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Preface

This thesis is about the well-posedness and sharp interface limits of stochastic Cahn-
Hilliard equations. We are concerned with the following three related problems:

(1)

We consider the stochastic 2-dimensional Cahn-Hilliard equation which is driven by
the derivative in space of a space-time white noise:

ou=A(=Au+ f(u)) + V- &

We use two different approaches to study this equation. First we prove that there
exists a unique solution to the stochastic Cahn-Hilliard equation. Moreover, we use
the Dirichlet form approach in [AR91] to construct the probabilistically weak solution.
By clarifying the precise relation between the two solutions, we also get the restricted
Markov uniqueness of the generator and the uniqueness of the martingale solutions.
Furthermore, we also obtain exponential ergodicity of the solutions.

We study the the sharp interface limit of e-dependent two dimensional stochastic
Cahn-Hilliard equation as ¢ — 0:

ot = Av® + EUWt,

1
V¢ = —cAuf + gf(us),

where W is space-time white noise or conservative noise. In the case when the noise
is sufficiently small, by comparing the solutions with the approximation solution
constructed in [ABC94], we show that the limit of the solutions is also solutions to
the deterministic Hele-Shaw problem.

We study the asymptotic limit, as € N\ 0, of solutions of the stochastic Cahn-Hilliard
equation:

1 .
Ou® = A <—5Au5 + gf(u‘g)) + Wi,

where W = W or W*® = W&, W is a (Q-Wiener process and W€ is smooth in time

and converges to W as € \, 0. In the case that W* = W, we prove that for all

o > %, the solution u® converges to a weak solution to an appropriately defined

limit of the deterministic Cahn-Hilliard equation. In radial symmetric case we prove
that for all o > %, u® converges to the deterministic Hele-Shaw model. In the case
that W*® = W€, we prove that for all ¢ > 0, u® converges to the weak solution to
the deterministic limit Cahn-Hilliard equation. In radial symmetric case we prove
that u® converges to deterministic Hele-Shaw model when ¢ > 0 and converges to a

stochastic model related to stochastic Hele-Shaw model when o = 0.
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Chapter 1

Introduction and Main Results

This thesis is concerned on the well-posedness and sharp interface limits of stochastic
Cahn-Hilliard equations.

1.1 The deterministic case

The Cahn-Hilliard equation on a smooth domain D is given by

Ou = Awv,

v=—Au+ f(u), (1.1)
ou  Ov
o =0 on 0D,

which was introduced by Cahn and Hilliard [CH58] to study the phase separation of
binary alloys. Here f(u) = u® —u. The equation () is the H '-gradient flow of the
energy functional

E(u) = % /D Vu(z)2dz + /D Flu(z))da, (1.2)
L2

where F'(u) = § 1)? is the double-well potential.
If w is a solution to equation () then

2

—5( /atu (t,2) (—=Au(t, ) + f(ult, z))) da

(1.3)
/ v(t, z)Av(t, z)dx / |Vu(t, z)|*dz < 0.
D
Clearly, the minimizers of the energy () are the constant functions u = 1 and u = —1,
which represent the “pure phases” of the system. However, these “pure phases” cannot be
reached unless the initial value ug satisfies [, uo(x)dx = %|D| because of the conservation
law, i.e.
— | u(t,z)der =0
o | ultz)
for any solution u to () Instead, what will be produced is a “mixed phase”, more
precisely, which is a region in which v ~ +1 with u ~ —1 in its complement. Moreover,
a transition occurs across its boundary. This is referred as phase segregation and the
boundary is the interface between the two phases. If we look at the solution in a large
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scale (“stand far enough back”), the transition is on an invisibly small scale. All we see

is just the interface. The evolution of v under the Cahn-Hilliard equation (EI) derives

an evolution of the interface. One of the most important problems is to determine how

the interface evolves. To see any evolution of the interface, we must wait for a long time.
t x

More specifically, let € be a small parameter and u(t, z) := u(Z, Z), where u is a solution
to () Then u® satisfies the following equation:

ot = Av°,
13 1 1>
v=—cAu +gf(u ), (1.4)
ou®  Ov®
= on =0 on OD.

It was formally derived by Pego [Peg89] and rigorous proved by [ABC94] by using
the method of matched asymptotic expansions that the equation (@) converges to the
Hele-Shaw model. That is, as € N\, 0, the chemical potential v* tends to a limit v which,
together with a free boundary I' := Up<;<7({t} x I'), solves the following deterministic
Hele-Shaw model:

(A’U:Oin'D\Ft, t>0,
?:OonaD,
n
v=_SH on I}, (1.5)
1
V:—{g} v on I,
L 2 on]ry,
where
b F(s) 2
— ds = =
S= Vs
0
[%]F v = (O,vT — ),

H is the scalar mean curvature of I'; with the sign convention that convex hypersurfaces
have positive mean curvature, V is the normal velocity of the interface with the sign
convention that the normal velocity of expanding hypersurfaces is positive, n is the unit
outward normal either to 9D or to I';. Denote D™ and D~ are the exterior and interior
of T';. vt v~ are respectively the restriction of v on [0,¢] x DT and [0,¢] x D~.

Later in [Che96], the author formulated a weak solution to the free boundary problem
(@) (see Definition ) and showed that the solutions of () approach, as € \, 0, to
weak solutions of () by using a compactness argument. In fact the energy functional
of () is given by

1
£ (uf) = / e (u)dx, € () == < |Vue|? + ZF(u). (1.6)
D 2 €
One can directly verify that for any solution (u®,v¥) to equation (@),
d
—&(u°(t,-)) = —/ Vv (t, )P dx <0, (1.7)
dt D

which is also called the Lyapunov property for equation (@) Thus £%(u®) is uniformly
bounded in ¢, > 0 if the energy of the initial value is bounded uniformly in €. Note that



1.2. The stochastic case 3

as ¢ — 0, F(u®) — 0, which is equivalent to u* — —1 + 21y for some E C [0,7] x D
where 1p is the characteristic function of E, i.e. 1g(z) =1 when z € F and 1g(z) =0
when = ¢ E. Ty := OF; is the interface. By using a varifold approach, Chen in [Che96]
analyzed the property of the limit of the solutions to equation () and then proposed a
definition of weak solution of this limit. Any classical smooth solutions to (@3 are weak
solutions. In some special case, the smooth weak solutions are also classical solutions to

(L.9).

1.2 The stochastic case

We are interested in the global well-posedness and the sharp interface limit of the stochas-
tic Cahn-Hilliard equation:

1 .
Ou = A (—6Au5 + gf(u5)> + "Wy, (1.8)
where W is the noise which may depend on «.

1.2.1 Well-posedness for stochastic Cahn-Hilliard equation

For the well-posedness, the stochastic Cahn-Hilliard equation was first studied in [PM83],
where Petschek and Metiu performed some numerical experiments for the stochastic
Cahn-Hilliard equation driven by space-time white noise. In [EM91], Elezovic and Mike-
lic proved the existence and uniqueness of a strong solution to the stochastic Cahn-Hilliard
equation driven by trace-class noise. Then Da Prato and Debussche [DPD96] proved ex-
istence and uniqueness of solutions for space-time white noise and obtained the existence
and uniqueness of an invariant measure for trace-class noise. Later there are many papers
in which the authors study the properties of the solutions to the stochastic Cahn-Hilliard
equations driven by trace-class noise (e.g. [DG11, Scal7]).

In Chapter B we show the well-posedness for the conservative stochastic Cahn-Hilliard
equation

1
dX, = —5A (AX—: X*:)dt + BdW,,
X0)=ze V!,

on T? in the probabilistically strong sense where A = A, B = div. W, is an L3(T? R?)-
cylindrical Wiener process, which is defined in Section @ : X3 : denotes the Wick
power, which is introduced in Section @ and the space V5 ' is similar to the Sobolev
space of order —1, which is introduced in Section @p

For the conservative-type equation (), the Gibbs measure v is formally given by
the following ®3-field:

(1.9)

v(dg) = cexp (— [0 d:c) ul(do),

where p is the Gaussian free field, ¢ is a normalization constant, and : ¢* : is the fourth
order Wick power of ¢. Equation () can be interpreted as the natural “Kawasaki”
dynamics (see [GLP99]) associated to the Euclidean ®3-quantum field. In [PW81] Parisi
and Wu proposed a program for Fuclidean quantum field theory based on getting Gibbs
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states of classical statistical mechanics as limiting distributions of stochastic processes,
especially as solutions to non-linear stochastic differential equations. Then one can use the
stochastic differential equations to study properties of the Gibbs states. This procedure is
called stochastic field quantization (see [JLM85]). The equation () can also be viewed
as a stochastic quantization equation for the ®3-field.

Over the years, there is a lot of literature (see [JLMS85, AR91, DPD03, MW17,
RZ717a, RZZ17h]) on the stochastic quantization of the ®3-field. The authors in these
papers considered the following non-conservative stochastic quantization equation:

dX, = (AX—: X3 )dt + dW,. (1.10)

First results are due to Jona-Lasinio and Mitter [JLM85]. Using the Girsanov theorem,
they constructed solutions to a modified equation on T?:

dX, = (=N + 1) (AX—: XP 1 +aX) + (—A + 1)"2dW, (1.11)

for 1% < ¢ < 1. They also proved the ergodicity for () In [AR91] Albeverio and
Rockner studied ([1.10) using Dirichlet forms and constructed probabilistically weak solu-
tions to ([L.10). In [MR99], Mikulevicius and Rozovskii constructed martingale solutions
to (M) but the uniqueness remained open. In [DPD03] Da Prato and Debussche con-
sidered the associated shifted equation to ([L.10) on T? and proved the local existence and
uniqueness of solutions in the probabilistically strong sense via a fixed point argument
and then showed the non-explosion for almost every initial point by using the invariant
measure. Recently Mourrat and Weber [MW17] showed the global existence and unique-
ness for the shifted equation both on T? and R? for every initial point. Combining the
results from the weak approach and strong approach, Rockner, Zhu and Zhu [RZZ17h|
proved the restricted Markov uniqueness for the generator of (@) and the uniqueness
of the martingale problem to ([l.10) arised in [MR99] on T? and R?. Furthermore, the
ergodicity of (E) on T? has been obtained in [HM18, RZZ17a, TW16].

For the conservative case, Funaki [Fun89] proved the existence and uniqueness of
equation (@) on R and in [DZ07] Debussche and Zambotti studied equation () on
[0, 1] with reflection. But for the higher dimensional case, even though the linear operator
A? gives much more regularity, the noise and hence the solutions are still so singular that
the non-linear terms in ([1.9) are not well-defined in the classical sense. This difficulty is
similar as in equation ()

To overcome this difficulty, we use two approaches to study () First we follow
the idea in [DPDO03], [MW17] and [RZZ17b] to split the solution to X =Y + Z, where

Z(t) = fot e*(tgis)AzBdWs. Similarly as in the ®5 case, Y has better regularity than the
solution to ([L.9) and satisfies the following shifted equation:

dy 1 1<

— =AY+ AN Cky3 k. gk

a2t T kz_; ’ (1.12)
Y(0)==z2

t—s

where Z(t) = fot e 2 BdW,. In Chapter B we obtain the existence and uniqueness of
the solution to () The fixed point arguments for local well-posedness in [DPDO03]
and [MW17] only hold for initial values in C~3*. Due to the singularity of the noise
and the lack of a maximum principle and a uniform LP-estimate, we only have a uniform
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H~'-estimate (see Theorem @), which is not strong enough to combine it with local well-
posedness (see Remark ﬂ) Instead, our argument is based on a classical compactness
argument. We obtain the existence of global solutions starting from the uniform H~1!-
estimate directly. Moreover we consider the solutions in H ! and use the L*-integrability
to obtain uniqueness for ([L.12).

In addition, we use the method in [AR91] to construct the Dirichlet form for (@)
(see Theorem E), which is given by

Mew) =5 [ (V6. Vb o0 € G5,

where FC}° is defined in Section @ We note that the tangent space is chosen as V!
and the gradient operator V is also defined in V;'. This is different from the Dirichlet
form for (@), where the tangent space is chosen as L? and the gradient is the L*-
derivative. By the integration by parts formula for v we also obtain the closability fo the
bilinear form (A,FCs°). The closure (A,D(A)) is a quasi-regular Dirichlet form, which
enables us to construct a probabilistically weak solution to () Then by clarifying the
relation between this solution and the solution to (), we prove that X — Z, where X
is the solution obtained by the Dirichlet form approach, also satisfies the shifted equation
(.12). Tt follows that ®3 field is an invariant measure for X. Then we obtain the Markov
uniqueness in the restricted sense for the generator of the Dirichlet form restricted to
FCp° and the uniqueness of probabilistically weak solutions to () having v as an
invariant measure.

We also prove exponential ergodicity by two approaches. One simple and short way
by the Dirichlet form approach is presented in Remark pB.31. Using a uniform estimate,
an invariant measure can also be constructed by the Krylov-Bogoliubov method. We
follow an idea from [TW16] to prove the strong Feller property of the semigroup of the
solution to the equation (@) Then we obtain exponential convergence to the unique
invariant measure of the semigroup for every starting point.

1.2.2 Sharp interface limit for big ¢ > 0

In Chapter @ we obtain the convergence results arising in the study of the sharp interface
limit, as € \, 0, of the solutions to the stochastic Cahn-Hilliard equation on D := (0, 1)?,

ot = Av® + 5"Wt,

1
V8 = —eAut + —f(ua)7 (1.13)
€
u®(0) = z,
with Neumann boundary conditions,
ou®  O°
= =0on JdD. 1.14
on on o (1.14)

Here f(u) = F'(u) and F(u) = +(u*—1)? is the double-well potential , ¢ > 0 is a constant,
and W is a singular noise which r@resen‘cs the space-time white noise in Section @ and

the conservative noise in Section
In [ABC94], the authors study the deterministic Cahn-Hilliard equation

owu® = Av® in Dy,

1 (1.15)
v° = gf(ua) —eAu® in Dr,
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where Dy := (0,7) x D. Assume that the interface has been formed initially. That is,
there exists a smooth closed curve I'qy CC D such that v*(0) = —1 in D™, the region
enclosed by 'y, and uf(0) &~ 1 in DT := D\ (I'joUD ™). Formally as € — 0, the solutions
to equation () reach the stable state u* such that f(u*) =0, i.e. lim.,ou®(t,z) = £1.
Hence there is an interface I'; between these two states.

The authors in [ABC94| use a new matched asymptotics to constructed approximation
solutions. They construct a pair of approximation solutions (u5,v%), such that I'; is the
zero level set of u5(t), which satisfies

Ou’y = Avy in Dy,
1 (1.16)
vy = —f(u5) — eAus + 15 in Dy,
£

for boundary conditions
ouy  O0AuG
on  On
They also showed that as ¢ — 0, both v* and v tend to v in C(Dr), which, together

with a free boundary I' = Up<i<r(I'y x {t}), satisfies the following deterministic Hele-Shaw
problem (), starting from gg:

=0 on JdD.

(Av=0in D\ Ty, t>0,
O,v =0 on 0D,
v=SH on I,
! (1.17)
1[0
V:§ n Ftv on Iy,
\ F0:F007

where

H is the mean curvature of I'; with the sign convention that convex hypersurfaces have
positive mean curvature, V is the normal velocity of the interface with the sign convention
that the normal velocity of expanding hypersurfaces is positive, n is the unit outward
normal either to 9D or to Iy, v and v~ are respectively the restriction of v on [0,¢] x DT
and [0,¢] x D~.

For the stochastic Cahn-Hilliard equation, the authors in [ABK18] proved that for
large 0 > 0 the sharp interface limit of equation ([1.13) also satisfies the deterministic
Hele-Shaw model if W is a trace-class noise. For o = 1, the sharp interface limit is also
conjectured to satisfy the following stochastic Hele-Shaw model:

(Av=0inD\ Ty, ¢t >0,
0,v =00n 90D,
v=Ad +Wonl}
1[0
V:§ {%}Ftvonft,

[ T'o = oo,

(1.18)
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In [AKO14], the authors prove that the sharp interface limit of generalized Cahn-Hilliard
equation: dyu = A(—eAu + 1 f(u) — G5) + Gj satisfies the following Hele-Shaw model:
(Av=—1limG]inD\Ty, t >0,
e—0
0,v =0 on 0D,

v=AH —limG5on Ty, (1.19)

1[0
V= 3 {%}FtvonFt,
\ FO:F007

Since they require some regularity conditions for G7, G5 w.r.t time, which are not satisfied
by Brownian motions, it is not clear how to obtain the stochastic Hele-Shaw model
rigorously. Until now, the rigorous complete description of the motion of interfaces in
dimensions two and three in stochastic case stands for many years as a wide open problem.

We mention that in [Fun99] and [Web10], the authors consider the following stochastic

Allen-Cahn equation
1

1

Ou = Au — 6—2f(u) + gEi (1.20)
The noise Z° is constant in space and smooth in time. For ¢ — 0 the correlation length
goes to zero at a precise rate and fot =%ds converges to a Brownian motion pathwisely.
They prove that the dynamics of the phase-separating hyperplane I'; appearing in the
limit is given by stochastic mean curvature flow (see also in [Funl@, Chapter 4]). For
space-time white noise, in [TW1§] the authors prove the “exponential loss of memory
property”. But for sharp interface limit, there is still no result for space-time white noise.
In Chapter W, we consider the sharp interface limit of stochastic Cahn-Hilliard equa-
tion driven by singular noise. The stochastic Cahn-Hilliard equation is a model for
the non-equilibrium_dynamics of metastable states in phase transitions, [Coo70, HH77,
Lan71]. In Section §.2, we consider the Cahn-Hilliard-Cook model which is generated by
Cook, [Coo70] (see also in [HH77]), incorporating thermal fluctuations in the form of an
additive noise. In our case the noise is chosen as W = W; or W = V - W5, where W, is
mass-conserved L*(D,R)-cylindrical Wiener process and W5 is an L?(D,R?)-cylindrical
Wiener process. In the case that W = V .- W, the equation is also well-known as
time-dependent Ginzburg-Landau (TDGL) equation. This equation is also related to the
stochastic quantization for ®3-quantum field. For the existence and uniqueness results
for these two kinds of equations, we refer to [DPD96, RYZ18] and the reference therein.
To analyze the sharp interface limit of the solution (u°,v¢) to equation ), we
estimate the difference of (u®, v¥) to (u5, v5) which is the solution to equation () For
the case W = Wi, we follow the idea in [ABKI18]. Let u® be the solutions to equation
(.13) and u5 be the approximation solution in Theorem §.2. We consider the equation
that the residual R® := u® — u% satisfies. Then we prove that R°® converges to 0 for
o> % by obtaining a uniform estimate of R° . Moreover, we prove that v* — v5 also
converges to 0, where v4 is the potential defined in ([L.16). Hence we obtain that the shar
interface limit of the equation ([l.13) satisfies the deterministic Hele-Shaw model ([1.17)
if o > %. We mention that since the noise is rougher, we cannot apply It6’s formulae
to R° directly. Hence the trick in [ABKI1§] fails in our case. Instead, we make use of
the Da prato-Debussche’s trick (see [DPDO03]). That is, let Z¢ = ¢ fot e~ =92 W), and
Yeé = R® — Z¢. Compared with Z° and u®, Y¢ has better regularity, which enables us to

apply Newton-Leibniz formula and obtain uniform estimate for Y* instead.
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For the case W = V - W5 the equation () is ill-posed in the classical sense, since
the solution is not a function. To define the nonlinear terms, a renormalization method
is required. As the solution is a distribution, we do not consider the sharp interface limit
for the solutions of () directly. Instead we do suitable approximation for the noise
with W" := W, * p;,, where p;, approximates to identity (as h — 0) and we consider the
following renormalized equation:

1
Qe = A (‘eAuah + = (Fuh) - 3cz,tu€7h>> dt+e7V - dWl, (1.21)

€
where 3¢}, ,u®" is the renormalization term (see (refc4a.5)). As h — 0, u" converges to
u®, which is the unique solution to equation ([l.13). Similarly we consider the residual
Rh = y&" — 5 and do a similar estimate as before. We mention that for fixed ¢ > 0,
¢t — 00 as h — 0, which makes the term c}itug’h hard to control. Thus we consider the
case that ¢ < h* for some ¢ > 0 and h goes to 0 (see Theorem Y.14). In this casi

1.21))

e,h

can be very small as i — 0. Thus the term cj ,u®" is small. For other terms in (]L.

the method is similar as the case that YW = W,. Finally we prove that R®" and v®" —v5
converge to 0 if o > % . This also implies that the sharp interface limit of the solution

to equation ([1.21]) is given by ()

1.2.3 Sharp interface limit for small ¢ > 0

In Chapte% we continue to consider the sharp interface limit of stochastic Cahn-Hilliard
equation ([L.§) for small o > 0. As what was showed in Chapter @, for large o > 0, the
stochastic Cahn-Hilliard equation ([l.§) converges to the deterministic Hele-Shaw model
(IL.5). However, for o > 0 small, the perturbation by the noise become much stronger. It
is reasonable to think that the solutions to equation ([l.§) do not converge to deterministic
Hele-Shaw model () when ¢ _is small. But the method in Chapter @ can be only applied
to prove the convergence to ([l.5) and also seems not easy to obtain the convergence for
small o.

To overcome the difficulty, we use a weak approach which is motivated by [Che96],
where the author considered the deterministic Cahn-Hilliard equation

(Ou® = Av®,  (t,z) € [0,T] x D,

V7 = —eAu(t) + %f(ue(t)), (t,x) €[0,T] x D,

out  oOv®
5= 5 =0, (t2)€[0,7)x D,

u®(0,2) = ug(z), = €D,

(1.22)

and formulated a weak solution to the deterministic Hele-Shaw model (@) (see Definition
and showed that the solutions to ([1.22) approach, as £ \, 0, to weak solutions to

(IL.5) by using a compactness argument. In fact, the Cahn-Hilliard equation ([L.22) is an

H~'-gradient flow with the van der Waals-Cahn-Hilliard energy functional

£° (u) ::/Deg(ug)dx, e (u) ::§|V7f\2+§F(u€). (1.23)

Denote by (u5,, v5,) the solution to the deterministic Cahn-Hilliard equation () One
can directly verify that

—58 5 / (Vv5|? <0, (1.24)



1.2. The stochastic case 9

which is also called the Lyapunov property for equation ([1.22). Thus £%(u%,) is uniformly
bounded in t,e > 0 if the energy of initial value is uniformly bounded in . Note that
as ¢ = 0, F(u5,) — 0, which is equivalent to u5, — —1 4 21 for some E C [0,T] x D
where 1 is the characteristic function of E, i.e. 1g(x) = 1 when x € E and 1g(z) =0
when = ¢ E. Iy := OF; is the interface. By using a varifold approach, Chen in [Che96]
analyzed the property of the limit of the solutions to equation (&) and then proposed a
definition of weak solution of this limit. Any classical smooth solutions to ([1.22) are weak
solutions. In some special case, the smooth weak solutions are also classical solutions to
(@) We need to mention that in [ABC94] and Chapter @, the convergence of solutions to
Cahn-Hilliard equation ([L.22) to ([L.5) is proved under the assumption on the existence of
smooth solution to () While in [Che96], Chen proved the convergence of the solution
to equation ([1.22) and analyzed the limit directly. No assumption on existence of solution
to () is required in [Che96].

In our case, we consider the sharp interface limit of the following stochastic Cahn-
Hilliard equation on a bounded smooth open domain D C R? (d = 2, 3):

(du® = Av°dt + 7dWy,  (t,z) € [0,T] x D,

v = —eu(0) + SfWE), () €[0.T] X D,
ous  Ov°
on  on
(u®(0,2) = ug(x), =x€D.

Here W is a ()-Wiener process where () satisfies (@) and (@) f(u) = F'(u) where
F(u) = 7(u* — 1)? is the double well potential and the initial data u§ satisfies

(1.25)

0, (t,z)e][0,T]x D,

1
4

1
sup / <§\Vu8(x)|2 + EF(ug(sv))) dr < & < o0,
D

0<e<1

L/ ug(x)de =mg € (—1,1) Ve € (0,1].
Dl Jo

For small ¢ > 0, we extend the method in [Che96] to equation () and obtain weak
solutions to _the limit of equation ([l.25). Then we consider the limit of the solution to
equation ([L.25) directly, which enables us to analyze different models the limit should
satisfy. We mainly consider () with two types of driven noise: ()-Wiener process and
“smeared” noise which is smooth in time.

(1.26)

The equation with ()-Wiener process for o > % In this case, we can obtain

that for o > 1. the solutions to equation (@) converge to the weak solutions defined
in Definition p.2. In fact, motivated by [DPD96]. we apply the 1t6’s formula to £°(u*)
and prove the Lyapunov property of equation () for all & > % (see Lemma @) By
tightness argument, we prove that for all o > %, the solutions to equation ([1.25) converge
to the weak solution of the limit of deterministic Cahn-Hilliard equation ([L.22) defined
by Chen [Che96] (see Theorem ) For o = 3, the tightness and convergence results are
still true. But we cannot conclude that the limit is a weak solution defined in Definition

Particularly in radial symmetric case, we prove that for all o > %, the limit of solutions
to equation ([L.25) satisfy ([L.22) in the weak sense. Thus we conjecture that in general for
P — a.s. w, as € \( 0, the chemical potential v°(w) tends to a limit v(w) which, together

with a free boundary I'(w) := Up<t<r({t} X I't(w)), (v(w),I'(w)) satisfies ()
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The equation with “smeared” noise for o > 0. Moreover, we consider stochastic
Cahn-Hilliard equation driven by“smeared” noise which is smooth in time. This kind of
noise was considered also for stochastic Allen-Cahn equation in [Fun99, Web1(, FY19].

We smoothen the noise in time and consider the following random PDE:

4 £
a@“t = A 4%, (t,2) € [0,T) x D,
e _ € l €
V¥ = —eAut(t) + 6f(u (t), (t,z)e[0,T]xD, (1.27)
out  o°
871 - an - 07 (t’x) € [07T] X @'D,
0°(0.) = (), €D,

dwe

dt
R. Formally as ¢ — 0, & — %. Since & is smooth in time, this enables us to apply the
Newton-Leibniz formula to £¢(u®) and obtain the Lyapunov property. Thus the tightness
and the convergence results hold for all & > 0. Similar as before, for all ¢ > 0, the
solutions to (ﬂ) converge to the weak solution to Definition (see Theorem b.21).
For the interesting case that o = 0, when ¢ \ 0, we have that u® — —1 4 21 g for some
E€[0,T] x D, v* — v and

where & = Wy = ffooo p:(t — s)Wsds and p. is an approximate delta function on

2d1p = Avdt + dW,. (1.28)

() actually gives a weak formula to describe how the evolution of the interface I'; :=
OF; is governed by the noise W (see Theorem p.24). This gives the first rigorous result of
the sharp interface limit of stochastic Cahn-Hillliard limit to a stochastic model. Similar
as before, we conjecture that for P — a.s. w, as ¢ ~\, 0, the chemical potential v*(w)
tends to a limit v(w) which, together with a free boundary I'(w) := Up<i<r({t} x T't(w)),
(v(w), '(w)) satisties the following stochastic problem:

(A'Udt = —th in D \ Ft, t> 0,

2—2:0011(91),

v=_SH on I}, (1.29)

1[0 L,

\

We also mention that Chen’s definition for weak solution in Definition @ is not so
“perfect”, since it is still unknown whether in general such a smooth weak solution is
a classical solution to ). The problems come from that a "good” weak formula for
the third equation in ([L.5) is still missing. Moreover, in [ABK18] the authors also give
some different conjectures about the sharp interface limit of equation ([1.25) via a formal
calculation, especially in the case that ¢ = 1. In their case the value of v on the interface
is different from ours. As what we analyze in Remark p.27, our model ([L.29) fit quite
well in radial symmetric case. But in general case, we still cannot give a fully rigorous
proof.

In fact, identifying the value of v on the interface I'; is the main task of varifold
approach to study the sharp interface limit of both Cahn-Hilliard equation and Allen-
Cahn equation (cf. [HT00, Ton02, Ton05, RS06, Le08, RT08]). In these literature, the
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authors give a weak formula for the third equation in (@) But they are unable to prove
the limit of the solutions to equation ([1.22) satisfy such weak formula. Until now, a fully
rigorous proof of the sharp interface limit of Cahn-Hilliard equation is still missing.

Finally, as what we mentioned before, the methods in [Che96] and also in this chapter
are deeply related to the theory of varifolds. We recall some related definitions in Section

. In fact, varifolds represent very natural generalizations of classical n-surfaces, as they
encode, loosely speaking, a joint distribution of mass and tangents. More technically, var-
ifolds are Radon measures defined on the Grassmann bundle R¢ x G(n, d), whose elements
are pairs (x,.S) specifying a position in space and an unoriented n-plane. Varifolds have
been proposed more than 50 years ago by Almgren [Alm65] as a mathematical model for
soap films. bubble clusters, crystals, and grain boundaries. After Allard’s fundamental
work [All72], varifolds have been successfully used in the context of Geometric Measure
Theory, Geometric Analysis, and Calculus of Variations. One successful application of
varifolds resulted in the definition and the study of a general weak mean curvature flow
in [Bra78]. which allowed to prove existence of mean curvature evolution with singular-
ities in [KT17]. Beyond the theory of rectifiable varifolds, the flexibility of the varifold
structure has been proved to be relevant to model diffuse interfaces, e.g., phase field
approximations, and a crucial part in the proof of the convergence of the Allen-Cahn
equation to Brakke’s mean curvature flow [[lm93, Ton03, TT15], or in the proof of the
I'-convergence of Cahn-Hilliard type energies to the Willmore energy (up to an additional
perimeter term) [Ton05, RS06, Le08, RT0§].

