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1. INTRODUCTION

1. Introduction

1.1. Brief summary of the problem

In 2015 Viorel Barbu and Michael Röckner developed a technique to prove existence
and uniqueness of global solutions to infinite-dimensional stochastic equations of the
form

{
dX(⋅, t) = −A(⋅, t)X(⋅, t) dt +X(⋅, t) dW(⋅, t)
X(⋅, t) = h(⋅),

(1.1)

where A is a nonlinear, monotone, demicontiuous, coercive operator with polynomial
growth andW is a Wiener process on some Hilbert space. In An operatorial approach
to stochastic partial differential equations driven by linear multiplicative noise [BR15]
this technique uses a scaling transform to transfer equation (1.1) into an operator
equation of the type

By +A y = 0. (1.2)

Under the so-called maximal monotonicity of the operators A ,B this kind of equa-
tion (1.2) has a unique solution. Consequently there exists also a unique solution to
(1.1). But this scaling transform approach is only applicable under the mentioned
assumptions of coercivity, demicontinuity and monotonicity. It also yields existence
and uniqueness in the case of the stochastic transport equation given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX(x, t) =
d

∑
i=1

αi(x, t)
∂X(x, t)
∂xi

dt − β(x, t)X(x, t) dt

− λX(x, t) ∣X(x, t)∣q−2
dt +X(x, t) dW(x, t)

X(x,0) = h(x),

X(t) = 0 on Υ ∶= {(x, t) ∈ ∂O × [0,T] ∣ −
d

∑
i=1

αi(x, t)ni(x) < 0},

(1.3)

for some λ > 0, q ≥ 2, αi, β, i = 1, ..., d, which are continuous in time and space and
αi are additionally one-times continuously differentiable with respect to space. In
the deterministic case the simplest form of a transport equation is given by

∂u

∂t
+ c ⋅ ∇u = 0. (1.4)

In general, this can be used to model the density of a physical quantity or the
transport of a particle in a fluid, such as a solute in a pipe with water. Here one
can think of air pollution or a traffic flow problem where for example the density
of the vehicles depends on position and time. The basic tool to solve such a
kind of transport equation (1.4) is given in almost all literature concerning partial
differential equations and known as the method of characteristics. This famous
approach is based on the transformation of the partial differential equation into
a system of ordinary differential equations. Solving this system, one constructs
a solution of the partial differential equation by combining the solutions to the
system in a suitable way.

The method of characteristics was published in 1803 by Gaspard Monge in Mé-
moire sur la théorie d’une équation aux dérivées partielles du premier ordre and
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1. INTRODUCTION

was developed further, among others by Joseph-Louis Lagrange, PaulCharpit and
Sylvestre F. Lacroix (see [HP15]). 1984 Hiroshi Kunita extended this well-known
method to stochastic partial differential equations. This approach is called method
of stochastic characteristics. In First order stochastic partial differential equations
[Kun84a] and later in the book Stochastic flows and stochastic differential equations
[Kun97] the author proves existence and uniqueness of local solutions to stochastic
partial differential equations of the form

{
du = F (x,u,∇u, ○dt),

u∣t=0 = g,
(1.5)

where F is a semimartingale, which is Hölder continuous and 5-times continuously
differentiable with respect to all variables (x,u,∇u) and of linear growth in all
variables. Obviously, the not so common notation of the semimartingale has to be
defined precisely and then a representation result (see Theorem 2.39 below) can be
proved. By this it is possible to transform the equation (1.5) into a more convenient
type of equations given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

du = f0(x,u,∇u, t) dt +∑
n≥1

fn(x,u,∇u, t) ○ dW n
t ,

u(x,0) = g(x),
(1.6)

where (W n
t )n≥1 are infinite independent copies of a one-dimensional Brownian

motion. Due to the fact that we already know that there exists a unique global
solution to the stochastic transport equation (1.3), the question arises if it is
possible to solve this equation also by the method of stochastic characteristics due
to the main result Theorem 4.5 of [Kun97, Theorem 6.1.5]. The main advantage
of the method of characteristics is that in a number of examples one obtains an
explicit expression of the solution. The reader might see that the equations (1.3)
and (1.6) are given in different settings. [BR15] considers perturbations by general
space-dependent Wiener processes and in terms of an Itô integral while [Kun97]
works with perturbations by a series of independent Brownian motions and in terms
of a Stratonovich integral. Furthermore, the conditions on the coefficient functions
are very different.

In this thesis we will elaborate the scaling transform approach in the example of
the stochastic transport equation (1.3), as well as the method of stochastic charac-
teristics as given in [Kun97]. During our studies we quickly realized that the main
existence and uniqueness result [Kun97, Theorem 6.1.5] as stated by H.Kunita is
not applicable in the case of the stochastic transport equation. Therefore we extend
the method of stochastic characteristics to a heuristic approach. By direct calcula-
tions of the method we end up with an explicit expression of solutions.
In a first step we apply this heuristic approach to Burgers type equations given in
the form

du = h(u) ⋅ ∇u dt +B(u) dWt (1.7)

and for explicitly given coefficient functions h(u). We also generalize the example
of Y.Yamato in [Kun84a] to the two-dimensional case. As expected for a heuristic
approach we have to verify that all determined candidates for solutions really solve
the considered problems. After some successful examples we consider the stochastic
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1. INTRODUCTION

transport equation. For the simple reason that an application of Theorem 4.5 is
not possible, we firstly determine the solution of the one-dimensional stochastic
transport equation with explicitly given coefficient functions and perturbed by a
Brownian motion with Stratonovich differentials of the form

⎧⎪⎪⎨⎪⎪⎩

du(x, t) = (x∇u(x, t) − λu(x, t) ∣u(x, t)∣q−2 ) dt + u(x, t) ○ dWt

u(x,0) = x2.
(1.8)

In a next step we focus on the perturbation by a general infinite-dimensional Wiener
process W. Choosing special orthonormal bases and setting the drift terms to zero,
we determine an explicit solution to the simplified stochastic equation

{
du = u ○ dW

u(x,0) = h(x).
(1.9)

By using the Itô-Stratonovich formula we end up with the fact that an application
of the method of stochastic characteristics to the stochastic transport equation
(1.3) is not possible in general. The Itô correction term including the orthonormal
basis of the general Wiener process makes an application of the heuristic method
of stochastic characteristics impossible.

For the method of stochastic characteristics H.Kunita developed a technique of
finding inverse processes. This result is a basic tool in Fully Nonlinear Stochas-
tic Partial Differential Equations [DPT96] of the authors Giuseppe Da Prato
and Luciano Tubaro, but it is not explicitly stated therein. Therefore we for-
mulate and prove this result (see Lemma 8.5 below) in detail at the end of this thesis.

In his book Stochastic partial differential equations [Cho07] Pao-LiuChow applied
the method of stochastic characteristics to solve linear and quasilinear stochastic
partial differential equations. In the first two chapters he reproduces many results
of [Kun97] in the classical case of Brownian motion. The conditions on the
coefficient functions coincide with the conditions for the main result of [Kun97].
One should note that the main tool of the approach is to find an inverse process.
With a restriction on the domain using a proper stopping time, the results are given
for almost all elements of the probability space and all space and time variables
depending on the stopping time. In [Cho07] these restrictions and corresponding
stopping times are not given explicitly or have been overlooked, respectively, but the
author denotes the solutions as pathwise solutions, which seems to correspond with
our notation. Nevertheless the representation formula (see Theorem 2.39 below),
which is proved in this thesis, is vaguely stated therein (see [Cho07, Equation
(2.13)]).

For the reader’s convenience we give an overview in the beginning of each chapter
concerning the main results, proofs and contributions.

1.2. Aim of the thesis

The scaling transform approach, as well as the method of stochastic characteristics,
both have their own advantages. By the method of stochastic characteristics we

3



1. INTRODUCTION

get an explicit expression of solutions, provided that we consider explicitly given
coefficient functions. On the other hand V.Barbu and M.Röckner prove a general
existence and uniqueness result which is valid for a large class of equations and as
we will see, also for the stochastic transport equation (1.3). The result includes
existence and uniqueness and we know, due to the scaling transform, that the
solution is of the form X(t) = eWy(t), where y solves a certain random partial
differential equation (see (7.3) below). We have not an explicit expression, but we
obtain the existence of a global solution.

The first aim of this thesis is to reformulate the method of stochastic characteristics
in a more convenient and more detailed version. To this end the representation
results e.g. Theorem 2.39 below are the most important steps. In [Kun97] these
statements are given in vaguely formulated exercises. It is a known fact that there
exist different concepts of solutions, like global or local solutions. Hence the kind of
solution has to be defined rigorously. Due to the fact that we restrict the domain
of the processes to a domain defined for almost all elements ω of the probability
space, the solutions are local ones which are defined up to a certain stopping time.
In our opinion, this consideration is very important and can easily be overlooked in
[Kun97]. Therefore we go into much detail concerning the kind of local solution.

Nevertheless the main task of this thesis is the application of the method of stochastic
characteristics to the stochastic transport equation. For this purpose it is necessary
to generalize the method of stochastic characteristics to a heuristic approach. It
means we have to determine solutions by hand. One should note that for Kunita’s
main result (see Theorem 4.5 below) and the explicit expression of the solution,
one has to solve a system of stochastic differential equation also by hand, as well
as in the heuristic approach. We observe that there is only one example given for
which Theorem 4.1 in [Kun84a] is applicable. This example is a one-dimensional
Burgers equation without drift term. It was done by Y.Yamato in [Kun84a]. We
generalize this example to two dimensions. Furthermore, we also consider different
kinds of drift terms and observe that the heuristic approach works successfully.
Hence we obtain an expression of solutions and therefore existence of the solutions.
Furthermore, we give an example which makes the main result of [Kun97] (see
Theorem 4.5 below) concrete. Considering the stochastic transport equation (1.3),
the Itô-Stratonovich formula has a very important role. The application of the
method of stochastic characteristics to the stochastic transport equation perturbed
with respect to Stratonovich differential instead of Itô differential is possible in a
few situations e.g.

• du(x, t) = (x∇u(x, t) − λu(x, t) ∣u(x, t)∣q−2 ) dt + u(x, t) ○ dWt

(see Example 6.4 below)

• du = u ○ dW =
∞
∑
j=1

√
2
π µj sin(jx)u ○ dW j

t . (see Example 6.8 below)

If we look at the stochastic transport equation given in the form (1.3) with Itô
differential, we have to rewrite it into the Stratonovich setting (see Lemma 6.11) and
hence obtain an additional drift term in the differential equation. We demonstrate
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1. INTRODUCTION

up to which conditions on the coefficient functions and perturbation the method of
stochastic characteristics gives us a local solution. With the detailed preparation of
the scaling transform approach in the case of the stochastic transport equation, we
compare the three methods, namely the scaling transform approach, the heuristic
method of stochastic characteristics and the application of Theorem 4.5 below. The
main tool in the proof of Theorem 4.5 is Lemma 4.8 below which states that under
certain conditions there exists a process satisfying an inverse property. This result
plays an important role in the article [DPT96]. We give a review on the method
therein, formulate the theorem to find an inverse process and thus fill a corresponding
gap in [DPT96].

1.3. Structure

The thesis is separated in 8 chapters. After a motivating introduction, which includes
a repetition of the classical method of characteristics, the second chapter starts with
basic definitions to fix the setting. In this part we prove fundamental representation
results for stochastic differential equations (see Theorem 2.33, Theorem 2.34 below),
as well as for stochastic partial differential equations. The special kind of notation

du = F (x,u,∇u, ○dt)

used in [Kun97] in the one-dimensional case, as well as in the multidimensional
case, can be represented by Brownian motions, which is formulated in Corollary
2.42 below. Furthermore, we repeat some important tools. Chapter 3 contains the
derivation of the method of stochastic characteristics which generalizes Subsection
1.5. below of the introduction. The third chapter is written in a nutshell and can
be used to apply the heuristic approach of the method of stochastic characteristics.
We do not formulate a theorem, but a stepwise derivation. For applications this
step-by-step formula is more convenient. Theorem 4.5, considering the existence
and uniqueness of solutions to first order stochastic partial differential equations,
is the primary part of Chapter 4. In Corollary 4.6 this existence and uniqueness
result applied to the case of Brownian motions is formulated. In this chapter also a
detailed written proof of the main theorem is included. It follows the fifth chapter
working on simple, but precise examples in which we apply the heuristic approach
to the case of some stochastic Burgers type equations. Chapter 6 gives the answer to
our main initial question. Under certain conditions we solve the stochastic transport
equation locally by an application of the heuristic method of stochastic character-
istics. Chapter 7 contains the scaling transform approach with a repetition of the
main result and a detailed proof in the case of the stochastic transport equation.
We finish Chapter 7 with a summarizing diagram which gives a comparison of all
methods considered in this thesis. In the last part we work out an application of
Lemma 4.8 in the article [DPT96] of G.Da Prato and L.Tubaro.

1.4. Future directions

The method of stochastic characteristics as published in [Kun97] is based on a repre-
sentation result which we prove in Chapter 2. In applications it might be of interest
if other kinds of noises or other local martingale representatives can be used to
find solutions of stochastic partial differential equations perturbed by these kinds of
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1. INTRODUCTION

processes. In another step it would be useful to generalize the conditions on the co-
efficient functions, to solve a stochastic partial differential equation by the method
of stochastic characteristics. We already know that this method can be applied
in many situations although the conditions of [Kun97] are not fulfilled. Further-
more, one could study the application of the method of stochastic characteristics to
the random partial differential equation which we obtain by the scaling transform
approach.

1.5. The method of characteristics for nonlinear partial
differential equations

The method of characteristics is one of the classical approaches to solve quasilin-
ear and also nonlinear partial differential equations of first order locally. It can
be found in well-known literature e.g. [Eva08, Chapter 3.2], [Str07, Section 1.2],
[Han11, Chapter 2, 2.2], [Smi64, Chapter III, §1], [Gar67, Chapter 2.2] and [Cou68,
§3]. The idea of this approach is to transform a partial differential equation into
a system of ordinary differential equations. The solutions to these ordinary dif-
ferential equations and in particular their inverse functions form a solution of the
partial differential equation by a smart combination. The transformation itself is
based on a coordinate transformation. That means the system of ordinary differ-
ential equations is generated by curves - the so-called characteristic curves. The
technique is based on the assumption that such curves exist and that we obtain
the corresponding system of ordinary differential equations. By solving this system,
respectively if we assume that this system is solvable, we construct a solution to the
partial differential equation. The geometrical picture behind this is to find a solution
to the partial differential equation by constructing a curve lying in the surface of
the corresponding graph of the unknown function. In the following we review the
method of characteristics for first order nonlinear partial differential equations on
U ∶= Rd × (0,T) for some T > 0. Let x = (x1, ..., xd, xd+1) ∈ U where xd+1 is the time
variable and

F ∶ Rd ×R ×Rd × [0,T]→ R

be a given smooth function. Let

Γ ∶= {x ∈ Rd+1 ∣xd+1 = 0} ⊂ ∂U

and g ∶ Γ → R also be a given smooth function. We consider the following Cauchy
problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂u

∂xd+1

= F(x1, ..., xd, u(x),
∂u

∂x1

(x), ..., ∂u
∂xd

(x), xd+1) ∀ x ∈ U

u∣Γ = g.
(1.10)

We suppose that u solves the partial differential equation (1.10) with boundary
condition on Γ and that u is a C2-function. Let x ∈ U be fixed. We want to calculate
u(x) by finding a curve lying in U and connecting x with an initial value in Γ.
Define

Γ∗ ∶= {r∗ ∈ Rd ∣ (r∗,0) ∈ Γ}.
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1. INTRODUCTION

Let y be a point near Γ with y = (y1, ..., yd, yd+1) ∈ Rd × [0,T]. Suppose that y can
be reached by a curve, i.e. there exist r ∈ Γ∗, s ∈ [0,T] and a function

x ∶ Rd+1 → Rd+1

such that x(r, s) = y. That means starting at r ∈ Γ∗ with initial condition

x(r,0) = (r,0),

the i-th component of the curve denoted by xi(r, s) reaches yi at time s. Without
loss of generality let yd+1 = s. Then we define with Lagrange’s notation ( ∂u∂xi = uxi)

z(r, s) ∶= u(x(r, s)) = u(x1(r, s), ..., xd(r, s), s),
pi(r, s) ∶= uxi(x(r, s)) = uxi(x1(r, s), ..., xd(r, s), s),
p(r, s) ∶= (p1(r, s), ..., pd(r, s)).

Additionally to the existence of the curve x we assume the following:

Assumption 1.1 The corresponding initial conditions for each r ∈ Γ∗ are given by
g ∶ Rd+1 → R with

z(r,0) = g(r,0),
pi(r,0) = gxi(r,0)

(1.11)

and satisfy

pd+1(r,0) − F (x1(r,0), ..., xd(r,0), g(r,0), gx1(r,0), ..., gxd(r,0),0) = 0. (1.12)

Conditions (1.11) and (1.12) are called compatibility conditions and initial con-
ditions satisfying these conditions are called admissible (cf. [Eva08, 3.2.3 b.]).

Remark 1.2 Let r ∈ Γ∗. Due to

∂

∂pd+1

[pd+1(r,0)

− F (x1(r,0), ..., xd(r,0), g(r,0), gx1(r,0), ..., gxd(r,0),0)] = 1 ≠ 0

(1.13)

another assumption on so-called noncharacteristic initial conditions as written in
([Eva08, §3 - after Lemma 1]) is fulfilled.

Now we rewrite equation (1.10) to obtain

pd+1(r, s) − F (x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s)) = 0 (1.14)

for r ∈ Γ∗, s ∈ [0,T]. By using the notation of Newton’s derivative (̇ = d
ds) we have

ż(r, s) =
d

∑
i=1

ẋi(r, s)pi(r, s) + pd+1(r, s).

By differentiating (1.14) with respect to s we also know that

d

ds
[pd+1(r, s) − F (x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))] = 0. (1.15)
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1. INTRODUCTION

If we apply the classical chain rule, we get that the left hand side of (1.15) is equal
to

d

ds
[pd+1(r, s) − F (x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))]

= ṗd+1(r, s) −
d

∑
i=1

ẋi(r, s)Fxi(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))

− ż(r, s)Fz(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))

−
d

∑
i=1

ṗi(r, s)Fpi(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))

− ẋd+1(r, s)Fxd+1(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))

= ṗd+1(r, s) −
d

∑
i=1

ẋi(r, s)Fxi(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))

− (
d

∑
i=1

ẋi(r, s)pi(r, s) + pd+1(r, s))Fz(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))

−
d

∑
i=1

ṗi(r, s)Fpi(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))

− Fxd+1(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))

= ṗd+1(r, s) −
d

∑
i=1

(Fxi(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))

+ pi(r, s)Fz(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s)))ẋi(r, s)

− pd+1(r, s)Fz(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))

−
d

∑
i=1

ṗi(r, s)Fpi(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))

− Fxd+1(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s)).

If we choose ẋi and ṗi such that

ẋi(r, s) ∶= −Fpi(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))
ṗi(r, s) ∶= Fxi(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))

+ pi(r, s)Fz(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s)),
(1.16)

we obtain

ṗd+1(r, s) − pd+1(r, s)Fz(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))
− Fxd+1(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))

= Fxd+1(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))
+ pd+1(r, s)Fz(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))
− pd+1(r, s)Fz(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))
− Fxd+1(x1(r, s), ..., xd(r, s),z(r, s),p(r, s), xd+1(r, s))

= 0

and (1.15) holds. Hence we have the following system of characteristic equations:
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dxi
ds

= −Fpi(x1, ..., xd,z,p, s), for i = 1, ..., d,

dz
ds

= pd+1 +
d

∑
i=1

ẋipi

= F (x1, ..., xd,z,p, s) −
d

∑
i=1

piFpi(x1, ..., xd,z,p, s),

dpi
ds

= Fxi(x1, ..., xd,z,p, s)

+ Fz(x1, ..., xd,z,p, s)pi, for i = 1, ..., d.

(CE)

For the sake of simplicity we dropped the parameters (r, s) in the above system of ODEs.
One should note that we define by (x(r, s),z(r, s),p(r, s)) in total (2d + 3) functions, but
due to the fact that ṗd+1 and ẋd+1 = 1 give no information we end up with a system of
(2d + 1) differential equations.
Due to Remark 1.2 we apply Lemma 2 of [Eva08, §3]. By this result we know that for any
point r ∈ Γ∗ there exists a neighborhood such that every point y sufficiently close to Γ can
be uniquely determined by a curve y = x(r, s). This means that the curve starting at point
r = x(r,0) reaches y = x(r, s) at time s. So, again by Remark 1.2 we invert x(r, s) near 0,
i.e. we find functions

R ∶ Rd+1 → Γ∗ and S ∶ Rd+1 → [0,T]

such that r = R(x) and s = S(x) for x sufficiently close to Γ. One obtains this by an
application of the inverse mapping theorem (see [Lan96, Chapter XIV, Theorem 1.2]).
Hence we get a local solution of our equation by solving the characteristic equations (CE)
with initial condition and choosing

u(x) = u(x(r, s)) = z(r, s) = z(R(x), S(x)) for x sufficiently close to Γ. (1.17)

The method is based on the assumptions that u solves the Cauchy problem and that we
find a curve x(r, s). Now, one should finally show that the constructed u in (1.17) really
solves problem (1.10). For this calculation we refer to [Eva08, Proof of Theorem 2].

Remark 1.3 (x(r, s),z(r, s),p(r, s)) is called characteristic curve or also Monge curves
and Monge strips, respectively, in honour of G.Monge. The characteristic equations are
also known as Lagrange-Charpit equations in honour of P.Charpit and J.-L. Lagrange.
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2. PRELIMINARIES

2. Preliminaries
In this chapter we recall some basic definitions from [Kun97]. The main aim of the whole
chapter is to formulate and prove a representation result for a Stratonovich integral of the
form

t

∫
0

F (ϕs, ○ds),

where F is a semimartingale satisfying some regularity assumptions. To this end we prove a
representation result for continuous C-valued local martingales (see Theorem 2.21 below) as
well as for Itô integrals based on continuous C-valued local martingales (see Theorem 2.33
below). The latter is redrafted to a more rigorous version as in [Kun97, Exercise 3.2.11].
Due to these results we are able to prove and state a representation result for Stratonovich
integrals of the form ∫

t
0 F (ϕs, ○ds) based on a continuous semimartingale taking values

in a certain space (see Theorem 2.39 below). Theorem 2.39 is based on [Kun97, Exercise
3.3.5], however this exercise is not sufficiently exact concerning the existence of continuous
processes (fn)n≥0 and the previous representation results. After that the application in
the case of Brownian motion is given in Subsection 2.7. below. This can not be found in
[Kun97], but it is one famous framework to apply any result of [Kun97]. The reader should
note that the presentation form in [Kun97] is constituted by continuous text. Hence the
author of this thesis reformulates the necessary definitions and results in a didactic prepared
and structured way.

2.1. Basic definitions in the approach of H. Kunita
Let (Ω,F , P ) be a complete, separable probability space endowed with a normal filtration
(Ft)t∈[0,T] for the finite time interval [0,T], T > 0, which is defined in the following way:

Definition 2.1 A family of sub-σ-fields (Ft)t∈[0,T] is called a normal filtration if
(Ft)t∈[0,T] is right-continuous, i.e. Ft = ⋂ε>0 Ft+ε, each Ft contains all null sets of
F and Fs ⊆ Ft for all s ≤ t.

In the case of a Brownian motion we define the following:

Definition 2.2 Let (Wt)t∈[0,T] be a real-valued Brownian motion on a probability space
(Ω,F , P ). For t ∈ [0,T] define the filtration

FW
t ∶= σ({Ws ∣0 ≤ s ≤ t}).

The corresponding filtration

FW
t+ ∶=⋂

s>t
FW
s , t ∈ [0,T]

is right-continuous. Therefore the normal filtration is given by

Ft ∶= σ(FW
t+ , σ({N ∈ F ∣P (N) = 0})).

In the following let D ⊂ Rd be a domain.

Definition 2.3 A collection of Rd-valued random variables X(x) ∶ Ω→ Rd, x ∈ D, is called
a random field with parameter set D ⊂ Rd. If D = [0,T], then the random field is called
a stochastic process and is denoted by (Xt)t∈[0,T].

It is a basic fact that a continuous stochastic process adapted with respect to the normal
filtration (Ft)t is (Ft)t-predicable (e.g. [RY05, Chapter IV, (5.1) Proposition]).

11
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Definition 2.4 A continuous, real-valued, (Ft)t-adapted (and therefore predictable)
stochastic process Xt is called a local martingale if there exists an increasing sequence
of stopping times (τn)n∈N with P (τn < T) n→∞ÐÐÐ→ 0 and the stopped process Xt∧τn is a
martingale.

Obviously, each martingale is a local martingale and each continuous local martingale Xt

satisfying

E
⎡⎢⎢⎢⎣

sup
s∈[0,T]

∣Xs∣
⎤⎥⎥⎥⎦
<∞

is a martingale as proved e.g. in [Kun97, Theorem 2.1.1].

Definition 2.5 A stopping time τ ∶ D × Ω → [0,∞] is called accessible if there exists
a sequence of stopping times (τn(x))n∈N such that for each x ∈ D τn(x) < τ(x) a.s. and
lim
n→∞

τn(x) = τ(x) a.s.

In many references, see for example [Pro15, after Proposition 1], this property is called
predictability of a stopping time.

Definition 2.6 A family of random variables Xt, t ∈ [0, τ), is called a local process if τ
is an accessible stopping time.

As stated in [Cho66, 8.1 Proposition] a lower semicontinuous function can be equivalently
defined by levelsets. Hence we define the property of a lower semicontinuous stopping time
in the following way.

Definition 2.7 A stopping time τ ∶ D × Ω → [0,∞] is called lower semicontinuous, if
one of the following three equivalent conditions holds for almost all ω:
(i) for all x0 ∈ D we have

lim inf
x→x0

τ(x,ω) ≥ τ(x0, ω),

(ii) for all x ∈ D the levelsets

{τ(x,ω) ≤ β} are closed ∀ β ≥ 0,

(iii) for all x ∈ D the levelsets

{τ(x,ω) > β} are open ∀ β ≥ 0.

The above equivalence is formally proved e.g. in [PKY09, Proposition 2.1.3]. Now we
extend Definition 2.6 to the case of Rd-valued index sets D.

Definition 2.8 A family of random variables Xt(x), x ∈ D, t ∈ [0, τ(x)) is called a local
random field if τ is an accessible and lower semicontinuous stopping time.

Definition 2.9 Let e ∈ N. For given functions f ∶ D → Re and g ∶ D ×D → Re×e we define
the following seminorms for k ∈ N0, 0 ≤ δ ≤ 1 and K ⊂ D compact:

∥f∥k+δ;K ∶= sup
x∈K

∣f(x)∣
1 + ∣x∣

+ ∑
1≤∣α∣≤k

sup
x∈K

∣Dα
xf(x)∣ + ∑

∣α∣=k
sup
x,y∈K
x≠y

∣Dα
xf(x) −Dα

xf(y)∣
∣x − y∣δ

∥g∥∼k+δ;K ∶= sup
x,y∈K

∣g(x, y)∣
(1 + ∣x∣)(1 + ∣y∣)

+ ∑
1≤∣α+α̃∣≤k

sup
x,y∈K

∣Dα
xD

α̃
y g(x, y)∣

+ ∑
∣α+α̃∣=k

sup
x,x′,y,y′∈K,
x≠x′,y≠y′

∣Dα
xD

α̃
y g(x, y) −Dα

xD
α̃
y g(x′, y) −Dα

xD
α̃
y g(x, y′) +Dα

xD
α̃
y g(x′, y′)∣

∣x − x′∣δ ∣y − y′∣δ
,

12
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where Dα
x or Dα

y , respectively, denote derivatives in the ordinary sense. Furthermore, we
set

∥f∥k+δ;D ∶= sup
x∈D

∣f(x)∣
1 + ∣x∣

+ ∑
1≤∣α∣≤k

sup
x∈D

∣Dα
xf(x)∣ + ∑

∣α∣=k
sup
x,y∈D
x≠y

∣Dα
xf(x) −Dα

xf(y)∣
∣x − y∣δ

∥g∥∼k+δ;D ∶= sup
x,y∈D

∣g(x, y)∣
(1 + ∣x∣)(1 + ∣y∣)

+ ∑
1≤∣α+α̃∣≤k

sup
x,y∈D

∣Dα
xD

α̃
y g(x, y)∣

+ ∑
∣α+α̃∣=k

sup
x,x′,y,y′∈D,
x≠x′,y≠y′

∣Dα
xD

α̃
y g(x, y) −Dα

xD
α̃
y g(x′, y) −Dα

xD
α̃
y g(x, y′) +Dα

xD
α̃
y g(x′, y′)∣

∣x − x′∣δ ∣y − y′∣δ
.

Based on these seminorms we define the following metrics.

Definition 2.10 Let k ∈ N0, e ∈ N. Let Ck(D,Re) denote the set of all k-times continuously
differentiable functions mapping the domain D ⊂ Rd into Re. Let (Ki)i∈N be an exhaustion
of D by compact sets. Obviously such an exhaustion of compact sets exists for any open
subset of Rd (see e.g. [KS08, Lemma 1.1]). For all f1, f2 ∈ Ck(D,Re) define the metric
dk+0(⋅, ⋅) by

dk+0(f1, f2) ∶=∑
i∈N

1

2i
∥f1 − f2∥k+0;Ki

1 + ∥f1 − f2∥k+0;Ki

.

Furthermore, let Ck(D × D,Re×e) denote the set of all k-times continuously differentiable
functions mapping the domain D × D ⊂ R2d into Re×e. For all g1, g2 ∈ Ck(D × D,Re×e) we
define the metric d∼k+0 by

d∼k+0(g1, g2) ∶=∑
i∈N

1

2i

∥g1 − g2∥∼k+0;Ki

1 + ∥g1 − g2∥∼k+δ;Ki

.

These metrics are known as Fréchet metrics. For the proof that the Fréchet metric satisfies
the conditions for metrics see e.g. [Alt16, 2.23 (1) Sequence spaces].

Definition 2.11 Let k ∈ N0, e ∈ N and 0 < δ ≤ 1. Define

Ck,δ(D,Re) ∶= {f ∈ Ck(D,Re) ∣Dα
xf is δ-Hölder continuous for ∣α∣ = k}.

Let (Ki)i∈N be an exhaustion of D by compact sets, then for all f1, f2 ∈ Ck,δ(D,Re) define
the metric dk+δ(⋅, ⋅) by

dk+δ(f1, f2) ∶=∑
i∈N

1

2i
∥f1 − f2∥k+δ;Ki

1 + ∥f1 − f2∥k+δ;Ki

.

Furthermore, we define

C̃k,δ(D ×D,Re×e) ∶= {g ∈ Ck(D ×D,Re×e) ∣Dα
xD

α̂
y g is δ-Hölder continuous for ∣α + α̂∣ = k}

and for all g1, g2 ∈ C̃k,δ(D ×D,Re×e) the metric d∼k+δ(⋅, ⋅) by

d∼k+δ(g1, g2) ∶=∑
i∈N

1

2i

∥g1 − g2∥∼k+δ;Ki

1 + ∥g1 − g2∥∼k+δ;Ki

.

As proved in [Alt16, 2.12. Proposition] there exist topologies induced by the above metrics.
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Remark 2.12 Ck,δ(D,Re) together with the topology induced by the metric dk+δ is a
Fréchet space. If δ = 0, we write Ck(D,Re) instead of Ck,0(D,Re). Furthermore, if k = 0
we write C(D,Re) instead of C0,0(D,Re).

The result can be found in [Alt16, 3.3 Continuous functions]. Since we have to work with
processes which depend on two parameters, we extend this result to D ×D.

Remark 2.13 C̃k,δ(D ×D,Re×e) together with the topology induced by the metric d∼k+δ is
a Fréchet space. If δ = 0, we write C̃k(D ×D,Re×e) instead of C̃k,0(D ×D,Re×e). If δ = 0,
we write C̃k(D × D,Re×e) instead of C̃k,0(D × D,Re×e). Furthermore, if k = 0 we write
C̃(D ×D,Re×e) instead of C̃0,0(D ×D,Re×e).

A continuous (Ft)t-adapted stochastic process (Xt)t∈[0,T] is called a continuous semi-
martingale if it can be written as the sum Xt = Mt + Bt of a continuous process of
bounded variation Bt and a continuous local martingale Mt (see e.g. [RY05, Chapter IV,
(1.17) Definition]). Next we define a class of specific semimartingales.

Definition 2.14 A family of continuous Re−valued semimartingales F (x, ⋅), x ∈ D, with
decomposition F (x, t) =M(x, t)+B(x, t) is called a family of continuous Ck,δ(D,Re) -
semimartingales if

• M(x, t) is a continuous Ck,δ(D,Re) - local martingale

i.e. M(x, t), t ∈ [0,T], is a local martingale for each x ∈ D and M(⋅, t) is
continuous in t a.s. in the space Ck,δ(D,Re), hence for all ε > 0 there exists a
δ > 0 such that for all s ∈ [0,T] with ∣t − s∣ < δ we have

dk+δ(M(⋅, t),M(⋅, s)) < ε a.s.

• B(x, t) is a continuous Ck,δ(D,Re) - process
i.e. B(⋅, t) is continuous in t a.s. in the space Ck,δ(D,Re),

• Dα
xB(x, t), t ∈ [0,T], are processes of bounded variation for all ∣α∣ ≤ k, x ∈ D.

For k ∈ N and δ = 0 we obtain the definition of a family of continuous Ck - semimartingales.
Furthermore, if k = 0 we write C instead of C0.

Definition 2.15 We define the following spaces of continuous processes:

M loc
c ∶= {M = (Mt)t ∣M is a continuous local martingale,M0 = 0},

Mc ∶= {M = (Mt)t ∣M is a continuous, square integrable martingale,M0 = 0}.

Let M,N ∈ Mc, then the inner product and the corresponding norm are given by

(M,N)
Mc

∶= sup
t∈[0,T]

E[MtNt],

∥M∥2
Mc

∶= sup
t∈[0,T]

E[∣Mt∣2].

As proved e.g. in [Mét82, 16.4 Proposition] the space Mc with the above inner product is
a Hilbert space.

Definition 2.16 Let M,N ∈ M loc
c . The joint quadratic variation or also called co-

variation of M,N associated with the partition ∆ = {0 = t0 < t1 < ... < tl = T} of [0,T] is
defined by

⟨M,N⟩∆
t ∶=

l−1

∑
k=0

(Mt∧tk+1 −Mt∧tk)(Nt∧tk+1 −Nt∧tk).
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The following theorem is a classical result and the proof can be found e.g. in [RY05,
Chapter IV, (1.9) Theorem].

Theorem 2.17 Let M,N ∈ M loc
c . ⟨M,N⟩∆

t converges in probability uniformly in t to a
uniquely determined continuous process of bounded variation ⟨M,N⟩t as ∣∆∣→ 0, i.e.

P lim
∣∆∣→0

sup
0≤t≤T

∣⟨M,N⟩∆
t − ⟨M,N⟩t∣ = 0.

Notation 2.18 If M = N , we shortly write

⟨M,M⟩t = ⟨M⟩t.

Furthermore, the following result can be found in [Kun97, Theorem 2.3.10].

Theorem 2.19 Mc has an orthogonal basis consisting of at most countable elements,
provided that (Ω,F , P ) is separable.

The proof follows the ideas of the proof of [Kun97, Theorem 2.3.10] and is written in a
detailed version.

Proof. Consider the following space of square integrable martingales:

M ∶= {M = (Mt)t ∣M is a square integrable martingale,
but not necessary continuous in t,M0 = 0}.

Define the corresponding norm and inner product by

(X,Y )M ∶= E[XT ⋅ YT],

∥X∥M ∶= E[X2
T]

1
2 .

The space (M , ∥ ⋅ ∥M ) is a real Hilbert space (see [Mét82, 17.8 Definition]). Since Ω
is separable we conclude that L2(Ω) is also separable which is proved in [AF09, 2.21
Theorem]. Therefore it exists a countable dense subset {Xk}k∈N ⊆ L2(Ω). Now we want
to prove that M is also separable, i.e. we have to find a countable dense subset in M . For
all t ∈ [0,T] we define

Y k
t ∶= E[Xk∣Ft] −E[Xk∣F0] (2.1)

and show
(i) (Y k

t )k∈N is a martingale,
(ii) Y k

t ∈ M for all k ∈ N,
(iii) (Y k

t )k∈N ⊂ M is dense, i.e. for an arbitrary (Yt)t ∈ M there exists a subsequence
(Y km

t )m∈N ∈ M such that Y km
t

m→∞ÐÐÐ→ Yt in M .
ad (i) For fixed k ∈ N the martingale property is obviously satisfied, since we have for

s ≤ t

E[Y k
t ∣Fs] = E[E[Xk∣Ft] −E[Xk∣F0]∣Fs]

= E[Xk∣Fs] −E[Xk∣F0] = Y k
s .

ad (ii) We have to show that ∥Y k
t ∥M < ∞ holds for all k ∈ N. Let k ∈ N be fixed. Then

we get by Jensen’s inequality

∥Y k∥2
M = E[(Y k

T)2]
= E[(E[Xk∣FT] −E[Xk∣F0])2]
≤ E[2E[Xk∣FT]2 + 2E[Xk∣F0]2]
≤ E[2E[(Xk)2∣FT] + 2E[(Xk)2∣F0]]
= 2E[(Xk)2] + 2E[(Xk)2] <∞.
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ad (iii) To verify the denseness in M we have to show that for any (Yt)t ∈ M there exists
a subsequence (Y km

t )m∈N such that

lim
m→∞

∥Y − Y km∥2
M = 0.

Due to the definition of M we know that Yt is a martingale and furthermore it is
bounded in L2. Now consider a subsequence (Xkm)m∈N such that Xkm converges
to YT in L2 for m→∞. By using that E[YT∣F0] = 0 we know that

E[(E[Xkm ∣F0])
2] = E[(E[Xkm − YT∣F0])

2]
≤ E[E[(Xkm − YT)2∣F0]]

= E[(Xkm − YT)2] m→∞ÐÐÐ→ 0

holds. Now we conclude

∥Y − Y km∥2
M = E[(YT − Y km

T )2]

= E[(YT −E[Xkm ∣FT] +E[Xkm ∣F0])
2]

= E[E[YT −Xkm ∣FT] +E[Xkm ∣F0])
2]

≤ E[2(E[YT −Xkm ∣FT])2 + 2(E[Xkm ∣F0])
2]

≤ E[2E[(YT −Xkm)2∣FT]] + 2E[(E[Xkm ∣F0])
2]

≤ 2E[(YT −Xkm)2] + 2E[(E[Xkm ∣F0])
2]

m→∞ÐÐÐ→ 0.

Hence we have {Y k}k∈N ⊆ M dense. Due to the fact that Mc ⊂ M is closed (cf. [KS10,
Chapter 1, 5.23 Proposition]), we obtain that Mc is also separable using [AF09, 1.22
Theorem]. Let {Mk}k∈N be a countable dense subset of Mc. By the method of Gram-
Schmidt’s orthogonalization (see (A.3) in Appendix A) one defines an orthogonal system
{Nk}k∈N. Therefore it holds that there exists an orthogonal basis of at most countable
elements if the probability space is separable.

Remark 2.20 The Gram-Schmidt’s orthogonalization may end in finite steps. Hence it
is possible to obtain an orthogonal basis of finite elements, depending on the dimension of
Mc.

In Appendix A we take a detailed look on the Kunita-Watanabe decomposition (Theorem
A.4) which we need for the proof of the following fundamental theorem. Furthermore, the
definition of orthogonality of continuous local martingales is reproduced in Definition A.1.
Under our assumption that the underlying probability space is separable, Theorem 2.19
guarantees the existence of an orthogonal basis of continuous, square integrable martingales
(cf. Definition A.6). The following result is a rigorously reformulated version of [Kun97,
Exercise 3.2.10].

Theorem 2.21 Let {Mn}n≥1 be an orthogonal basis of continuous, square integrable mar-
tingales. Then the following holds:
(i) Any continuous C(D,Re) - local martingale M can be represented for all x ∈ D,

t ∈ [0,T) by

M(x, t) = ∑
n≥1
∫

t

0
fn(x, s) dMn

s a.s.,

where fn(x, s) are measurable random fields, predictable in s for each x ∈ D.
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(ii) Let A(x, y, t) be defined for all x, y ∈ D by

A(x, y, t)i,j ∶= (⟨Mi(x, ⋅),Mj(y, ⋅)⟩t) a.s.

for all i, j = 1, ..., e, whereMi(x, t) denotes the i-th component of the Re - valued vector
M(x, t). Then there exists a continuous increasing process At such that A(x, y, t) is
absolutely continuous with respect to dAt for all x, y ∈ D a.s.

Proof.
(i) The main tool of this proof is the Kunita-Watanabe decomposition given in Theorem

A.4. In our situation we haveM ∈ M loc
c andMn ∈ Mc for all n ∈ N. HenceMn ∈ M loc

c .
By Lemma A.3 there exist unique fn(x) ∈ L2(⟨M⟩), x ∈ D, n ∈ N satisfying

⟨M(x, ⋅),Mn⟩t =
t

∫
0

fn(x, s) d⟨Mn⟩s (2.2)

for all n ∈ N and hence

∑
n≥1

⟨M(x, ⋅),Mn⟩t = ∑
n≥1

t

∫
0

fn(x, s) d⟨Mn⟩s.

For each x ∈ D we define

M(1)(x, t) ∶= ∑
n≥1
∫

t

0
fn(x, s) dMn

s ,

M(2)(x, t) ∶=M(x, t) −M(1)(x, t).

Then by [Kun97, Theorem 2.3.2], (2.2) and by using the orthogonality of the basis
{Mn}n≥1 we have

⟨M(1)(x, ⋅),Mn⟩t = ⟨ ∑
m≥1

∫
⋅

0
fm(x, s) dMm

s ,M
n⟩
t

= ∑
m≥1

∫
t

0
fm(x, s) d⟨Mm,Mn⟩s

= ∫
t

0
fn(x, s) d⟨Mn⟩s

= ⟨M(x, ⋅),Mn⟩t.

We conclude that

∑
n≥1

⟨M(2)(x, ⋅),Mn⟩t = ∑
n≥1

⟨M(x, ⋅) −M(1)(x, ⋅),Mn⟩t

= ∑
n≥1

⟨M(x, ⋅),Mn⟩t −∑
n≥1

⟨M(1)(x, ⋅),Mn⟩t

= ∑
n≥1

⟨M(x, ⋅),Mn⟩t −∑
n≥1

⟨M(x, ⋅),Mn⟩t = 0.

Due to the fact that {Mn}n≥1 is an orthogonal basis, see Definition A.6, we obtain
M(x, t) =M(1)(x, t) a.s. and this shows the representation

M(x, t) = ∑
n≥1
∫

t

0
fn(x, s) dMn

s .
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(ii) By (i) we consider the i-th component of the representation given by

Mi(x, t) = ∑
n≥1
∫

t

0
f in(x, s) dMn

s

for each i = 1, ..., e. The joint quadratic variation of Mi and Mj , i, j = 1, ..., e, is equal
to

⟨Mi(x, ⋅),Mj(y, ⋅)⟩t = ⟨∑
n≥1

⋅

∫
0

f in(x, s) dMn
s ,∑

n≥1

⋅

∫
0

f jn(y, s) dMn
s ⟩

t

= ∑
n≥1

t

∫
0

f in(x, s)f jn(y, s) d⟨Mn,Mn⟩s

= ∑
n≥1

t

∫
0

f in(x, s)f jn(y, s) d⟨Mn⟩s,

where we used [Kun97, Theorem 2.3.2]. Now we consider the measure

ν(ds) ∶= ∑
n≥1

1

2n
d⟨Mn⟩s.

Consequently there exists also a continuous increasing process At defined by

At ∶= ν([0, t]) =
t

∫
0

∑
n≥1

1

2n
d⟨Mn⟩s = ∑

n≥1

1

2n
(⟨Mn⟩t − ⟨Mn⟩0). (2.3)

Obviously, ν(ds) is absolutely continuous with respect to d⟨Mn⟩s. Hence by Radon-
Nikodym theorem (see e.g. [Kle14, Corollary 7.34]) there exists a density ρn such
that

d⟨Mn⟩s = ρn(s)ν(ds).

By applying this construction we obtain for the joint quadratic variation

⟨Mi(x, ⋅),Mj(y, ⋅)⟩t = ∑
n≥1
∫

t

0
f in(x, s)f jn(y, s) d⟨Mn⟩s

= ∑
n≥1
∫

t

0
f in(x, s)f jn(y, s)ρn(s) ν(ds)

=∶
t

∫
0

aij(x, y, s) dAs a.s.

(2.4)

Hence A(x, y, t) is absolutely continuous with respect to dAt for all x, y ∈ D a.s.

