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CONVEX SEMIGROUPS ON BANACH LATTICES

ROBERT DENK, MICHAEL KUPPER, AND MAX NENDEL

Abstract. In this paper, we investigate convex semigroups on Banach lattices.
First, we consider the case, where the Banach lattice is σ-Dedekind complete and
satisfies a monotone convergence property, having Lp-spaces in mind as a typical
application. Second, we consider monotone convex semigroups on a Banach lattice,
which is a Riesz subspace of a σ-Dedekind complete Banach lattice, where we con-
sider the space of bounded uniformly continuous functions as a typical example. In
both cases, we prove the invariance of a suitable domain for the generator under
the semigroup. As a consequence, we obtain the uniqueness of the semigroup in
terms of the generator. The results are discussed in several examples such as semilin-
ear heat equations (g-expectation), nonlinear integro-differential equations (uncertain
compound Poisson processes), fully nonlinear partial differential equations (uncertain
shift semigroup and G-expectation).

Key words: Convex semigroup, nonlinear Cauchy problem, fully nonlinear PDE,
well-posedness and uniqueness, Hamilton-Jacobi-Bellman equations
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1. Introduction

Given a C0-semigroup S = (S(t))t∈[0,∞) of linear operators on a Banach space X
with generator A : D(A) ⊂ X → X, it is well known that the domain D(A) is invariant
under S, i.e. S(t)x ∈ D(A) for all x ∈ D(A) and t ≥ 0. Moreover, it holds

AS(t)x = S(t)Ax for all x ∈ D(A) and t ≥ 0. (1.1)

This relation is fundamental in order to prove that the semigroup S is uniquely deter-
mined through its generator. The aim of this paper is to establish a relation similar to
(1.1) for C0-semigroups of convex operators on a Banach lattice X in order to prove
invariance of the domain and that the semigroup is uniquely specified via its generator.

Convex semigroups arise in a natural way, when considering convex differential equa-
tions such as the G-heat equation or more general HJB equations ∂ty−Ay = 0, u(0) = x
where Ay = supλAλy. One classical approach to treat such fully nonlinear equations
uses the theory of maximal monotone or m-accretive operators (see, e.g., [3], [4], [5],
[14], [11] and the references therein). To show that an accretive operator is m-accretive,
one has to prove that 1 + hA is surjective for small h > 0. However, in many cases it
is hard to verify this condition (for instance, it fails for the uncertain shift semigroup
on BUC defined in Subsection 4.3). This was one of the reasons for the introduction of
viscosity solutions (see the discussion in [11], Section 4). Viscosity solutions are known
to exist in many cases (see, e.g., [6], [7], [13]), the proof of uniqueness is rather delicate.
In contrast to these classical approaches, we start with the nonlinear semigroup as our
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main object. We study convex C0-semigroups on Banach lattices, i.e. S = (S(t))t∈[0,∞)

is a family of bounded convex operators X → X, such that, for every x ∈ X, it holds
S(0)x = x, S(t+ s)x = S(t)S(s)x for all s, t ≥ 0, and S(t)x→ x as t ↓ 0. If X = Lp(µ)
for p ∈ [1,∞) and some measure µ, or more generally if X is Dedekind σ-complete and
xn → infn xn for all decreasing sequences (xn)n in X which are bounded below, we
show that the key results from linear semigroup theory extend to the present nonlinear
framework. More precisely, defining the generator A by

Ax := lim
h↓0

S(h)x− x
h

for x ∈ D(A),

where D(A) :=
{
x ∈ X : limh↓0

S(h)x−x
h exists

}
, we show that S leaves the domain

D(A) invariant. Moreover, the map [0,∞) → X, t 7→ S(t)x is continuously differen-
tiable for all x ∈ D(A), and the time derivative is given by

AS(t)x = S′(t, x)Ax = inf
h>0

S(t)(x+ hAx)− S(t)x

h
.

Here, the right-hand side is the directional derivative or Gâteaux derivative of the
convex operator S(t) at x in direction Ax. In particular, if S(t) is linear, the Gâteaux
derivative simplifies to S′(t, x)Ax = S(t)Ax, which is consistent with (1.1). We further
show that the generator A is always a closed operator, which uniquely determines the
semigroup S on the domain D(A). As a consequence, y(t) := S(t)x, for x ∈ D(A),
defines the unique classical solution to the abstract Cauchy problem

(CP)

{
y′(t) = Ay(t), for all t ≥ 0,

y(0) = x.

In the case of a nonlinear operator of the form Au = supλ∈ΛAλu, where, e.g., Aλ is
the generator of a Lévy process for all λ ∈ Λ, we study the semigroup envelope S, i.e.
the smallest semigroup dominating the family of linear semigroups (Sλ)λ∈Λ. Following
[22], in [10] and [20] the existence of a semigroup envelope, under certain conditions,
has been shown for families of semigroups on BUC. Under a suitable boundedness con-
dition, this construction extends to Lp(µ), which makes our abstract results applicable
to the semigroup envelope of certain families of linear C0-semigroups on Lp(µ). In gen-
eral, the obtained domain D(A) will be larger than the natural domain

⋂
λ∈ΛD(Aλ),

but we still have – under appropriate assumptions – classical differentiability of the
solution for initial values in D(A). We remark that for generators of Lévy processes in
BUC under uncertainty, recent results were obtained, e.g., in [10], [12], [18], [20], and
[21]. Fully nonlinear equations in the strong Lp-setting were recently considered, e.g.,
by Krylov in [15], [16], [17].

There are examples of convex C0-semigroups on the Banach lattice BUC which can-
not be extended to Lp(µ), see e.g. the uncertain shift semigroup in Example 3.14.
Since BUC is not Dedekind σ-complete, we consider in the second part of this paper
the case, where X is a Riesz subspace of some Dedekind σ-complete Riesz space X.
A typical example for X is BUC. Here, we focus on monotone semigroups that are
continuous from above, meaning that S(t)xn ↓ 0 for all t ≥ 0, whenever xn ↓ 0. This
additional continuity property allows to extend the semigroup to Xδ := {x ∈ X : xn ↓
x for some bounded sequence (xn)n in X}. In contrast to the σ-Dedekind complete
case, the domain D(A) is, in general, not invariant under convex C0-semigroups. How-
ever, for monotone convex semigroups, the invariance can be achieved by extending the
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generator. Inspired by the directional derivative, we define the domain D(Aδ) of the
monotone generator Aδ as the set of all x ∈ X such that for every sequence (hn)n in
(0,∞) with hn ↓ 0 there exists an approximating sequence (Axn)n in X such that∥∥∥∥S(hn)x− x

hn
−Anx

∥∥∥∥→ 0 and Anx ↓ y =: Aδx.

The main results state that a monotone convex C0-semigroup leaves the domain D(Aδ)
of its monotone generator invariant, and the semigroup is uniquely determined by Aδ
on D(Aδ) if, in addition, the semigroup is continuous from above. As an example,
we consider the uncertain shift semigroup, which corresponds to the fully nonlinear
PDE ∂ty(t) = Ay(t), y(0) = x, where Ay := |y′| and y′ denotes the (weak) space
derivative. In that case, it holds BUC1 ⊂ D(Aδ) ⊂ W 1,∞ and W 1,∞ is invariant un-
der the corresponding semigroup. Similarly, for the second-order differential operator
Ax = 1

2 max{σx′′, σx′′}, where 0 ≤ σ ≤ σ, we derive that W 2,∞ is invariant under the
respective semigroup which corresponds to the G-expectation.

The structure of the paper is as follows. In Section 2 we introduce the setting and
state basic results on convex C0-semigroups which can be derived from the uniform
boundedness principle. Section 3 includes the main results on convex C0-semigroups
on σ-Dedekind complete Banach lattices. In particular, we provide invariance of the
domain and uniqueness of the semigroup in terms of the generator. The non σ-Dedekind
complete case is treated in Section 4. Finally, additional results on bounded convex
operators and directional derivatives of convex operators are collected in the appendix.

2. Notation and preliminary results

Let X be a Banach lattice. For an operator S : X → X, we define

‖S‖r := sup
x∈B(0,r)

‖Sx‖

for all r > 0, where B(x0, r) := {x ∈ X : ‖x − x0‖ ≤ r} for x0 ∈ X. We say that
an operator S : X → X is convex if S

(
λx + (1 − λ)y

)
≤ λSx + (1 − λ)Sy for all

λ ∈ [0, 1], positive homogeneous if S(λx) = λSx for all λ > 0, sublinear if S is convex
and positive homogeneous, monotone if x ≤ y implies Sx ≤ Sy for all x, y ∈ X, and
bounded if ‖S‖r <∞ for all r > 0.

Definition 2.1. A family S = (S(t))t∈[0,∞) of bounded operators X → X is called a
semigroup on X if

(S1) S(0)x = x for all x ∈ X,
(S2) S(t+ s)x = S(t)S(s)x for all x ∈ X and s, t ∈ [0,∞).

In this case, we say that S is a C0-semigroup if, additionally,

(S3) S(t)x→ x as t ↓ 0 for all x ∈ X.

We say that S is monotone, convex or sublinear if S(t) is monotone, convex or sublinear
for all t ≥ 0, respectively.

Throughout this article, let S be a convex C0-semigroup on X. For t ≥ 0 and x ∈ X,
we define the convex operator Sx(t) : X → X by

Sx(t)y := S(t)(x+ y)− S(t)x.
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Proposition 2.2. Let T > 0 and x0 ∈ X. Then, there exist L ≥ 0 and r > 0 such that

sup
t∈[0,T ]

‖Sx(t)y‖ ≤ L‖y‖

for all x ∈ B(x0, r) and y ∈ B(0, r).

Proof. It suffices to show that

sup
0≤t≤T

‖S(t)x‖ <∞ (2.1)

for all x ∈ X. Indeed, under (2.1) it follows from Theorem A.8 b) that there exists
some r > 0 such that b := supx∈B(x0,r) sup0≤t≤T ‖Sx(t)‖r < ∞. Since Sx(t) is convex

and Sx(t)0 = 0, we obtain from Lemma A.1 that

‖Sx(t)y‖ ≤ 2b
r ‖y‖

for all t ∈ [0, T ], x ∈ B(x0, r) and y ∈ B(0, r).
In order to prove (2.1), let x ∈ X. Since S(t)x→ x as t ↓ 0, there exists some n ∈ N

such that
R := sup

h∈[0,δ)
‖S(h)x‖ <∞,

where δ := T
n . Since S(t) is bounded for all t ≥ 0, it holds

c := max
0≤k≤n

‖S(kδ)‖R <∞.

Now, let t ∈ [0, T ]. Then, there exist k ∈ {0, . . . , n} and h ∈ [0, δ) such that t = kδ+h.
Since ‖S(h)x‖ ≤ R, it follows that ‖S(t)x‖ = ‖S(kδ)S(h)x‖ ≤ c. This proves (2.1) and
thus completes the proof. �

Remark 2.3. If S is sublinear, then there exist ω ∈ R and M ≥ 1 such that

‖S(t)x‖ ≤Meωt‖x‖ (2.2)

for all x ∈ X and t ∈ [0,∞). Indeed, by Proposition 2.2 and sublinearity of the
semigroup S, one has supt∈[0,1] ‖S(t)x‖ ≤ M‖x‖ for all x ∈ X and some M ≥ 1. Set

ω := logM . Then, for all t ∈ [0,∞), there exists some m ∈ N with t < m ≤ t+ 1. By
the semigroup property, it follows that

‖S(t)x‖ =
∥∥S( tm)mx∥∥ ≤Mm‖x‖ ≤M t+1‖x‖ = Meωt‖x‖

for all x ∈ X.

Corollary 2.4. Let T > 0 and x0 ∈ X. Then, there exist L ≥ 0 and r > 0 such that

sup
t∈[0,T ]

‖S(t)y − S(t)z‖ ≤ L‖y − z‖

for all y, z ∈ B(x0, r).

Proof. By Proposition 2.2, there exist L ≥ 0 and r > 0 such that

sup
t∈[0,T ]

‖Sx(t)y‖ ≤ L‖y‖

for all x ∈ B(x0, 2r) and y ∈ B(0, 2r). Now, let y, z ∈ B(x0, r). Then, y− z ∈ B(0, 2r),
and we thus obtain that

sup
t∈[0,T ]

‖S(t)y − S(t)z‖ = sup
t∈[0,T ]

‖Sz(t)(y − z)‖ ≤ L‖y − z‖,

which shows the desired Lipschitz continuity. �
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Corollary 2.5. The map [0,∞)→ X, t 7→ S(t)x is continuous for all x ∈ X.

Proof. Let t ≥ 0 and x ∈ X. Then, by Corollary 2.4, there exist L ≥ 0 and r > 0 such
that

sup
s∈[0,t+1]

‖S(s)y − S(s)x‖ ≤ L‖y − x‖

for all y ∈ B(x, r). Moreover, there exists some δ ∈ (0, 1] such that ‖S(h)x − x‖ ≤ r
for all h ∈ [0, δ]. For s ≥ 0 with |s− t| ≤ δ it follows that

‖S(t)x− S(s)x‖ = ‖S(s ∧ t)S(|t− s|)x− S(s ∧ t)x‖ ≤ L‖S(|t− s|)x− x‖ → 0

as s→ t. �

Corollary 2.6. Let (xn)n and (yn)n be two sequences in X with xn → x ∈ X and
yn → y ∈ X, and (hn)n be a sequence in (0,∞) with hn ↓ 0. Then, Syn(hn)xn → x.

Proof. We first show that S(hn)xn → x. By Corollary 2.4, there exist L ≥ 0 and r > 0
such that

sup
t∈[0,1]

‖S(t)z − S(t)x‖ ≤ L‖z − x‖.

for all z ∈ B(x, r). Hence, for n ∈ N sufficiently large, we obtain that

‖S(hn)xn − x‖ ≤ ‖S(hn)xn − S(hn)x‖+ ‖S(hn)x− x‖
≤ L‖xn − x‖+ ‖S(hn)x− x‖.

