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In this paper, we investigate the potential for a class of non-Gaussian processes
so-called generalized grey Brownian motion. We obtain a closed analytic form
for the potential as an integral of the M-Wright functions and the Green function.
In particular, we recover the special cases of Brownian motion and fractional
Brownian motion. In addition, we give the connection to a fractional partial
differential equation and its the fundamental solution.
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1 INTRODUCTION

Polymers are consisting of small chemical units that act on each other via different forces. A very simple and well-studied
model of an ideal chain is a classical random walk; see, eg, Madras and Slade and Rubinstein and Colby.1,2 In these models,
there are no interactions between the monomers that are far apart along the chain.2 In that case, it is known that the
nearest neighbors are linked via springs; ie, the chain can be considered as a chain of harmonic oscillators.

Of course, to obtain a more realistic polymer model, the suppression of self intersections had to be introduced (“excluded
volume”); see Edwards and Westwater3,4 for a continuum model; for random walks, see Domb and Joyce5 and references
therein. In addition, one has to consider solvent interactions.2 Individual chain polymer models are hence well studied
and widely understood. A continuum limit of those models, that is, where the polymers are modeled by Brownian motion
(Bm) paths, led to a deeper understanding in the asymptotic scaling behavior of the chains. The drawback of Bm or random
walk models is that they can not reflect long-range forces along the chain without introducing a further potential.

Fractional Brownian motion (fBm) paths have been suggested as a heuristic model,6 without yet including the “excluded
volume effect” although a more proper model would be based on self-avoiding fractional random walks.

The aim of this paper is at first to model the long-range correlations of fBm as a generalized bead-spring model, hence
a chain model. For this, we first consider a continuous model, which we then discretize. In the next step, we go beyond
the fBm-based models. More precisely, we discuss a generalized interaction that arises from non-Gaussian chain models.

Note: In particular, we consider the logarithm of the corresponding probability density function. Because of its role in
polymer physics, we use the term “chain potential” throughout this article, a widely used terminology, such as, eg, in
Rubinstein and Colby, Pelissetto and Vicari, and Jannink and des Cloizeaux.2,7,8

In that model, the interaction potentials are not only long-range along the chain but can also give rise to multiparticle
nonlinear forces between the constituents. The class of underlying random processes is that of generalized grey Brow-
nian motion (ggBm) that will give rise to chain models with nonlinear forces between the constituents and nonergodic
dynamics as shown in Molina-Garcí.9 There also occur higher order interactions; in particular, we give an explicit form for
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the three-particle term. The ggBm family of processes generalizes fBm in the sense that it still has stationary increments;
thus, it may serve as a generalized continuous polymer model.

In section 2, we shall introduce the required concepts and properties of ggBm so as to then present our results, and in
section 3, the chain potentials are derived, and the relation to the fractional partial equations is pointed out.

2 GENERALIZED GREY BROWNIAN MOTION IN ARBITRARY
DIMENSIONS

Before we introduce the definition of ggBm, let us recall two special functions that play a major role in what follows. For
0 < 𝛽 < 1 ,the Mittag-Leffler (entire) function E𝛽 is defined by the following:

E𝛽(z) ∶=
∞∑

n=0

zn

Γ(𝛽n + 1)
, z ∈ C, (1)

where

Γ(z) =

∞

∫
0

tz−1e−t dt, z ∈ C, Re(z) ≥ 0

is the Euler gamma function. Note that for n ∈ N, we have Γ(n + 1) = n!.
The M-Wright function is given as a particular choice of the Wright function W𝜆,𝜇, 𝜆 > −1, 𝜇 ∈ C via

M𝛽(z) ∶= W−𝛽,1−𝛽(−z) =
∞∑

n=0

(−z)n

n!Γ(−𝛽n + 1 − 𝛽)
.