1.3 Structure of the thesis

In Chapter P we collect some preliminaries for later chapters.

In Chapter B, we obtain the global well-posedness of stochastic Cahn-Hilliard equa-
tion ([l.4) driven by conservative white noise and prove the ergodicity. This chapter is
organized as follows: In Section we collect some results related to Besov spaces. In
Section ﬂ we study the solution to the linear equation and define the Wick power. In
Section g we obtain the global existence and uniqueness of solutions to the shifted equa-
tion (|L.12). In Section B.4 we obtain existence of probabilistically weak solutions via the
Dirichlet form approach. By clarifying the relation between the two solutions we obtain
Pi-field v is an invariant measure of X Markov uniqueness in the restricted sense for the
generator of the Dirichlet form restricted to FC}° and uniqueness of the probabilistically
weak solutions to (@) Moreover, using the Yamada-Watanabe Theorem in [Kur07] we
obtain a probabilistically strong solution to () in the stationary case. Finally we prove
the strong Feller property and exponential ergodicity of the Markov semigroup associated
to the solution to () in Section @ This part is based on the joint work [RYZ18] with
Prof. Michael Rockner and Prof. Rongchan Zhu.

In Chapter @, we consider the stochastic Cahn-Hilliard equation (@) driven by space-
time white noise and conservative noise and prove that for large ¢ > 0, the sharp interface
limit satisfies the deterministic Hele-Shaw model ([l.5). This chapter is organized as

This thesis is oganised in the following:

follows: In Section K.l we collect some results related to Besov spaces. The theorem
about the sharp interface limit for space-time white noise is stated in Section and we
prove it in Section #.3. In Section we use a similar argument as we used in Section ..

to prove the results for conservative noise. This part is based on the joint work [BYZ19)
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with Prof. Lubomir Banas and Prof. Rongchan Zhu.

In Chapter B, we consider the stochastic Cahn-Hilliard equation (@) where W¢ =W
or W¢ = W¢. Here W is a ()-Wiener process and W¢ is smooth in time and converges
to W as € \( 0. This chapter is organized as follows: In Section we give some basic
notations and assumptions. In subsection p.1.3 we give the main results for ([L.25) driven
by (Q-Wiener process. In Section p.2, we establish certain e-independent estimates for the
solution to ([1.25), which allow us obtain tightness and then apply Skorokhod’s theorem
to obtain a convergence subsequence for all o > % Moreover for o > %, we prove that
this limit is actually a weak solution to ([L.5). Similar as in [Che96], in Section p.3, we

study the rad symmetric case and prove that for all o > %, the limit of the solution
F)

to equation satisfies the deterministic Hele-Shaw model () The rigorous proof
of Theorem M in radial symmetric case is given in Section p.4. Finally in Section p.5, we
consider the case for “smeared” noise £ and obtain the convergence result for all o > 0.
For ¢ > 0, the limit of the solution to (@) is a weak solution to equation . For
o = 0, we obtain a stochastic characterisation of the evolution of the interface () and
partially prove in radial symmetric case that it satisfies the stochastic Hele-Shaw model
() This part is based on the joint work [YZ19] with Prof. Rongchan Zhu.




Chapter 2

Preliminary

2.1 Besov spaces

In the following we recall the definition of Besov spaces which will be frequently used
in Chapter g and W. For a general introduction to the theory of Besov spaces we refer
to [BCD11], Tri78, Tri06]. First we introduce the following notations. Throughout the
thesis, we use the notation a < b if there exists a constant ¢ > 0 such that a < c¢b,
and we write a = b if a < b and b < a. The space of real valued infinitely differentiable
functions of compact support is denoted by 2(R?) or 2. The space of Schwartz functions
is denoted by S(R?). Its dual, the space of tempered distributions, is denoted by S’(R9).
The Fourier transform and the inverse Fourier transform are denoted by F and F~1,
respectively.

Let x, 0 € D be nonnegative radial functions on R?, such that

(). the support of x is contained in a ball and the support of 6 is contained in an
annulus;

(il). x(2) + 2 0,500(2772) = 1 for all z € R™.

(iii). supp(x) Nsupp(6(277-)) = @ for j > 1 and suppf(2~-) N supph(277-) = ( for
li —j| > 1.

We call such a pair (x, ) dvadic partition of unity, and for the existence of dyadic
partitions of unity we refer to [BCD11, Proposition 2.10]. The Littlewood-Paley blocks
are now defined as

A ju=F Y (xFu) Aju=F 1 0(277)Fu).

Besov spaces
For a € R, p,q € [1,00], u € Z we define

lullg, = (D (2 Azullr) ),

Jj=-1

with the usual interpretation as [* norm in case ¢ = oo. The Besov space By, consists
of the completion of & with respect to this norm and the Hoélder-Besov space C® is given
by C*(R?) = Bg, ,(R?). For p,q € [1,00),

By (RY) = {u € S(RY) « ull gy, < oo},
Co(RY) € {u € S'(RY : ulenzey < 00},

13
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We point out that everything above and everything that follows can be applied to dis-
tributions on the torus (see [Sic85], [SW72]). More precisely, let S’(T%) be the space
of distributions on T¢. Besov spaces on the torus with general indices p,q € [1, 0] are
defined as the completion of C°°(T%) with respect to the norm

||U||Bg,q(1rd) = (Z (2ja||Aju||Lp(1rd)>q)1/q7

Jj=-1

and the Holder-Besov space C* is given by C* = B% (T%). We write || - || instead of
| - | Be. _(ray in the following for simplicity. For p,q € [1,00)

By (T?) = {u € 8'(T%) : ||ull gy () < o0}.

Co ¢ {u e S(TY : jula < ool. (2.1)

Here we choose Besov spaces as completions of smooth functions, which ensures that
the Besov spaces are separable which has a lot of advantages for our analysis below.

Wavelet analysis

We will also use wavelet analysis to determine the regularity of a distribution in a
Besov space. In the following we briefly summarize wavelet analysis below and we refer
to work of Meyer [Mey95], Daubechies [Dau92] and [Iri06] for more details on wavelet
analysis. For every r > 0, there exists a compactly supported function ¢ € C"(R) such
that:

(i). We have (¢(-), (- — k)) = 0y, for every k € Z;

(ii). There exist Ecedy, k € Z with only finitely many non-zero values, and such that
©(r) = D ep @rp(2x — k) for every z € R;

(iii). For every polynomial P of degree at most r and for every z € R, >, ., [ P(y)¢(y—
k)dyp(x — k) = P(x).

Given such a function ¢, we define for every x € R? the recentered and rescaled
function ¢} as follows

Pa(y) =L 22 (2" (y; — ,))-
Observe that this rescaling preserves the L:-norm. We let V;, be the subspace of L?(R?)
generated by {¢ : x € A, }, where

An = {(2771]{71, ceey 27n]{]d) : k’l € Z}

An important property of wavelets is the existence of a finite set ¥ of compactly supported
functions in C" such that, for every n > 0, the orthogonal complement of V,, inside V1
is given by the linear span of all the ¢?, z € A,,,¢ € V. For every n > 0

{f,x e A} UL -m >n € U x € Ay}

forms an orthonormal basis of L?(R%). This wavelet analysis allows one to identify a

countable collection of conditions that determine the regularity of a distribution.
Setting ¥, = WU{¢}, by some methods in weighted Besov space (see [RZZ17h, (2.2),

(2.3), (2.4)] and its reference for details), we know that for p € (1,00), @ € R, f € C*

LA S D20 Y > () ()" (2.2)
n=0

Yew, zeA,
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where w(z) = (1 + |2[})"2,0 > 0.

Estimates on the torus

In this part we give estimates on the torus for later use. Set 2 = (I — A)2. For
5> 0,p € [1,400] we use H; to denote the subspace of LP(T?), consisting of all f which
can be written in the form f = A"*g, g € LP(T¢) and the Hj norm of f is defined to be
the LP norm of g, i.e. || fllms = [|A° f[ Lo (ra-

To study (1.1) in the finite volume case, we will need several important properties of
Besov spaces on the torus and we recall the following Besov embedding theorems on the
torus first (c.f. [Tri78, Theorem 4.6.1], [GIP15, Lemma A.2], [Tri92, Remark 3, Section
2.3.2]):

Lemma 2.1. (i) Let 1 < py <pp < o0 and 1 < q < ¢ < o0, and let « € R. Then
B (T9) is continuously embedded in Bo 4/m=1/p2) (dy,

(ii) Let s >0, 1 <p <00, e >0. Then Hi** C B (T%) C B;,(T%).

(7ii) Let 1 < p; < py < oo and let « € R. Then Hg is continuously embedded in
Hg—d(l/m—l/m)

y .

(iv) Let 0 < ¢ < oo, 1 <p<ooands>0. Then B, C L.

Here C means that the embedding is continuous and dense.

We recall the following Schauder estimates, i.e. the smoothing effect of the heat flow,
for later use.

Lemma 2.2. (|GIP13, Lemma A.7]) Let u € BS (T%) for some o € R,p,q € [1,00].
Then for every 6 > 0
—tA2 _
e ull g s may S £l g .
One can extend the multiplication on suitable Besov spaces and also have the duality

properties of Besov spaces from [Tri78, Chapter 4]:

Lemma 2.3. (i) The bilinear map (u;v) — uv extends to a continuous map from C* x C®
to C if and only if o + 3 > 0.

(ii) Let o € (0,1), p,q € [1,00], p’ and ¢’ be their conjugate exponents, respectively.
Then the mapping (u;v) — [uvdz extends to a continuous bilinear form on ng(Td) X
B,%,(T9).

We recall the following interpolation inequality and multiplicative inequality for the
elements in H;, which is required for the a-priori estimate in section @ (cf. [Tri78,
Theorem 4.3.1], [RZZ15, Lemma 2.1}, [BCD11, Theorem 2.80]):

Lemma 2.4. (i) Suppose that s € (0,1) and p € (1,00). Then for u € H,

iy < el lull.

[l
(ii) Suppose that s > 0 and p € (1,00). If u,v € C*(T?) then
HQlS(UU)HLP(Td) S HUHLPI(W)HQ[SUHLW(W) + HUHL%(W)HQ[SUHLM(W)a

with p; € (1,00],i =1, ...,4 such that
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(7ii) Suppose that sy < s9 and 1 < p,q < co. Then for v € B2 and ¥0 € (0, 1)

p.q

0 1-6
U] L0s1+(1-0)sg < ||| ms1 ||U]| asn -
sy -0 < [l [l
We also collect some important properties for the multiplicative structure of Besov

spaces from [MW17] and [Tri06].

Lemma 2.5. ([MW17, Corollary 3.19, Corollary 3.21]) (1) For a > 0,p1,ps,p,q €
1, 0], le + p% = %, the bilinear map (u;v) — uv extends to a continuous bilinear map
from By < By, to B,

(2) For a < 0,ac+ 0 > 0,p1,p2,p,q € [1,00], pil%—p% = zla’ the bilinear map (u;v) — uv

extends to a continuous bilinear map from By X Bli q to By .

2.2 Symmetric quasi regular Dirichlet forms and Markov
Processes

In this section we recall some general Dirichlet form results from [MR92] which is used
in Chapter §. Let E be a Hausdorff topological space, m a o-finite measure on F,
and let B the smallest o-algebra of subsets of E with respect to which all continuous
functions on F are measurable. Let A be a symmetric Dirichlet form acting in the
real L%(m)-space, i.e. A is a positive, symmetric, bilinear, closed form with domain
D(A) dense in L?*(m), and such that A(®(u), ®(u)) < A(u,u), for any u € D(A), where
O(t) = (0Vvit) ALt € R. The latter condition is known to be equivalent with the
condition that the associated Cy-contraction semigroup T3, ¢ > 0, is submarkovian (i.e.
0 <u <1 m-a.e. implies 0 < Tyu < 1 m-a.e., for all uw € L?(m)); association means that
limyyo 1 (u — Tyu, v) r2(m) = Au, v), Vu, v € D(A).

Definition 2.6. (c¢f. [MR92, Chap. IV, Defi. 3.1]) A symmetric Dirichlet form is called
quasi-regular if the following holds:

(i) There exists a sequence (Fy)ren of compact subsets of E such that UpD(A)p, is
A2 -dense in D(A) (where D(A)p, == {u € D(A)|u =0 m-a.e. on E — Fy}; AY? s the
norm given by the scalar product in L*(m) defined by A1, where Ay (u,v) := A(u, v)+{(u,v),
(,) being the scalar product in L*(m). Such a sequence (Fy)ren is called an A-nest.

(7i) There exists an A}/Q—dense subset of D(A) whose elements have A-quasi continuous
m-versions. A real function u on E is called quasi continuous when there exists an A-nest
(Fy) s.t. u restricted to Fy, is continuous.

(iii) There exists u, € D(A),n € N, with A-quasi continuous m-versions u,, and there
exists an A-exceptional subset N of E s.t. {ty}nen separates the points of E — N. An
A-exceptional subset of E is a subset N C Ni(E — Fy) for some A-nest (Fy).

To recall the main results in [MR92] we recall the definitions of a Markov process and
a right process. Here we consider only Markov processes with life time oo.

Definition 2.7. (c¢f. [MR9Z, Chap. IV Defi. 1.5] A collection M := (2, M, (X¢)t>0, (P?).cr)
is called a Markov process (with state space E) if it has the following properties.

(i) There exists a filtration (M) on (2, M) such that (X;)i>o is an (My)i>o adapted
stochastic process with state space E.
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(7i) For each t > 0 there exists a shift operator 0, : Q — Q such that Xs 06, = Xqiy
for all s,t >0

(iii) P*,z € E, are probability measures on (2, M) such that z — P?*(A) is B(E)*-
measurable for each A € M resp. B(E)-measurable if A € o{X;|s € [0,00)}, where
B(E)* := NpepyB*(E) for P(E) denoting the family of all probability measures on
(E,B(E)) and BY(E) denotes the completion of the o-algebra B(E) w.r.t. a probability
P.

(iv) (Markov property) For all A € B(E) and any t,s > 0

P* (X, € AAM,]) =P [X, € A] P* —as.,2€ E.

Definition 2.8. (¢f. [MR92, Chap. IV Defi. 1.8]) Let M := (Q, M, (Xi)i>0, (P?).cr)
be a Markov process with state space E and corresponding filtration (M;). M is called a
right process if it has the following additional properties.

(i) (Normal property) P*(Xo=z) =1 for all z € E.

(i1) (Right continuity) For each w € Q, t — X;(w) is right continuous on [0, 00).

(7ii) (Strong Markov property) (M) is right continuous and for every (M;)-stopping
time o and every v € P(FE)

PY[ X,y € AIM,]| =PX (X, € A] P” —a.s.

for all A e B(E), t > 0.

Theorem 2.9. (JMR92, Chap. IV Thm 6.7]) Let E be a metrizable Lusin space. Then
a Dirichlet form (A, D(A)) on L*(E,m) is quasi-regular if and only if there exists a right
process M associated with (A, D(A)), i.e. the semigroup of M is an m-version of the

semigroup associated with (A, D(A)). In this case M is always properly associated with
(A, D(A)).

Remark 2.10. The results in [MR92, Chap. IV] are more general and can be applied
for general Hausdorff topological spaces and more general Markov processes. Lusin spaces
are enough for our use in this thesis.

2.3 Geometric measure theory

In this section, we recall some definitiosn and results of geometric measure theory which
is used in Chapter f§.

In this thesis, we denote by n ® n the matrix (n‘n’)gyq for n = (n',--- ,n%). We use
“I” to denote the identity matrix (d;;)4xq. For any d x d matrices A = (a;;) and B = (b;;),

d
A:B:= Trace(ATB) = Z al-jbij.

i,j=1

We denote by C(O) the space of m-th differentiable functions with compact support
in @ where O can be open or closed. Note that if O is compact, C"(O) = C™(O).
Moreover, we say a vector function Y = (Y1,--. Y4 € C™(O;RY) if Y € C7(0) for
any ¢ = 1,--- ,d. For any t > 0, we denote O, := [0,t] x O. We also denote by 1 the
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characteristic function of a set F, which is defined by 1g(x) =1 for x € E and 1g(z) =0
for z ¢ E.

Moreover, we denote H" as the n-dimensional Hausdorff measure on R? for any n €
0,d]. Forn = d, H? is just the Lebesgue measure on R%. For any H"-measurable function
6, we denote a measure H" |60 by

H"[0(A) :AO(x)dH"(x).

For any H™-measurable set M, H"| M := H"|1,, is the restriction of H"™ on M.

We denote by B,(z) the ball in R? centered at the origin # with radius r and B, :=
B,.(0). We also denote by S, the sphere of radius r in R? and by w, the area of unit
sphere S.

In the following, we recall several definitions from geometric measure theory (cf.
[AFPO00, Fed14, Sim83)]).

Radon measures
Let D be either an open or a closed domain. If L is a bounded linear functional on
C.(D) satisfying (L, ) > 0 whenever ¢ > 0 and ¢ € C.(D), a measure p generated by

pu(A) = sup  (L,v¢) forall A openin D
PpeCe(A),|4]<1

is called a Radon measure on D. We use (11,v) 1 € C.(D) to denote the value [ vdu(=
(L)),

Let 9MM(Dyr) be the space of all finite signed measures on Dy and Mgz (Dr) C M(Dr)
is the space of all Radon measures on Dr. Mg (Dr) and M(Dyr) are equipped with the
total variation norm || - |7 and weak topology, respectively. Now we give a criterion
theorem for a compactness sequence in Mg (Dr),

Theorem 2.11. (/Sim83, Theorem 4.4]) Suppose {jx}r>1 is a sequence of Radon mea-
sures on D with supys, ux(U) < oo for each open U C D with U compact in D. Then
there exists a subsequence {p } which weakly converges to a Radon measure on D in the
sense that

lim ju(f) = u(f) for cach f € Cu(D),

k’'—o00

where we used the notation

()= |t

BV functions
Let u € Li. (D). If the distributional gradient Du defined by

loc
(Du,Y) := (u, —divY) VY e C}(D;R%)

can be extended as a bounded linear functional over C,(D;R?%), then we say that u is a
function of bounded variation, denoted by u € BV(D). If u € BV (D), we use D;u to
denote the measure on C,(D) generated by the functional (u, —3,,v) for all ¥ € C}(D).
We denote by |Du| the Radon measure generated by

|Du|(A) := sup /udiv?dm, VA open C D.
YeC.(ARY),|YV|<1V/ A
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One can show in [Fed14] that D;u is absolutely continuous with respect to | Du| and there

exists a | Du|-measurable unit vector valued function © such that Du = 7|Dul, |Du|—
We say that a set £ C D is a BV set if 15 € BV(D). We denote vg by

Dlg(z)dx

|D1g|(z)dx

Clearly, in the case that OF is smooth, /g is the unit inward normal of E on 0F.

In the following, we introduce the several concepts of varifold, which can be found in
[Sim83, Chapter 8.

Rectifiable set

Definition 2.12. (rectifiable set) A set M C R is said to be a countably (d — 1)-
rectifiable set if M C My U <U;’i1 F; (Rd*1)>, where A=Y (My) = 0 and F; : R — R

are Lipschitz functions fori=1,2,---

Now we will give an important characterization of countably rectifiable sets in terms
of “approximate tangent spaces”.

Definition 2.13. If M is an H% '-measurable subset of R? and 0 is positive lacally
HIintegrable function on M, then we say that a (d — 1)-dimensional subspace T C R?
is the approzimate tangent space for M at x with respect to theta if for any f € C.(R?)

fim [ )0+ )i ) = 6(a) [ )i )
ANO S, a () T

where 1,5 : R — R? is defined by n.x(y) = A\ (y — x), 2,y € RY, X > 0. We denote

T=T,M.

The following theorem gives the important characterization of countably rectifiable
sets in terms of existence of approximate tangent spaces.

Theorem 2.14. ([Sim83, Theorem 11.6]) Suppose M is He'-measurable. Then M
is countably (d — 1)-rectifiable if and only if there is a positive locally He-integrable

function 8 on M with respect to which the approrimate tangent space T, M exists for
H —qe.x e M.

In more general case, we have

Theorem 2.15. ([Sim83, Theorem 11.8]) Suppose p is a Radon measure on R?, and for
r € R N> 0, let p,y be the measure given by . \(A) = M ~u(x + ANA). Suppose that
for y— a.e. x, there is 0(z) € (0,00) and a (d — 1)-dimensional subspace T C R¢ with

tim [ 1wty / Fy)aH\(y (2.4)

(T is called the approzimate tangent space for p at x, and 6 is called the multiplicity,
such p is also called rectifiable measure.) Let

M :={x : (232) holds for some T and some 0(x) € (0,00)},

and set 0(z) =0, x € R4\ M.
Then M is countably (d — 1)-rectifiable, 0 is He-measurable and p = H0. In
particular
B

—a.e.x € R
ﬂ\Owd 1ptt :
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Sets of locally finite perimeter

An important class of countably (d — 1)-rectifiable sets in R? comes from the sets of
locally finite perimeter (or Caccipoli sets).

We say that a H?-measurable subset E in R has locally finite perimeter in D if the
characteristic function 1g of F is a BV function in D. Thus |D1g| is a Radon measure
on D.

We can also define the reduced boundary 0*E of E by (see [Sim83, Section 14] for
details)

OE :={x €D :|Ug(x)] =1} = supp(|D1Eg|)

=<z U = im—DﬂE(BP(I))
_{ €Piv= |D1g|(By())

. (2.5)
exists and has length 1 5.

Moreover we have

Theorem 2.16. ([Sim83, Theorem 14.3]) Suppose E has locally finite perimeter in D.
Then O*E is countably (d — 1)-rectifiable and |D1g| = H | 0*E. In fact at each point
x € O*E, the approzimate tangent space T, of |Dlg| exists, has multiplicity 1, and is
given by

T,={yeR:y-vpg(zx) =0}.

Varifolds

Let G(d, d—1) be the Grassmannian space which parametrizes of all (d—1)-dimensional
linear subspaces of R?, which is a compact smooth manifold. For any 7' € G(d,d — 1), T
can be identified with its unit normal vector 7. More precisely, G(d,d — 1) = P, where
P =S4 /{i, —} is the set of unit normals of unoriented (d — 1)-planes in R

Definition 2.17. (varifold). A warifold (or, more precisely a (d — 1)-varifold) V is a
non-negative Radon measure on Gq4_1(D) := D x G(d,d — 1). The convergence of a
sequence of varifolds is defined as the weak convergence in the sense of Radon measure.

Definition 2.18. (mass). Given a (d—1)-varifold V', there corresponds a Radon measure
|Vl on D defined by
IVII(A) = V(z~'(A)),

where 7 is the projection Gq—1(D) 3 (x,T) — x onto D.

Definition 2.19. (rectifiable varifold) Let M be a countably (d — 1)-rectifiable set and
0 be a mon negative function with § > 0,H* ! — a.e. in M. A rectifiable (d — 1)-

varifold V- = v(M,0) in D is a non-negative Radon measure on Ga—1(D) of the form
V= QHd_l LM X 5T$M; i.e.

/ o(x, T)dV (x,T) = / o (z, T, M) 0(z)dH (z) VYo € C.(Gq1(D)).
Ga-1(D) M

First variation of a varifold

Definition 2.20. The first variation of a (d — 1)-varifold V' in D is the vector-valued
distribution 8V defined for any vector field Y = (Y!,.-- Y?) € CYD,R?) as

(6V,Y) := / divyY (z)dV (z,T).
Gq-1(D)
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Here for any T € G(d,d — 1),
d
diveY =Y VIV,
i=1
where VI = ¢, - VT {p;}¢, is ONB in RY, with
Vif(z) = Pr(Vf(x)), f€C(D),
and Pr is the orthogonal projection of R% onto T.
For any T' € G(d,d — 1) with p € P the unit normal of 7", we have that

d d
diveY =Y VIV =Y ;- (Pr(VY")

i=1 i=1

d
= Z @i+ (VY= (VY- p)p)

d d
=2 (axiY" - aijipjpi>
i=1 j=1
:V?:(I—p®p).

We simply denote P = G(d,d — 1). Hence the first variation formula becomes

(5V, V) = / [ V@) (- pe V). (2.6)

Moreover V' is said to have locally bounded first variation in D if for each U compactly
embedded in D, i.e. U is open in D and U is compact in D, there exists a constant ¢ > 0
such that

(6V,Y) < esup|Y], VY e CHU,R?).
U

By the general Riesz representation [Sim83, Theorem 4.1], this is equivalent to that there
exists a Radon measure |dV| on D characterized by

0V |(U) = sup 15V, Y)| < oo.

YeC.(U;R),|Y|<1
The following theorem is called the rectifiability theorem.

Theorem 2.21. ()Sim83, Theorem 42.4]) Suppose V is a (d — 1)-varifold which has
locally bounded first variation in D and satisfies

Lo VI (@)

>0
PO w1 pdt ’

for |V|| —a.e. x € D. ThenV is a (d — 1)-rectifiable varifold.

Mean curvature vector
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Definition 2.22. Let V' be a varifold which has locally bounded first variation in D such
that |0V| is absolutely continuous w.r.t. ||V||. A ||V ||-measurable vector-valued function
Hy is called a (generalized) mean curvature vector of V', if

— (V. Y) =([[VI, Hy - Y) := /DHv(x) Y (2)d[|V]| (). (2.7)
Remark 2.23. Consider E which has locally finite perimeter in D. Then by Theorem

2.16, V = v(0*E, 1) is a (d — 1)-rectifiable varifold and |V | = HY 1| 0*E. By Definition
.20,

OV, 7 = / divy, ¥ (z)dH (z), (2.8)

where T, is the tangent space of H 1| 0*F at x € 0*E.

In the case that E is smooth, then 0*E = OF, vg(x) = V(x)1op(x) where v(x) is the
inward normal vector of OE. By Theorem |2.16, T, is the orthogonal complement space of
v, which coincides with the definition of the classical tangent space. Note that in smooth
case, the mean curvature vector Hprp of OF can be identified by

/ Y HypdH™ = — / divy, Y (z)dH* .
o OF
Combining with (@), we obtain that

(BV,Y) = — / Y - HypdH* .
OFE

By Definition , Hy = ﬁaE, Hi —ae..



Chapter 3

Conservative stochastic
2-dimensional Cahn-Hilliard
equation

In this chapter, we consider the conservative stochastic Cahn-Hilliard equation

dX; = ——A(AX : X° 1) dt + BdW,
X0)=ze V!,

(3.1)

on T? in the probabilistically strong sense where A = A, B = div. W, is an L3(T? R?)-
cylindrical Wiener process, which is defined in Section @ : X3 : denotes the Wick
power, which is introduced in Section @ and the space V5 ' is similar to the Sobolev
space of order —1, which is introduced in Section El]p

3.1 Notations and preliminaries

Let L denote the space L*(T?), where T? = (0,1)? is the 2 dimensional torus and we use
(-,+) to denote the inner product in L. A is the Laplacian operator on L, that is,

, N 82 82
D(A) = H3(T°), A= 55 + 5.5 (3.2)

A is a self-adjoint operator in L, with complete orthonormal system (e,,),, of eigenvectors
in L, given by

eo(r) := 1, e 0)(7) = V2™ e (g 1,y (1) = V2e ™22
ek;(x) = 2 ’L7T(k215!31+k2$2 ,klkg % 0

Then we have Aej, = —Apex, where Ay = |k|*72 k = (ky, ko) € Z2, |k|* = kI + k3. We also
introduce a notation for the average of h € S'(T?):

m(h) = 3/<h, 60>5.

For any a € R, we define

Ve={ues§: Z)\g\g(u,ek>3\2 < oo}
i

23
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For any u,v € V¢, define

(u, v)ya :=m(u)m(v) + Z Mg (u, er)ss (v, ep)s.
K

It’s easy to see that (V< (-,-)y«) is a Hilbert space and V* ~ HS. Then for any s,« € R,
we can define a bounded operator (—A)* : V& — Vo725 by:

(—A)’u = Z A uger,

kez?\{(0,0)}

where u = >, uge, € V. In particular, we set @ := (—A)~! and extend it to a one-to-
one bounded operator ) by

Qh = Qh + m(h)eo. (3.3)
Note that )
o /\_kek: k 7é (07 0)7
Qe = {0 ~ (0,0) (3.4)
and
1
(ke k#(0,0),
Qer = {60 k= (0,0). (3.5)

Then we have B )
(u,v)ye == (Q?u, Q=*%),
and Q° : V* — V+25 ig an isomorphism for any a, s € R, since

<qu7 st>va+28 = <U, ’l)>va.

