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Summary

In this thesis, we develop analysis and study models on the cone of positive discrete Radon
measures K(Rd). This is a rather new but natural approach to model interacting particle
systems on a continuous state space. The thesis is structured as follows:

Section 1 gives a historic overview over the subject of interacting particle systems.
Furthermore, some external motivations for the consideration of the cone are given.

Part 2 establishes the preliminaries needed to develop analysis on the cone. Here,
we introduce the cone and draw the connection to homogeneous configuration spaces.
Heuristically, this connection can be explained by Plato’s theory of forms. Furthermore,
we also give a rigorous mathematical description. Topological and measurable strucures
on the cone are introduced. Also, we discuss harmonic analysis and the relevant notions
of Markov evolution in this chapter.

In Chapter 3, we discuss geometry on the cone K(Rd). We introduce the notions
of a gradient and Laplacian. Furthermore, we compare these notions to the so-called
Plato space introduced in Section 2. A short part of this chapter is devoted to the so-
called Umbral calculus, which is concerned with the analysis of polynomials. Also, we
introduce a new notion of geometry on the cone. Namely, the so-called difference calculus,
which considers discrete differences instead of infinitesimal objects. We also discuss some
commutation relations, a connection to Umbral calculus as well as the notion of a discrete
Laplacian.

Chapter 4 is concerned with the study of concrete particle systems on the cone K(Rd).
We consider the following three models:

• Glauber Dynamics

• Continuous Contact Model

• Bolker-Dieckmann-Law-Pacala Model

All three models belong to the class of so-called birth-and-death models. Here, stationary
particles appear and disappear according to some rates depending on the model. This
variety illustrates different challenges present for each model, which have to be solved
using different techniques. We show the existence of the different dynamics as well as
some additional properties typical for each model.
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1 Introduction

1.1 General Setting

During the last century, interacting particle systems have become an integral part of ma-
thematical modelling. When describing systems of large quantities of particles or agents,
one needs to take into account the interactions between these agents. The applications ran-
ge from physics and biology to economics and social systems. On the level of individually
interacting entities, the description is called microscopic. Depending on the context, the
number of particles falls in the range of 104 (large biological systems) to 1023(molecules).
Due to this large size, it is practically impossible to track the motion and development
of each single agent in the system. Furthermore, for a more realistic approach, spatial
models had to be considered, i.e. models that take into account positions of the entities
of the system. Therefore, mathematical methods from functional analysis and probability
theory had to be developed to describe such processes.

The first models taking into account the spatial structure of a system were developed
by Preston [49] in 1975, where he used Markov semigroup methods to describe spatial
models. The considered space was a bounded region of Rd or a finite set, and a finite
number of particles was considered. Other works were focussed on a discrete state space
to open up more possibilities regarding other aspects of the system, see [44] and the
references therein.

Later, systems on an unbounded state space (e.g. Rd) were considered. For the develop-
ment of the necessary analysis and geometry, see [2,4]. Furthermore, to have a non-trivial
density on the space, an infinite number of particles had to be considered. During the last
years, these systems have been extended by considering multi-component systems [22,23],
interaction with a random environment [7, 34,35] or spatially dependent rates [20, 40].

When choosing a model, one needs to take into account different features which are
relevant for the behaviour and properties of the system:

• Discrete vs. continuous: The considered state space can be chosen as a discrete set,
e.g. Zd or some other connected graph, or continuous, such as Rd or more generally,
a Riemannian manifold X. While discrete models are easier to analyse (e.g. [44])
and yield more results, a continuous state space models a physical system more
realistically.

• Bounded region vs. unbounded region/state space: A bounded region makes more
sense from a modelling point of view. On the other hand, one needs to take into
account the interaction of particles with the boundary. A way to circumvent this is
by considering an unbounded region and restricting the system after analysing the
model. The kind of region also determines whether a finite or an infinite amount of
particles should be considered.

Another advantage of an unbounded region with an infinite number of particles is
that phase transitions may be observed since invariant measures may not be uniquely
determined. For examples, see [12] and the references therein.

• Birth-and-Death models vs. diffusion vs. jump-type processes: Different mechanisms
yield different behaviours of the system. This choice of course depends on the desi-
red phenomenon which is to be modelled. For instance, the description of hopping
particles on configuration spaces was analysed in [5].
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There are some additional options which were already mentioned above. For our situa-
tion, we choose a specific version of a continuous particle system with unbounded state
space Rd. Futhermore, the considered models are only of birth-and-death type. Instead of
considering a homogeneous configuration space, the particle system comes from the cone
of positive discrete Radon measures. One specific property of this object is that particles
in the space Rd are assigned a positive number, or “mark”, which represents a property of
the particle such as weight. Some general analytic and geometric considerations for models
on the cone of Radon measures have been carried out in [27,28,38]. This thesis takes the
results from these works to expand on them, especially in the direction of specific models.

Note that this approach differs from the so-called marked configuration spaces consi-
dered in [1,39]. On the other hand, there is a direct relation to the extended configuration
space Γ(R∗+ × Rd) which is explored in later chapters. While the analysis and dynamics
on the cone are of special interest and the modelling possibilities of the cone are useful
in applications, one may also give some motivations for this object without referring to
these analytical properties or configuration spaces in general. The next section explains
three motivations from theoretical biology, probability theory and representation theory.

1.2 Motivation for the Cone

The mathematical object of interest for us is the cone of positive discrete Radon measures,
defined by

K(Rd) :=

{
η =

∑
i

siδxi ∈M(Rd)

∣∣∣∣∣si ∈ (0,∞), xi ∈ Rd

}
where by convention, the zero measure 0 ∈ K(Rd) is included. This thesis is concerned with
covering analytic properties of the cone. On the other hand, there are three approaches
which justify the use of this object without even considering its analytical properties. For
one, there is the aspect of modelling biological systems. Second, the cone appears naturally
when considering certain generalised stochastic processes. Third, the cone is given as the
space where Gamma measures are localised, which emerge from representation theory for
current groups. These three motivations will be explained in this chapter.

1.2.1 Applications to Biological Models

There is an external non-mathematical motivation to study particle systems realised as
elements of the cone. Namely, Vladimir Vernadsky (1998) wrote the following:

• “Organisms [...] are always separated from the surrounding inert matter by a clear
and firm boundary.” [58, p. 56]

• “Living matter [...] is spread over the entire surface of the Earth in a manner ana-
logous to a gas [...].”[58, p. 59]

• “In the course of time, living matter clothes the whole terrestrial globe with a
continuous envelope [...].” [58, p. 60]

This can be interpreted in the sense that system of living matter should possess two
properties: For one, the system should have a discrete nature. Furthermore, there is living
matter everywhere in the system. In mathematical terms, this means that the support of
this system should be dense in the underlying position space. Lastly, to be realistic, the
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system should have finite local mass due to the physical limitations of our world. The
mathematical realisation of these properties is given by the cone.

1.2.2 Probability Theory

The second motivation comes from the theory of generalised stochastic processes, i.e.
processes on the space D′(Rd) of generalised functions. By [54, Thm. 3.3.24], infinitely
divisible processes on D′(Rd) are actually concentrated on the subspace K(Rd). Note that
this result holds independently of the topological and analytical considerations done in
later chapters. For a subclass of measures, the so-called Gamma measures, we will also
show a direct proof of this statement.

1.2.3 Representation Theory for Current Groups

Measures supported on K(Rd) naturally appear in the study of representations for cur-
rent groups. Namely, when studying so-called commutative models of representations of
(SL(2,R))R

d
. When considering representations with respect to the unipotent subgroup

of (SL(2,R))R
d
, we arrive at spectral measures which are defined on the space D′(Rd)

and supported on K(Rd). Furthermore, these measures show some invariance properties.
These considerations were first done by Gelfand, Graev and Vershik [24]. Later, Tsilevich,
Vershik and Yor [57] used this as a starting point to further analyse so-called Gamma
processes.

As seen here, these measures supported on the cone K(Rd) appear naturally without
any a priori restiction of the spaces or aspects of modelling.

1.2.4 Analytical Motivation

There is another mathematical explanation why it makes sense to consider K(Rd). If we
take the class of Gamma-Poisson-measures on the extended configuration space Γ(R∗+ ×
Rd), we see that these measures assign full mass to the subset of configurations with finite
local mass, or Plato configurations. These configurations can be identified with objects in
the cone, i.e. there exists a one-to-one correspondence between the so-called Plato space
Π(R∗+ × Rd) and the cone K(Rd). Later, we give an explicit proof of this statement.

1.3 Description of Results/Outline of Thesis

We give a short outline of the thesis to guide the reader to the main results.

1.3.1 Connection to Configuration Spaces

There exists a natural connection of the cone K(Rd) to the so-called extended configuration
space Γ(R∗+ × Rd). Namely, there exists a bijection R : Γpf(R∗+ × Rd) → K(Rd), where
Γpf(R∗+ × Rd) is the space of pinpointing configurations with finite local mass, also called
Plato space Π(R∗+ × Rd) below. Our considerations will heavily rely on this bijection,
since the theory on Γ(Y ) for general Y is well-established. On the other hand, the use of
K(Rd) generates some new phenomena explored in this work. In Section 2, we introduce
all necessary background related to configuration spaces Γ(Y ), specifically the Plato space
Π(R∗+ × Rd) and establish the aforementioned connection to the cone K(Rd).
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1.3.2 Topological and Measure-Theoretical Considerations

To analyse the dynamics on the cone K(Rd), we first need to establish the topological
and measurable structures on this object in Chapters 2.6 and 2.7. We use the aforemen-
tioned connection to configuration spaces to define a topology on K(Rd). Furthermore,
we analyse the generated Borel-σ-algebra. In Chapter 2.8, we define classes of probability
measures on K(Rd). Namely, on Γ(R∗+ × Rd), Poisson measures assign full mass to the
space Π(R∗+ × Rd). We recall this fact including the proof in Theorem 2.24. Therefore, we
define probability measures on K(Rd) as image measures of such measures. Furthermore,
we construct Gibbs measures on K(Rd) using the well-known DLR approach, see also [29].

1.3.3 Harmonic Analysis and Markov Evolution

In Sections 2.9 and 2.10, we adapt the well-known theory of harmonic analysis on configu-
ration spaces to the case of K(Rd). More precisely, we define the set of finitely supported
Radon measures K0(Rd), which is connected to K(Rd) via the so-called K-transform.
Furthermore, we discuss the connections between measures on K(Rd) and its correlation
functions, which is needed for the analysis of the dynamics. In Chapter 2.11, we use this
connection to define various equivalent evolution equations describing these dynamics.

1.3.4 Calculus

Chapter 3 is concerned with the establishment of various analytic structures on K(Rd).
In Chapters 3.1 and 3.2, we consider the differential calculus established in [29]. Here,
continuous derivatives, an integration by parts formula and a continuous Laplacian are
introduced with respect to some underlying Lie group, i.e. the group of currents. Fur-
thermore, the results are compared to the case of Π(R∗+ × Rd) and we show a direct
correspondence between the formulae on Π(R∗+ × Rd) and K(Rd) in Chapter 3.3.

Next, we take a short look at the umbral calculus on K(Rd), i.e. the calculus of po-
lynomials on this space. We concentrate our considerations to the special sequence of
so-called fake falling factorials. This sequence has a nice connection to the aforementio-
ned K-transform, which we will state here. These considerations can be found in Chapter
3.4.

As a third part of the calculus (Chapter 3.5), we make use of the discrete structure of
the elements in K(Rd) to examine difference calculus on K(Rd). Here, instead of looking
at infinitesimal differences, we consider discrete differences. We define birth and death
gradients as well as a related integration by parts formula. Furthermore, we consider the
corresponding discrete Laplacian, which yields a jump-type Markov operator in this case.

1.3.5 Dynamics and Considered Models

For the last part of this work, we analyse three different birth-and-death models on the
cone.

Glauber Dynamics (Chapter 4.1): This model can be obtained by considering a
discrete Dirichlet form on K(Rd) with respect to a Gibbs measure. In this model, particles
disappear with constant rate, while they appear according to some pair potential in rela-
tion to all particles in a neighbourhood specified by the potential. Usually, the Glauber
dynamics are used to describe a homogeneous gas with a given potential.
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We show the existence of the dynamics for this model and calculate the corresponding
operators for statistical dynamics and obtain the hierarchical structure of the correlation
functions.

Continuous Contact Model (Chapter 4.2): The generator of this model is con-
structed explicitly by considering the desired heuristics: Particles disappear according to
the death rate which may depend on the mark of a particle. On the other hand, each
existing particle may spawn a new particle according to a given birth rate which may also
depend on the mark. The spawning procedure is independent of all other particles. This
model can be used to describe infection spreading, plant growth and similar processes.

We establish the existence of the dynamics using the hierarchical system of correlation
functions. Furthermore, we establish a priori estimates for each order of correlation as
well as estimates which are uniform in the order of correlation. Also, we show that the
contact model admits clustering. Lastly, we show the existence of invariant measures of
the contact model under some conditions.

Bolker-Dieckmann-Law-Pacala Model (Chapter 4.3): This model can be seen
as a modified contact model by adding a competition term: The mortality rate is increased
if particles are clustered together. This way, the clustering experienced by the contact
model can be prevented.

The density-dependent mortality also has a technical advantage. Namely, we are able
to use perturbation methods to show the existence of the dynamics. Furthermore, we
calculate the evolution equation for the statistical dynamics and comment on the non-
clustering behaviour of the system.
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2 Preliminaries

This section will include basic concepts for self-containedness as well as some fundamental
concepts from configuration spaces Γ(Y ), the cone K(Rd) and the connection between the-
se two. Furthermore, we recall the topological and measurable structures on configuration
spaces and establish similar structures on the cone K(Rd). We also introduce measures
on these spaces as well as harmonic analysis and explain how the evolution of dynamics
can be described using various types of evolution equations.

2.1 The Cone of Positive Discrete Radon Measures

We start the preliminary chapter by the introduction of the cone of positive discrete Radon
measures. Furthermore, the notion of the support of a measure and relations between
elements in K(Rd) are defined. Recall that by Vernadsky’s theory of living matter, a
system should be dense everywhere, discrete and have finite local mass.

One more property which we want from our system is that its elements are indistin-
guishable in the sense that the system given by (si, xi)i∈I and (sπ(i), xπ(i))i∈I behave the
same, where I is some countable index set and π an arbitrary permutation of I. One
possibility is to realise our system as sums of point masses δy, where y is either the mark
and position, or just the position of a particle, depending on the setup. This automatically
yields a discrete particle system. To obtain the other two properties, it is useful to let y
represent the position of a particle, while the mark is considered as a weight of the point
mass. These properties become clear when we consider a certain class of measures, name-
ly, Gamma measures. The properties are then proven in Proposition 2.30 and Theorem
2.24, respectively.

Definition 2.1. 1. The cone of nonnegative discrete Radon measures is defined as
follows:

K(Rd) :=

{
η =

∑
i

siδxi ∈M(Rd)

∣∣∣∣∣si ∈ (0,∞), xi ∈ Rd

}
By convention, the zero measure η = 0 is included in K(Rd).

2. We denote the support of η ∈ K(Rd) by

τ(η) := {x ∈ Rd | 0 < η({x}) =: sx(η)}.

If η is fixed, we write sx := sx(η).

3. For η, ξ ∈ K(Rd) we write ξ ⊂ η if τ(ξ) ⊂ τ(η) and sx(ξ) = sx(η) for all x ∈ τ(ξ).
If additionally |τ(ξ)| <∞, we write ξ b η.

4. For a function f ∈ Cc(Rd), denote the pairing with an element η ∈ K(Rd) by

〈f, η〉 :=
∑
x∈τ(η)

sxf(x).

While K(Rd) can be viewed as a subset of the space of positive Radon measures
M(Rd), it is not advisable to consider it as a subset topologically. This method works for
the space Γ(Y ) introduced below, as will be explained later. For K(Rd), it does not yield
satisfactory topological results. Instead, we keep Plato’s theory in mind and see K(Rd)
as the real-world projection of another space, called the Plato space Π(R∗+ × Rd). It is
introduced in Chapter 2.5.
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2.2 The Group (R∗+, ·)
The set R∗+ plays a special role for the analysis on the cone. Since we want to consider
harmonic analysis on R∗+, we need to establish integration theory with respect to the Haar
measure, i.e. we need to consider the group structure on R∗+.

Set R∗+ := (0,∞) and consider the Abelian group (R∗+, ·). There is a natural bijection
between (R,+) and (R∗+, ·) given by the exponential function x 7→ ex. The measure which
is invariant under the group operation (also known as the Haar measure) is given by

h(ds) =
1

s
ds

where ds denotes the Lebesgue measure on R∗+.
Using the bijection mentioned above, we may introduce a metric on (R∗+, ·). Consider

the Euclidean metric on (R,+), i.e.

d(x, y) = |x− y|, x, y ∈ R.

For any u, v ∈ R∗+, there exist x, y ∈ R such that u = ex, v = ey. Then we may define the
corresponding metric on R∗+ the following way:

ρ(u, v) = d(x, y) = |x− y| = | log u− log v| =
∣∣∣log

u

v

∣∣∣
For transformations considered later, it is interesting to consider the unitary characters
of (R∗+, ·), i.e. group homomorphisms to the unit sphere S1 ⊂ C∗. These characters are
given by mappings of the form

fλ(u) = eiλ log u

where λ ∈ R. Therefore, the dual group to (R∗+, ·) in the Pontrjagin sense is again (R,+).
Analogously to the Fourier transform on (R,+), we may use the above considerations

to introduce a transform on functions on (R∗+, ·).

Definition 2.2. Let f : R∗+ → R ∈ L1(R∗+, h). The Fourier transform of f is defined as

FR∗+f(λ) =

∫
R∗+
f(u)e−iλ log uh(ds)

Remark 2.3. Note the similarity to the Mellin transform on R∗+: It is defined as

Mf (α) =

∫
R∗+
f(s)sα−1ds =

∫
R∗+
f(s)sαh(ds).

If we write sα = eα log s, we obtain the following form:

Mf (α) =

∫
R∗+
f(s)eα log sh(ds)

Setting α = −iλ, we see that
Mf (−iλ) = FR∗+f(λ).
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There is a direct connection to the Fourier transform on R: Let f : R → R such that
its Fourier transform exists. Then f ◦ log : R∗+ → R and

[FRf ] (p) =

∫ ∞
−∞

f(x)e−ipxdx =

∫ ∞
0

f(log s)e−ip log sds

s
=
[
FR∗+(f ◦ log)

]
(p)

On the other hand, we can calculate the inverse Fourier transform on R∗+ the same way:
For a function g : R→ R,[

F−1
R g
]

(x) =
1

2π

∫ ∞
−∞

eipxg(p)dp =
1

2π

∫ ∞
0

eix log zg(log z)
dz

z
=
[
F−1

R∗+
(g ◦ log)

]
(x)

In other words, this implies for a function ψ : R∗+ → R,[
F−1

R∗+
ψ
]

(s) =
1

2π

∫ ∞
0

eis log zψ(z)
dz

z

provided, the expression exists. We denote F := FR∗+ ◦ FRd for functions from R∗+ × Rd

to R, where FRd denotes the Fourier transform on Rd.

Lemma 2.4. The following relations hold:

FR∗+

[
Q
( ·
s

)]
(z) = e−iz log s

(
FR∗+Q

)
(z)

FRd [a(· − x)] (p) = e−i(p,x) (FRda) (p)

Proof. Use variable substitution in the integral terms.

The following estimate will be useful in later calculations.

Lemma 2.5. Let ψ : R∗+ × Rd → R, ψ ∈ L1(R∗+ × Rd, h(dz)⊗ dp). Then∣∣F−1ψ
∣∣ (s, x) ≤ 1

(2π)d+1

∫ ∞
0

∫
Rd
|ψ(z, p)|dph(dz)

Proof. Direct calculation using the above definition.

The following Lemma is also needed to close our arguments.

Lemma 2.6. Let Q : R∗+ → R be an even function in the sense that

Q(s) = Q(s−1) ∀s ∈ R∗+.

Then its Fourier transform FR∗+Q is real-valued, provided, it exists.

Proof. We use Euler’s identity to rewrite the integral:

(FR∗+Q)(z) =

∫ ∞
0

cos(z log s)Q(s)h(ds) + i

∫ ∞
0

sin(z log s)Q(s)h(ds)

We need to show that the second expression equals zero. We use the variable transform
s 7→ 1

t
and see that∫ ∞

0

sin(z log s)Q(s)h(ds) = −
∫ ∞

0

sin(−z log s)Q(s)
1

s
ds

= −
∫ ∞

0

sin(z log t)Q

(
1

t

)
t
dt

t2
= −

∫ ∞
0

sin(z log t)Q(t)h(dt)

which proves the claim.
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The same statement holds for the function a on Rd. For applications in later chapters,
the relation of the Fourier transform to the convolution is useful. To this end, we define
the convolution on R∗+ analogously to the case of R.

Definition 2.7. Let f, g ∈ L1(R∗+, h). The convolution on R∗+ is defined as

(f ∗ g)(u) =

∫
R∗+
f(v)g

(u
v

)
h(dv)

The expected result also holds on R∗+:

Proposition 2.8. The following relation holds for two functions f, g : R∗+ → R:

FR∗+(f ∗ g) = FR∗+f · FR∗+g

2.3 Plato’s theory

As stated in the introduction, the cone K(Rd) is a suitable object to describe particle
systems in the real world. On the other hand, the question arises how to define and
interpret mathematical structures on the space K(Rd). As a motivation, we give a short
overview of Plato’s theory of forms.

In the theory, Plato stated that observations in the real world are mere projections of
higher forms or ideas. One way to picture this is the so-called cave allegory, which was
recited by Ross (1951) as follows: “A company of men is imprisoned in an underground
cave, with their heads fixed so that they can look only at the back wall of the cave. Behind
them across the cave runs a wall behind which men pass, carrying all manner of vessels
and statues which overtop the wall. Behind these again is a fire. The prisoners can only
see the shadows [...] of the things carried behind the wall, and must take these to be the
only realities” [52, P. 69].

Applied to our setting, the space K(Rd) is interpreted as the shadows projected onto
the cave wall. On the other hand, the space Π(R∗+ × Rd) which will be introduced below
is the space of forms or ideas, represented by the objects carried in front of the fire.
While the space K(Rd) is taken to be our reality, we use the space Π(R∗+ × Rd) to define
mathematical operations. The spaces are connected via the bijection R : Π(R∗+ × Rd) →
K(Rd) introduced below. In accordance with the cave allegory, R is also called reflection
mapping.

2.4 Configuration Spaces

As we will see in the next chapter, the Plato space Π(R∗+ × Rd) is a very specific subset
of the so-called configuration space Γ(R∗+ × Rd), which will fulfill the assumptions stated
heuristically in Chapter 2.1.

In general, the space of locally finite configurations Γ(Y ) is the space of all subsets of
Y which are finite in any compact set Λ ⊂ Y . The following definition makes this notion
more precise.

Definition 2.9. Let Y be a locally compact Hausdorff space. The space of locally finite
configurations over Y is defined as

Γ(Y ) = {γ ⊂ Y : |γ ∩ Λ| <∞ ∀Λ ⊂ Y compact}

where | · | denotes the number of elements of a set.
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From a physical perspective, Y is considered as phase space of an interacting particle
system. A configuration γ ∈ Γ(Y ) represents a set of indistinguishable agents (e.g. partic-
les, plants) which may interact with each other. In our considerations, we always consider
Y = R∗+ × Rd. More generally, Rd could be replaced by some more general locally comapct
space X. In this chapter, we recall some properties of Γ(Y ) which will form the basis for
the Plato space Π(R∗+ × Rd).

2.4.1 Topology and Measurable Structure of Γ(Y )

There exists a natural embedding of Γ(Y ) into the space of Radon measures M(Y ) on Y ,
namely

Γ(Y ) 3 γ 7→
∑
y∈γ

δy ∈M(Y )

where δy denotes the Dirac measure at point y ∈ Y . Note that we use the notion of γ
as a subset of Y and as a measure on Y interchangably. We equip Γ(Y ) with the vague
topology induced by M(Y ), i.e. the coarsest topology such that the following mappings
are continuous for all f ∈ Cc(Y ), where Cc(Y ) denotes the space of continuous functions
with compact support:

Γ(Y ) 3 γ 7→ 〈f, γ〉 =
∑
y∈γ

f(y)

In fact, Γ(Y ) equipped with this topology is a Polish space. A more detailed analysis of
the topological properties of Γ(Y ) can be found in [32].

The construction of a topology enables us to consider the Borel-σ-algebra B(Γ(Y )).
It should be noted that this σ-algebra coincides with the σ-algebra generated by the
following mappings:

NΛ : Γ(Y )→ N0, γ 7→ NΛ(γ) = |γ ∩ Λ|, Λ ∈ Bc(Y )

where Bc(Y ) denotes all precompact Borel subsets of Y , see e.g. [30].
We give another construction of the measurable space (Γ(Y ),B(Γ(Y )) which will be

useful for other considerations. For Λ ∈ Bc(Y ), we define the space of configurations
supported in Λ.

Γ(Λ) := {γ ∈ Γ(Y ) : γ ∩ Λ = γ}.

Furthermore, for n ∈ N, consider the set of n-point-configurations supported in Λ:

Γ(n)(Λ) := {γ ∈ Γ(Λ): |γ| = n},Γ(0)(Λ) := {∅}

Since γ ∈ Γ(Y ) is locally finite, the elements of Γ(Λ) are finite and we have the disjoint
decomposition

Γ(Λ) =
∞⋃
n=0

Γ(n)(Λ). (1)

We can represent Γ(n)(Λ) via symmetrization of the underlying space:

Λ̃n/Sn ' Γ(n)(Λ) (2)

where
Λ̃n := {(x1, . . . , xn) ∈ Λn | xi 6= xj ∀i 6= j}
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the off-diagonals and Sn the symmetric group of n elements. Denote the bijection (2) by
symn. This way, Γ(n)(Λ) can be equipped with the topology induced via Λn. Furthermore,
Γ(Λ) is equipped with the topology of disjoint unions. Hence, we can define the Borel-σ-
algebra B(Γ(Λ)) given by this topology.

For two sets Λ1,Λ2 ∈ B(Y ),Λ2 ⊂ Λ1, define the projection mapping

pΛ1,Λ2 : Γ(Λ1)→ Γ(Λ2), γ 7→ γ ∩ Λ2

where we set pΛ2 := pY,Λ2 . It was shown in e.g. [53] that (Γ(Y ),B(Γ(Y )) is the projective
limit of the spaces (Γ(Λ),B(Γ(Λ)) for Λ ∈ Bc(Y ). This especially implies that the map-
pings pΛ are B(Γ(Y ))-B(Γ(Λ))-measurable. The construction of B(Γ(Y )) via projections
will play an important role in the construction of measures on Γ(Y ).

2.4.2 The Space of Finite Configurations

For mathematical purposes, it is important to also consider the space Γ0(Y ) of finite
configurations, i.e.

Γ0(Y ) := {γ ∈ Γ(Y ) : |γ| <∞}

where | · | denotes the number of elements of a set. While the definition implies that Γ0(Y )
is a subset of Γ(Y ), the interpretation is a different one: Γ0(Y ) serves as a mathematical
counterpart to the physical space Γ(Y ). Also, the spaces Γ(Y ) and Γ0(Y ) are topologically
different: While Γ(Y ) is seen as a subspace of M(Y ) with the inherited topology, we use
a different approach for Γ0(Y ) which will be explained in this chapter. The approach is
similar to the one used in Chapter 2.4.1, but yields different results. We set

Γ
(n)
0 (Λ) := Γ(n)(Λ)

where Λ is an arbitrary Borel subset of Y . Since we only deal with finite configurations,
we may use decomposition (1) for Λ = Y , i.e.

Γ0(Y ) =
∞⊔
n=0

Γ
(n)
0 (Y ).

Furthermore, we may consider the symmetrization (2) to obtain

Ỹ n/Sn ' Γ(n)(Y ).

For Γ(n)(Y ), we choose the topology induced by the space Y n. For Γ0(Y ), we may use the
topology of disjoint unions. For a more detailed description of the topology used here, we
refer to [30].

Remark 2.10. The purpose of the space of finite configurations will become clearer once
we examine specific models. Since the models are introduced on the cone, we postpone this
discussion until after we have introduced the relevant spaces related to K(Rd).

2.5 Relation Between K(Rd) and Γ(R∗+ × Rd): The Plato Space
Π(R∗+ × Rd)

In this section, we want to establish the connection between the configuration space
Γ(R∗+ × Rd) and the cone K(Rd). Our goal is to define a certain subspace Π(R∗+ × Rd) ⊂
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Γ(R∗+ × Rd) such that there exists a one-to-one-correspondence between Π(R∗+ × Rd) and
K(Rd) in the following form:

R : Π(R∗+ × Rd)→ K(Rd), γ =
∑

(s,x)∈γ

δ(s,x) 7→
∑

(s,x)∈γ

sδx.

In terms of Plato’s theory, this mapping takes ideas γ ∈ Π(R∗+ × Rd) and projects (or
reflects) them to real-world objects η ∈ K(Rd). Obviously, R is not defined on the whole
space Γ(R∗+ × Rd). Therefore, we need to construct a suitable subspace. In other terms,
the Plato space constructed below is also known as the set of pinpointing configurations
with finite local mass, denoted by Γpf(R∗+×Rd). We explore these two properties in more
detail below.

Define the set of pinpointing configurations Γp(R∗+ × Rd) ⊂ Γ(R∗+ × Rd) as all confi-
gurations such that if (s1, x1), (s2, x2) ∈ γ with x1 = x2, then s1 = s2.

Remark 2.11. The pinpointing property ensures that there are no two elements of a
system at the same position. Due to the shape of elements in K(Rd), it is obvious that this
would not be possible.

Let us now take into account the second property of Π(R∗+ × Rd). To this end, we
define the local mass of a configuration.

Definition 2.12. For a configuration γ ∈ Γp(R∗+×Rd) and Λ ⊂ Rd compact, set the local
mass as

γ(Λ) =

∫
R∗+×Rd

s1Λ(x) dγ(s, x) =
∑

(s,x)∈γ

s1Λ(x) ∈ [0,∞]

This notion enables us to define the Plato space.

Definition 2.13. The Plato space Π(R∗+ × Rd) ⊂ Γ(R∗+ × Rd) is defined as the space of
all pinpointing configurations with finite local mass, i.e.

Π(R∗+ × Rd) := Γpf(R∗+ × Rd) = {γ ∈ Γp | γ(Λ) <∞ for all Λ ⊂ Rd compact}.

Remark 2.14. 1. The property of finite local mass accounts for the third property
stated in Chapter 2.1. It ensures that the system only has finite mass in any bounded
volume, which makes it physically viable.

2. The pinpointing property as well as the finiteness of local mass are sufficient to make
R : Π(R∗+ × Rd)→ K(Rd) bijective.

3. The state space needs to be of the specific form Y = R∗+ × X for the notion of
pinpointing configurations to make sense.

To establish a viable connection via R, we need to examine its measurability. First,
let us show that the set of pinpointing configurations on each compact Λ ∈ B(R∗+ × Rd)
is measurable.

Lemma 2.15 ([27]). Define the set of pinpointing configurations in Λ ∈ B(R∗+ × Rd) as

Γp(Λ) := {γ ∈ Γ(Λ): (s1, x1), (s2, x2) ∈ γ, x1 = x2 ⇒ s1 = s2} .

Then Γp(Λ) ∈ B(Γ(Λ)). In particular, this holds for Λ = R∗+ × Rd.
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Proof. We recall the proof from [27]. For the first case, consider a bounded set Λ ∈
Bc(R∗+ × Rd). Set D = {(x, x) : x ∈ Rd} ∈ B(Rd × Rd) the diagonal set of Rd. Then the
complement of Γp(Λ) admits the following representation:

Γp(Λ)c = {γ ∈ Γ(Λ): ∃(s1, x1), (s2, x2) ∈ γ : (x1, x2) ∈ D} =
∞⋃
k=0

Ak(Λ) (3)

where Ak(Λ) ⊂ Γ(k)(Λ) is defined as

Ak(Λ) := {γ ∈ Γ(k)(Λ) : |γ| = k,∃(s1, x1), (s2, x2) ∈ γ : (x1, x2) ∈ D}
By definition of of Γ(k)(Λ), there exists Ãk ∈ B(Λk) such that

Ãk = sym−1
k (Ak)

Since symk is measurable, we have Ak(Λ) ∈ B(Γ(Λ)) and hence, Γp(Λ) ∈ B(Γ(Λ)).
Let us now consider a general Λ ∈ B(R∗+ × Rd). We can find a covering {Λn}∞n=1 of Λ

with Λn compact and Λn ⊂ Λn+1 for all n ∈ N. Then

Γp(Λ) =
∞⋂
n=1

{γ ∈ Γ(Λ): γΛn ∈ Γp(Λn)} =
∞⋂
n=1

p−1
Λ,Λn

(Γp(Λn)). (4)

Since pΛ,Λn is B(Γ(Λ))-B(Γ(Λn))-measurable, we have Γp(Λ) ∈ B(Γ(Λ)).

We will see later that for the class of Poisson measures on Γ(R∗+ × Rd), we have
π(Π(R∗+ × Rd)) = 1, which gives another justification that Π(R∗+ × Rd) is suitable for our
considerations. Let us introduce a pairing on K(Rd) which uses the reflection mapping.

Definition 2.16. Let f ∈ Cc(R∗+ × Rd) and η ∈ K(Rd). Define the following pairing:

〈〈f, η〉〉 := 〈f,R−1η〉 =
∑

(s,x)∈R−1η

f(s, x)

2.6 Topological and Metric Structures on Π(R∗+ × Rd)

The Plato space Π(R∗+ × Rd) naturally inherits the topological structure of Γ(R∗+ × Rd),
i.e. the topology is given by the vague topology induced from the space of Radon measures
M(R∗+ × Rd). For a detailed description of topological and metric characterizations, see
e.g. [32].

Remark 2.17. The space Π(R∗+ × Rd) is not complete: Take for example some x0 ∈
Rd and s1 6= s2 ∈ R∗+. Furthermore, consider sequences s

(n)
i , x

(n)
i , i = 1, 2 with s

(n)
1 6=

s
(n)
2 , x

(n)
1 6= x

(n)
2 for all n ∈ N and

s
(n)
i → si, x

(n)
i → xi, n→∞, i = 1, 2.

Set

γ(n) := {(s(n)
1 , x

(n)
1 ), (s

(n)
2 , x

(n)
2 )} ∈ Π(R∗+ × Rd)

γ := {(s1, x0), (s2, x0)} ∈ Γ(R∗+ × Rd) \ Π(R∗+ × Rd)

Let f ∈ Cc(R∗+ × Rd). Then

|〈f, γ(n)〉 − 〈f, γ〉| = |f(s
(n)
1 , x

(n)
1 ) + f(s

(n)
2 , x

(n)
2 )− f(s1, x0)− f(s2, x0)|

≤ |f(s
(n)
1 , x

(n)
1 )− f(s1, x0)|+ |f(s

(n)
2 , x

(n)
2 )− f(s2, x0)|

→ 0, n→∞.

Therefore, γ(n) → γ, n→∞ in Γ(R∗+ × Rd) and Π(R∗+ × Rd) is not complete.
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2.7 Topology on the Cone K(Rd).

From a naive point of view, it seems to make sense to consider the embedding K(Rd) ⊂
M(Rd) of the cone into the space of Radon measures, equipped with the vague topology.
Unfortunately, this topology has no relation to the vague topology introduced above on
Π(R∗+ × Rd). In the spirit of Plato’s theory of ideas, the connection between Π(R∗+ × Rd)
and K(Rd) is essential. Therefore, we consider the final topology on K(Rd) induced by the
reflection mapping R, i.e. the finest topology such that the mapping

R : Π(R∗+ × Rd)→ K(Rd), γ =
∑

(sx,x)∈γ

δ(sx,x) 7→
∑
x∈τ(γ)

sxδx

is continuous. Here, we set for γ ∈ Π(R∗+ × Rd),

τ(γ) := {x ∈ Rd | ∃s ∈ R∗+ : (s, x) ∈ γ}

the support of γ. The usage of this topology has the obvious side effect that R becomes
a homeomorphism, which is helpful in and of itself in other regards. Some comments on
the final topology can be found in Appendix A.

2.8 Measures on Π(R∗+ × Rd) and K(Rd)

The following chapter is devoted to the construction of a class of probability measures
on Π(R∗+ × Rd), namely, Poisson measures. The construction is done on the larger space
Γ(R∗+ × Rd). For the class of Poisson measures, we show that they assign full mass to the
Plato space Π(R∗+ × Rd).

To obtain measures on K(Rd), we use the pushforward of measures on Π(R∗+ × Rd) un-
der the mapping R. A certain subclass of specific interest is the class of Gamma measures
which will be introduced below. One technical step will be to show the compatibility of
measurable structures on Π(R∗+ × Rd) and K(Rd). Finally, we construct Gibbs measures
on K(Rd) as perturbations of Gamma measures.

The general construction of Poisson measures can also be found in e.g. [4]. For the
construction of Gibbs measures, see [3] for homogeneous configuration spaces and [29] for
the case considered here.

