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1. Introduction

Lyons [55] introduced rough paths to give a description of solutions to ordinary differ-
ential equation (ODEs) driven by external time varying signals which is robust enough
to allow very irregular signals like the sample paths of a Brownian motion. His analysis
singles out a rough path as the appropriate topological structure on the input signal with
respect to which the solution of an ODE varies in a continuous way. Since its invention,
rough path theory (RPT) has been developed very intensively to provide robust analysis
of ODEs and a novel way to define solutions of stochastic differential equations driven
by non semimartingale signals. For a comprehensive review see the book of Friz and
Victoir [26] and the lecture notes of Lyons, Caruana and Lévy [56] or the more recents
ones of Friz and Hairer [24]. RPT can be naturally formulated also in infinite-dimension
to analyze ODEs in Banach spaces. This generalization is, however, not appropriate
for the understanding of rough PDEs (RPDEs), i.e. PDEs with irregular perturbations.
This is due to two basic facts. First, the notion of rough path encodes in a fundamental
way only the nonlinear effects of time varying signals, without possibility to add more
dimensions to the parameter space where the signal is allowed to vary in an irregular
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fashion. Second, in infinite dimension the action of a signal (even finite dimensional) can
be described by differential (or more generally unbounded) operators.

Due to these basic difficulties, attempts to use RPT to study rough PDEs have been
limited by two factors: the first one is the need to look at RPDEs as evolutions in
Banach spaces perturbed by one parameter rough signals (in order to keep rough paths
as basic objects), the second one is the need to avoid unbounded operators by looking
at mild formulations or Feynman—Kac formulas or transforming the equation in order to
absorb the rough dependence into better understood objects (e.g. flow of characteristic
curves).

These requirements pose strong limitations on the kind of results one is allowed to ob-
tain for RPDEs and the proof strategies are very different from the classical PDE proofs.
The most successful approaches to RPDEs do not even allow to characterize the solution
directly but only via a transformation to a more standard PDE problem. The need of a
mild formulation of a given problem leads usually to very strong structural requirements
like for example semilinearity. We list here some pointers to the relevant literature:

e Flow transformations applied to viscosity formulation of fully non-linear RPDEs
(including Backward rough differential equations) have been studied in a series of
work by Friz and coauthors: Diehl and Friz [18], Friz and Oberhauser [25], Caruana
and Friz [6], Diehl, Friz and Oberhauser [19], Caruana, Friz and Oberhauser [7] and
finally Friz, Gassiat, Lions and Souganidis [22].

o Rough formulations of evolution heat equation with multiplicative noise (with vary-
ing degree of success) have been considered by Gubinelli and Tindel [33], Deya,
Gubinelli and Tindel [16], Teichmann [61], Hu and Nualart [46] and Garrido-Atienza,
Lu and Schmalfuss [27].

o Mild formulation of rough Burgers equations with spatially irregular noise have been
first introduced by Hairer and Weber [38,39] and Hairer, Maas and Weber [37] leading
to the groundbreaking work of Hairer on the Kardar—Parisi-Zhang equation [35].

e Solutions of conservation laws with rough fluxes have been studied via flow trans-
formation by Friz and Gess [23] and via the transformed test function approach
by Lions, Perthame and Souganidis [52,50,51], Gess and Souganidis [29,30], Gess,
Souganidis and Perthame [28] and Hofmanova [43].

Hairer’s regularity structure theory [36] is a wide generalization of rough path which
allows irregular objects parametrized by multidimensional indices. A more conservative
approach, useful in many situations but not as general, is the paracontrolled calculus
developed by Gubinelli, Imkeller and Perkowski [31,32]. These techniques go around the
first limitation. In order to apply them however the PDEs need usually to have a mild
formulation where the unbounded operators are replaced by better behaved quantities
and in general by bounded operators in the basic Banach spaces where the theory is set
up. Existence and uniqueness of solutions to RPDEs are then consequences of standard
fixed-point theorems in the Banach setting.
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PDE theory developed tools and strategies to study weak solutions to PDEs, that
is distributional relations satisfied by the unknown together with its weak derivatives.
From a conceptual point of view the wish arises to devise an approach to RPDEs which
borrow as much as possible from the variety of tools and techniques of PDE theory. From
this point of view various authors started to develop intrinsic formulations of RPDEs
as which involves relations between certain distributions associated to the unknown and
the rough paths associated to the input signal. Let us mention the work of Gubinelli,
Tindel and Torrecilla [34] on viscosity solutions to fully non—linear rough PDEs, that of
Catellier [8] on rough transport equations (in connection with the regularization by noise
phenomenon), Diehl, Friz and Stannat [20] and finally of Bailleul and Gubinelli [1] on
rough transport equations. This last work introduces for the first time apriori estimates
for RPDEs, that is estimates which holds for any weak solution of the RPDE (though we
should also mention the contribution [57], in which weak formulations are investigated
for Young type equations driven by fractional Brownian motions with Hurst parameter
H > 1/2). These estimates are crucial to derive control on various norms of the solution
and obtain existence and uniqueness results, bypassing the use of the rough flow of
characteristics which has been the main tool of many of the previous works on this
subject.

In the present paper, we continue the development of general tools for RPDEs along
the ideas introduced in [1]. In particular, just as in the latter reference, we will rely
on the formalism of “unbounded rough driver” in order to model the central operators
governing the (rough part of the) dynamics in the equation. In fact, through the results
of this paper, we propose to extend the considerations of [1] along several essential
directions:

e We include the possibility of an unbounded drift term in the model under consid-
eration (see Definition 2.5), and generalize the main apriori estimates accordingly (see
Theorem 2.10). This improvement considerably extends the range of possible equations
covered by the approach, and we will indeed raise two fundamental examples that could
not have been treated in the framework of [1]: first a heat-equation model with lin-
ear transport noise (Section 2.4), then a more compelling (and much more thorough)
application to scalar conservation laws with rough fluxes, as introduced below.

e We rephrase the theory in the p-variation language and thus not restrict to the more
specific Holder topology used in [1]. Again, this technical extension, which requires a
careful follow-up of the controls involved in the procedure, will prove to be of a paramount
importance in the study of our main conservation-law model (see Remark 2.8 for more
details).

e We illustrate how to efficiently combine our general a priori estimates with Gronwall-
type arguments. Skimming over any book on PDEs indeed shows how fundamental such a
combination is for any nontrivial result on weak solutions. Therefore our strategy requires
the clear statement of an effective rough Gronwall lemma adapted to the p-variation set-
ting (see Lemma 2.12 below). While Gronwall-like arguments are well known in the rough
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path literature, they have been essentially employed in the context of rough strong so-
lutions. Here we show how to use them to obtain finer information about rough weak
solutions. This will require new ideas to overcome technical difficulties when working
with test functions.

e We solve, via the constructions of Section 5.3, an important technical question left open
in [1] about tensorization of the rough equation and the related space of test-functions
(see Remark 5.5 for more details). For the sake of clarity, we made the whole tensorization
argument self-contained with respect to [1].

Let us now elaborate on what will be the main illustration of the above technical
contributions (and what will actually occupy the largest part of the paper), namely the
rough extension of the so-called “conservation laws” equation.

Conservation laws and related equations have been paid an increasing attention lately
and have become a very active area of research, counting nowadays quite a number of
results for deterministic and stochastic setting, that is for conservation laws either of the
form

Opu + div(A(u)) =0, (1.1)
(see [4,5,47,49,53,54,58,59]) or
du + div(A(u))dt = g(z,uw)dW,

where the Itd stochastic forcing is driven by a finite- or infinite-dimensional Wiener
process (see [2,9,15,13,14,21,42,44,48,60,62]). Degenerate parabolic PDEs were studied
in [5,10] and in the stochastic setting in [3,12,41].

Recently, several attempts have already been made to extend rough path techniques to
conservation laws as well. First, Lions, Perthame and Souganidis (see [50,52]) developed
a pathwise approach for

du + div(A(z,u)) o dW =0,

where W is a continuous real-valued signal and o stands for the Stratonovich product in
the Brownian case, then Friz and Gess (see [23]) studied

du + div f(t, z,u)dt = F(t,z,u)dt + Ap(z,u, Vu)dz",

where Ay, is affine linear in v and Vu and z = (2!,...,2%) is a rough driving signal.

Gess and Souganidis [29] considered
du + div(A(z,u))dz = 0, (1.2)

where z = (21,...,2M) is a geometric a-Holder rough path and in [30] they studied
the long-time behavior in the case when z is a Brownian motion. Hofmanova [43] then

generalized the method to the case of mixed rough-stochastic model
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du + div(A(z,u))dz = g(x, u)dW,

where z is a geometric a-Holder rough path, W is a Brownian motion and the stochastic
integral on the right hand side is understood in the sense of Ito.

It was observed already a long time ago that, in order to find a suitable concept of
solution for problems of the form (1.1), on the one hand classical C'! solutions do not exist
in general and, on the other hand, weak or distributional solutions lack uniqueness. The
first claim is a consequence of the fact that any smooth solution has to be constant along
characteristic lines, which can intersect in finite time (even in the case of smooth data)
and shocks can be produced. The second claim demonstrates the inconvenience that often
appears in the study of PDEs and SPDEs: the usual way of weakening the equation leads
to the occurrence of nonphysical solutions and therefore additional assumptions need to
be imposed in order to select the physically relevant ones and to ensure uniqueness.
Hence one needs to find some balance that allows to establish existence of a unique
(physically reasonable) solution.

Towards this end, Kruzkov [49] introduced the notion of entropy solution to (1.1),
further developed in the stochastic setting in [2,5,21,48,62]. Here we pursue the kinetic
approach, a concept of solution that was first introduced by Lions, Perthame, Tadmor
[54] for deterministic hyperbolic conservation laws and further studied in [4], [10], [47],
[53], [54], [59], [58]. This direction also appears in several works on stochastic conservation
laws and degenerate parabolic SPDEs, see [12], [15], [13], [14], [42], [41] and in the (rough)
pathwise works [30], [29], [43], [50], [52].

Kinetic solutions are more general in the sense that they are well defined even in
situations when neither the original conservation law nor the corresponding entropy in-

equalities can be understood in the sense of distributions. Usually this happens due to

1
loc*

lack of integrability of the flux and entropy-flux terms, e.g. A(u) ¢ Li .. Therefore, fur-
ther assumptions on initial data or the flux function A are in place in order to overcome
this issue and remain in the entropy setting. It will be seen later on that no such restric-
tions are necessary in the kinetic approach as the equation that is actually being solved
— the so-called kinetic formulation, see (4.2) — is in fact linear. In addition, various proofs
simplify as methods for linear PDEs are available.

In the present paper, we are concerned with scalar rough conservation laws of the
form (1.2), where z = (2!,...,2™) can be lifted to a geometric rough path of finite
p-variation for p € [2,3). We will show how our general tools allow to treat (1.2) along the
lines of the standard PDEs proof strategy. Unlike the known results concerning the same
problem (see e.g. [29,50,52]), our method does not rely on the flow transformation method
and so it overcomes the limitations inevitably connected with such a transformation.
Namely, we are able to significantly weaken the assumptions on the flux coefficient A =
(A;;): we assume that a;; = 0¢ A;; and b; = div, A.; belong to W3°°, whereas in [29] the

regularity of order Lip>™ is required for some ~ > é with a € (0,1) being the Holder
11

3 5]7

it therefore means that almost five derivatives might be necessary. Nevertheless, let

regularity of the driving signal. For a 2-step rough path, i.e. in the range « € (
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us point out that even the regularity we require is not the optimal one. To be more
precise, we conjecture that with a more refined method one could possibly only assume
W7Y>°_regularity for the coefficients a, b with v > p.

For the sake of a clearer presentation and in order to convey the key points of our
strategy as effectively as possible, we will limit the scope of this paper to the first
“non-trivial” rough situation, that is to p € [2,3). This being said, we are very confident
with the possibility to extend the general pattern of this method to rougher cases, that
is to any p > 2, at the price of a heavier algebraic machinery.

Outline of the paper

In Section 2 we fix notations, introduce the notion of unbounded rough driver and
establish the main tools used thereafter: a priori estimates for distributional solutions
to rough equations and a related rough Gronwall lemma. For pedagogical purpose, we
then provide a first possible application of these results to a rough heat equation model
with transport noise (Section 2.4). In Section 3, we discuss the theoretical details of
the tensorization method needed to prove bounds on nonlinear functions of the solu-
tion. Section 4 introduces the setting for the analysis of conservations laws with rough
fluxes. Section 5 uses the tensorization method to obtain estimates leading to reduc-
tion, L'-contraction and finally uniqueness for kinetic solutions. In Section 6 we prove
some LP-apriori bounds on solutions which are stable under rough path topology. These
bounds are finally used in Section 7 to prove existence of kinetic solutions.

Acknowledgments

The authors would like to thank Dr. Mario Maurelli for some discussions about ten-
sorization and the anonymous referee for his careful reading and the extensive comments
which helped them to substantially improve the presentation of the results.

2. General a priori estimates for rough PDEs
2.1. Notation

First of all, let us recall the definition of the increment operator, denoted by 4. If g
is a path defined on [0,7] and s,¢ € [0,T] then dgs: := g1 — gs, if g is a 2-index map
defined on [0, 72 then §gsut := gst — gsu — gut- The norm of the element g, considered
as an element of a Banach space F, will be written indistinctly as:

lgllz, or Ng; E]. (2.1)

For two quantities a and b the relation a <, b means a < ¢, b, for a constant ¢, depending
on a multidimensional parameter x.
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In the sequel, given an interval I we call control on I (and denote it by w) any
superadditive map on Ay := {(s,t) € I?: s < t}, that is, any map w : A; — [0, oo[ such
that, for all s <u < t,

w(s,u) +w(u,t) < w(s,t).

We will say that a control is regular if lim|;_4 o w(s,t) = 0. Also, given a control w on
an interval I = [a,b], we will use the notation w(I) := w(a, b). Given a time interval I, a
parameter p > 0 and a Banach space E, we denote by Vf([ ; EY) the space of functions
g : I — FE for which the quantity

sup Z 9t; = Gtisa P

(t;)eP(I

is finite, where P(I) stands for the set of all partitions of the interval I. For any g €
Vi B),

wy(s,t) = sup 9t; — 9tin 1P
I (t)eP(s.1]) Z i

defines a control on I, and we denote by VP(I; E) the set of elements g € V7 (I; E) for
which w, is regular on 1. We denote by 7’2’([; E) the set of two-index maps g : I X1 — E
with left and right limits in each of the variables and for which there exists a control w
such that

1
|gst] < w(s,t)?

for all s,t € I. We also define the space V:;’JOC(I; E) of maps g : I x I — FE such that
there exists a countable covering {I} };, of I satisfying g € V’(Iy; E) for any k. We write
geVy(;E)orgeVy

1oc(I; E) if the control can be chosen regular.

Definition 2.1. Fix K > 1, p € [2,3), and I a finite interval. We will call a contin-
uous (weak geometric) p-rough path on I any element Z = (Z',2Z2%) € VJ(I;RE) x
Vy? (I; REE) such that for all 1 <4,/ < K and s <u <t € I,

Li _ 1 L 205 _ 2,ij 2,ij 11,9 2,ij 2.1 _ 1l
Zst _Zsu +Zut ’ Zst _Zsu +Zut +ZsuZut ’ Zst +Z Zst Zst .

Then we will say that a continuous (weak geometric) p-rough path Z = (Z1, Z?) is a lift
of z € VF(I;RE) provided Z}, = 2, — 2.

Lemma 2.2 (Sewing lemma). Fix an interval I, a Banach space E and a parameter ¢ > 1.
Consider a map h : I3 — E such that h € Imd and for every s <u <t €I,

|hsut| QW(S,t)C, (22)
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1
for some regular control w on I. Then there exists a unique element Ah € Vy* (I; E) such
that 6(Ah) = h and for every s <t €1,

[(AR)st] < Cew(s, t)S, (2.3)
for some universal constant C.

