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Preface

This thesis is about the well-posedness and sharp interface limits of stochastic Cahn-
Hilliard equations. We are concerned with the following three related problems:

(1) We consider the stochastic 2-dimensional Cahn-Hilliard equation which is driven by
the derivative in space of a space-time white noise:

∂tu = ∆(−∆u+ f(u)) +∇ · ξ.

We use two different approaches to study this equation. First we prove that there
exists a unique solution to the stochastic Cahn-Hilliard equation. Moreover, we use
the Dirichlet form approach in [AR91] to construct the probabilistically weak solution.
By clarifying the precise relation between the two solutions, we also get the restricted
Markov uniqueness of the generator and the uniqueness of the martingale solutions.
Furthermore, we also obtain exponential ergodicity of the solutions.

(2) We study the the sharp interface limit of ε-dependent two dimensional stochastic
Cahn-Hilliard equation as ε→ 0:∂tu

ε = ∆vε + εσẆt,

vε = −ε∆uε + 1

ε
f(uε),

where Ẇ is space-time white noise or conservative noise. In the case when the noise
is sufficiently small, by comparing the solutions with the approximation solution
constructed in [ABC94], we show that the limit of the solutions is also solutions to
the deterministic Hele-Shaw problem.

(3) We study the asymptotic limit, as ε↘ 0, of solutions of the stochastic Cahn-Hilliard
equation:

∂tu
ε = ∆

(
−ε∆uε + 1

ε
f(uε)

)
+ εσẆε

t ,

where Wε = W or Wε = W ε, W is a Q-Wiener process and W ε is smooth in time
and converges to W as ε ↘ 0. In the case that Wε = W , we prove that for all
σ > 1

2
, the solution uε converges to a weak solution to an appropriately defined

limit of the deterministic Cahn-Hilliard equation. In radial symmetric case we prove
that for all σ ≥ 1

2
, uε converges to the deterministic Hele-Shaw model. In the case

that Wε = W ε, we prove that for all σ > 0, uε converges to the weak solution to
the deterministic limit Cahn-Hilliard equation. In radial symmetric case we prove
that uε converges to deterministic Hele-Shaw model when σ > 0 and converges to a
stochastic model related to stochastic Hele-Shaw model when σ = 0.
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Chapter 1

Introduction and Main Results

This thesis is concerned on the well-posedness and sharp interface limits of stochastic
Cahn-Hilliard equations.

1.1 The deterministic case
The Cahn-Hilliard equation on a smooth domain D is given by

∂tu = ∆v,

v = −∆u+ f(u),

∂u

∂n
=
∂v

∂n
= 0 on ∂D,

(1.1)

which was introduced by Cahn and Hilliard [CH58] to study the phase separation of
binary alloys. Here f(u) = u3 − u. The equation (1.1) is the H−1-gradient flow of the
energy functional

E(u) := 1

2

∫
D
|∇u(x)|2dx+

∫
D
F (u(x))dx, (1.2)

where F (u) = 1
4
(u2 − 1)2 is the double-well potential.

If u is a solution to equation (1.1), then

d

dt
E(u(t, ·)) =

∫
D
∂tu(t, x) (−∆u(t, x) + f(u(t, x))) dx

=

∫
D
v(t, x)∆v(t, x)dx = −

∫
D
|∇v(t, x)|2dx ≤ 0.

(1.3)

Clearly, the minimizers of the energy (1.2) are the constant functions u ≡ 1 and u ≡ −1,
which represent the “pure phases” of the system. However, these “pure phases” cannot be
reached unless the initial value u0 satisfies

∫
D u0(x)dx = ±|D| because of the conservation

law, i.e.
d

dt

∫
D
u(t, x)dx = 0

for any solution u to (1.1). Instead, what will be produced is a “mixed phase”, more
precisely, which is a region in which u ≈ +1 with u ≈ −1 in its complement. Moreover,
a transition occurs across its boundary. This is referred as phase segregation and the
boundary is the interface between the two phases. If we look at the solution in a large

1



2 Chapter 1. Introduction and Main Results

scale (“stand far enough back”), the transition is on an invisibly small scale. All we see
is just the interface. The evolution of u under the Cahn-Hilliard equation (1.1) derives
an evolution of the interface. One of the most important problems is to determine how
the interface evolves. To see any evolution of the interface, we must wait for a long time.
More specifically, let ε be a small parameter and uε(t, x) := u( t

ε3
, x
ε
), where u is a solution

to (1.1). Then uε satisfies the following equation:
∂tu

ε = ∆vε,

v = −ε∆uε + 1

ε
f(uε),

∂uε

∂n
=
∂vε

∂n
= 0 on ∂D.

(1.4)

It was formally derived by Pego [Peg89] and rigorous proved by [ABC94] by using
the method of matched asymptotic expansions that the equation (1.4) converges to the
Hele-Shaw model. That is, as ε ↘ 0, the chemical potential vε tends to a limit v which,
together with a free boundary Γ := ∪0≤t≤T ({t} × Γt), solves the following deterministic
Hele-Shaw model: 

∆v = 0 in D \ Γt, t > 0,

∂v

∂n
= 0 on ∂D,

v = SH on Γt,

V =
1

2

[
∂

∂n

]
Γt

v on Γt,

(1.5)

where

S =

∫ 1

−1

√
F (s)

2
ds =

2

3
,[

∂

∂n

]
Γt

v := (∂nv
+ − ∂nv

−),

H is the scalar mean curvature of Γt with the sign convention that convex hypersurfaces
have positive mean curvature, V is the normal velocity of the interface with the sign
convention that the normal velocity of expanding hypersurfaces is positive, n is the unit
outward normal either to ∂D or to Γt. Denote D+ and D− are the exterior and interior
of Γt. v+, v− are respectively the restriction of v on [0, t]×D+ and [0, t]×D−.

Later in [Che96], the author formulated a weak solution to the free boundary problem
(1.5) (see Definition 5.2) and showed that the solutions of (1.4) approach, as ε ↘ 0, to
weak solutions of (1.5) by using a compactness argument. In fact the energy functional
of (1.4) is given by

Eε(uε) :=
∫
D
eε(uε)dx, eε(uε) :=

ε

2
|∇uε|2 + 1

ε
F (uε). (1.6)

One can directly verify that for any solution (uε, vε) to equation (1.4),

d

dt
Eε(uε(t, ·)) = −

∫
D
|∇vε(t, x)|2dx ≤ 0, (1.7)

which is also called the Lyapunov property for equation (1.4). Thus Eε(uε) is uniformly
bounded in t, ε > 0 if the energy of the initial value is bounded uniformly in ε. Note that



1.2. The stochastic case 3

as ε → 0, F (uε) → 0, which is equivalent to uε → −1 + 21E for some E ⊂ [0, T ] × D
where 1E is the characteristic function of E, i.e. 1E(x) = 1 when x ∈ E and 1E(x) = 0
when x 6∈ E. Γt := ∂Et is the interface. By using a varifold approach, Chen in [Che96]
analyzed the property of the limit of the solutions to equation (1.4) and then proposed a
definition of weak solution of this limit. Any classical smooth solutions to (1.5) are weak
solutions. In some special case, the smooth weak solutions are also classical solutions to
(1.5).

1.2 The stochastic case
We are interested in the global well-posedness and the sharp interface limit of the stochas-
tic Cahn-Hilliard equation:

∂tu
ε = ∆

(
−ε∆uε + 1

ε
f(uε)

)
+ εσẆε

t , (1.8)

where Ẇε
t is the noise which may depend on ε.

1.2.1 Well-posedness for stochastic Cahn-Hilliard equation
For the well-posedness, the stochastic Cahn-Hilliard equation was first studied in [PM83],
where Petschek and Metiu performed some numerical experiments for the stochastic
Cahn-Hilliard equation driven by space-time white noise. In [EM91], Elezovic and Mike-
lic proved the existence and uniqueness of a strong solution to the stochastic Cahn-Hilliard
equation driven by trace-class noise. Then Da Prato and Debussche [DPD96] proved ex-
istence and uniqueness of solutions for space-time white noise and obtained the existence
and uniqueness of an invariant measure for trace-class noise. Later there are many papers
in which the authors study the properties of the solutions to the stochastic Cahn-Hilliard
equations driven by trace-class noise (e.g. [DG11, Sca17]).

In Chapter 3 we show the well-posedness for the conservative stochastic Cahn-Hilliard
equation  dXt = −1

2
A
(
AX− : X3 :

)
dt+BdWt,

X(0) = z ∈ V −1
0 ,

(1.9)

on T2 in the probabilistically strong sense where A = ∆, B = div. Wt is an L2
0(T2,R2)-

cylindrical Wiener process, which is defined in Section 3.2. : X3 : denotes the Wick
power, which is introduced in Section 3.2 and the space V −1

0 is similar to the Sobolev
space of order −1, which is introduced in Section 3.1.

For the conservative-type equation (1.9), the Gibbs measure ν is formally given by
the following Φ4

2-field:

ν(dϕ) = c exp

(
−
∫
T2

1

4
: ϕ4 : dx

)
µ(dϕ),

where µ is the Gaussian free field, c is a normalization constant, and : ϕ4 : is the fourth
order Wick power of ϕ. Equation (1.9) can be interpreted as the natural “Kawasaki”
dynamics (see [GLP99]) associated to the Euclidean Φ4

2-quantum field. In [PW81] Parisi
and Wu proposed a program for Euclidean quantum field theory based on getting Gibbs
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states of classical statistical mechanics as limiting distributions of stochastic processes,
especially as solutions to non-linear stochastic differential equations. Then one can use the
stochastic differential equations to study properties of the Gibbs states. This procedure is
called stochastic field quantization (see [JLM85]). The equation (1.9) can also be viewed
as a stochastic quantization equation for the Φ4

2-field.
Over the years, there is a lot of literature (see [JLM85, AR91, DPD03, MW17,

RZZ17a, RZZ17b]) on the stochastic quantization of the Φ4
2-field. The authors in these

papers considered the following non-conservative stochastic quantization equation:

dXt = (AX− : X3 :)dt+ dWt. (1.10)

First results are due to Jona-Lasinio and Mitter [JLM85]. Using the Girsanov theorem,
they constructed solutions to a modified equation on T2:

dXt = (−4+ 1)−ε(4X− : X3 : +aX) + (−4+ 1)−
ε
2dWt (1.11)

for 9
10
< ε < 1. They also proved the ergodicity for (1.11). In [AR91] Albeverio and

Röckner studied (1.10) using Dirichlet forms and constructed probabilistically weak solu-
tions to (1.10). In [MR99], Mikulevicius and Rozovskii constructed martingale solutions
to (1.10) but the uniqueness remained open. In [DPD03] Da Prato and Debussche con-
sidered the associated shifted equation to (1.10) on T2 and proved the local existence and
uniqueness of solutions in the probabilistically strong sense via a fixed point argument
and then showed the non-explosion for almost every initial point by using the invariant
measure. Recently Mourrat and Weber [MW17] showed the global existence and unique-
ness for the shifted equation both on T2 and R2 for every initial point. Combining the
results from the weak approach and strong approach, Röckner, Zhu and Zhu [RZZ17b]
proved the restricted Markov uniqueness for the generator of (1.10) and the uniqueness
of the martingale problem to (1.10) arised in [MR99] on T2 and R2. Furthermore, the
ergodicity of (1.10) on T2 has been obtained in [HM18, RZZ17a, TW16].

For the conservative case, Funaki [Fun89] proved the existence and uniqueness of
equation (1.9) on R and in [DZ07] Debussche and Zambotti studied equation (1.9) on
[0, 1] with reflection. But for the higher dimensional case, even though the linear operator
∆2 gives much more regularity, the noise and hence the solutions are still so singular that
the non-linear terms in (1.9) are not well-defined in the classical sense. This difficulty is
similar as in equation (1.10).

To overcome this difficulty, we use two approaches to study (1.9). First we follow
the idea in [DPD03], [MW17] and [RZZ17b] to split the solution to X = Y + Z, where
Z(t) =

∫ t
0
e−

(t−s)
2

A2
BdWs. Similarly as in the Φ4

2 case, Y has better regularity than the
solution to (1.9) and satisfies the following shifted equation:

dY

dt
= −1

2
A2Y +

1

2
A

3∑
k=0

Ck
3Y

3−k : Zk :

Y (0) = z

(1.12)

where Z(t) =
∫ t
0
e−

t−s
2
A2
BdWs. In Chapter 3 we obtain the existence and uniqueness of

the solution to (1.12). The fixed point arguments for local well-posedness in [DPD03]
and [MW17] only hold for initial values in C− 4

3
+. Due to the singularity of the noise

and the lack of a maximum principle and a uniform Lp-estimate, we only have a uniform
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H−1-estimate (see Theorem 3.7), which is not strong enough to combine it with local well-
posedness (see Remark 3.11). Instead, our argument is based on a classical compactness
argument. We obtain the existence of global solutions starting from the uniform H−1-
estimate directly. Moreover we consider the solutions in H−1 and use the L4-integrability
to obtain uniqueness for (1.12).

In addition, we use the method in [AR91] to construct the Dirichlet form for (1.9)
(see Theorem 3.15), which is given by

Λ(φ, ψ) =
1

2

∫
〈∇φ,∇ψ〉V −1

0
dν, φ, ψ ∈ FC∞

b ,

where FC∞
b is defined in Section 3.4. We note that the tangent space is chosen as V −1

0

and the gradient operator ∇ is also defined in V −1
0 . This is different from the Dirichlet

form for (1.10), where the tangent space is chosen as L2 and the gradient is the L2-
derivative. By the integration by parts formula for ν we also obtain the closability fo the
bilinear form (Λ,FC∞

b ). The closure (Λ,D(Λ)) is a quasi-regular Dirichlet form, which
enables us to construct a probabilistically weak solution to (1.9). Then by clarifying the
relation between this solution and the solution to (1.12), we prove that X −Z, where X
is the solution obtained by the Dirichlet form approach, also satisfies the shifted equation
(1.12). It follows that Φ4

2 field is an invariant measure for X. Then we obtain the Markov
uniqueness in the restricted sense for the generator of the Dirichlet form restricted to
FC∞

b and the uniqueness of probabilistically weak solutions to (1.9) having ν as an
invariant measure.

We also prove exponential ergodicity by two approaches. One simple and short way
by the Dirichlet form approach is presented in Remark 3.31. Using a uniform estimate,
an invariant measure can also be constructed by the Krylov-Bogoliubov method. We
follow an idea from [TW16] to prove the strong Feller property of the semigroup of the
solution to the equation (1.9). Then we obtain exponential convergence to the unique
invariant measure of the semigroup for every starting point.

1.2.2 Sharp interface limit for big σ > 0

In Chapter 4 we obtain the convergence results arising in the study of the sharp interface
limit, as ε↘ 0, of the solutions to the stochastic Cahn-Hilliard equation on D := (0, 1)2,

∂tu
ε = ∆vε + εσẆt,

vε = −ε∆uε + 1

ε
f(uε),

uε(0) = z,

(1.13)

with Neumann boundary conditions,
∂uε

∂n
=
∂vε

∂n
= 0 on ∂D. (1.14)

Here f(u) = F ′(u) and F (u) = 1
4
(u2−1)2 is the double-well potential , σ > 0 is a constant,

and Ẇ is a singular noise which represents the space-time white noise in Section 4.2 and
the conservative noise in Section 4.4.

In [ABC94], the authors study the deterministic Cahn-Hilliard equation∂tu
ε = ∆vε in DT ,

vε =
1

ε
f(uε)− ε∆uε in DT ,

(1.15)
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where DT := (0, T ) × D. Assume that the interface has been formed initially. That is,
there exists a smooth closed curve Γ00 ⊂⊂ D such that uε(0) ≈ −1 in D−, the region
enclosed by Γ00, and uε(0) ≈ 1 in D+ := D\ (Γ00∪D−). Formally as ε→ 0, the solutions
to equation (1.15) reach the stable state u∗ such that f(u∗) = 0, i.e. limε→0 u

ε(t, x) = ±1.
Hence there is an interface Γt between these two states.

The authors in [ABC94] use a new matched asymptotics to constructed approximation
solutions. They construct a pair of approximation solutions (uεA, vεA), such that Γt is the
zero level set of uεA(t), which satisfies∂tu

ε
A = ∆vεA in DT ,

vεA =
1

ε
f(uεA)− ε∆uεA + rεA in DT ,

(1.16)

for boundary conditions
∂uεA
∂n

=
∂∆uεA
∂n

= 0 on ∂D.

They also showed that as ε → 0, both vε and vεA tend to v in C(DT ), which, together
with a free boundary Γ ≡ ∪0≤t≤T (Γt×{t}), satisfies the following deterministic Hele-Shaw
problem (1.5), starting from Γ00:

∆v = 0 in D \ Γt, t > 0,

∂nv = 0 on ∂D,
v = SH on Γt,

V =
1

2

[
∂

∂n

]
Γt

v on Γt,

Γ0 = Γ00,

(1.17)

where

S =

∫ 1

−1

√
F (s)

2
ds =

2

3
,

H is the mean curvature of Γt with the sign convention that convex hypersurfaces have
positive mean curvature, V is the normal velocity of the interface with the sign convention
that the normal velocity of expanding hypersurfaces is positive, n is the unit outward
normal either to ∂D or to Γt, v+ and v− are respectively the restriction of v on [0, t]×D+

and [0, t]×D−.
For the stochastic Cahn-Hilliard equation, the authors in [ABK18] proved that for

large σ > 0 the sharp interface limit of equation (1.13) also satisfies the deterministic
Hele-Shaw model if Ẇ is a trace-class noise. For σ = 1, the sharp interface limit is also
conjectured to satisfy the following stochastic Hele-Shaw model:

∆v = 0 in D \ Γt, t > 0,

∂nv = 0 on ∂D,
v = λH +W on Γt,

V =
1

2

[
∂

∂n

]
Γt

v on Γt,

Γ0 = Γ00,

(1.18)
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In [AKO14], the authors prove that the sharp interface limit of generalized Cahn-Hilliard
equation: ∂tu = ∆(−ε∆u+ 1

ε
f(u)−Gε

2) +Gε
1 satisfies the following Hele-Shaw model:

∆v = − lim
ε→0

Gε
1 in D \ Γt, t > 0,

∂nv = 0 on ∂D,
v = λH − lim

ε→0
Gε

2 on Γt,

V =
1

2

[
∂

∂n

]
Γt

v on Γt,

Γ0 = Γ00,

(1.19)

Since they require some regularity conditions for Gε
1, Gε

2 w.r.t time, which are not satisfied
by Brownian motions, it is not clear how to obtain the stochastic Hele-Shaw model
rigorously. Until now, the rigorous complete description of the motion of interfaces in
dimensions two and three in stochastic case stands for many years as a wide open problem.

We mention that in [Fun99] and [Web10], the authors consider the following stochastic
Allen-Cahn equation

∂tu = ∆u− 1

ε2
f(u) +

1

ε
Ξεt . (1.20)

The noise Ξε is constant in space and smooth in time. For ε → 0 the correlation length
goes to zero at a precise rate and

∫ t
0
Ξεsds converges to a Brownian motion pathwisely.

They prove that the dynamics of the phase-separating hyperplane Γt appearing in the
limit is given by stochastic mean curvature flow (see also in [Fun16, Chapter 4]). For
space-time white noise, in [TW18] the authors prove the ”exponential loss of memory
property”. But for sharp interface limit, there is still no result for space-time white noise.

In Chapter 4, we consider the sharp interface limit of stochastic Cahn-Hilliard equa-
tion driven by singular noise. The stochastic Cahn-Hilliard equation is a model for
the non-equilibrium dynamics of metastable states in phase transitions, [Coo70, HH77,
Lan71]. In Section 4.2, we consider the Cahn-Hilliard-Cook model which is generated by
Cook, [Coo70] (see also in [HH77]), incorporating thermal fluctuations in the form of an
additive noise. In our case the noise is chosen as W = W1 or W = ∇ ·W2, where W1 is
mass-conserved L2(D,R)-cylindrical Wiener process and W2 is an L2(D,R2)-cylindrical
Wiener process. In the case that W = ∇ · W2, the equation is also well-known as
time-dependent Ginzburg-Landau (TDGL) equation. This equation is also related to the
stochastic quantization for Φ4

2-quantum field. For the existence and uniqueness results
for these two kinds of equations, we refer to [DPD96, RYZ18] and the reference therein.

To analyze the sharp interface limit of the solution (uε, vε) to equation (1.13), we
estimate the difference of (uε, vε) to (uεA, v

ε
A) which is the solution to equation (1.16). For

the case W = W1, we follow the idea in [ABK18]. Let uε be the solutions to equation
(1.13) and uεA be the approximation solution in Theorem 4.2. We consider the equation
that the residual Rε := uε − uεA satisfies. Then we prove that Rε converges to 0 for
σ > 107

12
by obtaining a uniform estimate of Rε . Moreover, we prove that vε − vεA also

converges to 0, where vεA is the potential defined in (1.16). Hence we obtain that the sharp
interface limit of the equation (1.13) satisfies the deterministic Hele-Shaw model (1.17)
if σ > 107

12
. We mention that since the noise is rougher, we cannot apply Itô’s formulae

to Rε directly. Hence the trick in [ABK18] fails in our case. Instead, we make use of
the Da prato-Debussche’s trick (see [DPD03]). That is, let Zε = εσ

∫ t
0
e−ε(t−s)∆

2
dWs and

Y ε = Rε − Zε. Compared with Zε and uε, Y ε has better regularity, which enables us to
apply Newton-Leibniz formula and obtain uniform estimate for Y ε instead.
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For the case W = ∇ ·W2 the equation (1.13) is ill-posed in the classical sense, since
the solution is not a function. To define the nonlinear terms, a renormalization method
is required. As the solution is a distribution, we do not consider the sharp interface limit
for the solutions of (1.13) directly. Instead we do suitable approximation for the noise
with W h := W2 ∗ ρh, where ρh approximates to identity (as h → 0) and we consider the
following renormalized equation:

duε,h = ∆

(
−ε∆uε,h + 1

ε

(
f(uε,h)− 3cεh,tu

ε,h
))

dt+ εσ∇ · dW h
t , (1.21)

where 3cεh,tu
ε,h is the renormalization term (see (refc4a.5)). As h → 0, uε,h converges to

uε, which is the unique solution to equation (1.13). Similarly we consider the residual
Rε,h = uε,h − uεA and do a similar estimate as before. We mention that for fixed ε > 0,
cεh,t → ∞ as h→ 0, which makes the term cεh,tu

ε,h hard to control. Thus we consider the
case that ε ≲ hι for some ι > 0 and h goes to 0 (see Theorem 4.14). In this case, cεh,t
can be very small as h → 0. Thus the term cεh,tu

ε,h is small. For other terms in (1.21),
the method is similar as the case that W = W1. Finally we prove that Rε,h and vε,h− vεA
converge to 0 if σ > 26

3
. This also implies that the sharp interface limit of the solution

to equation (1.21) is given by (1.17).

1.2.3 Sharp interface limit for small σ ≥ 0

In Chapter 5, we continue to consider the sharp interface limit of stochastic Cahn-Hilliard
equation (1.8) for small σ ≥ 0. As what was showed in Chapter 4, for large σ > 0, the
stochastic Cahn-Hilliard equation (1.8) converges to the deterministic Hele-Shaw model
(1.5). However, for σ ≥ 0 small, the perturbation by the noise become much stronger. It
is reasonable to think that the solutions to equation (1.8) do not converge to deterministic
Hele-Shaw model (1.5) when σ is small. But the method in Chapter 4 can be only applied
to prove the convergence to (1.5) and also seems not easy to obtain the convergence for
small σ.

To overcome the difficulty, we use a weak approach which is motivated by [Che96],
where the author considered the deterministic Cahn-Hilliard equation

∂tu
ε = ∆vε, (t, x) ∈ [0, T ]×D,

vε = −ε∆uε(t) + 1

ε
f(uε(t)), (t, x) ∈ [0, T ]×D,

∂uε

∂n
=
∂vε

∂n
= 0, (t, x) ∈ [0, T ]× ∂D,

uε(0, x) = uε0(x), x ∈ D,

(1.22)

and formulated a weak solution to the deterministic Hele-Shaw model (1.5) (see Definition
5.2) and showed that the solutions to (1.22) approach, as ε ↘ 0, to weak solutions to
(1.5) by using a compactness argument. In fact, the Cahn-Hilliard equation (1.22) is an
H−1-gradient flow with the van der Waals-Cahn-Hilliard energy functional

Eε(uε) :=
∫
D
eε(uε)dx, eε(uε) :=

ε

2
|∇uε|2 + 1

ε
F (uε). (1.23)

Denote by (uεD, v
ε
D) the solution to the deterministic Cahn-Hilliard equation (1.22). One

can directly verify that
d

dt
Eε(uεD) = −

∫
D
|∇vεD|2 ≤ 0, (1.24)
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which is also called the Lyapunov property for equation (1.22). Thus Eε(uεD) is uniformly
bounded in t, ε > 0 if the energy of initial value is uniformly bounded in ε. Note that
as ε → 0, F (uεD) → 0, which is equivalent to uεD → −1 + 21E for some E ⊂ [0, T ] × D
where 1E is the characteristic function of E, i.e. 1E(x) = 1 when x ∈ E and 1E(x) = 0
when x 6∈ E. Γt := ∂Et is the interface. By using a varifold approach, Chen in [Che96]
analyzed the property of the limit of the solutions to equation (1.22) and then proposed a
definition of weak solution of this limit. Any classical smooth solutions to (1.22) are weak
solutions. In some special case, the smooth weak solutions are also classical solutions to
(1.5). We need to mention that in [ABC94] and Chapter 4, the convergence of solutions to
Cahn-Hilliard equation (1.22) to (1.5) is proved under the assumption on the existence of
smooth solution to (1.5). While in [Che96], Chen proved the convergence of the solution
to equation (1.22) and analyzed the limit directly. No assumption on existence of solution
to (1.5) is required in [Che96].

In our case, we consider the sharp interface limit of the following stochastic Cahn-
Hilliard equation on a bounded smooth open domain D ⊂ Rd (d = 2, 3):

duε = ∆vεdt+ εσdWt, (t, x) ∈ [0, T ]×D,

vε = −ε∆uε(t) + 1

ε
f(uε(t)), (t, x) ∈ [0, T ]×D,

∂uε

∂n
=
∂vε

∂n
= 0, (t, x) ∈ [0, T ]× ∂D,

uε(0, x) = uε0(x), x ∈ D.

(1.25)

Here W is a Q-Wiener process where Q satisfies (5.4) and (5.5). f(u) = F ′(u) where
F (u) = 1

4
(u2 − 1)2 is the double well potential and the initial data uε0 satisfies

sup
0<ε≤1

∫
D

(
ε

2
|∇uε0(x)|2 +

1

ε
F (uε0(x))

)
dx ≤ E0 <∞,

1

|D|

∫
D
uε0(x)dx = m0 ∈ (−1, 1) ∀ε ∈ (0, 1].

(1.26)

For small σ ≥ 0, we extend the method in [Che96] to equation (1.25) and obtain weak
solutions to the limit of equation (1.25). Then we consider the limit of the solution to
equation (1.25) directly, which enables us to analyze different models the limit should
satisfy. We mainly consider (1.25) with two types of driven noise: Q-Wiener process and
“smeared” noise which is smooth in time.

The equation with Q-Wiener process for σ ≥ 1
2
. In this case, we can obtain

that for σ > 1
2
, the solutions to equation (1.25) converge to the weak solutions defined

in Definition 5.2. In fact, motivated by [DPD96], we apply the Itô’s formula to Eε(uε)
and prove the Lyapunov property of equation (1.25) for all σ ≥ 1

2
(see Lemma 5.6). By

tightness argument, we prove that for all σ > 1
2
, the solutions to equation (1.25) converge

to the weak solution of the limit of deterministic Cahn-Hilliard equation (1.22) defined
by Chen [Che96] (see Theorem 5.3). For σ = 1

2
, the tightness and convergence results are

still true. But we cannot conclude that the limit is a weak solution defined in Definition
5.2.

Particularly in radial symmetric case, we prove that for all σ ≥ 1
2
, the limit of solutions

to equation (1.25) satisfy (1.22) in the weak sense. Thus we conjecture that in general for
P− a.s. ω, as ε ↘ 0, the chemical potential vε(ω) tends to a limit v(ω) which, together
with a free boundary Γ(ω) := ∪0≤t≤T ({t} × Γt(ω)), (v(ω),Γ(ω)) satisfies (1.5).
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The equation with “smeared” noise for σ ≥ 0. Moreover, we consider stochastic
Cahn-Hilliard equation driven by“smeared” noise which is smooth in time. This kind of
noise was considered also for stochastic Allen-Cahn equation in [Fun99, Web10, FY19].

We smoothen the noise in time and consider the following random PDE:

∂uε

∂t
= ∆vε + εσξεt , (t, x) ∈ [0, T ]×D,

vε = −ε∆uε(t) + 1

ε
f(uε(t)), (t, x) ∈ [0, T ]×D,

∂uε

∂n
=
∂vε

∂n
= 0, (t, x) ∈ [0, T ]× ∂D,

uε(0, x) = uε0(x), x ∈ D,

(1.27)

where ξεt = dW ε

dt
, W ε

t :=
∫∞
−∞ ρε(t − s)Wsds and ρε is an approximate delta function on

R. Formally as ε→ 0, ξε → dW
dt
. Since ξεt is smooth in time, this enables us to apply the

Newton-Leibniz formula to Eε(uε) and obtain the Lyapunov property. Thus the tightness
and the convergence results hold for all σ ≥ 0. Similar as before, for all σ > 0, the
solutions to (1.27) converge to the weak solution to Definition 5.2 (see Theorem 5.21).
For the interesting case that σ = 0, when ε↘ 0, we have that uε → −1 + 21E for some
E ∈ [0, T ]×D, vε → v and

2d1E = ∆vdt+ dWt. (1.28)
(1.28) actually gives a weak formula to describe how the evolution of the interface Γt :=
∂Et is governed by the noise W (see Theorem 5.24). This gives the first rigorous result of
the sharp interface limit of stochastic Cahn-Hillliard limit to a stochastic model. Similar
as before, we conjecture that for P − a.s. ω, as ε ↘ 0, the chemical potential vε(ω)
tends to a limit v(ω) which, together with a free boundary Γ(ω) := ∪0≤t≤T ({t} × Γt(ω)),
(v(ω),Γ(ω)) satisfies the following stochastic problem:

∆vdt = −dWt in D \ Γt, t > 0,

∂v

∂n
= 0 on ∂D,

v = SH on Γt,

Vdt = 1

2

[
∂

∂n

]
Γt

(vdt+∆−1dWt).

(1.29)

We also mention that Chen’s definition for weak solution in Definition 5.2 is not so
“perfect”, since it is still unknown whether in general such a smooth weak solution is
a classical solution to (1.5). The problems come from that a ”good” weak formula for
the third equation in (1.5) is still missing. Moreover, in [ABK18] the authors also give
some different conjectures about the sharp interface limit of equation (1.25) via a formal
calculation, especially in the case that σ = 1. In their case the value of v on the interface
is different from ours. As what we analyze in Remark 5.27, our model (1.29) fit quite
well in radial symmetric case. But in general case, we still cannot give a fully rigorous
proof.

In fact, identifying the value of v on the interface Γt is the main task of varifold
approach to study the sharp interface limit of both Cahn-Hilliard equation and Allen-
Cahn equation (cf. [HT00, Ton02, Ton05, RS06, Le08, RT08]). In these literature, the
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authors give a weak formula for the third equation in (1.5). But they are unable to prove
the limit of the solutions to equation (1.22) satisfy such weak formula. Until now, a fully
rigorous proof of the sharp interface limit of Cahn-Hilliard equation is still missing.

Finally, as what we mentioned before, the methods in [Che96] and also in this chapter
are deeply related to the theory of varifolds. We recall some related definitions in Section
5.1. In fact, varifolds represent very natural generalizations of classical n-surfaces, as they
encode, loosely speaking, a joint distribution of mass and tangents. More technically, var-
ifolds are Radon measures defined on the Grassmann bundle Rd×G(n, d), whose elements
are pairs (x, S) specifying a position in space and an unoriented n-plane. Varifolds have
been proposed more than 50 years ago by Almgren [Alm65] as a mathematical model for
soap films, bubble clusters, crystals, and grain boundaries. After Allard’s fundamental
work [All72], varifolds have been successfully used in the context of Geometric Measure
Theory, Geometric Analysis, and Calculus of Variations. One successful application of
varifolds resulted in the definition and the study of a general weak mean curvature flow
in [Bra78], which allowed to prove existence of mean curvature evolution with singular-
ities in [KT17]. Beyond the theory of rectifiable varifolds, the flexibility of the varifold
structure has been proved to be relevant to model diffuse interfaces, e.g., phase field
approximations, and a crucial part in the proof of the convergence of the Allen-Cahn
equation to Brakke’s mean curvature flow [Ilm93, Ton03, TT15], or in the proof of the
Γ-convergence of Cahn-Hilliard type energies to the Willmore energy (up to an additional
perimeter term) [Ton05, RS06, Le08, RT08].

1.3 Structure of the thesis
This thesis is organised in the following:

In Chapter 2 we collect some preliminaries for later chapters.
In Chapter 3, we obtain the global well-posedness of stochastic Cahn-Hilliard equa-

tion (1.4) driven by conservative white noise and prove the ergodicity. This chapter is
organized as follows: In Section 3.1 we collect some results related to Besov spaces. In
Section 3.2 we study the solution to the linear equation and define the Wick power. In
Section 3.3 we obtain the global existence and uniqueness of solutions to the shifted equa-
tion (1.12). In Section 3.4 we obtain existence of probabilistically weak solutions via the
Dirichlet form approach. By clarifying the relation between the two solutions we obtain
Φ4

2-field ν is an invariant measure of X Markov uniqueness in the restricted sense for the
generator of the Dirichlet form restricted to FC∞

b and uniqueness of the probabilistically
weak solutions to (1.9). Moreover, using the Yamada-Watanabe Theorem in [Kur07] we
obtain a probabilistically strong solution to (1.9) in the stationary case. Finally we prove
the strong Feller property and exponential ergodicity of the Markov semigroup associated
to the solution to (1.9) in Section 3.5. This part is based on the joint work [RYZ18] with
Prof. Michael Röckner and Prof. Rongchan Zhu.

In Chapter 4, we consider the stochastic Cahn-Hilliard equation (1.4) driven by space-
time white noise and conservative noise and prove that for large σ > 0, the sharp interface
limit satisfies the deterministic Hele-Shaw model (1.5). This chapter is organized as
follows: In Section 4.1, we collect some results related to Besov spaces. The theorem
about the sharp interface limit for space-time white noise is stated in Section 4.2 and we
prove it in Section 4.3. In Section 4.4 we use a similar argument as we used in Section 4.3
to prove the results for conservative noise. This part is based on the joint work [BYZ19]



12 Chapter 1. Introduction and Main Results

with Prof. Lubomir Banas and Prof. Rongchan Zhu.
In Chapter 5, we consider the stochastic Cahn-Hilliard equation (1.4) where Wε = W

or Wε = W ε. Here W is a Q-Wiener process and W ε is smooth in time and converges
to W as ε ↘ 0. This chapter is organized as follows: In Section 5.1 we give some basic
notations and assumptions. In subsection 5.1.3 we give the main results for (1.25) driven
by Q-Wiener process. In Section 5.2, we establish certain ε-independent estimates for the
solution to (1.25), which allow us obtain tightness and then apply Skorokhod’s theorem
to obtain a convergence subsequence for all σ ≥ 1

2
. Moreover for σ > 1

2
, we prove that

this limit is actually a weak solution to (1.5). Similar as in [Che96], in Section 5.3, we
study the radially symmetric case and prove that for all σ ≥ 1

2
, the limit of the solution

to equation (1.25) satisfies the deterministic Hele-Shaw model (1.5). The rigorous proof
of Theorem 5.4 in radial symmetric case is given in Section 5.4. Finally in Section 5.5, we
consider the case for “smeared” noise ξεt and obtain the convergence result for all σ ≥ 0.
For σ > 0, the limit of the solution to (1.27) is a weak solution to equation (1.5). For
σ = 0, we obtain a stochastic characterisation of the evolution of the interface (1.28) and
partially prove in radial symmetric case that it satisfies the stochastic Hele-Shaw model
(1.29). This part is based on the joint work [YZ19] with Prof. Rongchan Zhu.



Chapter 2

Preliminary

2.1 Besov spaces
In the following we recall the definition of Besov spaces which will be frequently used
in Chapter 3 and 4. For a general introduction to the theory of Besov spaces we refer
to [BCD11, Tri78, Tri06]. First we introduce the following notations. Throughout the
thesis, we use the notation a ≲ b if there exists a constant c > 0 such that a ≤ cb,
and we write a ⋍ b if a ≲ b and b ≲ a. The space of real valued infinitely differentiable
functions of compact support is denoted by D(Rd) or D . The space of Schwartz functions
is denoted by S(Rd). Its dual, the space of tempered distributions, is denoted by S ′(Rd).
The Fourier transform and the inverse Fourier transform are denoted by F and F−1,
respectively.

Let χ, θ ∈ D be nonnegative radial functions on Rd, such that
(i). the support of χ is contained in a ball and the support of θ is contained in an

annulus;
(ii). χ(z) +

∑
j≥0 θ(2

−jz) = 1 for all z ∈ Rd.
(iii). supp(χ) ∩ supp(θ(2−j·)) = ∅ for j ≥ 1 and suppθ(2−i·) ∩ suppθ(2−j·) = ∅ for

|i− j| > 1.
We call such a pair (χ, θ) dyadic partition of unity, and for the existence of dyadic

partitions of unity we refer to [BCD11, Proposition 2.10]. The Littlewood-Paley blocks
are now defined as

∆−1u = F−1(χFu) ∆ju = F−1(θ(2−j·)Fu).

Besov spaces
For α ∈ R, p, q ∈ [1,∞], u ∈ D we define

‖u‖Bα
p,q

:= (
∑
j≥−1

(2jα‖∆ju‖Lp)q)1/q,

with the usual interpretation as l∞ norm in case q = ∞. The Besov space Bα
p,q consists

of the completion of D with respect to this norm and the Hölder-Besov space Cα is given
by Cα(Rd) = Bα

∞,∞(Rd). For p, q ∈ [1,∞),

Bα
p,q(Rd) = {u ∈ S ′(Rd) : ‖u‖Bα

p,q
<∞},

Cα(Rd) ⊊ {u ∈ S ′(Rd) : ‖u‖Cα(Rd) <∞}.

13
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We point out that everything above and everything that follows can be applied to dis-
tributions on the torus (see [Sic85], [SW72]). More precisely, let S ′(Td) be the space
of distributions on Td. Besov spaces on the torus with general indices p, q ∈ [1,∞] are
defined as the completion of C∞(Td) with respect to the norm

‖u‖Bα
p,q(Td) := (

∑
j≥−1

(2jα‖∆ju‖Lp(Td))
q)1/q,

and the Hölder-Besov space Cα is given by Cα = Bα
∞,∞(Td). We write ‖ · ‖α instead of

‖ · ‖Bα
∞,∞(Td) in the following for simplicity. For p, q ∈ [1,∞)

Bα
p,q(Td) = {u ∈ S ′(Td) : ‖u‖Bα

p,q(Td) <∞}.

