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1. INTRODUCTION

1. Introduction

1.1. Brief summary of the problem

In 2015 Viorel Barbu and Michael Rockner developed a technique to prove existence
and uniqueness of global solutions to infinite-dimensional stochastic equations of the
form

X(at) = h()> .

where A is a nonlinear, monotone, demicontiuous, coercive operator with polynomial
growth and W is a Wiener process on some Hilbert space. In An operatorial approach
to stochastic partial differential equations driven by linear multiplicative noise [BR15)|
this technique uses a scaling transform to transfer equation into an operator
equation of the type

By + oy =0. (1.2)

Under the so-called maximal monotonicity of the operators o7, % this kind of equa-
tion has a unique solution. Consequently there exists also a unique solution to
. But this scaling transform approach is only applicable under the mentioned
assumptions of coercivity, demicontinuity and monotonicity. It also yields existence
and uniqueness in the case of the stochastic transport equation given by

AX (x.1) = Zaz(:c t)aX (z.1)

~AX (z,1) |X(m, D9 dt + X (2, t) dW(z, t)
X (z,0) = h(x),

dt — Bz, t) X (x,t) dt

X(t)=00n T = {(x,1) €00 x [0, T] | - Za,(w Bni(x) <0},

for some A >0, ¢ > 2, o;, 3,7 =1,...,d, which are continuous in time and space and
«; are additionally one-times continuously differentiable with respect to space. In
the deterministic case the simplest form of a transport equation is given by

%+C-VU:O. (1.4)
In general, this can be used to model the density of a physical quantity or the
transport of a particle in a fluid, such as a solute in a pipe with water. Here one
can think of air pollution or a traffic flow problem where for example the density
of the vehicles depends on position and time. The basic tool to solve such a
kind of transport equation (|1.4]) is given in almost all literature concerning partial
differential equations and known as the method of characteristics. This famous
approach is based on the transformation of the partial differential equation into
a system of ordinary differential equations. Solving this system, one constructs
a solution of the partial differential equation by combining the solutions to the
system in a suitable way.

The method of characteristics was published in 1803 by Gaspard Monge in Mé-
moire sur la théorie d’une équation aux dérivées partielles du premier ordre and
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was developed further, among others by Joseph-Louis Lagrange, Paul Charpit and
Sylvestre F. Lacroix (see [HP15]). 1984 Hiroshi Kunita extended this well-known
method to stochastic partial differential equations. This approach is called method
of stochastic characteristics. In First order stochastic partial differential equations
[Kun84al and later in the book Stochastic flows and stochastic differential equations
[Kun97| the author proves existence and uniqueness of local solutions to stochastic
partial differential equations of the form

{ du = F(x,u, Vu, odt), (L.5)

u|t:0 =g,

where F' is a semimartingale, which is Holder continuous and 5-times continuously
differentiable with respect to all variables (x,u,Vu) and of linear growth in all
variables. Obviously, the not so common notation of the semimartingale has to be
defined precisely and then a representation result (see Theorem below) can be
proved. By this it is possible to transform the equation into a more convenient
type of equations given by

du = fo(z,u, Vu,t) dt + > fo(z,u, Vu,t) o AW/,
nzl (1.6)
U(I70) = g(x),

where (W/'),»1 are infinite independent copies of a one-dimensional Brownian
motion. Due to the fact that we already know that there exists a unique global
solution to the stochastic transport equation , the question arises if it is
possible to solve this equation also by the method of stochastic characteristics due
to the main result Theorem of [Kun97, Theorem 6.1.5]. The main advantage
of the method of characteristics is that in a number of examples one obtains an
explicit expression of the solution. The reader might see that the equations
and are given in different settings. [BR15| considers perturbations by general
space-dependent Wiener processes and in terms of an It6 integral while [Kun97|
works with perturbations by a series of independent Brownian motions and in terms
of a Stratonovich integral. Furthermore, the conditions on the coefficient functions
are very different.

In this thesis we will elaborate the scaling transform approach in the example of
the stochastic transport equation , as well as the method of stochastic charac-
teristics as given in [Kun97|. During our studies we quickly realized that the main
existence and uniqueness result [Kun97, Theorem 6.1.5] as stated by H.Kunita is
not applicable in the case of the stochastic transport equation. Therefore we extend
the method of stochastic characteristics to a heuristic approach. By direct calcula-
tions of the method we end up with an explicit expression of solutions.
In a first step we apply this heuristic approach to Burgers type equations given in
the form

du = h(u) - Vu dt + B(u) dW,; (1.7)

and for explicitly given coefficient functions h(u). We also generalize the example
of Y. Yamato in [Kun84a| to the two-dimensional case. As expected for a heuristic
approach we have to verify that all determined candidates for solutions really solve
the considered problems. After some successful examples we consider the stochastic
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transport equation. For the simple reason that an application of Theorem is
not possible, we firstly determine the solution of the one-dimensional stochastic
transport equation with explicitly given coefficient functions and perturbed by a
Brownian motion with Stratonovich differentials of the form

{du(m,t) = (:Jc vu(z,t) = Au(z,t) [u(z, )| ) dt + u(z,t) o dW; (1.8)

u(x,0) = 2%

In a next step we focus on the perturbation by a general infinite-dimensional Wiener
process W. Choosing special orthonormal bases and setting the drift terms to zero,
we determine an explicit solution to the simplified stochastic equation

{ du=uodW

u(z,0) = h(z). (1.9)

By using the Ito-Stratonovich formula we end up with the fact that an application
of the method of stochastic characteristics to the stochastic transport equation
(1.3) is not possible in general. The It6 correction term including the orthonormal
basis of the general Wiener process makes an application of the heuristic method
of stochastic characteristics impossible.

For the method of stochastic characteristics H. Kunita developed a technique of
finding inverse processes. This result is a basic tool in Fully Nonlinear Stochas-
tic Partial Differential Equations |[DPT96] of the authors Giuseppe Da Prato
and Luciano Tubaro, but it is not explicitly stated therein. Therefore we for-
mulate and prove this result (see Lemma 8.5 below) in detail at the end of this thesis.

In his book Stochastic partial differential equations |[Cho07] Pao-Liu Chow applied
the method of stochastic characteristics to solve linear and quasilinear stochastic
partial differential equations. In the first two chapters he reproduces many results
of [Kun97] in the classical case of Brownian motion. The conditions on the
coefficient functions coincide with the conditions for the main result of [Kun97].
One should note that the main tool of the approach is to find an inverse process.
With a restriction on the domain using a proper stopping time, the results are given
for almost all elements of the probability space and all space and time variables
depending on the stopping time. In [ChoO7] these restrictions and corresponding
stopping times are not given explicitly or have been overlooked, respectively, but the
author denotes the solutions as pathwise solutions, which seems to correspond with
our notation. Nevertheless the representation formula (see Theorem below),
which is proved in this thesis, is vaguely stated therein (see [Cho(O7, Equation

(2.13)]).

For the reader’s convenience we give an overview in the beginning of each chapter
concerning the main results, proofs and contributions.

1.2. Aim of the thesis

The scaling transform approach, as well as the method of stochastic characteristics,
both have their own advantages. By the method of stochastic characteristics we
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get an explicit expression of solutions, provided that we consider explicitly given
coefficient functions. On the other hand V. Barbu and M. R6ckner prove a general
existence and uniqueness result which is valid for a large class of equations and as
we will see, also for the stochastic transport equation (L.3). The result includes
existence and uniqueness and we know, due to the scaling transform, that the
solution is of the form X (¢) = eWy(¢), where y solves a certain random partial
differential equation (see below). We have not an explicit expression, but we
obtain the existence of a global solution.

The first aim of this thesis is to reformulate the method of stochastic characteristics
in a more convenient and more detailed version. To this end the representation
results e.g. Theorem below are the most important steps. In [Kun97| these
statements are given in vaguely formulated exercises. It is a known fact that there
exist different concepts of solutions, like global or local solutions. Hence the kind of
solution has to be defined rigorously. Due to the fact that we restrict the domain
of the processes to a domain defined for almost all elements w of the probability
space, the solutions are local ones which are defined up to a certain stopping time.
In our opinion, this consideration is very important and can easily be overlooked in
[Kun97|. Therefore we go into much detail concerning the kind of local solution.

Nevertheless the main task of this thesis is the application of the method of stochastic
characteristics to the stochastic transport equation. For this purpose it is necessary
to generalize the method of stochastic characteristics to a heuristic approach. It
means we have to determine solutions by hand. One should note that for Kunita’s
main result (see Theorem below) and the explicit expression of the solution,
one has to solve a system of stochastic differential equation also by hand, as well
as in the heuristic approach. We observe that there is only one example given for
which Theorem 4.1 in [Kun84a) is applicable. This example is a one-dimensional
Burgers equation without drift term. It was done by Y. Yamato in [Kun84a]. We
generalize this example to two dimensions. Furthermore, we also consider different
kinds of drift terms and observe that the heuristic approach works successfully.
Hence we obtain an expression of solutions and therefore existence of the solutions.
Furthermore, we give an example which makes the main result of [Kun97] (see
Theorem below) concrete. Considering the stochastic transport equation ([1.3)),
the Ité-Stratonovich formula has a very important role. The application of the
method of stochastic characteristics to the stochastic transport equation perturbed
with respect to Stratonovich differential instead of 1td differential is possible in a
few situations e.g.

o du(z,t) = (v Vu(e,t) = Xz, 8) [u(z, )" ) dt + u(, 1) o W,
(see Example [6.4] below)
o du=uodW= 2 \/guj sin(jz)u o dW. (see Example 6.8 below)
=
If we look at the stochastic transport equation given in the form with Ito

differential, we have to rewrite it into the Stratonovich setting (see Lemma/6.11]) and
hence obtain an additional drift term in the differential equation. We demonstrate
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up to which conditions on the coefficient functions and perturbation the method of
stochastic characteristics gives us a local solution. With the detailed preparation of
the scaling transform approach in the case of the stochastic transport equation, we
compare the three methods, namely the scaling transform approach, the heuristic
method of stochastic characteristics and the application of Theorem below. The
main tool in the proof of Theorem is Lemma [.8 below which states that under
certain conditions there exists a process satisfying an inverse property. This result
plays an important role in the article [DPT96]. We give a review on the method
therein, formulate the theorem to find an inverse process and thus fill a corresponding
gap in [DPT96].

1.3. Structure

The thesis is separated in 8 chapters. After a motivating introduction, which includes
a repetition of the classical method of characteristics, the second chapter starts with
basic definitions to fix the setting. In this part we prove fundamental representation

results for stochastic differential equations (see Theorem Theorem below),
as well as for stochastic partial differential equations. The special kind of notation

du = F(z,u, Vu,odt)

used in [Kun97| in the one-dimensional case, as well as in the multidimensional
case, can be represented by Brownian motions, which is formulated in Corollary
below. Furthermore, we repeat some important tools. Chapter 3 contains the
derivation of the method of stochastic characteristics which generalizes Subsection
1.5. below of the introduction. The third chapter is written in a nutshell and can
be used to apply the heuristic approach of the method of stochastic characteristics.
We do not formulate a theorem, but a stepwise derivation. For applications this
step-by-step formula is more convenient. Theorem [4.5] considering the existence
and uniqueness of solutions to first order stochastic partial differential equations,
is the primary part of Chapter 4. In Corollary this existence and uniqueness
result applied to the case of Brownian motions is formulated. In this chapter also a
detailed written proof of the main theorem is included. It follows the fifth chapter
working on simple, but precise examples in which we apply the heuristic approach
to the case of some stochastic Burgers type equations. Chapter 6 gives the answer to
our main initial question. Under certain conditions we solve the stochastic transport
equation locally by an application of the heuristic method of stochastic character-
istics. Chapter 7 contains the scaling transform approach with a repetition of the
main result and a detailed proof in the case of the stochastic transport equation.
We finish Chapter 7 with a summarizing diagram which gives a comparison of all
methods considered in this thesis. In the last part we work out an application of
Lemma [4.8in the article [DPT96| of G. Da Prato and L. Tubaro.

1.4. Future directions

The method of stochastic characteristics as published in [Kun97| is based on a repre-
sentation result which we prove in Chapter 2. In applications it might be of interest
if other kinds of noises or other local martingale representatives can be used to
find solutions of stochastic partial differential equations perturbed by these kinds of
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processes. In another step it would be useful to generalize the conditions on the co-
efficient functions, to solve a stochastic partial differential equation by the method
of stochastic characteristics. We already know that this method can be applied
in many situations although the conditions of [Kun97| are not fulfilled. Further-
more, one could study the application of the method of stochastic characteristics to
the random partial differential equation which we obtain by the scaling transform
approach.

1.5. The method of characteristics for nonlinear partial
differential equations

The method of characteristics is one of the classical approaches to solve quasilin-
ear and also nonlinear partial differential equations of first order locally. It can
be found in well-known literature e.g. [Eva08, Chapter 3.2|, [Str07, Section 1.2],
[Han1l, Chapter 2, 2.2|, [Smi64, Chapter III, §1|, [Gar67, Chapter 2.2] and [Cou68,
§3]. The idea of this approach is to transform a partial differential equation into
a system of ordinary differential equations. The solutions to these ordinary dif-
ferential equations and in particular their inverse functions form a solution of the
partial differential equation by a smart combination. The transformation itself is
based on a coordinate transformation. That means the system of ordinary differ-
ential equations is generated by curves - the so-called characteristic curves. The
technique is based on the assumption that such curves exist and that we obtain
the corresponding system of ordinary differential equations. By solving this system,
respectively if we assume that this system is solvable, we construct a solution to the
partial differential equation. The geometrical picture behind this is to find a solution
to the partial differential equation by constructing a curve lying in the surface of
the corresponding graph of the unknown function. In the following we review the
method of characteristics for first order nonlinear partial differential equations on
U:=R?x(0,T) for some T >0. Let x = (1, ..., g, T4+1) € U where 4,1 is the time
variable and

F:R¥xRxR?x[0,T] - R
be a given smooth function. Let
[i={zeR¥"|z4,=0}coU

and ¢g: I' > R also be a given smooth function. We consider the following Cauchy
problem

ou ou ou
=Flxy,...,xq, ,— (), — (1), xg01 ) V2 €U
Dan (2120 u(@), () By 7 )y (1.10)
U|F=g.

We suppose that u solves the partial differential equation ((1.10)) with boundary
condition on I' and that w is a C?-function. Let x € U be fixed. We want to calculate
u(x) by finding a curve lying in U and connecting = with an initial value in T
Define

I*:={r eR?|(r*,0) eT}.
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Let y be a point near I" with y = (y1, ..., Y4, Ya+1) € R? x [0, T]. Suppose that y can
be reached by a curve, i.e. there exist r € I'*, s € [0, T] and a function

x: ]Rd+1 N Rd+1
such that x(r,s) = y. That means starting at r € I'* with initial condition
x(r,0) = (r,0),

the i-th component of the curve denoted by x;(r, s) reaches y; at time s. Without
loss of generality let 34,1 = s. Then we define with Lagrange’s notation (g—; = Uy, )

z(r,s) == u(x(r,s)) = u(x1(r,s),...,xq4(r, s), s),
pi(r,8) =y, (x(1,8)) = Uy, (x1(r,8), ..., x4(r, 8), 5),

p(?", 8) = (pl(rv 8)7 "'7pd(r7 S))
Additionally to the existence of the curve x we assume the following:

Assumption 1.1 The corresponding initial conditions for each r € I'* are given by
g: R+ R with

Z(?“, O) = g(?“, 0)7

pi(r,0) = g5, (r,0) (1.11)

and satisfy

pa+1(r,0) = F(21(r,0), ..., x4(r,0), 9(r,0), gz, (,0), ..., gz, (7,0),0) = 0. (1.12)

Conditions (1.11)) and (1.12)) are called compatibility conditions and initial con-
ditions satisfying these conditions are called admissible (cf. [Eva08, 3.2.3 b.|).

Remark 1.2 Let reI'*. Due to

0
apd+1

(P4 (r,0)

(1.13)
— F(gjl(r,O), ...,xd(r,0),g(7”,0),gm1(7"70)7 "'7grd(r70)’0):| =1#0

another assumption on so-called noncharacteristic initial conditions as written in
([Eva08, §3- after Lemma 1]) is fulfilled.

Now we rewrite equation (|1.10]) to obtain
Pas1(r,8) = F(x1(r,8), ..., zq(r,s),2(r,8),p(r,s), £4:1(r,8)) =0 (1.14)

for r e T*, s € [0, T]. By using the notation of Newton’s derivative (= &) we have

d
z(r,s) = ;:ti(r, $)pi(r,s) + pas1(r, s).

By differentiating ([1.14)) with respect to s we also know that

d

TP (n ) F(@i(r.), o wa(r,8).2(r, ), p(r,8) 2 (ros)) | = 0. (1.15)
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If we apply the classical chain rule, we get that the left hand side of ((1.15)) is equal
to

%[pd_'_l (r,s) = F(x1(r,8),...,xq(r,s),2z(r,s),p(r,s), zq1(r, s))]

d
= pd+1(7"> S) - ;ZB@(T’, S)in({L‘l(T, S)a ...,l‘d(’l", S)a Z(’l“, S)v p(?”, S),$d+1(7", S))
—z(r, 8)Fy(x1(r,8),...,xq(r,8),2(r,s),p(r,s), x411(r, 8))
d
- ;p@(r, S)Fpi(l‘l(ra S)v sy l‘d(’f', S)a Z(’l“, S), p(h 5)7l'd+1(r7 S))

- i'dJrl(rv S)Fmdﬂ (1'1(7", S), ) $d(T, 8)7 Z('I“, 3)7 p(?“, S)a derl(T: 8))

d
= pgs1(r,8) — Z;:bi(r, )y (z1(r,8),...,xq(r,s),2(r,s),p(r,8), Tas1 (7, 5))

d
- ( ;ii(r, $)pi(r,s) + pas1(r, s))FZ(xl(r, 8)y ey xq(r,s),z(r,s),p(r,s), xqs1(r,s))

- gpi(r, )y (21(7,5), s 2a(r,5),2(7, 5), D(r, 8), Tas1 (7, 5))
= Py (@1(ry8), oo wa(r,8),2(r, 8), D1, 8), 2as1 (7, 8))
= P (1, 5) - il (Fo(@1(r. ), .o 2a(r 9),2(r, 8), D(r, 5), 2.1 (1. 5))
+pir,8) Ea(1(r,8), o wa(r,5),2(r, 5), (7, 8), 20,1 (1, 5)) )i (7, )
— paer (1,8) Fy (211, 8), ooy wa(ry 8), 2(r, 5), P(r, 5), 21 (1, 5))
- im(r, 8)Fpy(21(7, ), s 7a(r,8),2(7, 8), D7, 8), Tas1 (7, )
= Py (@1(r,8), oo 2a(r,8),2(r, 8), D1, 8), 2asr (7, 5)).

If we choose ; and p; such that

zi(r,s) = —Fp,(x1(r,s),....,xq(r,s),2(r,s),p(r,s), xa+1(r,s))
pi(r,s) = Fy. (z1(r,s),...,xq(r,s),2(r,s),p(r,s),x4:1(7, 5)) (1.16)
+pi(r,8)Fp(x1(r,8),...yxq(r,s),z(r,s),p(r,s), zqa1(r, s)),

we obtain

Pas1(7,8) = par1 (1, 8) Fa(21(r, 8), .oy 2a(r, 8),2(r, 5), p(7, 8), ¥as1(7, 8))
- Fyy, (x1(r,8), ..., xq(r,s),2(r,s),p(r,s), 411(7, 5))
=Fy,, (x1(r,s),....;zq(r,s),2(r,s),p(r,s), xas1(r, s))
+pas1(ry 8) Fp(x1(r, 8), ...y xq(r,s),z(r, s),p(r,s), zae1(r, s))
—pas1(ry 8) Fp(x1(r, 8), ...y xq(r, s),z(r,s),p(r,s), zg:1(r, s))
= Foyp (@1(r,5), - wa(r, s),2(r, 5), p(7, 8), Tar1(r, 5))
=0

and (1.15)) holds. Hence we have the following system of characteristic equations:
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(2121 =-F,(21,...,24,2,P,5), fori=1,...,d,
% = Pd+1 +§;j3ipi
= F(z1,...,24,2,p,5) — Zd;pini(:cl, ey Ty Zy Py S), (CE)
iz
% =Fy,(v1,...,24,2,P, S)

+ F,(x1,...,24,2,p,8)p;, fori=1,....d.

For the sake of simplicity we dropped the parameters (7, s) in the above system of ODEs.
One should note that we define by (x(r,s),z(r,s),p(r,s)) in total (2d + 3) functions, but
due to the fact that pg.q and Z441 = 1 give no information we end up with a system of
(2d + 1) differential equations.

Due to Remark we apply Lemma 2 of [Eva08|, §3]. By this result we know that for any
point r € I' there exists a neighborhood such that every point y sufficiently close to I' can
be uniquely determined by a curve y = x(r, s). This means that the curve starting at point
r =x(r,0) reaches y = x(r, s) at time s. So, again by Remark [1.2| we invert x(r, s) near 0,
i.e. we find functions

R:R™ T and S: R - [0,T]

such that r = R(x) and s = S(z) for = sufficiently close to I". One obtains this by an
application of the inverse mapping theorem (see [Lan96, Chapter XIV, Theorem 1.2|).
Hence we get a local solution of our equation by solving the characteristic equations
with initial condition and choosing

u(z) =u(x(r,s)) =z(r,s) =z(R(x),S(x)) for x sufficiently close to I'. (1.17)

The method is based on the assumptions that u solves the Cauchy problem and that we
find a curve x(r,s). Now, one should finally show that the constructed w in ((1.17) really

solves problem ((1.10)). For this calculation we refer to [Eva08], Proof of Theorem 2|.

Remark 1.3 (x(r,s),z(r,s),p(r,s)) is called characteristic curve or also Monge curves
and Monge strips, respectively, in honour of G. Monge. The characteristic equations are
also known as Lagrange-Charpit equations in honour of P. Charpit and J.-L. Lagrange.






2. PRELIMINARIES

2. Preliminaries

In this chapter we recall some basic definitions from [Kun97|. The main aim of the whole
chapter is to formulate and prove a representation result for a Stratonovich integral of the
form

t
[ Flpa0ds),
0

where F' is a semimartingale satisfying some regularity assumptions. To this end we prove a
representation result for continuous C-valued local martingales (see Theorem[2.21]below) as
well as for Ito integrals based on continuous C-valued local martingales (see Theorem
below). The latter is redrafted to a more rigorous version as in [Kun97, Exercise 3.2.11].
Due to these results we are able to prove and state a representation result for Stratonovich
integrals of the form fot F(ps,0ds) based on a continuous semimartingale taking values
in a certain space (see Theorem below). Theorem is based on [Kun97, Exercise
3.3.5], however this exercise is not sufficiently exact concerning the existence of continuous
processes (fn)ns0 and the previous representation results. After that the application in
the case of Brownian motion is given in Subsection 2.7. below. This can not be found in
[Kun97], but it is one famous framework to apply any result of [Kun97|]. The reader should
note that the presentation form in [Kun97] is constituted by continuous text. Hence the
author of this thesis reformulates the necessary definitions and results in a didactic prepared
and structured way.

2.1. Basic definitions in the approach of H. Kunita

Let (Q2,.%, P) be a complete, separable probability space endowed with a normal filtration
(Zt)te[0,] for the finite time interval [0, T], T >0, which is defined in the following way:

Definition 2.1 A family of sub-o-fields (Ft)e[o,7) s called a mormal filtration if
(ﬂ})te[o,ﬂ is right-continuous, i.e. F; = Neso Frie, €ach Fi contains all null sets of

F and Fs € Fy for all s<t.
In the case of a Brownian motion we define the following:

Definition 2.2 Let (Wt)te[o,T] be a real-valued Brownian motion on a probability space
(2, %#,P). Fortel0,T] define the filtration

FV = o({Ws|0< s <t}).

The corresponding filtration

1s right-continuous. Therefore the normal filtration is given by
Fy=o(FY ,0({N € F|P(N) =0})).
In the following let D c R? be a domain.

Definition 2.3 A collection of R%-valued random variables X (x): Q - R4 2 €D, is called
a random field with parameter set D c R%. If D = [0, T], then the random field is called
a stochastic process and is denoted by (X¢)e[o,17-

It is a basic fact that a continuous stochastic process adapted with respect to the normal
filtration (%), is (:%¢)¢-predicable (e.g. [RY05, Chapter IV, (5.1) Proposition]).

11



2. PRELIMINARIES

Definition 2.4 A continuous, real-valued, (F)i-adapted (and therefore predictable)
stochastic process X; is called a local martingale if there exists an increasing sequence
of stopping times (Tp)nen with P(r, < T) 2700 and the stopped process Xinr, 15 G
martingale.

Obviously, each martingale is a local martingale and each continuous local martingale X;
satisfying

IE[ sup |X8|:| < 00
s€[0,T]

is a martingale as proved e.g. in [Kun97, Theorem 2.1.1].

Definition 2.5 A stopping time 7: D x Q — [0,00] is called accessible if there exists
a sequence of stopping times (Tp(z))nen such that for each x € D 1,(x) < 7(x) a.s. and
lim 7,,(x) = 7(z) a.s.

n—-oo

In many references, see for example [Prol5, after Proposition 1], this property is called
predictability of a stopping time.

Definition 2.6 A family of random variables Xy, t € [0,7), is called a local process if T
s an accessible stopping time.

As stated in [Cho66, 8.1 Proposition] a lower semicontinuous function can be equivalently
defined by levelsets. Hence we define the property of a lower semicontinuous stopping time
in the following way.

Definition 2.7 A stopping time 7: D x Q — [0, 00] is called lower semicontinuous, if
one of the following three equivalent conditions holds for almost all w:
(i) for all xg € D we have
lizmgignfv'(x,w) > 7(z,w),
—Zo

(it) for all x €D the levelsets

{T(z,w) < B} are closed ¥ 3 >0,
(iii) for all €D the levelsets

{r(x,w) > B} are open ¥ 3> 0.

The above equivalence is formally proved e.g. in [PKY09, Proposition 2.1.3]. Now we
extend Definition w to the case of Révalued index sets D.

Definition 2.8 A family of random variables Xi(x), x € D, t € [0,7(z)) is called a local
random field if T is an accessible and lower semicontinuous stopping time.

Definition 2.9 Let e € N. For given functions f: D — R® and g: D x D - R**® we define

the following seminorms for k € Ng, 0< 6 <1 and Kc D compact:

| fllkssx = SUpM+ S sup D f(z)|+ 3 sup 1Dz f(x) = Dy f ()

zek 1+ |x| 1<|al<k zeK la|=k =V |5U - y|5
Ty

~ ‘g(l',y)‘ v
lglli+s:x = sup sup |Dg Dy g(x,y)|
o x,yeK (1 + |$|)(1 + |y|) 1<|a+a|<k TyeK vy

F Y sw |DeDGg(x,y) - DeDyg(x',y) - DYDY g(x,y") + DYDY g2,y

la+a|=k =o' yu' <K, |:E - xl|5|y - y,|5

z#z',y:ty’

12



2. PRELIMINARIES

where Dy or Dy, respectively, denote derivatives in the ordinary sense. Furthermore, we
set

lesso=sup X 5 supipz o) 5 sup PRI =B

—qlé
1<|a|<k =D laf=k 4P |y

lg(z,y)|
lgl5ssm = sup + sup |Dy DS g(x,y)|
90 0 DO 1ot

|DYDSg(x,y) - DIDIg(a',y) - DIDSg(x,y') + DEDyg(x',y )I
+ Z sup

|a+él= L ! yydD |l‘ xl|6|y Yy |6
zxx! yiy

Based on these seminorms we define the following metrics.

Definition 2.10 Let k € Ng,e € N. Let C*(ID,R®) denote the set of all k-times continuously
differentiable functions mapping the domain D c R into R°. Let (K;)ien be an exhaustion

of D by compact sets. Obviously such an exhaustion of compact sets exists for any open
subset of R? (see e.g. [KS0S, Lemma 1.1]). For all f1, fo € CK(D,R®) define the metric

di+o(-,-) by

1 f1 = felkrox,
T 201+ | f1 = fol ko,

di+o(f1, f2) ==

Furthermore, let C*(D x D, R®®) denote the set of all k-times continuously differentiable
functions mapping the domain D x D ¢ R2? into R*¢. For all g1, g € Ck(]D) x D, R“*¢) we
define the metric d;_, by

1 o1 =920k
dvo(91,92) = ), = .
’ z%;{ 21+ ”91 — 92 ||k‘+6;KZ~

These metrics are known as Fréchet metrics. For the proof that the Fréchet metric satisfies
the conditions for metrics see e.g. [Alt16 2.23 (1) Sequence spaces].

Definition 2.11 Let ke Np,ee N and 0 < < 1. Define

Ch9(D,R®) := {f e C*(D,R®)

DS f is 6-Hélder continuous for|al = k}

Let (K;);en be an exhaustion of D by compact sets, then for all fi, fa € C’“"S(D,Re) define
the metric dgys(-,-) by

dk+6(f1,f2) = 2 l Hfl _f2||k+5;]Ki

2+ fa —f2”k+5;11<i.

Furthermore, we define

C«k,(S(D % D’Rexe) - {g c Ck(]D) < ]D)7Re><6)

Dg‘Dz‘g is 0-Hélder continuous for|a + &| = k}

and for all g1, go € C*9(D x D, R®*€) the metric dy,5(-,-) by

1 o —92lisx
divs(91,02) =) — — .
alne92) = 2 i T e

As proved in [AIt16l 2.12. Proposition| there exist topologies induced by the above metrics.

13



2. PRELIMINARIES

Remark 2.12 Ck"s(ID),]Re) together with the topology induced by the metric dg,s is a
Fréchet space. If § = 0, we write C*(D,R®) instead of C*°(D,R®). Furthermore, if k =0
we write C(D,R®) instead of CO° (D, R).

The result can be found in [AIt16] 3.3 Continuous functions|. Since we have to work with
processes which depend on two parameters, we extend this result to D x ID.

Remark 2.13 CH%(D x D,R®€) together with the topology induced by the metric di.s 15
a Fréchet space. If § = 0, we write C*(D x D, R*€) instead of C*O(D x D, R€). If 6 =0,
we write C*(D x D, R®€) instead of C*O(D x D,R*€). Furthermore, if k = 0 we write
C(D x D, R¥¢) instead of COO(D x D, RE*®).

A continuous (F;);-adapted stochastic process (Xi)seo ] is called a continuous semi-
martingale if it can be written as the sum X; = M; + B; of a continuous process of
bounded variation B; and a continuous local martingale M; (see e.g. [RY05, Chapter IV,
(1.17) Definition|). Next we define a class of specific semimartingales.

Definition 2.14 A family of continuous R°—valued semimartingales F(x,-), x € D, with
decomposition F(xz,t) = M(z,t) + B(z,t) is called a family of continuous C*°(D,R®) -
semimartingales if

e M(x,t) is a continuous C*9 (D, R®) - local martingale

i.e. M(x,t),t € [0,T], is a local martingale for each x € D and M(-,t) is
continuous in t a.s. in the space Ck";(D,Re), hence for all € >0 there exists a
0 >0 such that for all s € [0, T| with |t — s| < we have

di+s(M(-,t), M(-,s)) <€ a.s.
o B(z,t) is a continuous C*°(D,R®) - process
i.e. B(:t) is continuous in t a.s. in the space C*°(D,R®),
e DYB(x,t),te[0,T], are processes of bounded variation for all |a| < k,x € D.

For k €N and 6§ = 0 we obtain the definition of a family of continuous C* - semimartingales.
Furthermore, if k = 0 we write C instead of C°.

Definition 2.15 We define the following spaces of continuous processes:

M= {M = (M) | M is a continuous local martingale, Mo = 0},
M ={M = (M)¢| M is a continuous, square integrable martingale, My = 0}.

Let M, N € M., then the inner product and the corresponding norm are given by

(M,N) , = sup E[M;N;],
© te[0,T]

|M|%, = sup E[|M*].
te[0,T]

As proved e.g. in [Mét82, 16.4 Proposition| the space .#. with the above inner product is
a Hilbert space.

Definition 2.16 Let M, N € .#)°°. The joint quadratic variation or also called co-
variation of M, N associated with the partition A ={0=ty <ty <...<t;= T} of [0, T] is
defined by

-1
(M7N>tA = Z(th:,m - Mt/\tk)(Nt/\tkH - Nt/\tk)-
k=0

14
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The following theorem is a classical result and the proof can be found e.g. in [RY05]
Chapter IV, (1.9) Theorem)].

Theorem 2.17 Let M,N € .#°¢. (M,N)2 converges in probability uniformly in t to a
uniquely determined continuous process of bounded variation (M, N): as |A| -0, i.e.

Plim sup [(M,N){ = (M, N),| =0.
|Al=0 o<t<T
Notation 2.18 If M = N, we shortly write

(M, M) = (M);.
Furthermore, the following result can be found in [Kun97, Theorem 2.3.10].

Theorem 2.19 .Z. has an orthogonal basis consisting of at most countable elements,
provided that (2, F, P) is separable.

The proof follows the ideas of the proof of [Kun97, Theorem 2.3.10] and is written in a
detailed version.

Proof. Consider the following space of square integrable martingales:

M = {M = (M), | M is a square integrable martingale,

but not necessary continuous in ¢, My = 0}.
Define the corresponding norm and inner product by
(X,Y). s =E[XT YT],
| = E[X3]2.

The space (A#,| - |.») is a real Hilbert space (see [Mét82, 17.8 Definition|). Since Q
is separable we conclude that L?(€) is also separable which is proved in [AF09, 2.21
Theorem]. Therefore it exists a countable dense subset {X*}y € L2(92). Now we want
to prove that .# is also separable, i.e. we have to find a countable dense subset in .#. For
all ¢t € [0, T] we define

Y} = B[ X*.%] - B[ X¥|.%0] (2.1)

and show
(1) (Y})key is a martingale,
(ii) Y* e 4 for all k€N,
(iii) (Y)rey € A4 is dense, i.e. for an arbitrary (Y;); € .# there exists a subsequence
(Y™ Y men € A such that Y ZZ2 ¥, in .
ad (i) For fixed k € N the martingale property is obviously satisfied, since we have for
s<t

E[Y/"| 7] = E[E[X*|7] - E[X"| ]| 7]
=E[X"|.7,] - E[X*|F0] = Y7
ad (ii) We have to show that |Y;*| , < oo holds for all k € N. Let k € N be fixed. Then
we get by Jensen’s inequality

E[

E[(E[X*|Fr] - E[X"F0])*]
<E[2E[X"|F1]? + 2E[ X" F]?]

