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Abstract

We investigate presentation problems for certain split extensions of dis-
crete matrix groups. In the soluble front, we classify finitely presented Abels
groups over arbitrary commutative rings R in terms of their ranks and the
Borel subgroup B◦2(R) = ( ∗ ∗0 ∗ ) ≤ SL2(R). In the classical set-up, we prove
that, under mild conditions, a parabolic subgroup of a classical group is
relatively finitely presented with respect to its extended Levi factor. This
yields, in particular, a partial classification of finitely presented S-arithmetic
parabolics. Furthermore, we consider higher dimensional finiteness proper-
ties and establish an upper bound on the finiteness length of groups that
admit certain representations with soluble image.

Deutsche Zusammenfassung

In der vorliegenden Dissertation werden Präsentationen semi-direkter
Produkte diskreter Matrizengruppen untersucht. Im auflösbaren Fall
zeigen wir in Abhängigkeit vom Rang und von der Borel-Untergruppe
B◦2(R) = ( ∗ ∗0 ∗ ) ≤ SL2(R), welche Abels-Gruppen über dem Ring R
endlich präsentiert sind. Außerdem beweisen wir unter leichten Vorausset-
zungen, dass eine parabolische Untergruppe einer klassischen Gruppe re-
lativ endlich präsentiert bezüglich ihres erweiterten Levi-Faktors ist. Dies
liefert insbesondere eine partielle Klassifizierung endlich präsentierter S-
arithmetischer parabolischer Gruppen. Desweiteren studieren wir hochdi-
mensionale Endlichkeitseigenschaften und zeigen, dass die Endlichkeitslänge
von Gruppen mit gewissen auflösbaren Darstellungen nach oben durch die
Endlichkeitslänge von B◦2(R) beschränkt ist.

Keywords: Group theory, split extensions, finiteness properties, Abels groups,

Chevalley–Demazure groups, parabolic subgroups.
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Francivaldo Melo, Mauŕıcio Ayala-Rincón, Mauro L. Rabelo, Celius A. Ma-
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Introduction

A group G is called linear if it admits an embedding G ↪→ GLn(K) into
a general linear group over some field K. Linear groups with finite gener-
ating sets have a strong presence. Examples from geometry and topology
include fundamental groups of closed surfaces, lattices in many semi-simple
Lie groups, and conjecturally all compact 3-manifold groups. Also, free
groups, Coxeter groups and braid groups of finite rank are among the lin-
ear examples occurring in the intersection between algebra, geometry and
topology. From number theory, further linear examples include class groups
of algebraic integers, units in Hasse domains, and arithmetic lattices.

The study of finitely generated linear groups is thus of interest to many
areas. There has been a great deal of research on the structure of such
groups; cf. [51, Chapter 26] for some important examples. A major topic
in the theory concerns generators and relations. By their very nature, all
groups mentioned in the first paragraph admit finite presentations1, which
raises the following question: which discrete linear groups are finitely pre-
sented? Loosely speaking this means that, besides the finite generating set,
there exist finitely many equations between the generators that completely
determine the given group up to isomorphism.

To answer the broad question above, it is natural to first investigate
what happens with important families of discrete linear groups. The most
prominent examples of such groups are perhaps those lying in the class of S-
arithmetic groups, such as SLn(Z), SO2n(Fp[t]), PSp2n(Z[i]), GLn(Z[1/m]),
and SOn(Fq[t, t−1]); see Section 1.1.4 for a formal definition. Now, if a
finitely generated group G is known to be linear over a global field K,
then there exists an S-arithmetic subgroup G(OS) ≤ GLn(K) such that
G ↪→ G(OS).

Besides containing many known finitely generated linear groups, S-
arithmetic groups are important in their own right. Indeed, the interest
in such groups dates back to the work of C. F. Gauß. In the Disquisitiones
arithmeticae, Gauß investigated—in modern terms—the action of SL2(Z)
on the upper-half Euclidean plane in connection with his work on quadratic

1In the case of 3-manifolds, recall that any 3-manifold group known to be finitely
generated is automatically finitely presented by a result of G. P. Scott [84].
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forms; see [54, Abschnitt V]. The theory of S-arithmetic groups and associ-
ated geometric objects has since been a fruitful area of research; see [73] for
an introduction and overview.

The natural problem of classifying which S-arithmetic groups are finitely
presented is an ongoing major topic. About six decades ago, A. Borel and
Harish-Chandra [23], followed by M. S. Raghunathan [78], analyzed the
action of S-arithmetic groups on certain symmetric spaces in the case where
the matrix entries lie in the ring of integers of an algebraic number field—for
instance, SLn(Z) or PSp2n(Z[i]). They concluded, among other things, that
such groups are finitely presented. However, H. Nagao shook the theory by
showing that the S-arithmetic group SL2(Fq[t]) is not even finitely generated.
J.-P. Serre reproved Nagao’s result from the point of view of groups acting on
one-dimensional Euclidean buildings [86]. This general strategy of analyzing
actions of S-arithmetic groups on buildings and symmetric spaces to extract
information on the groups themselves was carried out intensively since then.
After important partial results—refer to the introductions of [33, 37, 36] for
an overview—the efforts culminated in the following.

Theorem 0.1 (Borel–Serre [24], Kneser, Borel–Tits, and Abels [3], Behr
[14], Bux [33]). Let Γ be an S-arithmetic subgroup of a split linear algebraic
group G over a global field K. Assume G is either reductive or a Borel
subgroup of a reductive group. If char(K) = 0, then Γ is finitely presented.
If char(K) > 0, then Γ is finitely presented if and only if |S| and the local
ranks of G are large enough.

The results above raise some questions. Regarding the underlying group
scheme G, what can one say if G is entirely contained in a Borel subgroup
of a reductive group, or if G sits between such a Borel subgroup and its
reductive overgroup? Another question concerns the underlying base ring.
Firstly, Theorem 0.1 is not unified in the sense that different proofs are
required depending on the characteristic of the base ring. Secondly, there
are natural representations of important finitely generated groups into non-
S-arithmetic matrix groups. For instance, the Burau representation of the
braid group B3 on three strands gives an embedding B3 ↪→ GL3(Z[t, t−1]).

The above discussion leads to the following. In the sequel, R denotes a
commutative ring with unity, unless stated otherwise. By a matrix group
we mean an affine group subscheme G of some GLn, defined over Z.

Question 0.2. Suppose an affine reductive Z-group scheme H ≤ GLn and
a Borel Z-subgroup B ≤ H are given. For which rings R (not necessarily
integral domains)...

i. ...and proper matrix subgroups G < B is the group G(R) finitely
presented?

ii. ...and matrix groups G of the form B ≤ G < H is G(R) finitely
presented?

2



The most important examples of (non-nilpotent) matrix groups covered
by Question 0.2 are arguably the soluble group schemes {An}n≥2 of Herbert
Abels (case i; see Section 0.1.1) and parabolic subgroups P of reductive
groups (case ii; see Section 0.1.2). The main results of this thesis include
the following contributions towards Question 0.2.

Theorem A. An Abels group An(R) is finitely presented if and only n is
large enough and the group B◦2(R) = ( ∗ ∗0 ∗ ) ≤ SL2(R) is finitely presented.

Theorem B. Let G be a classical group associated to a reduced, irreducible
root system Φ of rank at least two. Let I be a proper subset of simple roots
and suppose the triple (R,Φ, I) satisfies the QG condition. Then the stan-
dard parabolic subgroup PI(R) ≤ G(R) associated to I is finitely presented
if and only if its extended Levi factor LEI(R) is so.

The common feature shared by Abels groups and standard parabolics
is the fact that they decompose as semi-direct products, i.e. they are split
extensions of matrix groups. Before explaining the terminology and origins
of Theorems A and B in Sections 0.1.1 and 0.1.2, respectively, we discuss in
Section 0.1 some generalities and known difficulties regarding presentations
of split extensions.

The necessary conditions and assumptions occurring in Theorems A
and B involve generators and relators for the Borel subgroup of rank one

B◦2(R) =
{

( u r
0 u−1 ) | u ∈ R×, r ∈ R

}
≤ SL2(R).

This is part of a more general phenomenon involving representations with
soluble images as well as finiteness properties that generalize finite pre-
sentability. Out third main result explains the above mentioned phenomenon
and is an ingredient in the proofs of Theorems A and B.

Theorem C. Let R be a commutative ring with unity. Suppose a group G
retracts onto the group of R-points X(R)oH(R) of a connected soluble matrix
group X o H, where X and H denote an elementary root subgroup and a
maximal torus, respectively, of a classical matrix group. Then the finiteness
length of G is bounded above by that of B◦2(R), that is, φ(G) ≤ φ(B◦2(R)).

The finiteness length and the origins of Theorem C are discussed in
Section 0.2, whereas Theorem C itself is proved in Chapter 2. Using the
language of finiteness length, Theorems A and B are more precisely stated
(and proved) in Chapters 3 and 4, respectively.

0.1 Presentations of split extensions

A group retract is a homomorphism r : G → Q which admits a homo-
morphism ι : Q → G as a section. Thus, a retract is just another name for
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the split extension (or semi-direct product) G ∼= N o Q, where N = ker(r)
and Q acts on N via conjugation. To achieve finite presentability of G one
must, of course, assume it to be finitely generated. This means that N must
be finitely generated as a normal subgroup of G and that the quotient Q
has to be finitely generated as well. But one needs also assume that Q is
finitely presented due to the following observation.

Lemma 0.3 (Stallings [101, Lemma 1.3]). If Q is a retract of a finitely
presented group, then Q is also finitely presented.

One might ask: does this collection of necessary assumptions suffice to
guarantee that G is finitely presented? Before looking at examples, we
remark that G will be finitely presented whenever both N and Q are so.
However, N often does not even admit a finite generating set as a group.

Examples 0.4. The following split extensions G = N o Q all fulfill the
above listed necessary conditions for finite presentability, with N infinitely
generated (as a group). The question is whether Q acts ‘strongly enough’
on N as to allow for G to be finitely presented. The theory of metabelian
groups shows that this can be a delicate matter:

i. Let M1 = (F3[t, t−1],+) = M2, that is, M1 and M2 are isomorphic
copies of the underlying additive group of the ring of Laurent polyno-
mials with coefficients in the finite field with three elements. Given
n ∈ N ∪ {∞}, denote by Cn the cyclic group of order n. Consider

G = (M1 ×M2) o C2
∞ = (F3[t, t−1]× F3[t, t−1]) o 〈a, b | [a, b] = 1〉

with the action

M1 ×M2 × C2
∞ 3 ((r, s), a`bm) 7→ (rt`, stm).

Although G fulfils the necessary conditions for finite presentability, the
action of the quotient C2

∞ on the abelian normal subgroup M1 ×M2

is ‘weak’: a result due to Bux [32] implies that not even the factors
M1 oC2

∞
∼= M2 oC2

∞ can be finitely presented. Hence, neither is the
full group G = (M1 ×M2) o C2

∞ itself.

ii. The next example is due to H. Abels, R. Bieri, and R. Strebel. Con-
sider the split extension G = (M1 × M2) o (C∞ × C2), where M1

is isomorphic to the (C∞ × C2)-module Z[1/2] with the action of
(C∞ × C2) = 〈a, b | b2 = [a, b] = 1〉 given by

M1 × (C∞ × C2) 3 (r, (an, bε)) 7→ (−1)ε2−nr,

and M2 is isomorphic to the (C∞ × C2)-module Z[1/2] with action

M2 × (C∞ × C2) 3 (r, (an, bε)) 7→ (−1)ε2nr.
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In this case, the action of the quotient C∞ × C2 on the normal sub-
group M1 ×M2 is ‘better’ than in the previous example because both
factors M1 o (C∞ × C2) and M2 o (C∞ × C2) are finitely presented
by a theorem of Abels [3]. However, [20, Theorem 5.1] implies that
G = (M1 × M2) o (C∞ × C2) cannot be finitely presented.

iii. The following group was considered by Baumslag–Bridson–Holt–
Miller [12]. Let m = pq ∈ N with p, q coprime. This time, M1 is
the C2

∞-module Z[1/m] with action

M1 × C2
∞ 3 (r, (ak, b`)) 7→ pkq`r,

and M2 is the C2
∞-module Z[1/m] with action

M2 × C2
∞ 3 (r, (ak, b`)) 7→ pkq−`r.

Once again, the factors M1 o (C∞ × C∞) and M2 o (C∞ × C∞) are
finitely presented. Moreover, the given C2

∞-action on M1×M2 is ‘even
better’ in the sense that the full group G = (M1 × M2) o C2

∞ even
has finitely generated second homology [12, Example 3]. Nevertheless,
G still admits no finite presentations [12, p. 21].

The examples discussed in 0.4 suggest that one might need an ad hoc
analysis of group actions to be able to obtain qualitative results on presen-
tations of split extensions of groups belonging to a given class.

0.1.1 The group schemes of Herbert Abels

For every natural number n ≥ 2, consider the following Z-subscheme of
the general linear group.

An =


1 ∗ ··· ··· ∗

0 ∗
. . .

...
...

. . .
. . .

. . .
...

0 ··· 0 ∗ ∗
0 ··· ··· 0 1

 ≤ GLn .

Interest in the infinite family {An}n≥2, nowadays known as Abels’
groups, was sparked in the late seventies when Herbert Abels [2] published a
proof of finite presentability of the group A4(Z[1/p]), where p is any prime
number; see also [3, 0.2.7 and 0.2.14]. Abels’ groups emerged as coun-
terexamples to answers to long-standing problems in group theory and later
became a source of construction of groups with curious properties; see [46,
38, 19, 13] for recent examples.

Not long after Abels announced that A4(Z[1/p]) is finitely presented,
Ralph Strebel went on to generalize Abels’ result in the manuscript [94],
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which never got to be published and only came to our attention after Theo-
rem A was established. Strebel gives necessary and sufficient conditions for
subgroups of An(R), defined by

An(R,Q) =
{
g ∈ An(R) | the diagonal entries of g belong to Q ≤ R×

}
,

to be finitely presented. (In particular, An(R) = An(R,R×).) Remeslen-
nikov [unpublished] also verified that A4(Z[x, x−1, (x + 1)−1]) has a finite
presentation—a similar example is treated in detail in Strebel’s manuscript.

In the mid eighties, S. Holz and A. N. Lyul’ko proved independently that
An(Z[1/p]) and An(Z[1/m]), respectively, are finitely presented as well, for
all n,m, p ∈ N with n ≥ 4 and p prime [57, Anhang], [67]. Their techniques
differ from Strebel’s in that they consider large matrix subgroups of An and
relations among them to check for finite presentability of the overgroup. In
[103], S. Witzel generalizes the family {An}n≥2 and proves, in particular,
that most such groups over Z[1/p], for p an odd prime, are also finitely
presented and have varying Bredon finiteness properties.

Besides those examples in characteristic zero and Strebel’s manuscript,
the only published case of a finitely presented Abels group over a torsion ring
is also S-arithmetic. Y. de Cornulier and R. Tessera proved, in particular,
that A4(Fp[t, t−1, (t− 1)−1]) admits a finite presentation [47, Corollary 1.7].

Theorem A thus generalizes the above mentioned results of Abels,
Remeslennikov, Holz, Lyul’ko, and Cornulier–Tessera. As for the differ-
ences between our methods, Strebel’s proof [94] is more algebraic and di-
rect: after establishing necessary conditions, he proves them to be sufficient
by explicitly constructing a convenient finite presentation of An(R,Q) =
Un(R) o Qn−2. The proof of Theorem A given here follows an alterna-
tive route: it has a topological disguise and uses horospherical subgroups
and nerve complexes of Abels–Holz [2, 3, 57, 5], the early Σ-invariant for
metabelian groups of Bieri–Strebel [20], and K. S. Brown’s criterion for finite
presentability [28]; see Chapter 3 for details.

We remark that, in the S-arithmetic case, Theorem A and results of
Holz [57], Bieri [17], and Abels–Brown [4] show that Abels’ schemes yield
families of affine Z-group schemes whose S-arithmetic groups have varying
finiteness lengths; see Section 3.2 for details and a conjecture.

0.1.2 Parabolic subgroups

Parabolic subgroups play an important role, for example, in the structure
theory of algebraic groups and in the theory of buildings; see e.g. [22, 48, 6].
By a classical group we mean a matrix group G ≤ GLn which is either GLn
itself (for some n ≥ 2) or a universal Chevalley–Demazure group scheme,
such as SLn, Sp2n, or SOn; see Section 1.1.3 for more on such functors.
The protagonists of the present section are the so-called standard parabolic
subgroups of classical groups; refer to Chapter 4 for the formal definition.
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Instead of introducing a large amount of notation to define such groups here,
we find as useful as instructive to have the following working examples in
mind.

Example 0.5 (Parabolics in GLn). For the purpose of this introduction,
we can think of parabolic subgroups of a general linear group GLn as its
subgroups of block upper triangular matrices, such as( ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

)
in GL4 and

( ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 0 0 ∗

)
,

( ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

)
in GL5 .

Pictorially, a standard parabolic P ≤ GLn is thus of the form

P =


n1 × n1 ∗ · · · ∗

0 n2 × n2
. . .

...
...

. . .
. . . ∗

0 · · · 0 nk × nk

 ,

where k ≤ n is the number of diagonal (square) blocks and the i-th block
consists of ni × ni matrices.

Going back to presentation problems, the starting point for parabolics
is the well-known Levi decomposition [48, Exposé XXVI]. This describes a
standard parabolic as a split extension of its unipotent radical by its Levi
factor. In our working example, the unipotent radical of P is

U =


1n1 ∗ · · · ∗

0 1n2

. . .
...

...
. . .

. . . ∗
0 · · · 0 1nk

 E P,

where 1n denotes the n×n identity matrix, and the Levi factor is the block
diagonal

L =


n1 × n1 0 · · · 0

0 n2 × n2
. . .

...
...

. . .
. . . 0

0 · · · 0 nk × nk

 ≤ P,

Keeping in mind Examples 0.4, we ask whether the Levi factor acts
strongly enough on the unipotent radical as to detect finite presentability
of the full parabolic. Now, expectations on the Levi factor are high. In
fact, important structural and representation theoretical results regarding
this action are known to hold when the base ring is ‘not bad’; see e.g. [9,
90]. It might well be the case that, under mild assumptions on the base
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ring R, the Levi factor L(R) detects whether its parabolic overgroup P(R)
is finitely presented. The following example briefly outlines the phenomena
behind Theorem B and its proof.

Example 0.6. Let P1,P2 be the following parabolic subgroups of GL12.

P1 =


1×1 ∗ ··· ∗

0 5×5
. . .

...
...

. . . 1×1 ∗
0 ··· 0 5×5

 and P2 =


5×5 ∗ ··· ∗

0 1×1 ∗
...

... 0 1×1 ∗
0 ··· 0 5×5

 .

Now consider the groups above over the ring Z[t, t−1] of integer Laurent poly-
nomials. In Example 4.3 we shall prove that both groups P1(Z[t, t−1]) and
P2(Z[t, t−1]) fulfil the necessary conditions for finite presentability. Now,
the techniques from Chapter 4 will show that, to a finite presentation of
the Levi factor L1(Z[t, t−1]) of P1(Z[t, t−1]), we need only add finitely many
normal generators of the unipotent radical U1(Z[t, t−1]) E P1(Z[t, t−1]) and
finitely many (mostly commutator and conjugation) relations to construct
a presentation for the full group P1(Z[t, t−1]) = U1(Z[t, t−1])oL1(Z[t, t−1]).
In other words, P1(Z[t, t−1]) is relatively finitely presented with respect to
its Levi factor, giving meaning to the ‘strength’ of the action of L1(Z[t, t−1])
on U1(Z[t, t−1]). In particular, P1(Z[t, t−1]) is finitely presented, which gives
support to the expectations on the Levi factor.

So far, so good. The situation for P2(Z[t, t−1]), however, is more delicate.
We observe that such group admits the following retract.

P2(Z[t, t−1])�


15 0 ··· 0

0 ∗ ∗
...

... 0 ∗ 0
0 ··· 0 15

 ∼= B2(Z[t, t−1]) = ( ∗ ∗0 ∗ ) ≤ GL2(Z[t, t−1]).

The retract B2(Z[t, t−1]) clearly contains the matrices
(
t 0
0 t−1

)
and ( 1 1

0 1 ).
Thus, B2(Z[t, t−1]) cannot be finitely presented by a result due to Krstić
and McCool [64, Section 4], whence P2(Z[t, t−1]) itself also cannot be
finitely presented by Stallings’ Lemma 0.3. This shows that the Levi factor
L2(Z[t, t−1]) of P2(Z[t, t−1]) does not act strongly enough on the unipotent
radical U2(Z[t, t−1]) in order to encode finite presentability of the whole
parabolic P2(Z[t, t−1]) = U2(Z[t, t−1]) o L2(Z[t, t−1]).

Example 0.6 shows that, even for very similar parabolics, the Levi fac-
tor can fail to detect finite presentability of its overgroup. The issues that
might arise, however, come from possible retracts of the given parabolic.
The observation leading to Theorem B is the following. If the obstruc-
tive quotient B2(Z[t, t−1]) of P2(Z[t, t−1]) were itself finitely presented, the
techniques from Chapter 4 (used for P1(Z[t, t−1]) in particular) would have
equally well worked for P2(Z[t, t−1]) by also taking into account the action of
B2(Z[t, t−1])—besides L2(Z[t, t−1])—on the normal subgroup U2(Z[t, t−1]).
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The idea to remedy the situation is to look at the shape of a parabolic
subgroup P (equivalently, to look at adjacency relations between the roots
defining P) in order to construct a subgroup encoding the desired informa-
tion.

Example 0.7 (A new retract). Given a standard parabolic P ≤ GLn, we
define its extended Levi factor LE ≤ P to be its subgroup generated by the
diagonal square blocks—which form the Levi factor itself—and the trian-
gular blocks right above the diagonal—which will produce the obstructive
quotients. For instance, in P1 we only find square blocks, namely the 1× 1,
5× 5, 1× 1, and 5× 5 blocks which compose the Levi factor. Thus, its ex-
tended Levi factor LE1(Z[t, t−1]) is nothing but the Levi factor L1(Z[t, t−1])
itself.

LE1(Z[t, t−1]) = L1(Z[t, t−1]) =


1× 1 0 · · · 0

0 5× 5
. . .

...
...

. . . 1× 1 0
0 · · · 0 5× 5

 .

In turn, in P2(Z[t, t−1]) we have the usual square blocks but we also find a
single triangular block over the diagonal, as shown below.

5× 5 0 · · · 0

0 1× 1
. . .

...
...

. . . 1× 1 0
0 · · · 0 5× 5

 and


15 0 · · · 0

0 ∗ ∗
...

... 0 ∗ 0
0 · · · 0 15

 .

Thus, the extended Levi factor LE2(Z[t, t−1]) ≤ P2(Z[t, t−1]) is the subgroup

LE2(Z[t, t−1]) =


5× 5 0 · · · 0

0 1× 1 ∗
...

... 0 1× 1 0
0 · · · 0 5× 5

 ≤ P2(Z[t, t−1]).

The extended Levi factor of a parabolic P(R) is thus a subgroup contain-
ing both the Levi factor and the (possible) obstructive quotients of P(R)
as retracts. Theorem B is proved by showing that, under mild technical
assumptions on the base ring and root systems, a standard parabolic is
relatively finitely presented with respect to its extended Levi factor. In
other words, Theorem B reduces the question of whether P(R) is finitely
presented to the same question for the more tractable, proper subgroup
LE(R) ≤ P(R). See Chapter 4 for details.

The proof of Theorem B uses generators and relators à la Steinberg
[93, 92] and is elementary in the sense that it is done purely by means of
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elementary calculations—that is, commutator calculus paired with the well-
known commutator formulae of Chevalley. The technical QG condition from
Theorem B, defined in Chapter 4, derives from presentation properties for
B◦2(R) and from the so-called NVB condition. The latter is a common
assumption often made in the literature when one deals with commutators
in Chevalley–Demazure groups; compare, for example, [90, 9, 91].

In Section 4.3, we combine Theorem B with Theorem 0.1 to obtain a
partial classification of finitely presented S-arithmetic parabolics. This not
only establishes finite presentability of S-arithmetic groups in new cases,
but also recovers some known results. Furthermore, this points to a higher
dimensional conjecture; see Theorem 4.20 and Conjecture 4.24.

0.2 A view towards higher dimensions: finiteness
length & retracts

The properties considered in the previous sections, i.e. being finitely
generated or finitely presented, fit into a larger topological framework con-
sidered by Charles T. C. Wall in the sixties [101].

Definition 0.8. The finiteness length φ(G) of a group G is the supremum
of the n ∈ Z≥0 for which G admits a classifying space with finite n skeleton.

The quantity φ(G) has three immediate applications: it is a quasi-
isometry invariant of the given group [8]; if φ(G) ≥ n then G has, at least
up to dimension n, finitely generated (co)homology [30]; and φ(G) recovers
familiar algebraic properties including finite presentability [79]. To be pre-
cise, the group G is finitely generated if and only if φ(G) ≥ 1, and G admits
a finite presentation if and only if φ(G) ≥ 2; furthermore, G being finitely
identified is equivalent to φ(G) ≥ 3; see Section 1.2.

Thus, already establishing lower bounds on the finiteness length can
be a tricky issue—as evidenced by Example 0.4 and Theorems 0.1, A,
and B—and this has useful implications on the group structure. As a sim-
ple example, Theorems B and C show that, despite deep similarities, the
parabolics P1(Z[t, t−1]) and P2(Z[t, t−1]) from Example 0.6 are not quasi-
isometric. Distinguishing groups via their finiteness lengths can be inter-
preted as part of the ongoing program of distinguishing discrete groups up
to quasi-isometry. (This program was initiated by M. Gromov and gave
birth to (modern) geometric group theory.) The results in the remaining
chapters of this thesis are more precisely stated and proved using the lan-
guage of finiteness length. The examples and open problems discussed in the
sequel also concern the computation of the finiteness length of the groups
we are interested in.

We mentioned in passing that the necessary conditions involving Theo-
rems A and B concern the Borel subgroup B◦2(R) ≤ SL2(R) of rank one.
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What happens is that Theorem C holds for Abels groups An(R) (for n ≥ 4)
and certain parabolics PI(R) (depending on the shape of I in the Dynkin dia-
gram), showing that their finiteness lengths are bounded above by φ(B◦2(R)).
The class of groups for which Theorem C applies is quite large. The most
notable examples are perhaps certain groups of type (R) studied by M. De-
mazure and A. Grothendieck in the sixties [48, Exposé XXII, Cap. 5]; see
Section 2.2 for further examples and details.

To put Theorem C into a broader perspective, we recall the following
generalization of Theorem 0.1.

Theorem 0.9 (Borel–Serre [24], Tiemeyer [98], Bux [33],
Bux–Köhl–Witzel [36]). Let Γ be an S-arithmetic subgroup of a split
linear algebraic group G defined over a global field K. If G is either
reductive or a Borel subgroup of a reductive group, then φ(Γ) is known and
can be computed depending on char(K), on |S|, and on the local ranks of G.

Among the collection above is the Rank Theorem [36], which implies that
the finiteness length of S-arithmetic subgroups of classical groups in positive
characteristic grows as the rank of the underlying root system increases.
This means that taking a classical group G whose matrices are very large
yields φ(G(OS)) � 0. For generators and relations this is also observed in
algebraic K-theory for arbitrary rings [56, Section 4.3]. On the other hand,
Strebel observed that the finiteness length of a soluble linear group is not
necessarily large if the size of its matrices is big [94, 95]. Further examples
were later given by Bux [33] in the S-arithmetic set-up. Theorem C provides
a sufficient condition for a matrix group to belong to the extreme case of
not having better finiteness properties even if its matrices are very large.

Inspiration for Theorem C came from Borel subgroups B of Chevalley–
Demazure groups investigated by Kai-Uwe Bux in his Ph.D. thesis [33] in the
S-arithmetic set-up. The main result of [33] establishes φ(B(OS)) = |S| − 1
if OS is a Dedekind ring of arithmetic type and positive characteristic. This
makes precise for this class of groups the non-dependency of φ(B(OS)) on
the size of the matrices in B. The proof is geometric and first establishes
the upper bound φ(B(OS)) ≤ |S| − 1 [33, Theorem 5.1]. This inequality
was obtained by applying Brown’s criterion [29] to the simultaneous (di-
agonal) action of B(OS) on a product of |S| trees found in the product
of the Bruhat–Tits buildings associated to the completions G(Frac(OS)v)
for each place v ∈ S. On the other hand, the number |S| − 1 had been
shown to equal φ(B◦2(OS)) in a simpler example [33, Corollary 3.5]. Our
goal was to give an easier, purely algebraic explanation for the inequality
φ(B(OS)) ≤ φ(B◦2(OS)), which would likely extend to larger classes of rings.
And this was in fact the case; see Chapter 2 for the rather elementary proof
of Theorem C. As a by-product, Theorem C pairs up with results due to
M. Bestvina, A. Eskin and K. Wortman [16], and G. Gandini [53] yielding
a new proof of (a generalization of) Bux’s equality; see Theorem 2.11.

11



12



Chapter 1

Background and
preliminaries

In this chapter we recall and summarize basic facts on classical linear
groups and homotopical finiteness properties to be used throughout. All
of the material presented here is standard. Our notation for linear groups
closely follows those of Steinberg [93] and Silvester [87], and the basics on
the general linear group can be found e.g. in [56]. Throughout this text
we assume familiarity with root systems and Dynkin diagrams; see, for
instance, [26, Chapter 6] or [58, Chapter 3]. We refer the reader to the
classics [42, 93, 48] for a detailed account on Chevalley–Demazure group
schemes and their classification. The results on finiteness properties listed
here can be found in standard books and articles on the subject, such as [18,
79, 8, 55]. Specifically regarding generators and relators, we assume famil-
iarity with standard tools from combinatorial group theory. The results on
group presentations needed here are invoked without further comments; re-
fer e.g. to [43, 82]. The reader familiar with those topics might prefer to
skip this chapter altogether.

1.1 Matrices and classical groups

In this work we are interested in well-known concrete matrix groups with
entries in arbitrary commutative rings with unity.

Definition 1.1. A classical group is an affine group scheme G ≤ GLn,
defined over Z, that belongs to the following set.

{GLn, Gsc
Φ | n ∈ N≥2, Φ reduced irreducible root system} ,

where Gsc
Φ denotes the universal Chevalley–Demazure group scheme associ-

ated to the root system Φ; see Definition 1.5.
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The simplest example of Chevalley–Demazure group scheme is perhaps
the special linear group SLn = Gsc

An−1
.

In what follows we fix most of the notation to be used throughout while
listing well-known facts on matrices and classical groups to be used later on.

1.1.1 The general linear group and elementary matrices

Given i, j ∈ {1, . . . , n} with i 6= j, we denote by Eij(r) the matrix of
GLn(R) whose only non-zero entry is r ∈ R in the position (i, j). The
corresponding elementary matrix (also called elementary transvection) is
defined as eij(r) = 1n + Eij(r), where 1n denotes the n× n identity matrix.
For example, in GL12(Z[t, t−1]),

e67(−t−1) =


15 0 ··· 0

0 1 −t−1
...

...
. . . 1 0

0 ··· 0 15

 = 112 + E67(−t−1).

The subgroup of GLn(R) generated by all elementary matrices in a fixed
position (i, j) is denoted by Eij(R). For instance,

E67(Z[t, t−1]) = 〈
{
e67(r) | r ∈ Z[t, t−1]

}
〉 ≤ GL12(Z[t, t−1]).

