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Abstract
We study the long-time behavior of solutions to a stochastically driven Navier–Stokes
system describing the motion of a compressible viscous fluid driven by a temporal
multiplicative white noise perturbation. The existence of stationary solutions is estab-
lished in the framework of Lebesgue–Sobolev spaces pertinent to the class of weak
martingale solutions. The methods are based on new global-in-time estimates and a
combination of deterministic and stochastic compactness arguments. An essential tool
in order to obtain the global-in-time estimate is the stationarity of solutions on each
approximation level, which provides a certain regularizing effect. In contrast with the
deterministic case, where related results were obtained only under rather restrictive
constitutive assumptions for the pressure, the stochastic case is tractable in the full
range of constitutive relations allowed by the available existence theory, due to the
underlying martingale structure of the noise.
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1 Introduction

Stationary solutions of an evolutionary system provide an important piece of informa-
tion concerning the behavior in the long run. For systems with background in classical
fluid mechanics, stationary solutions typically minimize the entropy production and
play the role of an attractor, at least for energetically insulated fluid flows, see e.g.
[22].

The principal question arising in the context of randomly driven systems is the
existence of a (stochastic) steady state solution for the system. Earlier results in this
direction concern the incompressible case: Flandoli [23] proved existence of an invari-
ant measure by the “remote start” method in the 2D case. This result has been extended
in a few papers, for instance in Goldys and Maslowski [27,28] where existence of an
invariant measure has been shown by the method of embedded Markov chain theory.
Additonally, exponential speed of convergence to the invariant measure has been ver-
ified. A different approach has been adopted by Hairer and Mattingly [31] in which
case a slightly weaker convergence result (implying however the uniqueness of invari-
ant measures) has been shown under much weaker conditions on the nondegeneracy
of the noise. In the paper [8] the existence of invariant measure is proved for 2D
Navier–Stokes equation on unbounded domain by a compactnessmethod in the (weak)
bw-topology.

In 3D much less is known in the case of incompressible fluids. The problems here
appear already on the level of Markov property induced by the equation. A transition
Markov semigroup has been constructed in the papers by Da Prato and Debussche
[11,12], provided the noise term is sufficiently rough in space. A different approach
was adopted by Flandoli and Romito [26] who used the classical Stroock-Varadhan
type argument to find a suitable Markov selection and construct the semigroup. The
transition semigroup is shown to be be exponentially ergodic (under appropriate con-
ditions on the noise term) by the same arguments as in [27]. However, the uniqueness
of the Markov transition semigroup has not been proved so far.

In absence of theMarkov property (i.e. in the situationwhen the concept of invariant
measure as a steady state is not well defined) it is possible to work directly with sta-
tionary solutions, i.e. with solutions which are strictly stationary stochastic processes.
In the pioneering paper Flandoli and Gatarek [24] existence of such stationary solution
has been shown in the 3D incompressible case by means of finite-dimensional approx-
imations. A generalization to less regular noise on the whole space Rd was given in
[7], where existence of an invariant measure was proved if d = 2 and existence of a
stationary solution if d = 3.

Toour best knowledge, no relevant results on large timebehavior havebeen achieved
so far for compressible stochastic fluid flows, where the situation is much more com-
plex. To fill at least partially this gap, we examine the class of stationary solutions for
a stochastically driven Navier–Stokes system:

d� + divx (�u) dt = 0, (1.1)

d(�u) + divx (�u ⊗ u) dt + ∇x p(�) dt = divxS(∇xu) dt + G(�, �u) dW , (1.2)
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S(∇xu) = μ

(
∇xu+∇ t

xu− 2

3
divxuI

)
+ηdivxuI, (1.3)

where � = �(t, x) is the mass density and u = u(t, x) the macroscopic velocity of a
compressible viscous fluids contained in a physical domainO ⊂ R

3. Here the symbol
p = p(�) denotes the pressure, typically given by the isentropic state equation

p(�) = a�γ , a > 0, (1.4)

and S is the viscous stress tensor determined by Newton’s rheological law (1.3), with
viscosity coefficients μ > 0, η ≥ 0. The stochastic driving force is represented by the
stochastic differential of the form

G(�, �u) dW =
∞∑
k=1

Gk(x, �, �u) dWk,

where W = (Wk)k∈N is a cylindrical Wiener process specified in Sect. 2.2 below.
Aspointed out above, in contrastwith the frequently studied incompressibleNavier–

Stokes system, the problems related to the dynamics of compressible fluid flows driven
by stochastic forcing are basically open. First existence results were based on a suitable
transformation formula that allows to reduce the problem to a random system of
PDEs: The stochastic integral does no longer appear and deterministic methods are
applicable, see [39] for the 1D case, [40] for a rather special periodic 2D. Finally,
the work by Feireisl et al. [19] deals with the 3D case. The first “truly” stochastic
existence result for the compressible Navier–Stokes system perturbed by a general
nonlinearmultiplicative noisewas obtained byBreit andHofmanová [6]. The existence
of the so-called finite energy weak martingale solutions in three space dimensions
with periodic boundary conditions was established. Extension of this result to the zero
Dirichlet boundary conditions then appeared in [38,41]. For completeness, let us also
mention [3–5] where further results appeared, namely, a singular limit, the so-called
relative energy inequality and the local existence of strong solutions, respectively.

Our goal is to establish the existence of global–in–time solutions to system (1.1)–
(1.3) that are stationary in the stochastic sense. To this end, we use a direct method
based on the four layer approximation scheme developed in [6] inspired by [20]. More
specifically, the stationary solutions are constructed at the very basic approximation
level. The final result is obtained by means of a combination of deterministic and
stochastic compactness methods. To be more precise, the equations are regularized by
adding artificial viscosity and an artificial pressure term to the momentum equation
(1.2). Thus one is led to study the following approximate system

d� + divx (�u)dt = ε�� dt,

d(�u) + [
divx (�u ⊗ u) + a∇�γ + δ∇��

]
dt

= ε�(�u) + divxS(∇xu) dt

+ G(�, �u) dW ,

(1.5)
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where� > max{ 92 , γ }. For technical reasons, explained in detail in [20], the two limits
ε → 0, δ → 0 must be distinguished and performed in this order.

To find stationary solutions for (1.5) with ε > 0 and δ > 0 fixed, two additional
approximation layers are needed. Namely, a suitable Faedo–Galerkin approximation
of (1.5) of dimension N ∈ N, with certain truncations of various nonlinear terms
(corresponding to a parameter R ∈ N). Letting R → ∞ gives a unique solution
to the Faedo–Galerkin approximation. The passage to the limit as N → ∞ yields
existence of a solution to (1.5). Except for the first passage to the limit, we always
employ the stochastic compactness method. However, due to the delicate structure of
(1.1)–(1.3) it is necessary to work with weak topologies and therefore we are lead to
Jakubowski’s generalization of the classical Skorokhod representation theorem [34,
Theorem 2]. It applies to a large class of topological spaces, the so-called quasi-Polish
spaces, including (but not limited to) separable Banach spaces equipped with weak
topologies.

Another important ingredient of the proof is then the identification of the limit in the
nonlinear terms. To bemore precise, twomain difficulties arise. First, the passage to the
limit in the terms that depend nonlinearly on � (i.e. the pressure term and the stochastic
integral) cannot be performed directly since strong convergence of the approximate
densities does not follow from the compactness argument. This issue appears already
in the deterministic setting and is overcome by a technique based on regularity of the
effective viscous flux introduced by Lions [36]. A suitable stochastic version of this
method was developed in [6] to treat (1.1)–(1.3). Note, however, that the stationary
problem is rather different from the initial–value problem, where compactness of the
initial density field can be incorporated by a suitable choice of the initial data. Here, in
analogy with the deterministic approach developed in [18], compactness of the denisty
must be recovered from stationarity of the flow.

The seconddifficulty onehas to face arises in the passageof the limit in the stochastic
integral. Indeed, one has to deal with a sequence of stochastic integrals driven by a
sequence of Wiener processes. One possibility is to pass to the limit directly and
such technical convergence results appeared in several works (see [1] or [30]), a
detailed proof can be found in [15]. Another way is to show that the limit process is a
martingale, identify its quadratic variation and apply an integral representation theorem
for martingales, if available (see [14]). The existence theory for (1.1)–(1.3) developed
in [6] relies on neither of those and follows a rather new general and elementary
method that was introduced in [9] and already generalized to different settings.

Themain goal of the present paper is to show the existence of stationary solutions to
(1.1)–(1.3) in the framework of weak martingale solutions introduced in [6]. Although
the multi-level approximation procedure is identical with that used in [6], the uniform
estimates necessary for the existence theory are in general not suitable to study the long-
time behavior of the system. They are based on the application of Gronwall’s lemma
and therefore grow exponentially with the final time T . Hence, the major challenge
is to derive new estimates which are uniform with respect to all the approximation
parameters as well as in T . This is the heart of the paper. Let us point out that the
standardmethods used for the incompressible system, as for instance in [24,26], are not
applicable in the compressible case. Indeed system (1.1)–(1.3) is of mixed hyperbolic-
parabolic type and the dissipation term does not contain the density. Consequently, the
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forcing terms on the right-hand side of the energy balance cannot be absorbed in the
dissipative term appearing on the left-hand side in an obvious straightforward manner.

Furthermore, it does not seem to be possible to find universal estimates that would
be uniform in all the parameters R, N , ε, δ aswell as in T . Instead, during each approx-
imation step we develop new estimates which are then used for the particular passage
to the limit at hand. More precisely, at the starting level, that is for fixed parameters
R, N ∈ N, ε, δ > 0,we show existence, uniqueness and continuous dependence on the
initial condition. Thus, the resulting system isMarkovian and the transition semigroup
is Feller. Consequently, the existence of invariant measures can be shownwith the help
of the standard Krylov–Bogoliubov method in the infinite-dimensional setting. This
generates a family of approximate stationary solutions. Note that we loose uniqueness
already after the first passage to the limit (in R). Hence the usual Krylov–Bogoliubov
approach cannot be employed anymore, and even the concept of invariant measure
becomes ambiguous. To overcome this problem we construct stationary solutions on
the next level as limits of the corresponding approximate stationary solutions from the
previous level.

At each approximation step, there are essentially three necessary estimates: for the
energy, the velocity and the pressure. At the deepest level, we are able to obtain the
first two estimates uniformly in R, N but the third one depends on all the parameters
R, N , ε, δ and is therefore not suitable for any limit procedure. The key observation is
that these estimates may be significantly improved if we take stationarity into account.
Therefore, working directly with stationary solutions given by theKrylov–Bogoliubov
method, we derive an estimate for the velocity which is uniform in all the approxi-
mation parameters. This can be seen in Proposition 5.1. The estimate for the energy
and the pressure is more delicate and has to be reproved at each level by applying a
suitable test function to (1.1)–(1.3). The proof is then concluded by performing the
limit for vanishing approximation parameters based on a combination of deterministic
and probabilistic tools, similarly to [6].

It is remarkable that our result holds for the same range of the adiabatic expo-
nent γ > 3

2 as in the nowadays available existence theory. Note that the relevant
deterministic problem, namely the existence of bounded absorbing sets and attractors
require a rather inconvenient technical restriction γ > 5

3 , see [18,21]. Indeed, con-
sider the iconic example of the driving force �f(x)dW in (1.2). If we replace it by
the deterministic forcing �f(x)dt , then, to the best of our knowledge, it is not known
if the global-in-time weak solutions remain uniformly bounded for t → ∞ for γ in
the physically relevant range 1 ≤ γ ≤ 5/3. On the other hand, the stochastic forcing
�f(x)dW gives rise to stationary solutions for any γ > 3/2 as shown in Theorem 2.11.
The reason is the cancellation of certain terms in the energy balance due to stationarity
and the martingale structure of the noise (the vanishing expectation of the Itô integral).
In a sense, stationarity provides an additional a priori estimate. It is very difficult to
discover examples with a regularization effect arising from stationarity. It appeared in
some literature, in the context of dispersive equations with random initial conditions
(see, e.g. [2,10]), infinite interacting particle systems (see, e.g., [35]), and regularity
theory for stochastic incompressible Navier–Stokes equations (see [25]).

The rest of the paper is devoted to the proof of existence of a stationary solution
to the compressible Navier–Stokes system as stated in Theorem 2.11 below. The pre-
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cise setting is given in Sect. 2. In Sect. 3, we introduce the basic finite-dimensional
approximation and construct a family of approximate solutions adapting the standard
Krylov–Bogoliubov method. In Sect. 4, we develop global-in-time estimates for sta-
tionary solutions and pass to the limit R → ∞ and N → ∞. Section 5 is devoted to
the vanishing viscosity limit, i.e. ε → 0. Finally, in Sect. 6, we perform the limit for
vanishing artificial pressure, i.e. δ → 0, obtaining the desired stationary solution, the
existence of which is claimed in Theorem 2.11.

2 Mathematical framework

2.1 Boundary conditions

Although the boundary conditions in the real world applications may be quite compli-
cated and of substantial influence on the fluid motion, our goal is to focus on the effect
of stochastic perturbations imposed through stochastic volume forces. Accordingly,
we consider the periodic boundary conditions, where the physical domain may be
identified with the flat torus

T
3 ≡ ([−1, 1]|{−1,1}

)3
.

On the other hand, however, our method leans essentially on the dissipative effect
of viscosity represented by S in (1.2). In particular, it is convenient to keep a kind of
Korn–Poincaré inequality in force. Following the idea of Ebin [17], we consider the
physically relevant complete slip conditions

u · n|∂O = 0, [S(∇xu) · n] × n|∂O = 0 (2.1)

imposed on the boundary of the cube

O = [0, 1]3.

The crucial observation is that the constraint (2.1) is automatically satisfied by
periodic functions �, u defined on torus T3 and belonging to the symmetry class

�(t,−x) = �(t, x) x ∈ T
3,

ui (t, ·,−xi , ·) = −ui (t, ·, xi , ·) i = 1, 2, 3,

ui (t, ·,−x j , ·) = ui (t, ·, x j , ·) i �= j, i, j = 1, 2, 3,

(2.2)

cf. [17]. In such a way, we may eliminate the problems connected with the presence
of physical boundary by considering periodic functions defined on T3 and belonging,
in addition, to the symmetry class (2.2). Note that for u in the class (2.2), we have
Korn–Poincaré inequality

∫
T3

S(∇xu) : ∇xu dx ≥ cK P‖u‖2W 1,2(T3;R3)
. (2.3)
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In addition, we prescribe the total mass

∫
T3

�(t, x) dx = M0, t ∈ [0,∞), (2.4)

where M0 > 0 is a deterministic constant.
The assumption that M0 is deterministic is taken for simplicity, in order to avoid

unnecessary technicalities. A more general case of random M0 satisfying

m ≤ M0 ≤ m P-a.s. (2.5)

for some deterministic constants m,m ∈ (0,∞) can also be considered. In that case,
one would prescribe the law of M0 such that (2.5) holds.

