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1 Summary 

As vectors of a large number of pathogens, ticks pose a considerable problem not only in 

Germany, but also in most parts of the world. Most bites in Germany are caused by Ixodes 

ricinus for which there is no specific scientifically proven control agent available. An extensive 

application of synthetic chemical acaricides has lethal effects on non-target organisms and can 

further cause resistances in the target organism. However, repellents reduce the contact 

probability between host and tick, but do not regulate the further distribution of diseases. 

Although biological control options like entomopathogenic fungi are known to have high 

potential, there is a considerable lack of studies on formulation and applicability. The 

disadvantages, such as a low persistence as well as a not consistent efficacy of 

entomopathogenic fungi (EPF) in the field, still predominate over explicit advantages of 

biological control agents like a high target specificity, resulting in less toxicity for non-target 

organisms and a decreased probability of causing resistances in targets. Encapsulation of 

biological control agents in a biodegradable polymer matrix with supplemented nutrients can 

improve their stability, virulence as well as applicability for the above ground control of pests, 

such as ticks. Therefore, the overall aim of this work was to develop a biological tick control 

agent for the application in the field. To reduce the required dosage of a control agent, a 

biological attractant was encapsulated. S. cerevisiae releases CO2, attractive to ticks, by 

metabolizing supplemented nutrients. A co-encapsulated kill component, such as EPF biomass, 

germinates inside the bead and produces aerial conidia, the infection unit of EPF, on the bead 

surface. The attraction due to the attractant enables direct contact of the tick to the kill 

component, ideally resulting in high mortality rates. 

This work is subdivided into three chapters, focusing on different aspects of the development 

of an Attract-and-Kill formulation:  

Attract 

An Attract formulation was developed aiming at a slow CO2 release for an application 

above ground in order to attract ticks. Biodegradable calcium alginate beads containing 

S. cerevisiae cells, granular corn starch and 0.1 U∙g-1 amyloglucosidase fulfilled the 

required release of 0.2 mL∙(g∙h)-1 CO2 at a temperature range between 10 °C and 30 °C 

for both moist as well as dried and rehydrated beads. By supplementing urea as nitrogen 

source, the CO2 release of moist beads was further increased, at least for a short time. 
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Dried and rehydrated Attract beads were demonstrated to have a significant attractive 

effect on I. ricinus nymphs in a dual-choice experiment. 

Kill 

In this chapter, three highly virulent pre-selected Metarhizium spp. isolates were 

cultivated under different conditions on solid medium and in submerged culture, in 

order to screen for the most promising isolate under biotechnological aspects. The 

highest blastospore concentrations were obtained with the isolate M. brunneum Ca8II 

both for conidiation on solid medium and in submerged cultures. However, M. pemphigi 

X1c produced the highest total dry weight in submerged cultures. Since submerged 

cultivation provides several advantages over solid cultivation of EPF, blastospores of 

all three isolates produced by submerged cultivation were encapsulated in calcium 

alginate with supplemented nutrients. These microfermenter beads allowed a growth of 

fungal biomass and ensured formation of aerial conidia on the bead surface with the 

highest concentration for moist beads containing starch and M. brunneum Cb16III 

blastospores. By replacing starch with chitin, a significant increase in conidiation by 

more than two-fold for all isolates was attained. With chitin as sole nutrient, 

M. pemphigi X1c showed the highest conidiation on both moist and dry and rehydrated 

calcium alginate beads. The supplemented nutrients enabled a significant increase in 

drying survival of the sensitive blastospores with a maximum survival of 14.7%. 

The incorporation of hematin on the bead surface, as aggregating pheromone to extend 

the contact time between tick and bead, did not affect the conidiation on the beads. A 

qualitative aggregating effect was observed, however not accompanied with higher 

mortality rates as shown in a virulence test. The highest mortality of I. ricinus nymphs 

under laboratory conditions was achieved with sporulating beads containing 

M. pemphigi X1c blastospores.  

Attract-and-Kill 

First steps towards Attract-and-Kill formulation containing both S. cerevisiae cells and 

M. pemphigi X1c biomass, supplemented with nutrients were made. At least, a low CO2 

release combined with a moderate conidiation was demonstrated. The influence of the 

Crabtree effect on conidiation due to high glucose concentrations inside the beads was 

investigated. High ethanol concentrations inside the beads led to an inactivation of co-

encapsulated EPF biomass. 
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Altogether, this work demonstrates the high potential of the combination of encapsulated 

attractants and Kill components as biological tick control agents. The attractive effect of a CO2-

releasing formulation on I. ricinus nymphs was proven. Furthermore, a Metarhizium spp. isolate 

was identified that fulfills all the required needs, such as a high virulence and the capability to 

be easily produced with a high yield in submerged cultivation. The possibility of encapsulation 

and drying of blastospores was demonstrated. By co-encapsulation of S. cerevisiae cells with 

Metarhizium spp. blastospores, this work provides a promising approach for the development 

of an applicable biological tick control agent. 
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2 Introduction 

Ticks are vectors for a multitude of diseases worldwide, posing a risk not only to domestic and 

farm animals but also to humans [1]. Especially in the agricultural sector, tick bites cause 

massive economic losses. The transmission of pathogens cause infections in the host animal, 

frequently leading to losses in productivity as well as increasing morbidity and a higher 

mortality [2-5]. Tick bites also pose a great danger to humans. Infestation by an infected tick 

can cause incurable diseases in humans, such as Lyme borreliosis, Tick-borne encephalitis or 

Babesiosis [6-9]. In Europe and Asia alone, up to 10,000 reinfections with TBE are reported 

every year [10].  

In Germany, the risk of human infections is the most serious concern, whereas agricultural 

sectors have not been affected so far. Especially the castor bean tick I. ricinus, as the most 

important vector of diseases, causing 90 to 95% of all tick bites, is an important vector [11]. 

Other species as Rhipicephalus spp. or Dermacentor spp. are more rarely infesting humans. 

However, their occurrence in Germany and Europe is increasing due to migratory birds, 

increased imports of international goods and increased percentage of people travelling.  

Even though ticks and tick-borne diseases have gained more public attention, no specific control 

agent for ticks is available so far. The most widespread method worldwide is the direct 

application of chemical acaricides on host animals [12; 13]. However, it is reported that around 

90% of all pesticides do not reach the target [14], can cause lethal effects on non-target 

organisms and lead to resistances in the target [15], which makes a long-term application 

questionable. In Germany, the application of acaricides, such as permethrin, is predominantly 

restricted to veterinary medicine as spot-on or collar, while the use of such biocides on human 

skin as well as in larger areas is not carried out for health, ecological as well as economic 

reasons. Besides acaricides, repellent substances, such as essential oils, can reduce the 

probability of a direct contact between ticks and hosts [16-18]. However, an application of high 

dosages can lead to injuries, such as allergic contact dermatitis [19]. Since repellents do not 

reduce the basic problem and people worldwide get a raising awareness of protecting the 

environment and are less willing to use harmful chemical acaricides [20; 21], biological control 

agents have moved into the spotlight within the last decade [8; 22; 23].  

Besides entomopathogenic nematodes and parasitoids, entomopathogenic fungi (EPF) have 

been proven to be suitable candidates for biological tick control. EPF are mainly soil-borne 
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fungi and one of the natural predators of acari such as ticks [6; 24-27]. Compared to chemical 

insecticides, EPF present many advantages such as high specificity for the target pest with low 

environmental pollution and minimal risk for vertebrates [28-30]. The most promising genera 

are Beauveria and Metarhizium, which have already proven to be virulent against several tick 

species [22; 31; 32]. Especially fungi of the genus Metarhizium have shown potential to be 

effective as control agent for I. ricinus [23; 33].  

Commonly, aerial conidia are preferred as active ingredient for EPF-based pest control agents 

based on their high resistance against environmental factors and the comparatively high shelf 

life [34-37]. Very few products are based on blastospores (4.1%) or mycelium (2.3%) [37]. 

Usually, the fungal biomass is applied as a powder or oil dispersion with additional substances 

such as drying aids in order to improve the stability and shelf life of the product [38-41]. 

Consequently, large amounts of biomass are necessary. When aerial conidia are applied, a 

production is usually conducted in solid-state fermentation processes. However, solid-state 

fermentation is considered to have several disadvantages such as a slow growth rate, poor 

adjustability and to be labor-intensive [42; 43] compared to submerged fermentation strategies 

resulting in high cell densities of biomass in a large scale production [44]. It is known that 

Metarhizium spp. produce mycelium and propagules (blastospores) when cultivated in liquid 

media [45-47]. Even though blastospores are easier to produce and harvest on a technical scale 

than aerial conidia, they suffer from a higher sensitivity to environmental factors [36]. 

Furthermore, the majority of pests treated with fungal-based agents show a comparatively low 

mortality when conidia were directly applied in the field or on animals [26; 48]. A suitable 

formulation is not only able to stabilize living biomass for storage and application by creating 

a protective environment [49], encapsulation in biopolymer gels can additionally provide 

nutrients and other additives to improve growth, virulence and sporulation of the fungus in the 

field [50].  

In order to further reduce the required dosage of tick control agents, the Attract-and-Kill 

approach is a promising control strategy, already successfully applied below ground [44; 51; 

52]. Semiochemicals, such as CO2, can lure ticks towards a control agent containing EPF as 

control agent [53]. Incorporation of aggregation pheromones can increase the efficacy by 

extending the contact time of the tick and the control agent [54]. Altogether, the development 

of a suitable formulation is inevitable to exploit the full potential of a biological control agent, 

tailored to the application against ticks. 
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Figure 2.1 Sum of times cited by year over the past 20 years, using the queries ‘(tick OR ticks) AND 

((entomopathogenic AND (fungus OR fungi OR fungal)) OR epf)’ in the topic search criteria 

(Results found: 207, Sum of the Times Cited: 3,823, Average Citation per Item: 18.47, h-index: 30; 

source: Web of Knowledge: 28.05.2019). 
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Figure 2.2 Overview on the conception of this dissertation dealing with the development of Attract-and-Kill 

formulations for biological control of ticks, especially I. ricinus. The work is divided into three 

central chapters. EPF = Entomopathogenic fungi. 
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3 Aims 

The present work was part of the ZIM (Central innovation program of the middle class) project 

“BIOZEC” (No. 2426511CR4) which was funded by the BMWi (German Federal Ministry for 

Economic Affairs and Energy). An overview of the whole joint project is illustrated in figure A1 

(supplementary material). 

 

Different tick species, such as the common tick Ixodes ricinus, play an important role in the 

transmission of incurable diseases not only to domestic and farm animals but also to humans in 

Germany and worldwide. At present, ticks can only be controlled using unspecific acaricides, 

being usually harmful for human, animals and environment. Since no individual control 

measure is available on the market and due to the increasing number of risk areas for infection 

by tick bites every year, there is a significant demand for an effective biological control agent. 

Therefore, the overall aim of this work was to develop a biological tick control agent, attracting 

ticks by the release of carbon dioxide, to enable direct contact with a natural Kill component, 

as an entomopathogenic fungus, co-encapsulated in a biopolymer matrix. 

The overall aim of this work was segmented into sub-aims and organized in three chapters: 

Chapter 6.1: Attract 

I. Development of an Attract formulation consisting of calcium alginate, supplemented 

with S. cerevisiae, granular corn starch and amyloglucosidase (AG), optionally 

supplemented with urea; for the application above ground. A release of CO2 over two 

weeks was desired, which is why different AG concentrations and incubation 

temperatures were tested. The attractive effect of the formulation was tested for 

I. ricinus nymph with a dual-choice test in a Y-olfactometer setup. 

Chapter 6.2: Kill 

II. Examination of three highly virulent pre-selected Metarhizium spp. isolates on their 

conidiation at different temperatures on solid medium. Furthermore, the cultivation in 

submerged cultures to check for the production of high amounts of blastospores under 

different conditions was examined. For this purpose, the Metarhizium spp. isolates were 

cultivated in a nutrient rich medium at different temperatures and a range of initial 
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pH values to identify an isolate with high blastospore production and stability at a broad 

range of pH values. 

III. Development of a Kill formulation, containing Metarhizium spp. blastospores, 

supplemented with granular corn starch, aiming at a high conidiation of the isolates on 

the bead surface.  

IV. Drying of the Kill formulation with a high drying survival while maintaining the 

conidiation on the bead surface. Moreover, chitin powder from shrimp shells was 

evaluated as alternative nutrient source and its influence on conidiation as well as drying 

stability for the isolates.  

V. Hematin was coated on the bead surface to examine its suitability as aggregation 

pheromone with maintaining conidiation on the bead surface and virulence to enhance 

the contact time between tick and bead. 

VI. Examination of the virulence of newly formed aerial conidia on the bead surface against 

I. ricinus nymphs and adults under laboratory conditions in consideration of the 

influence of the supplemented nutrient. 

Chapter 6.3: Attract-and-Kill 

VII. Development of an Attract-and-Kill formulation, containing both S. cerevisiae cells and 

M. pemphigi X1c biomass, supplemented with starch and optional AG, aiming at a 

constant CO2 release and a sufficient conidiation on the bead surface for tick infection.  
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4 State of the Art 

4.1 Ixodes ricinus 

Ticks are temporary and obligatory bloodsucking arthropods belonging to the class of 

arachnids. Along with mites, they constitute the subclass Acari. Generally, ticks are divided 

into two major families, the Ixodidae or hard ticks, and the Argasidae or soft ticks [6]. The 

entire dorsal surface of the Ixodidae, in contrast to the Argasidae, is covered with a rigid 

chitinous shield [55]. Within the hard ticks, Ixodes is the largest genus, including 217 species 

[3]. These ectoparasites play an important role in the transmission of over 100 diseases not only 

to domestic and farm animals but also to humans [1]. Regarding livestock, each time a tick bites 

it causes stress and weakens the immune response affecting the productivity of the animal. This 

results in losses in the production of meat and milk, increased morbidity and in many cases 

mortality, causing high annual economic losses [2-5]. Among the most important diseases 

transmitted by ticks are Lyme borreliosis (Borrelia burgdorferi), Tick-borne encephalitis (TBE, 

TBE virus) and Babesiosis (Babesia spp.) [6-9], whereas TBE is known to be the most 

important tick-transmitted human viral disease in Europe and Asia with up to 10,000 human 

cases annually [10] and with an increasing number of risk areas every year [56]. Vaccines, 

available on the market, protect only against infections by viruses vectored by ticks [57]. 

Ixodes ricinus, also known as castor bean tick, is vector of 95% of all tick-transmitted pathogens 

in Europe. Furthermore, it is known to be the most important vector of these diseases in 

Germany, causing 90% to 95% of all tick bite incidences in humans [11]. I. ricinus is a host-

unspecified, generalist tick that feeds on more than 300 different vertebrate species [58]. In the 

USA, Ixodes scapularis is an important carrier of TBE and Lyme borreliosis to humans. 

Dermacentor, Rhipicephalus and Amblyomma [6] belong to other important disease vectors, 

especially to pets and farm animals.  

The life cycle of I. ricinus contains three stages as illustrated in figure 4.1: larva, nymph and 

adult. For molting as well as oviposition by female adults, a preceding blood meal is necessary, 

whereas each stage feeds on different hosts. Larvae and nymphs preferably infest rodents, such 

as mice and squirrels [59-63], but also ground-foraging birds, lizards and cloven hoofed animals 

[64; 65]. Mature ticks usually feed on larger mammals, such as roe deer [66]. Although humans 

can be infested by all stages, nymphs are the most frequent parasite [8]. Especially the wide 



State of the Art 

 

 

Sissy-Christin Lorenz  11 

 

host range leads to a high intra-species transmission of several infections, since hosts can be 

infested by a multitude of individuals [67].  

 

Figure 4.1 Life cycle of I. ricinus. [68] 

The selection of the host depends on the habitat, the behavior of both host and tick as well as 

the prevailing climatic conditions [63]. To improve the chance of finding a host (questing), ticks 

climb in the vegetation to an elevated height, whereas the three tick stages show different 

questing heights: Larvae and nymphs can predominantly be found between 0 cm to 70 cm, 

whereas adults can be observed up to 150 cm, depending on the vegetation [69; 70]. The 

difference in the questing heights may be caused by the higher sensitivity of immature tick 

stages to ambient humidity [71]. 

I. ricinus occurs in forests, but also in parks and gardens and can be active also during winter, 

depending on temperatures and photoperiodicity [7; 72-74]. During this time, ticks usually do 

not infest hosts. The highest questing activity is connected to an ambient temperature above 

7 °C, usually reached in the time from February to October [75]. High temperatures connected 

to a low relative humidity reduce off-host tick activities, due to the low tolerance towards 

desiccating conditions [76]. 
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4.2 Encapsulation in calcium alginate 

The encapsulation of microorganisms in calcium alginate is a well-established method suitable 

for several applications [30]. Alginate is a non-toxic and biodegradable, hydrophilic 

polysaccharide extracted from brown seaweed [77]. The two components β-D-mannuronic acid 

and α-L-guluronic acid are present in different arrangements and are 1,4-linked [78; 79]. 

Bivalent cations, such as calcium, bind to the carboxylate group of polyguluronic acid through 

ionic interactions and form a three-dimensional, semi-permeable hydrogel. The binding takes 

place according to the "egg box model" [80]. An overview of the chemical structure of sodium 

alginate and the molecular processes during formulation is shown in figure 4.2. 

Calcium alginate beads can be formed by dripping the sodium alginate, supplemented with 

different components, into a cross-linking solution containing divalent cations. The gelation 

takes place from the outside to the inside due to ionotropic gelation [49]. To ensure complete 

crosslinking and stable structure of the bead, a sufficient incubation time is necessary. 

 

 

Figure 4.2 Molecular processes during ionotropic gelation of calcium alginate [49]. 

The encapsulation in the biopolymer matrix can reduce various environmental stress factors for 

the encapsulated microorganisms, such as UV light, dryness and temperature [37; 81; 82]. Co-

encapsulation of further additives can have a positive effect on growth, drying survival and 

storage stability [50].  
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4.3 Attract 

4.3.1 Scent perception of ticks 

To find a potential host, I. ricinus possesses an organ located in the dorsal surface of the lowest 

segment of the front pair of legs. The so-called Haller’s organ consists of an anterior pit and a 

posterior capsule, both with multipurpose and single-pore sensilla (figure 4.3).  

 

 

Figure 4.3 Scanning electron micrograph illustrating the dorsal surface and terminal organ of the front leg of 

Dermacentor variabilis. Ap, anterior pit of Haller’s organ; Pc, posterior capsule of Haller’s organ; 

Pv, pulvillus [55]. 

The tick uses this highly complex sensory apparatus as primary organ for determining host 

location, determining host odors [83], recognizing pheromones [84; 85], and other sensory 

functions, such as detection of temperature [55; 86]. The sensilla in this organ respond to 

thermal energy and to elevated levels of CO2, NH3, H2S, as components of breath and body 

odor [53] and other odorants from warm-blooded animals that come within range, facilitating 

host location and contributing to successful attachment [8; 87].  

Promising results on the attractive effect of CO2 on ticks were already obtained in studies that 

applied CO2 traps, containing dry ice or CO2 gas bottles [88-92]. Schulze et al. [93] 

demonstrated an attracting effect of a CO2 trap on Ixodes scapularis in the field. Also Gherman 

et al. [94] could improve the traditional method of flagging (collection of ticks from the 

environment with a cotton flag) by CO2 dispersed into the white flannel. A study by van 
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Duijvendijk et al. [95] verified an activation of I. ricinus nymphs due to applied CO2. Even 

other tick species, such as Amblyomma or Dermacentor spp., were mainly attracted when CO2 

baits were applied [93; 96-98]. 

 

Figure 4.4 Adult Ixodes spp. tick questing [99]. 

The questing I. ricinus locate hosts in open spaces of forests, brushland, or grassland habitats. 

To enable attachment, the tick climbs vegetation, spread their first pair of legs (figure 4.4) 

containing the Haller’s organ, and wait for the host [55]. Ticks use their forelegs in a manner 

similar to how insects use antennae. 

 

4.3.2 Saccharomyces cerevisiae  

The microorganism Saccharomyces cerevisiae, known as baker's yeast, is exploited in a broad 

range of application fields, including chemistry and food industries, health care and research 

[100; 101]. S. cerevisiae is a unicellular eukaryote and a chemoorganotrophic facultative 

aerobic organism [102]. S. cerevisiae can generate energy from its principal energy source 

glucose via aerobic metabolism (cell respiration) or anaerobic metabolism (fermentation), both 

preceded by cytosolic glycolysis, the general pathway for conversion of glucose to 

pyruvate [103]. Under aerial conditions, pyruvate is oxidized to CO2 via cell respiration and 

oxygen is reduced to water. Energy in the form of ATP is generated [104]. Under anaerobic 

conditions and due to high glucose concentrations pyruvate is converted to ethanol and CO2 via 

acetaldehyde. The alcoholic fermentation is shown schematically in figure 4.5. 