Let F (x, t), x ∈ D, be a family of continuous C(D,Re) - semimartingales with the represen-
tation

F (x, t, ω) =M(x, t, ω) +B(x, t, ω),

as given in Definition 2.14. The continuous process of bounded variation is absolutely
continuous with respect to a continuous increasing measure denoted by dÃt, i.e. it can be
written as

B(x, t) =
t

∫
0

b(x, s) dÃs

18
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for a family of predictable processes b(x, t), x ∈ D. The integral on the right hand side is
a classical Lebesgue-Stieltjes integral. We obviously find a continuous increasing measure
(e.g. dAt +dÃt) to which dAt and dÃt are absolutely continuous. Consequently B(x, t) as
well as ⟨Mi(x, ⋅),Mj(y, ⋅)⟩t can be written as integrals with respect to this measure. For
simplicity let us denote this new measure by dAt. In the case At = t we obtain the classical
Lebesgue integral.

Definition 2.22 The triple
(a(x, y, t), b(x, t),At)

given by processes a ∶ D ×D × [0,T] ×Ω → Re×e, b ∶ D × [0,T] ×Ω → Re and a continuous
increasing process At is called local characteristic if the following conditions are fulfilled:
(i) a(x, y, t) is symmetric, i.e. aij(x, y, t) = aji(y, x, t) holds P−a.s. for all x, y ∈ D and

i, j = 1, ..., e,
(ii) a(x, y, t) is non-negative definite, i.e.

z⊺a(x, y, t)z =
e

∑
i,j=1

aij(x, y, t)zizj ≥ 0

holds P−a.s. for all x, y ∈ D and z ∈ Re.

Notation 2.23 From now on, whenever we speak about a family of continuous semimartin-
gales F (x, t), x ∈ D, with local characteristic (a, b,At), we mean that F can be written as
F (x, t) = B(x, t) +M(x, t) and (2.4) as well as

B(x, t) =
t

∫
0

b(x, s) dAs

holds.

2.2. Classes of local characteristics
In Chapter 1 we mentioned that H.Kunita considers stochastic partial differential equations
with coefficients given in the form F (x,dt), respectively F (x,u, p, ○dt), for some contin-
uous Ck,δ - valued semimartingale F . For the main result of Kunita’s approach the local
characteristics have to fulfill some regularity properties. Therefore we introduce the fol-
lowing classes of local characteristics. In this chapter let (a, b,At) be a local characteristic
in the sense of Definition 2.22.

Definition 2.24 We say the pair (a,At), respectively the process a, belongs to the
class Bk,δ

ub if a(⋅, ⋅, t) is predictable with values in C̃k,δ(D × D,Re×e) and the seminorm
∥a(t)∥∼k+δ;D ∶= ∥a(⋅, ⋅, t)∥∼k+δ;D is uniformly bounded a.s., i.e. there exists C > 0 such that

sup
t∈[0,T]

∥a(t)∥∼k+δ;D ≤ C a.s.

We say the pair (b,At), respectively the process b, belongs to the class Bk,δ
ub if b(⋅, t) is

predictable with values in Ck,δ(D,Re) and the seminorm ∥b(t)∥k+δ;D is uniformly bounded
a.s., i.e. there exists C > 0 such that

sup
t∈[0,T]

∥b(t)∥k+δ;D ≤ C a.s.
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Definition 2.25 We say the pair (a,At) [respectively (b,At)] belongs to the class Bk,δ
b

if the process a(⋅, ⋅, t) [respectively b(⋅, t)] is predictable with values in C̃k,δ(D × D,Re×e)
[respectively Ck,δ(D,Re)] and if for almost all ω the seminorm ∥a(t)∥∼k+δ;D [respectively
∥b(t)∥k+δ;D] is integrable with respect to the continuous increasing process At, which means
that

T

∫
0

∥a(t)∥∼k+δ;D dAt <∞ a.s.
⎡⎢⎢⎢⎢⎣
respectively

T

∫
0

∥b(t)∥k+δ;D dAt <∞ a.s.
⎤⎥⎥⎥⎥⎦
.

The next definition is analogously, but here we consider compact subsets of D.

Definition 2.26 We say the pair (a,At) [respectively (b,At)] belongs to the class Bk,δ

if the process a(⋅, ⋅, t) [respectively b(⋅, t)] is predictable with values in C̃k,δ(D × D,Re×e)
[respectively Ck,δ(D,Re)] and if for almost all ω ∈ Ω the seminorm ∥a(t)∥∼k+δ;K [respectively
∥b(t)∥k+δ;K] is integrable with respect to the continuous increasing process At for all compact
sets K ⊂ D, which means that

T

∫
0

∥a(t)∥∼k+δ;K dAt <∞ a.s.
⎡⎢⎢⎢⎢⎣
respectively

T

∫
0

∥b(t)∥k+δ;K dAt <∞ a.s.
⎤⎥⎥⎥⎥⎦
.

Notation 2.27 If (a,At) belongs to the class Bm,ε and (b,At) belongs to the class Bk,δ for
some k,m ∈ N0, 0 ≤ δ ≤ 1 and 0 ≤ ε ≤ 1, then we write shortly that the local characteristic
(a, b,At) belongs to the class (Bm,ε,Bk,δ).

Lemma 2.28 We have Bk,δ
ub ⊂ Bk,δ, i.e. if a pair (a,At) [respectively (b,At)] belongs to

the class Bk,δ
ub , then in particular it belongs to the class Bk,δ.

Proof. Let (a,At) belong to Bk,δ
ub , i.e.

sup
t∈[0,T]

∥a(t)∥∼k+δ,D < C a.s.

By monotonicity of the integral we have

T

∫
0

∥a(t)∥∼k+δ,K dAt ≤
T

∫
0

∥a(t)∥∼k+δ,D dAt

≤
T

∫
0

C dAt <∞ a.s. ∀ K ⊂ D compact.

Consequently (a,At) belongs to the class Bk,δ.

2.3. Construction of stochastic integrals

In the previous subsections we defined a particular kind of local martingales and semi-
martingales taking values in the Fréchet spaces Ck,δ and corresponding local characteris-
tics belonging to some regularity classes. With this knowledge we are now able to give a
stepwise construction of an Itô integral based on local martingales and semimartingales.
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Definition 2.29 Let M(x, t), x ∈ D, be a family of continuous Ck(D,R) - local martingales
with local characteristic (a,At) belonging to Bk,δ for k ∈ N0 and 0 ≤ δ ≤ 1. Let ft be a
predictable process with values in D satisfying

T

∫
0

a(fr, fr, r) dAr <∞ a.s.

Then the Itô integral ∫
t

0 M(fs,ds) is stepwise defined in the following way:

À Let ft be a simple process with values in D, i.e. there exists a partition
∆ = {0 = t0 < t1 < ... < tl = T} of [0,T] such that ft = ftk for any t ∈ [tk, tk+1),
k = 0, ..., l − 1. Then we define

Mt(f) ∶= ∫
t

0
M(fr,dr) ∶=

l−1

∑
k=0

M(ftk∧t, tk+1 ∧ t) −M(ftk∧t, tk ∧ t).

Á Now let ft be a predictable process with values in a compact subset K ⊂ D. Then
there exists a sequence (fnt )n∈N of simple (Ft)t-adapted processes with values in K
such that

T

∫
0

a(fnr , fnr , r) − 2a(fnr , fmr , r) + a(fmr , fmr , r) dAr
n,m→∞
ÐÐÐÐ→ 0 a.s.

Then ⟨M●(fn) −M●(fm)⟩T
n,m→∞
ÐÐÐÐ→ 0 a.s. and we obtain due to [Kun97, Theorem

2.2.15] uniform convergence in probability of {Mt(fn)}n∈N to Mt(f), i.e.

P lim
n→∞

sup
0≤t≤T

∣Mt(fn) −Mt(f)∣ = 0.

Â Let ft be an arbitrary predictable process satisfying

T

∫
0

a(fr, fr, r) dAr <∞ a.s.

Let (Kn)n∈N be a sequence of compact subsets of D such that Kn ↗ D. Let f̃nt be a
truncation of ft associated with Kn, n ∈ N, as reproduced in Definition A.12. Then
as in Á the sequence (f̃nt )n∈N satisfies

T

∫
0

a(f̃nr , f̃nr , r) − 2a(f̃nr , f̃mr , r) + a(f̃mr , f̃mr , r) dAr
n,m→∞
ÐÐÐÐ→ 0 a.s.

and therefore we obtain that {Mt(f̃n)}n∈N converges uniformly in probability to
∫
t

0 M(fs,ds), i.e.

P lim
n→∞

sup
0≤t≤T

∣∫
t

0
M(f̃n,ds) − ∫

t

0
M(fs,ds)∣ = 0.

Example 2.30 Let Xt be a continuous one-dimensional local martingale. Consider
M(x, t) ∶= x ⋅ Xt, x ∈ D ⊂ R, and M(x,0) = 0. Then M(x, t) is continuous in t a.s.
with values in C(D,R), because Xt is continuous in t. Hence we have that M(⋅, t) is a
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C(D,R) - local martingale. Let ft be a predictable process with values in D. Then for any
partition {0 = t0 < ... < tl = T} of [0,T] we have

l−1

∑
k=0

(M(ftk∧t, tk+1 ∧ t) −M(ftk∧t, tk ∧ t)) =
l−1

∑
k=0

(ftk∧t ⋅Xtk+1∧t − ftk∧t ⋅Xtk∧t)

=
l−1

∑
k=0

ftk∧t ⋅ (Xtk+1∧t −Xtk∧t)

and therefore we obtain

t

∫
0

M(fs,ds) =
t

∫
0

fs dXs,

as one can also find in [Kun97, after Lemma 2.3.1].

Definition 2.31 Let F (x, t), x ∈ D, be a family of continuous C(D,R) - semimartingales
with local characteristic (a, b,At) belonging to (B0,δ,B0,δ) for some δ > 0 and let ft be a
predictable process with values in D satisfying

T

∫
0

a(fs, fs, s) dAs <∞ and
T

∫
0

∣b(fs, s)∣ dAs <∞ a.s. (2.5)

Then the Itô integral of ft based on F (⋅,dt) is defined by

t

∫
0

F (fs, ds) ∶=
t

∫
0

b(fs, s) dAs +
t

∫
0

M(fs, ds).

Remark 2.32 We defined continuous semimartingales with values in the space Ck,δ(Λ,Rd)
for some Λ ⊂ D, k ∈ N0 and 0 < δ ≤ 1. Furthermore, we introduced the definition of local
characteristics belonging to the class Bk,δ. These spaces respectively classes include in
particular Hölder continuity. Hence, by applying Kolmogorov’s continuity theorem [Kun97,
Theorem 1.4.1, Theorem 1.4.4] there exists a continuous modification. For example let
M(λ, t) be a continuous Ck,δ - local martingale for some k ≥ 1 and 0 < δ ≤ 1 and let M̃(λ, t)
be a continuous modification. That means for all λ ∈ Λ there exists Ωλ such that P (Ωλ) = 1
and

M(λ, ⋅, ω) = M̃(λ, ⋅, ω) ∀ω ∈ Ωλ.

Now we define
ΩQd∩Λ ∶= ⋂

λ∈Qd∩λ
Ωλ.

Then we conclude that P (ΩQd∩Λ) = 1 and

M(λ, ⋅, ω) = M̃(λ, ⋅, ω) ∀ω ∈ ΩQd∩Λ,

which is equal to
M(λ, ⋅, ω) = M̃(λ, ⋅, ω) = lim

n→∞
M̃(λn, ⋅, ω)

for every sequence (λn)n≥0 ⊂ Qd∩Λ with λn
n→∞ÐÐÐ→ λ due to the continuity of λ↦ M̃(λ, ⋅, ω).

So rigorously, we obtain in the situation of Definition 2.29

t

∫
0

M̃(λ,ds) = lim
λn→λ

t

∫
0

M̃(λn,ds)
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= lim
λn→λ

lim
∣∆∣→0

M̃(λn, tk+1 ∧ t) − M̃(λn, tk ∧ t).

Hence considering M̃(λ) we are working with a double limit procedure. One should note
that a direct construction on the space Ck,δ(Λ) with the help of UMD-spaces is not possible,
since Ck,δ(Λ,Re) is not UMD as shown in a counterexample by M.Yor.

2.4. Representation results for Itô integrals
The following statement can be found as an exercise (cf. [Kun97, Exercise 3.2.11]). Now
we state this representation result rigorously and prove it in detail.

Theorem 2.33 Let {Mn}n≥1 be an orthogonal basis of continuous, square integrable mar-
tingales. Let M(x, t), x ∈ D, be continuous C(D,R) - local martingales with the represen-
tation

M(x, t) = ∑
n≥1

t

∫
0

fn(x, s) dMn
s , (2.6)

where fn(x, s), n ≥ 1, are measurable random fields, predictable in s for each x ∈ D. Let
(a,At) be the local characteristic belonging to the class Bk,δ for some k ∈ N0 and 0 ≤ δ ≤ 1.
Then we have

t

∫
0

M(ϕs,ds) = ∑
n≥1

t

∫
0

fn(ϕs, s) dMn
s (2.7)

for any continuous predictable D-valued process ϕt.

Proof. Due to Definition 2.29 we prove (2.7) by using the stepwise construction of the
stochastic integral:
À Simple functions ϕt
Let ϕt be a simple process, i.e. there exists a partition ∆ = {0 = t0 < t1 < ... < tl = T}
of [0,T] respectively for a t ∈ [0,T] we consider ∆ = {0 = t0 < t1 < ... < tl = t} such that
ϕs = ϕtk for all s ∈ [tk, tk+1). By Definition 2.29 and the representation (2.6) we obtain

t

∫
0

M(ϕs,ds) =
l−1

∑
k=0

M(ϕtk∧t, tk+1 ∧ t) −M(ϕtk∧t, tk ∧ t)

=
l−1

∑
k=0

(∑
n≥1

tk+1∧t

∫
0

fn(ϕtk∧t, s) dMn
s −∑

n≥1

tk∧t

∫
0

fn(ϕtk∧t, s) dMn
s )

=
l−1

∑
k=0

(∑
n≥1

(
tk+1∧t

∫
0

fn(ϕtk∧t, s) dMn
s −

tk∧t

∫
0

fn(ϕtk∧t, s) dMn
s ))

=
l−1

∑
k=0

(∑
n≥1

(
tk+1∧t

∫
tk∧t

fn(ϕtk∧t, s) dMn
s )

= ∑
n≥1

(
l−1

∑
k=0

(
tk+1∧t

∫
tk∧t

fn(ϕtk∧t, s) dMn
s )

= ∑
n≥1

t

∫
0

fn(ϕs, s) dMn
s ,

where we used ϕs = ϕtk for all s ∈ [tk, tk+1).
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Á Predictable processes on compact subsets
Let ϕt be a predictable process with values in K ⊂ D compact. By construction there exists
a sequence (ϕjt)j≥1 of simple processes with values in K such that

T

∫
0

a(ϕit, ϕit, t) − 2a(ϕit, ϕ
j
t , t) + a(ϕ

j
t , ϕ

j
t , t) dAt

i,j→∞
ÐÐÐ→ 0 a.s.

We have to show that
⟨M⋅(ϕi⋅ ) −M⋅(ϕj⋅ )⟩T

i,j→∞
ÐÐÐ→ 0 a.s.

holds. For simple processes we know that for all j ∈ N

t

∫
0

M(ϕjt ,ds) = ∑
n≥1

t

∫
0

fn(ϕjs, s) dMn
s

is valid. Therefore we have for i, j ∈ N

⟨M⋅(ϕi⋅ ) −M⋅(ϕj⋅ )⟩T = ⟨
⋅

∫
0

M(ϕis,ds) −
⋅

∫
0

M(ϕjs,ds)⟩T

= ⟨∑
n≥1

⋅

∫
0

fn(ϕis, s) dMn
s −∑

n≥1

⋅

∫
0

fn(ϕjs, s) dMn
s ⟩T

= ⟨∑
n≥1

⋅

∫
0

(fn(ϕis, s) − fn(ϕjs, s)) dMn
s ⟩T

.

By using [Kun97, Corollary 2.3.3.] and the fact that {Mn}n≥1 is an orthogonal basis we
obtain

⟨M⋅(ϕi⋅ ) −M⋅(ϕj⋅ )⟩T = ∑
n≥1

T

∫
0

((fn(ϕis, s) − fn(ϕjs, s))
2

d⟨Mn⟩s

= ∑
n≥1

T

∫
0

(fn(ϕis, s)2 − 2fn(ϕis, s)fn(ϕjs, s) + fn(ϕjs, s)2) d⟨Mn⟩s

= ∑
n≥1

T

∫
0

fn(ϕis, s)2 d⟨Mn⟩s −∑
n≥1

T

∫
0

2fn(ϕis, s)fn(ϕjs, s) d⟨Mn⟩s

+∑
n≥1

T

∫
0

fn(ϕjs, s)2 d⟨Mn⟩s.

Now we make use of (2.4) to receive

⟨M⋅(ϕi⋅ ) −M⋅(ϕj⋅ )⟩T

=
T

∫
0

a(ϕis, ϕis, s) dAs −
T

∫
0

2a(ϕis, ϕjs, s) dAs +
T

∫
0

a(ϕjs, ϕjs, s) dAs

=
T

∫
0

a(ϕis, ϕis, s) − 2a(ϕis, ϕjs, s) + a(ϕjs, ϕjs, s) dAs
i,j→∞
ÐÐÐ→ 0 a.s.
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Due to [Kun97, Theorem 2.2.15] Mt(ϕnt ) converges uniformly in probability to Mt(ϕt).
Â Arbitrary predictable processes
Now let ϕt be an arbitrary predictable process satisfying the integrability condition

T

∫
0

a(ϕt, ϕt, t) dAt <∞ a.s.

Let (Kj)j∈N be a sequence of compact subsets of D such that Kj ⊂ D and Kj ↗ D for
j →∞. Define the following truncation of ϕt:

ϕ̃jt ∶=
⎧⎪⎪⎨⎪⎪⎩

ϕt, if ϕt ∈ Kj

x0 ∈Kj , if ϕt ∉ Kj .

By construction we have

T

∫
0

a(ϕ̃it, ϕ̃it, t) − 2a(ϕ̃it, ϕ̃
j
t , t) + a(ϕ̃

j
t , ϕ̃

j
t , t) dAt

i,j→∞
ÐÐÐ→ 0.

By an application of [Kun97, Corollary 2.3.3.] and (2.4), we obtain for i, j ∈ N as in step Á

⟨M⋅(ϕ̃i⋅ ) −M⋅(ϕ̃j⋅ )⟩T = ⟨
⋅

∫
0

M(ϕ̃is,ds) −
⋅

∫
0

M(ϕ̃js,ds)⟩T

= ⟨∑
n≥1

⋅

∫
0

fn(ϕ̃is, s) dMn
s −∑

n≥1

⋅

∫
0

fn(ϕ̃js, s) dMn
s ⟩T

= ⟨∑
n≥1

⋅

∫
0

(fn(ϕ̃is, s) − fn(ϕ̃js, s)) dMn
s ⟩T

= ∑
n≥1

T

∫
0

(fn(ϕ̃is, s)2 − 2fn(ϕ̃is, s)fn(ϕ̃js, s) + fn(ϕ̃js, s)2) d⟨Mn⟩s

= ∑
n≥1

T

∫
0

fn(ϕ̃is, s)2 d⟨Mn⟩s −∑
n≥1

T

∫
0

2fn(ϕ̃is, s)fn(ϕ̃js, s) d⟨Mn⟩s

+∑
n≥1

T

∫
0

fn(ϕ̃js, s)2 d⟨Mn⟩s

=
T

∫
0

a(ϕ̃is, ϕ̃is, s) dAs −
T

∫
0

2a(ϕ̃is, ϕ̃js, s) dAs +
T

∫
0

a(ϕ̃js, ϕ̃js, s) dAs

=
T

∫
0

a(ϕ̃is, ϕ̃is, s) − 2a(ϕ̃is, ϕ̃js, s) + a(ϕ̃js, ϕ̃js, s) dAs
i,j→∞
ÐÐÐ→ 0 a.s.

Then by [Kun97, Theorem 2.2.15] Mt(ϕ̃nt ) converges uniformly in probability to
t

∫
0
M(ϕs,ds).

As a conclusion we obtain the following representation result for stochastic Itô integrals
based on semimartingales.
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Theorem 2.34 Let {Mn}n≥1 be an orthogonal basis of continuous, square integrable mar-
tingales. Let F (x, t), x ∈ D, be a family of continuous C(D,R) - semimartingales with local
characteristic

(a(x, y, t), b(x, t),At)

belonging to the class (B0,δ,B0,δ) for some 0 < δ ≤ 1. Let ϕt be a predictable process with
values in D and let condition (2.5) be fulfilled i.e.

T

∫
0

a(ϕs, ϕs, s) dAs <∞ and
T

∫
0

∣b(ϕs, s)∣ dAs <∞ a.s.

Then the Itô integral based on F (⋅,dt) can be represented as

t

∫
0

F (ϕs,ds) =
t

∫
0

f0(ϕs, s) dAs +∑
n≥1

t

∫
0

fn(ϕs, s) dMn
s , (2.8)

where fn(x, s), n ≥ 1, are measurable random fields, predictable in s for each x ∈ D.

Proof. Due to Definition 2.31 and Theorem 2.33, the representation formula (2.8) is valid
in the following sense:

t

∫
0

F (ϕs,ds) =
t

∫
0

B(ϕs,ds) +
t

∫
0

M(ϕs,ds)

=
t

∫
0

b(ϕs, s) dAs +
t

∫
0

M(ϕs,ds)

=
t

∫
0

f0(ϕs, s) dAs +∑
n≥1

t

∫
0

fn(ϕs, s) dMn
s ,

where b(x, t) =∶ f0(x, t).

2.5. Itô-Stratonovich formula
The main advantage of working with Stratonovich integrals is the applicability of the chain
rule. Similarly to the classical chain rule one obtains the fundamental theorem of calculus.
Let Wt be a standard one-dimensional Brownian motion, then

t

∫
0

Ws ○ dWs =
1

2
(Wt)2 − 1

2
(W0)2

holds and for any smooth function f ∶ R→ R with first derivative f ′ we have

t

∫
0

f ′(Ws) ○ dWs = f(Wt) − f(W0)

(see [KS10, 2.29]). We use these tools of the Stratonovich integral in applications (e.g.
Chapter 5 below). Of course if we want to calculate and solve systems of stochastic dif-
ferential equations, the application of the chain rule also for stochastic integrals is very
helpful. Additionally, it is a well-known result that if we want to rewrite an Itô integral
into a Stratonovich integral we have to add a correction term, the so-called Itô correc-
tion term. One can find this Itô-Stratonovich formula for example in [KP91, p. 316].
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Let (Xt)t∈[0,T] be a d-dimensional Itô process which, under appropriate assumptions on
b ∶ Rd × [0,T]→ Rd and σ ∶ Rd × [0,T]→ Rd×m, satisfies for an m-dimensional Brownian
motion Wt = (W 1

t , ...,W
m
t ) the following equation

Xt =X0 +
t

∫
0

b(Xs, s) ds +
t

∫
0

σ(Xs, s) dWs

=X0 +
t

∫
0

b(Xs, s) ds +
m

∑
n=1

t

∫
0

σ⋅n(Xs, s) dWn
s

(2.9)

for all t ∈ [0,T]. Equation (2.9) can be written equivalently as a Stratonovich stochastic
differential equation:

Xt =X0 +
t

∫
0

b(Xs, s) ds +
m

∑
n=1

t

∫
0

σ⋅n(Xs, s) ○ dWn
s

−
t

∫
0

1

2

m

∑
n=1

d

∑
j=1

σjn(Xs, s)
∂σ⋅n
∂xj

(Xs, s) ds.

(2.10)

The following theorem gives us this relation in our setting and can be found including the
proof in [Kun97, Theorem 3.2.5].

Theorem 2.35 Assume that F (x, t), x ∈ D, is a family of continuous C1(D,Rd) -
semimartingales with local characteristic (a, b,At) belonging to (B2,δ,B1,0) for some
0 < δ ≤ 1. Furthermore, let ϕt be a continuous semimartingale. Then the Stratonovich
integral is well-defined and related to the Itô integral by

t

∫
0

F (ϕs, ○ds) =
t

∫
0

F (ϕs,ds) +
1

2

d

∑
j=1

⟨
●

∫
0

∂F

∂xj
(ϕs,ds), ϕj●⟩

t
.

Lemma 2.36 By applying the representation result Theorem 2.34 componentwise, the
above results (2.10) and Theorem 2.35 are equivalent for an m-dimensional Brownian mo-
tion.

Proof. Let Wt = (W 1
t , ...,W

m
t ) be an m-dimensional Brownian motion. We rewrite the

stochastic differential equations into the same notation for drift and diffusion terms. We
consider the cases b(x, s) = f0(x, s) and σ(x, s) = (fij(x, s)) i=1,...,d

j=1,...,m
. The d-dimensional Itô

process ϕt which solves
t

∫
0

F (ϕs,ds) = ϕt

is given in the j-th component due to the representation result Theorem 2.34 by

ϕjt =
t

∫
0

f j0(ϕs, s) ds +
t

∫
0

m

∑
n=1

fjn(ϕs, s) dWn
s , (2.11)

provided ϕj0 = 0 for simplicity.
Now we prove the equivalence using Theorem 2.35 and Theorem 2.33, i.e. we get

t

∫
0

F (ϕs, ○ds) =
t

∫
0

F (ϕs,ds) +
1

2

d

∑
j=1

⟨
●

∫
0

∂F

∂xj
(ϕs,ds), ϕj●⟩

t
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=
t

∫
0

B(ϕs,ds) +
t

∫
0

M(ϕs,ds)

+ 1

2

d

∑
j=1

⟨
●

∫
0

∂[B +M]
∂xj

(ϕs,ds), ϕj●⟩
t

=
t

∫
0

B(ϕs,ds) +
t

∫
0

M(ϕs,ds) +
1

2

d

∑
j=1

⟨
●

∫
0

∂M
∂xj

(ϕs,ds), ϕj●⟩
t
,

where we use that Dα
xB(x, t), x ∈ D, t ∈ [0,T], are processes of bounded variation (see

Definition 2.14). By the representation of F and (2.11) we conclude

t

∫
0

F (ϕs, ○ds) =
t

∫
0

f0(ϕs, s) ds +
t

∫
0

m

∑
n=1

f⋅n(ϕs, s) dWn
s

+ 1

2

d

∑
j=1

⟨
●

∫
0

∂[∑mn=1 f⋅n]
∂xj

(ϕs, s) dWn
s , ϕ

j
●⟩
t

=
t

∫
0

f0(ϕs, s) ds +
t

∫
0

m

∑
n=1

f⋅n(ϕs, s) dWn
s

+ 1

2

d

∑
j=1

⟨
●

∫
0

∂[∑mn=1 f⋅n]
∂xj

(ϕs, s) dWn
s ,

●

∫
0

f j0(ϕs, s) ds +
●

∫
0

m

∑
n=1

fjn(ϕs, s) dWn
s ⟩

t

=
t

∫
0

f0(ϕs, s) ds +
t

∫
0

m

∑
n=1

f⋅n(ϕs, s) dWn
s

+ 1

2

d

∑
j=1

⟨
●

∫
0

m

∑
n=1

∂f⋅n
∂xj

(ϕs, s) dWn
s ,

●

∫
0

f j0(ϕs, s) ds⟩

+ 1

2

d

∑
j=1

⟨
●

∫
0

m

∑
n=1

∂f⋅n
∂xj

(ϕs, s) dWn
s ,

●

∫
0

m

∑
n=1

fjn(ϕs, s) dWn
s ⟩

t

=
t

∫
0

f0(ϕs, s) ds +
t

∫
0

m

∑
n=1

f⋅n(ϕs, s) dWn
s

+ 1

2

t

∫
0

m

∑
n=1

d

∑
j=1

∂f⋅n
∂xj

(ϕs, s)fjn(ϕs, s)⟨dWn
● ,dW

n
● ⟩s

=
t

∫
0

f0(ϕs, s) ds +
t

∫
0

m

∑
n=1

f⋅n(ϕs, s) dWn
s +

1

2

t

∫
0

m

∑
n=1

d

∑
j=1

∂f⋅n
∂xj

(ϕs, s)fjn(ϕs, s) ds.

Hence we obtain
t

∫
0

F (ϕs,ds) =
t

∫
0

F (ϕs, ○ds) −
1

2

t

∫
0

m

∑
n=1

d

∑
j=1

∂f⋅n
∂xj

(ϕs, s)fjn(ϕs, s)ds

=
t

∫
0

f0(ϕs, s) ds +
t

∫
0

m

∑
n=1

f⋅n(ϕs, s) dWn
s

= ϕt − ϕ0.

(2.12)

28



2. PRELIMINARIES

Remark 2.37 If we consider ϕt = x ∈ D in the situation of Theorem 2.35, the Itô correction
term vanishes and we obtain

t

∫
0

F (x, ○ds) =
t

∫
0

F (x,ds)

which is due to the decomposition

t

∫
0

F (x,ds) =
t

∫
0

M(x,ds) +
t

∫
0

B(x,ds).

By using the construction of the Itô integral (see Definition 2.29) we get for every partition
{0 = t0 < ... < tl = t} of [0, t]

l−1

∑
k=0

(M(x, tk+1 ∧ t) −M(x, tk ∧ t)) +
l−1

∑
k=0

(B(x, tk+1 ∧ t) −B(x, tk ∧ t))

=M(x, t) −M(x,0) +B(x, t) −B(x,0)
= (M(x, t) +B(x, t)) − (M(x,0) +B(x,0))
= F (x, t) − F (x,0).

Hence we conclude

t

∫
0

F (x, ○ds) =
t

∫
0

F (x,ds) = F (x, t) − F (x,0).

2.6. Representation results for Stratonovich integrals
To formulate a representation result for Stratonovich integrals based on semimartingales
we start with the formal definition of a Stratonovich integral as in [Kun97, before Theorem
3.2.5].

Definition 2.38 Let F (x, t), x ∈ D, be a family of continuous C(D,R) - semimartingales
and let ϕt be a continuous process with values in D. For a partition ∆ = {0 = t0 < ... < tl = T}
we define

F∆
t (ϕ) ∶=

l−1

∑
k=0

1

2
(F (ϕtk+1∧t, tk+1 ∧ t) + F (ϕtk∧t, tk+1 ∧ t)

− F (ϕtk+1∧t, tk ∧ t) − F (ϕtk∧t, tk ∧ t)).

If the sequence (F∆m
t (ϕ))m∈N converges in probability uniformly in t for any sequence

of partitions ∆m such that ∣∆m∣ → 0, then the limit ∫
t

0 F (ϕs, ○ds) is called Stratonovich
integral of ϕt based on F (x, t), i.e.

P lim
∣∆m∣→0

sup
0≤t≤T

∣F∆m
t (ϕ) − ∫

t

0
F (ϕs, ○ds)∣ = 0.

We follow the idea of [Kun97, Exercise 3.3.5] to formulate the representation result in the
case of Stratonovich integrals rigorously.
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Theorem 2.39 Let {Mn
t }n≥1 be an orthogonal basis of continuous, square integrable mar-

tingales. Let F (x, t), x ∈ D, be a family of continuous C1(D,R) - semimartingales with
local characteristic (a, b,At) belonging to (B2,δ,B1,0) for some 0 < δ ≤ 1. Assume that
F (x, t) can be represented by continuous C2 - processes and C1 - semimartingales (f̃n)n≥0

with local characteristics belonging to the class (B1,0,B1,0) as in Theorem 2.34. Then we
find (fn(x, t))n≥0 continuous C2 - processes and C1 - semimartingales such that for every
continuous semimartingale ϕt with values in D we have

t

∫
0

F (ϕs, ○ds) =
t

∫
0

f0(ϕs, s) dAs +∑
n≥1

t

∫
0

fn(ϕs, s) ○ dMn
s . (2.13)

Proof. Due to the assumption on F (x, t) we are able to apply Theorem 2.34. By Definition
2.31 we have for any continuous semimartingale ϕt

t

∫
0

F (ϕs,ds) =
t

∫
0

f̃n(ϕs, s) dAs +∑
n≥1

t

∫
0

f̃n(ϕs, s) dMn
s .

The integrability condition (2.5) of the definition is fulfilled for the continuous semimartin-
gale, since B1,0 ⊂ B0,δ as shown in Corollary A.8. First we prove

1

2

d

∑
i=1

⟨
●

∫
0

∑
n≥1

∂f̃n
∂xi

(ϕs, s)dMn
s , ϕ

i
●⟩
t

= 1

2
∑
n≥1

⟨f̃n(ϕ●, ●),Mn
● ⟩

t
− 1

2
∑
n≥1

⟨
●

∫
0

f̃n(ϕs,ds),Mn
● ⟩

t
.

(2.14)

By using [Kun97, Theorem 2.3.2] we have

1

2

d

∑
i=1

⟨
●

∫
0

∑
n≥1

∂f̃n
∂xi

(ϕs, s)dMn
s , ϕ

i
●⟩
t
= 1

2
∑
n≥1

d

∑
i=1

t

∫
0

∂f̃n
∂xi

(ϕs, s) d⟨ϕi●,Mn
● ⟩s

= 1

2
∑
n≥1

⟨
d

∑
i=1

●

∫
0

∂f̃n
∂xi

(ϕs, s)dϕis,M
n
● ⟩

t

Now we add some proper terms, which are in particular of bounded variation, and hence
their joint quadratic variations with the orthogonal basis {Mn

t }n≥1 are zero. We conclude
by the generalized d-dimensional Itô formula in Theorem A.13

1

2

d

∑
i=1

⟨
●

∫
0

∑
n≥1

∂f̃n
∂xi

(ϕs, s)dMn
s , ϕ

i
●⟩
t

= 1

2
∑
n≥1

⟨
d

∑
i=1

●

∫
0

∂f̃n
∂xi

(ϕs, s)dϕis,M
n
● ⟩

t
+ 1

2
∑
n≥1

⟨f̃n(ϕ0,0),Mn
● ⟩

t

+ 1

2
∑
n≥1

⟨1

2

d

∑
i,j=1

●

∫
0

∂2f̃n
∂xi∂xj

(ϕs, s)d⟨ϕi●, ϕj●⟩s,Mn
● ⟩

t

+ 1

2
∑
n≥1

⟨
d

∑
i=1

⟨
●

∫
0

∂f̃n
∂xi

(ϕs,ds), ϕi●⟩●
,Mn

● ⟩
t

+ 1

2
∑
n≥1

⟨
●

∫
0

f̃n(ϕs,ds),Mn
● ⟩

t
− 1

2
∑
n≥1

⟨
●

∫
0

f̃n(ϕs,ds),Mn
● ⟩

t
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= 1

2
∑
n≥1

⟨f̃n(ϕ0,0) +
●

∫
0

f̃n(ϕs,ds) +
d

∑
i=1

●

∫
0

∂f̃n
∂xi

(ϕs, s)dϕis

+ 1

2

d

∑
i,j=1

●

∫
0

∂2f̃n
∂xi∂xj

(ϕs, s)d⟨ϕi●, ϕj●⟩s +
d

∑
i=1

⟨
●

∫
0

∂f̃n
∂xi

(ϕs, s)dϕis, ϕ
i
●⟩●
,Mn

● ⟩
t

− 1

2
∑
n≥1

⟨
●

∫
0

f̃n(ϕs,ds),Mn
● ⟩

t

= 1

2
∑
n≥1

⟨f̃n(ϕ●, ●),Mn
● ⟩

t
− 1

2
∑
n≥1

⟨
●

∫
0

f̃n(ϕs,ds),Mn
● ⟩

t
.

We know that (f̃n)n≥0 are semimartingales so hence they also can be represented due to
Theorem 2.34 by

t

∫
0

f̃n(ϕs,ds) =
t

∫
0

f̃n,0(ϕs, s)dAs + ∑
m≥1

t

∫
0

f̃n,m(ϕs, s)dMm
s .

By applying as before [Kun97, Theorem 2.3.2] and using that {Mn
t }n≥1 is an orthogonal

basis (see Notation 2.23 above) we obtain for the second term on the right hand side of
(2.14)

1

2
∑
n≥1

⟨
●

∫
0

f̃n(ϕs,ds),Mn
● ⟩

t

= 1

2
∑
n≥1

⟨
●

∫
0

f̃n,0(ϕs, s)dAs,M
n
● ⟩

t
+ 1

2
∑
n≥1

∑
m≥1

t

∫
0

f̃n,m(ϕs, s)d⟨Mm
● ,M

n
● ⟩s

= 1

2
∑
n≥1

t

∫
0

f̃n,n(ϕs, s)dAs

Finally we achieve for (2.14) equivalently

1

2

d

∑
i=1

⟨
●

∫
0

∑
n≥1

∂f̃n
∂xi

(ϕs, s)dMn
s , ϕ

i
●⟩
t

= 1

2
∑
n≥1

⟨f̃n(ϕ●, ●),Mn
● ⟩

t
− 1

2
∑
n≥1

t

∫
0

f̃n,n(ϕs, s) dAs.

(2.15)

Now we are able to prove the claimed representation result. We apply Theorem 2.35 and
equation (2.15) to get

t

∫
0

F (ϕs, ○ds) =
t

∫
0

F (ϕs,ds) +
1

2

d

∑
i=1

⟨
●

∫
0

∂F

∂xi
(ϕs,ds), ϕi●⟩

t

=
t

∫
0

f̃0(ϕs, s) dAs +∑
n≥1

t

∫
0

f̃n(ϕs, s) dMn
s

+ 1

2

d

∑
i=1

⟨
●

∫
0

∑
n≥1

∂f̃n
∂xi

(ϕs, s) dMn
s , ϕ

i
●⟩
t
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=
t

∫
0

f̃0(ϕs, s) dAs +∑
n≥1

t

∫
0

f̃n(ϕs, s) dMn
s

+ 1

2
∑
n≥1

⟨f̃n(ϕ●, ●),Mn
● ⟩

t
− 1

2
∑
n≥1

t

∫
0

f̃n,n(ϕs, s) dAs

=
t

∫
0

⎛
⎝
f̃0(ϕs, s) −

1

2
∑
n≥1

t

∫
0

f̃n,n(ϕs, s)
⎞
⎠

dAs

+∑
n≥1

⎛
⎝

t

∫
0

f̃n(ϕs, s) dMn
s +

1

2
⟨f̃n(ϕ●, ●),Mn

● ⟩t
⎞
⎠

By using [Kun97, Theorem 2.3.5] we conclude with a suitable definition of (fn)n≥0

t

∫
0

F (ϕs, ○ds) =
t

∫
0

f0(ϕs, s) dAs +∑
n≥1

t

∫
0

fn(ϕs, s) ○ dMn
s

2.7. Results in the case of Brownian motion
The representation results of stochastic integrals as in the previous subsections are based
on the orthogonal basis of continuous, square integrable martingales and the corresponding
local characteristics. In this subsection we choose finite or infinite independent copies of
a standard Brownian motion (Wn

t )n≥1 as the orthogonal basis and use that the quadratic
variation of the Brownian motion is given by ⟨W●,W●⟩t = t respectively ⟨W i

●,W
j
● ⟩t = δijt.

Notation 2.40 If we consider infinite independent copies of a standard Brownian motion
(Wn

t )n≥1, the local characteristic of a family of continuous Ck,δ(D,R) - semimartingales
F (x, t), x ∈ D, are given in an explicit form. Remembering Theorem 2.21, we obtain for
(2.3) by the geometric series

At = ∑
n≥1

1

2n
(⟨Wn

⋅ ⟩t − ⟨Wn
⋅ ⟩0)

= ∑
n≥1

1

2n
(t − 0)

= ∑
n≥0

1

2n+1
t = t.

Consequently we have equivalently to (2.4)

a(x, y, t) = ∑
n≥1

fn(x, t)fn(y, t)

and so the local characteristic is given by

(∑
n≥1

fn(x, t)fn(y, t), f0(x, t), t)

as mentioned in [Kun97, Example after Lemma 3.4.4, p.106].

By applying Theorem 2.34 in the case of Brownian motion we obtain the following result:
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Corollary 2.41 Let (Wn
t )n≥1 be infinite independent copies of a one-dimensional standard

Brownian motion. Let F (x, t), x ∈ D, be a family of continuous C(D,R) - semimartingales
with local characteristic

(a(x, y, t), b(x, t),At) = (∑
n≥1

fn(x, t)fn(y, t), f0(x, t), t)

belonging to the class (B0,δ,B0,δ) for some δ > 0. Let ϕt be a predictable process with values
in D and satisfying condition (2.5) with

T

∫
0

∑
n≥1

f2
n(ϕs, s)ds <∞ and

T

∫
0

∣f0(ϕs, s)∣ds <∞ a.s.

Then the Itô stochastic integral is represented by

t

∫
0

F (ϕs,ds) =
t

∫
0

f0(ϕs, s)ds +∑
n≥1

t

∫
0

fn(ϕs, s)dWn
s

= ∑
n≥0

t

∫
0

fn(ϕs, s)dWn
s

(2.16)

provided that W 0
t ∶= t.

In the case of Stratonovich integrals we obtain the following application of Theorem 2.39:

Corollary 2.42 Let (Wn
t )n≥1 be infinite independent copies of a standard Brownian mo-

tion. Let F (x, t), x ∈ D, be a family of continuous C1(D,R) - semimartingales with local
characteristic (a, b,At) belonging to (B2,δ,B1,0) for some 0 < δ ≤ 1. Assume that F (x, t)
can be represented by continuous C2 - processes and C1 - semimartingales (f̃n)n≥0 with local
characteristics belonging to the class (B1,0,B1,0). Then we find (fn(x, t))n≥0 continuous
C2 - processes and C1 - semimartingales such that for every continuous semimartingale ϕt
with values in D we have

t

∫
0

F (ϕs, ○ds) = ∑
n≥0

t

∫
0

fn(ϕs, s) ○ dWn
s

=
t

∫
0

f0(ϕs, s)ds +∑
n≥1

t

∫
0

fn(ϕs, s) ○ dWn
s

(2.17)

provided W 0
t ∶= t.
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3. The method of stochastic characteristics

In this chapter we derive the method of stochastic characteristics in a nutshell, that means
we summarize the whole method. Compared to the classical method of characteristics as
remembered in Subsection 1.5., we obtain for almost all ω and all space and time variables
up to a certain stopping time similar definitions of stochastic characteristic curves, the
associated stochastic characteristic equations and finally a solution to a stochastic partial
differential equation. This abstract of the method can be used to apply it as a heuristic
approach. Under the assumption that the characteristic curves exist, one determines a
candidate for the solution, provided that an explicit problem is given. At the end obviously,
one has to verify that the candidate of the solution really solves the problem. Furthermore,
the author of this thesis discusses two questions in Subsection 3.2. below:

• Why do solutions to the stochastic characteristic equations exist?

• What are the corresponding assumptions to Assumption 1.1 and of noncharacteristic
initial data (see Remark 1.2)?

Concerning the first question some results of [Kun97, Chapter 4] has to be recalled, in
particular the framework of stochastic flows and the concept of local processes. As written
in Remark 3.14 below we clarify that the results are given for almost all ω and all space
and time pairs (x, t) with t up to a certain stopping time depending on x and ω. These
stopping times play an important role in finding the inverse process and finally obtain the
solution to the stochastic partial differential equation. This concept is sketched in this
chapter.

3.1. Derivation of the method in a nutshell

In the previous chapter all definitions and results were given and proved on a domain D ⊂
Rd, respectively for space variables in Rd. For working with stochastic partial differential
equations of the form

du = F (x,u,∇u, ○dt)

we have to consider the multivariable case for (x,u,∇u) ∈ R2d+1. Instead of Rd respectively
D ⊂ Rd all results can be extended easily to the space R2d+1. Hence in this chapter
we consider families of continuous semimartingales F (x,u, p, t), (x,u, p) ∈ R2d+1, as
in Definition 2.14. Obviously, the Fréchet spaces (cf. Definition 2.11) and classes of
local characteristics (cf. Definition 2.24 - Definition 2.26) are also defined for indices
(x,u, p) ∈ R2d+1.

Let T > 0 and consider the time interval [0,T]. Let F (x,u, p, t) be a continuous
Ck,δ(R2d+1,R) - semimartingale in the sense of Corollary 2.42 with local characteristic be-
longing to the class (Bk+1,δ,Bk,δ) for some k ≥ 5 and 0 < δ ≤ 1. Hence we can find
(fn(x, t))n≥0 continuous C2 - processes and C1 - semimartinagales with local characteristics
belonging to (B1,0,B1,0) as shown in Theorem 2.39. Furthermore, let g ∈ Ck,δ(Rd,R). We
consider the nonlinear stochastic partial differential equation of first order given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

du = f0(x,u,∇u, t) dt +∑
n≥1

fn(x,u,∇u, t) ○ dWn
t

u∣t=0 = g,
(3.1)
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and perturbed by infinite independent copies of the one-dimensional Brownian motion
(Wn

t )n≥1. Obviously, one can also consider the finite-dimensional case of the form

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

du = f0(x,u,∇u, t) dt +
m

∑
n=1

fn(x,u,∇u, t) ○ dWn
t ,

u∣t=0 = g,
(3.2)

where Wt = (W 1
t , ...,W

m
t ) is an m-dimensional standard Brownian motion as studied in

[Kun84a]. As proved in Theorem 2.39 the above equations are equivalent to the following
expression of the Cauchy problem

⎧⎪⎪⎨⎪⎪⎩

du = F (x,u,∇u, ○dt),
u = g on Γ ∶= {x ∈ Rd × [0,T] ∣x = (x1, ..., xd, t), t = 0}.