2.2 Stochastic setting

We consider a cylindrical (Ft )t≥0-Wiener process defined on a stochastic basis

(

,F, (Ft )t≥0,P

)
,

with a probability space (
,F,P), and a right-continuous complete filtration (Ft )t≥0.
Formally, it is given byW (t) = ∑

k≥1 ekWk(t)with (Wk)k∈N beingmutually indepen-
dent real-valued standardWiener processes relative to (Ft )t≥0. Here (ek)k∈N denotes a
complete orthonormal system in a separable Hilbert space U (e.g. U = L2(T3) would
be a natural choice). The stochastic integral in (1.2) is understood in the following
sense

∫
G(�, �u) dW =

∞∑
k=1

∫
Gk(x, �, �u)ek dWk =:

∞∑
k=1

∫
Gk(x, �, �u) dWk,

where the one-dimensional summands on the right-hand side are standard Itô-type
stochastic integrals. In agreement with (2.2), we suppose that the functions Gk =
Gk(x, ρ,q) satisfy

Gi
k(·,−xi , ·,−qi , ·) = −Gi

k(·, xi , ·, qi , ·), i = 1, 2, 3,

Gi
k(·,−x j , ·,−q j , ·) = Gi

k(·, x j , ·, q j , ·), i �= j, i, j = 1, 2, 3.
(2.6)

Remark 2.1 The meaning of (2.6) is to keep the spatially periodic solutions in the
symmetry class (2.2) as long as the initial data belong to (2.2) P-a.s.

Finally, we define the auxiliary space U0 ⊃ U via

U0 =
{
v =

∑
k≥1

αkek;
∑
k≥1

α2
k

k2
< ∞

}
,
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endowed with the norm

‖v‖2U0
=
∑
k≥1

α2
k

k2
, v =

∑
k≥1

αkek .

Note that the embeddingU ↪→ U0 is Hilbert–Schmidt. Moreover, trajectories ofW are
P-a.s. in C([0, T ];U0) (see [14]). For simplicity of the presentation, we often identify
G(�, �u) as a Hilbert–Schmidt operator on Uwith the sequence {Gk(�, �u)}k∈N as an
element of �2.

2.3 Main result

We use the concept of weak martingale solution introduced in [6]. In accordance with
the available a priori bounds provided by the energy estimates, a suitable state space
for [�, �u] is taken

� ∈ Lγ (T3), �u ∈ L
2γ

γ+1 (T3;R3),

where γ is the adiabatic exponent in the state equation (1.4). Accordingly, we con-
sider initial laws � defined on the Borel σ -algebra of the product space Lγ (T3) ×
L

2γ
γ+1 (T3;R3).

Definition 2.2 A quantity

[(

,F, (Ft )t≥0,P

); �,u,W
]

is called a weak martingale solution to problem (1.1)–(1.3) in [0, T ] with the initial
law � provided:

• (

,F, (Ft )t≥0,P

)
is a stochastic basis with a complete right-continuous filtration;

• W is an (Ft )t≥0-cylindrical Wiener process;
• the density � satisfies � ≥ 0, t �→ 〈�(t), ψ〉 ∈ C([0, T ]) for any ψ ∈ C∞(T3)

P-a.s., the function t �→ 〈�(t), ψ〉 is (Ft )-adapted, and

E

[
sup

t∈[0,T ]
‖�(t)‖nγ

Lγ (T3)

]
< ∞ for a certain n > 1; (2.7)

• the velocity field u ∈ L2(
 × (0, T );W 1,2(T3;R3)) satisfies

E

[(∫ T

0
‖u(t)‖2W 1,2(T3;R3)

dt

)n
]

< ∞ for a certain n > 1;

• the momentum �u satisfies t �→ 〈�u(t), φ〉 ∈ C([0, T ]) for any φ ∈ C∞(T3;R3)

P-a.s., the function t �→ 〈�u(t), φ〉 is (Ft )-adapted,
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E

[
sup

t∈[0,T ]
‖�u(t)‖n

2γ
γ+1

L
2γ

γ+1 (T3;R3)

]
< ∞ for a certain n > 1; (2.8)

• � = P ◦ (�(0), �u(0))−1,
• G(�, �u) = {Gk(�, �u)}k∈N ∈ L2(
 × (0, T ),P, dP ⊗ dt; �2(W−b,2(T3;R3)))

for some b > 3
2 , whereP denotes the progressively measurable σ -field associated

to (Ft )t≥0;
• for all test functions ψ ∈ C∞(T3), φ ∈ C∞(T3;R3) and all t ∈ [0, T ] it holds
P-a.s.

d
∫
T3

�ψ dx =
∫
T3

�u · ∇xψ dx dt,

d
∫
T3

�u · φ dx =
∫
T3

[
�u ⊗ u : ∇xφ − S(∇xu) : ∇xφ + p(�)divxφ

]
dx dt

+
∞∑
k=1

∫
T3

Gk(�, �u) · φ dx dWk .

Remark 2.3 In addition to Definition 2.2, we say that [�,u] satisfy the complete slip
boundary conditions (2.1), if [�(t, ·), �u(t, ·)] belong to the symmetry class (2.2) for
any t ∈ [0, T ] P-a.s.
Remark 2.4 Note that the statement about progressive measurability of the diffusion
coefficients G(�, �u) is introduced for completeness, and, as a matter of fact, can be
deduced from the (weak) progressive measurability of � and �u, see [6].

Remark 2.5 In contrast to the existence theory developed in [6], the moments in (2.7)–
(2.8) are bounded up to a certain positive order n rather then for all n > 1 as in
[6]. This is because the integrability of the moments for the initial–value problem is
controlled by the initial data.

Remark 2.6 Similarly to [4], we consider the class of dissipative martingale solutions
satisfying, in addition to the stipulations specified in Definition 2.2, an energy inequal-
ity. Indeed some form of energy balance will be used at every step of the construction
of the stationary solution. As a result, the stationary solution we obtain is also a dis-
sipative martingale solution in the sense of [4]. In addition, as in [6], the equation of
continuity (1.1) is satisfied in the renormalized sense

d
∫
T3

b(�)ψ dx =
∫
T3

b(�)u · ∇xψ dx dt

−
∫
T3

(
b′(�)� − b(�)

)
divxuψ dx dt (2.9)

for every ψ ∈ C∞(T3), and every b ∈ C1([0,∞)) with b′(z) = 0 for z ≥ Mb for
some constant Mb > 0. This is an essential tool to pass to the limit in the nonlinear
pressure.
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Due to the specific structure of the Navier–Stokes system (1.1)–(1.3), a concept of
stationarity must be chosen accordingly. We recall the standard definition of station-
arity for continuous processes ranging in the Sobolev space Wk,p.

Definition 2.7 Let k ∈ N0, p ∈ [1,∞) and let U = {U(t); t ∈ [0,∞)} be an
Wk,p(T3)-valued measurable stochastic process. We say that U is stationary on
Wk,p(T3) provided the joint laws

L(U(t1 + τ), . . . ,U(tn + τ)), L(U(t1), . . . ,U(tn))

on [Wk,p(T3)]n coincide for all τ ≥ 0, for all t1, . . . , tn ∈ [0,∞).

However, we observe that according to Definition 2.2, the velocity u is not
a stochastic process in the classical sense. Indeed, its trajectories belong to
L2(0, T ;W 1,2(T3;R3)), i.e. are only defined almost everywhere in time. Therefore,
even though the above definition of stationarity can be used for [�, �u], it is not suitable
to describe stationarity of u. To overcome this flaw, we consider solutions as random
variables ranging in the space Lq

loc([0,∞);Wk,p(T3)) as follows.

Definition 2.8 Let k ∈ N0, p, q ∈ [1,∞) and let U be an Lq
loc([0,∞);Wk,p(T3))-

valued random variable. Let Sτ be the time shift on the space of trajectories given by
SτU(t) = U(t + τ). We say that U is stationary on Lq

loc([0,∞);Wk,p(T3)) provided
the laws L(SτU), L(U) on Lq

loc([0,∞);Wk,p(T3)) coincide for all τ ≥ 0.

Note that as LemmaA.1 shows, it is actually sufficient to consider Definition 2.8 for
q = 1.As amatter of fact, the two concepts of stationarity introduced inDefinitions 2.7
and 2.8 are equivalent as soon as the stochastic process in question is continuous in
time; or alternatively, if it is weakly continuous and satisfies a suitable uniform bound.
Proofs of these statements are provided in Lemma A.2 and Corollary A.3 below.
Furthermore, it can be shown that both notions of stationarity are stable under weak
convergence, see Lemmas A.4 and A.5.

Motivated by Definition 2.8, we adapt the concept of stationarity introduced in
the context of incompressible viscous fluids by Romito [37], cf. also the approach
proposed by Itô and Nisio [33].

Definition 2.9 Aweakmartingale solution [�,u,W ] to (1.1)–(1.3) is called stationary
provided the joint law of the time shift

[Sτ �,Sτu,SτW − W (τ )
]
on

L1
loc([0,∞); Lγ (T3)) × L1

loc([0,∞);W 1,2(T3;R3)) × C([0,∞);U0)

is independent of τ ≥ 0.

Remark 2.10 In accordance with the previous discussion, if [�,u,W ] is a stationary
martingale solution of the Navier–Stokes system (1.1)–(1.3) in the sense of Defini-

tion 2.9, then the process [�, �u] is stationary on Lγ (T3)×L
2γ

γ+1 (T3;R3) in the sense of
Definition 2.7; whereas for uwe only have stationarity on L2

loc([0,∞);W 1,2(T3;R3))

in the sense of Definition 2.8.
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The following theorem is the main result of the present paper. For notational sim-
plicity, we restrict ourselves to the most difficult and physically relevant case of three
space dimensions. However, our result extends to the two- andmono-dimensional case
as well, even under the weaker assumption γ > 1 and γ ≥ 1, respectively.

Theorem 2.11 Let M0 ∈ (0,∞) be given. Let p = p(�) be given by (1.4)with γ > 3
2 .

Suppose that the diffusion coefficientsGk belong to the symmetry class (2.6) and there
exist functions gk ∈ C(T3 × [0,∞) × R

3;R3) and αk ≥ 0, k ∈ N, such that

Gk(x, ρ,q) = ρgk(x, ρ,q),

∣∣∇ρ,qgk(x, ρ,q)
∣∣+ |gk(x, ρ,q)| ≤ αk,

∞∑
k=1

α2
k = G < ∞.

(2.10)

Then problem (1.1)–(1.3), (2.1), (2.4) admits a stationary martingale solution
[�,u,W ].

Note that if for instance Gk(x, ρ, 0) = 0 for all x ∈ T
3, ρ ∈ [0,∞) and k ∈ N,

then (1.1)–(1.3) admits a trivial stationary solution, namely, u ≡ 0 and � ≡ const.
Nevertheless, Theorem 2.11 applies to more general diffusion coefficients Gk where
such trivial solutions do not exist.

Remark 2.12 Let us briefly discuss the noise term in the Eq. (1.2). Technically, W
is a cylindrical Wiener process. However, note that our approach covers also the
standard case of distributed (space-dependent) noise under very natural conditions.
More specifically, consider the Eq. (1.2) written formally as

(�u)

dt
(t, x) + divx (�u ⊗ u)(t, x) + ∇x p(�)(t, x)

= divxS(∇xu)(t, x) + σ(x, �(t, x), �u(t, x))
dW

dt
(t, x),

for (t, x) ∈ (0,∞) × T
3, where the noise intensity σ takes the form σ(x, ρ,q) =

ρσ1(x, ρ,q) and σ1 ∈ C1(T3 × [0,∞) × R
3;R3). Furthermore, dW

dt stands for a
white in time, space-dependent noise, which is considered to be a formal derivative
of an L2(T3;R3)-valued Wiener process. Denote by � the (trace class) incremental
covariance of W ; obviously there exists an orthonormal basis ( fk)k∈N in L2(T3;R3)

and a sequence (λk)k∈N, λk ≥ 0, such that

� fk = λk fk, W (t, x) =
∞∑
k=1

√
λk fk(x)Wk(t),

∞∑
k=1

λk < ∞,

where (Wk)k∈N is a sequence of independent, standard scalar Wiener processes. In
such case Definition 2.2 yields a natural concept of rigorous solution to the system
(1.1)–(1.3) if we set

gk(x, ρ,q) = σ1(x, ρ,q) fk(x)
√

λk, k ∈ N.
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If σ1 is bounded, globally Lipschitz in ρ, q, uniformly in x , fk ∈ C(T3;R3) and fk ,
are bounded on T

3, uniformly in k ∈ N, then the noise term satisfies the condition
(2.10), thereby Theorem 2.11 is applicable to the present case.

The rest of the paper is devoted to the proof of Theorem 2.11.

3 Basic finite-dimensional approximation

In this section, we introduce the zero-level approximate system to (1.1)–(1.3) and
study its long-time behavior for suitable initial data belonging to the symmetry class
(2.2). More precisely, based on an energy estimate, Proposition 3.1, and bounds for the
density, Lemma 3.2, we apply the Krylov–Bogoliubov method to deduce the existence
of an invariant measure.

We point out that in accordance with hypothesis (2.6), the solutions can be con-
structed to be spatially periodic solutions, i.e. they belong to the symmetry class (2.2),
as long as the initial data belong to the same class (2.2). We always tacitly assume this
fact without specifying it explicitly in the future.

Let

HN =
{
w = [w1,w2,w3] : wi =

∑
|m|≤N

am[wi ] exp (im · x) , |m| ≤ N

}

be the space of trigonometric polynomials of order N , endowed with the Hilbert
structure of the Lebesgue space L2(T3;R3), and let ‖ · ‖HN denote the corresponding
norm. Let

�N : L2(T3;R3) → HN

be the associated L2-orthogonal projection. Note that the following holds

‖�Nv‖L p(T3;R3) ≤ cp‖v‖L p(T3;R3) ∀v ∈ L p(T3;R3), (3.1)

and

�Nv → v in L p(T3;R3),

for any p ∈ (1,∞), cf. [29, Chapter 3].

3.1 Approximate field equations

Fix R ∈ N, N ∈ N, ε > 0, δ > 0 and let � > max{ 92 , γ }. The approximate solutions
� = �N , u = uN , uN (t) ∈ HN for any t , are constructed to satisfy the following
system of equations

d� + divx (�[u]R) dt = ε�� dt − 2ε� dt + H

(
1

M0

∫
T3

� dx

)
dt,
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d
∫
T3

�u · ϕ dx −
∫
T3

�[u]R ⊗ u : ∇xϕ dx dt −
∫
T3

a�γ H(‖u‖HN − R)divxϕ dx dt

= −
∫
T3

S(∇xu) : ∇xϕ dx dt +
∞∑
k=1

∫
T3

� �Ngk(�, �u) · ϕ dx dWk (3.2)

+ε

∫
T3

�u · �ϕ dx dt − 2ε
∫
T3

�u · ϕ dx dt

+δ

∫
T3

��H(‖u‖HN − R)divxϕ dx dt,

for any test function ϕ ∈ HN , where

[u]R = H
(‖u‖HN − R

)
u

with

H ∈ C∞(R), H =
⎧⎨
⎩
1 on (−∞, 0],
a decreasing function on (0, 1),
0 on [1,∞).

Note that the basic approximate system (3.2) is not the same as the one from [6],
cf. (1.5). To be more precise, in order to obtain global-in-time estimates we are forced
to include two more “stabilizing” terms in the continuity equation and to modify the
momentum equation accordingly. Nevertheless, similarly to [6, Sect. 3], it can be
shown that problem (3.2) admits a unique strong pathwise solution for any initial data
[�0, (�u)0] satifying, for some ν > 0,

�0 ∈ C2+ν(T3), 0 < � < �0 < �, (�u)0 ∈ C2(T3;R3) P-a.s.,

E

[(∫
T3

[ |(�u)0|2
�0

+ a

γ −1
�

γ
0 + δ

�−1
��
0

]
dx

)n
]

≤c(n) for all 1 ≤ n<∞. (3.3)

where �, � are deterministic constants, and where the associated initial value of u is
uniquely determined by

u0 ∈ HN ,

∫
T3

�0u0 · ϕ dx =
∫
T3

(�u)0 · ϕ dx for all ϕ ∈ HN .