S. cerevisiae can metabolize glucose to ethanol and CO2 under aerobic conditions [105]. This 

regulatory phenomenon is called ‘Crabtree effect’ and is mediated by a critical glucose 

concentration from 0.1 mg∙mL-1 [106]. At high glucose concentrations a repression of 

mitochondrial function is induced, leading to a less efficient energy production, compared to 
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respiration [107], but at the same time to a faster liberation of energy and thus more rapid 

growth [108]. After consumption of glucose, ethanol is assimilated as an energy source. The 

development of this phenomenon is due to an adaptation to high glucose concentrations [103; 

109]. 

 

Figure 4.5 Fermentation in S. cerevisiae [104]. 

S. cerevisiae is known to have a relatively high resistance to high glucose concentration as well 

as ethanol toxicity [110; 111], even though ethanol can retard the growth rates of yeasts [112]. 

A study of Aguilera et al. [113] reported a tolerance of 4% (v/v) ethanol for S. cerevisiae. This 

was supported by Ansanay-Galeote et al. [114]. In this study, a final viability of the cells was 

at least 85%, also when S. cerevisiae cells were exposed to ethanol concentrations up to 

6% (v/v). Balakumar et al. [115] even reported a survival of a concentration of 10% ethanol, 

added to the medium. The survival of higher concentrations due to slow adaption is conceivable. 

It can be further presumed that the production of ethanol is inducted by S. cerevisiae as a 

consequence to defend its niche from other microorganisms [109; 116].  
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4.3.3 Formulation of attractants 

S. cerevisiae  

The microorganism S. cerevisiae is able to produce CO2 by utilizing glucose. For an application 

as attractant producing component in a biological control agent, a supply of nutrients within a 

bead formulation with a biopolymer, such as calcium alginate, is necessary. Due to their low 

molecular weight, monosaccharides cannot be encapsulated permanently in calcium alginate 

because it is not retained by the polymer matrix [49; 117]. Since an encapsulation of 

monosaccharides is not possible due to the low molecular weight [49], starch can be 

supplemented alternatively. Starch is the main storage material of plants and is composed of 

glucose units which are glucosidal α-1,4-linked (figure 4.6). 

 

Figure 4.6 Chemical structure of starch [118]. 

As already demonstrated by Humbert et al. [119], supplemented starch, as a carbon source with 

high molecular weight, remains in the bead and furthermore enhances the structure of the 

hydrogel network [120]. Because S. cerevisiae lack the enzymatic equipment for the 

assimilation of starch, the supplementation of an amyloglucosidase (AG) is needed to make the 

nutrient source available (figure 4.7). 

 

Figure 4.7 Schematic illustration of an Attract formulation with controlled CO2 release [119]. 
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The co-encapsulation with EPF biomass is another conceivable and already reported method to 

make starch available for the encapsulated S. cerevisiae cells [44; 51; 52].  

Urea supplementation 

Urea is a natural substance that is excreted as a metabolic product through urine and sweat of 

mammals. Pure urea is a white, crystalline, odorless, non-toxic and non-hazardous solid that 

dissolves well in water and ethanol and is one of the most widely produced chemicals [121]. It 

is being used in many fields such as medicine, fertilizers, food and environmental 

protection [122]. 

 

Figure 4.8 Chemical structure of urea [123]. 

S. cerevisiae is reported to utilize urea as nitrogen source [124]. Urea is degraded in two steps, 

with a urea carboxylase and an allophanate hydrolase (figure 4.9) [125]. Because the sensilla 

of the Haller’s organ, ticks react to both CO2 and NH3 as components of body odor [53] the 

supplementation of urea may lead to an increase of the CO2 production of the Attract beads. 

The resulting release of NH3 may further enhance the attractive effect on ticks. 

 

Figure 4.9 Two step degradation of urea in S. cerevisiae cells [125]. 

Due to its low molecular weight, an effective encapsulation in pure calcium alginate is not 

possible [117]. Nonetheless, urea can be supplemented in both polymer and crosslinking 

solution to attain a defined concentration within the beads prepared by ionic gelation.  
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4.4 Kill 

4.4.1 Control strategies for I. ricinus 

Acaricides from various chemical groups, e.g. organophosphates, carbamates, pyrethroids or 

macrocyclic lactones (such as doramectin, ivermectin or moxidectin) are used worldwide for 

tick control [15] However, at present, there are no available control measures for ticks with 

chemical acaricides in the field in Germany, due to related disadvantages, such as negative 

impact on non-target animals, increasing development of resistances of the target organisms [8; 

126-128]. In Germany, their application is predominantly restricted to veterinary medicine, as 

spot-on or collar, while the use of such biocides in larger areas is not carried out for ecological 

as well as economic reasons. Current control agents follow different approaches.  

One product for the control of ticks within a restricted area is the “Ixogon tick roll” (Roekel & 

Dalsum B.V., Amsterdam, Netherlands). The product is based on mice equipping their nest 

with permethrin impregnated cotton (chemical acaricide), to kill attached ticks on their body. 

In a related concept, a host-targeted bait box was deployed, containing a bait attractant and 

fipronil-treated felt wick, passively treating small mammals with the acaricide when entering 

the box [129; 130]. However, both methods do not affect all mice species and other tick hosts 

usually do not get in contact with the product. Another product, working with chemical control 

is a clip treated with specific pheromones and acaricides that was developed against tropical 

tick species [131]. This bag works according to the Attract-and-Kill strategy and is attached to 

the ear or tail root of cattle. However, it is only effective against special tick species of the 

genus Amblyomma, which do not occur in Europe. 

Other options to prevent a direct contact between host and tick is the application of specific 

repellents. Especially for domestic animals, several studies were conducted on the effectiveness 

of essential oils and other natural substances. Substances as turmeric, cinnamon or thymol 

showed repellent effects towards different tick species, including I. ricinus [16-18]. 

Nevertheless, a high dosage application on human or animal skin can lead to an allergic contact 

dermatitis [19]. 

The development of biological control strategies for ticks has been overlooked for a long time. 

Biological methods in tick control have become increasingly prominent only within the last 

decade [8; 22; 23]. Besides entomopathogenic nematodes and parasitoids, acaricidal fungi have 

proved to be suitable antagonistic organisms which possess the ability to infect ticks. Acaricidal 
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fungi often also belong to the group of entomopathogenic fungi (EPF), which is why this 

general term is used as follows. Due to the high genetic variability, the development of 

resistances cannot be expected [132]. The most promising fungi are Beauveria spp. and 

Metarhizium spp. whereas the fungal species Metarhizium anisopliae and Beauveria bassiana 

are already proved to be virulent against ticks under optimal laboratory conditions [22; 31; 32]. 

A comparatively low mortality was frequently observed when the fungi were applied directly 

in the field or on animals (e.g. cattle as host) [26; 48]. This suggests that although the conidia 

adhere to the surface of the tick, in many cases they do not germinate or penetrate the cuticle 

or only induce a sub-lethal infection [133]. However, due to the large application area and the 

high dosages of aerial conidia usually required for the control of pests in the field [134], the 

application of unformulated EPF is mainly uneconomic. First approaches towards an Attract-

and-Kill strategy for ticks were published in previous studies [38; 135], but not for the control 

of I. ricinus. 

Usually, EPF isolates show a relatively high specific virulence for a small group of hosts [133]. 

While the application of high concentrations of EPF can lead to an influence on non-target 

arthropods, EPF are already present in the soil. Consequently, the use of EPF will not introduce 

foreign pathogens into the environment [136]. The living biomass in a control agent is exposed 

to environmental factors, such as extreme temperatures, dryness or UV light, when applied in 

the field resulting in high losses in viability. Therefore, a suitable formulation, especially for 

the encapsulation of EPF biomass is inevitable for an effective, cost efficient control agent 

against I. ricinus.  

 

4.4.2 Aggregation pheromones 

Ticks use behavior modifying substances, known as semiochemicals, including pheromones 

(communication) and allelochemicals such as allomones (defense) and kairomones (attractants 

for host identification and location, such as CO2 and NH3). The best studied semiochemicals 

are those for aggregation, attraction and sexual behavior [55], whereby the substances can have 

a varying influence on the behavior, specific for each tick species and development stage of the 

tick. 
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A known aggregating substance for hard ticks is hematin. It consists of a central iron atom and 

a porphyrin ring (figure 4.10) and is soluble only at high pH values and tends to self-aggregate 

at low pH values [137]. Hematin is a degradation product of blood [138]. 

 

Figure 4.10 Chemical structure of hematin.  

A significant effect of hematin as an aggregating substance on ticks of the species I. scapularis 

could be demonstrated [54; 139]. A quantitative effect on I. ricinus could not be shown so far. 

The incorporation of aggregation pheromones like hematin on the bead surface was thought to 

increase the contact time of the tick with the formulation and thus the probability of infection 

with a co-encapsulated entomopathogenic fungus. 

 

4.4.3 Formulation of entomopathogenic fungi 

A recent survey confirmed that  that aerial conidia are the most commonly used biomass for 

pest control [41]. Very few products are based on blastospores (4.1%) or mycelium (2.3%). 

Usually, biomass is applied as powder or oil dispersions with additional substances as drying 

aids in order to improve stability and shelf life of the product [37]. In comparison, encapsulation 

in calcium alginate beads is a well-established method for the protection of fungal biomass from 

environmental factors, such as temperature, extreme pH values or low water contents [140; 141] 

and was demonstrated not to interfere with vegetative growth and conidiation of EPF [142]. 

Nonetheless, drying of blastospores is, compared to aerial conidia, still a challenging task. 

Previous studies have shown that the addition of skimmed milk powder can increase the 

survival of B. bassiana blastospores [143]. This result was also corrobated for blastospores of 

M. flavoviride [144]. Studies by Jackson et al. [145] and Chong-Rodríguez et al. [146] showed 
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a increased survival during drying processes of B. bassiana and Paecilomyces fumosoroseus 

blastospores, respectively when diatomaceous earth was supplemented. An enhanced drying 

survival of M. anisopliae var. acridum blastospores was reported in a study by Leland et al. 

[36]. In that study the survival was significantly increased with a resulting germination of 20% 

of the blastospores, when the biomass was left in growth medium instead of washing with 

distilled water or PEG solution, prior to a fast-drying process on silica gel.  

Not only the supplements but also the final aw value of the formulation is reported to be an 

important factor in the drying process. Conidia and blastospores with a lower water activity 

exhibit lower conidiation rates after drying than those with higher aw values [81]. The 

cultivation time and the sampling point of the culture can have further impact on the drying 

stability of biomass, due to the composition of the cells [147; 148]. Especially the polyol content 

within cells, that was reported to affect drying stability, can vary during cultivation [149; 150]. 

A dried bead formulation furthermore facilitates application and storage of the control agent. 

Even though the use of conidia clearly predominates over blastospores, suitable formulations 

have the potential to make blastospores applicable and exploit their advantages, above all faster 

germination, faster speed-to-kill and cheaper production [44]. 

 

4.4.4 Metarhizium spp. 

Isolates of the genus Metarhizium belong to the family of Clavicipitaceae, which are classified 

as Ascomycota. A characteristic of these fungi is the asexual reproduction with spores. The 

classification is based on morphological characteristics of hyphae, aerial conidia and 

blastospores [8]. The genus is known to infect and kill a wide range of insects and arthropods. 

Different Metarhizium spp. isolates have been found worldwide in soil and could already be 

isolated from plant roots [151], insects [152] and ticks [23]. The commonly known species 

Metarhizium anisopliae was first described by Metschnikoff in the Ukraine in 1879. The EPF 

was isolated from infected beetles of the species Anisoplia austriaca (Southern Grain Leaf 

Beetle) and thus got its name and was then placed in the genus Metarhizium introduced by 

Sorokin in 1883. M. anisopliae was already used as a biological pesticide shortly after its 

discovery from 1880 to 1890 in the former Soviet Union against the beetle 

Cleonus punctiventris [153]. This makes M. anisopliae one of the first described EPFs to be 

used for pest control. There are over 40 different products based on Metarhizium spp. that are 
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applied against different types of pests. These include locusts, cockroaches, mosquitoes and 

also ticks [30; 41].  

 

 

Figure 4.11 Phylogenetic tree of the genus Metarhizium [154]. 
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Today the genus Metarhizium belongs to the order of hypocreales. The pedigree was revised 

by molecular methods by Bischoff  et al. [155], resulting in a division of the genus into 12 

different species. It has been found that former M. anisopliae isolates contain different species, 

including M. brunneum, M. anisopliae, M. pingshaense and M. robertsii (figure 4.11). Other 

known species are M. pemphigi, M. flavoviride, M. album and M. frigidum. Therefore, the 

assignment of isolates to the different species in the literature is often unprecise, not completely 

clarified and partly outdated [155]. Consequently, a screening for virulence is mandatory, to 

ensure the applicability of a Metarhizium spp. isolate as control agent for a certain pest.  

Cultivation 

For the cultivation of EPF, a distinction can be made between two general production processes, 

solid cultivation and submerged cultivation. It is commonly known from the literature, that 

Metarhizium spp. can form different morphologies, depending on the surrounding medium 

[156-159]. The application of EPF as control agent usually requires a large amount of biomass 

with a high vigor. Therefore, an optimized suitable cultivation method in order to produce 

biomass in a cost-efficient way is needed.  

On solid medium, EPF produces small asexual spores (<10 µm) called aerial conidia. 

Characteristic is the thick hydrophobic cell wall, which offers protection against abiotic stress 

factors and provide drying resistance and storage stability [34; 35; 37; 158]. Aerial conidia, as 

the natural infection unit of the EPF, are most commonly used in commercial formulations. 

Their germination on solid medium can take up to 24 h [160]. 

Solid phase cultivation has historically been the most widely used cultivation method. On a 

smaller scale it is a simple method with little technical effort. Usually, substrates as rice and 

barley, but also by-products and waste products are used as nutrients. The biggest disadvantage 

of solid phase cultivation is its low suitability for upscaling for industrial applications. It is 

either a simple technique requiring a large number of personnel or a technique requiring 

expensive equipment. Large amounts of substrate are required which causes problems during 

sterilization. In addition, the bioreactors for solid cultivation require lots of space because EPF 

only grow on the surface of the medium [82]. 

In submerged culture, EPF form mainly mycelium [47; 157] and thin-walled blastospores by 

budding from hyphae of the mycelium (figure 4.12) [161; 162]. Blastospores are vegetative 

cells which, in contrast to conidia, do not have a formal cell wall and are consequently more 

sensitive in terms of storage stability and drying resistance [82; 158]. On the other hand, their 
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faster germination is advantageous. Blastospores do not represent the natural infection unit, but 

it has been shown that they can be equally or even more virulent than conidia [33; 37]. Fungal 

mycelium is the second vegetative growth form of EPF. It consists of branched hyphae and can 

grow filamentous or pellet-like, whereas filamentous growth is an optimal basis for blastospore 

production [163; 164]. A high blastospore concentration further can be obtained for instance by 

increasing the osmotic pressure of the medium [47; 157]. The optimal temperature for 

submerged cultivation of Metarhizium spp. was reported in a range between 25 and 28 °C [36; 

45; 156; 161]. 

 

Figure 4.12 Microscopic images of different Metarhizium spp. isolates. [155].  

Besides the amount of biomass, the vigor is an important parameter that can be influenced by 

culture conditions [36; 158]. The ecological fitness of the spores is closely related to their 

endogenous components, e.g. the content of polyhydroxy alcohols (polyols). An increased 

polyol content is associated with germination at low water activities (aw), faster germination 

and improved drying tolerance [150]. The endogenous polyol content can be manipulated by 

medium parameters, as pH value or aw value of the medium [165]. The culture age has further 

impact on endogenous components and the properties of the formed biomass [82]. A negative 
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effect of a cultivation under unfavorable conditions (medium, pH value, temperature) on the 

virulence of the EPF was reported by Fernandes et al. [81]. 

Mode of action 

A unique feature of entomopathogenic fungi is their ability to infect insects and ticks via their 

cuticle. The natural infection unit of EPF are aerial conidia. The conidia adhere to the cuticle 

through hydrophobic interaction and also through the formation of mucus and adhesive proteins 

[166]. The cuticle of hard bodied ticks, such as I. ricinus, provides natural protection from 

adverse environmental factors [55]. It consists mainly of tanned proteins and chitin, as well as 

short-chain fatty acids. It has a low water activity, only hardly available nutrients for pathogens 

and a specific colonization by microbes serving as protection against pathogens. The 

composition of the epicuticle plays an important role in identifying the correct host. As a 

consequence, EPF are adapted to the composition of the cuticle and are therefore equipped with 

a particularly high number of proteases and chitinases [167]. 

The conidia adhering to the cuticle germinate and form penetration structures, such as an 

appressorium resulting in a penetration hypha (figure 4.13). Enzymatic and mechanical 

processes are involved in the penetration of the cuticle. Important enzymes are the mentioned 

proteases and chitinases, as well as esterases and lipases to soften the structure of the tick cuticle 

and facilitate an infection [168]. In comparison, EPF show significantly more proteases and 

chitinases than plant-pathogenic fungi. This difference is even bigger in fungi with a broad host 

spectrum than in specialists [166]. As soon as the penetration hyphae reaches the hemolymph 

of a host, blastospores are produced [167; 169]. 
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Figure 4.13 Diagrammatic representation of cuticle penetration by Metarhizium spp. using an appressorium 

along a seta [127], glandular duct (beige), and trichogen cell (purple) followed by budding off of 

blastospores in the hemolymph. [166] 

The death of the host finally occurs through a combination of different factors. The 

consumption of available nutrients as well as invasion and physical destruction of the organs 

are main reasons [170]. Additionally, toxic substances are produced by Metarhizium spp., such 

as destruxins [160]. After death, the fungus continues saprotrophically growth resulting in the 

formation of new infectious aerial conidia on the host surface [169]. 

A screening for a suitable isolate is of major importance for the development of a biological 

control agent, due to the high host specificity of fungi. EPF show a very high genetic variability 

between isolates of the same species. Since different isolates furthermore show individual 

growth behavior, a selection process under biotechnological aspects, such as cultivability, is 

necessary for a large-scale production. Even though blastospores are easier to produce and 

harvest on a technical scale than aerial conidia, they suffer from a higher sensitivity to 

environmental factors. Therefore, the screening of isolates for beneficial properties as well as 

for a suitable formulation is obligatory at the beginning of the development process of an 

efficient tick control agent. 
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5 Materials and methods 

5.1 Attract 

5.1.1 Saccharomyces cerevisiae 

Baker's yeast strain S. cerevisiae H205 (commercially available as compressed baker’s yeast 

under the brand name “VITAL-AROM”) was provided by Deutsche Hefewerke GmbH, 

Nürnberg, Germany. 

 

5.1.2 Bead preparation 

Amyloglucosidase 

As amylolytic enzyme for starch degradation, the amyloglucosidase (AG) preparation Panzym® 

HT 300 (Novozymes A/S, Bagsværd, Denmark) containing 300 AG units∙mL-1 was used. By 

definition, one AG unit∙mL-1 is the amount of enzyme cleaving 1 µmol of maltose per minute 

(conditions: 10 mg mL-1 maltose, pH 5.0, 37 °C, 30 min) [171]. 

Encapsulation 

Encapsulation was carried out based on a protocol of Humbert et al. [119]. A 4% (w/w) sodium 

alginate (Manugel GMB, Batch No. G7708901; FMC Biopolymer, Philadelphia, PA) solution 

was prepared, stirred for at least 1 h for homogenization and heat sterilized (6 min at 121 °C). 

The sodium alginate solution was thoroughly mixed with native granular corn starch (CIF 

GmbH, Siegburg, Germany). Then S. cerevisiae biomass was added as well as ultrapure water. 

