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Abstract

This thesis studies faithfully balanced modules, which are faithful modules with the double
centralizer property, and their relative version. For finite-dimensional algebras our main tool
is the category cogen1(M) of modules with a copresentation by summands of finite sums of M
on which Hom(−,M) is exact. For a faithfully balanced module M , the functors Hom(−,M)
and DHom(M,−) restrict to dualities of some subcategories of the module category and these
dualities turn out to be useful in studying (co)tilting and cluster-tilting modules. As examples,
we classify faithfully banlanced modules for the path algebra of Dynkin type A with linear
orientation.

Then we turn to study a relative version of faithfully balancedness, which we call 1-F-
faithful, by using relative homological algebra in the sense of Auslander-Solberg. Following this
line, we develop relative versions of the best known classes of faithfully balanced modules (in-
cluding (co)generators, (co)tilting and cluster tilting modules). Two highlights are the relative
cotilting correspondence and the relative (higher) Auslander correspondence, where the first is
a generalization of a relative cotilting correspondence of Auslander-Solberg to an involution (as
the usual cotilting correspondence is).
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Introduction

General idea

In mathematics, for example in the area of representation theory of finite-dimensional algebras,
a basic problem is to compare objects and to decide when they are equivalent, up to some
appropriate equivalence relation. The objects could be, for instance, algebras, modules, or
categories of modules. Given two modules over an algebra, one can ask whether they are
isomorphic; given two algebras one can ask whether they are isomorphic or whether they
have equivalent module categories. When the objects are very complicated, one may consider,
instead of “global data” connections between “local data”. Given two algebras, one can consider
equivalences of subcategories even though the whole module categories are not equivalent.
Often, such a subcategory is determined by a module. So it is natural to find a class of
modules which could provide us with interesting equivalences between subcategories and such
that these equivalences unify some well-studied equivalences that people care about. This thesis
attempts to do this and our candidate is the class of faithfully balanced modules.

Symmetries are everywhere in mathematics and faithfully balanced modules can provide
us with many symmetric results. In representation theory, a basic and powerful method is to
compare the module category of a given algebra Λ with the module category of the endomor-
phism algebra Γ of some Λ-module M . One may expect to get information of Λ by studying
Γ and vice versa. This method works better when M is a faithfully balanced module. In this
case, we will see a lot of symmetries between subcategories determined by M as, respectively,
Λ-module and Γ-module. Another basic idea in mathematics is to study objects from relative
point of view. We will also study a relative version of faithfully balanced module and study the
induced equivalences of subcategories. As we will show, in the relative setting, there are many
results with stronger symmetry.

Background

Let R be a ring and M a left R-module. We write endomorphisms of RM on the left, thus
for two endomorphisms f, g ∈ EndR(M) and an element m ∈ M the image of m under gf
is g(f(m)). Then M can be considered naturally as a left EndR(M)-module. We say M is
faithful/ balanced/ faithfully balanced 1 if the natural map of rings R → EndEndR(M)(M) is
injective/surjective/bijective.

Balanced modules are also known as modules with the double centralizer property and so a
faithfully balanced module is the same as a faithful module with the double centralizer property.
Let us recall the double centralizer of a subring. Let R be a ring and S a subring of R. The

1In some literature (for example [AF92, section 4]), faithfully balancedness is only defined for bimodules. A
faithfully balanced module RM in this thesis is called faithful and balanced in loc. cit., which is equivalent to
say that RMEndR(M)op is a faithfully balanced bimodule.
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centralizer of S in R is CR(S) := {r ∈ R | rs = sr for all s ∈ S}. This is a subring of R. The
double centralizer of S is CR(CR(S)). Clearly, S is a subring of its double centralizer. Now
let M be a left R-module and S := EndR(M) be the endomorphism ring of M acting from the
left. Then M is also left S-module. Let T = EndS(M), then M becomes a left T -module and
we have a ring homomorphism

ρ : R→ T, r 7→ (m 7→ rm).

On the other hand, since M is a left R-module, there is a ring homomorphism

θ : R→ EndZ(M), r 7→ (m 7→ rm).

Then im(θ) is a subring of EndZ(M). Its centralizer in EndZ(M) is

CEndZ(M)(im(θ)) = {f | fi = if for all i ∈ im(θ)} = S,

and its double centralizer is

CEndZ(M)(CEndZ(M)(im(θ))) = CEndZ(M)(S) = T.

The module M is said to have the double centralizer property if the double centralizer of
im(θ) in EndZ(M) is im(θ) itself, i.e., if im(θ) = T . Note that im(θ) = im(ρ), so M has the
double centralizer property if and only if ρ is surjective, if and only if RM is balanced. The
centralizer and the double centralizer of a subring are also called the commutator and the
second commutator, respectively, of this subring.

For general rings, balanced modules and (left) balanced rings (meaning that every left mod-
ule is balanced) are studied in [Cam70, DR72a, DR72b, DR73]. For finite-dimensional algebras,
Thrall [Thr48] gave several generalizations of quasi-Frobenius algebras (=QF algebras=self-
injective algebras) by considering faithfulness and balancedness of modules. He defined an
algebra Λ to be QF -1 if every finitely generated faithful Λ-module if faithfully balanced, and
an algebra to be QF -3 if it has a minimal faithful module. Then they are further developed in
[Mor58b, Tac73, Tac70].

Motivation

In this thesis, we restrict to study finite-dimensional algebras and finite-dimensional modules
over them. This thesis is inspired, on the one hand by the correspondences (see Table 1)
in representation theory of finite-dimensional algebras (or more generally artin algebras) in-
cluding the (higher) Auslander correspondence ([Iya07a]) and the (co)tilting correspondence
(=Brenner-Butler theorem, see [BB80, Miy86]), on the other hand by relative homological al-
gebra in the sense of Auslander-Solberg ([AS93b]). In each of the correspondences, there always
exists a special module that plays an important role. For example, in the (higher) Auslander
correspondence there is a cluster-tilting module whereas in the (co)tilting correspondence there
is a (co)tilting module. Both of them are faithfully balanced modules with some extra proper-
ties. This leads to the study of faithfully balanced modules which play the fundamental roles
in all of these correspondences. In their series of papers [AS93c, AS93d, AS93a] Auslander and
Solberg studied a special class of faithfully balanced modules - dualizing summands of cotilting
modules. As one main result they proved that a dualizing summand of a cotilting module will
produce a relative cotilting module for the endomorphism algebra of this dualizing summand
and vice versa.
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Our motivations are: 1. to understand faithfully balanced modules; 2. to give a unification
of some well-known correspondences by using faithfully balanced modules; 3. to understand
the interplay between faithfully balanced modules and relative homological algebra in the sense
of Auslander-Solberg. For the first motivation, we study some properties of faithfully balanced
modules and the dualities induced by them in Chapter 2, and give explicit descriptions of
faithfully balanced modules for the path algebra of Dynkin type A with linear orientations. In
order to achieve the latter two purposes, we give a relative version of faithfully balancedness in
Chapter 4. Then we will give relative versions of the well-known correspondences in Chapter 5
and 6. In particular, we generalize the main result on relative cotilting modules of Auslander-
Solberg and prove a relative version of Iyama’s higher Auslander correspondence.

Results

Results in this thesis are only proved for finite-dimensional algebras over a field. However, it is
easy to see, most of these results hold for artin algebras.

Consider tuples (Λ,M1, . . . ,Mt) consisting of an algebra Λ and several Λ-modules up to an
equivalence relation which identifies two such tuples (Λ,M1, . . . ,Mt) and (Λ′,M ′

1, . . . ,M
′
t) if

there is a Morita equivalence from Λ to Λ′ which sends each add(Mi) to add(M ′
i). We denote

by [Λ,M1, . . . ,Mt] the equivalence class of (Λ,M1, . . . ,Mt). It is easy to see that faithfully
balancedness of a module is preserved under this equivalence (cf. [CR72]).

• The assignment [Λ, ΛM ] → [EndΛ(M), EndΛ(M)M ] (∗) is an involution on the set of pairs
[Λ,M ] with M a faithfully balanced module.

A restriction of (∗) to a bijection between two sets of such pairs (or related tuples) will be
called a correspondence. The correspondence (∗) can be viewed as the cornerstone of all the
other correspondences in Table 1.

Classical case Relative case

(co)generator correspondence Corollary 4.3.7 (1) (2)

Morita-Tachikawa correspondence

(=generator-cogenerator correspondence) Corollary 4.3.7 (3)

(co)tilting correspondence

(=Brenner-Butler theorem) Theorem 5.3.2

correspondence of Gorenstein algebras Corollary 5.4.4

Auslander-Solberg correspondence Theorem 6.1.2

(higher) Auslander correspondence Theorem 6.2.3

Table 1

For a module M , we define

cogen1(M) = {X | ∃ 0→ X →M0 →M1 exact,Mi ∈ add(M) and HomΛ(−,M) exact on it}.
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Dually, one can define gen1(M). If ΛM is a faithfully balanced module, then we have a duality

HomΛ(−, ΛM) : cogen1(ΛM)←→ cogen1(ΓM) : HomΓ(−, ΓM)

where Γ = EndΛ(M). Buan and Solberg [BS98] first observed the symmetry: Λ ∈ cogen1(ΛM)
is equivalent to D Λ ∈ gen1(ΛM) and both are equivalent to M being faithfully balanced (see
also Lemma 2.2.3). Here D = HomK(−, K) is the K-dual functor (see section 1.2).

Fix an additive subbifunctor F ⊆ Ext1
Λ(−,−) of the form F = FG = FH for a generator

G and a cogenerator H - this is equivalent to fix the exact structure on finite-dimensional
Λ-modules induced by the functor F (cf. [DRSS99]), meaning an exact sequence is F-exact
if and only if it remains exact after applying the functor HomΛ(G,−) (or equivalently after
applying the functor HomΛ(−, H)). We define cogen1

F(M) ⊆ cogen1(M) to be the full sub-
category of modules X such that there exists an exact sequence 0 → X → M0 → M1 with
M0,M1 ∈ add(M) and HomΛ(−, H ⊕M) is exact on it (analogously we define genF

1 (M)). We
also introduce the notion of 1-F-faithfulness (meaning G ∈ cogen1

F(M)) as the relative analogue
of the notion of faithfully balancedness. Let ΛM be 1-F-faithful, then we have a duality

HomΛ(−, ΛM) : cogen1
FH (M)←→ cogen1

FR(M) : HomΓ(−, ΓM)

where Γ = EndΛ(M) and R = D HomΛ(M,H). There is also a dual version of the above
duality which involves the modules G and L := HomΛ(G,M). Then we observe the following
relationship between G,H and L,R

G

(−,ΛM)

��

τ

**h e b _ \ Y V
H

D(ΛM,−)

��

τ−

jj heb_\YV

L

(−,ΓM)

XX

Ω−2
M

**h e b _ \ Y V
R

D(ΓM,−)

XX

Ω2
M

jj heb_\YV

The upper dashed arrows mean H = τG ⊕ D Λ and G = τ−H ⊕ Λ whereas the lower dashed
arrows mean R = ΓM⊕Ω−2

M L and L = ΓM⊕Ω2
MR, where τ is the Auslander-Reiten translation

(see the definition before Corollary 1.2.9) and Ω2
M and Ω−2

M are defined in Definition 2.3.7. As
in the classical case, we have G ∈ cogen1

F(M) is equivalent to H ∈ genF
1 (M) (Theorem 4.2.3).

Let us recall the correspondences in the classical case in the above table based on the
correspondence induced by faithfully balanced (abbreviate as f.b.) modules and state the main
theorems in this thesis, i.e., relative versions of them.

Generator correspondence and Morita-Tachikawa correspondence

A generator ΛG (resp. cogenerator ΛH) is, by definition, a module such that Λ ∈ addG (resp.
D Λ ∈ addH) which is automatically a faithfully balanced module. Thus the (co)generator
correspondence [Azu66] can be stated as follows.

• The assignment (∗) restricts to a one-to-one correspondence

{[Λ, G] | G is a generator} 1:1←−−→ {[Γ, P ] | P is a f.b. projective module}
({[Λ, H] | H is a cogenerator} 1:1←−−→ {[Γ, I] | I is a f.b. injective module}).
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Clearly M is a generator-cogenerator (abbreviate as gen-cogen) if and only if End(M)M
is a faithfully balanced projective-injective module. An algebra that has a faithfully balanced
projective-injective module is also known as an algebra of dominant dimension ≥ 2. As a special
case of generator correspondence the Morita-Tachikawa correspondence [Mor71, Tac70, Rin07]
can be expressed as follows.

• The assignment (∗) restricts to a one-to-one correspondence

{[Λ,M ] | M is gen-cogen} 1:1←−−→ {[Γ,M ′] | M ′ is f.b. proj-inj}.

Note that M ′ is f.b. proj-inj implies M ′ is the maximal injective summand of Γ. One famous
example of the Morita-Tachikawa correspondence is the classical Auslander correspondence
[Aus99b]. Another famous example is given by the Schur-Weyl duality ([KSrX01]).

We consider the assignments (AS) (referring to Auslander and Solberg) and its dual version
(dual AS):

(AS) The assignment [Λ, ΛM,G] 7→ [Γ = EndΛ(M), ΓM,L = HomΛ(G,M)] with M
faithfully balanced and G a generator.

(dual AS) The assignment [Λ, ΛM,H] 7→ [Γ = EndΛ(M), ΓM,R = D HomΛ(M,H)] with
M faithfully balanced and H a cogenerator.

In the relative setting, we have the following result.

Theorem 1. (= Corollary 4.3.7)

(1) (relative generator correspondence)
The Auslander-Solberg assignment (AS) gives an involution on the set of triples [Λ,M,G]
with Λ⊕M ∈ add(G) and M is 1-FG-faithful.

(2) (relative cogenerator correspondence)
The dual Auslander-Solberg assignment (dual AS) givess an involution on the set of triples
[Λ,M,H] with D Λ⊕M ∈ add(H) and M is 1-FH-faithful.

(3) (relative Morita-Tachikawa correspondence)
The assignment [Λ,M,G,H] 7→ [EndΛ(M),M,L = HomΛ(G,M), R = D HomΛ(M,H)]
is a bijection between

(3a) [Λ,M,G,H] with Λ ∈ add(G),D Λ ∈ add(H), G = Λ ⊕ τ−H and M ∈ add(G) ∩
add(H) is 1-FG-faithful, and

(3b) [Γ, N, L,R] with L,R are the ends of a strong add(N)-dualizing sequence with Γ ∈
add(L) and D Γ ∈ add(R).

See Definition 4.3.1 for the definition of a strong add(N)-dualizing sequence.

(Co)tilting correspondence and correspondence of Gorenstein alge-
bras

A cotilting module ΛT is a (faithfully balanced) module such that

(T1) the injective dimension of T is finite, i.e., idΛ T <∞,

(T2) the module T is self-orthogonal i.e., Ext>0
Λ (T, T ) = 0, and
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(T3) there exists an exact sequence 0→ Tk → · · · → T1 → T0 → D Λ→ 0 with Ti ∈ add(T ).

The cotilting correspondence [BB80, Miy86] is (see Corollary 2.2.7):

• The assignment (∗) restricts to an involution on the set {[Λ, T ] | T is a cotilting module}.

The definition of a tilting module is dual to the one of a tilting module and the tilting corre-
spondence can be expressed dually.

The main result on relative cotilting modules (see Definition 5.1.1) of Auslander-Solberg is
the following.

Theorem 2. ([AS93c, Theorem 3.13], [AS93d, Theorem 2.8]) The assignment (AS) restricts
to a bijection between the following two sets of triples

(1) [Λ,M,G] with Λ ∈ add(G), F = FG, M is F-cotilting, and

(2) [Γ, N, L] with N ∈ add(L), L ∈ cogen1(N) and L is a cotilting module.

To generalize this result, we need the 4-tuple assignment

[Λ,M,L,G] 7→ [Γ, N, L̃, G̃]

with Γ = EndΛ(M), N = ΓM , L̃ = HomΛ(G,M), G̃ = HomΛ(L,M), and its dual

[Λ,M,R,H] 7→ [Γ, N, R̃, H̃]

with Γ = EndΛ(M), N = ΓM , R̃ = D HomΛ(M,H), H̃ = D HomΛ(M,R). Then we have the
following.

Theorem 3. (=Theorem 5.3.2)

(1) The 4-tuple assignment restricts to an involution on the set of 4-tuples [Λ,M,L,G] sat-
isfying

(1a) Λ ∈ add(G), F = FG,

(1b) L is F-cotilting and M is an F-dualizing summand (that is, M ∈ add(L) and L ∈
cogen1

F(M)) of L.

(2) The dual 4-tuple assignment restricts to an involution on the set of 4-tuples [Λ,M,R,H]
satisfying

(2a) D Λ ∈ add(H), F = FH ,

(2b) R is F-cotilting and M is an F-codualizing summand of R (that is, M ∈ add(R)
and R ∈ genF

1 (M) ).

Furthermore, for an assignment [Λ,M,R,H] 7→ [Γ, ΓM, R̃, H̃] we have idFH R = idFH̃ R̃.

It is well known that a cotilting module will induce a contravariant triangle equivalence, see
[Hap88, CPS86]. We prove a relative analogue of this result (Proposition 5.4.1): In the situation
of the previous theorem we have a contravariant triangle equivalence between Db

FG
(Λ-mod) and

Db
F
G̃

(Γ-mod) where Γ = EndΛ(M) and G̃ = HomΛ(L,M).
An algebra is Gorenstein if and only if there is a tilting-cotilting module, if and only if every

tilting module is cotilting [HU96, AS93a]. The correspondence for Gorenstein algebras, which
says that the endomorphism algebra of a tilting-cotilting module of some Gorenstein algebra is
again Gorenstein, can now be written as:
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• The assignment (∗) restricts to an involution on the set {[Λ,M ] | M is a tilting-cotilting
module}.

In the relative setting we have the following.

Theorem 4. (=Corollary 5.4.4)
Let [Λ,M,L,G] be a 4-tuple satisfying Λ ∈ add(G), F = FG, L is F-cotilting and M is an

F-dualizing summand of L and let [Γ, ΓM, L̃, G̃] be the corresponding 4-tuple under the 4-tuple

assignment. Then Λ is an F-Gorenstein algebra if and only if Γ is an F̃-Gorenstein algebra.

Auslander correspondence and Auslander-Solberg correspondence

Recall from [Iya07b, Iya07a] that for k ≥ 1 a module ΛM is called a k-cluster-tilting module if

k−1⋂
i=1

ker ExtiΛ(−,M) = add(M) =
k−1⋂
i=1

ker ExtiΛ(M,−).

Note that a k-cluster-tilting module is always a generator-cogenerator. It is easy to see that a
faithfully balanced module M is k-cluster-tilting if and only if

cogen1(M) ∩
k−1⋂
i=1

ker ExtiΛ(−,M) = add(M) = gen1(M) ∩
k−1⋂
i=1

ker ExtiΛ(M,−).

Define 1∼k−1⊥M :=
⋂k−1
i=1 ker ExtiΛ(−,M) and M⊥1∼k−1 :=

⋂k−1
i=1 ker ExtiΛ(M,−), then the higher

Auslander correspondence can be expressed as (cf. Theorem 6.2.3):

• The assignment (∗) restricts to a one-to-one correspondence between the following two
sets
{[Λ,M ] | M is f.b. with cogen1(M) ∩ 1∼k⊥M = add(M) = gen1(M) ∩M⊥1∼k−1}
and
{[Γ,M ′] | M ′ is f.b. proj-inj with Γ ∈ cogenk(M ′) and cogenk(M ′) = add(Γ)}.

A slightly more general version of the higher Auslander correspondence is the Auslander-
Solberg correspondence which is defined by Iyama and Solberg [IS18]. Recall that a module

ΛM is called a k-precluster-tilting module if M is a generator-cogenerator, ExtiΛ(M,M) = 0 for
0 < i < k and τk(M), τ−k (M) ∈ add(M) (see Definition 2.3.10 for the definition of τk and τ−k ).
A k-precluster-tilting module is obviously a faithfully balanced module. The Auslander-Solberg
correspondence can be described as:

• The assignment (∗) restricts to a one-to-one correspondence between the following two
sets
{[Λ,M ] | M is a k-precluster-tilting module}
and
{[Γ,M ′] | M ′ is f.b. proj-inj and there exists a strong k-add(M ′)-dual. seq. with left end
Γ and right end D Γ }.

Our relative generalizations are the following.

Theorem 5. (=Theorem 6.1.2)
Let ΛM be a faithfully balanced module and Γ = EndΛ(M). Then the assignment X, Y 7→
(X,M),D(M,Y ) gives a self-inverse bijection between the following sets of pairs of modules
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(1) {ΛL, ΛR | ΛM ⊕ Λ ∈ add(L), ΛM ⊕ D Λ ∈ add(R), L = τ−k R ⊕ Λ, R = τkL ⊕ D Λ,
ExtiΛ(L,R) = 0, 1 ≤ i ≤ k−1 such that there exists a strong add(ΛM)-dualizing sequence
with left end L and right end R}.

(2) {ΓG, ΓH | M ⊕ Γ ∈ add(G),M ⊕ D Γ ∈ add(H), G = τ−H ⊕ Γ, H = τG⊕ D Γ such that
there exists a strong k-add(ΓM)-dualizing sequence with left end G and right end H}.

Theorem 6. (=Theorem 6.2.3)
Let k ≥ 1. There is a one-to-one correspondence between isomorphism classes of basic k-(L,R)-
cluster tilting modules ΛM (for some L,R, see Definition 6.2.2 ) and finite-dimensional algebras
Γ with an exact structure given by F = FG = FH such that domdimF Γ ≥ k + 1 ≥ gldimF Γ.
The correspondence is induced by the assignment

[Λ,M,L,R] 7→ [Γ = EndΛ(M), ΓM,G = (L,M), H = D(M,R)].

As special cases, if k = 1, then the assignment (AS) restricts to involutions on the set of
triples

(1) [Λ,M,G] with Λ ∈ add(G), F = FG, M is both 1-F-faithful and F-projective-injective
and domdimF Λ ≥ 2 ≥ idFG.

(2) [Λ,M,G] with Λ ∈ add(G), F = FG, M is both 1-F-faithful and F-projective-injective
and domdimF Λ ≥ 2 ≥ gldimF Λ.
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Chapter 1

Preliminaries

We recall some definitions, constructions and basic results which are necessary for the rest of
the thesis. Most of the results here are well-known. For the proofs and unmentioned definitions
we refer to readers some standard references. See [ML98] for basic theory of categories and
additive categories; [Büh10, Kel96] for exact categories; [ARS95, ASS06] for representation
theory of finite-dimensional algebras; [Rot09] for homological algebra and [AS93b, BH62] for
relative homological algebra1. By a functor (if not clear from the context) we mean a covariant
functor.

1.1 Additive categories and exact structures

Let A be a category. For any two objects A1 and A2 of A we denote by HomA(A1, A2) the set
of morphisms from A1 to A2. Let R be a commutative ring. A category A is an R-category if
HomA(A1, A2) has the structure of an R-module and the composition maps HomA(A2, A3) ×
HomA(A1, A2) → HomA(A1, A3) are R-bilinear. A Z-category is also known as a preadditive
category. An object 0 in a preadditive category A is a zero object provided HomA(0, A) = 0 =
HomA(A, 0) for all A ∈ A.

An additive category is a preadditive category with finite products (or equivalently2, finite
coproducts). In an additive category finite products and coproducts coincide and they are
called direct sums (or biproducts) in this case. Given a finite set of objects {A1, A2, · · · , An}
in A we denote by A1 ⊕ A2 ⊕ · · · ⊕ An the direct sum of them and each Ai is called a (direct)
summand. In particular, if Ai = A for all i = 1, · · · , n then we write the direct sum as An.
Binary direct sums can be summarized as the following data:

A1

i1 //
A1 ⊕ A2

p1

oo

p2 //
A2

i2
oo

with morphisms i1, i2, p1, p2 satisfying the identities

p1i1 = 1A1 , p2i2 = 1A2 and i1p1 + i2p2 = 1A1⊕A2 .

An additive category has a zero object which is isomorphic to the direct sum of the empty set
of objects, and zero object in an additive category is unique up to a unique isomorphism. The
typical example of an additive category is the category Ab (=Z-Mod) of abelian groups.

1In this thesis, we only consider relative homological algebra in the sense of Auslander-Solberg.
2See for example [ML98, Theorem VIII 2.2].
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Fix an additive category A. Then A is called Hom-finite if for any two objects A1, A2 the
abelian group HomA(A1, A2) is finitely generated. Let K be a field. The category A is called
K-linear if the abelain group HomA(A1, A2) has the structure of a K-vector space and the
compositions are K-bilinear.

Let A,B be additive categories. A functor F : A → B is additive if any pair of morphisms
f, f ′ ∈ HomA(A1, A2) satisfies

F (f + f ′) = F (f) + F (f ′).

It is well-known that a functor between additive categories is additive if and only if it preserves
finite direct sums (hence zero objects). It is easy to see that HomA(A,−) : A → Ab and
HomA(−, A) : Aop → Ab are additive functors, where Aop is the opposite category of A.
Let A,B and C be additive categories. A functor F : A × B → C is an additive bifunctor if
F (A,−) : B → C and F (−, B) : A → C are additive functors for all A ∈ A and B ∈ B. The
functor HomA(−,−) : Aop ×A → Ab is an additive bifunctor.

Let A be an additive category and I a class of morphisms in A. Then I is called a (two-
sided) ideal of A if l(λf+µg)r ∈ I for all λ, µ ∈ Z, f, g : A1 → A2, r : A′ → A1 and l : A2 → A′′.
Ideals of A are in bijection with subfunctors of the functor HomA(−,−) : Aop ×A → Ab. For
an ideal I, the corresponding subfuntor is defined by assigning to each pair (A1, A2) of objects
in A a subgroup I(A1, A2) of HomA(A1, A2) such that lfr ∈ I(A′, A′′) whenever f ∈ I(A1, A2),
r ∈ HomA(A′, A1) and l ∈ HomA(A2, A

′′). Given an ideal I, we can form the ideal quotient
A/I of A which is the category with the same objects as A and the set of morphisms defined
via HomA/I(A1, A2) = HomA(A1, A2)/I(A1, A2). The ideal quotient of an additive category is
again additive.

Krull-Schmidt categories

We fix an additive category A. An object A ∈ A is called indecomposable if A 6= 0 and if
A = A1⊕A2 implies A1 = 0 or A2 = 0. An additive category is called a Krull-Schmidt category
is every object can be written as a finite direct sum of indecomposable objects such that each
of the indecomposable summands has local endomorphism ring.