This shows that S(hn)xn → x as n→∞. As a consequence,

Syn(hn)xn = S(hn)(xn + yn)− S(hn)yn → (x+ y)− y = x

as n→∞. The proof is complete. �

Proposition 2.7. Let x ∈ X with

sup
h∈(0,h0]

∥∥∥∥S(h)x− x
h

∥∥∥∥ <∞ for some h0 > 0.

Then, the map [0,∞) → X, t 7→ S(t)x is locally Lipschitz continuous, i.e., for every
T > 0, there exists some LT ≥ 0 such that ‖S(t)x−S(s)x‖ ≤ LT |t−s| for all s, t ∈ [0, T ].

Proof. Since the map [0,∞) → X, t 7→ S(t)x is continuous by Corollary 2.5, there
exists some constant CT ≥ 0 such that

sup
t∈(0,T ]

‖S(t)x− x‖
t

≤ CT .

By Corollary 2.4, there exist L ≥ 0 and r > 0 such that

sup
t∈[0,T ]

‖S(t)y − S(t)z‖ ≤ L‖y − z‖ for all y, z ∈ B(x, r).

Further, there exists some n ∈ N such that suph∈[0,δ] ‖S(h)x − x‖ ≤ r, where δ := T
n .

Now, let LT := LCT and s, t ∈ [0, T ] with s ≤ t. If t− s ∈ [0, δ], we have that

‖S(t)x− S(s)x‖ ≤ L‖S(t− s)x− x‖ ≤ LT (t− s).
In general, there exist k ∈ {0, . . . , n− 1} and h ∈ [0, δ] such that t− s = kδ+ h. Then,

‖S(t)x− S(s)x‖ ≤ ‖S(t)x− S(s+ kδ)x‖+
k∑
j=1

∥∥S(s+ jδ)x− S
(
s+ (j − 1)δ

)
x
∥∥

≤ LT
(
t− (s+ kδ)

)
+ LTkδ = LT (t− s).

The proof is complete. �
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3. Convex semigroups on σ-Dedekind complete Banach lattices

3.1. The generator and its domain. In this subsection, we assume that the Banach
lattice X is Dedekind σ-complete, i.e. any countable non-empty subset of X, which
is bounded above, has a supremum. Moreover, we assume that X has the monotone
convergence property, i.e. for every increasing sequence (xn)n which is bounded above
one has limn→∞ ‖ supm∈N xm− xn‖ = 0. A typical examples is given by X = Lp(µ) for
p ∈ [1,∞) and some measure µ. Recall that S is a convex C0-semigroup on X.

Definition 3.1. We define the generator A : D(A) ⊂ X → X of S by

D(A) :=

{
x ∈ X :

S(h)x− x
h

is convergent for h ↓ 0

}
(3.1)

and Ax := limh↓0
S(h)x−x

h for x ∈ D(A).

In this subsection, we investigate properties of the generator A and its domain D(A).
A fundamental ingredient for the analysis is the directional derivative of a convex
operator, see also Appendix B. Fix t ≥ 0. Since S(t) : X → X is a convex operator,
the function

R \ {0} → X, h 7→ S(t)(x+ hy)− S(t)x

h
is increasing for all x, y ∈ X. In particular,

−Sx(t)(−y) ≤ S(t)(x− hy)− S(t)x

−h
≤ S(t)(x+ hy)− S(t)x

h
≤ Sx(t)y

for x, y ∈ X and h ∈ (0, 1]. Since for all x, y ∈ X and every sequence (hn)n in (0,∞)
with hn → 0 one has

inf
n

S(t)(x+ hny)− S(t)x

hn
∈ X and sup

n

S(t)x− S(t)(x− hny)

hn
∈ X,

the operators

S′+(t, x)y := inf
h>0

S(t)(x+ hy)− S(t)x

h
and S′−(t, x)y := sup

h<0

S(t)(x+ hy)− S(t)x

h
(3.2)

are well-defined with values in X. Due to the monotone convergence property one has∥∥∥∥S′±(t, x)y ∓ S(t)(x± hy)− S(t)x

h

∥∥∥∥→ 0 as h ↓ 0. (3.3)

If the left and right directional derivatives coincide, then the directional derivative
is continuous in time. More precisely, the following holds.

Proposition 3.2. Suppose that S′+(t, x)y = S′−(t, x)y for some x, y ∈ X and some
t ≥ 0. Then, the maps [0,∞) → X, s 7→ S′±(s, x)y are continuous at t. In particular,
lims↓0 S

′
±(s, x)y = y.

Proof. Since S′−(s, x)y = −S′+(s, x)(−y) for all s ≥ 0, it suffices to prove the continuity
of the map [0,∞)→ X, s 7→ S′+(s, x)y at t. For all s ≥ 0 and h > 0, let

Dh,±(s, x)y :=
S(s)(x± hy)− S(s)x

±h
.

By Corollary 2.5, the mapping [0,∞)→ X, s 7→ Dh,±(s, x)y is continuous for all h > 0.
Let ε > 0. By (3.3), there exists some hε > 0 with∥∥Dhε,+(t, x)y − S′+(t, x)y

∥∥ < ε

4
and

∥∥Dhε,−(t, x)y − S′−(t, x)y
∥∥ < ε

4
.
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Since the mapping [0,∞)→ X, s 7→ Dhε,±(s, x)y is continuous, there exists some δ > 0
such that∥∥Dhε,+(s, x)y −Dhε,+(t, x)y

∥∥ < ε

4
and

∥∥Dhε,−(s, x)y −Dhε,−(t, x)y
∥∥ < ε

4

for all s ≥ 0 with |s− t| < δ. Hence,∥∥Dhε,+(s, x)y − S′+(t, x)y
∥∥ < ε

2
and

∥∥Dhε,−(s, x)y − S′−(t, x)y
∥∥ < ε

2
(3.4)

for all s ≥ 0 with |s− t| < δ. Since S′−(s, x)y ≤ S′+(s, x)y, we obtain that

S′+(s, x)y − S′−(t, x)y ≥ S′−(s, x)y − S′−(t, x)y ≥ Dhε,−(s, x)y − S′−(t, x)y

for all s ≥ 0. On the other hand,

S′+(s, x)y − S′+(t, x)y ≤ Dhε,+(s, x)y − S′+(t, x)y

for all s ≥ 0. Now, since S′+(t, x)y = S′−(t, x)y, we obtain that∣∣S′+(s, x)y − S′+(t, x)y
∣∣ ≤ ∣∣Dhε,+(s, x)y − S′+(t, x)y

∣∣+
∣∣Dhε,−(s, x)y − S′−(t, x)y

∣∣
for all s ≥ 0 and therefore, by (3.4),∥∥S′+(t, x)y − S′+(s, x)y

∥∥ < ε

for all s ≥ 0 with |s− t| < δ. Since S(0) = idX is linear, it follows that

S′+(0, x) = S′−(0, x) = idX

and therefore, limt↓0 S
′
±(t, x)y = S′±(0, x)y = y. �

It is a straightforward application of Proposition 2.7 that [0,∞) → X, t 7→ S(t)x
is locally Lipschitz continuous for all x ∈ D(A). The following first main result states
that it is even continuously differentiable on the domain.

Theorem 3.3. Let x ∈ D(A) and t ≥ 0.

(i) It holds S(t)x ∈ D(A) with

AS(t)x = S′+(t, x)Ax.

If S(t) is linear, this results in the well-known relation AS(t)x = S(t)Ax.
(ii) For t > 0, one has

lim
h↓0

S(t)x− S(t− h)x

h
= S′−(t, x)Ax.

(iii) It holds S′+(t, x)Ax = S′−(t, x)Ax. The mapping [0,∞) → X, s 7→ S(s)x is
continuously differentiable and the derivative is given by

d
dsS(s)x = AS(s)x = S′±(s, x)Ax for s ≥ 0.

(iv) It holds

S(t)x− x =

∫ t

0
AS(s)x ds =

∫ t

0
S′+(s, x)Ax ds =

∫ t

0
S′−(s, x)Axds.

Proof. (i) Let t ≥ 0 and (hn)n in (0,∞) with hn ↓ 0. Then,

S(t+ hn)x− S(t)x

hn
− S(t)(x+ hnAx)− S(t)x

hn
=
S(t)S(hn)x− S(t)(x+ hnAx)

hn
.

By Corollary 2.4, there exist L ≥ 0 and r > 0 such that

‖S(t)y − S(t)z‖ ≤ L‖y − z‖
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for all y, z ∈ B(x, r). For n ∈ N sufficiently large, we thus obtain that∥∥∥∥S(t)S(hn)x− S(t)(x+ hnAx)

hn

∥∥∥∥ ≤ L∥∥∥∥S(hn)x− x
hn

−Ax
∥∥∥∥→ 0.

Since, by (3.3),

S(t)(x+ hnAx)− S(t)x

hn
→ S′+(t, x)Ax,

we obtain the assertion.
(ii) Let t > 0 and (hn)n in (0, t] with hn ↓ 0. Then,

S(t)x− S(t− hn)x

hn
− S(t)x− S(t)(x− hnAx)

hn
=
S(t)(x− hnAx)− S(t− hn)x

hn
.

Again, by Corollary 2.4, there exist L ≥ 0 and r > 0 such that

sup
s∈[0,t]

‖S(s)y − S(s)z‖ ≤ L‖y − z‖

for all y, z ∈ B(x, r). By Corollary 2.6, we have S(hn)(x − hnAx) → x. Hence, for
n ∈ N sufficiently large, it follows that∥∥∥∥S(t− hn)S(hn)(x− hnAx)− S(t− hn)x

hn

∥∥∥∥ ≤ L∥∥∥∥S(hn)(x− hnAx)− x
hn

∥∥∥∥.
Using Corollary 2.6 and the convexity of Sx and Sx−hnAx, we find that, for sufficiently
large n ∈ N,

S(hn)(x− hnAx)− x
hn

=
Sx(hn)(−hnAx)

hn
+
S(hn)x− x

hn

≤ Sx(hn)(−Ax) +
S(hn)x− x

hn
→ 0

and

x− S(hn)(x− hnAx)

hn
=
Sx−hnAx(hn)(hnAx)

hn
− S(hn)x− x

hn

≤ Sx−hnAx(hn)(Ax)− S(hn)x− x
hn

→ 0.

This shows that
∥∥S(hn)(x−hnAx)−x

hn

∥∥→ 0, which implies that∥∥∥∥S(t)x− S(t− hn)x

hn
− S(t)x− S(t)(x− hnAx)

hn

∥∥∥∥→ 0.

Since, by (3.3),

S(t)x− S(t)(x− hnAx)

hn
→ S′−(t, x)Ax,

we obtain the assertion.
(iii) By definition, it holds S′+(t, x)Ax ≥ S′−(t, x)Ax, and, for t = 0,

S′+(0, x)Ax = S′−(0, x)Ax = Ax.
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Therefore, let t > 0 and 0 < h ≤ t. Then, by convexity of SS(t−h)x, for h sufficiently
small, it holds

S(t+ h)x− S(t)x

h
=
S(h)S(t)x− S(h)S(t− h)x

h

=
SS(t−h)x(h)

(
S(t)x− S(t− h)x

)
h

≤ SS(t−h)x(h)

(
S(t)x− S(t− h)x

h

)
,

which implies that

S′+(t, x)Ax = AS(t)x = lim
h↓0

S(t+ h)x− S(t)x

h

≤ lim
h↓0

SS(t−h)x(h)

(
S(t)x− S(t− h)x

h

)
= S′−(t, x)Ax,

where we used Corollary 2.6 in the last step. Now, Proposition 3.2 yields that the
mapping [0,∞)→ X, s 7→ S′+(s, x)Ax is continuous.

(iv) This follows directly from (iii) using the fundamental theorem of calculus. �

As in the linear case, the generator of a convex C0-semigroup is closed.

Proposition 3.4. The generator A is closed, i.e. for every sequence (xn)n in D(A)
with xn → x ∈ X and Axn → y ∈ X, one has x ∈ D(A) and Ax = y.

Proof. First, notice that

−Sxn(s)(−Axn) ≤ S′+(s, xn)Axn ≤ Sxn(s)Axn.

By Corollary 2.4, there exist L ≥ 0 and r > 0 such that

sup
s∈[0,1]

‖S(s)w − S(s)z‖ ≤ L‖w − z‖

for all w, z ∈ B(x± y, r). Hence, for n ∈ N sufficiently large,

‖Sxn(s)Axn − Sxn(s)y‖ ≤ L‖Axn − y‖ and

‖Sxn(s)(−Axn)− Sxn(s)(−y)‖ ≤ L‖Axn − y‖,
so that

‖S′+(s, xn)Axn − y‖ ≤ 2L‖Axn − y‖+ ‖Sxn(s)y − y‖+ ‖Sxn(s)(−y) + y‖
for all s ∈ [0, 1]. By Theorem 3.3,

S(h)xn − xn
h

− y =
1

h

∫ h

0

(
S′+(s, xn)Axn − y

)
ds

for all h > 0. Hence, for fixed h ∈ (0, 1], we find that∥∥∥∥S(h)x− x
h

− y
∥∥∥∥ = lim

n→∞

∥∥∥∥S(h)xn − xn
h

− y
∥∥∥∥ ≤ lim sup

n→∞

1

h

∫ h

0

∥∥S′+(s, xn)Axn − y
∥∥ds

≤ lim
n→∞

2L‖Axn − y‖+ sup
0≤s≤h

(
‖Sxn(s)y − y‖+ ‖Sxn(s)(−y) + y‖

)
= sup

0≤s≤h

(
‖Sx(s)y − y‖+ ‖Sx(s)(−y) + y‖

)
.
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This shows that∥∥∥∥S(h)x− x
h

− y
∥∥∥∥ ≤ sup

0≤s≤h

(
‖Sx(s)y − y‖+ ‖Sx(s)(−y) + y‖

)
→ 0 as h ↓ 0.