Elementary matrices and commutators between them have the following
properties, which are easily checked.

eij(r)eij(s) = eij(r + s), [eij(r), ekl(s)
−1] = [eij(r), ekl(s)]

−1, and

[eij(r), ekl(s)] =

{
eil(rs) if j = k,

1 if i 6= l, k 6= j.
(1.1)

In particular, we see that each subgroup Eij(R) is isomorphic to the
underlying additive group Ga(R) = (R,+) ∼= {( 1 r

0 1 ) | r ∈ R}. The group
generated by all elementary matrices is denoted simply by En(R), i.e.

En(R) = 〈{eij(r) ∈ GLn(R) | r ∈ R, i 6= j}〉.

Since every elementary matrix has determinant one, we have that En(R) is
in fact a subgroup of the special linear group SLn(R), whence we call En(R)
the elementary subgroup of SLn(R).

There are further useful relations and subgroups in GLn(R). Given units
u1, . . . , un ∈ R×, let Diag(u1, . . . , un) denote the following diagonal matrix.

Diag(u1, . . . , un) =

(
u1 0 0

0
. . . 0

0 0 un

)
∈ GLn(R).
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Direct matrix computations show that

Diag(a1, . . . , an) Diag(b1, . . . , bn) = Diag(a1b1, . . . , anbn).

Thus, for each j ∈ {1, . . . , n}, the group
Dj(R) = {Diag(u1, . . . , un) | ui = 1 if i 6= j} ≤ GLn(R) is isomor-
phic to the group of units Gm(R) = (R×, ·) = GL1(R). The subgroup
Dn(R) ≤ GLn(R) of diagonal matrices is defined as

Dn(R) = 〈
{

Diag(u1, . . . , un) | u1, . . . , un ∈ R×
}
〉.

In particular, Dn(R) =
∏n
j=1Dj(R) ∼= Gm(R)n. The matrix group scheme

Dn
∼= Gn

m, which is defined over Z, is also known as the standard (maximal)
torus of GLn. The following relations between diagonal and elementary
matrices are easily verified.

Diag(u1, . . . , un)eij(r) Diag(u1, . . . , un)−1 = eij(uiu
−1
j r). (1.2)

The subgroup of GLn(R) generated by all diagonal and elementary ma-
trices is known as the general elementary linear group, denoted GEn(R).
(This group is sometimes also called the elementary subgroup of GLn(R).)
This important object carries a lot of information on the base ring R and
lies at the heart of algebraic K-theory. Depending on R, the groups GEn(R)
and GLn(R) need not coincide, though they do in many important cases—
for instance, when R is a field. We refer the reader to [44, 56] for more on
GEn and K-theory. Presentations for GEn(R)—which, of course, depend
on the base ring R—were given by Silvester in [87].

Further subgroups of GLn(R) play an important role in its structure
theory, namely the subgroups Bn(R) (resp. B−n (R)) of upper (resp. lower)
triangular matrices. That is,

Bn(R) =


∗ ∗ ··· ∗

0 ∗
. . .

...
...

. . .
. . . ∗

0 ··· 0 ∗

 and B−n (R) =


∗ 0 ··· 0

∗ ∗
. . .

...
...

. . .
. . . 0

∗ ··· ∗ ∗

 .

The groups Bn(R) and B−n (R) typically show up in the investigation of
matrix decompositions from linear algebra, but also in stronger structural
results such as the Bruhat decomposition; see e.g. [22, 56, 6]. The Z-group
subscheme Bn shall also be called the standard Borel subgroup of the classical
group GLn. In the theory of buildings, the conjugates of Bn(R) (for R a
field) are the Borel subgroups of GLn(R) and correspond precisely to the
stabilizers of chambers in the Tits building associated to GLn(R) [6].

In the case of matrices with determinant one, the standard Borel sub-
group of SLn(R) is the subgroup of upper triangular matrices

B◦n(R) = Bn(R) ∩ SLn(R).
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We remark that both Bn(R) and B◦n(R) decompose as semi-direct products
by (1.2) and (1.1). More precisely,

Bn(R) =


1 ∗ ··· ∗

0 1
. . .

...
...

. . .
. . . ∗

0 ··· 0 1

o


∗ 0 ··· 0

0 ∗
. . .

...
...

. . .
. . . 0

0 ··· 0 ∗

 .

(Analogously for B◦n(R)). Consequently, Bn(R) and B◦n(R) retract onto a
copy of the group of units Gm(R) as follows.

Bn(R)�


∗ 0 ··· 0

0 1
. . .

...
...

. . .
. . . 0

0 ··· 0 1

 ∼= Gm(R)

and

B◦n(R)�




u 0 ··· ··· 0

0 u−1
. . .

...

0 0 1
. . .

...
...

. . .
. . .

. . . 0
0 0 ··· 0 1

 ∈ SLn(R)

∣∣∣∣∣∣∣∣∣u ∈ R
×

 ∼= Gm(R) for n ≥ 2.

1.1.2 Unitriangular groups and some commutator calculus

Any elementary matrix eij(r) is either upper or lower unitriangular—the
former being the case whenever i < j. The subgroup Un(R) ≤ GLn(R) of
upper unitriangular matrices, is easily seen to be nilpotent, of nilpotency
class n− 1, by (1.1). In fact, its lower central series is given below.

Un(R) = E1(R) D · · · D En−1(R) D 1,

where, for each k ∈ {1, . . . , n− 1}, the normal subgroup Ek(R) is given by

Ek(R) = 〈{eij(r) ∈ GLn(R) | r ∈ R, 1 ≤ i < j ≤ n, and |j − i| ≥ k}〉.

In fact, by carefully inspecting the indices and using the relations between
elementary matrices, one has that

Ek(R)/Ek+1(R) ∼=
n−k∏
i=1

Ei,i+k(R) ∼=
n−k∏
i=1

Ga(R).

Presentation problems for Un(R) have been considered many times in
the literature, most notably in the case where R is a field and in connection
to buildings and amalgams; see e.g. [99, Appendix 2], [49], and [6, Chap-
ters 7 and 8]. As a warm-up for some of the arguments to be used throughout
this thesis, we spell out below a ‘canonical’ presentation for the subgroup
Un(R) ≤ GLn(R), obtained via commutator calculus with elementary ma-
trices. Before stating the result, we recall some well-known commutator
identities, which can be verified directly, and fix the notation to be used for
the remainder of this section.
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Lemma 1.2. Let G be a group and let a, b, c ∈ G. Then

[ab, c] = a[b, c]a−1[a, c] (1.3)

and

[cac−1, [b, c]] · [bcb−1, [a, b]] · [aba−1, [c, a]] = 1. (Hall’s identity)

Fix T ⊆ R a generating set, containing the unit 1, for the underlying
additive group Ga(R) of the base ring R. That is, we view R as a quotient
of the free abelian group

⊕
t∈T

Zt.

We fix furthermore R ⊆
⊕

t∈T Zt a set of additive defining relators of R.

In other words, R is a set of expressions

{∑̀
a`t` | a` ∈ Z, t` ∈ T

}
⊆
⊕
t∈T

Zt,

where all but finitely many a`’s are zero, and such that

Ga(R) ∼=

⊕
t∈T

Zt

〈R〉
.

For every pair t, s ∈ T of additive generators, we choose an expression
m(t, s) = m(s, t) ∈

⊕
t∈T Zt such that the image of m(s, t) in R under the

given projection
⊕

t∈T Zt� R equals the products ts and st. In case t = 1,
we take m(1, s) to be s itself, i.e. m(1, s) = s = m(s, 1).

With such expressions m(t, s) chosen for all additive generators t, s ∈ T ,
we extend m : T ×T →

⊕
t∈T

Zt to the whole Z-module
⊕
t∈T

Zt by linearity. In

other words, given arbitrary expressions r, s ∈
⊕
t∈T

Zt, say

r =
∑
λ

aλtλ and s =
∑
µ

bµtµ in
⊕
t∈T

Zt,

we define m(r, s) ∈
⊕
t∈T

Zt as

m(r, s) =
∑
λ

∑
µ

aλbµm(tλ, tµ).

In particular, the additive expressions m(r, s) for the pairs r, s satisfy the
equalities

m(r, s) = m(s, r)

and
m(r, 1) = m(1, r) = r.

Notice furthermore that the image of m(r, s) in the ring R equals the product
of the images of r and s in R.
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Lemma 1.3. With the notation above, the group Un(R) ≤ GLn(R) admits
a presentation Un(R) = 〈Y | S〉 with generating set

Y = {eij(t) | t ∈ T, 1 ≤ i < j ≤ n} ,

and a set of defining relators S given as follows. For all (i, j) with 1 ≤ i <
j ≤ n and all pairs t, s ∈ T ,

[eij(t), ekl(s)] =


∏
u
eil(u)au , if j = k;

1, if i 6= l, k 6= j,
(1.4)

where m(t, s) =
∑
u
auu ∈

⊕
t∈T

Zt is the fixed expression attached to the pair

t, s as in the previous page.
For all (i, j) with 1 ≤ i < j ≤ n,∏

`

eij(t`)
a` = 1 for each

∑
`

a`t` ∈ R ⊆
⊕
t∈T

Zt. (1.5)

The set S is defined as the set of all relations (1.4) and (1.5) given above.

Proof. Let Ũ be the group defined by the presentation above—to make
everything explicit, we draw tildes ∼ over the given generators of Ũ , i.e.
ẽij(t), and keep the notation eij(r) for the actual elementary matrices of

Un(R) ≤ GLn(R). Consider the obvious homomorphism f : Ũ → Un(R)
sending ẽij(t) to eij(t). We prove Ũ to be isomorphic to Un(R) via f by

inspecting the lower central series of Ũ .
We observe that each subgroup Ũij = 〈{ẽij(t) | t ∈ T}〉 ≤ Ũ is abelian

since [ẽij(t), ẽij(s)] = 1 for all t, s ∈ T by (1.4). Moreover, the restriction of

f to Ũij takes values in the subgroup Eij(R) ≤ Un(R), by definition. But

then it follows from (1.5) and von Dyck’s theorem that f |
Ũij

: Ũij → Eij(R)

is a surjection because Eij(R) ∼= Ga(R) = (
⊕

t∈T Zt)/〈R〉. In particular, f
itself is surjective.

We claim that the restrictions f |
Ũij

are in fact isomorphisms onto their

images. Recall that Eij(R) is canonically isomorphic to Ga(R) via the ob-

vious assignment eij(r) 7→ r. Define a map ϕij : Ga(R) → Ũij as follows.
Given r ∈ Ga(R), pick any pre-image

∑
λ aλtλ ∈

⊕
t∈T Zt of r under the

given natural projection
⊕

t∈T Zt � Ga(R) and set ϕij(r) =
∏
λ ẽij(tλ)aλ .

It is easy to see that ϕij(r+s) = ϕij(r)ϕij(s) for all r, s ∈ Ga(R), by the very
definition of ϕij . Secondly, ϕij is in fact well-defined. Indeed, if

∑
λ aλtλ

and
∑

µ bµtµ are two pre-images of r in
⊕

t∈T Zt, then there exist finitely
many expressions

x1 =
∑
η1

x1
η1
tη1 , . . . , xk =

∑
ηk

xkηktηk ∈ R
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such that ∑
λ

aλtλ = x1 + · · ·+ xk +
∑
µ

bµtµ in
⊕
t∈T

Zt.

Thus,

ϕij(r) =
∏
λ

ẽij(tλ)aλ

=

(∏
η1

ẽij(tη1)x
1
η1

)
· · ·

(∏
ηk

ẽij(tηk)x
k
ηk

)(∏
µ

ẽij(tµ)bµ

)
(1.5)
=
∏
µ

ẽij(tµ)bµ ,

as desired. Thus, identifying Eij(R) ∼= Ga(R) as before, the maps

ϕij : Eij(R) ∼= Ga(R) → Ũij are homomorphisms satisfying

ϕij ◦ f |Ũij = id
Ũij

. Therefore, each f |
Ũij

: Ũij → Eij(R) is an isomorphism.

We remark that the maps ϕij : Eij(R) ∼= Ga(R) → Ũij satisfy

ϕij(x(y + z)) = ϕij(xy)ϕij(xz) = ϕij(yx)ϕij(zx) = ϕij((y + z)x) (1.6)

for all x, y, z ∈ Ga(R) because ϕij is an isomorphism onto its image and the
same holds in the domain Ga(R) ∼= (

⊕
t∈T Zt)/〈R〉. Furthermore, we claim

that, for all i, j with 1 ≤ i < j ≤ n and all r, s ∈ Ga(R),

[ϕij(r), ϕkl(s)] =

{
ϕil(rs) if j = k;

1 if i 6= l, j 6= k.
(1.7)

In effect, Equation (1.7) holds for r, s ∈ T by (1.4) and the definitions
of ϕil and m(r, s). For arbitrary r, s ∈ Ga(R), pick pre-images

∑L
`=1 a`t`

and
∑M

m=1 bmtm of r and s, respectively, in
⊕

t∈T Zt. Assume, without loss
of generality, that a1 6= 0 and moreover a1 > 0 (the proof for a1 < 0 is
analogous). Write r′ = (a1 − 1)t1 +

∑L
`=2 a`t`. By induction on the sum∑L

`=1 |a`|+
∑M

m=1 |bm| and repeated use of (1.3), one has that

[ϕij(r), ϕkl(s)]
Def.
=

[
L∏
`=1

ẽij(t`)
a` ,

M∏
m=1

ẽkl(tm)bm

]
(1.3)
= ẽij(t1) ·

[
ẽij(t1)a1−1

L∏
`=2

ẽij(t`)
a` ,

M∏
m=1

ẽkl(tm)bm

]
·

· ẽij(t1)−1 ·

[
ẽij(t1),

M∏
m=1

ẽkl(tm)bm

]
Def.
= ϕij(t1)[ϕij(r

′), ϕkl(s)]ϕij(t1)−1[ϕij(t1), ϕkl(s)]

induction
=

{
ϕil(r

′s)ϕil(t1s) if j = k;

1 if i 6= l, j 6= k.
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Since

ϕil(r
′s)ϕil(t1s) = ϕil(r

′s+ t1s) = ϕil((t1 + r′)s) = ϕil(rs)

by (1.6), the claim follows.

We have thus shown that the usual commutator relations (1.1) hold in
Ũ by identifying eij(r) 7→ r 7→ ϕij(r). Now, the naive claim would be that

the function ϕ : Un(R) → Ũ induced by the assignments eij(r) 7→ ϕij(r)
is a homomorphism, which would yield a left inverse to the epimorphism
f : Ũ � Un(R). However, it is a priori not clear why ϕ should be a
homomorphism at all since it is defined locally. This is why we turn to the
lower central series of Un(R) and Ũ .

For every k ∈ {1, . . . , n− 1} we let Ũk denote the subgroup Ũk =
〈Ũij : |j − i| ≥ k〉. By definition we have Ũk ⊃ Ũk+1 for all k. The com-

mutator relations (1.4) imply that each Ũij is normal in Ũ and that each

factor Ũk/Ũk+1 is of the form

Ũk

Ũk+1

∼=
n−k∏
i=1

Ũi,i+k.

Moreover,

Ũn−1 = Ũ1,n
∼= Ga(R) ∼= E1,n(R) = En−1(R)

and Ũn = 1, again by (1.4). Now, any element g ∈ Ũk can be written
uniquely as a product

g = u1 · · ·un−kh,

where each ui belongs to Ũi,i+k and h belongs to Ũk+1. This is proved
by reverse induction on k = n − 1, n − 2, . . . , 1 and again repeated use
of (1.4); see e.g. [93, p. 21] for similar computations. Thus, it follows (again
from (1.4)) that f induces, for every k ∈ {1, . . . , n− 1}, an epimorphism
f |k defined by

f |k :
Ũk

Ũk+1

�
Ek(R)

Ek+1(R)

ẽij(t)Ũk+1 7→ eij(t)Ek+1(R).

Conversely, the maps ϕij induce homomorphisms from Ek(R)/Ek+1(R)

to Ũk/Ũk+1 as follows. We first observe that the image of ϕij lies in Ũ|j−i|
by (1.7). Now, identifying

Ek(R)

Ek+1(R)
∼=

n−k∏
i=1

Ei,i+k(R) ∼=
n−k∏
i+1

Ga(R),
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we define a map ϕk : Ek(R)/Ek+1(R) ∼=
∏n−k
i=1 Ga(R)→ Ũk/Ũk+1 by sending

n−k∏
i=1

Ga(R) 3 (r1, . . . , rn−k) 7→ ϕ1,1+k(r1) · · ·ϕn−k,n(rn−k)Ũk+1.

By (1.7) and reverse induction on k = n−1, n−2, . . . , 1, it follows that the
maps ϕk are homomorphisms. Since, by definition, ϕk ◦ fk = id

Ũk/Ũk+1
for

all k, we have that the maps fk are isomorphisms.
Finally, reverse induction on k and commutativity of the following dia-

grams

Ũk Ũk/Ũk+1Ũk+1

Ek(R) Ek(R)/Ek+1(R)Ek+1(R)

f |
Ũk+1

f |
Ũk

fk

yields that f is an isomorphism, as required.

1.1.3 Chevalley–Demazure group schemes

Chevalley groups play a paramount role in the theories of algebraic
groups and finite simple groups, and have been intensively studied in the last
six decades. A Chevalley–Demazure group scheme is a representable functor
(cf. [102, 62]) from the category of commutative rings to the category of
groups which is uniquely associated to a complex, connected, semi-simple
Lie group and to a lattice of weights of the corresponding Lie algebra. We
recall below the general construction of Chevalley–Demazure group schemes
over Z along the lines of Abe [1] and Kostant [62] and state in the sequel a
precise definition of such functors.

Let GC be a complex, connected, semi-simple Lie group, and let g be
its Lie algebra with a Cartan subalgebra h ⊆ g and associated reduced root
system Φ ⊆ h∗. In his seminal Tohoku paper, Claude Chevalley established
the following.

Theorem 1.4 (Chevalley [41]). There exist non-zero elements Xα ∈ g,
where α runs over Φ, with the following properties.

i. Given α, β ∈ Φ with α 6= −β, if α+ β ∈ Φ, then

[Xα, Xβ] = ±(m+ 1)Xα+β,

where m is the largest integer for which β − mα ∈ Φ; otherwise
[Xα, Xβ] = 0;

ii. Xα ∈ gα = {X ∈ g | ad(H)X = α(H)X ∀H ∈ h}, i.e. each vector Xα

belongs to the weight space of h under the adjoint representation;
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iii. Setting Hα = [Xα, Xα] and (α, β) := 2 〈α,β〉〈β,β〉 ∈ Z for α, β ∈ Φ, one has

that Hα ∈ h\ {0} and [Hα, Xβ] = (β, α)Xβ;

iv. {Hα}α∈Φ spans h, the set {Hα, Xα}α∈Φ is a basis for g, and there is
a decomposition g = h⊕ (⊕α∈Φgα).

A basis {Hα, Xα}α∈Φ for g as above is known as a Chevalley basis and
the Z-Lie ring gZ generated by it is sometimes called a Chevalley lattice.
Using gZ alone, one may already proceed to construct the first examples of
Chevalley–Demazure groups over fields, namely those of adjoint type. Such
groups yield, for instance, infinite families of simple groups (both finite and
infinite). These were the groups introduced in [41], later popularized as
Chevalley groups; see e.g. [39]. The next step to construct more general
group schemes is to allow for different representations of g.

Let Psc = {χ ∈ h | χ(H) ∈ Z ∀H ∈ h} be the lattice of weights of h and
let Pad = spanZ(Φ) ⊆ Psc be the root lattice. If ρ : g → gl(V ) is a faithful
representation of g, then Pad ⊆ Pρ ⊆ Psc, where Pρ = {χ ∈ h∗ | Vχ 6= {0}}
denotes the lattice of weights of the representation ρ. (Recall that Vχ =
{X ∈ V | χ(H)X = ρ(H)X ∀H ∈ h}.) Conversely, given P ⊆ h∗ with Pad ⊆
P ⊆ Psc, there exists a faithful representation ρ : g → gl(V ) such that
Pρ = P ; see, for instance, [80, 21, 59].

Fix a lattice P := Pρ as above. From Kostant’s construction [62, Thm.
1 and Cor. 1], one can define a Z-lattice Bρ in the universal enveloping
algebra U(g) and a certain family F of ideals of Bρ [62, Section 1.3 and p.
98] such that

Z[GC, P ] := {f ∈ Hom(Bρ,Z) | f vanishes on some I ∈ F}

is a Hopf algebra over Z with the following properties:

i. Z[GC, P ] is a finitely generated integral domain;

ii. The coordinate ring C[GC] is isomorphic to the Hopf algebra
Z[GC, P ]⊗Z C.

In particular, we get a representable functor GPΦ := HomZ(Z[GC, P ],−) from
the category of commutative rings with unity to the category of groups.
Since the Lie group GC and the representation ρ are determined, up to
isomorphism, by the root system Φ and the lattice P , respectively, we see
that GPΦ depends only on Φ and P up to isomorphism. Moreover, by (ii) we
recover GC ∼= GPΦ (C) as the group of C-points of GPΦ . The functor GPΦ also
inherits some properties of GC. Namely, it is semi-simple (in the sense of
Demazure–Grothendieck [48]) and contains a maximal torus of rank rk(Φ)
defined over Z. Demazure’s theorem [48, Exposé XXIII, Cor. 5.4] ensures
that GPΦ is unique up to isomorphism. A detailed proof of existence is also
given in [48, Exposé XXV]. (See also Lusztig’s recent approach [66] to the
construction of Kostant.) We summarize the discussion with the following.
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Definition/Theorem 1.5 (Chevalley, Ree, Demazure [42, 80, 48, 62]).
Given a reduced root system Φ and a lattice P with Pad ⊆ P ⊆ Psc, the
Chevalley–Demazure group scheme of type (Φ, P ) is the split, semi-simple,
affine group scheme GPΦ defined over Z such that, for any field k, the split,
semi-simple, linear algebraic group of type Φ and defined over k is isomorphic
to GPΦ ⊗Z k.

By a Chevalley–Demazure group we mean the group of R-points GPΦ (R)
of some Chevalley–Demazure group scheme GPΦ for some commutative ring
R with unity. Of course, the two extreme cases of P deserve special names.
If P = Pad, the root lattice, then GPadΦ is said to be of adjoint type and we

write GPadΦ =: GadΦ in case Φ is, in addition, irreducible. If P = Psc, the full
lattice of weights of g, then GPΦ is of simply-connected type. If, moreover, Φ
is irreducible, then GPscΦ is called universal, and we write Gsc

Φ := GPscΦ .
The group scheme GPΦ has the following properties. Let y be an inde-

pendent variable. For each α ∈ Φ we get a monomorphism of the additive
group scheme Ga = Hom(Z[y],−) into HomZ(Z[GC, P ],−) = GPΦ . Fix a ring
R. Given an element r ∈ (R,+) = Ga(R), we denote its image under the
map above by xα(r) ∈ GPΦ (R). The unipotent root subgroup associated to
α is defined as Xα(R) := 〈xα(r) | r ∈ R〉 ≤ GPΦ (R), which is isomorphic to
Ga(R). Furthermore, the map Ga ↪→ GPΦ can be chosen so that

SL2(R) 3 ( 1 r
0 1 ) 7→ xα(r) and SL2(R) 3 ( 1 0

r 1 ) 7→ x−α(r).

In particular, if P = Psc, we obtain an isomorphism from the subgroup
of elementary matrices 〈E12(R),E21(R)〉 ≤ SL2(R) to the subgroup
〈Xα(R),X−α(R)〉 ≤ Gsc

Φ (R). Accordingly, we define the elementary sub-
group EPΦ of GPΦ to be its subgroup generated by all unipotent root elements,
that is

EPΦ (R) = 〈Xα(R) : α ∈ Φ〉 ≤ GPΦ (R).

In particular, EscAn−1
(R) = En(R) ≤ SLn(R). In the Chevalley–Demazure

setting, EPΦ (R) is the analogue of the elementary subgroup GEn of GLn.
The groups EPΦ (R) and GPΦ (R) need not coincide in general, but they are
known to be equal in some important cases—perhaps most prominently in
the case where GPΦ is universal and R is a field.

The maps from Ga into the Xα ≤ GPΦ as above also induce, for each
α ∈ Φ, an embedding of the multiplicative group Gm

∼=
( ∗ 0

0 ∗−1

)
↪→ GPΦ .

Given a unit u ∈ (R×, ·) = Gm(R) we denote by hα(u) the image of the
matrix

(
u 0
0 u−1

)
∈ SL2(R) under the map above. We call Hα(R) :=

〈{hα(u) | u ∈ R×}〉 ≤ GPΦ (R) a semi-simple root subgroup, which is a
subtorus of GPΦ (R). One of the main features of a universal group is that
H(R) := 〈Hα(R) | α ∈ Φ〉 is a maximal split torus of Gsc

Φ (R), defined over Z.
Two root subgroups Xα,Xβ with α 6= −β are related by the Cheval-

ley commutator formula (or Chevalley relations). If xα(r) ∈ Xα(R) and
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xβ(s) ∈ Xβ(R), then

[xα(r), xβ(s)] =


∏

m,n>0

mα+nβ∈Φ

xmα+nβ(rmsn)C
α,β
m,n if α+ β ∈ Φ,

1 otherwise,

(1.8)

where the powers Cα,βm,n, called structure constants, always belong to
{0,±1,±2,±3} and do not depend on r nor on s, but rather on α, on β, and
on the chosen total order on the set of simple roots ∆ ⊂ Φ. The formulae
above generalize the commutator relations (1.1) that we saw earlier for the
general linear group.

Example 1.6. Suppose rk(Φ) = n − 1 ≥ 2. Then
EscAn−1

(R) = En(R) ≤ SLn(R), the subgroup of GLn(R) gener-
ated by all elementary transvections. A set of simple roots of An−1 is given
by ∆ = {α1, . . . , αn−1} for αi = vi − vi+1 and 1 ≤ i ≤ n − 1, where
{vj}nj=1 ⊆ Rn is the canonical basis.
Via the usual identification ei,i+1(r)←→ xαi(r) of elementary matrices with
unipotent root elements, we iteratively recover all unipotent root subgroups
as well as the commutator formulae (1.8) in type An−1. For instance,
we can see that xαi+αi+1(r) = [ei,i+1(r), ei+1,i+2(1)], and the commutator
formulae assume the simpler form

[xα(r), xβ(s)] =

{
xα+β(rs) if α+ β ∈ Φ;

1 otherwise.

These are precisely the same relations shown in (1.1).

Steinberg derives in [93, Chapter 3] a series of consequences of the com-
mutator formulae, nowadays known as Steinberg relations. Among those,
we highlight the ones that relate the subtori Hβ to the root subgroups Xα.
Given hβ(u) ∈ Hβ(R) and xα(r) ∈ Xα(R), the following conjugation relation
holds.

hβ(u)xα(r)hβ(u)−1 = xα(u(α,β)r), (1.9)

where (α, β) ∈ {0,±1,±2,±3} is the corresponding Cartan integer from
Chevalley’s Theorem 1.4. The relations above are the analogues of the
diagonal relations (1.2) seen before for the general linear group.

Let W be the Weyl group associated to Φ. The Steinberg relations (1.9)
behave well with respect to the W -action on the roots Φ. More precisely,
let α ∈ Φ ⊆ Rrk(Φ) and let rα ∈ W be the associated reflection. The group
W has a canonical copy in EPΦ obtained via the assignment

rα 7→ wα := xα(1)x−α(1)−1xα(1) = image of
(

0 1
−1 0

)
∈ E2,
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under the map E2 → 〈Xα,X−α〉 above. With the above notation, given
arbitrary roots β, γ ∈ Φ, one has

hrα(γ)(v)xrα(β)(s)hrα(γ)(v)−1 = wα(hγ(v)xβ(s)±1hγ(v)−1)w−1
α

= xrα(β)(v
(β,γ)s)±1,

(1.10)

where the sign ±1 above does not depend on v ∈ R× nor on s ∈ R. We
shall sometimes refer to the relations above as Weyl relations.

Similarly to subgroups of triangular matrices in GLn, the Borel sub-
groups of Chevalley–Demazure groups GPΦ play an important role in their
structure theory. Results such as the Bruhat decomposition hold equally
well for GPΦ ; see e.g. [22, 48]. For our purposes, we define the standard Borel
subgroup BΦ of the universal Chevalley–Demazure group Gsc

Φ as

BΦ(R) = 〈Hα(R), Xα(R) : α ∈ Φ+〉 ≤ Gsc
Φ (R).

In particular, BAn−1(R) = B◦n(R).
The explicit construction of reduced, irreducible root systems leads to

the following.

Remark 1.7. For every n ≥ 1 there exist the following Z-embeddings of
Chevalley–Demazure group schemes:

Gsc
An ↪→ G

sc
An+1

, Gsc
An ↪→ G

sc
Bn+1

, Gsc
An ↪→ G

sc
Cn+1

, Gsc
An ↪→ G

sc
Dn+1

(n ≥ 3),

Gsc
Bn ↪→ G

sc
Bn+1

(n ≥ 2), Gsc
B3
↪→ Gsc

F4
, Gsc

Cn ↪→ G
sc
Cn+1

(n ≥ 2), Gsc
C3
↪→ Gsc

F4
,

Gsc
Dn ↪→ G

sc
Dn+1

(n ≥ 4), Gsc
D5
↪→ Gsc

E6
, Gsc

E6
↪→ Gsc

E7
, Gsc

E7
↪→ Gsc

E8
.

Proof. This follows immediately from Theorem 1.5 and the following natural
embeddings of Dynkin diagrams.

An

An+1

Cn+1Bn+1 Dn+1

Bn+2 Cn+2 Dn+2

long roots
short roots

no ramification

F4

B3 C3

leftmost roots rightmost roots

D5 E6 E7 E8

There are, of course, many other embeddings of Chevalley–Demazure
group schemes into one another besides those listed on Remark 1.7, though
we will not need them in this work.
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1.1.4 S-arithmetic groups

The most important examples of matrix groups to which the main results
of this thesis apply are the so-called S-arithmetic groups. Below we briefly
recall their definition—we refer the reader e.g. to [76, 69, 73] for a proper
introduction to arithmetic lattices and their S-arithmetic counterparts. As
usual, we draw from [22, 48] standard results on linear algebraic groups.

Let G be a linear algebraic group defined over a global field K, i.e. a
finite extension either of the rational numbers Q or of a function field Fq(t)
with coefficients in a finite field Fq. In what follows, S denotes a finite set
of places of K—a further standing assumption is that S contains all the
archimedean places and that S 6= ∅ if char(K) > 0. Recall that the ring of
S-integers OS ⊆ K is the subring

OS = {x ∈ K : |x|v ≤ 1 for all [v] /∈ S} ;

see e.g. [56, p. 86]. In this set-up, S is sometimes called a Hasse set of
valuations on K and OS is also known in the literature as a Dedekind ring
of arithmetic type. Loosely speaking, OS is the subring of K of all elements
which are ‘integers’ except possibly at S. Typical examples of such rings
include: Z[ 1

p1···pn ], the ring of rational integers whose denominators have

divisors only in {p1, . . . , pn} ⊂ N; the ring Fq[t, t−1] of Laurent polynomi-
als with coefficients in a finite field Fq; and OL, the ring of integers of an
algebraic number field L.