Proof. The proof follows that given in [24, Lemma 4.2] for Hélder norms, we only specify
the modification needed to handle variation norms. Regarding existence, we recall that
since 6h = 0, there exists a 2-index map B such that B = h. Let s, t € [0, 7], such that
s < t, and consider a sequence {m,; n > 0} of partitions {s =rjy <.-- <7y ., =1t} of
[s,]. Assume that 7, C 7,41 and lim, o SUpgc;ck, 771 — 1’| = 0. Set

kn
s
MZ =By~ > Broor, .
=0

Due to superadditivity of w it can be seen that there exists [ € {1,..., ky} such that

2w(s, t)

W(Tlnfh?"ﬁl) < L
n

Now we choose such an index [ and transform 7, into &, where 7 = {rg§ <r} <.-- <
n n n
iy <riyy <o <rp g} Then

T T _ Tn
Mst - MstL - (5B)7"Z"_177”Z”,7"l"4_1 - Mst - hTﬁpﬁ"Wﬁ.l
and hence

A - 2w(s,t)]°
‘Msﬂ;f - Mstn < w(rzq;l;r;:»l)c < |:7:| .

kn

Repeating this operation until we end up with the trivial partition &g = {s,t}, for which
M7 = 0 this implies that M7 converges to some My, satisfying

< 2%w(s, )¢ ch <Cew(s,t)s . O

=1

My = lim | My

2.2. Unbounded rough drivers

Let p € [2,3) be fixed for the whole section. In what follows, we call a (p-)scale any
4-uplet (E,, H||n)0 << Of Banach spaces such that F,, 11 is continuously embedded into
FE,,. Besides, for 0 < n < 3, we denote by E_,, the topological dual of E,.
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Definition 2.3. A continuous unbounded p-rough driver with respect to a scale

(En, H'||”)0<n<37 is a pair A = (A!, A%) of 2-index maps such that

Al € L(E_,E_(ny1)) for n€{0,2}, A% € L(E_,,E_(,42) for ne{0,1},
and there exists a regular control w4 on [0,T] such that for every s,t € [0,T],
| AL t||£ (B B ns1)) S wa(s,t) for n € {0,2}, (2.4)
2
42025 5y Swals,t)  for ne{0,1}, (2.5)
and, in addition, the Chen’s relation holds true, that is,

sAL,. =0, §AZ%, = AL, Al

su?

forall 0<s<u<t<T. (2.6)

Remark 2.4. Note that no geometricity assumption appears in Definition 2.3 as this is
not needed for the proof of the general a priori estimate in Theorem 2.10 below.

To see how such unbounded drivers arise in the study of rough PDEs, let us consider
the following linear heat-equation model:

du = Audt +V - Vudz, reRY | te(0,7),

(2.7)

u(0) = uo,
where V = (V1 ..., VE) is a family of smooth vector fields on R, and assuming for the
moment that z = (z1,...,2%) : [0,7] — RE is a smooth path. This (classical) equation

can of course be understood in the weak sense: for any test-function ¢ € WH2(RY), it
holds that

t t

ou(p)st = /ur(Aap)dr— /ur(div(ngo))dzT .

S S

Using a basic Taylor-expansion procedure (along the time parameter) and when ¢ €
W32(RYN), the latter expression can be easily developed as

Su(p)ar = / Up(AQ)dr + ua (A 9) + us (A% ) + 1, () | (2.8)

S

where we have set (using Einstein summation convention)
Ao = —Z8Fdiv(Vhg) %o = 2R dv(Vidiv(VEg)),  (2.9)

with Z', Z? defined by
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t
ZhF =gk, . 2 = / 821,dzf (2.10)

S

and where uf morally stands for some third-order remainder (in time) acting on
W32(RN).

Expansion (2.8) puts us in a position to extend the problem to a rough level and to
motivate the above Definition 2.3. Assume indeed that z only admits a finite p-variation
for a given p > 1, and consider its lift to a continuous (weak geometric) p-rough path
Z = (Z',Z?) (in the sense of Definition 2.1), for some fixed p € [2,3). Then the two
operator-valued paths Ab*, A%* can be extended along the very same formula (2.9), or
equivalently along the dual forms

Alu:=2ZvE ovu, A ui= 22 VvE V(YY) (2.11)

which, as one can easily check it, provides us with an example of an unbounded rough
driver, for instance on the Sobolev scale E,, := W™2(R™) (0 < n < 3).

Once endowed with A = (Al A%), and along the same principles as in [1], our in-
terpretation of (2.7) (or (2.8)) will essentially follow Davie’s approach to rough systems
([11]). Namely, we will call a solution any path u satisfying the property: for every
0 < s <t < T and every test-function ¢ € Ej3, the decomposition (2.8) holds true, for
some E_s-valued 2-index map uf such that for every ¢ € F3 the map uit(go) possesses

sufficient time regularity, namely, it has finite r-variation for some r < 1.
2.8. A priori estimates and rough Gronwall lemma

Before we turn to the main purpose of this subsection, namely the presentation of the
mathematical tools at the core of our analysis, let us extend the previous considerations
and introduce rough PDEs of the general form

dg: = p(dt) + A(dt)g: , (2.12)

where A = (A', A%) is an unbounded p-rough driver on a scale (E,)o<n<s and the drift
1, which possibly also depends on the solution, is continuous of finite variation.
Following the above ideas, we now give a rigorous meaning to such an equation.

Definition 2.5. Let p € [2,3) and fix an interval I C [0,7]. Let A = (A', A%) be a
continuous unbounded p-rough driver on I with respect to a scale (Ey,)o<ngs and let
ne V}(I; E_3). A path g: I — E_g is called a solution (on I) of the equation (2.12)

q

provided there exists ¢ < 3 and ¢* € V,’,__(I, E_3) such that for every s,t € I, s < t,
and ¢ € E3,

(69)s5t(2) = (01)se () + g5 ({AL" + A% ) + g2 (9). (2.13)
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Remark 2.6. Throughout the paper, we will set up the convention that every 2-index
map with a f§ superscript denotes an element of V;{Cfc([o, T), E_3) for some ¢ > 1.

Remark 2.7. In the heat-equation model (2.13), we thus have g = w and (@) = pi (@) ==
fst ur(Ap)dr. Note however that the formulation (2.13) allows the possibility of a very
general drift term g, as illustrated by our forthcoming conservation-law model (see Defi-
nition 4.5). In particular, the linearity of u! with respect to u would not play any essential
role in our approach of (2.13), and therefore we believe that this strategy could also be
useful in situations where p is derived from a quasilinear elliptic or monotone operator.
We do not intend to pursue here this line of research.

Remark 2.8. The consideration of p-variation topology (and not Holder topology) in Def-
inition 2.5 will be essential in the study of our rough conservation-law model (Sections 4
to 7), for two fundamental (and linked) reasons. First, it is a well-known fact that, even
in the smooth case, solutions to conservation laws are likely to exhibit discontinuities, a
phenomenon which could not be covered by the Holder setting. Besides, in the course of
the procedure, we will be led to consider drift terms of the form p;(¢) := m(1p ) ® ¢)
(p € C®(RYN)), for some measure m on [0,7] x RV that can admit atoms: such a map
u clearly defines a 1-variation path, but in general it may not be continuous.

Let us now present our first main result on an a priori estimate for the remainder g°
involved in (2.13). An important role will be played by the E_j-valued 2-index map g*
defined as

95 (9) = 0g(9)st — 9s(A" ) - (2.14)

Observe that due to (2.13), this path is also given by

94(9) = (Op)se(9) + 95(AZ70) + glu(9).

In the following result we will make use of both these expressions, depending on the
necessary regularity: the former one contains terms that are less regular in time but
more regular in space (i.e. they require less regular test functions) whereas the terms in
the latter one are more regular in time but less regular in space.

In order to balance this competition between time and space regularities, and following
the ideas of [1], we shall assume that a suitable family of “smoothing” operators can be
involved into the procedure:

Definition 2.9. We call a smoothing on a given scale (E,)o<ng3 any family of operators
(J")ne(o,1) acting on K, (for n = 1,2) in such a way that the two following conditions
are satisfied:

HJ?7 - Id”l:(Em,En) 5 Wm_n for (nvm) € {(07 1)7 (Oa 2)7 (L 2)} ’ (215)
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||J17H£(En E,) ~ 77 ~(m=n) for (nvm) € {(17 1)7 (11 2)7 (272)7 (173)7 (273)} . (2'16)

With this framework in mind, our main technical result concerning equation
(2.12)—(2.13) can now be stated as follows:

Theorem 2.10. Let p € [2,3) and fir an interval I C [0,T]. Let A = (A', A?) be a
continuous unbounded p-rough driver with respect to a scale (Ep)o<n<s, endowed with a
smoothing (J")nec(0,1) (in the sense of Definition 2.9), and let wa be a regular control
satisfying (2.4)—(2.5). Consider a path u € 71 (I; E_3) for which there exist two controls
w}“wu and a constant A € [p,3] such that for every ¢ € E3, s <t €I, ne€ (0,1) and

k € {1,2}, one has
()5t (T70)| < wpls, ) lelle, +n*Awils, 0) @l - (2.17)

Let g be a solution on I of the equation (2.13) such that g% € VQ% (I;E_3), for some
parameter

3pA
g€ [21)11/\,3). (2.18)

Finally, let Gs; = N'{g; L™ (s, t; E_¢)], where we recall that the notation N is introduced
by (2.1), fiz k € ]0, %) such that

1/3 3 1 3 3\
sl 2)zezs—s ;" 1-——): 2.19
2 <p Q) A—2 <q D ) ( )
and set
wi(s,1) = Gl wa(s, )37 1 wl(s, 1) wals, 1) +w?(s, 1) fwa(s, )35 0D,
(2.20)

Then there exists a constant L = L(p,q, k) > 0 such that if wa(I) < L, one has, for all
s<tel,

3
g3l m_s Sq wi(s,1)7. (2.21)

The high level of generality of this statement (that is, the involvement of three pa-
rameters k, \, ¢ and two controls wu, wi) will indeed be required in the sequel, and more
precisely in the strategy displayed in Section 5 for rough conservation laws. However, let
us here specialize this result for a more readable statement, which will turn out to be
sufficient for our other applications (namely, in Section 2.4 and in Sections 6-7):

Corollary 2.11. In the setting of Theorem 2.10, consider a path p € 71 (I; E_3) for which
there exists a control w,, such that for all s <t € I and ¢ € E3,
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[0m)st ()] < wuls, t) llelle, - (2.22)

Besides, let g be a solution on I of the equation (2.12) such that g° € Vf (I;E_3). Then
there exists a constant L = L(p) > 0 such that if wa(I) < L, one has, for all s,t € I,
s <t,

9%y Sq Mg L(5, 6 B-o)|wals, ) +wu(s, hwa(s,t) " (2.23)

Proof of Corollary 2.11. Thanks to (2.22), one has, for all ¢ € E3 and n € (0,1),

|(01)se (T < wpu(s,6) 770l 5, S wp(s,t) min (™ oll s el 22)
S w(s, )y min (0" Pllel ey, *llele.)
which readily allows us to take A = ¢ = p, kK = 0, w! = 0 and w? = cw,, (for some
universal constant ¢) in the statement of Theorem 2.10. O
Proof of Theorem 2.10. Let wy(s,t) be a regular control such that g%z, < wy(s, t)%
for any s,t € I. Let ¢ € E5 be such that ||¢| g, < 1. We first show that

(69%(9))sut = (69)su( A% ) + ghu (At 0), (2.24)

where g* was defined in (2.14). Indeed, owing to (2.13), we have

95(0) = 69(0)st — g5 (AN + AZ"1(9)) = dp(e)st

Applying § on both sides of this identity and recalling Chen’s relations (2.6) as well as
the fact that 66 = 0 we thus get

095 () = (09)su([AL" + A1) — 9s(ALT AL (9))-

Plugging relation (2.14) again into this identity, we end up with our claim (2.24).

The aim now is to bound the terms on the right hand side of (2.24) separately by
the allowed quantities G, w,,, wy and to reach a sufficient time regularity as required by
the sewing Lemma 2.2. To this end, we make use of the smoothing operators (J7) and
repeatedly apply the equation (2.13) as well as the two equivalent definitions of g* from
(2.14). We obtain

89°(9)sut = (09)su(TT A% 0) + (09) su(Id — TT) AL )
+ gL (A @) + gh (I — TN A o)
= g5 (AL TTAL ) + go(AZT TTAL 0) + (0p1) su(JT AL 0) + 65, (T A% )
+ (89)su((Id — T A% @)
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+ g (AZTTTAL 0) + (610)su(JTAL @) + g2, (JT AV 9)
+(89)su((Id — I AV @) — gs(ALF(Id — T AL )
=L +---+1Ip (2.25)

The use of the smoothing operators reflects the competition between space and time
regularity in the various terms in the equation. To be more precise, the only available
norm of g is L>°(0,T; E_g). So on the one hand g does not possess any time regularity
(at least at this point of the proof) but on the other hand it does not require any space
regularity of the corresponding test functions. In general, the presence of (Id—J") allows
to apply the first estimate (2.15) to make use of the additional space regularity in order
to compensate for the lack of time regularity. Correspondingly, the second estimate (2.16)
allows to use the additional time regularity in order to compensate for the lack of space
regularity.
Now bound the above as follows.

)

1 A

SN

|I1| + | I2] + | 16| S Gstwals,t » +n" GstoJA(s,t) + Gsrwal(s, t)%
|I5] §w (s,t)wa(s,t) wu(s,t)wA(s,t)F ,
|7 S wi(s,)wals,t) st)v

)

L] + [Is] S n2wy(s, ) iwals, )5 + 0 wy(s,t)Twals,t)7

S =

+17 7 wi (s, wa(

(
2 1 2
\Is| + | To| + [T10] S 1 Gatwals,t)? + 1% Gerwa(s, )7 +1Gawa(s,t)? .

In order to balance the various terms, we choose

n= wA(I)7%+”wA(s7t)%7“ € (0,1),
where k € [0, %) is the parameter picked along (2.19). Assuming that wa(I) < 1 we
deduce

166%(0)sut] < Grwals,t)? +w L (s, )wals, )7 +w (s, t)wals, £) 7% trR(-2)

+ 2w (1) g (s, ) 1wa(s, )" + Garwa (D) >G wa (s, 1) r >

Note that there are only two terms where we kept track of w4 (I), namely, the one that
needs to be absorbed to the left hand side eventually, i.e. the one containing wy, and
the one with a negative power. The latter one can be further estimated from above by
a constant depending on A and [ if we assume that I # () and the former one will then
determine the value of the constant L from the statement of the Theorem. Consequently,
recalling the definition (2.20) of w,, we obtain

1865 uellm_y S wals,8) +wa(1)7 2 wy(s, )7 .
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At this point, observe that the mapping w, defines a regular control. Indeed, on the one
hand, the regularity of w, easily stems from the continuity of w4. On the other hand,
superadditivity is obtained from [26, Exercise 1.9] by recalling that both w4 and w, are
controls and using condition (2.19), which can also be expressed as

q (3 q q(3—A
2(Z2—2) =1, T ) A—2))>1.
3(1? H) 3+3< P Tl ))

Since wy is also a regular control, 8¢ satisfies the assumptions of Lemma 2.2 and we can
3
thus conclude that, for all s < ¢ € I, || ||p_, < wy(s,t)e where

Wi(s,1) 1= Cylwa(s,t) + wa(D) 3G y(s, 1)

is a new control. Let us define L > 0 through the relation C'qL%(%”””) = %, so that if
the interval I satisfies w4 (I) < min(1, L), the above reasoning yields, for all s <t € I,

q
q 1
||gj!t||]?:3_3 < Cqws(s,t) + §wh(3»t) .

Iterating the procedure (on I such that wa(I) < min(1, L)), we get that forall s <t €l
and n > 0,

gy, < Cowouls,t)(D0277) 4+ 27 (5,1
=0

By letting n tend to infinity, we obtain the desired estimate (2.21). O

With Theorem 2.10 in hand, let us introduce the second main ingredient of our strat-
egy toward a priori bounds for equation (2.13): the Rough Gronwall Lemma. In brief,
and just as its classical counterpart, this property will allow us to turn local affine-type
estimates (for the increments of a path) into a global uniform bound.

Lemma 2.12 (Rough Gronwall Lemma). Fiz a time horizon T > 0 and let G : [0,T] —
[0,00) be a path such that for some constants C,L > 0, k > 1 and some controls wy,ws
on [0,T] with wy being regular, one has

0G4 < C( sup Gr> wl(s,t)% + wa(s, t), (2.26)

0<r<t

for every s <t €10,T] satisfying wi(s,t) < L. Then it holds

o?ng Gy < 2exp (M(O?LT)) ) {Go + O?ET (wz(O,t) exp ( — %))}7

where « is defined as
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o = min (1, L(2C’162)”) . (2.27)

Remark 2.13. We are aware that similar Gronwall-type properties have already been
used in the rough or fractional literature, especially when dealing with linear problems
(see for instance [45, Theorem 3.1 (ii)] or [26, Section 10.7]). Nevertheless, we have found
it important to have a clear statement of this result at our disposal, and we will refer to
it several times in the sequel.