3.2 Basic energy estimates

The energy estimates established in [6, Sect. 3] are not well-suited for the construction
of stationary solutions. Indeed, the application of Gronwall’s Lemma leads to an
exponentially (in time) growing right hand side. In this subsection we derive improved
energy estimates which overcome this problem and hold true uniformly in t . However,
it is important to note that at this stage of the proof, we are not able to obtain estimates
independent of all the approximation parameters, namely, the following bounds blow
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up as ε → 0. This can be seen in the proof below, namely, in the estimate (3.10) where
the desired bound (3.6) for n = 1 follows after we absorb the right hand side into the
second term on the left hand side. But this term is multiplied by ε and therefore we
obtain a constant on the right hand side which is proportional to an inverse power of
ε. The necessary uniform estimates for the passage to the limit in ε will be derived
directly for stationary solutions in Sect. 4.

Proposition 3.1 Let (�,u) be a solution to (3.2) starting from

�0 = 1, (�u)0 = u0 = 0. (3.4)

Then the following bounds hold true.

E

[(∫
T3

[
1

2
�|u|2 + a

γ − 1
�γ + δ

� − 1
��

]
(τ, ·) dx

)n]

≤ c (n, ε,G) , n ∈ N, (3.5)

1

T
E

[∫ T

0

(
‖u‖2W 1,2(T3;R3)

+ 2aε

γ
|∇x�

γ/2|2L2(T3;R3)
+ 2δε

�
|∇x�

�/2|2L2(T3;R3)

)
dt

]

≤ c (ε,G) . (3.6)

Proof Applying Itô’s chain rule to (3.2) we deduce the basic energy balance

d
∫
T3

[
1

2
�|u|2 + a

γ − 1
�γ + δ

� − 1
��

]
dx

+ 2ε
∫
T3

[
1

2
�|u|2 + aγ

γ − 1
�γ + δ�

� − 1
��

]
dx dt

+
∫
T3

S(∇xu) : ∇xu dx dt + ε

∫
T3

�|∇xu|2 dx dt

+ ε

∫
T3

(
aγ �γ−2 + δ��−2

)
|∇x�|2 dx dt

+ ε

∫
T3

1

2
H

(
1

M0

∫
T3

� dx

)
|u|2 dx dt

=
∞∑
k=1

∫
T3

� �Ngk(�, �u) · u dx dWk + 1

2

∞∑
k=1

∫
T3

1

�
|��Ngk(�, �u)|2 dx dt

+ H

(
1

M0

∫
T3

� dx

)∫
T3

(
aγ

γ − 1
�γ−1 + δ�

� − 1
��−1

)
dx dt,

(3.7)

we refer the reader to [6, Proposition 3.1] for details. In view of hypothesis (2.10) and
the continuity of �N (3.1), we have

∞∑
k=1

∫
T3

1

�
|��Ngk(�, �u)|2 dx ≤ c‖�‖Lγ (T3)

∞∑
k=1

‖gk(�, �u)‖2
L2γ ′

(T3;R3)
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≤ c‖�‖Lγ (T3)

∞∑
k=1

‖gk(�, �u)‖2L∞(T3;R3)
(3.8)

≤ c(G)‖�‖Lγ (T3),

where 1
γ

+ 1
γ ′ = 1. Remark that the function �̂ = ∫

T3 � dx satisfies the (deterministic)
ODE

d

dt
�̂ = −2ε�̂ + H

(
�̂

M0

)
. (3.9)

In particular, the function �̂ is bounded by a constant depending solely on the initial
mass M0. Taking expectation in (3.7) leads to

d

dt
E

[∫
T3

[
1

2
�|u|2 + a

γ − 1
�γ + δ

� − 1
��

]
dx

]

+ 2εE

[∫
T3

[
1

2
�|u|2 + aγ

γ − 1
�γ + δ�

� − 1
��

]
dx

]

+ E

[∫
T3

S(∇xu) : ∇xu dx
]

+ εE

[∫
T3

(
aγ �γ−2 + δ���−2) |∇x�|2 dx

]

≤ c (G)E‖�‖Lγ (T3) + E

[
H

(
1

M0

∫
T3

� dx

)∫
T3

(
aγ

γ − 1
�γ−1 + δ�

� − 1
��−1

)
dx

]
.

(3.10)

Now, we observe that both terms on the right hand side can be estimated by the
weighted Young inequality and then absorbed in the second term on the left hand
side. This readily implies (3.5) for n = 1 with an ε-dependent constant on the right
hand side that blows up as ε → 0. In addition, keeping (3.4) in mind and applying
the Korn–Poincaré inequality (2.3), we deduce the estimate for the ergodic averages
(3.6).

As the next step, we apply the Itô formula to (3.7) to obtain, for n ∈ N,

d

(∫
T3

[
1

2
�|u|2 + a

γ − 1
�γ + δ

� − 1
��

]
dx

)n

+ 2εn

(∫
T3

[
1

2
�|u|2 + aγ

γ − 1
�γ + δ�

� − 1
��

]
dx

)n

dt

+ n

(∫
T3

[
1

2
�|u|2 + a

γ − 1
�γ + δ

� − 1
��

]
dx

)n−1 ∫
T3

S(∇xu) : ∇xu dx dt

+ εn

(∫
T3

[
1

2
�|u|2 + a

γ − 1
�γ + δ

� − 1
��

]
dx

)n−1 ∫
T3

�|∇xu|2 dx dt

+ εn

(∫
T3

[
1

2
�|u|2 + a

γ − 1
�γ + δ

� − 1
��

]
dx

)n−1

×
∫
T3

(
aγ �γ−2 + δ��−2

)
|∇x�|2 dx dt
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+ εn

(∫
T3

[
1

2
�|u|2 + a

γ − 1
�γ + δ

� − 1
��

]
dx

)n−1

×
∫
T3

1

2
H

(
1

M0

∫
T3

� dx

)
|u|2 dx dt

= n
∞∑
k=1

(∫
T3

[
1

2
�|u|2 + a

γ − 1
�γ + δ

� − 1
��

]
dx

)n−1

×
∫
T3

��Ngk(�, �u) · u dx dWk

+ n

2

(∫
T3

[
1

2
�|u|2 + a

γ − 1
�γ + δ

� − 1
��

]
dx

)n−1

×
∞∑
k=1

∫
T3

1

�
|��Ngk(�, �u)|2 dx dt

+ n

(∫
T3

[
1

2
�|u|2 + a

γ − 1
�γ + δ

� − 1
��

]
dx

)n−1

× H

(
1

M0

∫
T3

� dx

)∫
T3

(
aγ

γ − 1
�γ−1 + δ�

� − 1
��−1

)
dx dt

+ n(n − 1)

2

(∫
T3

[
1

2
�|u|2 + a

γ − 1
�γ + δ

� − 1
��

]
dx

)n−2

×
∞∑
k=1

(∫
T3

��Ngk(�, �u) · u dx
)2

dt

=: K. (3.11)

By virtue of (2.10) and the continuity of �N (3.1),

∞∑
k=1

(∫
T3

��Ngk(�, �u) · u dx
)2

≤
∞∑
k=1

∥∥√� �Ngk(�, �u)
∥∥2
L2(T3;R3)

‖√�u‖2L2(T3;R3)

≤ c
∞∑
k=1

‖�‖Lγ (T3)‖�Ngk(�, �u)‖2
L2γ ′

(T3;R3)
‖√�u‖2L2(T3;R3)

≤ c
∞∑
k=1

‖�‖Lγ (T3)‖gk(�, �u)‖2
L2γ ′

(T3;R3)
‖√�u‖2L2(T3;R3)

≤ c(G)‖�‖Lγ (T3)‖√�u‖2L2(T3;R3)

≤ c(G)‖�‖Lγ (T3)

∫
T3

[
1

2
�|u|2 + a

γ − 1
�γ + δ

� − 1
��

]
dx .

(3.12)
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Therefore, passing to expectations, the right hand side of (3.11) may be estimated by

EK ≤ n

(∫
T3

[
1

2
�|u|2 + a

γ − 1
�γ + δ

� − 1
��

]
dx

)n−1

×
∫
T3

(
aγ

γ − 1
�γ−1 + δ�

� − 1
��−1

)
dx dt

+ c (n,G)E

(∫
T3

[
1

2
�|u|2 + a

γ − 1
�γ + δ

� − 1
��

]
dx

)n−1

‖�‖Lγ (T3) dt .

Now, after application of the weighted Young inequality, both these terms can be
absorbed in the second term on the left hand side of (3.11), yielding a constant that
blows up as ε → 0. Hence we may infer (3.5) for any solution of (3.2) starting from
regular initial data (3.3). ��

3.3 Regularity of the density

Making use of the additional damping terms in the first equation in (3.2), we are
able to show strong statements about the regularity of the solution depending on the
parameters.

Lemma 3.2 Let u ∈ C([0,∞); HN ). Let � be a classical solution to

∂t� + divx (�[u]R) = ε�� − 2ε� + H

(
1

M0

∫
T3

� dx

)
(3.13)

with �(0) ∈ C2+ν(T3) such that �(0) > 0 and
∫
T3 �(0) dx ≤ m.

(a) Then we have

‖�(τ, ·)‖Wk,p(T3) ≤ c(m, k, p, N , R, ε) ∀τ ≥ 1 (3.14)

for all k ∈ N and p < ∞.
(b) There exists a (deterministic) constant � = �(m, N , R, ε) > 0 such that

�(τ, ·) ≥ � ∀τ ≥ 1. (3.15)

In particular, the constants are independent of u.

Proof We start with equation (3.9) for the density averages that is independent of u.
Since (3.9) is a first order (deterministic) ODE an easy observation shows

�̂(t) → Mε as t → ∞, (3.16)

whereMε > 0 is the unique solution to the equation2εMε = H
(Mε

M0

)
. The convergence

above is uniform in the sense that for everyκ > 0 there is T = T (m, ε, κ)deterministic
such that |�̂(t) − Mε| < κ for all t ≥ T .
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The next step is to show that � is uniformly bounded from below as claimed in (b).
Returning to the equation of continuity, we have

∂t� − ε�� + ∇x�[u]R = −(2ε + divx [u]R)� + H

(
1

M0
�̂

)
.

Seeing that

|divx [u]R | ≤ D(R, N )

for some constant D(R, N ), we may use the comparison principle to deduce that

�(t, ·) ≥ �(t),

where � solves the equation

d�

dt
= −�(2ε + D(R, N )) + H

(
1

M0
�̂

)
, 0 < �(0) ≤ inf

T3
�(0). (3.17)

In accordance with (3.16) we have

H

(
1

M0
�̂(t)

)
→ H

(
Mε

M0

)
= 2εMε > 0 as t → ∞.

Since any solution to (3.17) is asymptotically stabilized towards this equilibrium, we
conclude that �̂(t) > 0 for any t > 0 and

�(t) →
H
(
Mε

M0

)
2ε + D(R, N )

as t → ∞

and finally (3.15) follows.
Now we are going to prove part (a). First, note that (3.16) implies

�̂(t) = ‖�(t)‖L1(T3) ≤ c(m). (3.18)

We apply maximal regularity theory (see e.g. [32]) to the Eq. (3.13) to obtain

‖∂t�‖L2(T ,T+1;W−2,q (T3)) + ‖��‖L2(T ,T+1;W−2,q (T3))

≤ c
(
‖�(T )‖W−1,q (T3) + ‖divx (�[u]R)‖L2(T ,T+1;W−2,q (T3))

+
∥∥∥H( 1

M0

∫
T3

� dx
)∥∥∥

L2(T ,T+1;W−2,q (T3))

)
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where q is chosen such 1 < q < 3/2. Since L1(T3) ↪→ W−1,q and we have (3.18)

‖∂t�‖L2(T ,T+1;W−2,q (T3)) + ‖�‖L2(T ,T+1;Lq (T3))

≤ c
(
‖�(T )‖W−1,q (T3) + ‖�‖L2(T ,T+1;W−1,q (T3)) + 1

)

≤ c
(
‖�(T )‖L1(T3) + ‖�‖L2(T ,T+1;L1(T3)) + 1

)

≤ c
(‖�‖L∞(T ,T+1;L1(T3)) + 1

) ≤ c,

where c depends on R and ε but is independent of T . Consequently, there is τ =
τ(T ) ∈ [T , T +1] such that �(τ) is bounded in Lq(T3) independently of T . A similar
argument as above shows

‖∂t�‖L2(τ,τ+1;W−1,q (T3)) + ‖�‖L2(T ,T+1;W 1,q (T3))

≤ c
(
‖�(τ)‖Lq (T3) + ‖�‖L2(T ,T+1;Lq (T3)) + 1

)
≤ c.

So we have

� ∈ L2(T , T + 1;W 1,q(T3))

with a bound independent of T . Now, we can bootstrap the argument to obtain the
claim. ��

3.4 Approximate invariant measures

With estimates (3.5), (3.6), (3.14) at hand, we are ready to apply themethod ofKrylov–
Bogoliubov [13, Sect. 3.1] to construct an invariantmeasure for system (3.2) with fixed
parameters R, N , ε, and δ. For r > 0 we define the set

R = Rr = {(r , v) ∈ C2+ν(T3) × HN ; r−1 ≤ r ≤ r , ‖∇r‖L∞(T3) ≤ r}.

It will be the state space for solutions to (3.2). By Cb(R) we denote the space of
continuous bounded functions on R.

First of all, we remark that the approximate system (3.2) can be solved using the
Banach fixed point theorem as in [6, Sect. 3]. In what follows, for an Fs-measurable
R-valued random variable η, we denote by Uη

s,t = (�
η
s,t ,u

η
s,t ) the solution of (3.2) at

time t starting at time s from the initial condition η. If s = 0 then we write simplyUη
t .

We obtain the following result.

Theorem 3.3 There is r large enough such that the following holds. Let 0 ≤ s < t
be given. Let η be an Fs -measurable R-valued initial condition. Then there exists
Uη
s = (�

η
s ,u

η
s ) ∈ L2(
;C([s, t];R)) which is the unique strong pathwise solution

to (3.2) starting from η at time s. In addition, if η1, η2 are two such initial conditions
then there is β ∈ (0, 2) such that
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E
∥∥Uη1

s,t − Uη2
s,t

∥∥2R ≤ C(t − s, R, N , ε, δ)E‖η1 − η2‖β

R. (3.19)

Proof The existence of the unique strong pathwise solution was established in
[6, Sect. 3]. In addition, by means of Lemma 3.2, the solution belongs to
L2(
;C([s, t];R)) if we choose r large enough. Following [6, Sect. 3] we obtain

E
∥∥uη1

s,t − uη2
s,t

∥∥2
HN

≤ E sup
s≤σ≤t

∥∥uη1
s,σ − uη2

s,σ

∥∥2
HN

≤ C(t − s, R, N , ε, δ)E‖η1 − η2‖2R.