(3.3)

Since we consider partial differential equations with perturbations by Brownian motion we
get an ω - dependence in the solution. Therefore the solution to equation (3.3) is denoted
by u(x, t, ω), but for short notation we only write u(x, t). Suppose u is a solution to (3.3)
and at least one-times continuously differentiable with respect to space and time for fixed
ω ∈ Ω. Furthermore, we assume that there exists a curve ξs(r) which maps the point r ∈ Γ
to a point of a neighborhood in Γ at time s. Additionally, we assume ξ0(x) = x for all
x ∈ Rd as the initial condition. Due to these assumptions we define the following functions,
now for fixed ω, r ∈ Rd and s ∈ [0,T]:

(ξs(r,ω), s) ∶= (ξ1
s(r,ω), ..., ξds(r,ω), s),

ηs(r,ω) ∶= u(ξs(r,ω), s),
χis(r,ω) ∶= uξis(ξs(r,ω), s),

χs(r,ω) ∶= (χ1
s(r,ω), ..., χds(r,ω)),

(3.4)

where ξit(r) denotes the i-th component of ξt(r). In the next step we combine (3.3) with
equations (3.4) and obtain

d

dt

⎡⎢⎢⎢⎢⎣
u(ξt(r), t) − u(ξ0(r),0) −

t

∫
0

F (ξ1
s(r), ..., ξds(r), ηs(r), χ1

s(r), ..., χds(r), ○ds)
⎤⎥⎥⎥⎥⎦
= 0.

By similar calculations as in Chapter 1 (cf. (1.15)) we receive a system of (2d+1) stochastic
differential equations (cf. (CE)), but now in the sense of Stratonovich:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dξt = −Fχt(ξ1
t , ..., ξ

d
t , ηt, χ

1
t , ..., χ

d
t , ○dt),

dηt = F (ξ1
t , ..., ξ

d
t , ηt, χ

1
t , ..., χ

d
t , ○dt) − χt ⋅ Fχt(ξ1

t , ..., ξ
d
t , ηt, χ

1
t , ..., χ

d
t , ○dt)

dχt = Fξt(ξ
1
t , ..., ξ

d
t , ηt, χ

1
t , ..., χ

d
t , ○dt) + Fηt(ξ1

t , ..., ξ
d
t , ηt, χ

1
t , ..., χ

d
t , ○dt)χt.

(SCE)

Equivalently we can write (SCE) componentwise for all i = 1, ..., d, as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dξit = −Fχi
t
(ξ1
t , ..., ξ

d
t , ηt, χ

1
t , ..., χ

d
t , ○dt),

dηt = F (ξ1
t , ..., ξ

d
t , ηt, χ

1
t , ..., χ

d
t , ○dt) −

d

∑
i=1

χitFχi
t
(ξ1
t , ..., ξ

d
t , ηt, χ

1
t , ..., χ

d
t , ○dt)

dχit = Fξit(ξ
1
t , ..., ξ

d
t , ηt, χ

1
t , ..., χ

d
t , ○dt) + Fηt(ξ1

t , ..., ξ
d
t , ηt, χ

1
t , ..., χ

d
t , ○dt)χit.

(3.5)

The above stochastic differential equations (SCE) are called stochastic characteristic
equations. Given a point x ∈ Rd and assuming that there exist unique solutions to (SCE)
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starting from x at time t = 0, these solutions solve the corresponding integral equation with
initial function g:

ξt(x) = x −
t

∫
0

Fχs(ξs(x), ηs(x), χs(x), ○ds)

ηt(x) = g(x) −
t

∫
0

χs ⋅ Fχs(ξs(x), ηs(x), χs(x), ○ds) +
t

∫
0

F (ξs(x), ηs(x), χs(x), ○ds)

χt(x) = ∇g(x) +
t

∫
0

Fξs(ξs(x), ηs(x), χs(x), ○ds) +
t

∫
0

Fηs(ξs(x), ηs(x), χs(x), ○ds)χs.

Let us assume that the solutions (ξt(x), ηt(x), χt(x)) exist up to a stopping time T (x).
Furthermore, let the inverse process ξ−1

t of ξt exist up to some stopping time σ(x). Then
we define for almost all ω and for all (x, t) with t < σ(x,ω)

u(x, t) ∶= ηt(ξ−1
t (x)). (3.6)

In Chapter 4 we show (cf. Theorem 4.5 below) that (3.6) is indeed the solution of the
stochastic partial differential equation (3.1) respectively (3.3).

3.2. Existence of solutions to stochastic characteristic
equations

If we compare the stochastic method with the classical one, two questions arise. First, why
should such solutions to (SCE) exist and second, what are the corresponding assumptions
to Assumption 1.1 and of noncharacteristic initial data (see Remark 1.2). To answer
these questions we use the 1-to-1-correspondence between stochastic flows and solutions
of stochastic differential equations. In [Kun97, Chapter 4] we find results considering the
following two cases:

• Given a stochastic flow ϕt (of special type), there exists a unique continuous semi-
martingale F such that ϕt = x + ∫

t
0 F (ϕs,ds) (see e.g. [Kun97, Theorem 4.4.1]).

• Given a semimartingale F (x, t) with corresponding local characteristic belonging to
a certain class, there exists a stochastic flow ϕt (see e.g. [Kun97, Theorem 4.6.5,
Theorem 4.7.3]).

The stochastic characteristic equations (SCE) are stochastic differential equations in the
sense of Stratonovich with the following type of solutions:

Definition 3.1 Let F (x, t), x ∈ Rd, be a family of continuous C(Rd,Rd) - semimartingales
with local characteristic (a, b,At) belonging to (B2,δ,B1,0) for some 0 < δ ≤ 1. Let σ∞ be a
stopping time and x0 ∈ Rd. A continuous local semimartingale ϕt, t ∈ [0, σ∞), with values
in Rd is called a local solution of the Stratonovich stochastic differential equation

ϕt = x0 +
t

∫
0

F (ϕs, ○ds) (3.7)

if

ϕt∧σN = x0 +
t∧σN

∫
0

F (ϕs∧σN , ○ds) a.s.
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is satisfied for any N ∈ N, where (σN)N∈N is a localizing sequence, i.e. σN < σ∞ for any
N ∈ N and σN ↗ σ∞ for N →∞. That means σ∞ is accessible.
If

lim
t↗σ∞

ϕt =∞ holds on {σ∞ < T},

where ∞ denotes the Alexandrov point in Rd, then ϕt is called maximal solution and σ∞
is called the explosion time.

Hence a maximal solution is defined up to a stopping time, the so-called explosion time,
which we formally define next.

Definition 3.2 Let Xt, t ∈ [0, τ), be a local process. The stopping time τ is called terminal
time of the local process Xt. If

lim
t↗τ

∣Xt∣ =∞,

then τ is called explosion time.

Now we present results which ensure the existence and uniqueness of solutions to (SCE)
under the condition that F (x,u, p, t) is a continuous Ck,δ(R2d+1,R) - semimartingale with
local characteristic belonging to (Bk+1,δ,Bk,δ) for some k ≥ 5 and 0 < δ ≤ 1.

We start with an existence and uniqueness result of maximal solutions (see [Kun97, Theo-
rem 3.4.5]) in the sense of Itô. In line with Definition 3.1 we define a maximal solution to
an Itô SDE in the following way.

Definition 3.3 Let F (x, t), x ∈ Rd, be a family of continuous C(Rd,Rd) - semimartingales
with local characteristic (a, b,At) belonging to (B0,δ,B0,δ) for some δ > 0. Let σ∞ be a
stopping time and x0 ∈ Rd. A continuous local process ϕt, t ∈ [0, σ∞), with values in Rd
and adapted to (Ft)t is called a local solution of the Itô stochastic differential equation

ϕt = x0 +
t

∫
0

F (ϕs,ds) (3.8)

if

ϕt∧σN = x0 +
t∧σN

∫
0

F (ϕs∧σN ,ds) a.s.

is satisfied for any N ∈ N, where (σN)N∈N is a localizing sequence, i.e. σN < σ∞ for any
N ∈ N and σN ↗ σ∞ for N →∞. If

lim
t↗σ∞

ϕt =∞ holds on {σ∞ < T},

where ∞ denotes the Alexandrov point in Rd, then ϕt is called maximal solution and
again σ∞ is called the explosion time.

Theorem 3.4 Let F (x, t), x ∈ Rd, be a family of continuous semimartingales with values
in C(Rd,Rd) and local characteristic belonging to (B0,1,B0,1). Then for each t0 ∈ [0,T]
and x0 ∈ Rd the Itô stochastic differential equation given by

ϕt = x0 +
t

∫
t0

F (ϕs,ds)

has a unique maximal solution ϕt, t ∈ [t0, σ∞), where σ∞ is the explosion time of ϕt.
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For the proof see [Kun97, Theorem 3.4.5]. Based on the representation result Corollary 2.41
we apply the above theorem to the case of infinite independent copies of a one-dimensional
Brownian motion.

Corollary 3.5 Let (Wn
t )n≥1 be infinite independent copies of a one-dimensional standard

Brownian motion. Let fn, n ≥ 0, be measurable and predictable random fields. Let F (x, t),
x ∈ Rd, be a family of continuous semimartingales with values in C(Rd,Rd) and local
characteristic

⎛
⎝
(∑
n≥1

f in(x, t)f jn(y, t))
i,j=1,...,d

, f0(x, t), t
⎞
⎠

belonging to (B0,1,B0,1). Then for any t0 ∈ [0,T] and x0 ∈ Rd the Itô stochastic differential
equation given by

ϕt = x0 +
t

∫
t0

f0(ϕs, s) ds +∑
n≥1

t

∫
t0

fn(ϕs, s) dWn
s

has a unique maximal solution ϕt, t ∈ [t0, σ∞), with explosion time σ∞ of ϕt.

Remark 3.6 The finite-dimensional version of Corollary 3.5 is a consequence of the clas-
sical existence and uniqueness result for SDEs as presented for example in [Oks07, Theorem
5.2.1] or [Kun97, Theorem 3.4.1]. The class B0,1

ub implies that the drift term f0 and the
diffusion terms f1, f2, ... are uniformly Lipschitz continuous and of uniformly linear growth.
We use [Kun97, Remark after Theorem 3.2.4] to extend the result to B0,1

b . By truncation
as formulated in the proof of Theorem 3.4.5 in [Kun97] the result is also valid for the class
B0,1.

Since the equations (SCE) are given in the sense of Stratonovich, we have to make use of
the Itô-Stratonovich formula as stated in Theorem 2.35. Then we extend the above result
to the setting of Stratonovich as proved in [Kun97, Theorem 3.4.7].

Theorem 3.7 Let F (x, t), x ∈ Rd, be a family of continuous C1(Rd,Rd) - semimartingales
with local characteristic (a, b,At) belonging to (B2,δ,B1,0) for some 0 < δ ≤ 1. Then for
each t0 ∈ [0,T] and x0 ∈ Rd the Stratonovich equation given by

ϕt = x0 +
t

∫
t0

F (ϕs, ○ds) (3.9)

has a unique maximal solution ϕt, t ∈ [t0, σ∞), in the sense of Definition 3.1.

Due to [Kun97, Theorem 4.7.3] such maximal solutions can be characterized as stochastic
flows which are defined in the following sense. Let here ○ denote the composition of two
functions.

Definition 3.8 Let ϕs,t(x), s, t ∈ [0,T], x ∈ Rd, be a continuous random field on (Ω,F , P ).
Then for almost all ω, ϕs,t(⋅, ω) = ϕs,t(ω) ∶ Rd → Rd defines a family of continuous maps
for all s, t ∈ [0,T]. (ϕs,t(ω))s,t∈[0,T] is called a stochastic flow of homeomorphisms if
there exists a null set N ⊂ Ω such that for all ω ∈ N∁ the family (ϕs,t(ω))s,t∈[0,T] defines a
flow of homeomorphisms, i.e. it satisfies:

(i) ϕs,u(ω) = ϕt,u(ω) ○ ϕs,t(ω) for all 0 ≤ s ≤ t ≤ u ≤ T,

(ii) ϕs,s(⋅, ω) = Id(⋅) for all s ∈ [0,T], where Id is the identity map,
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(iii) ϕs,t(ω) ∶ Rd → Rd is a homeomorphism for all s, t ∈ [0,T].

Consider the set of all homeomorphisms on Rd defined by

G ∶= {f ∶ Rd → Rd ∣ f is bijective, continuous and f−1 is continuous}

and let the product of Ψ1,Ψ2 ∈ G be the composite function Ψ1 ○Ψ2. Then (G, ○) becomes
obviously a group as stated e.g. in [Fis10, 2.1.4, Satz]. By defining a metric dG on G with

dG(Ψ1,Ψ2) ∶=
∞
∑
i=1

1

2i
⎛
⎝

sup
∣x∣≤i

∣Ψ1(x) −Ψ2(x)∣

1 + sup
∣x∣≤i

∣Ψ1(x) −Ψ2(x)∣
+

sup
∣x∣≤i

∣Ψ−1
1 (x) −Ψ−1

2 (x)∣

1 + sup
∣x∣≤i

∣Ψ−1
1 (x) −Ψ−1

2 (x)∣
⎞
⎠
,

we obtain that G is a complete topological group (cf. [Kun97, Chapter 4, 4.1 Preliminar-
ies]). In other words, a stochastic flow of homeomorphisms is a continuous random field
with values in G satisfying properties (i) and (ii) of Definition 3.8. Now we consider the
subgroup Gk of G which consists of all Ck - diffeomorphisms. Define

Gk ∶= {f ∶ Rd → Rd ∣ f, f−1 are k -times continuously differentiable}

and let

dk(Ψ1,Ψ2) ∶= ∑
∣α∣≤k

∞
∑
i=1

1

2i
⎛
⎝

sup
∣x∣≤i

∣Dα
xΨ1(x) −Dα

xΨ2(x)∣

1 + sup
∣x∣≤i

∣Dα
xΨ1(x) −Dα

xΨ2(x)∣
⎞
⎠

+ ∑
∣α∣≤k

∞
∑
i=1

1

2i
⎛
⎝

sup
∣x∣≤i

∣Dα
xΨ−1

1 (x) −Dα
xΨ−1

2 (x)∣

1 + sup
∣x∣≤i

∣Dα
xΨ−1

1 (x) −Dα
xΨ−1

2 (x)∣
⎞
⎠

be the corresponding metric. Then (Gk, dk) is a complete separable metric space.

Definition 3.9 A continuous random field ϕs,t(x), s, t ∈ [0,T], x ∈ Rd, is called a stochas-
tic flow with values in Gk if ϕs,t takes values in Gk and if properties (i) and (ii) of
Definition 3.8 are fulfilled.

Definition 3.10 Let ϕs,t, s, t ∈ [0,T], be a stochastic flow with values in Gk. If we define
N ∶= {A ∈ F ∣P (A) = 0} and

F̃s,t ∶= ⋂
ε>0

σ(ϕu,v ∣ s − ε ≤ u, v ≤ t − ε),

the filtration Fs,t ∶= σ(F̃s,t ∪N ) is a filtration depending on two parameters and is called
filtration generated by the flow ϕs,t.

Definition 3.11 Let ϕs,t, s, t ∈ [0,T], be a stochastic flow with values in Gk for some
k ∈ N0. Let (Fs,t)0≤s≤t≤T be the filtration generated by ϕs,t. The forward part ϕs,t,
0 ≤ s ≤ t ≤ T, is called forward Ck,δ - semimartingale flow, if for every s ∈ [0,T] the
stochastic flow ϕs,t, t ∈ [s,T], is a continuous Ck,δ(Rd,Rd) - semimartingale adapted to
(Fs,t)t∈[s,T].

It follows by Definition 3.11 that semimartingale flows are in particular semimartingales
and can be characterized by local characteristics (e.g. [Kun97, Theorem 4.4.1]).
Furthermore, we have the following important embeddings of the classes of local char-
acteristics. Due to Ck+1 ⊂ Ck for k ≥ 2 one can prove for k ≥ 2 and some 0 < δ ≤ 1
that
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• (Bk+1,δ,Bk,δ) ⊆ (B2,δ,B1,0)

• (Bk,δ,Bk−1,δ) ⊆ (B2,δ,B1,0)

holds. For the reader’s convenience the proofs are given in Appendix A, see Lemma A.10.

Definition 3.12 Let F (x, t), t ∈ [0, τ(x)), x ∈ Rd, be a local random field. If for the
domain

Dt(ω) ∶= {x ∈ Rd ∣ τ(x,ω) > t}

and for almost all ω the map F (⋅, t, ω) ∶ Dt(ω) → R is a Ck,δ - function for any t, then
F (x, t) is called a local Ck,δ - process.

By Definition 2.8 we know that τ(x) is lower semicontinuous. Hence Dt(ω) is open in Rd.

Definition 3.13 Let F (x, t), x ∈ Rd, t ∈ [0, τ(x)), be a continuous local Ck,δ - process
and (τn(x))n≥1 be an associated sequence of stopping times increasing to τ(x). Then
F (x, t) is called a continuous local Ck,δ - semimartingale if the stopped processes
Dα
xF (x, t ∧ τn(x)), x ∈ Rd, ∣α∣ ≤ k, n ∈ N, are all continuous semimartingales.

Remark 3.14 In the previous definitions we change the domain of the corresponding pro-
cesses and name them local. For almost all ω we consider pairs (x, t) such that x ∈ Dt(ω).
For continuous local processes we obtain results and equations which hold pathwise, i.e. for
almost all ω and all

(x, t) ∈ {(x̃, t̃) ∈ Rd × [0,T] ∣ τ(x̃, ω) > t̃}

the results and equations are satisfied. One should note that we get statements almost
surely, but τ(x,ω) could be very small and hence Dt(ω) could be a very small set.

The next result ([Kun97, Theorem 4.7.3]) shows that maximal solutions of Stratonovich
equation (3.9) are in particular stochastic flows. It is one of the basic results concerning
the 1-to-1 - correspondence between stochastic flows and solutions to SDEs.

Theorem 3.15 Let F (x, t), x ∈ Rd, be a family of continuous C(Rd,Rd) - semimartingales
with local characteristic belonging to (Bk+1,δ,Bk,δ) for some k ≥ 1, 0 < δ ≤ 1. Then the
system of maximal solutions (which exists due to Theorem 3.7) of Stratonovich equation
(3.9) defines a forward stochastic flow of local Ck - diffeomorphisms. Furthermore, it is a
continuous local Ck,ε - semimartingale flow for any ε < δ.

The proof is a consequence of [Kun97, Theorem 4.7.2]. Now we return to our system (SCE)
given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dξt = −Fχt(ξt, ηt, χt, ○dt),
dηt = F (ξt, ηt, χt, ○dt) − χt ⋅ Fχt(ξt, ηt, χt, ○dt)
dχt = Fξt(ξt, ηt, χt, ○dt) + Fηt(ξt, ηt, χt, ○dt)χt.

In the underlying situation F (x,u, p, t), (x,u, p) ∈ R2d+1, is a family of continuous
Ck,δ(R2d+1,R) - semimartingales for some k ≥ 5, 0 < δ ≤ 1 with local characteristic (a, b,At)
belonging to (Bk+1,δ,Bk,δ). Theorem C.2 ensures that the Stratonovich integral can be
differentiate with respect to the parameters (x,u, p) ∈ R2d+1. By Definition 2.11 of the
Fréchet space Ck,δ we know that the k-th derivative of F is in particular δ-Hölder con-
tinuous, hence the partial derivatives Fx, Fu, Fp of F (x,u, p, t) considered in (SCE) are
continuous Ck−1,δ - semimartingales. The same argumentation offers that the correspond-
ing local characteristics of the partial derivatives of F belong to (Bk,δ,Bk−1,δ) (cf. [Kun97,
Theorem 4.6.5 and the proof]). Since Ck−1,δ ⊂ C1 and (Bk,δ,Bk−1,δ) ⊆ (B2,δ,B1,0) hold for
k ≥ 2 and 0 ≤ δ ≤ 1, we are in the situation of Theorem 3.7 and therefore we obtain existence
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and uniqueness of maximal solutions to (SCE). Therefore the first question, namely why
should such solutions to (SCE) exist, is answered.
One should note that there exist maximal solutions (ξt(x), ηt(x), χt(x)) for almost all ω
and all (x, t) with t < T (x), where T (x) denotes the explosion time of the maximal solu-
tions. In Chapter 1 we have seen that Assumption 1.1 and Remark 1.2 on noncharacteristic
initial data are necessary to be able to apply the inverse function theorem. In the stochas-
tic case we compensate Assumption 1.1 and Remark 1.2 by using stopping times and a
restriction to a proper domain. Fix ω ∈ Ω. Let us consider one of the maximal solutions
to (SCE) namely

ξt(⋅, ω) ∶ {x ∈ Rd ∣T (x,ω) > t}→ Rd.

Due to Theorem 3.15 we conclude that ξt defines a forward stochastic flow of local Ck−1 -
diffeomorphisms and in particular it is a continuous local Ck−1,ε - semimartingale flow for
ε < δ. Furthermore, the explosion time T (x) is by Definition 3.12 and Definition 2.8 a
lower semicontinuous stopping time, hence the domain {x ∈ Rd ∣T (x,ω) > t} is an open set.
Le us consider the Jacobian matrix of ξt(x). The Jacobian matrixDξt(x) could be singular,
i.e.

detDξt(x,ω) = 0

for some t < T (x,ω). So the solution ξt(⋅, ω) would not be a diffeomorphism. Of course, if
detDξt(x) ≠ 0 for all t < T (x), we are able to find ξ−1

t . Therefore we define the following
stopping times

τinv(x) ∶= inf{t ∈ (0,T] ∣ detDξt(x) = 0}
τ(x) ∶= τinv(x) ∧ T (x),

(3.10)

for x ∈ Rd. From time t up to τinv(x) the inverse function of ξt(x) exists. The stopping times
τ(x), x ∈ Rd, are accessible and lower semicontinuous (cf. Definition 2.5 and Definition
2.7) as proved in Lemma B.1 for the reader’s convenience. By the definition of τ(x) we
have

lim
t↗τ(x)

detDξt(x) = 0

if τ(x) < T (x) for x ∈ Rd. By restricting ξt to

ξt∣{τ>t}(⋅, ω) ∶ {x ∈ Rd ∣ τ(x) > t}→ Rd,

ξt(⋅, ω) becomes a diffeomorphism and the inverse function ξ−1
t exists. Similarly one in-

troduces an adjoint stopping time for the inverse process ξ−1
t to ensure that the inverse

process takes values in the certain domain of the process ξt. Let us recall the domains and
codomains of ξt and ξ−1

t , respectively,

ξt ∶ {x ∈ Rd ∣ τ(x) > t}→ {ξt(x) ∈ Rd ∣x ∈ {z ∣ τ(z) > t}}
ξ−1
t ∶ {y ∈ Rd ∣ y ∈ ξt({x ∈ Rd ∣ τ(x) > t})}→ {x ∈ Rd ∣ τ(x) > t}.

Hence for all fixed t the curve ξt(x) defined on {x ∣ τ(x) > t} has an inverse process. Now
we define

σ(y) ∶ = inf {t ≥ 0 ∣ y ∉ ξt({x ∣ τ(x) > t})},

as the first time when y is no longer an element of ξt({x ∣ τ(x) > t}). Consequently
(ξ−1
t )t∈[0,σ) is well-defined and maps {y ∈ Rd ∣σ(y) > t} into {x ∈ Rd ∣ τ(x) > t}. The

stopping time σ is also called adjoint stopping time.
To get an idea of the construction of ξ−1

t , the terminology of an inverse process is convenient,
but not precise. The aim is to define a local process (ψt)t satisfying the properties for every
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t to be the inverse of ξt. Hence for all y ∈ Rd we define local processes ψt(y), t ∈ [0, σ̂(y)),
which satisfy

ψt(ξt(x)) = x and ξt(ψt(x)) = x,

and σ̂ denotes its explosion time. As detailed written in the next chapter (cf. Lemma
4.8 below), we can prove that σ = σ̂ a.s. for all y ∈ Rd. Therefore the inverse process
ξ−1
t (x) ∶= ψt(x) exists for t < σ(x).

The local solution to (3.1) respectively (3.3) can be defined by (3.6) for almost all
ω and all (x, t) with t < σ(x,ω). Therefore the method of stochastic characteristics is
applicable. The corresponding stochastic characteristic equations (SCE) are of the same
type as in the classical method. For the existence of solutions to (SCE) we have to assume
that the semimartingales takes values in C1 and that the local characteristic belongs at
least to (B2,δ,B1,δ) for some 0 < δ ≤ 1. For the main theorem, which we will prove in the
next chapter, this regularity assumption is not enough (cf. Theorem 4.5 below).
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4. The existence and uniqueness result of
H. Kunita

In this chapter we state the main existence and uniqueness result of H.Kunita under
rigorous conditions and prove it in detail (see Theorem 4.5 below). Herein, in particular
a continuous Ck,δ-valued semimartingale for some k ≥ 5 and 0 < δ ≤ 1 is necessary. The
main tool for the proof is Lemma 4.8 below, which is also proved in detail. As discussed
also in Chapter 3 we give the results always for almost all ω and all pairs (x, t) for t up
to a certain stopping time. From our point of view this is necessary since otherwise the
solution is not well-defined.

4.1. The main theorem
In this part we recall the existence and uniqueness result based on the method of stochastic
characteristics as given in the book Stochastic flows and stochastic differential equations of
H.Kunita [Kun97] in a detailed way. We start with the following deterministic equation
which is of the same type as (1.10) in Chapter 1:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂u

∂t
= F (x,u, ux, t),

u∣t=0 = g.
(4.1)

By a generalization of the method of characteristics to the stochastic setting, we want to
look at a similar type of Cauchy problem. Therefore we consider the equation

{
du = F (x,u,∇u, ○dt),

u∣t=0 = g.
(4.2)

Equation (4.2) is equivalent to the following nonlinear stochastic partial differential equa-
tion of first order given in integral form by

u(x, t) = g(x) +
t

∫
0

F(x,u(x, r),∇u(x, r), ○dr). (4.3)

As proved in Theorem 2.39, respectively Corollary 2.42, we find continuous C2 - processes
and C1 - semimartingales (fn(x,u, p, t))n≥0 such that

F (x,u, p, ○dt) = B(x,u, p,dt) +M(x,u, p, ○dt)
= f0(x,u, p, t) dAt +∑

n≥1

fn(x,u, p, t) ○ dMn
t .

Hence in this special case equation (4.2) corresponds to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

du = f0(x,u,∇u, t) dAt +∑
n≥1

fn(x,u,∇u, t) ○ dMn
t ,

u(x,0) = g(x).
(4.4)

In the special case of Brownian motion with At = t, Mn
t =Wn

t for all n ≥ 1 and for a family
of semimartingales F (x,u, p, t), (x,u, p) ∈ R2d+1, we find a decomposition as before by

F (x,u, p, ○dt) = f0(x,u, p, t) dt +∑
n≥1

fn(x,u, p, t) ○ dWn
t .
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for (x,u, p) ∈ Rd ×R ×Rd. Hence equation (4.2) corresponds to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

du = f0(x,u,∇u, t) dt +∑
n≥1

fn(x,u,∇u, t) ○ dWn
t ,

u(x,0) = g(x).
(4.5)

To study the existence of solutions we first give the definition of a local solution to equation
(4.3).

Definition 4.1 Let T ∶ Rd × Ω → [0,T] be a stopping time such that T (x) is accessible
and lower semicontinuous. A local R - valued random field u(x, t) is called local solution
of (4.3) with initial function g(⋅) ∈ C1(Rd,R) if u(x, t), 0 ≤ t < T (x), is a local C1,ε -
semimartingale for some ε > 0 and for almost every ω and all (x, t) with t < T (x,ω) the
equation

u(x, t) = g(x) +
t

∫
0

F(x,u(x, r),∇u(x, r), ○dr)

= g(x) +
t

∫
0

f0(x,u(x, r),∇u(x, r), r) dAr

+∑
n≥1

t

∫
0

fn(x,u(x, r),∇u(x, r), r) ○ dMn
r

(4.6)

is satisfied.

Definition 4.2 The stochastic characteristic system (cf. (SCE)) associated with (4.3) is
given by

dξt = −Fχt(ξt, ηt, χt, ○dt)

= −∂f0

∂χt
(ξt, ηt, χt, t) dAt −∑

n≥1

∂fn
∂χt

(ξt, ηt, χt, t) ○ dMn
t ,

dηt = F (ξt, ηt, χt, ○dt) − χt ⋅ Fχt(ξt, ηt, χt, ○dt)

= (f0(ξt, ηt, χt, t) − χt ⋅
∂f0

∂χt
(ξt, ηt, χt, t)) dAt

+∑
n≥1

(fn(ξt, ηt, χt, t) − χt ⋅
∂fn
∂χt

(ξt, ηt, χt, t)) ○ dMn
t ,

dχt = Fξt(ξt, ηt, χt, ○dt) + Fηt(ξt, ηt, χt, ○dt)χt

= (∂f0

∂ξt
(ξt, ηt, χt, t) +

∂f0

∂ηt
(ξt, ηt, χt, t)χt) dAt

+∑
n≥1

(∂fn
∂ξt

(ξt, ηt, χt, t) +
∂fn
∂ηt

(ξt, ηt, χt, t)χt) ○ dMn
t ,

(4.7)

where (ξt, ηt, χt) are processes given in Chapter 3 (see equations (3.4) and (SCE)).

Remark 4.3 Equation (4.7) forms a (2d+1)-dimensional system of stochastic differential
equations, i.e. it can be rewritten in the form

⎛
⎜
⎝

dξt
dηt
dχt

⎞
⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

dξ1
t

⋮
dξdt
dηt
dχ1

t

⋮
dχdt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−Fχ1
t
(ξt, ηt, χt, ○dt)

⋮
−Fχd

t
(ξt, ηt, χt, ○dt)

F (ξt, ηt, χt, ○dt) − χt ⋅ Fχt(ξt, ηt, χt, ○dt)
Fξ1t (ξt, ηt, χt, ○dt) + Fηt(ξt, ηt, χt, ○dt)χ

1
t

⋮
Fξdt

(ξt, ηt, χt, ○dt) + Fηt(ξt, ηt, χt, ○dt)χdt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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As introduced in Chapter 3 the solutions to the stochastic characteristic equations (4.7)
solve the corresponding integral equations

ξt(x) = x −
t

∫
0

Fχs(ξs(x), ηs(x), χs(x), ○ds),

ηt(x) = g(x) −
t

∫
0

χs ⋅ Fχs(ξs(x), ηs(x), χs(x), ○ds)

+
t

∫
0

F (ξs(x), ηs(x), χs(x), ○ds),

χt(x) = ∇g(x) +
t

∫
0

Fξs(ξs(x), ηs(x), χs(x), ○ds)

+
t

∫
0

Fηs(ξs(x), ηs(x), χs(x), ○ds)χs,

(4.8)

with initial function g ∈ Ck,δ(Rd,R). Under the assumption that these integral equations
are solvable for almost all ω and (x, t) with 0 ≤ t < T (x,ω) we obtain the stochastic
characteristic curve (ξt, ηt, χt).

If F (x,u, p, t), (x,u, p) ∈ R2d+1, is a family of continuous Ck,δ - semimartingales with local
characteristic belonging to the class (Bk+1,δ,Bk,δ) for some k ≥ 5 and 0 < δ ≤ 1, then
there exist maximal solutions to (4.8) as we have seen in Subsection 3.2. Next, we define
stopping times as in Chapter 3 in a formal way.

Definition 4.4 Let T (x) be the explosion time of the maximal solutions (ξt, ηt, χt). Then
we define for all x, y ∈ Rd the stopping times

τinv(x) ∶= inf {t > 0 ∣ detDξt(x) = 0},
τ(x) ∶= τinv(x) ∧ T (x),
σ(y) ∶= inf {t > 0 ∣ y ∉ ξt({x ∈ Rd ∣ τ(x) > t})},

where Dξt denotes the Jacobian matrix.

Now we state the main result Theorem 6.1.5 of [Kun97] in the following rigorous version.

Theorem 4.5 Let (Ω,F , P ) be a separable and complete probability space. Let
F (x,u, p, t), (x,u, p) ∈ R2d+1, be a family of continuous Ck,δ(R2d+1,R) - semimartingales
with local characteristic (a, b,At) belonging to the class (Bk+1,δ,Bk,δ) for some k ≥ 5 and
0 < δ ≤ 1. Let g be a function in Ck,δ(Rd,R). Let (ξt, ηt, χt) be the stochastic charac-
teristic curve solving (4.8). Then u(x, t) defined for almost all ω and all (x, t) such that
t ∈ [0, σ(x,ω)) by

u(x, t) ∶= ηt(ξ−1
t (x)) (4.9)

is a unique local solution of (4.3). Furthermore, u(x, t) is a continuous local Ck−1,ε -
semimartingale for some ε > 0.

Obviously, one can formulate the main theorem applied to the classical case of Brownian
motion (4.5) using Theorem 2.39 in the following way.
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Corollary 4.6 Let (Ω,F , P ) be a separable and complete probability space. Let (Wn
t )n≥1

be infinite independent copies of a standard Brownian motion. Let F (x,u, p, t), (x,u, p) ∈
R2d+1, be a family of continuous Ck,δ(R2d+1,R) - valued semimartingales with local char-
acteristic (a, b,At) belonging to the class (Bk+1,δ,Bk,δ) for some k ≥ 5 and 0 < δ ≤ 1. Let
(fn(x,u, p, t))n≥0 be measurable predictable Ck,δ - processes such that

(a, b,At) =
⎛
⎝
(∑
n≥1

fn(x,u, p, t)fn(x̃, ũ, p̃, t)), f0(x,u, p, t), t
⎞
⎠
.

That means we assume

BM-HP (i) ∑
n≥0

fn(⋅, ⋅, ⋅, t) is continuous in t with values in Ck,δ(R2d+1,R),

BM-HP (ii) ( ∑
n≥1

fn(x,u, p, t)fn(x̃, ũ, p̃, t)) is non-negative definite

and symmetric,
BM-HP (iii) ( ∑

n≥1
fn(x,u, p, t)fn(x̃, ũ, p̃, t)) has a modification which is a

predictable process with values in C̃k+1,δ(R2d+1 ×R2d+1,R),
BM-HP (iv) for all compact subsets K ⊂ R2d+1 ×R2d+1

T

∫
0
∥ ∑
n≥1

fn(t)fn(t)∥
∼

(k+1)+δ,K
dt <∞ holds a.s.,

BM-HP (v) f0(x,u, p, t, ω) has a modification which is a
predictable process with values in Ck,δ(R2d+1,R),

BM-HP (vi) for all compact subsets K ⊂ R2d+1

T

∫
0
∥f0(t)∥

k+δ,K
dt <∞ holds a.s.

Let g(⋅) ∈ Ck,δ(Rd,R) and (ξt(x), ηt(x), χt(x)) be the system of maximal solutions solving
(4.8). Then the unique local solution u(x, t) to the stochastic partial differential equation

⎧⎪⎪⎪⎨⎪⎪⎪⎩

du = f0(x,u(x, t),∇u(x, t), t) dt +∑
n≥1

fn(x,u(x, t),∇u(x, t), t) ○ dWn
t

u(x,0) = g(x)

is defined for almost all ω and all (x, t) with t ∈ [0, σ(x,ω)) by

u(x, t) ∶= ηt(ξ−1
t (x)).

Further it is a continuous local Ck−1,ε - semimartingale for some ε > 0.

4.2. Tools for the proof
One of the main tools for the proof of Theorem 4.5 is the following generalized Itô formula
stated as Theorem 3.3.2 in [Kun97].

Theorem 4.7 Let F (x, t), x = (x1, ..., xd) ∈ Rd, be a family of continuous C3(Rd,Rd) -
processes and continuous C2(Rd,Rd) - semimartingales with local characteristic belonging to
the class (B2,δ,B1,0) for some 0 < δ ≤ 1. Let gt be a continuous Rd - valued semimartingale.
Then the formula

F (gt, t) − F (g0,0) =
t

∫
0

F (gs, ○ds) +
d

∑
i=1

t

∫
0

∂F

∂xi
(gs, s) ○ dgis

is satisfied, where git denotes the i-th component of gt = (g1
t , ..., g

d
t ).
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The proof is given in Appendix C. As we have seen in Theorem 4.5 the solution (4.9) con-
tains an inverse process denoted by ξ−1

t . The name inverse process could be misinterpreted,
therefore we want to call attention that ξ−1

t is a process which satisfies for almost all ω
and (x, t) with t < τ(x) the condition to be the right inverse and left inverse to ξt(x). To
be precise we signify this process by ψt and define ξ−1

t ∶= ψt. Nevertheless, we call ψt the
inverse map as in [Kun97]. The following result can be found in [Kun97, Lemma 6.1.1].
We follow the ideas of the proof therein and formulate it in a detailed way.

Lemma 4.8

(i) The map ξt ∶ {x ∈ Rd ∣ τ(x,ω) > t}→ Rd is a Ck−1 - diffeomorphism for every t a.s.

(ii) The inverse map ξ−1
t (y), t < σ(y), is a continuous local Ck−1 - process and a local

Ck−2,ε - semimartingale for some ε > 0 and satisfies for almost all ω and all (y, t)
with t < σ(y,ω)

⎧⎪⎪⎨⎪⎪⎩

dξ−1
t = (Dξt(ξ−1

t (y)))−1
Fχt(y, ηt(ξ−1

t (y)), χt(ξ−1
t (y)), ○dt)

ξ−1
0 (y) = y.

(4.10)

(iii) σ(y) is an accessible, lower semicontinuous stopping time such that if σ(y) < T, we
have

lim
t↗σ(y)

∣detDξ−1
t (y)∣ =∞ or lim

t↗σ(y)
ξ−1
t (y) ∉ {x ∣T (x) > σ(y)}.

Proof. Let {Mn
t }n≥1 be an orthogonal basis of continuous, square integrable martingales.

We separate the proof into 7 steps:

Step 1: Definition of G and ψt
We consider a Stratonovich equation based on the following function:

G(x, t) ∶=
t

∫
0

(Dξs(x))
−1
Fχs(ξs(x), ηs(x), χs(x), ○ds). (4.11)

By using the representation result Theorem 2.39 we are able to rewrite G(x, t) using
Remark 2.37 as

t

∫
0

G(x, ○ds) = G(x, t) −G(x,0)

=
t

∫
0

(Dξs(x))
−1
Fχs(ξs(x), ηs(x), χs(x), ○ds)

=
t

∫
0

(Dξs(x))
−1 ∂f0

∂χs
(ξs(x), ηs(x), χs(x), s) dAs

+
t

∫
0

(Dξs(x))
−1
∑
n≥1

∂fn
∂χs

(ξs(x), ηs(x), χs(x), s) ○ dMn
s .

For y ∈ Rd we consider the following stochastic differential equation in the sense of
Stratonovich

ψt(y) = y +
t

∫
0

G(ψs, ○ds), (4.12)
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which is equal to

ψt(y) = y +
t

∫
0

G(ψs(y), ○ds)

= y +
t

∫
0

(Dξs(ψs(y)))
−1
Fχs(ξs(ψs(y)), ηs(ψs(y)), χs(ψs(y)), ○ds)

= y +
t

∫
0

(Dξs(ψs(y)))
−1 ∂f0

∂χs
(ξs(ψs(y)), ηs(ψs(y)), χs(ψs(y)), s) dAs

+
t

∫
0

(Dξs(ψs(y)))
−1
∑
n≥1

∂fn
∂χs

(ξs(ψs(y)), ηs(ψs(y)), χs(ψs(y)), s) ○ dMn
s .

Step 2: ψt is a local Ck−2,ε - semimartingale
The underlying F (x,u, p, t) is Ck,δ(R2d+1,R) - valued, hence Fp(x,u, p, t) is Ck−1,δ - valued.
For the maximal solution ξt itself there exists also a modification which is a Ck−1,ε - valued
semimartingale (cf. Chapter 3, Theorem 3.15), hence the Jacobian matrix (Dξt)−1 is a
Ck−2,ε - semimartingale. The considered G in (4.11) is again a Ck−2,ε - semimartingale. By
Theorem 3.7 we obtain the existence of a unique maximal solution for almost all ω and all
(y, t), t ∈ [0, σ̂(y)) denoted by ψt(y) such that ψ0(y) = y and ψt(y) ∈ {x ∣ τ(x) > t}, since G
is in particular a continuous C1 - semimartingale. Here σ̂(y) denotes the explosion time of
ψt. σ̂(y) is in particular an accessible and lower semicontinuous stopping time by definition.
Due to Theorem 3.15 the solution ψt is a local Ck−2,ε - semimartingale.

Step 3: Study of stopping times
Based on Definition 4.4 we should remember the underlying situation:

• ξt(x) is a maximal solution to (4.7) defined for almost all ω and all (x, t) with
t < T (x,ω), up to an explosion time T (x) such that

lim
t↗T (x)

ξt(x) =∞, if T (x) < T.

• ψt(y) is a maximal solution to (4.12) defined for almost all ω and all (y, t) with
t < σ̂(y,ω), up to an explosion time σ̂(y) such that

lim
t↗σ̂(y)

ψt(y) =∞, if σ̂(y) < T.

Let us fix ω. For reasons of notation we drop the ω-dependence in each process and stopping
time. Now we want to ask, what can happen if t goes to σ̂(y). Due to the property

ψt(y) ∈ {x ∣ τ(x) > t} ∀ t ∈ [0, σ̂(y))

of solution ψt as written in Step 2 we observe for t↗ σ̂(y) two possible cases: On the one
hand τinv(x) could coincide with σ̂ and hence we conclude

lim
t↗σ̂(y)

∣detDξt(ψt(y))∣ = 0.

On the other hand σ̂ could be the explosion time T (x) and hence we have in particular

lim
t↗σ̂(y)

ψt(y) ∉ {x ∣T (x) > σ̂(y)}.
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In summary we have for all y ∈ Rd

lim
t↗σ̂(y)

∣detDξt(ψt(y))∣ = 0 or lim
t↗σ̂(y)

ψt(y) ∉ {x ∣T (x) > σ̂(y)}. (4.13)

Step 4: ψt is right inverse
Remember that ξt(x) is one of the maximal solutions solving

ξt(x) = x −
t

∫
0

Fχs(ξs, ηs, χs, ○ds). (4.14)

By using the notation ξt(r) = ξ(r, t) equation (4.14) can be rewritten as

t

∫
0

ξ(x, ○ds) = ξt(x) − ξ0(x) = −
t

∫
0

Fχs(ξs, ηs, χs, ○ds). (4.15)

By an application of the generalized Itô formula (Theorem 4.7) we obtain for ξt(x)

ξt(ψt) − ξ0(ψ0) =
t

∫
0

ξ(ψr, ○dr) +
d

∑
i=1

t

∫
0

∂ξr
∂xi

(ψr) ○ dψir.

and by (4.12) this leads to

ξt(ψt) − ξ0(ψ0) = −
t

∫
0

Fχr(ξr(ψr), ηr(ψr), χr(ψr), ○dr) +
d

∑
i=1

t

∫
0

∂ξr
∂xi

(ψr) ○ dψir

= −
t

∫
0

Fχr(ξr(ψr), ηr(ψr), χr(ψr), ○dr) +
d

∑
i=1

t

∫
0

∂ξr
∂xi

(ψr) Gi(ψr, ○dr).

By using the definition (4.11) we finally get

ξt(ψt) − ξ0(ψ0) = −
t

∫
0

Fχr(ξr(ψr), ηr(ψr), χr(ψr), ○dr)

+
t

∫
0

Dξr(ψr)(Dξr(ψr))−1Fχr(ξr(ψr), ηr(ψr), χr(ψr), ○dr)

= −
t

∫
0

Fχr(ξr(ψr), ηr(ψr), χr(ψr), ○dr)

+
t

∫
0

Fχr(ξr(ψr), ηr(ψr), χr(ψr), ○dr) = 0.

As a conclusion we obtain
ξt(ψt) = ξ0(ψ0),

and receive that ψt is the right inverse to ξt, since

ξt(ψt(y)) = ξ0(ψ0(y)) = ξ0(y) = y.

holds for almost all ω and all (y, t) with t < σ̂(y,ω).
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Step 5: ψt is left inverse
The Jacobian matrix Dξt(ψt(y)) is non-singular for t < σ̂(y). By the implicite function
theorem [Lan96, Chapter XIV, Theorem 1.2] we conclude that ψt is a continuous Ck−1 -
process. Now we define the stopping time

τ̂(x) ∶= inf {t > 0 ∣ ξt(x) ∉ {y ∣ σ̂(y) > t} or ∣detDψt(ξt(x))∣ =∞} ∧ τ(x). (4.16)

The aim is to show that ψt is also the left inverse for almost all ω and (x, t) with t < τ̂(x,ω)
i.e.

ψt(ξt(x)) = x.

If we differentiate ξt(ψt(y)) = y, we obtain by the classical chain rule

I =Dξt(ψt(y))Dψt(y).

By plugging in ξt(x) and building the inverse we obviously obtain

I = (Dψt(ξt(x)))
−1(Dξt(ψt(ξt(x))))

−1
.