Proof. Let us successively set, for every t € [0, 7],

Ggr:= sup G, H;:=Ggrexp ( — M) and Hg;:= sup H,. (2.28)
= 0<s<t h al = 0<s<t

Also, let us denote by K the integer such that aL(K —1) < w1(0,T) < aLK, and define

a set of times ¢t < t; < -+ < tx as follows: ¢y := 0, tx := T and for k € {1,..., K — 1},

ty is such that wi(0,¢x) = aLk. In particular, wy (tx, tkt1) < ol < L (recall that we

have chosen o < 1 in (2.27)). Fix ¢ € [tx—1, ], for some k € {1,..., K'}. We start from

the trivial decomposition

k—2
=3 (0G)t,t,00 + (0G)t, 1.
=0

Then on each interval [t;,¢;41] one can apply the a priori bound (2.26). Taking into
account the facts that wy (tg, tx+1) < oL and that ws is a super-additive function, we get

k—2
(6G)or < ClaL)= Y Gepyoy +wa(0,t51) + C(aL)x Gy + wolty_1,t)
=0
ket
<C(aL)* Y Gepyyy +wa(0,1). (2.29)
=0

Let us bound the term Zi:ol G<i,,, above. According to our definitions (2.28), we have

k—1 k—1 k—1

w1(0,t;
E Gty = E Hy, , exp (—1(aL+1)) Her E exp(i + 1) <exp(k+1) Hep,
=0 =0 =0

(2.30)

where we have used the fact that w1(0,t;41) < aL(i + 1) for the first inequality. Com-
bining (2.29) and (2.30), we thus get that

x\»—‘

G<t Go + (.L)Q(O t) + C(CVL) (k’ + 1) HgT.

Now,
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w1(0,t
=G (- 2100)
Wl((),t)

w1 (0,tx—1) )
alL ’

< {Go +wZ(o,t)}exp(— -

) + C(aL)% exp(k + 1) H¢r exp ( -
and since w(0,tx—1) = aL(k — 1), we end up with:

w1(0, )

H; < Gy+ sup (wg(O, s) exp ( — T
a

0<s<T

)) + CGQ(OéL)%HgT.
By taking the supremum over ¢ € [0, 7], we deduce that

1 0, s)
Hep < Ce?(al)x H G 0 _wi(0,5)
<T e“(al)~Hgr + o+0221<)T(w2( ,8) exp( L ))

and recalling the definition (2.27) of «, it entails that

0
Her <2Go+2 sup_ (ws(0,5) exp ( - M))
0<s<T oL

The conclusion is now immediate, since

w1 (07 T)
al

w1 (O7 T)

< (2

GgTzeXp( )HgT. O

2.4. A first application: a priori estimates for a (rough) heat model

As a conclusion to this section, we would like to give an example of the possibilities
offered by the combination of the two previous results (Theorem 2.10 and Lemma 2.12),
through an application to the linear heat equation (2.7).

Note that this rough parabolic model (when z stands for a p-rough path, with p €
[2,3)) has already been considered in the literature (see for instance [7]). Our aim here
is not to provide a full treatment of the equation (which would certainly overlap existing
wellposedness results), but only to illustrate some of the main ideas of our approach,
before we turn to the more sophisticated conservation-law model.

To be more specific, let us focus on proving a uniform energy estimate for the approx-
imation of (2.7), that is the sequence of (classical) equations

du® = Au®dt +V - Vu®dz® zeRN  te(0,T),

(2.31)
u§ =up € L*(RY) |

where (2%).c(0,1) is a sequence of smooth paths that converges to a continuous (weak
geometric) p-rough path Z = (Z1, Z?) (for some fixed p € [2,3)), i.e. Z¢ := (525, [ ®

dzs) — Z as € — 0 (say for the uniform topology). We also assume that
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l,e|P 2,e £
sup{|ZSt ‘ + |Zst |2} < wz(s,t) , (2.32)
e>0

for some regular control wg. Note that, according to [26, Proposition 8.12], such a se-
quence (z°) can for instance be obtained through the geodesic approximation of Z.
Before we turn to a suitable “rough” treatment of (2.31), and for pedagogical purpose,
let us briefly recall how the basic energy estimate is derived in the classical smooth case.
In that situation, one formally tests (2.31) by ¢ = u§ and integration by parts leads to

t

t
Ju e +2 [ 1905 3 dr = Juolfs + [ (u)2iv V) dsg
0 0

¢
< luolle + 1Viwnoe [Iudladal. (233
0
Hence the (classical) Gronwall lemma applies and we obtain
¢
g 172 +2/ IVuslfFs dr < Vw2l g 17,
0

In the rough setting, these two elementary steps (namely, the estimate (2.33) and
then the use of the Gronwall lemma) will somehow be replaced with their rough coun-
terpart: first, the a priori estimate provided by Theorem 2.10, then the Rough Gronwall
Lemma 2.12.

In order to implement this strategy, consider the path v* := (uf)?, and observe that,
for fixed € > 0, this path is (trivially) governed by the dynamics

dv® =20 Autdt +V - Vo dz® .

Expanding the latter equation in its weak form (just as in 2.8) easily entails that for any
test-function ¢ € W3 (RY),

50° ()5t = (61°) st () + V5 (A5 0) + V5 (A5 0) + 05 () (2.34)
where the finite variation term p° is given by:

t t

(6p%)st(p) == —2/ / |Vus > dx dr — 2/ / Vui - Vousdzdr,

s RN s RN

and where A% A%e* are defined along (2.9)-(2.10) (by replacing 2 with 2¢). Even-
tually, the term v=% in (2.34) stands for some new “third-order” remainder acting on
W3 (RN).
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Equation (2.34) is actually the starting point of our analysis, that is the equation
to which we intend to apply the a priori estimate of Theorem 2.10 (or more simply
Corollary 2.11 in this case). To this end, and as anticipated above, we consider the scale
E, == Wm>(RY) (0 < n < 3). The construction of a smoothing on this scale (in the
sense of Definition 2.9) is an easy task: consider indeed any smooth, compactly-supported
and rotation-invariant function 7 on RY such that fR ~ J(@)dx = 1, and define J" as a
convolution operator, that is

Jp(x) = /Jn(ﬂf—y)w(y)dy, with g,(z) ==n""y(n"'z) . (2.35)
RN

Checking conditions (2.15)—(2.16) is then a matter of elementary computations, which
we leave to the reader as an exercise.
As far as the drift term u® is concerned, observe that it can be estimated as

t
[(0p%)st () S (/IIVUilliz d?")llsollLoo

S

t 1 t 1
2 2
+( / IIVuiII%zdr> ( / |u;f|%2dr) lolwie s (236

and hence the assumption (2.22) holds true for the control given by

t t 1 t 1
(0= [ IV dr + ( J 2 dr) ( [l dr)

We are thus in a position to apply Corollary 2.11 and deduce the existence of a constant
L > 0 (independent of ¢) such that on any interval I C [0, 7] satisfying wz(I) < L, one
has

Jo5E s S N5 L, 6 o) wz(s, ) + wue (s, oz (s, D)7 (s <te ), (2.37)
for some proportional constant independent of € (due to (2.32)).

In order to exploit the (non-uniform) bound (2.37), let us go back to (2.34) and apply
the equation to the trivial test-function ¢ = 1 € E3, which immediately leads to

t
(Ol 3 + 2 [ 195130 dr

VE(ALTL) + v (AZF1) + vg (1)

1
S lusllze wals, ) + [v5f (1))
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s<r<t

t
3— 3—
< sup [l [wz<s,t>% n |t—s|wz<s,t>ﬂ n ( J2 dr) wa(s.t)'5"
S

t
N
< [ sup 3+ [ 19012 dr} wal(s, )5
S

ST

for all s < t in a sufficiently small interval.
At this point, we are (morally) in the same position as in (2.33). By applying our
second main technical tool, namely the rough Gronwall Lemma 2.12, with

t
Fm il 2 [IVuiladr o mwr w0,
0

we finally obtain the desired uniform estimate

w1 (0, T)

=) ol (2.38)

Itx

T
sup uf 3+ [ 17053t S exp
T
0

for some proportional constant independent of ¢.

Remark 2.14. Starting from the uniform a priori estimate (2.38), one could certainly
settle a compactness argument and deduce the existence of a solution for the rough
extension of equation (2.31) (interpreted through Definition 2.5). But again, our aim
here is not to give a full treatment of this heat-equation example, and we refer the reader
to Section 7 for more details on such a compactness argument in the (more interesting)
rough conservation-law case. A full treatment of linear parabolic rough partial differential
equations with measurable coefficients can be found in [40].

3. Tensorization and uniqueness

We now turn to the sketch of a strategy towards uniqueness for the general rough
PDE (2.12), understood in the sense of Definition 2.5. These ideas will then be carefully
implemented in the next sections for the rough conservation-law model.

8.1. Preliminary discussion

Let us go back to the model treated in Section 2.4 and recall that one of the key points
of our strategy regarding (2.31) (and ultimately leading to (2.38)) was the derivation of
the equation satisfied by the squared-path v® = (uf)2. Observe in particular that if
(2.34) were to be true at the rough level, that is above the rough path Z = (Z!, Z?)
and not only above its approximation z¢ (with u accordingly replacing ), then the
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very same arguments could be used to show that estimate (2.38) actually holds true for
any solution of the underlying rough equation. The desired uniqueness property for this
equation would immediately follow, due to the linearity of the problem.

Let us point out that if the rough path Z was not geometric, the heuristic discussion
above would fail. Indeed, if Z is non geometric then taking squares in relation (2.31) for
¢ = 0 brings some extra terms in the right hand side of (2.34). This is the reason why
for a transport noise in the Itd form one has to require a suitable stochastic parabolicity
condition (the problem being ill-posed otherwise). Also note that our previous discussion
on existence does not encounter this problem. Specifically, in order to get existence we
work with a smooth approximation of the driving signal 2 and we derive some uniform
estimates in €. Then in the limit we automatically recover a geometric rough path. In
other words, in case of a Brownian motion z we solve the Stratonovich equation and not
the It6 one. Therefore in our analysis the geometricity assumption is only necessary in
the proof of uniqueness (see Section 5.1 for the application to conservation laws), and
this stems from the fact that we apply the chain rule to approximating sequences. We
refer to Remark 5.14 for further discussion of this issue.

Unfortunately, when working directly at the rough level, establishing such an equation
for the squared-path u? turns out to be a complicated exercise, due to the fact that u
cannot be considered as a test function anymore. Therefore new ideas are required for the
uniqueness result. In fact, let us consider the following more general formulation of the
problem (which will also encompass our strategy toward uniqueness for the conservation-
law model): if u, resp. v, is a (functional-valued) solution of the rough equation

duy = p(dt) + A(dt)us , resp. duvy = v(dt) + A(dt)vy , (3.1)

for a same unbounded rough driver A (but possibly different drift terms p, v), then what
is the equation satisfied by the product uv?

In order to answer this question (at least in some particular situations), we shall follow
the ideas of [1] and rely on a tensorization argument, together with a refined analysis
of the approximation error. To be more specific, starting from (3.1), we exhibit first the
equation for the tensor product of distributions U(z,y) := (u ® v)(z,y) = u(z)v(y).
Namely, write

5Ust = 5ust QUs +us ® (;'Ust + 5ust & 5vst ) (32)

and then expand the increments dug, Jvs; along (2.8), which, at a formal level, yields
the decomposition

8Ug = 6My + LU, +T2,U, + U, | (3.3)

where the finite variation term M can be expressed as:
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M; = / Hdr & Vr + / Uy & Var , (34)
[0,t] [0,¢]

and where the tensorized rough drivers I'!,I'? are given by:

L, =ALel+IeAl, , TI%4=A4l+IeA%+AL®AL. (3.5)
In equations (3.3) and (3.5), I denotes the identity map and U? is a remainder when
tested with smooth functions of the two variables.

An easy but important observation is that Chen’s relation (2.6) is again satisfied by
the components of T' := (T'!,T'2?). Equation (3.3) still fits the pattern of (2.13), and is
therefore likely to be treated with the same tools as the original equations (3.1), that is
along our a priori estimate strategy.

Our goal then is to test the tensorized equation (3.3) against functions of the form

Tty

P (z,y) = N ( 5

Yl ). (36)
and try to derive, with the help of Theorem 2.10, an e-uniform estimate for the resulting
expression. Such an estimate should indeed allow us to pass to the limit as ¢ — 0 (or in
other words, to “pass to the diagonal”) and obtain the desired equation for uv. To this
end, we consider the blow-up transformation 7. defined on test functions as

_ x_ T_
T.9(z,y) == V& (x4 + — %t ?) , (3.7)
where x4 = J”Tiy are the coordinates parallel and transverse to the diagonal. Note that

its adjoint for the L?-inner product reads
T:®(x,y) = P(zy +ex_,xy —ex_) (3.8)
and its inverse is given by
T 0(x,y) = eNO(xy +ex_,xy —cx_) . (3.9)
Setting
Us:=T:U , T::=T7'T"T. , M°:=T'M and U%*:=T:U°%, (3.10)
the tensorized equation (3.3) readily turns into
OUS(®) = OME(®) + US (P25, + T25)®) + U (@) - (3.11)

Applying (3.11) to the test-function ®(x,y) = (x4 )1 (2x_) then corresponds to apply-
ing (3.3) to the test-function ®. defined by (3.6).
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With these notations in mind, our search of an e-uniform estimate for U%¢ (via an
application of Theorem 2.10) will naturally give rise to the central notion of renormal-
izability for the driver under consideration.

3.2. Renormalizable drivers

Let us fix p € [2,3] for the rest of the section. Motivated by the considerations of
Section 3.1, we will now define and illustrate the concept of renormalizable rough driver.

Definition 3.1 (Renormalizable driver). Let A be a continuous unbounded p-rough driver
acting on C°(RY), and T its tensorization defined by (3.5) and acting on C°(RY xRY).
We say that A is renormalizable in a scale of spaces (£n)o<n<s if {T'c}ee(o,1) defined in
(3.10) can be extended to a bounded family (with respect to €) of continuous unbounded
p-rough drivers on this scale.

Remark 3.2. Although it is inspired by the equation (3.11) governing U¢, this definition
only depends on the driver A and not on the drift terms p, v involved in (3.1).

Remark 3.3. In the context of transport-type rough drivers, the renormalization property
corresponds to the fact that a commutator lemma argument in the sense of DiPerna-Lions
[17] can be performed.

For a clear illustration of this property, let us slightly anticipate the next sections
and consider the case of the driver that will govern our rough conservation-law model,
namely A = (A, A%) with

Alu:=2ZvEovu,  A%ui= 22 VRV (VI V) (3.12)
or equivalently

Ao = —ZMFdiv(VFe) and A% = Z27% div(Vidiv(VEy)) | (3.13)

S

for a given p-rough path Z = (Z!,Z%) in RX and a family of vector fields V =
(V1,...,VE) on R¥. Observe that this driver was already at the core of the heat-
equation model evoked in Section 2.2 (or in Section 2.4).

Proposition 3.4. Let A be the continuous unbounded p-rough driver defined by (3.12),
and assume that V € W3’°°(RN). Then, for every 1 < R < oo, A is a renormalizable

driver in the scale (Ern)og<ngs given by
Erpn i ={P € W (RN x RN): ®(x,y) = 0 if pr(z,y) > 1}, (3.14)

where pr(x,y)? = |v|?/R? + |v_|?, and equipped with the subspace topology of W™>.
Besides, it holds that
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||F;,stHI[J;(5R’ng,n71) SHVHW:s,oc wZ(Svt) ) ne {_07 _2} ) (3‘15)
2
T2 2 ) SWVIse @2(s:),  m€{=0,~1}, (3.16)

for some proportional constants independent of both € and R.

Remark 3.5. The support condition in the definition of spaces £g ,, implies in particular
that the test functions are compactly supported in the xz_ direction. This localization
is a key point in the proof below. As we mentioned it above, the test functions we are
ultimately interested in are those of the form (3.6), i.e. the dependence on z_ is only in
the mollifier ¢, which can indeed be taken compactly supported.

Remark 3.6. In the subsequent conservation-law model, the possibility of a specific lo-
calization in the x direction (as offered by the additional parameter R > 1) will turn
out to be an important technical tool when looking for suitable estimates of U¢ and M*
(along the notations of (3.11)), as detailed in Sections 5.4-5.5.

