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Abstract— Evaluation of robotic experiments requires physi-
cal robots as well as position sensing systems. Accurate systems
detecting sufficiently all necessary degrees of freedom, like the
famous Vicon system, are commonly too expensive. Therefore,
we target an economical multi-camera based solution by follow-
ing these three requirements: Using multiple cameras to track
even large laboratory areas, applying fiducial marker trackers
for pose identification, and fuse tracking hypothesis resulting
from multiple cameras via extended Kalman filter (i.e. ROS’s
robot localization). While the registration of a multi-camera
system for collaborative tracking remains a challenging issue,
the contribution of this paper is as follows: We introduce the
framework of Cognitive Interaction Tracking (CITrack). Then,
common fiducial marker tracking systems (ARToolKit, April-
Tag, ArUco) are compared with respect to their maintainability.
Lastly, a graph-based camera registration approach in SE(3),
using the fiducial marker tracking in a multi-camera setup, is
presented and evaluated.

I. INTRODUCTION
Tracking systems detecting robots’ poses, to perform ex-

periments with necessary accuracy, are in high demand in
scientific labs but rarely available. Thus, robotic develop-
ments and experiments are done in simulation while a real-
world evaluation is just done qualitatively. This approach has
two downsides, simulation often does model-simplifications
and thus behaves differently from real-world experiments
regarding actor and sensor systems. Moreover, bringing the
physical robot into simulation requires time and skills in mul-
tiple disciplines, and vice versa transferring the developed
algorithms back from simulation to real-life makes parameter
tuning necessary in general. Therefore, direct evaluation in
real-life simplifies the development drastically.

The outline of this work is as follows: we first give an
overview of related and fundamental work in Section II. Sec-
ond, an overview of the CITrack systems architecture is given
in Section IV. Section III introduces calibration techniques
based on graph-optimization. Further, the experimental setup
is presented in Section V including discussions on optimizing
the camera system for the fiducial marker tracking task as
well as an end-to-end localization evaluation using a Vicon
Tracking System. Finally, current applications and future
prospects are discussed in Section VI.

II. RELATED WORK
Multi-robot test-benches which use vision based fiducial

marker tracking for identifying numerous individuals in a
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scene do exist. Commonly, they are designed with educa-
tional purposes in mind. For example, students or profes-
sionals can upload their experiment’s specification remotely
to a test-bench server such, that their experiment is queued,
executed, and evaluated automatically. Unfortunately, all
approaches suffer from the fact that either the full six
dimensional pose can not be retrieved, or the design is not
applicable to multi-camera or -modal setups.

While this work has the goal of designing a camera based
tracking system, benchmark systems based on other modali-
ties are neglected but can be found in the survey by Jimnez-
Gonzlez et. al [1]. The following list is an overview of vari-
ous benchmark systems on robotic approaches: VISNET [2]
is a general purpose tracker based on a multi-camera network
which jointly tracks an arbitrary object’s in R3. Emulab [3]
tracks multiple robots on a coarse grid using Mezzanine [4]
which tracks a marker, but without identification, in SO(2).
MiNT-m [5] is analogue to Emulab, but got rid of the grid
constrained and introduced it’s own colored fiducial marker
with identifier encoding. The SSL-Vision System [6] is the
dual-camera based vision system for the RoboCup Small
Size League that offers a robot’s pose in R3 × SO(2) based
on colored fiducial markers. The downside of this system
is, that it does not handle the camera’s extrinsic calibration
explicitly, nor the fusion of detected markers in the cameras’
frustum-intersections. Teleworkbench [7] tracks and identifies
multiple fiducial markers in SO(2) in a single camera setup.
The Experimental Testbed for Large Multirobot Teams [8]
uses LED based markers that flash with their corresponding
ID, which is rectified within SO(2) by multiple cameras. The
Robotarium [9] uses the ArUco [10] fiducial marker tracking
in a table-top single-camera setup, capable of tracking in
SE(3), where the overall design is limited to the usage
of their GRITSBot. Further, robotic driven applications are
comprised by Lightbody et. al [11].