E[2E[(X*)?|F1] + 2E[(X")?|F]]
= 2E[(X*)?] + 2E[(X")?] < oo.

15
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ad (iii) To verify the denseness in .# we have to show that for any (Y;); € # there exists
a subsequence (Y™ ),y such that

: Cvkm 2 _
Jim Y = Y5 [%,

Due to the definition of .# we know that Y; is a martingale and furthermore it is
bounded in L?. Now consider a subsequence (X*m),,.y such that X*m converges
to Y in L? for m — oo. By using that E[Yy|%] = 0 we know that

E[(E[X*" - V| Z0])°]
E[E[(X" - Y1)?[%]]

m—>0oo

=E[(X" - Y7)?] == 0

E[(E[X*"|%])?]

IA

holds. Now we conclude

|Y -Y*"|% =E

(v -v§)’]
(Yt - E[ X" | Zp] + E[ X" ]) ]
E[Y7 - X*n|Z1] + E[ X%, ]) ]
2(E[Yr - X*|Fp])” + 2(E[X*" | 7o)’
< E[2E[(Yr - X*)2|Fr]] + 2E[(E[X*"|.7])"]
< 2E[ (Vi - X*)2] + 2E[(E[X*"|7])*]

m—00
—_—

Hence we have {Y*},y € .# dense. Due to the fact that .#. c .# is closed (cf. [KSI0,
Chapter 1, 5.23 Proposition|), we obtain that .#, is also separable using [AF09, 1.22
Theorem]. Let {M*}ey be a countable dense subset of .#,. By the method of Gram-
Schmidt’s orthogonalization (see in Appendix A) one defines an orthogonal system
{N¥}ren. Therefore it holds that there exists an orthogonal basis of at most countable
elements if the probability space is separable. O

Remark 2.20 The Gram-Schmidt’s orthogonalization may end in finite steps. Hence it
18 possible to obtain an orthogonal basis of finite elements, depending on the dimension of

M.

In Appendix A we take a detailed look on the Kunita-Watanabe decomposition (Theorem
A.4)) which we need for the proof of the following fundamental theorem. Furthermore, the
definition of orthogonality of continuous local martingales is reproduced in Definition [AT]
Under our assumption that the underlying probability space is separable, Theorem [2.19
guarantees the existence of an orthogonal basis of continuous, square integrable martingales
(cf. Definition . The following result is a rigorously reformulated version of [Kun97,
Exercise 3.2.10].

Theorem 2.21 Let {M"},51 be an orthogonal basis of continuous, square integrable mar-
tingales. Then the following holds:
(i) Any continuous C(D,R®) -local martingale M can be represented for all x € D,
tel0,T) by

M(z,t) = / fu(z,s)dMY  as.,

n>1

where fn(x,s) are measurable random fields, predictable in s for each x € D.

16
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(ii) Let A(x,y,t) be defined for all z,y €D by
A(x7y7t)i,j = ((Ml(x7)7Mj(y7 ))t) a.s.

foralli,j=1,....e, where Mi(x, t) denotes the i-th component of the R - valued vector
M(xz,t). Then there exists a continuous increasing process A; such that A(x,y,t) is
absolutely continuous with respect to dA; for all z,y €D a.s.

Proof.
(i) The main tool of this proof is the Kunita-Watanabe decomposition given in Theorem
In our situation we have M € .#!°¢ and M" € .#, for all n € N. Hence M™ e .#°°.
By Lemma there exist unique f,(x) € L2((M)), x € D, n € N satisfying

(M(e,), M) = [ fula.s) A7), (22)
0

for all n € N and hence
t
S (M(x,), M"Y, = 3 f Fulz,s) d(M™),.
nx1 n>1 0

For each x € D we define

M(l)(x,t) = /Otfn($,s) dM;,

n>1
M@ (2, t) := M(z,t) - MDD (z,1).
Then by [Kun97, Theorem 2.3.2|, (2.2)) and by using the orthogonality of the basis
{M"™},51 we have

(MO (.Y, M7, :< 5 /O~fm(x75) dMsm,M">t

m>1

= Z Atfm(xas) d(M™, M"™)s

m>1

- _[Otfn(:n,s) d(M™),
= <M(JZ7 ')7 Mn)t

We conclude that

SUMP (,), M™), = S (M(z,-) - MWD (z,-), M),

n>1 n>1
_ 1<M($, ),Mn>t _ Zl<M(1)(x’)7Mn>t
_ I(M(g;? ), M™),; - ZI(M(:::, ),M"); =0

Due to the fact that {M"},51 is an orthogonal basis, see Definition we obtain
M(z,t) = M) (2,¢) a.s. and this shows the representation

M(z,t) = Y fotfn(x,s) M.

n>1

17
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(ii) By (i) we consider the i-th component of the representation given by

Mi(z,t) = 3 [ Fi(a,s) AM™
n>1
for each i = 1, ...,e. The joint quadratic variation of M and M7, i,j =1, ..., e, is equal

to

(MG, ). MGy, )= ( f Fulw,s) M, 3 / fAy) )

n>1

Fula,s) fa(y,s) A(M", M"),

=2
n>1

Fula, ) fa(y,s) A(M™)s,

o o\w

nx1
where we used [Kun97, Theorem 2.3.2]. Now we consider the measure

v(ds):=> — d(M")

n>1 2n
Consequently there exists also a continuous increasing process A; defined by

Ay = v([0,t]) = fZ—d (M™), Zzn((M”)t—(M”)) (2.3)

n>1 n>1

Obviously, v(ds) is absolutely continuous with respect to d(M™)s. Hence by Radon-
Nikodym theorem (see e.g. [Kleldl Corollary 7.34]) there exists a density p, such
that

d(M™)s = pn(s)r(ds).

By applying this construction we obtain for the joint quadratic variation

(M), M (g, Y= 3 [ 7 ) fa,5) AT,

n>1

= f Fi(,9) Fi(y, $)pn(s) v(ds) (2.4)

n>1
::/a”(a:,y,s) dA; as.
0

Hence A(x,y,t) is absolutely continuous with respect to dA; for all z,y €D a.s.
O

Let F(z,t), x €D, be a family of continuous C(ID, R®) - semimartingales with the represen-
tation

F(z,t,w) =M(z,t,w) + B(z,t,w),

as given in Definition 2.14] The continuous process of bounded variation is absolutely
continuous with respect to a continuous increasing measure denoted by dA;, i.e. it can be
written as

B(a,t) = f b(z,s) dA,
0

18
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for a family of predictable processes b(x,t), x € D. The integral on the right hand side is
a classical Lebesgue-Stieltjes integral. We obviously find a continuous increasing measure
(e.g. dA; +dA,;) to which dA; and d4; are absolutely continuous. Consequently B(z,t) as
well as (M(x,-), M7 (y,-)); can be written as integrals with respect to this measure. For
simplicity let us denote this new measure by dA;. In the case A; =t we obtain the classical
Lebesgue integral.

Definition 2.22 The triple
(a(@,y.1),b(z,1), 41)

giwven by processes a: D xD x [0, T] x Q@ - R, b: Dx [0, T] x Q2 - R® and a continuous
increasing process Ay is called local characteristic if the following conditions are fulfilled:
(i) a(z,y,t) is symmetric, i.e. a¥(x,y,t) = a’*(y,x,t) holds P—a.s. for all z,y €D and
i j=1,..e,
(ii) a(x,y,t) is non-negative definite, i.e.

€

2la(z,y,t)z = Z aij(x,y,t)zﬂj >0
i,7=1

holds P-a.s. for all x,y €D and z € R®.

Notation 2.23 From now on, whenever we speak about a family of continuous semimartin-
gales F(x,t), x € D, with local characteristic (a,b, Ay), we mean that F can be written as

F(z,t) = B(z,t) + M(x,t) and as well as

t
B(a,t) = [ b(z,s) dA,
0
holds.

2.2. Classes of local characteristics

In Chapter 1 we mentioned that H. Kunita considers stochastic partial differential equations
with coefficients given in the form F(z,dt), respectively F(x,u,p,odt), for some contin-
uous C*? -valued semimartingale F. For the main result of Kunita’s approach the local
characteristics have to fulfill some regularity properties. Therefore we introduce the fol-
lowing classes of local characteristics. In this chapter let (a,b, A;) be a local characteristic
in the sense of Definition 2.22

Definition 2.24 We say the pair (a,A;), respectively the process a, belongs to the
class Bﬁf if a(-,-t) is predictable with values in C*°(D x D,R®€) and the seminorm
la(t) risp = lal )5 s uniformly bounded a.s., i.e. there exists C' >0 such that

sup_[a(t)50 < C as.
te[0, T]

We say the pair (b, A;), respectively the process b, belongs to the class Bﬁgs if b(-,t) is
predictable with values in C*°(D,R®) and the seminorm |b(t)|gss:p is uniformly bounded
a.s., i.e. there exists C >0 such that

sup [b(t)|k+s:p < C a.s.
te[0, T
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Definition 2.25 We say the pair (a,A;) [respectively (b, A;)] belongs to the class Blg’(s
if the process a(-,-,t) [respectively b(-,t)] is predictable with values in C*°(D x D, Re*¢)
[respectively C*°(D,R®)] and if for almost all w the seminorm |a(t)|;,sp [respectively

|16(t) | k+5,p/ is integrable with respect to the continuous increasing process Ay, which means
that

T T
f la(®)[zisp dAL < 00 a.s. [respectz’vely / [6() ] k+6:0 dA¢ < 00 a.s. |.
0 0

The next definition is analogously, but here we consider compact subsets of .

Definition 2.26 We say the pair (a,A;) [respectively (b, A;)] belongs to the class B0
if the process a(-,-,t) [respectively b(-,t)] is predictable with values in C™° (D x D, Re*¢)
[respectively C*° (D, R)/ and if for almost all w € Q0 the seminorm la() |5, s.5 [respectively
|16(t) || k+s:x/ is integrable with respect to the continuous increasing process Ay for all compact
sets K c D, which means that

T

T
[ la(t) |5+sx dAt < 0o a.s. [respectively f [6() k+s:x dA; < 00 a.s. |.
0 0

Notation 2.27 If (a, A;) belongs to the class B™ and (b, A;) belongs to the class B¥? for
some k,m eNp, 0<d <1 and 0 <e <1, then we write shortly that the local characteristic
(a,b, A;) belongs to the class (B™*<, B*9).

Lemma 2.28 We have Bl]f]’od c B* e if a pair (a,A;) [respectively (b, A;)] belongs to
the class Bﬁ{j, then in particular it belongs to the class BF°.

Proof. Let (a, A;) belong to Bﬁ{f, ie.

sup [a(t)[3isp < C as.
te[0,T]

By monotonicity of the integral we have

T T
[ 1a(®) sz dAi < [ la@®lisp da;
0 0
T
< / C dA; < oo as. V KcD compact.
0

Consequently (a, A;) belongs to the class B*9. O]

2.3. Construction of stochastic integrals

In the previous subsections we defined a particular kind of local martingales and semi-
martingales taking values in the Fréchet spaces C*° and corresponding local characteris-
tics belonging to some regularity classes. With this knowledge we are now able to give a
stepwise construction of an It6 integral based on local martingales and semimartingales.
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Definition 2.29 Let M(x,t), x €D, be a family of continuous C*(ID,R) - local martingales
with local characteristic (a, Ay) belonging to BR® for k€ Ng and 0 <5 < 1. Let f; be a
predictable process with values in D satisfying

T
]- a(f?"afr,r) dA'r <00 a.s.
0

Then the Itd integral [0 (fs,ds) is stepwise defined in the following way:

@ Let f; be a simple process with wvalues in 1D, i.e. there exists a partition
A={0=tg<ti<..<t;=T} of [0,T] such that f;=fy, for any te [ty tge1),
k=0,..,1-1. Then we define

-1

Mi(f)= [ M(f, ) = 5 MCfintsthes 70) = MFitsth 1)

@ Now let f; be a predictable process with values in a compact subset K c D. Then
there exists a sequence (fi*)nen of simple (Fi)i-adapted processes with values in K
such that

0 a.s.

T
[ alr gy =2a(s7 £ ) + alf £ ) dA, 25
0

n,m—>0oo

Then (Mo(f™) — Mo(f™))r ——— 0 a.s. and we obtain due to [Kun97, Theorem
2.2.15] uniform convergence in probability of { My(f")}nen to My(f), i.e.

Plim sup |Mi(f") ~ My(f)] =0

n=%0 0<t< T

® Let f; be an arbitrary predictable process satisfying

T

f a(fr, fryr) dA, < 00 a.s.

0

Let (K, )new be a sequence of compact subsets of D such that K,, » D. Let ft” be a
truncation of f; associated with Ky, n € N, as reproduced in Definition[A.14 Then
as in @ the sequence (f{*)nen satisfies

n,m—>00

0 a.s.

T
[ ar g =20 ) v alF F ) dA,
0

and therefore we obtain that {Mt(fn)}neN converges uniformly in probability to
fot M(fs,ds), i.e.

Plim sup |f M(f",ds) - f fs,ds)‘

n=00 0<t<T
Example 2.30 Let X; be a continuous one-dimensional local martingale. Consider

M(z,t) == x- Xy, v € D c R, and M(z,0) = 0. Then M(z,t) is continuous in t a.s.
with values in C(D,R), because X is continuous in t. Hence we have that M(-,t) is a
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C(D,R) - local martingale. Let f; be a predictable process with values in D. Then for any
partition {0 =1ty <...<t;= T} of [0, T| we have

Z ( (fernt> thar AT) = M( fr,nt, tr /\t)) = Z (ftk/\t'th,H/\t - ftk/\t'th/\t)

’\I\'W
= o

= ftk/\t : (th+1/\t - th/\t)
k=0

and therefore we obtain

f M(f,.ds) = f fs dX,,
0 0

as one can also find in [Kun97, after Lemma 2.3.1].

Definition 2.31 Let F(z,t), x € D, be a family of continuous C'(D,R) - semimartingales
with local characteristic (a,b, A;) belonging to (B%°, BY) for some 6 > 0 and let f; be a
predictable process with values in D satisfying

T

T
fa(fs,fs,s) dA, < oo and [ 1b(fs, )| dAs < 00 a.s, (2.5)
0

0

Then the Ito integral of f; based on F(-,dt) is defined by

/tF(fs, ds) ::[tb(fs,s) dAs+/tM(fs, ds).
0 0 0

Remark 2.32 We defined continuous semimartingales with values in the space Ck"s(A, ]Rd)
for some A cD, ke Ny and 0 <6 < 1. Furthermore, we introduced the definition of local
characteristics belonging to the class B¥°. These spaces respectively classes include in
particular Hélder continuity. Hence, by applying Kolmogorov’s continuity theorem [Kun97,
Theorem 1.4.1, Theorem 1.4.4] there exists a continuous modification. For example let
M(\,t) be a continuous C*9 _local martingale for some k>1 and 0 <8 <1 and let M()\, t)
be a continuous modification. That means for all X € A there exists Qy such that P(2)) =1
and

M\, w) = M(\, - w) YweQy.

Now we define

Qo= [
Q2N

Then we conclude that P(Qgany) =1 and
M()\,-7(,u) =M(>\,',(,U) VWEQanA’
which is equal to

M\, -, w) = M(X,-,w) = lim M(\,,-,w)

for every sequence (A )nso € QINA with A, 2%, X due to the continuity of A M()\, Lw).
So rigorously, we obtain in the situation of Definition

t t
fMA ds) = lim [ M(),.ds)
0 0
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= lim lim M\, tpe1 At) = M( M\, te A ).
Ai%\&&lo (Anstge1 A L) (An,tp A )

Hence considering M(A) we are working with a double limit procedure. One should note
that a direct construction on the space C’k"s(A) with the help of UMD-spaces is not possible,
since C’k"s(A,Re) is not UMD as shown in a counterexample by M. Yor.

2.4. Representation results for 1t6 integrals

The following statement can be found as an exercise (cf. [Kun97, Exercise 3.2.11]). Now
we state this representation result rigorously and prove it in detail.

Theorem 2.33 Let {M"},51 be an orthogonal basis of continuous, square integrable mar-
tingales. Let M(z,t), z €D, be continuous C(D,R) - local martingales with the represen-
tation

¢

M(z,t) = 3 [ fale,s) dM2, (2.6)
n>1 0

where fn(x,s), n > 1, are measurable random fields, predictable in s for each x € D. Let

(a, At) be the local characteristic belonging to the class B¥° for some ke Ng and 0< 6 < 1.

Then we have

fM(%,ds): szn(%,s) dM” (2.7)
0 0

n>1

for any continuous predictable D-valued process ;.

Proof. Due to Definition we prove by using the stepwise construction of the
stochastic integral:

@ Simple functions @

Let ¢; be a simple process, i.e. there exists a partition A = {0 =ty <t; <..<t, =T}
of [0, T] respectively for a ¢t € [0, T] we consider A = {0 =ty < t; < ... < t; = t} such that
©s =y, for all s € [tg,tr41). By Definition and the representation we obtain

! -1
f M(@Sv dS) = Z M(gptk/\tvtk+1 A t) - M(Sotk/\tytk A t)
0 k=0

-1 tr41 AT tnt
D DI ENACHVDELTES i FACROEITY
k=0 n>1 0 n>1 0

-1 7S TAU tiAt
= ( ( f fn(@tkm,s) dM:—ffn(SOtk/\t;S) de))
k=0 n>1 0 0

-1 trr1At
S (S ([ Ialunss) anty)

k=0 n21 tant

-1 trr1nt

= ( ( f fn(QOtk/\t,S) dMsn)

n2l k=0 4%y

where we used ¢g = @, for all s € [ty tge1).
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@ Predictable processes on compact subsets
Let ¢ be a predictable process with values in K c D compact. By construction there exists
a sequence (¢]);>1 of simple processes with values in K such that

T
. . . . . . i,j—>00
f a(py, ¢ t) = 2a(py, ¢, 1) + alpl, 97, 1) dAy ——— 0 as.
0

We have to show that
(M.(¢") = ML(¢7))r 222 0 as.

holds. For simple processes we know that for all j e N

f M(¢}.ds) = 3 f Fulls) AM]

n>1

is valid. Therefore we have for 7,5 € N
(M.(¢") - ML(¢!))r f M(¢py, ds) f M1, dS)

fon oL, s) dM] - fon(sos,s) dM")

n>1 n>1

(X / Fu(648) = full)) AMY)

n>1

By using [Kun97, Corollary 2.3.3.] and the fact that {M"},>1 is an orthogonal basis we
obtain

T
M) - M1 = 3 [ ((falhss) = fulirhss))” A",
0

n>1

(fn 90375) _2fn(80sv )fn(¢gvs)+fn(‘ﬁga3)2) d(M™)s

—_

>

3

(R

3

>

T
Fulolo o)AM= 5 [ 260l s)nliedso) d4M"),
n=lg

T
+fon(¢g,s)2 A(M™),.
0

nx

—

Now we make use of (2.4) to receive

(M.(¢") - M.(¢!))
T T T
=fa(soi,soi78) dAs—f2a(<pi,s0£78) dAs+fa(sOZ7s0£,S) dA,
0 0 0

T
= [ a6l 0h) - 20(2h i) + a9l ) dA T 0 as,
0
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Due to [Kun97, Theorem 2.2.15] M;(¢}') converges uniformly in probability to My (¢;).
® Arbitrary predictable processes
Now let ¢; be an arbitrary predictable process satisfying the integrability condition

T
f a(pt, pr,t) dAy < oo a.s.
0

Let (K;)jen be a sequence of compact subsets of I such that K; ¢ D and K; ~ D for
j = oo. Define the following truncation of y:

. Pt if o1 € K;
t l’oEKj, lfiptéKj

By construction we have
T
i~ ~i ~j ~j ~j i,j—00
[ o810 - 2088, 6) + algl, &, 6) da, 0.
0
By an application of [Kun97, Corollary 2.3.3.] and (2.4)), we obtain for 4, j € N as in step @
(ML(5) - M.(3)))r [ Mg}, ds) - [ M(l,ds))

fon(cps,S) dMg - fon(%,s) dM")

= n>1
= nzlf fn((ps,s) fn((pms)) dMn)

n>1

T
= 5 [ (Fa(@he ) =200 ) Ja(Blos) + Sl 9)?) (M),
0

T
Ful@o s Ao = 5 [ 260(BL5)fn(hos) AlM"),
nzl7g

3

Il
v
—
O\H

T
W (71, 8)2 d(M™)g
+n§10ff<w s)2 d(M")

o—

T
a(%,%,s) dAs - f2a(<ps,s0878) dAs +fa(90s,s0578) dAg
0

T

7] o
fa(cps,sosvs) 2a(@L, 3L, 8) +a(@l,¢l,s) dAy, —— 0 aus.
0

Then by [Kun97, Theorem 2.2.15] M;(p;) converges uniformly in probability to
t
[ M(ps,ds). O
0

As a conclusion we obtain the following representation result for stochastic It6 integrals
based on semimartingales.
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Theorem 2.34 Let {M"},51 be an orthogonal basis of continuous, square integrable mar-
tingales. Let F(x,t), x €D, be a family of continuous C (D, R) - semimartingales with local
characteristic

(a(x, y,t),b(z,t), At)

belonging to the class (BO";,BO"s) for some 0 < <1. Let ¢ be a predictable process with
values in D and let condition be fulfilled i.e.

T T
f a(ps,ps,s) dAg <oo and f |b(ps,8)| dAs < o0 a.s.
0 0

Then the Ito integral based on F(-,dt) can be represented as

n>1

[ Foaas) = [ folews) ade+ ¥ [ falpas) A, (28)
0 0 0

where fn(x,s), n>1, are measurable random fields, predictable in s for each x € D.

Proof. Due to Definition and Theorem the representation formula ({2.8)) is valid

in the following sense:

ftF(sos,dS)=ftB(<ps,d8)+ftM(sos,d8)
0 0 0

t

t
:/b(cps,s) dA5+fM(cps,ds)
0 0

n>1

t t
~ [ folpss) dds+ 3 [ fulonrs) AME,
0 0
where b(x,t) = fo(z,1). O

2.5. 1to-Stratonovich formula

The main advantage of working with Stratonovich integrals is the applicability of the chain
rule. Similarly to the classical chain rule one obtains the fundamental theorem of calculus.
Let W, be a standard one-dimensional Brownian motion, then

¢
[ Woedw, - %(Wt)Q - %(WO)Q
0
holds and for any smooth function f: R — R with first derivative f’ we have
¢
[ 7wy e dw, = (W) - £(Wy)
0

(see |[KS10L 2.29]). We use these tools of the Stratonovich integral in applications (e.g.
Chapter 5 below). Of course if we want to calculate and solve systems of stochastic dif-
ferential equations, the application of the chain rule also for stochastic integrals is very
helpful. Additionally, it is a well-known result that if we want to rewrite an Itd integral
into a Stratonovich integral we have to add a correction term, the so-called It6 correc-
tion term. Omne can find this It6-Stratonovich formula for example in [KP91, p. 316].
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Let (Xt)te[o,T] be a d-dimensional Itd process which, under appropriate assumptions on
b: R x [0, T] - R? and o: R? x [0, T] - R>™, satisfies for an m-dimensional Brownian
motion W; = (W}, ..., W/™) the following equation

¢ ¢
XtZXo-‘r[b(XS,S) ds+[a(X5,s) dW
0 0
. (2.9)

t
=X0+fb(Xs,s) ds+zfa.n(Xs,s) awr
n:IO

0

for all ¢ € [0, T]. Equation (2.9) can be written equivalently as a Stratonovich stochastic
differential equation:

t m t
Xt:X0+fb(Xs,s) ds+zfa.n(Xs,s)odW5
0 n=1

¢
Of
The following theorem gives us this relation in our setting and can be found including the
proof in [Kun97, Theorem 3.2.5].

(2.10)
(9on

m d
Z_: Z (XS,S)

(Xs,s) ds.

l\')lv—\

Theorem 2.35 Assume that F(xz,t), z € D, is a family of continuous C*(D,R?) -
semimartingales with local characteristic (a,b, A;) belonging to (B%*°,BY0) for some
0< 9 <1. Furthermore, let pr be a continuous semimartingale. Then the Stratonovich
integral is well-defined and related to the Ité integral by

[ Flonods) = [ Flpnds)+ %i( u (Pmnds) )
0 0 =1

Lemma 2.36 By applying the representation result Theorem componentwise, the
above results and Theorem are equivalent for an m-dimensional Brownian mo-
tion.

Proof. Let Wy = (W}, ...,W/™) be an m-dimensional Brownian motion. We rewrite the

stochastic differential equations into the same notation for drift and diffusion terms. We

consider the cases b(z, s) = fo(z,s) and o(x,s) = (fij(x,s)) i=1,...a . The d-dimensional It6
Jj=1 m

,,,,,,

process ¢; which solves
t
[F(stds) =Pt
0
is given in the j-th component due to the representation result Theorem by

t t m
- [ Rpes)ds+ [ X finlons) aw?, (2.11)
0 o nt

provided cp% = 0 for simplicity.
Now we prove the equivalence using Theorem and Theorem [2.33 i.e. we get

t 14 14
O[F(cps,OdS)=0fF(st,d3)+§jZ_:1( o (sos,dS),cp.)
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t t

- [ Bpsds)+ [ M(pyds)
EDUES O

:fB(goS,ds)+fM(g05,ds)+§Z< oz (cps,ds) 80.)7

0 0 g=1

where we use that DS B(x,t), v € D, t € [0,T], are processes of bounded variation (see
Definition [2.14)). By the representation of F' and (2.11]) we conclude

t t t
[ Flpuos) = [ folgs ) ds+ [ 3 Fulpn,s) awy
0 0 n=1

S e,

7=1
t t m
=_[f0(<Ps,8) d8+f fn(ps,s) AW
0 0 n=1
1 & [ O[Zm) fal . fo )
+§jz_:1<0fa—m](<ﬂs,8)d ,Offé(sos,S) d8+0f;fjn(cps,s) AW )t

t m
:ffo(gps,s) dS+fo~n((psas) dWsn

%i [z f”( psr5) AWV ,ffg(%,é’)dé’)
=1 0

19 afn d n
SB[ B e [ Sno)

0

ffo(%,S) d8+f2fn (ps,s) AW

0

[\DlH

Lm d
o5 | &2 G o awz aw),
0

n=1j=1
t

:Offo(cps,s) ds+/§:f.n(tps,8) dWanréoftizd:

0 n=1 7=1

S)fjn(SDSa s) ds

3
—_

Hence we obtain

ftF(%,dS):ftF(%,odS)—%ftTzn:i
0 0 0 -

S)fjn(SOSvS)dS

n=1j

‘ - (2.12)
:[f()(@s,S) dS+/Z SOS?S) de
0 o n=l
=Yt — Yo-
O
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Remark 2.37 If we consider ¢ = x € D in the situation of Theorem[2.35, the Ité correction
term vanishes and we obtain

ftF(x,Ods):ftF(x,ds)
0 0

which is due to the decomposition

ftF(x,ds)=ftM(a:,ds)+/tB(x,ds).
0 0 0

By using the construction of the Ité integral (see Deﬁmtion we get for every partition
{0 =tp<..<t = t} Of [O,t]

-1 -1

D (M(z,tger At) = M(z,t At)) + > (B, ther At) — B(x, t At))
k=0 k=0

=M(x,t) - M(x,0) + B(x,t) - B(x,0)
= (M(z,t) + B(x,t)) - (M(z,0) + B(z,0))
= F(z,t) - F(x,0).

Hence we conclude

/F(x,ods):/F(z,ds):F(x,t)—F(x,O).
0 0

2.6. Representation results for Stratonovich integrals

To formulate a representation result for Stratonovich integrals based on semimartingales
we start with the formal definition of a Stratonovich integral as in [Kun97, before Theorem
3.2.5].

Definition 2.38 Let F(x,t), x € D, be a family of continuous C'(D,R) - semimartingales
and let ¢y be a continuous process with values inD. For a partition A = {0 =ty < ...<t; = T}
we define

-1

1
FtA(SD) = Z §(F(%0tk+mt,tk+1 At)+ F(SDtkmntkﬂ At)
k=0

= F(@uantstie ) = F(@untsti A1)

If the sequence (FtAm(go))meN converges in probability uniformly in t for any sequence
of partitions Ay, such that |Ayp,| — 0, then the limit fOtF(cps,Ods) is called Stratonovich
integral of p; based on F(x,t), i.e.

¢
Plim sup |FA™ —/ F(ps,ods)| =0.
Pliny sup [ (i) = [ F(s,005)

We follow the idea of [Kun97, Exercise 3.3.5] to formulate the representation result in the
case of Stratonovich integrals rigorously.
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Theorem 2.39 Let {M] },>1 be an orthogonal basis of continuous, square integrable mar-
tingales. Let F(z,t), x € D, be a family of continuous C1(D,R) - semimartingales with
local characteristic (a,b, A;) belonging to (B>, B10) for some 0 < § < 1. Assume that
F(x,t) can be represented by continuous C? - processes and C' - semimartingales (fn)nzo
with local characteristics belonging to the class (BY°, B1Y) as in Theorem m Then we
find (fn(x,t))nso continuous C? - processes and C' - semimartingales such that for every
continuous semimartingale p; with values in D we have

[ F(ps,ods) - [ folgers) A+ 3 [ Fulpuss) 0 dMY. (213)

n>1

Proof. Due to the assumption on F(x,t) we are able to apply Theorem By Definition
we have for any continuous semimartingale ¢y

/F(9057d3) ffn(%,s) dA, +nz>:1/ (s, 8) dM?.

The integrability condition (2.5)) of the definition is fulfilled for the continuous semimartin-
gale, since B1Y ¢ B% as shown in Corollary First we prove

s)dM ¢l
(2.14)

22: f (ps,ds), M”)

l\.')l}—t

= % Z: (fn(‘ﬁu’) Mn

By using [Kun97, Theorem 2.3.2] we have

.
31 [ Bonteaaa)

71>1 n>114

Jfn

Xg

fn

Zi

o)

(s, 8) d{pt, MY

Q)

.
I

t\:alr—'
M=~

t
19

(s

=1 0

Q.D

(s s) dl, M),

l\3|H
v

o

Q

n

Now we add some proper terms, which are in particular of bounded variation, and hence
their joint quadratic variations with the orthogonal basis {M"},>1 are zero. We conclude
by the generalized d-dimensional It6 formula in Theorem

%i /Zaf"(sos,S)d ML),

i=1 n>1
1 d rof, NS
=5 Z (Zf f (@875) d@s’M ) Z (fn(SOO,O) M >
255 V4 25
2 1= 0 n
Ll & [ e .
+§¢;<§z;1 Ox;0x; (s 8) dlel, 2)e, M >

d .
+%n21<;( g.ij(SOS?ds)’SOZ).’M?)t
1 - n n
SR el LB [ i)
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. o d raf, .
n 70 n sad Sy dé
3 S (R0 [ S [ TR

l\')lv—l

0 fr [ Ofn .
3 ’]Z:l‘/ 8.’171 (QDS,S)CK@.,QO. S+Z< 8 ((PS,S)dQOS,gO.>.7M. )t

) [fn«os,ds) M)

n>1

ZZ: f gos,ds),M?>t.

l\DIH

Z: <fn(90-7 °), Mn

l\DIH

We know that ( fn)nzo are semimartingales so hence they also can be represented due to
Theorem by

t

JRACEDE ffno(sos,s)dA - f (9, 8) AM™.

0 m>1

By applying as before [Kun97, Theorem 2.3.2] and using that {M;},>1 is an orthogonal
basis (see Notation above) we obtain for the second term on the right hand side of
.14)

N | —

n>1

<ffn(9057d3)7M11)t
0

l\’)l»—t
l\’)l»—t

t
Z [an(SOSaS)dASaMn Z Z f nm (s, 8) M, M)
n>1 nzlmz1y

t

o (s, 8) dAg
ngloff,(w s)

N | =

Finally we achieve for (2.14)) equivalently

s)dM?',¢,).
(2.15)

t
1 g 1
:§g<fn (Po;.)M t_ig‘o/‘ (pS,S)dA

Now we are able to prove the claimed representation result. We apply Theorem and
equation (2.15) to get

fF(%,odS) fF(ws,d5)+ Z( SF(sﬁs,dS),sO.)

=1

n>1

[ e a8 [ ot
0

%Zd: fZaf” s) dM, wi)t

i= n>1
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t t
:[ (s, 8) dAs+Zf (ps,8) AM™
0 nzlyp

l\.')lr—l

> FACNONIH

l\.')lr—l

t
3 2 [ Fanlons) A,
n=1y

=O/t(f0(ﬁﬁs,3) n;[fnn gos,s))

5 ( [ Fuws) anz + <fn<so.,->,M:L>t)

n>1

By using [Kun97, Theorem 2.3.5] we conclude with a suitable definition of (fy,)ns0

f F(py,ods) = / folgsrs) dAs+ 3 [ Fulps) o dM]

n>1

2.7. Results in the case of Brownian motion

The representation results of stochastic integrals as in the previous subsections are based
on the orthogonal basis of continuous, square integrable martingales and the corresponding
local characteristics. In this subsection we choose finite or infinite independent copies of
a standard Brownian motion (W;*),»1 as the orthogonal basis and use that the quadratic
variation of the Brownian motion is given by (W, W,); = t respectively (W, WJ); = §;;t.

Notation 2.40 If we consider infinite independent copies of a standard Brownian motion
(W) ps1, the local characteristic of a family of continuous C*9(D,R) - semimartingales
F(z,t), z €D, are given in an explicit form. Remembering Theorem we obtain for
by the geometric series

Ao= 3 o ({0 - (7))

n>1

1
- 5 5 (0-0)
= 1 t=t
_n202n+1 -

Consequently we have equivalently to

a(x,y,t) = Z fu(z,t) fr(y,t)

n>1

and so the local characteristic is given by

(X Fal@ )y, 1), folw,t),t)

n>1

as mentioned in [Kun97, Example after Lemma 3.4.4, p.106].