That is, x ∈ D(A) with Ax = y. �

Theorem 3.3 shows that, for x ∈ D(A), the function t 7→ S(t)x is a C1-solution of
the Cauchy problem

y′(t) = Ay(t) (t > 0), y(0) = x.

The following theorem is the second main result of this section and shows uniqueness
of the solution.

Theorem 3.5. Let y : [0,∞) → X be a continuous function with y(t) ∈ D(A) for all
t ≥ 0 and ∥∥∥∥y(t+ h)− y(t)

h
−Ay(t)

∥∥∥∥→ 0 as h ↓ 0 for all t ≥ 0.

Then, y(t) = S(t)x for all t ≥ 0, where x := y(0).

Proof. Let t > 0 and g(s) := S(t − s)y(s) for all s ∈ [0, t]. Fix s ∈ [0, t). For every
h > 0 with h ≤ t− s, one has

g(s+ h)− g(s)

h
=
S(t− s− h)y(s+ h)− S(t− s)y(s)

h

=
SS(h)y(s)(t− s− h)

(
y(s+ h)− S(h)y(s)

)
h

.

By Proposition 2.2, there exist L ≥ 0 and r > 0 such that

sup
τ∈[0,t]

‖Sx(τ)z‖ ≤ L‖z‖ (3.5)

for all x ∈ B(y(s), r) and z ∈ B(0, r). Hence, for h sufficiently small, it follows that∥∥∥∥SS(h)y(s)(t− s− h)
(
y(s+ h)− S(h)y(s)

)
h

∥∥∥∥ ≤ L∥∥∥∥y(s+ h)− S(h)y(s)

h

∥∥∥∥,
where we used that limh↓0 y(s+ h) = y(s) = limh↓0 S(h)y(s). Since y(s) ∈ D(A),

y(s+ h)− S(h)y(s)

h
=
y(s+ h)− y(s)

h
− S(h)y(s)− y(s)

h
→ Ay(s)−Ay(s) = 0

as h ↓ 0. This shows that g(s+h)−g(s)
h → 0 as h ↓ 0.

We next show that the map g : [0, t] → X is continuous. Since its right derivative
exists, it follows that limh↓0 g(s+ h) = g(s) for s ∈ [0, t). Now, let s ∈ (0, t] and h > 0
sufficiently small. Then,

g(s− h)− g(s) = S(t− s)S(h)y(s− h)− S(t− s)y(s)

= Sy(s)(t− s)
(
S(h)y(s− h)− y(s)

)
.

Since y(s − h) → y(s) as h ↓ 0, it follows that S(h)y(s − h) → y(s) as h ↓ 0 by
Corollary 2.6. Together with (3.5), we obtain that limh↓0 g(s− h) = g(s).

Finally, fix µ in the dual space X ′. Since µg : [0, t] → R is continuous and its
right derivative vanishes on [0, t), it follows from [23, Lemma 1.1, Chapter 2] that
[0, t]→ X, s 7→ µg(s) is constant. In particular, µy(t) = µg(t) = µg(0) = µS(t)x. This
shows that y(t) = S(t)x, as X ′ separates the points of X. �
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Remark 3.6. With similar arguments as in the proof the previous theorem, one can show
the following statement: Let y : [0,∞)→ X be a continuous function with y(t) ∈ D(A)
for all t ≥ 0 and∥∥∥∥y(t)− y(t− h)

h
−Ay(t)

∥∥∥∥→ 0 as h ↓ 0 for all t > 0.

Then, y(t) = S(t)x for all t ≥ 0 with x := y(0).

Theorem 3.5 implies that convex semigroups are determined by their generators as
soon as the domain is dense.

Corollary 3.7. Let T be a convex C0-semigroup with generator B ⊂ A, i.e. D(B) ⊂
D(A) and A|D(B) = B. If D(B) = X, then S(t) = T (t) for all t ≥ 0.

Proof. For every x ∈ D(B), the mapping [0,∞)→ X, t 7→ T (t)x satisfies the assump-
tions of Theorem 3.5. Indeed, [0,∞) → X, t 7→ T (t)x is continuous by Corollary 2.5,
and, by Theorem 3.3, T (t)x ∈ D(B) ⊂ D(A) for all t ≥ 0 with

lim
h↓0

T (t+ h)x− T (t)x

h
= lim

h↓0

T (h)T (t)x− T (t)x

h
= BT (t)x = AT (t)x.

By Theorem 3.5, it follows that T (t)x = S(t)x for all t ≥ 0. Finally, since, by Corollary

A.4, the bounded convex functions T (t) and S(t) are continuous and D(B) = X, it
follows that S(t) = T (t) for all t ≥ 0. �

Corollary 3.8. The abstract Cauchy problem

(CP)

{
y′(t) = Ay(t), for all t ≥ 0,

y(0) = x

is (classically) well-posed in the following sense:

(i) For all x ∈ D(A), (CP) has a unique classical solution y ∈ C1([0,∞);X) with
y(t) ∈ D(A) for all t ≥ 0 and Ay ∈ C([0,∞);X).

(ii) For all x0 ∈ D(A) and T > 0, there exist L ≥ 0 and r > 0 such that

sup
t∈[0,T ]

‖y(t, x)− y(t, z)‖ < L‖x− z‖ for all x, z ∈ D(A) ∩B(x0, r),

where y( · , x) denotes the unique solution to (CP) with initial value x ∈ D(A).
(iii) For all t > 0 and r > 0, there exists some constant C ≥ 0 such that

‖y(t, x)‖ ≤ C for all x ∈ D(A) with ‖x‖ ≤ r.

Proof. By Theorem 3.3 and Theorem 3.5, it follows that, for every x ∈ D(A), the
Cauchy problem (CP) has a unique classical solution y ∈ C1([0,∞);X) with y(t) ∈
D(A) for all t ≥ 0 and Ay ∈ C([0,∞);X) which is given by y(t) = S(t)x. By Corollary
2.4, we obtain (ii), and (iii) is the boundedness of the operator S(t). �

Remark 3.9. Assume that for some operator A0 : D(A0) ⊂ X → X the abstract Cauchy
problem is well-posed in the sense of Corollary 3.8. Let the domain D(A0) be a dense
linear subspace of X, and assume that the map D(A0) → X, x 7→ y(t, x) is convex
for all t ≥ 0. Then, there exists a unique convex C0-semigroup S = (S(t))t∈[0,∞) with
S(t)x = y(t, x) for all x ∈ D(A0). Moreover, A0 ⊂ A, where A is the generator of
S, and D(A0) is S(t)-invariant for all t ≥ 0, i.e. S(t)x ∈ D(A0) for all t ≥ 0 and
x ∈ D(A0).

In fact, we can define the operator S(t)x := y(t, x) for all t ≥ 0 and x ∈ D(A0). As
S(t) is bounded by (iii) and convex, it is Lipschitz on bounded subsets of D(A0) by
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Corollary A.4. Therefore, there exists a unique continuous extension S(t) : X → X,
which again is bounded and convex. By the uniqueness in (i), the semigroup property
for the family S = (S(t))t∈[0,∞) holds for all x ∈ D(A0), and therefore for all x ∈ X.
Similarly, the strong continuity follows by y(·, x) ∈ C([0,∞);X) for x ∈ D(A0) and
(ii). Finally, as, for every x ∈ D(A0), the function y(·, x) is differentiable at zero with
derivative Ax, we obtain D(A0) ⊂ D(A) with A|D(A0) = A0 as well as, by (i), the
invariance of D(A0) under S(t).

In this way, we can construct a convex C0-semigroup by solving the Cauchy problem
only for initial values x ∈ D(A0). In applications, one might have D(A0) being much
smaller than D(A).

3.2. Semigroup envelopes. In this subsection, let X be a Banach lattice which is
Dedekind super complete, i.e. every non-empty subset which is bounded above has
a countable subset with identical supremum, and satisfies the monotone convergence
property (see beginning of this section). The typical example for X is Lp for 1 ≤ p <∞.
For two semigroups S and T on X, we write S ≤ T if

S(t)x ≤ T (t)x for all t ≥ 0 and x ∈ X.

Throughout this section, let (Sλ)λ∈Λ be a family of convex monotone semigroups on
X. We say that a semigroup S is an upper bound of (Sλ)λ∈Λ if S ≥ Sλ for all λ ∈ Λ.

Definition 3.10. We call a semigroup S (if existent) the semigroup envelope of (Sλ)λ∈Λ

if it is the smallest upper bound of (Sλ)λ∈Λ, i.e. if S is an upper bound of (Sλ)λ∈Λ and
S ≤ T for any other upper bound T of (Sλ)λ∈Λ.

Notice that the definition of a semigroup envelope already implies its uniqueness.
However, the existence of a semigroup envelope is not given in general. In [10] and
[20] the existence of a semigroup envelope, under certain conditions, has been shown
for families of semigroups on spaces of uniformly continuous functions. This is done
following an idea of Nisio [22], who was, to the best of our knowledge, the first to inves-
tigate the existence of semigroup envelopes. Moreover, it was shown (cf. [10],[20],[22])
that, for C0-semigroups, there is a relation between the semigroup envelope, that is the
supremum, of a family of semigroups and the pointwise supremum of their generators.
In this subsection, we now want to show that the construction of Nisio, which is a
pointwise optimization on a finer and finer time-grid, can be realized on Dedekind su-
per complete Banach lattices. Moreover, we show that the ansatz proposed by Nisio is
in fact the only way to construct the supremum of a family of semigroups. We further
show that, under certain conditions, the semigroup envelope is strongly continuous and
a sublinear monotone C0-semigroup, which makes the results from the previous subsec-
tion applicable to the semigroup envelope of certain families of linear C0-semigroups. In
view of the examples in [10] and [20], this could be the starting point for Lp-semigroup
theory for a large class of Hamilton-Jacobi-Bellman equations.

In the sequel, we consider finite partitions P := {π ⊂ [0,∞) : 0 ∈ π, π finite}.
For a partition π = {t0, t1, . . . , tm} ∈ P with 0 = t0 < t1 < . . . < tm we define
|π|∞ := maxj=1,...,m(tj − tj−1). The set of partitions with end-point t is denoted by Pt,
i.e. Pt := {π ∈ P : maxπ = t}.

Assume that the set {Sλ(t)x : λ ∈ Λ} is bounded above for all x ∈ X and all t > 0.
Let x ∈ X. Then, we set

Jhx := sup
λ∈Λ

Sλ(h)x
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for all h > 0 and

Jπx := Jt1−t0 · · · Jtm−tm−1x

for any partition π = {t0, t1, . . . , tm} ∈ P with 0 = t0 < t1 < . . . < tm.

Theorem 3.11. Assume that, for all t ≥ 0, there is a bounded operator C(t) : X → X
with Jπx ≤ C(t)x for all π ∈ Pt and x ∈ X. Then, the semigroup envelope S =
(S(t))t∈[0,∞) of (Sλ)λ∈Λ exists, is a convex monotone semigroup, and is given by

S(t)x = sup
π∈Pt

Jπx (3.6)

for all t ≥ 0 and x ∈ X. If C(t)x→ x as t ↓ 0 for all x ∈ X and Sλ0 is a C0-semigroup
for some λ0 ∈ Λ, then S is strongly continuous. Moreover, if Sλ is sublinear for all
λ ∈ Λ, then the semigroup envelope S sublinear.

Proof. Clearly, we have that Sλ(h)x ≤ Jhx for all λ ∈ Λ, h > 0 and all x ∈ X.
Moreover, Jh is monotone and convex for all h ≥ 0 since Sλ is montone and convex for
all λ ∈ Λ. Consequently, Jπ is monotone and convex with Sλ(t)x ≤ Jπx ≤ C(t)x for
all λ ∈ Λ, t ≥ 0, π ∈ Pt and x ∈ X, showing that S = (S(t))t≥0, given by (3.6), is
well-defined, monotone, convex and an upper bound of the family (Sλ)λ∈Λ. Moreover,
one directly sees that S is sublinear as soon as all Sλ are sublinear. From

Sλ0(t)x ≤ S(t)x ≤ C(t)x and Sλ0(t)x− x ≤ S(t)x− x ≤ C(t)x− x,

it follows that

‖S(t)x‖ ≤ ‖Sλ0(t)x‖+ ‖C(t)x‖
and

‖S(t)x− x‖ ≤ ‖Sλ0(t)x− x‖+ ‖C(t)x− x‖
for all t ≥ 0, x ∈ X and some (arbitrary) λ0 ∈ Λ. This implies that S(t) is bounded
for all t ≥ 0 and that limt↓0 S(t)x = x as soon as C(t)x → x as t ↓ 0 and Sλ0 is a
C0-semigroup for some λ0 ∈ Λ. Next, we show that S = (S(t))t≥0, defined by (3.6), is a
semigroup. Clearly, S(0)x = x for all x ∈ X. In order to show that S(t+s) = S(t)S(s)
for all s, t ≥ 0, let s, t ≥ 0 and x ∈ X. Then, it is easily seen that S(t+s)x ≤ S(t)S(s)x
since, for all π ∈ Pt+s,

Jπx ≤ Jπ0Jπ1x,
where π0 := {u ∈ π : u ≤ t} ∪ {t} and π1 := {u− t : u ∈ π, u ≥ t} ∪ {0}. On the other
hand, there exists a sequence (πn)n in Ps with S(s)x = supn∈N Jπnx. Defining

π∗n :=
n⋃
k=1

πk

for all n ∈ N, we obtain that Jπ∗nx → S(s)x, by the monotone convergence property.
Consequently,

JπS(s)x = lim
n→∞

JπJπ∗nx ≤ S(t+ s)x

for all π ∈ Pt, where, in the first equality, we used the fact that Jπ is continuous since
it is convex and bounded (see Lemma A.2). Taking the supremum over all π ∈ Pt, we
obtain that S(t)S(s)x ≤ S(t+ s)x.