Cα ⊊ {u ∈ S ′(Td) : ‖u‖α <∞}. (2.1)
Here we choose Besov spaces as completions of smooth functions, which ensures that

the Besov spaces are separable which has a lot of advantages for our analysis below.

Wavelet analysis
We will also use wavelet analysis to determine the regularity of a distribution in a

Besov space. In the following we briefly summarize wavelet analysis below and we refer
to work of Meyer [Mey95], Daubechies [Dau92] and [Tri06] for more details on wavelet
analysis. For every r > 0, there exists a compactly supported function φ ∈ Cr(R) such
that:

(i). We have 〈φ(·), φ(· − k)〉 = δk,0 for every k ∈ Z;
(ii). There exist Ëœãk, k ∈ Z with only finitely many non-zero values, and such that

φ(x) =
∑

k∈Z ãkφ(2x− k) for every x ∈ R;
(iii). For every polynomial P of degree at most r and for every x ∈ R,

∑
k∈Z
∫
P (y)φ(y−

k)dyφ(x− k) = P (x).
Given such a function φ, we define for every x ∈ Rd the recentered and rescaled

function φnx as follows
φnx(y) := Πd

i=12
n
2φ(2n(yi − xi)).

Observe that this rescaling preserves the L2-norm. We let Vn be the subspace of L2(Rd)
generated by {φnx : x ∈ Λn}, where

Λn := {(2−nk1, ..., 2−nkd) : ki ∈ Z}.

An important property of wavelets is the existence of a finite set Ψ of compactly supported
functions in Cr such that, for every n ≥ 0, the orthogonal complement of Vn inside Vn+1

is given by the linear span of all the ψnx , x ∈ Λn, ψ ∈ Ψ. For every n ≥ 0

{φnx, x ∈ Λn} ∪ {ψmx : m ≥ n, ψ ∈ Ψ, x ∈ Λm},

forms an orthonormal basis of L2(Rd). This wavelet analysis allows one to identify a
countable collection of conditions that determine the regularity of a distribution.

Setting Ψ⋆ = Ψ∪{φ}, by some methods in weighted Besov space (see [RZZ17b, (2.2),
(2.3), (2.4)] and its reference for details), we know that for p ∈ (1,∞), α ∈ R, f ∈ Cα

‖f‖pα ≲
∞∑
n=0

2n(α+1)p
∑
ψ∈Ψ⋆

∑
x∈Λn

|〈f, ψnx〉|pw(x)p. (2.2)
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where w(x) = (1 + |x|2)−σ
2 , σ > 0 .

Estimates on the torus
In this part we give estimates on the torus for later use. Set A = (I − ∆)

1
2 . For

s ≥ 0, p ∈ [1,+∞] we use Hs
p to denote the subspace of Lp(Td), consisting of all f which

can be written in the form f = A−sg, g ∈ Lp(Td) and the Hs
p norm of f is defined to be

the Lp norm of g, i.e. ‖f‖Hs
p
:= ‖Asf‖Lp(Td).

To study (1.1) in the finite volume case, we will need several important properties of
Besov spaces on the torus and we recall the following Besov embedding theorems on the
torus first (c.f. [Tri78, Theorem 4.6.1], [GIP15, Lemma A.2], [Tri92, Remark 3, Section
2.3.2]):

Lemma 2.1. (i) Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞, and let α ∈ R. Then
Bα
p1,q1

(Td) is continuously embedded in B
α−d(1/p1−1/p2)
p2,q2 (Td).

(ii) Let s ≥ 0, 1 < p <∞, ε > 0. Then Hs+ε
p ⊂ Bs

p,1(Td) ⊂ Bs
1,1(Td).

(iii) Let 1 ≤ p1 ≤ p2 < ∞ and let α ∈ R. Then Hα
p1

is continuously embedded in
H
α−d(1/p1−1/p2)
p2 .

(iv) Let 0 < q ≤ ∞, 1 ≤ p ≤ ∞ and s > 0. Then Bs
p,q ⊂ Lp.

Here ⊂ means that the embedding is continuous and dense.

We recall the following Schauder estimates, i.e. the smoothing effect of the heat flow,
for later use.

Lemma 2.2. ([GIP15, Lemma A.7]) Let u ∈ Bα
p,q(Td) for some α ∈ R, p, q ∈ [1,∞].

Then for every δ ≥ 0
‖e−tA2

u‖Bα+δ
p,q (Td) ≲ t−δ/4‖u‖Bα

p,q(Td).

One can extend the multiplication on suitable Besov spaces and also have the duality
properties of Besov spaces from [Tri78, Chapter 4]:

Lemma 2.3. (i) The bilinear map (u; v) 7→ uv extends to a continuous map from Cα×Cβ
to Cα∧β if and only if α + β > 0.

(ii) Let α ∈ (0, 1), p, q ∈ [1,∞], p′ and q′ be their conjugate exponents, respectively.
Then the mapping (u; v) 7→

∫
uvdx extends to a continuous bilinear form on Bα

p,q(Td) ×
B−α
p′,q′(Td).

We recall the following interpolation inequality and multiplicative inequality for the
elements in Hs

p , which is required for the a-priori estimate in section 3.3 (cf. [Tri78,
Theorem 4.3.1], [RZZ15, Lemma 2.1], [BCD11, Theorem 2.80]):

Lemma 2.4. (i) Suppose that s ∈ (0, 1) and p ∈ (1,∞). Then for u ∈ H1
p

‖u‖Hs
p
≲ ‖u‖1−s

Lp(Td)
‖u‖sH1

p
.

(ii) Suppose that s > 0 and p ∈ (1,∞). If u, v ∈ C∞(T2) then

‖As(uv)‖Lp(Td) ≲ ‖u‖Lp1 (Td)‖Asv‖Lp2 (Td) + ‖v‖Lp3 (Td)‖Asu‖Lp4 (Td),

with pi ∈ (1,∞], i = 1, ..., 4 such that
1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.
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(iii) Suppose that s1 < s2 and 1 ≤ p, q ≤ ∞. Then for u ∈ Bs2
p,q and ∀θ ∈ (0, 1)

||u||
B

θs1+(1−θ)s2
p,q

≤ ||u||θ
B

s1
p,q
||u||1−θ

B
s2
p,q
.

We also collect some important properties for the multiplicative structure of Besov
spaces from [MW17] and [Tri06].

Lemma 2.5. ([MW17, Corollary 3.19, Corollary 3.21]) (1) For α > 0, p1, p2, p, q ∈
[1,∞], 1

p1
+ 1

p2
= 1

p
, the bilinear map (u; v) 7→ uv extends to a continuous bilinear map

from Bα
p1,q

×Bα
p2,q

to Bα,
p,q.

(2) For α < 0, α+β > 0, p1, p2, p, q ∈ [1,∞], 1
p1
+ 1

p2
= 1

p
, the bilinear map (u; v) 7→ uv

extends to a continuous bilinear map from Bα
p1,q

×Bβ
p2,q

to Bα
p,q.

2.2 Symmetric quasi regular Dirichlet forms and Markov
Processes

In this section we recall some general Dirichlet form results from [MR92] which is used
in Chapter 3. Let E be a Hausdorff topological space, m a σ-finite measure on E,
and let B the smallest σ-algebra of subsets of E with respect to which all continuous
functions on E are measurable. Let Λ be a symmetric Dirichlet form acting in the
real L2(m)-space, i.e. Λ is a positive, symmetric, bilinear, closed form with domain
D(Λ) dense in L2(m), and such that Λ(Φ(u),Φ(u)) ≤ Λ(u, u), for any u ∈ D(Λ), where
Φ(t) = (0 ∨ t) ∧ 1, t ∈ R. The latter condition is known to be equivalent with the
condition that the associated C0-contraction semigroup Tt, t ≥ 0, is submarkovian (i.e.
0 ≤ u ≤ 1 m-a.e. implies 0 ≤ Ttu ≤ 1 m-a.e., for all u ∈ L2(m)); association means that
limt↓0

1
t
〈u− Ttu, v〉L2(m) = Λ(u, v), ∀u, v ∈ D(Λ).

Definition 2.6. (cf. [MR92, Chap. IV, Defi. 3.1]) A symmetric Dirichlet form is called
quasi-regular if the following holds:

(i) There exists a sequence (Fk)k∈N of compact subsets of E such that ∪kD(Λ)Fk
is

Λ
1/2
1 -dense in D(Λ) (where D(Λ)Fk

:= {u ∈ D(Λ)|u = 0 m-a.e. on E − Fk}; Λ1/2
1 is the

norm given by the scalar product in L2(m) defined by Λ1, where Λ1(u, v) := Λ(u, v)+〈u, v〉,
〈, 〉 being the scalar product in L2(m). Such a sequence (Fk)k∈N is called an Λ-nest.

(ii) There exists an Λ
1/2
1 -dense subset of D(Λ) whose elements have Λ-quasi continuous

m-versions. A real function u on E is called quasi continuous when there exists an Λ-nest
(Fk) s.t. u restricted to Fk is continuous.

(iii) There exists un ∈ D(Λ), n ∈ N, with Λ-quasi continuous m-versions ũn and there
exists an Λ-exceptional subset N of E s.t. {ũn}n∈N separates the points of E − N . An
Λ-exceptional subset of E is a subset N ⊂ ∩k(E − Fk) for some Λ-nest (Fk).

To recall the main results in [MR92] we recall the definitions of a Markov process and
a right process. Here we consider only Markov processes with life time ∞.

Definition 2.7. (cf. [MR92, Chap. IV Defi. 1.5] A collection M := (Ω,M, (Xt)t≥0, (Pz)z∈E)
is called a Markov process (with state space E) if it has the following properties.

(i) There exists a filtration (Mt) on (Ω,M) such that (Xt)t≥0 is an (Mt)t≥0 adapted
stochastic process with state space E.



2.3. Geometric measure theory 17

(ii) For each t ≥ 0 there exists a shift operator θt : Ω → Ω such that Xs ◦ θt = Xs+t

for all s, t ≥ 0
(iii) Pz, z ∈ E, are probability measures on (Ω,M) such that z 7→ Pz(A) is B(E)∗-

measurable for each A ∈ M resp. B(E)-measurable if A ∈ σ{Xs|s ∈ [0,∞)}, where
B(E)∗ := ∩P∈P(E)BP(E) for P(E) denoting the family of all probability measures on
(E,B(E)) and BP(E) denotes the completion of the σ-algebra B(E) w.r.t. a probability
P.

(iv) (Markov property) For all A ∈ B(E) and any t, s ≥ 0

Pz[Xs+t ∈ A|Ms] = PXs [Xt ∈ A] Pz − a.s., z ∈ E.

Definition 2.8. (cf. [MR92, Chap. IV Defi. 1.8]) Let M := (Ω,M, (Xt)t≥0, (Pz)z∈E)
be a Markov process with state space E and corresponding filtration (Mt). M is called a
right process if it has the following additional properties.

(i) (Normal property) Pz(X0 = z) = 1 for all z ∈ E.
(ii) (Right continuity) For each ω ∈ Ω, t 7→ Xt(ω) is right continuous on [0,∞).
(iii) (Strong Markov property) (Mt) is right continuous and for every (Mt)-stopping

time σ and every ν ∈ P(E)

Pν [Xσ+t ∈ A|Mσ] = PXσ [Xt ∈ A] P ν − a.s.

for all A ∈ B(E), t ≥ 0.

Theorem 2.9. ([MR92, Chap. IV Thm 6.7]) Let E be a metrizable Lusin space. Then
a Dirichlet form (Λ, D(Λ)) on L2(E,m) is quasi-regular if and only if there exists a right
process M associated with (Λ, D(Λ)), i.e. the semigroup of M is an m-version of the
semigroup associated with (Λ, D(Λ)). In this case M is always properly associated with
(Λ, D(Λ)).

Remark 2.10. The results in [MR92, Chap. IV] are more general and can be applied
for general Hausdorff topological spaces and more general Markov processes. Lusin spaces
are enough for our use in this thesis.

2.3 Geometric measure theory
In this section, we recall some definitiosn and results of geometric measure theory which
is used in Chapter 5.

In this thesis, we denote by n⊗ n the matrix (ninj)d×d for n = (n1, · · · , nd). We use
“I” to denote the identity matrix (δij)d×d. For any d×d matrices A = (aij) and B = (bij),

A : B := Trace(ATB) =
d∑

i,j=1

aijbij.

We denote by Cm
c (O) the space of m-th differentiable functions with compact support

in O where O can be open or closed. Note that if O is compact, Cm
c (O) = Cm(O).

Moreover, we say a vector function Y⃗ = (Y 1, · · · , Y d) ∈ Cm
c (O;Rd) if Y i ∈ Cm

c (O) for
any i = 1, · · · , d. For any t > 0, we denote Ot := [0, t] × O. We also denote by 1E the
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characteristic function of a set E, which is defined by 1E(x) = 1 for x ∈ E and 1E(x) = 0
for x 6∈ E.

Moreover, we denote Hn as the n-dimensional Hausdorff measure on Rd for any n ∈
[0, d]. For n = d, Hd is just the Lebesgue measure on Rd. For anyHn-measurable function
θ, we denote a measure Hnbθ by

Hnbθ(A) =
∫
A

θ(x)dHn(x).

For any Hn-measurable set M , HnbM := Hnb1M is the restriction of Hn on M .
We denote by Br(x) the ball in Rd centered at the origin x with radius r and Br :=

Br(0). We also denote by Sr the sphere of radius r in Rd and by ωd the area of unit
sphere S1.

In the following, we recall several definitions from geometric measure theory (cf.
[AFP00, Fed14, Sim83]).

Radon measures
Let D be either an open or a closed domain. If L is a bounded linear functional on

Cc(D) satisfying 〈L, ψ〉 ≥ 0 whenever ψ ≥ 0 and ψ ∈ Cc(D), a measure µ generated by

µ(A) = sup
ψ∈Cc(A),|ψ|≤1

〈L, ψ〉 for all A open in D

is called a Radon measure on D. We use 〈µ, ψ〉 ψ ∈ Cc(D) to denote the value
∫
D ψdµ(=

〈L, ψ〉).
Let M(DT ) be the space of all finite signed measures on DT and MR(DT ) ⊂ M(DT )

is the space of all Radon measures on DT . MR(DT ) and M(DT ) are equipped with the
total variation norm ‖ · ‖TV and weak topology, respectively. Now we give a criterion
theorem for a compactness sequence in MR(DT ),

Theorem 2.11. ([Sim83, Theorem 4.4]) Suppose {µk}k≥1 is a sequence of Radon mea-
sures on D with supk≥1 µk(U) < ∞ for each open U ⊂ D with Ū compact in D. Then
there exists a subsequence {µk′} which weakly converges to a Radon measure on D in the
sense that

lim
k′→∞

µk′(f) = µ(f) for each f ∈ Cc(D),

where we used the notation
µ(f) :=

∫
D
fdµ.

BV functions
Let u ∈ L1

loc(D). If the distributional gradient Du defined by

〈Du, Y⃗ 〉 := 〈u,−divY⃗ 〉 ∀Y⃗ ∈ C1
c (D;Rd)

can be extended as a bounded linear functional over Cc(D;Rd), then we say that u is a
function of bounded variation, denoted by u ∈ BV (D). If u ∈ BV (D), we use Diu to
denote the measure on Cc(D) generated by the functional 〈u,−∂xiψ〉 for all ψ ∈ C1

c (D).
We denote by |Du| the Radon measure generated by

|Du|(A) := sup
Y⃗ ∈Cc(A;Rd),|Y⃗ |≤1

∫
A

u divY⃗ dx, ∀A open ⊂ D.
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One can show in [Fed14] that Diu is absolutely continuous with respect to |Du| and there
exists a |Du|-measurable unit vector valued function ν⃗ such that Du = ν⃗|Du|, |Du|−a.e..

We say that a set E ⊂ D is a BV set if 1E ∈ BV (D). We denote ν⃗E by

D1E = ν⃗E|D1E| or ν⃗E(x) :=
D1E(x)dx

|D1E|(x)dx
. (2.3)

Clearly, in the case that ∂E is smooth, ν⃗E is the unit inward normal of E on ∂E.
In the following, we introduce the several concepts of varifold, which can be found in

[Sim83, Chapter 8].

Rectifiable set
Definition 2.12. (rectifiable set) A set M ⊂ Rd is said to be a countably (d − 1)-
rectifiable set if M ⊂ M0 ∪

(⋃∞
j=1 Fj

(
Rd−1

))
, where Hd−1(M0) = 0 and Fj : Rd−1 → Rd

are Lipschitz functions for i = 1, 2, · · · .
Now we will give an important characterization of countably rectifiable sets in terms

of “approximate tangent spaces”.
Definition 2.13. If M is an Hd−1-measurable subset of Rd and θ is positive lacally
Hd−1-integrable function on M , then we say that a (d− 1)-dimensional subspace T ⊂ Rd
is the approximate tangent space for M at x with respect to theta if for any f ∈ Cc(Rd)

lim
λ↘0

∫
ηx,λ(M)

f(y)θ(x+ λy)dHd−1(y) = θ(x)

∫
T

f(y)dHd−1(y),

where ηx,λ : Rd → Rd is defined by ηx,λ(y) = λ−1(y − x), x, y ∈ Rd, λ > 0. We denote
T = TxM .

The following theorem gives the important characterization of countably rectifiable
sets in terms of existence of approximate tangent spaces.
Theorem 2.14. ([Sim83, Theorem 11.6]) Suppose M is Hd−1-measurable. Then M
is countably (d − 1)-rectifiable if and only if there is a positive locally Hd−1-integrable
function θ on M with respect to which the approximate tangent space TxM exists for
Hd−1 − a.e. x ∈M .

In more general case, we have
Theorem 2.15. ([Sim83, Theorem 11.8]) Suppose µ is a Radon measure on Rd, and for
x ∈ Rd, λ > 0, let µx,λ be the measure given by µx,λ(A) = λ1−dµ(x + λA). Suppose that
for µ− a.e. x, there is θ(x) ∈ (0,∞) and a (d− 1)-dimensional subspace T ⊂ Rd with

lim
λ↘0

∫
Rd

f(y)dµx,λ(y) = θ(x)

∫
T

f(y)dHd−1(y). (2.4)

(T is called the approximate tangent space for µ at x, and θ is called the multiplicity,
such µ is also called rectifiable measure.) Let

M := {x : (2.4) holds for some T and some θ(x) ∈ (0,∞)} ,

and set θ(x) = 0, x ∈ Rd \M .
Then M is countably (d − 1)-rectifiable, θ is Hd-measurable and µ = Hdbθ. In

particular
θ(x) = lim

ρ↘0

µ(Bρ(x))

ωd−1ρd−1
, µ− a.e. x ∈ Rd.
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Sets of locally finite perimeter
An important class of countably (d− 1)-rectifiable sets in Rd comes from the sets of

locally finite perimeter (or Caccipoli sets).
We say that a Hd-measurable subset E in Rd has locally finite perimeter in D if the

characteristic function 1E of E is a BV function in D. Thus |D1E| is a Radon measure
on D.

We can also define the reduced boundary ∂∗E of E by (see [Sim83, Section 14] for
details)

∂∗E :={x ∈ D : |ν⃗E(x)| = 1} = supp(|D1E|)

=

{
x ∈ D : ν⃗E = lim

ρ↘0

D1E(Bρ(x))

|D1E|(Bρ(x))
exists and has length 1

}
.

(2.5)

Moreover we have

Theorem 2.16. ([Sim83, Theorem 14.3]) Suppose E has locally finite perimeter in D.
Then ∂∗E is countably (d − 1)-rectifiable and |D1E| = Hd−1b∂∗E. In fact at each point
x ∈ ∂∗E, the approximate tangent space Tx of |D1E| exists, has multiplicity 1, and is
given by

Tx =
{
y ∈ Rd : y · ν⃗E(x) = 0

}
.

Varifolds
LetG(d, d−1) be the Grassmannian space which parametrizes of all (d−1)-dimensional

linear subspaces of Rd, which is a compact smooth manifold. For any T ∈ G(d, d− 1), T
can be identified with its unit normal vector ν⃗. More precisely, G(d, d − 1) ∼= P , where
P := Sd−1/{ν⃗,−ν⃗} is the set of unit normals of unoriented (d− 1)-planes in Rd.

Definition 2.17. (varifold). A varifold (or, more precisely a (d − 1)-varifold) V is a
non-negative Radon measure on Gd−1(D) := D × G(d, d − 1). The convergence of a
sequence of varifolds is defined as the weak convergence in the sense of Radon measure.

Definition 2.18. (mass). Given a (d−1)-varifold V , there corresponds a Radon measure
‖V ‖ on D defined by

‖V ‖(A) := V (π−1(A)),

where π is the projection Gd−1(D) 3 (x, T ) 7−→ x onto D.

Definition 2.19. (rectifiable varifold) Let M be a countably (d − 1)–rectifiable set and
θ be a non negative function with θ > 0,Hd−1 − a.e. in M . A rectifiable (d − 1)–
varifold V = v(M, θ) in D is a non-negative Radon measure on Gd−1(D) of the form
V = θHd−1bM ⊗ δTxM , i.e.∫

Gd−1(D)

φ(x, T )dV (x, T ) =

∫
M

φ (x, TxM) θ(x)dHd−1(x) ∀φ ∈ Cc (Gd−1(D)) .

First variation of a varifold

Definition 2.20. The first variation of a (d − 1)-varifold V in D is the vector-valued
distribution δV defined for any vector field Y⃗ = (Y 1, · · · , Y d) ∈ C1

c (D,Rd) as

〈δV, Y⃗ 〉 :=
∫
Gd−1(D)

divT Y⃗ (x)dV (x, T ).
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Here for any T ∈ G(d, d− 1),

divT Y⃗ =
d∑
i=1

∇T
i Y

i,

where ∇T
i := φi · ∇T , {φi}di=1 is ONB in Rd, with

∇Tf(x) = PT (∇f(x)), f ∈ C1
c (D),

and PT is the orthogonal projection of Rd onto T .

For any T ∈ G(d, d− 1) with p ∈ P the unit normal of T , we have that

divT Y⃗ =
d∑
i=1

∇T
i Y

i =
d∑
i=1

φi · (PT (∇Y i))

=
d∑
i=1

φi ·
(
∇Y i − (∇Y i · p)p

)
=

d∑
i=1

(
∂xiY

i −
d∑
j=1

∂xjY
ipjpi

)
= ∇Y⃗ : (I− p⊗ p) .

We simply denote P ≡ G(d, d− 1). Hence the first variation formula becomes

〈δV, Y⃗ 〉 =
∫ ∫

D×P
∇Y⃗ (x) : (I− p⊗ p) dV (x, p), (2.6)

Moreover V is said to have locally bounded first variation in D if for each U compactly
embedded in D, i.e. U is open in D and Ū is compact in D, there exists a constant c > 0
such that

〈δV, Y⃗ 〉 ≤ c sup
U

|Y⃗ |, ∀Y⃗ ∈ C1
c (U,Rd).

By the general Riesz representation [Sim83, Theorem 4.1], this is equivalent to that there
exists a Radon measure |δV | on D characterized by

|δV |(U) = sup
Y⃗ ∈Cc(U ;Rd),|Y⃗ |≤1

|〈δV, Y⃗ 〉| <∞.

The following theorem is called the rectifiability theorem.

Theorem 2.21. ([Sim83, Theorem 42.4]) Suppose V is a (d − 1)-varifold which has
locally bounded first variation in D and satisfies

lim
ρ↘0

‖V ‖(Bρ(x))

ωd−1ρd−1
> 0,

for ‖V ‖ − a.e. x ∈ D. Then V is a (d− 1)-rectifiable varifold.

Mean curvature vector
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Definition 2.22. Let V be a varifold which has locally bounded first variation in D such
that |δV | is absolutely continuous w.r.t. ‖V ‖. A ‖V ‖-measurable vector-valued function
H⃗V is called a (generalized) mean curvature vector of V , if

− 〈δV, Y⃗ 〉 = 〈‖V ‖, H⃗V · Y⃗ 〉 :=
∫
D
H⃗V (x) · Y⃗ (x)d‖V ‖(x). (2.7)

Remark 2.23. Consider E which has locally finite perimeter in D. Then by Theorem
2.16, V = v(∂∗E, 1) is a (d− 1)-rectifiable varifold and ‖V ‖ = Hd−1b∂∗E. By Definition
2.20,

〈δV, Y⃗ 〉 :=
∫
∂∗E

divTxY⃗ (x)dHd−1(x), (2.8)

where Tx is the tangent space of Hd−1b∂∗E at x ∈ ∂∗E.
In the case that E is smooth, then ∂∗E = ∂E, ν⃗E(x) = ν⃗(x)1∂E(x) where ν⃗(x) is the

inward normal vector of ∂E. By Theorem 2.16, Tx is the orthogonal complement space of
ν, which coincides with the definition of the classical tangent space. Note that in smooth
case, the mean curvature vector H⃗∂E of ∂E can be identified by∫

∂E

Y⃗ · H⃗∂EdHd−1 = −
∫
∂E

divTx Y⃗ (x)dHd−1.

Combining with (2.8), we obtain that

〈δV, Y⃗ 〉 = −
∫
∂E

Y⃗ · H⃗∂EdHd−1.

By Definition 2.22, H⃗V = H⃗∂E,Hd−1 − a.e..



Chapter 3

Conservative stochastic
2-dimensional Cahn-Hilliard
equation

In this chapter, we consider the conservative stochastic Cahn-Hilliard equation dXt = −1

2
A
(
AX− : X3 :

)
dt+BdWt,

X(0) = z ∈ V −1
0 ,

(3.1)

on T2 in the probabilistically strong sense where A = ∆, B = div. Wt is an L2
0(T2,R2)-

cylindrical Wiener process, which is defined in Section 3.2. : X3 : denotes the Wick
power, which is introduced in Section 3.2 and the space V −1

0 is similar to the Sobolev
space of order −1, which is introduced in Section 3.1.

3.1 Notations and preliminaries
Let L denote the space L2(T2), where T2 = (0, 1)2 is the 2 dimensional torus and we use
〈·, ·〉 to denote the inner product in L. A is the Laplacian operator on L, that is,

D(A) = H2
2 (T2), A =

∂2

∂x2
+

∂2

∂y2
. (3.2)

A is a self-adjoint operator in L, with complete orthonormal system (en)n of eigenvectors
in L, given by

e0(x) := 1, e(k1,0)(x) =
√
2eiπk1x1 , e(0,k2)(x) =

√
2eiπk2x2 ,

ek(x) := 2eiπ(k1x1+k2x2), k1k2 6= 0.

Then we have Aek = −λkek, where λk = |k|2π2, k = (k1, k2) ∈ Z2, |k|2 = k21 + k22. We also
introduce a notation for the average of h ∈ S ′(T2):

m(h) := S′〈h, e0〉S .

For any α ∈ R, we define

V α := {u ∈ S ′ :
∑
k

λαk |S′〈u, ek〉S |2 <∞}.

23
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For any u, v ∈ V α, define

〈u, v〉V α := m(u)m(v) +
∑
k

λαkS′〈u, ek〉SS′〈v, ek〉S .

It’s easy to see that (V α, 〈·, ·〉V α) is a Hilbert space and V α ' Hα
2 . Then for any s, α ∈ R,

we can define a bounded operator (−A)s : V α → V α−2s by:

(−A)su =
∑

k∈Z2\{(0,0)}

λskukek,

where u =
∑

k ukek ∈ V α. In particular, we set Q := (−A)−1 and extend it to a one-to-
one bounded operator Q̄ by

Q̄h := Qh+m(h)e0. (3.3)
Note that

Qek =

{
1
λk
ek k 6= (0, 0),

0 k = (0, 0),
(3.4)

and

Q̄ek =

{
1
λk
ek k 6= (0, 0),

e0 k = (0, 0).
(3.5)

Then we have
〈u, v〉V α := 〈Q̄−α/2u, Q̄−α/2v〉,

and Q̄s : V α → V α+2s is an isomorphism for any α, s ∈ R, since

〈Q̄su, Q̄sv〉V α+2s = 〈u, v〉V α .

We also set
V α
0 := {h ∈ V α : 〈h, e0〉V α = 0},

and denote L2
0 := V 0

0 . Let Π denote the symmetric projector of V α on V α
0 , that is,

Π : V α → V α
0 ,Πh := h−m(h). (3.6)

Moreover, we define

V α(T2,R2) := {f = (f1, f2) : fi ∈ V α, i = 1, 2},

and similarly
V α
0 (T2,R2) := {f = (f1, f2) : fi ∈ V α

0 , i = 1, 2}.

In this chapter, we consider the initial value and the reference measure on V α
0 for

simplicity. For general case, we refer to [DZ07].
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3.2 The Linear Equation and Wick Powers
We consider the O-U process  dZt = −1

2
A2Zdt+BdWt,

Z(0) = 0,
(3.7)

where W is a U -cylindrical Wiener process and U := L2
0(T2,R2). For f ∈ L2

0(T2,R2) we
denote its component functions by f1, f2 ∈ L2

0(T2) i.e. f(x) = (f1(x), f2(x)),∀x ∈ T2.
There exist two independent L2(T2)-cylindrical Wiener processes W 1 and W 2 such that
W = (W 1,W 2). Set

D(B) = H1(T2,R2), B = div, D(B∗) = H1
2 (T2), B∗ = −∇. (3.8)

We know that

Zt(x) =

∫ t

0

e−
t−s
2
A2

BdWs =

∫ t

0

〈K(t− s, x− ·), dWs〉U ,

where K(t, x) = −∇xM(t, x) = (K1, K2), and M(t, x) is the kernel of e− t
2
A2 , that is,

M(t, x) =
∑

k e
− t

2
λ2kek(x).

For any function f on T2 , we can view it as a periodic function on R2 by defining
f̄(x) := f(x+m), when x+m ∈ T2, x ∈ R2, m ∈ Z2. Moreover, define

K̄j(t, x) := −F−1(πiξje
− t

2
|πξ|4)(x), j = 1, 2.

and K̄ := (K̄1, K̄2). By the Poisson summation formula (see [SW72, Section VII.2]) we
know that

K(t, x) =
∑
m

K̄(t, x+m),∀t (3.9)

and for any f ∈ L2(T2), j = 1, 2, x ∈ T2

∂je
− t

2
A2

f(x) =

∫
T2

Kj(t, x− y)f(y)dy

=

∫
R2

Kj(t, x− y)f(y)1T2(y)dy

=
∑
m

∫
R2

K̄j(t, x− y +m)f(y)1T2(y)dy

=

∫
R2

K̄j(t, x− y)
∑
m

1T2(y +m)f(y +m)dy

= (K̄j(t, ·) ∗ f̄)(x)

, (3.10)

where we used (3.9) in the third inequality and 1T2 is the indicator function of T2. Since

K̄j(t, x) = −F−1(πiξje
− t

2
|πξ|4)(x) = t−

3
4 K̄j(1, t−

1
4x)

and
|K̄j(1, t−

1
4x)| ≲ |F−1(πiξje

− 1
2
|πξ|4)(t−

1
4x)| ≲ |1 + t−

1
4x|−3,

we have the following estimate:

|K̄(t, x)| ≲ t−
ε
4 |x|−3+ε,∀ε ∈ [0, 3]. (3.11)
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Lemma 3.1. Z ∈ C([0, T ]; C−α) P-almost-surely, for all α > 0.

Proof By the factorization method in [DP04] we have that for κ ∈ (0, 1)

Z(t) =
sin(πκ)

π

∫ t

0

(t− s)κ−1〈M(t− s, x− ·), U(s)〉ds,

and
U(s, ·) =

∫ s

0

(s− r)−κe−
s−r
2
A2

BdWr.

A similar argument as in the proof of Lemma 2.7 in [DP04] implies that it suffices to
prove that for p > 1/(2κ),

E‖U‖L2p(0,T ;C−α) <∞. (3.12)
In fact, by (2.2) we have that

E‖U(s)‖2p−α ≲
∑
ψ∈Ψ⋆

∑
n≥0

∑
x∈Λn

E2−2αpn+2np|〈U(s), ψnx〉|2pw(x)2p

≲
∑
ψ∈Ψ⋆

∑
n≥0

∑
x∈Λn

2−2αpn+2np(E|〈U(s), ψnx〉|2)pw(x)2p.

Here σ > 0 in w(x) and we used that 〈U(s), ψnx〉 belongs to the first order Wiener-chaos
and Gaussian hypercontractivity (cf. [Nua13, Section 1.4.3] and [Nel73]) in the second
inequality. Moreover, we obtain that

E|〈U(s), ψnx〉|2 =E|〈U1(s), ψnx〉|2 + E|〈U2(s), ψnx〉|2

≤
2∑
j=1

∫ ∫
|ψnx(y)ψnx(ȳ)|

∫ s

0

(s− r)−2κK̄j ∗ K̄j(s− r, y − ȳ)drdydȳ

≲
∫ ∫

|ψnx(y)ψnx(ȳ)|
∫ s

0

(s− r)−
ε
2
−2κ|y − ȳ|−4+2εdrdydȳ

≲22n−2εns1−2κ− ε
2 ,

where
U j(y) =

∫ s

0

(t− s)κ−1〈Kj(s− r, y − ·), dW j
r 〉, j = 1, 2

and we used (3.10) in the second inequality and we also used [Hai14, Lemma 10.17] and
(3.11) to deduce that |K̄j ∗K̄j(s−r, y−ȳ)| ≲ |s−r|− ε

2 |y−ȳ|−4+2ε in the second inequality.
In fact, we can decompose K̄ into K̄ := K̄δ + K̄c

δ , where K̄δ is a compactly supported
function and satisfies (3.11), K̄c

δ is a Schwartz function. Then K̄∗K̄ = K̄δ∗K̄δ+H, where
H is a Schwartz function. By [Hai14, Lemma 10.17] we have K̄δ ∗ K̄δ(t, x) ≲ t−

ε
2 |x|−4+2ε

and K̄ ∗ K̄ satisfies the same inequality.
Thus, we have

E‖U(s)‖2p−α ≲
∑
n≥0

2(4−2ε−2α)pns(1−2κ− ε
2
)p.

Let κ be so small that 2− α < ε < 2− 4κ+ 2
p
, which implies that

4− 2ε− 2α < 0, (1− 2κ− ε

2
)p > −1.

Then (3.12) follows.
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□
Note that BB∗ = −A. Then by Fourier expansion it is easy to see that Zt ∼ N (0, Qt),

i.e. for any h ∈ S(T2)

EeiS⟨h,Zt⟩S′ = exp(−1

2
〈Qth, h〉),

where Qt = (−A)−1(I − e−
t
2
A2
).

According to the definition of V α and Lemma 2.1, we have C−α ⊂ V −α−ε for any
α, ε > 0. Then by Lemma 3.1, µt is supported on V −α

0 for any α > 0 and letting
t → ∞, by [Bog98, 3.8.13, Example], the law of Zt converges to the Gaussian measure
µ = N (0, Q), which is also supported on V −α

0 .
In the following we are going to define the Wick powers both in the state space and

the path space.
Firstly, we define the Wick powers on L2(S ′(T2), µ).

Wick powers on L2(S ′(T2), µ)
µ is of course also a measure supported on S ′(T2). We have the well-known (Wiener-

Itô) chaos decomposition
L2(S ′(T2), µ) =

⊕
n≥0

Hn,

where Hn is the Wiener chaos of order n (cf. [Nua13, Section 1.1.1]). Now we define the
Wick powers by using approximations: for ϕ ∈ S ′(T2) define

ϕε := ρε ∗ ϕ,

with ρε an approximate delta function on R2 given by

ρε(x) = ε−2ρ(
x

ε
) ∈ D,

∫
ρ = 1.

Here the convolution means that we view ϕ as a periodic distribution in S ′(R2) and
convolve on R2. For every n ∈ N we set

: ϕnε :Q:= cn/2ε Pn(c
−1/2
ε ϕε),

where Pn, n = 0, 1, ..., are the Hermite polynomials defined by the formula

Pn(x) =

[n/2]∑
j=0

(−1)j
n!

(n− 2j)!j!2j
xn−2j,

and cε =
∫
ϕ2
εµ(dϕ) =

∫ ∫
G(z − y)ρε(y)dyρε(z)dz = ‖1[0,t]Kε‖2L2(R×T2;R2). Then

: ϕnε :Q∈ Hn.

Here and in the following G is the Green function associated with −A on T2. In fact by
[SW72, Section 6.1, Chapter VII],

G(x) =
∑

k∈Z2\{(0,0)}

1

λk
ek(x) ' − log |x|, |x| → 0,

and G is continuously differentiable except outside {0}.
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For Hermite polynomial Pn we have that for s, t ∈ R

Pn(s+ t) =
n∑

m=0

Cm
n Pm(s)t

n−m, (3.13)

where Cm
n = n!

m!(n−m)!
.

A direct calculation yields the following:

Lemma 3.2. Let α > 0, n ∈ N and p > 1. : ϕnε :Q converges to some element in
Lp(S ′(T2), µ; C−α) as ε → 0. This limit is called the n-th Wick power of ϕ with respect
to the covariance Q and denoted by : ϕn :Q.

Proof The proof in similar to that of [RZZ17b, Lemma 3.1] since the Green function G
has the same regularity.

In fact, for any p > 1, ε1, ε2 > 0,m ∈ N, by (2.2), we have that∫ ∥∥: ϕmε1 :Q − : ϕmε2 :Q
∥∥2p
−α µ(dϕ)

≲
∑
ψ∈Ψ⋆

∑
n≥0

∑
x∈Λn

2−2αpn+2np

∫ ∣∣〈: ϕmε1 :Q − : ϕmε2 :Q, ψ
n
x

〉∣∣2p µ(dϕ)w(x)2p
≲
∑
ψ∈Ψ⋆

∑
n≥0

∑
x∈Λn

2−2αpn+2npw(x)2p
(∫ ∣∣〈: ϕmε1 :Q − : ϕmε2 :Q, ψ

n
x

〉∣∣2 µ(dϕ))p ,
where σ > 0 in ω(x) and in the last inequality we used the hypercontractivity of the
Gaussian measure. Moreover, we obtain that∫ ∣∣〈: ϕmε1 :Q − : ϕmε2 :Q, ψ

n
x

〉∣∣2 µ(dϕ)
≲
∫∫

|ψnx(y)ψnx(y)| |
(∫

ϕε1(y)ϕε1(y)µ(dϕ)

)m
− 2

(∫
ϕε1(y)ϕε2(y)µ(dϕ)

)m
+

(∫
ϕε2(y)ϕε2(y)µ(dϕ)

)m
|dydy

≲
∫∫

|ψnx(y)ψnx(y)| |
(∫∫

ρε1 (y − x1) ρε1 (y − x2)G (x1 − x2) dx1dx2

)m
− 2

(∫∫
ρε1 (y − x1) ρε2 (y − x2)G (x1 − x2) dx1dx2

)m
+

(∫∫
ρε2 (y − x1) ρε2 (y − x2) (x1 − x2) dx1dx2

)m
|dydy

≲ (εκ1 + εκ2)

∫∫
|ψnx(y)ψnx(y)| |y − y|−δdydy ≲ (εκ1 + εκ2) 2

−2n+nδ,

where δ > κ > 0,−2α+δ < 0. Here in the first inequality we used [Sim74, Theorem I.3], in
the third inequality we have used [Hai14, Lemma 10.17] and the fact that |G(x)| ≲ | log x|.
Thus the results follow from a direct calculation.