By applying Theorem in the case of Brownian motion we obtain the following result:
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Corollary 2.41 Let (W]*)ns1 be infinite independent copies of a one-dimensional standard
Brownian motion. Let F(x,t), x €D, be a family of continuous C(D,R) - semimartingales
with local characteristic

(a(x7y7t)7b(xvt)vAt) = ( Z fn(x7t)fn(y7t)7fO(wat)at)

n>1

belonging to the class (BO"S, BO"S) for some 6 > 0. Let @, be a predictable process with values
i D and satisfying condition with

n>1

T T
[ > A (ps,s)ds < oo and f |fo(ps, s)|ds < oo a.s.
0 0

Then the Ito stochastic integral is represented by

t t t
[ Fleads) = [ folps)as+ ¥ [ fulons)dmy
0 0 0

n>1

t (2.16)
- (05, 8) AW
nZ;OOff (¢s,5)

provided that W :=t.
In the case of Stratonovich integrals we obtain the following application of Theorem [2.39

Corollary 2.42 Let (W] )ps1 be infinite independent copies of a standard Brownian mo-
tion. Let F(x,t), x € D, be a family of continuous C*(D,R) - semimartingales with local
characteristic (a,b, A;) belonging to (B*°, B0) for some 0 < § < 1. Assume that F(x,t)
can be represented by continuous C? - processes and C* - semimartingales ( fn)nzo with local
characteristics belonging to the class (BY°, BY0). Then we find (fn(x,t))ns0 continuous

C? - processes and C' - semimartingales such that for every continuous semimartingale oy
with values in D we have

n>0

t t

f F(ps,ods) = Z [ fn(ps,s) o dW

0 t 0 . (2.17)

= f folps,s)ds+ > f fn(ps,s) o dW
0 0

n>1

provided W :=t.
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3. THE METHOD OF STOCHASTIC CHARACTERISTICS

3. The method of stochastic characteristics

In this chapter we derive the method of stochastic characteristics in a nutshell, that means
we summarize the whole method. Compared to the classical method of characteristics as
remembered in Subsection 1.5., we obtain for almost all w and all space and time variables
up to a certain stopping time similar definitions of stochastic characteristic curves, the
associated stochastic characteristic equations and finally a solution to a stochastic partial
differential equation. This abstract of the method can be used to apply it as a heuristic
approach. Under the assumption that the characteristic curves exist, one determines a
candidate for the solution, provided that an explicit problem is given. At the end obviously,
one has to verify that the candidate of the solution really solves the problem. Furthermore,
the author of this thesis discusses two questions in Subsection 3.2. below:

e Why do solutions to the stochastic characteristic equations exist?

e What are the corresponding assumptions to Assumption and of noncharacteristic
initial data (see Remark [1.2))?

Concerning the first question some results of [Kun97, Chapter 4| has to be recalled, in
particular the framework of stochastic flows and the concept of local processes. As written
in Remark below we clarify that the results are given for almost all w and all space
and time pairs (x,t) with ¢ up to a certain stopping time depending on = and w. These
stopping times play an important role in finding the inverse process and finally obtain the
solution to the stochastic partial differential equation. This concept is sketched in this
chapter.

3.1. Derivation of the method in a nutshell

In the previous chapter all definitions and results were given and proved on a domain D c
R?, respectively for space variables in R%. For working with stochastic partial differential
equations of the form

du = F(z,u, Vu,odt)

we have to consider the multivariable case for (z,u, Vu) € R24+1 Instead of RY respectively
D c R? all results can be extended easily to the space R24*!. Hence in this chapter
we consider families of continuous semimartingales F(z,u,p,t), (z,u,p) € R*"*!  as
in Definition Obviously, the Fréchet spaces (cf. Definition and classes of
local characteristics (cf. Definition - Definition are also defined for indices
(z,u,p) e R¥+L,

Let T > 0 and consider the time interval [0,T]. Let F(z,u,p,t) be a continuous
C*9 (R R) - semimartingale in the sense of Corollary with local characteristic be-
longing to the class (B¥*19 B¥®) for some k > 5 and 0 < § < 1. Hence we can find
(fn(,1))ns0 continuous C? - processes and C - semimartinagales with local characteristics
belonging to (B%, B%0) as shown in Theorem Furthermore, let g € C¥9(R% R). We
consider the nonlinear stochastic partial differential equation of first order given by

du = fo(z,u, Vu,t) dt + 3 fo(z,u, Vu,t) o AW}

n>1 (31)
u|t:0 =9,
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and perturbed by infinite independent copies of the one-dimensional Brownian motion
(W{")n>1. Obviously, one can also consider the finite-dimensional case of the form

dU:fo(LE,’U,, Vu,t) dt + an(x,u, Vu,t)othn’ (3 2)
n=1 .

u|t=0 =9,

where W; = (W},...,W/™) is an m-dimensional standard Brownian motion as studied in
[Kun84a]. As proved in Theorem the above equations are equivalent to the following
expression of the Cauchy problem

{du = F(z,u, Vu,odt), (3:3)

w=g on I:={zeR*x[0,T]|z= (21, ..., xq,t),t = 0}.
Since we consider partial differential equations with perturbations by Brownian motion we
get an w-dependence in the solution. Therefore the solution to equation is denoted
by u(z,t,w), but for short notation we only write u(z,t). Suppose u is a solution to (3.3))
and at least one-times continuously differentiable with respect to space and time for fixed
w € Q). Furthermore, we assume that there exists a curve £s(r) which maps the point r € T’
to a point of a neighborhood in I' at time s. Additionally, we assume &y(z) = x for all

x € R? as the initial condition. Due to these assumptions we define the following functions,
now for fixed w, 7 ¢ R? and s € [0, T]:

(&(rw),s) = (& (rw), .. (rw),s),
ns(r,w) = u(&s(r,w), s),
Xa(r,w) = ug (&(r,w), 5),
Xs(r,w) = (x4 (r,w), ..o X2 (r,w)),

(3.4)

where €/(r) denotes the i-th component of &(r). In the next step we combine (3.3 with
equations (3.4) and obtain

t
d
@0 - u(€o(),0) = [ FE), ) n (1) W), X1 ods) | =0
0
By similar calculations as in Chapter 1 (cf. (1.15])) we receive a system of (2d+1) stochastic

differential equations (cf. (CE))), but now in the sense of Stratonovich:

dgt = _Fxt(gtla -"7521777257)(23 "'aXtda Odt),
d77t = F(étlv "'aggynhxgv "'7X§la Odt) - Xt FXt(£1517 “'7{?77715’)(%7 '--7X§lv Odt) (SCE)
dXt = Fﬁt (gtla ”-767?!777157)(7}7 "'7Xz(‘/i7odt) + Fnt(ft17 "'76?7”257)(%7 "'7X§l? odt)Xt'

Equivalently we can write (SCE)) componentwise for all i = 1,...,d, as
dfz = _in (é-tla °")£gu Mt X%a "')X;i) Odt))
d .
dnt = F(gtla "'751?17 Nt Xt17 "'7X1E,l7 Odt) - ZX%FX;(Stla "'7{?7”%)@17 ceey X?? Odt) (35)
i=1

dXi = ng(gtla "'agfant,X%a --.aX?»Odt) + Fnt(§t17 "'75;,1’771‘/3)(%7 "'7X1Ctlv Odt)Xi.

The above stochastic differential equations (SCE]) are called stochastic characteristic
equations. Given a point = € R and assuming that there exist unique solutions to 1)
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3. THE METHOD OF STOCHASTIC CHARACTERISTICS

starting from z at time ¢ = 0, these solutions solve the corresponding integral equation with
initial function g:

t
G(0) =2~ [ Fu(&@)n(@),xs(), 0ds)
0
() = 9(0) = [ o+ P (€(0),mo(), s (), 08) + [ F(6(),m5(0), xo(2), 0d)
0 0

(@) = Vg(a) + [ Fe (€@ @) xo@)ods) + [ B (6@ m(@)x (@) 0ds)xe.
0 0

Let us assume that the solutions (&(z),n:(x), x:(z)) exist up to a stopping time T'(x).
Furthermore, let the inverse process & ! of & exist up to some stopping time o(z). Then
we define for almost all w and for all (z,t) with t < o(z,w)

u(z,t) = m(& ' (@) (3.6)

In Chapter 4 we show (cf. Theorem below) that (3.6]) is indeed the solution of the
stochastic partial differential equation (3.1)) respectively (3.3]).

3.2. Existence of solutions to stochastic characteristic
equations

If we compare the stochastic method with the classical one, two questions arise. First, why
should such solutions to (SCEJ) exist and second, what are the corresponding assumptions
to Assumption and of noncharacteristic initial data (see Remark [.2). To answer
these questions we use the 1-to-1-correspondence between stochastic flows and solutions
of stochastic differential equations. In [Kun97, Chapter 4| we find results considering the
following two cases:

e Given a stochastic flow p; (of special type), there exists a unique continuous semi-
martingale F' such that ¢, =z + fot F(ps,ds) (see e.g. [Kun97, Theorem 4.4.1]).

e Given a semimartingale F'(x,t) with corresponding local characteristic belonging to
a certain class, there exists a stochastic flow ¢; (see e.g. [Kun97, Theorem 4.6.5,
Theorem 4.7.3]).

The stochastic characteristic equations (SCE|) are stochastic differential equations in the
sense of Stratonovich with the following type of solutions:

Definition 3.1 Let F(z,t), z € RY, be a family of continuous C(R? RY) - semimartingales
with local characteristic (a,b, A;) belonging to (B%*°, B0) for some 0 <8< 1. Let 0o be a
stopping time and zo € RE. A continuous local semimartingale @y, t € [0,000), with values
in R% is called a local solution of the Stratonovich stochastic differential equation

¢
pr=a0+ [ Flpsods) (37)
0
if
tAON
Pitrnoy =To + f F(psaoy,0ds) a.s.
0
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3. THE METHOD OF STOCHASTIC CHARACTERISTICS

is satisfied for any N € N, where (on)nen 48 a localizing sequence, i.e. on < 0o for any
NeN and oy 7 0o for N = co. That means oo 1s accessible.
If

lim ¢ = 00 holds on {0s < T},

t /000

where oo denotes the Alezandrov point in R%, then ¢ 15 called mazximal solution and oo
1s called the explosion time.

Hence a maximal solution is defined up to a stopping time, the so-called explosion time,
which we formally define next.

Definition 3.2 Let X, t € [0,7), be a local process. The stopping time T is called terminal
time of the local process X;. If

hlet| = 00,
t/T

then T is called explosion time.

Now we present results which ensure the existence and uniqueness of solutions to (SCE)
under the condition that F(x,u, p,t) is a continuous C*°(R?**! R)- semimartingale with
local characteristic belonging to (B**19, B*9) for some k> 5 and 0 <4 < 1.

We start with an existence and uniqueness result of maximal solutions (see [Kun97, Theo-
rem 3.4.5]) in the sense of It6. In line with Definition we define a maximal solution to
an [td6 SDE in the following way.

Definition 3.3 Let F(x,t), x € R, be a family of continuous C(RY,R?) - semimartingales
with local characteristic (a,b, A;) belonging to (B%?, B%) for some § > 0. Let 0o be a
stopping time and xo € RY. A continuous local process py, t € [0,000), with values in RY
and adapted to (F); is called a local solution of the Ito stochastic differential equation

t
o1 =0 + f F(ps,ds) (3.8)
0
if
tAON
Ptroy =T+ [ F(pspoy,ds) a.s.
0

is satisfied for any N € N, where (on)nen 48 a localizing sequence, i.e. on < 0o for any
NeNand oy / 0o for N — oco. If

lim ¢; = 0o holds on {0 < T},

t /000

where oo denotes the Alexzandrov point in R, then oy is called maximal solution and
again o s called the explosion time.

Theorem 3.4 Let F(z,t), v € R, be a family of continuous semimartingales with values
in C(RY,R?) and local characteristic belonging to (B, B%'). Then for each tq € [0, T]
and xo € R? the Ito stochastic differential equation given by

t
op =0 + f F(ps,ds)
to

has a unique maximal solution @y, t € [ty,000), where 0o is the explosion time of py.
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For the proof see [Kun97, Theorem 3.4.5]. Based on the representation result Corollary
we apply the above theorem to the case of infinite independent copies of a one-dimensional
Brownian motion.

Corollary 3.5 Let (W]*)ns1 be infinite independent copies of a one-dimensional standard
Brownian motion. Let f,, n >0, be measurable and predictable random fields. Let F(x,t),
z € RY, be a family of continuous semimartingales with values in C(R* R?) and local
characteristic

((Z fz(:c,t)ffxy,t)) , fo(x,t),t)
nzl iji=1,....d

belonging to (B®', BOY). Then for any ty € [0, T] and ¢ € R? the Ito stochastic differential
equation given by

t t
er=a0+ [ folpss)ds+ ¥ [ fulions) WY
to 0

nzlt

has a unique maximal solution @y, t € [tg, 000 ), with explosion time oo of @¢.

Remark 3.6 The finite-dimensional version of Corollary[3.5is a consequence of the clas-
sical existence and uniqueness result for SDEs as presented for ezample in [Oks07, Theorem
5.2.1] or [Kun97, Theorem 3.4.1]. The class Bgl’ol implies that the drift term fo and the
diffusion terms f1, fa,... are uniformly Lipschitz continuous and of uniformly linear growth.
We use [Kun97, Remark after Theorem 3.2.4] to extend the result to Bg’l. By truncation
as formulated in the proof of Theorem 3.4.5 in [Kun97[ the result is also valid for the class
BOL.

Since the equations (SCE) are given in the sense of Stratonovich, we have to make use of
the Ito-Stratonovich formula as stated in Theorem [2.35 Then we extend the above result
to the setting of Stratonovich as proved in [Kun97, Theorem 3.4.7].

Theorem 3.7 Let F(x,t), x € RY, be a family of continuous C1 (R, R?) - semimartingales
with local characteristic (a,b, A;) belonging to (B%°, B0) for some 0 < 6 < 1. Then for
each tg € [0, T] and ¢ € R? the Stratonovich equation given by

t
or =T+ f F(ps,ods) (3.9)
to

has a unique maximal solution @y, t € [tg,000), in the sense of Definition .

Due to [Kun97, Theorem 4.7.3] such maximal solutions can be characterized as stochastic
flows which are defined in the following sense. Let here o denote the composition of two
functions.

Definition 3.8 Let p,¢(z), s,t € [0, T, x € R?, be a continuous random field on (,.F, P).
Then for almost all w, psi(-,w) = @s1(w): R? - R? defines a family of continuous maps
for all s,t € [0, T]. (¢s,t(w))sef0,17 is called a stochastic flow of homeomorphisms if
there exists a null set N c Q such that for all w e NC the family (0s,6(w)) s,te[0,7] defines a
flow of homeomorphisms, i.e. it satisfies:

(i) (Ps,u(w) = (Pt,u(w) © Sps,t(w) fO?“ all 0 <s<t<u< T;

(11) pss(-,w) =1d(-) for all s € [0, T, where 1d is the identity map,
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(i1i) @si(w): RT —R? is a homeomorphism for all s,t € [0, T).
Consider the set of all homeomorphisms on R? defined by
G:={f: RY - R?| f is bijective, continuous and f~ is continuous}

and let the product of W1, ¥y € G be the composite function ¥j o ¥y. Then (G, o) becomes
obviously a group as stated e.g. in [Fisl0, 2.1.4, Satz|. By defining a metric dg on G with

sup [Uy () - Wa ()| sup |07 () - U3 ()]

|z|<i x|<i
dG L ,\Ij = - + s
(21, %2) ;21 (1+sup|\1’1(x)—\112(x)| 1+Sup|\1111($)—\1151(x)|)

|z|<i |z|<i

we obtain that G is a complete topological group (cf. [Kun97, Chapter 4, 4.1 Preliminar-
ies]). In other words, a stochastic flow of homeomorphisms is a continuous random field
with values in G satisfying properties (i) and (ii) of Definition Now we consider the
subgroup Gy, of G which consists of all C'* - diffeomorphisms. Define

GF:={f: R > R? | f, £ ! are k -times continuously differentiable}

and let
sup [Dg ¥y (z) - DyWa(x)|

<1 ||<i
(U1, W) = =
k( 1, 2) Z 221(1+Sup|Dg\Ifl(l‘)—D%\p2(x)|)

laJ<k i=1

|z|<i

sup [Dg 07 (x) - DY 03" ()|

N =1 |z|<i
ki1 20\ 1+ sup [DgUy ! (2) - DYy (2))]

|z|<i
be the corresponding metric. Then (Gk ,dy) is a complete separable metric space.

Definition 3.9 A continuous random field ps¢(z), s,t € [0, T], x € R?, is called a stochas-
tic flow with values in G* if ¢, takes values in G* and if properties (i) and (ii) of
Definition [5.8 are fulfilled.

Definition 3.10 Let g, s,t € [0, T], be a stochastic flow with values in Gk If we define
N:={AeZ|P(A)=0} and

Far =) 0(Qun | s—e<u,v<t—e),
e>0

the filtration F; = O'(jsyt UN) is a filtration depending on two parameters and is called
filtration generated by the flow o ;.

Definition 3.11 Let @5, s,t € [0, T], be a stochastic flow with values in G* for some
keNg. Let (Fst)ocs<t<T be the filtration generated by psi. The forward part gy,
0<s<t< T, is called forward C*° - semimartingale flow, if for every s € [0, T] the
stochastic flow sy, t € [s, T|, is a continuous C’k’(s(Rd,Rd) - semimartingale adapted to

(Fst)tels, T)-

It follows by Definition that semimartingale flows are in particular semimartingales
and can be characterized by local characteristics (e.g. [Kun97, Theorem 4.4.1]).
Furthermore, we have the following important embeddings of the classes of local char-
acteristics. Due to C**' ¢ C* for k > 2 one can prove for k > 2 and some 0 < § < 1
that
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° (Bk+1,6 Bk,é) c (B2,6 Bl,())
° (Bk,(s’Bk—l,J) c (B2’6,B1’0)
holds. For the reader’s convenience the proofs are given in Appendix A, see Lemma

Definition 3.12 Let F(xz,t), t € [0,7(z)), = € RY, be a local random field. If for the
domain

Dy(w) = {z e R | 7(z,w) >t}

and for almost all w the map F(-,t,w): Dy(w) - R is a C* - function for any t, then
F(z,t) is called a local C*? - process.

By Definition [2.8] we know that 7(z) is lower semicontinuous. Hence D;(w) is open in R

Definition 3.13 Let F(xz,t), = € RY, t € [0,7(z)), be a continuous local C*? - process
and (7,(x))n>1 be an associated sequence of stopping times increasing to 7(x). Then
F(z,t) is called a continuous local Ck? - semimartingale if the stopped processes
DOF(z,t ATy(x)), € RY, |a| <k, neN, are all continuous semimartingales.

Remark 3.14 In the previous definitions we change the domain of the corresponding pro-
cesses and name them local. For almost all w we consider pairs (x,t) such that x € Dy(w).
For continuous local processes we obtain results and equations which hold pathwise, i.e. for
almost all w and all

(z,t) € {(2,%) eR*x [0, T] | 7(&,w) > £}

the results and equations are satisfied. One should note that we get statements almost
surely, but T(x,w) could be very small and hence Di(w) could be a very small set.

The next result ([Kun97, Theorem 4.7.3]) shows that maximal solutions of Stratonovich
equation (3.9) are in particular stochastic flows. It is one of the basic results concerning
the 1-to-1- correspondence between stochastic flows and solutions to SDEs.

Theorem 3.15 Let F(x,t), x € RY, be a family of continuous C(R? R?) - semimartingales
with local characteristic belonging to (B*19 B*9) for some k > 1, 0 < § < 1. Then the
system of mazximal solutions (which exists due to Theorem of Stratonovich equation
defines a forward stochastic flow of local C* - diffeomorphisms. Furthermore, it is a
continuous local C** - semimartingale flow for any e < §.

The proof is a consequence of [Kun97, Theorem 4.7.2]. Now we return to our system (SCE)
given by

d&s = —Fy, (& s X, 0dt),

dne = F (&5 xe, 0dt) = xe - Fy, (&7t Xe, 0dt)

dxt = Fe, (&, me, Xe, 0dt) + Fyy, (& e, Xe, 0dt) X

In the underlying situation F(z,u,p,t), (x,u,p) € R?¥*! is a family of continuous
CF9(R?¥*1 R) - semimartingales for some k > 5, 0 < § < 1 with local characteristic (a, b, A;)
belonging to (B**!° B¥%). Theorem ensures that the Stratonovich integral can be
differentiate with respect to the parameters (x,u,p) € R**!'. By Definition of the
Fréchet space C*9 we know that the k-th derivative of F is in particular -Holder con-
tinuous, hence the partial derivatives F, Fy,, F}, of F(z,u,p,t) considered in are
continuous C*~19 - semimartingales. The same argumentation offers that the correspond-
ing local characteristics of the partial derivatives of F' belong to (B*?, B¥=10) (cf. [Kun97,
Theorem 4.6.5 and the proof]). Since C*~1% ¢ C* and (B*9, B¥=19) ¢ (B%°, B1Y) hold for
k>2and 0 <6 <1, we are in the situation of Theorem [3.7]and therefore we obtain existence
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and uniqueness of maximal solutions to . Therefore the first question, namely why
should such solutions to exist, is answered.

One should note that there exist maximal solutions (&:(x),n:(x), x¢(x)) for almost all w
and all (x,t) with ¢ < T'(x), where T'(z) denotes the explosion time of the maximal solu-
tions. In Chapter 1 we have seen that Assumption [I.I]and Remark [I.2]on noncharacteristic
initial data are necessary to be able to apply the inverse function theorem. In the stochas-
tic case we compensate Assumption and Remark by using stopping times and a
restriction to a proper domain. Fix w € ). Let us consider one of the maximal solutions

to (SCE]) namely
& w): {zeRY T (x,w) >t} - R

Due to Theorem we conclude that & defines a forward stochastic flow of local C*~1-
diffeomorphisms and in particular it is a continuous local C*~1€ - semimartingale flow for
e < 0. Furthermore, the explosion time T'(x) is by Definition and Definition a
lower semicontinuous stopping time, hence the domain {x € R?|T(z,w) >t} is an open set.
Le us consider the Jacobian matrix of {;(x). The Jacobian matrix D& (x) could be singular,
ie.

det D& (x,w) =0

for some ¢t < T'(z,w). So the solution &(+,w) would not be a diffcomorphism. Of course, if
det D& (x) # 0 for all t < T(x), we are able to find & . Therefore we define the following
stopping times

Tiny () = inf{t € (0, T]| det D& (x) =0}

7(x) = Tinv () AT (),

for z € R?. From time ¢ up to 7iny () the inverse function of & () exists. The stopping times
7(x), x € R%, are accessible and lower semicontinuous (cf. Definition and Definition
2.7) as proved in Lemma for the reader’s convenience. By the definition of 7(z) we
have

(3.10)

lim det D& (z)=0

t T(x)

if 7(x) < T(x) for € RY. By restricting & to
&l (hw): {z e RY|r(2) > 1} > RY,

&(-,w) becomes a diffeomorphism and the inverse function & ! exists. Similarly one in-
troduces an adjoint stopping time for the inverse process &' to ensure that the inverse
process takes values in the certain domain of the process &. Let us recall the domains and
codomains of & and &1, respectively,

&t {xeRd|T(az)>t}—>{§t(aj) GRd‘$€{Z|T(Z)>t}}
&l {yeRd|ye§t({xeRd|T(a:)>t})}—>{meRd‘T(x)>t}.

Hence for all fixed ¢ the curve & (z) defined on {x|7(x) >t} has an inverse process. Now
we define

o(y) : =inf {t > O‘y ¢ &({x|m(x) > t})},

as the first time when y is no longer an element of &({z|7(z) > t}). Consequently
(& D te[0,0) is well-defined and maps {y € Re|o(y) > t} into {x € RY|r(x) > t}. The
stopping time o is also called adjoint stopping time.

To get an idea of the construction of &1, the terminology of an inverse process is convenient,
but not precise. The aim is to define a local process (v ); satisfying the properties for every
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t to be the inverse of &. Hence for all y € R we define local processes 1:(y), t € [0,6(y)),
which satisfy

Yi(&e(z)) =2 and & (Yi()) =,

and ¢ denotes its explosion time. As detailed written in the next chapter (cf. Lemma
below), we can prove that o = ¢ a.s. for all y € R%. Therefore the inverse process
& 1) =y () exists for t < o ().

The local solution to respectively can be defined by for almost all
w and all (z,t) with ¢ < o(z,w). Therefore the method of stochastic characteristics is
applicable. The corresponding stochastic characteristic equations are of the same
type as in the classical method. For the existence of solutions to (SCE])) we have to assume
that the semimartingales takes values in C' and that the local characteristic belongs at
least to (B9, B19) for some 0 < 6 < 1. For the main theorem, which we will prove in the
next chapter, this regularity assumption is not enough (cf. Theorem below).
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4. The existence and uniqueness result of
H. Kunita

In this chapter we state the main existence and uniqueness result of H.Kunita under
rigorous conditions and prove it in detail (see Theorem below). Herein, in particular
a continuous C*?-valued semimartingale for some k > 5 and 0 < § < 1 is necessary. The
main tool for the proof is Lemma below, which is also proved in detail. As discussed
also in Chapter 3 we give the results always for almost all w and all pairs (z,t) for ¢ up
to a certain stopping time. From our point of view this is necessary since otherwise the
solution is not well-defined.

4.1. The main theorem

In this part we recall the existence and uniqueness result based on the method of stochastic
characteristics as given in the book Stochastic flows and stochastic differential equations of
H. Kunita [Kun97] in a detailed way. We start with the following deterministic equation
which is of the same type as in Chapter 1:

% = F(:U>u7u:mt)7

uli=0 = g.

(4.1)

By a generalization of the method of characteristics to the stochastic setting, we want to
look at a similar type of Cauchy problem. Therefore we consider the equation

{ du = F(x,u, Vu,odt), (4.2)

uli=0 = g.

Equation (4.2) is equivalent to the following nonlinear stochastic partial differential equa-
tion of first order given in integral form by

u(z,t) =g(x) + [ F(;U,u(:v,r), vu(z,r), Odr). (4.3)
0

As proved in Theorem respectively Corollary we find continuous C? - processes
and C!-semimartingales (f,,(x,u,p,t))ns0 such that
F(z,u,p,odt) = B(x,u,p,dt) + M(x, u,p, odt)
= fo(ﬁ,u,p,t) dAt + Z fn(xauapvt) ° thn

n>1

Hence in this special case equation (4.2]) corresponds to

du = fo(z,u, Vu,t) dA; + Z fn(z,u, Vu,t) o dM,
n>1 (44)
u(z,0) = g(x).

In the special case of Brownian motion with A; = ¢, M;* = W/ for all n > 1 and for a family
of semimartingales F(z,u,p,t), (x,u,p) € R?*1 we find a decomposition as before by

F(x,u,p,odt) = fo(z,u,p,t) dt + 2 fn(z,u,p,t) o dW,".

n>1
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for (x,u,p) € R? x R x R?. Hence equation 1' corresponds to

du = fo(z,u, Vu,t) dt + Z fn(z,u, Vu,t) o dW/,
n>1 (45)
u(z,0) = g(x).
To study the existence of solutions we first give the definition of a local solution to equation

[E3).

Definition 4.1 Let T: R% x Q — [0, T] be a stopping time such that T(x) is accessible
and lower semicontinuous. A local R - valued random field u(x,t) is called local solution
of with initial function g(-) € CY (R, R) if u(x,t), 0 <t < T(x), is a local C1* -
semimartingale for some € > 0 and for almost every w and all (x,t) with t < T'(x,w) the
equation

t
u(z,t) =g(z) + [ F(z,u(z,r), Vu(z,r),odr)
0

=g(x)+ f fo(z,u(z,r), Vu(x,r),r) dA, (4.6)
0

n>1

t
+E[fn(x,u(-f,r),vu(.r,r),r)odM;L
0

1s satisfied.

Definition 4.2 The stochastic characteristic system (cf. (SCE])) associated with is
given by
dgt = _FXt (gtv Nty Xt» Odt)

8f0 afn
= 2 (& ey o t) dA = Y S
dxi (ft Mty Xt ) t P B

dne = F'(&, M, Xe, 0dt) = Xt - F, (&5 X, 0d2)

= (fO(é-tantaXtvt) — Xt %(gtvntvxtat)) dAt
Xt

(§t7nt7 Xtvt) © thna

Ofn "
+ Z (fn(étvnt)xtat) - Xt Ti(ftvntaxtat)) o th )

n>1

dxe = Fe, (&M, X5 odt) + Fyy, (&6, me, Xt 0dt) X

0 0
= (8?; (gtantaxtat) + ai(t) (ftvntaxtvt)xt) dAt
Ifn fn
— t)+ — t odM}
+7; ( 3& (ghntaxta )+ 87775 (gtantaXb )Xt) to

where (&, M, Xt) are processes given in Chapter 3 (see equations and (@)

Remark 4.3 Equation forms a (2d+1)-dimensional system of stochastic differential
equations, i.e. it can be rewritten in the form

dgtl _Fxtl (gta Mty Xts Odt)
d¢, ded —F\a (&, e, X, odt)
dne | = dne | = | F(&mes xes odt) = xe - Fy, (§¢,m¢, xt, 0dt)
dXt dX% thl (gtvntaXbodt) + Fnt (£t777taxta Odt)X%
dX? Fgf(gtaanhodt) + Fnt(fhnt?Xtvodt)Xg
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As introduced in Chapter 3 the solutions to the stochastic characteristic equations (4.7
solve the corresponding integral equations

ft(w)=:v—OftFxs(fs(a:)ms(x),xs(mOdS),

nt(x):g(x)_sz'Fxs(fs(x)vns($)7Xs(x)7od5)
+OjF(Ss(:v),ns(ﬂf)axs(ﬂﬁ),odS), (4.8)

Xt(x):vg(x)+b[tFfs(gs(x)ans(x)>Xs(m)aOds)

b [ B (@) (@), (@), eds) e,
0

with initial function g € Ck’é(Rd,R). Under the assumption that these integral equations
are solvable for almost all w and (z,t) with 0 < ¢ < T'(x,w) we obtain the stochastic
characteristic curve (&, n:, xt)-

If F(x,u,p,t), (z,u,p) e R2*! is a family of continuous C*? - semimartingales with local
characteristic belonging to the class (B¥*19 B*9) for some k > 5 and 0 < § < 1, then
there exist maximal solutions to as we have seen in Subsection 3.2. Next, we define
stopping times as in Chapter 3 in a formal way.

Definition 4.4 Let T'(x) be the explosion time of the maximal solutions (&, m¢, xt). Then
we define for all z,y € RY the stopping times

Tiny () = inf {t > 0‘ det D& (x) = O},
T(x) = Tiny () AT (),
o(y) :=inf {t >0 ‘ ye&({xe RY |7(x) > t})},

where D& denotes the Jacobian matriz.
Now we state the main result Theorem 6.1.5 of [Kun97] in the following rigorous version.

Theorem 4.5 Let (2, %,P) be a separable and complete probability space.  Let
F(x,u,p,t), (z,u,p) € R2*L be a family of continuous C*°(R2¥*! R) - semimartingales
with local characteristic (a,b, Ay) belonging to the class (B¥*1°, B¥9) for some k > 5 and
0<6<1. Letg be a function in C*°(R%R). Let (&,m:,xt) be the stochastic charac-
teristic curve solving (4.8). Then u(z,t) defined for almost all w and all (z,t) such that
te[0,0(x,w)) by

u(z,t) = (& (x)) (4.9)

15 a unique local solution of . Furthermore, u(xz,t) is a continuous local Cck-le .
semimartingale for some € > 0.

Obviously, one can formulate the main theorem applied to the classical case of Brownian
motion (4.5 using Theorem in the following way.
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Corollary 4.6 Let (Q,.%, P) be a separable and complete probability space. Let (W[ )ns1
be infinite independent copies of a standard Brownian motion. Let F(x,u,p,t), (x,u,p) €
R2¥1 be a family of continuous C*°(R2¥1 R) - valued semimartingales with local char-
acteristic (a,b, Ay) belonging to the class (B¥*1°, B¥9Y) for some k>5 and 0 <6 <1. Let
(fa(z,u,p,t))ns0 be measurable predictable C*° - processes such that

(a,b, Ar) = (( > fn<a:,u,p,wfn(:z,a,ﬁ,t)),fo(a:,u,p,w,t).

That means we assume

BM-HP (i) Y fuley-r e t) is continuous in t with values in C*9(R?¥+1 R),

n>0

BM-HP (ii) ( > fn(a:,u,p,t)fn(ic,ﬂ,ﬁ,t)) is non-negative definite
n>1
and symmetric,
BM-HP (iii) ( > fn(x,u,p,t)fn(ir,ﬂ,ﬁ,t)) has a modification which is a
n>1

predictable process with values in C*+10 (R?4+1 x R24+1 R),
BM-HP (iv) for all compact subsets K c R?¥*! x R2d+1

{TH ngl fn(t)fn(t)H(k+1)+57K dt < oo holds a.s.,

BM-HP (v)  fo(z,u,p,t,w) has a modification which is a
predictable process with values in C*9(R*¥*1 R),
BM-HP (vi) for all compact subsets K c R?¥*!

T
{ |‘f0(t)Hk+57K dt < oo holds a.s.

Let g(-) e CF9(RE,R) and (&(x),ne(x), xe(x)) be the system of mazimal solutions solving
(@, Then the unique local solution u(x,t) to the stochastic partial differential equation

du = fo(z,u(x,t), Vu(x,t),t) dt + Z falz,u(z,t), Vu(z,t),t) o dW;"

n>1

u(z,0) = g(x)
is defined for almost all w and all (x,t) with t € [0,0(x,w)) by
u(z, t) = (& (2)).

Further it is a continuous local C*~V¢ - semimartingale for some € > 0.

4.2. Tools for the proof

One of the main tools for the proof of Theorem [£.5]is the following generalized It6 formula
stated as Theorem 3.3.2 in [Kun97].