Finally, let T be an upper bound of (Sλ)λ∈Λ. Then, Jhx ≤ T (h)x for all h > 0 and
all x ∈ X and consequently Jπx ≤ T (t)x for all t ≥ 0, π ∈ Pt and x ∈ X, which shows
that S(t)x ≤ T (t)x for all t ≥ 0 and x ∈ X. �
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Corollary 3.12. Let the semigroup T be an upper bound of the family (Sλ)λ∈Λ. Then,
the semigroup envelope of (Sλ)λ∈Λ exists and is given by (3.6). If T is a C0-semigroup
and Sλ0 is a C0-semigroup for some λ0 ∈ Λ, then S is a C0-semigroup.

Proof. As we saw in the proof of the previous theorem, Sλ(t)x ≤ Jπx ≤ T (t)x for all
λ ∈ Λ, t ≥ 0, π ∈ Pt and x ∈ X. Therefore, the upper bound C(t) in the previous
theorem can be chosen to be T (t). �

Corollary 3.13. Let S be the semigroup envelope of the family (Sλ)λ∈Λ. Then,

S(t)x = sup
π∈Pt

Jπx

for all t ≥ 0 and x ∈ X.

3.3. Convolution semigroups on Lp. Let d ∈ N. In [10], the semigroup envelope,
discussed in the previous subsection, has been constructed for a wide class of Lévy
processes. In [10, Example 3.2], the authors consider families (Sλ)λ∈Λ of semigroups
on the space BUC = BUC(Rd) of bounded uniformly continuous functions, which are
indexed by a Lévy triplet λ = (b,Σ, µ). Recall that a Lévy triplet (b,Σ, µ) consists
of a vector b ∈ Rd, a symmetric positive semidefinite matrix Σ ∈ Rd×d and a Lévy
measure µ on Rd. For each Lévy triplet λ, the semigroup Sλ is the one generated by
the transition kernels of a Lévy process with Lévy triplet λ. More precisely,(

Sλ(t)x
)
(u) := E

[
x(u+ Lλt )

]
(3.7)

for t ≥ 0, x ∈ BUC and u ∈ Rd, where Lλt is a Lévy process on a probability space
(Ω,F ,P) with Lévy triplet λ. In [10, Example 3.2], it was shown that, under the
condition

sup
(b,Σ,µ)∈Λ

|b|+ |Σ|+
∫
Rd\{0}

1 ∧ |y|2 dµ(y) <∞, (3.8)

the semigroup envelope SBUC for the family (Sλ)λ∈Λ exists and that in this case (cf.
[10, Lemma 5.10])

lim
h↓0

∥∥∥∥SBUC(h)x− x
h

− sup
λ∈Λ

Aλx

∥∥∥∥
∞

= 0 for x ∈ BUC2. (3.9)

Here, BUC2 = BUC2(Rd) is the space of all twice differentiable functions with bounded
uniformly continuous derivatives up to order 2 and Aλ is the generator of the semigroup
Sλ for each λ ∈ Λ. Notice that the setup in [10] is not contained in the setup of the
previous subsection since BUC is not Dedekind super complete and does not satisfy the
monotone convergence property. Recall that, for each Lévy triplet λ, (3.7) also gives
rise to a linear monotone C0-semigroup on Lp = Lp(Rd), which will again be denoted by
Sλ (cf. [2, Theorem 3.4.2]). Therefore, the question arises if under a similar condition
as (3.8), the semigoup envelope of the family (Sλ)λ∈Λ can be constructed on Lp. In
general, the answer to this question is negative as the following example shows.

Example 3.14 (Uncertain shift semigroup). Let d = 1 and (Sλ(t)x)(u) := x(u + tλ)
for λ ∈ Λ := [−1, 1], t ≥ 0, x ∈ Lp(R) and u ∈ R. Then, for x ∈ Lp(R) given by

x(u) = |u|−1/2p1[−1,1](u),

sup
λ∈Λ

(Sλ(t)x)(u) =∞ for all t ≥ 0 and u ∈ [−t, t].

Therefore, the set {Sλ(t)x : λ ∈ Λ} does not have a least upper bound in Lp for all t > 0.
In particular, the semigroup envelope of the family (Sλ)λ∈Λ does not exist although the
set Λ satisfies condition (3.8).
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In view of the previous example, additional conditions are required in order to guar-
antee the existence of the semigroup envelope on Lp. In the sequel, let C∞c denote the
space of all C∞-functions x : Rd → R with compact support suppx.

Theorem 3.15. Let Λ be a non-empty set of Lévy triplets that satisfies (3.8).

(i) Assume that, for each t > 0, there exists a bounded operator C(t) : Lp → Lp

with

|Jπx| ≤ C(t)x for all t > 0, π ∈ Pt and x ∈ Lp. (3.10)

Then, the semigroup envelope S of (Sλ)λ∈Λ exists, and is a monotone sublinear
semigroup.

(ii) In addition to (3.10), assume that

sup
λ∈Λ

Aλx ∈ Lp for all x ∈ C∞c (3.11)

and that, for every x ∈ C∞c and every ε > 0, there exists a compact set K ⊂ Rd
with suppx ⊂ K and

lim sup
h↓0

(∫
Rd\K

∣∣(C(h)x
)
(u)
∣∣p

h
du

)1/p

≤ ε. (3.12)

Then, the semigroup S is a C0-semigroup, C∞c ⊂ D(A) and

Ax = sup
λ∈Λ

Aλx

for all x ∈ C∞c , where A denotes the generator of S.

Proof. (i) By Theorem 3.11, it is clear that (3.10) implies the existence of the semigroup
envelope S and that the latter is monotone and sublinear.

(ii) Let x ∈ C∞c . We show that x ∈ D(A) with Ax = supλ∈ΛAλx =: Bx. Let ε > 0.
By (3.11) and (3.12), there exists some compact set K ⊂ Rd with suppx ⊂ K and(∫

Rd\K

∣∣(Bx)(u)
∣∣pdu)1/p

<
ε

3
and

(∫
Rd\K

∣∣(C(h)x
)
(u)
∣∣p

h
du

)1/p

<
ε

3

for h > 0 sufficiently small. Since x ∈ Cc ⊂ BUC2∩Lp, it follows that S(t)x = SBUC(t)x
for all t ≥ 0. Hence, by (3.9),∥∥∥∥S(h)x− x

h
−Bx

∥∥∥∥
p

≤ vol(K)1/p

∥∥∥∥S(h)x− x
h

−Bx
∥∥∥∥
∞

+

(∫
Rd\K

∣∣(Bx)(u)
∣∣pdu)1/p

+

(∫
Rd\K

∣∣(S(h)x
)
(u)
∣∣p

h
du

)1/p

< ε

for h > 0 sufficiently small, where vol(K) denotes the Lebesgue measure of K.
In particular, ‖S(h)x − x‖p → 0 for all x ∈ C∞c . Since C∞c is dense in Lp and

S(t) : Lp → Lp is continuous, this implies the strong continuity of S. �

Notice that the semigroup envelope from the previous theorem is exactly the exten-
sion of the semigroup envelope on BUC, constructed in [10], to the space Lp. More
precisely, for each t ≥ 0, the operator S(t) is the unique bounded monotone sublinear
operator Lp → Lp with S(t)x = SBUC(t)x for all x ∈ BUC ∩ Lp. We will now give
two examples of Lévy semigroups (Sλ)λ∈Λ, where the semigroup envelope exists on Lp.
The first one is a semilinear version of Example 3.14. The problem in Example 3.14
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arises due to shifting sufficiently integrable poles. In order to treat this problem, one
first has to smoothen a given function x ∈ Lp via a suitable normal distribution and
then shift the smooth version of x. This results in the following example.

Example 3.16 (g-expectation). Let d ∈ N, p ∈ [1,∞), and

ϕλ(t, z) := (2πt)−d/2e−
|z+λt|2

2t for λ, z ∈ Rd and t > 0.

For λ ∈ Rd, we consider the linear C0-semigroup Sλ = (Sλ(t))t∈[0,∞) in Lp = Lp(Rd)
given by Sλ(0)x = x and(

Sλ(t)x
)
(u) :=

∫
Rd
x(v)ϕλ(t, u− v) dv =

(
x ∗ ϕλ(t, · )

)
(u) = E

[
x(u+Wt + λt)

]
for all t > 0, x ∈ Lp and u ∈ Rd, where (Wt)t∈[0,∞) is a d-dimensional Brownian Motion
on a probability space (Ω,F ,P). For each λ ∈ Λ, the generator Aλ of Sλ is given by
D(Aλ) = W 2,p and

Aλx = 1
2∆x+ λ · ∇x for x ∈W 2,p,

where ∆ denotes the Laplacian, ‘ · ’ is the scalar product in Rd, and W 2,p = W 2,p(Rd)
stands for the Lp-Sobolev space of order 2 (see also [19, Theorem 3.1.3] for the gen-
eration of a C0-semigroup in Lp and [25, Theorem 31.5] for the connection between
generator and Lévy triplet). Now, let Λ ⊂ Rd be a bounded and non-empty, and define(

Jhx
)
(u) := sup

λ∈Λ

(
Sλ(h)x

)
(u) for h ≥ 0, x ∈ Lp and u ∈ Rd. (3.13)

Notice that, for h > 0, Sλ(h)x ∈ BUC for all x ∈ Lp, which is why the supremum in
(3.13) can be understood pointwise for h > 0.

We show that the conditions of Theorem 3.15 are satisfied. For the construction of
an upper bound, we use the relation

ϕλ(h, u− v) = e−λ·(u−v)−h|λ|2/2ϕ0(h, u− v)

for all λ ∈ Rd, h > 0 and u, v ∈ Rd. With this and Hölder’s inequality, it follows that∣∣Jhx∣∣(u) =

∣∣∣∣ sup
λ∈Λ

∫
Rd
x(v)e−λ·(u−v)−h|λ|2/2ϕ0(h, u− v) dv

∣∣∣∣
=

∣∣∣∣ sup
λ∈Λ

E
[
x(u+Wh)e−λ·Wh−h|λ|2/2

]∣∣∣∣
≤
(
E
[
|x(u+Wh)|p

])1/p
sup
λ∈Λ

(
e−qh|λ|

2/2E
[
e−qλ·Wh

])1/q

=
(
E
[
|x(u+Wh)|p

])1/p
sup
λ∈Λ

e(q−1)h|λ|2/2

=
(
E
[
|x(u+Wh)|p

])1/p
e(q−1)hλ

2
/2 =:

(
C(h)x

)
(u),

where λ := supλ∈Λ |λ| and 1
p + 1

q = 1. As[
(C(h)x)(u)

]p
= eqhλ

2
/2
[
|x|p ∗ ϕ0(h, · )

]
(u),

we obtain that C(h1)C(h2) = C(h1 + h2) for h1, h2 > 0. Therefore,

|Jπx| ≤ C(t1 − t0) · · ·C(tm − tm−1)x = C(tm)x
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for any partition π = {t0, t1, . . . , tm} ∈ P with 0 = t0 < t1 < . . . < tm. By Fubini’s
theorem,

‖C(h)x‖pp = eqhλ
2
/2

∫
Rd

∫
Rd
|x(u− v)|pϕ0(h, v) dv du = eqhλ

2
/2‖x‖pp

for all h > 0 and x ∈ Lp, showing that C(h) : Lp → Lp is bounded.
Now, let x ∈ C∞c . We consider

(Bx)(u) := sup
λ∈Λ

(Aλx)(u) = 1
2∆x(u) + sup

λ∈Λ
λ · ∇x(u) (3.14)

for u ∈ Rd. As, for every λ ∈ Λ and u ∈ Rd,

|λ · ∇x(u)| ≤
d∑
j=1

|λj | |∂jx(u)| ≤ λ
d∑
j=1

|∂jx(u)|,

we obtain

‖Bx‖Lp ≤ C
(
‖∆x‖Lp + λ‖∇x‖Lp(Rd;Rd)

)
≤ C max{1, λ}‖x‖W 2,p , (3.15)

with a constant C independent of x and Λ, which shows, in particular, that Bx ∈ Lp
for all x ∈ C∞c .

It remains to verify (3.12). Let x ∈ C∞c , and choose a compact set K ⊂ Rd with
{u+v : u ∈ suppx, |v| ≤ 1} ⊂ K. For u ∈ Rd\K, we obtain x(u+Wh) = 0 if |Wh| ≤ 1,
and therefore,(

|x|p ∗ ϕ0(h, · )
)
(u) = E

(
|x(u+Wh)|p

)
= E

(
1{|Wh|>1}|x(u+Wh)|p

)
.

By Fubini’s theorem and Markov’s inequality, for any s > 2,

1

h

∫
Rd\K

E
(
1{|Wh|>1}|x(u+Wh)|p

)
du =

1

h
E
[
1{|Wh|>1}

∫
Rd\K

|x(u+Wh)|p du

]
≤ 1

h
‖x‖pp P(|Wh| > 1) =

1

h
‖x‖pp P

(
|W1| > h−1/2

)
≤ hs/2−1E

[
|W1|s

]
→ 0

as h ↓ 0. By definition of C(h), it follows that 1
h

∫
Rd\K

∣∣(C(h)x
)
(u)
∣∣p du→ 0 as h ↓ 0.

We have seen that all conditions of Theorem 3.15 are satisfied, and therefore the
semigroup envelope S = (S(t))t∈[0,∞) of (Sλ)λ∈Λ exists, and is a sublinear monotone
C0-semigroup.

