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Chapter 1

Introduction

At the core of this work is the discussion of a robust approach to study regularity
properties of solutions to nonlinear dispersive equations. We focus on initial data
in L2-based Sobolev spaces H® and derivative nonlinearities.

When referring to regularity properties, we mean a priori estimates, existence
of solutions and continuous dependence on initial data in a function space X <
C([0,T), H?) locally in time. We say that the equation is locally well-posed if the
data-to-solution mapping exists locally in time and is continuous.

We informally refer to an evolution equation as semilinear if the equation can
be solved by the contraction mapping argument and as quasilinear if the equation
can not be solved via Picard iteration.

Many examples of Cauchy problems considered below can be written as

du+P(D)u =udyu, (t,z)e€RxK", (1.1)
u(0) = u € H(K"), '

where K € {R,T = R/(27Z)}. Hp denotes the isotropic Sobolev space on K" of
real-valued functions, and P(D) denotes a skew-adjoint Fourier multiplier.

The argument from a seminal work [BS75] by Bona and Smith yields local well-
posedness in Hj(K") for s > ”T“, but neglects dispersive effects. This approach is
commonly referred to as energy method, which we aim to improve in the present
work. This will illustrate the regularizing effect of dispersion.

Another motivation to work with less regular initial data is that conserved quan-
tities like mass or energy are typically associated with lower Sobolev regularities.
Thus, conserved quantities lead us to physically natural choices for initial data.
Furthermore, in many cases a local result for these initial data can be globalized
via iteration of the local result.

One-dimensional models are best understood, and the literature is extensive.
A more accurate description of the developments in local well-posedness theory is
postponed to the sections at the end of this chapter.

One prominent example is the Benjamin-Ono equation (cf. [Ben67, [Ono75])

{ Opu + HOppu = udpu, (tvx) €R xK,

u(0) — up € Hi(K), (1.2)

where H : L?(K) — L?(K) denotes the Hilbert transform.



This we shall consider as model case to describe some features of the deployed
arguments.

On the real line, it is well-known that is not locally well-posed in a uniform
sense in function spaces embedded into C([0,T7], H}) for any s € R (cf. [MSTOILl
KTO05h]).

Another famous example is the Korteweg-de Vries equation (cf. [KdV95])

{ Ot + Opgz = udypu, (t,z) € R x K, (1.3)
u(0) = up € Hg(K). '

Due to higher dispersion than in the Benjamin-Ono case, can shown to
be locally well-posed in the semilinear sense for sufficiently regular initial data.
However, quasilinear behavior is exhibited for s < —3/4 on the real line and s <
—1/2 on the circle.

The above models admit several higher-dimensional generalizations. A mul-
tidimensional generalization of the Benjamin-Ono equation (cf. [PS95, Mar02l
LRRW19]) is given by

u(0) =uy € Hy(K"). (1.4)

{ O+ Oy, (=AY 20 =udyu, (t,r) € R x K",
The same holds for (1.3]). One possible higher dimensional version of the Korteweg-
de Vries equation is given by the Zakharov-Kuznetsov equation (cf. [ZK74] [LS82])

w(0)  =wuo € Hi(K™). (1.5)

{ Opu — Oz, Au = udy,u, (t,z) € R x K™,
Other generalizations in two dimensions include the Kadomtsev-Petviashvili equa-
tions (cf. [THKQY, IKTOS)).
Since P is a Fourier multiplier, we can rewrite the linear part of (L.1)) as

{ i0u+@(V/iju =0, (tz) €RxK", (1.6)

u(0) = up € H¥(K™).

In the above display ¢ € C'(R"™,R) is referred to as dispersion relation, and the
Fourier coefficients of solutions evolve by

a(t, &) = e qq(€). (1.7)

The L2-based Sobolev spaces are also natural spaces for initial data as the linear
evolution is unitary in these spaces.

Let U(t) denote the unitary group in H®(K"™) associated to the linear evolution
of . Seeking for strong solutions to the full equation, we have to consider the
following expression

w(t) = Ut)uo + /O Ut — 5)(uds, u)(s)ds = Do, (1). (1.8)

If we prove ®,, : X — X to be a contraction mapping in a suitable function space
X < C([0,T),H?), then the aforementioned regularity properties of the data-to-
solution mapping will be immediate.

Furthermore, by an infinite dimensional variant of the implicit function theorem,



the dependence on the initial data will be as smooth as the nonlinearity. In the
above examples, this would imply real analyticity of the data-to-solution mapping.
But, by the above, there are models of physical relevance, where the data-to-solution
mapping is known to be not even locally uniformly continuous. Thus, the corre-
sponding Cauchy problems are not directly amenable to Picard iteration although
well-posedness is expected from scaling arguments.

Control of rough wave interactions via frequency
dependent time localization

To understand the problematic interaction disrupting uniform local well-posed-
ness better, we localize frequencies on a dyadic scale. In the following we consider
the interaction of a high frequency wave with a low frequency wave in . Let
Py denote the frequency projector to frequencies around N € 20, Controlling the
energy transfer between high and low frequencies K < N involves an estimate of
the kind

|02, (PNU (t)uo P U (t)vo) | L1 (0,77, L2 (R))
S NTY2|| Py U (t)uo PicU ()voll 20,77, L2 ) (1.9)
S (NT)Y?|| Pyug|| 2 || Prcvol| 2

as one can only expect to recover half of a derivative in a bilinear estimate in the
case of Schrodinger interaction as is the case in .

(1.9) suggests to overcome the remaining derivative loss to consider frequency
dependent time localization T = T'(N) = N~!. This would completely ameliorate
the derivative loss. For the Benjamin-Ono equation on the real line this strategy
was carried out by Guo et al. in [GPWWTI].

To the best of the author’s knowledge, the first works, where energy transfer
is controlled by considering function spaces with frequency dependent time scales
are due to Christ-Colliander-Tao [CCTO08], Koch-Tataru [KT07] and Ionescu-Kenig-
Tataru [IKTO§].

A precursor of the argument can be found in the work [KT03] by Koch and
Tzvetkov, where linear Strichartz estimates on frequency dependent time intervals
were used to prove local well-posedness of for s > 5/4.

Earlier, Burg-Gérard-Tzvetkov noticed that dispersive properties of solutions
to Schrodinger equations on compact manifolds improve after frequency dependent
time localization (cf. [BGTOI]). It seems very likely that the stream of research
([K'T03, [CCT08, IK'T08, [KT0T]) was influenced by the observation of more regular
behavior (cf. [BGTO0I, [BGT04]) on frequency dependent time scales.

For the Benjamin-Ono equation better local well-posedness results are available
via a gauge transform, see below.

When considering dispersion generalized equations

{ Opu+ 0, Dju = wudyu, (t,r) €RxK, (1.10)

u(0) = up € H*(K),

arguments involving gauge transform mechanisms are still applicable for 1 < a < 2
on the real line (cf. [HIKK10]). However, this approach yields severe technical dif-
ficulties compared to the Benjamin-Ono case a = 1. This is in contrast to improved



dispersive effects for 1 < a < 2, which makes the solutions exhibit more regular
behavior. Moreover, in higher dimensions it is unknown whether there is a gauge
transform available at all.

Hence, in order to investigate properties of solutions to more general dispersive
PDE at low Sobolev regularities, we choose the approach of frequency dependent
time localization.

Another reason is that this approach also works on tori with little adaptations
as elaborated on in Chapter This is surprising because in the case of compact
manifolds dispersive effects take on a different character than on Euclidean space.
Estimates of the kind

U (#)uo | oo ary S 161~ uollzr (ar) (1.11)

for 8 > 0 must fail due to conservation of mass on compact manifolds M.

Thus, linear and bilinear Strichartz estimates like discussed above can not hold
true. However, it was observed for Schrédinger equations on compact manifolds by
Burg-Gérard-Tzvetkov in [BGT04] (see also the work of Staffilani-Tataru [ST02],
in which variable-coefficient Schrédinger equations were analyzed) that after local-
ization in time to frequency dependent time intervals can be recovered.

Indeed, the necessary time localization has to be chosen to T = T(N) = N~
This can be explained by a simple heuristic argument involving the group velocity,
which for Schrédinger equations has modulus proportional to the frequency.

Consequently, a wave packet with frequencies around N should roughly stay in
one chart for this time and can display behavior similar to waves in Euclidean space.
One obtains the following modification of (cf. [ST02, BGT04])

HeitAgPNuO”LOO(M) S ‘t|7n/2||PNUOHL1(M) 0< |t‘ 5 Nﬁl, (112)

where A, denotes the Laplace-Beltrami operator on a compact boundaryless smooth
Riemannian manifold M of dimension n, and Py denotes the orthogonal projector
localizing to eigenfunctions of (—A,)/? having eigenvalues around N € 2%,

The bilinear estimate can also be recovered for Schrodinger equations on compact
manifolds

n—1

N

1/2
) | Prvuoll 2 any | Pacvoll o an

(1.13)
which was proved by Hani in [HanI2]. Moreover, in the one dimensional case
generalized estimates were discussed by Moyua and Vega in [MVO0§|. Thus, the
observation remains true on the circle and also the consequence of local well-
posedness in H*(K) for s > 1.

In Chapter [3] the above arguments are given in detail, and it is pointed out
how frequency dependent time localization can diminish the difference between
Euclidean space and tori.

We revisit how bilinear Strichartz estimates follow in a well-known manner from
transversality in Euclidean space, and the arguments from [MV08|, [Han12] are re-
visited to discuss short-time bilinear Strichartz estimates on compact manifolds. As
indicated in , these estimates are crucial to overcome problematic frequency
interactions and effectively improve the energy method by making use of dispersive

effects. Also, one can perceive this as a bilinear refinement to the argument from
[KT03].

||PN6“A9UOPK6itAgUO||Lf([0,N*1],L§(M)) S <



In this chapter we also recall short-time linear Strichartz estimates as proved
in [BGT04] and [Dinl7] in the fractional case. Taking a different approach, it
is pointed out how f2-decoupling (cf. [BDI5, [BD17a]) leads to new Strichartz
estimates for fractional Schrodinger equations on tori. Further, bilinear refine-
ments are proved, and implications for well-posedness of generalized cubic nonlinear
Schrédinger equations on tori are given in Section The derivation of linear and
bilinear Strichartz estimates via decoupling was made publicly available in [Sch19Db].

Secondly, we shall see how short-time bilinear estimates combine with the idea
from [IKTO8| of frequency dependent time localization in Euclidean space. This
allows us to overcome derivative loss to prove local well-posedness for Cauchy prob-
lems with derivative nonlinearities as well in Euclidean space as on tori. In Section
first applications to infer new well-posedness results are provided.

There have been several previous works where short-time analysis on tori is used
to analyze dispersive PDE at low regularities. Among the first ones are contribu-
tions by Molinet [Mol12], Zhang [Zhal6] and Kwak [Kwal6]. The present work
seems to be the first one explicitly relating the results from [BGT04, Dinl7] and
[Han12, [MV0S] to prove local well-posedness for evolution equations with derivative
nonlinearities via frequency dependent time localization.

The improvement of the energy method via short-time bilinear estimates was
made publicly available in [Sch1g]. Chapter [3|also has a motivational character as
the techniques are further refined in the following chapters.

New local well-posedness results for higher-dimen-
sional Benjamin-Ono equations

In Chapter [] the argument from Chapter [ is deployed to prove new well-
posedness results for Benjamin-Ono equations in higher dimensions as well in Eu-
clidean space as on tori: The improvement stems from deploying bilinear short-time
estimates, whereas in previous works (cf. [LPRT19, LRRW19]) only linear short-
time estimates were used. The key difficulty is to verify transversality at comparable
frequencies which is more involved in case of the higher-dimensional dispersion re-
lations of or . Moreover, we introduce fractional equations to relate the
higher dimensional Benjamin-Ono equation from [LRRWT9] and . We refer to
Theorems and for the results. The analysis was made publicly available
in [Sch19d].

New regularity results for dispersive PDE with cu-
bic derivative nonlinearity on the circle

In Chapter [5| new a priori estimates and existence of solutions for one-dimensio-
nal dispersive equations with cubic derivative nonlinearity are proved.
The equations under consideration are instances of

{ du+0;Dgu = 0y(u?), (t,x) eRxT, (1.14)

u(0) =ug € Hy(T).

For a = 1, (1.14) is known as modified Benjamin-Ono equation and for a = 2
as modified Korteweg-de Vries equation. The latter equation is well-known to be



semilinear provided that s > 1/2 (cf. [Bou93b]). The periodic modified Benjamin-
Ono equation requires a gauge change before it is solvable by Picard iteration (cf.
[GLM14]). As well the periodic modified Benjamin-Ono as the modified Korteweg-
de Vries equation fail to be C3-well-posed below s = 1/2 although the scaling
critical regularities are given by s = 0 for a = 1 and s = —1/2 for a = 2. Thus,
both equations are expected to be well-posed below s = 1/2.

In addition to the arguments from the previous chapters, the analysis of the
Sobolev energies of solutions is refined by adding correction terms in the spirit of
the I-method (cf. [CKST02,ICKS™03]). This requires a better comprehension of the
resonance function than is currently available for higher dimensional Benjamin-Ono
equations. We refer to Theorem For periodic solutions to the Benjamin-Ono
equation this gives the first regularity result below s = 1/2. By working in Euclidean
windows, i.e., frequency dependent time localization given by T'= T(N) = N1,
we recover the same a priori estimates as were previously shown in Euclidean space
(cf. [Guolldl).

A related model is the derivative nonlinear Schrédinger equation

. . 2
{ i0pu + Ogpu = 0, (Jul*u), (t,x) eRxT, (1.15)

u(0) =ug € H*(T).

(1.15)) appears to be very similar to (1.14)) for a = 1. Sharp C? local well-posedness
of (1.15) was shown by Herr [Her06]. Here, the same local regularity results below

s < 1/2 for like for the modified Benjamin-Ono equation on the circle are
shown. This improves the result of Takaoka [Tak16], which was shown by different
means. In [Takl6] a priori estimates and existence of solutions were shown for
s> 12/25.

However, is known to be completely integrable, which is not the case for the
modified Benjamin-Ono equation. In order to point out that the method does not
depend on complete integrability, we choose to analyze (1.14]) for ¢ = 1 in detail
and point out the necessary modifications to deal with s well in Subsection
The analysis of Section was made publicly available in [Sch17al.

The modified Korteweg-de Vries equation is known to be completely integrable,
too. There are recent results exploiting the integrability and showing a priori esti-
mates up to the scaling critical regularity s. = —1/2 (cf. [KV19l [KTIg]).

Still, we carry out the perturbative analysis to prove existence of solutions and
a priori estimates in Sobolev spaces with positive regularity index as the analysis
extends to related models, which fail to be integrable anymore. Here, we choose not
to work in Euclidean windows but again with time localization 7' = T'(N) = N1
and perform a more precise multilinear analysis of possible interactions involving
the resonance function.

Another motivation to carry out the analysis was to prove existence of solutions.
This does not follow from the argument hinging on complete integrability. The
result is given in Theorem [5.2.2] This is most interesting in Sobolev spaces with
negative regularity index as renormalized versions of the mKdV equation are no
longer equivalent, effectively pointing out the only renormalized version admitting
existence of solutions.

In related Fourier Lebesgue spaces, this was accomplished by Kappeler and Mol-
nar in [KMI7] by arguments relying on complete integrability. We prove existence
of solutions to a renormalized version of the modified Korteweg-de Vries equation in
Sobolev spaces with negative regularity index and hence, non-existence of the un-



renormalized solutions conditional upon conjectured periodic Strichartz estimates
for the Airy evolution in Theorem [5.2.3] The results of Section [5.2] were made
publicly available in [Sch17h].

Local and global well-posedness for dispersion gen-
eralized fractional Benjamin-Ono equations on the
circle

In Chapter |§| we revisit dispersion generalized Benjamin-Ono equations
for 1 < a < 2 on the circle. Combining the short-time analysis with resonance
considerations and correction terms for the energy, we prove new local and global
well-posedness results in Theorem The correction terms are derived from
normal form transformations related to the argument from the previous chapter,
but without symmetrization.

On the circle, the only results for beyond the energy method are global
well-posedness for s > 1 — a/2 by Molinet-Vento [MV15]. Their result was proved
by a different approach. For a > 3/2 we can prove global well-posedness in L?(T).
The analysis was made publicly available in [Schi9a].

Variable-coefficient decoupling and smoothing esti-
mates

The last section has a different character because no nonlinear evolution equa-
tions are considered. Rather, we take a more abstract point of view and discuss
regularity results for oscillatory integral operators which come up in the short-
time analysis of free solutions to Schrodinger equations on compact manifolds (cf.
[BGT04]): these are the Fourier integral operators

T f(w,t) = / @O N (., 1;.€) f(£)de (1.16)

for suitable phase functions ¢. These constitute a variable coefficient generalization
of the constant-coefficient phase functions encountered in the classical restriction
problem.

There, one considers the operators

ef(et) = [ D ala, ) () (1.17)

It is well-known (cf. [Wis05],[BG11] Section 6]) that in the context of the re-
striction problem strictly less LP — L9-estimates become admissible after changing
from constant to variable-coefficient phase functions in .

However, in Chapter [7] we prove the same decoupling estimates for with
variable coefficients like in the constant-coefficient case (cf. [BD15]). It is well-
known that in the context of wave equations decoupling estimates can be utilized
effectively to prove LP-smoothing estimates (cf. [Wol00, [LaW02]), which provided
initial motivation to study decoupling estimates. Recently, this was extended to the
variable-coefficient context by Beltran-Hickman-Sogge in [BHSIS].



In the Schrodinger context we prove new LP-smoothing estimates for operators
(1.16]). For this we utilize a variable-coefficient generalization (cf. [Lee06al) of Tao’s
bilinear adjoint Fourier restriction theorem [Tao03]. The derived LP-smoothing
estiates extend the constant-coefficient result by Rogers and Seeger from [RSI10].

Remarks

In the following we sketch important developments in the exhaustive local well-
posedness theory of the Benjamin-Ono equation and the Korteweg-de Vries equa-
tion. The equations are well understood, and no new results for these equations
are proved in this work. Still, the search for an improved comprehension of these
two model cases had been propelling the development of short-time arguments (cf.
[GPWW11l [Mol12, Liul5]). The description of the well-posedness theory is also
given below for a comparison with different approaches.

Well-posedness theory for the Benjamin-Ono equation

The Benjamin-Ono equation was derived by Benjamin in [Ben67] and Ono in
[Ono75] to describe internal water waves at great depth.

In [ABFS89] Abdelouhab et al. proved local well-posedness for s > 3/2 invoking
the energy method (cf. [BST5]). We discuss the situation on the real line first.
Molinet-Saut-Tzvetkov proved in [MSTOI] that the data-to-solution mapping fails
to be C? in any Sobolev space and Koch-Tzvetkov argued in [KT05b] that the data-
to-solution mapping even fails to be uniformly continuous due to the High x Low —
High-interaction described above.

Using linear short-time Strichartz estimates, the same authors proved local well-
posedness for s > 5/4 in [KT03], which was the first result going beyond 3/2.

A milestone in the well-posedness theory was Tao’s proof of global well-posedness
in H'(R) in [Tao04]. In this work, a gauge transform related to the Cole-Hopf
transform was used to weaken the derivative loss significantly, and after applying
the gauge transform, the equation can be solved by Strichartz estimates.

In [Tao04] only Strichartz estimates were used as the gauge transform requires
considerably more careful treatment in Fourier restriction spaces. By these means,
Burg-Planchon proved local well-posedness in H*(R) for s > 1/4 in [BP08] and
this analysis was further improved by Ionescu and Kenig in [IK07] where global
well-posedness in L?(R) was proved. The original proof was simplified by Molinet
and Pilod in [MP12] and Ifrim-Tataru in [IT19]. In [IT19)] the use of Fourier restric-
tion spaces was avoided by combining normal form transformations with the gauge
transform.

For a recent survey on the Benjamin-Ono equation on the real line, we refer to the
work by Saut [Saul§].

On the circle, Molinet pointed out in [Mol07, Mol0§| that one can also treat the
periodic Benjamin-Ono equation in a perturbative way after gauge transform and
fixing the mean of the initial value. This proved the data-to-solution mapping of the
original equation to be C°° on hypersurfaces of initial data with fixed mean. The
argument yields global well-posedness in L?(T). However, for the original equation
and also for dispersion generalized versions, it was checked by Herr in [Her08] that
a bilinear estimate controlling the nonlinear wave interaction can not hold true.
Thus, this family of equations is not directly amenable to Picard iteration.
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Hinging on complete integrability, in a recent preprint by Talbut [Tall8] a priori
estimates as well on the real line as on the circle were claimed for s > —1/2, that
is up to the scaling critical regularity.

For the dispersion generalized equations

u(0) =ug € H*(R), (1.18)

{ Ou+ 0, D% = ulyu, (t,x) € R xR,
global well-posedness in L?(R) was proved by Herr et al. in [HIKKI0] adapting the
gauge transform for 1 < a < 2. Carrying out this approach brought up substantial
technical difficulties due to the strong dependence of the gauge on the frequencies.

Notably, in a previous work by Herr [Her(7] was shown that after weakening the
problematic High x Low — High-interaction through introducing a low-frequency
weight, becomes amenable to Picard iteration for 1 < a < 2, and sharp local
well-posedness results were established.

A much simpler approach than the one from [HIKKT0] was pointed out recently
by Molinet and Vento in [MV15], where local well-posedness for s > 1 — a/2 was
proved as well on the real line as on the circle. This work constitutes another
improvement of the energy method, which relies on understanding the resonance.
In higher dimensions this becomes a complicated endeavour.

Well-posedness theory for the Korteweg-de Vries equation

The Korteweg-de Vries equation was derived by Korteweg and de Vries in
[KdV95] to describe traveling waves in shallow water and is certainly one of the
most important dispersive models. Surprisingly, the solutions to possess an
infinite number of conserved quantities (cf. [Lax68,[MGKGS]). This property among
others is nowadays perceived as a consequence of complete integrability. However,
it turns out that the definition of complete integrability in infinite dimensions is a
delicate issue, and we refer to [KVI9] for a modern perspective.

is linked to the defocusing modified Korteweg-de Vries equation

u(0) = ug € H*(K) (1.19)

{ O+ Opzpu = u?Opu, (t,x) € R xK
via the Miura transform (cf. [Miu68]). Thus, it is not surprising that is also
completely integrable. However, these properties could not be effectively exploited
for the well-posedness theory on the real line until recently (cf. [KTI8, [KVZIS|
KV19)).

The first local well-posedness results on the real line improving the result due to
energy methods was established by Kenig-Ponce-Vega in [KPV93] using dispersive
effects, in particular smoothing and maximal function estimates.

Breakthrough results were established by applying Picard iteration in Fourier re-
striction spaces by Bourgain in [Bou93b]. The short-time analysis introduced in
[IKTO08] builds on Fourier restriction spaces (cf. Chapter [2).

The title of this work is a deliberate homage to the seminal works [Bou93al, [Bou93b].

In [Bou93b] global well-posedness in L?(T) was proved for and local well-
posedness for in H'/2(T). On the circle these were the first results improving
on the energy method.

Regarding , the Fourier restriction approach was refined by Kenig-Ponce-Vega
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in [KPV96], where smooth local well-posedness in H*(R) for s > —3/4 and H~/2(T)
was proved.

These results are again sharp as the data-to-solution mapping fails to be C? below
these regularities.

On the circle the properties following from complete integrability are more acces-
sible due to compactness, and Kappeler and Topalov proved global well-posedness
of (1.3) in H~Y(T) in [KT06]. Utilizing the Miura transform, global well-posedness
of %D in L?(T) was shown in [KT05a]. These results are sharp (cf. [Mol12]).
We refer to Section 5.2 for further discussion.
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Chapter 2

Notation and function spaces

Purpose of this section is to fix the notation and describe the general setting of
the following analysis. We introduce function spaces, into which the solutions will
be placed.

The set-up is explained in detail for the Euclidean space. Many basic properties
from below remain true when considering periodic domains.

In the following we use the notation A < B to denote A < C'B for some harmless
constant C, which can change from line to line. To point out dependence on param-
eters, e.g. p,q, the notation A <, , B is used. This is short-hand for A < C(p,¢)B
The symbols ~ or 2 are supposed to be understood likewise.

Furthermore, s+ refers to s4¢ for € > 0, and A < N** B is short-hand notation
for A <. N**<B.

2.1 Schwartz functions and the Fourier transform

Definition 2.1.1. The Schwartz space is defined as
SR™) ={f:R" — C| f is smooth and

Vo, 8 € NG 2 [ fllas = sup 2%0° f(z)| < oo}, (2.1)
me n

References are [SWT1], Chapter 1], [Graldl Chapter 2]. S(R™) becomes a sepa-

rable Fréchet-space when considering || - ||, as a collection of seminorms:
= 3 oty I lles 1S = gllas (2.2)
2 T 1 =gl

The topological dual space, whose elements will be referred to as tempered
distributions (or simply distributions, when there is no room for confusion), is
denoted by S'(R™).

The Fourier transform of an L!-function f : R® — C is defined by

&= flae "™ de, (2.3)

Rn

where z.§ = Y"1, x;&; denotes the standard inner product in R".
Here, we follow the conventions of [Sogl7, Chapter 0].
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The Fourier transform f is a homeomorphism on S(R™) and inverted by

3(x) = (2m)" / g(E)e<de. (2.4)

n

For f,g € L*(R™) define convolution by

(fxg)(z) = - f(z—y)g(y)dy (2.5)

and for f,g € S(R™) recall the fundamental relations (cf. [Sogl7, Theorem 0.1.8])

@m)"(f,9) = @m)" | fla)g(z)de = | f(©)i(€)de = (f.g) (Parseval), (2.6)

Rn ]Rn
I fllzz@ny = 2m)™2|| £l 22 @y (Plancherel),  (2.7)
(f9)(€) = (2m) ™" (f % §)(£), (2.8)

which imply the Fourier transform to be a unitary operator (up to an irrelevant
factor) on L*(R™).

Next, we define Littlewood-Paley projectors in Euclidean space. For a detailed
exposition, see [Graldl Chapter 6].

Let p(§) be a smooth and radially decreasing function with

p(€) =1, [¢] <1 andsupp p C B(0,2).
For k € Z define
Xk(€) = p(27%€) — p(2'77¢),  supp xx € B(0,2")\B(0,2"7)

and the kth Littlewood-Paley projector is defined by

~ N

(Pef)(€) = xx() (&),  feSRM).

It follows that Py f € C*°(R™). Occasionally, we write synonymously P, = Pk,
where capital letters K denote dyadic numbers and minuscules the dyadic logarithm.
Usually, frequencies less than 1 are considered together:

Peo = Z P. (2.9)

k<0

2.2 Sobolev spaces and Fourier restriction spaces

In the following the function spaces for initial data are typically L2-based inho-
mogeneous Sobolev spaces

H*(R") = {f € S'®R") | If |z = [€)° F(€)ll2 < o0}, (2.10)

where (€) = (1 + [¢]*)"/?.
When we consider solutions u(t, ) € §'(R x R™) to evolution equations

{ iOu+e(V/iju =0, ¢eC(RR), (2.11)

u(O) = 1Ug € HS(Rn),
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we distinguish time as separate variable, and the space-time Fourier transform is
denoted by

Fizlu](r, &) = a(r,§) = / e~ HTeT Sy (t, x)dtd. (2.12)
RxR?
Here, (7,&) denote the dual variables of (¢, x).
The space-time Fourier transform is inverted by

u(t,x) = e L (r, €)drde. (2.13)

1
(27T)n+1 /Rx]R"

In (2.11), p(V/i) is supposed to be understood as a Fourier multiplier

o~

(p(V/i)u)(§) = @ (§)u(s).

By Stone’s theorem, it follows that (2.11)) gives rise to a unitary evolution on
H*.
A solution u € &’ to (2.11)) satisfies

(T = p(&))u(r,§) = 0. (2.14)

Thus, the distributional support of @ is concentrated on the set {7 = ¢(£)}. In
the following this will typically be a hypersurface with non-vanishing curvature. It is
well-known that the Fourier transform of compactly supported functions on curved
surfaces (cf. [Sogl7, Chapter 2.2]) leads to the dispersive properties of solutions to
in Euclidean space.

According to the symbol suggested by , we define the Fourier restriction
spaces

Xg'={ue SRxR") | Jullxso = (T = @(€)*(€)*alr, )2, < o0}, (2.15)

where s,b € R.

Nonlinear dispersive PDE on tori were systematically studied in [Bou93a] and
[Bou93b]. In the context of wave equations in Euclidean space there is the related
work by Klainerman-Machedon [KM93], see also the earlier works by Beals and
Rauch-Reed [Bea83| RR&2].

s is referred to as the variable of spatial regularity and b as variable of modulation
regularity.

We have the following lemma that local solutions are X *°-elements:

Lemma 2.2.1 (Free solutions in X*?). Let f € H*(R") for some s € R. Then,
for any Schwartz time cutoff n € S(R) we find the following estimate to hold:

(T /i
||77(t)€1w( /Z)U0||X;vb(Rxw) S w0l s - (2.16)

Related to Sobolev embedding, X *°-functions can be written as superposition

of free solutions for b > 1/2. Consequently, modulation stable properties of free

solutions are inherited by the X®°-functions for b > 1/2. We have the following
lemma:

16



Lemma 2.2.2 (Transfer principle in Fourier restriction spaces,
[Tac06, Lemma 2.9, p. 100]). Let s € R and b > 1/2. Let Y be a Banach space
comprised of functions on R x R™ with the property that

™D Flly SN f e amy (2.17)
for all f € H*(R™) and 79 € R. Then, we have the embedding

lully <o llull s o- (2.18)

E.g. the Strichartz estimates for solutions to the Schrédinger equation (cf.
[K'T98])

) 2 n n
e uol| L2 (r, £z (Rn)) Snpq luollz2@ey (2 < q,p < o0, p + i 5) (2.19)

read in the context of X*’-spaces

||€itAUO||L§(]R,L£(R")) Sn,p,q,b ”uHXg’b (q,p) like above, b > 1/2. (2.20)

The following linear estimate in X *°-spaces points out how Duhamel’s formula
generalizes the fundamental theorem of calculus. For a nonlinear equation

O+ o(V/i)u = F(u),
{ u(0) = up € H*(R™), (2.21)

a function v € C([0,T], H*) with F(u) € L'([0,T], H®) is referred to as strong
solution to (2.21]) provided that u satisfies Duhamel’s formula

t
u(t) = eV /Dy — z/ e t=)e(V/0) Py (s))ds. (2.22)
0
In X*’-spaces we have the following linear estimate:

Lemma 2.2.3 (X*%-energy estimate, [Tao06, Proposition 2.12, p. 103]). Let u €
> SR x R™) be a smooth solution to (2.21)). Then, for any s € R and b > 1/2,

t,loc
and any compactly supported smooth time cutoff n(t), we have

[n@)ull xs0 oo [w(O)[ e + [[F(u)] xz0-1- (2.23)

Consequently, to apply a contraction mapping argument in Fourier restriction
spaces, one also has to prove a nonlinear (typically multilinear) estimate

1F @)y mr S F(lul) oo (2:24)

When it comes to large data theory, one can only expect to solve the equation
locally in time. At this point the following stability lemma comes into play:

Lemma 2.2.4. Let n € S(R) be a Schwartz function in time. Then, we have

Ine)ull oo Sno lull e (2.25)

for any s,b € R and any function u € S(R x R™). Furthermore, if —1/2 < b <b <
1/2, then for any 0 < T < 1

In(t/T)ull o Sapr T ull ze- (2.26)
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2.3 Functions of bounded variation and adapta-
tions for dispersive equations

To maximize the gain in the modulation variable, one would like to apply the
contraction mapping argument for b = 1/2.

However, H'/?(R) fails to embed into L>°(R); thus, X*'/2 does not embed into
L*>([0,T], H?). Moreover, the transfer principle fails.

One remedy is to consider a slightly smaller function space using a Besov refine-
ment in the modulation variable. Here, we consider UP-/VP-spaces as substitute
since these spaces behave well under sharp time cutoff, in contrast to X*’-spaces,
where multiplication with a sharp time cutoff is not bounded. This is useful when
considering frequency dependent time localization later.

For a detailed exposition on UP-/VP-spaces we refer to [HHKQ9], see also [HHKI0].
Below, we collect the most important information to keep the exposition self-con-
tained.

Let I = [a,b), where —o00 < a < b < co. The VP(I)-spaces contain functions
of bounded p-variation, p € [1,00), which take values in L?(T") (although the
function space properties remain valid for an arbitrary Hilbert space). UP(I) are
atomic spaces, which are predual to the V?(I)-spaces. We let Z(I) denote the set
of all possible partitions of I; these are sequences a = tg <t; < ... <tg =b.

Definition 2.3.1. Let {t,}/, € Z(I) and {¢x}E ' C L2 with S p, [[ér—1|2, =
1. Then, the function

K
a(t) = > Gr1X(te_y .t () (2.27)
k=1
is said to be a UP(I)-atom. Further,
UPI) = {f : I — LT | fllver) < oo}, (2.28)
where
1 loery = mf{Aellez [ F(£) = D Avar(t), ax — UP — atom}. (2.29)
k=0

By virtue of the atomic representation, we find elements u(t) € UP(I) to be
continuous from the right, having left-limits everywhere and admitting only count-
ably many discontinuities (cf. [HHK09, Proposition 2.2, p. 921]). Properties of the
spaces with bounded p-variation were already discussed in [WieT9).

Definition 2.3.2. We set

VP ={v: I — L[ |[vllver) < oo},
where

K 1/p
lvllvery = sup (Z lo(tr) — U(tk1)||1£i> < 0.
{te} iz €2(I) \k=1
We recall that one-sided limits exist for VP-functions and again V?-functions can

only have countably many discontinuities (cf. [HHKQ9, Proposition 2.4, p. 922]).
In the following we confine ourselves to consider the subspaces V? re © VP of right-

continuous functions vanishing at —oco. For the sake of brevity, we write V? for
Ve ..
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Definition 2.3.3. We define the following subspaces of V2, respectively U?:
V(1) = {v e V3(I) |v(a) = 0},
Us(I) = {u e U*(I) | u(b) = 0}

These function spaces behave well with sharp cutoff functions contrary to X *°-
spaces, where one has to use smooth cutoff functions. We have the following esti-
mates for sharp cutoffs (cf. [CHT12, Equation (2.2), p. 55]):

lullue(ry = lIxrullve(-co,00))
[vllvery < Ixrullve—oo,00) < 2[ullven-
We record the following embedding properties:
Lemma 2.3.4. Let I = [a,b).
1. If 1 <p<gq<oo, then ||lullys < ||ullur and ||ullve < |Jullve.
2. If1 <p<oo, then |Jullyve S ||ullue-

3. If1<p<q<oo,ula) =0 and u € VP is right-continuous, then ||ullye <
[ullve.

4. Let 1 <p < q<oo, E be a Banach space and T be a linear operator with
[Tulle < Collullua, [[Tulle < Cpllullur, with0 < Cp < Cy.

Then,
< Cq
I Tull e < log{ ) llullve.
i

Proof. The first part follows from the embedding properties of the ¢’-norms and
the second part from considering UP-atoms. For the third claim see [HHK09, Corol-
lary 2.6, p. 923] and the fourth claim is proved in [HHKQ9, Proposition 2.20., p. 930].

O

Definition 2.3.5. We define
DU*(I) = {0u|u € U*(I)} (2.30)
with the derivative taken in the sense of tempered distributions.

We observe that for any f € DU?(I), the function u € U?(I) satisfying dyu = f
is unique up to constants. Fixing the right limit to be zero, we can set

I fllpvzcry = lullv2y, f=0w, weUd, (2.31)

which makes DU?(I) a Banach space. We have the following embedding property
(cf. [CHT12) p. 56)):

Lemma 2.3.6. Let I =[a,b). Then,
LY(I) — DU*(I).

We have the following lemma on DU — V-duality:
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Lemma 2.3.7. [HHK0Y, Proposition 2.10, p. 925] We have (DU?(I))* = VZ(I)
with respect to a duality relation, which for f € LY(I) C DU?(I) is given by

(f.0) =/;(f(t),v(t))Lidt:/ab/fvdxdt.

/a ' / fodadt

For f € DU?(I) one can still consider a related mapping, but this requires more
careful considerations (cf. [HHKO09, Theorem 2.8, p. 924]).
Adapting UP-/VP-spaces to the linear propagator e?*#(V/%) yields the following func-
tion spaces:

Moreover,

I fllpu2(ry = sup
Iollyz=1

lullz oy = e N | o 11y,
||’UHV£(I;H) = ‘le_itW(V/i)U||VP(I;H)7
lull bz (r;my = HB_W(V/”UHDW(I;H)-

UZ-atoms are piecewise free solutions.

2.4 Function spaces for frequency dependent time
localization

The time localization is chosen depending on ¢. Let T € (0,1] and a = a(yp).
We define the short-time U2-space, into which we place the solution by

lulfery = > (A+N)* sup IXrPrvullrs 1,2y (2.32)
Ne2Nou{o} [I|=min(N™%,T),
1cfo.1)

Here we write Py := P<g (cf. (2.9)) for brevity.
The function space N°, into which we will place the nonlinearity, is given by

HfH?VS(T) = Z (14 N)* sup ||XIPNUHQDU3;(I;L2)' (2.33)
Ne2Nou{o} [ |=min(N—,T),
IC[o,T]

The frequency dependent time localization erases the dependence on the initial data
away from the origin. Instead of a common energy space C([0,T], H®), we have to
consider the following space:

[ull B 7y = [1P<ow(0) |72 + > N** sup ||[Pyu(t)]7.. (2.34)
No1 te[0,T)

This space deviates from the usual energy space logarithmically. The following
linear estimate substitutes for the X*’-energy estimate from Lemma

Lemma 2.4.1. Let T € (0,1] and u be a solution to (2.21)). Then, we find the
following estimate to hold:

lullrg S Nlullps(ry + 1)l ng (1) (2.35)
Proof. A proof in the context of a specific evolution equation, which immediately
generalizes, is given in [CHT12, Lemma 3.1., p. 59]. O
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2.5 Modifications for tori

We turn to a discussion of the necessary modifications in the periodic setting.
In some applications one has to consider tori with arbitrary period A > 0. We set
T =R/(27nZ) and AT = R/(27\Z). Further, for A = (A1,...,\,) € RZ, we set

AT™ = x™_, (R/(21);)). (2.36)

Varying A one has to keep track of possible dependencies of constants on the
spatial scale. The conventions below follow [CKS™T03].

For A € RZ, the Fourier transform of a 2 \-periodic L!-function f: AT x ... x
A, T — C takes on values in Z" /A :=7Z/\1 X ... x Z/\, and is defined by

f(6) = / f@)eEdr (€ € Z7/N). (2.37)
A1TX...x A, T

Let (d€)x be the normalized counting measure on Z"/\:

[a@@n =15 X oo (239)

i=1"" cezn /A
The Fourier inversion formula is given by

1

/ F(€)eiE (de). (2.39)

We find the usual properties of the Fourier transform to hold:

lz0m = el iz, (Plancere), (2.40)
- 1 A
[ s = G [ QIO Parsewal).  (241)

For further properties, see [CKST03| p. 702]. We define the Sobolev space H; with
norm

£l = 1F(€)(€)* Il (2.42)

(d€)x

and like above HS® =, H3.
For a 2mA-periodic function f(t,x) with time variable ¢ € R, we define the
space-time Fourier transform

B €) = (Frav) (7, ) = / dt [ dee e ot ) (€€ ZMA tER).

R Jare
(2.43)
The periodic space-time Fourier transform is inverted by
1 / / iw b it~
v(t, ) = —— [ dr dé) e et (T, ). 2.44
(1) = Gyt [0 | (@) (r,€) (2.44)

We also use short-time UP-/VP-function spaces in the periodic case as long as
modulation considerations do not play a role.
We contend that in this case the UP-/VP-set up yields a simplification compared to
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the framework of the classical short-time X **-spaces introduced in [IKT08] as long
as one does not use modulation considerations.

In the latter case, there does not seem to be a simplification and we revisit the
well-known construction from [IKTO08]. For the proofs of the basic function space
properties, which hold true independent of the domain and dispersion relation,
we refer to the literature. (NB. The proofs are more involved than in the UP-
framework but well-known in the literature.) The definition requires a partition
in the modulation, which we denote differently from the partition of the spatial
frequencies.

Let 1o : R — [0, 1] denote an even smooth function supp (19) C [—8/5,8/5] with
no =1 on [-5/4,5/4]. For k € N we set

M (7) = no(7/2%) — no(/2571).

We write n<,, = ZT:oﬂj for m € N. For k € Ny set Iy = [—1,1] and I}, =

[_2k72k]\(_2k_172k_1)'
For k € Np and j € Ny set for a dispersion relation ¢ € C'(R",R)
Dy ={(1,§) ERXZ|E € I, 27! < |1 — (&) < 2},

o (2.45)
Di<; ={(1,§) eRXZ|E € I, |1 — p(§)] < 27T}

Next, we define an X *-type space for the Fourier transform of frequency-localized
27 A-functions:

ka,\:{f:RXZn/A—)C|

Cie)s L <OO}.

supp(f) C R x L, | fllxen = D 2 ni (r — (€) (7, €)lI 2
=

Partitioning the modulation variable through a sum over n; yields the estimate

I 1Ol Nz, S el (2.46)
Also, we record the estimate
> 2 ny(r - / 27 @ 2 — ) R e, s
j=l+1
+ 22— @) [ 1G] 270+ 2 =) s, 1
S el xens

(2.47)

which is a rescaled version of [GOI8, Equation (3.5)].
In particular, we find for a Schwartz-function v for k,1 € N,ty € R, fi, € X\
the estimate

IF @'t = t0)) - F~H (i)l xun S I Fll s (2.48)
We define the following spaces:

Eix = {uo : AT = C|supp(do) C Iy, [[uoll s, » = [luollzz < oo},
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which are the spaces for the dyadically localized energy.
Next, we set

Co(R, E,z) = {uy € C(R, By, ») | supp(ux) C [—4,4]}
and define for a frequency 2* and a > 0 the following short-time X**-space:

Fign = {ur € Co(R, Eg ) |[luxll g, = sup | Flurno (2" (t — ti)]ll x,., < 00}
k

Similarly, we define the spaces to capture the nonlinearity:
Ny = {ur € Co(R, Eg,») |
urlvg , = sup (7 = (&) +i2°%) " Flugno (2°* (¢ — t)]l| x40 < 00}
k€

We localize the spaces in time in the usual way. For T' € (0,1] we set

Fga(T) = {wr € C([-T. TV, Ex \) vkl re (m) = ak:uiﬁf[_T . |Gkl Fe, < oo}
and
NEA(T) = A{ur € C([=T,T], Ex 2) uklng (1) = inf [tk || g, < oo}

ﬁk =Ug in[fT,T]

We assemble the spaces for dyadically localized frequencies in a straight-forward
manner using Littlewood-Paley theory: as an energy space for solutions we consider

Ei(T) = {’LL € C([_T» T]vH?\O) |

Bi(r) = | P<oul(0)]I7; + Ztk:ﬁ% . 2°5|| Pru(ty)|72 < oo}.
k>1 )

[[ul

We define the short-time X *®-space for the solution
Fy(T) = {u € C(=T, T, B2 [l ry = 3 2% | Pealld oy < o0},
k>0
and for the nonlinearity we consider
Ny™(T) = {u € C([-T. 1), H®) [||ull Rso 7y = ZQZ“HPWII%MT) < oo}
k>0

We also make use of k-acceptable time multiplication factors (cf. [IKTO08]): for
k € Ny we set

10
St = {mx € C*RR): mllsy =279 0mu o= < o0}.

Jj=0

The generic example is given by time localization on a scale of 27%% i.e., 79(2°%-).
The estimates (cf. [IKTO08, Eq. (2.21), p. 273])

| Zkzo mk(t)Pk(u)HF;=“(T) < (Supkzo ||mk||S,;*) 1wl F2o(T)>
Z (2.49)
|2 k0 M (O) P ()| vy S (Supgso Imllsg) - [lullvee )
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follow from integration by parts.
From ([2.49)) follows that we can assume Fj, (T') functions to be supported in time

on an interval [T — 2-2k=10 T 4 9—ak=10]

We record basic properties of the short-time Xi’b—spaces introduced above. The
next lemma establishes the embedding Fy*(T') — C([0,T], H).

Lemma 2.5.1. (i) We find the estimate
lullzgerz S llullrg,
to hold for any u € Fi',.

(ii) Suppose that s € R, T >0 and u € Fy"*(T). Then, we find the estimate

lullcqo,ry,ms) < lullree(r)
to hold.

Proof. For a proof see [IKT08, Lemma 3.1., p. 274] in Euclidean space and
[GO18, Lemma 3.2, 3.3] in the periodic case. O

We state the energy estimate for the above short-time X *°-spaces. The proof,
which is carried out on the real line in [IKTO08, Proposition 3.2., p. 274] and in the
periodic case in [GOI8| Proposition 4.1.], is omitted.

Proposition 2.5.2. Let T € (0,1], a > 0 and u,v € C([-T,T), HY) satisfy the
equation
10w+ o(V/i)u =vin XT" x (=T, T).

Then, we find the following estimate to hold for any s € R:

[l F3(T) < HUHE‘;"’(T) + ||’UHN‘;’Q(T)~

For the large data theory we have to define the following generalizations in terms
of regularity in the modulation variable to the X-spaces:

X={f:RxZ—C|

oo

supp(f) € R x I, [|f [l xp = D 2 |Ini (7 — o(n) f(r,n)lez £z < o0}
§=0

where b € R. The short-time spaces Fy'®, F2*(T) and N*®, N%5(T) are defined
following along the above lines with X}, replaced by X?.

Indeed, in a similar spirit to the treatment of X;’b—spaces, we can trade regularity
in the modulation variable for a power of T"

Lemma 2.5.3. [GOI8, Lemma 3.4] Let T >0, a > 0 and b < 1/2. Then, we find
the following estimate to hold:

HPkUHFl:ﬂ S T<1/27b)7||PkUHFg

for any function u with temporal support in [=T,T| and implicit constant indepen-
dent of k.
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Below we have to consider the action of sharp time cutoffs in the Xj-spaces.
Recall from the usual X®’-space-theory that multiplication with a sharp cutoff in
time is not bounded. However, we find the following estimate to hold:

Lemma 2.5.4. [GO18, Lemma 3.5] Let k € Z. Then, for any interval I = [t1,t3] C
R, we find the following estimate to hold:

sup 2972||n; (1 — () Fra[L1 (8) Pru]ll 202 S | Fo(Prtt) | x,
J=Z

with implicit constant independent of k and I.
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Chapter 3

Control of rough wave
interactions via frequency
dependent time localization

In this chapter we give an overview of the approach, which is varied in the fol-
lowing chapters to prove new local regularity results. We reprove in detail local
well-posedness of the Benjamin-Ono equation in H*(T) for s > 1.

This result does not come close to the global well-posedness result in L?(T) by Mo-
linet (cf. [Mol08]), which was proved via a gauge transform.

Below we argue how the argument extends to related models, which are no longer
easily amenable to a gauge transform.

The chapter also has a motivational character preparing for the more involved ar-
guments, which are deployed in the following chapters.

We return to the example from the introduction, where we had been considering
the Benjamin-Ono equation

{ Opu+HOppu = udyu, (t,r) eRxT, (3.1)

u(0) = up € H(T).

H : L*(T) — L*(T) denotes the Hilbert transform, which we define as the Fourier
multiplier

~

(Hf)(€) = —i sgn(€) f(£).