2.8.1 Construction of Poisson Measures on Π(R∗+ × Rd)

In this section, we explicitly construct the class of Poisson measures on Π(R∗+ × Rd).
This is done by constructing measures on Γ(R∗+ × Rd) and restricting these measures to
the subspace Π(R∗+ × Rd). We also define a specific subclass, known as Gamma-Poisson
measures. Furthermore, we show that this class assigns full mass to the Plato space, i.e.
π(Π(R∗+ × Rd)) = 1.

The general approach is to explicitly define a finite measure on Γ(Λ) for any bounded
volume Λ ∈ Bc(R∗+ × Rd), which is then normalised to obtain a probability measure on
Γ(Λ). Next, we use the consistency property of this family to show the existence of a
probability measure on Γ(R∗+ × Rd). This approach is well-known in literature, see e.g.
[4].

Let ν be a Radon measure on the space R∗+ and σ a nonatomic Radon measure on Rd

(e.g. the Lebesgue measure). Recall that by decomposition (1), we have

Γ(Λ) =
∞⋃
n=0

Γ(n)(Λ) '
∞⋃
n=0

Λ̃n/Sn.
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Since (ν ⊗ σ)⊗n defines a measure on Λ̃n, we see that κν
n,Λ := (ν ⊗ σ)⊗n ◦ sym−1

n defines a

measure on Γ(n)(Λ). We then proceed to define a finite measure on Γ(Λ) as follows:

λΛ
ν,σ :=

∞∑
n=0

1

n!
κν
n,Λ,

where we set κν
0,Λ = δ{∅}. The measure defined this way is called the Lebesgue-Poisson

measure with intensity ν⊗σ. It is easy to see that the full mass of λΛ
ν,σ is equal to eν⊗σ(Λ).

Hence, we obtain a probablity measure on Γ(Λ) by setting

πΛ
ν,σ := e−ν⊗σ(Λ)λΛ

ν,σ.

This measure is also known as the Poisson measure on Γ(Λ). If the intensity measures ν, σ
are fixed, we may omit them in the notation. It can be shown that the family {πΛ}Λ∈Bc(Rd)

is consistent, i.e. for Λ2 ⊂ Λ1,Λi ∈ Bc(Rd),

πΛ2 = πΛ1 ◦ p−1
Λ1,Λ2

By Kolmogorov’s theorem for projective limits (see e.g. [48]), we obtain the existence of
a probability measure for Γ(R∗+ × Rd), which is the projective limit we constructed in
Chapter 2.4.

Definition 2.18. The measure given by the projective limit of the family {πΛ
ν,σ}Λ∈Bc(Rd)

is called the Poisson measure on Γ(R∗+ × Rd) with intensity measure ν ⊗ σ. It is denoted
by

π = πν = πν,σ = πν⊗σ.

Remark 2.19. There exists an alternative definition of the Poisson measure given via
its Laplace transform: πν⊗σ is the unique measure such that the following holds for all
functions ϕ ∈ Cc(R∗+ × Rd):∫

Γ(R∗+×Rd)

e〈ϕ,γ〉πν⊗σ(dγ) = exp

(∫
R∗+×Rd

eϕ(s,x) − 1(ν ⊗ σ)(ds, dx)

)
(5)

see e.g. [4].

There exists another characterization of the Poisson measure which is useful for the
construction of measures on K(Rd), since it yields a similar identity there. Denote by
M+(R∗+ × Rd) the set of all nonnegative Radon measures on R∗+ × Rd.

Proposition 2.20 (Mecke identity, [46, Satz 3.1]). Let µ be a probability measure on
M+(R∗+ × Rd) such that its local first moments exist, i.e.∫

M+(R∗+×Rd)

〈1Λ, γ〉µ(dγ) =

∫
M+(R∗+×Rd)

∫
Λ

1dγµ(dγ) <∞ for all Λ ∈ Bc(R∗+ × Rd).

Then µ is the Poisson measure with intensity ν ⊗ σ if and only if the following equation
holds for all nonnegative measurable functions F : R∗+ × Rd ×M+(R∗+ × Rd)→ R+:∫

M+(R∗+×Rd)

∫
R∗+×Rd

F (s, x, γ)γ(ds, dx)πν⊗σ(dγ) =

=

∫
R∗+×Rd

∫
M+(R∗+×Rd)

F (s, x, γ + δ(s,x))πν⊗σ(dγ)(ν ⊗ σ)(ds, dx)
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Remark 2.21. 1. From now on, we assume that the first moment of ν exists, i.e.∫
R∗+
sν(ds) <∞. (6)

2. We sometimes denote the intensity measure on R∗+ × Rd by κ(ds, dx) = ν(ds) ⊗
σ(dx).

The next definition gives a special subclass of Poisson measures, which will be exami-
ned in more detail.

Definition 2.22. Consider the intensity measure on R∗+ given by the following expression:

νθ(ds) = θ
1

s
e−sds

where θ > 0 is a fixed shape parameter. Obviously, νθ fufills assumption (6). The corre-
sponding Poisson measure is called the Gamma-Poisson measure, denoted by πθ. As above,
we denote the projection to Γ(Λ),Λ ∈ Bc(R∗+ × Rd) by

πΛ,θ := πθ ◦ p−1
Λ

Before we turn our attention to the specific properties of Gamma-Poisson measures, let
us show a useful statement that holds for the general class of Poisson measures. Namely,
a Poisson measure assign full mass to the set Π(R∗+ × Rd). An explicit proof was given in
e.g. [27]. We include the proof for completeness. We start by showing this property for
the set of pinpointing configurations Γp(R∗+ × Rd).

Theorem 2.23 ([27]). Let πν be a Poisson measure such that ν fulfills (6). Then we have
πν(Γp(R∗+ × Rd)) = 1.

Proof. As in the proof of Lemma 2.15, denote by D = {(x, x) : x ∈ Rd} ∈ B(R2d) the
diagonal set in R2d. Note that (σ ⊗ σ)(D) = 0. Again, let {Λn}∞n=1 be a covering of
R∗+ × Rd with Λn compact and Λn ⊂ Λn+1 for all n ∈ N. Furthermore, assume that
Λn = Λn,R∗+ × Λn,Rd for each n. Using representation (4), we obtain

πν(Γ
c
p(R∗+ × Rd)) = πν

(⋃
n∈N

p−1
Λn

(Γp(Λn)c)

)
≤

∞∑
n=1

πν
(
p−1

Λn
(Γp(Λn)c)

)
.

Since for any compact Λ, we have

πν
(
p−1

Λ (Γp(Λ)c)
)

= e−ν⊗σ(Λ)λν (Γp(Λ)c) ,

it is enough to show that for any Λ ∈ Bc(R∗+ × Rd) with above assumptions, we have

λν (Γp(Λ)c) = 0.

Using decomposition (3) and the product structure of Λ, we see

λν (Γp(Λ)c) ≤
∞∑
n=1

λν
(
{γ ∈ Γ(k)(Λ) | ∃(s1, x1), (s2, x2) ∈ γ : (x1, x2) ∈ D}

)
=
∞∑
k=0

1

k!
(ν ⊗ σ)⊗k

(
{(si, xi)}ki=1 ⊂ Λ | ∃i 6= j : (xi, xj) ∈ D}

)
≤

∞∑
k=2

1

k!

(
k

2

)[
(ν ⊗ σ)⊗(k−2)(Λk−2)

]
· [(σ ⊗ σ)(D)] · ν(ΛR∗+)

= 0
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Next, let us show that γ(Λ) < ∞ for πν-almost all γ ∈ Γ(R∗+ × Rd), which implies
πν(Π(R∗+ × Rd)) = 1.

Theorem 2.24 ([27]). For πν as above, πν(Π(R∗+ × Rd)) = 1.

Proof. For any Λ ∈ Bc(Rd), we have∫
Γ(R∗+×Rd)

γ(Λ)πν(dγ) =

∫
Γ(R∗+×Rd)

〈s⊗ 1Λ(x), γ〉πν(dγ)

=

∫
Rd

∫
R∗+
s1Λ(x)ν(ds)σ(dx) = σ(Λ)

∫
Rd
sν(ds) <∞

which implies our claim. Note that it is essential that (s 7→ s) ∈ L1(R∗+, dν).

Considering the above result, we may consider πν as a probability measure on the
space (Π(R∗+ × Rd),B(Π)), where B(Π) = B(Π(R∗+ × Rd)) is the trace-σ-algebra, i.e.

B(Π(R∗+ × Rd)) :=
{
A ∩ Π(R∗+ × Rd) | A ∈ B(Γ(R∗+ × Rd))

}
.

2.8.2 Probability Measures on K(Rd)

We are now ready to consider two important classes of probability measures on K(Rd).
First, we introduce the class of Gamma measures, denoted by Gθ, which are the image
of the Gamma-Poisson measures on Π(R∗+ × Rd) under the mapping R. Next, we con-
sider Gibbs measures on K(Rd), which are given through perturbations of said Gamma
measures.

In the previous chapter, we established the relation between K(Rd) and Π(R∗+ × Rd).
Therefore, it makes sense to further investigate the relation given via the mapping R. For
instance, we may show the relation between the σ-algebras B(Π(R∗+ × Rd)) and B(K(Rd)).

Theorem 2.25. The image σ-algebra of B(Π(R∗+ × Rd)) under R and B(K(Rd)) coincide,
i.e.

B(K(Rd)) =
{
R(A ∩ Π(R∗+ × Rd)) | A ∈ B(Γ(R∗+ × Rd))

}
Proof. The proof is a direct consequence of the topological considerations found in Ap-
pendix A.

Since we established the connection between Π(R∗+ × Rd) and K(Rd), let us come to
the definition of Gamma measures on K(Rd).

Definition 2.26. Let πθ be a Gamma-Poisson measure on the space Π(R∗+ × Rd). Then
the Gamma measure on K(Rd) is defined as the image measure of πθ, i.e. for any bounded
and measurable function F : K(Rd)→ R,∫

K(Rd)

F (η)Gθ(dη) =

∫
Π(R∗+×Rd)

F (Rγ)πθ(dγ)

we denote the Gamma measure by G = Gν = Gθ.
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Remark 2.27. 1. For a class of cylindrical functions, we get the following explicit
formula: Let g ∈ C∞b (RN) for some N ∈ N and ϕ1, . . . , ϕN ∈ C∞c (Rd). Then∫

K(Rd)

g (〈ϕ1, η〉, . . . , 〈ϕN , η〉)Gθ(dη)

=

∫
Π(R∗+×Rd)

g (〈id⊗ ϕ1, γ〉, . . . , 〈id⊗ ϕN , γ〉)πθ(dγ),

where id⊗ ϕ(s, x) := sϕ(x).

2. Similar to the case of Π(R∗+ × Rd), there is an alternative characterization of Gθ via
its Laplace transform: For any ϕ ∈ Cc(Rd),∫

K(Rd)

e〈ϕ,η〉Gθ(dη) = exp

(∫
R∗+×Rd

esϕ(x) − 1(ν ⊗ σ)(ds, dx)

)
this is easily seen by using Remark 2.19 and the definition of the Gamma measure.

Also, the Gamma measures admit a Mecke-type characterization similar to Proposition
2.20.

Proposition 2.28 ([29]). Let µ be a probability measure on M+(Rd) which has finite first
local moments, i.e. for any ∆ ∈ Bc(Rd), we have∫

M+(Rd)

η(∆)µ(dη) <∞. (7)

Then µ = Gθ if and only if for any measurable function F : Rd ×M+(Rd)→ R+, we have∫
M+(Rd)

∫
Rd
F (x, η)η(dx)µ(dη) =

∫
M+(Rd)

∫
Rd

∫
R∗+
sF (x, η + sδx)νθ(ds)σ(dx)µ(dη). (8)

Proof. “⇒”: As a first step, let us consider functions of the form

F (x, η) = f(x)g (〈ϕ1, η〉, . . . , 〈ϕN , η〉) , (9)

where f, ϕ1, . . . , ϕN ∈ Cc(Rd) and g ∈ Cc(RN). We then rewrite the left-hand-side
of (8) recalling that µ = Gθ:∫

M+(Rd)

∫
Rd
F (x, η)η(dx)µ(dη) =

=

∫
K(Rd)

∫
Rd
f(x)g(〈ϕ1, η〉, . . . , 〈ϕN , η〉)η(dx)Gθ(dη)

=

∫
K(Rd)

〈f, η〉g(〈ϕ1, η〉, . . . , 〈ϕN , η〉)Gθ(dη)

=

∫
Π(R∗+×Rd)

〈id⊗ f, γ〉g(〈id⊗ ϕ1, γ〉, . . . , 〈id⊗ ϕN , γ〉)πθ(dγ)

=

∫
Rd

∫
R∗+

∫
Π(R∗+×Rd)

sf(x)×

× g(〈id⊗ ϕ1, γ + δ(s,x)〉, . . . , 〈id⊗ ϕN , γ + δ(s,x)〉)πθ(dγ)νθ(ds)σ(dx)

=

∫
Rd

∫
R∗+

∫
K(Rd)

sf(x)g(〈ϕ1, η + sδx〉, . . . , 〈ϕN , η + sδx〉)Gθ(dγ)νθ(ds)σ(dx)

=

∫
K(Rd)

∫
Rd

∫
R∗+
sF (x, η + sδx)νθ(ds)σ(dx)Gθ(dη)
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By the monotone class theorem and approximation arguments, this identity can be
extended to all nonnegative measurable functions.

“⇐”: For the other direction, we show that the Laplace transform of νθ with (8) coincides
with (5). To this end, let ϕ ∈ Cc(Rd) with ϕ ≥ 0 and set

L(t) :=

∫
M+(Rd)

exp (−t〈ϕ, η〉)µ(dη).

Note the following two properties of this function:

L is strictly positive: By Jensen’s inequality, we see using (7) that∫
M+(Rd)

exp(−t〈ϕ, η〉)µ(dη) ≥ exp

(
−t
∫
M+(Rd)

〈ϕ, η〉µ(dη)

)
≥ exp

(
−t
∫
M+(Rd)

‖ϕ‖∞η(suppϕ)µ(dη)

)
> 0

Differentiability of L: L is continuous on [0,∞) and continuously differentiable
on (0,∞). Since µ is a probability measure and exp(−t〈ϕ, ·〉) is bounded, this
assertion follows by Lebesgue’s Theorem.

If we differentiate L(t), we obtain

d

dt
L(t) = −

∫
M+(Rd)

〈ϕ, η〉 exp(−t〈ϕ, η〉)µ(dη)

(8)
= −

∫
Rd

∫
R∗+

∫
M+(Rd)

sϕ(x) exp(−t〈ϕ, η + sδx〉)µ(dη)νθ(ds)σ(dx)

= −
∫
Rd

∫
R∗+
sϕ(x)e−tsϕ(x)

∫
M+(Rd)

exp(−t〈ϕ, η〉)µ(dη)νθ(ds)σ(dx)

Therefore, L satisfies the initial value problem{
d
dt
L(t) = −C(t)L(t)

L(0) = 1
(10)

where

C(t) =

∫
Rd

∫
R∗+
sϕ(x)e−tsϕ(x)νθ(ds)σ(dx).

The ODE (10) has the following unique solution:

L(t) = L(0) exp

(
−
∫ t

0

C(u)du

)
= exp

(
−
∫
Rd

∫
R∗+
e−tsϕ(x)νθ(ds)σ(dx)

)

Setting t = 1, we see that L(1) is exactly the Laplace transform of Gθ. This holds
for all ϕ ∈ Cc(Rd) with ϕ ≥ 0, and therefore, µ = Gθ.
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Remark 2.29. Since it is needed in the construction of Gibbs measures, we want to
mention the independence property of Gamma measures: For a collection of disjoint sets
∆1, . . . ,∆N ∈ Bc(Rd), the random variables η(∆1), . . . , η(∆N) are independent. In other
words, ∫

K(Rd)

N∏
i=1

ϕi (η(∆i))Gθ(dη) =
N∏
i=1

∫
K(Rd)

ϕi(η(∆i))Gθ(dη) (11)

for any ϕi ∈ L∞(Rd), i = 1, . . . , N .

Typical configurations under Gθ have the interesting property of having dense support
τ(η).

Proposition 2.30. For any compact set ∆ ∈ Bc(Rd) with σ(∆) > 0, we have

Gθ({η ∈ K(Rd) : |τ(η) ∩∆| = n}) = 0 ∀n ∈ N0

Proof. For the proof, recall that the Poisson measure πθ on Π(R∗+ × Rd) with intensity
measure κθ = νθ ⊗ σ has the following representation:

πθ({γ ∈ Π(R∗+ × Rd) : |γ ∩ Λ̃| = n}) =
κθ(Λ̃)

n!
e−κθ(Λ̃) (12)

for any compact set Λ̃ ∈ Bc(R∗+ × Rd). Now, set Λ = R∗+ × ∆. We have the following
relation between Gθ and πθ:

Gθ({η ∈ K(Rd) : |τ(η∆)| = n}) =

∫
K(Rd)

1{|τ(η∆)|=n}(η)Gθ(dη)

=

∫
Π(R∗+×Rd)

1{|γΛ|=n}(γ)πθ(dγ)

= πθ({γ ∈ Π(R∗+ × Rd) : |γ ∩ Λ| = n}︸ ︷︷ ︸
=:A

)

We have the following decomposition of A:

A =
⋃
j0∈N

⋂
j≥j0

{γ ∈ Π(R∗+ × Rd) : |γ ∩ Λj| = n}

where we set

Λj = ∆×
[

1

j
, j

]
∈ Bc(R∗+ × Rd).

Applying (12), we obtain

πθ(A) = πθ

(⋃
j0∈N

⋂
j≥j0

{γ ∈ Π(R∗+ × Rd) : |γ ∩ Λj| = n}

)

= lim
j0→∞

πθ

(⋂
j≥j0

{γ ∈ Π(R∗+ × Rd) : |γ ∩ Λj| = n}

)
≤ lim

j0→∞
πθ
(
{γ ∈ Π(R∗+ × Rd) : |γ ∩ Λj| = n}

)
= lim

j0→∞

κθ(Λj)

n!
e−κθ(Λj) = 0

Note that the property νθ(R∗+) =∞ is crucial to obtain the density of τ(η).
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2.8.3 Gibbs Measures on K(Rd)

Gibbs measures play an important role in the analysis of a given particle system. They
indicate invariant states and show the existence of phase transitions within the system.
For some basic notions related to Gibbs measures, see e.g. the works [25,26].

Since we are working with particle systems on an infinite volume, there are some techni-
cal steps needed in the construction of Gibbs measures. This chapter provides an overview
of the construction of Gibbs measures as perturbations of Gamma measures on the cone.
Furthermore, some technical differences to the classical construction on Π(R∗+ × Rd) are
discussed. The main source of this chapter is [29]. For a more detailed discussion of Gibbs
measures on configuration spaces and the cone, see [10,11]. The general construction will
follow the approach of Dobrushin, Lanford and Ruelle, see e.g. [26].

For the construction of Gibbs measures, we need to consider a class of admissible pair
potentials. Consider a pair potential

φ : Rd × Rd → R

which is assumed to be measurable, symmetric and bounded. Set the following:

‖φ−‖∞ := sup
x,y∈Rd

(max{−φ(x, y), 0}) ≤ 0

‖φ‖∞ := sup
x,y∈Rd

|φ(x, y)| <∞

We impose the following conditions on the potential φ:

Finite range condition (FR): There exists R > 0 such that

φ(x, y) = 0 if |x− y| > R

Repulsion condition (RC): There exists δ > 0 such that

inf
|x−y|≤δ

φ(x, y) > 2mφ
δ‖φ

−‖

where mφ
δ > 0 is an explicitly given constant. Heuristically, (RC) means that the

repulsion of two particles close to each other is stronger than the global attraction.

Under these conditions, we can define the relative Hamiltonian of the system.

Definition 2.31. Fix η, ξ ∈ K(Rd) and ∆ ∈ Bc(Rd). Then the relative energy or Hamil-
tonian is given by

H∆(η | ξ) =

∫
∆

∫
∆

φ(x, y)η(dx)η(dy) + 2

∫
∆c

∫
∆

φ(x, z)η(dx)ξ(dz)

=
∑

x,y∈τ(η)∩∆

φ(x, y)sxsy + 2
∑

x∈τ(η)∩∆
z∈τ(ξ)∩∆c

φ(x, z)sxsz

The element ξ may bee seen as the boundary conditions for the localised particle
system η ∩∆.
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Remark 2.32. The reasoning why the conditions (FR) and (RC) yield a suitable poten-
tial is quite technical and involves a partition of Rd in appropriate cubes related to the
interaction of φ. This partition is then used to show finiteness and boundedness from below
of H∆. A detailed anaylsis is given in [29].

The construction starts locally as a perturbation of Gamma measures. Therefore, we
need to localise the notion of Gamma measures. Furthermore, we need to normalise the
constructed measure using the corresponding partition function. After constructing a local
specification, we may extend the underlying set to obtain a Gibbs measure on the whole
space.

Definition 2.33. Let ∆ ∈ Bc(Rd). For a fixed Gamma measure Gθ, define the correspon-
ding local Gamma measure on ∆ as

G∆,θ := Gθ ◦ p−1
∆

where p∆ : K(Rd)→ K(∆) is defined via

η =
∑
x∈τ(η)

sxδx 7→
∑

x∈τ(η)∩∆

sxδx.

For ξ ∈ K(Rd), define the partition function as

Z∆(ξ) :=

∫
K(∆)

exp [−H∆(η | ξ)]G∆,θ(dη)

The partition function will serve as the normalising constant for our local Gibbs mea-
sure. Furthermore, note that the definition depends on the choice of Gamma measure. It
can be shown that under the assumptions (FR) and (RC), the partition function serves
the right purpose:

Lemma 2.34 ([29, Lemma 3.3]). Under assumptions (FR) and (RC), for any ∆ ∈ Bc(Rd)
and ξ ∈ K(Rd), we have

0 < Z∆(ξ) <∞

where Z∆(ξ) ≤ 1, if additionally φ ≥ 0.

Given the partition function, we can now proceed to define the local Gibbs measures.

Definition 2.35. For any ∆ ∈ Bc(Rd), define the local Gibbs measure with boundary
condition ξ ∈ K(Rd) as

µ∆(dη | ξ) :=
1

Z∆(ξ)
e−H∆(η|ξ)G∆,θ(dη)

Remark 2.36. • Note that Lemma 2.34 is needed to make sense of this definition.

• For fixed ∆ ∈ Bc(Rd) and ξ ∈ K(Rd), the measure µ∆(dη | ξ) is a probability measure
on K(∆).

For the construction of the desired Gibbs measure, we need to “lift” the family of
measures µ∆ to the space K(Rd). This is done in the following definition.
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Definition 2.37. Define the local specification Π = {π∆}∆∈Bc(Rd) as a family of stochastic
kernels

π∆ : B(K(Rd))×K(Rd)→ [0, 1]

π∆(B | ξ) := µ∆(B∆,ξ | ξ)

where
B∆,ξ := {η ∈ K(∆) | η + ξ∆c ∈ B}

By using the structure of H∆ and Property (11), we see that the family Π is consistent:∫
K(Rd)

π∆̃(B | η)π∆(dη | ξ) = π∆(B | ξ), ∆, ∆̃ ∈ Bc(Rd), ∆̃ ⊂ ∆

Heuristically, if we let ∆ “grow” to the whole space Rd, the boundary condition di-
sappears and we obtain the Dobrushin-Lanford-Ruelle (DLR) equation as definition for
Gibbs measures.

Definition 2.38. A probability measure µ on K(Rd) is called a Gibbs measure with pair
potential φ if it satisfies the DLR equilibrium equation∫

K(Rd)

π∆(B | η)µ(dη) = µ(B)

for all ∆ ∈ Bc(Rd) and B ∈ B(K(Rd)). The set of all Gibbs measures with respect to a
given potential φ is denoted by G(φ).

The rest of this subchapter is devoted to the outline of the proof of existence of such
Gibbs measures given in [29]. In fact, it can even be shown that there exists a special
subclass of G(φ), known as tempered Gibbs measures. It is defined as follows:

Consider the following space

Kα(Rd) := {η ∈ K(Rd) |Mα(η) <∞},

where

Mα(η) :=

(∑
k∈Zd

η(Qk)
2e−α|k|

) 1
2

and Qk is the cube centered at k ∈ Zd with edge length δ/
√
d > 0, where δ was given by

(RC).

Definition 2.39. Define the set of all tempered discrete Radon measures by

Kt(Rd) :=
⋂
α>0

Kα(Rd).

Then the set of all tempered Gibbs measures are all Gibbs measures concentrated on
Kt(Rd), i.e.

Gt(φ) := G(φ) ∩ P(Kt(Rd))

where P(Kt(Rd)) denotes the set of probability measures over Kt(Rd).
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Remark 2.40. 1. The idea of the existence proof relies on finding an appropriate to-
pology in which we can find a sequence {π∆N

(· | ξ)}N∈N from the local specification
Π which converges to a probability measure on Kt(Rd). Secondly, the DLR equation
needs to be verified.

2. Note that classic approaches like the one Ruelle used are not applicable here due to
the structure of our underlying space. Of course, the existence of Gibbs measures
on Kt(Rd) can be translated to the existence on Γ(Y ) via the mapping R. But the
techniques used for Γ(Y ) rely on, for example, a uniform integrability condition
which is not given here (see e.g. [3]): For Γ(Y ), our potential translates to

φΓ(s, x, t, y) = tsφ(x, y),

for which we have

ess sup
(s,x)∈R∗+×Rd

∫
R∗+

∫
Rd
|e−stφ(x,y) − 1|νθ(dt)⊗ σ(dy) =∞

The following identity is useful for calculations regarding Gibbs measures. It first
appeared in [25] and [47]. The version used in this work can be found in [29].

Proposition 2.41 (Georgii-Nguyen-Zessin identity, GNZ). Let F : Rd × K(Rd) → R+

measurable and µ ∈ G(φ). Then∫
K(Rd)

∫
Rd
F (x, η)η(dx)µ(dη)

=

∫
K(Rd)

∫
R∗+×Rd

F (x, η + sδx)e
−Φ((s,x);η)sνθ(ds)σ(dx)µ(dη)

(13)

where for η := (sy, y)y∈τ(η) ∈ K(Rd)

Φ ((s, x); η) := 2s
∑
y∈τ(η)

syφ(x, y)

Proof. As before, we consider functions of the form (9). For short, we just write F (x, η) =
f(x)g(η). Assume that supp f ⊂ suppϕi ⊂ ∆ for all i and some ∆ ∈ Bc(Rd). Since the
Gibbs measures are defined via Gamma measures and the DLR equations, it makes sense
to make use of that in the proof. Therefore, for µ Gibbs measure,∫

K(Rd)

∫
Rd
F (x, η)η(dx)µ(dη)

=

∫
K(Rd)

〈f, η∆〉g(η∆)µ(dξ)

=

∫
K(Rd)

∫
K(Rd)

〈f, η∆〉g(η∆)π∆(dη | ξ)µ(dξ)

=

∫
K(Rd)

∫
K(∆)

〈f, η∆〉g(η∆)
1

Z∆(ξ)
e−H(η∆|ξ∆c )G∆,θ(dη∆)µ(dξ)

=

∫
K(Rd)

∫
K(∆)

∫
∆

∫
R∗+
f(x)g(η∆ + sδx)

1

Z∆(ξ)
×

27



× e−H(η∆+sδx|ξ∆c )sνθ(ds)σ(dx)G∆,θ(dη)µ(dξ)

=

∫
∆

∫
R∗+

∫
K(Rd)

∫
K(∆)

F (x, η∆ + sδx)
1

Z∆(ξ)
e−H(η∆|ξ∆c )×

× e−Φ((s,x);η∆+ξ∆c )G∆,θ(dη∆)µ(dξ)sνθ(ds)σ(dx)

=

∫
∆

∫
R∗+

∫
K(Rd)

∫
K(Rd)

F (x, η + sδx)e
−Φ((s,x);η)π∆(η | ξ)µ(dξ)sνθ(ds)σ(dx)

=

∫
∆

∫
R∗+

∫
K(Rd)

F (x, η + sδx)e
−Φ((s,x);η)µ(dξ)sνθ(ds)σ(dx)

=

∫
K(Rd)

∫
Rd

∫
R∗+
F (x, η + sδ)e−Φ((s,x);η)sνθ(ds)σ(dx)µ(dη)

The claim for general F follows again by a monotone class argument and approximation.

2.9 Harmonic Analysis on Π(R∗+ × Rd)

Due to the infinite-dimensional nonlinear structure of the considered spaces, the dynamics
modeled on Π(R∗+ × Rd) are rather difficult to analyse directly. Instead, we intend to
rewrite equations on Π(R∗+ × Rd) to the space of finite configurations Π0(R∗+ × Rd) ⊂
Π(R∗+ × Rd). This can be done using the so-called K-transform, which will be introduced
in this chapter. Furthermore, we show relations between functions on Π(R∗+ × Rd) and
Π0(R∗+ × Rd). The approach used here is well-known in the theory of statistical physics.
In the homogeneous situation, the theory can be found in [30]. We start with the space
Π0(R∗+ × Rd).

2.9.1 The K-Transform

As noted above, we want to introduce our auxiliary space which is related to the Plato
space via the K-transform.

Definition 2.42. The Plato space of finite configurations Π0(R∗+ × Rd) is defined as

Π0(R∗+ × Rd) := {γ ∈ Π(R∗+ × Rd) | |γ| <∞}

where | · | denotes the number of elements in a set. Its topology is induced by the set
Γ0(R∗+ × Rd), see Chapter 2.4.2.

Remark 2.43. While Π0(R∗+ × Rd) ⊂ Π(R∗+ × Rd) as a set, it fulfills a different role
than Π(R∗+ × Rd). Π(R∗+ × Rd) is the space which stands for the ideas or forms of the
“real” physical system, while the set Π0(R∗+ × Rd) is seen as a mathematical construct
besides Π(R∗+ × Rd). Furthermore, the topological properties are entirely different, which
will become clear in this chapter.

For technical purposes, we may introduce subspaces of Π0(R∗+ × Rd) which are used
to decompose the space.

Definition 2.44. 1. For n ∈ N0, the set of n-point configurations is defined as

Π
(n)
0 (R∗+ × Rd) :=

{
γ ∈ Π0(R∗+ × Rd) : |γ| = n

}
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2. For a set Λ ⊂ R∗+ × Rd, the set of all configurations supported in Λ is defined as

Π0(Λ) :=
{
γ ∈ Π0(R∗+ × Rd) : γ ⊂ Λ

}
3. A Borel set A ⊂ Π0(R∗+ × Rd) is called bounded if there exists Λ ⊂ R∗+×Rd compact

and N ∈ N such that

A ⊂
N⋃
n=0

Π
(n)
0 (Λ).

Denote the system of all such sets by Bb(Π0(R∗+ × Rd)).
Note that we have the following decompositions:

Π0(R∗+ × Rd) =
∞⊔
n=0

Π
(n)
0 (R∗+ × Rd) =

⋃
Λ∈Bc(R∗+×Rd)

Π0(Λ)

where the first union is disjoint and Bc(R∗+ × Rd) denotes all Borel subsets of R∗+ × Rd

with compact closure.

The next step is to introduce the K-transform between Π0(R∗+ × Rd) and Π(R∗+ × Rd).
To this end, we need to define classes of functions on which this transform is well-defined.
Furthermore, for the extension of the K-transform to a wider class of functions, we intro-
duce a specific class of measures.

Definition 2.45. 1. A function G : Π0(R∗+ × Rd)→ R is said to be bounded with local
support if there exist C > 0 and Λ ∈ Bc(R∗+ × Rd) such that the following estimate
holds for all η ∈ K0(Rd):

|G(γ)| ≤ C1Π0(Λ)(γ) (14)

note that this implies that G(γ) = 0 if γ ∩ Λc 6= ∅. We denote by Bls(Π0(R∗+ × Rd))
all functions G : Π0(R∗+ × Rd)→ R which are bounded with local support.

2. A function G : Π0(R∗+ × Rd) → R is called bounded with bounded support if there
exists Λ ∈ Bc(R∗+ × Rd), N ∈ N and C > 0 such that

|G(γ)| ≤ C1Π0(Λ)(γ)1{|γ|≤N}(γ), (15)

i.e. G(γ) = 0 whenever |γ| > N or γ∩Λc 6= ∅. Denote the space of all such functions
by Bbs(Π0(R∗+ × Rd)). Obviously, we have Bbs(Π0(R∗+ × Rd)) ⊂ Bls(Π0(R∗+ × Rd)).

3. A measure ρ on Π0(R∗+ × Rd) is called locally finite if for any Λ ∈ Bc(R∗+ × Rd) and

for any m ∈ N0, the value of ρ(Π
(m)
0 (Λ)) is finite. Equivalently, ρ(A) is finite for all

bounded measurable sets A ⊂ Π0(R∗+ × Rd). The space of all locally finite measures
on Π0(R∗+ × Rd) is denoted by Mlf(Π0(R∗+ × Rd)).

We now have enough preparation to explicitly define the K-transform and show im-
portant properties.

Definition 2.46 ([30]). Let G ∈ Bls(Π0(R∗+ × Rd)). The K-transform of G is the function
KG : Π(R∗+ × Rd)→ R defined by

(KΠG)(γ) = (KG)(γ) :=
∑
ξbγ

G(ξ)

where the inclusion ξ b γ means that the sum is taken over all finite subsets of γ. The
dependence on Π is omitted if no confusion can arise. Note that by the definition of
Bls(Π0(R∗+ × Rd)), the K-transform is well-defined on such functions.
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Let us recall some results which can be taken directly from the theory of homogeneous
configuration spaces.

Proposition 2.47 ([30]). 1. The K-transform maps functions from Bls(Π0(R∗+ × Rd))
to cylinder functions FL0(Π(R∗+ × Rd)), i.e. for G ∈ Bls(Π0(R∗+ × Rd)), there exists
Λ ∈ Bc(R∗+ × Rd) such that

(KG)(γ) = (KG)(γ ∩ Λ)

for all γ ∈ Π(R∗+ × Rd).

2. The K-transform maps Bbs(Π0(R∗+ × Rd)) to polynomially bounded functions, i.e.
for G ∈ Bbs(Π0(R∗+ × Rd)), there exist Λ ∈ Bc(R∗+ × Rd), N ∈ N and C > 0 such
that

|KG|(γ) ≤ C(1 + |γ ∩ Λ|)N ., γ ∈ Π(R∗+ × Rd).

3. The mapping K : Bls(Π0(R∗+ × Rd))→ FL(Π(R∗+ × Rd)) is invertible with

K−1F (γ) =
∑
ξ⊂γ

(−1)|γ\ξ|F (ξ), γ ∈ Π0(R∗+ × Rd).

4. K is linear and positivity preserving.

5. If G ∈ Bls(Π0(R∗+ × Rd)) and continuous, then KG is also continuous.

Let us consider an example from statistical mechanics. Namely, the so-called coherent
states.

Example 1 ([30]). For a function f ∈ Cc(R∗+ × Rd), define the coherent state or Lebesgue-
Poisson exponent as

eλ(f) : Π0(R∗+ × Rd)→ R, γ 7→ eλ(f, γ) :=
∏

(s,x)∈γ

f(s, x).

Then eλ(f) ∈ Bls(Π0(R∗+ × Rd)). Its K-transform is given by

(Keλ(f))(γ) =
∏

(s,x)∈γ

(1 + f(s, x)), γ ∈ Π(R∗+ × Rd).

Let us finish this part by introducing the ?-convolution, which is related to the K-
transform as the standard convolution on Rd to the Fourier transform.

Definition 2.48. Let F,G ∈ Bls(Π0(R∗+ × Rd)). Define the ?-convolution as

(F ? G)(γ) :=
∑

(ξ1,ξ2,ξ3)∈P3
∅ (γ)

F (ξ1 ∪ ξ2)G(ξ2 ∪ ξ3), γ ∈ Π0(R∗+ × Rd).

where P3
∅ (γ) denotes all partitions of γ into three parts, where the parts may be empty.

As stated before, the following relation holds:

Proposition 2.49 ([30]). Let F,G ∈ Bls(Π0(R∗+ × Rd)) be given. Then

K(F ? G) = KF ·KG.
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2.9.2 Correlation Measures on Π0(R∗+ × Rd)

To consider dynamics, it is essential to work on Banach spaces such as L1-type spaces. To
this end, we need to introduce suitable classes of measures. Furthermore, these measures
correspond to probability measures on Π(R∗+ × Rd), which are used to model the dynamics
of our system. Also, the class of considered measures enables us to extend the K-transform
to the aforementioned L1-spaces. The method is based on [30,43].

To extend the K-transform, we introduce an integration kernel based on this mapping.

Definition 2.50. Define the following pre-kernel based on the K-transform by

K : Bb(Π0(R∗+ × Rd))× Π(R∗+ × Rd)→ [0,∞)

(A, γ) 7→ K(A, γ) := (K1A)(γ)
(16)

Let us prove that K is in fact a pre-kernel. The property K(∅, γ) = 0 for any γ ∈
Π0(R∗+ × Rd) is clear. For σ-additivity, let Ai ∈ Bb(Π0(R∗+ × Rd)), i ∈ N disjoint such
that the countable union is again in Bb(Π0(R∗+ × Rd)). Then there exist N ∈ N and
Λ ∈ Bc(R∗+ × Rd) such that

∞⋃
i=1

Ai ⊂
N⋃
k=0

Π
(k)
0 (Λ).