III. MARKER BASED CALIBRATION

Camera network calibration has widely been discussed
in literature, whereas the sparse bundle adjustment (SBA)
is the fundamental approach to intrinsic and extrinsic cal-
ibration, visual SLAM, structure from motion, and scene
reconstruction [12]. This holds whether the setup consists
out of multiple cameras in a static scene or single camera
moving through it. SBA optimizes the cameras’ parameters
and detected objects at the same time but is also very
susceptible with respect to the identified objects on the
pixel screen [13]. If range measurements already exists and
intrinsic parameters are sufficiently calibrated, graph SLAM



Fig. 1: Tracking and benchmark systems [2], [3], [5], [6],
[7], [8], [9] (from left to right and top to bottom)

is the way to optimize just the extrinsics. Both approaches
has been recently brought together by Yeguas-Bolivar and
Medina-Carnicer proposing a fiducial marker (FM) based
graph SLAM approach under the constraints of known
FM geometrics [13]. However, every approach builds up a
measurement graph which can be optimized, given that the
initial parameters are already close to a solution, by the same
techniques (e.g. the Levenberg-Marquard (LM) algorithm).

All of the discussed work so far only respects measured
objects in R3 without taking the orientation into account.
FM allow the measurements in SE(3) and thus, the graph
optimization can be extended to also respect orientations
and therefore simplifies the full SBA approach of being
a graph SLAM problem. Therefore, graph SLAM based
calibration can be applied not only to camera networks but
every heterogeneous multi-sensor setup as long as every
sensor provides measurements in SE(3). However, sensor
intrinsics need to be known and measurements needs to be
free of systematical error.

Fig. 2 (left) shows the concept of the presented approach,
while Fig. 2 (right) represents the corresponding full coordi-
nate transformation (CT) tree of the depicted example. Given
a set of cameras C, a set of multiple markersM is identified
at the same time (Fig. 2: C = {i, j} and M = {k}).
In order to calibrate the camera network, OTi and OTj

need to be optimized, such that the residual transformation
ikTjk becomes the identity matrix. The great benefit of the
FM approach is, that the identified markers can be directly
associated between the camera systems and that the extrinsics
of the markers (iTk, jTk) are measured. Therefore, visual
FM are introduced in Section III-A which is followed by
the extended graph SLAM approach to FM based camera
network calibration in Section III-B and III-C.

A. Fiducial Marker Detection

Fiducial markers (FM) are objects or patterns in a physical
environment which are detectable and localizeable through
an exteroceptive sensor [14], [15]. Visual FM had their
biggest impact with the advent of augmented reality (AR)
applications in camera based systems. The common shape of
visual FM for AR in particular is a squared pattern as shown
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Fig. 2: Camera pair detecting a single FM (left) and corre-
sponding CT tree with erroneous measurement (right).
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Fig. 3: FM detectable by ArUco [10],ARToolKit [16], and
ICL [17] (left to right)

in Fig. 3 where the four edges1 allow the determining of
extrinsic parameters through homography and known intrin-
sic camera parameters. Although, another famous application
is FM-based visual localization systems, since they provide
robustness against environmental factors, distinguishability,
economical feasibility in production and application, and
precision in localization up to SE(3). Many FM systems
has been proposed in the vision community [18]. Among
all systems resides a common, two-staged way of how to
detect and identify the FM in a scene. The first stage is the
hypothese generation which creates a list of regions, together
with their transformation parameters (homography or affine),
which are likely to contain a marker. The second stage
identifies and decodes a hypotheses under transformation,
if the region is indeed a marker or just an arbitrary object.

B. Calibration

In order to calibrate the cameras as illustrated in Fig. 2,
OTi and OTj need to be optimized, such that the two
transforms OTi

iTk and OTj
jTk coincide.

Let xi be the state vector consisting of the parameters,
which are the extrinsic calibration, of camera i with respect
to a reference coordinate system O. Further, let xik and
Ωik be respectively the mean and the information matrix
of measuring FM k via camera i.

To avoid singularities in the over-paramatrized space
SE(3) induced by quaternions, the state vector x is de-
fined on a manifold expressed by x = (x, y, z, qx, qy, qz)
as proposed by Grisetti et al. [19]. (x, y, z) de-
note the translatory components, while (qx, qy, qz) be-
ing the imaginary components of the unit quaternion(√

1− q2
x − q2

y − q2
z , qx, qy, qz

)
.