Following the heuristic argument from the introduction, we choose the frequency

dependent time localization T(N) = N~! and consider the short-time function
spaces
HUH%’EO(T) = Z (1+N)* sup ||PNU||?J§O(1;L2(T))7 (3.2)
Ne2You{o} [I|=N""AT,
Ic(o,1]

where U%O is the U2-space adapted to the linear propagator of (3.1)). Nio(T) and
E*(T) are also defined following Section
To propagate solutions in F3,(T), we prove the following two estimates in
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addition to the linear estimate (2.35) for s > 1:
{ 102 (u?) vz 7y <l

2
F§O(T) (33)

[l () S llwollz JrT”“HSJ-;O(T)'

To prove continuous dependence, we make use of a known variant of the Bona-
Smith approximation (cf. [BS75]). In the context of short-time X®’-spaces on
Euclidean space, this was already adapted in [IKTO0S§].

First, we show Lipschitz-continuity in L? for initial data with higher regularity.
Denoting v = uy — us for u; smooth solutions to and s > 1, we find

[vllFo, () S ollpocry + 110z (v(ur +u2))l vy, (1)
[0z (v (uy +2U2))HN%O(T) s ||UHF,g02(T)(HU1| Fio(m) + l[u2llFg ()
||U||E0(T) S v (0)[I72

+T0lfo iy (luall rg (1) + N2l 7y (1),

(3.4)

and in the second step, the following set of estimates is proved:

[vll 7 ) < oll =y + 100 (w(us + u2)) g, (1)

[0z (v (uy +U2))||N;;;O(T) N ||U||FgO(T)(||U1||FSO(T) + ||U2||Fgo(T))
190132y S o) + Tlll3s o (3.5)
+T||U”§?go(T)”u2|
+T||U||FgO(T)||U|

Fpo(T)

Fgo 2l pze, (7

The standard bootstrap arguments to conclude local well-posedness are given in
Section

Important symmetries of to prove the above sets of estimates are conserva-
tion of mass and the real-valuedness of solutions as already pointed out in [IKTO0S].
One novel observation is how frequency dependent time localization allows us to
overcome the derivative loss on tori via short-time Strichartz estimates.
The argument is modular in the sense that it extends to higher order nonlinearities

O+ HOppu = ub~10,u, (t,z) e R x T, (3.6)
u(0) = o € HE(T), ’
where k € Z>3, and dispersion generalizations H0p, — 0, D%, 1 < a < 2.
The corresponding estimates to (3.3)) to prove a priori estimates are
Hu|kFgO(T) S kEs(T) + ||3m(uk)||Ngo(T)
[0 (w )2 Nio(T) S [[ul FQgO(T) . (3.7)
llleiry S luollire + ThullE! -

To write down the estimates for differences of solutions to (3.6]), we consider
&(u’f — ug) = 0. (v(Qk(u1,u2)) = 0 (v, Sk (v, uz)), (3.8)

and the set of estimates to prove L2-Lipschitz continuity for initial data in H,
s > 1, is given by

||U||FgO(T) S lolloery + ||aw('UQk(u1>UZ))HN%O(T)
102 (vQk (w1, u2)) o, () S vllrg,, () Qr(llurllry (1), [lullFy (1)) (3.9)
10]1%o0 () NSO '
(0170 2y Qr w5 o (1) 12l g (1))
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The corresponding estimates to (3.5)) yielding continuous dependence in H® are

loll7g o () S lolles oy + 1102 (vQk (w1, u2)) | s, (1)
102 (vQk (u1, u2)ling o, (r) S Illrg () @ulluall g, (1)s ull g ()
1ol ) < (o).
ATl Sl g, oy izl )
+T(lvllpo(ryllvll 7 (1) luzll 725 (1)
Sz%(HUHFgo(T), HU2||F]§O(T)))

(3.10)
with polynomials Si, i = 1,2.
To make the heuristic argument precise and carry out the nonlinear and energy
estimate rigorously, we start with a discussion of Strichartz estimates.

3.1 Bilinear Strichartz estimates

A Taylor expansion in frequency space suggests that frequency localized so-
lutions u = e®*(V/)y,, where supp g C B(&p,¢e) for some ¢ < 1 are to first
approximation traveling waves with group velocity —V¢(&y). The following propo-
sition points out how difference of the group velocities, i.e., transversality of the
characteristic surfaces, can lead to bilinear improvements of the linear estimates.

Proposition 3.1.1 (Bilinear Strichartz estimates). Let U; be open sets in R™,
0; € CYU;,R) and let u; have Fourier support in balls of radius r, which are
contained in U; for i =1,2. Moreover, suppose that |V1(§1) — Vipa(&2)] > N >0,
whenever §; € Uy, i =1, 2.

Then, we find the following estimate to hold:

n—1

i i i i roe
”e tp1(V/ )ule tp2(V/ )u2||L§11(R><R”) S,n WHUl HL2(]RTL) Hu2||L2(]Rn). (3.11)

In Euclidean space this follows from a change of variables (cf. [Bou98]). We
omit the proof to avoid repetition because a periodic analog is discussed in detail
in the following proposition.

However, in the periodic case one can not expect this estimate to hold globally in
time due to lack of dispersion. Instead, we have the following estimate:

Proposition 3.1.2. Let U; be open sets in R™, ¢; € CY(U;,R) and let f; € L*(R x
Z") with |
fi(r,§) =0 for&¢ B(&S,r) C U, |7 —@i(§)] <27 (3.12)

fori=1,2. Moreover, suppose that |Vp1(&1) — Vipa(&2)| > M = 2™ > 0, whenever
&elU;,1=1,2.
Then, we find the following estimate to hold:

[1f1* falz2

Proof. An application of Cauchy-Schwarz gives

2
e foler, = [ar [@on | [an [@enninent-ne-a)

S sup meas(Br.¢)|| 13 f2113,
T)

ot Sn (14 7) T gm0 g o= 2 | o2 (3.13)
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where

Bre={(m1,&) | Im—p1(&)| S 27, |(T—11)—p2(E—&)| S 272,& € Uy, €& € Us}.

In the following let j; < jy without loss of generality (since f1 * fo = fo * f1).
Note that fixing & and letting 7 vary

meas(Br¢) S 2 #({&1 € suppefi1 | T — ¢1(61) —p2(E — &) $272}),  (3.14)

where § — &1 € suppg f2. Set ge(€1) = @1(61) + p2(§ — &1).
Next, we divide supp, f1 into

M
I; = {&1 € suppg f1 | [0ige(&1)| > 0*}7

and choosing €, as a sufficiently large dimensional constant, we find that supp, f1
is covered by (I;)™.
Hence, it is enough to estimate

#{& € L [ 1T —p1(&r) —2(6 &) S22} S A+227™)(1+7)"71 (3.15)

The above display follows from counting &;; by the lower bound of the derivative

and the remaining components by the size of suppe fi. Taking (3.14) and (3.15)
together completes the proof. O

Remark 3.1.3. From the proof is clear that there are variants for general tori, but
we will not need them.

Proposition [3.1.2] states that for modulations large relative to the difference of
group velocities there is little difference between Euclidean space and the torus.
Moreover, the same proof applies in Euclidean space with the difference that the
constant in is improved to 272~™r"~1 because no longer points on a grid are
considered but a continuous range.

The localization in time allows us to assume that it is enough to consider regions
of modulation, which have a minimal size antiproportional to the frequency depen-
dent time localization (cf. (2.47)). This allows us to obtain enough smoothing to
ameliorate the derivative loss.

On the other hand, it is not clear for us how to derive the above estimate directly for
solutions at short times. Only after imposing a condition on the dispersion relation,
we can derive the corresponding estimate for :

Definition 3.1.4. We say that a dispersion relation ¢ : R™ — R is of sum type if
0(&) =Y, u(&) with p slowly varying, i.e., p(z) ~ p(2z) for any x # 0.

Proposition 3.1.5. Let K <« N, suppose that ¢ is of sum type and satisfies
[Vo(&)| ~ [€|* for some a > 0. Then, we find the following estimate to hold:
||PNeitW(V/i)ulpKeitW(V/i)UQ||L%([O,N7a]7L2(Tn))

K" (3.16)
S NT | Pnvusl| 2 (rey | Pruz || 2 (1my -

In the one-dimensional case this estimate was proved up to complex conjugation
in [MV08, Theorem 4, p. 125], and the below argument follows along its lines.
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Proof. We find

Ul(t) _ Z eiz’kleitW(kl)a(kl), ’LLQ(t) _ Z eim.kgeitcp(@)b(kz),

k,ezm kocZm
u1u2(t) _ Z eia:.(kl-‘rkz)[eit[¢(k1)+<p(k2)]a(kl>b(k2)]_
k1,ko€Z™

Consequently, Plancherel’s theorem yields

2

Z Z ettlplk—ka)tok) g (] — ko)b(ks)

keZm |koeZ™
Z Z it (o (k—kS)+o (k)] ~ o (k=) +o(kED)]) (3.17)

KEL™ () 1) czn

l[urual|7

x alk — kS )b(kSa(k — kS)b(kS).
Set Y (k') = o(k — k') + p(k'). Next, let ns(t) = n(t/d), where n is a suitable

bump function and majorize

N—a,
| it < [ a0, §=5
and we find

/ OO =Y S aswl) — v (kP))

REZ™ 1D 1P egn (3.18)

x a(k — kS a(k — kS )bk,

The inner sum we will estimate with Young’s inequality. Note that
(k) — (k)
1
- / Vion (6 + (k) — k) (kS — KDt

0
1

= / [Vo(ks? + (kY — k) — Vop(k — (kS + (k) — k&)t - (k) — k).

(3.19)

By assumption, it is easy to see that there is one component of the integral, which
is of order N® independent of ¢, say the first component. This gives

BT = (N (ky, ks kD)) (kS — BSD) + 3 Cilles, k5, k) (kS — KS),

=2

where, due to our assumptions on u, there is C' > 0 so that

C7' < dey (b, K KDY <
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An application of Young’s inequality yields

BID S D {sup > 1((ON ey (ke kS kS (RS — kSD)

(2
kezn kD ELM (1 cpn

+ 37 Cilk, KBS (RS = KEN %Y Ja(k — ka)b(ks)[*.

=2 ko€Z™

The sum >, 1), [9(...)| is majorized by [ 17(€)|d¢, and summation over the re-
21

maining indices yields a factor K per summation.
Consequently,

BI S Y 6K Y lalk — ka)P[b(ks)|?

kezn ko€Z™
SOK"Hall3]6113,
and the proof is complete. O

Observe how the special form of ¢ comes into play in the expression (3.19) and
the subsequent estimates.

Remark 3.1.6. We illustrate the argument and some of its consequences.

Suppose that n = 1 and w1 and uy have Fourier support in intervals I; and Is,
respectively, and consider the dispersion relation ¢(&) = £|¢|%, £ € R. Suppose that
Iy, I do not necessarily belong to dyadically separated annuli, but still satisfy

V(&) — V(&) ~ N®, where §; € 1.
The Fourier support must be convex so that when we are integrating

1
/0 Vok$? + (kY — k) — Vo (k — K))dt.

)%

k' is always an element of I and k — k' is always an element of I;. This yields the
integral to be ~ N®. Then, the proof gives the same estimate like for High x Low —
High-interaction.

We shall see that we can also deal with High x High x High x Low X .. .-
interaction |§;| ~ N;, i =1,...,k, Ny ~ Ny ~ N3 > Ny 2 N5... with two bilinear
estimates:

There are three frequencies &1, &a, €3 satisfying |&;| ~ N, i = 1,2,3 and we have
the convolution constraint Zf & = 0. We argue that there are i,j € {1,2,3} :
&l = 1§11 = N

Divide the frequency projector into smaller intervals. We write

PNlul,PNQ’U,QPNB’LL;),PK’LL;L cee = Z PIIU1P[2’UQP]3U3PKU4 P (320)
I1,12,13

Here, I; denote intervals of length ¢N, ¢ < 1, K <« ¢N. With the intervals
having a size of ¢V, there is no loss summing up the different contributions at last.
Observe that I; and —I; must be separated due to impossible frequency interaction
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otherwise. In case I} and I, are separated, the estimate ||&1]|* — |&]?] 2 N° is
immediate.
If there is no separation between I; and I3, the intervals are neighbours and +13
will be separated from I; and I due to otherwise impossible frequency interaction.
Consequently, we record the estimates

155 5 (Prv, €% P uy (0) P, €% Peug (0)) | 120, ), £2)

< N7 P (0) 2| Py (0) 2,

where S<y denotes the part where the modulus of the frequencies is separated of
order N and N7 ~ Ny ~ N. This follows from the interval slicing argument depicted
above.

Moreover, rescaling solutions u(t, z) — u(A*t, \z) yields the estimate with
the same constant on a rescaled domain.

We have a look at examples: In the one-dimensional case one can consider the
equations:
i0u+ D 'u=0, a>0, uw:RxT—C,

or, similarly,

Ou+ 0, Diu=0, u:RxT—=R.
In both cases Proposition yields for free solutions u;, i = 1,2

[Py () Prcua (8) || 12 0,5 -], p2my) S N7 2 [Py (0)| 2y | Preuz (0)]| L2y,

where K < N. This becomes useful when we consider fractional Benjamin-Ono
equations below.

3.2 Linear Strichartz estimates

In the case of an interaction of comparable frequencies one can not expect to still
be able to apply transversality considerations. However, this is exploited in Chapter
when dealing with fractional Benjamin-Ono equations even in higher dimensions.
Moreover, transversality can also come from angular separation.

One way to derive a nonlinear estimate for comparable frequencies is to ap-
ply linear Strichartz estimates, which are related to curvature of the characteristic
surface.

In Euclidean space this mechanism is well-understood. Starting point for the
derivation of linear estimates is a dispersive estimate

[PV /D || oo ny Sn (14 [¢) 70| Pro]| 1 (- (3.21)

For general results relating curvature and decay, see [KT05¢c]. Due to unitarity of
the time evolution, one has the L2-estimate

leeittp(V/i)uO”Lz(Rn) 5 HP1u0||L2(Rn) (3.22)

and following [GVT9], Strichartz estimates for ¢ # 2 follow from the T'T*-argument

(ITom5])]

IThe endpoints ¢ = 2, p # oo were covered in [KT98] by a more subtle interpolation argument.
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3.2.1 Strichartz estimates from decoupling and applications

The situation is less clear in the periodic case. Below, we show how the essen-

tially sharp ¢?-decoupling results from [BD15, [BD17a] imply Strichartz estimates
for more general phase functions.
In the Bourgain-Demeter works this was pointed out for Schrédinger dispersion
relation. The following modest generalization of the argument clarifies the role of
curvature. We point out how ¢?-decoupling implies Strichartz estimates for non-
degenerate phase functions on tori T" = (R/27Z)". These estimates apply to
solutions to linear dispersive PDE

{ 0w+ p(V/i)u =0, (t,z) € R x T,

u(0) — up, (3.23)

where ¢ € C?(R™, R).
The eigenvalues of D% (&) are denoted by {y1(),...,7.(£)} and we set

(&) = min({#neg.7i(E), #posyi()}).

The non-degeneracy hypothesis we assume reads as follows for 1 : 2N — R>0:

min(|;(§)[) ~ max(|%i(§)]) ~ ¥ (N), [€] € [N,2N),  0,(§) = k. (Ex(v))

The Strichartz estimates we prove below read
1 Pn e Dug|| porsermy S HI1YPN*) || Pyuo]| 2. (3.24)

To prove (3.24]), we will use ¢2-decoupling (cf. [BD15, BD17a]), more precisely,
(variants of) the discrete L2-restriction theorem.

Proposition 3.2.1. Suppose that ¢ satisfies (¥ (¢)) and let I C R be a compact
interval with |I| 2 1. Then, we find the following estimates to hold for any e > 0

n_ n+2

1/p N(i_ ’ )+6
(min(¢(N), 1))1/p

||PN€it“’(v/i)U0HLP(IxTn) Se | |l Pnuol| L2 (3.25)

provided that W <p<oo.

Proof. Without loss of generality let I = [0,T]. First, let p > w and compute
P

WEZ = [, o | D) e
T0<i<T|lgl~eN
p

~(n+2) . .
~ NT \A< . Z el(fb§+m¢(N5))ﬂo(N€) dxdt.
VIV SOy ez

We distinguish between (N) <« 1 and (N) 2 1. In the latter case, we use
periodicity in space to find

N—(n+2) . (@bt o(NE
" @TNGN)) (V) Am,.“,mww),l >~ ag(N)e T R AN P,
T 0<t<TN2y(N) l€]~1,
EeZ™ /N
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This expression is amenable to the discrete L2-restriction theorem
[BDT5, Theorem 2.1, p. 354] or the variant for hyperboloids because T N2t (N) >

N? and the frequency points are separated of size % and the eigenvalues of %
are approximately one.
Hence, we have the following estimate uniform in ¢ (the dependence is encoded

in ¢(N), which drops out in the ultimate estimate)
< N—(n+2)
™ (TNY(N))"h(N)

< TNGE=52)P4e | P |18,

n+2

(TN2)(N)) N E =557+ Py |5

Next, suppose that ¥)(N) < 1. In this case we can not avoid loss of derivatives
2(n+2—k)
n

in general. Following along the above lines, we find for p > —

p

N—(nt+2) il (Ne)
WSEZY ~ o [y e | Do €IS (V)| daa
v 0<t<TN?G(N) | [€[~1,
EEL™ /N

to(NE)

. p
Zez(w~§+N2w(N)),a0(N€) dxdt

< N—(n+2)
~ (NT)™)(N) _Aﬁwl,...,mngTNQ,

0<t<TN?
<. BV ERETS
Y(IN)

which yields the claim. O

P Pyvuolls,

Recall that certain Strichartz estimates from [Bou93al, BD15| [BD17a] are known
to be sharp up to endpoints. Since the proposition is a generalization, the Strichartz
estimates proved above are also sharp in this sense. Moreover, as in [BD15], [BD17a]
there are estimates for 2 < p < W, which follow from interpolation. As
an example, we consider Strichartz estimates for the free fractional Schroédinger
equation
{ O+ D =0, (t,x) e RxT", (3.26)

U(O) = Up.

The phase function ¢(§) = [£|*, 0 < a < 2, a # 1 is elliptic, and the lack of
differentiability at the origin is not an issue because low frequencies can always be
treated with Bernstein’s inequality. ¢ satisfies (£°(¢))) with (N) = N2~2. Hence,
we find by virtue of Proposition [3.2.1

HeitDa 2—a n 7; 2
2284 (2 - 2E2) | else.
(3.27)

To find the Lf‘)z—estimate in one dimension, we interpolate the ng—endpoint

estimate with the trivial Lfym—estimate.

In case n =1, 1 < a < 2 this recovers the Strichartz estimates from [DET16], and

for 0 < a < 1, this estimate was proved in [Dinl7].

For n > 2, 1 < a < 2, the estimates seem to be new. In [Dinl7] short-time

arguments were used to derive Strichartz estimates on arbitrary compact manifolds.

uollzs  (1x1m) Snias I[M* ol e, 5> s0= {
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These estimates we can improve on tori for 1 < a < 2 because we do not have to
sum up over frequency dependent time intervals.

However, for p # 2, Proposition [3.2.1]does not yield Strichartz estimates without
loss of derivatives. When we want to apply these estimates to prove well-posedness
of generalized cubic nonlinear Schrodinger equations

. . o 2 n
{ iOpu+@(V/i)u = =£[ulu, (t,x) € RxT", (3.28)

u(0) =up € H*(T"),

we will use orthogonality considerations to prove refined bilinear Lf’x—estimates for
High x Low — High-interaction. These estimates have no loss of derivatives in the
high frequency, thus allowing us to close the contraction argument.

In [BGTO05, Theorem 3, p. 193] was proved the following proposition to derive well-
posedness to cubic Schréodinger equations on compact manifolds:

Proposition 3.2.2. Let ug,vg € L*(T"), K,N € 2N, If there exists so > 0 such
that

”PNe:titap(v/i)UOPKeiitap(V/i)vo ”L%T(IXT’L)

V2 . (3.29)
< I1M* min(N, K)*°|| Pyuo|| 2 || Pxvol| L2,

where I C R is a compact time interval with |I| = 1, then the Cauchy problem
(13.28)) is locally well-posed in H® for s > sq.

For ¢ = Y0 | a;€? (3:29) follows from almost orthogonality and the Galilean
transformation (cf. [Bou93al, Wanl3]). It turns out that it is enough to require
(EF(1))) to hold for some uniform constant C, > 0:

Ve e R™ : min(|y;(§)]) ~ max([yi(§)]) ~ Cp,  0,(§) = k. (EM(Cy))

This will be sufficient to generalize the Galilean transformation and prove the fol-
lowing:

Proposition 3.2.3. Suppose that p € C*(R™,R) satisfies (E¥(Cy)). Then, there
is s(n, k) such that we find the estimate

|‘PNezl:itap(V/i)uOPKezl:itap(V/i 1/2||PNUO||L2 ||PKU0||L2

(3.30)
to hold for s > s(n, k), where I C R denotes a compact time interval, |I| 2 1.

)UO”LE,E(IX’H‘") <c,.s K|

Proof. Partition Py = ZKl Ry,, where Ry projects to cubes of sidelength K.
Then, by means of almost orthogonality,

Ihs(B3:30)° < Z | Rk, eV /Dug PtV /Dy ||2Lfvz(1><'ﬂ“")'
K1

After applying Holder’s inequality, we are left with estimating two Lﬁx—norms.
Clearly, by Proposition [3.2.1
1Pre™ vl a1y Ses K| Prcvoll 2

provided that s > s(n,0y).
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To treat the other term, let & denote the center of the cube Qk,, onto which
Ry, is projecting in frequency space, and following along the above lines, we write

| R, eitw(V/i)uO”‘i%wUXTn)
4
= i(z.£+te(8)) 5
o %Szl,...,zngﬂ, Z € tg(§)| dadt
0<t<T €€EQK,
4
- %Sm,...,mnS?ﬂ, Z ﬁo(g + gl)ei(n({o-i-g )+te(Cote)) dxdt
[¢'|<K
4
= i((x+tVp(£0)).& +tehe (§') )0 (¢!
B A§m17~»-,zn,g2ﬂ, Z € ’ c0 w0(§ ) dxdt
0<t<T [¢'|<K

= ||]D§K1 6itw£0 (V/i)wo (93 + tV(,O(&))) H%‘l(lx'ﬂ‘")’

where ¢, (§) = @(So +&') — (&) — Vip(&o)-¢'-

After breaking ||P§Ke”¢50(v/i)w0||L§x(szn) < Y cner |Preteo (VD] pa,
the single expressions are amenable to Proposition Indeed, the size of the
moduli of the eigenvalues of D%y, are approximately independent of the frequen-
cies.

Hence,

1PLe’™ 0N Do pa (rurny Se,e, P HFE || Prawol| 2,
and from carrying out the sum and the relation of ug and wyp, we find

|| P<rce™ 0V Dapg || pagrerny Serp KT R uol| 2.

The claim follows from almost orthogonality, i.e.,

1/2
(ZHRKluo@z) S [1Pvuol|ze-
K1

This bilinear improvement can also stem from transversality: Write
V(&) £ Ve(§2)| ~ N, whenever [&1] ~ K, [&] ~ N. (T%)

The corresponding short-time estimate from Section [3.1] is sufficient to derive an
Lix—estimate for finite times by gluing together the short time intervals:

Proposition 3.2.4. Let a > 0, K < N,K,N € 2" and suppose that ¢ satisfies
(T*). Then, we find the following estimate to hold:

1P e g Pree Y D || a1y S U2 [ Pyvaol| 2| Prvoll 2 (3.31)

provided that I C R is a compact time interval with |I| 2 N~¢.
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Proof. Let I =J;I;, |I;| ~ N, where the I; are disjoint. Then,

1hs(331)% < Z ||PNehth(v/i)UOPKBﬂW(V/i)UO||2Lg_w(1j XT)
1, ’

< #1)N | PyuolZ2 || PrvollZs,
and the claim follows from #1I; ~ |I|N®. O

Invoking Proposition [3:2.2] together with Propositions [3.2.3] or [3.:2:4] the below
theorem follows:

Theorem 3.2.5. Suppose that ¢ € C*(R™,R) satisfies (E¥(Cy)). Then, there is
so(n, k) such that is locally well-posed for s > so(n, k).

Let n = 1 and suppose that ¢ satisfies (T*). Then, there is sg = so(v) such that
is locally well-posed for s > so(p).

We give examples: In one dimension we treat the fractional Schrédinger equation

{ i0u+ D% = +|ul?u, (t,x) ER x T,
s (3.32)

u(0) =ug € H*(T),
where D = (—A)Y/2,

Theoremyields uniform local well-posedness for s > 22—“, 1 < a < 2, which
is presumably sharp up to endpoints as discussed in [CHKLI5|, where the endpoint
s = 22—“ was covered by resonance considerations.

For 0 < a < 1 varying the above arguments, we can also prove local well-posedness
for s > QTT“, which was previously proved in [Dinl7] in the context of Strichartz
estimates for fractional Schrédinger equations on compact manifolds.

Moreover, in Euclidean space fractional Schrodinger equations were considered

in [HS15]. Key ingredient to well-posedness are linear and bilinear Strichartz esti-
mates, which hold globally in time due to dispersive effects. On the circle we can
reach the same regularity up to the endpoint like in [HS15].
It might well be the case that the linear Strichartz estimates are sharp in higher
dimensions because they match the estimates from Euclidean space. However, satis-
factory bilinear Lf’z—Strichartz estimates appear to be beyond the above arguments
and possibly require additional angular decompositions (cf. [CKST08]).

We also discuss hyperbolic Schrodinger equations. The well-posedness result
from [Wan13l, [GT12] is recovered for the hyperbolic nonlinear Schrodinger equation
in two dimensions, which is known to be sharp up to endpoints.

Generalizing the example probing sharpness to higher dimensions indicates that
there is only a significant difference between hyperbolic and elliptic Schrodinger
equations in low dimensions.

For hyperbolic phase functions, Theorem recovers the results from [Wanl13l

GT12], where essentially sharp local well-posedness of

{ i+ (02, —02))u = =+ul*u, (t,x) € RxT?

u(0) =ug € H*(T?), (3.33)

was proved for s > 1/2. Notably, due to subecriticality of the L} -Strichartz esti-
mate, already for the hyperbolic equations

i+ (02, — 02, + 02, )u = *ul?u, (t,x) € R x T3,
u(0) = Uo,

(3.34)
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and

- 2 _ 92 2 _ 92 _ 2 4
{ Zatu + (a;m a:cz + ax?, 8374)’& - :|:|U| U, (t,l’) ERXT ’ (335)

u(0) = ug,

the (essentially sharp) Strichartz estimates yield the same well-posedness results as
for the elliptic counterparts:

Firstly, recall the counterexample from [Wan13|, which showed C3-ill-posedness
of for s < 1/2. As initial data consider

¢N(w) — N—1/2 Z eikxle—ikxz’
[k|I<N

which satisfies ||¢n]||gs ~ N° and S[on]|(t) := e“(aﬁl*@iz)dw = ¢n. This implies

T
H/o |S[on1(s)PSlen(s)ds|| = Tlllon*on e 2 TN

Hs

For details on this estimate, see [Wanl3].
The validity of the estimate

Slonllze (TS
Hs

T
/0 1ST6](5) 2 S[éw](s)ds

requires s > 1/2.

The same counterexample shows that s > 1/2 is required for C3-well-posedness of
(3.34). This regularity is reached up to the endpoint in Theorem

When considering , we modify the above example to

¢N (l') — N—l Z eiklwle—iklwz eikzwge—ik2w4
)
[k1],|k2|<N
which again satisfies ||¢pn||gs ~ N*.

Carrying out the estimate for the first Picard iterate with the necessary modifica-
tions yields

T
/0 ISTon](9)2STon]()ds| = Tllonénllne = TN?*,

Hs

which implies C3-ill-posedness, unless s > 1. This regularity is again obtained up
to the endpoint in Theorem [3.2.5

Apparently, for other hyperbolic Schrédinger equations, the L;{w—StriChartZ es-
timate also coincides with the elliptic L;{z—estimate, and modifications of the above
counterexample yield lower thresholds than in the elliptic case. This indicates that
the difference between elliptic and hyperbolic Schrédinger equations is only signifi-
cant in lower dimensions.

3.2.2 Strichartz estimates on compact manifolds

A fairly different approach to derive Strichartz estimates, which does not only
work on tori, but on general compact Riemannian manifolds, is to localize time in a
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frequency dependent way such that the difference between a compact manifold and
Euclidean space is no longer significant, and one recovers the dispersive estimate.

As already pointed out in the introduction, this approach was successfully ap-
plied in [BGT04] to solutions to the Schrédinger equation

(3.36)

iOu+Agu =0, (t,z) e RxM,
u(0) =ug € HS(M)

where A, denotes the Laplace-Beltrami operator on a compact boundaryless Rie-
mannian manifold M. The argument admits extension to manifolds with boundary
(cf. [BSS08,BSS12]), non-elliptic (cf. [MT15]) and fractional Schrédinger equations
on compact manifolds (cf. [Dinl7]).

We record the last result:

Proposition 3.2.6 ([Dinl7, Proposition 2.5, p. 8312]). Let a € (0,00)\{1}, N €
2No and M an n-dimensional compact Riemannian manifold without boundary. De-
noting D% = (—Ag)“/2 we find the following estimate to hold:

1Pve™ ol L3 0,5t~ A1), 22 (a1)) S N[ Prol| 2 (3.37)

provided that 2 < q,p < o0, %—1— % =2, (¢,p) # (2,0), s=n (% - %) — %'

In Py projects to the union of eigenspaces of —A, consisting of eigen-
functions with eigenvalues comparable to N2.
These estimates become useful after invoking the transfer principle when one con-
siders fractional Schrodinger equations on the circle for frequency dependent time
intervals.

3.3 Short-time nonlinear estimates

With short-time linear and bilinear estimates at our disposal, we come back to
the propagation of the nonlinearity of the Benjamin-Ono equation on the circle in
short-time function spaces. First, record the following estimates due to Proposition
the transfer principle and the interpolation argument from Lemma

Proposition 3.3.1. Let K, N € 2V, K < N and |I| < N~ be an interval. Suppose
that u,v € U3, (I). Then, we find the following estimates to hold:

1/2

[PnuPrvlpzqo,n-1,2cry) S N Prvulluz, oI Prulluz, ), (3.38)

||PNUPKU||L‘f([o,Nﬂ],L?(T)) S N2 10g2<N>||PNU||V§O(1)||PKU||V§O(I)- (3.39)

The estimates remain true in case of comparable frequencies as long as ||€1|—&2|] 2
N whenever & € suppsu and §a € supp,0.

We prove the following proposition:

Proposition 3.3.2. Let T € (0,1] and 0 < s < s'. Then, we find the following
estimates to hold:

||aw(uv)HNgo(T) S llul Fgl o (T) (3.40)

Fio () [[V]

102 (u0) s, o2y S Tl o]
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Proof. After frequency localization, it is enough to derive short-time DU3, — U3 -
estimates by the definition of the function spaces.
In case of High x Low — High-interaction (N ~ Ny > N3), we use the imbedding
LY(I) = DU%,(I), Holder in time (recall that [I| = N=!) and (3.38)) to derive
HPNaa:(PNlupNzU)HDU@O(I) S N||PN1UPN2U||L1(I;L§)
S N2 Py, uPn,vl|pe(rz2)

rg ”PNlu”U%O(I)HPN2v||U1230(I)'

For High x High — High-interaction (N ~ Ny ~ N3), we use duality to write

PN Oy (PnyuPn,v)lpuz, (122) S sup N‘//PN/wPNluPNZdedt .

iy, =1
Since two factors must be frequency separated of order N by Remark [3.1.6F] we can

use a bilinear Strichartz estimate on two factors (say w and u) and use the energy
estimate on the remaining factor to find

N

//PN/wPNluPszdxdt‘ 5 NHPN’wPNIUHLQ(I;L?)HPN2U||L2(I;L2)
I
S 10g2<N>||w||v§O(1)||PN1U||vgo ||PN2U||U,§O'

Finally, for High x High — Low-interaction (N; ~ Ny > N), we have to
partition the interval I, |[I| = N~! into Ny * intervals, which accounts for a factor
of N1 /N. Using duality and the bilinear Strichartz estimate, we find with |I'| = N, *

/ /PNwPNluPszdl‘dt 5 ||PNwPN1UHL2(I’7L§)HPNQUHLQ(I’,Li)
Il

Ny
< logX () | Pvwlly

2,010 HPN1U||V§O(I/) ||PN2UHU1230(1/),

which yields the claim because it implies

Ny
| Pn Oz (PrnyuP,v) | puz, (1:02) S log*(—=) sup [ Pnvyulloz, L2
I'|=N],
rci
X sup ||PN2U||U§,O(1/;L2)~
[I'|=N; ",
rcl

O

The proof makes the heuristic argument from the introduction (1.9)) precise by
using embedding properties of the function spaces and the transfer principle.
We point out that the argument extends to higher nonlinearities:

2Strictly speaking, we have to consider a decomposition like in Remark [3.1.6} the details are
omitted for the sake of brevity.
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Proposition 3.3.3. Let s > 1/2 and k > 3. Then, we find the following estimates
to hold:

k
102 (u1 - uk)lIvg o (1) S H lwillFs (1) (3.42)
=1

k
(T)- (3.43)

[0 (1 - -~Uk)||NgO(T) S Hu1||Fg
1=2

Proof. In case of High x ... — High-interaction (N ~ Ny 2 Na... 2 Nj) the
following crude estimate suffices:

1PN (Ou (Pnyur - .. Pryu)l puz, ) S N2 Py, ... Pryukllpiore2)
k

S Pxywllzeere [T I1Pwwlloe,

i—s (3.44)

S 1Pwv |z (I)HN [Pl -

For High x High x ... — Low-interaction (N < Ny ~ No, N3 2 N3... 2 Ny)
observe

| Pn (Ox (P, w1 Pryus - -« Py ug)) | oz r

N
< N2t sup sup /1, /PNvPNlulPNzug . Py, updxdt
N rer el =Y,

1 /l -1
’ —
|T'|=N7y

k+1
SNi o osup ||PyvPyuallzz ([Payuelizz 1T 1Pyl e,

lollyz =1
k+1
Ny
N log<W> sup ) HPN1U1||U20(1/)HPN2U2||U20(1/) H N ||PNzul||U2 (I
[I'|=Ni

which is again enough to conclude the estimates (3.42), (3.43). O

3.4 Energy estimates

Purpose of this section is to propagate the energy norm. For solutions to (3.1
the desired estimate reads as

lullBery < luollzrs + Tllullies () (3.45)

For solutions to the difference equation, that is for v = u; — us, where uy,us are
solutions to the original equation, we prove two estimates in addition to . The
first one leads to Lipschitz dependence of the data-to-solution mapping in L? for
initial data in H®, s > 1:

1By S N0O)Z2 + Tlollzo ) (lusllee(ry + luzllpe ). (3.46)
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The second one leads to potentially non-uniform continuous dependence of the
data-to-solution mapping in H*:

o]

2ES(T) S ||UH%IS+T(HU| Fs(T)+||v||F0(T)||U||FS(T)HU2HF2(5(T))~
3.47

In case of the Benjamin-Ono equation, we prove the following estimates:

%s(T)+||U| 2Fs(T) [[uzl

Proposition 3.4.1. Let T € (0,1] and s > 1.

(a) For a smooth solution u to (3.1), we find (3.45) to hold.

(b) Let uy, us be smooth solutions to (3.1) and v = uy — uy be the difference of
the two solutions. Then, we find (3.46|) and (3.47) to hold.

The building block to prove Proposition is the following estimate.
Lemma 3.4.2. Let T € (0,1] and N3 < Ny ~ N. Then, we find the following

estimate to hold:

T
/ ds/dﬂﬂPNUlPNluzPNws S TlIPyvuall ey, (o)1 Pavy vzl mg (ol P sl eg, ()
0
(3.48)

Proof. Key ingredient is again the short-time bilinear Strichartz estimate. First,
consider the case Ny < N. After breaking [0, T] into < NT intervals I of size N~1,
we have to estimate

/ds/deNulPNluQPNQU;g
I

< ||Pyuy Py, uz |l 22 (1;02) | Payusl L2 (1,2

SN Y Pyvuillpz royllPyiuzlloz ey | Prsuslloz (rre
2o(I;L?) BoI;L?) 2o I;L2?)

Since splitting the time interval accounts for a factor of at most T'N, the proof is
complete. In case Ny ~ N, it is easy to see following Remark that we can still
apply a bilinear Strichartz estimate to one pair. O

We show Proposition [3.4.1
Proof of Proposition[3.4.1l First, we show (3.45). One has to analyze

supye(o,7) |[Pvu(t)]|72 to conclude the estimate of the E*-norm after carrying out
the sum over N with weight N25.
The fundamental theorem of calculus yields

t
| Pyu(t)||2: = || Pvu(0)||3 + 2/ ds/deNuPN(BgC(uu)).
0

First, consider High x Low — High-interaction. That means we estimate

t
/ ds/deNuPN[Bm(uPNzu)],
0
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where Ny < N. In case the derivative hits the high frequency factor, we integrate
by parts to derive a more favourable expression: Write

t
/ ds/d:cPNuPN(BmuPMu)
0
t
:/ ds/deNuPN(azu)PMudx
0

¢
+/ ds/deNu[PN(amuPNQU) — Py (0yu) Py, uldz.
0

For the first term we find after integration by parts:

t 1 t
/ ds/deNuPN(ﬁxu)PNﬂ = —5/ ds/deNuPNuax(Pg\bu).
0 0

The second term is a commutator term, which we analyze in Fourier variables:

~

(PN [0suPy,u] — Py (9zu) Pyyu) ()
= Z XN (61 + €2)(—i€1)a(€)xn (§2)1(€2) — x v (§1) (=€) a(€1)x v, (§2)1(E2)

§=&1+&2

= > (& + &) —xw () (—ig)xn ()6 a(E)
§=61+&2

= Y m(&, &)X (§)i(€) TN, (S2)a(E).
§=&1+82

It is straight-forward to check that
Ny
106 0g2m (&1, €2)| Sat,az Nortar®

In classical short-time Fourier restriction spaces the concluding arguments are
detailed in [IKTO8| p. 292]. The commutator argument was already used in [BS75]
and is crucial to finish the proof.

Here, we point out that one can also change back to position space via expansion
of m(&1,&2) into a rapidly converging Fourier series (cf. [Hanl2l Section 5], [CHTT2,
Lemma 5.2, p. 68]), which gives

t
/ ds/deNu[PN(ﬁquN,“u) — Pn(0u) Py, ul
0

< N2
~ N
DY

Ni~N

By virtue of (3.48) and the Cauchy-Schwarz inequality, one finds

Sy % ‘ /0 t ds / dz PyuPy, uPy, (0yu)

N>1 Ni~N 1<No<N

STY N* >y Na||Prvullpo  oryl| Py ull po () [Pzl £o (1)
N>1 Ni~N 1<Na<N

t
/ ds/da:PNuI:’N(azuPMu)
0

t
/ ds/deNuPNluPNzu .
0

S Tllullfe ry-

43



In the above estimate we did not distinguish between High x Low — High-
interaction or High x High — High-interaction. When dealing with High X
High — High-interaction, there is no point in integrating by parts, and follow-
ing Remark [3.1.6] the bilinear Strichartz estimate can still be applied.

In case of High x High — Low-interaction (N <« N; ~ Nj), we again do not
integrate by parts but simply use to find

2N ),

N>1 Ni~N2>>N

ST Z NP Z ||PNU||FgO(T)||PN1UHFgo(T)HPNWHFgO(T) S Tllul
N>1 Ni~N2>N
provided that s > 1. The proof of estimate is complete.
Next, we turn to estimate : Due to the reduced symmetry, one can not
always integrate by parts like above. Again, we invoke the fundamental theorem of
calculus to write

t
/ ds/dzPNuPNﬁw(PNluPNQu)

0

3 3
Fo(T)

| Pxo(t)[22 = [|Pyu(0) 2 +2 / s / 4 Pyu( Py (0 (0(y + u2))).

First, consider High x Low — High-interaction (No < N). In case the high
frequency is on the difference solution, that means we are considering the expression

/ ds / dx PNyv Py (0, (v( Py, (u1 + u2)))
0

we can argue like above by integration by parts and the commutator estimate to
conclude

Ty > > IPnvlley, 1Py, vy, Nall Pryullpg,
N>11<N2<N Ni~N

STY Y 1Pl g, () |1 Py vl gy Nl g o ) S Tll0llg Il
N>1N;~N

However, when considering the expression A = fot ds [ dzPyvPn (95 (Pn,v - u)),
Ny < N we can not integrate by parts. Still,

A§TZ Z Z N||PNUHF;;O(T)HPNluHFgO(T)||PN2U||F;;O(T)
N>11<N; <N Ni~N

S Tl o llull mg ()

provided that s > 1.

In case of High x High — High- and High x High — Low-interaction, the ar-
gument from the proof of applies without modification and yields the desired
estimate. This completes the proof of .

We turn to the proof of . For this purpose rewrite the equation satisfied by
V= U — Uy as
040 + HOppv = 0y (v?) 4 20, (vusy)

Using the same strategy like above, we have to focus on High x Low — High-
interaction (Ny < N) in the expression 9, (uz Pyv), where we can not integrate by
parts.
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More precisely, we have to carry out the estimate

Z N2s Z / dS/d-TPNUPN (o w2 P, v v)

N>1 1I<N2 KN

ST Z Z Z N2S+1||PNU||F,§O(T)||PN1U2||F;§O(T)||PN2U||FgO(T)
N>11<No &N NNy

S T||UHFOO(T)HU ||u2||F290(T)

The remaining cases can be treated like above, which completes the proof. O]
For smooth solutions u to we have to derive

k
HUJHZES <||UoHH<+TH I (3.49)

and for differences of solutions

lelloery < 0032 + Tlellbg, o @eluallrg, - ezl g 2y): (3.50)
oz < Nolle + T(lols  zyShlolleg oy, luzll g, (1)) (3.51)
+ Tllollp, eryllole HuaneB(T>sk<Hqugo 1 izl g (my),

where Q, and Si, i =1,2 are polynomials like in .
The commutator arguments to put the derivative on a low frequency factor
extend directly. The second ingredient to generalize Proposition is the analog

of Lemma [3.4.2

Lemma 3.4.3. Let k € Z>3, (Ni)fill C 2o Suppose that Ny ~ Ny > Ny > ... >
Nis1 and let T C R be an interval with |I| = Ny'. Then, we find the followmg
estimate to hold:

//PNI’LQPNQ’LLQ N PNk+1uk+1d.’17dt
I

k+1
SN 1||PN1U1HU2O(I)”PNzuZHU?SO(I)||PN3“3”U§30(1) H N |PN “1||U2 (I)-

(3.52)

Proof. Suppose that Ny ~ Ny 2 N3 > N4. Then, the expression is amenable
to two short-time bilinear Strichartz estimates involving the highest to fourth to
highest frequencies and using pointwise bounds on the remaining frequencies yields

k+1
hs(3.52) < Ny * H 1Py, willoz, H | P, will Loo oo
=1 1=5
k+1
<N1memmd1HN/wwwmdl
=1 1=5

Suppose that N1 ~ Ny ~ N3 ~ Ny. In this case we use Holder’s inequality and
Bernstein’s inequality to find
k+1

Ihs(3.52) < H [1PnwillLg, H [P wil e,
k+1

1/2 1/2
SNy / H | P, Uz||L8L4 H Ni/ | P, will e 2 -

i=1 =5
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Next, we use the transfer principle for UP-spaces and Proposition to find

4 k+1
—-1/2 1/2
<NV [T 1P~ willers, o1y HNi/ 1 Pn,willoz, )
i1 i=5
4 k+1
— 1/2
SN TPy willos, o TT N2 Pwillos, oy
=1 =5

The ultimate estimate follows from U? < U® (cf. Lemma [2.3.4). This completes
the proof. O

We summarize the energy estimates for k-generalized Benjamin-Ono equations:

Proposition 3.4.4. Let T € (0,1], k € Z>3 and s > 1.

(a) For a smooth solution u to (3.6), we find (3.49) to hold.

(b) Let uy, us be smooth solutions to (3.6) and v = uy — ug be the differences of
two solutions. Then, we find (3.50) and (3.51)) to hold.

3.5 Proof of local well-posedness via Bona-Smith
approximation

With the nonlinear estimates and energy estimates at hand, we show how
allows us to conclude local well-posedness by bootstrap arguments and a variant of
the Bona-Smith approximation.

First, we carry out the argument for small initial data and assume like above that
ug € C™ (T)

The energy method [ABFS89] yields existence of solutions in C([0,7*], H3(T))
for § > 3/2, where lim;_, 7~ ||u(t)|| g2s = 0o whenever T* < oo. For brevity (and
to point out independence of the arguments on the propagator) we write in the
following F*(T) = Fo(T).

The set of estimates together with yields

Fe < lluollre + lullfs ) + Tllul

[[ul %S(T)'

Next, we make use of continuity of ||u|

gs(r) in T" and
. . 2
Jim oy S Nollime, i (192, (6) [ v-(ry = 0.

For details, see e.g. [KT07) Section 1, p. 6].
Consequently, the above set of estimates yields

[l

provided that ||Jug| g+ is chosen sufficiently small.
For s’ > s we have

lullperry S lullpe ) + 1100 (W)l e (1
[udpul oy < Null por oy llull 7o ()

S lluwolle + Tllul

%SI(T) ||’LL| Fs(T)-
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Together with (3.53)), this implies
el por 1) S i or for ' > 5.

This a priori estimate for higher regularities together with the blow-up alternative
shows that T* > 1 provided that ||ug|| g+ is chosen sufficiently small.

Next, we argue that the set of estimates yield an a priori estimate for v in
L? in dependence of ||u;|| g+ for s > 1: The estimates imply for ||[v|| go(r)

ol Focry < 1O)Z2 + l[vllFor) (luslF () + lluzllFe )

+ Tl[vll oy (s

%S(T) + [Juz| 2Fs(T))a

and further, for ||u;||g- < € sufficiently small,

vl oy S llv(0)]|L2-

Lastly, the set of estimates (3.5]) yields again for ||u;||gs S e

[olFs () S N0(O)1Zs + Tllvlle () + Tllollpoy 1ol 7oy luzll pos r).-

To prove existence of the data-to-solution mapping by the above display, let us
be the solution associated to P<yuo and uy be the solution associated to ug.
Due to the difference of initial data consisting only of high frequencies, the gain
from estimating ||v||po compensates the loss from

|uallp2s (1) S [[P<nuollazs S N¥||[P<nuollms-

Then, the data-to-solution mapping H® — C([0,T], H®) N F*(T) is constructed
as an extension of H* — C([0,T], H*) N F*(T), a priori only for sufficiently small
initial data. Continuity, but no uniform continuityﬂ follows likewise because the
approximation depends on the distribution of the Sobolev energy along the high
frequencies, i.e., ||P>nuo| ms-

We give the details: Let ug be a smooth initial datum and consider v = S$°(ug)—
S (P<nup). Observe that

[vllFo(r) S lluo — P<nuol|re
S IP>nuollze S N72([Psnuol o
Moreover, Ps nyug is the initial datum to v. Consequently,
1P>nuollgs S v(0)[as S llvllpe(r).-

A variant of the proof of the a priori estimates for solutions yields the bound

2

[l ror ey lullpg o (1) + llul

2 iy S )2 + Tl 2

for s’ > s.
This shows |lua||pe () < [lu2(0)[| g« provided that [lus||ps(r) is sufficiently
small. This implies

[uallp2s 7y S [[P<nuollazs S N¥|uollms-

3Tt is not excluded that the data-to-solution mapping is uniformly continuous as is the case for
the Benjamin-Ono evolution on hyperplanes. It simply does not follow from the method of proof.
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For the solution to the difference equation we derive the inequality

1B (ry S N0O)Frs + TllollEe oy + Tlollz o el s

This allows us to conclude a priori estimates for v = S3°(ug) — S (P<nup) in terms
of P>N’U,Q.