The final concentrations were 2% (w/w) sodium alginate, 20% (w/w) granular corn starch and 

15% (w/w) S. cerevisiae biomass. Optionally, AG (0.05 – 1 U∙g-1) was added to the sodium 

alginate matrix solution. The stirred matrix solution was transferred into a 20 mL syringe and 

dripped through a drain tube (Ø=0.90*40 mm Sterican; B. Braun Melsungen AG, Melsungen, 

Germany) into 180 mM calcium chloride. The beads were kept in the cross-linking solution for 

20 min, then separated and washed with ultrapure water. For beads supplemented with urea, 

12.5% (w/w) was added to both crosslinking and polymer solution. Beads containing urea were 

not washed to prevent loss of urea. All calcium alginate beads were prepared under sterile 

conditions with autoclaved materials. During preparation, all materials were kept on ice. 
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Optionally, beads were air-dried under the laminar air-flow of a clean bench for 24 h. Dry beads 

were slowly rehydrated in petri dishes containing 1.5% (w/w) water agar at 7 °C for 24 h. 

 

Figure 5.1 Encapsulation based on the dripping method: Production of beads by ionic gelation [49]. 

 

5.1.3 Determination of CO2 release 

For the measurement of the CO2 production of the beads, the released amount of CO2 was 

quantified using a carbon dioxide meter with pump-aspirated sampling (Vaisala CARBOCAP® 

GM70; Vaisala Oyj, Helsinki, Finland). The CO2 release rates were determined like previously 

described by Vemmer et al. [52]. In this work, the amount of CO2 produced by 1 g moist beads 

in 1 h was measured in a closed tube with a volume of 50 mL at 25 °C. The data are represented 

as difference between ambient air and the CO2 release rate of the beads and illustrated as  

mL CO2 produced per g of moist or rehydrated beads in 1 h. 

 

5.1.4 Y-olfactometer 

In order to determine the attractivity of beads, the behavior of I. ricinus nymphs was tested in 

a dual-choice experiment using a Y-olfactometer (teflon, self-constructed by IS Insect Services 

GmbH, Berlin, Germany). Between two and four nymphs were applied at the entrance of the 

Y-olfactometer and the movement was screened for 3 min. The decision for one side (‘control’ 
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with fresh air or ‘test’ with attractant) was noted, when a mark at 3 cm was crossed by a tick 

(figure 5.2). The flow in the test side either contained CO2 produced by Attract beads or a 

defined CO2 concentration. The laminar flow was adjusted at 47.8 mL∙min-1 with 77-80% 

relative humidity and a CO2 concentration of the ambient air between 520-650 ppm at 23 °C. 

 

Figure 5.2 Schematic drawing of the experimental setup of the Y-olfactometer.  

 

5.2 Kill 

5.2.1 Metarhizium spp. 

The Metarhizium brunneum isolates Ca8II and Cb16III were obtained from Goettingen 

University (Prof. Stefan Vidal, Agricultural Entomology). Metarhizium pemphigi X1c was 

received from the University of Hohenheim (Prof. Ute Mackenstedt, Parasitology). All fungal 

isolates were cultivated on malt-peptone agar (MPA; 3.0% (w/w) barley malt extract, 0.5% 

(w/w) peptone from casein and 1.5% (w/w) agar) in the dark at 25 °C. The produced aerial 

conidia were used for cultivation on solid media as well as for inoculation of submerged 

cultures and encapsulation in calcium alginate beads. 
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5.2.2 Solid state cultivation 

Metarhizium spp. isolates were cultivated on solid medium adapted from Krell et al. [172], 

containing 1.5% (w/w) agar, 4.0% (w/w) ANiPept (protein hydrolysate from animal by-

products, ANiMOX GmbH, Berlin), 5.0% (w/w) glucose and 7.0% (w/w) 

polyethylene glycol 200 [31]. The initial pH value was adjusted to 6.0 with 1 M HCl. All dishes 

were inoculated with 103 aerial conidia and incubated at 15 °C, 25 °C or 30 °C for three weeks. 

 

5.2.3 Submerged cultivation 

Metarhizium spp. isolates were cultivated in 75 mL medium in 250 mL shake flasks with baffles 

for 210 h at 25 °C and 175 rpm (IKA KS 4000 ic control, Staufen, Germany). The medium was 

adapted from Krell et al. [172] with 4.0% (w/w) ANiPept, 5.0% (w/w) glucose and 7.0% (w/w) 

PEG and an initial pH value for all cultures adjusted to pH 6.0 with 1 M HCl. Precultures were 

prepared with cryopreserved aerial conidia from the solid cultivation and cultivated for 48 h. 

Submerged cultures were inoculated with blastospores from the preculture to an initial 

concentration of 106 blastospores∙mL-1. The blastospore concentration of submerged cultures 

was counted with a Thoma cell counting chamber (Paul Marienfeld GmbH & Co. KG, Lauda 

Koenigshofen, Germany) under a light microscope (Photomicroscope; Carl Zeiss AG, 

Oberkochen, Germany). 

Analysis of biomass formation 

To determine the aerial conidial concentration of the solid cultures, an area of 1 cm2 was 

punched out of the medium with a scalpel and placed in 1 mL of 0.1% (w/w) Tween-80. Aerial 

conidia were counted, and the concentration calculated similar to blastospores in submerged 

cultures (see above). Dry weight of total biomass of submerged cultures was determined by 

drying in dried and pre-weighted 1.5 mL centrifuge tubes. Therefore, 1.5 mL culture broth was 

pipetted into the tube and centrifuged for 10 min at 27,000 g. The supernatant was removed, 

and the tubes dried at 60 °C for 72 h. After cooling the tubes down to room temperature, the 

dry weight was determined gravimetrically. 

Glucose measurement with high performance liquid chromatography 

Media samples from submerged cultures were centrifuged for 20 min at 27,000 g in a 1.5 mL 

centrifuge tube to remove biomass and particles. The supernatant was transferred in a new 
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1.5 mL centrifuge tube and centrifuged again. The remaining supernatant was transferred to 

HPLC vials. Glucose was quantified by high-performance liquid chromatography (HPLC) 

using the Primaide system (Hitachi, Chiyoda, Japan) equipped with a NUCLEODUR® 100-5 

NH2-RP (5 μm) column (Macherey-Nagel GmbH, Düren, Germany) and ultrapure 

water/acetonitrile as eluent at a ratio of 21:79 and a flow rate of 1 mL∙min-1. The injection 

volume was 10 μL. Pure glucose was used as analytical standard for the calculation of the 

glucose concentration in the samples. 

 

5.2.4 Bead preparation 

Preparation of blastospores 

Blastospores were separated from the culture broth after submerged cultivation by sterile 

filtration through autoclaved paper dishes (Qualitative filter paper, 401, 12 – 15 µm pore size, 

VWR, Germany) as described above. The collected blastospores were centrifuged for 10 min 

at 2,700 g to separate blastospores from the medium. The pellet was re-suspended in 1 mL 0.9% 

(w/w) NaCl and centrifuged again to remove residual medium. Finally, the pellet was dissolved 

in 0.5 mL 0.9% (w/w) NaCl and blastospore concentration was determined with a Thoma cell 

counting chamber as described above.  

Encapsulation 

The encapsulation was conducted analogous to chapter 5.1.1. Prior to encapsulation, a 4.0% 

(w/w) sodium alginate (Manugel GMB, Batch No. G7708901; FMC Biopolymer, Philadelphia, 

PA) solution was prepared with ultrapure water and heat sterilized for 6 min at 121 °C. For 

preparation of calcium alginate beads under sterile conditions, 4.0% (w/w) sodium alginate 

solution was thoroughly mixed with either 15% (w/w) sterilized native granular corn starch 

(CIF GmbH, Siegburg, Germany) or 15.0% (w/w) chitin powder from shrimp shells (Sigma-

Aldrich Chemie GmbH, Munich, Germany) as well as 2.0% (w/w) inactivated and ground yeast 

(Deutsche Hefewerke GmbH, Nürnberg, Germany). Then, Metarhizium spp. blastospores were 

added to the suspension up to a final concentration of 106 blastospores∙g-1. The solution was 

diluted with ultrapure water to a final sodium alginate concentration of 2.0% (w/w). After 

stirring, the matrix solution was dripped into a stirring sterile 2.0% (w/w) CaCl2 solution 

through a 20 mL syringe equipped with a cannula (Ø=2.10∙80 mm, Sterican; B. Braun 
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Melsungen AG, Melsungen, Germany). Prepared beads were separated and rinsed with 

ultrapure water. 

Drying of beads and determination of CFU 

If not stated otherwise, beads were separated and dried for 24 h. under the laminar air flow of a 

clean bench at ambient temperature and 35 – 50% relative humidity to a water activity (aw 

value) of 0.3 – 0.4. The aw of the beads was measured, using a water activity meter 

(LabMASTER-aw, Novasina AG, Switzerland).  

To determine the survival of encapsulated blastospores from dried beads, ten beads were 

dissolved in 10 mL of a buffer containing 0.05 M Na2CO3 and 0.03 M citric acid solution 

adapted from Mater et al. [173] on a rotary shaker for 60 min at 50 rpm and 25 °C. The number 

of colony forming units (CFU) was evaluated by a plate counting method on MPA, incubated 

at 25 °C for 48 – 72 h. The survival of the encapsulated cells during drying of the beads was 

calculated as follows: 

% of survival = (N/N0)∙100  

With N: total CFU after drying and N0: total CFU before drying of the beads. 

Coating with hematin 

A stock solution of 20% (w/w) hematin (Chemos GmbH & Co.KG, Altdorm, Germany) in 1 M 

NaOH was prepared. The stock solution was mixed in equal parts with Tween-80 and diluted 

with coating buffer (25% (w/w) 0.2 M tris(hydroxymethyl)aminomethane (Tris), 29.7% (w/w) 

0.1 M HCl in ultra-pure water) to a final concentration of 0.5% (w/w) hematin. Dried Kill beads 

containing 15% (w/w) granular corn starch and M. pemphigi X1c blastospores were soaked in 

the solution for up to 60 s. After the soaking, beads were not washed. For the determination of 

hematin on the bead surface, ten beads were dissolved in dissolving buffer as described above, 

diluted in equal parts with 1 M NaOH and the concentration calculated based on the optical 

absorption at a wavelength of 387 nm (Photometer Genesys 10s UV-Vis Spectrophotometer, 

Fisher Scientific, Schwerte, Germany). The beads had a final surface concentration of  

10–20 µg∙cm-1 hematin. 
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5.2.5 Analysis of conidiation of encapsulated Metarhizium spp. on beads 

Moist beads were placed on water agar (1.5% (w/w) agar) in petri dishes (Ø=94 mm) and 

incubated at 25 °C for four weeks. After every week, the surface concentration of aerial conidia 

was determined for ten beads. Therefore, each bead was placed in 1.0 mL of 0.1% (w/w) 

Tween-80 and mixed gently for 30 sec to detach aerial conidia from the surface. The 

concentration was calculated using a Thoma cell counting chamber as described above. 

 

5.2.6 Screening for virulence 

Ticks 

Ixodes ricinus, Dermacentor reticulatus and Rhipicephalus sanguineus nymphs as well as 

adults of all three species were obtained from IS Insect services (Berlin, Germany). Unfed ticks 

were kept at ambient temperature and with saturated MgSO4 solution to maintain a relative 

humidity > 90% in sealed plastic boxes (Clip & Close, Emsa GmbH, Emsdetten, Germany) in 

the dark until used in experimental designs. 

Experimental setup 

In order to screen for the virulence of the newly formed aerial conidia on the bead surface for 

tick nymphs, beads were prepared as described above and incubated on water agar (1.5% (w/w) 

agar) at 25 °C for two weeks and then placed in ELISA-stripes (F8 maxisorp loose NUNC-

immuno module, Thermo Fisher Scientific, Roskilde, Denmark) with one bead in each well 

(figure 5.3). For every Metarhizium spp. isolate, 30 wells were used. In each well, one nymph 

was added and then sealed with Parafilm M. Air holes were pricked into the Parafilm M with a 

small cannula zo allow air exchange. The ELISA-stripes were incubated at 25 °C in a sealed 

box with saturated MgSO4 solution (relative humidity >90%) in the dark and monitored twice 

a week with a digital microscope (Keyence VHX-1000; Keyence Corporation, Osaka, Japan) 

to identify infected nymphs. Two control groups (nymphs without treatment and beads without 

active ingredient) were used. 

 

Figure 5.3 Experimental setup of the virulence screening. 
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5.3 Attract-and-Kill 

5.3.1 Bead preparation 

Attract-and-Kill beads were prepared as described above for the Kill formulation containing 

15% granular corn starch. In addition, 15% (w/w) S. cerevisiae cells and optionally AG was 

added in different concentrations. Different forms of biomass were co-encapsulated. For 

encapsulation of mycelium, it was separated from culture medium and blastospores by sterile 

filtration through autoclaved paper dishes (Qualitative filter paper, 401, 12 – 15 µm pore size, 

VWR, Germany). The filter was rinsed with 0.9% (w/w) NaCl to remove remaining 

blastospores. A concentration of 2% (w/w) mycelium was applied to the bead matrix instead of 

blastospores. Aerial conidia for encapsulation were collected from MPA agar, cultivated at 

25 °C for three weeks, using 3 mL 0.1% (w/w) Tween-80. The final concentration of aerial 

conidia inside the beads was analogous to blastospores 106 conidia∙g-1. 

Analysis of beads 

The quantification of CO2 produced by the beads was conducted as described in chapter 5.1.2. 

Conidiation on the bead surface was determined as described in 5.2.4 

Determination of glucose content inside beads 

Glucose concentration was determined with HPLC as described above. Beads were dissolved 

as described in 5.2.4, centrifugated at 27,000 g for 20 min and the supernatant analyzed as 

described in 5.2.3. 

 

5.3.2 Ethanol determination in beads 

To determine the ethanol content inside the beads, an Ethanol Assay kit (Megazyme 

International, Wicklow, Ireland) was used. Attract-and-Kill beads were prepared without EPF 

biomass. 0.5 g beads were a dissolved t each timepoint in 10 mL dissolving solution as 

described in chapter 5.2.3. Solutions were centrifuged for 10 min at 2,700 g for 10 min. The 

supernatant was removed fort ethanol determination.  

The determination of ethanol was conducted according to the manual, using a 

spectrophotometer (Genesys 10S UV-Vis, Thermo Fisher Scientific, Waltham, USA) and 

disposable micro cuvettes (Biosigma, Cona, Italy)  
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5.3.3 Ethanol stability 

A defined amount of 104 blastospores was incubated in a final volume of 1 mL of different 

ethanol concentrations in ultrapure water (0 – 0.4 g∙mL-1) for 10 min. A volume of 100 µL of 

each sample was plated on MPA and incubated at 25 °C for 72 – 96 h. CFU was calculated as 

described above. 

 

5.4 Statistical analysis 

Statistical analysis was carried out with the software SPSS Statistics V22.0 (SPSS, Chicago, 

IL). All data are given as mean values ± standard deviations (sd) or as mean values ± standard 

error (se) and were checked for normality and homogeneity of variance using Shapiro-Wilk and 

Levene test. The level of significance was set at p<0.05. 

Means for CO2 production, attractivity of the formulation, drying survival and ethanol survival 

were tested for significant differences by one-way analysis of variance (ANOVA) followed by 

a Games-Howell post-hoc test with Welch correction for non-homogeneity, if the requirements 

of homoscedasticity of variance were not met.  

Repeated measures ANOVA was conducted for cultivation experiments (blastospore 

concentration and dry weight), conidiation on beads containing encapsulated EPF, virulence 

screening, glucose content in beads as well as ethanol content in beads to compare the effects 

of the treatment across time with time and treatment as independent variables. The sphericity 

of the matrix assumption was assessed with the Mauchley sphericity test; if the outcome of the 

test was significant, the F values were corrected using the Greenhouse-Geisser approach. When 

the requirements for homoscedasticity of variance were not met, a Games-Howell post hoc test 

was used to establish differences in means.  
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6 Results and discussion 

6.1 Attract 

Ticks, such as I. ricinus are known to be activated or attracted by CO2 gradients [94; 95]. In 

view of an active movement of the ticks towards the CO2 source, the required amount of a 

control agent in the field can be reduced when this agent is in close proximity with the attractant. 

An artificial CO2 source can lure ticks into a defined area what facilitates the treatment with 

control agents. 

6.1.1 CO2 production of encapsulated S. cerevisiae in calcium alginate  

Originally, beads containing S. cerevisiae, native granular corn starch and amyloglucosidase 

(AG) were developed by Humbert et al. [119] for the attraction and control of wireworms in 

soil. This formulation was based on pre-studies from Vemmer et al. [52] and used exclusively 

below ground, so far. In this work, CO2 producing beads were adapted and for the first time 

applied for the attraction of arthropods living above ground.  

The microorganism S. cerevisiae naturally assimilates monosaccharides, such as glucose, for 

growth and metabolism. CO2 is a by-product of this process and was early reported to attract 

ticks as I. ricinus in the field [88]. Due to their low molecular weight, monosaccharides cannot 

be encapsulated permanently in calcium alginate because it is not retained by the polymer 

matrix [49]. As already demonstrated by Humbert et al. [119], supplemented starch, as a carbon 

source with high molecular weight, remains in the bead and furthermore enhances the structure 

of the hydrogel network [120]. Because S. cerevisiae does not bring the enzymatic equipment 

to assimilate starch, an AG was co-encapsulated to make the nutrient source available for the 

encapsulated cells. 

Influence of the amyloglucosidase concentration on the CO2 production 

In a first step, the CO2 production of moist beads containing different concentrations of AG 

was compared at a constant incubation temperature of 25 °C to identify the optimal 

concentration for an application of the beads above ground. To ensure tick attraction, a 

minimum concentration of 0.2 mL∙(g∙h)-1 CO2 for the Attract beads was intended for a period 

of two weeks. The CO2 production of four formulations with different AG concentrations is 

illustrated in figure 6.1. 
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There was a significant influence of the AG concentration on the CO2 production at every time 

point (0 d F3,11=90.755; p<0.05, 7 d F3,10.507=49.067; p<0.05, 14 d F3,9.292=11.494; p<0.05, 21 d 

F3,11,022=4.656; p<0.05). The CO2 production decreased for all formulations significantly over 

the incubation time of three weeks (p<0.05). Freshly prepared beads containing AG produced 

CO2 concentrations higher than 0.2 mL∙(g∙h)-1, whereas the control showed a production of 

0.14 mL∙(g∙h)-1, probably as a result of remaining nutrients in the cells. After seven days, only 

beads containing 0.05 and 0.1 U∙g-1 AG exceeded the minimum CO2 concentration, whereas 

the CO2 production of beads prepared with 1.0 U∙g-1 AG already decreased to a concentration 

of 0.17 mL∙(g∙h)-1. After two weeks, the nutrients inside all formulations were probably already 

depleted and as a consequence none of them reached the defined minimum of 0.2 mL∙(g∙h)-1 

CO2. Beads containing 0.05 U∙g-1 AG showed the significant highest production beyond 

0.1 mL∙(g∙h)-1 with 0.15 mL∙(g∙h)-1 after 14 days (p<0.05).  

 

Figure 6.1  Influence of the amyloglucosidase concentration on the CO2 production of S. cerevisiae 

encapsulated in calcium alginate supplemented with corn starch over three weeks at 25 °C. Different 

letters above bars indicate significant differences according to one-way ANOVA with Games-

Howell post hoc test at p<0.05 (n=5; mean ± sd). 

It is known from the literature that S. cerevisiae is not able to metabolize starch when the cells 

are not biotechnologically modified [52; 174; 175]. Therefore, a supplementation with AG is 

inevitable to attain adequate concentrations. The obtained CO2 concentrations in the presented 

experiment are in good agreement with a study by Humbert et al. [119]. The faster decrease of 
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the CO2 production of the formulation with 1.0 U∙g-1 AG very likely resulted from the faster 

cleavage of starch by the relatively high concentration of encapsulated AG, leading to an earlier 

depletion of the nutrient source. For further experiments, a concentration of 0.1 U∙g-1 AG was 

chosen, due to its relatively consistent, sustained CO2 release, even though the desired CO2 

concentration was not attained for the entire two weeks. 

Influence of temperature on the CO2 production 

Drying of microorganisms is a common method and usually required for a long-time storage to 

maintain a high viability of the cells [176]. Therefore, not only moist, but also dried and 

rehydrated formulations were examined for their CO2 production at different temperatures to 

ensure practicability not only under ideal conditions but also in the field. Since the incubation 

temperature has a significant influence on the metabolism of encapsulated S. cerevisiae cells, 

the CO2 production of moist as well as dried and slowly rehydrated beads was investigated at 

different temperatures in a range between 4 °C and 30 °C. The measured values and their 

statistical significance are summarized in figure 6.2. 