As the map Rd → R, z 7→ supλ∈Λ λ·z is Lipschitz (which follows, e.g., by Lemma A.7),
the same holds for the nonlinearity

F : W 1,p → Lp, x 7→ sup
λ∈Λ

λ · ∇x,

where W 1,p = W 1,p(Rd) denotes the Lp-Sobolev space of order 1. In particular, the
operator B : W 2,p → Lp, x 7→ supλ∈ΛAλx, is well-defined and Lipschitz. Now let
x ∈ W 2,p, and let (xn)n be a sequence in C∞c with ‖x − xn‖W 2,p → 0. By the Lip-
schitz continuity of B, we see that (Bxn)n is a Cauchy sequence in Lp and therefore
convergent. By Theorem 3.15, we have Ax = Bx for all x ∈ C∞c , and as the gener-
ator A of S is closed due to Proposition 3.4, we obtain x ∈ D(A). Therefore, we see
that W 2,p ⊂ D(A). In particular, we obtain a unique classical solution to the Cauchy
problem in the sense of Corollary 3.8 for all initial values in D(A).

Notice that we did not use results from PDE theory in order to obtain the well-
posedness of the Cauchy problem. As the nonlinearity F is Lipschitz continuous as a
map from W 1,p to Lp, it can be shown that all assumptions of [19, Prop. 7.1.10 (iii)]
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are satisfied. Therefore, for every x ∈ W 2,p there exists a solution y ∈ C1([0,∞);Lp)
with y(t) ∈W 2,p for all t ≥ 0 that solves the Cauchy problem

y′(t) = By(t) for all t > 0, y(0) = x.

By Theorem 3.5, it follows that y(t) = S(t)x for all t ≥ 0 and x ∈W 2,p. In particular,
W 2,p is S(t)-invariant for all t ≥ 0. Therefore, S is the unique continuous extension of
the solution operator x 7→ y(·, x), which is defined on W 2,p.

Remark 3.17. In the above examples, we consider the uncertain shift semigroup and
the uncertain shift with known volatility (g-expectation). For the case of an uncertain
volatility matrix λ (G-expectation) and the corresponding fully nonlinear operator

(
Ax
)
(u) =

1

2
sup
λ∈Λ

tr
(
λ∇2x(u)

)
= sup

λ∈Λ

1

2

d∑
i,j=1

λij∂ijx(u),

the existence of the semigroup envelope in Lp seems to be an open problem.

Example 3.18 (Compound Poisson processes). Let µ : B(Rd)→ [0, 1] be a fixed prob-
ability measure. For λ ≥ 0, t ≥ 0, x ∈ Lp and u ∈ Rd, let(

Sλ(t)x
)
(u) := e−λt

∞∑
n=0

(λt)n

n!

∫
Rd
· · ·
∫
Rd
x(u+ v1 + . . .+ vn) dµ(v1) · · · dµ(vn).

Then, Sλ is the semigroup corresponding to a compound Poisson process with intensity
λ ≥ 0 and jump distribution µ. Now, let Λ ⊂ [0,∞) be bounded, λ := inf Λ and
λ := sup Λ. Let

Jhx := sup
λ∈Λ

Sλ(h)x for h ≥ 0 and x ∈ Lp.

Then, by Jensen’s inequality,∣∣Jhx∣∣(u) ≤
(

sup
λ∈Λ

e−λh
∞∑
n=0

(λh)n

n!

∫
Rd
· · ·
∫
Rd
|x(u+ v1 + . . .+ vn)|p dµ(v1) · · · dµ(vn)

)1/p

≤ e
(
λ−λ
)
h((Sλ(h)|x|p

)
(u)
)1/p

=:
(
C(h)x

)
(u)

for all h ≥ 0, x ∈ Lp and u ∈ Rd. As before, we see that C(h1)C(h2) = C(h1 + h2) for
all h1, h2 > 0 and

|Jπx| ≤ C(t1 − t0) · · ·C(tm − tm−1)x = C(tm)x

for any partition π = {t0, t1, . . . , tm} ∈ P with 0 = t0 < t1 < . . . < tm. Again, by
Fubini’s theorem,

‖C(h)x‖p = e

(
λ−λ
)
h‖x‖p

for all h ≥ 0 and x ∈ Lp, showing that C(h) : Lp → Lp is bounded. Let x ∈ C∞c .
It remains to show that 1

h

∫
Rd\K

∣∣(C(h)x
)
(u)
∣∣p du < ε for h > 0 sufficiently small.

However, this follows from the fact that∫
Rd

∣∣∣∣
(
Sλ(h)|x|p

)
(u)− |x(u)|p

h
− λ

∫
Rd
|x(u+ v)|p − |x(u)|p dµ(v)

∣∣∣∣du→ 0 as h ↓ 0.

By Theorem 3.15, the semigroup envelope S = (S(t))t∈[0,∞) of (Sλ)λ∈Λ exists, and is a
monotone, bounded and sublinear C0-semigroup. Let B : Lp → Lp be given by

(Bx)(u) := sup
λ∈Λ

λ

∫
Rd
x(u+ v)− x(v) dµ(v) for x ∈ Lp and u ∈ Rd.
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Then, we have A = B on C∞c by Theorem 3.15. Since B is bounded and sublinear,
and thus globally Lipschitz (see Lemma A.7), A is closed by Proposition 3.4 and C∞c is
dense in Lp, it follows that D(A) = Lp and therefore A = B. In particular, we obtain
a classical solution in the sense of Corollary 3.8 for all initial values x ∈ Lp.

Finally, we remark that due to the global Lipschitz continuity of B, we can also
apply the theorem of Picard-Lindelöf to obtain a unique solution y(·, x) to the abstract
initial value problem

y′(t) = By(t) for t > 0, y(0) = x,

for all x ∈ Lp. By Theorem 3.5, it follows that y(t, x) = S(t)x for all t ≥ 0 and x ∈ Lp.

4. The non σ-Dedekind complete case

In this section, we consider convex semigroups on Banach lattices which are not σ-
Dedekind complete. As we have seen in Example 3.14, the uncertain shift semigroup
cannot be defined on Lp, but we will see below that it is a convex C0-semigroup on the
space BUC of all bounded uniformly continuous functions. Another example, we are
going to discuss in this section, is the G-expectation, which is the solution to a fully
nonlinear version of the heat equation.

We assume that X is a Banach lattice which is a Riesz subspace of a Dedekind
σ-complete Riesz space X̄. For a sequence (xn)n in X, we write xn ↓ x if (xn)n is
decreasing, bounded from below, and x = infn xn ∈ X̄. A typical example is the space
BUC as a subspace of the space L∞ of all bounded measurable functions. We define

Xδ :=
{
x ∈ X̄ : xn ↓ x for some sequence (xn)n in X

}
.

Let M be the space of all positive linear functionals µ : X → R which are continuous
from above, i.e. µxn ↓ 0 for every sequence (xn)n in X such that xn ↓ 0. Every µ ∈M
has a unique extension µ : Xδ → R which is continuous from above, i.e. µxn ↓ µx for
every sequence (xn)n in Xδ such that xn ↓ x ∈ Xδ, see e.g. [9, Lemma 3.9]. We assume
that M separates the points of Xδ, i.e. for every x, y ∈ Xδ with x 6= y there exists some
µ ∈M with µx 6= µy.

Definition 4.1. A monotone semigroup S is called continuous from above if S(t)xn ↓
S(t)0 for all t ∈ [0,∞) and every sequence (xn)n in X with xn ↓ 0.

4.1. Invariant domains. As before, let S be a convex semigroup on X. In contrast to
Section 3, where the Banach lattice X is Dedekind σ-complete and has the monotone
convergence property, the domain

D(A) :=

{
x ∈ X :

S(h)x− x
h

is convergent in X for h ↓ 0

}
is in general not invariant under the semigroup. We therefore introduce the following
modified versions of the domain.

Definition 4.2. The domain D(Aδ) of the monotone generator Aδ is defined as the
set of all x ∈ X such that, for every (hn)n in (0,∞) with hn ↓ 0, there exists a sequence
(Anx)n in X and some y ∈ Xδ such that∥∥∥∥S(hn)x− x

hn
−Anx

∥∥∥∥→ 0 and Anx ↓ y. (4.1)

We define the monotone generator Aδ : D(Aδ) ⊂ X → Xδ of S by Aδx := y for
x ∈ D(Aδ), where y is the limit in (4.1), which is uniquely determined by Lemma B.1.
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Definition 4.3. The Lipschitz set of the semigroup S is defined as

DL :=

{
x ∈ X : sup

h∈(0,h0]

∥∥∥∥S(h)x− x
h

∥∥∥∥ <∞ for some h0 > 0

}
. (4.2)

We further define the symmetric Lipschitz set of the semigroup S by

Ds
L :=

{
x ∈ X : x,−x ∈ DL

}
.

Then the following holds.

Lemma 4.4. One has D(A) ⊂ D(Aδ) ⊂ DL, and Aδ|D(A) = A. If X is Dedekind
σ-complete and has the monotone convergence property, then D(A) = D(Aδ).

Proof. We first assume that x ∈ D(A). Then, for every hn ↓ 0 and Anx := Ax for all
n ∈ N, one has ∥∥∥∥S(hn)x− x

hn
−Anx

∥∥∥∥→ 0,

which shows that x ∈ D(Aδ) with Aδx = Ax.
We next assume that x ∈ D(Aδ). Then, there exists some h0 > 0 such that

sup
h∈(0,h0]

∥∥∥∥S(h)x− x
h

∥∥∥∥ <∞.
Otherwise, there exists a sequence hn ↓ 0 such that

∥∥S(hn)x−x
hn

∥∥ ≥ n for all n. Since x ∈
D(Aδ) there exists a bounded decreasing sequence (Anx)n in X such that Anx ↓ Aδx
and ∥∥∥∥S(hn)x− x

hn
−Anx

∥∥∥∥→ 0.

But then,

sup
n

∥∥∥∥S(hn)x− x
hn

∥∥∥∥ ≤ sup
n

∥∥∥∥S(hn)x− x
hn

−Anx
∥∥∥∥+ sup

n
‖Anx‖ <∞,

which is a contradiction. This shows that x ∈ DL. If, in addition, X is σ-Dedekind
complete and has the monotone convergence property, then Aδx ∈ X and ‖Anx −
Aδx‖ → 0, so that S(hn)x−x

hn
→ Aδx which shows that D(Aδ) = D(A). �

For every x ∈ X and y ∈ Xδ, the directional derivative is defined as

S′+(t, x)y = inf
h>0

S(t)(x+ hy)− S(t)x

h
∈ Xδ.

For further details on the directional derivative we refer to Appendix B. The main result
of this subsection is that both, D(Aδ) and DL, are invariant under the semigroup, and
states regularity properties in the time variable t.

Theorem 4.5. For every x ∈ DL one has

(i) S(t)x ∈ DL for all t ∈ [0,∞),
(ii) for every µ ∈M there is a locally bounded measurable function fµ : [0,∞)→ R

with µS(t)x = µx+
∫ t

0 fµ(s) ds for all x ∈ D(Aδ) and t ≥ 0.

For every x ∈ D(A) it holds

(iii) S(t)x ∈ D(Aδ) for all t ≥ 0 with AδS(t)x = S′+(t, x)Aδx,

(iv) µS(t)x = µx+
∫ t

0 µS
′
+(s, x)Aδx ds for every µ ∈M and all t ≥ 0. In particular,

fµ(s) = µS′+(s, x)Aδx for almost every s ∈ [0,∞).
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Moreover, (iii) and (iv) hold for all x ∈ D(Aδ) if, in addition, the semigroup is mono-
tone and continuous from above.

Proof. (i) Fix t ≥ 0. By Corollary 2.4 there exist L ≥ 0 and r > 0 such that

‖S(t)(y + x)− S(t)x‖ ≤ L‖y‖

for all y ∈ B(x, r). Since S(h)x→ x as h ↓ 0, it follows that∥∥∥∥S(h)S(t)x− S(t)x

h

∥∥∥∥ =

∥∥∥∥S(t)S(h)x− S(t)x

h

∥∥∥∥ ≤ L∥∥∥∥S(h)x− x
h

∥∥∥∥ <∞
for all h ∈ (0, h′0] and some h′0 > 0.

(ii) Since x ∈ DL, it follows from Proposition 2.7 that the map [0,∞)→ X, t 7→ S(t)x
is locally Lipschitz continuous. Fix µ ∈ M . Since µ is continuous on X, see e.g. [1,
Theorem 9.6], the map [0,∞) → R, t 7→ µS(t)x is also locally Lipschitz continuous

and is therefore in W 1,∞
loc

(
[0,∞)

)
by Lebesgue’s theorem. That is, there exists a locally

bounded measurable function fµ : [0,∞)→ R with µS(t)x = µx+
∫ t

0 fµ(s) ds.
(iii) Fix t > 0, let (hn)n be a sequence in (0,∞) with hn ↓ 0, and x ∈ D(A). By

Corollary 2.4, there exists some L > 0 such that∥∥∥∥S(t+ hn)x− S(t)x

hn
− S(t)(x+ hnAx)− S(t)x

hn

∥∥∥∥ =

∥∥∥∥S(t)S(hn)x− S(t)(x+ hnAx)

hn

∥∥∥∥
≤ L

∥∥∥∥S(hn)x− x− hnAx
hn

∥∥∥∥ = L

∥∥∥∥S(hn)x− x
hn

−Ax
∥∥∥∥→ 0 as n→∞.

Moreover, the sequence

An
(
S(t)x

)
:=

S(t)(x+ hnAx)− S(t)x

hn

is decreasing and satisfies An(S(t)x) ↓ S′+(t, x)Ax. This shows that S(t)x ∈ D(Aδ)
with AδS(t)x = S′+(t, x)Ax. Recall that Ax = Aδx for all x ∈ D(A) by Lemma 4.4.

If in addition, S is monotone, continuous from above, and x ∈ D(Aδ), then there
exists a bounded decreasing sequence (Anx)n in X such that∥∥∥∥S(hn)x− x

hn
−Anx

∥∥∥∥→ 0 and Anx ↓ Aδx.