Theorem 4.7 Let F(x,t), © = (x1,...,x4) € R, be a family of continuous C3(R% R?) -
processes and continuous C2 (]Rd, Rd) - semimartingales with local characteristic belonging to

the class (B*°, B0) for some 0 < § < 1. Let g; be a continuous R? - valued semimartingale.
Then the formula

OF .
(gs,5) o dg,
ZLj

t d t
F(9t7t)_F(9070):fF(957°d3)+Z;fa
0 =0

is satisfied, where gi denotes the i-th component of g; = (gf, ...,gf).
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The proof is given in Appendix C. As we have seen in Theorem the solution con-
tains an inverse process denoted by &;1. The name inverse process could be misinterpreted,
therefore we want to call attention that & ! is a process which satisfies for almost all w
and (z,t) with ¢ < 7(z) the condition to be the right inverse and left inverse to & (z). To
be precise we signify this process by vy and define &, L= 4p,. Nevertheless, we call 9 the
inverse map as in [Kun97]. The following result can be found in [Kun97, Lemma 6.1.1].
We follow the ideas of the proof therein and formulate it in a detailed way.

Lemma 4.8
(i) The map &: {x e RY|7(z,w) >t} - R is a C*1 - diffeomorphism for every t a.s.

(i) The inverse map &' (y), t < o(y), is a continuous local C*~1 - process and a local
C*=2¢ _semimartingale for some ¢ > 0 and satisfies for almost all w and all (y,t)
with t < o(y,w)

{ A& = (DE(E W) By m (&7 ) xe (&7 (), odlt) (4.10)

&) =y

(i1i) o(y) is an accessible, lower semicontinuous stopping time such that if o(y) < T, we
have

lim |det D& (y)| =00 or lim &'(y) ¢ {x|T(x) >0 (y)}.
tro(y) tro(y)

Proof. Let {M['},>1 be an orthogonal basis of continuous, square integrable martingales.
We separate the proof into 7 steps:

Step 1: Definition of G and
We consider a Stratonovich equation based on the following function:

Ga,t) = [ (D&(@) " e (€@),me(@). xs(2), 0ds). (411)
0

By using the representation result Theorem we are able to rewrite G(x,t) using
Remark [2.37 as

f G(z,0ds) = Gz, 1) - G(x,0)
0

(Dés(2)) ™ Fy, (6s(@),ms(2), xs (), odls)

-10fo

3 (&s(w),ns(x), xs(2),5) dAs
Xs

(D&s(x))

O\H‘ O\H‘

o [ (D6 S A0 (@), ) (). ) o A
0

nzla s

For y € R? we consider the following stochastic differential equation in the sense of
Stratonovich

i) =+ [ Gs,ods), (4.12)
0
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which is equal to

) =y+ [ Gluy).ods)
0

=yt [ (D)) P (60D (80 (9)) e (U (1)) odls)
0

-10fo
Oxs

(Des(n(y)) ' 3 2

n>1 aXS

=yt (Dfs(¢s(y))) (gs(ws(y))7778(¢S(3/))7Xs(ws(y))75) dA;

(&s(¥s (1)), ms (Vs (1)), X (s (y)), 5) 0 AM .

+

o\ﬁ o\“

Step 2: 1y is a local C¥=2¢ - semimartingale
The underlying F(z,u,p,t) is C*9(R**1 R)-valued, hence Fp(z,u,p,t) is C*19 _valued.
For the maximal solution &, itself there exists also a modification which is a C*~1¢ - valued

semimartingale (cf. Chapter 3, Theorem [3.15)), hence the Jacobian matrix (D&)™! is a
C*=22 _semimartingale. The considered G in (4.11)) is again a C*=2 _semimartingale. By
Theorem [3.7| we obtain the existence of a unique maximal solution for almost all w and all

(y,t), t€[0,5(y)) denoted by 1¢(y) such that ¢¥o(y) =y and ¥ (y) € {z|7(z) > t}, since G
is in particular a continuous C! - semimartingale. Here 6(y) denotes the explosion time of
Y. 6(y) is in particular an accessible and lower semicontinuous stopping time by definition.
Due to Theorem the solution 1) is a local C*~%¢ - semimartingale.

Step 3: Study of stopping times
Based on Definition [£.4] we should remember the underlying situation:

e & (x) is a maximal solution to (4.7) defined for almost all w and all (x,t) with
t <T(z,w), up to an explosion time T'(x) such that

t/}iTr?x)&(x) =00, if T(2)<T.

e ;(y) is a maximal solution to (4.12]) defined for almost all w and all (y,t) with
t <o (y,w), up to an explosion time &(y) such that

lim ¢ (y) =00, if 6(y)<T.
t76(y)

Let us fix w. For reasons of notation we drop the w-dependence in each process and stopping
time. Now we want to ask, what can happen if ¢ goes to 6(y). Due to the property

Y(y) e{x|T(x) >t} Vte[0,5(y))

of solution 1); as written in Step 2 we observe for ¢ .~ 6(y) two possible cases: On the one
hand 7,y () could coincide with 6 and hence we conclude

lim |det D& (¢ (y))| = 0.
t76(y)

On the other hand & could be the explosion time T'(z) and hence we have in particular

Jim () ¢ {2|7(2) > 5 (0)),
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In summary we have for all y € R?

lim |det D& (ve(y))|=0 or  lim oy (y) ¢ {z|T(2)>5(y)}.
t76(y) t 6(y)

Step 4: iy is right inverse
Remember that &(x) is one of the maximal solutions solving

t
&i(0) == [ P (oo xssods).
0

By using the notation &(r) = £(r,t) equation (4.14) can be rewritten as

f (a,0ds) = & (x) ~&ofa) = f P (61 X 0019).

By an application of the generalized Itd formula (Theorem [4.7)) we obtain for & (z)

)odlﬂi.

t d t 85
&)~ &o(vo) = Of €U 0dr) + 3 Of =
and by this leads to

d L ,
()~ &o(vn) = [ P (&), 1 (W) e () ) + [ ch () o ]
%/ o

4 ¢
- / (&) (ot + 3 [ 5F odr).
0 =1 0
By using the definition (4.11]) we finally get

t
& () = &o(vo) = - [ By, (& (r)s e (¥r), X (7)), 0dr)
0
. f DE ()D& ()™ P (6 ) () xo (81, o)
[ (), 10 (10), X (80 o)

f (& (80), (), X0 (), 0dr) = 0.

As a conclusion we obtain

& (¥r) = &o (o),

and receive that vy is the right inverse to &, since

§(e(y)) = o(o(y)) =60 (y) =y

holds for almost all w and all (y,t) with ¢ < 6(y,w).

o1

(4.13)

(4.14)

(4.15)
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Step 5: iy is left inverse

The Jacobian matrix D& (1¢(y)) is non-singular for ¢ < 6(y). By the implicite function
theorem [Lan96l Chapter XIV, Theorem 1.2] we conclude that 1y is a continuous Cck-1.
process. Now we define the stopping time

7(x) = inf {t > O|§t(x) ¢ {y|&(y) >t} or |det Dy (& (x))| = oo} AT(x). (4.16)

The aim is to show that 1 is also the left inverse for almost all w and (x,t) with t < 7(z,w)
ie.

(&) = .
If we differentiate & (v:(y)) = y, we obtain by the classical chain rule

['= D& (v (y)) Dbe(y)-

By plugging in &(x) and building the inverse we obviously obtain

I=(Du(&(@)))” (D& (& (@))))
Hereby equation can be written as

dé.t = _FXt (gtv Tty Xt Odt)
= _]IFXt (é.t?ntJXhodt) (417)

-1 -1
= —(DYy(&(2))) (D& (&(2)))) Fy, (&1t X2, odt).
By application of the generalized Itd formula (Theorem [4.7) to ¥:(&;) we obtain

s *(6.) 0 e

Yule) = (&) = f Hewods) + 3 [
By using (L12) and (LT7) we receive
(&) - vol&o())
- [t (D& (&)
RGO GO @) o)
f (DY (&(2))) (Des6e(2))
’ 4 (4.18)
(Dssws(fs(x)))) B (@), (), xs (), ods)
f (D& (&)
@), o

- [ (D& @) P (&) ne (@), x(a), ods)
0

The above stochastic differential equation for v¢(x) := ¥¢(&(x)) has a unique solution given
for almost all w and all (z,t), t < 7(x,w) by

vi(x) = Y (&(2)) = 2. (4.19)
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Details are written in Lemma Equation (4.19) shows that 1), is also the left inverse
of & up to the stopping time 7.

Step 6: T =T
Now we analyse the connection between the stopping time 7(x) given by (4.16)) and 7(x)
as in Definition . In this step we show that for all z € R?

T(x) =7(x) as.
holds. Let w be fixed. If 7(x) > T'(z), it is clear that
7(x) = Tinv () AT () = T(x)

and therefore 7(x) = 7(z) is valid.
If 7(x) < T(z), we consider the two cases in the definition of 7 separately. First, let

7(x) =inf {t > 0] &(x) ¢ {y|6(y) > t}}
= inf {t > 0|§t(aj) e{y|o(y) <t}}.

If &(x) e {y|o(y) < t}, then we also know by that
&) e({wlo) sthnfyl T |det D, (:(v))] =0})
o({ylew <thn{yl lm i) e {=|T() <o(w)})

Considering the first intersection we conclude i,y (2) <t or due to the second intersection
T(x) <t. That means 7(z) < 7(x). On the other hand we have by definition 7(z) < 7(z).
Consequently, 7(z) = 7(z) is proved.

Let us consider the other case. If 7(x) = inf {t >0 ‘ |det Dy (& (x))| = oo}, then we obtain

lim det D& (x) =0,
t 7(x)

since by D (& (x))DéE(x) =1 we know

1 detI
lim —————= lim ————= lim detD = oo.
t/'lf'rgﬁ) det D& (x) tzlfn(%c) det D& (x) tzlfn(%c) et Dy(&()) = o0

And therefore 7(x) = Tiny(z) > 7(z) > 7(x). Summarizing we proved 7(x) = 7(z).

Step 7: Conclusion and formal proofs of the statements (i), (ii), (iii)
Suppose

&(z) = &(a") for z,2" e {Z|7(Z) > t}.

Since (& (x)) = x on {Z|7(&) > t} we obtain z = z’. Therefore (x) is injective.
Due to the implicite function theorem [Lan96, Chapter XIV, Theorem 1.2| and by using
the fact that the Jacobian matrix D¢ is non-singular, we know that &(z) is a C*1-
diffeomorphism. Hence the first claim (i) of the Lemma is proved.

The results of part (ii), which are that ;(y), t < o(y), is a continuous local C*~! - process
and a local C*2¢-semimartingale for ¢ > 0, are shown in particular in Step 2. Hereby
equation correlates with . The properties of ¢, to be the right inverse as well
as the left inverse to & were proved in Step 4 and Step 5.
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For the last claim we consider the explosion time & of 1;. In Step 3 we proved the analogous
assertions of part (iii) but for stopping time . Now we have to show it for o(y), where

o(y) = inf {t > O‘y ¢&({xe Rd|7(ac) > t})}

as defined in Definition Therefore we will prove o(y) = 6(y) a.s. Due to part (i) and
Steps 4, 5 we have

§({z]r(x) >t}) < {yla(y) > t}, (4.20)

since ¥;(y) is well-defined for almost all w and all y € &({x|7(z,w) > t}). Due to the
definition of 1)y we know that the following relation

Yo {ylo(y) >t} - ({z|7(z) > t})
holds and we receive as written in Step 2
U{ylo(y) > t}) € {z|r(x) > t}.
Now we conclude that
§(hi({ylo(y) > 1})) € &({z|7(2) > 1}).
Since & (1 (y)) = y for all y € {§]5(7) > t}, it follows
{ylo(y) >t} c &({z[7(x) > t}). (4.21)
Due to (#20) and ([#21) we have
§({z|r(x) > 1)) ={ylo(y) > t}.
Consequently by the definition of o(y) we conclude that
a(y) =6(y).

Thereby claim (iii) is proved. O

The third important tool for the proof of Theorem 4.5 is the chain rule for the stochastic
characteristic curve as written in [Kun97, Lemma 6.1.3]. We follow the ideas of the proof
therein.

Lemma 4.9 For the inverse function &' the relation

9 “1N] _ ige-1
S L&D = xieh (4.22)
holds fori=1,....d.
Proof. Our first step is to show
ony &
=Xt . 4.23
0, Xt o ( )
So, we define
;. O &
0; = - Xt 4.24
t d; Xt o ( )

and prove 67 = 0 for all i = 1,...,d. To this end let us consider the stochastic differential
equation which generates 6 and observe the stochastic characteristic equation (4.7 of 7

dT/t = F(ftﬂ?tha Odt) — Xt FXt(gbntaXtv Odt) with 770(33) = g(x)
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Therefore we obtain

on, 09 O t 2 o
Ui _ g _ o — o - g
9r. axi[ngOfF(fs,ns,xs, ds) Ofxsts(Ss,ns,xs, dS)]

(9%-
a t
aln!fXSFXs(§S7n87XSaodS)].
‘Lo

Now we apply Theorem to the second term which admits us to interchange integration
and differentiation

t
f F(&San&XSa OdS)] -
0

ony B dg 855 oF
ox; Ox; - 0x; 6§s

8773 OF
Ox; Ons

x.lfXSFXs(gsvn&XSvodS)],
‘Lo

By applying the classical product rule and Theorem [C-2] to the last term we obtain

(5577757X570d5) + (§57778’X370d3)

t

OXs aF
[ X (gsanstsv ods
0

t

t
87715 89 855 Ffs (5877787X870d3) + [ %Fns (gs?ns’xs’ods)
0 i

ox; 8J:Z ox;
0
t
[ %
0
-9
_/Xsﬁ_M[FXs(587n57X57OdS)]
tO
gkz
t

- [ XS%[FXS (fs»"]&X&odS)]'

0

t
OXs
FXs(é-S’nS:XSvOdS)_/ 8J;"FXS(§S,775,XS,OdS)
0 K3

(557U8)X87Od3)+fansF (5877757X570d8)

Consequently we have on the one hand

t

ant ag 855 8"75
Fe, (& M55 X5, 0ds) + Of o, Fy, (&1 75 X5, 0ds)

. (4.25)

- / Xsaixi[FXs(fs,n&X& Ods)]'

0

Under the initial conditions xo(z) = %(x) and &y(z) = = we consider

% 99 _ 0& 0% ftd[ 855]

Xt a’El - 8561 RS 81‘1 ~Xo &Tz Xs 8561 ’

By applying It6’s product rule (see [RY05, Chapter IV, 3.1 Proposition|) we get

t t
8€t _ ag _ I:agsjl 855 85
Xt 8.%1‘ 8%1‘ N bf Xs d 8xi " i 891:@- dXS i <X.’ 81’1‘ >t
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t
f Xs d gij 8332 0/- 1 gﬁ, )

In the next step we use the classical Ito-Stratonovich formula (see [Kun97, Theorem 2.3.5])

to receive

¢ ¢
06 0dg _ 9Es 98s
Xta_xi_(?_a:i_fXSOd[ ]+f 'OdXs-

0 0
By an application of [Kun97, Theorem 2.3.6 (ii)] we conclude by (4.7)

t
8515 89 f i
Xt ox; 8% y Xs oz, [FXS (fs, Nss Xs) Ods)

O\w

Xs il [Fxs (Esa Nsy Xs» Ods)]

0Es
ng(587n57x-570d8)+[8 Xs Us(§8777$7X870d8)

t
/
9&s
+
I
0
By using (4.24)), (4.25) and adding and subtracting a—g_ we obtain
ox;

o= 09 (. % _09)

6951- 69:,- ! 81‘1‘ 82?1‘
0 s
ag F§9(£87nS7XSJOdS)+ f 817 F (ésv”&X&odS)
t
0 o0& g
- fXSa_%[FXs(£S7nS7XSuodS):| - (Xt : 81‘1 - 8_112)

0

By applying (4.26) we get
t

t
— ags 8778
_JaxiFﬁs(gsan57XSu ds)+/amiFﬂs(€87n87X87 ds)

t

t
0 8
_f [Fx5(§s77757XSa°d5) +/X88x Fxs(i&nsaXS)odS)]
0 0 v
0 0 |,
_fing(gsan&XS’odS) fXS { s(fsﬂlsaXs,odS)
0

0775

(§s,775,X57°d8) sz ns(fs,TI&XsaodS)

s 9Es
(81'@ Xsa_m.’i)'FnS(ES)nS’Xsaods)

- o\w o\

= f 9; : F77s (5877787XS70d5)-
0

26
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4. THE EXISTENCE AND UNIQUENESS RESULT OF H. KUNITA

The unique solution of the linear stochastic differential equation

46} = 0, F,, (&, e, xt,0dt)  with

o :ano_x 9% _ g CVgeer= 99 9dg _
0 6:@ Oé?xi 8.29@

i = — =
69@ 8:@ ’

where e; = (0,..,1,..0) denotes the unit vector, is 8¢ = 0. Here we make use of the facts
that the initial condition is 0 and that the solution is of the form 6; = 6f - exp(...), as in
[Oks07, Exercise 5.3.*%]. Therefore we have

j Ony %3}
0;=0=——xt —
t 8331 Xt 8952
which is equivalent to
Iy = xs- &
ozt ' 9ai

Hence we have shown equation (4.23). Furthermore, we have

VOn(e™) = vneH(Deae) (4.27)

by the classical chain rule and the Theorem of the inverse function [Rud64l 9.24 Theorem)|.
Due to equations (4.23) and (4.27)) we obtain

V(& W) = (& 1) D& (& W) (D& W)

(4.28)
= (& (¥)
and we have componentwise
(&) = xice
which proves the statement of the Lemma. O

4.3. Proof of the main theorem

The proof of the main Theorem [4.5] follows the ideas of Theorem 6.1.2 and Theorem 6.1.4
in [Kun97].

Proof. In the theorem we define for almost all w and all (z,t) with ¢ < o(x,w)

u(z,t) = (& (@)

Let w be fixed. Due to the fact that n; is a continuous C¥~! - process and ¢! is a continuous
C*=2_ process, we have that u is also a continuous local C¥~2- process. Furthermore,

ou
Uy, =

¢ 81‘2

is a local C*~%¢- semimartingale by Lemma since

~ 8[771:(5{1(33))]
- 9

i

U, (1) =xi (& (@) (4.29)

holds for almost all w and all (x,t),t < o(x,w). By integration we obtain (k —1)-
differentiability instead of a (k —2) - differentiability, therefore u(x,t) is a continuous local
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4. THE EXISTENCE AND UNIQUENESS RESULT OF H. KUNITA

C*=1_ semimartingale. By application of the generalized It6 formula in Theorem we
receive

d[m (&) = dn(&) + 21 O ety o d[(671)]. (4.30)

Let us consider the first term of (4.30)) and make use of (4.7

dne(§71) = F(&(&),me(&), xe (&) 0dt) = xa (&) Fa (6(&7) me(&7) xe (&), 0dt)
= F('a nt(gt_l)a Xt(gt_l)a Odt) - Xt(gt_l) FXt('a nt(gt_l)v Xt(gt_l)’ Odt)'

By using (4.10) the second term of (4.30)) is equal to

S ey oa[(6)] = V() o

i=1 8
- Vnt@;l)(Da(s;l))‘l Fxto,m(s;l),xt(g;l),odt>.
Adding both terms together we obtain for (4.30]) by using and (| -
dlne(& )] = FCome(& ) xe(&),edt) = xa(§ ) Fxt(-,m@;l),xt(égl), odt)
+V(EN(DEE™D) ™ P& (€, odt)
= FCome(& ) xa (&) odt) = xe(&) Fao G670 xe(€r ), 0dt)

+ Xt(‘gt_l) FXt('7nt(§t_1)7Xt(€t_l)7Odt)
= F('»nt(gt_l)aXt(ét_l)v odt).

Therefore we have locally
t
u(ot) =& ) =9+ [ Fem(E )0 (g ), 0dr)
0
and due to u solves
t
u(z,t) =g(x) + [ F(z,u(z,r), Vu(z,r),odr)
0

for almost all w and all (x,t) such that ¢ < o(z,w). To show the uniqueness of the solution
let @(x,t) be another solution to equation (4.3) satisfying (4.6). The aim is to show that
for almost all w and all (z,t) with ¢t < T'(z) A o(x)

u(&e(w),t) = ne(x)

holds. We have seen that 4 is in particular a continuous local C*~1¢ - semimartingale for
some k > 5. That means the local characteristic belongs at least to the class (B*¢, B4¢). By
applying the generalized [t6 formula in Theorem since we have at least C3-processes,
we obtain

a(&t,t) — (o, 0)
t d t
=[a(£s,ods)+2[
0 =17

d t
[F(£s>u(55a3) Vu(gsv Ods Z[
=19

o dg;

fS,S)F (5577787X870d$)
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4. THE EXISTENCE AND UNIQUENESS RESULT OF H. KUNITA

t t
= [ P60 (60r9). Vi€ ), 0ds) = [ T, 8) - P (€. X o).
0 0

Due to (4.8) we obtain for the difference
(a(fti) - (- 0)) - (77t - o)
t

t
:fF(ﬁSvQ@SaSLVﬁ(éws))ods)_fva(§873)'Fxs(€S77787X5a°d3)
0 . . 0
+/XS'FX5(€S77787X870d8)_fF(gsanS7XS7odS)
[ P (61 i(60,5), V(6. 5), 0ds) - f P (€10 X1 0d5)

t
= [ (Vi€ ) = %) - P (o s 0d5).
0

By using essentially that V is at least a C® - process we can apply Theorem to Vu and
& and receive

V(& t) = Vi(&o,0)

¢ d 7 .
= [ v, 0as)+ Y. [ 6([,;7] (€o5) 0 el
0 0 '

i=1
t

d ! ~
= [ VG 1), Ve 9),008) - 3. [ AT e, ) (6 s o)
0

0 =1 61131
t

[ Fe (€6, (s, ), Vi(Es, ), ods) + [ V(6 5) Py, (66, (Es, ), V(€ 5), ods)

d t

+;Ofa([;; (55 8) Fyi (&5, (s, 8), Vi(Es, 8), 0ds)
d ¢ o[Vl

1—21‘0/ [8$:L {s,S) (§S7nSaX570dS).

As before we obtain for the difference

(Va(&,t) - va(-,0)) - (xi - xo)

t
= [ P66, 9), VilEs, ), 0ds) + [ V(6,5 Py (€, 06sr ), V6, 5), 0ds)
0 0

o (G 9V Ex (6, 1(6s,5), V(s 5), o)

t
O (gsas)FX§(£SanstSa°d3)_[Fﬁs(£SaU57Xsaod5)
! 0
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4. THE EXISTENCE AND UNIQUENESS RESULT OF H. KUNITA

t t
- f Fe (60, (60, 8), Vit(6r5),0d8) + [ Tii(€e, ) Fy, (€6, (s, ), V(€ 5), 0ds)
0

+

M&

t
fa[az‘u (55;8) F (§Sa (6873)7vﬁ(§573)ﬂ0d3)_FXé(gs’ns’Xs’Ods))
3 i

<.
I
—

t
Ffs (5877757X87Od8) - f Fns (5877787X870d8)X5'
0

o _

Next, we consider the following systems of stochastic differential equations for (@(&,t)—n:)
dla(&e,t) —ne] = F (&, u(&e, 1), V&, t), odt) = F'(&, me, xt, odt)
- (V&(ﬁt,t) - Xt) “ Fyy (&1, Xt 0dt) (4.31)
w(&0,0) =m0 =0
and

d[Va(&e,t) — xe] = Fe, (&, (&, t), V(& t), odt)
+ V'a(ft, t) (ftv ﬁ(étv t)v Vﬁ(ft, t)a Odt)

d u
ZM(F (&, W&ty t), V(& 1), 0dt)

= O (4.32)
- FX% (‘Eta Mty Xt Odt))
- Fft (ft) Tty Xt Odt) - F77t (gtv Tty Xt odt)Xt
w(&0,0) =m0 =0
Due to Theorem [3.7] the systems have unique solutions given by
u(&e(z),t) —m(x) =0
and V(& (z),t) - xi(z) =0.
Consequently we proved that (4.9) defines a unique solution to equation (4.3)). O

4.4. Application to an example in the linear case

In this subsection we apply the existence and uniqueness result of H. Kunita as stated in
Corollary above to a linear stochastic partial differential equation. The result includes
that the solution is given as composite function of the solutions to the system of stochastic
characteristics equations (4.8]). Hence we separate the following example into two parts.
First, we have to verify that the corresponding local characteristic as defined in Definition
belongs to the class (B**19 B¥9) for some k> 5 and 0 < § < 1. Due to the representa-
tion result Theorem [2.39 we know that we are able to rewrite the one-dimensional problem
in terms of a semimartingale F(x,u,p,t) for (z,u,p) € R®. Hence we obtain existence and
uniqueness of the solution. Hereafter we determine the solution by solving the system of
stochastic characteristic equations and finding the inverse process. Obviously, we do not
have to check that the solution solves the equation.

Example 4.10 Let W, be a standard Brownian motion. We assume that ¢, [0, T] - R
are continuous functions and h € CY(R,R). We consider the following linear stochastic
partial differential equation for x € R

{du(a:,t) = (¢(t)  Vu(z,t) —P(t) u(x, t) - u(z, b)) dt + dW,

4.33
u(z,0) = h(z). (4.33)
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4. THE EXISTENCE AND UNIQUENESS RESULT OF H. KUNITA

By applying the Ito-Stratonovich formula the equation s obviously equivalent to

{du(m, t) = (6(t) z Vu(z,t) — () u(z, t) - u(x,t)) dt + odW;

4.34
u(z,0) = h(x). (4.34)

Due to the representation result the corresponding semimartingale is given for almost all
w and all (z,y,2) e R® by

/tF(x,y,z,Ods)zj(g])(s)xz—z[;(s)y—y) dt+[t0dW5
0 0 0

Hence the local characteristic (a,b, A;) is defined for all (z,y,2) € R? and (Z,7,2) € R? by

a(x7 y? Z7j7 g? 27t) = 17

b(2,y,2,t) = d(t) zz - () y -y,
At =1.

Let us verify BM-HP (i) - BM-HP (vi): BM-HP (ii) is fulfilled, since a = 1 is a constant
function and obviously symmetric and non-negative definite. BM-HP (iii) and BM-HP (v)
are clearly satisfied. Consider for any K c R? compact

T T 1 r
N | dt:/ sup dt+[1dt
0[ el = | o « W1y N2

€
(@',y",2")e
T
t

0
+ [ sup — — d
i (z,y,2),(z" 2" )eK |(.’L‘, Y, Z) - (.’L',y, Z)|5|($,7y,7 ZI) - ($,7y,7 Z,)|(s

(I7y12)7(‘f,7g,12’)€K
(x7y7z)¢(‘i7g72)
(2'y',2")#(@9',2")

< o0

Hence BM-HP (iv) is fulfilled. Concerning BM-HP (vi) we have

T £ p(t) w2 - () y -yl
b(t) |k+sx dt = &
[ Olasat= [ D

T T

+/ sup |¢3(t)z+¢(t)—1+q3(t)x+¢3(t)+¢3(t)|dt+det

0 (f,yvz)EK 0

T T
< |<Z~>(t)|(sup ] |=| dt+f(|¢(t)|+1)dt
0 0

z,z)eK
T
[ sup JB@O1(J2]+ 2+ fal) + [9(8)] + 1 d < o0
0 (z,y,2)eK

By the same arguments BM-HP (i) is satisfied. Therefore the local characteristic (a, b, A;)
belongs to the class (B**19 B*9) for some k > 5 and 6 > 0. By Corollary we know
that there exists a unique solution. To find this solution we have to solve the system of
stochastic characteristic equations for

F(ﬁtﬂ?taXh Odt) = ((B(t) gt Xt — Qﬁ(t) e — ’I’]t) dt + Oth
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4. THE EXISTENCE AND UNIQUENESS RESULT OF H. KUNITA

given by

g, = -¢(t) & dt
d'l’]t = ( —ﬁ(t)nt —nt) dt +1 Oth.

As proved in Lemma the solutions are given with initial values {y(x) =z, (z) = h(x)
for almost all w and all (z,t) with ¢ up to the explosion time by

§t<x>exp(m [ é6) ds)
0

h(z) + _O[t exp (fﬂj(r) dr + s) o dW, (4.35)

m(z) = t
exp (Ofw(s) ds+t)

Obviously, the inverse process of & is given for almost all w and all (z,t), t € [0,0(z,w))
by

t
& (x) = In(z) + f 3(s) ds.
0

Hence the unique local solution to equation (4.33)) is given for almost all w and all (z,t),
t up to a stopping time o(z,w) by

h (ln(m) + j b(s) ds) + i exp (0[81;(7") dr + s) odW;

u(z,t) =

exp ({t Y(s)ds + t)
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5. APPLICATION TO STOCHASTIC BURGERS EQUATIONS

5. Application to stochastic Burgers equations

In Chapter 3 we introduced the heuristic method of stochastic characteristics. Under the
assumptions that a solution of the considered problem exist and that there exists a stochas-
tic characteristic curve as defined by , we obtain stochastic characteristic equations
which have to be solved. In this chapter we state some examples concerning the
new heuristic approach of the method of stochastic characteristics. For this purpose we
look at different stochastic Burgers equations, find possible candidates for solutions under
the above assumptions and hence have to verify if they really solve the problems. Due
to these examples we see the main advantage of the method of stochastic characteristics,
namely to receive an explicit expression of the solution. We will start with a generalization
of Yamato’s example to two dimensions (see Example below). After that we extend
Yamato’s example by adding an drift term (see Example below). Due to the fact that
we want to study stochastic Burgers equations with It6 differential we formulate and prove
in Lemma below an application of the It6-Stratonovich formula. By this we achieve a
tool for solving different Burgers type equations and further determine explicit solutions
(see Example and Example below). In Example below we solve by the heuristic
method of stochastic characteristics a stochastic transport equation with coefficient func-
tions of polynomial growth. Obviously these functions do not fulfill the conditions of the
main Theorem [£.5] in Chapter 4.

Yamato’s example (J[Kun84al, Example after Theorem 4.1.]) for the quasilinear stochastic
partial differential equation in one dimension is given in the following form

du(zx,t) = u(x,t)%(m,t) odW;
x

u(z,0) = g(x)

for 2 € R, t € [0,T] and with initial function g(x) = z and g(x) = x2, respectively. The
first step is to extend problem (5.1]) to two dimensions. Let us consider the 2-dimensional
version of problem (5.1)).

Example 5.1 Let W; = (th,Wf) be a 2-dimensional Brownian motion on a complete
and separable probability space (Q,. 7, P). We consider the following equation for x € R?,
te[0,T]

(5.1)

du(zx,t) = u(z,t)Vu(z,t) o dW;
2 U ‘
= > u(z, t)%(m, t) o dWy (5.2)
i=1 ?
u(x,0) = g(z), g € C'(R% R).

By using the representation result Theorem [2.39 this equation is equivalent to

{du(w, t) = F(z,u(z,t), Vu(x,t),odt)
'LL(H?, 0) = g(m),

where

2 .
F(x17x27uap1ap27odt) = Zupz OthZ
=1

for all (x1,72,u,p1,p2) € R®. We concentrate on the heuristic method of stochastic charac-
teristics, hence we will not look at the corresponding local characteristic or formal conditions
concerning the results in Chapter 4. As written in Chapter 8 the heuristic approach will
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5. APPLICATION TO STOCHASTIC BURGERS EQUATIONS

give us a candidate for a solution. Let us assume that u solves and that we have a
stochastic curve (&,m, x¢) defined as in Chapter 8 (see equation ) The associated
stochastic characteristic equations (@ for

2 . .
F(£t7 Nty Xt» Odt) = Z 77tX7Zt ° thl
i=1

are given fori=1,2 by

7

dgt = _FXi (§t7 Mty Xt Odt) == [tht] ° th =-no th
t

2 .
dT]t = F(§t7 Mty Xty Odt) - Z sz (£t7 Tty Xts Odt)lef (53)
i=1

2 . . 2 . .
= Zntxff odW{ - ZX?ﬂ?t odW{ =0.
i=1 i=1

By considering the initial conditions no(z) = g(x) and &(z) = x for € R? we obtain on
the one hand the solution

ne(x) =no(x) = g(x),

and on the other hand componentwise for i =1,2 with x = (x1,x2)

t
(@) =) [ g(a)oaw;
0
=z — g(x)Wy.
The above solution can be rewritten as
&) = (w1 - g(@)W}! w0 - g(x) V7).

Let us assume that (&,m;) exist up to an explosion time T. Similarly to Lemma we
consider stopping times for the inverse process 5{1 as in Definition

Tinv () := inf{t > 0| det D& (z) = 0},
T(x) = Tinv(2) AT (2),
o(z):=inf{t>0|z ¢ &({T e RY| (%) > th}.

2

For an ezplicit initial function g(z) = |z[* = ¥, 3 we get
k=1

1 2, 2yl

& (@) =21 — (27 + 23) Wy,

2 2 2\1i2

& () = o = (a1 +23) WY
The corresponding Jacobian matrix is given by

(1-2z th) (-2 Wt2)
Déi(x) = ( (—2$2%/th) (1- Q;QWE)) .