Hereby equation (4.14) can be written as

dξt = −Fχt(ξt, ηt, χt, ○dt)
= −IFχt(ξt, ηt, χt, ○dt)

= −(Dψt(ξt(x)))
−1(Dξt(ψt(ξt(x))))

−1
Fχt(ξt, ηt, χt, ○dt).

(4.17)

By application of the generalized Itô formula (Theorem 4.7) to ψt(ξt) we obtain

ψt(ξt) − ψ0(ξ0) =
t

∫
0

ψ(ξs, ○ds) +
d

∑
i=1

t

∫
0

∂ψs
∂xi

(ξs) ○ dξis.

By using (4.12) and (4.17) we receive

ψt(ξt(x)) − ψ0(ξ0(x))

=
t

∫
0

(Dξs(ψs(ξs(x))))
−1

⋅ Fχs(ξs(ψs(ξs(x))), ηs(ψs(ξs(x))), χs(ψs(ξs(x))), ○ds)

−
t

∫
0

(Dψs(ξs(x)))(Dψs(ξs(x)))
−1

⋅ (Dξs(ψs(ξs(x))))
−1
Fχs(ξs(x), ηs(x), χs(x), ○ds)

=
t

∫
0

(Dξs(ψs(ξs(x))))
−1

⋅ Fχs(ξs(x), ηs(ψs(ξs(x))), χs(ψs(ξs(x))), ○ds)

−
t

∫
0

(Dξs(ψs(ξs(x))))
−1
Fχs(ξs(x), ηs(x), χs(x), ○ds)

(4.18)

The above stochastic differential equation for νt(x) ∶= ψt(ξt(x)) has a unique solution given
for almost all ω and all (x, t), t < τ̂(x,ω) by

νt(x) = ψt(ξt(x)) = x. (4.19)
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Details are written in Lemma C.1. Equation (4.19) shows that ψt is also the left inverse
of ξt up to the stopping time τ̂ .

Step 6: τ = τ̂
Now we analyse the connection between the stopping time τ̂(x) given by (4.16) and τ(x)
as in Definition 4.4. In this step we show that for all x ∈ Rd

τ(x) = τ̂(x) a.s.

holds. Let ω be fixed. If τ̂(x) ≥ T (x), it is clear that

τ(x) = τinv(x) ∧ T (x) = T (x)

and therefore τ̂(x) = τ(x) is valid.
If τ̂(x) < T (x), we consider the two cases in the definition of τ̂ separately. First, let

τ̂(x) = inf {t > 0 ∣ ξt(x) ∉ {y ∣ σ̂(y) > t}}
= inf {t > 0 ∣ ξt(x) ∈ {y ∣ σ̂(y) ≤ t}}.

If ξt(x) ∈ {y ∣ σ̂(y) ≤ t}, then we also know by (4.13) that

ξt(x) ∈ ({y ∣ σ̂(y) ≤ t} ∩ {y ∣ lim
s↗σ̂(y)

∣detDξs(ψs(y))∣ = 0})

∪ ({y ∣ σ̂(y) ≤ t} ∩ {y ∣ lim
s↗σ̂(y)

ψs(y) ∈ {z ∣T (z) ≤ σ̂(y)}).

Considering the first intersection we conclude τinv(x) ≤ t or due to the second intersection
T (x) ≤ t. That means τ(x) ≤ τ̂(x). On the other hand we have by definition τ̂(x) ≤ τ(x).
Consequently, τ(x) = τ̂(x) is proved.

Let us consider the other case. If τ̂(x) = inf {t > 0 ∣ ∣detDψt(ξt(x))∣ =∞}, then we obtain

lim
t↗τ̂(x)

detDξt(x) = 0,

since by Dψt(ξt(x))Dξt(x) = I we know

lim
t↗τ̂(x)

1

detDξt(x)
= lim
t↗τ̂(x)

det I
detDξt(x)

= lim
t↗τ̂(x)

detDψt(ξt(x)) =∞.

And therefore τ̂(x) = τinv(x) ≥ τ(x) ≥ τ̂(x). Summarizing we proved τ(x) = τ̂(x).

Step 7: Conclusion and formal proofs of the statements (i), (ii), (iii)
Suppose

ξt(x) = ξt(x′) for x,x′ ∈ {x̃ ∣ τ(x̃) > t}.

Since ψt(ξt(x)) = x on {x̃ ∣ τ(x̃) > t} we obtain x = x′. Therefore ξt(x) is injective.
Due to the implicite function theorem [Lan96, Chapter XIV, Theorem 1.2] and by using
the fact that the Jacobian matrix Dξt is non-singular, we know that ξt(x) is a Ck−1 -
diffeomorphism. Hence the first claim (i) of the Lemma is proved.
The results of part (ii), which are that ψt(y), t < σ(y), is a continuous local Ck−1 - process
and a local Ck−2,ε - semimartingale for ε > 0, are shown in particular in Step 2. Hereby
equation (4.10) correlates with (4.12). The properties of ψt to be the right inverse as well
as the left inverse to ξt were proved in Step 4 and Step 5.
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For the last claim we consider the explosion time σ̂ of ψt. In Step 3 we proved the analogous
assertions of part (iii) but for stopping time σ̂. Now we have to show it for σ(y), where

σ(y) = inf {t > 0 ∣ y ∉ ξt({x ∈ Rd ∣ τ(x) > t})}

as defined in Definition 4.4. Therefore we will prove σ(y) = σ̂(y) a.s. Due to part (i) and
Steps 4, 5 we have

ξt({x ∣ τ(x) > t}) ⊆ {y ∣ σ̂(y) > t}, (4.20)

since ψt(y) is well-defined for almost all ω and all y ∈ ξt({x ∣ τ(x,ω) > t}). Due to the
definition of ψt we know that the following relation

ψt ∶ {y ∣ σ̂(y) > t}→ ({x ∣ τ(x) > t})

holds and we receive as written in Step 2

ψt({y ∣ σ̂(y) > t}) ⊆ {x ∣ τ(x) > t}.

Now we conclude that

ξt(ψt({y ∣ σ̂(y) > t})) ⊆ ξt({x ∣ τ(x) > t}).

Since ξt(ψt(y)) = y for all y ∈ {ỹ ∣ σ̂(ỹ) > t}, it follows

{y ∣ σ̂(y) > t} ⊆ ξt({x ∣ τ(x) > t}). (4.21)

Due to (4.20) and (4.21) we have

ξt({x ∣ τ(x) > t}) = {y ∣ σ̂(y) > t}.

Consequently by the definition of σ(y) we conclude that

σ(y) = σ̂(y).

Thereby claim (iii) is proved.

The third important tool for the proof of Theorem 4.5 is the chain rule for the stochastic
characteristic curve as written in [Kun97, Lemma 6.1.3]. We follow the ideas of the proof
therein.

Lemma 4.9 For the inverse function ξ−1
t the relation

∂

∂xi
[ηt(ξ−1

t )] = χit(ξ−1
t ) (4.22)

holds for i = 1, ..., d.

Proof. Our first step is to show
∂ηt
∂xi

= χt ⋅
∂ξt
∂xi

. (4.23)

So, we define

θit ∶=
∂ηt
∂xi

− χt ⋅
∂ξt
∂xi

(4.24)

and prove θit = 0 for all i = 1, ..., d. To this end let us consider the stochastic differential
equation which generates θit and observe the stochastic characteristic equation (4.7) of ηt

dηt = F (ξt, ηt, χt, ○dt) − χt ⋅ Fχt(ξt, ηt, χt, ○dt) with η0(x) = g(x).
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Therefore we obtain

∂ηt
∂xi

− ∂g

∂xi
= ∂

∂xi

⎡⎢⎢⎢⎢⎣
g +

t

∫
0

F (ξs, ηs, χs, ○ds) −
t

∫
0

χsFχs(ξs, ηs, χs, ○ds)
⎤⎥⎥⎥⎥⎦
− ∂g

∂xi

= ∂

∂xi

⎡⎢⎢⎢⎢⎣

t

∫
0

F (ξs, ηs, χs, ○ds)
⎤⎥⎥⎥⎥⎦
− ∂

∂xi

⎡⎢⎢⎢⎢⎣

t

∫
0

χsFχs(ξs, ηs, χs, ○ds)
⎤⎥⎥⎥⎥⎦
.

Now we apply Theorem C.2 to the second term which admits us to interchange integration
and differentiation

∂ηt
∂xi

− ∂g

∂xi
=

t

∫
0

∂ξs
∂xi

∂F

∂ξs
(ξs, ηs, χs, ○ds) +

t

∫
0

∂ηs
∂xi

∂F

∂ηs
(ξs, ηs, χs, ○ds)

+
t

∫
0

∂χs
∂xi

∂F

∂χs
(ξs, ηs, χs, ○ds) −

∂

∂xi

⎡⎢⎢⎢⎢⎣

t

∫
0

χsFχs(ξs, ηs, χs, ○ds)
⎤⎥⎥⎥⎥⎦
.

By applying the classical product rule and Theorem C.2 to the last term we obtain

∂ηt
∂xi

− ∂g

∂xi
=

t

∫
0

∂ξs
∂xi

Fξs(ξs, ηs, χs, ○ds) +
t

∫
0

∂ηs
∂xi

Fηs(ξs, ηs, χs, ○ds)

+
t

∫
0

∂χs
∂xi

Fχs(ξs, ηs, χs, ○ds)−
t

∫
0

∂χs
∂xi

Fχs(ξs, ηs, χs, ○ds)

−
t

∫
0

χs
∂

∂xi
[Fχs(ξs, ηs, χs, ○ds)]

=
t

∫
0

∂ξs
∂xi

Fξs(ξs, ηs, χs, ○ds) +
t

∫
0

∂ηs
∂xi

Fηs(ξs, ηs, χs, ○ds)

−
t

∫
0

χs
∂

∂xi
[Fχs(ξs, ηs, χs, ○ds)].

Consequently we have on the one hand

∂ηt
∂xi

− ∂g

∂xi
=

t

∫
0

∂ξs
∂xi

Fξs(ξs, ηs, χs, ○ds) +
t

∫
0

∂ηs
∂xi

Fηs(ξs, ηs, χs, ○ds)

−
t

∫
0

χs
∂

∂xi
[Fχs(ξs, ηs, χs, ○ds)].

(4.25)

Under the initial conditions χ0(x) = ∂g
∂x(x) and ξ0(x) = x we consider

χt
∂ξt
∂xi

− ∂g

∂xi
= χt

∂ξt
∂xi

− χ0
∂ξ0

∂xi
=

t

∫
0

d [χs
∂ξs
∂xi

] .

By applying Itô’s product rule (see [RY05, Chapter IV, 3.1 Proposition]) we get

χt
∂ξt
∂xi

− ∂g

∂xi
=

t

∫
0

χs d [∂ξs
∂xi

] +
t

∫
0

∂ξs
∂xi

dχs + ⟨χ⋅,
∂ξ⋅
∂xi

⟩
t
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=
t

∫
0

χs d[∂ξs
∂xi

] + 1

2
⟨χ⋅,

∂ξ⋅
∂xi

⟩
t
+

t

∫
0

∂ξs
∂xi

dχs +
1

2
⟨χ⋅,

∂ξ⋅
∂xi

⟩
t
.

In the next step we use the classical Itô-Stratonovich formula (see [Kun97, Theorem 2.3.5])
to receive

χt
∂ξt
∂xi

− ∂g

∂xi
=

t

∫
0

χs ○ d[∂ξs
∂xi

] +
t

∫
0

∂ξs
∂xi

○ dχs.

By an application of [Kun97, Theorem 2.3.6 (ii)] we conclude by (4.7)

χt
∂ξt
∂xi

− ∂g

∂xi
= −

t

∫
0

χs
∂

∂xi
[Fχs(ξs, ηs, χs, ○ds)] +

t

∫
0

∂ξs
∂xi

○ dχs

= −
t

∫
0

χs
∂

∂xi
[Fχs(ξs, ηs, χs, ○ds)]

+
t

∫
0

∂ξs
∂xi

Fξs(ξs, ηs, χs, ○ds) +
t

∫
0

∂ξs
∂xi

χsFηs(ξs, ηs, χs, ○ds).

(4.26)

By using (4.24), (4.25) and adding and subtracting ∂g
∂xi

we obtain

θit =
∂ηt
∂xi

− ∂g

∂xi
− (χt ⋅

∂ξt
∂xi

− ∂g

∂xi
)

=
t

∫
0

∂ξs
∂xi

Fξs(ξs, ηs, χs, ○ds) +
t

∫
0

∂ηs
∂xi

Fηs(ξs, ηs, χs, ○ds)

−
t

∫
0

χs
∂

∂xi
[Fχs(ξs, ηs, χs, ○ds)] − (χt ⋅

∂ξt
∂xi

− ∂g

∂xi
).

By applying (4.26) we get

θit =
t

∫
0

∂ξs
∂xi

Fξs(ξs, ηs, χs, ○ds) +
t

∫
0

∂ηs
∂xi

Fηs(ξs, ηs, χs, ○ds)

−
t

∫
0

χs
∂

∂xi
[Fχs(ξs, ηs, χs, ○ds)] +

t

∫
0

χs
∂

∂xi
[Fχs(ξs, ηs, χs, ○ds)]

−
t

∫
0

∂ξs
∂xi

Fξs(ξs, ηs, χs, ○ds) −
t

∫
0

χs
∂ξs
∂xi

Fηs(ξs, ηs, χs, ○ds)

=
t

∫
0

∂ηs
∂xi

Fηs(ξs, ηs, χs, ○ds) −
t

∫
0

χs
∂ξs
∂xi

Fηs(ξs, ηs, χs, ○ds)

=
t

∫
0

(∂ηs
∂xi

− χs
∂ξs
∂xi

) ⋅ Fηs(ξs, ηs, χs, ○ds)

=
t

∫
0

θis ⋅ Fηs(ξs, ηs, χs, ○ds).
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The unique solution of the linear stochastic differential equation

dθit = θitFηt(ξt, ηt, χt, ○dt) with

θi0 =
∂η0

∂xi
− χ0

∂ξ0

∂xi
= ∂g

∂xi
−∇g ⋅ ei =

∂g

∂xi
− ∂g

∂xi
= 0,

where ei = (0, ..,1, ..0) denotes the unit vector, is θit = 0. Here we make use of the facts
that the initial condition is 0 and that the solution is of the form θit = θi0 ⋅ exp(...), as in
[Oks07, Exercise 5.3.*]. Therefore we have

θit = 0 = ∂ηt
∂xi

− χt ⋅
∂ξt
∂xi

which is equivalent to
∂ηt
∂xi

= χt ⋅
∂ξt
∂xi

.

Hence we have shown equation (4.23). Furthermore, we have

∇(ηt(ξ−1
t )) = ∇ηt(ξ−1

t )(Dξt(ξ−1
t ))

−1
(4.27)

by the classical chain rule and the Theorem of the inverse function [Rud64, 9.24 Theorem].
Due to equations (4.23) and (4.27) we obtain

∇(ηt(ξ−1
t (y)) = χt(ξ−1

t (y)) ⋅Dξt(ξ−1
t (y))(Dξt(ξ−1

t (y)))
−1

= χt(ξ−1
t (y))

(4.28)

and we have componentwise
∂

∂xi
[ηt(ξ−1

t )] = χit(ξ−1
t )

which proves the statement of the Lemma.

4.3. Proof of the main theorem
The proof of the main Theorem 4.5 follows the ideas of Theorem 6.1.2 and Theorem 6.1.4
in [Kun97].

Proof. In the theorem we define for almost all ω and all (x, t) with t < σ(x,ω)

u(x, t) ∶= ηt(ξ−1
t (x)).

Let ω be fixed. Due to the fact that ηt is a continuous Ck−1 - process and ξ−1
t is a continuous

Ck−2 - process, we have that u is also a continuous local Ck−2 - process. Furthermore,

uxi ∶=
∂u

∂xi

is a local Ck−2,ε - semimartingale by Lemma 4.9, since

uxi(x, t) =
∂[ηt(ξ−1

t (x))]
∂xi

= χit(ξ−1
t (x)) (4.29)

holds for almost all ω and all (x, t), t < σ(x,ω). By integration we obtain (k − 1) -
differentiability instead of a (k − 2) - differentiability, therefore u(x, t) is a continuous local
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Ck−1,ε - semimartingale. By application of the generalized Itô formula in Theorem 4.7 we
receive

d[ηt(ξ−1
t )] = dηt(ξ−1

t ) +
d

∑
i=1

∂ηt
∂xi

(ξ−1
t ) ○ d[(ξ−1

t )i]. (4.30)

Let us consider the first term of (4.30) and make use of (4.7)

dηt(ξ−1
t ) = F (ξt(ξ−1

t ), ηt(ξ−1
t ), χt(ξ−1

t ), ○dt) − χt(ξ−1
t ) Fχt(ξt(ξ−1

t ), ηt(ξ−1
t ), χt(ξ−1

t ), ○dt)
= F (⋅, ηt(ξ−1

t ), χt(ξ−1
t ), ○dt) − χt(ξ−1

t ) Fχt(⋅, ηt(ξ−1
t ), χt(ξ−1

t ), ○dt).

By using (4.10) the second term of (4.30) is equal to

d

∑
i=1

∂ηt
∂xi

(ξ−1
t ) ○ d[(ξ−1

t )i] = ∇ηt(ξ−1
t ) ○ dξ−1

t

= ∇ηt(ξ−1
t )(Dξt(ξ−1

t ))−1
Fχt(⋅, ηt(ξ−1

t ), χt(ξ−1
t ), ○dt).

Adding both terms together we obtain for (4.30) by using (4.27) and (4.28)

d[ηt(ξ−1
t )] = F (⋅, ηt(ξ−1

t ), χt(ξ−1
t ), ○dt) − χt(ξ−1

t ) Fχt(⋅, ηt(ξ−1
t ), χt(ξ−1

t ), ○dt)

+∇(ηt(ξ−1
t ))(Dξt(ξ−1

t ))−1
Fχt(⋅, ηt(ξ−1

t ), χt(ξ−1
t ), ○dt)

= F (⋅, ηt(ξ−1
t ), χt(ξ−1

t ), ○dt) − χt(ξ−1
t ) Fχt(⋅, ηt(ξ−1

t ), χt(ξ−1
t ), ○dt)

+ χt(ξ−1
t ) Fχt(⋅, ηt(ξ−1

t ), χt(ξ−1
t ), ○dt)

= F (⋅, ηt(ξ−1
t ), χt(ξ−1

t ), ○dt).

Therefore we have locally

u(⋅, t) = ηt(ξ−1
t (⋅)) = g(⋅) +

t

∫
0

F (⋅, ηr(ξ−1
r ), χr(ξ−1

r ), ○dr)

and due to (4.29) u solves

u(x, t) = g(x) +
t

∫
0

F (x,u(x, r),∇u(x, r), ○dr)

for almost all ω and all (x, t) such that t < σ(x,ω). To show the uniqueness of the solution
let ũ(x, t) be another solution to equation (4.3) satisfying (4.6). The aim is to show that
for almost all ω and all (x, t) with t < T (x) ∧ σ(x)

ũ(ξt(x), t) = ηt(x)

holds. We have seen that ũ is in particular a continuous local Ck−1,ε - semimartingale for
some k ≥ 5. That means the local characteristic belongs at least to the class (B4,ε,B4,ε). By
applying the generalized Itô formula in Theorem 4.7, since we have at least C3-processes,
we obtain

ũ(ξt, t) − ũ(ξ0,0)

=
t

∫
0

ũ(ξs, ○ds) +
d

∑
i=1

t

∫
0

∂ũ

∂xi
(ξs, s) ○ dξis

=
t

∫
0

F (ξs, ũ(ξs, s),∇ũ(ξs, s), ○ds) −
d

∑
i=1

t

∫
0

∂ũ

∂xi
(ξs, s)Fχi

s
(ξs, ηs, χs, ○ds)
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=
t

∫
0

F (ξs, ũ(ξs, s),∇ũ(ξs, s), ○ds) −
t

∫
0

∇ũ(ξs, s) ⋅ Fχs(ξs, ηs, χs, ○ds).

Due to (4.8) we obtain for the difference

(ũ(ξt, t) − ũ(⋅,0)) − (ηt − η0)

=
t

∫
0

F (ξs, ũ(ξs, s),∇ũ(ξs, s), ○ds) −
t

∫
0

∇ũ(ξs, s) ⋅ Fχs(ξs, ηs, χs, ○ds)

+
t

∫
0

χs ⋅ Fχs(ξs, ηs, χs, ○ds) −
t

∫
0

F (ξs, ηs, χs, ○ds)

=
t

∫
0

F (ξs, ũ(ξs, s),∇ũ(ξs, s), ○ds) −
t

∫
0

F (ξs, ηs, χs, ○ds)

−
t

∫
0

(∇ũ(ξs, s) − χs) ⋅ Fχs(ξs, ηs, χs, ○ds).

By using essentially that ∇ũ is at least a C3 - process we can apply Theorem 4.7 to ∇ũ and
ξt and receive

∇ũ(ξt, t) −∇ũ(ξ0,0)

=
t

∫
0

∇ũ(ξs, ○ds) +
d

∑
i=1

t

∫
0

∂[∇ũ]
∂xi

(ξs, s) ○ dξis

=
t

∫
0

∇F (ξs, ũ(ξs, s),∇ũ(ξs, s), ○ds) −
d

∑
i=1

t

∫
0

∂[∇ũ]
∂xi

(ξs, s)Fχi
s
(ξs, ηs, χs, ○ds)

=
t

∫
0

Fξs(ξs, ũ(ξs, s),∇ũ(ξs, s), ○ds) +
t

∫
0

∇ũ(ξs, s)Fηs(ξs, ũ(ξs, s),∇ũ(ξs, s), ○ds)

+
d

∑
i=1

t

∫
0

∂[∇ũ]
∂xi

(ξs, s)Fχi
s
(ξs, ũ(ξs, s),∇ũ(ξs, s), ○ds)

−
d

∑
i=1

t

∫
0

∂[∇ũ]
∂xi

(ξs, s)Fχi
s
(ξs, ηs, χs, ○ds).

As before we obtain for the difference

(∇ũ(ξt, t) −∇ũ(⋅,0)) − (χt − χ0)

=
t

∫
0

Fξs(ξs, ũ(ξs, s),∇ũ(ξs, s), ○ds) +
t

∫
0

∇ũ(ξs, s)Fηs(ξs, ũ(ξs, s),∇ũ(ξs, s), ○ds)

+
d

∑
i=1

t

∫
0

∂[∇ũ]
∂xi

(ξs, s)Fχi
s
(ξs, ũ(ξs, s),∇ũ(ξs, s), ○ds)

−
d

∑
i=1

t

∫
0

∂[∇ũ]
∂xi

(ξs, s)Fχi
s
(ξs, ηs, χs, ○ds) −

t

∫
0

Fξs(ξs, ηs, χs, ○ds)

−
t

∫
0

Fηs(ξs, ηs, χs, ○ds)χs
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=
t

∫
0

Fξs(ξs, ũ(ξs, s),∇ũ(ξs, s), ○ds) +
t

∫
0

∇ũ(ξs, s)Fηs(ξs, ũ(ξs, s),∇ũ(ξs, s), ○ds)

+
d

∑
i=1

t

∫
0

∂[∇ũ]
∂xi

(ξs, s)(Fχi
s
(ξs, ũ(ξs, s),∇ũ(ξs, s), ○ds) − Fχi

s
(ξs, ηs, χs, ○ds))

−
t

∫
0

Fξs(ξs, ηs, χs, ○ds) −
t

∫
0

Fηs(ξs, ηs, χs, ○ds)χs.

Next, we consider the following systems of stochastic differential equations for (ũ(ξt, t)−ηt)
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d[ũ(ξt, t) − ηt] = F (ξt, ũ(ξt, t),∇ũ(ξt, t), ○dt) − F (ξt, ηt, χt, ○dt)

− (∇ũ(ξt, t) − χt) ⋅ Fχt(ξt, ηt, χt, ○dt)

ũ(ξ0,0) − η0 = 0

(4.31)

and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[∇ũ(ξt, t) − χt] = Fξt(ξt, ũ(ξt, t),∇ũ(ξt, t), ○dt)
+∇ũ(ξt, t)Fηt(ξt, ũ(ξt, t),∇ũ(ξt, t), ○dt)

+
d

∑
i=1

∂[∇ũ](ξt, t)
∂xi

(Fχi
t
(ξt, ũ(ξt, t),∇ũ(ξt, t), ○dt)

− Fχi
t
(ξt, ηt, χt, ○dt))

− Fξt(ξt, ηt, χt, ○dt) − Fηt(ξt, ηt, χt, ○dt)χt
ũ(ξ0,0) − η0 = 0.

(4.32)

Due to Theorem 3.7 the systems have unique solutions given by

ũ(ξt(x), t) − ηt(x) = 0

and ∇ũ(ξt(x), t) − χt(x) = 0.

Consequently we proved that (4.9) defines a unique solution to equation (4.3).

4.4. Application to an example in the linear case
In this subsection we apply the existence and uniqueness result of H.Kunita as stated in
Corollary 4.6 above to a linear stochastic partial differential equation. The result includes
that the solution is given as composite function of the solutions to the system of stochastic
characteristics equations (4.8). Hence we separate the following example into two parts.
First, we have to verify that the corresponding local characteristic as defined in Definition
2.22 belongs to the class (Bk+1,δ,Bk,δ) for some k ≥ 5 and 0 < δ ≤ 1. Due to the representa-
tion result Theorem 2.39 we know that we are able to rewrite the one-dimensional problem
in terms of a semimartingale F (x,u, p, t) for (x,u, p) ∈ R3. Hence we obtain existence and
uniqueness of the solution. Hereafter we determine the solution by solving the system of
stochastic characteristic equations and finding the inverse process. Obviously, we do not
have to check that the solution solves the equation.

Example 4.10 Let Wt be a standard Brownian motion. We assume that φ̃, ψ̃ ∶ [0,T]→ R
are continuous functions and h ∈ C1(R,R). We consider the following linear stochastic
partial differential equation for x ∈ R

⎧⎪⎪⎨⎪⎪⎩

du(x, t) = (φ̃(t)x∇u(x, t) − ψ̃(t)u(x, t) − u(x, t)) dt + dWt

u(x,0) = h(x).
(4.33)
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By applying the Itô-Stratonovich formula the equation (4.33) is obviously equivalent to

⎧⎪⎪⎨⎪⎪⎩

du(x, t) = (φ̃(t)x∇u(x, t) − ψ̃(t)u(x, t) − u(x, t)) dt + ○dWt

u(x,0) = h(x).
(4.34)

Due to the representation result the corresponding semimartingale is given for almost all
ω and all (x, y, z) ∈ R3 by

t

∫
0

F (x, y, z, ○ds) =
t

∫
0

(φ̃(s)xz − ψ̃(s) y − y) dt +
t

∫
0

○dWs

Hence the local characteristic (a, b,At) is defined for all (x, y, z) ∈ R3 and (x̄, ȳ, z̄) ∈ R3 by

a(x, y, z, x̄, ȳ, z̄, t) ∶= 1,

b(x, y, z, t) ∶= φ̃(t)xz − ψ̃(t) y − y,
At ∶= t.

Let us verify BM-HP (i) - BM-HP (vi): BM-HP (ii) is fulfilled, since a = 1 is a constant
function and obviously symmetric and non-negative definite. BM-HP (iii) and BM-HP (v)
are clearly satisfied. Consider for any K ⊂ R3 compact

T

∫
0

∥a(t)∥∼(k+1)+δ;K dt =
T

∫
0

sup
(x,y,z)∈K
(x′,y′,z′)∈K

1

(1 + ∣(x, y, z)∣)(1 + ∣(x′, y′, z′)∣)
dt +

T

∫
0

1 dt

+
T

∫
0

sup
(x,y,z),(x′,y′,z′)∈K
(x̄,ȳ,z̄),(x̄′,ȳ′,z̄′)∈K

(x,y,z)≠(x̄,ȳ,z̄)
(x′,y′,z′)≠(x̄′,ȳ′,z̄′)

0

∣(x, y, z) − (x̄, ȳ, z̄)∣δ ∣(x′, y′, z′) − (x̄′, ȳ′, z̄′)∣δ
dt

<∞

Hence BM-HP (iv) is fulfilled. Concerning BM-HP (vi) we have

T

∫
0

∥b(t)∥k+δ;K dt =
T

∫
0

sup
(x,y,z)∈K

∣φ̃(t)xz − ψ̃(t) y − y∣
(1 + ∣(x, y, z)∣)

dt

+
T

∫
0

sup
(x,y,z)∈K

∣φ̃(t) z + ψ̃(t) − 1 + φ̃(t)x + φ̃(t) + φ̃(t)∣ dt +
T

∫
0

0 dt

≤
T

∫
0

∣φ̃(t)∣ sup
(x,z)∈K

√
∣x∣ ∣z∣ dt +

T

∫
0

(∣ψ̃(t)∣ + 1) dt

+
T

∫
0

sup
(x,y,z)∈K

∣φ̃(t)∣ (∣z∣ + 2 + ∣x∣) + ∣ψ̃(t)∣ + 1 dt <∞

By the same arguments BM-HP (i) is satisfied. Therefore the local characteristic (a, b,At)
belongs to the class (Bk+1,δ,Bk,δ) for some k ≥ 5 and δ > 0. By Corollary 4.6 we know
that there exists a unique solution. To find this solution we have to solve the system of
stochastic characteristic equations for

F (ξt, ηt, χt, ○dt) = (φ̃(t) ξt χt − ψ̃(t)ηt − ηt) dt + ○dWt
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given by

dξt = −φ̃(t) ξt dt

dηt = ( − ψ̃(t)ηt − ηt) dt + 1 ○ dWt.

As proved in Lemma C.3 the solutions are given with initial values ξ0(x) = x, ηt(x) = h(x)
for almost all ω and all (x, t) with t up to the explosion time by

ξt(x) = exp
⎛
⎜
⎝
x −

t

∫
0

φ̃(s) ds
⎞
⎟
⎠

ηt(x) =
h(x) +

t

∫
0

exp(
s

∫
0
ψ̃(r) dr + s) ○ dWs

exp(
t

∫
0
ψ̃(s) ds + t)

.

(4.35)

Obviously, the inverse process of ξt is given for almost all ω and all (x, t), t ∈ [0, σ(x,ω))
by

ξ−1
t (x) = ln(x) +

t

∫
0

φ̃(s) ds.

Hence the unique local solution to equation (4.33) is given for almost all ω and all (x, t),
t up to a stopping time σ(x,ω) by

u(x, t) =
h(ln(x) +

t

∫
0
φ̃(s) ds) +

t

∫
0

exp(
s

∫
0
ψ̃(r) dr + s) ○ dWs

exp(
t

∫
0
ψ̃(s) ds + t)

.
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5. Application to stochastic Burgers equations
In Chapter 3 we introduced the heuristic method of stochastic characteristics. Under the
assumptions that a solution of the considered problem exist and that there exists a stochas-
tic characteristic curve as defined by (3.4), we obtain stochastic characteristic equations
(SCE) which have to be solved. In this chapter we state some examples concerning the
new heuristic approach of the method of stochastic characteristics. For this purpose we
look at different stochastic Burgers equations, find possible candidates for solutions under
the above assumptions and hence have to verify if they really solve the problems. Due
to these examples we see the main advantage of the method of stochastic characteristics,
namely to receive an explicit expression of the solution. We will start with a generalization
of Yamato’s example to two dimensions (see Example 5.1 below). After that we extend
Yamato’s example by adding an drift term (see Example 5.3 below). Due to the fact that
we want to study stochastic Burgers equations with Itô differential we formulate and prove
in Lemma 5.4 below an application of the Itô-Stratonovich formula. By this we achieve a
tool for solving different Burgers type equations and further determine explicit solutions
(see Example 5.5 and Example 5.6 below). In Example 5.7 below we solve by the heuristic
method of stochastic characteristics a stochastic transport equation with coefficient func-
tions of polynomial growth. Obviously these functions do not fulfill the conditions of the
main Theorem 4.5 in Chapter 4.

Yamato’s example ([Kun84a, Example after Theorem 4.1.]) for the quasilinear stochastic
partial differential equation in one dimension is given in the following form

⎧⎪⎪⎪⎨⎪⎪⎪⎩

du(x, t) = u(x, t)∂u
∂x

(x, t) ○ dWt

u(x,0) = g(x)
(5.1)

for x ∈ R, t ∈ [0,T] and with initial function g(x) = x and g(x) = x2, respectively. The
first step is to extend problem (5.1) to two dimensions. Let us consider the 2-dimensional
version of problem (5.1).

Example 5.1 Let Wt = (W 1
t ,W

2
t ) be a 2-dimensional Brownian motion on a complete

and separable probability space (Ω,F , P ). We consider the following equation for x ∈ R2,
t ∈ [0,T]

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

du(x, t) = u(x, t)∇u(x, t) ○ dWt

=
2

∑
i=1

u(x, t) ∂u
∂xi

(x, t) ○ dW i
t

u(x,0) = g(x), g ∈ C1(R2,R).

(5.2)

By using the representation result Theorem 2.39 this equation is equivalent to

{
du(x, t) = F (x,u(x, t),∇u(x, t), ○dt)
u(x,0) = g(x),

where

F (x1, x2, u, p1, p2, ○dt) ∶=
2

∑
i=1

upi ○ dW i
t

for all (x1, x2, u, p1, p2) ∈ R5. We concentrate on the heuristic method of stochastic charac-
teristics, hence we will not look at the corresponding local characteristic or formal conditions
concerning the results in Chapter 4. As written in Chapter 3 the heuristic approach will
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give us a candidate for a solution. Let us assume that u solves (5.2) and that we have a
stochastic curve (ξt, ηt, χt) defined as in Chapter 3 (see equation (3.4)). The associated
stochastic characteristic equations (SCE) for

F (ξt, ηt, χt, ○dt) =
2

∑
i=1

ηtχ
i
t ○ dW i

t

are given for i = 1,2 by

dξit = −Fχi
t
(ξt, ηt, χt, ○dt) = −

∂[ηtχit]
∂χit

○ dW i
t = −ηt ○ dW i

t

dηt = F (ξt, ηt, χt, ○dt) −
2

∑
i=1

Fχi
t
(ξt, ηt, χt, ○dt)χit

=
2

∑
i=1

ηtχ
i
t ○ dW i

t −
2

∑
i=1

χitηt ○ dW i
t = 0.

(5.3)

By considering the initial conditions η0(x) = g(x) and ξ0(x) = x for x ∈ R2 we obtain on
the one hand the solution

ηt(x) = η0(x) = g(x),

and on the other hand componentwise for i = 1,2 with x = (x1, x2)

ξit(x) = ξi0(x) −
t

∫
0

g(x) ○ dW i
s

= xi − g(x)W i
t .

The above solution can be rewritten as

ξt(x) = (x1 − g(x)W 1
t ,x2 − g(x)W 2

t ).

Let us assume that (ξt, ηt) exist up to an explosion time T . Similarly to Lemma 4.8 we
consider stopping times for the inverse process ξ−1

t as in Definition 4.4

τinv(x) ∶= inf{t > 0 ∣ detDξt(x) = 0},
τ(x) ∶= τinv(x) ∧ T (x),
σ(x) ∶= inf {t > 0 ∣x ∉ ξt({x̃ ∈ Rd ∣ τ(x̃) > t})}.

For an explicit initial function g(x) = ∣x∣2 =
2

∑
k=1

x2
k we get

ξ1
t (x) = x1 − (x2

1 + x2
2)W 1

t ,

ξ2
t (x) = x2 − (x2

1 + x2
2)W 2

t .
(5.4)

The corresponding Jacobian matrix is given by

Dξt(x) = ((1 − 2x1W
1
t ) (−2x1W

2
t )

(−2x2W
1
t ) (1 − 2x2W

2
t )

) .

Hence the determinant of the Jacobian matrix can be identified by

detDξt(x) = 1 − 2x1W
1
t − 2x2W

2
t = 1 − 2(x ⋅Wt). (5.5)
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Up to the first time τinv(x) for which 1 − 2(x ⋅Wt) = 0 the inverse process ξ−1
t exists. The

stopping time τinv(x) is given for x ∈ R2 by

τinv(x) = inf {t > 0 ∣
2

∑
j=1

xjW
j
t =

1

2
}.

As computed in Lemma D.1 for the reader’s convenience, the inverse process ξ−1
t for the

explicit initial function g is given by

ξ−1
t (x1, x2)

=
⎛
⎝

2x1(W 2
t )2 +W 1

t − 2x2W
1
t W

2
t

2(W 1
t )2 + 2(W 2

t )2

−
W 1
t

√
(1 − 4x2

2(W 1
t )2 − x1W 1

t (4 − 8x2W 2
t ) − 4x2

1(W 2
t )2 − 4x2W 2

t )
2(W 1

t )2 + 2(W 2
t )2

,
W 1
t W

2
t − 2x1(W 1

t )2W 2
t + 2x2(W 1

t )3

2(W 1
t )3 + 2(W 2

t )2

−
W 1
t W

2
t

√
(1 − 4x2

2(W 1
t )2 + 8x1x2W 1

t W
2
t − 4x1W 1

t − 4x2
1(W 2

t )2 − 4x2W 2
t )

2(W 1
t )3 + 2(W 2

t )2

⎞
⎠

(5.6)

for almost all ω and all (x, t), t < σ̂(x,ω), where σ̂(x) is the explosion time of ξ−1
t (x). At

this point we will ignore that ξ−1
0 (x) is not well-defined. Since we assumed that there is a

stochastic characteristic curve (ξt, ηt) which prepare the system of SDEs (5.3), we obtain
a candidate for a local solution to (5.2). Hence we set for almost all ω and all (x, t),
t ∈ [0, σ̂(x,ω))

u(x, t) ∶= ηt(ξ−1
t (x))

= 2x2
1 + 2x2

2

1 − 2x1W 1
t − 2x2W 2

t +Z
,

(5.7)

where
Z ∶=

√
1 − 4x2W 2

t − 4x2
1(W 2

t )2 − 4x1W 1
t + 8x1x2W 1

t W
2
t − 4x2

2(W 1
t )2.

For t = 0 withW 1
0 =W 2

0 = 0 the initial condition of (5.2) is fulfilled, since for all x = (x1, x2)

u(x,0) = 2(x2
1 + x2

2)
2

= ∣x∣2

holds. Now we have to verify that u as defined in (5.7) is a solution to (5.2). To this end
we use the differential equation and the notation of Newton’s derivative of the Brownian
motion given by Ẇ 1

t and Ẇ 2
t , respectively. We have to show

du

dt
(x, t) = u(x, t) ∂u

∂x1
(x, t) Ẇ 1

t + u(x, t)
∂u

∂x2
(x, t) Ẇ 2

t . (5.8)

Calculating the left hand side of (5.8) we get by classical rules of differential calculus

du

dt
(x, t) = d

dt
[ 2x2

1 + 2x2
2

1 − 2x1W 1
t − 2x2W 2

t +Z
]

= 1

Z(1 − 2x1W 1
t − 2x2W 2

t +Z)2
( − (2x2

1 + 2x2
2) [Z(−2x1Ẇ

1
t − 2x2Ẇ

2
t )

+ (−2x2Ẇ
2
t − 4x2

1W
2
t Ẇ

2
t − 2x1Ẇ

1
t + 4x1x2Ẇ

1
t W

2
t + 4x1x2W

1
t Ẇ

2
t − 4x2

2Ẇ
1
t W

1
t )])
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= (2x2
1 + 2x2

2)
Z(1 − 2x1W 1

t − 2x2W 2
t +Z)2

((−1) [Z(−2x1Ẇ
1
t − 2x2Ẇ

2
t )

+ (−2x2Ẇ
2
t − 4x2

1W
2
t Ẇ

2
t − 2x1Ẇ

1
t + 4x1x2Ẇ

1
t W

2
t + 4x1x2W

1
t Ẇ

2
t − 4x2

2Ẇ
1
t W

1
t )]).

Hence we obtain

du

dt
(x, t) = u(x, t)

⎛
⎝

(−1)
Z(1 − 2x1W 1

t − 2x2W 2
t +Z)

⋅ [Z(−2x1Ẇ
1
t − 2x2Ẇ

2
t ) + (−2x2Ẇ

2
t − 4x2

1W
2
t Ẇ

2
t − 2x1Ẇ

1
t

+ 4x1x2Ẇ
1
t W

2
t + 4x1x2W

1
t Ẇ

2
t − 4x2

2Ẇ
1
t W

1
t )]

⎞
⎠
.

(5.9)

The partial derivative with respect to x1 is given by

∂u

∂x1
(x, t) = ∂

∂x1
[ 2x2

1 + 2x2
2

1 − 2x1W 1
t − 2x2W 2

t +Z
]

=
4x1(1 − 2x1W

1
t − 2x2W

2
t +Z) − (2x2

1 + 2x2
2) [−2W 1

t +
−8x1(W 2

t )2−4W 1
t +8x2W

1
t W

2
t

2Z ]
(1 − 2x1W 1

t − 2x2W 2
t +Z)2

= 4x1Z(1 − 2x1W
1
t − 2x2W

2
t +Z)

Z(1 − 2x1W 1
t − 2x2W 2

t +Z)2

− (2x2
1 + 2x2

2)[(−2W 1
t )Z − 4x1(W 2

t )2 − 2W 1
t + 4x2W

1
t W

2
t ]

Z(1 − 2x1W 1
t − 2x2W 2

t +Z)2
.

Now we make use of the following equality by adding and subtracting the term 4x1(W 1
t )2:

[(−2W 1
t )Z − 4x1(W 2

t )2 − 2W 1
t + 4x2W

1
t W

2
t ]

= (1 − 2x1W
1
t − 2x2W

2
t +Z) (−2W 1

t ) − 4x1((W 1
t )2 + (W 2

t )2).

Hence the partial derivative with respect to x1 is finally given by

∂u

∂x1
(x, t) = 1

Z(1 − 2x1W 1
t − 2x2W 2

t +Z)2
(4x1Z(1 − 2x1W

1
t − 2x2W

2
t +Z)

− (2x2
1 + 2x2

2) ⋅ [(1 − 2x1W
1
t − 2x2W

2
t +Z) (−2W 1

t ) − 4x1((W 1
t )2 + (W 2

t )2)] ).

The partial derivative with respect to x2 can be calculated in a similar way by

∂u

∂x2
(x, t) = ∂

∂x2
[ 2x2

1 + 2x2
2

1 − 2x1W 1
t − 2x2W 2

t +Z
]

=
4x2(1 − 2x1W

1
t − 2x2W

2
t +Z) − (2x2

1 + 2x2
2) [−2W 2

t +
−4W 2

t +8x1W
1
t W

2
t −8x2(W 1

t )2
2Z ]

(1 − 2x1W 1
t − 2x2W 2

t +Z)2

= 1

Z(1 − 2x1W 1
t − 2x2W 2

t +Z)2
⋅ (4x2Z(1 − 2x1W

1
t − 2x2W

2
t +Z)

− (2x2
1 + 2x2

2)[(−2W 2
t )Z − 2W 2

t + 4x1W
1
t W

2
t − 4x2(W 1

t )2]).

As before we add and subtract the matching term 4x2(W 2
t )2 and get the following equality

[(−2W 2
t )Z − 2W 2

t + 4x1W
1
t W

2
t − 4x2(W 1

t )2]
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= (1 − 2x1W
1
t − 2x2W

2
t +Z) (−2W 2

t ) − 4x2((W 1
t )2 + (W 2

t )2).

Hence we receive

∂u

∂x2
(x, t) = 1

Z(1 − 2x1W 1
t − 2x2W 2

t +Z)2
⋅ (4x2Z(1 − 2x1W

1
t − 2x2W

2
t +Z)

− (2x2
1 + 2x2

2) [(1 − 2x1W
1
t − 2x2W

2
t +Z) (−2W 2

t ) − 4x2((W 1
t )2 + (W 2

t )2)] ).

Now we are able to verify (5.8). Due to (5.9) it is enough to prove that

∂u

∂x1
(x, t) ⋅ Ẇ 1

t +
∂u

∂x2
(x, t) ⋅ Ẇ 2

t

= (−1)
Z(1 − 2x1W 1

t − 2x2W 2
t +Z)

⋅ (Z(−2x1Ẇ
1
t − 2x2Ẇ

2
t )

+ ( − 2x2Ẇ
2
t − 4x2

1W
2
t Ẇ

2
t − 2x1Ẇ

1
t + 4x1x2Ẇ

1
t W

2
t

+ 4x1x2W
1
t Ẇ

2
t − 4x2

2Ẇ
1
t W

1
t )).

(5.10)

Let us start on the left hand side of (5.10)

∂u

∂x1
(x, t) Ẇ 1

t +
∂u

∂x2
(x, t) Ẇ 2

t

= 4x1Ẇ
1
t Z(1 − 2x1W

1
t − 2x2W

2
t +Z)

Z(1 − 2x1W 1
t − 2x2W 2

t +Z)2

−
(2x2

1 + 2x2
2) [(1 − 2x1W

1
t − 2x2W

2
t +Z) (−2W 1

t ) − 4x1((W 1
t )2 + (W 2

t )2)] Ẇ 1
t

Z(1 − 2x1W 1
t − 2x2W 2

t +Z)2

+ 4x2Ẇ
2
t Z(1 − 2x1W

1
t − 2x2W

2
t +Z)

Z(1 − 2x1W 1
t − 2x2W 2

t +Z)2

−
(2x2

1 + 2x2
2) [(1 − 2x1W

1
t − 2x2W

2
t +Z) (−2W 2

t ) − 4x2((W 1
t )2 + (W 2

t )2)] Ẇ 2
t

Z(1 − 2x1W 1
t − 2x2W 2

t +Z)2
.