A morphism f : A → B in A is called left minimal if any endomorphism g : B → B
such that f = gf is an automorphism. Dually, f is called right minimal if any endomorphism
h : A→ A such that f = fh is an automorphism.

Proposition 1.1.1. (cf. [ARS95, Theorem 2.2, 2.4]) Let f : A → B be a morphism in a
Krull-Schmidt category.

(1) There is a decomposition A
f=(f

′
0 )

−−−−→ B′ ⊕B′′ = B such that f ′ is left minimal.

(2) There is a decomposition A = A′ ⊕ A′′ f=(f ′ 0)−−−−−→ B such that f ′ is right minimal.

The morphism f ′ in the above proposition is called the left (resp. right) minimal version of
f .

Example 1.1.2. Let Λ be a finite-dimensional algebra over some field K. Then, by Krull-
Schmidt theorem (see for instance [AF92, Theorem 12.9]), the category of all finitely generated
(left) Λ-modules Λ-mod is a Krull-Schmidt category.
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Approximations

Let A be an additive category and C a subcategory of A. A morphism f : A→ C with A ∈ A
and C ∈ C is a left C-approximation of A if the induced homomorphism of abelian groups
HomA(f, C ′) : HomA(C,C ′) → HomA(A,C ′) is surjective. Dually, a morphism g : C → A is
a right C-approximation of A if the induced homomorphism of abelian groups HomA(C ′, g) :
HomA(C ′, C) → HomA(C ′, A) is surjective. A subcategory C ⊆ A is called covariantly (resp.
contravariantly) finite if any object A ∈ A admits a left (resp. right) C-approximation, and it
is called functorially finite if it is both covariantly and contravariantly finite.

For an object A ∈ A, we define add(A) to be the subcategory consisting of all summands
of finite direct sums of copies of A. It is well-known that if A is a Hom-finite additive category
then add(A) is functorially finite.

A morphism f : A→ C with A ∈ A and C ∈ C is a minimal left C-approximation of A if it
is a left C-approximation and it is left minimal. Dually, we have the notion of a minimal right
C-approximation.

Abelian categories

Let A be an additive category and A
f−→ B

g−→ C a pair of composable morphisms in A. Then f
is called a kernel of g if gf = 0 and for any morphism f ′ : A′ → B such that gf ′ = 0 there exists
a unique morphism θ : A′ → A such that f = θf ′, in this case we define ker g := A. Dually, g
is called a cokernel of f if gf = 0 and for any morphism g′ : A′ → B such that g′f = 0 there
exists a unique morphism φ : C → C ′ such that g′ = φg, in this case we define coker f := A.
Clearly, a kernel (resp. cokernel) of a morphism is unique up to a unique isomorphism, and so
we can say the kernel (resp. cokernel). The pair (f, g) is called a kernel-cokernel pair if f is
the kernel of g and g is the kernel of f .

An abelian category is an additive category such that every morphism has a kernel an a
cokernel and such that for each morphism f : A→ B the canonical factorization

coker(ker(f))
f // ker(coker(f))

  AAAAAAAAAA

A

>>}}}}}}}}}} f // B

��9999999999

ker(f)

DD									
coker(f)

induces an isomorphism f . For simplicity, we identify coker(ker(f)) and ker(coker(f)) for a
morphism f and define them to be the image (denoted by im(f)) of f .

Recall that, in an additive category, a morphism i : A → B is called a monomorphism
if ig = 0 implies g = 0. A morphism i : A → B is a split monomorphism if there exists a
morphism j : B → A such that ji = 1A. A morphism p : B → C is called an epimorphism
hp = 0 imples h = 0. A morphism p : B → C is a split epimorphism if there exists a morphism
q : C → B such that pq = 1C . Clearly, any split monomorphism (resp. epimorphism) is a
mnomorphism (resp. epimorphism). It is well-known that an aditive category is abelian if and
only if every morphism has a kernel and a cokernel, every monomorphism is a kernel and every
epimorphism is a cokernel.
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Let A be an abelian category and A
f−→ B

g−→ C a sequence of morphisms. The sequence is
exact at B if im(f) = ker(g). More generally, a long (possibly infinite) sequence

· · · → An+1
fn+1−−→ An

fn−→ An−1 → · · ·

is a (chain) complex 3 if fnfn+1 = 0 for all n; it is called exact if it is exact at An for all n. In
particular, any exact sequence is a complex. A short exact sequence is an exact sequence of the
following form

0→ A
f−→ B

g−→ C → 0,

and in this case we say B is an extension of C by A. Such a short exact sequence is split if f
is a split monomorphism, or equivalently g is a split epimorphism. In an abelian category, a

sequence 0→ A
f−→ B

g−→ C → 0 is a short exact sequence if and only if (f, g) is a kernel-cokernel
pair.

Let A,B be abelian categories. An additive functor F : A → B is exact if it sends short
exact sequences in A to short exact sequences in B. In contrast with this, any additive functor
sends split short exact sequences to split short exact sequences. An object P ∈ A is called
projective if the functor HomA(P,−) : A → Ab is an exact functor, dually, an object I ∈ A is
called injective if the functor HomA(−, I) : Aop → Ab is an exact functor. We denote by P(A)
the subcategory of all projective objects and by I(A) the subcategory of all injective objects
in A.

An abelian category A is said to have enough projectives (resp. injectives) if for any object
A ∈ A there exists an epimorphism P → A → 0 (resp. a monomorphism 0 → A → I)
with P ∈ P(A) (resp. I ∈ I(A)). In this case, the map P → A (resp. A → I) is a right
P(A)-approximation (resp. left I(A)-approximation) of A.

Example 1.1.3. (1) Let R be a ring. Then the category of all (left) R-modules R-Mod is
an abelian category with enough projectives and injectives.

(2) Let Λ be a finite-dimensional algebra over some filed K. Then the category Λ-mod is a
Hom-finite abelian K-category with enough projectives and injectives. The subcategory
of projectives is P(Λ) := P(Λ-mod) = add(Λ) and the subcategory of injectives is I(Λ) :=
I(Λ-mod) = add(D Λ), where D Λ is the standard K-dual (defined below) of ΛopΛ.

Exact structures

Let A be an additive category and E a fixed class of kernel-cokernel pairs in A. If a pair (f, g)
belongs to E , then we say f is an inflation, g a deflation and (f, g) a conflation. The class E
is called an exact structure on A if it is closed under isomorphisms and satisfies the following
axioms:

(E0) The identity map 1A is an inflation for all A ∈ A.

(E0op) The identity map 1A is a deflation for all A ∈ A.

(E1) A composition of two inflations is an inflation.

(E1op) A composition of two deflations is a deflation.

3A sequence · · · → An−1 fn−1

−−−→ An fn

−−→ An+1 → · · · with increasing indices satisfying fnfn−1 = 0 for all n
is known as a cochain complex.
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(E2) The push-out of an inflation along an arbitrary morphism exists and yields an inflation.

(E2op) The pull-back of a deflation along an arbitrary morphism exists and yields a deflation.

An exact category is a pair (A, E) consists of an additive category A and an exact structure E
on it. Let E1 and E2 be two exact structures on A, then we say E1 is smaller than E2 provided
that E1 ⊆ E2. This defines a partial order on the class of all exact structures on an additive
subcategory.

Example 1.1.4. (1) Let A be an abelian category, E1 = {All short exact sequences in A}
and E2 = {All split short exact sequences in A}. Then E1 is the unique maximal exact
structure on A and E2 is the unique minimal exact structure on A.

(2) Let A be an additive category and E = {All split kernel-cokernel pairs in A}. Then E
is the unique minimal exact structure on A. Rump [Rum11] proved there also exists a
unique maximal exact structure on A.

(3) Let A be an abelian category and B a extension closed subcategory. Let E the class
consisting of all short exact sequences with all the three terms in B. Then E is an exact
structure on the additive category B.

Projectives and injectives. Let (A, E) and (A′, E ′) be exact categories. An additive functor
F : A → A′ is called exact if F (E) ⊆ E ′. An object P ∈ A is called projective (with respect
to E) if the functor HomA(P,−) : A → Ab, here Ab is the exact category with the exact
structure consisting of all short exact sequences. Dually, we can define injective objects in
an exact category. Projective and injective objects in exact categories are generalizations of
Projective and injective objects in abelian categories. An exact category (A, E) is said to have
enough projectives (resp. injectives) if for any object A ∈ A there exists a delation P → A
(resp. an inlation A→ I) with P projective (resp. I injective).

1.2 Finite-dimensional algebras and modules

Throughout this section, we fix a field K. A (not necessarily commutative, unital) ring Λ is a K-
algebra provided Λ is a K-vector space and the multiplication in Λ is compatible with the scalar
multiplication, i.e., k(λµ) = (kλ)µ = λ(kµ) for all k ∈ K and λ, µ ∈ Λ. A finite-dimensional
K-algebra is a K-algebra which has finite dimension as a K-vector space.

For a finite-dimensional K-algebra Λ, we denote by Λ-mod the category of finitely generated
(= finite-dimensional = finite length) left Λ-modules, and by mod-Λ the category of finitely
generated right Λ-modules. Clearly, mod-Λ is the same as Λop-mod.

Let M ∈ Λ-mod. Then there is a corresponding module HomK(M,K) in mod-Λ which is
called the K-dual of M . Let f : M → N be a morphism in Λ-mod, then we have a morphism
HomK(f,K) : HomK(N,K) → HomK(M,K) in mod-Λ and we also have HomK(fg,K) =
HomK(g,K) HomK(f,K) for any morphism g : L → M . This defines a contravariant functor
D := HomK(−, K) : Λ-mod→ mod-Λ. Since the same argument works for right modules, then
the fact that the natural morphism M → HomK(HomK(M,K), K) is an isomorphism for all
M induces the following duality:

D : Λ-mod
∼←−−→ mod-Λ = Λop-mod : D

which is known as the standard K-duality.
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Let M ∈ Λ-mod and Γ = EndΛ(M) be its endomorphism ring. Then M can be naturally
viewed as a left Γ-module and moreover a left Λ-left Γ-bimodule. We write ΓM when we
consider M as a left Γ-module. We will study the following four contravariant functors:

HomΛ(−,M) : Λ-mod←→ Γ-mod: HomΓ(−,M)

D HomΛ(M,−) : Λ-mod←→ Γ-mod: D HomΓ(M,−).

One of the reasons that we would like to study these functors is that they form two adjoint
pairs (of contravariant functors). Let us recall the definition of an adjoint pair. Let A,B be
arbitrary categories and F : A → B and G : B → A two functors. Then we say (F,G) is an
adjoint pair if for all A ∈ A and B ∈ B there exists an bijection of sets

HomB(F (A), B)
∼=−→ HomA(A,G(B))

which is natural in both A and B. In this case, we also say F is left adjoint to G and G is right
adjoint to F . Now let F : A → B be a contravariant functor. Then F is the same as a functor
Aop → B or a functor A → Bop. We say a pair of contravariant functors is an adjoint pair if
they form an adjoint pair when viewing as covariant functors.

Example 1.2.1. Let ΛMΓ be a bimodule. Then we have an isomorphism

HomΛ(ΛMΓ ⊗Γ ΓY, ΛX)
∼=−→ HomΓ(ΓY,HomΛ(ΛMΓ, ΛX))

which is natural in X ∈ Λ-mod and Y ∈ Γ-mod, i.e., (ΛMΓ⊗Γ−,HomΛ(ΛMΓ,−)) is an adjoint
pair which is usually known as the Hom-Tensor adjunction.

Convention In order to keep the formulas and diagrams in reasonable length we will often
use the conventions (−, ΛM) := HomΛ(−,M) and D(ΛM,−) := D HomΛ(M,−). If there is no
ambiguity we may omit the subscript and write (−, ΛM) (or (−, ΓM)) as (−,M).

Lemma 1.2.2. [AS93c, Lemma 3.3][ARS95, Proposition 2.1] Let M ∈ Λ-mod and Γ =
EndΛ(M).

(1) ((−, ΛM), (−, ΓM)) is an adjoint pair of contravariant functors and it restricts to a duality

(−, ΛM) : add(ΛM)←→ add(Γ) = P(Γ) : (−, ΓM).

(2) (D(ΛM,−),D(ΓM,−)) is an adjoint pair of contravariant functors and it restricts to a
duality

D(ΛM,−) : add(ΛM)←→ add(D Γ) = I(Γ) : D(ΓM,−).

In general, any bimodule Λ-ΓM gives rise to adjoint pairs of contravariant functors (−, ΛM) :
add(ΛM) and (D(ΛM,−),D(ΓM,−)).

Since we have a natural bimodule Λ-ΛopΛ = ΛΛΛ, the adjoint pair ((−, ΛΛ), (−, ΛopΛ)) of
contravariant functors restricts to a duality

(−, ΛΛ) : add(ΛΛ)←→ add(ΛopΛ) : (−, ΛopΛ)

between finitely generated left Λ-modules and finitely generated right Λ-modules. Consider the
functor νΛ := D(−, ΛΛ) : Λ-mod→ Λ-mod, then νΛ restricts to a duality

P(Λ) = add(ΛΛ)→ add(D(ΛopΛ)) = I(Λ)

between finitely generated projective left Λ-modules and finitely generated injective left Λ-
modules with quasi inverse ν−1

Λ := (D(−), ΛopΛ) ∼= (D(ΛopΛ),−). The functor νΛ is known as
the Nakayama functor for Λ-mod. We will write νΛ as ν if there is no ambiguity. We have the
following important natural isomorphism induced by the Nakayama functor:
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Lemma 1.2.3. [ASS06, Lemma2.11] Let Λ be a finite-dimensional K-algebra. Then we have
an isomorphism

HomΛ(P,M)
∼=−→ D HomΛ(M, νP )

which is natural in P ∈ P(Λ) and M ∈ Λ-mod.

By the Krull-Schmidt theorem, Λ can be decomposed into a direct sum of indecomposable
projective modules Λ = P1 ⊕ · · · ⊕ Pn. An algebra Λ is said to be basic if Pi � Pj when
i 6= j. Similarly, a module M is said to be basic if each of its indecomposable summand is
of multiplicity 1. Two finite-dimensional algebras Λ and Γ are said to be Morita equivalent
if Λ-mod and Γ-mod are equivalent. It is well-known that any finite-dimensional algebra Λ is
equivalent to a basic algebra and for any module M ∈ Λ-mod there is a basic module M ′ such
that add(M) = add(M ′).

Quivers and representations

A (finite) quiver Q = (Q0, Q1, s, t) consists of

- a finite set Q0 of vertices;

- a finite set Q1 of arrows;

- a map s : Q1 → Q0 sends each arrow to its source; and

- a map t : Q1 → Q0 sends each arrow to its target.

For an arrow α we shall present it as s(α)
α−→ t(α) with s(α), t(α) ∈ Q0. The following are some

easy examples of quivers:

• ee • // • // • • //// • • ++WWWWW
•

33ggggg
++WWWWW •
•

33ggggg

Let Q = (Q0, Q1, s, t) be a quiver and i, j ∈ Q0. A path from i to j of length l is a sequence
(i|α1, α2, · · · , αl|j) such that each αn ∈ Q1 and s(α1) = i, t(αn) = s(αn+1) for all n ∈ {2, · · · , l}
and t(αl) = j. Such a path can be presented as

i = s(α1)
α1−→ t(α1)

α2−→ · · · → s(αl)
αl−→ t(αl) = j

and will be written as p = αl · · ·α2α1. In particular, if l = 0 then we must have i = j and the
path will be called a constant path and denoted by ei. For a path p = αl · · ·α2α1, we define
s(p) = s(α1) and t(p) = t(αl). A path p such that s(p) = t(p) is called a oriented cycle and
it is called a loop if it is of length 1. A quiver without oriented cycle is called acyclic. Given
two paths p = αl · · ·α2α1 and p′ = α′m · · ·α′2α′1 such that t(p′) = s(p), we denote by p · p′ the
concatenation of the two paths, i.e.,

p · p′ = αl · · ·α2α1α
′
m · · ·α′2α′1.

The path algebra KQ of Q is the K-algebra whose underlying K-vector space has basis con-
sisting of all paths of length ≥ 0 and with multiplication defined on two basis elements p, p′

by

pp′ =

{
p · p′ if t(p′) = s(p)

0 otherwise.

We have the following fundamental result on path algebras:
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Lemma 1.2.4. [ASS06, Lemma 1.4] Let Q = (Q0, Q1, s, t) be a (finite) quiver and KQ be its
path algebra. Then KQ is an associative unital K-algebra with unit 1 =

∑
i∈Q0

ei and it is
finite-dimensional if and only if Q has no oriented cycles.

Let Q be a quiver and KQ be the path algebra of Q. We define R to be ideal of KQ
generated by all arrows. An ideal I of KQ is admissible if there exists an m ≥ 2 such that
Rm ⊆ I ⊆ R2. If I is an admissible ideal of KQ, then the pair (Q, I) is called a bound quiver
and the algebra KQ/I is called a bound quiver algebra which is always a finite-dimensional
algebra ([ASS06, Proposition 2.6]).

Proposition 1.2.5. [ASS06, Proposition 2.6] Let Q be a quiver and I an admissible ideal of
KQ. Then KQ/I is a finite-dimensional K-algebra.

Remark 1.2.6. If K is algebraically closed, Gabriel proved that every finite dimensional alge-
bra can be obtained as a bounded quiver algebra, see for example [ASS06, Theorem 3.7].

Let Q be a quiver. A (finite-dimensional K-linear) representation of Q consists of:

• a finite dimensional K-vector space Mi for each i ∈ Q0;

• a K-linear map ϕα : Mi →Mj for each arrow i
α−→ j.

Such a representation is denoted by M = (Mi, ϕα). Let M = (Mi, ϕα) and M ′ = (M ′
i , ϕ

′
α) be

two representations of Q. A morphism f : M → M ′ is a collection of linear maps fi : Mi →
M ′

i , i ∈ Q0 such that for each arrow α : i→ j we have fjϕα = ϕ′αf1, i.e., the following diagram
commutes

Mi
ϕα //

fi
��

Mj

fj
��

M ′
i

ϕ′α //M ′
j.

Representations and morphisms between them form a category which we denote by repK(Q).
The category repK(Q) is an abelian K-category. For a bounded quiver (Q, I), one can define
representations and morpshims in a similar way and then they will form a category repK(Q, I).
In this case we have repK(Q, I) ' KQ/I-mod. For details see [ASS06, Chapter III].

Homological dimensions

Let Λ be a finite-dimensional K-algebra and M be a finitely generated left Λ-module. A
projective resolution of M is an exact sequence

· · · → Pn+1 → Pn → · · · → P1 → P0 →M → 0

with Pi ∈ P(Λ). Such a resolution is called minimal if P0 → M is the minimal right P(Λ)-
approximation and each map Pi+1 → Pi factors through a minimal right P(Λ)-approximation
Pi+1 → im(Pi+1 → Pi). Since Λ-mod is a Krull-Schmidt category with enough projectives, the
minimal projective resolution of M always exists. A minimal partial resolution P1 → P0 →
M → 0 is usually called a minimal projective presentation of M . If there exists a projective
resolution of M such that Pn+1 = 0, then we say M has projective dimension at most n and
write as pdΛM ≤ n, if moreover Pn 6= 0 then we say M has projective dimension n and write
as pdΛ M = n. If there is no such a projective resolution of M , then we say the projective
dimension of M is infinity write as pdΛM = ∞. The projective dimension of a module is
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well-defined, i.e., it does not depend on the choice of projective resolutions. Dually, we have
injective coresolutions and injective dimension idΛM for all M . It is well-known that

sup{pdΛM |M ∈ Λ-mod} = sup{idΛM |M ∈ Λ-mod}

and it is called the (left) global dimension of Λ and will be denoted as gldim Λ. An algebra Λ
is semisimple if and only if gldim Λ = 0; Λ is hereditary i and only if gldim Λ = 1.

Proposition 1.2.7. [ASS06, Proposition A4.7] Let 0 → L → M → N → 0 be a short exact
sequence in Λ-mod.

(1) pdN ≤ max(pdM, pdL+ 1), and the equality holds if pdM 6= pdL.

(2) pdL ≤ max(pdM, pdN − 1), and the equality holds if pdM 6= pdN .

(3) pdM ≤ max(pdL, pdN), and the equality holds if pdN 6= pdL+ 1.

There is an injective version of the above proposition which we shall not state.

Let · · · → Mn+1
fn+1−−→ Mn

fn−→ Mn−1 → · · · be a complex of Λ-modules, then Hi :=
ker(fn)/ im(fn+1) is called the n-th homology4 group of this complex.

Given a projective resolution · · · → Pn+1
fn+1−−→ Pn → · · · → P1

f1−→ P0 → M → 0 of M , we

will get a complex · · · → Pn+1
fn+1−−→ Pn → · · · → P1

f1−→ P0 → 0 after deleting the term M . By
applying HomΛ(−, N) we obtain a complex

0→ (P0, N)
(f1,N)−−−→ (P1, N)→ · · · → (Pn, N)

(fn+1,N)−−−−−→ (Pn+1)→ · · · .

Consider the cohomology

ExtiΛ(M,N) := ker((fi+1, N))/ im((fi, N))

which is known as the i-th extension group of M by N . This is well-defined and can be re-
obtained by the dual construction involving an injective coresolution of N . Moreover, for each
i ≥ 0 we have an additive bifunctor

ExtiΛ(−,−) : (Λ-mod)op × Λ-mod→ Ab.

The functors ExtiΛ(M,−) and ExtiΛ(−, N) are known as the i-th (right) derived functors of the
functors HomΛ(M,−) and HomΛ(−, N).

Elements in the group Ext1
Λ(M,N) can be identified with equivalent classes of short exact

sequences with the equivalence relation as follows. Two exact sequence ε : 0 → N → E →
M → 0 and η : 0 → N → E ′ → M → 0 are equivalent if there exists a map f : E → E ′ such
that the following diagram commutes

ε : 0 // N // E //

f
��

M // 0

η : 0 // N // E ′ //M // 0

and such a map f must be an isomorphism. We denote by [ε] the equivalent class of these
equivalent short exact sequences.

4For cochain complexes we will use the terminology cohomology and the symbol Hn.
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Given an exact sequence 0→ A→ B → C → 0 in Λ-mod there is two long exact sequences

0 // (M,A) // (M,B) // (M,C) // Ext1(M,A) // Ext1(M,B) //

Ext1(M,C) // · · · // Extn(M,C) // Extn+1(M,A) // · · ·

0 // (C,N) // (B,N) // (A,N) // Ext1(C,N) // Ext1(B,N) //

Ext1(A,N) // · · · // Extn(A,N) // Extn+1(C,N) // · · · .

Let · · · → Pn+1
fn+1−−→ Pn → · · · → P1

f1−→ P0 →M → 0 be the minimal projective resolution
of M , we define the i-th syzygy module of M to be Ωi

ΛM := ker(fi). Dually, we have the i-th
cosyzygy module Ω−iΛ M of M .

Now consider the minimal injective coreslution of Λ

0→ Λ→ I0 → I1 → I2 → · · · .

If there exists an integer k such that Ii is projective for 0 ≤ i ≤ k − 1, then we say Λ has
dominant dimension at least k and write as domdim Λ ≥ k; if moreover Ik is not projective
then we say Λ has dominant dimension k and write as domdim Λ = k. If Ii is projective for
all i ≥ 0 then we write domdim Λ = ∞. An algebra Λ is called self-injective if every injective
module is projective, or equivalently the module D Λ is projective. Clearly, if Λ is self-injective
then domdim Λ =∞.

Auslander-Reiten theory

In the rest of this chapter we fix a finite-dimensional K-algebra Λ.

Let M1
f1−→ M0

f0−→ M be the projective presentation of M . Applying the functor (−,Λ)
yields an exact sequence

0→ (M,Λ)
(f0,Λ)−−−→ (P0,Λ)

(f1,Λ)−−−→ (P1,Λ)→ coker((f1,Λ))→ 0

and we define coker((f1,Λ)) ∈ Λop-mod to be the transpose of M and denote it by TrM . The
transpose of a module is unique up to isomorphism. It is easy to prove that TrM = 0 if and
only if M is projective, and for M which is not projective Tr TrM ∼= M .

Let M,N ∈ Λ-mod, Let P(M,N) denote the subset of HomΛ(M,N) consisting of all ho-
momorphisms that factor through a projective module. This defines an ideal in the category
Λ-mod and so we can form the ideal quotient with objects being the same as objects in Λ-mod
and the set of morphisms being HomΛ(M,N) := HomΛ(M,N)/P(M,N). We denote this ideal
quotient by Λ-mod, which is known as the projectively stable category of Λ-mod. Dually, we
have the injectively stable category Λ-mod of Λ-mod.

Proposition 1.2.8. [ARS95, Proposition IV 1.6][ASS06, Proposition 2.2] The assignment
M → TrM defines a duality

Tr : Λ-mod −→ Λop-mod.

The compositions τ := D Tr and τ− := Tr D are called the Auslander-Reiten translations.

Corollary 1.2.9. The Auslander-Reiten translations defines a duality

τ : Λ-mod←→ Λ-mod : τ−.
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Theorem 1.2.10. [AR75, ASS06] Let Λ be a finite-dimensional K-algebra and M,N ∈ Λ-mod.
Then there exist isomorphisms

Ext1
Λ(M,N) ∼= D HomΛ(τ−N,M) ∼= D HomΛ(N, τM)

which is natural in both variables.

The following lemma first appeared in [Aus99a, Corrolary III 4.2]. We also give a short
proof.

Lemma 1.2.11. Let 0→ A→ B → C → 0 be an exact sequence of Λ-modules and X be any
Λ-module. Then the following are equivalent:

(1) the sequence 0→ HomΛ(X,A)→ HomΛ(X,B)→ HomΛ(X,C)→ 0 is exact;

(2) the sequence 0→ HomΛ(C, τX)→ HomΛ(B, τX)→ HomΛ(A, τX)→ 0 is exact.

Proof. If X is projective then there is noting to prove. Assume X is not projective. Let
P1 → P0 → X → 0 be the minimal projective presentation. This gives an exact sequence
0 → τX → νP1 → νP0 whisch is the minimal copresentation of τX. Thus, by Lemma 1.2.3,
for any Λ-module Y we have a commutative diagram of exact rows

0 // HomΛ(Y, τX) // HomΛ(Y, νP1) //

∼=
��

HomΛ(Y, νP0)

∼=
��

D HomΛ(P1, Y ) // D HomΛ(P0, Y ) // D HomΛ(X, Y ) // 0.