This means for γ ∈ Π0(R∗+ × Rd),

K

(
∞⋃
i=1

Ai, γ

)
=
∑
ξbγ

∞∑
i=1

1Ai(ξ) =
∑
ξbγ
|γ|≤N

∞∑
i=1

1Ai(ξ)
∞∑
i=1

∑
ξbγ
|ξ|≤N

1Ai(ξ) =
∞∑
i=1

K(A, γ),

which shows the claim. Furthermore, K can in fact be extended:

Lemma 2.51. The pre-kernel K has a unique extension to a kernel on B(Π0(R∗+ × Rd))×
Π(R∗+ × Rd).

Proof. Since Bb(Π0(R∗+ × Rd)) is a ring, we only need to show σ-finiteness of K(·, γ) to
obtain a unique extension to B(Π0(R∗+ × Rd)). But for A ∈ Bb(Π0(R∗+ × Rd)), the sum

K(A, γ) =
∑
ξbγ

1A(ξ)

is finite. Therefore, by Carathéodory’s theorem, K can be extended uniquely to a kernel
on B(Π0(R∗+ × Rd))× Π(R∗+ × Rd).

We may also extend Relation (16) to more general functions.

Proposition 2.52. Let G : Π0(R∗+ × Rd) → R be a measurable function with G ≥ 0 or
G ∈ Bls(Π0(R∗+ × Rd)). Then∫

Π0(R∗+×Rd)

G(ξ)K(dξ, γ) =
∑
ξbγ

G(ξ) = (KG)(η).

Proof. Note that G may be approximated by a sequence of simple functions, i.e.

G(γ) =
∞∑
k=1

ak1Ak(γ)

where ak ∈ R, A ∈ Bb(Π0(R∗+ × Rd)), γ ∈ Π0(R∗+ × Rd). The identity can then be obtained
by monotone limits. For more details, see [30, 43].
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We may now use the kernel K to construct measures on Π0(R∗+ × Rd) corresponding
to probability measures on Π(R∗+ × Rd).

Definition 2.53. Let µ be a probability measure on (Π(R∗+ × Rd),B(Π(R∗+ × Rd))). The
corresponding correlation measure is defined on (Π0(R∗+ × Rd),B(Π0(R∗+ × Rd))) by the
relation

ρµ(A) :=

∫
Π(R∗+×Rd)

K(A, γ)µ(dγ).

The class of locally finite measures on Π0(R∗+ × Rd) introduced above forms an inte-
resting class of measures in applications. Therefore, it is of interest to characterize locally
finite correlation measures via its underlying probability measure on Π(R∗+ × Rd). Name-
ly, the class of probability measures with finite local moments. We define this class of
probability measures and state the relation to locally finite measures.

Proposition 2.54. Let µ be a probability measure on (Π(R∗+ × Rd),B(Π(R∗+ × Rd))).
Then the corresponding correlation measure ρµ is locally finite if and only if the following
holds: For any Λ ∈ Bc(R∗+ × Rd) and N ∈ N,∫

Π(R∗+×Rd)

|γ ∩ Λ|Nµ(dγ) <∞. (17)

Definition 2.55. A measure µ with property (17) is said to have finite local moments of
all order. The space of all such measures is denoted by M1

fm(Π(R∗+ × Rd)).

Proof of Proposition 2.54. The proof works analogously to the case of classical configu-
ration spaces, see [30]. It is repeated for convenience in our case.

“⇐”: Let A ∈ Bb(Π0(R∗+ × Rd)). Then there exist Λ ∈ Bc(R∗+ × Rd) and N ∈ N such
that

A ⊂
N⋃
k=0

Π
(k)
0 (Λ).

Then

ρµ(A) =

∫
K(Rd)

K(A, γ)µ(dγ)

≤
N∑
k=0

∫
Π(R∗+×Rd)

K(Π
(k)
0 (Λ), γ)µ(dγ) =

N∑
k=0

∫
Π(R∗+×Rd)

(
|γ ∩ Λ|
k

)
µ(dγ)

(18)

where we used that

K(Π
(k)
0 (Λ), γ) =

∑
ξbγ

1
Π

(k)
0 (Λ)

(ξ) =
∑
ξbγ
|γ|=k

1
Π

(k)
0 (Λ)

(ξ) =

(
|γ ∩ Λ|
k

)

The last expression of (18) consists of a finite linear combination of powers of |γ ∩Λ| and
is therefore finite by assumption.

“⇒”: Let N ∈ N and Λ ∈ Bc(R∗+ × Rd). The expression |γ ∩ Λ| can be written as a

linear combination of binomial coefficients
(|γ∩Λ|

k

)
for k ≤ n and therefore, by a calculation

similar to (18), we obtain the result.
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For the class M1
fm(Π(R∗+ × Rd)), we may now extend the K-transform to L1-spaces

related to these measures.

Proposition 2.56 ([30]). Let µ ∈ M1
fm(Π(R∗+ × Rd)) be given. For all functions G ∈

Bbs(Π0(R∗+ × Rd)), we have G ∈ L1(Π0(R∗+ × Rd), ρµ). Furthermore, if G ≥ 0 or G ∈
Bbs(Π0(R∗+ × Rd)), then∫

Π0(R∗+×Rd)

G(γ)ρµ(dγ) =

∫
Π(R∗+×Rd)

(KG)(γ)µ(dγ) (19)

Proof. The proof works directly as in [30]. Since µ(Π(R∗+ × Rd)) = 1, the restriction from
Γ(R∗+ × Rd) to Π(R∗+ × Rd) makes no difference for the identity.

Remark 2.57. For a measure µ ∈ M1
fm(Π(R∗+ × Rd)), we may define the correlation

measure without using the kernel K directly via

ρµ(A) :=

∫
Π(R∗+×Rd)

K1A(γ)µ(dγ), A ∈ Bb(Π0(R∗+ × Rd)).

This is due to Proposition 2.54, since K1A ∈ L1(µ) for A ∈ Bb(Π0(R∗+ × Rd)).

Definition 2.58. The remark above enables us to explicitly define the dual operator of
K, i.e.

K∗ : M1
fm(Π(R∗+ × Rd))→Mlf(Π0(R∗+ × Rd))

µ 7→ K∗µ := ρµ

To finally extend the K-transform, we need one more continuity result of this mapping.

Lemma 2.59 ([30]). Let {Gn}n∈N ⊂ Bbs(Π0(R∗+ × Rd)) be a sequence converging in
L1(Π0(R∗+ × Rd), ρµ) for some measure µ ∈ M1

fm(Π(R∗+ × Rd)). Then {KGn}n∈N con-
verges in L1(Π(R∗+ × Rd), µ).

Proof. Calculation using the triangle inequality |KG| ≤ K|G|.

We may now prove the extension result for the K-transform on L1-spaces.

Theorem 2.60 ([30]). Let µ ∈ M1
fm(Π(R∗+ × Rd)). For any G ∈ L1(Π0(R∗+ × Rd), ρµ),

define

KG(γ) :=
∑
ξbγ

G(ξ)

where the series converges absolutely µ-almost surely. Furthermore, we have the following
estimate:

‖KG‖L1(µ) ≤ ‖K|G|‖L1(µ) = ‖G‖L1(ρµ)

which implies that KG ∈ L1(µ). Also, identity (19) holds for all G ∈ L1(ρµ).

Proof. The statement for non-negative functions follows from calculations using the pre-
vious lemma as well as Fatou’s lemma. The extension to general functions is done by
decomposing the function into a positive and negative part.

One important identity related to the K-transform concerns the cominatorial convolu-
tion given by Definition 2.48. The identity given by Proposition 2.49 can also be extended
under some conditions.
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Proposition 2.61 ([30]). Let F,G ∈ Bls(Π0(R∗+ × Rd)) and let µ ∈ M1
fm(Π(R∗+ × Rd)).

Assume one of the following conditions:

1. F,G ≥ 0

2. |F | ? |G| ∈ L1(ρµ) (and consequentially K(F ? G) ∈ L1(µ))

3. F,G ∈ L1(ρµ).

Then the following identity holds µ-almost surely:

K(F ? G) = KF ·KG.

Proof. Direct consequence of Theorem 2.60.

2.9.3 Correlation Functions on Π0(R∗+ × Rd)

For a certain subclass of measures of M1
fm(Π(R∗+ × Rd)), we may show existence of a

density function for the correlation measure ρµ. This density is known as the correlation
function of µ. Since the representation of dynamics is easier in terms of correlation functi-
ons, it is useful in applications to find out when these fucntions exist. In this chapter, we
want to discuss necessary conditions. Namely, the property of local absolute continuity of
a measure with respect to the Poisson measure introduced in Chapter 2.8.1.

Definition 2.62. We call a measure µ ∈M1
fm(Π(R∗+ × Rd)) locally absolutely continuous

with respect to the Poisson measure π if the measure µΛ is absolutely continuous with
respect to πΛ for all Λ ∈ Bc(R∗+ × Rd), where µΛ := µ ◦ p−1

Λ as in Chapter 2.8.1.

This property can be transferred to the corresponding correlation measure. Further-
more, it implies the existence of a density function:

Proposition 2.63 ([30]). For a measure µ ∈ M1
fm(Π(R∗+ × Rd)) which is locally abso-

lutely continuous with respect to π, the correlation measure ρµ is absolutely continuous
with respect to the Lebesgue-Poisson measure λ introduced in Chapter 2.8.1. The density
function has the following representation for any γ ∈ Π0(Λ):

kµ(γ) =
dρµ
dλ

=

∫
Π(Λ)

dµΛ

dπΛ
(γ ∪ ξ)πΛ(dξ)

Definition 2.64. The function kµ : Π0(R∗+ × Rd)→ R defined by the previous proposition
is called the correlation function corresponding to µ. Furthermore, we have the decomposi-
tion kµ ' {k(n)

µ }∞n=0, where for any n ∈ N, k(n)
µ : (R∗+ × Rd)n → R is a symmetric function

with

k(n)
µ (s1, x1, . . . , sn, xn) :=

{
kµ({(s1, x1), . . . , (sn, xn)}), if |{(s1, x1), . . . , (sn, xn)}| = n

0, otherwise

The functions k
(n)
µ are called n-point correlation functions.

We want to mention a relation which will be helpful when introducing the notion of
a correlation function on the cone K(Rd). Namely, the so-called Bogoliubov functional,
which can be set in relation with the correlation function of a measure. A more detailed
discussion can be found in [31].
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Definition 2.65. Let µ ∈ M1
fm(Π(R∗+ × Rd)). The Bogoliubov functional LΠ

µ correspon-
ding to µ is defined as

LΠ
µ (ϕ) :=

∫
Π(R∗+×Rd)

∏
(s,x)∈γ

(1 + ϕ(s, x))µ(dγ)

for any measurable function ϕ : R∗+ × Rd → R, provided, the right-hand side exists for |ϕ|.

We only provide a heuristic version of the following proposition, since it only serves
as a motivation for the correct shape of the correlation functions on K(Rd) later.

Proposition 2.66 ([31]). Under some assumptions, the Bogoliubov functional is the ge-
nerating functional of the correlation function. In other words, for any ϕ : R∗+ × Rd → R
such that LΠ

µ (ϕ) is well-defined, we have

LΠ
µ (ϕ) =

∞∑
n=0

1

n!

∫
R∗+×Rd

n
ϕ(s1, x1) · · ·ϕ(sn, xn)×

× k(n)
µ (s1, . . . , xn)ν(ds1)σ(dx1) . . . ν(dsn)σ(dxn)

2.10 Harmonic Analysis on K(Rd)

Now that we have established the framework of harmonic analysis on the underlying Plato
space Π(R∗+ × Rd), we want to transfer these notions to the physical space of the cone
K(Rd). Let us start by introducing analogous notions of the auxiliary spaces introduced
above as well as classes of functions on these spaces needed for the analysis.

Definition 2.67. 1. The set of Radon measures with finite support is defined as

K0(Rd) :=
{
η ∈ K(Rd) : |τ(η)| <∞

}
2. For n ∈ N0, the set of n-point measures is defined as

K(n)
0 (Rd) :=

{
η ∈ K0(Rd) : |τ(η)| = n

}
, n ∈ N

and K(0)
0 (Rd) = {0} the set consisting of the zero measure.

3. For a compact set Λ ⊂ Rd, the set of all measures supported in Λ is defined as

K0(Λ) :=
{
η ∈ K0(Rd) : τ(η) ⊂ Λ

}
4. A set A ⊂ K0(Rd) is called bounded if there exists a compact set Λ ⊂ Rd and N ∈ N

such that

A ⊂
N⋃
n=0

K(n)
0 (Λ).

Denote the collection of all bounded subsets of K0(Rd) by Bb(K0(Rd)).
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5. A bounded set A ⊂ K0(Rd) is said to have compact marks if additionally, there exists
a compact set I ⊂ R∗+ such that

A ∩ {η ∈ K0(Rd) | ∃x ∈ τ(η) : sx /∈ I} = ∅

Denote the collection of all such sets by Bcm(K0(Rd)).
Note that we have

K0(Rd) =
∞⊔
n=0

K(n)
0 (Rd)

K0(Rd) =
⋃

Λ∈Bc(Rd)

K0(Λ)

where the first union is disjoint.

Remark 2.68. Even though the spaces Π(R∗+ × Rd) and K(Rd) appear simultaneously,
the notions introduced above pose a small difference: For K0(Λ), we do not assume that the
set of marks is concentrated in a compact set. Therefore, a second notion of boundedness
is introduced via Bcm(K0(Rd)).

Let us relate the subspaces of Π(R∗+ × Rd) and K(Rd) via the reflection mapping R
introduced in Chapter 2.5.

Proposition 2.69. The following relations hold:

1. RΠ0(R∗+ × Rd) = K0(Rd)

2. RΠ
(n)
0 (R∗+ × Rd) = K(n)

0 (Rd) for any n ∈ N0.

3. RΠ0(R∗+ × Λ) = K0(Λ) for any set Λ ⊂ Rd.

4. For any A ∈ Bb(Π0(R∗+ × Rd)), we have RA ∈ Bcm(K0(Rd)) and vice versa.

Proof. Let us prove the first statement. The other statements follow analogously.
“⊂”: Let γ ∈ Π0(R∗+ × Rd), then there exists a representation γ =

∑n
i=1 δ(si,xi). This

yields Rγ =
∑n

i=1 siδxi ∈ K0(Rd).
“⊃”: Let η ∈ K0(Rd). Again, we have η =

∑n
i=1 siδxi . By setting γ =

∑n
i=1 δ(si,xi), we

obtain γ ∈ Π0(R∗+ × Rd) and Rγ = η.

We continue by introducing the analogue of function spaces on K0(Rd). There are some
function spaces which are specifically using the mark structure of K0(Rd). This enables us
to consider L1-spaces corresponding to measures with mark weights such as in Definition
2.22.

Definition 2.70. 1. A function G : K0(Rd)→ R is said to be bounded with local sup-
port if there exist C > 0 and Λ ∈ Bc(Rd) such that the following estimate holds for
all η ∈ K0(Rd):

|G(η)| ≤ C1K0(Λ)(η)
∏
x∈τ(η)

sx (20)

note that this implies that G(η) = 0 if τ(η) ∩Λc 6= ∅. We denote by Bls(K0(Rd)) all
functions G : K0(Rd)→ R which are bounded with local support.

36



2. A function G : K0(Rd) → R is called bounded with bounded support if there exists
Λ ∈ Bc(Rd), N ∈ N and C > 0 such that

|G(η)| ≤ C1K0(Λ)(η)1{|τ(η)|≤N}(η),

i.e. G(η) = 0 whenever |τ(η)| > N or τ(η) ∩ Λc 6= ∅. Denote the space of all such
functions by Bbs(K0(Rd)).

3. Let us also define a modified version of Bbs(K0(Rd)) which takes into account the

effect of the marks as above. We define the space B̃bs(K0(Rd)) as all functions
G : K0(Rd)→ R which satisfy the bound

|G(η)| ≤ C1K0(Λ)(η)1{|τ(η)|≤N}(η)
∏
x∈τ(η)

sx

for some Λ ∈ Bc(Rd), N ∈ N and C > 0. Obviously, we have B̃bs(K0(Rd)) ⊂
Bls(K0(Rd)).

4. Define the space of bounded functions with compact mark support as all functions
G ∈ Bbs(K0(Rd)) such that there exists a compact set I ⊂ R∗+ such that

|G(η)| ≤ C1K0(Λ)1{|τ(η)|≤N}
∏
x∈τ(η)

1I(sx) (21)

where Λ, C and N are as above. One class of compact sets of special interest will be
I = [a, b] with 0 < a < b <∞. Denote the space of bounded functions with compact
marks by Bcm(K0(Rd)).

5. A measure ρ on K0(Rd) is called locally finite if for any Λ ∈ Bc(Rd) and for any

m ∈ N0, the value of ρ(K(m)
0 (Λ)) is finite. Equivalently, ρ(A) is finite for all bounded

measurable sets A ⊂ K0(Rd). The space of all locally finite measures on K0(Rd) is
denoted by Mlf(K0(Rd)).

6. A measure ρ on K0(Rd) is called mark-locally finite if ρ(A) < ∞ for all A ∈
Bcm(K0(Rd)). Obviously, a locally finite measure ρ is also mark-locally finite.

Let us now relate the function spaces on Π0(R∗+ × Rd) and on K0(Rd). We use the
reflection mapping R to map functions F(Π0(R∗+ × Rd)) on Π0(R∗+ × Rd) to functions
F(K0(Rd)) on K0(Rd) the following way:

Definition 2.71. Define the pushforward of functions on Π0(R∗+ × Rd) to K0(Rd) as
follows:

R : F(Π0(R∗+ × Rd))→ F(K0(Rd))

F 7→ RF := F ◦ R−1

analogously, we may define the inverse mapping R−1 : F(K0(Rd))→ F(Π0(R∗+ × Rd)).

The main difference between function spaces on Π0(R∗+ × Rd) and on K0(Rd) is that the
definitions on Π0(R∗+ × Rd) a priori require compactness of mark support, while functions
on K0(Rd) need to be bounded in the mark variables as in Definition 2.70 above. The
next Proposition shows that one needs to be careful when comparing locally supported
functions on Π0(R∗+ × Rd) and K0(Rd).
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Proposition 2.72. For the above spaces, the following relations hold:

1. RBls(Π0(R∗+ × Rd)) 6⊂ Bls(K0(Rd)) and Bls(Π0(R∗+ × Rd)) 6⊃ R−1Bls(K0(Rd)).

2. RBbs(Π0(R∗+ × Rd)) = Bcm(K0(Rd)).

Proof. 1. Let G ∈ Bls(Π0(R∗+ × Rd)) such that for some 0 < a < 1, we have [a, b]×Λ′ ⊂
Λ, where Λ is as in Definition 2.45 and Λ′ ⊂ Rd compact. We require the estimate

C1Π0(Λ)(R−1η) ≤ C11K0(Λ′)(η)
∏
x∈τ(η)

sx

for some C,C1 > 0. But since a < sx < 1 is possible and the number of points in
η is arbitrary, the right-hand side can be arbitrarily small. On the other hand, let
G ∈ Bls(K0(Rd)). To show R−1G ∈ Bls(Π0(R∗+ × Rd)), we require

C1K0(Λ′)(Rγ)
∏

x∈τ(Rγ)

sx ≤ C11Π0(Λ)(Rγ)

for some C,C1 > 0 and Λ,Λ′ as in the definitions above. Since there is no compact-
ness requirement on the marks in Bls(K0(Rd)), the left-hand side can be arbitrarily
large.

2. Let G ∈ Bbs(Π0(R∗+ × Rd)). Then there exist Λ ∈ Bc(R∗+ × Rd) compact, N ∈ N
and C > 0 such that (15) holds. Since Λ is compact, there exist 0 < a < b such that
Λ ⊂ [a, b]× Λ′ for some Λ′ ∈ Bc(Rd). Then

G(R−1η) ≤ C1Π0(Λ)(R−1η)1{|R−1η|≤N}(R−1η)

≤ C1Π0([a,b]×Λ′)(R−1η)1{|R−1η|≤N}(R−1η)

= C1K0(Λ′)(η)1{|τ(η)|≤N}(η)
∏
x∈τ(η)

1[a,b](sx)

which shows the first inclusion. On the other hand, let G ∈ Bcm(K0(Rd)). Then
there exist Λ′ ∈ Bc(Rd), I ∈ Bc(R∗+), N ∈ N and C > 0 such that (21) holds. Also,
I × Λ′ ∈ Bc(R∗+ × Rd) and since

1K0(Λ′)(η)
∏
x∈τ(η)

1I(sx) = 1Π0(I×Λ′)(R−1η),

the claim follows.

Analogously to the case of Π0(R∗+ × Rd), we may define the K-transform. The defi-
nition is exactly the same. The differing function spaces offer different estimates on the
transformed function, though.

Definition 2.73. Let G ∈ Bls(K0(Rd)). The K-transform of G is defined as the function
KG : K(Rd)→ R of the form

(KKG)(η) = (KG)(η) :=
∑
ξbη

G(ξ)

where the inclusion ξ b η is meant in the sense of Definition 2.1. Again, the dependence
on K is dropped if it is clear from context.
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Lemma 2.74. For any G ∈ Bls(K0(Rd)), the K-transform is well-defined and the follo-
wing estimate holds:

|(KG)(η)| ≤ C
∏

x∈τ(η)∩Λ

(1 + sx)

where C and Λ are as in Definition 2.70.

Proof. We have

|(KG)(η)| ≤
∑
ξbη

|G(η)| ≤ C
∑

ξ∈K0(Λ)
τ(ξ)⊂τ(η)

∏
x∈τ(ξ)

sx = C
∏

x∈τ(η)∩Λ

(1 + sx)

where the product in the last expression is finite if and only if the sum∑
x∈τ(η)∩Λ

sx

is finite. Since the latter is true by definition of η ∈ K(Rd), the claim follows.

The following example is the K0(Rd)-analogue of coherent states. Furthermore, it
relates these states to the coherent states on Π0(R∗+ × Rd).

Example 2. For a function ϕ ∈ Cc(Rd), we define the coherent state as the function
eK(ϕ) : K0(Rd)→ R by

eK(ϕ, η) :=
∏
x∈τ(η)

sxϕ(x)

since ϕ is bounded, eK(ϕ) fulfills bound (20). We can calculate its K-transform:

(KeK(ϕ))(η) =
∏
x∈τ(η)

(1 + sxϕ(x))

For the right-hand-side to be well-defined, the series
∑

x∈τ(η) sxϕ(x) needs to be convergent.
Since ϕ is compactly supported, this is given in our case.

For fϕ(s, x) := sϕ(x), consider the Lebesgue-Poisson exponent eλ(fϕ) from Example
1, we see that

eK(ϕ,Rγ) = eλ(fϕ, γ), γ ∈ Π0(R∗+ × Rd)

We can relate the K-transform on Π0(R∗+ × Rd) and on K0(Rd) in the following way:

Proposition 2.75. For G ∈ Bls(K0(Rd)) ∩ RBls(Π0(R∗+ × Rd)) and η ∈ K(Rd), the
following holds:

(KKG)(η) = (KΠ(R−1G))(R−1η)

Below, we will show that Bcm(K0(Rd)) is dense in various L1-spaces. Furthermore,
we know that Bcm(K0(Rd)) ⊂ Bls(K0(Rd)) ∩ RBls(Π0(R∗+ × Rd)) by Proposition 2.72.
Therefore, the above relation holds on a nontrivial set of functions in L1(K0, ρ) for some
class of measures ρ appearing below.
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Proof of Proposition 2.75. Let η =
∑

i∈I siδxi , where I ⊂ N. Then

(KKG)(η) =
∞∑
n=0

∑
{i1,...,in}⊂I

G

(
n∑
i=1

sikδxik

)
=
∞∑
n=0

∑
{i1,...,in}⊂I

G

(
R

[
n∑
i=1

δ(xik ,sik )

])

=
∞∑
n=0

∑
{i1,...,in}⊂I

(R−1G)

(
n∑
i=1

δ(xik ,sik )

)

=
∞∑
n=0

∑
{i1,...,in}⊂I

(R−1G)

(
R−1

[
n∑
i=1

sikδxik

])
= (KΠ(R−1G))(R−1η)

For the calculations later in this work, we also need some identities regarding the K-
transform. The following Lemma simplifies the combinatorial calculations related to the
K-transform.

Lemma 2.76. Let G,G1, G2 ∈ Bls(K0(Rd)).

1. The K-transform has the following properties:

KG(η − sxδx)−KG(η) = −(KG(·+ sxδx))(η − sxδx)
KG(η + sxδx)−KG(η) = (KG(·+ sxδx))(η)

2. The K-transform and the ?-convolution have the following relation:

K(G1 ? G2) = KG1 ·KG2

Proof. These can be shown by direct calculations using combinatorial arguments. A simi-
lar proof for the case Γ(Y ) can be found in [30].

For calculations on the space of finite measures, we need the following identity, also
known as Minlos Lemma. The proof is identical to the case of Γ(Y ).

Lemma 2.77 ([36]). Let λκ be the Lebesgue-Poisson measure on K0(Rd) associated with
some intensity measure κ = ν ⊗ σ.

1. Let G : K0(Rd)→ R, H : (K0(Rd))2 → R. Then∫
K0(Rd)

∫
K0(Rd)

G(ξ1 + ξ2)H(ξ1, ξ2)λκ(dξ1)λκ(dξ2)

=

∫
K0(Rd)

G(η)
∑
ξ⊂η

H(ξ, η − ξ)λκ(dη)

2. Let H : K0(Rd)× R∗+ × Rd → R. Then∫
K0(Rd)

∑
x∈τ(η)

H(η, sx, x)λκ(dη)

=

∫
K0(Rd)

∫
R∗+×Rd

H(η + sδx, s, x)κ(ds, dx)λκ(dη)
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provided, at least one side of the equation exists.

Our goal now is to extend the K-transform to the whole space L1(ρ) for (mark-)locally
finite measures ρ on K0(Rd).

The rest of this chapter is devoted to density statements of the spaces introduced
above. Especially when considering semigroup theory and dynamics in general, for tech-
nical reasons, it is essential to consider dense subspaces of L1-type spaces. Especially
Bcm(K0(Rd)) will be of interest.

Lemma 2.78. For any locally finite measure ρ, the space Bbs(K0(Rd)) is dense in L1(ρ).

Proof. Let G ∈ L1(K0(Rd), ρ) for some measure ρ on K0(Rd). Let us first approximate
unbounded functions with bounded support. Define

Gn(η) :=
[
G(η)1K0(Bn)(η)1{|τ(η)|≤n}(η)

]
∧ n

G′n(η) :=
[
G(η)1K0(Bn)(η)1{|τ(η)|≤n}(η)

]
where Bn ⊂ Rd is the ball with radius n centered at 0. Then Gn ∈ Bbs(K0(Rd)) and

‖Gn(η)−G′n(η)‖L1(ρ) =

∫
K0(Rd)

|Gn(η)−G′n(η)|ρ(dη)

=

∫
K0(Rd)

|G′n(η)|1{|Gn(η)|≥n}(η)ρ(dη)

≤
∫
K0(Rd)

|G(η)|1{|G(η)|≥n}(η)ρ(dη)

since G ∈ L1(K0(Rd), ρ), the last term converges to 0 for n→∞. Next, define

G′′n(η) = G(η)1K0(Bn)(η)

Recall that we have the disjoint decomposition of K0(Rd) into n-point-configurations, i.e.

K0(Rd) =
∞⋃
m=0

K(m)
0 (Rd), K(m)

0 (Rd) =
{
η ∈ K0(Rd) : |τ(η)| = m

}
Using this decomposition, we get

‖G′n(η)−G′′n(η)‖ =

∫
K0(Rd)

|G′n(η)−G′′n(η)|ρ(dη)

=
∞∑

m=n+1

∫
K(n)

0 (Rd)

|G′′n(η)|ρ(dη) ≤
∞∑

m=n+1

∫
K(n)

0 (Rd)

|G(η)|ρ(dη)

and since G ∈ L1(K0(Rd)), the series is absolutely convergent. Therefore, the last ex-
pression converges to 0 for n → ∞. For the last step, note that the increasing sequence
{K0(Bn)}∞n=1 approximates K0(Rd) and therefore

‖G′′n −G‖L1 =

∫
K0(Rd)

|G(η)|ρ(dη)−
∫
K0(Bn)

|G(η)|ρ(dη)

which converges to 0 as n→∞ by the argument above.
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A similar result can be obtained for B̃bs(K0(Rd)) with a modified measure:

Corollary 2.79. Define the density function

f(η) =
∏
x∈τ(η)

1

sx
.

Then the space B̃bs(K0(Rd)) is dense in L1(K0(Rd), fρ).

Proof. Let G ∈ L1(fρ). Then by definition, we have

‖G‖L1(fρ) =

∫
K0(Rd)

|G(η)|
∏
x∈τ(η)

1

sx
ρ(dη) <∞

This implies that G·f ∈ L1(ρ). Since Bbs(K0(Rd)) is dense in L1(ρ), there exists a sequence
{Gn}∞n=1 ⊂ Bbs(K0(Rd)) such that

‖Gn −G · f‖L1(ρ) → 0, n→∞.

on the other hand, the sequence {G̃n}∞n=1 is in B̃bs(K0(Rd)), where G̃n := Gn
f

:

G̃n(η) =
Gn(η)

f(η)
≤ C1K0(Λ)(η)1{|τ(η)|≤N}(η)

∏
x∈τ(η)

sx

Furthermore, it converges to G in L1(fρ):

‖G̃n −G‖L1(fρ) =

∫
K0(Rd)

∣∣∣∣Gn

f
−G

∣∣∣∣ fdρ
=

∫
K0(Rd)

|Gn −Gf |dρ = ‖Gn −Gf‖L1(ρ) → 0 n→∞.

which completes the proof.

One typical example of a locally finite measure on K0(Rd) is derived from the Lebesgue-
Poisson measure on Π0(R∗+ × Rd). Since we are only working on K0(Rd) in later chapters,
we use the same notation for the measures on Π0(R∗+ × Rd) and K0(Rd). If we need to
distinguish between those two, we will remark this accordingly.

Example 3. Let ν be a finite measure on R∗+ and σ a non-atomic measure on Rd (e.g.
the Lebesgue measure). Define the measure λ = λν⊗σ as∫

K0(Rd)

F (η)λ(dη) =

= F (0) +
∞∑
n=1

1

n!

∫
(R∗+×Rd)n

F

(
n∑
i=1

siδxi

)
ν(ds1) . . . ν(dsn)σ(dx1) . . . σ(dxn)

Where F : K0(Rd) → R such that the above expression exists and 0 denotes the zero
measure. Then λ is locally finite.

42



Proof. Let Λ ∈ Bc(Rd) and m ∈ N0. For m = 0, the statement is clear. Let m ≥ 1. Then

λ
(
K(m)

0 (Λ)
)

=
1

m!

∫
(R∗+×Rd)m

1K(m)
0 (Λ)

(
m∑
i=1

siδxi

)
ν(ds1) . . . ν(dsm)σ(dx1) . . . σ(dxm)

=
1

m!

∫
(R∗+×Rd)m

m∏
i=1

1Λ(xi)ν(ds1) . . . ν(dsm)σ(dx1) . . . σ(dxm)

=
ν(R∗+)mσ(Λ)m

m!
<∞

Example 4. One specific example is the measure based on νθ(ds) from Definition 2.22.
We fix θ > 0 and omit the dependence for convenience. Then λν⊗σ can be rewritten as

λν⊗σ(dη) = f(η)λν̃⊗σ(dη),

where f is the density function from Corollary 2.79 and ν̃(ds) = θe−sds. Since ν̃ is a finite
measure on R∗+, we see by Example 3 that λν̃⊗σ is locally finite. Therefore, Bbs(K0(Rd))

is dense in L1(λν̃⊗σ) and B̃bs(K0(Rd)) is dense in L1(λν⊗σ).

As stated above, it also makes sense to state the density of Bcm(K0(Rd)) in the L1-
spaces.

Proposition 2.80. Let ρ ∈ Mlf(K0(Rd)). The space Bcm(K0(Rd)) is dense in L1(ρ) as
well as L1(fρ), where f is the density function from Corollary 2.79.

Proof. By Lemma 2.78 and Corollary 2.79, it suffices to show that functions in the spaces
Bbs(K0(Rd)) and B̃bs(K0(Rd)) can be approximated by functions in Bcm(K0(Rd)), where
the convergence is taken with respect to L1(ρ) and L1(fρ) respectively. Consider G ∈
Bbs(K0(Rd)). Define the sequence {Gn}∞n=0 by

Gn(η) := G(η) ·
∏
x∈τ(η)

1[ 1
n
,n](sx), η ∈ K0(Rd).

Then

|Gn(η)| ≤ C1K0(Λ)(η)1{|τ(η)|≤N}
∏
x∈τ(η)

1[ 1
n
,n](sx)

where C,Λ and N are given as in Definition 2.70. This shows that Gn ∈ Bcm(K0(Rd)).
Let us show that G can be approximated by such functions:

‖Gn −G‖L1 =

∫
K0(Rd)

|Gn(η)−G(η)|ρ(dη)

=

∫
K0(Rd)

|G(η)|

∣∣∣∣∣∣1−
∏
x∈τ(η)

1[ 1
n
,n](sx)

∣∣∣∣∣∣ ρ(dη)

=

∫
K0(Rd)

|G(η)|ρ(dη)−
∫
K0(Rd)

|G(η)|
∏
x∈τ(η)

1[ 1
n
,n](sx)ρ(dη)
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Since G ∈ L1(ρ), by Lebesgue’s theorem, it suffices to show Gn → G pointwisely. Fix
η ∈ K0(Rd). Since τ(η) is finite, there exists n0 ∈ N such that sx ∈ [ 1

n
, n] ∀x ∈ τ(η) for

all n ≥ n0. Therefore, ∏
x∈τ(η)

1[ 1
n
,n](sx) = 1 ∀n ≥ n0

which means that Gn(η) = G(η) for all n ≥ n0, i.e. Gn → G pointwisely. By above
arguments, this implies Gn → G in L1, which completes the proof.

The proof that Bcm(K0(Rd)) is dense in L1(fρ) follows the same scheme. Note that

the estimate for Gn as above for G ∈ B̃bs(K0(Rd)) reads

|Gn(η)| ≤ C1K0(Λ)(η)1{|τ(η)|≤N}
∏
x∈τ(η)

sx1[ 1
n
,n](sx)

≤ CnN1K0(Λ)(η)1{|τ(η)|≤N}
∏
x∈τ(η)

1[ 1
n
,n](sx)

which also implies Gn ∈ Bcm(K0(Rd)).

Similar to the case of Π0(R∗+ × Rd), we now want to consider the extension of the
K-transform to L1-type spaces.

2.10.1 Correlation Measures on K0(Rd)

In this section, we introduce the correlation measures related to a probability measure
µ on (K(Rd),B(K(Rd))), similarly to Π0(R∗+ × Rd). We then extend the K-transform to
L1-type spaces. Note that due to the structure of the spaces K(Rd) and K0(Rd), we need
to pay attention to the properties of measures with respect to its marks. We proceed as
before:

Definition 2.81. Define the pre-kernel derived from the K-transform by

K : Bb(K0(Rd))×K(Rd)→ [0,∞)

(A, η) 7→ K(A, η) := (K1A)(η)

In a similar fashion to Definition 2.50, we can show that K is a pre-kernel. Furthermore,
the same extension result holds:

Lemma 2.82. The pre-kernel K can be uniquely extended to a kernel on B(K0(Rd)) ×
K(Rd).

Proof. Similar to the proof of Lemma 2.51

The following proposition relates the K-transform to the kernel defined above.

Proposition 2.83. Let G : K0(Rd) → R be a measurable function with G ≥ 0 or G ∈
Bls(K0(Rd)). Then ∫

K0(Rd)

G(ξ)K(dξ, η) =
∑
ξbη

G(ξ) = (KG)(η)

Proof. Similar to the proof of Proposition 2.52
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Now that K is defined as a kernel on (K(Rd),B(K(Rd))), we may use it to construct
measures on K0(Rd).

Definition 2.84. Let µ be a probability measure on the space (K(Rd),B(K(Rd))). The
corresponding correlation measure is defined as a measure on (K0(Rd),B(K0(Rd))) by the
relation

ρµ(A) :=

∫
K(Rd)

K(A, η)µ(dη)

As we have seen before, it may be of interest to know if a correlation measure ρµ is
locally finite. One should note though, that the measures on K0(Rd) used in applications
will not be locally finite as defined above, cf. Example 4. Such measures are mark-locally
finite, though. Since this measure was constructed using a locally finite measure, it still
makes sense to examine the class of locally finite measures. The connection to properties
of µ is stated in the next proposition.

Proposition 2.85. Let µ be a probability measure on (K(Rd),B(K(Rd))). Then the cor-
responding correlation measure ρµ is locally finite if and only if the following holds: For
any Λ ∈ Bc(Rd) and N ∈ N, ∫

K(Rd)

|τ(η) ∩ Λ|Nµ(dη) <∞

A measure µ with the above property is said to have finite local moments of all order. The
space of all such measures is denoted by M1

fm(K(Rd)).

Remark 2.86. It should be stressed again that typical measures from applications do
not fulfill the above property: As seen in Proposition 2.30, we have |τ(η) ∩ Λ| = ∞ for
any compact set Λ ∈ Bc(Rd) due to the fact that Λ does not take into account the mark
variable. From a constructive standpoint, it is still crucial to consider these measures.