The special choice 𝛽 = 1
2

yields the following:

M 1
2
(z) = 1√

𝜋
exp

(
−z2

4

)
; (2)

ie, we recover the Gaussian density.
The Mittag-Leffler function E𝛽 is the Laplace transform of the M-Wright function in R+; hence,

E𝛽(−s) =

∞

∫
0

e−s𝜏M𝛽(𝜏)d𝜏. (3)

Definition 1 (see Mura and Mainardi10 for d = 1). Let 0 < 𝛽 < 1 and 0 < 𝛼 < 2 be given. A d-dimensional continuous
stochastic process B𝛽,𝛼 = {B𝛽,𝛼(t), t ≥ 0} defined on a complete probability space (Ω, ,P) is a ggBm if:

1. P(B𝛽,𝛼(0) = 0) = 1, that is ggBm, starts at zero almost surely.
2. Any collection

{
B𝛽,𝛼(t1), … ,B𝛽,𝛼(tn)

}
with 0 ≤ t1 < t2 < … < tn < ∞ has characteristic function given, for any

𝜃 = (𝜃1, … , 𝜃n) ∈ (Rd)n, where 𝜃j = (𝜃j,1, … 𝜃j,d)

E

(
exp

(
i

n∑
k=1

(𝜃k,B𝛽,𝛼(tk))

))
= E𝛽

(
−1

2

d∑
k=1

(𝜃.,k,Σ𝛼𝜃.,k)

)
, (4)

where E denotes the expectation and

Σ𝛼 = 1
2
(

t𝛼k + t𝛼
𝑗
− |tk − t𝑗|𝛼)n

k,𝑗=1 .
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3. The joint probability density function of (B𝛽,𝛼(t1), … ,B𝛽,𝛼(tn)) is equal to

𝑓𝛽(𝜃,Σ𝛼) =
(2𝜋)−

nd
2√

detΣ𝛼

∞

∫
0

𝜏
− nd

2 e−
1

2𝜏
∑d

k=1(𝜃.,k ,Σ
−1
𝛼
𝜃.,k)M𝛽(𝜏)d𝜏. (5)

The ggBm B𝛽,𝛼 has the following properties:

1. It is an 𝛼

2
self-similar process with stationary increments.

2. Its characteristic function has the form as follows:

E

(
ei(k,B𝛽,𝛼(t))

)
= E𝛽

(
− |k|2

2
t𝛼
)
, k ∈ R

d. (6)

3. For each t ≥ 0, the moments of any order are given by the following:{
E(|B𝛽,𝛼(t)|2n+1) = 0,
E(|B𝛽,𝛼(t)|2n) = (2n)!

2nΓ(𝛽n+1)
(dt𝛼)n.

4. The covariance function has the form as follows:

E((B𝛽,𝛼(t),B𝛽,𝛼(s))) = d
2Γ(𝛽 + 1)

(t𝛼 + s𝛼 − |t − s|𝛼) , t, s ≥ 0. (7)

5. For each t, s ≥ 0, the characteristic function of the increments is as follows:

E

(
ei(k,B𝛽,𝛼 (t)−B𝛽,𝛼(s))

)
= E𝛽

(
− |k|2

2
|t − s|𝛼) , k ∈ R

d. (8)

Remark 1. For n = 1, the density f𝛽(𝜃, t) is the fundamental solution of the following time fractional differential
equation (see Mentrelli and Pagnini 11)

D
2𝛽
t 𝑓𝛽(𝜃, t) = Δ𝑓𝛽(𝜃, t), (9)

where Δ is the d-dimensional Laplacian in 𝜃 andD
2𝛽
t is the Caputo-Djrbashian fractional derivative; see Samko et al.12

Remark 2. The family B𝛽,𝛼 forms a class of 𝛼

2
self-similar processes with stationary increments, which includes the

following:

1. For 𝛽 = 𝛼 = 1, the process {B1,1(t), t ≥ 0} is a standard d-dimensional Bm.
2. For 𝛽 = 1 and 0 < 𝛼 < 2, {B1,𝛼(t), t ≥ 0} is a d-dimensional fBm with Hurst parameter 𝛼

2
.

Note that the one-dimensional fBm with Hurst parameter h is the centered Gaussian process with covariance

E(Bh
t Bh

s ) =
1
2
(t2h + s2h − |t − s|2h).