With the help of a second short notation Y ∶= (1 − 2x1W
1
t − 2x2W

2
t +Z) we get

∂u

∂x1
(x, t) Ẇ 1

t +
∂u

∂x2
(x, t) Ẇ 2

t

= 4x1Ẇ
1
t ZY

ZY 2
−

(2x2
1 + 2x2

2) [Y (−2W 1
t ) − 4x1((W 1

t )2 + (W 2
t )2)] Ẇ 1

t

ZY 2

+ 4x2Ẇ
2
t ZY

ZY 2
−

(2x2
1 + 2x2

2) [Y (−2W 2
t ) − 4x2((W 1

t )2 + (W 2
t )2)] Ẇ 2

t

ZY 2
.

Now we use the following result

4(x2
1 + x2

2)((W 1
t )2 + (W 2

t )2)
= 4x2

2(W 2
t )2 + 4x2

1(W 1
t )2 + 4x2

1(W 2
t )2 + 4x2

2(W 1
t )2

= (1 − 4x2W
2
t + 4x2

2(W 2
t )2 − 4x1W

1
t + 8x1x2W

1
t W

2
t + 4x2

1(W 1
t )2)

− (1 − 4x2W
2
t − 4x2

1(W 2
t )2 − 4x1W

1
t + 8x1x2W

1
t W

2
t − 4x2

2(W 1
t )2)

= (1 − 2x1W
1
t − 2x2W

2
t )2 −Z2

= ((1 − 2x1W
1
t − 2x2W

2
t ) +Z) ((1 − 2x1W

1
t − 2x2W

2
t ) −Z)

= Y ((1 − 2x1W
1
t − 2x2W

2
t ) −Z)
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to achieve

∂u

∂x1
(x, t) Ẇ 1

t +
∂u

∂x2
(x, t) Ẇ 2

t

= 4x1Ẇ
1
t ZY

ZY 2
+

(2x2
1 + 2x2

2) [(2YW 1
t ) + 4x1((W 1

t )2 + (W 2
t )2)] Ẇ 1

t

ZY 2

+ 4x2Ẇ
2
t ZY

ZY 2
+

(2x2
1 + 2x2

2) [(2YW 2
t ) + 4x2((W 1

t )2 + (W 2
t )2)] Ẇ 2

t

ZY 2

= 4x1Ẇ
1
t ZY

ZY 2
+

(2x2
1 + 2x2

2)(2YW 1
t Ẇ

1
t ) + 4(x2

1 + x2
2)((W 1

t )2 + (W 2
t )2) ⋅ 2x1Ẇ

1
t

ZY 2

+ 4x2Ẇ
2
t ZY

ZY 2
+

(2x2
1 + 2x2

2)(2YW 2
t Ẇ

2
t ) + 4(x2

1 + x2
2)((W 1

t )2 + (W 2
t )2) ⋅ 2x2Ẇ

2
t

ZY 2

= 4x1ZẆ
1
t Y + (2x2

1 + 2x2
2) ⋅ 2W 1

t Ẇ
1
t Y + 2x1Ẇ

1
t Y (1 − 2x1W

1
t − 2x2W

2
t −Z)

ZY 2

+ 4x2ZẆ
2
t Y + (2x2

1 + 2x2
2) ⋅ 2W 2

t Ẇ
2
t Y + 2x2Ẇ

2
t Y (1 − 2x1W

1
t − 2x2W

2
t −Z)

ZY 2

= 4x1ZẆ
1
t + (2x2

1 + 2x2
2) ⋅ 2W 1

t Ẇ
1
t + 2x1Ẇ

1
t (1 − 2x1W

1
t − 2x2W

2
t −Z)

ZY

+ 4x2ZẆ
2
t + (2x2

1 + 2x2
2) ⋅ 2W 2

t Ẇ
2
t + 2x2Ẇ

2
t (1 − 2x1W

1
t − 2x2W

2
t −Z)

ZY

= 4x1ZẆ
1
t + 4x2ZẆ

2
t + (2x2

1 + 2x2
2)[2W 1

t Ẇ
1
t + 2W 2

t Ẇ
2
t ]

ZY

+ (2x1Ẇ
1
t + 2x2Ẇ

2
t )(1 − 2x1W

1
t − 2x2W

2
t ) − 2x1ZẆ

1
t − 2x2ZẆ

2
t

ZY

= 2x1ZẆ
1
t + 2x2ZẆ

2
t + (2x2

1 + 2x2
2)[2W 1

t Ẇ
1
t + 2W 2

t Ẇ
2
t ]

ZY

+ (1 − 2x1W
1
t − 2x2W

2
t )(2x1Ẇ

1
t + 2x2Ẇ

2
t )

ZY

= Z(2x1Ẇ
1
t + 2x2Ẇ

2
t ) + 4x2

1W
1
t Ẇ

1
t + 4x2

1W
2
t Ẇ

2
t + 4x2

2W
1
t Ẇ

1
t + 4x2

2W
2
t Ẇ

2
t

ZY

+ 2x1Ẇ
1
t + 2x2Ẇ

2
t − 4x2

1W
1
t Ẇ

1
t − 4x1x2W

1
t Ẇ

2
t − 4x1x2W

2
t Ẇ

1
t − 4x2

2W
2
t Ẇ

2
t

ZY

= (−1)
Z(1 − 2x1W 1

t − 2x2W 2
t +Z)

⋅ (Z(−2x1Ẇ
1
t − 2x2Ẇ

2
t )

+ ( − 2x2Ẇ
2
t − 4x2

1W
2
t Ẇ

2
t − 2x1Ẇ

1
t + 4x1x2Ẇ

1
t W

2
t + 4x1x2W

1
t Ẇ

2
t − 4x2

2Ẇ
1
t W

1
t ))

which is equal to the right hand side of (5.10). We finally proved that u as defined in (5.7)
is a local solution to the 2-dimensional problem (5.2).

Remark 5.2 Obviously, it is possible to extend the above Example 5.2 to three or more
dimensions, but then the calculations and expressions will become much longer and a chal-
lenge for reading and writing.

Due to the definition of (SCE) we can see that the system of stochastic differential equations
is simplified in the case where the diffusion term depends on the gradient of the unknown
function. In the notation of the stochastic characteristic curve the dependence on χt leads
to dηt = 0. The next example is an extension of Yamato’s example to the case where the
diffusion term coincides with the drift term.
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Example 5.3 Let Wt be a one-dimensional Brownian motion on a complete and separable
probability space (Ω,F , P ). Consider the following equation for x ∈ R, t ∈ [0,T],

⎧⎪⎪⎪⎨⎪⎪⎪⎩

du(x, t) = u(x, t)∂u
∂x

(x, t) dt + u(x, t)∂u
∂x

(x, t) ○ dWt

u(x,0) = g(x).
(5.11)

Similarly to Example 5.1 the stochastic characteristic equations, provided that u solves
(5.11) and that there exists the stochastic characteristic curve (ξt, ηt), are given by

dξt = −ηt dt − ηt ○ dWt

dηt = (ηtχt − χtηt) dt + (ηtχt − χtηt) ○ dWt = 0.
(5.12)

With initial condition η0(x) = g(x) = x2 the equation dηt = 0 has the solution

ηt(x) = x2. (5.13)

Hence we have to study

dξt = −x2 dt − x2 ○ dWt,

which is equivalent to

ξt(x) = ξ0(x) −
t

∫
0

x2 ds −
t

∫
0

x2 ○ dWs

= x − x2t − x2Wt.

Up to its explosion time σ̂(x) the inverse process ξ−1
t is given by

ξ−1
t (x) = 2x

1 +
√

1 − 4x(t +Wt)

for almost all ω and all (x, t) such that t < σ̂(x,ω) as proved in Lemma D.2 for the reader’s
convenience. Hence we set for almost all ω and all (x, t) such that t ∈ [0, σ̂(x,ω))

u(x, t) ∶= ηt(ξ−1
t (x)) =

⎛
⎝

2x

1 +
√

1 − 4x(t +Wt)
⎞
⎠

2

. (5.14)

The calculations of the partial derivatives with respect to x and t are given in Lemma D.3.
Now we verify that (5.14) is really a solution to (5.11). To this end we plug (5.14) into
(5.11) and prove that (5.14) solves the differential equation written as

du

dt
(x, t) = u(x, t)∂u

∂x
(x, t) + u(x, t)∂u

∂x
(x, t)Ẇt

= u(x, t)∂u
∂x

(x, t) ⋅ (1 + Ẇt) ,

where we deal with the notation ○dWt

dt =∶ Ẇt. By using the fact that

du

dt
(x, t) = u(x, t) ⋅ 4x(1 + Ẇt)√

1 − 4x(t +Wt)(1 +
√

1 − 4x(t +Wt))
,

as shown in Lemma D.3, it is enough to prove

∂u

∂x
(x, t) = 4x√

1 − 4x(t +Wt)(1 +
√

1 − 4x(t +Wt))
.
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The above equality is valid, since

∂u

∂x
(x, t) =

8x(1 +
√

1 − 4x(t +Wt) − 2xt − 2xWt)√
1 − 4x(t +Wt)(1 +

√
1 − 4x(t +Wt))3

=
4x(2 + 2

√
1 − 4x(t +Wt) − 4xt − 4xWt)√

1 − 4x(t +Wt)(1 +
√

1 − 4x(t +Wt))3

=
4x(1 +

√
1 − 4x(t +Wt))

2

√
1 − 4x(t +Wt)(1 +

√
1 − 4x(t +Wt))3

= 4x√
1 − 4x(t +Wt)(1 +

√
1 − 4x(t +Wt))

.

In the previous Examples 5.1 and Example 5.3 we look at problems dealing with the
Stratonovich integral. The next extension is to solve Burgers type equations dealing with a
classical Itô integral. We consider stochastic Burgers equations as given in [LR15]. Remark
5.19 in [LR15] includes without consideration of the assumptions that the equation

du = (∆u + h(u) ⋅ ∇u) dt +B(u) dW

is called stochastic generalized Burgers equation if ∆ is the Laplace operator, W is a
cylindrical Wiener process on a Hilbert space and h = (h1, ..., hd) ∶ R → Rd are Lipschitz
functions. Due to the fact that we want to apply the heuristic method of stochastic
characteristics, we can only look at first order stochastic generalized Burgers equations in
one dimension perturbed by a standard Brownian motionWt. Hence we consider equations
of the form

du = h(u) ⋅ ∇u dt +B(u) dWt. (5.15)

To get a better view of the calculations we firstly solve the so-called stochastic Burgers
equation for dimension one with h(u) = u. Furthermore, we choose a special diffusion
term B(u) =

√
2u. Since the perturbation is not given by a Stratonovich differential, we

have to apply the Itô-Stratonovich formula. Before we come to a concrete example namely
Example 5.5 below, we need the following result.

Lemma 5.4 Let Wt be a standard one-dimensional Brownian motion and c > 0. Then the
equation

du(x, t) = u(x, t) ∂u
∂x

(x, t) dt + cu(x, t) dWt (5.16)

is equivalent to

du(x, t) = (1 − c
2

2
)u(x, t) ∂u

∂x
(x, t) dt + cu(x, t) ○ dWt (5.17)

Proof. The result is a classical application of Theorem 2.35 and in particular (2.12), since

u(x, t) − u(x,0) =
t

∫
0

u(x, s)∂u
∂x

(x, s) ds +
t

∫
0

cu(x, s) dWs

=
t

∫
0

u(x, s)∂u
∂x

(x, s) ds +
t

∫
0

cu(x, s) ○ dWs

− 1

2

t

∫
0

∂[cu]
∂x

(x, s) ⋅ cu(x, s) ds

70



5. APPLICATION TO STOCHASTIC BURGERS EQUATIONS

=
t

∫
0

(1 − c
2

2
)u(x, s) ∂u

∂x
(x, s) ds +

t

∫
0

cu(x, s) ○ dWs.

Hence we obtain (5.17) in terms of the Stratonovich integral.

Example 5.5 Let Wt be a standard one-dimensional Brownian motion. Consider the
following equation for x ∈ R, t ∈ [0,T]:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

du(x, t) = u(x, t)∂u
∂x

(x, t) dt +
√

2u(x, t) dWt

u(x,0) = x2.
(5.18)

Due to Lemma 5.4 we know that (5.18) is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

du(x, t) = (1 − (
√

2)2

2
)u(x, t)∂u

∂x
(x, t) dt +

√
2u(x, t) ○ dWt

=
√

2u(x, t) ○ dWt

u(x,0) = x2.

(5.19)

Let us assume that u solves equation (5.19) and that the stochastic characteristic curve
(ξt, ηt) as stated in Chapter 3 exists. Then the stochastic characteristic equations consid-
ering

F (ξt, ηt, χt, ○dt) =
√

2ηt ○ dWt

are given by
dξt = 0 (5.20)

and
dηt =

√
2ηt ○ dWt. (5.21)

With initial condition η0(x) = x2 the equation dηt =
√

2ηt ○ dWt has the solution

ηt(x) = x2 exp (
√

2Wt), (5.22)

where we applied Lemma D.4. Furthermore, we obtain for (5.20) the solution

ξt(x) = x.

Obviously, the inverse process of ξt(x) is given by

ξ−1
t (x) = x.

Hence we set for almost all ω and all (x, t) with t < σ̂(x,ω)

u(x, t) ∶= x2 exp (
√

2Wt) (5.23)

to obtain a candidate for a solution to (5.19). We finally have to verify that u is really a
local solution to (5.19). Due to the chain rule for Stratonovich integrals we receive

u(x,0) +
t

∫
0

√
2u(x, s) ○ dWs = x2 +

t

∫
0

√
2x2 exp (

√
2Ws) ○ dWs

= x2 +
√

2x2

t

∫
0

exp (
√

2Ws) ○ dWs
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= x2 +
√

2x2 [ 1√
2

exp (
√

2Wt) −
1√
2

exp(0)]

= x2 +
√

2x2 1√
2

exp (
√

2Wt) −
√

2x2 1√
2

= x2 exp (
√

2Wt)
= u(x, t).

Now we extend Example 5.5 to the case of B(u) = u.

Example 5.6 Let Wt be a standard one-dimensional Brownian motion. Consider the
following equation for x ∈ R, t ∈ [0,T]:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

du(x, t) = u(x, t)∂u
∂x

(x, t) dt + u(x, t) dWt

u(x,0) = x2.
(5.24)

Due to Lemma 5.4 we know that (5.24) is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

du(x, t) = (1 − 1

2
)u(x, t)∂u

∂x
(x, t) dt + u(x, t) ○ dWt

= 1

2
u(x, t)∂u

∂x
(x, t) dt + u(x, t) ○ dWt

u(x,0) = x2.

(5.25)

Let us assume that u solves (5.25) and that the stochastic characteristic curve (ξt, ηt) as
stated in Chapter 3 exists. Then the stochastic characteristic equations considering

F (ξt, ηt, χt, ○dt) =
1

2
ηtχt dt + ηt ○ dWt

are given by

dξt = −
1

2
ηt dt (5.26)

and
dηt = ηt ○ dWt. (5.27)

As before we apply Lemma D.4 to equation (5.27) with initial condition g(x) = x2, c = 1
and obtain the solution

ηt(x) = x2 exp (Wt). (5.28)

Now we plug (5.28) into (5.26) and get the integral equation

ξt(x) = x −
1

2
x2

t

∫
0

exp(Ws) ds.

Under the condition that the solutions ξt, ηt exist up to the explosion time T we can find
the inverse process. Up to another explosion time σ̂ we obtain for almost all ω and all
(x, t) with t < σ̂(x,ω)

ξ−1
t (x) = 2x

1 +

¿
ÁÁÀ1 − 2x(

t

∫
0

exp(Ws) ds)

.
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For the reader’s convenience the details can be found in Lemma D.5. Hence we define for
almost all ω and all (x, t) such that t < σ̂(x,ω)

u(x, t) ∶= 4x2 exp(Wt)

⎛
⎝

1 +

¿
ÁÁÀ1 − 2x(

t

∫
0

exp(Ws) ds)
⎞
⎠

2
(5.29)

to be a candidate for a solution to (5.25). Due to the assumptions we finally have to verify
that (5.29) is really a local solution to (5.25). So we will show that u fulfills

du

dt
(x, t) = 1

2
u(x, t)∂u

∂x
(x, t) + u(x, t)Ẇt. (5.30)

Detailed calculations concerning the partial derivatives are given in Lemma D.6. The partial
derivative of u with respect to time t is given in terms of a short notation for

Z ∶=

¿
ÁÁÁÁÀ1 − 2x

⎛
⎜
⎝

t

∫
0

eWs ds
⎞
⎟
⎠

by

du

dt
(x, t) = d

dt
[ 4x2eWt

(1 +Z)2
]

=
4x2eWt[Z(1 +Z)2Ẇt + 2xeWt + 2xeWtZ]

Z(1 +Z)4

=
4x2eWt[2xeWt + ẆtZ(1 +Z)]

Z(1 +Z)3
.

Furthermore, we have for the right hand side of (5.30)

1

2
u(x, t)du

dx
(x, t) + u(x, t)Ẇt

= 1

2

4x2eWt

(1 +Z)2

(Z(1 +Z)2 ⋅ 8xeWt + 8x2eWt( ∫
t

0 e
Ws ds)(1 +Z))

Z(1 +Z)4
+ 4x2eWtẆt

(1 +Z)2

= 2x2eWt

(1 +Z)2

(Z(1 +Z)2 ⋅ 8xeWt + 8x2eWt( ∫
t

0 e
Ws ds)(1 +Z))

Z(1 +Z)4
+ 4x2eWtẆt

(1 +Z)2

=
2x2eWt(Z(1 +Z)2 ⋅ 8xeWt + 8x2eWt( ∫

t
0 e

Ws ds)(1 +Z))

Z(1 +Z)6
+ 4x2eWtẆt

(1 +Z)2

=
2x2eWt(Z(1 +Z) ⋅ 8xeWt + 8x2eWt( ∫

t
0 e

Ws ds))(1 +Z)

Z(1 +Z)6
+ 4x2eWtẆt

(1 +Z)2

=
2x2eWt(Z(1 +Z) ⋅ 8xeWt + 8x2eWt( ∫

t
0 e

Ws ds))

Z(1 +Z)5
+ 4x2eWtẆt

(1 +Z)2

=
16x3e2WtZ(1 +Z) + 16x4e2Wt( ∫

t
0 e

Ws ds) + 4x2eWtẆtZ(1 +Z)3

Z(1 +Z)5

=
4x2eWt[4xeWtZ(1 +Z) + 4x2eWt( ∫

t
0 e

Ws ds) + ẆtZ(1 +Z)3]

Z(1 +Z)5
.
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By using

4xeWtZ(1 +Z) = 4xeWtZ + 4xeWt − 8x2eWt(∫
t

0
eWs ds)

we receive

1

2
u(x, t)du

dx
(x, t) + u(x, t)Ẇt

=
4x2eWt[4xeWtZ + 4xeWt − 4x2eWt( ∫

t
0 e

Ws ds) + ẆtZ(1 +Z)3]

Z(1 +Z)5

=
4x2eWt[2xeWt(2 + 2Z − 2x( ∫

t
0 e

Ws ds)) + ẆtZ(1 +Z)3]

Z(1 +Z)5

=
4x2eWt[2xeWt(1 +Z)2 + ẆtZ(1 +Z)3]

Z(1 +Z)5

=
4x2eWt[2xeWt + ẆtZ(1 +Z)]

Z(1 +Z)3
.

Hence (5.25) holds and u defined by (5.29) is a local solution.

Let us consider (5.15) again. If we choose h(u) = u3 and B(u) = u2, the coefficient functions
and hence the local characteristic are not of linear growth. Consequently, an application
of the existence result in Theorem 4.5 is not possible so far. But by using the heuristic
method introduced in Chapter 3 we have a tool to find a candidate for a solution.

Example 5.7 Let Wt be a one-dimensional standard Brownian motion. Let us consider
by using the Itô-Stratonovich formula

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du(x, t) = u(x, t)3 ∂u

∂x
(x, t) dt + u(x, t)2 dWt

= u(x, t)3 ∂u

∂x
(x, t) dt + u(x, t)2 ○ dWt −

1

2
⋅ u(x, t)2 ⋅ 2u(x, t) ⋅ ∂u

∂x
(x, t) dt

= (u(x, t)3∂u

∂x
(x, t) − u(x, t)3∂u

∂x
(x, t)) dt + u(x, t)2 ○ dWt

= u(x, t)2 ○ dWt

u(x,0) = x2.

(5.31)

Under the assumption that u solves (5.31) and that the stochastic characteristic curve
(ξt, ηt, χt) as defined in (3.4) exists, we obtain for

F (ξt, ηt, χt, ○dt) = η2
t ○ dWt

the system of stochastic characteristic equations given by

dξt = 0

dηt = η2
t ○ dWt

with initial values ξ0(x) = x and η0(x) = x2. The solutions are given for almost all ω and
all (x, t) with t up to exposition time T (x,ω) by

ξt(x) = x and ηt(x) =
x2

1 − x2Wt
.
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Hence we obtain a candidate for a solution for almost all ω and all (x, t), t up to explosion
time T (x,ω) by

u(x, t) ∶= x2

1 − x2Wt
. (5.32)

By using Newton’s derivative one can easily determine the partial derivative of u with
respect to time to verify (5.31), since

du

dt
= ( x2

1 − x2Wt
)

2
Ẇt.

Hence (5.32) solves (5.31) locally.
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CHARACTERISTICS TO STOCHASTIC TRANSPORT EQUATIONS

6. Application of the method of stochastic
characteristics to stochastic transport equations

The main component of this thesis can be found in this chapter in which we apply the
method of stochastic characteristics to the stochastic transport equation as given in An
operatorial approach to stochastic partial differential equations driven by linear multiplica-
tive noise [BR15] of V.Barbu and M.Röckner. If one compares the conditions on the
coefficient functions of the stochastic transport equation with the assumptions in Theo-
rem 4.5 above, it is obvious that a direct application of Theorem 6.1.2 in [Kun97] is not
possible. Hence we try to solve the problem by using the new heuristic approach of the
method of stochastic characteristics. We do this step-by-step. That means we discuss
different cases of (6.1) below to see under which assumptions an application is possible or
not. As we have seen in the previous Chapter 4 the main advantage of the method is the
explicit expression of the local solution, provided that the coefficient functions are given.
Therefore, in each subsection we consider a different example with explicit coefficient func-
tions satisfying continuity and continuous differentiability as in [BR15]. In Subsection 6.1.
below we take a look at the stochastic transport equation with Stratonovich integral in
dimension one and with perturbation by a standard Brownian motion (see Lemma 6.3 and
Example 6.4 below). This subsection will end with an extended result for d-dimensional
space variables and perturbation by a series of independent copies of standard Brownian
motions, see Lemma 6.5 below. In Subsection 6.2. below we discuss the dependence on
the general infinite-dimensional Wiener process as defined below in Definition 6.1. Hence,
we look at an equation without drift terms, i.e. an equation of the form

du = u ○ dW.

For this kind of equations we formulate and prove an existence result in Theorem 6.6 be-
low and give a detailed derivation. Additionally, we consider explicit orthonormal bases,
namely the trigonometrical bases on L2([0,1]) as well as on L2([0, π]), see Example 6.8
and Example 6.9 below. We will see (cf. Example 6.10 below) that we are not able
to combine the examples of Subsection 6.1. with our result in Subsection 6.2. In the
third subsection we look at the original stochastic partial differential equation (6.1) be-
low with Itô differential and rewrite it in terms of the Stratonovich differential by using
the Itô-Stratonovich formula. Here an application of the heuristic method of stochastic
characteristics is not possible, too (see Example 6.12 below). The crucial point is in the
Itô-Stratonovich dilemma as we will see later.

Let O ⊂ Rd be an open and bounded set with smooth boundary ∂O. Let φi, ψ ∶ Ō×[0,T]→
R be continuous functions with ∇xφi ∈ C(Ō × [0,T],Rd) for i = 1, ..., d. The stochastic
transport equation is a stochastic first order hyperbolic equation on O× [0,T) of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

du(x, t) =
d

∑
i=1

φi(x, t)
∂u

∂xi
(x, t) dt − ψ(x, t)u(x, t) dt

− λu(x, t) ∣u(x, t)∣q−2 dt + u(x, t) dW(x, t)
u(x,0) = h(x).

(6.1)

for λ > 0, q ≥ 2 and initial function h ∈ C2(O). W is given as in the next definition.

Definition 6.1 A Wiener process W on a real separable Hilbert space H is defined by

W(x, t) ∶=
∞
∑
j=1

µjej(x)W j
t , (6.2)
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for all x ∈ O, t ≥ 0, where for all j = 1,2, ...

• W j
t is an independent system of real-valued Brownian motions on (Ω,F , P ) with

normal filtration (Ft)t≥0

• ej ∈ C2(Ō,R) ∩H is an orthonormal basis in H and

• µj ∈ R.
We denote by ∥ ⋅ ∥∞ the sup norm.

Assumption 6.2 We assume that there exist γ̃j ∈ [1,∞), j = 1,2, ..., such that for all
y ∈H

∥yej∥H ≤ γ̃j ∥ej∥∞∥y∥H
and

∞
∑
j=1

µ2
j γ̃

2
j ∥ej∥2

∞ <∞.

Let
µ ∶= 1

2

∞
∑
j=1

µ2
je

2
j

be a multiplier in V and a symmetric multiplier in H.

One of the main questions in this thesis deals with the comparability of the methods,
namely the scaling transform approach and the method of stochastic characteristics applied
to (6.1). In Chapter 7 we will show that the stochastic transport equation has a unique
(global) solution using the scaling transform approach. Hence we will have a closer look
on the general setting and further conditions on (6.1).

6.1. The stochastic transport equation with Stratonovich
differential of standard Brownian motion

We consider H = R and a standard Brownian motion as a special case of a Wiener process
given in Definition 6.1. Hence we solve problem (6.1) in the case of µ1 ∶= 1, µk ∶= 0 for all
k > 1 and e1(x) = 1, ek(x) = 0 for all k > 1. Let Wt be a standard Brownian motion, hence
we obtain for (6.2)

W(t) =Wt.

Furthermore, we look at the Stratonovich differential instead of the Itô differential as
written in (6.1).

Lemma 6.3 Let λ > 0 and q ≥ 2. Consider the one-dimensional stochastic transport
equation given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

du(x, t) = φ1(x, t)∇u(x, t) dt − ψ(x, t)u(x, t) dt

− λu(x, t) ∣u(x, t)∣q−2 dt + u(x, t) ○ dWt

u(x,0) = h(x)
(6.3)

for x ∈ O ⊂ R and t ∈ [0,T], where Wt is a standard Brownian motion in one dimension.
Then the solutions to the stochastic characteristic equations (SCE) are the solutions to the
following integral equations for almost all ω and x ∈ O, t ∈ [0, T (x,ω))

ξt(x) = x −
t

∫
0

φ1(ξs(x), s) ds,

ηt(x) =
eWte− ∫

t
0 ψ(ξr(x),r) dr

(∣h(x)∣−(q−2) + λ(q − 2)
t

∫
0
e(q−2)[Ws−∫

s
0 ψ(ξr(x),r) dr] ds)

1
q−2

.
(6.4)

78



6. APPLICATION OF THE METHOD OF STOCHASTIC
CHARACTERISTICS TO STOCHASTIC TRANSPORT EQUATIONS

Proof. We assume that u solves (6.3) and that there exists the stochastic characteristic
curve (ξt, ηt, χt) defined by (3.4) in Chapter 3. The corresponding stochastic characteristic
equations (SCE) of the semimartingale

F (ξt, ηt, χt, ○dt) = (φ1(ξt, t)χt − ψ(ξt, t)ηt − ληt∣ηt∣q−2) dt + ηt ○ dWt

are given by

dξt = −Fχt(ξt, ηt, χt, ○dt)
= −φ1(ξt, t) dt

dηt = F (ξt, ηt, χt, ○dt) − χt ⋅ Fχt(ξt, ηt, χt, ○dt)
= [φ1(ξt, t)χt − ψ(ξt, t)ηt − ληt∣ηt∣q−2 − φ1(ξt, t)χt] dt + ηt ○ dWt

= ( − ψ(ξt, t)ηt − ληt∣ηt∣q−2) dt + ηt ○ dWt,

(6.5)

where we make use of the representation result Theorem 2.39. The corresponding initial
conditions are

ξ0(x) = x,
η0(x) = h(x).

Under the assumption on continuity of φ1 Theorem 1.3 in [CL55] yields that there exists a
solution given by an integral equation. Furthermore, ∇xφ1 ∈ C implies Lipschitz continuity
since we are acting on (Ō × [0,T]). Theorem 2.2 in [CL55] shows that the stochastic
characteristic equation dξt = −φ1(ξt, t)dt with initial condition ξ0(x) = x has a unique
solution given by the integral equation

ξt(x) = x −
t

∫
0

φ1(ξs(x), s) ds.

Now we solve the system of stochastic differential equations (6.5) up to an explosion time
T (x). We achieve by an equivalence transformation

dηt
dt

= ( − ψ(ξt, t)ηt − ληt∣ηt∣q−2) + ηt
○dWt

dt
.

Rewritten in Newton’s notation (Ẇt = ○dWt

dt ) for the time derivative we conclude

η̇t = ( − ψ(ξt, t)ηt − ληt∣ηt∣q−2) + ηtẆt,

which is equivalent to
1

ηt
η̇t = −ψ(ξt, t) − λ∣ηt∣q−2 + Ẇt

and we finally obtain
1

ηt
η̇t − Ẇt + ψ(ξt, t) = −λ∣ηt∣q−2. (6.6)

Now we define
νt ∶= ln(ηt) −Wt + ∫

t

0
ψ(ξs, s) ds, (6.7)

hence
ν̇t =

1

ηt
η̇t − Ẇt + ψ(ξt, t)
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is equal to the left hand side of equation (6.6). It is clear that

ν0 = ln(∣h(x)∣),

∣ηt∣ = exp (νt +Wt − ∫
t

0
ψ(ξs, s) ds)

(6.8)

hold. By substitution (6.7) we achieve

ν̇t = −λ∣ηt∣q−2 = −λe(q−2)νte(q−2)Wte−(q−2) ∫
t
0 ψ(ξs,s) ds,

which is equivalent to

−(q − 2)ν̇te−(q−2)νt = λ(q − 2)e(q−2)Wte−(q−2) ∫
t
0 ψ(ξs,s) ds

and hence

d

dt
[e−(q−2)νt] = λ(q − 2)e(q−2)Wte−(q−2) ∫

t
0 ψ(ξs,s) ds.

Due to the fundamental theorem of calculus the above equation is equivalent to

e−(q−2)νt = e−(q−2)ν0 + λ(q − 2)
t

∫
0

e(q−2)Wse−(q−2) ∫
s
0 ψ(ξr,r) dr ds.

Combining the definition of νt and (6.8) this leads to

∣ηt∣−(q−2)e(q−2)Wte−(q−2) ∫
t
0 ψ(ξr,r) dr

= ∣h(x)∣−(q−2) + λ(q − 2)
t

∫
0

e(q−2)Wse−(q−2) ∫
s
0 ψ(ξr,r) dr ds

and hence

∣ηt∣−(q−2) = e−(q−2)Wte(q−2) ∫
t
0 ψ(ξr,r) dr

⋅ (∣h(x)∣−(q−2) + λ(q − 2)
t

∫
0

e(q−2)Wse−(q−2) ∫
s
0 ψ(ξr,r) dr ds).

Finally, we get for almost all ω and x ∈ O, t ∈ [0, T (x,ω)),

ηt(x) =
eWte− ∫

t
0 ψ(ξr(x),r) dr

(∣h(x)∣−(q−2) + λ(q − 2)
t

∫
0
e(q−2)[Ws−∫

s
0 ψ(ξr(x),r) dr] ds)

1
q−2

,

where T (x) is the explosion time defined by

T (x) ∶= inf

⎧⎪⎪⎨⎪⎪⎩
t ∈ [0,T) ∣λ(q − 2)

t

∫
0

e(q−2)[Ws−∫
s
0 ψ(ξr(x),r) dr] ds = −∣h(x)∣−(q−2)

⎫⎪⎪⎬⎪⎪⎭
.

One advantage of the method of stochastic characteristics is that one obtains an explicit
solution provided that proper coefficient functions and initial conditions are given. There-
fore, we look at a one-dimensional stochastic transport equation with simple but concrete
drift functions φ1, ψ, initial function h(x) = x2 and standard one-dimensional Brownian
motion Wt. Let O = [0,1] and φ1 be the identity map.
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Example 6.4 In the special case of φ1(x, t) = x and ψ(x, t) = 0 there exists a solution to
the following one-dimensional stochastic transport equation given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

du(x, t) = (x∇u(x, t) − λu(x, t) ∣u(x, t)∣q−2 ) dt + u(x, t) ○ dWt

u(x,0) = x2.
(6.9)

By separation of variables we determine the solution ξt(x) = xe−t, which solves the stochas-
tic differential equation

dξt
dt

(x) = −ξt(x).

Obviously, the inverse process is given for all x ∈ [0,1], t ∈ [0, T (x)) by

ξ−1
t (x) = xet,

where
T (x) ∶= inf {t > 0 ∣ − xet = 0} ∧T = T.

Due to Lemma 6.3 we additionally obtain

ηt(x) = ( exp (Wt) )
⎛
⎜
⎝
(x2)−(q−2) + λ(q − 2)

t

∫
0

e(q−2)Ws ds
⎞
⎟
⎠

− 1
q−2

.

Hence we define for almost all ω and x ∈ [0,1], t ∈ [0, T (x,ω))

u(x, t) = ( exp (Wt) )
⎛
⎜
⎝
(x2e2t)−(q−2) + λ(q − 2)

t

∫
0

e(q−2)Ws ds
⎞
⎟
⎠

− 1
q−2

(6.10)

to be a candidate for a local solution to (6.9). The initial condition for t = 0 is fulfilled,
since

u(x,0) = ( exp (W0) )
⎛
⎜
⎝
(x2)−(q−2) + λ(q − 2)

0

∫
0

e(q−2)Ws ds
⎞
⎟
⎠

− 1
q−2

= x2.

Now we have to verify that (6.10) is really a solution to (6.9). For the reader’s convenience
we calculate the partial derivatives in Lemma D.7. Due to these results with

N ∶= (x2e2t)−(q−2) + λ(q − 2)
t

∫
0

e(q−2)Ws ds

we have

du

dt
(x, t) = u(x, t) Ẇt + u(x, t) (2(x2e2t)−(q−2) − λe(q−2)Wt

N
)

= u(x, t) (2(x2e2t)(x2e2t)−(q−1) − λe(q−2)Wt

N
) + u(x, t) Ẇt

= xu(x, t) (2(xe2t)(x2e2t)−(q−1)

N
) − λu(x, t) ( eWt

N
1

q−2
)
q−2

+ u(x, t) Ẇt

= xu(x, t) ((2xe2t)(x2e2t)−(q−1)

N
) − λu(x, t) ∣u(x, t)∣q−2 + u(x, t) Ẇt

= x∇u(x, t) − λu(x, t) ∣u(x, t)∣q−2 + u(x, t) Ẇt

and hence that u solves equation (6.9).
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For the sake of completeness we extend Lemma 6.3 to the d-dimensional case and pertur-
bation by a series of independent copies of a Brownian motion. We note that we are no
longer in the situation of Definition 6.1.

Lemma 6.5 Consider the d-dimensional problem of (6.3) given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du(x, t) =
d

∑
i=1

φi(x, t)
∂u

∂xi
(x, t) dt − ψ(x, t)u(x, t) dt

− λu(x, t) ∣u(x, t)∣q−2 dt +
∞
∑
j=1

u(x, t) ○ dW j
t

u(x,0) = h(x),
for x ∈ O.

(6.11)

Under the assumption that u solves (6.11) and that there exists the stochastic characteristic
curve (ξt, ηt, χt), given as in equation (3.4), the solutions to the stochastic characteristic
equations have to satisfy the following integral equations for almost all ω and x ∈ O with
x = (x1, ..., xd) and t ∈ [0, T (x,ω))

ξ1
t (x) = x1 −

t

∫
0

φ1(ξs(x), s) ds,

⋮

ξ1
t (x) = xd −

t

∫
0

φd(ξs(x), s) ds,

ηt(x) =
exp (

∞
∑
j=1

W j
t ) exp (

t

∫
0
ψ(ξr(x), r) dr)

⎛
⎝
∣h(x)∣−(q−2) + λ(q − 2)

t

∫
0
e
(q−2)[

∞
∑
j=1

W j
s −

s

∫
0
ψ(ξr(x),r) dr]

ds
⎞
⎠

1
q−2

.

(6.12)

Proof. By the same technique as in Lemma 6.3 we obtain that the corresponding stochastic
characteristic equations for

F (ξt, ηt, χt, ○dt) = (
d

∑
i=1

φi(ξt, t)χit − ψ(ξt, t)ηt − ληt ∣ηt∣
q−2 ) dt +

∞
∑
j=1

ηt ○ dW j
t

are given by
dξ1
t = −Fχ1

t
(ξt, ηt, χt, ○dt) = −φ1(ξt, t) dt

⋮
dξdt = −Fχd

t
(ξt, ηt, χt, ○dt) = −φd(ξt, t) dt

dηt = F (ξt, ηt, χt, ○dt) −
d

∑
i=1

χit ⋅ Fχi
t
(ξt, ηt, χt, ○dt)

= ( − ψ(ξt, t)ηt − ληt∣ηt∣q−2) dt +
∞
∑
j=1

ηt ○ dW j
t .

(6.13)

Under the assumption on continuity of φi and Lipschitz continuity the results Theorem 1.3
and Theorem 2.2. in [CL55] are also applicable for systems as written in [CL55, Chapter 1,
Section 5]. And we conclude that the stochastic characteristic equations dξit = −φi(ξt, t) dt

82



6. APPLICATION OF THE METHOD OF STOCHASTIC
CHARACTERISTICS TO STOCHASTIC TRANSPORT EQUATIONS

with initial condition ξi0(x) = xi have unique solutions given by the integral equations

ξit(x) = xi −
t

∫
0

φi(ξs(x), s) ds, for i = 1, ..., d.

By a similar calculation as in the proof of Lemma 6.3 we end up with

ηt(x) =
exp (

∞
∑
j=1

W j
t ) exp (

t

∫
0
ψ(ξr(x), r) dr)

⎛
⎝
∣h(x)∣−(q−2) + λ(q − 2)

t

∫
0
e
(q−2)[

∞
∑
j=1

W j
s −

s

∫
0
ψ(ξr(x),r) dr]

ds
⎞
⎠

1
q−2

.

6.2. Application to general infinite-dimensional Wiener
processes

Up to now we considered series of standard Brownian motions. Now we investigate what
happens if we perturb an equation by a general infinite-dimensional Wiener process on a
Hilbert space H as given in Definition 6.1. Let us look at the following differential equation

{
du = u ○ dW

u(x,0) = h(x)
(6.14)

for x ∈ O and initial function h on O with values in R. Due to Definition 6.1 the problem
is equivalent to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

du =
∞
∑
j=1

µj ej(x)u ○ dW j
t

u(x,0) = h(x).
(6.15)

Equation (6.14) has no drift term which simplifies the corresponding stochastic differential
equations if we apply the heuristic method of stochastic characteristics as we will see in
the proof of the following existence result.

Theorem 6.6 Let W be a general Wiener process in the sense of Definition 6.1 satisfying
Assumption 6.2. Then a local solution to (6.14) and (6.15), respectively, is given for almost
all ω and all x ∈ O with t ∈ [0, T (x,ω)) by

u(x, t) = h(x) exp
⎛
⎝

∞
∑
j=1

µjej(x)W j
t

⎞
⎠
. (6.16)

Before we prove the theorem, let us see how to deduce the expression of the solution (6.16).

Derivation
Obviously, we apply the heuristic method of stochastic characteristics as introduced in Chap-
ter 3. Under the assumption that u solves (6.15) and that (ξt, ηt, χt) is the stochastic
characteristic curve, we obtain due to the representation result Theorem 2.39

F (ξt, ηt, χt, ○dt) =
∞
∑
j=1

µj ej(ξt)ηt ○ dW j
t .
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Consequently, we look at the corresponding stochastic characteristic equations with initial
conditions ξ0(x) = x and η0(x) = h(x), which are given by

dξt = 0

and dηt =
∞
∑
j=1

µjej(ξt)ηt ○ dW j
t

=
∞
∑
j=1

µjej(x)ηt ○ dW j
t .

Evidently, we receive the trivial solution ξt(x) = x. By using Newton’s derivative we deter-
mine by an equivalence transformation

η̇t =
∞
∑
j=1

µjej(x)ηtẆ j
t

⇔ 1
ηt
η̇t =

∞
∑
j=1

µjej(x)Ẇ j
t

⇔ 1
ηt
η̇t −

∞
∑
j=1

µjej(x)Ẇ j
t = 0

⇔ d
dt [ln(ηt) −

∞
∑
j=1

µjej(x)W j
t ] = 0

⇔ ln(ηt) =
∞
∑
j=1

µjej(x)W j
t + ln(h(x))

⇔ ηt(x) = h(x) exp(
∞
∑
j=1

µjej(x)W j
t ) .

The inverse process ξ−1
t of ξt(x) = x is naturally equal to

ξ−1
t (x) = x.

Hence a candidate for a local solution to (6.15) can be defined for almost all ω and x ∈ O
with t ∈ [0, T (x,ω)) by

u(x, t) = ηt(ξ−1
t (x))

= h(x) exp
⎛
⎝

∞
∑
j=1

µjej(x)W j
t

⎞
⎠
,

(6.17)

where T (x) is the explosion time of ηt. The stopping times as defined in Definition 4.4 are
given by

τinv(x) = inf{t > 0 ∣ detDξt(x) = 0}
= inf{t > 0 ∣ det I = 0} =∞

τ(x) = T (x).

Now we have to prove that (6.17) is a solution to (6.15), i.e. we have to show that

du

dt
(x, t) =

∞
∑
j=1

µjej(x)u(x, t)Ẇ j
t (6.18)

holds.

Proof of Theorem 6.6 We have

du

dt
(x, t) = d

dt

⎡⎢⎢⎢⎢⎣
h(x) exp

⎛
⎝

∞
∑
j=1

µjej(x)W j
t

⎞
⎠

⎤⎥⎥⎥⎥⎦
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= h(x)
⎛
⎝

∞
∑
j=1

µjej(x)Ẇ j
t

⎞
⎠

exp
⎛
⎝

∞
∑
j=1

µjej(x)W j
t

⎞
⎠

=
∞
∑
j=1

µjej(x)
⎛
⎝
h(x) exp

⎛
⎝

∞
∑
j=1

µjej(x)W j
t

⎞
⎠
⎞
⎠
Ẇ j
t ,

and therefore the statement is valid.

Now we apply Theorem 6.6 to the stochastic transport equation (6.1) acting on H = L2(O).
Let us consider the one-dimensional case with O ⊂ R and the following orthonormal bases
which are in particular continuously differentiable.

Theorem 6.7 The following collections are orthonormal bases on L2(O):
⎧⎪⎪⎨⎪⎪⎩

√
2

π
sin(jx)

⎫⎪⎪⎬⎪⎪⎭j≥1

for O = [0, π], (6.19)

{
√

2 sin(jπx)}
j≥1

for O = [0,1]. (6.20)

Statement (6.19) is stated and proved in [RY08, Theorem 3.56] and result (6.20) including
the proof corresponds to Theorem 4.1 in [HW96]. For µj ∈ R, j ≥ 1, satisfying

∞
∑
j=1

4

π2
µ2
j <∞ (6.21)

Assumption 6.2 is fulfilled for the orthonormal basis (6.19). For the reader’s convenience
it is proved in Lemma D.8. Under the assumption

∞
∑
j=1

8µ2
j <∞ (6.22)

on µj ∈ R, j ≥ 1, the analogous result is stated in Lemma D.9 for the orthonormal basis
(6.20).

Example 6.8 Let W be a general infinite-dimensional Wiener process on L2([0, π]) with
orthonormal basis ej(x), j ≥ 1, given by (6.19). Let µj ∈ R, j ≥ 1, satisfy (6.21). Then a
local solution to ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

du = u ○ dW =
∞
∑
j=1

√
2

π
µj sin(jx)u ○ dW j

t

u(x,0) = h(x)
is given for almost all ω and x ∈ [0, π] with t ∈ [0, T (x,ω)) by

u(x, t) = h(x) exp
⎛
⎝

∞
∑
j=1

√
2

π
µj sin(jx)W j

t

⎞
⎠
. (6.23)

Obviously, the above example as well as the following one are applications of Theorem 6.6.
T (x) denotes the explosion time of ηt as written in the proof of Theorem 6.6.