By Corollary 2.4, there exists some L > 0 such that∥∥∥∥S(t+ hn)x− S(t)x

hn
− S(t)(x+ hnAnx)− S(t)x

hn

∥∥∥∥ ≤ L∥∥∥∥S(hn)x− x
hn

−Anx
∥∥∥∥→ 0

as n→∞. By Lemma B.4, the sequence (AnS(t)x) given by

AnS(t)x :=
S(t)(x+ hnAnx)− S(t)x

hn

is decreasing and satisfies AnS(t)x ↓ S′+(t, x)Aδx. This shows that S(t)x ∈ D(Aδ) with
AδS(t)x = S′+(t, x)Aδx.

(iv) Since x ∈ D(Aδ), it follows from Lemma 4.4 that x ∈ DL. Fix µ ∈ M . By (ii)
one has

µS(t)x = µx+

∫ t

0
fµ(s) ds
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for all t ≥ 0. In particular, t 7→ µS(t)x is differentiable almost everywhere. Since µ
is continuous from above it follows from the previous step (iii) that the derivative is
a.e. given by

fµ(t) = lim
h↓0

µS(t+ h)x− µS(t)x

h
= µAδS(t)x = µS′+(t, x)Aδx.

The proof is complete. �

For the symmetric Lipschitz set of a sublinear monotone semigroup, we have the
following proposition.

Proposition 4.6. Let S be sublinear and monotone. Then, the symmetric Lipschitz
set Ds

L is a linear subspace of X. If

−S(s)
(
− S(t)x

)
≥ S(t)

(
− S(s)(−x)

)
for all s, t ≥ 0 and x ∈ X, (4.3)

then S(t)x ∈ Ds
L for all t ≥ 0 and x ∈ Ds

L.

Proof. The sublinearity of S implies that

S(t)(x+ λy)− (x+ λy) ≤ S(t)x− x+ λ
(
S(t)y − y

)
and

−S(t)(x+ λy) + x+ λy ≤ S(t)(−x) + x+ λ
(
S(t)(−y) + y

)
for all x, y ∈ X and λ > 0. Consequently,

‖S(t)(x+λy)−(x+λy)‖ ≤ ‖S(t)x−x‖+‖S(t)(−x)+x‖+λ
(
‖S(t)y−y‖+‖S(t)(−y)+y‖

)
for all x, y ∈ X and λ > 0, which shows that x+ λy ∈ Ds

L for all x, y ∈ Ds
L and λ > 0.

Since −x ∈ Ds
L for all x ∈ Ds

L, it follows that Ds
L is a linear subspace of X.

Now, let x ∈ Ds
L and t ≥ 0. Since S(t) is sublinear and bounded, it is globally

Lipschitz with some Lipschitz constant L > 0 (see Lemma A.7). Therefore,

‖S(h)S(t)x− S(t)x‖ ≤ L‖S(h)x− x‖,
i.e. S(t)x ∈ DL. It remains to show that −S(t)x ∈ DL. First, observe that

−S(t)x− S(h)
(
− S(t)x

)
≤ −S(t)x+ S(h)S(t)x ≤ S(t)

(
S(h)x− x

)
and, by (4.3),

S(h)
(
− S(t)x

)
+ S(t)x ≤ −S(t)

(
− S(t)(−x)

)
+ S(t)x ≤ S(t)

(
S(h)(−x) + x

)
.

Therefore,∥∥S(h)
(
− S(t)x

)
+ S(t)x

∥∥ ≤ L(‖S(h)x− x‖+
∥∥(S(h)(−x) + x

)∥∥),
which shows that −S(t)x ∈ DL. �

Example 4.7. Let S be a translation-invariant sublinear monotone semigroup on the
space BUC = BUC(G), where G is an abelian group with a translation invariant metric
d such that (G, d) is separable and complete. Here, translation invariant means that(

S(t)x(u+ ·)
)
(0) =

(
S(t)x

)
(u) for all x ∈ BUC, u ∈ G and t ≥ 0.

The space BUC of all bounded uniformly continuous functions x : G → R is endowed
with the supremum norm ‖x‖∞ := supu∈G |x(u)|. Under mild continuity assumptions,
the semigroup has a dual representation(

S(t)x
)
(u) = sup

µ∈Pt

∫
G
x(u+ v) dµt(v) for all x ∈ BUC, u ∈ G and t ≥ 0. (4.4)
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where Pt is a convex set of Borel measures on G for all t ≥ 0. For further details on
dual representations we refer to [9]. For instance, such a dual representation holds if the
semigroup is continuous from above. An example, where the semigroup S satisfies (4.4),
is the semigroup envelope SBUC of a family (Sλ)λ∈Λ of linear convolution semigroups
of the form (3.7) satisfying (3.8) (see Section 3.3). For further examples, we refer to
[10]. Notice that, under (4.4),

−
(
S(t)(−x)

)
(u) = inf

µ∈Pt

∫
G
x(u+ v) dµt(v) for all x ∈ BUC, u ∈ G and t ≥ 0.

Then, for x ∈ BUC, u ∈ G, µt ∈ Pt and µs ∈ Ps, it follows from (4.4) and Fubini’s
theorem that∫

G

(
S(t)x

)
(u+ v) dµs(v) ≥

∫
G

∫
G
x(u+ v + w) dµt(w) dµs(v)

=

∫
G

∫
G
x(u+ v + w) dµs(v) dµt(w)

≥
∫
G
−
(
S(s)(−x)

)
(u+ w) dµt(w).

Taking the infimum over all µs ∈ Pt and supremum over all µt ∈ Ps yields

−S(s)
(
− S(t)x

)
≥ S(t)

(
− S(s)(x)

)
.

By Proposition 4.6, we thus find that Ds
L is S(t)-invariant for all t ≥ 0.

Remark 4.8. Consider the setup of the previous example. Given C ≥ 0 and h0 > 0, let
Ds
L(C, h0) denote the set of all x ∈ Ds

L such that ‖S(h)x−x‖∞ ≤ Ch and ‖S(h)(−x)+
x‖∞ ≤ Ch for all h ∈ [0, h0]. Let x ∈ Ds

L(C, h0) and ν be a Borel probability measure
on G. Then, one has xν ∈ Ds

L(C, h0), where xν(u) :=
∫
G x(u + v) ν(dv). In fact,

by a Banach space valued version of Jensen’s inequality (see e.g. [10] or [20]) and the
translation invariane of S,

S(h)xν − xν = S(h)

(∫
G
x( · + v) dν(v)

)
− xν ≤

∫
G

(
S(h)x

)
( · + v) dν(v)− xν

=

∫
G

(
S(h)x

)
( · + v)− x( · + v) dν(v) ≤ Ch

for all h ≥ 0. In a similar way, it follows that

S(h)(−xν) + xν ≤
∫
G

(
S(h)(−x)

)
( · + v) + x( · + v) dν(v) ≤ Ch

for all h ∈ [0, h0]. Combining these two estimates yields that∥∥S(h)xν − xν
∥∥
∞ ≤ Ch and

∥∥S(h)(−xν) + xν
∥∥
∞ ≤ Ch

for all h ∈ [0, h0], i.e. xν ∈ Ds
L(C, h0).

4.2. Uniqueness. Now, we are ready to state the main result of this paper. We show
that a convex semigroup is uniquely determined on D(Aδ) through its generator Aδ if
the semigroup is, in addition, monotone and continuous from above.

Theorem 4.9. Let S be a convex monotone C0-semigroup on X which is continuous
from above with monotone generator Aδ. Let y : [0,∞) → X be a continuous function



24 ROBERT DENK, MICHAEL KUPPER, AND MAX NENDEL

with y(t) ∈ D(Aδ) for all t ≥ 0, and assume that, for all t ≥ 0 and (hn)n in (0,∞)
with hn ↓ 0, there exists a bounded decreasing sequence (Bny(t))n in X such that∥∥∥∥y(t+ hn)− y(t)

hn
−Bny(t)

∥∥∥∥→ 0 and Bny(t) ↓ Aδy(t).

Then, y(t) = S(t)x for all t ≥ 0, where x := y(0).

Proof. Let t > 0 and g(s) := S(t − s)y(s) for all s ∈ [0, t]. Fix s ∈ (0, t). For every
h > 0 with h < t− s one has

g(s+ h)− g(s)

h
=
S(t− s− h)y(s+ h)− S(t− s)y(s)

h

=
S(t− s− h)y(s+ h)− S(t− s− h)y(s)

h

− S(t− s− h)S(h)y(s)− S(t− s− h)y(s)

h
.

Let (hn)n in (0,∞) with hn ↓ 0 and µ ∈ M . By assumption, for y := y(s) ∈ D(Aδ),
there exists a bounded decreasing sequence (Bny)n with∥∥∥∥y(s+ hn)− y(s)

hn
−Bny

∥∥∥∥→ 0 and Bny ↓ Aδy. (4.5)

Define

νnz :=
µS(t− s− hn)(y + hnz)− µS(t− s− hn)y

hn
and νz := lim sup

n→∞
νnz

for every z ∈ Xδ and all n for which t− s−hn > 0, where we take the unique extension
of S to Xδ given by Lemma B.2. By Corollary 2.4, there exists some L > 0 such that∥∥∥∥S(t− s− hn)y(s+ hn)− S(t− s− hn)

(
y + hnBny)

)
hn

∥∥∥∥ ≤ L∥∥∥∥y(s+ hn)− y
hn

−Bny
∥∥∥∥→ 0

as n→∞. Therefore, we conclude that

lim sup
n→∞

µ

(
S(t− s− hn)y(s+ hn)− S(t− s− hn)y

hn

)
= lim sup

n→∞
νnBny. (4.6)

We next show that

lim sup
n→∞

νnBny = νAδy. (4.7)

To that end, we first show

νz ≤ inf
h>0

µS(t− s)(y + hz)− µS(t− s)y
h

(4.8)

for all z ∈ X. Indeed, for every ε > 0, there exists some h0 > 0 and, by Corollary 2.5
there exists some m0 ∈ N such that

inf
h>0

µS(t− s)(y + hz)− µS(t− s)y
h

+ 2ε ≥ µS(t− s)(y + h0z)− µS(t− s)y
h0

+ ε

≥ µS(t− s− hm)(y + h0z)− µS(t− s− hm)y

h0
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for all m ≥ m0. Hence, for all n ≥ m0 which satisfy hn ≤ h0 one has

inf
h>0

µS(t− s)(y + hz)− µS(t− s)y
h

+ 2ε

≥ µS(t− s− hn)(y + hnz)− µS(t− s− hn)y

hn
= νnz,

which shows (4.8) by taking the limit superior as n → ∞ and letting ε ↓ 0. As a
consequence of (4.8), it follows that ν is continuous from above. Indeed, for every
zn ↓ 0 one has

0 ≤ inf
n
νzn ≤ inf

h>0
inf
n

µS(t− s)(y + hzn)− µS(t− s)y
h

= 0

so that νzn ↓ 0. Hence, for every ε > 0 there exist n0,m0 ∈ N such that

νAδy + 2ε ≥ νBn0y + ε ≥ νmBn0y ≥ νmBmy
for all m ≥ m0 ∨ n0, where the last inequality follows by monotonicity of νm. This
shows that

νAδy ≥ lim sup
n→∞

νnBny.

Further, νAδy = lim supn→∞ νnAδy ≤ lim supn→∞ νnBny by monotonicity of νn, which
proves (4.7).

Since y = y(s) ∈ D(Aδ), it follows from (4.1) that there exists a bounded decreasing
sequence (Any)n with∥∥∥∥S(hn)y − y

hn
−Any

∥∥∥∥→ 0 and Any ↓ Aδy.

By the same arguments as before we get,

lim sup
n→∞

µ

(
S(t− s− hn)S(hn)y − S(t− s− hn)y

hn

)
= lim sup

n→∞
νnAny = νAδy. (4.9)

Hence, in combination with (4.6) and (4.7) we get

lim sup
n→∞

µ

(
S(t− s− hn)y(s+ hn)− S(t− s− hn)y(s)

hn

)
= lim sup

n→∞
µ

(
S(t− s− hn)S(hn)y(s)− S(t− s− hn)y(s)

hn

)
(4.10)

for every sequence (hn)n in (0,∞) with hn ↓ 0 and all µ ∈ M . As a consequence, we
conclude that

µg(s+ hn)− µg(s)

hn
→ 0 (4.11)

for every sequence (hn)n in (0,∞) with hn ↓ 0 and all µ ∈M . Indeed, by passing to a
subsequence (nk)k, we may assume that

lim sup
n→∞

µg(s+ hn)− µg(s)

hn
= lim

k→∞

µg(s+ hnk)− µg(s)

hnk
.

By passing to another subsequence, which we still denote by (nk)k, we can further
assume that

lim inf
k→∞

µ

(
S(t− s− hnk)S(hnk)y(s)− S(t− s− hnk)y(s)

hnk

)
= lim sup

k→∞
µ

(
S(t− s− hnk)S(hnk)y(s)− S(t− s− hnk)y(s)

hnk

)
. (4.12)
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Then, by applying the equality (4.10) to the subsequence (hnk)k we obtain

lim sup
n→∞

µg(s+ hn)− µg(s)

hn
= lim

k→∞

µg(s+ hnk)− µg(s)

hnk

≤ lim sup
k→∞

µ

(
S(t− s− hnk)y(s+ hnk)− S(t− s− hnk)y(s)

hnk

)
− lim inf

k→∞
µ

(
S(t− s− hnk)S(hnk)y(s)− S(t− s− hnk)y(s)

hnk

)
= 0,

where the last equality follows from (4.10) and (4.12). With similar arguments, we also

obtain lim infn→∞
µg(s+hn)−µg(s)

hn
≥ 0, which shows (4.11).