We also set
Vi :={h e V*: (h,ep)va =0},

and denote L2 := V. Let II denote the symmetric projector of V* on Vg, that is,
II:V* — Vi, lIh:=h—m(h). (3.6)
Moreover, we define
VAT R?) = {f = (fi. fo) : i e Vi =12},

and similarly
‘/()Q(T27R2) = {f - (f17f2) : fl S ‘/Oa7i = 172}

In this chapter, we consider the initial value and the reference measure on Vj* for
simplicity. For general case, we refer to [DZ07].
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3.2 The Linear Equation and Wick Powers

We consider the O-U process

1
dZt = —§A2Zdt + Bth,
Z(0) =0,

(3.7)

where W is a U-cylindrical Wiener process and U := L3(T? R?). For f € L3(T? R?) we
denote its component functions by fi, fo € Li(T?) i.e. f(z) = (fi(x), fo(x)),Vo € T2
There exist two independent L?(T?)-cylindrical Wiener processes W' and W? such that
W = (W', W?2). Set

D(B) = H'(T?* R?), B = div, D(B*) = Hy(T?), B* = —V. (3.8)

We know that

t t
Zt(x)_/ e‘t2SA2BdWs_/(K(t—s,x—-),dWs>U,
0 0

where K(t,z) = —V,M(t,z) = (K',K?), and M(t,z) is the kernel of e~24°| that is,
M(t,z) = 3, e~ heg().
~ For any function f on T? , we can view it as a periodic function on R? by defining
f(x) := f(x +m), when z +m € T? z € R% m € Z*. Moreover, define

Ki(t,z) = —F Y(mige 2™ (2),j = 1,2,

and K := (K', K?). By the Poisson summation formula (see [SW72, Section VIL.2]) we
know that

K(t,z) =Y K(t,z+m),vt (3.9)
and for any f € L?(T?), j = 1,2, x € T?
Qe 2 fw) = | KI(t,x —y)f(y)dy
'ﬂ‘Q

= [ K'(t,z —y)f(y)le(y)dy

=2 - Ktz —y+m)f(y)ley)dy (3.10)

= | K(t,x—y)) Le(y+m)fly+m)dy

R?
= (K7(t,)  f)(x)
where we used (@) in the third inequality and Ly is the indicator function of T?. Since
Ki(t,x) = —F Y(mige ™" () = t T KI(1, ¢ 7)

and
K7 (1,0 5)| S |F M wigge 2 ™) (v | S 1+ 5]
we have the following estimate:

K (t,2)| < 5|23+, Ve € [0, 3]. (3.11)
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Lemma 3.1. Z € C([0,T];C®) P-almost-surely, for all a > 0.

Proof By the factorization method in [DP04] we have that for x € (0,1)

sin(mk)

Z(t) = /0 (t—8)" " HM(t—s,2—"),U(s))ds,

™

Us) = [ =y

A similar argument as in the proof of Lemma 2.7 in [DP04] implies that it suffices to
prove that for p > 1/(2k),

and

2* Baw,.

E”UHLQT"(O,T;C*O‘) < 0OQ. (312)
In fact, by (@) we have that
BUGIZ S Y > D> B2 W[ U(s), ¢) ()™

Pel, n>0 zeA,

<SONTST aemrmEU(s), ) 2P w() .

YeWw, n>0 zeA,

Here o > 0 in w(x) and we used that (U(s).47) belongs to the first order Wiener-chaos
and Gaussian hypercontractivity (cf. [Nual3, Section 1.4.3] and [Nel73]) in the second
inequality. Moreover, we obtain that

E(U(s), v * =EKU(s), ¥i)* + EIU*(s), 7)1

SZQ://I%EZ(?JWZ(?J)I/OS(S—T)_Q“f_fj*f_(j(s—T,y—y)drdydy

S [ [l [ s =n-i =ty = g drdyay

<22n Qan 1— 25——

Y

where .
Uﬂ'<y>:/ (t— $)" 1K (s —ryy — ), W), j = 1,2
0

nd we used () in the second inequality and we also used [Hail4, Lemma 10.17] and
ﬂ) to deduce that | K7« K7 (s—r,y—7)| < [s—r|"2[y—g|~** in the second inequality.
In fact, we can decom iose K into K := K5+ K¢, where Kj is a compactly supported

o)

P

function and satisfies (B.11)), K is a Schwartz function. Then K* K = K5 K, 5+H where
H is a Schwartz function. By [Hail4, Lemma 10.17] we have Kj x Ks(t,x) < 72 |x|74+%
and K x K satisfies the same inequality.

Thus, we have

EHU( 2p < 224 2e— 2a)pn (1- 25—2)17

—a ~
n>0

Let k be so small that 2 —a <e <2 —4k + ]23, which implies that
4—25—2a<0,(1—2m—§)p>—1.

Then () follows.
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g

Note that BB* = —A. Then by Fourier expansion it is easy to see that Z, ~ N (0, Q;),
i.e. for any h € S(T?)

, 1
Eezg(h,Z&)g/ = exp(—§<ch7 h>)7

where Q, = (—A) (I — e~ 24%).

According to the definition of V* and Lemma @ we have C™* C V~°7¢ for any
a,e > 0. Then by Lemma , p is supported on Vi ® for any a > 0 and letting
t — oo, by [Bog98, 3.8.13, Example|, the law of Z; converges to the Gaussian measure
p=N(0,Q), which is also supported on V;

In the following we are going to define the Wick powers both in the state space and
the path space.

Firstly, we define the Wick powers on L?(S'(T?), u).

Wick powers on L*(S'(T?), )
p is of course also a measure supported on &'(T?). We have the well-known (Wiener-
[t6) chaos decomposition
2(8'(T%), 1) = P Ha,

n>0

where H,, is the Wiener chaos of order n (cf. [Nual3, Section 1.1.1]). Now we define the
Wick powers by using approximations: for ¢ € S§'(T?) define

¢s = p6*¢7

with p. an approximate delta function on R? given by
g T
pe(x) =e7p(2) €D, [ p=1.

Here the convolution means that we view ¢ as a periodic distribution in &'(R?) and
convolve on R2. For every n € N we set

Ll = PPy (12 9.),

)

where P,,n = 0,1, ..., are the Hermite polynomials defined by the formula

(/2]
4 n! .
Poz) =S (-1 — ™%
" Z( TEFTIEPA.
and c. = [ ¢2u(do) = [ [ G(z = y)p(y)dype(2)dz = || Ljo. K2 (grem2)- Then
DL 1€ Ha.

Here and in the following G is the Green function associated with —A on T?. In fact by
[SWT72 Section 6.1, Chapter VII],
1
G = > goenle) = —loglel.fe] =0,

kez2\{(0,0)}

and G is continuously differentiable except outside {0}.
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For Hermite polynomial P, we have that for s,z € R

Pu(s+1) = Xn: Cm Py (s)t"™, (3.13)

m=0

m o n!
where O = sy

A direct calculation yields the following:

Lemma 3.2. Let « > 0, n € N and p > 1. : ¢ :¢ converges to some element in
LP(S'(T?), 1;C~*) as € — 0. This limit is called the n-th Wick power of ¢ with respect
to the covariance () and denoted by : ¢" :q.

Proof The proof in similar to that of [RZZ17b, Lemma 3.1] since the Green function G
has the same regularity.
In fact, for any p > 1,e1,e0 > 0,m € N, by (@), we have that

16 i0 = 562 ), (a0
S S S e [ i - 5o ig ) n(dg)u(a)

Pel, n>0 xzeA,

ST S S rrmemaa ([ o iq -6 ig ) uas)

DEW, n>0 €A,

where ¢ > 0 in w(z) and in the last inequality we used the hypercontractivity of the
Gaussian measure. Moreover, we obtain that

1660 = o squm) utao)

s [[ 1w ||(/¢€1 o n(a)) = 2( [ oo utan))
+( [ outwionta d¢>) dydy
S [[ @i ([[ oo w500 G- 26 o1~ i)
o (// pes (4 — 1) pey (J — 02) G (1 — 2) dxldxg)m
(// ey ( 1) Pey (U — x2) (11 — 2) d:Eldxg)m |dydy

<(etep) / )6 @)y — Bl dydy < (5 + £5) 224,

where § > k > 0, —2a+9 < 0. Here in the first inequality we used [Sim74, Theorem 1.3], in
the third inequality we have used [Hail4, Lemma 10.17] and the fact that |G(z)| < |log x|.
Thus the results follow from a direct calculation.

O

Wick powers on a fixed probability space
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Now we fix a probability space (2, F, P) and consider a U-cylindrical Wiener process
W. In the following we assume that F is the o-field generated by {(W;, h),h € U,t € R*}.
We also have the well-known (Wiener-1t6) chaos decomposition

2Q,F,P) =P,

n>0

where H!, is the Wiener chaos of order n (cf. [Nual3, Section 1.1.1]). We can define Wick
powers of Z(t) with respect to different covariances by approximations: Let

¢
Ze(t,x):pa*Zt:/<B* -5%A pm,dW>
0

t
= / (K (t—s,x—+),dWy)y,
0
where p. , = p:-(v — ), Kc(t,x) = (pe * K}, p. * K7) and
K] = _Z(iﬂkj)e_%/\iekd =12
k

For any nN, we set

 Z2(1) 0= (00)? Pa ((ee) F 2A0)) €,

where P,,,n =0,1,---, are the Hermite polynomials and c.; = ||]1[Ovt]K€Hi2(R><’H‘2-R2)

Lemma 3.3. ([RZZ17l, Lemma 3.3]) For « > 0, p > 1, n € N, : Z" 1, converges in
LP(Q,C([0, T);C~%)). The limit is called Wick power of Z(t) of order n with respect to
the covariance Q¢ and is denoted by : Z"(t) :q,

Proof By (@) we already proved Z. € C([0,7],C_%), P — a.s.. Now we prove that
1 Z™ g, is a Cauchy sequence. For every p > 1, by (R.9) we have for ¢;,t2 > 0 that

EH( Qtl : ZET;L :Qt1)<t17 ) ( Zm Qiy — ¢ Zg :th)(t27')|’2—pa
< Z Z Z E2*20Pn+2np| <: 51 :Qtl - Zez :Qt1)(t1?'>
PeEW, n>0 z€A,
( Zm Qi Zg :Qtz)(t27 _),wg>|2pw<x>2p
SO OY D 2R 2L g, — 20 )t )
PeEW, n>0 z€A,
( Zm Qry 'Zg :Qt2)<t27')>w >| )pw<x>2p7

where we used Gaussian hypercontractivity in the second inequality. For convenience we
use £, 1 = 1,2 to denote space-time white noise given by [ ¢(s,y)& (ds, dy) = [g. (¢, dW!)
for ¢ € L*(R* x T?). Then by [Nual3, Proposition 1.1.4] we obtain that for £ = 1,2 and
j=12

2
Qu; = Z / H?llkék (tj — si,y — vi) 1sie[0,tj]fl (dm) .. 3 (dnm) ,
=1
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where 1, = (Sq,Ya), and [ f (m1..n) € (dm1) ... € (dny,) denote a generic element of the n-th
chaos of £ for ny..,, = n1 -+ - m,. Moreover, for t; < t5 to estimate

m m m n 2
]E ’<( Qtl : Zag :Qtl) (t]-’ ) ( Z Qt2 . Zaz :th) (t27 ) 7wx>| ’
since ¢! is independent to €2, it suffices to calculate
/|<Hzn K (4 - — yi) Ls,epo] — T2 KL (8 — i — i) Lsiefo
— [IT™ 1Kl (to — — i) Ls,cf0,00] — H;ilf_(ég(?b — 85, — Yi) Ls,c0,2))s Y Py m,

which is bounded by

/ | Hm Kl Syt — yi) - H?il—f(sl (t2 — Si T yi))]lsi[o,tl]
H:n lKl (tl ) Hzn lKl (t2 - yi)>]15i€[0,t1]7¢g>|2dn1---m
mo I mop ny|?
+2/ \([Hilea (t2 = i — i) Losefa e — U Key (t2 — Si,- — ¥i) Lasefiral] 02| dinm.

) (3.14)
To calculate the bound () above, we need several estimations of K'(t,z) and K'(¢, z).
For convenience, we denote )
1t )]s := 7 + |-

Then by [Hail4, Lemma 10.17, Lemma 10.18], we have that for any ¢ € (0, 1)

[Ki(ta) — K'(ta)] S ()] S e , (3.15)
and
[K'(t,2) = K'(s,9)] S (= s,2 = o)1 (16 )77 + s, ) 15°7°) - (3.16)
In particular, for any 6 € (0, 1), we obtain that
’Ki‘l (tl — S Y — yZ) - Kél <t2 — Sy — yl)‘
S ‘Kél (1 —siy —ui) — K' (ty — 55,y — yi)| + |Kl (t1— siy — yi) — K (ta — 53,y — yi)|
+ K (ty = si,y — wi) — KL, (ta — i,y — )|
[ _3_ _3_
S (&5 1t =) (1 = iy = I+ (82 = s,y — i) |777)

s _
Sty = tal? (|t = il 7578t — s 72 ) Jy— gl
(3.17)
and
‘ tl_Siay_yi)_Rég(tl_siay_yi)l
SIKL (= sivy — i) — K" (b= s,y — )| + | KL, (b= si,y — wi) — K' (b1 — 83,5 — ui)|
1.8 1
S(Ed+ed) [ —si| 22y — T
(3.18)
Then the estimate of () can be obtained by using the interpolation of the form:
G2 a; — IGZ Z (I 0:) (a — b)) (1121 @),

k=1
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and the estimates (), (% For the third line in (), since K! are integrable, by
(B.1

using the interpolation and ), we obtain that

/ |<[H§LK£1 (tz — Siyt T yz) ﬂsie[tm] - H?ilf(i—z (t2 — Siy yi) $;iE€[t1,t2] ] 1/) >} dm..m
Sl +ed)d / VR0 (2)te = sil T g mll2 — TP 2 =y P dadzdi
i=1
S+ it —taf! [ URERE - 2| dedz
S(e) + 9|ty — to]P 27270,
For the first two lines in (), we consider m = 1 for simplicity. The general m € N can

be obtained in a similar way by using the interpolation. For m = 1, the first two lines
can be rewrote as

/((al(Z)—bl(Z))—(az(Z)—bz(Z)))((al(Z)—az( 2)) — (b1(2) = b2(2))) ¥z (2) 05 (2)dzdzdsdy,
where for i = 1,2
ai(z) = KL (ty — 5,2 — y)Laepou), bi(2) = K. (ta — 5,2 — y) Lucpour].
We only calculate
/(Ch(Z) = b1(2))(b1(2) — b2(2)) 07 (2)05 (2)dzdzdsdy,
the rest term can be estimated similarly. In fact, by (B.17) and (B.19)

[(a1(2) = b1(2))(b1(2) — b2(2))]

5 1,6 1,5\2
S(e)+8)) [t — tof* (|t2 — 5|72t |ty — 8|7§+§> |z —y

1-36

1-36 —
|7 2 =yl Lscpotr)-

Thus we obtain
/ (ar(2) — b1(2)) (b1(3) — ba(2))| [ (2)9"(2) | dzdzdyds
S+ -l [ prEu e - o s
(e84 D)ty — by 27200,

Hence the first two lines in (B.14) are bounded by (g2 + e3)|t; — 12727 Then we
deduce that

E|((: 20, —: 20 ) (tr,) = (1 20 g, — 220 wq,,) (t2,) ¢n>y

N(51 + 52)|t1 - t2|42_2n+6n6’

Then the above estimates yield that

E H( gl1 :Cl - Z:; :Ct1) (t17'> - (: :;L Ct2 - Z:; :Ct2) (t2’.)H27pa
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op
—2anp+2np+2n (26 26\ P -+ o—2np+6npd
SE EZ e (51 +52)‘t2_t1’42 e,
YeW, n>0

Thus the results follow from Kolmogorov’s continuity test (in time) if we choose § > 0
small enough and p sufficiently large.
0

By this lemma we can also define the Wick powers with respect to another covariance
n _1
L Z0(t) sgi= 2 P, (cg 225(75))

Lemma 3.4. (|[RZZ17Y, Lemma 3.4]) For o >0, p> 1, n € N, : Z'(t) :q converges in
LP(Q,C((0,T];C™)). Here C((0,T];C~%) is equipped with the norm supejo ) t°| - || - for
p > 0. The limit is called Wick power of Z(t) of order n with respect to the covariance
Q and is denoted by : Z"(t) .

Proof By the definition of Hermite polynomials, we have that

[n/2]

n l n! n—
L Z0(t) g= Y (cer — o) RSO Z272(1) g, -
=0

Then the theorem follows directly from Lemma @ and the fact that
’CE,t - Ce’ S tipa

for any p > 0.
O

Remark 3.5. Here we do not combine the initial value with the Wick powers as in
[MW17, \RZZ17Y], since we can obtain existence of solutions to the shifted equation )
for any initial value in V' (see Section @)

In the following, we only use Wick powers : - :¢ and we write : - : for simplicity.

Relations between two different Wick powers
We introduce the following probability measure. Set : ¢(¢) := 1 : ¢* 1, : p(¢) :=: ¢* .
Let
v = coxp(— N,

where ¢ is a normalization constant and N = s/(: q 3, €9)s. According to [Sim74, Lemma
V.5 and Theorem V.7] we have that for every p € [1,00), ¢(¢) := e € LP(S'(T?), ).

The following result is about the relation between the two different Wick powers.

Lemma 3.6. Let ¢ be a measurable map from (2, F,P) to C([0,T], Byy) with v > 2,
Po ¢(t)™' = v for every t € [0,T) and let Z(t) be defined as above. Assume in addition
that y = ¢ — Z € C((0,T];CP) P-a.s. for some 3 > a > 0. Here C((0,T];CP) is equipped

with the norm sup,¢p tﬂTTaH -|lg. Then for everyt >0, n € N

n

gn(t) =Y Chyn () 2Rt P—as.

k=0

Here the Wick power on the left hand side is the limit obtained and defined in Lemma
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Proof By Lemma @ it follows that for every K € N, p > 1
2728 ZF 0 in LP(Q,0((0,T];C7)), as e — 0.

Since y. = ¢. — Z. = p. *y and y € C((0,T];C%) P-a.s., it is obvious that y. — y in
C((0,T];CP~") P-a.s. for every k > 0 with 8 — Kk — a > 0, which combined with Lemma
implies that for £ € N, k < n,
Lk Byt ZE o in 0((0,T];C7), as e — 0.

Here —F means convergence in probability. Since e™" € LP(S'(T?), u) for every p > 1,
by Hélder’s inequality and Lemma we get that for ¢ > 0 and p > 1

DQL(t) i@ (t) - in LP(Q,C77), as e — 0.
Moreover, by () we have
: ¢n - (ys + ZE) _ Cn/QP ( 1/2(y5 +Z ))

ch n/2p 1/22 )( —1/2y€)n—k

:ZC’fj : Zf : yg*k
k=0

which implies the result by letting ¢ — 0. U

3.3 The Solution to the Shifted Equation

Now we fix a stochastlc basis (2, F, {Fi}iejo,00), P) and on it a U-cylindrical Wiener
process W. Define Z(t f e~ =942 BdV (s) as in Section @ Now we consider the
following shifted equatlon

dY 1 1 <

— =AY +-AY Cky3k. Zk.

dt 2 T3 kZ:O 3 ’ (3.19)
Y (0) ==z

Generally we consider initial data x that are Fy measurable and belong to V5!, a.s..
To prove the existence of the solution to equation (@), we use a smooth approximation
on each path:

dy. 1 1 <
S =AY+ —AS CryPRLzb
dt 2 2 kz:% Ble © (3.20)
}/6(0> = T,

where Z. = Z % p., x. = x % p., and p. is as introduced in Section @ Note that the
solution Y to equation () and the solution Y, to (32(]) also satisfy:

dm(Y (1))
dt

which means that m(Y (t)) = m(Yz(¢)) = 0.

= 0,m(Y(0)) = 0, (3.21)
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From Lemma @ we know that there exists a ' C Q, P(Q') = 1, such that for any
weQ Zw),: 2" (w) e C(0,T);C*),n = 2,3, Ya > 0. Since Z.(w) is smooth,
by monotone trick in [LR15, Theorem 5.2.2 and Theorem 5.2.4], there exists a unique
solution Y (w) to equation (@) in L?(0,T; V) N C([0,T]; L%) for each w € Q. We
are going to find a convergent subsequence of {Y.(w)}, which converge to a solution to
equation (B.19) and prove uniqueness of solutions to (B.19). Then we obtain a unique
Fi-adapted solution to equation (B.19).

In this section we never distinguish V', H3 and By, since they have equivalent norms.
For convenience we denote all of them as H®.

Theorem 3.7 (a-priori estimate). IfY is a solution to equation ), then there exists
a constant Cp which only depends on T and Z(w), such that for Vt € [0,T]

1 t
Y1 = llellas+5 [ (V@B + VOl ds<Cr (322)

Moreover there exist constants C' > 0, A\, > 0, k =1,2,3, for every t € (0,T]

1

2

3
Vi3 <C [tV (Z t=PM sup (r’”"““ /. ||A’gé>> : (3.23)
k=1

0<r<t

where p > 0 is a small enough constant introduced in Lemma .

Proof Since
dY 1 §3 kv 3—k k

and m(Y) = 0, taking scalar product with (—A)~'Y" we obtain that

d ’ _
£||Y|ﬁrl HY |G + V]I = = Chy*F: 28 1Y),
k=1
that is
d
EHYH%{—l + Y5+ Y12 S Y, 22 9|+ (Y20 22 0| + (Y2, Z). (3.24)

So, we only need to estimate the right hand side of ). We only consider [(Y3 Z)].
The other terms can be estimated similarly. Lemma implies

(Y2, 2)| SN Z]-allY?||Bg,,  Va>0.
Moreover, by Lemma @ and Lemma @ Then

1Y% 8e, S 1199V 3|0 S [|APY 2|1 ||V 2|

1,1 Y

L_ 11
where [y > a,p08> 1 and p—og— ot
Choose ¢; < 5 and p; > ¢, we have

Yilm = VI, <I|IVII?
1Y 2|lpa = |[Y]]?5, SI|Y]7a-

Lza
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For [|2A%Y 2|, we have
1202 |[ 1o S [PV 21 S |20V 2751V 2 |20,

where 1 < py < p1 <2, By = 1 — 2(}7— — —) 51 < 1 and we used Lemma @ in the first

inequality and Lemma @ in the second inequality. For ||Q(Y || Lrz2, let py < g, we have

3 1 1 1
1Y 2 ][zr: SNYEVY|ze SV e [VE]] 20 S ||Y||H1||Y||2 2 S Yl [Y]]7,

where we used Hoélder’s inequality in the second inequality. Furthermore

3 3
1Yz S Y P S Y1

P2
2

h lw

Combining the above estimates we get
1Y 15, S VIV ]5
Combining this with Lemma @, we have
(Y22 S VI I It S 2+ w (V112 + 1Y)

where \ = ﬁ and we used the Young’s inequality. Choosing p to be so small that

2\ < 1, we can conclude that there exists A\, > 0, & = 1,2, 3 such that % <1

3

3
AP
||Y||H g (||Y||H1 HIYIE) S M 25 S e,

k=1 k=1

and () follows. Moreover, since ||Y||g-1 < [|Y]|zs+ we have that

3

A

HYHH1+ 1Yl S D028 )1
k=1

By [TW16, Lemma 3.8] we have

IYillys S 7V (Zt 2 sup (1] 2, ||Ak))

1
2
0<r<t

g

Since the approximation equation () have the same prior estimate as () By
() we deduce that the sequence {Y.} is bounded in L>°(0,T; H~*) N L*([0, T] x T?) N
L?*(0,T; H'). This implies that {AY.} is bounded in L*(0,7; H~') and {Y2} is bounded
in L*/3([0, T] x T?). Moreover, Lemma P.1 and Lemma @ imply that {: Z2 :} is bounded
in LP(0,7; H™®) for any a > 0,¢ > 0 and p > 1. Then we can prove the following lemma:

Lemma 3.8. {L=} is bounded in LP(0,T; H*), where p € (1,3).
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Proof According to the argument before, we only need to show that {Y2Z.} and {Y. :
Z?% :} are bounded in LP(0,T; H™') when p € (1, 3).

We omit ¢ if there is no confusion in this proof.

For Y?Z we have

1Y* 2l S 1Y g0 1Z11-a S 1Yl g0 1 2] o

where 5y > a > 0, we used Lemma @ in the first inequality and Lemma @ in the
second inequality. Furthermore,

Iv? AV S 1Yol |,

gz S ]

where 8; > By, ~ o + L o = 5, we used Lemma @ in the first inequality and Lemma @

in the second inequality. By Lemma @, B;, C L% for any ¢ > 1 and s > 0. Since
6—1+2
HY ~ Bgz C B,, for ¢ > 2, the Besov interpolation in Lemma @ implies that
1 _ s 1 1 s

v HYH" Y] Y] (3.25)
B0

1Y [z S Y15,

qOQN‘ 7721\1’

q0,2 qo 2

For [|AP1Y || eo, let po > 2. Then we use Lemma @ and Sobolev interpolation to get

3 1+52 1-62
XY |0 S Y [ S Y Mgt Y1520
where 1 = [ + p% —1=0,— q%. Thus we have

34842
1Y 50 S MY [l IvyEsd e, (3.26)
By Lemma @ we deduce that
3+8L+8 )
V22l e S VIG5V YE2A 508,

For any p € (1 ,3) let $; and s be small enough such that (8; + s+ 3)p < 4. Then
Young’s inequality implies that there exists A > 0 such that

For p small enough, {YZ.} is bounded in L?(0,T; By %,).
On the other hand,

1Y 2 2% e SV Mgy |12 2% flea S Y llint 75,

where we used Lemma @ in the first inequality and Lemma @, Lemma @ in the second
inequality. Then by Young’s inequality

4
1YV 2%} SV I+t
2,00

Choosing p small enough we deduce that {Y. : Z2 :} is bounded in L3(0,T; By %) By
Lemma ﬁ we have By% C Hy;*™° for any § > 0. Hence {Y2Z.} and {Y. : Z2 :} are
bounded in LP(0,7; H~ ) Vp € (1, 3), which implies the results. O
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Theorem 3.9. For every x € Vi !, there exists at least one solution to equation )
in C([0,T]; Vo ') N LA([0,T] x T?) ﬁL2(0 T; V).

Proof Since H' C H° compactly for any § < 1 (see [[Tri06, Proposition 4.6]), a classical
compactness argument (cf. [GRZ09, Lemma C.2] or [Tem01l, Theorem 2.1, Chapter
I11]) implies that there exists a sequence {e;,} and Y € L*°(0,T, H~') N L*(0,T; H) N
LA([0,T) x T?), such that Y., — Y in L*(0,T; H°) N C([0,T]; H™3), V6 < 1.

It is sufficient to show that for a suitable 6 € (0, 1), the limit ¥ we obtained above is
a solution in H 3.

In fact, if Y is a solution in H 3, i.e. for any h € H3

1 t
a-3Yy — Yo, h) s = __/ a-({A%h, Y ) pnds + = / - IZCkYi“ Mo ZF . AR)nds.
0

2
(3.27)
Y isin L°°(0,7, H ') N L*(0,T; H') N L*([0,T] x T?). Then we take the scalar product
of 2 and (—A)~'Y, which is just the duality in H~* and H®. Hence

d 3 -
aHYH?{fl HY |G + 1Y = = Chy* . 28 y).

k=1

Thus ||Y||g-1 is continuous w.r.t t. Moreover, [Tem01, Lemma 1.4, Chapter III] implies
that Y is weakly continuous in ', then Y € C([0,T); H!).

We still write € instead of ¢, if there is no confusion. Since Y; is a solution to equation
(), letting ¢ — 0, it’s easy to see that

lim H— 3<}/8, h>H3 = H- 3<Y h)Hd hr% H—1<A2h, }/S>H1 = H—1<A2h, Y>H1
e—

e—0

llmH 1< Z Ah>H1 = - 1< Z Ah)Hl

It remains to show for any h € H*

lim | / (Y3(s) — Y3(s), h)ds| = 0, (3.28)

e—0

lim | <Y2( )Z:(s) = Y*(s)Z(s), h)ds| = 0, (3.29)

e—0

hI% |/ (s) =Y (s): Z%: (s),h)ds| = 0. (3.30)
e—

Since Y. — Y in L*([0, T]xT?), which is equivalent to |[Yz|| za(or1x12) = [[Y|]L4(0,77%72)
and Y. =™ Y, where =™ means convergence in Lebesgue measure m on [0, 7] x T?, we
have HY3HL3(OT]><T2 — [[Y3]] 4 and Y3 =™ Y3, Then (B.28) holds by uniform

integrabilit
For (@), let R. =Y. —Y. By the triangle inequality

L3 ([0,T]xT2)

(V22 = V22, 1| S (RY + Yo, Z)| + {2 — Z,Y?h)].
For the second term on the right hand side of the above inequality, we have

((Ze = Z.Y°h)| S 112Z. = Z]|-allY*hllBg, S 112 = Zl|-allY?||5g, [1P]I55

21’
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where we used Lemma in the first inequality and Lemma @ in the second inequality.
By [[Iri92, Remark 2, Section 3.2, Chapter 2] we have H! C Bg, for any a < 1. Hence

((Ze = Z,Y?h)| S |22 = Z||-allY?||g, 1P|
Combining with (), we have
(2~ 2,V S 112 — Zl|-allbllan VI3 2 2V,

where f3 > a > 0,s > 0. Let % + % + 3 < 2. Then Lemma @ and Holder’s inequality
imply that

t

|/ (Z.— Z,Y?h)ds| — 0, e—0.

0

Similarly
(RYh, Z)| S ||RY || g 1|1 Z]| -

For |[R.Y||pg , we have

I1RY |5y, SNRY ] goy < 107 Rel[pal[Y l|za + |20 || pal | Rel | s,

where By > a > 0 and we used Lemma @ in the first inequality and Lemma @ in the

second inequality. By Lemma @ we have the Sobolev embedding H, f+3 C HY 1. Hence

1RY ||Bg, S IR Y[z + Y]] R\l 5

H50+2 | H50+2 |

By Sobolev interpolation, choosing o > 5 + By, we have

34 1_Bo
Y]] Sgealalpaes

Hﬁ0+%

Moreover, since § > 3 + [y, we have ||R. s S IBellms and (Y]] 305, S |[Y[zs. Then
we deduce that

1_Po
IRY [[Bg, S I Bellms|Y|]s + Y lg * [ Re [ s [V ]| 717 -
Let 5y < % such that
+%+1 < 2.