Proof of Proposition 2.85. The proof works analogously to the one of Proposition 2.54.

We want to turn our attention to measures on K0(Rd) which are not locally finite, but
at least mark-locally finite. These measures are the analogue of locally finite measures on
Π0(R∗+ × Rd). More precisely, we want to examine a certain type of measures mentioned
already: For a measure ρ on K0(Rd), set

ρ̃(dη) := f(η)ρ(dη)

where f : K0(Rd)→ (0,∞) is the density function defined as

f(η) =
∏
x∈τ(η)

1

sx
.

Lemma 2.87. Let ρ be a locally finite measure. Then ρ̃ is mark-locally finite.

Proof. Let A ∈ Bcm(K0(Rd)). Then A ∈ Bb(K0(Rd)). Furthermore, there exists a > 0 such
that for all η ∈ A, we have sx ≥ a for all x ∈ τ(η). Then

ρ̃(A) =

∫
K0(Rd)

1A(η)ρ̃(dη) =

∫
K0(Rd)

1A(η)f(η)ρ(dη)

≤
∫
K0(Rd)

1A(η) max

(
1,

1

aN

)
ρ(dη) = max

(
1,

1

aN

)
ρ(A) <∞
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2.10.2 Correlation Functions on K0(Rd)

For the correlation measures on K0(Rd), we now want to analyse the question of existence
of a density function. From the point of view of applications, the considered correlation
measures are usually mark-locally finite, but not locally finite. Therefore, we concentrate
our efforts on this class of measures. We analyse such measures by pulling them back to
the Plato space Π(R∗+ × Rd) and using the results from the previous chapters. To compare
measures on K(Rd) and Π(R∗+ × Rd), we need the notion of mark-local absolute continuity.

Definition 2.88. Let µ be a probability measure on (K(Rd),B(K(Rd))).

1. Let Λ ⊂ R∗+ × Rd. For η ∈ K(Rd) of the form η =
∑

x∈τ(η) sxδx, define the projection
with marks as

pΛ(η) =
∑
x∈τ(η)

(sx,x)∈Λ

sxδx

The projection measure is defined as

µΛ := µ ◦ p−1
Λ .

2. The measure µ is called mark-locally absolutely continuous with respect to the gamma
measure Gθ if for any Λ ⊂ R∗+ × Rd compact, the measure µΛ is absolutely continuous
with respect to GΛ

θ .

Proposition 2.89. A correlation measure ρµ on K0(Rd) corresponding to a probability
measure µ on K(Rd) is mark-locally finite if and only if the measure ρµR−1 on Π0(R∗+ × Rd)
is locally finite.

Proof. Let ρµ be the correlation measure of a measure µ on K(Rd). Then for a set A ∈
Bcm(K0),

ρµ(A) =

∫
K(Rd)

K(A, η)µ(dη) =

∫
K(Rd)

(KK1A)(η)µ(dη)

=

∫
K(Rd)

[
KΠ(R−1

1A)
]

(R−1η)µ(dη) =

∫
K(Rd)

[KΠ1R−1A] (R−1η)µ(dη)

=

∫
Π(R∗+×Rd)

(KΠ1R−1A)(γ)µR−1(dγ)

= ρµR−1 (R−1A)

where µR−1 is the pullback measure of µ under R. Reversing the calculations yields the
converse result.

The following Lemma is needed to compare measures on K(Rd) and Π(R∗+ × Rd):

Lemma 2.90. Let µ as a probability measure on K(Rd) be mark-locally absolutely conti-
nuous with respect to Gθ. Then µR−1 on Π(R∗+ × Rd) is locally absolutely continuous with
respect to πθ.

Proof. Consider Λ ∈ Bc(R∗+ × Rd) and let A ∈ Π(Λ) with πΛ
θ (A) = 0. Then

0 = πΛ
θ (A) = GΛ

θ (RA)
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since µΛ is absolutely continuous with respect to GΛ
θ , this implies

0 = µΛ(RA) = µΛ
R−1(A)

which implies the claim.

These two statements together yield the following:

Proposition 2.91. Let µ be a probability measure on K(Rd) which is mark-locally absolu-
tely continuous with respect to Gθ and its associated correlation measure ρµ is mark-locally
finite. Then µR−1 ∈M1

fm(Π(R∗+ × Rd)) and it is locally absolutely continuous with respect
to πθ. Furthermore, ρµR−1 is absolutely continuous with respect to λθ and its correlation
function exists.

Proof. The statement follows with Proposition 2.89, Lemma 2.90 and Proposition 2.63.

Altogether, we obtain the desired result:

Theorem 2.92. Assume the conditions of Proposition 2.91. Then the correlation function
of µ exists, i.e. a function kµ : K0(Rd)→ R such that kµ is the density function of ρµ with
respect to λθ,R.

Proof. By the above proposition, we obtain the existence of a correlation function for
ρµR−1 on Π0(R∗+ × Rd) with respect to λθ. The claim follows by transferring this function
via the reflection mapping R.

There are some more considerations related to correlation functions useful in app-
lications, which should be mentioned here. Namely, the so-called hierarchical structure
associated with a function k : K0(Rd) → R. This way, we may replace a function on
K0(Rd) by a sequence of functions on (R∗+ × Rd)n. This is useful in applications, since
we may replace an evolution equation on an infinite-dimensional space by a sequence of
equations on finite-dimensional spaces. A similar notion was introduced in Definition 2.64.

Definition 2.93. Let k : K0(Rd) → R. The hierarchical structure corresponding to k is
defined as the sequence of symmetric functions {k(n)}∞n=0, k(n) : (R∗+ × Rd)n → R by

k(n)(s1, x1, . . . , sn, xn) :=

{
k(
∑n

i=1 siδxi), if η =
∑n

i=1 siδxi ∈ K(n)
0 (Rd)

0, otherwise

If associated with a correlation function kµ, the function k
(n)
µ is called the n-point corre-

lation function of µ. We also write

k(n)(s1, . . . , xn) := k(n)(s1, x1, . . . , sn, xn)

for convenience.

There is a related definition which may also be seen as correlation function on the
space K0(Rd). Namely, we use the relation to the Bogoliubov functional on K(Rd). It is
defined the following way:
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Definition 2.94. For a function ψ ∈ Cc(Rd), define the Bogoliubov functional associated
with a probability measure µ on K(Rd) as

LK
µ (ψ) =

∫
K(Rd)

∏
x∈τ(η)

(1 + sxψ(x))µ(dη).

Using Proposition 2.66, we see that for a function ψ ∈ Cc(Rd), we obtain

LK
µ (ψ) =

∞∑
n=0

1

n!

∫
(R∗+×Rd)n

s1 · · · snψ1(x1) · · ·ψn(xn)×

× k(n)
µ (s1, . . . , xn)ν(ds1) . . . ν(dsn)σ(dx1) . . . σ(dxn)

=
∞∑
n=0

1

n!

∫
(Rd)n

ψ(x1) · · ·ψn(xn)×

×

[∫
(R∗+)n

s1 · · · snk(n)
µ (s1, . . . , xn)ν(ds1) . . . ν(dsn)

]
σ(dx1) . . . σ(dxn)

Therefore, we may define the following notion of a correlation function:

Definition 2.95. The n-point correlation function on K0(Rd) with respect to positions is
defined as

k̃(n)
µ (x1, . . . , xn) :=

∫
(R∗+)n

s1, · · · snk(n)
µ (s1, . . . , xn)ν(ds1) . . . ν(dsn).

where k(n) is the n-point correlation function introduced in Definition 2.93.

Remark 2.96. Since the function k̃(n) can be obtained via integration of k(n), we proceed
by only analysing the latter.

2.11 Markov Evolution

It is well-known that there is a link between functional analysis and probability relating
semigroups and stochastic processes. We want to briefly explain this connection, since it
forms the foundation for the construction of our dynamics. Namely, we consider jump-type
operators on the space of functions on K(Rd) to define our models.

As seen in [15, Chapter 4.2], we may explicitly construct a Markov process given a
bounded operator of the type

Af(x) = κ

∫
E

f(y)− f(x)µ(x, dy) (22)

where κ > 0 is an intensity parameter and µ : E × B(E) a transition function, where E
is a Banach space. The operator A is defined on the space B(E) of bounded functions on
E and corresponds to a Markov process with exp(κ)-distributed jump times. The jumps
occur from x to y with distribution µ(x, dy). An explicit construction of this process can
be found in the aforementioned work. Instead of analysing the stochastic process, one may
also analyse the evolution equation

∂

∂t
ut(x) = Aut(x)

ut(x)|t=0 = u0(x).
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We take this idea and apply it to our setting.
In Chapter 4, we will define operators of the shape (22) as starting point. Note that

in our case, the whole particle system η ∈ K(Rd) “jumps” to η + sδy or η − sxδx, corre-
sponding to birth or death of a particle. Due to the complex structure of the underlying
particle system, a direct analysis of this operator is usually not possible. Below, we des-
cribe alternative ways to describe and analyse the dynamical systems on Π(R∗+ × Rd) and
K(Rd).

2.11.1 Markov Evolution on Π(R∗+ × Rd)

As seen in the previous chapter, there exists a correspondence between classes of functions
on Π0(R∗+ × Rd) and Π(R∗+ × Rd). The analysis of physical systems on Π(R∗+ × Rd) or
K(Rd) poses various problems: For one, the number of particles is infinite. Furthermore,
the underlying space is infinite-dimensional which restricts the number of available tools.

On the other hand, the K-transform gives us a possibility to analyse the dynamics
by transforming evolution equations on Π(R∗+ × Rd) to equations on Π0(R∗+ × Rd). This
chapter describes the equations which can be used to describe the dynamics in this way.
The scheme described here was also used in the homogeneous case in [30].

From a physical perspective, we start with the evolution of measures, or states. The
system of infinitely many particles is too complex to describe it pathwisely, i.e. “track”
the motion of each particle. Instead, a statistical approach is more suitable. The evolution
is governed by the so-called Fokker-Planck equation, also known as forward Kolmogorov
equation:

∂

∂t
〈F, µt〉 = 〈F,L∗µt〉

µt|t=0 = µ0

where µ0 is a probability measure on Π(R∗+ × Rd), L∗ a linear operator on the class of
probability measures, and F from a suitable class of test functions.

From a modelling perspective, the dynamics are usually defined via the so-called back-
ward Kolmogorov equation

∂

∂t
Ft(γ) = LFt(γ), γ ∈ Π(R∗+ × Rd).

Ft|t=0 = F0

where L is the pre-dual operator to L∗. This way, the evolution can be described ex-
plicitly via the Markov-type operator L. The functions F : Π(R∗+ × Rd) → R are called
observables. They represent physical quantities of a dynamical system, such as energy.
The duality mentioned above is given by

〈F, µ〉 =

∫
Π(R∗+×Rd)

F (γ)µ(dγ),

where µ is a probability measure on Π(R∗+ × Rd). Typically, we use the Poisson measure
here. We will see how to describe the dynamics explicitly via the operator L in later
chapters.

As stated before, the analysis of the infinite-dimensional system above poses some
difficulties. Instead, we use the K-transform to define new operators on functions on
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Π0(R∗+ × Rd). As we saw in Chapter 2.9.3, under some conditions, the correlation measure
ρµ0 admits a correlation function k0. The evolution of this function is described by the
so-called quasi-Fokker-Planck equation

∂

∂t
kt(γ) = L4kt(γ), γ ∈ Π0(R∗+ × Rd)

kt|t=0 = k
(23)

Here, the operator L4 is given as the dual K-transform of L∗, i.e. L4 = K∗L∗K∗−1.
One related question is of course if the evolution kt is again the correlation function of a
measure µt on Π(R∗+ × Rd).

The fourth way to describe the dynamics of our system is via the quasi-Kolmogorov
equation. We consider the pre-dual operator of L4 with respect to the duality

〈〈G, k〉〉 =

∫
Π0(R∗+×Rd)

G(γ)k(γ)λ(dγ). (24)

where λ is a locally finite measure on Π0(R∗+ × Rd). We usually consider the Lebesgue-

Poisson measure here. The operator is denoted by L̂ and can be explicitly calculated as
L̂ = K−1LK. It is also referred to as the symbol of L. The equation has the following
form:

∂

∂t
Gt(γ) = L̂Gt(γ), γ ∈ Π0(R∗+ × Rd)

Gt|t=0 = G0

2.11.2 Markov Evolution on K(Rd)

The description of evolutions can also be done on the spaces K(Rd) and K0(Rd). Similarly,
the physical description of a particle system is given by the Fokker-Planck equation

∂

∂t
〈F, µt〉 = 〈F,L∗µt〉

µt|t=0 = µ0

where µ0 is a probability measure on K(Rd) and F from a suitable class of test functions.
Again, from a modelling perspective, the (backward) Kolmogorov equation is appropriate:

∂

∂t
Ft(η) = LFt(η), η ∈ K(Rd).

Ft|t=0 = F0

where L is a Markov (pre-)generator. The functions F : K(Rd)→ R are called observables.
They represent physical quantities of a dynamical system, such as energy. The duality is
similarly given by

〈F, µ〉 =

∫
K(Rd)

F (η)µ(dη).

Also, we have corresponding equations on the spaces of Radon measures with finite sup-
port K0(Rd), also named quasi-Kolmogorov equation and quasi-Fokker-Planck equation:

∂

∂t
Gt(η) = L̂G(η), η ∈ K0(Rd)

Gt|t=0 = G0
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and

∂

∂t
kt(η) = L4kt(η), η ∈ K0(Rd)

kt|t=0 = k0

(25)

As before, the operator L̂ = K−1LK is called the symbol of L. Equation (25) of course
only makes sense if the evolution of measures on K0(Rd) admits a density function as
explained in Chapter 2.10. The duality used for functions on K0(Rd) is given by

〈〈G, k〉〉 =

∫
K0(Rd)

G(η)k(η)λ(dη). (26)

where λ is a mark-locally finite measure on K0(Rd), usually the image measure of the
Lebesgue-Poisson measure under R. The approach used for the analysis of the models
in Chapter 4 is as follows: We set up the specific generator on functions on K(Rd). This
way, we explicitly see the heuristic dynamics of the system. Next, we calculate the corre-
sponding operator L̂ on quasi-observables using the K-transform and some combinatorial
arguments. Since the calculations are quite similar for all models, we do not carry out
the calculations for all models. If appropriate, we use L̂ to prove the existence of the
dynamics.

The next step is to calculate the operator L4 of the statistical dynamics. As stated in
Chapter 2.10, the correlation functions has a direct relation to the underlying probability
measure µ. Therefore, also the evolution of correlation functions may have this connection
to the evolution of states. If appropriate, we take the evolution of correlation functions to
show specific properties of the model. At this point, the representation of the correlation
functions via the hierarchical structure is very useful, since it lets us see dependencies
within the particle system.

After considering the evolution of (25), one important question is the existence of a
probability measure on K(Rd) such that the solution kt is the correlation function of the
measure µ. This question can be answered using a classical result by Lenard, [43].

Theorem 2.97 (Cf. [30,43]). Assume that the function k : K0(Rd)→ R and its associated
sequence {k(n)}∞n=0 satisfy the following conditions:

1. Normalisation: k(0) ≡ 1

2. Lenard positivity: For any G : K0(Rd)→ R with KG ≥ 0, we have∫
K0(Rd)

G(η)k(η)λ(dη) ≥ 0

3. Moment growth: For any bounded set Λ ⊂ R∗+ × Rd and j ≥ 0, the following holds:

∞∑
n=0

(mΛ
n+j)

− 1
n =∞

where the moments are defined as

mΛ
n := (n!)−1

∫
Λn
k(n)(s1, . . . , xn)ν(ds1) . . . ν(dsn)σ(dx1) . . . σ(dxn)
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Then there exists a unique measure µ on (K(Rd),B(K(Rd))) such that k is the correlation
function associated with µ.

Remark 2.98. The theorem in [30] was originally formulated on the space Γ(Y ). Nevert-
heless, the way it is stated above, it also works for K(Rd) by transferring it to Π(R∗+ × Rd).
This is due to the fact that the existence of a correlation function as above suffices to have
a measure on Γ(R∗+ × Rd) which assigns full mass to the Plato space Π(R∗+ × Rd).
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3 Calculus on the Spaces Π(R∗+ × Rd) and K(Rd)

The spaces Π(R∗+ × Rd) and K(Rd) open up different possibilities to define calculus of
functions on these spaces. For one, these spaces have a continuous structure by the nature
of the underlying space Rd. This gives rise to the classical notion of differential calcu-
lus. The space Π(R∗+ × Rd) naturally inherits the differential structure from the superset
Γ(R∗+ × Rd). Since the restriction conserves full mass with respect to typical measures, the
process is straightforward and is explained in the first part of this chapter. In the general
case of Γ(X) for some Riemannian manifold X, the theory was already established in [4].
We may take the notions of e.g. the Laplacian and apply it to our case directly.

The cone K(Rd) gives rise to a slightly altered differential structure. Due to the asym-
metry in marks, we need to introduce a specific group of flows when transitioning from
Π(R∗+ × Rd) to K(Rd). In the end, we will show that these construction describe the same
phenomenon, though, at least for some special cases. This way, we may also define objects
such as the Laplacian on K(Rd), see e.g. [28] or [38]. One should note, though, that there
are some technical steps to be considered, since the underlying measure µ on K(Rd) is
not quasi-invariant with respect to the group action generating the differential calculus.

On the other hand, the discrete nature of elements γ ∈ Π(R∗+ × Rd) and η ∈ K(Rd)
give rise to a different kind of calculus, namely, difference calculus. This way, we may
combine the continuous structure of the state space Rd with the discrete structure of
elements in Π(R∗+ × Rd) and K(Rd). The associated discrete Laplacian is introduced and
analysed.

A short part of this chapter is also devoted to the so-called umbral calculus. This theory
is concerned with the analysis of certain types of polynomials and acts as a generalisation
of the theory of combinatorics related to the binomial coefficient and gives a nice relation
to the combinatorial structure of difference calculus and the K-transform. For a general
introduction to umbral calculus, see e.g. [51]. For a more detailed view on the infinite-
dimensional case, see [21] and the references therein.

3.1 Differential Calculus on Π(R∗+ × Rd)

To properly introduce dynamics on the space Π(R∗+ × Rd), we should analyse the diffe-
rential structure of the space. The theory has been established on Γ(R∗+ × Rd) in works
such as [2, 4]. See [3] for the case where Gibbs measures are considered as underlying
measures on the space. Since typical probability measures on Γ(R∗+ × Rd) assign full mass
to Π(R∗+ × Rd), the theory remains unchanged when considering Π(R∗+ × Rd) instead of
Γ(R∗+ × Rd). The goal of this chapter is to introduce typical notions of differential geo-
metry on Π(R∗+ × Rd). We define a gradient and show an integration by parts formula as
well as a Laplace operator on Π(R∗+ × Rd). Note that the theory can be easily extended
to a more general Riemannian manifold instead of Rd.

From now on, assume that the intensity measure κ of the Poisson measure πκ on
Π(R∗+ × Rd),B(Π(R∗+ × Rd)) admits a density function with respect to the Lebesgue mea-
sure.

3.1.1 The Group of Diffeomorphisms

The differential geometry on configuration spaces may be defined as a lifting of the dif-
ferential geometry on the underlying manifold, in our case, Rd. To define directional
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derivatives, we consider the group Diffc(R∗+ × Rd) of all diffeomorphisms on Y which are
equal to the identity outside of a compact set, where the group operation is the usual
composition. We now want to lift this group to Π(R∗+ × Rd).

Definition 3.1. Let ϕ ∈ Diffc(R∗+ × Rd). Define a function on Π(R∗+ × Rd) as

ϕ : Π(R∗+ × Rd)→ Π(R∗+ × Rd), ϕ(γ) := {ϕ(s, x) | (s, x) ∈ γ}

The choice of Diffc(R∗+ × Rd) implies that there are only finitely many points of γ which
are changed by the mapping ϕ.

Let us recall some results from [4]. The properties are especially essential for our case,
since it implies that the diffeomorphisms preserve the mass of the space Π(R∗+ × Rd).

Proposition 3.2 ([4], Proposition 2.1, 2.2). Let ϕ ∈ Diffc(R∗+ × Rd) and πκ the Poisson
measure with intensity measure κ. Then the following holds:

1. Set ϕ∗πκ := πκ ◦ ϕ−1. Then
ϕ∗πκ = πϕ∗κ

2. The measure πκ is quasi-invariant with respect to Diffc(R∗+ × Rd) and we have

d(ϕ∗πκ)

dπκ
(γ) =

∏
(s,x)∈γ

pκϕ(s, x) exp

(∫
R∗+×Rd

(1− pκϕ(s, x))κ(ds, dx)

)

where pκϕ depends on the measure κ and the transformation ϕ and is given explicitly.

3.1.2 The Gradient on Π(R∗+ × Rd)

We may now introduce the notion of derivatives of functions on Π(R∗+ × Rd). To this
end, we consider the connection between the group Diffc(R∗+ × Rd) and its corresponding
Lie algebra. Set Vc(R∗+ × Rd) to be the set of all C∞-vector fields vΠ : Π(R∗+ × Rd) →
Π(R∗+ × Rd) such that there exists a compact set K ⊂ R∗+ × Rd such that vΠ(s, x) = 0 if
(s, x) /∈ K. In other words, we consider smooth vector fields with compact support. For a
fixed v ∈ Vc(R∗+ × Rd), we may consider the associated flow, i.e. the subgroup {ϕvt }t∈R of
Diffc(R∗+ × Rd) such that the following equation is solved for any (s, x) ∈ R∗+ × Rd:

d

dt
ϕvt (s, x) = v(ϕvt (s, x)), t ∈ R

ϕv0(s, x) = (s, x)

This enables us to define a directional derivative for functions on Π(R∗+ × Rd).

Definition 3.3. Let F : Π(R∗+ × Rd) → R and vΠ ∈ Vc(R∗+ × Rd). Define the directional
derivative along vΠ as

(∇Π
vΠ
F )(γ) :=

d

dt
F (ϕvΠ

t (γ))|t=0

provided it exists.

For a special class of functions, we may give a more explicit representation of the
derivative.
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Definition 3.4. Let D = C∞c (R∗+ × Rd) be the space of all infinitely differentiable func-
tions ϕ : Y → R with compact support and C∞b (RN), N ∈ N all infinitely differentiable
bounded functions g : Rn → R. The space FC∞b (D,Π(R∗+ × Rd)) is defined as the space of
all functions F : Π(R∗+ × Rd)→ R which are of the form

F (γ) = g(〈ϕ1, γ〉, . . . , 〈ϕN , γ〉)

where g ∈ C∞b (RN) and ϕi ∈ D, i = 1, . . . , N . The pairing of ϕ ∈ D and γ ∈ Π(R∗+ × Rd)
is given by

〈ϕ, γ〉 =
∑

(s,x)∈γ

ϕ(s, x).

Remark 3.5. A function F ∈ FC∞b (D,Π(R∗+ × Rd)) belongs to the class of so-called
cylinder functions, i.e. it only depends on elements of γ in some compact set Λ ⊂ R∗+ × Rd.

Proposition 3.6 ([4]). Let F ∈ FC∞b (D,Π(R∗+ × Rd)). Then the directional derivative
is given by

(∇Π
vΠ
F )(γ) =

N∑
j=1

∂jg (〈ϕ1, γ〉, . . . , 〈ϕN , γ〉) 〈∇vΠ
ϕj, γ〉

where ∇vΠ
denotes the directional derivative along vΠ on R∗+ × Rd.

To introduce the gradient, we also need to define the appropriate tangent space. This
allows us to use Riesz’ representation theorem to obtain the existence of the gradient.

Definition 3.7. We define the tangent space Tγ(Π(R∗+ × Rd)) at a configuration γ ∈
Π(R∗+ × Rd) as

Tγ(Π(R∗+ × Rd)) = L2(R∗+ × Rd → T (R∗+ × Rd), dγ)

i.e. the space of vector fields V : R∗+ × Rd → T (R∗+ × Rd) which are square-summable with
respect to γ. The corresponding scalar product is given by

〈V 1
γ , V

2
γ 〉Tγ(Π(R∗+×Rd)) :=

∫
R∗+×Rd

〈V 1
γ (s, x), V 2

γ (s, x)〉T(s,x)(R∗+×Rd)γ(ds, dx)

=
∑

(s,x)∈γ

〈V 1
γ (s, x), V 2

γ (s, x)〉

The scalar product on T(s,x)(R∗+ × Rd) is just the Euclidean scalar product. Furthermore,
the space Tγ(Π(R∗+ × Rd)) equipped with 〈·, ·〉Tγ(Π(R∗+×Rd)) is a Hilbert space. We see that

vΠ ∈ Vc(R∗+ × Rd) can be seen as a vector field vΠ ∈ Tγ(Π(R∗+ × Rd)) which is constant in
γ ∈ Π(R∗+ × Rd).

The introduction of a tangent space enables us to also define the gradient.

Definition 3.8. Let F : Π(R∗+ × Rd)→ R. We define the gradient of F as the mapping

∇ΠF : Π(R∗+ × Rd)→ Tγ(Π(R∗+ × Rd)), γ 7→ (∇ΠF )(γ)

such that for any vΠ ∈ Vc(R∗+ × Rd), the following holds:

(∇Π
vΠ
F )(γ) = 〈∇ΠF, vΠ〉Tγ(Π(R∗+×Rd)).
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Similar to Proposition 3.6, we have an explicit representation of the gradient for smooth
cylinder functions:

Proposition 3.9. Let F ∈ FC∞b (D,Π(R∗+ × Rd)). Then for any γ ∈ Π(R∗+ × Rd) and
(s, x) ∈ R∗+ × Rd, we have

(∇ΠF )(γ; s, x) =
N∑
j=1

∂jg(〈ϕ1, γ〉, . . . , 〈ϕN , γ〉)∇ϕ(s, x) (27)

where ∇ is the gradient on R∗+ × Rd.

3.1.3 Integration by Parts Formula on Π(R∗+ × Rd)

After the definition of the gradient on Π(R∗+ × Rd), we want to state the corresponding
integration by parts formula. In other words, we calculate the adjoint (∇Π)∗ of the gradient
∇Π. Here, we only consider the case where the probability measure on Π(R∗+ × Rd) is

Poissonian as defined in Chapter 2.8.1. We denote by div(s,x) the divergence operator in
(s, x) ∈ R∗+ × Rd.

Theorem 3.10 ([4], Theorem 3.1). Let F,G ∈ FC∞b (D,Π(R∗+ × Rd)) and a vector field
v ∈ Vc(R∗+ × Rd). Then, the following holds:∫

Π(R∗+×Rd)

(∇Π
v F )(γ)G(γ)πκ(dγ) = −

∫
Π(R∗+×Rd)

F (γ)(∇Π
vG)(γ)πκ(dγ)

−
∫

Π(R∗+×Rd)

F (γ)G(γ)Bπκ
v (γ)πκ(dγ)

where Bπκ
v plays the role of a logarithmic derivative of the classical integration by parts

formula and is given by the following expression:

Bπκ
v (γ) = 〈βκ

v , γ〉 =
∑

(s,x)∈γ

〈βκ(s, x), v(s, x)〉+ div(s,x) v(s, x)

where

βκ(s, x) :=
∇ρ(x)

ρ(x)
(28)

and ρ is the density function of κ with respect to the Lebesgue measure.

Remark 3.11. 1. As also seen in Proposition 3.6, the shape of the logarithmic deri-
vative hints at the fact that the differential geometry on Π(R∗+ × Rd) can be seen as
a lifting of the geometry of the underlying space Y . For a more detailed explanation,
see [4].

2. The operator ∇Π can be extended to a domain D(EΠ
πκ), where D(EΠ

πκ) will be specified
in the next chapter.
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3.1.4 The Continuous Laplacian on Π(R∗+ × Rd)

One more important object from differential calculus is the Laplace operator, especially
when considering stochastic processes. The Laplacian will be defined using the theory of
Dirichlet forms. To this end, we define the following pre-Dirichlet form associated with
the gradient introduced before.

Definition 3.12. Let F,G ∈ FC∞b (D,Π(R∗+ × Rd)). Define the bilinear form

EΠ
πκ(F,G) :=

∫
Π(R∗+×Rd)

〈∇ΠF (γ),∇ΠG(γ)〉Tγ(Π(R∗+×Rd))πκ(dγ).

EΠ
πκ is also called the intrinsic pre-Dirichlet form corresponding to πκ on Π(R∗+ × Rd).

We proceed to define a differential operator which will turn out to be the “Laplacian”
associated with the bilinear form introduced above.

Definition 3.13. Let F ∈ F∞b (D,Π(R∗+ × Rd)) of the form

F (γ) = g(〈ϕ1, γ〉, . . . , 〈ϕN , γ〉)

with all objects as defined before. Define an operator (HΠ
πκ ,FC

∞
b (D,Π(R∗+ × Rd))) as

(HΠ
πκF )(γ) =−

N∑
i,j=1

∂i∂jg(〈ϕ1, γ〉, . . . , 〈ϕN , γ〉)
∑

(s,x)∈γ

〈∇ϕi(s, x),∇ϕj(s, x)〉

−
N∑
j=1

∂jg(〈ϕ1, γ〉, . . . , 〈ϕN , γ〉)
∑

(s,x)∈γ

∆ϕj(s, x)

−
N∑
j=1

∂jg(〈ϕ1, γ〉, . . . , 〈ϕN , γ〉)
∑

(s,x)∈γ

〈∇ϕj(s, x), βκ(s, x)〉

where βκ was defined in (28) and ∆ is the Laplacian on R∗+ × Rd.

As similar calculations will be done later for the difference calculus on K(Rd), we only
state the results and omit the calculations here. We refer to [4] for further details.

Theorem 3.14 ([4], Theorem 4.1, Corollary 4.1). The operator HΠ
πκ is associated with

the Dirichlet form EΠ
πκ . More precisely, for any F,G ∈ FC∞b (D,Π(R∗+ × Rd)), we have

EΠ
πκ(F,G) = (HΠ

πκF,G)L2(πκ).

Moreover, the form (EΠ
πκ ,FC

∞
b (D,Π(R∗+ × Rd))) is closable on L2(πκ). Its closure, which

is denoted by (EΠ
πκ , D(EΠ

πκ)), is associated with the positive definite, self-adjoint Friedrichs’
extension (HΠ

πκ , D(HΠ
πκ)) of the operator (HΠ

πκ ,FC
∞
b (D,Π(R∗+ × Rd))).

We may also extend the gradient introduced before.

Proposition 3.15 ([4], Corollary 4.2). The operator ∇Π can be extended to the domain
D(EΠ

πκ). Moreover, let F : Π(R∗+ × Rd)→ R of the form

F (γ) = g(〈ϕ1, γ〉, . . . , 〈ϕN , γ〉)

where this time, g ∈ C∞b (RN) and ϕi ∈ H1
0 (R∗+ × Rd,κ) from the Sobolev space of order

1. Then F ∈ D(EΠ
πκ) and (27) also holds for F (almost everywhere).
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3.2 Differential Calculus on K(Rd)

We now proceed to introduce differential structures on K(Rd). Note that one needs to
account for the asymmetry arising through the difference between the weights and the
positions of particles. This gives rise to the definition of an extrinsic and intrinsic gra-
dient. The goal is to combine these two to obtain a gradient for functions on K(Rd).
Unfortunately, the asymmetric structure of the underlying space prevents certain inva-
riance properties usually given on other spaces. More precisely, we usually want to consider
an infinite measure on the marks from R∗+, i.e.∫

R∗+
ν(ds) =∞. (29)

Therefore, it is not possible to obtain a unitary representation of the Lie group correspon-
ding to the gradient. It is still possible to define a Laplace operator. Note the comparison
with the space Π(R∗+ × Rd), where the mark variable is treated the same as all position
variables.

Due to the special structure of K(Rd), we need to construct the gradients for the marks
and position separately. The gradients corresponding to the marks are called extrinsic
gradients, since these operate on the external structure of a fixed element η ∈ K(Rd).
The gradients with respect to the positions are called intrinsic, since these are related to
the underlying spatial and differential structure of the state space Rd. After constructing
these gradients separately, we may combine them to obtain a joint gradient for functions
on K(Rd). To this end, we define a semidirect product of groups corresponding to the
different types of gradients.

The construction of the extrinsic and intrinsic gradient follows the same scheme as the
construction of the gradient on Π(R∗+ × Rd). In general, this chapter follows the conside-
rations given in [27] and [38].

3.2.1 Extrinsic Gradient

Let us start by considering the extrinsic gradient. To this end, consider the group of so-
called currents. It is defined as the set of all continuous functions θ : Rd → R∗+ which are
equal to one outside a compact set. The group operation is given by pointwise multipli-
cation of two such functions. Denote this group by Cc(Rd → R∗+). It acts on the space of
Radon measures M(Rd) in the following way: If we take θ ∈ Cc(Rd → R∗+) and a measure
η ∈M(Rd), the modified measure θη is defined as

θη(dx) = θ(x)η(dx).

in particular, for η =
∑

x∈τ(η) sxδx ∈ K(Rd), this means

θ(x)η =
∑
x∈τ(η)

θ(x)sxδx.

We can now use this action of Cc(Rd → R∗+) on M(Rd) to define the extrinsic derivative.

Definition 3.16. Let h ∈ Cc(Rd) and consider the corresponding one-parameter subgroup
of Cc(Rd → R∗+) given by (eth)t∈R. For a function F : M(Rd)→ R, an extrinsic derivative
in direction h is defined the following way:

(∇ext
h F )(η) =

d

dt
F (ethη)|t=0, η ∈M(Rd).
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provided, the derivative exists. The corresponding extrinsic tangent space is given by

T ext
η (M) = L2(Rd, η)

which becomes a Hilbert space with the standard L2-scalar product. The extrinsic gradient
of F at the point η is defined as ∇extF : K(Rd)→ T ext

η (M) via the following relation:

(∇ext
h F )(η) = 〈(∇extF )(η), h〉T ext

η (M) =

∫
Rd

(∇extF )(η)h(x)η(dx) ∀h ∈ Cc(Rd).

3.2.2 Intrinsic Gradient

Let us continue with the notion of an intrinsic gradient. Again, we define a group which
acts on the space M(Rd). Let Diffc(Rd) denote the group of diffeomorphisms with compact
support. In this case, the notion of compact support means that a diffeomorphism ψ ∈
Diffc(Rd) is equal to the identity outside of a compact set. The group operation is the
usual composition of mappings. Furthermore, the action of Diffc(Rd) on the space M(Rd) is
given as follows: For an element ψ ∈ Diffc(Rd) and η ∈M(Rd), and a Borel set Λ ∈ B(Rd),
we set

(ψ∗η)(Λ) := η(ψ−1Λ),

i.e. ψ∗η is the pushforward measure of η under ψ. In the special case where η ∈ K(Rd), η =∑
x∈τ(η) sxδx, we obtain

ψ∗η(Λ) =
∑
x∈τ(η)

sxδx
(
ψ−1(Λ)

)
=
∑
x∈τ(η)

sxδψ(x)(Λ).

since the total mass is conserved and ψ is a diffeomorphism, we see that ψ∗η ∈ K(Rd).
Similar to the differential geometry on Π(R∗+ × Rd), we consider the set Vc(Rd) of all

compactly supported vector fields on Rd. Each v ∈ Vc(Rd) can be associated with a one-
parameter subgroup of diffeomorphisms {ψvt }t∈R ⊂ Diffc(Rd) as the solution to the family
of differential equations

d

dt
ψt(x) = v(ψt(x))

ψ0(x) = x

for x ∈ Rd. We call {ψvt }t∈R the flow associated with v.
The directional derivative can again be defined in the sense of Lie derivatives.

Definition 3.17. Let v ∈ Vc(Rd) and {ψvt }t∈R ⊂ Diffc(Rd) the associated flow. For a
function F : K(Rd)→ R, the intrinsic derivative along v is defined by

(∇int
v F )(η) =

d

dt
F (ψv∗t η)|t=0

provided, it exists. The corresponding intrinsic tangent space is set as

T int
η (K(Rd)) := L2(Rd → T (Rd), η)

with the scalar product

〈V 1
η , V

2
η 〉T int

η (K(Rd)) :=
∑
x∈τ(η)

sx〈V 1
η (x), V 2

η (x)〉Tx(Rd)
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where the scalar product on Tx(Rd) is again just the Euclidean scalar product.
We define the intrinsic gradient of such a function F as the mapping ∇intF : K(Rd)→

T int
η (K(Rd)) which satisfies the following equation for all v ∈ Vc(Rd):

(∇int
v F )(η) = 〈(∇intF )(η), v〉T int

η (K(Rd)).

3.2.3 The Group G on K(Rd)

We want to define the group acting on K(Rd) as the analogue of Diffc(R∗+ × Rd) on
Π(R∗+ × Rd). To this end, we combine the actions used in the extrinsic and intrinsic
gradient above. The joint action of g = (θ, ψ) ∈ Cc(Rd → R∗+)×Diffc(Rd) on an element
η =

∑
x∈τ(η) sxδx ∈ K(Rd) is given by

(gη) = θ · ψ∗η =
∑
x∈τ(η)

θ(x)sxδψ(x)

where ψ∗η denotes the pushforward measure.
For two elements g1 = (θ1, ψ1) and g2 = (θ2, ψ2), the composition acts as

(g2 ◦ g1)(η) = g2g1η = g2

 ∑
x∈τ(η)

h1(x)sxδψ1(x)

 =
∑
x∈τ(η)

h2(x)h1(ψ−1
2 (x))sxδψ2◦ψ1(x)

Therefore, the product on the group G is given by

g2 ◦ g1 = (θ2 · θ1 ◦ ψ−1
2 , ψ2 ◦ ψ1).