Hence the determinant of the Jacobian matriz can be identified by

det D& (x) =1 - 22 W, = 22 W2 =1 -2(z- Wy). (5.5)
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5. APPLICATION TO STOCHASTIC BURGERS EQUATIONS

Up to the first time Tiny(x) for which 1 —2(xz-W;) = 0 the inverse process & exists. The
stopping time Ty () is given for x € R? by

2 j 1
Tinv(2) = inf {t > 0‘ ]Z:;ijt = 5}
As computed in Lemma for the reader’s convenience, the inverse process &t for the
explicit initial function g is given by
& (w1, m2)
) 2(WH)2 +2(W7)?
B W1 - 423 (W2 - a1 W/ (4 - 82 W) — daf(W)P)? — dan W)
2(WL)2 +2(WE2)? 7 (5.6)
WEWE = 221 (WEH2W2 + 200 (W}H)3
2(W)3 +2(W¢)?
WAW2/(1 = 422(W]E)2 + 811 2gWIWE — day WL — 422 (W2)2 — 4w W2) )

2(Wt1)3 + 2(Wt2)2

for almost all w and all (z,t), t < 6(x,w), where 6(x) is the explosion time of &1 (x). At
this point we will ignore that fal(az) s not well-defined. Since we assumed that there is a
stochastic characteristic curve (&,my) which prepare the system of SDEs , we obtain
a candidate for a local solution to . Hence we set for almost all w and all (x,t),
tel0,6(x,w))
u(z,t) = m (& ()
~ 222 + 223 (5.7)
12 W =22 WE+ Z

where

Z = \J1 - dwa WP ~ 43 (W2)? — Ay W} + 82122 W)W — da(W))2,
Fort =0 with W¢ = W¢ =0 the initial condition of is fulfilled, since for all x = (x1,x2)

2(%‘% + IE%) — |l’|2

u(z,0) = 5

holds. Now we have to verify that u as defined in s a solution to . To this end
we use the differential equation and the notation of Newton’s derivative of the Brownian
motion given by W} and W2, respectively. We have to show

1) = 1) o (o) W+ ) 2 ) W (9
1 T2

Calculating the left hand side of (@ we get by classical Tules of differential calculus

d_u(x t)—i 222 + 223

dt 7 dt | 122 W - 20 WE + Z
1

C Z(1 =22y W} - 22W7 + Z)2

+ (—2:52Wt2 - 4x%Wt2Wt2 - 2951th + 4x1$2Wt1Wt2 + 4x1x2Wt1Wt2 - 4$§Wt1Wt1)])

(- (201 +223) [ Z(-200 W] - 22,0077)
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5. APPLICATION TO STOCHASTIC BURGERS EQUATIONS

~ (23@% +2m§)
CZ(1 -2 W - 20 WP + Z)2

+ (=20 W72 = 42 WEWE = 20, W + daymo W)W + Ay W W2 - 4m%Wt1Wt1)]).

((—1) [Z(—lewg )

Hence we obtain

(-1)
Z(l - 2[1}1th - 21’2Wt2 + Z)

U at) = (e, ) (
° [Z(_2x1Wt1 - 2$2Wt2) + (_2x2Wt2 - 4$%Wt2wt2 - 2$1Wt1 (59)
+ Az W W?2 + Az WIWE - 4:1:%Wt1Wt1)]).

The partial derivative with respect to x1 is given by

( 1 = 0 222 + 223
Oay | 1 =20 WL = 20W2 + Z

4oy (1= 221 W = 205 W2 + Z) - (223 + 223) [-2W} +
) (1- 22, W} =22, W2 + Z)2
Ax Z(1-2: W - 22, WE + Z)
CZ(1 =20 WE = 220 WP + Z)2
(227 + 223)[(2W)) Z — 4wy (W) = 2W + day W W ]
Z(l 2.%'1W1 2[E2W2+Z)2

—8x1 (W2)2 AW +82o WL W2 ]
27

Now we make use of the following equality by adding and subtracting the term 4axy(W})2:
[(-2W Z - 4z (W2)? = 2W} + 4y WEWE]
= (120 W} = 22oW7 + Z) (-2W}) — a1 (W) + (WP)?).

Hence the partial derivative with respect to x1 is finally given by

%(x t) = 1
Oxy 7 Z(1 =22 W = 20W7 + Z)2

- (207 +223) - [(1 = 20! = 209 W + 2) (=2W}) = 421 (W) + (W)?)] ).

(4212(1 - 20 W} - 22507 + Z)

The partial derivative with respect to xo can be calculated in a similar way by

( 1 - 2:6'% + 236%
X,
8:52 1- 2:61th - 2932Wt2 +7
4m2(1 = 2m W = 22, WP + Z) - (203 + 223) [ 207 +
- (1 -2z, W} =20 W2 + Z)2

—AW2E+8x1 W W2 -8z2(W,})? ]
27

1
CZ(1 =22 W} - 20 W7 + Z)2

— (223 + 22 [(-2WP) Z - 2W 2 + 4 W W2 - 4:):2(Wt1)2]).

(42221 - 20 W} = 22,07 + Z)

As before we add and subtract the matching term 4xo(W2)? and get the following equality
[(—2W2)Z = 2W72 + 4z WL W? - dao(W)?]
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= (1 =201 W} = 209 W7 + Z) (=2W7) — dao (W) + (W7)?).

Hence we receive

1
Z(1- 2331th - 2x2Wt2 +7)?
— (227 +223) [(1 - 22 W} = 22oW§ + Z) (-2W7) — daa (W2 + (W)?)] )

S—Z(x, t) = - (49[;22(1 — 20 W} = 22, W2 + Z)

Now we are able to verify (@ Due to (@) it is enough to prove that

O oy vt 2y i
0xo

ox
) (-1)
Z(l — 2$1Wt1 - 2x2Wt2 + Z)
+( - 2o W — 4 WEWE = 200 W, + dary g W W
+ 4z oW W7 - 423 W} th)).

(2(-20W} - 20072 510,

Let us start on the left hand side of
du
8.7}1
e WEZ(1 - 20 W - 225 WE + Z)
 Z( =20 W - 20, WP + Z)2

B (227 +223) [(1 - 220 W = 229 W2 + Z) (-2W}) — g (W2 + (W2)?) | W
Z(1 =25, W} = 22oW2 + Z)2
AxoWREZ(1 = 20\ W = 200 W7 + Z)
Z(1 =20, W} =220, W2 + Z)?
(201 +243) [(1-22,W} = 220W2 + Z) (-2W72) — dao (W2 + (W))W
Z(l —2(L‘1Wt1 _2$2Wt2 +Z)2 '

(@)W + 2 () W2
(9:62

With the help of a second short notation Y := (1 - 221 W} — 22o W72 + Z) we get

ou
Oz
B 4£L'1thzY (227 + 223) [Y (—2W}) - 4$1((Wt1)2 + (Wt2)2)] th
ToZv? ZY?
N 4$2Wt2ZY 3 (2x% + 295%) [Y (_2Wt2) - 4$2((Wt1)2 + (Wt2)2)] Wt2
ZY?2 ZY?2 '

(:Ea t) th + a_m(x’t) Wt2

Now we use the following result

(@t +a3) (W2 + (W)?)
= 4as(W)? + 4 (Wy)? + 4af (W)? + daj (W)
= (1 - 422 WP + 4a3(WP2)? — daa W + 8z W W + 42 (W))?)
— (1 - 42 WP - 423 (W2)? = day Wy + 8z1 22 W W — 43 (W))?)
= (1 =22y W} = 22, W72)% - 722
= (1 =22 W} = 222W7) + Z) (1 - 22, W} = 225 W7) - Z)
=Y ((1 -2, W} - 22.W7) - Z)
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5. APPLICATION TO STOCHASTIC BURGERS EQUATIONS

to achieve
Oty W+ 2 () W
81‘1 8332

_An Wi Zy (222 +223) [QY W) + day (W) + (W2)?) | W

ZY? ZY?
. Az, WRZY N (227 +223) [(2Y W) + dao (W12 + (WE)?) | W2
ZY? ZY?
Ao Wirzy (223 +223) QY WEW) + 4(af + 23) (W2 + (WE)?) - 20 W}
ST v A
. Az, W2EZY N (223 +223) QY WAWP) + 4(2? + 23) (W) + (WE)?) - 220 W
ZY? ZY?
) 41 ZWEY + (222 +223) - 2WLWLY + 22y WY (1 - 22, W - 200 W2 - Z)
ZY?
. dxo ZWEY + (223 +223) - 2WEWEY + 22oW2Y (1 = 22, W — 200 W7 - Z)
ZY?
_Aa ZW + (22 +223) - 2W W + 20 WY (1 - 209 W — 220 W - Z)
zY
. dao ZW7E + (202 + 222) - 2WEWE + 200 W2 (1 - 20 W} - 200 W2 - 2)
ZY
_ 4 ZW}E+ 4xg ZWE + (202 + 223) [2WEWE + 2W2EW 2]
ZY
. (21 W+ 200 W2) (1 - 201 W} = 220 W2) = 221 ZW L — 220 ZW 2
zY
_ 201 ZW + 220 ZWP + (227 + 2a3) [2W, WY + 2W2 W]
zY
L (- 201 Wit = 220 W2) (201 W} + 222 W2)
ZY
_ Z(2zAW}E + 22oW2) + 42 WIWE + 4x2WEWE + 4w W)W + dxsW2EWE
zY
. 201 Wik + 200 W2 — 4x2WWE - dayzoWEW? — 4w 2o WEW}E — 422 W2 W2
zY
-1 . .
= (-1) - (Z(—lewt1 — 255 W7)

Z(1 =20 W} = 22.W2 + Z)
+ ( - 2a:2Wt2 - 4m%Wt2Wt2 -2z th + 4x1$2Wt1Wt2 + 4x1x2Wt1Wt2 - 430%th th))

which is equal to the right hand side of . We finally proved that w as defined in

is a local solution to the 2-dimensional problem .

Remark 5.2 Obviously, it is possible to extend the above Example to three or more
dimensions, but then the calculations and expressions will become much longer and a chal-

lenge for reading and writing.

Due to the definition of we can see that the system of stochastic differential equations
is simplified in the case where the diffusion term depends on the gradient of the unknown
function. In the notation of the stochastic characteristic curve the dependence on x; leads
to dny = 0. The next example is an extension of Yamato’s example to the case where the

diffusion term coincides with the drift term.
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Example 5.3 Let W; be a one-dimensional Brownian motion on a complete and separable
probability space (0, %, P). Consider the following equation for z € R, t € [0, T7,

{du(m 1) = u(z, t) (ar t) dt +u(z, t) (1’ t) o dW; (5.11)

u(z,0) = g(x).

Similarly to Ezample [5.1] the stochastic characteristic equations, provided that u solves
and that there exists the stochastic characteristic curve (&,m;), are given by

d&; = —ny dt —ng o dW;

(5.12)
dn; = (TItXt - tht) dt + (mexe — xeme) o dW; = 0.
With initial condition no(z) = g(x) = 2% the equation dn; = 0 has the solution
n(x) = z°. (5.13)

Hence we have to study
dé = -2 dt - 2% o AW,

which is equivalent to

t ¢
ft(x)zfo(x)—[xQ ds—[x20dWs
0 0
:m—xzt—xQWt.

Up to its explosion time &(x) the inverse process &' is given by

2x
+\/1—4.’L’(t+Wt)

for almost all w and all (x,t) such that t < 6(x,w) as proved in Lemmafor the reader’s
convenience. Hence we set for almost all w and all (z,t) such that t € [0,6(z,w))

-1 _
& (x) = 1

2
_ 100 = 2x
u(e 1) = (& () (1+ 1_4x(t+Wt)) . (5.14)

The calculations of the partial derivatives with respect to x and t are given in Lemma[D.3
Now we verify that is really a solution to . To this end we plug into
and prove that solves the differential equation written as
(SL‘ t) =u(z, t) (:r t) +u(x, t) (x )W,
=u(zx, t) (3: t)- (1+Wt),

where we deal with the notation O‘B‘?/t =: W,. By using the fact that

42(1 + W)
V1-4z(t+W)(1+/1-4z(t+W,))
as shown in Lemma[D.3, it is enough to prove

ou 4z

e G (e e )

du
E(l‘, t) =u(z,t) -
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5. APPLICATION TO STOCHASTIC BURGERS EQUATIONS

The above equality is valid, since

@(w b = Sx(l +/1—4dx(t+Wy) - 2zt —Zth)
O 1= da(t+ W) (1 ++/1—dx(t+ Wy))3
Az(2 +2/1 - 4z (t + Wy) — dat — dxWy)
) V91-4z(t+ W) (1 ++/1-da(t+ We))3
4z(1+/1- da(t+Wy))’
) V91-4z(t+ W) (1 ++/1-da(t+Wp))3
4x
/T At W) (1 + /1 da(i + Wh))

In the previous Examples and Example we look at problems dealing with the
Stratonovich integral. The next extension is to solve Burgers type equations dealing with a
classical Ito integral. We consider stochastic Burgers equations as given in [LR15|. Remark
5.19 in [LR15] includes without consideration of the assumptions that the equation

= (Au+h(u) - Vu) dt + B(u) dW

is called stochastic generalized Burgers equation if A is the Laplace operator, W is a
cylindrical Wiener process on a Hilbert space and h = (hq,...,hq): R — R? are Lipschitz
functions. Due to the fact that we want to apply the heuristic method of stochastic
characteristics, we can only look at first order stochastic generalized Burgers equations in
one dimension perturbed by a standard Brownian motion W;. Hence we consider equations
of the form

du = h(u) - Vu dt + B(u) dW;. (5.15)

To get a better view of the calculations we firstly solve the so-called stochastic Burgers
equation for dimension one with h(u) = u. Furthermore, we choose a special diffusion
term B(u) = V/2u. Since the perturbation is not given by a Stratonovich differential, we
have to apply the [to-Stratonovich formula. Before we come to a concrete example namely
Example [5.5] below, we need the following result.

Lemma 5.4 Let W, be a standard one-dimensional Brownian motion and ¢ > 0. Then the
equation

du(z,t) = u(z, t) (w t) dt + cu(x,t) dW; (5.16)

s equivalent to

du(z,t) = (1 - —2) u(z, t) (x t) dt + cu(x,t) o dW,; (5.17)

Proof. The result is a classical application of Theorem and in particular (2.12]), since

u(z,t) —u(z,0) = [ u(x, 8) (a: s)ds+ [ cu(x,s)dWs

u(z, s) (:L' s) ds +

~ % f O[cul
0

cu(z,s) odWs

O\m o
o O

(z,8)-cu(x,s)ds
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5. APPLICATION TO STOCHASTIC BURGERS EQUATIONS

t t
= [ u(:): s) Ou (z,s) ds+ fcu(x,s) o dWs.
0 Oz 0

Hence we obtain ([5.17)) in terms of the Stratonovich integral. O

Example 5.5 Let W; be a standard one-dimensional Brownian motion. Consider the
following equation for x € R, t € [0, T]:

{du(w,t) u(z, t) % () dt + VB (e, 1) W, _
u(z,0) =
Due to Lemma we know that s equivalent to
2
du(a,t) = ( (f) ) (x t) (:c,t) At + V2 u(z,t) o dW;
(5.19)

2u(m,t) odW;
u(z,0) = 2°.

Let us assume that u solves equation and that the stochastic characteristic curve
(&,mt) as stated in Chapter 3 exists. Then the stochastic characteristic equations consid-
ering

F(§t7ntaxt7 Odt) = \/57715 ° th

are given by
dé& =0 (5.20)

and

dng = V2 n; 0 AW, (5.21)
With initial condition no(z) = z2 the equation dn; = \/§7lt o dW; has the solution

ne(x) =xQexp(\/§Wt), (5.22)
where we applied Lemma . Furthermore, we obtain for the solution
&(x) = .
Obviously, the inverse process of &(x) is given by
&' () =
Hence we set for almost all w and all (x,t) with t < 6(x,w)
u(x,t) = x? exp(ﬂWt) (5.23)

to obtain a candidate for a solution to , We finally have to verify that u is really a
local solution to . Due to the chain rule for Stratonovich integrals we receive

t t
u(x,0)+/\/§u(:z,s)0dWS:m2+[\/§m2exp(\/§Ws)odWS
0 0

t
=22 +V22° fexp(x/ﬁWs)odWs
0
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1 1
=22 + /222 [— exp (\/§Wt) - —exp(0)

V2 V2
=x2+\/§x2%exp(\/§Wt)—\/§x2%
=xgexp(\/§Wt)

=u(z,t).
Now we extend Example [5.5/to the case of B(u) = u.

Example 5.6 Let W; be a standard one-dimensional Brownian motion. Consider the
following equation for x € R, t € [0, T]:

du(z,t) = u(x,t)?(x,t) dt +u(x,t) dW;
x

(5.24)
u(z,0) = 22
Due to Lemma[5.4) we know that is equivalent to
1 ou
du(z,t) = (1 - —)u(x, t)—(z,t) dt + u(x,t) o dW;
2 Ox
1
= 5u(m,t)g—u(x,t) dt + u(z,t) o dW; (5.25)
x

u(z,0) = 2°.
Let us assume that u solves and that the stochastic characteristic curve (&,mn) as

stated in Chapter 8 exists. Then the stochastic characteristic equations considering

1
F (& mey xt,0dt) = 37X dt +mn o dWy
are given by
1
dge = —5me dt (5.26)

and

dnt =MN¢o th (527)
As before we apply Lemma to equation with initial condition g(x) = x2, ¢ = 1

and obtain the solution

mi(x) = 2% exp (W7). (5.28)

Now we plug mnto and get the integral equation
1 ¢
&(z)=x- 5:52 f exp(Ws) ds.
0

Under the condition that the solutions &,m: exist up to the explosion time T we can find
the inverse process. Up to another explosion time & we obtain for almost all w and all
(x,t) with t < 6(z,w)

2z

&' () = t :
1+ \} 1-2z (f exp(Ws) ds)
0
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For the reader’s convenience the details can be found in Lemma[D-5 Hence we define for
almost all w and all (x,t) such that t < 6(z,w)

422 exp(W;)

(SN

to be a candidate for a solution to . Due to the assumptions we finally have to verify
that s really a local solution to 5.25). So we will show that u fulfills

u(z,t) = (5.29)

(;_?(x,t) = u(gj t) (I t) +u(a: t)Wt (530)

Detailed calculations concerning the partial derivatives are given in Lemma[D.G. The partial
derivative of u with respect to time t is given in terms of a short notation for

¢
Z:= |1- 23:([ eWs ds)
0

by
du d [ 4z2eVt
L O R P
dt dt | (1+2)2
_4a%eM[Z(1+ Z)* Wy + 20"t + 20" 7]
Z(1+2)4
4a%eMt [Qxewt + Wi Z(1+ Z)]
Z(1+2)3
Furthermore, we have for the right hand side of
1
—u(x, t)d (z,t) +u(z, t)W,
2 dx
1 dg2eWe (Z(l +27)% - 8xeMt + 8x2eWt(f0t eWs ds)(l + Z)) Ax2eWe T,
== +
2(1+2)2 Z(1+2)* (1+2)2
922eWe (Z(l + Z)?% - 8xeVt + SxZGWt(_[Ot eWs ds)(l + Z)) 4z2eWe T,
T (1+2)? Z(1+2)1 T2y
. 2$26Wt(2(1 +Z)%-8zet + 8x2ve(f0t esds)(1+ Z)) A2V,
- Z(1+ 2Z)6 (1+Z)2
QxQeWt(Z(l +7Z)-8xet + 8x2eWt(f0t eWs ds))(l +7) 4I 2 We,
- Z(1+ 2Z)6 (1+Z)2
2$26Wt(Z(1 +Z) -8zt + 827t ( Ot eWs ds)) 4z2eWe T,
B Z(1+2)5 T2y
1622 Z(1+ Z) + 162 PV (fy e ds) + 4aPeMWLZ(1+ 2)°
Z(1+2Z)5
402t [4zeM Z(1+ 2) + 42V ( [ eV ds) + WeZ(1+ 2)?]
- Z(1+ 2Z)5 ‘
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By using
t
4xeMt Z(1+ Z) = 4ze™ Z + Aze™t - SxQeWt( [ e's ds)
0

we recetve

u(x t) (:c t) +u(x, t)W;

4%26Wt [40eW Z + 4meWV - 4$26Wf(f0t eWsds) + W, Z(1 + Z)3]
Z(1+Z)>
4% —2$€Wt(2 +27 - 2z( fot eV ds)) + WiZ(1+ Z)3]
Z(1+2)5
422t 22t (1+ 2)2 + Wi Z(1+ Z)?
— Z(+2)p
422t 20t + W, Z(1 + 7))
“Z(1+ 27

Hence holds and u defined by 1$ a local solution.

Let us consider again. If we choose h(u) = u® and B(u) = u?, the coefficient functions
and hence the local characteristic are not of linear growth. Consequently, an application
of the existence result in Theorem is not possible so far. But by using the heuristic
method introduced in Chapter 3 we have a tool to find a candidate for a solution.

Example 5.7 Let W; be a one-dimensional standard Brownian motion. Let us consider
by using the It6-Stratonovich formula

du(z,t) = u(z,t)? %(x t) dt +u(x,t)? AW,

= u(x,t)? —(1: t) dt +u(x,t)? o dW, —1 cu(z,t)? - 2u(z,t) - (:z: t) dt

(u(a: t) (a: t) —u(x, t)3 (a; t)) dt +u(z, t) o dW; (5.31)
= u(z,t)? Oth
u(x,0) = z2.

Under the assumption that u solves (5.31)) and that the stochastic characteristic curve

(&5, xt) as defined in exists, we obtain for
F(&,mt, X1, 0dt) = 7 o AW,

the system of stochastic characteristic equations given by

dgt = 0
dn =7 o AW,

with initial values &y(x) = = and no(x) = 22. The solutions are given for almost all w and

all (z,t) with t up to exposition time T (x,w) by

.%'2

&(z) =z and n(z) = 2w,
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Hence we obtain a candidate for a solution for almost all w and all (x,t), t up to explosion
time T(z,w) by

(5.32)

By using Newton’s derivative one can easily determine the partial derivative of u with
respect to time to verify , since

P
Hence solves locally.
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6. APPLICATION OF THE METHOD OF STOCHASTIC
CHARACTERISTICS TO STOCHASTIC TRANSPORT EQUATIONS

6. Application of the method of stochastic
characteristics to stochastic transport equations

The main component of this thesis can be found in this chapter in which we apply the
method of stochastic characteristics to the stochastic transport equation as given in An
operatorial approach to stochastic partial differential equations driven by linear multiplica-
tive noise [BR15] of V.Barbu and M. Rockner. If one compares the conditions on the
coefficient functions of the stochastic transport equation with the assumptions in Theo-
rem above, it is obvious that a direct application of Theorem 6.1.2 in [Kun97] is not
possible. Hence we try to solve the problem by using the new heuristic approach of the
method of stochastic characteristics. We do this step-by-step. That means we discuss
different cases of below to see under which assumptions an application is possible or
not. As we have seen in the previous Chapter 4 the main advantage of the method is the
explicit expression of the local solution, provided that the coefficient functions are given.
Therefore, in each subsection we consider a different example with explicit coefficient func-
tions satisfying continuity and continuous differentiability as in [BR15]. In Subsection 6.1.
below we take a look at the stochastic transport equation with Stratonovich integral in
dimension one and with perturbation by a standard Brownian motion (see Lemma [6.3{and
Example below). This subsection will end with an extended result for d-dimensional
space variables and perturbation by a series of independent copies of standard Brownian
motions, see Lemma below. In Subsection 6.2. below we discuss the dependence on
the general infinite-dimensional Wiener process as defined below in Definition [6.1} Hence,
we look at an equation without drift terms, i.e. an equation of the form

du =uodW.

For this kind of equations we formulate and prove an existence result in Theorem be-
low and give a detailed derivation. Additionally, we consider explicit orthonormal bases,
namely the trigonometrical bases on L?([0,1]) as well as on L?([0,7]), see Example
and Example below. We will see (cf. Example below) that we are not able
to combine the examples of Subsection 6.1. with our result in Subsection 6.2. In the
third subsection we look at the original stochastic partial differential equation be-
low with Itd differential and rewrite it in terms of the Stratonovich differential by using
the Ito-Stratonovich formula. Here an application of the heuristic method of stochastic
characteristics is not possible, too (see Example below). The crucial point is in the
[to-Stratonovich dilemma as we will see later.

Let O c R? be an open and bounded set with smooth boundary 00. Let ¢;,1): 0x[0,T] -
R be continuous functions with V,¢; € C(Q x [0, T],R?) for i = 1,...,d. The stochastic
transport equation is a stochastic first order hyperbolic equation on O x [0, T') of the form

d u
Au(r,t) = 3, 010, 1) 5 (o) dt = 0, uCa, ) di
= ' B (6.1)
= du(x,t) ju(x, )7 dt +u(z,t) dW(a,t)

u(z,0) = h(z).
for A\ >0, ¢ > 2 and initial function h € C?(Q). W is given as in the next definition.

Definition 6.1 A Wiener process W on a real separable Hilbert space H is defined by

V(1) = 3 e (1)WY, (6.2
2
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6. APPLICATION OF THE METHOD OF STOCHASTIC
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for all x € O, t >0, where for all j=1,2, ...
o th is an independent system of real-valued Brownian motions on (2,.%, P) with
normal filtration (F)ts0

°cj€ C%2(O,R) n H is an orthonormal basis in H and

® i eR.
We denote by | - ||o the sup norm.
Assumption 6.2 We assume that there exist 7; € [1,00), j = 1,2,..., such that for all
yeH
lvejlla <j lejlleolylm

and
o0

Z 35 lejl% < co.

Let
_1 i
=5 2
be a multiplier in V' and a symmetric multiplier in H.

One of the main questions in this thesis deals with the comparability of the methods,
namely the scaling transform approach and the method of stochastic characteristics applied
to . In Chapter 7 we will show that the stochastic transport equation has a unique
(global) solution using the scaling transform approach. Hence we will have a closer look
on the general setting and further conditions on .

6.1. The stochastic transport equation with Stratonovich
differential of standard Brownian motion
We consider H =R and a standard Brownian motion as a special case of a Wiener process

given in Definition Hence we solve problem (6.1]) in the case of pj =1, pg = 0 for all
k>1and e;(x) =1, ex(x) =0 for all k> 1. Let W; be a standard Brownian motion, hence

we obtain for (/6.2))
W(t) = W;.

Furthermore, we look at the Stratonovich differential instead of the Itd differential as
written in (6.1]).

Lemma 6.3 Let A > 0 and g > 2. Consider the one-dimensional stochastic transport
equation given by

du(z,t) = ¢1(x,t)Vu(z,t) dt — Y (x, t)u(x,t) dt
Mz, t) Juz, )97 dt + u(z, t) o AW, (6.3)
u(z,0) = h(x)

forx € O cR and t € [0, T], where Wy is a standard Brownian motion in one dimension.
Then the solutions to the stochastic characteristic equations (@ are the solutions to the
following integral equations for almost all w and x € O, t € [0,T(z,w))

&) =2~ [ 01(&(2).5) ds,
0

Wi Jo ¥(&r(a)r) dr (6.4)

n(x) =

1
-2

(In(@)l- @2 + A(q - 2)/e(q W § vler () ] )"
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Proof. We assume that u solves (6.3)) and that there exists the stochastic characteristic
curve (&, ne, x¢) defined by (3.4) in Chapter 3. The corresponding stochastic characteristic
equations (SCE)) of the semimartingale

F(&,ms xesodt) = (01(&,t)xe — (&, t)me — Anglme|2) dt + 1y 0 AW,

are given by

d& = =Fy, (&, ey X1, 0dt)
= —¢1(&,t) di

dne = F(&, M, Xe, 0dt) = Xt - F, (& mes X, 0dt) (6.5)
= [¢1 (&, t)xe — (&, t)ne — Amelme| 2 = 1 (&, t)Xt] dt +ng o dW;
= (= (&, t)me = Amelne|972) dt +m 0 AW,

where we make use of the representation result Theorem [2.39, The corresponding initial
conditions are

EO(CC) =T,
no(x) = h(x).

Under the assumption on continuity of ¢; Theorem 1.3 in [CL55] yields that there exists a
solution given by an integral equation. Furthermore, V¢ € C implies Lipschitz continuity
since we are acting on (O x [0, T]). Theorem 2.2 in [CL55] shows that the stochastic
characteristic equation d§; = —¢1(&,t)dt with initial condition £y(x) = = has a unique
solution given by the integral equation

ft(x)Zl’—_/éﬁl(fs(x),S) ds.
0

Now we solve the system of stochastic differential equations (6.5)) up to an explosion time
T'(x). We achieve by an equivalence transformation

dn; _9 odW;
—=(- SO — A =) 4+
I (= (& t)m — Aplme|®2) + e g
Rewritten in Newton’s notation (W. = °dd‘;Vt) for the time derivative we conclude

e = (= (& t)me = Mpelnel™2) + me Wi,
which is equivalent to
1. _ .
n—m = —1p(&,t) = Al 17 + W,
i
and we finally obtain

. = _
Em — Wi+ (&, t) = =l 72 (6.6)

Now we define ,
vi=In(m) - Wi+ [ 0(€.s) ds, (6.7)

hence

. 1. .
vy =—np = Wi+ (&, t)
Mt
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is equal to the left hand side of equation . It is clear that

vo = In([h(x)]),

t (6.8)
|ne| = exp(yt + Wy - fo (s, 8) ds)
hold. By substitution (6.7)) we achieve
Dy = <Ap|172 = ~Ae(0 D (-DWeo=(a-2) [y ¥(8s) ds
which is equivalent to
—(q- Z)Dte_(q_Q)”i =g - 2)6(11—2)Wte—(q—2) Jew(€s,s) ds
and hence
%[e—(q—2)w] _ (g - 2)elaDWeg~(a-2) [§ (6es) ds
Due to the fundamental theorem of calculus the above equation is equivalent to
t
e~ (@2t _ ~(a-2)vo AMg-2) f e(a-2)Ws o=(¢-2) [§ ¥ (&rr) dr g
0
Combining the definition of v; and this leads to
e (02 e(a-2We o=(a-2) J (&) dr
¢
(@) )+ Mg -2) [ 0D D e o g
0
and hence
e (02 = e (2DWe (a-2) f w(rr) dr
¢
()2 2 Mg -2) [ oD @D e g)
0
Finally, we get for almost all w and z € O, t € [0,T(x,w)),
ewt e_ fot "ZJ(ET(I)’T) dr
Ut(x) = t . 1
()20 4 A(g - 2) [ elaDIWeri w60 a7 )7
0
where T'(z) is the explosion time defined by
t
T(z) = inf{t e[0,T) [ A(¢-2) f el DWerfg b (& (@) ar] g —|h(x)|_(q_2)}.
0
O]

One advantage of the method of stochastic characteristics is that one obtains an explicit
solution provided that proper coefficient functions and initial conditions are given. There-
fore, we look at a one-dimensional stochastic transport equation with simple but concrete
drift functions ¢1,, initial function h(z) = 2% and standard one-dimensional Brownian
motion W;. Let O =[0,1] and ¢; be the identity map.
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Example 6.4 In the special case of ¢p1(x,t) =x and (x,t) =0 there exists a solution to
the following one-dimensional stochastic transport equation given by

du(w,t) = (2 Vu(,t) = Mo, ) julz, )] ) dt +u(z,t) o dW; 69)
u(z,0) = 2.

By separation of variables we determine the solution &(z) = xe™, which solves the stochas-
tic differential equation

as,
@) = ().

Obviously, the inverse process is given for all x € [0,1], t € [0,T(x)) by

& () =ae,

where
T(z):= inf{t>0’ ~ze' =0} AT=T.

Due to Lemma[6.3 we additionally obtain

ne(x) = (exp(Wt)) ((xQ)(q2) +Ag-2) f ela=2Ws ds) 7 :
0

Hence we define for almost all w and z € [0,1], t € [0,T(z,w))

‘H
»

u(x,t) = (exp (W) ) ((mzeZt)_(q_Q) +A(g-2) f ela=2)Ws ds) : (6.10)

0
to be a candidate for a local solution to . The initial condition for t = 0 is fulfilled,

since

B

»

q-

0
u(z,0) = (exp (Wo) ) ((x2)—(q—2) +Mg-2) / o(-2)Ws ds) Z .2
0

Now we have to verify that 1s really a solution to . For the reader’s convenience

we calculate the partial derivatives in Lemma[D.7], Due to these results with
t
N := (x262t)_(q_2) +XMq-2) f el2DWs 5
0

we have

. 2021 -(4-2) _ \p(a-2W;
%(x,t)=u($,t)wt+u(x,t) (2(“" ) Ae )

N

2222 (22626)-(a-1) _ \pla-2)Wi ‘
=u(x,t) ( (7™ (ae )N Ae )+u(w,t) Wy

2($€2t)(x262t)_(q_1)
N
2N (226N (g-1)
- ((2:E€ )(z%e™)
N
= 2 vu(z,t) - Au(z,t) [u(z, )72 + u(x, t) W,

and hence that u solves equation .

Wi \472
)—)\u(az,t) ( c - ) +u(x,t) Wy

=z u(z,t) ( -
N a2

) “Au(z, t) Julz, )72 + u(z, t) Wy
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For the sake of completeness we extend Lemma to the d-dimensional case and pertur-
bation by a series of independent copies of a Brownian motion. We note that we are no
longer in the situation of Definition [6.1

Lemma 6.5 Consider the d-dimensional problem of given by

d ou
du(z,t) = 3 ¢i(x, t) 5 (w,t) dt = (. t)u(z,t) dt
=1 7
) fu(r D2 dt+ Y u(z, t) o AW (6.11)
j=1
u(z,0) = h(x),
forz e Q.

Under the assumption that u solves and that there exists the stochastic characteristic
curve (&, Xt), given as in equation , the solutions to the stochastic characteristic
equations have to satisfy the following integral equations for almost all w and x € Q with
x=(x1,....,2q) and t € [0,T(z,w))

& (@) =a1- [ o1& (@).s) ds,
0

& (@) = 24 Of Ga(s(2),5) ds, 6.12)
exp(jofj1 Wg)exp(ofq/}(fr(:c),r) d'r)

ne(x) =

j=1

(o=} . S L :
t( —2>[2 Wi~ [ (& (),r) dr] a2
(’h(x)‘_(q_” PAg-2)[e LA dS)
0

Proof. By the same technique as in Lemma we obtain that the corresponding stochastic
characteristic equations for

d , ) oo .
F(&,me, x¢,0dt) = (Z@(&,t)xi — (&, t) me = Mg |mel? 2) dt + "m0 dW
i=1 J=1

are given by
dgtl = _FX% (gbnta Xt» Odt) = _¢1(£t7t) dt

ded = —F\a (&t me Xty 0dt) = =¢a(&,t) di

. (6.13)
g = F (&5 Xt,0d8) = 3 g - Fyg (&40 X, 0dt)

i=1

=(-v(&. e - )\nt|77t|q72) dt+ > neo dwy.
i1

Under the assumption on continuity of ¢; and Lipschitz continuity the results Theorem 1.3
and Theorem 2.2. in [CL55] are also applicable for systems as written in [CL55, Chapter 1,
Section 5]. And we conclude that the stochastic characteristic equations d&f = —¢; (&, t) dt
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with initial condition 56(33) = x; have unique solutions given by the integral equations

t
E(x) =2 - / ¢i(&s(x),8) ds, fori=1,...,d.
0
By a similar calculation as in the proof of Lemma [6.3| we end up with

exp (j§1 Wt]) exp ( Oft (& (x),r) dr)

ne(x) = — —.
t (q—2)[ > Wi-[¥(&-(z),r) dr] a-2
(|h(x)|‘(‘1‘2) +Ag-2)[e i=1 0 ds)
0

6.2. Application to general infinite-dimensional Wiener
processes

Up to now we considered series of standard Brownian motions. Now we investigate what
happens if we perturb an equation by a general infinite-dimensional Wiener process on a
Hilbert space H as given in Definition[6.1} Let us look at the following differential equation

du=1uodW
(6.14)

u(z,0) = h(x)

for x € O and initial function A on O with values in R. Due to Definition the problem
is equivalent to

u= 3 cej(x)uodW
d j;luj i (@) o dW; (6.15)
u(z,0) = h(z).