Definition 1.8. A subgroup Γ ≤ G is called S-arithmetic if it is com-
mensurable with ρ−1(GLn(OS)) ≤ G for some faithful K-representation
ρ : G ↪→ GLn.

Besides the ones seen in the introduction, examples of S-arithmetic
groups are scattered everywhere around this work. Indeed, given a ma-
trix group G, that is, an affine Z-group subscheme G ≤ GLn, we can always
take the group of R-points G(R) for any commutative ring R with unity.
In particular, G(OS) is an S-arithmetic subgroup of G considered as an
algebraic group over K = Frac(OS).

Of course, G(OS) is not the only S-arithmetic subgroup of G—different
K-embeddings θ : G ↪→ GLm usually yield non-isomorphic S-arithmetic
subgroups of G. However, all S-arithmetic subgroups of a given linear al-
gebraic group lie in the same commensurability class; see, for instance, [69,
Section 3.1].

1.2 Basics on the finiteness length

As highlighted in the introduction, the finiteness length is useful for
many reasons. Perhaps one of the most important ones is the fact that it is a
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quasi-isometry invariant. In a recent remarkable paper, Skipper, Witzel and
Zaremsky used such invariant to construct infinitely many quasi-isometry
classes of finitely presented simple groups [88].

Lemma 1.9. Let G and H be quasi-isometric groups. Then φ(G) = φ(H).
In particular, if H and G are commensurable, then φ(G) = φ(H).

Refer to [8] for a proof of Lemma 1.9. As pointed out in Section 1.1.4,
all S-arithmetic subgroups of a given linear algebraic group G are com-
mensurable. In particular, if ρ : G ↪→ GLn is any Frac(OS)-embedding,
Lemma 1.9 implies that φ(Γ) = φ(ρ(G) ∩ GLn(OS)) for all S-arithmetic
subgroups Γ ≤ G.

In fortunate cases, the finiteness length of a group is handed to us by
nature.

Example 1.10. Since a classifying space for a finite group can be con-
structed from a compact presentation 2-complex by inductively adding
finitely many cells in each dimension to kill higher homotopy groups, it
follows that all finite groups have unbounded finiteness length. In symbols,
φ(G) =∞ whenever |G| <∞.

Example 1.11. Using Lemma 1.9, it is easy to check that finitely generated
abelian groups also have unbounded finiteness length. Indeed, if A is such
a group, then Lemma 1.9 implies φ(A) = φ(A/tor(A)), where tor(A) is the
torsion part of A. But A/tor(A) is just a free abelian group of finite rank,
i.e. it is isomorphic to Zn for some n ∈ Z≥0. Since Zn has the n-torus as a
classifying space, it follows that φ(A/tor(A)) =∞, as claimed.

Example 1.12. More generally, all the groups G from the first paragraph
of the introduction satisfy φ(G) =∞; see e.g. [79, 6].

The finiteness length can also be defined in terms of Wall’s homotopical
finiteness properties [101]. A group G is said to be of type Fn if it admits
a classifying space with finite n-skeleton. Thus, φ(G) is the largest n for
which G is of type Fn—in case G is of type Fn for all n (equivalently, if its
finiteness length is unbounded), we say that G is of type F∞ (resp. we write
φ(G) =∞).

All groups are of type F0. Considering algebraic finiteness properties [79],
one has the following. By looking, for instance, at Cayley graphs, one shows
that G is of type F1 if and only if it admits a finite generating set—in
particular, Gmust be countable. Passing to presentation 2-complexes, which
are quotients of Cayley complexes by the group action, one sees that G is of
type F2 if and only if it is finitely presented. Furthermore, attaching 3-cells
to a compact presentation 2-complex to kill its second homotopy, one proves
that G is of type F3 if and only if it is finitely identified [75]. This shows
how lower bounds on the finiteness length recover familiar properties.
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The following result shows how finiteness properties behave under group
extensions.

Lemma 1.13. Consider a short exact sequence

N ↪→ G� Q.

If N and Q are of type Fn, then so is G. In case N is of type Fn−1 and G
is of type Fn, then Q is of type Fn. If the sequence splits and G is of type
Fn, then the retract Q is also of type Fn.

We refer the reader e.g. to [79, Theorems 4 and 6] for a proof of the
above. Lemma 1.13 can be used to give useful bounds on the finiteness
length of groups which fit into short exact sequences.

Corollary 1.14. Given a short exact sequence

N ↪→ G� Q,

the following hold.

i. If φ(Q) =∞, then φ(N) ≤ φ(G).

ii. If φ(N) =∞, then φ(Q) = φ(G).

iii. If the sequence splits, then φ(G) ≤ φ(Q).

iv. If the sequence splits trivially, i.e. G = N × Q, then
φ(G) = min {φ(N), φ(Q)}.

Proof. If Q (resp. N) enjoys all finiteness properties Fn, then G in-
herits all finiteness properties from N (resp. from Q) by Lemma 1.13,
whence (i) and (ii) follow. Part (iii) is just the third claim of
Lemma 1.13 restated in the language of finiteness length. By (iii),
one has φ(N × Q) ≤ min {φ(N), φ(Q)}. If both N and Q are of
type Fn, then so is N × Q by the first claim of Lemma 1.13, whence
φ(N ×Q) ≥ min {φ(N), φ(Q)}.
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Chapter 2

The retraction tool

In this chapter we give an upper bound on the finiteness length of groups
which admit certain split soluble representations, and present some conse-
quences of this result. Typical examples to which the theorem below applies
include many soluble (non-nilpotent) linear groups and some parabolic sub-
groups of classical groups.

The first main result of this thesis is the following.

Theorem 2.1 (Theorem C, restated). Suppose a group Γ retracts onto a
soluble matrix group X(R) oH(R) ≤ G(R), where X and H denote, respec-
tively, a unipotent root subgroup and a maximal torus of a classical matrix
group G. Then φ(Γ) ≤ φ(B◦2(R)).

Recall that [33, Corollary 3.5 and Theorem 5.1] show that
φ(B(OS)) ≤ φ(B◦2(OS)) in the case where B is a Borel subgroup of a
Chevalley–Demazure group scheme and OS is an S-arithmetic ring in posi-
tive characteristic. Theorem 2.1 thus generalizes Bux’s inequality to a much
wider class of groups, but now with a fairly elementary proof, to be given
below in Section 2.1. In Section 2.2 we give examples of groups for which
Theorem 2.1 holds. We also combine Theorem 2.1 with some known results
to give a new proof of (a generalization of) the main result of [33].

2.1 Proof of Theorem 2.1

The hypotheses of the theorem already yield an obvious bound on the
finiteness length of the given groups by Corollary 1.14. Indeed, in the
notation of Theorem 2.1, Corollary 1.14(iii) shows that φ(Γ) ≤ φ(X(R) o
H(R)). The actual work thus consists of proving that the finiteness length
of X(R) oH(R) is no greater than the desired value, namely the finiteness
length of the standard Borel subgroup B◦2(R) = ( ∗ ∗0 ∗ ) ≤ SL2(R) of rank one.

We begin with the following observation, which is well-known in the
S-arithmetic case.
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Lemma 2.2. For any commutative ring R with unity, the standard Borel
subgroups Bn(R) ≤ GLn(R) and B◦n(R) ≤ SLn(R) have the same finiteness
length, which in turn is no greater than φ(B◦2(R)).

Proof. Though Lemma 2.2 is stated for arbitrary rings, the proof presented
here is essentially Bux’s proof in the S-arithmetic case in positive charac-
teristic; see [33, Remark 3.6].

If |R×| = 1, then there are no diagonal entries other than 1, whence
Bn(R) = B◦n(R) = Un(R), which trivially implies equality of the finiteness
lengths. We may thus assume that R has at least two units. Recall that
both Bn(R) and B◦n(R) retract onto Gm(R). Thus, if Gm(R) is not finitely
generated, then φ(Bn(R)) = φ(B◦n(R)) = φ(B◦2(R)) = 0. Suppose from now
on that Gm(R) is finitely generated.

Consider the central subgroups Zn(R) ≤ Bn(R) and Z◦n(R) ≤ B◦n(R)
given by

Zn(R) =
{

Diag(u, . . . , u) ∈ GLn(R) | u ∈ R×
}

=
{
u1n | u ∈ R×

} ∼= Gm(R)

and

Z◦n(R) = Zn(R) ∩B◦n(R) =
{
u1n | u ∈ R× and un = 1

} ∼= µn(R),

respectively, where µn(R) denotes the group of n-th roots of unity of R.
(Remark: Since R is an arbitrary commutative ring with unity, the groups
above need not coincide with the centers of their overgroups.) Using the
determinant map and passing to projective groups (that is, factoring out
the central subgroups above) we obtain the following commutative diagram
of short exact sequences.

Bn(R)B◦n(R) Gm(R)

Z◦n(R) Zn(R) pown(Gm(R))

PB◦n(R) PBn(R) Gm(R)
pown(Gm(R)) ,

det

where the map pown : Zn(R) → Gm(R) means taking n-th powers, i.e.
pown(u · 1n) = un. Since Gm(R) is a finitely generated (abelian) group, we
have that the groups of the top row and right-most column have finiteness
lengths equal to ∞, whence we obtain, by Corollary 1.14,

φ(PB◦n(R)) = φ(B◦n(R)) ≤ φ(Bn(R)) = φ(PBn(R)) ≥ φ(PB◦n(R)).
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Since the group Gm(R)/pown(Gm(R)) of the bottom right corner is a
(finitely generated) torsion abelian group, it is finite, from which the equality

φ(PBn(R)) = φ(PB◦n(R))

follows, by Lemma 1.9. Together with the inequalities above, this concludes
the proof of the first claim.

Finally, any Bn(R) retracts onto B2(R) via the map

Bn(R) =


∗ ∗ ∗ ··· ∗

0 ∗ ∗
. . .

...

0 0 ∗
. . .

...
...

. . .
. . .

. . . ∗
0 ··· ··· 0 ∗



∗ ∗ 0 ··· 0

0 ∗ 0
. . .

...

0 0 1
. . .

...
...

. . .
. . .

. . . 0
0 ··· ··· 0 1

 ∼= B2(R),

which yields the second claim by Corollary 1.14(iii) and the equality
φ(B◦2(R)) = φ(B2(R)) established above.

Recall that, in the notation of Theorem 2.1, it suffices to show that
φ(X(R)oH(R)) ≤ φ(B◦2(R)). To this end we shall use the standard matrix
representations of classical groups and apply Corollary 1.14 repeatedly. To
do so, however, we have to assume that the group of units Gm(R) of the
underlying base ring R is finitely generated, as we did at some stage during
the proof of Lemma 2.2. This assumption is in fact harmless.

Remark 2.3. If the group of units Gm(R) is not finitely generated, then
Theorem 2.1 holds.

Proof. In this case we have that

0 ≤ φ(Γ) ≤ φ(X(R) oH(R)) ≤ φ(H(R)) ≤ φ(Gm(R)) = 0

and

0 ≤ φ(B◦2(R)) ≤ φ(
{(

u 0
0 u−1

)
| u ∈ R×

}
) = φ(Gm(R)) = 0

by Corollary 1.14(iii), because both the torus H(R) and B◦2(R) retract onto
Gm(R).

In face of Remark 2.3 we may (and do) assume, for the remainder
of this section, that Gm(R) is finitely generated.

Proceeding with the proof of Theorem 2.1, we warm-up by considering
the easier case where the underlying classical group G containing X o H
is the general linear group itself, which will set the tune for the remaining
cases. (Recall that H is a maximal torus of G.)

Proposition 2.4. Theorem 2.1 holds if G = GLn.
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Proof. Here we take a matrix representation of G = GLn such that the given
soluble subgroup XoH is upper triangular. In this case, the maximal torus
H is the subgroup of diagonal matrices of GLn, i.e.

H(R) = Dn(R) =
n∏
i=1

Di(R) ≤ GLn(R),

and X is identified with a subgroup of all elementary matrices in a single
fixed position, say (i, j) with i < j. That is,

X(R) = Eij(R) = 〈{eij(r) | r ∈ R}〉 ≤ GLn(R).

Recall that the action of the torus H(R) = Dn(R) on the unipotent root
subgroup X(R) = Eij(R) is given by the diagonal relations (1.2). But such
relations also imply the decomposition

X(R) oH(R) = Eij(R) o Dn(R) = 〈Eij(R), Di(R), Dj(R)〉 ×
∏
i 6=k 6=j

Dk(R)

∼= B2(R)×Gm(R)n−2

because all diagonal subgroups Dk(R) with k 6= i, j act trivially on the
elementary matrices eij(r). Since we are assuming Gm(R) to be finitely
generated, it follows from Corollary 1.14(iv) and Lemma 2.2 that

φ(X(R) oH(R)) = min
{
φ(B2(R)), φ(Gm(R)n−2)

}
= min {φ(B◦2(R)),∞}
= φ(B◦2(R)).

Having solved the initial case of GLn, we now investigate the situation
where the classical group scheme G in the statement of Theorem 2.1 is a
universal Chevalley–Demazure group scheme, say G = Gsc

Φ with underlying
root system Φ associated to the given maximal torus H ≤ Gsc

Φ and with a
fixed set of simple roots ∆ ⊂ Φ. In this case we have that

H(R) =
∏
α∈∆

Hα(R),

and X is the unipotent root subgroup associated to some (positive) root
η ∈ Φ+, that is,

X(R) = Xη(R) = 〈xη(r) | r ∈ R〉.

The proof proceeds on a case-by-case analysis on the root system Φ and
the given root η ∈ Φ+. Instead of diving into all possible combinations,
however, some obvious reductions can be done.
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Lemma 2.5. If Theorem 2.1 holds whenever G is a universal Chevalley–
Demazure group scheme Gsc

Φ of rank at most four and X = Xη with η ∈ Φ+

simple, then it holds when G is any universal Chevalley–Demazure group
scheme.

Proof. Write X(R) = Xη(R) and H(R) =
∏
α∈∆Hα(R) as above. By the

Weyl relations (1.10), we can find an element w in the Weyl group W
associated to Φ and a corresponding element ω in the image of W in Gsc

Φ (R)
such that w(η) ∈ Φ+ is a simple root and

ω(Xη(R) oH(R))ω−1 ∼= Xw(η)(R) oH(R).

(The conjugation above takes place in the overgroup Gsc
Φ (R).) We may thus

assume η ∈ Φ+ to be simple. From the Steinberg relations (1.9) we have
that

X(R) oH(R) =

Xη(R) o

 ∏
α∈∆
〈η,α〉6=0

Hα(R)


× ∏

β∈∆

〈η,β〉=0

Hβ(R),

which implies that φ(X(R) o H(R)) = φ(Xη(R) o H◦(R)) by Corol-
lary 1.14(iv), where

H◦(R) =
∏
α∈∆
〈η,α〉6=0

Hα(R).

Inspecting the Dynkin diagrams for (reduced, irreducible) root systems, it
follows that the number of simple roots α ∈ ∆ for which 〈η, α〉 6= 0 is at
most four. Since the semi-simple root subgroups generating the torus H◦(R)
are precisely those which might not commute with Xη(R), the embeddings
of Remark 1.7 yield the result.

Thus, in view of Remark 2.3, Proposition 2.4 and Lemma 2.5, the proof
of Theorem 2.1 will be complete once we establish the following.

Proposition 2.6. Theorem 2.1 holds whenever G is a universal Chevalley–
Demazure group scheme Gsc

Φ with

Φ ∈ {A1,A2,C2,G2,A3,B3,C3,D4}

and XoH is of the form

XoH = Xη o

 ∏
α∈∆
〈η,α〉6=0

Hα


with η ∈ Φ+ simple.
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Proof. This time we do not avoid the case-by-case analysis, though the idea
of the proof is quite simple. In each case, we find a matrix group G(Φ, η, R)
satisfying φ(G(Φ, η, R)) = φ(B◦2(R)) and which fits in a short exact sequence

Xη(R) oH(R) ↪→ G(Φ, η, R)� Q(Φ, η, R)

where Q(Φ, η, R) is finitely generated abelian. In fact, G(Φ, η, R) is often
taken to be Xη(R) oH(R) itself so that Q(Φ, η, R) is trivial in many cases.
The proposition thus follows from Corollary 1.14(i).

To construct the matrix groups G(Φ, η, R) above, we use mostly Ree’s
matrix representations of classical groups [80] as worked out by Carter
in [39]. (Recall that the case of Type B2 was cleared by Dieudonné [50] after
left open in Ree’s paper.) In the exceptional case G2 we follow Seligman’s
identification from [85]. We remark, however, that Seligman’s numbering of
indices agrees with that of Carter’s for G2 as a subalgebra of B3.

Type A: We identify the scheme Gsc
An

with SLn+1 so that the soluble
subgroup Xη oH ≤ SLn+1 is upper triangular and the given maximal torus
H of SLn+1 is the subgroup of diagonal matrices. Now, if rk(Φ) = 1, then
there is nothing to check, for in this case Xη(R)oH(R) itself is isomorphic to
B◦2(R). If Φ = A2, identify Xη(R) with the root subgroup E12(R) ≤ SL3(R)
so that

Xη(R) oH(R) =

{(
a r 0
0 b 0
0 0 (ab)−1

)
∈ SL3(R)

∣∣∣∣ a, b ∈ R×, r ∈ R} .
It follows that Xη(R) oH(R) is isomorphic to B2(R) via

Xη(R) oH(R) 3
(
a r 0
0 b 0
0 0 (ab)−1

) (
a r
0 b

)
∈ B2(R) ≤ GL2(R).

(Recall that B2(R) has the same finiteness length as B◦2(R) by Lemma 2.2.)
Concluding the case of Type A, if Φ = A3 we identify Xη(R) with the root
subgroup E23(R) ≤ SL4(R), which gives

Xη(R) oH(R) =

{(
a 0 0 0
0 b r 0
0 0 c 0
0 0 0 (abc)−1

)
∈ SL3(R)

∣∣∣∣∣ a, b, c ∈ R×, r ∈ R
}
.

Here, Xη(R)oH(R) is isomorphic to the group B2(R)×Gm(R) via the map

Xη(R) oH(R) 3

(
a 0 0 0
0 b r 0
0 0 c 0
0 0 0 (abc)−1

) ((
b r
0 c

)
, a

)
∈ B2(R)×Gm(R).

Thus, φ(Xη(R)oH(R)) = φ(B◦2(R)) by Corollary 1.14(iv) and Lemma 2.2.
In the notation given in the beginning of the proof, we have defined the
groups G(A1, η, R), G(A2, η, R) and G(A3, η, R) to be Xη(R) oH(R).
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Type C: Suppose Φ = Cn. Following Ree and Carter we identify Gsc
Cn

with the symplectic group Sp2n ≤ SL2n. If Φ = C2, denote by ∆ = {α, β}
the set of simple roots, where α is short and β is long. The unipotent root
subgroups are given by

Xα(R) = 〈
{
e12(r)e43(r)−1 ∈ SL4(R) | r ∈ R}

}
〉

and
Xβ(R) = E24(R) = 〈{e24(r) ∈ SL4(R) | r ∈ R}}〉,

whereas the maximal torus H(R) is the diagonal subgroup

H(R) = 〈Hα(R),Hβ(R)〉 = 〈{Diag(a, a−1, a−1, a),

Diag(1, b, 1, b−1) ∈ SL4(R) | a, b ∈ R×}〉.

Now, if η = α (that is, if η is a short root), then Xη(R)oH(R) is the group

Xη(R) oH(R) =

{(
u r 0 0
0 v 0 0
0 0 u−1 0
0 0 −r v−1

)
∈ Sp4(R)

∣∣∣∣∣u, v ∈ R×, r ∈ R
}
.

Hence, Xη(R) oH(R) is isomorphic to B2(R) via

Xη(R) oH(R) 3

(
u r 0 0
0 v 0 0
0 0 u−1 0
0 0 −r v−1

) (
u r
0 v

)
∈ B2(R),

which yields φ(Xη(R) o H(R)) = φ(B◦2(R)) by Lemma 2.2. On the other
hand, if η = β (i.e. η is long), then Xη(R) oH(R) is given by

Xη(R) oH(R) =

{( u 0 0 0
0 v 0 r
0 0 u−1 0
0 0 0 v−1

)
∈ Sp4(R)

∣∣∣∣u, v ∈ R×, r ∈ R} ,
which is isomorphic to B◦2(R)×Gm(R) via

Xη(R) oH(R) 3
( u 0 0 0

0 v 0 r
0 0 u−1 0
0 0 0 v−1

) ((
v r
0 v−1

)
, u

)
∈ B◦2(R)×Gm(R).

Thus, φ(Xη(R)oH(R)) = φ(B◦2(R)) by Corollary 1.14(iv). Again we have
simply defined G(C2, η, R) = Xη(R)oH(R) for any choice of η ∈ C2 simple.

Lastly, assume Φ = C3 and denote its set of simple roots by ∆ =
{α1, α2, β}, where β is the long root. We have Gsc

C3
= Sp6 with the root

subgroups given by the following matrix subgroups.

Xα1(R) = 〈
{
e12(r)e54(r)−1 ∈ SL6(R) | r ∈ R

}
〉,

Xα2(R) = 〈
{
e23(r)e65(r)−1 ∈ SL6(R) | r ∈ R

}
〉,
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Xβ(R) = E36(R) = 〈{e36(r) ∈ SL6(R) | r ∈ R}〉,

and

H(R) = 〈Hα1(R),Hα2(R),Hβ(R)〉 = 〈{Diag(a1, a
−1
1 , 1, a−1

1 , a1, 1),

Diag(1, a2, a
−1
2 , 1, a−1

2 , a2),Diag(1, 1, b, 1, 1, b−1) ∈ SL6(R) | a1, a2, b ∈ R×}〉.

Here we are only interested in the case where η is the central root α2, for
otherwise η would be orthogonal to one of the other simple roots. Thus,

Xη(R) oH(R) =




u 0 0 0 0 0
0 v r 0 0 0
0 0 w 0 0 0
0 0 0 u−1 0 0
0 0 0 0 v−1 0
0 0 0 0 −r w−1

 ∈ Sp6(R)

∣∣∣∣∣∣∣u, v, w ∈ R×, r ∈ R
 .

The isomorphism

Xη(R) oH(R) 3


u 0 0 0 0 0
0 v r 0 0 0
0 0 w 0 0 0
0 0 0 u−1 0 0
0 0 0 0 v−1 0
0 0 0 0 −r w−1

 (( v r
0 w ) , u) ∈ B2(R)×Gm(R)

then yields φ(Xη(R)oH(R)) = φ(B2(R)) = φ(B◦2(R)) by Corollary 1.14(iv)
and Lemma 2.2—once again, G(C3, η, R) = Xη(R) oH(R) does the job.

Type D: The case of maximal rank concerns the root system Φ = D4,
with set of simple roots {α1, α2, α3, α4} and the given simple root η being
equal to the central root α2 which is not orthogonal to any other simple
root. Here, Gsc

D4
= SO8. Following Ree and Carter, the root subgroups and

the maximal torus are given as follows.

Xα1(R) = 〈
{
e12(r)e−1

65 ∈ SL8(R) | r ∈ R
}
〉,

Xα2(R) = 〈
{
e23(r)e−1

76 ∈ SL8(R) | r ∈ R
}
〉,

Xα3(R) = 〈
{
e34(r)e−1

87 ∈ SL8(R) | r ∈ R
}
〉,

Xα4(R) = 〈
{
e38(r)e−1

47 ∈ SL8(R) | r ∈ R
}
〉,

and

H(R) =〈Hα1(R), Hα2(R), Hα3(R), Hα4(R)〉
=〈{Diag(a1, a

−1
1 , 1, 1, a−1

1 , a1, 1, 1), Diag(1, a2, a
−1
2 , 1, 1, a−1

2 , a2, 1),

Diag(1, 1, a3, a
−1
3 , 1, 1, a−1

3 , a3), Diag(1, 1, a4, a4, 1, 1, a
−1
4 , a−1

4 )

∈ SL8(R) | a1, a2, a3, a4 ∈ R×}〉.

The torus H(R) is a subgroup of the diagonal group T (R) given by

T (R) = 〈
{

Diag(u, v, w, x, u−1, v−1, w−1, x−1) ∈ SL8(R) | u, v, w, x ∈ R×
}
〉.
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Recall that η = α2, the central root. Set G(D4, α2, R) = Xη(R)oT (R). We
have a short exact sequence

Xη(R) oH(R) ↪→ G(D4, α2, R)�
T (R)

H(R)
,

from which we deduce φ(Xη(R) o H(R)) ≤ φ(G(D4, α2, R) by Corol-
lary 1.14(i) because the quotient T (R)/H(R) is finitely generated abelian.
But G(D4, α2, R) is isomorphic to B2(R)×Gm(R)2 via

G(D4, α2, R) 3


u 0 0 0 0 0 0 0
0 v r 0 0 0 0 0
0 0 w 0 0 0 0 0
0 0 0 x 0 0 0 0
0 0 0 0 u−1 0 0 0
0 0 0 0 0 v−1 0 0
0 0 0 0 0 −r w−1 0
0 0 0 0 0 0 0 x−1

 (( v r
0 w ) , u, x),

whence φ(G(D4, α2, R)) = φ(B2(R)) = φ(B◦2(R)) by Corollary 1.14(iv) and
Lemma 2.2.

Types B and G: For simplicity, we approach the remaining cases at once
since we shall use the embedding of the group of type G2 into the special
orthogonal group of type B3. For convenience, we assume from now on that
the base ring R has char(R) 6= 2 in order to simplify the choice of a symmet-
ric matrix preserved by the elements of Gsc

B3
(R) = SO7(R). This assumption

is harmless, for the proof in the case char(R) = 2 follows analogously (after
a change of basis) using Dieudounné’s matrix representation [50] since the
underlying quadratic form preserved by the ambient group SO7 is the same.

Denote by ∆ = {α1, α2, β} the set of simple roots of B3, where β is the
short root. The root subgroups are given below.

Xα1(R) = 〈
{
e23(r)e65(r)−1 ∈ SL7(R) | r ∈ R

}
〉,

Xα2(R) = 〈
{
e34(r)e76(r)−1 ∈ SL7(R) | r ∈ R

}
〉,

Xβ(R) = 〈{exp(r · (2 · E41 − E17)) ∈ SL7(R) | r ∈ R}〉,

Hα1(R) = 〈
{

Diag(1, a1, a
−1
1 , 1, a−1

1 , a1, 1) ∈ SL7(R) | a1 ∈ R×
}
〉,

Hα2(R) = 〈
{

Diag(1, 1, a2, a
−1
2 , 1, a−1

2 , a2) ∈ SL7(R) | a2 ∈ R×
}
〉,

and

Hβ(R) = 〈
{

Diag(1, 1, 1, b2, 1, 1, b−2) ∈ SL7(R) | b ∈ R×
}
〉.

Now let Λ = {α, γ} denote the set of simple roots of G2, where γ is the
short root. In the identification above, the embedding of G2 into B3 maps
the long root α ∈ G2 to the (long) root α1 ∈ B3, and the root subgroups of
Gsc

G2
≤ Gsc

B3
= SO7 are listed below.

Xα(R) = Xα1(R),
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Xγ(R) = 〈{exp(r · (2 · E12 + E37 − E46 − E51)) ∈ SL7(R) | r ∈ R}〉,

Hα(R) = Hα1(R),

and

Hγ(R) = 〈
{

Diag(1, c−2, c, c, c2, c−1, c−1) ∈ SL7(R) | c ∈ R×
}
〉.

We now return to the soluble subgroup Xη o H ≤ Gsc
Φ . In the case

Φ = B3, the maximal torus H(R) is the diagonal subgroup H(R) =
〈Hα1(R), Hα2(R), Hβ(R)〉 and η is the middle simple root α2 which is not
orthogonal to the other simple roots, so that Xη(R) = Xα2(R). Let T (R) be
the diagonal group

T (R) = 〈
{

Diag(1, u, v, w, u−1, v−1, w−1) ∈ SL7(R) | u, v, w ∈ R×
}
〉.

Setting G(B3, α2, R) = Xη(R) o T (R) we obtain a short exact sequence

Xη(R) oH(R) ↪→ G(B3, α2, R)�
T (R)

H(R)
,

which gives φ(Xη(R) oH(R)) ≤ φ(G(B3, α2, R)) by Corollary 1.14(i). But
the isomorphism G(B3, α2, R) ∼= B2(R)×Gm(R) given by

G(B3, α2, R) 3


1 0 0 0 0 0 0
0 u 0 0 0 0 0
0 0 v r 0 0 0
0 0 0 w 0 0 0
0 0 0 0 u−1 0 0
0 0 0 0 0 v−1 0
0 0 0 0 0 −r w−1

 (( v r
0 w ) , u),

yields φ(G(B3, α2, R)) = φ(B2(R) = φ(B◦2(R)) by Corollary 1.14(iv) and
Lemma 2.2.

Suppose now that Φ = G2. The maximal torus H(R) is the diagonal
subgroup H(R) = 〈Hα(R), Hγ(R)〉. This time we consider the diagonal
subgroup T (R) given by

T (R) = 〈
{

Diag(1, u, v, u−1v−1, u−1, v−1, uv) ∈ SL7(R) | u, v ∈ R×
}
〉

and let G(G2, η, R) = Xη(R)oT (R), again obtaining a short exact sequence
Xη(R) o H(R) ↪→ G(G2, η, R) � T (R)/H(R) giving φ(Xη(R) o H(R)) ≤
φ(G(G2, η, R)). If η is the long root α = α1, then the map

G(G2, η, R) = Xα1(R) o T (R) 3


1 0 0 0 0 0 0
0 u r 0 0 0 0
0 0 v 0 0 0 0
0 0 0 u−1v−1 0 0 0
0 0 0 0 u−1 0 0
0 0 0 0 −r v−1 0
0 0 0 0 0 0 uv

 ( u r0 v )
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yields an isomorphism G(G2, η, R) ∼= B2(R), whence φ(G(G2, η, R)) =
φ(B◦2(R)) by Lemma 2.2. If η is the short root γ, we observe that

G(G2, η, R) = Xγ(R) oH(R) ∼= (Xγ(R) oHα(R))×Gm(R)

because for any xγ(r) = exp(r · (2 · E12 + E37 − E46 − E51)) ∈ Xγ(R) and
d = Diag(1, u, v, u−1v−1, u−1, v−1, uv) ∈ T (R) the following holds.

dxγ(r)d−1 = d


1 2r 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 r
0 0 0 1 0 −r 0
−r −r2 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 d−1 =


1 u−12r 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 u−1r
0 0 0 1 0 −u−1r 0

−u−1r −u−2r2 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 .

Hence, φ(G(G2, η, R)) = φ(Xγ(R) o Hα(R)). The latter group, however,
is isomorphic to the matrix group {( 1 r

0 u ) ∈ GL2(R) | r ∈ R, u ∈ R×}, which
in turn is isomorphic to Ga(R) o Gm(R) = {( ∗ ∗0 1 )} ≤ GL2(R) by inverting
the action of the diagonal matrices on the unipotent part. However, due
to our standing assumption that Gm(R) is finitely generated, we have that
the group Ga(R) o Gm(R) described above is commensurable with B◦2(R).
Indeed, B◦2(R) contains a subgroup of finite index which is isomorphic to a
group of the form {(

u2 r
0 1

)
∈ GL2(R) | u ∈ S×, r ∈ R

}
for some (torsion-free) subgroup of units S ⊆ R×. Since the group above is
a subgroup of finite index of Ga(R) oGm(R), the claim follows. Thus,

φ(Xη(R) oHα(R)) = φ(Ga(R) oGm(R)) = φ(B◦2(R))

by Lemma 1.9. This finishes the proof of the proposition and thus of The-
orem 2.1.