Proof of Proposition 3.4. Recall that the driver T' was defined in (3.5), and that

Al A%* are defined by (3.13). Therefore, the driver I'. which was defined by I'¥ =
T-T*T. can be written as

Po=Z3Tve,  T2h =237yl Ty,

where
Iyl =-V"-Vi—e 'V .V - Df .

We have here used the notation

VE = %(vx +V,), D) =div. V(z),
and for any real-valued function ¥ on RV

UE(z,y) = V(o +ex )£ U(zy —cx).

From these expressions, it is clear that neither Fi::t nor Fg::t influence the support of

1 | 2,%
: SR,n — 5R,n71 and F&St : SR,n — 5R7n72

the test-functions, and so the operators I'_’;,
are indeed well-defined. Next, by the Taylor formula we obtain

1
e W =21 /DV((w+ —ex_) + 2erz_)dr.
0
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Hence, since any function ® € &g, satisfies @(z,y) = 0 as soon as |z_| > 1, we obtain
forn=0,1,2

1,
ITve®llen,., S (IVilwne + [DVwre)@ller, i S NIV Iwnsro[®llen i
and for n =0,1

2, 1,% 11, 1,
TV e@llen., = ITV TV ®llen, S IVIwnrre TV ®Rllen i

S IVilwntre [Viiwnszos [ @]l

which holds true uniformly in e. Consequently, uniformly in € (and of course R),

T2 il 2 e mn 1) SV w2(5,1),  n€{=0,-2},
2
T2 o ) SIVIse @2(558),  m€ {=0,~1},

where wyz is a control corresponding to the rough path Z, namely,
24l Swz(s,t)r, 25| Swz(s, ). O
4. Rough conservation laws I: presentation

Throughout the remainder of the paper, we are interested in a rough path driven
scalar conservation law of the form

du+div (A(z,u))dz =0,  t€(0,7), z€R",

(4.1)
u(0) = wo,
where z = (2!,...,2%) can be lifted to a geometric p-rough path and A : RY x Re —
RN*K  Using the Einstein summation convention, (4.1) rewrites

du + 9y, (Aij(z,u)) dz? =0, t€(0,T), z € RV,
u(0) = uo.

As the next step, let us introduce the kinetic formulation of (4.1) as well as the basic
definitions concerning the notion of kinetic solution. We refer the reader to [58] for a
detailed exposition. The motivation behind this approach is given by the nonexistence
of a strong solution and, on the other hand, the nonuniqueness of weak solutions, even
in simple cases. The idea is to establish an additional criterion — the kinetic formulation
— which is automatically satisfied by any strong solution to (4.1) (in case it exists)
and which permits to ensure the well-posedness. The linear character of the kinetic
formulation simplifies also the analysis of the remainder terms and the proof of the
apriori estimates. It is well-known that in the case of a smooth driving signal z, the
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kinetic formulation of (4.1), which describes the time evolution of fi(x,&) = 1,,(z)>e¢,
reads as

df + Vo f-adz — 0cfbdz = Ogm,

4.2
£(0) = fo, 2

where the coefficients a, b are given by
a=(a;) = (0cAij) : RY xR = RV*E p= (b)) = (div, A;) : RY xR — R¥

and m is a nonnegative finite measure on [0,7] x RY x R¢ which becomes part of the
solution. The measure m is called kinetic defect measure as it takes account of possible
singularities of u. Indeed, if there was a smooth solution to (4.1) then one can derive
(4.2) rigorously with m = 0. We say then that u is a kinetic solution to (4.1) provided,
roughly speaking, there exists a kinetic measure m such that the pair (f = 1,5¢,m)
solves (4.2) in the sense of distributions on [0,7) x RY x Rg.

In the case of a rough driver z, we will give an intrinsic notion of kinetic solution
0 (4.1). In particular, the kinetic formulation (4.2) will be understood in the framework
of unbounded rough drivers presented in the previous sections. The reader can immedi-
ately observe that (4.2) fits very naturally into this concept: the left hand side of (4.2)
is of the form of a rough transport equation whereas the kinetic measure on the right
hand side plays the role of a drift. Nevertheless, one has to be careful since the kinetic
measure is not given in advance, it is a part of the solution and has to be constructed
within the proof of existence. Besides, in the proof of uniqueness, one has to compare
two solutions with possibly different kinetic measures.

The kinetic formulation (4.2) can be rewritten as

b 0
df = (_a> : (viiC)dz—i-agm

df =V Ve fdz+ 85771, (4.3)

or

where the family of vector fields V is given by

by b
_all DRI _alK
V:(Vl’...,VK):<ba>: ) ) . (4.4)
—aN1 -t TONK

Note that these vector fields satisfy for i € {1,..., K}
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dng’m V; = 8Ebz - diVz a.; = 65 diVI Al - diVm 85141 =0. (45)

Let us now label the assumptions we will use in order to solve equation (4.2) or its
equivalent form (4.3), beginning with the assumptions on V:

Hypothesis 4.1. Let V be the family of vector fields defined by relation (4.4). We assume
that:

Vews @) and  V(z,0)=0 VreRY. (4.6)

Notice that the assumption V(x,0) = 0 is only used for the a priori estimates on
solutions of (4.2), so that it will not show up before Section 6. In addition, as in the toy
heat model case, we shall also assume that z can be understood as a rough path.

Hypothesis 4.2. For some fixed p € [2,3), let Z = (Z', Z?) be a continuous (weak geomet-
ric) p-rough path on [0, T] which is a lift of the function z in the sense of Definition 2.1,
and we fix a regular control wz such that for all s <t € [0,T]

1 2
1ZL| Swz(s,t)r 23] Swz(s,t)r .

Endowed with the p-rough path Z = (Z!,Z?), we can turn to the presentation of
the rough driver structure related to our equation (4.3). The scale of spaces (En)o<n<s
where this equation will be considered is

En — Wn,l(RN+1) N Wn,oo(RNJrl) )

Then we define the central operator-valued paths as follows: for all s < t € [0,T] and
¢ € Ey (resp. p € E3),

A;tw P= Zslt’l VZ . v{,z‘p )

: o _ (4.7)
resp. Aso:=2Z3"V? Ve, (V' Ver) .

It is readily checked that A := (A!, A?) defines a continuous unbounded p-rough driver
on (Ey)o<ngs, and that for all s < ¢ € [0,T7,

HAit”ZZ(EmEn_l) 5 wZ(s,t)a ne {_07 _2}7

(4.8)
2
|‘A§t||12/(EmEn72) S/ wZ(S?t)a ne {703 71}

As in Section 2.2, it will be useful to have the expression of A»* and A%* in mind for
our computations. Here it is readily checked that:

Aig*go = —Zslt’k divy ¢ (ngo) , and Aif(p = th’jk divy ¢ (deivm,g (ngo)) . (4.9
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The last point to be specified in order to include (4.2) in the framework of unbounded
rough drivers, is how to understand the drift term given by the kinetic measure m. To
be more precise, in view of Subsection 2.3, one would like to rewrite (4.2) as

0fst = Opst + (A;t + Ait)fs + fsht (4.10)

where 6y stands for the increment of the corresponding kinetic measure term and f! is a
suitable remainder. However, already in the smooth setting such a formulation can only
be true for a.e. s,t € [0,7]. Indeed, the kinetic measure contains shocks of the kinetic
solution and thus it is not absolutely continuous with respect to the Lebesgue measure.
The atoms of the kinetic measure correspond precisely to singularities of the solution.
Therefore, it makes a difference if we define the drift term p:(¢) as —m(1j40¢p) or
—m(1jo,)Osp). According to the properties of functions with bounded variation, the
first one is right-continuous whereas the second one is left-continuous. Furthermore,
they coincide everywhere except on a set of times which is at most countable. Note also
that the rough integral f* defined by

5f£t = (Ait + Agt)fs + fgt

is expected to be continuous in time. Thus, depending on the chosen definition of u, we
obtain either right- or left-continuous representative of the class of equivalence f on the
left hand side of (4.10). These representatives will be denoted by f+ and f~ respectively.

For the sake of completeness, recall that in the deterministic (as well as stochastic)
setting, the kinetic formulation (4.2) is understood in the sense of distributions on [0, T") x
RN+1. That is, the test functions depend also on time. Nevertheless, for our purposes it
seems to be more convenient to consider directly the equation for the increments §f.
Correspondingly, we include two versions of (4.2) in the definition of kinetic solution, even
though this presentation may look slightly redundant at first. Both of these equations
will actually be needed in the proof of uniqueness.

Before doing so, we proceed with a reminder of two technical definitions introduced
in [13] and extending classical concepts from PDE literature: the definition of a Young
measure and a kinetic function. Just as in [13,43], the consideration of such specific
objects will be one of the keys toward wellposedness for the problem (4.2).

In what follows, we denote by P;(R) the set of probability measures on R.

Definition 4.3 (Young measure). Let (X,\) be a o-finite measure space. A mapping
v: X — Pi(R) is called a Young measure provided it is weakly measurable, that is, for
all ¢ € Cy(R) the mapping z — v,(¢) from X to R is measurable. A Young measure v
is said to vanish at infinity if

[ [idan@are <o

X R
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Definition 4.4 (Kinetic function). Let (X, \) be a o-finite measure space. A measurable
function f : X x R — [0,1] is called a kinetic function on X if there exists a Young
measure v on X that vanishes at infinity and such that for a.e. z € X and for all £ € R

f(2,€) = v2((€,00)).

We are now ready to introduce the notion of generalized kinetic solution to (4.2), as
an intermediate step in the construction of full solutions.

Definition 4.5 (Generalized kinetic solution). Let fo : RN+1 — [0, 1] be a kinetic function.
A measurable function f : [0,7] x RV*1 — [0,1] is called a generalized kinetic solution
to (4.1) with initial datum fy provided

(i) there exist f*, such that f;" = f; = f, for a.e. t € [0,T], f7 are kinetic functions
on R¥ for all t € [0,T], and the associated Young measures v+ satisfy

sup //|§|duti’z(£)dx< 00, (4.11)

0<t<T
RN R

(iii) there exists a finite Borel measure m on [0, 7] x RN+1,

(iv) there exist f*+8 ¢ Vf ([0,T]; E—3) for some ¢q < 3,

loc

such that, recalling our definition (4.9) of AL* and A%*, we have that

315 (p) = fH (AL @ + A% 0) — m(L(..00e0) + F175(0), (4.12)
3f(p) = £ (A 0 + AL0) — m(11,.00c0) + f27 (), (4.13)
holds true for all s < ¢ € [0,7] and all ¢ € Es.

Finally we state the precise notion of solution we will consider for eq. (4.2):

Definition 4.6 (Kinetic solution). Let ug € L*(RY). Then u € L>(0,T; L*(RY)) is called
a kinetic solution to (4.1) with initial datum wug if the function fi(z,&) = 1,,(z)>¢ is a
generalized kinetic solution according to Definition 4.5 with initial condition fy(x,§) =

Lug(@)>¢-
4.1. The main result

Our well-posedness result for the conservation law (4.1) reads as follows.

Theorem 4.7. Let ug € LY(RY) N L2(RY), and assume our Hypothesis /.1 and /.2 are
satisfied. Then the following statements hold true:
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(i) There exists a unique kinetic solution to (4.1) and it belongs to L>=(0,T; L?(RN)).
(ii) Any generalized kinetic solution is actually a kinetic solution, that is, if f is a
generalized kinetic solution to equation (4.1) with initial datum 1,,>¢ then there
exists a kinetic solution u to (4.1) with initial datum uy such that f = 1,5¢ for a.e.

(t,x,&).
(iii) If w1, ue are kinetic solutions to (4.1) with initial data uy o and usgg, respectively,
then for a.e. t € [0,T]

[[(ua () — w2 () * |zt < [[(u1,0 — u2,0) " [lLr-

Remark 4.8. Note that in the definition of a kinetic solution, u is a class of equivalence in
the functional space L°°(0,T; L' (R")). Consequently, the L!-contraction property holds
true only for a.e. t € [0, T]. However, it can be proved that in the class of equivalence u
there exists a representative u™, defined through Lyt (t,0)>e = fi7 (z,€), which has better
continuity properties and in particular it is defined for every ¢ € [0,T]. If uf‘ and u;r are
these representatives associated to u; and wuo respectively, then

[y (8) = ug (1)) Fllzr < [[(u1,0 — u2,0) [l
is satisfied for every t € [0, T).
4.2. Conservation laws with smooth drivers

Let us show that in the case of a smooth driver z, our notion of solution co-
incides with the classical notion of kinetic solution. Recall that using the standard
theory for conservation laws, one obtains existence of a unique kinetic solution u €
L>(0,T; LY(RYN)) N L>°(0, T; L?(RY)) to the problem

Opu + div(A(z,u))z =0, u(0) = wp. (4.14)

In other words, there exists a kinetic measure m such that f = 1,¢ satisfies the corre-
sponding kinetic formulation

O f = 8§m +V. Vg’mf Z,
f(O) = fO = 1U()>fa
in the sense of distributions over [0, 7) x RN+ that is, for every p € C°([0,T) x RN*1)

it holds true

T T

/ F(Bupe) At + folgo) = / fo(V - Vigy) dzy + m(Dep) (4.15)

(recall that divV = 0).
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Lemma 4.9. Let u be a classical kinetic solution of equation (4.14). Then u is also a rough
kinetic solution in the sense of Definition 4.0, and the following relation holds true:

ft(‘%f) = Vt,$((£7 OO)) = 1ut($)>£’
where v is the Young measure related to f.

In order to derive from this formulation the equations for time increments needed in
Definition 4.5, let us first recall a classical compactness result for Young measures.

Lemma 4.10 (Compactness of Young measures). Let (X, \) be a o-finite measure space
such that L'(X) is separable. Let (V") be a sequence of Young measures on X such that
for some p € [1,00)

sup // |€]P dv] (&) dA(2) < oo. (4.16)

neN
X

Then there exists a Young measure v on X satisfying (4.16) and a subsequence, still
denoted by (v™), such that for all h € L'(X) and all ¢ € Cy(R)

n1gr;o / B(&) v (€) dA(z / / 6(&) dv.(€) dA(2)

Moreover, if fn,n € N, are the kinetic functions corresponding to v, n € N, such
that (4.16) holds true, then there exists a kinetic function f (which corresponds to the
Young measure v whose existence was ensured by the first part of the statement) and a
subsequence still denoted by (f™) such that

fo S f in LO(X xR).
With this result in hand, we are able to obtain the representatives f* and f~ of f.

Lemma 4.11. Let f be a classical kinetic solution defined as in Lemma /.9. For fized
€ (0,T) and € > 0 set:

t+e

t
1 1
== /fsdsa f;,s = /fsds~
3 3
t t—e

Then there exist f+, f~, representatives of the class of equivalence f, such that, for
every t € (0,T), fit, fi are kinetic functions on RN and, along subsequences,

ST and  f7° S f7 in LRV,
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Moreover, the corresponding Young measures uti satisfy

sup / / €]+ [€12) 5, (d€) < ljull ey + 20 2. (4.17)

te( OT)

Proof. Both f° and f—¢ are kinetic functions on R", with associated Young measures

given by:
t4e ¢
1 _ 1
vt == [ vyds, v, == [ vsds.
€ €
t t—e

Furthermore, recall that v . (d§) = dy,(2)(d€). Hence, due to the fact that u sits in the
space L>(0,T; LY (RN)) N L>=(0,T; L?(RY)), the following relation holds true:

[ [ e+ 1Py vz o fzs[gup// €]+ 1€1%) vy (d€) da

RN R

< lullpgers + ||UHL§°L§-

Thus, we can apply Lemma 4.10 to deduce the existence of f;, f,~, which are kinetic
functions on R such that, along a subsequence that possibly depends on ¢,

e A e (L Zal (R (4.18)

Moreover, the associated Young measures v;~ satisfy (4.17).

It remains to show that they also fulfill f;" = f; = f; for a.e. t € (0,T). According
to the classical Lebesgue differentiation theorem, there exists a set of full measure E,, C
[0, T] possibly depending on ), such that

t+e
lim E / fs()ds = fi(¥) for all t € By,

e—=0 ¢
t

for any 1 € L'(RN*1). Therefore, in view of (4.18) we deduce that for every v €
LY(RN*1) it holds

fr@) = fi()  forallte Ey.