1the outmost points of a marker provide the greatest number of pixels
relatively to the marker’s area and thus reducing pose jitter to maximize the
accuracy of line equations formed from the border sides



The log-likelihood l, that the measurements of two nodes i
and j for one particular FM k coincide, shows the following
proportionality:

lijk ∝ ek (xi,xj)
ᵀ

Ωijkek (xi,xj) =: Fijk . (1)

Let ek (xi,xj) = t2v
(
ikTjk

)
be the state vector of the

residual transformation and t2v be a function that projects a
transformation matrix to a state vector on the manifold. All
components of e become zero, if and only if ikTjk is the
identity matrix which makes it suitable for gradient descent
techniques. Further, let Ωijk be the information matrix of
measuring xjk from xik which can be obtained via error
propagation between the measurements. Since the full CT
tree is known, the residual transformation between i and j
can be directly expressed as:

ikTjk =
(OTi

iTk

)−1 OTj
jTk, (2)

The goal of a maximum likelihood approach is to find the
configuration of the states x of the cameras that minimizes
the negative log-likelihood of all observations:

F(C,M) =
∑
i,j∈C

∑
k∈M

ek(xi,xj)
ᵀ

Ωijkek(xi,xj)︸ ︷︷ ︸
Fijk

γijk,

(3)
with γ being an indicator function that is 1, if a FM is seen
by camera i and j and 0 otherwise.

C. Error Minimization via Iterative Local Linearizations
If a good initial guess x̂ of the camera poses is known,

the numerical solution of Eq. 3 can be obtained by using the
Gauss-Newton or Levenberg-Marquardt algorithms. The idea
is to approximate the error function by its first order Taylor
expansion around the current initial guess x̂ij = (x̂i, x̂j):

ek(x̂i + ∆xi, x̂j + ∆xj) ' ek(x̂i, x̂j)+Jijk∆(xi,xj) (4)

Here, Jijk is the Jacobian of ek(xi,xj). For further
simplicity of notation, the indices of the measurement are
encoded in the residual term as follows: eijk = ek(xi,xj).
Now substituting Eq. 3 in the residual terms of Eq. 4 leads
to:

Fijk(x̂ij + ∆xij)

= ek(x̂ij + ∆xij)
ᵀ

Ωijkek(x̂ij + ∆xij)

' (eijk + Jijk∆xij)
ᵀ

Ωijk (eijk + Jijk∆xij)

= eᵀ
ijkΩijkeijk︸ ︷︷ ︸

cijk

+2 eᵀ
ijkΩijkJijk︸ ︷︷ ︸

bᵀ
ijk

∆xij

+ ∆xᵀ
ij Jᵀ

ijkΩijkJijk︸ ︷︷ ︸
Hijk

∆xij

= cijk + 2bᵀ
ijk∆xij + ∆xᵀ

ijHijk∆xij

(5)

With this approximation for one measurement k between two
cameras i and j, the combined log-likelihood in Eq. 3 can
be rewritten as

F(C,M) =
∑
i,j∈C

∑
k∈M

cijk + 2bᵀ
ijk∆xij + ∆xᵀ

ijHijk∆xij ,

(6)
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Fig. 4: Pose graphs of cameras (◦) and FM measurements
(�). Initial pose graph (left) and marginalized version to fit
into linear equation system (right).

and minimized in x by solving the linear system∑
i,j∈C

∑
k∈M

Hijk∆xij︸ ︷︷ ︸
H∆̃x

= −
∑
i,j∈C

∑
k∈M

bijk︸ ︷︷ ︸
b

.
(7)

The linearized solution is then obtained by adding to the
initial guess the computed increments

x̃ = x̂ + ∆̃x. (8)

Note, that x̂ and x now update all parameter in one step.
In order to interpret this approach as a graph optimization,

Fig. 2 (right) illustrates the functions and quantities that play
a role in defining an edge of the graph. Cameras can be
interpreted as nodes in a pose graph, which are connected via
FM measurements to each other. Fig. 4 (left) shows an initial
pose graph consisting out of three cameras and four fiducial
markers. The optimization approach requires a marginalized
graph as depicted in Fig. 4 (right). It is shown, that lose
edges (e.g. FM 4 was measured by only by camera 2) are
removed and multiple edges are expanded (e.g. FM 2 was
measured by camera 1, 2, 3). The marginalized graph can
then be used to build up the linear system in Eq. 7.

IV. ARCHITECTURE OVERVIEW

The modular and distributed system architecture of the
CITrack is shown in Fig. 5 and consists out of multiple open-
source contributions: The physical CITrack, its simulation
model2 and its tools consisting out of grabber, tracker,
localization, and calibration tools.

To be compliant with Robot Operating System (ROS),
all applications are available as ROS-packages. Further, all
simulation models are available for the Gazebo simulation.