Moreover, [20, Lemma 2.2] implies

sup
s≤σ≤t

∥∥�η1
s,σ − �η2

s,σ

∥∥
W 1,2(T3)

≤ C(t − s, R, N , ε, δ) sup
s≤σ≤t

‖uη1
s,σ − uη2

s,σ ‖HN

P-a.s. and hence

E
∥∥�η1

s,t − �
η2
s,t

∥∥β

W 1,2(T3)
≤ C(t − s, R, N , ε, δ)E‖η1 − η2‖β

R.

for any β > 0. In order to obtain the final estimate we choose l ∈ N such that
Wl,2(T3) ↪→ C2+ν(T3) and interpolateWl,2(T3) betweenWl+1,2(T3) andW 1,2(T3).
Using Lemma 3.2 this implies for some β ∈ (0, 2)

E
∥∥�η1

s,t − �
η2
s,t

∥∥2
C2+ν (T3)

≤ cE
∥∥�η1

s,t − �
η2
s,t

∥∥2
Wl,2(T3)

≤ cE
∥∥�η1

s,t − �
η2
s,t

∥∥β

W 1,2(T3)

∥∥�η1
s,t − �

η2
s,t

∥∥2−β

Wl+1,2(T3)

≤ C(t − s, R, N , ε, δ)E‖η1 − η2‖β

R.

��
Let us now define the operators Pt by

(Ptϕ)(η) := E
[
ϕ
(
Uη
t
)]

ϕ ∈ Cb(R).

Corollary 3.4 The Eq. (3.2) defines a Feller Markov process, that is, Pt : Cb(R) →
Cb(R) and

E[ϕ(Uη
t+s)|Ft ] = (Psϕ)(Uη

t ) ∀ϕ ∈ Cb(R), ∀η ∈ H , ∀t, s > 0. (3.20)

Besides, the semigroup property Pt+s = Pt ◦ Ps holds true.

Proof The Feller property Pt : Cb(R) → Cb(R) is an immediate consequence of
(3.19) and the dominated convergence theorem.

In order to establish the Markov property (3.20), we shall prove that

E[ϕ(Uη
t+s)Z ] = E[(Psϕ)(Uη

t )Z ] ∀Z ∈ Ft .

123



Stationary solutions to the compressible Navier–Stokes… 1001

By uniqueness

Uη
t+s = UUη

t
t,t+s P-a.s..

It is therefore sufficient to show that

E[ϕ(UV
t,t+s)Z ] = E[(Psϕ)(V)Z ]

holds true for every Ft -measurable random variable V. By approximation (one uses
dominated convergence and the fact thatVn → V in E implies Ptϕ(Vn) → Ptϕ(V) in
R a.s.), it is enough to prove it for random variables V = ∑k

i=1 V
i1Ai where Vi ∈ R

are deterministic and (Ai ) ⊂ Ft is a collection of disjoint sets such that ∪i Ai = 
.
Consequently, it is enough to prove it for every deterministicV ∈ E . Now, the random
variableUV

t,t+s depends only on the increments of the Brownian motion between t and
t + s, hence it is independent of Ft . Therefore

E[ϕ(UV
t,t+s)Z ] = E[ϕ(UV

t,t+s)]E[Z ].

Since UV
t,t+s has the same law as UV

s by uniqueness, we have

E[ϕ(UV
t,t+s)Z ] = E[ϕ(UV

s )]E[Z ] = Psϕ(V)E[Z ] = E[Psϕ(V)Z ]

and the proof of (3.20) is complete.
Taking expectation in (3.20) we get on the one hand

E[E[ϕ(Uη
t+s)|Ft ]] = E[ϕ(Uη

t+s)] = (Pt+sϕ)(η)

and on the other hand

E[(Psϕ)(Uη
t )] = (Pt (Psϕ))(η).

Thus the semigroup property follows. ��
For an F0-measurable random variable η ∈ R, let μt,η denote the law of Uη

t . If the
law of η is μ then it follows from the definition of the operator Pt that μt,η = P∗

t μ.
For the application of the Krylov–Bogoliubov method, we shall prove the following
result.

Proposition 3.5 Let the initial condition be given by (3.4), that is η ≡ (1, 0) ∈ R.
Then the set of laws

{
1

T

∫ T

0
μs,η ds; T > 0

}

is tight onR.
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Proof Recall that μs,η are laws on the space R. In particular, the second component
is finite dimensional whereas the first one not. Let μ�

s,η and μu
s,η denote the marginals

of μs,η corresponding respectively to the first and second component of the solution.
That is, μ�

s,η is the law of �
η
s on C2+ν(T3) and μu

s,η is the law of uη
s on HN . It is then

enough to establish tightness of both following sets separately:

{
1

T

∫ T

0
μu
s,η ds; T > 0

}
,

{
1

T

∫ T

0
μ

�
s,η ds; T > 0

}
. (3.21)

As a consequence of (3.6) and the equivalence of norms on HN we have

1

T
E

[ ∫ T

0
‖uη

t ‖2HN
dt

]
≤ c(N , ε,G).

Consequently, for compact sets

BR := {
v ∈ HN ; ‖v‖HN ≤ R

} ⊂ HN

by means of Chebyshev inequality we obtain

1

T

∫ T

0
μu
s,η(B

c
R) ds = 1

T

∫ T

0
P(‖uη

s ‖HN > R) ds ≤ 1

R2

1

T
E

[ ∫ T

0
‖uη

t ‖2HN
dt

]
,

which in turn implies the tightness of the first set in (3.21). In order to establish
tightness in the second component, we define

BR :=
{
r ∈ Wk,p(T3); ‖r‖Wk,p(T3) ≤ R

}
.

For p ∈ (1,∞) and k ∈ N sufficiently large this is a compact set in C2+ν(T3) hence
making use of (3.14) we have

1

T

∫ T

0
μ

�
s,η(B

c
R) ds = 1

T

∫ T

0
P(‖�η

s ‖Wk,p > R) ds ≤ 1

R
sup
t≥0

E‖�η
t ‖Wk,p

and the desired tightness follows. ��
Finally, the Krylov–Bogoliubov theorem [13, Theorem 3.1.1] applies and yields

the following.

Corollary 3.6 Fix R, N ∈ N, ε, δ > 0. Then there exists an invariant measure L�,u
for the dynamics given by (3.2). In addition, as consequence of (3.16),

L�,u[r ≥ �] = 1, L�,u

[ ∫
T3

r dx = Mε

]
= 1.
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4 First limit procedures: R → ∞, N → ∞
The existence of an invariant measure for the zero level approximate problem (3.2)
implies the existence of a stationary solution [�R,uR]. Our ultimate goal is to perform
successively the limits for R → ∞, N → ∞, ε → 0, and finally δ → 0. Even
though this may look like a straightforward modification of the arguments used in the
existence proof [6], there are several new aspects that must be handled. First of all, the
uniform bounds used in the existence proof [6] are controlled by the initial data. This
is not the case for the stationary solution for which the “initial value” is not a priori
known and the necessary estimates must be deduced from the energy balance (3.11)
using the fact that the solution possesses the same law at any time. Moreover, the
estimates derived in the previous section, that is, Proposition 3.1 and Lemma 3.2 do
not hold independently of the approximation parameters R, N , ε, δ and are therefore
not suitable for the limit procedure. In addition, since the point-values of the density
are not compact, the proof of the strong convergence of the approximate densities
based on continuity of the effective viscous flux must be modified.

Let [�R,uR] be a solution of the approximate problem (3.2) whose law at (every)
time t is given by the invariant measure L�R ,uR constructed in Corollary 3.6. As the
first step, we show a new uniform bound for [�R,uR] that can be deduce from the
energy balance (3.11). Note that at this stage, the estimate still blows up as ε → 0.

Proposition 4.1 Let [�R,uR] be a stationary solution to (3.2) given by the invariant
measure from Corollary 3.6. Then we have for all n ∈ N and a.e. t ∈ (0,∞)

E

[(∫
T3

[
1

2
�R |uR |2 + aγ

γ − 1
�

γ

R + δ�

� − 1
��
R

]
dx

)n]
≤ c(n,G, ε),

E

[
‖uR‖2W 1,2(T3)

]
≤ c(G, ε).

(4.1)

Proof After taking expectations in (3.11), we observe that due to stationarity of
[�R,uR], the first term is constant in time, thus its time derivative vanishes. This
is a consequence of Corollary A.6. By the same reasoning we may ultimately omit the
time integrals in all the remaining expressions. Then we apply (3.8), (3.12) to estimate
the terms coming from the stochastic integral and obtain

εE

[(∫
T3

[
1

2
�R |uR |2 + aγ

γ − 1
�

γ

R + δ�

� − 1
��
R

]
dx

)n]

+E

[(∫
T3

[
1

2
�R |uR |2 + a

γ − 1
�

γ

R + δ

� − 1
��
R

]
dx

)n−1

×
∫
T3

S(∇xuR) : ∇xuR dx

]

+ εE

[(∫
T3

[
1

2
�R |uR |2 + a

γ − 1
�

γ

R + δ

� − 1
��
R

]
dx

)n−1
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×
∫
T3

(
aγ �

γ−2
R + δ��−2

R

)
|∇x�R |2 dx

]

≤ c(n,G)E

[(∫
T3

[
1

2
�R |uR |2 + a

γ − 1
�

γ

R + δ

� − 1
��
R

]
dx

)n−1

×
∫
T3

(
aγ

γ − 1
�

γ−1
R + δ�

� − 1
��−1
R

)
dx

]

+ c (n,G)E

[(∫
T3

[
1

2
�R |uR |2 + a

γ − 1
�

γ

R + δ

� − 1
��
R

]
dx

)n−1

‖�R‖Lγ (T3)

]
.

The application of the weighted Young inequality allows to absorb both terms on the
right hand side into the first term on the left hand side. The claim follows. ��
Proposition 4.2 Let [�R,uR] be a stationary solution to (3.2) given by the invariant
measure from Corollary 3.6. Then we have for all n ∈ N, a.e. T ∈ (0,∞) and τ > 0

E

[(
sup

t∈[T ,T+τ ]

∫
T3

[
1

2
�R |uR |2 + a

γ − 1
�

γ

R + δ

� − 1
��
R

]
dx

)n
]

+ 2εE

[(∫ T+τ

T

∫
T3

[
1

2
�R |uR |2 + aγ

γ − 1
�

γ

R + δ�

� − 1
��
R

]
dx dt

)n]

+ E

[(∫ T+τ

T
‖uR‖2W 1,2(T3;R3)

dt

)n]

+ εE

[(∫ T+τ

T

∫
T3

(
aγ �

γ−2
R + δ��−2

R

)
|∇x�R |2 dx dt

)n]

≤ c(n,G, ε, τ ),

(4.2)

where the constant on the right hand side does not depend on T .

Proof Taking the n-th power and expectation in the energy balance (3.7) and applying
(3.8), (3.12) and the Korn–Poincaré inequality, we deduce

E

[
sup

t∈[T ,T+τ ]

∫
T3

[
1

2
�R |uR |2 + a

γ − 1
�

γ

R + δ

� − 1
��
R

]
dx

]n

+ 2εE

[∫ T+τ

T

∫
T3

[
1

2
�R |uR |2 + aγ

γ − 1
�

γ

R + δ�

� − 1
��
R

]
dx dt

]n

+E

[∫ T+τ

T
‖uR‖W 1,2(T3;R3) dt

]n

+ εE

[∫ T+τ

T

∫
T3

(
aγ �

γ−2
R + δ��−2

R

)
|∇x�R |2 dx dt

]n
(4.3)

≤ c(n)E

[∫
T3

[
1

2
�R(T )|uR(T )|2 + a

γ − 1
�

γ

R(T ) + δ

� − 1
��
R(T )

]
dx

]n
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+ c(n,G)E

[∫ T+τ

T
‖�R‖Lγ (T3)

∫
T3

�R |uR |2 dx dt
] n

2

+ c(n,G)E

[∫ T+τ

T
‖�R‖Lγ (T3) dt

]n

+ c(n)E

[∫ T+τ

T

∫
T3

(
aγ

γ − 1
�

γ−1
R + δ�

� − 1
��−1
R

)
dx dt

]n
.

The first term on the right hand side can be estimated due to (4.1) by a constant
c(n,G, ε). The third termon the right hand side can be estimated byYoung’s inequality
as follows

E

[∫ T+τ

T
‖�R‖Lγ (T3) dt

]n

≤ ε

2
E

[∫ T+τ

T

∫
T3

[
1

2
�R |uR |2+ aγ

γ −1
�

γ

R+ δ�

�−1
��
R

]
dxdt

]n
+c(n, ε, τ ) (4.4)

and then absorbed into the second termon the left hand side of (4.3).A similar approach
applies to the last term on the right hand side of (4.3). For the remaining term we write

E

[∫ T+τ

T
‖�‖Lγ (T3)

∫
T3

�R |uR |2 dx dt
] n

2

≤ E

[
sup

t∈[T ,T+τ ]

∫
T3

1

2
�R |uR |2 dx

∫ T+τ

T
‖�R‖Lγ (T3) dt

] n
2

≤ κ E

[
sup

t∈[T ,T+τ ]

∫
T3

1

2
�R |uR |2 dx

]n
+ c(κ)E

[∫ T+τ

T
‖�R‖Lγ (T3) dt

]n
,

where the last term can be again estimated as in (4.4). Choosing κ sufficiently small
yields the claim. ��

In view of the uniform bounds provided by Proposition 4.2 , for fixed ε, δ > 0, the
asymptotic limits for R → ∞ and N → ∞ can be carried over exactly as for the initial
value problem in [6, Sects. 3, 4]. In the limit, we obtain the following approximate
system.

• Regularized equation of continuity.

∫ ∞

0

∫
T3

[
�∂tϕ + �u · ∇xϕ

]
dx dt

= ε

∫ ∞

0

∫
T3

[∇x� · ∇xϕ − 2�ϕ
]
dx dt − 2ε

∫ ∞

0

∫
T3

Mεϕ dx dt (4.5)

for any ϕ ∈ C∞
c ((0,∞) × T

3) P-a.s.
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• Regularized momentum equation.

∫ ∞

0
∂tψ

∫
T3

�u · ϕ dx dt +
∫ ∞

0
ψ

∫
T3

�u ⊗ u : ∇xϕ dx dt

+
∫ ∞

0
ψ

∫
T3

(a�γ + δ�β)divxϕ dx dt

−
∫ ∞

0
ψ

∫
T3

S(∇xu) : ∇xϕ dx dt − ε

∫ ∞

0
ψ

∫
T3

�u · �ϕ dx dt

−2ε
∫ ∞

0
ψ

∫
T3

�u · ϕ dx dt = −
∞∑
k=1

∫ ∞

0
ψ

∫
T3

Gk · ϕ dx dWk (4.6)

for any ψ ∈ C∞
c ((0,∞)), ϕ ∈ C∞(T3;R3) P-a.s.

To summarize, we deduce the following.