Next, we consider a sequence of smooth initial data (u,) € H* converging to
ug € H?%, s > 1.
We write

ST (un) = S (um) = (S7°(un) — ST (P<nun)) — (ST (um) — ST (P<ntm))
+ (57 (P<nun) — ST (P<num)),

and by the above considerations,

|57 (un) — SZO"O(Um)HC([O,T],HS) S ||P2Nun||HS =+ ||PZNUm||HS
+ |57 (P<nun) — ST (P<num) | c(o,1),m55)-

For the third term note that

ST (P<nun) — ST (P<num)|lcom,me) < ISF (P<ntn) — ST (P<ntm) oy ms
< f([P<nun — P<num| ms)-

We have f(x) — 0 as x — 0 due to continuous dependence in H? (cf. [ABFS89)).
Since || P<nun — P<num|l s < N37%|| P<n (ty — wm)| =, we find that

ST (P<Nun) — ST°(P<nUm)|lc(o,r),me) — 0 as n,m — oo

for any N. Choosing N so that ||[Ps>nun|ms + [|[PoNUm|ms < €/2 for any n,m,
which is possible due to convergence to u, we infer the existence of the data-to-
solution mapping and continuous dependence on the initial data provided that the
initial data are sufficiently small.

When dealing with large initial data, we rescale the initial value ug — Aug(-/X)

to consider the Benjamin-Ono equation with small initial data on the rescaled torus
AT.
Following Remark[3.1.6] the decisive bilinear Strichartz estimate is scaling invariant,
which allows us to rerun the above proof for small initial data on the rescaled torus.
But note that this argument does not adapt in a simple manner to the case of higher
order nonlinearities because of criticality or supercriticality of the L?-norm.

3.6 First applications

In this section we give simple applications of the above argument to derive
new well-posedness results. The first class of equations we consider are generalized
Benjamin-Ono equations on the circle:

P . |
{ O+ 0, D% =uF10,u, (t,z) ERxT, (3.54)

u(0) = up € H(T),

where below 1 < a <2, k € Z>».
As already stated in the introduction, although we have more dispersion than
in the Benjamin-Ono case, these equations seem to be harder to analyze because a
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gauge transform is not easily available.

However, the modular approach depicted above via short-time Strichartz estimates
allows us to prove well-posedness results, also for polynomial nonlinearities.

The time localization is chosen to T'(N) = N~ and the bilinear Strichartz estimate
from Proposition [3.1.2) reads

|Pret®Prug Preet®Pavg 12 o n-epm) S N™?|[uoll 2(my lvoll 2y (K < N).
(3.55)
Then, the arguments from above yield the following theorem:

Theorem 3.6.1. Let 1 <a <2, k€Z>y and s > 1.

(a) There exists a continuous mapping T = T(||uo||m=,s) so that for any solution
u to (3.6)), we find the following estimate to hold

sup [[u(®) ]z < ol (3.56)
t€[0,T] !

provided that s’ > s and u(0) is a smooth real-valued initial datum.

(b) For solutions uy,us to (3.6) we find the following estimate to hold:

sup lus(t) = u2(t)llz2 Sjus0)are 111 (0) — u2(0)]|z2 (3.57)

t€[0,T

provided that u;(0) are smooth real-valued initial datum for i =1,2 and T =
T(mac [, (0) -, ) from (a).

(c) (3.6) is locally well-posed in H?, i.e., with T like in (a) the data-to-solution
mapping S : H*® — C([0,T], H*®) admits a unique continuous extension
Ss H® — C([0,T], H).

Large-data-theory does no longer require rescaling, but, due to the improved
short-time bilinear estimate, the corresponding estimates from Proposition [3.3.2
improve with an additional factor 7%, § > 0 on the right hand-side.

In the limiting case a = 1 the above results can only be proved for small initial
data.

Theorem [3.6.1] generalizes the results from [MR09] on generalized Benjamin-Ono
equations (a = 1,k > 2) on the circle up to s = 1. In [MR09] the well-posedness
result was established by means of a gauge transform recasting the derivative non-
linearity into a milder form. This does not seem to be easily feasible for 1 < a < 2
or polynomial nonlinearities because even for a = 1 the gauge transform changes
with the power of the nonlinearity.

Like seen above, the nonlinear estimate can be carried out for s > 0 for quadratic
nonlinearities. The threshold s > 1 stems only from the energy estimate.

In Chapter [6] we shall see how to improve the energy estimate by normal form
transformations for £ = 1. This will give the currently best well-posedness results
for dispersion generalized Benjamin-Ono equations on the circle for 1 < a < 2.

A further equation amenable to the methods of this chapter is the Shrira equa-
tion
{ ou+ HeyyAu = ulz,u, (t,xz) € R x T, (3.58)
u(0) =up € H(T™). '
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The above analysis yields well-posedness for s > (n + 1)/2. In case n = 2, this
modestly improves the recent result from [BJUM19], where well-posedness for s >
7/4 was shown. The results for n > 3 appear to be the first results below the energy
threshold.

Another physically relevant model is the Zakharov-Kuznetsov equation

{ Ot + Opgatt + 30, 0yyu = udyu, (t,z,y) € RxTxT, (3.59)

u(0) =y € H3(T?).

The linear propagator becomes Opze + Oyyy after a rotation, which allows us to
apply the above arguments and prove corresponding statements for (3.59)) like in

Theorem for s > 3/2.

In the following chapter we will see how to treat higher-dimensional Benjamin-Ono
equations by the above arguments in greater generality.
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Chapter 4

New local well-posedness
results for higher-
dimensional Benjamin-Ono
equations

4.1 Introduction to higher-dimensional Benjamin-
Ono equations

In this chapter well-posedness of the higher-dimensional fractional Zakharov--
Kuznetsov equations

{ Opu + 0y, (—=A)?u  =wudyu, (t,z) € Rx K" (4.1)

u(0) =g € H*(K"),

is discussed, where n > 2, 1 < a < 2 and K € {R,T}. In the following let
D, = (—A)Y/2,

In higher dimensions yields a generalization of the Benjamin-Ono equation
for a = 1 (cf. [LRRW19, Mar02 [PS95]). For a = 2, becomes the Zakharov-
Kuznetsov equation (cf. [ZK74] [LS82]).

The aim is to improve results obtained by the energy method [BST75|, which
yields well-posedness for s > "TH Already in the one-dimensional case, it is well-
known that the data-to-solution mapping for dispersion coefficients 1 < a < 2 is
not uniformly continuous (cf. [KT05b, [HIKKI10, MST01]).

Also, in two dimensions it was proved for ¢ = 1 in [LRRW19] that the data-
to-solution mapping is not C2. In the same work local well-posedness was proved
for a = 1 provided that s > 5/3 using short-time linear Strichartz estimates (cf.
[KT03]).

Here, we improve the local well-posedness for n = 2 and relate the cases a = 1
and a = 2 to recover in the limiting case the local well-posedness result for the
Zakharov-Kuznetsov equation for s > 1/2 (cf. [GHI4, [MP15]) in two dimensions
and s > 1 in three dimensions [MP15, RV12]. Recently, the essentially sharp C?-
well-posedness result for s > —1/4 for the Zakharov-Kuznetsov equation in two
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dimensions was proved by Kinoshita [Kin19] via refined transversality and resonance
considerations, crucially making use of the nonlinear Loomis-Whitney inequality.
The results obtained in this chapter for dimensions n > 4 seem to be new for
1<a<?2.

Following the approach from Chapter |3] we use transversality and localization
of time to frequency dependent time intervals to prove the following theorem:

Theorem 4.1.1. Letn > 2, K=R, 1 <a <2 and s > ”TJ“?’ —a. Then (4.1)) is
locally well-posed.

Remark 4.1.2. As pointed out in Chapter |3] the method of proof extends to
generalized Benjamin-Ono-Zakharov-Kuznetsov equations (cf. [Grdl [LP09])

Opu + Oy, Dy = 0y, (u¥),  (t,2) ERXR", k>2, (4.2)

which we do not cover explicitly.
Furthermore, the proof yields local well-posedness in the Besov space B3, for
s="183 _g
2 ’ . . o1 .
In case a = 2, the below arguments point out that (4.1) is a semilinear equation
for sufficiently large values of s, and no frequency dependent time localization is
required to prove local well-posedness. Thus, in the Euclidean case a = 2 will not

be considered in the following.

For this chapter let S,(t) denote the linear propagator of (4.1), that is

L —

Sa(t)ug(§) = e~ 11 i (€).

As already seen above, the most problematic interaction happens in case a low
frequency interacts with a high frequency because the derivative nonlinearity

O, (PyuPgu) (K < N)

possibly requires us to recover a whole derivative. The derivative loss is partially
ameliorated by the following bilinear Strichartz estimate:

Proposition 4.1.3. Letn > 2, K,N € 2% K < N. Then, we find the following
estimate to hold:

anl 1/2
1P Sa @ PiSo Ol ey S (T ) IPvuololPrsnlze. (43

This proposition is a consequence of Proposition [3.1.1] and will be proved in
Section (4.4
Apparently, this is still insufficient to recover the derivative loss for 1 < a < 2. To
overcome the gap, we additionally localize time in a frequency dependent way.

In the following we motivate for which frequency dependent time localization
we can treat the most problematic High x Low — High-interaction utilizing (4.3).
For K < N one finds

102, (PN Sa(t)uoPrSa(t)vo)ll L1 (jo,17:22 (7))
< NT'?|| Py Sa(t)uoPrc Sa(t)vol 20,7522 ()

Kn—l

<TYVAN [ =——
~J Na

1/2
) ||PNUO||L2(]R")||PKUOHL2(R“)-
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This suggests that for T(N) = N2 this peculiar interaction can be estimated
for s > (n—1)/2, which is carried out in Section Below, let F*(T) and N2 (T)
and E*(T) denote the short-time function spaces adapted to S,(t) with frequency
dependent time localization T(N) = N% 2. The precise definitions are given in
Section

This argument is sufficient to handle High x Low — High-interactions and
Highx High — High-interactions for n = 2. For Highx High — High-interactions
when n > 3, we prove a weaker transversality estimate in Proposition but one
can as well utilize linear Strichartz estimates (cf. [LRRW19)]):

Proposition 4.1.4. Letn > 3,1 <a <2 and 2 < p,q < 00, p# oo. Then, we
find the following estimate to hold
1Sa(®)fllLe®,L2@ny) S If1 s gnys

(4.5)
1Sa®) fllLaqo, 11,22 @y ST 1 f |25 (R7)

i 242 — 1 _ 1) _ atl
provided thatq+p—1 ands-n<2 p) .

These estimates are useful in the proof of local well-posedness results for gener-
alized equations (4.2)) as shown in Section In Sectionwe prove the following
proposition:

Proposition 4.1.5. Let K=R, 1 <a <2, n>2,s>(n—1)/2. Then, we find
the following estimates to hold:

102 (wo)l|vs () S Nulles oy vl 75 (1), (4.6)
102 (uwv)l| vo(ry S llwllpory vl £s (1) - (4.7)

The energy estimates give a worse regularity threshold to close the argument,
namely s > %*3 — a. The following proposition is proved in Section
Proposition 4.1.6. Let K=R, n > 2,1 < a < 2 and let u be a smooth solution
to (4.1). Then, we find the following estimate to hold

lullEe vy < luollzre + Tllullis () (4.8)

provided that s > s, 1=

n+3 _
5 a.

Corresponding estimates show L2-Lipschitz dependence for initial values in H*,
s > s, and continuous dependence like in Chapter
Another Benjamin-Ono-Zakharov-Kuznetsov equation was considered in [RV17]:

{ Ou — 0y, DY u+ 05,020 =udpu, (tz) eRxR? 1<a<2, (4.9)
u(0) =ug € H*(R"). '
Here, (D, f)(€) = |€1]f(€), so that only dispersion in the z;-component is decreased
compared to the Zakharov-Kuznetsov equation. Local and global well-posedness
results for were also proved via frequency dependent time localization.

Lastly, we remark that the local well-posedness result from Theorem [4.1.1] gives
global well-posedness in the energy space H®/ 2(R?) for sufficiently large a in the
two-dimensional case due to conservation of energy

1
E(u) = / | D&/ 2u|? — gug(t,x)dz.
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Another conserved quantity is the mass
M(u) = / u?(t, x)dz,

but a well-posedness result in L? seems to be far beyond the methods of this chapter.
Tteration of Theorem for s = a/2 yields:

Corollary 4.1.7. Letn =2, K=R and a > 5/3. Then, (4.1) is globally well-posed
for s =a/2.

We turn to a discussion of the fully periodic case, in which case the following
theorem is shown:

Theorem 4.1.8. Let K=T, n>2,1<a<2ands > (n+1)/2. Then, (4.1) is
locally well-posed in H*(T™) for sufficiently small initial data.

In this chapter, we show well-posedness for small periodic initial data on time
intervals with fixed size. In Chapter [5| detailed arguments (rescaling the mani-
fold, modulation considerations) are provided to handle large data on small time
intervals.

In case n = 2 this improves the result from [LPRT19], where local well-posedness
was proved in H?®(T?) provided that s > 5/3 for a = 2.

In these works short-time linear Strichartz estimates were used. In this chapter this
result is modestly improved by transversality considerations, and corresponding re-
sults are proven in higher dimensions.

The results in higher dimensions appear to be the first ones below the energy thresh-
old. However, the covered regularities are still far from the energy space.

To make further progress, one presumably needs a better comprehension of
the resonance set, which appears to be more delicate than for the Kadomtsev
Petviashvili-equations (cf. [Bou93c, TKTO08, [Zhal6]). The recent work by Kinoshita
[Kin19] has the potential to improve the understanding also in the fully periodic
case.

Key ingredient in the proof below are bilinear convolution estimates for the
space-time Fourier transform of functions, which are localized in frequency and
modulation. These are derived in Subsection [£.8.2] Here, the transversality con-
siderations from Euclidean space again comes into play. However, we always have
to localize time reciprocally to the highest involved frequency so that transversal-
ity becomes observable. Therefore, we can not lower the regularity, for which our
method of proof yields local well-posedness, as the dispersion coefficients increase
compared to the Euclidean case.

After the derivation of these bilinear convolution estimates, the argument follows
Chapter

4.2 Proof of new well-posedness results in Eucli-
dean space

With the short-time nonlinear and energy estimates at hand, we find for smooth
solutions u to (1.4) with 1 < a < 2 the following set of estimates to hold, where
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s' >85> s,

lull per () S Nullgsr gy + w0, ull e (o
[uBz, ull ngr () < Nlullg oy lull e ()
ullfer oy S ol + TlullZ o llull g o)

By the argument from Section this yields a priori estimates for solutions
in H® and persistence of regularity. The short-time adaptation of the Bona-Smith
argument, which was described in detail in Section [3.5] yields Lipschitz continuity
in L? for more regular initial data and continuous dependence. Details are omitted
to avoid repetition.

4.3 Linear Strichartz estimates

In this section linear Strichartz estimates on Euclidean space are discussed.
We start with a dispersive estimate, which was proved for ¢ = 1 in [LRRWT9,
Proposition 3.1.]. The modifications for a > 1 are straight-forward; we give the
details for the sake of completeness.

Proposition 4.3.1. Leta > 1, n >3 and ¢ : R™ — R be a smooth, radial function
supported in By, (0,2)\B,(0,1/2). Then, we find the following estimate to hold:

L/wmw@M“m%Ascw* (4.10)

with C' only depending on n, ¥ and a.

Proof. We rewrite the integral in spherical coordinates to find

Hat) = [ dre o) [ do(o)ent et
0 T Sn—l
p(r

=/mMﬂdwdﬂﬂn

0

where y; . (r) = (tr®T + xir, zor, L THT).
Recall the decay (cf. [Sogl7, Lemma 8.2.4, p. 262])

6(y)| S L+ Jy) 7.

This is already enough to prove the claim for n > 4.

Indeed, partition supp(p) = E1UEs, where By = {r € supp(p)||tr®t!+z1r| < 1}
and |E1| < [t|~!. To see this, note that [¢tr¢*t! +x17r| < 1 implies [tr® + 21| < 2 and,
by change of variables,

2
// L{jtratay <23 (r)p(r)dr = / L{jtrr g | <2y p(r")dr’ < CJt|71,
1/2 r'~1

where C' depends on 1, n and a.
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Similarly, Ey C {r € supp(p)[tr® + x1| > 2} and consequently,
[ strlotueatniar < [ Sl 4 ayr -2 dr
2 [trotm|>2

n—1
<C [tr + 21|72 dr
[tr4+z1]|>2

—ngl/ v+ /t]” 2 dr
[r+z1/t|>2/|t|

After a linear change of variables, we estimate the expression by C|t|~*.
We turn to n = 3. Here, we make use of the asymptotic expansion

= O

ily\ *%Iyl

ly |* (ly| > 1) cp. [Gra09, Example 10.4.3].
Vf(r), where f(r) = (tr**! 4+ 217)% + r2|2’|? and
Fl={re 8UPP(P)||”“+1 +aur| <10 {r € supp(p)llf'(n)| < [t} 2 EY,
F2 = {r € supp(p)ltr* 4 aarl > 1, (7] > [} € B2

where |&;, m( )<
Set ¢(r) =

Below, we see that |F!| < [¢|7!, which means that this contribution is controlled
by [6] < 1.

Moreover, the contribution of & , when integrating over F? is controlled by the
higher dimensional argument due to F? C E? and sufficient decay to run the above
argument.

A computation yields

f'(r) =2t%(a+ Dr(r* —r_)(r* —ry),
(a+2)xy L a+2 2(951)2 z? |=|2
ry=— - - - :
=T 2@ )t a+1 t (a+ 12 (a+ 1)
We can suppose that % ~ 1 and Iw ‘ < 1 since otherwise |f(r)| 2 |t|. Conse-
quently, the roots are real and separated
In fact, |ry| ~ 1 and |ry —r_| ~ 1. Moreover, whenever f’ vanishes, then |f"| is

still bounded away from zero and thus, |F!| < |¢|~L.
For the estimate of the contribution of ¢*%! /|y| over F? note that we can write

&(T) Pdr ~ iew(r) p(r) .
oy P / ey

Next, the domain of integration is divided up into a finite union of intervals,
where p/f’ is monotone. On each interval, integration by parts yields the desired
result. O

Remark 4.3.2. The dispersive estimate follows also from [KT05c, Proposition 4.7].

Proof of Proposition[{.1.]} For n > 3 the dispersive estimate and conservation of
mass give by interpolation

1Sa ()Pl Loy S 1 T2PIUPLE| Lot @y
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provided that 2 < p < co. Combination with the TT*-argument (cf. [Tom7hl
GV79, [KT98]) proves Strichartz estimates

150 () PNl or,rzmny) S NPl L2 ny

provided that p,q > 2, % + % =1, p # .
A scaling argument gives for p, ¢ like above

- 1 1\ a+1
I5.0Ps Pz szcaon S VU Pf sy 5 =n (-1 ) - 2L,
and (4.5]) follows from Littlewood-Paley theory. O

4.4 Bilinear Strichartz estimates

Purpose of this section is to prove bilinear Strichartz estimates as stated in

Proposition [£.1.3]
Whereas the proof of bilinear estimates is straight-forward in case of separated
frequencies, it requires more care to treat the High x High x High-interaction

// PNlSa(t)UOPN2Sa(t)U0PN3Sa(t)’LU0dl’dydt, N1 ~ N2 ~ Ng. (411)
R2x[0,T]

We shall see that it is still amenable to a bilinear Strichartz estimate.

Both cases follow from Proposition To apply Proposition we have
to analyze the group velocity v,(§) = =V, (£), where ¢, (€) = &1]€|°.
We have

Orpa(€) = IE|" +agi[E]*™2, Dapa(€) = ababol¢|™2. (4.12)

Proof of Proposition[{.1.3 First, divide Byn\By/2 into finitely overlapping balls
of radius K. We denote an associated family of smooth frequency projectors by
(Rr). Then, by almost orthogonality

Py Sa(t)uo PicSa(tyvol2: S D [1RLSa(t)uoPrc Sat)voll3 (4.13)
L

To estimate the terms in the sum, we use Proposition From (4.12) we find
01pa(§)] = (N/2) for [¢] = N/2 and [01a(E)] < (1 + a)(2K) for [¢] < 2K and
(3.11) implies

@) < Y
L

Kn—l ) ) Kn—l 5 5
) IRewolal Pl < (55 ) 1Pl I Picool,
which completes the proof. O

Next, we turn to the case of three comparable frequencies in the plane as depicted
in (4.11]). We prove the following proposition:

Proposition 4.4.1. Let N > 1 and suppose that & € R%2, N/16 < || < 16N for
i=1,2,3 and & + & + &3 = 0. Then, there are i,j € {1,2,3} with

[va (&) —va(&5)| 2 N
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Proof. A key observation is that for A € R? with [Aa| < ¢|A| or |A1| < ¢|A|, where ¢

is a small constant, a Taylor expansion of |\| around the large component reveals
d1pa(N) = (L +a)[M]* + O3 A" 7?)

(1 +a) M| +O(Ail")  ([X2] < c|A]),

Aipa(AN) = ol +0(*Xo]®)  (|Ma] < €fA]).

This means that as soon as one component dominates the other one, the propaga-
tion into xzi-direction is essentially governed by the group velocity associated to a
(fractional) one-dimensional Benjamin-Ono equation, which has been considered in
Section [3.61

To deal with different sizes of the components for A € R?, we introduce the
notation A € (A, B), where A, B € {Low, Medium, High}.
Low-components \; satisfy |\;| < ¢3|\|, Medium-components satisfy
I\i| € [¢2|], c|Al/2] and High-components |A;| > ¢|A|/2.
Further, write A € (X,Y), where X,Y € {4, —} to indicate A; > 0, Ay < 0.
E.g. A € (High(+), Medium(—)) means |A1| > <21 | X,| € [3[A], S, Ay > 0,2 <
0 or X € (Low, High(—)) means |A1] < 3|\, [Aa| > %M, A2 <0.
Here, ¢ is a small constant chosen so that the error terms in the above Taylor
expansion can be neglected in the following considerations.

We sort the frequencies according to the above system.
Suppose that the components of any frequency are all at least of medium size so
that no component of the three frequencies is low.
Then, by |0204 (&)| > cP|&i]® for i = 1,2, 3.
Next, observe that for & € (+,+) or & € (—, —) we have D2, (&;) > ®|&]%, and in
case of mixed signs & € (+,—) or & € (—,+) we have Oy, (&) < —c®|&;|* and the
estimate [02¢q (&) — Oapa(&;)| 2 N® is immediate, whenever the components of §;
have mixed signs and the components of §; have equal signs.
Next, we turn to the case where all components §;;, j = 1,2 and ¢ = 1, 2, 3 have size
greater than c®|&;|, and all frequencies are of equal signs, i.e., sgn(&;1) = sgn (&),
t = 1,2, 3; the case of mixed signs follows mutatis mutandis.
Say

&1 € (High(+), Medium(+)), & € (High(+), High(+)),
& € (High(—), High(-)).

Write &1 = a1, 22 = B&12, where a, B € [c®, ¢°], and it follows

|3290a(51) - 52%%(53)\
aéi1é12 a(l+ a)éi1(1+ B)éia

2—a 2—a

(EH+&)7  (L+ )26+ (1+B)2%E,) = (4.14)
M > Na.
() +&)= 7

Next, we suppose that there is one low component involved, say &; € (Low, High)
or (High, Low). Suppose that there is a frequency &; € (High, High). Then, we

find |020q(€1)] = O(c?[€]*) and [D2a(&;)| 2 c?[€]*. Hence, |02a(é1) — O20a(§5)] 2
c2|€]%, which yields the desired transversality.

> a
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In case & € (Low, High) we have |£12] ~ ||, and there is another frequency, say &;
with [§a2] ~ [€].
Further, by the above considerations, suppose next that & € (Low, High) or
& € (Medium, High).
Either way, |£31] < |€11]|+]|&12] < ¢|€11] and we can expand 01 ¢(&;) in the second com-
ponent of the frequencies to find that the analysis reduces to the one-dimensional
fractional Benjamin-Ono equation and hence, there are §; and §; by Remark
with

O16a(&) — D10a(&)] 2 N°.

The same argument applies in case & € (High,Low). In case there is & €
(High, High) the difference satisfies |92pq(£1) — O2pa(&5)] 2 ¢?€]* and in case
there is no §; € (High, High) we can expand in the first frequency component to
reduce the analysis to the one-dimensional fractional Benjamin-Ono equation ac-
cording to which there are §;,{; such that [01¢4 (&) — O19a(&5)] 2 €]

The proof is complete. O

These transversality considerations for comparable frequencies do not appear to
remain true in higher dimensions. Instead, we revisit the proof of Proposition [4.4.1
to prove the following weaker result in higher dimensions, which is still sufficient
for our purposes:

Proposition 4.4.2. Let1<a<2,n>3and& €¢R",i=1,2,3 with& +&+E& =
0 and |&;| ~ 2%. Further, suppose that |&;1| ~ 2% and set | = max;—1 23 1;.
Then, there are & and &; such that

0a (&) — va(&;)| 2 212k@D).

Proof. First, we deal with the case n = 3. To lighten the notation further, we
use the less precise notation ~ , < compared to the more carefully defined regions

)~

above. The below argument can be made precise borrowing the notation from the
proof of Proposition

By symmetry and convolution constraint, we can suppose that [£11| ~ 2!, |€a1] ~
2!, If |€31] < 2!, then there is another component of &3 having size 2%, by symmetry
say |E32] ~ 2",

By the convolution constraint, there is i € {1;2} such that |;5| ~ 2%. Then, we
find

|82</7a(£z) - 62<,0a(§3)| Z 2l2k(a—1)_

Thus, we suppose in the following that [£11| ~ €21 ~ |€31] ~ 20

If there is no component among &;;, j = 1,2,3, % = 2, ..., n, which is comparable
to 2F, then the analysis reduces to the one-dimensional fractional Benjamin-Ono
equation after expansion of 91, .

Thus, we suppose in the following that there is a component say |£12| ~ 2F. By
convolution constraint, we can suppose further that |£s| ~ 2F.

If [£32] < 2%, then it follows |Dapq (&1) — Oaipa(E3)| = 21200~ 1F,

Thus, we suppose in the following that [£12| ~ |£aa| ~ |€32] ~ 2F.

Next, we take the third component into account: If |¢;3] < 2F for i = 1,2,3,
then the third component can be neglected, and the claim follows from the two-
dimensional argument because the third component does not significantly contribute
to 0, 1 =1,2.
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If |£&13] ~ 2F, there exists a third component of another frequency of comparable
size by convolution constraint, say |£23] ~ 2. If |¢33] < 2%, then we find

|8390a(£1) — aB@a(ﬁB)‘ Z 2l2(a—1)k’

Thus, we can suppose that |;3] ~ 2% for i = 1,2, 3.
In the next step, we take the signs into account. If the product of the signs of the
first and second or first and third component differs, then the claim follows from
the observation that the second, respectively, third component of v, are of opposite
signs.
Thus, we suppose that

Sgn(filgi?) = SQn(§j1£]2)7 7’7] S {17 27 3}7

sgn(§nis) = sgn(&;1€5s)-
There are two frequencies, for which the first component has the same sign, say &;
and &3, and one frequency, for which the first component has a different sign, that
is &3 in the current setting.
By (4.15)) the signs of the other components must also be equal for £ and & and
different for £5. Write 21 = a&i1, §22 = B2, €23 = Y13, where a ~ B~y ~ 1.

Suppose that § > v. Then, we compute along the lines of (4.14)
(1+a)(1+6)
2—a
(L4 )26t + (14 B)%€F, + (1+7)%€E3) =
I+a)(1+P)
— 2—a
(T+ )26t + (14 8)2€F, + (1+ 8)%EEy) 2
1+ (anp)
2—a )

B (§%1 +§%2 +§%3) 2

and consequently,

|3290a(f1) - 529%(53)\

(4.15)

1+a)(1+8) 1
= lag11&12| 5 5 S
(L + )23 + (14 B)%67, + (1 +92)z2) 2 (€1 + &7 +&73) 2
aNp
(1 +&+ 5%3)277&

If v > B, then the same computation reveals

105pa(é1) = Bzpa(€s)] Z 2207V,

This proves the claim for n = 3. The above arguments extend to higher dimensions
inductively. O

> |a&11612] > 2lgla=bk,

4.5 Function spaces

The UP-/VP-spaces are adapted to free solutions in the usual way:
lulluz(r;e2) = 1Sa(=t)u®)llur @2,
lvllve 2y = [1Sa(=)v(®)lve(r;L2),

lwllpuzr:e2) = [1Sa(=)wt) [ puz(r:L2)-
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Motivated by , we choose T(N) = N%~2 as frequency dependent time localiza-
tion.
Below, we shall only deal with the case 1 < a < 2 since for a = 2 the localization
to small frequency dependent time intervals is no longer necessary, and the analysis
comes down to the Fourier restriction analysis without localization in time from
[GH14].

Let x; denote a sharp cut-off to a time interval I. The short-time UZ2-space,
into which the solution to will be placed, is given by

[ull%e () = 1 P<oullErzgo,7),22) + Z N* sup [|Pyxrullfe ey
N>1 ‘I‘:N“iZ/\T,

The corresponding spaces for the nonlinearity and the energy space are defined
like in Section 2.4

As in Section [3:1] the estimates for the free solutions from Sections [-3] and [4-4]
the transfer principle and the interpolation argument from Lemma [2:3.4] imply the
following linear estimates:

Proposition 4.5.1. Letn >3,1<a <2, N € 2Y and I be an interval. Suppose
that 2/q+2/p=1,2 < q,p < co. Then, we find the following estimate to hold:

I Pnu)Larsoe@ey) S NPl PNuollya(r;n2), (4.16)

wheres:n(%—l)—”—“‘l.
P q

For bilinear estimates we record the following:

Proposition 4.5.2. Let 1 <a <2, Ny > Ny and I be an interval with |I| = foQ,
Then, we find the following estimates to hold:

Nn—l 1/2
1Pvs Ptz e S (T ) IPsallzi I Praveliz, (@)
' 1

Nyt
NY

1/2
) log? (N1)|| Py, ua|lv2 ()| Py uzllve(r) -
(4.18)

1Py ur Py usll s | (rxmny S <

4.6 Short-time nonlinear estimates

This section is devoted to the propagation of the nonlinearity in the short-time
function spaces.
The argument is close to Section with the difference that we have not adapted
the time localization to Euclidean windows because we are not considering compact
manifolds. The time localization is chosen such that an application of Hélder’s
inequality in time together with a bilinear estimate ameliorates the derivative loss.

Proof of Proposition[{.1.5. After using Littlewood-Paley theory, we are reduced to
the analysis of High x Low — High-, High x High — High- and High x High —
Low-interaction. Carrying out the summation in the short-time function spaces

gives (4.6) and (4.7).
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Suppose that N3 ~ N7 > Ny and let I be an interval with |I| < NgiQ. Then,
we compute

||PN385L’1 (PNlupsz)HDUg(I) 5 N1||PN1UPN2/U”L}L§
a-2
2

S NN, ® |[PyyuP,vllpzre

< NV Pyulloz o | Prcvlluz -
Suppose that N; ~ Ny ~ N3 and n = 2. Using duality, we find
| PNy Oz, (P, uPng )|l puz(ry =  sup //Ple(?xl(PNQuPNSU)dxdt. (4.19)

lwlly2 =1

Now, we use Proposition [£:4.1]to apply a bilinear Strichartz estimate on two factors,
say w and u, to find

@19) S Niv sup |[PnwPyyullrz [[Pysvllzz

[lw] va2:1
SNIN, 7 1og2(Na) || Payullvz (y Ns />~ | Py vllwz ),

which is sufficient.
For n > 3 we use two L} ,-Strichartz estimates instead:

| PNy Oz, (P, uPn,v) || puzry S Nal| Py uPr, vl 1z

n—(a

a—2 +1)
SN3N3? Ny 7 [[Pyyulluzy | Py, vllozn
n—1
S N3 1Pxulluz o |1 Pravlluz )
which is again sufficient.
At last, suppose that N3 <« N7 ~ Ns. Here, we have to add localization in time

which amounts to a factor (N;/N3)?~®. More concretely, we have to decompose
I =U;J; with |J;] < lef". We use duality to write

| Pny O, (P, uPn,v) || DUz (1) §NSZsup/ /PNBwPNluPszdazdt
i W
S N3 Y sup || PrywPnyullpz (g, xmn)
||PN2U||L§,HE(J¢><R")

—a _1. 1/2
Ny \>7* a2 /NPT
< 2 3
NN3(N3> M ( Nt )

log® (N1)|| P, ul| mg || P, 0| g

n—1
< (N1/N3)' "Ny 2 log*(N1) || P,y ul| wo | Pa, vl o

and carrying out the summation is straight-forward for s > (n — 1)/2. O

4.7 Energy estimates

First, we turn to the proof of Proposition Recall s, = 22 — q.
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Proof of Proposition[{.1.6. The fundamental theorem of calculus yields

t
| Pvu(t)||32 = || Pnuol|3e +2/ ds/ dxPyuPy 0Oy, (u?).
0 n

The time integral we treat with Littlewood-Paley decompositions and analyze the
possible interactions separately.

Suppose that N1 ~ N3 > N,. Then, integration by parts and a commutator
estimate (cf. Section yield after localization in time to intervals of size Nj~2

t
[ [ PuwtnPrupxdsa| NNzl pwuyaliz, [Pl
0o Jrn : :

1/2

N"_1 a=2
5TN2N§—a( i ) N T 1P, ule,,
1 i

N2 a—1
stp () iewade,

In case N7 <« Ny ~ N3, there is no point to integrate by parts, and the estimate
follows like above from the bilinear Strichartz estimate. In case Ny ~ Ny ~ N3, one
argues like in the proof of the nonlinear estimate, where High x High — High-
interaction is considered. Again, integration by parts is not required. O

Next, we proof the energy estimates, which will yield Lipschitz continuity in L?
for initial data in H®, s > s,, and continuity of the data-to-solution mapping after
invoking the Bona-Smith approximation.

Proposition 4.7.1. Let K =R, n > 2, 1 < a < 2 and uy, us be two smooth
solutions to (4.1). Denote v = uy — ug. Then, we find the following estimates to
hold

[ Eocry S N0OZ2 + Tllolzo e (lutllpz ey + luzlles ), (4.20)
[0l ey < 0 (O) |7 (4.21)
+ T(||UH?1’D;(T) + HU”%;(T)HUQHF;(T) + HU”F,Q(T)HU||F;(T)||U2HF3S(T))
provided that s > sq.

Proof. Performing the same reductions like above, we have to estimate

‘//Pvaawl(PNZUPN3U)d$dt

for N1 ~ N3 > NQ, N1 g N2 ~ N3 and N3 < N1 ~ NQ.

The first case can be dealt with like in the corresponding estimate for solutions
because we can still integrate by parts.

The second case does not require integration by parts and can be estimated like
above.

For the case N3 <« N1 ~ Ny we estimate

S NTN? || Py vPrg ol 2 1Pyl e

n—1
STN?™"Ny ™ || Pxvll o | Pyl m | Pva ol -
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This yields (4.20) after summation. To prove (4.21)), one writes
040 + Oy, D5v = 004, v + Oy, (ugv).

The first term has the same symmetries like the term we encountered when proving
a priori estimates for solutions. For the second term the only new estimate one has
to carry out (due to impossibility to integrate by parts) is

T
S N [ [ Pyods, (PrusPico)dudt £ Tlolrgerllollvs ol 2o
0 R

1<K<N

which follows by the above means provided that s > s,. O

4.8 Periodic solutions to fractional Zakharov-Kuz-
netsov equations

Next, the above considerations for short-time nonlinear and energy estimates
are extended to the fully periodic case. Firstly, the function spaces are introduced.

4.8.1 Function spaces in the periodic case

We shall be brief because the function spaces are defined completely analogous
to [GO18| with the basic function space properties remaining valid.
For k € Ny let

L] e <y, k=0,
P fgeRM g~ 2" else
For 1 < a <2, k € Ny define the dyadic X**-type normed spaces

Xagp ={f € L*(Rx Z") | f is supported in Aj, x R and | f||x,, < oo}, where

11X = D 272105 (r = 2a(€)) fll 2
§=0

(dg)y. v

The basic properties from Section remain valid: if k,1 € Ny and f, € X, , then
> 22 ni(r — al©)) / e €27 A+ 27— ) A s,
j=l41

+22(In<i(r — @a(€)) / [fu(r' 1271 (1 + 27 |7 — 7))~ dr || 2

2o S Ikl

(4.22)
Consequently, for f € X, , we find for I € Ny, tp € R, v € S(R)

1Fealr(2' (= t0)) Fea (F)lxa S 11

The frequency localized spaces are defined like in Section replacing X} with
X,k The spaces FZ(T'), N3(T'), E*(T) are again assembled by Littlewood-Paley
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theory. Let C = C([-T,T], H*(T™)) and define

F(T) = {u € Cf|jul

sk
Fe(ry = ) 2% |1 Peul%, ,(ry < o0},
keNo

N(T) = {u € ClllullRsr) = Y 22 IPsuly, , r) < o0},
keNg

Bery = 1 Peow()|3s + Y sup  22F|[ Peu(ty)|3, < oo}
k21tk€[7T,T]

EXT) = {u e Cul

4.8.2 Bilinear estimates

Next, we point out bilinear convolution estimates for space-time Fourier trans-
forms of functions localized in frequency and modulation.
For the remainder of this section suppose that 1 < a < 2 and for k,j € Ny let

h =8 | €€ A [T —wa(§) <27}

Lemma 4.8.1. Let ki, j; €N, f; : Rx Z" — Ry, f; € L*(R x Z"), supp(f;) C
Dg. <, fori€{1,2,3}.

(a) Suppose that ko < ki — 5. Then, we find the following estimate to hold:

/R ) (fu* fo) fs S (L4207 R) 12| fy]|5292/2200= DR /2| ||| £5]]5. (4.23)
o

(b) Suppose that |k — ko| < 10, |ke — k3| < 10 and j; > k;. Further, suppose that
fi(&,7) =0 for|&| ¢ [24, 2571, where i = 1,2,3 and | = max;—1 231;. Then,
we find the following estimate to hold:

3
/ (fr# fa) fs S 271220 DR 2 TT 292 £y . (4.24)
RxZm™ i=1

(¢) The estimate

3
/ (f1 % fo) f S 2nkmin/220m 2T | il 2 (4.25)
Rxzn i=1

holds true.

Proof. (a) and (b) are consequences of the considerations from Section
By almost orthogonality, we can suppose that the f; are supported in balls of radius
2%2. Then, the estimate (4.23) follows from Holder’s inequality

/ (1% fo)fs < I fallzellfo = fallue
RxZm™

™ (de)1

and invoking Proposition (4.24) follows likewise.

(c) follows from two applications of Cauchy-Schwarz inequality without using the
resonance function. O
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4.8.3 Short-time nonlinear estimates

Proposition 4.8.2. Letn > 2 and T € (0,Ty]. We find the following estimates to
hold:

02, (o)l o 7y S Nl mz ) vl e oy (4.26)
0z, (o)l nory S Null pory vl s () (4.27)
provided that n/2 < s < s'.

Remark 4.8.3. The argument below yields nonlinear estimates up to s > (n—1)/2.
The regularity threshold s > (n + 1)/2 comes from carrying out energy estimates.

Proof. Choose by the definition of the function spaces @, v € C(R, H"*?) such that
1Pt r, . < 2| Bpullp, . (r) and [ Peor, < 2[|ProllF, o)

for k € N. Set up = Pyt and v, = P,0. Then, it suffices to consider the interactions
High x Low — High:

[P (D, (kg Vi), S 20522 g, |, 0k sy, (B2 <k —5) (4.28)

a,k ~v
High x High — High:

HPkaﬂJl (uklvk2)||Nu,,k S 2((n_1)/2+)k”uk1 HFa,kl ”Ukz ||Fa,k2 (|k1_k| < 10, |k2_k| < 10)
(4.29)
High x High — Low:

POy (g iy )| va e S 200208y g, ks N5y, (B < k1 —5)  (4.30)

Then the claim follows from the definition of the function spaces by summing over
the frequencies.

We start with High x Low — High-interaction. By the definition of N, j, and
F, k-spaces, it suffices to show the estimate

2
2* Z Q_j/QHle,Sj (fk1,j1 * fk27j2)HL2 S 2(n=k2/2 H Zji/Qkahji ||L2' (431)
gk i=1

Here,
. — Ny (T - @a(g))ft,m[ui], 7i >k,
Frigi (6, 7) { pes (7 ol Fonli], i = .

To prove (4.31)), use duality and apply estimate (4.23) to find

e _ (fergn * froo)llz = sup /Z ng,j(fkl,jl*szm)
X

llgw,sll L2=1

2
5 o(n=1)kz/29—k/2 H 2ji/2||fki,ji L2-

i=1

For the Highx High — High-interaction, we split the sum over the output mod-
ulation variable into k < j < 2k and j > 2k. Further, we introduce an additional
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frequency localization in the x;-variable to find for frequency localized pieces

* _ l l
2l Z 2 ]/QHlDZ,z,ga‘(fkll,ﬁ*fki,jz)”Lz

E<j<2k
2
5 21* Z 27j/22j/2271*/22(n—2)k/2 H2J1/2||f£}; i ”L2
k<j<2k i=1

2
< 2=/ T 282 fle 1

i=1
after applying duality and estimate (4.24]), where f,lc i (&,7) =0 for

€| & [2%,25F).

Summation over [ and [; only gives a logarithmic factor, not changing the estimate
effectively.

For the high modulation output, apply duality and estimate to find

2
2" Z 2_J/2||1DZ,§]~ (fk17j1 * f’sz)HLQ S 2" Z 9= /29(n=1k/2 H2]i/2||fki7ji||l/2
j>2k j>2k i=1

2
5 2(n—1)k/2 H 2jj/2||fki7]‘i ||L2-

=1

For the High x High — Low-interaction, we argue similarly: Taking into ac-
count the additional time localization, it suffices to prove

2
2N 0 Iy (fiy gy * Frg)llze S 20 VOR2 T 292 fu sl (432)
>k i=1

where supp(f, j;) € Dy, <., Ji > k1 for i =1,2.
Again, the sum over j is split into k < j < 2kq, j > 2k;.
In the first case, we use duality and apply (4.23)) to find
2
9k1 Z 9—3/293/29(n=1)k/29—k1 H 2ji/2||fk‘ Ji
k<j<2k: i=1

L2

2
< (2ky = k)20 DR [T 292 fi o e

i=1

In the second case, estimate (4.25) yields

2% N 272 1pe _ (frrgy * frago)ll
i>2ky

2
S A B | R

i>2k i=1

2
SRR | B P
i=1

L2 (4.33)

L2

The proof is complete. O

67



4.8.4 Energy estimates

Purpose of this section is to propagate the energy norm of solutions and differ-
ences of solutions in terms of short-time norms. We prove the following proposition:

Proposition 4.8.4. Letn > 2,1 < a < 2, T € (0,Tp], s > (n+1)/2 and
u e C([-T,T], H*(T™)) be a smooth solution to (4.1). Then, we find the following
estimate to hold:

[ullBe (ry < luollfre + Tllullig ). (4.34)

For two solutions to (4.1)) u; € C([-T,T), H§®) the function v = u; —us satisfies
the estimates

[ol50¢ry S N0O)I72 + TollolFoe(ry (lurll g ry + lluall 7 (1)), (4.35)
[0l 7y S N0l + TollvllEs ¢y + Tollvlleoemllvlles (o lluell p2ery  (4.36)
+ To||v] %’;(T)||U2| Fs(T)-

Like in the Euclidean case we find for the evolution of the L%-norm of the
frequencies

Peu(te)|2s = [|Peu(0)|2s + 2 / Poudy, Py (uv)dadt,
T [0, ]

where u solves the following forced equation:
Opu + Oy Diu = Oy, (uv).

The key estimates are carried out in the following lemma, the rest follows from
integration by parts and commutator estimates (cf. Lemma Section [3.5)):
Lemma 4.8.5. Let 0 <T < Tp, u; € Fo 1, (T), i =1,2,3 and kpmaz > ko.

(a) Suppose that ko < ki — 5. Then, we find the following estimate to hold:

/ uguouzdxdt
[0,T]xT™

(b) Suppose that |k — ka| < 10, |k1 — k3| < 10 and F 5 (u;)(§,7) = 0, whenever
€| ¢ [2,21FY). Set I* = max;—1231;. Then, the following estimate holds:

/ uy ususdadt
[0,T]xT"

(c) Suppose that k1 < k —5. Then, we find the following estimate to hold:

3
SJ T2(n—1)k2/2H ”uiHFa,ki(T)' (437)
=1

3
S T027l*/22nk2/2 H ”uiHFa,ki - (438)

i=1

/ Pru0y, Py (uPy,v)dzdt
[0,T]xT"

(4.39)

T2 2 olp oy 3 Pl .
|k/—k|<10
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Proof. By symmetry we can assume that k; < ko < k3. Let @, € F,p, with
%l £, ., < 2[lwillF, , (r), @ =1,2,3 by the definitions.

The u; will be denoted by u; to lighten the notation. To estimate the functions in
the short-time function spaces, time has to be localized according to the highest
frequency. Let v: R — [0, 1] be a smooth function supported in [—1, 1] with

273(90—71) =1 VzreR.
nez
The left hand-side of (4.37)) is dominated by

B / (= () F w1 (25 = )11 ()

|n|<cT02ks ji>k;
(o (T — 0a () Fraluoy (2t — 0)]) * (nj, Fo o [uzy (252t — n)])(d€)rdr|  (4:40)

=3 )+ D ()

neA neB
where
A={neZh(2" —n)lprn #~(2% —n)},
B ={neZpy2" —n)lpmn=~(2" -n)}
In (4.40) read n;, = n<;, for j; = ky; it is sufficient to derive bounds for this
modulation variable decomposition according to (4.22]).
Apparently, |A| < 10, |B| < CoT2¥. The main contribution of B is handled first.
Denote

fkriaji = Nj; (T - (pa(g))ft7x[u1,y(2k3t - n)1[07T] (t)]a 1=1,2,3.

We do not distinguish between different values of n because the following estimates
are independent of n.
In case k1 < ko — 5 an application of (4.23]) yields

Z( )< Toks Z 2]1/22k1/2

neB Ji>kq

3
§T2k1/2H Z 2ji/2||fki7j7: L2

1=1j; >k;

H kal 2Ji

because jz > k3.
In case |k — ka| < 10, |k2 — k3| < 10 an application of (4.24]) gives

3
Z() S T2"ks/297 /2 H Z 2ji/2||fkiyji L2

neB i=1j;>k;

3
5 T27Lk3/22_l*/2H Z 2Jl/2||szjr L2

1=1j;>k;

For the boundary terms note that sharp cutoffs in time are almost bounded in X, j:
for an interval I C R, k € No, fi € X and ff = F(1;(6)F 1(fx)) (cf. [IKTOS,
p. 291]) we find

sup /21y (7 — 2ul€) L2 % 1 klx,
J

69



An application of Cauchy-Schwarz gives

3
DDt || (V7

L2
neB ji>ki i=1
2
S ok 2ok 2T N 992| fi,jill e sup 2772 5] 22,
i=1ji >k Jen

which yields the claim.
For the proof of (4.39)), we integrate by parts (cf. [[KT0§]) to find

| PPy (0, uPy, v)dxdydt]|
T x[0,T]

<| PyuPy (0, u) Py, vdadydt] + C | / (d€)1drF(Pyu)(€,7)
T7 % [0,T] i—1 YZ"XR

X / (d€1)1dT1 F(Pr, 02,v) (&1, T1) Fo(€§ — &1, 7 — m)bi (€, 61)],
Z™ xR

where v;, ¢ = 1,...,n are bounded and regular multipliers. The resulting expres-
sions can be handled by (4.23). O

We are ready to prove Proposition

Proof of Proposition[{.8. Following the remark after Proposition we find
for a solution to

tr
[Peatti)lfs = Pl +2 [ ds [ dePuPy(o.,),
O n

For the integral we consider the following interactions:
High x Low — High:

tk
/ ds/ dx PruPr0y, (uPru) (ki <k —5) (4.41)
0 n
High x High — High:
ty
/ ds | dxPyuPp0y, (uPgu) (|k— ki <5) (4.42)
0 T
High x High — Low:
T
/ ds/ dx Pruldy, (Pr,uPr,u) (k< ki —5) (4.43)
0 n

High x Low — High-interaction is estimated by (4.39) to

EAD) < T20HOR2 N Pl D Pm e, @)
"n’L7k7|§5 \m17k1|§5

and summing over k; < k — 10 and square summing over k gives (4.34)).
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In case of High x High — High-interaction, the functions are additionally
partitioned in the first component of the frequencies. Estimate (4.38]) is used to
obtain

@32 S T2 N Pl oy DL 1Pmulls,,
|m—k|<5 |my—k1|<10

and square summing over k gives (4.34). For High x High — Low-interaction,
there is no reason to integrate by parts, and the argument for High x Low — High-
interaction is used.