There was a significant influence of the incubation temperature on the CO2 production of moist 

as well as of dried and rehydrated beads (F9,16.176=124.487; p<0.05). The CO2 production 

increased nearly linearly from 0.15 mL∙(g∙h)-1 to 0.47 mL∙(g∙h)-1 (moist beads) or from 

0.1 mL∙(g∙h)-1 to 0.44 mL∙(g∙h)-1, respectively (dried and rehydrated beads) with the 

temperature between 4 °C and 25 °C (p<0.05). However, there was no significant differences 

in the CO2 production of beads between 10 °C and 18 °C (moist: p=0.059, rehydrated: 

p=0.413). Moreover, a further increase in incubation temperature up to 30 °C had no significant 

effect on the CO2 production, equally whether moist (p=0.894) or dried and rehydrated beads 

(p=0.249) have been considered.  

When comparing moist and dried and rehydrated beads, significant differences in the CO2 

production were solely noticeable for 4 °C and 25 °C (p<0.05). At 10, 18 and 30 °C, no 

significant differences were measured (p=0,72, p=0,201, p=0,978). However, there was a 

tendency for a slightly higher CO2 production of moist beads than of dried and rehydrated beads 

at all incubation temperatures investigated. 

The results in figure 6.2 illustrate that temperatures greater or equal 10 °C lead to an adequate 

minimal CO2 production of 0.2 mL∙h-1∙g-1 to ensure applicability in the experimental setup of 

the Y-olfactometer for both, moist as well as dried and rehydrated beads. Consequently, it can 

be assumed, that the S. cerevisiae cells as well as the AG present a sufficient activity at lower 
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temperatures, even though the activity optimum for both is set at higher temperatures. 

S. cerevisiae is reported to grow between 3 °C and 45 °C with an optimum at 32 °C [177] 

whereas the encapsulated AG has a temperature optimum of 60 °C [178; 179]. As a result of a 

lower activity at moderate temperatures, an extended nutrient supply in the bead is supported 

and therefore a long-lasting CO2 release is ensured [119]. The temperature dependent activity 

of co-encapsulated S. cerevisiae cells and AG correlating with the CO2 release of beads was 

previously demonstrated by Humbert et al. [119], however for moist beads exclusively. The 

results are in good agreement with the release rates depicted in figure 6.1. Surprisingly for both, 

moist and dried and rehydrated beads, a significant difference was measured only at 4 and 

25 °C. Due to the drying process and a related loss of viable cells [180], a reduction of the CO2 

production was expected. These similar release rates are most probably caused by the high 

quantity of encapsulated S. cerevisiae cells within the beads. When high amounts of living cells 

are encapsulated, a limitation in the supply of nutrients is supposed to occur. Through a lack of 

nutrient supply, not all living cells produce high amounts of CO2. Therefore, a reduction of 

viable cells during drying is thought to solely lead to a minor reduction in CO2 production. Even 

though drying of microorganisms is a common method, damaging effects of a drying process 

especially on encapsulated cells are known [120; 181-183], like compression by a shrinking 

polymer matrix. Further factors during drying that have a direct effect on the viability, like 

osmotic and oxidative stress, an increase of intracellular pH and salt concentrations, may lead 

to an additional lasting damage of the cells [180; 184]. When considering the determination of 

the colony forming units before and after the drying process (unpublished data), a significant 

reduction of viable S. cerevisiae cells was measured, whereas damaged cells which are not able 

to propagate are not monitored with this method even though their metabolism might still be 

working [185] what therefore may lead to a maintenance of the CO2 production. This was also 

demonstrated by Humbert et al. [51], whereas the dried and rehydrated beads presented in at 

study only achieved a CO2 release rate of 0.1 mL∙h-1∙g-1. A harsh rehydration procedure was 

conducted for the measurement of CO2 release rates in that study. As already reported in the 

literature, a slow and therefore gentle rehydration leads to a much higher viability of living cells 

[186; 187]. Poirier et al. [187] pointed out a critical aw range between 0.117 and 0.455 that a 

rehydration process needs to overcome slowly to induce a high cell survival. Due to the 

application of dry beads above ground without previous rehydration, a slow sorption of water 

is given and therefore high cell viability is supposed to be provided when beads are applied in 
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the field, whereas the supplemented corn starch maintain the moisture, as it is reported to 

possess a high water binding capacity [188; 189]. 

 

Figure 6.2  CO2 production of moist and dried and rehydrated calcium alginate beads containing S. cerevisiae, 

corn starch and 0.1 U/g amyloglucosidase incubated at different temperatures. Different letters 

above bars indicate significant differences according to one-way ANOVA with Games-Howell post 

hoc test at p<0.05 (n=5; mean ± sd). 

The temperature-driven activity of encapsulated S. cerevisiae cells and the related CO2 

production follows the natural behavior of I. ricinus nymphs. These ticks show an increasing 

active movement at temperatures above 7 °C to 10 °C, whereas temperatures over 24 °C 

combined with a relative humidity below 80% lead to a withdrawal of the ticks and less activity 

due to the danger of dehydration [190]. Consequently, at low temperatures with low tick 

activity, fewer nutrients are metabolized within the beads and therefore a longer CO2 release is 

provided.  

The beads in figure 6.3 are either moist or dried and rehydrated to a water activity of 0.99 under 

optimal conditions. In the field, drying and rehydration processes take place during the day, so 

that the examination of the bead behavior at different water activities is necessary. Figure 6.3 

presents the CO2 production as well as the moisture content of the beads as a function of the 

water activity. 
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The graphs for the CO2 production of dehydration and rehydration were nearly congruent. It is 

noticeable that the CO2 production dropped from 0.31 to 0.02 mL∙(g∙h)-1 between aw 0.962 and 

0.871 for dehydration and raised from 0.01 to 0.36 mL∙(g∙h)-1 between aw 0.895 and 0.962 

during rehydration. In this range, a moisture content between 10.8% and 26.9% was determined, 

implying a threshold for the CO2 production and consequently a limitation for the application 

of the beads in the field. The water activity defines the amount of available water in the 

surrounding medium and has a large influence on the growth of living cells. Examinations on 

the growth of yeast, such as S. cerevisiae depending on moisture content or water activity was 

mainly conducted in context of food technology. Exemplary, a study of Termini et al. [191] 

support the findings presented in figure 6.3 as they could not report any growth for the tested 

osmotolerant yeast strains below a water activity of 0.760 at 30 °C, whereas the optimum aw 

for growth was in range of 0.913 to 0.998. 

 

Figure 6.3  CO2 production and moisture content during drying and rehydration of encapsulated S. cerevisiae in 

calcium alginate supplemented with supplemented corn starch. (CO2 production: n=5, moisture 

content: n=10; mean ± sd). 

Activity as well as shelf life highly depends on the water content of the cells [192; 193]. 

Therefore, the processes of drying and especially rehydration and a good moisture retention 

need further investigation to enable an application of the formulation in the field. 

 

An Attract formulation, applicable above ground was developed. The formulation containing 

S. cerevisiae cells, granular corn starch and 0.1 U∙g-1 AG releases a concentration of more than 

0.2 mL∙h-1∙g-1 CO2 at temperatures above 10 °C for a minimum of one week at 25 °C.  

 



Results and discussion 

 

 

Sissy-Christin Lorenz  42 

 

6.1.2 CO2 production of Attract beads with supplemented urea 

Urea is a natural substance that is excreted as a metabolic product through urine and sweat and 

can be decomposed by urease to CO2 and ammonia (NH3). The sensilla of the Haller’s organ 

are reported to respond to elevated levels of these substances [53]. S. cerevisiae can utilize urea 

as sole nitrogen source by degrading it in NH3 and CO2 [124]. Therefore, urea was 

supplemented to the Attract beads containing 0.05 U∙g-1 amyloglucosidase in order to increase 

the CO2 production (figure 6.4). There was a significant influence of the composition of the 

formulation on the CO2 production of moist beads (0 d: F2,12=56.354; p<0.05, 1 d: F2,12=62.514; 

p<0.05, 2 d: F2,12=45.978; p<0.05, 3 d: F2,12=25.097; p<0.05, 4 d: F2,12=23.971; p<0.05). Beads 

containing S. cerevisiae supplemented with starch, amyloglucosidase and additional urea 

attained the highest CO2 release at every timepoint when compared with the other two 

formulations. The production decreased from 0.56 mL∙(g∙h)-1 CO2 for fresh beads to 

0.24 mL∙(g∙h)-1 CO2 after four days of incubation but still with the significant highest release 

rate (p<0.05). The other two formulations did not reach a CO2 production above 

0.22 mL∙(g∙h)-1.  

 

Figure 6.4 CO2 production of moist calcium alginate beads containing S. cerevisiae, corn starch, urea and 0.05 

U∙g-1 amyloglucosidase incubated at 25 °C. Different letters above bars indicate significant 

differences according to one-way ANOVA with Games-Howell post hoc test at p<0.05 (n=5; mean 

± sd). 



Results and discussion 

 

 

Sissy-Christin Lorenz  43 

 

It is noticeable that the beads achieve a significantly higher CO2 production compared to the 

normal Attract beads only by adding urea. A significant increase in CO2 production is also 

apparent in comparison to figure 6.1. The production decreases significantly within one day, 

either because most of the urea has already been degraded or because it diffuses out of the bead. 

Even if the capsules have not been stored in a liquid atmosphere, condensed water in the vessels 

allowed diffusion out of the bead. A strong decrease within 24 h from 0.21 to 0.06 mL∙(g∙h)-1 

CO2 can also be observed for the beads, which exclusively contain S. cerevisiae and urea. In 

order to improve the retention of urea within the capsules, an alternative formulation material 

could be selected for encapsulation. Promising results from the fertilizer industry were achieved 

with starch-based formulations [194; 195]. A coating of the bead aiming at a reduction of pore 

size would additionally be conceivable.  

However, the supplementation of urea as additional nutrient for the encapsulated S. cerevisiae 

attained promising first results in further increasing the CO2 release. An improvement of the 

attraction of I. ricinus due to the released NH3 still needs to be verified. 

 

6.1.3 Activity of beads towards I. ricinus nymphs 

To examine the attractive effect of CO2 produced by encapsulated S. cerevisiae cells, dried 

beads were slowly rehydrated and placed in a Y-Olfactometer. As illustrated in figure 6.5, the 

application of beads as well as free CO2 had a significant effect on the movement of I. ricinus 

nymphs compared to the control side with fresh air (p<0.05). 10 g dried and rehydrated Attract 

beads established an average CO2 concentration of 2240±615 ppm in the experimental setup of 

the Y-olfactometer. 82.6% of the I. ricinus nymphs were attracted and migrated towards the 

test side. To verify the attraction, a positive control with free CO2 was conducted and in this 

case 74% of the nymphs were attracted.  

Due to evolutionary development, ticks are conditioned to react to CO2, because mammals 

release large quantities of CO2 via breath and skin [196; 197]. The tick I. ricinus uses the 

Haller's organ, located at their front pair of legs, to detect CO2 in the surrounding air [198]. 

Literature on the attractive effect of CO2 on ticks is usually based on the application of CO2 

traps, containing dry ice or CO2 gas bottles, that only provide a short-term emission and high 

costs [88-92]. For example, Schulze et al. [93] demonstrated the attracting effect of a CO2 trap 

on Ixodes scapularis in the field. The results presented in figure 6.5 are contrary to a study by 
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van Duijvendijk et al. [95]. In that study, CO2 only evoked a response of the I. ricinus nymphs 

but no active movement, which only observed when combining CO2 and host odor. Regarding 

the experimental setup, a two to 20-fold higher concentration of CO2 was applied in the system, 

that may have had already a repelling effect on the nymphs. CO2 concentrations higher than 

3000 ppm in the experimental setup of this study triggered a significant repelling effect on the 

I. ricinus nymphs (data not shown), supporting this hypothesis. 

Not only the CO2 release but also the high moisture content of rehydrated beads may attract 

ticks. I. ricinus, like other terrestrial arthropods, needs to maintain its water balance in an 

environment with an average relative humidity often below a threshold concentration, situated 

between 86 to 96% RH [199]. Below this concentration, ticks need to maximize active uptake 

of water vapor from the surrounding air [200]. Crooks et al. [201] showed a significant 

attraction along a moisture gradient, when ticks were dehydrated. Since ticks absorb moisture 

from the surrounding air, a preference towards moist objects can be observed and was also 

monitored during experiments conducted with the moist Attract beads. A combination with a 

Kill-component therefore seems beneficial for a control agent. 

 

Figure 6.5  Attraction of I. ricinus nymphs by either 1500 – 2000 ppm CO2 or 10 g dried and rehydrated calcium 

alginate beads containing S. cerevisiae, corn starch and 0.1 U/g amyloglucosidase at ambient 

temperature. Airflow of 47.8 mL∙min-1 with 77-80% relative humidity. The control side contained 

fresh air. Different letters in legend indicate significant differences according to t-test at p<0.05 

(n=30; mean ± sd). 
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Even though, the attraction of I. ricinus towards CO2 is not completely clarified, the attraction 

of nymphs was shown in this experiment. Pursuing literature suggests promising results for the 

attractivity of the bead for luring several other tick species, such as Amblyomma spp. or 

Dermacentor spp., that are mainly attracted when CO2 baits are applied [93; 96]. Attraction 

experiments with individuals of these species as well as I. ricinus adults need to be conducted 

in a following project. The supplementation with other odorous substances attractive for ticks, 

such as ammonium or acetate [196], can further enhance the attractive effect of the formulation. 

Nonetheless, the attraction of I. ricinus nymphs towards free CO2 as well as towards the 

developed Attract formulation under laboratory conditions was successfully demonstrated in 

this work.  
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6.2 Kill 

In a pre-screening, conducted by the University of Hohenheim, five Metarhizium spp. isolates 

were examined on their virulence against I. ricinus nymphs (supplementary material). The three 

most virulent isolates, M. pemphigi X1c, M. brunneum Ca8II and M. brunneum Cb16III were 

screened for their potential to serve as an active Kill-component in a tick control formulation. 

6.2.1 Conidiation of Metarhizium spp. isolates on solid medium  

Fermentation of entomopathogenic fungi on solid media is the conventional way to obtain aerial 

conidia for further application. It is known that most EPF can tolerate a wide range of 

temperatures, whereas optimal conditions for germination, growth and conidiation are specific 

for each isolate [202; 203]. The aim of this experiment was to get insights into the conidiation 

of the three pre-selected Metarhizium spp. isolates on solid medium at different temperatures 

(figure 6.6) and further on to find an isolate with a high conidiation under realistic conditions 

in the field. The isolates were cultivated on a medium adapted from Krell et al. [172] at 15 °C, 

25 °C and 30 °C in the dark for 28 days. 

For all three incubation temperatures, the Metarhizium spp. isolate had a significant effect on 

the aerial conidia production (15 °C: F2,21=155.933; p<0.05, 25 °C: F2,21=87.482; p<0.05, 

30 °C: F2,21=277.231; p<0.05) as well as on the interaction of treatment and time (15 °C: 

F2.433,25.547=23.455; p<0.05, 25 °C: F2.250,23.630=6.564; p<0.05, 30 °C: F2.040,21.425=17.347; 

p<0.05) and the time solely (15 °C: F1.217,25.547=133.757; p<0.05, 25 °C: F1.125,23.630=79.210; 

p<0.05, 30 °C: F1.020,21.425=72.192; p<0.05). 

Regarding conidia production at 15 °C, M. brunneum Cb16III reached the highest aerial conidia 

yield with 3.5∙107 conidia∙cm-2 after 28 days which was significantly higher than for the other 

two Metarhizium spp. isolates (p<0.05). There was no significant difference between 

M. bunneum Ca8II with 0.9∙107 conidia∙cm-2 and M. pemphigi X1c with 0.9∙107 conidia∙cm-2 

(p=0.903), respectively (figure 6.6 A). At 25 °C, conidiation was increased for all isolates when 

compared to 15 °C. In comparison, M. pemphigi X1c showed the significant lowest 

concentration (2.2∙107 conidia∙cm-2) at 25 °C after 28 days (p<0.05). Between the isolates 

M. brunneum Ca8II and Cb16III no significant difference was observed (p=0.802) 

(figure 6.6 B). Regarding incubation at 30 °C, M. brunneum Ca8II showed the significant 

highest conidiation with 4.7∙107 conidia∙cm-2 (p<0.05) after 28 days, while M. pemphigi X1c 

showed the significant lowest concentration with 0.2∙107 conidia∙cm-2 (p<0.05) (figure 6.6 C). 
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Figure 6.6  Conidia concentration during cultivation of three Metarhizium isolates at A: 15 °C, B: 25 °C and C: 

30 °C on solid medium for four weeks. Different letters in the legend indicate significant differences 

according to RM-ANOVA with Games-Howell post hoc test at p<0.05 (n=8; mean ± sd). 

The results clearly demonstrate a significant faster conidiation on the selected medium for the 

M. brunneum isolates compared to M. pemphigi X1c at 25 and 30 °C. The conidiation after 

2 weeks of incubation at 25 °C ( 2.8∙106 - 2.8∙107 conidia∙cm-2) are comparable to results 

obtained by Gao et al. [159] with a concentration between 1.4∙106 to 2.4∙106 conidia∙cm-2 for 

M. anisopliae after two weeks. Since germination as well as conidiation is affected by the 

composition of the medium [159; 204], differences in germination and conidiation are not 

surprising. Regarding the different conidiation within the isolates, further studies of Ouedraogo 

et al. [203] and Nishi et al. [202] assumed a connection between the temperature optimum and 

the phylogenetic position and the regional origin of the tested Metarhizium isolates. This was 

also confirmed by Wang  et al. [205]. Since the fungi tested in this screening were either isolated 

from soil (M. brunneum) or a dead tick (M. pemphigi) in Germany, an adaption to a higher 

temperature as e.g. 30 °C was not to be expected. This finding is in good agreement with a 

study of Davidson et al. [206] reporting only little or no growth at all for Metarhizium isolates 
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incubated at 30 °C and 35 °C. For M. pemphigi, growth was already decelerated at 30 °C in this 

study. Considering average meteorological data from Germany [207], conidiation of the fungi 

in a temperature range between 15 °C and 30 °C is required to be applicable in the field in 

Germany. This was proven for all three isolates, at least under laboratory conditions. 

 

6.2.2 Liquid cultivation of three Metarhizium spp. isolates 

Cultivation at different temperatures 

Entomopathogenic fungi like Metarhizium spp. grow in two different morphologies, namely 

blastospores and mycelium, when cultivated in submerged cultures [156; 157], an established 

way to generate large quantities of fungal biomass. In the development of a pest control product, 

cost-effectiveness is a major factor. Submerged cultivation of EPF allows a simpler scale up 

and thus a reduction of costs, compared to a solid state cultivation process. In order to find a 

suitable candidate for blastospore production, the three isolates were incubated at three different 

temperatures. Figure 6.7 shows a significant influence of the Metarhizium spp. isolate on the 

blastospore production (15 °C F2,18=122.437; p<0.05, 25 °C F2,18=228.792; p<0.05, 30 °C 

F2,18=8.991; p<0.05) as well as the total dry weight (15 °C F2,12=177.262; p<0.05, 25 °C 

F2,12=127.848; p<0.05, 30 °C F2,12=416.054; p<0.05). Furthermore, the combination of isolate 

and time (blastospores: 15 °C F5.032,45.285=19.612; p<0.05, 25 °C F6.227,56.045=16.443; p<0.05, 

30 °C F7,62.997=3.676; p<0.05, dry weight: 15 °C F6.082,36.494=26.717; p<0.05,  25 °C 

F5.475,32.847=7.127; p<0.05, 30°C F3.705,22.229=34.994; p<0.05) as well as the time by itself 

(blastospores: 15 °C F2.516,45.285=132.180; p<0.05, 25 °C F3.114,56.045=92.982; p<0.05, 30 °C 

F3.5,62.997=4.498; p<0.05, dry weight:15 °C F3.041,36.494=296.785; p<0.05, 25 °C 

F2.737,32.847=101.934; p<0.05, 30 °C F1.852,22.229=67.227; p<0.05) had a significant effect here. 