Take Y ∈ {A,B,C}, then the above diagram gives the following commutative diagram

0

��

0

��

0

��
0 // HomΛ(C, τX) //

��

HomΛ(B, τX) //

��

HomΛ(A, τX) //

��

0

0 // D HomΛ(P1, C) //

��

D HomΛ(P1, B) //

��

D HomΛ(P1, A) //

��

0

0 // D HomΛ(P0, C) //

��

D HomΛ(P0, B) //

��

D HomΛ(P0, A) //

��

0

0 // D HomΛ(X,C) //

��

D HomΛ(X,B) //

��

D HomΛ(X,A) //

��

0

0 0 0

with the three columns and the two middle rows exact. By the Snake lemma, the first row is
exact if and only if the last row is exact.

A morphism f : A → B is called left almost split if it is not split monomorphism and any
morphism A → M which is not split monomorphism factors through f . It is called minimal
left almost split if it is both left minimal and left almost split. Dually, we have right almost

split and minimal right almost split morphisms. A short exact sequence 0→ A
f−→ B

g−→ C → 0
is said to be an almost split exact sequence (or Auslander-Reiten sequence) if f is left almost
split and g is right almost split.
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Proposition 1.2.12. [ARS95, Proposition 1.14] The following are equivalent for a short exact

sequence 0→ A
f−→ B

g−→ C → 0.

(1) The sequence is an almost split sequence.

(2) f is minimal left almost split.

(3) g is minimal right almost split.

(4) A is indecomposable and g is right almost split.

(5) C is indecomposable and f is left almost split.

(6) A ∼= τC and g is right almost split.

(7) C ∼= τ−1A and f is left almost split.

Theorem 1.2.13. [ARS95, Theorem 1.15]

(1) If A is an indecomposable module which is not injective, then there is an almost split exact
sequence 0→ A→ B → τ−1A→ 0.

(2) If C is an indecomposable module which is not projective, then there is an almost split
exact sequence 0→ τC → B → C → 0.

A morphism f : A → B is said to be irreducible if it is neither a split monomorphism nor
a split epimorphism and if f = f2f1 then either f1 is a split monomorphism or f2 is a split
epimorphism. Clearly, an irreducible morphism is either a monomorphism or an epimorphism.
For a finite-dimensional algebra Λ, there is an associated quiver (maybe infinite), called the
Auslander-Reiten quiver, defined as follows. Put an vertex for each isomorphism class [M ] of
indecomposable Λ-module; draw an arrow [M ] → [N ] for each irreducible morphism from M
to N ; draw a dotted arrow from each nonprojective module [M ] to [τM ].

Let Λ = K(1 → 2 → 3), then indecomposable modules for Λ are indexed by the set
{(i, j) : 1 ≤ i ≤ j ≤ 3} and the Auslander-Reiten quiver of Λ can be presented the following.

(1, 3)

##GGGGGGGGG

(2, 3)

;;wwwwwwwww

##GGGGGGGGG
(1, 2)oo

##GGGGGGGGG

(3, 3)

;;wwwwwwwww
(2, 2)oo

;;wwwwwwwww
(1, 1)oo

For more details and examples see [ARS95, ASS06].

1.3 Relative homological algebra

We recall from [AS93b] the basics of relative homological algebra. An additive subbifunctor F
of Ext1

Λ(−,−) is a functor F : (Λ-mod)op × Λ-mod→ Ab such that

• for any (C,A) ∈ (Λ-mod)op × Λ-mod, F(C,A) is a subgroup of Ext1
Λ(C,A),

23



• for any morphism (α, β) : (C,A)→ (C ′, A′) the diagram of group homomorphisms

F(C,A)

F(α,β)

��

� � // Ext1
Λ(C,A)

Ext1
Λ(α,β)

��
F(C ′, A′) �

� // Ext1
Λ(C ′, A′)

is commutative.

A short exact sequence ε : 0→ A→ B → C → 0 is called F-exact if [ε] ∈ F(C,A).
Let X ⊆ Λ-mod be a subcategory, then one can associate two additive subbifunctors

FX ,F
X ⊆ Ext1(−,−) to the subcategory X defined for (C,A) ∈ (Λ-mod)op×Λ-mod as follows

FX (C,A) = {0→ A→ B → C → 0 | (B,X )→ (A,X )→ 0 is exact}
FX (C,A) = {0→ A→ B → C → 0 | (X , B)→ (X , C)→ 0 is exact}.

If X = add(M) for some module M , then we simply write Fadd(M) as FM and Fadd(M) as
FM . Clearly, we have FM = FΛ⊕M and FM = FD Λ⊕M . It follows from Lemma 1.2.11 that
FM = FτM⊕D Λ and FM = Fτ−M⊕Λ.

Let F ⊆ Ext1(−,−) be an additive subbifunctor, we say a monomorphism f : X → Y is an

F-monomorphism if the short exact sequence 0 → X
f−→ Y → coker f → 0 is F-exact, dually

we have F-epimorphism.

Proposition 1.3.1. [BH62, Theorem 1.1][DRSS99, Proposition 1.4] The following are equiv-
alent for an additive subbifunctor F of Ext1

Λ.

(1) Compositions of F-monomorphisms are again F-monomorphisms.

(2) Compositions of F-epimorphisms are again F-epimorphisms.

(3) The functor F(C,−) is half exact5 on F-exact sequences for all C ∈ Λ-mod.

(4) The functor F(−, A) is half exact on F-exact sequences for all A ∈ Λ-mod.

An additive subbifunctor F of Ext1 is called closed if it satisfies the above equivalent con-
ditions. The functors FX ,F

X are closed for any subcategory X .

Proposition 1.3.2. [DRSS99, Corollary 1.6] There is a one-to-one correspondence between

(1) the class of closed additive subbifunctors of Ext1
Λ;

(2) exact structures on Λ-mod.

Explicitly, to each closed additive subbifunctor F we attach an exact structure

EF := {all F-exact sequences}

and to each exact structure E we attach a closed additive subbifunctor F defined via

F(C,A) := {ε : 0→ A→ B → C → 0|ε ∈ E}.
5A functor F is called half exact if it sends an short exact sequence 0 → A → B → C → 0 to an exact

sequence F(A)→ F(B)→ F(C).
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We say F has enough projectives (resp. injectives) if the corresponding exact category has
enough projectives (resp. injectives). We denote by P(F) (resp. I(F)) the subcategory of
projectives (resp. injectives) of F. By [AS93b, Proposition 1.7], we have that FM ,FM are
both additive subbifunctors of Ext1

Λ(−,−) with enough projectives and enough injectives, and
P(FM) = add(τ−M ⊕ Λ), I(FM) = add(M ⊕ D Λ), P(FM) = add(M ⊕ Λ) and I(FM) =
add(τM ⊕ D Λ) . Therefore, one can define, as in the abelian case, for F ∈ {FM ,FM} the
derived functors ExtiF(−,−), i ≥ 1, which are defined by using F-injective coresolutions or F-
projective resolutions. In particular, we have a natural isomorphism of functors Ext1

F
∼= F. Also,

we have the notions of F-projective dimension, F-injctive dimension and F-global dimension
which we denote by pdF, idF and gldimF, respectively. Many arguments work for the standard
homological algebra also work for relative homological algebra, for example, there is a relative
version of Lemma 1.2.7. We may freely use the results that can be proved with the same
arguments as the standard case.

According to [AS93c], the existence of F-cotilting modules is equivalent to F is of the form
F = FG = FH for a generator G and a cogenerator H, and in this case H = τG ⊕ D Λ and
G = τ−H ⊕ Λ. Such a functor is called an additive subbifunctor (of Ext1

Λ) of finite type. As
one of our main results, we will prove the relative (co)tilting correspondence. So, in this thesis,
we will only consider the additive subbifunctors of finite type. If Λ is representation finite,
i.e., there are only finitely many indecomposable Λ-modules up to isomorphism, then there is
a largest generator G which is the direct sum (taken over a representative set of nonisomorphic
indecomposables) of all the indecomposables. We refer to this G the Auslander generator of Λ.
Note that G is also the largest cogenerator and we have FG = FG.
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Chapter 2

Faithfully balanced modules

2.1 Categories generated or cogenerated by a module

Let M be a Λ-module. The subcategories cogen(M) := {N | ∃ monomorphism 0 → N →
M0 withM0 ∈ add(M)} and gen(M) := {N | ∃ epimorphismM0 → N → 0 withM0 ∈ add(M)}
are well-studied and play an important role in classical tilting theory (cf. [ASS06, Chapter
VI]). We are going to study the “higher” versions of them. For every non-negative integer k we
associate to a module M two full subcategories of Λ-mod

cogenk(M) :=

{
N

∣∣∣∣ ∃ exact seq. 0→N →M0 → · · · →Mk with Mi ∈ add(M), and s.t.

(Mk,M)→· · · → (M0,M)→ (N,M)→ 0 is exact

}
genk(M) :=

{
N

∣∣∣∣ ∃ exact seq. Mk → · · · →M0 → N → 0 with Mi ∈ add(M), and s.t.

(M,Mk)→· · · → (M,M0)→ (M,N)→ 0 is exact

}
.

We define cogen∞(M) to be the full subcategory of Λ-mod consisting of modules N such
that there exists an exact sequence

0→ N
f0−→M0

f1−→M1 · · ·
fn−→Mn → · · ·

such that fi factors through coker fi−1 →Mi which is a minimal left add(M)-approximation for
every i ≥ 0. The definition of gen∞(M) is dual. It is easy to see that cogen0(M) = cogen(M)
and gen0(M) = gen(M).

The following lemma will be used frequently, the case k = 0 is well known and can be found
in [ASS06, Lemma VI 1.8].

Lemma 2.1.1. Let 1 ≤ k ≤ ∞.

(1) The following are equivalent for N ∈ Λ-mod.

(1a) N ∈ cogenk(M).

(1b) The natural map N → HomΓ(HomΛ(N,M),M) = ((N,M),M), n 7→ (f 7→ f(n)) is
an isomorphism and ExtiΓ(HomΛ(N,M),M) = 0 for 1 ≤ i ≤ k − 1.

(2) The following are equivalent for N ∈ Λ-mod.

(2a) N ∈ genk(M).

(2b) The natural map D(M,D(M,N)) ∼= HomΛ(M,N)⊗Γ M → N , f ⊗m 7→ f(m) is an
isomorphism and ExtiΓ(M,D(M,N)) = 0 for 1 ≤ i ≤ k − 1.

26



Proof. (1) Let N ∈ cogenk(M), that means we have an exact sequence

0→ N →M0 → · · · →Mk

with Mi ∈ add(M) and such that the functor HomΛ(−,M) is exact on it, i.e., we get an
exact sequence

(Mk,M)→ · · · → (M0,M)→ (N,M)→ 0.

This sequence is a projective resolution of HomΛ(N,M) as a left Γ-module. Applying the
functor HomΓ(−,M) to it yields a complex

0→ ((N,M),M)→ ((M0,M),M)→ · · · → ((Mk,M),M).

Now, consider the natural map N → HomΓ(HomΛ(N,M),M), this gives a commutative
diagram,

0 // ((N,M),M) // ((M0,M),M) // · · · // ((Mk,M),M)

0 // N

OO

//M0

OO

// · · · //Mk

OO

The map M ′ → HomΓ(HomΛ(M ′,M),M) is an isomorphism for M ′ ∈ add(M) because
it is in the case of M ′ = M . This implies that all vertical maps are isomorphisms, in
particular N → HomΓ(HomΛ(M,N),M) is an isomorphism and since the second row is
exact, the complex in the first row is also exact. This implies ExtiΓ(HomΛ(N,M),M) = 0
for 1 ≤ i ≤ k − 1.
For the other direction, by Lemma 1.2.2 (1) we can take a projective resolution of
HomΛ(N,M) as a left Γ-module as follows

(Mk,M)→ · · · → (M0,M)→ (N,M)→ 0

and apply HomΓ(−,M) to compute ExtiΓ(HomΛ(N,M),M), 1 ≤ i ≤ k − 1. Since by
assumption ExtiΓ(HomΛ(N,M),M) = 0, 1 ≤ i ≤ k−1 and N → HomΓ(HomΛ(N,M),M)
is an isomorphism. The complex gives an exact sequence

0→ N →M0 → · · · →Mk.

If we apply HomΛ(−,M) to this sequence we get the projective resolution from before,
so it is exact which shows that N is in cogenk(M).

(2) By using the facts thatN ∈ genk(M) if and only if DN ∈ cogenk(DM) and EndΛop(DM) ∼=
EndΛ(M)op, we see that the statement (2) can be deduced from the right module version
of (1).

Corollary 2.1.2. For 1 ≤ k ≤ ∞, the categories cogenk(M) and genk(M) are closed under
direct sums and summands. Furthermore, we have

cogen∞(M) =
⋂

1≤k<∞

cogenk(M), gen∞(M) =
⋂

1≤k<∞

genk(M).

We will need the following useful lemma which already appeared for the specific situation
of a relative cotilting module in [AS93c, Lemma 3.3 (b)] and [AS93c, Proposition 3.7].
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Lemma 2.1.3. Let M ∈ Λ-mod and Γ = EndΛ(M).

(1) A module X ∈ cogen1(M) if and only if the natural map

HomΛ(Y,X)→ HomΓ((X,M), (Y,M))

is an isomorphism for all Y ∈ Λ-mod. Furthermore, in this case we have

νΓ(X,M) = D((X,M), (M,M)) ∼= D(M,X).

Dually, a module Y ∈ gen1(M) if and only if the natural map

HomΛ(Y,X)→ HomΓ(D(M,X),D(M,Y ))

is an isomorphism for all X ∈ Λ-mod. Furthermore, in this case

ν−Γ D(M,Y ) = (D(M,M),D(M,Y )) ∼= (Y,M).

(2) For k ≥ 1, X ∈ cogenk+1(M) if and only if the natural maps

ExtiΛ(Y,X)→ ExtiΓ((X,M), (Y,M)), 0 ≤ i ≤ k

are isomorphisms for all Y ∈
⋂k
i=1 ker ExtiΛ(−,M).

Dually, Y ∈ genk+1(M) if and only if the natural maps

ExtiΛ(Y,X)→ ExtiΓ(D(M,X),D(M,Y )), 0 ≤ i ≤ k

are isomorphisms for all X ∈
⋂k
i=1 ker ExtiΛ(M,−).

Proof. (1) Assume X ∈ cogen1(M), then there exists an exact sequence 0→ X →M0 →M1

such that Mi ∈ add(M) and HomΛ(−,M) is exact on it. We apply HomΛ(Y,−) to get
an exact sequence

0→ HomΛ(Y,X)→ HomΛ(Y,M0)→ HomΛ(Y,M1).

Now, we consider the commutative diagram

0 // (Y,X) //

(−,M)
��

(Y,M0)

(−,M) ∼=
��

// (Y,M1)

(−,M) ∼=
��

0 // ((X,M), (Y,M)) // ((M0,M), (Y,M)) // ((M1,M), (Y,M)).

The second row also can be obtained by applying first HomΛ(−,M) then HomΓ(−, (Y,M))
to the exact sequence 0→ X →M0 →M1, so it remains exact. The induced isomorphism
of the kernels is the map in the claim. Conversely, by taking Y = Λ we obtain a natural

isomorphism X
∼=−→ ((X,M),M) which implies X ∈ cogen1(M).

(2) Assume X ∈ cogenk+1(M), then we have an exact sequence 0→ X →M0 → · · · →Mk+1

such that Mi ∈ add(M) and HomΛ(−,M) is exact on it. Applying HomΛ(−,M) yields
an exact sequence (Mk+1,M) → · · · → (M0,M) → (X,M) → 0 which is a projective
resolution of (X,M) as a left Γ-module. Now assume Y ∈

⋂k
i=1 ker ExtiΛ(−,M). To

compute ExtiΓ((X,M), (Y,M)) for 1 ≤ i ≤ k we apply HomΓ(−, (Y,M)) to this projective
resolution and delete the term ((X,M), (Y,M)) to get a complex

· · · // 0 // ((M0,M), (Y,M)) // ((M1,M), (Y,M)) // · · · // ((Mk+1,M), (Y,M)) // 0 // · · ·
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which fits into the following commutative diagram

· · · // 0 // (Y,M0) //

(−,M) ∼=
��

(Y,M1) //

(−,M) ∼=
��

· · · // (Y,Mk+1)

(−,M) ∼=
��

// 0 // · · ·

· · · // 0 // ((M0,M), (Y,M)) // ((M1,M), (Y,M)) // · · · // ((Mk+1,M), (Y,M)) // 0 // · · ·

where the complex in the first row is obtained by applying HomΛ(Y,−) to 0→ X →M0 →
· · · → Mk+1 and deleting the term (Y,X). Our assumption Y ∈

⋂k
i=1 ker ExtiΛ(−,M)

implies that the i-th cohomology of the first row is ExtiΛ(Y,X). Now the isomorphism
of the two complexes induces the claimed natural isomorphisms. To prove the other
implication, just take Y = Λ.

We also have the following subcategories of Λ-mod that are closely related to cogenk(M)
and genk(M):

copresk(M) := {N | ∃ exact seq. 0→ N →M0 → · · · →Mk with Mi ∈ add(M)}
presk(M) := {N | ∃ exact seq. Mk → · · · →M0 → N → 0 with Mi ∈ add(M)}.

These subcategories are useful in characterizing tilting and cotilting modules (see [Wei10]).
It follows from the definitions that cogen0(M) = cogen(M) = copres0(M) and cogenk(M) ⊆
copresk(M) for any M and k ≥ 1. In particular, if M is injective then cogenk(M) = copresk(M)
for any k ≥ 0.

Remark 2.1.4. By using results in [GT96, Section 3], one can easily deduce that the subcate-
gories copresk(M) and presk(M) are functorially finite for any k ≥ 0 and M ∈ Λ-mod. However,
to the author’s knowledge, it is unknown for an arbitrary M whether cogenk(M) or genk(M)
is functorially finite (even contravariantly finiteness or covariantly finiteness is unknown) when
k > 1.

2.2 Faithfully balanced modules and dualities

Faithfully balanced modules can be defined for any ring. For finite-dimensional algebras,
Lemma 2.1.1 allows us to give the following internal definition.

Definition 2.2.1. A Λ-module M is called faithfully balanced if Λ ∈ cogen1(M).

Note that the above definition also makes sense for right modules. The following surprising
and also well-known result says every module becomes faithfully balanced when considered as
a module over its endomorphism ring.

Lemma 2.2.2. [AF92, Proposition 4.12] [AS93a, Lemma 2.2] Let M ∈ Λ-mod and Γ =
EndΛ(M) and consider M as a left Γ-module. Then ΓM is faithfully balanced.

In [BS98], a faithfully balanced module is also known as a module of faithful dimension
at least 2. The following lemma (the same as [BS98, Proposition 2.2]), which characterizes
modules of faithful dimension at least k + 1, can be obtained as an immediate consequence of
Lemma 2.1.1.

Lemma 2.2.3. The following are equivalent for every 1 ≤ k ≤ ∞.
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(1) Λ ∈ cogenk(M).

(2) The natural map Λ→ EndΓ(M) is an isomorphism and ExtiΓ(M,M) = 0, 1 ≤ i ≤ k− 1.

(3) D Λ ∈ genk(M).

Proof. The equivalence between (1) and (2) is a special case of Lemma 2.1.1. The equivalence
to (3) follows again by seeing that the equivalence between (1) and (2) also works for right
modules. Then pass with the duality from the right module statement for (1) to (3).

The following dualities will play a fundamental role.

Lemma 2.2.4. Let M be a faithfully balanced Λ-module and Γ = EndΛ(M). Then the functors
(−, ΛM) : Λ-mod←→ Γ-mod: (−, ΓM) restrict to a duality of categories

cogen1(ΛM)←→ cogen1(ΓM).

They restrict further to a duality

cogenk(ΛM)←→ cogen1(ΓM) ∩
k−1⋂
i=1

ker ExtiΓ(−, ΓM).

Dually, the functors D(ΛM,−) : Λ-mod ←→ Γ-mod: D(ΓM,−) restrict to a duality of cate-
gories

gen1(ΛM)←→ gen1(ΓM).

They restrict further to a duality

genk(ΛM)←→ gen1(ΓM) ∩
k−1⋂
i=1

ker ExtiΓ(ΓM,−).

Proof. By Lemma 2.1.3 the functor (−, ΛM) is fully faithful on cogen1(ΛM). Let Λ-ΓM be a Λ-
Γ-bimodule, ΛN a left Λ-module and ΓN

′ a left Γ-module. We denote by αN : N → ((N,M),M)
and αN ′ : N

′ → ((N ′,M),M) the two natural maps. Then the compositions

(N,M)
α(N,M)// (((N,M),M),M)

(αN ,M)// (N,M)

(N,M)
α(N′,M)// (((N ′,M),M),M)

(αN′ ,M)// (N ′,M)

are both identities, since by Lemma 1.2.2 the functors (−, ΛM) and (−, ΓM) form an adjoint
pair. Therefore, if αN (resp. αN ′) is an isomorphism, then so is α(N,M) (resp. α(N ′,M)). Since
M is faithfully balanced the dualities follow from Lemma 2.1.1.

Remark 2.2.5. (1) We also have the above dualities when M is a balanced Λ-module. To
see this, we observe that if ΛM is balanced then it is faithfully balanced as a Λ/ ann(M)-
module, where ann(M) is the annihilator ideal ofM , and Γ = EndΛ(M) ∼= EndΛ/ ann(M)(M)
as algebras. We may identify cogen1(ΛM) and cogen1(Λ/ ann(M)M) since any Λ/ ann(M)-
module is naturally a Λ-module and if X ∈ cogen1(ΛM) then we must have ann(M)X = 0.
Since ΓM is always faithfully balanced by Lemma 2.2.2, we have the desired duality

cogen1(ΛM) = cogen1(Λ/ ann(M)M)←→ cogen1(ΓM)).

In general, for an arbitrary Λ-module M , we have a duality

cogen1(ΛM)←→ {Y ∈ Γ-mod |Y
∼=−→ ((Y, ΓM), ΛM)}

where Γ = EndΛ(M). We have similar dualities for k ≥ 2.
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(2) We have already seen in Lemma 2.1.1 that cogen1(M) consists of the modules N such
that αN is an isomorphism. It is also straightforward to see that cogen(M) consists of
the modules N with αN a monomorphism.

If we now consider a faithfully balanced Λ-module M , Γ = EndΛ(M) and Im(−,M) the
essential image of the functor (−,M), then we have

cogen1(ΓM) ⊆ Im(−,M) ⊆ cogen(ΓM).

Let Im(−,M)⊕ be the full subcategory of Γ-mod whose objects are summands of modules
in Im(−,M). Then it is easy to see from the previous proof that Im(−,M)⊕ consists of
those modules N such that αN is a split monomorphism.

If ΛM is a cogenerator, then Im(−,M) = cogen1(ΓM) and in particular Im(−,M) is
closed under summands in this case.

Corollary 2.2.6. Let k ≥ 1. Let M ∈ Λ-mod be faithfully balanced and assume id ΓM ≤ k−1,
then we have

cogenk(M) = cogenk+1(M) = · · · = cogen∞(M).

Corollary 2.2.7. Let k ≥ 1 and M be a faithfully balanced Λ-module and ExtiΛ(M,M) = 0 for
1 ≤ i ≤ k − 1. Then we have

(1) The functors (−, ΛM), (−, ΓM) restrict to a duality

{M ′ ∈ add(ΛM) | pdM ′ ≤ k} ←→ {P ∈ add(Γ) | Ω−(k+1)
M P = 0}.

(2) The functors D(ΛM,−),D(ΓM,−) restrict to a duality

{M ′ ∈ add(ΛM) | idM ′ ≤ k} ←→ {J ∈ add(D Γ) | Ω(k+1)
M J = 0}.

Proof. It is straightforward to check that the duality from Lemma 2.2.4 restricts to these
equivalences.

A result of Morita

We recall a result of Morita which is very useful in constructing new faithfully balanced modules
from old ones.

Lemma 2.2.8. Let M,X ∈ Λ-mod. Assume M is faithful and X is indecomposable. If M ⊕X
is (faithfully) balanced, then we have either X ∈ gen(M) or X ∈ cogen(M).

Proof. Let E = EndΛ(X), then E is a local ring and hence there is a unique simple E-module,
say S. Define

X1 =
∑

f :M→X

im(f) and X0 =
⋂

g:X→M

ker(g).

Then X1 and X0 are left-Λ-left-E-subbimodules of X. By definition, we have X ∈ gen(M) if
and only if X1 = X and X ∈ cogen(M) if and only if X0 = 0. Now assume X1 6= X and X0 6= 0.
Then X/X1 6= 0 and hence has S as a quotient. This implies HomE(X/X1, X0) 6= 0. Thus
there exists a non-zero E-endomorphism θ : X → X such that X1 ⊆ ker(θ) and im(θ) ⊆ X0.
Let Γ = EndΛ(M), then we have

EndΛ(M ⊕X) =

(
Γ HomΛ(X,M)

HomΛ(M,X) E

)
,
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and M⊕X is a left Λ-left EndΛ(M⊕X)-bimodule. We claim that

(
0 0
0 θ

)
is an EndΛ(M⊕X)-

endomorphism of M ⊕X, that is, for any element

(
a b
c d

)
∈ EndΛ(M ⊕X) we have

(
0 0
0 θ

)(
a b
c d

)
=

(
a b
c d

)(
0 0
0 θ

)
.

To prove the claim we need to show θc = 0, bθ = 0 and θd = dθ. Now im(c) ⊆ X1 ⊆ ker(θ)
gives θc = 0, im(θ) ⊆ X0 gives bθ = 0 and the fact that θ is an E-endomorphism gives θd = dθ.

By assumption, M ⊕X is balanced and this implies that the action of

(
0 0
0 θ

)
is given by the

multiplication of some element λ ∈ Λ. Now we must have λM = 0 which forces λ = 0 since M
is faithful as a Λ-module. Thus we have θ = 0, a contradiction.

Lemma 2.2.9. Let M be faithfully balanced. If either X ∈ gen(M) or X ∈ cogen(M), then
M ⊕X is also faithfully balanced.

Proof. We will prove the case X ∈ gen(M) and the proof of the case X ∈ cogen(M) is dual.
Since M is faithfully balanced, there is an exact sequence

0→ Λ
f−→M0

g−→M1

such that f and coker(f) → M1 are minimal left add(M)-approximations. We claim that the
map f is also a left add(M ⊕ X)-approximation. To this end, it is enough to show that any
map h : Λ→ X factors through f . Consider the following diagram

0 // Λ
i

}}{
{

{
{
h

��

f //M0

j
vvm m m m m m m m

MX p // X // 0

where p is the minimal right add(M)-approximation of X. Since X ∈ gen(M), p is an epimor-
phism and so there is an i : Λ→ MX such that h = pi. Then i factors as i = jf and we have
h = pi = (pj)f . This proves the claim. Now since coker(f) ∈ cogen(M) ⊆ cogen(M ⊕X) we
conclude that Λ ∈ cogen1(M ⊕X). This proves M ⊕X is faithfully balanced.