To prove (4.39)), we write
tr
[Pt = 1P +2 [ ds [ doPeoPon, (o6 + )
0 n

and estimate High x High — High-interaction and High x High — Low-interac-
tion like above to obtain (4.39). In case of High x Low — High-interaction, one
finds two different terms:

T
/ ds/ dx PLvPy0y, (0P, (ug +u2)) (k1 <k—15) (4.44)
0 n
and .
/ ds/ dx Prv POy, (u1 + u2)Py,v) (kB <k —5). (4.45)
O n

(4.44)) is estimated following along the above lines because we can integrate by
parts to arrange the derivative on the smallest frequency.

For (4.45)) we use estimate (4.37)) instead to find
[@45) < T2kon—ki/2
Yo NPwvlr ey D 1Pwvle, @

[m—k|<5 [m1—k1|<5
> (IPnwallp,,.cr) + [1Prmuslls, ,.c))
|m—Fk|<5

and square summing in k and summing over k; < k — 5 gives (4.35).
To prove (4.36)), the solution to the difference equation is rewritten as

O + Oy, D5v = Oy, (112) + Oz, (vug).

When estimating [|v||gs() for s > (n + 1)/2, the contribution of 9, (v?) can be
handled like in the proof of (4.34]), which gives

T
ZQ%S/ ds/ Az Pyo P, (v%) S Tols -
k 0 "

The contribution of 9, (vuz) can be treated like in the proof of (4.34) except for
the interaction

T
/ ds dxPyv POy, (ue Pp,v) (k1 <k —5)
O ']r'll
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because here we can not integrate by parts like above. Instead, estimate (4.37) and
square summing in k£ and summation in k; < k — 5 gives

T
> ok / ds | dzPyvPi0y, (u2 Py, v) S Tl|v| ps(r)lluzl| p2s () |0]| Fo(1)-
k1<k—5 0 T

4.8.5 Proof of new well-posedness results on tori

Proof of Theorem[{.1.8 Fix s > (n + 1)/2. We only demonstrate the proof of a
priori estimates for smooth initial values. The additionally required arguments to
construct the data-to-solution mapping are like in the proof of Theorem For
0 < T < Ty we find for a smooth solution

lullps(ry S HUHQES(T) + 1102, (u?) s (1)
[[ul QES(T) S lwollzrs + Tollul %;(T)

This implies
1/4
llls oy S lwolFre + T lullos () + Tollulls oy

and since

li sy S o i Hiwvsry =

tim [l -y < Juoll s, 1 19, (u2) gy = 0
like in Section we can choose Ty = 1 for sufficiently small initial data and prove
a priori estimates by a bootstrap argument. L?-Lipschitz continuity for initial data
in H*® and continuity and existence of the data-to-solution mapping are derived like
in Section 3.4 O
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Chapter 5

New regularity results for
dispersive PDE with cubic
derivative nonlinearities on
the circle

In this chapter we prove local existence of solutions and new a priori estimates for
solutions to dispersive PDE with cubic derivative nonlinearity posed on the circle.
The model cases we discuss in detail are the modified Benjamin-Ono equation

Ou+ HOppu = 0x(u?), (t,x) € R x AT, (5.1)
u(0) =g € HZ(A\T) '
and the modified Korteweg-de Vries equation
Ot + Opgzu = £0,(u3), (t,7) €ER x T, (5.2)
u(0) =wuo € HR(T). :

The sign of the nonlinearity is irrelevant for our local-in-time analysis.
The arguments extend to dispersion generalizations interpolating between the two
equations or the closely related derivative nonlinear Schrédinger equation.

Frequency dependent time localization will be used to introduce extra smooth-
ing, and we add a correction term to control the energy transfer at lower regularities.
The argument differs in the following point: In case of quadratic dispersion rela-
tion, we will work in Euclidean windows T' = T(N) = N~! allowing us to recover
dispersive properties from Euclidean space. Then, one is in the position to utilize
the analysis on the real line from [Guoll] and to prove local existence and a priori
estimates for the same regularity s > 1/4. This is the first regularity result for
on the circle below s = 1/2.

For the modified Korteweg-de Vries equation, one finds stronger dispersive prop-
erties to hold compared to due to a cubic dispersion relation. We do not work
in Euclidean windows but with 7 = T(N) = N~!. This will be sufficient to cover
5> 0. To go below L2, we have to increase localization in time.

We can prove existence of solutions after renormalization conditional upon conjec-
tured Strichartz estimates on tori for negative Sobolev regularities.
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5.1 Quadratic dispersion relations

In this section we discuss the existence and a priori estimates of periodic solutions
to cubic one-dimensional Schrodinger-like equations with derivative nonlinearity like
1.

It turns out that the following derivative nonlinear Schrédinger equation (ANLS)
is also amenable to the employed methods:

(5.3)

10+ Oppu =10, (|u|?u), (t,z) € R x AT,
u(0, x) = ug(x).

From the point of view of dispersive equations, the models look very similar.
However, is completely integrable (cf. [KNT78]) in contrast to (5.1}, which is
not known to be completely integrable. Since it is useful to point out that the
approach does not hinge on complete integrability in a crucial manner, we choose

to analyze (5.1) in detail and give the modifications for (5.3) in Subsection
On the real line, the equations share the scaling symmetry

u(t,z) = AV 2u(W", A ), (5.4)

which makes the scaling critical regularity of these equations s, = 0, but it is known
that the data-to-solution mapping fails to be C? for s < 1/2.

On the real line, has been analyzed by Guo in [Guoll]: In [Guoll] it was
proved that the Cauchy problem on the real line is locally well-posed with
uniform continuity of the data-to-solution mapping as long as s > 1/2 and provided
that the L2-norm of the initial data is sufficiently small, see also the earlier work
IMRO4] and references therein.

Furthermore, for smooth and real-valued solutions, a priori estimates have been
established for s > 1/4 in [Guoll]. The analog local well-posedness result in
H'/?(T) was shown by Guo-Lin-Molinet in [GLMI4].

Takaoka showed in [Tak99] that on the real line is locally well-posed in
H'/2(R) making use of the Fourier restriction spaces and a gauge transform to
remedy the problematic nonlinear term |u|?d,u. Global well-posedness was later
shown employing the I-method by Colliander et al. in [CKS™T02] on the real line
(s > 1/2) and in [Mos17] on the circle (s > 1/2).

Adapting the Fourier restriction spaces and the gauge transform to the periodic
setting, Herr showed in [Her06] that the Cauchy problem is locally well-posed in
H'/2(T). Again, the data-to-solution mapping fails to be C® below H'/?(T) and
even fails to be uniformly continuous below H'/2(T) (cf. [MosIT)).

In [Gr5] Griinrock proved that on the real line is locally well-posed in
Fourier Lebesgue spaces, which scale almost like L2, and in [GHOS|, Griinrock-Herr
showed that on the circle is locally well-posed in Fourier Lebesgue spaces,
which scale like H'/%. In a recent work [DNY19] by Deng-Nahmod-Yue, the exten-
sion to almost scaling critical Fourier Lebesgue spaces is claimed.

Unconditional uniqueness for s > 1/2 was proved by Kishimoto on the circle (cf.
[Kis12]) and by Mosincat-Yoon ([MY18]) on the real line.

Takaoka showed in [Tak16] the existence of weak solutions and a priori estimates
for s > 12/25 combining the analysis from [CKST02] and [Her06]. The gauge
transform plays an important role in [Tak16] so that the Highx Low x Low — High-
interaction can be estimated in X **-spaces.
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Our approach is different: After frequency dependent time localization, basic
ingredients to carry out the estimates are short-time linear and bilinear Strichartz
estimates discussed in Chapter The time localization allows us to control the
derivative nonlinearity in conservative form and we will not use a gauge transform.
This allows us to obtain the same regularity s > 1/4 for a priori estimates like in
the Euclidean case. We prove the following theorem:

Theorem 5.1.1. Let s > 1/4 and ug € H*(T). There are mappings p = u(s) > 0,
T = T(s,||uollg=) > 0 so that there is a solution u € C([-T,T], H*(T)) to (5.1)
with A\ =1 in the sense of generalized functions, and we find the a priori estimate

sup ||u(t)|[zs < C(s, [Juol| 2 )|l uol| &2 (5.5)
te[—T,T]

to hold provided that ||uglrz < ps. Moreover, we have C(s,||up|lg:) < Cs and
T (s, |luollm=) > 1 as ||uo|lgs — 0.

For s > 1/4 we will show the boundsE|

||U?)||F;(T) S ||u||§3§(T) + ||8x(u3/3)”N§(T)
Ha:r(u /3)HN§(T) S ||u| F3$(T)
2y S luolifrg +Tllull$e .

The proof of the a priori estimate will be concluded by a continuity argument.
To infer existence of weak solutions, we use a compactness argument: a smoothing
effect in the energy estimates admits the construction of solutions.

5.1.1 Function spaces and Strichartz estimates

Following Section we define the following short-time function spaces for
arbitrary periods A > 0 for frequency localized functions supp, (@) C Ii:

lull (1) = |I|7S2112/\T lulloz, ;22
clor)

[0l Ny a () = mf‘;leT ||U||DU§O(1;L§)7 (5.6)
clor)

Eg = A{uo : AT = C | supp¢ (@) € Iy, luo|| g, = lluoll Lz < oo},

and the spaces F¥(T), N3(T') and E3(T') are assembled by Littlewood-Paley theory
like in Section 2.4

When we analyze , the function spaces will be adapted to the Schrodinger
propagator. The adapted UZ-spaces are denoted by UZ. The short-time function
spaces, where U3, is replaced with UX, will also be denoted by Fj x, Ni.x. The
adaptation will be clear from context. For the short-time nonlinear estimates, the
frequency projectors can be taken to be sharp, but for a technical reason the fre-
quency projectors have to be chosen smooth for the energy estimate.
Building blocks for the nonlinear and energy estimate are linear and bilinear esti-
mates:

IThe precise form of the energy estimate is slightly more complicated.
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Proposition 5.1.2. Let u € U3,(I; L3) with Pou = u and |I| < 27%. Then, we
find the following estimate to hold:

||UHL§3(I;L§‘) S ”u”UfBO(I;Li)' (5.7)

Further, let v € U3 (1; L3) with Ppv = v for some m <k —5 or ||&] — |&]| 2 27
provided that £ € suppgd and & € suppe0. Then, we find the following estimates
to hold:

luvllzz(rr2) < 2_k/2||uHU§O(I;L§)HU”U)%O(I;Li)a (5.8)
HUUHLZ(I;LZ;) S k227k/2Hu”V§O(I;L§)HDHV,fO(I;Li)' (5.9)

For the latter estimate, it is enough to assume u,v € VB?O(I; Li)

Proof. 1t is enough to verify the claims for A = 1 as the general case follows from
rescaling. is a consequence of Proposition and the transfer principle after
considering positive and negative frequencies separately.

follows from the transfer principle and the short-time bilinear Strichartz esti-
mate from Proposition see also the subsequent remark.

follows from interpolating with linear estimates, see Property (iv) from
Lemma 234 O

We record the corresponding estimates in case of Schrodinger interaction, which
are proved like in the previous proposition:

Proposition 5.1.3. Let u € U%(I; L3) with Pyu = u and |I| < 27%. Then, we find
the following estimate to hold:

||UHL§(1;L§) s HUHUg(I;Li)- (5.10)

Further, let v € UX(I; L3) with Pypv = v for some m < k —5 or ||&| — |&]] 2 2%
provided that § € suppgi and & € suppg0. Then, we find the following estimates
to hold:

S 2_k/2||u||U§(I;L§)HU”UK(I;Li)v (5.11)
—k/2

HUU||L2(1;L§)
luvlL2(r,z) S k?2 lullvzrez)llvilvzacz)- (5.12)

The estimates remain true after replacing v by v.
For the latter estimate, it is enough to assume u,v € VZ(I;L3).

5.1.2 Short-time trilinear estimate

Aim of this section is to derive a short-time trilinear estimate:

Proposition 5.1.4. Suppose that s > 1/4, T € (0,1] and u,v,w € F{(T). Then,
we find the following estimate to hold:

10z (wow) || s (1) S Nlullrs 1ol 7s () 1wl 7s () (5.13)
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We perform decompositions with respect to frequency, essentially reducing the

estimate ((5.13]) from above to

||Pk4aﬂﬂ(uk1Uk2wk3)||Nk4‘A S a(kl’ k2, ks, k4) ||uk1 ||Flc1,>\ ”vkz ”sz,)\ Hwk3 ||Fk3,A'
—_—

(k)
(5.14)
We prove using the estimates from Proposition In order to structure
the proof, we list each possible frequency interaction: in any case, we find estimate
to hold for regularities s > 1/4.

(i) High x Low x Low — High-interaction: This interaction will be estimated
by Lemma [5.1.5

(ii) High x High x Low — High-interaction: This interaction will be estimated

by Lemma [5.1.6]

(iii) High x High x High — High-interaction: This interaction will be estimated

by Lemma [5.1.7]

(iv) High x High x Low — Low-interaction: This interaction will be estimated
by Lemma [5.1.8

(v) High x High x High — Low-interaction: This interaction will be estimated
by Lemma [5.1.9

(vi) Low x Low x Low — Low-interaction: This interaction will be estimated by
Lemma [5.1.10]

We start with High x Low x Low — High-interaction:

Lemma 5.1.5. Suppose that kqy > 20 and k1 < ko < k3 — 5. Then, we find (5.14)
to hold with o = 2%1/2,

Proof. We use the embedding L'(I) < DU3%,(I) and Hélder in time to find for
1] = 2k
([ Prey Oz (e, Vi, iy ) DUZ  (1:12)
S 1102 (wky Uy wieg M 21 (1,22
< 2872 g, vry Wi | 21,3
< 252w, || oo (13050) | 0ks Wiy | 221522

k
S 252wy oz sez) loks oz (se2) lwis oz, i) -

The ultimate estimate follows from (j5.8)) and Bernstein’s inequality. The claim
follows from the definition of the function spaces. O

Next, High x High x Low — High-interaction is considered:

Lemma 5.1.6. Suppose that ky > 20, k1 < ko < k3 and k1 < ka—20, |ka—k4| < 10.
Then, (5.14) holds with a(k) = 20Tk,
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Proof. Let I be an interval with |I| < 27, We use duality to write

([ Prey O (e, Vi, Wiy ) DUz, (1:22) <28 sup / Py, fug, vp,w,dadt.  (5.15)
IJAT

Ifllvz =1
Among Py, f, Vk,, Wk, there is a pair amenable to a bilinear Strichartz estimate as
pointed out in Section [3.1} Say this is Py, fwg,. Then, we find from (5.8) and (5.9)
the following

(5-15) /S 2k4||Pk4fwk3”L%I;Li)”uklw@ ”LZ(I;Li)

SE sup 1P fllve, | lwksllva, o lun oz, @iz lows loz, ez
1£llyz, =1

~ ki llUZ ,(I;L2 ko lUZ ,(I;L2 ks llUZ ,(I;L2)>

< 205w Nl ey ok oz, ez lwks oz (2

where the ultimate step follows from the embedding properties of UP-/VP-spaces.
The claim follows from the definition of the function spaces. O

We estimate the interaction, which gives the s = 1/2-threshold of uniform local
well-posedness, that is High x High x High — High-interaction:

Lemma 5.1.7. Suppose that kg > 20, k1 < ko < ks and |k; — k4| < 30 for any
i €{1,2,3}. Then, (5.14) holds with a(k) = 2F/2,

Proof. We use the embedding L' (I) < DU%,(I), Holder in time and (5.7) to find
for [I| < 27F4

| Prs O (e, vy W )| DUZ  (1522)

< 25 [k, Oy Wiy || 11 (1,22

< 252w, vpy wiy l2(r.22)
S 2kuz”“h ||L6(I;L§) vk, ||L6(I;L§)Hwk3 ||L6(I;L§)
< 2542 jug, vz, ;22 llvks loz 02y lwks oz, (;22)
which yields the claim. O

In the following interactions one input frequency is significantly larger than the
output frequency. This requires us to add localization in time. We consider the
contribution from High x High x Low — Low-interaction.

Lemma 5.1.8. Suppose that k3 > 20, k1 < kg < k3, k1 < ko —10 and ky < ko —10.
Then, (5.14) holds with a(k) = 2(0)ks,

Proof. We use duality to write for |I| < 27k

[Py O (i, vy wiy ) puz, 1,22y S 2% sup / P, fug, vk, wi,dzdt.  (5.16)
I JAT

Sup
Illva,
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To estimate uy, and v, in F), we have to divide up I into intervals J with
|J| < 27%s and write

(5.16) < Z 2" sup // Py, fug, g, wi, dxdt
JJaT

JCI, ||f”v§
727"

=1
o

521@42 Sup || Pry fory || 22 (:02) [tk s [ 2 (5 22)

JCI Hf“vgof
S 28 k2R 2 o, oz (52202 Pl o ) llws oz (:22)
JCI

52(0+)k3 Elclll) (||uk1||U};O(J;L§)||Uk2||U};O(J;L§)||wk3||U§O(J;L§)>7

|7 <2 7"
where the penultimate estimate follows from (5.8]) and (5.9)). The ultimate estimate

follows from partitioning I with intervals of length 2%t giving a factor of 2F1—F4,
The claim follows from the definition of the function spaces. O

Next, we deal with High x High x High — Low-interaction:

Lemma 5.1.9. Suppose that ks > 20, k1 < ko < k3, k4 < k1 —10 and k3 —k; < 10.
Then, we find (5.14)) to hold with a(k) = 20k,

Proof. By the above argument we write

| Prey O (U, Vi, Wiy | DUz (1:12) S Qka sup P, [k, Vi, Wi, dxdt.
BO( )\)
JCI, Hf”vgozl J JAT

|J]S27 "4
(5.17)
Now we observe that among the high frequencies there must be one pair say wug,,
Uk, with ||&1] = [&2]| Z 2 provided that &; € supp; @k, and & € suppg O, .
To this pair, we can apply a bilinear Strichartz estimate from Proposition to
find

E17) <2 Z sup || Py fwWhs || L2 (7:22) [tk Vi, [ 22,22

f =1
St flve,

A k327 R 2w, || JiL2 27012 ||y, || 2 selveslloz 2
52 20(JiL3) 20 (J:L3) 20 (1i2)
JcI

S 2(0k)+ ?%I? (”ukl ||U,230(J;L§)Hvkz||UgO(J;L§)Hwke,”Ugo(J;Li)) .

O

At last, we record the Low X Low X Low — Low-estimate which is straight-
forward from Young’s inequality and Bernstein’s inequality:

Lemma 5.1.10. Suppose that max;—1234k; < 100. Then, we find estimate (5.14))
to hold with a(k) = 1.
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5.1.3 Energy estimates

In the following the energy norm is propagated in terms of the short-time Fourier
restriction norm. More precisely, we shall show the estimate
el (ry S ol + Tllulle—z (5.18)
for s > 1/4, small enough [lug[|r2 and &= &(s) > 0. A similar estimate was proved
on the real line in [Guolll Proposition 8.1., p. 1124].

Proposition 5.1.11. Let T € (0,1] and u € C([-T,T], HY) be a real-valued

solution to (5.1). Then, for s > 1/4, there exists E(s) > 0 and 6(s) > 0 such that
we find (5.18) to hold provided that

Juoll 2 < 8(s): (5.19)

In order to prove Proposition we employ a variant of the I-method (cf.
ICKS™02, [ICKS™03]):
Symmetrized energy quantities are considered, which come into play after integra-
tion by parts in the time variable. In the context of short-time norms, this strategy
was previously used in [KT07, [KT12].
The following analysis is close to the arguments on the real line from [Guoll]. In
fact, we see from the proof that one can treat the Euclidean and periodic case si-
multaneously. However, we prefer to use multilinear estimates than linear estimates
as was done in [GuoTd].
We also make use of the following definition from [KT0T7]:

Definition 5.1.12. Let ¢ > 0 and s € R. Then S? is the set of real-valued
spherically symmetric and smooth functions (symbols) with the following properties:

(i) Slowly varying condition: For £ ~ &' we have
a(§) ~ a(¢’),
(ii) symbol regularity,

Va € No : [0%a()] < a(§)(1 +€%)7*/2,

(iii) growth at infinity, for [¢] > 1 we have

log a(§)
S*€§w§8+€.

Note that since a and expressions involving a are going to act as a Fourier
multiplier for 2w A-periodic functions, the actually relevant domain of a is Z/\.
However, in order to derive favourable pointwise estimates extended versions to the
real line are used. Furthermore, if we only wanted to control the H®-norm of u,
then we would just have to take into account the symbols a(¢) = (1 + £2)°. But
since we have to derive estimates uniform in time, we have to allow a slightly larger
class of symbols following [KT07]. This makes up for the difference between E3(T)
and C([0,T], H3). The proof of Proposition is concluded choosing symbols
which allow us to derive suitable estimates for frequency localized energies.
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To derive the estimate (5.18)), we are going to analyze the following generalized
energy Ej A for a smooth, real-valued solution to (5.1):

EgA () = /£ i) =1 Y a6

E1EZ/N

The following symmetrization and integration by parts arguments can be found
almost verbatim in [Guoll]. Again, there is the difference that the computations
in [Guoll] were carried out for a continuous frequency range.
We use the following notation for the d — 1-dimensional grid in d-dimensional
space:
y={&+&+...+&=0]&€Z/\},

and the measure is given as follows:

/f§1 FENTNEn &)=y D FE)- T,

§1+...+8a=0

We find for the derivative of Ej ’A(u) after symmetrization

d o .
S E ) = R (w)
=5 [, f00(6) + €20(62) + 0(&s) + Ea(e](En) el TS

4

The symmetrization argument fails for differences of solutions. This leads to the

well-known breakdown of uniform continuity of the data-to-solution mapping below
HY2,
Next, we consider the correction term

B ) = [ 6 6. 1€ AN I(E)A

where we require the multiplier b to satisfy the following identity on I'}:

(w(&1) +w(&2) +w(&s) +w(€a))bi (&1, 82,83, Ea)
= S (&a(&) + ©a(&) + Gal&) + &aa(a)).
Consequently, we achieve a cancellation

R w) = (B3 + B ()

6
_C/ b3 (&1,82,63,84 + &5+ &6)(Ea + &5 + &6) Hﬁ (&5).

We have the following proposition on choosing the multiplier b§ smooth and ex-
tending it off diagonal, which allows us to separate variables easier later on. We
follow ideas from [KT12] and [CHT12].
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Proposition 5.1.13. Let a € SZ. Then, for each dyadic X < 8 < p, there is an
extension of by from the diagonal set

{(&,&.&.&) €T3t é| ~ N & ~ B, |&], [€a] ~ p}
to the full dyadic set

{(€I7§2a§37§4) € R4 : |£1| ~ )‘7 |€2| ~ ﬁ7 |§3|7 |€4| ~ /’(’}a

which satisfies )
15 (&1, 62,85, 1) S alp)p™!

and

‘6?163285382452(61?52753754)‘ 50& ( ) 1)‘ alﬁ a2 oc3+a4)
with the implicit constant depending on o, but not on A, 3, p.

Proof. In the following we can assume that w(&1) + w(&2) + w(&s) + w(&s) # 0 as
long as we show by to be smooth because it is easy to see that &1a(&1) + &2a(&2) +

3a(&3) + &aa(€a) = 0 whenever w(&1) + w(&2) +w(&s) +w(&) = 0.
Furthermore, due to symmetry we can assume that &3 > 0, £, < 0. First, we check
the cases [&2] <C[&3], [€1] < [€5].

Suppose that &1,&2 > 0. In this case we have w(&1) + w(&2) +w(és) + w(é) =
—2(&1& + (&1 + £2)&3), and we consider

§1a(&1) + &2a(82) n §3a(&3) + Eaa(8a)
S&+ (La+81)E  (S1& +&E& +48&)

The size and regularity properties of the first term follow from the size and regularity
properties of a. For the second term we multiply with 1 = —(&; +&2)/ (& +&4). We

set
_ &a(§) +na(n)

which is a smooth function. Since ¢ satisfies the bounds |q| < a(N) and |8g82q| S
a(N)N~@+b) for |¢| ~ |n| ~ N, the conclusion follows also for the second term
(61 +&)(Eza(&s) + &aa(bs)) §1+&
(G +&&+66)(E +&) & t+&EE&+H0EG
In the case & < 0,& > 0 we find w(&) + w(&2) + w(&s) + w(és) = —2(& +
&2)(& + &3). Hence,

Cby(&1,82,83,64) =

Cby(&1,82,63,84) =

)

q(£37£4)'

§1a(§1) +&a(&) | &a(8s) + Eaa(Ea)

(61 +&3)(61 +&2) (51 +&3) (&3 + &)
1

g +§ (51752) é. +€ (53754)

which satisfies the required bounds because [£1| < |€3].
In case [&1| ~ |&a] ~ €3] ~ |€4] we can assume & < 0,& < 0 and &1,&3 > 0 and
write

a(§1)é1 + a(§2)é2 n a(§3)€s + a(§4)és
(61 +8&)(E+8) (61 + &) (€ +&)
q(§1,82) — q(&3, &1 — &2 — &3)
&+ &3
q(&1,&) —q(& + (&2 + &), 6 — (&2 +&3))
&2+ &3 .

Cby(&1,82,63,64) =
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Now the bounds follow from the size and regularity of q. O

After smoothly extending the symbol on a dyadic scale {(&1,&2,8€3,84) € Ty :
[€1] ~ A & ~ B,]&3],1€4] ~ p} off diagonal we can separate variables without
restriction (possibly after an additional partition of unity):

b1 (&1,&2,83,8a) ~ by (N1, N2, N3, Ny)x1(&1)x2(§2)x3(€3)xa(&a) (5.20)

with regular bump functions y of size < 1 localized at |&;| < N; so that we can
absorb the bump functions into the frequency projectors and return to position
space.

For details on the separation of variables by expanding b} into a rapidly converging
Fourier series see [Hanl2, Section 5].

The boundary term EY )‘(u) can be estimated in a favourable way in terms of
regularity. But since the boundary term does not depend on the length of the time
interval, it is not surprising that the scaling invariant L?-norm comes into play:

Proposition 5.1.14. Let a € SI. Then, we have
a,A a,\
BV )] S lu)lI7; Bg ™ (u(t)).

Proof. We use a dyadic decomposition of I'} and the expansion ([5.20) to write

|E?7A(u)| - ‘/1" bz(gla52753754)’&(61)ﬁ(§2)a(§3)a(§4)dr4
S NlSN;VsNN4 /Fi:KiNNi b4(§1752753)64)11(51)&(62)a(§3)ﬂ<§4)dr4

< > b4 (N1, No, N3, Ny)| ‘ / P, 4P, uPy, uPy, udx
N1<N2<N3~Ny AT

(5.21)

The normalization of dI'} allows us to switch back to position space with an estimate
independent of A.

The size estimate of b§ and applications of Holder’s and scale-invariant Bernstein’s
inequality imply

B21) < Y aW)NT Y Payullnse | Pagull e | Pagull 3 1Pyl 3
N1<N2<N3z~Ny

(N1N2)1/2
< > a(N4)T”Pn1U”L§||Pnzu||L§||Pn3u”L§||Pn4u||L§
N1<N2<N3~N4

< llull3: Eo(w).
which yields the claim. O

Now we estimate the remainder. Since the localization in time yields a be-
haviour of solutions very similar to the real line case, some of the arguments from
the proof below can already be found in the proof of the real line analog [Guolll
Proposition 8.5., p. 1127]. Because the short-time smoothing estimate seems to be
logarithmically inferior to the real line case, we avoid its use by using short-time
bilinear Strichartz estimates.
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Proposition 5.1.15. Let s > 1/4 and T € (0,1]. There exists ¢ = £(s) > 0 and
£(s) > 0 so that

S Tllulzes (5.22)
holds true for any u € C([-T, T],Hf\’o) and a € S¢.
Proof. We have to estimate
T 6
/ /F [bZ(€17£27§3v§4 +£5+§6)(§4+£5+§6 H fg, (523)
0 JIg j=1

Smoothly divide the frequencies into dyadic blocks and use the notation [£;] ~
2ki = K;. Due to symmetry, we can assume that Ky < Ky < K3, K4 < K5 < Kg.
We write €456 = 4 + &5 + €. Temporarily, we introduce an additional frequency
projector Py for €456, which is also required to be smooth.

We find

T
Bsy |[ |
KK |70

6
ba (&1, &2, €3, Ea56) €56 X i (Ea56) H
De:[&i|~ K, [€a56 |~ K j=1
(5.24)
In order to derive estimates in terms of the short-time norms, we have to localize
time reciprocally to the highest occuring frequency.
We bound the dyadically localized expression in several cases:
Case 1: K5 ~ K6 ~ Kmax,Kg g K5 Write Cl = {(Kl,...,Kg) : K5 ~ K@ ~

Kax, K3 S K5} and estimate this part of (5.24]) by

6

TKg sup \// ba(&1, 62,3, Ea56)€a56 X K (Ea56) H a(t, &;)dlydt],
K;€C1,K<Ks 17|=Kg " j=1

(5.25)
where I C (0,7T] denotes an interval of length K *.

Expand

K(&LSG) — / e—iac&sst(x)dx — / e—ixf4e—i3:£5e—ixEGfK(w)d$7 (526)
R R

and it is easy to see that for K > 1 we can choose fx as rescaled versions of each
other, yielding a uniformly in K bounded L-norm.

Plugging in the expression (5.20)) in addition and absorbing the factors stemming
from (5.26)) into the @;, we are left with estimating

> TKgb§(Ky, Ko, K3, K sup // Huk (t,&;)dlydt
F>‘

KeC,KSKs |I| Kg 6 j=1
ST Z |ba(K71, K2, K3, K) K |Kg
KeC1,KSK3
sup | / / Py uy Pyyus . .. Pryuedzdt],
[I|=r" AT
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where we have changed back to position space at last.
Using the pointwise estimate of 0%, we find

> b5 (K, Ky, K3, K)K]| S a(K3).
K<K3

We use the short-time estimates from Section [5.1.1l to derive suitable estimates for
the expression

dt diL‘Pkl’U,l N Pkg,uﬁ . (527)

AT
The bounds for (5.27) are derived according to the separation of the involved fre-
quencies. Let K7 < ... < K} denote the increasing rearrangement of { K7y, ..., Kg}

and write wug, instead of Py, u; in the following.

Subcase la: K < K§:

In this case we can use two bilinear Strichartz estimates. Say K; and Ky are
the lowest and second-to-lowest frequencies and K5 and Kg are the highest and
second-to-highest frequencies. We arrange ux,ur, and ug,uy, in pairs for two bi-
linear Strichartz estimates and use Bernstein’s inequality on ug, and ug,. We find
together with an application of the transfer principle

(B-27) < llwk, g pge vk, | Lgo L5 [ty vhs | 22 12 [tk ke | 22 12
o (KiK3)'?

~ Kg ||uk1||F)\,k1||uk'2HF>\,k2 HukGHFA,kg'

Taking all estimates together, we have proved

T
/ R6 Cla.
0

6
< TZ DK KT IR, ullm
i=1

S TH [ull =2 (1)
i=1

where the last step follows from carrying out the summations and choosing € and &
sufficiently small.

Subcase 1b: K3 < Kj ~ K ~ K§: In this case it is easy to see that there is
still one pair of highest frequencies which is separated of order K§ in the frequency
supports following Section [4.8.2 Say K; and K, are the smallest frequencies.
Following along the above lines, we are led to the estimate:

TZ K K* I/Z(K* 2(s+e) H”Pk U”Fk R

=1

S TH [ull o=y
i=1

where carrying out the summations is straight-forward.

Subcase 1c: K3 < K3 ~ K§: In this case we use a bilinear estimate on ug;ug:,

three Lg L-linear Strichartz estimates on ugx, ugx, ug: and one pointwise bound ug:x.
’ 3 4 5 1
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This gives

6
T > (K7 KV (K5)* ) T I1Peull s,
Ki<K;<KinKg i=1
6
sT]] 1P ull o= -
=1

Subcase 1d: K{ < K5 ~ K{§: The argument from Subcase 1c is applicable because
there is a pair of high frequencies with dist(|¢;, |¢;]) 2 K§ for §; € suppgii,, due
to otherwise impossible frequency interaction.

Subcase le: Kj ~ Kg. Here, no multilinear estimates are used, but six ng—
Strichartz estimates to find

[ maisr Y o <S+€>K*H\\Pku\|pkMTHM
i=1

Ki~Kg

Fa € (T)

Case 2: Ky ~ K3 ~ Kpay, Kg < Ks: Introduce the notation
Co={(K1,...,K¢) | Ko ~ K3 ~ Kpax, Ko S Ko}
and suppose in the following K < K. We have to bound

6

T Z Ks sup // b (&1, &2, €5, Ea56)Eas6 X i (€as6) H (t,&5)dTgdt] .
KeCy, K<Kg [I|=K;* j=1
(5.28)

Following along the above lines, we are led to the estimate

B ST > |ba(K1, Kz, K3, K)K|Ks  sup
KeCy, K<Ks |1|=FK;!

Py u. .. Pyyudzdt
AT

<T Z K K2(5+€ sup
KeCs ‘I|:K3Tl

Pgu... Pkﬁudxdt‘ .
AT

The product is estimated according to the separation of the frequencies like in Case
1.

Subcase 2a, 2b: Kj < K} ~ K§, Kji < Kj ~ K§: Here, one can use two bilinear
Strichartz estimates on the highest frequencies leading to a gain of (K¢)~! and two
pointwise bounds on the lowest frequencies, which gives a factor (K fK;)l/ 2. and
one has to sum

6 6
TS Ki(5)2 9 (ki K5) 2 (55)  [[I1Peull e, S T Nl FemE(ry:
=1 i=1

K;

Subcase 2c, 2d: K5 < K3 ~ Kg, Ki < K3 ~ K¢: In this case one uses again one
bilinear estimate, three LY -Strichartz estimates and one pointwise bound to find

6

6
Ty (KDYPKG(55) 2K TPl o S T T IPeull gz o)
K i=1 i=1
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Subcase 2e: K ~ Kg: After using six L{ -Strichartz estimates, the estimate is
concluded like in Subcase 1le.

Case 3: K3 ~ Kg ~ K, Ko, K5 < Ks: In this case the above argument
is enhanced with an additional symmetrization, which corresponds to a further
integration by parts: Note that

//b4 (&1, 2,63, Eas6) 8456
//b4 5435575675123)512

/ / —b4 (€4, &5, €65 —Easo 5456Hu (t,&)dTydt

i=1

6
[T att, €)argat
:6

(5.29)

_ /O /F V(6o 756,545@5456Z_];[la(t,mdrgdt

and thus, it is enough to estimate

/ / [0 (€1, €2, €3, Eas6) — b4 (—Eay —&5, —E6, Eas6) 54561_[1“551 )dlgd

1=1

By the mean value theorem and regularity of b, we find the symmetrized expression
to be regular likewise. Further, we have the size estimate

(Fg)2e+)
(K§)?
As Kj < Ki ~ K¢, we can use two bilinear Strichartz estimates and two pointwise
bounds like in the Subcases a,b to finish the proof. O

|05 (€15 €25 €35 Eas6) — 0G (&4, —E55 —E65 Eas6)| S Kj.

To conclude the proof of the energy estimate, we derive thresholds of the fre-
quency localized energy. Recall the following lemma from [KTQ7], which was only
proved on the real line; however, the proof carries over to AT.

Lemma 5.1.16. [KT07, Lemma 5.5., p. 26] For any ug € H*(AT) and e > 0, there
is a sequence (By)nen, Satisfying the following conditions:

(a) 22"s||PnUOH%§ < BnHUOH%{f\’

(b) 220 B S 1,

(c) (Bn) satisfies a log-Lipschitz condition, which is given by
€
08 B — log Bl < o — .

By this, we conclude the proof of Proposition|5.1.11|in a similar spirit to [KT07,
Section 5.

87



Proof of Proposition[5.1.11. We choose £ > 0 and ¢ > 0 in dependence of s > 1/4
so that the estimate becomes true for any a € S? by virtue of Proposition
0. 1. 10l

Let ko € Ny and let (3,,) be an envelope sequence from Lemma[5.1.16] for the initial
data ug. We prove

sup 22| Pou(t)| 7 < Br(lluollrg + Tllul (5.30)

te[—T,T]

from which follows (5.18)) after carrying out the summation over k, due to property
(b) from Lemma[5.1.16

We consider @,° = 2% max(l,ﬂk_olQ*E‘k*k“‘) and we find

6
F;’E(T))’

Z dEOHPkUOH%i < Z22ks||PkU0||2L§ + 2%827%%7’%'5;1HPWOHQLg
k>0 2

<e ol

due to the slowly varying condition and property (i) from Lemma
The implicit constant in the estimate above does not depend on kg, but only on ¢.
Smoothing out a linearly interpolated version, we can find a symbol a*o(¢) € S? so
that

ak (&) ~ &;°, || ~ 2"

For details on this procedure, see [OW18, Subsection 2.3].
Next, following the computations from the beginning of this subsection, we find by
means of Proposition [5.1.14] and [5.1.15

)z s lluollFre + luollzz lluollZre + luollZz w1z + TllulGes -
Requiring ||ug||zz to be sufficiently small, this implies
) o ol + Tl gy e ool + Tl

with the second estimate following from ||ug||%. Se [Juol/%.. At last, since |u||%. ~
> k>0 &EOHPku(t)HQLi, we arrive at

~ko 2 2 6
sup a’ | Peu(t)lzz | Ss lluollzrs + Tllullze - -
S | 2 3| S o)

Restricting the sum to ko implies (5.30). The proof is complete. O

5.1.4 Proof of new regularity results for the modified Benja-
min-Ono equation

As typical for the construction of solutions, we prove a priori estimates for

smooth solutions first. In the second step, we use a compactness argument to

construct solutions. For this we will use a smoothing effect in the energy estimates.
Our first aim is to prove the following proposition:
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Proposition 5.1.17. Let s > 1/4 and ug € HR*(T). There is a constant ps > 0
depending on s and a function T =T (s, ||ug||gs) so that we find the estimate
sup |Ju(t)]|zs < C(s, luollas)l|uol| (5.31)
te[-T,T)
to hold for the unique smooth solution to (5.1)), where X = 1 and provided that
lluollzz < ps. Moreover, we find T > 1 and C(s, ||uo||m=) = D(s) as ||uo||zs — 0.

We control the F*(T')-norm of the solution. This suffices to conclude an a priori
bound for the Sobolev norm due to F**(T") — L H®.
Continuity and limit properties of 7" — ||ul| g5 (71, [|u|
the bootstrap argument were discussed in Section
We are ready to prove Proposition [5.1.17

Fi(T7) @8 T’ — 0 to carry out

Proof of Proposition[5.1.17. First, we assume that |jug|zs < Cs < 1. C, will be
specified below, and we shall see how the general case follows from rescaling. To be
in the position to invoke Proposition we have to assume that ||ugl|z2 < ps.
Then, we find the following estimates to hold from Propositions and

l[ull 7o (1) < Ci(lull gy + 1102w /3) | o 1))
102 (w®/3) | ve(ry < CosllullF oy
ll e () < Css(lluollzrs + Tllul%. ry)-
Following [KTO7, Section 1], set X (T') = ||ul| g+ (1) +|u| p=(7) and derive a bound

on X (T) from a continuity argument: Firstly, we find limg 0 X (T") < 2||luo|| -
Secondly, we note that from the above estimates we find

X(T) < Cs(|luoll - + X(T)?) (5.32)

with Cs = Cs(Ch5,C25,C5,5,T) > 1, which we can argue to be uniform in T on
(0,1].
From continuity of X (7'), we have

X(T) < 4C]uo| -
for T" € (0, T]. However, we find from (5.32) the improvement
X(T) < 20, Juoll -

choosing C sufficiently small in dependence of Cs, e.g. Cy = (4C,)~3/2.
This proves
sup |Ju(t)||gs < 2Cs]luol|a>
te[0,1]
provided that |jug | zs < Cs.
Next, we consider the case of initial data large in H3.
We rescale ug — A~1/2y, (A71.) =: uQ, which also changes the underlying manifold
T — AT. For the rescaled initial data, we have |Ju}||gs — |Juollzz < ps as A — oo
and ||ud||zz = ||uo|| L2 is small enough.
On the other hand, we have the following set of inequalities for the emanating
solutions u™:

[l || 5 () < CilluM By (ry + 102((w)?/3)]Ing (1)
102 ((u*)/3)lIvg (1) < CoslluMFery
1 13 o) < Cas(lug s + TllullGoe o)-
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By the above means, we find
X(T) < Cu(|ludl; + X(T)?)

and further,

sup [|u* ()| mg < 20 |luol|a;
t€(0,1]

provided that [[uol| s < C,.

Scaling back, we find the following a priori estimate

sup |u(t)||zs < C(s, [Juollms)|luol|
te[0,A 2]

to hold, where the dependence of C on ||ug|/g= stems from an insufficient control
over low frequencies when scaling back and forth. Since we can choose

)\ — ||u0~||H3
Cs

the proof is complete. O

)

We turn to the proof of existence of solutions. For ug € Hg(T) with |Jug|[z2 < ps,
we denote ug , = P<pug for n € N. With ug,, € H*(T) and |lugn|r2 < ps, there
is an emanating sequence of smooth solutions u,, to by the energy method (cf.
Section with u,(0) = ug,,, and we can already give the a priori estimate

sup |lun () |zs < C(s, luollz=)[uomll s < CCs, [[uoll ) l[uoll e
t€[0,To)

with Ty and C independent of n. Next, we prove precompactness of (uy,):

Lemma 5.1.18. Let ug € HR(T) for s > 1/4 and denote by (uy,) the sequence
of solutions to (p.1)) with u,(0) = uo,n, where ug, = P<nug. Then, we find the
sequence (uy) to be precompact in C([—T,T), H*(T)) for T < Ty = To(s, ||uol|ms)-

Proof. By the a priori estimate, we have a bound for ||u,||c(—7,7],#+) uniform in
n for T < Ty. In addition, we prove the following uniform tail estimate: For any
€ > 0, there is ng = ng(ug) so that we find the estimate

[ Ponotnllo-7r),m) <€ (5.33)

for all n € N.
This is a consequence of the smoothing effect of the energy estimates from Sec-
tion [5.1.3} We consider symbols resembling

2s > 970
a(m) = my ", |ml 2 27, (5.34)
0, else

to derive the estimate
|1 P> ket s (1) — |\P>kw>,n||§1s’ < CO(s, luollm=)272* = 0 as k — oo,
and consequently,

1 Posttn |2y g1y < I1Pskiolee + C (s, Juollz=)272% = 0 as k = oc.
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Hence, it is enough to prove the precompactness of (P<p,uy) to conclude that
of (uy). From Duhamel’s formula and the boundedness of the linear propagator on
low frequencies, we find

[ P<ngtin(t +6) = Pangun(t)| me

) t+6 ,
< (€% = 1) Pengtin ()| 1+ + ||/ e P (D (un (1) /3))dE || 11
t

0

2 s+1/2
N ||up |l ooy, mrey + NG

< 5||unH:é'([fT,T],HS)
SNOJWO”HS d.
(5.35)

For the penultimate estimate we use Bernstein’s inequality and Sobolev imbed-
ding HY* < L3 to write

t+46
i —t)82 s+1/2
II/ e 00 P (D (un(#)? /3))dW e S NG T2 ()P s 451, 20)
t

S NG 26 | e 0

+1/2 3
< No T2 e
The ultimate estimate in (5.35)) follows from choosing ¢ small enough in depen-
dence of ng and the a priori estimate. The equicontinuity of the small frequencies
together with the uniform tail estimate ([5.33) implies precompactness by the Arzela-
Ascoli criterion. This completes the proof. O

We are ready to finish the proof of the main result:

Proof of Theorem[5.1.1 As described above for s > 1/4, we consider ug € HE(T)
with small L?-norm and denote by (u,), the smooth solutions emanating from
P<pug. By Lemma there is a subsequence (uy,)r which converges to a
function v € C([-T,T], H®). For the sake of brevity we denote u,, again with w,.

It remains to check that the limit object satisfies the a priori estimate and the
equation in the sense of generalized functions. The estimate

sup |u(t)|| s < C(s, [[uollm+)
t€[0,To)

|uol| s

is immediate from the convergence in the H*-norm.
Furthermore, for any n € N and ¢ € C°([-T,T],C>(T)) we find the identity

/i[rat“n(t,w)w(t,x)dxdt+/:;/Taﬁungadxdt:l:/TT/Taw((un)fi/?,)wdxds
(5.36)

to hold.
Integration by parts gives

T T T
7/ /unatgodzdtJr/ /unaggodxdt: :F/ /(ui/3)6130drdt. (5.37)
—rJr -7 Jr —rJr

From Hélder’s inequality we find

T T
Ihs(5.37) — —/ /Uat@dxdt—i—/ /u@igodxdm
-TJT -TJT
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and using in addition Sobolev embedding H'/4(T) < L*(T), we find

T
rhs(5.37) — F / / (u®/3) 0, pdadt.
-TJT

This completes the proof. O

5.1.5 Modifications for the derivative nonlinear Schrodinger
equation

In this paragraph we sketch the necessary modifications to show that the asser-
tions from Theorem on periodic solutions to extend to periodic solutions
to .

We show a corresponding short-time trilinear estimate and an energy estimate with
smoothing effect after adapting the short-time function spaces to the Schrédinger
flow. More precisely, it is shown

Hé’x(IU|22U)HN§(T> SHHH%(T) (5.38)
lelldgery S ol + Tl |

provided that A > 1, s > 1/4 and € = £(s) > 0, [luollz2 < ps. We start with the
short-time trilinear estimate:

Proposition 5.1.19. Let A > 1, T € (0,1], 1/4 < s < 1/2 and suppose that
u,v,w € FY(T). Then, we find the following estimate to hold:

10x (wow) || s 1y S Nullrs oy 10l 7 oy 1wl 75 () (5.39)

Proof. The strategy is the same like in the proof of Proposition The claim
follows from revisiting the proof of Proposition [5.1.4] and whenever one applies an
estimate from Proposition the corresponding estimate from Proposition [5.1.3]
is applied.