2.2 Applications

In this section, we give some concrete examples of groups for which
Theorem 2.1 holds. We also combine the theorem to important results due
to Bestvina–Eskin–Wortman and Gandini in order to generalize (and obtain
a new proof of) Bux’s main result in [33]. We begin with the examples,
some of which will show up in the following chapters.

Example 2.7. The soluble affine Z-group subscheme A4 ≤ GL4 below
retracts onto B2 as follows.

A4(R) =

(
1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 1

) (
1 0 0 0
0 ∗ ∗ 0
0 0 ∗ 0
0 0 0 1

)
∼= B2(R) ≤ GL2(R).
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Hence φ(A4(R)) ≤ φ(B◦2(R)) by Theorem 2.1. In fact, soluble matrix
groups are the ‘obvious’ candidates to apply Theorem 2.1.

Example 2.8. On the other hand, it is not hard to find non-soluble ex-
amples for which Theorem 2.1 holds. Consider the following subgroup of
SL12(Z[t, t−1]).

P2(Z[t, t−1]) =



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗

 ≤ SL12(Z[t, t−1]).

Although P2(Z[t, t−1]) itself does not retract onto B◦2(Z[t, t−1]), it does admit
a retract onto the following soluble subgroup of SL4(Z[t, t−1]).

14 0 ··· ··· 0

0 ∗ 0 0
. . .

...
... 0 ∗ ∗ 0

0 0 ∗ 0
...

...
. . . 0 0 ∗ 0

0 ··· ··· 0 14

 ∼= E23(Z[t, t−1]) o (D4(Z[t, t−1]) ∩ SL4(Z[t, t−1])).

This yields φ(P2(Z[t, t−1])) ≤ 1 by Theorem 2.1 and [64, Section 4]. In
particular, P2(Z[t, t−1]) can never be finitely presented.

Example 2.9. Classical results also yield many non-linear examples for
which Theorem 2.1 applies, though for rather trivial reasons.
For instance, suppose R is such that |R×| ≥ 2 with a generator s ∈ R× of
even or unbounded order. Consider a Borel subgroup BΦ(R) of a Chevalley–
Demazure group Gsc

Φ (R); cf. Section 1.1.3 for definitions and notation. Then
we can always find an epimorphism Ψ : BΦ(R) � C2 = 〈x | x2〉. For
example, take the map induced by

hα(s) 7→ x for some fixed simple root α ∈ Φ+,

hδ(s
′) 7→ 1 whenever R× 3 s′ 6= s or δ 6= α,

xδ(r) 7→ 1 for all r ∈ R and δ ∈ Φ.

Consequently, there is an action

ψ : BΦ(R)→ Aut(BS(`,m))

on a Baumslag–Solitar group BS(`,m) = 〈a, t | t−1a`t = am〉 by sending
BΦ(R) onto the subgroup C2

∼= 〈β〉 ≤ Aut(BS(`,m)) via Ψ, where β is the
involution given by a 7→ a−1 and t 7→ t. Thus, the group

G = BS(`,m) oψ BΦ(R)
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is an example to which Theorem 2.1 applies and which is non-linear when-
ever `,m ∈ Z\ {0, 1} are coprime. This is because such a BS(`,m) is
not residually finite; refer e.g. to [45] for some well-known results on
Bausmalg–Solitar groups and their automorphisms. (In fact, we even have
φ(G) = φ(BΦ(R)) by Corollary 1.14 because finitely generated one-relator
groups have aspherical presentation 2-complexes [52].)

Most notably, we can apply Theorem 2.1 to the following series of exam-
ples, which relate to groups of type (R). These were studied by M. Demazure
and A. Grothendieck in the sixties and generalize parabolic subgroups of re-
ductive algebraic groups; see [48, Exposé XXII, Cap. 5].

Corollary 2.10. Let G be an affine group scheme defined over Z and
let H ≤ G be a Z-subgroup, of type (R) with soluble geometric fibers,
of a classical group G. If there exists a Z-retract r : G → H, then
φ(G(R)) ≤ φ(B◦2(R)) for any commutative ring R with unity.

Proof. For every R as in the statement, the given Z-retract yields a group
retract r : G(R) � H(R), whence φ(G(R)) ≤ φ(H(R)). We show that
φ(H(R)) must be bounded above by φ(B◦2(R)).

Since H ≤ G is of type (R) with soluble geometric fibers, it follows
from [48, Exposé XXII, Cor. 5.6.5] that H is the semi-direct product H =
UH o T ≤ G, where T is the maximal torus of G and UH is the unipotent
radical of (the soluble group) H. Moreover, there exists some positive root
α in the underlying root system of G (with respect to the given torus T )
for which the unipotent root subgroup Xα ≤ G is contained in UH. Now,
UH(R) itself is generated by unipotent root subgroups Xβ(R) for β ∈ Λ,
where Λ is some subset of simple roots of G. Thus, the map sending each
Xβ(R) pointwise to 1 for all β 6= α and which is constant on T (R) and on
Xα(R) induces a further retract

H(R) = UH(R) o T (R) Xα(R) o T (R) ≤ G(R),

yielding φ(H(R)) ≤ φ(Xα(R) o T (R)). It follows from Theorem 2.1 that
φ(Xα(R) o T (R)) ≤ φ(B◦2(R)).

We now prove the following generalization of Bux’s main theorem in [33].

Corollary 2.11. Suppose P is a proper parabolic subgroup of a non-
commutative, connected, reductive, split linear algebraic group G ≤ GLn
defined over a global field K. Denote by UP the unipotent radical of P
and by TP the maximal torus of G contained in P. For any S-arithmetic
subgroup Γ ≤ UP o TP, the following inequalities hold.

|S| − 1 ≤ φ(Γ) ≤ φ(B◦2(OS)).

In particular, if K has positive characteristic and P = B = UB o TB is a
Borel subgroup of G, then φ(Γ) = |S| − 1.
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Proof. We first reduce the problem to the case where G is a universal
Chevalley–Demazure group scheme. The group G fits into the following
diagram of linear algebraic groups over K.

G RG×G′ G′

G

f

In the diagram, G′ is semi-simple, RG is the radical of G and the upper
group G is simply-connected. The left-most projection is an almost direct
product. Since G and G are split and semi-simple, the projection given by
the central isogeny f is a covering of Chevalley–Demazure group schemes,
with G being universal. By taking the corresponding diagram intersected
with parabolic subgroups and recalling that the unipotent subgroups of G,
G′ and G are isomorphic, it follows that S-arithmetic subgroups of P ≤
G have the same finiteness length as the S-arithmetic subgroups of the
corresponding parabolic P ≤ G (see e.g. the steps in [14, 2.6(c)]; notice that
Satz 1 cited by Behr holds regardless of characteristic). Since S-arithmetic
subgroups of a given linear algebraic group are commensurable, we may
restrict ourselves to the S-arithmetic group P(OS) ≤ G(OS).

In the set-up above, the first inequality follows from [16, Proposition 10]
and [29], and the second inequality follows from Corollary 2.10. Now sup-
pose char(OS) > 0. Since B◦2(OS) ⊇ ( 1 ∗

0 1 ) ∼= Ga(OS), one has that B◦2(OS)
has no bounds on the orders of its finite subgroups due to the additive struc-
ture of OS ; see e.g. [74, Section 23]). But B◦2(OS) acts by cell-permuting
homeomorphisms on the product of |S| Bruhat–Tits trees, each such tree
being associated to the locally compact group SL2(Frac(OS)v) for v ∈ S;
cf. [86]. Since the stabilizers of this action are finite [31, Section 3.3], it
follows that B◦2(OS) belongs to Kropholler’s HF class [63]. Thus, Gandini’s
theorem applies [53], yielding φ(B◦2(OS)) < |S|, which finishes the proof.

Corollary 2.11 gives, in particular, a shorter (and the author dares say
simpler) proof of Bux’s equality [33, Theorem A]. Of course, Corollary 2.11
is known to be “uninteresting” in characteristic zero—the reader familiar
with the theory of S-arithmetic groups recalls that, in this case, φ(B(OS))
does not depend on the cardinality of S by the Kneser–Tiemeyer local-global
principle [98, Theorem 3.1], and moreover that φ(B◦2(OS)) =∞ [98, Corol-
lary 4.5]. Nevertheless, the charm of Corollary 2.11 lies in the independency
of characteristic and in the content of the three theorems used to prove it,
namely: isoperimetric inequalities in higher dimensions for S-arithmetic lat-
tices [16], a homotopical obstruction intrinsic to the group schemes consid-
ered (Cor. 2.10), and a geometric obstruction occurring for many groups
which act nicely on finite-dimensional contractible complexes [53].

42



Chapter 3

Finite presentability of
Herbert Abels’ groups

From the fifties to the eighties, the general theory of finitely presented
soluble groups underwent major progress thanks to the works of Baumslag,
Bieri, Groves, P. Hall, Remeslennikov, Strebel, and many others; see, for
instance, [65, Chap. 11], the survey [95], and [15, Appendix A]. Even for
small solubility class, the area still has quite challenging open problems,
such as the Σm-conjecture [61].

In the fifties, Philip Hall asked whether the image of any finitely pre-
sented soluble group is itself finitely presented. Herbert Abels proved this
to be false by giving the following, remarkably simple counterexample.

Theorem 3.1 (Abels [2]). The soluble linear group

A4(Z[1/p]) =

(
1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 1

)
≤ GL4(Z[1/p])

is a counterexample to Philip Hall’s problem.

That A4(Z[1/p]) has a non-finitely presented homomorphic image is easy
to see: by commutator and diagonal relations (1.1) and (1.2), its center
Z(A4(Z[1/p])) is the subgroup of upper right-most elementary matrices

Z(A4(Z[1/p])) =

(
1 0 0 ∗
0 1 0 0
0 0 1 0
0 0 0 1

)
.

Thus, Z(A4(Z[1/p])) is isomorphic to the additive group Ga(Z[1/p]), which
is infinitely generated. In particular, A4(Z[1/p]) modulo its center can never
be finitely presented. The tricky part of Abels’ theorem thus consisted in
proving that A4(Z[1/p]) is finitely presented.

The example above promptly led to generalizations which also found
applications in many areas, as highlighted in the introduction. The group
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schemes of Herbert Abels are the infinite family {An}n≥2 of matrix groups
given by

An :=


1 ∗ · · · · · · ∗

0 ∗ . . .
...

...
. . .

. . .
. . .

...
0 · · · 0 ∗ ∗
0 · · · · · · 0 1

 ≤ GLn .

We observe that An(R) decomposes as a semi-direct product
An(R) = Un(R) o Tn(R), where

Un(R) =


1 ∗ ··· ··· ∗

0 1
. . .

...
...

. . .
. . .

. . .
...

0 ··· 0 1 ∗
0 ··· ··· 0 1

 , Tn(R) =


1 0 ··· ··· 0

0 ∗
. . .

...
...

. . .
. . .

. . .
...

0 ··· 0 ∗ 0
0 ··· ··· 0 1

 = An(R) ∩Dn(R).

Just as with A4(Z[1/p]), it is easy to see that the center of An(R) is the
additive group Z(An(R)) = E1n(R) ∼= Ga(R) generated by all elementary
matrices in the upper right corner.

The generalizations and applications mentioned above typically relate to,
or make use of, presentations of Abels groups. In this chapter, we classify
which such groups are finitely presented by proving the following, precise
version of Theorem A.

Theorem 3.2 (Theorem A, restated). Let R be a commutative ring with
unity. If R is not finitely generated as a ring, then φ(An(R)) = 0 for all
n ≥ 2. Otherwise, the following hold.

i. φ(A2(R)) > 0 if and only if R is finitely generated as a Z-module, in
which case φ(An(R)) = φ(B◦2(R)) =∞ for all n ≥ 2.

ii. If R is infinitely generated as a Z-module, then
φ(A3(R)) = min {1, φ(B◦2(R))}.

iii. Suppose n ≥ 4 and that R is infinitely generated as a Z-module.
Then φ(An(R)) ≤ φ(B◦2(R)) and, given ` ∈ {1, 2}, one has that
φ(B◦2(R)) ≥ ` implies φ(An(R)) ≥ `.

Parts (ii) and (iii) were established by Ralph Strebel independently in
an unpublished manuscript [94]. Our proof is less algebraic than Strebel’s
and employs tools that were not available to him at the time, namely the
early Σ-theory for metabelian groups due to Strebel himself and Bieri [20],
and horospherical subgroups considered by Holz in his thesis [57].

The first claims of Theorem 3.2 are well-known and follow from standard
methods:
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Proof of Theorem 3.2 (except for (iii)). If φ(An(R)) > 0 for some n ≥ 3,
then An(R) and its retract Ga(R) o Gm(R) are finitely generated, where
the action of Gm(R) on Ga(R) is given by multiplication. Thus, Gm(R)
is a finitely generated abelian group and Ga(R) is finitely generated as
a Z[Gm(R)]-module, which shows that R is finitely generated as a ring.
This deals with the very first claim of the theorem, except possibly when
n = 2. Now, if φ(A2(R)) > 0, then A2(R) ∼= Ga(R) is finitely generated
as a Z-module. This implies, for every n ≥ 2, the following: the unipo-
tent radical Un(R) of An(R) is a finitely generated nilpotent group and
thus has φ(Un(R)) = ∞; the group of units Gm(R) of R is itself finitely
generated by Samuel’s generalization of Dirichlet’s Unit Theorem [83, Sec-
tion 4.7], whence the diagonal subgroups Dn(R) and Tn(R) ≤ An(R) also
have φ(Tn(R)) = φ(Dn(R)) = ∞. Since An(R) = Un(R) o Tn(R)—and
φ(B◦2(R)) = φ(B2(R)) by Lemma 2.2—it follows from Corollary 1.14 that
φ(An(R)) = φ(B◦2(R)) =∞.

Assume from now on that R is not finitely generated as a Z-module. In
this case, A3(R) can never be finitely presented. Indeed, if Gm(R) is finite,
then φ(A3(R)) = φ(U3(R)) = 0. In case Gm(R) has torsion-free rank at
least one and if A3(R) were finitely presented, then its metabelian quotient
A3(R)/Z(A3(R)) = A3(R)/E13(R) would also be finitely presented by [20,
Corollary 5.6]. But the complement of the Σ-invariant [20] of the Z[T1(R)]-
module U3(R)/E13(R) ∼= E12(R)⊕E23(R) is easily seen to contain antipodal
points. This implies that U3(R)/E13(R) is not tame as a Z[T1(R)]-module,
which contradicts [20, Theorem 5.1].

To prove the equality in (ii), we first note that φ(A3(R)) = 0 =
φ(B◦2(R)) if Gm(R) is finite or not finitely generated (e.g. as in the be-
ginning of the proof of Lemma 2.2). Assuming Gm(R) to be (infinite and)
finitely generated, we see that A3(R) retracts onto a group commensurable
with B◦2(R) just as in the end of the proof of Proposition 2.6 (case G2 with
η short). Thus, φ(A3(R)) ≤ φ(B◦2(R)).

The tricky part of Theorem 3.2 is thus (iii). Its proof goes as follows.
The first inequality follows from Theorem 2.1 because An(R), with n ≥ 4,
retracts onto the Borel subgroup B2(R) ≤ GL2(R), as shown below.

An(R) =


1 ∗ ··· ··· ∗

0 ∗
. . .

...
...

. . .
. . .

. . .
...

...
. . . 0 ∗ ∗

0 ··· ··· 0 1




1 0 0 0 ··· ··· 0

0 ∗ ∗ 0
. . .

...

0 0 ∗ 0
. . .

. . .
...

... 0 0 1
. . .

. . .
...

...
. . .

. . .
. . . 1 0

0 ··· ··· 0 0 1

 ∼= B2(R).

It is also not hard to see that An(R) is finitely generated when-
ever B◦2(R) is so. Indeed, φ(B◦2(R)) ≥ 1 implies that the subgroups
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Eij(R) o Tn(R) ≤ An(R), with 1 ≤ i < j ≤ n, admit finite generating
sets; confer e.g. the last paragraph of the previous proof. But the unipotent
part Un(R) ≤ An(R) is itself generated by all elementary matrices eij(r) for
r ∈ R and 1 ≤ i < j ≤ n. Thus, given a finite set of generators for B◦2(R),
one can construct a finite set of generators for Un(R) o Tn(R) = An(R).

Now, for each pair (n,R), where n is a natural number greater than three
and R is a commutative ring with unity, we construct a finite-dimensional
connected simplicial complex CC(H (n,R)) on which An(R) acts cocom-
pactly by cell-permuting homeomorphisms. Generalizing a result due to
Stephan Holz, we show that the space CC(H (n,R)) is always simply-
connected. Using Σ-theory for metabelian groups [20], we prove that all cell
stabilizers of the given action An(R) y CC(H (n,R)) are finitely presented
whenever B◦2(R) is so. We finish off the proof by invoking the following well-
known criterion whose final form below is due to K. S. Brown.

Theorem 3.3 ([28]). Let G be a group acting by cell-permuting homeomor-
phisms on a CW-complex X such that (a) all vertex-stabilizers are finitely
presented; (b) all edge-stabilizers are finitely generated; and (c) the G-action
on the 2-skeleton X(2) is cocompact. Then G is finitely presented.

Section 3.1 is devoted to the construction of the space CC(H (n,R)).
The above mentioned properties of the action and of the space are shown in
Sections 3.1.1 and 3.1.2.

3.1 A space for An(R)

Recall that a covering of a given set X is a collection of subsets {Xλ}λ∈Λ

of X whose union is the whole of X, i.e. X = ∪λ∈ΛXλ. The nerve of the
covering {Xλ}λ∈Λ is the simplicial complex N({Xλ}λ∈Λ) defined as follows.
Its vertices are the sets Xλ for λ ∈ Λ, and k + 1 vertices Xλ0 , Xλ1 , . . . , Xλk

span a k-simplex whenever the intersection of all such Xλi is non-empty, i.e.
∩ki=0Xλi 6= ∅.

In [57, 5], Stephan Holz and Herbert Abels investigate nerve complexes
attached to groups as follows. Fixing a family of subgroups, they take the
nerve of the covering of the group by all cosets of subgroups of the given
family. (Such spaces are also called coset posets or coset complexes in the
literature.) More precisely, given a group G and a family H = {Hλ}λ∈Λ

of subgroups of G, let H denote the covering H = {gH | g ∈ G, H ∈H } of
G by all (left) cosets of all members of H . The coset complex CC(H ) is
defined as the nerve of the covering N(H). In particular, if the family H is
finite, one has that CC(H ) is (|H | − 1)-dimensional.

The inspiration for considering such spaces came primarily from the the-
ory of buildings. For example, if G is a group with a BN-pair (G,B,N, S) [6,
Chapter 6], then the coset poset CC(H ) associated to the family H of
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all maximal standard parabolic subgroups of G is by definition the build-
ing ∆(G,B) associated to the system (G,B,N, S); see e.g. [6, Section 6.2].
However, such complexes show up in many other contexts, e.g. Deligne
complexes [40], Bass–Serre theory [86], Σ-invariants of right-angled Artin
groups [71], and higher generating families of pure [35] and general braid
groups [34].

Since the vertices of CC(H ) are (left) cosets of subgroups of G, it follows
that G has a natural action on CC(H ) by cell-permuting homeomorphisms,
namely the action induced by left multiplication on the cosets gH for g ∈ G
and H ∈H .

Going back to the groups of Abels, consider the following Z-subschemes
of An for n ≥ 4.

H1 =


1 ∗ ··· ∗ 0

0 ∗
. . .

...
...

...
. . .

. . . ∗
...

0 0 ∗ 0
0 0 ··· 0 1

 , H2 =

 1 0 ··· ··· 0
0 ∗ ∗ ··· ∗
...

. . .
. . . ∗

...
0 0 ∗ ∗
0 0 ··· 0 1

 , and H3 =


1 ∗ 0 ··· 0

0 ∗ 0
. . .

...
...

. . .
. . . 0 0

0 0 ∗ ∗
0 0 ··· 0 1

 .

For n = 4 we consider in addition the following the following Z-subscheme.

H4 =


1 0 ∗ 0
0 ∗ ∗ ∗
0 0 ∗ 0
0 0 0 1

 .

The unipotent radicals of the matrix groups above—i.e. the intersections
of each Hi with the group of upper unitriangular matrices Un ≤ GLn—are
examples of group schemes arising from (maximal) contracting subgroups;
see e.g. [57, 3, 11]. To see this, consider the locally compact group An(K)
for K a non-archimedean local field. In this case, each unipotent radical
Ui(K) = Hi(K) ∩Un(K) is the contracting subgroup associated to the au-
tomorphism given by conjugation by some element t contained in the torus
Tn(K). Holz shows [57, 2.7.3 and 2.7.4] that this defines a unipotent group
scheme over Z depending on t ∈ Tn(K). Following Abels we call the schemes
Hi above horospherical and their unipotent radicals Ui = Hi∩Un contract-
ing subgroups.

Let R be an arbitrary commutative ring with unity. For n ≥ 4, let
H (n,R) denote the family of (R-points of) horospherical subgroups of
An(R) given by

H (n,R) =

{
{H1(R), H2(R), H3(R), H4(R)} , if n = 4;

{H1(R), H2(R), H3(R)} otherwise.

We also let

H(n,R) = {gH | g ∈ An(R), H ∈H (n,R)} .
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In the notation above, the space we shall consider is the nerve complex

CC(H (n,R)) = N(H(n,R))

associated to the covering of An(R) by the left cosets H(n,R) of the horo-
spherical subgroups listed above. As mentioned previously, the group An(R)
acts on the simplicial complex CC(H (n,R)) by cell-permuting homeomor-
phisms via left multiplication on the vertices.

3.1.1 Fundamental domain and cell-stabilizers

The complex CC(H (n,R)) has many useful features. Most of the facts
we are about to list here and in Section 3.1.2 hold for arbitrary groups and
coset complexes with similar properties. To be precise, we shall only need
the facts that the chosen family H (n,R) is finite, the group An(R) is a
split extension An(R) = Un(R) o Tn(R), and the contracting subgroups
Ui(R) = Hi(R) ∩ Un(R) (as well as the intersections of any number of
contracting subgroups) are all Tn(R)-invariant.

Lemma 3.4. The complex CC(H (n,R)) is colorable and homogeneous.
The given action of An(R) on CC(H (n,R)) is type-preserving and cocom-
pact. Any cell-stabilizer is isomorphic to a finite intersection of members of
H (n,R).

Proof. Since the intersection of cosets in a group is a coset of the intersec-
tion of the underlying subgroups, it follows that the complex CC(H (n,R))
is homogeneous. That is to say, every simplex is contained in a simplex of
dimension k = |H (n,R)| − 1 and every maximal simplex has dimension
exactly k. (Note that CC(H (n,R)) is a chamber complex if n ≥ 5.) We
observe that CC(H (n,R)) is colored with types (or colors) given precisely
by the family of subgroups H (n,R). Also, the given action of An(R) on
CC(H (n,R)) is type-preserving and transitive on the set of maximal sim-
plices of CC(H (n,R)). Thus, the maximal simplex given by the intersection⋂

H∈H (n,r)

H

is a fundamental domain for the An(R)-action. In particular, since
|H (n,R)| is finite, it follows that the action of An(R) is cocompact.

The stabilizers of the An(R)-action are also easy to determine. For
instance, given a maximal simplex σ = {g1H1(R), g2H2(R), g3H3(R)}
in CC(H (n,R)) with n ≥ 5, there exists g ∈ An(R) such that σ =
g · {H1(R), H2(R), H3(R)}. A group element h ∈ An(R) fixes σ if and
only if h ∈ g(H1(R) ∩H2(R) ∩H3(R))g−1. A similar argument shows that
a cell-stabilizer of CC(H (n,R)) for any n ≥ 4 is a conjugate of some inter-
section of subgroups that belong to the family H (n,R).
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The existence of a single simplex as fundamental domain and the prop-
erty that cell-stabilizers are conjugates of finite intersections of members of a
fixed family of subgroups actually characterize coset complexes; see e.g. [35,
Observation A.4 and Proposition A.5].

Having determined the cell-stabilizers, we now prove that they are
finitely presented whenever we need them to be.

Proposition 3.5. Suppose B◦2(R) is finitely presented and n ≥ 4. Then
any finite intersection of members of H (n,R) is finitely presented.

Proof. We shall prove that, under the given assumption, the vertex-
stabilizers are finitely presented. It will be clear from the arguments below
that the same holds for stabilizers of higher dimensional cells.

By Lemma 3.4, we need only show that the members of H (n,R) are
finitely presented. By the commutator (1.1) and diagonal relations (1.2),
we see that the ‘last-column subgroup’ Cn−1 of H1, given by

Cn−1 =


1 0 ··· 0 ∗ 0

0 1
. . .

...
...

...
...

. . .
. . . 0

...
...

...
. . . 1 ∗

...
0 ∗ 0

0 ··· ··· 0 1

 ,

is normal in H1. The quotient H1/Cn−1 is isomorphic to the subgroup

Qn−1 =


1 ∗ ··· ∗ 0 0

0 ∗
. . .

...
...

...
...

. . .
. . . ∗

...
...

...
. . . ∗ 0

...
0 1 0

0 ··· ··· 0 1

 ≤ H1.

Now, the column subgroup Cn−1 is itself finitely presented. Indeed, since
B◦2(R) is finitely presented, then so is the commensurable group

Ga(R) oGm(R) ∼= {( 1 ∗
0 ∗ )} ≤ GL2(R),

as in the end of the proof of Proposition 2.6 (case G2 with η short). In
particular, the Gm(R)-module Ga(R) with the given action

Gm(R)×Ga(R) 3 (u, r) 7→ u−1r

is tame [20, Theorem 5.1]. But Cn−1 is isomorphic to (Ga(R))n−2 oGm(R),
where the action of Gm(R) on each copy of the Gm(R)-module Ga(R) is the
multiplication shown above, and the action Gm(R) y (Ga(R))n−2 is just the
diagonal action. Thus, by [20, Proposition 2.5(i)] it follows that (Ga(R))n−2

is a tame Gm(R)-module, which implies—again by [20, Theorem 5.1]—that
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Cn−1
∼= (Ga(R))n−2 oGm(R) is finitely presented. We have shown that H1

fits into a (split) short exact sequence

Cn−1 ↪→ H1 � Qn−1

where Cn−1 is finitely presented. Decomposing Qn−1 similarly via the last
column, as we did with H1, a simple induction on n shows that Qn−1 itself
is also finitely presented. It follows from Lemma 1.13 that H1 is finitely
presented.

By considering the ‘first-row subgroup’

Rn−1 =


1 0 ··· 0
0 ∗ ∗ ··· ∗ ∗
... 0 1 0 0 0
...

. . .
. . .

. . .
...

0 1 0
0 ··· ··· 0 1


of H2, which is also normal by (1.1) and (1.2), an entirely analogous ar-
gument using Ga(R) o Gm(R) ∼= {( ∗ ∗0 1 )} ≤ GL2(R) shows that H2 is also
finitely presented.

The case of H3 is even easier since it is the direct product

H3 =


1 ∗ 0 ··· 0 0

0 ∗ 0
. . .

...
...

...
. . .

. . . 0
...

...
...

. . . ∗ 0
...

0 1 0
0 ··· ··· 0 1

×


1 0 ··· 0 0 0

0 1
. . .

...
...

...
...

. . .
. . .

. . .
...

...
...

. . . 1 0
...

0 ∗ ∗
0 ··· ··· 0 1

 ,

and both factors on the right-hand side are finitely presented because both
groups {( ∗ ∗0 1 )} , {( 1 ∗

0 ∗ )} ≤ GL2(R) are so.
Establishing finite presentability of H4 ≤ A4(R) is slightly different.

Consider the subgroups

Γ1 =

(
1 0 ∗ 0
0 ∗ ∗ 0
0 0 ∗ 0
0 0 0 1

)
and Γ2 =

(
1 0 0 0
0 ∗ 0 ∗
0 0 1 0
0 0 0 1

)
and let p1 : Γ1 � Q and p2 : Γ2 � Q denote the natural projections onto
the diagonal subgroup

Q =

(
1 0 0 0
0 ∗ 0 0
0 0 1 0
0 0 0 1

)
.

With this notation, we have that H4 is isomorphic to the fiber product

P = {(g, h) ∈ Γ1 × Γ2 | p1(g) = p2(h)} .

We observe now that Γ1 and Γ2 are finitely presented—i.e. of homotopical
type F2—since

ker(p1) =

(
1 0 ∗ 0
0 1 ∗ 0
0 0 ∗ 0
0 0 0 1

)
∼= C3 ≤ H1 and

(
1 0 0 0
0 ∗ 0 ∗
0 0 1 0
0 0 0 1

)
∼= {( ∗ ∗0 1 )} ≤ GL2(R)
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are so. (In particular, ker(p1) is of type F1.) Furthermore, the finite pre-
sentability of B◦2(R) implies that Q is a finitely generated abelian group—in
particular, it is of type F3; cf. Section 1.2. Therefore, the fiber product
P ∼= H4 is finitely presented by the (asymmetric) 1-2-3-Theorem [27, Theo-
rem B].

Entirely analogous arguments for the non-trivial finite intersections of
members of H (n,R) show that all such groups are also finitely presented,
which concludes the proof of the proposition.

3.1.2 Connectivity properties

The following observation is due to Stephan Holz. To prove it one con-
siders the homotopy equivalences given in [5, Theorem 1.4].

Lemma 3.6 ([57, Korollar 5.18]). Let G = NoQ and suppose H is a family
of Q-invariant subgroups of N . Then there exists a homotopy equivalence
between the coset complex CC(H ) of H with respect to N and the coset
complex CC({H oQ | H ∈H }) with respect to whole group G.

Corollary 3.7. Let Hu(n,R) denote the family of unipotent radicals
Ui(R) = Hi(R) ∩Un(R) of all members Hi(R) ∈H (n,R) and write

Hu(n,R) = {vU(R) | v ∈ Un(R), U(R) ∈Hu(n,R)} .

Then the spaces CC(Hu(n,R)) = N(Hu(n,R)) (with respect to Un(R)) and
CC(H (n,R)) (with respect to An(R)) are homotopy equivalent.

Proof. This follows at once from Lemma 3.6 since the Tn(R)-action by
conjugation preserves each Ui(R) by the diagonal relations (1.2).

Thus, to show that CC(H (n,R)) is connected and simply-connected,
it suffices to prove that the coset complex CC(Hu(n,R)) of contracting
subgroups, with cosets taken in the unipotent radical Un(R), is connected
and simply-connected. To do so we take advantage of the algebraic meaning
of connectivity properties of coset complexes.

Recall that the colimit colimF of a diagram F : I → Grp from a small
category I to the category of groups is a group K together with a family of
maps Ψ = {ψO : F (O)→ K}O∈Obj(I) satisfying the following properties.

• ψP ◦ F (f) = ψO for all f ∈ Hom(O,P );

• If (K ′,Ψ′) is another pair also satisfying the conditions above, then
there exists a unique group homomorphism ϕ : K → K ′ such that
ϕ ◦ ψO = ψ′O for all O ∈ Obj(I).
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In this case we write K = colimF , omitting the maps Ψ. Typical exam-
ples of colimits in the category of groups are amalgamated free products. In
general, suppose H is a family of subgroups of a given group. This induces
a diagram FH : IH → Grp by defining the category IH to be the poset
given by members of H and their pairwise intersections, ordered by inclu-
sion. For example, if H = {A,B} with A,B ≤ G and C = A∩B, then FH

is just the usual diagram

C

A

B

and the colimit colimFH is simply the push-out (or amalgamated product)
colimFH = A ∗C B.