Figure 6.7 illustrates the blastospore concentrations as well as the total dry weight for all three 

Metarhizium spp. isolates during cultivation at 15 °C, 25 °C and 30 °C. The three isolates 

showed significant differences in the blastospore concentration. At 15 °C and 25 °C, 

M. brunneum Cb16III showed the significant lowest blastospore production with. 

4.77∙106 blastospores∙mL-1 compared to the other isolates. Even though M. brunneum Ca8II 

obtained the highest blastospore concentration at this temperature, M. pemphigi showed the 

significant highest total dry weight with 88.34 g∙L-1 after 4 days (p<0.05). All isolates reached 

their individually highest blastospore concentration at 25 °C, but each at different time points.  
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Figure 6.7  Liquid cultivation of three Metarhizium spp. isolates in shaking flasks at 15 °C (A, B), 25 °C (C, D) 

and 30 °C (E, F) for nine days. A, C, E: Blastospores, B, D, F: total dry weight. Different letters in 

the legend indicate significant differences according to RM-ANOVA with Games-Howell post hoc 

test at p<0.05 (blastospores: n=7, dry weight: n=5; mean ± sd). 
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M. brunneum Ca8II presented the significant highest overall concentration of 

2.9∙107 blastospores∙mL-1 at 25 °C when the cultivation was stopped after nine days (p<0.05). 

In comparison, it is noticeable that M. pemphigi X1c had a lower increase in the blastospore 

concentration up to 1.9∙107 blastospores∙mL-1 but on the other hand attained the highest dry 

weight of 86 g∙L-1 within the first three days. Surprisingly, M. brunneum Ca8II only reached 

less than half (34 g∙L-1) in the same time. Unlike on solid medium, M. brunneum Cb16III was 

found to be the least blastospore producing isolate at 25 °C with a maximum of 

6.9∙106 blastospores∙mL-1 and a dry weight of 55 g∙L-1 after three days. Regarding the total dry 

weight of all Metarhizium spp. isolates, it is notable that the dry weight increased within the 

first three days, followed by a measurable decrease to half of its weight. A correlation between 

the blastospore concentration and the total dry weight can be observed, especially when 

considering the curves for M. pemphigi X1c. A reduction of the blastospore concentration led 

simultaneously to a new increase in the dry weight. 

Figure 6.7 E and F show that growth at 30 °C was only measurable for the isolate M. brunneum 

Cb16III. The isolate reached a blastospore concentration of 1.0∙105 blastospores∙mL-1 with a 

maximum total dry weight of 39.14 g∙L-1 after four days, whereas the other two isolates 

generated a total dry weight up to a maximum of 9.3 g∙L-1, significantly lower compared to the 

results obtained at 15 °C and 25 °C. 

In previous studies, the optimal temperature for submerged cultivation of Metarhizium spp. was 

reported in a range between 25 °C and 28 °C [36; 45; 156; 161]. This is consistent with the 

results obtained in this work. Regarding recent studies examining the growth of M. brunneum, 

the results obtained at 25 °C are in good agreement with Krell et al. [172]. In that study, a 

comparable medium was used and blastospore in concentrations up to  

8.0∙106 blastospores∙ml-1 were produced with a M. brunneum isolate at 25 °C after 48 h which 

is in good agreement with 7.4∙106 blastospores∙ml-1 obtained in this study for M. brunneum 

Ca8II.  

Comparing the results within the three isolates, M. brunneum Ca8II led to the highest overall 

blastospore concentrations, whereas M. brunneum Cb16III produced significantly less 

blastospores. It becomes clear that individual needs have to be considered, not only for different 

fungi, but also for different isolates within a certain species regarding culture conditions and 

medium composition.  
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M. pemphigi X1c presented a moderate blastospore concentration for 15 °C and 25 °C but the 

significant highest dry weight compared to the other isolates (p<0.05). The increase of the dry 

weight for all three isolates within the first days can be explained by the biology of the formation 

of blastospores by buddying from hyphae [161]. With an increasing blastospores production, 

mycelium growth seemed to decrease. Such phases of alternating production of mycelium and 

blastospores was already been observed before [162]. As shown by Krell et al. [172], the 

composition of liquid media for EPF cultivation can influence a shift from finely dispersed 

mycelium towards blastospores. Since the proportions of mycelium and blastospores are 

correlating to one another, a higher formation of blastospores and thus a significant increase in 

the blastospore concentration can be achieved by optimization of media composition [36; 157; 

162] and process strategy [208]. Iwanicki et al. [209], for instance, obtained 4.0∙108 and 

5.9∙108 blasospores∙ml-1 within the same time for two isolates of M. anisopliae and M. robertsii, 

respectively with glucose concentrations up to 140 g∙L-1, nearly threefold higher than the 

glucose concentration in the medium used in this study. This indicates that a further raise of the 

glucose concentration may lead to a higher blastospore yield [157; 210]. On the other hand, 

Jackson et al. [211] used a glucose concentration of only 36 g∙L-1 glucose in the medium and 

achieved concentrations up to 1.6∙108 blasospores∙ml-1 for M. anisopliae after four days of 

cultivation, whereby a reduction of the glucose concentration to 8.0 g∙L-1, only 

6.5∙105 blasospores∙ml-1 were recorded. Figure 6.8 illustrates exemplary the remaining glucose 

concentration in the medium measured during the cultivation of M. pemphigi X1c at 25 °C. It 

can be noticed, that a concentration of 23.9 g∙L-1 glucose remained in the medium after a 

cultivation period of nine days, compared to the initial concentration of 50 g∙L-1 glucose in the 

medium. Since the fungi decelerated growth, a limitation in the glucose uptake is assumed, 

potentially caused by the lack of further nutrients or the accumulation of by-products [212]. 

This indicates that solely a further increase in glucose will probably not improve the blastospore 

concentration.  
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Figure 6.8  Comparison of glucose concentration of the medium as well as blastospore concentration during 

submerged cultivation of M. pemphigi X1c at 25 °C (n=5; mean ± sd). 

 

Cultivation at different initial pH values 

Regarding different growth conditions of EPF in submerged cultures, not only temperature but 

also the initial pH value can influence germination, total biomass and production of 

blastospores. As previously reported by Hallsworth et al. [149], EPF show growth at a larger 

pH range, probably due to a higher ability to regulate their cytosolic pH value. Therefore, 

growth at a broad range of pH values indicates a high pH tolerant isolate that can have 

advantages over other microorganisms when applied in the field. Hence, different liquid 

medium pH values were adjusted and their influence on the blastospore concentration as well 

as total dry weight was tested. Figure 6.9 reveals a significant influence of the Metarhizium spp. 

isolate on the blastospore production at different pH values (pH 3 F2,18=77.542; p<0.05, pH 9 

F2,18=166.150; p<0.05) as well as the total dry weight (pH 3 F2,12=53.282; p<0.05, pH 9 

F2,12=49.039; p<0.05). Furthermore, the combination of isolate and time (blastospores: pH 3 

F4.173,37.557=29.841; p<0.05, pH 9 F5.077,45.694=47.562; p<0.05, dry weight: pH 3 

F4.922,29.531=27.726; p<0.05, pH 9 F3.754,22.527=9.374; p<0.05) as well as the time by itself 

(blastospores: pH 3 F2.087,37.557=73.463; p<0.05, pH 9 F2.539,45.694=65.730; p<0.05, dry weight: 

pH 3 F2.461,29.531=93.134; p<0.05, pH 9 F1.877,22.527=60.764; p<0.05) had a significant effect here. 
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Figure 6.9  Blastospore concentration during liquid cultivation of three Metarhizium spp. isolates in shaking 

flasks at 25 °C and different initial media pH value 3 (A, B) and 9 (C, D) for nine days. A, C: 

Blastospores, B, D: total dry weight. Different letters in the legend indicate significant differences 

according to RM-ANOVA with Games-Howell post hoc test at p<0.05 (blastospores: n=7, dry 

weight: n=5; mean ± sd). 

The three Metarhizium spp. isolates show a significant difference in their tolerance against 

different initial pH values, referring to the results illustrated in figure 6.9. Regarding both, total 

dry weight and blastospore concentration, M. pemphigi X1c showed the significant highest 

tolerance in a range of pH 3 to pH 9 (p<0.05). For all pH values (pH 4.5 and pH 7.5 in 

supplementary material) maximum blastospore concentrations between 1.89∙107 to 

2.66∙107 blastospores∙mL-1 and maximum total dry weights between 65.54 g∙L-1 and 93.06 g∙L-

1 were obtained. For both M. brunneum isolates the blastospore production at pH 3 was higher 

than with initial pH 9. Since the EPF all tend to acidify the medium to create favorable 
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conditions for their growth (pH value during cultivation was measured), this result was as 

expected [213].  

Generally, pH values in submerged culitvations of Metarhizium spp. are adjusted near neutral 

[45; 162] or not considered any further. Kleespies et al. [47] determined blastospore 

concentrations for three M. anisopliae isolates with an initial pH value between 4.5 and 8.0 in 

submerged culture for three days. The results of two isolates are in good agreement with the 

blastospore concentrations obtained in this study, even though those concentrations were 

reached in a shorter time. In contrast to this study, Kleespies et al. [47] inoculated with a ten-

fold higher inoculum, leading to higher blastospore concentrations in a shorter time. On the 

other hand, the findings are contrary to those of Ypsilos et al. [161], who reported no growth at 

pH 3 for M. anisopliae. Other literature mainly focused on solid medium and reported growth 

over a wider range of pH (2.9 – 11.1) [149]. Issaly et al. [162] reported a positive effect of a 

pH regulation during cultivation of M. flavoviride due to pellet formation when the pH was not 

regulated. This phenomenon of pellet formation was not found for M. pemphigi X1c but for 

both M. brunneum isolates in this study, especially at pH 9, what may have led to the low 

blastospore concentrations. Further studies, such as Ypsilos et al. [161] found an increase in the 

polyol concentration for pH 5 – 10 within the blastospores. Even though this was not examined 

for the submerged cultures, polyols are described to be helpful for drying survival [150] and a 

high concentration within M. pemphigi X1c can be expected due to its stability at harsh culture 

conditions. Since blastospores are known to be very sensitive to drying processes, this should 

be taken into account for further experiments.  

Even though, promising results for submerged cultivation of all three Metarhizium spp. isolates 

were obtained, M. pemphigi X1c presents the highest potential for further application as a 

biological control agent. The isolate offers not only the opportunity to achieve a shift towards 

a higher blastospore concentration (because of the highest dry weight) but also the chance for 

a higher activity when applied in the field due to its stability at a broad range of pH values. 

Nevertheless, this study exhibits some limitations. To enhance cultivation yields, factors, such 

as carbon/nitrogen ratio, oxygen levels or produced by-products should be considered.  

A scale-up of the submerged cultivation of M. pemphigi X1c under optimal conditions up to a 

bioreactor volume five liters in a batch as well as fed-batch fermentation was checked by a 

project partner in context of the connected joint cooperation research project “BIOZEC”.  
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6.2.3 Conidiation of encapsulated Metarhizium spp. isolates on beads 

Encapsulation in calcium alginate is a well-established method for the protection of fungal 

biomass from environmental factors, such as temperature, extreme pH values or low water 

contents [140; 141] and was demonstrated not to interfere with vegetative growth and 

conidiation of EPF [142]. The incorporation of different additives can result in further 

advantages for the EPF, such as drying stability or improved conidiation [50; 143; 214; 215]. 

Conidiation on moist beads 

High dosages of aerial conidia (1013 – 1014 conidia/ha) are usually required for the control of 

pests in the field [134]. The direct application of non-formulated aerial conidia has several 

disadvantages, such as a lower shelf life, thus more frequent application and consequently 

higher costs. Following a different approach, a suitable formulation in the form of a bead that 

functions as a microfermenter can reduce the required initial biomass because encapsulated 

nutrients lead to a multiplication of a relatively small inoculum [50]. Therefore, blastospores of 

the selected EPF were encapsulated in calcium alginate beads together with different nutrients 

aiming at a multiplication of the biomass. The blastospores are supposed to germinate within 

the bead and in the next step grow out and produce virulent aerial conidia on the bead surface. 

Even though, blastospores are reported to be less resistant to environmental factors than aerial 

conidia [36; 158], they are easier to produce in high quantities and therefore more suitable for 

a large-scale production.  

As illustrated by figure 6.10, there was a significant effect of the encapsulated Metarhizium spp. 

isolate (15 °C F2,27=284.979; p<0.05, 25 °C F2,27=111.423; p<0.05, 30 °C F2,27=146.838; 

p<0.05) and the interaction of isolate and time (15 °C F4.012,54.157=22.343; p<0.05, 25 °C 

F3.744,50.549=10.878; p<0.05, 30 °C F3.650,49.278=13.499; p<0.05) as well as time (15 °C 

F2.006,54.157=84.148; p<0.05, 25 °C F1.872,50.549=94.442; p<0.05, 30 °C F1.825,49.278=29.369; 

p<0.05) on the conidiation on the bead surface.  

In this experiment, native granular corn starch was added to the formulation. Starch is well 

known to maintain the structure of beads [120], to function as drying protectant [119], to bind 

water [189; 216], to serve as a long-lasting nutrient [50] and therefore may enhance aerial 

conidia production on the bead surface [215; 216]. In this study, a more than four hundred-fold 

multiplication of the initial biomass (106 blastospores ∙bead-1) was achieved for all three isolates 

within 28 days at 25 °C, referring to the produced aerial conidia on the bead surface. 
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Figure 6.10  Conidiation of M. pemphigi X1c, M. brunneum Ca8II and Cb16III encapsulated in calcium alginate 

referring to the conidiation on the bead surface at 15 °C (A), 25 °C (B) and 30 °C (C) for four weeks. 

Different letters in the legend indicate significant differences according to RM-ANOVA with 

Games-Howell post hoc test at p<0.05 (n=10; mean ± sd). 

All Metarhizium spp. isolates reached their highest conidiation when incubated at 25 °C 

(figure 6.10) with a concentration of 1.2∙107 conidia∙bead-1 (M. brunneum Ca8II) or even higher 

(M. brunneum Cb16III and M. pemphigi X1c). No significant difference was observed between 

the beads containing M. pemphigi X1c (1.6∙107 conidia∙bead-1) and M. brunneum Cb16III 

(1.9∙107 conidia∙bead-1) blastospores (p=0.111), when comparing the concentrations obtained 

after 28 days, although there was a significant difference between the isolates considering the 

interaction of isolate and time (p<0.05). Even though, M. brunneum Ca8II had a significant 

higher conidia concentration on the bead surface after seven days than M. pemphigi X1c, the 

conidiation decreased, and the isolate attained the significant lowest final conidiation of 

1.2∙107 conidia∙bead-1; p<0.05. 

When the moist beads were incubated at 15 or 30 °C, the conidiation was decreased, compared 

to 25 °C. At 15 °C, beads containing M. brunneum Cb16II blastospores showed the highest 

conidiation with 5.61∙106 conidia∙bead-1 after four weeks. Similar to the conidiation on solid 
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medium (figure 6.1), both other isolates presented significant less conidiation (p<0.05) with 

7.27∙105 (M. pemphigi X1c) and 3.19∙106 conidia∙bead-1 (M. brunneum Cb16III). 

The conidiation for M. pemphigi X1c reached an expectedly low concentration of 

1.72∙104 conidia∙bead-1 when incubated at 30 °C, compared to the results obtained with solid 

cultivation. Also M. brunneum Ca8II only reached a concentration of 2.91∙106 conidia∙bead-1. 

Regarding the decreased growth in submerged cultures at 30 °C, it can be assumed that 

M. brunneum Ca8II aerial conidia are more tolerant to higher temperatures than blastospores, 

leading to a faster germination [217; 218]. 

Figure 6.11 shows all three encapsulated isolates after four weeks of incubation at 25 °C and 

30 °C.  

 

Figure 6.11  Moist beads containing Metarhizium spp. blastospores incubated for four weeks at25 °C (A, B, C) 

and 30 °C (D, E, F). A, D: M. pemphigi X1c, B, E: M. brunneum Ca8II, C, F: M. bruuneum Cb16III.  

While beads incubated at 25 °C predominantly showed conidiation on the bead surface, beads 

incubated at 30 °C resulted in a significant higher radial mycelium growth for all three 

Metarhizium spp. isolates and thus an increased conidiation on the surrounding area around the 

bead. Since only the conidia concentrations on the bead surface were determined, the actual 

concentration of conidia formed at 30 °C was higher, considering the conidia on the 

surrounding area.  

However, the presented results show a significant difference in the production of aerial conidia 

on the bead surface within the three Metarhizium spp. isolates for all temperatures tested. Since 



Results and discussion 

 

 

Sissy-Christin Lorenz  58 

 

M. brunneum isolates are reported to be able to assimilate corn starch [219], it is not surprising 

that M. brunneum Ca8II and M. brunneum Cb16III showed a significant higher conidiation 

within the first seven days of incubation, whereas M. pemphigi X1c needed further 14 days to 

attain equivalent conidiation at 25 °C. M. pemphigi X1c was isolated from a dead ticks’ body, 

hence a fewer adaption to the utilization of corn starch as nutrient is conceivable. Qualitative 

enzyme activity assays support this presumption of less metabolization by M. pemphigi 

(figure 6.11). Notwithstanding, the presented data on conidiation at 25 °C are in good 

agreement with the concentrations of newly formed M. brunneum conidia as reported in a 

previous study by Przyklenk et al. [50]. In contrast to this screening, Przyklenk et al. [50] 

applied dried beads containing aerial conidia instead of blastospores. Concerning germination 

within the bead and the conidiation on the bead surface, no significant difference between 

encapsulated aerial conidia and blastospores was observed (see also chapter 6.3.2). A further 

increase of the inoculum did not result in a higher growth rates or a higher conidiation (data not 

shown) as already shown for M. brunneum by Przyklenk et al. [50].  

 

Figure 6.12  Microscopic image of newly formed Metarhizium spp. conidia on moist calcium alginate beads, 

incubated for three weeks at 25 °C. A: M. pemphigi X1c, B: M. brunneum Ca8II, C: M. brunneum 

Cb16III.  

The findings illustrate an appropriate conidiation of more than 1.25∙104 conidia∙bead-1 

(figure 6.12; equivalent to 105 conidia∙cm-2 in the virulence pre-screening (supplementary 

material)) on the bead surface for all three isolates at 25 °C when granular corn starch was 

supplemented as nutrient. Conidiation at lower temperatures need to be improved to be 

applicable in the field, since the temperature in Germany in spring is to be expected between 

10 °C and 28 °C [207].   

Aiming at a further increase in conidiation, a quantitative test on petri dishes with agar 

containing different nutrients was conducted for the three Metarhizium spp. isolates (figure 

6.13). 
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Figure 6.13  Metarhizium spp. isolates incubated on different media at 25 °C for 2 weeks, dyed with Lugol's 

iodine. 
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All petri dishes were incubated under the same conditions. As expected, the qualitative test 

showed only a low consumption of corn starch, whereas the three Metarhizium spp. isolates 

showed a utilization of supplemented chitin or chitosan. Microcrystalline cellulose (CMC) as 

well as Xylan showed no obvious difference to the control without any supplements.  

To enhance conidiation on the bead surface, chitin as an industrial by-product was chosen as an 

alternative nutrient for encapsulation. 

Conidiation on dried and rehydrated beads 

Blastospores were encapsulated in calcium alginate beads together with either starch or chitin 

and dried gently in a laminar air flow. The conidiation on both, moist as well as dried and 

rehydrated beads was determined every week for 28 days. As illustrated by figure 6.14, there 

was a significant effect of the formulation (M. pemphigi X1c F3,36=479.676; p<0.05, 

M. brunneum Ca8II F3,36=140.596; p<0.05, M. brunneum Cb16III F3,36=241.260; p<0.05) and 

the interaction of formulation and time (M. pemphigi X1c F8.616,103.392=17.456; p<0.05, 

M. brunneum Ca8II F5.251,63.008=11.035; p<0.05, M. brunneum Cb16III F7.323,87.874=46.409; 

p<0.05) as well as time (M. pemphigi X1c F2.872,103.392=240.695; p<0.05, M. brunneum Ca8II 

F1.750,63.008=73.675; p<0.05, M. brunneum Cb16III F2.441,87.874=169.583; p<0.05) on the 

conidiation on the bead surface. 

Both, moist and dried and rehydrated beads containing chitin showed a significant higher 

conidiation compared to beads containing starch for all three isolates (p<0.05). Moist beads 

containing chitin and M. pemphigi X1c blastospores reached the highest overall conidiation 

with 4.68∙107 conidia∙bead-1 after 28 days of incubation, followed by beads with chitin and 

M. brunneum Cb16III blastospores (3.93∙107 conidia∙bead-1) For M. brunneum Ca8II 

containing beads, 2.60∙107 conidia∙bead-1 were determined. In comparison to moist beads 

containing starch, the conidiation could be increased at least by more than two-fold for all 

isolates, when chitin was supplemented instead. 