Recall the possible frequency interactions, which were enumerated for the proof
of Proposition and remain the same. We give the details in case of High x
Low x Low — High-interaction and High x High x High — High-interaction. In
the first case, under the same assumptions like in Lemma[5.1.5] let I be an interval
of length 274 and we compute by Holder in time, a short-time bilinear Strichartz
estimate and Bernstein’s inequality

(| Py O (wbey Uk Wi | DUz (1:22) S 2k4||ukﬁk2wk3||L1(1;L§)

< 2502w, || oo (1:050) 1Pk wis | 2122

S 2k1/2||uk1 ||U2(1;L§) vk, ||U§(1;L§) |k, ||UZ(I;L§)~

By the above means, the corresponding estimate to Lemma [5.1.5] follows from the
definition of the function spaces.
In the second case we use Holder in time and three Lgm—Strichartz estimates to
find
_ k _
(| Proy O (whey Uk Wi )| Dz (1:22) S 2 [ty Vo Wik || 21 (1,22

< 2k4/2||uk15k2wk3HL2(15L§)

S 22wy Loy lowallocring leowa Lo i)
k

S 252 lury oz (r.22) 1oma oz (1) 1wns oz (1.2 -
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The other cases follow like in Section too. O

The energy estimate is more involved due to the reduced symmetry. If one
wants to stick to the use of linear and bilinear short-time Strichartz estimates, one
has to integrate by parts a second time in one case of the remainder estimate.
Alternatively, the claim follows from a refined trilinear estimate. Below we do the
extra work of a second integration by parts to point out that the second correction
satisfies better bounds.

Proposition 5.1.20. Let T € (0,1], s > 1/4 and suppose that u € C([-T,T], HY®)
is a smooth solution to (5.3)). Then, there exists £(s) and 6(s) > 0 such that we find
the estimate

8 ) (5.40)

lul )

By Ss Nollirg + T(lullGo—e iy + Ilul

to hold provided that
l[uollrz < d(s). (5.41)

We analyze the following generalized energy E A for a smooth solution to (15.3):
Byt = [ atenaeiear) (542
2

In the following we carry out the program from above. We have to take care of
the change of dispersion relation and that the solutions are no longer real-valued.
It turns out that the symmetrized expression when computing %Eg A s still close
to the corresponding expression from Section [5.1.3]

i a,\ __ . ~ = ~ A= A
thO a /§1+§2=0 a(€1>(l£1) /1=§11+§12+§13 U(fll)U(§12)U(€13)d1—‘3u<§2)dr2

v a@nae) [ (€21 (€22 (€2)dT T
§1+€£2=0 Ea=E21+E€22+&23

7

=3 /F (a(&)& + al62) + a(€)8s + al8a)€a) (&) U(E2)a(Es)u(Ea)dly

Like above we consider the correction term
B = [ M6 s ai@)i@a@IE, (643
4
and we require the multiplier b¢ to satisfy the following identity on I'}:

(—i)(&7 — & + &5 — €5 (61, 62,83, 8a) = %(51@(61) + &aa(82) + E3a(83) + €aa(8a))
(5.44)
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so that we have:

d
Rg™ = —(Eg™ + 1)

= 2/ b (&1 + 12 + €13, &2, &3, &) (161 ) A& )U(Er2) W Ers ) T(E2)a(Es ) (Eq)dT g
T —_—

&1

+2 /r* b3 (&1, Eo1 + Eao + Eo3, &3, £4) (1) (1€2) (&1 ) (€22 ) U(Eo3 ) U(€3)U(Ea ) ATy

&2

=03 [ e+ €2+ €10, 60, )61 0060 (E12) 1) € (E)T(E )T,

We show the same size and regularity estimates for the symbol b from (5.44))
like in Section .13t

Proposition 5.1.21. Let a € S:. Then, for each dyadic X\ < 8 < u, there is an
extension by of by from the diagonal set

to the full dyadic set

{(€1,6,65.60) € R 1&5] ~ N, l&5] ~ B, 1€5] ~ [€5] ~ n}, (5.46)

which satisfies ~
b5 S a(pu)u™

and

|07 05205 03B | S a(p)u™ ' NT Ny @2 Ny Ny,
where |&] ~ N; and |&5] < ... < |&] denotes an increasing rearrangement of &;,
i=1,....4.

Proof. We prove the proposition through Case-by-Case analysis: Note the symme-
tries between &; and &3, & and &, and the pairs {&1,&3} and {&2,&4}. Moreover, we
dispose of irrelevant factors below.

Case 1 (/&3] < |€7]):

Subcase 1a (|&1] ~ [§2] > [€s], [6]):
In this subcase we find |¢3 + &3] ~ |€1| and decompose

a : _ &a(&) +&al&e) | &salés) + &aal8a)
Vil 628080 = (NG T ) T (@t )6 T )

Using the notation from the proof of Proposition [5.1.13] we have

et = G LG

and the size and regularity estimates follow from the size and regularity estimates
of q. These estimates were already discussed in Section [5.1.3]
Subcase 1b (|&1| ~ |€3] > |€al, [84]):
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In this subcase we find for the resonance function || ~ |&|?, and the size
and regularity estimates for an extension of b§ follow from considering the trivial
decomposition

&ia(&i)
< (&G +&)(&+8&)

(5.47)

4

(3

Case 2 (|&7] ~ [&5] > [€5]):

In this case it is clear again that the resonance function is of size |£5]?, and a
suitable extension is provided through ([5.47]).
Case 3 (&1] ~ [¢1]):

Subcase 3a (|1 + &al, [€2 + &3] < [€7]):
We compute

a a(€1)é1 +a(€2)(€2) | a(és)€s + a(€)(6a)
billn 6ol ba) = (&1 + &) (&2 +&3) - (61 + &) (& +&3)
_ (61, 6) —q(€s,—& — & — &)
&+ &3
q(&1,62) —q(& + (&2 +&3), 6 — (2 + &)
&2+ &3 ’

and the claim follows from the size and regularity properties of q.

Subcase 3b ([€1 + &| < €7, €2 + €8] ~ [€7]):
We use the decomposition

a a(&)é Fal&)be | alés)és 4 alés)és
ik, 6,60, ba) = (61 +&2)(62 +63) - (€1 4+ &) (52 +&3)
_ (61,62 n q(€3,&4)

&+ &3 & +&

and the claim follows from the considerations of Subcase la. In case |£1 + 2| ~ |£F]
and |&o + &3] ~ |£}] we argue mutatis mutandis.
Subcase 3¢ (|€&1 + &of ~ &2 + &3] ~ [€7]):

The claim follows again from considering the decomposition (5.47)). O

In the following estimates we have decreased symmetry compared to Section
but we still have the same frequency interactions. With Proposition [5.1.3
playing the role of Proposition we can argue in most of the cases like above.

We record the estimate for the boundary term, which is derived like in Propo-

sition B T.T4

Proposition 5.1.22. Let Ef’)‘, i = 1,2 be like above. Then, we find the following
estimate to hold:

a,\ a,\
1B (u(t))] S B (w(t) luoll 7 (5.48)
For the remainder we derive the following estimate:

Proposition 5.1.23. We find the following estimate to hold:

T
/O RS A(u)ds S (Eg™ (u(T)) + E7 (u(0)))luol 72 + T(llullyg—z gy + lulleecr)):

(5.49)
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Proof. We consider dyadic frequency ranges |£1;] ~ M;, i = 1,2,3 and |¢;| ~ L; for
1 = 2, 3,4 with the increasing rearrangements M{ < My < M3, L5 < L5 < Lj.
Further, let K denote the increasing rearrangement of the union of M; and L;.
Case 1: My ~ M35 ~ K¢, Ly < My
Case 2: Lj ~ L} ~ K§, My < Lj: In both cases the argument from the proof
of Proposition [5.1.15| applies because it depends only on short-time Strichartz esti-
mates and the symbol size and regularity.
Case 3: L} ~ M3 ~ K¢g; L, My < K¢§: This case needs more care as, due to
the reduced symmetry, we can not always argue like in Case 3 from the proof of
Proposition [5.1.15]

If Ly ~ K¢, we have an improved estimate for the symbol, namely
(Kg)?+9) KF)/(Kg)?. In this case the claim can be concluded by two bilinear
Strichartz estimates involving the high frequencies and two pointwise bounds. This
gives

K* 2(s+s)K* 6
RS\, 1) £ 70 1) PO R T g
6 i=1

Fpx A
%,

with a straight-forward summation over the frequency blocks.
Note the symmetry between M;, M3z and Ly, Ly. Suppose that Ly ~ Kg.
We write out the imaginary part to find

R\ = C/FA (b3 (11 + 12 + €13, 62, €3, €4) — b5 (€11 + &12 + &1, =611, =612, —&13)]
X (€11 + &2 + flg)ﬁ(fll)ﬁ(Elz)ﬁ(flﬁ))ﬁ(&)ﬁ(fB)ﬁ(&)dFé

If Lo ~ M7, the same argument from Case 3 from the proof of Proposition|5.1.15
is applicable as we find a more favourable bound for the difference of the multipliers
after using the mean value theorem.

If Ly ~ M, this is not the case, but the second resonance function is very
favourable:

QP (11,600,613, 60,83,&1) = —EH + & — € + 6 — & + & 2 (K2

Then, another integration by parts gives

6 T — b3 (€11 + &2 + 13,62, 83, &)
BoaMi Ly) =[S /Fé,giNMi,Lj Q@ (&11,612,613, 82,63, &4)
x (6(&11)u(E12)0(Ers)u(E2)a(Es)u(Ea)dTR]E

o~ b3 (&1 + 12 + €13, 82,83, &)
* [\f/&?N@NK*g’ Q@) (&1, &2, €13, €2, €3, 6a)

M LE<K,
X 0(&11)U(E2)U(Er3)ila (W(Ea1 )(Eaz)T(Ea3) (€3 )T(E4)dTy + .. ]
= B3 (u(T)) — B3N w(0) + RS 2 (w),

S

(&11 + &2+ &13)

(€11 + &2+ &i3)

where we did not record the terms coming up in case the derivative hits another
factor than w(&;). This case we have singled out as |&] ~ K so the factor &
presumably gives the main contribution. From the estimates we shall see that
further terms are lower order indeed.
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Since Q) is bounded from below, we still have the necessary regularity to argue
like in the proof of Proposition [5.1.15 Further, we have the size estimate

bZ(fll + 512 + 5137 527 £3a §4)
Q@) (&11,612, €13, 82,63, E4)

Hence, estimating

_ a(Ky)
~ g

(11 + &2+ &i3)

4
S Pegull 2 | Pezullz2 T T I1Par ol ose

‘ / Py uPy,, WPy, , u Py, WP, u Py, udz
AT ,
=1

gives together with the pointwise bound after carrying out the sum over K;
A A
By (u(t))] S B (w®) u(®)]|7-

Let Ni < ... < N¢§ denote the increasing rearrangement of the dyadic sizes of
the occurring frequencies. We shall estimate the expression like above according to
the separation of the involved frequencies.

Case 1: N§ < N7 ~ N§, N < Ng ~ Ng. In both cases we apply two bilinear
Strichartz estimates. Note that the time localization amounts to a factor of TNg
and the two bilinear Strichartz estimates yield a gain of (Ng)~!, the four pointwise
bounds give a contribution H?Zl(Ni*)l/Q.

Subcase la: N§ ~ K. Summing the derivatives &11 + &2 + €13, {2 with the same
argument like in the proof of Proposition yields a contribution of (Ng)2.
Further, the multiplier is estimated by (Ng)2(sT¢) /(Ng)3. This gives

4 8
|R§,a,/\(N17"'7N8)‘ §T 8N8* H(Nz )1/2HHU‘”F7L;,>\»
i=1 =1

which is actually summable for s > 1/6.
Next, suppose that Ng > K. This implies N§ ~ K§ or K§ ~ N < Ng. In the
first scenario, the above estimate yields the following bound

4

. 8
RS aa(NF VD) TN ()™ =0 TTO) Y2 T e,
6 67 =1 i=1 )

and in the second case

8 * * (Ng)Q(SJ’_E) = x\1/2 :
B an(NT, - N ST— 15— TTAHY2 T llul
5 i=1 i=1

Fox \+
;

In both cases summing over dyadic frequencies yields

|R§,a,/\| S THu”gi*E(T)
for s > 1/6.

Case 2: Nf < Nj ~ ...~ Ng, Ny < Nj ~ ...~ Ng§. From the constraint on
the initial frequencies N3 ~ N§ is ruled out and it has to hold N§ ~ K¢.
Either way, one applies one bilinear Strichartz estimate on w,;u,: (in the first
subcase this is clear, in the latter, since there is an odd number of high frequencies,
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one pair is amenable to one bilinear Strichartz estimate) and three Lgm—Strichartz
estimates on the remaining high frequencies wy:, unzs, unz; the other frequencies are
estimated by pointwise bounds. Here, we do not have to take into account complex
conjugation because we argue by Proposition This gives

* s 3 8
|R8 (N* N*)‘ < TN*(N*)—l/Q (NS)Q( +e) (N*)Q H(N*)I/QH HU *”
S,a,\ 1s:94V8 ~ 8 8 (N§)3 8 7 n,; Fn;,*yn
i=1 =1

which, after summation, gives the estimate

8 8
|Rs,a,/\| S THU‘| F;\'*a(T)
for s > 1/6. The proof is complete. O

With the bound for the remainder terms and the boundary terms at disposal,
the energy estimate is carried out like for the modified Benjamin-Ono equation.
The concluding arguments from Subsection adapt mutatis mutandis.

5.2 Cubic dispersion relation

In this section we consider the Cauchy problem for the modified Korteweg-de
Vries (mKdV) equation posed on the circle T = R/(27Z) with real-valued
initial data wug.

Note that on the real line, there is the scaling symmetry

u(t, z) — Mu(N3t, Ax), uo(z) = Iuo(\x),

which leads to the scaling invariant homogeneous Sobolev space H ™1/ 2(R).
The energy is given by

(Opu)?  ut
Elu] = + — 5.50
W= [ S (5.50)
where the signs from (5.2]) match the signs in (5.50). Hence, the positive sign gives
rise to the defocusing and the negative sign gives rise to the focusing modified

Korteweg-de Vries equation. The mKdV equation is closely related to the classical
Korteweg-de Vries equation

{ Opu+ Oygzu = 0, (u?)/2, (t,x) €R X T, (5.51)

u(0) = up.

We do not give a complete description of previous works on (see also the
section in Chapter [1)) and , but rather an excerpt of work more closely related
to the following considerations. The reader is also referred to the list of literature
therein.

We stress that although several of the symmetries of the mKdV equation are
certainly used in the proof of the main result, in particular that real-valued initial
data give rise to real-valued solutions, the method does not depend on complete
integrability.
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Likewise, it is possible to prove a priori estimates and existence of solutions to
the KdV-mKdV-equation (cf. [Moll2])

{ Ot + Opgz = 0, (u?) /2 + 0, (u?)/3, (t,z) ER X T,
u(0) =ug € H*(T).

The analysis can be adapted to consider generalized KdV equations (cf. [Sta97,
CKS™04]) like
Ot + Opppu = +uF 10,0, (t,z) e Rx T

or dispersion generalized equations like
O+ 0, D2ty = +u?0,u, (t,x) €eR x T,

where 1 < a < 2, which are no longer amenable to inverse scattering techniques.
Exploiting the integrability properties and the inverse scattering transform, Kap-
peler and Topalov showed in the defocusing case to be globally well-posed
in L2(T) (cf. [KT05a]) with a notion of solutions defined through smooth approxi-
mations. From Sobolev embedding one finds that these solutions satisfy the mKdV
equation in the sense of generalized functions as soon as s > 1/6.
Unconditional well-posedness of the mKdV equation by means of normal form re-
duction was shown by Kwon and Oh in [KOI12] for s > 1/2.
Since the mKdV equation is completely integrable, there is an infinite number
of conserved quantities of solutions: In addition to the conservation of energy, we
record the conservation of mass for real-valued solutions, i.e.,

/u2dx:/ugda:
T T

because this provides us with an L*-a priori estimate sup,cg [[u(t)]| 221y < [luollp2(r)
for smooth solutions.

It is known that the data-to-solution map fails to be C3 below s < 1/2 (cf.
[Bou97]) and even fails to be uniformly continuous (cf. [CCT03, BGT02]) because
of the resonant term on the diagonal.

Non-diagonal resonant interactions can be removed by changing to the renor-
malized modified Korteweg-de Vries equation:

9 1

Ot + Opgau = (u° — — u2)6zu = MN(u). (5.52)
27T T

The solution to ([5.52) is given in terms of the solution to (5.2)) as follows:

v(t,x) = u(t,z — C’(/O /TUQ(I’,t’)dx’dt')) = u(t,x — Ct|jupl|32). (5.53)

The norm of the solution to for positive Sobolev regularities equals the one
of the solution to , and most of the well-posedness results were in fact shown for
the renormalized mKdV equation. Removing the off-diagonal resonant interactions
introduces a drift term governed by the L2-norm, which breaks uniform continuity
of the unrenormalized mKdV equation for initial data with variable L2-norm.

For negative Sobolev regularities one should define the nonlinear interaction 91
for in Fourier variables, see below. For the technical reason of having the
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non-diagonal resonant interactions removed, we also work with the renormalized
version . However, by the above considerations, the Cauchy problems are
essentially equivalent in Sobolev spaces with non-negative regularity index.

There are further results not relying on complete integrability: Employing a
nonlinear modification of the Fourier restriction spaces instead, Nakanishi et al.
showed in [NTT10] local well-posedness of for s > 1/3 and a priori estimates
for s > 1/4 (see also the previous work [I'T04] by Takaoka and Tsutsumi).

Combining the normal form approach from [KO12] and the nonlinear ansatz from
INTT10], Molinet-Pilod-Vento proved unconditional well-posedness for s > 1/3 in
[MPV19].

Moreover, in another recent work [Moll2] by Molinet, it was shown that the
Kappeler-Topalov solutions satisfy the defocusing mKdV equation in L?(T) in the
distributional sense.

In the focusing case, relying on the conservation of mass and using short-time
Fourier restriction, was shown the existence of global distributional solutions in
Cy(R; L*(T)). This means that the solutions are continuous curves in L*(T) en-
dowed with the weak topology.

In this work it was also proved that the data-to-solution map fails to be contin-
uous from L%(T) to D’([0,T]) for non-constant initial data ug € H>(T). We revisit
the analysis and see that one can control the nonlinear interaction below L? for
suitable time localization.

On the real line, is better behaved than on the torus because of stronger
dispersive effects: In [KPV93] it was shown that is locally well-posed for
s > 1/4 by a Picard iteration scheme in a resolution space capturing the dispersive
effects. This result was recovered in the framework of Fourier restriction spaces by
Tao in [Tao01]. Global well-posedness for s > 1/4 was also shown in [CKST02|.

Christ et al. showed in [CHT12] a priori estimates for smooth solutions on the
real line for —1/8 < s < 1/4 making use of the short-time Fourier restriction spaces.

Again heavily relying on complete integrability, Koch and Tataru showed a priori
estimates for s > —1/2 in [KTIS].

When we refer to existence of solutions in the following, we work with the
following definition:

Definition 5.2.1. We say that there exist solutions to an evolution equation if there
is a data-to-solution mapping S : H* — C([-1,T], H®), where T' = T'(|Jug|| =) > 0,
with the following properties:

(i) S(up) satisfies the equation in the distributional sense and S(ug)(0) = uy.

(ii) There exists a sequence of smooth global solutions (u,,) such that u, — S(ug)
in C([-T,T],H?®) as n — 0.

This notion was introduced by Guo-Oh in [GOIS]| to discuss existence of solu-
tions to the nonlinear Schrodinger equation on the circle for low regularities.

We recall why the second property is natural for two reasons following [GO18§]:
Local well-posedness requires continuity of the data-to-solution map, but also from
a practical point of view the construction of solutions typically requires at least one
approximating sequence of smooth global solutions.

One purpose of this chapter is to show the existence of solutions and a priori
estimates below H'Y2(T) up to L?(T) relying on localization in time of the Fourier
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restriction spaces. The frequency dependent localization in time introduces extra
smoothing, which allows us to overcome the loss of derivative at low regularities.
EssentiallyEI, we show the following three estimates for 7' € (0,1] and s > 0:

fulencry S o + 1@l
IR enry S T (5.54)
by S ool + Tl -

With the above set of estimates at disposal, bootstrap and compactness argu-
ments allow us to prove the following theorem:

Theorem 5.2.2. Let s > 0. Given ug € H*(T), there is a function T = T(||uo]| mr+)
so that there exists a local solution w € C([-T,T], H*(T)) to (1.19). Furthermore,
we find the a priori estimate

sup ||u(t)|[#= < Clluol|m (5.55)
te[—T,T]

to hold.

There is also the recent work [KVZI18] by Killip et al. relying on complete
integrability, where a priori estimates for smooth periodic initial data are shown,
too. In fact, for a solution to (|5.2)) with smooth initial data ug, the a priori estimate

[s]
lu)llzzery < luolls (1 + lluollF:) =2

is proved in [KVZ1§| for —1/2 < s < 1/2. By means of the transformation (5.53)),
the a priori estimate extends to smooth solutions to (5.52)).

Notably, in [KVZI§] are also proved a priori estimates for smooth solutions to
the cubic NLS

. _ 2
{ Zatu + aza:u - :t|u| U, (t’ m) E R X T7 (556)

u(0) = uy,

in the same range —1/2 < s < 1, but in [GO18] it was shown that because the data-
to-solution mapping can be constructed with the aid of compactness arguments for
a renormalized version of the cubic NLS for —1/8 < s < 0, it can not exist for
(15.56)).

In the context of Fourier Lebesgue spaces which scale like Sobolev spaces with
negative regularity index this program was carried out by Kappeler and Molnar in
[KM17] for relying on complete integrability.

We conjecture that the renormalized version is the correct formulation of
the mKdV equation for negative Sobolev regularities because of the reduced reso-
nances in view of the ill-posedness result from [Mol12].

Another purpose of the following computations is to point out the critical interac-
tions which require further comprehension to clarify non-existence of solutions:

For the non-linear estimate we shall see that localizing time higher than recipro-
cal to the frequency allows us to control the renormalized nonlinear interaction for
negative Sobolev regularity. The situation for the energy estimate is more delicate:
the critical interactions in the energy estimate occur for small second resonance.

2For the actually slightly more complicated energy estimate see Subsection
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These are the interactions we can not estimate below L? in this work without the
currently unproved L?I—Strichartz estimate

lullzs , @xm) S IIuIIth.,ylm. (5.57)

This estimate was conjectured by Bourgain in [Bou93b]. Although there has been
considerable progress regarding Strichartz estimates on tori (cf. [HLI3| BD15]),
this estimate seems to be out of reach at the moment.

Theorem 5.2.3. Suppose that (5.57) holds. Then, there is s’ < 0 so that for
s’ < s < 0 there exists T = T(||luo|lms) such that there exists a local solution
ue C([-T,T],H*(T)) to (5.52), and we find the a priori estimate

sup |[u(t)|| s 1y < Clluo||ar
te[-T,T]
to hold.
Furthermore, solutions to (5.2)) do not exist for s’ < s < 0.

In Subsection [5.2.1] we introduce notation, and in Subsection we finish the
proof of the a priori estimates relying on a short-time trilinear estimate from Sub-
section [5.2.3] and energy estimates from Subsection Preliminary multilinear
estimates to prove the short-time trilinear estimate are discussed in Section [5.2.2

5.2.1 Function spaces and more notation

Regarding the conventions for the Fourier transform, Littlewood-Paley theory
and function space properties, we refer to Section [2.5] The dispersion relation for
the Airy equation is given by ¢(¢) = £3. For the remainder of this chapter, the X *°-
spaces are adapted to the Airy dispersion relation. Further, we confine ourselves to
unit periods A = 1 and A is omitted from the notation in the following.

Also, the spaces Ej, Fi¥ and N are defined like in Section @ with dispersion
relation ¢ (&) = &£3.

Localization of the function spaces in time is carried out like in Section [2.5
yielding spaces Fi*(T') and N (T'). Littlewood-Paley assembly yields the spaces
E®, E5(T), F5(T) and N2(T).

We also use the spaces F,f’a with generalized modulation regularity b < 1/2
to propagate large data. This is accomplished by Lemma [2.5.3] gaining a factor
T(1/2=8)= when we increase modulation regularity to 1 /2.

Throughout this chapter, we work with the renormalized version of .
We use the following notation for the trilinear interaction in :

N(u, v, w) (n) = inda(n)o(—n)w(n) +in E @(n1)o(ng)w(ng) .
ni+nzs+nz=n,
(n1+n2)(n1+nz)(n2+ns3)#0

R(u,v,w) (n)

N (u,v,w)"(n)
(5.58)
We abbreviate the condition (n1 + n2)(n1 + ng)(n2 + n3) # 0 in the sum for the
non-resonant interaction N with (x). In Fourier variables we write

(fixfoxfa)y ()= Y film)fa(na)fs(na), fi:Z—C. (5.59)

ni+nz+nz=n,
()
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5.2.2 Multilinear estimates

In the following we recall and derive multilinear estimates for periodic functions
with support of the space-time Fourier transform adapted to the Airy equation. We
denote the frequency ranges with k; and the modulation ranges with j;. The de-
creasing arrangements are denoted by ki > k3 > ... or j7 > j5 > ..., respectively.
We recall the following linear Strichartz estimates going back to Bourgain (cf.
[Bou93al):

Lemma 5.2.4. For u € X%/3 we find the following estimate to hold:

HUHLg(R,Lg(T)) S llullxo.1/s. (5.60)
For ug € L*(T) with supp(t) C I we find
1S(@)uollrs , (r2) S CelIl™[[uollL2(r).- (5.61)

Proof. Estimate (5.60)) is proved in [Bou93b| Proposition 7.15., p. 211] and (5.61]) is
proved in Proposition (for Schrodinger and Airy dispersion this estimate was
already proven in [Bou93al [Bou93b|] by a more direct method). O

From the above displays the following estimates are consequences of Holder’s
inequality and almost orthogonality:

Lemma 5.2.5. Foru € L*(RxT) with supp(F 5(u;)) C Dy, ;, we find the following
estimates to hold:

4
/ U1UQU3U4d$dt 5 H 2ji/3||ft’m(ui)||ngz s (562)

RXT i1 T

4
/ U1U2’LL3U4dmdt /S 27j;/226k§ H 2ji/2 H}"t’x(ui)Hsz . (563)
RXT i o

Proof. Estimate (5.62) follows from an application of Hélder’s inequality and (5.60)),
and for a proof of (5.63)), see for instance [GOI8, Equation (5.5)]. O

Already in [Bou93b| was conjectured that the estimate
HUHLE‘@(RXT) S lull o172+ (5.64)
holds true. Interpolation with gives
lullze , mxmy S llull xor.a/0+. (5.65)

This estimate would provide us with smoothing in any short-time F“-space, which
seems to be necessary to carry out energy estimates for negative Sobolev regularities.
From the short-time estimates from Proposition we find the estimate

3 —n
[Pl 6 j0.2-2n), £o (ry) < 27 8[| Prtio| 2. (5.66)

Thus, we know that the LY ,-Strichartz estimate loses no derivatives in F''-space by
the following computation:
1/6
o3 2, 116
1Pae'®uolleqo.o-mprery S | D I1Pae®uollZe (s pocy)
I|I|=2—2n
S 1 Pauol| 2
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The smoothing obtained in F'*-spaces for a > 1 by ([5.66) is not sufficient to prove
energy estimates for negative Sobolev regularities.
We recall the following bilinear estimates from [Mol12].

Lemma 5.2.6 ([Mol12, Equation (3.7), p. 1906]). Let f1, fo € L*(R x Z) with the
following support properties

(t,n) € supp (f;) = (1 —n’) 27, i=1,2,

where j1 < ja.
Then, for any N > 0 we find the following estimate to hold:

) 9j2/4
1f1 % fallz2ez (nisny S 271/2 (

N1/4 + 1) [ fillz2llf2ll 2 (5.67)

In case of separated frequencies we can refine the above estimates.

The following lemma is adapted to the nonlinear interaction dictated by the modified
Korteweg-de Vries equation in the following sense: The nonlinear interaction takes
place between w1, us, ug, where uy will serve as a dual test function.

If there is one frequency much smaller than the remaining three, the resonance
is very favourable, and we do not need a refined estimate. Thus, we only consider
the case where two frequencies are smaller than the remaining two. This is relevant
for High x Low x Low — High-interaction:

Lemma 5.2.7. Suppose that ky > 20, k;y
that j, > [aki] for a € {1,2,3,4} with «
suppeti; C I; where |I;] S 2k,

Then, we find the following estimate to hold:

ke < ks — 5. Moreover, suppose

<
< 2 and supp(@;) C Dy, j, and that

4

/ uq (¢, ¢)ua(t, x)ug(t, v)us(t, z)dtde < M H 2ji/2||ft7m(ui)||L3ggl, (5.68)
RxT i=1

where M = 2L/22-71/29~[ak1]/2,

Proof. We denote the space-time Fourier transform of u; : R x T — C with f; :
R xZ — C, Fiy(u;)(r,n) = fi(r,n). Further, we consider the shifted function
gi(T,n) = fi(t +n3,n) and observe (1,n) € supp(g;) < (7 +n3,n) € supp(f;) so
that g;(7,n) = 0, unless |7| < 27:.

Case A: Suppose that j7 = jo: That is a low frequency carries a high modulation.
We shall see that the computation below can also deal with the case j7 = j3 by
exchanging the roles of g5 and g3.

Changing into Fourier space, we find after change of variables

/dx/dtul(t,x)w(t,x)u;;(t,x)w(t,x)

T R

— [ [ R fatra ) fa(rsna) ()
F4(T) F4(n)

:/T > g1(r1,n1)g2(72,m2)

1,72,T4 ni,ne,ng

94(7'4,714)93(11(7'1, 7277'4,711,”2,”4)7 —ni1 —n2 — n4)~
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By means of the resonance function
h(Tl,T27T3,?’Ll,TLQ,TL3) = —T1 — T2 — T3 + 3(711 + ng)(nl +n3)(n2 +TL3),

we can compute the effective supports in the modulation variables.

Set B34 = {n4 € Z||h(r1, 72, Ta,n1,n2,n4)| < 273} and with the third variable
distinguished, we denote h(7y, T2, 74,11, n2,n4) as hg and compute 9,,hs = (n1 +
nz)(ng4 — n3), which gives |9, hs| = 22F1.

Thus, an application of the Cauchy-Schwarz inequality yields |Esy| < (14 27372k1),
and we find the estimate

> /dedT1dT4|g1(T17n1)|\92(727n2)\ > lga(hs, =1 — ng — n4)||ga(74, na)|

na,ni g

(1—}—2]3 le 1/2 Z /d7'2|gz To, N2 |/d7’1/d7'4|g1 T1,n1)|X

nz,ni

(Z |93 (hs, —n1 — ng — na)[*ga(ra, na)[*) /2.

Lzt

(5.69)

By repeated applications of the Cauchy-Schwarz inequality, we find:

(B69) < (1+ 277211/ 3" /dﬁ\gl(ﬁml)\/dm

nz,ni

1/2 1/2
(/ dmlontrzima? (Z PR ——— n4)||%32|94(7'47”4)|2>

S (14277 2R0) 1292 gy | 2 sup/dﬁ/dm

1/2
E |91(T1,m1)] (E llgs(hs, —n1 — no — na) |72 94(%”4)2)

T2
ni

Uz

5 (1+2j3—2kf)1/22l/2||g2||L3EL sup/dﬁ/du
na

1/2
2 2 _ _ _ 2
(E |91(717”1)|> (E |94(74,m0)[> Y llga(ha, —n1 — na n4)|L32>
ni ng ni

S (L + 277202912 6o 1o [l g3 L2

1/2 1/2
X Sup/dﬁ/dM( |91 71,n1)|2> <Z |g4(74,n4)|2>

g

1/2

4
< (14 257240 1201/290 29332 T gl 2z
=1

In case j3 > 2k} we find (5.68) to hold with M = 2!/22791/22=k1If j; < 2k}, we
find (5.68) to hold with M = 2/22-71/22-[ek{l/2 which is the worse bound. This
p.68

proves | ) in Case A.
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Case B: In case j; = j;, that is a high frequency carrying a high modulation we
estimate the low frequency g3 by Cauchy-Schwarz to find:

2j3/22l/2||93”L3Z5l sup /dﬁ/duZ\gl(ﬁ,nl)\
o ™ (5.70)
> " lg2(r2,n2)l1ga(ha, —n1 — ngy — ng))|

ny

We consider the set Eq2 = {ns € Z|hq = O(274)}. Since d,,,hs = 3(n1+n3)(na—ny)
we find |9,,ha| = 2251 and further |Eg| < (14 2747281)1/2, We find after several
applications of the Cauchy-Schwarz inequality:

B70) < (1 + 2947 2k5)1/2235/291/2 | ga]| 122 sUp / dry / dr

n3,T3

1/2
Z lg1(71,m1)] (Z |92(72,112) 1|94 (ha, =11 — ng — n3)|2>

ni n2

1/2
< 2]3/221/2(1 —1—234*27‘31)1/2“93”&5% sup /dTQZ </ d71|91(71,n1)|2>
ni

n3,73

1/2
X (Z |92(72,12)[?[|ga (R, =101 — n2 — ns)“%gl)

na

S2j3/22l/2(1+2j4—2kf)1/2||93||L332%3 sup /d7—2||91HL22%

n3,73

1/2
X (Z 192(72,m2) [ Y [l9a(ha, —n1 — ng — n3)||2Lg>
ng ni

4
< 973/29L/2(1 4 9ia—2ki)1/2972/2 H lgill L2e2 -
i=1 '
Clearly, an adapted computation shows the claim if ji = j4.
The estimate (5.68) follows from the same considerations as in Case A. O

The estimate for High x High x Low — Low-interaction is related, but the
minimal size of the support of the modulation variable is different. This is taken
into account in the following sections.

5.2.3 Short-time trilinear estimates

Recall for k € Ny and j € Ny the regions Dy, j, Dy <; in Fourier space defined

in (225).
Our aim is to prove estimates of the following kind for all possible frequency inter-
actions:

HPI@4N(U17U2,U3)HN;§¢4 S D(Oé, k‘l, kg, k‘3, k4) ||U1||Fk171/27,a ||UQ||F;2/27.a ||’LL3HF;3/27,Q.

D(Q’E)
(5.71)
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In fact, the resonant interaction can be perceived as a special case of High x High X
High — High-interaction, see below. Hence, we only estimate the non-resonant
part.
The trilinear estimate

19 (ur, ua, ug)l| woe (1) S TOlunl po.e oy luzll ooy usl| oo ) (5.72)

then follows from splitting up the frequency support of the functions and Lemma
Note that it will be enough to estimate one function in ([5.71)) at a modulation

slightly below 1/2 to derive (5.72)).
Below, we only derive (5.71) for Fy-spaces in detail. The systematic modifi-

cation to find to hold with one modulation regularity strictly less than 1/2
follows by accepting a slight loss in the highest modulation in modulation localized
estimates.

We start with High x Low x Low — High-interaction:

Lemma 5.2.8. Let kg > 20 and k1 < ky < k3 — 5 and suppose that Py, u; = u,; for
i € {1,2,3}. Then, we find the estimate (5.71)) to hold with D(a, k) = 2~ (@/2=2)ka
for any € > 0.

Proof. Let v : R — [0, 1] be a smooth function with supp(y) C [-1, 1] and

Z Yz —m) = 1.

meZ
We find the left hand-side in (5.71]) to be dominated by

€25 3" sup ||(r — n® + 2Ry ()
mez tha €R

(Foalno (M40t — 1) )y (215t = tr,) — m)ud]
* Froa[y (298 — tr,) — m)us] * Fr oy M = tr,) — m)us]) || x, -

We observe that #{m & Z|no(2l**l(- — t;))y(2le* (- — t,) —m) # 0} = O(1).
Consequently, it is enough to prove

C2" sup (7 — n® + 21" T, (0)(Fr e o214 (8 — 1))y (2RI 7my

tk-4€]R
* Fra (720 — 1) — m)ua] « Foo[y(21%1 (£ = tr))us]) || x,,
< 27 (@/2m ks [ur |l g Nuzllpg lusllpe -

We write fr, = Fy . [no(219%) (t — t;.)y (2% (¢ — t) — m)w;] and with additional
localization in modulation we use the notation

fr i = N<ji (T — ng)fkm Ji = [O‘kﬂ’
o M5 (T - ns)fkia ]1 > [O‘kﬂ
By means of the definition of F and (2.48)), it is further enough to prove
Z Z 27].4/2“1Dk4,<9,-4 (Forgs * Fraiga * fraga) llL2e2

ja>[aka] j1,d2,53>[ak]]

3
27O T Y 2P gl zes.

i=1ji >[ak]]

(5.73)
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We see that (5.73) follows from (5.68]). In fact, the resonance function, giving a
lower bound for the minimal modulation in ([5.73)), is given by

Q= (]4}1 + ko + k‘3)3 — k_(13 — k‘g — kg = 3(]<J1 + k‘g)(k‘l + k‘3)(l€2 + k‘g)

Thus, 221 < |Q| < 22%1+ks | To derive effective estimates, we localize |Q ~ 22Fatl,
This is equivalent to prescribe |ko + k3| ~ 2!, and the contribution to [5.73)) will be
denoted by

HPSlllDrm,(g)M (fklyjl * sz’jz * fk37j3)~||L§Z?1-

We write Dy, j, for Dy, (<);, in the following.

In the above display we split the frequency support of fi, j, up into intervals of
length 2!, that is fx, j, = >, fi, ;, and, due to the localization of 2, this also gives
a decomposition of f, j, so that the above display is dominated by

Z HPSZ)lD’M-,JA (fklle * f]gmjz * f/£37j3)~||L$—ei'
I

Further, we split after decomposition in 0 <[ < k3 the sum over js into j4 < 2k} +1
and j4 > 2k} + 1. For fixed [ we find from ([5.68|)

k —ja/2 l I I -
274 E 2 i/ E ||P91Dk4,j4 (fkhjl * sz,jz * fk37j3) HLEZ?L
[aks]<ja<2kT+L, I
ji>lakl], 1=1,2,3

3
521% Z 2—j4/22—j1*/221/22—[ak1]/22j4/2H Z 2ji/2\|fk:i,ji
[oka] <ja<2k}+1 i=1j,>[ak]]

3
Sk eRIETT N T 292 fi

=1 j;>[akt]

L2

L2¢2,

n

where f,g j, for i = 2,3 were reassembled by means of almost orthogonality and
Cauchy-Schwarz inequality. ‘
For the second part j4 > 2k] + [, we take 2791/2 < 2734/2 0 find similarly

2k H" > 2N PG, (e % Fl g % Fly ) le2e
I

Ja>2kT+1 j1,52,53>[ak]]

3
< 9ka Z 9—Ja/29l/29—[aki]/2 H 2ji/2||fk7:,ji

L2
Ja>2kr+1 i=1
3
52_[ak1]/2H Z 242 fr gl pzez -
P21 5> (k]

An estimate with one modulation strictly less than 1/2 follows from slight loss in
the highest modulation. We omit the details. O

We turn to High x High x Low — High-interaction.

Lemma 5.2.9. Let k4 Z 20, k‘l S ]{32 S kg, ]Cl S kg — 15, |k‘2 — k4‘ S 10 and
suppose that Py,u; = u; fori € {1,2,3}. Then, we find estimate (5.71) to hold with
D(a, k) =2-(1/2=)k4 for any e > 0.
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Proof. With the reduction steps and notation from above, we have to prove

2k Z 277/ Z ||1Dk4,j4 (fk’lajl * Jhaga * fk37j3)~||L2€2

T n

Ja>[aky] J1.92,33>[ak]]
3 (5.74)
S 20N S0 22 e llnze
=1 j; >[ak]]
We use (5.63)) to find
3
Hle4,j4 (fkhjl * szyjz * f/@37j3) HLEZ% 5 270 /22€k1 2j4/2 H 2]1/2||fki,ji L2e2- (575>

=1

We find from the resonance relation that ji > 3k — 10. Now the estimate
follows in a similar spirit to the computation above: Splitting up the sum over j4
into [aky4] < ja < 3kT and ju > 3kF, we find

3
9ka Z 9—Jja/2 Z 9eki 9—=3k1/29j4/2 H 2ji/2||ka i

[aka] <ja<3k? J1,92,d3> k] =1

3
<. 3]@;2—@/2-&-(8/2)@ H Z 2ji/2||fki,ji

i=1j; >[ak]]

3
eSOl | I RE T

1=1j; >[aky]

L2e2

n

L2e2

n

L2e2-

=

For the remaining part we argue like above

3
ORI SELY) D DRECCT P

ja>3k: i=1j;>[ak}]

3
52_k4/2+6k4H Z 2jj/2||fki7ji

i=1 j,>[aki]

L2e2,

=

and the claim follows. The variant with one function in a strictly less modulation
regularity than 1/2 follows from the same considerations like in the previous lemma.
O

We turn to High x High x High — High-interaction. In this case, we do not
use a multilinear argument but only the bilinear estimate from Lemma [5.2.6] In
the special case a@ = 1, this becomes the analysis from [Mol12]. Additionally, the
computation reveals that the interaction under consideration can be estimated for
negative Sobolev regularities for o > 1.

Lemma 5.2.10. Let ky > 20 and |k; — k4| < 20 for any i € {1,2,3} and suppose

that Py,u; = u; for i € {1,2,3}. Then, we find (5.71) to hold with D(a, k) =
9—(e/2=1/Dks yhenever o > 1.
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Proof. The usual reduction steps lead us to the remaining estimate:

S oamPoks Nl (Fe * Fraa * fras) lz2e2

ja>[oka) J1,92,932[aky]
5 (5.76)
< 27 (e/271/2)k H Z 2ji/2||fki Ji [l L2£2
i=1j;>[ak]]

We use duality to write

||1Dk4,j4 (fk17j1 * fk21j2 * fks,js)”L 202 = sup //u1u2u3u4dxdt

Ttn
‘ U4HL2 »=1

where u; = F; ) [fr, ;. for i =1,2,3.

After splitting the expression according to Pyu;, where Py projects to only pos-
itive, respectively negative frequencies, it is easy to see that two bilinear estimates
are applicable.
Indeed, the same sign must appear twice. A pair of this kind is amenable to
as the output frequency must be of order 2k1 and the two remaining factors are
also amenable to a bilinear estimate.

Say we can apply bilinear estimates to wquq and usus. This gives

||1Dk4 ia (fkl,]i * fk27j2 * fk37j3)||L2€2

T'n

< 901/29(ia—ka)/2972/29 (s~ k4)/4H | fii il z2ez
=1
3
< 9—ka/29j1/4g—aks/4 H 2j1/2||fk' illnzes .
/L:1 T n
The claim follows after summation over jy. O

The resonant interaction is a special case of High x High x High — High-
interaction, but we mention that in this case the same estimate like above can be
proved by elementary means.

Next, we deal with High x High X Low — Low-interaction:

Lemma 5.2.11. Let k1 > 20, k1 < kg < ks, k1 < ko — 5, ky < ko — 5 and suppose
that Py,u; = w; for i € {1,2,3}. Then, we find - to hold with D(a, k) =
9(a/2=1+e)kig(1-a)ks for any € > 0.

Proof. Contrary to the previous cases, we have to add localization in time in order
to estimate uy, and uy, in F or Fy}, respectively.
For this purpose let v : R — [0, 1] be a smooth function supported in [—1, 1] with

the property
> e -m)=1
meEZ

We find the left hand-side to be dominated by

C2 ST sup [ Faafumo (275 (¢ — t,)7(27F (t = tr,) — m)]+

]| <2le(kr —a)] Pha R

Fraluzy(2 (t = tr) — m)] * Fralusy(2°7 (¢ = t) —m)] |x,,
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With the additional localization in time available, we can annex the modulation
variable for j; < [akf], i = 1,2,3 and denote fi, = Flu;y(2¥1(t — t1,) — m)] and
with additional localization in modulation we write

Fro i = N<ji (T = 1°) frys Ji = [akf],
o 7]]7(7 - ng)fkia ]l > [Oékﬂ

With the reduction steps from above, we have to prove

ga(ky—ka) ok Z 9—3a/2 Z ||1Dk4_’j4(fk1,jl*fkm*fkavjs)~||wgl

ja>laka) J1,J2,J32> k]
3
< 2(&/271+5)k12(17a)k4 H Z 2ji/2||fkv j~||L2g2.
i=1 ji>[ak]

(5.77)

Like in the proof of Lemma [5.2.8] the resonance is localized to
22 5 |0 S 2+,

and we introduce additional localization P}, for Q| ~ 22¥1+! where 0 < 1 < kj.
Correspondingly, we decompose f, ;, into intervals I of length 2!, which allows an
almost orthogonal decomposition of the output.

Lastly, we split the sum over js into j4 < 2k7 +1 and j, > 2k + 1. For fixed [

we find from (5.68])
ga(ki—ka)gka Z 9—J4/2

[aka]<ja<[2kT+],
Ji>[aky]

1/2
[ I .
X <§ :Hpﬂlﬁk‘b“ (fk17j1 * fk27j2 * fk37j3) ||i§é%>

I
3
< 9kaga(ki—ks) Z 9—Js/29—31/29l/29—[ak1]/29js/2 H 2jj/2||fk§i7]‘i ll2
[ovka] <ja<[2k7 +1], i=1
Jiz[ok]]

3 .

< kT2ak1/22(17a)k427k1 H Z 2ji/2||fki7j1‘, )
i=1j;>[aki]
3

< 9(a/2—1+e/2)k1g(1—a)ks H Z 2ji/2||fk‘ gillze-

i=1 j;

Likewise, we find for the contribution of j4 > 2k} + [ the bound

2.

3
2(&/2—1+5/2)k12(1_a)k4H Z 2ji/2||fki7ji
=1 j; >[ak]]

Summation over [ yields the claim. O

At last, we turn to High x High x High — Low-interaction:
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Lemma 5.2.12. Let k1 > 20, ky < kg < ks, k1 > ks —10, k4 < k1 —10 and suppose
that Py,u; = w; for i € {1,2,3}. Then, we find (5.71) to hold with D(a, k) =
2(a=3/2+e)k19(1=)ks for any e > 0.

Proof. As in the proof of Lemma[5.2.11} we have to add localization in time accord-
ing to k7. With the notation and conventions from Lemma [5.2.11] we have to show
the estimate

ghagotki=he) N " gmia/z R 115, ,, (Frvg * fraga * fraia) lz2ez

ja>[oka] J1.d2,J3>ak]]
3
1—a)k —3/2+4€)k ji /2
S 20kl 32t b TTS° 2072 | zee.
i=1 ji>[ak;]

(5.78)

The resonance function implies j; > 3k} — 15. We split the sum in (5.78)) over
Ja up into [aky] < j4 < 3kF and jy > 3k7.
The first part is estimated by an application of (5.63)

okaga(ki—ka) Z 2_j4/2 Z ||1Dk4,j4 (fk?hjl * sz,jg * fk}g,j3 >~HL72_Z$L

[oka] <ja<3k? ji>laky]
3
<. 2ak12(1—04)k4 2—]‘4/2 2_jf/228kI2j4/2H2ji/2||fk}'j' L2g2
< E E iJillL2€2
[aka] <ja<3k: J1.92.98 > (k] i=1

3
< 2leckems/Dhighi(=a) (gyple=2m/2TT N~ 20/,
P21 5> (k]

L2¢2-

n

The estimate for j, > 3k} follows similarly. This proves the claim together with
the standard modification of lowering the modulation regularity slightly. O

We record the estimate for the interaction of low frequencies, which follows in a
straight-forward manner from Cauchy-Schwarz inequality.

Lemma 5.2.13. Let ky,...,ks <200. Then, we find (5.71) to hold with D(«, k) =
1.