NIV

Then by Holder inequality, we get

t i t
HR Ylgg 1Pl |1Z]|-ads < || R[5l (1Y [[72) Fds
0 0

where F' € L>(0,T).
Moreover, we have

(Yo :Z2: =Y : 22 by S|Ye(: 22— Z2 ), h)| + [(Re - Z2 ., b))

N[

1
t 1
([ i) o
0

By essentially the same argument as above, () also follows.
Then we have got_a solution Y in C’([O,T],H ) N L([0,T] x T?) N L*(0,T; H').
Combining this with (@), we have Y € C([0,T]; Vg ') N L4([0, T] x T?) N L2(0,T; Vy).
O

Now we have obtained the existence of solutions of equation () The following is
the uniqueness result.
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Theorem 3.10. For every x € Vy !, there exists a unique solution to equation ) in
C([0,T); Vg Hy n LA([0, T] x T?) ﬂLQ(O T;Vy).

Proof Suppose u, v are two solutions of () with the same initial value. Let r = u—wv,
then r satisfies:

dr 1, L v k() 3=k _ 3k . 7k .
=54 r+§AZCg(u A LS
r(0) = 0.
Similarly to () we have:
d
Sl + il S 102w+ 0), 2)] + 102, 27 3)1. (3.31)

By Lemma @ and Lemma @ we know
2 . 2. 2 -
(%, Z7 )1 S Ml llsg, 17

where 8 > a > 0. Then Lemma @ and Lemma @ imply that

+
0ol rl e S el (]t

1721lse, < [17°72)] 4 < I
L

where 1 > By > a > 0 and we used the Sobolev interpolation and Sobolev embedding
theorem in the last inequality. Then by Young’s inequality, there exists a A\; > 0 such
that for any € > 0

(2,2 22 )| S ellrlln + |Ir[F-t 7 (3.32)

Let p be small enough. Then g :=¢t=?* € L(0,T).
For [{(r?(u + v), Z)|, we similarly obtain that

2w+ 0), 2] S ¥+ o)l g, 11210 S (Ilar®|lsg, + 1or®lsp, ) £,
For ||ur?||ga , we have

[lur? ||, < 107 (wr?)llzeo S APl Lo |12 on + (|00 oo [l oo 2= (1) + (1),

with pg > 1, By > a > 0, and 1O:le_|_i 1+ , Disqi > Po,t = 1,2. Here we used

Lemma in the first inequality and Lemma @ in the second inequality:.
For (1), according to (@) we know that for any s > 0

172l = [lrl72e < lIr HH1 Sl H

Moreover, let p; > 4. Then

[12%ul | < (197l za < [full2 2BIHUH% S Ml ul 72,

4

where 31 = (y + % — p% and we used Lemma @ in the first inequality and Sobolev inter-
polation in the second inequality and Besov embedding Lemma in the last inequality.
Combining these estimates above we have

2—L4s
() S Mlrllp™ H?“H NPt 8
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Hence by Young’s inequality

481 2(1-281)

o L - 12p
(1) S ellrllz + [l lull g

TR ——
ul| 4 t o,

Let pg be close to 1 and [y, s be so small enough such that i >1-— L + By + s, which is

equivalent to 22— -+ (128 1) 5 < 1. Then the Hoélder 1nequahty yields for p small enough
Q1 ‘I1
M=0) . 1 . 1
—s _L—s
A ol A ([ utipar) " ([ halgear )
0 0

Then we get

flﬁ 2(1-pB1) 2

T _ I _,
fie= |3 Nl 87t 5 € L0, T),

and for any € > 0,
(1) S ellrllzn + el (3.33)

For (II), let g = 4. Then we have +— p—o € (2,1), which implies that p, € (3,2).
Similarly by Lemma

12509 a S 120707 oo 1] 1,

where pi?) + qi3 = p%, P3,q3 > po. From () we know that for every s > 0

[Irllzes S IITIIHI R ||

Let p3 > 2. Then by Lemma @ we have

Q(Bo < < % =2
270 | os S Irllgee STl gD rllg2

where we used Sobolev interpolation in the second inequality and that Sy = fs — 1 + p%.
Hence

3+ L_i_ﬁ l_@_}ri_é +B 1 +5 _,_ﬁio
L P A A e [ P
Thus, we have
24p-Lys  Los G0
D) Sl ™ ™ Pl 7 s
Then by Young’s inequality we have
—ﬁ—@ T 2: Bo
“II) S ellrllz + Il lul| 2 tomE
It is easy to see that p, < 2 yields ﬁ < 4 when s, fy are small enough. Then for
P9 2 2
; é} T 25p Bo
small enough p we have f3' := ||ul|,3 ” t m 272 e LY0,7).

Then we obtain that for any ¢ > 0
[(r*u, Z)| S ellrllin + fllrlE-

where f*:= fi+ fi e L'(0,T).
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The same holds with u replaced by v. Let f = f*+ f* € L'(0,T). Then
(7 (u + ), Z)| S ellrlfin + FllrllF-1-

Hence we get

d
Sl + il S ellrllan + (F + 9l

Choose a suitable € > 0 such that
d
Sl < (F+ )il

Then by Gronwall’s inequality we have

IO+ % O 0 )+ s(5)ds ) 0.

Since V! is a subspace of H~!, we obtain the uniqueness.

g

Remark 3.11. We emphasize that we cannot obtain global well-posedness of equation
@) by combining (13.28) with fized point argument in [DPD03] and [MW17] since we
only have an H '-estimate. In fact, in order to use fized point arguments to obtain local
solutions, the initial value should be in C=5%. An initial value in H™'-norm is not enough
to use mild formulation to obtain local solution.

3.4 Relation to the solution given by Dirichlet forms

In this section, we are going to obtain a probabilistically weak solution of equation (@)
via the Dirichlet form approach and compare this solution with the solution we obtain in
Section 4.

According to the definition of Vi* and [Hid80, Theorem 3.1], p is supported on V;
for any s > 1. So we fix a small enough sy > 0 and Voflfso as the state space and denote
it by E for convenience. By identifying V! and V; ' via the Riesz isomrophism we have
the following Gelfand triple:

E*CcVy'CE (3.34)
where E* = V7! and the dualization between E* and E is g- (u, v) 5 := vt (QU, V), -1-s
0 0
for any u € E* v € E. Here ys(-, )y —s is denoted by
Vi (u, ’U>V—s = Z S’ <U, 6k>55/ <'U, €k>87 u € ‘/bs, v E Vb_s. (335)
k
Then we have that
g (U, v)p = (u,v)y-1,Yu € E*, Vv € Vit (3.36)
Moreover we define FC;°; = {f(g«(li, ) g, -+ s 5+ (lm, )p) :m €N, f € C°(R™), ly,--- 1l €
E*}. For all ¢ = f(g(li, g, s 5(lm,)r) € FC°, we can define the directional
derivative for h € V!

Ohp(z) :=lim plz 4 th) = (2) = Z Oif (b, ) Es -+ s me{lmy ) ) (i, h>VO*1'

i=1
Then by the Riesz representation theorem, there exists a map Vi : E — V; ' such that
(Vo(), Byt = (), h € Vi
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3.4.1 Solution given by Dirichlet forms

Since Q71750 : VIT% — V717 is the Riesz isomorphism for Vj' %, i.e.
—1-s
V01+So<h’ k>V071750 e <Q 0h7 k>V0717507

1—s0

i is in fact a Gaussian measure on Hilbert space V", with covariance operator C' :=

Q%% that is
i(h,z)v_1_50
S e o pu(dz) = (Ch, h>v0*1*50'

0

Then we have the following integration by parts formula for p:

Proposition 3.12. For all F € FCy°,h € Vit we have
[onFan= [ o-(2h )P (@)uldo) (337)

Proof First, by [DPZ02, Section 1.2.4] we know the reproducing kernel of (Vy 7%, p) is
V,, = CY2V; ' 7% = V1. Then by [MR92, Theorem 3.1, Chapter I1] we have

/ O Fdy = / (C7 h, @)y m1-x0 F(9)pi(dg)
= [1Q > b o)y F@n(do
== [ (4B ) F(Oulde)
_ / £-(Q AN, 6) g F (6)u(d)
_ / g (A%h, ) g F(¢)u(dz).

g

Remark 3.13. In fact, by a similar argument in [GJ12, (9.1.32)], ) still holds for
Fexp(—N), where N = s/(: ¢ :,e0)s d.e. for all F € FOX h € Vit

[ on(Fexp(-N)dn = [ 5-(42h, 0)F (6) exp(~N(o)n(do)

Then for the Gibbs measure v defined in Section @, we have the following integration
by parts formula:

Proposition 3.14. For all F € FC?, h € VT we have
/ opFdv = / (5= (A%h, @) — p=(Ah,: ¢° ) ) F(¢)v(dg). (3.38)
Proof According to Proposition and Remark

/ OpFdy = / (OWF) exp(—N)dp



3.4. Relation to the solution given by Dirichlet forms 43

= c/[@h(F exp(—N)) + Fexp(—N)0pNldu

= [ F(0) (e (4°h.0)1 - N (6)) v(do)
By [Oba94, Theorem 4.1.1],
Oy s 2(x) = n @@ (pe xB)(2).
Here 0y, : ¢Z(x) : is defined as the directional derivative of the function ¢ —: ¢”(x). Then
OnNe(9) = (- &2 1, hx pe),
1 : o). Letting € — 0, due to the closability of O, in L*(E, p),
ON(¢) = (: ¢° :,h) = —p-(Ah,: ¢° ),

where N (¢) := (

1.
1

which implies

/3hFdl/ = / (5 (A%h, ¢)p — - (Ah,: & 1)) F()v(do).

Theorem 3.15. The bilinear form

1
Meb) =3 [ (V0,90 adi¥o, b € FCF

is closable in L*(E,v). Its closure is a symmetric quasi-reqular Dirichlet form denoted
by (A, D(A)).

Proof Let hi, = v/ Arex, {hi}rez2\{(0,0)} is an orthonormal basis of Vy . Then

1 dp O
A = — — d (100
((Pad]) 9 E ahk ahk v, V907w € C(b )
kez?\{(0,0)}

By Proposition we have [ %‘%du = — [ P, dv, where ), € L*(E,v) and

B (9) = —p= (Ahy, o) 5 + g (Ahy,: ¢° ), Vk # (0,0).

According to [MR92, Proposition 3.5, Chapter II], (A, FC;®) is closable on L?(FE,v) and
its closure (A, D(A)) is a symmetric Dirichlet form. Moreover by [MR92, Proposition
4.2, Chapter IV], the capacity of (A, D(A)) is tight, and according to the fact that FCg°
separates the points in L?*(E,v), we obtain that (A, D(A)) is a quasi-regular Dirichlet
form. g

Since (A, D(A)) is a quasi-regular Dirichlet form on L?*(E,v), it is well-known that
there is a conservative Markov diffusion processes

M = (Q,F, My, (X(t))i=0, (P?).cp),

which is properly associated with (A, D(A)), i.e. for u € L*(E,v) N By(E), the transition
semigroup Pu(z) := E*[u(X(t))] is A-quasi-continuous for all ¢ > 0 and is a v-version
of Tyu where T is the semigroup associated with (A, D(A)). For the notion of A-quasi-
continuity we refer to [MR92, Chapter III, Definition 3.2]. Then we have the following
Fukushima decomposition for X (¢) under P*:
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Theorem 3.16. There exists a map W : Q — C([0, 00); C([0, 00); V5 ' 7%(T?,R?))), and
a properly A-exceptional set S C E,i.e. v(S) =0 and P*(X(t) € E\ S,Vt>0) =1 for
z € E\ S, such that Vz € E\ S, W is a U-cylindrical Wiener process on (2, My, P?)
and the sample paths of the associated process M = (2, F, My, (X (t))i>0, (P?).cr) on E
satisfy the following: for h € V350,

g (h, X(t) = X(0))p = — %/0 w(A%h, X (s)) pds
+ % /Ot g (Ah,: X(8)* ) pds (3.39)

t
+/ (B*h, dWS)VOA(TQ’Rz),Vt >0,P* —a.s.,
0

where B, B* are defined as in ) Moreover, v is an invariant measure for M in the
sense that [ Pudv = [udv for uw € L*(E,v) N By(E).

Proof Let up(@) = p+(h,¢)p, h € V37 and let £ be the generator of (A, D(A)). For
any v € D(A)

_/L‘uhvdy = %/(VUh,VU>VO—1dV

1
- / Ohv(6)v(do)
_ %/ (5 (A%h, §) p — g+ (Ah,: 6% ) ) v(G)w(do).

Hence w, € D(L£) and Lup(¢) = —% (g (A%h, @) — p-(Ah,: ¢* ) p).
By Fukushima’s decomposition, we have for q.e. z € E,
1

t ¢
up(Xy)—un(Xo) = Mth—i—/ Lup(X,)ds = Mth—a/ (E*<A2h,XS>E — g (Ah,: Xg’ )E) ds,
0 0

where M" is a martingale additive functional with (M"), = t||h|]? _,.
0
In fact, by [AR91, Proposition 4.5],

t
(M), = / (Vun(X.), Vun(X.)) s = t][B]]% .

For f = B*Qh € U, with h € V!, define Wtf = M]" and let D := span{B*Qe;, : k €
Z*\{(0,0)}}. Since || B*Qh||% = HhHQO_l, it is easy to check that (W/ W9), = t(f, g)y for
f,g € D, where (W7 W¥), is the bracket process of W/ and W9. Moreover D is dense in U
and W, is Q-linear on D, since the embedding U — V; *~*(T?, R?) is Hilbert-Schmidt for
any s > 0. By [AR91], Theorem 6.2], there exist a map W : Q — C([0, 00); V5 1 7%(T?, R?)),
and a properly A-exceptional set S C E, i.e. v(S)=0and P*(X(t) € B\ S,Vt>0) =1
for z € £\ S, such that Vz € E'\ S, W is a U-cylindrical Wiener process on (2, M, P?)
such that for any f € D

V0717S <W f>V01+S = Wf? P — a.s.,
where —1-«(-, ) 145 s defined by () In particular,
<B*h7 Wt>VO_1(']I‘2,R2) = <Wt7 B*Qh>U = Mth7

and W = (W' W?), where W' : Q — C([0,00); E),i = 1,2 are two independent L2-
cylindrical Wiener processes under P for any z € £\ S. 4
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3.4.2 Relation between the two solutions

In the following we discuss the relation between M constructed above and the shifted
equation ([L.12). In fact, by Lemma @ we have that C™® C V~17% for a € (0,1),
C™ € B(V717%) and v(C™* N E) = 1. For W constructed in Theorem B.16 define
Z(t) = [y e"=94/2paw,.

Theorem 3.17. Let o € (0, %), a < B < 2—«. There exists a properly A-exceptional
set Sy C E in the sense of Theorem such that for every z € (C~* N E) \ Sy under
P:,Y =X —ZeC(0,T);C°)NnC([0,T);C~) is a solution to the following equation:

1 [t 2 o 4
Vi) = /0 eI S Oy (5)) s Z(s) s ds + e EEX(0). (3.40)

B+a

Here C((0,T);C”) is equipped with the norm sup,ciot + || - ||g. Moreover,
PX(t) e (CT*NE)\S,Vt>0]=1forz€ (C*NE)\ S,.
Proof For z € E'\ S under P* we have that

1/t t
X(t) = 5/ e (=AY 4 X(r)3dr+ Z(t) + e_iAzX(O).
0

Since v is an invariant measure for X, by Lemma @ and Lemma @ we conclude that
for every T'> 0, p > 1,6 > 0, with 20 — a < 0, and pg > 1 large enough

[E [ 1o aartas 5 & [ X0y aota
; ;
= LR d¢<T/u 6 Ity (d) < o

which implies that there exists a properly A-exceptional set S; D S such that for z € E\S;
P*-a.s.

T
L X ()P € L2(0,T:C), EZ/ |2 X () : P udr < 00, ¥p> 1.
0

Here we used Lemma @ to deduce the first result. The second, however, does not imply
the first directly because of (@) Lemma @ implies that for a < f <2 -«

t
/ e~ (t=A%/2 4 X(1)*: dr € C([0, oo);Cﬁ) P* —a.s..
0

Now by Lemma @ we conclude that for z € €™\ Sy, e 24°X(0) € C([0,T],C) N
C((0,7],CP). Thus,

X —-7ZeC(0,T],c*)nC((0,T],C%) P* —a.s..

Since P” o X (t)~! = v, by Lemma @ we conclude that under P¥, by Fubini’s theorem
Y := X — Z satisfies () and for v-a.e. z € F under P?, Y := X — Z satisfies (B.40).
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In the following we prove that these results hold under P* for z outside a properly A-
exceptional set. First we have Z € C([0,00);C~%) P¥-a.s., which combined with X — Z €
C([0,T],C~*) implies

P'[X € C([0,00),C7%)] = 1.

We also have

1 [tots 2
5/ e tots=IAT2 A X (1)3 2 dr
to

+e (X () — Z(to)) € C((0,00)%:C%) P — as..

Y(S,t()) I:X(S + t()) — Z(S + t()) =

Similar arguments as in the proof of Lemma @ imply that Vs > 0,29 > 0

PY(: X (s +tg)? ZCZ (s,t0)' + Z(s+to)* ",
XEC([0,00),C )Y € 0((0,00)%C%) =1

In the following we use I;4, to denote the equality
t 2
/ eI A L X (54 10) : ds
0

3 t
=y / e P RACLY (5, t0)! : Z(s + to)* ! ds.
1=0 70

Then using Fubini’s theorem we know that
P¥(I,,, holds V¢ > 0,a.e.ty > 0, X € C([0,00);C™*),Y € C((0,00)%,C%)) = 1

Here we used X € C([0,00); C™*) for & < 3 to make the right hand side of I; s, meaningful.
It is obvious that the right hand side of the first equality is continuous with respect to .

Since [) e 9424 1 X (s + t9)* : ds = thO —(=st10)A%/2 A - X (5)3 : ds we know that

fo e~ =942 A - X (54 t)? : ds is also continuous with respect to ty and we obtain that
P¥ (1,4, holds Vt,to > 0, X € C([0,00);C),Y € C((0,00)%C")) =1

This implies that there exists a properly A-exceptional set Sy D Sy such that for z €
(C*N E)\ S under P*

P*(X € C([0,00): C~%), I, holds Vi, to > 0) = 1.
Indeed, define
Qo :={w: X € C([0,00);C™),: ZF :€ C((0,00);C™*), k = 1,2,3, I, holds Vt,t, > 0},

and let ©; : Q — Q,t > 0, be the canonical shift, i.e. ©;(w) = w(- +1t),w € Q. Then it is
easy to check that
0;'0 >N, teRT,

M e '.

t>0,teQ

and
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On the other hand, by the Markov property we know that
P*(0;'Q0) = P,(1q,)(2),Vz € (CT*NE)\ S,

which by [MR92, Chapter IV Theorem 3.5] is A-quasi-continuous in the sense of [MR92,
Chapter IIT Definition 3.2] on E. It follows that for every ¢ > 0

P*(0,'Q)) =1 qezcE,
which yields that
P*(Q) =1 gqez€E.

Here g.e. means that there exists a properly A-exceptional set such that outside this
exceptional set the result holds. Now Y satisfies (B.40) P*-a.s. for z € (C~* N E)\S5,.
Moreover, for z € (C*N E)\S: Y € C([0,00);C~*) N C([0,T],C?), Z € C([0,0);C)
P*-a.s., which implies that

P*[X(t) € (C°NE)\ So,¥t > 0] = 1for 2 € (CNE)\ Ss.
O

Corollary 3.18. Let _X' =Y + Z where Y is the unique solution to ) v is an
invariant measure of X.

Proof By Theorem and the uniqueness of the solution to () we know that
XLX,PP—asVze (C™*N E)\ S, which combined with v(C™* N ) = 1 implies that
v is an invariant measure of X. U

3.4.3 Markov uniqueness in the restricted sense

In this subsection we prove Markov uniqueness in the restricted sense and the uniqueness
of the martingale (probabilistically weak) solutions to (@) if the solution has v as an
invariant measure.

By [MR92, Chapter 4, Section 4b] it follows that there is a point separating countable
Q-vector space D C FCp° such that D C D(L(A)). Let A% be the set of all quasi-regular
Dirichlet forms (A, D(A)) (cf. [MR92]) on L?(E;v) such that D € D(L(A)) and A = A on
D x D. Here for a Dirichlet form (A, D(A)) we denote its generator by (L(A), D(L(A))).

In the following we consider the martingale problem in the sense of [AR94] and prob-
abilistically weak solutions to (@)

Definition 3.19. (i) A v-special standard process M = (Q, F, (M), Xy, (P?)) in the
sense of [MR92, Chapter 1V] with state space E is said to solve the martingale problem
for (L(A), D) if for all u € D, u(X(t)) — u(X(0)) — fot L(AN)u(X(s))ds, t > 0, is an
(My)-martingale under P”.

(i) A v-special standard process M = ), Xy, (P?)) with state space E
is called a probabilistically weak solution to (E) zf there exists two map W* : Q —
C([0,00); E) i = 1,2 such that for v-a.e. z under P*, W := (W' W?) is an L3(T? R?)-
cylindrical Wiener process with respect to (M) and the sample paths of the associated
process satisfy @) for all h € V3+so,




48 Chapter 3. Conservative stochastic 2-dimensional Cahn-Hilliard equation

Remark 3.20. If M is a probabilistically weak solution to ), we can easily check that
it also solves the martingale problem. Conversely, if M solves the martingale problem,
then with the same argument in Theorem [3.16. there exists an LZ(T? R?)-cylindrical
Wiener process W such that (X, W) satisfies ) for h € V3o, That is to say, these
two definitions are equivalent.

To explain the uniqueness result below we also introduce the following concept:

Two strong Markov processes M and M’ with state space E and transition semigroups
(pt)e>0 and (p})s>o are called v-equivalent if there exists S € B(FE) such that (i) v(E\S) =
0, (i) P*[X(t) € S,Vt > 0] = P[X'(t) € S,Vt > 0] = 1,z € S, (iii) p.f(2) = p,f(2) for
all f € By(E),t>0and z€ S.

Combining Theorem 3.9 and Theorem 3.10, we obtain Markov uniqueness in the
restricted sense for (L(A), D) (see part (iii)) and the uniqueness of martingale (proba-
bilistically weak) solutions to (1.1) if the solution has v as an invariant measure (see part

(1), (if)):

Theorem 3.21. (i) There exists (up to v-equivalence) exactly one probabilistically weak
solution M to /@/) satisfying P*(X € C([0,00); E)) = 1 for v-a.e. and having v as
an invariant measure, i.e. for the transition semigroup (pi)iso, [pefdv = [ fdv for
f € L*(E;v).

(ii) There exists (up to v-equivalence) exactly one v-special standard process M
with state space E solving the martingale problem for (L(A), D) and satisfying P*(X €
C([0,00); E)) =1 for v-a.e. and having v as an invariant measure.

(7ii) §A™ = 1. Moreover, there ezists (up to v-equivalence) exactly one v-special
standard process M with state space E associated with a Dirichlet form (A, D(A)) solving
the martingale problem for (L(A), D).

Proof The proof is the same as [RZZ17b, Theorem 3.12].

For (i), suppose that M is a probabilistically weak solution to (@) and let p! be
the transition semigroup (of sub-probability kernels) associated with M!. Since v is an
invariant measure and

Pif _)t—>0 f’

for f € FCg°, by [MR92, Chapter II, Subsection 4a] (p;)i~o uniquely determines a
strongly continuous_contraction semigroup (7}!');~o of operators on L?(E;v). By the
proof of Theorem PB.17 we know_that the solution to (@) having v as an invariant
measure minus Z also satisfies () under P”. Moreover, by the pathwise uniqueness
of solutions to (B.40) we obtain that p} f(2) = P, f(z) v-a.e. for all f € By(E),t > 0,
which implies that p} is associated with the Dirichlet form (A, D(A)) obtained in Section

. Here P, is the semigroup properly associated with (A, D(A)) obtained in Section @
Since M is a v-special standard process and has continuous paths, by [MR92, Chapter 4,
Theorem 1.15, Theorem 5.1] M is properly associated with (A, D(A)). Then by [MR92,
Chapter 4, Theorem 6.4] M! is v-equivalent to M obtained in Section B.2, which implies
(i) easily.

(ii) follows from the first result and the above Remark.

The second result in (iii) follows from the first result and [AR95, Theorem 3.4]. We
only prove the first. Since for every (A, D(A)) € A" there exists a unique Markov
process M associated with (A, D(A)) and Theorem holds for M, by Theorems @
and B.1( we know that for the semigroup p, associated with M we have p,f = P.f v-a.e.
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for f € B,(E), which implies that p; is a v-version of the semigroup T} associated with
(A, D(A)). Then by [MR92, Chapter I] we know that (A, D(A)) = (A, D(A)). Now (iii)
follows.

OJ

3.4.4 Stationary solution

Now we consider the stationary case. In this case, we can obtain a probabilistically strong
solution to @ Take two different stationary solutions X7, X5 to with the same initial
condition n € C* N E, a > 0, a small enough, having the distribution v. We have

t 1 t t—7
X;(t) = efiAzn + 5/ e~ T AA Xi(7)? 1 dr + Z(1),
0

where Z is the stochastic convolution
t
Z(t) = / e~ T4 BdW,.
0

By a similar argument as in the proof of Theorem and using Lemma @ we have
that for every p > 1

T
B[ X0 [Padr =T [ 68 P vtde) < .
0
Then Lemma @ implies that fora > 0, a < f <2 —«
t
/ e TPAX () dr € C([0,T):C°) P—as..
0

Thus by Lemma @ we conclude that
X, — ZeC(0,T];C%) P—a.s.,

where C((0,T);C") is equipped with the norm SUDye(0,7] tl&TaH - ||g. Moreover, similar
arguments as in the proof of Theorem yield that if @ > 0 with « small enough, X; — 7

is a solution to the following equation
i : .
Y(t)= 5/ 6_(t_5>A2/2AZ CLY (s)': Z(s)* " - ds + e 4%, (3.41)
0 1=0

Here the Wick powers of Z are defined as in Lemma @

Now by [LR15. Proposition G.0.5] we know the solutions to equation ( are also
the solutions to (E) and by uniqueness of the solutions to (@) in Theorem B.10, this
implies that

X1 —Z=Xo—Zon [0, 7] P—a.s..
Then the pathwise uniqueness holds for the stationary solutions to (@) Now by the

existence of the stationary martingale solution ( cf. [MR99]) and the Yamada-Watanabe
Theorem in [Kur07] we obtain:

Theorem 3.22. For any initial condition X (0) € C~*NE with distribution v and o > 0,
a small enough, there exists a unique probabilistically strong solution X to ) such
that X is a stationary process, i.e. for every probability space (0, F,{Fi}icior), P) with a
U-Wiener process W, there exists an Fy-adapted stationary process X : [0, T] x Q — E
such that for P —a.s. w € Q, X satisfies (@3 Moreover, for 0 < f < 2 — «

X —-ZecC(0,T;C%) P—a.s.



50 Chapter 3. Conservative stochastic 2-dimensional Cahn-Hilliard equation

3.5 Ergodicity

Let X =Y + Z where Y is the solution to equation () By the uniqueness of the
solution Y we have that X is a Markov process. Let P; be the semigroup of X, i.e

Pd(z) = Ed (X(tz)), V& e Cy(Vih).

We recall that the U-cylindrical Wiener process W take values in C([0, T], V5 ' ~*0(T?, R?)),
P—a.s., for any sy > 0. Let D denote the Fréchet derivative of functions on C([0, T, Vy ' % (T?, R?))
(i.e. with respect to the noise). We also denote the Cameron-Maritin space by CM :=
{w: w € L*([0,T], L3(T*R?)),w(0) = (0,0)}. Here we view dw as a function on
[0, T] x T? rather than lying in the tangent space of T=.

Proposition 3.23. For a fized x € Vj', let X7 := X(t,2) = Z; + Y (t, 1) be a map from
C([0,T], Vg '7%) to Vy'. For any w € CM its directional derivative DXZ(w) is given in
mild form as

1 [t R ‘ .
DXj(w) =5 / e TINRAN T3 (s)  ZL: DXL (w)ds + / e~ =2 By,
0 =0 0

(3.42)

The proof of Proposition can be obtained by using approximation or the implicit
function theorem (see [Dri03, Theorem 19.28], [HM18], [TW16]).

Let D denote the Fréchet derivative of functions on V;'. We also consider the fol-
lowing equation:

2
1 1
Oy Joh=—=A%J h+-A 3CLY2 N t) 28 T,k
t ,t 2 ,t 2 <Z 2 ( ) t )t . (343)

=0

Josh=he Vot

Then Jo:h = DX(t,z)(h), i.e. it is the derivative of X(¢,-) in the direction h. For
w € CM, by Duhamel’s principle

t
D%f(w):/o Js 1 BOsw(s)ds. (3.44)

We define the stopping time
i=inf{t € (0,T) : t*|| : ZF : ||_a > 1,k =1,2,3}, (3.45)
where p > 0 is a small enough constant introduced in Lemma @

Proposition 3.24. For anyz € Vg ' with ||z||g—1+ < R, there exists constants C1(R), Cy(R)
such that for allt < 717

t t
sup [Vl v [ Vllfads v [ Vilfipds <y and - sup|louhllns < Callblls
s<t 0 0 s<t

Proof The first bound with constant C; follows from the proof of Theorem @
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For the second bound, we note that Jyh satisfies the following equation:

du 1 5, 1 SR ol
u(0) =h

Taking scalar product with (—A)~!u, we obtain that
d. o 2 2 2. .2
%HUHHfl +ullfp = =3(Y"+2YZ+ : Z7 : u®),

that is J
EHUH?JA + |ull3p < 6[(YZ,u?)| +3|(: Z% 1, u?)].