Group-theoretically speaking, the group G equipped with this product becomes the semi-
direct product of the aforementioned groups:

G = Cc(Rd → R∗+) o Diffc(Rd)

Later, we will compare the actions of the groups on Π(R∗+ × Rd) and K(Rd).

3.2.4 Joint Gradient

The extrinsic and intrinsic gradient can be merged together to obtain a joint gradient
for functions on K(Rd). After introducing the joint gradient, we proceed by explicitly
calculating the action for a class of cylinder functions.

Definition 3.18. Let h ∈ Cc(Rd) and v ∈ Vc(Rd). The directional derivative of a function
F : K(Rd)→ R is given as the sum of the extrinsic and intrinsic derivative, i.e.

(∇K
(h,v)F )(η) := (∇ext

h F )(η) + (∇int
v F )(η).

The corresponding tangent space is given by

Tη(K(Rd)) = T ext
η (K(Rd))⊕ T int

η (K(Rd)).

The gradient can be defined directly as

∇K := (∇ext,∇int).
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Let us now consider concrete functions. We define the following set of cylinder functions
on K(Rd) where we are able to give an explicit expression for the directional derivative.

Definition 3.19. Consider the following set of functions:

FC(K(Rd)) := R
[
FC∞b (D(R∗+ × Rd),Π(R∗+ × Rd))

]
In other words, F ∈ FC(K(Rd)) iff there exists a function G : Π(R∗+ × Rd)→ R,

G(γ) = g(〈ϕ1, γ〉, . . . , 〈ϕN , γ〉), g ∈ C∞b (RN), ϕi ∈ D(R∗+ × Rd)

such that F (η) = (RG)(η) = G(R−1η). We may also write

F (η) = g(〈〈ϕ1, η〉〉, . . . , 〈〈ϕN , η〉〉), (30)

where 〈〈ϕ, η〉〉 = 〈ϕ,R−1η〉.

Let us calculate the directional derivatives considered above for such functions.

Proposition 3.20. Let h ∈ Cc(Rd), v ∈ Vc(Rd) and F ∈ FC(K(Rd)). Then the directional
derivative has the following representation:

(∇K
(h,v)F )(η) =

=
N∑
i=1

∂jg(〈〈ϕ1, η〉〉, . . . , 〈〈ϕN , η〉〉)
∑
x∈τ(η)

[
∂sϕj(sx, x)h(x)sx +∇Rdϕj(sx, x)v(x)

]
Proof. Let h ∈ Cc(Rd), F ∈ FC(K(Rd)). We calculate the extrinsic and intrinsic gradient
separately. Start with the calculation of

(∇K
hF )(η) =

d

dt

[
g(〈〈ϕ1, e

thη〉〉, . . . , 〈〈ϕN , ethη〉〉)
]
|t=0

.

To this end, let ϕ ∈ Cc(R∗+ × Rd). Then

〈〈ϕ, ethη〉〉 =
∑
x∈τ(η)

ϕ(eth(x)sx, x) =
∑

(sx,x)∈R−1η
(sx,x)∈suppϕ

ϕ(eth(x)sx, x)

Since ϕ has compact support, the sum is finite and we can calculate the derivative in t:

d

dt
〈〈ϕ, ethη〉〉 =

∑
x∈τ(η)

d

dt
ϕ(eth(x)sx, x) =

∑
x∈τ(η)

h(x)eth(x)sx∂sϕ(eth(x)sx, x)

For the derivative of F , this means

d

dt

[
g(〈〈ϕ1, e

thη〉〉, . . . , 〈〈ϕN , ethη〉〉)
]

=
N∑
j=1

∂jg(〈〈ϕ1, e
thη〉〉, . . . , 〈〈ϕN , ethη〉〉)

d

dt
〈〈ϕj, ethη〉〉

=
N∑
j=1

∂jg(〈〈ϕ1, e
thη〉〉, . . . , 〈〈ϕN , ethη〉〉)

∑
x∈τ(η)

h(x)eth(x)sx∂sϕ(eth(x)sx, x)
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At t = 0, this means

(∇K
hF )(η) =

N∑
j=1

∂jg(〈〈ϕ1, η〉〉, . . . , 〈〈ϕN , η〉〉)
∑
x∈τ(η)

h(x)sx∂sϕ(sx, x)

=
N∑
j=1

∂jg(〈〈ϕ1, η〉〉, . . . , 〈〈ϕN , η〉〉)〈〈∂sϕ · h, η〉〉.

Let us now look at the derivative in the space variable, i.e.

(∇K
v F )(η) =

d

dt
[g(〈〈ϕ1, ψ

v
t (η)〉〉, . . . , 〈〈ϕN , ψvt (η)〉〉)]|t=0 .

Let v ∈ Vc(Rd) and {ψvt }t∈R ⊂ Diffc(Rd) the associated flow. Furthermore, let ϕ ∈ Cc(R∗+×
Rd). Then

d

dt
〈〈ϕ, ψvt (η)〉〉 =

∑
x∈τ(η)

d

dt
ϕ(sx, ψ

v
t (x))

=
∑
x∈τ(η)

∇Rdϕ(sx, ψ
v
t (x)) · d

dt
ψvt (x)

=
∑
x∈τ(η)

∇Rdϕ(sx, ψ
v
t (x)) · v(ψvt (x))

This implies

d

dt
[g(〈〈ϕ1, ψ

v
t (η)〉〉, . . . , 〈〈ϕN , ψvt (η)〉〉)]

=
N∑
j=1

∂jg(〈〈ϕ1, ψ
v
t (η)〉〉, . . . , 〈〈ϕN , ψvt (η)〉〉)

∑
x∈τ(η)

[
∇Rdϕj(sx, ψ

v
t (x))

]
· v(ψvt (x))

where ∇Rd denotes the gradient on Rd. At t = 0, we obtain

(∇K
v F )(η) =

N∑
j=1

∂jg(〈〈ϕ1, η〉〉, . . . , 〈〈ϕN , η〉〉)
∑
x∈τ(η)

∇Rdϕj(sx, x) · v(x)

=
N∑
j=1

∂jg(〈〈ϕ1, η〉〉, . . . , 〈〈ϕN , η〉〉)
∑
x∈τ(η)

∇Rd
v ϕj(sx, x)

where ∇Rd
v denotes the directional derivative on Rd along v.

Let us combine these calculations. Let h ∈ Cc(Rd) and v ∈ Vc(Rd). Then

(∇K
(h,v)F )(η) = (∇K

hF )(η) + (∇K
v F )(η)

=
N∑
j=1

∂jg(〈〈ϕ1, η〉〉, . . . , 〈〈ϕN , η〉〉)
∑
x∈τ(η)

∂sϕj(sx, x)h(x)sx

+
N∑
j=1

∂jg(〈〈ϕ1, η〉〉, . . . , 〈〈ϕN , η〉〉)
∑
x∈τ(η)

∇Rdϕj(sx, x)v(x)

=
N∑
i=1

∂jg(. . . )
∑
x∈τ(η)

[
∂sϕj(sx, x)h(x)sx +∇Rdϕj(sx, x)v(x)

]
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3.2.5 Integration by Parts on K(Rd)

The next step is to introduce an integration by parts formula on K(Rd). There are some
technical details which need to be considered, especially if we want to assume that (29)
holds. This property breaks the quasi-invariance of measures Gν on K(Rd) with respect
to the underlying group of motions G. To state the integration by parts formula, we need
to impose some assumptions on the measure ν:

1. Assume that (29) holds, or in other words, ν(R∗+) =∞.

2. Assume that ν has a representation

ν(ds) =
l(s)

s
ds (31)

where l : R∗+ → (0,∞). Note that we assume l > 0.

3. Assume that l fulfills the following integrability condition:∫
R∗+
l(s) min{1, s−1}ds <∞ (32)

For technical reasons, one needs to be more careful regarding measurability. Therefore,
for n ∈ N, we introduce Bn(Π(R∗+ × Rd)) as the smallest σ-algebra on Π(R∗+ × Rd) such
that the following mappings are measurable:

γ 7→ |γ ∩ Λ|

where Λ ⊂ Y is compact and additionally, Λ ⊂
[

1
n
,∞
)
× Rd.

On K(Rd), we may introduce the image-σ-algebra

Bn(K(Rd)) := {RA | A ∈ Bn(Π(R∗+ × Rd))}.

Note that for any function F ∈ FC(K(Rd)), due to the compact support of the functions
ϕi, there exists some n ∈ N such that F is Bn(K(Rd))-measurable.

Under these considerations, we may now state the integration by parts result on K(Rd).
Denote by divx the divergence operator in x ∈ Rd.

Theorem 3.21 ([38], Theorem 14). Assume that (29), (31) and (32) hold. Furthermore,
assume that l ∈ C1(R∗+) and l′ ∈ L1(R∗+, ds). Let h ∈ Cc(Rd) and v ∈ Vc(Rd). Then for
any F,G ∈ FC(K(Rd)) such that F,G are Bn(K(Rd))-measurable, the following holds:∫

K(Rd)

(∇K
(h,v)F )(η)G(η)Gν(dη) = −

∫
K(Rd)

F (η)(∇K
(h,v)G)(η)Gν(dη)

−
∫
K(Rd)

F (η)G(η)B
(n)
(h,v)(η)Gν(dη)

where the logarithmic derivative is defined as follows:

B
(n)
(h,v) = Bh +B(n)

v

Bh(η) =
∑
x∈τ(η)

sx
l′(sx)

l(sx)
h(x) + l(0)

∫
Rd
h(x)dx

B(n)
v (η) =

∑
x∈τ(η)
sx≥1/n

divx v(x)

where l(0) := lims→0 l(s).

63



3.2.6 The Continuous Laplacian on K(Rd)

This section is devoted to the introduction of a Laplace operator related to the gradi-
ent introduced above. Again, we proceed using Dirichlet form theory. The corresponding
Laplace operator can be given explicitly as lifting. It can then be shown that this lifted
operator is the operator associated with the Dirichlet form.

Definition 3.22. Assume that (31) and (32) hold. For F,G ∈ FC(K(Rd)), define the
bilinear form

EKν (F,G) :=
1

2

∫
K(Rd)

〈∇KF (η),∇KG(η)〉Tη(K(Rd))Gν(dη)

To introduce the operator which will turn out to be the Laplacian, we need to introduce
some auxiliary differential operators.

Definition 3.23. Let F ∈ FC(K(Rd)), η ∈ K(Rd) and x ∈ τ(η). Set

(∆Rd
x F )(η) := ∆RdF (η − sxδx + sxδy)|y=x

(∆
R∗+
x F )(η) := ∆

R∗+
u F (η − sxδx + uδx)|u=s

where ∆Rd is the Laplacian on Rd and

(∆R∗+f)(s) := s2f ′′(s) + sf ′(s) + s2 l
′(s)

l(s)
f ′(s), s ∈ R∗+.

These differential operators can be seen as a “lifting” of operators on Rd and R∗+, respec-
tively.

Let us define the Laplacian and state the connection to the Dirichlet integral defined
above.

Theorem 3.24 ([38], Theorem 16). Assume (31) and (32). Furthermore, assume that
l ∈ C1(R∗+). For F ∈ FC(K(Rd)), define the operator

(LK
ν F )(η) :=

1

2

∑
x∈τ(η)

[
(∆Rd

x F )(η) + (∆
R∗+
x F )(η)

]
Then (LK

ν ,FC(K(Rd))) is a symmetric operator on L2(K(Rd),Gν) and the following holds:

EKν (F,G) = (−LK
ν F,G)L2(K(Rd),Gν)

Furthermore, (EKν ,FC(K(Rd))) is closable on L2(K(Rd),Gν). Denote the closure of this
form by (EKν , D(EKν )). Also, the operator (LK

ν ,FC(K(Rd))) has Friedrichs’ extension which
we denote by (LK

ν , D(LK
ν )). It is the operator associated with the form (EKν , D(EKν )).

3.3 Comparing the Differential Calculus of Π(R∗+ × Rd) and K(Rd)

Since the spaces Π(R∗+ × Rd) and K(Rd) are related via the reflection and should repre-
sent different viewpoints of the same situation, it makes sense that we should be able
to arrive at the same results comparing the differential geometry of those spaces. The
different nature of these spaces gives rise to different generalisations, but in some special
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cases, we may see that the results coincide. We start by comparing the group actions on
Π(R∗+ × Rd) and K(Rd), which motivates a certain explicit relation. Next, we compare
the corresponding Lie algebras to show that the relation gives rise to well-defined flows,
even though the element on Π(R∗+ × Rd) related to an algebra element on K(Rd) is not
in Diffc(R∗+ × Rd). Afterwards, we compare the notions of gradients and integration by
parts to show that this correspondence in fact yields the same results on both spaces.

3.3.1 Comparing Diffc(R∗+ × Rd) and Cc(Rd → R∗+) o Diffc(Rd)

As a first step, we motivate a correspondence between Diffc(R∗+ × Rd) and G. Due to the
nature of the considered groups, we do not obtain a one-to-one-correspondence. Nevert-
heless, we may still compare the action of the groups Diffc(R∗+ × Rd) and G.

Let us start at the group G on K(Rd). Let η ∈ K(Rd) and g = (θ, ψ) ∈ G. Then as
before,

gη =
∑
x∈τ(η)

θ(x)sxδψ(x).

Taking the reverse reflection, we obtain

R−1(gη) =
∑

(s,x)∈R−1η

δ(θ(x)sx,ψ(x)).

On Π(R∗+ × Rd), this corresponds to the mapping

ϕ(s, x) = (θ(x)s, ψ(x)).

This mapping is invertible with the inverse

ϕ−1(s, x) =

(
1

θ(ψ−1(x))
s, ψ−1(x)

)
.

Also, the inverse mapping ϕ−1 has the form ϕ−1(s, x) = (ϑ(x)s, φ(x)) for some ϑ ∈
Cc(Rd → R∗+) and φ ∈ Diffc(Rd), namely ϑ(x) = 1/θ(ψ−1(x)) and φ(x) = ψ−1. This fact
can also easily be seen considering the group structure of G.

Of course, in general, we still do not have ϕ ∈ Diffc(R∗+ × Rd), since θ may not be
differentiable and s · θ(x) is not compactly supported in R∗+ × Rd.

3.3.2 Explicit Relation: Lie Algebras

The relation which was motivated above can also be checked on the level of corresponding
algebras. As noted before, we have the following setting:

The algebra corresponding to the group Diffc(R∗+ × Rd) on Π(R∗+ × Rd) is given by
Vc(R∗+ × Rd), which is the set of all vector fields on R∗+ × Rd with compact support. The
correspondence is given as above via the associated flow.

On K(Rd), the corresponding set to the group G is given by the pair (h, v), where
h ∈ Cc(Rd) and v ∈ Vc(Rd). The corresponding flow is given by (eth, ψvt ), where ψvt is the
flow associated with v.

Let us start with an element (h, v) ∈ Cc(Rd) × Vc(Rd). Our aim is to find a vector
field on R∗+ × Rd corresponding to the pair (h, v) such that relations on Π(R∗+ × Rd) and
K(Rd) coincide.
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As seen in the previous chapter, for an element g = (θ, ψ) ∈ G, we have a corresponding
element (s · θ, ψ) on Π(R∗+ × Rd). More precisely, consider a flow {(eth(x), ψvt (x))}t∈R ⊂ G
on K(Rd). Then the corresponding flow on Π(R∗+ × Rd) is obtained as

ϕt(s, x) = (sθt(x), ψvt (x)).

The vector field corresponding to {ϕt}t∈R is given by

d

dt
ϕt(s, x)|t=0 = (s · h(x), v(x)) =: vΠ(s, x)

We want to consider this relation to show that the differential objects on Π(R∗+ × Rd)
and K(Rd) coincide. Note that we do not have vΠ ∈ Vc(R∗+ × Rd). Nevertheless, vΠ corr-
responds to a subgroup of Diff(R∗+ × Rd) which can be constructed in the same way as
for the associated flow before: We are searching for a flow {ϕt}t∈R ⊂ Diff(R∗+ × Rd) such
that

d

dt
ϕt(s, x) = vΠ(ϕt(s, x))

ϕ0(s, x) = (s, x)

If we write ϕt(s, x) = (αt(s, x), ψt(s, x)) for some functions αt : Y → R∗+ and ψt : Y → Rd,
the equation becomes

d

dt
αt(s, x) = αt(s, x)h(ψt(s, x))

d

dt
ψt(s, x) = v(ψt(s, x))

The second equation is independent of the first, which implies ψt(s, x) = ψvt (x), where ψvt
is the flow associated with v. For the first equation, this means

d

dt
αt(s, x) = αt(s, x)h(ψvt (x))

which can be solved using standard ODE techniques in t. The solution can be represented
in the form

αt(s, x) = exp

(∫ t

0

h(ψvt (x))dt

)
α0(s, x) = exp

(∫ t

0

h(ψvt (x))dt

)
s

which is well-defined for any (s, x) ∈ R∗+ × Rd, since h and ψvt are continuous. Therefore,
even though the mapping (h, v) 7→ (s · h, v) is not into Diffc(R∗+ × Rd), we have a well-
defined flow on R∗+ × Rd.

In what follows, we want to compare the notions of the derivative and integration by
parts formula in the case outlined above.

3.3.3 Comparing Derivatives on Π(R∗+ × Rd) and K(Rd)

For the space of cylinder functions, we have already calculated the directional derivatives
on both spaces Π(R∗+ × Rd) and K(Rd). Recall Propositions 3.6 and 3.20:
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Reminder. 1. Let vΠ ∈ Vc(R∗+ × Rd) and F ∈ FC∞b (D,Π(R∗+ × Rd)). Then the di-
rectional derivative is given by

(∇Π
vΠ
F )(γ) =

N∑
j=1

∂jg (〈ϕ1, γ〉, . . . , 〈ϕN , γ〉) 〈∇vΠ
ϕj, γ〉 (33)

where ∇ denotes the gradient on R∗+ × Rd.

2. Let h ∈ Cc(Rd), v ∈ Vc(Rd) and F ∈ FC(K(Rd)). Then the directional derivative
has the following representation:

(∇K
(h,v)F )(η) =

=
N∑
i=1

∂jg(〈〈ϕ1, η〉〉, . . . , 〈〈ϕN , η〉〉)
∑
x∈τ(η)

[
∂sϕj(sx, x)h(x)sx +∇Rdϕj(sx, x)v(x)

]
We show that in the case vΠ = (s · h, v), the representations coincide. The interesting

part of (33) is the directional derivative in ϕj. For the special form of vΠ, this becomes

∇vΠ
ϕj = 〈∇ϕj, vΠ〉 = ∂sϕj(s, x

1, . . . , xd)sh(x) +
d∑
i=1

∂xiϕj(s, x
1, . . . , xd)vi(x)

= ∂sϕj(s, x
1, . . . , xd)sh(x) + (∇Rdϕj)(s, x

1, . . . , xd) · v(x)

where x = (x1, . . . , xd) ∈ Rd and v(x) = (v1(x), . . . , vd(x)). In total, the directional
derivative has the form

(∇Π
vΠ
F )(γ) =

N∑
j=1

∂jg(〈ϕ1, γ〉, . . . , 〈ϕN , γ〉)
∑

(s,x)∈γ

[
∂sϕj(s, x)sh(x) + (∇Rdϕj)(s, x) · v(x)

]
.

Keeping in mind the definition of the pairing 〈〈·, ·〉〉, we see that the derivatives coincide.

3.3.4 Comparing the Integration by Parts Formulae

Next, we compare the integration by parts formulae on Π(R∗+ × Rd) and K(Rd). Note
that this comparison assumes that ν(R∗+) <∞, which is not necessary for the theory on
K(Rd). While the rest of the formula is similar, the interesting part here is the logarithmic
derivative. While in the general case, it is difficult to compare these parts, we may look
at a special case where these functions on Π(R∗+ × Rd) and K(Rd) coincide.

Reminder. The logarithmic derivatives for the integration by parts formulae are given
as follows:

1. For the case Π(R∗+ × Rd):

Bπκ
vΠ

(γ) := 〈βκ
vΠ
, γ〉 =

∫
R∗+×Rd

[
〈βκ(y), vΠ(y)〉Ty(R∗+×Rd) + div(s,x) vΠ(y)

]
γ(dy)

=
∑

(s,x)∈γ

[
〈βκ(s, x), vΠ(s, x)〉T(s,x)(R∗+×Rd) + div(s,x) vΠ(s, x)

]
with y = (s, x) and βκ being the logarithmic derivative of the density function ρ, i.e.

βκ
vΠ

=

〈
∇ρ
ρ
, vΠ

〉
, κ(dy) = ρ(y)dy
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2. For the case K(Rd):

B
(n)
(h,v)(η) =

∫
Rd

l′(sx)

l(sx)
h(x)η(dx) + l(0)

∫
Rd
h(x)dx+

∑
x∈τ(η)

sx≥ 1
n

divx v(x) (34)

Remark 3.25. The additional modification using the parameter n is needed since Gν is
not quasi-invariant with respect to the group G if

ν(R∗+) =∞, ν(ds) =
l(s)

s
ds.

If we assume that ν(R∗+) < ∞, we find that l(0) = 0 and we can (heuristically) take
n→∞ in (34). The expression for the logarithmic derivative becomes

B
(∞)
(h,v)(η) =

∑
x∈τ(η)

sx
l′(sx)

l(sx)
h(x) +

∑
x∈τ(η)

divx v(x)

Let us consider a special case on Π(R∗+ × Rd) to show that the above formulae coincide.
In our construction of Gamma measures on K(Rd), we only consider the case where the
underlying intensity measure has the form

κ(ds, dx) =
l(s)

s
dsdx.

The density function of κ is then given by

ρ(s, x) =
l(s)

s
.

Therefore, its logarithmic derivative is

βκ(s, x) =

(
l′(s)

l(s)
− 1

s
, 0, . . . , 0

)
For our choice of vΠ, we obtain for the logarithmic derivative on Π(R∗+ × Rd),

Bπκ
vΠ

(γ) =
∑

(s,x)∈γ

(
l′(s)

l(s)
− 1

s

)
sh(x) + ∂s(sh(x)) +

d∑
i=1

∂xiv
i(x)

=
∑
(s,x)

l′(s)

l(s)
sh(x) + divx v(x)

which coincides with the logarithmic derivative on K(Rd), and therefore, the integration
by parts formulae coincide.

3.4 Umbral Calculus

The theory of umbral calculus is concerned with studying sequences of certain polynomi-
als. The objects of this theory can be seen as generalisations of the monomial sequence
pn(x) = xn. In this case, the sequence fulfills the binomial theorem

pn(x+ y) =
n∑
i=0

pi(x)pn−i(y), (35)
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but there are other sequences of polynomials for which this or a similar identity holds.
In the one-dimensional case, the theory was extensively studied by e.g. Roman and Rota,
see [51] and the references therein.

On the other hand, it is also possible to define similar sequences of polynomials on
infinite-dimensional spaces such as the space of Radon measures. The most straightforward
way to define polynomials on K(Rd) is to consider polynomials on the larger space M(Rd)
and simply restrict the mappings to the smaller space. However, there are some sequences
which need to be defined directly on K(Rd). The theory is mentioned here because there
exist some nice applications related to infinite-dimensional combinatorics introduced via
the K-transform earlier. For a more detailed picture in the case Π(R∗+ × Rd) (or rather
Γ(R∗+ × Rd)), see [21].

In this work, we only illustrate the theory via the example of falling factorials. In one
dimension, this sequence is defined as

pn(x) := (x)n =
n∏
k=1

(x− k + 1) = x(x− 1) · · · (x− n+ 1),

which also fulfill the binomial identity (35). For this sequence, the so-called generating
functional equals

∞∑
n=0

pn(x)
tn

n!
= (1 + t)x = exp (x log(1 + t)) .

Also, note that we have the relation (
x

n

)
=

1

n!
(x)n.

where the left-hand side is the generalised binomial coefficient.

3.4.1 Umbral Calculus on Π(R∗+ × Rd)

To define polynomials on the space Π(R∗+ × Rd), we embed it in the space of generalised
functions D(R∗+ × Rd)′, where as before, D = D(R∗+ × Rd) = C∞c (R∗+ × Rd). Therefore,
we proceed by defining polynomials on the space D′. For technical reasons, this step is
essential, since D is a so-called nuclear space, which is found in the Gel’fand triple

D ⊂ L2(R∗+ × Rd, dκ) ⊂ D′.

For a more detailed description of the theoretical background, see [21]. We set D�k to be
the space of all symmetric functions f ∈ D⊗k for k ∈ N0.

Definition 3.26 ([21]). A function P : D′ → R is called a polynomial of degree n ∈ N on
D′ if it has the form

P (η) =
n∑
k=0

〈f (k), η⊗k〉

where f (k) ∈ D�k for k = 0, . . . , n, f (n) 6= 0 and η⊗0 = 1. The notation 〈·, ·〉 denotes the
dual pairing between D′⊗k and D⊗k. Denote the space of all polynomials on D′ by P(D′).

By lifting the theory from one dimension to the infinite-dimensional case, we arrive at
the following representation. In analogy of the one-dimensional case, we write (·)n for the
sequence of falling factorials.
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Proposition 3.27 ([21]). The falling factorials on D′ have the following explicit form:

(γ)0 = 1

(γ)1 = γ

(γ)n(x1, . . . , xn) = γ(x1)(γ(x2)− δx1(x2)) · · · (γ(xn)− δx1 − · · · − δxn−1(xn))

where γ(x) := γ({x}). This sequence of polynomials is interesting for our theory, since
it encompasses the combinatorics of the K-transform introduced before.

Corollary 3.28 ([21]). Let γ =
∑∞

i=1 δxi ∈ Π(R∗+ × Rd) ⊂ D′(R∗+ × Rd) and set
(
γ
n

)
:=

1
n
(γ)n. Then, the following formula holds:(

γ

n

)
=

∑
{i1,...,in}⊂N

δxi1 � · · · � δxin (36)

where � denotes the symmetric tensor product.

Remark 3.29. The relation directly links to the K-transform: For γ = {xi}∞i=1 and
G : Π0(R∗+ × Rd)→ R, we have

(KΠG)(γ) =
∞∑
n=0

〈
G(n),

(
γ

n

)〉
whenever the transform is well-defined for G, and {G(n)}∞n=0 is the sequence of symmetric
functions G(n) : (R∗+ × Rd)n → R associated with G.

In terms of umbral calculus, sequences of polynomials may be introduced via its ge-
nerating functional. For the falling factorials, it is given for ϕ ∈ Cc(R∗+ × Rd), by the
following expression:

Eϕ(γ) =
∞∑
n=0

1

n!
〈ϕ⊗n, (γ)n〉

There are more relations to combinatorics and point processes connected to the theory
of umbral calculus which would exceed the scope of this work which can be found in the
aforementioned paper.

3.4.2 Umbral Calculus on K(Rd)

We may also introduce polynomials on the space K(Rd). For a large class of polynomials, as
above, it is possible to define polynomials on the space D′(Rd) ⊃ K(Rd) and restrict these
mappings to K(Rd). Note, however, there are some classes of polynomials which can only
be defined on K(Rd) directly. This is especially interesting in the case of falling factorials:
While we may introduce the falling factorials in the same way as on Π(R∗+ × Rd), a more
interesting class is the sequence of so-called fake falling factorials, which are the image
of the falling factorials on Π(R∗+ × Rd). They can be introduced explicitly using a similar
representation as Proposition 3.27.

Definition 3.30. For each η ∈ K(Rd), define the sequence of fake falling factorials as

P (0)(η) = 1

P (1)(η) = η

P (n)(η)(x1, . . . , xn) = η(x1)(η(x2)− s1δx1(x2))×
× · · · (η(xn)− s1δx1(xn)− · · · − sn−1δxn−1(xn))

where η =
∑

x∈τ(η) sxδx and η(x) = η({x}).
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As this definition relies explicitly on the coefficients of η ∈ K(Rd), this sequence
can not be extended to the whole space D′(Rd). On the other hand, we have a similar
representation as in Corollary 3.28: For η ∈ K(Rd), we have

1

n!
P (n)(η) =

∑
{i1,...,in}⊂N

sxi1 · · · sxinδx1 � · · · � δxn (37)

where � represents the symmetric tensor product and η =
∑

i∈N sxiδxi .
As stated above, the fake falling factorials also arise as the image of falling factorials

on Π(R∗+ × Rd) under the reflection mapping.

Proposition 3.31. Let ϕ : Rd → R be a measurable function with compact support and
set fϕ(s, x) := sϕ(x) for (s, x) ∈ R∗+ × Rd. Then for η ∈ K(Rd) and all n ∈ N0, the
following holds:

〈ϕ⊗n, P (n)(η)〉 = 〈〈f⊗nϕ , (R−1η)n〉〉

where (·)n denotes the falling factorials on Π(R∗+ × Rd) as introduced in Proposition 3.27.

Proof. The relation follows immediately when comparing formulae (36) and (37).

Remark 3.32. The reflection mapping R allows us to transfer other classes of polyno-
mials such as Charlier or Hermite polynomials from Π(R∗+ × Rd) to K(Rd) as well. As we
only focus on the applicability of polynomials to infinite-dimensional combinatorics here,
these other classes will not be discussed in this work.

We want to relate the fake falling factorials to the K-transform on K(Rd), which is the
reason why this class is more relevant for us than the “real” falling factorials on K(Rd).
Consider a symmetric function with compact support ϕ(n) ∈ D�n(Rd) and set

Gϕ(n)(η) :=

{
s1 · . . . · snϕ(n)(x1, . . . , xn), if η =

∑n
i=1 siδxi ∈ K(n)

0 (Rd)

0, otherwise

Then Gϕ(n) ∈ B̃bs(K0(Rd)) and the following holds:

(KKGϕ(n))(η) =
1

n!
〈ϕ(n), P (n)(η)〉

Note that this relation is valid for the specific class of functions defined above. Neverthe-
less, such functions play an important role as L1-functions considering the shape of the
intensity measure on R∗+ introduced in Definition 2.22.

The fake falling factorials will also appear in the next chapter when we talk about
difference calculus on the cone.

3.5 Difference Calculus

We now want to take into account the discrete structure of the configurations themselves.
This enables us to define an entirely different kind of calculus, namely, difference calculus.
Here, we consider discrete differences between a function evaluated at two different points.
The discrete nature of our configurations dictates how these differences will look like.
While the differential calculus introduces above corresponds to diffusion processes on
the state spaces, the difference calculus can be intepreted as corresponding jump-type
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processes. These kind of expressions will also appear later when we consider birth-and-
death models.

As before, we first consider the situation in the Plato space Π(R∗+ × Rd). Furthermore,
there are some identities related to umbral calculus which are stated in this chapter. We
also point out difficulties which arise when transferring the identities from Π(R∗+ × Rd)
to K(Rd). For the general case on Γ(R∗+ × Rd) or Π(R∗+ × Rd), we refer to [21] for a more
detailed analysis.

3.5.1 Difference Calculus on Π(R∗+ × Rd)

Let us start with the case on Π(R∗+ × Rd). In this case, configurations γ ∈ Π(R∗+ × Rd) are
described only by the positions of their elements and marks are treated the same way. We
introduce the elementary discrete gradients as well as the derived directional derivatives.

Definition 3.33. Let F ∈ FC∞b (D,Π(R∗+ × Rd)). Introduce the following discrete gradi-
ents:

1. Let γ ∈ Π(R∗+ × Rd) and (s, x) ∈ γ. The elementary death gradient is defined as

D−(s,x)F (γ) = F (γ − δ(s,x))− F (γ).

The corresponding tangent space is set as T−γ (Π(R∗+ × Rd)) = L2(R∗+ × Rd, γ).

2. For a function ψ ∈ Cc(R∗+ × Rd), we define the directional derivative as

D−ψF (γ) =
∑

(s,x)∈γ

ψ(s, x)D−(s,x)F (γ).

3. For (s, x) ∈ R∗+ × Rd, we define the elementary birth derivative as

D+
x F (γ) = F (γ + δ(s,x))− F (γ)

with the corresponding tangent space T+
γ (Π(R∗+ × Rd)) = L2(R∗+ × Rd, dκ). Note

that γ ∈ Π(R∗+ × Rd) is a set of zero Lebesgue measure and hence, the expression
above is well-defined almost everywhere.

4. For a function ϕ ∈ Cc(R∗+ × Rd), the directional (birth) derivative is defined as

D+
ϕF (γ) =

∫
R∗+×Rd

ϕ(s, x)D+
(s,x)F (γ)κ(ds, dx).

We now want to give some connections of difference calculus to umbral calculus, na-
mely, the connection between the gradients defined above and the falling factorials on
Π(R∗+ × Rd).

Proposition 3.34. Let ψ ∈ L2(R∗+ × Rd, dκ) and ϕ ∈ Cc(R∗+ × Rd). Then, the generating
functional of the falling factorials on Π(R∗+ × Rd) fulfills the following relation:

D+
ψEϕ(γ) = 〈ϕψ〉Eϕ(γ)

where 〈ϕ〉 denotes the expected value (integral) of a function ϕ.
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Proof. Since

(D+
ψEϕ)(γ) = D+

ψ

[
∞∑
n=0

1

n!
〈ϕ⊗n, (·)n〉

]
(γ) =

∞∑
n=0

1

n!
D+
ψ (〈ϕ⊗n, (·)n〉)(γ)

we can fix n ≥ 1 and consider one summand: Denote y = (s, x) and yi = (si, xi).

D+
ψ (〈ϕ⊗n, (·)n〉)(γ)

=

∫
R∗+×Rd

ψ(y)[〈ϕ⊗n, (γ + δy)n〉 − 〈ϕ⊗n, (γ)n〉]κ(dy)

=

∫
R∗+×Rd

ψ(y)

 ∑
{y1,...,yn}⊂γ+δy

ϕ(y1) · · ·ϕ(yn)−
∑

{y1,...,yn}⊂γ

ϕ(y1) · · ·ϕ(yn)

κ(dy)

=

∫
R∗+×Rd

ψ(y)nϕ(y)
∑

{y1,...,yn−1}⊂γ

ϕ(y1) · · ·ϕ(xn−1)κ(dy)

= n

∫
R∗+×Rd

ψ(y)ϕ(y)κ(dy) · 〈ϕ⊗(n−1), (γ)n−1〉

For n = 0, we get D+
ψ (〈ϕ⊗0, (·)0〉)(γ) = 0. Together, this means

(D+
ψEϕ)(γ) = 〈ψϕ〉

∞∑
n=1

1

(n− 1)!
〈ϕ⊗(n−1), (γ)n−1〉 = 〈ϕψ〉Eϕ(γ)

3.5.2 Difference Calculus on K(Rd)

By treating the mark space R∗+ as a separate entity as it is done on K(Rd) and not as
another variable as on Π(R∗+ × Rd), we may refine the definition of the birth and death
gradients for functions on K(Rd). We redefine these gradients taking into account these
marks. Furthermore, we show a discrete integration by parts formula and define a Dirichlet
form and Laplacian.

Definition 3.35. Let F ∈ FC(K(Rd)).

1. The discrete death gradient of F is given by

(D−x F )(η) := F (η − sxδx)− F (η)

where x ∈ τ(η). Corresponding to this, we define a tangent space as T−η (K(Rd)) :=
L2(Rd, η).

2. For a function h ∈ Cc(Rd), define the directional derivative along h as

(D−h F )(η) := 〈(D−F )(η), h〉T−η (K(Rd))

=

∫
Rd

(D−x F )(η)h(x)η(dx) =
∑
x∈τ(η)

sxh(x)(D−x F )(η)
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3. The discrete birth gradient is defined by

(D+
(s,x)F )(η) := F (η + sδx)− F (η)

where (s, x) ∈ R∗+ × Rd, x /∈ τ(η). Here, the corresponding tangent space is defined
as T+

η (K(Rd)) = L2(R∗+ × Rd, ν ⊗ σ). For a function g ∈ L2(R∗+ × Rd, ν ⊗ σ), we
may define the directional derivative as

(D+
g F )(η) := 〈(D+F )(η), g〉T+

η (K(Rd)) =

∫
R∗+×Rd

(D+
(s,x)F )(η)g(s, x)(ν ⊗ σ)(ds, dx).

There is an adjoint-like relation between the two derivatives defined above, which can
be expressed via the following integration by parts-type equation.