As the space L'(RV*1) is separable (more precisely it contains a countable set D that
separates points of L>®(RN*1)), we deduce that f;¥ = f; for all ¢ from the set of full
measure NyepEy. The same argument applied to f~ then completes the claim. O



3610 A. Deya et al. / Journal of Functional Analysis 276 (2019) 3577-3645

Proof of Lemma 4.9. As a consequence of Lemma 4.11, for all ¢ € C°(RV*1),
05 () = —/fr(V V) dzr —m(1(s0e),

0fst (o /.fr (V- V) dz, —m(14)0c0),

hold true for every s,t € (0,T). This can be obtained by testing (4.15) by ¢y and
1% where ¢¢ and ¥ ¢ are suitable approximations of 1j0, and 1y ), respectively,

such as
1, if r € [0,¢], 1, ifrel0,t—el,
Prf =012t ifr e [ttt gl Pt i= ==t ifreft—et], (419)
0, ifrelt+eT], 0, if r € [t,T7,

and passing to the limit in €. Therefore, we arrive at the equivalent formulation

Sf(0) = FHAG @) + fF (A 0) + FH () — m(1(.00c0),
5fu(p) = [T (AN ) + f7 (AL 0) + F2(0) — m(1 s 1)0ep),

which holds true in the scale (E,,) with E,, = WnL(RN )N (RN +1) for remainders
8 given by

t

£h(0) = — [E(AY ) + / (FE(V - Vi) — fE(V - Vi))da.

S

Where we have replaced f by f* in the above Riemann-Stieltjes since f;” = f;” = f; for
a.e. t € (0,T). Plugging into the integral the equation for f* we get

2 ) = —fF (A% ) / /fw V(V - V) dzy +m(Li0:(V - Vo) | dz,.

Inspection of this expression shows that f*# ¢ VY oo (E—2) for any p > 1/2. Moreover,
it can be proved, cf. [14, Remark 12] or [43, Lemma 4.3], that the kinetic measures m
do not have atoms at ¢ = 0 and consequently f;" = fo. O
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5. Rough conservation laws II: uniqueness and reduction
5.1. General strategy

Before we turn to the details, let us briefly sketch out the main steps of our method
toward uniqueness for the problem (4.1), interpreted through the above kinetic formu-
lation. The starting observation is, in fact, the basic identity

(ut —u?)T = /1u1>§(1 —1,s¢)dé , uluPeER,
R

which, applied to two kinetic functions u!, u?, immediately yields

It =) [l = 15 = e,
where f!, f2 stands for the generalized kinetic functions associated with !, u?.

We are thus interested in a estimate for the product f(1— f2), and to this end, we will
naturally try to understand the dynamics of this path. At this point, observe that owing
to (4.12)—(4.13), the two paths f* and f? := 1— f? (or rather their representatives f>%)
are solutions of rough equations driven by the same driver A (we will carefully justify
this assertion below).

This brings us back to the same setting of Section 3.1, and following the ideas therein
described, we intend to display a tensorization procedure based on the consideration of
the path

F = f1a+ ®f2,+ .

The main steps of the analysis are those outlined in Section 3.1, namely:

(i) Derive the specific rough equation satisfied by F (that is, the corresponding version
of (3.3)), with clear identification of a drift term @ and a remainder F®. This is the
purpose of Section 5.2 below, and, as expected, it will involve the tensorized driver T'
derived from A along (3.5).

(#1) Apply the blow-up transformation (3.7) to the equation and, in order to use our
a priori estimate on the remainder, try to find suitable bounds for the (transformed)
drift term Q° := T @, as well as for the supremum of F° := T} F. These issues will be
addressed in Sections 5.4 and 5.5.

(#4¢) Combine Theorem 2.10 with the renormalizability property of the tensorized driver
(as proved in Proposition 3.4) in order to estimate the (transformed) remainder F%¢ :=
T*F*%. Then use this control to pass to the diagonal (that is to let € tend to 0) and, with
the limit equation at hand, try to settle a rough Gronwall argument toward the desired
estimate (in a way similar way to the example treated in Section 2.4). This will be the
topic of Section 5.6, and it will finally lead us to the expected uniqueness property.
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The principles of this three-step procedure are thus quite general, and they could
certainly be used as guidelines for other rough-PDE models.

Nevertheless, when it turns to its rigorous implementation (at least in our case), the
above scheme happens to be the source of (painful) technical difficulties related to the
“localizability” of the test-functions, that is the control of their support. As we already
evoked it in Remark 3.6, these difficulties will force us to consider the sophisticated scale
Er,n introduced in (3.14), and thus to handle an additional parameter R > 1 throughout
the procedure (on top of the blow-up parameter €). The dependence of the resulting
controls with respect to R will be removed afterwards, via a (rough) Gronwall-type
argument.

Note finally that the construction of a smoothing (in the sense of Definition 2.9) for
the “localized” scale £g ,, is not an as easy task as in the situation treated in Section 2.4:
we will go back to this problem in Section 5.3 and therein construct a suitable family of
operators.

From now on and for the rest of the section, let f1, f? be two generalized kinetic
solutions to (4.1), and fir two associated measures m*,m? (along Definition J.5(iii)).
Besides, we will use the following notation: f == 1 — f as well as x := (x,€&) € RN*L,
y = (y,¢) € RV

5.2. Tensorization

We here intend to implement Step (i) of the above-described procedure, that is to
derive the specific rough equation governing the path F = 1+ ® f2+ defined on [0, T] x
RN+ x RN+ by

Fy(x,y) = fi () fF T (y): (5-1)

For the moment, let us consider the general scale of spaces £2 = WH(RN 1 x RVN+1)n
W0 (RVN+L x RNF1) (0 < n < 3) with norms

[@llee = [|@lwn1(mr+1xry+1) + [ wn.co @V +1xRN+1)
and recall that the tensorized driver I' = (I'!, I'?) is defined along the formulas

Il =ALeIl+IeAl, , T4 =A%01+10A2% +A, Al .

S

Proposition 5.1. In the above setting, and for all test functions ® € 83?, the following
relation is satisfied:

SFy(®) = 0Qu(®) + Fy (T +T27)®) + FL(®), (5.2)

where F? € VQq/S(E%) and where Q is the path defined (in the distributional sense) as:
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Qi=Qi =i = [ ol [~ [ 11 @ o, 5.3

[0,] [0,¢]

Proof. Let us first work out the algebraic form of the equation governing F' in a formal
way. Namely, according to relations (4.12), the equations describing the dynamics of f+
and f27 in the distributional sense are given by:

Sfht = ALFEY 4 A2 8 9emt (1) + fH° (5.4)
Ot = ALTET + AL T2 — 0em® (1) — [0 (5.5)

In order to derive the equation for F, we tensorize the equation for f'+ with the equation
for f2+. Similarly to (3.2) we obtain the following relation, understood in the sense of
distributions over RV*+1 x RN+1.

0Fy =0fyt @ 2T+ flreofit +ofit wofit.

Expanding 04" and 6 /%" above according to (5.4) and (5.5), we end up with:

§Fy =T F, +T%F,
— [T ®@0:m® (L) — Oem' (1(s,) ® Oem®(L(sy) + Oem' (159 ® f2F + RY,  (5.6)
where all the other terms have been included in the remainder R.,. More explicitly
Rly= A1 © AT+ A © AL P+ AL 6 A
-2,
o ARECY S S
— (AL + AL 0T ® 8€m2(1(s,t]) + 8€m1(1(s,t]) ® (AL + A2) 2T
— Oem* (1(5,47) © Ogm® (15 )
— (A + AR T fT e (AL + AL
— Oem! (1) @ [ 7F = [P @ Oem® (1) — fiT @ £,

Let us further decompose the term I := dem!(1(54) ® 9¢m?*(1(s ) in (5.6). The inte-
gration by parts formula for two general BV functions A and B reads as

AB, = ABs + / AdB, + / B._dA..

(s,t] (s,t]

Applying this identity to I, we obtain I = I; + Iy with

L =—- / 85m1(1(5ﬂ) ® dagmz, and I, = — / dagm: ® 3§m2(1(sw)).

(s,t] (s,t]
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We now handle I; and I separately. For the term [; we invoke again equation (5.4)
describing the dynamics of %, which yields

I =- / (6fa" = (AL + AZ)fT = fih) @ ddem] = — / 0fs" ® ddgm® + RZ,
(s,t] (s,t]

= - / AT ®@doem? + [T ®@ 9em® (1(,.4) + R,
(s,t]

Similarly, we let the patient reader check that the equivalent of relation (5.5) for § ;_t,
derived from (4.13), leads to

—_ _ _217
I, = /ff’ ®ddem). — ;7 @ Oem' (1(5,) + Oem?(1(sy) ® e (15.4) + R,

(s:t]

In addition, observe that f2+ — f2~ = 9¢m?(1,y). Hence 2= —0gm(1ysy) = f2+ and
we obtain

b= / 27 @ ddem! — T @ 0em! (1(,g) + RS,

(s,t]

Plugging the relations we have obtained for I = I; + I into (5.6) and looking for
cancellations, we end up with the following expression for d F:

0Fy =T4LF, +T%F, + / ddgm} @ f7~ - / fHt @ doem® + F,

(s,t] (s,t]

with FY%, = RL, + R2, + R®,. Having the definition (5.3) of @ in mind, this proves equa-
tion (5.2) in the distributional sense, for test functions ® € C°(RN*! x RN+1) since
distributions can act in each set of variables separately. We now establish the claimed
regularity for F% through an interpolation argument. To this end, consider the smooth-
ing (J"),e(0,1) (With respect to (£)o<ng3) derived from the same basic convolution
procedure as in (2.35), and for ® € C°(RN 1 x RN+ write

FE(®) = F&(J"®) + Fy((1d — JM)®)

The first term will be estimated with the decomposition into the various remainder terms
F2(J1®) = RL,(J7®) + R2,(J"®) 4+ R3,(J"®). Close inspection of the precise form of
R" for ¢ = 1,2,3 shows that the terms which require more than three derivatives from
J"® (resulting in negative powers of 1) are also more regular in time. On the other
hand, F%((Id — J7)®) can be estimated directly from the equation (5.2) and while the
various terms show less time regularity they also require less than three derivatives from
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(Id = J")® which in turn become positive powers of 7. Reasoning as in the proof of
Theorem 2.10 we can obtain a suitable choice for 1 which shows that there exists a
regular control wy;, depending on the controls for f?,m?, [ 4 =1,2, such that

FE (@) < wyys, /9 g (5.7)

To complete the argument we need to go from the distributional to the variational
form of the dynamics of . That is, we need to establish eq. (5.2) for all ® € £ and not
only for ® € C°(RN*+1 x RN¥+1) In order to do so we observe that C2°(RN+1 x RV+1)
is weakly-x dense in £. Choosing a sequence (®,,), C CZ(RN*! x RN+1) weakly-x
converging to ® € £ we see that all the terms in eq. (5.2) apart from the remainder
F?% converge. Consequently also the remainder converges and it satisfies the required
estimates by (5.7). O

Let us now turn to the implementation of Step (ii) of the procedure described in
Section 5.1. We recall that the blow-up transformation (7.).c(o,1) has been introduced
in Section 3.1, together with the explicit description of the related transforms 70, T !
(see (3.8) and (3.9)). Setting

=TT, , Q°:=T'Q and F" :=T'F%, (5.8)

it is easy to check that, for each fixed e € (0, 1), the transformed path F¢ := T* F satisfies
the rough equation

5Fsst(q)) = 5Q§t(@) + FSE((I‘i’:t + FEZZ})@) + nge(q)) ) (5'9)

in the same scale (E2)o<n<3 as the original equation (5.2).

As a preliminary step toward an efficient application of Theorem 2.10 to equation
(5.9), we need to find suitable bounds for Q¢ (keeping condition (2.17) in mind) and for
the supremum of F*¢ (which, in view of (2.20)—(2.21), will be involved in the resulting
estimate). As we mentioned it earlier, the above scale (£2) turns out to be too general
for the derivation of such bounds, and we must restrict our attention to the more specific
(set of) localized scale(s) (Ern)ogngs (R > 1) defined in (3.14), that is

Epp = {® € WP (RNT x RN &(x,y) = 0if pr(x,y) > 1} , (5.10)
with pr(x,y)? = x4 [2/R? + x|
5.8. Construction of a smoothing
The first condition involved in Theorem 2.10 is the existence of a suitable smoothing

(in the sense of Definition 2.9), and we thus need to exhibit such an object for the above
scale (Eg.n)ocngs (for fixed R > 1).
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Just as in Section 2.4, a first natural idea here is to turn to a convolution procedure:
namely, we introduce a smooth rotation-invariant function ;3 on RN¥*! x RN*1 with
support in the ball of radius % and such that [pyi1, gy J(X,y)dxdy = 1, and consider
J" defined as

Tho(x,y) = / J(x — %y — §)p(®, §)dxdy , with
RN+1xRN+1
(%, y) =02V "2 (%, y)) -

Unfortunately, the sole consideration of the so-defined family (J"),¢(0,1) is no longer
sufficient in this “localized” setting, since convolution may of course increase the sup-
port of test-functions, leading to stability issues. Accordingly, an additional localization
procedure must come into the picture.

To this end, let us first introduce a suitable cut-off function:

Notation 5.2. Let n € (0, 1) and let 6, € C°(R) be such that
0<0, <1, supp 0, C Bi_2, C R, 0, =1 on Bi_3, CR,
where for o > 0 we set By 1= [—a, a]. We also require the following condition on 6,):
IV*0,| <n7F, fork=1,2.
Finally, for all R > 1 and x,y € RN we define
0,(x,y) = Ory(x,y) = Oy (pr(x,y)).
With these objects in hand, we have the following technical result.

Proposition 5.3. Let ©,, be the function introduced in Notation 5.2. Then it holds that

||@77q>||512,k 5 H(I)Hfz?k fO’l“ k=0,1,2, (511)
||(1 - (—)n)(I)HgR,O 5 77k||¢’||83,k fO’f’ k= 1,2, (512)
[(1=0y)Pllen, S nll®llen (5.13)

with proportional constants independent of both n and R. Besides,
supp(J"0,P) C {(x,y) e RV x RV*L: pr(x,y) 1}
and there exists UV € Ep 3 with supps, [[VR|le,, < 00 such that for all x,y € RN*!
1’ F 10,2 (%,y)| S Ur(%,¥)|®llen,. (5.14)

where the proportional constant is again independent of both n and R.
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Before we turn to the proof of these properties, let us observe that they immediately
give rise to the expected smoothing:

Corollary 5.4. For alln € (0,1) and R > 1, consider the operator J" on Erik (k=0,1,2)
defined as J(®) = J"(0,®). Then J" defines a smoothing on the scale (Ery.), and
conditions (2.15)—(2.16) are both satisfied with proportional constants independent of R.

Remark 5.5. The existence of a smoothing for the localized scale (Eg,,,) is also an (un-
proven) assumption in the analysis carried out in [1] for a rough transport equation (see
in particular Section 5.2 in the latter reference). The statement above thus offers a way
to complete these results.

Proof of Proposition 5.3. In order to prove (5.11), we write
V(©,®) =(VO,)®+06,(V),

where the second term does not pose any problem. On the other hand, the term VO,
diverges as 7! due to the assumptions on 0,, namely, it holds

VO, = (V0,)(pr(x,¥))Vor(X,y).

But due to the support of ® and the fact that 6,, = 1 on B;_3,, we have that for every
(x,y) in the region where VO,, # 0 there exists (X, ¥) outside of support of ® such that

|(X7Y) - (5(75’” S n hence
12(x,y)| = |[2(x,y) — 2%, 9)| S nll®ller,
and consequently (5.11) follows for k = 1. If k = 2, we have
V3(0,%®) = (V?0,)® +2V6, - Vo + 0, V3,

where the third term does not pose any problem and the second one can be estimated
using the reasoning above. For the first one, we observe that Vi@n diverges like 72 but
for every (x,y) such that V20 # 0 there exists (%X, ¥) that lies outside of support of ®,
satisfies |(x,y) — (X, ¥)| < 1. Resorting to a second order Taylor expansion and invoking
the fact that both ®(X,y) and V®(X,y) are vanishing we get:

[@(x,¥)| = [®(x,y) — (%,¥) - D®(%,¥)((x,y) = (X, 7))

, R (5.15)
S D7 (2, 2y )l|(x,y) = (X 97 S 07 [ ®llen,.

and relation (5.11) follows.
The same approach leads to (5.12). To be more precise, for (x,y) from the support
of (1 —©,)® we have using the first and second order Taylor expansion, respectively,
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(1= 0n)2x,y)| S "1 = 60y)@llen, < 1" 1@l (5.16)

where we used (5.11) for the second inequality.
To show (5.13), we write

Vi(l-6,)2 =—-(Ve,)®+(1-06,)(Ve).
The second term can be estimated due to (5.16) as follows
(1 =6,)(Ve)| S nll®llep,.-

For the first term, we recall that even though VO, is of order n~!, ® can be estimated
on the support of VO,, by n* due to (5.15). This yields

(VO P S nl[®lles,,

and completes the proof.
Let us now prove (5.14). First of all, we observe the trivial estimate, for k = 1,2, and
(x,y) € supp(J"0,®),

1 7HI10,2(x,¥)| < 770,z S [|lle, < [Plle,- (5.17)
Next, we note that
supp(J"0,®) C {(x,y) e RVFLx RN pp(x,y) <1 - n} (5.18)
since R > 1, and denote
Dp = {(x,y) € RN x RN*!: pp(x,y) < 1}. (5.19)
Let d(-,0Dpg) denote the distance to its boundary dDg. Owing to (5.18), it satisfies
d((x,y),0DRr) = n for all (x,y) € supp(J"0,P).