Equation (6.14)) has no drift term which simplifies the corresponding stochastic differential
equations if we apply the heuristic method of stochastic characteristics as we will see in
the proof of the following existence result.

Theorem 6.6 Let W be a general Wiener process in the sense of Definition[6.1] satisfying

Assumption . Then a local solution to and , respectively, is given for almost
all w and all x € O with t € [0,T(z,w)) by

J=1

u(z,t) = h(x)exp (i ujej(a:)Wg) . (6.16)

Before we prove the theorem, let us see how to deduce the expression of the solution (6.16]).

Derivation

Obuviously, we apply the heuristic method of stochastic characteristics as introduced in Chap-
ter 3. Under the assumption that u solves and that (&,m, x¢) is the stochastic
characteristic curve, we obtain due to the representation result Theorem|2.39

F(&,me, xt,0dt) = > pje (&) my o thj-
j=1
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Consequently, we look at the corresponding stochastic characteristic equations with initial
conditions &y(x) = x and no(x) = h(x), which are given by

dg =0
and dmy = Y pje;(&)m o AW/
j=1
= > pjej(x)ne o W,
j=1

Evidently, we receive the trivial solution &(x) = x. By using Newton’s derivative we deter-
mine by an equivalence transformation

= Zlﬂjej(x)ntwtj
‘]:
= Wi = X nei (@)WY
< Lin— X pie;(x)W{ = 0
7=1

= % ln(nt)—zlujej(x)Wg] = 0
Jj=

- mm>=mgwqum¢HMMM)
= n(x) = h(z)exp (;i ujej(:z:)Wf).

The inverse process &% of &(x) = x is naturally equal to

&l(x) =w.

Hence a candidate for a local solution to can be defined for almost all w and x € O
with t € [0, T (z,w)) by

ua,t) =n(& ()

o0 , 6.17
= h(x) exp(zl,ujej(m)Wtj), (6.17)
j=

where T'(x) is the explosion time of n,. The stopping times as defined in Deﬁm'tion are
given by

Tinv(2) = inf{t > 0| det D& (z) =0}
= inf{t > 0| detI =0} = oo
7(x) =T(x).

Now we have to prove that (6.17)) is a solution to (6.15)), i.e. we have to show that
du >, -
E(mvt) = Z:lujej(SU)u(l',t)Wt (618)
=

holds.
Proof of Theorem[6.6 We have

du d ad ;
E($, t) = o [h(m) exp (j; ,ujej(x)WtJ)]
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= h(x) (i ujej(x)Wg) exp (i ujej(:r)Wg)
j=1 J=1

- iujeg‘(w) (h(m) exp (2 Mjej(w)Wtj)) Wy,

and therefore the statement is valid.
O

Now we apply Theoremto the stochastic transport equation (6.1]) acting on H = L*(Q).
Let us consider the one-dimensional case with @ c R and the following orthonormal bases
which are in particular continuously differentiable.

Theorem 6.7 The following collections are orthonormal bases on L*(Q):

{\/gsin(jac)} for O = [0, 7], (6.19)

j21
{\/isin(jﬂ'x)} o for ©=10,1]. (6.20)
7>
Statement (6.19)) is stated and proved in [RY08, Theorem 3.56] and result (6.20) including
the proof corresponds to Theorem 4.1 in [HW96]. For p1; € R, j > 1, satisfying

o0

4
Zi — 15 < 00 (6.21)
J:

Assumption is fulfilled for the orthonormal basis (6.19). For the reader’s convenience
it is proved in Lemma[D.§ Under the assumption

85 < o0 (6.22)
j=1

on u; € R, j > 1, the analogous result is stated in Lemma for the orthonormal basis
(16.20]).

Example 6.8 Let W be a general infinite-dimensional Wiener process on L*([0,7]) with

orthonormal basis ej(x), j > 1, given by . Let pij € R, j > 1, satisfy . Then a
local solution to

du=uodW=>) g,uj sin(jx)uothj
j=1 vV 7
u(z,0) = h(z)

is given for almost all w and x € [0, 7] with t € [0,T(z,w)) by

u(x,t) = h(x) exp(i %Mj sin(jx) Wtj) (6.23)
i

Obviously, the above example as well as the following one are applications of Theorem
T'(x) denotes the explosion time of 7; as written in the proof of Theorem .

Example 6.9 Let W be a general infinite-dimensional Wiener process on L*([0,1]) with
orthonormal basis ej(x), j > 1, given by . Let pj e R, j > 1, satisfy . Then a

local solution to

du=uodW=>" \/§Mj Sin(ij)uothj
j=1

u(z,0) = h(x)
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is given for almost all w and x € [0,1] with t € [0,T(x,w)) by

u(z,t) = h(x) exp(i V2 sin(jm) Wt]) (6.24)

J=1

In the previous part we have seen some examples where the method of stochastic char-
acteristics is applicable and leads to an explicit expression of solutions. Now we try to
combine Example [6.4] and Example [6.9]

Example 6.10 Let W be a general infinite-dimensional Wiener process on L*([0,1]) with

orthonormal basis e;(x), j > 1, given by . Let pj eR, j>1, satisfy . Consider
for z €[0,1]

du = (z Vu - Aulu??) dt +uodW
= (3: Vu—)\u|u|q_2) dt + i \/i/tj sin(ij)UOthj (6.25)
j=1
u(z,0) = h(z).
Assume that u is a solution to and that there exists the stochastic characteristic
curve (&, m, x¢). Let us define

F(&,me, xe,0dt) = (& xe - )\77t|77t|q_2) dt+ ) V25 sin(j &)y o awy.
=1

Then the corresponding stochastic characteristic equations are given by

d& = =& dt,
& & (6.26)
o) ==
and
dp = (= Ample972) dt+ S V2 gy sin(G &) o AW,
2 (6.27)

no(x) = h(z).
Due to Example[6.4] we know that the solution to is given for all z € [0,1], t € [0, T)

by
E(x)=xe.

Now we try to determine the solution to i the same way as before and obtain by
using Newton’s derivative

1 0o o
— 1 = —)\|77t|q_2 + Z \/§uj sin (ije‘t) Wi,
Up i
which is equivalent to
1 d w
n_ﬁt - Z \/illj sin (jﬂa:e’t) Wtj - _)\|,,7t|q72‘
t j=1

With our techniques there is no chance to find the primitive function of the term
sin (jﬂ'xe_t)Wt]. Hence the method of stochastic characteristics is not applicable in the

mized Example at the moment.
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In the previous example we have seen that we are not able to solve the stochastic trans-
port equation by the method of stochastic characteristics. In particular a time-
dependence of solution & causes problems. To see this we look at the general case of the
one-dimensional stochastic transport equation with Stratonovich differential given by

du = (¢1(z,t)Vu - ¥ (2, t)u - Au |u|q_2) de + i pjej(x)uo thj
j=1 (6.28)

u(z,0) = h(x).

Provided that wu solves ([6.28) and that there exists the stochastic characteristic curve
(&, mt, x¢), we end up with the stochastic characteristic equations

d&; = —¢1(&,t) dt

dige = (=(& B = M | e+ 3 puj e (&) 0 W]
j=1

(6.29)

as we have seen before. This system of stochastic differential equations can only
be solved if d&; = —¢1(&,t) dt generates a time-independent solution. Due to the initial
condition &y(z) = x the only time-independent solution is &(x) = x which implies ¢1(z,t) =
0. In this special case we are able to determine the solution of

dne = (=0 (&, ) = Mg e 72) dt + > pje (&) me o AW
=1

= (= (@, ) = A e %) dt + > pjej(a) me o AW
j=1

As seen many times before the equation is equivalent to

1 ) . :
o +p(a,t) = 3 pjej(x) W] = A2
j=1

In particular we find a substitution for the term 3 p; ej(x)Wtj as in the proof of Theorem
i=1
[6.61 This is not the case if we have to solve

1. = g i
ant (&) = > g e (€)W = X972,
j=1

where the stochastic characteristic curve & depends on time t.

6.3. The stochastic transport equation with Ité differential

Up to now we considered the stochastic transport equation with Stratonovich differential.
In [BR15] the equation is given with Itd differential and for general Wiener processes as
defined in Definition [6.1l Due to the fact that the method of stochastic characteristics
is only working with Stratonovich differential we have to rewrite by applying the
Ito-Stratonovich formula.
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Lemma 6.11 The stochastic partial differential equation s equivalent to

du(zx,t) = Zqﬁz(x t) (3: t) dt — ¢ (x, t)u(x,t) dt

—)\u(x t) |u(x )92 dt

5 Z > 12 (@l t) () de

11]1

e (6.30)
_522 ](x)u ](55) dt
i=1j=1
+2 ses(@)ula,t) o dWi
u(z,0) = h(x)

for allz € O and t € [0, T1.

Proof. We use the [to-Stratonovich formula in d dimensions. The application of Theorem

[2:35] provides

d
du(x,t) = (Zl x t) (a: t) =z, t)u(z,t) = u(z, t) |u(z, )" 2)

oo

Z e (@)u(z,t) AW

.

(Z@(:@ t) (3: £) = (@, t)ulz, £) = Mu(z, ¢) [u(z, )% ) dt

* Z pjej(@)u(a,t) o AW - Z Z pjej(x)u(z,t) Olute t):f]e](x)]

7, 15=1 )
d
:(;qﬁl(m t) (m t) —(x, t)u(x,t) = Au(w,t) |u(z, )| 2)

+ Z uw(z, t)piej(x) o thj
=1

Zd: i (Mjej(x)u(m,t)[au(x?t)ﬂjej(l“) +u(w, t)p; aej(x)]) dt

bac - ox; ox;

[\')l?—‘

.
—_

d
- (X e, t) (x t) = (. t)ulz,t) - Mu(z,t) [u(z, )7

i=1

d oo
—%ZZ e(x)u(z, t) xt)——zgujej(x)u

lel

J<x>)

i_o: pie;(x)u(z,t) o dWJ

O

Example 6.12 Let W be a general infinite-dimensional Wiener process as in Definition
on H = L*(0) and suppose that Assumption 18 satisfied. For simplicity we consider
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the stochastic transport equation i dimension one with ¢1 =1 =0 given by
du(z,t) = -Au(z, t) [u(z, )72 dt +u(z,t) dW
= Mz, t) [u(z, )72 dt + Y pjej(z)u(z,t) aw; (6.31)

J=1

u(z,0) = h(z).
By applying Lemma equation is equivalent to

14L& )
du(z,t) = —3 ; Z (ej(x) u(z, t) (gg t) +ej(z)u ) da
“Au(z,t) Ju(z, )72 dt + Z ;i () ue,t) o WY (6.32)
j=1
u(x,0) = h(z).

Under the assumption that u solves and (&, ne, xt) is the corresponding stochastic
characteristic curve as defined in Chapter 8 the associated system of stochastic character-

istic equations for

1 d oo de.
F(&,me, xt,0dt) = 5 Z Z (e](& i Xt +ej(&) (m)2 J (gt)) dt
- AN |771;|q_2 dt + Z pjei(&)me o thj
=1
are given by '
dg; =-F i(gtantyxta Odt)
1< 6.33
52 e (&) mdt fori=1,...d, (6.33)
and
d .
dnt = F(étanhxta Odt) - Z XiFX; (é.t?nta Xts Odt)
=1
1 & Oe; ~
( 3 E ? (&) = el 2) dt (6.34)

MS LM&

+ €j (gt) U dW]

Il
—_

J

Obuviously, does not generate a time-independent solution. Hence we are not able to
find the solutions (&,m:) and finally solve by the method of stochastic characteristics.

Due to Example we conclude that at the moment we have no technique to solve (6.1))

by the method of stochastic characteristics.

Remark 6.13 In subsection 6.2 we have shown that equation given by

du =uodW
= > njejuodWi
j=1
u(z,0) = h(x)
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for x e @ c RY is solvable by the method of stochastic characteristics. Furthermore, a local
solution is given for almost all w and x € O with t € [0,T(z,w)) by

u(z,t) = h(z)exp (i,uj e;j(z) Wtj) ,

where T'(x) denotes the explosion time. Due to Lemma the solution u solves also
locally

ad 0
du ZZM?(eiu%+ejuzaej)) dt

Ty

Il
—
N | —

~
I a
_
<
I
_

= (6.35)

I
—_——
DO | =
iMs
8
=
N V)
—_——
('b
SO
IS
Q
I
+
<
[N
Q|
S0
N—
N —
o,
~

If we compare equation gien by

du(x,t) = ( > Z 1 (ej (2)?u(z, t) (a: t) +e;(x) u?(a,t

i=17=1
+u(x,t) dW(z,t)

with equation

o)) a

du(z,t) = (Z oi(z, t) (:L' t) = P(z, t)u(x, t) — (e, t) ul(x, t)|T 2)
+u(x,t) dW(x,t),

one could come up with the idea to find a proper choose of the coefficient functions ¢;,v such
that can be written in terms of . But this is not possible because in particular
the coefficients ¢; do not depend on u. Accordingly, we see no chance to solve the general
stochastic transport equation by the method of stochastic characteristics.

Remark 6.14 In general a direct application of the main result given in Corollary[{.4 to
the stochastic transport equation is not possible. In [BR15] we have the assumptions that
the coefficient functions ¢; are continuously differentiable in space and i is a continuous
function. In [Kun97] the coefficient functions have to be at least 5-times continuously dif-
ferentiable in all variables (x,u,Vu), Holder continuous and of linear growth. In particular
the term Au|u|T2 for q > 2 does not fulfill these conditions. In very special and simplified
cases an application is possible, as seen in Example [[.10. In this case we take ¢ =2 and
consider space-independent orthonormal bases. Hence the critical term \u|u|7~2 for ¢ > 2 of
the stochastic transport equation as written in [BR15] has been dropped in Example .
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7. The scaling transform approach

In this chapter we repeat the operatorial approach developed by V. Barbu and M. R6ckner
in An operatorial approach to stochastic partial differential equations driven by linear multi-
plicative noise [BR15]. We do this in the case of the stochastic transport equation, despite
the fact that the conditions of the main existence and uniqueness result Theorem 3.1 in
[BR15] are not exactly satisfied. Nevertheless it is possible to apply the operatorial ap-
proach as written in [BR15, Section 6.3.]. We reproduce this in a detailed and restructured
way to see at the end that the scaling transform solves the problem. Furthermore, we illus-
trate in a summarizing diagram the three considered methods in the case of the stochastic
transport equation, see Subsection 7.3. below.

The scaling transform approach is applicable to general infinite-dimensional stochastic
partial differential equations for ¢ € [0, T] of the form

{dX(-,t) = —AC )X (1) dt+ X (1) dW(-, t) -

X(,t) = h(),

where A is a monotone-like operator, W is a Wiener process and h is some initial function.
We consider this type of equations on a Gelfand triple

VcH2xH cV”.

The idea of the scaling transform approach is to multiply the equation with e"V(®) | ie. we
consider that solutions are of the form

X(#) = "y (r) (7.2)
and transform SPDE ([7.1]) into a random differential equation

Su(t) =~ TOAD (T Oy(0) - p y(e), te[0T)

y(0) = h,

(7.3)
where 1 depends on the representation of the Wiener process. Then we rewrite equation
into an equation of the form
By+ Ty+ oy =0, (7.4)
where o7, % and 7 are maximal monotone operators on a new defined Gelfand triple
VcHcV".

Finally we apply an existence and uniqueness result for such kind of operator equations
and hence we obtain existence and uniqueness of solutions to (|7.1)).

7.1. The existence and uniqueness result of V. Barbu and
M. Rockner

Let T >0 and [0, T] be the underlying time interval. Let (©,.%, P) be a complete prob-
ability space with normal filtration (% ). Let (V)] - |v) be a reflexive Banach space
continuously and densely embedded into a real separable Hilbert space (H, || g). By the
Riesz isomorphism (cf. [Brélll Theorem 5.5. - Chapter 5.2]) H is isometric isomorph to
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its dual space H* and the dual pairing fulfills v« (v, w)y = (v,w)y for all v e H,w e V. The
dual space is again continuously and densely embedded into the dual space of V' denoted
by V*. The above construction forms a Gelfand triple (cf. [Emm04, Definition 8.1.7])
written as

VcHxH cV”.

Let O ¢ R? be a bounded and open subset with smooth boundary 0Q. We consider a
stochastic differential equation with multiplicative noise in H of the form

{dX(t) =-A(t)X(t) dt + X (t) dW(¢t) (7.5)

X(0) = h,

where h € H. The perturbation W is a Wiener process on H in the following sense as
already defined in Chapter 6. Let us recall the definition.

Definition A Wiener process W on a real separable Hilbert space H is defined by
W(x,t) := Z /Ljej(x)Wtj, (7.6)
j=1

for allxeQ, t >0, where for all j =1,2, ...

o Wtj is an independent system of real-valued Brownian motions on (2,.%,P) with
normal filtration (F¢)ts0

e ¢;€C*(0,R) N H is an orthonormal basis in H and
® i eR.
Furthermore, let Assumption [6.2] be fulfilled.

Definition 7.1 A (%;)s0-adapted process X : [0, T| - H with continuous sample paths
1s called a solution to for initial value h € H, if it satisfies for some 1 < q < oo

X e L™((0, T),L*(Q, H)),
X(t):h—fA(s)X(s) ds+/X(s) dW(s), € [0, T,
0 0

AX e LTT((0, T) x Q,V*) and X € LU((0, T) x Q, V).

In [BR15] the method of scaling and transforming a stochastic partial differential equation
into a random differential equation is used to prove an existence and uniqueness result
for equation under certain conditions. We state this result in Theorem below.
The random differential equation corresponds to an equation with maximal monotone
operators. Even if one does not know the validity of these conditions, it is possible to
apply the method. To call attention to the scaling transform approach we state the main
result as well as the underlying conditions HP (i) - HP (iv).

HP(i) V ¢ H c V* is a Gelfand triple with a separable, reflexive Banach space V' and
separable real Hilbert space H. By Asplund’s Theorem [Barl0, Theorem 1.1.] the
spaces V and V* are strictly convex with respect to an equivalent norm on V.

HP(ii) The operator A: [0,T] x V x Q — V™ is progressively measurable, i.e. for every
t € [0, T] the restricted operator Alpg xvxa is B([0,t]) ® B(V) ® F-measurable,
where B denotes the Borel-o-algebra on the corresponding spaces.
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HP(iii) There is ¢ > 0 such that, for each ¢t € [0, T] and w € Q, the operator

G:V—-V"
u=u(t,w) > G(u) =du+ A(t,w)u = ou(-, t,w) + A(t,w)u(:, t,w)

is monotone, demicontinuous and for some 1 < g < oo there are constants ~; >
0,72,7v3 € R,4; €e R with ¢ =1,2,3 such that

v (At u,u)y, > 1 HUH‘{/ +72”u||%{ + 3 VueV,te[0,T], (7.7)
lA@) v < HlulE +32 + 33w, YueV,te[0,T]

P-a.s.

HP(iv) e*W(®) s, for each ¢, a multiplier in V and a symmetric multiplier in H such that
there exists a (%) -adapted, R, -valued process Z(t), t € [0, T], with

IE[ sup |Z(t)|r] < 00

te[0,T]
for all 1 <r < oo and
[ Oyl < Z(0) Iyl Vie[0,T], VyeV, (7.9)
[ Oyl < Z@) lyla Vte[o,T], VyeH, (7.10)
<6iw(t)$7y>H = (z,e*"Wy) . Vte[0,T], Va,yeH (7.11)

P-as. and t = eV ®) ¢ H is continuous for fixed w.

For the reader’s convenience the definitions of monotonicity and demicontinuity are men-
tioned in Appendix E, namely in Definition and Definition respectively.

Theorem 7.2 Under hypotheses HP(i)- HP(iv), for each h € H, equation has a
unique solution X. Moreover, the function t — e‘W(t)X(t) is V*— absolutely continuous
on [0, T| and

T
dr _w &
W(t) & 1,-W(t) q-1
EL/”e dt[e X(t)] LLdtf<oo

holds.

Details can be found in [BR15|. In this chapter we focus on the stochastic transport
equation. Therefore we study this equation explicitly and finally apply the following main
result concerning the existence and uniqueness of a solution to an operator equation of the

form (7.4)).

Proposition 7.3 Let o/, A be mazximal monotone operators in V x V*. Let F: D(T) c
VY = V* be a maximal monotone operator such that B+ 7 is maximal monotone in ¥V xV*.
Then, for any f €V, there is a unique solution y to the equation

By+ Ty+Ady-=f. (7.12)

The proof can be found in [BR15, Proposition 4.4.]. The strategy for proving the existence
and uniqueness result for the stochastic transport equation is to apply the above Proposi-
tion to well-chosen operators. We will not apply Theorem directly. The basic tool
of the operatorial approach is the following Definition [7.4] of a maximal monotone operator
(cf. |Barl0), Definition 2.1.]).
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Definition 7.4 Let V,V* be two real Banach spaces. Any operator A: V. — V™ can be
identified with its graph
graph{(u, Au) e V. x V*}.

Therefore, we define for AcV xV*

Au:={veV"|(u,v) e A},

D(A):={ueV|Au+ o},
R(A):= |UJ Au
ueD(A)

A set AcV xV* is called monotone, if
v (v1 —va,u1 —ug)y >0 for all (u;,v;) € Ayi=1,2.

A monotone set AcV xV* is called mazximal monotone if it is not properly contained
i any other monotone subset of V- x V*.

Further necessary tools are the following theorems of [Barl(] which give in particular
equivalent statements to maximal monotonicity.

Theorem 7.5 Let J be the duality mapping of V.. Let V and V* be reflexive and strictly
convex and let Ac'V xV* be a monotone set. Then A is mazximal monotone in V x V™ if
and only if, for each A >0 and ¢ >0

U (Au+ AT () ul ) = v
ueD(A+NJ|- |5

holds.

The above result including the proof can be found in [Barl(, Theorem 2.3]. In Appendix
E we give the definition of a hemicontinuous operator, see Definition [E.3] Furthermore,
we remember Theorem 2.4 from [Barl0]:

Theorem 7.6 Let V be a reflexive Banach space and A: V. — V* be a monotone and
hemicontinuous operator. Then A is maximal monotone in V x V*,

7.2. Application to stochastic transport equations

Let O c R? be a bounded and open subset with smooth boundary 90 and ¢ > 2. Consider
the Gelfand triple
9
LY(O,R) c L*(O,R) c L+1(0,R). (7.13)

We study the hyperbolic stochastic partial differential equation of first order given by

X (z,1) = zaz( t)aX(x 1)

~AX (z,t) |X(ac,t)|q_2 dt + X (z,t) AW (z,t)
X(z,0) = h(z),

dt - B(z,t) X (x,t) dt
(STE)

X(t)zOonT::{(x t) € 00 x [0, T] ‘ Z%(»T t)n;( 1:)<0}
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where we assume

(1)i=1,....a is the normal vector to 0O,

A>0, (7.14)

he H'(O,R)nLYO,R),h=00n 7T, (7.15)

a;,eC(Ox[0,T],R)Yi=1,...4d, (7.16)

6041' 8041' —~ d

pi= (o, — , T],R%), 1

Voo (ag:1 (%d)eC((OJX[O 1, R%) (7.17)
(7.18)
(7.19)

1
5 divy a(z,t) + B(z,t) > v,

with v = ¥, M?’y]?”ejuzo and 7; € [1,00), j > 1, as given in Assumption m For short
notation we define
o= (ai,...,aq): Ox[0,T] - RY, (7.20)
B(u) = —ulu|T2. (7.21)

Remark 7.7 In the case V = LY(O,R) for q > 2, it is convenient to estimate
E[||ew(t)H(‘]/] respectively E[Hew(t) ”%{]

and consequently verify HP(iv). We conclude this from Fernique’s Theorem [DPZ1J,
Theorem 2.6.]. The statement of Fernique’s Theorem is that on a separable Banach space
a Gaussian random variable has exponential tails. Applied to the exponential series, we
can show that HP (iv) is fulfilled and we obtain

exp ( sup [W(t)|o) € LI(2).
0<t<T

Now we reformulate the existence and uniqueness result of solutions to the stochastic
transport equation as published in [BR15, Section 6.3].

Theorem 7.8 Under the conditions - there exists a unique solution X to the

stochastic transport equation

Due to the strategy of applying Proposition the following proof and calculations are
given in a backward direction to see that the scaling transform mentioned at the
beginning of this chapter is useful. The proof follows the ideas of the proof of [BR15,
Theorem 3.1, Proposition 3.3|

Proof. In a first step we define analogously to [BRI15L Section 4| the following Gelfand
triple
VcHcV” (7.22)

with

e V = Banach space of all LY(0Q,R)-valued, (.%;):-adapted processes
y: [0,T] - LI(0,R) with norm

T . %
”va = (]E[[ Hew(t)y(t)HLq dt]) < co.
0
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e H = Hilbert space of all L?(Q,R)-valued, (.%;);-adapted processes
y: [0,T] » L?(0O,R) with norm

T ) %
= (2 [ |7 Outol, o) <
0

and inner product

T

-E| f (7 Oy(t), D2 (1)) 12 dt] < oo

0

e V* = Banach space of all LY (0, R)-valued, (.%;);-adapted processes
y: [0,T] - L (O, R) with norm

1
7

uyuw:—( f ey, ]) <oo = o

For fixed initial function h € H'(Q,R) n LY(0,R) we define the operators
oY —V
y(t) = (y)(t) = 2O (y(t) + ) [y(2) + BT
7.23
- Za (t)e ‘Wm% +(B(t) + p)h 72
PB: D(B)cYV — V
d
y(t) = (By)(t) = d—g;(t) + (u+v)y(t) (7.24)
T:D(T)cV—V*

d ) OLe" Dy (1)]
. = S (e Ay (D]
y(t) = (Ty)(t): 2; i(t)e™ Oz (7.25)

+(B(t) -v)y(t),
with corresponding domains

D(#) = {y e V|y e AC([0,T], L7 (0, R)) nC([0, T], L*(O,R)) P-as,

dy
E eV, y(0) = 0}

W
Ze‘waiM eV, y=0on T},
i=1 Ow;

D(ﬂ)::{yev

where AC([0,T], LY (0, R)) denotes the space of all absolutely continuous L% -valued func-
tions on [0, T] and % is defined as in Definition We consider the following integral
and integrate by parts

- / iai(ewy)%jy] d

0 i=1

fZaml(e Y) d$+/zd:( w aaze Olaey] dz
i=1

8@21 i
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fZaml (eVy)? dx+/2(e y) [ ]+(e y)aaz) dz

a0 = 1

2 A 6042 2
fZamz eVy) dx+[2a,( ) [Z eVy)? da.
g0 =1 i 0
Hence we obtain

d W
_ f ai(ewy)M da
i=1 a:L’Z

)

(2

(7.26)

l\DI}—A

1
2 Zaznz(e y) dz +
90 i=1

Under assumption ([7.19) given by

55

1
5 divy a(z,t) + B(x,t) —v >0,

we can show that the operator .7 as defined in ((7.25]) is monotone, since by Riesz isomor-
phism we receive

T
vi(Z(y),yhy = IE[ f(ew(t)(gy)(t),ew(t)y(t))Lz dt]
0
7 d V()
. IE[ f / O ai(x,t)e‘W(t)W +(Bla,t) - v)y(D))
0 O %
. (ew(t)y(t)) dz dt]

T t
_ E[JJ_eW(t) zd:az( t) ~W(t) 8[ewa(;y(t)] (eW(t)y(t))

i=1 2

+ "D (B, 1) - )y() (" Dy(1)) da dt]

T
=IEL/O[§: iz t)%(e‘w(t) (1)) dz dt]

1=1 )

]E[ f f(ﬁ(x,t) ~)(e"Oy(1))? da dt].

0 O

Now we make use of (7.26]) to obtain
T
18 10w
vi(Z(y),yhy =E f(f——zocmi(ewy)z dw+[—8a (e"y) d:c) dt
0 80 24 0 2 0x;

T
E[ O[ @[ (B(z,t) - 1) (" Dy(t))? do dt]
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T | d . T
_Elofa/—§;ami(e Y) da:dt]+E[b[©)f

T
[ [ [ Bt =) Oy())? da dt]

0 O

80 v
+E[
:E[f_l
2

T

Due to assumption ([7.19)), the definition of the domain D(.7") and the definition of T we
conclude

N | =

div, a(eVy)? dz dt]

N | —
M=

]
—_

aini(eVy)? dz dt]

=

[ —div, a+ f(z,t) - u)(ew(t)y(t)) dz dt:|
O

IS

M& O\’

.
1l
—_

aini(eVy)? d(z, t)]+EL f —%Z mni(e"y)?d(z, t)]

ox[0, T\Y 7!

(% div, a+ B(z,t) - V)(ew(t)y(t))2 dz dt:|.

O\H
o

vi(Z(y),y)y >

Furthermore, we prove that the operator o/ given by is maximal monotone in ¥V xV*.
To this end we use Theorem [7.6] which states that monotonicity and hemicontinuity of an
operator imply maximal monotonicity. We obtain monotonicity since by Riesz isomorphism
we have for y,5 €V

vl (y) = (9),y - 9)v
T
- g [ [ (XD (4 n)|(y + h)|q72
0 O
—e") e(q_2)w(g) + h)|g} + h|q72)(ewy - ewg)) dzx dt]
T
]E[b[ / ( —éewal _Wa[ax ] +eV(B+p)h

0 (2

d W
+ Z ewaiefw—a[e h]
=1 i

g fT @/(A(ewwh))\(ew(wm)f‘z

M@+ m)|(" @+ h))|q2)((ew(y +h) = (" (5 + b)) da i

-e(B+ u)h)(ewy - eng) dx dt]

>0,

since s+ s|s|972 is increasing for ¢ > 2. Furthermore, hemicontinuity of o7 is fulfilled since

98



7. THE SCALING TRANSFORM APPROACH

again by Riesz isomorphism

E_I}(l) vl (y + kv) = (y),z)y
T

d W
= ,l{i_r)r(l)IE[ f <6W[AQ(Q—2)W (y + kv + h)‘y + KU + hlq_2 - Z Ozie_wa[;x.h] +(B+u)h
0 =1 ?

2l (4 h)|y + h|q_2 + Zd: _Wa[ ] = (B+p)h ] €WZ> dt]
i=1 L2

T
—hmIE[f )\e(q 2)W((y+m+h)|y+/-w+h] ~(y+h)y+h" )] ewz>L dt]
0

Similarly as in [PRO7, Example 4.1.5] we use Holder’s inequality to obtain

hm V*

(o (y+ k) = (), 2|

ql

<hmE[/ H w )\e(q 2>W((y+m)+h)‘y+m)+h‘q —(?/+h)|y+h|q 2)]

e, dt]

L
I q’

dt

!