Example 6.9 Let W be a general infinite-dimensional Wiener process on L2([0,1]) with
orthonormal basis ej(x), j ≥ 1, given by (6.20). Let µj ∈ R, j ≥ 1, satisfy (6.22). Then a
local solution to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

du = u ○ dW =
∞
∑
j=1

√
2µj sin(jπx)u ○ dW j

t

u(x,0) = h(x)

85



6. APPLICATION OF THE METHOD OF STOCHASTIC
CHARACTERISTICS TO STOCHASTIC TRANSPORT EQUATIONS

is given for almost all ω and x ∈ [0,1] with t ∈ [0, T (x,ω)) by

u(x, t) = h(x) exp
⎛
⎝

∞
∑
j=1

√
2µj sin(jπx)W j

t

⎞
⎠
. (6.24)

In the previous part we have seen some examples where the method of stochastic char-
acteristics is applicable and leads to an explicit expression of solutions. Now we try to
combine Example 6.4 and Example 6.9.

Example 6.10 Let W be a general infinite-dimensional Wiener process on L2([0,1]) with
orthonormal basis ej(x), j ≥ 1, given by (6.20). Let µj ∈ R, j ≥ 1, satisfy (6.22). Consider
for x ∈ [0,1]

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

du = (x∇u − λu∣u∣q−2) dt + u ○ dW

= (x∇u − λu∣u∣q−2) dt +
∞
∑
j=1

√
2µj sin(j π x)u ○ dW j

t

u(x,0) = h(x).

(6.25)

Assume that u is a solution to (6.25) and that there exists the stochastic characteristic
curve (ξt, ηt, χt). Let us define

F (ξt, ηt, χt, ○dt) ∶= (ξt χt − ληt∣ηt∣q−2) dt +
∞
∑
j=1

√
2µj sin(j π ξt)ηt ○ dW j

t .

Then the corresponding stochastic characteristic equations are given by

dξt = −ξt dt,

ξ0(x) = x
(6.26)

and

dηt = ( − ληt∣ηt∣q−2) dt +
∞
∑
j=1

√
2µj sin(j π ξt)ηt ○ dW j

t ,

η0(x) = h(x).
(6.27)

Due to Example 6.4 we know that the solution to (6.26) is given for all x ∈ [0,1], t ∈ [0,T)
by

ξt(x) = xe−t.

Now we try to determine the solution to (6.27) in the same way as before and obtain by
using Newton’s derivative

1

ηt
η̇t = −λ∣ηt∣q−2 +

∞
∑
j=1

√
2µj sin (j π xe−t) Ẇ j

t ,

which is equivalent to

1

ηt
η̇t −

∞
∑
j=1

√
2µj sin (j π xe−t) Ẇ j

t = −λ∣ηt∣
q−2.

With our techniques there is no chance to find the primitive function of the term
sin (j π xe−t) Ẇ j

t . Hence the method of stochastic characteristics is not applicable in the
mixed Example 6.10 at the moment.
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In the previous example we have seen that we are not able to solve the stochastic trans-
port equation (6.25) by the method of stochastic characteristics. In particular a time-
dependence of solution ξt causes problems. To see this we look at the general case of the
one-dimensional stochastic transport equation with Stratonovich differential given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

du = (φ1(x, t)∇u − ψ(x, t)u − λu ∣u∣q−2) dt +
∞
∑
j=1

µj ej(x)u ○ dW j
t

u(x,0) = h(x).
(6.28)

Provided that u solves (6.28) and that there exists the stochastic characteristic curve
(ξt, ηt, χt), we end up with the stochastic characteristic equations

dξt = −φ1(ξt, t) dt

dηt = (−ψ(ξt, t)ηt − ληt ∣ηt∣q−2) dt +
∞
∑
j=1

µj ej(ξt)ηt ○ dW j
t

(6.29)

as we have seen before. This system of stochastic differential equations (6.29) can only
be solved if dξt = −φ1(ξt, t) dt generates a time-independent solution. Due to the initial
condition ξ0(x) = x the only time-independent solution is ξt(x) = x which implies φ1(x, t) =
0. In this special case we are able to determine the solution of

dηt = (−ψ(ξt, t)ηt − ληt ∣ηt∣q−2) dt +
∞
∑
j=1

µj ej(ξt)ηt ○ dW j
t

= (−ψ(x, t)ηt − ληt ∣ηt∣q−2) dt +
∞
∑
j=1

µj ej(x)ηt ○ dW j
t .

As seen many times before the equation is equivalent to

1

ηt
η̇t + ψ(x, t) −

∞
∑
j=1

µj ej(x)Ẇ j
t = −λ ∣ηt∣q−2 .

In particular we find a substitution for the term
∞
∑
j=1

µj ej(x)Ẇ j
t as in the proof of Theorem

6.6. This is not the case if we have to solve

1

ηt
η̇t + ψ(ξt, t) −

∞
∑
j=1

µj ej(ξt)Ẇ j
t = −λ ∣ηt∣q−2 ,

where the stochastic characteristic curve ξt depends on time t.

6.3. The stochastic transport equation with Itô differential

Up to now we considered the stochastic transport equation with Stratonovich differential.
In [BR15] the equation is given with Itô differential and for general Wiener processes as
defined in Definition 6.1. Due to the fact that the method of stochastic characteristics
is only working with Stratonovich differential we have to rewrite (6.1) by applying the
Itô-Stratonovich formula.
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Lemma 6.11 The stochastic partial differential equation (6.1) is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du(x, t) =
d

∑
i=1

φi(x, t)
∂u

∂xi
(x, t) dt − ψ(x, t)u(x, t) dt

− λu(x, t) ∣u(x, t)∣q−2 dt

− 1

2

d

∑
i=1

∞
∑
j=1

µ2
je

2
j(x)u(x, t)

∂u

∂xi
(x, t) dt

− 1

2

d

∑
i=1

∞
∑
j=1

µ2
jej(x)u2(x, t)

∂ej

∂xi
(x) dt

+
∞
∑
j=1

µjej(x)u(x, t) ○ dW j
t

u(x,0) = h(x)

(6.30)

for all x ∈ O and t ∈ [0,T].

Proof. We use the Itô-Stratonovich formula in d dimensions. The application of Theorem
2.35 provides

du(x, t) = (
d

∑
i=1

φi(x, t)
∂u

∂xi
(x, t) − ψ(x, t)u(x, t) − λu(x, t) ∣u(x, t)∣q−2 ) dt

+
∞
∑
j=1

µjej(x)u(x, t) dW j
t

= (
d

∑
i=1

φi(x, t)
∂u

∂xi
(x, t) − ψ(x, t)u(x, t) − λu(x, t) ∣u(x, t)∣q−2 ) dt

+
∞
∑
j=1

µjej(x)u(x, t) ○ dW j
t −

1

2

d

∑
i=1

∞
∑
j=1

µjej(x)u(x, t)
∂[u(x, t)µjej(x)]

∂xi
dt

= (
d

∑
i=1

φi(x, t)
∂u

∂xi
(x, t) − ψ(x, t)u(x, t) − λu(x, t) ∣u(x, t)∣q−2 ) dt

+
∞
∑
j=1

u(x, t)µjej(x) ○ dW j
t

− 1

2

d

∑
i=1

∞
∑
j=1

(µjej(x)u(x, t)[
∂u(x, t)
∂xi

µjej(x) + u(x, t)µj
∂ej(x)
∂xi

]) dt

= (
d

∑
i=1

φi(x, t)
∂u

∂xi
(x, t) − ψ(x, t)u(x, t) − λu(x, t) ∣u(x, t)∣q−2

− 1

2

d

∑
i=1

∞
∑
j=1

µ2
je

2
j(x)u(x, t)

∂u

∂xi
(x, t) − 1

2

d

∑
i=1

∞
∑
j=1

µ2
jej(x)u2(x, t)

∂ej

∂xi
(x)) dt

+
∞
∑
j=1

µjej(x)u(x, t) ○ dW j
t .

Example 6.12 Let W be a general infinite-dimensional Wiener process as in Definition
6.1 on H = L2(O) and suppose that Assumption 6.2 is satisfied. For simplicity we consider
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the stochastic transport equation (6.1) in dimension one with φ1 = ψ = 0 given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

du(x, t) = −λu(x, t) ∣u(x, t)∣q−2 dt + u(x, t) dW

= −λu(x, t) ∣u(x, t)∣q−2 dt +
∞
∑
j=1

µj ej(x)u(x, t) dW j
t

u(x,0) = h(x).

(6.31)

By applying Lemma 6.11 equation (6.31) is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du(x, t) = −1

2

d

∑
i=1

∞
∑
j=1

µ2
j (ej(x)2 u(x, t) ∂u

∂xi
(x, t) + ej(x)u2(x, t)

∂ej

∂xi
(x)) dt

− λu(x, t) ∣u(x, t)∣q−2 dt +
∞
∑
j=1

µj ej(x)u(x, t) ○ dW j
t

u(x,0) = h(x).

(6.32)

Under the assumption that u solves (6.32) and (ξt, ηt, χt) is the corresponding stochastic
characteristic curve as defined in Chapter 3 the associated system of stochastic character-
istic equations for

F (ξt, ηt, χt, ○dt) = −
1

2

d

∑
i=1

∞
∑
j=1

µ2
j (ej(ξt)2 ηt χ

i
t + ej(ξt) (ηt)2 ∂ej

∂xi
(ξt)) dt

− ληt ∣ηt∣q−2 dt +
∞
∑
j=1

µj ej(ξt)ηt ○ dW j
t

are given by
dξit = −Fχi

t
(ξt, ηt, χt, ○dt)

= 1

2

∞
∑
j=1

µ2
jej(ξt)2 ηt dt for i = 1, ..., d,

(6.33)

and

dηt = F (ξt, ηt, χt, ○dt) −
d

∑
i=1

χitFχi
t
(ξt, ηt, χt, ○dt)

=
⎛
⎝
−1

2

d

∑
i=1

∞
∑
j=1

ej(x) (ηt)2 ∂ej

∂xi
(ξt) − ληt ∣ηt∣q−2⎞

⎠
dt

+
∞
∑
j=1

µj ej(ξt)ηt ○ dW j
t .

(6.34)

Obviously, (6.33) does not generate a time-independent solution. Hence we are not able to
find the solutions (ξt, ηt) and finally solve (6.31) by the method of stochastic characteristics.

Due to Example 6.12 we conclude that at the moment we have no technique to solve (6.1)
by the method of stochastic characteristics.

Remark 6.13 In subsection 6.2 we have shown that equation (6.14) given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

du = u ○ dW

=
∞
∑
j=1

µj ej u ○ dW j
t

u(x,0) = h(x)
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for x ∈ O ⊂ Rd is solvable by the method of stochastic characteristics. Furthermore, a local
solution is given for almost all ω and x ∈ O with t ∈ [0, T (x,ω)) by

u(x, t) = h(x) exp
⎛
⎝

∞
∑
j=1

µj ej(x)W j
t

⎞
⎠
,

where T (x) denotes the explosion time. Due to Lemma 6.11 the solution u solves also
locally

du =
⎛
⎝

1

2

d

∑
i=1

∞
∑
j=1

µ2
j (e2

j u
∂u

∂xi
+ ej u2 ∂ej

∂xi
)
⎞
⎠

dt

+
∞
∑
j=1

µj ej(x)u dW j
t

=
⎛
⎝

1

2

d

∑
i=1

∞
∑
j=1

µ2
j (e2

j u
∂u

∂xi
+ ej u2 ∂ej

∂xi
)
⎞
⎠

dt

+ u dW.

(6.35)

If we compare equation (6.35) given by

du(x, t) =
⎛
⎝

1

2

d

∑
i=1

∞
∑
j=1

µ2
j (ej(x)2 u(x, t) ∂u

∂xi
(x, t) + ej(x)u2(x, t)

∂ej

∂xi
(x))

⎞
⎠

dt

+ u(x, t) dW(x, t)

with equation (6.1)

du(x, t) = (
d

∑
i=1

φi(x, t)
∂u

∂xi
(x, t) − ψ(x, t)u(x, t) − λu(x, t) ∣u(x, t)∣q−2) dt

+ u(x, t) dW(x, t),

one could come up with the idea to find a proper choose of the coefficient functions φi, ψ such
that (6.35) can be written in terms of (6.1). But this is not possible because in particular
the coefficients φi do not depend on u. Accordingly, we see no chance to solve the general
stochastic transport equation (6.1) by the method of stochastic characteristics.

Remark 6.14 In general a direct application of the main result given in Corollary 4.6 to
the stochastic transport equation is not possible. In [BR15] we have the assumptions that
the coefficient functions φi are continuously differentiable in space and ψ is a continuous
function. In [Kun97] the coefficient functions have to be at least 5-times continuously dif-
ferentiable in all variables (x,u,∇u), Hölder continuous and of linear growth. In particular
the term λu∣u∣q−2 for q > 2 does not fulfill these conditions. In very special and simplified
cases an application is possible, as seen in Example 4.10. In this case we take q = 2 and
consider space-independent orthonormal bases. Hence the critical term λu∣u∣q−2 for q > 2 of
the stochastic transport equation as written in [BR15] has been dropped in Example 4.10.
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7. The scaling transform approach
In this chapter we repeat the operatorial approach developed by V.Barbu and M.Röckner
in An operatorial approach to stochastic partial differential equations driven by linear multi-
plicative noise [BR15]. We do this in the case of the stochastic transport equation, despite
the fact that the conditions of the main existence and uniqueness result Theorem 3.1 in
[BR15] are not exactly satisfied. Nevertheless it is possible to apply the operatorial ap-
proach as written in [BR15, Section 6.3.]. We reproduce this in a detailed and restructured
way to see at the end that the scaling transform solves the problem. Furthermore, we illus-
trate in a summarizing diagram the three considered methods in the case of the stochastic
transport equation, see Subsection 7.3. below.

The scaling transform approach is applicable to general infinite-dimensional stochastic
partial differential equations for t ∈ [0,T] of the form

{
dX(⋅, t) = −A(⋅, t)X(⋅, t) dt +X(⋅, t) dW(⋅, t)
X(⋅, t) = h(⋅),

(7.1)

where A is a monotone-like operator, W is a Wiener process and h is some initial function.
We consider this type of equations on a Gelfand triple

V ⊂H ≅H∗ ⊂ V ∗.

The idea of the scaling transform approach is to multiply the equation with e−W(t), i.e. we
consider that solutions are of the form

X(t) = eW(t)y(t) (7.2)

and transform SPDE (7.1) into a random differential equation

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d

dt
y(t) = −e−W(t)A(t)(eW(t)y(t)) − µ y(t), t ∈ [0,T]

y(0) = h,
(7.3)

where µ depends on the representation of the Wiener process. Then we rewrite equation
(7.3) into an equation of the form

By +T y +A y = 0, (7.4)

where A ,B and T are maximal monotone operators on a new defined Gelfand triple

V ⊂H ⊂ V∗.

Finally we apply an existence and uniqueness result for such kind of operator equations
and hence we obtain existence and uniqueness of solutions to (7.1).

7.1. The existence and uniqueness result of V. Barbu and
M.Röckner

Let T > 0 and [0,T] be the underlying time interval. Let (Ω,F , P ) be a complete prob-
ability space with normal filtration (Ft)t≥0. Let (V, ∥ ⋅ ∥V ) be a reflexive Banach space
continuously and densely embedded into a real separable Hilbert space (H, ∥ ⋅ ∥H). By the
Riesz isomorphism (cf. [Bré11, Theorem 5.5. - Chapter 5.2]) H is isometric isomorph to
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its dual space H∗ and the dual pairing fulfills V ∗⟨v,w⟩V = ⟨v,w⟩H for all v ∈H,w ∈ V . The
dual space is again continuously and densely embedded into the dual space of V denoted
by V ∗. The above construction forms a Gelfand triple (cf. [Emm04, Definition 8.1.7])
written as

V ⊂H ≅H∗ ⊂ V ∗.

Let O ⊂ Rd be a bounded and open subset with smooth boundary ∂O. We consider a
stochastic differential equation with multiplicative noise in H of the form

{
dX(t) = −A(t)X(t) dt +X(t) dW(t)
X(0) = h,

(7.5)

where h ∈ H. The perturbation W is a Wiener process on H in the following sense as
already defined in Chapter 6. Let us recall the definition.

Definition 6.1 A Wiener process W on a real separable Hilbert space H is defined by

W(x, t) ∶=
∞
∑
j=1

µjej(x)W j
t , (7.6)

for all x ∈ O, t ≥ 0, where for all j = 1,2, ...

• W j
t is an independent system of real-valued Brownian motions on (Ω,F , P ) with

normal filtration (Ft)t≥0

• ej ∈ C2(Ō,R) ∩H is an orthonormal basis in H and

• µj ∈ R.

Furthermore, let Assumption 6.2 be fulfilled.

Definition 7.1 A (Ft)t≥0-adapted process X ∶ [0,T] → H with continuous sample paths
is called a solution to (7.5) for initial value h ∈H, if it satisfies for some 1 < q <∞

X ∈ L∞((0,T), L2(Ω,H)),

X(t) = h −
t

∫
0

A(s)X(s) ds +
t

∫
0

X(s) dW(s), t ∈ [0,T],

AX ∈ L
q

q−1 ((0,T) ×Ω, V ∗) and X ∈ Lq((0,T) ×Ω, V ).

In [BR15] the method of scaling and transforming a stochastic partial differential equation
into a random differential equation is used to prove an existence and uniqueness result
for equation (7.1) under certain conditions. We state this result in Theorem 7.2 below.
The random differential equation corresponds to an equation with maximal monotone
operators. Even if one does not know the validity of these conditions, it is possible to
apply the method. To call attention to the scaling transform approach we state the main
result as well as the underlying conditions HP(i) - HP(iv).

HP(i) V ⊂ H ⊂ V ∗ is a Gelfand triple with a separable, reflexive Banach space V and
separable real Hilbert space H. By Asplund’s Theorem [Bar10, Theorem 1.1.] the
spaces V and V ∗ are strictly convex with respect to an equivalent norm on V .

HP(ii) The operator A ∶ [0,T] × V × Ω → V ∗ is progressively measurable, i.e. for every
t ∈ [0,T] the restricted operator A∣[0,t]×V ×Ω is B([0, t]) ⊗ B(V ) ⊗ Ft-measurable,
where B denotes the Borel-σ-algebra on the corresponding spaces.
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HP(iii) There is δ ≥ 0 such that, for each t ∈ [0,T] and ω ∈ Ω, the operator

G ∶ V Ð→ V ∗

u = u(⋅, t, ω)↦ G(u) ∶= δu +A(t, ω)u = δu(⋅, t, ω) +A(t, ω)u(⋅, t, ω)

is monotone, demicontinuous and for some 1 < q < ∞ there are constants γ1 >
0, γ2, γ3 ∈ R, γ̄i ∈ R with i = 1,2,3 such that

V ∗ ⟨A(t)u,u⟩V ≥ γ1∥u∥qV + γ2∥u∥2
H + γ3 ∀u ∈ V, t ∈ [0,T], (7.7)

∥A(t)u∥V ∗ ≤ γ̄1∥u∥q−1
V + γ̄2 + γ̄3∥u∥H , ∀u ∈ V, t ∈ [0,T] (7.8)

P−a.s.

HP(iv) e±W(t) is, for each t, a multiplier in V and a symmetric multiplier in H such that
there exists a (Ft)t-adapted, R+-valued process Z(t), t ∈ [0,T], with

E[ sup
t∈[0,T]

∣Z(t)∣r] <∞

for all 1 ≤ r <∞ and

∥e±W(t)y∥V ≤ Z(t) ∥y∥V ∀ t ∈ [0,T], ∀ y ∈ V, (7.9)
∥e±W(t)y∥H ≤ Z(t) ∥y∥H ∀ t ∈ [0,T], ∀ y ∈H, (7.10)

⟨e±W(t)x, y⟩
H
= ⟨x, e±W(t)y⟩

H
∀ t ∈ [0,T], ∀ x, y ∈H (7.11)

P -a.s. and t↦ e±W(t) ∈H is continuous for fixed ω.

For the reader’s convenience the definitions of monotonicity and demicontinuity are men-
tioned in Appendix E, namely in Definition E.1 and Definition E.2, respectively.

Theorem 7.2 Under hypotheses HP(i)- HP(iv), for each h ∈ H, equation (7.5) has a
unique solution X. Moreover, the function t ↦ e−W(t)X(t) is V ∗− absolutely continuous
on [0,T] and

E
⎡⎢⎢⎢⎢⎣

T

∫
0

∥eW(t) d

dt
[e−W(t)X(t)]∥

q
q−1

V ∗
dt

⎤⎥⎥⎥⎥⎦
<∞

holds.

Details can be found in [BR15]. In this chapter we focus on the stochastic transport
equation. Therefore we study this equation explicitly and finally apply the following main
result concerning the existence and uniqueness of a solution to an operator equation of the
form (7.4).

Proposition 7.3 Let A ,B be maximal monotone operators in V × V∗. Let T ∶ D(T ) ⊂
V → V∗ be a maximal monotone operator such that B+T is maximal monotone in V ×V∗.
Then, for any f ∈ V∗, there is a unique solution y to the equation

By +T y +A y = f. (7.12)

The proof can be found in [BR15, Proposition 4.4.]. The strategy for proving the existence
and uniqueness result for the stochastic transport equation is to apply the above Proposi-
tion 7.3 to well-chosen operators. We will not apply Theorem 7.2 directly. The basic tool
of the operatorial approach is the following Definition 7.4 of a maximal monotone operator
(cf. [Bar10, Definition 2.1.]).
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Definition 7.4 Let V,V ∗ be two real Banach spaces. Any operator A ∶ V → V ∗ can be
identified with its graph

graph{(u,Au) ∈ V × V ∗}.

Therefore, we define for A ⊂ V × V ∗

Au ∶= {v ∈ V ∗ ∣ (u, v) ∈ A},
D(A) ∶= {u ∈ V ∣Au ≠ ∅},
R(A) ∶= ⋃

u∈D(A)
Au.

A set A ⊂ V × V ∗ is called monotone, if

V ∗⟨v1 − v2, u1 − u2⟩V ≥ 0 for all (ui, vi) ∈ A, i = 1,2.

A monotone set A ⊂ V × V ∗ is called maximal monotone if it is not properly contained
in any other monotone subset of V × V ∗.

Further necessary tools are the following theorems of [Bar10] which give in particular
equivalent statements to maximal monotonicity.

Theorem 7.5 Let J be the duality mapping of V . Let V and V ∗ be reflexive and strictly
convex and let A ⊂ V × V ∗ be a monotone set. Then A is maximal monotone in V × V ∗ if
and only if, for each λ > 0 and q > 0

⋃
u∈D(A+λJ∥⋅∥q−1V )

(Au + λJ(u)∥u∥q−1
V ) = V ∗

holds.

The above result including the proof can be found in [Bar10, Theorem 2.3]. In Appendix
E we give the definition of a hemicontinuous operator, see Definition E.3. Furthermore,
we remember Theorem 2.4 from [Bar10]:

Theorem 7.6 Let V be a reflexive Banach space and A ∶ V → V ∗ be a monotone and
hemicontinuous operator. Then A is maximal monotone in V × V ∗.

7.2. Application to stochastic transport equations
Let O ⊂ Rd be a bounded and open subset with smooth boundary ∂O and q ≥ 2. Consider
the Gelfand triple

Lq(O,R) ⊂ L2(O,R) ⊂ L
q

q−1 (O,R). (7.13)

We study the hyperbolic stochastic partial differential equation of first order given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX(x, t) =
d

∑
i=1

αi(x, t)
∂X(x, t)
∂xi

dt − β(x, t)X(x, t) dt

− λX(x, t) ∣X(x, t)∣q−2 dt +X(x, t) dW(x, t)
X(x,0) = h(x),

X(t) = 0 on Υ ∶= {(x, t) ∈ ∂O × [0,T] ∣ −
d

∑
i=1

αi(x, t)ni(x) < 0},

(STE)
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where we assume

λ > 0, (7.14)
h ∈H1(O,R) ∩Lq(O,R), h = 0 on Υ, (7.15)
αi, β ∈ C(Ō × [0,T],R) ∀ i = 1, ..., d, (7.16)

∇xαi = (∂αi
∂x1

, . . . ,
∂αi
∂xd

) ∈ C(Ō × [0,T],Rd), (7.17)

(ni)i=1,...,d is the normal vector to ∂O, (7.18)
1

2
divx α(x, t) + β(x, t) > ν, (7.19)

with ν ∶= ∑j≥1 µ
2
j γ̃

2
j ∥ej∥2

∞ and γ̃j ∈ [1,∞), j ≥ 1, as given in Assumption 6.2. For short
notation we define

α ∶= (α1, ..., αd) ∶ Ō × [0,T]→ Rd, (7.20)
B(u) ∶= −u∣u∣q−2. (7.21)

Remark 7.7 In the case V = Lq(O,R) for q > 2, it is convenient to estimate

E[∥eW(t)∥qV ] respectively E[∥eW(t)∥qH]

and consequently verify HP(iv). We conclude this from Fernique’s Theorem [DPZ14,
Theorem 2.6.]. The statement of Fernique’s Theorem is that on a separable Banach space
a Gaussian random variable has exponential tails. Applied to the exponential series, we
can show that HP(iv) is fulfilled and we obtain

exp ( sup
0≤t≤T

∣W(t)∣∞) ∈ Lq(Ω).

Now we reformulate the existence and uniqueness result of solutions to the stochastic
transport equation as published in [BR15, Section 6.3].

Theorem 7.8 Under the conditions (7.14) - (7.19) there exists a unique solution X to the
stochastic transport equation (STE).

Due to the strategy of applying Proposition 7.3 the following proof and calculations are
given in a backward direction to see that the scaling transform (7.2) mentioned at the
beginning of this chapter is useful. The proof follows the ideas of the proof of [BR15,
Theorem 3.1, Proposition 3.3]

Proof. In a first step we define analogously to [BR15, Section 4] the following Gelfand
triple

V ⊂H ⊂ V∗ (7.22)

with

• V ≡ Banach space of all Lq(O,R)-valued, (Ft)t-adapted processes
y ∶ [0,T]→ Lq(O,R) with norm

∥y∥V ∶=
⎛
⎝
E[

T

∫
0

∥eW(t)y(t)∥
q

Lq
dt]

⎞
⎠

1
q

<∞.
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• H ≡ Hilbert space of all L2(O,R)-valued, (Ft)t-adapted processes
y ∶ [0,T]→ L2(O,R) with norm

∥y∥H ∶=
⎛
⎝
E[

T

∫
0

∥eW(t)y(t)∥
2

L2
dt]

⎞
⎠

1
2

<∞

and inner product

⟨y, z⟩H ∶= E[
T

∫
0

⟨eW(t)y(t), eW(t)z(t)⟩L2 dt] <∞.

• V∗ ≡ Banach space of all Lq
′(O,R)-valued, (Ft)t-adapted processes

y ∶ [0,T]→ Lq
′(O,R) with norm

∥y∥V∗ ∶=
⎛
⎝
E[

T

∫
0

∥eW(t)y(t)∥
q′

Lq′ dt]
⎞
⎠

1
q′

<∞, q′ = q

q − 1
.

For fixed initial function h ∈H1(O,R) ∩Lq(O,R) we define the operators

A ∶ V Ð→ V∗

y(t)↦ (A y)(t) ∶= λe(q−2)W(t)(y(t) + h) ∣y(t) + h∣q−2

−
d

∑
i=1

αi(t)e−W(t)∂[eW(t)h]
∂xi

+ (β(t) + µ)h
(7.23)

B ∶ D(B) ⊂ V Ð→ V∗

y(t)↦ (By)(t) ∶= dy

dt
(t) + (µ + ν)y(t) (7.24)

T ∶ D(T ) ⊂ V Ð→ V∗

y(t)↦ (T y)(t) ∶= −
d

∑
i=1

αi(t)e−W(t)∂[eW(t)y(t)]
∂xi

+ (β(t) − ν)y(t),
(7.25)

with corresponding domains

D(B) ∶= {y ∈ V ∣ y ∈ AC([0,T], Lq
′
(O,R)) ∩ C([0,T], L2(O,R)) P -a.s.,

dy

dt
∈ V∗, y(0) = 0},

D(T ) ∶=
⎧⎪⎪⎨⎪⎪⎩
y ∈ V

RRRRRRRRRRR

d

∑
i=1

e−Wαi
∂[eWy]
∂xi

∈ V∗, y = 0 on Υ

⎫⎪⎪⎬⎪⎪⎭
,

where AC([0,T], Lq′(O,R)) denotes the space of all absolutely continuous Lq
′
-valued func-

tions on [0,T] and dy
dt is defined as in Definition E.5. We consider the following integral

and integrate by parts

−∫
O

d

∑
i=1

αi(eWy)
∂[eWy]
∂xi

dx

= −∫
∂O

d

∑
i=1

αini(eWy)2 dx + ∫
O

d

∑
i=1

(eWy)∂[αie
Wy]

∂xi
dx
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= −∫
∂O

d

∑
i=1

αini(eWy)2 dx + ∫
O

d

∑
i=1

(eWy)(αi
∂[eWy]
∂xi

+ (eWy)∂αi
∂xi

) dx

= −∫
∂O

d

∑
i=1

αini(eWy)2 dx + ∫
O

d

∑
i=1

αi(eWy)
∂[eWy]
∂xi

dx + ∫
O

d

∑
i=1

∂αi
∂xi

(eWy)2 dx.

Hence we obtain

−∫
O

d

∑
i=1

αi(eWy)
∂[eWy]
∂xi

dx

= −1

2
∫
∂O

d

∑
i=1

αini(eWy)2 dx + 1

2
∫
O

d

∑
i=1

∂αi
∂xi

(eWy)2 dx.

(7.26)

Under assumption (7.19) given by

1

2
divx α(x, t) + β(x, t) − ν > 0,

we can show that the operator T as defined in (7.25) is monotone, since by Riesz isomor-
phism we receive

V∗⟨T (y), y⟩V = E
⎡⎢⎢⎢⎢⎣

T

∫
0

⟨eW(t)(T y)(t), eW(t)y(t)⟩L2 dt

⎤⎥⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎢⎣

T

∫
0

∫
O

eW(t)( −
d

∑
i=1

αi(x, t)e−W(t)∂[eW(t)y(t)]
∂xi

+ (β(x, t) − ν)y(t))

⋅ (eW(t)y(t)) dx dt

⎤⎥⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎢⎣

T

∫
0

∫
O

−eW(t)
d

∑
i=1

αi(x, t)e−W(t) ∂[eW(t)y(t)]
∂xi

(eW(t)y(t))

+ eW(t)(β(x, t) − ν)y(t)(eW(t)y(t)) dx dt

⎤⎥⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎢⎣

T

∫
0

∫
O

d

∑
i=1

−αi(x, t)
∂[eW(t)y(t)]

∂xi
(eW(t)y(t)) dx dt]

+E[
T

∫
0

∫
O

(β(x, t) − ν)(eW(t)y(t))2 dx dt

⎤⎥⎥⎥⎥⎦
.

Now we make use of (7.26) to obtain

V∗⟨T (y), y⟩V = E
⎡⎢⎢⎢⎢⎣

T

∫
0

(∫
∂O

−1

2

d

∑
i=1

αini(eWy)2 dx + ∫
O

1

2

∂αi
∂xi

(eWy) dx) dt

⎤⎥⎥⎥⎥⎦

+E
⎡⎢⎢⎢⎢⎣

T

∫
0

∫
O

(β(x, t) − ν)(eW(t)y(t))2 dx dt

⎤⎥⎥⎥⎥⎦
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= E
⎡⎢⎢⎢⎢⎣

T

∫
0

∫
∂O

−1

2

d

∑
i=1

αini(eWy)2 dx dt

⎤⎥⎥⎥⎥⎦
+E

⎡⎢⎢⎢⎢⎣

T

∫
0

∫
O

1

2
divx α(eWy)2 dx dt

⎤⎥⎥⎥⎥⎦

+E
⎡⎢⎢⎢⎢⎣

T

∫
0

∫
O

(β(x, t) − ν)(eW(t)y(t))2 dx dt

⎤⎥⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎢⎣

T

∫
0

∫
∂O

−1

2

d

∑
i=1

αini(eWy)2 dx dt

⎤⎥⎥⎥⎥⎦

+E
⎡⎢⎢⎢⎢⎣

T

∫
0

∫
O

(1

2
divx α + β(x, t) − ν)(eW(t)y(t))2 dx dt

⎤⎥⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎢⎣
∫
Υ

−1

2

d

∑
i=1

αini(eWy)2 d(x, t)
⎤⎥⎥⎥⎥⎦
+E

⎡⎢⎢⎢⎢⎣
∫

∂O×[0,T]/Υ

−1

2

d

∑
i=1

αini(eWy)2 d(x, t)
⎤⎥⎥⎥⎥⎦

+E
⎡⎢⎢⎢⎢⎣

T

∫
0

∫
O

(1

2
divx α + β(x, t) − ν)(eW(t)y(t))2 dx dt

⎤⎥⎥⎥⎥⎦
.

Due to assumption (7.19), the definition of the domain D(T ) and the definition of Υ we
conclude

V∗⟨T (y), y⟩V ≥ 0.

Furthermore, we prove that the operator A given by (7.23) is maximal monotone in V×V∗.
To this end we use Theorem 7.6 which states that monotonicity and hemicontinuity of an
operator imply maximal monotonicity. We obtain monotonicity since by Riesz isomorphism
we have for y, ŷ ∈ V

V∗⟨A (y) −A (ŷ), y − ŷ⟩V

= E[
T

∫
0

∫
O

(eWλe(q−2)W(y + h)∣(y + h)∣
q−2

− eWλe(q−2)W(ŷ + h)∣ŷ + h∣
q−2

)(eWy − eWŷ) dx dt]

+E[
T

∫
0

∫
O

( −
d

∑
i=1

eWαie
−W∂[eWh]

∂xi
+ eW(β + µ)h

+
d

∑
i=1

eWαie
−W∂[eWh]

∂xi
− eW(β + µ)h)(eWy − eWŷ) dx dt]

= E[
T

∫
0

∫
O

⎛
⎝
λ (eW(y + h))∣(eW(y + h))∣

q−2

− λ (eW(ŷ + h))∣(eW(ŷ + h))∣
q−2⎞

⎠
((eW(y + h) − (eW(ŷ + h)) dx dt]

≥ 0,

since s↦ s∣s∣q−2 is increasing for q ≥ 2. Furthermore, hemicontinuity of A is fulfilled since
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again by Riesz isomorphism

lim
κ→0

V∗⟨A (y + κv) −A (y), z⟩V

= lim
κ→0

E
⎡⎢⎢⎢⎢⎣

T

∫
0

⟨eW[λe(q−2)W (y + κv + h)∣y + κv + h∣q−2 −
d

∑
i=1

αie
−W∂[eWh]

∂xi
+ (β + µ)h

− λe(q−2)W (y + h)∣y + h∣q−2 +
d

∑
i=1

αie
−W∂[eWh]

∂xi
− (β + µ)h], eWz⟩

L2

dt

⎤⎥⎥⎥⎥⎦

= lim
κ→0

E
⎡⎢⎢⎢⎢⎣

T

∫
0

⟨eW[λe(q−2)W((y + κv + h)∣y + κv + h∣q−2 − (y + h)∣y + h∣q−2)], eWz⟩
L2

dt

⎤⎥⎥⎥⎥⎦
.

Similarly as in [PR07, Example 4.1.5] we use Hölder’s inequality to obtain

lim
κ→0

V∗ ∣⟨A (y + κv) −A (y), z⟩V ∣

≤ lim
κ→0

E
⎡⎢⎢⎢⎢⎣

T

∫
0

∥eW[λe(q−2)W((y + κv + h)∣y + κv + h∣q−2 − (y + h)∣y + h∣q−2)]∥
Lq′

⋅ ∥eWz∥
Lq dt

⎤⎥⎥⎥⎥⎦

≤ lim
κ→0

E
⎡⎢⎢⎢⎢⎣

T

∫
0

∥eW[λe(q−2)W((y + κv + h)∣y + κv + h∣q−2 − (y + h)∣y + h∣q−2)]∥
q′

Lq′
dt

⎤⎥⎥⎥⎥⎦

1
q′

⋅E
⎡⎢⎢⎢⎢⎣

T

∫
0

∥eWz∥q
Lq dt

⎤⎥⎥⎥⎥⎦

1
q

= lim
κ→0

∥λe(q−2)W((y + κv + h)∣y + κv + h∣q−2 − (y + h)∣y + h∣q−2)∥
V∗

∥z∥V = 0

with Lebesgue’s dominated convergence theorem. Now we apply the existence and unique-
ness result Proposition 7.3 for operator equations of the type (7.12) with f = 0, a maximal
monotone operator T ∶ D(T ) ⊂ V → V∗ and maximal monotone sum B + T in V × V∗.
We have shown that T is monotone. But in fact it is not maximal monotone, so we
know that B +T is also not maximal monotone. Hence we are not able to apply Propo-
sition 7.3 directly. Therefore we use [BB69] and [Lio69] to show that B + T is closable
in Lq((0,T) × O,R) for fixed ω ∈ Ω and the closure B +T is maximal monotone in
Lq((0,T) ×O,R) ×Lq′((0,T) ×O,R). By applying Theorem 7.5 the equation

(B +T )y + e−WF (e−Wy) = 0 in (0,T) ×O

has a unique solution y ∈ D(B +T ), where F is the corresponding dual mapping; for
details see Lemma E.6. As written in Lemma E.7 it is also true, that B +T is maximal
monotone in V × V∗. All in all we are able to apply Proposition 7.3 to the new operator
equation

(B +T )y +A y = 0,

since both operators are maximal monotone. Therefore there exists a unique solution
y ∈ D(B +T ) i.e. there exists (yn)n∈N ⊂ D(B +T ) with yn → y in V for n → ∞ and
(B +T )yn +A yn → 0 in V for n→∞ .

99



7. THE SCALING TRANSFORM APPROACH

Now we use the definitions of the operators (7.23), (7.24) and (7.25) to verify that y is the
solution of the random differential equation (7.3) in the sense of [BR15, Definition 3.2.].
Let y ∈D(B +T ), then we have

0 = By +T y +A y

= dy

dt
+ (µ + ν)y −

d

∑
i=1

αie
−W∂[eWy]

∂xi
+ (β − ν)y

+ λe(q−2)W(y + h) ∣y + h∣q−2 −
d

∑
i=1

αie
−W∂[eWh]

∂xi
+ (β + µ)h

= dy

dt
−

d

∑
i=1

αie
−W∂[eWy]

∂xi
+ βy + βh + µy + µh

+ λe(q−2)W(y + h) ∣y + h∣q−2 −
d

∑
i=1

αie
−W∂[eWh]

∂xi

= dy

dt
−

d

∑
i=1

αie
−W∂[eWy]

∂xi
+ (β + µ)(y + h)

+ λe(q−2)W(y + h) ∣y + h∣q−2 −
d

∑
i=1

αie
−W∂[eWh]

∂xi
.

Finally we obtain

dy

dt
=

d

∑
i=1

αie
−W∂[eW(y + h)]

∂xi
− (β + µ)(y + h) − λe(q−2)W(y + h) ∣y + h∣q−2 .

By shifting y to y − h we get the following equivalent random differential equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dy

dt
(x, t) =

d

∑
i=1

αi(x, t)e−W(x,t)∂[eW(x,t)y(x, t)]
∂xi

− (β(x, t) + µ(x))y(x, t)

− λe(q−2)W(x,t)y(x, t) ∣y(x, t)∣q−2 ,

y(x,0) = h(x).

We conclude that

dy

dt
=

d

∑
i=1

αie
−W∂[eWy]

∂xi
− (β + µ)y − λe(q−2)Wy ∣y∣q−2 ,

which is equivalent to

dy =
d

∑
i=1

αie
−W∂[eWy]

∂xi
dt − (β + µ)y dt

− λe(q−2)W(eWe−W)y ∣y∣q−2 dt

=
d

∑
i=1

αie
−W∂[eWy]

∂xi
dt − e−W(β + µ)(eWy) dt

− e−Wλ(eWy) ∣eWy∣q−2
dt.

If we multiply with eW, we obtain

eW dy =
d

∑
i=1

αi
∂[eWy]
∂xi

dt − (β + µ)(eWy) dt − λ(eWy) ∣eWy∣q−2
dt
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=
d

∑
i=1

αi
∂[eWy]
∂xi

dt − β(eWy) dt − µ(eWy) dt − λ(eWy) ∣eWy∣q−2
dt

and therefore

eW dy + µ(eWy) dt =
d

∑
i=1

αi
∂[eWy]
∂xi

dt − β(eWy) dt − λ(eWy) ∣eWy∣q−2
dt.

By adding (eWy) dW on both sides we get

eW dy + µ(eWy) dt + (eWy) dW

=
d

∑
i=1

αi
∂[eWy]
∂xi

dt − β(eWy) dt − λ(eWy) ∣eWy∣q−2
dt + (eWy) dW.

(7.27)

It is suggestive to apply Itô’s product rule (see [RY05, Chapter IV, 3.1 Proposition]) to
eWy which leads to

eW(t)y(t) = eW(0)y(0) +
t

∫
0

eW(s) dy(s) +
t

∫
0

y(s) d(eW(s)) + ⟨eW(⋅), y(⋅)⟩t.

Now we use Lemma E.4 and obtain

eW(t)y(t) = y(0) +
t

∫
0

eW(s) dy(s) +
t

∫
0

eW(s)y(s) dW(s) +
t

∫
0

µeW(s)y(s) ds. (7.28)

In terms of differentials equation (7.28) is equivalent to

d[eWy] = eW dy + µeWy dt + eWy dW.

By using the right hand side of (7.27) this leads to

d[eWy] =
d

∑
i=1

αi
∂[eWy]
∂xi

dt − β(eWy) dt − λ(eWy) ∣eWy∣q−2
dt + (eWy) dW. (7.29)

Now the right hand side of (7.29) is equal to the right hand side of (STE) for (eWy).
Therefore we have that

X ∶= e−Wy (7.30)

is the unique solution to equation (STE). In summary, we have that the scaling transform
approach leads to the existence and uniqueness of the solution X(t) = eW(t)y(t) to (STE).

7.3. Summarizing diagram
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8. AN APPLICATION OF LEMMA 4.8 TO [DPT96]

8. An application of Lemma 4.8 to [DPT96]
In the proof of Theorem 4.5 we essentially use Lemma 4.8 to determine for a given process
another process which satisfies the property to be the right and left inverse. This so-called
inverse process is given again for almost all ω and all time and space variables up to a cer-
tain stopping time. In Fully Nonlinear Stochastic Partial Differential Equations [DPT96]
the authors G.DaPrato and L.Tubaro use this result to solve a second order nonlinear
stochastic partial differential equation under proper conditions. Herein the authors declare
that such an inverse process exists and refer to a first publication of [Kun97]. Due to our
knowledge regarding the book [Kun97] we work up this important tool namely Lemma 8.5
below and prove it in detail. Additionally, we prove the Itô-Wentzell formula as stated
in Theorem 8.3 below by using [Kun97]. In [DPT96] this formula is not given explicitly,
but it is refered to [Tub88]. The latter states the formula in a different framework and
applies results of Kunita’s lecture notes [Kun84b] and [Kun84a] in the proof. We reproduce
the whole framework of [DPT96] and give rigorous derivations to the considered equations.
One should note that all result are also given for almost all ω and all parameters depending
on ω.

Let us consider second order nonlinear stochastic partial differential equations of the form

{
du(t, ⋅) = L(t, ⋅, u,Du,D2u) dt + ⟨b(t, ⋅)Du + h(t, ⋅)u,dWt⟩Rd1

u(0, ⋅) = u0(⋅),
(8.1)

where

L ∶ [0,∞) ×Rd ×R ×Rd ×Rd×d → R

b ∶ [0,T] ×Rd → Rd1×d

h ∶ [0,T] ×Rd → Rd1

u0 ∶ Rd → R

satisfy some conditions mentioned below and Wt is a Rd1 - valued standard Brownian mo-
tion on a probability space (Ω,F , P ) and adapted to a normal filtration (Ft)t≥0. The idea
of [DPT96] is to transform SPDE (8.1) into a deterministic partial differential equation for
fixed ω ⎧⎪⎪⎨⎪⎪⎩

dv
dt (t, ⋅) = Λ(t, ⋅, v,Dv,D2v)
v(0, ⋅) = u0(⋅)

(8.2)

and hence to obtain an equivalence between these problems. Furthermore, the authors
prove an existence result of solutions to (8.2) in a maximal time interval. The drift and
diffusion terms L, b and h have to fulfill the following conditions:

Assumption 8.1
(i) For some α,β ∈ (0,1) the map

L ∶ [0,∞) ×Rd ×R ×Rd ×Rd×d → R

and its partial derivatives Dh
xD

k
uD

l
pD

m
q L with ∣h∣ + ∣k∣ + ∣l∣ + ∣m∣ ≤ 2 are α-Hölder

continuous in time t, β-Hölder continuous in space x and locally Lipschitz continuous
in u, p, q uniformly. For example in the case of the drift operator L that means for
any T > 0, r > 0 there exists a constant MT,r such that

∣L(t, x, u, p, q)−L(s, x′, u′, p′, q′)∣

≤MT,r(∣t − s∣α + ∣x − x′∣β + ∣u − u′∣ + ∣p − p′∣ + ∣q − q′∣)
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holds for all t, s ∈ [0,T], x,x′ ∈ Rd and u,u′, p, p′, q, q′ with ∣u∣, ∣u′∣ ≤ r,∣p∣, ∣p′∣ ≤ r,
∣q∣, ∣q′∣ ≤ r.