Moreover, also dried and rehydrated beads containing chitin and M. pemphigi X1c revealed a 

higher conidiation of 3.03∙107 conidia∙bead-1 compared to both, moist and dried and rehydrated 

formulations containing starch (p<0.05). For beads containing the isolates M. pemphigi X1c 

and M. brunneum Ca8II, the process of drying and rehydration led to a significant reduction of 

the conidiation for both formulations (p<0.05), whereas it had no significant effect on the 

conidiation for beads containing M. brunneum Ca8II blastospores (starch p=0.20, chitin 

p=0.10). 



Results and discussion 

 

 

Sissy-Christin Lorenz  61 

 

A control bead consisting of alginate and blastospores without any further additive showed no 

conidiation for the dried and rehydrated beads and only 2.30∙105 conidia∙bead-1 for the moist 

formulation (data not shown). 

 

 

Figure 6.14  Conidiation of M. pemphigi X1c (A). M. brunneum Ca8II (B) and M. brunneum Cb16III (C) 

encapsulated in calcium alginate supplemented with corn starch or chitin on the bead surface at 25°C 

for four weeks. Different letters in the legend indicate significant differences according to RM-

ANOVA with Games-Howell post hoc test at p<0.05 (n=10; mean ± sd). 

For the determination of drying survival, moist as well as dried and rehydrated beads were 

dissolved, CFU determined and the drying survival calculated for all formulations. Considering 

the survival of Metarhizium spp. blastospores in all formulations containing nutrients, a 

significant higher drying survival was obtained compared to a control bead without additives 

(p<0.05). For the control containing M. pemphigi X1c blastospores, only 0.14% of the 

encapsulated biomass survived the process of drying and rehydration. The addition of starch to 

the bead led to a survival of 2.67% for M. pemphigi X1c, with no significant difference to 

M. brunneum Ca8II (5.18%, p=0.057) and Cb16III (5.02%, p=0.086). Beads containing chitin 

and M. pemphigi X1c reached the highest overall survival with 14.7% which was more than 
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ten-fold higher when compared to the control. Formulations with chitin and M. brunneum Ca8II 

attained 10.4% and M. brunneum Cb16III 12.3%, respectively. For all isolates, the 

supplementation of chitin led to a significant higher drying survival, compared to beads with 

granular corn starch (p<0.05). 

 

Figure 6.15  Drying survival of M. pemphigi X1c, M. brunneum Ca8II and M. brunneum Cb16III encapsulated 

in calcium alginate together with starch or chitin. Different letters above bars indicate significant 

differences according to RM-ANOVA with Games-Howell post hoc test at p<0.05 (n=10; mean ± 

sd). 

The advantages of granular corn starch were already mentioned above. Chitin in comparison is 

known to be one of the most widely occurring polysaccharides, as it serves for structure 

formation of the cuticle not only in the majority of insects [220] but also in hard bodied ticks 

[55]. Most EPF are known to provide chitinase activity [221-223]. Therefore, chitin can likely 

serve as nutrient [224; 225] and enhance conidiation on beads [226]. Only marginal sorption 

properties for chitin are reported, compared to starch under optimal conditions [227; 228]. 

The presented results show a significant difference in the production of aerial conidia on the 

bead surface when comparing starch and chitin as nutrient. For both additives, assimilation by 

Metarhizium spp. was already reported [219; 222; 229]: Therefore, a high conidiation is not 

surprising. Nevertheless, a significant difference was revealed. Other than the M. brunneum 

isolates, M. pemphigi X1c was originally isolated from a dead tick body, so that a fewer 

adaption to the utilization of corn starch as nutrient compared to chitin as part of the tick cuticle 
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is conceivable. Fernandes et al. [81] showed relatively low amylase secretion for M. anisopliae 

compared to other EPF such as Beauveria bassiana, also supported by the qualitative enzyme 

assay in figure 6.13. Chitinase however, is part of the enzymatic equipment of EPF since it is 

needed for growth regulation [230], as their cell wall consists partly of chitin. A further benefit 

of a high chitinase secretion by EPF is to facilitate the infection of a potential host. The cuticle, 

consisting of chitin and other structure-giving substances [55] forms not only the primary 

surface for contact with conidia but also the main barrier for infection [222]. Therefore, 

extracellular chitinases with high activity are necessary for an efficient infection of the host by 

softening its cuticle due to assimilation of the incorporated chitin [231]. Conidiation on calcium 

alginate beads containing chitin was already shown for EPF such as B. bassiana [226] and 

Erynia neoaphidis [216]. For Metarhizium spp., only growth on solid medium containing chitin 

was demonstrated so far  with the highest colony growth compared to other nutrients [224]. To 

the authors’ best knowledge, this is the first report on conidiation of Metarhizium spp. 

blastospores encapsulated in calcium alginate beads supplemented with chitin as main nutrient. 

Comparing the results, formulations containing chitin present a significant higher conidiation 

on the surface compared to beads supplemented with starch. Moreover. this formulation 

demonstrated a higher drying survival compared to the beads containing granular corn starch, 

probably due to size and stability of the encapsulated chitin flakes (<300 µm, sieved) that are 

known to be bigger than the starch granules (10-20 µm) [214]. This might prevent a 

compression during drying and therefore lead to reduced physical stress on the blastospores 

[50; 184]. Furthermore, a slightly slower drying based on the measured water activity was 

observed for beads containing chitin (data not shown). A slow drying reduces the drying stress 

as presented by [232; 233]. Dried beads containing chitin showed significant higher conidiation 

compared to moist beads containing starch. Even though, the initial biomass within the bead 

was significantly reduced during drying, supplemented nutrients can lead to higher conidiation 

due to the “microfermenter effect” of the beads: A fast consumption of nutrients results in a 

faster germination of the blastospores. It cannot be entirely excluded, that the EPF blastospores 

started germination directly after encapsulation what may lead to a higher vigor of the biomass 

prior to the drying process. Also, the harvesting time-point of the blastospores may have played 

a role. [148] showed a decrease in germination of aerial conidia with an increase of the 

incubation time. Even though, submerged cultures for encapsulation were only cultivated for 

five days, an effect of the cultivation time on the vigor of the biomass cannot be excluded. Not 

only leads a higher biomass concentration within the shake flasks to a reduced oxygen level in 
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the medium, but also a connection between the polyol content inside EPF and the cultivation 

time was demonstrated [149; 150]. A significant reduction of polyols within the blastospores 

after a cultivation time of 96 h can be hypothesized, based on results by [165]. Because a 

connection between the polyol-content within EPF biomass and the drying survival is reported 

[234; 235], this might also influence the results on drying survival of encapsulated 

Metarhizium spp. blastospores illustrated in figure 6.15.  

The higher aerial conidia concentration after two weeks of incubation, however, suggests a 

faster assimilation of the chitin, compared to starch, because a fast secretion of extracellular 

chitinase by the EPF and consequently a fast germination leads to higher conidiation on the 

bead surface in a shorter time. It should also be noted that the real survival rates are probably 

higher since the conditions of capsule dissolution in this study are very harsh. A study of Faria 

et al. [233] demonstrated that a slow rehydration of dried EPF biomass, such as on water agar 

or in humid atmosphere, can prevent the imbibitional damage of water inflow during fast 

rehydration. This is the case when dried beads are directly dissolved without prior slow 

rehydration. An application on moist soil lead to a slow sorption of the beads and thus to a 

gentle rehydration. 

Another known advantage of chitin compared to starch is the probability of fewer 

contaminations, as it cannot be used as carbon source by saprophytic organisms like 

Penicillium spp. [236] 

The Kill formulation was successfully dried with a drying survival over 10% and not only 

maintaining the conidiation but also increasing it for all three Metarhizium spp. isolates, when 

chitin was supplemented as sole nutrient source.  

 

Further screening experiments for the encapsulation of complex nutrients, like industrial waste-

products such as grounded Sitotroga carcasses, resulted in promising conidiation on the bead 

surface. Another experiment was conducted with calcium gluconate instead of calcium chloride 

as crosslinker and led to a marginal increase of the conidiation, what is in line with results of 

Humbert et al. [214]. 

Moreover, the scale-up of the encapsulation process was already tested. A suitable method is 

jet-cutting which enables a large-scale production. Storage stability for beads containing 

M. pemphigi X1c blastospores was qualitatively examined for a period of six months. All beads 

showed conidiation on the surface after rehydration and incubation on water agar at 25 °C. 
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Influence of a hematin coating on Kill beads  

Aggregating pheromones, such as hematin, are well known semiochemicals [55]. The coating 

of beads with these tick aggregating substances may lead to an enhanced infection of the ticks 

due to an increased contact time with the control agent. Previous studies related to this work 

showed a significant aggregating effect of 1 – 100 µg∙cm-2 hematin for I. ricinus nymphs 

(personal communication, Dr. Hans Dautel, IS Insect Services GmbH, Berlin, Germany). To 

ensure a consistent germination, dried Kill beads exemplary containing M. pemphigi X1c 

blastospores, supplemented with starch as nutrient were soaked and coated with hematin for 

different periods (figure 6.16). There was no significant effect of the soaking (F3,36=02.302; 

p=0.094) and interaction of soaking and time (F3.477,41.724=1.606; p=0.197) but of the time solely 

(F1.159,41.724=367.250; p<0.05) on the conidiation on the bead surface.   

 

Figure 6.16 Conidiation of M. pemphigi X1c encapsulated in calcium alginate with starch at 25 °C for four 

weeks, coated with hematin for different soaking times. Different letters in the legend indicate 

significant differences according to RM-ANOVA with Games-Howell post hoc test at p<0.05 (n=10; 

mean ± sd). 

All formulations revealed a conidiation between 7.72∙106 and 1.03∙107 conidia∙bead-1 after 

incubation for four weeks at 25 °C. Since no significant differences between the conidiation on 

the control and the hematin-coated beads were determined, a coating with hematin does not 

seem to affect the encapsulated blastospores regarding the final conidia concentration on the 

bead surface.  
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Figure 6.17 Calcium alginate beads containing starch, coated with hematin. 

In a subsequent virulence test a prolonged contact time of I. ricinus nymphs with the coated 

beads compared to the uncoated control beads could be observed. This aggregating effect of 

hematin is consistent with results of two studies that reported an aggregation of I. scapularis 

nymphs and adults [54; 139]. An influence of the green color on the bead surface due to the 

hematin on the behavior of I. ricinus nymphs was excluded. A higher average of dead I. ricinus 

nymphs due to a prolonged contact time with the beads was not determined. 

 

6.2.4 Virulence of aerial conidia formed by encapsulated Metarhizium spp.  

Virulence against nymphs 

In order to examine the virulence of the encapsulated Metarhizium spp. isolates against 

I. ricinus nymphs, beads supplemented with granular corn starch were pre-incubated for 

28 days and monitored for the effect of the newly formed aerial conidia against I. ricinus 

nymphs. Figure 6.18 illustrates that the treatment (=fungal isolate) (F4,20=100.006; p<0.05) and 

the interaction of treatment and time (F8.264,41.319=1937.750; p<0.05) as well as the time 

(F2.066,41.319=7942.463; p<0.05) had a significant impact on the virulence of the beads. 

For the experiment, two controls were used: a negative control without beads (control) and a 

second control, containing beads without EPF biomass (control bead). No significant difference 

was determined between the two control groups (p=1.000). Consequently, there was no effect 

of the formulation material on the average number of dead nymphs. Both groups showed an 

average number of 3.3% dead nymphs at the end of the experiment. All beads with EPF as 

active ingredient had a significant higher virulence compared to both control groups (p<0.05) 
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as demonstrated in figure 6.18. Beads containing M. brunneum Ca8II led to the lowest average 

number of 80% dead nymphs within the isolates. There was no significant difference between 

the beads containing M. brunneum Ca8II and M. brunneum Cb16III with 83% after 97 days of 

incubation (p=0.609). By contrast, the beads containing M. pemphigi X1c blastospores reached 

a significantly higher average number of 100% dead nymphs compared to both M. brunneum 

isolates (p<0.05). The virulent effect was already evident after ten days of incubation. 

 

Figure 6.18  Examination of three Metarhizium spp. isolates encapsulated in calcium alginate with supplemented 

corn starch for virulence of their newly formed aerial conidia on the bead surface against I. ricinus 

nymphs for 97 days. Different letters behind bars indicate significant differences according to RM-

ANOVA with Games-Howell post hoc test at p<0.05 (n=5; mean ± se). 

The encapsulation of EPF in calcium alginate beads with integrated nutrients can have several 

advantages for a biological control agent, as mentioned above. Since the formulation material 

is in direct contact with the biomass, it has an immediate influence on the germination and 

growth and may influence the virulence of newly formed aerial conidia on the bead surface 

[133].  

When comparing the virulence of aerial conidia from the different Metarhizium spp. isolates 

produced on the bead surface, it became apparent that M. pemphigi X1c showed a faster mode 

of action than the M. brunneum isolates (figure 6.18). Especially compared to the pre-screening 

(supplementary material), a significant increase of the virulent effect of M. pemphigi X1c was 

monitored. Since M. pemphigi X1c did not present a higher conidiation on the bead surface 
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compared to the other isolates (figure 6.10), the vigor of the encapsulated blastospores or the 

influence of the surrounding nutrients and biopolymer matrix had an influence on the different 

average numbers of dead nymphs. For both M. brunneum isolates, a lower virulence was 

determined for the formulation than in the pre-screening with non-formulated conidia. Even 

though blastospores for all three isolates were produced under the same conditions, the vigor 

of newly formed aerial conidia can vary due to the ability of the isolates to decompose 

encapsulated nutrients. As already reported by Faria et al. [237], aerial conidia in good 

condition with a fast germination are more virulent than debilitated aerial conidia. The 

germination of the encapsulated blastospores has a direct impact on the conidiation on the bead 

surface. Debilitated blastospores may have led to newly formed aerial conidia with a low vigor, 

resulting in a lower virulence of M. brunneum. In addition, it should be noted that the nymphs 

were able to avoid direct contact with the bead in this experiment as opposed to the virulence 

pre-screening trial. A physical contact with a sufficient number of conidia is mandatory to get 

infected, as reported by Jaronski [238]. The setup of the pre-screening provided a consistent 

dispersion of aerial conidia on the bottom plate and therefore a higher probability of permanent 

contact to the nymphs, whereas the beads provide high conidiation on a limited area 

(figure 6.19). 

 

Figure 6.19  Microscopic image of infected I. ricinus nymphs with M. pemphigi X1c (A), M. brunneum Ca8II 

(B) or M. brunneum Cb16III (C).  

A virulent effect of the newly formed conidia on the bead surface of all three encapsulated 

Metarhizium spp. isolates against I. ricinus nymphs could be demonstrated. Since 

M. pemphigi X1c turned out to be the most virulent isolate when formulated in calcium alginate, 

it was chosen for further experiments. 

The virulence of the newly formed conidia on the moist beads containing M. pemphigi X1c 

blastospores supplemented with granular corn starch was also qualitatively proven for nymphs 
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of the species Dermacentor reticulatus and Rhipicephalus sanguineus (figure 6.20). To the 

author’s best knowledge, there is no virulent effect of Metarhizium spp. on D. reticulatus 

published so far. A mortality of the related species D. variabilis of less than 20% was attained 

with M. anisopliae conidia in a study of Kirkland et al. [239]. The virulent effect of 

Metarhizium spp. isolates on R. sanguineus supports the results published in previous studies 

[32; 240-243]. A virulent effect of Metarhizium spp. conidia against R. sanguineus larvae was 

already demonstrated by Bernardo et al. [35]. The experiment showed 100% dead ticks after an 

incubation time of 14 days (n=50). 

 

Figure 6.20  Microscopic image of infected R. sanguineus nymphs with M. pemphigi X1c from moist beads after 

incubation at 23 °C for 14 days.  

Because blastospores are sensitive for drying, a consistent virulence of newly formed conidia 

even on dried and rehydrated beads needed to be ensured. Furthermore, the tick cuticle is mainly 

composed of proteins, chitin and several lipids [244]. A supplementation of these components 

in a bead formulation can result in a higher virulence of newly formed conidia due to a pre-

conditioning of the fungus. A higher drying survival for blastospores encapsulated with chitin 

was already demonstrated in chapter 6.2.3. As demonstrated in figure 6.21, there was a 

significant effect of the treatment (=formulation) (F5,24=672.800; p<0.05) and the interaction of 

treatment and time (F6.535, 31.368=10.207; p<0.05) as well as time (F1.307,31.368=45.407; p<0.05) 

on the average number of dead nymphs. 

Figure 6.21 illustrates a significant lower average number of dead nymphs for the control 

without beads, compared to the groups treated with incubated beads containing EPF 

blastospores (p<0.05). As already shown in figure 6.18, the formulation without active 

ingredient had no effect on the nymphs compared to nymphs without any contact to beads. All 

treatments attained an average number of 100% dead I. ricinus nymphs within 97 days, whereas 

an average number of 90% was already reached after 10 days. Within the formulations, a 
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difference between moist and dried and rehydrated beads appeared but with no significant 

difference (starch: p=0.897, chitin: p=1.000). Furthermore, beads containing chitin as nutrient 

source did not show a higher average number of dead nymphs compared to the beads containing 

starch (moist: p=0.897, dried and rehydrated: p=1.000). 

 

Figure 6.21  Virulence of newly formed aerial conidia on the bead surface of M. pemphigi X1c encapsulated in 

calcium alginate supplemented with corn starch or chitin against I. ricinus nymphs during incubation 

for 97 days at 23 °C. Different letters behind bars indicate significant differences according to RM-

ANOVA with Games-Howell post hoc test at p<0.05 (n=5; mean ± se). 

For infection, physical contact of the tick with a sufficient number of conidia is needed [238]. 

A concentration of aerial conidia on the bead surface sufficient for infection was given for all 

formulations, compared to the concentration of non-formulated conidia used in the pre-

screening (supplementary material). A study of De Moraes et al. [245] demonstrated a higher 

proteolytic but not chitinolytic activity for M. anisopliae, when the EPF was cultivated in liquid 

cultures supplemented with 0.8% chitin. This is in line with results obtained by Beys da Silva 

et al. [244], who also reported a rise in lipase and protease concentrations for M. anisopliae in 

cultures containing chitin. Barreto et al. [246] showed an increase of intracellular chitinases 
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when chitin was added, whereas additional glucose or N-acetylglucosamine induced the 

secretion of extracellular chitinases.  

A higher virulence for formulations containing chitin was expected but could not be shown in 

this experiment. Concerning former studies, a combination of chitin with other nutrients, such 

as N-acetylglucosamine or starch (as described in chapter 6.1) may enhance the virulent effect 

of newly formed conidia. In addition, the conidial concentrations were already high enough for 

an infection of I. ricinus nymphs. 

Virulence against adults 

Even though, nymphs and larvae are more common in the field than adults, a high effectiveness 

of the Kill formulation against all stages is desired. Figure 6.22 illustrates the average 

percentages of dead adults of the species I. ricinus, D. reticulatus and R. sanguineus. The beads 

containing M. pemphigi X1c blastospores, supplemented with granular corn starch, were pre-

incubated for two weeks. The newly formed conidia on the bead surface resulted in 100% dead 

nymphs for both, I. ricinus after 38 days and R. sanguineus already after ten days, respectively. 

In comparison, 88% of the D. reticulatus adults were infected and killed.  

 

Figure 6.22  Virulence of newly formed aerial conidia on the bead surface of encapsulated M. pemphigi X1c 

against I. ricinus, D. reticulatus and R. sanguineus adults for 38 days (n=1). 
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Figure 6.23  Microscopic image of infected R. sanguineus adult with M. pemphigi X1c. 

R. sanguineus and D. reticulatus are not as common as I. ricinus in Germany, but have a 

worldwide distribution [247]. The two species are known to carry Erhlichia, Francisella and 

Rickettsia, as well as other bacterial parasites [248; 249], causing several diseases also in 

humans. Regarding the process of infection, tick larvae have fewer natural openings than adults 

[250], so that an infection could be complicated. Nevertheless, larva and nymphs appear to be 

more susceptible to conidia of entomopathogenic fungi than adults [28; 251]. Even though, the 

infection of adults with EPF is generally less efficient than for nymphs, it significantly reduces 

the fitness of all stages as well as egg oviposition [24; 26; 32; 252]. 