Therefore, performing a Taylor expansion we obtain for k¥ = 1,2, and (x,y) €
supp(J"0,P),

1’10, (x, y)| 0P ld((%,5), ODR)[* (T, Py

, (5.20)
S 1d((x,y), 0DR)[*|| @l e

where we also used (5.11) and the fact that g is embedded in W*°°. Besides we may
put (5.17) and (5.20) together to conclude that there exists Ur € Eg g satisfying the
conditions stated in this Lemma and, in addition,
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min {1,]d((x,y), 0Dp)’} < ¥r(x,y)

which completes the proof. For example we can take

Yp(x.y) = d((x,y),0Dr)3, if (x,y) € Dg and d((x,y),0Dg) < 1/2,
Y 1, if (x,y) € Dg and d((x,y),0Dgr) > 3/4,

and complete it with a smooth interpolation in between. O
5.4. Preliminary estimate for the supremum of F*

We can now go ahead with our strategy and state our upper bound for F* in (5.9).

Proposition 5.6. Let F© be the increment defined by (5.8). Then for all0 < s <t < T it
holds that

N[F€7Lm(57t55}*%,0)] 5 M(57t7€7R) ) (521)
where

M(s,t,e,R) := RN + sup // F(d¢)dx + sup //| S(dQ)dy  (5.22)

s<r<t s<r<t
RN RN

and the proportional in (5. 21) constant does not depend on € and R. We recall that,
following Definition /.5(i), z/t * stands for the Young measure associated with the kinetic
function fi*

Remark 5.7. Observe that our localization procedure becomes apparent here for the first
time. Indeed, the bound (5.21) still depends on the localization parameter R. This lack
of uniformity does not pose any problem since our procedure will later consist in sending
e — 0 first and then R — oo.

Proof. Consider the function T¢ : R? — [0, 0o[ defined as
¢ -

whose main interest lies in the relation (9:9:Y)(€,¢) = e~ '1j¢_¢|<2e- Let us derive some

5711‘5/_</|§25 dfldc/,

8\0»

elementary properties of T<. First, we obviously have:

0YE(E,¢) = /5 1je—¢r<2: AC (5.23)
¢
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and in particular 9¢Y¢(&, +00) = 0. A simple change of variables also yields:

0

- / 6_11\5’*C’|<2€ df'dC/ = TE(O,C—@.

Moreover, writing
¢/e ¢
TE(O7<) =£ / / 1‘5/|<2d£ldgl
it follows that
CI
72(0,0)| = / / 1ejes d€/dC < c.
—00 —00

Finally, using the elementary bound

10:2(€, Q) < 2
which stems from (5.23), we obtain that
T2, Ol = [T°(0, =9I S e+ ¢ =&l S e+ €]+ (<.
Recall that, since both f! and f? are kinetic solutions, we have flt(z,&) =

v (€, 400)) and f2T(y, ) = v2,F ((—o0,¢]). With the above properties of T¢ in mind
we thus obtain, for all ¢ € [0, 7] and z,y € RN,

/f1+ 2,6) 7 (y: O™ e —¢i<o- dEAC = */f“(x )2 (y, O)(0c0:T9) (€, ¢) ded(

/ / 1 (6)(0:T9) (€, C) dE w2 (dC)
R R
//r ) ubit(d€) 2o (dC)
R R

et [ leviF(de) /m L (5.24)

R

We are now ready to bound F*© in &f o, which is a L'-type space. Namely, a simple
change of variables yields:
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e e
1Fles, < [ FEGY) L e L n ey
RN+1yxRN+1

< / FT<X7y)€_N_1 1|x,\<6 1|a:+\<R dXdy

RN+1xRN+1

< / N1y el en / Fi(x,y)e e <. dédCdady.
RN xRN 2

Hence, thanks to relation (5.24), we get

1P, 5 [ e e teen(= o+ [l + [1c105 @0 Jasay
R R

RN xRN

serve [ eva o / €l v (de) + / C1V2(00) ) ey

RN xRN
serv+ [ [lgmagae [ [ aod,
RN R RN R

and the estimate (5.21) follows. 0O
5.5. Preliminary estimate for the drift term Q°

Let us now proceed to an estimation of the drift term Q¢ in (5.9), where we recall
that @ is defined by (5.3). This estimation must fit the pattern of (2.17) with respect to
the smoothing (Jn)ne(o 1) introduced in Corollary 5.4. To this aim, we set:

qt '*\/mdr f27 /mdr®1/27
[0,4] [0,]
and in parallel
e [ emd, ot [oitemd,.
[0,¢] [0,¢]

With these notations, it holds true that
1
Q' =(0e®I)q"' =20f¢" =o' where 9] := 5% @1 +1@d), (5.25)

and in the same way Q? = 26’5Jr ¢> + 02. We now bound the increments ¢* for £ = 1,2
uniformly.
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Lemma 5.8. For all0 <s<t<T and ® € Ery, k= 1,2, it holds that

> 1664 (0FTo@)| < wn(s, 1)1 0F @l o
=12

where £ = 1,2, and the proportional constant does not depend on €, R and the control
W, is defined as follows

win(s,t) = [ f2 | Leem® ((s,] x RYFY) + || £ oem? (s, 1] x RYF). (5.26)

Proof. We shall bound ql(f)ngstI)) only, the bound on q2(8ng6<I>) being obtained in a
similar way.
Step 1: Bound on ¢'. Consider a test function ¥ € Eg o, and let us first point out that

St () < [ dal e, y)Wx.y)ldy.
xy
so that the change of variable x~ = 1(x —y) and x unchanged yields

|6gL, (T)| = 2N +1 / Sql,(dx,x — 2x_)|W(x,x — 2x_)|dx_

X,X_

<2N+1//6qslt(dx,x—2x,)sup\\1'(x7x—ZX,)\dX,

X_ X

PARE sup/&qst (dx,x —2x_) /sup\\II(x7x—2x,)\dx,

X

= 2N |sup [ 6¢l, (dx,x — 2x_) /sup |U(xy +x_, x4 —x_)|dx_

X4

X
X

(5.27)

Furthermore, we have:

sup/éq;t(dx,foX /sup/m (dr,dx)|f?(x — 2x_)|

x_
X ]s,t]

<Pl= [ midndx)

J5,t] x RN+1

<P pemt((s, 1] x RVHL),

Reporting this estimate into (5.27) we get:



A. Deya et al. / Journal of Functional Analysis 276 (2019) 3577-3645 3623

103 () S 12l Loem ((s,8] x RNFH W] 11 poe, (5.28)
where we have introduced the intermediate norm

||‘I’HL£L5'§ = / dx_sup |¥ (x4 +x_,x4 —x_)|. (5.29)

X4
RN+1

Step 2: Simple properties of the L LY -norm. We still consider a test function ¥ € &g .

Observe that by the basic change of variables x_ = e !'x_, one has
[T Lr e = g~N-1 / dx_ sup |U(z+e'x_,2z—e'x ) (5.30)
RN+1
= / dx_sup [¥(z +x_,z—x_)] = [[¥[[p2 g .
RN+1 *

In addition, if ¥ € £r o, we can use the fact that the support of ¥ is bounded in the x_
variable (independently of R) in order to get:

19l e < W]
Step 3: Conclusion. As a last preliminary step, notice that
T, = T.0f,
where we recall that 8;’ is defined by (5.25). This entails:
1045 (05 To®)| = |04, (T-0F ®)].
Then, applying successively (5.28) and (5.30) it follows that

1005 (OF T-@)| = |94, (T-0F @)|
<2 lzeem? (s, 8] x RY D [0F @[ 1 o
S lzeem! ((s,1] x RV 0F @]ler o,
which is our claim. O
We are now ready to establish our main estimate on Q°.
Proposition 5.9. Let Q be defined by (5.3), Q° := T,Q and let (JA”)UE(O,I) be the set

of smoothing operators introduced in Corollary 5.4. Then for all0 < s < t < T and
®c &y, k=1,2, it holds that
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16Q ()] S winls, )@ llens + 1" woer(s, O @llen,., (5.31)
0Q5 (Y R) + Woe,r(s,1) S win (s, )0 Urllen,o, (5.32)

where the proportionality constants do not depend on €, n and R, and Vg is the function
introduced in Proposition 5.3. In (5.31) and (5.32), we also have wy, given by (5.26) and
the control wy . r 15 defined as

Woer(8,t) = 00L (T*UR) + 602,(T°VR) . (5.33)

Remark 5.10. Although it seems purely technical, inequality (5.32) sets the stage for our
contraction argument yielding uniqueness. Namely, the proper control we need for the
measure term of our equation will stem from the fact that the control w, . r appears in
a “good” form in the Lh.s. of (5.32). This damping effect is reminiscent of (2.33) for the
heat equation model.

Remark 5.11. Observe that the bound (5.31) (which will serve us in the forthcoming
application of Theorem 2.10) still depends on both parameters € and R. At this point we
are not systematically looking for uniformity but only for bounds that we will be able
to control afterwards, via the Gronwall-type arguments of Section 5.6. The situation
here can somehow be compared with our use of the (non-uniform) estimate (2.36) in the
example treated in Section 2.4.

Proof. Recall that @ is written as Q' — Q2 in (5.3). We focus here on the estimate for
Q!. Furthermore, owing to (5.25) we have

0Q (J1®) = TZ6Q5(J"®) = 5Q4,(T-J"®) = 20Q3° — 6Q4*,
where
0Qu " = 0F g (TJ"®), and 6Q.7° = dolk (T.J"®).
Now thanks to Lemma 5.8, we have that
16Qur "] = 1603 (O T-J"®)| S 12 e (5, 8] x RN [0 J7@ ey,

Moreover, invoking the fact that J” is a bounded operator in &; plus inequality (5.11),
we get:

||35+Jn‘1)||53,o S ||J7](I)H£R,1 S ||¢||£R,1’
which entails the following relation:

16Qut | S 12 peem (s, 8] x RN @le, -
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As far as the term 6Q'2° is concerned, we make use of (5.14) to deduce
1 H0Qu | = 1P TF (80 (Te " ®)| < 11*~* 80 (Te] J"®]) < (|| o, m (5, 1)
Putting together our bound on 6Q'1 and 6Q'>¢, we thus get:
6Qu (T T"®)| S win(s, D|®ller, + 7> woe,m(s,D)|lep .
and along the same lines, we can prove that
6Q2 (T T"®)| S win(s, | @lles + 7> woe,m(s,D)|lep

which achieves the proof of our assertion (5.31).
The second claim (5.32) is obtained as follows: we start from relation (5.25), which

yields:

0Q5(VR) = 0Qst (T ¥ R)
= =00 (T-VR) = 603(T- U R) + 6qs,(T-0F Vr) + 043, (T.07 U R)
< —Woe r(5,1) + g (T-O W) + 662, (T0F Wg) (5.34)

We can now proceed as for (5.31) in order to bound 6q;t(T58g\IJR) and 6q§t(T€8§+\I/R)
above, and this immediately implies (5.32). O

5.6. Passage to the diagonal

Thanks to the results of Sections 5.3-5.5, we are now in a position to efficiently apply
Theorem 2.10 to the transformed equation (5.9). To be more specific, we study this
equation on the scale (£g.n)o<ngs defined in (5.10) (for fixed R > 1) and consider the
smoothing (jn)ne(o,l) given by Corollary 5.4. At this point, let us also recall that the
driver A governing the original equation is known to be renormalizable with respect to
the scale (g, ): this was the content of Proposition 3.4, which provides us with the two
bounds (3.15)—(3.16) (uniform in both ¢ and R) for the tensorized driver I'°.

By injecting these considerations, together with the results of Proposition 5.6 and
Proposition 5.9, into the statement of Theorem 2.10, we immediately obtain the following
important assertion about the remainder F%¢ in equation (5.9): there exists a constant
L > 0 such that if wz(I) < L, one has, for all s <t € I,

Qw

(Vs

e, S Wie,R(S:)

= M(s,t,e, R)wz(s,6)? 2" + wm (s, wz (s, £)7 + wee.r(s, hwz(s, )"
(5.35)
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where the proportional constant is independent of € and R, the quantities M, wz, wy,,
We e r are respectively defined by (5.22), Hypothesis 4.2, (5.26) and (5.33), and we have
fixed (once and for all) the parameters ¢, k such that

9 3 1/3 3
€ 3], el--L=z(-—=]]|.
i [2p+3 ) " [q 2(29 Q)]

As a first consequence of estimate (5.35), we can derive the following bound on the
limit of wy ¢ r(s,t) as e — 0 and R — oo.

Lemma 5.12. Let w, o r be the control defined by (5.33). There exists a finite measure
on [0,T] such that, for all0 < s <t < T,

lim sup lim sup wy ¢ r(s,t) < p((s,t]). (5.36)

R—o0 e—=0

Proof. Consider the sequence of measures (11%)e>0 on [0,T] defined for every Borel set
B C[0,T] as

u5(B) = (/m;T ®1,3,—> (T-¥R) + (/UTH ®m3r) (Te¥R), (5.37)
B B
so that wy . r(S,t) = p%((s,t]). By applying equation (5.9) to the test function ¥x and
using (5.32), we get that for every s <t € [0, 7],
OF5(WR) < FL (D55 +T25)(WR)) — woe r(s,t) + F5T(WR) + wmn(s, )10 Vel
and so
Woe,r(5:1) < FS(|(L+T0% + T20) U] + [F55(VR)| + wm(s, )10 Uz

Therefore, due to Proposition 5.6, estimate (5.35) and assumption (4.11), we can conclude
that for every interval I C [0, T] satisfying wz(I) < L, one has

woer(I) S eRN +1+ W (D) (1 + wZ(I)%) + woe,r(Hwz(I)",

for some proportional constant independent of e, R. As a consequence, there exists 0 <
L’ < L such that for every interval I C [0,T] satisfying wz(I) < L', it holds

Wo e (1) SeRY + 14w (D).

By uniformity of both L’ and the proportional constant, the latter bound immediately
yields

Woe,r(0,T) S eRYN + 1+ wp(0,7). (5.38)
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Thus, the sequence (u%)->0 defined by (5.37) is bounded in total variation on [0, 7] and
accordingly, by Banach-Alaoglu theorem, there exists a subsequence, still denoted by
(1%)e>0, as well as a finite measure pr on [0, 7] such that for every ¢ € C([0,77), one
has

pr(p) = pr(p)  ase—0.
Moreover, as a straightforward consequence of (5.38), we get
#r([0,T]) S 14 wm(0,T).

Therefore (ip)ren is bounded in total variation and there exists a finite measure p on
[0, T'] satisfying

U([Oa T]) S+ Wm(()? T)7
such that, along a subsequence,

/UR(QO) - ,U(SD), V(,O € C([O’TD7 R — oo.

Finally, due to the properties of BV-functions, for every R € N, there exists an at
most countable set Dp such that the function ¢ — 1 (]0,¢]) is continuous on [0, T]\ Dxg.
Furthermore, by Portmanteau theorem, one has

pz(10,8) = pr(0,2])  VE€[0,T]\Dr € —0.
Similarly, there exists a countable set D such that

Fix s < t € [0,T]. Since a countable union of countable sets is countable, we may consider
a sequence (sg), resp. (tx), of points outside of UgDgr U D that increase, resp. decrease,
to s, resp. t, as k tends to infinity. Then

lim sup wg e r(s,t) = limsup px()s,t]) < limsup pi(sk, tk]) = pr((sk, tx])
e—0 e—0 e—0

and

lim sup lim sup wo ¢ r(s,t) < limsup pr(|sk, te]) = w(]sk, t]).
R—o00 e—0 R—o00

By letting & tend to infinity, we get (5.36), which achieves the proof of the lemma. O

We are now ready to prove our main intermediate result towards uniqueness.
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Proposition 5.13. Consider ¢ € C°(RN*1) such that

Y =0, supp ¥ C By, 3 / P(x)dx = 1.