□
Wick powers on a fixed probability space
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Now we fix a probability space (Ω,F , P ) and consider a U -cylindrical Wiener process
W . In the following we assume that F is the σ-field generated by {〈Wt, h〉, h ∈ U, t ∈ R+}.
We also have the well-known (Wiener-Itô) chaos decomposition

L2(Ω,F , P ) =
⊕
n≥0

H′
n,

where H′
n is the Wiener chaos of order n (cf. [Nua13, Section 1.1.1]). We can define Wick

powers of Z(t) with respect to different covariances by approximations: Let

Zε(t, x) = ρε ∗ Zt =
∫ t

0

〈B∗e−
t−s
2
A2

ρε,x, dWs〉U

=

∫ t

0

〈Kε(t− s, x− ·), dWs〉U ,
,

where ρε,x = ρε(x− ·), Kε(t, x) = (ρε ∗K1
t , ρε ∗K2

t ) and

Kj
t = −

∑
k

(iπkj)e
− t

2
λ2kek, j = 1, 2.

For any nN, we set

: Zn
ε (t) :Qt := (cε,t)

n
2 Pn

(
(cε,t)

− 1
2 Zε(t)

)
∈ H′

n,

where Pn, n = 0, 1, · · · , are the Hermite polynomials and cε,t =
∥∥1[0,t]Kε

∥∥2
L2(R×T2;R2)

Lemma 3.3. ([RZZ17b, Lemma 3.3]) For α > 0, p > 1, n ∈ N, : Zn
ε :Qt converges in

Lp(Ω, C([0, T ]; C−α)). The limit is called Wick power of Z(t) of order n with respect to
the covariance Qt and is denoted by : Zn(t) :Qt.

Proof By (3.1) we already proved Zε ∈ C([0, T ], C−α), P − a.s.. Now we prove that
: Zm :Qt is a Cauchy sequence. For every p > 1, by (2.2) we have for t1, t2 ≥ 0 that

E‖(: Zm
ε1

:Qt1
− : Zm

ε2
:Qt1

)(t1, ·)− (: Zm
ε1

:Qt2
− : Zm

ε2
:Qt2

)(t2, ·)‖2p−α
≤
∑
ψ∈Ψ⋆

∑
n≥0

∑
x∈Λn

E2−2αpn+2np|〈(: Zm
ε1

:Qt1
− : Zm

ε2
:Qt1

)(t1, ·)

− (: Zm
ε1

:Qt2
− : Zm

ε2
:Qt2

)(t2, ·), ψnx〉|2pw(x)2p

≲
∑
ψ∈Ψ⋆

∑
n≥0

∑
x∈Λn

2−2αpn+2np(E|〈(: Zm
ε1

:Qt1
− : Zm

ε2
:Qt1

)(t1, ·)

− (: Zm
ε1

:Qt2
− : Zm

ε2
:Qt2

)(t2, ·), ψnx〉|2)pw(x)2p,

where we used Gaussian hypercontractivity in the second inequality. For convenience we
use ξl, l = 1, 2 to denote space-time white noise given by

∫
ϕ(s, y)ξl(ds, dy) =

∫
R+〈ϕ, dW l

s〉
for ϕ ∈ L2(R+ ×T2). Then by [Nua13, Proposition 1.1.4] we obtain that for k = 1, 2 and
j = 1, 2

: Zm
εk
(tj) :Qtj

=
2∑
l=1

∫
Πm
i=1K̄

l
εk
(tj − si, y − yi) 1si∈[0,tj ]ξ

l (dη1) . . . ξ
l (dηm) ,
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where ηa = (sa, ya), and
∫
f (η1...n) ξ (dη1) . . . ξ (dηm) denote a generic element of the n-th

chaos of ξ for η1···n = η1 · · · ηn. Moreover, for t1 ≤ t2 to estimate

E
∣∣〈(: Zm

ε1
:Qt1

− : Zm
ε2

:Qt1

)
(t1, ·)−

(
: Zm

ε1
:Qt2

− : Zm
ε2

:Qt2

)
(t2, ·) , ψnx

〉∣∣2 ,
since ξ1 is independent to ξ2, it suffices to calculate∫

|〈Πm
i=1K̄

l
ε1
(t1 − si, · − yi)1si∈[0,t1] − Πm

i=1K̄
l
ε2
(t1 − si, · − yi)1si∈[0,t1]

− [Πm
i=1K̄

l
ε1
(t2 − si, · − yi)1si∈[0,t2] − Πm

i=1K̄
l
ε2
(t2 − si, · − yi)1si∈[0,t2]], ψ

n
x〉|2dη1...m,

which is bounded by

2

∫
|〈(Πm

i=1K̄
l
ε1
(t1 − si, · − yi)− Πm

i=1K̄ε1(t2 − si, · − yi))1si[0,t1]

− (Πm
i=1K̄

l
ε2
(t1 − si, · − yi)− Πm

i=1K̄
l
ε2
(t2 − si, · − yi))1si∈[0,t1], ψ

n
x〉|2dη1...m

+2

∫ ∣∣〈[Πm
i=1K̄ε1 (t2 − si, · − yi)1si∈[t1,t2] − Πm

i=1K̄ε2 (t2 − si, · − yi)1si∈[t1,t2]
]
, ψnx
〉∣∣2 dη1...m.

(3.14)
To calculate the bound (3.14) above, we need several estimations of K̄ l(t, x) and K̄ l

ε(t, x).
For convenience, we denote

‖(t, x)‖s := t
1
4 + |x|.

Then by [Hai14, Lemma 10.17, Lemma 10.18], we have that for any δ ∈ (0, 1)

|K l
ε(t, x)−K l(t, x)| ≲ εδ‖(t, x)‖−3−δ

s ≲ εδt
−1+δ

2 |x|−1−3δ, (3.15)

and

|K l(t, x)−K l(s, y)| ≲ ‖(t− s, x− y)‖δs
(
‖(t, x)‖−3−δ

s + ‖(s, y)‖−3−δ
s

)
. (3.16)

In particular, for any δ ∈ (0, 1), we obtain that∣∣K̄ l
ε1
(t1 − si, y − yi)− K̄ l

ε1
(t2 − si, y − yi)

∣∣
≲
∣∣K̄ l

ε1
(t1 − si, y − yi)− K̄ l (t1 − si, y − yi)

∣∣+ ∣∣K̄ l (t1 − si, y − yi)− K̄ l (t2 − si, y − yi)
∣∣

+
∣∣K̄ l (t2 − si, y − yi)− K̄ l

ε1
(t2 − si, y − yi)

∣∣
≲
(
εδ1 + |t1 − t2|

δ
4

) (
‖(t1 − si, y − yi)‖−3−δ

s + ‖(t2 − si, y − yi)‖−3−δ)
≲ |t1 − t2|

δ
4

(
|t2 − si|−

1
2
+ δ

2 + |t1 − si|−
1
2
+ δ

2

)
|y − yi|−1−3δ ,

(3.17)
and∣∣K̄ l

ε1
(t1 − si, y − yi)− K̄ l

ε2
(t1 − si, y − yi)

∣∣
≲
∣∣K̄ l

ε1
(t1 − si, y − yi)− K̄ l (t1 − si, y − yi)

∣∣+ ∣∣K̄ l
ε2
(t1 − si, y − yi)− K̄ l (t1 − si, y − yi)

∣∣
≲
(
εδ1 + εδ2

)
|t1 − si|−

1
2
+ δ

2 |y − yi|−1−3δ .
(3.18)

Then the estimate of (3.14) can be obtained by using the interpolation of the form:

Πm
i=1ai − Πm

i=1bi =
m∑
k=1

(Πk−1
i=1 bi)(ak − bk)(Π

m
i=k+1ai),
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and the estimates (3.17), (3.18). For the third line in (3.14), since K l
ε are integrable, by

using the interpolation and (3.18), we obtain that∫ ∣∣〈[Πm
i=1K̄

l
ε1
(t2 − si, · − yi)1si∈[t1,t2] − Πm

i=1K̄
l
ε2
(t2 − si, · − yi)1si∈[t1,t2]

]
, ψnx
〉∣∣2 dη1...m

≲(εδ1 + εδ2)
m∑
i=1

∫
ψnx(z)ψ

n
x(z̄)|t2 − si|−1+δ

1si∈[t1,t2]|z − yi|−1−3δ|z̄ − yi|−1−3δdzdz̄dη1...m

≲(εδ1 + εδ2)|t1 − t2|δ
∫
ψnx(z)ψ

n
x(z̄)|z − z̄|−6δdzdz̄

≲(εδ1 + εδ2)|t1 − t2|δ2−2n+6nδ.

For the first two lines in (3.14), we consider m = 1 for simplicity. The general m ∈ N can
be obtained in a similar way by using the interpolation. For m = 1, the first two lines
can be rewrote as∫

((a1(z)−b1(z))− (a2(z)−b2(z)))((a1(z̄)−a2(z̄))− (b1(z̄)−b2(z̄)))ψnx(z)ψnx(z̄)dzdz̄dsdy,

where for i = 1, 2

ai(z) = K̄ l
εi
(t1 − s, z − y)1s∈[0,t1], bi(z) = K̄ l

εi
(t2 − s, z − y)1s∈[0,t1].

We only calculate∫
(a1(z)− b1(z))(b1(z)− b2(z̄))ψ

n
x(z)ψ

n
x(z̄)dzdz̄dsdy,

the rest term can be estimated similarly. In fact, by (3.17) and (3.18)

|(a1(z)− b1(z))(b1(z̄)− b2(z̄))|

≲
(
εδ1 + εδ2

)
|t1 − t2|

δ
4

(
|t2 − s|−

1
2
+ δ

2 + |t1 − s|−
1
2
+ δ

2

)2
|z − y|−1−3δ |z̄ − y|−1−3δ

1s∈[0,t1].

Thus we obtain ∫
|(a1(z)− b1(z))(b1(z̄)− b2(z̄))||ψnx(z)ψnx(z̄)|dzdz̄dyds

≲
(
εδ1 + εδ2

)
|t1 − t2|

δ
4

∫
|ψnx(z)ψnx(z̄)||z − z̄|−6δdzdz̄

≲(εδ1 + εδ2)|t1 − t2|
δ
42−2n+6nδ.

Hence the first two lines in (3.14) are bounded by (εδ1 + εδ2)|t1 − t2|
δ
42−2n+6nδ. Then we

deduce that

E
∣∣〈(: Zm

ε1
:Qt1

− : Zm
ε2

:Qt1

)
(t1, ·)−

(
: Zm

ε1
:Qt2

− : Zm
ε2

:Qt2

)
(t2, ·) , ψnx

〉∣∣2
≲(εδ1 + εδ2)|t1 − t2|

δ
42−2n+6nδ.

Then the above estimates yield that

E
∥∥(: Zm

ε1
:C1 − : Zm

ε2
:Ct1

)
(t1, ·)−

(
: Zm

ε1
:Ct2

− : Zm
ε2

:Ct2

)
(t2, ·)

∥∥2p
−α
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≲
∑
ψ∈Ψ⋆

∑
n≥0

2−2αnp+2np+2n
(
ε2δ1 + ε2δ2

)p |t2 − t1|
δp
4 2−2np+6npδ.

Thus the results follow from Kolmogorov’s continuity test (in time) if we choose δ > 0
small enough and p sufficiently large.

□
By this lemma we can also define the Wick powers with respect to another covariance

: Zn
ε (t) :Q:= c

n
2
ε Pn

(
c
− 1

2
ε Zε(t)

)
.

Lemma 3.4. ([RZZ17b, Lemma 3.4]) For α > 0, p > 1, n ∈ N, : Zn
ε (t) :Q converges in

Lp(Ω, C((0, T ]; C−α)). Here C((0, T ]; C−α) is equipped with the norm supt∈[0,T ] t
ρ‖·‖−α for

ρ > 0. The limit is called Wick power of Z(t) of order n with respect to the covariance
Q and is denoted by : Zn(t) :Q.

Proof By the definition of Hermite polynomials, we have that

: Zn
ε (t) :Q=

[n/2]∑
l=0

(cε,t − cε)
l n!

(n− 2l)!l!2l
: Zn−2l

ε (t) :Qt .

Then the theorem follows directly from Lemma 3.3 and the fact that

|cε,t − cε| ≲ t−ρ,

for any ρ > 0.
□

Remark 3.5. Here we do not combine the initial value with the Wick powers as in
[MW17, RZZ17b], since we can obtain existence of solutions to the shifted equation (3.19)
for any initial value in V −1

0 (see Section 3.3).

In the following, we only use Wick powers : · :Q and we write : · : for simplicity.

Relations between two different Wick powers
We introduce the following probability measure. Set : q(ϕ) := 1

4
: ϕ4 :, : p(ϕ) :=: ϕ3 :.

Let
ν = c exp(−N)µ,

where c is a normalization constant and N = S′〈: q :, e0〉S . According to [Sim74, Lemma
V.5 and Theorem V.7] we have that for every p ∈ [1,∞), φ(ϕ) := e−N ∈ Lp(S ′(T2), µ).

The following result is about the relation between the two different Wick powers.

Lemma 3.6. Let ϕ be a measurable map from (Ω,F ,P) to C([0, T ], B−γ
2,2 ) with γ > 2,

P ◦ ϕ(t)−1 = ν for every t ∈ [0, T ] and let Z(t) be defined as above. Assume in addition
that y = ϕ−Z ∈ C((0, T ]; Cβ) P-a.s. for some β > α > 0. Here C((0, T ]; Cβ) is equipped
with the norm supt∈[0,T ] t

β+α
4 || · ||β. Then for every t > 0, n ∈ N

: ϕn(t) :=
n∑
k=0

Ck
ny

n−k(t) : Zk(t) : P− a.s..

Here the Wick power on the left hand side is the limit obtained and defined in Lemma
3.2.



3.3. The Solution to the Shifted Equation 33

Proof By Lemma 3.4 it follows that for every k ∈ N, p > 1

: Zk
ε :→: Zk : in Lp(Ω, C((0, T ]; C−α)), as ε→ 0.

Since yε = ϕε − Zε = ρε ∗ y and y ∈ C((0, T ]; Cβ) P-a.s., it is obvious that yε → y in
C((0, T ]; Cβ−κ) P-a.s. for every κ > 0 with β − κ− α > 0, which combined with Lemma
2.3 implies that for k ∈ N, k ≤ n,

yn−kε : Zk
ε :→P yn−k : Zk : in C((0, T ]; C−α), as ε→ 0.

Here →P means convergence in probability. Since e−N ∈ Lp(S ′(T2), µ) for every p ≥ 1,
by Hölder’s inequality and Lemma 3.2 we get that for t > 0 and p > 1

: ϕnε (t) :→: ϕn(t) : in Lp(Ω, C−α), as ε→ 0.

Moreover, by (3.13) we have

: ϕnε :=: (yε + Zε)
n := cn/2ε Pn(c

−1/2
ε (yε + Zε))

=
n∑
k=0

Ck
nc
n/2
ε Pk(c

−1/2
ε Zε)(c

−1/2
ε yε)

n−k

=
n∑
k=0

Ck
n : Zk

ε : yn−kε ,

which implies the result by letting ε→ 0. □

3.3 The Solution to the Shifted Equation
Now we fix a stochastic basis (Ω,F , {Ft}t∈[0,∞),P) and on it a U -cylindrical Wiener
process W . Define Z(t) =

∫ t
0
e−(t−s)A2/2BdW (s) as in Section 3.2. Now we consider the

following shifted equation:
dY

dt
= −1

2
A2Y +

1

2
A

3∑
k=0

Ck
3Y

3−k : Zk :,

Y (0) = x.

(3.19)

Generally we consider initial data x that are F0 measurable and belong to V −1
0 , a.s..

To prove the existence of the solution to equation (3.19), we use a smooth approximation
on each path: 

dYε
dt

= −1

2
A2Yε +

1

2
A

3∑
k=0

Ck
3Y

3−k
ε : Zk

ε :,

Yε(0) = xε,

(3.20)

where Zε = Z ∗ ρε, xε = x ∗ ρε, and ρε is as introduced in Section 3.2. Note that the
solution Y to equation (3.19) and the solution Yε to (3.20) also satisfy:

dm(Y (t))

dt
= 0,m(Y (0)) = 0, (3.21)

which means that m(Y (t)) = m(Yε(t)) = 0.
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From Lemma 3.2 we know that there exists a Ω′ ⊂ Ω, P(Ω′) = 1, such that for any
ω ∈ Ω′, Z(ω), : Zn : (ω) ∈ C((0, T ]; C−α), n = 2, 3, ∀α > 0. Since Zε(ω) is smooth,
by monotone trick in [LR15, Theorem 5.2.2 and Theorem 5.2.4], there exists a unique
solution Yε(ω) to equation (3.20) in L2(0, T ;V 2

0 ) ∩ C([0, T ];L2
0) for each ω ∈ Ω′. We

are going to find a convergent subsequence of {Yε(ω)}, which converge to a solution to
equation (3.19) and prove uniqueness of solutions to (3.19). Then we obtain a unique
Ft-adapted solution to equation (3.19).

In this section we never distinguish V α, Hα
2 and Bα

2,2 since they have equivalent norms.
For convenience we denote all of them as Hα.

Theorem 3.7 (a-priori estimate). If Y is a solution to equation (3.19), then there exists
a constant CT which only depends on T and Z(ω), such that for ∀t ∈ [0, T ]

||Y ||2H−1 − ||x||H−1 +
1

2

∫ t

0

(
||Y (s)||2H1 + ||Y (s)||4L4

)
ds ≤ CT . (3.22)

Moreover there exist constants C > 0, λk > 0, k = 1, 2, 3, for every t ∈ (0, T ]

‖Yt‖2H−1 ≤ C

t−1 ∨

(
3∑

k=1

t−ρλk sup
0≤r≤t

(
rρλk‖ : Zr : ‖λk−α

)) 1
2

 , (3.23)

where ρ > 0 is a small enough constant introduced in Lemma 3.4.

Proof Since
dY

dt
= −1

2
A(AY −

3∑
k=0

Ck
3Y

3−k : Zk :),

and m(Y ) = 0, taking scalar product with (−A)−1Y we obtain that

d

dt
||Y ||2H−1 + ||Y ||2H1 + ||Y ||4L4 = −〈

3∑
k=1

Ck
3Y

3−k : Zk :, Y 〉,

that is
d

dt
||Y ||2H−1 + ||Y ||2H1 + ||Y ||4L4 ≲ |〈Y, : Z3 :〉|+ |〈Y 2, : Z2 :〉|+ |〈Y 3, Z〉|. (3.24)

So, we only need to estimate the right hand side of (3.24). We only consider |〈Y 3, Z〉|.
The other terms can be estimated similarly. Lemma 2.3 implies

|〈Y 3, Z〉| ≲ ||Z||−α||Y 3||Bα
1,1
, ∀α > 0.

Moreover, by Lemma 2.1 and Lemma 2.4. Then

||Y 3||Bα
1,1

≲ ||Aβ0Y 3||Lp0 ≲ ||Aβ0Y
3
2 ||Lp1 ||Y

3
2 ||Lq1 ,

where β0 > α, p0 > 1 and 1
p0

= 1
p1

+ 1
q1
.

Choose q1 ≤ 8
3
and p1 > 8

5
, we have

||Y
3
2 ||Lq1 = ||Y ||

3
2

L
3
2 q1

≲ ||Y ||
3
2

L4 .
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For ||Aβ0Y
3
2 ||Lp1 , we have

||Aβ0Y
3
2 ||Lp1 ≲ ||Aβ1Y

3
2 ||Lp2 ≲ ||AY

3
2 ||β1Lp2 ||Y

3
2 ||1−β1Lp2 ,

where 1 < p2 < p1 < 2, β0 = β1 − 2( 1
p2

− 1
p1
), β1 < 1 and we used Lemma 2.1 in the first

inequality and Lemma 2.5 in the second inequality. For ||AY 3
2 ||Lp2 , let p2 < 8

5
, we have

||AY
3
2 ||Lp2 ≲ ||Y

1
2∇Y ||Lp2 ≲ ||Y ||H1||Y

1
2 ||

L
2p2
2−p2

≲ ||Y ||H1||Y ||
1
2

L
p2

2−p2

≲ ||Y ||H1||Y ||
1
2

L4 ,

where we used Hölder’s inequality in the second inequality. Furthermore

||Y
3
2 ||Lp2 ≲ ||Y ||

3
2

L
3p2
2

≲ ||Y ||
3
2

L4 .

Combining the above estimates we get

||Y 3||Bα
1,1

≲ ||Y ||3−β1L4 ||Y ||β1H1 .

Combining this with Lemma 3.4, we have

|〈Y 3, Z〉| ≲ ||Y ||3−β1L4 ||Y ||β1H1t
− ρ

4 ≲ t−
ρ
4
λ + κ

(
||Y ||4L4 + ||Y ||2H1

)
,

where λ = 4
1−β1 and we used the Young’s inequality. Choosing ρ to be so small that

ρ
4
λ < 1, we can conclude that there exists λk > 0, k = 1, 2, 3 such that λkρ

4
< 1

d

dt
||Y ||2H−1 +

1

2

(
||Y ||2H1 + ||Y ||4L4

)
≲

3∑
k=1

‖ : Zk : ‖λk−α ≲
3∑

k=1

t−
λkρ

4 ,

and (3.22) follows. Moreover, since ‖Y ‖H−1 ≲ ‖Y ‖L4 we have that

d

dt
||Y ||2H−1 +

1

2
||Y ||4H−1 ≲

3∑
k=1

‖ : Zk : ‖λk−α.

By [TW16, Lemma 3.8] we have

‖Yt‖2H−1 ≲ t−1 ∨

(
3∑

k=1

t−ρλk sup
0≤r≤t

(
rρλk‖ : Zr : ‖λk−α

)) 1
2

.

□
Since the approximation equation (3.20) have the same prior estimate as (3.19). By

(3.22) we deduce that the sequence {Yε} is bounded in L∞(0, T ;H−1)∩L4([0, T ]×T2)∩
L2(0, T ;H1). This implies that {AYε} is bounded in L2(0, T ;H−1) and {Y 3

ε } is bounded
in L4/3([0, T ]×T2). Moreover, Lemma 2.1 and Lemma 3.4 imply that {: Z3

ε :} is bounded
in Lp(0, T ;H−α) for any α > 0, ε > 0 and p > 1. Then we can prove the following lemma:

Lemma 3.8. {dYε
dt
} is bounded in Lp(0, T ;H−3), where p ∈ (1, 4

3
).
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Proof According to the argument before, we only need to show that {Y 2
ε Zε} and {Yε :

Z2
ε :} are bounded in Lp(0, T ;H−1) when p ∈ (1, 4

3
).

We omit ε if there is no confusion in this proof.
For Y 2Z we have

||Y 2Z||B−α
2,∞

≲ ||Y 2||
B

β0
2,∞

||Z||−α ≲ ||Y 2||
B

β0
2,1
||Z||−α,

where β0 > α > 0, we used Lemma 2.5 in the first inequality and Lemma 2.1 in the
second inequality. Furthermore,

||Y 2||
B

β0
2,1

≲ ||Aβ1Y 2||L2 ≲ ||Aβ1Y ||Lp0 ||Y ||Lq0 ,

where β1 > β0, 1
p0

+ 1
q0

= 1
2
, we used Lemma 2.1 in the first inequality and Lemma 2.4

in the second inequality. By Lemma 2.1, Bs
q,2 ⊂ Lq for any q ≥ 1 and s > 0. Since

Hδ ' Bδ
2,2 ⊂ B

δ−1+ 2
q

q,2 for q ≥ 2, the Besov interpolation in Lemma 2.4 implies that

||Y ||Lq0 ≲ ||Y ||Bs
q0,2

≲ ||Y ||
1− 1

q0
+ s

2

B
2
q0
q0,2

||Y ||
1
q0

− s
2

B
2
q0

−2

q0,2

≲ ||Y ||
1− 1

q0
+ s

2

H1 ||Y ||
1
q0

− s
2

H−1 . (3.25)

For ||Aβ1Y ||Lp0 , let p0 ≥ 2. Then we use Lemma 2.1 and Sobolev interpolation to get

||Aβ1Y ||Lp0 ≲ ||Y ||Hβ2 ≲ ||Y ||
1+β2

2

H1 ||Y ||
1−β2

2

H−1 ,

where β1 = β2 +
2
p0

− 1 = β2 − 2
q0
. Thus we have

||Y 2||
B

β0
2,1

≲ ||Y ||
3
2
+

β1
2
+ s

2

H1 ||Y ||
1
2
−β1

2
− s

2

H−1 . (3.26)

By Lemma 3.4 we deduce that

||Y 2Z||B−α
2,∞

≲ ||Y ||
3
2
+

β1
2
+ s

2

H1 ||Y ||
1
2
−β1

2
− s

2

H−1 t−
ρ
4 .

For any p ∈ (1, 4
3
), let β1 and s be small enough such that (β1 + s + 3)p < 4. Then

Young’s inequality implies that there exists λ > 0 such that

||Y 2Z||p
B−α

2,∞
≲ ||Y ||2H1 + ||Y ||

4
3
λ( 1

2
−β1

2
− s

2
)

H−1 t−
ρ
3
λ.

For ρ small enough, {Y 2
ε Zε} is bounded in Lp(0, T ;B−α

2,∞).
On the other hand,

||Y : Z2 : ||B−α
2,∞

≲ ||Y ||B1
2,∞

|| : Z2 : ||−α ≲ ||Y ||H1t−
ρ
4 ,

where we used Lemma 2.5 in the first inequality and Lemma 2.1, Lemma 3.4 in the second
inequality. Then by Young’s inequality

||Y : Z2 : ||
4
3

B−α
2,∞

≲ ||Y ||2H1 + t−ρ.

Choosing ρ small enough we deduce that {Yε : Z2
ε :} is bounded in L

4
3 (0, T ;B−α

2,∞). By
Lemma 2.1 we have B−α

2,∞ ⊂ H−α−δ
2 for any δ > 0. Hence {Y 2

ε Zε} and {Yε : Z2
ε :} are

bounded in Lp(0, T ;H−1), ∀p ∈ (1, 4
3
), which implies the results. □
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Theorem 3.9. For every x ∈ V −1
0 , there exists at least one solution to equation (3.19)

in C([0, T ];V −1
0 ) ∩ L4([0, T ]× T2) ∩ L2(0, T ;V 1

0 ).

Proof Since H1 ⊂ Hδ compactly for any δ < 1 (see [Tri06, Proposition 4.6]), a classical
compactness argument (cf. [GRZ09, Lemma C.2] or [Tem01, Theorem 2.1, Chapter
III]) implies that there exists a sequence {εk} and Y ∈ L∞(0, T,H−1) ∩ L2(0, T ;H1) ∩
L4([0, T ]× T2), such that Yεk → Y in L2(0, T ;Hδ) ∩ C([0, T ];H−3), ∀δ < 1.

It is sufficient to show that for a suitable δ ∈ (0, 1), the limit Y we obtained above is
a solution in H−3.

In fact, if Y is a solution in H−3, i.e. for any h ∈ H3

H−3〈Yt − Y0, h〉H3 = −1

2

∫ t

0
H−1〈A2h, Ys〉H1ds+

1

2

∫ t

0
H−1〈

3∑
k=0

Ck
3Y

3−k
s : Zk

s :, Ah〉H1ds.

(3.27)
Y is in L∞(0, T,H−1) ∩ L2(0, T ;H1) ∩ L4([0, T ]× T2). Then we take the scalar product
of dY

dt
and (−A)−1Y , which is just the duality in H−3 and H3. Hence

d

dt
||Y ||2H−1 + ||Y ||2H1 + ||Y ||4L4 = −〈

3∑
k=1

Ck
3Y

3−k : Zk :, Y 〉.

Thus ||Y ||H−1 is continuous w.r.t t. Moreover, [Tem01, Lemma 1.4, Chapter III] implies
that Y is weakly continuous in H−1, then Y ∈ C([0, T ];H−1).

We still write ε instead of εk if there is no confusion. Since Yε is a solution to equation
(3.20), letting ε→ 0, it’s easy to see that

lim
ε→0

H−3〈Yε, h〉H3 = H−3〈Y, h〉H3 , lim
ε→0

H−1〈A2h, Yε〉H1 = H−1〈A2h, Y 〉H1 ,

lim
ε→0

H−1〈: Z̄3
ε :, Ah〉H1 = H−1〈: Z̄3 :, Ah〉H1 .

It remains to show for any h ∈ H1

lim
ε→0

|
∫ t

0

〈Y 3
ε (s)− Y 3(s), h〉ds| = 0, (3.28)

lim
ε→0

|
∫ t

0

〈Y 2
ε (s)Zε(s)− Y 2(s)Z(s), h〉ds| = 0, (3.29)

lim
ε→0

|
∫ t

0

〈Yε(s) : Z2
ε : (s)− Y (s) : Z2 : (s), h〉ds| = 0. (3.30)

Since Yε → Y in L4([0, T ]×T2), which is equivalent to ||Yε||L4([0,T ]×T2) → ||Y ||L4([0,T ]×T2)

and Yε ⇒m Y , where ⇒m means convergence in Lebesgue measure m on [0, T ]× T2, we
have ||Y 3

ε ||L 4
3 ([0,T ]×T2)

→ ||Y 3||
L

4
3 ([0,T ]×T2)

and Y 3
ε ⇒m Y 3. Then (3.28) holds by uniform

integrability.
For (3.29), let Rε = Yε − Y . By the triangle inequality

|〈Y 2
ε Zε − Y 2Z, h〉| ≲ |〈Rε(Y + Yε)h, Z〉|+ |〈Zε − Z, Y 2h〉|.

For the second term on the right hand side of the above inequality, we have

|〈Zε − Z, Y 2h〉| ≲ ||Zε − Z||−α||Y 2h||Bα
1,1

≲ ||Zε − Z||−α||Y 2||Bα
2,1
||h||Bα

2,1
,
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where we used Lemma 2.3 in the first inequality and Lemma 2.5 in the second inequality.
By [Tri92, Remark 2, Section 3.2, Chapter 2] we have H1 ⊂ Bα

2,1 for any α < 1. Hence

|〈Zε − Z, Y 2h〉| ≲ ||Zε − Z||−α||Y 2||Bα
2,1
||h||H1 .

Combining with (3.26), we have

|〈Zε − Z, Y 2h〉| ≲ ||Zε − Z||−α||h||H1||Y ||
3
2
+

β3
2
+ s

2

H1 ||Y ||
1
2
−β3

2
− s

2

H−1 ,

where β3 > α > 0, s > 0. Let 3
2
+ β3

2
+ s

2
< 2. Then Lemma 3.4 and Hölder’s inequality

imply that

|
∫ t

0

〈Zε − Z, Y 2h〉ds| → 0, ε→ 0.

Similarly
|〈RεY h, Z〉| ≲ ||RεY ||Bα

2,1
||h||H1||Z||−α.

For ||RεY ||Bα
2,1
, we have

||RεY ||Bα
2,1

≲ ||RεY ||
B

β0
2,2

≲ ||Aβ0Rε||L4||Y ||L4 + ||Aβ0Y ||L4||Rε||L4 ,

where β0 > α > 0 and we used Lemma 2.1 in the first inequality and Lemma 2.4 in the
second inequality. By Lemma 2.1 we have the Sobolev embedding Hβ+ 1

2
2 ⊂ Hβ

4 . Hence

||RεY ||Bα
2,1

≲ ||Rε||Hβ0+
1
2
||Y ||L4 + ||Y ||

Hβ0+
1
2
||Rε||H 1

2
.

By Sobolev interpolation, choosing δ > 1
2
+ β0, we have

||Y ||
Hβ0+

1
2
≲ ||Y ||

3
4
+

β0
2

H1 ||Y ||
1
4
−β0

2

H−1 .

Moreover, since δ > 1
2
+ β0, we have ||Rε||H 1

2
≲ ||Rε||Hδ and ||Y ||

H
1
2+β0

≲ ||Y ||Hδ . Then
we deduce that

||RεY ||Bα
2,1

≲ ||Rε||Hδ ||Y ||L4 + ||Y ||
3
4
+

β0
2

H1 ||Rε||Hδ ||Y ||
1
4
−β0

2

H−1 .

Let β0 < 1
2
such that

3

4
+
β0
2

+ 1 < 2.

Then by Hölder inequality, we get∫ t

0

||RεY ||Bα
2,1
||h||H1||Z̄||−αds ≲

(∫ t

0

||Rε||2Hδds

) 1
2
(∫ t

0

(||Y ||2H1)Fds

) 1
2
(∫ t

0

||Y ||4L4ds

) 1
4

→ 0,

where F ∈ L∞(0, T ).
Moreover, we have

|〈Yε : Z2
ε : −Y : Z2 :, h〉| ≲ |〈Yε(: Z2

ε : − : Z2 :), h〉|+ |〈Rε : Z
2 :, h〉|.

By essentially the same argument as above, (3.30) also follows.
Then we have got a solution Y in C([0, T ];H−1) ∩ L4([0, T ] × T2) ∩ L2(0, T ;H1).

Combining this with (3.21), we have Y ∈ C([0, T ];V −1
0 ) ∩ L4([0, T ]× T2) ∩ L2(0, T ;V 1

0 ).
□

Now we have obtained the existence of solutions of equation (3.19). The following is
the uniqueness result.
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Theorem 3.10. For every x ∈ V −1
0 , there exists a unique solution to equation (3.19) in

C([0, T ];V −1
0 ) ∩ L4([0, T ]× T2) ∩ L2(0, T ;V 1

0 ).

Proof Suppose u, v are two solutions of (3.19) with the same initial value. Let r = u−v,
then r satisfies: 

dr

dt
= −1

2
A2r +

1

2
A

3∑
k=0

Ck
3 (u

3−k − v3−k) : Zk :,

r(0) = 0.

Similarly to (3.24) we have:

d

dt
||r||2H−1 + ||r||2H1 ≲ |〈r2(u+ v), Z〉|+ |〈r2, : Z2 :〉|. (3.31)

By Lemma 2.3 and Lemma 3.4 we know

|〈r2, : Z2 :〉| ≲ ||r2||Bα
1,1
t−ρ,

where β > α > 0. Then Lemma 2.1 and Lemma 2.4 imply that

||r2||Bα
1,1

≲ ||Aβ0r2||
L

4
3
≲ ||Aβ0r||L2||r||L4 ≲ ||r||

β0+3
2

H1 ||r||
1−β0

2

H−1 ,

where 1 > β0 > α > 0 and we used the Sobolev interpolation and Sobolev embedding
theorem in the last inequality. Then by Young’s inequality, there exists a λ1 > 0 such
that for any ε > 0

|〈r2, : Z2 :〉| ≲ ε||r||2H1 + ||r||2H−1t−ρλ1 . (3.32)
Let ρ be small enough. Then g := t−ρλ1 ∈ L1(0, T ).

For |〈r2(u+ v), Z〉|, we similarly obtain that

|〈r2(u+ v), Z〉| ≲ ||r2(u+ v)||Bα
1,1
||Z||−α ≲

(
||ur2||Bα

1,1
+ ||vr2||Bα

1,1

)
t−ρ.

For ||ur2||Bα
1,1
, we have

||ur2||Bα
1,1

≲ ||Aβ0(ur2)||Lp0 ≲ ||Aβ0u||Lp1 ||r2||Lq1 + ||Aβ0r2||Lp2 ||u||Lq2 := (I) + (II),

with p0 > 1, β0 > α > 0, and 1
p0

= 1
p1

+ 1
q1

= 1
p2

+ 1
q2
, pi, qi > p0, i = 1, 2. Here we used

Lemma 2.1 in the first inequality and Lemma 2.5 in the second inequality.
For (I), according to (3.25) we know that for any s > 0

||r2||Lq1 = ||r||2L2q1 ≲ ||r||
2− 1

q1
+s

H1 ||r||
1
q1

−s
H−1 .

Moreover, let p1 ≥ 4. Then

||Aβ0u||Lp1 ≲ ||Aβ1u||L4 ≲ ||u||1−2β1
L4 ||u||2β1

H
1
2
4

≲ ||u||1−2β1
L4 ||u||2β1H1 ,

where β1 = β0 +
1
2
− 2

p1
and we used Lemma 2.1 in the first inequality and Sobolev inter-

polation in the second inequality and Besov embedding Lemma 2.1 in the last inequality.
Combining these estimates above we have

(I) ≲ ||r||
2− 1

q1
+s

H1 ||r||
1
q1

−s
H−1 ||u||1−2β1

L4 ||u||2β1H1 .
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Hence by Young’s inequality

t−ρ(I) ≲ ε||r||2H1 + ||r||2H−1||u||
4β1
1
q1

−s

H1 ||u||
2(1−2β1)

1
q1

−s

L4 t
− 2ρ

1
q1

−s .

Let p0 be close to 1 and β0, s be so small enough such that 1
p1
> 1− 1

p0
+ β0 + s, which is

equivalent to 2β1
1
q1

−s +
(1−2β1)

1
q1

−s
1
2
< 1. Then the Hölder inequality yields for ρ small enough

∫ t

0

||u||
4β1
1
q1

−s

H1 ||u||
2(1−β1)

1
q1

−s

L4 τ
− 2ρ

1
q1

−sdτ ≲
(∫ t

0

||u||2H1dτ

) 1
2
(∫ t

0

||u||4L4dτ

) 1
4

.

Then we get

fu1 := ||u||
4β1
1
q1

−s

H1 ||u||
2(1−β1)

1
q1

−s

L4 t
− 2ρ

1
q1

−s ∈ L1(0, T ),

and for any ε > 0,
t−ρ(I) ≲ ε||r||2H1 + fu1 ||r||2H−1 . (3.33)

For (II), let q2 = 4. Then we have 1
p2
+ 1

4
= 1

p0
∈ (3

4
, 1), which implies that p2 ∈ (4

3
, 2).

Similarly by Lemma 2.5

||Aβ0r2||Lp2 ≲ ||Aβ0r||Lp3 ||r||Lq3 ,

where 1
p3

+ 1
q3

= 1
p2
, p3, q3 > p2. From (3.25) we know that for every s > 0

||r||Lq3 ≲ ||r||
1− 1

q3
+ s

2

H1 ||r||
1
q3

− s
2

H−1 .