3. For 𝛼 = 1, {B𝛽,1(t), t ≥ 0} is a 1
2

self-similar non-Gaussian process with the following:

E

(
ei(k,B𝛽,1(t))

)
= E𝛽

(
− |k|2

2
t
)
, k ∈ R

d. (10)

4. For 0 < 𝛼 = 𝛽 < 1, the process {B𝛽(t) ∶= B𝛽,𝛽(t), t ≥ 0} is 𝛽

2
-self-similar and is called d-dimensional grey

Brownian motion (gBm for short). Its characteristic function is given by the following:

E

(
ei(k,B𝛽 (t))

)
= E𝛽

(
− |k|2

2
t𝛽
)
, k ∈ R

d. (11)
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For d = 1, this process was introduced by W. Schneider.13,14

5. For other choices of the parameters 𝛽 and 𝛼, we obtain, in general, non-Gaussian processes.

The M-Wright function with two variables M1
𝛽

of order 𝛽 (one-dimensional in space) is defined by

M
1
𝛽
(x, t) ∶= M𝛽(x, t) ∶= 1

2
t−𝛽M𝛽(|x|t−𝛽), 0 < 𝛽 < 1, x ∈ R, t ∈ R

+, (12)

which is a probability density in x evolving in time t with self-similarity exponent 𝛽. The following integral representation
for the M-Wright function is valid; see Mainardi et al.15

M𝛽∕2(x, t) = 2

∞

∫
0

e−
x2

4𝜏√
4𝜋𝜏

t−𝛽M𝛽(𝜏t−𝛽)d𝜏, 0 < 𝛽 ≤ 1, x ∈ R. (13)

This representation is valid in a more general form; see Mainardi et al,15, equation (6.3) but for our purpose, it is sufficient
in view of its generalization for x ∈ Rd. In fact, Equation (13) may be extended to a general spatial dimension d by the
extension of the Gaussian function, namely,

M
d
𝛽∕2(x, t) ∶= 2

∞

∫
0

e−
1

4𝜏
|x|2

(4𝜋𝜏)
d
2

t−𝛽M𝛽(𝜏t−𝛽)d𝜏, x ∈ R
d, t ≥ 0, 0 < 𝛽 ≤ 1. (14)

The function Md
𝛽

2

is nothing but the fundamental solution of a time fractional diffusion Equation (9); see Mentrelli and

Pagnini11 for details.

3 CHAIN POTENTIALS

In this section, we compute the chain potentials associated to the system driven by a ggBm. First, we point out the classical
case driven by a Bm that is the sum of harmonic oscillator potentials corresponding to nearest neighbors attraction. We
then compute the chain potential for the general non-Gaussian family B𝛽,𝛼 .

3.1 Gaussian case
Let X = {X(t), t ≥ 0} be a standard Gaussian process in Rd with covariance

E
(

Xi(t)X𝑗(s)
)
= RX (t, s)𝛿i𝑗 .

Denote the discrete increments of X by the following:

Y (k) ∶= X(k) − X(k − 1), k = 1, … ,N, N ∈ N.

The density of the RdN -valued random variable Y = (Y (1), … ,Y (N)) may be computed from its characteristic function,
namely, for any 𝜆 = (𝜆1, … , 𝜆N) ∈ RdN

C(𝜆) ∶= E
(

ei(Y ,𝜆)) = E

(
exp

(
i

N∑
k=1

(Y (k), 𝜆k)Rd

))

= ∫
RdN

𝜚X
N(𝑦) exp

(
i

N∑
k=1

(𝑦k, 𝜆k)Rd

)
d𝑦.
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If we represent this characteristic function C by

C(𝜆) = ∫
RdN

e−HX (𝑦) exp

(
i

N∑
k=1

(𝑦k, 𝜆k)Rd

)
d𝑦,

then by an inverse Fourier transform, we obtain

HX (𝑦) = − ln
(
𝜚X (𝑦)

)
, 𝑦 ∈ R

dN .

The function HX is called chain potential of the system.

1. If X is the Brownian motion B in Rd, putting tk = k, k = 1, … ,N, up to an irrelevant constant, the function HB is given
by the following:

HB(𝑦) = 1
2

N∑
k=1

|𝑦k|2 = 1
2

N∑
k=1

|xk − xk−1|2,
where xk, k = 1, … ,N denotes the integrated variables.

2. For the fBm X = Bh with Hurst parameter h ∈ (0, 1) (see Bock et al16 and a special case below) up to an irrelevant
constant

HBh (𝑦) = 1
2
(𝑦,Σ−1𝑦) =

N∑
k,n=1

𝑦k𝜎kn𝑦n =
N∑

k,n=1
gkn(xk − xn)2,

where Σ−1 = (𝜎kn)N
k,n=1 denotes the inverse of the covariance matrix of the increments Yh(k) = Bh(k) − Bh(k − 1),

k = 1, … ,N. In addition, it is known that 𝜚X is the fundamental solution of the heat equation; see, eg, Evans17.