RN+1

Let also {pr; R > 0} C CX(RN*Y) be a family of smooth functions such that
wr >0, supp ¢r C By, /3, sup lerllws~ S 1.
We define

Pr(X,y) = pr(xy)Y(2x_). (5.39)
Then for every 0 < s <t < T, it holds true that, as € — 0,

F{(®R) — hi(er), (5.40)
(F;,st + Fg,st)Fss(q)R) — (Ait + A§t>hs(90R)> (5.41)

where hy = ft17+ft27+.

Proof. Consider first a function ¥ supported in Dr = Bry1 X Bryi € RVFTL x RN+

1

Then for all functions v', v? we have:

o' @ v (V)| = ’ / vl (xy +x )0 (xy —x)U(x4 +x,xy —x_)dx_dx,
Dr

< [ e xR e sup [0y x v x)ldx
v+
Dr

Recalling our definition (5.29), |v! ®v?(¥)| can be further estimated in two ways: on the
one hand we have

! @ v* (V)] < ||v1||L1(BR+1)Hv2||L°°(BR+1)H\IIHL1_LS:a

and on the other hand we also get

|U1 ®U2(\Ij)| < ||U2||L1(BR+1)Hvl||L°°(BR+1)H\IJHL1,L?F°'

In order to apply this general estimate, define a new test function ®Pr(x,y) =
vr(x4)1¥(2x_), and observe that ®r is compactly supported in the set Dg. Since
IFET < 1, IfPT) < 1t follows that f5F, /2T € L'(Bgy1) (notice that the local-
ization procedure is crucial for this step). Therefore one may find g',g? € C°(RN+1)
such that |g'| < 1, |¢?| < 1 and
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1, £2,
||ft * gl||L1(BR+1) + Hft - ggHLl(BR-H) < 0. (542)

We now split the difference Fy — h; as follows:

|FY (Pr) — hi(or)
<|FF(Pr) — (91 ® 92)° (PR)|+] (91 © 92)° (Pr) — (9" ") (0r) |+ (9" 9°) (0Rr) — hulR)] .
(5.43)

We shall bound the three terms of the right hand side above separately. Indeed, owing
to (5.42) and the fact that |g}] < 1, |¢?| < 1 and |T-® gL L < 1 uniformly in R, e,
we have

[FE (@) — (9" ® ¢°)°(@R)| < |(¢" @ (7T = ¢*N(T@r) + [((f1F —g") @ 7)) (T ®r)]

|
72, 2,4 1,
5 ||gl||L°°(BR+1)Hft - QQHLI(BR-H) + ||ft ||L°°(BR+1)||ft - gl||L1(BR+1) 5 d

(5.44)

On the other hand, using the continuity of ¢!, g?> we have
lim (g' ® ¢°)(T.®r) = (9'9°) (¥R).

and thus | (g1 ® g2)° (Pr) — (9'9?)(¢r)| < 6 for € small enough. Moreover, as in (5.44),
we have

(9" 9*)(¢r) — he(¢r)|
72, 72, 1,
< ||gl||L°°(BR+1)Hft - ggHLl(BR-H) + ||ft +||L°°(BR+1)||ft * _gl||L1(BR+1)

d.

/

N

Since ¢ is arbitrary we have established (5.40).
Let us now turn to (5.41). Observe that by Proposition 3.4 we have that T.I'L*®x
and T.T'2*®p are bounded uniformly in € in LlLf. Specifically, we have:

‘lTEF;7*¢R‘|L£Lf < ||Fi-’*‘1’R||L£L1c = ||F;7*¢R||L£(31§Lf(BR))

< ||]‘—‘;7*¢R||£R,O SV H(I)R”r‘:}?.,l

where we used in order the boundedness of T, in L{L‘f, the compact support of ®g
to go from L' to L* and finally the renormalizability of A in the spaces (Egr.)n (as
provided by Proposition 3.4). The same reasoning applies to T.I'2*®x. Similarly to
(5.43), in order to establish the limit of F¢(T2*®p) for j = 1,2, it is enough to consider
(¢* ® ¢*)(T:TL*®R) and (¢' @ ¢2)(T.I'2*®R) for gt, g2 as in (5.42). Now, recalling the
very definition (5.8) of I';,
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(9' @ ) ITL* @) = (¢" ® ¢*) T T.0R) = T (g' ® ¢*))(T-Pr)
=(Alg'® >+ g' ® A'¢*)(T.DR)

and hence we end up with:

lim (g' ® ¢*)(T.TL*@R) = (A'g")g® + 9" (A'9%))(vr) = (9'9°) (AV*0R).

E—00

Similarly we have:
(9' ® PNITE*PR) = (9" @ g°)(T*"T.0R) = (I*(g" ® g°))(T-r)
— (A% @ g% + ' ® A2g% + Alg! @ ALg?)(T.®p)
Therefore, in view of the geometricity of the underlying rough path Z, we obtain
lim (g' ® g*)(T.T2" ) = ((A%g")g” + g (A%0%) + (A'g")(A'9")) (¢r)
= (9'9°)(A** o). (5.45)
This finishes the proof of (5.41). O

Remark 5.14. We point out that the geometricity of the rough path Z was essential in
order to prove the last equality in (5.45), where it allowed for certain cancellations. In
other words, if the rough path was not geometric, then the convergence (5.41) would not
be valid and additional terms would appear after the passage to the limit ¢ — 0. This is
precisely the reason why it is necessary to work with geometric rough paths.

The following contraction principle is the main result of this section. By considering
two equal initial conditions, it yields in particular our desired uniqueness result for
generalized solutions of equation (4.1).

Proposition 5.15. Let f1 and f? be two generalized kinetic solutions of (4.1) with initial
conditions f} and f2. Assume that fa fé € L*(RNT1) then

sup || f Pt oy < 1o Fall o ey
te(0,T]

Proof. Our global strategy is to take limits in (5.9) in order to show the contraction
principle. We now divide the proof in several steps.

Step 1: Limit in €. Recall that ® i has been defined by (5.39). Applying (5.9) to the test
function ®p yields:

SF5,(PR) = 6Q5,(Pr) + FS((Th%, +T27,)@R) + Fi (DR). (5.46)

Furthermore, similarly to (5.32), we have that
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0Q5(Pr) < =004 (T-PR) — 603 (T-Pr) + Wi (s, )| Prllen, < 10F Prlley  wm (s, t).

By using Proposition 5.13, we can take limits in relation (5.46), which, together with
(5.35), gives the following bound for the increments of the path h; = ftl’Jr ff "+ for every
interval I such that wz(I) < Land all s <t €1,

Shat(pr) < (AL + A2)hy(or) + limsup w. o r(s, )7 + 108 @rllen owm(s,t), (5.47)

e—0

where w, . g is the control defined in (5.35). Application of Proposition 5.6 and
Lemma 5.12 gives a uniform bound in R on limsup,_,,ws«. r(S,t) in terms of the control
wy given by

3
q

wy(s,t) :wz(s,t)' 25 1 (8, )wz (s, t) + (s, thwz (s, t)". (5.48)
Namely, we have lim sup,_,o ws  r(S,t) < wy(s,t), hence we can recast inequality (5.47)
as:

Sha(pr) < (Al + A2)h(pr) +wils,8)1 + |0 Drllepo wm(s:t) | (5.49)

for all s <t € I with wz(I) < L.

Step 2: Uniform L' bounds. We now wish to test the increment 6h,; against the function
1(z,€) = 1 in order to get uniform (in ¢) L' bounds on h. This should be obtained by
taking the limit R — oo in (5.49). However, the difficulty here is the estimation of the
term (AL, + A2,)hs(pr), uniformly in R. To circumvent this problem, we want to choose
another test function which is easier to estimate but with unbounded support. Namely,
instead of the function g of Proposition 5.13, let us consider a function ¢g 1 (x4) =
(x4 /R)Yr(x4). In this definition 97, (x4 ) = (x4 /L) with 1 (xy) = (1+ [x4|?)~M for
M > (N +1)/2, and ¢ is a smooth compactly supported function with ¢|p, , = 1.
With these notations in hand, relation (5.49) is still satisfied for the function ¢g 1

Shar(or,n) < (Al + A2)hy(or,L) +wy(s, )

wm (s, 1), (5.50)
where ®p 1, is defined similarly to (5.39). We can now take limits as R goes to infinity

n (5.50). That is, since A2 pg 1 is an element of L', uniformly in R and for j = 1,2,
we have

Rlijnoo(Ait + Agt)hs (PrL) = (A;t + Agt)hs(ﬂ)L)

In addition, according to the definition (5.25) of 6;, we have that if g = g(x4) then
8; g =g (x4), while 8; g = 0 whenever g = g(x_). Therefore, it is readily checked that:

Of Pro(x,y) = R (9e) (x4 /R)v (x4 /L)(2x-) + L™ p(x4. /R) (D) (x4 / L) (2x-),
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and thus ||3§+(I’R,L||€R,o < (R7' + L™1). Hence, invoking our last two considerations, we
can take limits as R — oo in relation (5.50) to deduce, for all s <t € I with wz(I) < L,

Sher(thr) S (AL, + A2)ho(ihr) + wy(s,8) 7 + CL ™  wp (s, £). (5.51)

We are now in a position to apply our Gronwall type Lemma 2.12 to relation (5.51).
To this aim, we can highlight the reason to choose 1y, as a new test function. Indeed,
invoking Proposition 3.4 it is easy to show that for this particular test function we have

(A% + AZ)hs (V)| Sv hs(r)wz (s, )17

for some constant depending only on the vector fields V' but uniform in L. The other
terms on the right hand side of (5.51) are controls. Note that even though u([s,?])
is not superadditive due to the possible presence of jumps, p is a positive measure
anyway. Therefore one has the following property which can be used as a replacement
for superadditivity

pulls; u]) + pllu, t]) < 2p(]s, ).

Hence a simple modification of Lemma 2.12 (to take into account this small deviation
from superadditivity) gives readily

sup ht(’l/}L) 5 1a
t€[0,T)

where the constant is uniform in L and depends only on w,,wz, V, 1 and ho(tr). This
implies that if hg € L' we can send L — co and get that

sup h(1) <1, (5.52)
t€[0,T)

by monotone convergence. Summarizing, we have obtained that h; is in L' uniformly in
t € [0,7].

Step 3: Conclusion. Having relation (5.52) in hand, we can go back to equation (5.51)
for hy(¢r), and send L — oo therein. We first resort to the fact that sup,co ) he(1) is

bounded in order to get that:

(At + AZ)hs(¥r) S (Agy + AZ)hs(1) = 0,

lim
L—oo

where the second identity is due to the fact that divV = 0 (as noted in (4.5)). Thus, the
limiting relation for dhg(e)r) is:

Shat(1) < wy(s, b)e, (5.53)

Q|
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for all s,t € [0, T] at a sufficiently small distance from each other. Thus, one may telescope
(5.53) on a partition {0 =ty < t; < --- < ¢, = ¢t} whose mesh vanishes with n. Invoking
our expression (5.48) for wy, this entails:

ht(l) - ho(l) = z_: 6htiti+1 (1)
=0

(2—2k—1)AL Ak
:| P P

S L_Osup wz(ti, tiy1) (wz(0,8) 4+ wn (0,t) +21([0,])) ,

1=0,...,n—1
due to % — 2k —1 > 0. Eventually we send n — oo and use the fact that wy is a regular
control. This yields:

L 2, = ho(1) < ho(1) = I3 F2llus
which ends the proof. O

Once endowed with the result of Proposition 5.15, we can use standard arguments on
kinetic equations (such as those in [13]) to derive uniqueness of the solution to equation
(4.1), as well as the reduction of a generalized kinetic solution to a kinetic solution and
the L'-contraction property. This is the contents of the following corollary.

Corollary 5.16. Under the assumptions of Theorem /.7, uniqueness holds true for equa-
tion (4.1). Furthermore, Theorem 4.7 (ii) and (iii) are satisfied.

Proof. Let us start by the reduction part, that is Theorem 4.7 (ii). Let then f be a
generalized kinetic solution to (4.1) with an initial condition at equilibrium: fo = 1,,>¢.
Applying Proposition 5.15 to f! = f2 = f leads to

sup (£ s, < Iofollzs . = useluosellzs , = 0.

Hence f;"(1 — f,;7) = 0 for a.e. (x,€). Now, the fact that f;" is a kinetic function for all
t € [0,T) gives the conclusion: indeed, by Fubini’s Theorem, for any ¢ € [0,7T), there is
a set By of full measure in R" such that, for all x € By, f;" (z,&) € {0,1} for a.e. £ € R.
Recall that —0¢f;" (z,-) is a probability measure on R hence, necessarily, there exists

*:[0,T) x RY — R measurable such that f;"(z,£) = 1,+(;.4)>¢ for a.e. (z,£) and all
t € [0,T). Moreover, according to (4.11), it holds

sup /|u (t,x)|dz = sup //|§\dytz &) dx < oo. (5.54)

O<t<T 0< <T

Thus u" is a kinetic solution and Theorem 4.7(ii) follows.
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In order to prove the L'-contraction property (that is Theorem 4.7(iii)), consider two
kinetic solutions g, uz of equation (4.1) with respective initial conditions u; g, u2 o. Then
we have:

(w1 — up)* = / LoyseTosede .
R

Let uf and u; denote the representatives of uy, us as constructed above. Then we apply
Proposition 5.15 and obtain

—2+

+ 1+ L+72+
It (1) = ud @) ") o = 1T e < Uo7 Fo ™ len, = llCudo = udo) Iy

which completes the proof of Theorem 4.7(iii). Uniqueness is obtained in the same way,
by considering two identical initial conditions. O

6. Rough conservation laws III: a priori estimates

In this section we will establish a priori L?-estimates for kinetic solutions to (4.1). We
thus consider a kinetic solution u to (4.1) and let f;(x,) = 1,,(z)>¢ be the corresponding
kinetic function, to which we can associate a Borel measure m (along Definition 4.5(iii)).
Let us also introduce some useful notation for the remainder of the section.

Notation 6.1. We denote by x; the function x¢(z,&) = fi(x,&) —1eco. We also define the
functions By, 7, : RVNTL — R, where ¢ > 0, as follows:

€19 if ¢ >0,

5q+1(x7£) = £|§|qa and ’Yq(l',g) = {1 qu —0.

The interest of the functions 8,7y, lies in the following elementary relations, which
are labeled here for further use:

aSBqul = (q + 1)’an a§7qu2 = (q + 2)5q+17

and consequently for ¢ > 2 we have

xt(Bar) = / hue(@)]?dz, and  [xel(1) = ye(sgn(é / up(z) dz. (6.1)

RN

With these preliminary notations in mind, our a priori estimate takes the following form.

Theorem 6.2. Assume Hypothesis /.1 holds true. Then u satisfies the following relation:

sup |lu(t, )z < [u(0, )|z (6.2)
t€[0,T]
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and, for all ¢ > 2,

e lu(t, M7 + (@ = Ddmor(1g-2) Sag [[u(0, )70 + w0, )2 + [u(0,)l|z1- (6.3)

Remark 6.3. The above result gives a priori estimates for kinetic solutions that depend
only on the rough regularity of the driver A, and are therefore well-suited for the proof of
existence in the next section. Note that in order to make all the arguments below entirely
rigorous, it is necessary to either work at the level of a smooth approximation (just as in
the example treated in Section 2.4) or to introduce an additional cut-off of the employed
test functions. Since we will only apply Theorem 6.2 to smooth approximations, we omit
the technical details here. For classical solutions it is easy to prove L? bounds. These
bounds will depend on the C* norm of the driver and so will not pass to the limit. But
using the fact, proved in Lemma 4.9, that classical kinetic solutions are, in particular,
rough kinetic solutions, we can justify the steps below and get the uniform estimates
claimed in Theorem 6.2.