Proposition 3.36 (Discrete integration by parts). For the measure ν on R∗+, assume the
moment condition (6). For any F,G ∈ FC(K(Rd)) and h ∈ Cc(Rd), we have∫

K(Rd)

(D−h F )(η)G(η)G(dη) =

∫
K(Rd)

F (η)(D+
id⊗hG)(η)G(dη)

−
∫
K(Rd)

F (η)G(η)BG,h(η)G(dη)

where (id⊗ h)(s, x) := sh(x) and

BG,h(η) =

∫
Rd
hdη −

∫
R∗+×Rd

(id⊗ h)d(ν ⊗ σ)

=
∑
x∈τ(η)

sxh(x)−
∫
R∗+×Rd

sh(x)ν(ds)σ(dx)

Proof. It is enough to consider the term containing F (η− sxδx). For this term, we obtain
by using Mecke’s formula (8)∫

K(Rd)

∫
Rd
h(x)F (η − sxδx)G(η)η(dx)G(dη) =

=

∫
K(Rd)

∫
Rd

∫
R∗+
sh(x)F (η) G(η + sxδx)︸ ︷︷ ︸

=G(η+sxδx)−G(η)+G(η)

ν(ds)σ(dx)G(dη)

=

∫
K(Rd)

F (η)

∫
Rd

∫
R∗+
sh(x)D+

(s,x)G(η)ν(ds)σ(dx)G(dη)

+

∫
K(Rd)

F (η)G(η)

∫
Rd

∫
R∗+
sh(x)ν(ds)σ(dx)G(dη)

=

∫
K(Rd)

F (η)(D+
id⊗hG)(η)G(dη)

+

∫
K(Rd)

F (η)G(η)

∫
Rd

∫
R∗+
sh(x)ν(ds)σ(dx)G(dη)

Now adding the remaining term, we obtain the statement of the proposition.
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3.5.3 Discrete Laplacian

There is a Laplacian-type operator associated with the above gradients. The definition
is straightforward using the Dirichlet integral for the class of cylinder functions F,G ∈
FC(K(Rd)),

Edis(F,G) :=

∫
K(Rd)

〈D−F,D−G〉T−η (K(Rd))G(dη).

As it turns out, using the discrete birth gradient yields the same bilinear form:

Lemma 3.37. Let F,G ∈ FC(K(Rd)). Then

Edis(F,G) =

∫
K(Rd)

〈D+F,D+G〉T+
η (K(Rd))G(dη)

Proof. Using Mecke’s formula (8), we obtain

Edis(F,G) =

∫
K(Rd)

∑
x∈τ(η)

D−x F (η)D−xG(η)G(dη)

=

∫
K(Rd)

∑
x∈τ(η)

[F (η − sxδx)− F (η)][G(η − sxδx)−G(η)]G(dη)

=

∫
K(Rd)

∫
R∗+×Rd

s[F (η)− F (η + sδx)][G(η)−G(η + sδx)]ν(ds)σ(dx)G(dη)

=

∫
K(Rd)

∫
R∗+×Rd

s(D+
(s,x)F )(η)(D+

(s,x)G)(η)ν(ds)σ(dx)G(dη)

=

∫
K(Rd)

〈D+F,D+G〉T+
η (K(Rd))G(dη)

Proposition 3.38. The mapping (Edis,FC(K(Rd))) is a well-defined symmetric bilinear
form on L2(K(Rd),G).

Proof. The symmetry and bilinearity are clear. We need to show that the form Edis gives
the same result for elements from the same equivalence class. Therefore, consider F,G ∈
FC(K(Rd)) with F = 0 G-a.e. Then by Mecke’s formula (2.20), we get for any A ∈ Bc(Rd),∫

K(Rd)

∫
Rd

∫
R∗+
|F (η + sδx)|1A(x)ν(ds)σ(dx)G(dη) =

∫
K(Rd)

|F (η)|η(A)G(dη) = 0

which implies that F (η + sδx) = 0 dGdνdσ-almost everywhere on K(Rd) × R∗+ × Rd.
Plugging this in, we see

Edis(F,G) =

∫
K(Rd)

∫
R∗+×Rd

[F (η + sδx)− F (η)][G(η + sδx)−G(η)]ν(ds)σ(dx)G(dη) = 0

The discrete Laplacian is now given by the Markov generator associated with the
above form.

75



Proposition 3.39. For each F ∈ FC(K(Rd)), we set

(LdisF )(η) =

∫
Rd

(D−x F )(η)η(dx) +

∫
R∗+×Rd

(D+
(s,x)F )(η)(ν ⊗ σ)(ds, dx)

=
∑
x∈τ(η)

sx5[F (η − sxδx)− F (η)] +

∫
R∗+×Rd

s[F (η + sδx)− F (η)](ν ⊗ σ)(ds, dx)

Then (Ldis,FC(K(Rd))) is a symmetric operator in L2(K(Rd),G). Also, it is associated
to the form introduced above, i.e.

Edis(F,G) = (−LdisF,G)L2(K(Rd),G), F,G ∈ FC(K(Rd)). (38)

Furthermore, the form (Edis,FC(K(Rd))) is closable on L2(K(Rd),G). Also, for the ope-
rator (Ldis,FC(K(Rd))), there exists the Friedrichs’ extension. Denote these extensions
by (Edis, D(Edis)) and (Ldis, D(Ldis)), respectively. Then the operator (Ldis, D(Ldis)) is the
generator of the bilinear form (Edis, D(Edis)).

Remark 3.40. The operator Ldis defined above is the K(Rd)-analogue of the operator on
Γ(R∗+ × Rd) which is the generator of the so-called Surgailis process. This operator models
independent birth and death of particles on the underlying state space. It was studied in
e.g. [16, 55, 56].

For the proof of the proposition, recall the following result:

Theorem 3.41 ([50, Theorem X.23]). Let A be a positive symmetric operator and let
E(F,G) = (AF,G) for F,G ∈ D(A). Then E is a closable quadratic form and its closure
Ê is the quadratic form of a unique self-adjoint operator Â.

Proof of Proposition 3.39. Let us start by showing identity (38). For functions F,G ∈
FC(K(Rd)), we have using Mecke’s formula,

Edis(F,G) =

∫
K(Rd)

∑
x∈τ(η)

(D−x F )(η)G(η − sxδx)G(dη)

−
∫
K(Rd)

∑
x∈τ(η)

(D−x F )(η)G(η)G(dη)

= −
∫
K(Rd)

∫
R∗+×Rd

s(D+
(s,x)F )(η)G(η)ν(ds)σ(dx)

−
∫
K(Rd)

∑
x∈τ(η)

(D−x F )(η)G(η)G(dη)

= (−LdisF,G)L2(K(Rd),G)

The symmetry of Ldis is now clear since Edis is symmetric. Let us check that Ldis actually
maps functions F ∈ FC(K(Rd)) to L2(K(Rd),G). As it is easily seen by representation
(30), there exists a compact set Λ ⊂ R∗+ × Rd and a constant C > 0 such that

(D−x F )(η) ≤ C1Λ(sx, x), x ∈ τ(η)

(D+
(s,x)F )(η) ≤ C1Λ(s, x), (s, x) ∈ R∗+ × Rd \ τ(η).
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We may also decompose our expression using the triangle inequality:

∥∥LdisF
∥∥
L2(K(Rd),G)

≤

∥∥∥∥∥∥
∑
x∈τ(·)

sxD
−
x F

∥∥∥∥∥∥
L2(K(Rd),G)

+

∥∥∥∥∥
∫
R∗+×Rd

s(D+
(s,x)F )ν(ds)σ(dx)

∥∥∥∥∥
L2(K(Rd),G)

Let us consider the first term and show that it is finite: We split the expression into
diagonal and off-diagonal terms and use Mecke’s identity:∥∥∥∥∥∥

∑
x∈τ(·)

sxD
−
x F

∥∥∥∥∥∥
2

L2(K(Rd),G)

=

=

∫
K(Rd)

 ∑
x∈τ(η)

(D−x F )(η)

2

G(dη)

≤ C2

∫
K(Rd)

 ∑
x∈τ(η)

sx1Λ(sx, x)

2

G(dη)

= C2

∫
K(Rd)

∑
x∈τ(η)

∑
y∈τ(η−sxδx)

sxsy1Λ(sx, x)1Λ(sy, y)G(dη)

+ C2

∫
K(Rd)

∑
x∈τ(η)

s2
x1Λ(sx, x)G(dη)

= C2

∫
K(Rd)

∫
R∗+×Rd

∫
R∗+×Rd

s1s21Λ(s1, x1)1Λ(s2, x2)ν(ds1)ν(ds2)σ(dx1)σ(dx2)G(dη)

+ C2

∫
K(Rd)

∫
R∗+×Rd

s2
1Λ(s, x)ν(ds)σ(dx)G(dη)

<∞

The expression is finite since the inner integral is bounded and G is a probability measure.
For the second expression of LdisF , we may proceed in the same way as above to obtain
finiteness. Therefore, we obtain LdisF ∈ L2(K(Rd),G).

The Friedrichs’ extension is obtained by showing that −Ldis is a positive operator. Let
F ∈ FC(K(Rd)). Then by Mecke’s identity,

(LdisF, F ) =

∫
K(Rd)

∑
x∈τ(η)

sx(D
−
x F )(η)F (η) +

∫
R∗+×Rd

s(D+
(s,x)F )(η)F (η)ν(ds)σ(dx)G(dη)

=

∫
K(Rd)

∫
R∗+×Rd

s[F (η)− F (η + sδx)]F (η + sδx)ν(ds)σ(dx)

+

∫
R∗+×Rd

s[F (η + sδx)− F (η)]F (η)ν(ds)σ(dx)G(dη)

=

∫
K(Rd)

∫
R∗+×Rd

−
[
(D+

(s,x)F )(η)
]2

ν(ds)σ(dx)G(dη) ≤ 0

Therefore, Ldis is negative and −Ldis is a positive operator.
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Next, we establish the connection between the falling factorials and difference calculus
on K(Rd). The following relations hold between the discrete gradients and the falling
factorials:

Proposition 3.42. Let ϕ be a measurable and compactly supported function. Then, the
following relations hold:

1. Let η ∈ K(Rd) and x ∈ τ(η). Then

D−x 〈ϕ⊗n, P (n)(·)〉(η) = −nsxϕ(x)〈ϕ⊗n−1, P (n−1)(· − sxδx)〉(η)

2. For h ∈ Cc(Rd), we have

D−h 〈ϕ
⊗n, P (n)(·)〉(η) = −n

∑
x∈τ(η)

sxh(x)sxϕ(x)〈ϕ⊗n−1, P (n−1)(· − sxδx)〉(η)

3. For (s, x) ∈ R∗+ × Rd, x /∈ τ(η), we get

D+
(s,x)〈ϕ

⊗n, P (n)(·)〉(η) = nsϕ(x)〈ϕ⊗n−1, P (n−1)(·)〉(η)

4. For g ∈ L2(R∗+ × Rd), the following holds:

D+
g 〈ϕ⊗n, P (n)(·)〉(η) = n

∫
R∗+×Rd

sϕ(x)g(s, x)〈ϕ⊗n−1, P (n−1)(η)〉(σ ⊗ l)(dx, ds)

= n〈fϕ, g〉L2(R∗+×Rd)〈ϕ⊗n−1, P (n−1)(η)〉

Proof. 1. Using equation (37), we obtain

D−x 〈ϕ⊗n, P (n)(·)〉(η) =
∑

{i1,...,in}⊂N
xij 6=x∀j

si1 · · · sinϕ(xi1) · · ·ϕ(xin)

−
∑

{i1,...,in}⊂N

si1 · · · sinϕ(xi1) · · ·ϕ(xin)

= −
∑

{i1,...,in}⊂N
∃j : xij=x

si1 · · · sinϕ(xi1) · · ·ϕ(xin)

= −nsxϕ(x)
∑

{i1,...,in−1}⊂N
∀j : xij 6=x

si1 · · · sin−1ϕ(xi1) · · ·ϕ(xin−1)

= −nsxϕ(x)〈ϕ⊗n−1, P (n−1)(· − sxδx)〉(η)

2. The second part follows directly by part 1 and the definition.

3. For the third statement, we obtain

D+
(s,x)〈ϕ

⊗n, P (n)(·)〉(η) = D+
(s,x)

∑
{i1,...,in}⊂N

si1 · · · sinϕ(xi1) · · ·ϕ(xin)

=
∑

{i1,...,in}⊂N
∃j : xij=x

si1 · · · sinϕ(xi1) · · ·ϕ(xin)

= n
∑

{i1,...,in−1}⊂N

si1 · · · sin−1ϕ(xi1) · · ·ϕ(xin−1)sϕ(x)

= nsϕ(x)〈ϕ⊗n−1, P (n−1)(·)〉(η)
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4. The fourth statement follows by using part 3 as well as the definition of the birth
gradient.

We may apply the above result to the mapping which is defined analogously to the
generating functional on Π(R∗+ × Rd).

Definition 3.43. On K(Rd), define the following mapping:

Eϕ(η) =
∞∑
n=0

1

n!
〈ϕ⊗n, P (n)〉 =

∞∑
n=0

1

n!
〈〈f⊗nϕ , (R−1η)n〉〉

where ϕ ∈ Cc(Rd) and fϕ(s, x) = sϕ(x).

Corollary 3.44. Let ψ ∈ L2(R∗+ × Rd, dκ) and ϕ ∈ Cc(Rd). Then, the following holds:

D+
ψEϕ(η) = 〈ψ, fϕ〉L2(R∗+×Rd)Eϕ(η)

Proof. Apply statement 4 of Proposition 3.42 to each summand.

3.5.4 Commutation Relations for Discrete Gradients on K(Rd)

Especially in the theories of operator algebras and mathematical physics, the notion of a
commutator is of importance. Let us calculate the commutator for some combinations of
the discrete gradients introduced above.

Proposition 3.45. We have the following relations:

1. Let g, h ∈ Cc(Rd). Then
[D−g , D

−
h ] = 0.

2. Let ϕ, ψ ∈ L2(R∗+ × Rd, dκ). Then

[D+
ϕ , D

+
ψ ] = 0

3. For h ∈ Cc(Rd) and ϕ ∈ L2(R∗+ × Rd, dκ), we have

[D−h , D
+
ϕ ] = D+

fhϕ

where fh(s, x) = sh(x), as above.

Proof. 1. Let g, h ∈ Cc(Rd) and F ∈ FC(K(Rd)) a test function. Using the fact that∑
y∈τ(η)

∑
x∈τ(η−syδy)

=
∑
x∈τ(η)

∑
y∈τ(η−syδy)

,

we see that
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(
[D−g , D

−
h ]F

)
(η) = D−g

∑
x∈τ(·)

sxh(x)[F (· − sxδx)− F (·)]

 (η)

−D−h

∑
x∈τ(·)

sxg(x)[F (· − sxδx)− F (·)]

 (η)

=
∑
y∈τ(η)

syg(y)

 ∑
x∈τ(η−syδy)

sxh(x)[F (η − syδy − sxδx)− F (η − syδy)]

−
∑
x∈τ(η)

sxh(x)[F (η − sxδx)− F (η)]


−
∑
y∈τ(η)

syh(y)

 ∑
x∈τ(η−syδy)

sxg(x)[F (η − syδy − sxδx)− F (η − syδy)]

−
∑
x∈τ(η)

sxg(x)[F (η − sxδx)− F (η)]


=
∑
y∈τ(η)

∑
x∈τ(η−syδy)

syg(y)sxh(x)[F (η − syδy − sxδx)− F (η − syδy)]

−
∑
y∈τ(η)

∑
x∈τ(η)

syg(y)sxh(x)[F (η − sxδx)− F (η)]

−
∑
y∈τ(η)

∑
x∈τ(η−syδy)

syh(y)sxg(x)[F (η − syδy − sxδx)− F (η − syδy)]

+
∑
y∈τ(η)

∑
x∈τ(η)

syg(y)sxh(x)[F (η − sxδx)− F (η)]

= 0

2. Let ϕ, ψ ∈ L2(R∗+ × Rd, dκ) and F ∈ FC(K(Rd)). Then

(D+
ϕD

+
ψF )(η) = D+

ϕ

(∫
R∗+×Rd

ψ(s, x)[F (·+ sδx)− F (·)]κ(ds, dx)

)
(η)

=

∫
R∗+×Rd

ϕ(t, y)

(∫
R∗+×Rd

ψ(s, x)[F (η + tδy + sδx)− F (η + tδy)]κ(ds, dx)

−
∫
R∗+×Rd

ψ(s, x)[F (η + sδx)− F (η)]κ(ds, dx)

)
κ(dt, dy)

=

∫
R∗+×Rd

∫
R∗+×Rd

ϕ(t, y)ψ(s, x)[F (η + tδy + sδx)− F (η + tδy)

− F (η + sδx) + F (η)]κ(ds, dx)κ(dt, dy)

=

∫
R∗+×Rd

∫
R∗+×Rd

ψ(s, x)ϕ(t, y)[F (η + tδy + sδx)− F (η + sδx)
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− F (η + tδy) + F (η)]κ(dt, dy)κ(ds, dx)

= (D+
ψD

+
ϕF )(η)

Where the last step is done by backtracking the calculation with the variables and
functions switched.

3. Let h ∈ Cc(Rd) and ϕ ∈ L2(R∗+ × Rd, dκ). Then(
[D−h , D

+
ϕ ]F

)
(η) = (D−hD

+
ϕF )(η)− (D+

ϕD
−
h F )(η)

= D−h

(∫
R∗+×Rd

ϕ(s, x)[F (·+ sδx)− F (·)]κ(ds, dx)

)
(η)

−D+
ϕ

∑
x∈τ(·)

sxh(x)[F (· − sxδx)− F (·)]

 (η)

=
∑
y∈τ(η)

syh(y)

∫
R∗+×Rd

ϕ(s, x)[F (η − syδy + sδx)− F (η − syδy)]κ(ds, dx)

−
∑
y∈τ(η)

syh(y)

∫
R∗+×Rd

ϕ(s, x)[F (η + sδx)− F (η)]κ(ds, dx)

−
∫
R∗+×Rd

ϕ(t, y)
∑

x∈τ(η+tδy)

sxh(x)[F (η + tδy − sxδx)− F (η + tδy)]κ(dt, dy)

+

∫
R∗+×Rd

ϕ(t, y)
∑
x∈τ(η)

sxh(x)[F (η − sxδx)− F (η)]κ(dt, dy)

=

∫
R∗+×Rd

∑
y∈τ(η)

syh(y)ϕ(s, x)[F (η − syδy + sδx)− F (η − syδy)]κ(ds, dx)

−
∫
R∗+×Rd

∑
y∈τ(η)

syh(y)ϕ(s, x)[F (η + sδx)− F (η)]κ(ds, dx)

−
∫
R∗+×Rd

∑
x∈τ(η+tδy)

sxh(x)ϕ(t, y)[F (η + tδy − sxδx)− F (η + tδy)]κ(dt, dy)

+

∫
R∗+×Rd

∑
y∈τ(η)

syh(y)ϕ(s, x)[F (η − syδy)− F (η)]κ(ds, dx)

=

∫
R∗+×Rd

∑
y∈τ(η)

syh(y)ϕ(s, x)[F (η − syδy + sδx)− F (η − syδy)]κ(ds, dx)

−
∫
R∗+×Rd

∑
y∈τ(η)

syh(y)ϕ(s, x)[F (η + sδx)− F (η)]κ(ds, dx)

−
∫
R∗+×Rd

∑
y∈τ(η)

syh(y)ϕ(s, x)[F (η + sδx − syδy)− F (η + sδx)]κ(ds, dx)

+

∫
R∗+×Rd

∑
y∈τ(η)

syh(y)ϕ(s, x)[F (η − syδy)− F (η)]κ(ds, dx)

−
∫
R∗+×Rd

th(y)ϕ(t, y)[F (η)− F (η + tδy)]κ(dt, dy)
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We see that everything except the last term cancels out. On the other hand,

(D+
fhϕ
F )(η) =

∫
R∗+×Rd

sh(x)ϕ(s, x)[F (η + sδx)− F (η)]κ(ds, dx),

which is equal to the last term of the above calculation.
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4 Dynamics

Now that the necessary theoretical background on K(Rd) is established, it is time to
consider specific models on the cone. We consider three models which are typically of
interest:

1. Glauber dynamics

2. Generalised Contact Model

3. Bolker-Dieckmann-Law-Pacala (BDLP) Model

Since the direct analysis of the Markov-type operator on K(Rd) is too difficult, we resort
to the scheme proposed in Chapter 2.11.2. This means that we take the following steps:

1. Define the Markov pre-generator L on a class of observables F : K(Rd)→ R.

2. Use the K-transform to define an associated operator on a class of quasi-observables
G : K0(Rd) → R via the relation L̂ := K−1LK. This operator is also called the
symbol of L.

3. Assuming that the underlying initial state admits a correlation function, we may use
the duality on K0(Rd) to construct the statistical dynamics for correlation functions.

4. Depending on the model, we may show the existence of the dynamics using quasi-
observables (L1-techniques) or correlation functions (L∞-techniques).

5. The different function spaces on K0(Rd) also enable us to prove certain properties
of the models such as a priori estimates or asymptotic behaviour.

4.1 Glauber Dynamics

The first model we want to investigate are the Glauber dynamics. This model emerges from
the analysis of the underlying Gibbs measure based on a corresponding energy functional.
There have been various works on the Glauber dynamics under different circumstances,
such as consideration of finite volume in [6]. For configuration spaces, this model has been
examined in [37] and [19]. While the former is concerned with the construction of the
corresponding Gibbs measure, the latter employs semigroup theory to show the existence
of dynamics of various models. The analysis of Gibbs measures on the cone of positive
measures and preliminary work to this paper were done in [29]. We want to focus on
the first step of the process of showing the existence of a semigroup on L1-type spaces
of quasi-observables. Furthermore, we establish the hierarchical structure associated with
the Glauber dynamics.

4.1.1 Generator Corresponding to the Dirichlet Form

The generator of the Glauber dynamics is based on a Dirichlet form corresponding to an
underlying Gibbs measure. A brief overview of the construction of Gibbs measures can
be found in Chapter 2.8.3 of this work. Note that for this chapter, we restrict ourselves
to the intensity measure νθ from Definition 2.22.

In the case of Γ(Rd), it has been shown in [37] that there exists a Hunt process with
the generator given by the Dirichlet form given below. Furthermore, this process has the
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corresponding Gibbs measure as invariant measure. These statements were shown using
semigroup techniques together with the theory of Dirichlet forms. We want to use the
same techniques to obtain similar results as in the configuration space case.

Definition 4.1. Let µ ∈ G(φ) and F,G ∈ FC(K(Rd)). Define the following form:

E(F,G) :=
1

2

∫
K(Rd)

∫
Rd
D−x F (η)D−xG(η)η(dx)µ(dη)

=
1

2

∫
K(Rd)

∑
x∈τ(η)

sxD
−
x F (η)D−xG(η)µ(dη)

Remark 4.2. For a more general bilinear form, one may replace sx by some function
m : R+ → R, sx 7→ m(sx).

Proposition 4.3. The operator associated to the above (Dirichlet) form has the form

(LF )(η) =
∑
x∈τ(η)

sx [F (η − sxδx)− F (η)]

+

∫
R∗+×Rd

[F (η + sxδx)− F (η)] e−Φ((s,x);η))sνθ(ds)σ(dx)

where Φ is defined as in Proposition 2.41 and F ∈ FC(K(Rd)).

Proof. we show
E(F,G) = (LF,G)L2(K(Rd),dG).

By using the Georgii-Ngyuen-Zessin identity (13), we can calculate

E(F,G) =
1

2

∫
K(Rd)

∫
R∗+×Rd

D−x F (η)D−xG(η)η(dx)G(dη)

=
1

2

∫
K(Rd)

∫
R∗+×Rd

D−x F (η)(G(η − sxδx)−G(η))η(dx)G(dη)

=
1

2

∫
K(Rd)

∫
R∗+×Rd

D−x F (η)(G(η − sxδx)η(dx)G(dη)

− 1

2

∫
K(Rd)

∫
R∗+×Rd

D−x F (η)G(η)η(dx)G(dη)

(13)
=

1

2

∫
K(Rd)

∫
R∗+×Rd

D−x F (η + sxδx)G(η)e−Φ((s,x);η)sνθ(ds)σ(dx)G(dη)

− 1

2

∫
K(Rd)

∫
R∗+×Rd

D−x F (η)G(η)η(dx)G(dη)

= −1

2

∫
K(Rd)

∫
R∗+×Rd

(F (η + sxδx)− F (η))G(η)e−Φ((s,x);η)sνθ(ds)σ(dx)G(dη)

− 1

2

∫
K(Rd)

∑
x∈τ(η)

sx(F (η − sxδx)− F (η))G(η)G(dη)

= −1

2

∫
K(Rd)

∫
R∗+×Rd

(F (η + sxδx)− F (η))e−Φ((s,x);η)sνθ(ds)σ(dx)︸ ︷︷ ︸
=:(L1F )(η)

FG(η)G(dη)
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− 1

2

∫
K(Rd)

∑
x∈τ(η)

sx(F (η − sxδx)− F (η))

︸ ︷︷ ︸
=:(L0F )(η)

G(η)G(dη)

The definitions of L0 and L1 will be used in the next chapter, when we calculate the
symbol of L.

4.1.2 The Symbol for the Glauber Dynamics

As mentioned above, in many cases, it is convenient to consider the symbol operator on
the space of quasi-observables. In this chapter, we consider the Markov-type operator
calculated above,

(LF )(η) =
∑
x∈τ(η)

sx [F (η − sxδx)− F (η)]

+

∫
R∗+×Rd

[F (η + sxδx)− F (η)] e−Φ((s,x);η))sνθ(ds)σ(dx)

and calculate the corresponding symbol on the space of functions G : K0(Rd)→ R.
For convenience, we recall the following notation.

Reminder. The Lebesgue-Poisson exponent is defined by

eλ(f, η) :=
∏
x∈τ(η)

f(sx, x)

for f : R∗+ × Rd → R and η ∈ K0(Rd) whenever the above expression is defined. Note that
we use the notation eλ for a function on K0(Rd) here, as opposed to Π(R∗+ × Rd).

Also, the following combinatorial identities are needed when calculating L̂:

Lemma 4.4. The Lebesgue-Poisson exponent has the following properties:

Keλ(f, η) =
∏
y∈τ(η)

(1 + f(sy, y)), η ∈ K0(Rd)

(G ? eλ(f))(η) =
∑
ξ⊂η

G(ξ)eλ(f + 1, ξ)eλ(f, η − ξ)

provided, both sides of the equations make sense.

We are now ready to give the form of the symbol on quasi-observables.

Proposition 4.5. The symbol L̂ corresponding to L is given by

(L̂G)(η) = −

 ∑
x∈τ(η)

sx

G(η)

+

∫
R∗+×Rd

s
∑
ξ⊂η

G(ξ + sδx)eλ(e
−2ssyφ(x,y), ξ)eλ(e

−2ssyφ(x,y) − 1, η − ξ)νθ(ds)σ(dx)

for G ∈ Bcm(K0(Rd)).
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Proof. We set L = L0 + L1, where L0 and L1 are defined in the proof of Proposition 4.3.
The same decomposition can be done for L̂. We begin by calculating L̂0 using Lemma
2.76.

(L̂0G) = K−1

 ∑
x∈τ(η)

sx [KG(η − sxδx)−KG(η)]


= K−1

 ∑
x∈τ(η)

sx [−(KG(·+ sxδx))(η − sxδx)]


= K−1

∑
x∈τ(η)

sx

(
−

∑
ξbη−sxδx

G(ξ + sxδx)

)
= −K−1

∑
x∈τ(η)

∑
ξbη−sxδx

sx (G(ξ + sxδx))

= −K−1
∑
ξbη︸ ︷︷ ︸

=id

∑
x∈τ(ξ)

sxG(ξ)

= −

 ∑
x∈τ(ξ)

sx

G(ξ)

Next, we calculate L̂1 using Lemma 4.4.

(L̂1G) = K−1

∫
R∗+×Rd

[KG(η + sxδx)−KG(η)] e−Φ((s,x),η)sνθ(ds)σ(dx)

= K−1

∫
R∗+×Rd

KG(·+ sxδx)(η)e−Φ((s,x),η)sνθ(ds)σ(dx)

= K−1

∫
R∗+×Rd

KG(·+ sxδx)(η)K
[
e−Φ((s,x),·) − 1

]
sνθ(ds)σ(dx)

= K−1

∫
R∗+×Rd

K
[
G(·+ sxδx)(η) ?

(
e−Φ((s,x),·) − 1

)]
sνθ(ds)σ(dx)

=

∫
R∗+×Rd

s
∑
ξ⊂η

G(ξ + sδx)
∏
y∈τ(ξ)

(
e−2ssyφ(x,y)

) ∏
y∈τ(η−ξ)

(
e−2ssyφ(x,y) − 1

)
νθ(ds)σ(dx)

Note that we used η as a placeholder for legibility.

4.1.3 Existence of a Semigroup for the Glauber Dynamics

For the Glauber model, the existence of dynamics is shown using semigroup theory on
L1-type spaces of quasi-observables. In the following chapter, we prove the existence of
an analytic semigroup associated to the generator L̂.

We start by introducing the spaces on which we want to construct our semigroup.
These spaces are of L1-type and have fixed densities depending on the number of particles
and the size of the corresponding marks, which is represented by the coefficients C and
α.
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Definition 4.6. For C > 0 and α ∈ R, define the family of L1-type spaces

Lα,C := L1
(
K0(Rd), C |τ(η)|eα

∑
x∈τ(η) sxdλG

)
with the usual L1-norm defined by the stated measure. We denote this norm by ‖ · ‖α,C.

Recall that by Proposition 2.80, the space Bcm(K0(Rd)) is dense in Lα,C for any C > 0
and α ∈ R.

The construction scheme for the semigroup is as follows: First, we prove the existence
of a semigroup for the generator L̂0. Next, we give sufficient conditions on the parameters
α,C and the coefficients of L̂1, namely, the potential φ, to ensure that this part can be
seen as a suitable perturbation of the operator L̂0.

Proposition 4.7. For any α,C, the operator L̂0 defined above with the domain

D(L̂0) :=

G ∈ Lα,C

∣∣∣∣∣∣
∑
x∈τ(η)

sx ·G(η) ∈ Lα,C


generates a contraction semigroup on Lα,C. Moreover, this semigroup is analytic.

The proof of the statement follows the same outline as in [19] and is as follows: The
first part of the statement will be shown using Hille-Yosida. For the second part, recall
the following variation. We denote by R(ζ, A) := (ζ1−A)−1 the resolvent of A (provided
it exists).

Lemma 4.8 ([14, Ex. II.4.12(6)]). Let (A,D(A)) be a closed, densely defined linear ope-
rator on a Banach space X. If there exist δ > 0, r > 0 and M ≥ 1 s.t.

Σδ := {ζ ∈ C : |ζ| > r and | arg(ζ)| < π

2
+ δ} ⊆ ρ(A)

and

‖R(ζ, A)‖ ≤ M

|ζ|
for all ζ ∈ Σδ, then A generates an analytic semigroup.

Proof of Proposition 4.7. The closedness of L̂0 is clear since it is a multiplication operator.
Dense domain: By Proposition 2.80, we have that Bcm(K0(Rd)) ⊆ Lα,C is dense. Hence,

it is enough to show that Bcm(K0(Rd)) ⊆ D(L̂0). Let G ∈ Bcm(K0(Rd)). Then there exists
an interval [a, b] ⊂ R∗+ such that G(η) = 0 whenever there exists sx such that sx /∈ [a, b]
as well as N ∈ N such that G(η) = 0 whenever |τ(η)| > N . Hence,

‖L̂0G‖α,C =

∫
K0(Rd)

∣∣∣L̂0G(η)
∣∣∣C |τ(η)|eα

∑
x∈τ(η) sxλG(dη)

=

∫
K0(Rd)

∑
x∈τ(η)

sxG(η)C |τ(η)|eα
∑
x∈τ(η) sxλG(dη)

≤ b

∫
K0(Rd)

|τ(η)|G(η)C |τ(η)|eα
∑
x∈τ(η) sxλG(dη)

≤ b

∫
K0(Rd)

NG(η)C |τ(η)|eα
∑
x∈τ(η) sxλG(dη)

= bN‖G‖α,C <∞

87



By above arguments, L̂0 is densely defined.
What is left to show is the resolvent bound. Let δ ∈ (0, π

2
) and ζ ∈ Σδ ∪ R∗+. Since

sx ∈ R∗+, ∣∣∣∣∣∣
∑
x∈τ(η)

sx + ζ

∣∣∣∣∣∣ > 0

and hence, R(ζ, L̂0) is well-defined for all ζ ∈ Σδ ∪ R∗+ as the multiplication operator

R(ζ, L̂0)G(η) = − 1∑
x∈τ(η) sx + ζ

G(η)

For ζ ∈ C, we show

‖R(ζ, L̂0)‖ ≤

{
1
|ζ| , if <ζ ≥ 0
M
|ζ| , if <ζ < 0

which will complete the conditions for Hille-Yosida and Lemma 4.8. Here, M > 0 is a
constant defined below and <ζ denotes the real part of ζ ∈ C.

Case <ζ ≥ 0: Since |
∑

x∈τ(η) sx + ζ| ≥ |ζ|,

‖R(ζ, L̂0)G(η)‖ =

∣∣∣∣∣ 1∑
x∈τ(η) sx + ζ

∣∣∣∣∣ ‖G(η)‖ ≤ 1

|ζ|
‖G(η)‖

Case <ζ < 0: Since | arg(ζ)| ≤ π
2

+ δ, we have

|=ζ| ≥ |ζ| ·
∣∣∣sin(π

2
+ δ
)∣∣∣ = |ζ| · | cos ζ|

where =ζ denotes the imaginary part of ζ. This yields the estimate

|ζ|∣∣∣∑x∈τ(η) sx + ζ
∣∣∣ ≤ |ζ|
|=ζ|

≤ 1

cos δ
=: M

we can now use this to establish the resolvent bound:

‖R(ζ, L̂0)G‖ ≤ 1

|ζ|

∥∥∥∥∥∥ |ζ|∣∣∣∑x∈τ(·) sx + ζ
∣∣∣G
∥∥∥∥∥∥ ≤ 1

|ζ|
M‖G‖ =

M

|ζ|
‖G‖

by the above considerations, the claim follows.

Next, we consider L̂1 as a perturbation of L̂0. First, we introduce the notion of a
relative bound.

Definition 4.9 ([14], III.2.1). Let A : D(A) ⊂ X → X be a linear operator on the Banach
space X. An operator B : D(B) ⊂ X → X is called (relatively) A-bounded if D(A) ⊆ D(B)
and if there exist constants a, b ∈ R+ such that

‖Bx‖ ≤ a‖Ax‖+ b‖x‖ (39)

for all x ∈ D(A). The A-bound of B is

a0 := inf{a ≥ 0: ∃b ∈ R+ s.t. (39) holds}
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Theorem 4.10 ([14, III.2.10]). Let the operator (A,D(A)) generate an analytic semigroup
(T (z))z∈Σδ∪{0} on a Banach space X. Then there exists a constant β > 0 such that (A +
B,D(A)) generates an analytic semigroup for every A-bounded operator B having A-bound
a0 < β.

The following identity for the coherent states will be useful in later calculations:

Lemma 4.11. For the measure λG, the following formula holds:∫
K0(Rd)

eλ(f, η)λG(dη) = exp

(∫
R∗+×Rd

f(s, x)νθ(ds)σ(dx)

)

The following Lemma yields the relevant bound for the perturbation L̂1.

Lemma 4.12 (relative bound for L̂1). Let α < 1. For any C > 0 with

C ≤ (1− α)α

2θ
∫
Rd φ(x, y)σ(dy)

, (40)

the following estimate holds:

‖L̂1G‖α,C ≤
1

C
‖L̂0G‖α,C , G ∈ D(L̂0) = D(L̂1)

Note that the domain of the operators also depend on α and C.

Remark 4.13. It is interesting to note the additional restriction imposed by the intro-
duction of α, which yields an upper bound on the parameter C. Compare to the condition
given in [19], Example 1.

Proof. We write C(η) := C |τ(η)|eα
∑
y∈τ(η) sy for brevity.

‖L̂1G‖ =

∫
K0(Rd)

∣∣∣L̂1G(η)
∣∣∣C(η)λG(dη)

≤
∫
K0(Rd)

∑
ξ⊂η

∫
R∗+×Rd

se−Φ((s,x),ξ)|G(ξ + sδx)|×

× eλ
(∣∣e−2ssyφ(x,y) − 1

∣∣ , η − ξ)C(η)νθ(ds)σ(dx)λG(dη)

=

∫
K0(Rd)

∫
R∗+×Rd

∑
ξ⊂η

se−Φ((s,x),ξ)|G(ξ + sδx)|×

× eλ
(∣∣e−2ssyφ(x,y) − 1

∣∣ , η − ξ)C(η)νθ(ds)σ(dx)λG(dη)

2.77
=

∫
K0(Rd)

∫
K0(Rd)

∫
R∗+×Rd

se−Φ((s,x),ξ1)|G(ξ1 + sδx)|×

× eλ
(∣∣e−2ssyφ(x,y) − 1

∣∣ , ξ2

)
C(ξ1 + ξ2)νθ(ds)σ(dx)λG(dξ1)λG(dξ2)

2.77
=

∫
K0(Rd)

∫
K0(Rd)

∑
x∈τ(ξ1)

sxe
−Φ((s,x),ξ1−sxδx)|G(ξ1)|×

× eλ
(∣∣e−2sxsyφ(x,y) − 1

∣∣ , ξ2

)
C(ξ1 − sxδx + ξ2)λG(dξ1)λG(dξ2)
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=

∫
K0(Rd)

|G(ξ1)|C(ξ1)
∑

x∈τ(ξ1)

∫
K0(Rd)

sx e
−Φ((s,x),ξ1−sxδx)︸ ︷︷ ︸

≤1

×

× eλ
(∣∣e−2sxsyφ(x,y) − 1

∣∣ , ξ2

)
C(ξ1 − sxδx + ξ2)C(ξ1)−1λG(dξ1)λG(dξ2)

≤
∫
K0(Rd)

|G(ξ1)|C(ξ1)
∑

x∈τ(ξ1)

∫
K0(Rd)

sx×

× eλ
(∣∣e−2sxsyφ(x,y) − 1

∣∣ , ξ2

)
C(ξ2)C(sxδx)

−1λG(dξ1)λG(dξ2)

= C−1

∫
K0(Rd)

|G(ξ1)|C(ξ1)
∑

x∈τ(ξ1)

sxe
−αsx×

×
∫
K0(Rd)

eλ
(∣∣e−2sxsyφ(x,y) − 1

∣∣Ceαsy , ξ2

)
λG(dξ2)λG(dξ1)

4.11
= C−1

∫
K0(Rd)

|G(ξ1)|C(ξ1)
∑

x∈τ(ξ1)

sxe
−αsx×

× exp

(∫
R∗+×Rd

∣∣e−2sxsφ(x,y) − 1
∣∣Ceαsνθ(ds)σ(dx)

)
λG(dξ1)

≤ C−1

∫
K0(Rd)

|G(ξ1)|C(ξ1)
∑

x∈τ(ξ1)

sxe
−αsx×

× exp

(∫
R∗+×Rd

2sxsφ(x, y)Ceαsνθ(ds)σ(dx)

)
λG(dξ1)

2.22
= C−1

∫
K0(Rd)

|G(ξ1)|
∑

x∈τ(ξ1)

sx×

× exp

[(
2Cθ

∫
R∗+×Rd

φ(x, y)e(α−1)sdsσ(dx)− α

)
sx

]
︸ ︷︷ ︸

(∗)

C(ξ1)λG(dξ1)

≤ 1

C
‖L̂0G‖

The last estimate holds if (∗) ≤ 1, i.e.