Theorem 3.8 (Abels–Holz [5, Thm. 2.4]). Let H be a family of subgroups
of a group G and let π : colimFH → G denote the natural map from the
colimit of FH to G. Then the coset complex CC(H ) is connected if and
only if π is surjective, and CC(H ) is additionally simply-connected if and
only if π is an isomorphism.

Using the above we will obtain the last ingredient to finish the proof of
Theorem 3.2(iii) once we establish the following generalization of a result
due to Stephan Holz [57, Proposition A.3].

Proposition 3.9. For every n ≥ 4 one has that Un(R) ∼= colimFHu(n,R).

Proof. The idea is to write down a convenient presentation for Un(R) which
shows that it is the desired colimit. To do so, we first write down presen-
tations for the members of Hu(n,R). For the course of this proof we fix
(and follow strictly) the notation of Lemma 1.3. In particular, T ⊆ R will
denote an arbitrary, but fixed, additive generating set for (R,+) = Ga(R)
containing 1. As in Lemma 1.3, we fix R a set of additive defining relators
of Ga(R).

We observe that U3(R) and U4(R) are abelian, by the commutator re-
lations (1.1). It is also easy to see that U1(R) ∼= Un−1(R) ∼= U2(R) by
translating the indices of elementary matrices accordingly. Thus, we have
the following presentations.

U1(R) =〈{eij(t) | t ∈ T, 1 ≤ i < j ≤ n− 1} | Relations (1.4) and (1.5)

for all i, j with 1 ≤ i < j ≤ n− 1, and all t, s ∈ T 〉.

U2(R) =〈{eij(t) | t ∈ T, 2 ≤ i < j ≤ n} | Relations (1.4) and (1.5)

for all i, j with 2 ≤ i < j ≤ n, and all t, s ∈ T 〉.
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U3(R) =〈{e12(t), en−1,n(s) | t, s ∈ T} | [e12(t), en−1,n(s)] = 1 for all t, s ∈ T,
and relations (1.5) for all t, s ∈ T and (i, j) ∈ {(1, 2), (n− 1, n)}〉.

U4(R) =〈{e13(p), e23(t), e24(s) | p, t, s ∈ T} | [eij(t), ekl(s)] = 1 for all

t, s ∈ T and (i, j), (k, l) ∈ {(1, 3), (2, 3), (2, 4)} , and

relations (1.5) for all t, s ∈ T and (i, j) ∈ {(1, 3), (2, 3), (2, 4)}〉.

The pairwise intersections Ui(R) ∩ Uj(R) also admit similar presentations
by restricting the generators (and corresponding relations) to the indices
occurring in both Ui(R) and Uj(R). For instance,

U1(R) ∩ U2(R) =


1 0 ··· ··· 0 0
0 1 ∗ ··· ∗ 0
...

. . .
. . .

. . .
...

...
0 1 ∗ 0

0 1 0
0 ··· ··· 0 1

 ∼= Un−2(R),

with presentation

U1(R) ∩ U2(R) =〈{eij(t) | t ∈ T, 2 ≤ i < j ≤ n− 1} | Relations (1.4) and

(1.5) for all i, j with 2 ≤ i < j ≤ n− 1, and all t, s ∈ T 〉.

Now consider the group Un defined as follows. As generating set we take

Xn = {eij(t), ekn(s) | 1 ≤ i < j ≤ n− 1, 2 ≤ k ≤ n, and t, s ∈ T} .

The set of defining relators Sn is formed as follows. For all t, s ∈ T and
indices i, j, k, l which are either all in {1, . . . , n− 1} or all in {2, . . . , n},
consider the relations

[eij(t), ekl(s)] =


∏
u
eil(u)au , if j = k;

1, if i 6= l, k 6= j,
(3.1)

and
[e12(t), en−1,n(s)] = 1, (3.2)

where m(t, s) =
∑
u
auu ∈

⊕
t∈T

Zt is as in Lemma 1.3. For all t, s ∈ T and

pairs i, j which are either all in {1, . . . , n− 1} or all in {2, . . . , n}, consider
additionally the relations

m∏
`=1

eij(t`)
a` = 1 for each

m∑
`=1

a`t` ∈ R, (3.3)

where R is the fixed set of additive defining relators of Ga(R) as in
Lemma 1.3. If n = 4 we need also consider the relations

[e13(t), e24(s)] = 1 (3.4)
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for all pairs t, s ∈ T . We take Sn to be the set of all relations (3.1), (3.2),
and (3.3) (in case n ≥ 5), and S4 is the set of all relations (3.1) through
(3.4) above with n = 4. We then define Un by means of the presentation

Un = 〈Xn | Sn〉.

Reading off the presentations for the Ui(R) and for their pairwise inter-
sections, it follows from von Dyck’s theorem that colimFHu(n,R) is isomor-
phic to the group Un above.

Thus, to finish the proof of the proposition, it suffices to show that
Un(R) is isomorphic to Un. To avoid introducing even more symbols and
repeating familiar arguments in order to explicitly construct the obvious
isomorphism, we proceed as follows. Recall that Un(R) admits the pre-
sentation Un(R) = 〈Y | S〉 given in Lemma 1.3. Abusing notation and
comparing the presentations Un = 〈Xn | Sn〉 and Un(R) = 〈Y | S〉, it suf-
fices to define in Un the missing generators e1n(t) (for t ∈ T ) and also show
that all the relations from S missing from Sn do hold in Un. (Inspecting
the indices, the missing relations are the ones involving the commutators
[e1j(t), ekn(s)] for j = 2, . . . , n and k = 1, . . . , n− 1, and (j, k) 6= (2, n− 1).)

For every t ∈ T , define in Un the element e1n(t) = [e12(t), e2n(1)]. With
this new commutator at hand, the proof will be concluded once we show
that the following equalities hold in Un.
For all s, t ∈ T and j, k ∈ {2, . . . , n− 1} with j 6= k and (j, k) 6= (2, n− 1),

[e1j(t), ekn(s)] = 1. (3.5)

For all t ∈ T and j ∈ {2, . . . , n− 1},

[e1j(t), ejn(1)] = [e1j(1), ejn(t)] = e1n(t). (3.6)

For all t, s ∈ T and i, j with 1 ≤ i < j ≤ n,

[eij(t), e1n(s)] = 1. (3.7)

For all
∑m

`=1 a`t` ∈ R,
m∏
`=1

e1n(t`)
a` = 1. (3.8)

Relation (3.5) holds: If n = 4 there is nothing to show, since in this
case the only equation to verify is [e13(t), e24(s)] = 1, which holds by (3.4).
Assume n ≥ 5. We first observe that

[e1j(t), en−1,n(s)] = 1 (3.9)
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for all t, s ∈ T and j ∈ {3, . . . , n− 2} since

e1j(t)en−1,n(s)
(3.1)
= e12(t)e2j(1)e12(t)−1e2j(1)−1en−1,n(s)

(3.1)
= e12(t)e2j(1)e12(t)−1en−1,n(s)e2j(1)−1

(3.2)
= e12(t)e2j(1)en−1,n(s)e12(t)−1e2j(1)−1

(3.1)
= e12(t)en−1,n(s)e2j(1)e12(t)−1e2j(1)−1

(3.2)
= en−1,n(s)e12(t)e2j(1)e12(t)−1e2j(1)−1

(3.1)
= en−1,n(s)e1j(t).

Proceeding similarly, we conclude that

[e12(t), ekn(s)] = 1 (3.10)

for all t, s ∈ T and k ∈ {3, . . . , n− 2}. Now suppose j < k. Then

[e1j(t), ekn(s)]
(3.1)
= [e1j(t), [ek,n−1(s), en−1,n(1)]] = 1

because e1j(t) commutes with en−1,n(1), by (3.9), and with ek,n−1(s),
by (3.1). Analogously, if j > k, then

[e1j(t), ekn(s)]
(3.1)
= [[e12(t), e2j(1)], ekn(s)] = 1

by (3.1) and (3.10). Thus, the relations (3.5) hold in Un.

Relation (3.6) holds: To check (3.6) we need Lemma 1.2. First,

[e12(t), e2n(1)]
(3.1)
= [e12(t), [e23(1), e3n(1)]].

Setting a = e12(t), b = e23(1), and c = e3n(1), Hall’s identity yields

1 = [cac−1, [b, c]] · [bcb−1, [a, b]] · [aba−1, [c, a]]

(3.1)
= [e12(t), e2n(1)] · [e23(1)e3n(1)e23(1)−1, e13(t)]

(3.1)
= [e12(t), e2n(1)] · [e2n(1)e3n(1), e13(t)]

(1.3)
= [e12(t), e2n(1)] · e2n(1) · [e3n(1), e13(t)] · e2n(1)−1 · [e2n(1), e13(t)]

(3.1)&(3.5)
= [e12(t), e2n(1)] · [e3n(1), e13(t)],

that is, e1n(t) = [e13(t), e3n(1)]. On the other hand,

[e12(1), e2n(t)]
(3.1)
= [e12(1), [e23(t), e3n(1)]].
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Setting a = e12(1), b = e23(t), and c = e3n(1), Hall’s identity and 3.1 yield

1=[e12(1), e2n(t)] · [e23(t)e3n(1)e23(1)−1, e13(t)]

(3.1)
= [e12(1), e2n(t)] · [e2n(t)e3n(1), e13(t)]

(1.3)
= [e12(1), e2n(t)] · e2n(t) · [e3n(1), e13(t)] · e2n(t)−1 · [e2n(t), e13(t)]

(3.1)&(3.5)
= [e12(1), e2n(t)] · [e3n(1), e13(t)].

The last product above equals [e12(1), e2n(t)]e1n(t)−1 by the previous com-
putations. We have thus proved that

e1n(t)
Def.
= [e12(t), e2n(1)] = [e12(1), e2n(t)] = [e13(t), e3n(1)].

Since [e12(1), e2n(t)] also equals [e12(1), [e23(1), e3n(t)]], again by (3.1), com-
putations similar to the above also yield [e13(t), e3n(1)] = [e13(1), e3n(t)].
Entirely analogous arguments show that

[e1j(t), ejn(1)] = [e1j(1), ejn(t)] = e1n(t)

for all j ∈ {2, . . . , n− 1}.

Relations (3.7) hold: We now prove that the subgroup Z :=
〈{e1n(t) | t ∈ T}〉 ≤ Un is central. Let t, s ∈ T and let i, j be such that
1 ≤ i < j ≤ n. We want to show that e1n(t) and eij(s) commute in Un. To
begin with,

[e1n(t), e1n(s)]
(3.6)
= [[e12(t), e2n(1)], [e13(s), e3n(1)]]

(3.1)
= 1,

i.e. Z is abelian. If i = 1 and j 6= n, then j ≥ 2 and we can pick k ∈
{2, . . . , n− 1} such that k 6= j because n ≥ 4, yielding

e1n(t)e1j(s)
(3.6)
= [e1k(t), ekn(1)]e1j(s)

(3.5)&(3.1)
= e1j(s)[e1k(t), ekn(1)]

(3.6)
= e1j(s)e1n(t).

Similarly, if j = n and i 6= 1, choose k ∈ {2, . . . , n− 1} such that k 6= i. We
obtain

[e1n(t), ein(s)]
(3.6)
= [[e1k(t), ekn(1)], ein(s)]

(3.1)&(3.5)
= 1.
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It remains to prove [e1n(t), eij(s)] = 1 for 1 < i < j < n. In this case,

e1n(t)eij(s)
(3.6)
= e1i(1)ein(t)e1i(1)−1ein(t)−1eij(s)

(3.1)
= e1i(1)ein(t)e1i(1)−1eij(s)ein(t)−1

(3.3)&(3.1)
= e1i(1)ein(t)e1j(s)

−1eij(s)e1i(1)−1ein(t)−1

(3.5)&(3.1)
= e1j(s)

−1e1i(1)ein(t)eij(s)e1i(1)−1ein(t)−1

(3.1)
= e1j(s)

−1e1i(1)eij(s)ein(t)e1i(1)−1ein(t)−1

(3.3)&(3.1)
= e1j(s)

−1e1j(s)eij(s)e1i(1)ein(t)e1i(1)−1ein(t)−1

(3.6)
= eij(s)e1n(t).

Thus, relations (3.7) hold for all t, s ∈ T and i, j with 1 ≤ i < j ≤ n.

Relations (3.8) hold: Given any pair t, s ∈ T ,

[e12(t)e12(s), e2n(1)]
(1.3)
= e12(t)[e12(s), e2n(1)]e12(t)−1[e12(t), e2n(1)]

(3.6)&(3.7)
= [e12(s), e2n(1)][e12(t), e2n(1)]

(3.6)&(3.7)
= [e12(t), e2n(1)][e12(s), e2n(1)]. (3.11)

Now let
m∑̀
=1

a`t` ∈ R be an additive defining relator in R—recall that t` ∈ T

and a` ∈ Z as in Lemma 1.3. By induction on
m∑̀
=1

|a`| and (3.11), it follows

that

m∏
`=1

e1n(t`)
a` Def.

=
m∏
`=1

([e12(t`), e2n(1)])a`
(3.11)

=

[
m∏
`=1

e12(t`)
a` , e2n(1)

]
(3.1)
= 1.

Since the relations (3.5) through (3.8) missing from the presentation
for Un(R) from Lemma 1.3 also hold in Un, it follows that Un and Un(R)
are isomorphic, as claimed.

3.2 Remarks on the finiteness lengths of Abels’
groups

Recall that Theorem 2.1 guarantees that the finiteness lengths of many
soluble linear groups (including Abels groups) do not necessarily increase
with the size of their matrices. A follow-up question is: which properties
intrinsic to the underlying group scheme G can affect the finiteness length
of G(R)? Theorem 3.2 and the other results mentioned in this section point
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out that, in order to have better finiteness properties on Abels’ groups, the
rank n− 2 of the torus Tn ≤ An should be large enough, which in this case
implies that the size of the matrices also grows, by the very definition of the
group scheme An.

It is in general non-trivial to determine which properties a matrix group
G must have so that φ(G(R)) � 0 for any R. In the S-arithmetic set-up,
Abels groups provide series of groups with increasing finiteness properties.
The following example is essentially due to Abels and Holz. Since it does
not appear in the literature in the general form presented below, we include
for convenience a quick proof of the desired properties.

Example 3.10. Let OS be a Dedekind domain of arithmetic type and sup-
pose char(OS) = 0. Then φ(An(OS)) = n− 2.

Proof. By the Kneser–Tiemeyer local-global principle [98, Thm. 3.1], we
may assume that S contains a single non-archimedean place. By restric-
tion of scalars (see e.g. [69, Lemma 3.1.4]), it suffices to consider the case
where Frac(OS) = Q. In this set-up, OS is of the form OS = Z[1/p] for
some prime number p ∈ N. Now, φ(An(Z[1/p])) < n − 1, for otherwise it
would be of homological type FPn−1 and thus of type FP∞ by [17, Propo-
sition]. In particular, its center Z(An(Z[1/p]) would be finitely generated
by [17, Corollary 2]. However, Z(An(Z[1/p]) is the elementary subgroup
E1n(Z[1/p]) ∼= Ga(Z[1/p]), which is not finitely generated, yielding a con-
tradiction. Finally, φ(An(Z[1/p])) ≥ n− 2 by [4, Theorem B] and Brown’s
criteria (Theorem 3.3 and [29, Proposition 1.1]).

After K. S. Brown’s work [29], one can show that the finiteness length of
an Abels group An(R) grows by proving that CC(H (n,R)) is highly con-
nected. However, to obtain the example above we made no use of coset
complexes whatsoever; see also Witzel’s results on generalizations of S-
arithmetic Abels groups in characteristic zero [103]. Given the current state
of knowledge, there are no general methods to deal with connectivity prop-
erties of arbitrary coset complexes. What typically happens is an ad-hoc
analysis of the combinatorics of the given complex followed by an applica-
tion of fiber-type arguments to obtain the desired properties; see [5, 35, 34]
for examples.

The following are low-dimensional arithmetic examples that do use coset
complexes, the first of which is already covered by Example 3.10.

Example 3.11 (Holz). Let OS be a Dedekind domain of arithmetic type
with char(OS) = 0 and suppose n ≤ 5. Then φ(An(OS)) ≥ n− 2.

Proof. Just as in 3.10 we may assume thatOS = Z[1/p] for some prime p. In
this case, it follows from [57] and [5, Corollary 3.14] that the coset complex
associated to all horospherical subgroups of An(Z[1/p]) is: connected if
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n ≥ 3; simply-connected if n ≥ 4; and 2-connected if n = 5. The cell-
stabilizers all have unbounded finiteness lengths, e.g. by [98, Theorems 4.3
and 3.1]. The claim thus follows from [5, Proposition 4.7].

Example 3.12. Suppose now that OS is a Dedekind domain of arith-
metic type with char(OS) > 0. If |S| ≤ 3, then φ(An(OS)) =
min {n− 2, φ(B◦2(OS))}.

Proof. This follows immediately from Theorem 3.2 and Corollary 2.11.

It should be stressed that, if char(OS) = 0, then φ(B◦2(OS)) =∞ by [98,
Corollary 4.5]. Theorem 3.2 and the S-arithmetic examples above provide
supporting evidence for the following.

Conjecture 3.13. Suppose R is a finitely generated commutative ring with
unity which is infinitely generated as a Z-module. Then, for all n ≥ 2,

φ(An(R)) = min {n− 2, φ(B◦2(R))} .

It would be interesting to develop tools to analyze the topology and
geometry of the complexes CC(H (n,R)) associated to Abels groups for
arbitrary base rings R. (We remark that the construction of the spaces
CC(H (n,−)) above, for fixed n, is functorial.) For instance, what can be
said about the second homology of CC(H (4, R)) over Q for arbitrary R?
(Example 3.10 shows that CC(H (4,OS)) cannot be 2-connected.) Theo-
rem 3.2 can be interpreted as a low-dimensional attempt to obtain general
statements about CC(H (n,−)).

3.3 About the proof of Theorem 3.2

Our necessary condition in Theorem 3.2(iii)—that is, the finite pre-
sentability of B◦2(R)—slightly differs from Strebel’s necessary condition
[94], though one can easily check that they are equivalent. Also, although
Strebel’s original theorem is slightly more general in that he considers groups
of the form

An(R,Q) :=
{
g ∈ An(R) | the diagonal entries of g belong to Q ≤ R×

}
,

our proof carries over to his case as well as long as one replaces the necessary
condition on B◦2(R) by “the group

{( � ∗0 �−1 ) ∈ SL2(R) | ∗ ∈ R, � ∈ Q}

is finitely presented.”
The author was unable to prove geometrically that the complex

CC(H (n,R)) of Section 3.1 is simply-connected. The algebraic proof given

59



here, whose main technical ingredient is Proposition 3.9, is the step whose
methods are more similar to those of Strebel’s in [94]. There are two key
differences between the proofs.

Firstly, under the assumption that Ga(R) o Q is finitely presented,
Strebel gives a unified construction of concrete presentations of the groups
An(R,Q) above which need the hypothesis n ≥ 4. Presentations of An(R)
using our methods can of course be extracted by using [28, Theorem 1] or
more directly by starting with the presentation from Proposition 3.9 and
combining it with a presentation of the torus Tn(R) forming the semi-direct
product Un(R) o Tn(R). However, Strebel’s proof has an advantage in
that the above mentioned presentations derived from [28, 57] are somewhat
cumbersome and none of them is as clean as Strebel’s presentation.

Secondly, our proof of Proposition 3.9 drawing from Holz’s ideas [57, An-
hang] has a slight advantage in that it suggests that there is a K-theoretical
phenomenon behind the finiteness length of Abels groups. It is known that
GLn(R) and SLn(R) are typically finitely generated (resp. finitely presented)
whenever n is large enough or the base ring has good low-dimensional K-
groups [56]. In spirit, a large rank n gives one enough space in GLn(R) to
work with elementary matrices via commutator calculus. The same happens
with the elementary matrices in An(R): while Strebel and Holz need the
hypothesis n ≥ 4 for their results, Holz observes that one can spare some
generators and some relations for An(R) in the case n ≥ 5 in comparison
to A4(R). This observation is incorporated in our proof and is the reason
why the space CC(H (n,R)) used here is 3-dimensional for n = 4 but 2-
dimensional for n ≥ 5; compare the proof of Proposition 3.9 for n = 4 and
n ≥ 5.

The use of coset complexes here is heavily inspired by the theory of
Abels and Holz [2, 57, 3, 5], which in turn was inspired by Tits buildings.
In [5, Section III], Abels and Holz show how their constructions generalize
buildings associated to BN -pairs and recover, in particular, results on con-
nectivity and amalgams. Proposition 3.9 also has parallels with phenomena
occurring for unipotent groups over fields; see, for instance, the introduc-
tion of [49] for an overview on recent results. It would be interesting to
construct further examples of unitriangular groups over arbitrary rings that
admit ‘building-like’ coset complexes.
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Chapter 4

Presentations of parabolic
subgroups

In the structure theory of groups of Lie type and algebraic groups, their
parabolic subgroups play an important role; see e.g. [99, 48, 68]. The
parabolics of classical matrix groups can be characterized differently de-
pending on the base ring [97, 100, 22]. Suppose the base ring is a field and
G is classical. A subgroup P ≤ G is called parabolic whenever the variety
G/P is complete. In the theory of buildings, standard parabolic subgroups
arise as stabilizers of panels of a fixed fundamental chamber and are in-
timately related to parabolic subgroups of the corresponding Weyl group.
Equivalently, P is called parabolic if it contains a Borel subgroup. (Over
fields, Borel subgroups are precisely the maximal, connected, soluble alge-
braic subgroups of G.) In particular, parabolic subgroups always contain a
maximal split torus.

In this work, we consider analogues of the parabolics above which are
most easily described via sets of simple roots. Recall that a classical group
G ≤ GLn has a corresponding root system Φ with respect to an arbitrary,
but fixed, maximal split torus H ≤ G. As pointed out in Chapter 1, if
G = GLn itself, the standard torus is H = Dn, the diagonal subgroup.
(Accordingly, if G = SLn, then H = Dn ∩ SLn.) Given a subset of roots
X ⊆ Φ we let ΦX ⊆ Φ denote the root subsystem generated by X, that is,
ΦX = spanZ(X)∩Φ ⊆ Rrk(Φ). Let us furthermore fix ∆ ⊂ Φ a set of simple
roots.

Definition 4.1. With the notation above, a standard parabolic subgroup
P(R) = PI(R) of a classical group G(R) is a group of the form

PI(R) = 〈H(R), Xδ(R) : δ ∈ Φ+ ∪ ΦI〉

for some subset of simple roots I ⊆ ∆. (In particular, PI(R) is contained
in the elementary subgroup of G(R); cf. Chapter 1.)
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We remark that both the elementary subgroup and the standard Borel
subgroup of G(R) are themselves parabolic subgroups. More precisely, the
elementary subgroup is the parabolic P∆(R), whereas the standard Borel
subgroup is P∅(R). Both such groups shall also be called the trivial standard
parabolic subgroups of G(R). If G = GLn (resp. SLn), the trivial parabolics
are P∅(R) = Bn(R) and P∆(R) = GEn(R) (resp. P∅(R) = B◦n(R) and
P∆(R) = En(R)).

The groups from Definition 4.1 generalize parabolics of classical
groups—as defined in the beginning of this chapter—in the following sense:
if the base ring R is a field, then any PI(R) as above is (the group of R-
points of) a parabolic subgroup of a classical group and, conversely, any
parabolic subgroup of a classical group over the field R is conjugate to an
algebraic subgroup of G the form PI for some set I of simple roots; cf. [22,
Chapter IV] or [48, Exposé XXVI].

The main result of this chapter is the following lower bound on the
finiteness length of standard parabolics.

Theorem 4.2 (Theorem B, restated). Let G be a classical group with un-
derlying (reduced, irreducible) root system Φ, let I ⊂ Φ be a set of simple
roots, and suppose the triple (R,Φ, I) is QG. Given a standard parabolic
subgroup PI(R) ≤ G(R), let LEI(R) denote its extended Levi factor; cf.
Definition 4.5. Then φ(PI(R)) ≥ 2 if and only if φ(LEI(R)) ≥ 2.

Theorem 4.2 still needs some explanation. Let (R,Φ, I) be as in the
statement. The ring R is said to be ‘not very bad’ (see e.g. [90, 9, 91]) for
the root system Φ—or NVB for short—whenever the following holds.{

2 ∈ R× if Φ ∈ {Bn,Cn,F4} ,
2, 3 ∈ R× if Φ = G2.

Imposing the NVB condition assures that the commutator formulae (1.8)
of Chevalley do not degenerate and that the structure constants occurring in
the commutators are all invertible. This is an optimal set-up when working
with commutator calculus in classical groups. It often happens that drop-
ping the NVB condition yields similar—or sometimes the same—results,
though in such a case one might have to go through painful case-by-case
verifications with degenerate commutator formulae. For our purposes, there
are other means to avoid technicalities with structure constants besides
the NVB condition. We say that the triple (R,Φ, I) is ‘quite good’—
abbreviated QG—if any of the following two conditions hold.

i. B◦2(R) is finitely presented; or

ii. B◦2(R) is finitely generated, R is NVB for Φ, and I 6= {α} in the case
where Φ = G2 and α ∈ G2 is long.
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Imposing finite presentability of B◦2(R) completely eliminates the problems
we would have to deal with regarding characteristic and structure constants,
though such condition might be considered too restrictive. The assumption
that B◦2(R) is finitely generated is made to ensure that all parabolics that
we consider are finitely generated, which is a necessary assumption for fi-
nite presentability. Lastly, the excluded case Φ = G2 and I = {α} with
α ∈ G2 long is the only one for which the computations we shall conduct
could not be carried out. (We believe, however, that some ingenious cal-
culations might show that such case need not be excluded.) Despite the
technical assumptions given by the QG condition, we strongly suspect that
Theorem 4.2 holds for arbitrary triples (R,Φ, I).

Let us look back at the parabolics P1,P2 ≤ GL12 from the introduction
and see how Theorem 4.2 applies.

Example 4.3. We again consider the following parabolic subgroups of
GL12(Z[t, t−1]).

P1(Z[t, t−1]) =


1×1 ∗ ··· ∗

0 5×5
. . .

...
...

. . . 1×1 ∗
0 ··· 0 5×5

 , P2(Z[t, t−1]) =


5×5 ∗ ··· ∗

0 1×1 ∗
...

... 0 1×1 ∗
0 ··· 0 5×5

 .

Recall from the Introduction that their extended Levi factors (cf. Defini-
tion 4.5) are the subgroups

LE1(Z[t, t−1]) =


1× 1 0 · · · 0

0 5× 5
. . .

...
...

. . . 1× 1 0
0 · · · 0 5× 5

 ≤ P1(Z[t, t−1])

and

LE2(Z[t, t−1]) =


5× 5 0 · · · 0

0 1× 1 ∗
...

... 0 1× 1 0
0 · · · 0 5× 5

 ≤ P2(Z[t, t−1]).

Let us first look at LE1(Z[t, t−1]). Since the 5 × 5 blocks are isomor-
phic to GL5(Z[t, t−1]) by Suslin’s theorems [96, Theorem 7.8 and Corol-
lary 7.10], we see via (1.2) and (1.1) that LE1(Z[t, t−1]) is isomorphic
to (GL5(Z[t, t−1]) × GL1(Z[t, t−1]))2. As seen in Example 1.11, the group
GL1(Z[t, t−1]) = Gm(Z[t, t−1]) ∼= C∞ × C2 is finitely presented. The follow-
ing argument shows that GL5(Z[t, t−1]) is finitely presented as well—and
thus that φ(LE1(Z[t, t−1])) ≥ 2. First of all, the ring Z[t, t−1] has stable
rank at most three [56, Theorem 4.1.11] because it is a localization of Z[t].
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This yields, by Quillen’s fundamental theorem [77, Section 6, Corollary to
Theorem 8], the following isomorphisms of stable and unstable K-groups.

K1,5(Z[t, t−1]) ∼= K1(Z)⊕K0(Z)

and
K2,5(Z[t, t−1]) ∼= K2(Z)⊕K1(Z).

Since the Ki(Z[t, t−1]) for i ∈ {0, 1, 2} are finitely generated (see e.g. Mil-
nor [72, Section 10] and Rosenberg [81, p. 75]), it follows from [56, Theo-
rem 4.3.25] that GL5(Z[t, t−1]) admits a finite presentation, as required.
The above arguments—and (1.2)—also yield φ(LE2(Z[t, t−1])) ≥ 1. How-
ever, Theorem 2.1 holds for LE2(Z[t, t−1]) because of the retract

LE2(Z[t, t−1])�


15 0 ··· 0

0 ∗ ∗
...

... 0 ∗ 0
0 ··· 0 15

 ∼= B2(Z[t, t−1]),

whence φ(LE2(Z[t, t−1]) = 1 by [64, Section 4]. It thus
follows from Theorem 4.2 that the parabolic subgroups
P1(Z[t, t−1]), P2(Z[t, t−1]) ≤ GL12(Z[t, t−1]) are not quasi-isometric.

In Section 4.1 we recall some facts about the structure of parabolics. The
construction of the extended Levi factor is also given in Section 4.1 along
with some examples and properties. Theorem 4.2 is proved in Section 4.2.
In Section 4.3 we look at applications of Theorem 4.2. We close the chapter
in Section 4.4 with some remarks on Theorem 4.2 and further research
directions.

4.1 Structure of parabolics, and the extended Levi
factor

It is well-known that a parabolic subgroup PI(R) admits a Levi decom-
position [48, Exposé XXVI, Prop. 1.6], that is, it splits as a semi-direct
product PI(R) = UI(R) o LI(R) with

UI(R) = 〈Xγ(R) : γ ∈ Φ+\ΦI〉 and LI(R) = 〈H(R),Xα(R) : α ∈ ΦI〉.

(Recall that H is a maximal standard torus of the classical overgroup.)
The normal subgroup UI(R) is called the unipotent radical of PI(R)—it is
always nilpotent and admits a filtration via levels of roots with respect to
the defining subset I ⊆ ∆; see, for instance, [68] for the case of algebraically
closed fields or [48, Exposé XXVI, Sec. 2] for the general case. The group
LI(R) is called the Levi factor of PI(R). When defined over a field, LI is a
reductive algebraic group and its derived subgroup will be classical because
the overgroup G ≥ PI is classical.
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Example 4.4. Suppose R is e.g. a field or a semi-local ring. As hinted
in the Introduction, the standard (non-trivial) parabolic subgroups of
SLn(R) = GscAn−1

(R) are of the form

PI(R) =


n1×n1 ∗ ∗ ··· ∗

0 n2×n2 ∗ ···
...

...
. . . ∗

0 ··· 0 nk×nk

 ≤ SLn(R),

that is, PI(R) is a subgroup of block upper triangular matrices. The
Levi factor LI(R) is the subgroup generated by the diagonal matrices
Dn(R) ∩ SLn(R) and the square blocks on the diagonal. The condition
∅ 6= I ( ∆ (i.e. PI(R) is non-trivial) implies that the number k of blocks
is at least 2, and that at least one block is a square of size at least two, so
that it consists of invertible square matrices with determinant 1. In other
words, every block is isomorphic to some SLni(R) if 1 < ni < n.
For instance, suppose n = 6 and I = {α1, α3}. Then
PI(R) = P{α1,α3}(R) ≤ SL6(R) is given by

P{α1,α3}(R) =

 ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗
0 0 0 0 0 ∗

 .