Proposition 4.3 Let ε, δ > 0 be given. Then there exists a stationary weak martingale
solution [�ε,uε] to (4.5)–(4.6). In addition, for n ∈ N and every ψ ∈ C∞

c ((0,∞)),
ψ ≥ 0, the following generalized energy inequality holds true

−
∫ ∞

0
∂tψ

(∫
T3

[
1

2
�ε|uε|2 + a

γ − 1
�γ

ε + δ

� − 1
��

ε

]
dx

)n

dt

+ 2εn
∫ ∞

0
ψ

(∫
T3

[
1

2
�ε|uε|2 + aγ

γ − 1
�γ

ε + δ�

� − 1
��

ε

]
dx

)n

dt

+ n
∫ ∞

0
ψ

(∫
T3

[
1

2
�ε|uε|2 + a

γ − 1
�γ

ε + δ

� − 1
��

ε

]
dx

)n−1

×
∫
T3

S(∇xuε) : ∇xuε dx dt

≤ n
∞∑
k=1

∫ ∞

0
ψ

(∫
T3

[
1

2
�ε|uε|2 + a

γ − 1
�γ

ε + δ

� − 1
��

ε

]
dx

)n−1

×
∫
T3

�ε gk(�ε, �εuε) · uε dx dWk

+ n

2

∫ ∞

0
ψ

(∫
T3

[
1

2
�ε|uε|2 + a

γ − 1
�γ

ε + δ

� − 1
��

ε

]
dx

)n−1

×
∞∑
k=1

∫
T3

1

�ε

|�ε gk(�ε, �εuε)|2 dx dt

+ n
∫ ∞

0
ψ

(∫
T3

[
1

2
�ε|uε|2 + a

γ − 1
�γ

ε + δ

� − 1
��

ε

]
dx

)n−1

×

× H

(
Mε

M0

)∫
T3

[
aγ

γ − 1
�γ−1

ε + δ�

� − 1
��−1

ε

]
dx dt

+ n(n − 1)

2

∫ ∞

0
ψ

(∫
T3

[
1

2
�ε|uε|2 + a

γ − 1
�γ

ε + δ

� − 1
��

ε

]
dx

)n−2
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×
∞∑
k=1

(∫
T3

�ε gk(�ε, �εuε) · uε dx

)2

dt . (4.7)

Proof The proof follows the lines of [6, Sects. 3, 4]. The first passage to the limit as
R → ∞ relies on a stopping time argument from [6, Sect. 3.1] whereas the limit
N → ∞ employs the stochastic compactness method based on the Jakubowski–
Skorokhod representation theorem [34, Theorem 2] as in [6, Sect. 4]. We point out
that all the necessary estimates in [6, Sects. 3, 4] come from the energy balance, which
is controlled by the initial condition. In the present construction, the bound for the
initial energy is replaced by the estimate (4.1) which holds true due to stationarity.
Apart from that, the only difference to [6] is that we have to deal with path spaces
containing an unbounded time interval, that is

Lq
loc([0,∞); X), (Lq

loc([0,∞); X), w), Cloc([0,∞); (X , w)),

where q ∈ (1,∞) and X is a reflexive separable Banach space. Recall that
Lq
loc([0,∞); X) is a separable metric space given by

( f , g) �→
∑
M∈N

2−M(‖ f − g‖Lq (0,M;X) ∧ 1
)
,

and a set K ⊂ Lq
loc([0,∞); X) is compact provided the set

KM := { f |[0,M]; f ∈ K} ⊂ Lq(0, M; X)

is compact for every M ∈ N. On the other hand, the remaining two spaces are
(generally) nonmetrizable locally convex topological vector spaces, generated by the
seminorms

f �→
∫ M

0
〈 f (t), g(t)〉X dt, M ∈ N, g ∈ Lq ′

(0,∞; X∗), 1
q + 1

q ′ = 1,

and

f �→ sup
t∈[0,M]

〈 f (t), g〉X , M ∈ N, g ∈ X∗,

respectively. As above, a set K is compact provided it’s restriction to each interval
[0, M] is compact in (Lq(0, M; X), w) and C([0, M]; (X , w)), respectively. Fur-
thermore, it can be seen that these topological spaces belong to the class of the
so-called quasi-Polish spaces, where the Jakubowski–Skorokhod theorem [34, Theo-
rem 2] applies. Indeed, in these spaces there exists a countable family of continuous
functions that separate points. The proof of tightness of the corresponding laws in
the current setting is therefore reduced to exactly the same method as in [6, Sect. 4].
Note that the key estimate was [6, (4.1)], which is replaced by (4.2). Consequently,
the passage to the limit follows the lines of [6, Sect. 4]. In addition, Lemma A.4 and
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Lemma A.5 show that this limit procedure preserves stationarity defined in Defini-
tions 2.7 and 2.8. Hence the limit solution is stationary. Finally, we obtain (4.7) by
passing to the limit in (3.11). The passage to the limit in the stochastic integral can be
justified for instance with help of [15, Lemma 2.1]. ��
Remark 4.4 Note that for n = 1 the generalized energy inequality (4.7) corresponds
to the usual energy inequality established in [4]. The higher order version for n ∈ N

is new and employed in order to obtain an analog of Proposition 4.2 suitable for the
subsequent limit procedures ε → 0 and δ → 0 in Sects. 5 and 6.

5 Vanishing viscosity limit

Our goal in this section is to perform the passage to the limit as ε → 0. This represents
the most critical and delicate part of our construction. Remark that after completing
this limit procedure we have already proved existence of stationary solutions to the
stochasticNavier–Stokes system for compressible fluids – under an additional assump-
tion upon the adiabatic exponent γ . The last passage to the limit presented in Sect. 6
is then devoted to weakening this additional assumption.

We point out that the key results needed for the previous limit procedure in Sect. 4,
namely, Proposition 4.1 and consequently Proposition 4.2, depend on ε. Furthermore,
it turns out that the global in time energy estimates uniform in ε and δ are very
delicate. On the contrary, in the existence proof in [6], the basic energy estimate [6,
Proposition 3.1] established on the first approximation level held true uniformly in
all the approximation parameters. Consequently, no further manipulations with the
energy inequality were needed. This brought significant technical simplifications in
comparison to the present construction of stationary solutions. To be more precise,
due to the fact that already after the passage to the limit N → ∞, the energy balance
is violated and has to be replaced by an inequality. In other words, one cannot justify
the application of Itô’s formula anymore and it is necessary to establish a more general
version of the energy inequality, cf. (4.7).

Recall from [6, Sect. 5], that in addition to the usual energy estimate [6, (5.2)],
a higher integrability of the density [6, (5.9)] was necessary in order to justify the
compactness argument. Nevertheless, as in the deterministic setting it was not possible
to obtain strong convergence of the approximate densities directly. Consequently, the
identification of the limit proceeded in two steps. First, the passage to the limit in the
approximate system was done but the expressions with nonlinear dependence on the
density could not be identified. Second, a stochastic analog of the effective viscous
flux method originally due to Lions [36] allowed to prove strong convergence of the
densities and hence to complete the proof.

Let us begin with an estimate for the velocity.

Proposition 5.1 Let [�ε,uε] be the stationary solution to (4.5)–(4.6) constructed in
Proposition 4.3. Then for a.e. t ∈ (0,∞)

E

[
‖uε‖2W 1,2(T3;R3)

]
≤ c(G, M0), (5.1)
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E

[∫
T3

[
1

2
�ε|uε|2 + a

γ − 1
�γ

ε + δ

� − 1
��

ε

]
dx ‖uε‖2W 1,2(T3;R3)

]

≤ c(G, M0)E

[∫
T3

[
1

2
�ε|uε|2 + a

γ − 1
�γ

ε + δ

� − 1
��

ε

]
dx

]

+ c(M0). (5.2)

Proof Taking expectation in the energy inequality (4.7), we observe that due to sta-
tionarity of [�ε,uε], the first term is constant in time, thus its time derivative vanishes.
We recall that Mε ≤ c(M0) and using (2.10) we estimate

∞∑
k=1

∫
T3

1

�ε

|�εgk(�ε, �εuε)|2 dx ≤ c(G)

∫
T3

�ε dx ≤ c(G, M0), (5.3)

and

∞∑
k=1

(∫
T3

�εgk(�ε, �εuε) · uε dx

)2

≤
∞∑
k=1

∥∥√�εgk(�ε, �εuε)
∥∥2
L2(T3;R3)

‖√�εuε‖2L2(T3;R3)

≤ c(G, M0)

∫
T3

1

2
�ε|uε|2 dx .

(5.4)

which leads to

2εE

[(∫
T3

[
1

2
�ε|uε|2 + aγ

γ − 1
�γ

ε + δ�

� − 1
��

ε

]
dx

)n]

+ E

[(∫
T3

[
1

2
�ε|uε|2 + a

γ − 1
�γ

ε + δ

� − 1
��

ε

]
dx

)n−1 ∫
T3

S(∇xuε) : ∇xuε dx

]

≤ c(G, M0)E

[(∫
T3

[
1

2
�ε|uε|2 + a

γ − 1
�γ

ε + δ

� − 1
��

ε

]
dx

)n−1 ]

+ E

[(∫
T3

[
1

2
�ε|uε|2 + a

γ − 1
�γ

ε + δ

� − 1
��

ε

]
dx

)n−1

× H

(
1

M0

∫
T3

�ε dx

)∫
T3

(
aγ

γ − 1
�γ−1

ε + δ�

� − 1
��−1

ε

)
dx

]
.

(5.5)

Moreover, it follows as a consequence of Corollary 3.6 that

H

(
1

M0

∫
T3

�ε dx

)
= H

(
Mε

M0

)
= 2εMε.

Hence, setting n = 1 and applying the Korn–Poincaré inequality yields (5.1), since
the second term on the right hand side in (5.5) can be absorbed in the first term on the
left hand side. Setting n = 2 in (5.5) we deduce (5.2). ��
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We point out that the corresponding bound for the energy which can be obtained
from (5.5), i.e.

εE

[∫
T3

[
1

2
�ε|uε|2 + aγ

γ − 1
�γ

ε + δ�

� − 1
��

ε

]
dx

]
≤ c(G, M0)

still depends on ε and is therefore not suitable for the passage to the limit ε → 0. As
the next step, we derive an improved estimate for the energy as well as for the pressure.

Proposition 5.2 Let [�ε,uε] be the stationary solution to (4.5)–(4.6) constructed in
Proposition 4.3. Then the following uniform bound holds true for a.e. t ∈ (0,∞)

E

[∫
T3

[
a�γ+1

ε + δ��+1
ε + 1

3
�2

ε |uε|2
]
dx

]
≤ c(δ,G, M0). (5.6)

In addition, if s ∈ (1, �+1
�−1 ∧ 2(γ+1)

γ+2

]
then for a.e. T > 0 and τ > 0

E

[(
sup

t∈[T ,T+τ ]

∫
T3

[
1

2
�ε|uε|2 + a

γ − 1
�γ

ε + δ

� − 1
��

ε

]
dx

)s]

+ E

[(∫ T+τ

T
‖uε‖2W 1,2(T3;R3)

dt

)s]
≤ c(τ, δ, M0,G, s),

(5.7)

where the constant is independent of T .

Proof Our goal is to use the quantity ∇x�
−1
x

[
�ε − (�ε)T3

]
, where (�ε)T3 =

|T3|−1Mε, as test functions in the momentum equation, where �x is the periodic
Laplacian. We apply Itô’s formula to the functional f (ρ,q) = ∫

T3 q · �−1
x ∇xρ dx .

This step can be made rigorous by mollifying the equation, see [6, Sect. 5]. After a
rather tedious but straightforward manipulations, we deduce from (4.5) and (4.6) that

∫ T+1

T

∫
T3

(
a�γ+1

ε + δ��+1
ε

)
dx dt +

∫ T+1

T

∫
T3

1

3
�2

ε |uε|2 dx dt

= Mε

|T3|
∫ T+1

T

∫
T3

(
a�γ

ε + δ��
ε

)
dx dt + 1

3

Mε

|T3|
∫ T+1

T

∫
T3

�ε|uε|2 dx dt

+
∫ T+1

T

∫
T3

(
4

3
μ + η

)
divxuε �ε dx dt

+2ε
∫ T+1

T

∫
T3

�εuε · ∇x�
−1
x

[
�ε − Mε

]
dx dt + ε

∫ T+1

T

∫
T3

�2
εdivxuε dx dt

−
∫ T+1

T

∫
T3

(
�εuε ⊗ uε − 1

3
�ε|uε|2I

)
: ∇x�

−1
x ∇x�ε dx dt

+
[∫

T3
�εuε · ∇x�

−1
x

[
�ε − Mε

|T3|
]
dx

]t=T+1

t=T
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+
∫ T+1

T

∫
T3

�εuε · ∇x�
−1
x

[
divx (�εuε)

]
dx dt

−
∞∑
k=1

∫ T+1

T

∫
T3

Gk(�ε, �εuε) · ∇x�
−1
x

[
�ε − Mε

|T3|
]
dx dWk . (5.8)

Note that in the above the second term on the left hand side, the second term on the
right hand side and the second summand on the fifth line were added artificially and
they cancel out. Passing to expectations in (5.8) and keeping in mind that the processes
are stationary we deduce

E

[∫
T3

[
a�γ+1

ε + δ��+1
ε + 1

3
�2

ε |uε|2
]
dx

]

≤ c(M0)E

[∫
T3

(1
2
�ε|uε|2 + a

γ − 1
�γ

ε + δ

� − 1
��

ε

)
dx

]

− E

[∫
T3

(
�εuε ⊗ uε − 1

3
�ε|uε|2I

)
: ∇x�

−1
x ∇x�ε dx

]

+ E

[∫
T3

(4
3
μ + η

)
divxuε �ε dx dt

]

+ E

[∫ T+1

T

∫
T3

�εuε · ∇x�
−1
x divx (�εuε) dx

]

+ 2εE

[∫
T3

�εuε · ∇x�
−1
x

[
�ε − Mε

|T3|
]
dx

]
+ εE

[∫
T3

�2
εdivxuε dx

]

=: (I ) + (I I ) + (I I I ) + (I V ) + (V ) + (V I ).

Now, we estimate each term separately. By Young’s inequality we obtain for every
κ > 0

(I ) ≤ κ E

[∫
T3

(1
3
�2

ε |uε|2 + a�γ+1
ε + δ��+1

ε

)
dx

]

+ c(κ, M0)E

[∫
T3

(
|uε|2 + 1

)
dx

]

≤ κ E

[∫
T3

(1
3
�2

ε |uε|2 + a�γ+1
ε + δ��+1

ε

)
dx

]
+ c(κ,G, M0),

using the uniform bound (5.1). In order to control the remaining integrals on the right
hand side, we first use Hölder’s inequality to obtain

(I I ) ≤ cE

[
‖√�εuε‖L2(T3;R3)‖uε‖L6(T3;R3)

∥∥∥√�ε ∇x�
−1
x ∇x�ε

∥∥∥
L3(T3;R3×3)

]

≤ c
(
E

[
‖√�εuε‖2L2(T3;R3)

‖uε‖2W 1,2(T3;R3)

]

+E

[∥∥∥√�ε ∇x�
−1
x ∇x�ε

∥∥∥2
L3(T3;R3×3)

])
.
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Furthermore, since � ≥ 9/2, we have

E

[∥∥∥�ε
1/2∇x�

−1
x ∇x�ε

∥∥∥2
L3(T3;R3×3)

]
≤ E

[
‖�ε‖

L
9
2 (T3)

∥∥∥∇x�
−1
x ∇x�ε

∥∥∥2
L

9
2 (T3;R3×3)

]

≤ cE

[
‖�ε‖3

L
9
2 (T3)

]
dt ≤ cE

[
‖�ε‖3L�(T3)

]
≤ κδE

[
‖�ε‖�

L�(T3)

]
+ c(κ, δ).

Note that we also used the continuity of ∇x�
−1
x ∇x and Young’s inequality. Similarly,

we can estimate

(I V ) ≤ E

[
‖uε‖L6(T3;R3)‖�ε‖L3(T3)

∥∥∥∇x�
−1
x divx (�εuε)

∥∥∥
L2(T3;R3×3)

]

≤ cE
[‖uε‖L6(T3;R3)‖�ε‖L3(T3) ‖�εuε‖L2(T3;R3)

]
≤ cE

[
‖uε‖2W 1,2(T3;R3)

‖�ε‖2L3(T3;R3)

]

≤ cE
[
‖uε‖2W 1,2(T3;R3)

‖�ε‖�
L�(T3;R3)

]
+ c(G, M0)

using (5.1). We also have that

(I I I ) ≤ κδ E
[
‖�ε‖2L2(T3)

]
+ c(κ, δ)E

[
‖∇uε‖2L2(T3;R3)

]

≤ κδ E
[
‖�ε‖�

L�(T3)

]
+ c(κ, δ,G, M0)

as well as

(V I ) ≤ κδ E‖�ε‖�
L�(T3)

+ c(κ, δ,G, M0).