Since µ is continuous on X, see e.g. [1, Theorem 9.6], it follows by the same arguments
as in the proof of Theorem 3.5 that s 7→ µg(s) is continuous on [0, t]. By [23, Lemma
1.1, Chapter 2] we conclude that the map s 7→ µg(s) is constant on [0, t], since it is
continuous and its right derivative vanishes on [0, t). In particular, µy(t) = µg(t) =
µg(0) = µS(t)y(0) for all µ ∈ M . This shows that y(t) = S(t)y(0) as M separates the
points of X. �

Corollary 4.10. Let S be a convex monotone C0-semigroup on X which is continuous
from above with monotone generator Aδ, and let T be a convex C0-semigroup on X
with generator B and monotone generator Bδ such that Bδ ⊂ Aδ. If D(B) = X, then
S(t) = T (t) for all t ≥ 0.

Proof. For every x ∈ D(B), the mapping y : [0,∞) → X, y(t) := T (t)x satisfies the
assumptions of Theorem 4.9. Indeed, y(0) = x by definition, t 7→ y(t) is continuous by
Corollary 2.5, and y(t) ∈ D(Bδ) ⊂ D(Aδ) by Theorem 4.5 with∥∥∥∥y(t+hn)−y(t)

hn
−Bny(t)

∥∥∥∥→ 0 and Bny(t) ↓ Bδy(t) = Aδy(t)

where Bny(t) := T (t)(x+hnBx)−T (t)x
hn

for all n ∈ N. Hence, by Theorem 4.9, it follows

that T (t)x = y(t) = S(t)x for all t ≥ 0. Since, by Corollary A.4, the bounded convex

functions T (t) and S(t) are continuous, and D(B) = X, it holds S(t) = T (t) for all
t ≥ 0. �

4.3. The uncertain shift semigroup on BUC. Let G be a convex set endowed with
a metric d : G × G → [0,∞). We assume that, for every u, v ∈ G and λ ∈ (0, 1),
there exists some λ(u, v) ∈ G such that d(u, λ(u, v)) = λd(u, v) and d(λ(u, v), v) = (1−
λ)d(u, v). The space of all bounded uniformly continuous functions x : G→ R is denoted
by BUC = BUC(G) and endowed with the supremum norm ‖x‖∞ := supu∈G |x(u)|.
Notice that BUC is a Riesz subspace of the Dedekind σ-complete Riesz space L∞ of all
bounded Borel measurable functions x : G→ R. On L∞, we consider the partial order
x ≤ y whenever x(u) ≤ y(u) for all u ∈ G.

The uncertain shift semigroup S on BUC is defined by(
S(t)x

)
(u) := sup

d(u,v)≤t
x(v) for all x ∈ BUC, u ∈ G and t ≥ 0.

Lemma 4.11. S is a sublinear monotone C0-semigroup on BUC. Moreover,

DL = Ds
L = Lipb,

where Lipb = Lipb(G) is the space of all bounded Lipschitz continuous functions G→ R.
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Proof. We first show that S(t) : BUC → BUC is well-defined and bounded. To this
end, fix x ∈ BUC. Since

|S(t)x(u)| ≤ sup
d(u,v)≤t

|x(v)| = ‖x‖∞ for all u ∈ G,

it follows that ‖S(t)x‖∞ ≤ ‖x‖∞. Fix ε > 0 and δ > 0 such that |x(u)− x(v)| ≤ ε for
all u, v ∈ G with d(u, v) ≤ δ. Let u, v ∈ G with d(u, v) ≤ δ and w ∈ G with d(u,w) ≤ t.
Then, for λ := t

t+δ , one has

d
(
v, λ(v, w)

)
= λd(v, w) ≤ λ(t+ δ) = t

and

d
(
w, λ(v, w)

)
= (1− λ)d(v, w) ≤ (1− λ)(t+ δ) = δ

Hence,

x(w)−
(
S(t)x

)
(v) ≤ x(w)− x

(
λ(v, w)

)
≤ ε.

Taking the supremum over all w ∈ G with d(u,w) ≤ t, it follows that(
S(t)x

)
(u)−

(
S(t)x

)
(v) ≤ ε.

By a symmetry argument, we obtain that |S(t)x(u) − S(t)x(v)| ≤ ε, showing that
S(t)x is uniformly continuous with the same modulus of continuity as x. We thus have
shown that S(t) : BUC → BUC is well-defined and bounded. By definition, each S(t)
is sublinear and monotone, and S(0)x = x for all x ∈ BUC. Moreover, for t ≤ δ, one
has ∣∣(S(t)x

)
(u)− x(u)

∣∣ ≤ sup
d(u,v)≤t

|x(v)− x(u)| ≤ ε

for all u ∈ G, i.e. ‖S(t)x − x‖∞ ≤ ε for all t ≤ δ, which shows that S is strongly
continuous. It remains to show that S satisfies the semigroup property. Let s, t ≥ 0.
Further, let u ∈ G and w ∈ G with d(u,w) ≤ s+ t. Then, for λ := t

s+t , it holds

d
(
w, λ(u,w)

)
= (1− λ)d(u,w) ≤ s

and

d
(
u, λ(u,w)

)
= λd(u,w) ≤ t.

Hence,

x(w) ≤ sup
d(λ(u,w),v)≤s

x(v) =
(
S(s)x

)(
λ(u,w)

)
≤ sup

d(u,v)≤t

(
S(s)x

)
(v) =

(
S(t)S(s)x

)
(u).

Taking the supremum over all w ∈ G with d(u,w) ≤ s+ t, it follows that(
S(s+ t)x

)
(u) ≤

(
S(t)S(s)x

)
(u).

Now, let w ∈ G with d(u,w) ≤ t. Then, there exists a sequence (wn)n in G with
d(w,wn) ≤ s and x(wn)→

(
S(s)x

)
(w). Then,(

S(s)x
)
(w) = lim

n→∞
x(wn) ≤ sup

d(u,v)≤s+t
x(v) =

(
S(s+ t)x

)
(u).

Taking the supremum over all w ∈ G with d(u,w) ≤ t, yields that(
S(t)S(s)x

)
(u) ≤

(
S(s+ t)x

)
(u).

Altogether, we have shown that S is a sublinear monotone C0-semigroup on BUC.
Now, let x ∈ DL. Then, there exist h0 > 0 and C ≥ 0 such that ‖S(h)x−x‖∞ ≤ Ch

for all h ∈ [0, h0]. Hence, for all u, v ∈ G with d(u, v) =: h ≤ h0,

x(u)− x(v) ≤
(
S(h)x

)
(v)− x(v) and x(v)− x(u) ≤

(
S(h)x

)
(u)− x(u).
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This implies that |x(u) − x(v)| ≤ ‖S(h)x − x‖∞ ≤ Ch = Cd(u, v). Since x ∈ BUC
is bounded, it follows that x ∈ Lipb. On the other hand, if x ∈ Lipb ⊂ BUC with
Lipschitz constant C > 0, it follows that

‖
(
S(h)x

)
(u)− x(u)‖ ≤ sup

d(u,v)≤h
|x(v)− x(u)| ≤ Cd(u, v) ≤ Ch

for all u ∈ G and h ≥ 0. Therefore x ∈ DL. Since −x ∈ Lipb for all x ∈ Lipb, it follows
that Lipb ⊂ Ds

L. Since, by definition, Ds
L ⊂ DL, the assertion follows. �

We now specialize on the case, where G = R with the Euclidian distance d(u, v) =
|u− v|. In this case, the uncertain shift semigroup is given by(

S(t)x
)
(u) = sup

|v|≤t
x(u+ v)

for all u ∈ R and t ∈ [0,∞). By Lemma 4.11, it follows that S is a sublinear monotone
C0-semigroup on BUC. In addition, by Dini’s lemma, it is continuous from above.
Denote by Aδ : D(Aδ) ⊂ BUC → BUCδ the monotone generator of S. Notice that
BUCδ is the space of all bounded upper semicontinuous functions R → R. Moreover,
by Lemma 4.11, we have that DL = Ds

L = W 1,∞. Recall that the space of all Lipschitz
continuous functions coincides with the space W 1,∞ = W 1,∞(R) of all functions with
weak derivative x′ ∈ L∞ = L∞(R) (w.r.t. the Lebesgue measure). As usual, we denote
by BUC1 = BUC1(R) the set of all x ∈ BUC which are differentiable with x′ ∈ BUC.

Proposition 4.12. Let G = R. Then, BUC1 ⊂ D(A) ⊂ D(Aδ) ⊂ DL = Ds
L = W 1,∞.

In particular, S(t)x ∈W 1,∞ for every x ∈W 1,∞ and all t ≥ 0. Further, for x ∈ D(Aδ),
one has Aδx = |x′| almost everywhere.

Proof. If x ∈ BUC1, it follows from Taylor’s theorem that∥∥∥∥S(h)x− x
h

− |x′|
∥∥∥∥
∞
→ 0 as h ↓ 0.

Hence, by Lemma 4.4 and Lemma 4.11,

BUC1 ⊂ D(A) ⊂ D(Aδ) ⊂ DL = Ds
L = W 1,∞.

In particular, W 1,∞ is invariant under the uncertain shift semigroup by Theorem 4.5.
Let x ∈ W 1,∞. By Rademacher’s theorem the function x is differentiable almost

everywhere. If x is differentiable at u, then

lim
h↓0

(
S(h)x

)
(u)− x(u)

h
= lim

h↓0
sup
|v|≤h

x(u+ v)− x(u)

h
= lim

h↓0
sup
|v|=h

x(u+ v)− x(u)

h

= |x′(u)|.

Since, for x ∈ D(Aδ), one has

(
Aδx

)
(u) = lim

h↓0

(
S(h)x

)
(u)− x(u)

h

for all u ∈ Rd, we conclude that Aδx = |x′| almost everywhere. Here, x′ is understood
as the weak derivative in L∞. �



CONVEX SEMIGROUPS ON BANACH LATTICES 29

4.4. The symmetric Lipschitz set of the G-expectation. We consider the G-
expectation on BUC = BUC(R), which corresponds to the sublinear semigroup(

S(t)x
)
(u) := sup

σ≤σ≤σ
E
[
x
(
u+

∫ t

0
σs dWs

)]
for x ∈ BUC, u ∈ G and t ≥ 0,

where W is a Brownian motion on a filtered probability space (Ω,F , (Ft),P) and the
supremum is taken over all progressively measurable processes with values in [σ, σ], see
e.g. [8] and [24] for an overview on G-expectations. We assume that 0 ≤ σ ≤ σ. One
can verify that S is a translation invariant sublinear C0-semigroup on BUC which is
continuous from above. Moreover, an application of Itô’s formula shows that

lim
h↓0

S(h)x− x
h

=
1

2
max

{
σx′′, σx′′

}
for all x ∈ BUC2 = BUC2(R).

Fix x ∈ Ds
L. By definition of the symmetric Lipschitz set, there exist C > 0 and

h0 > 0 such that x ∈ Ds
L(C, h0). For every δ > 0, define xδ(u) :=

∫
R x(u + v) νδ(dv),

where νδ is the normal distribution N (0, δ) with mean zero and variance δ. Then,
xδ ∈ BUC2 for all δ > 0, and ‖xδ − x‖∞ → 0 as δ ↓ 0. In view of Remark 4.8, one has

S(h)xδ − xδ ≤ Ch and − S(h)(−xδ)− xδ ≥ −Ch

for all h ∈ [0, h0] and δ > 0. Hence, letting h ↓ 0, it follows that

1

2
σx′′δ ≤ C and

1

2
σx′′δ ≥ −C.

This shows that ‖x′′δ‖∞ is uniformly bounded in δ > 0. Hence, there exists a sequence
δn ↓ 0 such that

∫ v
u x
′′
δn

(z)− y(z) dz → 0 for all u, v ∈ R with u < v and some y ∈ L∞
w.r.t. the Lebesgue measure. By the dominated convergence theorem, we get

x(u+ h)− x(u) = lim
n→∞

(
xδn(u+ h)− xδn(u)

)
= lim

n→∞

(
hx′δn(u) +

∫ u+h

u

∫ v

u
x′′δn(z) dz dv

)
=
(

lim
n→∞

hx′δn(u)
)

+

∫ u+h

u

∫ v

u
y(z) dz dv

for all u ∈ R and h > 0. In particular, x is differentiable with x′(t) = limn→∞ x
′
δn

(t)

and second weak derivative x′′ = y, i.e. x ∈ W 2,∞. This shows that Ds
L = W 2,∞.

As an application of Proposition 4.6, it follows that S(t)x ∈ W 2,∞ for all t ≥ 0 and
x ∈ W 2,∞. Notice that we do not assume that σ > 0, which is a standard assumption
in PDE theory for obtaining regularity results in Hölder spaces (cf. [24, Appendix C,
§4] for a short survey).

Appendix A. Bounded convex operators

Let X and Y be Banach lattices. For an operator S : X → Y , we define Sx : X → Y
by Sxy := S(x + y) − Sx for all x, y ∈ X. Recall that S : X → Y is bounded, if
‖S‖r <∞ for all r > 0, where

‖S‖r := sup
x∈B(0,r)

‖Sx‖.

Here, B(x0, r) := {x ∈ X : ‖x− x0‖ ≤ r} for x0 ∈ X and r > 0.
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Lemma A.1. Let S : X → Y be convex with S0 = 0 and r > 0 with b := ‖S‖r < ∞.
Then,

‖Sx‖ ≤ 2b
r ‖x‖

for all x ∈ B(0, r).

Proof. Let x ∈ B(0, r). For x = 0, the statement holds by assumption. For x 6= 0, the
convexity of S implies that

Sx ≤ ‖x‖r S
(

r
‖x‖x

)
and Sx ≥ −S(−x) ≥ −‖x‖r S

(
− r
‖x‖x

)
,

and therefore,

‖Sx‖ ≤ ‖x‖r
(∥∥S( r

‖x‖x
)∥∥+

∥∥S(− r
‖x‖x

)∥∥) ≤ 2b
r ‖x‖.