Its unipotent radical and Levi factor are, respectively,

U{α1,α3}(R) =

 1 0 ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
0 0 1 0 ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 1

 and L{α1,α3}(R) =

 ∗ ∗ 0 0 0 0
∗ ∗ 0 0 0 0
0 0 ∗ ∗ 0 0
0 0 ∗ ∗ 0 0
0 0 0 0 ∗ 0
0 0 0 0 0 ∗

 .

We observe that the Levi factor L{α1,α3}(R) is generated by the following
subgroups of SL6(R).

L1 =
(

SL2(R) 0
0 14

)
, H2 =

(
1 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 13

)
,

L3 =

(
12 0 0
0 SL2(R) 0
0 0 12

)
, H4,5 =

(
13 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

)
.

In this case (recall that R is a field or is semi-local), we have the following
identifications using the notation from Section 1.1.3.

L1 = 〈Xα1(R),X−α1(R)〉, H2 = Hα2(R) ∼= Gm(R)

L3 = 〈Xα3(R),X−α3(R)〉, H4,5 = 〈Hα4(R),Hα5(R)〉 ∼= Gm(R)2,
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and

U{α1,α3}(R) = 〈Xα2(R), Xα4(R), Xα5(R),

Xα1+α2(R), Xα2+α3(R), Xα3+α4(R), Xα4+α5(R),

Xα1+α2+α3(R), Xα2+α3+α4(R), Xα3+α4+α5(R),

Xα1+α2+α3+α4(R), Xα2+α3+α4+α5(R),

Xα1+α2+α3+α4+α5(R) 〉.

The decomposition for the Levi factor L{α1,α3}(R) from Example 4.4
holds in a more general context. We spell it out below in terms of adjacency
relations in the Dynkin diagram of Φ.

Recall that the root system Φ has an arbitrary, but fixed, choice of
(totally ordered) simple roots ∆. Viewing ∆ as the set of vertices of its
Dynkin diagram D∆, if I is a subset of simple roots, we write Adj(I) for the
set of simple roots not in I that are adjacent to some (not necessarily the
same) element of I. In symbols,

Adj(I) := {δ ∈ ∆\I | ∃α ∈ I for which there is an edge in D∆

connecting δ to α}.

Now, let ∅ 6= I ( ∆. This subset I of simple roots generates a subdiagram
I in the Dynkin diagram D∆. Denote by I1, . . . , Ik the (pairwise disjoint)
subsets of I that span the connected components of I in D∆. We observe
that

ΦI = ΦI1 ·∪ ΦI2 ·∪ · · · ·∪ ΦIk .

It then follows from Chevalley’s formulae (1.8) and Steinberg’s rela-
tions (1.9) that the Levi factor LI(R) ≤ PI(R) ≤ G(R) is in fact an
extension of a direct product of elementary groups, of rank smaller than
rk(Φ), by a torus. For instance, if G = Gsc

Φ , then

LI(R) = EscΦI
(R) o 〈Hα(R) : α ∈ ∆\I〉

=

 k∏
j=1

EscΦIj
(R)

o 〈Hα(R) : α ∈ ∆\I〉.

In case G = GLn, we have

LI(R) =

 k∏
j=1

GEnj (R)

oGm(R)n−n1−...−nk .

If I = ∅, then LI(R) is just the standard torus H(R). From the above
description of LI(R) and Corollary 1.14, it follows that the torus—whence
the group of units Gm(R)—must be finitely generated if PI(R) is to be
finitely presented.
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We define the non-adjacent roots of I to be the complement

NAdj(I) = ∆\(I ∪Adj(I)) = {α ∈ ∆\I | α is adjacent to no element of I} ,

and the extension of the given set I is defined as
Ext(I) = ∆\Adj(I) = I ∪ NAdj(I). With the adjacency termi-
nology, the extended Levi factor is defined as follows.

Definition 4.5. Let PI(R) be a standard parabolic subgroup of a classical
group G(R). The extended Levi factor of PI(R), denoted by LEI(R), is the
subgroup generated by the standard torus H(R) and either a single root
subgroup Xα(R) with α ∈ ∆ the first long root, in case I is empty, or by the
root subgroups Xα(R) for α ∈ ΦI together with the non-adjacent positive
root subgroups Xβ(R) with β ∈ Φ+

NAdj(I), in case I 6= ∅. In symbols,

LEI(R) :=

{
〈H(R), Xα(R) : α is the first long root of ∆〉, if I = ∅;

〈H(R), Xα(R), Xβ(R) : α ∈ ΦI , β ∈ Φ+
NAdj(I)〉 otherwise.

We usually reserve the notation LEI(R) for the case I 6= ∅ and write
LE∅(R) otherwise. By the very definition the extended Levi factor is unique
when I 6= ∅. In contrast, LE∅(R) depends a priori on the given ordering on
the set of simple roots ∆. However, by the Weyl relations (1.10), different
orderings yield conjugate (hence isomorphic) extended Levi factors.

We remark that LEI(R) contains LI(R), though this containment might
not be proper. In fact, one has the following split short exact sequences.

Xα(R) ↪→ LE∅(R)� L∅(R) = H(R) ∼= LEn(R)/Xα(R)

and

〈Xβ(R) : β ∈ Φ+
NAdj(I)〉 ↪→ LEI(R)� LI(R) ∼=

LEI(R)

〈Xβ(R) : β ∈ Φ+
NAdj(I)〉

.

Thus, by Lemma 1.13, if an extended Levi factor is finitely presented, then
so is the Levi factor itself.

In the language of Example 0.7 from the Introduction, in the case where
I 6= ∅, the root subgroups Xβ(R) with β ∈ NAdj(I) are the generators
of the triangular blocks of PI(R), whereas LI(R) is generated by both the
square blocks—generated by the Xα(R) with α ∈ ΦI—and the torus H(R).

Example 4.6. We describe the extended Levi factor for the parabolic sub-
group P{α1,α3}(R) ≤ SL6(R) from Example 4.4 (R a field, or semi-local).
As observed before, we have two subgroups which are generated by root
subgroups with roots from Φ{α1,α3}, namely L1 = 〈Xα1(R), X−α1(R)〉
and L3 = 〈Xα3(R), X−α3(R)〉. Those are precisely the square blocks
from P{α1,α3}(R). Now, the only simple root which is not adjacent to
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I = {α1, α3} is the last one, α5. So NAdj(I) is the singleton {α5} and
one has ΦNAdj(I) = {±α5} and Φ+

NAdj(I) = {α5}, whence the triangular

block of P{α1,α3}(R) is just the root subgroup Xα5(R). Pictorially,

L1 =

 ∗ ∗ 0 0 0 0
∗ ∗ 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , L3 =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 ∗ ∗ 0 0
0 0 ∗ ∗ 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 and Xα5(R) =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 ∗
0 0 0 0 0 1

 .

Thus,

LE{α1,α3}(R) =



∗ ∗ 0 0 0 0
∗ ∗ 0 0 0 0
0 0 ∗ ∗ 0 0
0 0 ∗ ∗ 0 0
0 0 0 0 ∗ ∗
0 0 0 0 0 ∗

 .

Of course, we still have to show that the extended Levi factor LEI(R)
fits in our framework of retracts with respect to PI(R).

Proposition 4.7. Suppose I 6= ∅. There is a retract r : PI(R) � LEI(R)
with kernel

KI(R) = 〈Xγ(R) : γ ∈ Φ+\ΦExt(I)〉.

If I = ∅, then one has a retract r : P∅(R) = BΦ(R) � LE∅(R) with
kernel

K∅(R) = 〈Xγ(R) : γ ∈ Φ+\ {α}〉.

Proof. Assume first that I = ∅. By Chevalley’s formulae (1.8) and
Steinberg’s relations (1.9), we see that K∅(R) E BΦ(R) and LE∅(R) =
Xα(R) o H(R) ∼= BΦ(R)/K∅(R). Suppose I 6= ∅. Again from (1.8)
and (1.9), it follows that KI(R) E PI(R). Since Ext(I) is the disoint
union of I and NAdj(I), we have that the unipotent root subgroups that
generate LEI(R) do not involve any Xγ(R) ≤ KI(R). Furthermore, such
unipotent root subgroups are partitioned into blocks which pairwise have
only non-adjacent roots between them. Hence, LEI(R) is a complement
of KI(R) in PI(R) with trivial intersection, so that the natural projection
PI(R)� PI(R)/KI(R) yields the desired retract.

It follows from Lemma 1.13 and Proposition 4.7 that the finite pre-
sentability of LEI(R) (resp. LE∅(R)) is a necessary condition for the finite
presentability of the whole parabolic PI(R) (resp. P∅(R)). Proposition 4.7
also implies that we can make use of the usual presentation of a semi-direct
product to build a presentation for PI(R) out of presentations of LEI(R)
and KI(R). For the Borel subgroup P∅(R), we will instead make use of
a presentation for its unipotent radical U∅(R) = 〈Xγ(R) : γ ∈ Φ+〉. We

68



shall therefore need convenient presentations for U∅(R) and KI(R), to be
described in the sequel, for the proof of Theorem 4.2.

Recall that the unipotent radical UI(R) admits a well-known presenta-
tion obtained as follows. The unipotent root elements xγ(r), with γ running
over Φ+\ΦI and r ∈ R, form the generating set. The defining relators
are given by the commutator formulae (1.8) and the additive condition
xγ(r) · xγ(s) = xγ(r + s) for all γ ∈ Φ+\ΦI , r, s ∈ R. This is precisely the
analogue of Lemma 1.3 in the more general context of parabolics in classical
groups. We note, in particular, that if the classical overgroup G equals GLn
or SLn, then U∅(R) = Un(R), the subgroup of upper unitriangular matrices.

As seen in Section 1.1.2, commutator calculus yields concrete presen-
tations for UI(R). In what follows we fix the notation for a presentation
of (R,+) = Ga(R) = (

⊕
t∈T Zt)/〈R〉 just as in Section 1.1.2. In par-

ticular, T ⊆ R is a subset of additive generators containing 1, the set
R ⊆

⊕
t∈T Zt is a set of additive defining relators, and we have a func-

tion m : (
⊕

t∈T Zt)×(
⊕

t∈T Zt)→ (
⊕

t∈T Zt) for which the image of m(r, s)
in R equals the product of the images of r and s in R under the given natural
projection. We observe that m(−,−) can be used to represent products of
powers of additive expressions as follows. Given natural numbers k, ` ∈ N
and r, s ∈ (

⊕
t∈T Zt), define pk,`(−,−) recursively as

pk,`(r, s) := m(m(r, . . .m(r, r)) · · · )︸ ︷︷ ︸
k occurrences of r

, m(s, . . .m(s, s)) · · · )︸ ︷︷ ︸
` occurrences of s

).

Lemma 4.8. Let R be a commutative ring with unity and let T , R, and
m(r, s) =

∑
u auu be as in Section 1.1.2. The unipotent radical UI(R) of

a parabolic subgroup PI(R) of a classical group G(R) admits a presentation
UI(R) = 〈Y | S〉 with generating set

Y =
{
xγ(t) | t ∈ T, γ ∈ Φ+\ΦI

}
and defining relators S given as follows. For all γ, η ∈ Φ+\ΦI and t, s ∈ T ,

[xγ(t), xη(s)] =


∏

mγ+nη∈Φ+

(∏
u

xmγ+nη(u)au

)Cγ,ηm,n
, if γ + η ∈ Φ;

1 otherwise,

(4.1)
where

∑
u auu ∈

⊕
t∈T Zt is the value of pm,n(t, s) as above, and∏

λ

xγ(tλ)aλ = 1 for all
∑
λ

aλtλ ∈ R as in Section 1.1.2. (4.2)

Proof. This is a straightforward generalization of Lemma 1.3, which it-
self covers the case I = ∅ and G ∈ {GLn,SLn}. In fact, an analogous
proof applies. To see this, recall that UI(R) is also nilpotent by (1.8) and
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that the factors of its lower central series are direct products of Ga(R);
see e.g. [93, Chapter 3] and [9, Theorem 2.a, see also closing remark 1].
Recasting Lemma 1.3 with Chevalley’s formulae (1.8), which generalize
the commutator relations (1.1), just repeat the same steps of the proof of
Lemma 1.3 to obtain the above presentation for UI(R).

Our next remark is that KI(R) admits a presentation very similar to that
of UI(R) described above. The proof is analogous to that of Lemma 1.3.
Since the filtration of KI(R) via a central series might not be clear a priori,
we outline below how to imitate the arguments from Lemma 1.3. In par-
ticular, the reader unfamiliar with the full proof of Lemma 4.8 might just
adapt the proof of the lemma below to the set-up of 4.8.

Lemma 4.9. Let R be a commutative ring with unity and let T , R, and
m(r, s) =

∑
u auu be as in Section 1.1.2. Suppose I 6= ∅. Then the kernel

KI(R) of the retraction r : PI(R) � LEI(R) of Proposition 4.7 admits
a presentation KI(R) = 〈Y | S〉 with generating set

Y =
{
xγ(t) | t ∈ T, γ ∈ Φ+\ΦExt(I)

}
and a set of defining relators S given by the same formulae (4.1) and (4.2)
of Lemma 4.8, but now for all γ, η ∈ Φ+\ΦExt(I).

Sketch of proof following Lemma 1.3. Given a positive root α ∈ Φ+, we can
write (uniquely)

α =
∑

δ∈Ext(I)

pδδ +
∑

γ∈Adj(I)

qγγ, with pδ, qγ ∈ Z≥0.

We define the adjacency level of α, denoted by alvl(α), to be the integer
alvl(α) =

∑
γ∈Adj(I) qγ from the equation above. Let

Kj = 〈Xγ(R) : γ ∈ Φ+\ΦExt(I) has alvl(γ) ≥ j〉.

By the commutator formuale (1.8), we see that each Kj is normal in KI(R)
and each factor Kj/Kj+1 is canonically isomorphic to∏

γ∈Φ+\ΦExt(I)

alvl(γ)=j

Xγ(R) ∼=
∏

γ∈Φ+\ΦExt(I)

alvl(γ)=j

Ga(R).

Hence, the subgroups Kj yield a terminating central series for KI(R)—
though it might not coincide with the lower central series.

Now let K̃I(R) be the group defined by the presentation stated in the
lemma, with the decoration ˜ above the elements of the generating set; e.g.
x̃γ(t) instead of xγ(t). Define analogously

K̃j = 〈
{
x̃γ(t) | t ∈ T and γ ∈ Φ+\ΦExt(I) of alvl(γ) ≥ j

}
〉.
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By von Dyck’s theorem, the obvious map

f : Y −→ KI(R)

x̃γ(t) 7→ xγ(t)

induces a surjection K̃I(R) � KI(R)—which we also call f by abuse of
notation—because the defining relations (4.1) and (4.2) hold in KI(R) and
each Xγ(R) ∼= Ga(R) is generated by the {xγ(t) | t ∈ T}. By (4.1) we also

see that K̃j E K̃I(R) for every j, and f restricts to surjections K̃j � Kj .
Furthermore, relations (4.1) and (4.2) imply—analogously to Lemma 1.3—
that each factor K̃j/K̃j+1 is isomorphic to∏

γ∈Φ+\ΦExt(I)

alvl(γ)=j

X̃γ ∼=
∏

γ∈Φ+\ΦExt(I)

alvl(γ)=j

Ga(R),

where the X̃γ are defined in the obvious way. Such maps are all induced by f .

Thus, K̃I(R) and KI(R) are nilpotent groups with isomorphic (terminating)
central series via isomorphisms induced by the same surjection. It then
follows by induction on the nilpotency class that f is an isomorphism.

4.2 Proof of Theorem 4.2

By Proposition 4.7, the extended Levi factor LEI(R) is a retract of
its parabolic overgroup PI(R), whence φ(PI(R)) ≤ φ(LEI(R)) by Corol-
lary 1.14. Thus, to prove Theorem 4.2, it remains to settle the following.

Theorem 4.10. Let PI(R) be a standard parabolic subgroup of a classical
group G(R) and suppose (R,Φ, I) is QG. If the extended Levi factor LEI(R)
admits a finite presentation, i.e. if φ(LEI(R)) ≥ 2, then φ(PI(R)) ≥ 2.

We shall prove Theorem 4.10 only in the cases where the classical over-
group G is a universal Chevalley–Demazure group scheme Gsc

Φ . The reason
for this is that the proof given here carries over almost verbatim to the case
where G = GLn after recasting the proof steps in the language of elemen-
tary and diagonal matrices. (Recall from Example 1.6 that the unipotent
root subgroups of GLn(R) are the Eij(R) and the standard maximal torus
is the diagonal subgroup Dn(R).) Thus, we assume for the remainder
of Section 4.2 that the classical overgroup G ≥ PI is a universal
Chevalley–Demazure group scheme G = Gsc

Φ .

The strategy to prove Theorem 4.10 is as follows. We first analyze the
structure of the base ring R under our standing assumptions. Now, recall
that a semi-direct product G = N oϕ Q, with N = 〈Y | S〉, Q = 〈X | R〉
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and ϕ the homomorphism Q
ϕ−→ Aut(N) determining the action, admits the

following presentation.

G = 〈X ∪ Y | S ∪R ∪
{
xyx−1ϕ(y) | x ∈ X, y ∈ Y

}
〉. (*)

We then consider the two cases, I = ∅ and I 6= ∅. In the former, PI(R)
is the standard Borel subgroup BΦ(R) = U∅(R) o H(R). Since H(R) is
a finitely generated abelian group, we can take a finite presentation for
H(R) with finitely many semi-simple root elements as generators. Com-
bining this with the presentation for U∅(R) from Lemma 4.8 and Stein-
berg’s relations (1.9), we get a canonical (in general infinite) presentation
for BΦ(R) as in (*). On the other hand, using the fact that the extended
Levi factor LE∅(R) is finitely presented, Theorem 2.1 implies that each
subgroup Xγ(R) o H(R) ≤ BΦ(R) for γ ∈ Φ+ has a finite presentation.
We fix such presentations with convenient generating sets, and we appropri-
ately add unipotent root elements and Chevalley and Steinberg relations to
construct a finitely presented group B̃Φ(R). Finally, we apply von Dyck’s
theorem twice to show that B̃Φ(R) is isomorphic to BΦ(R).

For I 6= ∅, we start by taking a finite presentation for the extended Levi
factor LEI(R) with generating set given by appropriately chosen unipotent
and semi-simple root elements. The canonical presentation (*) for PI(R) is
given by the chosen presentation for LEI(R) together with the presentation
of KI(R) from Lemma 4.9 with the addition of Chevalley and Steinberg
relations. We then break down the proof into two cases given by the QG
condition: If B◦2(R) is finitely presented, we get finite presentations for each
Xγ(R)oH(R) for γ ∈ Φ+\ΦExt(I) and proceed similarly to the Borel case; If

R is NVB for Φ, we construct a finitely presented group P̃I(R) from LEI(R)
adding just the obvious generators from KI(R) as a normal subgroup of
PI(R) and the necessary Chevalley and Steinberg relations, then proceed to
prove P̃I(R) ∼= PI(R) via commutator computations.

Unless stated otherwise, the arguments given here are for arbitrary, but
fixed, total orders on the set of simple roots ∆ ⊂ Φ—which extend to total
orders on Φ. The above mentioned finite presentations thus use the same
given, fixed ordering. But the reader can work right from the start with
presentations which are independent of choice of ordering—just add to the
given group presentation the (finitely many) copies of relations listed here
that correspond to all possible choices of ordering.

Results in this section distinguish as little as possible the different types
of root systems. We therefore warn the reader to be armed with patience to
face the lengthy notation battle ahead.

Let us begin with the following elementary results on root systems and
root subgroups that will be needed in the sequel.

Lemma 4.11 ([58, 10.2 A]). Given a non-simple root γ ∈ Φ+\∆, there exist
a simple root α ∈ ∆ and a positive root β ∈ Φ+ such that α + β = γ.
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Lemma 4.12. If ∅ 6= I ( ∆ and α ∈ Adj(I), then there exist α̃ ∈ ΦI and
β̃ ∈ Φ+ such that α̃ + β̃ = α.

Proof. Take δ ∈ I adjacent to α. Then β̃ := δ + α ∈ Φ+ and the claim
follows for α̃ := −δ.

Lemma 4.13. Let Xα(R),Xβ(R) ≤ Gsc
Φ (R) be root subgroups with α and β

linearly independent. There exist a one-dimensional subtorus Hα,β(R) ≤
H(R), given by the assignment h : Gm(R)

∼=−→ Hα,β, u ∈ R× 7→ h(u),
and an integer n = n(α, β) 6= 0 such that Hα,β(R) centralizes Xα(R) and
h(u)xβ(r)h(u)−1 = xβ(unr) for all xβ(r) ∈ Xβ(R) and all h(u) ∈ Hα,β(R).

Proof. We may assume α and β to be simple by (1.10). If α is orthogonal
to β, define Hα,β to be the semi-simple root subgroup Hβ(R) and the claim
follows. The case rk(Φ) ≥ 3 is also easy: choose another simple root γ which
is adjacent to β and non-adjacent to α and set Hα,β = Hγ(R). For the
general case, pick integers p, q ∈ Z\ {0} such that 2p− q · (α, β) = 0 and set
h(u) := hβ(u)−qhα(u)p and Hα,β(R) := 〈{h(u) | u ∈ R×}〉 ≤ H(R). Then
Hα,β(R) centralizes Xα(R) by Steinberg’s relations (1.9). As the Cartan
integers lie in {±1,±2,±3}, one easily checks that n(α, β) := p · (β, α)− 2q
must be non-zero, and the result follows again from (1.9).

From the proof of Lemma 4.13 one can take n(α, β) to be ±1 or ±2 in
many cases. Furthermore, the torus Hα,β(R) needs not be unique, thus the
integers n(α, β) may vary. Clearly, n(−α, β) = −n(α, β).

Definition 4.14. Given a commutative ring R with unity and two roots
α, β ∈ Φ, we define their toral constant to be

cα,β(R) = min {|n(α, β)| : Hα,β(R) and n(α, β) are as in Lemma 4.13} .

The toral constant of Φ and R is defined as

cΦ(R) = max {cα,β(R) | α, β ∈ Φ} .

In the next few pages we establish a great deal of notation and remarks
necessary to construct the presentations for the proof of Theorem 4.10. We
kindly ask the reader to bear with us during this task.

The first step is to establish notation concerning the base ring R, keeping
in mind the standing assumptions of Theorem 4.10. By the QG condition,
the Borel subgroup B◦2(R) of rank one is always finitely generated. Hence,
the torus H(R) of Gsc

Φ (R) is finitely generated as well; see Section 4.1. We
may thus fix A ⊆ Gm(R) = R× a finite generating set for the multiplica-
tive (abelian) group of units of R, say A = {v1, . . . , vξ}. Now, B◦2(R) is
isomorphic to the semi-direct product Ga(R)oGm(R) with action given by

Gm(R)×Ga(R) // Ga(R)

R× ×R 3 (u, r) � // u2r.
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We may therefore choose a finite set T0 = {x0 = 1, x1, . . . , xν} ⊆ R
such that R× · T0 := {uxi | 0 ≤ i ≤ ν and u ∈ 〈A〉} additively generates
R. Given a positive integer c ∈ N, let A[c] denote the set of monomials{
vε11 · · · v

εξ
ξ | −c ≤ εj ≤ c ∀j

}
over A with powers of the letters bounded by

±c; notice that 1 ∈ A[c]. Using the action of R× on R given above, we have
that A[2] · T0 generates R as a Z[R×]-module. Setting cΦ := cΦ(R) ∈ N the
toral constant of Φ and R, one has that T̃ := A[cΦ] · T0 is also a (finite)
generating set for R as a Z[R×]-module. Hence, the (possibly infinite) set
T := 〈A[cΦ]〉 · T0 = R× · T0 additively generates the ring R.

Put differently, the set T0 above freely generates the free Z[R×]-module

M =

ν⊕
`=0

Z[R×] · x`,

and T = 〈A[cΦ]〉 · T0 and T̃ = A[cΦ] · T0 are, respectively, a generating set
for M as a Z-module and a finite generating set for M as a Z[R×]-module.
We let furthermore A ⊆ M denote an arbitrary, but fixed, set of additive
defining relators for (R,+). That is, we fix an epimorphism π : M � Ga(R)
of abelian groups which maps every uxi ∈ R× · T0 ⊂M to its copy uxi in R
and fix a set A ⊂M such that ker(π) = spanZ(A) ⊆M .

What now follows is a detailed adaptation of what we did before in
Sections 1.1.2 and 4.1. For every pair xi, xj ∈ T0, fix an expression
m(xi, xj) ∈M representing the product xixj = xjxi in the ring R. That is,
m(xi, xj) ∈M is chosen so that π(m(xi, xj)) = xixj in R. (We are abusing
notation since we are looking at T0 = {x0, . . . , xν} both as a subset of R and
as a free basis of M .) Furthermore, we choose the expressions m(xi, xj) so
that m(xi, 1) = xi = m(1, xi) and m(xi, xj) = m(xj , xi) for all xi, xj ∈ T0.

Now define a family {pm,n}(m,n)∈N×N of maps pm,n : M × M → M

recursively and Z-linearly as follows. Firstly, given t, s ∈ T = R× · T0 with
t = uxi and s = vxj , where xi, xj ∈ T0 and u, v ∈ R×, we set

p1,1(t, s) := p(t, s) = p(uxi, vxj) := uv ·m(xi, xj),

wherem(xi, xj) ∈M is as in the previous paragraph. Having defined p(−,−)
over T ×T , we extend it Z-linearly to M ×M , which is possible because M
is free abelian with basis T . The p(−,−) thus induce maps from M ×M to
M , which we also call p(−,−), as follows. Given elements r =

∑ν
i=0 aiuixi

and s =
∑ν

j=0 bjvjxj in M , where ai, bj ∈ Z and uixi, vjxj ∈ T , set

p1,1(r, s) := p(r, s) :=
ν∑
i=0

ν∑
j=0

aibj · p(uixi, vjxj).

Secondly, with the maps p : M ×M → M at hand and and given m,n ∈
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N× N, we recursively define pm,n(−,−), also first on T × T , by setting

pm,n(t, s) := p(p(t, . . . p(t, t)) · · · )︸ ︷︷ ︸
m occurrences of t

, p(s, . . . p(s, s)) · · · )︸ ︷︷ ︸
n occurrences of s

).

For example, p3,2(t, s) = p(p(t, p(t, t)), p(s, s)). Finally, since the maps
{pm,n}(m,n)∈N×N are defined on the basis T of M as a free abelian group,

they extend Z-linearly like in the previous case of p(−,−) to maps which we
also call pm,n, defined on the whole of M ×M .

Each map pm,n(−,−) : M×M →M has the following properties. Given
t = uxi and s = vxj in T , one has

pm,n(t, s) = pm,n(uxi, vxj) = umvn · pm,n(xi, xj). (4.3)

In particular, if we have t = wuxi and s = zvxj for w, z ∈ R× and

uxi, vxj ∈ T̃ = A[cΦ] · T0, then pm,n(t, s) does not depend on the cho-
sen representations of t and s as products t = wuxi and s = zvxj in

T = 〈A[cΦ]〉 · T0 = R× · T̃ . And, given arbitrary elements r =
∑ν

i=0 aiuixi
and s =

∑ν
j=0 bjvjxj in M with ai, bj ∈ Z and uixi, vjxj ∈ T , one has

pm,n(r, s) =
ν∑
i=0

ν∑
j=0

umi v
n
j · pm,n(xi, xj). (4.4)

The previous equations imply, in particular, the following relations among
the Z- and R×-coefficients occurring in an expression pm,n(t, s). Given ar-
bitrary elements u, v ∈ R× and xi, xj ∈ T0, write

pm,n(uxi, vxj) =

ν∑
`=0

a`w`x` and pm,n(xi, xj) =

ν∑
`=0

b`z`x`,

where the coefficients a` and b` lie in Z and w`, z` ∈ R×. Then, for all
` = 0, . . . , ν, the following relations hold.

a` = b` and w` = umvnz`. (4.5)

The above are simple consequences of (4.3) and the fact that M is free with
basis T0 over the group ring Z[R×], which itself is free abelian over R×.

Furthermore, much like the expressions m(−,−) chosen previously, the
maps pm,n(−,−) yield representations in M of products of elements in the
ring R. More precisely, for all expressions r, s ∈M ,

π(pm,n(r, s)) = π(r)mπ(s)n ∈ R,

where π is the given projection of M onto R as abelian groups.
During the proof of Theorem 4.10, it will be convenient to represent

every unit in R as a product of the form some k-th power in R times some
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unit from the generating set A[cΦ] ⊆ R—the power k is typically taken to
be two. Such representations will allow us to manipulate relations by using
the action of the torus H(R) on unipotent root subgroups.

Recall that T̃ ⊂ T is the finite set T̃ = A[cΦ] · T0. Every element of the
(finitely generated) abelian group R× = 〈A[cΦ]〉 can be written as a product
wku where w ∈ R× and u ∈ A[cΦ], whence every t ∈ T can be written as
t = wkuxi with uxi ∈ T̃ and w ∈ R×. Such a representation is by no means
unique. However, if wkuxi and zkvxj are two distinct representations of the
same t ∈ T , then xi = xj and thus the relation wku = zkv holds in R×

because M is a free Z[R×]-module on the basis T0.
With this in mind, we can manipulate the coefficients of the expressions

pm,n(−,−) using squares as follows. Given t, s ∈ T , let us write

pm,n(t, s) =
ν∑
`=0

a`(m,n, t, s)g`(m,n, t, s)
2o`(m,n, t, s)x`, (4.6)

where a`(m,n, t, s) ∈ Z, g`(m,n, t, s) ∈ R×, o`(m,n, t, s) ∈ A[cΦ] and x` ∈
T0. If any representations t = w2uxi = wxi, s = z2vxj = z are chosen with
w, z, w, z ∈ R×, u, v ∈ A[cΦ] and xi, xj ∈ T0, then (4.3) yields the following
relations between coefficients of pm,n(t, s), pm,n(uxi, vxj) and pm,n(xi, xj).

a`(m,n, t, s) = a`(m,n, uxi, vxj) = a`(m,n, xi, xj) and

g`(m,n, t, s)
2o`(m,n, t, s) = (w2mz2n)g`(m,n, uxi, vxj)

2o`(m,n, uxi, vxj)

= (wmzn)g`(m,n, xi, xj)
2o`(m,n, xi, xj)

= (w2u)m(z2v)ng`(m,n, xi, xj)
2o`(m,n, xi, xj).

(4.7)

(We keep in mind that the coefficients g` and o` are not uniquely determined,
but rather that pm,n(t, s) does not depend on such choices.)

With the notation established—which is fixed throughout the
present section—we now show how certain Chevalley- and Steinberg-like
relations can be derived using only finitely many commutator and conju-
gation relations. In fact, the next few lemmata represent the core of the
present chapter. The upcoming proofs are rather simple once the reader is
comfortable with the notation spelled out above, so we urge them to consult
the previous pages whenever needed. Recall that R× = 〈A〉.