<hmE[[H Wi xela- 2>W((y+m}+h)‘y+nv+h‘q —(y+h)|y+h|q )]

E
o 171, o]

—hmH)\e(q 2>W((y+nv+h)‘y+f<m+h‘q —(y+h)’y+h‘q_ )H Iz]y, =0

La

with Lebesgue’s dominated convergence theorem. Now we apply the existence and unique-
ness result Proposition for operator equations of the type with f =0, a maximal
monotone operator .7 : D(.7) c ¥V - V* and maximal monotone sum £+ .7 in V x V*.
We have shown that .7 is monotone. But in fact it is not maximal monotone, so we
know that £ + .7 is also not maximal monotone. Hence we are not able to apply Propo-
sition [7.3| directly. Therefore we use [BB69| and [Lio69] to show that % + .7 is closable
in Lq((O T) x O,R) for fixed w € € and the closure %+ 7 is maximal monotone in
L9((0,T) x O,R) x LY ((0,T) x @,R). By applying Theorem 7.5 . the equation

(B+T)y+e " F(e"y)=0 in (0,T)x0O

has a unique solut1on y € D(B+.T), where F is the corresponding dual mapping; for
details see Lemma As written in Lemma E it is also true, that & +.7 is maximal
monotone in YV x V*. All in all we are able to apply Proposition [7.3] to the new operator
equation

(B+T)y+dy=0,

since both operators are maximal monotone. Therefore there exists a unique solution
y e D(AB+.7) ie. there exists (Yn)newy € D(# +.7) with y,, > y in V for n - oo and
(B+ T )yp+ Ay, - 0inV for n - oo .
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Now we use the definitions of the operators ([7.23)), (7.24]) and (|7.25)) to verify that y is the
solution of the random differential equation (|7.3) in the sense of [BR15, Definition 3.2.].
Let ye D(#+ .7), then we have

0=%By+ Ty+Ay
W]

e I zal L (B 1)y

dt

%%
+ A W (L n) |y + BT - Zaie_w ; h) +(B+p)h
i=1 4
< wOle"y]
=Y e ——"+ By + Bh+ py + ph
i=1 i

o[e"h]

d
+ 2l DV (L h) |y + b7 Z e 5
Ly

Cdy & wole™y]
S dt Zlale Ox;

+(B+p)(y+h)

d W
+ )\e(q72)w(y +h)|y+ h|q_2 - Z aiewa[(; h .
i=1 Li

Finally we obtain

LU LI G AT

_ _ (g-2)W q-2
) o R (RSO RS EM RS TER i

By shifting y to y — h we get the following equivalent random differential equation:

W(z,t)
B ) = St 0 L IEOL (500,04 )y
Xy
- )‘e(q Z)W(%t)y(x? t) |y(ac, t)|q_2 )
y(z,0) = h(z).
We conclude that
d W
dy —Wa y] (¢-2)W_ | 1q-2
SV Aela-
i 21 9 ~(B+n)y-Ae Yy,

which is equivalent to

dy = Z ,Wae—y] t—(,6’+,u)ydt

~ Aele 2)W( Ve My ly? dt
d 7W8

=2

- ox;

- [

] dt - eiW(ﬂ + u)(ewy) dt

If we multiply with ", we obtain

"yl

d
Wd — Zala[e y
i=1

dt = (5 +u)(e™y) dt = A(e™y) [e"y|"

i
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. gLeV -2
=>q [(%U ‘y] dt — g(eVy) dt — u(e"y) dt = A(eVy) ‘ewyr] dt
-1 i

and therefore

d %%
eV dy + p(eVy) dt = > aia[e yl

dt - g(e"y) dt — A(e"y) ‘ewy‘(ﬁ2 dt.
i=1 Ox;

By adding (e"y) dW on both sides we get

eV dy + ,u(ewy) dt + (ewy) dWwW
d a[ew ]

= i

i=1 Ox;

_ 7.27
dt - B(e"y) dt — A(e"y) ‘ewy‘q 2t + (e"y) dw. (7.27)

It is suggestive to apply It6’s product rule (see [RY05, Chapter IV, 3.1 Proposition]) to
e"y which leads to

t

0y() =" Oy(0) + [ ay(s)+ [ y(s) A (7O 5
0 0

Now we use Lemma [E.4] and obtain

t

"y (t) = y(0) + f e dy(s) + f eV )y (s) AW(s) + f e’y (s) ds. (7.28)
0 0 0

In terms of differentials equation ([7.28)) is equivalent to
d[eVy] = eV dy + pe"Vy dt + "y dW.
By using the right hand side of ((7.27)) this leads to

d[ew _ d ,3[6W ] (W IRV W, 9-2 W
yl=> o 5 dt - p(e™y) dt — A(e"y) ‘e y‘ dt+ (e"y) dW. (7.29)
i=1

)

Now the right hand side of (7.29) is equal to the right hand side of (STE) for (e"y).
Therefore we have that

X:=e "y (7.30)

is the unique solution to equation (STE|). In summary, we have that the scaling transform
approach leads to the existence and uniqueness of the solution X (t) = ™"y (t) to (STE).
O]

7.3. Summarizing diagram
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8. An application of Lemma 4.8 to [DPT96]

In the proof of Theorem we essentially use Lemma to determine for a given process
another process which satisfies the property to be the right and left inverse. This so-called
inverse process is given again for almost all w and all time and space variables up to a cer-
tain stopping time. In Fully Nonlinear Stochastic Partial Differential Equations [DPT96]
the authors G.DaPrato and L. Tubaro use this result to solve a second order nonlinear
stochastic partial differential equation under proper conditions. Herein the authors declare
that such an inverse process exists and refer to a first publication of [Kun97|. Due to our
knowledge regarding the book [Kun97| we work up this important tool namely Lemma
below and prove it in detail. Additionally, we prove the It6-Wentzell formula as stated
in Theorem below by using [Kun97]. In [DPT96] this formula is not given explicitly,
but it is refered to [Tub88|. The latter states the formula in a different framework and
applies results of Kunita’s lecture notes [Kun84b| and [Kun84a) in the proof. We reproduce
the whole framework of [DPT96] and give rigorous derivations to the considered equations.
One should note that all result are also given for almost all w and all parameters depending
on w.

Let us consider second order nonlinear stochastic partial differential equations of the form

{du(t, ) = L(t,-,u, Du, D*u) dt + (b(t,-) Du + h(t,-)u, dW;)ga, 8.1)

U(O, ) = uO(')v
where
L:[0,00) xR x R x RY x R™? - R
b: [0, T] x R - R%*d
h: [0, T] x R - RN
up: R? > R
satisfy some conditions mentioned below and W; is a R% - valued standard Brownian mo-
tion on a probability space (€2,.%, P) and adapted to a normal filtration (.%#;);>0. The idea

of [DPT96] is to transform SPDE (8.1)) into a deterministic partial differential equation for
fixed w

{%(t, ) = A(t,-,v, Dv, D%) (8.2)

U(Oa ) = UO()
and hence to obtain an equivalence between these problems. Furthermore, the authors

prove an existence result of solutions to (8.2) in a maximal time interval. The drift and
diffusion terms L,b and h have to fulfill the following conditions:

Assumption 8.1
(i) For some o, (€ (0,1) the map

L:[0,00) x R x R x RY x R4 - R

and its partial derivatives DﬁDfLDLDZZ”L with |h| + |k| + |I| + |m| < 2 are a-Hélder

continuous in time t, B-Hélder continuous in space x and locally Lipschitz continuous
in u,p,q uniformly. For example in the case of the drift operator L that means for
any T >0, r>0 there exists a constant M, such that

|L(t, 2, u,p,q)~L(s,2",4',p’, ¢")]
<My (Jt=s* +la =)’ + lu=/| +Ip =9 +]a - )
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(i4)

(iii)

(i)
(v)

(vi)

holds for all t,s € [0, T), z,2" € R? and u,u’,p,p',q,q" with |u|,|u'| < r,|p|,|p'| <7,

lallq| <.
There exists € >0 such that, for any r >0, there is C, > 0 satisfying

|L(0,x,u,p,q) - L(O,x',u,p,q)| < CT|$ - xllﬁ_hf

for all z,2" e RY and u,p,q with |ul,|p|,|q| < r.

The drift operator L and its partial derivatives Dl;DﬁDéDZInL with |h|+|k|+|l|+|m| =3
are continuous with respect to all variables and, for any T >0 and r > 0, there exists
a constant N, such that

|L(t7x7uvp7Q)| < NT,?"
holds for all t € [0, T], z € R? and u, p, q with |ul,|pl,|q| <.
The diffusion terms b, h and their partial derivatives D¥b, DEb, DEh, DER with |k| < 4
are uniformly continuous and bounded in [0, T] x RY.
The partial derivatives DEb, Db, DEh, DED with |k| < 4 are of class C' in time, uni-
formly in x, i.e. DFb(-,x) € C1([0, T],R), that means in particular that they are
globally Lipschitz continuous in time (since C' implies Lipschitz continuity) and lo-
cally Lipschitz continuous in space. For D];b, D];h it holds that

k k d
|Dob(t,x) — Dib(s,z)| < K[t —s| V xeR%t se[0,T]

and
|DFb(t,2) - DFb(t,y)| < K|z -y| ¥ 2,y e KcR? compact, t € [0, T).

For all T,r > 0, there exists vy, >0 such that for the transposed matriz b'(t,x) of
b(t,x) and the identity matriz 1

8_L(t>$7uap7Q) - lb(t,x)bT(t,l') >vp,l
dq 2 :

holds for all t € [0, T], z € R? and u, p, q with |ul,|pl,|q| <.

Now we define the following operator.

Definition 8.2 Consider a mapping

a: RN — RV
1 ay(z)
z=| t |~ ax)= :
TN an(z)

For the partial derivatives O;a;(x) = %(m) and gradient Da(x) we define

T 010i(2) - ai2)
RY s TR[Da(z) - ()] = . :
El Onai(z) - ()

.....

For matriz valued functions A(z) € RM*N with x e RN and A(z) = (aij($))i.:1 M this

J=1,..., N

operator is defined by

trace[ D[A(z) -e1]- AT(x)]
TR[DA(z)-A"(x)] = :
trace[ D[A(x) -en]- AT(z)]
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M N
2 djan () - aii(x)

~
—_
<

M=
M=

djain () - aij(v)

Il
—_

j=li=1

where AT denotes the transposed matriz of A.

In the following we have a closer look on the transformation in which Kunita’s result
of finding an inverse process plays an important role. The whole transformation can be
separated into 7 steps based on the Ito-Wentzell formula applied to and a well-chosen
SDE below. But first of all we give an overview:

Define
L(t,&,u, Du, D*u) == L(t,&,u, Du, D*u) - %trace[bT -b- D*u] (Step 1).
Consider given by
du = L(t,x,u, Du, D*u) dt + (b- Du + h - u,dW;)ga, .

Solve

dé = TR[Db(t, &) - b (t,&)] dt —b"(¢,&) dW,| (Step 2).

Let £(t,x) be the solution and determine

et x) = n(t, z). (Step 3)

It holds n(t,&(t,z)) = . Then we apply the It6-Wentzell formula to d[u(t,£(t,z))] and

obtain _
d[u(t,€)] = L(t,&,u, Du, D*u) dt — (b~ Du, h)ga, dt

— trace [Dh-b" | u dt +u (h, dW;)ga, .
Let y(t,x) = u(t,&(t,x)) be the solution (Step 4) and set u(t,z) := y(t,n(t,x)). Consider

(8.3)

do =|h[*0 dt — o(h,dW;)ga, | (Step 5).

Let o(t,z) be the solution and define v(¢,z) = o(t,z) - y(¢t,x) (Step 6). Now we show
u(t, ) = W) (Step 7)

Calculating Du(t,z), D*u(t,z) as well as Du(t,&(t,z)), D?u(t,£(t,z)) we finally receive
ov 0 2
a(t,x) = E[g(t,:v)u(t,f(t,w))] = A(t,z,v, Dv, D*v),

which is equivalent to
‘Cil—g = A(t,-,v, Dv, D*v)
v(0) = up.

The basic idea of this approach is the application of the It6-Wentzell formula (cf. The-
orem [A.13)), but given in the following version similar to [Tub88, Proposition 2|. From now
on we use the short notation 9; for

Bl
ox; *
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Theorem 8.3 Let (W]"),-1

...dy be a di-dimensional Brownian motion. Let fo, f1,
be continuous C2(R% R) - functions such that

"'7fd1
dy
(Z_:lfn(t7w)fn(t7y)7 fO(tvx)7t)

belong to the class (BY?, B10). Consider the solution u(t,x) of the stochastic differential
equation

du(t,z) = fo(t,z) dt + %1: fn(t,x) AW

n=1
Let k(t,x) be a continuous semimartingale with values in D, i.e. it is represented compo-
nentwise for alli=1,...,d by

d1
dri(t,z) = pi(t,z) dt + Y o (t,z) AW},

n=1
where p;, Cip, © =

1,....d, n= dy are continuous functions. Then the process v(t,x) =
u(t, k(t,x)) solves the following stochastic differential equation
dy
do(t,) = folts w(t,2)) dt+ 3. fults i(t,2)) AV,
n=1
+(Dut, k(7)) p(t, 7))o dt

+ Zl(Du(t, k(t,x)),om(t, x))ga AW,

N |

0;0;u(t, k(t,x)) - Z oin(t,x) - ojn(t,x)dt

+

e
M& TM&

)

1l
=

n

) Oifu(t,k(t,x)) - o (t,x) dt

The proof follows the ideas of the proof of Theorem 3.3.1 in [Kun97|

Proof. Due to Theorem and Theorem we know that for some F, g fulfilling

dy
(z,dt) = fo(t,x) dt + Z fu(t,z) AW/,

n=1

di
(z,dt) = p(t,z) dt + Y o (t,z) AW},

n=1
we have

Flg(a.0).t) = Fg(2.0),0) = [ dF(g(z.5).)
0

¢ g b
:[F(g(x,s),ds)+;/8iF(g(:c,s),s) dgi(z,s)

N)I}—A

t (8.4)
/ 0,F (9(2,5).5) d(gi(,0). 95w, 9))s

J 19

d

z( OF(a(2.9).05).5(2.9))

t
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One should note that 9;F(g(z,s),s) means that we evaluate the partial derivative of F
with respect to x; at (g(z,s),s). We obtain by Remark

t t dy t
F(m,s)-F(x,O)=[F(x,ds):]f0(s,x) ds+21/fn(s,x) awr
0 0 =0

By applying (8.4) to du(t,z) = u(dt,z) instead of F' and dk(t,x) = k(dt,x) instead of g
we receive

v(t,x) —v(0,2) = u(t,k(t,z)) —u(0,k(0,z))

t L dy
= /fo(S,H(S,[E)) d$+[ Z:lfn(s,ff(37x))dwg
0 0 "7

Oiu(s, k(s,x)) dki(s,x)

+
o\“
M&

i=1

gl

+Z<f 8iu(ds,li(8,x)),lii(°a$)>
0

i=1

d
Z &‘ajU(S, 5(3755)) d <"€i(°7w)7 ﬁj('? :E))s

3,7=1

l\DlH

t

:[tfo(s,ﬁ(s,x)) ds+ft§: (s,k(s,x)) dW
J n=1

d
> Oiu(s, k(s,x)) - pi(s,x) ds

i=1

+

dy
Oiu(s,k(s,x)) - oin(s,x) dW

M=

+

o O _

i=1n=1

t
/2

d
+Z</ 8iu(ds,/<c(s,x)),/€i('ax)> :
0

£
v t

0;0ju(s,k(s,x)) d{ri(e,z),Kj(e,2)),

l\Dl'—‘
—_

. i\fM&

By using the classical fact that the quadratic variation vanishes if one element is of bounded
variation, we conclude

t t g,
v(t,z) —v(0,x) = / fo(s,k(s,x)) ds+ f Z:lfn(s,fi(s,x)) dawy

La d
oiu(s,k(s,x)) - pi(s,x) ds+ f > z; (s,k(8,2)) - oin(s,x) AW
J neli

+
o _
Mz:,

1l
—_

7

d dy
Z 9i0ju(s,k(s,x))- Y. oin(s,x) - ojn(s,x) ds

7,7=1 n=1

<O/8zu(ds K(5,2)), Ki(e, x)>

[\DI>—~
o\ﬁ

+

M

t
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L
fo(s,k(s,x)) ds+/ Z (s,k(s,z)) dW]

+ O\“

SO D

(Du(s,k(s,z)),p(s,z))ga ds

d

[

1(Du(s, k(8,2)),0m(s,2))ga AW

3
1

+
N |

Lod dy
f Z 0;0ju(s,k(s,x)) - Z:lam(s,:z) ~ojn(s,z) ds
0 n=

3,5=1
t
o/
0

<.

d

i

™M=

Difn(s,k(s,2))  oin(s,z) ds

n=1

—_

1=
[l

Due to Assumption (iii) and (iv) the operator L, the diffusion terms b- Du and h-u
are C2 - functions and continuous. Consider (8.1)) given by

du = L(t,x,u, Du, D*u) dt + (b(t,z) Du + h(t, )u, dW;)ga,
di d

= L(t,x,u, Du, D*u) dt + > bki(t,x) - Qiu(t, ) + hy(t, z) - u(t, z) dwk
k=1i=1

and an arbitrary stochastic differential equation given by
d& _ é—(h‘il'i dt+£(li[i'u th

i i
_ {(h'l“ dt + Z {f/}}ﬂll thk
k=1

d 8.5
diff k .
i 3 cm aw, (85)
S1 k=1
=] : dt + : ,
é(ll‘if’( d1 - X
! X &g AWy
k=1
~drift : d ~diffu _ ¢ #diffu ~diffuy dxdq :
where £ is R%-valued and & = (&9 £, ) is R**%-valued. By applying Theorem

to (8.1) and (8.5)) we obtain
du(t,$) = L(t, &, u(t,£), Du(t, ), D*u(t, <)) dt

k=1 \ =1

d [ d
+ (Zbki(t,f)@U(t,f) +hi(t,€) -u(t,g)) dwf

di -
+(Du(t, ), " Yga dt + S (Du(t, €), €5 e dWE

k=1
1 d d1 L
+ 5 Z 818]?,6(75,&) Z é;{/i”ll . (11 fu dt
i,j=1 k=1
d di d
* 2020 20 ey (8:6) - Byu(t )] -1 dt
i=1k=17=1
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d d

+ZZ& [hi(t,&) -u(t,£)]- ¢ ( M dt.

i=1 k=1

b

Hence we have finally

du(t, <) =L(t é‘,U(t €), Du(t 76) D?u(t, <)) dt (8.6)
Z 86 U(t 5) Z {(hﬂu (( 1f'hl dt (87)
lj 1

(Du(t a) Ity o dt (8.8)
+ Z Z Z Dibi; (,€) - Oqu(t, &) - )" dt (8.9)
i=1k=175=1
d di d
300 Dbk (5,6) - didju(t,€) - dt (8.10)
i=1k=17=1
d di
3> bt ) - ut, ) - ) dt (8.11)
i=1k=1
d dp
00 3 b (t,€) - du(t, ) - £ di (8.12)
i=1k=1
di
Z(Z%(t )0t ) + (. €) - ut, &))th (8.13)
k=1
i<Du(t €, £ 0 AW, (8.14)

Now we summarize the diffusion parts (8.13) and (8.14))

d1 d dl o
Z ( > bri(t, )ult, &) + hk(t,f)u(t,f)) AWE + S (Du(t,€), 640 )pn dWE
1 k=1

d
= (Zb i(t, ) 05u( as)+hk(t7s)u(t7&)) (Du(t, ), &™) ga AW}

i=1

kl(t7 5)8zu(t, ﬁ) + hk(t, {)u(t ) + 0; U(t, g)g[/\ ffu th

i ME“ ?MH i MH

5
i
We choose £""(¢,z) such that

(bri(t,(t2)) + 17 (8, ) ) = 0.

Hence by defining

(1) = b8 (82)) = (1, (1))

we obtain

Zzau(t,g (b (8, ) = bga(£,) ) AWE + (<) - th(t,g)de

k=11:=1

= u(t, &) Z hy(t,€) AW
k=1
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8. AN APPLICATION OF LEMMA 4.8 TO [DPT96]

= U(t, é) : <h(t7 <)7th))]Rd1
= y(tv .’E) : <h(t7 £Q)7d‘/vlf))Rdla

where we set y(t,x) := u(t,{(t,z)). Therefore we have

e o)y = =bT (1, £(t, ) e R4 (8.15)

Next, we consider the sum of (8.8), (8.9), (8.11)) and (8.12)

(Du(t,€), £ g+ 30 3 (@bkj(t,f) - Qsut, €) - £dim

1,j=1k=1

+ Oihu (4, €) - u(t, €) - €5 + hyp (8, €) - Qu(t, €) -E,‘-E,”.“) dt
d di
= (Du(t,£), " Yga+ 3 Y (@bkj(t,s) -Oju(t, &) - (<bri(t, £))
i,j=1k=1
+ O (8,€) -t €) - (gt ) + g (8,€) - Dy (t, €) - (—bw,a))) “

d B d dy
= 2 Ou(t, ) 3 (= O (8,€) - ju(t ) - bt ) )
j=1

ig=1k=1

d o d
> 8ju(t,a>(a;-“'“ =30 Oibgy (.6 - bra (2, s))
j=1

1=1k=1
di d
k=11=1

We choose 5{‘/-1“”1(15, x) such that
ity o, &
(5_(,-” = 0> Oiby(£,€) - bki(t7£)) =0.
k=1i=1

Hence by defining

(@) 1= trace[ D(b(t £ (t,2)) - €5) - b (£,5(t,2))]

we obtain by Definition [8:2]

d di d di
=1 k=1 i=1k=1

= —(b(t, &) Du(t, &), h(t,&))ga, dt — trace[ Dh(t, )b (¢t,&)Ju(t, &) dt
= —(b(t, &) Dy(t,x), h(t,&))ga, dt —trace[ Dh(t, )b (L, &) ]y(t, z) dt.

Therefore we have

trace[(D(b(t,é(t,a:)? ce1))-b'(t,5(t,x))]

trace[(D(b(¢,E(t,2)) - eq)) - b (¢, £ (E, 2))] (8.16)
= TR[Db(t,&(t,x)) - b (L, (L, x))]

E(lri['l (t, l‘) _
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Now we determine the sum of (8.6)), (8.7) and (8.10)

1 d & diffu +diffu
L(t, & u(t, ), Du(t, €), D*u(t, ) dt+ 5 3 9idju(t,€) 3. e dt
1,7=1 k=1

d di B
+ Z Z bk](t, f(t, 1,‘)) . ala]u(t’ E) . g;/\l{ﬂu dt

ij=1k=1
= L(t, &, u(t, &), Du(t, &), D?u(t,&)) dt

d d1
D ICCRS 2. (b (8:9) (a8, )

ij=1
N dp

1,7=1 k=1

d

1 ¢ &
1,5=1k=1

d di

3,7=1 k=1

1 d di

ij=1k=1
1
= L(t,&,u(t, ), Du(t, &), D*u(t,£)) dt - 5 trace[b' (t,£)b(t, &) D*u(t, )] dt.

Step 1: New operator
Define a new elliptic nonlinear operator by

- 1
L(t,,u,p,q) = L(t,w,u, p,q) = 5 trace[b' (¢, ) - b(t, ) - ] (8.17)

Step 2: New SDE
Consider the system of stochastic differential equations for the paramatrized space variable

§(t,2)

£0) - o (8.18)

The function b(¢,x) satisfies in particular Condition (v), which is necessary to apply
the next Lemma.

{df = TR[Db(t,€) - b7(£,€)] dt - b7 (£,€) AW,

Lemma 8.4 Under Assumption there exists a unique solution &(t,x) to the stochastic
differential equation .

Proof. We apply [LR15, Theorem 3.1.1.] to obtain an existence and uniqueness result
to equation (8.18]). The conditions which we have to verify are formally an integrability
condition, the local weak monotonicity and weak coercivity. As explained in [KRZ99,
Remark 1.3.], it follows that the above assumptions are satisfied if

T
f | =57 (t,0)| - | TR[Db(t,0) - b7 (£,0)]| dt < oo (8.19)
0
and the global Lipschitz condition in space

| =b7(t,2) + b7 (t,y)|* + | TR[Db(t, ) - 0" (t,)] = TR[DO(t,y) - b" (t,y)]| < Ko~ ]
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holds for all ¢ € [0,T], 2,y € R? and a constant K > 0. Condition contains the
integrability in point 0 of the corresponding norms for the drift and diffusion term. Due
to the classical result that a uniformly continuous function is integrable, this condition
is fulfilled by Assumption (iv). The global Lipschitz condition is satisfied due to
Assumption (v). O

The solution £(¢,x) is defined up to an explosion time T'(z,w), i.e. for almost all w and
all (z,t) with ¢t € [0,T(x,w)). Since £(t,z) is not a diffeomorphism in general, we restrict
this map to a domain for which the determinant of the Jacobian matrix is not singular.
Therefore we define as before

7(x) :=inf {t > 0| det DE(t, x) = O} AT (z).
The corresponding adjoint stopping time is

o(y) =inf {t> 0|y ¢ £(t, (x| 7(2) > 1))}
i.e. up to this time a point y is in the codomain of {x|7(z) > t}.

Step 3: Inverse function
We want to find the inverse function of the solution. By using the approach of H. Kunita,
similarly to [Kun84a, Lemma 3.1.], we are able to prove an existence result.

Lemma 8.5 Let £(t,x) be the solution of equation . Then

a) the map &(t,-): {z e R|7(z,w) >t} - R is a diffeomorphism and

b) for almost all w and for all (x,t) such that t € [0,0(x)) the inverse function n(t,x)
satisfies the following stochastic differential equation

n = 5 (DEE)) TRIDH(E EDT (1, E(n))]

+(DEM) IO (t,£(n)) o AW, (8.20)
n(0,z) = x.

Proof. The Ansatz is to use the Itdo-Wentzell formula similarly to the proof Lemma [£.§]
above.

Step A: Transformation into Stratonovich setting

As shown in Theorem [2.35] a multidimensional It6 stochastic differential equation can be
written equivalently in terms of Stratonovich differentials. Carried over to the stochastic
differential equation of d¢ we obtain

d¢ = TR[Db(t )b (t,6)]dt-b"(t,€) dW,

8bk1
) (t &)bkz(t &) dy (bkl(tvg))
= dt- 3 z dwf

*”’M(t Oha(rg)] T\t
di iabwt )bt a)—ldz Ot (1, €)1, €)
Wiy Om RiAT 203 ki dy br1(t, &)
= : dt_z : Othk
dqi dq -
35 a1, €)1 - %E S ome)
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(%kl
, Zh homeo) (bm(t,ﬁ))
: dt - : o dWF

)] )

,5 ?
_ _% TR[Db(t,€) - b7 (,€)] dt - b7 (t,€) 0 AW, (8.21)

Step B: The stochastic differential equation of the inverse process
Let n(t,x) be the solution to

n/= 5 (DE)) " TRIDO(E EMD (1,E())] i

+(DE()) 10T (¢,€(n)) 0 AW,
n(0,z) =z

Step C: Application of the It6-Wentzell formula

By using the generalized It6 formula of Theorem we show that d[&(n)] =
d[&(t,n(t,2))] = 0. With the initial condition £(0,7(0,x)) = £(0,z) = & we obtain that n
is the right inverse function of &.

d .
d[§(n)] = d&(t,n) + Z; 9i&(t,m) odn’
= —% TR[Db(t,&(t,m)) - b (t,£(t,m))] dt =" (,£(t,m)) o AW,

d
+ % Z; 0;€(t,m)(DE(t,m)) ™ TRIDb(t, £(t,n))b" (t,£(¢,0))] dt

d
+ ;ais(t, n)(DE(t,n) b7 (£,£(n)) o AW,

_ % TRDb(t,£(t,n)) - b (£,(t,n))] dt - b7 (£,£(t,n)) o AW,

+ S (DE(t ) - (DE(m)) ™ TRIDY(E £ )BT (1, (¢ m))] e
+ (DE(tm)) - (DEED) T (1,€(E 1)) o ATV,
=~ TRIDD(1, (1)) - (1€ )] d =BT (1,62, m)) 0 ATV,
+ 5 TRIDD(E (1, m)D (1, 6(6,m))]
SO (1,E(t ) 0 AV
=0.

In particular we proved that the right inverse function exists for almost all w and for all
(t,x) with t < o(z,w), hence
£t z)) ==

holds.
Step D: Definition of stopping times
Now we define for the explosion time & of 7

#(z) =inf {t > 0[&(t,2) ¢ {y|6(y,w) > 1} or |det Dn(t,£(t,2)| = 0o | AT(x)
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and show that the property of 1 to be the left inverse is also fulfilled by proving

d[n(t,&(t,z))] =0 if t < 7(x).

Since £(t,n(t,x)) = x as shown before, we obtain by an application of the chain rule

Dg(t,n(t,x)) - Dn(t, x) = D[E(t,n(t,x))] = Dz = L. (8.22)
Taking the inverse and evaluating at £(t,-) we get

-1

-1
(Dn(te(t,)) - (Detn(t.e(t-)) =1
In the next step we rewrite equation (8.21)) and use of equation (8.22))
1
dg = _5 TR‘[Db(ta g) : bT(t’ 5)] dt - bT(tv 5) o th

- =S TRI(DY(,E()) ™ (DEC (L)) Db, €) - (1,6)] de
= (D, €(,)) ™+ (DE(En(EE(E)) BT (E:8) 0 AWy,

Then we apply again the generalized Itd formula and obtain

d[n(&)] = dn(t,£(t,2))] = 0.

Step E: Prove that 7 =7 and that & is a diffeomorphism

By the same arguments as in the proof of Lemma we can show that 7(x) = 7(z) a.s.
Suppose £(t,x) = &(t,2") holds for z,z" € {|7(&) > t}. Since n(t,£(t,x)) = = holds for
almost all w and ¢ < 7(x,w), we obtain

n(t,&(t,z)) = n(tvf(tvx,)) =>z=1.

So &(t, )| (754} is one-to-one (injective). By using the inverse mapping theorem (see [Lan96)
Chapter XIV, Theorem 1.2|) we obtain that £ is a diffeomorphism. O

Step 4: Composition of solutions
We define

y(t,z) = u(t,{(t, x)). (8:23)
Obviously we obtain for the inverse function
y(t,n(t,x)) = U(t)f(tw(t’f’?))) = u(t’ x)

Hence a solution to (8.1) is given in the form

’LL(t,ZL') = y(ta n(ta '73))

Step 5: New SDE by multiplication with a process
We set

v(t,x) = o(t,z) - y(t,x), (8.24)

where o(t, ) is the solution of

{ do = |h(t, z)[o(t,x) dt - o(t, z)(h(t, ), dW}) g, (8.25)

0(0) = 1.
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As claimed in [DPT96] the solution is given by

t

Q(t,w):exp[%f|h(s,£(s,w))|2 ds-[m(s,g(s,x)),dws)Rdl . (8.26)
0

0

Here we have to use Itd’s product rule [RY05, Chapter IV, 3.1 Proposition|. A detailed
derivation of (8.25) can be found in Appendix G. Calculating the partial derivative with
respect to time ¢ of v(t, ), we receive

%(t LL') = Q(t7 :L')f/(t, 57 u(t7 5)) Du(tu g)? D2u(t7 5)) - Q(t7 :L')(b(t, S)Duu h)Rdl
- trace[Dh - blu(t, x) (8.27)
v(0) = up.

Step 6: Combination of u,v,9,n

Plugging y(t,n(t,x)) = u(t, z) into (8.24)), we get an expression of solution to (8.1 in terms
of the three solutions v,n, 0 by

o(t,n(t,x))

u(t,x) =y(t,n(t,r)) = wtn(t))

Step 7: Solution of problem ([8.2))
By computing Du, D?u and by plugging them into (8.27) we obtain (8.2).

Definition 8.6 Let T' be a (F¢)is0 - stopping time. A strong solution of problem
in [0,T] is a mapping
uw: [0,T]xRIxQ >R
such that the following hold:
(i) u(t,-) is F-Bochner-measurable for all t > 0, i.e. u(t,-) is the a.s.-limit of simple
random variables with values in C>° (R4, R)
(ii) For all x € R? the real-valued stochastic process u(-,x) is such that

L(t,z,u, Du, D*u) € L' ([0,T] x Q),R)
b(-,z)Du e L*([0,T] x Q),R%)
h(-,x)u e L2([0,T] x Q),RM).

(i1i) For almost all w and all (x,t) with t € [0,T(z,w)]

t

t
u(t,-) =ug + / L(s, -,’U,,D’LL,D2’LL) ds + f(b(s, )Du(s,-) + h(s, )u(s,-), dWs)ga
0 0

holds.
As found in the Appendix A of [DPT96] we also define

Definition 8.7 Let X,Y be Banach spaces such that X c Y continuously. Let
F:[0,00) x X - Y be an operator and J c [0,00) be an interval such that minJ =0. A
function v is called a strict solution of
dov
— =F(t,v(t
o F(to)
v(0) = vp € X,

(8.28)

if for a fized 0 € (0,1) the following hold:
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(i) veCY(J,Y)nCY(Jy, X) for any closed and bounded subinterval Jy c .J
(i1) (é—g(t) = F(t,v(t)), t e J, and v(0) = vy is satisfied.

The following result [DPT96, Proposition 2.2| established the equivalence relation between
the stochastic partial differential equation (8.1) and the transformed problem (8.2)).

Theorem 8.8 Let ug € C*(RY) and let T(x) < T be a stopping time with respect to the
filtration (F¢)¢s0-

o Ifu(-,x) is a strong solution of in [0,7(x)], then the function
v(-,+) = 0(-,)u(-, &(++)) is a strict solution of (8.9).

o Ifv(-,x) e C([0,7(x)],C*P(RY)) n C*([0,7(x)],CP(R?)) for almost all w and v is a
strict solution of such that v(t,-) is (F i-Bochner—measumble for any t > 0,

then u(-,-) = Zg:ZE:)) is a strong solution of .

The existence result of strict solutions to (8.28)) are also written in the Appendix of [DPT96),
Theorem A.2], but we will not go into detail, since the aim of this chapter was an application
of Kunita’s approach with Lemma [8.5
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A. Appendix to the preliminaries
First of all we reproduce the basic definition of orthogonality.

Definition A.1 Let M,N € .Z°°. If (M,N); =0 for all t € [0, T], then M, N are called
orthogonal (M L N). Let M,N € #.. Then M, N are orthogonal if and only if

E[(M; - M,)(N; - Ny)

7] =0
holds for all s,t € [0, T], s<t.

Definition A.2 Let L?>((M)) be the set of all predictable processes f; such that

T
[ o2 d(M)s < 00 a.s.
0

Let M € #°°. Define

2= { [ fam,

feL*((M)),te[o, T]}.

In this section we reproduce the result concerning an orthogonal decomposition of local
martingales as in [Kun97, after Theorem 2.3.6] which is also known as the Kunita-Watanabe
decomposition. To this end we first look at the following lemma.

Lemma A.3 Let M, N e .Z2¢. Then there exists a unique f € L*({M)) satisfying

t

(M,NY = [ £ (). (A1)

0

In particular if N € M., then we have

E[/OT|fS|2 A(M), ] < oo.

The proof is given in [Kun97, Lemma 2.3.7|. Now we state the famous Kunita-Watanabe
decomposition as in [Kun97, Theorem 2.3.8|.

Theorem A.4 Let M,N € .#°°. Then there exists a unique NV e Z(M)) and a
unique N3 e ¢ such that N?) is orthogonal on £ ({M)) and the decomposition N =
N+ N holds.

The proof follows the idea of the proof of [Kun97, Theorem 2.3.8]. For the reader’s conve-
nience we check all the details.

Proof.
Existence of the decomposition
Due to Lemma there exists a unique f € L?({M)) such that (A.1)) holds. Define

t
N = f fs dM, and N® = N,- ND.
0
Then we obtain with [Kun97, Theorem 2.3.2]

(NO )= ([ goang, ),
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- [ e an,
t
:l;ﬁMM%
Hence by using
(NW M), = (N, M), (A.2)

Therefore we get by definition and linearity of the joint quadratic variation (see [Kun97,
Theorem 2.2.13])

(NP M)y = (N -ND M,
<N>M>t_<N(1)7M>t
(NaM>t_<N7M>t:O-

Hence orthogonality of N ) on Z((M)) is fulfilled, since for an arbitrary M e .Z((M))
given by fot fsdM we have
- t
(N@X/~ﬁdhﬂh=/“ﬁdUW”JWh=&
0 0
Hence we have shown the existence of an orthogonal decomposition with
N=N® 4+ N®)

Uniqueness of the AdecomAposition ) R
Suppose that N = N + N@) with N ¢ 2((M)) and N®) ¢ #/°° orthogonal on
Z((M)). Then

FO_N® oy 5O - v NO
=NO - NO e 2((M)).
Since M € .#°¢, we obtain with
(N® - N@ ry, = (ND - ND Ay,

- (N(l),M)t _ (N(l),M)t

=(N,M); - (N,M), =0.
Hence Nt(z) - Nt@) is orthogonal to M and on Z({M)). We conclude Nt(Q) = Nt(2) and
N - N, .