Finally, continuity of ∇x�
−1
x and (5.1) imply

(V ) ≤ κδ

(
E‖�ε‖4L4(T3)

+ E‖∇x�
−1
x [�ε − |T3|−1Mε]‖4L4(T3)

dx

)

+ c(κ, δ)‖uε‖2L2(T3;R3)

≤ c κδ E‖�ε‖�
L�(T3)

+ c(κ, δ,G, M0)

Summing up the inequalities above, choosing κ small enough and using stationarity,
we obtain

E

[ ∫
T3

a�γ+1
ε + δ��+1

ε dx +
∫
T3

1

3
�2

ε |uε|2 dx
]

≤ E

[∫
T3

[
1

2
�ε|uε|2 + a

γ − 1
�γ

ε + δ

� − 1
��

ε

]
dx ‖uε‖2W 1,2(T3;R3)

]

+ c(δ,G, M0).
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Thus, due to (5.2) andYoung’s inequality, wemay conclude that the stationary solution
[�ε,uε] admits the uniform bound (5.6) as well as

E

[(
1 +

∫
T3

[
1

2
�ε|uε|2 + a

γ − 1
�γ

ε + δ

� − 1
��

ε

]
dx

)
‖uε‖2W 1,2(T3;R3)

]

≤ c(δ,G, M0). (5.9)

Finally, let us show (5.7). To this end, we may go back to the energy inequality
(4.7) for n = 1, obtaining

E

[(
sup

t∈[T ,T+τ ]

∫
T3

[
1

2
�ε|uε|2 + a

γ − 1
�γ

ε + δ

� − 1
��

ε

]
dx

)s]

+ E

[(∫ T+τ

T
‖uε‖2W 1,2(T3;R3)

dt

)s]

≤ c(s)E

[
sup

t∈[T ,T+τ ]

∣∣∣∣∣
∞∑
k=1

∫ t

T

∫
T3

�ε gk(�ε, �εuε) · uε dx dWk

∣∣∣∣∣
s]

+ c(s)E

[
sup

t∈[T ,T+τ ]

∣∣∣∣
∞∑
k=1

∫ t

T

∫
T3

1

�ε

|�εgk(�ε, �εuε)|2 dx dr
∣∣∣∣
s
]

+ c(s)E

[
sup

t∈[T ,T+τ ]

∣∣∣∣
∫ t

T

∫
T3

�γ−1
ε + ��−1

ε dx dr

∣∣∣∣
s
]

.

The first term on the right hand side is estimated using the Burkholder–Davis–Gundy
inequality and (5.4); the second term using (5.3). We deduce that

E

[(
sup

t∈[T ,T+τ ]

∫
T3

[
1

2
�ε|uε|2 + a

γ − 1
�γ

ε + δ

� − 1
��

ε

]
dx

)s]

≤ c(s, τ, M0,G)

(
1 + E

[(∫ T+τ

T

∫
T3

�ε|uε|2 dx dr
) s

2
]

+E

[∣∣∣∣
∫ T+τ

T

∫
T3

�γ−1
ε + ��−1

ε dx dr

∣∣∣∣
s])

.

Now, by Hölder’s inequality, stationarity, (5.9) and (5.6), for s ∈ (1, 2),

E

(∫ T+τ

T

∫
T3

�ε|uε|2 dx dr
) s

2

≤ c(τ, s)E

(∫ T+τ

T

(‖√�εuε‖L2(T3;R3)‖uε‖L6(T3;R3)

)s ‖√�ε‖sL3(T3)
dt

) 1
2

≤ c(τ, s)E

(∫ T+τ

T
‖√�εuε‖2L2(T3;R3)

‖uε‖2L6(T3;R3)
+ ‖√�ε‖

2s
2−s

L3(T3)
dt

) 1
2
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≤ c(τ, s)

(
E

[
‖√�εuε‖2L2(T3;R3)

‖uε‖2W 1,2(T3;R3)

]
+ E‖�ε‖

s
2−s

Lγ (T3)

)

≤ c(τ, s, δ,G, M0)

(
1 + E

(∫
T3

�γ+1
ε dx

) s
(γ+1)(2−s)

)

≤ c(τ, s, δ,G, M0)

(
1 + E

∫
T3

�γ+1
ε dx

)
≤ c(τ, s, δ,G, M0) (5.10)

provided s ≤ 2(γ+1)
γ+2 . Similarly,

(∫
T3

�γ−1
ε + ��−1

ε dx

)s

≤ 1 +
∫
T3

�γ+1
ε + ��+1

ε dx,

provided s ≤ �+1
�−1 . Consequently, (5.7) follows due to (5.6). ��

With Propositions 5.1 and 5.2 at hand, we are able to follow the compactness
argument of [6, Sect. 5.1]. To be more precise, as ε → 0 we aim at constructing
stationary solutions to the following system.

• Equation of continuity

∫ ∞

0

∫
T3

[
�∂tϕ + �u · ∇xϕ

]
dx dt = 0 (5.11)

for any ϕ ∈ C∞
c ((0,∞) × T

3) P-a.s.

• Regularized momentum equation

∫ ∞

0
∂tψ

∫
T3

�u · ϕ dx dt +
∫ ∞

0
ψ

∫
T3

�u ⊗ u : ∇xϕ dx dt

+
∫ ∞

0
ψ

∫
T3

(a�γ + δ��)divxϕ dx dt

−
∫ ∞

0
ψ

∫
T3

S(∇xu) : ∇xϕ dx dt

= −
∞∑
k=1

∫ ∞

0
ψ

∫
T3

Gk(�, �u) · ϕ dx dWk

(5.12)

for any ψ ∈ C∞
c ((0,∞)), ϕ ∈ C∞(T3;R3) P-a.s.

Note that unlike the energy estimate in [6], the bound (5.7) only gives limited
moment estimates, i.e. s cannot be arbitrarily large. Nevertheless, (5.7) is sufficient
to perform the passage to the limit. We also point out that the assumption (2.10) on
the noise coefficients is actually stronger than the one in [6], and consequently the
convergence of the stochastic integral is more straightforward.

We deduce the following.
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Proposition 5.3 Let δ > 0 be given. Then there exists a stationary solution [�δ,uδ] to
(5.11)–(5.12). Moreover, we have the estimates

E

[
‖uδ(t)‖2W 1,2(T3;R3)

]
≤ c(G, M0), (5.13)

and

E

[(∫
T3

[
1

2
�δ|uδ|2 + a

γ − 1
�

γ
δ + δ

� − 1
��

δ

]
dx

)∫
T3

‖uδ‖2W 1,2(T3;R3)
dx

]

≤ c(G, M0)E

[∫
T3

[
1

2
�δ|uδ|2 + a

γ − 1
�

γ
δ + δ

� − 1
��

δ

]
dx

]
+ c(M0),

(5.14)

for a.e. t ∈ (0,∞). In addition, the equation of continuity (5.11) holds true in the
renormalized sense and for all ψ ∈ C∞

c ((0,∞)), ψ ≥ 0, the following energy
inequality holds true

−
∫ ∞

0
∂tψ

(∫
T3

[
1

2
�δ|uδ|2 + a

γ − 1
�

γ
δ + δ

� − 1
��

δ

]
dx

)
dt

+
∫ ∞

0
ψ

∫
T3

S(∇xuδ) : ∇xuδ dx dt

≤
∞∑
k=1

∫ ∞

0
ψ

∫
T3

�δ gk(�δ, �δuδ) · uδ dx dWk

+ 1

2

∫ ∞

0
ψ

∞∑
k=1

∫
T3

1

�δ

|�δ gk(�δ, �δuδ)|2 dx dt .

(5.15)

Proof First, we proceed as in [6, Sect. 5.1] and establish the necessary tightness of
the joint law of [�ε, �εuε,uε,W ]. The only difference is that the corresponding path
spaces are replaced by their local-in-time analogs as discussed in the proof of Propo-
sition 4.3. Consequently, the Jakubowski–Skorokhod theorem applies and we obtain
a new family of martingale solutions, still denoted by [�ε, �εuε,uε,W ], obeying the
same laws and converging in probability with respect to a new basis, still denoted by(

,F, (Ft )t≥0,P

)
. In addition, the limit satisfies

∫ ∞

0

∫
T3

[
�∂tϕ + �u · ∇xϕ

]
dx dt = 0,

∫
T3

� dx = M0, (5.16)

for any ϕ ∈ C∞
c ((0,∞) × T

3) P-a.s.,

∫ ∞

0
∂tψ

∫
T3

�u · ϕ dx dt +
∫ ∞

0
ψ

∫
T3

�u ⊗ u : ∇xϕ dx dt

+
∫ ∞

0
ψ

∫
T3

(
a�γ + δ��

)
divxϕ dx dt (5.17)
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−
∫ ∞

0
ψ

∫
T3

S(∇xu) : ∇xϕ dx dt = −
∫ ∞

0
ψdMϕ

for any ψ ∈ C∞
c ((0,∞)), ϕ ∈ C∞(T3;R3) P-a.s. Here Mϕ is a square integrable

martingale and the bars denote the corresponding weak limits with respect to t, x .
For details, we refer to [6, Proposition 5.6]. In addition, � satisfies the renormalized
equation of continuity. That is

∂t b(�) + divx
(
b(�)u

)+ (
b′(�)� − b(�)

)
divxu = 0 (5.18)

in the sense of distribution on (0,∞) × T
3 for every b ∈ C1([0,∞)) with b′(z) = 0

for z ≥ Mb for some constant Mb > 0. However, as discussed in [20, Remark 1.1],
the assumption on b′ can be weakened to

|b′(z)z| ≤ c(zθ + z
γ
2 ) for all z > 0 and some θ ∈ (0, γ

2 ).

This in particular includes the function b(z) = z log z employed below.
In order to complete the proof, it is enough to show strong convergence of the

densities as in [6, Sect. 5.2]. More specifically, we prove that

lim sup
ε→0

E

[
‖�ε − �‖�+1

L�+1(T3)

]
≤ lim sup

ε→0
E

[∫
T3

(
��+1

ε − ���
)
dx

]

≤ 0 for any t > 0. (5.19)

Note that the first inequality follows from the algebraic inequality which holds true

(A − B)�+1 = (A − B)�(A − B) ≤ (A� − B�)(A − B) whenever A, B ≥ 0.

In order to see the rightmost inequality in (5.19) we use the method of Lions [36]
based on regularity of the effective viscous flux. More specifically, mimicking the
technique from the proof of Proposition 5.2, we derive from (4.5)–(4.6) the identity

∫ T+1

T

∫
T3

(
a�γ+1

ε + δ��+1
ε

)
dx dt = Mε

|T3|
∫ T+1

T

∫
T3

(
a�γ

ε + δ��
ε

)
dx dt

+
∫ T+1

T

∫
T3

(
�εuε · ∇x�

−1divx (�εuε) − �εuε ⊗ uε : ∇x�
−1
x ∇x�ε

)
dx dt

+
∫ T+1

T

∫
T3

(
4

3
μ + η

)
divxuε �ε dx dt

+2ε
∫ T+1

T

∫
T3

�εuε · ∇x�
−1
[
�ε − Mε

|T3|
]
dx dt + ε

∫ T+1

T

∫
T3

�2
εdivxuε dx dt

+
[∫

T3
�u · ∇x�

−1
x

[
�ε − Mε

|T3|
]
dx

]t=T+1

t=T
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−
∞∑
k=1

∫ T+1

T

∫
T3

Gk(�ε, �εuε) · ∇x�
−1
[
�ε − Mε

|T3|
]
dx dWk . (5.20)

In addition, since �ε satisfies the equation of continuity in the strong sense, the appli-
cation of the commutator lemma in the spirit of [16] yields

d(�ε log �ε) = − divx
(
�ε log �ε uε

)− �ε divxuε + ε�(�ε log �ε) − ε
|∇�ε|2

�ε

− 2ε
(
�ε log �ε + �ε

)+ 2εMε

(
log �ε + 1

)
≤ −divx

(
�ε log �ε uε

)− �ε divxuε+ε�(�ε log �ε)+2εc(M0)
(
�ε + 1

)
.

In the above we applied the estimate

−2ε
(
�ε log �ε + �ε

)+ 2εMε

(
log �ε + 1

) ≤ εc(M0)
(
�ε + 1

)
,

which follows since −�ε log �ε is bounded from above by a constant and log �ε is
bounded by �ε. Inserting this into (5.20) implies

∫ T+1

T

∫
T3

(
a�γ+1

ε + δ��+1
ε

)
dx dt ≤ Mε

|T3|
∫ T+1

T

∫
T3

(
a�γ

ε + δ��
ε

)
dx dt

+
∫ T+1

T

∫
T3

(
�εuε · ∇x�

−1divx (�εuε) − �εuε ⊗ uε : ∇x�
−1
x ∇x�ε

)
dx dt

−
(
4

3
μ + η

)[∫
T3

�ε log(�ε) dx

]t=T+1

t=T
+ εc(M0)

∫ T+1

T

∫
T3

(
�ε + 1

)
dx dt

+ 2ε
∫ T+1

T

∫
T3

�εuε · ∇x�
−1
[
�ε − Mε

|T3|
]
dx dt + ε

∫ T+1

T

∫
T3

�2
εdivxuε dx dt

+
[∫

T3
�εuε · ∇x�

−1
x

[
�ε − Mε

|T3|
]
dx

]t=T+1

t=T

−
∞∑
k=1

∫ T+1

T

∫
T3

Gk(�ε, �εuε) · ∇x�
−1
[
�ε − Mε

|T3|
]
dx dWk .

(5.21)

Similarly, as the limit density � also satisfies the renormalized equation of continuity
(5.18), we deduce choosing b(z) = z log z that

d(� log �) = −divx
(
� log � u

)− � divxu

holds true in the sense of distributions. Therefore, we obtain from the limit equations
(5.16), (5.17) that
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∫ T+1

T

∫
T3

(
a�γ + δ��

)
� dx dt = M0

|T3|
∫ T+1

T

∫
T3

(
a�γ + δ��

)
dx dt

+
∫ T+1

T

∫
T3

(
�u · ∇x�

−1divx (�u) − �u ⊗ u : ∇x�
−1
x ∇x�

)
dx dt

−
(
4

3
μ + η

)[∫
T3

� log � dx

]t=T+1

t=T

+
[∫

T3
�u · ∇x�

−1
x

[
� − M0

|T3|
]
dx

]t=T+1

t=T
−
∫ T+1

T
dM�,

with

� = ∇x�
−1
x

[
� − M0

|T3|
]

.