Let p3 ≥ 2. Then by Lemma 2.1 we have

||Aβ0r||Lp3 ≲ ||r||Hβ2 ≲ ||r||
1+β2

2

H1 ||r||
1−β2

2

H−1 ,

where we used Sobolev interpolation in the second inequality and that β0 = β2 − 1 + 2
p3
.

Hence

||Aβ0r2||Lp2 ≲ ||r||
3
2
+

β2
2
− 1

q3
+ s

2

H1 ||r||
1
2
−β2

2
+ 1

q3
− s

2

H−1 = ||r||
2+

β0
2
− 1

p2
+ s

2

H1 ||r||
1
p2

− s
2
−β0

2

H−1 .

Thus, we have
(II) ≲ ||r||

2+
β0
2
− 1

p2
+ s

2

H1 ||r||
1
p2

− s
2
−β0

2

H−1 ||u||L4 .

Then by Young’s inequality we have

t−ρ(II) ≲ ε||r||2H1 + ||r||2H−1 ||u||
2

1
p2

− s
2−β0

2

L4 t
− 2ρ

1
p2

− s
2−β0

2 .

It is easy to see that p2 < 2 yields 2
1
p2

− s
2
−β0

2

≤ 4 when s, β0 are small enough. Then for

small enough ρ we have fu2 := ||u||
2

1
p2

− s
2−β0

2

L4 t
− 2ρ

1
p2

− s
2−β0

2 ∈ L1(0, T ).
Then we obtain that for any ε > 0

|〈r2u, Z〉| ≲ ε||r||2H1 + fu||r||2H−1 ,

where fu := fu1 + fu2 ∈ L1(0, T ).
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The same holds with u replaced by v. Let f = fu + f v ∈ L1(0, T ). Then
|〈r2(u+ v), Z̄〉| ≲ ε||r||2H1 + f ||r||2H−1 .

Hence we get
d

dt
||r||2H−1 + ||r||2H1 ≲ ε||r||2H1 + (f + g)||r||2H−1 .

Choose a suitable ε > 0 such that
d

dt
||r||2H−1 ≲ (f + g)||r||2H−1 .

Then by Gronwall’s inequality we have

||r(t)||2H−1 ≲ ||r(0)||2H−1 exp

(∫ t

0

f(s) + g(s)ds

)
= 0.

Since V −1
0 is a subspace of H−1, we obtain the uniqueness.

□
Remark 3.11. We emphasize that we cannot obtain global well-posedness of equation
(3.19) by combining (3.22) with fixed point argument in [DPD03] and [MW17] since we
only have an H−1-estimate. In fact, in order to use fixed point arguments to obtain local
solutions, the initial value should be in C− 4

3
+. An initial value in H−1-norm is not enough

to use mild formulation to obtain local solution.

3.4 Relation to the solution given by Dirichlet forms
In this section, we are going to obtain a probabilistically weak solution of equation (3.1)
via the Dirichlet form approach and compare this solution with the solution we obtain in
Section 4.

According to the definition of V α
0 and [Hid80, Theorem 3.1], µ is supported on V −s

0

for any s > 1. So we fix a small enough s0 > 0 and V −1−s0
0 as the state space and denote

it by E for convenience. By identifying V 1
0 and V −1

0 via the Riesz isomrophism we have
the following Gelfand triple:

E∗ ⊂ V −1
0 ⊂ E (3.34)

whereE∗ = V s0−1
0 and the dualization betweenE∗ andE is E∗〈u, v〉E :=

V
1+s0
0

〈Qu, v〉
V

−1−s0
0

for any u ∈ E∗, v ∈ E. Here V s〈·, ·〉V −s is denoted by

V s
0
〈u, v〉V −s :=

∑
k

S′〈u, ek〉SS′〈v, ek〉S , u ∈ V s
0 , v ∈ V −s

0 . (3.35)

Then we have that
E∗〈u, v〉E = 〈u, v〉V −1

0
,∀u ∈ E∗,∀v ∈ V −1

0 . (3.36)
Moreover we define FC∞

b ; = {f(E∗〈l1, ·〉E, · · · , E∗〈lm, ·〉E) : m ∈ N, f ∈ C∞
b (Rm), l1, · · · , lm ∈

E∗}. For all φ = f(E∗〈l1, ·〉E, · · · , E∗〈lm, ·〉E) ∈ FC∞
b , we can define the directional

derivative for h ∈ V −1
0 :

∂hφ(z) := lim
t→0

φ(z + th)− φ(z)

t
=

m∑
i=1

∂if(E∗〈l1, ·〉E, · · · , E∗〈lm, ·〉E)〈li, h〉V −1
0
.

Then by the Riesz representation theorem, there exists a map ∇φ : E → V −1
0 such that

〈∇φ(z), h〉V −1
0

= ∂hφ(z), h ∈ V −1
0 .
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3.4.1 Solution given by Dirichlet forms
Since Q−1−s0 : V 1+s0

0 → V −1−s0
0 is the Riesz isomorphism for V 1+s0

0 , i.e.

V
1+s0
0

〈h, k〉
V

−1−s0
0

= 〈Q−1−s0h, k〉
V

−1−s0
0

,

µ is in fact a Gaussian measure on Hilbert space V −1−s0
0 , with covariance operator C :=

Q2+s0 , that is ∫
V

−1−s0
0

e
i⟨h,z⟩

V
−1−s0
0 µ(dz) = 〈Ch, h〉

V
−1−s0
0

.

Then we have the following integration by parts formula for µ:

Proposition 3.12. For all F ∈ FC∞
b , h ∈ V 3+s0

0 , we have∫
∂hFdµ =

∫
E∗〈A2h, ϕ〉EF (ϕ)µ(dϕ). (3.37)

Proof First, by [DPZ02, Section 1.2.4] we know the reproducing kernel of (V −1−s0
0 , µ) is

Vµ := C1/2V −1−s0
0 = V 1

0 . Then by [MR92, Theorem 3.1, Chapter II] we have∫
∂hFdµ =

∫
〈C−1h, ϕ〉

V
−1−s0
0

F (ϕ)µ(dϕ)

=

∫
〈Q−2−s0h, ϕ〉

V
−1−s0
0

F (ϕ)µ(dϕ)

= −
∫

V
1+s0
0

〈Ah, ϕ〉
V

−1−s0
0

F (ϕ)µ(dϕ)

= −
∫

E∗〈Q−1Ah, ϕ〉EF (ϕ)µ(dz)

=

∫
E∗〈A2h, ϕ〉EF (ϕ)µ(dz).

□

Remark 3.13. In fact, by a similar argument in [GJ12, (9.1.32)], (3.37) still holds for
F exp(−N), where N = S′〈: q :, e0〉S i.e. for all F ∈ FC∞

b , h ∈ V 3+s0
0∫

∂h (F exp(−N)) dµ =

∫
E∗〈A2h, ϕ〉EF (ϕ) exp(−N(ϕ))µ(dϕ)

Then for the Gibbs measure ν defined in Section 3.2, we have the following integration
by parts formula:

Proposition 3.14. For all F ∈ FC∞
b , h ∈ V 3+s0

0 , we have∫
∂hFdν =

∫ (
E∗〈A2h, ϕ〉E − E∗〈Ah, : ϕ3 :〉E

)
F (ϕ)ν(dϕ). (3.38)

Proof According to Proposition 3.12 and Remark 3.13∫
∂hFdν = c

∫
(∂hF ) exp(−N)dµ
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= c

∫
[∂h(F exp(−N)) + F exp(−N)∂hN ]dµ

=

∫
F (ϕ)

(
E∗〈A2h, ϕ〉E − ∂hN(ϕ)

)
ν(dϕ)

By [Oba94, Theorem 4.1.1],

∂h : ϕ
n
ε (x) := n : ϕn−1

ε (x) : (ρε ∗ h)(x).

Here ∂h : ϕnε (x) : is defined as the directional derivative of the function ϕ→: ϕnε (x). Then

∂hNε(ϕ) = 〈: ϕ3
ε :, h ∗ ρε〉,

where Nε(ϕ) := 〈1
4
: ϕ4

ε :, e0〉. Letting ε→ 0, due to the closability of ∂Πh in L2(E, µ),

∂hN(ϕ) = 〈: ϕ3 :, h〉 = −E∗〈Ah, : ϕ3 :〉E,

which implies ∫
∂hFdν =

∫ (
E∗〈A2h, ϕ〉E − E∗〈Ah, : ϕ3 :〉E

)
F (ϕ)ν(dϕ).

□
Theorem 3.15. The bilinear form

Λ(φ, ψ) :=
1

2

∫
〈∇φ,∇ψ〉V −1

0
dν, ∀φ, ψ ∈ FC∞

b ,

is closable in L2(E, ν). Its closure is a symmetric quasi-regular Dirichlet form denoted
by (Λ, D(Λ)).

Proof Let hk =
√
λkek, {hk}k∈Z2\{(0,0)} is an orthonormal basis of V −1

0 . Then

Λ(φ, ψ) =
1

2

∑
k∈Z2\{(0,0)}

∫
∂φ

∂hk

∂ψ

∂hk
dν, ∀φ, ψ ∈ FC∞

b ,

By Proposition 3.14 we have
∫

∂φ
∂hk

dν = −
∫
φβhkdν, where βhk ∈ L2(E, ν) and

βhk(ϕ) = −E∗〈A2hk, ϕ〉E + E∗〈Ahk, : ϕ3 :〉E,∀k 6= (0, 0).

According to [MR92, Proposition 3.5, Chapter II], (Λ,FC∞
b ) is closable on L2(E, ν) and

its closure (Λ, D(Λ)) is a symmetric Dirichlet form. Moreover by [MR92, Proposition
4.2, Chapter IV], the capacity of (Λ, D(Λ)) is tight, and according to the fact that FC∞

b

separates the points in L2(E, ν), we obtain that (Λ, D(Λ)) is a quasi-regular Dirichlet
form. □

Since (Λ, D(Λ)) is a quasi-regular Dirichlet form on L2(E, ν), it is well-known that
there is a conservative Markov diffusion processes

M = (Ω,F ,Mt, (X(t))t≥0, (Pz)z∈E) ,

which is properly associated with (Λ, D(Λ)), i.e. for u ∈ L2(E, ν)∩Bb(E), the transition
semigroup Ptu(z) := Ez[u(X(t))] is Λ-quasi-continuous for all t > 0 and is a ν-version
of Ttu where Tt is the semigroup associated with (Λ, D(Λ)). For the notion of Λ-quasi-
continuity we refer to [MR92, Chapter III, Definition 3.2]. Then we have the following
Fukushima decomposition for X(t) under Pz:
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Theorem 3.16. There exists a map W : Ω → C([0,∞);C([0,∞);V −1−s0
0 (T2,R2))), and

a properly Λ-exceptional set S ⊂ E,i.e. ν(S) = 0 and Pz (X(t) ∈ E \ S, ∀t ≥ 0) = 1 for
z ∈ E \ S, such that ∀z ∈ E \ S, W is a U-cylindrical Wiener process on (Ω,Mt,Pz)
and the sample paths of the associated process M = (Ω,F ,Mt, (X(t))t≥0, (Pz)z∈E) on E
satisfy the following: for h ∈ V 3+s0,

E∗〈h,X(t)−X(0)〉E =− 1

2

∫ t

0
E∗〈A2h,X(s)〉Eds

+
1

2

∫ t

0
E∗〈Ah, : X(s)3 :〉Eds

+

∫ t

0

〈B∗h, dWs〉V −1
0 (T2,R2),∀t ≥ 0,Pz − a.s.,

(3.39)

where B,B∗ are defined as in (3.8). Moreover, ν is an invariant measure for M in the
sense that

∫
Ptudν =

∫
udν for u ∈ L2(E, ν) ∩ Bb(E).

Proof Let uh(ϕ) = E∗〈h, ϕ〉E, h ∈ V 3+s0
0 , and let L be the generator of (Λ, D(Λ)). For

any v ∈ D(Λ)

−
∫

Luhvdν =
1

2

∫
〈∇uh,∇v〉V −1

0
dν

= −1

2

∫
∂hv(ϕ)ν(dϕ)

=
1

2

∫ (
E∗〈A2h, ϕ〉E − E∗〈Ah, : ϕ3 :〉E

)
v(ϕ)ν(dϕ).

Hence uh ∈ D(L) and Luh(ϕ) = −1
2
(E∗〈A2h, ϕ〉E − E∗〈Ah, : ϕ3 :〉E).

By Fukushima’s decomposition, we have for q.e. z ∈ E,

uh(Xt)−uh(X0) =Mh
t +

∫ t

0

Luh(Xs)ds =Mh
t −

1

2

∫ t

0

(
E∗〈A2h,Xs〉E − E∗〈Ah, : X3

s :〉E
)
ds,

where Mh is a martingale additive functional with 〈Mh〉t = t‖h‖2
V −1
0

.
In fact, by [AR91, Proposition 4.5],

〈Mh〉t =
∫ t

0

〈∇uh(Xs),∇uh(Xs)〉V −1
0
ds = t‖h‖2

V −1
0
.

For f = B∗Q̄h ∈ U , with h ∈ V −1
0 , define W f

t := Mh
t and let D := span{B∗Qek : k ∈

Z2\{(0, 0)}}. Since ‖B∗Qh‖2U = ‖h‖2
V −1
0

, it is easy to check that 〈W f ,W g〉t = t〈f, g〉U for
f, g ∈ D, where 〈W f ,W g〉t is the bracket process ofW f andW g. MoreoverD is dense in U
and W ·

t is Q-linear on D, since the embedding U → V −1−s
0 (T2,R2) is Hilbert-Schmidt for

any s > 0. By [AR91, Theorem 6.2], there exist a mapW : Ω → C([0,∞);V −1−s
0 (T2,R2)),

and a properly Λ-exceptional set S ⊂ E, i.e. ν(S) = 0 and Pz (X(t) ∈ E \ S, ∀t ≥ 0) = 1
for z ∈ E \ S, such that ∀z ∈ E \ S, W is a U -cylindrical Wiener process on (Ω,Mt,Pz)
such that for any f ∈ D

V −1−s
0

〈W, f〉V 1+s
0

= W f ,Pz − a.s.,

where V −1−s
0

〈·, ·〉V 1+s
0

is defined by (3.35). In particular,

〈B∗h,Wt〉V −1
0 (T2,R2) = 〈Wt, B

∗Qh〉U =Mh
t ,

and W = (W 1,W 2), where W i : Ω → C([0,∞);E), i = 1, 2 are two independent L2
0-

cylindrical Wiener processes under Pz for any z ∈ E \ S. □
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3.4.2 Relation between the two solutions
In the following we discuss the relation between M constructed above and the shifted
equation (1.12). In fact, by Lemma 2.1 we have that C−α ⊂ V −1−s0 for α ∈ (0, 1),
C−α ∈ B(V −1−s0) and ν(C−α ∩ E) = 1. For W constructed in Theorem 3.16 define
Z(t) :=

∫ t
0
e−(t−s)A2/2BdWs.

Theorem 3.17. Let α ∈ (0, 1
3
), α < β < 2 − α. There exists a properly Λ-exceptional

set S2 ⊂ E in the sense of Theorem 3.16 such that for every z ∈ (C−α ∩ E) \ S2 under
Pz, Y := X − Z ∈ C((0, T ]; Cβ) ∩ C([0, T ]; C−α) is a solution to the following equation:

Y (t) =
1

2

∫ t

0

e−(t−s)A2/2A

3∑
l=0

C l
3Y (s)l : Z(s)3−l : ds+ e−

t
2
A2

X(0). (3.40)

Here C((0, T ]; Cβ) is equipped with the norm supt∈[0,T ] t
β+α
4 || · ||β. Moreover,

Pz[X(t) ∈ (C−α ∩ E) \ S2,∀t ≥ 0] = 1 for z ∈ (C−α ∩ E) \ S2.

Proof For z ∈ E \ S under Pz we have that

X(t) =
1

2

∫ t

0

e−(t−τ)A2/2A : X(τ)3 : dτ + Z(t) + e−
t
2
A2

X(0).

Since ν is an invariant measure for X, by Lemma 2.1 and Lemma 3.2 we conclude that
for every T ≥ 0, p > 1, δ > 0, with 2δ − α < 0, and p0 > 1 large enough∫

Ez
∫ T

0

‖ : X(τ)3 : ‖p−αdτν(dz) ≲
∫
Ez
∫ T

0

‖ : X(τ)3 : ‖p
Bδ−α

p0,p0

dτν(dz)

=T

∫
‖ : ϕ3 : ‖p

Bδ−α
p0,p0

ν(dϕ) ≲ T

∫
‖ : ϕ3 : ‖p2δ−αν(dϕ) <∞,

which implies that there exists a properly Λ-exceptional set S1 ⊃ S such that for z ∈ E\S1

P z-a.s.

: X(·)3 :∈ Lp(0, T ; C−α), Ez
∫ T

0

‖ : X(τ)3 : ‖p−αdτ <∞, ∀p > 1.

Here we used Lemma 2.1 to deduce the first result. The second, however, does not imply
the first directly because of (2.1). Lemma 2.2 implies that for α < β < 2− α∫ t

0

e−(t−τ)A2/2A : X(τ)3 : dτ ∈ C([0,∞); Cβ) Pz − a.s..

Now by Lemma 2.2 we conclude that for z ∈ C−α \ S1, e−
t
2
A2
X(0) ∈ C([0, T ], C−α) ∩

C((0, T ], Cβ). Thus,

X − Z ∈ C([0, T ], C−α) ∩ C((0, T ], Cβ) Pz − a.s..

Since Pν ◦ X(t)−1 = ν, by Lemma 3.6 we conclude that under Pν , by Fubini’s theorem
Y := X − Z satisfies (3.40) and for ν-a.e. z ∈ E under Pz, Y := X − Z satisfies (3.40).
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In the following we prove that these results hold under Pz for z outside a properly Λ-
exceptional set. First we have Z ∈ C([0,∞); C−α) Pν-a.s., which combined with X−Z ∈
C([0, T ], C−α) implies

Pν [X ∈ C([0,∞), C−α)] = 1.

We also have

Ȳ (s, t0) :=X(s+ t0)− Z(s+ t0) =
1

2

∫ t0+s

t0

e−(t0+s−τ)A2/2A : X(τ)3 : dτ

+e−sA
2/2(X(t0)− Z(t0)) ∈ C((0,∞)2; Cβ) Pν − a.s..

Similar arguments as in the proof of Lemma 3.6 imply that ∀s > 0, t0 ≥ 0

Pν(: X(s+ t0)
3 :=

3∑
l=0

C l
3Ȳ (s, t0)

l : Z(s+ t0)
3−l :,

X ∈ C([0,∞), C−α), Ȳ ∈ C((0,∞)2; Cβ)) = 1,

In the following we use It,t0 to denote the equality∫ t

0

e−(t−s)A2/2A : X(s+ t0)
3 : ds

=
3∑
l=0

∫ t

0

e−(t−s)A2/2AC l
3Ȳ (s, t0)

l : Z(s+ t0)
3−l : ds.

Then using Fubini’s theorem we know that

Pν(It,t0 holds ∀t ≥ 0, a.e.t0 ≥ 0, X ∈ C([0,∞); C−α), Ȳ ∈ C((0,∞)2; Cβ)) = 1.

Here we usedX ∈ C([0,∞); C−α) for α < 1
3
to make the right hand side of It,t0 meaningful.

It is obvious that the right hand side of the first equality is continuous with respect to t0.
Since

∫ t
0
e−(t−s)A2/2A : X(s + t0)

3 : ds =
∫ t+t0
t0

e−(t−s+t0)A2/2A : X(s)3 : ds we know that∫ t
0
e−(t−s)A2/2A : X(s+ t0)

3 : ds is also continuous with respect to t0 and we obtain that

Pν(It,t0 holds ∀t, t0 ≥ 0, X ∈ C([0,∞); C−α), Ȳ ∈ C((0,∞)2; Cβ)) = 1.

This implies that there exists a properly Λ-exceptional set S2 ⊃ S1 such that for z ∈
(C−α ∩ E) \ S2 under Pz

Pz(X ∈ C([0,∞); C−α), It,t0 holds ∀t, t0 ≥ 0) = 1.

Indeed, define

Ω0 :={ω : X ∈ C([0,∞); C−α), : Zk :∈ C((0,∞); C−α), k = 1, 2, 3, It,t0 holds ∀t, t0 ≥ 0},

and let Θt : Ω → Ω, t > 0, be the canonical shift, i.e. Θt(ω) = ω(·+ t), ω ∈ Ω. Then it is
easy to check that

Θ−1
t Ω0 ⊃ Ω0, t ∈ R+,

and
Ω0 =

⋂
t>0,t∈Q

Θ−1
t Ω0.
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On the other hand, by the Markov property we know that

Pz(Θ−1
t Ω0) = Pt(1Ω0)(z),∀z ∈ (C−α ∩ E) \ S2

which by [MR92, Chapter IV Theorem 3.5] is Λ-quasi-continuous in the sense of [MR92,
Chapter III Definition 3.2] on E. It follows that for every t > 0

Pz(Θ−1
t Ω0) = 1 q.e.z ∈ E,

which yields that
Pz(Ω0) = 1 q.e.z ∈ E.

Here q.e. means that there exists a properly Λ-exceptional set such that outside this
exceptional set the result holds. Now Y satisfies (3.40) Pz-a.s. for z ∈ (C−α ∩ E)\S2.
Moreover, for z ∈ (C−α ∩ E)\S2 Y ∈ C([0,∞); C−α) ∩ C([0, T ], Cβ), Z ∈ C([0,∞); C−α)
Pz-a.s., which implies that

Pz[X(t) ∈ (C−α ∩ E) \ S2,∀t ≥ 0] = 1 for z ∈ (C−α ∩ E) \ S2.

□

Corollary 3.18. Let X̄ = Ȳ + Z where Ȳ is the unique solution to (3.19). ν is an
invariant measure of X̄.

Proof By Theorem 3.17 and the uniqueness of the solution to (3.19) we know that
X

d
= X̄, Pz − a.s.∀z ∈ (C−α ∩E) \ S2, which combined with ν(C−α ∩E) = 1 implies that

ν is an invariant measure of X̄. □

3.4.3 Markov uniqueness in the restricted sense
In this subsection we prove Markov uniqueness in the restricted sense and the uniqueness
of the martingale (probabilistically weak) solutions to (3.1) if the solution has ν as an
invariant measure.

By [MR92, Chapter 4, Section 4b] it follows that there is a point separating countable
Q-vector spaceD ⊂ FC∞

b such thatD ⊂ D(L(Λ)). Let Λq.r. be the set of all quasi-regular
Dirichlet forms (Λ̃, D(Λ̃)) (cf. [MR92]) on L2(E; ν) such that D ⊂ D(L(Λ̃)) and Λ̃ = Λ on
D×D. Here for a Dirichlet form (Λ̃, D(Λ̃)) we denote its generator by (L(Λ̃), D(L(Λ̃))).

In the following we consider the martingale problem in the sense of [AR94] and prob-
abilistically weak solutions to (3.1):

Definition 3.19. (i) A ν-special standard process M = (Ω,F , (Mt), Xt, (Pz)) in the
sense of [MR92, Chapter IV] with state space E is said to solve the martingale problem
for (L(Λ), D) if for all u ∈ D, u(X(t)) − u(X(0)) −

∫ t
0
L(Λ)u(X(s))ds, t ≥ 0, is an

(Mt)-martingale under Pν.
(ii) A ν-special standard process M = (Ω,F , (Mt), Xt, (P

z)) with state space E
is called a probabilistically weak solution to (3.1) if there exists two map W i : Ω →
C([0,∞);E) i = 1, 2 such that for ν-a.e. z under Pz, W := (W 1,W 2) is an L2

0(T2,R2)-
cylindrical Wiener process with respect to (Mt) and the sample paths of the associated
process satisfy (3.39) for all h ∈ V 3+s0.
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Remark 3.20. If M is a probabilistically weak solution to (3.1), we can easily check that
it also solves the martingale problem. Conversely, if M solves the martingale problem,
then with the same argument in Theorem 3.16, there exists an L2

0(T2,R2)-cylindrical
Wiener process W such that (X,W ) satisfies (3.39) for h ∈ V 3+s0. That is to say, these
two definitions are equivalent.

To explain the uniqueness result below we also introduce the following concept:
Two strong Markov processesM andM ′ with state space E and transition semigroups

(pt)t>0 and (p′t)t>0 are called ν-equivalent if there exists S ∈ B(E) such that (i) ν(E\S) =
0, (ii) Pz[X(t) ∈ S, ∀t ≥ 0] = P′z[X ′(t) ∈ S, ∀t ≥ 0] = 1, z ∈ S, (iii) ptf(z) = p′tf(z) for
all f ∈ Bb(E), t > 0 and z ∈ S.

Combining Theorem 3.9 and Theorem 3.10, we obtain Markov uniqueness in the
restricted sense for (L(Λ), D) (see part (iii)) and the uniqueness of martingale (proba-
bilistically weak) solutions to (1.1) if the solution has ν as an invariant measure (see part
(i), (ii)):

Theorem 3.21. (i) There exists (up to ν-equivalence) exactly one probabilistically weak
solution M to (3.1) satisfying Pz(X ∈ C([0,∞);E)) = 1 for ν-a.e. and having ν as
an invariant measure, i.e. for the transition semigroup (pt)t≥0,

∫
ptfdν =

∫
fdν for

f ∈ L2(E; ν).
(ii) There exists (up to ν-equivalence) exactly one ν-special standard process M

with state space E solving the martingale problem for (L(Λ), D) and satisfying Pz(X ∈
C([0,∞);E)) = 1 for ν-a.e. and having ν as an invariant measure.

(iii) ♯Λq.r. = 1. Moreover, there exists (up to ν-equivalence) exactly one ν-special
standard process M with state space E associated with a Dirichlet form (Λ, D(Λ)) solving
the martingale problem for (L(Λ), D).

Proof The proof is the same as [RZZ17b, Theorem 3.12].
For (i), suppose that M1 is a probabilistically weak solution to (3.1) and let p1t be

the transition semigroup (of sub-probability kernels) associated with M1. Since ν is an
invariant measure and

p1tf →t→0 f,

for f ∈ FC∞
b , by [MR92, Chapter II, Subsection 4a] (p1t )t>0 uniquely determines a

strongly continuous contraction semigroup (T 1
t )t>0 of operators on L2(E; ν). By the

proof of Theorem 3.17 we know that the solution to (3.39) having ν as an invariant
measure minus Z also satisfies (3.40) under Pν . Moreover, by the pathwise uniqueness
of solutions to (3.40) we obtain that p1tf(z) = Ptf(z) ν-a.e. for all f ∈ Bb(E), t > 0,
which implies that p1t is associated with the Dirichlet form (Λ, D(Λ)) obtained in Section
3.2. Here Pt is the semigroup properly associated with (Λ, D(Λ)) obtained in Section 3.2.
SinceM1 is a ν-special standard process and has continuous paths, by [MR92, Chapter 4,
Theorem 1.15, Theorem 5.1] M1 is properly associated with (Λ, D(Λ)). Then by [MR92,
Chapter 4, Theorem 6.4] M1 is ν-equivalent to M obtained in Section 3.2, which implies
(i) easily.

(ii) follows from the first result and the above Remark.
The second result in (iii) follows from the first result and [AR95, Theorem 3.4]. We

only prove the first. Since for every (Λ̃, D(Λ̃)) ∈ Λq.r. there exists a unique Markov
process M̃ associated with (Λ̃, D(Λ̃)) and Theorem 3.16 holds for M̃ , by Theorems 3.17
and 3.10 we know that for the semigroup p̃t associated with M̃ we have p̃tf = Ptf ν-a.e.
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for f ∈ Bb(E), which implies that p̃t is a ν-version of the semigroup Tt associated with
(Λ, D(Λ)). Then by [MR92, Chapter I] we know that (Λ, D(Λ)) = (Λ̃, D(Λ̃)). Now (iii)
follows.

□

3.4.4 Stationary solution
Now we consider the stationary case. In this case, we can obtain a probabilistically strong
solution to 3.1. Take two different stationary solutions X1, X2 to 3.1 with the same initial
condition η ∈ C−α ∩ E, α > 0, α small enough, having the distribution ν. We have

Xi(t) = e−
t
2
A2

η +
1

2

∫ t

0

e−
t−τ
2
A2

A : Xi(τ)
3 : dτ + Z(t),

where Z is the stochastic convolution

Z(t) =

∫ t

0

e−
t−s
2
A2

BdWs.

By a similar argument as in the proof of Theorem 3.17 and using Lemma 3.2 we have
that for every p > 1

E
∫ T

0

‖ : Xi(τ)
3 : ‖p−αdτ = T

∫
‖ : ϕ3 : ‖p−αν(dϕ) <∞.

Then Lemma 2.2 implies that for α > 0, α < β < 2− α∫ t

0

e−
t−τ
2
A2

A : Xi(τ)
3 : dτ ∈ C([0, T ]; Cβ) P− a.s..

Thus by Lemma 2.2 we conclude that
Xi − Z ∈ C((0, T ]; Cβ) P− a.s.,

where C((0, T ]; Cβ) is equipped with the norm supt∈[0,T ] t
β+α
4 ‖ · ‖β. Moreover, similar

arguments as in the proof of Theorem 3.6 yield that if α > 0 with α small enough, Xi−Z
is a solution to the following equation

Y (t) =
1

2

∫ t

0

e−(t−s)A2/2A

3∑
l=0

C l
3Y (s)l : Z(s)3−l : ds+ e−

t
2
A2

η. (3.41)

Here the Wick powers of Z are defined as in Lemma 3.4.
Now by [LR15, Proposition G.0.5] we know the solutions to equation (3.41) are also

the solutions to (3.19) and by uniqueness of the solutions to (3.19) in Theorem 3.10, this
implies that

X1 − Z = X2 − Z on [0, T ] P− a.s..

Then the pathwise uniqueness holds for the stationary solutions to (3.1). Now by the
existence of the stationary martingale solution ( cf. [MR99]) and the Yamada-Watanabe
Theorem in [Kur07] we obtain:
Theorem 3.22. For any initial condition X(0) ∈ C−α∩E with distribution ν and α > 0,
α small enough, there exists a unique probabilistically strong solution X to (3.1) such
that X is a stationary process, i.e. for every probability space (Ω,F , {Ft}t∈[0,T ],P) with a
U-Wiener process W , there exists an Ft-adapted stationary process X : [0, T ] × Ω → E
such that for P− a.s. ω ∈ Ω, X satisfies (3.1). Moreover, for 0 < β < 2− α

X − Z ∈ C((0, T ]; Cβ) P− a.s..



50 Chapter 3. Conservative stochastic 2-dimensional Cahn-Hilliard equation

3.5 Ergodicity
Let X = Y + Z where Y is the solution to equation (3.19). By the uniqueness of the
solution Y we have that X is a Markov process. Let Pt be the semigroup of X, i.e

PtΦ(x) = EΦ (X(t, x)) , ∀Φ ∈ Cb(V
−1
0 ).

We recall that the U -cylindrical Wiener processW take values in C([0, T ], V −1−s0
0 (T2,R2)),

P−a.s., for any s0 > 0. LetD denote the Fréchet derivative of functions on C([0, T ], V −1−s0
0 (T2,R2))

(i.e. with respect to the noise). We also denote the Cameron-Maritin space by CM :=
{ω : ∂tω ∈ L2([0, T ], L2

0(T2;R2)), ω(0) = (0, 0)}. Here we view ∂tω as a function on
[0, T ]× T2 rather than lying in the tangent space of T2.

Proposition 3.23. For a fixed x ∈ V −1
0 , let Xx

t := X(t, x) = Zt + Y (t, x) be a map from
C([0, T ], V −1−s0

0 ) to V −1
0 . For any ω ∈ CM its directional derivative DXx

t (ω) is given in
mild form as

DXx
t (ω) =

1

2

∫ t

0

e−(t−s)A2/2A

2∑
l=0

3C l
2Y

2−l(s) : Z l
s : DXx

s(ω)ds+

∫ t

0

e−(t−s)A2/2Bdωs.

(3.42)

The proof of Proposition 3.23 can be obtained by using approximation or the implicit
function theorem (see [Dri03, Theorem 19.28], [HM18], [TW16]).

Let D denote the Fréchet derivative of functions on V −1
0 . We also consider the fol-

lowing equation:∂tJs,th = −1

2
A2Js,th+

1

2
A

(
2∑
l=0

3C l
2Y

2−l(t) : Z l
t : Js,th

)
Js,sh = h ∈ V −1

0

. (3.43)

Then J0,th = DX(t, x)(h), i.e. it is the derivative of X(t, ·) in the direction h. For
ω ∈ CM, by Duhamel’s principle

DXx
t (ω) =

∫ t

0

Js,tB∂sω(s)ds. (3.44)

We define the stopping time

τ r := inf{t ∈ (0, T ) : tρ|| : Zk
t : ||−α > r, k = 1, 2, 3}, (3.45)

where ρ > 0 is a small enough constant introduced in Lemma 3.4.

Proposition 3.24. For any x ∈ V −1
0 with ‖x‖H−1 ≤ R, there exists constants C1(R), C2(R)

such that for all t ≤ τ r

sup
s≤t

||Ys||H−1 ∨
∫ t

0

||Ys||4L4ds ∨
∫ t

0

||Ys||2H1ds ≤ C1 and sup
s≤t

||J0,sh||H−1 ≤ C2||h||H−1

Proof The first bound with constant C1 follows from the proof of Theorem 3.7.
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For the second bound, we note that J0,th satisfies the following equation:
du

dt
= −1

2
A2u+

1

2
A

(
2∑
l=0

3C l
2Y

2−l(t) : Z l
t : u

)
u(0) = h

.

Taking scalar product with (−A)−1u, we obtain that

d

dt
||u||2H−1 + ||u||2H1 = −3〈Y 2 + 2Y Z+ : Z2 :, u2〉,

that is
d

dt
||u||2H−1 + ||u||2H1 ≤ 6|〈Y Z, u2〉|+ 3|〈: Z2 :, u2〉|.

Following the same argument that we used to estimate (3.31) and using the first bound,
we use Grönwall’s inequality to obtain the second bound.

□
Let χr ∈ C∞(R) such that χr(ζ) ∈ [0, 1] for all ζ ∈ R, and

χr(ζ) =

1, |ζ| ≤ r

2
0, |ζ| ≥ r

.

Following the notation in [TW16], we set

C3,−α(0, T ) := C([0, T ]; C−α)× C((0, T ]; C−α)2, (3.46)

and Z := (Z, : Z2 :, : Z3 :) ∈ C3,−α(0, T ). We also define

|||Z|||t := max
k=1,2,3

{
sup
0≤s≤t

sρ|| : Zk
s : ||−α

}
.

Theorem 3.25. (Bismut-Elworthy-Li Formula) Let x ∈ V −1
0 , Φ ∈ C1

b (V
−1
0 ) and ω be a

process taking values in the Cameron-Martin space CM with ∂sω adapted. Assume that
there exists a deterministic constant C ≡ C(t) such that ||∂sω||L2(0,t;U) ≤ C P − a.s..
Then we have

E[DΦ(Xx
t )(DXx

t (ω))χr(|||Z|||t)] = E
(
Φ(Xx

t )χr(|||Z|||t)
∫ t

0

〈∂sω(s), dWs〉
)

− E (Φ(Xx
t )∂+χr(|||Z|||t)(ω))

, (3.47)

where
∂+χr(|||Z|||t)(ω) = ∂ζχr(|||Z|||t)∂+|||Z|||t(Y ),

∂+|||Z|||t(Y ) = lim
δ→0+

|||Z + δY |||t − |||Z|||t
δ

, (3.48)

Y = (Qω(·), 2ZQω(·), 3 : Z2 : Qω(·)) ∈ C3,−α(0, t) and

Qω(·) :=
∫ ·

0

e−(·−s)A2/2B∂sω(s)ds.
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Proof This can be proved by the same calculation as that in the proof of [TW16, The-
orem 5.4].

Let δ > 0 and u = ∂tω ∈ L2(0, t;U). For every n ≥ 1, we define the shift Tδu by

Tδu : Z
n
t ::=

n∑
k=0

(δQω(t))
n−k : Zk

t :

and we let TδuZ =
(
Tδu : Z

k :
)3
k=1

.
Let Xδ(t, x) = TδuZt + Y δ, where Y δ solves the equation

∂tY
δ = −1

2
A2Y δ +

1

2
A

(
3∑

k=0

Ck
3 (Y

δ)3−kTδu : Z
k :

)
Y δ(0) = x

.

We follow the idea in [Nor86] and [TW16] to construct a probability measure Pδ such
that the law of TδuZ under Pδ is the same as the law of Z under P. Then we can obtain
the identity

∂δ+EP
δ (

Φ(Xδ(t, x))χr(|||TδuZ|||t)
) ∣∣∣

δ=0
= 0. (3.49)

To construct Pδ, let vδ := −δ
∫ t
0
〈u(s), dWs〉 and define

Hδ(r) := exp{vδ(r)− δ2

2

∫ r

0

‖u(s)‖2Uds}.

By our assumptions on ω, the Novikov’s condition is satisfied, i.e.

E exp(
δ2

2

∫ t

0

‖u‖2Uds) <∞,

thus by [DPZ14, Theorem 10.14, Proposition 10.17], W δ(r) := W (r) + δ
∫ r
0
u(s)ds is a

U -cylindrical Wiener process under Pδ, where dPδ := HδdP. Moreover we can obtain
that

TδuZr =

∫ r

0

e−(r−s)A2/2BdW δ
s .

Then (3.49) follows.
Using the chain rule, ∂δΦ

(
Xδ(t, x)

)
= DΦ

(
Xδ(t, x)

) (
∂δX

δ(t, x)
)
and

∂δH
δ(t) = −Hδ(t)

(∫ t

0

〈u(s), dWs〉U + δ

∫ t

0

‖u(s)‖2Uds
)
.

For ∂δ+χ(|||TδuZ|||t), note that TδuZ− (Z+ δY ) = (0, δ2Q2
ω, 3δ

2ZQ2
ω + δ3Q3

ω), then we get

lim
δ→0+

|||TδuZ|||t − |||Z|||t
δ

= lim
δ→0+

|||Z + δY |||t − |||Z|||t
δ

,

that is
∂δ+χr(|||TδuZ|||t)

∣∣∣
δ=0

= ∂+χr(|||Z|||t)(ω). (3.50)



3.5. Ergodicity 53

Using the bounds in Proposition 3.24, by the dominated convergence theorem we can
pass the derivative inside the expectation in (3.49) and integrate by parts to obtain

E
(
DΦ

(
Xδ(t, x)

) (
∂δX

δ(t, x)
)
χr(|||TδuZ|||t)H

δ(t)
) ∣∣∣

δ=0
=

− E
(
Φ
(
Xδ(t, x)

)
χr(|||TδuZ|||t)∂δH

δ(t)
) ∣∣∣

δ=0

− E
(
Φ
(
Xδ(t, x)

)
∂δ+χr(|||TδuZ|||t)(ω)H

δ(t)
) ∣∣∣

δ=0

.