0 ≥ 2Cθ

∫
R∗+×Rd

φ(x, y)e(α−1)sdsσ(dx)− α

= 2Cθ

∫
Rd
φ(x, y)σ(dx)

∫
R∗+
e(α−1)sds− α

=
2C

1− α
θ

∫
Rd
φ(x, y)σ(dx)− α

rewriting yields the claim.

Combining this estimate with a condition on C emerging from Theorem 4.10 yields
the final existence result:

Theorem 4.14. Let C ≥ 2 and (40) holds. Then L̂ generates an analytic semigroup on
the space Lα,C.
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Proof. Condition (40) yields the relative boundedness of L̂1 w.r.t. L̂0. The condition C ≥ 2
ensures that the estimate is sharp enough to guarantee the existence of the perturbed
semigroup according to Theorem 4.10.

4.1.4 Statistical Dynamics of the Glauber Model

For completeness, let us calculate the operator on the space of correlation functions cor-
responding to L̂ according to the scheme proposed in Chapter 2.11.2.

Proposition 4.15. The operator L4 is given by(
L4k

)
(η) =

(
L40 k

)
(η) +

(
L41 k

)
(η)

= −
∑
x∈τ(η)

sxk(η)

+

∫
K0(Rd)

∑
x∈τ(η)

sxeλ(e
−2sxsyφ(x,y), η − sxδx)×

× eλ(e−2sxsyφ(x,y) − 1, ξ)k(η + ξ − sxδx)λG(dξ)

Proof. We start again with L40 . Since L̂ is a multiplication operator, we directly obtain(
L40 k

)
(η) = −

∑
x∈τ(η)

sxk(η).

To calculate L41 , we fix ξ ⊂ η and look at one summand first. Additionally, we exchange
ξ and η − ξ. We also write

f(ζ) := eλ(e
−2ssyφ(x,y), ζ)

g(ζ) := eλ(e
−2ssyφ(x,y) − 1, ζ)

for short. Note that the application of Minlos Lemma in the following calculation will
change s→ sx in f and g.∫

K0(Rd)

∫
R∗+×Rd

sf(η − ξ)g(ξ)G(η − ξ + sδx)k(η)νθ(ds)σ(dx)λG(dη)

=

∫
K0(Rd)

∑
x∈τ(η−ξ)

sxf(η − ξ − sxδx)g(ξ)G(η − ξ)k(η − sxδx)λG(dη)

For the last steps, we need to look at the complete sum to apply the other version of
Minlos Lemma.

〈〈L̂1G, k〉〉 =

∫
K0(Rd)

∑
ξ⊂η

∑
x∈τ(η−ξ)

sxf(η − ξ − sxδx)g(ξ)G(η − ξ)k(η − sxδx)λG(dη)

2.77
=

∫
K0(Rd)

∫
K0(Rd)

∑
x∈τ(η1)

sxf(η1 − sxδx)g(η2)G(η1)k(η1 + η2 − sxδx)λG(dη2)λG(dη1)

=

∫
K0(Rd)

G(η)

∫
K0(Rd)

∑
x∈τ(η1)

sxf(η1 − sxδx)g(η2)k(η1 + η2 − sxδx)λG(dη2)

︸ ︷︷ ︸
=L41 k(η1)

λG(dη1)
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4.1.5 Hierarchical Structure for the Glauber Dynamics

Rewriting the equation for the correlation function in terms of the hierarchical structure,
we arrive at the following operators:

Proposition 4.16. For n ∈ N, the operator L4n on the hierarchy of correlation functions
of the Glauber model is given by

(L4k(n))(s1, . . . , xn) =

−
n∑
i=1

sik
(n)(s1, . . . , xn)

+
∞∑
m=0

1

m!

∫
(R∗+×Rd)m

n∑
i=1

si

n∏
j=1
j 6=i

e−2sisjφ(xi,xj)

m∏
k=1

(
e−2sitkφ(xi,yk) − 1

)
×

× k(n+m−1)(s1, . . . , ši, x̌i, . . . , xn, t1, . . . , ym)νθ(dt1)σ(dy1) . . . νθ(dtm)σ(dym)

where ši, x̌i means that these variables are omitted.

Remark 4.17. In the special case of n = 1, this reduces to

L(1)k(1)(s, x) = −sk(1)(s, x)

+ s
∞∑
m=0

1

m!

∫
R∗+×Rd

n

m∏
k=1

(e−2stkφ(x,yk) − 1)×

× k(m)(t1, y1, . . . , tm, ym)νθ(dt1)σ(dy1) . . . νθ(dtn)σ(dyn)

We see that each correlation function depends on all other functions of higher order.

4.2 Continuous Contact Model on the Cone

The next model to consider is the continuous contact model on K(Rd). Heuristically, this
model is a simple birth-and-death process used to describe e.g. infection spreading, where
each agent x ∈ τ(η), η ∈ K(Rd) represents an infected individual. Another application
is biological growth in abundance of recources: Each agent of the system may spawn a
new agent independent of all other agents of the system. On the other hand, each agent
dies independently after some random time. In the discrete case, this model has been
thoroughly examined, see e.g. the monographs [44, 45] by Liggett. Lately, a version on
continuous state spaces has become established as well. A first description can be found
in [42]. Furthermore, the analysis of its correlation functions and invariant measures was
done in [36]. In the case of compact marks, the analysis of invariant states was carried
out in [41]. Other generalisations of the model include the introduction of fecundity or
establishment parameters [20] or an underlying random environment [34,35].

While the model itself is easy to describe, the analysis of it poses some rather unique
problems. Since neither birth nor death is regulated by population size, in the supercritical
case, the system may grow exponentially fast. Therefore, standard perturbation techniques
used for the Glauber dynamics are not applicable here, unless we extend the function space
considered for the dynamics. Furthermore, the analysis of this model is mostly described
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on the level of correlation fucntions as opposed to quasi-observables as it was the case for
the Glauber dynamics.

On the other hand, the model allows a nice description in terms of its hierarchical
structure, since the dependence on the order of correlation functions is only downwards.
This enables a deep analysis on the side of correlation functions.

We start the chapter by setting up the model via its Markov-type operator. Next,
we proceed as proposed in Chapter 2.11.2 to derive the corresponding operator in the
space of correlation functions. After stating the hierarchical structure of the system of
correlation functions, we may derive a priori estimates. On the one hand, we show such
kind of estimates for a fixed order n ∈ N0. On the other hand, we calculate uniform
bounds which also hold for the correlation function k : K0(Rd)→ R.

Consider the model

(LF )(η) =
∑
x∈τ(η)

m(sx)[F (η − sxδx)− F (η)]

+
∑
x∈τ(η)

∫
R∗+×Rd

q(sx, s)a(x− y)[F (η + sδy)− F (η)]νθ(ds)σ(dy)

for F ∈ FC(K(Rd)). On the example of infection spreading mentioned above, the objects
of the above expression mean the following: The agents in η ∈ K(Rd) represent infected
individuals. An individual recovers from its infection with the rate m(s), while an infected
individual sxδx may infect new agents with rate and distribution given by

q(sx, s)a(x− y)νθ(ds)σ(dy).

The form and properties of the rates m, q and a will be prescribed later when discussing
the properties of the model.

4.2.1 The Symbol for the Contact Model

To follow the scheme of Markov evolution, we need to calculate the corresponding operator
on the space of quasi-observables.

Proposition 4.18. The symbol L̂ corresponding to L of the contact model has the follo-
wing form for functions G ∈ Bcm(K0(Rd)):

(L̂G)(η) = −
∑
x∈τ(η)

m(sx)G(η)

+
∑
x∈τ(η)

∫
R∗+×Rd

q(sx, s)a(x− y)[G(η − sxδx + syδy) +G(η + sδy)]νθ(ds)σ(dy)

= −
∑
x∈τ(η)

m(sx)G(η)

+
∑
x∈τ(η)

∫
R∗+×Rd

q(sx, s)a(x− y)G(η − sxδx + sδy)νθ(ds)σ(dy)

+
∑
x∈τ(η)

∫
R∗+×Rd

q(sx, s)a(x− y)G(η + sδy)νθ(ds)σ(dy)

Proof. Use the relation L̂ = K−1LK and calculate similarly to the Glauber model.
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Note that if we considered the hierarchy {G(n)}∞n=0 in terms of quasi-observables, the
equation for fixed n ∈ N0 would depend on the function of order n + 1. On the side of
correlation functions, this dependence is switched.

4.2.2 Statistical Dynamics of the Contact Model

For the contact model, perturbation methods on typical spaces fail due to a “too strong”
birth rate. Instead, it is customary to analyse the system of correlation functions. By
using duality (26), we may calculate the dual operator for the statistical dynamics.

Proposition 4.19. The operator L4 is given by

(L4k)(η) =−
∑
x∈τ(η)

m(sx)k(η)

+
∑
y∈τ(η)

∫
R∗+×Rd

q(s, sy)a(x− y)k(η − syδy + sδx)νθ(ds)σ(dx)

+
∑
y∈τ(η)

∑
x∈τ(η−syδy)

q(sx, sy)a(x− y)k(η − syδy)

where k : K0(Rd)→ R is from a class of L∞-type functions which will be specified later.

Due to the asymmetry of q, it is worth noting that the sum and integral in the second
line of the operator switch places.

Remark 4.20. We can rewrite the operator L4 as follows:

(L4k)(η) =
∑
y∈τ(η)

∫
K0(Rd)

q(s, sy)a(x− y) [k(η − syδy + sδx)− k(η)] νθ(ds)σ(dx)

+

 ∑
y∈τ(η)

∫
K0(Rd)

q(s, sy)a(x− y)νθ(ds)σ(dx)−
∑
y∈τ(η)

m(sy)

 k(η)

+
∑
y∈τ(η)

∑
x∈τ(η−syδy)

q(sx, sy)a(x− y)k(η − syδy)

=
∑
y∈τ(η)

Lyk(η) +
∑
y∈τ(η)

(κ(sy)−m(sy))k(η)

+
∑
y∈τ(η)

∑
x∈τ(η−syδy)

q(sx, sy)a(x− y)k(η − syδy)

= (Mk)(η) + (V k)(η) + (Wk)(η)

where κ(sy) =
∫
Rd a(x)σ(dx) ·

∫
R∗+
q(s, sy)νθ(ds) and we set for a function k : K0(Rd)→ R
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and η ∈ K0(Rd),

Lyk(η) =

∫
K0(Rd)

q(s, sy)a(x− y) [k(η − syδy + sδx)− k(η)] νθ(ds)σ(dx), y ∈ τ(η)

r(s) = κ(s)−m(s), s ∈ R∗+
Mk(η) =

∑
y∈τ(η)

Lyk(η)

V k(η) =
∑
y∈τ(η)

r(sy)k(η)

Wk(η) =
∑
y∈τ(η)

∑
x∈τ(η−syδy)

q(sx, sy)a(x− y)k(η − syδy)

Remark 4.21. The operators M and V do not commute, i.e. MV 6= VM . Therefore,
the approach via Duhamel formula used in [36] is not directly applicable here. Hence, we
need to refine the approach by approximating the involved semigroups. As it turns out, one
viable approximation is given by Trotter’s product formula.

Proposition 4.22 ([14, Corollary III.5.8]). Let (T (t))t≥0 and (S(t))t≥0 be strongly conti-
nuous semigroups on a Banach space X satisfying the stability condition∥∥∥∥[T ( tn

)
S

(
t

n

)]n∥∥∥∥ ≤Mewt for all t ≥ 0, n ∈ N (41)

and some constants M ≥ 1, w ∈ R. Consider the sum A + B on D := D(A) ∩D(B) of
the generators (A,D(A)) and (B,D(B)) of (T (t))t≥0 and (S(t))t≥0, respectively. Assume
that D and (λ0−A−B)D are dense in X for some λ0 > w. Then C := A+B generates
a strongly continuous semigroup (U(t))t≥0 given by the following formula:

U(t)x = lim
n→∞

[
T

(
t

n

)
S

(
t

n

)]n
, x ∈ X

with uniform convergence for t in compact intervals.

Remark 4.23. If the existence of the semigroup generated by A + B is known a priori,
we may use formula (41) directly. Especially, for bounded operators A,B, we have

et(A+B) = lim
m→∞

e
t
m
Ae

t
m
B (42)

4.2.3 Hierarchical structure for the Contact Model

As mentioned above, the growth that may occur in the contact model is too strong to find
a uniform bound for the operators M and V defined on L∞(K0(Rd)). Instead, we consider
the equation componentwise to show estimates for each correlation function k(n), n ∈ N.
Later, we will extend the function space to derive some global estimates as well.
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Proposition 4.24. The operators L4n are given by

L4n k
(n)(s1, x1, . . . , sn, xn) = −

n∑
i=1

m(si)k
(n)(s1, x1, . . . , sn, xn)

+
n∑
i=1

∫
R∗+×Rd

q(s, si)a(x− xi)k(n)(s1, x1, . . . , xi−1, s, x, si+1, . . . , sn, xn)νθ(ds)σ(dx)

+
n∑
i=1

∑
j 6=i

q(sj, si)a(xj − xi)k(n−1)(s1, x1, . . . , ši, x̌i, . . . , sn, xn)

where x̌i means that this variable is omitted.

In the sequel, we may omit the dependence on variables which are left fixed. We can
rewrite the above expression in the following way:

(L(n)k(n))(s1, . . . , xn) =
n∑
i=1

∫
R∗+×Rd

q(s, si)a(x− xi)
[
k(n)(s, x)− k(n)(si, xi)

]
νθ(ds)σ(dx)

+

[
n∑
i=1

∫
R∗+×Rd

q(s, si)a(x− xi)νθ(ds)σ(dx)−
n∑
i=1

m(si)

]
k(n)

+
n∑
i=1

∑
j 6=i

q(sj, si)a(xj − xi)k(n−1)(ši, x̌i)

= (Mn + Vn)k(n) +Wnk
(n−1)

where Mn, Vn and Wn represent the operators in the first, second and third summand,
respectively. Furthermore, from now on we assume that r is bounded.

The representation of the correlation functions in this hierarchical fashion enables us
to consider the solution for fixed n separately.

Lemma 4.25. The operators Mn and Vn are bounded on L∞((R∗+ × Rd)n).

Proof. Let k(n) ∈ L∞((R∗+ × Rd)n).

|Mnk
(n)| =

∣∣∣∣∣
n∑
i=1

∫
R∗+×Rd

n
q(s, si)a(x− xi)

[
k(n)(s, x)− k(n)(si, xi)

]
νθ(ds)σ(dx)

∣∣∣∣∣
≤ ‖q‖L1‖a‖L12n‖k(n)‖∞
= 2n‖q‖L1‖a‖L1‖k(n)‖∞

|Vnk(n)| ≤
n∑
i=1

|r(si)||k(n)(s1, . . . , xn)| ≤ sup
s>0
|r(s)|n‖k(n)‖∞

Since Mn and Vn are bounded operators, both are the generators of C0-semigroups
on L∞(R∗+ × Rdn). In fact, Mn is a Markov generator and therefore, its semigroup etMn

is contractive. Note that Mn is not a self-adjoint operator, because the kernel q is not
symmetric.

Lemma 4.26. The semigroup etMn is positive and conservative and therefore contractive.
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Proof. Denote by 1 ∈ L∞(R∗+ × Rd) the function which is equal to 1 everywhere. The
conservativity Mn1 = 1 is clear from the definition of Mn. For positivity, we split the
operator into Mn = M

(1)
n +M

(2)
n , where for f ∈ L∞((R∗+ × Rd)n), we set

M (1)
n f(s1, x1, . . . , sn, xn) =

n∑
i=1

∫
R∗+×Rd

q(s, si)a(x− xi)f(. . . , s, x︸︷︷︸
i−th

, . . . )νθ(ds)σ(dx)

M (2)
n f(s1, x1, . . . , sn, xn) = −

n∑
i=1

κ(si)f(s1, x1, . . . , sn, xn)

Then for f ≥ 0, we have M
(1)
n f ≥ 0 and therefore also etM

(1)
n f ≥ 0 for any t ≥ 0. On the

other hand,

etM
(2)
n f = e−t

∑n
i=1 κ(si)f,

where κ is a real-valued function. Therefore, this semigroup is also positive. The positivity
of etMn now follows from Trotter’s product formula (42).

Using these two properties, we obtain for a function 0 ≤ f ∈ L∞(R∗+ × Rd) with
‖f‖∞ ≤ 1,

etMnf ≤ etMn1 = 1.

By applying the supremum, we see that

‖etMnf‖ ≤ ‖1‖ = 1.

Since the sum Mn + Vn is bounded, it generates a C0-semigroup as well. It is given by
the Trotter product formula

et(Mn+Vn) = lim
m→∞

[
e
t
m
Mne

t
m
Vn
]m

. (43)

Equation (25) can now be rewritten as a hierarchical sequence of equations, n ∈ N:

∂

∂t
k

(n)
t (s1, . . . , xn) = (Mn + Vn)k

(n)
t (s1, . . . , xn) + (Wnk

(n−1))(s1, . . . , xn)

k
(n)
t|t=0(s1, . . . , xn) = k

(n)
0 (s1, . . . , xn)

(44)

The solution to this equation is given by Duhamel’s formula:

k
(n)
t (s1, x1, . . . , sn, xn) = et(Mn+Vn)k

(n)
0 (s1, x1, . . . , sn, xn)

+

∫ t

0

e(t−τ)(Mn+Vn)Wnk
(n−1)
τ (s1, x1, . . . , sn, xn)dτ

(45)

Remark 4.27. Compare to the formula used in [36]: The non-commutativity of the ope-
rators Mn and Vn forces a slightly more complicated approach for the calculation of a
priori estimates.
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4.2.4 A Priori Estimates

The preparations of the previous chapter are now used to give estimates for the correlation
functions k

(n)
t . Using Trotter’s formula (43), we may rewrite the solution (45) as

k
(n)
t (s1, . . . , xn) = lim

m→∞

(
e
t
m
Mne

t
m
Vn
)m

k
(n)
0 (s1, . . . , xn)

+

∫ t

0

lim
m→∞

(
e
t−τ
m
Mne

t−τ
m
Vn
)m

Lnk
(n−1)(s1, . . . , xn)dτ

We show that the Trotter approximation can be estimated independently of m.

Lemma 4.28. For any m ∈ N and any k ∈ L∞((Rd)n), we have∥∥∥(e t
m
Mne

t
m
Vn
)m

k
∥∥∥
∞
≤ etnR‖k(n)

0 ‖∞,

where R := sups>0 r(s).

Proof. Let m ∈ N and k ∈ L∞((Rd)n). First, we estimate the action of the semigroup
generated by Vn: ∣∣etVnk∣∣ =

∣∣∣et∑n
i=1 r(si)

∣∣∣ |k(s1, . . . , xn)| ≤ et
∑n
i=1 r(si)‖k‖∞

≤ et
∑n
i=1 R‖k‖∞ = etnR‖k‖∞

The desired expression can be estimated in the following way:∥∥∥(e t
m
Mne

t
m
Vn
)m

k
(n)
0

∥∥∥ ≤ ∥∥∥e t
m
Mn

∥∥∥m ∥∥∥e t
m
Vn
∥∥∥m ∥∥∥k(n)

0

∥∥∥
∞
≤ etnR

∥∥∥k(n)
0

∥∥∥
∞

where we used that Mn generates a contraction semigroup.

Remark 4.29. The non-commutativity prevents a pointwise estimate in the marks si, i =
1, . . . , n, as can be seen in the proof above.

The following estimate follows if we apply the Lemma to the solution (45):

Lemma 4.30. We have the following estimate for the solution (45):

‖k(n)
t (s1, . . . , xn)‖∞ ≤ etnR‖k(n)

0 ‖∞ +

∫ t

0

e(t−τ)nR‖Wnk
(n−1)
τ (s1, . . . , xn)‖∞dτ

Proof. Use the previous lemma as well as the fact that the Trotter formula provides the
strong limit, which commutes with the underlying norm.

We are now ready to state the main result of this section.

Theorem 4.31. Assume that the kernels a and q are bounded. Furthermore, assume that
the initial condition to the Cauchy problem (44) obeys the following bound for all n ∈ N
and some C > 0:

‖k(n)
0 ‖∞ ≤ Cnn!

Then, the following a priori estimate holds:

‖k(n)
t ‖∞ ≤ α(t)nenRt(C + t)nn!K(a, q)n

where
α(t) = max{1, e−tR}, K(a, q) = (1 + ‖a‖∞‖q‖∞).
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Proof. The statement is proven by induction. For n = 1, we have by Lemma 4.30,

k
(1)
t (x1, s1) ≤ etRC ≤ (C + t)etRα(t)K(a, q).

For the induction step, we also start with Lemma 4.30:

‖k(n+1)
t ‖∞ ≤ et(n+1)R‖k(n+1)

0 ‖∞ +

∫ t

0

e(t−τ)(n+1)R‖Wn+1k
(n)
τ ‖∞dτ

≤ et(n+1)RCn+1(n+ 1)!

+ et(n+1)R

∫ t

0

e−τ(n+1)R

n∑
i=1

∑
j 6=i

‖q(sj, si)a(xj − xi)k(n)
τ (ši, x̌i)‖∞dτ

≤ et(n+1)R(C + t)n+1(n+ 1)!

+ et(n+1)R‖q‖∞‖a‖∞
∫ t

0

e−τ(n+1)Rα(τ)neτnr0(C + τ)nn!K(a, q)ndτ

≤ et(n+1)R(C + t)n+1(n+ 1)!

+ et(n+1)R‖q‖∞‖a‖∞(n+ 1)!α(t)n+1K(a, q)nn

∫ t

0

(C + τ)ndτ

≤ (n+ 1)!et(n+1)R(C + t)n+1K(a, q)n+1α(t)n+1

Remark 4.32. Note that the parameter R is not assumed to be nonnegative. Therefore,
if the mortality rate m dominates the birth rate κ globally, we have exponential decay of
the correlation functions, which is in accordance with the homogeneous model [36]. On
the other hand, even for small “peaks” of the birth rate, we can not guarantee the decay
of the solutions. In fact, in similar situations, it was shown that these small flucuations
may already lead to a growth of population, see e.g. [35].

Let us now consider lower bounds for the contact model in a subcritical regime. As it
can be seen from Theorem 4.31, the correlation functions of the contact model decay if R
is negative. Nevertheless, even in the subcritical regime, the system will admit so-called
“clustering”. This means that local peaks in the birth rate are still visible, even if the
system as a whole is decaying. We concentrate us on the translation invariant case, i.e.
the system starts out in a Poissonian state.

Theorem 4.33. Assume that there exists a bounded set B ⊂ R∗+ × Rd such that

α := inf
(s1,x1),(s2,x2)∈B

q(s1, s2)a(x1 − x2) > 0 (46)

Furthermore, assume that the mortality is bounded from above by some δ > 0, i.e. m ≤ δ
and α[ν ⊗ σ](B) ≤ δ. Consider the Poissonian initial condition k(n) ≡ Cn for some
C > 0. Then for any n ∈ N, {(s1, x1), . . . , (sn, xn)} ⊂ B and t ≥ tn :=

∑n−1
j=1

1
j
, the

following holds:
k

(n)
t (s1, x1, . . . , sn, xn) ≥ βne(α[ν⊗σ](B)−δ)t

The next few pages will be dedicated to the proof of the theorem. First and foremost,
we need to rewrite the operator L4n in a different form. Next, we apply Trotter’s product
formula and show the estimate for the approximated semigroup. In the end, we will put
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the preliminary results together to show the above statement. We consider the following
operator:

Aink
(n) =

∫
Rd

∫
R∗+
q(s, si)a(x− xi)k(n)

t (s1, . . . , xi−1, s, x, si+1, . . . , xn)ν(ds)σ(dx)

This way, we may rewrite the equation in the following way:

∂

∂t
k

(n)
t (s1, . . . , xn) =

n∑
i=1

Aink
(n)
t −

n∑
i=1

m(si)k
(n)
t (s1, . . . , xn) +Wnk

(n−1)(s1, . . . , xn)

Set

An :=
n∑
i=1

Ain and ϑn(s1, . . . , sn) :=
n∑
i=1

m(si).

Then, the above equation can be rewritten as

∂

∂t
k

(n)
t (s1, . . . , xn) = Ank

(n)
t (s1, . . . , xn)− ϑn(s1, . . . , sn)k

(n)
t (s1, . . . , xn)

+Wnk
(n−1)
t (s1, . . . , xn)

Using Duhamel and Trotter, we may write this equation as

k
(n)
t (s1, . . . , xn) = et(An−ϑn)k

(n)
0 (s1, . . . , xn)

+

∫ t

0

e(t−τ)(An−ϑn)Wnk
(n−1)
τ (s1, . . . , xn)dτ

= lim
m→∞

[
e
t
m
Ane−

t
m
ϑn
]m

k
(n)
0 (s1, . . . , xn)

+

∫ t

0

lim
m→∞

[
e
t−τ
m
Ane−

t−τ
m
ϑn
]m

Wnk
(n−1)
τ (s1, . . . , xn)dτ

Assume that the initial conditions are of the form k
(n)
0 = Cn for some constant C > 0.

Furthermore, assume that the function r(s) is bounded from below, i.e.

r(s) = κ(s)−m(s) ≥ ρ

for some ρ ∈ R. We also assume that m(s) ≤ δ. For n = 1, we use the reaction-diffusion
type equation to obtain

k
(1)
t (s1, x1) = et(M1+V1)k

(1)
0 (s1, x1) = C lim

m→∞

[
e
t
m
M1e

t
m
V1

]m
1 ≥ Cetρ

since M1 is positive and conservative. For general n ≥ 2, we drop the first term in
Duhamel’s formula to obtain the following estimate:

k
(n)
t (s1, . . . , xn) ≥

∫ t

0

lim
m→∞

[
e
t−τ
m
Ane−

t−τ
m
ϑn
]m

Wnk
(n−1)
τ (s1, . . . , xn)dτ

=
n∑
i=1

∑
j 6=i

∫ t

0

lim
m→∞

[
e
t−τ
m
Ane−

t−τ
m
ϑn
]m

(q(si, sj)a(xi − xj))k(n−1)(ši, x̌i)dτ

(47)
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For the main calculation, we need to estimate terms of the form

euAne−uϑn [q(si, sj)a(xi − xj)].

Since we assume that m is bounded from above, ϑn is bounded from above by nδ. Since
An is a positive operator, we see that

euAne−uϑn [q(si, sj)a(xi − xj)] ≥ e−nδueuAn [q(si, sj)a(xi − xj)]. (48)

Let us estimate the term on the right-hand-side.

Lemma 4.34. Under assumption (46) and n ≥ 2, the following holds for 1 ≤ i, j ≤ n:

euAn(q(si, sj)a(xi − xj)) ≥ αenα[ν⊗σ](B)u

Proof. Since An is the sum of two non-commuting operators, we need to apply Trotter’s
product formula again to obtain

euAn (q(s1, s2)a(x1 − x2)) = lim
l→∞

[
e
u
l
Anne

u
l
Ān−1
n

]l
(q(s1, s2)a(x1 − x2))

where we set Ājn =
∑j

i=1A
i
n. We proceed by double induction. Denote by IHn and IHl

the induction hypotheses for the induction in n and l, respectively. For the case n = 2,
rewrite the semigroup using Cauchy’s product formula:

euA
1
2euA

2
2 =

∞∑
l=0

ul

l!

l∑
i=0

(
l

i

)
(A1

2)i(A2
2)l−i

Using Lemma 4.35, we obtain

euA
1
2euA

2
2(q(si, sj)a(xi − xj)) ≥

∞∑
l=0

ul

l!

l∑
i=0

(
l

i

)
α(α[ν ⊗ σ](B))l

= αenα[ν⊗σ](B)u

This proves the inductive base. Assume that the statement of the lemma holds for some
n− 1 ≥ 2. Note that by slight abuse of notation, we use that Ān−1

n = An−1. We want to
analyse the term

euA
n
neuĀ

n−1
n (q(si, sj)a(xi − xj)) =

∞∑
l=0

ul

l!
(Ann)l

[
euĀ

n−1
n (q(si, sj)a(xi − xj))

]
(49)

Therefore, it suffices to consider

(Ann)l
[
euĀ

n−1
n (q(si, sj)a(xi − xj))

]
for fixed l ∈ N0. We claim that for any l ∈ N0,

(Ann)l
[
euĀ

n−1
n (q(si, sj)a(xi − xj))

]
≥ αeα(n−1)[ν⊗σ](B)u(α[ν ⊗ σ](B)u)l (50)

101



for l = 0, this is clear by IHn. Assume that (50) holds for some l − 1. Then

(Ann)l
[
euĀ

n−1
n (q(si, sj)a(xi − xj))

]
=

∫
R∗+×Rd

q(s, sn)a(x− xn)
(

(Ann)l−1
[
euĀ

n−1
n (q(si, sj)a(xi − xj))

])
ν(ds)σ(dx)

(46)

≥
∫
B

α
(

(Ann)l−1
[
euĀ

n−1
n (q(si, sj)a(xi − xj))

])
ν(ds)σ(dx)

IHl
≥
∫
B

αeα(n−1)[ν⊗σ](B)u(α[ν ⊗ σ](B)u)l−1ν(ds)σ(dx)

= αeα(n−1)[ν⊗σ](B)u(α[ν ⊗ σ](B)u)l

combining (49) with (50) yields

euA
n
neuĀ

n−1
n (q(si, sj)a(xi − xj)) ≥ αeα(n−1)[ν⊗σ](B)u

∞∑
l=0

ul

l!
(α[ν ⊗ σ](B)u)l

= αeαn[ν⊗σ](B)u

We still need to prove the statement used in the proof of Lemma 4.34.

Lemma 4.35. Assume condition (46). For all i, j ∈ N0, we have

(A1
2)i(A2

2)j[q(s1, s2)a(x1 − x2)] ≥ α(α[ν ⊗ σ](B))i+j (51)

the same statement holds for the function q(s2, s1)a(x2 − x1).

Proof. The statement is shown by double induction. For i = j = 0, the statement follows
directly from condition (46). Let i = 0 and assume that

(A2
2)j(q(s1, s2)a(x1 − x2) ≥ α(α[ν ⊗ σ](B))j

for some j ∈ N0. Then

(A2
2)j+1(q(s1, s2)a(x1 − x2)) =

∫
R∗+×Rd

q(s, s2)a(x− x2)×

×
[
(A2

2)j(q(s1, s2)a(x1 − x2)
]

(s1, x1, s, x)ν(ds)σ(dx)

≥ α

∫
R∗+×Rd

1B2(s, x, s2, x2)×

×
[
(A2

2)j(q(s1, s2)a(x1 − x2)
]

(s1, x1, s, x)ν(ds)σ(dx)

IH

≥ α

∫
B

α(α[ν ⊗ σ](B))jν(ds)σ(dx)

= α(α[ν ⊗ σ](B))j+1
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For the next step, fix j and assume that (51) holds for some i ∈ N0. Then

(A1
2)i+1(A2

2)j(q(s1, s2)a(x1 − x2))

=

∫
R∗+×Rd

q(s, s1)a(x− x1)
[
(A1

2)i(A2
2)j(q(s1, s2)a(x1 − x2))

]
(s, x, s2, x2)ν(ds)σ(dx)

≥ α

∫
R∗+×Rd

1B2(s, x, s1, x1)
[
(A1

2)i(A2
2)j(q(s1, s2)a(x1 − x2))

]
(s, x, s2, x2)ν(ds)σ(dx)

= α

∫
B

[
(A1

2)i(A2
2)j(q(s1, s2)a(x1 − x2))

]
(s, x, s2, x2)ν(ds)σ(dx)

IH

≥ α

∫
B

α(α[ν ⊗ σ](B))i+jν(ds)σ(dx) = α(α[ν ⊗ σ](B))i+j+1

Therefore, the statement of the lemma holds.

Remark 4.36. In a similar fashion, one can show that

(A1
2)i(A2

2)j[1] ≥ (α[ν ⊗ σ](B))i+j.

Now we can backtrack using Trotter’s formula to obtain the desired estimate.

Proposition 4.37. Assume that m ≤ δ for some δ > 0. For any u ≥ 0 and n ∈ N,
{(s1, x1), . . . , (sn, xn)} ⊂ B such that (46) holds for B, we have the following estimate:

eu(An−ϑn)[q(si, sj)a(xi − xj)] ≥ αen(α[ν⊗σ](B)−δ)u

Proof. Using Trotter’s formula, we have

eu(An−ϑn) = lim
m→∞

[
e
u
m
Ane−

u
m
ϑn
]m

therefore, the estimate holds if for each m ∈ N,[
e
u
m
Ane−

u
m
ϑn
]m

[q(si, sj)a(xi − xj)] ≥ αen(α[ν⊗σ](B)−δ)u.

but this is clear by Lemma 4.34 and estimate (48).

Proof of Theorem 4.33. For the case n = 1, we obtain

k
(1)
t (x1, s1) = Cet(A1−ϑ1)

1 ≥ Ce−δtetA11

This can be seen by writing the semigroup as the exponential series and using induction
for the summands similar to the proofs of the above lemmas. For general n ∈ N, assume
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that the estimate holds for n− 1. Then by (47) and the above lemmas, we obtain

k
(n)
t (s1, . . . , xn) ≥

∫ t

0

e(t−τ)(An−ϑn)Wnk
(n)
τ (s1, . . . , xn)dτ

IH

≥ βn−1(n− 1)!

∫ t

tn−1

e(n−1)(α[ν⊗σ](B)−δ)τe(t−τ)(An−ϑn)

n∑
i=1

∑
j 6=i

q(si, sj)a(xi − xj)dτ

≥ βn−1(n− 1)!

∫ t

tn−1

e(n−1)(α[ν⊗σ](B)−δ)τe−n(t−τ)δ

n∑
i=1

∑
j 6=i

e(t−τ)An [q(si, sj)a(xi − xj)]dτ

4.37

≥ βn−1(n− 1)!e−nδt
∫ t

tn−1

e(n−1)α[ν⊗σ](B)τeδτn(n− 1)αeαn[ν⊗σ](B)(t−τ)dτ

≥ βnn!e−nδteα[ν⊗σ](B)t

∫ t

tn−1

(n− 1) e−(α[ν⊗σ](B)−δ)τ︸ ︷︷ ︸
≥1

dτ

≥ βnn!en(α[ν⊗σ](B)−δ)t
∫ t

tn−1

(n− 1)dτ

≥ βnn!en(α[ν⊗σ](B)−δ)t

where the last inequality holds if the integral term is greater or equal one, i.e.∫ t

tn−1

(n− 1)dτ ≥ 1⇔ t− tn−1 ≥ 1⇔ t ≥ tn

This proves the claim.

Later, we consider a way to prevent clustering in the system. Namely, the so-called
BDLP model has a self-regulating mechanism via competition. This model is analysed in
Chapter 4.3.

4.2.5 Uniform Estimates With Respect to the Number of Particles

In this part, we show that solutions of (25) which start from a particular class of initial
conditions will stay in this class. Namely, if the initial condition is bounded by a term
including (|τ(η)|!)2, this bound will be preserved for all time. It should be noted that
this bound holds uniformly with respect to the number of particles, while the a priori
estimates in the previous chapters were done for fixed |τ(η)| ∈ N.

The result will be shown as follows: We consider the homogeneous problem on the
space of quasi-observables

∂

∂t
Gt(η) = (M̃ + Ṽ )Gt(η)

Gt(η)|t=0 = G0(η)
(52)

where M̃ and Ṽ are the pre-duals of M and V . We show the existence of a C0-semigroup
on an L1-space. This implies the existence of a weak*-semigroup on the corresponding
L∞-type space of correlation functions. This semigroup is then perturbed by the inhomo-
geneity W . Since we construct a semigroup on this L∞-space, the global estimate holds.