Remark 4.15. Let J be a finite set and let G be a group containing the
(finitely many) symbols X = {hα(a) | α ∈ J, a ∈ A} . For every α ∈ J ,
define the subgroup Hα = 〈{hα(a) | a ∈ A}〉 ≤ G. If the subgroup 〈X〉 ≤ G
is abelian and if for all α ∈ I one has

k∏
i=1

h(ai)
εi = 1 in G whenever aε11 · · · a

εk
k = 1 in R× = 〈A〉,
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then each Hα ≤ G is a homomorphic image of Gm(R) = R× and the direct
product

∏
α∈J Hα surjects onto 〈X〉 ≤ G. In this set-up, given α ∈ J and a

unit u = aε11 · · · a
εk
k ∈ R

×, we denote

hα(u) :=
k∏
i=1

h(ai)
εi ,

in which case hα(u) = hα(v) in G whenever u = v in R×.

Proof. This is an obvious consequence of von Dyck’s theorem, for all rela-
tions from Gm(R) = R× hold in each Hα and the whole of 〈X〉 is abelian.

To ease computations in the remainder of this section, we shall write
a • b = aba−1 to denote the conjugation of b by a in a group G 3 a, b.

Lemma 4.16. Let Ψ ⊆ Φ be a (reduced, irreducible) root subsystem of rank
two and let G be a group containing the (finitely many) symbols

X =
{
xγ(uxi), hα(a) | γ, α ∈ Ψ, a ∈ A, uxi ∈ T̃ = A[cΦ] · T0

}
.

Given t = w2uxi ∈ T = R× · T̃ and γ ∈ Ψ, define an element xγ(t) in G as

xγ(t) := hγ(w) • xγ(uxi).

Now suppose the hypotheses from Remark 4.15 hold for G and assume fur-
ther that the following ( finitely many) relations hold in G:
for all α, β, γ ∈ Ψ, xi ∈ T0, m ∈ Z, a, b ∈ A and u, v ∈ A[cΦ] such that
a(γ,α)u = bm(γ,β)v in R× = 〈A[cΦ]〉, one has

hα(a) • xγ(uxi) = hβ(b)m • xγ(vxi). (4.8)

Then the following hold true:

i. For all xi ∈ T0, w, z ∈ R×, α, β, γ ∈ Ψ, u, v ∈ A[cΦ] and m ∈ Z such
that w(γ,α)u = zm(γ,β)v, one has

hα(w) • xγ(uxi) = hβ(z)m • xγ(vxi).

ii. For any t ∈ T and γ ∈ Ψ, the element xγ(t) as above is well-
defined, that is, it does not depend on the chosen representation of
t as a product of the form t = w2uxi with w ∈ R×, u ∈ A[cΦ] and
xi ∈ T0. Moreover, relations between units hold inside the xγ(−), that
is, xγ(wxi) = xγ(zxi) for all w, z ∈ R× with w = z in R×.

iii. The Steinberg relations hold in G, that is, for all t ∈ T,w ∈ R× and
α, γ ∈ Ψ, one has hα(w) • xγ(t) = xγ(w(γ,α)t).
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Proof. First a clarification. There exist only finitely many relations of the
form (4.8) because the sets Ψ, T0 and A are all finite and the powers oc-
curring in the elements of the subset

A[cΦ] =
{
vε11 · · · v

εξ
ξ | vj ∈ A,−cΦ ≤ εj ≤ cΦ ∀j

}
of the (finitely generated) abelian group R× are bounded.

An obvious but useful observation is the following. If vj ∈ A and u =
vε11 · · · v

εξ
ξ is an element of A[cΦ] for which −cΦ ≤ m(γ, β) + εj ≤ cΦ for some

m ∈ Z and γ, β ∈ Ψ, then Relation (4.8) implies

hβ(vi)
m • xγ(uxi) = xγ(uxi), (4.9)

where u = vε11 · · · v
m(γ,β)+εj
j · · · vεξξ ∈ A

[cΦ].
Proof of (i): Write w = a1 · · · af as a product of generators ai ∈

A. Following Remark 4.15, we have hα(w) = hα(a1) · · ·hα(af ). Applying
Relation (4.8) f times and again Remark 4.15, we obtain m1, . . . ,mf ∈ Z,
b1, . . . bf ∈ A and v ∈ A[cΦ] such that

hα(w) • xγ(uxi) = hβ(bm1
1 · · · b

mf
f ) • xγ(vxi) in G and

(bm1
1 · · · b

mf
f )(γ,β)v = w(γ,α)u = z(γ,β)v in R×.

In particular, one has (z−mbm1
1 · · · b

mf
f )(γ,β)v = v ∈ A[cΦ].

Since R× = 〈A〉 and by definition of A[cΦ], we may write

z−mbm1
1 · · · b

mf
f = vε11 · · · v

εξ
ξ and v = vδ11 · · · v

δξ
ξ

such that the powers εj , δj satisfy −cΦ ≤ εj(γ, β) + δj ≤ cΦ for all j =
1, . . . , ξ. In this way, we also have

v = v
ε1(γ,β)+δ1
1 · · · vεξ(γ,β)+δξ

ξ . (4.10)

Again using Remark 4.15, we obtain

hα(w) • xγ(uxi) = hβ(bm1
1 · · · b

mf
f ) • xγ(vxi)

= (hβ(z)mhβ(z)−mhβ(bm1
1 · · · b

mf
f )) • xγ(vxi)

= (hβ(z)mhβ(vε11 · · · v
εξ
ξ )) • xγ(vxi)

= (hβ(z)mhβ(v1)ε1 · · ·hβ(vξ)
εξ) • xγ(vδ11 · · · v

δξ
ξ xi).

But we can apply (4.9) multiple times to the last equation above. In other

words, by induction on
∑ξ

j=1 |εj |, it follows from (4.9) and (4.10) that

(hβ(v1)ε1 · · ·hβ(vξ)
εξ) • xγ(vδ11 · · · v

δξ
ξ xi) = xγ(vxi).
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Thus hα(w) • xγ(uxi) = hβ(z)m • xγ(vxi), as desired.
Proof of (ii): This follows from Remark 4.15 and the previous item.

Indeed, suppose t = w2uxi = w2uxi in R×. Then u = (w−1w)2u and thus

hγ(w) • xγ(uxi) = (hγ(ww−1w)) • xγ(uxi) = hγ(w) • (hγ(w−1w) • xγ(uxi))

(i)
= hγ(w) • xγ(uxi).

The second claim follows from the above with (i) and Remark 4.15.
Proof of (iii): We first remark that the notation xγ(w(γ,α)t) makes

sense, for the product of w(γ,α) ∈ R× with t ∈ T = R× · T̃ lies in T . Now
let t = w2

0uxi be any representation of t ∈ T with w0 ∈ R×, u ∈ A[cΦ]

and xi ∈ T0. Let furthermore z ∈ R×, v ∈ A[cΦ] and m ∈ Z be such that
w(γ,α)u = z2mv in R×. In particular, one has that

(w0z
m)2vxi = w(γ,α)w2

0uxi = w(γ,α)t in T,

i.e. the product (w0z
m)2vxi represents the element w(γ,α)t in R×. Thus,

hα(w) • xγ(t)
(ii)
= hα(w) • (hγ(w0) • xγ(uxi))

4.15
= hγ(w0) • (hα(w) • xγ(uxi))

(i)
= hγ(w0) • (hγ(z)m • xγ(vxi))

4.15&(ii)
= xγ(w(γ,α)t),

as claimed.

A group G for which the hypotheses of 4.15 and 4.16 hold also admits
an analogue of Lemma 4.13, as the following shows.

Lemma 4.17. Let Ψ ⊆ Φ be a (reduced, irreducible) root subsystem of rank
two and let G be a group containing the (finitely many) symbols

X =
{
xγ(uxi), hα(a) | γ, α ∈ Ψ, a ∈ A, uxi ∈ T̃ = A[cΦ] · T0

}
.

Suppose all the hypotheses of Lemma 4.16 hold for G. For any given γ ∈ Ψ,
let Xγ denote the following (finitely generated) subgroup of G.

Xγ =
〈{
hα(a) • xγ(t)

∣∣∣t ∈ T̃ , a ∈ A,α ∈ Ψ
}〉
≤ G.

The following holds: Given two linearly independent roots α, β ∈ Ψ, there ex-
ist non-zero integers p, q such that the subgroup Hα,β := 〈{h(u) |u ∈ R×}〉 ≤
G centralizes Xα and h(u) • xβ(t) = xβ(unt) for all u ∈ R×, t ∈ T , where
h(u) := hβ(u)−qhα(u)p and n := p(β, α)− 2q 6= 0.

Proof. As in the proof of Lemma 4.13, take any pair p, q ∈ Z\ {0} for which
2p− q · (α, β) = 0. Again we have that n = p(β, α)− 2q must be non-zero.
The equation from the statement, with n as above, follows immediately from
Lemma 4.16(iii). And also by Lemma 4.16(iii) one has

h(u) • xα(t) = xα(u2p−q·(α,β)t) = xα(u0t) = xα(t) for all t ∈ T and u ∈ R×,

which finishes the proof.
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So far we derived torus- and Steinberg-like relations from certain con-
trolled sets. Next we consider commutators. Suppose once again we have

a group G containing the symbols
{
xγ(t)

∣∣∣ γ ∈ Ψ, t ∈ T = R× · T̃
}
, where

Ψ ⊆ Φ is a (reduced, irreducible) root subsystem of rank two. Given t, s ∈ T
and (m,n) ∈ N× N, let us write the expression for pm,n(t, s) as

pm,n(t, s) =
ν∑
`=0

a`(m,n, t, s)g`(m,n, t, s)
2o`(m,n, t, s)x` ∈ Z[R×]

with a` := a`(m,n, t, s) ∈ Z, g` := g`(m,n, t, s) ∈ R×, o` := o`(m,n, t, s) ∈
A[cΦ], x` ∈ T0. With this notation, given γ, η ∈ Ψ, define in G the expression

ζm,n(γ, η, t, s) =
ν∏
`=0

xmγ+nη(g
2
` o`x`)

a` (4.11)

whenever the (integer) linear combination mγ+nη lies in Ψ. Such an expres-
sion might a priori depend on the choice of squares g2

` ∈ R× and elements
o` ∈ A[cΦ] representing the units that show up as coefficients of pm,n(t, s).
But if G also contains the symbols {hα(a) |α ∈ Ψ, a ∈ R×} then, as long
as the hypotheses of Lemma 4.16 hold, the expression ζm,n(γ, η, t, s) is
well-defined. This is because xmγ+nη(g

2
` o`x`) can be written as

xmγ+nη(g
2
` o`x`) = hmγ+nη(g`) • xmγ+nη(o`x`)

and R× acts on the elements xmγ+nη(−) via its images 〈{hα(u) |u ∈ R×, α ∈
Ψ}〉 ≤ G. Moreover xmγ+nη(g

2
` o`x`) = xmγ+nη(g

2
`o`x`) whenever g2

` o` =
g2
`o` in R×. Thus, the relations showing that pm,n(t, s) is well-defined in the

Z[R×]-module M have, by Remark 4.15 and Lemma 4.16, analogues in G
which imply that ζm,n(γ, η, t, s) is well-defined. We can now show that the
commutator formulae also derive from controlled sets of relations.

Lemma 4.18. Let Ψ ⊆ Φ be a (reduced, irreducible) root subsystem of rank
two and let G be a group containing the (finite) set of symbols

X =
{
xγ(uxi), hα(a)

∣∣∣ γ, α ∈ Ψ, a ∈ A, uxi ∈ T̃ = A[cΦ] · T0

}
.

Suppose all hypotheses of Lemma 4.16 hold for G and assume furthermore
that the following ( finitely many) relations hold in G:
for all γ, η ∈ Ψ linearly independent roots and all uxi, vxj ∈ T̃ ,

[xγ(uxi), xη(vxj)] =


∏

mγ+nη∈Ψ
m,n>0

ζm,n(γ, η, uxi, vxj)
Cγ,ηm,n , if γ + η ∈ Ψ;

1 otherwise,

(4.12)

where the expressions ζm,n(−) are defined as in (4.11).
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Now define in G elements hα(u) and xγ(t) as in 4.15 and 4.16, with

u ∈ R× and t ∈ T = R× · T̃ . Then Chevalley’s commutator formula for
linearly independent roots holds in G. That is, for all t, s ∈ T and all
γ, η ∈ Ψ linearly independent, one has

[xγ(t), xη(s)] =


∏

mγ+nη∈Ψ
m,n>0

ζm,n(γ, η, t, s)C
γ,η
m,n , if γ + η ∈ Ψ;

1 otherwise.

(4.13)

Proof. The main trick here is Lemma 4.17. It explains why the commutator
relations between the xγ(t) and xη(s) over the infinite set T 3 t, s can be

extracted from the given commutator formulae over the finite set T̃ .
Let γ, η ∈ Ψ be linearly independent. Following Lemma 4.17, there exist

p1, p2, q1, q2 ∈ Z\ {0} for which

2p1 − q1(η, γ) = 0 = 2p2 − q2(γ, η) and (4.14)

p1(γ, η)− 2q1 6= 0 6= p2(η, γ)− 2q2. (4.15)

Let now t, s ∈ T be arbitrary. Since T = R×T̃ = R×A[cΦ]T0, we can find
w, z in the (finitely generated) abelian group R× and uxi, vxj ∈ T̃ such that

t = wp1(γ,η)−2q1uxi and s = zp2(η,γ)−2q2vxj . (4.16)

Using the above, Remark 4.15, and Lemmata 4.16 and 4.17, we have that

[xγ(t), xη(s)] = [(hγ(w)−q1hη(w)p1) • xγ(uxi), (hη(z)
−q2hγ(z)p2) • xη(vxj)]

= (hγ(w)−q1hη(w)p1hη(z)
−q2hγ(z)p2) • [xγ(uxi), xη(vxj)].

(4.17)

If γ + η /∈ Ψ, then xγ(uxi) and xη(vxj) commute by (4.12) and thus so do
xγ(t) and xη(s) by (4.17).

Now suppose γ+ η ∈ Ψ. Substituting (4.12) in (4.17), the proof of the
lemma will be finished once we conclude that

(hγ(w)−q1hη(w)p1hη(z)
−q2hγ(z)p2) • ζm,n(γ, η, uxi, vxj) = ζm,n(γ, η, t, s)

for every pair m,n for which mγ+nη ∈ Ψ. By the definition (4.11) of ζm,n,
one has that ζm,n(γ, η, uxi, vxj) is equal to the product

ν∏
`=0

xmγ+nη(g`(m,n, uxi, vxj)
2o`(m,n, uxi, vxj)x`)

a`(m,n,uxi,vxj),

where the coefficients a`(m,n, uxi, vxj) ∈ Z, g`(m,n, uxi, vxj) ∈ R× and
o`(m,n, uxi, vxj) ∈ A[cΦ] are as in (4.11). By Lemma 4.16, one has

(hγ(z)p2) • xmγ+nη(g`(m,n, uxi, vxj)
2o`(m,n, uxi, vxj)x`) =

= xmγ+nη(z
p2(mγ+nη,γ)g`(m,n, uxi, vxj)

2o`(m,n, uxi, vxj)x`).
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But (mγ + nη, γ) = 2m+ n(η, γ), which yields

zp2(mγ+nη,γ)g`(m,n, uxi, vxj)
2o`(m,n, uxi, vxj) =

= (z2p2)mg`(m,n, uxi, z
p2(η,γ)vxj)

2o`(m,n, uxi, z
p2(η,γ)vxj)

by (4.7). Thus,

(hγ(z)p2) • xmγ+nη(g`(m,n, uxi, vxj)
2o`(m,n, uxi, vxj)x`) =

= xmγ+nη((z
2p2)mg`(m,n, uxi, z

p2(η,γ)vxj)
2o`(m,n, uxi, z

p2(η,γ)vxj)x`).

Similarly,

(hη(z)
−q2)•

• xmγ+nη((z
2p2)mg`(m,n, uxi, z

p2(η,γ)vxj)
2o`(m,n, uxi, z

p2(η,γ)vxj)x`) =

= xmγ+nη

(
(z−q2(γ,η)+2p2)mg`(m,n, uxi, z

−2q2+p2(η,γ)vxj)
2·

·o`(m,n, uxi, z−2q2+p2(η,γ)vxj)x`

)
=

= xmγ+nη(g`(m,n, uxi, s)
2o`(m,n, uxi, s)x`)

by (4.14), (4.15) and (4.16). Analogously, we conclude that

(hγ(w)−q1hη(w)p1) • xmγ+nη(g`(m,n, uxi, s)
2o`(m,n, uxi, s)x`) =

= xmγ+nη(g`(m,n, t, s)
2o`(m,n, t, s)x`).

Since a`(m,n, uxi, vxj) = a`(m,n, t, s) by (4.7) as well, it follows that

(hγ(w)−q1hη(w)p1hη(z)
−q2hγ(z)p2) • ζm,n(γ, η, uxi, vxj) =

= (hγ(w)−q1hη(w)p1hη(z)
−q2hγ(z)p2)•

•
ν∏
`=0

xmγ+nη(g`(m,n, uxi, vxj)
2o`(m,n, uxi, vxj)x`)

a`(m,n,uxi,vxj) =

=

ν∏
`=0

(
(hγ(w)−q1hη(w)p1hη(z)

−q2hγ(z)p2) • xmγ+nη

(
g`(m,n, uxi, vxj)

2·

·o`(m,n, uxi, vxj)x`))a`(m,n,uxi,vxj) =

=

ν∏
`=0

xmγ+nη(g`(m,n, t, s)
2o`(m,n, t, s)x`)

a`(m,n,t,s) = ζm,n(γ, η, t, s),

as desired.

4.2.1 Proof of Theorem 4.10 for I = ∅

The case I = ∅ concerns the Borel subgroup of the given Chevalley–
Demazure group, denoted by BΦ(R) = P∅(R) ≤ Gsc

Φ (R). The Levi decom-
position for such group is just BΦ(R) = U∅(R) o H(R), where H(R) =
〈Hα(R) : α ∈ Φ〉 is the standard torus and U∅(R) = 〈Xγ(R) : γ ∈ Φ+〉.
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Consider the following sets of relations. For all α ∈ Φ, γ ∈ Φ+, v ∈ A,
and t ∈ T ,

hα(v)xγ(t)hα(v)−1 = xγ(v(γ,α)t). (4.18)

For all t1, t2 ∈ T and γ, η ∈ Φ+,

[xγ(t1), xη(t2)] =


∏

mγ+nη∈Φ+

ζm,n(γ, η, t1, t2), if γ + η ∈ Φ;

1 otherwise,

(4.19)

where the expression ζm,n(γ, η, t1, t2) is defined as in (4.11). And recalling
that A is the kernel of the natural projection π : M � Ga(R), we also
consider the following relations: for all a =

∑ν
l=0 alwlxl ∈ A—where al ∈ Z,

wl ∈ R× and xl ∈ T0—and γ ∈ Φ+,

ν∏
l=0

xγ(wlxl)
al = 1. (4.20)

Let SB be the set of all relations (4.18), (4.19) and (4.20) given above.

Since H(R) is finitely generated abelian, we may fix a presentation

H(R) ∼= 〈{hα(v) | α ∈ Φ, v ∈ A} | T 〉

with T finite. Combining this with Lemma 4.8 and the given descriptions
of R, A and SB, we obtain as in (*) a standard presentation

BΦ(R) ∼= 〈
{
hα(v), xγ(t) | α ∈ Φ, γ ∈ Φ+, v ∈ A, t ∈ T

}
| T ∪ SB〉. (4.21)

Suppose the extended Levi factor LE∅(R) of BΦ(R) is finitely pre-
sented. By definition, LE∅(R) consists of a single unipotent root sub-
group acted upon non-trivially by the standard torus. Hence every sub-
group Xγ(R) o H(R) ≤ BΦ(R) for γ ∈ Φ+ is finitely presented, not just
LE∅(R) = Xα(R) o H(R)—this follows immediately from Theorem 2.1
and the following observation: given a positive root γ, there exist a simple

root η ∈ ∆ and an isomorphism w : Xγ(R) oH(R)
∼=−→ Xη(R) oH(R). In-

deed, due to the action of the Weyl group W of Φ, we can find β ∈ Φ and
a simple root η ∈ Φ such that rβ(γ) = η, where rβ ∈ W is the reflection
associated to β. By the reflection relations (1.10) we can thus take w to be
the conjugation in Gsc

Φ (R) by wβ, where wβ is the element of (the image of)
W corresponding to rβ as defined in Section 1.1.3.

For each γ ∈ Φ+, let then Xγ(R) oH(R) = 〈Xγ | Sγ〉 be a finite presen-
tation with generating set

Xγ =
{
hα(v), xγ(t)

∣∣∣ v ∈ A, t ∈ T̃ , α ∈ Φ
}
.
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Let Ỹ be the finite set of generators

Ỹ =
{
x̃γ(t)

∣∣∣ t ∈ T̃ , γ ∈ Φ+
}
.

We define the following finite sets of relations. For all a, b ∈ A, uxi, vxi ∈ T̃ ,
m ∈ Z and α, β ∈ Φ, γ ∈ Φ+ for which a(γ,α)u = bm(γ,β)v in R×,

hα(a)xγ(uxi)hα(a)−1 = hβ(b)mxγ(vxi)hβ(b)−m. (4.22)

(The relations above are finite in number as explained e.g. in the proof of
Lemma 4.16.) For all t1, t2 ∈ T̃ , γ, η ∈ Φ+,

[x̃γ(t1), x̃η(t2)] =


∏

mγ+nη∈Φ+

ζ̃m,n(γ, η, t1, t2), if γ + η ∈ Φ;

1 otherwise,

(4.23)

where ζ̃m,n is obtained from the ζm,n from (4.11) by formally replacing
xmγ+nη(−) by x̃mγ+nη(−).

Finally, we let S̃B denote the union of the sets Sγ (with γ running over Φ+)
and the sets of all relations (4.22) and (4.23) given above. Notice that we
did not add any defining relators coming from the underlying additive group
Ga(R), except for those possibly contained in the Sγ .

Let B̃Φ(R) be the group given by the presentation

B̃Φ(R) ∼= 〈{hα(v) | α ∈ Φ, v ∈ A} ∪ Ỹ | T ∪ S̃B〉. (4.24)

By construction, B̃Φ(R) is finitely presented. We claim that
B̃Φ(R) ∼= BΦ(R). Consider the obvious map hα(v) 7→ hα(v), x̃γ(t) 7→ xγ(t)

from B̃Φ(R) to BΦ(R). Since (the images of) all the relations in T ∪ S̃B
hold in BΦ(R) and because BΦ(R) is generated by H(R) and the xγ(t) for

t ∈ T̃ and γ ∈ Φ+, we get a natural epimorphism B̃Φ(R) � BΦ(R) by
von Dyck’s theorem. To prove that this is also injective, let F be the free
group on the generating set {hα(v), xγ(t) | α ∈ Φ, γ ∈ Φ+, v ∈ A, t ∈ T} of
(4.21) and consider the homomorphism f given by

f : F // B̃Φ(R)

hα(v) � // hα(v)

xγ(t) � // hγ(w)x̃γ(uxi)hγ(w)−1,

where w ∈ 〈A[cΦ]〉 and uxi ∈ T̃ are such that t = w2uxi. Since all re-
lations from the torus H(R) hold in its image in B̃Φ(R) and because the
relations (4.22) are contained in the given presentation for B̃Φ(R), it fol-
lows from Remark 4.15 and Lemma 4.16 that f is well-defined. It remains
to show that the set of relations SB given in (4.21) is contained in ker(f).
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The relations (4.18) follow immediately from Lemma 4.16(iii). We now
want to show that

f([xγ(t1), xγ(t2)]) = 1

for all t1, t2 ∈ T . This is essentially trivial, for f restricted to
〈Xγ(R),H(R)〉 ≤ BΦ(R) yields a surjection onto

〈X̃γ ,Hγ(R)〉 =
〈{
x̃γ(t), hγ(v)

∣∣∣ t ∈ T̃ , v ∈ A}〉
by definition of f and because the set S̃B from (4.24) contains (the copy
of) Sγ . As for the remaining commutator relations, which only involve
linearly independent roots, we simply observe that all hypotheses from
Lemma 4.18 hold for the group B̃Φ(R). It then follows that all rela-
tions (4.19) are contained in ker(f). Similarly, we see that the rela-
tions (4.20) are in ker(f). Indeed, whenever a =

∑ν
l=0 alwlxl ∈ A then f

maps any
∏ν
l=0 xγ(wlxl)

al to 1 in B̃Φ(R) because this holds in 〈Xγ(R),H(R)〉,
which surjects onto 〈X̃γ ,H(R)〉 ≤ B̃Φ(R). This concludes the proof.

4.2.2 Proof of Theorem 4.10 for I 6= ∅

Recall from Section 4.1 that PI(R) = KI(R) o LEI(R) ≤ Esc
Φ (R) with

KI(R) = 〈Xγ(R) : γ ∈ Φ+\ΦExt(I)〉 and

LEI(R) = 〈Hη(R), Xα(R) : η ∈ Φ and α ∈ ΦI ∪ Φ+
NAdj(I)〉.

By hypothesis, we may fix a presentation LEI(R) = 〈X | R〉 with (finite)
generating set

X =
{
hβ(v), xα(t)

∣∣∣β ∈ Φ, α ∈ ΦI ∪ Φ+
NAdj(I), v ∈ A and t ∈ T̃

}
and R finite. Now consider the following sets of relations. For all β ∈ Φ,
γ ∈ Φ+\ΦExt(I), v ∈ A, and t ∈ T,

hβ(v)xγ(t)hα(v)−1 = xγ(v(γ,β)t). (4.25)

For all t ∈ T̃ , t1 ∈ T , α ∈ ΦI ∪ Φ+
NAdj(I), and γ ∈ Φ+\ΦExt(I),

[xα(t), xγ(t1)] =


∏

m,n>0
mα+nγ∈Φ

ζm,n(α, γ, t, t1), if α+ γ ∈ Φ;

1 otherwise,

(4.26)

where the expression ζm,n(γ, η, t, t1) is defined as in (4.11).
For all t1, t2 ∈ T and γ, η ∈ Φ+\ΦExt(I),

[xγ(t1), xη(t2)] =


∏

mγ+nη∈Φ+

ζm,n(γ, η, t1, t2), if γ + η ∈ Φ;

1 otherwise,

(4.27)
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where the expression ζm,n(γ, η, t1, t2) is defined as in (4.11).
For all a =

∑ν
l=0 alwlxl ∈ A and γ ∈ Φ+\ΦExt(I),

ν∏
l=0

xγ(wlxl)
al = 1. (4.28)

Let SI be the set of all relations (4.25), (4.26), (4.27) and (4.28). Then

PI(R) ∼= 〈X ∪
{
xγ(t) | γ ∈ Φ+\ΦExt(I), t ∈ T

}
| R ∪ SI〉 (4.29)

is a presentation for the parabolic subgroup PI(R) ≤ Gsc
Φ (R) as in (*).

To prove Theorem 4.10 for I 6= ∅ we consider two cases according to
the QG condition. Recall that the triple (R,Φ, I) is QG whenever B◦2(R)
is finitely presented or B◦2(R) is finitely generated, R is NVB for Φ, and
I 6= {α} in the case where Φ = G2 and α ∈ G2 is long.

We shall thus list two finite presentations according to whether B◦2(R)
is finitely presented or not, and show that PI(R) is isomorphic to them in
the given cases. Both presentations have a lot in common—in particular the
following (finite) generating set. Let

Ỹ =
{
x̃γ(t)

∣∣∣ t ∈ T̃ , γ ∈ Φ+\ΦExt(I)

}
and define furthermore the following (finite) sets of relations.
For all a, b ∈ A, uxi, vxi ∈ T̃ , m ∈ Z, α, β ∈ Φ and γ ∈ Φ+\ΦExt(I) for which

a(γ,α)u = bm(γ,β)v in R×,

hα(a)x̃γ(uxi)hα(a)−1 = hβ(b)mx̃γ(vxi)hβ(b)−m. (4.30)

For all t, s ∈ T̃ , α ∈ ΦI ∪ Φ+
NAdj(I) and γ ∈ Φ+\ΦExt(I),

[xα(t), xγ(s)] =


∏

m,n>0
mα+nγ∈Φ

ζ̃m,n(α, γ, t, s), if α+ γ ∈ Φ;

1 otherwise,

(4.31)

where ζ̃m,n is obtained from the ζm,n from (4.11) by formally replacing

xmγ+nη(−) by x̃mγ+nη(−). For all t1, t2 ∈ T̃ and γ, η ∈ Φ+\ΦExt(I),

[x̃γ(t1), x̃η(t2)] =


∏

mγ+nη∈Φ+

ζ̃m,n(γ, η, t1, t2), if γ + η ∈ Φ;

1 otherwise,

(4.32)

where ζ̃m,n is as above. The finite presentations to be used in the remainder

of this proof have Ỹ as generating set and contain all relations (4.30), (4.31)
and (4.32) besides a few additional, case-dependent relations.
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Case 1 – B◦2(R) is finitely presented

Similarly to the previous case 4.2.1, we fix a finite presentation

B◦2(R) =
〈{
hα0(v), xα0(t) | v ∈ A, t ∈ T̃

}
| S0

〉
≤ EscA1

(R)

and, for each γ ∈ Φ+\ΦExt(I), we let Sγ be the set obtained from S0 by

formally replacing α0 by γ wherever α0 occurs. Define S̃B,I to be the (not
necessarily disjoint) union

⋃
γ∈Φ+\ΦExt(I)

Sγ together with the sets of all re-

lations (4.30), (4.31) and (4.32) from the end of the previous section. We
claim that the finitely presented group

P̃I(R) = 〈X ∪ Ỹ | R ∪ S̃B,I〉 (4.33)

is isomorphic to the parabolic group PI(R).

It is clear that the natural map hα(v) 7→ hα(v), x̃γ(t) 7→ xγ(t) from

P̃I(R) to PI(R) induces an epimorphism P̃I(R)� PI(R). Let F be the free
group on the generating set X ∪

{
xγ(t) | γ ∈ Φ+\ΦExt(I), t ∈ T

}
of (4.29)

and consider the homomorphism f : F → P̃I(R) given by X 3 x 7→ x
and xγ(t) 7→ hγ(w)x̃γ(uxi)hγ(w)−1, where w ∈ 〈A[cΦ]〉 and uxi ∈ T̃ are
such that t = w2uxi. As in 4.2.1, the map f is well-defined. Proving that f
induces a left-inverse of P̃I(R)� PI(R) is essentially a reprise of the previ-
ous case 4.2.1. In effect, the proof that the relations (4.25) are contained
in ker(f) is exactly the one given in 4.2.1. And since S̃I contains copies
of the Sγ that define B◦2(R), the commutativity between x̃α(t1) and x̃γ(t2)
is also dealt with exactly like in 4.2.1. The relations (4.26) and (4.27)
for γ 6= η belong to ker(f) by Lemma 4.18. Finally, the additive rela-
tions (4.28) belong to ker(f) because 〈Xγ(R),Hγ(R)〉 ∼= B◦2(R) surjects

onto 〈X̃γ ,Hγ(R)〉 ≤ P̃I(R) via f . Thus SI ⊆ ker(f) and we are done.

Case 2 – R is not very bad

The assumptions imposed by the NVB condition imply that the struc-
ture constants of the commutator formulae are all invertible. Thus, for this
section we assume them to be in the generating set A[cΦ] of the group
of units R×. In particular, (Cγ,ηm,n)±1 ·uxi ∈ T̃ for all xi ∈ T0, γ, η ∈ ΦI ∪Φ+

and u ∈ R× for which the product (Cγ,ηm,n)±1u belongs to A[cΦ].