As an immediate consequence of Lemma 2.2.8 and Lemma 2.2.9 we have the following

Corollary 2.2.10. [Mor58a, Theorem 1.1]
Let M ∈ Λ-mod be faithfully balanced and X ∈ Λ-mod indecomposable. Then the following are
equivalent:

(1) M ⊕X is faithfully balanced;

(2) X ∈ gen(M) or X ∈ cogen(M).

In particular, M ⊕ P ⊕ I is faithfully balanced for every projective module P and injective
module I.

32



2.3 Dualizing summands and the Auslander-Solberg as-

signment

Dualizing summands

Auslander and Solberg introduced (in [AS93d, section 2]) the following notion.

Definition 2.3.1. Let M,L ∈ Λ-mod and assume M is a summand of L. We say M is a
dualizing summand of L if L ∈ cogen1(M). For k ≥ 0, we say M is a k-dualizing summand if
L ∈ cogenk(M). Thus a dualizing summand of L is the same as a 1-dualizing summand of L.

By using the duality from Lemma 2.2.4 it is easy to find modules having a given faithfully
balanced module as a dualizing summand.

Corollary 2.3.2. Let M be a faithfully balanced Λ-module and Γ = End(M). Then the assign-
ments G 7→ (G,M), L 7→ (L,M) give inverse bijections between

(1) isomorphism classes of ΛG ∈ cogen1(M) with Λ ∈ add(G), and

(2) isomorphism classes of modules L ∈ Γ-mod having ΓM as a dualizing summand.

Lemma 2.3.3. Let M,L ∈ Λ-mod, Γ = EndΛ(M) and assume M is a summand of L. Then
M is a dualizing summand of L if and only if cogen1(L) = cogen1(M).

Proof. The “if” part is obvious. For the “only if” part, assume M is a dualizing summand of
L and X ∈ cogen1(L). Then there exists an exact sequence

0→ X → LX0 → LX1

with LXi ∈ add(L) and (−, L) exact on it. We apply (−, ΛM) to it and the resulting complex
remains exact, since M ∈ add(L). Now apply (−, ΓM) to see X ∼= ((X,M),M). This proves
cogen1(L) ⊆ cogen1(M). To prove cogen1(M) ⊆ cogen1(L), take any Y ∈ cogen1(M) and
take the minimal left add(L)-approximations f : Y → LY0 and coker f → LY1 . Then we get a
complex

0→ Y
f−→ LY0 → LY1 .

We need to show it is exact. By construction, we will obtain an exact sequence

(LY1 ,M)→ (LY0 ,M)→ (Y,M)→ 0

after applying (−, ΛM). Now apply (−, ΓM) to yield an exact sequence

0→ ((Y,M),M)→ ((LY0 ,M),M)→ ((LY1 ,M),M)

which is naturally isomorphic to the complex 0→ Y
f−→ LY0 → LY1 , as desired.

We observe the following

Lemma 2.3.4. Let M,N ∈ Λ-mod and L = M ⊕ N . For k ≥ 1, if N ∈ cogenk(M) (i.e.,
M is a k-dualizing summand of L ), then M is faithfully balanced if and only if L is faith-
fully balanced. In this case we have cogenk(M) = cogenk(L). Furthermore, if additionally
copresk(L) = cogenk(L) , then we also have copresk(M) = cogenk(M).
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Proof. According to Lemma 2.3.3, we may assume k > 1. Since L ∈ cogenk(M) ⊆ cogen1(M),
it follows from Lemma 2.3.3 that cogen1(L) = cogen1(M) and hence M is faithfully balanced
if and only if L is faithfully balanced.

Let us from now on assume that M,L are faithfully balanced. We want to see that
cogenk(L) = cogenk(M). Let Γ = EndΛ(M). Since L ∈ cogen1(M) we can find a genera-
tor G ∈ Γ-mod such that L = (G,M) by Corollary 2.3.2. We observe that L ∈ cogenk(M)
implies ExtiΓ((L,M),M) = ExtiΓ(G,M) = 0 for 1 ≤ i ≤ k − 1. In other words, ΓM ∈⋂k−1
i=1 ker ExtiΓ(G,−). But since G is a generator we have that genk+1(G) = Γ-mod. We set

B = EndΛ(L) ∼= EndΓ(G)op and take X ∈ cogenk(ΛM). Now, observe

(X,L) ∼= (((X,M),M), (G,M)) ∼= (G, (X,M))

is an isomorphism of left B-modules. The dual statement in Lemma 2.1.3 (2) gives that we
have natural isomorphisms

ExtiΓ((X,M),M)→ ExtiB((G, (X,M)), (G,M)) ∼= ExtiB((X,L), L)

for 1 ≤ i ≤ k − 1. This implies by Lemma 2.1.1 that cogenk(M) = cogenk(L). Furthermore,
since cogenk(M) ⊆ copresk(M) ⊆ copresk(L) are always fulfilled, an equality cogenk(M) =
copresk(L) implies they are all equal.

Example 2.3.5. Let H be a cogenerator, then every summand of H of the form D Λ⊕X is a
k-dualizing summand for every k ≥ 0.

The Auslander-Solberg assignment

Now we look at triples (Λ,M,G) where Λ is a finite-dimensional algebra and M and G are
finite-dimensional left Λ-modules. We define the following equivalence relation between these
triples: (Λ,M,G) is equivalent to (Λ′,M ′, G′) if there is a Morita equivalence Λ-mod → Λ′-
mod restricting to equivalences add(M) → add(M ′) and add(G) → add(G′). We denote by
[Λ,M,G] the equivalence class of a triple.

Definition 2.3.6. We consider the following assignment

[Λ,M,G] 7→ [Γ, N, L]

with Γ = End(M), N = ΓM , L = (G,M) and call this the Auslander-Solberg assignment.
There is a dual assignment

[Λ,M,H] 7→ [Γ, N,R]

with Γ, N as before and R = D(M,H) which we call the dual Auslander-Solberg assignment.

From Corollary 2.3.2 we see that the Auslander-Solberg assignment gives a one-to-one cor-
respondence between the following

(1) [Λ,M,G] with Λ ∈ add(G), G ∈ cogen1(M),

(2) [Γ, N, L] with N ∈ add(L), Γ⊕ L ∈ cogen1(N).

The previous bijection has an obvious dual version using the dual Auslander-Solberg assignment
and gen, H and R instead of cogen, G and L, respectively.

We are going to refine this assignment, our first refinement needs the following notation.
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Definition 2.3.7. We denote for Λ-modules M and X by ΩMX the kernel of the minimal right
add(M)-approximation MX → X. For k ≥ 1 we define inductively:

Ωk
MX :=

{
ΩMX if k = 1,

ΩM(Ωk−1
M X) if k ≥ 2.

Dually, we define Ω−MX as the cokernel of a minimal left add(M)-approximation X →MX and
Ω−kM X inductively.

Definition 2.3.8. Let k be a non-negative integer and L,M,R ∈ Λ-mod. An exact sequence

0→ L→M0 →M1 → · · · →Mk → R→ 0

is called a k-add(M)-dualizing sequence from L to R if

(i) Mi ∈ add(M) for i ∈ {0, . . . , k},

(ii) the functors (−,M) and D(M,−) are exact on it,

(iii) add(R) = add(M ⊕ Ω
−(k+1)
M L) and add(L) = add(M ⊕ Ωk+1

M R).

In this case we say L is the left end and R is the right end of this k-add(M)-dualizing sequence.

This has the following consequences for the ideal quotient categories add(L)/ add(M) and
add(R)/ add(M):

Lemma 2.3.9. Let 0 → L → M0 → M1 → · · · → Mk → R → 0 be a k-add(M)-dualizing
sequence from L to R for some k ≥ 0 in Λ-mod. Then we have an equivalence

Ω
−(k+1)
M : add(L)/ add(M)←→ add(R)/ add(M) : Ωk+1

M .

Proof. We claim that given a short exact sequence η : 0 → U
f−→ M0

g−→ V → 0 with M0 ∈
add(M) and such that the functors (−,M) and (M,−) are exact on it, then we have an
equivalence

Ω−1
M : add(U)/ add(M)↔ add(V )/ add(M) : Ω1

M .

Take a map α : X → Y in add(U) and consider the following commutative diagram

ηX : 0 // X
fX //

α

��

MX
0

gX //

β
���
�
�

Ω−1
M X //

γ

���
�
�

0

ηY : 0 // Y
fY //MY

0

gY // Ω−1
M Y // 0

where ηX and ηY are both direct summands of η by our assumption. In particular, we have
ΩMΩ−1

M X ∼= X and ΩMΩ−1
M Y ∼= Y in add(U)/ add(M). Assume there is another map β′ :

MX
0 → MY

0 such that β′fX = fY α and denote by γ′ the induced map on cokernels. Then we
have (β−β′)fX = 0 and thus there exists a unique θ : Ω−1

M X →MY
0 such that β−β′ = θgX . It

follows that γ − γ′ = gY θ. Now assume α factors as α = α2α1 though an object M ′ ∈ add(M),
then since fX is a left add(M)-approximation there is a map φ : MX

0 →M ′ such that α1 = φfX .
Thus we have α = α2α1 = (α2φ)fX , and a diagram chasing gives a map ψ : Ω−1

M X →MY
0 such

that γ = gY ψ. These proves that the map

Homadd(U)/ add(M)(X, Y )→ Homadd(V )/ add(M)(Ω
−1
M X,Ω−1

M Y ), α 7→ γ
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is well defined. Similarly, we have a map

Homadd(V )/ add(M)(Ω
−1
M X,Ω−1

M Y )→ Homadd(U)/ add(M)(X, Y ), γ 7→ α.

Clearly, these two maps are mutually inverse and this proves the claim. Now the lemma follows
by induction on k.

Definition 2.3.10. Let X ∈ Λ-mod and k ≥ 1 be an integer. We define

τkX = τ(Ωk−1
Λ X) and τ−k X = τ−(Ω

−(k−1)
Λ X).

We occasionally use the conventions

X⊥1∼k :=
k⋂
i=1

ker Exti(X,−) and 1∼k⊥X :=
k⋂
i=1

ker Exti(−, X).

Lemma 2.3.11. Let M be a faithfully balanced Λ-module and Γ = EndΛ(M). Then, for k ≥ 1,
the assignment X, Y 7→ (X,M),D(M,Y ) gives a self-inverse bijection (up to seeing X, Y as Λ
or as Γ-modules) between the following sets of pairs of Λ-modules and Γ-modules

{ΛG, ΛH |
G = τ−k H ⊕ Λ ∈ cogen1(M) ∩ 1∼(k−1)⊥M

H = τkG⊕D Λ ∈ gen1(M) ∩M⊥1∼(k−1)
}

and
{ΓL, ΓR | ∃ a k- ΓM-dualizing sequence from L to R}.

If all modules are basic, we have D(M, τkG) = Ω
−(k+1)
M (G,M).

Proof. The bijection follows from Lemma 2.2.4 and the observation νΓ(M ′,M) = D(M,M ′) for
every M ′ ∈ add(M) ⊆ cogen1(M) from Lemma 2.1.3. The rest statements are obvious.

Corollary 2.3.12. Let G,H be as in the bijection of Lemma 2.3.11, then we have an equivalence

τk : add(G)←→ add(H) : τ−k ,

where add(G) (resp. add(H)) denotes the projective (resp. injective) stable category.

Proof. This follows from the equivalence of Lemma 2.3.9 by pre- and postcomposing with
(−,M) and D(M,−) and then use Lemma 2.3.11.

Example 2.3.13. Obviously triples [Λ,M,M ] correspond to triples [Γ, N,Γ] and since M is
a generator we conclude that N is a projective Γ-module. The module M is a generator-
cogenerator (i.e., Λ ⊕ D Λ ∈ add(M)) if and only if N is projective-injective. Furthermore,
add(M) = add(τkM ⊕ Λ) and M being a generator-cogenerator with Exti(M,M) = 0, 1 ≤
i ≤ k − 1 corresponds to a dualizing sequence 0 → Γ → N0 → · · · → Nk → D Γ → 0
with Ni projective-injective and P(G) a projective generator, I(Γ) an injective cogenerator.
But this is equivalent to Γ being k-minimal Auslander-Gorenstein which means by definition
id ΓΓ ≤ k + 1 ≤ domdimΓΓ. These algebras have been studied by Iyama and Solberg in [IS18].
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Chapter 3

Faithfully balanced modules for K( ~An)

In this chapter, we will study and classify faithfully balanced modules for the algebra Λn =
K(1→ 2→ · · · → n) which is isomorphic to the n×n lower triangular matrix algebra over K.
This chapter is based on an earlier version of [CBMRS19].

3.1 Combinatorics of faithfully balanced modules

The indecomposable modules for Λn are indexed by the set In = {(i, j) : 1 ≤ i ≤ j ≤ n}, which
we display as the blocks of a Young diagram

(1, n) (1, n − 1) (1, n − 2) (1, 2) (1, 1)

(2, n) (2, n − 1) (2, n − 2) (2, 2)

(3, n) (3, n − 1)

(n − 1, n) (n− 1, n− 1)

(n, n)

The element (i, j) corresponds to the module Mij with top and socle the simple modules S[i]
and S[j]. The left hand column is the indecomposable projective modules, the top row is
the indecomposable injective modules and the modules Mii are the simple modules S[i]. The
Auslander-Reiten quiver is the same picture, with irreducible maps going vertically and to the
right, and the Auslander-Reiten translation τ = D Tr takes each module Mij with j < n to
Mi+1,j+1. By a leaf we mean an element of the set Ln = {(1, 0), (2, 1), . . . , (n + 1, n)}. We
define cohooks for (i, j) ∈ In and virtual cohooks for (i, j) ∈ Ln by the formula

cohook(i, j) = {Mkj : 1 ≤ k < i} ∪ {Mi` : n ≥ ` > j}.

Definition 3.1.1. Let M be a finite-dimensional Λn-module. We say M fulfills the cohook-
condition if the following conditions are fulfilled:

(C1) M1,n ∈ add(M);

(C2) cohook(i, i− 1) ∩ add(M) 6= ∅, 2 ≤ i ≤ n;

(C3) for every indecomposable Mi,j ∈ add(M) with Mi,j 6= M1,n we have cohook(i, j) ∩
add(M) 6= ∅.
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It is clear that if a module M satisfies (C1) then cohook(i, i−1)∩add(M) 6= ∅ for i = 1, n+1.
To characterize faithfully balanced modules for Λn we need the following construction of minimal
approximations of projectives.

Let M be a basic module with P1 = M1,n ∈ add(M). Fix i ∈ {2, . . . , n}, we define a
summand MJi of M as follows. Let Ji be the maximal subset of the set S = {(a, b) | a ≤ i ≤ b}
fulfilling:

• If Ma,b ∈ add(M) with (1, n) 6= (a, b) ∈ S, then Ji ∩ {(x, y) | x ≤ a, y ≤ b} = {(a, b)}.

By assumption we have Ji = {(i1, j1), (i2, j2), . . . , (it, jt)} with i ≥ i1 > i2 > · · · > it−1 > it ≥ 1.
We define

MJi :=

{⊕
(a,b)∈JiMa,b if jt = n

(
⊕

(a,b)∈JiMa,b)⊕M1,n if jt < n.

Without loss of generality we may assume jt = n. For every pair (is, js) we fix a nonzero
homomorphism fs : Pi = Mi,n → Mis,js which is the composition of irreducible morphisms
in the Auslander-Reiten quiver. Note that ft is a monomorphism. For f1 we have an exact
sequence

Mi,n
f1−→Mi1,j1

g11−→ N1 → 0

and for every successive pair (fs, fs+1) we have an exact sequence

Mi,n

( fs
fs+1

)
−−−−→Mis,js ⊕Mis+1,js+1

(gs+1,s gs+1,s+1)−−−−−−−−−−→ Ns+1 → 0.

These exact sequences give rise to a short exact sequence

0→ Pi
f−→MJi

g−→ N(i)→ 0

where

f =


f1

f2

f3
...
ft

 g =


g11

g21 g22

g32 g33

. . . . . .

gt,t−1 gt,t


and N(i) =

⊕t
s=1Ns. Moreover, we have N1 = M ε

i1,i−1 with ε = 1 − δi,i1 (i.e., ε ∈ {0, 1} with
ε = 0 if and only if i1 = i) and Ns = Mis+1,js for 1 < s ≤ t.

Lemma 3.1.2. The map f is the minimal left add(M)-approximation of Pi.

Proof. Note that Hom(Pi,Mc,d) = 0 if c > i or d < i. For an indecomposable summand Ma,b

of M , if Ma,b is not a summand of MJi then there exists some (is, js) ∈ Ji such that Ma,b is a
quotient of Mis,js or Mis,js is a submodule of Ma,b and hence any homomorphism from Pi to
Ma,b factors through fs. This shows that f is a left add(M)-approximation of Pi. Note that
the minimal add(M)-approximation must be a summand of MJi . By our construction, none of
the maps fs factor through another one. Hence f is the minimal add(M)-approximation.

Theorem 3.1.3. For a finite dimensional Λn-module M the following are equivalent:

(1) M is faithfully balanced,

(2) M fulfills the cohook condition.
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Proof. Assume that M does not fulfill the cohook condition. We show that M is then not
faithfully balanced. If P1 /∈ add(M), then M is not faithfully balanced. If there is an
i ∈ {2, 3, . . . , n} with cohook(i, i − 1) ∩ add(M) = ∅, then in the previous construction
Ji = {(i1, j1), . . . , (it, jt) = (it, n)} with 1 ≤ i1 < i and therefore Mi1,i−1 ∈ add(N(i)). But
the assumption implies Mi1,i−1 /∈ cogen(M) and therefore N(i) /∈ cogen(M). If there is
P1 6= Mi,j ∈ add(M) with cohook(i, j)∩ add(M) = ∅. We can apply the previous construction,
we observe Ji = {(i, j) = (i1, j1), . . . , (it, jt) = (it, n)} and therefore N(i) has a summand Mi2,j

with i2 < i but by assumption Mi2,j /∈ cogen(M). This completes the proof of one implication.
Assume now that M fulfills the cohook condition. We need to see that N(2), . . . , N(n) ∈

cogen(M). Assume there is i ∈ {2, . . . , n} minimal with N(i) /∈ cogen(M). Let J`, 2 ≤ ` ≤ n
be the sets of indices from the previous construction. Let Ji = {(i1, j1), . . . , (it, jt) = (it, n)}
with i ≥ i1 > i2 > · · · > it ≥ 1.

Case 1: Assume 1 < i1 < i, then we have Ji ⊂ Ji−1 and Mis+1,js ∈ addN(i − 1) ⊂ cogen(M),
1 ≤ s ≤ t − 1. So N(i) /∈ cogen(M) implies Mi1,i−1 /∈ cogen(M). Since we have
cohook(i, i− 1) ∩ add(M) 6= ∅, we conclude that i1 6= i− 1 and that there is an Mx,i−1 ∈
add(M) with i1 < x ≤ i−1. Now, by definition we have (x, i−1), (i1, j1) are the first two
entries in Jx, this implies Mi1,i−1 ∈ addN(x) ⊂ cogen(M) by assumption since x < i.

Case 2: i1 = 1. In this case we have Ji = {(1, n)} and N(i) = M1,i−1. By assumption cohook(i, i−
1) ∩ add(M) 6= ∅ and Ji = {(1, n)} we conclude that there is an 1 ≤ x ≤ i − 1 with
Mx,i−1 ∈ add(M). Since we assume N(i) = M1,i−1 /∈ add(M) we deduce x > 1. Now
we have Jx = {(x, i − 1), (1, n)} and therefore N(x) = M1,i−1 which is in cogen(M) by
assumption.

Case 3: i1 = i. In this case (i2, j2), . . . , (it, jt) = (it, n) are in Ji−1 and Mis+1,js ∈ addN(i − 1)
for 2 ≤ s ≤ t − 1. So N(i) /∈ cogen(M) implies Mi2,j1 /∈ cogen(M). But cohook(i1, j1) ∩
add(M) 6= ∅ implies that there is i2 < x < i1 with Mx,j1 ∈ add(M). Now again,
(x, j1), (i2, j2) are the first two entries in Jx and therefore Mi2,j1 ∈ addN(x) ⊂ cogen(M)
by assumption since x < i.

Example 3.1.4. The following is a complete list of basic faithfully balanced modules for Λ3,
where each small Young diagram represents a faithfully balanced module with indecomposable
summands the black boxes �.
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There are 21 in total, and the first 5 in the top row are tilting modules.

3.2 Counting faithfully balanced modules

Let M be a Λn-module, we denote by |M | the number of nonisomorphic indecomposable sum-
mands of M . Consider the subsets

Pn,i :=

{
M ∈ Λn- mod | M is basic with |M | = i and satisfies (C1) and (C3)

}
Kn,i :=

{
M ∈ Λn- mod | M is basic with |M | = i and satisfies the cohook condition

}
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and define pn,i = #Pn,i, kn,i = #Kn,i, pn(X) =
∑

i≥1 pn,iX
i, and kn(X) =

∑
i≥1 kn,iX

i. We
also consider the subsets

P
[−r]
n,i :=

{
M ∈ Λn- mod

∣∣∣∣M is basic with |M | = i, M satisfies (C1) and (C3)

but fails (C2) for some fixed r leaves

}
P

[r]
n,i :=

{
M ∈ Λn- mod

∣∣∣∣M is basic with |M | = i, M satisfies (C1) and (C3)

and also satisfies (C2) for some fixed r leaves

}
and define p

[−r]
n,i = #P

[−r]
n,i and p

[r]
n,i = #P

[r]
n,i. If M ∈ P

[−r]
n,i , by removing the given r virtual

cohooks M can be viewed as a Λn−r-module which satisfies (C1) and (C3). This shows p
[−r]
n,i =

pn−r,i. By using the inclusion-exclusion priciple we conclude

p
[r]
n,i =

r∑
j=0

(−1)j
(
r

j

)
p

[−j]
n,i =

r∑
j=0

(−1)j
(
r

j

)
pn−j,i.

Lemma 3.2.1. For n ≥ 1 we have

(1) kn(X) =
∑n−1

j=0 (−1)j
(
n−1
j

)
pn−j(X);

(2) pn(X) =
∑n−1

j=0

(
n−1
j

)
kn−j(X).

In particular, we have k1(X) = X = p1(X).

Proof. By the definition of kn,i we have kn,i = p
[n−1]
n,i =

∑n−1
j=0 (−1)j

(
n−1
j

)
pn−j,i. So

kn(X) =
∑
i≥1

(
n−1∑
j=0

(−1)j
(
n− 1

j

)
pn−j,i)X

i

=
n−1∑
j=0

(−1)j
(
n− 1

j

)
pn−j(X).

This proves (1), and (2) follows from (1) and the fact k1(X) = p1(X).

The AR-quiver of Λn+1 can be obtained by extending the AR-quiver of Λn with leaves by
sending each module Mi,j (including the leaves) to a module Mi,j+1 ∈ Λn+1-mod. As before, we
don’t display the arrows. The following example shows how to get the AR-quiver of Λ4 from
the AR-quiver of Λ3 with leaves.

1, 3 1, 2 1, 1 1, 0

2, 3 2, 2 2, 1

3, 3 3, 2

4, 3

=⇒

1, 4 1, 3 1, 2 1, 1

2, 4 2, 3 2, 2

3, 4 3, 3

4, 4

Lemma 3.2.2. For n ≥ 1 we have

pn+1(X) = (1 +X)2

n−1∑
r=0

(
n− 1

r

)
(

r∑
j=0

(−1)j
(
r

j

)
pn−j(X)Xr).
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Proof. By definition pn+1(X) =
∑

i≥1 pn+1,iX
i. Note that for each i, Pn+1,i can be written as a

disjoint union
Pn+1,i = P

(a)
n+1,i t P

(b)
n+1,i t P

(c)
n+1,i t P

(d)
n+1,i

where
P

(a)
n+1,i = {M ∈ Pn+1,i | Mn+1,n+1 /∈ add(M) and M1,1 /∈ add(M)}

P
(b)
n+1,i = {M ∈ Pn+1,i | Mn+1,n+1 /∈ add(M) but M1,1 ∈ add(M)}

P
(c)
n+1,i = {M ∈ Pn+1,i | Mn+1,n+1 ∈ add(M) but M1,1 /∈ add(M)}

P
(d)
n+1,i = {M ∈ Pn+1,i | Mn+1,n+1 ∈ add(M) and M1,1 ∈ add(M)}.

Define p
(a)
n+1,i = #P

(a)
n+1,i, p

(b)
n+1,i = #P

(b)
n+1,i, p

(c)
n+1,i = #P

(c)
n+1,i and p

(d)
n+1,i = #P

(d)
n+1,i. Then it is

clear that p
(b)
n+1,i = p

(c)
n+1,i and p

(a)
n+1,i = p

(b)
n+1,i+1 = p

(c)
n+1,i+1 = p

(d)
n+1,i+2 for all i ≥ 1. Moreover, we

have

p
(a)
n+1,i =

n−1∑
r=0

(
n− 1

r

)
(

r∑
j=0

(−1)j
(
r

j

)
p

[−j]
n,i−r) =

n−1∑
r=0

(
n− 1

r

)
(

r∑
j=0

(−1)j
(
r

j

)
pn−j,i−r).

Hence

pn+1(X) =
∑
i≥1

p
(a)
n+1,iX

i +
∑
i≥2

p
(b)
n+1,iX

i +
∑
i≥2

p
(c)
n+1,iX

i +
∑
i≥3

p
(d)
n+1,iX

i

=
∑
i≥1

p
(a)
n+1,iX

i +
∑
i≥1

p
(b)
n+1,i+1X

iX +
∑
i≥1

p
(c)
n+1,i+1X

iX +
∑
i≥1

p
(d)
n+1,i+2X

iX2

= (1 +X)2(
∑
i≥1

p
(a)
n+1,iX

i)

= (1 +X)2

n−1∑
r=0

(
n− 1

r

)
(

r∑
j=0

(−1)j
(
r

j

)
pn−j(X)Xr).

Theorem 3.2.3. We have

kn(X) =
n∏
j=1

((1 +X)j − 1)

for every n ≥ 1.