The Kill formulation enables the application of a relatively low amount of biomass that 

reproduces itself by means of a suitable formulation. It was demonstrated to have a virulent 

effect on both I. ricinus nymphs and adults under laboratory conditions and a further promising 

virulent effect against the ticks D. reticulatus and R. sanguineus. This formulation still shows 

some limitations, such as the missing quantitative examination for storability and field trials, 

but still provides a high potential for application in the field after some further development.  
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6.3 Attract-and-Kill 

The most desirable formulation is a combination of both Attract- and Kill formulation to 

combine all advantages of the separate beads (chapter 6.1 and 6.2) to reduce efforts associated 

with a co-application. Therefore, different experiments were conducted to analyze the 

suitability of a co-encapsulation of M. pemphigi X1c and S. cerevisiae in calcium alginate. 

6.3.1 CO2 Production of S. cerevisiae co-encapsulated with M. pemphigi X1c 

It is important to ensure a consistent attractive effect of the Attract-and-Kill formulation for 

ticks above ground. Since S. cerevisiae does not bring the enzymatic equipment to use starch 

as nutrient, the co-encapsulation EPF may solve this problem as previously reported for 

wireworms below ground [50-52]. Following the idea of a CO2 production, depending on the 

EPF growth, ticks only get attracted, when the EPF starts growing, increasing the chance of a 

conidiation on the bead surface and thus infection. Because of the low AG secretion by 

M. pemphigi X1c as illustrated in figure 6.13, a co-encapsulation with AG was tested as well. 

As illustrated in figure 6.24, there was a significant influence of the formulation on the CO2 

production at every time point during incubation of beads for 14 days. The highest CO2 

production was attained by the formulation containing 0.1 U∙g-1 AG with 0.4 mL∙(g∙h)-1 for 

freshly prepared beads, 0.32 mL∙(g∙h)-1 after seven days incubation at 25 °C and  

0.09 mL∙(g∙h)-1 after 14 days. Except for the last measuring point, the CO2 production was 

significantly higher compared to the other two formulations (0 and 7 days p<0.05, 14 days 

p=0.051). The beads containing S. cerevisiae cells and M. pemphigi X1c blastospores reached 

a nearly consistent CO2 production between 0.06 and 0.12 mL∙(g∙h)-1. The control bead, 

containing S. cerevisiae cells only, produced significant less CO2 compared to the formulation 

with EPF at every timepoint (p<0.05) 

The results support the findings of chapter 6.2, indicating a very low extracellular AG activity 

of M. pemphigi X1c. To exclude an influence of different biomasses in combination with AG, 

the CO2 production for both, blastospores or aerial conidia as well as mycelium was measured. 

Figure 6.25 demonstrates, that beads with blastospores or aerial conidia led to a CO2 production 

without significant difference) at all time points (0 days p=0.059, 7 days p=0.960, 14 days 

p=0.129, 21 days p=0.314. Beads with mycelium produced significant less CO2 when freshly 

prepared but aligned the other treatments then within the first seven days (p=0.05).  
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Figure 6.24  CO2 production of S. cerevisiae encapsulated in calcium alginate supplemented with corn starch and 

co-encapsulated with either M. pemphigi X1c blastospores or blastospores and 0.1 U∙g-1 

amyloglucosidase for 14 days. Different letters in legend indicate significant differences according 

to one-way ANOVA with Games-Howell post hoc test at p<0.05 (n=5; mean ± sd). 

 

Figure 6.25  CO2 production of S. cerevisiae encapsulated in calcium alginate supplemented with corn starch and 

co-encapsulated with M. pemphigi X1c and 0.1 U∙g-1 amyloglucosidase for 21 days. Different letters 

in legend indicate significant differences according to one-way ANOVA with Games-Howell post 

hoc test at p<0.05 (n=6; mean ± sd). 
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The biomass form did not seem to have an additional positive effect on the CO2 production of 

the formulation compared to formulations containing only AG illustrated in chapter 6.1. To 

attract ticks above ground under influence of environmental factors, a sufficient CO2 production 

is inevitable. The results in chapter 6.1 as well as in figure 6.24 demonstrate that an Attract 

formulation without supplemented AG may attract ticks under defined laboratory conditions 

but will probably not produce enough CO2 to attract nymphs in the field. Environmental factors 

like wind, as well as the natural diffusion of CO2 will result in a dilution of the released CO2 

and thus in a reduction of attractivity. Therefore, only a formulation containing AG seems to be 

suitable for an above ground application regarding the CO2 production, regardless of the 

supplemented Metarhizium pemphigi X1c biomass. 

 

6.3.2 Conidiation of co-encapsulated M. pemphigi X1c 

Not only the CO2 production, but also the conidiation of M. pemphigi X1c on the bead surface 

is of great importance for the effectiveness of the formulation, as stated in chapter 6.2. 

Therefore, the different M. pemphigi X1c biomasses were examined for their conidiation on 

moist beads, when encapsulated with S. cerevisiae and 0.1 U∙g-1 AG. The treatment (= 

encapsulated biomass) (F2,27=9.278; p<0.05) and the interaction of treatment and time 

(F3.776,50.838=5.351; p<0.05) as well as the time (F1.883,50.838=137.673; p<0.05) had a significant 

impact on the conidiation on the beads. 

Comparing the conidiation of beads containing different biomasses, it is conspicuous that 

blastospores led to the significant lowest amount of aerial conidia on the bead surface with an 

average number of 1.16∙106 conidia∙bead-1 after 28 days of incubation at 25 °C (p<0.05), as 

illustrated in figure 6.26. Between beads containing mycelium (1.91∙106 conidia∙bead-1) and 

aerial conidia (2.39∙106 conidia∙bead-1), no significant difference in conidiation was measured 

(p=0.526).  
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Figure 6.26  Conidiation of M. pemphigi X1c encapsulated in calcium alginate together with S. cerevisiae, 

supplemented with corn starch and 0.1 U g-1 amyloglucosidase referring to the conidiation on the 

bead surface at 25 °C for four weeks. Different letters in legend indicate significant differences 

according to one-way ANOVA with Games-Howell post hoc test at p<0.05 (n=10; mean ± sd). 

Results presented in figure 6.10 demonstrate a more than ten-fold higher conidiation for a 

similar formulation containing blastospores but no AG. Despite the total amount of aerial 

conidia on the bead surface, the conidiation itself was delayed for several days, compared to 

the results presented in figure 6.10. Since the supplemented AG is the only difference within 

the formulation, different concentrations were examined on their influence on the conidiation 

on the bead surface. Figure 6.27 illustrates that the AG concentration (F3,36=1004.076; p<0.05) 

and the interaction of concentration and time (F6.257,75.080=33.689; p<0.05) as well as the time 

(F2.086,75.080=55.140; p<0.05) had a significant impact on the conidiation on the beads. A ten-

fold increase of the AG concentration up to 1 U∙g-1 led to a significant reduction of the 

conidiation after 28 days of incubation (0.69∙106 conidia∙bead-1) compared to beads 

supplemented with 0.1 U∙g-1 (1.16∙106 conidia∙bead-1) and 0.05 U∙g-1 (1.38∙106 conidia∙bead-1) 

AG (p<0.05). Between 0.05 and 0.1 U∙g-1 AG, no significant difference was measured 

(p=0.095) even though the average conidiation was marginally higher for the lower 

concentration of AG. In comparison, the control without supplemented AG reached a 

concentration of 1.71∙107 conidia∙bead-1, analogous to the results attained in figure 6.10.  
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Figure 6.27  Conidiation of M. pemphigi X1c encapsulated in calcium alginate together with S. cerevisiae, 

supplemented with corn starch and different concentrations of amyloglucosidase referring to the 

conidiation on the bead surface at 25 °C for four weeks. Different letters in legend indicate 

significant differences according to one-way ANOVA with Games-Howell post hoc test at p<0.05 

(n=10; mean ± sd). 

The supplementation of AG at any concentration tested had a negative effect on the conidiation 

of the encapsulated fungus, regardless of the biomass form encapsulated. Even a relatively 

small concentration of AG led to a significant reduction in conidiation. Since, S. cerevisiae is 

well known and used to produce ethanol under different conditions [253; 254], an influence of 

this by-product was evident. For a better understanding of the procedures occurring inside the 

beads, a closer look at the ethanol production seemed to be a promising approach. 

 

6.3.3 Ethanol production of S. cerevisiae in calcium alginate beads 

S. cerevisiae is an ethanol producing microorganism. The intensity of the ethanol production 

depends mainly on the glucose concentration in the surrounding medium and the oxygen 

availability [102-104]. The AG concentration (F2,12=604.018; p<0.05) and the interaction of 

treatment and time (F5.167,31.001=24.948; p<0.05) as well as the time solely (F2.583,31.001=247.978; 

p<0.05) had a significant impact on the ethanol concentration within the beads.  
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From figure 6.28 it can be seen that the control bead without supplemented AG showed no 

measurable ethanol at any time point whereas the ethanol concentration raised significantly 

with the increase of the AG concentration (p<0.05). Beads containing 0.05 U∙g-1 reached an 

ethanol concentration of 0.15 g∙bead-1, beads with 1 U∙g-1 AG attained 0.40 g∙bead-1 ethanol 

already after 14 days of incubation at 25 °C.  

 

Figure 6.28  Ethanol concentration of encapsulated S. cerevisiae in calcium alginate supplemented with starch 

and different concentrations of amyloglucosidase for two weeks. Different letters in legend indicate 

significant differences according to one-way ANOVA with Games-Howell post hoc test at p<0.05 

(n=5; mean ± sd). 

High glucose concentrations lead not only to a higher CO2 production but also to an additional 

production of ethanol, regardless of aerobic or anaerobic conditions, when a specific glucose 

concentration in the surrounding area is exceeded [105]. De Deken [106] demonstrated that 

already a concentration higher than 0.1 mg∙mL-1 induces the so-called ‘Crabtree effect’. In this 

experiment, one bead was dissolved in 1 mL buffer to determine the ethanol concentration 

inside the bead. A critical concentration was already exceeded a few minutes after preparation 

of the beads with 0.09 mg∙bead-1 glucose as demonstrated in figure 6.29. During incubation at 

25 °C, the concentration raises up to 0.87 mg∙bead-1 glucose within 17 h. Regarding the 

encapsulated amount of initially 15% (w/w) starch, a maximum of around 4 mg∙bead-1 glucose 

can be generated by cleavage with the supplemented AG. This concentration was reached inside 
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the control bead, without encapsulated S. cerevisiae cells, after eight days of incubation 

(figure 6.29). 

The second graph shows the concentration of available glucose in the bead, when S. cerevisiae 

cells were co-encapsulated. The glucose concentration remains below a measurable 

concentration. S. cerevisiae is able to adapt to grow on high concentrations of glucose very fast 

[255; 256]. Glucose induces a repression of mitochondrial function and leads to a less efficient 

energy production, compared to respiration [107] but at the same time leads to a faster liberation 

of energy and thus enables more rapid growth [108]. Apart from that, S. cerevisiae is known to 

have a relatively high resistance to ethanol toxicity. The production of ethanol to defend its 

niche from other microorganisms is conceivable [109; 116]. 

 

Figure 6.29  Glucose concentration in moist calcium alginate beads containing starch and 0.1 U∙g-1 

amyloglucosidase with and without S. cerevisiae as determined by HPLC measurement for eleven 

days (n=3; mean ± sd). 

In view of the radius of the beads (around 1 mm), the diffusion of oxygen into the bead is 

limited [257]. It can be assumed, that the cells immobilized in the inner matrix of the bead grow 

under anaerobic conditions, regardless of the glucose concentration. This circumstance further 

enhances the production of ethanol and through the process of alcoholic fermentation, the CO2 

production is accelerated, but the total volume of released CO2 is reduced [258]. A reduction 

of the diameter of the bead may reduce the process of fermentation in the yeast but also impairs 
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water retention within the bead, another important factor for the CO2 production as pointed out 

in chapter 6.1.1.  

Blastospores show a high sensitivity to stress factors compared to other biomass forms. The 

resistance against ethanol is very low, as demonstrated in figure 6.30. Already an incubation in 

an aqueous solution of 0.1 g∙mL-1 ethanol led to a reduction of germinating blastospores of 

more than 50%. As illustrated in figure 6.28, beads containing 0.1 U∙g-1 reached this 

concentration after seven days, beads supplemented with 1.0 U∙g-1 AG already after three days. 

Even if the encapsulated blastospores were able to germinate within this time, a constant 

increase of the ethanol concentration as demonstrated in figure 6.28 will inhibit further growth. 

The water contained in the beads allows the ethanol to pass through the cell wall. Inside the 

blastospores the alcohol causes an unspecific precipitation of the proteins. Vital functions 

within the cell can no longer take place in this way [259]. 

 

Figure 6.30  Survival of M. pemphigi X1c blastospores incubated with different concentrations of ethanol for 

10 min at ambient temperature (n=5; mean ± sd). 

Even though the produced ethanol impedes the germination and growth of co-encapsulated 

blastospores, it inhibits contamination by other microorganisms being present in the field, such 

as other fungi. The S. cerevisiae cells, as already stated, affect their surrounding environment 

to improve their ecological fitness. 
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The realization of a formulation, containing both, S. cerevisiae and M. pemphigi X1c biomass, 

would reduce costs by saving production steps and bead material. In addition, the application 

of a single formulation facilitates its use in the field and the microorganisms can take advantage 

of each other (like cleavage of starch through extracellular enzymes of a fungus). By contrast, 

the interaction of two co-encapsulated microorganisms can lead to a reduced efficiency, more 

precisely of CO2 release and conidiation on the surface, due to occurring by-products, such as 

ethanol.  

A co-encapsulation of both microorganisms was demonstrated but with resulting decreases in 

either CO2 release or in conidiation on the bead surface due to the high ethanol concentration 

inside the beads. Even though the Attract-and-Kill approach is still generally imaginable, the 

formulation needs further investigation. Another possibility will be a co-application of both 

formulations, since ticks generally tend to move over the beads when actively searching for a 

blood meal. Therefore, an infection is presumable when both formulations are applied in a close 

area. An independent application of both formulations for tick control (e.g. the combination of 

the Kill formulation with other attractants or the combination of the Attract formulation with 

an independent Kill-component) is conceivable. 
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7 General discussion and conclusions 

Different tick species, such as the castor bean tick Ixodes ricinus, play an important role in the 

transmission of serious diseases in Germany and worldwide. Besides the infestation of domestic 

animals, tick bites cause massive economic losses in the agricultural sector by the infection of 

livestock with several pathogens. Resulting infections in the host animal can cause decreases in 

productivity, an increasing morbidity and a higher mortality [2-5]. Several transmitted 

pathogens also pose a great danger to humans, inducing diseases such as Lyme borreliosis, 

Tick-borne encephalitis or Babesiosis [6-9]. In Germany, the risk of human infections is the 

most serious concern with the I. ricinus constituting the most important vector pathogens [11]. 

Other species as Rhipicephalus spp. or Dermacentor spp. are more rarely infesting humans but 

with an increasing percentage. At present, no individual control measure for ticks is available 

on the marked. Ticks can only be controlled using unspecific chemical acaricides [15], coming 

along with several disadvantages, such as negative impact on non-target animals, increasing 

development of resistances of the target organisms and risks for human, animals and 

environment [8; 126-128; 260]. Because of the constantly increasing number of risk areas for 

tick infection and a consumer-driven shift towards a more environment-friendly pest control, 

there is a significant demand for an effective biological control agent for ticks. To overcome 

several drawbacks of biological control agents, such as low persistence and activity in the field, 

detailed research into a suitable formulation containing active biological components is of 

utmost importance. This is why this work has focused on the development of a novel 

biologically based formulation to be used in an Attract-and-Kill approach to control ticks in the 

field. 

 

The overall aim of this work was to develop a formulation which attracts ticks, especially of 

the species I. ricinus, by the release of carbon dioxide, to enable direct contact with a bead, 

coated with an aggregating substance to increase the exposure to a natural Kill component, 

preferably an entomopathogenic fungus. The following questions were addressed: Can 

encapsulated S. cerevisiae cells produce sufficient CO2 over a defined period of time for an 

application above ground? What influence do supplemented amyloglucosidase, drying and 

rehydration processes as well as temperature have on the CO2 release? Is it possible to further 

increase the CO2 release by the supplementation of urea as nitrogen source? Is the released CO2 
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from dried and rehydrated Attract beads attractive to I. ricinus nymphs? How do three highly 

virulent pre-selected Metarhizium spp. isolates conidiate on solid medium depending on the 

temperature? Which isolate produces the highest blastospore concentration in submerged 

cultivation regarding temperature and initial pH value? Which isolate shows the highest 

conidiation on beads, when blastospores were encapsulated with different nutrients? Can 

encapsulated blastospores be dried? Does a coating with aggregation pheromones affect the 

conidiation on the bead surface and enhance contact time between ticks and beads? Are the 

newly formed conidia on the bead surface still virulent against I. ricinus nymphs and adults? 

Are S. cerevisiae and EPF blastospores suitable for co-encapsulation? How do the co-

encapsulated biological components inside the bead interact with each other, regarding CO2 

release and conidiation on the bead surface? The research questions are discussed below in a 

general context and objectives for future research are proposed. Several topics have already 

been discussed in detail in previous chapters, so wherever possible, reference is made to the 

relevant chapters to avoid redundancies. 

CO2 gradients play a decisive role in the host localization by ticks such as I. ricinus [88; 94; 

95]. The use of artificial CO2 sources has already been reported for monitoring of ticks in the 

field, but not on the basis of encapsulated S. cerevisiae cells. The idea of encapsulating 

S. cerevisiae together with nutrients in order to provide a long-term attracting effect on insect 

pests has been successfully established for wireworms below ground [52; 119; 219]. The 

organism S. cerevisiae naturally assimilates monosaccharides, such as glucose, for growth and 

metabolism, with CO2 as a by-product. However, due to their low molecular weight, 

monosaccharides cannot be encapsulated permanently in calcium alginate because it is not 

retained by the polymer matrix [49; 117]. Against this, starch, as a carbon source with high 

molecular weight, remains in the bead and enhances the structure of the hydrogel network [120]. 

Because S. cerevisiae does not bring the enzymatic equipment to metabolize starch [54; 174; 

175], a supplementation of amyloglucosidase was necessary to make the nutrient source 

available for encapsulated cells. 

The Attract formulation, developed for the application above ground, was presented and 

discussed in chapter 6.1. The encapsulation of S. cerevisiae cells with granular corn starch and 

supplemented amyloglucosidase led to a release of adequate CO2 concentrations over 

0.2 mL∙(g∙h)-1 over a minimum period of one week. The starch is decomposed into glucose 

molecules by the amyloglucosidase and can thus be assimilated by the S. cerevisiae cells. 

Depending on the amyloglucosidase concentration, the amount and duration of the CO2 release 
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varies. Furthermore, it could be shown that the temperature has a significant influence on the 

CO2 release. Lower temperatures reduce the activity of the cell metabolism as well as the 

enzyme activity and therefore lead to a reduced but also a prolonged release of CO2 [119; 177-

179]. The temperature-driven activity of encapsulated S. cerevisiae cells and the related CO2 

production follows the natural behavior of I. ricinus nymphs, showing an increasing active 

movement at temperatures above 7 to 10 °C [190]. Consequently, at low temperatures with low 

tick activity, fewer nutrients are metabolized within the beads and therefore a sustained CO2 

release is provided.  

Drying of microorganisms is a common method for maintaining a high viability of the cells 

during long-time storage [176]. Even though, the drying process results in a loss of viable cells 

[120; 180-183], the CO2 release of slowly rehydrated beads was only marginally affected 

compared to moist beads. When high amounts of living cells are encapsulated, a limitation in 

the supply of nutrients is supposed to occur, resulting in a lower CO2 release compared to the 

same concentration of free cells, dissolved in liquid medium. A reduction of the cell 

concentration during drying consequently solely lead to a minor reduction in CO2 production 

because the total number of well supplied cells remains more or less constant [51]. 

Nevertheless, a rehydration of the beads to a high water activity of more than aw 0.95 was 

demonstrated to be inevitable for reactivation of the S. cerevisiae metabolism and thus a high 

CO2 release [191]. As already reported in the literature, a slow and therefore gentle rehydration 

leads to a much higher viability of living cells [186; 187]. The supplemented corn starch may 

maintain the moisture, as it is reported to possess a high water binding capacity [188; 189]. 

Due to environmental factors there is a stronger diffusion of CO2 above ground when compared 

with below ground applications, which is why a high release is necessary to attract ticks. It has 

been shown that the addition of urea can significantly increase a CO2 release for a short period 

of time. S. cerevisiae cells can use urea as nitrogen source converting it to CO2 and NH3 [125]. 