(ii) There exists ε > 0 such that, for any r > 0, there is Cr > 0 satisfying

∣L(0, x, u, p, q) −L(0, x′, u, p, q)∣ ≤ Cr ∣x − x′∣β+ε

for all x,x′ ∈ Rd and u, p, q with ∣u∣, ∣p∣, ∣q∣ ≤ r.
(iii) The drift operator L and its partial derivatives Dh

xD
k
uD

l
pD

m
q L with ∣h∣+ ∣k∣+ ∣l∣+ ∣m∣ = 3

are continuous with respect to all variables and, for any T > 0 and r > 0, there exists
a constant NT,r such that

∣L(t, x, u, p, q)∣ ≤ NT,r

holds for all t ∈ [0,T], x ∈ Rd and u, p, q with ∣u∣, ∣p∣, ∣q∣ ≤ r.
(iv) The diffusion terms b, h and their partial derivatives Dk

xb,D
k
ub,D

k
xh,D

k
uh with ∣k∣ ≤ 4

are uniformly continuous and bounded in [0,T] ×Rd.
(v) The partial derivatives Dk

xb,D
k
ub,D

k
xh,D

k
uh with ∣k∣ ≤ 4 are of class C1 in time, uni-

formly in x, i.e. Dk
xb(⋅, x) ∈ C1([0,T],R), that means in particular that they are

globally Lipschitz continuous in time (since C1 implies Lipschitz continuity) and lo-
cally Lipschitz continuous in space. For Dk

xb,D
k
xh it holds that

∣Dk
xb(t, x) −Dk

xb(s, x)∣ ≤K ∣t − s∣ ∀ x ∈ Rd, t, s ∈ [0,T]

and
∣Dk

xb(t, x) −Dk
xb(t, y)∣ ≤K ∣x − y∣ ∀ x, y ∈ K ⊂ Rd compact, t ∈ [0,T].

(vi) For all T, r > 0, there exists νT,r > 0 such that for the transposed matrix b⊺(t, x) of
b(t, x) and the identity matrix I

∂L

∂q
(t, x, u, p, q) − 1

2
b(t, x)b⊺(t, x) ≥ νT,rI

holds for all t ∈ [0,T], x ∈ Rd and u, p, q with ∣u∣, ∣p∣, ∣q∣ ≤ r.

Now we define the following operator.

Definition 8.2 Consider a mapping

α ∶ RN Ð→ RN

x =
⎛
⎜
⎝

x1

⋮
xN

⎞
⎟
⎠
↦ α(x) =

⎛
⎜
⎝

α1(x)
⋮

αN(x)

⎞
⎟
⎠
.

For the partial derivatives ∂iαj(x) =
∂αj

∂xi
(x) and gradient Dα(x) we define

RN ∋ TR[Dα(x) ⋅ α(x)] =

⎛
⎜⎜⎜⎜⎜
⎝

N

∑
i=1
∂1αi(x) ⋅ αi(x)

⋮
N

∑
i=1
∂Nαi(x) ⋅ αi(x)

⎞
⎟⎟⎟⎟⎟
⎠

.

For matrix valued functions A(x) ∈ RM×N with x ∈ RN and A(x) = (aij(x)) i=1,...,M
j=1,...,N

this

operator is defined by

TR[DA(x) ⋅A⊺(x)] ∶=
⎛
⎜
⎝

trace[D[A(x) ⋅ e1] ⋅A⊺(x)]
⋮

trace[D[A(x) ⋅ eN ] ⋅A⊺(x)]

⎞
⎟
⎠
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=

⎛
⎜⎜⎜⎜⎜⎜
⎝

M

∑
i=1

N

∑
j=1

∂jai1(x) ⋅ aij(x)

⋮
N

∑
j=1

M

∑
i=1
∂jaiN(x) ⋅ aij(x)

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

where A⊺ denotes the transposed matrix of A.

In the following we have a closer look on the transformation in which Kunita’s result
of finding an inverse process plays an important role. The whole transformation can be
separated into 7 steps based on the Itô-Wentzell formula applied to (8.1) and a well-chosen
SDE (8.18) below. But first of all we give an overview:

Define

L̃(t, ξ, u,Du,D2u) ∶= L(t, ξ, u,Du,D2u) − 1

2
trace[b⊺ ⋅ b ⋅D2u] (Step 1).

Consider (8.1) given by

du = L(t, x, u,Du,D2u) dt + ⟨b ⋅Du + h ⋅ u,dWt⟩Rd1 .

Solve
dξ = TR[Db(t, ξ) ⋅ b⊺(t, ξ)] dt − b⊺(t, ξ) dWt (Step 2).

Let ξ(t, x) be the solution and determine

ξ−1(t, x) =∶ η(t, x). (Step 3)

It holds η(t, ξ(t, x)) = x. Then we apply the Itô-Wentzell formula to d[u(t, ξ(t, x))] and
obtain

d[u(t, ξ)] = L̃(t, ξ, u,Du,D2u) dt − ⟨b ⋅Du,h⟩Rd1 dt

− trace [Dh ⋅ b⊺] u dt + u ⟨h,dWt⟩Rd1 .
(8.3)

Let y(t, x) ∶= u(t, ξ(t, x)) be the solution (Step 4) and set u(t, x) ∶= y(t, η(t, x)). Consider

d% = ∣h∣2% dt − %⟨h,dWt⟩Rd1 (Step 5).

Let %(t, x) be the solution and define v(t, x) = %(t, x) ⋅ y(t, x) (Step 6). Now we show
u(t, x) = v(t,η(t,x))

%(t,η(t,x)) . (Step 7)

Calculating Du(t, x), D2u(t, x) as well as Du(t, ξ(t, x)),D2u(t, ξ(t, x)) we finally receive

∂v

∂t
(t, x) = ∂

∂t
[%(t, x)u(t, ξ(t, x))] = Λ(t, x, v,Dv,D2v),

which is equivalent to
⎧⎪⎪⎨⎪⎪⎩

dv
dt = Λ(t, ⋅, v,Dv,D2v)
v(0) = u0.

The basic idea of this approach is the application of the Itô-Wentzell formula (cf. The-
orem A.13), but given in the following version similar to [Tub88, Proposition 2]. From now
on we use the short notation ∂i for ∂

∂xi
.
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Theorem 8.3 Let (Wn
t )n=1,...,d1 be a d1-dimensional Brownian motion. Let f0, f1, ..., fd1

be continuous C2(Rd,R) - functions such that

(
d1

∑
n=1

fn(t, x)fn(t, y), f0(t, x), t)

belong to the class (B1,0,B1,0). Consider the solution u(t, x) of the stochastic differential
equation

du(t, x) = f0(t, x) dt +
d1

∑
n=1

fn(t, x) dWn
t .

Let κ(t, x) be a continuous semimartingale with values in D, i.e. it is represented compo-
nentwise for all i = 1, ..., d by

dκi(t, x) = ρi(t, x) dt +
d1

∑
n=1

σin(t, x) dWn
t ,

where ρi, σin, i = 1, ..., d, n = 1, ..., d1 are continuous functions. Then the process v(t, x) =
u(t, κ(t, x)) solves the following stochastic differential equation

dv(t, x) = f0(t, κ(t, x)) dt +
d1

∑
n=1

fn(t, κ(t, x)) dWn
t

+ ⟨Du(t, κ(t, x)), ρ(t, x)⟩Rd dt

+
d1

∑
n=1

⟨Du(t, κ(t, x)), σ⋅n(t, x)⟩Rd dWn
t

+ 1

2

d

∑
i,j=1

∂i∂ju(t, κ(t, x)) ⋅
d1

∑
n=1

σin(t, x) ⋅ σjn(t, x) dt

+
d

∑
i=1

d1

∑
n=1

∂ifn(t, κ(t, x)) ⋅ σin(t, x) dt

The proof follows the ideas of the proof of Theorem 3.3.1 in [Kun97].

Proof. Due to Theorem A.13 and Theorem 2.34 we know that for some F, g fulfilling

F (x,dt) = f0(t, x) dt +
d1

∑
n=1

fn(t, x) dWn
t ,

g(x,dt) = ρ(t, x) dt +
d1

∑
n=1

σ⋅n(t, x) dWn
t ,

we have

F (g(x, t), t) − F (g(x,0),0) =
t

∫
0

dF (g(x, s), s)

=
t

∫
0

F (g(x, s),ds) +
d

∑
i=1

t

∫
0

∂iF (g(x, s), s) dgi(x, s)

+ 1

2

d

∑
i,j=1

t

∫
0

∂i∂jF (g(x, s), s) d⟨gi(x, ●), gj(x, ●)⟩s

+
d

∑
i=1

⟨
●

∫
0

∂iF (g(x, s),ds), gi(x, ●)⟩
t

.

(8.4)
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One should note that ∂iF (g(x, s), s) means that we evaluate the partial derivative of F
with respect to xi at (g(x, s), s). We obtain by Remark 2.37

F (x, s) − F (x,0) =
t

∫
0

F (x,ds) =
t

∫
0

f0(s, x) ds +
d1

∑
n=1

t

∫
0

fn(s, x) dWn
s

By applying (8.4) to du(t, x) = u(dt, x) instead of F and dκ(t, x) = κ(dt, x) instead of g
we receive

v(t, x) − v(0, x) = u(t, κ(t, x)) − u(0, κ(0, x))

=
t

∫
0

f0(s, κ(s, x)) ds +
t

∫
0

d1

∑
n=1

fn(s, κ(s, x)) dWn
s

+
t

∫
0

d

∑
i=1

∂iu(s, κ(s, x)) dκi(s, x)

+ 1

2

t

∫
0

d

∑
i,j=1

∂i∂ju(s, κ(s, x)) d ⟨κi(●, x), κj(●, x)⟩s

+
d

∑
i=1

⟨
●

∫
0

∂iu(ds, κ(s, x)), κi(●, x)⟩
t

=
t

∫
0

f0(s, κ(s, x)) ds +
t

∫
0

d1

∑
n=1

fn(s, κ(s, x)) dWn
s

+
t

∫
0

d

∑
i=1

∂iu(s, κ(s, x)) ⋅ ρi(s, x) ds

+
t

∫
0

d

∑
i=1

d1

∑
n=1

∂iu(s, κ(s, x)) ⋅ σin(s, x) dWn
s

+ 1

2

t

∫
0

d

∑
i,j=1

∂i∂ju(s, κ(s, x)) d ⟨κi(●, x), κj(●, x)⟩s

+
d

∑
i=1

⟨
●

∫
0

∂iu(ds, κ(s, x)), κi(●, x)⟩
t

.

By using the classical fact that the quadratic variation vanishes if one element is of bounded
variation, we conclude

v(t, x) − v(0, x) =
t

∫
0

f0(s, κ(s, x)) ds +
t

∫
0

d1

∑
n=1

fn(s, κ(s, x)) dWn
s

+
t

∫
0

d

∑
i=1

∂iu(s, κ(s, x)) ⋅ ρi(s, x) ds +
t

∫
0

d1

∑
n=1

d

∑
i=1

∂iu(s, κ(s, x)) ⋅ σin(s, x) dWn
s

+ 1

2

t

∫
0

d

∑
i,j=1

∂i∂ju(s, κ(s, x)) ⋅
d1

∑
n=1

σin(s, x) ⋅ σjn(s, x) ds

+
d

∑
i=1

⟨
●

∫
0

∂iu(ds, κ(s, x)), κi(●, x)⟩
t
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=
t

∫
0

f0(s, κ(s, x)) ds +
t

∫
0

d1

∑
n=1

fn(s, κ(s, x)) dWn
s

+
t

∫
0

⟨Du(s, κ(s, x)), ρ(s, x)⟩Rd ds

+
t

∫
0

d1

∑
n=1

⟨Du(s, κ(s, x)), σ⋅n(s, x)⟩Rd dWn
s

+ 1

2

t

∫
0

d

∑
i,j=1

∂i∂ju(s, κ(s, x)) ⋅
d1

∑
n=1

σin(s, x) ⋅ σjn(s, x) ds

+
t

∫
0

d

∑
i=1

d1

∑
n=1

∂ifn(s, κ(s, x)) ⋅ σin(s, x) ds

Due to Assumption 8.1 (iii) and (iv) the operator L, the diffusion terms b ⋅Du and h ⋅ u
are C2 - functions and continuous. Consider (8.1) given by

du = L(t, x, u,Du,D2u) dt + ⟨b(t, x)Du + h(t, x)u,dWt⟩Rd1

= L(t, x, u,Du,D2u) dt +
d1

∑
k=1

d

∑
i=1

bki(t, x) ⋅ ∂iu(t, x) + hk(t, x) ⋅ u(t, x) dW k
t

and an arbitrary stochastic differential equation given by

dξ = ξdrift dt + ξdiffu dWt

= ξdrift dt +
d1

∑
k=1

ξdiffu⋅k dW k
t

=
⎛
⎜
⎝

ξdrift1

⋮
ξdriftd

⎞
⎟
⎠

dt +

⎛
⎜⎜⎜⎜⎜⎜
⎝

d1
∑
k=1

ξdiffu1k dW k
t

⋮
d1
∑
k=1

ξdiffudk dW k
t

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

(8.5)

where ξdrift is Rd-valued and ξdiffu = (ξdiffu⋅1 , ..., ξdiffu⋅d1 ) is Rd×d1-valued. By applying Theorem
8.3 to (8.1) and (8.5) we obtain

du(t, ξ) = L(t, ξ, u(t, ξ),Du(t, ξ),D2u(t, ξ)) dt

+
d1

∑
k=1

⎛
⎝

d

∑
i=1

bki(t, ξ)∂iu(t, ξ) + hk(t, ξ) ⋅ u(t, ξ)
⎞
⎠

dW k
t

+ ⟨Du(t, ξ), ξdrift⟩Rd dt +
d1

∑
k=1

⟨Du(t, ξ), ξdiffu⋅k ⟩Rd dW k
t

+ 1

2

d

∑
i,j=1

∂i∂ju(t, ξ)
d1

∑
k=1

ξdiffuik ⋅ ξdiffujk dt

+
d

∑
i=1

d1

∑
k=1

d

∑
j=1

∂i [bkj(t, ξ) ⋅ ∂ju(t, ξ)] ⋅ ξdiffuik dt
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+
d

∑
i=1

d1

∑
k=1

∂i [hk(t, ξ) ⋅ u(t, ξ)] ⋅ ξdiffuik dt.

Hence we have finally

du(t, ξ) = L(t, ξ, u(t, ξ),Du(t, ξ),D2u(t, ξ)) dt (8.6)

+ 1

2

d

∑
i,j=1

∂i∂ju(t, ξ)
d1

∑
k=1

ξdiffuik ⋅ ξdiffujk dt (8.7)

+ ⟨Du(t, ξ), ξdrift⟩Rd dt (8.8)

+
d

∑
i=1

d1

∑
k=1

d

∑
j=1

∂ibkj(t, ξ) ⋅ ∂ju(t, ξ) ⋅ ξdiffuik dt (8.9)

+
d

∑
i=1

d1

∑
k=1

d

∑
j=1

bkj(t, ξ) ⋅ ∂i∂ju(t, ξ) ⋅ ξdiffuik dt (8.10)

+
d

∑
i=1

d1

∑
k=1

∂ihk(t, ξ) ⋅ u(t, ξ) ⋅ ξdiffuik dt (8.11)

+
d

∑
i=1

d1

∑
k=1

hk(t, ξ) ⋅ ∂iu(t, ξ) ⋅ ξdiffuik dt (8.12)

+
d1

∑
k=1

⎛
⎝

d

∑
i=1

bki(t, ξ)∂iu(t, ξ) + hk(t, ξ) ⋅ u(t, ξ)
⎞
⎠

dW k
t (8.13)

+
d1

∑
k=1

⟨Du(t, ξ), ξdiffu⋅k ⟩Rd dW k
t . (8.14)

Now we summarize the diffusion parts (8.13) and (8.14)

d1

∑
k=1

⎛
⎝

d

∑
i=1

bki(t, ξ)∂iu(t, ξ) + hk(t, ξ)u(t, ξ)
⎞
⎠

dW k
t +

d1

∑
k=1

⟨Du(t, ξ), ξdiffu⋅k ⟩RN dW k
t

=
d1

∑
k=1

⎛
⎝

d

∑
i=1

bki(t, ξ)∂iu(t, ξ) + hk(t, ξ)u(t, ξ)
⎞
⎠
+ ⟨Du(t, ξ), ξdiffu⋅k ⟩Rd dW k

t

=
d1

∑
k=1

d

∑
i=1

bki(t, ξ)∂iu(t, ξ) + hk(t, ξ)u(t, ξ) + ∂iu(t, ξ)ξdiffuik dW k
t

=
d1

∑
k=1

d

∑
i=1

bki(t, ξ(t, x))∂iu(t, ξ) + ∂iu(t, ξ)ξdiffuik (t, x) dW k
t +

d1

∑
k=1

hk(t, ξ)u(t, ξ) dW k
t .

We choose ξdiffuik (t, x) such that

(bki(t, ξ(t, x)) + ξdiffuik (t, x)) = 0.

Hence by defining

ξdiffuik (t, x) ∶= −bki(t, ξ(t, x)) = −b⊺ik(t, ξ(t, x))

we obtain
d1

∑
k=1

d

∑
i=1

∂iu(t, ξ)(bki(t, ξ) − bki(t, ξ)) dW k
t + u(t, ξ) ⋅

d1

∑
k=1

hk(t, ξ) dW k
t

= u(t, ξ) ⋅
d1

∑
k=1

hk(t, ξ) dW k
t
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= u(t, ξ) ⋅ ⟨h(t, ξ),dWt)⟩Rd1

= y(t, x) ⋅ ⟨h(t, ξ),dWt)⟩Rd1 ,

where we set y(t, x) ∶= u(t, ξ(t, x)). Therefore we have

ξdiffu(t, x) = −b⊺(t, ξ(t, x)) ∈ Rd×d1 (8.15)

Next, we consider the sum of (8.8), (8.9), (8.11) and (8.12)

⟨Du(t, ξ), ξdrift⟩Rd +
d

∑
i,j=1

d1

∑
k=1

⎛
⎝
∂ibkj(t, ξ) ⋅ ∂ju(t, ξ) ⋅ ξdiffuik

+ ∂ihk(t, ξ) ⋅ u(t, ξ) ⋅ ξdiffuik + hk(t, ξ) ⋅ ∂iu(t, ξ) ⋅ ξdiffuik

⎞
⎠

dt

= ⟨Du(t, ξ), ξdrift⟩Rd +
d

∑
i,j=1

d1

∑
k=1

⎛
⎝
∂ibkj(t, ξ) ⋅ ∂ju(t, ξ) ⋅ (−bki(t, ξ))

+ ∂ihk(t, ξ) ⋅ u(t, ξ) ⋅ (−bki(t, ξ)) + hk(t, ξ) ⋅ ∂iu(t, ξ) ⋅ (−bki(t, ξ))
⎞
⎠

dt

=
d

∑
j=1

∂ju(t, ξ) ⋅ ξdriftj +
d

∑
i,j=1

d1

∑
k=1

( − ∂ibkj(t, ξ) ⋅ ∂ju(t, ξ) ⋅ bki(t, ξ))

− ∂ihk(t, ξ) ⋅ u(t, ξ) ⋅ bki(t, ξ) − hk(t, ξ) ⋅ ∂iu(t, ξ) ⋅ bki(t, ξ) dt

=
d

∑
j=1

∂ju(t, ξ)
⎛
⎝
ξdriftj −

d

∑
i=1

d1

∑
k=1

∂ibkj(t, ξ) ⋅ bki(t, ξ)
⎞
⎠

−
d1

∑
k=1

d

∑
i=1

∂ihk(t, ξ) ⋅ u(t, ξ) ⋅ bki(t, ξ) − hk(t, ξ) ⋅ ∂iu(t, ξ) ⋅ bki(t, ξ) dt.

We choose ξdriftj (t, x) such that

(ξdriftj −
d1

∑
k=1

d

∑
i=1

∂ibkj(t, ξ) ⋅ bki(t, ξ)) = 0.

Hence by defining

ξdriftj (t, x) ∶= trace[D(b(t, ξ(t, x)) ⋅ ej) ⋅ b⊺(t, ξ(t, x))]

we obtain by Definition 8.2

−
d

∑
i=1

d1

∑
k=1

hk(t, ξ) ⋅ ∂iu(t, ξ) ⋅ bki(t, ξ) −
d

∑
i=1

d1

∑
k=1

∂ihk(t, ξ) ⋅ u(t, ξ) ⋅ bki(t, ξ) dt

= −⟨b(t, ξ)Du(t, ξ), h(t, ξ)⟩Rd1 dt − trace[Dh(t, ξ)b⊺(t, ξ)]u(t, ξ) dt

= −⟨b(t, ξ)Dy(t, x), h(t, ξ)⟩Rd1 dt − trace[Dh(t, ξ)b⊺(t, ξ)]y(t, x) dt.

Therefore we have

ξdrift(t, x) =
⎛
⎜
⎝

trace[(D(b(t, ξ(t, x)) ⋅ e1)) ⋅ b⊺(t, ξ(t, x))]
⋮

trace[(D(b(t, ξ(t, x)) ⋅ ed)) ⋅ b⊺(t, ξ(t, x))]

⎞
⎟
⎠

= TR[Db(t, ξ(t, x)) ⋅ b⊺(t, ξ(t, x))]

(8.16)
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Now we determine the sum of (8.6), (8.7) and (8.10)

L(t, ξ, u(t, ξ),Du(t, ξ),D2u(t, ξ)) dt + 1

2

d

∑
i,j=1

∂i∂ju(t, ξ)
d1

∑
k=1

ξdiffuik ξdiffujk dt

+
d

∑
i,j=1

d1

∑
k=1

bkj(t, ξ(t, x)) ⋅ ∂i∂ju(t, ξ) ⋅ ξdiffuik dt

= L(t, ξ, u(t, ξ),Du(t, ξ),D2u(t, ξ)) dt

+ 1

2

d

∑
i,j=1

∂i∂ju(t, ξ)
d1

∑
k=1

(−bkj(t, ξ))(−bki(t, ξ)) dt

−
N

∑
i,j=1

d1

∑
k=1

bkj(t, ξ) ⋅ ∂i∂ju(t, ξ) ⋅ bki(t, ξ) dt

= L(t, ξ, u(t, ξ),Du(t, ξ),D2u(t, ξ)) dt + 1

2

d

∑
i,j=1

d1

∑
k=1

∂i∂ju(t, ξ)bkj(t, ξ)bki(t, ξ) dt

−
d

∑
i,j=1

d1

∑
k=1

∂i∂ju(t, ξ)bkj(t, ξ)bki(t, ξ) dt

= L(t, ξ, u(t, ξ),Du(t, ξ),D2u(t, ξ)) dt − 1

2

d

∑
i,j=1

d1

∑
k=1

∂i∂ju(t, ξ)bkj(t, ξ)bki(t, ξ) dt

= L(t, ξ, u(t, ξ),Du(t, ξ),D2u(t, ξ)) dt − 1

2
trace[b⊺(t, ξ)b(t, ξ)D2u(t, ξ)] dt.

Step 1: New operator
Define a new elliptic nonlinear operator by

L̃(t, x, u, p, q) ∶= L(t, x, u, p, q) − 1

2
trace[b⊺(t, x) ⋅ b(t, x) ⋅ q] (8.17)

Step 2: New SDE
Consider the system of stochastic differential equations for the paramatrized space variable
ξ(t, x)

⎧⎪⎪⎨⎪⎪⎩

dξ = TR[Db(t, ξ) ⋅ b⊺(t, ξ)] dt − b⊺(t, ξ) dWt

ξ(0) = x.
(8.18)

The function b(t, x) satisfies in particular Condition 8.1 (v), which is necessary to apply
the next Lemma.

Lemma 8.4 Under Assumption 8.1 there exists a unique solution ξ(t, x) to the stochastic
differential equation (8.18).

Proof. We apply [LR15, Theorem 3.1.1.] to obtain an existence and uniqueness result
to equation (8.18). The conditions which we have to verify are formally an integrability
condition, the local weak monotonicity and weak coercivity. As explained in [KRZ99,
Remark 1.3.], it follows that the above assumptions are satisfied if

T

∫
0

∥ − b⊺(t,0)∥2 − ∣TR[Db(t,0) ⋅ b⊺(t,0)]∣ dt <∞ (8.19)

and the global Lipschitz condition in space

∥ − b⊺(t, x) + b⊺(t, y)∥2 + ∣TR[Db(t, x) ⋅ b⊺(t, x)] −TR[Db(t, y) ⋅ b⊺(t, y)]∣ ≤K ∣x − y∣
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holds for all t ∈ [0,T], x, y ∈ Rd and a constant K > 0. Condition (8.19) contains the
integrability in point 0 of the corresponding norms for the drift and diffusion term. Due
to the classical result that a uniformly continuous function is integrable, this condition
is fulfilled by Assumption 8.1 (iv). The global Lipschitz condition is satisfied due to
Assumption 8.1 (v).

The solution ξ(t, x) is defined up to an explosion time T (x,ω), i.e. for almost all ω and
all (x, t) with t ∈ [0, T (x,ω)). Since ξ(t, x) is not a diffeomorphism in general, we restrict
this map to a domain for which the determinant of the Jacobian matrix is not singular.
Therefore we define as before

τ(x) ∶= inf {t > 0 ∣ detDξ(t, x) = 0} ∧ T (x).

The corresponding adjoint stopping time is

σ(y) ∶= inf {t > 0 ∣ y ∉ ξ(t,{x ∣ τ(x) > t})}

i.e. up to this time a point y is in the codomain of {x ∣ τ(x) > t}.

Step 3: Inverse function
We want to find the inverse function of the solution. By using the approach of H.Kunita,
similarly to [Kun84a, Lemma 3.1.], we are able to prove an existence result.

Lemma 8.5 Let ξ(t, x) be the solution of equation (8.18). Then
a) the map ξ(t, ⋅) ∶ {x ∈ Rd ∣ τ(x,ω) > t}→ Rd is a diffeomorphism and
b) for almost all ω and for all (x, t) such that t ∈ [0, σ(x)) the inverse function η(t, x)

satisfies the following stochastic differential equation

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dη = 1

2
(Dξ(η))−1 TR[Db(t, ξ(η))b⊺(t, ξ(η))] dt

+ (Dξ(η))−1b⊺(t, ξ(η)) ○ dWt

η(0, x) = x.

(8.20)

Proof. The Ansatz is to use the Itô-Wentzell formula similarly to the proof Lemma 4.8
above.
Step A: Transformation into Stratonovich setting
As shown in Theorem 2.35 a multidimensional Itô stochastic differential equation can be
written equivalently in terms of Stratonovich differentials. Carried over to the stochastic
differential equation of dξ we obtain

dξ = TR[Db(t, ξ) ⋅ b⊺(t, ξ)] dt − b⊺(t, ξ) dWt

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

d1
∑
k=1

d

∑
i=1

∂bk1
∂xi

(t, ξ)bki(t, ξ)

⋮
d1
∑
k=1

d

∑
i=1

∂bkd
∂xi

(t, ξ)bki(t, ξ)

⎞
⎟⎟⎟⎟⎟⎟
⎠

dt −
d1

∑
k=1

⎛
⎜
⎝

bk1(t, ξ)
⋮

bkd(t, ξ)

⎞
⎟
⎠

dW k
t

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

d1
∑
k=1

d

∑
i=1

∂bk1
∂xi

(t, ξ)bki(t, ξ) − 1
2

d1
∑
k=1

d

∑
i=1

∂bk1
∂xi

(t, ξ)bki(t, ξ)

⋮
d1
∑
k=1

d

∑
i=1

∂bkd
∂xi

(t, ξ)bki(t, ξ) − 1
2

d1
∑
k=1

d

∑
i=1

∂bk1
∂xi

(t, ξ)bki(t, ξ)

⎞
⎟⎟⎟⎟⎟⎟
⎠

dt −
d1

∑
k=1

⎛
⎜
⎝

bk1(t, ξ)
⋮

bkd(t, ξ)

⎞
⎟
⎠
○ dW k

t
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= −1

2

⎛
⎜⎜⎜⎜⎜⎜
⎝

d1
∑
k=1

d

∑
i=1

∂bk1
∂xi

(t, ξ)bki(t, ξ)

⋮
d1
∑
k=1

d

∑
i=1

∂bkd
∂xi

(t, ξ)bki(t, ξ)

⎞
⎟⎟⎟⎟⎟⎟
⎠

dt −
d1

∑
k=1

⎛
⎜
⎝

bk1(t, ξ)
⋮

bkd(t, ξ)

⎞
⎟
⎠
○ dW k

t

= −1

2
TR[Db(t, ξ) ⋅ b⊺(t, ξ)] dt − b⊺(t, ξ) ○ dWt (8.21)

Step B: The stochastic differential equation of the inverse process
Let η(t, x) be the solution to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dη = 1

2
(Dξ(η))−1 TR[Db(t, ξ(η))b⊺(t, ξ(η))] dt

+ (Dξ(η))−1b⊺(t, ξ(η)) ○ dWt

η(0, x) = x

Step C: Application of the Itô-Wentzell formula
By using the generalized Itô formula of Theorem 4.7 we show that d[ξ(η)] =
d[ξ(t, η(t, x))] = 0. With the initial condition ξ(0, η(0, x)) = ξ(0, x) = x we obtain that η
is the right inverse function of ξ.

d[ξ(η)] = dξ(t, η) +
d

∑
i=1

∂iξ(t, η) ○ dηi

= −1

2
TR[Db(t, ξ(t, η)) ⋅ b⊺(t, ξ(t, η))] dt − b⊺(t, ξ(t, η)) ○ dWt

+ 1

2

d

∑
i=1

∂iξ(t, η)(Dξ(t, η))−1 TR[Db(t, ξ(t, η))b⊺(t, ξ(t, η))] dt

+
d

∑
i=1

∂iξ(t, η)(Dξ(t, η))−1b⊺(t, ξ(η)) ○ dWt

= −1

2
TR[Db(t, ξ(t, η)) ⋅ b⊺(t, ξ(t, η))] dt − b⊺(t, ξ(t, η)) ○ dWt

+ 1

2
(Dξ(t, η)) ⋅ (Dξ(t, η))−1 TR[Db(t, ξ(t, η))b⊺(t, ξ(t, η))] dt

+ (Dξ(t, η)) ⋅ (Dξ(t, η))−1b⊺(t, ξ(t, η)) ○ dWt

= −1

2
TR[Db(t, ξ(t, η)) ⋅ b⊺(t, ξ(t, η))] dt − b⊺(t, ξ(t, η)) ○ dWt

+ 1

2
TR[Db(t, ξ(t, η))b⊺(t, ξ(t, η))] dt

+ b⊺(t, ξ(t, η)) ○ dWt

= 0.

In particular we proved that the right inverse function exists for almost all ω and for all
(t, x) with t < σ(x,ω), hence

ξ(t, η(t, x)) = x

holds.
Step D: Definition of stopping times
Now we define for the explosion time σ̂ of η

τ̂(x) = inf {t > 0 ∣ ξ(t, x) ∉ {y ∣ σ̂(y,ω) > t} or ∣detDη(t, ξ(t, x)∣ =∞} ∧ τ(x)
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and show that the property of η to be the left inverse is also fulfilled by proving

d[η(t, ξ(t, x))] = 0 if t < τ̂(x).

Since ξ(t, η(t, x)) = x as shown before, we obtain by an application of the chain rule

Dξ(t, η(t, x)) ⋅Dη(t, x) =D[ξ(t, η(t, x))] =Dx = I. (8.22)

Taking the inverse and evaluating at ξ(t, ⋅) we get

(Dη(t, ξ(t, ⋅))
−1
⋅ (Dξ(t, η(t, ξ(t, ⋅)))

−1
= I.

In the next step we rewrite equation (8.21) and use of equation (8.22)

dξ = −1

2
TR[Db(t, ξ) ⋅ b⊺(t, ξ)] dt − b⊺(t, ξ) ○ dWt

= −1

2
TR[(Dη(t, ξ(t, ⋅))−1 ⋅ (Dξ(t, η(t, ξ(t, ⋅)))−1 ⋅Db(t, ξ) ⋅ b⊺(t, ξ)] dt

− (Dη(t, ξ(t, ⋅))−1 ⋅ (Dξ(t, η(t, ξ(t, ⋅)))−1 ⋅ b⊺(t, ξ) ○ dWt.

Then we apply again the generalized Itô formula and obtain

d[η(ξ)] = d[η(t, ξ(t, x))] = 0.

Step E: Prove that τ̂ = τ and that ξt is a diffeomorphism
By the same arguments as in the proof of Lemma 4.8 we can show that τ̂(x) = τ(x) a.s.
Suppose ξ(t, x) = ξ(t, x′) holds for x,x′ ∈ {x̃ ∣ τ(x̃) > t}. Since η(t, ξ(t, x)) = x holds for
almost all ω and t < τ(x,ω), we obtain

η(t, ξ(t, x)) = η(t, ξ(t, x′))⇒ x = x′.

So ξ(t, x)∣{τ>t} is one-to-one (injective). By using the inverse mapping theorem (see [Lan96,
Chapter XIV, Theorem 1.2]) we obtain that ξ is a diffeomorphism.

Step 4: Composition of solutions
We define

y(t, x) ∶= u(t, ξ(t, x)). (8.23)

Obviously we obtain for the inverse function

y(t, η(t, x)) = u(t, ξ(t, η(t, x))) = u(t, x).

Hence a solution to (8.1) is given in the form

u(t, x) = y(t, η(t, x)).

Step 5: New SDE by multiplication with a process
We set

v(t, x) ∶= %(t, x) ⋅ y(t, x), (8.24)

where %(t, x) is the solution of

{
d% = ∣h(t, x)∣2%(t, x) dt − %(t, x)⟨h(t, x),dWt⟩Rd1

%(0) = 1.
(8.25)
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As claimed in [DPT96] the solution is given by

%(t, x) = exp

⎡⎢⎢⎢⎢⎣

1

2

t

∫
0

∣h(s, ξ(s, x))∣2 ds −
t

∫
0

⟨h(s, ξ(s, x)),dWs⟩Rd1

⎤⎥⎥⎥⎥⎦
. (8.26)

Here we have to use Itô’s product rule [RY05, Chapter IV, 3.1 Proposition]. A detailed
derivation of (8.25) can be found in Appendix G. Calculating the partial derivative with
respect to time t of v(t, x), we receive

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dv

dt
(t, x) = %(t, x)L̃(t, ξ, u(t, ξ),Du(t, ξ),D2u(t, ξ)) − %(t, x)⟨b(t, ξ)Du,h⟩Rd1

− trace[Dh ⋅ b]v(t, x)
v(0) = u0.

(8.27)

Step 6: Combination of u, v, %, η
Plugging y(t, η(t, x)) = u(t, x) into (8.24), we get an expression of solution to (8.1) in terms
of the three solutions v, η, % by

u(t, x) = y(t, η(t, x)) = %(t, η(t, x))
v(t, η(t, x))

.

Step 7: Solution of problem (8.2)
By computing Du,D2u and by plugging them into (8.27) we obtain (8.2).

Definition 8.6 Let T be a (Ft)t≥0 - stopping time. A strong solution of problem (8.1)
in [0, T ] is a mapping

u ∶ [0, T ] ×Rd ×Ω→ R

such that the following hold:
(i) u(t, ⋅) is Ft-Bochner-measurable for all t ≥ 0, i.e. u(t, ⋅) is the a.s.-limit of simple

random variables with values in C2,β(Rd,R)
(ii) For all x ∈ Rd the real-valued stochastic process u(⋅, x) is such that

L(t, x, u,Du,D2u) ∈ L1([0, T ] ×Ω),R)
b(⋅, x)Du ∈ L2([0, T ] ×Ω),Rd1)
h(⋅, x)u ∈ L2([0, T ] ×Ω),Rd1).

(iii) For almost all ω and all (x, t) with t ∈ [0, T (x,ω)]

u(t, ⋅) = u0 +
t

∫
0

L(s, ⋅, u,Du,D2u) ds +
t

∫
0

⟨b(s, ⋅)Du(s, ⋅) + h(s, ⋅)u(s, ⋅),dWs⟩Rd1

holds.

As found in the Appendix A of [DPT96] we also define

Definition 8.7 Let X,Y be Banach spaces such that X ⊂ Y continuously. Let
F ∶ [0,∞) ×X → Y be an operator and J ⊂ [0,∞) be an interval such that minJ = 0. A
function v is called a strict solution of

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dv

dt
= F (t, v(t))

v(0) = v0 ∈X,
(8.28)

if for a fixed θ ∈ (0,1) the following hold:
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(i) v ∈ C1,θ(J1, Y ) ∩ C0,θ(J1,X) for any closed and bounded subinterval J1 ⊂ J
(ii) dv

dt (t) = F (t, v(t)), t ∈ J , and v(0) = v0 is satisfied.

The following result [DPT96, Proposition 2.2] established the equivalence relation between
the stochastic partial differential equation (8.1) and the transformed problem (8.2).

Theorem 8.8 Let u0 ∈ C2,β(Rd) and let τ(x) ≤ T be a stopping time with respect to the
filtration (Ft)t≥0.

• If u(⋅, x) is a strong solution of (8.1) in [0, τ(x)], then the function
v(⋅, ⋅) = %(⋅, ⋅)u(⋅, ξ(⋅, ⋅)) is a strict solution of (8.2).

• If v(⋅, x) ∈ C([0, τ(x)],C2,β(Rd)) ∩ C1([0, τ(x)],Cβ(Rd)) for almost all ω and v is a
strict solution of (8.2) such that v(t, ⋅) is (Ft)-Bochner-measurable for any t ≥ 0,
then u(⋅, ⋅) = v(⋅,η(⋅,⋅))

%(⋅,η(⋅,⋅)) is a strong solution of (8.1).

The existence result of strict solutions to (8.28) are also written in the Appendix of [DPT96,
Theorem A.2], but we will not go into detail, since the aim of this chapter was an application
of Kunita’s approach with Lemma 8.5.
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A. Appendix to the preliminaries
First of all we reproduce the basic definition of orthogonality.

Definition A.1 Let M,N ∈ M loc
c . If ⟨M,N⟩t = 0 for all t ∈ [0,T], then M,N are called

orthogonal (M ⊥ N). Let M,N ∈ Mc. Then M,N are orthogonal if and only if

E[(Mt −Ms)(Nt −Ns)∣Fs] = 0

holds for all s, t ∈ [0,T], s < t.

Definition A.2 Let L2(⟨M⟩) be the set of all predictable processes ft such that

T

∫
0

∣fs∣2 d⟨M⟩s <∞ a.s.

Let M ∈ M loc
c . Define

L (⟨M⟩) ∶= {∫
t

0
fs dMs ∣ f ∈ L2(⟨M⟩), t ∈ [0,T]}.

In this section we reproduce the result concerning an orthogonal decomposition of local
martingales as in [Kun97, after Theorem 2.3.6] which is also known as the Kunita-Watanabe
decomposition. To this end we first look at the following lemma.

Lemma A.3 Let M,N ∈ M loc
c . Then there exists a unique f ∈ L2(⟨M⟩) satisfying

⟨M,N⟩t =
t

∫
0

fs d⟨M⟩s. (A.1)

In particular if N ∈ Mc, then we have

E[∫
T

0
∣fs∣2 d⟨M⟩s] <∞.

The proof is given in [Kun97, Lemma 2.3.7]. Now we state the famous Kunita-Watanabe
decomposition as in [Kun97, Theorem 2.3.8].

Theorem A.4 Let M,N ∈ M loc
c . Then there exists a unique N (1) ∈ L (⟨M⟩) and a

unique N (2) ∈ M loc
c such that N (2) is orthogonal on L (⟨M⟩) and the decomposition N =

N (1) +N (2) holds.

The proof follows the idea of the proof of [Kun97, Theorem 2.3.8]. For the reader’s conve-
nience we check all the details.

Proof.
Existence of the decomposition
Due to Lemma A.3 there exists a unique f ∈ L2(⟨M⟩) such that (A.1) holds. Define

N
(1)
t ∶= ∫

t

0
fs dMs and N

(2)
t ∶= Nt −N (1)

t .

Then we obtain with [Kun97, Theorem 2.3.2]

⟨N (1),M⟩t = ⟨∫
⋅

0
fs dMs,M⟩

t
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= ∫
t

0
fs d⟨M,M⟩s

= ∫
t

0
fs d⟨M⟩s.

Hence by using (A.1)
⟨N (1),M⟩t = ⟨N,M⟩t (A.2)

Therefore we get by definition and linearity of the joint quadratic variation (see [Kun97,
Theorem 2.2.13])

⟨N (2),M⟩t = ⟨N −N (1),M⟩t
= ⟨N,M⟩t − ⟨N (1),M⟩t
= ⟨N,M⟩t − ⟨N,M⟩t = 0.

Hence orthogonality of N (2) on L (⟨M⟩) is fulfilled, since for an arbitrary M̃ ∈ L (⟨M⟩)
given by ∫

t
0 f̃s dMs we have

⟨N (2),∫
⋅

0
f̃s dMs⟩t = ∫

t

0
f̃s d⟨N (2),M⟩s = 0.

Hence we have shown the existence of an orthogonal decomposition with

N = N (1) +N (2).

Uniqueness of the decomposition
Suppose that N = N̂ (1) + N̂ (2) with N̂ (1) ∈ L (⟨M⟩) and N̂ (2) ∈ M loc

c orthogonal on
L (⟨M⟩). Then

N̂ (2) −N (2) = N − N̂ (1) −N +N (1)

= N (1) − N̂ (1) ∈ L (⟨M⟩).

Since M ∈ M loc
c , we obtain with (A.2)

⟨N̂ (2) −N (2),M⟩t = ⟨N (1) − N̂ (1),M⟩t
= ⟨N (1),M⟩t − ⟨N̂ (1),M⟩t
= ⟨N,M⟩t − ⟨N,M⟩t = 0.

Hence N̂ (2)
t − N (2)

t is orthogonal to M and on L (⟨M⟩). We conclude N̂ (2)
t = N (2)

t and
N̂

(1)
t = N (1)

t .

Remark A.5 Now we denote N (1) by PL (⟨M⟩)[N] the orthogonal projection of N to
L (⟨M⟩). Due to Theorem A.4 we have

N = N (1) +N (2) = PL (⟨M⟩)[N] +N (2)

and N (2) = N −PL (⟨M⟩)[N].

By the Gram-Schmidt orthogonalization (see e.g. [Gre75, 10.8 The Schmidt-
orthogonalization]) we construct an orthogonal basis of elements in M loc

c . Let
M

(1)
t , ...,M

(n)
t ∈ M loc

c . Define

N
(1)
t ∶=M (1)

t

N
(2)
t ∶=M (2)

t −PL (⟨N(1)⟩)[M
(2)
t ]

⋮

N
(n)
t ∶=M (n)

t −
n−1

∑
k=1

PL (⟨N(k)⟩)[M
(n)
t ].

(A.3)
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Then N (1)
t , ...,N

(n)
t is an orthogonal system and M (k) ∈ L (⟨N (1)⟩) ⊕ ... ⊕L (⟨N (n)⟩) for

all k = 1, ..., n. Furthermore, if M (k) ∈ Mc then N (k) ∈ Mc (see [Kun97, Theorem 2.3.8])
for all k = 1, ..., n.

Definition A.6 Let {M (n)}n∈N be an orthogonal system in Mc and M ∈ Mc. If
⟨M (n),M⟩t = 0 for all n ∈ N implies M = 0, then the system is called an orthogonal
basis.

The following result can be found in [Kun97, Theorem 2.3.9].

Theorem A.7 Let {M (n)}n≥1 be an orthogonal system. It is an orthogonal basis if and
only if any M ∈ Mc is expanded as

M = ∑
k≥1

PL (⟨M(k)⟩)[M].

For the reader’s convenience we prove the inclusion of classes of local characteristics as
used in the proof of Theorem 2.39.

Corollary A.8 We have B1,0 ⊂ B0,δ for every 0 ≤ δ ≤ 1.

Proof. Let (b,At) belong to the class B1,0, i.e. for all compact sets K ⊂ D we have
t

∫
0

∥b(s)∥1+0;K dAs <∞ a.s.

This means in particular
t

∫
0

sup
x∈K

∣b(x, s)∣
1 + ∣x∣

dAs <∞ a.s., (A.4)

t

∫
0

sup
x∈K

∣Dα
x b(x, s)∣ dAs <∞ a.s., (A.5)

t

∫
0

sup
x,y∈K

∣Dα
x b(x, s) −Dα

x b(y, s)∣
∣x − y∣0

dAs

=
t

∫
0

sup
x,y∈K

∣Dα
x b(x, s) −Dα

x b(y, s)∣ dAs <∞ a.s.