Remark 3.

1. Note that the terms
V = 1

2
|xk − xk−1|2

are harmonic oscillator potentials, attracting nearest neighbors. Thus, for Gaussian processes, HX may be calcu-
lated via HX = −ln𝜚X through the characteristic function of the process by an inverse Fourier transform. In addi-
tion, HX will always be a quadratic form, basically the inverse of the covariance matrix akl ∶= E ((Y (k),Y (l))Rd),
k, l = 1, … ,N.

2. For the fBm case, the difference is that the interaction is not anymore confined to nearest neighbors. For small
Hurst index, this inverted matrix leads to a long-range attraction along the chain making it more compact than
(discretized) Brownian, while for Hurst indices larger than 1

2
, there appears a repulsion of next-to-nearest neigh-

bors, stretching the chain; see Bock et al16 and Figure 1 that displays the coupling gkn between the central particle
and the others along the chain, for h = 0.3 and h = 0.8.

3.2 A non-Gaussian generalization
In general, for the non-Gaussian case, the chain potential will no more be quadratic. To keep things simple, let us for the
moment just look at the case of N = 2.

3.2.1 Chain potential for two-particle interaction
We look at the increment Ykl = B𝛽,𝛼(k) − B𝛽,𝛼(l) for 0 < l < k < ∞. The function H𝛽,𝛼(𝑦) = − ln

(
𝜚𝛽,𝛼(𝑦)

)
can be computed

from the characteristic function of Ykl; ie, for any 𝜆 ∈ Rd, we have the following:

E

(
ei(𝜆,B𝛽,𝛼 (k)−B𝛽,𝛼(l))

)
= E𝛽

(
−1

2
|𝜆|2|k − l|𝛼)

= ∫
Rd

𝜚
𝛽,𝛼

1 (𝑦) exp (i(𝑦, 𝜆)) d𝑦,
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FIGURE 1 Coupling Constants for small and large Hurst indices in the case of fractional Brownian motion.

through the inverse Fourier transform with 𝜁 ∶= |k − l|𝛼
𝜚
𝛽,𝛼

1 (𝑦) = 1
(2𝜋)d ∫

Rd

exp (−i(𝑦, 𝜆)Rd)E𝛽

(
−1

2
|𝜆|2𝜁) d𝜆

= 1
(2𝜋)d

∞

∫
0

M𝛽(𝜏)∫
Rd

exp
(
−i(𝑦, 𝜆)Rd − 1

2
|𝜆|2𝜁𝜏) d𝜆d𝜏.

Computing the Gaussian integral and using Equation (14) yields the following:

𝜚
𝛽,𝛼

1 (𝑦) = 1

(2𝜋)
d
2

∞

∫
0

1

(𝜏𝜁 )
d
2

exp
(
− 1

2𝜏𝜁
|𝑦|2)M𝛽(𝜏)d𝜏

= 2
d
2

∞

∫
0

1

(4𝜋𝜏)
d
2

exp
(
− 1

4𝜏
|√2𝑦|2)(

𝜁
1
𝛽

)−𝛽
M𝛽

(
𝜏

(
𝜁

1
𝛽

)−𝛽
)

d𝜏

= 2
d
2
−1
M

d
𝛽

2

(√
2𝑦, 𝜁

1
𝛽

)
.

Therefore, up to a constant, the function H𝛽,𝛼 is given by the following:

H𝛽,𝛼(𝑦) = − ln
(
M

d
𝛽

2

(√
2𝑦, 𝜁

1
𝛽

))
, 𝑦 ∈ R

d.

Remark 4.

1. In Figure 2, we plot H𝛽,𝛼 for different values of 𝛽 and 𝛼 = 1
3

(other values of 𝛼 do not produce any essential
difference in the shape of the plots) assuming a time length |k − l| = 1.

2. It follows from Remark 1 that the density 𝜚𝛽,𝛼1 is the fundamental solution of a time fractional differential equation
in Rd.
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FIGURE 2 Chain potential H𝛽,𝛼 for d = 1;|k − l| = 1 and 𝛽 = 1, 1
3
,

1
4
, and 1

8
[Colour figure

can be viewed at wileyonlinelibrary.com]

3.2.2 Chain potential for (N + 1)-particle interactions
In general, for an arbitrary N ∈ N, H𝛽,𝛼 may be computed using the same technique, namely considering the vectors

Y (k) ∶= Y 𝛽,𝛼(k) ∶= B𝛽,𝛼(k) − B𝛽,𝛼(k − 1), k = 1, … ,N.