Proof. Let hn(X) =
∏n

j=1((1 +X)j − 1), then k1(X) = h1(X). Assume km(X) = hm(X) holds
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for all m ≤ n. Then we need to show kn+1(X) = hn+1(X). Indeed, we have

kn+1(X) = pn+1(X) +
n∑
j=1

(−1)j
(
n

j

)
pn+1−j(X) (by Lemma 3.2.1 (1))

= pn+1(X)−
n−1∑
l=0

(−1)l
(

n

l + 1

)
pn−l(X) (by setting l = j − 1)

= (1 +X)2

n−1∑
r=0

(
n− 1

r

)
Xr(

r∑
l=0

(−1)l
(
r

l

)
pn−l(X)) (by Lemma 3.2.2 )

−
n−1∑
l=0

(−1)l
(

n

l + 1

)
pn−l(X)

=
n−1∑
l=0

(−1)l((1 +X)2

n−1∑
r=0

(
n− 1

r

)
Xr −

(
n

l + 1

)
) (by Lemma 3.2.1 (2))

· (
n−1−l∑
s=0

(
n− 1− l

s

)
kn−l−s(X))

=
n−1∑
t=0

t∑
l=0

(−1)l(1 +X)2(
n−1∑
r=l

(
r

l

)(
n− 1

r

)
Xr)

(
n− 1− l
t− l

)
kn−t(X) (by setting t = s+ l)

−
n−1∑
t=0

t∑
l=0

(−1)l
(

n

l + 1

)(
n− 1− l
t− l

)
kn−t(X).

Note that we have the following identities

n−1∑
r=l

(
r

l

)(
n− 1

r

)
Xr =

(
n− 1

l

)
X l(1 +X)n−1−l

t∑
l=0

(−1)l(1 +X)2(

(
n− 1

l

)
X l(1 +X)n−1−l)

(
n− 1− l

s

)
=

(
n− 1

t

)
(1 +X)n+1−t

t∑
l=0

(−1)l
(

n

l + 1

)(
n− 1− l

s

)
=

(
n

t+ 1

)
.

So we can continue to write kn+1(X) as

n−1∑
t=0

(

(
n− 1

t

)
(1 +X)n+1−t −

(
n

t+ 1

)
)hn−t(X)

=
n−1∑
t=0

(

(
n− 1

t

)
(1 +X)n+1−t −

(
n− 1

t

)
)hn−t(X)−

n−2∑
t=0

(
n− 1

t+ 1

)
hn−t(X)

=
n−1∑
t=0

(
n− 1

t

)
hn+1−t(X)−

n−2∑
t=0

(
n− 1

t+ 1

)
hn−t(X)

= hn+1(X)

as desired.
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We denote by fb(Λn) the set of isomorphism classes of basic faithfully balanced modules,
and by fb(Λn)≤q the set of isomorphism classes of faithfully balanced modules with each inde-
composable summand has a multiplicity of at most q.

Corollary 3.2.4. For Λn we have the following.

(1) The number of basic faithfully balanced modules is
∏n

i=1(2i − 1).

(2) |fb(Λn)≤q| =
∑

i≥1 kn,iq
i =

∏n
i=1((q + 1)i − 1).

(3) kn,i =
∑

(j1,j2,...,jn) : 1≤jr≤r,
∑n
r=1 jr=i

(
1
j1

)(
2
j2

)
· · ·
(
n
jn

)
.

(4) Any basic faithfully balanced module for Λn has at least n indecomposable summands, and
the number of basic faithfully balanced modules with n indecomposable summands is n!.

(5) The direct sum of all indecomposable modules is a faithfully balanced module with N =
n(n + 1)/2 indecomposable summands; there are N − 1 basic faithfully balanced modules
with N − 1 summands.

3.3 Poset structures

Let Λ be any finite-dimensional algebra. We say that a Λ-module M is gen1-critical if any
proper summand N of M has gen1(N) 6= gen1(M); similarly for cogen1-critical. We say that a
module is minimal faithfully balanced if it is faithfully balanced and any proper direct summand
is not faithfully balanced. Clearly any minimal faithfully balanced module is gen1- and cogen1-
critical.

Proposition 3.3.1. If T is a 1-tilting module, i.e. T has projective dimension ≤ 1, then T is
gen1-critical. If in addition Λ is hereditary, then T is minimal faithfully balanced.

Proof. For the first part of the theorem, we prove a stronger result that every basic rigid module
T with pdT ≤ 1 is is gen1-critical. Assume T = M⊕N and gen1(M) = gen1(T ). Then we have
N ∈ gen1(M) and so there is an exact sequence M1 → M0 → N → 0 with M0,M1 ∈ add(M)
and Hom(M,−) exact on it. Thus we obtain two short exact sequences

0→ X1 →M1 → X0 → 0,

0→ X0 →M0 → N → 0.

Applying Hom(N,−) to the first exact sequence yields an exact sequence

0 = Ext1(N,M1)→ Ext1(N,X0)→ Ext2(N,X1) = 0

since T is rigid and pdN ≤ pdT ≤ 1. This means the second short exact sequence is split and
so N ∈ add(M). It follows that add(M) = add(T ) and therefore M = T since T is basic.

Now suppose that T is a basic tilting module and Λ is hereditary. Let M be a faithfully
balanced summand of T . Then we have two exact sequences

0→ Λ→M0 → X → 0,

0→ X →M1 → Y → 0

with Mi ∈ add(M) such that HomΛ(−,M) is exact on both short exact sequences. It is
straightforward to check that T ′ = M ⊕ X is a tilting module. By definition T ′ ∈ gen(T ) ∩
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cogen(T ) = T⊥∩⊥T , so T ⊕T ′ is rigid and since tilting modules are maximal rigid we conclude
add(T ) = add(T ′). By applying Hom(−,M) to the second short exact sequence we conclude
Ext1(Y,M) = 0. By applying Hom(Y,−) to the first exact sequence we conclude Ext1(Y,X) = 0
and therefore the second short exact sequence splits, so X ∈ add(M). This implies add(T ) =
add(M ⊕X) = add(M). Since T is basic, we deduce that M = T .

Recall [AS80] that a module X ∈ add(M) is a splitting projective if every epimorphism
M ′ → X with M ′ ∈ add(M) is a split epimorphism, and it is a splitting injective if every
monomorphism X → M ′ is a split monomorphism. We write M g for the direct sum of one
copy of each of the splitting projective summands of M and M c for the direct sum of one
copy of each of the splitting injective summands of M . By [AS80, Theorem 2.3], add(M g) is a
minimal cover for add(M), so M g is a minimal summand of M with gen(M g) = gen(M), and it
is unique up to isomorphism with this property. Similarly for M c with cogen(M c) = cogen(M).

Lemma 3.3.2. If M is a minimal faithfully balanced module for Λn, then any indecomposable
summand X of M is a summand of M g or M c, and X is a summand of both if and only if X
is projective-injective. Thus

M ⊕ P1
∼= M g ⊕M c.

Proof. Since M is faithfully balanced, by condition (C2) in Definition 3.1.1, every indecompos-
able summand X of M which is not projective-injective is a proper submodule or quotient of
another summand of M . Thus X cannot be a summand of both M g and M c. On the other
hand, if X is a summand of neither, then it is both a proper submodule and quotient of other
summands of M . But then the complement of X still satisfies the conditions of Definition 3.1.1,
so is faithfully balanced, contradicting minimality.

Lemma 3.3.3. Let M be a minimal faithfully balanced module for Λn. If N is a module with
gen(N)∩ cogen(N) = gen(M)∩ cogen(M), then N is faithfully balanced and M is a summand
of N .

Proof. Clearly gen(gen(M)∩cogen(M)) = gen(M) and cogen(gen(M)∩cogen(M)) = cogen(M),
so we have gen(N) = gen(M) and cogen(N) = cogen(M). By the uniqueness of minimal covers
and cocovers, M g ∼= N g and N c ∼= M c. By Lemma 3.3.2, we conclude that M is a summand
of N . Now N is faithfully balanced by Corollary 2.2.10.

Define fb(n) := {M ∈ fb(Λn) | |M | = n}. We consider some possible partial orders on
fb(n). We define the following relations on minimal faithfully balanced modules

N EM : ⇔ cogen(N) ⊆ cogen(M), gen(N) ⊇ gen(M)

N ≤M : ⇔ cogen1(N) ⊆ cogen1(M), gen1(N) ⊇ gen1(M).

They are clearly reflexive and transitive, by Lemma 3.3.3 and Corollary 3.2.4(5) they are also
antisymmetric and therefore a partial order.

Example 3.3.4. We have the following Hasse diagrams1 of fb(3). First for the inclusion of

1In this thesis, we draw an arrow x→ y in the Hasse diagram of some poset P if y covers x (i.e., X < y and
there is no z such that x < z < y) in P .
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the cogen1-categories, then ≤ and E respectively.
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Consider the poset (fb(n),E). A module L is a common lower bound of M and N in
(fb(n),E) if and only if cogen(L) ⊆ cogen(M) ∩ cogen(N) and gen(L) ⊇ gen(M) ∪ gen(N).
For any two elements M and N in (fb(n),E) the module Λn is always a common lower bound
of them.

Proposition 3.3.5. The poset (fb(n),E) is a lattice for all n ≥ 1.

Proof. For any two elements M and N in fb(n), we will construct the meet of them and
then apply [Sta12, Proposition 3.3.1]. Consider the basic module C such that add(C) is the
minimal cocover of cogen(M) ∩ cogen(N) and the basic module G such that add(G) is the
minimal cover of gen(M) ∪ gen(N). Then we have cogen(C) = cogen(M) ∩ cogen(N) and
gen(G) = gen(M) ∪ gen(N), also we have C ∈ gen(G). Note that |C| ≤ n and the equality
holds if and only if C = D Λn = M = N . Now we complete C to a faithfully balanced module
with exactly n indecomposable summands. If |C| = n then we are done. Assume |C| = t < n.
Note that G can be written as

G = Gi1 ⊕Gi2 ⊕ · · · ⊕Gis

such that 1 = i1 < i2 < · · · < is ≤ n and top(Giα) = S[iα] for all 1 ≤ α ≤ s. Clearly, we have
Gi1 = M1n. For each 2 ≤ α ≤ s, we take the indecomposable module Miα with top(Miα) = S[iα]
and having the following properties:

(P1) Miα is a submodule of C,

(P2) Giα is a quotient of Miα ,

(P3) Miα has minimal length with respect to (P1) and (P2).

Define G′ =
⊕

2≤α≤sMiα and L = C⊕G′, then we have C ∈ gen(G) ⊆ gen(G′⊕M1n). We claim
that L ∈ fb(n), and in this case we have cogen(L) = cogen(C) and gen(L) = gen(G′ ⊕M1n)
which imply that L is a common lower bound of M and N . We first examine the conditions
in Theorem 3.1.3 for L to show it is faithfully balanced. It follows from the construction that
(C1) and (C2) are satisfied. Consider cohook(i, i − 1) for 2 ≤ i ≤ n. If S[i − 1] ∈ cogen(L)
then we have cohook(i, i− 1)∩add(L) 6= ∅. If S[i−1] /∈ cogen(L) = cogen(C), then it is not in
cogen(M) or cogen(N). Without loss of generality we may assume S[i−1] /∈ cogen(M), then we
must have S[i] ∈ gen(M) since M is faithfully balanced. Thus we have S[i] ∈ gen(G′) ⊆ gen(L)
and cohook(i, i− 1) ∩ add(L) 6= ∅. This proves that L also satisfies (C3). Now the inclusion-
exclusion principle gives 0 = (n−1)−(t−1)−(s−1)+u, where u is the number of virtual cohooks
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that each one of which contains an indecomposable summand of C and an indecomposable
summand of G′. If u 6= 0, then by the construction of G′ we know that there exists some i
such that cohook(i, i− 1) contains an indecomposable summand of C and an indecomposable
summand of G. But this contradicts the fact that M,N ∈ fb(n). Hence we have u = 0 and
|L| = t+ (s− 1) = n, as desired.

Assume L′ ∈ fb(n) is also a common lower bound of M,N . Then we have cogen(L′) ⊂
cogen(M) ∩ cogen(N) = cogen(L) = cogen(C) and hence every indecomposable summand of
L′ is a submodule of C. We claim that L′ E L. To prove this, it is enough to show that
gen(L′) ⊇ gen(L) and it reduces further to show that Miα ∈ gen(L′) for all 2 ≤ α ≤ s. Since
L′ is a common lower bound of M,N , we have Giα ∈ gen(L′) for all 2 ≤ α ≤ s. Now assume
there is an α such that Miα /∈ gen(L′), then there must exists an indecomposable module
M ′

iα ∈ add(L′) such that top(M ′
iα) = S[iα], Giα is a quotuent of M ′

iα and l(M ′
iα) < l(Miα). But

this contradicts the minimality of Miα . Thus we have L′ E L and this proves L is the meet of
M and N .

Example 3.3.6. The following table gives an examples of the construction in the above result
for n = 4. We also give the Hasse diagram of (fb(4),E). The vertices in the boxes are the
cotilting modules.

M N C G G′ L
� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�
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The underlying graph of the Hasse diagram can be visualized as a truncated octahedron
with two disected hexagons as indicated in the picture below:

D Λ4

Λ4

Proposition 3.3.7. The poset (fb(n),≤) is not a lattice when n ≥ 4.

Proof. Consider modules M = P [1] ⊕ P [2] ⊕ · · · ⊕ P [n − 2] ⊕ M2,n−1 ⊕ M1,n−2 and N =
P [1]⊕P [2]⊕ · · · ⊕P [n− 2]⊕M2,n−1⊕M2,n−2. It’s easy to check M,N ∈ fb(n). Moreover, we
have

cogen1(M) = add(Λn ⊕M2,n−1 ⊕M1,n−2 ⊕Mn−1,n−1)

and
cogen1(N) = add(Λn ⊕M2,n−1 ⊕M2,n−2 ⊕Mn−1,n−1).

Thus
cogen1(M) ∩ cogen1(N) = add(Λn ⊕M2,n−1 ⊕Mn−1,n−1).

If L is a common lower bound of M and N , then we must have add(Λn) ⊆ cogen1(L) ⊆
cogen1(M) ∩ cogen1(N) and gen1(L) ⊇ gen1(M) ∪ gen1(N). Note that there are exactly four
subcategories sitting between add(Λn) and cogen1(M) ∩ cogen1(N):

add(Λn), add(Λn ⊕Mn−1,n−1), add(Λn ⊕M2,n−1), add(Λn ⊕M2,n−1 ⊕Mn−1,n−1),

and they correspond to basic modules

Λn, E := P [1]⊕ P [2]⊕ · · · ⊕ P [n− 1]⊕Mn−1,n−1,

L1 := P [1]⊕P [2]⊕· · ·⊕P [n−1]⊕M2,n−1, L2 := P [1]⊕P [2]⊕· · ·⊕P [n−2]⊕M2,n−1⊕Mn−1,n−1

in fb(n), respectively, in the sense that each of these subcategories is the cogen1 subcategory
of the corresponding module. It is straightforward to check the four modules are all common
lower bounds of M and N and Λn < E < L2 and Λn < L1. But L1 and L2 are not comparable
since we have P [n − 1] ∈ gen1(L1) \ gen1(L2) and M2,n−1 ∈ gen1(L2) \ gen1(L1). This means
M and N have no smallest common lower bound.

Example 3.3.8. We give the Hasse diagramm of (fb(4),≤) on the next page. The vertices in
the boxes are the cotilting modules. In the Hasse diagram we denote the modules in cogen1(M)\
add(M) by � and the ones in gen1(M) \ add(M) by �. The following table gives concrete
examples of modules considered in the above result, and their relation can be easily seen from
the Hasse diagram.

M N L1 L2 E
� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�

� � � �
� � �
� �
�
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Chapter 4

The relative version of faithfully
balancedness

4.1 On categories relatively cogenerated by a module

Let M ∈ Λ-mod. We recall that one can associate two additive subbifunctors FM ,F
M ⊆

Ext1
Λ(−,−) to the subcategory add(M) defined for (C,A) ∈ (Λ-mod)op × Λ-mod as follows

FM(C,A) = {0→ A→ B → C → 0 | HomΛ(−,M) is exact on it}
FM(C,A) = {0→ A→ B → C → 0 | HomΛ(M,−) is exact on it}.

An exact sequence in Λ-modules is FM exact if and only if HomΛ(−,M) is exact on it and the
category I(FM) = add(M ⊕D Λ) is the category of FM -injectives.
An exact sequence in Λ-modules is FM exact if and only if Hom(M,−) is exact on it and the
category P(FM) = add(M ⊕ Λ) is the category of FM -projectives.

In the two new exact structures, we have

(1) cogenk(M) is the category of modules N such that there exists an FM -exact sequence

0→ N →M0 → · · · →Mk

with Mi ∈ add(M). Since M is FM -injective, this sequence can be seen as the beginning
of an FM -injective coresolution.

(2) genk(M) is the category of modules N such that there exists an FM -exact sequence

Mk → · · · →M0 → N → 0

with Mi ∈ add(M). Since M is FM -projective, this sequence can be seen as the beginning
of an FM -projective resolution.

We define two new full subcategories of Λ-mod

cogenkF(M) :=

{
N

∣∣∣∣ ∃ F-exact seq. 0→N →M0 → · · · →Mk with Mi ∈ add(M), and s.t.

Hom(Mk,M)→· · · → Hom(M0,M)→ Hom(N,M)→ 0 is exact

}
genF

k (M) :=

{
N

∣∣∣∣ ∃ F-exact seq Mk → · · · →M0 → N → 0with Mi ∈ add(M), and s.t.

Hom(M,Mk)→· · · → Hom(M,M0)→ Hom(M,N)→ 0 is exact

}
.

Similarly, we can define copreskF(M) and presFk (M). Then, we have cogenk(M) = copreskFM (M) =

cogenkFM (M) and genk(M) = presFMk (M) = genFM
k (M).
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Example 4.1.1. Let F = FG = FH for a generator G and a cogenerator H and M be a module
with ExtiΛ(G,M) = 0 (resp. ExtiΛ(M,H) = 0), 1 ≤ i ≤ k + 1 for some k ≥ 0. Then one has

cogenkF(M) = cogenk(M)∩
k+1⋂
i=1

ker ExtiΛ(G,−) (resp. genF
k (M) = genk(M)∩

k+1⋂
i=1

ker ExtiΛ(−, H) ).

Lemma 4.1.2. Let F = FG = FH for a generator G and a cogenerator H. A module Z ∈
cogenk(M) is in cogenkF(M) if and only if the short exact sequences

0→ Ω−iMZ
fi−→Mi → Ω

−(i+1)
M Z → 0

with fi minimal left add(M)-approximation are F-exact for 0 ≤ i ≤ k.

Proof. It is enough to observe the following: If f : X → Y is an F-monomorphism and F = FH ,
then this is equivalent to (f,H) being surjective. So if an F-monomorphism f factors as f = αβ,
then β also has to be an F-monomorphism.

Remark 4.1.3. Let M be any module and k ≥ 0, then cogenk(M) = cogenkFM (M) =
copreskFM (M) is closed under summands and is FM -extension closed since M is FM -injective.

For k ≥ 1, it is closed under kernels of FM -epimorphisms X → Y with X, Y ∈ cogenk(M).
For k = ∞ it is also closed under cokernels of FM -monomorphisms X → Y with X, Y ∈
cogen∞(M). So, one can define the derived category Db

FM (cogenk(M)), see [Nee90, Kel96]. It
is completely unknown which informations these encode.

Embedding into an abelian category

We fix ∆ = EndΛ(G)op and e ∈ ∆ the projection onto the summand Λ (resp. Σ = EndΛ(H)op

and ε ∈ Σ the projection onto D Λ), r = HomΛ(G,−) then we have a pair (e, r) of adjoint
functors (resp. ` = Σε⊗Λ − = D HomΛ(−, H), then we have an adjoint pair (ε, `))

e : ∆-mod� Λ-mod: r (resp. ` : Λ-mod� Σ-mod: ε)

with e is exact and r is fully faithful, maps F-exact sequences to exact sequences and add(G)
to add(∆). In particular, it maps F-projective resolutions to projective resolutions and we get
induced isomorphisms

ExtiF(M,N)→ Exti∆(r(M), r(N)), i ≥ 0.

Dually, ε is exact, ` is fully faithful, maps F-exact sequences to exact sequences and add(H)
to add(D Σ), it maps F-injective resolutions to injective resolutions and induces isomorphisms
on the Ext-groups ExtiF(M,N)→ ExtiΣ(`(M), `(N)), i ≥ 0. We have

Im r = cogen1(D(e∆)) and Im ` = gen1(Σε).

It is also easy to see: If T is a relative tilting Λ-module, then r(T ) is a tilting ∆-module:
Conversely, every tilting ∆-module in cogen1(J) restricts under e to a relative tilting module.
This gives a bijection, respecting the partial order (given by inclusion of perpendicular cate-
gories).
If C is a relative cotilting module then `(C) is a cotilting Σ-module and every cotilting module
in Im ` = gen1(Σε) restricts under ε to a relative cotilting module.

The following lemma is originally proved by Auslander and Solberg in [AS93c].
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Lemma 4.1.4. Keep notations as above. We have

gldimF Λ ≤ gldim ∆ ≤ gldimF Λ + 2.

Proof. For the first inequality, if gldim ∆ = ∞ then there is nothing to prove. Assume
gldim ∆ = k < ∞, then we have ExtiF(M,N) ∼= Exti∆(r(M), r(N)) = 0 for all i > k. Thus
gldimF Λ ≤ gldim ∆. For the second inequality, if gldim Λ = ∞ then we are done. Assume
gldimF Λ = k < ∞. For an arbitrary X ∈ ∆-mod, one can choose a projective presentation

(G,G1)
(G,f)−−−→ (G,G0)→ X → 0 of X. This exact sequence comes from a map f : G1 → G0 in

Λ-mod with G0, G1 ∈ add(G). Since gldimF Λ = k, there exists an F-projective resolution

0→ Gk+2 → · · · → G3 → G2 → ker(f)→ 0

of ker(f). Thus we have a projective resolution

0→ (G,Gk+2)→ · · · → (G,G3)→ (G,G2)→ (G, ker(f))→ 0

of (G, ker(f)) in ∆-mod. This gives rise to a projective resolution

0→ (G,Gk+2)→ · · · → (G,G3)→ (G,G2)→ (G,G1)→ (G,G0)→ X → 0

of X. This proves gldim ∆ ≤ k + 2.

Lemma 4.1.5. Let Λ and ∆ be as above and k ≥ 0. Then the following are equivalent:

(1) pdF D Λ ≤ k and gldim ∆ ≤ k + 2,

(2) gldimF Λ ≤ k,

(3) idF Λ ≤ k and gldim Σ ≤ k + 2.

Proof. (1)⇒ (2) : Let J = D(e∆). Clearly, gldimF Λ ≤ k if and only if

Extk+1
∆ (cogen1(J), cogen1(J)) = 0.

We have J = D(e∆) = r(D Λ) and it is easily seen that pdF D Λ ≤ k is equivalent to pd ∆J ≤ k.
We claim the stronger implication: gldim ∆ ≤ k + 2 and pd J ≤ k implies

Extk+1(cogen1(J),∆-mod) = 0

(i.e., pdX ≤ k for all X ∈ cogen1(J)).
If we have an exact sequence 0→ A→ J0 → B → 0 with J0 ∈ add(J) and we apply a functor
(−, Y ) then we get a dimension shift Exti(A, Y ) ∼= Exti+1(B, Y ) for all i ≥ k+1. In particular,
we have for X ∈ cogen1(J),

Extk+1(X, Y ) ∼= Extk+2(Ω−X, Y ) ∼= Extk+3(Ω−2X, Y ) = 0

since we assume that gldim ∆ ≤ k + 2.
(2)⇒ (1) Clearly, if gldimF Λ ≤ k, then pdF D Λ ≤ k. By Lemma 4.1.4, we also have

gldim ∆ ≤ gldimF Λ + 2 ≤ k + 2.

The equivalence of (2) and (3) is proven analogously.

Example 4.1.6. Let Λ = K(1 → 2 → · · · → n). Then there are 2N with N =
∑n−1

k=1 k basic
generators G. The minimal F-global dimension is 0 which is obtained if and only of G is the
Auslander generator. The maximal F-global dimension is n− 1 (cf. Example 6.3.2, (4)).
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4.2 The relative version of faithfully balancedness

Recall that for a finite-dimensional algebra Λ, a module ΛM is faithful if and only if Λ ∈
cogen(M) = cogen0(M), and it is faithfully balanced if and only if Λ ∈ cogen1(M). So it makes
sense to call a faithful module 0-faithful and call a faithfully balanced module 1-faithful. Of
course one can define the notion of k-faithful module for any non-negative integer k. Since in
the relative setting balancedness doesn’t make sense, we introduce the following definition.

Definition 4.2.1. Let F ⊆ Ext1
Λ(−,−) be an additive subbifunctor of finite type and k a

non-negative integer. We say a module M is k-F-faithful if P(F) ⊆ cogenkF(M). In particular,
a 1-FΛ-faithful module is just a faithfully balanced module.

Easy examples of 1-F-faithful modules are F-(co)tilting modules (see section 8) and modules
which have G or H as a summand. Here is an other easy example.

Example 4.2.2. (1) Let Λ be a finite-dimensional algebra, P1, . . . , Pn its indecomposable
projectives and assume that there is a subset I ⊆ {1, . . . , n} such thatM :=

⊕
i∈I
⊕

j≥0 τ
−jPi

is finite-dimensional and faithfully balanced. Then G = M ⊕ Λ and H = M ⊕D Λ fulfill
FG = FH =: F. Clearly, we have G ∈ cogen1

F(M), so M is 1-F-faithful.

(2) Let Λ be a basic Nakayama algebra and assume M =
⊕

X : indec, not simpleX is faithfully

balanced 1. Let G = M ⊕
⊕

Pi : simple proj Pi and H = M ⊕
⊕

Ii : simple inj Ii. Then we
claim:

{1-F-faithful modules} = {M ′ ⊕ S | S semi-simple, add(M ′) = add(M)}

Since M is F-projective-injective, M has to be summand of every 1-F-faithful module. On
the other hand, let S be a semi-simple module, we want to see that M ⊕S is 1-F-faithful.
Assume that there is a simple projective P /∈ add(S), since (P, S) = 0 = (S, P ) we have
that the minimal left add(M ⊕ S) equals the minimal left add(M) and the minimal left
add(H)-approximation, in particular G ∈ cogenF(M⊕S). Now, we look at the cokernel of
the approximation X = Ω−M⊕SP , since M is faithfully balanced we have X ∈ cogen(M), in
particular X has no simple injective summand. So, every simple summand S ′ /∈ add(S) of
X has a minimal left add(H)-approximation which coincides with a minimal left add(M)-
and add(M⊕S)-approximation which is an F-monomorphism and therefore, we conclude
that G ∈ cogen1

F(M ⊕ S).