Now let S̃I be the set of all relations (4.30), (4.31) and (4.32) from
Section 4.2.2 together with the following (finitely many) relations (4.34)
and (4.35) regarding the structure constants.

x̃δ((C
γ,η
m,n)∓1uxi)

±Cγ,ηm,n = x̃δ(uxi) whenever (Cγ,ηm,n)∓1u ∈ A[cΦ], and (4.34)

hα(Cγ,ηm,n)±1x̃δ(uxi)
∓(δ,α)Cγ,ηm,nhα(Cγ,ηm,n)∓1 = x̃δ(uxi). (4.35)
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We shall prove that the finitely presented group

P̃I(R) = 〈X ∪ Ỹ | R ∪ S̃I〉

is isomorphic to PI(R). The set-up is the same as in the previous sections,
the goal being to show that the relations SI live in ker(f). Following the
previous cases, most of the relations in SI were already dealt with. For the
commutator relations we need only show that

f([xγ(t), xγ(s)]) = 1

for all t, s ∈ T and γ ∈ Φ+\ΦExt(I) because the remaining commutator
relations already follow from Lemma 4.18, as done twice before.

We remind the reader that, since the torus H(R) is contained in the
extended Levi factor LEI(R)—whose presentation is included in that of
P̃I(R)— and all hypotheses for Lemma 4.18 hold for the group P̃I(R), we
may (and do) make free use in P̃I(R) of any notation and relations between
root elements, as discussed on and after Remark 4.15. In particular, if
we define the homomorphism f : F → P̃I(R) via X 3 x 7→ x and
xγ(t) 7→ hγ(w)x̃γ(uxi)hγ(w)−1, where w ∈ 〈A[cΦ]〉 and uxi ∈ T̃ are such
that t = w2uxi, then f is well-defined by Remark 4.15 and Lemma 4.16,
and furthermore we can define x̃γ(t) := f(xγ(t)) for all t ∈ T .

In the sequel we simplify the computations by making use of more ex-
plicit Chevalley commutator formulae. Such formulae might depend on the
chosen ordering of roots. Nevertheless, working with them imposes no loss
of generality since the proofs are analogous if the ordering of the roots (and
thus the formulae) change. We refer the reader to classic references (e.g.
[48, 93, 39]) for explicit formulae and structure constants, with the usual
warning that the explicit structure constants vary with the ordering of roots.
We shall often simplify the notation on the structure constants using capital
letters, writing e.g. A,B,C,D,E, . . . instead of Cγ,ηm,n, C

α,β
a,b , . . ., and so on.

Let t, s ∈ T and γ ∈ Φ+\ΦExt(I). We first want to show that all x̃γ(t)
and x̃γ(s) commute, that is,

1 = f([xγ(t), xγ(s)]) =
[
hγ(w)x̃γ(uxi)hγ(w)−1, hγ(z)x̃γ(vxj)hγ(z)−1

]
(**)

where t = w2uxi and s = z2vxj . Relations (4.32) already give us

[x̃γ(t), x̃γ(s)] = 1 for all t, s ∈ T̃ . Since γ ∈ Φ+\ΦExt(I), we may choose
α ∈ ΦI ∪Φ+ and β ∈ Φ+ such that α+β = γ, which exist either by Lemma
4.11 or by Lemma 4.12. Now, for each s ∈ T̃ and using the commutator
relations already at our disposal together with (4.34), we obtain from the
explicit commutator formulae (regardless of ordering of roots) some equa-
tions for x̃γ(s) of the following forms, which depend on the type of the
subsystem Φ{α,β}. (The reader familiar with Chevalley’s formulae might
rightfully protest that there are other possible equations for x̃γ(s), but the
ones below suffice for our purposes.)
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x̃γ(s) =


[x̃α(s), x̃β(A−1)]±1, if (mα+ nβ ∈ Φ{α,β} ⇐⇒ m = n = 1);

[x̃α(s), x̃β(B±1)]ζ̃1,2(α, β, s,B±1)±C , if γ, γ + β ∈ Φ{α,β} = B2;

[x̃α(s), x̃β(D±1)]ζ̃2,1(α, β, s,D±1)±E ζ̃1,2(α, β, s,D±2)±F , if γ is

short and Φ{α,β} is of type G2 with both α, β short.

(4.36)
In the above, A,B,C, ... are shortenings for the appropriate structure con-
stants involved in each type. (Warning: Here we are slightly misusing no-
tation. Indeed—recalling the definition of the generating set X ∪ Ỹ for our
presentation of P̃I(R)—if the root α lies in ΦI ∪ Φ+

NAdj(I), then the symbol

x̃α(−) does not exist a priori, but rather xα(−) does. We then just simply
define x̃α(−) to be xα(−) in this case. Similarly for x̃β.) We now prove
that (**) holds using the slightly more explicit equalities from (4.36).

Case 1: Suppose γ = α+β is the only linear combination of α and β in
Φ{α,β}. Then x̃γ(−) is simply a commutator of x̃α and x̃β so that the first
equation of (4.36) applies. We then have

f([xγ(t), xγ(s)]) = [x̃γ(t), x̃γ(s)]
(4.36)

= [x̃γ(t), [x̃α(s), x̃β(A−1)]±1]
4.18
= 1

by Lemma 4.18 since γ + α /∈ Φ{α,β} 63 γ + β.

Case 2: Suppose Φ{α,β} = B2 with γ, γ + β ∈ Φ{α,β}. Here, x̃γ(−)
appears as the first term of the formula for [x̃α(−), x̃β(−)]. Thus

f([xγ(t), xγ(s)])
(4.36)

=
[
x̃γ(t),

[
x̃α(s), x̃β(B±1)

]
ζ̃1,2(α, β, s,B±1)±C

]
.

Now, both γ + (α + 2β) and γ + α do not lie in Φ{α,β}, so that any term

x̃γ(−) commutes with any terms x̃α(−) and ζ̃1,2(α, β,−,−) by Lemma 4.18

(and the definition (4.11) of ζ̃). But Lemma 4.18 also yields equations

x̃γ(t)x̃β(B±1) = x̃β(B±1)x̃γ(t)ζ̃1,1(γ, β, t, B±1)±G and

x̃γ(t)x̃β(B±1)−1 = x̃β(B±1)−1x̃γ(t)ζ̃1,1(γ, β, t, B±1)∓G.

Since γ + β = α+ 2β ∈ Φ{α,β} = B2, it follows from Lemma 4.18 that any

ζ̃1,1(γ, β,−,−) term commutes with the x̃γ(−), x̃β(−) and x̃α(−) terms.
Thus x̃γ(t) also commutes with [x̃α(s), x̃β(B±1)] because

x̃γ(t)[x̃α(s), x̃β(B±1)] = x̃γ(t)x̃α(s)x̃β(B±1)x̃α(s)−1x̃β(B±1)−1 =

= x̃α(s)x̃β(B±1)ζ̃1,1(γ, β, t, B±1)±Gx̃α(s)−1x̃β(B±1)−1ζ̃1,1(γ, β, t, B±1)∓G·

· x̃γ(t) = [x̃α(s), x̃β(B±1)]
(
ζ̃1,1(γ, β, t, B±1)ζ̃1,1(γ, β, t, B±1)−1

)±G
x̃γ(t) =

= [x̃α(s), x̃β(B±1)]x̃γ(t).
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Thus
[
x̃γ(t),

[
x̃α(s), x̃β(B±1)

]
ζ̃1,2(α, β, s,B±1)±C

]
= 1, as required.

Case 3: Assume Φ{α,β} to be of type G2. If γ is long, then we may
assume without loss of generality that {α, β} span a subsystem of type
A2 ⊂ G2 (all roots long)—here, the proof is the same as in Case 1.

Suppose then that γ is short. Because (R,Φ, I) is QG and Φ = G2,
the given parabolic PI(R) is of the form P{δ}(R) where δ ∈ G2 is a short
root. For the moment let us denote by {δ, η} the simple roots of G2 with η
being the long one. Since γ ∈ Φ+\Ext(I) = G2\ {δ}, and after analyzing all
possibilities for the short root γ as a sum of two roots α, β, we may assume
both α and β to be short. In this case, the last equation from (4.36) holds
for x̃γ(s). To show that f([xγ(t), xγ(s)]) = 1 we proceed as in Case 2.

Now, γ is a short root which is a sum of two short roots, whence γ+α and
γ+β are the only linear combinations of γ, α and γ, β in Φ{α,β}, respectively.
Moreover α+ (γ + β) = α+ (α+ 2β) /∈ Φ{α,β} because no root in G2 equals
two times a sum of short roots. And α + (γ + α) /∈ Φ{α,β} as well since
α+ (γ + α) = 3α+ β does not occur in type G2 with both α and β short.

Combining the above with Lemma 4.18, we obtain the equalities

x̃γ(t)x̃α(s) = x̃α(s)x̃γ(t)ζ̃1,1(γ, α, t, s)±H ,

x̃γ(t)x̃α(s)−1 = x̃α(s)−1x̃γ(t)ζ̃1,1(γ, α, t, s)∓H ,

x̃γ(t)x̃β(D±1) = x̃β(D±1)x̃γ(t)ζ̃1,1(γ, β, t,D±1)±J and

x̃γ(t)x̃β(D±1)−1 = x̃β(D±1)−1x̃γ(t)ζ̃1,1(γ, β, t,D±1)∓J .

Furthermore, the expressions ζ̃1,1(γ, α,−,−) commute with the terms

x̃α(−), x̃β(−) and ζ̃1,1(γ, β,−,−), and the ζ̃1,1(γ, β,−,−) themselves also
commute with the terms x̃α(−) and x̃β(−). Expanding the commuta-
tor in the product x̃γ(t) · [x̃α(s), x̃β(D±1)] and moving x̃γ(t) to the right
as in Case 2, it follows that x̃γ(t) commutes with the whole commuta-
tor [x̃α(s), x̃β(D±1)]. Since x̃γ(−) also commutes with the expressions

ζ̃2,1(α, β,−,−) and ζ̃1,2(α, β,−,−) by the properties of linear combinations
of γ, α, β from the previous paragraphs, it follows that x̃γ(t) commutes with

[x̃α(s), x̃β(D±1)]ζ̃2,1(α, β, s,D±1)±E ζ̃1,2(α, β, s,D±2)±F = x̃γ(s).

Lemma 4.18 and Cases 1, 2, 3 show that Relations (4.27) lie in ker(f).

It remains to prove that the additive relations (4.28) also belong to
ker(f). It suffices to verify this for the simple roots in Φ+\ΦExt(I). Such
a simple root, say β, is necessarily adjacent to an α ∈ I, whence by
Lemma 4.12 we may assume that the root subgroup Xβ(R) ≤ PI(R) lies
in the unipotent radical of a parabolic subgroup in type Φ{α,β} = A2, B2 or
G2 whose Levi factor is generated by Xα(R), X−α(R) and Hβ(R). Assume
without loss of generality that {α, β} is a basis for Φ{α,β}.
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From now on we make use of the full commutator relations in P̃I(R) with-
out further references, for they have just been shown to hold. In particular,
we have proved that the root subgroups X̃γ(R) := 〈{x̃γ(t) | t ∈ T}〉 of the

unipotent radical of the finitely presented group P̃I(R) are all abelian, and
in fact Z[R×]-modules via the action of the torus H(R) ≤ P̃I(R). This ac-
tion is compatible with the R×-action by multiplication on the abelian group
(R,+), which is generated (over Z) by T . Proving the relations (4.28) lie
in ker(f) means showing that each X̃γ(R) is isomorphic to (R,+).

Recall from Lemma 1.2 that the equation [ab, c] = a[b, c]a−1[a, c] holds
in any group. In particular, if ai commutes with [aj , c] and [ai, c] commutes
with [aj , c] for all i, j, one has

[
d∏
i=1

ai, c

]
=

d∏
i=1

[ai, c]. (4.37)

Now let a =
∑ν

`=0 a`t` ∈ A be an arbitrary additive relation of R, with

a` ∈ Z and t` = w2
`u`x` ∈ T = R×T̃ . We have to show that x̃β(a) :=∏ν

`=0 x̃β(t`)
a` = 1. Suppose first that either Φ{α,β} = A2 or that the given

α ∈ I is a short root with Φ{α,β} = B2 or G2. In such cases, there exists
η ∈ Φ{α,β} such that β is the only linear combination either of α, η or of
−α, η. From the commutator relations and invertibility of the structure
constants (4.34), one has—for some structure constant C—that

x̃β(a) =

ν∏
`=0

x̃β(t`)
a`=

ν∏
`=0

[x±α(t`), x̃η(C
∓1)]a`

(4.37)
=

[
ν∏
`=0

x±α(t`)
a` , x̃η(C

∓1)

]

But x±α(a) :=
∏ν
`=0 x±α(t`)

a` = 1 for this holds in (the image of) the

subgroup LEI(R) of the finite presentation P̃I(R). Thus, x̃β(a) = 1.

Now, since the case where Φ{α,β} = G2 with α ∈ I long is excluded by the
QG condition, it remains only to check x̃β(a) = 1 in the case where Φ{α,β} =
B2 and α is long (and thus β is short). We have Φ{α,β} = {±α,±β,±(α +
β),±(α + 2β)}. This time we shall use commutator formulae for type B2

with more explicit structure constants (e.g. from [93, Chapter 10]) to avoid
complicated notations with arbitrary symbols for structure constants. In
the given subgroup 〈X̃β(R),X±α(R),Hβ(R)〉 ≤ P̃I(R) we have in particular
the following equations for all t ∈ T .


[xα(t), x̃β(1)] = x̃α+β(t)±1x̃α+2β(t)±1

[x−α(t), x̃α+β(1)] = x̃β(t)±1x̃α+2β(t)±1

[x̃α+β(t), x̃β(1)] = x̃α+2β(t)±2.

(4.38)

91



From the second equation, and employing commutator formulae, one has

x̃β(a)
Def.
=

ν∏
`=0

x̃β(t`)
a` =

ν∏
`=0

(
[x−α(t`), x̃α+β(1)]x̃α+2β(t`)

∓1
)a`

4.18
=

(
ν∏
`=0

[x−α(t`), x̃α+β(1)]a`

)(
ν∏
`=0

x̃α+2β(t`)
a`

)∓1

(4.37)
=

[
ν∏
`=0

x−α(t`)
a` , x̃α+β(1)

](
ν∏
`=0

x̃α+2β(t`)
a`

)∓1

=

(
ν∏
`=0

x̃α+2β(t`)
a`

)∓1

=: (x̃α+2β(a))∓1

because x−α(a) =
∏ν
`=0 x−α(t`)

a` = 1 in (the image of) LEI(R) in P̃I(R).
By the first equation from (4.38) and an analogous computation, one

has that x̃α+β(a) = x̃α+2β(a)±1 and, also using (4.37), we obtain from
the third equation in (4.38) that [x̃α+β(a), x̃β(1)] = x̃α+2β(a)±2. Since the
structure constants are invertible and contained in our generating set for R×,
we can apply relation (4.35) (together with Remark 4.15 and Lemma 4.16)
repeatedly to the expression x̃α+2β(a)±2 to obtain the equality x̃α+2β(a)±2 =
hα+2β(±2)x̃α+2β(a)hα+2β(±2)−1.

Combining all of the above gives

x̃β(a) = (x̃α+2β(a))∓1 = hα+2β(±2)−1[x̃α+β(a), x̃β(1)]2hα+2β(±2)

= hα+2β(±2)−1[x̃α+2β(a)±1, x̃β(1)]2hα+2β(±2) = 1

because x̃α+2β(−) commues with x̃β(−) by Lemma 4.18.
Thus SI ⊆ ker(f), which concludes the proof of the theorem.

4.3 Special cases: simply-laced, and S-arithmetic

Below we state as corollary a special case of Theorem 4.2 for ease of
reference and to illustrate its reach. Recall that a standard parabolic sub-
group of a classical group is maximal if the only standard parabolic properly
containing it is the whole elementary subgroup of the given classical group.

Corollary 4.19. Let G(R) be a classical group with underlying (reduced,
irreducible) simply-laced root system Φ of rank at least two, and suppose all
of its standard parabolic subgroups are finitely generated. Then a standard,
non-trivial, maximal parabolic subgroup of G(R) is finitely presented if and
only if its Levi factor is finitely presented.

Proof. Let PI(R) ≤ G(R) be a parabolic subgroup as in the statement.
Since PI(R) is maximal, every simple root is adjacent to some element of
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I, whence the extended Levi factor of PI(R) coincides with its Levi factor.
Since all standard parabolics of G(R) are finitely generated, then so is B◦2(R)
by Theorem 2.1. Because Φ is simply-laced, the triple (R,Φ, I) is certainly
QG because the NVB condition imposes no restrictions on the base ring R
in this case. The claim thus follows from Theorem 4.2.

The punchline is that the Levi factor does have a ‘strong enough action’
on the unipotent radical in the cases above. If B◦2(R) is finitely generated,
then Corollary 4.19 and an inductive argument yield a characterization of
finite presentability—in terms of the block diagonal—for the parabolics

n1×n1 ∗ ··· ∗

0 n2×n2

. . .
...

...
. . .

. . . ∗
0 ··· 0 nk×nk

 in GLn(R) (or SLn(R))

fow which no consecutive pairs (ni, ni+1) = (1, 1) occur. (Recall that such
a result cannot hold true in this generality if all ni are equal to one, as
Corollary 2.11 shows.)

An important application of Theorem 4.2 is the following contribution
to the theory of S-arithmetic groups. To better state the result we introduce
some notation. Let G be a split reductive linear algebraic group defined over
a field K. We say that a parabolic subgroup P ≤ G has root gaps if there
exists a K-retract of P onto a connected K-subgroup H ≤ G of type (R)
with soluble geometric fibers.

Theorem 4.20. Let G be a split, connected, reductive, linear algebraic
group defined over a global field K. Let P ≤ G be a proper parabolic subgroup
with Levi factor L ≤ P and suppose Γ ≤ P is an S-arithmetic subgroup. As-
sume further that |S| > 1 if char(K) > 0. The following hold.

i. If char(K) = 0, then Γ is finitely presented;

ii. If char(K) > 0 and P has root gaps, then Γ is finitely presented if and
only if |S| ≥ 3;

iii. If P has no root gaps, char(K) > 0, and K is NVB for the underlying
root system of G, then Γ is finitely presented if and only if any S-
arithmetic subgroup of L is so.

It should be stressed that Theorem 4.20 also holds for the exceptional
parabolic in type G2 excluded from Theorem 4.2 by the QG condition.

Part (i) above is far from new. Though not formally proved by Abels
in [3], it is an immediate consequence of [3, Theorems 5.6.1 and 6.2.3], the
Kneser–Tiemeyer local-global principle [60], and cocompactness of parabol-
ics [25, Proposition 9.3]. It was also known to P. Abramenko, via geometric
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methods. The first published proof of 4.20(i) was Tiemeyer’s theorem [98,
Corollary 4.5], which also relies on [25, Proposition 9.3].

Part (ii) establishes finite presentability of S-arithmetic parabolics in
new cases while including the low-dimensional version of Corollary 2.11—
this time with a new proof, independent of [16].

The results of 4.20(iii) for non-minimal proper parabolics over function
fields were, to the best of our knowledge, unknown. Finite presentations for
small classes of parabolics in the Kac–Moody set-up (over finite fields) have
been obtained; see e.g. [49, Corollary 1.2] and references therein. Part (iii)
also gives examples of ‘strong action’ of the Levi factor.

Before proving Theorem 4.20, we recall the following.

Lemma 4.21. Let r : H � G be a K-retract of connected linear algebraic
groups. If Γ ≤ G is S-arithmetic, then φ(Γ) ≥ φ(Λ) for any S-arithmetic
subgroup Λ ≤ H.

Proof. Since r : H � G is a K-retract, we may (and do) identify G with
a K-closed subgroup of H. Without loss of generality, fix a K-embedding
H ↪→ GLn for some n, so that both H and its subgroup G are seen as
K-closed subgroups of the same GLn. Because S-arithmetic subgroups are
commensurable, we may restrict ourselves to the S-arithmetic subgroup Γ :=
G ∩ GLn(OS) of G, by Lemma 1.9. Now let Λ ≤ H be an arbitrary S-
arithmetic subgroup of H and let Λ0 := r−1(Γ) ≤ H be the full pre-image
of Γ under r. Since r : H � G is a K-retract, it restricts to an ordinary
group retract r|Λ0 : Λ0 � Γ. In particular, we have that φ(Γ) ≥ φ(Λ0) by
Corollary 1.14. On the other hand, [69, Lemma 3.1.3(a)] implies that Λ0 is
commensurable with Λ. Thus, φ(Λ0) = φ(Λ), whence the lemma.

Proof of Theorem 4.20. We first reduce the problem to Chevalley–
Demazure case. Let G be a split, connected, reductive, linear algebraic
group defined over a global field K, and let P be a proper parabolic sub-
group. Since every parabolic in G is conjugate to a standard one, we may
restrict ourselves to the standard parabolic subgroups with respect to an
arbitrary, but fixed, maximal split torus. Proceeding exactly as in the be-
ginning of the proof of Corollary 2.11, we may assume G to be a universal
Chevalley–Demazure group scheme and we may restrict ourselves to the S-
arithmetic subgroup P(OS) of P. Finally, the assumption |S| > 1 if K is a
function field guarantees that the parabolics of P(OS) are finitely generated
by O’Meara’s structure theorem [74, Theorem 23.2].

Part (i). If char(K) = 0, Abels’ theorem [3] implies that B◦2(OS) is
always finitely presented, whence OS satisfies the QG condition. Now, the
extended Levi factor is an extension, by a torus, of a direct product of Borel
subgroups or reductive groups; cf. Section 4.1. From Abels’ theorem and
[24, Theorem 6.2], the extended Levi factors in characteristic zero are always
finitely presented. Thus, Part (i) follows from Theorem 4.2.
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Part (ii). From now on we assume char(K) > 0. Since P has root
gaps, it follows from Lemma 4.21 and Theorem 2.1 that B◦2(OS) must be
finitely presented if Γ is so, whence |S| ≥ 3 by Corollary 2.11. Conversely, if
|S| ≥ 3, then B◦2(OS) is finitely presented by Corollary 2.11. In particular,
regardless of root system Φ and subset of simple roots I, the triple (OS ,Φ, I)
is always QG. Furthermore, since |S| ≥ 3, the reductive part of an extended
Levi factor will always be finitely presented by the low-dimensional Rank
Theorem of Behr [14]. Thus, Γ is finitely presented by Theorem 4.2.

Part (iii). Still assuming char(K) > 0, suppose further that K is not
very bad for the underlying root system of G. Then the subring OS is
also NVB since it contains the (finite) prime field by [74, 23.1 and 23.2].
Recall that P = U o L is a standard parabolic subgroup of the simply-
connected, semi-simple group G, where U is the unipotent radical and L the
Levi factor. We then have L = (

∏
i GΦi) oH, where H is a torus and each

GΦi is a Chevalley–Demazure group scheme; see Section 4.1. Furthermore,
U(OS) admits a presentation as given in Lemma 4.9.

Suppose rk(GΦi) ≥ 2 for all i. In this case we know from [70, Cor. 4.6]
and [10, Theorem 14.1] that each GΦi(OS) equals its elementary subgroup
EΦi(OS), whence P(OS) has the form given in Definition 4.1. Thus, Theo-
rem 4.2 applies directly, and we are done.

Assume then rk(GΦi) = 1 for some i—this might even include the case
excluded from Theorem 4.2 where P(OS) = P{α}(OS) ≤ GG2(OS) with α
long. Here, P(OS) is finitely presented only if so is GΦi(OS), which in turn is
finitely presented if and only if its derived subgroup G′Φi(OS) is so. But the
latter is isomorphic to SL2(OS), which is finitely presented only if |S| ≥ 3 by
Behr’s theorem [14]. In this case, the Borel subgroup B◦2(OS) is also finitely
presented by Corollary 2.11, so that Theorem 4.2 holds in this case, too.
This concludes the proof of Theorem 4.20.

4.4 Concluding remarks, and future directions

As mentioned, we believe Theorem 4.2 still holds without the QG con-
dition. The excluded parabolic in G2 can likely be dealt with by choosing
the right ordering of roots. Until then, as a test case, one may consider:

Problem 4.22. Prove that the parabolic P{α}(F5[t, t−1]) ≤ GscG2
(F5[t, t−1]),

with α long, is finitely presented if and only if its Levi factor is finitely
presented (even though none of them admits a finite presentation).

Theorem 4.2 might be strengthened by proving that the finite pre-
sentability of the Borel subgroup B◦2(R) of rank one implies that of (any)
universal elementary Chevalley–Demazure group Esc

Φ (R). This is true over
Dedekind rings of arithmetic type by Borel–Serre and Behr and was often
used in the proof of Theorem 4.20. Whether this is true in general is likely
well-known to specialists, though we were unable to find a reference.
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Question 4.23. Is there a commutative ring R with unity for which
B◦2(R) = ( ∗ ∗0 ∗ ) is finitely presented but the elementary subgroup E2(R) ≤
SL2(R) is not? Equivalently, is the kernel of the natural map St(A1, R) �
E2(R) finitely generated as a normal subgroup whenever B◦2(R) is finitely
presented? Here, St(Φ, R) denotes the Steinberg group of type Φ over R.

Besides the restrictions on the characteristic of the base ring, the only
missing piece for a full characterization of finite presentability of all S-
arithmetic parabolics in terms of root gaps and Levi factors is the case
where char(OS) > 0 and |S| = 1. Here, we think of OS simply as the ring
of polynomials over a finite field. Proceeding e.g. as in [89] or [7], it can
be shown that a maximal parabolic subgroup of GLn(Fq[t]) or SLn(Fq[t]) is
finitely presented if and only if its Levi factor is so. This likely extends to
non-maximal parabolics with no root gaps as well as to other simply-laced
root systems. Whether this holds for root systems of types B, C, F and G,
however, is unknown to us.

Theorem 4.20(iii) uses H. Behr’s low-dimensional Rank Theorem [14].
Applying his result explicitly, Case (iii) of Theorem 4.20 becomes precise:

• Suppose char(K) > 0 and that K is NVB;

• The semi-simple part of the Levi factor L ≤ P is covered via a central
isogeny by a direct product of (finitely many) classical groups GΦi of
types Φi;

• Each such algebraic group has global rank di = |S| · rk(Φi);

• Setting d = mini{di}, it follows from 4.20(iii) and [14] that an S-
arithmetic subgroup Λ ≤ L (and hence Γ) is finitely presented if and
only if d ≥ 3.

The proofs of the full Rank Theorem [36] and Bux’s equality [33] are
geometric and independent of type of roots and of characteristic of the base
ring. Moreover, they also deal with higher finiteness properties. The follow-
ing conjecture was posed by Kai-Uwe Bux in the case of maximal parabolics.
In face of Theorem 4.2 and appropriately generalizing the notion of extended
Levi factor, we extend Bux’s conjecture as follows.

Conjecture 4.24. Let G ≤ GLn be a reductive linear algebraic group de-
fined over a global field K. Suppose P is a parabolic subgroup of G and
let LE ≤ P denote its extended Levi factor. If Γ ≤ P and Λ ≤ LE are
S-arithmetic, then the equality φ(Γ) = φ(Λ) holds.

We remind the reader that Conjecture 4.24 holds in characteristic zero
by Tiemeyer’s theorem [98, Corollary 4.5], with φ(Γ) = φ(Λ) =∞, and also
in the split soluble case in positive characteristic by Corollary 2.11, with
φ(Γ) = φ(Λ) = |S| − 1.
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[92] R. Steinberg. “Générateurs, relations et revêtements de groupes
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1n The n× n identity matrix. 7

Adj(I) Set of simple roots in ∆\I that are adjacent to I. 66

An An Abels Z-group scheme (n ≥ 2). 5

B◦2(R) The standard Borel subgroup of rank one, that is,
B◦2(R) = ( ∗ ∗0 ∗ ) ≤ SL2(R).

3

Bn(R) Subgroup of upper triangular matrices of
GLn(R).

15

B◦n(R) Subgroup of upper triangular matrices of SLn(R). 15

BΦ(R) The standard Borel subgroup of the universal
Chevalley–Demazure group Gsc

Φ (R).
25

CC(H ) The coset complex associated to the family H of
subgroups of a given group G.

46

char(K) Characteristic of the field K. 2

Cn The cyclic group of order n. 4

∆ Subset of simple roots of the root system Φ. 32

Diag Diagonal matrix of GLn, that is,
Diag(u1, . . . , un) ∈ GLn(R) is the matrix
whose diagonal entries are u1, . . . , un ∈ R× and
all other entries are zero.
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Dj(R) Subgroup of diagonal matrices of GLn(R) whose
only diagonal entries 6= 1 are in the j-th position.

15

Dn(R) Subgroup of diagonal matrices of GLn(R). 15
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16
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Ext(I) Extension of the set of simple roots I, that is, the
union of I with its non-adjacent roots NAdj(I).

67

Ga The additive affine Z-group scheme, that is,
Ga(R) = (R,+) ∼= ( 1 ∗

0 1 ) ≤ GL2(R).
14

Gm The multiplicative affine Z-group scheme, that is,
Gm(R) = (R×, ·) = GL1(R), the group of units
of R.
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GPΦ Chevalley–Demazure group scheme of type
(Φ, P ), defined over Z.

23

Gsc
Φ Universal Chevalley–Demazure group scheme of

type Φ, defined over Z.
23

H Maximal split torus of a classical group G, defined
over Z.

61

Hα(R) Semi-simple root subgroup of GPΦ (R) attached to
α ∈ Φ.

23

H (n,R) A family of horospherical subgroups of An(R). 47

LEI(R) The extended Levi factor of a standard parabolic
PI(R).

67

LI(R) Levi factor of a parabolic PI(R). 64

NAdj(I) Simple roots of ∆\I that are not adjacent to I. 67

N({Xλ}λ∈Λ) The nerve complex of the covering {Xλ}λ∈Λ of a
set X.

46

OS A Dedekind ring of arithmetic type associated to
the finite set of places S of its fraction field.

26

P∅(R) The standard Borel subgroup of a classical group
G(R).

62

Φ A root system, usually assumed in this work to
be reduced and irreducible.

3

φ(G) The finiteness length of the group G. 10

ΦX The root subsystem generated by the subset X ⊆
Φ, that is, ΦX = spanZ(X) ∩ Φ.

61

PI(R) The standard parabolic subgroup of a classical
group G(R), associated to a subset I of simple
roots of G.

61

R An arbitrary commutative ring with unity. 2

UI(R) Unipotent radical of a parabolic PI(R). 64

Un(R) Subgroup of upper unitriangular matrices of
GLn(R).
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Xα(R) Unipotent root subgroup of GPΦ (R) attached to
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Brown’s criterion (presentations), 46
Bux’s equality, 41

Classical matrix representations
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Coset complexes, 46

Fiber product, 50
Finiteness properties, 26

finiteness length, 10
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Global field, 26
Group retract, 3

Levi decomposition, 64

Matrices
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additive, 14
Borel, 25
Chevalley–Demazure, 23
classical, 13
contracting, 47
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Levi factor, 64
multiplicative, 15
parabolic, 61
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Nerve complexes, 46
Not very bad (NVB), 62

Presentation
for Un(R), 18
for UI(R), 69
for KI(R), 70
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for semi-direct products, 72

Quite good (QG), 62

Relations
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