We summarize the regularity thresholds for which we can show the trilinear
estimate (5.72)) by splitting up the frequencies and using the estimate (5.71))

1. High x Low x Low — High-interaction: Lemma [5.2.8| provides us with the
regularity threshold s = —(«/4)+.

2. High x High x Low — High-interaction: Lemma [5.2.9| provides us with the
regularity threshold s = —(1/2)+.

3. High x High x High — High-interaction: Lemma [5.2.10| provides us with
the regularity threshold s = (1 — «)/4.

4. High x High x Low — Low-interaction: Lemma [5.2.11] provides us with the
regularity threshold s = —(1/6)+ for a = 1.

5. High x High x High — Low-interaction: Lemma [5.2.12| provides us with the
regularity threshold s = —(1/6)+ for o = 1.
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6. Low x Low x Low — Low-interaction: There is no threshold.
This proves the following proposition:

Proposition 5.2.14. Let T € (0,1]. For 0 < s < 1/2, there is a(s) < 1 and
0 =0(s) >0 orfors=0,a=1 and 8 =0 we find the following estimate holds:

3
190w, w2, ws)ll e cry S T T il ooy

i=1

Furthermore, there is 6’ > 0 so that for any 0 < 6 < ¢’ there is s = s(§) < 0 and

0 >0 so that ,

9% (w1, ua, UB)HNSJH(T) < T’ H [l

i=1

Fs:148(T)-

We do not quantify the estimates in detail for negative Sobolev regularity be-
cause in this case, we can only prove a conditional result.

5.2.4 Energy estimates

In order to close the iteration, we have to propagate the energy norm. First aim
of this section is to prove the following proposition:

Proposition 5.2.15. If s > 1/4, then we find the following estimate to hold

[[ul

QES(T) < lluollFre + Tllul %Sva(T)' (5.79)

Furthermore, there are 0 > 0 and non-negative functions c(s), d(s) so that we find
for any M € 2N the estimate

ullzs oy S ol Fre +T° M ullfos oy + M~ Nl fros oy + T Nt 1y (5.80)
to hold whenever s > 0.

To prove the above estimates, we analyze the energy functional ||u(t)||%. =
ez (k)?®a(t, k)|?. Like in Sec we have to take into account the larger
class of symbols from Definition [5.1.12)

It is admissible to choose ¢ = €(s) > 0 in the following, but the subsequent
estimates must be uniform in . We also write a(251) = 22k1(s+¢) because the
expression safely estimates linear combinations of a(2%).

For a € S we set
lu(®)lzre = a(n)la(t,n)?

nez
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and for a solution to ([5.52)) we compute

Oullu(®)|Fre = 2R(D_ a(n)(dea(t, n))a(t, —n))
nez
= 2%(2 a(n)in®|a(t,n)|> +ina(n)|a(t, n)|*a(t, n)a(t, —n)
neL
—|—iga(n) S° At m)alt, na)a(t, ns)alt, —n))

n=ni-+nz+ns,

()

= C( > (a(n1)ny + a(n2)ng + a(ns)ns + nya(ng))
ni1+nz+nz+nas=0, )
() aa(m

X 4(t,n1)a(t, no)a(t, ng)a(t, na)),

where the last step follows from a symmetrization argument, which fails for the
difference equation. This is a consequence of the lack of uniform continuous depen-
dence for s < 1/2.

We set

Ri,a(T7 Ui, uz,us, U4)

= > /0 V.0 (@)1 (£, 11 )lig (t, no) 3 (£, 13 )l (t, ng ) dt,

ni+nz+nz+ngs=0,
()

and we write Ry“(T,u) := Ry“(T, u, u,u, u).

Above we have found that ||u(t)]|%. = |luo|%. + CRy*(t,u), and we shall see
that the above expression can be estimated as long as s > 1/4 in F*!(T)-spaces.
However, to go below s = 1/4, we have to add a correction term in a similar spirit
to the I-method like in Section But the boundary term will not depend on
the length of the time interval anymore. To remedy this, we do not differentiate by
parts all of Ry but only the part which contains high frequencies. Precisely, we
set for a large frequency M € 2N

T
RM (T, u) = C / ST Gaa @t )t na)it, ns)alt, na)dt
0 ny+notns+ny=0,
(%), Inj|<M

and decompose Ry (t,u) = Ry“M (¢, u) + (R (t,u) — RY*™ (t,u)). The frequency

cutoff M will be later chosen depending on the norm of the initial value.
Next, we differentiate by parts: We have

ovau(t,n) + (in)3a(t,n) = in|a(t,n)|*a(t, n) +%n Z (t,n1)a(t, ne)a(t, ng),

n=ni+nz+ns,
()

and after changing to interaction picture o(t,n) = e’mstﬁ(t, n), we find

8t@(t,n)=in|@(n)|2ﬁ(n)+% > oty )i(t, n2)d(t, ns).
n:nl?f;erns,
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The resonance function is given by
QM) =ni +nj3 +n3 +ni = —3(n1 +n2)(n1 +n3)(n2 +n3)  (n4,...,n4) € Ty

Differentiation by parts is possible because the resonance function does not vanish
for the terms in R}“:

T
R(T) = / ds 3 ea@alt ma)a(t,na)a(t na)alt na)

ni+ne+nz+ngs=0,

()

= > el

ni+n2+nz+nas=0,
*

s,a /
it (n1,n2,n3,n4) 4
= E Vs ,o(T / tat(zﬂn — )Hvtnl
ni+ngs+nz+ngs=0, 1,762,7¢3, 4 _

()

Y Ly m)it st na) o

ni+ne+nz+ngs=0, ZQ(n)

()

+4 Z w”@/ dt(0:0(t, n1))0(t, n2)0(t, n3 )0 (¢, ng)

1Q(n
ni+nz+nz+ngs=0, ( ) 0
(%)

dteztﬂ(nl,nz,n3,n4) H d(ng, t

=1

= By(0;T) + I(T) + II(T),

Ys, a(n)

|, ) Pa(t n)adt ne)a(t, ng)a(t, na)

I(T)—C/OTds

ni+nz+nz+ns=0,
(*)

and

=C / ds Ysa(®)ny 3 a(t, na)lt, n3)a(t, na)

Q(m)
n1+nz+n3+n4 0, ni+ns+ne+n7=0,
()

U(t, nS)u(tv nG)u(tv n7)‘

If we differentiate only R5®(t,u) — Ry (¢,u), then one of the initial frequencies
has to be larger than M.
The following lemma provides us with a pointwise bound on |95 4|:

Lemma 5.2.16. Let s > 0, n; € Iy, fori € {1,2,3,4} and a € S5. Then, we find
the following estimate to hold:

()] £ O

Q(m)]. (5.81)
The tools we use to derive the pointwise bound are the mean value theorem

and the double mean value theorem. To avoid confusion, we state the double mean
value theorem.
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Lemma 5.2.17. Ify is controlled by z and ||, |\| < ||, then

y(E+n+A) =y +n) —yE+ ) +y&) = (9(\77||A|?)-

Proof. Cf. |CKS™03, Lemma 4.2., p. 715]. O

We are ready to prove Lemma

Proof of Lemma[5.2.16. 'We prove the bound by Case-by-Case analysis.
Case 1: |n| ~ |ng| ~ |n3| ~ |n4| ~ 2F1.

Subcase a: Two of the factors |ng + nsl, |n2 + n4l,|ng + n4| are much smaller
than |nj| (note that one factor must be of size |n}| because at least two numbers
will be of the same sign).

For definiteness suppose in the following that [ns + ns|, [n1 + na| < |n}| and from
this assumption follows |Q(m)| ~ |n}||ne + ns|iny + nal.

We set £ =ny, E4+1n = —no, E+ A= —ny, £+1+ X =ng in order to check that the
assumptions of the double-mean value theorem for the function a(-)- are fulfilled.
a(2kh)

2kT

z(§)

Hence, from property (ii) of the symbol we find |, o] <

Consequently, we find to hold in this case.

Subcase b: Next, suppose that one of the factors |na + ng|, |n2 + na|, |ns + ny| is
much smaller than 251 whereat the others are comparable to 2¥1. For definiteness
suppose that this is |n; +ns|. For the resonance function follows |[Q2(72)| ~ (n})?|ni+
nz|. We invoke the mean value theorem to find

|n2 + n3||n1 + Tl2|.

- g a2ky
[a(m)] S () |y + sl ~ =g Q)]

which proves the claim in this subcase.

Subcase c: Suppose that all three factors [ng+ns|, |ne +n4|, [ng +ny| are compa-
rable to ni. This gives |Q(7)| ~ 23%1. Using the trivial bound [t ()| < a@(2F1)2k
we find to hold also in this subcase.

Case 2: |n| < |na| ~ |ns| ~ |ng| ~ 2%1.
In this case we have |Q(7)| ~ 2%%1; together with the trivial bound the estimate
is immediate.
Case 3: |n1], |n2| < |ng| ~ |n4| ~ |n3|.
In this case we find [Q2(7)| ~ |n1 + n2|(n})?, and an application of the mean value
theorem yields i

[Vs.a(@)] S Ina + nafa(2™),

which yields the claim in this case. O

Remark 5.2.18. In Sobolev spaces with negative regularity index a related es-
timate was proven in [CHT12, Lemma 5.2, p. 59]. There, also regularity of the
extension was proven. This will allow us to separate variables in Sobolev spaces
with negative regularity index.

The second important ingredient to find the bound for R}“ is the following
improvement of the LS-Strichartz estimate. We remark that following along the
lines of Section one can derive stronger estimates in some cases. But since this
would not improve the overall analysis, we just record the simplified version below.

116



Lemma 5.2.19. Suppose that supp(Fy.(u;)) € Dy, j,, where j; > [aki] for 1 <
a <2 and kj < ki —10. Then, we find the following estimate to hold:

4
([ Py N (2, ug, ua)ll 2 S g~ki/2ki/2 H2ji/2”ui”Liw-
=2

Proof. After changing to Fourier space and using duality, we rewrite the left hand-
side by means of the notation and conventions from Subsection [5.2.2

sup /d71/dT2/dTg > 8(71,m1)92(72,12)g3 (75, 13) g4 (ha, na+na+ns).
91l 202 =1,
112117”:17

ni,n2,n3

Case A: k3 < k¥ —10. Suppose that v and g, are at low frequencies and further,
k5 — kil <5.
In the following we use the same notation like above in Subsection [5.2.3] Observing
that |0hy/Ons| = 3|(n1 + na + 2n3)(n1 + ng)| = 2F1, applications of the Cauchy-
Schwarz inequality in ng and 7, yield

/d7'1/d7'2/d7'3 Z 0(71,11)92(72,12)93(73,13) g4 (ha, N1 + N2 + n3)

ni,n2,n3

S/dTl/dTg Z 5(7-1’”1)92(727”2)(1_|_2j4_kf)1/2

ni,ne

n

S/dm/dm D g2(r2,m2) (/d71|5(71,n1)|2)1/2

nz,ni

1/2
x (Z|93(T37n3)|2/d71|94(h4,n1 +n2+n3)2> :

ns

1/2
X (Z |93(73,13) g4 (ha, 11 + 12 + n3)|2>

Next, suppose that ko < k1. Then, an application of the Cauchy-Schwarz inequality
in ng gives

1/2 1/2
S (1+2j47k1‘)1/2/d72/d732 </d71|?7(71,ﬂ1)2> (Z |92(72,n2)|2>
ni n2
1/2
X<Z|g3(T3,n3)|2> gall2e2
ns

T5n T'n

4
S (14 2947 k1)1/2972/2938/2 985 /2|5 13 0 H gillz2e2
=2

with the ultimate estimate following by applications of the Cauchy-Schwarz inequal-
ity in nq, 7 and 73.
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Suppose that |k% —k}| < 3. Since |9%h3/0n3| > 2*1, we find by the above means

/dTl/dTQ/dT4 Z 17(7'1,711)94(7'4,n4)g2(72,n2)93(h3,n1 —|—n2—|—n4)

ni,nz,nq

S/dﬁ/dTg/du Z ﬂ(rl,nl)g4(74,n4)(1+2j37k1)1/4

n1,Nq
1/2
X <Z|g2(T27ﬂ2)|2|93(h37ﬂ1 +n2+n4)|2> ;
na

and the proof is concluded by further applications of Cauchy-Schwarz like above.
Next, suppose that v is among the high frequencies and ks = k}. Then, we can
estimate due to [9%hs/On3| ~ 2k

/dﬁZfﬂ(ﬁ,nl)/dTQ/deLZgQ(TQ,nQ)294(747714)93(%,”1 + ng + n4)
ni nz Mg
S/d’rg Zgg(Tg,ng)/d7'4/dﬁZf/(ﬁ,nl)(l+2j37kik)1/4
no ni

1/2
x (Z 194 (74, 14)[?|g3 (h3, n1 + ng + n4)|2>

M4

1/2
< (1+2j3_kf)1/4/d72292(727ﬂ2)/dT4Z (/dTl|17(717”1)|2)
1/2
X <Z ‘94(7'47”4)‘2/d7'1|93(h3>—711 —ng—n4)|2> )

nq

and the claim follows from further applications of the Cauchy-Schwarz inequality
in ny, 74, ny and Ty.

Next, we turn to the case, where ks < ky — 10, |k — ko|, |[k1 — k4] < 5.
Like above we estimate by the Cauchy-Schwarz inequality

/d7'1/d7'2/d7'3 > lgs(rsna)l[6(r,m1) Y lga(ha, —n1 = ng — n3)||g2(72,m2))|

ni,n3 na

S22 Lan [an [ 3 o)

ni,n3

1/2
X (Z |94(ha, =1 — ng — n3)|*|ga (T2, n2)|2> )

na

where the estimate follows from |9,,h4| > 2¥1 provided that ni + 2ng + ng # 0.
There is at most one no satisfying this relation. The degeneration of the sum in
this special case implies the claim in general.

We continue like above with applications of the Cauchy-Schwarz inequality in
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T, N1, T2, 73 and ng to find

o 1/2
< (1—|—2J4*k1)1/2/d7'2/d7'3 Z |g3(73,m3)| (/d7'1|5(7'17711)|2)

ni,n3

1/2
X (Z lga(ha, —n1 —n2 —n3)| 7z, |92(T2an2)|2>

n2

4
<1+ 2j4*k1‘)1/22k3/22j2/22j3/2 H ||gi||L72_€$l
i=2
4
S 27k 29ki/2 H gill L2z -
i=2
The same argument proves the claim if k; < k3 — 10, |ka — k3| <5, |ks — k4| <5

by exchanging the application of the Cauchy-Schwarz inequality in n; and ng in the
penultimate estimate. O

With the above two lemmas at our disposal we can find a bound on Ry®™.

Proposition 5.2.20. Let oo = 1. Then, there are functions c¢(s) > 0 (with ¢(s) =0
for s >1/4) and &(s) > 0 so that for any M € 2% we find the estimate

4
Ry*“M(T uy,. .. ug) S TM T ||usl
i=1

pein(r) (5.82)

to hold whenever s > —1/2, a € S%.

Proof. Firstly, we apply a dyadic decomposition on the spatial frequencies. We
estimate RZ’”’M(T, U1, ..., uq) for frequency localized functions u;, where Py, u = u,
k; <log,(M). For these functions we will show the estimate

4
Ri’a’M(T, ULy ,’LL4) 5 TH Q(Si)ki UiHFﬁL_ (583)
1=1

for s > 1/4.

The slightly less regularity than s on the right hand-side allows us to sum over
dyadic blocks in the end. With the frequencies being smaller than M, from
for s > 1/4 follows already for s > 0. The next reduction, independently
from the interactions we consider below, is to localize time antiproportionally to
the highest frequency.

Let v : R — [0,1] a smooth function with support in [—1, 1] and the property

Z Yz —m) =1.

meZ
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By means of this function write

Ry“(T,u1,...,u4)

T
_ / S Gaa(@)an(t ma)ia(t n)is(t ns)ia(t, na)
0 n1+n2+(n§+n4:0,

= /O dt > Voo (@)Y (257t — m)iy (t,ny)

meEZni+n2+n3+ngs=0,
(%)

X (2Kt — m) o (t, n2)y (2Kt — m)as(t, ng)y(2°F 1t — m)ia(t, na).

Already note that there are O(T2%1) values of m for which the above expression
does not vanish.
We localize with respect to the modulation:

With fi, (7, €) = Fi o (4(2°% ¢ — m)u;) (7, 6) we seff]

Frois = N<j, (T = 12) fr,s ji = [aki],
o i (7 = 1°) frys Ji > ki),

In the above sum, in case of non-vanishing contribution, we have to distinguish
between the two cases:

A= {m € Z|1jom()y(2*% - —m) = (275 . —m)},
B={m e Z|lp ()72 - —m) £ v(2°* - —m) and 1o 7(-)7(2°%1 - —m) # 0}.

Note that #B < 4. Consequently, we save a factor 251 compared to A, and we give
the necessary modifications after we have carried out the estimates in the bulk of
the cases, which corresponds to A. We have #.A4 < T2k

First, we estimate Highx Highx High x High-interaction: We require |k1 —k;| <
20 for i € {2,3,4}. From Lemma|5.2.16|we find |, (7)| S a;f,:) Q(m)|. In order to
be in the position to separate variables, we introduce another dyadic sum governing
the size of |Q(7m)|. Below we take |Q(7)| ~ 2F where ki — 20 < k < 3k} + 20 and
sum over k in the end.

We observe the following estimate:

~ ok ~okT
> Y Bepegr Yy B e
ki <k<3kj,meA ' ki <k<ski,

)2 jQl~2* (5.84)

<T f[ 9(s=)ki
i=1

whenever s > 1/4.
This computation is enough to prove the claim when all frequencies are compa-
rable. Indeed, suppose from symmetry that j; = ji and together with the resonance

3Strictly speaking, we had to consider fm,k; OF fm. K, j;» respectively, tracking the additional
dependence on m, but with all the estimates below being uniform in m, we choose to drop depen-
dence on m for the sake of brevity.
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relation 271 > |Q(@)| ~ 2% and three LY ,-Strichartz estimate we find

/E Z Jr1 1 (71, nl)sz,j2 (72, n2)fk3,j3 (73, ns)fk4,j4 (74,m4)

=0 22 ni=0,
(%)
S22 i 2oz 272100, (Franga * Froigs * Fraa) lz2ez (5.85)
4
S22 frs il 2
=1

and ( - follows from (5.84]) and ( - due to

We turn to High x Hzgh X Low x Low- 1nteract10n Suppose that |k — ka| <5
and k3, ks < k1 — 10. From Lemma [5.2.16| and dividing up the magnitude of the
resonance function into the dyadic sum EQkI_5§k§2kI +ki+5,, we find

|Q|~2F
a(2k1 . .
Z Z a(gk )|Q|1/22k4/227k1/2
92k7
2k} —5<k<2k}]+k;+5, meA
|Q|~2’“
<T E 2k/22k /22 k3 /2
0<k<kj,
|Q|~2F

4
< Ta(2ki)2ka/29ki/29-ki/2 < TH2(57)ki
i=1
whenever s > 1/4.
This yields the claim because we can again suppose that j; = ji, and together

with the resonance identity 2/1 > |Q(7)| ~ 2* and the improved Strichartz estimate
from Lemma [5.2.19 it follows

/T > ﬂfkmji(ﬂ'ani)

1+72 4T3+ 74=0 1) Lo 4 g 4ng=0, i=1
(%)

S 2j1/2||fk1,j1 ”Lﬁlgzik/znlfh (fkg,jz * fk31j3 * fk47j4)~HLEZ$L
4

S 27 M2k 2R TT 292 il 2
1=1

At last, we estimate High x High x High X Low-interaction: Suppose that
ki1 > ... > ky, |k1 — k3| <10 and kg < k3 — 10. Lemmam together with the
magmtude of the resonance function || ~ 23*1 leads us to consider

a(2") 1/26k] /20—k /2 (k) 1/20k; /20—k /2 KDy okl /2
> e [911/224 /227 <782 ) || 20ki /29 /2 < gk )oki

meA

<T f[ 2(s7)
=1
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whenever s > 1/4. This proves the claim due to

4
/ ) I 2. (7isma)
T1A 724734 Ta=0 ) g dng g =0, i=1
()

S22 oy g lpzez |02 100, (Frags * Frougs * Fraa) llz2ez

4
S QTR R R T 202 py
i=1

L2¢2 .

T n

We turn to the cases from B. We have to estimate the expression

a(2k) 3 n
227]“{ |Q(n)|fk1’j1(T17n1)fk2’j2(7—27n2)
Tit+7a=0 4 1ny=0,
()

fkg,j3(7—37n3)fk4,j4(7—47n4);
where
fra (rom) = Fralljo,m ()25 — n)ug, (¢, 7).
The additional decomposition in modulation is given by fi, = > >0 Srr -
Suppose below that j; = ji. Like above we find by three Lgm—Strichartz esti-
mates

a2k . -
Z 92k; 2 ||fk17j1 (Tlvnl)”Lf.f%HlIkl (fk27j2 * fk3,j3 * fk4,j4) ”L?f%
k.ji

a2k : o B -
<> 2%;)2’@“(1/2 Vo279 f i lpze2 I, (Frado * Fraa * fraia) lL2ez

k.ji
o a2t
~E 22k1‘

4
9(3/2+e)ky o H ”quF&’
i=1

where the ultimate estimate follows from Lemma Lemma and (2.48)).
O

The same argument handles js» = j7.

We prove the estimate for the boundary term:

Lemma 5.2.21. Suppose that s € (—1/2,1/2). Then, we find the following estimate
to hold:
By M(0;7) S M) |l

Fo.a(T)> (5.86)
where d(s) > 0.

Proof. We localize frequencies on a dyadic scale, i.e., Py,u; = u; and suppose by
symmetry that k1 > ko > k3 > ky. Below let m = logy(M). By virtue of Lemma
it is enough to derive a bound in terms of the Sobolev norms. For the
evaluation at ¢ = 0 we have from Lemma [5.2.16] and an application of Holder’s
inequality in position space

a(2*) ) ) A A
92k > |41 (0, n1)|[di2(0, n2)||ds (0, 1) |4 (0, mg) |
ni+ng+nz+ns=0,
(+),|n1|>M
d(2k1)

A

sar Ul Oz lluz(0)] 2|15 (0] ze ([ (0) 2= )
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where u}(0,2) = Y |40, k)[e*®, | € {3,4}.
After applying Bernstein’s inequality, we sum up the dyadic pieces:

a(2k
S A s (0)az s 0)222% 2 s (0) 222/ s O)
k1>ko>k3>ks >0,
(*),k1>m
a(2k), o,
< Z — 2 29 |ug (0) 2 [lu2(0) [ 2 [[w(0) | 7
k1~k22m

< M= [[u(0)
which we can arrange as long as s > —1/2 by choosing € = ¢(s) sufficiently small. [

Next, we derive the crucial bound for the correction term Ry M(T, Uly-en, UG-
Since the frequency constraint has become irrelevant, we drop it in the following.

Proposition 5.2.22. If s > 0, a =1 and a € S for some € = e(s) > 0, then we
find the following estimate to hold:

6
Ry“M(T,uy, . ug) S T ] luill oo ry. (5.87)

Proof. First, we estimate the term I(T).

We use the same reductions like in the proof of Proposition Again, we
firstly apply a decomposition into intervals in frequency space. That is we estimate
RZ’“’M(T,ul,...,uﬁ) for frequency localized functions u;, where Py,u = u. For
these functions we will show the estimate

Rg™M(T)

(5.88)

i=1

and (5.87)) will follow from ([5.88)) by summing over dyadic pieces. We localize time
antiproportionally to the highest frequency.
Let v : R — [0,1] a smooth function with support in [—1, 1] and the property

> fe—m =1
MmEZL
With this function we write

T
I(T,u):/o dt Z wsa(z) [a(t, n1)|2a(t, ny)a(t, ng)a(t, ng)a(t, ny)

n1+n2+(n;;+n4:0, Q( )

= / LODEDY wggg Sy (2t — )i (1)

meZni+nz+nz+nas=0,
(*)

X (2Rt — m)ay (8, ny)y (28 — m)ay (£, 1)y (25t — m)ig(t, ng) x
X (28t — m)iis (8, n3)y(2M £ — m)iia(t, na).

Below we carry out the argument for the majority of the cases, where the smooth
cutoff function does not interact with the sharp cutoff. This contribution we denote
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by I4(T,w), so that I(T,u) = I4(T,u) + Ig(T,u).

We denote fku (T’ n)*: Fi [7(216; : _m)al('a n)]v fku (T’ TL) = ;Ft [7(2]6; : _m)al(" n)]’
fris(mon) = F[y(2M - —m)ai (-,n)] and f;(r,n) = F[y(2% - —m)i;(-,n)] for j €
{2,3,4}.

We localize with respect to modulation as follows:

£ = Tlgji(T - ng)fv Ji = [akﬂv
" g (r =) S G > (o).
After changing also to the Fourier side in the time variable and applying the triangle
inequality, we estimate by Lemma [5.2.16 the multiplier

Vs,0(M a(2k
’ Q(T(l?)nl < aé%r)

okt

This leaves us with estimating the following expression where we assume the
space-time Fourier transforms to be non-negative:

D D

J11,J12,J13,72,J3,74 n1+n2+(n§.+n4:0,
*

fkn’jn (7—117 nl)

/T11+T12+T13+7'2+7'3+7'4—0 (5 89)

Fh12,j12 (T125010) iz s (T135 1) fiea 3o (T2, 12) fhg s (T3, 13) fra,a (Tas 10a)

We apply the Cauchy-Schwarz inequality in the modulation variables and n; to find

3 4
(o-89) = Z/ Fraign (T1,m1) Z ka"’ji
L Y2 Ti=050 ng,ng,(*) i=2
1/2 1/2
2
< Z (/ ‘fku,ju *r fk12,j12 *r fk13’j13|2> (/ ‘fk21j2 * fk3’j3 * fk4’j4| >
ni
2 1/2

1/2
2
< (Z/|fk117j11fk12’j12fk137j13| > Z/ Z iz gz s s fraga
ni ni

nz,n3,

()

The first term we estimate by Young’s inequality in 7, Holder in n; and by the
embedding % — ¢3 to find

1/2
Z (/ ‘fku,ju (nl) *r fk12-,j12 (nl) *r fk13,j13 (n1)|2)

S Z I frar i (R 2227272 | frr ie (M) 1222772 ey vl 22

ni

3
5 2j12/22j13/2 H ||f/€1i Jii

i=1

L2¢2 .

Ttn

The second term is amenable to the refined Lgm—Strichartz estimate from Lemma
5.2.19)in case of separated frequencies and three ng—Strichartz estimates in case
of non-separated frequencies. This yields

3
(5-89) < 2~ (h/2)- H 2j1i/2”fku,j1i
i=1

L2¢2 .

Thn

4
L2202 H 2Ji/2 ||fklﬂjl
=2
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Gathering all factors, we have found the estimate

a(2k1 e o
IA(T,’LLl,...7U4)§T Z ;216;)2]612’612 (k1/2)
ke <k}
3 4
I > 2 PUfeiilize IT D° 221 nillize,
i=1j1; >k} i=2j; >kt

and estimate (5.88]) follows even for negative s due to ([2.48)).
Next, we turn to the exceptional cases, where

Y@M —m) Loy (-) # (25 - —m).

In the above argument replace fi,, = ]-"W[I[O’T](-)v(Zkf - —m)]u; and decompose

fkll = ZjuZO fk117j11 .

Two applications of Cauchy-Schwarz inequality give

4
100, (Frado * Frgs * Fra i)z S 2F2/228/22021200 2 T || i,
=2

22 (5.90)

and interpolating this bound with the (refined) Lf ,-Strichartz estimate yields

3 4
Fervgnllzze T2 fergillize T2 M1 e,

=2 =2

(5.89) < 20k

L22-

=

Gathering all factors, we have found the estimate

a(2kr) .
IBS’ Z 92k} 2k12(0+)k1 Z kalhjnHL?.Ei

k1<k7 j11>0
3 4
i (1/2)—
I D Wewiilizze IT D° 2727 I fe, s llzzee

1=2 j1;>k7 1=2 j; >k}

The claim now follows from Lemma 2.5.4] and Lemma 2.5.3
We turn to the more involved estimate of I7(T). With the notation and following
the reductions from above, we show that

6
II(T,uy, ... ug) = I+ Ig S T7 T 20705 fuy]
i=1

Fo .
ki

Also, we use an additional dyadic decomposition for n;. That means we assume
in the following n; € I, and additionally sum over k1. We denote the decreasing
arrangements of ko, ks, ks by aj, a5, a3 and of ks, ke, k7 by 07,b5,b5. Note that
k1 < aj + 5 due to impossible frequency interaction. We distinguish the cases
kT = a7 and k} = b7.
Case A: ki =aj:

We localize time according to k}. Lemma [5.2.16] yields the estimate

|ths,a(M)]

it - <d(2kf)
Q(n

k1
~ T92k; 2m.
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After introducing an additional partition in the modulation variables (although we
do not write out the sum anymore) and applying the triangle inequality, we arrive
at the following expression:

kY
Z ok1 a;gk*) / Z kal s 7'1,nZ

0<k1<ki+5 totTr= 07L1+n2+n3+n4 =0,1=2
(¥),n1€lx,

X Z fk57j5(7-5vn5)fk67jﬁ(76anﬁ)fk77j7(7—77n7)
ni1+ns+ne+n7=0,
(*),m1 €1k,

a(2kn) .
S Z 2]61227]@”11@ (fk27j2 * fraga ¥ fk’47j4) HLEE%
0<ky <k?+5

X ||1Ik1 (fks,js) * fk67j5 * fk77j7)~||Lf.€i'

Now we apply the (refined) Lf -Strichartz estimate twice to find the following
bound for the integral:

( ) a —a Q.
S D 2 TT 2 o2

Tth
1<ki<aj 1=2

X 2(0+)b{2—b /221)*/2 H2]l/2||fk
=5

)2 ki /29a3/29—b] /22b3/2H2J1/2ka“h||[12éz

Tth
=2

isJi

T’VL

a(2k

<
~ Qk*

Taking the time localization into account gives an additional factor of 72%1, and
we find to hold for s > 0 after summing over j; and invoking in case
the sharp cutoff does not interact with the smooth functions.

If we are in the exceptional case that

Lo () (25 - —=m) # (2" - —m),
we interpolate the above estimate with m ) to find

a(2k ) x .
le (0+)k12 kI /22 by /22b /22k /2H2(]l/2) ||fk'

i2Ji ’

Tn

=2

where f, = Fyo[ljo77()7(2¥ - —m)us] and j> > 0. Now the claim follows from
Lemma 2.5.3] and Lemma 254
Case B: k] =07:

Localize time according to af: Let v be a smooth function supported in [—1, 1]
such that Y, ., v*(- —m) =1 and write

Z Z / dtlp (t Z ql}é((l?i?) nily, (m)V(ZaIt —m)tsg(t,ng)

m 0<k1<a +5 n1+n2+n3+n4:0,
()

X (291t — m)ig(t, ng) (2"t — m)ia(t, na)

X Z V(24 t — m)is (t, s )i (t, ne )iz (t, 7).
ni+ns+ne+nr=0,

()
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First, we handle the cases, where

1.7 (-)7(2%7 - —m) = 7(2% - —m).

The exceptional cases is dealt with below. To lighten the notation, we omit the
smooth cutoff v below again. We estimate

Z /dt ws (L?i )Tllljk (?’Ll)UQ(t TLQ)’U,g(t ng)U4(t 7’L4)

0<k;1< Q( )
1<ai+5 n1+n2+n3+n4 0,
(%)

X Z s (t, s )t (t, ne )tz (t, n7)

ni1+ns+ne+n7=0,

()
Y /dt > > a5 (t, ns5 )t (t, g )iz (£, 107)
O<k1<a +5 nlelk n1+n5+n§+n7:O,
(*
1/)s a
X Z t ’Il2)U3(t N3)U4(t —nNnip —nNg — 7?,3)
na,n3,(*)
2\ 1/2
S /dt > s (t, ns )t (t, g ) ir (T, n7)
0<k1<a +5 ni n1+n5+(n¢)3+n7:0,
o\ 1/2
ws a
X Z Z t ng)u;g(t TL3)’U,4(t —Nn1 —ng — n3)
ni1 |na, TL';
(5.91)

Next, we apply Holder’s inequality in time, and for s, 43 and w4, we already
insert the decomposition in the modulation variable adapted to the localization in
time. This means we start with a size of the modulation variable of 291. Further,
we assume again fg, j, > 0. We find from applying Plancherel’s theorem and the
(refined) Strichartz estimate

o\ 1/2

Z Z Z Wﬂmz (t,m2) s, i, (t, n3) g, j, (E,104)

J2,J3,ja2>aj N1 |ng,ns,(*)

(2°1)
S 92a} Z Hllkl (fk27j2 * fra s ¥ fk4,j4) llz2e2

TN
J2,J3,ja>aj

G2 i 2y a 2900400
S Sar 2P0 LS 22 e

T n

Qi

1=2j;>a}

We note that for the other convolution term in (5.91f) the localization in time is
not high enough to evaluate the factors in Fj,. We increase localization in time
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to 251, but, by L2-almost orthogonality and the time localization up to 2%1, which
is already provided, this only gives a factor 2¥1/22-41/2 Further, we plug in the
localization in modulation on scale b and suppose fi, ;, > 0. By Plancherel’s
theorem and the refined Strichartz estimate, we conclude the bound

o\ 1/2

Z Z Z s (t, ns )t (t, ne )7 (t, n7)

J5,36,J7 207 ni |ns,ne

SO My, (Fres * Frage * frrs) llz2ez

J5,d6,47>b%
7
527’6;/22’“/21_[ Z 2542 il ez -
i=5 j, > b

We gather all the factors to find:

~raa* 7
T Z 2k‘1 aégai)20,’{2(0+)a;21)1‘/2270,?/2271)1‘/22]61/2 H2]1/2||fz],b“[‘z€ﬁ
1<k1<aj ' =2

7
S Ta2) [T 21 fis.

=2

We find (5.88) to hold for s > 0 and e(s) > 0 due to (2.48]).
In the four exceptional cases

1@ )L ri() # (25 - —m)
(5.91)) becomes via interpolation with (5.90)) like in the exceptional cases above

o\ 1/2

Z Z Z Wﬂlﬁ (t,n2)ts j, (t, n3)ia,j, (L, 4)

L2402 -

n

J2,J3,ja>aj n1 |ng,ns,(*)

s}

(2°1)
Z ||1Ik1 (frz,go * Fra s * fk4,j4)||L3_€%

<
~ 22a’1‘

J2,J3,ja=>aj

= oat 4
< G2") ok, 20 -at /2901 (1/2)+ S I agallzze [T Y 27270

~ 220.{ TN
J220 1=3j;2a]

TrigillLzez -

The second factor is estimated like in the bulk of the cases. This is possible because
we let the sharp cutoff only act on the first factor. The claim follows again from

Lemma 2.5.3] and 2.5.4 O
Next, we see how under the hypothesis
lullre  ®xm) S llwllxo+.a/0+ (5.92)

we can show energy estimates for negative Sobolev regularities for functions in
F1*9_spaces for some § > 0. We shall only prove a qualitative result because (5.92)

is currently unproven.
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Proposition 5.2.23. Let T € (0,1] and suppose that (5.92) is true. There is
6’ >0 and 0 > 0 so that for 0 < § < ¢ there is s = s(0) < 0 such that the following
estimate holds:

6
RS,y ST° H |will 16 1y (5.93)
i=1
Proof. Like above the frequency constraint is omitted, and Rgm a 18 split into dyadic
blocks R6(K1,K2,K3,K4,K5,K6,K7) where supp ’al - Ikiv Ki = 2’61 We may
assume by symmetry that Ko > K3 > Ky, K5 > K¢ > K7. Further, let K >
K3 ... > K¢ denote a decreasing rearrangement of K;, i =2,...,7.

Case A: Ky 2 K5. In this case K ~ K» and we add localization in time according
to Ky: Let v be a smooth function with support in [—1, 1] satisfying

Z’yG(t—m) =1.

We have to estimate
4

P a(n)nl (1+8)k? N
dtlo,r E e — ||72 1t —m)u;(t, n;

ni1+ne+nz+ngs=0, =2
(*)

7
X Z H’y(2(1+6)k;t — m)ai(t,ni).

ni+ns+ne+nr=0, i=5

(*)
First, we handle the majority of cases where
Lo, 7y () yUHOM . —m) = y(20FDK - —pm)

Let fr, = Fio[y(20FOF .« —m)u,].
This is further decomposed as fi, = Zjiz(lJré)kf Frigse
By the above, we have to estimate

2k
Z QQTI”sz,jz * fk37j3 * fk4,j4HL3€% ||fk5,j5 * fks,js * fk77j7||L3,€$1 (594)
k1<ko

after which it remains to sum over j; > (1 + 0)k} and take into account time
localization, which amounts to a factor T2(1+9k1

Above, a € S¢ for negative s is crudely bounded by a constant.

(5.92)) yields for one factor

I fkado * Fraiga * Fragallzee S UFia [fraa] - Frn Uraia) - Fra Wkadall 2212
S P fraiollne N Fia Frasisllne N Fea fragallre .
4
< 200 24997 fi il
=2

and by (2.48), we find the contribution of the majority of the cases to be bounded
by

7
S 720 T 270197 P s
i=2 :
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with easy summation in certain Sobolev spaces with negative regularity index.
Next, suppose that

1.2y ()Y (2OFIR L —m) £ (20K L ).

Set fr, = Fro[v(2AHOKT . —m) 1o 7y (-)us); the further notation remains unchanged.
Following along the above lines by applying six L?’z—Strichartz estimates gives the
estimate

(5-94) S ok; (4(1+6)k 79+ Z 24]2/9||fk2 2J2 HL2 H Z (4jj/9)+||fki;ji HQ

§2>0 =3 j;>(1+0)k}

with straight-forward summation for certain negative regularity index due to Lemma

253 and Lemma 254
Case B: K5 ~ Kg > Ks.
Subcase BI: K2 > K3. Let

QW (ny,ng,n3,n4) =03 +n3 +n3 +nd (ng,...,n4) €Ty

denote the first resonance function and

6
Q(Q)(nl,...,ng):Zn?, (nl,...7n6)€F6

i=1

denote the second resonance function.
In case KZ > K3 we find

190 (n1,m2,m3,14)| < |QW) (1,115, 116, 107) |
and consequently, the second resonance function for the collected frequencies
9(2) (n2a n3,ng, —Ns, —Ng, _n'?) = Q(l) (nla n2, N3, n4) - Q(l) (’I’Ll, N5, N6, ’I’L7)

satisfies || ~ |QW) (ny, s, ne, n7)| > K2.
Let 7 be like in Case A. We add localization in time according to K éH‘s), which
leads us to estimate

/}R dt > wg(f;;) ny [[v@Tkit — m)ig (¢, ms)

ni+ngs+ns+ns=0, =2
()
7
X Z Loy ()y (2%t — m)iis (¢, ns) H YRUFOR L —m)iiy (t,n).
ni1+ns+ne+n7=0, =6
(%)
(5.95)
First, we deal with the majority of the cases, where

o (I (2K - ) = (209K ), (5.96)

The idea is to use two bilinear Strichartz estimates from Lemma [5.2.6] involving
us,ug,u7 and the function with high modulation j; > 2ks — 10. Suppose e.g. that
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Ja > 2ks — 10.
Up to time localization factor and summation over j; > (1 4 0)k} we find

2k
22k* / fk2 g2 ¥ fks js ¥ fk47J4)(fko js ¥ fks je * fk77J7)

k1<ka

2k
Z / Uk, jo - - - Uky,j, dTd,

k1<k2

where Uk;,j; = ft_:cl [fkq 7ji]‘
Here, we ignore the (in this case) irrelevant reflection f(7,&) = f(—7, =¢).
The contribution of ([5.96]) is consequently estimated by

7
< po—1/aks 2 Ty a2y
~ oka/2 H kamJiHQ

=2

Hence, summation for negative regularity index is straight-forward for § < 1/4.
Next, we turn to the exceptional cases

1.7y ()Y (OHIR L —m) £ (20K L ).

Here, we have fy, = Fy.[usy(200 Ok . —m)1j,7)(+)] and the argument from above
interpolated with (5.90) gives for j; > (1 +d)kf, i =2,...,7

Z /usz. .Uk, j,dxdt

k1<ks+10

2512 (544 )ks TT oGs/2)—
SETVE ST129 7271 e sl

=2

Summation over j; gives

23/ 2y
ka/ 2 9=(Bks/H)+9(1+0)ks/2 ZQ(J5/2) || Frs.js ll2
J5=>0
7
H Z 207273 fro Lo

i=2,i#£5 j;>(146)ks

and this contribution is bounded by Lemma and Lemma [2.5.3

Subcase BIT: K2 < K3. In case K5 ~ Ky we find |QW) (ny,ns,n6,n7)| ~ K2
and consequently, |Q(2)| ~ K3. The argument from Subcase BI provides a sufficient
estimate. Thus, suppose in the following K; < K.

Subsubcase Blla: K3 < K>. It has to hold K7 ~ K.
If Ko < K7, then |Q(1)(’I’L17 ns, Ne, n7)| Z K52K7 > |Q(1)(’I’L1, ng, N3, ’I’L4)|
If K; <« K, then |Q(1)(n1,n5,n6,n7)| P K52K2 > |Q(1)(n1,n2,n3,n4)\ because
|Q(1)(TL1, Nno, N3, TL4)| ,S K22K3
In any case, |Q)| > K2 and the argument from Subcase BI is sufficient.
It remains to check Ky ~ K;. We separate variables like in the proof of Proposition
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5.1.15| (the required regularity of the multiplier is provided following Remark [5.2.18
after Lemma |5.2.16)) and we have to estimate

ok T
Z 2%2/0 dt/dxuk2...uk7

k1<k2

Let v be like above and by Hoélder’s inequality
2k
Z 2%k Z /Rdt / dm'y(2(1+6)k2t —m)ug, .. .7(2(“‘5)’“% —m)
k1 <ks |m|<ST20+8)k2
Lo, (O)uns v (- g Y (- - Jur, (- )

1
5 QT2 Z ||’7(2(1+6)k2t — 7’)7,)’1”,C2 ||L?£ .
|m\5T2(1+6)k2

lJns Y (- ey (- )L,z (Dllzg lluwy ()l g -

Decompose for i € {2,3,4,7}

Jre = ft,x[7(2(1+5)k2t —mug,] = Z Fr.i

§i>(148) k2
and by (5.92)
IFoalfidlee, S D0 WFalfmgdlee, S D 20907 f |2
Ji2(1+6)k2 ji>(1+68)k2

for i € {2,3,4,7}. For these functions time is already localized sufficiently.
For the high frequencies we have to add localization in time, where we exploit
orthogonality in time

HukS’YQ (2(1+6)k2t - m)ukﬁ 1[O,T] HL::’Ym
s <Z [k, y (20 HOF2E — m) (20 kst — )

1/3
gy (205082t — )5 (20t — ) 2, )
Consequently, it is enough to estimate
1/3 R ) ~
(200080 /2000082 ) T g 3200kt — )| g g 5200 — ) g,

which by k5 < (3/2)ke, (5.92)) and the above argument of splitting the modulation
is achieved by

6
< 9(0+)k29(1+5)k2 /6 H Z 9(4/9+)3
=5 j;>(14+6)ks

Gathering all factors and invoking (2.48)), we have derived the bound

fkujz'HQ

2k2 7 - ‘
Rg,a(K27 - ,K7) < T22T22(1+6)k22(1+5)k2/6 H 2( (1/18)+)k;

U; .
) e
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Since there are four factors with frequency higher or equal to K, there is enough
smoothing from the ng—estimate to sum the expression even for negative regulari-
ties choosing ¢ sufficiently small.

Subsubcase Bllb: Ky ~ K3.
If K7 ~ Kg, then |QW) (ny,n5,n6,n7)| > K2 > K3 and the argument from Subcase
BI applies.
Similarly, if Ky < K7 < K5 we find

1M (n1,n5,m6,17)| ~ K2K7 > K3 2 |QW (01,19, 13, 04)|

Thus, we can suppose that K7 < K. In this case the argument from Subsubcase
BlIa applies because there are at least two frequencies comparable to Ko and at
most two frequencies, namely K5 and Kg, much higher than K.

The proof is complete. O

Remark 5.2.24. We point out from the proofs of Propositions and
and Lemma that there is some slack in the regularity. In fact, we can
lower the regularity on the right hand-side depending on s (after making ¢ = £(s)
smaller if necessary). This observation becomes important in the construction of
the data-to-solution mapping.

To conclude the proof of the energy estimate, one derives a bound for the thresh-
olds of the frequency localized energy (cmp. Lemma|5.1.16)). For details we refer to
Section B.1.3

5.2.5 Proof of new regularity results for the modified Korte-
weg-de Vries equation

The proof of Theorem [5.2.2] is a variant of the arguments from Section
The arguments follow [GO18|, where low regularity periodic solutions to the NLS
had been discussed.

After establishing a priori estimates on smooth solutions, a compactness argument
is used to construct the solution mapping.

Lemma 5.2.25. Let ug € H*(T) and s > 0. There is a function T = T'(s, ||uo|| mr+)
so that we find the following estimate for the unique smooth solution to (5.52)) to
hold:

sup |u(t)||g=(ry S lluoll s (m)- (5.97)
te[—T,T)

We control the F*!(T)-norm of the solution by a continuity argument. By
Lemma this is enough to prove Lemma [5.2.25

Together with the short-time X*’-energy estimate, the nonlinear estimate from
Proposition [5.2.14] and the energy estimate from Proposition [5.2.15] there is § > 0
and c(s), d(s) > 0 so that the following estimates hold true for any M € 2N:

lullpencry < llullesery + 19U w) | v (r)
1)l nvsaery S TOMullfen ()
lullfeiry S lluollFs + T M |ull o gy
AM I o iy + TNl Gt -

(5.98)
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To carry out the continuity argument, recall the continuity and limit properties of
T = |ullgs () T = llullvsry-
We are ready to prove a priori estimates for smooth solutions.

Proof of Lemma[5.2.25 Assuming that ug is a smooth and real-valued initial da-
tum, we find from the classical well-posedness theory the global existence of a
smooth and real-valued solution u € C(R, H*®) (see e.g. [Bou93a]) which satisfies
the set of estimates @ .

We define X(T') = |lull gs(1) + [[M(u)|| ys1(7) and find the bound

X(T)? < Culluo|lys + Co((TM) + M~ 4N X(T)? + TP X(T)) X (T)?

by eliminating ||u]
Set R = C1*||ug

Fea(r) 0 the above system of estimates.
|+ and choose M = M (R) large enough so that

CoM~ 4 (2R)? < 1/4.
Next, choose Ty = Tp(R) < 1 small enough so that
CoTY (M) (2R)* + (2R)*) < 1/4.

Together with the limiting properties for T — 0 a continuity argument yields
X(T) < 2R for T < Ty,
Iterating the argument gives sup,ejo 7] |u(t)ll () S l[wollas for To = To([|uollm=)-
The proof is complete.

We establish the existence of the solution mapping. For ug € H*(T), we set
uo,n, = P<pug for n € N. Obviously, ug,, € H>(T) and hence, the initial data give
rise to smooth global solutions u,, € C(R, H>(T)). According to Lemma we
already have a priori estimates on a time interval [0,Tp] where Ty = To(||luo| m+)
independent of n. Moreover, we have the following compactness lemma (cf. Lemma
, which is proven by the same means like above:

Lemma 5.2.26. Let ug € H*(T) for some s > 0. Let u, be the smooth global
solutions to (5.52) with un,(0) = wug,, like above.
Then, (un)nen ts precompact in C([=T,T], H*(T)) for T < Ty = To(||uollm=)-

Key ingredient like above is the uniform tail estimate, i.e., there is ng € N such
that for any n € N
”PznounHCTHs <e. (599)

We are ready to prove the main result:

Proof of Theorem[5.2.9 For uy € H*(T) let (un)nen denote the smooth global
solutions generated from the initial data P<,uo as described above. By Lemma
we find a convergent subsequence (uy, ), which converges to a function u €
C([-T,T), H?). We observe that due to the sequence also converges in E*(T).
With |0 (uy — w)l|neary S TN uol|%e |un — ull pea(r), we find for T = T(|juo]| =)
the estimate

ltn = ullper(ry S llun — ullps (1)
to hold. The convergence in F*!(T) already gives the a priori estimate for the
limit. Moreover, we deduce from the multilinear estimates in Proposition that
{N(uy,)} converges to N(u) in N*(T) < D’. We conclude that u satisfies (5.52) in
the distributional sense with the claimed properties and the proof is complete. [
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For the proof of non-existence of solutions to the unrenormalized mKdV equa-
tion, we compare smooth solutions to and via a gauge transform. The
argument parallels [GO18].