Since ∂δXδ(t, x)
∣∣∣
δ=0

= DXx
t (ω) and ∂δHδ(t)

∣∣∣
δ=0

= −
∫ t
0
〈u(s), dWs〉, combining with (3.50)

we get (3.47) which completes the proof.
□

We use (3.47) to prove the following proposition.

Proposition 3.26. There exists universal constants θ1 > 0 such that for every T > 0,
x ∈ V −1

0 with ‖x‖H−1 ≤ R, there exists a constant C ≡ C(T,R) > 0 satisfying

|PtΦ(x)− PtΦ(y)| ≤ C(T,R)
1

tθ1
‖Φ‖∞‖x− y‖H−1 + 2‖Φ‖∞P(t ≥ τ

r
2 ) (3.51)

for every y ∈ V −1
0 , ‖x− y‖H−1 ≤ 1, Φ ∈ C1

b (V
−1
0 ) and t ∈ [0, T ].

Proof Let Φ ∈ C1
b (V

−1
0 ). Then

|PtΦ(x)− PtΦ(y)| = |E [Φ (X(t, x))− Φ (X(t, y))] | ≤ I1 + I2,

where

I1 := |E [Φ (X(t, x))− Φ (X(t, y))χr(|||Z|||t)] |
I2 := |E [Φ (X(t, x))− Φ (X(t, y)) (1− χr(|||Z|||t))] |.

For the second term we have that I2 ≤ 2‖Φ‖∞P(t ≥ τ
r
2 ). By the mean value theorem we

get that

I1 =
∣∣∣E(∫ 1

0

DΦ (Xzλ
t (y − x)) dλ · χr(|||Z|||t)

) ∣∣∣
=
∣∣∣ ∫ 1

0

E (DΦ (Xzλ
t ) (y − x)χr(|||Z|||t)) dλ

∣∣∣,
where zλ := x+λ(y−x). For any h ∈ V −1

0 , let ω be such that B∂sω(s) = J0,sh for s ≤ τ r

and 0 otherwise. Then ∂sω(s) satisfies the condition in Theorem 3.25. Furthermore, by
(3.44) and J0,sJs,t = J0,t we have DXzλ

t (ω) = tDXzλ
t (h). Then we can use (3.47) to obtain

that

E (D [Φ(Xzλ
t )] (h)χr(|||Z|||t)) =

1

t
E
(
Φ(Xzλ

t )

∫ t

0

〈∂sω(s), dWs〉χr(|||Z|||t)
)

− 1

t
E (Φ(Xzλ

t )∂+χr(|||Z|||t)(ω)) .

Then we have

I1 ≤
1

t
‖Φ‖∞

∫ 1

0

E
∣∣∣ ∫ t

0

〈∂sω(s), dWs〉χ(|||Z|||t)
∣∣∣dλ+

1

t
‖Φ‖∞

∫ 1

0

E
∣∣∣∂+χr(|||Z|||t)(ω)∣∣∣dλ.
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For the first term we have

E
∣∣∣ ∫ t

0

〈∂sω(s), dWs〉χ(|||Z|||t)
∣∣∣ ≤ E∣∣∣ ∫ t∧τr

0

〈∂sω(s), dWs〉
∣∣∣

≤
(∫ t∧τr

0

‖∂sω(s)‖2Uds
) 1

2

≲
(∫ t∧τr

0

‖J0,sh‖2H−1ds

) 1
2

≤ C2t‖h‖H−1 ,

where we used the Cauchy-Schwartz inequality and Itô’s isometry in the second step and
Proposition 3.24 in the last step.

By the definition of ∂+χr(|||Z|||t)(ω), we have that for any β > α > 0,∣∣∣∂+χr(|||Z|||t)(ω)∣∣∣ ≤ ∂+|||Z|||t(Y ) ≤ |||Y |||t ≲ |||Z|||t‖Qω(t)‖β,

where Y is as introduced in Theorem 3.25 and we used Lemma 2.3 in the last inequality.
Moreover, we use Lemma 2.2 and Lemma 2.5 to obtain

‖Qω(t)‖β ≲
∫ t

0

(t− s)−
β+2
4 ‖J0,sh‖−2ds ≲

∫ t

0

(t− s)−
β+2
4 ‖J0,sh‖H−1ds ≲ C2t

2−β
4 ‖h‖H−1 .

Choosing β small enough, we deduce that there exists a constant θ1 ∈ (0, 1
2
), such that

I1 ≲ C2
1

tθ1
‖Φ‖∞‖h‖H−1 .

Letting h = y − x we finish the proof.
□

We denote by ‖µ1 − µ2‖TV the total variation distance of two probability measures
µ1, µ2 on V −1

0 given by

‖µ1 − µ2‖TV := sup
∥Φ∥L∞≤1

∣∣∣ ∫ Φdµ1 −
∫

Φdµ2

∣∣∣.
Theorem 3.27. There exists θ ∈ (0, 1) such that for any x, y ∈ V −1

0 with ‖x‖H−1 ≤ R
and ‖x− y‖H−1 ≤ 1 there exists a constant C(R) > 0 satisfying

‖Pt(x, ·)− Pt(y, ·)‖TV ≤ C(R)‖x− y‖θH−1 ,

for every t ≥ 1.

Proof The proof is similar as that of [TW16, Theorem 5.8].
First we fix T > 0, thus the constant in Proposition 3.26 does not rely on T . Without

loss of generality, we assume T ≤ 1.
By [DPZ96, Section 7.1], (3.51) is equivalent to

‖Pt(x)− Pt(y)‖TV ≤ C
1

tθ1
‖x− y‖H−1 + 2P

(
t ≥ τ

r
2

)
,
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for every t ≤ T and ‖x− y‖H−1 ≤ 1.
Recall the proof of Lemma 3.3 and 3.4, we can obtain that for any α ∈ (0, 1), p > 2,

there exists a small θ2 ≡ θ2(α) ∈ (0, 1) and a constant C ≡ C(T, α, p) ≡ C(α, p) (T is
fixed now), such that for any ρ ∈ (0, 1), and any n ∈ N

E sup
s,t∈[0,T ]

‖ : Zn(t) : − : Zn(s) : ‖p−α
tpρspρ|t− s|pθ2

≤ C.

Hence we obtain that
P
(
t > τ

τ
2

)
≤ P

(
|||Z|||t >

r

2

)
≲ tθ2

r
.

By the semigroup property and contractivity, we have that

‖P1(x)− P1(y)‖TV ≤ ‖PT (x)− PT (y)‖TV ,

where
‖PT (x)− PT (y)‖TV ≤ inf

t≤T

{
C1

1

tθ1
‖x− y‖H−1 + C2

1

r
tθ2
}
.

Let g(t) := C1
1
tθ1

‖x − y‖H−1 + C2
1
r
tθ2 , t > 0 and note that for t0 =

(
θ1C1

θ2C2

) 1
θ1+θ2 , g(t0) =

inft>0 g(t). If t0 ≤ T , then there exists a constant C ≡ C(θ1, θ2, r) such that

‖PT (x)− PT (y)‖TV ≤ g (t0) = C‖x− y‖θ2H−1 .

Otherwise t0 > T , which implies that

‖PT (x)− PT (y)‖TV ≤ C1
1

T θ1
‖x− y‖H−1 + C2

1

r
T θ2

≤ C1
1

T θ1
‖x− y‖H−1 + C2

1

r
tθ20

= C1
1

T θ1
‖x− y‖H−1 + C̃2

1

r
‖x− y‖

θ2
θ1+θ2

H−1

≤ C(T,R, θ1, θ2, r)‖x− y‖
θ2

θ1+θ2

H−1

for a constant C ≡ C(T,R, θ1, θ2, r) ≡ C(R, θ1, θ2, r). Combining all the estimates above
we deduce that

‖P1(x)− P1(y)‖TV ≤ C(R)‖x− y‖
θ2

θ1+θ2

H−1 ,

which completes the proof.
□

In order to use Krylov-Bogoliubov method to prove the existence of an invariant
measure, the H−1 uniform estimate is not enough. We need to find a space compactly
embedded in H−1 where the solution is bounded in probability. We make use of the
integrability on a smaller space, which is compactly embedded in H−1. Thus we have

Theorem 3.28. For every x ∈ V −1
0 , there exists a probability Borel measure νx on V −1

0

such that νx is an invariant measure for the semigroup {Pt, t ≥ 0} on V −1
0 .
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Proof By (3.23) and a similar argument as in the proof of [TW16, Corollary 3.10] we
have that

sup
x∈V −1

0

sup
t>0

(t ∧ 1)E‖X(t, x)‖2H−1 <∞. (3.52)

By the uniqueness of the solution, we know X(t, x) = Zt−1,t + Yt−1,t, where Zs,t :=∫ t
s
e−(t−r)A2/2BdWr and Ys,r, r ≥ t− 1 solves the equation

dYs,r
dr

= −1

2
A2Ys,r +

1

2
A

3∑
k=0

Ck
3Y

3−k
s,r : Zs,r

k :,

Ys,s = X(s, x).

(3.53)

Applying Theorem 3.7 with Yt,r replacing Yr we have

E
∫ t+1

t

‖Yt,r‖2H1dr ≲ 1 + E‖Yt,t‖2H−1 = 1 + E‖X(t, x)‖2H−1 .

Combining this with (3.52) we deduce that for α ∈ (0, 1),

E
∫ t+1

t

‖X(s, x)‖2C−αds ≤ E
∫ t+1

t

‖Yt,s‖2H1ds+ E
∫ t+1

t

‖Zt,s‖2C−αds ≲ 1 +
1

1 ∧ t
,

where we used a similar argument as in the proof of [TW16, Theorem 2.1] in the last
inequality. Then we obtain that for t ≥ 1

E
∫ t

1

‖X(s, x)‖2C−αds ≲ t.

Moreover, by (3.22) we have

E
∫ 1

0

‖Ys‖2H1ds ≲ 1 + ‖x‖2H−1 .

Thus for t ≥ 1∫ t

0

E‖X(s, x)‖2C−αds ≤
∫ 1

0

E‖X(s, x)‖2C−αds+

∫ t

1

E‖X(s, x)‖2C−αds ≲ 1 + ‖x‖2H−1 + t.

By Chebyshev’s inequality, for any K > 0

P(‖X(t, x)‖C−α > K) ≤ 1

K2
E‖X(t, x)‖C−α .

Thus there exists a constant C > 0, such that∫ t

0

P(‖X(s, x)‖C−α > K)ds ≤ C

K2

∫ t

0

E‖X(s, x)‖2C−αds

≤ C

K2
(1 + ‖x‖2H−1 + t).

Letting Rt(x, ·) = 1
t

∫ t
0
Ps(x, ·)ds, for K2

ε := C
ε
we get

Rt(f ∈ C−α ∩ V 1
0 : ‖f‖C−α > Kε) ≤ Rt(f ∈ V 1

0 : ‖f‖C−α > Kε) ≤ (1 +
1 + ‖x‖H−1

t
)ε.
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By [Tri06, Proposition 4.6] we know that {f ∈ C−α ∩ V 1
0 : ‖f‖C−α > Kε} is a compact

subset of V −1
0 since the embedding C−α ⊂ V −1 is compact. This implies the tightness

of {Rt}t≥0 in V −1
0 . By the Krylov-Bogoliubov existence theorem (see [DPZ96, Corollary

3.1.2]), there exists a sequence tk ↗ ∞ and a measure νx such that Rtk → νx weakly in
V −1
0 and νx is an invariant measure for the semigroup {Pt}t≥0.

□
To prove the exponential mixing property, we make use of the irreducibility of Z and

a uniform estimate, which is slightly different from that in the proof of [TW16, Theorem
6.3].

Theorem 3.29. There exists a constant λ ∈ (0, 1) and T0 ≥ 0 such that

‖Pt(x)− Pt(y)‖TV ≤ 1− λ,

for every x, y ∈ V −1
0 , t ≥ T0 + 1.

Proof From (3.23) we know that for any fixed r > 0, there exist T0,M > 0 which are
independent of ω, x, such that for any initial value x ∈ V −1

0 , we have that {ω : |||Z|||T0 ≤
M} ⊂ {‖Y (T0)‖V −1

0
< r

2
} ∩ {‖Z(T0)‖V −1

0
< r

2
}.

By Theorem 3.27 for every a ∈ (0, 1) there exists r ≡ r(a) > 0 such that for every
x, y ∈ B̄r(0) and t ≥ 1

‖Pt(x)− Pt(y)‖TV ≤ 1− a, (3.54)
where Br(u) := {x ∈ V −1

0 : ‖x−u‖V −1
0

< r}. Then by (3.23) for any initial value x ∈ V −1
0 ,

there exists b ≡ b(r) ∈ (0, 1) such that

P(‖X(T0)‖V −1
0

≤ r) ≥ P
(
{‖Y (T0)‖V −1

0
≤ r

2
} ∩ {‖Z(T0)‖V −1

0
≤ r

2
}
)

≥ P(|||Z|||T0 ≤M)

≥ b,

(3.55)

where in the last step we used the irreducibility of the law of Z. Here we omit the proof
of the irreducibility of Z, since it is the same as that of [TW16, Theorem 6.3]. Moreover,
by (3.55) for any r > 0

inf
x∈V −1

0

PT0(x, B̄r(0)) ≥ b. (3.56)

By Markov property, for any Φ ∈ Cb(V
−1
0 ), t ≥ T0 + 1, and x, y ∈ B̄r(0) we have that

|PtΦ(x)− PtΦ(y)| = |E [Pt−T0Φ(X(T0;x))− Pt−T0Φ(X(T0; y))]|

=

∣∣∣∣∫ [Pt−T0Φ(x̃)− Pt−T0Φ(ỹ)]PT0(x, dx̃)PT0(y, dỹ)

∣∣∣∣
≤‖Φ‖L∞PT0(x)⊗ PT0(y)

((
B̄r(0)× B̄r(0)

)c)
+ ‖Φ‖L∞

∫
B̄r(0)×B̄r(0)

‖Pt−T0(x̃)− Pt−T0(ỹ)‖TV PT0(x, dx̃)PT0(y, dỹ).

This implies that

‖Pt(x)− Pt(y)‖TV ≤ PT0(x)⊗ PT0(y)
((
B̄r(0)× B̄r(0)

)c)
+ (1− a)PT0(x)⊗ PT0(y)

(
B̄r(0)× B̄r(0)

)
≤ 1− aPT0(x, B̄r(0))PT0(y, B̄r(0))

≤ 1− ab2,
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where we used (3.54) in the first inequality and (3.56) in the last inequality. Thus we can
complete the proof by setting λ = ab2.

□
The following corollary gives the exponential convergence to a unique invariant mea-

sure.

Corollary 3.30. There exists a unique invariant measure ν̄ for the semigroup {Pt}t≥0

such that
‖Pt − ν̄‖TV ≤ (1− λ)

⌊ t
T0+1

⌋‖δx − ν̄‖TV .,
for every x ∈ V −1

0 , t ≥ T0 + 1. Moreover, ν̄ = ν.

Proof The first result follows from the proof of [TW16, Corollary 6.6]. In fact, for any
probability measures µ1, µ2 on V −1

0 , denote M(dx, dy) := µ1(dx)µ2(dy). Note that

‖µ1Pt − µ2Pt‖TV ≤ 1

2
sup

∥Φ∥L∞≤1

∫∫
|PtΦ(x)− PtΦ(y)|M(dx, dy),

where µPt(dx) :=
∫
Pt(y, dx)µ(dy). Thus by Theorem 3.29, for t ≥ T0 + 1,

‖µ1Pt − µ2Pt‖TV ≤ (1− λ)
(
1−M

({
(x, x) : x ∈ V −1

0

}))
.

By using the characterization of the total variation distance in the transportation theory
(cf. [Vil09, Section 1])

‖µ1 − µ2‖TV = 2 inf
µ1,µ2

{
1−M

({
(x, x) : x ∈ V −1

0

})
:M(dx, dy) := µ1(dx)µ2(dy)

}
.

We obtain that
‖µ1Pt − µ2Pt‖TV ≤ (1− λ) ‖µ1 − µ2‖TV .

By Theorem 3.28, for x ∈ V −1
0 , νx is an invariant measure. Thus we have

‖νx − νy‖TV = ‖νxPt − νyPt‖TV ≤ (1− λ)‖νx − νy‖TV.

This implies that νx = νy for any x, y ∈ V −1
0 i.e. {Pt : t ≥ 0} has a unique invariant

measure ν̄. Moreover, for t ≥ T0 + 1,

‖Pt(x)− ν̄‖TV ≤ (1− λ) ‖Pt−T0−1(x)− ν̄‖TV ,

which implies the first assertion.
For the second assertion, by Corollary 3.18, ν is an invariant measure of X. Hence

ν̄ = ν. □

Remark 3.31. In the following we give a simple and short proof for exponential conver-
gence by the theory of Dirichlet forms.

Similarly to [DPDT04], by comparing the two Dirichlet forms for Cahn-Hilliard equa-
tion and the dynamical Φ4

2 model, we can obtain the spectral gap of equation (3.1). Indeed,
by the same arguments in [RZZ17b] and [TW16] we know that ν is also the invariant mea-
sure for the solution to the dynamical Φ4

2 model. We denote the Dirichlet form associated
with the dynamical Φ4

2 model by (Λ̄, D(Λ̄)), i.e.

Λ̄(f, g) =
1

2

∫
E

〈Df,Dg〉L2dν, f, g ∈ D(Λ̄),
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where D denotes the gradient operator in L2(T2) (see [RZZ17b]). In [TW16] the expo-
nential convergence for the dynamical Φ4

2 model in total variation is proved. This implies
the exponential convergence in L2(E, ν)-norm. By [Wan06, Theory 1.1, Example 1.1.2]
this is equivalent to the Poincaré inequality∫

f 2dν − (

∫
fdν)2 ≤ CΛ̄(f, f), f ∈ D(Λ̄).

From the proof of Theorem 3.15 we know that

Λ(f, f) =
1

2

∑
k

∫
| ∂f
∂hk

|2dν =
1

2

∑
k

λk

∫
| ∂f
∂ek

|2dν ≥ 1

2

∑
k

∫
| ∂f
∂ek

|2dν = Λ̄(f, f),

where hk =
√
λkek, {hk}k∈Z2\{(0,0)} is an orthonormal basis of V −1

0 . Then by [Wan06,
Theory 1.1, Example 1.1.2] we have

‖Ptf −
∫
fdν‖L2(E,ν) ≤ e−

t
C ‖f −

∫
fdν‖L2(E,ν).



Chapter 4

Sharp interface limit of stochastic
Cahn-Hilliard equation with singular
noise

In chapter 4 we obtain the convergence results arising in the study of the sharp interface
limit, as ε↘ 0, of the solutions to the stochastic Cahn-Hilliard equation on D := (0, 1)2,

∂tu
ε = ∆vε + εσẆt,

vε = −ε∆uε + 1

ε
f(uε),

uε(0) = z,

(4.1)

with Neumann boundary conditions,
∂uε

∂n
=
∂vε

∂n
= 0 on ∂D. (4.2)

Here f(u) = F ′(u) and F (u) = 1
4
(u2−1)2 is the double-well potential , σ > 0 is a constant,

and Ẇ is a singular noise which represents the space-time white noise in Section 4.2 and
the conservative noise in Section 4.4.

In the case of conservative noise, similarly as in Chapter 3, the nonlinear term is
ill-defined since the solutions are expected to be distributions. Thus we consider the
following renormalized equation duε = ∆(−ε∆uε + 1

ε
: f(uε) :)dt+ εσBdW,

uε(0) = z ∈ H−1,
(4.3)

with Neumann boundary conditions,
∂uε

∂n
=
∂∆uε

∂n
= 0 on ∂D, (4.4)

where : f(uε) :=: f(φε + Z̄ε) : is the Wick power defined in (4.46).
Equation (4.3) is also the limit of the following approximate equation:

duε,h = ∆

(
−ε∆uε,h + 1

ε

(
f(uε,h)− 3cεh,tu

ε,h
))

dt+ εσ∇ · dW h
t , (4.5)

where 3cεh,tu
ε,h is the renormalization term (see (4.42)-(4.44)). As h → 0, uε,h converges

to uε, which is the unique solution to equation (4.3).

60
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4.1 Notations and preliminaries
Let D := (0, 1)2, DT := (0, T ) × D. In this chapter, we always use 〈·, ·〉 to denote the
L2(D)-inner product. For any E ⊂ D, we denote by 1E the characteristic function of E,
i.e.

1E(x) =

{
1 if x ∈ E,

0 if x 6∈ E.

We consider the Neumann Laplacian operator ∆ on L2(D) with domain

D(∆) = {u ∈ H2(D) :
∂u

∂n
= 0 on ∂D}.

The operator −∆ is self-adjoint positive and has compact resolvent. It possesses a basis
of eigenvectors {ek}k∈Z2 which is orthonormal in L2(D). In fact for k = (k1, k2) ∈ Z2,
ek(x) is given by

e0(x) := 1, e(k1,0)(x) =
√
2 cos πk1x1, e(0,k2)(x) =

√
2 cos πk2x2, ,

ek(x) := 2 cos πk1x1 · cos πk2x2, k1k2 6= 0.
(4.6)

It is associated with the eigenvalues {λk}, where λk ' |k|2.
We also introduce a notation for the average of g ∈ L2(D):

m(g) := 〈g, e0〉.

For any α ∈ R, we define V α as the closure of C∞(D) under the norm

‖g‖2V α := m(g)2 +
∑
k

λαk 〈g, ek〉2.

It is easy to see that (V α, ‖ · ‖V α) is a Hilbert space and V α ' Hα, where Hα is the
classical Sobolev space on domain D which can be defined as the closure of C∞(D) under
the norm

‖g‖2Hα =
∑
k∈Z2

(1 + λk)
α〈g, ek〉2.

In the rest of this chapter, we use the notation Hα to represent V α for simplicity.
Moreover for any s, α ∈ R, we can define a bounded operator (−∆)s : Hα → Hα−2s

by:
(−∆)su =

∑
k∈Z2\{(0,0)}

λskukek,

where u =
∑

k ukek ∈ Hα.
We also set

Hα
0 := {g ∈ Hα : 〈g, e0〉Hα = 0},

where 〈·, ·〉Hα denote the inner product in Hα. Moreover we denote L2
0 := H0

0 .
Finally, as what we mentioned in Introduction, the method in this chapter is heavily

relied on Theorem 4.2, which holds under the assumption that the smooth solution to
(1.17) exists. We assume Γ00 ∈ C3+α for some α ∈ (0, 1), then

Theorem 4.1. ( [CHY96, Theorem 1.1]). For any Γ00 ∈ C3+α for some α ∈ (0, 1),
there exists a T > 0, such that (1.17) has a unique local solution {(v,Γ)}t∈[0,T ], where
Γ ∈ C

3+α
3 ([0, T ]; C3+α)
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Now we fix Γ00 and T in the following of this chapter. Then by [ABC94, Theorem
2.1], we have that

Theorem 4.2. Let (v,Γt) be a classical smooth solution to (1.17) in Theorem 4.1. For
any K > 0 there exists a pair (uεA, v

ε
A) of solutions to (1.16), such that

‖rεA‖C(DT ) ≲ εK−2.

Moreover, it holds that
‖vεA − v‖C(DT ) ≲ ε,

where v is the solution to (1.17) below. In particular, uεA and vεA are uniformly bounded.
Finally for x away from Γt, i.e. d(x,Γt) > Cε, where d(x,Γt) is the distance of x to

Γt and C is some constant which is independent to ε,

|uεA(t, x)− 1| ≲ ε or |uεA(t, x) + 1| ≲ ε.

4.2 The sharp interface limit for space-time white
noise

Let W = W be an L2
0(D)-cylindrical Wiener process on a fixed stochastic basis (Ω,F ,P).

Theorem 4.3. ([DPD96, Theorem 2.1])For P− a.s. ω, there exists a unique solution uε

to equation (4.1) in C([0, T ];H−1).

We rewrite the equation (4.1) asdu
ε = ∆vεdt+ εσdW in DT ,

vε =
1

ε
f(uε)− ε∆uε in DT .

(4.7)

We assume that the interface has been formed initially. That is, there exists a smooth
closed curve Γ00 ⊂⊂ D such that uε(0) ≈ −1 in D−, the region enclosed by Γ00, and
uε(0) ≈ 1 in D+ := D \ (Γ00 ∪ D−).

Our main theorem will show that as ε→ 0, vε tends to v, which, together with a free
boundary Γ ≡ ∪0≤t≤T (Γt × {t}), satisfies the deterministic Hele-Shaw problem (1.17).

We present now the following spectral estimate which is useful in our proof.

Proposition 4.4. ([ABC94, Proposition 3.1]) Let uεA be the approximation given in
Theorem 4.2. Then for all w ∈ H1 satisfying Neumann boundary conditions such that∫
D w = 0, the following estimate is valid

ε‖w‖2H1 +
1

ε

∫
f ′(uεA)w

2 ≥ −C0‖w‖2H−1 .

We consider the residual
Rε := uε − uεA, (4.8)

where uε is the unique solution to (4.7). We show bounds for this error Rε in our main
theorem below.
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Theorem 4.5. (Main Theorem) Let uεA be defined in Theorem 4.2 with large enough
K and let uε be the unique solution to (4.1) with initial value uε(0) = uεA(0). For any
σ∗ > δ > 0,  γ > 13,

σ∗ >
1

3
γ +

13

3
+ 2δ,

where σ∗ = σ − 1
4

is introduced in Lemma 4.8, there exist a generic constant C > 0 and
a constant Cδ > 0 for all δ > 0 such that the following estimates hold

P
[
‖Rε‖L3(DT ) ≤ Cε

γ
3

]
≥ 1− Cδε

δ,

P
[
‖Rε‖2L∞(0,T ;H−1) ≤ C

(
εγ−1 + εσ

∗−1−2δ+ γ
3

)]
≥ 1− Cδε

δ,

P
[
‖vε − vεA‖2L1(0,T ;H−2) ≤ Cε

γ
3
−1
]
≥ 1− Cδε

δ.

Remark 4.6. Since δ can be as small as enough, the best choice is σ > 107
12

.

Corollary 4.7. There exists a subsequence {εk}∞k=1 such that for P− a.s. ω ∈ Ω

lim
k→∞

uεk = −1 + 21Et in L3(DT0),

where Et is the region enclosed by Γt.

Proof The local uniqueness of (1.17) can be obtained directly by [CHY96, Theorem 1.1].
Then by the construction of uεA in [ABC94], for uniformly t ∈ [0, T0]

lim
ε→0

uεA = −1 + 21Et uniformly on compact subsets.

Moreover all the results in Theorem 4.5 hold if replacing T by T0.
For any η > 0, choosing ε small enough such that Cε γ

3 < η, then we have

P
[
‖Rε‖L3(DT ) > η

]
≤ P

[
‖Rε‖L3(DT ) > Cε

γ
3

]
≤ Cδε

δ,

which implies that ‖Rε‖L3 converge in probability to 0. Thus there exists a subsequence
(still denoted as ε), such that

lim
ε→0

‖Rε‖L3(DT ) = 0 P− a.s..

Since Rε = uε − uεA, we obtain the assertion.
□

4.3 The proof of the Main Theorem
4.3.1 The decomposition of the equation for the error
Combining (4.7), (1.16) and (4.8) we know that Rε satisfies the following equation:

dRε = −ε∆2Rεdt+
1

ε
∆(f(uεA +Rε)− f(uεA)) dt+∆rεAdt+ εσdW,

∂Rε

∂n
=
∂∆Rε

∂n
= 0 on ∂D.

(4.9)
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Let Zε
t := εσ

∫ t
0
e−(t−s)ε∆2

dWs, which is the mild solution to the linear equation: dZε = −ε∆2Zεdt+ εσdW,

∂Zε

∂n
=
∂∆Zε

∂n
= 0 on ∂D.

(4.10)

Then Y ε := Rε − Zε satisfies:
dY ε = −ε∆2Y εdt+

1

ε
∆(f ′(uεA)(Y

ε + Zε) +N (uεA, Y
ε + Zε)) dt+∆rεAdt,

∂Y ε

∂n
=
∂∆Y ε

∂n
= 0 on ∂D.

(4.11)

where N (u, v) := f(u+ v)− f(u)− f ′(u)v.
Moreover, we define a stopping time Tε by:

Tε := T ∧ inf{t > 0 :

∫ t

0

‖Y ε
s ‖3L3ds > εγ}, (4.12)

for some γ > 1.

4.3.2 Estimate for Zε

Lemma 4.8. For any δ > 0, there exists a constant Cδ > 0, such that

P[Ωδ] > 1− Cδε
δ,

where C1 > 0 is a universal constant, Ωδ := {‖Z‖C(DT ) ≤ C1ε
σ∗−2δ}, and σ∗ := σ − 1

4
.

Proof By the factorization method in [DP04] we have that for κ ∈ (0, 1)

Zε(t) = εσ
sin(πκ)

π

∫ t

0

(t− s)κ−1〈M(ε(t− s), x, ·), U(s)〉ds,

where M(εt, x, y) is the kernel of the semigroup {e−εt∆2} and

U ε(s, ·) =
∫ s

0

(s− r)−κe−ε(s−r)∆
2

dWr.

Similarly to the proof of Lemma 2.12 in [DP04], we have that

E
[
‖Zε(t)‖C(DT )

]
≲T ε

σE
[
‖U ε‖L2p(DT )

]
. (4.13)

It suffices to estimate E
[
‖U ε‖L2p(DT )

]
for p > 1

2κ
.

In fact, we have that

E
[
‖U ε(s)‖2pL2p(DT )

]
≲
∫
DT

E

[∣∣∣∣∫ s

0

(s− r)−κe−ε(s−r)∆
2

dWr

∣∣∣∣2p
]
dsdx

≲
∫
DT

(
E

[∣∣∣∣∫ s

0

(s− r)−κe−ε(s−r)∆
2

dWr

∣∣∣∣2
])p

dsdx.

(4.14)
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Here we used that U ε(x) belongs to the first order Wiener-chaos and Gaussian hypercon-
tractivity (cf. [Nua13, Section 1.4.3] and [Nel73]) in the second inequality. Moreover, we
obtain that

E

[∣∣∣∣∫ s

0

(s− r)−κe−ε(s−r)∆
2

dWr

∣∣∣∣2
]
≲
∫ s

0

∫
D
(s− r)−2κM(ε(s− r), x, y)2dyds. (4.15)

Since M(t, x, y) is the kernel of e−t∆2 , we have that for any g ∈ L2∫
D
M(t, x, y)g(y)dy = e−t∆

2

g(x) '
∑
k

〈g, e−t|k|4ek〉ek(x).

Hence
M(t, x, y) '

∑
k

e−t|k|
4

ek(x)ek(y). (4.16)

where ek is defined in (4.6). Note that ek(x)ek(y) = 1
2
(ek(x − y) + ek(x + y). Thus we

obtain

M(t, x, y) '
∑
k

e−t|k|
4

(ek(x− y) + ek(x+ y)) := P (t, x− y) + P (t, x+ y), (4.17)

Then (4.15) becomes

E

[∣∣∣∣∫ s

0

(s− r)κe−ε(s−r)∆
2

dWr

∣∣∣∣2
]
≲
∫ s

0

∫
D
(s−r)−2κ

(
P (ε(s− r), x− y)2 + P (ε(s− r), x+ y)2

)
dyds.

(4.18)
By [SW72, p282, (c)], we have that

|P (t, x)| ≲ |x|−2e
− t

|x|4 ≲ t−
η
4 |x|−2+η, ∀η ∈ [0, 2]. (4.19)

Then taking (4.18) into (4.19), we deduce that

E

[∣∣∣∣∫ s

0

(s− r)κe−ε(s−r)∆
2

dWr

∣∣∣∣2
]
≲ ε−

η
2

∫ s

0

∫
D
(s− r)−2κ− η

2

(
|x+ y|−4+2η + |x− y|−4+2η

)
dyds

≲ ε−
η
2 s1−2κ− η

2 |x|−2+2η.
(4.20)

Here we require that
1− 2κ− η

2
> 0, −2 + 2η > 0,

that is
1 < η < 2− 4κ, (4.21)

which can be obtained by choosing small enough κ > 0. Hence by (4.13) and (4.14), we
obtain that for any p ≥ 1

E
[
‖U ε‖L2p(DT )

]
≲ εσ−

η
4 .

This implies that for any 2 > η > 1,

E
[
(‖Zε‖C(DT ))

]
≲ εσ−

η
4 . (4.22)

Hence we can obtain our results by Chebyshev’s inequality.
□
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4.3.3 Local-in-time estimate for Y ε up to Tε on the set Ωδ

Now we fix an ω ∈ Ωδ, thus by Lemma 4.8, ‖Zε(ω)‖C(DT ) ≲ εσ
∗−2δ. All estimates in this

section in on Ωδ.
By taking inner product with (−∆)−1Y ε in both side of equation (4.11) we have that

1

2

d‖Y ε‖2H−1

dt
+ ε‖Y ε

t ‖2H1 = −1

ε
〈f ′(uεA)(Y

ε+Zε)+N (uεA, Y
ε+Zε), Y ε〉− 〈rεA, Y ε〉. (4.23)

In the following, we estimate the right hand side of (4.23) separately:
Using Proposition 4.4 we have that

− 1

ε
〈f ′(uεA)Y

ε, Y ε〉 ≤ ε‖Y ε‖2H1 + C0‖Y ε‖2H−1 . (4.24)

For −1
ε
〈f ′′(uεA)(Y

ε, Zε〉 by Theorem 4.2 we know that uεA is uniformly bounded in DT .
Thus we have that

1

ε
|〈f ′′(uεA)Y

ε, Zε〉| ≲ 1

ε
‖Y ε‖L3‖Zε‖

L
3
2
≲ εσ

∗−1−2δ‖Y ε‖L3 , (4.25)

where we used Hölder’s inequality in the first inequality and Lemma 4.8 in the last
inequality.

By [ABC94, Lemma 2.2], we have that vN (u, v) ≥ −C|v|3. Then

−1

ε
〈N (uεA, Y

ε + Zε), Y ε〉 = −1

ε
〈N (uεA, Y

ε + Zε), Y ε + Zε〉+ 1

ε
〈N (uεA, Y

ε + Zε), Zε〉

≲ 1

ε
‖Y ε + Zε‖3L3 +

1

ε
|〈N (uεA, Y

ε + Zε), Zε〉|

≲ 1

ε
‖Y ‖3L3 + ε3(σ

∗−2δ)−1 +
1

ε
|〈N (uεA, Y

ε + Zε), Zε〉|,
(4.26)

where we used Lemma 4.8 in the last inequality.
For |〈N (uεA, Y

ε+Zε), Zε〉|, by the Taylor expansion, N (uεA, Y
ε+Zε) = f ′′(uεA+θ(Y

ε+
Zε))(Y ε + Zε)2 = 6(uεA + θ(Y ε + Zε))(Y ε + Zε)2, where θ ∈ (0, 1). Then we have

|〈N (uεA, Y
ε + Zε), Zε〉| ≲ εσ

∗−2δ‖N (uεA, Y
ε + Zε)‖L1

≲ εσ
∗−2δ(‖Y ε + Zε‖3L3 + ‖Y ε + Zε‖2L2)

≲ ε3(σ
∗−2δ) + ε4(σ

∗−2δ) + εσ
∗−2δ‖Y ε‖2L3 + εσ

∗−2δ‖Y ε‖3L3 ,

(4.27)

where we used the uniform boundness of uεA in the second inequality and Lemma 4.8 in
the first and the last inequality.

For |〈rεA, Y ε〉|, by Theorem 4.2 we have

|〈rεA, Y ε〉| ≲ εK−2‖Y ε‖L1 ≲ εK−2‖Y ε‖L3 . (4.28)

Let σ∗ > δ, ε < 1, δ be small enough and K large enough. Collecting (4.23)-(4.28)
together, by using Hölder’s inequality we have

d‖Y ε(t)‖2H−1

dt
≲ ‖Y ε‖2H−1 +

1

ε
‖Y ε‖3L3 + εσ

∗−1−2δ(‖Y ε‖L3 + ‖Y ε‖2L3 + ‖Y ε‖3L3) + ε3(σ
∗−2δ)−1.
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Then for any t ≤ Tε we have

‖Y ε(t)‖2H−1 ≲
∫ t

0

et−s
(
1

ε
‖Y ε‖3L3 + εσ

∗−1−2δ‖Y ε‖L3 + ε3(σ
∗−2δ−)−1

)
ds

≲T
1

ε

∫ t

0

‖Y ε‖3L3dτ + εσ
∗−1−2δ

(∫ t

0

‖Y ε‖3L3dτ

) 1
3

+ ε3(σ
∗−2δ)−1

≲ εγ−1 + εσ
∗−1−2δ+ γ

3 + ε3(σ
∗−2δ)−1.

(4.29)

To estimate L2(0, Tε;H
1) norm of Y ε, we use the estimate presented in [ABC94, p.171]

−1

ε

∫ t

0

∫
D
f ′′(uεA)g

2dxds ≲ ε−
2
3 (

∫ t

0

‖g‖3L3ds)
2
3 , ∀g ∈ L3.

Then
− 1

ε

∫ t

0

〈f ′′(uεA)Y
ε, Y ε〉ds ≤ ε−

2
3 (

∫ t

0

‖Y ε‖3L3ds)
2
3 ≲ ε

2
3
(γ−1). (4.30)

Combining (4.23), (4.25)-(4.28) and (4.30) we have for any t ≤ Tε∫ t

0

‖Y ε‖2H1ds ≲ ε
2
3
γ− 5

3 + εσ
∗−2−2δ+ γ

3 + ε3(σ
∗−2δ)−2 + εγ−2. (4.31)

4.3.4 Final step: Globalization Tε ≡ T

Let
γ1 := (γ − 1) ∧ (3(σ∗ − 2δ)− 1) ∧ (σ∗ − 1− 2δ +

γ

3
),

γ2 := (
2

3
γ − 5

3
) ∧ (3(σ∗ − 2δ)− 2) ∧ (σ∗ − 2− 2δ +

γ

3
) ∧ (γ − 2) = (

2

3
γ − 5

3
) ∧ (γ1 − 1),

then we have for any t ≤ Tε

sup
s∈[0,t]

‖Y ε‖2H−1 ≲ εγ1 ,

∫ t

0

‖Y ε‖2H1ds ≲ εγ2 . (4.32)

We use the Sobolev’s embedding of Hβ into Lp with β := 2(1
2
− 1

p
) = p−2

p
. Then by

the interpolation we have

‖Y ε‖L3 ≲ ‖Y ε‖
H

1
3
≲ ‖Y ε‖

2
3

H1‖Y ε‖
1
3

H−1 .

For any t ≤ Tε by (4.32) we have∫ t

0

‖Y ε‖3L3ds ≲ sup
t∈[0,t]

‖Y ε‖H−1

∫ t

0

‖Y ε‖2H1ds

≲ ε
γ1
2
+γ2 .