The characteristic function of Y =
(

Y 𝛽,𝛼(1), … ,Y 𝛽,𝛼(N)
)
, for any 𝜆 = (𝜆1, … , 𝜆N) ∈ (Rd)N , is given by the following:

E

(
ei

∑N
k=1 (𝜆k ,Y 𝛽,𝛼(k))

Rd
)
= E𝛽

(
−1

2

N∑
k=1

(𝜆k,Q𝜆k)Rd

)
,

where Q ∶= Q𝛽,𝛼 = (akn)d
k,n=1 is the covariance matrix of Y given by the following:

akn = E ((Y (k),Y (n))) = d
2Γ(𝛽 + 1)

[|k − 1 − n|𝛼 + |n − 1 − k|𝛼 − 2|k − n|𝛼] .
Inverting the Fourier transform, denoting ||𝑦||2Q ∶=

∑N
k=1 (𝑦k,Q𝑦k)Rd , the density 𝜚

𝛽,𝛼

N of Y has the form

𝜚
𝛽,𝛼

N (𝑦) = 1

(2𝜋)
dN
2 (det Q)

1
2

∞

∫
0

1

𝜏
dN
2

exp
(
− 1

2𝜏
||𝑦||2Q)M𝛽(𝜏)d𝜏.

Hence, the chain potential is as follows:
H𝛽,𝛼(𝑦) = − ln

(
𝜚
𝛽,𝛼

N (𝑦)
)
.

Let us consider the special case of the three-particle (N = 2) interaction in dimension d = 1. The previous result gives the
chain potential:

𝜚
𝛽,𝛼

3 (𝑦) = 1
(2𝜋)d(det Q)

1
2

∞

∫
0

1
𝜏

exp
(
− 1

2𝜏
||𝑦||2Q)M𝛽(𝜏)d𝜏.

For special values of the parameter 𝛽, we may compute in a closed form the density 𝜚
𝛽,𝛼

3 shown in Table 1.
Here, K𝜈 , Gm,n

p,q , and Ai are the Bessel K, Meijer G, and Airy functions, respectively; see Olver et al.18

4 OUTLOOK

The specific form of the higher order interactions that arise for 𝛽 < 1, based on a Taylor expansion of ln(𝜚𝛽,𝛼(y)), would be
an interesting subject of investigation, at least for some special cases. Because of the type of the special functions in the
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TABLE 1 Density 𝜚
𝛽,𝛼

3 for special values of the parameter 𝛽 M𝜷 (𝝉) 𝝔
𝜷 ,𝜶
𝟑 (y)

𝛽 = 0 e−𝜏 1

𝜋 det (Q)
1
2

K0

(√
2||𝑦||Q)

𝛽 = 1
3

3
2
3 Ai(3−

1
3 𝜏) 1

8𝜋3 det (Q)
1
2

G0,0
5,0

⎛⎜⎜⎝
||𝑦||6Q
5832

|||| 0, 0, 1
3
,

1
3
,

2
3

⎞⎟⎟⎠
𝛽 = 1

2
1√
𝜋

e−
𝜏2

4
1

(2𝜋)2 det (Q)
1
2

G0,0
3,0

⎛⎜⎜⎝
||𝑦||4Q

64

|||| 0, 0, 1
2

⎞⎟⎟⎠
𝛽 = 1 𝛿1(𝜏) 1

2𝜋 det (Q)
1
2

exp
(
− 1

2
||𝑦||2Q)

table above, such Taylor expansion is not directly at hand. The dynamics of a polymer chain has irreversible aspects lead-
ing to decorrelation of configurational properties for a longtime limit. For simple mechanical models with time reversible
equations of motion, the irreversibility is a consequence of the chaotic nature of the dynamics which, for a many body
system, is expected to result in ergodic mixing. There is a well-known connection between ggBm and anomalous diffu-
sions; see Mura and Mainardi.10 It shown in Schwarzl et al19 that anomalous diffusions are having nonergodicity. Indeed,
it is easy to prove that ggBm lacks ergodicity whenever we have 𝛽 ≠ 1, hence in the non-Gaussian case. A physical and
mathematical study the consequences of the non-Gaussianity are of special interest.
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