A. CITrack

The CITrack comprises a main experiment area of 6 m×
6 m× 1.5 m that is rectified by five cameras as depicted
in Fig. 6 (left). The operative hight of 1.5 m is explained
by the cameras’ overlapping fields of view, such that a
10 cm × 10 cm fiducial marker (FM) does never go out
of sight. The experiment area can also be partitioned into
four sub-fields running up to four independent experiments
in parallel3. Robots and objects are attached with FM for
position and orientation detection as well as for identifi-
cation. Four SP-5000M-GE2 grayscale cameras with 8 mm

2https://github.com/cognitiveinteractiontracking
3VR experience: https://youtu.be/ezJA2EgBLyk
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Fig. 5: Architecture overview of the CITrack environment. Left: Physical CITrack overhanged with C=5 cameras observing
the area. Top-Right: Tracking pipeline as applied in the experiments with C = 5 FM tracker and M = #Marker Kalman
filter for each FM ID. Bottom-Right: RSB interfaces of A= 2 AMiRo [20] is advertised in the university network which
assigns domain names by MAC addresses. A workstation PC, running ROS applications (Apps), allocating K≤A robots via
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parallel and all ROS topics are automatically namespaced by the robots domain name. Major open-source contributions are
highlighted in green, minor contributions and implementations of third parties in partial green, and third party implementation
necessary for the setup in gray. Transport types are written in italic and package names in teletype.

Fig. 6: Exemplary setup of the CITrack: four different
experiments running in parallel (left) and birds-eye view
from color camera with labeled objects and robot.

lenses and one SP-5000C-GE2 color camera with 6 mm lens,
with a resolution of 2560×2048 pixels each, are mounted
above the experiment area. Each camera is connected via
Ethernet to the university network and is grabbed via GigE-
Vision by a common server running Ubuntu 16.04 and
ROS Kinetic. Furthermore, all computer based systems are
synchronized via Network Time Protocol (NTP) while the
cameras are synchronized via Precision Time Protocol (PTP)
and synchronously hardware triggered to achieve exact time
stamping which is crucial for any later fusion. The server
also runs the multimaster fkie[21] to advertise ROS commu-
nication in the network. Thus, experiments and recordings
can be conducted by any common PC in the network.

B. CITrack Tools

Three different calibration tools for setting the extrinsic
parameters of the cameras in the CITrack are available:

tf dyn for manual online calibration, oneshot calib
which averages poses of a single static FM, and
graph calib that realizes the approach from Section III.

Once the camera system is calibrated, localization is
performed as follows: Images of each camera are grabbed
and processed separately to provide the IDs and poses of
all detected FM in the current frames. To be fully ROS
compliant and to make use of the image pipeline-
implementation the camera drivers are written, such that
they provide the undistorted raw camera image via the
#camera/image raw-topic, and all corresponding infor-
mation via the #camera/camera info-topic. Each cam-
era frame is then processed by a FM tracker to provide the ID
and pose of every detected marker via odometry messages on
a single #camera/odom/#ID-topic. Currently, ArUco2/3,
ArToolKit5, AprilTag, and ICL are implemented. Further,
the Kalman filter provided by the robot localization-
package from Moore and Stouch [22] is applied to fuse
odometry of equal IDs from different cameras.

V. EXPERIMENTAL SETUP & EVALUATION

In this section, various setups are evaluated. First, the
different fiducial marker (FM) tracker ArToolkit, ArUco,
and AprilTag are analyzed regarding their accuracies in
Section V-A. Further, the FM based calibration error and
convergence speed of our proposed approach is evaluated in
Section V-B. At last, the FM based calibration and the end-
to-end error of the tracking pipeline, as shown in Fig. 5, is
evaluated against a Vicon tracking system, consisting out of



Fig. 7: Combined FM-Vicon Marker (left) and qualitative
evaluation (right) of various measurements of the FM-Vicon
marker on the plane floor of the CITrack laboratory for a
single camera. Black surface is measured by Vicon while
the other is measured by ArUco.

ArUco ICL AprilTag ARToolKit
RMSE (m) .009162 .143602 .018296 .042388
µCOS (1) .000186 .020259 .009214 0.009622

TABLE I: Root Mean Squared Error (RMSE) and mean
cosine similarity (µCOS) for chosen FM tracker. RMSE is
the remaining error of fitting a plane into the performed
measurements, while µCOS is calculated wrt. the reference
frame parallel to the plane.

eight MX T20 which are interfaced by the Vicon Nexus 1.8.4
software, in Section V-B.

A. FM Error Evaluation

To evaluate which FM tracking system is sufficient for
the calibration task, we measure a plane surface under the
camera by passing around a combined FM-Vicon marker
on the floor (c.f. Fig. 7). Figure 7 qualitatively reveals the
discrepancy between a straight plane measured by Vicon
versus a FM tracker. While the planes are not perfectly
aligned, due to naive extrinsic calibration, the FM tracker
shows comparable high noise in measuring the plane.