Following the same argument that we used to estimate () and using the first bound,
we use Gronwall’s inequality to obtain the second bound.

U
Let x, € C*(R) such that x,.(¢) € [0,1] for all ( € R, and
r
17 |C| <5
X (¢) = 2.
0,[¢l =7
Following the notation in [TW16], we set
C372(0,7) := C([0,T)C™) x C((0,T; C7*)?, (3.46)

and Z := (Z,: Z?:,: Z3:) € C*>~(0,T). We also define

— el . 7k .
1zl = e { sup 11 25 1 |
Theorem 3.25. (Bismut-Elworthy-Li Formula) Let x € Vy*, ® € C}(Vy!) and w be a
process taking values in the Cameron-Martin space CM with O,w adapted. Assume that
there exists a deterministic constant C' = C(t) such that ||Ow||r20p0y) < C P — a.s..
Then we have

E[D®(X7) (DXL () (1Z]1,)] = E (@(aemuuzmt) / <asw<s>,dws>)

, (3.47)
—E (X))o x-(I1Z],)(w))
where
I x- (2111 (w) = dex-(lZl) O+ N Z ]I, (Y),
I1Z + oYl = IlZIl, (3.48)

0. 11ZII,(Y) = lim :

Y = (Qw()72ZQw()73 A Qw()) < 037_(1(0725) and

Qu() = / e_('_S)AQ/QBﬁsw(s)ds.

0
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Proof This can be proved by the same calculation as that in the proof of [TW16, The-
orem 5.4].
Let § > 0 and u = Q,w € L?(0,t;U). For every n > 1, we define the shift Ty, by

n

Tsu: 2] = Z(5Qw(t))"_k A

k=0

and we let Ts,Z = (T(gu 7k :)2:1.
Let X°(t,x) = Ts5,Z; + Y?, where Y solves the equation

3
1 1
PAGES —51421/‘S + A (Z CE(YO)3kTy, - ZF :)
k=0 '

Y(0) =x

We follow the idea in [Nor86] and [TW16] to construct a probability measure P° such
that the law of T}, Z under P° is the same as the law of Z under P. Then we can obtain
the identity

OB (X (L o)X (ITnZll) | =0, (3.49)

To construct P, let v% := —§ f(f(u(s), dWy) and define

() = eplo') — 5 [ uls) s

By our assumptions on w, the Novikov’s condition is satisfied, i.e.

52 t
Bexply | lullids) < oc,
0

thus by [DPZ14, Theorem 10.14, Proposition 10.17], W(r) := W (r) + 0 [, u(s)ds is a
U-cylindrical Wiener process under P°, where dP° := H°dP. Moreover we can obtain
that

TyuZy = / ' e 2 Baw?.
0

Then () follows.

Using the chain rule, 0;® (X°(¢t,2)) = D® (X°(t,z)) (0;X°(¢,z)) and

ost10) = ~1%0) [ twto) w5 [ fuGolas ).

For 05 x (I T5uZ]|l,), note that T5,Z — (Z+0Y) = (0,0°Q?2,306°ZQ2 + 5°Q?2), then we get

o Tl =021, _ N2+ oY, — 2N,
50+ 1) 50+ )
that is
s+ Xr (1 T5uZll)| = Oxx» (NI Z]M1,) (w)- (3.50)

0=0
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Using the bounds in Proposition , by the dominated convergence theorem we can
pass the derivative inside the expectation in (B.49) and integrate by parts to obtain

E (D® (X°(t,2)) (05X (t,0) xe (IT0nZI)HO (1) | =

6=0
B (® (X°(1,2) X, (1Tl )3 7°0) |
— B (@ (X°(t,2)) 5 (T ZI) @) D) |
Since 95 X°(t, x)’(; o DX} (w) and (%H&(t)‘(;:o = — Jy (u(s),dW,), combining with ()

we get () which completes the proof.
U

We use () to prove the following proposition.

Proposition 3.26. There exists universal constants 601 > 0 such that for every T > 0,
x € Vit with |z|| g < R, there exists a constant C = C(T, R) > 0 satisfying

[P@(x) = B2(y)| < C(T, R) - [ @llosllz — ylla—1 + 2| @[l P(t > 72) (3.51)

1
.
for everyy € Vi', ||l —yllg— <1, @ € CL(V; ") and t € [0, T).

Proof Let ® € C}(Vy"). Then

|P®(x) — B®(y)| = [E[® (X(t,2) = (X(E,y))]| < L+ I,

where

L= [E[®(X(t, 7)) = (X (& y) x- (I Z]])]
I = [E[® (X(t,2)) = @ (X(4,9) (1= (21 ]-

For the second term we have that I < 2||®||,P(t > 72). By the mean value theorem we
get that

n=[e( [ pe@rw-mawiiz)|

b

- | / E (DD (X7) (y — o) (IZ]],)) dA

where z) := z+ Ay —z). For any h € Vo_l, let w be such that Bo,w(s) = Jy sh for s < 77
and 0 otherwise. Then Osw(s) satisfies the condition in Theorem B.25. Furthermore, by
(B.44) and Jo s J5+ = Jor we have DX (w) = tDX;*(h). Then we can use (@) to obtain
that

B(D G (0 (lIZI) = 78 (25 [ @l Wizl )

_ %]E (@XM (1Z11,) () -

Then we have

h < 710l [ B| [ @t awizil)

1 1
Dt 7190 [ o (1211 @) |
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For the first term we have

E / (D(s), W) (1Z]],)

tATT

<E[ [ (Qw(s).aw)
0
tATT

< ( / ||asw<s>||%]ds)
0
tAT" %
S([ Wochlfas)
0

< Cotl|h|| -1,

where we used the Cauchy-Schwartz inequality and [t6’s isometry in the second step and
Proposition B.24 in the last step.
By the definition of d;x,(|||Z]|,)(w), we have that for any § > a > 0,

00121 @)] < 2NZILY) < WY N, S NZILIQu(®s,
where Y is as introduced in_Theorem and we used Lemma @ in the last inequality.
Moreover, we use Lemma, and Lemma to obtain

t

¢ __B+2 _B+2 2=
1Qu(Dls < / (t = 5)" 5 | Jouhl|ads < / (t— 5) % | Joshlsds < Cot S |l sr.

Choosing 8 small enough, we deduce that there exists a constant ¢; € (0, %), such that

1 S Cog |0 el 1.

1
|
Letting h = y — x we finish the proof.

O

We denote by ||p1 — p2||ry the total variation distance of two probability measures

fu, piz on Vi given by
/(I)d,ul —/CDdMZ‘.

Theorem 3.27. There exists 0 € (0,1) such that for any v,y € Vg ' with ||z||g—+ < R
and ||z — y||g-1 < 1 there exists a constant C(R) > 0 satisfying

H/il - ,UQHTV = sup
[@llpee <1

1P, ) = Puly, zv < C(R) e =yl
for every t > 1.

Proof The proof is similar as that of [TW16, Theorem 5.8].
First we fix T' > 0, thus the constant in Proposition @ does not rely on 7. Without
loss of generality, we assume T < 1.

By [DPZ96, Section 7.1], (E) is equivalent to

1 T
1Pi(z) = P@)lly < Cogrllw = yllirs + 2P (82 72)
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for every t < T and ||z — y||g- < 1.

Recall the proof of Lemma and @ we can obtain that for any « € (0,1), p > 2,
there exists a small 0y = 0y(a) € (0,1) and a constant C' = C(T, a,p) = C(a,p) (T is
fixed now), such that for any p € (0,1), and any n € N

cZMt) —  Z™(s P
B ap 12270 =2
5,£€[0.7] teeseet — s|pb2

cx<C

Hence we obtain that

t@
P(t>7%) <P(llzll, > 5) S —

By the semigroup property and contractivity, we have that

1P1(x) = Po)ll vy < [[1Pr(2) = Pr(y)lly »

where
1Pr(o) = Pyl < i { Cugrllo = yll-s -+ Core |
1
Let g(t) :== Cigrllz — yllg-1 + Copt?™,t > 0 and note that for t, = (%) g (t) =

infi~o g(t). If tyg < T, then there exists a constant C' = C(6y, 65, 7) such that

1Pr(z) = Pr(y)llpy < g (to) = Cllz =yl

Otherwise ty > T', which implies that

1 1
1Pr(x) = Pr(y)lley < Crogr e = ylla- + Co-T™

1 1
Sqfﬁu—mma+or#

1
= Curlle = yll-s + ol — g B

_62

S C(T7 R7 917827 )HJI - y||91+92

for a constant C' = C(T, R, 0,0,7) = C(R, 01,05, 7). Combining all the estimates above
we deduce that

1P1(2) = Pr() vy < C(R)[lx - yHi}*fQ,

which completes the proof.
O

In order to use Krylov-Bogoliubov method to prove the existence of an invariant
measure, the H~! uniform estimate is not enough. We need to find a space compactly
embedded in H~! where the solution is bounded in probability. We make use of the
integrability on a smaller space, which is compactly embedded in H~!. Thus we have

Theorem 3.28. For every x € V!, there exists a probability Borel measure v, on Vg '
such that v, is an invariant measure for the semigroup {P,,t > 0} on Vy*
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Proof By () and a similar argument as in the proof of [TW16, Corollary 3.10] we
have that
sup sup(t A DE||X (¢, 2)]|5-1 < oo. (3.52)
zeVy L t>0
By the uniqueness of the solution, we know X(t,z) = Z;_1; + Y;_1,, where Z;; =
f; e~ =22 BAW, and Y;,, r >t — 1 solves the equation

3
dy. 1 1
M= A+ Ay CEYER Lz,
dr 27 T kz:% 37 s ’ (3.53)
Yes = X(s,2).

Applying Theorem @ with Y, replacing Y, we have
t+1
B[ ¥ Badr € 1+ BIYialos = 1+ EIX ()
t
Combining this with () we deduce that for a € (0, 1),

t+1 t+1 t+1 1
B[ X aads <E [ Vilfds+E [ 1ZlRds S 14 1o
t t t

where we used a similar argument as in the proof of [TW16, Theorem 2.1] in the last
inequality. Then we obtain that for ¢ > 1

t
E/ 1X (5, 2)[3-ads S t.
1
Moreover, by () we have

1
E [ I¥olnds S 1+ il
0

Thus for ¢t > 1

t 1 t
[ EIXG0lEcds < [ BIX (i) ads + [ BIX(,0) Bonds S 1+ s+t
0 0 1
By Chebyshev’s inequality, for any K > 0
1
BIX ()l > K) < 25 EIX () oo

Thus there exists a constant C' > 0, such that

t C t
/Mwumm»KmsjfEM@wa%
0 K 0
C
< 1+ allf + 1),

Letting Ry(z,-) = 1 fo Jds, for K2 := < we get

L+ [l

R(feC™nVy i |[flle-a > Ke) S R(f € Vg [[flle-a > K2) < (1+ ;

)e.



3.5. Ergodicity o7

By [Tri06, Proposition 4.6] we know that {f € C"* NV : || fllc-« > K.} is a compact
subset of V! since the embedding C~* C V! is compact. This implies the tightness
of {R;};>0 in Vy '. By the Krylov-Bogoliubov existence theorem (see [DPZ96, Corollary
3.1.2]), there exists a sequence 5 ! 0o and a measure v, such that R; — v, weakly in
Vy ! and v, is an invariant measure for the semigroup {P,;};>0.
O
To prove the exponential mixing property, we make use of the irreducibility of Z and
a uniform estimate, which is slightly different from that in the proof of [TW16, Theorem
6.3].

Theorem 3.29. There exists a constant X € (0,1) and Ty > 0 such that

1P (x) = Bi(y)llov <1 — A,
for every x,y € Vo', t > Ty + 1.

Proof From () we know that for any fixed » > 0, there exist Ty, M > 0 which are
independent of w, z, such that for any initial value z € V!, we have that {w : || Z]|,, <

My C{IY (To)lly1< 53 NI Z(To)llv;+ < 51
By Theorem M for every a € (0,1) there exists r = r(a) > 0 such that for every
z,y € B,(0) and t > 1
1Pi(z) = Pu(y)llrv <1 —a, (3.54)
where B, (u) := {x € V; ' : |#—ully— < r}. Then by () for any initial value x € V;
there exists b = b(r) € (0,1) such that

r r
B(IX (To) vy < 1) = P (Y )l < 5301200y < 53)
> P12, < M) (3.55)
>,
where in the last step we used the irreducibility of the law of Z. Here we omit the proof

of the irreducibility of Z, since it is the same as that of [TW16, Theorem 6.3]. Moreover,
by (B.55) for any r > 0

inf P (z,B,(0)) >b. (3.56)

z€Vy !

By Markov property, for any ® € C,(Vy'), t > Ty + 1, and z,y € B,(0) we have that
|F:®(x) — PO(y)| = |E [Prp, @(X (To; ) — P, ®(X (T0; )]
| [ (@) = P ()] Pt )P )
<@z Pry () ® Pry(y) ((B,(0) x B,(0))")

+||<1>\|Loo/_ — NPn () = Py (9) 2w Pry (v, d%) Pry (y, dg).
B (0)x B(0)

This implies that

1P(2) = Po(y)llry < Pry(2) @ Pry(y) ((Br(0) x B,(0))°) + (1 = a) Pr, () @ Pr, (y) (B,(0) x B,(0

< 1—CLPTO(JI,BT(O))PTO( B (0))
<1 —&62,
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where we used () in the first inequality and () in the last inequality. Thus we can
complete the proof by setting A = ab?.
O

The following corollary gives the exponential convergence to a unique invariant mea-
sure.

Corollary 3.30. There ezists a unique invariant measure v for the semigroup {P;}i>o
such that

1P = 7oy < (1= N5 )j6, = 7l
for every x € Vi, t > Ty + 1. Moreover, v = v.

Proof The first result follows from the proof of [TW16, Corollary 6.6]. In fact, for any
probability measures p1, pio on Vo’l, denote M (dz,dy) := py(dzx)ps(dy). Note that

P =Py <5 s [ [ 1P() = P M(do.dy).

|<I>HLoo<1

where pP(dz) := [ Pi(y,dz)pu(dy). Thus by Theorem , for t > Ty + 1,

1Py — Py < (L= 2) (1= M ({(z.2) : 2 € V')

By using the characterization of the total variation distance in the transportation theory
(cf. [Vil09, Section 1])

i = rellpy =2 inf {1 M ({(z,2) :0 € Vi }) - M(d, dy) = pa(do)pea(dy) }

We obtain that
||M1Pt - M2Pt||Tv < (1 - >‘) ||M1 - M2||Tv :

By Theorem , for z € V5 !, v, is an invariant measure. Thus we have

Ve — vyl = [ve P — vy Bllrv < (1= A)||ve — vy [y

This implies that v, = v, for any x,y € V; ' i.e. {P :t> 0} has a unique invariant
measure . Moreover, for ¢t > Ty + 1,

1Pi(z) = Zllpy < (1= M [Pz 1(2) = Pllpy

which implies the first assertion.
For the second assertion, by Corollary , v is an invariant measure of X. Hence
v=u. U

Remark 3.31. In the following we give a simple and short proof for exponential conver-
gence by the theory of Dirichlet forms.

Similarly to [DPDTO04/, by comparing the two Dirichlet forms for Cahn-Hilliard equa-
tion and the dynamical ®3 model, we can obtain the spectral gap of equation ). Indeed,
by the same arguments in [RZZ170] and |TW16] we know that v is also the invariant mea-
sure for the solution to the dynamical ®3 model. We denote the Dirichlet form associated
with the dynamical ®3 model by (A, D(A)), i.e.

Afrg) = 2 /E (Df. Dg)padv, f.g € D(R).
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where D denotes the gradient operator in L*(T?) (see [RZZ17Y]). In |TW1G] the expo-
nential convergence for the dynamical ®3 model in total variation is proved. This implies
the exponential convergence in L*(E,v)-norm. By [Wan0¢, Theory 1.1, Example 1.1.2]
this is equivalent to the Poincaré inequality

[ frav ([ ravp <ciis.p.f e D),
From the proof of Theorem we know that
1 of
5;/'%' ZA/| \4_22/1 A(f. ),

where hy, = /Ager, {hitreze\(00) s an orthonormal basis of Vi '. Then by [Wan04,
Theory 1.1, Example 1.1.2] we have

| — / vl < e | f - / Favll e o,



Chapter 4

Sharp interface limit of stochastic
Cahn-Hilliard equation with singular
noise

In chapter @ we obtain the convergence results arising in the study of the sharp interface
limit, as € \, 0, of the solutions to the stochastic Cahn-Hilliard equation on D := (0, 1)?,

ot = Av° + 5"Wt,

1
v = oA 4 (), (1)
u®(0) = 2,
with Neumann boundary conditions,
ou®  O°
= =0 on dD. 4.2
on  On o (42)

Here f(u) = F'(u) and F(u) = +(u*—1)?is the double-well potential , ¢ > 0 is a constant,
and W is a singular noise which represents the space-time white noise in Section @ and
the conservative noise in Section @

In the case of conservative noise, similarly as in Chapter a, the nonlinear term is
ill-defined since the solutions are expected to be distributions. Thus we consider the

following renormalized equation

1
du® = A(—eAu® + o f(u®) 2)dt + &7 BdW,

(4.3)
u (0)=z€ H ',
with Neumann boundary conditions,
ou®  O0Au®
= =0 on 0D 4.4
on on on o (44)
where : f(uf) :=: f(¢° + Z°) : is the Wick power defined in ()
Equation (4.3) is also the limit of the following approximate equation:
1
duh = A (—sAua’h + = (flush) - 3cztu5’h)) dt 4+ &7V - dW}, (4.5)
- :

where 3¢}, ,u®" is the renormalization term (see )-()) As h — 0, u>" converges
to u®, which is the unique solution to equation ({.3).

60
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4.1 Notations and preliminaries

Let D := (0,1)?, Dr := (0,T) x D. In this chapter, we always use (-,-) to denote the
L?(D)-inner product. For any E C D, we denote by 1z the characteristic function of F,

i.e.
1p(x) = 1if x ek,
P =0t 2 ¢ B

We consider the Neumann Laplacian operator A on L*(D) with domain

0
D(A) = {u e H(D) : a—“ — 0 on 9D}
n
The operator —A is self-adjoint positive and has compact resolvent. It possesses a basis
of eigenvectors {e;}reze which is orthonormal in L*(D). In fact for k = (ky, ky) € Z2,

ex(x) is given by

eo(r) == 1, e 0)(x) = V2 cos mkyay, e(0,ke) () = V2 cos mkos,

(4.6)
ex(z) := 2 cos kyxy - cos Thoxa, kiks # 0.

It is associated with the eigenvalues {\;}, where A\, ~ |k|?.
We also introduce a notation for the average of g € L?(D):

m(g) == (g, €o)-

For any o € R, we define V* as the closure of C*°(D) under the norm
lglIPe = m(g)® + > Ai{g, e,
k

It is easy to see that (V| - ||v«) is a Hilbert space and V* ~ H®, where H® is the
classical Sobolev space on domain D which can be defined as the closure of C*°(D) under

the norm
lglFe = > (1+X)(g, ex)*.
kez?
In the rest of this chapter, we use the notation H* to represent V' for simplicity.
Moreover for any s, € R, we can define a bounded operator (—A)® : H® — HY2%
by:
(—A)°u = Z Apuker,
keZ2\{(0,0)}
where u =), uper, € H®.
We also set
HE ={g€ H*: (g,e0) g = 0},

where (-, ) o denote the inner product in H*. Moreover we denote Lg := HY.

Finally, as what we mentioned in Introduction, the method in this chapter is heavily
relied on Theorem {.2, which holds under the assumption that the smooth solution to
(@) exists. We assume ['gg € C3™ for some « € (0, 1), then

Theorem 4.1. ( [CHYY6, Theorem 1.1]). For any Loy € C3™ for some a € (0,1),

there exists a T > 0, such that ({1.17) has a unique local solution {(v,I")}icpo,r), where
3+a

I'e ¢ ([0, T7;:C%+)
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Now we fix I'go and 7" in the following of this chapter. Then by [ABC94, Theorem
2.1], we have that

Theorem 4.2. Let (v,T;) be a classical smooth solution to (|I.1 1) in Theorem B For
any K > 0 there exists a pair (u%,vy) of solutions to (1.14), such that

5 llewn Se72

Moreover, it holds that
103 = vllewn S e
where v is the solution to ) below. In particular, u5 and v are uniformly bounded.

Finally for x away from Ty, i.e. d(x,T'y) > Ce, where d(z,T'y) is the distance of = to
I'; and C is some constant which is independent to ¢,

u(t,x) =1 Se or |uiy(t,z)+ 1] Se.

4.2 The sharp interface limit for space-time white
noise

Let W = W be an L%(D)-cylindrical Wiener process on a fixed stochastic basis (€, F,P).

Theorem 4.3. ([DPD96, Theorem 2.1])For P — a.s. w, there exists a unique solution u®
to equation (@) in C([0,T); H™1).

We rewrite the equation (@) as

du® = Avedt + °dW in Dr,

1 , (4.7)
v° = gf(ue) — eAu’ in Dr.

We assume that the interface has been formed initially. That is, there exists a smooth
closed curve I'yy CC D such that u°(0) ~ —1 in D, the region enclosed by I'gy, and
u(0) = 1in DT :=D\ (T UD").
Our main theorem will show that as ¢ — 0, v® tends to v, which, together with a free
boundary I' = Up<;<r(I'; x {t}), satisfies the deterministic Hele-Shaw problem (m)
We present now the following spectral estimate which is useful in our proof.

Proposition 4.4. (JABC94, Proposition 3.1]) Let u% be the approximation given in
Theorem |f.4. Then for all w € H' satisfying Neumann boundary conditions such that
wa =0, the following estimate is valid

1
clwlfye + 2 [ i) = ~Colluly
We consider the residual
R® = u® —uf, (4.8)

where u° is the unique solution to (@) We show bounds for this error ¢ in our main
theorem below.
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Theorem 4.5. (Main Theorem) Let us_be defined in Theorem @ with large enough
K and let u® be the unique solution to (@) with initial value u®(0) = u5(0). For any
o*>0>0,

v > 13,

1 13
> - — + 20,
o 3’y+3+

where 0* = o — }1 is introduced in Lemma @, there exist a generic constant C' > 0 and
a constant Cs > 0 for all o > 0 such that the following estimates hold

P{I1¥]|sory < C3] 21 - G,

P [HREH%W(O,T;H—Q <C <€771 + 80*7172‘”%)_ >1— Cse’,

P |:||U6 — Uf‘lH%l(O,T;H_Q) S 05%_1 2 1-— 0585.

107

Remark 4.6. Since 6 can be as small as enough, the best choice is 0 > 5.

Corollary 4.7. There exists a subsequence {ex}32, such that for P —a.s. w € Q

lim v = —1+ 215 in L*(Dg,),

k—o00

where E; is the region enclosed by I'y.

Proof The local uniqueness of (@) can be obtained directly by [CHY96, Theorem 1.1].
Then by the construction of u§ in [ABC94], for uniformly ¢t € [0, Tp]

lir% u$y = —1 + 21, uniformly on compact subsets.
E—

Moreover all the results in Theorem @ hold if replacing T" by Tj.
For any i > 0, choosing e small enough such that Ce3 < 5, then we have

P (1B loon) > 1] < B [|R o) > O] < O,

which implies that || R?|| ;s converge in probability to 0. Thus there exists a subsequence
(still denoted as ¢€), such that

ll_{% HRSHL3(DT) =0 P—a.s.

Since R® = u® — u,, we obtain the assertion.

U
4.3 The proof of the Main Theorem
4.3.1 The decomposition of the equation for the error
Combining (@), () and (@) we know that R® satisfies the following equation:
AR — —cA?Redt + éA (F(ul, + RE) — F(us))) dt + Arsydt + <7V,
(4.9)

OR®  OARE

o 7 =0 on 0D.
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Let Z; :=¢€° fot e~ (t=9)=2% g1/, which is the mild solution to the linear equation:

dZ° = —eN*Zedt + 7dW,

£ € 410
07° _IAZ 0 on 9D, (4.10)
on on

Then Y°¢ := R® — Z¢ satisfies:

1
dY® = —eA2Y<dt + EA (f(uS) (Y + Z°) + N(u5y, Y + Z°)) dt + ArSdt,

ov: oA (4.11)
on  on - 9T
where N (u,v) := f(u+v) — f(u) — f'(u)v.
Moreover, we define a stopping time 7. by:
t
T.:=T ANinf{t > 0: / |YE|3ads > &7}, (4.12)
0

for some v > 1.

4.3.2 Estimate for Z¢

Lemma 4.8. For any 0 > 0, there exists a constant Cs > 0, such that
P[Qs] > 1 — Cje?,
where Cy > 0 is a universal constant, Qs == {||Z| cpyy) < C1e” "}, and 0* == 0 — 1.

Proof By the factorization method in [DP04] we have that for x € (0, 1)

»Sin(7k)

Ze(t) = ¢ /O(t—s)”_1<M(5(t— §),z.-), U(s))ds,

™

where M (et,z,y) is the kernel of the semigroup {e~<*2’} and
Us(s, ) = / (s — 1) Fe A q,.
0

Similarly to the proof of Lemma 2.12 in [DP04], we have that

E [IIZ*®)ller)] SreE [1U]|z2e )] - (4.13)

It suffices to estimate E [||U?||r20(p,] for p > 5-.
In fact, we have that

/ (s — r)_"‘e_a(s_r)MdWr
0

2p
] dsdx

2 p
] ) dsdzx.

E (10" 0o < [ E
T

S,

(4.14)

/ (s — r)’”e’g(s’r)AdeT
0
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Here we used that U¢(z) belongs to the first order Wiener-chaos and Gaussian hypercon-
tractivity (cf. [Nual3, Section 1.4.3] and [Nel73]) in the second inequality. Moreover, we
obtain that

/ (S o r)—ﬁe—e(s—r)AQ
0

Since M(t,x,y) is the kernel of e *2* we have that for any ¢ € L2

/M (t, 2, 9)g(y)dy = e g(z) 2 > (g,e M ep)er(x).

k

E

i ] < /OS/D(S — 1) "M(e(s — 1), 2, y) dyds.  (4.15)

Hence
M(t,x,y) Ze el e, (2)en(y). (4.16)

where ey, is defined in (@) Note that ex(z)ex(y) = 2(ew(z — y) + ex(x + y). Thus we
obtain

M(tz,y) =Y e ™ (ep(x —y) +en(z +1)) = Pt,o —y) + Ptz +y),  (4.17)

Then () becomes

s 2 s
E / (s — r)fe A g, ] < / / (s=r) 7" (P(e(s — 1),z —y)* + P(e(s — ),z + y)?) dyds.
0 0o Jp
(4.18)
By [SW72, p282, (c)], we have that
P(t,2)] S o2 T S 42247, vy € [0,2), (4.19)

Then taking () into (), we deduce that
2
] [ [ g e g dys

5 €*g51*2“*g ’$|72+277'

w\d

E

/ (S . T)ne—s(s—r)AQdWT
0

(4.20)
Here we require that
1—2K—g>0, 242> 0,
that is
1<n<2—4k, (4.21)

which can be obtained by choosing small enough x > 0. Hence by (lll%) and (M), we
obtain that for any p > 1

_n
4

E [|U|lz2rppy] Se
This implies that for any 2 > n > 1,

E [(1Z°|lecor)] S €7

Hence we can obtain our results by Chebyshev’s inequality:.

n

[N

(4.22)
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4.3.3 Local-in-time estimate for Y° up to 7. on the set ()5

Now we fix an w € s, thus by Lemma @, 125 (w)|lopyy S e 2. All estimates in this
section in on 5.
By taking inner product with (—=A)~'Y* in both side of equation () we have that

1 d||YE||2 - € 1 g € € &€ € € &€ 15 (>
S A VB = — () (Y 29) 4 Ny, Y54 29, Y9) = (5, V). (4.23)
In the following, we estimate the right hand side of () separately:
Using Proposition we have that
1
= (P @)Y= Y7) < el V¥l + Coll V¥ 7+ (4.24)

For —2(f"(u)(Y*, Z%) by Theorem @ we know that u5 is uniformly bounded in Dr.
Thus we have that

1 1 o1
S W)Y, 2] S IVl 2y S =R (4:25)
where we used Holder’s inequality in the first inequality and Lemma @ in the last

inequality.
By [ABC94, Lemma 2.2], we have that v\ (u,v) > —C|v|?. Then

1 1 1
—g</\/'(uf4,YE +Z°),Y*%) = —g</\/'(uf4,YE +Z°), Y+ Z°) + g</\/'(uf4,Y5 + Z°),Z°%)

—_

€ € 1 € € € €
S ZIVE+ Zlfze + [N (0, Y7 + 29), Z)|

— M

. 1
S Yl + 37207+ SN, Y2+ 29), Z°),

~

M

(4.26)
where we used Lemma @ in the last inequality.
For |(N(uS, Y+ Z°), Z¢)|, by the Taylor expansion, N (u5, Y+ 2°) = f"(u5+0(Y*+
ZENYe+ Z5)2 =6(uy + 0(Y* + Z°)) (Y + Z°)?, where 6 € (0,1). Then we have

[N (uly, Yo+ Z29), Z°)| S 7 72N (ul, Y2 o+ Z9) o
ST (YT 4 2 + YT+ 27122 (4.27)

~Y
g 63(0*725) +84(a*726) +€a*725|lys”%3 +8a*725uys”i3,

where we used the uniform boundness of u% in the second inequality and Lemma @ in
the first and the last inequality.
For |(r%,Y*)|, by Theorem @ we have

[P, YO S e 2IYe | S ™2 Y o (4.28)
Let ¢* > 40, € < 1, § be small enough and K large enough. Collecting ()-( 8)

together, by using Holder’s inequality we have

dllYE@)||? 1 . .
IO < e Lol =20 s+ I+ 1) 720
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Then for any t < T, we have

~Y

! 1 . .
VO [ e (Ve + 22 + 70

1
e : ! 3 . 4.29
,STE/ D e — (/ ||Yf||isdT> oo (42
0 0

— *_1— X *_ —
557 1+€¢7 1-20+4 +63(0 20) 1‘

To estimate L*(0,7.; H') norm of Y, we use the estimate presented in [ABC94, p.171]

I 2, 7 >
[ rdgidds <[l v e £
€Jo Jp 0

Then

1 t t
-2 [wryeyads < e[ vedst g0 4ao)
0 0

Combining (|42ii), (|425)—(|4264) and () we have for any t < T

¢
/ 1YE|Fds < €375 4 g0 WG | 307 -20)-2 4 92 (4.31)
0

4.3.4 Final step: Globalization 7. =T

Let
o= (7—1)/\(3(0*—25)—1)/\(0*—1—25+%),
2 5 . . ¥ 2 5
t2i= (57— 2) A (30"~ 26) ~2) A (0" —2-26+ 1) A(y = 2) = (v~ 2) A (31 — 1),
3 3 3 3 3
then we have for any t < T
t
sup V2|4 < e, / V| ds < ™. (4.32)
s€[0,¢] 0

We use the Sobolev’s embedding of H? into LP with 3 := 2(% — é) = 1%2. Then by
the interpolation we have
2 1
1Y e S YN S Il g 1Y 5[

H3 ~

For any t < T, by () we have

t t
[ Ielads S sup vl [ 1Yo Ids
0 te[0,4 0

71
-5 t+72
Se2 ™2,

(4.33)

Then we have that for ¢ small enough, T, =T, if v < & + 5.
Let v, > %'y — % such that v, = %7 — g, then we only need

>2 +10
il 37 3
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i.e.
(o210
i 3773
2 10

30" —28) —1> -
(o ) 37t 3

vy o2 10
1o+ Ls 24
L7 t3737T3

A direct calculation yields that

v > 13
oL B (4.34)
0' — JE—
3/ Ty T
which also implies 71 = (y = 1) A (0" =1 —26 + 3).
Since R =Y*® + Z¢, by Lemma we have for any w €
R (W) ||spp) S €3 +67 7% Ses,
H 2< oo 1 f1-2642 (4.35)
HRE(W)HL‘X’(O,T;H—l) Sl 47 T,
Finally, note that
1
vty = AT+ Z2°) = = (flue) = flud)).
Therefore, by using the embedding C'(D) C L?
1A + Z9) | omm—= SIY N2z + 12N own S % +7 7%
Moreover, similarly to what we do above
fus) = fuy) = flul) R+ N (uy, )
= f'(uy) R+ f"(uy + O(R)) (R
= [/(uG) R+ 6(ufy + 0(R)) (7)™
Since {u5} are uniformly bounded in ¢ and ¢ € [0, 1], we have that
1S () = fw)leromsm—2) S 1 (w®) = f(ud)llror)
SR N rpry + 1R [ erop) + 1B |1 (pr)
SR [ roor) + 1B Zsop + 1B 250y
5 £3 4+ I —26
<<t
where we use the Sobolev embedding L' ¢ H~? in the first inequality.
Hence we deduce that
v° — v oy < eztl gzl
o = villar-s S <3 wan
<es b

Combining it with (), we obtain our results stated in the Theorem @
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4.4 Sharp interface limit for conservative noise

In this section, we will consider the case that W = V - W, where W is an L3(D,R?)-
cylindrical Wiener process on stochastic basis (Q, F,P). For g € L3(D,R?), we denote
its component functions by g1,g2 € Li(D), i.e. g(x) = (91(2), g2(x)),Vx € D. There
exist two independent L2(D)-cylindrical Wiener processes W' and WW? such that W =
(W w2).