The main result of this section is the following

Theorem 4.2.3. Let F ⊆ Ext1(−,−) be an addtive subbifunctor of the form F = FG = FH

for a generator G and a cogenerator H. The following are equivalent for every module M and
every k ≥ 0.

(1) G ∈ cogenkF(M).

(2) H ∈ genF
k (M).

Let M ∈ Λ-mod and Γ = EndΛ(M). We define

Σ = EndΛ(H) and ∆ = EndΛ(G).

1this is the case if Λ has no simple projective-injective and τ−S is not simple injective for every S simple
projective - for example An fulfills this for n ≥ 3.
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We first remark that generators and cogenerators are faithfully balanced, in particular this
applies to H and G and we have

Λ-mod = cogen(H) = cogen1(H) = cogen2(H) = · · · = cogen∞(H)

Λ-mod = gen(G) = gen1(G) = gen2(G) = · · · = gen∞(G).

By Lemma 2.2.4 we have dualities of categories

(−, ΛH) : Λ-mod←→ cogen1(ΣH) : (−, ΣH)

D(ΛG,−) : Λ-mod←→ gen1(∆G) : D(∆G,−).

The key step in the proof is given by the following lemma.

Lemma 4.2.4. Keep the above notations. For 0 ≤ k ≤ ∞ we have

(1) The following are equivalent

(1a) N ∈ cogenkF(M).

(1b) Σ(N,H) ∈ genk(Σ(M,H)).

(1c) Consider the natural map (M,H)⊗Γ (N,M)→ (N,H), f ⊗ g 7→ f ◦ g.

(i) For k = 0: It is an epimorphism .

(ii) For k ≥ 1: It is an isomorphism and ExtiΓ((N,M),D(M,H)) = 0 for 1 ≤ i ≤
k − 1.

(2) The following are equivalent

(2a) N ∈ genF
k (M).

(2b) (G,N)∆ ∈ genk((G,M)∆).

(2c) Consider the natural map (M,N)⊗Γ (G,M)→ (G,N), f ⊗ g 7→ f ◦ g.

(i) For k = 0: It is an epimorphism.

(ii) For k ≥ 1: It is an isomorphism and ExtiΓ((G,M),D(M,N)) = 0 for 1 ≤ i ≤
k − 1.

Proof. It is easy to see the equivalence of (1a) and (1b) using that the duality (−, H) restricts
to a duality of categories

(−, ΛH) : cogenkF(M)←→ cogen1(ΣH) ∩ genk(Σ(M,H)) : (−, ΣH).

To see that the map from the right to the left is well-defined it is important to observe that ΣH is
an injective module (since H is a cogenerator), therefore the functor (−, ΣH) is exact. Similarly,
it is easy to see the equivalence of (2a) and (2b) using the second equivalence mentioned above.
For the equivalence of (1b) and (1c) we translate the statement of (1c) into the characterization
from Lemma 2.1.1. The most important observation is the following E := EndΣ((M,H)) = Γop.
The natural map from Lemma 2.1.1 (for the category genk Σ(M,H)) is:

HomΣ((M,H), (N,H))⊗E (M,H)→ (N,H)

f ⊗ g 7→ f(g).

First observe E = Γop means left (resp. right) E-modules are naturally right (resp. left)
Γ-modules and XE ⊗E EL ∼= LΓ ⊗Γ ΓX. Secondly, since H is a cogenerator we have

HomΣ((M,H), (N,H)) = (N,M).
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With this identifications the map from before becomes the natural map mentioned in (1c).
The equivalence of (2b) and (2c) is analogue. We set C = End∆((G,M)) = Γ. By lemma 2.1.1
we have to look at the natural map

Hom∆((G,M), (G,N))⊗C (G,M)→ (G,N)

f ⊗ g 7→ f(g).

We have an isomorphism of right Γ-modules since G is a generator

Hom∆((G,M), (G,N)) = (M,N).

With this identifications the map from before becomes the natural map in (2c).

We observe that the proof of Theorem 4.2.3 is a direct consequence of the previous lemma:
By setting N = G in part (1) and N = H in part (2), we obtain the same maps in (1c), (2c)
and therefore the claim follows.

Lemma 4.2.5. Let F = FG = FH for a generator G and a cogenerator H. Let M ∈ Λ-mod,
Γ = EndΛ(M), L = (G,M) and R = D(M,H).
If we assume that Λ ∈ cogen1

F(M) and H ∈ gen1(M) then the duality (−, ΛM) : cogen1(M)↔
cogen1(M) : (−, ΓM) restricts to a duality cogen1

FH (ΛM) ↔ cogen1
FR(ΓM). Furthermore, it

restricts to a duality

(−, ΛM) : cogenkFH (M)←→ cogen1
FR(M) ∩

k−1⋂
i=1

ker ExtiΓ(−, R) : (−, ΓM)

In particular, G ∈ cogenkFH (M) is equivalent to L ∈ cogen1
FR(M) and ExtiΓ(L,R) = 0 for

1 ≤ i ≤ k − 1.

Proof. Since H ∈ gen1(M) we have that D(M,R) = D(M,D(M,H))→ H is an isomorphism.
So, it is enough to proof that (−, ΛM) maps cogen1

FH (M) to cogen1
FR(M) and use R ∈ gen1(ΓM)

to get the quasi-inverse by symmetry.
Let X ∈ cogen1

FH (M). We choose a projective presentation P1 → P0 → X → 0. By
applying (−, ΛM) we get an exact sequence of Γ-modules 0 → (X,M) → (P0,M) → (P1,M)
is with (Pi,M) ∈ add(M). We apply (−, R) to get a complex

((P1,M), R)→ ((P0,M), R)→ ((X,M), R)→ 0.

We would like to see that it is exact. By Hom-Tensor adjunction it identifies with the first row
in the following commutative diagram

D[(M,H)⊗Γ (P1,M)] // D[(M,H)⊗Γ (P0,M)] // D[(M,H)⊗Γ (X,M)] // 0

D(P1, H) //

OO

D(P0, H)

OO

// D(X,H) //

OO

0

Note that the arrows up are the dual of the natural maps (M,H) ⊗Γ (Y,M) → (Y,H) given
by f ⊗ g 7→ f ◦ g. By Lemma 4.2.4 we know that this natural map is an isomorphism if and
only if Y ∈ cogen1

FH (M). By assumption we have P1, P0, X ∈ cogen1
FH (M) and the first row

identifies with the complex in the second row. But the exactness of the second row follows since
D(−, H) is right exact. This proves (X,M) ∈ cogen1

FR(M). For the symmetry, we need to see
Γ ∈ cogen1

FR(M). But Γ = (M,M) and M ∈ cogen1
FH (M) implies the claim by the argument

just given.
The further restriction follows directly from Lemma 4.2.4.
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Of course there is a dual version of the previous lemma which we will leave out.
If ΛM is 1-FH-faithful, then ΓM does not have to be 1-FR-faithful (with Γ = EndΛ(M) and

R = D(M,H)). We give an example for this.

Example 4.2.6. Let Λ be the path algebra of 1
α−→ 2

β−→ 3 modulo the relation βα = 0. Let
G = Λ ⊕ S1, H = D Λ ⊕ S2 and F = FH = FG. Then M := G is clearly 1-FH-faithful and
pdFM = 0. Let us look at Γ = EndΛ(M), since we have irreducible morphisms

S3 → 2
3 → 1

2 → S1

we can identify it with the following bound path algebra

d→ c→ b→ a

modulo all path of length 2. We have

ΓM = (P1,M)⊕ (P2,M)⊕ (P3,M) = Pb ⊕ Pc ⊕ Pd

and

ΓR := D(M,H) = ΓM ⊕D(M,S2).

We apply D(M,−) to an injective coresolution 0 → S2 → I2 → I1 to obtain a projective
presentation

Pb = (P1,M)→ Pc = (P2,M)→ D(M,S2)→ 0.

This implies D(M,S2) ∼= Sc and therefore τ−R = τ−Sc = Sd. It is easy to see that Sd /∈
cogen(ΓM) implying τ−R /∈ cogen1

FR(M). This shows ΓM is not 1-FR-faithful.

Thus the property of being 1-F-faithful is not as nicely symmetric as being faithfully bal-
anced. Nevertheless, we can get the symmetry again if we restrict to the following special
case.

Proposition 4.2.7. Let F = FG = FH for a generator G and a cogenerator H. Let M be a
faithfully balanced Λ-module, Γ = EndΛ(M), L = (G,M) and R = D(M,H).
If M ∈ add(H) (or equivalently, D Γ ∈ add(R) ), then the following are equivalent:

(1) ΛM is 1-FH-faithful.

(2) ΓM is 1-FR-faithful.

Dually, if M ∈ add(G), then ΛM is 1-FG-faithful if and only if ΓM is 1-FL-faithful.

Proof. We assume M ∈ add(H). Assume G ∈ cogen1
FH (M), we have to see τ−R ∈ cogen1

FR(M).

Since H ∈ genFH

1 (M) implies that we have an F-exact sequence

0→ Ω2
MH →M1 →M0 → H → 0

with Mi ∈ add(M). Since M ∈ add(H), this implies Ω2
MH ∈ cogen1

F(M). We apply D(M,−)
to the last three terms of the four term sequence and obtain an injective copresentation of R.
We apply (−,M) to the first three terms and observe and get an exact sequence

(M0,M)→ (M1,M)→ (Ω2
MH,M) = τ−R→ 0

in particular this proves the claim.

55



4.3 Strong dualizing sequences

Definition 4.3.1. Let 0 → L → M0 → M1 → · · · → Mk → R → 0 be a k-add(M)-dualizing
sequence in Γ-mod for some non-negative integer k. We say it is strong if D(L,−) is exact on
it.

We can characterize it as follows.

Lemma 4.3.2. A k-add(M)-dualizing sequence as in the above definition is strong if and only
if one (equivalently all) of the following equivalent statement is fulfilled:

(1) D(L,−) is exact on it, i.e., it is an FL-exact sequence (or equivalently, R ∈ genFL
k (M) ).

(2) (−, R) is exact on it, i.e., it is an FR-exact sequence (or equivalently, L ∈ cogenkFR(M) ).

(3) Consider the natural map (M,R)⊗Λ (L,M)→ (L,R), where Λ = EndΓ(M).

(i) For k = 0: It is an epimorphism .

(ii) For k ≥ 1: It is an isomorphism and ExtiΛ((L,M),D(M,R)) = 0 for 1 ≤ i ≤ k − 1.

Proof. We will prove (1) and (3) are equivalent and the equivalence of (2) and (3) can be proved
dually.

We consider the following commutative diagram

0 // D(L,R) i′ //

i
��

D(L,Mk)
f //

∼=
��

D(L,Mk−1) //

∼=
��

· · · // D(L,M0)

∼=
��

0 // D((M,R)⊗ (L,M))
j //

∼=
��

D((M,Mk)⊗ (L,M))
g//

∼=
��

D((M,Mk−1)⊗ (L,M)) //

∼=
��

· · · // D((M,M0)⊗ (L,M))

∼=
��

0 // ((L,M),D(M,R)) // ((L,M),D(M,Mk)) // ((L,M),D(M,Mk−1)) // · · · // ((L,M),D(M,M0)).

Assume (1), then the first row is exact. Since the functor ((L,M),−) is left exact, the
sequence

0→ D((M,R)⊗ (L,M))→ D((M,Mk)⊗ (L,M))→ D((M,Mk−1)⊗ (L,M))

is exact. For k = 0, we have ji is a monomorphism and so is i. This shows the natural map
(M,R) ⊗Λ (L,M) → (L,R) is an epimorphism. For k ≥ 1, we have an induced isomorphism
on kernels

D(L,R) = ker f
∼=−→ ker g = D((M,R)⊗ (L,M)).

This proves the natural map (M,R)⊗Λ (L,M)→ (L,R) is an isomorphism. Now the exactness
of the first row implies the exactness of the last row which is equivalent to

ExtiΛ((L,M),D(M,R)) = 0

for 1 ≤ i ≤ k − 1. Conversely, assume (3). If k = 0, then the map i is a monomorphism and
so is i′. If k ≥ 1, then the last row is exact and the natural map (M,R) ⊗Λ (L,M) → (L,R)
is an isomorphism will imply the first row is isomorphisc to the last row. So we have, in both
cases, that the first row is exact. Since the functor D(L,−) is right exact, (1) follows from the
exactness of the first row.
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Remark 4.3.3. From the proof of the above lemma we see that for any X if N ∈ cogen1
FX (M)

then the natural map (M,X)⊗ (N,M)→ (N,X) is an isomorphism. The converse holds true
if X is a cogenerator (cf. Lemma 4.2.4). Similarly, we have if N ∈ genFX

1 (M) then the natural
map (M,N)⊗ (X,M)→ (X,N) is an isomorphism.

Lemma 4.3.4. Let Γ be a finite-dimensional algebra and 0 → L → M0 → · · · → Mk →
R → 0 be a k-add(M)-dualizing sequence of Γ-modules with M faithfully balanced. Define
Λ = EndΓ(M), G = (L,M) and H = D(M,R). If Γ ∈ cogen1

FR(M) and R ∈ gen1(M) then for
every k ≥ 1 the functor (−,M) restricts to a duality

cogenkFR(M)←→ cogen1
FH (M) ∩

k−1⋂
i=1

ker ExtiΛ(−, H ⊕M).

In particular, L ∈ cogenkFR(M) is equivalent to ExtiΛ(G,H ⊕M) = 0, 1 ≤ i ≤ k − 1.

Proof. The case k = 1 follows directly from Lemma 4.2.5. For k > 1 we note that FR = FR⊕D Γ

and then apply Lemma 4.2.5 using the cogenerator R⊕D Γ (in place of H).

Lemma 4.3.5. Let M be a faithfully balanced Λ-module and Γ = EndΛ(M). Let k ≥ 1. Then,
the assignment X, Y 7→ (X,M),D(M,Y ) gives a self-inverse bijection (up to seeing X, Y as Λ
or as Γ-modules) between the following sets of pairs of Λ-modules and Γ-modules

{ΛG, ΛH |
G = τ−k H ⊕ Λ ∈ cogen1

FH (M) ∩ 1∼(k−1)⊥(M ⊕H)

H = τkG⊕D Λ ∈ genFG
1 (M) ∩ (M ⊕G)⊥1∼(k−1)

}

and
{ΓL, ΓR | ∃ a strong k- ΓM-dualizing sequence from L to R}.

Proof. This follows from Lemma 2.3.11, Lemma 4.3.2 and Lemma 4.3.4.

Example 4.3.6. Let M be a faithfully balanced Λ-module and assume that it has a summand
X ⊕ τ−X with X not injective. We define G = Λ ⊕ τ−X, H = D Λ ⊕X and F = FG = FH .
Then, by definition we have G ∈ cogen1(M) = cogen1

F(M) and H ∈ gen1(M) = genF
1 (M).

Therefore, we obtain for Γ = EndΛ(M) a strong add(ΓM)-dualizing sequence with a projective-
plus-M left end and an injective-plus-M right end.

Now, we can formulate a relative version of the generator/ cogenerator and Morita-Tachikawa
correspondence.

Corollary 4.3.7. (1) (relative generator correspondence)
The Auslander-Solberg assignment [Λ,M,G] 7→ [End(M),M, (G,M)] is an involution on
the set of triples [Λ,M,G] with Λ⊕M ∈ add(G) and M is 1-FG-faithful.

(2) (relative cogenerator correspondence)
The dual Auslander-Solberg assignment [Λ,M,H] 7→ [End(M),M,D(M,H)] is an invo-
lution on the set of triples [Λ,M,H] with D Λ⊕M ∈ add(H) and M is 1-FH-faithful.

(3) (relative Morita-Tachikawa correspondence)
The assignment [Λ,M,G,H] 7→ [End(M),M,L = (G,M), R = D(M,H)] is a bijection
between

* [Λ,M,G,H] with Λ ∈ add(G),D Λ ∈ add(H), G = Λ ⊕ τ−H and M ∈ add(G) ∩
add(H) is 1-FG-faithful, and

* [Γ, N, L,R] with L,R are the ends of a strong add(N)-dualizing sequence with Γ ∈
add(L) and D Γ ∈ add(R).
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4.4 F-dualizing summands

Of course, we can also consider relative dualizing summands.

Definition 4.4.1. Let F = FG = FH , M,L ∈ Λ-mod and assume M is a summand of L.
We say M is an F-dualizing summand of L if L ∈ cogen1

F(M). For k ≥ 0, we say it is a
k-F-dualizing summand if L ∈ cogenkF(M).

Relative dualizing summands have the properties which we expect from them:

Lemma 4.4.2. Let F = FG = FH and M,N be Λ-modules and L = M ⊕ N , k ≥ 1. If
N ∈ cogenkF(M) (i.e., M is k-F-dualizing summand of L ), then M is 1-F-faithful if and only
if L is 1-F-faithful.
If H ∈ gen1(M), then cogenkF(M) = cogenkF(L). Furthermore, in this case if also copreskF(L) =
cogenkF(L) then we have copreskF(M) = cogenkF(M).
In particular, if M is 1-F-faithful, then M ⊕P ⊕ I is 1-F-faithful for every F-projective module
P and F-injective module I.

Proof. Let Σ = EndΛ(H). We consider the duality for M from Lemma 4.2.4:

(−, H) : cogenkF(M)←→ cogen1(ΣH) ∩ genk(Σ(M,H)) : (−, H)

and also for L we have

(−, H) : cogenkF(L)←→ cogen1(ΣH) ∩ genk(Σ(L,H)) : (−, H).

Since (M,H) is a summand of (L,H) and (L,H) ∈ genk(M,H) follows that gen1(L,H) ⊆
gen1(M,H) (dual argument to 1-dualizing summand situation).
Furthermore, we claim: if H ∈ gen1(M), then Σ(M,H) is faithfully balanced (and therefore,
the claim follows from the dual of Lemma 2.3.4 and using the duality from above again). So,
assume there is an exact sequence M1 → M0 → H → 0 with Mi ∈ add(M) and (M,−) exact
on it. Apply (−, H) to it, to obtain an exact sequence 0 → Σ → (M0, H) → (M1, H). Apply
(−, (M,H)) to it and using ((X,H), (Y,H)) = (Y,X) for all Λ-modules X, Y you can identify
the result with the complex (M,M1)→ (M,M0)→ (M,H)→ 0 which we know is exact since
H ∈ gen1(M). This proves Σ ∈ cogen1((M,H)) and therefore the claim. The remaining claims
are proven as in Lemma 2.3.4.

Example 4.4.3. Let G be a generator and F = FG. Then a 1-F-faithful summand of G
is the same as an F-dualizing summand of G. These are easily determined as follows, let
H = D Λ ⊕ τG and P1 → P0 → H → 0 a minimal F-presentation with Pi ∈ add(G). Then,
the 1-F-faithful summands of G are the summands P of G with P1 ⊕ P0 ∈ add(P ). Of course,
with a dual statement one can find the 1-F-faithful (i.e., the F-codualizing) summands of H.

58



Chapter 5

Relative cotilting theory

5.1 Relative cotilting modules

Relative cotilting modules are introduced in [AS93c].

Definition 5.1.1. Let F = FH ⊆ Ext1
Λ be an additive subbifunctor with H a cogenerator. We

call a Λ-module C a k-F-cotilting module if

(i) it is F-self-orthogonal (i.e., Ext>0
F (C,C) = 0),

(ii) idFC ≤ k, and

(iii) there is an F-exact sequence 0→ Ck → · · · → C1 → C0 → H → 0 with Ci ∈ add(C).

We recall a result of Wei. Partially, it is already proven in [AR91a].

Theorem 5.1.2. ([Wei10, Theorem 3.10]) Let F ⊆ Ext1(−,−) be an additive subbifunctor
with enough projectives and injectives, C be a Λ-module and let k ≥ 1. Then the following are
equivalent

(1) C is a k-F-cotilting module.

(2) copresk−1
F (C) =

⋂
i≥1 ker ExtiF(−, C).

In this case, we also have copresk−1
F (C) = cogenk−1

F (C) and

cogenk−1
F (C) = cogenkF(C) = cogenk+1

F (C) = · · · = cogen∞F (C).

Lemma 5.1.3. Let F = FG = FH ⊆ Ext1(−,−) be an additive subbifunctor with enough
projectives and injectives. Let k ≥ 1 and M an F-self-orthogonal module. If idFM ≤ 1 and
H ∈ genF

k−1(M), then C = M ⊕ Ωk
MH is a k-F-cotilting module. Furthermore, we have

cogenk−1
F (M) =

⋂
i≥1

ker ExtiF(−, C).

Then M is an (k − 1)-F-dualizing summand of C.

Proof. We first prove that C is a k-F-cotilting module. It is straightforward to check idFC ≤ k
by induction on k. Now we check C is F-self-orthogonal. By using the definition of Ωk

MH by
approximations we easily check ExtiF(M,Ωk

MH) = 0 for all i ≥ 1. Then use the fact that M is
F-self-orthogonal we have

ExtiF(Ωk
MH,M) ∼= Exti+1

F (Ωk−1
M H,M) = 0
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for all i ≥ 1, where the last equality holds since idFM ≤ 1. To see ExtiF(Ωk
MH,Ω

k
MH) = 0

for all i ≥ 1 we use ExtiF(M,Ωk
MH) = 0 for all i ≥ 1 and idFC ≤ k. More precisely, We

apply the functor (−,Ωk
MH) to the F-exact sequences 0→ Ωt

MH →Mt−1 → Ωt−1
M H → 0, with

Mt−1 ∈ add(M), to conclude

ExtiF(Ωk
MH,Ω

k
MH) ∼= Exti+1

F (Ωk−1
M H,Ωk

MH) ∼= · · · ∼= Exti+kF (H,Ωk
MH) = 0

since idFC ≤ k. Together with H ∈ genF
k−1(M), we conclude that C is an k-F-cotilting module.

Furthermore, it is easy to check cogenk−1
F (M) ⊆

⋂
i≥1 ker ExtiF(−, C) by using the fact that

idFC ≤ k. We prove the other inclusion by induction over k.
For k = 1. By definition we have C ∈ cogenF(M) and this implies

ker Ext1
F(−, C) = cogenF(C) ⊆ cogenF(M)

by Theorem 5.1.2.
For k ≥ 2. Since C does depend on k we denote it in this part of the proof by Ck. We

divide the proof into the follwing parts.
(i)
⋂
i≥1 ker ExtiF(−, Ck) ⊆

⋂
i≥1 ker ExtiF(−, Ck−1). This is easy to see that there is an

F-exact sequence 0→ Ck →M ′ → Ck−1 → 0 with M ′ ∈ add(M).
(ii) By induction hypothesis we may assume

⋂
i≥1 ker ExtiF(−, Ck) ⊆ cogenk−2

F (M). Let

X ∈
⋂
i≥1 ker ExtiF(−, Ck), so there exists an F-exact sequence

0→ X →M0 → · · · →Mk−2 → Z → 0

with M i ∈ add(M) and (−,M) exact on it. We claim Z ∈ cogenF(M) = ker Ext1
F(−, C1). We

split the sequence up into short F-exact sequences

0→ X t →M t → X t+1 → 0, 0 ≤ t ≤ k − 2

with X := X0, Z := Xk−1. Since (−,M) is exact on the sequence for t = k − 2, we conclude
Ext1

F(Z,M) = 0. So, it is enough to see Ext1
F(Z,Ω1

MH) = 0.
(iii) Ext1

F(Z,Ω1
MH) ∼= ExtkF(Z,Ωk

MH). Applying (Z,−) to the sequences

0→ Ωt
MH →Mt−1 → Ωt−1

M H → 0

to conclude ExtiF(Z,Ωt−1
M H) ∼= Exti+1

F (Z,Ωt
MH) for all i ≥ 1. Applying this iteratively gives

(iii).
(iv) ExtkF(Z,Ωk

MH) ∼= Ext1(X,Ωk
MH). Applying (−,Ωk

MH) to the short exact sequences
0 → X t → M t → X t+1 → 0 yields ExtiF(X t,Ωk

MH) ∼= Exti+1
F (X t+1,Ωk

MH) for all i ≥ 1.
Applying this iteratively gives (iv).

But since X ∈
⋂
i≥1 ker ExtiF(−, Ck) we have Ext1(X,Ωk

MH) = 0 and therefore, using (iii)

and (iv) this implies Ext1
F(Z,Ω1

MH) = 0.

Remark 5.1.4. If C is a 1-F-cotilting module and M an F-dualizing summand, then we have
M = C. Therefore, non-trivial F-dualizing summands only appear in the theory of F-cotilting
modules with idF > 1.

Example 5.1.5. Let M ∈ Λ-mod be rigid (i.e., Ext1
Λ(M,M) = 0) and also X := Ω−M be rigid,

then for H = X ⊕D Λ, F = FH we have idFM ≤ 1, M is F-self-orthogonal and X ∈ gen1(M).
If we now assume additionally that M is faithfully balanced and Ext1,2(M ⊕X,X) = 0, then
we have

H ∈ genF
1 (M) = gen1(M) ∩

2⋂
i=1

ker Exti(−, X)
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(cf. Example 4.1.1) implying that M is 1-F-faithful. In particular, we have then C := M⊕ΩMH
is a 1-F-cotilting module with

cogenF(M) =
⋂
i≥1

ker ExtiF(−, C).

Example 5.1.6. Let X be an arbitrary faithfully balanced module and k ≥ 1. If τX ∈
cogenk−1(X), then cogenk−1(X) is the FX-perpendicular category

⋂
i≥1 ker ExtiFX (−, C) for the

FX-k-coltilting module C = X ⊕ Ωk
X D Λ. If add(X) is, for example, τ -stable then τX ∈

cogenk−1(X).

More generally we will study the F-cotilting modules obtained from a 1-F-faithful F-injective
module as special cotilting modules.

Let us fix an F-exact resolution by F-projectives of H (with add(H) = I(F))

· · · → P2 → P1 → P0 → H → 0.

Then we obtain the relative version of [IZ18, Theorem 1.1] as follows, let cotiltFn (Λ) be the
set of basic isomorphism classes of n-F-cotilting Λ-modules. It is naturally a poset with respect
C ≤ C ′ if and only if C ∈

⋂
i≥1 ker ExtiF(−, C ′).

Lemma 5.1.7. Let F = FG = FH and n ≥ 1, we define P :=
⊕n−1

j=0 Pj. If idF P ≤ n and
idF Ωn

PH ≤ n, then C = P ⊕ Ωn
PH is an n-F-cotilting module and it is the minimum element

in cotiltFn (Λ). Furthermore, if idF Pj ≤ j + 1, 1 ≤ j ≤ n− 1, then idF P ⊕ Ωn
PH ≤ n.