However, fitting the planes into each other, to assume a
perfect extrinsic calibration, results in quantitative evaluation
for all FM tracker. ArUco outperforms all other FM based
systems by at least one magnitude in measuring a straight
plane as shown in Table I. All FM tracker were applied per
frame over at least 250 measurements to avoid artifacts by
any tracker based filtering. However, while no FM tracker
system performs perfectly, we stick to ArUco for further
experiments.

B. FM Based Calibration Evaluation

We use the combined marker from V-A and perform
a random trajectory captured by all four cameras of the
CITrack as depicted in Fig. 8. Due to the labeled marker
and hardware-trigger based synchronization, we achieve a
perfect association between all measurements. Furthermore,
we can directly setup any Sparse Bundle Adjustment (SBA)
toolbox for camera network calibration, since all FM tracker
provide pixel and pose location. Thus, we use Matlab2018a
bundleAdjustment as our baseline.

y (m)
x (m)

z
(m

)

Fig. 8: Calibration walk as tracked by Vicon (blue) and the
final calibrated CITrack in an operative hight between 0 m
and ∼1 m wrt. the floor. The two point clouds do overlap suf-
ficiently well with little disturbances at the CITrack boarders
(e.g. (x,y)=(1,-3) m).

We apply our proposed approach as follows: First, we
initialize the camera positions using tf dyn (c.f. Sec. IV-
B). Second, we associate all FM detections to a pairwise
detection as depicted in Fig. 2 and 4. Third, we build
up the linear equation systems for R3 (i.e. common graph
SLAM w/o measuring orientations) and the proposed SE(3).
We solve Eq. 7 using Levenberg–Marquardt algorithm and
apply loss specific damping parameters λ for translation (λt)
and rotation (λq) error. We found that constant λt = 10−3

and λq = 10−1 over 1000 iteration performed sufficiently
well in all experiments, and that parameter change during
optimization was not necessary. Since FM measurements of
our calibration walk (c.f. Fig. 8) are not equally distributed,
biased calibration due to possible systematical errors of the
FM tracker is possible. Therefore, we introduce a k-means++
inspired refinement step (ref.), where we sample a new data
set for calibration from the old one, by assigning a sampling
weight to every measurement that is the reciprocal sum of
distances to all adjacent measurements. Finally, the progress
and end results are depicted in Fig. 9 which reveal that the
proposed approach with refinement performs best.

C. FM End-to-End Evaluation

The end-to-end error is evaluated on the calibration walk
as depicted in Fig. 8. We applied the CITrack as shown
in Fig 5 and recorded the Kalman filtered pose of the FM
trackers for the calibration marker. With the known temporal
association between the FM tracking and the Vicon system
we are able to evaluate the exact error of our approach
wrt. the Vicon system. Table II reveals that our proposed
calibration approach even outperforms other solutions in an
end-to-end evaluation and is therefore the technique of choice
for FM based camera calibration.
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Fig. 9: Calibration error e, as defined in Sec. III-B, over num-
ber of iterations. The first 60 episodes show that the proposed
approach on SE(3) with refinement of the measurements
outperforms the standard Matlab bundleAdjustment
(SBA), calibrations in R3 and SE(3) without refinement of
the measurements respectively. Final mean errors e after
1000 iterations are: SBA: .398, SE(3) w/o ref.: .380, R3 w/
ref.: .384, SE(3) w/ ref.: .377. While all curves start with the
same error, we assume that SBA starts with low damping
factors λ, which are annealed over the first iterations, causing
the increasing error.

SBA SE(3) w/o R3 w/ SE(3) w/
RMSE .06739 .04991 .0536 .04692
µCOS .00157 .00134 .00136 .00128

TABLE II: End-to-end error of the calibration walk. w/ and
w/o refer to the refinement (ref.)

VI. CONCLUSIONS AND FUTURE WORK

This publication presents a novel graph-based multi-
camera calibration based via fiducial marker tracking and
evaluates the tracking performance in an end-to-end approach
against a Vicon system. Our approach gives anyone the tools
to build a vision and fiducial marker based tracking bench-
mark system with the introduced, sufficient quality. The
final calibrated CITrack system allows us to perform crucial
upcoming tasks which are necessary to induce robotic bench-
marking (c.f. application video4): multi-robot tracking, real-
life data-annotation, and model-identification. With human-
robot interaction in mind, the next effort of extending the
presented CITrack is to add more tracking modalities, which
can be seamless calibrated using our proposed approach, as
long as they provide measurements in R3 or SE(3).
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