The additional release of NH3 could increase the attractiveness for ticks [55; 261; 262]. 

However, due to its low molecular weight, urea is still difficult to retain in the capsule and could 

easily be rinsed out in the field during rain, which requires more detailed research into a suitable 

formulation. 

The attraction of I. ricinus nymphs by the developed CO2 releasing beads was shown in chapter 

6.1. Dried and rehydrated beads released a sufficient CO2 concentration to attract ticks in a 

dual-choice experiment. Even if a luring effect by pure CO2 is confirmed for some tick genera 

[88-90; 92], an attractive effect of CO2 produced by S. cerevisiae is not guaranteed. The 
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volatiles, produced by yeast, such as, such as ethanol or acetaldehyde [263], are reported as 

attractant for baiting traps for different pests [264-266] but, however, can affect ticks in a both 

attractive or repellent way what needed to be investigated. The alternative of attracting ticks by 

traps containing dry ice was already reported, but with the limitation that these traps only 

provide a short-term emission combined with high costs [88-92]. A long-term solution to attract 

I. ricinus in the field has not been published so far. Other literature further suggests promising 

results for the attractivity of the CO2 producing beads for several other tick species, such as 

Amblyomma or Dermacentor spp., that are mainly attracted when CO2 baits are applied [93; 

96]. 

The results show first promising steps on the way to a bead formulation, which releases CO2 

over a defined period of time in the field and could be used to attract ticks such as I. ricinus. 

The application to other pests moving above ground is also conceivable. The attractive effect 

allows to reduce the required dosage of kill components for pest control when this agent is in 

close proximity with the attractant. This not only protects the environment but also drastically 

reduces costs. Up to an applicable form, however, various limitations of this bead formulation 

have yet to be overcome in order to ensure their effectiveness in the field.  

Therefore, future research needs to focus on the extension of CO2 emissions in order to 

guarantee a long-term attractive effect. In addition, more attention should be paid on the 

influence of by-products formed by the S. cerevisiae cells on the formulation as well as the pH 

value inside the beads. The utilization of urea should be investigated more closely and its 

influence on the attractive effect for ticks should be examined. Other starches and 

amyloglucosidases should also be considered in future work in order to further increase the CO2 

emission. It has already been shown that a high moisture content is indispensable for a sufficient 

CO2 emission. The desiccation of the beads above ground poses a bigger problem than during 

below ground application due to higher diffusion processes. By incorporating swelling and 

moisture absorbing agents, moisture retention within the beads can be improved and thus the 

CO2 release ensured over a longer period of time.   

 

The Kill formulation, developed for the application above ground, was presented and discussed 

in chapter 6.2. The choice of biomass form is a crucial factor in the development of a Kill 

formulation based on entomopathogenic fungi. Entomopathogenic fungi like Metarhizium spp. 

grow in two different morphologies, namely blastospores and mycelium, when cultivated in 
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submerged cultures [156; 157], as well as mycelium and aerial conidia, when cultivated on solid 

medium [202; 203], whereas optimal conditions for germination, growth and conidiation are 

specific for each isolate. Fermentation on solid medium is the conventional way to obtain aerial 

conidia for further application, whereas submerged cultivation not only allows a simpler scale 

up and thus a reduction of costs [44]. For all three selected Metarhizium spp isolates, 

M. brunneum Ca8II and Cb16II and M. pemphigi X1c, was shown that they form aerial conidia 

on solid medium within a wide temperature range, which is an important prerequisite for the 

application in the field. Also, all isolates showed a blastospore production depending on the set 

conditions. Since the proportions of mycelium and blastospores are correlating to one another, 

a shift from mycelium towards blastospore formation can be achieved by optimization of media 

composition [36; 157; 162] and process strategy [208]. Furthermore. M. pemphigi X1c was 

found to be the most tolerant isolate, when cultivated at different initial pH values. Differences 

in cell composition, depending on the pH value, can have a significant effect on their drying 

stability due to the changing polyol content inside the cells [150; 161]. In addition, a varying 

pH value within the cells becomes apparent during dehydration. A pH tolerant isolate can 

therefore be advantageous and achieve a higher drying survival rate. The stability during drying 

processes is an important factor since blastospores are known to be very sensitive to, compared 

to aerial conidia [158].  

The transfer of an active ingredient in an applicable bead form can not only facilitates an 

application in the field but also improves its characteristics. By encapsulating EPF in calcium 

alginate, the biomass can be effectively protected against detrimental environmental factors 

[140; 141]. Furthermore, the addition of various additives, such as drying aids or nutrients, not 

only increases drying stability but also improves conidiation on the bead surface [50; 143; 214; 

215]. Due to the supplemented nutrients, encapsulated biomass is supposed to germinate within 

the bead and in the next step grow out and produce virulent aerial conidia on the bead surface. 

Starch was demonstrated to provide stabilization of the bead structure in previous studies [120], 

function as drying protectant [119] and serve as nutrient for the EPF, resulting in a higher 

conidiation [215; 216]. The beads can be seen as microfermenters that provide everything to 

multiply a relatively small inoculum. Thus the usually required dosages for pest control in the 

field can be reduced [50]. Moist beads containing Metarhizium spp. blastospores and starch 

reached their highest conidiation on the bead surface at 25 °C. However, the presented results 

show a significant difference in the production of aerial conidia on the bead surface within the 

three Metarhizium spp. isolates. Even though Metarhizium spp. isolates are reported to be able 
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to assimilate starch [219], a qualitative test demonstrated a relatively low utilization as nutrient, 

especially for M. pemphigi X1c. It was isolated from a dead ticks’ body, whereas the other two 

isolates were isolated from soil, hence a fewer adaption to the utilization of corn starch as 

nutrient is conceivable. To enhance the conidiation, chitin was chosen as alternative for starch. 

It serves for structure formation of the cuticle not only in the majority of insects [220], but also 

in hard bodied ticks [55]. Since EPF are reported to secrete chitinases, it can probably serve as 

nutrient [221-225]. Regarding the results, formulations containing chitin present a significant 

higher conidiation on the surface compared to beads supplemented with starch, whereas beads 

containing M. pemphigi X1c showed the highest conidiation on both moist as well as dried and 

rehydrated beads. The results support the assumption, that especially this species is more 

adapted to utilize components of the tick cuticle. Moreover, the formulation containing chitin 

demonstrated a higher drying survival for encapsulated blastospores compared to the beads 

containing granular corn starch, probably due to size and stability of the encapsulated chitin 

flakes that are known to be bigger than the starch granules [214], preventing compression 

during drying and therefore lead to reduced physical stress on the cells [50; 184].  

In order to increase the probability of infection, the coating of an aggregation pheromone can 

extend the contact time between tick and bead [54; 139]. Hematin was attached to the bead 

surface by soaking. The coating had no negative effect on the conidiation of the EPF on the 

bead surface. A subsequent virulence test showed an extended contact time of I. ricinus nymphs 

with the coated beads, but had no effect on the virulence, compared to a control, probably due 

to the high conidia concentration on the surface. 

A virulence test with moist beads was performed to check the efficacy of the beads against I. 

ricinus nymphs. A virulent effect of the newly formed conidia on the bead surface of all three 

encapsulated Metarhizium spp. isolates could be demonstrated. The virulence of the newly 

formed conidia on the moist beads containing M. pemphigi X1c blastospores supplemented 

with granular corn starch was also qualitatively proven for nymphs of the species D. reticulatus 

and R. sanguineus. Compared to moist beads, no significant difference in virulence was 

observed, when dried and rehydrated beads were applied. Also, the supplementation of chitin 

as nutrient had no effect, even though a higher virulence was expected due to a pre-conditioning 

of the EPF with the encapsulated chitin [244; 245]. A virulent effect of M. pemphigi X1c was 

further demonstrated on adults of the species I. ricinus, D. reticulatus and R. sanguineus. Even 

though, the infection of adults with EPF is generally less efficient than for nymphs, it 

significantly reduces the fitness of all stages as well as egg oviposition [24; 32; 252]. 
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In order to increase the biomass yield, in this case for blastospores, further research should 

focus not only on the optimal media composition to prevent limitations but also on possible by-

products that might be formed by EPF during cultivation and can inhibit growth [212]. The 

regulation of the pH value could also lead to an increase in the yield [162]. Furthermore, a 

quantitative examination for storability is necessary. For further improvement of the speed to 

kill of newly formed conidia, experiments with fresh beads without pre-incubation, need to be 

carried out in order to gain a more precise insight into the threshold conidia concentration on 

the surface needed for a sufficient infection of ticks and whether various additives influence 

this process. Finally, the execution of field trials is inevitable, in order to examine the 

effectiveness of the beads also in the field. First experiments were carried out in a semi-free 

area but did not provide any significant results. The evaluation was carried out by recovering 

the ticks from a leaf litter, which posed major problems. Also, the conidiation on freshly 

prepared beads containing blastospores was reduced in the field, compared to laboratory 

conditions, because the beads dehydrate very quickly and consequently the EPF lacks the 

required moisture for growth. Again, the supplementation of swelling agents can improve the 

performance of the developed bead in the field, here regarding the growth of EPF. 

 

A suitable Kill formulation not only reduces costs, due to a relatively low amount of required 

biomass, but also provides further advantages for encapsulated EPF biomass, such as protection 

against environmental factors and thus a higher persistence in the field. The encapsulation of 

the total biomass instead of pure blastospores is likewise conceivable in order to further reduce 

production costs. The developed formulation can also be adapted to other EPF, such as 

Beauveria spp. and thus provides a high potential in application. A combination with an Attract 

formulation could furthermore reduce the required amount and make the application even more 

efficient. Regardless of the limitations, this work paves the way for the encapsulation of EPF 

blastospores as control agent above ground, not only for Ixodidae but also for other pests, 

naturally getting infected by EPF.  

 

To bring together the benefits of the bead formulations described in chapters 6.1 and 6.2, a 

combination of both, the Attract and the Kill formulation is the most desirable solution, as 

described in chapter 6.3. A co-formulation of both microorganisms, S. cerevisiae and 

M. pemphigi X1c, supplemented with nutrients can reduce production and material costs 
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associated with a co-application. Since S. cerevisiae does not bring the enzymatic equipment to 

use starch as nutrient, the co-encapsulated EPF may solve this problem by secretion of 

amyloglucosidase to assimilate the supplemented starch, as previously reported for wireworms 

below ground [50-52]. It is essential for the functionality of the Attract–and–Kill formulation 

that the CO2 production is maintained at a constant level, compared to the Attract bead. A CO2 

production depending on the EPF growth was aspiring as it directly connects its conidiation 

with the release of enzyme and thus glucose, resulting in a release of attractant by the 

encapsulated S. cerevisiae. Below ground, diffusion processes are slower compared to 

processes above ground, therefore a pest attracting CO2 gradient can be generated and 

perpetuated with lower CO2 concentrations. However, it was shown that the CO2 release is too 

low for the application above ground, when no additional amyloglucosidase is supplemented. 

A formulation without supplemented amyloglucosidase may attract ticks under defined 

laboratory conditions but will probably not produce enough CO2 to attract nymphs in the field, 

due to the influence of environmental factors, such as wind, and diffusion processes. When 

beads containing M. pemphigi X1c were supplemented with additional amyloglucosidase, 

however, a significantly reduced conidiation on the bead surface was observed, regardless of 

the type of biomass used. Beads following the Attract-and-Kill approach containing 

S. cerevisiae and EPF have already been successfully used below ground with constant 

conidiation [219], but with the difference that no additional amyloglucosidase was 

supplemented. The amyloglucosidase inside the bead releases large amounts of glucose, which 

can lead to the induction of a Crabtree effect in the encapsulated S. cerevisiae cells. Since, 

S. cerevisiae is well known and used to produce ethanol under different conditions, such as 

anaerobicity or high glucose concentrations [102-104; 253; 254], an influence of this by-

product was evident. Already a glucose concentration higher than 0.1 mg∙mL-1 induces ethanol 

production in S. cerevisiae [105; 106], whereas a critical concentration inside the beads was 

already exceeded a few minutes after preparation of the beads, even though the preparation was 

conducted on ice. The consumption of the complete glucose released within the beads by the 

encapsulated S. cerevisiae cells was demonstrated. This is possible due to a fast adaption of this 

microorganism to high glucose concentrations [255; 256]. The Crabtree effect leads to a faster 

liberation of energy and thus enables more rapid growth [108], then again is S. cerevisiae known 

to have a relatively high resistance to ethanol toxicity, what further offers evolutionary 

advantages over other microorganisms [109; 116]. 
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Blastospores provide the lowest resistance against stress factors, compared to mycelium and 

aerial conidia [158]. A concentration of 0.1 g∙mL-1 ethanol (reached in a bead containing 

0.1 U∙g-1 amyloglucosidase already after seven days) already led to a reduction of germinating 

blastospores of more than 50% as demonstrated in chapter 6.3. The constant increase of the 

ethanol amount inside the bead will inhibit further growth in the long run, even for lower 

amyloglucosidase concentrations, causing the conidiation on the bead surface to be insufficient 

for an infection of ticks.  

Previous approaches towards an attract-and-kill strategy for tick control are versatile. One 

approach was the combination of attraction-aggregation-attachment pheromones with an 

acaricide incorporated into a plastic strip attached to an animal’s tail for the control of ticks on 

livestock [131]. Even though this kind of strategy reduces infestation of animals, much effort 

for the attachment of the strip needs to be raised, resulting in high costs and is still largely 

dependent on the use of synthetic chemical acaricides. Traps, acting in the field are usually 

based on a combination of an artificial attractant (such as CO2, released from dry ice or other 

semiochemicals) combined with an adhesive surface [88; 267]. Adhesive surfaces are 

disadvantageous in that, on the one hand, they also fix non-target organisms and, on the other 

hand, their characteristics (such as stickiness) are dependent on environmental factors. First 

tests within the project 'BIOZEC' could furthermore demonstrate that the choice of a suitable 

adhesive substance which safely fixes ticks and does not harm the environment is difficult 

(personal communication Dr. Hans Dautel, IS Insect Services, Berlin). Furthermore, the 

disposal effort of such a trap has to be considered, whereby a purely biological control agent is 

decomposed in the long run by natural processes of soil organisms. Only a few studies made 

use of entomopathogenic fungi as kill components, such as reported by Maranga et al. [268]. 

The limitation of these approaches, besides the synthetic attract component, is mainly the 

stability of the applied biomass. By using a suitable formulation for the fungus, its activity can 

be prolonged and characteristics, such as virulence, can be improved. 

The co-encapsulation is still desirable in view of the advantages mentioned even though it 

seems not feasible at this point, in view of the insight gained in this thesis. The interaction of 

the two co-encapsulated microorganisms lead to a reduced efficiency, more precisely of CO2 

release and conidiation on the surface, due to occurring by-products, such as ethanol. The co-

formulation has to overcome several limitations, such as the low conidiation and CO2 release, 

to become applicable in the field. Several possibilities in further research are conceivable. A 

reduction of the bead diameter to ensure a better supply of oxygen could be considered to reduce 
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anaerobic growth [257], whereby this impairs water retention within the bead, another 

important factor for the CO2 production as pointed out in chapter 6.1. Possibly there is also the 

possibility to absorb the formed ethanol with another supplemented substance. Exchanging 

starch with other nutrients that allows better utilization of an EPF to reduce the required 

supplementation of enzymes and thus the glucose release inside the bead might be a different 

solution. Another option is a more detailed strain selection regarding compatibility to drying 

processes, utilization of starch and co-encapsulation with S. cerevisiae, as already mentioned 

for chapter 6.1 and 6.2. However, a co-application of both formulations instead of a co-

formulation of the microorganisms presented in this work could be the next ambitious step. An 

infection is presumable when both formulations are applied in a close area. An independent 

application of the single formulations combined with other artificial attractants (independent of 

growth processes or environmental factors) or kill components (such as substances with 

botanical origin (Benelli, 2016 #827)) is also conceivable. 

 

The high potential of both, the Attract and Kill formulation, for the control of I. ricinus was 

demonstrated in this work. The significant attraction as well as a 100% mortality of I. ricinus 

nymphs was achieved under laboratory conditions, a promising development starting point for 

further research. In a broader perspective, the application of both formulations is transferable 

to other tick species, not only in Germany but also worldwide, such as from the genera 

Hyalomma spp., Rhipicephalus spp. and Amblyomma spp., as the most important livestock ticks 

in Latin America, Africa, Australia and Asia [269] and the blacklegged tick I. scapularis as an 

increasing public health concern in the USA [270; 271]. For the species R. sanguineus and 

D. reticulatus the virulent effect of the Kill formulation was already demonstrated. Gaining 

further knowledge about attractants for ticks, other than CO2, to optimize the Attract 

formulation is another main concern of further research [95]. Since CO2 acts as a host attractant 

for nearly all bloodsucking arthropod pests, an adaption to other above ground pests, like 

mosquitoes and biting flies, is also conceivable [272-274]. A subsequent incorporation of other 

EPF, adapted to the corresponding pest, such as B. bassiana, is practicable [44]. 

 

To conclude, the approach of the combination of an Attract-and-Kill formulation for the control 

of above-ground living pests has high potential which indeed is not exploited yet and still needs 

further research. The formulation is supposed to contribute to the reduction of acaricides in 
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livestock and to facilitate the control of ticks in contact areas for people, such as gardens and 

parks, as well as in risk areas for infection with tick borne diseases. In order to advance research 

for biological control agents, highly interdisciplinary work is required where bioprocess and 

formulation technology brings together microbiological and entomological knowledge to obtain 

an efficient control agent in the end. 
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8 Appendix 

The Project BIOZEC 

The present work was part of the ZIM (Central innovation program of the middle class) project 

“BIOZEC” (No. 2426511CR4) which was funded by the BMWi (German Federal Ministry for 

Economic Affairs and Energy). Figure A1 shows a detailed flow chart for the project 'BIOZEC'. 

The development and production of the biocontrol formulations as well as cultivation and a part 

of the lab-scale efficacy tests were carried out at the University of Applied Sciences Bielefeld, 

whereas the remaining parts were conducted at the University of Hohenheim (working group 

of Prof. Dr. U. Mackenstedt) and by IS Insect Services GmbH Berlin. 

 

Figure A.1  Flow chart of the ZIM project 'BIOZEC’ – Development of a biological tick control agent based on 

an innovative Attract-and-Kill strategy. 
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Supplementary material 

Screening of five Metarhizium spp. isolates 

Please note: This experiment was carried out by the working group of Prof. Dr. U. Mackenstedt 

(University of Hohenheim) under the control of Dr. M. Wassermann who keeps all rights for 

editing, exploiting and publication of the data presented in figure A.3. 

As a previous screening, five Metarhizium spp. isolates were examined on their virulence 

against I. ricinus nymphs. For the experiment 20 petri dishes (Ø=50 mm) were prepared for 

each isolate with a final aerial conidiation of 105 conidia∙cm-2 by adding a conidia solution into 

the petri dish (in 0.9% NaCl + 0.1% Tween-80) and let it dry overnight. Air holes were pricked 

in the lid with a hot needle. Then, five I. ricinus nymphs were placed in each plate and sealed 

with Parafilm M (Pechiney Plastic Packaging Inc., IL, USA). The dishes were incubated at 

25 °C in a sealed box with saturated MgSO4 solution (relative humidity >90%) in the dark and 

monitored daily for the first two weeks and afterwards twice a week with a digital microscope 

(Keyence VHX-1000; Keyence Corporation, Osaka, Japan) to identify infected nymphs, 

respectively. The pre-screening ended after 97 days. 

 

Figure A.2 Preliminary screening of five different Metarhizium spp. isolates for virulence of their aerial conidia 

against I. ricinus nymphs during incubation at 25°C for 97 days. Different letters behind bars 

indicate significant differences according RM-ANOVA with Games-Howell post hoc test at p<0.05 

(n=20; mean ± se). 
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Cultivation at different initial pH values 

In addition to the results, presented in figure 6.9, the Metarhizium spp. isolates were cultivated 

with an initial pH value of 4.5 and 7.5, as presented in figure A.3. 

 

 

FigureA.3 Blastospore concentration during liquid cultivation of three Metarhizium spp. isolates in shaking 

flasks at 25 °C and different initial media pH value 4.5 (A, B) and 7.5 (C, D) for nine days. A, C: 

Blastospores, B, D: total dry weight. Different letters in the legend indicate significant differences 

according to RM-ANOVA with Games-Howell post hoc test at p<0.05 (blastospores: n=7, dry 

weight: n=5; mean ± sd). 
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