Proof. We check that idFC ≤ n implies that C is F-self-orthogonal. Observe that Ωn
PH = Ωn

FH
and let i ≥ 1, then we have

ExtiF(C,C) = ExtiF(Ωn
FH,C) = Exti+nF (H,C) = 0

since idFC ≤ n. Since the last condition is fulfilled by definition of C, we can conclude that C
is an n-F-cotilting module.

If L ∈ cotiltFn (Λ), then we have by definition of C that

ExtiF(C,L) = Exti+nF (H,L) = 0

since idF L ≤ n. Therefore C is the minimum.
The last claim is a straightforward induction on n. For n = 1 the claim follows from the

previous lemma. For the induction step apply (−,M) to the F-exact sequence

0→ Ωn
PH → Pn−1 → Ωn−1

P H → 0.

By hypothesis idF Pn−1 ≤ n and idF Ωn−1
P H ≤ n− 1, we conclude idF Ωn

PH ≤ n.

5.2 The 4-tuple assignment

Now we consider 4-tuples (Λ,M,L,G) with Λ a finite-dimensional algebra and M,L,G finite-
dimensional Λ-modules. We define the following equivalence relation between these 4-tuples:
(Λ,M,L,G) is equivalent to (Λ′,M ′, L′, G′) if there is an equivalence of categories Λ-mod

∼−→
Λ′-mod restricting to equivalences add(M)

∼−→ add(M ′), add(L)
∼−→ add(L′) and add(G)

∼−→
add(G′). We denote by [Λ,M,L,G] the equivalence class of a 4-tuple and we may assume the
algebra and all the modules appearing in the equivalence class to be basic.

To establish a relative version of cotilting correspondence which is an involution, we will
need the following definition.
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Definition 5.2.1. We define the following assignment

[Λ,M,L,G] 7→ [Γ, N, L̃, G̃]

with Γ = EndΛ(M), N = ΓM , L̃ = (G,M), G̃ = (L,M) and call this the balanced Auslander-
Solberg assignment or just the 4-tuple assignment.
The dual 4-tuple assignment is the following

[Λ,M,R,H] 7→ [Γ, N, R̃, H̃]

with Γ = End(M), N = ΓM , R̃ = D(M,H), H̃ = D(M,R). Since, we will always consider
pairs (G,H) and (L,R) which determine each other, we will in later proofs combine the two
assignments into a 6-tuple assignment

[Λ,M,L,R,G,H] 7→ [Γ, N, L̃, R̃, G̃, H̃]

with Γ = End(M), N = ΓM , L̃ = (G,M), R̃ = D(M,H), G̃ = (L,M), H̃ = D(M,R).

Lemma 5.2.2. Keep the above notations. Then we have

(1) The 4-tuple assignment restricts to an involution on the set of 4-tuples [Λ,M,L,G] with
Λ ∈ add(G), F = FG, M is 1-F-faithful, M is an F-dualizing summand of L and L is
the left end of an F-exact strong add(M)-dualizing sequence.

(2) The dual 4-tuple assignment restricts to an involution on the set of 4-tuples [Λ,M,R,H]
with D Λ ∈ add(H), F = FH , M is 1-F-faithful, M is an F-codualizing summand of R
and R is the right end of an F-exact strong M-dualizing sequence.

Proof. We take a 6-tuple [Λ,M,L,R,G,H] with Λ ∈ add(G),D Λ ∈ add(H), F = FG = FH ,
M 1-F-faithful and there is an F-exact strong M -dualizing sequence

0→ L→M0 →M1 → R→ 0.

We want to see that applying the 6-tuple assignment gives an involution. So consider a 6-tuple
[Γ, N, L̃, R̃, G̃, H̃] with Γ = End(M), N = ΓM , L̃ = (G,M), R̃ = D(M,H), G̃ = (L,M),

H̃ = D(M,R). Clearly, Γ ∈ add(G̃), D Γ ∈ add(H̃) since M ∈ add(L) ∩ add(R) and since L

and R are ends of an add(ΛM)-dualizing sequence we have FG̃ = FH̃ =: F̃. Since L is left end of

a strong add(M)-dualizing sequence, we have by Lemma 4.3.5 that G̃ = (L,M) ∈ cogen1
F̃

(N),

this means N is 1-F̃-faithful. Since M is 1-F-faithful we get a strong add(N)-dualizing sequence

0→ L̃→ Ñ0 → Ñ1 → R̃→ 0

by Lemma 4.3.5. It split off the summand

0→ N
1−→ N

0−→ N
1−→ N → 0

and obtain an exact sequence

0→ L̃′ → N0 → N1 → R̃′ → 0 (∗)

with Ni ∈ add(N). The only missing property is that (∗) is F̃-exact. We first observe that
Ni = D(M, Ii) with 0 → H ′ → I1 → I0 is an injective copresentation, H = D Λ ⊕ H ′. Since

(G̃,−) = ((L,M),−) is left exact, it is enough to check that it is also right exact on (∗).
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Now, since L ∈ cogen1
FH (M) we have a natural isomorphism D(L,H)→ ((L,M),D(M,H)) by

Lemma 4.2.4 (1). In particular, we have a natural isomorphism

(G̃, Ni) = ((L,M),D(M, Ii))→ D(L, Ii)

since Ii ∈ add(H). This means when we apply (G̃,−) to the last three nonzero terms of (∗) we
get an exact sequence which identifies under the just mentioned natural isomorphism with

D(L, I0)→ D(L, I1)→ D(L,H ′)→ 0

and this is exact.

5.3 Relative cotilting correspondence

We give a generalization of the cotilting correspondence to a relative set-up together with a
relative dualizing summand - this is a generalization of Auslander-Solberg’s main results in
[AS93c, AS93d] which we reobtain as a corollary. We will use the 4-tuple assignments for our
theorem (see Definition 5.2.1, Lemma 5.2.2).

As before, we fix an additive subbifunctor F = FG = FH of Ext1
Λ(−,−) for some generator

G and cogenerator H.
Define

K+,b
F (add(H)) = {Y ∈ K+(add(H)) | ∃ n ∈ Z such that Hi(HomΛ(Y,H)) = 0 for i ≥ n}

then we have Db
F(Λ-mod) ' K+,b

F (add(H)) as triangulated categories, where Db
F(Λ-mod) is the

bounded derived category of the exact category Λ-mod with the exact structure induced by F.
For more on the derived category of an exact category we refer to [Nee90, Kel96, Pan16]. As in
the standard case, one can prove that an F-self-orthogonal Λ-module L is an F-cotilting module
if and only if Thick(L) = Kb(add(H)) where by Thick(L) we mean the smallest triangulated
subcategory of Kb(add(H)) which contains L and closed under direct summands. We also have
the following lemma which can be proved by the same argument in the standard case (cf.
[CHU94, AI12]).

Lemma 5.3.1. Let L = M ⊕ U be a basic F-cotilting module.

(1) If there exists an F-exact sequence 0 → U
f−→ M0 → V → 0 with f the left minimal

add(M)-approximation of U , then M⊕V is a basic F-cotilting module with idF(M⊕V ) ≤
idF L. Furthermore, this F-exact sequence (after adding 1M to f and its cokernel ) gives
rise to a strong 0-add(M)-dualizing sequence with Exti(U ⊕M,V ⊕M) = 0 for i ≥ 1.

(2) If there exists an F-exact sequence 0 → V → M1
g−→ U → 0 with g the right minimal

add(M)-approximation of U , then M ⊕ V is a basic F-cotilting module with idF(M ⊕
V ) ≤ idF L + 1. Again this gives rise to a strong 0-add(M)-dualizing sequence with
Exti(V ⊕M,U ⊕M) = 0 for i ≥ 1.

Now we are ready to present our improvement of Auslander and Solberg’s results. Recall,
the 4-tuple assignment

[Λ,M,L,G] 7→ [Γ, ΓM, L̃, G̃]

where Γ = EndΛ(M), L̃ = (G,M) and G̃ = (L,M). We also consider the dual 4-tuple
assignment

[Λ,M,R,H] 7→ [Γ, ΓM, R̃, H̃]

where Γ = EndΛ(M), R̃ = D(M,H) and H̃ = D(M,R).
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Theorem 5.3.2. Keep the above notations. Then we have

(1) The 4-tuple assignment restricts to an involution on the set of 4-tuples [Λ,M,L,G] sat-
isfying

(1a) Λ ∈ add(G), F = FG,

(1b) L is F-cotilting and M is an F-dualizing summand of L.

(2) The dual 4-tuple assignment restricts to an involution on the set of 4-tuples [Λ,M,R,H]
satisfying

(2a) D Λ ∈ add(H), F = FH ,

(2b) R is F-cotilting and M is an F-codualizing summand of R (that is, M ∈ add(R)
and R ∈ genF

1 (M) ).

Furthermore, for an assignment [Λ,M,R,H] 7→ [Γ, ΓM, R̃, H̃] we have idFH R = idFH̃ R̃.

Proof. We prove (1) and (2) together.
We want to use Lemma 5.2.2, so we first prove that (1b) (or (2b)) implies that M is 1-F-

faithful. To prove M is 1-F-faithful we need to show the natural map (M,H) ⊗Γ (G,M) →
(G,H) is an isomorphism, where Γ = EndΛ(M). Since L is F-cotilting it is 1-F-faithful and
thus the natural map (L,H)⊗B (G,L)→ (G,H) is an isomorphism, where B = EndΛ(L). By
Lemma 4.2.4 (1), M being an F-dualizing summand of L is equivalent to that the natural map
(M,H)⊗Γ (L,M)→ (L,H) is an isomorphism. Hence we have

(M,H)⊗Γ (G,M)
∼=−→ ((M,H)⊗Γ (L,M))⊗B (G,L)

∼=−→ (L,H)⊗B (G,L)
∼=−→ (G,H)

as desired. Since L is F-cotilting and M is an F-dualizing summand of L, we have an F-exact
strong add(M)-dualizing sequence 0 → L → M0 → M1 → R → 0 with Mi ∈ add(M). By
Lemma 5.3.1 we see that R is also an F-cotilting module. Now, by Lemma 5.2.2 the 6-tuple
assignment restricts to an involution on the set of 6-tuples [Λ,M,L,R,G,H] satisfying the

conditions (1a), (1b), (2a) and (2b) if we prove that R̃ := D(M,H) and L̃ := (G,M) are

F̃-cotilting modules, where F̃ := FG̃ = FH̃ , G̃ = (L,M) and H̃ = D(M,R).
Assume idFR = n, then we have F-exact sequences

0→ R→ H0 → H1 → · · · → Hn−1 → Hn → 0 (∗)

and
0→ Rn → Rn−1 → · · · → R1 → R0 → H → 0. (∗∗)

The functor (M,−) is exact on both (∗) and (∗∗). Applying D(M,−) to (∗∗) we get an
exact sequence

0→ D(M,H) = R̃→ D(M,R0)→ D(M,R1)→ · · · → D(M,Rn−1)→ D(M,Rn)→ 0 (??)

of Γ-modules, where each D(M,Ri) ∈ add(H̃) is an F̃-injective module. We claim that this

sequence is F̃-exact which will imply that (??) is an F̃-injective resolution of R̃ and so idF̃ R̃ ≤ n.
Consider the following commutative diagram

0 // ((L,M),D(M,H)) //

∼=
��

((L,M),D(M,R0)) //

∼=
��

· · · // ((L,M),D(M,Rn)) //

∼=
��

0

0 // D((M,H)⊗ (L,M)) // D((M,R0)⊗ (L,M)) // · · · // D((M,Rn)⊗ (L,M)) // 0

0 // D(L,H) //

∼=

OO

D(L,R0) //

∼=

OO

· · · // D(L,Rn) //

∼=

OO

0
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The first row and the second row are naturally isomorphic by the Hom-Tensor adjunction, the
second row and the last row are naturally isomorphic because H,R ∈ genFL

1 (M). The last row
is obtained by applying the functor D(L,−) to (∗∗) and it is exact . Hence the first row is
exact and the claim follows.

Similarly, apply the functor D(M,−) to (∗) we will get an F̃-exact sequence

0→ D(M,Hn)→ D(M,Hn−1)→ · · · → D(M,H1)→ D(M,H0)→ D(M,R) = H̃ → 0 (?)

with D(M,Hi) ∈ add(R̃). Now applying the functor D(R̃,−) = D((M,H),−) to (??) we will
get the first row of the following commutative diagram

0 // (D(M,H),D(M,H)) // (D(M,H),D(M,R0)) // · · · // (D(M,H),D(M,Rn)) // 0

0 // (H,H) //

∼= D(M,−)

OO

(R0, H) //

∼= D(M,−)

OO

· · · // (Rn, H) //

∼= D(M,−)

OO

0

The lower row is exact because (∗∗) is F-exact and the vertical arrows are isomorphisms because

H,R ∈ gen1(M). Therefore the upper row is exact and this means Exti
F̃

(R̃, R̃) = 0 for i > 0.

Combining (?) and (??), we see that R̃ is an F̃-cotilting module. According to the proof of

Lemma 5.2.2, there is a strong add(ΓM)-dualizing sequnce 0→ L̃→ M̃0 → M̃1 → R̃→ 0 with

M̃i ∈ add(ΓM). Again by Lemma 5.3.1, we conclude that L̃ is an F̃-cotilting module.

Finally, since the dual 4-tuple assignment restricts to an involution we have idFR = idF̃ R̃.

Corollary 5.3.3. (1) The functors (−, ΛM) : Λ-mod←→ Γ-mod : (−, ΓM) restrict to dual-

ities 0<⊥FL←→ 0<⊥F̃L̃ and 0<⊥FR←→ 0<⊥F̃R̃.

(2) We have idFR ≤ idF L ≤ idFR + 2 and idF̃ R̃ ≤ idF̃ L̃ ≤ idF̃ R̃ + 2.

Proof. (1) Given X ∈ 0<⊥FL we need to show that (X, ΛM) ∈ 0<⊥F̃L̃ and it is enought to show

(X, ΛM) ∈ copres∞
F̃

(L̃) by Theorem 5.1.2. Taking an F-projective resolution · · · → P1 → P0 →
X → 0 of X and applying (−, ΛM) to get a complex

0→ (X,M)→ (P0,M)→ (P1,M)→ · · · .

A standard argument shows that it is F̃-exact and therefore (X, ΛM) ∈ copres∞
F̃

(L̃). Now

given Y ∈ 0<⊥FR we will prove that (Y, ΛM) ∈ 0<⊥F̃R̃. Applying ((Y,M),−) to the F̃-injective

resolution (??) of R̃ gives a complex

0→ ((Y,M), R̃)→ ((Y,M),D(M,R0))→ · · · → ((Y,M),D(M,Rn))→ 0.

One can easily check that it is in fact exact and thus (Y, ΛM) ∈ 0<⊥F̃R̃.
(2) follows from Lemma 5.3.1.

Remark 5.3.4. In particular, if we take M = L to be the trivial F-dualizing summand then we
have [Λ, L, L,G] 7→ [Γ, ΓL, L̃ = (G,L),Γ] and thus L̃ is a cotilting Γ-module, ΓL is a dualizing

summand of L̃ and idF L ≤ idΓ L̃ ≤ idF L+ 2. This gives [AS93c, Theorem 3.13]. The fact that
the 4-tuple assignment restricts to an involution gives [AS93d, Theorem 2.8].
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5.4 Consequences of the relative cotilting correspondence

Derived equivalence induced by an F-dualizing summand

Let [Λ,M,L,G] be a 4-tuple satisfying Λ ∈ add(G), F = FG, L is F-cotilting and M is an
F-dualizing summand of L. Then by Theorem 5.3.2 the 4-tuple assignment gives a 4-tuple
[Γ = EndΛ(M), ΓM, L̃ = (G,M), G̃ = (L,M)] satisfying Γ ∈ add(G̃), F̃ = FG̃, L̃ is F̃-

cotilting and ΓM is an F̃-dualizing summand of L̃. We consider the derived categories of exact
categories Db

F(Λ-mod) and Db
F̃

(Γ-mod) and we will show the functors (−, ΛM) and (−, ΓM)

induce a duality between triangulated categories Db
F(Λ-mod) and Db

F̃
(Γ-mod).

Proposition 5.4.1. Let [Λ,M,L,G] be a 4-tuple such that Λ ∈ add(G), F = FG, L is F-

cotilting and M is an F-dualizing summand of L and let [Γ, ΓM, L̃, G̃] be the corresponding
4-tuple under the 4-tuple assignment. Then the functors (−, ΛM) and (−, ΓM) induce a con-
travariant triangle equivalence between Db

F(Λ-mod) and Db
F̃

(Γ-mod).

Proof. Let B = EndΛ(L) and B̃ = EndΓ(L̃), then C := (G,L) is a cotilting B-module and C̃ :=

(G̃, L̃) is a cotilting B̃-module. By [Bua01, Proposition 4.4.3] , the functor (−, ΛL) induces a

contravariant triangle equivalence between Db
F(Λ-mod) and Db(B-mod) and the functor (−, ΓL̃)

induces a contravariant triangle equivalence between Db
F̃

(Γ-mod) and Db(B̃-mod).
We note that by Lemma 2.1.3 (1) the composition

EndB(C) = ((G,L), (G,L))
∼=−→ EndΛ(G)op

∼=−→ ((G,M), (G,M)) = EndΓ(L̃) = B̃

is an isomorphism of algebras. Similarly, we have EndB̃(C̃) ∼= EndΓ(G̃)op ∼= B. Since BC is
cotilting, B̃C is also cotilting and we have

B̃C = (B, BC) = ((L,L), (G,L))
∼=−→ (G,L)

∼=−→ ((L,M), (G,M)) = (G̃, L̃) = B̃C̃

by Lemma 2.1.3 (1). It follows that the functors (−, BC) and (−, B̃C̃) induce a contravariant

triangle equivalence between Db(B-mod) and Db(B̃-mod). The desired contravariant triangle
equivalence follows by combining this duality and the above triangle dualities.

Remark 5.4.2. As the above proof suggests, there exist triangle equivalences Db
F(Λ-mod) '

Db(B̃-mod) and Db
F(Γ-mod) ' Db(B-mod). The dual version of Proposition 5.4.1 shows that

an F-codualizing summand of an F-tilting module will induce a relative derived equivalence.

F-Gorenstein algebra

Recall that an algebra Λ is called Gorenstein if id(ΛΛ) <∞ and id(ΛΛ) <∞. Define

P∞(Λ) = {X ∈ Λ-mod | pdΛX <∞} and I∞(Λ) = {Y ∈ Λ-mod | idΛ Y <∞}.

Then Λ being Gorenstein is equivalent to P∞(Λ) = I∞(Λ). Let F = FG = FH be a subbifunctor
of Ext1

Λ and define

P∞(F) = {X ∈ Λ-mod | pdFX <∞} and I∞(F) = {Y ∈ Λ-mod | idF Y <∞}.

Following [AS93a] we call an algebra F-Gorenstein if P∞(F) = I∞(F), and F-Gorenstein
algebras can be chcaracterized as follows.

66



Lemma 5.4.3. ([AS93a, Proposition 3.3])

(1) An algebra Λ is F-Gorenstein if and only if there exists an F-cotilting F-tilting module.

(2) An algebra Λ is F-Gorenstein if and only if every F-cotilting module is F-tilting and every
F-tilting module is F-cotilting.

Corollary 5.4.4. Let [Λ,M,L,G] be a 4-tuple satisfying Λ ∈ add(G), F = FG, L is F-cotilting

and M is an F-dualizing summand of L and let [Γ, ΓM, L̃, G̃] be the corresponding 4-tuple under

the 4-tuple assignment. Then Λ is an F-Gorenstein algebra if and only if Γ is an F̃-Gorenstein
algebra.

Proof. Consider the 6-tuple assignment [Λ,M,L,R,G,H] 7→ [Γ, ΓM, L̃, R̃, G̃, H̃] as in the proof

of Theorem 5.3.2. Then L,R are F-cotilting modules and L̃, R̃ are F̃-cotilting modules. By
Lemma 5.4.3, Λ is F-Gorenstein if and only if L and R are F-tilting modules, if and only if L̃, R̃
are F̃-tilting modules by the tilting version of Theorem 5.3.2, if and only if Γ is F̃-Gorenstein
by Lemma 5.4.3 again.

Remark 5.4.5. (1) The tilting version of Theorem 5.3.2 implies that pdF̃ L̃ = pdF L, pdF L ≤
pdFR ≤ pdF L+ 2 and pdF̃ L̃ ≤ pdF̃ R̃ ≤ pdF̃ L̃+ 2. Now by using [AS93a, Proposition

3.4], we see that pdF̃ G̃ = idF̃ H̃ ≤ pdF̃ L̃+ idF̃ L̃ ≤ pdF L+ idFR + 2.

(2) In particular, if we take M = L then the above result gives [AS93a, Proposition 3.1 and
Proposition 3.6].

5.5 Special cotilting

We assume throughout this section that F = FG = FH for a generator G and a cogenerator H.
The easiest situation where relative dualizing summands appear in relative cotilting modules
are when these summands are 1-F-faithful F-injective modules.

Definition 5.5.1. Let C be an F-cotilting module of idFC ≤ r. We say that C is special
if it has an F-injective (r − 1)-F-dualizing summand I. This is equivalent to an F-injective
summand I of C such that cogenr−1

F (C) = cogenr−1
F (I) by Lemma 4.4.2. We sometimes call C

I-special if it is special with respect to the F-injective I.
Dually, we say an F-tilting module T of pdF T ≤ r is special if it has a F-projective summand
P such that genF

r−1(T ) = genF
r−1(P ).

We look at a minimal F-injective F-coresolution of G

0→ G→ I0 → I1 → I2 → · · ·

and define Jn =
⊕

t≤n It (so in particular we have G ∈ cogennF(Jn)

Theorem 5.5.2. Let r ≥ 1. We consider the following three finite sets.

(1) Isomorphism classes of basic special cotilting modules of idF ≤ r.

(2) Isomorphism classes of basic F-injective modules I with G ∈ cogenr−1
F (I).

(3) Isomorphism classes of basic I ∈ add(H) with Jr−1 ∈ add(I).
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Then the sets (2) and (3) are equal. Mapping C to its maximal F -injective summand gives a
bijection between (1) and (2). The inverse is given by mapping I to CI,r := I ⊕ Ωr

IH.

Proof. Assume Jr−1 ∈ add(I) ⊂ add(H), then clearly G ∈ cogenr−1
F (Jr−1) ⊂ cogenr−1

F (I) and
we conclude that (3) is a subset of (2). So assume I ∈ add(H) with G ∈ cogenr−1

F (I). Since
the minimal F-injective F-exact r-copresentation (of G) must be a summand of any other F-
injective F-exact r-copresentation, it follows that Jr−1 ∈ add(I) and therefore the sets (2) and
(3) are equal.
So let C be an I-special r-F-cotilting module and let J be its maximal injective summand - of
course I ∈ add(J) and clearly copresr−1

F (I) ⊆ copresr−1
F (J) ⊆ copresr−1

F (C). Since I, J are F-
injective and C is r-F-cotilting we conclude that these inclusions of subcategories coincide with
cogenr−1

F (I) ⊆ cogenr−1
F (J) ⊆ cogenr−1

F (C). Since C is I-special it follows that they are all equal,
in particular J ∈ cogenF(I) implies J ∈ add(I) and therefore add(I) = add(J). This means
the map is well-defined. It follows from lemma 5.1.3 that the assignment I 7→ CI = I ⊕ Ωr

IH
is the inverse map.

Let Σr
F(Λ) be the finite subposet of the poset of isomorphism classes of basic F-cotilting

modules of idF ≤ r, where the partial order is given by inclusion of perpendicular categories...
Let addJr−1(H) be the lattice given by isomorphism classes of basic summands I of H such
that Jr−1 ∈ add(I) . The partial order is just given by inclusion of summands, the meet and
join are defined in the obvious way. In particular, if H = Jr−1 ⊕ X with |X| = t, then the
lattice addJr−1(H) is isomorphic to the power set P({1, 2, . . . , t}) which is a poset with respect
to inclusion and a lattice with respect to intersection and union (sometimes also referred to as
a t-dimensional cube).

Corollary 5.5.3. The finite poset Σr
F(Λ) is a lattice and the bijection from the previous theorem

gives a lattice isomorphism
Σr

F(Λ)→ addJr−1(H).

We also observe that if an I-special r-F-cotilting module C has an (r − 1)-F-dualizing
summand M , then I ∈ add(M).

We give now several little applications, in particular connecting it with the other parts of
the article.

Examples and applications

(1) Non-relative special tilting has been defined in [PS17] and many special cases had been
considered before, as APR-tilting and BB-tilting [BGfP73], [BB80], [APR79], n-APR-
tilts [IO11] or flip-flops for posets [Lad07]. Any endomorphism ring of a generator has a
canonical special cotilt, this has been used to define desingularizations of orbit closures
and quiver Grassmannians in [CIFR13], [CBS17], [PS18].

(2) We explain that (non-relative) special cotilting naturally gives two recollements relating
the cotilted algebras: Let I be a (k − 1)-faithful injective Λ-module for k ≥ 1 and
C = CI,k = I ⊕ Ωk

I D Λ the I-special k-cotilting module. Then Ωk
I is an equivalence

of categories add D Λ/ add I → addC/ add I with quasi-inverse Ω−kI (this follows from
[AR91b, Theorem 5.2] with X = add(I)). Let B = EndΛ(C)op, then B DC is special
k-tilting module with respect to the (k − 1)-faithful projective module P = (C, I). Let
P = Bε and I = D(eΛ) for idempotents e ∈ Λ, ε ∈ B. Then the equivalence Ωk

I induced
an isomorphism of algebras

(Λ/(e))op = Endadd D Λ/ add I(D Λ) ∼= EndaddC/ add I(C) = (B/(ε))op
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Observe also eΛe ∼= EndΛ(I)op ∼= εBε, therefore we have two recollements with isomorphic
ends induced by the idempotents e, ε.

Λ-mod

F

��

puujjjjjjjjjjjjjjjjq

uujjjjjjjjjjjjjjjj

e
SSSSSSSS

))SSSSSSS

Λ/(e)- mod

ijjjjjjj

55jjjjjjjjj

j
TTTTTTT

))TTTTTTT

eΛe-mod

`

iiSSSSSSSSSSSSSSS
r

iiSSSSSSSSSSSSSSS

λ

uukkkkkkkkkkkkkkk

ρuukkkkkkkkkkkkkkk

B- mod
π

iiTTTTTTTTTTTTTT

φ
iiTTTTTTTTTTTTTT εkkkkkkk

55kkkkkkkk

Furthermore, the cotilting functor F := D(−, C) commutes with the following functors
from the recollements ε ◦ F = e, F ◦ ` = λ.