(A.6)

for all ∣α∣ ≤ 1. Let δ ∈ [0,1] be arbitrary. Obviously, we have for all compact sets K also
t

∫
0

∥b(s)∥0+δ;K dAs =
t

∫
0

sup
x∈K

∣b(x, s)∣
1 + ∣x∣

dAs +
t

∫
0

sup
x∈K

∑
1≤∣α∣≤0

∣Dα
x b(x, s)∣ dAs

+
t

∫
0

sup
x,y∈K

∣D0
xb(x, s) −D0

xb(y, s)∣
∣x − y∣δ

dAs

=
t

∫
0

sup
x∈K

∣b(x, s)∣
1 + ∣x∣

dAs

+
t

∫
0

sup
x,y∈K

∣b(x, s) − b(y, s)∣
∣x − y∣δ

dAs <∞ a.s.

since the first term is finite a.s. by (A.5) and furthermore (A.6) implies Lipschitz continuity
and Hölder continuity. Obviously, each one-times continuously differentiable function with
bounded derivative is Lipschitz continuous.
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Corollary A.9 B0,1
ub ⊂ B0,1

b .

Proof. Let f belong to the class B0,1
ub . By Definition 2.25 and the fact that each bounded

function is integrable on a bounded domain, we easily conclude that f also belongs to
B0,1
b .

Lemma A.10 If a local characteristic (a, b,At) belongs to (Bk+1,δ,Bk,δ) for some k ≥ 5
and 0 < δ ≤ 1, then it also belongs to the subclass (B2,δ,B1,0).

Proof. For k ≥ 5 it is clear, that Ck+1 ⊂ C1. Therefore a local characteristic (a,At)
belonging to Bk+1,δ is also in the class B2,δ for each Hölder exponent δ > 0. Now we
consider the local characteristic (b,At) belonging to Bk,δ. By definition and linearity of
the integral we have for every K ⊂ D compact:

t

∫
0

sup
x∈K

∣b(x, t)∣
1 + ∣x∣

dAs <∞ a.s.,

t

∫
0

∑
1≤∣α∣≤k

sup
x∈K

∣Dα
x b(x, t)∣ dAs <∞ a.s. and

t

∫
0

∑
∣α∣=k

sup
x,y∈K
x≠y

∣Dα
x b(x, t) −Dα

x b(y, t)∣
∣x − y∣δ

dAs <∞ a.s.

(A.7)

Since every Hölder continuous function is uniformly continuous and bounded on a compact
set, we obtain for δ = 0:

t

∫
0

∥b(t)∥1+0;K dAs =
t

∫
0

sup
x∈K

∣b(x, t)∣
1 + ∣x∣

dAs +
t

∫
0

∑
1≤∣α∣≤1

sup
x∈D

∣Dα
x b(x, t)∣ dAs

+
t

∫
0

∑
∣α∣=1

sup
x,y∈K
x≠y

∣Dα
x b(x, t) −Dα

x b(y, t)∣
∣x − y∣0

dAs

≤
t

∫
0

sup
x∈K

∣b(x, t)∣
1 + ∣x∣

dAs +
t

∫
0

∑
1≤∣α∣≤1

sup
x∈D

∣Dα
x b(x, t)∣ dAs

+
t

∫
0

2 ∑
∣α∣=1

sup
x∈K

∣Dα
x b(x, t)∣ dAs <∞ a.s.

which is finite by (A.7).

In the same way one proves the following inclusion.

Corollary A.11 If a local characteristic (a, b,At) belongs to (Bk,δ,Bk−1,δ) for some k ≥ 5
and 0 < δ ≤ 1, then it also belongs to the subclass (B2,δ,B1,0).

For the sake of completeness we state the definition of a truncation.

Definition A.12 A truncation of a function f ∶ [0,T] → Rd associated with a compact
set K ⊂ Rd is defined by

f̃t =
⎧⎪⎪⎨⎪⎪⎩

ft, if ft ∈ K,
x0 ∈ K fixed, if ft ∉ K.

As proved in [Kun97, Theorem 3.3.1] the following so-called generalized Itô formula is
valid.
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Theorem A.13 Let F (x, t), x ∈ D, be a family of continuous C2 - processes and continu-
ous, C1 - semimartingales with local characteristic belonging to the class (B1,0,B1,0). Let
gt be a continuous D−valued semimartingale. Then F (gt, t) is a continuous semimartingale
and

F (gt, t) − F (g0,0) =
t

∫
0

F (gs,ds) +
d

∑
i=1

t

∫
0

∂F

∂xi
(gs, s) dgis

+ 1

2

d

∑
i,j=1

t

∫
0

∂2F

∂xi∂xj
(gs, s) d⟨gi⋅ , gj⋅ ⟩s

+
d

∑
i=1

⟨
⋅

∫
0

∂F

∂xi
(gs,ds), gi⋅ ⟩

t

is satisfied.
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B. Appendix to the method of stochastic
characteristics

Lemma B.1 The stopping time τ(x) given by

τinv(x) ∶= inf{t ∈ (0,T] ∣ detDξt(x) = 0}
τ(x) ∶= τinv(x) ∧ T (x).

is accessible and lower semicontinuous.

Proof. Since ξt is the maximal solution of (SCE) and in particular a continuous local
semimartingale, it is defined up to the explosion time T . We know by Definition 2.8 that
T is accessible and lower semicontinuous. Furthermore, we know that the minimum of two
accessible stopping times is accessible (cf. [Del72, Chapter III, T45]). Hence we have to
show that also τinv is accessible. Define the sequence

τ
(n)
inv (x) ∶= inf {t ∈ (0,T] ∣ detDξt(x) ≤

1

n
} .

The (Ft)t-adapted process ξt is in particular continuous and continuously differentiable
w.r.t. space (cf. [Kun97, Theorem 3.3.4]), that means detDξt is also continuous and
adapted. By Début Theorem (cf. [Del72, Chapter III, T23]) we get that for each n ∈ N
τ
(n)
inv is a stopping time. By definition we have

τ
(n)
inv (x) = inf {t ∈ (0,T] ∣ detDξt(x) ≤

1

n
}

≤ inf {t ∈ (0,T] ∣ detDξt(x) ≤
1

n + 1
}

= τ (n+1)
inv (x).

Moreover for all x ∈ Rd
τ
(n)
inv (x) < τinv(x) a.s. (B.1)

holds, since if we assume τ (n)inv (x) = τinv(x), we conclude by definition of τ (n)inv (x) that for
all ε > 0

detDξτinv(x)−ε(x) >
1

n

holds, which contradicts the continuity of detDξt(x). Obviously,

lim
n→∞

τ
(n)
inv (x) = τinv(x)

holds. So τinv is accessible.

Next we prove that τ is lower semicontinuous. To this end let x0 ∈ Rd. Let Bε(x0) denote
the open ball with radius ε centered at x0 in Rd, i.e.

Bε(x0) ∶= {y ∈ Rd ∣ ∣y − x0∣ < ε}.

By using the lower semicontinuity of T we obtain

lim inf
x→x0

T (x) ≥ T (x0) ≥ τ(x0).
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Now we have to show

lim inf
x→x0

inf {t ∈ (0,T] ∣ detDξt(x) = 0}

≥ inf {t ∈ (0,T] ∣ detDξt(x0) = 0}.
(B.2)

Due to the fact that ξt(x) is continuous in t with values in Ck−1,δ, we know in particular
that detDξt(x) is continuous in x. Let us assume that

detDξt(x0) > 0,

then there exists an ε > 0 such that detDξt(x) > 0 for all x ∈ Bε(x0). By definition of τinv
we conclude that

τinv(x) ≥ t ∀x ∈ Bε(x0).

Hence we have
lim inf
x→x0

τinv(x) ≥ t (B.3)

Let us assume the contraposition of (B.2), i.e.

lim inf
x→x0

inf{t ∈ (0,T] ∣ detDξt(x) = 0} < inf{t ∈ (0,T] ∣ detDξt(x0) = 0}.

Then there exists a t ∈ (0,T] such that τinv(x0) ≥ t holds and also

lim inf
x→x0

τinv(x) < t

which contradicts (B.3). Hence (B.2) is proved.
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C. Appendix to the existence and uniqueness
result of H. Kunita

Theorem 4.7 Let F (x, t), x = (x1, ..., xd) ∈ Rd, be a family of continuous C3(Rd,Rd) -
processes and continuous C2(Rd,Rd) - semimartingales with local characteristic belonging to
the class (B2,δ,B1,0) for some 0 < δ ≤ 1. Let gt be a continuous Rd - valued semimartingale.
Then the formula

F (gt, t) − F (g0,0) =
t

∫
0

F (gs, ○ds) +
d

∑
i=1

t

∫
0

∂F

∂xi
(gs, s) ○ dgis (C.1)

is satisfied, where git denotes the i-th component of gt = (g1
t , ..., g

d
t ).

The proof follows the ideas of the proof of Theorem 3.3.2 in [Kun97].

Proof. We apply the generalized Itô’s formula Theorem A.13 to

F̃ (gt, t) ∶=
∂F

∂xi
(gt, t) (C.2)

to obtain the assertion that F̃ (gt, t) is a continuous semimartingale. The assumptions on F
are satisfied since F is a C3 - process and a continuous C2 - semimartingale, hence ∂F

∂xi
∈ C2

and a continuous C1 - semimartingale. Therefore F̃ (gt, t) is a continuous semimartingale
and due to the generalized Itô formula we know

F̃ (gt, t) − F̃ (g0,0) =
t

∫
0

F̃ (gs,ds) +
d

∑
i=1

t

∫
0

∂F̃

∂xi
(gs, s) dgis

+ 1

2

d

∑
i,j=1

t

∫
0

∂2F̃

∂xi∂xj
(gs, s) d⟨gi⋅ , gj⋅ ⟩s +

d

∑
i=1

⟨
⋅

∫
0

∂F̃

∂xi
(gs,ds), gi⋅ ⟩

t

(C.3)

holds. By the Itô-Stratonovich formula [Kun97, Theorem 2.3.5] and the fact that only the
first term and second term on the right hand side of (C.3) is not of bounded variation, we
get

d

∑
i=1

t

∫
0

F̃ (gs, s) ○ dgis =
d

∑
i=1

t

∫
0

F̃ (gs, s) dgis +
1

2

d

∑
i=1

⟨F̃ (g⋅, ⋅), gi⋅ ⟩t

=
d

∑
i=1

t

∫
0

F̃ (gs, s) dgis +
1

2

d

∑
i=1

⟨F̃ (g0,0) +
⋅

∫
0

F̃ (gs,ds) +
d

∑
i=1

⋅

∫
0

∂F̃

∂xi
(gs, s) dgis, g

i
⋅ ⟩
t

=
d

∑
i=1

t

∫
0

F̃ (gs, s) dgis +
1

2

d

∑
i=1

⟨
⋅

∫
0

F̃ (gs,ds), gi⋅ ⟩
t

+ 1

2

d

∑
i=1

⟨
d

∑
i=1

⋅

∫
0

∂F̃

∂xi
(gs, s) dgis, g

i
⋅ ⟩
t

.

Now we use (C.2) to obtain

d

∑
i=1

t

∫
0

∂F

∂xi
(gs, s) ○ dgis =

d

∑
i=1

t

∫
0

∂F

∂xi
(gs, s) dgis +

1

2

d

∑
i=1

⟨
⋅

∫
0

∂F

∂xi
(gs,ds), gi⋅ ⟩

t

+ 1

2

d

∑
i=1

⟨
d

∑
j=1

⋅

∫
0

∂2F

∂xi∂xj
(gs, s) dgjs, g

i
⋅ ⟩
t
.
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By applying [Kun97, Theorem 2.3.2] we receive

d

∑
i=1

t

∫
0

∂F

∂xi
(gs, s) ○ dgis =

d

∑
i=1

t

∫
0

∂F

∂xi
(gs, s) dgis +

1

2

d

∑
i=1

⟨
⋅

∫
0

∂F

∂xi
(gs,ds), gi⋅ ⟩

t

+ 1

2

d

∑
i,j=1

t

∫
0

∂2F

∂xi∂xj
(gs, s) d⟨gi⋅ , gj⋅ ⟩s.

Starting on the right hand side of (C.1) we obtain by an application of Theorem 2.35 to
the first term

t

∫
0

F (gs, ○ds) +
d

∑
i=1

t

∫
0

∂F

∂xi
(gs, s) ○ dgis

=
t

∫
0

F (gs,ds) +
1

2

d

∑
i=1

⟨
⋅

∫
0

∂F

∂xi
(gs,ds), gi⋅ ⟩

t

+
d

∑
i=1

t

∫
0

∂F

∂xi
(gs, s) dgis +

1

2

d

∑
i,j=1

t

∫
0

∂2F

∂xi∂xj
(gs, s) d⟨gi⋅ , gj⋅ ⟩s

+ 1

2

d

∑
i=1

⟨
⋅

∫
0

∂F

∂xi
(gs,ds), gi⋅ ⟩

t

=
t

∫
0

F (gs,ds) +
d

∑
i=1

t

∫
0

∂F

∂xi
(gs, s) dgis +

1

2

d

∑
i,j=1

t

∫
0

∂2F

∂xi∂xj
(gs, s) d⟨gi⋅ , gj⋅ ⟩s

+
d

∑
i=1

⟨
⋅

∫
0

∂F

∂xi
(gs,ds), gi⋅ ⟩

t
.

Finally we apply the generalized Itô formula Theorem A.13 to receive

t

∫
0

F (gs, ○ds) +
d

∑
i=1

t

∫
0

∂F

∂xi
(gs, s) ○ dgis = F (gt, t) − F (g0,0).

Lemma C.1 The unique solution to equation (4.18) is given by

ψt(ξt(x)) = x.

Proof. We have to verify that (4.19) solves the integral equation (4.18). Define νt(x) =
ψt(ξt(x)). Hence consider for νt(x) = x

ν0(x) +
t

∫
0

(Dξs(νs(x)))
−1 ⋅ Fχs(ξs(x), ηs(νs(x)), χs(νs(x)), ○ds)

−
t

∫
0

(Dξs(νs(x)))
−1
Fχs(ξs(x), ηs(x), χs(x), ○ds)

= x +
t

∫
0

(Dξs(x))
−1 ⋅ Fχs(ξs(x), ηs(x), χs(x), ○ds)
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−
t

∫
0

(Dξs(x))
−1
Fχs(ξs(x), ηs(x), χs(x), ○ds)

= x

Uniqueness follows by Theorem 3.7 and the same arguments as written in Step 2 in the
proof of Lemma 4.8.

Theorem C.2 Let F (x, t), x ∈ D, be a family of continuous Cm,δ - semimartingale with
local characteristic belonging to the class (Bm+1,δ,Bm,δ) for some m ≥ 1 and δ > 0. For a
family of continuous D-valued Ck,γ - semimartingales f(λ, t), λ ∈ Λ ⊂ Re domain, for some
k ≥ 2 and γ > 0, we define L̊(λ, t) ∶= ∫

t
0 F (f(λ, s), ○ds). Then

∂L̊

∂λi
(λ, t) =

d

∑
l=1

t

∫
0

∂f l

∂λi
(λ, s)∂F

∂xl
(f(λ, s), ○ds)

holds, which is equivalent to

∂

∂λi
(

t

∫
0

F (f(λ, s), ○ds)) =
d

∑
l=1

t

∫
0

∂f l

∂λi
(λ, s)∂F

∂xl
(f(λ, s), ○ds).

The proof is given in [Kun97, Theorem 3.3.4].

Lemma C.3 By using the technique of an integrating factor the following equations

ξt(x) = exp
⎛
⎜
⎝
x −

t

∫
0

φ̃1(s) ds
⎞
⎟
⎠

ηt(x) =
h(x) +

t

∫
0

exp(
s

∫
0
ψ̃(r) dr + s) ○ dWs

exp(
t

∫
0
ψ̃(s) ds + t)

(C.4)

solve the system of stochastic differential equations

dξt = −φ̃1(t)ξt dt (C.5)

dηt = ( − ψ̃(t)ηt − ηt) dt + 1 ○ dWt, (C.6)

with ξ0(x) = x and η0(x) = h(x).

Proof. We easily determine the partial derivatives w.r.t. time t to verify that the stochastic
differential equation is fulfilled

dηt
dt

(x) = exp
⎛
⎜
⎝

t

∫
0

ψ̃(s) ds + t
⎞
⎟
⎠
⋅ exp

⎛
⎜
⎝

t

∫
0

ψ̃(r) dr + t
⎞
⎟
⎠
⋅ Ẇt ⋅ exp

⎛
⎜
⎝

t

∫
0

ψ̃(s) ds + t
⎞
⎟
⎠

−2

− exp
⎛
⎜
⎝

t

∫
0

ψ̃(s) ds + t
⎞
⎟
⎠

−2

⋅
⎡⎢⎢⎢⎢⎣
(h(x) +

t

∫
0

exp
⎛
⎝

s

∫
0

ψ̃(r) dr + s
⎞
⎠
○ dWs)

⋅(ψ̃(t) + 1) ⋅ exp
⎛
⎜
⎝

t

∫
0

ψ̃(s) ds + t
⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
⋅
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= Ẇt − (ψ̃(t) + 1) ⋅ ηt

Analogously we receive by the fundamental theorem of calculus and chain rule

dξt
dt

(x) = −φ̃1(t) ⋅ exp
⎛
⎜
⎝
x −

t

∫
0

φ̃1(s) ds
⎞
⎟
⎠

= −φ̃1(t) ⋅ ξt.

Hence (C.4) are the solutions to (C.5) and (C.6).
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D. Appendix to the application to stochastic
Burgers equations and stochastic transport
equations

Lemma D.1 The inverse process in the setting of Example 5.1 is given by

ξ−1
t (x1, x2)

=
⎛
⎝

2x1(W 2
t )2 +W 1

t − 2x2W
1
t W

2
t

2(W 1
t )2 + 2(W 2

t )2

−
W 1
t

√
(1 − 4x2

2(W 1
t )2 − x1W 1

t (4 − 8x2W 2
t ) − 4x2

1(W 2
t )2 − 4x2W 2

t )
2(W 1

t )2 + 2(W 2
t )2

,
W 1
t W

2
t − 2x1(W 1

t )2W 2
t + 2x2(W 1

t )3

2(W 1
t )3 + 2(W 2

t )2

−
W 1
t W

2
t

√
(1 − 4x2

2(W 1
t )2 + 8x1x2W 1

t W
2
t − 4x1W 1

t − 4x2
1(W 2

t )2 − 4x2W 2
t )

2(W 1
t )3 + 2(W 2

t )2

⎞
⎠
.

Proof. Obviously, we have to prove that for any a, b ∈ R

ξ−1
t (a − (a2 + b2)W 1

t ,b − (a2 + b2)W 2
t ) = (a, b) (D.1)

is satisfied. Let us start with the first component:

−bW 1
t W

2
t + a(W 2

t )2 + W 1
t

2 −
W 1

t

√
(1+4a2(W 1

t )2+8abW 1
t W

2
t −4aW 1

t +4b2(W 2
t )2−4bW 2

t )
2

(W 1
t )2 + (W 2

t )2

=
−2bW 1

t W
2
t + 2a(W 2

t )2 +W 1
t −W 1

t

√
(1 − 2aW 1

t − 2bW 2
t )

2

2((W 1
t )2 + (W 2

t )2)

= −2bW 1
t W

2
t + 2a(W 2

t )2 +W 1
t −W 1

t + 2a(W 1
t )2 + 2bW 1

t W
2
t

2((W 1
t )2 + (W 2

t )2)

=
2a((W 1

t )2 + (W 2
t )2)

2((W 1
t )2 + (W 2

t )2)
= a.

For the second component we get

b(W 1
t )3 − a(W 1

t )2W 2
t +

W 1
t W

2
t

2 −
W 2

t

√
(W 1

t )2(1+4a2(W 1
t )2+8abW 1

t W
2
t −4aW 1

t +4b2(W 2
t )2−4bW 2

t )
2

W 1
t ((W 1

t )2 + (W 2
t )2)

=
2b(W 1

t )2 − 2aW 1
t W

2
t +W 2

t −W 2
t

√
(1 − 2aW 1

t − 2bW 2
t )2

2((W 1
t )2 + (W 2

t )2)

= 2b(W 1
t )2 − 2aW 1

t W
2
t +W 2

t −W 2
t + 2aW 1

t W
2
t + 2b(W 2

t )2

2((W 1
t )2 + (W 2

t )2)

=
2b((W 1

t )2 + (W 2
t )2)

2((W 1
t )2 + (W 2

t )2)
= b.
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Lemma D.2 The inverse process in Example 5.3 is given for almost all ω and all (x, t)
with t < σ̂(x,ω) by

ξ−1
t (x) = 2x

1 +
√

1 − 4x(t +Wt)
.

Proof. Obviously, we have to prove that for any x ∈ R

ξ−1
t (ξt(x)) = x

is true for ξt(x) = x − x2t − x2Wt. This property is fulfilled, since

ξ−1
t (ξt(x)) = ξ−1

t (x − x2t − x2Wt)

= 2(x − x2t − x2Wt)
1 +

√
1 − 4(x − x2t − x2Wt)(t +Wt)

= 2(x − x2t − x2Wt)
1 +

√
1 − 4(xt + xWt − x2t2 − x2tWt − x2tWt − x2(Wt)2)

= 2x(1 − xt − xWt)
1 +

√
1 − 4xt − 4xWt + 4x2t2 + 8x2tWt + 4x2(Wt)2

= 2x(1 − xt − xWt)
1 +

√
(1 − 2xt − 2xWt)2

= 2x(1 − xt − xWt)
1 + 1 − 2xt − 2xWt

= 2x(1 − xt − xWt)
2(1 − xt − xWt)

= x.

Furthermore, ξ−1
t is the right inverse to ξt since

ξt(ξ−1
t (x)) = ξt

⎛
⎝

2x

1 +
√

1 − 4x(t +Wt)
⎞
⎠

= 2x

1 +
√

1 − 4x(t +Wt)
−
⎛
⎝

2x

1 +
√

1 − 4x(t +Wt)
⎞
⎠

2

t

−
⎛
⎝

2x

1 +
√

1 − 4x(t +Wt)
⎞
⎠

2

Wt

= 2x

1 +
√

1 − 4x(t +Wt)
− 4x2t

(1 +
√

1 − 4x(t +Wt))2

− 4x2Wt

(1 +
√

1 − 4x(t +Wt))2

=
2x(1 +

√
1 − 4x(t +Wt))

(1 +
√

1 − 4x(t +Wt))2

− 4x2t

(1 +
√

1 − 4x(t +Wt))2
− 4x2Wt

(1 +
√

1 − 4x(t +Wt))2

=
2x + 2x

√
1 − 4x(t +Wt) − 4x2t − 4x2Wt

(1 +
√

1 − 4x(t +Wt))2

=
x(1 +

√
1 − 4x(t +Wt))2

(1 +
√

1 − 4x(t +Wt))2
= x.
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Lemma D.3 The partial derivatives of u defined by (5.14) are given for almost all ω and
all (x, t) with t < σ̂(x,ω) by

du

dt
(x, t) = u(x, t) ⋅ 4x(1 + Ẇt)√

1 − 4x(t +Wt)(1 +
√

1 − 4x(t +Wt))

du

dx
(x, t) =

8x(1 +
√

1 − 4x(t +Wt) − 2xt − 2xWt)√
1 − 4x(t +Wt)(1 +

√
1 − 4x(t +Wt))3

.

Proof. Due to the quotient rule of differential calculus we obtain

du

dt
(x, t) = d

dt

⎡⎢⎢⎢⎣

4x2

2 + 2
√

1 − 4x(t +Wt) − 4xt − 4xWt

⎤⎥⎥⎥⎦

=
−4x2( − 2(4x + 4xẆt)1

2
1√

1−4x(t+Wt)
− (4x + 4xẆt))

(1 +
√

1 − 4x(t +Wt))4

=
4x2(4x + 4xẆt)(1 +

√
1 − 4x(t +Wt))√

1 − 4x(t +Wt)(1 +
√

1 − 4x(t +Wt))4

= 16x2(x + xẆt)√
1 − 4x(t +Wt)(1 +

√
1 − 4x(t +Wt))3

= u(x, t) ⋅ 4x(1 + Ẇt)√
1 − 4x(t +Wt)(1 +

√
1 − 4x(t +Wt))

.

Analogously we determine the partial derivative with respect to space variable x

du

dx
(x, t) = d

dx

⎡⎢⎢⎢⎣

4x2

2 + 2
√

1 − 4x(t +Wt) − 4xt − 4xWt

⎤⎥⎥⎥⎦

=
8x(1 +

√
1 − 4x(t +Wt))2 − 4x2( −

4(t+Wt)(1+
√

1−4x(t+Wt))
√

1−4x(t+Wt)

(1 +
√

1 − 4x(t +Wt))4

=
8x(1 +

√
1 − 4x(t +Wt))2 + 16x2(t +Wt)(1 +

√
1 − 4x(t +Wt))√

1 − 4x(t +Wt)(1 +
√

1 − 4x(t +Wt))4

= 8x√
1 − 4x(t +Wt)(1 +

√
1 − 4x(t +Wt))2

+ 16x2(t +Wt)√
1 − 4x(t +Wt)(1 +

√
1 − 4x(t +Wt))3

=
8x(1 +

√
1 − 4x(t +Wt) − 2xt − 2xWt)√

1 − 4x(t +Wt)(1 +
√

1 − 4x(t +Wt))3
.

Lemma D.4 Let c > 0. The local solution to the stochastic differential equation

{
dηt = c ηt ○ dWt

η0(x) = g(x)

is given by

ηt(x) = g(x) exp(cWt)

for almost all ω and all x, t such that t < T (x,ω), where T (x) is the explosion time.
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Proof. By using Newton’s derivative ○dWt

dt =∶ Ẇt we have to verify that ηt(x) solves

dηt
dt

(x) = c ηt(x)Ẇt.

Determine the partial derivative, we obtain

dηt
dt

(x) = d

dt
[g(x) exp(cWt)]

= g(x) c Ẇt exp(cWt)
= c ηt(x) Ẇt.

Lemma D.5 The inverse process of

ξt(x) = x −
1

2
x2

t

∫
0

exp(Ws) ds

is given for almost all ω and all (x, t) with t < σ̂(x,ω) by

ξ−1
t (x) = (2x) ⋅

⎛
⎜⎜
⎝

1 +

¿
ÁÁÁÁÀ1 − 2x

⎛
⎜
⎝

t

∫
0

eWs ds
⎞
⎟
⎠

⎞
⎟⎟
⎠

−1

.

Proof. We have to prove that for any x ∈ R

ξ−1
t (ξt(x)) = x

is true. This property is fulfilled, since

ξ−1
t (ξt(x)) = ξ−1

t

⎛
⎜
⎝
x − 1

2
x2

t

∫
0

eWs ds
⎞
⎟
⎠

=
2(x − 1

2x
2
t

∫
0
eWs ds)

1 +

¿
ÁÁÀ1 − 2(x − 1

2x
2
t

∫
0
eWs ds)(

t

∫
0
eWs ds)

=
2x − x2 (

t

∫
0
eWs ds)

1 +

¿
ÁÁÀ1 − 2x(

t

∫
0
eWs ds) − x2 (

t

∫
0
eWs ds)

2

=
2x − x2 (

t

∫
0
eWs ds)

1 +

¿
ÁÁÀ(1 − x(

t

∫
0
eWs ds))

2

=
x(2 − x(

t

∫
0
eWs ds))

2 − x(
t

∫
0
eWs ds)

= x.
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Lemma D.6 The partial derivatives of u defined by (5.29) are given by

du

dt
(x, t) =

4x2eWt[Z(1 +Z)2Ẇt + 2xeWt + 2xeWtZ]
Z ⋅ (1 +Z)4

,

du

dx
(x, t) =

Z(1 +Z)2 ⋅ 8xeWt + 8x2eWt( ∫
t

0 e
Ws ds)(1 +Z)

Z(1 +Z)4
,

where we make use of the short notation

Z ∶=
√

1 − 2x(∫
t

0
eWs ds).

Proof. Due to the quotient rule of differential calculus we obtain

du

dt
(x, t) = d

dt
[ 4x2eWt

(1 +Z)2
]

=
Z(1 +Z)2 ⋅ 4x2Ẇte

Wt − 4x2eWt( − 2xeWt)(1 +Z)
Z(1 +Z)4

= Z(1 +Z)2 ⋅ 4x2Ẇte
Wt + 8x3e2Wt(1 +Z)

Z(1 +Z)4

=
4x2eWt[Z(1 +Z)2Ẇt + 2xeWt + 2xeWtZ]

Z ⋅ (1 +Z)4
.

Additionally, we get for the partial derivative with respect to x

du

dx
(x, t) = d

dx
[ 4x2eWt

(1 +Z)2
]

=
(1 +Z)2 ⋅ 8xeWt − 4x2eWt( − 2 ∫

t
0 e

Ws ds) (1+Z)
Z

(1 +Z)4

=
Z(1 +Z)2 ⋅ 8xeWt + 8x2eWt( ∫

t
0 e

Ws ds)(1 +Z)
Z(1 +Z)4

.

Lemma D.7 The partial derivative with respect to x and t of (6.10) are given by

du

dt
(x, t) = u(x, t) Ẇt + u(x, t) (2(x2e2t)−(q−2) − λe(q−2)Wt

N
) ,

du

dx
(x, t) = u(x, t) ((2xe2t)(x2e2t)−(q−1)

N
) ,

where we use the short notation

N ∶= (x2e2t)−(q−2) + λ(q − 2)
t

∫
0

e(q−2)Ws ds.

Proof. Due to classical derivation rules we have

du

dt
(x, t) = N

1
q−2 Ẇt e

Wt

N
2

q−2
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−
eWt ( 1

q−2N
1

q−2 N−1( − (q − 2) (x2e2t)−(q−1) (2x2e2t) − λ(q − 2)e(q−2)Wt))

N
2

q−2

= eWt

N
1

q−2
Ẇt +

eWt

N
1

q−2
(2(x2e2t)−(q−2) − λe(q−2)Wt

N
)

and

du

dx
(x, t) = −

eWt ( 1
q−2N

1
q−2 N−1( − (q − 2) (x2e2t)−(q−1) (2xe2t)))

N
2

q−2

= eWt

N
1

q−2
((2xe2t)(x2e2t)−(q−1)

N
) .

Lemma D.8 Let µj ∈ R. If (6.21) given by

∞
∑
j=1

4

π2
µ2
j <∞

is satisfied, the orthonormal basis (6.19), i.e.

⎧⎪⎪⎨⎪⎪⎩

√
2

π
sin(jx)

⎫⎪⎪⎬⎪⎪⎭j≥1

fulfills Assumption 6.2.

Proof. Let f ∈ L2([0, π]), then we conclude

∥f ⋅ ej∥2
L2 =

π

∫
0

RRRRRRRRRRR
f(x) ⋅

√
2

π
⋅ sin(jx)

RRRRRRRRRRR

2

dx

= 2

π

π

∫
0

∣f(x) ⋅ sin(jx)∣2 dx

= 2

π

π

∫
0

∣f(x)∣2 ∣ sin(jx)∣2 dx

≤ 2

π
⋅ sup
x∈[0,π]

∣ sin(jx)∣2 ⋅ ∥f∥2
L2 .

Hence we choose γ̃j =
√

2
π . Under Assumption (6.21) it follows that

∞
∑
j=1

µ2
j

2

π

XXXXXXXXXXX

√
2

π
sin(jx)

XXXXXXXXXXX

2

∞
=

∞
∑
j=1

4

π2
µ2
j ∥sin(jx)∥2

∞ =
∞
∑
j=1

4

π2
µ2
j <∞.

Due to the fact that C∞([0, π]) ⊂ Lq([0, π]) dense for 1 ≤ q <∞, it is obvious that

µ = 1

2

∞
∑
j=1

µ2
j(

2

π
⋅ sin2(jx)) = 1

π

∞
∑
j=1

µ2
j ⋅ sin2(jx)

is a multiplier in Lq([0, π]), q ≥ 2, and a symmetric one in L2([0, π]).
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Lemma D.9 Let µj ∈ R. If (6.22) given by

∞
∑
j=1

8µ2
j <∞

is satisfied, the orthonormal basis (6.20), i.e.

{
√

2 sin(jπx)}
j≥1

fulfills Assumption 6.2.

Proof. Let f ∈ L2([0,1]), then we conclude

∥f ⋅ ej∥2
L2 =

1

∫
0

∣f(x) ⋅
√

2 ⋅ sin(jπx)∣
2

dx

= 2

1

∫
0

∣f(x) ⋅ sin(jπx)∣2 dx

= 2

1

∫
0

∣f(x)∣2 ∣ sin(jπx)∣2 dx

≤ 2 ⋅ sup
x∈[0,1]

∣ sin(jπx)∣2 ⋅ ∥f∥2
L2 .

Hence we choose γ̃j = 2. Under Assumption (6.22)

∞
∑
j=1

µ2
j 4 ∥

√
2 sin(jπx)∥

2

∞
=

∞
∑
j=1

8µ2
j ∥sin(jπx)∥2

∞ =
∞
∑
j=1

8µ2
j <∞

follows. Due to the fact that C∞([0, π]) ⊂ Lq([0, π]) dense for 1 ≤ q <∞, it is obvious that

µ = 1

2

∞
∑
j=1

µ2
j(2 sin(jπx)) =

∞
∑
j=1

µ2
j sin2(jπx)

is a multiplier in Lq([0, π]), q ≥ 2, and a symmetric one in L2([0, π]).
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E. Appendix to the scaling transform approach
The following definition is borrowed from [Bar10, Definition 2.1.].

Definition E.1 An operator A ∶ V → V ∗ is called monotone, if

V ∗⟨A(u) −A(v), u − v⟩V ≥ 0

for all u, v ∈ V .

Definition E.2 Let V be a reflexive, real Banach space and A ∶ V → V ∗ be an opera-
tor. Then A is called demicontinuous if and only if strong convergence in V implies weak
convergence in V ∗, i.e.

un
n→∞ÐÐÐ→ u in V ⇒ A(un)⇀ A(u) in V ∗.

The above definition is taken from [Ruz04, Definition 1.3.].

Definition E.3 Let V be a real Banach space and A ∶ V → V ∗ be an operator. Then A is
called hemicontinuous if for all v,w ∈ V and ϕ ∈ V

lim
λ→0

V ∗⟨A(v + λw), ϕ⟩V = V ∗⟨A(v), ϕ⟩V

holds.

Lemma E.4 The following equation holds true

d[eW(t)] = eW(t) dW(t) + µeW(t) dt.

Proof. By an application of Itô formula (see [Oks07, Theorem 4.1.2]) to the exponential
function we obtain for all t ∈ [0,T] and x ∈ O

eW(x,t) = eW(x,0) +
t

∫
0

eW(x,s) dW(x, s) + 1

2

t

∫
0

eW(x,s) d⟨W(x, ⋅)⟩s

= e0 +
t

∫
0

eW(x,s) dW(x, s) + 1

2

t

∫
0

eW(x,s) d⟨
∞
∑
j=1

µjej(x)W j
⋅ ,

∞
∑
j=1

µjej(x)W j
⋅ ⟩
s

= 1 +
t

∫
0

eW(x,s) dW(x, s) + 1

2

∞
∑
j=1

µ2
je

2
j(x)

t

∫
0

eW(x,s) d⟨W j
⋅ ,W

j
⋅ ⟩s

= 1 +
t

∫
0

eW(x,s) dW(x, s) + 1

2

∞
∑
j=1

µ2
je

2
j(x)

t

∫
0

eW(x,s) ds

= 1 +
t

∫
0

eW(x,s) dW(x, s) + µ(x)
t

∫
0

eW(x,s) ds,

where we define

µ(x) ∶= 1

2

∞
∑
j=1

µ2
je

2
j(x) (E.1)

for all x ∈ O.
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Definition E.5 Let y(t), t ∈ [0,T], be an H-valued, (Ft)t-adapted process with continuous
sample paths and let it be V ∗-absolutely continuous on [0,T], P-a.s. The function dy

dt is
defined by

y(t, ω) = y(0, ω) +
t

∫
0

dy

ds
(s,ω) ds, ∀ t ∈ [0,T], ω ∈ Ω

and (eW dy
dt ) ∈ L

q′((0,T) ×Ω, V ∗).

This definition is taken from [BR15, after Definition 3.2.]

Lemma E.6 Let the assumptions of Theorem 7.8 be fulfilled. Let J ∶ V → V∗ be the duality
mapping on V and F be defined by

F ∶ V → V∗

y ↦ F (y)(t) = eW(t)J(eW(t)y(t))∣eW(t)y(t)∣q−2
V ∀ t ∈ [0,T].

Then the equation
(B +T )y + e−WF (e−Wy) = 0

has a unique solution.

Proof. Let us define G(z) ∶= J(z)∥z∥q−2. The operator (B +T ) is maximal monotone in
Lq((0,T) ×O,R) × Lq′((0,T) ×O,R), hence by [Bar10, Theorem 2.3] with λ = 1 and for
q > 2 we obtain

Lq
′
((0,T) ×O,R) = ⋃

y∈D(B+T +G)
((B +T )y +G(y)).

With the help of [Bar10, Theorem 2.1, Lemma 2.2.] there exists a unique ŷ ∈ D(B +T )
such that for 0 ∈ Lq′((0,T) ×O,R)

0 = (B +T )ŷ +G(ŷ)
= (B +T )ŷ + J(ŷ)∥ŷ∥q−2

= (B +T )ŷ + eWe−WJ(eWe−Wŷ)∥eWe−Wŷ∥q−2
Lq

= (B +T )ŷ + e−WF (e−Wŷ).

Lemma E.7 Let the assumptions of Theorem 7.8 be fulfilled. The operator B +T is
maximal monotone in V × V∗.

We follow the ideas of the proof of Theorem 2.2. in [Bar10].

Proof. We assume that (B +T ) is not maximal monotone in V × V∗, i.e. there exists
(x0, y0) ∈ V × V∗ such that

(x0, y0) ∉ (B +T ) (E.2)

and
V∗⟨y − y0, x − x0⟩V ≥ 0 ∀(x, y) ∈ (B +T ). (E.3)

Let J ∶ V → V∗ be the duality mapping on V. We define G(z) ∶= J(z)∥z∥q−2. We can show
as in [BR15, Lemma 4.2] that

R((B +T ) + λG) = V∗,
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where R(A) denotes the union ⋃u∈D(A)Au for any operator A with domain D(A) (see
Definition 7.4). Therefore there exists (x1, y1) ∈ (B +T ) with

λG(x1) + y1 = λG(x0) + y0,

which is equivalent to

λG(x0) − λG(x1) = y1 − y0.

So, by (E.3) we get

V∗⟨G(x0) −G(x1), x1 − x0⟩V = V∗⟨y − y0, x − x0⟩V ≥ 0.

Due to the definition of the duality mapping given by

J(z) ∶= {z∗ ∈ V∗ ∣ ⟨z∗, z⟩ = ∥z∥2}

as stated in [Bar10, equation (1.1)] we obtain for z ∈ V

V∗⟨G(z), z⟩V = V∗⟨J(z)∥z∥q−2, z⟩V
= ∥z∥q−2

V∗⟨J(z), z⟩V
= ∥z∥q−2∥z∥2 = ∥z∥q.

Hence we have

0 ≤ V∗⟨G(x0) −G(x1), x1 − x0⟩V
= V∗⟨G(x0), x1⟩V − V∗⟨G(x0), x0⟩V − V∗⟨G(x1), x1⟩V + V∗⟨G(x1), x0⟩V
= V∗⟨G(x0), x1⟩V − ∥x0∥q − ∥x1∥q + V∗⟨G(x1), x0⟩V ,

which is equivalent to

∥x0∥q + ∥x1∥q ≤ V∗⟨G(x0), x1⟩V + V∗⟨G(x1), x0⟩V .

Next, we consider

V∗⟨G(x1) −G(x0), x1 − x0⟩V = ∥x1∥q + ∥x0∥q − (V∗⟨G(x0), x1⟩V + V∗⟨G(x1), x0⟩V)

≤ 0.

Due to (E.3) we conclude V∗⟨G(x1) −G(x0), x1 − x0⟩V = 0. Consequently we have

∥x0∥q = ∥x1∥q = V∗⟨G(x0), x1⟩V = V∗⟨G(x1), x0⟩V

which shows
G(x0) = G(x1).

As written in [Bar10, Section 1.1] the duality mapping J−1 of V∗ is single-valued, since V
is strictly convex, we obtain

x1 = x0.

Therefore we obtain (x0, y0) = (x1, y1) ∈ (B +T ), which contradicts (E.2), and show that
(B +T ) is maximal monotone.
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F. Appendix to an application of Lemma 4.8 to
[DPT96]

We apply Itô’s product rule (see [RY05, Chapter IV, 3.1 Proposition]) to deduce equation
(8.25).

Derivation We apply Itô’s product rule to the equation (8.3)

dy = (L̃(t, ξ, y,Dy,D2y) − ⟨b ⋅Dy,h⟩Rd − trace[Dh ⋅ b⊺]) dt + y ⟨h,dWt⟩Rd1

and an arbitrary stochastic differential equation given by

d% = %drift dt +
d1

∑
k=1

%diffk dW k
t .

and obtain

d% dy = [% ⋅ (L̃(t, ξ, y,Dy,D2y) − ⟨b ⋅Dy,h⟩Rd − trace[Dh ⋅ b])] dt (F.1)

+ % ⋅ y ⋅ ⟨h,dWt⟩Rd1 (F.2)

+ y ⋅ %drift dt (F.3)

+
d1

∑
k=1

y ⋅ %diffk dW k
t (F.4)

+ ⟨
d1

∑
k=1

%diffk dW k
⋅ ,

d1

∑
k=1

y ⋅ hk dW k
⋅ ⟩

t
. (F.5)

As before we consider the diffusion term and drift term separately to determine %drift and
%diff. Let us start with the diffusion terms, i.e. the sum of (F.2) and (F.4)

% ⋅ y ⋅ ⟨h,dWt⟩Rd1 +
d1

∑
k=1

y ⋅ %diffk dW k
t =

d1

∑
k=1

(% ⋅ y ⋅ hk + y ⋅ %diffk ) dW k
t

=
d1

∑
k=1

y ⋅ (% ⋅ hk + %diffk) dW k
t .

Hence we define

%diffk ∶= −% ⋅ hk

Next, we plug %diffk into the covariation term (F.5) to get

⟨
d1

∑
k=1

%diff dW k
⋅ ,

d1

∑
k=1

y ⋅ hk dW k
⋅ ⟩

t
= ⟨

d1

∑
k=1

(−% ⋅ hk) dW k
⋅ ,

d1

∑
k=1

y ⋅ hk dW k
⋅ ⟩

t

=
d1

∑
k=1

−% ⋅ hk ⋅ y ⋅ hk d⟨W k
⋅ ,W

k
⋅ ⟩t

= −
d1

∑
k=1

% ⋅ y ⋅ h2
k dt

= −% ⋅ y ⋅ (
d1

∑
k=1

h2
k) dt

= −% ⋅ y ⋅ ∣h∣2 dt. (F.6)
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Let us consider the sum of the drift terms (F.1), (F.3) and (F.6)

(% ⋅ (L̃(t, ξ, y,Dy,D2y) − ⟨b ⋅Dy,h⟩Rd − trace[Dh ⋅ b]) + y ⋅ %drift − % ⋅ y ⋅ ∣h∣2) dt

= (% ⋅ y + y ⋅ %drift − % ⋅ y ⋅ ∣h∣2) dt

= (y ⋅ %) dt + y ⋅ (%drift − % ⋅ ∣h∣2) dt.

To get
y ⋅ (%drift − % ⋅ ∣h∣2) = 0

we have to choose
%drift ∶= % ⋅ ∣h∣2

Finally we obtain the stochastic differential equation (8.25) given by

d% = ∣h∣2 ⋅ % dt − % ⋅
d1

∑
k=1

hk dW k
t

= ∣h∣2 ⋅ % dt − % ⋅ ⟨h,dWt⟩Rd1
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stochastic, 47

characteristic equations, 8
stochastic, 46
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stochastic, 46

covariation, 14

filtration
generated by flow, 40
normal, 11

Itô equations, 38
Itô formula, 121
Itô integral

based on a semimartingale, 22
representation result, 26

Itô-Stratonovich formula, 27
Itô-Wentzell formula, 106

local characteristic, 19
class Bk,δ, 20
class Bk,δ

b , 20
class Bk,δ

ub , 19
local martingale, 12

space M loc
c, , 14

local process, 12
in Ck,δ, 41

local random field, 12
local solution

of Itô equations, 38
of Stratonovich equations, 37

martingale
space Mc, 14

operator
monotone, 137
demicontinuous, 137
hemicontinuous, 137
maximal monotone, 94

orthogonal, 117
orthogonal basis, 119

quadratic variation, 14

random field, 11

semimartingale flows, 40
solution

local, 46
maximal , 38
strict, 115
strong, 115

stochastic flow
of homeomorphisms, 39
with values in Gk, 40

stochastic integral
Itô, 21
Stratonovich, 29

stochastic process, 11
stopping time

accessible, 12
explosion time, 38
lower semicontinuous, 12
terminal time, 38

Stratonovich equations, 37
Stratonovich integral

representation result, 30

Theorem
generalized Itô formula, 48

truncation, 120
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