Following a similar argument as in [RZZ17b, RYZ1§], in this case, the solution to
(K.3) is distribution-valued. Thus we consider the approximate equation (4.5) instead.

4.4.1 Existence and uniqueness of solutions to equation (4.3)

In order to consider the convolution of the noise with an approximate delta function, we
need to extend the noise to the whole space R%. Considering the Neumann boundary
condition, it is reasonable to extend it evenly to [—1,1]? first, then do a periodical exten-
sion to the whole space. That is, for any function g on D which satisfies the Neumann
boundary condition, we view it as a function § on R? by

g(x) == g(|x1+k1|, |xatka|), V= (x1,25) € R?, Vk = (k1, ko) € 7% when z+k € -1, 1]2.
Moreover, for z € R? and ¢ > 0, define
M(t,x) = —F (e =" (@),

where F~! is the inverse Fourier transformation on R%. By Poisson summation formula,
for any (x,y) € D?
M(t,z,y) = Z (M(t,x+y+2k)+ M(t,x —y+2k))
kez?
is the kernel of e=*2” on D, where A is the Neumann Laplacian operator on D. A direct
calculation yields that for any g € L*(D)

[ Mgty = [ M- gty (1.37)
D R
Define
K(t,z,y) = =V,M(t,x,y) = Y (K(t,z +y+2k) — K(t,z —y+2k)),
kez?
where K(t,x) = (K'(t,z), K*(t,x)) := —VM(t,z), thus for any ¢t > 0, K’(¢t,-) is the
inverse Fourier transformation of the function n — —Winje_%‘””|4, ie.
Ki(t,x) = —F Y(mine 2™ (2).

We use S(R?) to denote the Schwartz function on R?, §'(R?) to denote the Schwartz
distribution on R? and s/(g2)(, -)s(r2) to denote the dual between S(R?) and S'(R?). Then
we know that K7(t,-) € S(R?) for any t > 0. Moreover we define Z¢ by

t 2 t
Ze(t,x) = 50/ <K(t—8,$,'),dWS>L2(D’R2) :EUZ/ S’(R2)<K](t—s,l’—'),dW§>3(R2).

(4.38)
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Here W = (WY W?2), W7, j =1,2 is two i.i.d Wiener processes defined by

s (W, g)swey = (W, 3) r2(p),

for any g € S(R?) and g € L*(D) is defined as

(@)= (g(w +2k) — g(—z +2k)), z € D.

keZ?

For simplicity we write

2 t t
Zs<t,$) =€’ Z/ S'(R2)<Kj<t — 8T — '>? dWsJ>S(R2) = 80/ S'<K(t - 5T .>7 dWS>S‘
= o 0

We also denote B
7° =7 4 e m(2),

(4.39)

where z € H™', m(z) is defined in Section @ Then Z¢ is the mild solution to the linear

equation

dZ¢ = —eA?Z° + £ BdW,
7Z°(0) = m(z) € R,

with Neumann boundary conditions,

0z¢ B ONZE
on  On

=0on 0D,

where

D(B) = H'(D, %), B = div, D(B") = H'(D), B" = -V.

Let p, be an approximate delta function on R? given by
5 T
mle) =205, [o=1.

Define for any (¢,z) € Dy

ZM(t,x) : = / AR (e(t = 1), =), dWl)s

For fixed e, h > 0, let ©*" be a solution to the following equation on D

ngE’h
dt
¢=M(0) = (2 = m(2)) * pn,

1 _
= A(—eAp™" + o =+ 725y )

(4.40)

(4.41)

(4.42)
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with A the Neumann Laplacian operator on D. Here : f(¢°" + Z=") : is the Wick power
defined by

3
f(eoh 4 25 = ZCéf : (Zs’h)‘?ik : (gps’h)k (4.43)
k=0

where for any £ =0,1,2,3

3

(2 = 30k (27 (e (e)

(21" =1, (Z250) a= (2°0), - (291) = (2°1) = &, (@),
(20 = (297 = 36, () (2°7) .

and
(@) =K [Z9"(t,2)*] . (4.44)

Lemma 4.9. ([LR15, Example 5.2.27]) For any ,h > 0, there exists a unique solution
e=h € C([0,T]; L3(D)) to equation ).

Since m(z) € R, similar as in the proof in Lemma @ or [MW17, RZZ17h, RYZ1§],
for any k = 1,2,3,as h — 0, : (vah)k : converges in C([0,T],C%) for any a < 0 whose
limit is denoted as : (Z a) . Here C* is defined as the Besov space B, ., see Section @

and the reference therein for details.
Then we denote

nga 1 < 7€\ .
= A=eAet + - e+ 29 ), (4.45)
©*(0) =z —m(z) € Hy !,
where
L f(f + Z9) ZC’“ 757 (o). (4.46)

Theorem 4.10. (/RYZ18, Theorem 4.4]) For P — a.s. w, there exists a unique solution
©° to equation ) in C([0,T); Hy*) for any fived e > 0.

Remark 4.11. We note that in Chapter 3 and [RYZ18], we consider the periodical
boundary condition, which is different from the Neumann boundary condition. But by our
extension method as we explained before, a similar proof follows.

In fact, ¢° = limy,_,o ¢*" in C([0,T]; Hy'). Let us" sh 4 Zeh ush also converges
to u® in C' ([0 T); H~'), which is the unique solution to (ﬁ)

4.4.2 The sharp interface limit of equation (4.3)

Similarly as in the proof of Theorem @ we prove that for a suitable choice h(g). the
solutions to ({.3) will converge to the solution to deterministic Hele-Shaw model (|1_17 .
The method is a modification of the one in Section @ We consider the residual

f—

R =t — . (4.47)
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Let Yo" = R®" — 75" which satisfies

1
YS! = —eA?Yhdt + A (f'(uG) (V" 4+ Z257) + Ny, YO + 270)) dt
. (4.48)
C
- %A(ui + 75" £ Yo + ArSdt,

where ¢j, ; is defined in () For Y*" we also have the energy estimate:

LAY |3

1
ST e[ YER )3 = — () (VS + 29+ N, Yo+ 250, Yo

CE
— (5, YO + —’E"t (ufy + Yoh 4 z5h y=hy,
(4.49)

In order estimate Y¢, we still need the estimation of Z=" and ¢+~ Analogously to
Lemma we have

Lemma 4.12. There exists a constant Cy > 0 such that for any 0 < 5 <1,
E [[1Z*"lcmn] < Cac™h 7,
where 0, = 0 — g. Then for any 0 > 0, there exists a constant Cs > 0, such that
P[Q] > 1 — Cse’,
where QU = {||Z°"|o(pyy < Coc” #h72}.
Proof We follow a similar proof as in Lemma @ A factorization formula implies that

L SINTK

ZoMt, x) =
(t,2) =e”—

/0 (t — 8y N (M(e(t — 5),2 — ), U (s))ds,

tA2

where M (t,x,y) is the kernel of e7*2" and

t
U (s,0) = [ (6= )= ), ) AW
0
where K, is defined in () Combined with (), we have that
[Kn(et,2,9)| S ()50 (Jo =y~ + |+ y179).

where 3,(,n > 0 and 8+ ( +n = 3. Similarly to ()—() we have that

BJvt o] st [ [ (=0 (el o — o) dyas

—B, o 1-2k—8_j12-2
n K ¢
SeTh s TR P

(4.50)

where we require that

1—2m—§>0, (<1

Similarly to (4.14), we have that

3 o8,
E [[|U*|s2p(pry] S Th™.
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Let n =2 and k > 0 be small enough such that § <1 —({ <2 —4k, ( < 1. Similarly
as in the proof of Lemma 2.7 in [DP04], we have that

E 127" t)ller)] Sr "B [1U" [l 12007)]

4.51
<2, (4.51)

Then by Chebyshev’s inequality, we finish the proof.

For ¢j,;, we have the following estimate:

Lemma 4.13. There exists a constant C' > 0 such that for any (t,x) € Dr and any
e,h e (0,1),
66 (2)] < ~Ce*logh.

Proof Following a similar argument as in ({.16), () and (), we obtain that for
all g € (g1, 92) € L*(D,R?)
[ tamgts = [ Kispatia+ [ K mmi
D D D
=7 (g, kalew) + (g2 Ralew)) e ().
k

Hence

K(t,z,y) =Y [kle e (z)ex(y). (4.52)

where ¢, is defined in (@) Note that eg(z)er(y) = 3 (ex(z —y) + ex(z +y)). Thus we
obtain

K(t,a,y) = > [kle ™™ (ex(a —y) + ex(w + 1)) 1= Palt,x — y) + Pa(t,x +y).  (4.53)
k

By [SW72, p282, (c)], we have that for any (¢,x) € Dr,
t -3
Pyt )| S Jal e R S (8 4 Jaf) (4.54)
Thus we obtain for any t € [0,7], z,y € D,
1 -3 1 -3
Kt S (0 +l—gl)  +(E0F +le+yl)

We can extend the definition of K(t,z,y) for x,y € R? with the same form as in
(), and denote

Kilt.r.9) = [ (oK (tay - 2)de (4.55)
R2
Therefore () becomes

t
ZoM(t, x) = 5"/ (Kn(e(t =),z — ), dWy) 12(p r2)
0
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Then by [Hail4, Lemma 10.17] we have that
1 -3 1 -3
| K (et z,y)| S ((gt)z + |z — y| +h) + <(5t)1 + |z + 9| +h> . (4.56)

Then we have that for any (t,z) € Dy.
t
Gl < [ [ 1Kzt~ o) Pardy
o Jp

te -6 te —6
< 52"_1/ / <ri + |z —y| + h) drdy + 820—1/ / (Ti + |z 4yl + h> drdy
o Jo o Jo

< —e*tlogh.
(4.57)
]

Now we have the following main result in this section:

Theorem 4.14. Let u®" be the unique solution to (@) and vy be defined in Theorem
with large enough K > 0. For some 0 > 0 such that £/ < h?, we assume that

v > 13,
1 13 (4.58)
o> g’}/ + E} +46.

Then there exist a generic constant C > 0 and a constant Cs > 0 for all 0 < ¢ <

g — %’y — %3 - g such that the following estimates hold

P [||R€’h||L3(DT) < O3] >1 - 05,

P [HRfvhHiw(O,T;Hﬂ) <C(e '+ g“*—l—%—@): >1— O, (4.59)

]P) |:H'U€7h - (UZH%A(O,T;H72) S 08%71 Z 1 - 0586.

Proof The proof is similar to Section @
Again we define a stopping time

t
TR = T Ant{t > 0 / V() Badr > 7). (4.60)
0

Then let ¢t < 7" and fix an w € Q. Since

h2<e? (4.61)
for some 6 > 0. We have that
0
—logh < —3 loge <e7?, chel S g2o-1=9, (4.62)

For %(ui +Yeh 4 Z&h YEh) we have that for small enough ¢

t £
C
h,t J_ Y_9_
/ 2l + yoh + zoh yemdr Seile, Setta?l
0
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For the rest terms on the right hand side of (), we follow the proof in Section @
by replacing the estimate for Z° with the estimate of Z=" in Lemma §.12. Thus we have

that for small enough ¢ and ¢t < T="

I_9_ _ 11— 2 _95—0)—
sup ||Y€’h(7'>||§{_1d7'§€20+3 2 6_|_€'y 1+€a* 1 26+3 9+€3(0* 20—0) 1'
T€[0,¢]
Also,

t
/ ||Y87h(7)||§{1d7 < £20+33=0 | F(r-1)=1 4 [0n-2-2043—0 | 3(0u20-0)-2 4 -2
0

Hence we have

t
sup [Yoh(r) |2 dr S e, / |Yoh (7 [2ndr < £, (4.63)
T€[0,¢] 0
where
o= (20—1—%—2—(5)/\(0*—1—25—9—1—%)/\(3(0*—25—6’)—1)/\(7—1),
2 5
= (=1 A(Ey=2).
Yo = (11— 1) (37 3)

Similarly to (), we have
t 24
| vetiar s e
0

In order to prove 75" = T for small enough &, we need to prove v < %71 + 9. First we
assume that v, = %’y — %, ie.

2 2
N3 g
Then %71 + v2 > v yields
2 10
Y1 > 5’7 + ?

A direct calculation yields that

v > 13,

113 3
> oy e 4204045
Oyt F2WHO+

which implies that
71:(0*—1—25—9—1-%)/\(7—1).

Since 6,3 > 0 can be as small as enough, we can only assume that () hold and let
0<20<o—3y—2—0.

Since R&" = Yo" + 75" and H' C L3, we can obtain the estimate of R>" which is
similar to () Moreover let

1
v = —e A+ = (f(utt) = 365, u)
- :
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similarly to (), we obtain that
1 1
||U€’h - UZH%l(O,T;H*?) S gHRE’hHLQ(DT) + g‘|R€’h‘|L1(DT) + g||c‘l€z,tue’h||il(o,T;H72)

1 1
S ell R sy + EHRE’hHm(DT) + g”ci,tHLm IR + vyl 3oy

<es g2 2ogh < sl
U

Remark 4.15. [t is easy to see that (@) implies o > 23—6 + 6. This implies that the
faster that h converges to O than €, the smaller o could be. Since 6§ can be small enough,
the lower bound for o is %.

Note that the lower bound for o is smaller than the case of space-time white noise
(see Remark |4.4). In fact we can also consider the mollified space-time white noise in
Section just as in this section. By comparing € with the converging speed of the noise,

the lower bound for o could be much smaller.

Corollary 4.16. There exist subsequences {e3}5°, and {hy}52, with €% < h? such that
forP—a.s. w € ()
lim u" = —1 421, in L*(Dyg),

k—o00

where E; is the region enclosed by I'y.

Proof The proof is the same as Corollary @, we ignore it here for simplicity.



Chapter 5

Weak solutions to the sharp
interface limit of stochastic
Cahn-Hilliard equations

In this chapter, we consider stochastic Cahn-Hilliard equations driven by two types of

noise.

First, we consider the sharp interface limit of the following stochastic Cahn-Hilliard
equation on a bounded smooth open domain D C R? (d = 2, 3):

(du® = Avedt +<7dW,, (t,x) € (0,T] x D,
1
¥ = oD (1) + (D). () € 0.7] %D,

out  Ov®
o 0, (t,z)€[0,T]x 0D,

(u®(0,2) = ug(x), = €D.

Here W is a @-Wiener process where @) satisfies (@) and (@) f(u) = F'(u) where
(u? — 1)% is the double well potential and the initial data uj satisfies

F(u) = |

1

1
sup / <§\Vu8(x)|2 + EF(ué(m))) dr < & < o0,
D

s 52)
—/ ug(z)dr =mg € (—1,1) Ve € (0,1].
D] Jp
In the last section, we consider the equation driven by a “smeared” noise:
fa €
aut =Av"+¢e%;, (t,x) € (0,T] x D,
1
© = —eAu(t) + = f(u(t)), (t,z)€0,T]xD,
v = —eA(t) + _fE D), (tx) € [0,7] 53
ou®  ov°
— =0, (t 0,7] x 0D
on  On » (t2) €[0,T] x 9D,
u®(0,2) = uy(z), =z €D,

where & =
Formally as € — 0, & — %

__ dwWe
dt ?

\

£ = [ p(t—s)Wids and p. is an approximate delta function on R.

aw

7
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78 equations

5.1 Preliminary

5.1.1 Basic notations and assumptions

In the following, we denote by S~ ! the unit sphere in R? and 7 a generic element in
Sd-1,

We assume that D is a smooth bounded open domain in R? (d = 2,3). Let Q be an
linear operator on L?(D), which is commuted with A and satisfies

QGQ = O, (54)
where eg(z) = 1 for any x € D and
Tr((—A)Q) < +oo. (5.5)

Let (Q, F,P) be a stochastic basis and defined on it a Q-Wiener process W on L?(D).
According to [DPD96, Remark 2.2], we have that

Theorem 5.1. Assume that ) satisfies ), ), then for P — a.s. w, the equation
) has a unique analytic weak solution u® € C([0,T]; H* N L*).

Let u® be the solution to equation (15:11), we set

ES(t) :==E5(u)(t) = Aea(ua(t,x))dx, e“(uf) == g\VuEIQ + éF(ua). (5.6)

5.1.2 Definition of a weak solution to the limit of equation (j5.1))

Now we recall the following definition of weak solutions to the limit of equation (lS:l])
introduced in [Che96, Definition 2.1]:

Definition 5.2. A triple (E,v,V) is called a weak solution to the limit of equation )
if the following holds:

(i) E = Uepor({t} x Ey) is a subset of Dr and 15 € C([0,T]; L') N L>(0,T; BV);

(ii) v € L2(0, T; HY);

(iii) V. = V(t,z,p) is Radon measure on Dr x P and for almost every t € [0,T],
Vt.=V(t,-,-) is a varifold on D, and there exist Radon measure u' on D, u'-measurable
functions -+ ¢y, and p'-measurable P-valued functions ph, -l such that

0

IA

A<l (i= Zc > 1, sz®pz—1u—ae (5.7)

2| D1y, |(x)dx < dyit(x ( /\/761 _ ) (5.8)

/ Y(x,p)dV(x,p) Z/ V(z, pi(x))dp'(z) Vi € C(D x P);  (5.9)
DxP
(iv) For any t € (0,T] and for almost every T € (0,t),

/t/ (=21, 00 + Vo - Vib) dadr — / 204,0(0,) Vi€ CH[0,6) x D),  (5.10)
0 D D

(D1, 0¥ = (1p,, div(eV)) = %wt,?) Ve CAD:RY, (5.1

D +/Tt/D\Vv|2 < u’ (D). (5.12)
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5.1.3 Main results for ()-Wiener noise
Theorem 5.3. Assume that o > 1 and ) hold. Let @ satisfy ) and ) Let

(uf,v%) be the solution to ) Then there exist a probability space (Q, F, {F; }rep), P),
(@€, 9°) € C([0,T); L?) x L*(0,T; H') with Po (a€,5°) " = Po (u,v°) " on C(]0,T]; L?) x
L2(0,T; H'). There also exists a subsequence € such that as g, \ 0 the following holds:

(i) There exists a measurable set E C Q x Dy, such that 1y is {F;}-adapted in L*(D)
and for P — a.s. w

i (w) = —1+21pw), a.e. in Dr and in C°([0,T); L?)

for any B < & where E(w) :={(t,z) € Dy : (w,t,z) € E}; i
(ii) There exists v which is weakly measurable in L*(0,T; H'), such that for P—a.s. w

7% (W) — v(w)  weakly in L*(0,T; HY);

(iii) There exist random variables p € Mg and {p;;}),_, € M such that for
P—a.s. w

e W (@ dadt — dp(w, t, ) weakly in Mg,

5.13
k0, U (W) 0y, ™ (w)dadt — dpgj(w,t,x) weakly in M, Vi,j=1,---,d. (5.13)

() For P — a.s. w, there exists Radon measure V(w) on Dr x P, and p(w,z)dt =
dp(w, t,x) such that for any t € (0,T) and Y € C}(D;; R?)

/Ot<(5vs7§7>ds = /Ot/DVE7 s (Tdp(s, @) — (i (5,7)) 4 y) - (5.14)

ForP —a.s. w, (E(w),v(w),V(w)) satisfies all the properties in Definition except
). In particular, if o > %, ) holds, thus (E(w),v(w),V(w)) is a weak solution
in the sense of Definition |5.4.

Theorem 5.4. Let o > %, with the same notations as in Theorem , and suppose that

the assumptions in Theorem hold. Then in radially symmetric case, that is D = By,
where By is the unit ball in RY and that u is radially symmetric, we have that
dp = 2S|D1g,|dzdt as Radon measure on Dr.

In particular, for a.e.t € [0,T], V' is a (d — 1)-rectifiable varifold (see [Sim83, Section
11, Section 38] for definition), i.e.

dV (t,z,p) = 25|D1g,|dxdtds, (1.0)(dp) as Radon measure on Dr x P,
where Vg, is defined in (@) Then we have that

{(d:uij)dxd = Up, ® Vg, dp as Radon measure on YjT, (5 15)

o(t,x) = Sig, () - Hye(z) on supp(|D1g,|) for a.e.t € [0,T],

Hy+ is the mean curvature vector of V' defined in Definition and 0z is the Dirac

measure concentrated at V € P.
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Remark 5.5. Since E; is a BV set for a.e. t € [0,T], by Theorem , O*Ey is a
(d — 1)-rectifiable set and
|Dlg,| = H O EL.

Then in radial symmetric case, for a.e. t € [0,T]
pt = 2S|D1g,| = 2SH 9" E,.

By Remark @, when Ey; is a smooth domain, ﬁvt s just the classical mean curvature
vector of OE and Ug, is the inward normal vector of OE;. Thus the last equation in )
gives a weak formula of the third equation in (|1.4).

5.1.4 Remarks on the definition of weak solutions

Suppose that (E.v,V) is a weak solution of Definition @ In the following, we show
how Definition @ is connected with () This has been obtained in [Che96, Subsection
2.4]. We give more details for complete results.

Observe that in distribution sense, d;1p is defined for any ¢ € C1([0,¢) x D)

/Ot/p(@t]lE)@D:/Ot/pat(IlElﬁ)—/ot/D]lEaﬂb:—/DlEow(O,x)dx—/ot/D1E8t¢dxds,

Thus () implies that in distribution sense
20,1l = Av, in [0,T] xD.

Since v € L*(0,T; H'), Av and 2¢ are ill-defined in (@) They have to be understood
in distribution sense. We suppose that (v,I") is smooth enough such that Av and g—z are
well-defined.

Suppose that D\ E C D. Denote I'; := 0E; \ 0D and let Dt = E? ND be the interior
of B, in D and D~ =D\ E,.

For the first equation in (@) For any = € D\ I, Av(z) = 0 since 1g(z) is a
constant in time. More precisely, let ) € C1([0,t) x D) and suppi(s,-) C D\ I, for any
s € [0,t), we have that

/Ot/p]lEtat@Z)dxds:/Ot/l)8t¢dxds:—/p¢(0’.)dx: _/DﬂEo@/)(U,')diE.

Then () implies that
¢
/ / Vv - Vidxds = 0,
0o Jp

which is the weak formula of the first equation in ()
For the second equation in ([L.5): Since D\ E C D, 0Dt = 9D UTI'. For any
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Y € CH[0,t) x DF) and suppy(s,-) C D* for any s € [0,1),

/ /8 3 —zded lds = / t /D ) div(Vuy)drds
/ - Vo - Vf/zda:ds+/ /D+ Avipdrds
/ / Vo - Vipdzds + 2 / / (0,1 p)Ydzds
:/0 /Dw-wd:cds—z/DILEOz/J(O,:c)dx—Q/Ot/DﬂEatwdxds

=0,
(5.16)
where we used () in the last equality. Thus we obtain in distribution sense the

following holds.
v

an
For the last equation in (@) For any v € C}(D,)

=0, on [0,7T]x dD.

1
/ Ol pdH? = —= / VoVydH?
D 2 D

:—% / VUV@ZJde—% / VoVihdH?
T U0 (5.17)
== / div(Voy)dH® + = / div(Voy)dH?
2 ot 2 |
1

:—/ (Opv" — Opv 7 )pdH.
2 Jr,

By using the weak formula of normal velocity in [Tonl9, (2.5)], we have that

o [ gdH' — | 0gdH¥ = | VVg it — gHVAH
Iy Iy I
Let ¢ satisfy
Ap =1,
gi 0 on 0D,

and take g = %‘5, we obtain that

/ 01 g, hdH? =0, / 1g,pdH? — / 15,0.pdH?
D D

=0, / ApdH? — / AdypdH?

:at/ &Pd%dl /a&Pdel
Ty an

675 g d—1
V—- ——H
/V " VdH



Chapter 5. Weak solutions to the sharp interface limit of stochastic Cahn-Hilliard
82 equations

= / ApVdH*™ + / ey, (divii — H) dH*
Ty . 571

0
= [ YVdHI + / Py (divii — H)dH.
Ty I (971

By our assumption, D7 is the exterior of I'. Thus 7 is the inward normal vector of the
interior of I'. Then if I'; = {(z,y) € D :y = ¢(x) € R}, it is well-known that

A T W
H‘“(W)’" Jirwap Ve

which implies that divii = H on I';. Hence we obtain that

YVAHT! = % / (Opv — Opv 7 )pdH?,

Ft Ft

which yields that in distribution sense
1 . _
V:§(0nv — Oyv7).

Therefore we know that () is a weak formulation of all the equations in (@)
except the third equation.

For the third equation in (@) following the argument in [Che96, Subsection
2.4], we can only prove the third equation in weak sense in the radial symmetric case as
in Theorem and Remark p.5.

In general case, it was shown in [RT08, Theorem 3.1, Theorem 3.2], under the as-
sumption that for a.e. t € [0,T], v°(t,-) — v(t,-) weakly in WP for p > d, the authors
proved that

o(t,z) = SHy: - Ug,, H* ' —a.e. x € O°E,. (5.18)

But the assumption that v — v weakly in W1? for p > d has not been obtained until
now since we can only obtain the convergence in H! = W2,

In fact, identifying the value of v on the interface I'; is the main task of varifold
approach to study the sharp interface limit of both Cahn-Hilliard equation and Allen-
Cahn equation (cf. [HT00, Ton02, Ton05, RS06, Le08, RT08]). Until now, a fully rigorous
proof for the (deterministic) Cahn-Hilliard equation is still missing.

5.2 Convergence

5.2.1 Lyapunov functional £° and basic estimates

In the deterministic case, where no forcing terms are present, the function £° defined
in (p.6) decreases in time. In stochastic case, the authors in [DPD96]| showed a similar
property when ¢ = 1 and (p.4) is satisfied. Using the same trick we can prove a similar
result.