Thus passing to expectations and using the fact that the processes are stationary,
we get

E

[ ∫ T+1

T

∫
T3

(
a�γ+1

ε + δ��
ε

)
�ε dx dt

]
≤ Mε

|T3| E
[∫ T+1

T

∫
T3

(
a�γ

ε + δ��
ε

)
dx dt

]

+ E

[∫ T+1

T

∫
T3

(
�εuε · ∇x�

−1divx (�εuε) − �εuε ⊗ uε : ∇x�
−1
x ∇x�ε

)
dx dt

]

+ 2εE

[∫
T3

�εuε · ∇x�
−1
[
�ε − Mε

|T3|
]
dx

]
+ εE

[∫
T3

�2
εdivxuε dx

]
. (5.22)

Note that the inequality is due to the fact that we are not able to pass to the limit
in the fourth term on the right hand side of (5.21) and we can only use its negativity.
Similarly we obtain

E

[∫ T+1

T

∫
T3

(
a�γ + δ��

)
� dx dt

]
= M0 E

[∫ T+1

T

∫
T3

(
a�γ + δ��

)
dx dt

]

+ E

[∫ T+1

T

∫
T3

(
�u · ∇x�

−1divx (�u) − �u ⊗ u : ∇x�
−1
x ∇x�

)
dx dt

]
. (5.23)

Note that the ε-terms in (5.22) vanish due to Proposition 5.2 andwe haveMε → M0
as ε → 0. Consequently, the desired conclusion (5.19) follows as soon as we observe
that

lim
ε→0

E

[∫ T+1

T

∫
T3

(
�εuε · ∇x�

−1divx (�εuε) − �εuε ⊗ uε : ∇x�
−1
x ∇x�ε

)
dx dt

]

= E

[∫ T+1

T

∫
T3

(
�u · ∇x�

−1divx (�u) − �u ⊗ u : ∇x�
−1
x ∇x�

)
dx dt

]
.

(5.24)
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In fact, (5.24) in combination with (5.22) and (5.23) implies

lim sup
ε→0

E

[∫ T+1

T

∫
T3

(
a�γ

ε + δ��
ε

)
�ε dx dt

]
≤ E

[∫ T+1

T

∫
T3

(
a�γ + δ��

)
� dx dt

]

which shows strong convergence of�ε bymonotonicity arguments. Relation (5.24) can
be established by compensated compactness arguments (applied P-a.s.) if we show
that the expressions under expectations are P-equi-integrable. Considering the two
summands separately and using continuity of ∇x�

−1
x ∇x , we have

∣∣∣∣
∫
T3

�εuε · ∇x�
−1divx (�εuε) dx

∣∣∣∣
≤ c‖√�εuε‖L2(T3)‖√�ε‖L2�(T3)‖∇x�

−1
x ∇x�εuε‖

L
2�

�−1 (T3;R3)

≤ c‖√�εuε‖L2(T3)‖√�ε‖L2�(T3)‖�εuε‖
L

2�
�−1 (T3;R3)

≤ c‖√�εuε‖L2(T3)‖√�ε‖L2�(T3)‖uε‖L6(T3;R3)‖�ε‖L�(T3)

≤ c‖√�εuε‖L2(T3)‖√�ε‖L2�(T3)‖uε‖W 1,2(T3;R3)‖�ε‖L�(T3),

as � ≥ 9
2 . Similarly, we have

∣∣∣∣
∫
T3

�εuε ⊗ uε : ∇x�
−1
x ∇x�ε dx

∣∣∣∣
≤ c‖√�εuε‖L2(T3)‖u‖W 1,2(T3;R3)‖√�ε‖L2�(T3)‖�ε‖L�(T3).

Here, in accordance with (5.9),

E

[
‖√�εuε‖2L2(T3)

‖u‖2W 1,2(T3;R3)

]
≤ c(δ,G, M0),

while, by virtue of (5.6),

‖√�ε‖L2�(T3)‖�ε‖L�(T3) = ‖�ε‖
3
2
L�(T3)

∈ Lq(
), q = 2�

3
> 2.

We have shown (5.19); whence strong convergence of �ε. Consequently, as in [6,
Sect. 5.2], we may identify the nonlinear terms in (5.17) and hence [�,u] is a weak
martingale solution to (5.11)–(5.12). Stationarity then followsbyLemmasA.4 andA.5.
The estimate (5.13) and (5.14), respectively, is obtained by weak lower semicontinuity
from (5.1) and (5.2), respectively, since the constants were uniform in ε. The same
arguments give the energy inequality (5.15). Note that the passage to the limit in the
stochastic integral can be justified for instance with help of [15, Lemma 2.1]. ��
Remark 5.4 It is important to note that there is an essential difference between the
strong convergence of the density in the existence theory, see [6, Sect. 5.2], and the
above proof.More specifically, the existence theory requires compactness of the initial
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data which is not available in the present setting. Instead the fact that the solution is
stationary must be used.

6 Vanishing artificial pressure limit

As the final step of the proof of our main result, Theorem 2.11, it remains to perform
the last limit procedure, that is, δ → 0. Recall that according to Proposition 5.3, the
stationary solutions constructed in the previous section already satisfy the uniform
bounds (5.13) and (5.14). Nevertheless, the pressure estimate as well as the estimate
for the energy and velocity from Proposition 5.2 all blow up as δ vanishes. Therefore,
in order to apply the compactness argument from [6, Sect. 6] it is necessary to improve
these estimates. The rest of the construction then proceeds exactly as in [6, Sect. 6.1–
6.3].

Proposition 6.1 Let [�δ,uδ] be the stationary solution to (5.11)–(5.12) constructed in
Proposition 5.3. Then the following uniform bound holds true for some α > 0 and a.e.
t ∈ (0,∞)

E

[∫
T3

[
a�

γ+α
δ + δ��+α

δ + �1+α
δ |uδ|2

]
dx

]
≤ c(G, M0), (6.1)

In addition, for some s > 1 and for a.e. T > 0 and τ > 0

E

[(
sup

t∈[T ,T+τ ]

∫
T3

[
1

2
�δ|uδ|2 + a

γ − 1
�

γ
δ + δ

� − 1
��

δ

]
dx

)s]

+ E

[(∫ T+τ

T
‖uδ‖2W 1,2(T3;R3)

dt

)s]
≤ c(τ, M0,G, s),

(6.2)

where the constant is independent of T .

Proof As far as the pressure estimates are concerned we use the test function

∇x�
−1
x

[
�α − (�α)T3

]
, α > 0.

We obtain after a rather tedious but straightforward manipulation the following ana-
logue of (5.8)

∫ T+1

T

∫
T3

(
a�

γ+α
δ + δ��+α

δ

)
dx dt +

∫ T+1

T

∫
T3

1

3
�1+α

δ |u|2 dx dt

=
∫ T+1

T

(∫
T3

(
a�

γ
δ + δ��

δ

)
dx (�α

δ )T3

)
dt

+1

3

∫ T+1

T

(∫
T3

�δ|uδ|2 dx dx (�α
δ )T3

)
dt
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+
∫ T+1

T

∫
T3

(
4

3
μ + η

)
divxuδ �α

δ dx dt

−
∫ T+1

T

∫
T3

(
�δuδ ⊗ uδ − 1

3
�δ|uδ|2I

)
: ∇x�

−1
x ∇x

[
�α

δ

]
dx dt

+
[∫

T3
�δuδ · ∇x�

−1
x

[
�α

δ − (�α
δ )T3

]
dx

]t=T+1

t=T

−
∫ T+1

T

∫
T3

�δuδ · ∇x�
−1[d(�α

δ )] dx

−
∞∑
k=1

∫ T+1

T

∫
T3

Gk(�δ, �δuδ) · ∇x�
−1 [�α

δ − (�α
δ )T3

]
dx dWk . (6.3)

Next, we evoke the renormalized equation of continuity (5.18)

d�α
δ + divx (�

α
δ uδ) dt + (α − 1)�α

δ divxuδ dt = 0

deducing from (6.3)

∫ T+1

T

∫
T3

(
a�

γ+α
δ + δ��+α

δ

)
dx dt +

∫ T+1

T

∫
T3

1

3
�1+α

δ |uδ|2 dx dt

=
∫ T+1

T

(∫
T3

(
a�

γ
δ + δ��

)
dx (�α

δ )T3

)
dt

+ 1

3

∫ T+1

T

(∫
T3

�δ|uδ|2 dx (�α
δ )T3

)
dt

+
∫ T+1

T

∫
T3

(
4

3
μ + η

)
divxuδ �α

δ dx dt

−
∫ T+1

T

∫
T3

(
�δuδ ⊗ uδ − 1

3
�|uδ|2I

)
: ∇x�

−1
x ∇x

[
�α

δ

]
dx dt

+
[∫

T3
�δuδ · ∇x�

−1
x

[
�α

δ − (�α
δ )T3

]
dx

]t=T+1

t=T

+
∫ T+1

T

∫
T3

�δuδ · ∇x�
−1
x

[
divx (�

α
δ uδ) + (α − 1)�α

δ divxuδ

]
dx dt

−
∞∑
k=1

∫ T+1

T

∫
T3

Gk(�δ, �δuδ) · ∇x�
−1
x

[
�α

δ − (�α
δ )T3

]
dx dWk . (6.4)

Before proceeding, we make the assumption that 0 < α < 1/3, which implies in
particular

∣∣(�α
δ )T3

∣∣ ≤ c(M0),

∥∥∥∇x�
−1
x

[
�α

δ − (�α
δ )T3

]∥∥∥
L∞(T3;R3)

≤ c(M0)
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using Hölder’s inequality, Sobolev’s embedding and continuity of ∇x�
−1
x ∇x . Passing

to expectations in (6.4) and keeping in mind that the processes are stationary we
deduce

E

[∫
T3

[
a�

γ+α
δ + δ��+α

δ + �1+α
δ |uδ|2

]
dx

]

≤ c(M0)

(
E

[∫
T3

[
1

2
�δ|uδ|2 + a

γ − 1
�γ + δ

� − 1
��

δ

]
dx

]
+ 1

)

+ E

[∫
T3

(
4

3
μ + η

)
divxuδ �α

δ dx

]

+ E

[∫
T3

(
�δuδ ⊗ uδ − 1

3
�δ|uδ|2I

)
: ∇x�

−1
x ∇x

[
�α

δ

]
dx

]

+ E

[∫
T3

�δuδ · ∇x�
−1
x [divx (�α

δ uδ) + (α − 1)�α
δ divxuδ] dx

]
.

(6.5)

Moreover, using the uniform bound (5.13) we may further reduce (6.5) to

E

[∫
T3

[
a�

γ+α
δ + δ��+α

δ + �1+α
δ |uδ|2

]
dx

]

≤ E

[∫
T3

(
�δuδ ⊗ uδ − 1

3
�δ|uδ|2I

)
: ∇x�

−1
x ∇x

[
�α

δ

]
dx

]

+ E

[∫
T3

�δuδ · ∇x�
−1
x [divx (�α

δ uδ) + (α − 1)�α
δ divxuδ] dx

]
+ c(G, M0).

Note that we applied Young’s inequality to the first and second term on the right-
hand side of (6.5) and in order to absorb the arising term eventually. To control the
remaining integrals on the right hand side, we first use Hölder’s inequality to obtain

∣∣∣∣E
[∫

T3

(
�δuδ ⊗ uδ − 1

3
�δ|uδ |2I

)
: ∇x�

−1
x ∇x

[
�α

δ

]
dx

]∣∣∣∣
≤ cE

[
‖√�δuδ‖L2(T3;R3)‖uδ‖L6(T3;R3)

∥∥√�δ ∇x�
−1∇x

[
�α

δ

]∥∥
L3(T3;R3×3)

]

≤ c
(
E

[
‖√�uδ‖2L2(T3;R3)

‖uδ‖2W 1,2(T3;R3)

]
+ E

[∥∥√�δ ∇x�
−1∇x

[
�α

δ

]∥∥2
L3(T3;R3×3)

])
.

Furthermore, we have

∥∥∥√�δ ∇x�
−1
x ∇x

[
�α

δ

]∥∥∥2
L3(T3;R3×3)

≤ ∥∥√�δ

∥∥2
L2γ (T3)

∥∥∥∇x�
−1
x ∇x

[
�α

δ

]∥∥∥2
Lq (T3;R3×3)

1

2γ
+ 1

q
= 1

3
, γ >

3

2
.

Now, we choose α > 0 so small that αq ≤ 1 to conclude that

∥∥∥√�δ divx∇x�
−1
x ∇x

[
�α

δ

]∥∥∥2
L3(T3;R3×3)

≤ c(M0)‖�δ‖Lγ (T3).
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Similarly, we can handle

∣∣∣∣
∫
T3

�δuδ · ∇x�
−1
x divx [�α

δ uδ] dx
∣∣∣∣

≤ ‖√�δuδ‖L2(T3;R3)‖√�δ‖L2γ (T3)

∥∥∥∇x�
−1
x ∇x

[
�α

δ uδ

]∥∥∥
Lq (T3;R3×3)

where

1

2
+ 1

2γ
+ 1

q
= 1, in particular q < 6 if γ >

3

2
,

and where

∥∥∥∇x�
−1
x ∇x

[
�α

δ u
]∥∥∥

Lq (T3;R3×3)
≤ ‖�α

δ uδ‖Lq (T3;R3)

≤ ‖uδ‖L6(T3;R3)‖�α
δ ‖Ls (T3),

1

6
+ 1

s
= 1

q
.

Taking αs ≤ 1 we get, similarly to the above,

∣∣∣∣
∫
T3

�δuδ · ∇x�
−1
x divx [�α

δ uδ] dx
∣∣∣∣

≤ c(M0)
(
‖√�δuδ‖2L2(T3;R3)

‖uδ‖2W 1,2(T3;R3)
+ ‖�δ‖Lγ (T3;R3)

)
.

Finally,

∣∣∣∣
∫
T3

�δuδ · ∇x�
−1
x [�α

δ divxuδ] dx
∣∣∣∣

≤ ‖√�δ‖L2γ (T3;R3)‖√�δuδ‖L2(T3;R3)

∥∥∥∇x�
−1
x [�α

δ divxuδ]
∥∥∥
Lq (T3;R3)

≤ 1

2

(
‖�δ‖Lγ (T3) + ‖√�δu‖2L2(T3;R3)

∥∥∥∇x�
−1
x [�α

δ divxuδ]
∥∥∥2
Lq (T3;R3)

)
,

where

1

2γ
+ 1

2
+ 1

q
= 1, q < 6 if γ >

3

2
.

As the∇x�
−1
x -operator gains one derivative, we get, bymeans of the standard Sobolev

embedding,

∥∥∥∇x�
−1
x [�α

δ divxuδ]
∥∥∥
Lq (T3;R3)

≤ ‖�α
δ divxuδ‖Lr (T3), r < 2.
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Thus, similarly to the previous steps, we may conclude that

∣∣∣∣
∫
T3

�δuδ · ∇x [�α
δ divxuδ] dx

∣∣∣∣
≤ c(M0)

(
‖√�δuδ‖2L2(T3;R3)

‖uδ‖2W 1,2
0 (T3;R3)

+ ‖�δ‖Lγ (T3;R3)

)
.