(4.33)

Then we have that for ε small enough, Tε = T , if γ < γ1
2
+ γ2.

Let γ1 > 2
3
γ − 2

3
such that γ2 = 2

3
γ − 5

3
, then we only need

γ1 >
2

3
γ +

10

3
.
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i.e. 
γ − 1 >

2

3
γ +

10

3

3(σ∗ − 2δ)− 1 >
2

3
γ +

10

3

σ∗ − 1− 2δ +
γ

3
>

2

3
γ +

10

3
.

A direct calculation yields that  γ > 13

σ∗ >
1

3
γ +

13

3
+ 2δ,

(4.34)

which also implies γ1 = (γ − 1) ∧ (σ∗ − 1− 2δ + γ
3
).

Since Rε = Y ε + Zε, by Lemma 4.8 we have for any ω ∈ Ωδ

‖Rε(ω)‖L3(DT ) ≲ ε
γ
3 + εσ

∗−2δ ≲ ε
γ
3 ,

‖Rε(ω)‖2L∞(0,T ;H−1) ≲ εγ−1 + εσ
∗−1−2δ+ γ

3 .
(4.35)

Finally, note that

vε − vεA = ε∆(Y ε + Zε)− 1

ε
(f(uε)− f(uεA)) .

Therefore, by using the embedding C(D) ⊂ L2

‖∆(Y ε + Zε)‖L1(0,T ;H−2) ≲ ‖Y ε‖L2(0,T ;L2) + ‖Zε‖C(DT ) ≲ ε
γ
3 + εσ

∗−2δ.

Moreover, similarly to what we do above

f(uε)− f(uεA) = f ′(uεA)R
ε +N (uεA, R

ε)

= f ′(uεA)R
ε + f ′′(uεA + θ(Rε))(Rε)2

= f ′(uεA)R
ε + 6(uεA + θ(Rε))(Rε)2.

Since {uεA} are uniformly bounded in ε and θ ∈ [0, 1], we have that

‖f(uε)− f(uεA)‖L1(0,T ;H−2) ≲ ‖f(uε)− f(uεA)‖L1(DT )

≲ ‖(Rε)3‖L1(DT ) + ‖(Rε)2‖L1(DT ) + ‖Rε‖L1(DT )

≲ ‖Rε‖L3(DT ) + ‖Rε‖2L3(DT ) + ‖Rε‖3L3(DT )

≲ ε
γ
3 + εσ

∗−2δ

≲ ε
γ
3 ,

where we use the Sobolev embedding L1 ⊂ H−2 in the first inequality.
Hence we deduce that

‖vε − vεA‖L1(0,T ;H−2) ≲ ε
γ
3
+1 + ε

γ
3
−1

≲ ε
γ
3
−1.

(4.36)

Combining it with (4.34), we obtain our results stated in the Theorem 4.5.
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4.4 Sharp interface limit for conservative noise
In this section, we will consider the case that W = ∇ ·W , where W is an L2

0(D,R2)-
cylindrical Wiener process on stochastic basis (Ω,F ,P). For g ∈ L2

0(D,R2), we denote
its component functions by g1, g2 ∈ L2

0(D), i.e. g(x) = (g1(x), g2(x)),∀x ∈ D. There
exist two independent L2

0(D)-cylindrical Wiener processes W 1 and W 2 such that W =
(W 1,W 2).

Following a similar argument as in [RZZ17b, RYZ18], in this case, the solution to
(4.3) is distribution-valued. Thus we consider the approximate equation (4.5) instead.

4.4.1 Existence and uniqueness of solutions to equation (4.3)
In order to consider the convolution of the noise with an approximate delta function, we
need to extend the noise to the whole space R2. Considering the Neumann boundary
condition, it is reasonable to extend it evenly to [−1, 1]2 first, then do a periodical exten-
sion to the whole space. That is, for any function g on D which satisfies the Neumann
boundary condition, we view it as a function ḡ on R2 by

ḡ(x) := g(|x1+k1|, |x2+k2|), ∀x = (x1, x2) ∈ R2, ∀k = (k1, k2) ∈ Z2 when x+k ∈ [−1, 1]2.

Moreover, for x ∈ R2 and t > 0, define

M̄(t, x) = −F−1(e−
t
2
|π·|4)(x),

where F−1 is the inverse Fourier transformation on R2. By Poisson summation formula,
for any (x, y) ∈ D2

M(t, x, y) :=
∑
k∈Z2

(
M̄(t, x+ y + 2k) + M̄(t, x− y + 2k)

)
is the kernel of e−t∆2 on D, where ∆ is the Neumann Laplacian operator on D. A direct
calculation yields that for any g ∈ L2(D)∫

D
M(t, x, y)g(y)dy =

∫
R2

M̄(t, x− y)ḡ(y)dy. (4.37)

Define

K(t, x, y) := −∇yM(t, x, y) =
∑
k∈Z2

(
K̄(t, x+ y + 2k)− K̄(t, x− y + 2k)

)
,

where K̄(t, x) = (K̄1(t, x), K̄2(t, x)) := −∇M̄(t, x), thus for any t > 0, K̄j(t, ·) is the
inverse Fourier transformation of the function η → −πiηje−

t
2
|πη|4 , i.e.

K̄j(t, x) := −F−1(πiηje
− t

2
|πη|4)(x).

We use S(R2) to denote the Schwartz function on R2, S ′(R2) to denote the Schwartz
distribution on R2 and S′(R2)〈·, ·〉S(R2) to denote the dual between S(R2) and S ′(R2). Then
we know that K̄j(t, ·) ∈ S(R2) for any t > 0. Moreover we define Zε by

Zε(t, x) := εσ
∫ t

0

〈K(t− s, x, ·), dWs〉L2(D,R2) = εσ
2∑
j=1

∫ t

0
S′(R2)〈K̄j(t− s, x− ·), dW̄ j

s 〉S(R2).

(4.38)
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Here W̄ = (W̄ 1, W̄ 2), W̄ j, j = 1, 2 is two i.i.d Wiener processes defined by

S′(R2)〈W̄ j, g〉S(R2) = 〈W, g̃〉L2(D),

for any g ∈ S(R2) and g̃ ∈ L2(D) is defined as

g̃(x) :=
∑
k∈Z2

(g(x+ 2k)− g(−x+ 2k)) , x ∈ D.

For simplicity we write

Zε(t, x) = εσ
2∑
j=1

∫ t

0
S′(R2)〈K̄j(t− s, x− ·), dW̄ j

s 〉S(R2) := εσ
∫ t

0
S′〈K̄(t− s, x− ·), dW̄s〉S .

We also denote
Z̄ε := Zε + e−εt∆

2

m(z), (4.39)
where z ∈ H−1, m(z) is defined in Section 4.1. Then Z̄ε is the mild solution to the linear
equation {

dZ̄ε = −ε∆2Z̄ε + εσBdW,

Z̄ε(0) ≡ m(z) ∈ R,

with Neumann boundary conditions,

∂Z̄ε

∂n
=
∂∆Z̄ε

∂n
= 0 on ∂D,

where
D(B) = H1(D,R2), B = div, D(B∗) = H1(D), B∗ = −∇. (4.40)

Let ρh be an approximate delta function on R2 given by

ρh(x) = h−2ρ(
x

h
),

∫
ρ = 1.

Define for any (t, x) ∈ DT

Zε,h(t, x) : = εσ
∫ t

0
S′〈K̄(ε(t− r), x− ·), dW̄ h

s 〉S

= εσ
∫ t

0
S′〈K̄h(ε(t− r), x− ·), dW̄s〉S ,

(4.41)

where W̄ h = W̄ ∗ ρh, and K̄h(t, x) = (K̄1
h(t, x), K̄

2
h(t, x)),

K̄j
h(t, x) =

∫
R2

K̄j(t, x− y)ρh(y)dy.

For fixed ε, h > 0, let φε,h be a solution to the following equation on D
dφε,h

dt
= ∆(−ε∆φε,h + 1

ε
: f(φε,h + Z̄ε,h) :)

φε,h(0) = (z −m(z)) ∗ ρh,
(4.42)
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with ∆ the Neumann Laplacian operator on D. Here : f(φε,h+ Z̄ε,h) : is the Wick power
defined by

: f(φε,h + Z̄ε,h) ::=
3∑

k=0

Ck
3 :
(
Z̄ε,h

)3−k
:
(
φε,h

)k (4.43)

where for any k = 0, 1, 2, 3

:
(
Z̄ε,h

)k
::=

3∑
l=0

Ck
3 :
(
Zε,h

)k−l
:
(
e−εt∆

2

m(z)
)k
,

:
(
Z̄ε,h

)0
: := 1, :

(
Z̄ε,h

)
::=
(
Z̄ε,h

)
, :
(
Z̄ε,h

)2
:=
(
Z̄ε,h

)2 − cεh,t(x),

:
(
Z̄ε,h

)3
: :=

(
Z̄ε,h

)3 − 3cεh,t(x)
(
Z̄ε,h

)
.

and
cεh,t(x) = E

[
Z̄ε,h(t, x)2

]
. (4.44)

Lemma 4.9. ([LR15, Example 5.2.27]) For any ε, h > 0, there exists a unique solution
φε,h ∈ C([0, T ];L2(D)) to equation (4.42).

Since m(z) ∈ R, similar as in the proof in Lemma 3.3 or [MW17, RZZ17b, RYZ18],
for any k = 1, 2, 3, as h → 0, :

(
Z̄ε,h

)k
: converges in C([0, T ], Cα) for any α < 0 whose

limit is denoted as :
(
Z̄ε
)k

:. Here Cα is defined as the Besov space Bα
∞,∞, see Section 2.1

and the reference therein for details.
Then we denote 

dφε

dt
= ∆(−ε∆φε + 1

ε
: f(φε + Z̄ε) :),

φε(0) = z −m(z) ∈ H−1
0 ,

(4.45)

where

: f(φε + Z̄ε) ::=
3∑

k=0

Ck
3 :
(
Z̄ε
)3−k

: (φε)k . (4.46)

Theorem 4.10. ([RYZ18, Theorem 4.4]) For P − a.s. ω, there exists a unique solution
φε to equation (4.45) in C([0, T ];H−1

0 ) for any fixed ε > 0.

Remark 4.11. We note that in Chapter 3 and [RYZ18], we consider the periodical
boundary condition, which is different from the Neumann boundary condition. But by our
extension method as we explained before, a similar proof follows.

In fact, φε = limh→0 φ
ε,h in C([0, T ];H−1

0 ). Let uε,h := φε,h+Zε,h, uε,h also converges
to uε in C([0, T ];H−1), which is the unique solution to (4.3).

4.4.2 The sharp interface limit of equation (4.3)
Similarly as in the proof of Theorem 4.5 we prove that for a suitable choice h(ε), the
solutions to (4.3) will converge to the solution to deterministic Hele-Shaw model (1.17).

The method is a modification of the one in Section 4.3. We consider the residual

Rε,h := uε,h − uεA. (4.47)
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Let Y ε,h = Rε,h − Zε,h, which satisfies

dY ε,h =− ε∆2Y ε,hdt+
1

ε
∆
(
f ′(uεA)(Y

ε,h + Zε,h) +N (uεA, Y
ε,h + Zε,h)

)
dt

−
cεh,t
ε
∆(uεA + Zε,h + Y ε,h) + ∆rεAdt,

(4.48)

where cεh,t is defined in (4.44). For Y ε,h we also have the energy estimate:

1

2

d‖Y ε,h‖2H−1

dt
+ ε‖Y ε,h(t)‖2H1 =− 1

ε
〈f ′(uεA)(Y

ε,h + Zε,h) +N (uεA, Y
ε,h + Zε,h), Y ε,h〉

− 〈rεA, Y ε,h〉+
cεh,t
ε
〈uεA + Y ε,h + Zε,h, Y ε,h〉.

(4.49)
In order estimate Y ε, we still need the estimation of Zε,h and cεh,t. Analogously to

Lemma 4.8 we have

Lemma 4.12. There exists a constant C2 > 0 such that for any 0 < β ≤ 1,

E
[
‖Zε,h‖C(DT )

]
≤ C2ε

σ∗h−2,

where σ∗ = σ − β
4
. Then for any δ > 0, there exists a constant Cδ > 0, such that

P [Ω′
δ] > 1− Cδε

δ,

where Ω′
δ = {‖Zε,h‖C(DT ) ≤ C2ε

σ∗−2δh−2}.

Proof We follow a similar proof as in Lemma 4.8. A factorization formula implies that

Zε,h(t, x) = εσ
sin πκ

π

∫ t

0

(t− s)κ−1〈M(ε(t− s), x− ·), U ε,h(s)〉ds,

where M(t, x, y) is the kernel of e−t∆2 and

U ε,h(s, x) =

∫ t

0

〈(t− r)−κKh(ε(t− r), x, ·), dWs〉L2(D,R2),

where Kh is defined in (4.55). Combined with (4.56), we have that

|Kh(εt, x, y)| ≲ (εt)−
β
4 h−η

(
|x− y|−ζ + |x+ y|−ζ

)
,

where β, ζ, η ≥ 0 and β + ζ + η = 3. Similarly to (4.15)-(4.20) we have that

E
[∣∣U ε,h(s, x)

∣∣2] ≲ ε−
β
2 h−2η

∫ s

0

∫
D
(s− r)−2κ−β

2

(
|x+ y|−2ζ + |x− y|−2ζ

)
dyds

≲ ε−
β
2 h−2ηs1−2κ−β

2 |x|2−2ζ ,

(4.50)

where we require that
1− 2κ− β

2
> 0, ζ < 1.

Similarly to (4.14), we have that

E
[
‖U ε,h‖L2p(DT )

]
≲ εσ−

β
4 h−η.
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Let η = 2 and κ > 0 be small enough such that β < 1− ζ < 2− 4κ, ζ < 1. Similarly
as in the proof of Lemma 2.7 in [DP04], we have that

E
[
‖Zε,h(t)‖C(DT )

]
≲T ε

σE
[
‖U ε,h‖L2p(DT )

]
≲ εσ−

β
4 h−2.

(4.51)

Then by Chebyshev’s inequality, we finish the proof.
□

For cεh,t, we have the following estimate:

Lemma 4.13. There exists a constant C > 0 such that for any (t, x) ∈ DT and any
ε, h ∈ (0, 1),

|cεh,t(x)| ≤ −Cε2σ−1 log h.

Proof Following a similar argument as in (4.16), (4.17) and (4.19), we obtain that for
all g ∈ (g1, g2) ∈ L2(D,R2)∫

D
K(t, x, y)g(y)dy =

∫
D
K1(t, x, y)g1(y)dy +

∫
D
K2(t, x, y)g2(y)dy

'
∑
k

(〈g1, |k1|ek〉+ 〈g2, |k2|ek〉) e−t|k|
4

ek(x).

Hence
K(t, x, y) '

∑
k

|k|e−t|k|4ek(x)ek(y). (4.52)

where ek is defined in (4.6). Note that ek(x)ek(y) = 1
2
(ek(x− y) + ek(x+ y)). Thus we

obtain

K(t, x, y) '
∑
k

|k|e−t|k|4(ek(x− y) + ek(x+ y)) := P2(t, x− y) + P2(t, x+ y). (4.53)

By [SW72, p282, (c)], we have that for any (t, x) ∈ DT ,

|P2(t, x)| ≲ |x|−3e
− t

|x|4 ≲
(
t
1
3 + |x|

)−3

. (4.54)

Thus we obtain for any t ∈ [0, T ], x, y ∈ D,

|K(εt, x, y)| ≲
(
(εt)

1
4 + |x− y|

)−3

+
(
(εt)

1
4 + |x+ y|

)−3

.

We can extend the definition of K(t, x, y) for x, y ∈ R2 with the same form as in
(4.52), and denote

Kh(t, x, y) :=

∫
R2

ρh(z)K(t, x, y − z)dz. (4.55)

Therefore (4.41) becomes

Zε,h(t, x) = εσ
∫ t

0

〈Kh(ε(t− r), x− ·), dWs〉L2(D,R2)
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Then by [Hai14, Lemma 10.17] we have that

|Kh(εt, x, y)| ≲
(
(εt)

1
4 + |x− y|+ h

)−3

+
(
(εt)

1
4 + |x+ y|+ h

)−3

. (4.56)

Then we have that for any (t, x) ∈ DT .

|cεh,t(x)| ≤ ε2σ
∫ t

0

∫
D
|Kε

h(t− r, x, y)|2drdy

≲ ε2σ−1

∫ tε

0

∫
D

(
r

1
4 + |x− y|+ h

)−6

drdy + ε2σ−1

∫ tε

0

∫
D

(
r

1
4 + |x+ y|+ h

)−6

drdy

≲ −ε2σ−1 log h.
(4.57)

□
Now we have the following main result in this section:

Theorem 4.14. Let uε,h be the unique solution to (4.3) and uεA be defined in Theorem
4.2 with large enough K > 0. For some θ > 0 such that εθ ≲ h2, we assume thatγ > 13,

σ >
1

3
γ +

13

3
+ θ.

(4.58)

Then there exist a generic constant C > 0 and a constant Cδ > 0 for all 0 < δ <
σ
2
− 1

6
γ − 13

6
− θ

2
such that the following estimates hold

P
[
‖Rε,h‖L3(DT ) ≤ Cε

γ
3

]
≥ 1− Cδε

δ,

P
[
‖Rε,h‖2L∞(0,T ;H−1) ≤ C

(
εγ−1 + εσ∗−1−2δ−θ)] ≥ 1− Cδε

δ,

P
[
‖vε,h − vεA‖2L1(0,T ;H−2) ≤ Cε

γ
3
−1
]
≥ 1− Cδε

δ.

(4.59)

Proof The proof is similar to Section 4.3.
Again we define a stopping time

T ε,h := T ∧ inf{t > 0 :

∫ t

0

‖Y ε,h(τ)‖3L3dτ > εγ}. (4.60)

Then let t < T ε,h and fix an ω ∈ Ω′
δ. Since

h−2 ≲ ε−θ (4.61)

for some θ > 0. We have that

− log h ≲ −θ
2
log ε ≲ ε−δ, |cεh,t| ≲ ε2σ−1−δ. (4.62)

For cεh,t
ε
〈uεA + Y ε,h + Zε,h, Y ε,h〉 we have that for small enough ε∫ t

0

cεh,t
ε
|〈uεA + Y ε,h + Zε,h, Y ε,h〉|dτ ≲ ε

γ
3
−1cεh,t ≲ ε2σ+

γ
3
−2−δ.
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For the rest terms on the right hand side of (4.49), we follow the proof in Section 4.3
by replacing the estimate for Zε with the estimate of Zε,h in Lemma 4.12. Thus we have
that for small enough ε and t ≤ T ε,h

sup
τ∈[0,t]

‖Y ε,h(τ)‖2H−1dτ ≲ ε2σ+
γ
3
−2−δ + εγ−1 + εσ∗−1−2δ+ γ

3
−θ + ε3(σ∗−2δ−θ)−1.

Also,∫ t

0

‖Y ε,h(τ)‖2H1dτ ≲ ε2σ+
γ
3
−3−δ + ε

2
3
(γ−1)−1 + εσ∗−2−2δ+ γ

3
−θ + ε3(σ∗−2δ−θ)−2 + εγ−2.

Hence we have

sup
τ∈[0,t]

‖Y ε,h(τ)‖2H−1dτ ≲ εγ1 ,

∫ t

0

‖Y ε,h(τ)‖2H1dτ ≲ εγ2 , (4.63)

where

γ1 := (2σ +
γ

3
− 2− δ) ∧ (σ∗ − 1− 2δ − θ +

γ

3
) ∧ (3(σ∗ − 2δ − θ)− 1) ∧ (γ − 1),

γ2 := (γ1 − 1) ∧ (
2

3
γ − 5

3
).

Similarly to (4.33), we have ∫ t

0

‖Y ε,h‖3L3dτ ≲ ε
γ1
2
+γ2 .

In order to prove T ε,N = T for small enough ε, we need to prove γ < 1
2
γ1 + γ2. First we

assume that γ2 = 2
3
γ − 5

3
, i.e.

γ1 >
2

3
γ − 2

3
.

Then 1
2
γ1 + γ2 > γ yields

γ1 >
2

3
γ +

10

3
.

A direct calculation yields thatγ > 13,

σ >
1

3
γ +

13

3
+ 2δ + θ +

β

4
,

which implies that
γ1 = (σ∗ − 1− 2δ − θ +

γ

3
) ∧ (γ − 1).

Since δ, β > 0 can be as small as enough, we can only assume that (4.58) hold and let
0 < 2δ < σ − 1

3
γ − 13

3
− θ.

Since Rε,h = Y ε,h + Zε,h, and H1 ⊂ L3, we can obtain the estimate of Rε,h which is
similar to (4.35). Moreover let

vε,h := −ε∆uε,h + 1

ε

(
f(uε,h)− 3cεh,tu

ε,h
)
,
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similarly to (4.36), we obtain that

‖vε,h − vεA‖2L1(0,T ;H−2) ≲ ε‖Rε,h‖L2(DT ) +
1

ε
‖Rε,h‖L1(DT ) +

1

ε
‖cεh,tuε,h‖2L1(0,T ;H−2)

≲ ε‖Rε,h‖L3(DT ) +
1

ε
‖Rε,h‖L3(DT ) +

1

ε
‖cεh,t‖L∞‖Rε,h + uεA‖L3(DT )

≲ ε
γ
3
−1 − ε2σ−2 log h ≲ ε

γ
3
−1.

□

Remark 4.15. It is easy to see that (4.58) implies σ > 26
3
+ θ. This implies that the

faster that h converges to 0 than ε, the smaller σ could be. Since θ can be small enough,
the lower bound for σ is 26

3
.

Note that the lower bound for σ is smaller than the case of space-time white noise
(see Remark 4.6). In fact we can also consider the mollified space-time white noise in
Section 4.2 just as in this section. By comparing ε with the converging speed of the noise,
the lower bound for σ could be much smaller.

Corollary 4.16. There exist subsequences {εk}∞k=1 and {hk}∞k=1 with εθk ≲ h2k such that
for P− a.s. ω ∈ Ω

lim
k→∞

uεk,hk = −1 + 21Et in L3(DT0),

where Et is the region enclosed by Γt.

Proof The proof is the same as Corollary 4.7, we ignore it here for simplicity.
□



Chapter 5

Weak solutions to the sharp
interface limit of stochastic
Cahn-Hilliard equations

In this chapter, we consider stochastic Cahn-Hilliard equations driven by two types of
noise.

First, we consider the sharp interface limit of the following stochastic Cahn-Hilliard
equation on a bounded smooth open domain D ⊂ Rd (d = 2, 3):

duε = ∆vεdt+ εσdWt, (t, x) ∈ (0, T ]×D,

vε = −ε∆uε(t) + 1

ε
f(uε(t)), (t, x) ∈ [0, T ]×D,

∂uε

∂n
=
∂vε

∂n
= 0, (t, x) ∈ [0, T ]× ∂D,

uε(0, x) = uε0(x), x ∈ D.

(5.1)

Here W is a Q-Wiener process where Q satisfies (5.4) and (5.5). f(u) = F ′(u) where
F (u) = 1

4
(u2 − 1)2 is the double well potential and the initial data uε0 satisfies

sup
0<ε≤1

∫
D

(
ε

2
|∇uε0(x)|2 +

1

ε
F (uε0(x))

)
dx ≤ E0 <∞,

1

|D|

∫
D
uε0(x)dx = m0 ∈ (−1, 1) ∀ε ∈ (0, 1].

(5.2)

In the last section, we consider the equation driven by a “smeared” noise:

∂uε

∂t
= ∆vε + εσξεt , (t, x) ∈ (0, T ]×D,

vε = −ε∆uε(t) + 1

ε
f(uε(t)), (t, x) ∈ [0, T ]×D,

∂uε

∂n
=
∂vε

∂n
= 0, (t, x) ∈ [0, T ]× ∂D,

uε(0, x) = uε0(x), x ∈ D,

(5.3)

where ξεt = dW ε

dt
, W ε

t :=
∫∞
−∞ ρε(t− s)Wsds and ρε is an approximate delta function on R.

Formally as ε→ 0, ξε → dW
dt
.

77
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Chapter 5. Weak solutions to the sharp interface limit of stochastic Cahn-Hilliard

equations

5.1 Preliminary
5.1.1 Basic notations and assumptions
In the following, we denote by Sd−1 the unit sphere in Rd and ν⃗ a generic element in
Sd−1.

We assume that D is a smooth bounded open domain in Rd (d = 2, 3). Let Q be an
linear operator on L2(D), which is commuted with ∆ and satisfies

Qe0 = 0, (5.4)
where e0(x) ≡ 1 for any x ∈ D and

Tr((−∆)Q) < +∞. (5.5)
Let (Ω,F ,P) be a stochastic basis and defined on it a Q-Wiener process W on L2(D).

According to [DPD96, Remark 2.2], we have that
Theorem 5.1. Assume that Q satisfies (5.4), (5.5), then for P − a.s. ω, the equation
(5.1) has a unique analytic weak solution uε ∈ C([0, T ];H1 ∩ L4).

Let uε be the solution to equation (5.1), we set

Eε(t) := Eε(uε)(t) =
∫
D
eε(uε(t, x))dx, eε(uε) :=

ε

2
|∇uε|2 + 1

ε
F (uε). (5.6)

5.1.2 Definition of a weak solution to the limit of equation (5.1)
Now we recall the following definition of weak solutions to the limit of equation (5.1)
introduced in [Che96, Definition 2.1]:
Definition 5.2. A triple (E, v, V ) is called a weak solution to the limit of equation (5.1)
if the following holds:

(i) E = ∪t∈[0,T ]({t} × Et) is a subset of DT and 1E ∈ C([0, T ];L1) ∩ L∞(0, T ;BV );
(ii) v ∈ L2(0, T ;H1);
(iii) V = V (t, x, p) is Radon measure on DT × P and for almost every t ∈ [0, T ],

V t := V (t, ·, ·) is a varifold on D, and there exist Radon measure µt on D̄, µt-measurable
functions ct1, · · · , ctd, and µt-measurable P -valued functions pt1, · · · , ptd such that

0 ≤ cti ≤ 1 (i = 1, · · · , d),
d∑
i=1

cti ≥ 1,
d∑
i=1

pti ⊗ pti = I µt − a.e., (5.7)

2S|D1Et|(x)dx ≤ dµt(x)

(
S =

∫ 1

−1

√
F (s)

2
ds =

2

3

)
, (5.8)

∫ ∫
D×P

ψ(x, p)dV t(x, p) =
d∑
i=1

∫
D
cti(x)ψ(x, p

t
i(x))dµ

t(x) ∀ψ ∈ Cc(D × P ); (5.9)

(iv) For any t ∈ (0, T ] and for almost every τ ∈ (0, t),∫ t

0

∫
D
(−21Eτ∂tψ +∇v · ∇ψ) dxdτ =

∫
D
21E0ψ(0, ·) ∀ψ ∈ C1

c ([0, t)× D̄), (5.10)

− 〈D1Et , vY⃗ 〉 := 〈1Et , div(vY⃗ )〉 = 1

2
〈δV t, Y⃗ 〉 ∀Y⃗ ∈ C1

c (D;Rd), (5.11)

µt(D̄) +

∫ t

τ

∫
D
|∇v|2 ≤ µτ (D̄). (5.12)
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5.1.3 Main results for Q-Wiener noise
Theorem 5.3. Assume that σ ≥ 1

2
and (5.2) hold. Let Q satisfy (5.4) and (5.5). Let

(uε, vε) be the solution to (5.1). Then there exist a probability space (Ω̃, F̃ , {F̃t}t∈[0,T ], P̃),
(ũε, ṽε) ∈ C([0, T ];L2)×L2(0, T ;H1) with P̃◦ (ũε, ṽε)−1 = P◦ (uε, vε)−1 on C([0, T ];L2)×
L2(0, T ;H1). There also exists a subsequence εk such that as εk ↘ 0 the following holds:

(i) There exists a measurable set E ⊂ Ω̃×DT , such that 1E is {F̃t}-adapted in L2(D)
and for P̃− a.s. ω

ũεk(ω) → −1 + 21E(ω), a.e. in DT and in Cβ([0, T ];L2)

for any β < 1
12

where E(ω) := {(t, x) ∈ DT : (ω, t, x) ∈ E};
(ii) There exists v which is weakly measurable in L2(0, T ;H1), such that for P̃−a.s. ω

ṽεk(ω) → v(ω) weakly in L2(0, T ;H1);

(iii) There exist random variables µ ∈ MR and {µij}di,j=1 ∈ Md×d such that for
P̃− a.s. ω

eεk(ω)(ũεk(ω))dxdt→ dµ(ω, t, x) weakly in MR,

εk∂xiũ
εk(ω)∂xj ũ

εk(ω)dxdt→ dµij(ω, t, x) weakly in M, ∀i, j = 1, · · · , d.
(5.13)

(iv) For P̃ − a.s. ω, there exists Radon measure V (ω) on DT × P , and µt(ω, x)dt =

dµ(ω, t, x) such that for any t ∈ (0, T ] and Y⃗ ∈ C1
c (Dt;Rd)∫ t

0

〈δV s, Y⃗ 〉ds =
∫ t

0

∫
D
∇Y⃗ :

(
Idµ(s, x)− (µij(s, x))d×d

)
. (5.14)

For P̃− a.s. ω, (E(ω), v(ω), V (ω)) satisfies all the properties in Definition 5.2 except
(5.12). In particular, if σ > 1

2
, (5.12) holds, thus (E(ω), v(ω), V (ω)) is a weak solution

in the sense of Definition 5.2.

Theorem 5.4. Let σ ≥ 1
2
, with the same notations as in Theorem 5.3, and suppose that

the assumptions in Theorem 5.3 hold. Then in radially symmetric case, that is D = B1,
where B1 is the unit ball in Rd and that uε0 is radially symmetric, we have that

dµ = 2S|D1Et|dxdt as Radon measure on DT .

In particular, for a.e.t ∈ [0, T ], V t is a (d − 1)-rectifiable varifold (see [Sim83, Section
11, Section 38] for definition), i.e.

dV (t, x, p) = 2S|D1Et |dxdtδν⃗Et (t,x)
(dp) as Radon measure on DT × P,

where ν⃗Et is defined in (2.3). Then we have that{
(dµij)d×d = ν⃗Et ⊗ ν⃗Etdµ as Radon measure on D̄T ,

v(t, x) = Sν⃗Et(x) · H⃗V t(x) on supp(|D1Et |) for a.e. t ∈ [0, T ],
(5.15)

H⃗V t is the mean curvature vector of V t defined in Definition 2.22 and δν⃗ is the Dirac
measure concentrated at ν⃗ ∈ P .
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Remark 5.5. Since Et is a BV set for a.e. t ∈ [0, T ], by Theorem 2.16, ∂∗Et is a
(d− 1)-rectifiable set and

|D1Et | = Hd−1b∂∗Et.

Then in radial symmetric case, for a.e. t ∈ [0, T ]

µt = 2S|D1Et| = 2SHd−1b∂∗Et.

By Remark 2.8, when Et is a smooth domain, H⃗V t is just the classical mean curvature
vector of ∂Et and ν⃗Et is the inward normal vector of ∂Et. Thus the last equation in (5.15)
gives a weak formula of the third equation in (1.5).

5.1.4 Remarks on the definition of weak solutions
Suppose that (E, v, V ) is a weak solution of Definition 5.2. In the following, we show
how Definition 5.2 is connected with (1.5). This has been obtained in [Che96, Subsection
2.4]. We give more details for complete results.

Observe that in distribution sense, ∂t1E is defined for any ψ ∈ C1
c ([0, t)× D̄)∫ t

0

∫
D
(∂t1E)ψ =

∫ t

0

∫
D
∂t(1Eψ)−

∫ t

0

∫
D
1E∂tψ = −

∫
D
1E0ψ(0, x)dx−

∫ t

0

∫
D
1E∂tψdxds,

Thus (5.10) implies that in distribution sense

2∂t1E = ∆v, in [0, T ]×D.

Since v ∈ L2(0, T ;H1), ∆v and ∂v
∂n

are ill-defined in (1.5). They have to be understood
in distribution sense. We suppose that (v,Γ) is smooth enough such that ∆v and ∂v

∂n
are

well-defined.
Suppose that D \ E ⊂ D. Denote Γt := ∂Et \∂D and let D+ = Eo

t ∩D be the interior
of Et in D and D− = D \ Ēt.

For the first equation in (1.5): For any x ∈ D \ Γ, ∆v(x) = 0 since 1E(x) is a
constant in time. More precisely, let ψ ∈ C1

c ([0, t)× D̄) and suppψ(s, ·) ⊂ D \ Γs for any
s ∈ [0, t), we have that∫ t

0

∫
D
1Et∂tψdxds =

∫ t

0

∫
D
∂tψdxds = −

∫
D
ψ(0, ·)dx = −

∫
D
1E0ψ(0, ·)dx.

Then (5.10) implies that ∫ t

0

∫
D
∇v · ∇ψdxds = 0,

which is the weak formula of the first equation in (1.5).
For the second equation in (1.5): Since D \ E ⊂ D, ∂D+ = ∂D ∪ Γ. For any
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ψ ∈ C1
c ([0, t)× D̄+) and suppψ(s, ·) ⊂ D+ for any s ∈ [0, t),∫ t

0

∫
∂D

∂v

∂n
ψdHd−1ds =

∫ t

0

∫
D+

div(∇vψ)dxds

=

∫ t

0

∫
D+

∇v · ∇ψdxds+
∫ t

0

∫
D+

∆vψdxds

=

∫ t

0

∫
D
∇v · ∇ψdxds+ 2

∫ t

0

∫
D
(∂t1E)ψdxds

=

∫ t

0

∫
D
∇v · ∇ψdxds− 2

∫
D
1E0ψ(0, x)dx− 2

∫ t

0

∫
D
1E∂tψdxds

=0,
(5.16)

where we used (5.10) in the last equality. Thus we obtain in distribution sense the
following holds.

∂v

∂n
= 0, on [0, T ]× ∂D.

For the last equation in (1.5): For any ψ ∈ C1
c (D̄t)∫

D
∂t1EtψdHd = −1

2

∫
D
∇v∇ψdHd

= −1

2

∫
D+

∇v∇ψdHd − 1

2

∫
D−

∇v∇ψdHd

=
1

2

∫
D+

div(∇vψ)dHd +
1

2

∫
D−

div(∇vψ)dHd

=
1

2

∫
Γt

(∂nv
+ − ∂nv

−)ψdHd−1.

(5.17)

By using the weak formula of normal velocity in [Ton19, (2.5)], we have that

∂t

∫
Γt

gdHd−1 −
∫
Γt

∂tgdHd−1 =

∫
Γt

V∇g · n⃗− gHVdHd−1.

Let φ satisfy

∆φ = ψ,

∂φ

∂n
= 0 on ∂D,

and take g = ∂φ
∂n
, we obtain that∫

D
∂t1EtψdHd =∂t

∫
D
1EtψdHd −

∫
D
1Et∂tψdHd

=∂t

∫
D+

∆φdHd −
∫
D+

∆∂tφdHd

=∂t

∫
Γt

∂φ

∂n
dHd−1 −

∫
Γt

∂t
∂φ

∂n
dHd−1

=

∫
Γt

V∇∂φ

∂n
· n⃗− ∂φ

∂n
HVdHd−1
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=

∫
Γt

∆φVdHd−1 +

∫
Γt

∂φ

∂n
V (div n⃗−H) dHd−1

=

∫
Γt

ψVdHd−1 +

∫
Γt

∂φ

∂n
V (div n⃗−H) dHd−1.

By our assumption, D+ is the exterior of Γ. Thus n⃗ is the inward normal vector of the
interior of Γ. Then if Γt = {(x, y) ∈ D : y = ϕ(x) ∈ R}, it is well-known that

H = div

(
∇ϕ√

1 + |∇ϕ|2

)
, n⃗ = − 1√

1 + |∇ϕ|2
(−∇ϕ, 1)T ,

which implies that div n⃗ = H on Γt. Hence we obtain that∫
Γt

ψVdHd−1 =
1

2

∫
Γt

(∂nv
+ − ∂nv

−)ψdHd−1,

which yields that in distribution sense

V =
1

2
(∂nv

+ − ∂nv
−).

Therefore we know that (5.10) is a weak formulation of all the equations in (1.5)
except the third equation.

For the third equation in (1.5): following the argument in [Che96, Subsection
2.4], we can only prove the third equation in weak sense in the radial symmetric case as
in Theorem 5.4 and Remark 5.5.

In general case, it was shown in [RT08, Theorem 3.1, Theorem 3.2], under the as-
sumption that for a.e. t ∈ [0, T ], vε(t, ·) → v(t, ·) weakly in W 1,p for p > d, the authors
proved that

v(t, x) = SH⃗V t · ν⃗Et , Hd−1 − a.e. x ∈ ∂∗Et. (5.18)
But the assumption that vε → v weakly in W 1,p for p > d has not been obtained until
now since we can only obtain the convergence in H1 = W 1,2.

In fact, identifying the value of v on the interface Γt is the main task of varifold
approach to study the sharp interface limit of both Cahn-Hilliard equation and Allen-
Cahn equation (cf. [HT00, Ton02, Ton05, RS06, Le08, RT08]). Until now, a fully rigorous
proof for the (deterministic) Cahn-Hilliard equation is still missing.

5.2 Convergence
5.2.1 Lyapunov functional Eε and basic estimates
In the deterministic case, where no forcing terms are present, the function Eε defined
in (5.6) decreases in time. In stochastic case, the authors in [DPD96] showed a similar
property when ε = 1 and (5.4) is satisfied. Using the same trick we can prove a similar
result.

Lemma 5.6. There exists a constant which only depends on T and 0 < ε0 < 1 such that
for any ε ∈ (0, ε0] and any p ≥ 1,

E sup
t∈[0,T ]

Eε(t)p ≤ CT (ε
2σ−1 + E0)p, (5.19)
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and
E
(∫ T

0

‖∇vε‖2L2dt

)p
≤ CT (ε

2σ−1 + E0)p. (5.20)

Proof We will not give all the details of the proof since it is the same as [DPD96, Section
2.3], we only calculate the order of ε for every term in the following.

Applying Itô’s formula on Eε, we have that

dEε(uε) = 〈DEε(uε), duε〉+ ε2σ

2
Tr(QD2Eε(uε))dt

= −〈∇vε,∇vε〉dt+ ε2σ+1

2
Tr(−∆Q)dt+

ε2σ−1

2
Tr(f ′(uε)Q)dt+ εσ〈vε, dWt〉.

(5.21)
By using the same trick as in [DPD96, Section 2.3] we have that

Tr(f ′(uε)Q) ≲ 1 + εEε(uε).