Lemma 5.6. There exists a constant which only depends onT" and 0 < g9 < 1 such that
for any e € (0,e0] and any p > 1,

E sup E(t)P < Op(e* ! + &)P, (5.19)
te(0,7)
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and

T p
g ( / ||Vv€||izdf) < Cp(e¥ 4+ &) (5.20)
0

Proof We will not give all the details of the proof since it is the same as [DPD96, Section
2.3], we only calculate the order of ¢ for every term in the following.
Applying It0’s formula on £°, we have that
20
dE° (uf) = (DE* (uf), duf) + %Tr(QD2£6(u6))dt
20+1 20—1

Tr(—AQ)dt +

= —(Vv7, Voo)dt +

Tr(f' (u®)Q)dt + £°(v°, dW,).
(5.21)
By using the same trick as in [DPD96, Section 2.3] we have that

Tr(f'(v*)Q) S 14 e&°(u).
Hence we deduce from () that for any p > 1,
T P P
E | sup &(t) +/ Vv |3ads | SE[ &+ 142+ sup () +¢7 sup |[Me(t)
te[0,7] 0 te[0,T te(0,7
where M®(t) := f(f(ve, dWy). Let e be small enough, we have that

P T P
E ( sup Eg(t)> +E </ ||VU€||%2ds> <Pl L gl LR sup | ME(2)]P,
0

t€[0,7) t€[0,T

By Burkholder-Davis-Gundy’s inequality

E sup M) S E(M)r)f =B ( / ||¢@vf<t>||%zdt)2

te[0,7
T
<E (/ Hw%dt)
0

Then by Young’s inequality, for any x > 0, there exists a constant C; = C1(T') such that

[SIS]

T P
E sup |M:(t)|P < Cy + &kE (/ HVUEH%QCIS) :
0

t€[0,T]
Thus for a small enough x > 0, there exists a constant C7 > 0 such that
T p
E sup £(t)P + (1 —r)E (/ ||V116||%2d8) < Cp(ePPo=D 1 ghy,
te[0,7 0
which implies our results. U

Corollary 5.7. There exists a constant Cr > 0, such that for any p > 1

P
E sup (/ F(ug(t,;v))dx) < CreP(EP 4 eP20-1) (5.22)
te[0,T D
and
E sup ||u‘5(t)||4].ff1 <Cr(1+ &+ 5p(2"_1)). (5.23)
te[0,7

N =

In the rest of this section, we always assume o >
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5.2.2 Estimates for {u°}
We introduce a function ¢°(¢, z) defined by

g (t,x) == G(u'(t, x)), (5.24)

where .
= / \/T(x)dx, Vu € R.
Observe that h
[vrl= [ Vel < [ ewmar=en, 6.2
and there are positive constants c;, ¢y such that

61|U1 — UQ|2 S |G(’LL1) — G(U2)| S CQ|’LL1 — U2|(1 + |U1| + |UQ|), \V/UI,’LLQ c R. (526)

Lemma 5.8. There exists constant Cp > 0 which only depends on T, such that for any

B €0, 13),
E (g7l ozswr1) + 97 llos oy + 1w llosqoryes) < Cr

Proof Similarly to the proof of [Che96, Lemma 3.2], let p be any fixed mollifier satisfying
peC™®RY), 0<p<1, supppC Bi(0), /de =1,
where B; is the unit ball in R? centered at 0. For any small > 0, we define
up(t, ) :/B p(y)u (L, x — ny)dy.
1

Here we assume that u° is extended to {x € R?: d(z,D) < no} by

u(t,y +nnly)) = u(t,y —nn(y)), y € 0D, n € [0,n),

where 79 is a small positive number and n(y) is the unit outward normal vector to 0D at
y € dD.

Then by (), we have that for any p > 1, n € (0,n0),

E sup [V ()[|7- S nPE sup [[u()[[7. <077, (5.27)
te[0,7) t€[0,7]

and

E sup </ |us) —u€|2dx> <E|{ sup / / ) |uf(t, x —ny) —u(t, z)]? dydx
t€[0,T] D t€[0,T] B
P
SE (sup // g™tz —ny) — (t,w)ldydfv>
te[0,7) By

SHPE sup [V (0)|17,

(5.28)
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where we use () in the second inequality and ) ) in the last line.
For any 0 < 7 <t < T, by using u*(t) — (1) = [ 6( )ds—l—a(Wt—WT) (in weak
sense), we have that

B ([ 1 (00) — () (w(t.0) = () o)
<E ( / t /D Vo (s, 2) (Vi (t, ) — Ve (7, 7)) \da;ds)p
e ([ ] (ugt0.0) = i) (7 = W) )
([ ] IWEF)g (t— )t (Esitépﬂ Ius(s >Hfzz> o

1
+ PR sup [|us(s)[17. (BI[W, — W-[|75)*
s€[0,7T]

(= )b+ (- e
nP(t—T)E,

where in the third inequality we use (l52d), (|52ﬂ), (|527|) and the fact that

E|W, = W[5 < It =7

~

Then we have that
Elluf(t) - u*(7)|% <E ( [ 1 t0) = w7 0) (0 0,) = ) |da:)
+E (/D | (u(t,2) — g (t, x)) (u(t, 2) — u(T, 2)) |d:r;>

P
+E (/ | (UE(T, x) — u;(T, x)) (u(t,z) —u (7, x)) |dm>
D
2p % %
nP(t—1)i + [E ( sup [|ug(t) — (t)HLZ) (E sup HU6H%5>
te[0,T] tefo, T
SRt —7)% 4,

where we use () in the second inequality and (), () in the last inequality. If
we take 7 = 19 A (£ — 7)3, we have that

Eluf(t) — v ()| <SPt —7)% +n% < (t—7)5. (5.30)
Moreover, using () we have that
p
Ellg*(t) — ¢ ()P SE (/ (1, 2) — ()] (14 (1, 2)| + x>|>dx)
< S € P gP (531)
S E|uf(t) —u(7)][7. | 1+ E sup |[u]]%,
t€[0,T

< (t—71)1,
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where we use () and () in the last inequality.

Finally by Kolmogorov’s criteria (see e.g. [DPZ14, Theorem 3.3]), for any 0 < 8 < &

127
E (||96||0B([0,T};L1) + HUEHCB([O,T];L2)) S L

Moreover by ()
E sup Vo (Ol S 1
te[0,T]

Thus

Ellgllzeorwry SE sup [Vg*(@)llzr + E sup [|g°(8)[[ S 1
te[0,T] te[0,T]

5.2.3 Estimates for {v°}

We want to obtain the estimate of v¢ in the space H'. By () and Poincaré-Wirtinger
inequality, it is enough to estimate v® := ﬁ Jpv° (x)d.

Lemma 5.9. For any 6 > 0, there exists a constant C = C(§,T) > 0, such that

T
P (/ |v° () |3 dt < (J) >1-6.
0

Proof For any R > 0, set
T
Ani= (0 € QI @leqorn + s £+ [ 190l < R
te0,T 0

By the same argument as in [Che96, Lemma 3.4] and using an integration by parts
formula, we have that

= Jp (D*¢ = (e(u)l = eVu® ® V) — utVip - Vo© — utAp(v® — 7))
- Jp Apus

where D%y is the Hessen matrix of 1), ¢ is the unique solution to

—A¢Y =wu, —u, in D,
O

%:O on O0D.

Here uj is defined in the same way as in the proof of Lemma @

Then for a fixed w € Ag, all the estimates in the proof of [Che96, Lemma 3.4] hold.
Thus we have that there exists a constant Cg such that for any w € Ag, t € [0,7] and
any 1,¢ € (0,1)

WL+ 2R E ()W) + |V (0,0l 2o)
T NN 7

where mg = ug € (—1,1) is as in (@) Taking 7 small and independent of €, we obtain
that there exists constant C'’z > 0 such that for any w € Ag, t € [0, 7],

[0°(w, )| < Cr

T ~
/ v°(t)%dt < Cp.
0
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Ap C {/OT@E(t)%lt < GR}.

Moreover, by Poincaré-Wirtinger inequality

Hence we have

[0l S [o°] 4+ [V 2,
thus for any R > 0 there exists a constant C'r > 0, such that
T T ~
([ Il < on) 2 B ([ 0@ < Cn 90 g, < R) = Bl
0 0

By Lemma @ and Lemma @, using Chebyshev’s inequality, we have that for any
d > 0, there exists a constant R = R(§) > 0, such that

P(Ag) > 1-0.
Then we obtain the assertion of the lemma. O
5.2.4 Tightness
For any 3 < %, we denote
X' =R x L(0,T) x C°([0,T); L2) x C°([0,T); L*) x L%(0,T; H"), (5.32)

where L2 (0, T; H') is the space L*(0,T; H') equipped with the weak topology, L? is the
space L? equipped with the weak topology and L2 (0,7 is the space L>®(0,T') equipped
with the weak-* topology. We also denote

X2 = M x M, (5.33)

where 91 is the space of all finite signed measure on Dy and M C M is the space of all
Radon measure on Dr. Mp and M are equipped with the total variation norm || - ||rv
and weak topology, respectively. Here an element in 99%¢ is a d x d 9M-valued matrix
{,uij}‘ij:} where 1;; € 9.

Let P¢ be the probability measure on X! x X? defined by

-1

P =Po (51 sup || F'(u®)|[zr, £ (u®), u®, G(u®),v%, e (u”)dxdt, {0,,u 0, udwdt }4; :
t€[0,T]

) (5.34)

In the following we will prove that {P€}. is tight on X! x X2. This is equivalent to prove

the tightness of every component.

For sup,eio ry | F/(w)| 1, by () and Chebyshev’s inequality, we know that

Ee™' sup /F(us)dxfi 1.
D

t€[0,T]

Then we have that for any § > 0, there exists a constant K; > 0 such that

P (5‘1 sup || F(u)||p < K1> >1-4.

te(0,7
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For &, by () and Chebyshev’s inequality, we have that for any 6 > 0, there exists
a constant Ky > 0 such that

P (supé’f < K2> >1-0.
t

By the Banach-Alaoglu theorem, any bounded set in L>°(0,7") is precompact in L% (0,7T),
thus P o (£5(uf)) ™" is tight on L2%(0,T).

For u®, by the Banach-Alaoglu theorem, any bounded set in L? is precompact in
L?. Then by a generalized Arzela-Ascoli theorem, any bounded set in C?([0,T]; L?)
is precompact in C7([0,T]; L?) for any 0 < v < (. Hence we obtain the tightness of
Po (uf)~" on C7([0,T]; L2) by using Chebyshev’ inequality and Lemma @

For G(u®), by Lemma@ we have that for any J > 0, there exists a constant K3 > 0
such that

P (|G (u)| oo, rmwray + 1G () losoapinyy < Ks) =16

d

Since W1 is compactly embedded into L9 for any ¢ € [1, =%1, then by a generalized

Arzela-Ascoli theorem for any 0 < v < 3, the set
{g€ C([0, T8 LY) « [|gllz~ iy + lgllesoryy < K}

is compact in C7([0,T]; L'), which implies the tightness of Po (G(uf))~" in C7([0,T]; L")
for any v < %

For v°, the tightness of P o (v°) " in L2(0,7T; H') is followed by Lemma @ and the
Banach-Alaoglu theorem.

For €0,,u°0,,u° and e°(u®), since L'(Dr) is embedded into 9. Moreover for any
f € LY(Dr), we have that

f(t,x)dxdt = frdxdt — f~dxdt.

Since Dr is a compact set, we have that fYdxdt, f~dxdt € Mp. By Theorem , any
bounded set in Mg w.r.t. total variation norm is precompact in My w.r.t weak topology,
which implies that any bounded set in 991 w.r.t. total variation norm is precompact in
M w.r.t weak topology. Thus by (@) and

€000 Dr, 0% || 1 Dy S €| VUE ||t (D) S

~

sup &,
te[0,7

&)l S sup &7,
t€[0,7)
we obtain the tightness of P o (e(u®)dzdt, {€0,,u0,, ufdxdt}ij)_l in X2,
Hence we proved the tightness of {]13’5}€ in X! x X2 Then by using a Jakubowski’s
version of the Skorokhod Theorem in the form given by [BO13, Theorem A.1], which was
proved in [Jak9g]:

Theorem 5.10. Let X be a topological space such that there exists a sequence { fn}n>1
of continuous functions f, : X — R that separate points of X. Let us denote by . the
o-algebra generated by the maps {f,}. Then:

(1) every compact subset of X is metrizable;

(2) every Borel subset of a o-compact set in X belongs to .7 ;
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(33) every probability measure supported by a o-compact set in X has a unique Radon
extension to the Borel o-algebra on X;

(G4) if (un) is a tight sequence of probability measures on (X,.), then there ezists a
subsequence (ny)g>1, a probability space (Q, F,P) with X -valued Borel measurable random
variables X, X such that i, is the law of X and X} converge almost surely to X.
Moreover, the law of X is a Radon measure.

We obtain that

Theorem 5.11. Assume o > % There exist a probability space (0, F, {]:"}te[oﬂ,ﬁ’) on
X1 x X2, a subsequence e), (we still denote it as € for simplicity) and

{ (51 sup ||F(@)| 1, £ (@), @, G(@), 0°, € () dadt, {wxiﬂsﬁxjﬂedxdt}ij) } C X'xx?
t€[0,T]

and
(CL’g?uagavnu? {MZ]}Z]) € Xl X X27

such that

(i) Po(e SUPepo,r) [1F(0°)| 11, E5(0°), @8, G(aF), 0%, e*(4° ) dwdt, {58$iﬂ58$jﬂ5dxdt}ij)fl -
P on X! x X2,

(ii) (e sup,epo.m |1 F (@) || 21, E5(0), as, G(a°), 0%, e (0 )dadt, {€0,,u° Dy, i dzxdt };5) con-
verges to (0,€,u, g, v, u, {ij }ij) in Xt x X% P—a.s, ase \, 0.

In particular, for P — a.s.w, there exists a Borel set E(w) C Q x Dy, such that as
e N0

(iii) v — u in C3([0,T); L?), ¢ = G(u) = 251p a.e. in Dy and in C*([0,T); LY),
u=—1+21g a.e. in Dy and in CP([0,T]; L?).

Moreover, denote E = {(w,t,x) € Qx Dy : (t,x) € E(w)}, By :={(w, ) : (w,t,x) € E},
then 1, is {F }iep-adapted in L*(D) and satisfies the following:

(iv) For all B < &, P (15 € CP((0,T); L)) = 1,

(v) B (|B| = |Bo| = 252 |D|,vt € 0,T]) =1,

(vi) (1 € L®(0,T; BV)) = 1.

Proof Since X' x X? is locally convex space and its dual space is separable, by [Rud73,
Theorem 3.4], the condition in Theorem p.1( holds. Thus the Skorokhod theorem Theo-
rem p.10 yields the first assertion and the existence of convergence subsequence to

(a,E,u, g,v, 1, {pris }ij) in X' x X2

Since Po (@, 9°) ! = Po (uf,v°)~!, we have that for any h € H,

eo ( /D (@ (t) — @ (0))hda + /0 v Vhdx)

is a Wiener process on (€, F,P) with covariance HQ%hH%Q. Thus there exists a Q-Wiener
process W on L? which is defined on (2, F,P). Then we have that for any h € H'

/D(ff(t) —&5(0))hdx+/0t/DV@€~Vhdx:5” /Ot<h,dWs). (5.35)
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Moreover, we denote {ﬁt}te[O,T} be completion under P of the natural filtration gen-
erated by {W;}iep 17, thus {Fi}icp.r is a normal filtration. By [DPD96], we know that
for any e > 0, @ is the unique solution, thus by Yamada—Watanabe theorem (see e.g.
[LR15, Theorem E.0.8]) {@}, is {F;};-adapted in L*(D). Since @° — u in C([0,T]; L2),
we know that u is {F; };-adapted in L?(D).

In the rest of this proof, we ignore the notation ~ if there is no confusion.

By (p.26), we know that for any ¢,7 € [0,7], any € > 0

uf(t) — u*(7) [ S 1G(uf(t)) — G(u (1))l
thus we have that for P — a.s.w
[u () = u(7)||72 S N1G(uf () = G(u(7))| 1

Since G(u) — g in CP([0,T1], L") for any 8 < 15, let € — 0 we have that

limsup [[u(t) — u(7)l|7> < lg(t) = g(D) e S It =717

e—0

Since uf(t) — wu(t) in L?, by the weakly lower-semicontinuity, we have that

lu(t) — u(s)[7> < lminf [lu*(t) — u(7) ]2 S [t — 7"

Hence we obtain that u € C’g([O, T); L?) P — a, s,. Similarly we have for any ¢,h > 0
lu® = w72 S G (W) = G")|p, P —as.
Let h — 0, we obtain
lu® = ullf2 S NG(W) = gllr, P—as,

which implies that v — w in C2 ([0, T]; L?) P — a.s..
On the other hand, by (@) we know that

N

E sup / (4] - 1Y%z S E sup |F(w)|m S e,
D

t€[0,7) t€[0,T

As ¢ — 0, we have that for P—as. |ul =1in L% Vt € [0, T, which implies that for
P — a.s. there exists a measurable set E(w) in Dy, such that

u=—-1+2lg, P—as.

Since u is {]t"t}te[o,ﬂ—adapted in L?, we know 1 is also {f}}te[o,T]—adapted in L2
Moreover by the right hand side of (), we obtain that for P — a.s.w,

lo — Gl = lim |G (u) — Glu) ;2 < lim " — ] =0

which implies that g = G(u) = 251g. Hence we proved the assertion (iii).
Using the estimate (p.30), we have that for any ¢, 7 € [0, T,

El|Lg — 1g |75 S EllLs — Le, |75 S WmEllus(t) - *(1)I|75 S [t - 7[5

~Y
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Then the assertion (iv) followed by the Kolmogorov’s criteria.
Note that the equation (p.1]) is conserved, i.e. for any t € [0, T,

/ue(t,x)dx = / ug(x)dx = |D|my.
D D

Since u® — u = —1+ 21p, we have that |E,| = ¥£¢|D|. This proved the assertion (v).
Finally set ¢° := G(u®), by () we know that

D (t,)|(D) = /D Ve (¢, 2)|de < £,

As e \ 0, since ¢° — g = 281 in C([0,T); L') and & — £ in L2(0,T), by [AFPOC,
Proposition 3.13|, we obtain that Dg° — Dg in L*°(0,T; BV'). Then by the lower semi-
continuity of the BV norm we obtain that |D1g,|(D) = 55/Dg(t, )| < 55E(t). This
completes the proof of the theorem.

U

5.2.5 Proof of Theorem 5.3

Now we are in a position to prove Theorem @ Before we begin the proof, we need to
first recall some crucial lemmas to estimate the following “discrepancy” measure (°(u)dx

1
C*(uf)dx = (g\VU€|2 — gF(us)) dz. (5.36)
Lemma 5.12. (|Che9¢, Lemma 4.4, Theorem 3.6]). Let

e = {(u,v) € H*(D) x L*(D) : v = —8Au—|—§f(u) in D, Ou =0 on GD}.

on

There exist positive constants Cy and ny € (0,1] such that for every n € (0,m0], every
e € (0,1], and every (uf,v°) € K¢,

/ [ (u) + = (uF)] < Cln / £ [Vee|? + Coe / ()2 (5.37)
{z€D;lus|>1-n} {z€D;slus|<1-n}

D

Moreover there exist continuous, non-increasing, and positive functions Mi(n) and Msy(n)
defined on (0,n9] such that for every n € (0,1n], every e € (0, M], and every (u®,v%) €
K¢, we have that

/D(C‘?(ug))Jr dx gnfl)es(us)dx+€M2(n)/(vs(x))Qda;, (5.38)

D

where (C5(u®))" is the positive part of C*(uf).

Proof of Theorem

Let {u§(-)}e be a family of initial data satisfying () Let (u®,v°) be the solution of
with initial value ug. The first three assertions can be obtained directly by Theorem
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In the following we fixed w such that all the assertions in Theorem hold. For
simplicity of notation, we also denote ¢ by € and omit the notation tilde ~ in the Theorem
5.11l.

Since G(u®) — 251 g and |DG(u®)| < e*(u®) for every € and every (t,z) € Dy, by the
lower semicontinuity of the BV norms, we have that

2S|D1g,|dtdxr < dpu,

which is the inequality (@)_
For any ¢ € C;([0,t) x D), denote h(t,u) := [,(1 + u(z))(t, x)dz. Since (uf,v°) is
a solution to equation (p.1)), by It6’s formula we have that for any 7 € (0, ?)

(1) = h0.w'0) = [ [ owira)(1 4 (radedr + [ (ot ).,
combined with ¥ (t) = 0, which yields that
—/D(l +u(0,2))1(0, x)dx :/Ot/pﬁtl/}(ﬂ x)(1 + v (7, x))dxdr — /Ot/DVUEVQZJ
o ), dW.).
e [wtr)aw)
Let € N\, 0, we obtain that the identity ()

In addition, for any t € (0,77, Y € CH(Dy; RY), a direct calculation by integration by
parts yields that

/?-Vuevaz/? Vus ( eAUE + f( ))
D
= /DY —eVu® @ Vu©) + / ¢ ()Y - figp
oD

= /DY ) —eVut @ Vu©).

The last equality holds because D is an open domain thus Y =0 on OD. Then taking
integration from s = 0 to s = t and letting € 0, we obtain

t t
/ 21 pdiv(vY )dads = / / DY : (Idp — (dpi;) axa) - (5.39)
0 0 JD

It remains to construct V to finish the proof. Note that for any 0 < 7 <t < T,

//dus:c—ll\r‘l%// dsda:'—/S (5.40)

Therefore, in the sense of Radon measure,
du(t, z) = du'(z)dt.

By () we have pt(D) = E(t) for a.e. t € (0,T]. Consequently, for a.e. t € (0,T] and
a.e. T € (0,t), by (p.21]), we have that

(D) =£(0) = e ) = iy ()0 - [ [ 1907
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20—1

+ lim (62”“ /t Tr(—AQ)ds + < /t Tr(f'(u®)Q)ds + & /t<v5, dWT>> :

e\
Similar as in the proof of Lemma @, we have that for o > %,

20—1

lim (52"“ /t Tr(—AQ)ds + c /t Tr(f'(u®)Q)ds + &° /t@g, dWT>> =0.

e\0

Hence we deduce that

t t
,f(p)gg(T)—/ / \Vv|2dxds:uT(D)—/ / IVo[2dds,
T D T D

which is the inequality ()
Next, we study the relation between p;; and p. Observe that for any ¢ € (0,77, and
i},Z:G ijjﬁIRd%

t t
e / / Y' (Vur @ V') Z =¢ / / S YIZ90,u%0, vt dudt
0o Jp U 2

t
Sé/ / \Y||Z|| Ve [Pdadt (5.41)
0 D

t t
<[ [Nz« [ [ 1712w,
0o Jp 0o Jop
where Y7 is the transpose of vector Y. Here in the last inequality we use the definition

of ¢¢(uf) in () then e°(uf) + (*(u®) = ¢|Vu|?.
o

By taking 7 as small as enough in ), we have that

t
lim Y| Z|¢E(vf) < 0.
i [ [ 712160 <
Thus letting € \, 0 in (), we obtain that

t t
| [ e,z < [ [ 19171 (5.42)
0 D 0 D

Therefore, in the sense of measure |du;;(t,x)] < du(t,z). Consequently, there exists
p-measurable functions v;;(¢, ) such that

dpi;(t,x) = vy (t, x)dp(t, z), p—ae. (t,z) € Dr.

By the definition of j;; and (), we have that

0 < (Vi) gug = Wij(t,2)) 4oy <1, p—ae. (t,z) € Dr.
Therefore we have that

d
(Vi) asa = E Al @ Uy, p— a.e.,

i=1
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where ;, 1 = 1,--- | d are y-measurable unit vectors and \;, s = 1--- | d are u-measurable
functions, which satisfy

d
0SN<L(i=1-,d), > N<1, Y GedG=1 p-aec. (5.43)
; =1

It then follows from () that for a.e. t € (0,7] and for every Y € C1(D,R%),
d

2/ 1g,div (v(t,x)Y(x)) dx =
D 4:

D

=1

VY (z) : (1— Xi(t, )7, (t, 2) @ E(t,x)) dut (z)

= | VY(x): ) d(a) (1 - a(t ) @ Bi(tx)) dpd' (),

D 1

where

Clearly, for a.e. t € (0,T], 0 < ¢ < 1and 3 ¢ > 1 for i — a.e.. Define p! =
{v;(t,z), —v;(t,z)} € P and V' asin (p.9), then V is defined by dV (¢, z, p) = dV*(z, p)dt,

i.e.

sH

AV (t,2,p) = > ()8, (p)dpt' () dpd,

=1

satisfying (iii) of Definition .
Then by (2.6),

/D 15, ()i (u(t,2)F (2)) do = %<5vt,?>.

Thus we obtain () Hence we proved (iv) of Theorem @ This completes the proof
of Theorem p.3.

5.2.6 The case that ¢ = %

As what is shown in the last subsection, for o = %, the limit of solution to equation (@)
satisfies all the definition in Definition @ except () Instead we have

Proposition 5.13. Let i' be as in Theorem , then

t
p' (D) + / / Vo> < " (D) + Co(t —7), P—a.s., (5.44)

T JD

where Cq := Tr(Q).
Proof By using the method as in subsection , we have that for o = %

() =) =y ()0~ [ [ v
+ ll\r‘% (52 /: Tr(—AQ)ds + % /Tt Tr(f' (u®)Q)ds + 85</Tt V%, dWT)>
<&(r)— /Tt /D |Voldxds + (t — 7)Tr(Q).
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Thjlast inequality holds because |uf| — 1 and f'(uf) = 3(u®)? — 1. Thus we obtain
(p.44).

g

Remark 5.14. By Proposition and the analysis in the proof of Theorem mn
Subsection . In the case that o = %, the energy put may grow a little faster than that
in deterministic case. But as what we will show in the next section, at least in radial
symmetric case, the perturbation by the noise e2dW is not strong enough, such that the
limit of equation also converges to deterministic Hele-Shaw model (in a weak sense).
Thus we conjecture that in general for P—a.s. w, the sharp interface limit of ) satisfies
the deterministic Hele-Shaw model )

(Av=0mD\Ty, t >0,

ov
— = D
o 0 on 0D,

v=SH only,

\ V= %(&ﬂﬁ — O0pv™) on Ty

5.3 Case of radial symmetry for ¢ > %

In this section we are going to prove Theorem @ In this case of radial symmetry, we
assume D = B;.

Any function w in this section of the form w(z) = wu(|z|). For convenience, we do
not distinguish functions of x € By from functions of r € [0,1). We only distinguish the
integrals of dx from that of dr, due to consideration of singularities at the origin.

Denote r = |z|, then the equation (p.1l) should be changed as

( d—1
du® = O, v°dt + T(?Tvgdt +e%dWy,  (t,r) € (0,T) x [0,1),

v = O (t) ~ Aot L), (bn) € OT)X[0,1),  (5.45)

Ous(t,1) =0.0°(t,1) =0, tel0,T],
Lu®(0,7) =ug(r), = €D.

Here W, is given by
Wy =) anbi(r)Bu(t), (5.46)

kezd

where {0 }reze is a sequence of independent Brownian motions and {cy} satisfies

Z @ < 00. (5.47)

kezd

{by }eza is an orthogonal basis in L3(0, 1), which is defined as { f € L*(0,1) : fol fr)yri—tdr =
0}, i.e.

1
/ bi(r)yr*tdr =0, Vk € Z° (5.48)
0

Note that ()—() is just the radially symmetric version of condition (@) and (@)

Moreover, all the results we obtained in the previous section also hold for this case. In
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particular, there exists a Borel set E c [0,T] x [0,1) such that E = {(t,x) € Dy :
(t,|z]) € E} and E;, := {r € [0,1) : (t,r) € [0,7] x [0,1)} is a BV set in [0,1) for any
t € [0,77.

Remark 5.15. For the existence of radial symmetric solution to @ under the assump-
tion in this section, we only need to check that any solution u® to ) s invariant under
the rotation transformation. Then by the uniqueness, we can obtain that u® is radial
symmetric.

In fact, any rotation transformation in R% can be identified as an orthogonal matriz
with determinant 1, i.e. an element in SO(d). For any A € SO(d), a direct calculation
yields that

V(woA)=(Vv)oA (Av)o A= A(vo A).

Then_we have that for any solution (u®,v®) to ), (uf o A,v° 0o A) is also a solution
to ) By the uniqueness of solutions to ), if the initial value_of (u®,v®) is radial
symmetric, (u®,v) is also radial symmetric. In this case, equation ) is equivalent to
(hm. 7).

Moreover, a direct calculation yields that

¢
/ |Vu(|m|)|2dx:/ rd_1|8ru(r)|2dr.
B 0

Since in 1-dimensional case, H([0,1]) is embedded in C([0,1]), we have that in radial
symmetric case, for a.e. t € [0,T], u®(t,-),v¢(t,-) € C(By \ Bs) for any 6 € (0,1).

We also mention that all the results in [Che96, Section 5] only depend on the second
equation in ( m) and the estimate of (u®,v®). Thus with a similar proof, we obtain the
following theorems.