We start by considering a modified solution to (52) to obtain a contraction semigroup.

104



Proposition 4.38. Let M̃n and Ṽn the pre-duals of Mn and Vn as above and Rn the
multiplication operator with Rn := nR, where R is the bound given in Lemma 4.28. Then
the family of operators {T (t)}t≥0 defined by

T (t)G(η) =
(
et(M̃n+Ṽn−Rn)G(n)

)
(η)

is a C0-contraction semigroup on the space L1 := L1(K0(Rd), (|τ(·)|!)2dλ). Its generator
is given by A := M̃ + Ṽ −R with domain

D(A) = {G ∈ L1 : |τ(·)|2G ∈ L1}

Note that Ṽ = V and Ṽn = Vn as functions, therefore, we omit the tilde from now on.

Remark 4.39. [14, Lemma II.1.3.(iv)] Let us recite the following classic result from
semigroup theory which is used in the upcoming proof. Let (A,D(A)) be the generator of
a C0-semigroup (T (t))t≥0. Then

T (t)x− x = A

∫ t

0

T (s)xds (53)

for x ∈ X.

Proof of Proposition 4.38. The semigroup properties, i.e. T (0)G = G and T (t + s)G =
T (t)T (s)G, are directly inherited from the semigroups on the fixed-particle spaces. Let
us show that T (t) is a contraction on L1. First, for fixed n ∈ N0, the following estimate
holds for any G ∈ L1:

‖et(M̃n+Vn−Rn)G(n)‖L1 = e−tRn‖et(M̃n+Vn)G(n)‖L1 ≤ e−tRnetRn‖G(n)‖L1 = ‖G(n)‖L1

where we used that M̃n generates a contraction semigroup and Vn ≤ nR. Therefore, the
estimate ‖T (t)G‖L1 ≤ ‖G‖L1 holds and (T (t))t≥0 is a contraction semigroup.

Next, we show the continuity of the semigroup at t = 0. First, we show the property
for G ∈ D(A).

‖T (t)G−G‖L1 =

=
∞∑
n=0

1

n!
(n!)2

∫
R∗+×Rd

n

∣∣∣et(M̃n+Vn−Rn)G−G
∣∣∣ ν(ds1) . . . ν(dsn)σ(dx1) . . . σ(dxn)

=
∞∑
n=0

n!
∥∥∥et(M̃n+Vn−Rn)G(n) −G(n)

∥∥∥
L1(R∗+×Rd)

=
∞∑
n=0

n!

∥∥∥∥(M̃n + Vn −Rn)

∫ t

0

es(M̃n+Vn−Rn)G(n)ds

∥∥∥∥
≤

∞∑
n=0

n!
∥∥∥M̃n + Vn −Rn

∥∥∥∫ t

0

∥∥∥es(M̃n+Vn−Rn)G(n)ds
∥∥∥

≤
∞∑
n=0

n!
∥∥∥M̃n + Vn −Rn

∥∥∥∥∥G(n)
∥∥ t

≤ const · t
∞∑
n=0

n!n‖G(n)‖
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which converges to zero if G ∈ D(A).
Next, we need to show that the continuity holds for general G ∈ L1. But since

Bcm(K0) ⊂ D(A) is dense in L1, there exists a sequence (Gm)m∈N ⊂ D(A) such that
‖G − Gm‖L1 → 0 if m → ∞. Let ε > 0. By above considerations, we can choose m ∈ N
and t > 0 such that

‖G−Gm‖ <
ε

3
and ‖T (t)Gm −Gm‖ <

ε

3

Therefore, it follows that

‖T (t)G−G‖ ≤ ‖T (t)G− T (t)Gm‖+ ‖T (t)Gm −Gm‖+ ‖Gm −G‖

≤ ‖T (t)‖ · ‖G−Gm‖+
ε

3
+
ε

3

<
ε

3
+

2ε

3
= ε

which shows continuity for general G ∈ L1.
As a last step, we need to show that A is in fact the generator of (T (t))t≥0. Let

G ∈ D(A) as defined above. We use identity (53) twice and obtain∥∥∥∥T (t)G−G
t

− (M̃ + V −R)G

∥∥∥∥
L1

=
∞∑
n=0

n!
1

t

∥∥∥et(M̃n+Vn−Rn)G(n) −G(n) − t(M̃n + Vn −Rn)G(n)
∥∥∥

=
∞∑
n=0

n!
1

t

∥∥∥∥(M̃n + Vn −Rn)

∫ t

0

es(M̃n+Vn−Rn)G(n)ds− (M̃n + Vn −Rn)

∫ t

0

G(n)ds

∥∥∥∥
=
∞∑
n=0

n!
1

t

∥∥∥∥(M̃n + Vn −Rn)

∫ t

0

es(M̃n+Vn−Rn)G(n) −G(n)ds

∥∥∥∥
=
∞∑
n=0

n!
1

t

∥∥∥∥(M̃n + Vn −Rn)2

∫ t

0

∫ s

0

eτ(M̃n+Vn−Rn)G(n)dτds

∥∥∥∥
≤ const ·

∞∑
n=0

n!n2 1

t

∫ t

0

∫ t

0

∥∥∥eτ(M̃n+Vn−Rn)G(n)
∥∥∥ dτds

≤ const ·
∞∑
n=0

n!n2 1

t
t2‖G(n)‖

= const · t
∞∑
n=0

n!n2‖G(n)‖

The series is finite if G ∈ D(A) and therefore, the term converges to zero as t → 0.
Therefore, A with domain D(A) is the generator of the semigroup (T (t))t≥0.

Next, we may view the pre-dual W̃ of W as bounded perturbation of A. Recall that
for a function G ∈ L1, the operator is defined as

(W̃G)(η) =
∑
x∈τ(η)

∫
R∗+×Rd

q(sx, s)a(x− y)G(η + sδy)ν(ds)σ(dy)
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provided the right-hand-side makes sense. Let us show that W̃ is in fact a bounded
operator.

Proposition 4.40. Assume that the kernel q fulfills the following boundedness condition:

sup
t∈[0,∞)

∫ ∞
0

q(t, s)ds =: ‖q‖L∞(L1) <∞.

Then, W̃ is a bounded operator on the space L1.

Proof. Let G ∈ L1. Using combinatorial arguments and Cauchy-Schwarz, we obtain

‖W̃G‖L1 =
∞∑
n=0

n!

∫
R∗+×Rd

|(W̃G)(n)(s1, . . . , xn)|ν(ds1) . . . σ(dxn)

≤
∞∑
n=0

n!

∫
R∗+×Rd

n∑
i=1

∫
R∗+×Rd

|q(si, s)a(xi − y)|×

× |G(n+1)(s1, . . . , xn, s, y)|ν(ds)σ(dy)ν(ds1) . . . σ(dxn)

≤
∞∑
n=0

n!
n∑
i=1

∫
R∗+×Rd

|q(si, s)a(xi − y)|ν(ds)σ(dy)×

×
∫
R∗+×Rd

n+1
|G(n+1)|dν⊗n+1dσ⊗n+1

≤ ‖a‖L1‖q‖L∞(L1)

∞∑
n=0

n!
n∑
i=1

‖G(n+1)‖L1

= ‖a‖L1‖q‖L∞(L1)

∞∑
n=1

(n− 1)!(n− 1)‖G(n)‖L1

≤ ‖a‖L1‖q‖L∞(L1)

∞∑
n=1

n!‖G(n)‖L1

≤ ‖a‖L1‖q‖L∞(L1)‖G‖L1

Therefore, the operator W̃ is bounded on L1.

By the bounded perturbation theorem (e.g. [14, Thm. III.1.3]), the operator (A +
W̃ ,D(A)) generates a C0-semigroup as well. Since A generates a contractive semigroup,
the perturbed semigroup obeys the following bound:

‖et(A+W̃ )‖ ≤ et‖a‖L1‖q‖L∞(L1) .

We have shown that (A+ W̃ ,D(A)) is the generator of a C0-semigroup on L1. Therefore,
the dual semigroup T ∗(t) exists with generator A∗ + W = (M + V − R) + W and is
weak*-continuous on the space

K :=

{
k ∈ L∞(K0(Rd)) :

1

(|τ(·)|!)2
k ∈ L∞(K0(Rd))

}
Furthermore, the semigroup (T ∗(t))t≥0 yields the solution to the equation

∂

∂t
kt(η) = (A∗ +W )k(η)

k|t=0(η) = k0(η)
(54)
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Note that the equation is understood in the weak*-sense. Recall that for the contact
model, equation (25) can be rewritten as

∂

∂t
kt(η) = (A∗ +W −R)kt(η)

k|t=0(η) = k0(η)
(55)

where k0 ∈ K. Denote by k̃t the solution to (54). Then the solution to (55) is given by

kt(η) =
(
etRn k̃

(n)
t

)
(η).

For k̃t and η ∈ K0(Rd), we have the following estimate:

|k̃t(η)| = (|τ(η)!|2)

[
kt(η)

(|τ(η)|!)2

]
≤ (|τ(η)|!)2‖k̃t‖K ≤ (|τ(η)|!)2et‖W‖‖k0‖K

And therefore, the solution kt to (55) satisfies

|kt(η)| ≤ etR|τ(η)|et‖W‖(|τ(η)|!)2‖k0‖K = et(R|τ(η)|−‖W‖)(|τ(η)|!)2‖k0‖K.

Assuming R ≤ 0, this gives us the following estimate on K:

Proposition 4.41. Let k0 ∈ K and R := sups>0 r(s) ≤ 0. Then the solution to (55)
satisfies the following norm estimate for all t ≥ 0:

‖kt‖K ≤ e−t‖W‖‖k0‖K

4.2.6 Invariant Measures for the Contact Model

The hierarchical dependence of the correlation functions in the contact model enables us
to show the existence of invariant measures. One approach which may be used in the
case of compact marks uses the theorem of Krein-Rutman to rewrite equation (58) as an
eigenvalue equation, see [41]. Note that this approach relies on the fact that the integral
operator on marks is compact, which is not given in our case. Instead, we use the approach
from the homogeneous contact model [36]. In this case, we analyse the marks in the same
way as the position variables by applying harmonic analysis on R∗+ as explained in Chapter
2.2. Note that this approach imposes certain symmetry and integrability conditions on
the kernels.

In general, we want to find a measure for which the evolution stays constant, i.e.

∂

∂t
µt = L∗µt = 0.

Where L∗ is again the dual operator to L defined for the contact model. By standard ar-
guments from harmonic analysis above, this implies that for all n ∈ N0, the corresponding
n-point correlation functions fulfill the following equation:

L4n k
(n) + f (n) = 0 (56)

where f (1) ≡ 0 and

f (n) =
n∑
i=1

k(n−1)(ši, x̌i)
∑
j 6=i

q(si, sj)a(xi − xj)
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Our goal is to express k(n) via f (n), which means that we need to invert the operator
L4n , i.e.

k(n) = −(L4n )−1f (n).

since f (n) is defined via k(n−1), this gives us a recursive description of the sequence of
correlation functions.

The following theorem is an adaption of a similar theorem from the theory of configu-
ration spaces Γ(Rd), see [36]. Set dh to be the Haar measure on R∗+, i.e.

h(ds) =
1

s
ds.

Theorem 4.42. Let d ≥ 3 and assume the following conditions on Q and a:

1. ‖a‖L1(Rd) = ‖Q‖L1(R∗+,dh) = 1

2. All second moments exist, i.e.∫
Rd
xkxja(x)dx <∞ for all 1 ≤ k, j ≤ d∫

R∗+
s2Q(s)ds <∞

3. FRda ∈ L1(Rd), FR∗+Q ∈ L
1(R∗+, dh)

Then, for any ρ ≥ 0, there exists a unique measure µρ ∈ M1(K(Rd)) such that the cor-
responding sequence of correlation functions satisfies (56), is translation invariant in all
variables with respect to the corresponding group action and fulfills the following estimate:

k(n) ≤ Cn
ρ (n!)2. (57)

Furthermore, the density of the system is k(1) ≡ ρ.

The rest of this chapter is devoted to the proof of the theorem. Define the jump
operator with respect to marks as

Qk(s) =

∫
R∗+
Q

(
t

s

)
k(s)h(ds)

For n = 1, the equation has the form∫
R∗+×Rd

Q

(
s

s1

)
a(x− x1)k(1)(s, x)h(ds)σ(dx) = k(1)(s1, x1) (58)

Remark 4.43. 1. The operator Q needs to be normalised in two ways simultaneously:
First, the principal eigenvalue should be λ = 1. On the other hand, we also need
‖Q‖L1 = 1 to obtain equation (58).

2. We consider invariant measures with respect to the Haar measure h and not with
respect to the Lévy measure νθ.

3. We show estimate (57), which implies the moment growth condition of Theorem
2.97. The rest of the existence proof follows the same scheme as in [36].
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Assume that we are looking for a solution which is translation invariant in all variables
with respect to the corresponding group operation. Then, the first correlation function is
constant:

k(1)(s1, x1) = ρ > 0.

Note that if we choose to have a solution of this form, we need to assume that κ = m.
Otherwise, the solution will decay or explode, depending on which coefficient is larger.
This situation is also known as the critical case. We also assume that a and Q are even
in the sense that

a(x) = a(−x), Q(s) = Q(s−1)

Remark 4.44. For the position kernel, evenness corresponds to the case of a homogeneous
environment, which is natural if we do not want to make additional assumptions. This
interpretation can also be used to explain the above property of Q: The natural distance
on (R∗+, ·) is given by

d(s, t) =
∣∣∣log

s

t

∣∣∣ = d(t, s).

If we assume that Q also only depends on the distance of the two marks, i.e. there exists
a function Φ: R∗+ → R such that Q := Φ ◦ d : (R∗+)2 → R, it makes sense to assume the
above symmetry.

Let us consider the case n = 2. In the translation invariant case, this means that

v(2)(s1, x1, s2, x2) = v(2)

(
s1

s2

, x1 − x2

)
.

Then (56) becomes

Q ∗1 (a ∗ v(2))

(
s1

s2

, x1 − x2

)
+Q ∗2 (a ∗ v(2))

(
s1

s2

, x1 − x2

)
− 2v(2)

(
s1

s2

, x1 − x2

)
= ρa(x1 − x2)

[
Q

(
s1

s2

)
+Q

(
s2

s1

)]
= 2ρa(x1 − x2)Q

(
s1

s2

)
Replacing s1

s2
→ t and x1 − x2 → ξ, the equation becomes

Q ∗1 (a ∗ v(2))(t, ξ) +Q ∗2 (a ∗ v(2))(t, ξ)− 2v(2)(t, ξ) = −2ρa(ξ)Q(t)

Remark 4.45. The convolution in s1 works in the following sense:

L1
2v

(2)

(
s1

s2

, x1 − x2

)
=

∫
R∗+×Rd

Q
(s1

s

)
a(x1 − x)v(2)

(
s

s2

, x− x2

)
h(ds)σ(dx)

=

∫
R∗+×Rd

Q

(
s1

s2t

)
a(x1 − x)v(2)(t, x− x2)

s2

s2t
dtσ(dx)

= Q ∗ (a ∗ v(2))

(
s1

s2

, x1 − x2

)
If we dropped the assumption of evenness on Q, we would need to be careful at the convo-
lution ∗2 in s2, since Q is not even in the sense that

Q(s) 6= Q(s−1).
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Instead, we would consider the function

Q̃(s) := Q(s−1)

which means that

L2
2v

(2)

(
s1

s2

, x1 − x2

)
=

∫
R∗+×Rd

Q
(s2

s

)
a(x1 − x)v(2)

(s1

s
, x− x2

)
h(ds)σ(dx)

=

∫
R∗+×Rd

Q̃

(
s

s2

)
a(x1 − x)v(2)

(s1

s
, x− x2

)
h(ds)σ(dx)

=

∫
R∗+×Rd

Q̃

(
s1

s2

t

)
a(x1 − x)v(2)

(
1

t
, x− x2

)
h(dt)σ(dx)

= Q̃ ∗ (a ∗ v(2))

(
s1

s2

, x1 − x2

)
Rewritten, the equation looks as follows:

Q ∗ (a ∗ v(2))(t, ξ) + Q̃ ∗ (a ∗ v(2))(t, ξ)− 2v(2)(t, ξ) = −ρa(ξ)
(
Q(t) + Q̃(t)

)
Let us return to the case where Q is even. In this case, the equation simplifies to

Q ∗ (a ∗ v(2))(t, ξ) +Q ∗ (a ∗ v(2))(t, ξ)− 2v(2)(t, ξ) = −2ρa(ξ)Q(t)

After taking the Fourier transform, the equation becomes

2Q̂(z)â(p)v̂(2)(z, p)− 2v̂(2)(z, p) = −2ρâ(p)Q̂(z)

⇔ 2
[
Q̂(z)â(p)− 1

]
v̂(2)(z, p) = −2ρâ(p)Q̂(z)

⇔ v̂(2)(z, p) =
ρâ(p)Q̂(z)[

1− Q̂(z)â(p)
] ,

assuming that the right hand side is well-defined.
Under the conditions of Theorem 4.42, the function v̂(2)(z, p) is integrable and we can

take
v(2)(t, ξ) = F−1

(
v̂(2)(z, p)

)
.

Note that there might be problems with the integrability of k(2) in the original equation,
which we can to circumvent by considering the second Ursell function instead. Therefore,
the actual solution to (56) for n = 2 has the form

k(2)(t, ξ) = v(2)(t, ξ) + ρ2.

This consideration is only a technical step to apply the Fourier transform properly. If we
set

A =
1

(2π)d+1

∫ ∞
0

∫
Rd

|â(p)Q̂(z)|
1− â(p)Q̂(z)

dph(dz)

we get the estimate
k(2)(s1, x1, s2, x2) ≤ ρA+ ρ2 ≤ C2(2!)2

where

C := max

{
A,

√
ρ(A+ ρ)

2

}

111



Remark 4.46. The choice of C will become clear after the general induction step.

For general n ≥ 3, we need to solve

L4n k
(n)(s1, x1, . . . , sn, xn) =−

n∑
i=1

k(n−1)(s1, x1, . . . , ši, x̌i, . . . , sn, xn)×

×
∑
j 6=i

a(xi − xj)Q
(
si
sj

)
=: −f (n)(s1, . . . , xn)

Then, the following expression is a solution to (56):

k(n)(s1, x1, . . . , sn, xn) =

∫ ∞
0

etL
4
n f (n)(s1, x1, . . . , sn, xn)dt

Note that this is just the resolvent formula for λ = 0, i.e. the inverse of the operator L4n .
This expression makes sense if the following two conditions are satifsied:∫ ∞

0

etL
4
n f (n)(s1, x1, . . . , sn, xn)dt <∞

etL
4
n f (n) → 0 for almost all (s1, . . . , xn)

Let us check the first condition by induction. We assume that

k(n−1) ≤ Cn−1
ρ ((n− 1)!)2

This yields

f (n)(s1, . . . , xn) ≤ Cn−1
ρ ((n− 1)!)2

n∑
i=1

∑
j 6=i

a(xi − xj)Q
(
si
sj

)

By the Markov property of the semigroup etL
4
n , we see that the only relevant summands

of L4n are Lin and Ljn. Using this fact and the positivity of the semigroup, we obtain∫ ∞
0

[
etL
4
n f (n)

]
(s1, . . . , xn)dt

≤ Cn−1
ρ ((n− 1)!)2

n∑
i=1

∑
j 6=i

∫ ∞
0

[
etL
4
n a(xi − xj)Q

(
si
sj

)]
(si, xi, sj, xj)dt

= Cn−1
ρ ((n− 1)!)2

n∑
i=1

∑
j 6=i

∫ ∞
0

[
et(L

i
n+Ljn)a(xi − xj)Q

(
si
sj

)]
(si, xi, sj, xj)dt
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By the contraction property of etL
4
n on L∞, we obtain for the remaining integral term∫ ∞

0

[
et(L

i
n+Ljn)a(xi − xj)Q

(
si
sj

)]
(si, xi, sj, xj)dt

≤
∫ ∞

0

ess sup
sj∈R∗+,xj∈Rd

∣∣∣∣etLina(xi − xj)Q
(
si
sj

)∣∣∣∣ (si, xi)dt
=

∫ ∞
0

ess sup
sj ,xj

∣∣∣∣F−1F
[
etL

i
na(·i − xj)Q

(
·i
sj

)]∣∣∣∣ (si, xi)dt
=

∫ ∞
0

ess sup
sj ,xj

∣∣∣∣F−1

[
et(â(p)Q̂(z)−1)F

(
a(·i − xj)Q

(
·i
sj

))]∣∣∣∣ (si, xi)dt
=

∫ ∞
0

ess sup
sj ,xj

∣∣∣F−1
[
et(â(p)Q̂(z)−1)e−iz log sje−i(p,xj)â(p)Q̂(z)

]∣∣∣ (si, xi)dt
≤ 1

(2π)d+1

∫ ∞
0

ess sup
sj ,xj

∫ ∞
0

∫
Rd

∣∣∣et(â(p)Q̂(z)−1)e−i(zi log sj−(pi,xj))â(p)Q̂(z)
∣∣∣ (si, xi)dph(dz)dt

=
1

(2π)d+1

∫ ∞
0

∫ ∞
0

∫
Rd
et(â(p)Q̂(z)−1)

∣∣∣â(p)Q̂(z)
∣∣∣ dph(dz)dt

By using Fubini’s theorem, we may exchange the integrals and use∫ ∞
0

et(â(p)Q̂(z)−1)dt =
1

1− â(p)Q̂(p)

to obtain that the above expression equals

1

(2π)d+1

∫ ∞
0

∫
Rd

|â(p)Q̂(z)|
1− â(p)Q̂(z)

dph(dz)

Note that we do not need the absolute value, since the functions a and Q are real and
even. By some standard assumptions on the kernels a and Q as above, this expression is
finite.

Putting everything together, we obtain

k(n)(s1, x1, . . . , sn, xn) =

∫ ∞
0

etL
4
n f (n)(s1, . . . , xn)dt

≤ Cn−1
ρ ((n− 1)!)2n(n− 1)A ≤ Cn

ρ (n!)2

the remainder of the proof follows the same scheme as in [36, Chapter 4.3].

4.3 Bolker-Dieckmann-Law-Pacala Model

As we have seen in Theorem 4.33, particles in the contact model admit clustering, if
there exists some area where the birth kernel is strong enough. To counter this effect, we
add competition to the contact model to suppress clustering. While semigroup techniques
do not work for the dynamics of n-point correlation functions in the contact model, the
addition of the competition mechanism enables us to use semigroup theory again to show
the existence of the dynamics this way. Heuristically, this is due to the fact that by
introducing competition, the mortality rate of the system increases with the population
size. Therefore, this mechanism is also called self-regulation. The model is known as the
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Bolker-Dieckmann-Law-Pacala model. It was first studied by the aforementioned authors
[8, 9, 13]. For the infinite-dimensional case on Γ(X), we refer to [17,18] for more details.

From a modelling perspective, the additional term adds another natural component.
Namely, in nature, agents such as animals or plants have to compete for resources. In areas
with high population, the mortality will be higher, since more agents have to compete for
the same amount of limited resources.

As stated above, we modify the contact model by adding a competition term. The
model is given by the following operator for F ∈ FC(K(Rd)):

(LF )(η) =
∑
x∈τ(η)

m(sx)[F (η − sxδx)− F (η)]

+ κ−
∑
x∈τ(η)

∑
y∈τ(η−sxδx)

q−(sx, sy)a
−(x− y) [F (η − sxδx)− F (η)]

+ κ+
∑
x∈τ(η)

∫
R∗+×Rd

q+(sx, s)a
+(x− y)[F (η + sδy)− F (η)]ν(ds)σ(dy)

where the kernels are normalised, i.e.∫
Rd
a±(x)σ(dx) = 1,

∫
R∗+
q±(s)ν(ds) = 1

and κ+, κ− > 0 are birth and competition rates, respectively.

Remark 4.47. While the model can be considered in a general setting for a mortality
function function m : R → R, we only consider m(s) ≡ m constant for the proof of
existence.

4.3.1 The Symbol for the BDLP Model

As usual in the scheme, we proceed by considering the operator L̂ on the space of quasi-
observables.

Proposition 4.48. The symbol L̂ on Bcm(K0(Rd)) corresponding to L is given by

(L̂G)(η) = −
∑
x∈τ(η)

m(sx)G(η)

− κ−
∑
x∈τ(η)

∑
y∈τ(η−sxδx)

q−(sx, sy)a
−(x− y)G(η − syδy)

− κ−
∑
x∈τ(η)

∑
y∈τ(η−sxδx)

q−(sx, sy)a
−(x− y)G(η)

+ κ+
∑
x∈τ(η)

∫
R∗+×Rd

q+(sx, s)a
+(x− y)G(η − sxδx + sδy)ν(ds)σ(dy)

+ κ+
∑
x∈τ(η)

∫
R∗+×Rd

q+(sx, s)a
+(x− y)G(η + sδy)ν(ds)σ(dy)

Proof. Combinatorial arguments similar to the calculations done for the Glauber dynamics
and contact model.
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4.3.2 Existence of a Semigroup for the BDLP Model

As we have calculated the operator L̂, we may use perturbation theory to show the
existence of the dynamics as it was the case for the Glauber dynamics. By adding the
competition term, the mortality rate is “strong” enough to dominate the birth intensity,
at least for a high population. We consider the following decomposition of L̂:

L̂1
0G(η) = −

∑
x∈τ(η)

m(sx)G(η)

L̂2
0G(η) = −κ−

∑
x∈τ(η)

∑
y∈τ(η−sxδx)

q−(sx, sy)a
−(x− y)G(η)

L̂1G(η) = −κ−
∑
x∈τ(η)

∑
y∈τ(η−sxδx)

q−(sx, sy)a
−(x− y)G(η − syδy)

L̂2G(η) = κ+
∑
x∈τ(η)

∫
R∗+×Rd

q+(sx, s)a
+(x− y)G(η − sxδx + sδy)ν(ds)σ(dy)

L̂3G(η) = κ+
∑
x∈τ(η)

∫
R∗+×Rd

q+(sx, s)a
+(x− y)G(η + sδy)ν(ds)σ(dy)

(59)

For the proof of existence, we restrict ourselves to the case where the intrinsic mortality is
constant, i.e. m(s) ≡ m. We consider the evolution on the spaces Lα,C as defined in Defi-
nition 4.6 with the usual L1-norm denoted by ‖ · ‖α,C . Assume the following integrability
condition on q+ and q−:

There exist constants Π± > 0 such that for all sx ∈ R∗+,∫
R∗+
q±(sx, s)e

αsν(ds) ≤ Π±. (60)

Let us now state the conditions for relative boundedness of Li, i = 1, 2, 3 w.r.t. L0. To
improve legibility, we write C(η) = C |τ(η)|eα

∑
z∈τ(η) sz for short.

Let us first state the result for the main part of the generator.

Proposition 4.49. The operator L̂0 = L̂1
0 + L̂2

0 generates an analytic semigroup with

D(L̂0) =
{
G ∈ Lα,C : L̂0G ∈ Lα,C

}
Proof. Hille-Yosida, using that Bcm(K0(Rd)) is dense in Lα,C , analogously to the proof of
Proposition 4.7.

We now consider the decomposition (59) and consider each perturbation separately.
For convenience, we write λ = λG in the following proofs.

Lemma 4.50. Assume (60). Then

‖L̂1G‖α,C ≤
κ−CΠ−

m
‖L̂1

0G‖α,C
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Proof. We have

‖L̂1G‖α,C =

∫
K0(Rd)

∣∣∣L̂1G(η)
∣∣∣C |τ(η)|eα

∑
x∈τ(η) sxλ(dη)

≤
∫
K0(Rd)

κ−
∑
x∈τ(η)

∑
y∈τ(η−sxδx)

q−(sx, sy)a
−(x− y)|G(η − syδy)|C(η)λ(dη)

= κ−
∫
K0(Rd)

∫
R∗+×Rd

∑
x∈τ(η)

q−(sx, s)a
−(x− y)|G(η)|C(η + sδy)ν(ds)σ(dy)λ(dη)

= κ−C

∫
K0(Rd)

|G(η)|C(η)
∑
x∈τ(η)

∫
R∗+×Rd

q−(sx, s)e
αsa−(x− y)ν(ds)σ(dy)λ(dη)

(60)

≤ κ−CΠ−

m

∫
K0(Rd)

m|τ(η)||G(η)|C(η)λ(dη)

≤ κ−CΠ−

m
‖L̂1

0G‖α,C

Lemma 4.51. For α ≥ 0 and (60), we have the following estimate:

‖L̂2G‖α,C ≤
Π+κ+

m
‖L̂1

0G‖α,C

Proof.

‖L̂2G‖α,C ≤

≤ κ+

∫
K0(Rd)

∑
x∈τ(η)

∫
R∗+×Rd

q+(sx, s)a
+(x− y)|G(η − sxδx + sδy)|ν(ds)σ(dy)C(η)λ(dη)

2.77
= κ+

∫
K0(Rd)

∑
y∈τ(η)

∫
R∗+×Rd

q+(s, sy)a
+(x− y)|G(η)|C(η − syδy + sδx)ν(ds)σ(dx)λ(dη)

= κ+

∫
K0(Rd)

|G(η)|C(η)
∑
y∈τ(η)

∫
R∗+×Rd

q+(s, sy)e
−αsyeαsxa+(x− y)ν(ds)σ(dx)λ(dη)

≤ κ+

∫
K0(Rd)

|G(η)|C(η)
∑
y∈τ(η)

Π+λ(dη)

≤ Π+κ+

m
‖L̂1

0G‖α,C

Lemma 4.52. Assume the following pointwise estimate:

2e−αsκ+a+(x)q+(s) ≤ Cκ−a−(x)q−(s) a.s.

Then, the following estimate holds:

‖L̂3G‖α,C ≤
1

2
‖L̂2

0‖α,C

116



Proof.

‖L̂3G‖α,C ≤

≤ κ+

∫
K0(Rd)

∑
x∈τ(η)

∫
R∗+×Rd

q+(sx, s)a
+(x− y)|G(η + syδy)|C(η)ν(ds)σ(dy)λ(dη)

2.77
=

∫
K0(Rd)

∑
y∈τ(η)

∑
x∈τ(η−syδy)

κ+q+(sx, sy)a
+(x− y)|G(η)|C(η − syδy)λ(dη)

=

∫
K0(Rd)

∑
y∈τ(η)

∑
x∈τ(η−syδy)

κ+q+(sx, sy)a
+(x− y)C−1e−sy︸ ︷︷ ︸

≤κ−a−q−

|G(η)|C |τ(η)|eα
∑
z∈τ(η) szλ(dη)

≤
∫
K0(Rd)

∑
y∈τ(η)

∑
x∈τ(η−syδy)

κ−q−(sx, sy)a
−(x− y)|G(η)|C |τ(η)|eα

∑
z∈τ(η) szλ(dη)

= ‖L̂2
0G‖α,C

Putting this all together, we obtain the following result:

Theorem 4.53. Assume integrability condition (60) as well as

2(Π−κ−C + Π+κ+) < m

2e−αsκ+q+(s)a+(x) ≤ Cκ−q−(s)a−(x) ν ⊗ σ − a.e.

Then the operator L̂ generates a strongly continuous semigroup on Lα,C.

Proof. Take the Lemmas above together with Theorem 4.10. The factor of 2 stems from
the proof of the perturbation theorem.

4.3.3 Statistical Dynamics of the BDLP Model

Let us close the considerations of the BDLP-model by taking into account the evoluti-
on of correlation functions. The correlation functions let us show that the competition
introduced in this model suppresses clustering of the solution.

Let us start by giving the form of the operator L4 on the space of correlation functions.

Proposition 4.54. The operator L4 is given by

(L4k)(η) = −
∑
x∈τ(η)

m(sx)k(η)

− κ−
∫
R∗+×Rd

∑
x∈τ(η)

q−(sx, s)a
−(x− y)k(η + sδy)ν(ds)σ(dy)

− κ−
∑
x∈τ(η)

∑
y∈τ(η−sxδx)

q−(sx, sy)a
−(x− y)k(η)

+ κ+
∑
y∈τ(η)

∫
R∗+×Rd

q+(s, sy)a
+(x− y)k(η − syδy + sδx)ν(ds)σ(dx)

+ κ+
∑
y∈τ(η)

∑
x∈τ(η−syδy)

q+(sx, sy)a
+(x− y)k(η − syδy)

where the considered class of k : K0(Rd)→ R is specified below.
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Proof. The proof works analogously to the calculations done before by using duality (26).

The fact that the evolution on quasi-observables conserves integrability of the soluti-
on can be used to show that the correlation functions obey a sub-Poissonian bound by
considering the dual semigroup, similar to [33]. It should be noted, though, that we do
not make any statements about the continuity of the dual semigroup. For the evolution
in mind, consider the following space for some C > 0 and α ∈ R:

Kα,C =
{
k : K0(Rd)→ R | k · C−|τ(·)|e−α

∑
x∈τ(·) sx ∈ L∞(K0(Rd), λG)

}
.

which is the dual to the space Lα,C from the previous chapter with respect to duality

(26). This means the following: Denote by (Ût)t≥0 the semigroup generated by L̂ on Lα,C ,
cf. Theorem 4.53. Then we can construct the evolution of correlation functions using the
following relation:

〈〈G, kt〉〉 = 〈〈ÛtG, k0〉〉

for an initial condition k0 ∈ Kα,C . Denote Û∗t k0 := kt. Since the evolution on Kα,C is
also given by a semigroup, the bound is preseved. In other words, for an initial condition
k0 ∈ Kα,C , we have

|kt(η)| ≤ const · C |τ(η)|eα
∑
x∈τ(η) sx .

Note that in comparison to Theorem 4.33, there is no factor |τ(η)|! included, which in-
dicates that the BDLP model suppresses the clustering which is present in the contact
model.
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Appendix

A The Final Topology on K(Rd) and the Relation to

Measurable Structures

We want to check that the final topology induced by the mapping R : Π(R∗+ × Rd) →
K(Rd) fulfills the statements used in this work. In what follows, there are some statements
from topology and measure theory.

First, let us show that a homeomorphism preserves the measurable structure.

Lemma A.1. Let f : X → Y be a homeomorphism on topological spaces X and Y . Then
the image-σ-algebra of X under f and the Borel-σ-algebra of Y coincide, i.e. Bf (X) =
B(Y ), where

Bf (X) := {f(A) | A ∈ B(X)}

Proof. Let τX and τY be the topologies of the corresponding spaces. Since B(X) = σ(τX)
and B(Y ) = σ(τY ), it suffices to show f(τX) = τY . Note that we abuse the notation
slightly, as we may use the same notation for the pre-image mapping and the inverse
mapping of f .

“⊆”: Let B ∈ f(τX), i.e. there exists A ∈ τX such that B = f(A). Since f−1 is continuous,
we have B ∈ τY .

“⊇”: Let B ∈ τY . We want to show that there exists A ∈ τX such that B = f(A). Since
f is continuous, we may set A := f−1(B) ∈ τX . Since f is bijective, we see that
f(f−1(B)) = B.

Next, let us define the notion of the final topology, which is the topology induced by a
family of mappings. Since we only concider the reflection mapping R, we define the final
topology with respect to one mapping.

Definition A.2. Let (X, τX) be a topological space, Y a set and f : X → Y some mapping.
A topology τY on Y is called final topology with respect to (X, τX , f) if one of the following
equivalent properties holds:

1. τY is the finest topology such that f is continuous.

2. A subset O ⊂ Y is open if and only if f−1(O) ⊂ X is open.

3. A mapping g : Y → Z is continuous if and only if g ◦ f is continuous, where Z
topological space.

Let us show some topological results stemming from this definition.

Lemma A.3. Let (X, τX) be a topological space, Y a set and f : X → Y a bijection. Then
f(τX) is the final toplogy on Y , where

f(τX) = {f(U) | U ∈ τX} .
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Proof. Let us first show that f : (X, τX) → (Y, f(τX)) is continuous. To this end, let
V ∈ f(τX). Then there exists U ∈ τX such that f(U) = V by definition of f(τX).
Therefore, we also have

f−1(V ) = U ∈ τX
and f is continuous.

Next, we need to show that f(τX) is the finest topology such that f is continuous. Let
W ⊂ Y with W /∈ f(τX) and assume that there exists U ∈ τX such that f−1(W ) = U .
But since f is a bijection, we have

W = f(f−1(W )) = f(U) ∈ f(τX)

which is a contradiction. Therefore, the claim holds.

Furthermore, the following result is immediate by part 2 of the definition:

Lemma A.4. Let f : (X, τX)→ (Y, f(τX)) be a bijection. Then f is a homeomorphism.

Proof. f is continuous by definition. We need to check that the inverse mapping f−1 : Y →
X is continuous. To this end, let U ∈ τX . Since f is a bijection, we have(

f−1
)−1

(U) = f(U) ∈ f(τX).

In fact, this also holds directly by applying part 2 of the definition.

Remark A.5. In our case, these results are applied to the bijective reflection mapping
R : Π(R∗+ × Rd) → K(Rd). It induces the topology on K(Rd) and becomes a homeomor-
phism. Furthermore, the measurable structures on Π(R∗+ × Rd) and K(Rd) coincide.
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