Hence we deduce from (5.21) that for any p ≥ 1,

E

(
sup
t∈[0,T ]

Eε(t) +
∫ T

0

‖∇vε‖2L2ds

)p

≲ E
(
E0 + ε2σ−1 + ε2σ+1 + ε2σ sup

t∈[0,T ]
Eε(t) + εσ sup

t∈[0,T ]
|M ε(t)|

)p

where M ε(t) :=
∫ t
0
〈vε, dWs〉. Let ε be small enough, we have that

E

(
sup
t∈[0,T ]

Eε(t)

)p

+ E
(∫ T

0

‖∇vε‖2L2ds

)p
≲ εp(2σ−1) + Ep0 + E sup

t∈[0,T ]
|M ε(t)|p,

By Burkholder-Davis-Gundy’s inequality

E sup
t∈[0,T ]

|M ε(t)|p ≲ E (〈M ε〉T )
p
2 = E

(∫ T

0

‖
√
Qvε(t)‖2L2dt

) p
2

≲ E
(∫ T

0

‖∇vε‖2L2dt

) p
2

.

Then by Young’s inequality, for any κ > 0, there exists a constant C1 ≡ C1(T ) such that

E sup
t∈[0,T ]

|M ε(t)|p ≤ C1 + κE
(∫ T

0

‖∇vε‖2L2ds

)p
.

Thus for a small enough κ > 0, there exists a constant CT > 0 such that

E sup
t∈[0,T ]

Eε(t)p + (1− κ)E
(∫ T

0

‖∇vε‖2L2ds

)p
≤ CT (ε

p(2σ−1) + Ep0 ),

which implies our results. □
Corollary 5.7. There exists a constant CT > 0, such that for any p ≥ 1

E sup
t∈[0,T ]

(∫
D
F (uε(t, x))dx

)p
≤ CT ε

p(Ep0 + εp(2σ−1)) (5.22)

and
E sup
t∈[0,T ]

‖uε(t)‖4pL4 ≤ CT (1 + Ep0 + εp(2σ−1)). (5.23)

In the rest of this section, we always assume σ ≥ 1
2
.
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5.2.2 Estimates for {uε}
We introduce a function gε(t, x) defined by

gε(t, x) := G(uε(t, x)), (5.24)

where
G(u) :=

∫ u

−1

√
2F (x)dx, ∀u ∈ R.

Observe that ∫
D
|∇gε(t, ·)| =

∫
D

√
2F (uε)|∇uε|dx ≤

∫
D
eε(uε)(t)dx = Eε(t), (5.25)

and there are positive constants c1, c2 such that

c1|u1 − u2|2 ≤ |G(u1)−G(u2)| ≤ c2|u1 − u2|(1 + |u1|+ |u2|), ∀u1, u2 ∈ R. (5.26)

Lemma 5.8. There exists constant CT > 0 which only depends on T , such that for any
β ∈ (0, 1

12
),

E
(
‖gε‖L∞(0,T ;W 1,1) + ‖gε‖Cβ([0,T ];L1) + ‖uε‖Cβ([0,T ];L2)

)
≤ CT

Proof Similarly to the proof of [Che96, Lemma 3.2], let ρ be any fixed mollifier satisfying

ρ ∈ C∞(Rd), 0 ≤ ρ ≤ 1, suppρ ⊂ B1(0),

∫
Rd

ρ = 1,

where B1 is the unit ball in Rd centered at 0. For any small η > 0, we define

uεη(t, x) =

∫
B1

ρ(y)uε(t, x− ηy)dy.

Here we assume that uε is extended to {x ∈ Rd : d(x,D) ≤ η0} by

uε(t, y + ηn(y)) = uε(t, y − ηn(y)), y ∈ ∂D, η ∈ [0, η0],

where η0 is a small positive number and n(y) is the unit outward normal vector to ∂D at
y ∈ ∂D.

Then by (5.23), we have that for any p > 1, η ∈ (0, η0),

E sup
t∈[0,T ]

‖∇uεη(t)‖
p
L2 ≲ η−pE sup

t∈[0,T ]
‖uε(t)‖pL2 ≲ η−p, (5.27)

and

E sup
t∈[0,T ]

(∫
D
|uεη − uε|2dx

)p
≤ E

(
sup
t∈[0,T ]

∫
D

∫
B1

ρ(y)|uε(t, x− ηy)− uε(t, x)|2dydx

)p

≲ E
(

sup
t∈[0,T ]

∫
D

∫
B1

ρ(y)|gε(t, x− ηy)− gε(t, x)|dydx

)p

≲ ηpE sup
t∈[0,T ]

‖∇gε(t)‖pL1

≤ ηpE sup
t∈[0,T ]

Eε(t)p ≲ ηp,

(5.28)
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where we use (5.26) in the second inequality and (5.25), (5.19) in the last line.
For any 0 ≤ τ < t ≤ T , by using uε(t)− uε(τ) =

∫ t
τ
∆vε(s)ds+ εσ(Wt−Wτ ) (in weak

sense), we have that

E
(∫

D
|
(
uεη(t, x)− uεη(τ, x)

)
(uε(t, x)− uε(τ, x)) |dx

)p
≤E

(∫ t

τ

∫
D
|∇vε(s, x)

(
∇uεη(t, x)−∇uεη(τ, x)

)
|dxds

)p
+ εpσE

(∫
D
|
(
uεη(t, x)− uεη(τ, x)

)
(Wt −Wτ ) |dx

)p
≲E

(∫ t

τ

∫
D
|∇vε|2

) p
2

(t− τ)
p
2

(
E sup
s∈[0,T ]

‖∇uεη(s)‖
p
L2

)
+ εpσE sup

s∈[0,T ]
‖uεη(s)‖

p
L2

(
E‖Wt −Wτ‖2pL2

) 1
2

≲(t− τ)
p
2 η−p + (t− τ)

p
2 εpσ

≲η−p(t− τ)
p
2 ,

(5.29)

where in the third inequality we use (5.20), (5.23), (5.27) and the fact that

E‖Wt −Wτ‖2pL2 ≲ |t− τ |p.

Then we have that

E‖uε(t)− uε(τ)‖2pL2 ≲E
(∫

D
|
(
uεη(t, x)− uεη(τ, x)

)
(uε(t, x)− uε(τ, x)) |dx

)p
+ E

(∫
D
|
(
uε(t, x)− uεη(t, x)

)
(uε(t, x)− uε(τ, x)) |dx

)p
+ E

(∫
D
|
(
uε(τ, x)− uεη(τ, x)

)
(uε(t, x)− uε(τ, x)) |dx

)p

≲η−p(t− τ)
p
2 +

E( sup
t∈[0,T ]

‖uεη(t)− uε(t)‖L2

)2p
 1

2 (
E sup
t∈[0,T ]

‖uε‖2pL2

) 1
2

≲η−p(t− τ)
p
2 + η

p
2 ,

where we use (5.29) in the second inequality and (5.23), (5.28) in the last inequality. If
we take η = η0 ∧ (t− τ)

1
3 , we have that

E‖uε(t)− uε(τ)‖2pL2 ≲ η−p(t− τ)
p
2 + η

p
2 ≤ (t− τ)

p
6 . (5.30)

Moreover, using (5.26) we have that

E‖gε(t)− gε(τ)‖pL1 ≲ E
(∫

D
|uε(t, x)− uε(τ, x)| (1 + |uε(t, x)|+ |uε(τ, x)|) dx

)p
≲ E‖uε(t)− uε(τ)‖pL2

(
1 + E sup

t∈[0,T ]
‖uε‖pL2

)
≲ (t− τ)

p
12 ,

(5.31)
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where we use (5.23) and (5.30) in the last inequality.
Finally by Kolmogorov’s criteria (see e.g. [DPZ14, Theorem 3.3]), for any 0 < β < 1

12
,

E
(
‖gε‖Cβ([0,T ];L1) + ‖uε‖Cβ([0,T ];L2)

)
≲ 1.

Moreover by (5.25)
E sup
t∈[0,T ]

‖∇gε(t)‖L1 ≲ 1.

Thus
E‖g‖L∞(0,T ;W 1,1) ≲ E sup

t∈[0,T ]
‖∇gε(t)‖L1 + E sup

t∈[0,T ]
‖gε(t)‖L1 ≲ 1

□

5.2.3 Estimates for {vε}
We want to obtain the estimate of vε in the space H1. By (5.20) and Poincaré-Wirtinger
inequality, it is enough to estimate v̄ε := 1

|D|

∫
D v

ε(x)dx.

Lemma 5.9. For any δ > 0, there exists a constant C ≡ C(δ, T ) > 0, such that

P
(∫ T

0

‖vε(t)‖2H1dt ≤ C

)
≥ 1− δ.

Proof For any R > 0, set

AR :=

{
ω ∈ Ω : ‖uε(ω)‖C([0,T ];L2) + sup

t∈[0,T ]
Eε(t)(ω)p +

∫ T

0

‖∇vε(ω, t)‖2L2dt ≤ R

}
.

By the same argument as in [Che96, Lemma 3.4] and using an integration by parts
formula, we have that

v̄ε =

∫
D (D2ψ : (e(uε)I− ε∇uε ⊗∇uε)− uε∇ψ · ∇vε − uε∆ψ(vε − v̄ε))∫

D ∆ψuε

where D2ψ is the Hessen matrix of ψ, ψ is the unique solution to−∆ψ = uεη − ūεη in D,
∂ψ

∂n
= 0 on ∂D.

Here uεη is defined in the same way as in the proof of Lemma 5.8.
Then for a fixed ω ∈ AR, all the estimates in the proof of [Che96, Lemma 3.4] hold.

Thus we have that there exists a constant CR such that for any ω ∈ AR, t ∈ [0, T ] and
any η, ε ∈ (0, 1)

|v̄ε(ω, t)| ≤ CR
η−1(1 + ε1/2η−d/2)(Eε(t)(ω) + ‖∇vε(ω, t)‖L2(D))

1−m2
0 −

√
ε−√

η
,

where m0 = ūε0 ∈ (−1, 1) is as in (5.2). Taking η small and independent of ε, we obtain
that there exists constant C̃R > 0 such that for any ω ∈ AR, t ∈ [0, T ],∫ T

0

v̄ε(t)2dt ≤ C̃R.
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Hence we have
AR ⊂

{∫ T

0

v̄ε(t)2dt ≤ C̃R

}
.

Moreover, by Poincaré-Wirtinger inequality

‖vε‖H1 ≲ |v̄ε|+ ‖∇vε‖L2 ,

thus for any R > 0 there exists a constant CR > 0, such that

P
(∫ T

0

‖vε(t)‖2H1dt ≤ CR

)
≥ P

(∫ T

0

v̄ε(t)2dt ≤ C̃R, ‖∇vε‖2L2(DT ) ≤ R

)
≥ P(AR).

By Lemma 5.6 and Lemma 5.8, using Chebyshev’s inequality, we have that for any
δ > 0, there exists a constant R ≡ R(δ) > 0, such that

P (AR) ≥ 1− δ.

Then we obtain the assertion of the lemma. □

5.2.4 Tightness
For any β < 1

12
, we denote

X 1 := R× L∞
w∗(0, T )× Cβ([0, T ];L2

w)× Cβ([0, T ];L1)× L2
w(0, T ;H

1), (5.32)

where L2
w(0, T ;H

1) is the space L2(0, T ;H1) equipped with the weak topology, L2
w is the

space L2 equipped with the weak topology and L∞
w∗(0, T ) is the space L∞(0, T ) equipped

with the weak-* topology. We also denote

X 2 := Md×d ×MR, (5.33)

where M is the space of all finite signed measure on DT and MR ⊂ M is the space of all
Radon measure on DT . MR and M are equipped with the total variation norm ‖ · ‖TV
and weak topology, respectively. Here an element in Md×d is a d × d M-valued matrix
{µij}di,j=1 where µij ∈ M.

Let P̂ε be the probability measure on X 1 ×X 2 defined by

P̂ε := P ◦

(
ε−1 sup

t∈[0,T ]
‖F (uε)‖L1 , Eε(uε), uε, G(uε), vε, eε(uε)dxdt, {ε∂xiuε∂xjuεdxdt}ij

)−1

.

(5.34)
In the following we will prove that {P̂ε}ε is tight on X 1×X 2. This is equivalent to prove
the tightness of every component.

For supt∈[0,T ] ‖F (uε)‖L1 , by (5.22) and Chebyshev’s inequality, we know that

Eε−1 sup
t∈[0,T ]

∫
D
F (uε)dx ≲ 1.

Then we have that for any δ > 0, there exists a constant K1 > 0 such that

P

(
ε−1 sup

t∈[0,T ]
‖F (uε)‖L1 ≤ K1

)
≥ 1− δ.
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For Eε, by (5.19) and Chebyshev’s inequality, we have that for any δ > 0, there exists
a constant K2 > 0 such that

P
(
sup
t

Eεt ≤ K2

)
≥ 1− δ.

By the Banach-Alaoglu theorem, any bounded set in L∞(0, T ) is precompact in L∞
w∗(0, T ),

thus P ◦ (Eε(uε))−1 is tight on L∞
w∗(0, T ).

For uε, by the Banach-Alaoglu theorem, any bounded set in L2 is precompact in
L2
w. Then by a generalized Arzelà-Ascoli theorem, any bounded set in Cβ([0, T ];L2)

is precompact in Cγ([0, T ];L2
w) for any 0 < γ < β. Hence we obtain the tightness of

P ◦ (uε)−1 on Cγ([0, T ];L2
w) by using Chebyshev’ inequality and Lemma 5.8.

For G(uε), by Lemma 5.8 we have that for any δ > 0, there exists a constant K3 > 0
such that

P
(
‖G(uε)‖L∞(0,T ;W 1,1) + ‖G(uε)‖Cβ([0,T ];L1) ≤ K3

)
≥ 1− δ.

Since W 1,1 is compactly embedded into Lq for any q ∈ [1, d
d−1

], then by a generalized
Arzelà-Ascoli theorem for any 0 < γ < β, the set

{g ∈ Cγ([0, T ];L1) : ‖g‖L∞(0,T ;W 1,1) + ‖g‖Cβ([0,T ];L1) ≤ K}

is compact in Cγ([0, T ];L1), which implies the tightness of P ◦ (G(uε))−1 in Cγ([0, T ];L1)
for any γ < 1

12
.

For vε, the tightness of P ◦ (vε)−1 in L2
w(0, T ;H

1) is followed by Lemma 5.9 and the
Banach-Alaoglu theorem.

For ε∂xiuε∂xjuε and eε(uε), since L1(DT ) is embedded into M. Moreover for any
f ∈ L1(DT ), we have that

f(t, x)dxdt = f+dxdt− f−dxdt.

Since DT is a compact set, we have that f+dxdt, f−dxdt ∈ MR. By Theorem 2.11, any
bounded set in MR w.r.t. total variation norm is precompact in MR w.r.t weak topology,
which implies that any bounded set in M w.r.t. total variation norm is precompact in
M w.r.t weak topology. Thus by (5.19) and

‖ε∂xiuε∂xjuε‖L1(DT ) ≲ ε‖∇uε‖L1(DT ) ≲ sup
t∈[0,T ]

Eεt ,

‖eε(uε)‖L1(DT ) ≲ sup
t∈[0,T ]

Eεt ,

we obtain the tightness of P ◦
(
eε(uε)dxdt, {ε∂xiuε∂xjuεdxdt}ij

)−1 in X 2.
Hence we proved the tightness of {P̂ε}ε in X 1 × X 2. Then by using a Jakubowski’s

version of the Skorokhod Theorem in the form given by [BO13, Theorem A.1], which was
proved in [Jak98]:

Theorem 5.10. Let X be a topological space such that there exists a sequence {fn}n≥1

of continuous functions fn : X → R that separate points of X . Let us denote by S the
σ-algebra generated by the maps {fn}. Then:

(j1) every compact subset of X is metrizable;
(j2) every Borel subset of a σ-compact set in X belongs to S ;
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(j3) every probability measure supported by a σ-compact set in X has a unique Radon
extension to the Borel σ-algebra on X ;

(j4) if (µn) is a tight sequence of probability measures on (X ,S ), then there exists a
subsequence (nk)k≥1, a probability space (Ω,F ,P) with X -valued Borel measurable random
variables Xk, X such that µnk

is the law of Xk and Xk converge almost surely to X.
Moreover, the law of X is a Radon measure.

We obtain that

Theorem 5.11. Assume σ ≥ 1
2
. There exist a probability space (Ω̃, F̃ , {F̃}t∈[0,T ], P̃) on

X 1 ×X 2, a subsequence εk (we still denote it as ε for simplicity) and{(
ε−1 sup

t∈[0,T ]
‖F (ũε)‖L1 , Eε(ũε), ũε, G(ũε), ṽε, eε(ũε)dxdt, {ε∂xiũε∂xj ũεdxdt}ij

)}
⊂ X 1×X 2

and
(a, E , u, g, v, µ, {µij}ij) ∈ X 1 ×X 2,

such that
(i) P̃◦

(
ε−1 supt∈[0,T ] ‖F (ũε)‖L1 , Eε(ũε), ũε, G(ũε), ṽε, eε(ũε)dxdt, {ε∂xiũε∂xj ũεdxdt}ij

)−1
=

P̂ε on X 1 ×X 2,
(ii)

(
ε−1 supt∈[0,T ] ‖F (ũε)‖L1 , Eε(ũε), ũε, G(ũε), ṽε, eε(ũε)dxdt, {ε∂xiũε∂xj ũεdxdt}ij

)
con-

verges to (0, E , u, g, v, µ, {µij}ij) in X 1 ×X 2, P̃− a.s, as ε↘ 0.
In particular, for P̃ − a.s.ω, there exists a Borel set E(ω) ⊂ Ω̃ × DT , such that as

ε↘ 0

(iii) uε → u in C
β
2 ([0, T ];L2), g = G(u) = 2S1E a.e. in DT and in Cβ([0, T ];L1),

u = −1 + 21E a.e. in DT and in Cβ([0, T ];L2).
Moreover, denote E = {(ω, t, x) ∈ Ω×DT : (t, x) ∈ E(ω)}, Et := {(ω, x) : (ω, t, x) ∈ E},

then 1Et is {F̃}t∈[0,T ]-adapted in L2(D) and satisfies the following:
(iv) For all β < 1

12
, P̃
(
1E ∈ Cβ([0, T ];L1)

)
= 1,

(v) P̃
(
|Et| = |E0| = 1+m0

2
|D|,∀t ∈ [0, T ]

)
= 1,

(vi) P̃ (1E ∈ L∞(0, T ;BV )) = 1.

Proof Since X 1 ×X 2 is locally convex space and its dual space is separable, by [Rud73,
Theorem 3.4], the condition in Theorem 5.10 holds. Thus the Skorokhod theorem Theo-
rem 5.10 yields the first assertion and the existence of convergence subsequence to

(a, E , u, g, v, µ, {µij}ij) in X 1 ×X 2.

Since P̃ ◦ (ũε, ṽε)−1 = P ◦ (uε, vε)−1, we have that for any h ∈ H1,

ε−σ
(∫

D
(ũε(t)− ũε(0))hdx+

∫ t

0

∇ṽε · ∇hdx
)

is a Wiener process on (Ω̃, F̃ , P̃) with covariance ‖Q 1
2h‖2L2 . Thus there exists a Q-Wiener

process W̃ on L2 which is defined on (Ω̃, F̃ , P̃). Then we have that for any h ∈ H1∫
D
(ũε(t)− ũε(0))hdx+

∫ t

0

∫
D
∇ṽε · ∇hdx = εσ

∫ t

0

〈h, dW̃s〉. (5.35)
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Moreover, we denote {F̃t}t∈[0,T ] be completion under P̃ of the natural filtration gen-
erated by {W̃t}t∈[0,T ], thus {F̃t}t∈[0,T ] is a normal filtration. By [DPD96], we know that
for any ε > 0, ũε is the unique solution, thus by Yamada–Watanabe theorem (see e.g.
[LR15, Theorem E.0.8]) {ũε}t is {F̃t}t-adapted in L2(D). Since ũε → u in C([0, T ];L2

w),
we know that u is {F̃t}t-adapted in L2(D).

In the rest of this proof, we ignore the notation ˜ if there is no confusion.
By (5.26), we know that for any t, τ ∈ [0, T ], any ε > 0

|uε(t)− uε(τ)|2 ≲ |G(uε(t))−G(uε(τ))|,

thus we have that for P̃ − a.s.ω

‖uε(t)− uε(τ)‖2L2 ≲ ‖G(uε(t))−G(uε(τ))‖L1 .

Since G(uε) → g in Cβ([0, T ], L1) for any β < 1
12
, let ε→ 0 we have that

lim sup
ε→0

‖uε(t)− uε(τ)‖2L2 ≲ ‖g(t)− g(τ)‖L1 ≲ |t− τ |β.

Since uε(t) → u(t) in L2
w, by the weakly lower-semicontinuity, we have that

‖u(t)− u(s)‖2L2 ≤ lim inf
ε→0

‖uε(t)− uε(τ)‖L2 ≲ |t− τ |β.

Hence we obtain that u ∈ C
β
2 ([0, T ];L2) P− a, s,. Similarly we have for any ε, h > 0

‖uε − uh‖2L2 ≲ ‖G(uε)−G(uh)‖L1 , P̃− a.s..

Let h→ 0, we obtain

‖uε − u‖2L2 ≲ ‖G(uε)− g‖L1 , P̃− a.s.,

which implies that uε → u in C β
2 ([0, T ];L2) P̃− a.s..

On the other hand, by (5.22) we know that

E sup
t∈[0,T ]

∫
D
(|uε| − 1)2dx ≲ E sup

t∈[0,T ]
‖F (uε)‖L1 ≲ ε.

As ε → 0, we have that for P̃ − a.s. |u| ≡ 1 in L2, ∀t ∈ [0, T ], which implies that for
P̃− a.s. there exists a measurable set E(ω) in DT , such that

u = −1 + 21E, P̃− a.s..

Since u is {F̃t}t∈[0,T ]-adapted in L2, we know 1E is also {F̃t}t∈[0,T ]-adapted in L2.
Moreover by the right hand side of (5.26), we obtain that for P̃− a.s.ω,

‖g −G(u)‖L1 = lim
ε→0

‖G(uε)−G(u)‖L1 ≲ lim
ε→0

‖uε − u‖ = 0

which implies that g = G(u) = 2S1E. Hence we proved the assertion (iii).
Using the estimate (5.30), we have that for any t, τ ∈ [0, T ],

E‖1Et − 1Eτ‖
2p
L1 ≲ E‖1Et − 1Eτ‖

2p
L2 ≲ lim

ε→0
E‖uε(t)− uε(τ)‖2pL2 ≲ |t− τ |

p
6 .
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Then the assertion (iv) followed by the Kolmogorov’s criteria.
Note that the equation (5.1) is conserved, i.e. for any t ∈ [0, T ],∫

D
uε(t, x)dx ≡

∫
D
uε0(x)dx = |D|m0.

Since uε → u = −1 + 21E, we have that |Et| = 1+m0

2
|D|. This proved the assertion (v).

Finally set gε := G(uε), by (5.25) we know that

|Dgε(t, ·)|(D) =

∫
D
|∇gε(t, x)|dx ≤ Eε(t).

As ε ↘ 0, since gε → g = 2S1E in C([0, T ];L1) and Eε → E in L∞
w∗(0, T ), by [AFP00,

Proposition 3.13], we obtain that Dgε → Dg in L∞(0, T ;BV ). Then by the lower semi-
continuity of the BV norm we obtain that |D1Et |(D) = 1

2S
|Dg(t, ·)| ≤ 1

2S
E(t). This

completes the proof of the theorem.
□

5.2.5 Proof of Theorem 5.3
Now we are in a position to prove Theorem 5.3. Before we begin the proof, we need to
first recall some crucial lemmas to estimate the following “discrepancy” measure ζε(uε)dx

ζε(uε)dx :=

(
ε

2
|∇uε|2 − 1

ε
F (uε)

)
dx. (5.36)

Lemma 5.12. ([Che96, Lemma 4.4, Theorem 3.6]). Let

Kε :=

{
(u, v) ∈ H2(D)× L2(D) : v = −ε∆u+ 1

ε
f(u) in D, ∂u

∂n
= 0 on ∂D

}
.

There exist positive constants C0 and η0 ∈ (0, 1] such that for every η ∈ (0, η0], every
ε ∈ (0, 1], and every (uε, vε) ∈ Kε,∫

{x∈D;|uε|≥1−η}

[
eε (uε) + ε−1f 2 (uε)

]
≤ C0η

∫
{x∈D;|uε|≤1−η}

ε |∇uε|2 + C0ε

∫
D
(vε)2. (5.37)

Moreover there exist continuous, non-increasing, and positive functions M1(η) and M2(η)
defined on (0, η0] such that for every η ∈ (0, η0], every ε ∈ (0, 1

M1(η0)
], and every (uε, vε) ∈

Kε, we have that∫
D
(ζε(uε))+ dx ≤ η

∫
D
eε(uε)dx+ εM2(η)

∫
D
(vε(x))2dx, (5.38)

where (ζε(uε))+ is the positive part of ζε(uε).

Proof of Theorem 5.3

Let {uε0(·)}ε be a family of initial data satisfying (5.2). Let (uε, vε) be the solution of
(5.1) with initial value uε0. The first three assertions can be obtained directly by Theorem
5.11.
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In the following we fixed ω such that all the assertions in Theorem 5.11 hold. For
simplicity of notation, we also denote εk by ε and omit the notation tilde ˜ in the Theorem
5.11.

Since G(uε) → 2S1E and |DG(uε)| ≤ eε(uε) for every ε and every (t, x) ∈ DT , by the
lower semicontinuity of the BV norms, we have that

2S|D1Et|dtdx ≤ dµ,

which is the inequality (5.8).
For any ψ ∈ C1

c ([0, t) × D̄), denote h(t, u) :=
∫
D(1 + u(x))ψ(t, x)dx. Since (uε, vε) is

a solution to equation (5.1), by Itô’s formula we have that for any τ ∈ (0, t)

h(t, uε(t))− h(0, uε(0)) =

∫ t

0

∫
D
∂tψ(τ, x)(1 + uε(τ, x))dxdτ +

∫ t

0

〈ψ(τ, ·), duε(τ)〉,

combined with ψ(t) ≡ 0, which yields that

−
∫
D
(1 + uε(0, x))ψ(0, x)dx =

∫ t

0

∫
D
∂tψ(τ, x)(1 + uε(τ, x))dxdτ −

∫ t

0

∫
D
∇vε∇ψ

+ εσ
∫ t

0

〈ψ(τ, ·), dWτ 〉.

Let ε↘ 0, we obtain that the identity (5.10).
In addition, for any t ∈ (0, T ], Y⃗ ∈ C1

c (Dt;Rd), a direct calculation by integration by
parts yields that∫

D
Y⃗ · ∇uεvε =

∫
D
Y⃗ · ∇uε

(
−ε∆uε + 1

ε
f(uε)

)
= −

∫
D
DY⃗ : (eε(uε)− ε∇uε ⊗∇uε) +

∫
∂D
eε(uε)Y⃗ · n⃗∂D

= −
∫
D
DY⃗ : (eε(uε)− ε∇uε ⊗∇uε) .

The last equality holds because D is an open domain thus Y⃗ ≡ 0 on ∂D. Then taking
integration from s = 0 to s = t and letting ε↘ 0, we obtain∫ t

0

21Ediv(vY⃗ )dxds =

∫ t

0

∫
D
DY⃗ : (Idµ− (dµij)d×d) . (5.39)

It remains to construct V to finish the proof. Note that for any 0 < τ < t < T ,∫ t

τ

∫
D̄
dµ(s, x) = lim

ε↘0

∫ t

τ

∫
D
eε(uε)dsdx =

∫ t

τ

E(s)ds. (5.40)

Therefore, in the sense of Radon measure,

dµ(t, x) = dµt(x)dt.

By (5.40) we have µt(D̄) = E(t) for a.e. t ∈ (0, T ]. Consequently, for a.e. t ∈ (0, T ] and
a.e. τ ∈ (0, t), by (5.21), we have that

µt(D̄) =E(t) = lim
ε↘0

Eε(t) = lim
ε↘0

(
Eε(uε)(τ)−

∫ t

τ

∫
D
|∇vε|2

)
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+ lim
ε↘0

(
ε2σ+1

∫ t

τ

Tr(−∆Q)ds+
ε2σ−1

2

∫ t

τ

Tr(f ′(uε)Q)ds+ εσ
∫ t

τ

〈vε, dWτ 〉
)
.

Similar as in the proof of Lemma 5.6, we have that for σ > 1
2
,

lim
ε↘0

(
ε2σ+1

∫ t

τ

Tr(−∆Q)ds+
ε2σ−1

2

∫ t

τ

Tr(f ′(uε)Q)ds+ εσ
∫ t

τ

〈vε, dWτ 〉
)

= 0.

Hence we deduce that

µt(D̄) ≤ E(τ)−
∫ t

τ

∫
D
|∇v|2dxds = µτ (D̄)−

∫ t

τ

∫
D
|∇v|2dxds,

which is the inequality (5.12).
Next, we study the relation between µij and µ. Observe that for any t ∈ (0, T ], and

Y⃗ , Z⃗ ∈ C(D̄t;Rd),

ε

∫ t

0

∫
D
Y⃗ T (∇uε ⊗∇uε) Z⃗ =ε

∫ t

0

∫
D

∑
i,j

Y iZj∂xiu
ε∂xju

εdxdt

≤ε
∫ t

0

∫
D
|Y⃗ ||Z⃗||∇uε|2dxdt

≤
∫ t

0

∫
D
|Y⃗ ||Z⃗|eε(uε) +

∫ t

0

∫
D
|Y⃗ ||Z⃗|ζε(uε),

(5.41)

where Y⃗ T is the transpose of vector Y⃗ . Here in the last inequality we use the definition
of ζε(uε) in (5.36) then eε(uε) + ζε(uε) = ε|∇uε|2.

By taking η as small as enough in (5.38), we have that

lim
ε↘0

∫ t

0

∫
D
|Y⃗ ||Z⃗|ζε(uε) ≤ 0.

Thus letting ε↘ 0 in (5.41), we obtain that∫ t

0

∫
D̄
Y⃗ T (dµij)d×d Z⃗ ≤

∫ t

0

∫
D
|Y⃗ ||Z⃗|dµ. (5.42)

Therefore, in the sense of measure |dµij(t, x)| ≤ dµ(t, x). Consequently, there exists
µ-measurable functions νij(t, x) such that

dµij(t, x) = νij(t, x)dµ(t, x), µ− a.e. (t, x) ∈ D̄T .

By the definition of µij and (5.42), we have that

0 ≤ (νij)d×d = (νij(t, x))d×d ≤ I, µ− a.e. (t, x) ∈ D̄T .

Therefore we have that

(νij)d×d =
d∑
i=1

λiν⃗i ⊗ ν⃗i, µ− a.e.,
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where ν⃗i, i = 1, · · · , d are µ-measurable unit vectors and λi, i = 1 · · · , d are µ-measurable
functions, which satisfy

0 ≤ λi ≤ 1 (i = 1, · · · , d),
d∑
i=1

λi ≤ 1,
d∑
i=1

ν⃗i ⊗ ν⃗i = I, µ− a.e.. (5.43)

It then follows from (5.39) that for a.e. t ∈ (0, T ] and for every Y⃗ ∈ C1
c (D,Rd),

2

∫
D
1Etdiv

(
v(t, x)Y⃗ (x)

)
dx =

∫
D
∇Y⃗ (x) :

(
I−

d∑
i=1

λi(t, x)ν⃗i(t, x)⊗ ν⃗i(t, x)

)
dµt(x)

=

∫
D
∇Y⃗ (x) :

d∑
i=1

cti(x) (I− ν⃗i(t, x)⊗ ν⃗i(t, x)) dµ
t(x),

where

cti(x) = λi(t, x) +
1

d− 1

(
1−

d∑
i=1

λi(t, x)

)
.

Clearly, for a.e. t ∈ (0, T ], 0 ≤ cti ≤ 1 and
∑d

i=1 c
t
i ≥ 1 for µt − a.e.. Define pti =

{ν⃗i(t, x),−ν⃗i(t, x)} ∈ P and V t as in (5.9), then V is defined by dV (t, x, p) = dV t(x, p)dt,
i.e.

dV (t, x, p) =
d∑
i=1

cti(x)δpti(x)(p)dµ
t(x)dpdt,

satisfying (iii) of Definition 2.22.
Then by (2.6), ∫

D
1Et(x)div

(
v(t, x)Y⃗ (x)

)
dx =

1

2
〈δV t, Y⃗ 〉.

Thus we obtain (5.11). Hence we proved (iv) of Theorem 5.3. This completes the proof
of Theorem 5.3.

5.2.6 The case that σ = 1
2

As what is shown in the last subsection, for σ = 1
2
, the limit of solution to equation (5.1)

satisfies all the definition in Definition 5.2 except (5.12). Instead we have
Proposition 5.13. Let µt be as in Theorem 5.3, then

µt(D̄) +

∫ t

τ

∫
D
|∇v|2 ≤ µτ (D̄) + CQ(t− τ), P̃ − a.s., (5.44)

where CQ := Tr(Q).

Proof By using the method as in subsection 5.2.5, we have that for σ = 1
2

µt(D̄) =E(t) = lim
ε↘0

(
Eε(uε)(τ)−

∫ t

τ

∫
D
|∇vε|2

)
+ lim

ε↘0

(
ε2
∫ t

τ

Tr(−∆Q)ds+
1

2

∫ t

τ

Tr(f ′(uε)Q)ds+ ε
1
2 〈
∫ t

τ

vε, dWτ 〉
)

≤ E(τ)−
∫ t

τ

∫
D
|∇v|2dxds+ (t− τ)Tr(Q).
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The last inequality holds because |uε| → 1 and f ′(uε) = 3(uε)2 − 1. Thus we obtain
(5.44).

□

Remark 5.14. By Proposition 5.13 and the analysis in the proof of Theorem 5.3 in
Subsection 5.2.5. In the case that σ = 1

2
, the energy µt may grow a little faster than that

in deterministic case. But as what we will show in the next section, at least in radial
symmetric case, the perturbation by the noise ε 1

2dW is not strong enough, such that the
limit of equation (5.1) also converges to deterministic Hele-Shaw model (in a weak sense).
Thus we conjecture that in general for P−a.s. ω, the sharp interface limit of (5.1) satisfies
the deterministic Hele-Shaw model (1.5):

∆v = 0 in D \ Γt, t > 0,

∂v

∂n
= 0 on ∂D,

v = SH on Γt,

V =
1

2
(∂nv

+ − ∂nv
−) on Γt.

5.3 Case of radial symmetry for σ ≥ 1
2

In this section we are going to prove Theorem 5.4. In this case of radial symmetry, we
assume D = B1.

Any function u in this section of the form u(x) ≡ u(|x|). For convenience, we do
not distinguish functions of x ∈ B1 from functions of r ∈ [0, 1). We only distinguish the
integrals of dx from that of dr, due to consideration of singularities at the origin.

Denote r = |x|, then the equation (5.1) should be changed as

duε = ∂rrv
εdt+

d− 1

r
∂rv

εdt+ εσdWt, (t, r) ∈ (0, T )× [0, 1),

vε = −ε∂rruε(t)−
d− 1

r
∂ru

ε +
1

ε
f(uε(t)), (t, x) ∈ (0, T )× [0, 1),

∂ru
ε(t, 1) = ∂rv

ε(t, 1) = 0, t ∈ [0, T ],

uε(0, r) = uε0(r), x ∈ D.

(5.45)

Here Wt is given by
Wt =

∑
k∈Zd

αkbk(r)βk(t), (5.46)

where {βk}k∈Zd is a sequence of independent Brownian motions and {αk} satisfies∑
k∈Zd

λkα
2
k <∞. (5.47)

{bk}k∈Zd is an orthogonal basis in L2
0(0, 1), which is defined as {f ∈ L2(0, 1) :

∫ 1

0
f(r)rd−1dr =

0}, i.e. ∫ 1

0

bk(r)r
d−1dr = 0, ∀k ∈ Zd. (5.48)

Note that (5.46)-(5.48) is just the radially symmetric version of condition (5.4) and (5.5).
Moreover, all the results we obtained in the previous section also hold for this case. In
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particular, there exists a Borel set Ẽ ⊂ [0, T ] × [0, 1) such that E = {(t, x) ∈ DT :
(t, |x|) ∈ Ẽ} and Ẽt := {r ∈ [0, 1) : (t, r) ∈ [0, T ] × [0, 1)} is a BV set in [0, 1) for any
t ∈ [0, T ].

Remark 5.15. For the existence of radial symmetric solution to (5.1) under the assump-
tion in this section, we only need to check that any solution uε to (5.1) is invariant under
the rotation transformation. Then by the uniqueness, we can obtain that uε is radial
symmetric.

In fact, any rotation transformation in Rd can be identified as an orthogonal matrix
with determinant 1, i.e. an element in SO(d). For any A ∈ SO(d), a direct calculation
yields that

∇(v ◦ A) = (∇v) ◦ A (∆v) ◦ A = ∆(v ◦ A).

Then we have that for any solution (uε, vε) to (5.1), (uε ◦ A, vε ◦ A) is also a solution
to (5.1). By the uniqueness of solutions to (5.1), if the initial value of (uε, vε) is radial
symmetric, (uε, vε) is also radial symmetric. In this case, equation (5.1) is equivalent to
(5.45).

Moreover, a direct calculation yields that∫
B1

|∇u(|x|)|2dx =

∫ t

0

rd−1|∂ru(r)|2dr.

Since in 1-dimensional case, H1([0, 1]) is embedded in C([0, 1]), we have that in radial
symmetric case, for a.e. t ∈ [0, T ], uε(t, ·), vε(t, ·) ∈ C(B1 \Bδ) for any δ ∈ (0, 1).

We also mention that all the results in [Che96, Section 5] only depend on the second
equation in (5.45) and the estimate of (uε, vε). Thus with a similar proof, we obtain the
following theorems.

Theorem 5.16. Assume that {(ũε, ṽε)} is obtained in Theorem 5.11. Then

lim
ε↘0

∫ T

0

∫
D

∣∣ζε(ũε)∣∣dxdt = 0, P̃− a.s.,

where ζε(ũε) is the discrepancy measure defined in (5.36).