�

The following two lemmas aim to clarify the difference between convex continuous
and convex bounded operators.

Lemma A.2. Let S : X → Y be convex. Then, the following statements are equivalent:

(i) S is continuous.
(ii) For all x ∈ X, there exists some r > 0 such that ‖Sx‖r <∞.

Proof. Let x ∈ X and r > 0 with b := ‖Sx‖r < ∞. Then, since Sx is convex with
Sx(0) = 0, we obtain from Lemma A.1 that

‖Sxy‖ ≤ 2b
r ‖y‖ for all y ∈ B(0, r).

This shows that Sx is continuous at 0, i.e. S is continuous at x.
Now, assume that there exists some x ∈ X such that ‖Sx‖r = ∞ for all r > 0.

Then, there exists a sequence (yn)n in X with yn → 0 and ‖Sxyn‖ ≥ n. Therefore, the
sequence (Sxyn)n in Y is unbounded, and thus not convergent. This shows that Sx is
not continuous at 0, i.e. S is not continuous at x. �

Lemma A.3. Let S : X → Y . Then, the following statements are equivalent:

(i) S is bounded.
(ii) For all x ∈ X and all r > 0, it holds ‖Sx‖r <∞.

Proof. Clearly, (ii) implies (i) by considering x = 0 in (ii). Therefore, assume that S is
bounded. Then, for every x ∈ X and r > 0, one has ‖Sx‖r ≤ 2‖S‖‖x‖+r <∞. �

Corollary A.4. Let S : X → Y be bounded and convex. Then, S is Lipschitz on
bounded subsets, i.e. for every r > 0, there exists some L > 0 such that ‖Sx − Sy‖ ≤
L‖x− y‖ for all x, y ∈ B(0, r).

Proof. Let x, y ∈ B(0, r), so that x − y ∈ B(0, 2r). As in the proof of Lemma A.3, it
follows that

‖Sx‖2r ≤ 2‖S‖‖x‖+2r ≤ 2‖S‖3r =: b.

Hence, it follows from Lemma A.1 that ‖Sy − Sx‖ = ‖Sx(y − x)‖ ≤ b
r‖y − x‖. �

In the previous two lemmas, we have seen that, for a convex operator S : X →
Y , boundedness implies continuity. The following example shows that a convex and
continuous operator S : X → Y is not necessarily bounded.
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Example A.5. Let X = c0 :=
{

(xn) in R : xn → 0 as n → ∞
}

be endowed with the
supremum norm ‖ · ‖∞ and Y = R. Then, X and Y are two Banach lattices. We define
S : X → Y by

Sx := sup
n∈N
|xn|n.

Notice that S is well-defined, since for every x ∈ X, there exists some n0 ∈ N such
that |xn| ≤ 1 for all n ∈ N with n ≥ n0. We first show that S : X → Y is convex. For
λ ∈ [0, 1] and x, y ∈ X, one has∣∣λxn + (1− λ)yn

∣∣n ≤ λ|xn|n + (1− λ)|yn|n

for all n ∈ N, which implies that

S
(
λx+ (1− λ)y

)
= sup

n∈N

∣∣λxn + (1− λ)yn
∣∣n ≤ λSx+ (1− λ)Sy.

Next, we show that S is continuous. Let x ∈ X and ε ∈ (0, 1]. Then, there exists n0 ∈ N
such that |xn| ≤ ε

3 for all n ∈ N with n ≥ n0. Now, let y ∈ X with ‖x− y‖∞ ≤ ε
3 and

‖x− y‖∞ is sufficiently small such that∣∣|xn|n − |yn|n∣∣ ≤ ε for all n ∈ N with n < n0.

For n ∈ N with n ≥ n0, one has

|xn|+ |yn| ≤ 2|xn|+ ‖x− y‖∞ ≤ ε.
Hence, for all n ∈ N with n ≥ n0,∣∣|xn|n − |yn|n∣∣ ≤ |xn|n + |yn|n ≤ |xn|+ |yn| ≤ ε.
Altogether,

|Sx− Sy| ≤ sup
n∈N

∣∣|xn|n − |yn|n∣∣ ≤ ε.
So far, we have shown that S : X → Y is convex and continuous. However, S is not
bounded. To that end, let ek denote the k-th unit vector. Then, 2ek ∈ B(0, 2) for all
k ∈ N, but S(2ek) = 2k →∞.

In the sublinear case, the notions of continuity and boundedness are equivalent.

Lemma A.6. Let S : X → Y be sublinear. Then, S is bounded if and only if it is
continuous if and only if it is continuous at 0.

Proof. We have already seen that boundedness implies continuity. Therefore, assume
that S is continuous at 0. Then, there exists some r > 0 such that ‖S‖r <∞. Since S
is positive homogeneous, it follows that ‖S‖r <∞ for all r > 0. �

Lemma A.7. Let S : X → Y be sublinear and continuous. Then S is Lipschitz,
i.e. there exists some L > 0 such that ‖Sx− Sy‖ ≤ L‖x− y‖ for all x, y ∈ X.

Proof. Let L := 2‖S‖1 which is finite by Lemma A.6. Fix x, y ∈ X. By sublinearity, it
holds

Sx− Sy ≤ S(x− y) ≤ |S(x− y)|+ |S(y − x)|.
By a symmetry argument, it follows that

|Sx− Sy| ≤ |S(x− y)|+ |S(y − x)|.
Hence,

‖Sx− Sy‖ ≤ ‖S(x− y)‖+ ‖S(y − x)‖ ≤ L‖x− y‖.
�
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The results in Section 2 strongly rely on the following uniform boundedness principle
for convex continuous operators.

Theorem A.8. Let S be a family of convex continuous operators X → Y . Assume
that supS∈S ‖Sx‖ <∞ for all x ∈ X.

(i) There exists some r > 0 such that

sup
S∈S
‖S‖r <∞.

(ii) For every x0 ∈ X, there exists some r > 0 such that

sup
x∈B(x0,r)

sup
S∈S
‖Sx‖r <∞.

Proof. (i) By the uniform boundedness principle, there exist c > 0, x1 ∈ X and r > 0
such that

‖Sx‖ ≤ 2c
3

for all S ∈ S and x ∈ B(x1, 4r). If x1 = 0, the proof is finished. Hence, assume that
x1 6= 0 and define

x0 :=
(

1− 2r
‖x1‖

)
x1.

Since ‖x0 − x1‖ ≤ 2r, it follows that B(x0, 2r) ⊂ B(x1, 4r). By assumption,

d := sup
S∈S

1
2‖S(−x0)‖+ 2

∥∥S(x02 )∥∥ <∞.
Now, let x ∈ B(0, r) and S ∈ S. Then,

Sx = S
(
x0+2x

2 − x0
2

)
≤ 1

2

(
S(x0 + 2x) + S(−x0)

)
and

2S
(
x0
2

)
− S(x0 − x) = 2S

(x+(x0−x)
2

)
− S(x0 − x) ≤ Sx.

We thus obtain that

‖Sx‖ ≤ 1
2

∥∥S(x0 + 2x) + S(−x0)
∥∥+

∥∥2S
(
x0
2

)
− S(x0 − x)

∥∥
≤ 1

2‖S(x0 + 2x)‖+ ‖S(x0 − x)‖+ 1
2‖S(−x0)‖+ 2

∥∥S(x02 )∥∥
≤ c+ d.

(ii) Let x0 ∈ X. Then, supS∈S ‖Sx0x‖ < ∞ for all x ∈ X. By part a), there exist
b ≥ 0 and r > 0 such that

sup
S∈S
‖Sx0‖2r ≤ b

2 .

Now, let S ∈ S, x ∈ B(x0, r) and y ∈ B(0, r). Then, x+ y ∈ B(x0, 2r) and

Sxy = Sx0(x+ y − x0)− Sx0(x− x0).

Therefore, ‖Sxy‖ ≤ ‖Sx0(x+ y − x0)‖+ ‖Sx0(x− x0)‖ ≤ b. �

Appendix B. Directional derivatives of convex operators

We are in the setting of Section 4, i.e. X is a Banach lattice which is a Riesz subspace
of a Dedekind σ-complete Riesz space X̄. Let M be the space of all positive linear
functionals µ : Xδ → R which are continuous from above. We assume that M separates
the points of Xδ.

Lemma B.1. Let (xn)n be a sequence in X. If (yn)n and (zn)n are decreasing sequences
in X which are bounded from below such that ‖xn − yn‖ → 0 and ‖xn − zn‖ → 0, then
infn yn = infn zn.
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Proof. Fix µ ∈M . Since µ is continuous on X, see e.g. [1, Theorem 9.6], one has

µ(yn − zn) = µ(yn − xn) + µ(xn − zn)→ 0,

which shows that

µ
(

inf
n
yn

)
= lim

n→∞
µyn + lim

n→∞
µ(zn − yn) = lim

n→∞
µzn = µ

(
inf
n
zn

)
.

Since infn yn, infn zn ∈ Xδ and M separates the points of Xδ, it follows that infn yn =
infn zn. �

Lemma B.2. Let S : X → X be a convex monotone operator which is continuous
from above. Then, it has a unique monotone convex extension S : Xδ → Xδ which is
continuous from above.

Proof. For each µ ∈ M , the convex monotone functional µS : X → R is continuous
from above. Thus, by [9, Lemma 3.9], it has a unique extension to a convex monotone
functional µS : Xδ → R which is continuous from above.

Fix x ∈ Xδ. For (xn)n and (yn)n in X with xn ↓ x and yn ↓ x, one has

µ
(

inf
n
Sxn

)
= inf

n
µSxn = µS

(
inf
n
xn

)
= µS

(
inf
n
yn

)
= inf

n
µSyn = µ

(
inf
n
Syn

)
,

so that Sx := infn Sxn is well defined as M separates the points of Xδ. Then, S is
convex and continuous from above as

µ
(

inf
n
Sxn

)
= inf

n
µSxn = µSx

for every (xn)n in Xδ with xn ↓ x ∈ Xδ. Moreover, if S̃ is another extension which is

continuous from above, then S̃x = limn→∞ S̃xn = limn→∞ Sxn = Sx for every (xn)n
in X with xn ↓ x ∈ Xδ, which shows that such an extension is unique. �

Let S : X → X be a convex operator. Then, the function

R \ {0} → X, h 7→ S(x+ hy)− Sx
h

is increasing for all x, y ∈ X. Hence, for all x ∈ X, the operators

S′+(x)y := inf
h>0

S(x+ hy)− Sx
h

and S′−(x)y := sup
h<0

S(x+ hy)− Sx
h

(B.1)

for y ∈ X are well-defined with values in X̄ since

S′+(x)y = inf
n∈N

S(x+ hny)− Sx
hn

∈ Xδ and S′−(x)y = sup
n∈N

Sx− S(x− hny)

hn
∈ −Xδ

for every sequence (hn)n in (0,∞) with hn → 0. The following properties follow directly
from the definition.

Remark B.3. For all x, y ∈ X one has

(i) S′−(x)y = −S′+(x)(−y),
(ii) S′−(x)y ≤ S′+(x)y,
(iii) S′+(x)y = S′−(x)y = Sy, if S is linear.

If S : X → X is a convex monotone operator which is continuous from above, then
by Lemma B.2 it has a unique convex monotone extension S : Xδ → Xδ which is
continuous from above. Therefore, S(x + hy) ∈ Xδ for all y ∈ Xδ and h > 0. Hence,
S′+(x) extends to

S′+(x) : Xδ → Xδ, y 7→ inf
h>0

S(x+ hy)− Sx
h



34 ROBERT DENK, MICHAEL KUPPER, AND MAX NENDEL

for all x ∈ X.

Lemma B.4. Let S : X → X be a convex monotone operator which is continuous from
above. For every x ∈ X, the mapping S′+(x) has the following properties:

(i) S′+(x)y ≤ Sxy for all y ∈ Xδ,
(ii) S′+(x) : Xδ → Xδ is convex and positive homogeneous,
(iii) S′+(x) is continuous from above,

(iv) S(x+hnyn)−Sx
hn

↓ S′+(x)y, for all sequences (hn) in (0,∞) and (yn) in Xδ which
satisfy hn ↓ 0 and yn ↓ y ∈ Xδ.

Proof. (i) For every y ∈ Xδ, one has S′+(x)y ≤ S(x+ y)− S(x) = Sx(y).
(ii) For ε > 0, µ ∈M , and λ ∈ [0, 1] there exists some h > 0 such that

µ
(
λS′+(x)y1 + (1− λ)S′+(x)y2

)
+ ε

≥ λµS(x+ hy1)− µS(x)

h
+ (1− λ)

µS(x+ hy2)− µS(x)

h

≥
µS
(
x+ h(λy1 + (1− λ)y2)

)
− µS(x)

h
≥ µS′+(x)

(
λy1 + (1− λ)y2

)
.

This shows that S′+(x) is convex on Xδ. Moreoever, for λ > 0 and y ∈ Xδ it holds

S′+(x)(λy) = inf
h>0

S(x+ λhy)− Sx
h

= λ inf
h>0

(
S(x+ λhy)− Sx

λh

)
= λS′+(x)y.

(iii) For every yn ↓ y one has

inf
n
S′+(x)yn = inf

h>0
inf
n

S(x+ hyn)− S(x)

h
= inf

h>0

S(x+ hy)− S(x)

h
= S′+(x)y.

(iv) Fix ε > 0, and µ ∈ M . By definition of S′+ and continuity from above of S,
there exist n0,m0 ∈ N such that

µS′+(x)y + 2ε ≥ µS(x+ hn0y)− µSx
hn0

+ ε

≥ µS(x+ hn0ym0)− µSx
hn0

≥ µS(x+ hn1yn1)− µSx
hn1

for n1 := n0 ∨m0. This shows that S(x+hnyn)−Sx
hn

↓ S′+(x)y. �
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