Summing up the above estimates we obtain

E

[∫
T3

a�
γ+α
δ + δ��+α

δ + 1

3
�1+α

δ |uδ|2 dx
]

≤ E

[∫
T3

[
1

2
�δ|uδ|2 + a

γ − 1
�

γ
δ + δ

� − 1
��

δ

]
dx
∫
T3

‖uδ‖2W 1,2(T3;R3)
dx

]

+ c(G, M0),

wherewe absorbed the term ‖�δ‖Lγ (T3;R3) in the left-hand side.We close the estimates
by evoking (5.14). Thus we may conclude that any global in time stationary solutions
admit the uniform bound (6.1) as well as

E

[(
1 +

∫
T3

[
1

2
�δ|uδ|2 + a

γ − 1
�

γ
δ + δ

� − 1
��

δ

]
dx

)
‖uδ‖2W 1,2(T3;R3)

]

≤ c(G, M0). (6.6)

Finally, we claim that

E

[(∫
T3

[
1

2
�δ|uδ|2 + a

γ − 1
�

γ
δ + δ

� − 1
��

δ

]
dx

)s]
≤ c

for a certain s = s(α) > 1. Indeed the �δ-dependent terms can be estimated directly
by (6.1) while, by Hölder inequality and Sobolev embedding,

(∫
T3

�δ|uδ|2 dx
)s

≤ (‖√�δuδ‖L2(T3;R3)‖uδ‖L6(T3;R3)

)s ‖√�δ‖sL3(T3)

≤ c

[
‖√�δuδ‖2L2(T3;R3)

‖uδ‖2W 1,2(T3;R3)
+
(∫

T3
�

γ
δ dx

) 1
γ (2−s)

]
.

Note that we also took into account γ > 3
2 . This can be estimated by (6.6) provided

s < 2 − 1
γ
. The term with �

γ
δ (and δ��

δ ) is estimated by Jensen’s inequality. Now we
go back to the energy inequality (5.15). Due to (5.3) we obtain after taking the power
s and the supremum in time and expectation
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E

[(
sup

t∈[T ,T+τ ]

∫
T3

[
1

2
�δ|uδ|2 + a

γ − 1
�

γ
δ + δ

� − 1
��

δ

]
dx

)s]

+ E

[(∫ T+τ

T
‖uδ‖2W 1,2(T3;R3)

dt

)s]

≤ c(G, M0) + E

[
sup

t∈[T ,T+τ ]

∣∣∣∣∣
∞∑
k=1

∫ t

T

∫
T3

Gk(�δ, �δuδ) · uδ dx dWk

∣∣∣∣∣
s]

.

Note that all terms are well-defined by (6.6). Here, the second term on the right
hand side is controlled by (5.4) and the Burkholder–Davis–Gundy inequality similarly
to (5.10) as follows

E

[
sup

t∈[T ,T+τ ]

∣∣∣∣∣
∞∑
k=1

∫ t

T

∫
T3

Gk(�δ, �δuδ) · uδ dx dWk

∣∣∣∣∣
s]

≤ c(s, M0)E

[(∫ T+τ

T

(∫
T3

1

2
�δ|uδ|2 dx

) s
2

dt

]
,

which can be again estimated by (6.1). We therefore conclude that (6.2) holds true.
for a.e. T > 0, where the constant depends on τ but it is independent of T . ��

Finally, we have all in hand in order to complete the proof of Theorem 2.11.

Proof of Theorem 2.11 We follow the lines of [6, Sect. 6]. In view of Proposition 6.1,
we are able to apply the Jakubowski–Skorokhod representation theorem and obtain
convergence of [�δ,uδ] (in fact, we obtain a new family ofmartingale solutions defined
on a new probability space but keep the original notation for simplicity) to a stationary
weak martingale solution of

∫ ∞

0

∫
T3

[
�∂tϕ + �u · ∇xϕ

]
dx dt = 0,

∫
T3

� dx = M0,

for any ϕ ∈ C∞
c ((0,∞) × T

3) P-a.s.,

∫ ∞

0
∂tψ

∫
T3

�u · ϕ dx dt +
∫ ∞

0
ψ

∫
T3

�u ⊗ u : ∇xϕ dx dt

+
∫ ∞

0
ψ

∫
T3

a�γ divxϕ dx dt

−
∫ ∞

0
ψ

∫
T3

S(∇xu) : ∇xϕ dx dt = −
∫ ∞

0
ψdMϕ

for any ψ ∈ C∞
c ((0,∞)), ϕ ∈ C∞(T3;R3) P-a.s. Here Mϕ is a square integrable

martingale and the bars denote the corresponding weak limits. In addition, � satisfies
the renormalized equation of continuity.
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In order to identify the nonlinear density dependent terms, we keep Remark 5.4 in
mind and apply the effective viscous flux method in the same way as in [6, Sect. 6.1–
6.3], which then completes the proof. Note that similarly to Sect. 5, even the limited
moment estimates from Proposition 6.1 are sufficient for the passage to the limit. ��

Appendix A: Auxiliary results

In this final section, we collect several auxiliary results concerning the two notions
of stationarity introduced in Definitions 2.7 and 2.8. First of all, we observe that it is
actually enough to consider Definition 2.8 for q = 1.

Lemma A.1 Let k ∈ N0, p, q ∈ [1,∞). If U is stationary on L1
loc([0,∞);Wk,p(T3))

in the sense of Definition 2.8 and U ∈ Lq
loc([0,∞);Wk,p(T3)) P-a.s. then U is sta-

tionary on Lq
loc([0,∞);Wk,p(T3)).

Proof According to the assumption, for all f ∈ Cb(L1
loc([0,∞);Wk,p(T3))), it holds

E[ f (U)] = E[ f (SτU)].

If f ∈ Cb(L
q
loc([0,∞);Wk,p(T3))) then for all R ∈ N

U �→ f (U1|U|≤R) ∈ Cb(L
1
loc([0,∞);Wk,p(T3)))

hence

E[ f (U1|U|≤R)] = E[ f ((SτU)1|SτU|≤R)].

Finally, since U ∈ Lq
loc([0,∞);Wk,p(T3)) P-a.s., we obtain that

U1|U|≤R → U in Lq
loc([0,∞);Wk,p(T3)) P-a.s.

and we conclude by the dominated convergence. ��
Next, we show that for the case of stochastic processes with continuous trajectories,

the two definitions are equivalent.

Lemma A.2 Let k ∈ N0, p ∈ [1,∞). An Wk,p(T3)-valued measurable stochastic
process U with P-a.s. continuous trajectories is stationary on Wk,p(T3) in the sense
of Definition 2.7 if and only if it is stationary on L1

loc([0,∞);Wk,p(T3)) in the sense
of Definition 2.8.

Proof Let us first show that Definition 2.8 implies Definition 2.7. Let τ ≥ 0 and
t1, . . . , tn ∈ [0,∞). Let (ψm) be a smooth and compactly supported approximation
to the identity on R and define

�m(U) =
(∫ ∞

0
U(s)ψm(t1 − s)ds, . . . ,

∫ ∞

0
U(s)ψm(tn − s)ds

)
.
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If ϕ ∈ Cb([Wk,p(T3)]n) then ϕ ◦ �m ∈ Cb(L1
loc([0,∞);Wk,p(T3))) and therefore

E[ϕ ◦ �m(SτU)] = E[ϕ ◦ �m(U)].

Sendingm → ∞we obtain due to the continuity ofU and the dominated convergence
theorem that

E[ϕ(U(t1 + τ), . . . ,U(tn + τ))] = E[ϕ(U(t1), . . . ,U(tn))]

and the claim follows.
To show the converse implication, let us fix τ ≥ 0 and an equidistant partition

0 = t1 < · · · < tn < · · · < ∞ with mesh size �t = τ
m for some m ∈ N. Observe that

there is an one-to-one correspondence between sequences Ûm = (U(t1),U(t2), . . . ) ∈
�1loc(W

k,p(T3)) and piecewise constant functions in L1
loc([0,∞);Wk,p(T3)) given by

Ũm(t) = U(ti ) if t ∈ [ti , ti+1). Moreover, it is an isometry in the following sense

N∑
i=1

‖Ûm(ti )‖Wk,p(T3) =
∫ N�t

0
‖Ũm(t)‖Wk,p(T3) dt .

Thus, if � denotes this isometry and ϕ ∈ Cb(L1
loc([0,∞);Wk,p(T3))), then ϕ ◦ � ∈

Cb(�
1
loc(W

k,p(T3))). Consequently,

E[ϕ(Ũm)] = E[ϕ(Sτ Ũm)]

follows from Definition 2.7. Due to the continuity of U we may send m → ∞ which
completes the proof. ��

The following result proves that weak continuity together with a uniform bound is
enough for the equivalence of Definitions 2.7 and 2.8 to hold true.

Corollary A.3 The statement of Lemma A.2 remains valid if the trajectories of U are
P-a.s. weakly continuous and for all T > 0

sup
t∈[0,T ]

‖U‖Wk,p(T3) < ∞ P-a.s. (A.1)

Proof Let (ϕε) be an approximation to the identity onT3. SinceU has weakly continu-
ous trajectories inWk,p(T3) and satisfies (A.1), the processUε := U∗ϕε has strongly
continuous trajectories in Wk,p(T3). Hence the equivalence of the two notions of
stationarity from Lemma A.2 holds.

Now, let U be stationary on L1
loc([0,∞);Wk,p(T3)) in the sense of Definition 2.8.

That is, for every f ∈ Cb(L1
loc([0,∞);Wk,p(T3))) we have

E[ f (SτU)] = E[ f (U)].
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Since U �→ f (U ∗ ϕε) also belongs to Cb(L1
loc([0,∞);Wk,p(T3))) we deduce that

E[ f (Uε)] = E[ f ([SτU] ∗ ϕε)] = E[ f (SτUε)].

So,Uε is stationary in the sense of Definition 2.8 and due to LemmaA.2,Uε is station-
ary in the sense of Definition 2.7. In addition, Uε(t) → U(t) strongly in Wk,p(T3)

for every t ∈ [0,∞). Therefore, if g ∈ Cb([Wk,p(T3)]n), we may use dominated
convergence in order to pass to the limit in expressions of the form

E[g(Uε(t1), . . . ,Uε(tn))] = E[g(Uε(t1 + τ), . . . ,Uε(tn + τ))].

Stationarity of U in the sense of Definition 2.7 follows.
To show the converse implication, assume that U is stationary in the sense of

Definition 2.7. By the same argument as above, it follows that Uε is stationary in the
sense of Definition 2.7 hence stationary in the sense of Definition 2.8. In other words,
for every f ∈ Cb(L1

loc([0,∞);Wk,p(T3))),

E[ f (Uε)] = E[ f (SτUε)].

According to (A.1) we obtain that Uε → U in L1
loc([0,∞);Wk,p(T3)) and the dom-

inated convergence theorem yields the claim. ��
As the next step, we show that both notions of stationarity introduced in Defini-

tions 2.7 and 2.8 are stable under weak convergence.

Lemma A.4 Let k ∈ N0, p, q ∈ [1,∞) and let (Um) be a sequence of random vari-
ables taking values in Lq

loc([0,∞);Wk,p(T3))). If, for all m ∈ N, Um is stationary
on Lq

loc([0,∞);Wk,p(T3)) in the sense of Definition 2.8 and

Um⇀U in Lq
loc([0,∞);Wk,p(T3)) P-a.s.,

then U is stationary on Lq
loc([0,∞);Wk,p(T3)).

Proof Stationarity ofUm implies that for every f ∈ Cb(L
q
loc([0,∞);Wk,p(T3))) and

every τ ≥ 0

E[ f (SτUm)] = E[ f (Um)]. (A.2)

Moreover, it follows from the above weak convergence and the weak continuity of

Sτ : Lq
loc([0,∞);Wk,p(T3))) → Lq

loc([0,∞);Wk,p(T3)))

that for every g ∈ Cb((L
q
loc([0,∞);Wk,p(T3)), w)) it holds

g(SτUm) → g(SτU), g(Um) → g(U).
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In particular, since every weakly continuous function is strongly continuous hence
(A.2) holds with f replaced by g, we deduce by the dominated convergence theorem
that

E[g(SτU)] = E[g(U)].

Now, it remains to verify the corresponding expression for a general strongly con-
tinuous function f ∈ Cb(L

q
loc([0,∞);Wk,p(T3))). To this end, let (ϕε) be a smooth

approximation to the identity on R × T
3. Since convolution with ϕε is a compact

operator on Lq
loc([0,∞);Wk,p(T3)), we obtain that

U �→ f (U ∗ ϕε) =: f (Uε) ∈ Cb((L
q
loc([0,∞);Wk,p(T3)), w))

and consequently

E[ f (Uε)] = E[ f ([SτU] ∗ ϕε)] = E[ f (SτUε)],

hence Uε is stationary. Since

Uε → U in Lq
loc([0,∞);Wk,p(T3)) P-a.s.,

we may pass to the limit ε → 0 and conclude using the dominated convergence
theorem. ��
Lemma A.5 Let k ∈ N0, p ∈ [1,∞) and let (Um) be a sequence of Wk,p(T3)-valued
stochastic processes which are stationary on Wk,p(T3) in the sense of Definition 2.7.
If for all T > 0

sup
m∈N

E

[
sup

t∈[0,T ]
‖Um‖Wk,p(T3)

]
< ∞ (A.3)

and

Um → U in Cloc([0,∞); (Wk,p(T3), w)) P-a.s.,

then U is stationary on Wk,p(T3).

Proof The claim is a consequence of Corollary A.3 and Lemma A.4. Indeed, as a
consequence of (A.3) we deduce that

E

[
sup

t∈[0,T ]
‖Um‖Wk,p(T3)

]
< ∞

thus Um satisfies the assumptions of Corollary A.3 and the same is true for U due to
lower semicontinuity of the corresponding norm. Accordingly,Um satisfy the assump-
tions of Lemma A.4 which implies that U is stationary in the sense of Definition 2.8.
Corollary A.3 then yields the claim. ��
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Let us conclude with a simple observation that stationarity is preserved under com-
position with measurable functions.

Corollary A.6 Let k ∈ N0, p ∈ [1,∞). Let the stochastic process U be stationary
on Wk,p(T3) in the sense of Definition 2.7. Then for every measurable function F :
Wk,p(T3) → R, the stochastic process F(U) is stationary on R.

Proof The proof follows immediately from the corresponding equality of joint laws
of (U(t1), . . . ,U(tn)) and (U(t1 + τ), . . . ,U(tn + τ)). ��
Corollary A.7 Let k ∈ N0, p, q ∈ [1,∞). Let U be stationary on Lq

loc([0,∞);Wk,p

(T3)) in the sense of Definition 2.8. Then for every measurable function F :
Wk,p(T3) → R and a.e. s, t ∈ [0,∞), the laws of U(s) and U(t) on Wk,p(T3)

coincide.

Proof Since the mappingU �→ U(t) �→ F(U(t)) is measurable on Lq
loc([0,∞);Wk,p

(T3)) for a.e. t ∈ [0,∞). For the same reasons, the mapping Ss−t : U �→ U(s) �→
F(U(s)) is measurable on Lq

loc([0,∞);Wk,p(T3)) for a.e. s, t ∈ [0,∞). Hence the
claim follows from the equality of laws of U and Ss−tU. ��
Remark A.8 Note that in view of Corollary A.7 the stationarity in the sense of Def-
inition 2.8 implies the following almost everywhere version of Definition 2.7: if U
is stationary on Lq

loc([0,∞);Wk,p(T3)) in the sense of Definition 2.8 then the joint
laws

L(U(t1 + τ), . . . ,U(tn + τ)), L(U(t1), . . . ,U(tn))

on [Wk,p(T3)]n coincide for a.e. τ ≥ 0, for a.e. t1, . . . , tn ∈ [0,∞).
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7. Brzeźniak, Z., Ferrario, B.: Stationary solutions for stochastic damped Navier–Stokes equations inRd .

ArXiv e-prints (2017)
8. Brzeźniak, Z., Motyl, E., Ondreját, M.: Invariant measure for the stochastic Navier–Stokes equations

in unbounded 2D domains. Ann. Probab. 45(5), 3145–3201 (2017)
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