Proof In this proof, we ignore the notation tilde ˜ for simplicity.
For a fixed ω such that all the assertions in Theorem 5.11 hold. By the same proof as

[Che96, Theorem 5.1], we have that there exists a constant C > 0 he following estimates∫
Bδ

eε(uε)dx ≤ CδM ε(t), ∀δ ∈ (0, 1), (5.49)

where M ε(t) := 1 + Eε(uε)(t) + ‖vε‖2H1 ∈ L1(0, T ), and

sup
0<r<1

∣∣rd−1 (ζε(uε) + vεuε)
∣∣ ≤ CM ε(t). (5.50)

Hence for any small δ and η,∫
D
|ζε (uε)| dx ≤

∫
Bδ∪{|uε|≥1−η}

|ζε (uε)| dx+
∫
D∩{r>δ,|uϵ|≤1−η}

|ζε (uε)| dx
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≤
∫
Bδ∪{|uε|≥1−η}

eε (uε) dx+

∫
D∩{r>δ,|uϵ|≤1−η}

[
|vε| |uε|+ r1−dCM ε(t)

]
dx

≤
∫
Bδ∪{|uε|≥1−η}

eε (uε) dx+

∫
D∩{r>δ,|uϵ|≤1−η}

[
|vε| (1− η) + r1−dCM ε(t)

]
dx,

where we used the definition of ζε and eε(uε) and (5.49) in the second inequality.
For the first integral above, we have that∫

Bδ∪{|uε|≥1−η}
eε (uε) dx ≤

∫
Bδ

eε (uε) dx+

∫
{|uε|≥1−η}

eε (uε) dx

≤ CδM ε(t) + C0ηM
ε(t) + C0εM

ε(t),

where we used (5.49) and (5.37) in the second inequality.
For the second integral, we have that∫

D∩{r>δ,|uϵ|≤1−η}

[
|vε| (1− η) + r1−dCM ε(t)

]
dx ≤

∫
{|uϵ|≤1−η}

[
|vε|+ δ1−dCM ε(t)

]
dx

≤ Hd({|uϵ| ≤ 1− η})
(
M ε(t)

1
2 + δ1−dCM ε(t)

)
.

By Theorem 5.11 we know that ε−1F (uε) is uniformly bounded in L∞(0, T ;L1). Thus
there exists a constant C1 > 0 such that

Hd({|uϵ| ≤ 1− η}) ≤ Hd({||uϵ| − 1| ≥ η}) ≤ η−2

∫
D
F (uε)dx ≤ C1η

−2ε.

Combining all the estimates above, we have that for any η, δ > 0, there exists a
constant C(δ, η) > 0, such that∫

D

∣∣ζε(ũε)∣∣dx ≤ C2 (δ + η + ε+ C(δ, η)ε)M ε(t),

C2 is independent of ε, η, δ. Integrating the last inequality in (0, T ) and letting first ε→ 0
and then δ, η to 0, we can obtain the theorem.

□
In the following, we are going to prove

dµ = 2S|D1E|dxdt.

To prove this, we need a technical lemma:

Lemma 5.17. ([Che96, Lemma 5.4]) For every small positive constant δ > 0, there
exists a small positive constant ε0(δ) and a large positive constant C(δ) > 0, such that
for every ε ∈ (0, ε0(δ)], if (uε, vε) is a pair satisfying the second equation in (5.45) and

‖vε‖H1(B1) ≤ δ−1,

∫
B1

eε(uε)dx ≤ E0,

then the following hold:
(i). If (a, b) ⊂ (δ, 1] is an open interval where |uε| < 1−| ln ε|− 1

2 , then for a.e.t ∈ [0, T ],
uε is strictly monotonic in (a, b) and |b− a| ≤ C(δ)ε| ln ε|.
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(ii). Denote Aε := {r ∈ [2δ, 1− 2δ] : uε(r) = 0}, then∫ 1−2δ

2δ

rd−1eε(uε)dr − C(δ)
√
ε ≤ 2S

∑
r∈Aε

rd−1 ≤
∫ 1−2δ+C(δ)ε| ln ε|

2δ−C(δ)ε| ln ε|
rd−1eε(uε)dr + C(δ)

√
ε.

(iii). For any r ∈ Aε,∣∣∣∣vε(r) + sgn (uεr(r))
S(d− 1)

r

∣∣∣∣ ≤ C(δ)ε1/8.

(iv). If r1 6= r2 in Aε, then
|r1 − r2| ≥

1

C(δ)
.

Theorem 5.18. Let {(ũεk , ṽεk)}k are radially symmetric solutions of (5.45) which satisfy
all the assertions in Theorem 5.11. Then for any t ∈ (0, T ], ψ ∈ Cc(Dt),∫ t

0

∫
D
ψ(t, x)dµ(t, x) = 2S

∫ t

0

∫
D
ψ|D1Et |dxdt, P̃− a.s..

Proof The proof is a modification of the proof of [Che96, Theorem 5.3]. The only
difference is that in stochastic case, by (5.21), Theorem 5.4 and Proposition 5.13, we
know that for all σ ≥ 1

2
, there exists a hε ∈ L2(Ω,F ,P;L2(0, T )) such that

µ̃tε(D) :=

∫
D
eε(ũε(t, x))dx = Ẽε(t) ≤ E0 + hε(t) P− a.s.,

where for P− a.s. ω, {hε(ω, ·)}ε is bounded in L2(0, T ), while in deterministic case as in
[Che96], hε is just 0. Then the rest proof just follows the proof of [Che96, Theorem 5.3]
for a fixed ω.

We ignore the notation tilde ˜ in Theorem 5.11 for simplicity.
By (5.21), Theorem 5.4 and Proposition 5.13, we know that for all σ ≥ 1

2
, there exists

a hε ∈ L2(Ω,F ,P;L2(0, T )) such that

µtε(D) = Eε(t) ≤ E0 + hε(t) P− a.s., (5.51)

where dµtε := eε(uε)dx and for P− a.s. ω, {hε(ω, ·)}ε is bounded in L2(0, T ).
In the following we fix ω such that all the assertions in Theorem 5.11 hold, such that

(5.51) holds, and such that {hε(ω, ·)}ε is bounded in L2(0, T ).
The following proof is a modification of the proof of [Che96, Theorem 5.3]. We use a

contradiction argument. Since 2S|D1Et|dx ≤ dµt, we assume that there exists T0 ∈ (0, T ],
such that ∫ T0

0

∫
D
dµ(t, x) =

∫ T0

0

∫
D
dµtdt > 2S

∫ T0

0

∫
D
|D1Et |dxdt.

Since dµ = dµtdt is a Radon measure on DT , we know that limδ↘0

∫ T
0
µt(Bδ)dt = 0

and limδ↘0

∫ T
0
µt(B1 \ B̄1−δ)dt = 0. Thus there exists δ > 0 such that∫ T0

0

∫
B1−2δ\B̃2δ

dµ ≥ 2S

∫ T0

0

∫
D
|D1Et(x)| dxdt+ δ

(
T0 + 2

√
T0E0 + Ch(ω) + 1

)
, (5.52)
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where Ch(ω) := supε∈[0,1) ‖hε(ω, ·)‖2L2(0,T0)
. For simplicity we denote CT0 :=

√
T0E0 + Ch(ω).

Since dµε := dµtεdt := eε(uε)dxdt → dµ, there exists a large positive integer J ≡ J(δ)
such for all j ≥ J ,∫ T

0

∫
B1−2δ\B̄2δ

dµ
εj
t (x)dt ≥ 2σ

∫ T

0

∫
D
|D1Et | dxdt+ δ(T0 + 2CT0).

Denote
φδ(t) := µ

εj
t (B1−2δ \ B̄2δ), ϕ(t) := 2S|D1Et |(D).

we have that∫ T0

0

φδ(t)− ϕ(t)dt ≤
∫
{φδ−ϕ≥δ}

φδ(t)− ϕ(t)dt+

∫
{φδ−ϕ<δ}

φδ(t)− ϕ(t)dt

≤δT0 +
∫
{φδ−ϕ≥δ}

φδ(t)− ϕ(t)dt

≤δT0 +
∫
{φδ−ϕ≥δ}

φδ(t)dt

≤δT0 + ‖φδ‖L2(0,T0)

√
H1({t ∈ [0, T0] : φδ(t)− ϕ(t) ≥ δ})

≤δT0 + CT0
√

H1({t ∈ [0, T0] : φδ(t)− ϕ(t) ≥ δ}).

In the last inequality we used (5.51) and that

φδ(t) ≤ µ
εj
t (D) ≤ E0 + hε

j

.

By (5.52), we obtain that

H1({t ∈ [0, T0] : φδ(t)− ϕ(t) ≥ δ}) ≥ 4δ2 > 0.

Moreover, since vε converges in L2
w(0, T ;H

1) thus is uniformly bounded in L2(0, T ;H1),
we have that

H1({t ∈ [0, T0] : ‖vε‖H1 ≤ δ−1} = 1−H1({t ∈ [0, T0] : ‖vε‖H1 > δ−1} > 1−δ2‖vε‖2L2(0,T ;H1) > 0.

Hence, for each j > J , there exists tj ∈ [0, T0] such that

‖vεj(tj, ·)‖H1 ≤ δ−1, µ
εj
tj (B1−2δ \ B̄2δ) ≥ 2S|D1Etj

|(D) + δ. (5.53)

Now we show that (5.53) is wrong for j large enough.
For each j ≥ J , we define

Aj :=
{
r ∈ [δ, 1− δ]; r ∈ supp

(∣∣∣D1Ẽtj

∣∣∣)} ,
Aεj := {r ∈ [2δ, 1− 2δ];uεj (r, tj) = 0} ,

where Ẽ ⊂ [0, T ]× [0, 1) such that E = {(t, x) ∈ DT : (t, |x|) ∈ Ẽ} and Ẽt := {r ∈ [0, 1) :
(t, r) ∈ [0, T ]× [0, 1)} is a BV set in [0, 1) for any t ∈ [0, T ]. By Theorem 2.16,

|D1Ẽ| = H0bsupp (|D1Ẽ|) , |D1E| = Hd−1bsupp (|D1E|) . (5.54)

Moreover, supp (|D1E|) is a (d− 1)-rectifiable set and supp (|D1Ẽ|) is a 0-rectifiable set.
Since H0 is just the counting measure of points in [0, 1), we have that supp (|D1Ẽ|) =
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{r ∈ [0, 1) : |D1Ẽ|({r}) 6= 0} which is at most countable. Denote R(x) := |x| is a Lipshitz
function on D, thus R(E) = Ẽ and R (supp (|D1E|)) = supp (|D1Ẽ|) which implies that
(|D1E|) consists of countable (d − 1)-spheres. By (5.54) and Fubini’s theorem, we have
that

|D1Et |(D) =

∫ 1

0

Hd−1(D∩R−1(y))dy =

∫ 1

0

ωdy
d−1

1supp(|D1Ẽ |)(y)dy =
∑

y∈supp(|D1Ẽ |)

ωdy
d−1.

Then we obtain that

|D1Etj
|(D) ≥

∑
r∈Aj

ωdr
d−1 ≥ δd−1ωd(♯A

j),

where ♯Aj is the number of elements in Aj which is finite since |D1Etj
|(D) is finite. By

the second estimate in Lemma 5.17, Aεj is also a finite set.
Moreover, by the first inequality in (5.53) and Lemma 5.17, we have that

µ
εj
t

(
B1−2δ \ B̄2δ

)
=

∫ 1−2δ

2δ

rd−1eε(uε)dr ≤ 2S
∑
r∈Aε

rd−1 + C(δ)
√
ε.

Thus since ωd > 1, there exists a large integer J1 ≥ J such that

µ
εj
tj

(
B1−2δ \ B̄2δ

)
≤ 2S

∑
r∈Aej

ωdr
d−1 +

δ

2
∀j ≥ J1.

Hence by the second inequality in (5.52),∑
r∈Aϵj

ωdr
d−1 ≥

∑
r∈Aj

ωdr
d−1 +

δ

4S
, ∀j ≥ J1 (5.55)

Denote
lj :=

√
εj + sup

t∈[0,T0]

∫ 1

δ

|uεj(t, r) + 1− 21Ẽt
(r)|rd−1dr.

Since uεj → −1 + 21E in Cβ([0, T ];L1),

sup
t∈[0,T0]

∫
D
|uεj(t, x) + 1− 21Et(x)|dx = sup

t∈[0,T0]

∫ 1

0

rd−1|uεj(t, r) + 1− 21Ẽt
(r)|dr → 0,

for a fixed δ > 0, we have that limj→∞ lj = 0.
We claim that the definition of lj and (5.26) imply the existence of J2 ≥ J1 such that

min
r1,r2∈Ai,r1 ̸=r2

|r1 − r2| ≤ 4lj, ∀j ≥ J2, (5.56)

which is a contradiction to Lemma 5.17. We prove the (5.56) in the following two steps.
First, if Aεj ⊂ ∪r∈Aj (r − 2lj, r + 2lj), we claim that for some r ∈ Aj, there exist at

least two elements of Aεj in (r − 2lj, r + 2lj), which concludes (5.56).
If this claim is not true, that is, for any r ∈ Aj, there exists at most one r0 ∈

Aεj ∩ (r − 2lj, r + 2lj). Denote

Aj := {r ∈ Aj : ∃r0 ∈ Aεj , r0 ∈ (r − 2lj, r + 2lj)}.
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Then ♯Aj = ♯Aεj ≤ ♯Aj. Note that the number of elements in Aj in bounded in j since

♯Aj ≤ δ1−dω−1
δ |D1Etj

|(D) = δ1−dω−1
δ Eεj(tj)

and Eε(t) is uniformly in ε bounded in L∞(0, T ). By (5.55) we have that
δ

4S
=
∑
r∈Aεj

ωdr
d−1 −

∑
r∈Aj

ωdr
d−1

=
∑
r∈Aεj

ωdr
d−1 −

∑
r∈Aj

ωdr
d−1 −

∑
r∈Aj\Aj

ωdr
d−1

≤
∑
r∈Aj

ωd
(
(r + 2lj)

d−1 − rd−1
)
−

∑
r∈Aj\Aj

ωdr
d−1

≤2lj#A
j −

∑
r∈Aj\Aj

ωdr
d−1

≤C(δ)lj −
∑

r∈Aj\Aj

ωdr
d−1,

which is impossible for big j since limj→∞ lj = 0.
Then if Aεj ⊂ ∪r∈Aj (r − 2lj, r + 2lj) does not hold, there exists r1 ∈ Aεj such that

r1 /∈ ∪r∈Aj (r − 2hj, r + 2hj), i.e. (r1 − 2lj, r2 + 2lj)∩Aj = ∅. Therefore, limε→0 u
ε ≡ 1 or

limε→0 u
ε ≡ −1 on (r1 − 2lj, r2 + 2lj). Without loss of generality, we assume limε→0 u

ε ≡
−1 on (r1 − 2lj, r2 + 2lj). Thus there exists (a1, b1) ⊂ (δ, 1) such that r1 ∈ (a1, b1) and
|uεj | < 1 − | ln ε|− 1

2 on (a1, b1). By the first assertion of Lemma 5.17, uεj is monotonic
on (a1, b1) and |b1 − a1| ≤ C(δ)εj| ln εj|. Let εj be small enough such that (a1, b1) ⊂
(r1 − 2lj, r2 + 2lj).

We assume ∂ruεj(r0) > 0, i.e. uεj is monotone increasing on (a1, b1). Since limε→0 u
ε ≡

−1 on (r1 − 2lj, r2 + 2lj), we have that

Hd(uε > 0, |uε| > δ) ≤
∫
B1\B̄δ

|uεj(t, x) + 1− 21Et(x)|dx ≤ lj.

Since uε is continuous, there must be a r2 ∈ (r1, r1 + 2lj) ∩ Aεj .
In the case that ∂ruεj(r0) < 0, a similar argument yields that there exists r2 ∈

(r1 − 2lj, r1) ∩ Aεj . Anyway, we obtain r2 ∈ Aεj , such that |r1 − r2| ≤ 4lj.
Thus we proved (5.56), which is a contradiction to Lemma 4.2. Then we finish the

proof of the Theorem.
□

5.4 Proof of Theorem 5.4
The definition of V in (5.9) can be written as

dV t(x, p) =
d∑
i=1

cti(x)δpti(x)dµ
t(x)dp.

From (5.7) we know that

d‖V t‖(x) =
d∑
i=1

cti(x)dµ
t(x) ≥ dµt(x).
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First, we will show for a.e. t ∈ [0, T ], V t is a (d− 1)-rectifiable varifold.
As what we mentioned in Remark 5.5, for a.e. t ∈ [0, T ], Et is a BV set, thus for

a.e. t ∈ [0, T ]
µt = 2S|D1Et| = 2SHd−1b∂∗Et.

HereHd−1b∂∗Et is the (d−1)-dimensional Hausdorff measure on ∂∗Et. ∂∗Et is the reduced
boundary of Et (see (2.5))

∂∗Et = {x ∈ D : |ν⃗Et(x)| = 1} = supp(|D1Et |).

Moreover, by Theorem 2.16, ∂∗Et is a countably (d− 1)-rectifiable set and

lim
ρ↘0

|D1Et|(Bρ(x))

ρd−1
= ωd−1, Hd−1 − a.e. x ∈ ∂∗Et, (5.57)

where Bρ(x) is the ball in Rd with radius ρ and centered at x and ωd−1 is the area of unite
sphere in Rd−1. Since ‖V t‖ ≥ µt = 2S|1Et |, by Theorem 2.21, to show V t is rectifiable,
we need to show V t has locally bounded first variation. In fact, by (5.54), supp(D1Ẽt

) is
a countable set, thus

d|D1Et(x)| = ωd
∑

r∈supp(D1Ẽt
)

δr(|x|)dx,

where δr is the Dirac measure on R. Thus ∂∗Et = ∂Et which consists of countable
(d− 1)-spheres. Then by trace theorem∫

∂Et

|v|2dHd−1 ≲ ‖v‖2H1 .

By (5.11),

|〈δV t, Y⃗ 〉| ≲ |
∫
∂Et

vY⃗ · n⃗EtdHd−1|

≲ ‖Y ‖L∞

∫
∂Et

|v|dHd−1

≲ ‖v‖H1‖Y ‖L∞ ,

which implies V t has locally bounded first variation.
Thus by the definition of rectifiability and the expression of V t, we have that

dV t(x, p) = 2S|D1Et |dxδν⃗Et (t,x)
(dp) as Radon measure on D × P,

i.e.
dV (t, x.p) = dV t(x.p)dt = dµt(t, x)δν⃗Et (t,x)

(dp).

Hence we conclude that ct1 = 1, ct2 = · · · = ctd = 0 and pt1 = ν⃗Et . Then by the construction
of V in subsection 5.2.5, we have that λ1 = 1, λ2 = · · · = λd = 0 and

(dµij)d×d = ν⃗Et ⊗ ν⃗Etdµ.

Then by (5.11), for any Y⃗ ∈ C1
c (D,Rd), we have that

−〈δV t, Y⃗ 〉 = 2〈D1Et , vY⃗ 〉 = 2〈ν⃗Et|D1Et |, vY⃗ 〉 = 1

S
〈‖V t‖, vY⃗ · ν⃗Et〉.



5.5. The case for “smeared” noise 103

Hence by the Definition 2.22, we obtain that

SH⃗V t = vν⃗Et ‖V t‖ − a.e.,

where H⃗V t is the mean curvature vector of V t in Definition 2.22. This also implies that
for ‖V t‖ − a.e. x ∈ D \ supp(|D1Et |), H⃗V t = 0. Thus we have that

v = SH⃗V t · ν⃗Et on supp(|D1Et|).

5.5 The case for “smeared” noise
We observe that the requirement σ ≥ 1

2
only comes from the second variation term

ε2σ−1

2
Tr(f ′(uε)Q) in (5.21) when we apply Itô’s formula on Eε(uε). If there were no such

term ε2σ−1

2
Tr(f ′(uε)Q), Theorem 5.11 would hold for σ ≥ 0.

This motivates us to consider the following equation:

∂uε

∂t
= ∆vε + εσξεt , (t, x) ∈ [0, T ]×D,

vε = −ε∆uε(t) + 1

ε
f(uε(t)), (t, x) ∈ [0, T ]×D,

∂uε

∂n
=
∂vε

∂n
= 0, (t, x) ∈ [0, T ]× ∂D,

uε(0, x) = uε0(x), x ∈ D,

(5.58)

where uε0 satisfies (5.2) and ξεt is formally defined by ξεt =
∫∞
−∞ ρε(t− s)dWs. In fact, let

(Wt, t ≥ 0) be a Q-Wiener process on L2
0(D) defined on a probability space (Ω,F ,P),

where Q satisfies (5.4) and (5.5). We extend the definition of (Wt, t ≥ 0) to negative time
by considering an i.i.d Q-Wiener process (Ŵt, t ≥ 0) and setting Wt = Ŵ−t for t < 0.
Then (Wt, t ∈ R) is a two-sided Q-Wiener process on L2

0. Let ρ be a mollifying kernel i.e.

ρ ∈ C∞(R), 0 ≤ ρ ≤ 1, suppρ ⊂ [−1, 1],

∫
R
ρ = 1, ρ(t) = ρ(−t).

For γ > 0 we set ρε(t) = ε−γρ( t
εγ
). Then the approximate Wiener process W ε

t is defined
as

W ε
t :=

∫ ∞

−∞
ρε(t− s)Wsds, (5.59)

Its derivative is defined as

ξεt :=
dW ε

t

dt
=

∫ ∞

−∞
ρε(t− s)dWs. (5.60)

Since ρε is supported on [−εγ, εγ], only the definition on negative time [−εγ, 0) of Wt is
used. Thus we have that for any g ∈ L2(D)∫ T

0

〈g(t), ξεt 〉dt =
∫ T

0

〈g(t),
∫ t+εγ

−εγ
ρε(t− s)dWs〉dt

=

∫ T+εγ

−εγ
〈
∫ T

0

ρε(s− t)g(t)dt, dWs〉.
(5.61)
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Lemma 5.19. There exists a constant which only depends on T such that for any ε ∈ (0, 1]
and any p ≥ 1, any σ ≥ 0

E sup
t∈[0,T ]

Eε(t)p ≤ CT (ε
σ + E0)p, (5.62)

and
E
(∫ T

0

‖∇vε‖2L2dt

)p
≤ CT (ε

σ + E0)p. (5.63)

Proof The proof is a modification of Lemma 5.6.
Note that the noise in equation 5.58 is smooth in time, which enable us to apply

Newton-Leibniz formula on Eε to avoid the second variation term in (5.21). We have
that

dEε(uε)
dt

= 〈DEε(uε), ∂tuε〉 = −〈∇vε,∇vε〉+ εσ〈vε, ξεt 〉. (5.64)

By (5.61) we know that∫ T

0

〈vε(t), ξεt 〉dt =
∫ T+εγ

−εγ
〈ρε ∗ vε(t), dWt〉,

where we simply denote

ρε ∗ vε(t) :=
∫ T

0

ρε(t− s)vε(s)ds.

Similarly as the proof in Lemma 5.6. by Burkholder-Davis-Gundy type inequality, we
have that

E sup
t∈[0,T ]

|
∫ T

0

〈vε(t), ξεt 〉dt| ≲ E sup
t∈[0,T ]

|
∫ T

0

〈ρε ∗ vε(t), dWt〉|

≲
(
E sup
t∈[0,T ]

|
∫ T

0

〈ρε ∗ vε(t), dWt〉|2
) 1

2

≲
(∫ T

0

E‖
√
Q(ρε ∗ vε(t))‖2L2dt

) 1
2

≲
(∫ T

0

(ρε ∗ E‖∇vε‖L2)2 dt

) 1
2

≲
(∫ T

0

E‖∇vε‖2L2dt

) 1
2

,

where we used the Young’s inequality in the last inequality. The rest is the same as in
the proof of Lemma 5.6. We omit it here for simplicity.

□
With the same notation and proof as in Theorem 5.11, we can obtain a tightness

result for any σ ≥ 0.
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Theorem 5.20. Assume σ ≥ 0, Q satisfies (5.4) and (5.5). There exist a probability
space (Ω̃, F̃ , P̃) on X 1 ×X 2, a subsequence εk (we still denote it as ε for simplicity) and{(

ε−1 sup
t∈[0,T ]

‖F (ũε)‖L1 , Eε(ũε), ũε, G(ũε), ṽε, eε(ũε)dxdt, {ε∂xiũε∂xj ũεdxdt}ij

)}
⊂ X 1×X 2

and
(a, E , u, g, v, µ, {µij}ij) ∈ X 1 ×X 2,

such that
(i) P̃◦

(
ε−1 supt∈[0,T ] ‖F (ũε)‖L1 , Eε(ũε), ũε, G(ũε), ṽε, eε(ũε)dxdt, {ε∂xiũε∂xj ũεdxdt}ij

)−1
=

P̂ε on X 1 ×X 2,
(ii)

(
ε−1 supt∈[0,T ] ‖F (ũε)‖L1 , Eε(ũε), ũε, G(ũε), ṽε, eε(ũε)dxdt, {ε∂xiũε∂xj ũεdxdt}ij

)
con-

verges to (0, E , u, g, v, µ, {µij}ij) in X 1 ×X 2, P̃− a.s, as ε↘ 0.
In particular, for P̃− a.s.ω, there exists a Borel set E ∈ DT , such that as ε↘ 0
(iii) uε → u in u in Cβ([0, T ];L2), g = G(u) = 2S1E a.e. in DT and in Cβ([0, T ];L1),

u = −1 + 21E a.e. in DT and in Cβ([0, T ];L2).
Moreover, denote Et := {x : (t, x) ∈ E}. Then
(iv) For all β < 1

12
, P̃
(
1E ∈ Cβ([0, T ];L1)

)
= 1,

(v) P̃
(
|Et| = |E0| = 1+m0

2
|D|,∀t ∈ [0, T ]

)
= 1,

(vi) P̃ (1E ∈ L∞(0, T ;BV )) = 1.

Proof For all σ ≥ 0, one can check that with Lemma 5.19 true, all the estimate in
Subsection 5.2.2 and 5.2.3 hold for the solution (uε, vε) to equation (5.58). Then the
same proof as Theorem 5.11 follows.

□
Moreover, for σ ≥ 0, the same argument as in Subsection 5.2.5 yields that

Theorem 5.21. Assume that σ ≥ 0 and (5.2) hold. Let (uε, vε) be the solution to (5.58).
Then there exist a probability space (Ω̃, F̃ , P̃), (ũε, ṽε) ∈ C([0, T ];L2)× L2(0, T ;H1) with
P̃◦(ũε, ṽε)−1 = P◦(uε, vε)−1 on C([0, T ];L2)×L2(0, T ;H1). There also exists a subsequence
εk such that as εk ↘ 0 the following holds:

(i) There exists a measurable set E ⊂ Ω̃×DT , such that for P̃− a.s. ω

ũεk(ω) → −1 + 21E(ω), a.e. in DT and in Cβ([0, T ];L2)

for any β < 1
12

where E(ω) := {(t, x) ∈ DT : (ω, t, x) ∈ E};
(ii) There exists a random variable v ∈ L2

w(0, T ;H
1) (v is weakly measurable in

L2(0, T ;H1)) such that for P̃− a.s. ω

ṽεk(ω) → v(ω) weakly in L2(0, T ;H1);

(iii) There exist random variables µ ∈ MR and {µij}di,j=1 ∈ Md×d such that for
P̃− a.s. ω

eεk(ω)(ũεk(ω))dxdt→ dµ(ω, t, x) weakly in MR,

εk∂xiũ
εk(ω)∂xj ũ

εk(ω)dxdt→ dµij(ω, t, x) weakly in M, ∀i, j = 1, · · · , d.
(5.65)
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(iv) For P̃− a.s. ω, there exists a Radon measure V (ω) on DT × P , and µt(ω, x)dt =
dµ(ω, t, x) such that for any t ∈ (0, T ] and Y⃗ ∈ C1

0(Dt;Rd)∫ t

0

〈δV s, Y⃗ 〉ds =
∫ t

0

∫
D
∇Y⃗ :

(
Idµ(s, x)− (µij(s, x))d×d

)
. (5.66)

In particular, for P̃−a.s. ω, (E(ω), v(ω), V (ω)) satisfies all the properties in Definition
5.2 except (5.12). If σ > 0, (5.12) holds, thus (E(ω), v(ω), V (ω)) is a weak solution in
the sense of Definition 5.2.

Proof The proof is almost the same as in Subsection 5.2.5. The only difference is in
the proof of that the existence of a Q-Wiener process on L2 cannot be obtained directly
such that for any ε > 0, (5.35) holds. We use the original equation (5.58) to prove (5.10)
directly.

In fact, for any ψ ∈ C1
c ([0, t)×D),

−
∫
D
(1 + uε(0, x))ψ(0, x)dx =

∫ t

0

∫
D
∂tψ(τ, x)(1 + uε(τ, x))dxdτ −

∫ t

0

∫
D
∇vε∇ψdxdτ

+ εσ
∫ t

0

∫
D
ψ(τ, x)ξε(τ, x)dxdτ.

Thus for P− a.s.ω ∈ Ω,

lim
ε→0

(∫ t

0

∫
D
∂tψ(τ, x)(1 + uε(τ, x))dxdτ +

∫
D
(1 + uε(0, x))ψ(0, x)dx−

∫ t

0

∫
D
∇vε∇ψdxdτ

)
= 0.

Since P̃ ◦ (ũε, ṽε)−1 = P ◦ (uε, vε)−1, we have that for P̃ − a.s.ω ∈ Ω̃ and any σ > 0,

lim
ε→0

(∫ t

0

∫
D
∂tψ(τ, x)(1 + ũε(τ, x))dxdτ +

∫
D
(1 + ũε(0, x))ψ(0, x)dx−

∫ t

0

∫
D
∇ṽε∇ψdxdτ

)
= 0,

which yields that∫ t

0

∫
D
∂tψ(τ, x)(1 + ũ(τ, x))dxdτ +

∫
D
(1 + ũ(0, x))ψ(0, x)dx−

∫ t

0

∫
D
∇ṽ∇ψdxdτ = 0.

Thus we obtain (5.10). The rest proof is the same as the proof of Theorem 5.3 in
Subsection 5.2.5.

□
Moreover in radial symmetric case,

Theorem 5.22. Let σ ≥ 0, with the same notations as in Theorem 5.21, and suppose
that the assumptions in Theorem 5.21 hold. Then in radially symmetric case, that is
D = B1, where B1 is the unit ball in Rd and that uε0 is radially symmetric, we have that

dµ = 2S|D1Et|dxdt as Radon measure on DT .

In particular, for a.e.t ∈ [0, T ], V t is a (d− 1)-rectifiable varifold, i.e.

dV (t, x, p) = 2S|D1Et |dxdtδν⃗Et (t,x)
(dp) as Radon measure on DT × P.
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Then we have that{
(dµij)d×d = ν⃗Et ⊗ ν⃗Etdµ as Radon measure on D̄T ,

v(t, x) = Sν⃗Et(x) · H⃗V t(x) on supp(|D1Et |) for a.e. t ∈ [0, T ],
(5.67)

H⃗V t is the mean curvature vector of V t defined in Definition 2.22 and δν⃗ is the Dirac
measure concentrated at ν⃗ ∈ P .

Proof It suffice to prove

dµ = 2S|D1Et |dxdt as Radon measure on DT ,

then the following is the same as the proof of Theorem 5.4 in Section 5.3.
In fact, by taking hε(t, x) =

∫ t
0

∫
D v

ε(s, x)ξε(s, x)dsdx in (5.51), then all the proof
followed as in the proof of Theorem 5.18. Thus we can finish the proof.

□

Remark 5.23. The same as in Remark 5.5, in radial symmetric case, v = SH on Γt
in a weak sense. Thus in radial symmetric case, for all σ > 0 the sharp interface limit
of equation 5.58 satisfies the deterministic Hele-Shaw model (1.5) in a weak sense. In
general we also conjecture that the sharp interface limit of equation 5.58 satisfies the
deterministic Hele-Shaw model (1.5)

∆v = 0 in D \ Γt, t > 0,

∂v

∂n
= 0 on ∂D,

v = SH on Γt,

V =
1

2
(∂nv

+ − ∂nv
−) on Γt.

Now we will focus on the case that σ = 0. Note that the triple (E, v, V ) obtained in
Theorem 5.21 satisfies all the definition in Definition 5.2 except (5.10) and (5.12). Let
D+ = Eo

t ∩ D be the interior of Et in D and D− = D \ Ēt.

Theorem 5.24. Let (Ω̃, F̃ , P̃), E, v be as in Theorem 5.21 and Q be an operator satisfying
(5.4),(5.5). Then there exists a Q-Wiener process W̃ on L2(D), which is defined on
(Ω̃, F̃ , P̃), such that

2d1Et = ∆vdt+ dW̃t,

in the sense that for any t ∈ [0, T ] and ψ ∈ C1
c ([0, t)× D̄),∫ t

0

∫
D
(−21Eτ∂tψ +∇v · ∇ψ) dxdτ =

∫
D
21E0ψ(0, ·) +

∫ t

0

〈ψ(τ, ·), dW̃τ 〉. (5.68)

Proof For any h ∈ H1, denote

M ε
h :=

∫
D
(uε(t)− uε(0))hdx+

∫ t

0

∇vε · ∇hdx

and
M̃ ε

h :=

∫
D
(ũε(t)− ũε(0))hdx+

∫ t

0

∇ṽε · ∇hdx.
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Clearly,
M ε

h =

∫
D
h(x)W ε

t (x)dx

and as ε → 0, M ε
h converges to a Wiener process with covariance ‖Q 1

2h‖2L2 . Since P ◦
(M ε

h)
−1 = P̃ ◦ (M̃ ε

h)
−1, we know that the law of M̃ ε

h converges to a Wiener process with
covariance ‖Q 1

2h‖2L2 . Moreover

lim
ε→0

M̃ ε
h =

∫
D
(u(t)− u(0))hdx+

∫ t

0

∇v · ∇hdx, P̃ − a.s..

Thus we obtain that ∫
D
(u(t)− u(0))hdx+

∫ t

0

∇v · ∇hdx

is a Wiener process with covariance ‖Q 1
2h‖2L2 on (Ω̃, F̃ , P̃). Then there exists a Q-Wiener

process W̃ on L2, which is defined on (Ω̃, F̃ , P̃), such that

〈Wt, h〉 =
∫
D
(u(t)− u(0))hdx+

∫ t

0

∫
D
∇v · ∇hdxds.

Thus we obtain the following equation for u:

du = ∆vdt+ dWt

Similar to the proof in Subsection 5.2.5, the Itô’s formula yields that for any ψ ∈
C1
c ([0, t)× D̄)

−
∫
D
(1 + u(0, x))ψ(0, x)dx =

∫ t

0

∫
D
∂tψ(τ, x)(1 + u(τ, x))dxdτ −

∫ t

0

∫
D
∇v∇ψdxdτ

+

∫ t

0

〈ψ(τ, ·)dWτ 〉,

i.e. ∫ t

0

∫
D
(−21Eτ∂tψ +∇v · ∇ψ) dxdτ =

∫
D
21E0ψ(0, ·) +

∫ t

0

〈ψ(τ, ·), dW̃τ 〉.

Similarly to the discussion in Subsection 5.1.4, (5.68) is a weak formula for

2d1Et = ∆vdt+ dW̃t.

□

Corollary 5.25. For any ψ ∈ C1
c ([0, t)× D̄), with suppψ ⊂ D \ Γt,∫ t

0

∫
D
∇v · ∇ψdHdds =

∫ t

0

〈ψ, dW̃s〉.

This is in fact a weak formula for

∆v = −dWt

dt
in D \ Γt.
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Proof Since ψ ∈ C1
c ([0, t) × D̄) and suppψ ⊂ D \ Γt, we know that 1Eψ = ψ and

1E∂tψ = ∂tψ. Thus∫ t

0

∫
D
1Et∂tψdx =

∫ t

0

∫
D
∂tψdx = −

∫
D
ψ(0, ·)dx = −

∫
D
1E0ψ(0, ·)dx.

Then by (5.68), we can finish the proof.
□

Remark 5.26. Similar to the deterministic case, ∆v and ∂v
∂n

are ill-defined. The equation
of (v,Γ) should be understood in distribution sense. We suppose that (v,Γ) is smooth
enough such that ∆v and ∂v

∂n
are well-defined.

We also suppose that D \ E ⊂ D. Denote Γt := ∂Et \ ∂D and let D+ = Eo
t ∩D be the

interior of Et in D and D− = D \ Ēt.
For any ψ ∈ C1

c ([0, t)× D̄), with suppψ(t, ·) ∩ Γt = ∅,∫ t

0

∫
∂D

∂v

∂n
ψdHd−1ds =

∫ t

0

∫
∂D+

∂v

∂n
ψdHd−1ds−

∫ t

0

∫
Γt

∂v

∂n
ψdHd−1ds

=

∫ t

0

∫
∂D+

∂v

∂n
ψdHd−1ds

=

∫ t

0

∫
D+

div(∇vψ)dHdds

=

∫ t

0

∫
D+

∇v · ∇ψdHdds+

∫ t

0

∫
D−

∆vψdHdds

=

∫ t

0

〈ψ, dW̃s〉+
∫ t

0

∫
D+

∆vψdHdds

=

∫ t

0

2〈ψ, d1Es〉 = 0,

(5.69)

where we used Corollary 5.25 in the fifth equality. The last equality holds because
suppψ(t, ·) ∩ Et = ∅.

Formally we have that in distribution sense
∂v

∂n
= 0 in [0, T ]× ∂D.

To calculate the velocity of Γt, formally we denote v̂ = v + ∆−1 ˙̃W , where ˙̃W is the
formal derivative dW̃

dt
. Then we have

2∂t1Et = ∆v̂,

and v̂ = 0 in [0, T ]× (D \ Γt). For any ψ ∈ C1
c (D̄t)∫ t

0

∫
D
∂t1EtψdHdds = −1

2

∫ t

0

∫
D
∇v̂∇ψdHdds

= −1

2

∫ t

0

∫
D+

∇v̂∇ψdHdds− 1

2

∫ t

0

∫
D−

∇v̂∇ψdHdds

=
1

2

∫ t

0

∫
D+

div(∇v̂ψ)dHdds+
1

2

∫ t

0

∫
D−

div(∇v̂ψ)dHdds

=
1

2

∫ t

0

∫
Γt

(∂nv̂
+ − ∂nv̂

−)ψdHd−1ds.

(5.70)
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Then following the same calculation as in Section 5.1.4, we obtain that in distribution
sense

V =
1

2
(∂nv̂

+ − ∂nv̂
−).

Thus formally we have
Vdt = 1

2

[
∂

∂n

]
Γt

(vdt+∆−1dW̃t), (5.71)

Here
[
∂
∂n

]
Γt

is defined by [
∂

∂n

]
Γt

f = ∂nf
+ − ∂nf

−,

where f+, f− is the restriction of f on D+, D−, respectively.

Remark 5.27. For the value of v on Γt, since Theorem 5.22 holds for all σ ≥ 0.
Combining it with Corollary 5.25, Remark 5.26 and (5.71), we prove that in radial case,
when σ = 0, the sharp interface limit of equation (5.58) is the formally the stochastic
Hele-Shaw model (1.29). For general case, we conjecture that the sharp interface limit
also satisfies (1.29): 

∆vdt = −dWt in D \ Γt, t > 0,

∂v

∂n
= 0 on ∂D,

v = SH on Γt,

Vdt = 1

2

[
∂

∂n

]
Γt

(vdt+∆−1dWt).

Remark 5.28. The idea of “smeared noise” in this section can be also applied to the case
of space-time white noise by considering the mollified space-time white noise. That is,
considering the convolution of space-time white noise with a mollifier both in space and
in time. Then a similar result can be obtained.
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