Proof of Theorem 6.2. Due to relation (6.1), our global strategy will be to test u; against
the functions 3, defined in Notation 6.1. We will split this procedure in several steps.
Step 1: Equation governing x. Let x be the function introduced in Notation 6.1, and
observe that dx(¢) = 6 f(v). Furthermore we have (in the distributional sense) V1¢co =
0 whenever ¢ # 0, and we have assumed V(z,0) = 0 in (4.6). Having in mind relation
(4.7) defining A' and A2, this easily yields:

X(AY o+ A%*p) = (A o + A¥* ).

Then the function x solves the rough equation

5x () = 00em () + x(AV* ) + X(A%*p) + X' (¥) (6.4)

where ! = fI.
Step 2: Considerations on weights. Our aim is to apply equation (6.4) to a test function
of the form f3,_; for some g > 2. The growth of the test function does not pose particular
problems since we can use a scale of spaces of test function with a polynomial weight
wWg—1 = 1+ 4-1. However, in order to obtain useful estimates, we cannot apply directly
the Rough Gronwall strategy. Indeed, estimates for Xh(ﬂq—l) will in general depend on
m(wy—1) and on |x|(wg—1), and we cannot easily control m(wqy_1).

To avoid this problem we have to inspect more carefully the equation satisfied by
Xh(ﬁq_l). Applying § to (6.4) with ¢(§) = B4—1 we obtain

5Xiut(ﬁ¢1*1) = (5X)su(Ai’t*5qfl) + XEu(Azlft*ﬁqfﬁ (6.5)

with the usual notation
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Xgu = (5X)su - AiuX&

Note that this point can be made rigorous as explained in Remark 6.3. Moreover, using
the specific definition of A1*, A%* namely

Ao =-Z'V - Vy, Ao =27°V.-V(V V),

we have that the test functions on the right hand side of (6.5), i.e. Alljt*ﬂqq and Ai’t*ﬂq,l,
as well as their derivatives are bounded by the weight wy_o and not just w1 as we
would naively expect. So we can use the scale of spaces with weight wq—_o in order to
estimate the remainder.

To this end, consider the family (E)o<n<3 of weighted spaces given by

VEop

Wq—2

Bl =S o : RV SR [lpflpg o= Y

0<k<n

< 0
L

Since wq—2 stands for a fixed weight (independent of n), it is easy to check that the basic
convolution procedure (2.35) gives birth to a smoothing (J"),¢(0,1) With respect to this
scale.

Step 3: Estimation of x* as a distribution. We are now in a position to see relation (6.5)
as an equation of the form (2.12) on the scale (E4)o<n<s, and apply the general a priori
estimate of Theorem 2.10 (or more simply Corollary 2.11) in this context. Indeed, if
¢ € EY then it holds true that

[0mst (Dep)| < dmist(wo—2)llllpg = (65t (1) + o1t (vg-2)) |2l g -

Besides, if ¢ € E?

i1, M =0,1,2, then

, k
HAst*SDHEZ, SHVIlwn,oc wZ(svt)p ||80||Eg+k? k=12,

which implies that A = (A, A%) is a continuous unbounded p-rough driver on the scale

(E2)ogn<s- Hence, thanks to Corollary 2.11 (keep in mind that we implicitly consider

smooth approximations of the noise Z here), we get that for all s < ¢ sufficiently close
to each other,

3

IxEile, S wis, )

. 3—p 6.6
= o ) a0t (1) + B o)) a5 (66)
rels,t

In the latter relation, we still have to find an accurate bound for |x|(1) and m(y,—2).
Step 4: Reduction to L' estimates. Inserting the above smoothing (J"),e(0,1) into (6.5),
we obtain
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IXH(Bg—1) = Ox((1 = I AV By1) + 6x((1 = JN)A**By1) — x (AW (1 = T A B, 1)
X (AP TTAY By y) + X (AVFTTAP* By _y) + x(AP*TTA% By )
FXF(TTAN Bya) + X (T AP By )
—(5m(8§J”A1’*ﬁq,1) — 6m(8£J"A2’*Bq,1)
As already explained above, the test functions on the right hand side always contain

derivatives of 41, so that the scale (EZ) is sufficient to control the right hand side.
Indeed, we may use (6.6) for the remainder as well as the elementary bound (observe

that [x|(7g-1) = x(Bg-1))

IX()] < Ixl(wg-2)llelleg < IxI(X +we-1)llellzg = 2IxI(1) + x(Bg-1)) ¢l £g

to deduce, along the same lines as in the proof of Theorem 2.10, that

5% (Ba-01 S (sup Perl(1) + sup 3 (By-1) Jwz(s,8)7
r€(s,t] re€ls,t]
Fwz(Drwy(s,t)r + (Fma(1) + dme(Yg—2)) wals,t) 7,

provided s,u,t € I with wz(I) sufficiently small. We can now resort to the (original)
sewing Lemma 2.2, which gives

3
WEBam) S (sup (1) + sup e (B-) Jws (s 1)
r€ls,t] rEls,t]

3—p
P .

+ (Mt (1) + 0misi (1g-2)) wa(s, 1)

Finally, (6.4) applied to 8,—1 reads as

X (Bg-1) = X(A"* By1) + x(A**Bg-1) — (¢ — 1)dm(v4—2) + x*(B4-1)

so that recalling relation (6.1) and applying the Rough Gronwall lemma yields, for any
q=2,

sup X¢(Bq-1) + (¢ — 1)dmor(v4-2) S x0(Bg—1) + dmor(1) + sup |x¢|(1). (6.7)
te[0,T) t€[0,T]

In particular, for ¢ = 2 we obtain an estimate for dmgr(1) in terms of SUPe(o,7] Ixe] (1)
and the initial condition only:

sup x¢(B1) +dmor(1) S xo(€) + sup [x:|(1).
te[0,T te[0,T]

Plugging this relation into (6.7) and recalling relation (6.1), we thus end up with:
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sup [luel|7q + (¢ — 1D)dmor(v4-2) < xo0(Bg-1) + sup [x:[(1). (6.8)
te[0,T] te[0,T]

This way, we have reduced the problem of obtaining a priori estimates in L? to estimates
in L', and more specifically to an upper bound on sup;c(o 7y [x¢/(1).
Step 5: L' estimates. The first obvious idea in order to estimate |x|(1) is to follow the
computations of the previous step. However, this strategy requires to test the equation
against the singular test function (x,&) — sgn(€). It might be possible to approximate
this test function and then pass to the limit. In order to do so one would have to prove
that the rough driver behaves well under this limit and that we have uniform estimates.
Without embarking in this strategy, we shall first upper bound w, in L'. Namely,
observe that the L'-contraction property established in Section 5 immediately implies
the L'-estimate we need. Indeed we note that under hypothesis (4.6), equation (4.1)
with null initial condition possesses a kinetic solution which is constantly zero. Hence
the L!-contraction property applied to u; = u and uy = 0 yields (6.2). Going back to
relation (6.1), this also implies:

sup |x¢[(1) < [[uollL1,
t€[0,T]

which is the required bound for |x¢|(1) needed to close the L%-estimate (6.8). Our claim
(6.3) thus follows. O

7. Rough conservation laws I'V: existence

Let us finally establish the existence part of Theorem 4.7. To this end, we consider
(Z™),en, a family of canonical rough paths lifts associated with smooth paths (2"),
which converge to Z in the uniform sense (over the time interval [0,T]), and such that

n>=0

for some proportional constant independent of s, ¢ € [0, T], and where wy is the regular
control introduced in Hypothesis 4.2. Note that the existence of such an approximation
(Z™),, is for instance guaranteed by the result of [26, Proposition 8.12]. Then we define
the approximate drivers A" = (A™!, A™2) as follows

Al =2V Ve,

Ao =23V VoV Veap) -
It is readily checked that both A and A™ define continuous unbounded p-rough drivers
(in the sense of Definition 2.3) on the scale (Ex)o<k<s given by Ej = WFLRNT1) N

Wkoo(RN+1) " and, according to (7.1), we can clearly pick the related controls wan of
A" in such a way that
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sup wan (s, t) Swz(s,t) , (7.2)
n>0

for some proportional constant independent of s,t € [0,7]. We fix this scale (Ex)o<k<3s
as well as these uniformly-bounded controls wan», for the rest of proof.

Using the standard theory for conservation laws, one obtains existence of a unique
kinetic solution u™ to the approximate problem

du” 4 div(A(z,u™) A" =0, u"(0) = ug,

moreover we denote by f™ = 1,»~¢ the kinetic function associated to u™ and by m™ the
kinetic measure appearing in the kinetic formulation (4.15). We are now ready to prove
the existence of a solution to equation (4.1).

Proof of Theorem 4.7 (i). Step 1: A priori bound for the regularized solutions. Due to
Lemma 4.9, the classical solutions f” corresponds to rough kinetic solutions f™* satis-

fying

Sfot () = Frr (ALY ) + R (AR ) + f1 PR (0) — m™ (1 (6,00 0),

o . ) B (7.3)
Sfu () = fIm (ALY ) + R (AL 0) + fi 7 M () = m" (L ) Oep),

which holds true in the above scale (Ek)ogk<s, for some remainders froth,

Under our standing assumption on the initial condition, it follows from Theorem 6.2
that the approximate solutions u™ are bounded uniformly in L°°(0,7; L* N L2(RY))
and the corresponding kinetic measures m™ are uniformly bounded in total variation.
Therefore the Young measures v = d,n—¢ satisfy

| / Clvia(de) s 2 / / 6P 11 (M) S ol + uollEee (70

te[O,T]

Now we simply invoke Corollary 2.11 and (7.2) to obtain, since |f™*| < 1,

3 n 3-p
”fst’ ’ ng(s,t)p +m (l(s,t])wz(sat) L (75)

provided wz(s,t) < L. Notice that this restriction on the distance of s,t induces a
covering {Ix; k < M} of the interval [0,T], for a finite M € N. To be more specific, I}
is just chosen so that:

sup wz(s,t) < L Vk.
s,tely,
Thus relation (7.5) is satisfied on each interval Ij.

Step 2: Limit in equation (7.3). By (7.4) the assumptions of Lemma 4.10 are fulfilled
and there exists a kinetic function f on [0, 7] x RY such that, along a subsequence,
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*

P f in Lo([0,T) x RVFL), (7.6)

and the associated Young measure v satisfies

esssup / / €]+ 1€2) 2.0 (A€) < uoll s + o2

t€[0,T)

Moreover by the Banach-Alaoglu theorem there exists a nonnegative bounded Borel
measure m on [0, 7] x RN*! such that, along a subsequence,

m" Sm o in My([0,T] x RN, (7.7)

Moreover using Lemma 4.11 we have also the existence of the good representatives f=*
of f. In order to pass to the limit in the equation (7.3) the main difficulty originates in
the fact that the only available convergence of f™7* (as well as f™~ and f™) is weak*
in time. Consequently, we cannot pass to the limit pointwise for a fixed time t. In order
to overcome this issue, we observe that the first three terms on the right hand sides in
(7.3), i.e. the approximation of the Riemann-Stieltjes integral, are continuous in ¢. The
kinetic measure poses problems as it contains jumps, which are directly related to the
possible noncontinuity of f™. Therefore, let us define an auxiliary distribution f™” by

F7 () = FT () + m™ (L0, 40e),

and observe that due to (7.3) it can also be written as
17 (0) = £ () +m" (0. D)-
Then we have
O15 () = S (AG o) + LI (AT ) + 17 () (78)

and due to (7.5), satisfied on each Iy, this yields:

015" (S (wz(s,)7 +m(Tpm)wz(s, )7 ) I¢lle, Swz (5,07 Il (7.9)

where the second inequality stems from (7.7).

Owing to the fact that f™” is a path, the local bound (7.9) on each interval I; can
be extended globally on [0,7] by a simple telescopic sum argument. In other words,
(f™"(¢))nen is equicontinuous and bounded in V([0, T]; R) for g = 35 So as a corol-
lary of the Arzela-Ascoli theorem (cf. [26, Proposition 5.28]), there exists a subsequence,
possibly depending on ¢, and an element f*¢ € V,([0,T]; R) such that

(@)= > in VI(0,TER) Ve >q. (7.10)
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As the next step, we prove that the limit f>% can be identified to be given by a true
distribution f? as

1% = £ (@) + m(Lpn0ep) = [ () + m(10 ) 0ew) = £, (). (7.11)

To this end, let us recall that given 71,75 > 1 such that % + % > 1, we can define the
Young integral as a bilinear continuous mapping

VI (0, TER) x V72 ([0,T):R) = VI2(0,TER),  (g,k) v / gdh,
0

see [26, Theorem 6.8]. Let 1) € C°([0,T)). Then it follows from the definition of ™,
the integration by parts formula for Young integrals and f' b= o + = f, that

T

T
/ FR (@) dt — m(0ep) + folso)o = — / Bed S (p).
0

0

The convergences (7.6) and (7.7) allow now to pass to the limit on the left hand side,
whereas by (7.10) we obtain the convergence of the Young integrals on the right hand
side.

We obtain

T

T
/ Sl dt — m(bdeg) + folp)to = — / Gedfre
0

0

Now, in order to derive (7.11) we consider again the two sequences of test functions (4.19)
and pass to the limit as € — 0. Indeed, due to Lemma 4.11 we get the convergence of the
first term on the left hand side, the kinetic measure term converges due to dominated
convergence theorem and for the right hand side we use the continuity of the Young
integral. We deduce

— 1) = m(Ljo.10ep) + folp) = =7 + [0,

—I7 () = m(Lo,000) + fol9) = =77 + Jg,
and (7.11) follows since for ¢ = 0 we have
b, s n,b . n,
fof = lim f5(p) = lim 5 (p) = fol)-

Now, it only remains to prove that fg“ = fo. The above formula at time ¢t = 0 rewrites
as
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I (@) = fole) = —m(1{030c0).

Hence the claim can be proved following the lines of [43, Lemma 4.3] and we omit the
details. For the sake of completeness, let us set f, := fo and f:}" = fr.

Finally we have all in hand to complete the proof of convergence in (7.3). Fix ¢ € E3
and integrate (7.8) over s as follows

1 s+€ s+-e ste
> [ermaerar—2 [t agztaa =2 [ e

—

g/s(5fn’b)rt( )dT——/f"_( o+ AP )dr:é/sf"t—

s—¢ S§—€

On the left hand side we can successively take the limit as n — oo and € — 0 (or rather
for a suitable subsequence of n and € depending possibly on ¢ and s, to be more precise).
This leads to the following assertion: for every s < t € [0, 7], the quantities

s+e

FH5(p) == lim lim —/f"Jrh

e—0 n—oo £

(7.12)
Jortle) = lim fim 2 / e
are well-defined, finite and satisfy
(BF)st(0) = [ (AT 0+ A% 0) + F°(p). (7.13)

Injecting (7.11) into (7.13) yields that for every s < ¢ € [0, 7],

5150

FHAL 0 + A% 0) — m(L(s10e9) + 7% (9)
3f(9) = [ (Ao + AL ) — m(L5.0060) + for

o ()

)
)

and so it only remains to prove that the remainders f*°% defined by (7.12) are sufficiently
regular. To this end, we first observe that

limsupm"(1¢s,q) < m(1fsy), lim sup m"(154)) < m(1y54) (7.14)
n—o00 n—00
holds true for every s < t € [0,7]. Indeed, the weak™ convergence of m™ to m, as
described by (7.7), allows us to assert that for every ¢ in the (dense) subset €,, of
continuity points of the function ¢ — m(1(g ), one has m™ (1) — m(1(y) as n — oo.
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Consider now two sequences sg,t; in €, such that s strictly increases to s and t
decreases to t, as k — co. Hence it holds that

lim sup m”(l(s’t]) < limsup m”(l(swk}) = m(L(s, t,])-
n—oo n— oo

Taking the limsup over k yields the first part of (7.14), the second part being similar.
Next, we make use of (7.5) and (7.14) to deduce for every ¢ € E3 and every s < t € I,

5@ S el (wz(s,0) +mls, 1) Fwz(s, ') "

P
3

We can conclude that f*f ¢ Volioe ([0, TT; E3), and finally the pair (f,m) is indeed a
generalized kinetic solution on the interval [0, 1.

Step 3: Conclusion. The reduction Theorem 4.7(ii) now applies and yields the existence
of ut : [0,T) x RN — R such that L+ s = f; (2,€) for ae. (z,£) and every t.
Besides, we deduce from (4.17) that u™ € L°(0,T; L* N L*(RY)). Hence, the function
ut is a representative of a class of equivalence u which is a kinetic solution to (4.1).
In view of Remark 4.8, this is the representative which then satisfies the L!-contraction
property for every t € [0,T] and not only almost everywhere. The proof of Theorem 4.7(i)
is now complete. O
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