(3) The standard cogenerator correspondence says that the assignment [Λ, ΛE] 7→ [Γ, ΓI]
defined by Γ = End(E), I = ΓE gives a bijection between

(a) [Λ, ΛE] with D Λ ∈ addE.

(b) [Γ, ΓI] with I injective and Γ ∈ cogen1(I).

Let us denote CI to be the special 2-cotilting Γ-module which exists in situation (b). Then
the AS-assignment [Γ, ΓI, CI ] 7→ [Λ, ΛE,G] with G = (CI , I) gives a natural extension of
the cogenerator correspondence to a bijection between the following.

(a’) [Λ, ΛE,G] with D Λ ∈ addE and E is an FG-cotilting module.

(b’) [Γ, ΓI, CI ] with I injective and Γ ∈ cogen1(I), CI 2-cotilting with cogen1(CI) =
cogen1(I).

This can be generalized to the 4-tuple assignment as follows:

Example of the relative cotilting correspondence using special cotilting

This is our main example for Theorem 5.3.2. Let us look at the 5-tuple assignment [Λ, I, L,G,H] 7→
[Γ = EndΛ(I), ΓI, L̃ = (G, I), G̃ = (L, I), H̃ = D(I,H)]. Then this gives a involution on the
following 5-tuples [Λ, I, L,G,H] with Λ ∈ add(G),D Λ⊕ I ∈ add(H), F = FH = FG and L is
an I-special 2-F-cotilting module.

The proof goes as follows: By Theorem 5.3.2 we know that L̃ is again an F̃-cotilting module
with F̃ = FH̃ and has an F̃ -dualizing summand ΓI. So we need to see that idF̃ L̃ ≤ 2, then

L̃ is the (uniquely determined) ΓI-special 2-F-cotilting module. Recall that the assumption
ensures that we have an F-exact strong I-dualizing sequence 0→ L→ I0 → I1 → H → 0 with
Ij ∈ add(I), so we can see R := H as the right end of it. This has been used to show that for

G̃ := (L, I), H̃ = D(I,H) we have F̃ = FH̃ = FG̃. Now, apply (−, I) to a minimal projective

presentation of G and D(I,−) to a minimal injective copresentation of H to obtain an F̃-exact,

strong ΓI-dualizing sequence with left end (G, I) = L̃ and right end D(I,H) = H̃. This ensures

that idF̃ L̃ ≤ 2 and therefore L̃ is an ΓI-special 2-F̃-cotilting.

We remark that special r-(co)tilting requires an F-injective (r − 1)-F-dualizing summand.
In our previously considered assignments we looked only at 1-F-dualizing summands, that is
why our example only works for r = 2.
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Mutation and dualizing sequences induce special tilts on endomorphism rings

Lemma 5.5.4. Let 0 → L → M0 → · · · → Mk → R → 0 be an F-exact strong k-M-dualizing
sequence with ExtjF(L,R) = 0 for j ≥ 1 and L,R be F-self-orthogonal. Let B = End(L) and
A = End(R). Then T = (L,R) is a special k-tilting A-module with respect to P = (M,R) and
C = D(L,R) is a special k-cotilting B-module with respect to I = D(L,M). Furthermore, we
have EndA(T ) ∼= Bop and EndB(C) ∼= Aop.

Proof. Apply (−, R) to the strong dualizing sequence, setting Pi = A(Mi, R) ∈ add(P ), we get
an exact sequence of A-modules

0→ A→ Pk → · · · → P0 → T → 0.

This shows pdT ≤ k and A has an add(T )-resolution with all middle terms in add(P ) (⊆
add(T )). Since the dualizing sequence is strong and by assumption L ∈ F,1≤⊥R ∩ cogen∞F (R),
we can use Lemma 2.1.3,(2) to get an isomorphism ExtjF(L,L)→ ExtjA(T, T ). Since L is F-self-
orthogonal, the module T is self-orthogonal. This implies that T is a special k-tilting module
with respect to P . Similarly, one can show that C is a special k-cotilting module with respect
to I. The last claim follows from Lemma 2.1.3,(1).

Passing to endomorphism rings of special cotilting modules

Recall, that in the non-relative case the Brenner-Butler assignment (BB) : [Σ, J, L′] 7→ [B =
EndΣ(L′),D(L′, J), BL

′] maps J-special t-cotilting Σ-modules L′ to a D(L′, J)-special t-cotilting
B-module and this assignment is an involution on these triples.
We explain how this relates to relative special cotilting: Let H be a basic cogenerator, Σ =
EndΛ(H)op and ε ∈ Σ the projection onto the summand D Λ, then we have a pair of adjoint
functors

` = D(−, H) : Λ-mod� Σ-mod: ε = (Σε,−)

with Im ` = gen1(Σε). As always we set F = FH . Then for I ∈ add(H) we have `(I) ∈ add(D Σ)
and: H ∈ genF

t−1(I)⇔ D Σ ∈ gent−1(`(I)),
⊕t

j≥1 Ωj
`(I) D Σ ∈ gen1(Σε).

The assignment [Λ, I, L,H] 7→ [Σ = EndΛ(H)op, `(I), `(L)] injects an I-special t-FH-cotilting
modules L to an `(I)-special t-cotilting Σ-module `(L). Any J-special t-cotilting Σ-module L′

for some J ∈ add(D Σ) is in the image of this assignment if and only if
⊕t

j≥1 Ωj
J D Σ ∈ gen1(Σε).

The assignment [Λ, I, L,H] 7→ [B = EndΛ(L),D(L, I),D(L,H)] injects an I-special t-FH-
cotilting modules L to an D(L, I)-special t-cotilting B-module D(L,H). In fact, combining the
assignments we get a commuting triangle as follows

[Λ, I, L,H]
`

ttjjjjjjjjjjjjjjjj
D(L,−)

**UUUUUUUUUUUUUUUUU

[Σ = EndΛ(H)op, `(I), `(L)] oo
(BB) // [B = EndΛ(L),D(L, I),D(L,H)]

Example 5.5.5. Here are the endomorphism rings of the special cotilts of the relative Auslan-
der algebras for Λ = K(1 → 2 → 3 → 4 → 5), G = P5 ⊕M,M =

⊕4
i=1

⊕
j≥0 τ

−jPi, F = FG

from Example 6.3.2, (4). We choose I = M ∈ add(H), then the M -special tilting and cotilting
modules conincide with: G,M ⊕ S4,M ⊕ S3,M ⊕ S2, H. Their respective endomorphism ring
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is shown by the quiver with relations below.
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Chapter 6

Relative Auslander correspondence
and F-Auslander algebras

We generalize the notion of dominant dimension to the relative setting.

Definition 6.0.1. Let Γ be a finite-dimensional algebra and F = FG = FH for a generator ΓG
and a cogenerator ΓH. Consider the minimal F-coresolution of G by F-injectives

0→ G→ H0 → H1 → H2 → · · · .

We define domdimF Γ = k if there exists an integer k such that Hi ∈ add(G) for 0 ≤ i ≤ k − 1
and Hk /∈ add(G). If Hi ∈ add(G) for all i ≥ 0 then we define domdimF Γ =∞.

Remark 6.0.2. As is in the classical case, our definition of F-dominant dimension is left-right
symmetric in the following sense: A functor F = FG = FH determines a functor FDH = FDG =:
F∗ in the category Γop-mod and vice versa, and domdimF Γ = k if and only if domdimF∗ Γop = k.

6.1 Relative Auslander-Solberg correspondence

Lemma 6.1.1. Let F = FG = FH with G and H basic and assume ΓM is a module such that
add(M) = add(G) ∩ add(H). Then the following are equivalent for every k ≥ 1.

(1) There is an F-exact sequence 0 → G → M0 → M1 → · · · → Mk → H → 0 with
Mi ∈ add(M).

(2) domdimF Γ ≥ k + 1 ≥ idFG.

(3) domdimF Γ ≥ k + 1 ≥ pdFH.

Proof. (1) ⇒ (2) and (1) ⇒ (3) are obvious. We prove (2) ⇒ (1) and (3) ⇒ (1) is dual.
Assume (2) then we have an F-exact sequence

0→ G→M0 →M1 → · · · →Mk−1 →M ′
k → H ′ → 0

with Mi ∈ add(M) for 0 ≤ i ≤ k − 1, M ′
k ∈ add(M) and H ′ ∈ add(H). We may assume this

F-exact sequence is a successive composition of minimal left add(M)-approximations of the
cokernels. By the dual version of Lemma 5.1.3 we have M ⊕ H ′ is an F-tilting module with
idF(M ⊕H ′) = 0. By Lemma 5.3.1 (1) we know that M ⊕H ′ is basic and hence M ⊕H ′ = H.

Now the desired F-exact sequence in (1) can be obtained by adding M
1−→M to M ′

k → H ′.
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Theorem 6.1.2. (relative Auslander-Solberg correspondence)
Let ΛM be a faithfully balanced module and Γ = EndΛ(M). Then the assignment X, Y 7→
(X,M),D(M,Y ) gives a self-inverse bijection between the following sets of pairs of modules

(1) {ΛL, ΛR | ΛM ⊕ Λ ∈ add(L), ΛM ⊕ D Λ ∈ add(R), L = τ−k R ⊕ Λ, R = τkL ⊕ D Λ,
ExtiΛ(L,R) = 0, 1 ≤ i ≤ k−1 such that there exists a strong add(ΛM)-dualizing sequence
with left end L and right end R}.

(2) {ΓG, ΓH | M ⊕ Γ ∈ add(G),M ⊕ D Γ ∈ add(H), G = τ−H ⊕ Γ, H = τG⊕ D Γ such that
there exists a strong k-add(ΓM)-dualizing sequence with left end G and right end H}.

Proof. Combine Lemma 4.3.5 and Lemma 6.1.1.

6.2 Relative Auslander correspondence

Lemma 6.2.1. Let k ≥ 1 and assume domdimF Γ ≥ k+1. Let ΓM be a module with add(M) =

add(G)∩ add(H). Then we have cogenkF(M) = Ωk+1
F (Γ-mod) and genF

k (M) = Ω
−(k+1)
F (Γ-mod).

Furthermore, the following are equivalent:

(1) cogenkF(M) = add(G).

(2) genF
k (M) = add(H).

(3) gldimF Γ ≤ k + 1.

Proof. Since domdimF Γ ≥ k + 1 and add(M) = add(H) ∩ add(G), we have clearly add(G) ⊆
cogenkF(M) ⊆ Ωk+1

F (Γ-mod). On the other hand, we proved in Lemma 5.1.3 that in this case

cogenkF(M) =
⋂
i≥1

ker ExtiF(−, C)

for C = M ⊕ Ωk+1
M H and idFC ≤ k + 1. So given X ∈ Ωk+1

F (Γ-mod), there is an Y ∈ Γ-mod
such that X = Ωk+1

F Y and then by dimension shift for i ≥ 1

ExtiF(X,C) = Exti+k+1
F (Y,C) = 0

since idFC ≤ k+1. In particular, X ∈ cogenkF(M). One can prove genF
k (M) = Ω

−(k+1)
F (Γ-mod)

with the dual argument.
Now clearly, gldimF Γ ≤ k + 1 is equivalent to Ωk+1

F (Γ-mod) ⊆ add(G) and by the just
proved result, we conclude it is equivalent to (1). The equivalence of (3) and (2) can be proven
with the analogous argument.

Definition 6.2.2. Let M ∈ Λ-mod and assume that there is a strong add(M)-dualizing se-
quence with left end L and right end R.

We say that M is a k-(L,R)-cluster tilting module if

(i) Λ ∈ cogen1
FR(M) and D Λ ∈ genFL

1 (M),

(ii) cogen1
FR(M) ∩

⋂k−1
i=1 ker ExtiΛ(−, R) = add(L) and genFL

1 (M) ∩
⋂k−1
i=1 ker ExtiΛ(L,−) =

add(R).

Let Γ be a finite-dimensional algebra and F = FG for a generator G. Then we say Γ is an
k-F-Auslander algebra if domdimF Γ ≥ k + 1 ≥ gldimF Γ.
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Theorem 6.2.3. (relative Auslander correspondence)
Let k ≥ 1. There is a one-to-one correspondence between isomorphism classes of basic k-(L,R)-
cluster tilting modules ΛM (for some L,R ) and finite-dimensional algebras Γ with an exact
structure given by F = FG = FH such that domdimF Γ ≥ k+1 ≥ gldimF Γ. The correspondence
is induced by the assignment

[Λ,M,L,R] 7→ [Γ = EndΛ(M), ΓM,G = (L,M), H = D(M,R)].

Proof. Let M be an k-(L,R)-cluster tilting module and Γ = EndΛ(M), G = (L,M), H =
D(M,R) and F = FG = FH . Since L ∈ cogen1

FR(M) ∩
⋂k−1
i=1 ker ExtiΛ(−, R), we have G ∈

cogenkF(M) by Lemma 4.2.5. Similarly, from Λ ∈ add(L),D Λ ∈ add(R) we conclude that

ΓM ∈ add(G) ∩ add(H) and therefore domdimF Γ ≥ k + 1. By the same lemma, we also have
cogenkF(M) = add(G) and therefore by Lemma 6.2.1 gldimF Γ ≤ k + 1.
Conversely, by Lemma 6.2.1 and Lemma 4.2.5 we can also conclude the other implication.

6.3 Examples of F-Auslander algebras

The easiest example can be found for k = 1. Here, for a 1-cluster tilting pair (L,R) with
respect to M we have G = L is a generator, H = R is a cogenerator with F = FG = FH and
the definition shortens to a module M such that cogen1

F(M) = add(G) and genF
1 (M) = add(H)

is fulfilled.
Here are some easy examples of 1-F-Auslander algebras.

Example 6.3.1. (1) Let F = FΛ andM be a projective-injective module such that cogen1(M) =
add(Λ) and gen1(M) = add(D Λ). Then, by Lemma 6.2.1 it is easy to see that this is
equivalent to domdim Λ ≥ 2 ≥ gldim Λ and it is well-known that this characterizes Λ to
be an Auslander algebra.

(2) Assume F = FG = FH and G = H is a generator-cogenerator, in this case we say Λ is F-
selfinjective. A classification of F-selfinjective algebras can be found in [AS93a, section 5].
For example, if G is an Auslander generator (= 1-cluster tilting module), this is fulfilled.
Then, if we choose M = G = H, then we have cogen1

F(M) = cogen1(M) = add(M) =
gen1(M) = genF

1 (M) and this gives us another example.

(3) Let Γ be the path algebra of 1 → 2 → 3 and let M = P2 ⊕ P1 ⊕ I2. We define G :=
Γ ⊕ M and H := D Γ ⊕ M , then it is easy to see FG = FH =: F and cogen1

F(M) =
add(G), genF

1 (M) = add(H).

(4) Let Γ be the path algebra of the following quiver:

1
��

3 // 2 // 4.

Let M := P2 ⊕ τ−P2 ⊕ τ−2P2, G = M ⊕ P1 ⊕ P3 ⊕ P4, H = M ⊕ I1 ⊕ I3 ⊕ I4 and
F := FG = FH . Then we have F-exact sequences

0→ P4 → P2 → τ−P2 → I4 → 0

0→ P3 → τ−P2 → τ−2P2 → I3 → 0

0→ P1 → τ−P2 → τ−2P2 → I1 → 0
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which show domdimF Γ = 2. It also easy to see that 2 = maxX{pdFX}(= gldimF Γ)
, since the three missing indecomposables which are not in addG or addH are 2, 1

2 ,
3
2

which appear as cosyzygies of the three injectives in the F-exact sequences and so all have
pdF = 1. We have Λ = EndΓ(M) is given by the following quiver with relations

•
α
//

β // •
γ
//

δ // • γα = δβ = δα + γβ = 0.

(5) Let Λ be the path algebra modulo the relations:

b β
((RRRR

a
α 66mmmm

γ ))SSSS d, βα− δγ = 0.
c δ

55kkkk

Its Auslander-Reiten quiver is drawn in the following graphic, in the square boxes you

find M = Pd ⊕
b
d

c
⊕ Pa ⊕

b
a
c
⊕ Ia and together with the remaining circled modules
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?>=<89:;d
c

""DDDDDD b
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a
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It is very easy to show that M is faithfully balanced and F = FG = FM⊕D Λ fulfills
domdimF Λ = 2 = gldimF Λ. Now we look at Γ = EndΛ(M), this is given by the path
algebra of the following quiver with the overlapping zero-relations

3
δ
��;;;;

1 α
// 2

β
//

γ AA����
4 ε

// 5, βα = 0 = δγα, εβ = 0 = εδγ

the vertices 1, 2, 3, 4, 5 correspond to the summands d,
b
d

c
, Pa,

b
a
c
, a in the given order.

To calculate ΓM = (Λ,M) = D(M,D Λ) we look at its four indecomposable summands

P3 = (Pa,M) = D(M, Ia) = I5 I3 = D(M, Id) = (Pd,M) = P1

(Pb,M) = D(M, Ib) (Pc,M) = D(M, Ic)

then we apply (−,M) to the F-exact sequence 0 → Pb →
b
d

c
→ b

a
c
→ Ib → 0 and

obtain a projective presentation 0 → P5 → P4 → P2 → (Pb,M) → 0 (and similar
for (Pc,M)). From this we conclude that (Pb,M), (Pc,M) are two regular modules in

different homogeneous tubes for the full subquiver Ã2, more precisely:

(Pb,M) =: R0 : K
1
  BBBB

0 // K
0

//

1
>>||||

K // 0

(Pc,M) =: R1 : K
1
  BBBB

0 // K
1

//

1
>>||||

K // 0

then we have τ (±)Rj = Rj, j = 0, 1. We set now G̃ = P2⊕P4⊕P5⊕M, H̃ = I1⊕I2⊕I4⊕M
and define F̃ := F

ΓG̃
= FΓH̃ , observe that add(ΓM) = add(G̃) ∩ add(H̃). The following

sequences are F̃-exact (setting R01 = R0 ⊕R1)

0 // P2
// R01

// I3
// I1

// 0

0 // P4
// P3

// I3
// I2

// 0

0 // P5
// P3

// R01
// I4

// 0
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We deduce domdimF̃ Γ = 2 = idF̃ D Γ. We have EndΓ(G̃)op ∼= EndΛ(G) has gldim ≤ 4
since gldimF Λ ≤ 2 by Lemma 4.1.5, therefore by the same argument and the observation
2 = idF̃ D Γ we conclude gldimF̃ Γ ≤ 2.

Here are examples of higher F-Auslander algebras.

Example 6.3.2. (1) A k-(L,R)-cluster tilting module M with L = M = R is just the
same as a k-cluster tilting module in the sense of [Iya08]. In this case, Γ = EndΛ(M),
G = (M,M) = Γ, H = D(M,M) = D Γ, so F = FΓ and so domdimF Γ = domdim Γ,
gldimF Γ = gldim Γ and we reobtain a higher Auslander algebra (this is the Krull-
dimension zero case of Iyama’s Auslander correspondence, see [Iya07a]).

(2) Let Γ be the path algebra of 1→ 2→ · · · → n. Let Mt :=
⊕

i 6=t
⊕

j≥0 τ
−jPi, Gt = Mt⊕Pt,

Ft = FGt , 1 < t ≤ n, then Γ has the structure of a (t − 2)-Ft-Auslander algebra for
t ≥ 3 and for t = 2 we have domdimF2 Λ = 1 = gldimF2

Λ. For large n we have that
Λ3 = EndΛ(M3) is a representation-infinite algebra with an F-Auslander structure.

(3) We consider the following quiver (of Dynkin type E6) Q

f

a // b // c //

OO

d // e

For x ∈ {a, b, d, e, f} we define Mx =
⊕

y 6=x
⊕

j≥0 τ
−jPy, Gx = Mx⊕Px, Fx = FGx . Then

an inspection if the AR-quiver gives the following for the path algebra Γ = KQ: Γ is a 2-
Fa- and 2-Fb-Auslander algebra, a 4-Fd- and 4-Ff -Auslander algebra and 6-Fe-Auslander
algebra.

(4) Let Γ = K(1→ 2→ · · · → n) for some integer n > 3 and we defineM :=
⊕n−1

i=1

⊕
j≥0 τ

−jPi,

G = M⊕Pn, H = M⊕I1 and F = FG = FH . We find the minimal F-projective resolution
of I1 (which is also the minimal F-injective resolution of Pn) as follows

0→ Pn → n−1
n → n−2

n−1 → · · · → 1
2 → I1 → 0 (∗)

from this we conclude pdF D Γ = n− 1 and domdimFG = n− 1. One can easily see that
the highest pdF is obtained at an injective module and therefore gldimF Γ = n− 1, so we
have an (n− 2)-F-Auslander algebra.

Let Λ = EndΓ(M), we denote by P[Mi], I[Mi], S[Mi] the projective, injective and semi-simple
Λ-module associated to Mi ∈ add(M). Let L = Λ(G,M) = Λ⊕ (Pn,M), R = D(M,H) =
D Λ ⊕ D(M, I1) and ΛM ∈ add(L) ∩ add(R). Then we have Π := (

⊕
1<j<n Pj,M) =

D(M,
⊕

1<j<n Ij) is a projective-injective Λ-module, M = Π⊕ P[P1] ⊕ I[P1], L = Λ⊕ I[P1],
R = D Λ ⊕ P[P1]. We verify (Π, P[P1]) = ((Si,M), P[P1]) = (I[P1], P[P1]) = 0 for 3 ≤ i ≤ n
and (I1,M) = 0, (S2,M) = S[ 1

2 ]. We apply (−,M) to (∗) and obtain an exact sequence

of Λ-modules

0→ 0 = (I1,M)→ P[ 1
2 ] → P[ 2

3 ] → · · · → P[n−1
n ] → I[P1] → 0 (∗∗)

This implies pd I[P1] = n−2. Now, apply (−, P[P1]) to (∗∗) and obtain K = (S[ 1
2 ], P[P1]) ∼=

Ext1
Λ((S3,M), P[P1]) = Extn−2

Λ (I[P1], P[P1]).

We would like to see that ΛM is a (n− 2)-(L,R)-cluster tilting module with respect to L
and R as before. Since we easily verify cogen1

FH (ΓM) = add(G⊕
⊕

3≤i<n Si) and (Si,M) =
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Ωn−iI[P1] by the exact sequence (∗∗), we have cogen1
FR(M) = add(L⊕

⊕
3≤i<n Ωn−iI[P1]).

Now, we conclude

cogen1
FR(M) ∩

n−3⋂
i=1

ker ExtiΛ(−, R)

= add(L⊕
⊕

3≤i<n

Ωn−iI[P1]) ∩
n−3⋂
i=1

ker ExtiΛ(−, P[P1])

= add(L)

where we use the calculation of ExtjΛ(I[P1], P[P1]), j ≥ 1 from before.

There are further examples of converting KAn into a relative Auslander algebra. Here is
another family of these:

Example 6.3.3. We fix Γ = K(1→ 2→ · · · → n) for some integer n ≥ 3 and we will also allow
quotients by certain admissible 2-sided ideals I. Our aim is to describe a family of F-Auslander
algebras which interpolate between Iyama’s example [Iya08, Example 2.4] and the usual exact
structure on Γ-mod. We study the following class of generators G` := Γ⊕

⊕
1≤i≤`

⊕
j>0 τ

−jPi,

1 < ` < n− 1 1 .

1. If (n − ` + 1)|n (or equivalently, (n − ` + 1)|(` − 1)), then Γ is a (2 `−1
n−`+1

)-minimal F`-

Auslander-Gorenstein algebra (i.e., domdimF` Γ ≥ 2 `−1
n−`+1

+1 ≥ idF` G`), where F` = FG` .
If ` < n−1 and n−`+1 does not divide n, then Γ is not a minimal F`-Auslander-Gorenstein
algebra.
proof: For ` ≤ k ≤ n we look at the F`-injective resolution of Pk and here we keep
track the sequence of tops (they are all simple) of the F`-injectives appearing, it fulfills
a1 = `, a2 = k− (n− `− 1), at = at−2− (n− `+ 1) for all t ≥ 3. Now, the condition to be
a minimal F`-Auslander-Gorenstein algebra is equivalent to that there is one t (for all k)
such that at = 1. Since t has to work for all k (and ` < n−1), we conclude that t has to be
uneven, say t = 2s+ 1 (then it is an 2s-minimal F`-Auslander-Gorenstein algebra). Now,
the recursion tells us 1 = at = at−2− (n− `+ 1) = at−2s− s(n− `+ 1) = `− s(n− `+ 1),
so it follows s = `−1

n−`+1
.

2. But from the shape of the Auslander-Reiten quiver of Γ we can conclude that the maximal
pdF`

is obtained at an injective module, therefore gldimF`
Γ = pdF`

D Γ and we have:
Γ is a k-F`-Auslander algebra (for some k) if and only if (n − ` + 1)|n and in this case
k = 2( `−1

n−`+1
).

3. Assume I is a 2-sided admissible ideal with {X | IX = 0} ⊆ {X | dimK X ≥ n− `+ 2}.
We define G` := Γ/I ⊗Γ G` is a generator for Γ/I and we set F` := FG`

. Since we can
use the same F-projective and F-injective resolutions (because of the choice of the ideal)
we have: Γ is a k-F`-Auslander algebra) if and only if Γ/I is an k-F`-Auslander algebra)
In particular, if we set I = radn−`+1(Γ), then we have G` = Γ/I and if (n− `+ 1)|n then
we get a (non-relative) 2( `−1

n−`+1
)-Auslander algebra.

If we allow ` = n− 1 (cf. previous example), this describes the (n− 1)-Auslander algebra
of Iyama [Iya08, Example 2.4].

1For ` = 1 we have F1 = Ext1
Γ and observe domdim Γ = 1 = gldim Γ; ` = n, n− 1 are already studied in the

previous examples
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Conceptually the same family can be defined more generally for Nakayama algebras, we
explain this in the selfinjective Nakayama algebra case:

Example 6.3.4. Let Cn be the oriented cycle quiver with arrows i → i + 1(mod n) and
J ⊆ KCn be the ideal generated by the arrows, N ∈ N, we define Γ := KCn/J

N (this is a self-
injective Nakayama algebra). Let n−`+1 < N and M``≥n−`+1 be the direct sum of all modules
of vector space dimension ≥ n− `+ 1 and let Xn be the direct sum of all modules having Sn as
a composition factor and vector space dimension < n− `+ 1, we define G` = M``≥n−`+1 ⊕Xn

and F` = FG` . Then Gn is the Auslander generator and for ` = n− 1 we have Γ is an (n− 2)-
Fn−1- Auslander algebra. Moreover, for 1 < ` < n − 1 we have Γ is a k-F`-Auslander algebra
(for some k) if and only if (n− `+ 1)|n, and in this case k = 2 `−1

n−`+1
. The proof is exactly the

same as in the previous example.
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