Remark A.5 Now we denote NV by ﬁg((M»[N] the orthogonal projection of N to
ZL((M)). Due to Theorem[A.]] we have

N=N®+N® =2, [N]+N®
and NP = N - 24 [N].

By the Gram-Schmidt orthogonalization (see e.g. [Gre75, 10.8 The Schmidt-
orthogonalization|) we construct an orthogonal basis of elements in .Z°°.  Let

Mt(l), ...,Mt(n) € A°°. Define
Nt(l) . Mt(l)
Nt(Z) = Mt(Q) - ’@.2’((N(1)))[Mt(2)]

() _ g S (n)
Ny 7= M - kZ Py vy My ]
=1
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Then Nt(l), ...,Nt(n) is an orthogonal system and M) ¢ Z((NMY)) @ ... @ L((N™)) for
all k =1,...,n. Furthermore, if M®* ¢ .#, then N*) ¢ .#, (see [Kun97, Theorem 2.3.8|)
forall k=1,....n.

Definition A.6 Let {M(”)}neN be an orthogonal system in M. and M € M.. If
(M(”),M)t =0 for all n € N implies M = 0, then the system is called an orthogonal
basis.

The following result can be found in [Kun97, Theorem 2.3.9].

Theorem A.7 Let {M(")}n21 be an orthogonal system. It is an orthogonal basis if and
only if any M € M, is expanded as

M = Z yﬁ((M(k)))[M]'
k>1

For the reader’s convenience we prove the inclusion of classes of local characteristics as
used in the proof of Theorem [2.39

Corollary A.8 We have B0 ¢ B% for every 0 <6 < 1.
Proof. Let (b, Ay) belong to the class B, i.e. for all compact sets K c D we have

t
[ 1) s 44, < 0 as.
0

This means in particular

t

f supM dAs < o0 a.s., (A.4)
reK 1+ |ac|

sup|Dob(zx,s)| dAs < oo a.s., (A.5)
zeK

o o
~+ ~+

Dgb -Dgb
z,yeK |z =y
¢
= / sup |Db(z,s) - Dob(y, s)| dAs < oo a.s.
0 z,yeK

0

for all o] < 1. Let § € [0, 1] be arbitrary. Obviously, we have for all compact sets K also

t t t
b
L1 ossse 4t = [sup PO an o fap 52 103G )] 0,
J J weK 1+ |z| 5 2¢K 1<al<0

sup

t 0 0
o s 12800 D)
z,yeK |$_y|

0

t
[l
0

zeK 1+ |$|

dAg < o0 a.s.

x,yeK |l‘ - y|6

[ sup )00
0

since the first term is finite a.s. by (A.5)) and furthermore (|A.6)) implies Lipschitz continuity
and Holder continuity. Obviously, each one-times continuously differentiable function with
bounded derivative is Lipschitz continuous. O
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Corollary A.9 B%' c B}

Proof. Let f belong to the class Bgl’gl. By Definition and the fact that each bounded

function is integrable on a bounded domain, we easily conclude that f also belongs to

B O
b

Lemma A.10 If a local characteristic (a,b, A;) belongs to (B¥*19 B¥9) for some k > 5
and 0< 6 <1, then it also belongs to the subclass (32’5,B1’0).

Proof. For k > 5 it is clear, that C**! ¢ C!. Therefore a local characteristic (a, As)
belonging to B**19 is also in the class B*? for each Holder exponent § > 0. Now we
consider the local characteristic (b, A;) belonging to B9 By definition and linearity of
the integral we have for every K c D compact:

t
/sup oz, ) dA; < o0

reK 1+ |.7)|

~

> sup|Dgb(z,t)| dAs < 0o as. and (A.7)
1<|af<k zeK
¢
Do _ Do
[ 5 aup 10200 D20t

5 dA; < oo a.s.
ok vk |z~ y|
T#y

Since every Hoélder continuous function is uniformly continuous and bounded on a compact
set, we obtain for ¢ = 0:

[ ()15 A, = [ Redlans [ 3 swplpshaolda,

xeK 1+ |z| 3 1<]al<1 z€D

+f Z sup |Dmb($?t)_Dxb(y7t)| dAS

jal=1 2 [z =yl

¢
b(z,t
S/sup| (,0) dAg + > sup|Dgb(z,t)| dAs
zeK 1+|~’U| 0 1<lal<t zeD
t

+ f 2 > sup|Dgb(z,t)| dAs < oo aus.
0 |a|:1 zeK

which is finite by (A.7)). O
In the same way one proves the following inclusion.

Corollary A.11 If a local characteristic (a,b, A;) belongs to (B, B¥=19) for some k > 5
and 0< 6 <1, then it also belongs to the subclass (Bz"s,Bl’O).

For the sake of completeness we state the definition of a truncation.

Definition A.12 A truncation of a function f: [0, T] - R? associated with a compact
set K c R? is defined by

fr=

3 ft7 ifftEK7
xo € K fized, if f; ¢ K.

As proved in [Kun97, Theorem 3.3.1] the following so-called generalized It6 formula is
valid.
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Theorem A.13 Let F(x,t), x €D, be a family of continuous C? - processes and continu-
ous, C - semimartingales with local characteristic belonging to the class (BYY, B1Y). Let

g+ be a continuous D-valued semimartingale. Then F(g¢,t) is a continuous semimartingale
and

s) dg.

t d t
F(gt,t)—F(go,0)=fF(gs’d3)+Z;/gf
=0

(9578) d(g’,97)s

1s satisfied.
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B. Appendix to the method of stochastic
characteristics
Lemma B.1 The stopping time 7(z) given by

inf{t € (0, T]| det D& (x) =0}
Tinv(2) AT ().

7_inv(x) :

T(x):

18 accessible and lower semicontinuous.

Proof. Since & is the maximal solution of and in particular a continuous local
semimartingale, it is defined up to the explosion time 7. We know by Definition that
T is accessible and lower semicontinuous. Furthermore, we know that the minimum of two
accessible stopping times is accessible (cf. [Del72, Chapter III, T45]). Hence we have to
show that also 7i,y is accessible. Define the sequence

T () = mf{te (0,T] | det D& (w) < _}

The (.%#;)t-adapted process & is in particular continuous and continuously differentiable
w.r.t. space (cf. [Kun97, Theorem 3.3.4]), that means det D; is also continuous and
adapted. By Début Theorem (cf. [Del72, Chapter III, T23]) we get that for each n € N

()

T 1S a stopping time. By definition we have

7" () = inf {t € (0,7T] | det D& (x) < %}

11'1V

<inf {t € (0,T]| det D&(x) < - 1 -
(n+1)( )

an

Moreover for all x € R?

1(nrxlz)(m) < Tinv(7) a.s. (B.1)

holds, since if we assume Tlnv (m) Tinv(2), we conclude by definition of 7' (1:) that for
alle >0

1
det DgTinv(]})—E('r) > E

holds, which contradicts the continuity of det D&;(x). Obviously,
hm 7 (x) = Tinv ()

mv

holds. So 7,y 1s accessible.

Next we prove that 7 is lower semicontinuous. To this end let x € RY. Let B:(zp) denote
the open ball with radius ¢ centered at z in R?, i.e.

B.(wo) = {y e RY| |y - wo| < £}
By using the lower semicontinuity of 7" we obtain

liminf T'(x) > T'(xz¢) > 7(x0).
T—T(
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Now we have to show

lim inf inf {¢ € (0, T]| det D&(x) = 0}
roro B.2
> inf {t € (0,T]| det D& () = 0}. 2

Due to the fact that {(x) is continuous in ¢ with values in C*19 we know in particular
that det D& (z) is continuous in x. Let us assume that

det D&(xg) > 0,

then there exists an € > 0 such that det D& (z) > 0 for all x € B.(x0). By definition of 7,y
we conclude that
Tiv(2) >t Vo € B(x0).

Hence we have
liminf 7y () > ¢ (B.3)
T—T0

Let us assume the contraposition of (B.2)), i.e.

liminfinf{t € (0, T]| det D& (z) = 0} < inf{t € (0, T]| det D& (xo) = 0}.
T—T0

Then there exists a ¢ € (0, T] such that 7,y (o) > ¢ holds and also

liminf 7y (2) < ¢
-0

which contradicts (B.3)). Hence (B.2)) is proved. O
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C. Appendix to the existence and uniqueness
result of H. Kunita

Theorem Let F(x,t), © = (x1,...,xq9) € R, be a family of continuous C3(RY, R?) -
processes and continuous C%(RY, Rd) - semumartingales with local characteristic belonging to
the class (B2"5, B9 for some 0 <5 < 1. Let g; be a continuous R? - valued semimartingale.
Then the formula

t
OF .
F(g:,t) = F (90,0 fF(957°d8)+Z/£(gs,8)odgs (C.1)

is satisfied, where gi denotes the i-th component of g; = (gf, ...,gf).
The proof follows the ideas of the proof of Theorem 3.3.2 in [Kun97].

Proof. We apply the generalized 1t6’s formula Theorem to

oF
8$i

F(gi,t) = t) (C.2)

to obtain the assertion that F' (g¢,t) is a continuous semimartingale. The assumptions on F’
are satisfied since F is a C®- process and a continuous C? - semimartingale, hence % eC?

and a continuous C' - semimartingale. Therefore F (g¢,t) is a continuous semimartingale
and due to the generalized Itd formula we know

F(gi,t) - F(go0,0) = fF(gs,d8)+Zf

14 [ PF
+§mzzlofaxa

s,5) dgs
o (gss) dg’

(C.3)

)t 3 1.5
10T i=

t

- OF
&vi
holds. By the It6-Stratonovich formula [Kun97, Theorem 2.3.5] and the fact that only the

first term and second term on the right hand side of (C.3]) is not of bounded variation, we
get

~+

d

¢ d
- 1 - ;
fF gs,S)odngf (gs,8) dgl + QZ(F(Q.,-),Q.>t
0 =1

i=1

M
(e

i= =1

i=1

Now we use (C.2)) to obtain

t
1

d d
(9s8) dgs+— (fF(gs,dS) g) +5Z;<Zf8x (s, ) dgﬁ,g.i> :

t =1 t

fﬁgs,s)dgs %i(F(go,O) [F<gs,ds> Z[ (009 g )
19
/7

d ~OF R - OF
;Ofaxi(gs’s)"dgf;of 5) dgl + ;I( o (90:9).')
13, & O*F

52 Z/a (g37 dgs7 )t'

=1 ]:1
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By applying [Kun97, Theorem 2.3.2| we receive

d

>

- OF
=1 0

X

Q

N

(95:5) © gl = i[ s)dgs+1i( ﬂF(gs,ds) ),
=17

t
13 O*F .
a Sy d .27 ] S
*3. 2, By 009 A9

Starting on the right hand side of (C.1) we obtain by an application of Theorem to
the first term

/F(gs,Ods)Jer:/gf( s)odgi
0 =1 0
1 d
fF(gsjds 52 fa (gs,dS)g)
+§;0fgi(9578) dgs+— JZl a (9875)d<9 9')s
d
%Z(f d5)9>

Of§F<gs,s>dgs+— > fa (g05) ).

i,5=17%
d

+Z<f%(gs,ds),gfi>.
=1y i

t

Finally we apply the generalized It6 formula Theorem to receive

t g ¢
fF(gS,Ods)+Z/
0 i=1p

s) odg. = F(gi,t) - F(g0,0).

Lemma C.1 The unique solution to equation 15 given by

Yi(&e(x)) = 2.

Proof. We have to verify that (4.19)) solves the integral equation (4.18]). Define v4(x) =
(& (x)). Hence consider for v (z) = x

t

vo(@) + [ (DEa(@)) ™+ o (6(@),m(ws (2)), xs (s (), o)

0

(DEs(vs())) ™ Py (€5(2), ms(), xs(), ods)

=T+

(Dés(x)) ™ - . (€s(@),ms(), xs(), 0ds)

/
/
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D{s(a:) Xs(fs(x),ns(x),xs(m),Ods)

D\H‘

=T

Uniqueness follows by Theorem [3.7] and the same arguments as written in Step 2 in the
proof of Lemma [4.8] O

Theorem C.2 Let F(xz,t), z €D, be a family of continuous C™?° - semimartingale with
local characteristic belonging to the class (B™ 19 B™9) for some m > 1 and § > 0. For a
family of continuous D-valued C*7 - semimartingales f(\,t), A€ A c R® domain, for some
k>2 and v >0, we define L(\,t) := fOtF(f()\, s),ods). Then

. ofl OF
m (>\ £) = Zof L) 5T 5), 0d3)

=1

holds, which is equivalent to

d
Ods) = Z;

l

[ 2092 (10 ),009)
0

The proof is given in [Kun97, Theorem 3.3.4].

Lemma C.3 By using the technique of an integrating factor the following equations

&i(x) = exp (fU—/QNH(S) ds)
0

t s _
h(z) + [ exp ([ P(r)dr+ 3) o dW, (C4)
0 0
n(x) = .
exp (f Y(s) ds+ t)
0
solve the system of stochastic differential equations
dé; = -1 ()& dt (C.5)
dnp = (= (t)me = i) dt + 1o W, (C.6)

with & (x) = x and no(x) = h(x).

Proof. We easily determine the partial derivatives w.r.t. time ¢ to verify that the stochastic
differential equation is fulfilled

, -2

(a:)exp(fl/)(s) ds+t) exp(/ dr+t) W - exp(/z/}(s) ds+t)
0

—exp([t s)ds+t) [h(l’ +[texp([w r)dr+s)0dW)

0 0

~(1ﬂ(t)+1)-exp(f@5(s) ds+t) :
0
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= Wt— (&(t) +1) Mt

Analogously we receive by the fundamental theorem of calculus and chain rule

d&:

E(fﬂ) = —¢1(t) -exp (ﬂf - Of é1(s) dS)

=—d1(t) - &.
Hence ((C.4)) are the solutions to (C.5)) and (C.6)).
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D. Appendix to the application to stochastic

Burgers equations and stochastic transport
equations

Lemma D.1 The inverse process in the setting of FExample s given by

& (1, 22)

B 2$1(Wt2)2 + th — 2$2Wt1Wt2
B Q(th)Q + Q(Wt2)2

WH/(1 - 422(Wh2 — 21 WE (4 - 8xoW2) — 4x2(W2)2 — 4z WP)
Z(Wt1)2 + Q(Wt2)2 7
WEW2 = 220 (WH2W2 + 229 (W}H)3
2(Wt1)3 + Q(Wt2)2

WEW2/ (1 - 422(WH2 + 8z12oWIW? — 4oy W — 42 (W2)2 - dasW2)
2(Wt1)3 + 2(VVtQ)2 .

Proof. Obviously, we have to prove that for any a,b € R

&' (a- (@ + YW/ b= (a® + b )WP) = (a,b) (D.1)

is satisfied. Let us start with the first component:

B2+ (W22 + WTtl B th\/ (1+4a2(Wt1)2+8abWt1V2Vt2—4aWt1+4b2(Wt2)2—4bWt2)
(W2 +(W2)?
SOBWEWE + 2a(W2)2 + W - Wi/ (1 - 2aW} - 26W2)°
2((Wt1)2 + (Wt2)2)
206WAW2 + 2a(W2)2 + WL - Wi+ 2a(W}H)?2 + 20W W2
2((Wt1)2 + (Wt2)2)
261((I/I/t1)2 + (Wt2)2)
i 2((Wt1)2+(Wt2)2) i

For the second component we get

112 WQ\/(Wl)Q 1+4a2(W})2+8abW W2 -4aW ! +4b2 (W 2)2-4bW 2
b(WL)3 —a(WLH)2W2 + Wt2Wt _ ¢ ( t 2t ¢ ¢ ¢ t)

WH(WH2+ (W2)?)
2b(WH)2 = 2aW W2 + W2 = W2\/(1 - 2aW}} — 26W72)2
i 2((WhH? + (W2)?)
20(WH)2 = 2aWrWE + W2 = W2+ 2aWEWE + 20(W32)?
i 2((Wh)2 + (W2)?)
2b((Wt1)2 + (WtQ)Q)
i 2((Wt1)2 + (WtQ)Q)
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Lemma D.2 The inverse process in Example is given for almost all w and all (x,t)
with t < 6(x,w) by
2x

+/1—dx(t+ W)
Proof. Obviously, we have to prove that for any x ¢ R
&l (&) =
is true for & (z) =  — 2%t — x2W;. This property is fulfilled, since
f{l(ﬁt(:v)) = ft_l(x — 2%t - x2Wt)
~ 2(x — 22t — 22Wy)
S 1+\/1-4(z - 2%t - 2Wy) (E+ W)
~ 2(x - 2%t - 22Wy)
1+ V1-4(zt +aWy — 222 — 22tW, — 22tW, — 22(W;)2)
2z(1 —xt —xWy)
1+ \/1— dat — da W, + 42202 + 822 tW, + A2 (W))?
2x(1 - xt — xWy)
1++/(1 -2t - 22W;)?
_ 2z(1-at - 2Wy)
1+1- 22t - 220,
C2w(l-at-aWy)
2(1 = xt — xWy)

-1 _
& (x) = 1

Furthermore, & ! is the right inverse to & since

3 . 2x
&(& ' (2)) = ft(l + m)

2
2z B 2z ;
1+y/1-4dzx(t+Wy) \1++/1-4x(t+Wy)

2
2z
_(1+\/1—4x(t+Wt)) i

_ 2z B 4%t
T+y/1-4dx(t+Wy)  (1++/1-4z(t+Wy))?
41’2Wt

(LT da(t+ W)’
C2z(1+\/1-4da(t+ W)
(/T da(t+ W)

4%t 422 W,

(Tt W)? (14T da(t + Wy))?
22+ 22/1 - da(t + Wy) — da’t - 42° W,
i (1+/T-4z(t+ W,))?
(LT T W)
(Tt W)
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Lemma D.3 The partial derivatives of u defined by are given for almost all w and
all (z,t) with t <o (x,w) by

4a(1+ W)
V1-4z(t+ W) (1+/1-4z(t+ W)
d_u( " 8x(1+\/1—4m(t+Wt)—2xt—2th)
dzx )=

T4zt + W) (1 +/1—4z(t+ Wy))3

%(m,t) =u(x,t)-

Proof. Due to the quotient rule of differential calculus we obtain

du d 472
—(l‘,t):—
de dt | 2+ 24/1 - 4x(t + Wy) — dat — 42W,

_4x2( -2(4x + 4th)%W - (4z + 4:1:Wt))
(1T g2t W)
42 (4 + 4xWy) (1 + /1 - da(t + Wy))
TG W (1 + /1 da(t + W)
1622 (2 + 2W;)

VT da(t W (1 /T da(t+ W)

Cu(at) - dz(1+ W) '
V1-dz(t+ W) (1+/1-da(t+ Wy))

Analogously we determine the partial derivative with respect to space variable z

du d 42
_(.T,t) = -
dx dz | 2+ 24/1 — da(t + Wy) — dat — 4= Wy
8z(1++/1 —4dx(t+W;))% - 4952( () (14T 22 (B )

V1-dz(t+We)

(1+V/1—4a(t + W)
8a(1+/1—4dx(t+Wy))? + 1622t + Wy) (1 + /1 - da(t + Wy))
) VI L+ W) (L+ /T4t + Wp)!
8x 162%(t + W;)

) V1-4z(t+ W) (1 ++/1-4da(t+ Wy))2 " V1-4z(t+ W) (1 +/1-4x(t+W;))3
8z(1++/1—4da(t+W,) - 2at — 22W,)

T /T 4w (t s W) (1 + /1 dz(t+ W)?

Lemma D.4 Let ¢>0. The local solution to the stochastic differential equation

{ dne = cny o dWy
no(z) = g(x)

s given by
m(x) = g(x) exp(cWy)

for almost all w and all x,t such that t < T(x,w), where T'(x) is the explosion time.
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oth _

Proof. By using Newton’s derivative = W, we have to verify that 7;(z) solves

dme _ ;
E(m) =cn(x) Wy

Determine the partial derivative, we obtain

U (1) = < [o(x) exp(e )]
= g(m) ¢ Wy exp(cWy)
=cm(x) W,.

Lemma D.5 The inverse process of

t
Gla) = - 507 Of exp(W,) ds

is giwen for almost all w and all (x,t) with t <& (z,w) by

&l (x) = (22)-| 1+ 1—2m(/eWsds)
0

Proof. We have to prove that for any z € R

(@) =

is true. This property is fulfilled, since

&H&) =¢" (az -

-1

N |

¢
22 feWs ds)
0
Q(m— :L'QfeWS ds)
0

t t
1+\} 1—2(m—%:c2fews ds)(fews ds)
0 0

t
2 — 22 (f eWs ds)
0

¢ t 2
1+\J 1—2:6(/6W5 ds)—x2(fews ds)
0 0

¢
21 — 2 (f eWs ds)
0

AT
e{fs)

2—$({6WS ds)

N[
~
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Lemma D.6 The partial derivatives of u defined by are given by

422e™M [ Z(1+ Z)°W, + 2ze"" + 22V 7]

@)= ,
dt Z-(1+2)4

u Z(1+ 2)%-8xe™t +8x2eWt(ft eeds)(1+ Z)
e Z(1+ Z)t

where we make use of the short notation

Z:=\/1—2x(f0tews ds).

Proof. Due to the quotient rule of differential calculus we obtain

du d [ 4z2eW
—(m,t) - ="
dt dt [(1 + Z)Q]
Z(1+2)% - 4a® W, - 4a%e Wi (- 22e")(1+ Z)
) Z(1+2Z)*
Z(1+2)% - 42® W™ + 8232Vt (1 + 2)
) Z(1+2)1
AP Z(1+ Z)* Wi + 22 + 201 7]
Z-(1+2)4 '

Additionally, we get for the partial derivative with respect to x

du d [ 4a2eM
Q= L A
dz dz | (1+Z)?
(1+2)2-8azeWt —da2eWe( -2 [ e d ) +Z)
- (1+Z)4
Z(1+Z)2 8$6Wt+8x26Wt(fteWS ds)(1+Z)
- Z(1+Z)*

Lemma D.7 The partial derivative with respect to x and t of are given by

du . 2(x2e?)~(1-2) _ \e(a-2)W:
E($7t)=u(xvt)Wt+u($at) ( ( ) N )’
du (2ze?) (22e?t)~(a-1)

—(z,t) = u(z,t

) = utany (20 ,

where we use the short notation
t
N := ($2€2t)_(q_2) +A(g-2) f ela=DWs g,
0

Proof. Due to classical derivation rules we have

du NT2 1, W
(‘Ta t) = 2
dt N2
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Wi (q%qu%Q N‘1< —(q-2) (z2e?)~@D) (222e%) - A(q - 2)6(‘1_2)Wt))

Nz
eWt X eWt (2(m2€2t)—(q—2) _ )\e(q_2)Wt )
N

and

du W (ﬁNq 2 N~ ( (¢- (1:262'5)_(‘1_1) (2$62t)))

Q
|

»

Na
et (2$e2t)($2€2t)—(q—1)
(=5 )

Lemma D.8 Let pj e R. If given by

DEVE
o0

= ) 1

1s satisfied, the orthonormal basis , i.e.

{\/gsin(jx)}

j21
fulfills Assumption [6-3

Proof. Let f e L*([0,7]), then we conclude

I7-esta - [ |1 \ﬁ sin(j)

0

27 N2
== Of (@) -sin(jz)? dz

2

-2 [ 1#@F sngef as

2 oy
<= sup [sinGio) P 1z,

ze[0,7]

Hence we choose ¥; = \/g . Under Assumption (6.21) it follows that

2
522 |\ 2 snie)| = § Lk psnGiet = 5 ke
j=1 ™ ™ %) .7—1 ‘7_1

Due to the fact that C*°([0,7]) c L([0,7]) dense for 1 < g < oo, it is obvious that

%i ( st(jx)):%i -sin?(jx)

is a multiplier in L([0,7]), ¢ > 2, and a symmetric one in L?([0,7]).
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Lemma D.9 Let pj e R. If given by

28#?<oo
j=1

1s satisfied, the orthonormal basis , i.e.
{\/ﬁsm(ﬁm)}jzl

fulfills Assumption [6.3
Proof. Let f e L*([0,1]), then we conclude

1
||f'6jHi2 = / |f(x) . \/i.sin(j71'ﬂs)|2 dz
0
|f(x) ‘Sin(jﬂ'a?)|2 dz

|f(2)?|sin(jmz)? da

1
:2[
0

1
=2f
0
2 2

<2- sup |[sin(jmz)|”- | f]7-

z€[0,1]

Hence we choose 4; = 2. Under Assumption ((6.22))
z,u?él H\/§ sm(gmc)”oo = 8,%2 |sin(jraz)|5, = >, 8;;]2« < oo
j=1 j=1 j=1
follows. Due to the fact that C*°([0,7]) c LI([0,7]) dense for 1 < g < oo, it is obvious that

p==>y M?(Q sin(jﬂa;)) =y ,ujz sin?(jmz)
j=1 j=1

N | =

is a multiplier in L9([0,7]), ¢ > 2, and a symmetric one in L?([0,7]).
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E. Appendix to the scaling transform approach
The following definition is borrowed from [Barl(, Definition 2.1.].
Definition E.1 An operator A: V - V* is called monotone, if
ve(A(u) = A(v),u-v)y >0
for all u,ve V.

Definition E.2 Let V' be a reflexive, real Banach space and A: V — V™ be an opera-
tor. Then A is called demicontinuous if and only if strong convergence in V' implies weak
convergence in V*, i.e.

Un —>u in V = A(un) — A(u) in V*.
The above definition is taken from [Ruz04, Definition 1.3.].

Definition E.3 Let V' be a real Banach space and A: 'V — V™ be an operator. Then A is
called hemicontinuous if for allv,w eV and p eV

&i_{% v+ (A(v+ Aw), o)y = v+ (A(v), o)v
holds.

Lemma E.4 The following equation holds true
d[ew(t)] =V aw(t) + pe™® az.

Proof. By an application of Itd formula (see [Oks07, Theorem 4.1.2|) to the exponential
function we obtain for all ¢ € [0, T] and x € O

¢ ¢
eW@t) - W@0) / V@) AW (x, 5) + % / V@) YW(x,-))s
0

0
t

t
1 (o) . % .
=¥+ [ @) AW (z, 5) + 2 / "l d< > ujei(x)W?, 37 Njej(x)W']>
J 5 j=1 J=1 °
t
=1+
t

t
1 j j
6VV(x,s) dW(.’E,S) n 5 Z M?e?(x) f 6W($,S) d“/[/'.]7 WJ>3
i J=1 0

t
1 o0
=1+ f W (@:9) dW(z,s) + 3 Z ,u?e?(:n) [ eV(@9) 4
Jj=1 0

t

=1+ [ V@) aW(z, s) + u(x) [ eV (@s) g,
0

=) o
~+

where we define

Hw) =3 3 e e) (B.1)

for all z € O. O
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Definition E.5 Let y(t),t € [0, T, be an H-valued, (%#;)-adapted process with continuous
sample paths and let it be V*-absolutely continuous on [0, T|, P-a.s. The function % 15

defined by
t

d
y(t,w):y(O,w)+fd—y(s,w) ds, Vtel0, T],we
s
0
and (") e LY ((0, T) x Q, V™).

This definition is taken from [BRIS, after Definition 3.2.]

Lemma E.6 Let the assumptions of Theorem[7.8 be fulfilled. Let J :V — V* be the duality
mapping on V and F be defined by
F:V->V*
y = F(y)(t) = "D (" Oy())e" Dy(t)[7* v te [0, T).
Then the equation
(B+T)y+e"F(eVy)=0

has a unique solution.

Proof. Let us define G(z) := J(2)||z|972. The operator (% +.7) is maximal monotone in
LI((0,T) x O,R) x L7 ((0,T) x O,R), hence by [Barl0, Theorem 2.3] with A = 1 and for
q > 2 we obtain

(0, x0R) = U ((Z+Ty+G))
yeD(HB+T+G)

With the help of [Barl0, Theorem 2.1, Lemma 2.2.| there exists a unique ¢ € D(#+ .7)
such that for 0 € L7 ((0,T) x O, R)
0=(B+T)y+G)
=(Z+7)g+J @91
= (@ D)+ eI e ) e V|4
=(Z+T)j+e "F(e ).
O

Lemma E.7 Let the assumptions of Theorem be fulfilled. The operator B+ T is

mazimal monotone in YV x V*.
We follow the ideas of the proof of Theorem 2.2. in [Barl0].

Proof. We assume that (£ + .7) is not maximal monotone in V x V*, i.e. there exists
(z0,y0) € V x V* such that
(z0,90) ¢ (Z+7) (E.2)

and
ve{y—yo,x —xzo)p 20 V(x,y) e (B +T). (E.3)

Let J:V - V* be the duality mapping on V. We define G(z) := J(2)]z|92. We can show
as in [BRI5, Lemma 4.2| that

R((%B+T)+)\G) =V",
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where R(A) denotes the union Uyep(ay Au for any operator A with domain D(A) (see
Definition . Therefore there exists (z1,y1) € (B + 7)) with

AG(21) +y1 = AG(20) + Yo,
which is equivalent to

AG(z0) = AG(21) = y1 - vo-
So, by we get

ve(G(20) - G(z1), 21 — Z0)v = v+ (¥ — Yo, T — To)y > 0.
Due to the definition of the duality mapping given by
J(2)={z" e V" {z",2) = |2}

as stated in [BarlQ, equation (1.1)] we obtain for z € V

ve(G(2),2)y = v (J ()2 772 2}y
= 21720 (2), 2)v

= 2197212 = |1 2]
Hence we have

0 <y (G(x9) — G(x1), 21 — x0 )y
=v(G(x0),21)y —v+(G(x0),20)y — V(G (21),21)y + v+(G(21),20)y
=y (G(z0), 21}y — |zo]? = [21[? + v+ (G(21), T0)V,

which is equivalent to
[zol[* + |21 |* < v+ {G(20), 1)y + v+ (G (1), z0)v-
Next, we consider
V(G (1) = G(ao), 21 =20}y = |1 + o | = (v+(Gla0), 21)y + v+ (G(z1), 70)v )
<0.
Due to (E.3) we conclude y«(G(z1) — G(x0),z1 — zo)y = 0. Consequently we have
[0l = [21]* = v<(G(20), 21)v = v+ (G(21), z0)v

which shows

G(x()) = G(acl)

As written in [Barl(, Section 1.1] the duality mapping J~! of V* is single-valued, since V
is strictly convex, we obtain
X1 = .

Therefore we obtain (z9,0) = (x1,41) € (B + 7 ), which contradicts (E.2), and show that
(% + ) is maximal monotone. O
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F. Appendix to an application of Lemma 4.8 to
[DPTI6]

We apply It6’s product rule (see [RY05, Chapter IV, 3.1 Proposition|) to deduce equation
®25).

Derivation We apply Ité’s product rule to the equation
dy = (L(t,€,y, Dy, D*y) = (b Dy, hga  trace[ Dh-b7]) dt + y (h, W) e,

and an arbitrary stochastic differential equation given by

_ drift S il vk
do=o0 dt+ng dW}.

k=1
and obtain
do dy = [Q~ (i(t,ﬁ, y, Dy, D*y) — (b- Dy, h)ga — trace[ Dh - b])] dt (F.1)
+0-y - (h,dWi)ga, (F.2)
+y- ottt (F.3)
&4 diff 11k
+ Z y- o, AWy (F.4)
k=1
& wf ok B k
w3 ofTawk, Yy awt) (F.5)
k=1 k=1 t
As before we consider the diffusion term and drift term separately to determine o™ and
0% Let us start with the diffusion terms, i.e. the sum of and
4 diff ik O diff k
0-y-(h,dWy)ga, + Yy -0, AW =) (Q-y-hwy-gkl )th
k=1 k=1
di
=Yy (o b+ 0" ) awf
k=1
Hence we define
o7 = —0+ hy
Next, we plug Qgiﬁ into the covariation term to get
&y e k & . k
(> o™ AWk, 3y by dWF) = (3 (=0 i) dWFE, Y y- i dWF)
k=1 k=1 LR | k=1 t
& k ik
= Z—Q‘hk'y'hkd(w . )t
k=1
di
=— Z oy hz dt
k=1
dy
= —g-y-(Zh%) dt
k=1
=—0-y-|nfdt. (F.6)
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Let us consider the sum of the drift terms , and @
(o (L(t,€,y, Dy, D?y) = (b- Dy, h)ga ~ trace[ Dh-b]) +y - o™ — oy - [h]?) dt
=(0-y+y- o™ -0-y-|nP) at
= (y-0) dt+y- (o™ - o |nP?) at.

To get .
y- (" =0 n*) =0

we have to choose

erift =p- |h|2

Finally we obtain the stochastic differential equation given by

di
do=|h> o dt—g- Y hy dWF
k=1

=|h* o dt — o (h,dW;)ga,
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C*9_semimartingale,
CF9-space,

characteristic curve, [9]
stochastic,
characteristic equations,
stochastic,
characteristic system
stochastic,
covariation, [14]

filtration
generated by flow, [A0]

normal, [T7]

It6 equations,
It6 formula, [12]]
[t6 integral
based on a semimartingale, 22]
representation result,
Ito-Stratonovich formula, 27]
Ito-Wentzell formula, [T06]

local characteristic, [19]
class BF9,
k.6
class B2 K
class B},

local martingale,
space ///(}?C,
local process,
in C*9
local random field,
local solution

of It6 equations,
of Stratonovich equations,

martingale

space A,

operator

monotone, [I37]
demicontinuous, [137]

hemicontinuous,
maximal monotone, [94]

orthogonal,
orthogonal basis, [I19]

quadratic variation,

random field, [T

semimartingale flows, [40]
solution

local, [46]
maximal ,
strict, [IT5]
strong, [IT5]

stochastic flow

of homeomorphisms, [39]

with values in G¥,
stochastic integral

Ito,

Stratonovich, [29]
stochastic process,
stopping time

accessible,

explosion time,

lower semicontinuous,

terminal time,
Stratonovich equations, [37]
Stratonovich integral

representation result, [30]

Theorem
generalized [t6 formula,
truncation, [I20]
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