Theorem 5.16. Assume that {(a®,0°)} is obtained in Theorem . Then

T
li “(@)|dzdt =0, P—a.s.,
61{1(1)/0 /D{C(u)’x a.s
where (5(u°) is the discrepancy measure defined in )

Proof In this proof, we ignore the notation tilde ~ for simplicity.
For a fixed w such that all the assertions in Theorem hold. By the same proof as
[Che96, Theorem 5.1], we have that there exists a constant C' > 0 he following estimates

/ ef(uf)de < COMe(t), Vo € (0,1), (5.49)

where Me(t) = 1+ (uf)(t) + ||[v||%, € L}(0,T), and

sup [r? (¢ (uf) + vut)| < CME(1). (5.50)

0<r<1

Hence for any small § and 7,

/ ¢ ()] de < / ¢ ()| do + / ¢° ()| da
D BsU{|us|>1—-n} D{r>6,|u¢|<1—n}
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< / e (u°) dx —i—/ [[v°] [uf| + 'O M= (t)] da
BsU{|u¢|>1—n}

Dm{r>57|u€‘§1_n}

< / e (u¥) dx + / [[v°] (1 —n) + r'“CM=(t)] dx,
BsU{|u®|=1—-n}

DA{r>3,|uc|<1—n}

where we used the definition of (¢ and e®(u®) and () in the second inequality.
For the first integral above, we have that

/ e (u¥)dx < / e (u®) dx + / e (u®) dx
BsU{|u|=1-n} B; {luf[=1-n}

< C(SME(t) + C()??M€<t> + CoéfME(t),

where we used () and () in the second inequality.
For the second integral, we have that

/ UfHLﬂﬂ+FdCMWde§/ 2] + 64O M (1)) de
DN{r>d,|uc|<1—n}

{lu¢|<1—n}

< H({Ju] < 1-n}) (ME(@)F + 6 1OME(D))

By Theorem we know that e ' F(uf) is uniformly bounded in L>(0,7;L'). Thus
there exists a constant C; > 0 such that

HI({u] < 1— ) < HA{ ] — 1] > 0}) < 0~ /D F(u)de < Cuy 2.

Combining all the estimates above, we have that for any 7,6 > 0, there exists a
constant C(6,7) > 0, such that

/D [C(@) | < Co (6 4+ + = + C(8,m)e) ME(1),

(5 is independent of ¢, 7, §. Integrating the last inequality in (0, 7") and letting first ¢ — 0
and then 9,7 to 0, we can obtain the theorem.
O

In the following, we are going to prove
dp = 2S5|D1g|dxdt.
To prove this, we need a technical lemma:

Lemma 5.17. (|Che96, Lemma 5.4]) For every small positive constant § > 0, there
exists a small positive constant €9(0) and a large positive constant C(d) > 0. such that
for every € € (0,e0(0)], if (u®,v°) is a pair satisfying the second equation in (5.25‘) and

sy <67 [ ) < &,
By
then the following hold:
(7). If (a,b) C (9, 1] is an open interval where |u?| < 1—|lne|~2, then fora.e.t € [0,T],
u® is strictly monotonic in (a,b) and |b —a| < C(0)e|Ine|.
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(it). Denote A® := {r € [20,1 — 20] : u(r) = 0}, then
1-26+C(d)e|Ine|

/212 Pl () dr — C(0)VE <28 3 7t g/ P16 (u)dr + C(6)VE.

0 reAe 20—C(6)e| Ine|
(iii). For any r € A®,

S(d—1)

r

v (r) + sgn (uz(r))

‘ < C(6)e'/8,

(). If r1 # ry in A%, then
1

c()

Theorem 5.18. Let {(a*, 0% )}y are radially symmetric solutions of ) which satisfy
all the assertions in Theorem . Then for any t € (0,T], ¥ € C.(Dy),

Proof The proof is a modification of the proof of [Che96. Theorem 5.3]. The only
difference is that in stochastic case, by (p.21)), Theorem @ and Proposition p.13, we
know that for all o > 3, there exists a h® € L?(Q2, F,P; L*(0,T)) such that

|1y — 19| >

(D) = /Dee(ff(t,x))dx = E5(t) < &+ hE(t) P —a.s.,

where for P — a.s. w, {h°(w,)}. is bounded in L*(0,T), while in deterministic case as in
[Che96], A® is just 0. Then the rest proof just follows the proof of [Che96, Theorem 5.3]
for a fixed w.

We ignore the notation tilde = in Theorem p.11 for simplicity.

By (p.21f), Theorem @ and Proposition p.13, we know that for all o > %, there exists
a he € L*(Q, F,P; L*(0,T)) such that

pt(D) = E5(t) < & + h°(t) P—a.s., (5.51)

where du! := e*(uf)dr and for P — a.s. w, {h°(w,)}. is bounded in L0, T).

In the following we fix w such that all the assertions in Theorem p.11 hold, such that

(@) holds, and such that {h®(w,-)}. is bounded in L?(0,T).
The following proof is a modification of the proof of [Che96, Theorem 5.3]. We use a

contradiction argument. Since 25|D1g,|dx < du', we assume that there exists Ty € (0,77,

such that
To To To
/ /du(t,x) :/ /dutdt>28/ /|D1Et|dl'dt.

Since dy = d,utdt is a Radon measure on Dy, we know that lims\ o fo “(Bs)dt =0
and lims g fo Y(By \ Bi_s)dt = 0. Thus there exists § > 0 such that

TO TO
/ / dp > 25/ / |D1p, (z)| dadt + 6 (TO +2y/ToEo + Ch(w) + 1) . (5.52)
0 Bi_25\Bas 0 D
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where Cy(w) = sup.¢(o 1) |17 (w, ')”%2(0,%)- For simplicity we denote Cr,, := \/To& + Ch(w).
Since dpf = dutdt := e*(uf)dxdt — dpu, there exists a large positive integer J = J(0)
such for all 7 > J,

T T
/ / dpy’ (z)dt > 20/ / |D1g,| dxdt + 6(Th + 2C7,).
0 JBi_25\Bas 0 JD

@s(t) := p;’ (Bi—2s \ Bas), ¢(t) :=25|D1g,|(D).

Denote

we have that

[ et —swas | e —owas [ a0 o

{ps—¢<d}
<071y + / ws(t) — o(t)dt
{ps—¢>6}
T
{ps—¢>5}

<8Ty + |lpsll 2oy VHI({t € [0,T0] = s(t) — o(t) > 63)
<6Ty + O vV HY({t € [0, To) : s(t) — ¢(t) > 0}).

In the last inequality we used () and that

ps(t) < 1y’ (D) < &+ b7
By (), we obtain that
HY({t € [0,Tp] : ps(t) — @(t) > 6}) > 46% > 0.

Moreover, since v° converges in L2 (0,7; H') thus is uniformly bounded in L?(0,T; H'),
we have that

H({t € [0,T0) « [[o°]lmr < 67"} = 1=H' ({t € [0, T5) « [[v"]lsrr > 07"} > 1=0%[[0%|| 720 71y > O-
Hence, for each j > J, there exists t; € [0, Tp| such that
||U€j (tj, )HHl < 5_17 M;] (Bl—QzS \ BQ(S) > 28|D1Etg|(p) + 0. (553)

Now we show that () is wrong for j large enough.
For each 57 > J, we define

Al = {r € [0,1—0];r € supp ()D]léiv

D

A% = {r € [26,1 - 26];u% (r,t;) = 0},

where £ C [0,T] x [0,1) such that E = {(t,z) € Dy : (t,|z|) € E} and E, ;= {r € [0,1) :
(t,r) € [0,T] x [0,1)} is a BV set in [0,1) for any ¢ € [0,7]. By Theorem )

[D1g| = H|supp (|D1g]), [DLg|=H"""|supp (|D1gl). (5.54)

Moreover, supp (|D1g|) is a (d — 1)-rectifiable set and supp (|D13]) is a O-rectifiable set.
Since H° is just the counting measure of points in [0, 1), we have that supp (|D1|) =
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{r €0,1) : [D1|({r}) # 0} which is at most countable. Denote R(xr) := |z| is a Lipshitz
function on D, thus R(E£) = £ and R (supp (|D1g|)) = supp (|D1|) which implies that
(|D1g|) consists of countable (d — 1)-spheres. By (pb.54) and Fubini’s theorem, we have
that

1
|D1g,|(D / HTH(DNR (y ))dy:/o wdydflllsupp(w]lé')(y)dy: Z way?t

yEsupp(\D]lED
Then we obtain that

|D]1Etj |(D) > Z wdrd_l > 5d_1wd(ﬁAj)7

reAl

where 47 is the number of elements in A7 which is finite since |D1 g, |(D) is finite. By

the second estimate in Lemma p.17, A% is also a finite set
Moreover, by the first inequality in (5.53) and Lemma p.1 /, we have that

1-26

i <Bl_25\3%):/2 Pl (u)dr < 28 30 11 4 CO)VE.

J reAe

Thus since wy > 1, there exists a large integer J; > J such that

e = a0
f1; (Bioas \ Bas) <28 Z war®™ + 5 Vi > Ji.

rc A%

Hence by the second inequality in (),

d 1 > d 1 R - > i
Z wyr Z wyr + 45, \V/j = Jl (5 55)

reAci reAl

Denote

= /&, + sup / |u (t,r) +1—21¢ (r)|rd_1dr.

tGOTo

Since ufi — —1+ 21 in C?([0,T]; LY),

1
sup / |u(t,z) + 1 — 21, (x)|de = sup / r i (tr) + 1 — 21 5, (r)|dr — 0,
t€[0,7p] /D t€[0,Tp] J0

for a fixed 0 > 0, we have that lim;_,. [; = 0.
We claim that the definition of /; and () imply the existence of .Jo > J; such that

mi_n |’I"1 — T‘2| S 4lj, VJ Z JQ, (556)
r1,mr2 €AY T F£rD
which is a contradiction to Lemma . We prove the () in the following two steps.
First, if A% C U,eqs (r — 21,7 + 2;), we claim that for some r € A7, there exist at
least two elements of A% in (r — 2l;,r + 2[;), which concludes (@)
If this claim is not true, that is, for any r € A7, there exists at most one ry €
A% N (r —2l;,r+ 2l;). Denote

Aj = {TEAj : 37“0 GAEj,T’O S (T—2lj,7”+2lj)}.
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Then 44’ = §A% < §A7. Note that the number of elements in A’ in bounded in j since
tA7 < 61 wi | D1g, [(D) = 61wy tE% (1)
and £¢(t) is uniformly in ¢ bounded in L*°(0,T"). By () we have that

% = Z ward™t — Z war®™?

reA%i reAj
= Z wd'r"’l’1 — Z wdrd’l - Z wdrd’l
reA°i reAl reAi\ AJ
< Z Wy ((r + 2lj)d’1 — qu) — Z wer®?
rcAl reAi\ A
<2U;HA — Z war®™!
rcAI\ A
<CO— Y wer™
reAI\A7

which is impossible for big j since lim; o {; = 0.

Then if A% C U,cas (r — 21,7 + 2l;) does not hold, there exists r; € A% such that
11 € Upeni (1 — 2hj, 7+ 2h;), ie. (ry — 21,79 + 21;)NA? = &. Therefore, lim._,ou® = 1 or
lim. ,ou® = —1 on (ry — 2l;,r5 + 21;). Without loss of generality, we assume lim._,ou® =
—1 on (r; — 2l;,72 + 2l;). Thus there exists (aj,b1) C (J,1) such that r1 € (a1,b;) and
lui] < 1 —|lne|"2 on (a
on (al,bl) and |b1 — (lll
( QZJ, T2 —|— 2l )

We assume 0,u% (rg) > 0, i.e. % is monotone increasing on (aq, by). Since lim,_,o u® =
—1 on (ry —2l;, 75 + 21;), we have that

ai,by). By the first assertion of Lemma p.17, u% is monotonic
< C(0)ej]Ingj|. Let ¢; be small enough such that (a1,b1) C

M > 0, |uf| > 6) < / 5 (¢, ) + 1 = 21, ()| der < 1.
Bl\B5

Since u° is continuous, there must be a ry € (rq, 71 + 2[;) N A%.

In the case that 0,u%(rg) < 0, a similar argument yields that there exists ro €
(ry — 2l;,m1) N A%. Anyway, we obtain ry € A%, such that |r —ry| < 4i;.

Thus we proved (E), which is a contradiction to Lemma 4.2. Then we finish the
proof of the Theorem.

g

5.4 Proof of Theorem 5.4

The definition of V' in (@) can be written as

d
dVi(z,p) = cl(x)0ywdp' (x)dp.

=1

From (@) we know that

d[V*|i(z) =) cilx)dp'(z) = dy' ().

=1
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First, we will show for a.e. t € [0,T]. V" is a (d — 1)-rectifiable varifold.
As what we mentioned in Remark @, for a.e. t € [0,T], E; is a BV set, thus for
a.e. t€[0,7T]
pt = 2S|D1lg,| = 2SH9*E,.

Here H4~1|0* E; is the (d—1)-dimensional Hausdorff measure on 8* E;. 9* E is the reduced
boundary of E; (see (R.5))

OB, ={z €D: |Ug,(z) =1} = supp(|D1g]).

Moreover, by Theorem , 0*Ey is a countably (d — 1)-rectifiable set and

Dlg|(B
}}{% | E;)L(lp<x)) = w1, H ' —ae 2z € 0°E, (5.57)

where B,(x) is the ball in R? with radius p and centered at x and wy_; is the area of unite
sphere in R4, Since ||V!|| > u! = 2S|1g,|, by Theorem @, to show V' is rectifiable,
we need to show V? has locally bounded first variation. In fact, by (@), supp(D1g,) is
a countable set, thus

dIDlg,(x)| =ws > 6(z|)dz,

rEsupp(D]lEt)

where ¢, is the Dirac measure on R. Thus 0*E;, = OF,; which consists of countable
(d — 1)-spheres. Then by trace theorem

/@ ot S ol
t

By (b.11),

(VI ST oY - itgdH*

OE;
<Vl / o] dH
OFE:
< Yol Y [,

which implies V* has locally bounded first variation.
Thus by the definition of rectifiability and the expression of V*, we have that

dV*'(z,p) = 25|D1g,|dxds,, (1.0)(dp) as Radon measure on D x P,

le.

AV (t,2.p) = dV'(z.p)dt = dp'(t, 2) 05, (1.2) (dp)-
Hence we conclude that ¢t =1, ¢, = --- = ¢}, = 0 and p} = Ug,. Then by the construction
of V in subsection , we have that Ay =1, Ay =--- = A\; =0 and

(dptij) yq = VB, @ Vg, dp.

Then by (), for any Y € C1(D,R?), we have that

1

— (V' Y) = 2(D1g,, vY) = 2(ig,|D1g,|,vY) = =(|VI|,vY - 7g,).

|
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Hence by the Definition , we obtain that
SHy: = vig, |V — a.e.,

where Hy is the mean curvature vector of V! in Definition . This also implies that
for ||[VY|| — a.e. x € D\ supp(|D1g,|), Hy« = 0. Thus we have that

v=SHy: -5, on supp(|D1g,]).

5.5 The case for “smeared” noise

We observe that the requirement o > 2 only comes from the second variation term

2
520'71

5 Tl;((ji(ug)Q) in () when we apply Itd’s formula on £°(uf). If there were no such
term E—Tr(f'(u®)Q), Theorem would hold for o > 0.

2
This motivates us to consider the following equation:

4 g

35; = Av 7€, (tx) € [0,T] x D,

1

e _ _ A € - € T D

vf = —eAwi(t) + —f(u(®)), (t.2) € [0,T] x D, (5.58)
out  ov®

on = on - Oa (t7$) S [07T] X OD’
w(0,0) = wj(a). 7 €D,

where uf satisfies (@) and & is formally defined by & = ffooo pe(t — s)dWs. In fact, let
(Wi, t > 0) be a Q-Wiener process on L3(D) defined on a probability space (Q, F,P),
where @ satisfies (p.4) and (@) We extend the definition of (W;, ¢t > 0) to negative time
by considering an i.i.d @)-Wiener process (Wt,t > 0) and setting W; = W_, for t < 0.
Then (W;,t € R) is a two-sided Q-Wiener process on L2. Let p be a mollifying kernel i.e.

peC=(R), 0<p<1, supppC [-1,1] /pzl, o(t) = p(—1).
R

For v > 0 we set p-(t) = e77p(%). Then the approximate Wiener process Wy is defined
as

Wy = / pe(t — s)Wids, (5.59)
Its derivative is defined as
dWEe &
£ = dtt = / pe(t — 8)dW;. (5.60)

Since pe is supported on [—£7,¢7], only the definition on negative time [—&7,0) of W} is
used. Thus we have that for any g € L*(D)

[ a.gi= [ o, [ "t — sy
0 0 - (5.61)

_ /Tw(/OT pe(s — D)g(t)dt, dW,).

—&7
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Lemma 5.19. There exists a constant which only depends on T such that for anye € (0, 1]
and anyp > 1, any o > 0

E sup ()P < Cp(e? 4+ &), (5.62)
t€[0,T]
and
T p
E </ ||VUEH%2dt) < Cr(e” + &)P. (5.63)
0

Proof The proof is a modification of Lemma @

Note that the noise in equation H.5§ is smooth in time, which enable us to apply
Newton-Leibniz formula on £° to avoid the second variation term in () We have
that

d&s (u®)
dt

By () we know that
T Trev
/ (v° (1), €5}t = / (pe % v° (£), dVV3),
0 —eY

= (DE°(uf), yuty = —(Vu°, Vo) + &7 (v°, &). (5.64)

where we simply denote

pe ¥ V5 (t) 1= /0 pe(t — s)v°(s)ds.

Similarly as the proof in Lemma @ by Burkholder-Davis-Gundy type inequality, we
have that

T T
E sup | [ (0°(2),&)dt] SE sup | [ (poxv°(t), dWy)

te0,1] Jo te0,7] Jo

2

T
S (E sup | (Pa*vg(t),dWG)F)

te[o, 7] Jo

S (/OTEH VQ(p- * vs(t))llizdt> %

1
T 2
< (/ (pE*EHVU‘SHLQ)2dt)
0
T 3
s( / Euwuizdt) ,
0

where we used the Young’s inequality in the last inequality. The rest is the same as in

the proof of Lemma p.6. We omit it here for simplicity.
O

With the same notation and proof as in Theorem , we can obtain a tightness
result for any o > 0.
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Theorem 5.20. Assume o > 0, Q satisfies ) and ) There exist a probability
space (2, F,P) on X' x X2, a subsequence &, (we still denote it as € for simplicity) and

{ (5_1 sup ||[F(a%)||p:, £ (a%), a°, G(u®), v, e (a°)dxdt, {eaxiﬁaaxjﬂadxdt}ij> } C Xtxx?

te[0,7)

and
(a,E,u, g, v,y {puij }ij) € X' x X2,

such that

(i) Po (e~ supye oy |1F (@) |1, £(@), @, G(@), 0%, e (@) dadt, {0, @D, acdwdt} ;) =
Pe on X! x X2,

(ii) (e7 sup,epo.m |1 F (@) || 1, E5(a), a5, G(af), 0%, e (a)dadt, {0y, 0% 0y u*dxdt }15) con-
verges to (0,&,u, g,v, w, {p;}ij) in Xt x X2, P—a.s, ase \, 0.

In particular, for P — a.s.w, there exists a Borel set E € Dr, such that as £ N0

(i) us — w inu in CP([0,T); L?), g = G(u) = 2S1g a.e. in Dy and in CP([0,T]; L),
u=—1+21g a.e. in Dy and in CP([0,T]; L?).

Moreover, denote Et ={z:(t,x) € E}. Then

(iv) For all B < 5, P (15 € C*([0,T}; LY)) =1,

(v) B (|Ei| = | Eo| = 252 |D|, vt € [0,T]) =1,

(vi) P(1p € L>®(0,T; BV)) = 1.

Proof For all ¢ > 0, one can check that with Lemma - true, all the estimate in
Subsection l§ g and |5_” hold for the solution (u°,v°) to equation (5.5§). Then the
same proof as Theorem p.11| follows.

O
Moreover, for ¢ > 0, the same argument as in Subsection yields that

Theorem 5.21. Assume that o > 0 and ) hold. Let (u,v®) be the solution to (ﬂ)
Then there exist a probabzlzty space (Q, F, ]P’) (@e,v°) € C([0,T]; L?) x L*(0,T; H*) with
Po(af,5°) " = Po(uf,v°) " on C([0, T); L2)><L2(O,T, H?'). There also exists a subsequence
g such that as €, (0 the following holds:

(i) There exists a measurable set E C Q x Dy, such that for P—as w

@ (w) = =1+ 2lpw), ae. in Dy and in C°([0,T]; L?)

for any B < 35 where E(w) :={(t,z) € Dr : (w,t,z) € E};

(ii) There exists a random variable v € L2,(0,T;H"') (v is weakly measurable in
L*(0,T; HY)) such that for P — a.s. w

7% (W) — v(w)  weakly in L*(0,T; H);

(iii) There exist random variables p € Mp and {p;}f,_, € M such that for
P—as w

e&k(w)(ﬁak(w))dxdt — dp(w, t,x)  weakly in Mg,

i ~ . o (5.65)
€405, U (W) 0y, 0™ (w)dadt — dpgj(w, t,x) weakly in M, Vi,j=1,--- d.
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(iv) For P — a.s. w, there exists a Radon measure V(w) on Dy x P, and pt(w, z)dt =
dp(w, t,x) such that for any t € (0,T]) and Y € C}(Ds; R?)

/Ot<5vs7§7>ds = /ot/pv{) : (Idu(s,x) — (,uij(s,ac))dxd) ) (5.66)

In particular, for P—a.s. w, (E(w),v(w),V(w)) satisfies all the properties in Definition
except ) If 0 >0, (5.13) holds, thus (E(w),v(w),V(w)) is a weak solution in

the sense of Definition .

Proof The proof is almost the same as in Subsection . The only difference is in
the proof of that the existence of a Q-Wiener process on L? cannot be obtained directl
such that for any € > 0, () holds. We use the original equation (@) to prove (@

directly.
In fact, for any ¢ € CL([0,¢) x D),

—/D(l + u(0,2))Y(0, z)dx :/0 /Datw(f, z)(1 4+ v (7, x))dzdr —/0 /DVU Vidxdr
o e (7, ) dadr.
+e /0/1)¢(7x)§(7x) xdT
Thus for P — a.s.w € €,
}:ig(l) (/0 /D@tw(T, z)(1 4 u(7,x))dxdr + /D(l +u®(0,2))¥(0, x)dx —/0 /Z)vavwdxm') =0.
Since P o (a°,5°) ! = Po (uf,v°)"!, we have that for P — a.s.w € Q and any ¢ > 0,
}:i_I}(l) (/0 /Dat¢(7, z)(1 4 @ (7, x))dzdr + /D(l + (0, 2))Y(0, z)dx —/0 /DVﬁsvwdxdT) =0,
which yields that
/ / Ob(r, x)(1 + u(r, x))dzdr + / (14 a(0,2))¥(0, z)dx — / / VoVydzdr = 0.
o Jp D o Jp

Thus we obtain (m) The rest proof is the same as the proof of Theorem @ in
Subsection p.2.5.

g

Moreover in radial symmetric case,

Theorem 5.22. Let 0 > 0, with the same notations as in Theorem , and suppose
that the assumptions in Theorem |5.21 hold. Then in radially symmetric case, that is
D = By, where By is the unit ball in RY and that u§ is radially symmetric, we have that

dp = 2S|D1g,|dzdt as Radon measure on Dr.
In particular, for a.e.t € [0,T], V' is a (d — 1)-rectifiable varifold, i.e.

dV (t,x,p) = 25|D1g,|dxdtds,, 1.0)(dp) as Radon measure on Dr x P.
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Then we have that

(dpij) g q = P, ® Ug,dp as Radon measure on Dr, (5.67)
v(t,z) = Sig,(x) - Hyt(x) on supp(|D1g,|) for a.e.t e [0,T], '
Hy+ is the mean curvature vector of V' defined in Definition and 0z is the Dirac

measure concentrated at vV € P.
Proof 1t suffice to prove
dp = 2S|D1g,|dxdt as Radon measure on Dr,
then the following is the same as the proof of Theorem @ in Section @

In fact, by taking h®(t,z) = f; ve(s, x)E8(s, x)dsdx in (), then all the proof
followed as in the proof of Theorem . Thus we can finish the proof.

g

Remark 5.23. The same as in Remark , in radial symmetric case, v = SH on I'y
in a weak sense. Thus in radial symmetric case, for all o > 0_the sharp interface limit
of equation |5.58 satisfies the deterministic Hele-Shaw model ) in a_weak sense. In
general we also conjecture that the sharp interface limit of equation |5.58 satisfies the
deterministic Hele-Shaw model )

(Av=0mD\Ty, t >0,
0
%zOon@D,

v=SH only,

1
\ Y = é(aniﬁ — 0yv7) onTy.
Now we will focus on the case that o = 0. Note that the triple (£.v, V') obtained in
Theorem satisfies all the definition in Definition @ except (p.10) and (@) Let
DT = E? N'D be the interior of F; in D and D~ =D\ E;.

Theorem 5.24. Let (Q, .7:", ]f"), E, v be as in Theorem and Q) be an operator satisfying
),). Then there exists a Q-Wiener process W on L*(D), which is defined on
(Q, F,P), such that

2d1 5, = Avdt + dW,,

in the sense that for any t € [0,T] and ¢ € C1([0,t) x D),
t t
/ / (=21 0 + Vo - Vib) dadr — / 215,00, ) +/ W), ). (5.68)
o Jo D 0
Proof For any h € H!, denote

M: = /D(us(t)—u6<0))hdx+/0tw€-wdx

and

M; = /D(af(t)—aE(O))hder/otWE.wdx.
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Clearly,
ME = / h(2)WE (2)da
D

: : . 1 :

and as £ — 0, M; converges to a Wiener process with covariance ||Qzh|/2,. Since P o

(M)t = Po (M;)™!, we know that the law of M; converges to a Wiener process with
: 1

covariance ||Q2h||3,. Moreover

t
lim M; = / (u(t) — u(0))hdz +/ Vv -Vhdz, P—a.s..
e—0 D 0
Thus we obtain that .
/ (u(t) — u(0))hdx + / Vv - Vhdx
D 0

is a Wiener process with covariance ||Q%h||%2 on (Q, F,P). Then there exists a Q-Wiener
process W on L? which is defined on (€2, F,P), such that

(Wi, B — / (u(t) — u(0))hdz + / t / Vo - Vhdzds.
D 0o Jp
Thus we obtain the following equation for wu:
du = Avdt + dW,
Similar to the proof in Subsection , the Ito’s formula yields that for any ¢ €

Cx([0,t) x D)

_ /D (1 + (0, 2))eb(0, ) dz — /0 t /D (7)1 + ulr, 2))dwdr — /0 t /D VoVidedr
+ [ i),

i.e.

t t
/ / (=21, 0y + Vv - Vo)) dudr = / 21p,(0,-) + / (W(r,-), dW,).
0o Jp D 0
Similarly to the discussion in Subsection , () is a weak formula for

2d1 5, = Avdt + dW,.

Corollary 5.25. For any ¢ € C1([0,t) x D), with suppy) C D\ Iy,

/Ot/DVv-Vz/)deds:/ot(@b,dWS).

This is in fact a weak formula for

awy .
Av:—# in D\ T
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Proof Since ¢ € CL([0,t) x D) and suppyy C D\ I';, we know that L1g¢ = @ and
15850 = 3. Thus

/Ot/D]lEtatzbdx:/ot/D@de: —/2)¢(07.)d$: _/DHEO@/J(O,-)diﬂ.

Then by (), we can finish the proof.
U

Remark 5.26. Similar to the deterministic case, Av and are ill-defined. The equation
of (v,T') should be understood in distribution sense. We suppose that (v,T") is smooth
enough such that Av and g—z are well-defined.

We also suppose that D\ E' C D. Denote I’y := OE;\ 0D and let D* = Ef N'D be the
interior of Ey in D and D~ =D\ k.
For any ¢ € C1([0,t) x D), with supp(t,-) N Ty =0,

/ / ¢de Lds = / / mmd Lds — / / 8Uzpd7-td Lds
aD 8D+ Ft
/ / 1/Jd’Hd lds
8D+
/ / div(Voy)dHds
D+

= / Vo - VipdHds + / / AvipdHds
0o Jp+ -

_ /0 (i, dWV,) + /O /D Avpdids

_/ 2<w7dﬂ-Es> =0,
0

where we used Corollary in the fifth equality. The last equality holds because
supp ¥ (t,-) N Ey = 0.
Formally we have that in distribution sense
ov
on

(5.69)

=0 in [0,T] x OD.

To calculate the velocity of Ty, formally we denote v = v + Aflﬁ/, where W is the

formal derivative dg. Then we have
Qat]]_Et - A'{J

and © =0 in [0,T] x (D\T}). For any ¢ € CH(D;)

/ / Ol ppdHds = —= / / VoVipdHds

t
_ ! / VoVidHids — 1 / VoVidHds
2 Jo Jp+ 2 Jo Jp-

t t
/ / div(Vﬁlp)d?-[ddsnLl / / div(Voy)dHds
0 JD+ 2 0 -
/ (0,0 — 0,07 )pdH " ds.
r

(5.70)
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Then following the same calculation as in Section , we obtain that in distribution
sense

Thus formally we have
1[0 -
dt =~ | =— dt + A~d 71
var = 1 M (vt + A~aVTy), (5.71)

Here [%}Ft is defined by

0 _
|:%:|th:811]£+_811]£ )

where T, f~ is the restriction of f on DY, D™, respectively.

Remark 5.27. For the value of v on I';, since Theorem holds for all o > 0.
Combining it with Corollary ‘@, Remark and ), we prove that in radial case,
when o = 0, the sharp interface limit of equation ) is the formally the stochastic
Hele-Shaw model j} For general case, we conjecture that the sharp interface limit

also satisfies :

N—

'Avdt = —th m'D\Ft, t> 0,

0
a—ZzOon@D,
v=SH onTy,

110
== | = AN .

\

Remark 5.28. The idea of “smeared noise” in this section can be also applied to the case
of space-time white noise by considering the mollified space-time white noise. That is,
considering the convolution of space-time white noise with a mollifier both in space and
in time. Then a similar result can be obtained.
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