We sketch the argument for the sake of self-containedness and for details refer to

[GO18].

Proof of Theorem[5.2.3 Existence and a priori estimates of solutions to for
negative regularity conditional upon conjectured Strichartz estimates are proved
like above. Here, corresponding estimates to are utilized.

For the proof of non-existence of solutions to , we argue by contradiction.
Fix s < 0 from the hypothesis of Theorem and ug € H*(T)\L*(T). Suppose
that there exists T > 0 and a solution v € C([-T,T], H*(T)) to in the sense
of definition (.2.11

By defining

’Un(t) = 672“ fT |u0’n|2d$un(t)a

we find a sequence of smooth solutions to (5.52)).
Further, by assumption

Up(t = 0) = uy (0) = up in H*(T).

By a variant of Lemma there is a subsequence (v, ); converging to v
in C([-T,T),H®) with T = T(||ug||g=)- The convergence of u,, implies the con-
vergence of v, to 0 in the sense of distributions: Let ¢ € C([-T,T],C*°(T)).
Then,

(wnl0): 60} 12 = F(0) = (u(®), 6(0)) 2

by convergence of u,(t) in C([-T,T], H®). Further, F' € C.(R).
It follows that

| / / onddadt] = | / et Je o lPde (1) (1)) 2 |
< |/672itf11‘|uo,n|2dwF(t)dt| + / [(u(t) — un(t),¢(t))Li|dt — 0.

The first term vanishes according to the Riemann-Lebesgue lemma and the second
term due to u, — u in CpH?®. This means that v, converges to 0 in the distri-
butional sense, and since v,, — v in CpH?, this implies v = 0. This contradicts
up = v(0) # 0. O
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Chapter 6

Local and global
well-posedness for dispersion
generalized Benjamin-Ono
equations on the circle

6.1 Introduction to dispersion generalized Benja-
min-Ono equations

In this chapter we prove new regularity results for the one-dimensional fractional
Benjamin-Ono equation in the periodic case

{ O+ 0, D%u = udyu, (t,x) € R x T,

s o (6.1)

where 1 < a < 2 is considered in the following.

Previous works on dispersion generalized Benjamin-Ono equations include
[HIKK10, [Guol2)] in the real line case and [MV15] in the periodic case. In [MV15]
global well-posedness was proved in H*(T) for s > 1 — a/2, where 1 < a < 2.
For details on these works, we refer to the remarks on the well-posedness theory
of the Benjamin-Ono equation in Chapter [I} The following results are proven via
short-time analysis:

Theorem 6.1.1. For 1 < a < 3/2, (6.1)) is locally well-posed in H*(T) provided
that s > 3/2 —a.
For 3/2 < a <2, (6.1) is globally well-posed in L*(T).

Remark 6.1.2. Recall that Molinet pointed out in [Mol08] that in the Benjamin-
Ono case the periodic data-to-solution mapping is C*° on hyperplanes of initial
data with fixed mean. From this, one might suspect that this is also true in the
dispersion generalized case. However, Herr proved in [Her08] that can not be
solved via Picard iteration for 1 < a < 2 explaining our use of short-time analysis.

The analysis extends the short-time Strichartz analysis from Chapter [3] which
is further improved by considering modified energies. By this we mean correction
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terms for the frequency localized energy corresponding to normal form transforma-
tions like in Chapter [5] but without symmetrization.

The improved symmetrized expression does not yield new information when an-
alyzing differences of solutions because of reduced symmetry. Still, normal form
transformations allow us to improve the energy estimates.

An early application of modified energies was given by Kwon in [Kwo08]. In
this work, modified energies were combined with short-time Strichartz estimates
(cf. [KT03)]) in order to improve the local well-posedness theory for the fifth-order
KdV equation. This was refined by Kenig-Pilod in [KP15] using short-time Fourier
restriction spaces to prove global well-posedness in the energy space. In the inde-
pendent work by Guo-Kwak-Kwon [GKK13] a modulation weight was used to prove
the same result.

An application of modified energies in the context of short-time Fourier restriction
spaces for periodic solutions was given by Kwak in [Kwal6]. In this work, the global
well-posedness of the fifth-order KAV equation on the circle was proved in H2.

On the real line, short-time analysis for dispersion generalized Benjamin-Ono

equations was already carried out in [GuoI2|. In [Guol2] no normal form transfor-
mations were used, which gave local well-posedness for s > 2 — a, where 1 < a < 2.
The gain from introducing modified energies is most significant for large dispersion
coefficients allowing us to prove well-posedness in L?(T). Further, it appears as if
some of the arguments can be applied in the low-dispersion case 0 < a < 1. For
these equations on the circle, which are also of physical interest, are currently no
well-posedness results beyond the energy method available.
On the real line, there is the recent work by Molinet-Pilod-Vento [MPV18] refin-
ing the analysis from [MV15] by normal form transformations. Since this analysis
makes use of smoothing effects unavailable on the circle, it is not clear how to extend
the analysis from [MPV18] to the circle.

The local well-posedness result from Theorem for 1 < a < 2, which is
globalized for a > 3/2 due to conservation of mass on T is currently the best. This
improves global well-posedness for s > 1 —a/2, where 1 < a < 2, proved in [MV15].
As argued in the previous chapters, the analysis can be transferred to the real line.
This yields a possible simplification of the analysis from [HIKKI0]. On the real
line, the multilinear estimates relying on linear and bilinear Strichartz estimates
are improved due to dispersive effects. However, the introduction of a modified
energy would require additional care because the resonance

Q(&1,&,8) =& &4 + &6+ &]86]Y G eR, & +6&+E&=0

might become arbitrarily small in modulus for non-vanishing &; € R. To avoid this,
we confine ourselves to initial data with vanishing mean. As this is a conserved
quantity, there is no loss of generality in assuming

/Tu(x)dx —0.

When we localize time, we do not work in Euclidean windows, but rather base
the analysis on the time localization T' = T(N) = N% 2: This is explained by
interpolating between Euclidean windows in the Benjamin-Ono case and the Fourier
restriction norm analysis for a = 2, where frequency dependent time localization
is no longer required. For the large data theory, it turns out to be convenient to
consider the slightly shorter times N~2~9 giving an additional factor of T? in the
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nonlinear estimates (cf. Lemma [2.5.3)).

The following set of estimates will be established for the proof of Theorem [6.1.1
for a smooth solution u to with vanishing mean. For 1 < a < 2, T € (0, 1],
M € 2% and s’ > s > max(3/2 —a, 0), there are 6(a,s) > 0, c(a,s) > 0, d(a,s) >0
and 6(a, s) > 0 such that

||7'LHF2':5(T) ,S HZ”EV(T) + ||u8mu||N;/,;(T)
”ua“’ugNi/“;(T) S 7| g(f"5(T)||“| F&(T)
lal gy S 10O 1
AMETull G s o 1l g 8 oy
+M- dHUIFS/S(T)HuIF;s TNl [l -

By the usual bootstrap arguments (cf. Section, the above display gives a priori
estimates. In this chapter we omit the bootstrap arguments to avoid repetition.

For differences of solutions v = u; — ug, where u; denote smooth solutions to
(6.1) with vanishing mean, we have the following set of estimates for s > 3/2 — a
in case 1 < a < 3/2and s =0 in case 3/2 < a < 2 and the remaining parameters
like in the previous display:

ol /25, < Noll-172gry + 190 (0 +u2)) |y 125,

100 (s + w2)0) [y 1r2 gy S Tl 172yl | sy + sz

HUHQE*UQ(T) S ||’U(0)H?{71/2
—AICTHQ)”2 128 )(HU1|

+M™ d”vH —1/26( )(||U1| FS‘S(T))
+T9||U||2 1/26(T)(||u1||F55 +||u2||F55 )

re ()

Fodery T2l pes ()

peos oy + Iz

which yields Lipschitz-continuity in H /2 for initial data in H*.
The related set of estimates with parameters like in the previous display

||U||F:,5(T) N ””HES(T) + ”ax(”(ul + UQ))Hva“(T)
[0z (v(ur + UQ))HN;:‘S(T) S THHUHF;vS(T) (||u1||F;,5(T) + ||u2||pj«5(T)
010z < O3

FMOT 0l 5 (2l g 7y + 01| g )
+M~ d||v|‘ps,6(T)(||u2||FSv5(T) + ||U”Fg S(T))
FTO (012, (22 gy + 10125 )

Hvll o125 (e 1]

reomylallppo el ppo ) ),

where r = (2 —a) + s, yields continuous dependence by a variant of the Bona-Smith
approximation (cf. Section .

This chapter is structured as follows: After introducing function spaces in Sec-
tion we consider linear and bilinear estimates of functions localized in frequency
and modulation in Section [63] In Section [6.4] the short-time bilinear estimate is
carried out, and in Section the energy estimates are proved.
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6.2 Function spaces

In this section the notation from Chapter 2] is adapted to (6.1). We define a
dyadically localized energy space

E,={f € L*|P.f = [}
and set
Co(R, By) = {uy € C(R, By) |supp(uy) C [—4,4] x R}.

We define the short-time X*’-space F}, , for frequencies comparable to 2*.
For 1 < a < 2, we localize time on a scale of 2(a_2_‘5)k, where § > 0:

F o = {u € Co(R, Ey)|[lugllps - = sup | Furmo (2@~ Tk (¢ — t4))][|x,... < 00}
’ tk€

(6.2)

Based on the observation that for a =1, T = T(N) = N~ is a natural localization

in time and that for a = 2, we do not need localization in time anymore to over-

come the derivative loss due to sufficient dispersive effects, we choose as inbetween

localization in time 7' = T'(N) = N®~279. It turns out that for some limiting cases
small 6 > 0 will be useful.

Correspondingly, we define the space, in which the nonlinearity is estimated, as

NP o = {ur € Co(R, Ey,)|
lurllng = flgg (7 — w(€) + 23 TR "L F g (2270 F0k (£ — 11))]||x,, ., < 00}
k

We localize the spaces in time for T' € (0, 1] as usual:

FLa(T) = {u € C-T.TL B el oy =, inf el < o)
and
NEW(T) = fun € CU-TT) Bl oy =, inf el < o}

The spaces E*, E5(T), F$°(T) and N3(T) are composed like in Chapter [2] via
Littlewood-Paley decomposition. The dispersion relation is denoted by

pa(§) = &1

The regions in Fourier space localized at frequency and modulation are denoted
by
DE, 5 = {(,€) € RX Z[¢] ~ 2%, |7 = 0u(€)] ~ 27)

with the obvious modification for the variant Dy, _; .

6.3 Linear and bilinear estimates

In the following we derive L2-bilinear convolution estimates for space-time func-
tions localized in frequency and modulation. Consider k;, j;, ¢ = 1,2,3 and f, j, €
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L%O(R X Z)7 Supp(fkivji) < DI(:
Aim is to prove estimates

i, <Ji"

3
/ / T 52 (702 0) (72 €0) o 3 (75, €9) AT (€)Ts(7) S s ) T il

i=1

(6.3)

The following L} ,-Strichartz estimate is independent of the separation of the fre-
quencies. It is a refinement of the Strichartz estimates from decoupling for fractional
dispersion relations, which was discussed in Subsection|3.2.1]in the one-dimensional
case. The proof generalizes the a = 2-case given in [Mol12] Lemma 3.3., p. 1906].

Lemma 6.3.1. Let1 <a <2, f, . € LéO(Z x R), suppfr, ;; C Di < i=12.

Then, we find the following estimate to hold:
s g * oo llpz | S 20min/220max/ GO o fr a2
Proof. By the reflection lemma ([Tao01l Corollary 3.8.])
[uvllz = [[uv]]2,

we can suppose that suppe fi, j; C Zxo for i =1,2.
An application of Cauchy-Schwarz gives

/dT/ds‘/dn/dflfkl,jl(rh§1>fk2,j2<fmfa) 2

/S Su? 05(7‘, §)||fk1,j1 ”%”fkmj’z”gﬂ
T7

where
a(r,€) S mes({(71,€1) € R x Zxol€ — & € Zzo, (11 — pa(&1)) < 2"
and (1 — 7 — @a(€ — &1)) < 272})
S 2t AT, €)
with

A(T,8) ={& >0 &~ & >0 and (T — @u(&1) — pal€ — &) < 20max},

In the region 2/max < £9F1 notice that

Jmax
gafl

In the region 0 < 5‘1‘“ < 29max yge that 0 < &1 < € to obtain that

1/2
#A(Ta 5) S ( ) —+ 1 5 2jmax/(¢l+l).

#A(T,€) S #{E |0 < g < 2mex} g /4D,
(6.4) follows from the above two displays.
Lemma 6.3.2. Let ko < k1 — 5. Then, we find (6.3) to hold with

a(k, §) = min((1 + 27579k )1/2972/2 (1 4 gis=aki)l/291/2,

(1 + 2j37(a71)k17k2)1/22j1/2)'

140

(6.4)



Proof. We perform a change of variables f,ffj7 (1,8) = fry,5. (T + @al§),€) so that

£ 5 12 = [l fx, g |2 and supp(£7 ;) € {(ri,&) € RX Z | |&] ~ 2%, |7i| S 2ji}
The resonance function

Q%(&1,&2) = (&1 + &2)[€1 + & — &1l&a]|" — &2/Ea]” (6.5)

comes into play quantifying the effective support of the involved functions. Record

oNe

} e+ &l — ] ~ & el

% (6.6)
‘6;;2 = [|& + &| — 1&2]"] ~ [& + &2

We prove the first estimate. An application of Cauchy-Schwarz inequality in &,
yields

/ / Fioin (710 €0) frn s (722 €2) frs s (75, £3)dT5(€)dT'3(7)
Sj/(dfl)l/dTlf’ﬁJl(Tl,fl)/d72(1+2j3*ak1)1/2

1/2
x ( Jenist @I+ -9 +52>|2) .

Further applications of Cauchy-Schwarz in 71, &; and 75 yield
_ 1/2
< [ [an 2z ([t e
1/2
( / (&)1 |7, (72,62) / dn|ff (-1 =7+ Q% =& — @)F)
} 1/2
s+ [anist e ([t meP) I,

3
S22 P T

isJi
i=1

L2-

This yields the first bound.
To prove the second claim, we carry out the same computation after rearranging

//fks,js(Tsafs)fkl,jl(71,51)fk2,j2(727fz)dr3(§)dr3(T)
— [(gan [ arasfs (it [t [ansf,ne)

X (= Q6L ), 6 — &),

Note that

'39(5&) ~ I+ &l — &) ~ J&)®.

96

n the following computations, at some point we freely interchange f with ]F(T, &) = f(—1,-¢)
as this leaves the L2-norm and support region invariant.
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Firstly, apply Cauchy-Schwarz in &; to find

< / (da),s / drsfft s (s,6s) / dry (1 4 272 ak)1/2

1/2
x ( Jenlst @I 4+ 9 +53>|2) .

Next, apply Cauchy-Schwarz in 73, £3 and at last 71 to find the bound

3
S22 22 ) 2 T fi e

i=1

2.

The third bound is established by the same argument. The difference of the
group velocity is less favourable though. This leads to inferior estimates: an appli-
cation of the Cauchy-Schwarz inequality in &; yields

/dTQ/(d€2)1f]ﬁ7j2(TQa€2)
/(dfl)l /dTlf]?i,jl (Tlvgl)fk#s7j3<7—l + 72— Q% & + &)
S [dn [ st ) [ an-enhckz

1/2
(/(d&hf;ﬁ,jl (7—1751)'2‘.}[]?;]‘3(7-1 + 72— Q%8 +§2)|2) :

Now apply Cauchy-Schwarz like above in 75, & and 7 to find

3
< 2j1/2(1 4 23'3*(“71)]“7]62)1/2 H [ ki i ll2-
i=1

This proves the third bound. O

Remark 6.3.3. Unless one introduces modulation weights like e.g. in [GPWWTI],
the third bound is insufficient to overcome the derivative loss in case of High X
Low — High-interaction. Moreover, it is this estimate which complicates short-
time bilinear estimates for a negative Sobolev regularity index.

Lemma 6.3.4. Let 1 < a < 2. If |k, — k;| <20, i=1,2,3, then we find to
hold with a(k,j) = 29i1/2(1 + 272 —(@=DEN/A for amy iy iy € {1,2,3} provided that
i # s

Suppose in addition that ||&;, |* — |&,|*] ~ 2°% provided that &;,, € suppe(fr,,, j.,.):
im € {1,2,3}. Then, we find to hold with o = 2711 /2(1 4 2z —ak1)1/2,

Proof. We assume in the following that a > 1 because the claim is covered in Lemma
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for a = 1. For the first claim, we apply Cauchy-Schwarz in &; to find

/dTl/(dgl)lf/ﬁJl(Tlafl)
/de /(d£2)1f]zi7j2 (r2. &) fF (4 72+ Q%6 + &)
S/dﬁ /(d&)lfli’jl(ﬁ’&)/d72(1+2j3—(a—1)k1)1/4

1/2
( [anist @)1 s+ m+ 0 +52>|2) .

This estimate follows due to

‘Bzga ~ 2Ma=Dks

9&3

which is derived from Case-by-Case analysis according to the signs of the involved
frequencies.
Applications of Cauchy-Schwarz in 71, &1 and 75 lead to

3
S 222 (14 20 e IIOVATT £ s,
i=1
which proves the first claim for my; = 2, my = 3. There is no loss of generality due
to the symmetry among k;, i = 1,2, 3.
For the second claim, we argue like in Lemma Let 71 = 3, i = 2. From

the proof we shall see that this is no loss of generality.
We apply the Cauchy-Schwarz inequality in & to find

/dﬁ/(d&)lf;ﬁ,jl(ﬁ,fl)
/de /(dfzhf;z,jz(m,fz)f;i,j?,(ﬁ + 72+ Q%(&1,62), &1 + §2)
S [an [enst ,(n.6) [dn( 2oy

1/2
( / A& 7 5, (r, Q)PIFE 5, (i + 72+ Q% 6 + 52)2> :

Now the claim follows from application of Cauchy-Schwarz inequality in 71, & and
T2. O

To estimate lower order terms, we use the following estimate not exploiting the
dispersion relation but following from Cauchy-Schwarz inequality:

Lemma 6.3.5. Estimate (6.3)) holds with a = 2kmin/227min/2,

6.4 Short-time bilinear estimates

Purpose of this section is to prove the following proposition:
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Proposition 6.4.1. Let T € (0,1] and u,v € F5°(T), i = 1,2.
If 1 < a < 3/2, then there are 6 = d(a,s) > 0 and 6 = 6(a,s) > 0 so that we find
the following estimates to hold:

(|0 (uv) HNgv‘S(T) S T9||UHF35(T) ||v||F£'5(T)7 (6.7)

- (6.8)

||a€17(uv) ||N;1/2’5(T) 5 TGHUHFJU?'J(T) ||v|

provided that s > 3/2 — a.
If3/2 < a < 2, then there are §(a) > 0 and 6(a) > 0 so that we find the following
estimate to hold:

Haw(uv> HNa*l/?’é(T) 5 T9||UHF£.5(T) HUHF;UZ‘*(T)- (6'9>

We work with 6 = 0 in the following, which will be omitted from notation. Later
we shall see how the analysis yields the estimates claimed above.
The above estimates are proved after decompositions in the frequency (cf. Subsec-
tion . This essentially reduces the estimates to

”Pk:saﬂﬁ(uhqu)HNkS,a g a(b)”uk’l HFkl,a ||uk2 ||Fk2,a' (610)

These estimates are proved via the L2-bilinear estimates from the previous section.
We enumerate the possible frequency interactions:

(i) High x Low — High-interaction: This case is treated in Lemma
(ii) High x High — High-interaction: This case is treated in Lemma m
(iii) High x High — Low-interaction: This case is treated in Lemma [6.4.4]
(iv) Low x Low — Low-interaction: This case is treated in Lemma [6.4.5]

We start with High x Low — High-interaction:

Lemma 6.4.2. Let 1 < a < 2. Suppose that ks > 20, ko < k3 — 5. Then, we find
(6.10) to hold with o = 1.

Proof. By the same reductions like in Chapter [4 we find that it is enough to prove

2
k3.3 (fk17j1 * fk27j2)||L2 S H 2]i/2||fkmj1, L2, (6.11)

Jjz>(2—a)ks 1=1

D DI

where supp(f, j;) € Dy, <;, for i = 2,3, and we can suppose that j; > (2 — a)ks.
For the resonance function, we have the estimate from below

|Qa| Z Qak3+k2 )

Consequently, there is j; > aks + ko — 10.

Suppose that j5 > aks 4+ ko — 10. Then, we apply duality and the first bound
from Lemma [6.3.2] to find

2 2oy i fra) oz
jz>aks+ka—10
(6.12)

2
S 2ok 20 21 k) 2 T o

i=1
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By the lower bound for j; and a > 1, it follows

2 2
(6:12) < 27 (@hotkal/2gn/2on/2o= ol 2T fy sille S 2722 T] 272 fis il -

i=1 i=1

This yields (6.11)).
Suppose that j; > aks + ko — 10. The argument for jo > aks + ko — 10 is the
same. An application of the second bound from Lemma yields

Do 278y (frag * fra)llee

j32(2—a)k:3
2

< Z 2—j3/2(1 + 2j1—ak3)1/22j2/2 H | Fr g ll2

Js>(2—a)ks i=1

2 2
5 2—(2—a)k3/22—a/€3/2 H 2Ji/2||fki,ji 2= ke H 2Ji/2||fki,ji 2
i=1 i=1
This completes the proof. O

We turn to High x High — High-interaction:

Lemma 6.4.3. Let 1 < a < 2. Suppose that k3 > 50, |k1 —ko| < 10, |ke — k3| < 10.
Then, we find (6.10]) to hold with o = 1.

Actually, the same argument as in High x Low — High-interaction is applicable
since there are two frequencies with group velocity difference of size 271 (cf. Section
3.1]). Below, we point out how to prove clearly better estimates using the resonance.

Proof. Like above it suffices to prove

2
i3s3 (fk17j1 * sz,j2)||L2 S H2ji/2||fki,jiH2 (613)

Js>(2—a)ks i=1

oks Z 2—]‘3/2”1[)7

In this case we have |Q¢| > 2(¢+1ks  Hence, due to otherwise impossible modulation
interaction, there is j; > (a + 1)ks — 20.

If j5 > (a+1)ks — 20, then we use duality and the first estimate from Lemma [6.3.4]
to find

Z 2_j3/2||1D237j3(fk1,j1 *fk27j2)||L2

Js>(a+1)k3—10

2

2
< 2*(a+1)k3/22j1/2(1 + 2j2*(a*1)k3)1/4 H ||fk7’,»j7‘,
i=1

The claim follows even with extra smoothing.
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If j1 > (a+ 1)ks — 10 (or jo2 > (a + 1)ks — 10, where the same estimate can be
applied), then we use again the first estimate from Lemma to derive

2. 2oy (v Fra) e

Ja>(2—a)ks
2

< Z 2—j3/2(1 + 2j3—(a—1)k3)1/42j2/2 H | f, il

Jz>(2—a)ks i=1

2
< 9—(1+e(a))ks H 2ji/2||fk- iilla
i=1
even for some € = ¢(a) > 0. O

We turn to High x High — Low-interaction, which is dual to High x Low —
High-interaction. We have to add localization in time in order to estimate the input
frequencies in short-time spaces.

Lemma 6.4.4. Let ky > 30 and k3 < k1 — 5. Then, we find (6.10) to hold with
a= (3]{;1)2(1*0)’61 9(a—3/2)ks

Proof. Following the definition of the N, j-spaces, we have to estimate

2 S 2Bl Fuunven@CR (- ), (6.14)
Jja>(2—a)ks

The resonance is given by [Q4| > 2aki+ks,
Suppose that j3 > ak; + k3 — 10. Then, we find

aky

+k
B8 < 2552 fug v (22 (¢ — 1)) 2 .

After adding localization in time (since we are estimating an L?-norm at this point),
it is enough to estimate

(2—a) (k1 —ks3) aky+k
292 T I g, v (2R (= 1) - (6.15)
Write
fk17j1 = 1D21v(§)h ]:t@h/(2(2_a)kl (t - t/\))ukl]’
Fraga = IDZ2,<S>12'Ft@h(?(g_a)kﬁlo(t = 1)Uk, |-

In the above display, the low modulations are annexed matching time localization
as usual.
Then, an application of two Liw—Strichartz estimates gives

2
©15) <20k F T S 272 fi il

i=1ji>(2—a)k

2
a—1 ;.
SR | DR e

i=1j;>(2—a)k:
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This yields a first bound. Some of the above estimates are crude because the next
case gives the worse bound anyway.

We turn to the sum over js in , where j3 < aki + k3 — 10.
By the reduction and notations from Chapter [5, we have to estimate

2(2—a)(k1—k3)2k3 Z 2—j3/2||1Da

k3,<j3 <fk1’j1 * sz,Jé)HLfY&a
(2—a)ksz<js<aki+ks

where ji,72 > (2 — a)k;.
Suppose that ji > ak; + k3 — 10 by symmetry among fi, j, and fi, j,. An
application of Lemma [6.3.2] in conjunction with duality gives

Satmebhaghe 57 g/ (1 90 ol el
Js<aki+ks

2
< (Bky )21k ge=s/2ks TT 0t /2| £

i=1

25

which is inferior to the first bound. The proof is complete. O

We record the estimate for Low x Low — Low-interaction which is immediate
from Lemma [6.3.5]

Lemma 6.4.5. Let k; < 100, i = 1,2,3. Then, we find (6.10)) to hold with a(k) = 1.

Proof of Proposition[6.4.1 With the above estimates for frequency localized inter-
actions at disposal, we can infer the claimed estimates: For High x Low — High-
interaction Lemma [6.4.2] gives the estimates after square-summing

102 (wo)l|vocry S el moery 0l mo+ 1y

10 (o)l 172y S Nl 172 o]

F3(T)

where 1 < a <3/2 and s > 3/2 —a.

Increasing time localization leads to extra smoothing (because the minimal size
of the modulation regions will become larger). Together with Lemma we
deduce from the proof of Lemma [6.4.2

100 () o5 iy S T el s o 10 g

||8w(uv) HNafl/?vé(T) S TQHUHF;UZJ(T) ||U||F2,5(T)

for some 6 > 0 for any § > 0 with a and s like in the previous display.

For 3/2 < a < 2 the argument is analogous for High x Low — High-interaction.
For High x High — High-interaction the estimates due to Lemma [6.4.3] are suffi-
cient because of improved resonance compared to High x Low — High-interaction.
For High x High — Low-interaction the short-time estimates become worse when
increasing time localization. But there is room in the estimate from Lemma
to prove the estimates for §(a) > 0 chosen sufficiently small. O

147



6.5 Energy estimates

Purpose of this section is to propagate the energy norm of solutions and differ-
ences of solutions: Set

[ullFrm = m(&)a(§)a(—9).
3

We consider generalized symbols m € S? like in Chapter [5l However, s can also be
negative. In this case the definition is adapted following [CHT12].
The following estimates are shown:

Proposition 6.5.1. Let 1 < a < 2, T € (0,1], M € 20 and suppose that u is
a smooth solution to (6.1) with vanishing mean. Then, there are positive (s, a),
0(a,s), (a,s), c(a,s), d(a,s) so that we find the following estimate to hold

17

Beery S lullfs + TMC|lul}
+ M|

Fb €, J(T)

6.16
+T0||u\ (6.16)

F.s €, o F.s 6
provided that s > 3/2 — a.
The following energy estimates for differences of solutions are proved.

Proposition 6.5.2. Let T € (0,1], 1 < a < 2 and M € 2Yo. Suppose that
s> 3/2—a and u;, i = 1,2, are smooth solutions to with vanishing mean.
Then, there are positive c(a,s),d(a, s),0(a,s),d(a,s) so that we find the following
estimate to hold:

oIl 72y S N0 Zr-12 + TMEIT 125 g (| g oy + N2l o )

MUl s g (| r (o) (6.17)

Feoery T lluel

Tl ns g (|

ko T2z )

Furthermore, the following estimate holds:

1ol () S N0(O) s + MTN0l s gy (10l oy + N2l )
Mol oy (lell oy + szl o) (6.18)
+ T (0 s o 101l 1728 gy 2| s oy Itz o o '
Iy 2y + 01205

where r = s+ (2 — a).

For smooth solutions we find by the fundamental theorem of calculus and after
symmetrization

)y = [0
e / / (M6 + m(€2)a + m(Es)Es) (6 )i €2)iU(Es)dTsdls.
0 I's

To integrate by parts like in Chapter [5} we consider the first resonance function

Q7 (61,82,83) = &1l&1]* + &al&a|” + &3163]" (€1,82,&3) € Is. (6.19)
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A consequence of the mean value theorem is

|Qlll(§1a§2a€3)| Z |£maX|a‘€min|7

and thus, the first resonance does not vanish provided that &; # 0.
Integration by parts becomes possible, and we find

T
B [Ca Y e+ mi@) + mal )it i)

&1+E€2+E63=0,

&i
T
(m(&1)€1 +m(&2)€a +m(€3)E3) . ) .
= X . at, &)t )t &)
_ 1(61,62,&3)
51+£§2i;%3—0, 1 »
T
L Z m(&1)& +m(&2)&a + m(53)€3a(t’§1)ﬂ(t7§2)

0 eperta,  SIG T &lEf" + &G
i#0
X & > alt )it &)

€3=E§31+832,

= BS™(0;T) + RS™(T).
Set
m(&1)€1 +m(&2)62 +m(&3)E3
&1l&1]0 + &2|&a|® + &5l&s]e

The following estimate of the multiplier is a consequence of the mean value theorem
and the lower bound for the resonance function:

b?m(fh 527 63) =

Lemma 6.5.3. Let |&1| ~ |&2] 2 |€3] > 0. Then, the following estimate holds:

max;=1,2,3 Im (&)

|€1]@

|b§7m(§17 627 53)| 5

We collect the low frequencies as

T
Ry™M = / dt >0 06 6o E )t E1)alt, E2)a(t, ).

§1+E€2+E€3=0,
1<|6i <M

Like in Chapter |5 we differentiate by parts only RS™ — R5™™ such that one of
the initial frequencies is higher than M.

This leads us to the boundary term B§’m’M with one of the frequencies higher than
M. We have the following lemma:

Lemma 6.5.4. Suppose that —1/2 < s < 1/2. Then, we find the following estimate
to hold for any 1 <a <2, >0:

By M(0:T) £ M~ ul (6.20)

Fo(T)
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Proof. Localize frequencies on a dyadic scale, i.e., Py,u; = u; and suppose k1 2
ko > k3 by symmetry. Let m = logy(M). We use the embedding from Lemma [2.5.1]
to reduce the bound to a bound of Sobolev norms. By Lemma [6.5.3] and Hélder in
position space, we find the estimate for the evaluation at ¢ =0

2sk1 92sks
2ok ML ETN S i (0,60)6(0,9)] s 0. £9)|

2ak:1
&1+€2+E€3=0,
&i#0,|61|>M

92sk1 92sks
) Piy0) 5 Pr ) 2228572 Peu(O)]

2ak:1

5 225k1

This expression sums up to the claimed estimate. O

The remainder term is symmetrized once again to find (the constraint for the
initial frequencies is omitted because it is not relevant in the following)

RZ’”—O/ dt/ AP0 (61, 0, E1 + €52) — B3 (—Ea1, —Ea2, €1 + €32))Es
Xt €Y €2)iU(E a1 )ilt o).
Set
B (€1, 60, Exn, E32) = B3 (€0, 0 E51 + Exn) — 5™ (~En, —En, o + £l

For the second symmetrization we record again by the mean value theorem:

Lemma 6.5.5. With the above notation, we find the following estimate to hold:

max;=1,2,3 |m(&)

max;—1,23 |&|®

D™ (€1, €0, a1, €2)] < ez,

where €] > |€5] > ... denotes a decreasing rearrangement of the &;, i = 1,2,31, 32.

For the more difficult remainder estimate, it is important to note that the second
symmetrization cancels the second resonance

05(&1,62,83, &) = &l&|* + &|&| + &1&] " +&aléal®,  (&1,&2,83,84) € T4 (6.21)

Next, an estimate is derived which is effective when estimating expressions involving
two high frequencies and two low frequencies provided that the second resonance is
non-vanishing.

Lemma 6.5.6. Let ki, ji € N and f, j, € L3(R x Z) with supp(fr, j.) C Dy, <;,-
Suppose that kv < ko < k3, ko < k3 — 5 and suppg(fkmjm) - I m, m = 1,2,
|In| <28

Then, we find the following estimate to hold:

/dl—“l(T)/dr4(£)fk1,j1(Tl?gl)sz,jé(7-2762)f/€37j3(7-3753)fk4,j4(7—4?€4)
(6.22)

< mln(231/2 2]3/2)(1 4 9Ja— ak4)1/2232/22l/2 H | frs s
i=1
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Proof. Like in Section [5.2.2] we rewrite and make successive use of the Cauchy-
Schwarz inequality to find

J0ar) [ A€ i (71007200 iy (70 €0) s (1, 60)
= [an [ttt in6) [an [@enst &)
< [ dne [ fE () (om - a1 -6 - 2 - &)
s [an [wenst ) [an [ st )
X /d72(1+2j47ak:4)1/2 </(d§2)1f,ﬁ,j2|2|f]ﬁ7j4|2>1/2
sk [y [an [@nst, &)

1/2
X /dTQ (/dT1|flﬁ,j1(T17€1)|2>
1/2
X </(d§2)1|f;z,j2(7'2,€2)|2/d71|f;jij4(7'4,§4)|2>

4
< 9V/2932/2973/2(1 4 gia—aka)l/2 H I i g |2
i=1
This yields the second estimate.
Similarly, we find the first estimate by

[ [t g [an [en st )

< [t [dngf (et n - - m 26 - - &)
sk fan [gonst 6 [an st (&) [an
X(/MwﬂﬁmmimmﬁﬂFﬁ—w—m+%rﬁ—&—&ﬂyﬂ

4
5 21/22j1/22j3/2(1 + 2j4—ak4)1/2 H ||fk

i=1

i»Jill2-

O

Remark 6.5.7. Note that the argument is symmetric with respect to the low
frequencies k1 and ko above and the high frequencies k3 and k4. Below, we freely
use the estimates obtained from such permutations.

We record the following short-time consequences (i.e., modulations large de-
pending on the frequencies):

Lemma 6.5.8. Let k;,j, € N, i=1,...,4 and suppose that
kq Sk‘gﬁks, k2§k3—5, ji2(2—a)k3 fO’r’iE{l,...,4} (623)
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Then, we find the following estimate to hold:

/ drs (7) / AT4(6) fir 1 (71 €0) Fraia (s €2) Froausa (73, €3) s ya (71 0)
s (6.24)
S22 frgille

i=1
provided that k1 < kg — 5.
Suppose (6.23) and |k; — ko| < 5. Then, we find the following estimate to hold:

/ drs (7) /5 e T8 i (7 60 72,80 s (7 69 2,60

4
i=1

(6.25)
Proof. The first claim follows from applying Lemma[6.5.6| with [ = k2 and observing
that jmax > aks + ko — 10.
For the second claim, we use a similar argument like in Section We carry
out a decomposition of the expression into |Q2| ~ 29%3%! which is equivalent to
assuming that [&; & &| ~ 2%
At this point, we can assume that fx, ;, (7,-) and fx, j,(7,-) are supported in inter-
vals I,,,, m = 1,2 of length 2.
The decompositions f,i‘ j, are almost orthogonal, that is

I;
DN E S W kil
I;

and further, supposing that [Q2| ~ 2¢*s+!for fixed I, there are only finitely many
intervals I5 such that there is a non-trivial contribution

Jas) [ AR L R 72,80 o (5,85) s (s )

(6.26)
The localized expression is amenable to the argument yielding the first estimate.
So,

4
_ T I
(6:26) <27 <H 2 /2> I fr g 2l fel g 2l Frs s 121l frea a ll2-
=1

The claim follows from carrying out the sum over I; and Is by almost orthogonality
and the sum over [, which leads to the 2(0)*2 ]ogs. O

We have the following estimate due to Cauchy-Schwarz inequality to handle
lower order terms:

Lemma 6.5.9. Let k;, j; € N and fy, ;, € LQZO(]R x Z) with supp(fr, ;) € Di, <,
and let k¥ > ... >k} and j; > ... > ji denote decreasing rearrangements of k;, j;.
Then, we find the following estimate to hold:

/dF4(T)/dF4(5)fk1,j1(Tl»51)fk2,j2(T27fz)fkg,jg(ﬁn53)fk4,j4(74»§4)

isJi 12+

4
< oki/29k3 12911 29035 12T | 4
i=1
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However, if Q§ = 0 we find [£]| = |&5], |£5] = |€4], where the actual frequen-
cies have opposite signs. Thus, the sum over the frequencies collapses and two
applications of Cauchy-Schwarz in the modulation variables give the following:

Lemma 6.5.10. Let ki, j; € N and fy, j, € L2,(R x Z) with supp(f, ;) € D, <;.-
Let |k1 —ko| <2, |ks—ks| < 2 and ki > k3 and let jT > ... > ji denote a decreasing
rearrangement of the j;.

Then, we find the following estimate to hold:

/dF4(T) Aw&z:o, AU (&) frr s (715 €0) o o (720 §2) Fies s (73, €3) fra a (T2, €4)

§3+84=0

4
S 29i/2975/2 H ||fk1j1

i=1

2.

In case there is one frequency clearly lower than the remaining three frequencies,
the resonance is very favourable, and we make use of the following bound, which is
a consequence of three Ltﬁﬁz—Strichartz estimates:

Lemma 6.5.11. Let ki, j; € N and fy, j, € L2((Z x R) with supp(f, ;) € D, <.,
and let j7 > ... > ji denote a decreasing rearrangement of the j;.
Then, we find the following estimate to hold:

/dF4(T)/dF4(§)fk1,j1(71,fl)fk-z,jz(Tz,52)fk3,j3(73’53)fk4,j4(74,€4)

4
< 27200 T2 f o
i=1

Proof. Let u; = .7-',;,]01 [fk:.j,] denote the inverse Fourier transform and to simplify
the notation let j; = j7.
Then, changing back to position space and applying Holder’s inequality gives

/GT4(T)/dF4(f)fk1,j1(ﬁa§1)-~-fk4,j4(747§4)

_ /dt/dxul(t,a:)...U4(t,x)

4 4
S llunlize, [T uillzg . S W llzz, TT29 2572 fi, s
=2 =2

4
< 2_-7;/22(0+)eran H 2_]2/2 ||fk
i=1
The L?,x—Strichartz estimate is an instance of Proposition 0

i5Jill2¢

Further, we have the following consequence of four Lf ,-Strichartz estimates:

Lemma 6.5.12. Let 1 <a <2, ki, ji € N and fi, j, € L3,(Z x R)
with supp(fr, j,) € Df, <;.- Then, we find the following estimate to hold:

/ dF4(T)/ dUa(€) frr g2 (1, §1) Fra i (725 §2) frs s (735 €3) fha i (T2, €a)
Ty(T) Ty (8)

4 (a+2)j;
rg H2 Aatd) ||fk7’,»jz‘ 2.
i=1
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Proof. Like in Lemma [6.5.11] change to position space and apply Holder to find

/ dT4(7) / AT4(E) Forgn (713 €0) - Frngs (72 €4)

_ /dt/dmul(t,x)...U4(t,x)

4 4 (a+2)j;
< H lwillps , < H2 T || fis i 2
i=1 i=1
The Lfﬁz—Strichartz estimate is a consequence of Lemma m O

The more involved remainder estimate, for which the above multilinear estimates
are deployed, is carried out in the following lemma;:

Lemma 6.5.13. Let 1 < a < 2 and T € (0,1]. Suppose that s > 3/2 — a. Then,
we find the following estimate to hold:

/O ! R™[u]ds

provided that m € S2 and £(s,a) > 0, 0(s,a) > 0, 6 = d(s,a) > 0 are chosen
sufficiently small.

4

0
S T ||7.L‘ F;ig’é(T)

Proof. In the expression

T
/ dt / A0LB (€1, €2, a1 Ea2)iU(€1)(E2)(Ea1 ) Ens) (6.27)
0 Ty

we can suppose [&1] 2 |6al, [€s1] 2 €2 by symmetry.
Further, we break the frequencies into dyadic blocks |£1] ~ 2F1, |&o] ~ 2F2 |€31] ~
2’6317 |§32| ~ k32
After dyadic frequency localization, for an estimate of , one has addition-
ally to take into account the time localization and the multiplier bound. For this
purpose, we perform a Case-by-Case analysis:
Case A. [&1] ~ (&2
Subcase AL [&1] > (€3] 2 [€31] 2 [€s2
Subcase AIL |&] > |&3] < |&31] ~ [€32]
Subcase AIIL [&] ~ |&3] 2 [€s1] 2 [€s2]
Subcase AIV. [&1] ~ [€5] < [€31] ~ [€52]
Case B. || > |&|
Subcase BL [1] ~ [&5] ~ [£51] ~ €3]
Subcase BIL |&| ~ &3] < [€31] ~ [€32]
Subcase BIIL. [£;] ~ [&3] ~ [€31] > [€32]
Let v : R — [0, 1] denote a smooth function with support in [—1, 1] satisfying

274(33—71) =1

nez
We have
(6-27) ¢, ) worr ... = > /dt/ by (&1, €2, €31, $32)
Im|<T20kmax R JTal&1|~2" ...

Lo,y ()7 (27 *Fmext — m)a(&y) ... y(27 et — m)a(Es2),
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where a = (2 — a + 6) so that the products (2~ “Fmaxt — m)a(&;) are estimated in
Fiki—spaces.
Here and below, we confine ourselves to the majority of the cases, where the smooth
cutoff does not interact with the sharp cutoff, i.e., only the m € Z are considered,
for which

oy (Jy (27 ks« —m) = (27 kwes . ). (6.28)

Recall that there are at most four exceptional cases for which the above display fails.
Like in Subsection[5.2.4] these can be treated by interpolation with the estimate from
Lemma

Thus, adapting the reductions and notations from Subsection [5.2.4] one has to
estimate

T2 a0tk |p, (2K k2 ok ghs)) / dTy(T) / A4 (€) fry,ju (11, 61)
Q840 (6.29)

fk21j2 (7-27 EQ)fkahjm (7—317 531)fk32,j32 (7—327 532)a

where j; > (2 —a+ 0)kT, i = 1,2,31,32 taking into account the time localization.
For the sake of brevity write in the following fr, j; = frs1,jsr @A [y s = fhss,jsa-
For the estimate we use Lemma [6.5.8 and in case of separated frequencies
and Lemma whenever the frequencies are not separated. We turn to the single
cases.

) . 92sk1 92skzyo2ek]
Subcase AL For b we have the size estimate b7 < e S ) 2ks

The time localization yields a factor of T2(32~4+9k1 and an application of Lemma

[6.5.8] gives

4
(6:29) < max(2°%k1, 225ks ) pks—hag2(malkigdkig2eks T2 £ i),
=1

Subcase AII. In case the frequencies are not of comparable size, one can argue
like in Case Al
Otherwise, we apply Lemma to find together with the size estimate of b)* and
the time localization

4
ghsg(@-a+dlkig2ekig= (430 TT 0di/2| f
i=1

max(225k1 \ 223k3 )
2ak1

(6:29) < T

2

Subcase AIII. This case can be covered following along the above lines.
2sk 2sks
Subcase AIV. The size estimate for bj* is b} < W?MQ’“. The

time localization yields a factor of T2(2—4+9ks1 and an application of Lemmam
gives a smoothing factor of 27%312°k1 which yields

4
629 § TmaX(QQSkl ) 225]@3)2(17(1)](:1 2(170,)]631 25k31 22€k1 H 2]1/2 ka“jl ||2
i=1

. . . 92sky 92skp Yokl
Subcase BL The size estimate of b7 is b < 22 Sty )

ization amounts to a factor of T2(2=2+9k1 and using the resonance [Qg| > 2@tk

22¢k1 time local-
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hence, ji > (a+ 1)k1/2 — 10 in conjunction with Lemma [6.5.11| we find

2204k Dk /20(3—at 8k ook TT oie/2
6-29) STW2 19—(a+1)k1/29(2—a+8)k193¢ck: HQ%/ ||fk“jz 9
i=1
4
< T92sk19(5/2)(1-a)93ek: Hz]‘i/Qka‘ Jilla-
i=1

. . . 92sk1 92ska)g2eky
Subcase BIL The size estimate is |p7] < 22 = )

gives a factor of T2(2=4t9ks1 and by Lemma we find

, time localization

max(225k1 223k2 )2k1
< b
629 <T S

4
2(270.%»5)]{,‘31271631 238k31 H 2]1/2ka js ||L2~
1yJ
i=1

Subcase BIIL The size of by is given by [b7| < B L22) 9 (1420)k1 | Time

localization gives a factor of T2(2~9+9k1 and an application of Lemma m gives

4
9(2—a+d8)k193ck19—k1 H 2j¢/2||fk/ iill2

=1

maX(QQSkl ) 228]62 )2k1
629) <T Sah

4
< TmaX(QQSkl , 228]62)22(17(1)]“ 2(3€+5)k1 H 2‘]1/2”,]0]{:
i=1

i5Jill2+

In all cases we find extra smoothing. It is straight-forward to carry out the sum-
mations. O

We turn to the proof of energy estimates for differences of solutions.

Proof of Proposition [6.5.2 We start with the proof of (6.17).

An application of the fundamental theorem of calculus gives up to irrelevant factors

27| Pao(t)] 2 = 27" | Pav(0) 122

1+€2 +%3:07

&i

In the following we pretend that v is governed by 0;v + 0, D% = 0, (vuy) to lighten
the notation because we can prove the same estimates replacing u; with uy. This
is possible due to multilinearity of the argument.

The estimate is carried out by Case-by-Case analysis, which is more involved
than in the energy estimates for solutions due to reduced symmetry. For the inter-
action between v,u1,v in the above display, we have to take care of the following
cases:

Case I : High x Low — High-interaction: (v,u1,v)
Case IT : High x Low — High-interaction: (v,v,u1)
Case III : High x High — High-interaction

Case IV : High x High — Low-interaction: (v, u,v)
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We start with an analysis of Case I.
After integration by parts and switching back to position space, we find

T
2 ok / dt / dzPyuPyu; Pyv (k< n—10). (6.30)
0

Strictly speaking, the estimates are carried out rather for the absolute values of
the space-time Fourier transform which becomes only possible after integration by
parts in time first. The above notation is used in order to make the argument more
readable.

Further, we omit to indicate the summation over the frequencies. One checks that
the expressions sum up to the desired regularities.

Integration by parts in time is only carried out for n > log,(M): This gives

[6:30) = 2-"2%2~(@+8) [P,y Py Pov]”,

T
+27"2k27(‘m+k)(/ dt/@mpn(vul)Pkulpn/v
0

T
+ / dt / P00, Py (u3) Ppiv)
0
:B[(O;T)+I1+IQ, kﬁn—lo

Like in the proof of Proposition [5.2.15| we only integrate by parts the high frequen-
cies. The boundary term can be estimated using Holder’s inequality and Bernstein’s
inequality like in the estimate of the boundary term for solutions:

o> > ol / dxPv(t) Peuy (t) P ()

n>m k<n—10 |n—n’|<5
SN Y 2 () el P (8) oo | P ()] 2
n>mk<n—6 |n—n’|<5

S MﬁdHUHQFLLﬂ/z,&(T)||U1HF;,5(T),

where the ultimate estimate follows from Lemma [2.5.1] Moreover, for the low
frequencies it is straight-forward to infer by the same means that

T
>y 2—”2k/ dt/dxpnvpkulpn,v5TMC||UH2F,1/2,5(T)||u1|F;,s(T).
0 a

1<n<m k<n—6

We turn to the more involved estimate of I; and I5. The frequency constraint
is omitted in the following. Compared to the remainder estimate for solutions
the multiplier is slightly worse because we do not integrate by parts another time.
Moreover, the second resonance can vanish.

We split I1 = I11 + I12 + I13 according to Littlewood-Paley decomposition. This
means that we consider High x Low — High-interaction for Iy1, High x High —
High-interaction for I1o and High x High — Low-interaction for I;3. If the second
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resonance does not vanish, then Lemma [6.5.8| applies and we find

T
[ =27 / dt/ (PpvPiruy + Pyuy Pyrv) Poug Prro
0

5 T2(2—a+5)n2—an2—n26n (||Pn’UHan HPkful ||F‘5 o + HPnul ||F¢f.n ||Pk’v||F5 k’)

[Pruillps, 1 Prvllps -
a,k a,n’

If the second resonance vanishes, then we apply Lemma [6.5.10f This ameliorates
the factor 22=9+9" from the time localization and gives

Iy 727 (1Pl g, |Pun g, + I1Patllrg, I Pylles, ) I1Pews I, | Patl -

For I3 we have to estimate
T
2*“"/ dt/anPn/ulPkuanuvdx, k<n-10, |n—n'| <5, [n" —n| <5.
0
The second resonance satisfies Q4] > 2@+ By Lemma [6.5.11] we find

"

Iy S T2 a+Omg—ang=(@HOn/29m By || Pyt s | Pl | Prrol s

< T2(3/275a/2)n2(s+5)n ||13anF<s

a,n

Powllps |1 Pnllgs, | Partllps -

"

We turn to High x High — Low-interaction: This amounts to estimate
T
113 = 270‘”/ dt/Pml’UPm27.L1PkU1Pn/U (Tl S my — 5)
0

I3 is amenable to Lemma after adding time localization 72(2=¢+9)m1  Taking
all factors together, we find

L § T2 2@ mo=at Py ollgs  NPmywillrg, I Pewillps | Povllpes -
a,mq a, a,n

a,moy ’

For I, we use again Littlewood-Paley decomposition to write Is = Io1 + Ioo + I3
like above.
Since the deployed arguments are multilinear, the estimates for Iy; and sy are
carried out like above. However, in case of I53 we encounter the additional case of
comparable frequencies

T
2_”2_‘1"216/ dt/anPmlulezuanfv |my — ma| <10, |my —n| < 10,
0

which is not necessarily amenable to Lemma [6.5.8
But, after adding localization in time 72(>~¢t9)" and using Lemma [6.5.12] in the
non-resonant case and Lemma [6.5.10]in the resonant case, we find the estimate

Iy S TP P ooy [Pyl |1 Pstiallrg,, 1Puollis .

which is again more than enough.
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In Case IT we can not integrate by parts in space to put the derivative on a more
favourable factor. Thus, we have to estimate the expression

T
/ dt/anPn/ulpkv. (6.31)
0

Integration by parts in time yields

T
1T = 9—(antk) [anPn/ulka]tho + 2~ (antk) (/ dt/@xPn(vul)Pn/ulka
0

T T
+/ dt/anaxPn/(u%)ka—i—/ dt/anPn/ulaka(vu1)>
0 0
=B (0;T) + 11, + 11 + 3.

To derive suitable estimates, we do not integrate by parts all of (6.31) but only
the part with high frequencies like above. We find for the boundary term with
initial frequencies n > log, (M) following along the above lines of the estimate for
B;(0;T):

Broar(O0:T) $ M=ol gy 1l s

and for the low frequencies like above
T
S % % [ farwpirio ST g ol o
1<n<m |n—n'|<5k<n—6
We turn to the estimate of Il;. For the evaluation we plug in Littlewood-Paley
decomposition of P, (u1v) and split like above Iy = II11 + 1112 + I1;3.
We have
T T
I, = 2*(“”““)2"(/ dt/anPk/mPn/ulPkU—l—/ dt/Pk/anuan/ulka)
0 0
( kK <n-10).

Time localization amounts to a factor of T2(2~+t9n  In the non-resonant case we
use Lemma and in the resonant case Lemma|6.5.10|to find gathering all factors

I, < T27R20=97 (|| Pool| s

a,n

|Peallps |, + IPuuillgs |1 Pavllr,)

|Pwuillgs IPevllrs, -

For 115 we have to estimate
T

2(1*‘1)”*’“/ dt/PnlvP,L2u1Pn/u1ka, [ny —n'| <5, |ng —n| <5.  (6.32)
0

For this we use Lemma [6.5.11] because the second resonance |Q2| > 2(etbn g
favourable:

(6.32) < T22-atd)ng(l-a)ng—kg—(at1jn/2

B0y, I Prsurlleg, IParlles I Peoles,
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For 115 estimate by Lemma [6.5.8
T
2(1—a)n—k/ dt/Pml'UPmQUQPﬂ’UQPkU
0
S T2 et an=R P lps N Pususllps, |Puvzllps |1Pevllps
a,my a,mg a,n’ a,

where |m; —ma| <5, n' <my — 6.
Like above split I1y = I3 + I155 + 1153 and for 1157 we have to estimate

g(1—ajn—k /T dt/anPn/ulPk/ulka (k, k' <n—5).
0
In the non-resonant case we find by applying Lemma [6.5.6]
Iy < T22(1—a)”2(6+6)n2—kHPnUHF{fm ”P”'ulHFf,n/ HPk’ulan’k/ 1Pl s -
In the resonant case it follows from Lemma [6.5.10]
Iy S T2 Py [ Pwillgs [ Puusllps |Peolles,

which is still sufficient.
For I35 use Lemma [6.5.11] to find

T
2(1_a)n_k/ at / PrvPp,u1 Poyug Pro
0
< T22-atdngl-ang—ko—(atlin/29en) p 4|l

% | Poyutllrg | Pagtrlles, I Pevlls,

a,ng

and for Il>3 we have to estimate
T
2(1_‘1)"_’“/ dt/anPmlulegulka, n<mp—>5.
0

Here, we apply Lemma[6.5.8| to find

1y S T2 t0m 20O Doy o (| Pouallgs | Prsills I Prvllps -

The estimate of 113 is easier because the derivative hits a smaller frequency, but all
frequencies can be comparable. This leads to the expression

T
2_“”/ dt/anPn/ulelvP,mul,
0

which can also be treated like above with Lemma [6.5.8] in the non-resonant case
and Lemma [6.5.10] in the resonant case.
In Case III we have to estimate

T
/ dt/Pnluanszn3v (6.33)
0
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with |n; —n| < 10.
The resonance is very favourable, and we find after integration by parts in time

T

T
(6:33) = 27 (+0m [/ Pmulpnszngv] + 27 (atbn( / a / Oy Py (u}) Py v Ppyv
0

t=0
T T
—|—/ dt/Pnlulaa:Pnz(vul)PnSv—i—/ dt/Pnluanzvaang(vul))
0 0
=B (0;T)+ I + 1115 + I115.

Like above integration by parts in time is only carried out for high frequencies,
which gives

T
>y oleton Vpnlulpmupmu] 5MdeU”;;W,&(T)||u1||F;,5(T)

n>m |n;—n|<10 t=0

and

T
S X [t [ PPl S TN e g sy

1<n<m |n;—n|<10
Due to symmetry in the frequencies and multilinearity of the applied estimates, we

only estimate I11y. We split 111} = 1111y + 1115+ I11,3 according to Littlewood-
Paley decomposition. For I11;; we have to consider

T
2*“"/ ds/PnlulPkuleansv, k<n-—15,
0

and an application of Lemma [6.5.11] gives
11111 5 T2(27a+6)n2€n27(a+1)n/227¢1n HPTL1 uy ||F5
g
[Peurll s, (1Pnsvllps 1 Psvllps -

For I11,5 we have to estimate

T
2“”/ dt/Pnluanzuangvav
0

with all frequencies comparable, i.e., |n; —n| < 15.

In the non-resonant case use Lemma [6.5.12 and in the resonant case use Lemma
6.5.10[ to find

1T S T2 Py llpg . [Pastiallpg [ Pastllng, [ Patlleg» Ini —n] < 15.
For 11113 we have to estimate
T
2_“"/ dt/Pmlulezuansznsv, |m1 —ma| <5, mna,n3 < my — 10.
0
An application of Lemma [6.5.8] yields

"

Iy <27 T2 a0 Py || s w Pmotiallps ([ Povllps N Porvllps .
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This finishes the analysis of Case III.
In Case IV we are considering

T
/ dt/PnU(Pmlulezv), n<mj—>5. (6.34)
0

An integration by parts in time yields

T

(6:34) =2~ (emtm) U anPmlulpmz”}
t=0

T
+2_(aml+")(/ dt/@an(vul)Pmlulezv

/ dt/ Povdy Py, (u3 Pm2v+/ dt/ P v Py, 4104 Py, (Vug))
=B (0;T)+1IVy + IVo + V3.

Like above only the high frequencies are integrated by parts.
For the corresponding boundary term, we find by Holder’s inequality, Bernstein’s

inequality and Lemma like for the previous boundary term Bj
T

Brym(;T)= Y > > 2lemtn { / anPmlulmeU}
t=0

mi>mn<mi—>5|m;—m2|<5

S M_dllv”i‘(;l/zﬁ

il gz sy

and for the low frequencies

S YT /dt/PvaluleQU<TM°HU||2,1/25 T

mi<mn<mi—6|m;—m2|<5

Like above we split IV, = I'Viy + IVi5 + I'Vi3. To estimate IV, consider
T
2 am / dt/(anPkul + PyvPyuy) P ur Pryv,  k<n—25.
0

Since the second resonance does not vanish, IV;; is amenable to Lemma [6.5.8 and

we find

IViy § T20720m ™ (| Pyvllgs (| Pewallps , + |1 Pevllps I Paua g )

||Pm1u'1||F‘S |1:)n’L2’U||F‘S

a,mq a,m 2

For IVi5 we can apply Lemma to find

[Py 0l

a,mog

IVyy < T20720)magdmigen || p gl s HanulnFa NPy || s

a,n a,mq

and for I'Vi3 the only additional case arises when all frequencies are comparable in

T
2_‘”"1/ dt/Pm3va4u1Pmlu1Pm2v, Al |m; — 1| < 10.
0
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In the non-resonant case use Lemma [6.5.12 and in the resonant case Lemma [6.5.10]
to find

Vis S T2 Pus s [ Pongollzs, 1Pl 1Pl

We split IVo = IVoy + IVog + IVo3. In case 1V5; we have to estimate
T
2(1_“)’”12_”/ dt/anPmlulPkulezv (k,n <mq —5).
0

In the resonant case this expression is estimated by Lemma [6.5.10] and in the non-
resonant case use Lemma [6.5.8] to find

Vo S 7202 | Py s [ Pongollis [ Pavlles [ Peut s

For IV55 consider
T
2(1_“)"”_"/ dt/anPmlulpmzulpmsv, Im’ :n <m' —10,|m; —m/| < T.
0

This we estimate by Lemma [6.5.11] to find
IVoy < T2(27a+5)m1 27(a+1)m1/22(17a)m1 9"

1Pavllrs N Pmivilles,, NPmoutlles, [1Pmsolips
For IV53 we have to estimate
T
2(1_“)’"12_"/ dt/anBIull:’12u1Pm2v, n<mo—5<Il —10.
0
An application of Lemma [6.5.8| gives

Vo § 7207200 P s | Pl ps, [1Pyunllps MNPz 5

a,n a,ly a,mg

1V3 is estimated like V5. This completes the proof of (6.17)).

In order to prove (6.18)), we write by the fundamental theorem of calculus up to
irrelevant factors

T
22| Pyv(T) [ = 227 Pav(0)172 + 22"8/ dt/P”“aan(vz)

22”5/ dt/PvaP vu)

= 22| P,v(0)[|7> + 2°"*(A + B),

where

_ g2 / dt / X (E)0(E) 60 )(E2) ()T,

— cgne / i / AT 02 ()61 + X2 (€2)6n + X2 (€2)63)0(61)0(E2)b(E).
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After integration by parts in time we find

T

(X (ED)& + X2 ()& + X2 (&3)E) v v
A= ) ] 0
A EEPrGGR TR e
€70 7 t=0
T 2 2 2
(X7 (€161 + x5 (§2)62 + X7 (€3)€3) ., .
+/0 D> §1]&1]™ + Eal62|* + &3(&3]” 0e1)0(82)

&1 +€2.+%3 =0,
&Y, 8(&)i(é)

€3=E§31+&32,

531’

T 2 2 2
Xz (§0)&1 + X (&2)62 + X7 (€3)€3) o -
+/0 dt Z L6+ Eal€alo + &3] 0(€1)0(&2)

&1+€2+E83=0,

&i

&Y, 0(&)ia(6n)

€3=£31+E32,
&3i

= Ba(0;T) + Ay + As.

Set
Cxa(&)& + xa (&) + xa(63)Es
bs(E1,€2,8) = &l + &l&* + &l&sle

A second symmetrization like in the proof of the energy estimates for solutions gives

T
A= C/ dt/ dlyb3(&1, &2, E31 + €32)€30(£1)0(E2)0(€31)0(E32)
0 .

T
= C/ dt/ dTa[b3(&1,62,&31 + E32) — b3(—E&31, —€32, &31 + E32)]
0 I,
£30(£1)0(62)0(831)0(E32)
T
e / dt / AT4bs (£, €2, €1, E32)0(€1)0(E2)D(E51)D (Ex2),
0 I,

and the expression is estimated like in Lemma [6.5.13]
To estimate

T
Ay = / dt / AT abs (61, €, €5)ExD(€1)0(E2)0(Ex1)ita (Ex2),
0 Ty

we conduct a Case-by-Case analysis plugging in Littlewood-Paley decomposition.
For the interaction of (v, v,v) before integration by parts in time, we have to take
into account the following cases:

Case I: High x Low — High (|&1| ~ |&] > |&)]),
Case II: High x High — High (|&1] ~ |&2] ~ |€3]),
Case III: High x High — Low (|&3| < |&1] ~ |€2])-
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Here, we additionally plug in the possible frequency interactions for (£s3,&s1,&32)
like I = Iy + Is + I3. For I; we have to estimate

T
I, = 2%nso(l=a)n ( / dt / P,vPyv (P Prug + Pk/an/u2)> ,
0

(k, k' <n—05).

In the non-resonant case both expressions can be handled with Lemma and in
the resonant case Lemma [6.5.10] yields

L g QQnSTQ(l_a)nHPnUHan||PkUHF(j,€
(1Pwtllps |Poualles, + [Puolles|Putalps )
I, is amenable to Lemma which gives
I, < 92 g@-atdng(i-a)ngeng—(a+1)n/2
1Paollrs NPevllgs N PusvllEs, [1Prsuzlies
where |n —n;| <5, k <n—10.
For I5 consider

T
22”82“*&)"/ dt/PnquvPllvﬂm, n<l—5 k<n-—5.
0

Lemma [6.5.8] gives

Iy S 2220 =0 Q0= Pl o || Pevllps ([ Puvllps ([ Pryusllps -
5 a, a,ly a,ta

Consider Case II next. Split I1 = Il + Il + II5. For I11; we have to consider

22n52(1a)n(/T dt/PnlansznakauQ + /T dt/Pnlanszkanqu),
\nl—n2|§3(,)|n1—n3|§3,k§n1—6. i
This we estimate by Lemma to find
[1, < 22nspC—atong(-amg—(atn/2| p il .,

a,nq

‘P’VIQUHF(‘;’,Q

IPnsvllrs,, 1Peuallps, + 1 Pevll s | Pogue

5 ).
a,k Faﬂba

For I15 consider
T
22"52“*“)”/ dt/vaPnQvavPMuQ, Iy —n;| <10, i =2,3,4.
0

This we estimate by Lemma in the non-resonant case and by Lemma [6.5.10)
in the resonant case to find

[Pasvllps, 1Pnsuzll s

a,n3 a,ng

I, S 22T 72 Py vlps | |1 Poyvls
a,ny

a,ng

For I3 we have to consider

T
22”52(1*“)”1/ dt/Pnlan2vH1vH2uQ, ny <ly — 10, |n; —ng| < 5.
0
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This is amenable to Lemma |6.5.8 which yields the estimate

1T S 207200 By ol os | Pugollps [ Puvllps, | Pauellps -
a,n a,ly a,ly

a,ng

We estimate I1I = 111y + 1115 + I113. For 111, consider
T
92nsg(l-am / dt / Py, 0P, v(PyvPyug + PrvPruy),
0

where k <ny —5, k' <k —5.
The expressions are amenable to Lemma and we find

111 < 227220 | Py || ps || Poyvll s

(IPollps NPwuzllps , + 1 Pevlips [ Pruzllrs, )-

The same argument applies to 111 because there can not be a resonant case, which
gives

Iy £ 22122 Pyvl gy N Povlles [Py oles, (1Puzlies,
|ll —12| S 5, ll S ny — 10.

For III5 we have to consider
T
22"5/ dt/Pnlvaka(BlvpbuQ), k<l —10,k <ny — 10.
0

If |ny — 1| > 15, we can argue like above. Otherwise, all frequencies are comparable
and applying Lemma |6.5.12 in the non-resonant case and Lemma [6.5.10] in the
resonant case to find

1115 £ 2072020 Pyl gy |Pagollrg, I1PLoles, | Pouslles, o lnn — b < 5.

For the estimate of B, we are again in the situation from the proof of . The
only difference is that we do not have the extra smoothing from the H~!/2%-input
regularity, which leads to the shift in regularity.

We have the following cases:

Case I. High x Low — High(v,us,v),
Case II: High x Low — High(v,v,us),
Case III: High x High — High,

Case IV: High x High — Low(v, ug,v).

To estimate the individual contributions, we use exactly the same arguments from
above. Hence, we shall be brief.

In Case I we integrate by parts to put the derivative on the lowest frequency
from above to arrive at the expression

T
22nsgk / dt / dxP,vPyusPyv (k< n—5). (6.35)
0
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Integration by parts in time gives modulo boundary terms and irrelevant factors
T
©35) — B1(0:T) = 22s9—am( / dt / 90 P (0(0 + 112)) Pyt Pt
0

T
+ / dt / PovP0, (ud) Pov)
0
:Il+12, (k,k’§n75)

The boundary terms are handled like in the proof of . We omit the estimates
of the boundary terms in the following. Split I; = I;; + I;2 + I13. Using Lemma
[6-5-8 in case of non-vanishing resonance and Lemma [6.5.10] in case of vanishing
second resonance, we find

Iy S 22T P s | Puvlleg, (1Pl || Pyl

a,n

F1Pwvlles, IPuuslles, + 1 Paollrg, IPevlles, ).
For I15 we find by the above argument
I < 22”5"T2(1_“)"||va||F;1n1 I Pnyuzllrs 4 1PasvllFs, I Pruzllps [Prgollps

with |n; —n| <5, k <n —10.
Further,
Ly S 222t n0matOm B gy || Prus ps || Proollps y

(IPmstizllrs . + [ Pusvllrs ).

In case of I3 the additional case of comparable frequency occurs
T
22”527’1”2]“/ dt/anPm1u2Pm2u2Pn/v, |my —ma| <10, |my —n| <10,
0
and we find by Lemma [6.5.12] or Lemma [6.5.10] respectively,

123 S 22’!7,31‘!22(17(1)77,||P)n,vHF5

a,n

1Pzl g, 1Ptz 2||RL/UIIF§W.

a,m

In Case II we have to estimate the expression
T
22”52”/ dt/anPn/uszv k<n-—>5.
0
This we integrate by parts in time to find
T
IT — B(0;T) = 22"S2<1—a>”—’€(/ dt/@an(v(v + ug)) Ppyrug Prv
0
T
+ / dt/anﬁxPn/ (u2) Py
0

T
+/ dt/anPn/ugaka(v(v—l—ug)))
0
—[I, + Iy + I1s.
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By the above notation and arguments we find

Iy S 22 T2C " M| Pyug | ps || Pevllps (1 Pavlles I1Pruallps

y

+Povlles Povellrs  + 1Pavllrs [ Povlles ) kB <n—10

with an improved estimate for k # &’
For I, estimate by Lemma [6.5.11

T
22”52(2_a)"_k/ dt/Pn1UPn2u2Pn/U2PkU
0

S 222k VRN P o)l s (1Payualips,,, + | Pasvllrs,)
a,ny a,ng a,ny

[ Prsuzllps | Pevllps i — n'| <5, k<n-—10.
For Il,5 estimate by Lemma|6.5.8

T
92nsg(2—ajn—k / dt / Py 0(Ppytiy + Pryv) Prrtig Pyv
0

S 22nsT2(17a+5)m1 2(27a)n7k ||Pm1 vHF“

a,mq

|Prus||ps 1Psollps
a,n a,k

1Py w2l s

a,m

A gl ).

a,mog

where n < mj — 5.
For Il5; estimate

T
22"52(2_a)”_k/ dt/anPn/ung/uQka, kkE <n-—10,
0

and it follows like above

Iy S 22 T2 NPyl s (|Pausllps | Prouzllps  l|Prollps
, a,n a,k a,k

with an improved estimate for k # &'
For II5; we find by Lemma [6.5.1]]
11y < 22nsT2(2—a+6)n28n2(2—a)n—k2—(a+l)n/2

1Puollrs, |1 Pastellis [ Patzllis, [ Pevlles .

where |n —n;| <5, k <n —10.
For II53 we find by Lemma [6.5.8

Iy S 227727kt Om Pyl oy || Prnyual g || Pryuia| s

a,my a,mo

Peollps,
For II3 we can argue in case of separated frequencies like in II; or Il and the

conclusion is easier because the derivative hits a low frequency.
However, in case of comparable frequencies there is the additional case

T
22"52“—&)”/ dt/vaPnzuanSv(Pmug—|—Pn4v) 3n: |n; —n| <10. (6.36)
0
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This is estimated by Lemma [6.5.12] in case of non-vanishing resonance and [6.5.10)
otherwise to find

(6:36) < 122220 | P || ps ||Poyuallps || Pagllps

a,ny a,ng a,n3

(1Pusuzllps, + 1Pasollrs -

In Case III we find via the above arguments
11, < 22ns22=atd)ngeng—(at1n/29(1—a)n
1Py tzlles [ Peizllps | Pasollrs [1Pagvlles
(ln —n;] <10, k <n—15)
111y S 22720720 | Py sl ps | N Prsuellrs, [1Pasvlle, 1 Payoll s

1 ynQ sn3 a,ny
(|n; — n|] < 15)
Il < T2(1—a+5)m12(1—a)n2€n
|Postzllrs 1 Pratzlls [ Puolles, [Puvlles,. (0 <my—10)

and due to symmetry and multilinearity the remaining cases are omitted.
In Case IV consider

T
22”52”/ dt/an(PmluQPm,“v)7 n <mjp —5.
0

With the notation from above, we find

IVy < 2%nsroro(=2a)migdmuy | po ol ps || Py || s

a,mq a,mg
(1Pavlg, (1Petzllrg -+ 1Petllg ) + | Peolles I Patallg )
— &
IVis < 92nsmgno(l—2a)my 9dm, ||P"U||F3,n(”PHIUQHFin/ + ”Pn’v”ij,)

[Py ua |

a,m

IViy S 22720730 (| Pyug gy 4 | Py 0l )
2y 2

1||Pm2v||F5 ;

a,mo

[P0l 78

a,m

NPoyvllzs [ Pomyall s

a,m a,my :
For the other cases record

IVor S g2nsai=ato)m ||an||F;j " [Py u2| s

a,mq

[Pruszllps 1Pyl pg

amnz’

IVay S 22" T2 ™| Pyl s (| Pryualis [ Pmatialls, [ Ponyllrs .
a,mog :

Vo S 22020200 P ps || Pyusl|ps, [|Prusllps (| Prsvlles
a,mn a,ly a,ly

Case V3 is omitted due to multilinearity and symmetry.
All frequency localized estimates sum up to one of the below expressions choosing
¢ sufficiently small

Tl
Tl

3
FS'S(T)HUQ‘ Fo(T)

: [[uz]|?

F2o )2 psd ()
T”UHF;,S(T)H'U”FG—I/Z,(S(T)||u2||F{f+(2*a),5(T)||u2||F;,5(T).

This finishes the proof of (6.18]). O
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Chapter 7

Variable-coefficient
decoupling and smoothing
estimates for elliptic and
hyperbolic phase functions

In this chapter new regularity results for variable-coefficient elliptic and hyper-
bolic phase functions are discussed. This relates to short-time estimates for the
oscillatory integral operators which arise when analyzing dispersive equations on
compact manifolds.

The linear and bilinear short-time Strichartz estimates on arbitrary compact
manifolds from Chapter [3| are inferred from results for the respective oscillatory
integral operators. Unfortunately, the established results in this chapter do not
directly yield a regularity result for dispersive PDE on compact manifolds on times,
which do not depend on the frequency. We hope that the connection can be estab-
lished in the future.

Below, variable-coefficient versions of #2-decoupling inequalities for elliptic and
hyperbolic phase functions are proved and applications are given. Further, we
consider frequency localized LP-smoothing estimates for variable coefficients. Here,
the bilinear approach yields the same estimates like in the constant-coefficient case.

7.1 Introduction to variable-coefficient oscillatory
integral operators

We consider smooth functions a € C°(R" ™! x R"), a = a; ® az, 0 < aj,az < 1
and ¢ : B"*1(0,1) x B*(0,1) — R, which we shall refer to as amplitude and phase
function, respectively.

We associate the oscillatory integral operator

Tf(ta) = [ e alt )5 (7.)
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and the rescaled versions
T f(tx) = / eI (/N /N, €) f(€)dE (7.2)

for different classes of phase functions.
Subject of discussion are variable-coefficient generalizations of the phase function

t(E, I}
M7 I]Tf:dzag(l,,l,fl,,fl), OS]{?STL/Q
2 N

k

Phyp(t, 25 €) = (,€) +

Set also I, = diag(1,...,1) € R**™,
In the following we shall always assume that there are at most as many negative
eigenvalues as positive eigenvalues, which is no loss of generality since time reversal
t — —t flips signs.
We define the Gauss map by
Go(z;§)

G:B""' x B" = S", G(z¢) = Colz 6 z = (t,x), (7.3)

where m € N and B,, denotes the unit ball in R™ and

Go(z;w) = J\ O, 0.6(2:€) (7.4)

Jj=1

with the standard identification A" R™+! = R+1,
We impose the following conditions on the phase function:

H1) rank 9,¢0(z;€) =n V(z,¢) € B"' x B",
H2) 8525 (0:0(2:€), G(2:60))|¢—¢, is non-degenerate.

H1) is a non-degeneracy condition, and H2) implies that the constant coefficient
approximation of ¢ is the adjoint Fourier restriction operator (i.e. extension op-
erator) associated to a non-degenerate surface. These assumptions are known as
Carleson-Sjolin conditions (cf. [CS72]). For an exposition, see e.g. [Sogl7, Sec-
tion 2.2].

Contrary to the constant-coefficient case ¢py,, rescaling (t,z) — (A\%t, \z), £ —
&/ yields no exact symmetry. Therefore, it is useful to quantify the conditions H1)
and H2). Before doing so, we point out the following more precise versions of H1)
and H2), which one may assume without loss of generality:

H1')  det 9,¢(z€) #0forall (;6) e Tx X xE=Z x E;
Hsz]) 8t6§§¢(z;§) is non-degenerate for all (2;€) € Z x E
and has exactly k negative eigenvalues.

Here, T, X, = denote balls of radius less or equal to one around the origin. To
reduce from H1) and H2) to the conditions in the above display, one applies a
rotation in space-time. This gives G(0;0) = e,41, and then one uses a partition
of unity to suitably localize the support. Moreover, the implicit function theorem
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implies the existence of smooth functions ® and ¥ taking values in X and €2,
respectively, such that

0:0(2;¥(2:€)) = ¢ (7.5)
and

8§¢(t,¢(t,m;§);£) =T (76)

The first identity allows us to find a graph parametrization

£ (0:0(2¥(2:€))) = (£ (9:0) (2 ¥(2€)))

for a hypersurface ¥, with non-vanishing curvature. From differentiating the second
identity we find 9,®(0;0) = 8§§¢)(0; 0)~L.
Later on, H1’) and H2') are quantified. It turns out that one can perceive any
phase function satisfying H1’') and H2') after introducing a partition of unity and
&1 E)

rescaling as small smooth perturbations of ¢p,, = (z,§) + —>5=~.

For h € C?(B™(0,1),R) let the extension operator Ej, be given by

Enf(t,2) = / CHEEHRO) f(¢)de

B"(0,1)

where f € L2, supp(f) € B"(0,1) and define a smooth weight function, which is
essentially a characteristic function on some ball B"*1(z, R), z = (¢,7):

wper(ta)=1+R e —z[+ Rt —7)~ "

for some large integer N € N, which is fixed later.

We define the decoupled LP-norm for variable coefficient operators for
1 < R < \. Let T denotes a finitely overlapping family of R~'/2 balls covering
B™(0,1). Set

1/2
172l ) = (Z ||TAfT|2LP<S>>

T7€TR

for S measurable and

a(p, k) = (7.7)

2(n+2—k
1 % Atzh < p < oo

1 1 2(n+2—k)
k 1*27,), QSPSWa
2
We recall the constant-coefficient £2-decoupling theorem:

Theorem 7.1.1. [BDI17d, Theorem 1.2, p. 280] Let R > 1, N > 10, 2 < p <
00,0 < k < n/2, a(p,k) as in and h : B"(0,1) — R be a C?-function with
Hessian aggh having modulus of eigenvalues in [C~*, O] for some C > 0. Then, we
find for f with supp(f) C B(0,1) the following estimate to hold:

1B fllLoton, Seve REPOXNELS | ang,,

provided that N > N(n,p).

Strictly speaking, this result was proved in [BD17a] only for the hyperboloid

n

h(€) =31, a;&2. However, the arguments from [PS07], which are illustrated in the
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context of elliptic surfaces in [BD15], Section 7], yield the more general translation
invariant case in a straight-forward manner. See also the discussion below.

Originally, decoupling inequalities were studied for the cone by Wolff in [LaW02,
Wol00] to make progress on LP-smoothing estimates (cf. [MSS92, MSS93]) for the
wave equation. These estimates were refined (cf. [GS09, Boul3]) until the break-
through result of Bourgain-Demeter (cf. [BD15, BD17b]) where sharp decoupling
inequalities for the paraboloid were proved. Subsequently, the result was general-
ized to hyperboloids (cf. [BD17a]). These results also give estimates for exponential
sums, in particular essentially sharp Strichartz estimates on irrational tori.

The theory was also extended to non-degenerate curves (cf. [BDGI16]). As al-
ready pointed out in Beltran-Hickman-Sogge [BHS18], the decoupling theory seems
to extend to the variable coefficient case sharply divergent from the LP — L94-
estimates for oscillatory integral operators. In fact, it is well known that there are
strictly less estimates admissible in the constant coefficient case due to Kakeya com-
pression (cf. [Bou91l Bou95, Wis05]). For recently proved sharp LP — LP-estimates
for variable-coefficient oscillatory integral operators, we refer to Guth-Hickman-
Hiopoulou [GHITT].

Our first result is the following extension of Theorem [7.1.1}

Theorem 7.1.2. Let 2 <p<oo,n,M €N, 0 <k <n/2 and a(p, k) like in (7.7).
Suppose that (¢, a) satisfies H1') and H%ﬂ)' Then, we find the following estimate
to hold:

IT* fllzo @ty Sespta X POFENTA N o gy + A7 Fl2. (7.8)

For variable-coefficient generalizations of the phase function @eone(t,z;€) =
(x,&) + t|€| associated to the adjoint Fourier restriction problem of the cone this
was carried out in [BHSIS|. The proof of Theorem adapts this general strat-
egy from [BHS18] to prove variable-coefficient decoupling from constant-coefficient
decoupling: on small spatial scales the variable-coefficient oscillatory integral oper-
ator is well-approximated by a constant-coefficient operator. It is enough to make
progress on this small scale because it extends to any scale by means of parabolic
rescaling.

Already in the context of constant coefficients, approximating one surface by
another on small scales and recovering arbitrary scales by rescaling was used to
derive decoupling estimates for more general elliptic surfaces or the cone (cf. [BDI5,
Section 7, 8]), see also [PS07, [GO16].

It seems plausible that a similar approximation derives the variable-coefficient
cone decoupling from the variable-coefficient paraboloid decoupling. Recently, in
[Har18] was shown by the same approximation that broad-narrow considerations
are also valid for the cone. We do not pursue this line of argument.

The following different consequences of Theorem are given in Section [7.3
The variable-coefficient ¢?-decoupling implies a stability theorem for exponential
sums which is proved using the argument in [BD15] for the constant-coefficient
case. Moreover, on small spatial scales the broad-narrow considerations from the
constant-coefficient case extends to the variable- coefficient case. Further, we point
out how the decoupling theorem implies Strichartz and smoothing estimates without
further arguments (e.g. dispersive estimates for the propagator). Here, we use a
localization property of the kernel which was used in the constant-coefficient case in
[RS10] and in the context of variable coefficients in [Lee06b]. The found Strichartz
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estimates are inferior to the known Strichartz estimates for Schrédinger equations
with variable coefficients (cf. [BGT04][ST02]). We rather point out this application
due to its simplicity.

In Rogers-Seeger [RS10] LP-smoothing estimates of the following Schrodinger-
like equations were considered:

De 4
|| b fHLP(R“xI) ~p,Iann ||fHLP(R")a a>1, pe(2+ ﬁ;w)»

(7.9)

These estimates are the analog of local smoothing estimates for the wave equation,
which is a deeper question. Further, estimates of this kind improve the sharp fixed
time estimates of Miyachi [Miy81] and Fefferman-Stein [ES72].

In the context of Schrodinger’s equation these estimates were previously dis-
cussed in Rogers [Rog08]. In this work a conditional result was proved according
to which an LP-restriction estimate implies a smoothing estimate. According to
the restriction conjecture, should hold for p > %"TH) However, the Sobolev
regularity was shown to be sharp. These considerations were extended in Lee et al.
[ILRV11l [LRS13] where more general space-time estimates

€™ fllLa gLy () Stramia I1F2@n (7.10)

were taken into account. See also the previous work by Rogers [Rog09]. In [LRS13]
was also shown a more precise equivalence between extension estimates and smooth-
ing estimates.

In [RS10] was proved for p > 2+ ﬁ relying on the bilinear adjoint Fourier
restriction theorem for elliptic surfaces by Tao (cf. [Tao03], see also [TVVIS]) after
frequency localization. In the last section we improve the LP-smoothing results for
variable-coefficient elliptic phase functions derived from decoupling by using the
bilinear argument from [RS10]. Here, we use the variable-coefficient generalization
by Lee (cf. [LeeO6b]) of Tao’s bilinear adjoint Fourier restriction theorem for the
paraboloid. Again, we use the localization property of the kernel. The following
estimate is proved:

Theorem 7.1.3. Letp > 2+ nT—l and (¢, a) be data giving rise to the Hormander-
operator T™ which satisfies H1') and HQEO]). Then, for any € > 0 we find the
following estimate to hold:

1T fll o ety So.e AV 2P ) ooy (7.11)

It is well-known that for constant coefficients the frequency localized estimates
admit globalization (cf. [See90, RS10]) to

||eitAfHLP(]R"><[O 1]) ||fHLP(Rn
Once one can perceive the operators T as suitable localization of some (say) gener-

alized Schrodinger evolution, it seems feasible to globalize ((7.11)) in a similar spirit.
We do not pursue this question.
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7.2 Variable-coefficient decoupling for hyperbolic
phase functions

7.2.1 Basic reductions

Before we begin the proof of Theorem in earnest, we carry out several
reductions. Most importantly, we quantify the conditions H1') and H 2’[k]). In
dependence of €, M and p from Theorem [7.1.2] we choose a small constant 0 <
Cpar < 1 and a large integer N = N¢ a7, and define the following conditions which
we will impose on the phase function for A > 1:

H1,) |5‘25¢)(z;§) —I,| < cpar for all (2,§) € Z x =
H2[1k]) |0:07¢ — I| < cpar for all (2,€) € Z x E
D1}) 02, 0¢ ¢l (zx2) < Cpar for 2< 5| < N

D13) Hatagéf?HLoo(ZxE) < cpar for 3< B[ <N

D24) 0200 ¢l 1~ < 222 for 1 < |B| < 2N

For technical reasons we also impose the following margin condition on the positional
part a; of the amplitude a:

My) dist(suppar, R*T1\Z) > 1/(4A)

We already note the following consequence of H 2[1k]):
0:Veo| < 2[¢]. (7.12)

In [GHII7] it was shown that after introducing suitable partition of unities and
performing changes of variables an elliptic phase function satisfying H1’) and H 2’[0])
reduces to the following normal form:

el2
st = (2.6 + 1L v e g (7.13)
with & being quadratic in (¢,2) and &, to say
000 E(0:€) =0 V| <1, fEN.

The explicit representation is not required for the following arguments.
However, it is useful to keep it in mind stressing the nature of a small smooth
perturbation to ¢p,,. We refer to data (¢, a) satisfying the above conditions for
some A > 1 and 0 < k < n/2 as type (A, k)-data. The notation and nomenclature
is analogous to [BHS18|] to point out the similarity to the case of homogeneous
variable-coefficient phase functions.

It turns out that these conditions are invariant under parabolic rescaling in a
uniform sense, and this allows us to run the induction argument for normalized
data. However, to reduce arbitrary hyperbolic phase functions, we have to do one
rescaling which depends on the phase function. This gives rise to the dependence
on ¢ in . If we confine ourselves in to normalized data, there will be no
explicit dependence on ¢. We define the relevant constant as follows, where £, M
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and p were fixed above and cpq, and N = N¢ pr, in the definition of normalized
data are chosen in dependence.
We denote by D% ;.(A; R) the infimum over all D > 0 so that the estimate

1T fllze 5y < DRECHVENTAf|| por,,,, o+ R/R) N5 f ] 22

holds true for all data (¢, a) of type (A, k), balls Bg of radius R contained in B(0, \)
and f € L?(B™(0,1)). For the weight function we take N as in D24).
The estimate
< (MR) < C. (7.14)

implies Theorem since we can reduce to normal data. It turns out that it is
enough to prove the following proposition:

Proposition 7.2.1. Let 1 < R < A'=¢/". Then, we find the estimate (7.14) to
hold true.

In fact, we observe that for any 1 < p < R and p~1/2

o= > T f,
oNO£D,
o:R™Y2 _pall

-ball # one may write

where 6 denotes the intersection of supp(f) and 6. We compute using Minkowski’s
and Cauchy-Schwarz inequality that for any weight w one has

w =0 D T ollow)?

p=1/2—ball

=( Y. D TV

0:p=1/2—ball ¢:R~'/2_ball,

1T fll 2

dec

ori£0 (7.15)
SO @ TR
0:p=1/2—ball o:R™Y/2 —ball,

oNOA)D

< (R/D)FITA o

Since || T* fll1o(Br) S HT/\fHLp 1 (Br) , from taking p = 1 in the above display it
follows that
Aan(NR) S RO (7.16)

which yields finiteness of ©°.
Moreover, we can reduce to

LAY < C. (7.17)

Indeed, the support conditions of the amplitude a imply that the support of T f
is always contained in B(0,\). We cover B(0, \) by an essentially disjoint family of

A~ % -balls
1T e sony < D, 1T,
B:A'"n —balls
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and using Minkowski’s inequality we find

1T fllo(m) S D% (N AT 2)AT (A0 )pk)te

1/2
> 1T foll 3o (o) S QR D S V[P
9-(>\1_£)*1/2 balls
R e RS
1/2
25(n+1)
> ||T>\f9H%P(wB(OJ)) + A2 ATENE|| £l

0:\—1/2—balls

For N large enough in dependence of ¢, n and M we find (7.8)) to hold from
(7.15) for normalized data.

7.2.2 Rescaling of variable-coefficient phase functions

We record the following trivial rescaling allowing us to reduce data of type A to
data of type 1:

Lemma 7.2.2. For any A > 1 we find the following estimate to hold:
AN R) Sa D7 (MA; R/A). (7.18)

Proof. Let (¢,a) be a datum in A-normal form. We define ¢(z; &) = A¢(z/A; €) and
amplitude a(z;§) = a(z/A;€) and observe that T>f = T*Af. Note the equivalent
behaviour of ¢ and ¢ under one positional derivative. Hence, we find (¢, a) to satisfy
H1y), H2}y), D1i), D1}), and the second derivative amounts to an additional factor
of 1/A. Hence, we find D2;) to hold. The new margin of the new amplitude @ has
been increased to size 1/4 and we find M7) to hold. This step might require the
additional argument of decomposing the amplitude function through a partition of
unity and translating each piece, if necessary, to adjust to the enlarged support
Asupp(a). This involves a sum over O(A™*1) operators where each is associated to
type 1-data.

Covering B(0, R) with R/A-balls yields another factor of O(A™"!), but these
pieces can be bounded by D7 ; (A/A; R/A), and the proof is complete. Moreover,
the form of the error term allows us to summarize the sum over O(A"!) error
terms again as error term. O

Next, we show the following stability result for normalized phase functions under
parabolic rescalingﬂ This allows us to properly run an induction argument.
Lemma 7.2.3. [Parabolic rescaling for hyperbolic phase functions] Let 2 < p < oo,
1<p<R<A0<k<n/2and ap,k) like in (7.7). Suppose that (¢,a) satisfies
H1') and H%c]) and let T be the associated oscillatory integral operator. If g

is supported in a p~t-ball and p is sufficiently large, then there exists a constant
C(¢) > 1 such that

1T 9 Lo (s ) oo DLR(A/Co®, RICp?) (R p*)* PO+ T gl o,
+ B2 /R) TN gl

1Here, the term parabolic refers to the rescaling of time by a quadratic factor compared to
space and is not restricted to phase functions related to elliptic (parabolic) surfaces.
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Proof of Lemma[7.2.3 for phase functions of type 1. Let & € B™(0,1) be the cen-
tre of p~!-ball where g is supported. We perform the change of variables ¢ =
p(€ — &) and we compute

g(e) = [P0 ggle)de

- / e AT A (21 + pE) p g 60 + o€ dE
n [ ——
g(&")
We expand ¢ to find

/ 1
o(z: 60+ /p) = ¢(Z;§o)+[vs¢(z;£o)]%+ﬂ_2 / (1= ) (02 (z: €0+ p)E! )

Let ®¢, (t,z) = (t, ®(t,2;&)); P Mt,z) = )@50(15/)\ x/)) and we introduce the
dilations D, (t,z) = (p*t, px) and D;_l( r) = p~lz. We find
A (Peq (P°t/Xpr/N)i0) A g o ®) oD, = e, (7.19)
where

TN §(t,x) = / N B GNP (2 €)3(€)d,

and the phase g?)(t, x; ) is given by

() + /O (1= 1) (02d(@ey (1, D, 1): o + 1€/ )6, E)dr

and the amplitude a(y, t; &) = a(Pe, (¢; D;,ly); & +&/p).
We verify (|7.19): From the definition

(@2, 0 Dy)(t, @) = Mg, (p°t/, p/A)
and

¢A(q)2o (DP(tv .’E)),fo + f/p)
= Ap(Dg, (P°t/ A, p/N); €0 + €/ p)

— A(b((bﬁo (th/)‘v pm/)\); 60) + )\[vf(b(q)fo (,02t/)\, px/)\); gO)]

ASEEA

1
+ p‘QA/O (1= r)(DZed(Peo (P°t/ X, p/N); €0 + 1p~ HE)E, E)dr
which proves .

If ¢ is in normal form, then we can also write

|£|2

3t 7€) = (&) + 10 / (1= 1) (O2E(Be, (1, D) 1), &0 + 1E/p)Es ), (7.20)

and with ¢ being supported in B"(0,1) we can assume that |¢| < 1.
A change of spatial variables gives

1729l o (Br) So 0 T 9HL:>((<1>A oD,)~1(Bg))
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where the implicit constant stems from the Jacobian of ®¢,, which is controlled by
property D17). Note that the implicit constant can be chosen constant for data of
type 1 provided that cpqr > 0 is chosen small enough. We cover (@g‘o o Dp)_l(B Rr)
with essentially disjoint R/p?-balls, Br)y2 € Bry,2 and find

1/p

n T 2
HT)\gHLp(BR) §¢ P( +2)/p Z ”T)\/p g”I[),p(BR/pz)
BR/pzeBR/pz

We argue below that
~ 2 _ * r °g
TGl 1o (8,,,,2) Sev DTN Cp?, R/Cp*)(R] p?)* T TP g s
ec R/p

+ (R/ )2 (O R) ™Ml gl| 2 gy

)

(7.21)

holds for each Bg,,> € Br/,> and some C>1.

If (é,&) was a type-1 datum, this would be a consequence of the definitions.
First, we show how to conclude the proof with (7.21)): we can write

Up BR/pz - ((1)20 o Dp)_l(BCd)R) = Cpg,

R/p2€BR 2

where Bc,r is a ball concentric to B, but with enlarged radius CyR for some
Cys > 1 because ®¢, is a diffeomorphism.

Hence, we find from summing the pth power on both sides over R/p? balls and
inverting the change of variables

1/p

(VO RICP)(R)p?) 0= | ST 1TV g e

d
Br,,2€B ee

< D5 (\/Cp®, R/Cp?)(R/p*)* R+ T 7" g

(wB 2 )

R/p

LER (e, )
Inverting the change of coordinates yields

172Gl o8y Sevi6 D5 (A Cp?, R/Cp*)(R/p?)* 1+

( > 1T 901170 (s, ) F + B2V R) ™Y gl 22
6:(R/p?)—1/2—ball

It is straight-forward to check that the @, which are the images of § under the
mapping £ — p(§ — &), which inverts the change of variables in frequency space,
form a cover of the suppg with R~'/2-balls. Note how the error term compensates
the decomposition into R/p? balls. In fact, any R/p2-ball contributes with (R/p?)*"
and there are roughly p2(*+1) R/p*-balls.

It remains to prove for each Bg,,2 € Br/p2. For this purpose record the
following representations of ¢r, = ¢(t, (L~1)tx; LE):

B 1
oot z;§) = (x,8) + /0 (1 =) {0%ed(Pey (t, D)yr 0 L™ ), &0 + L€/ p) LE, LE)dr,
(7.22)
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and from Taylor expansion we find (up to an irrelevant phase factor)
OLt, a3€) = p°d(t, e, (t, D!,y o L' x); & + LE/ p). (7.23)

&y, is an affinely changed version of ¢ for some invertible L, so that 8@255 £(0,0;0) =
I,’j. We perceive L = diag(\/fi1, - - -, /lin) - R, where R is a rotation and p1,. .., tin
are the eigenvalues of 8758525(2) which is already close to I¥ quantified by property
m2M).

We verify H1,) for b: Taking an x derivative of the integral term leads to an
expression of the kind c%aggd) <0y Pg, - p L
0:0Z:¢ is controlled by property Dj) of ¢. From the definition of ®¢, and the chain
rule we find 9, P¢, = (0,0:¢)~*. Since |8§£¢ — I¥| < ¢par, we have |9, P¢,| < 2 and
we find the total expression to be of order cp.r/p. Note that taking a frequency
derivative does not magnify the size.
Likewise we verify D1}) for |3| = 2. For higher derivatives in £ we can argue with
the representation and observe that the bounds for large p become smaller
and smaller since any derivative in ¢ gives rise to a factor of p~!. In this way one
checks the validity of D2;).

We check H 2[1k]): For this purpose we write
00ZDL(t,;€) — Ly = 0,091 (t,23€) — 0,02 dr.(0,0;0)

and use the fundamental theorem of calculus. For an additional £ derivative we
find the contribution to be of size O(cparp~t). For positional derivatives we use
property D21) of ¢ to find this contribution to be also much smaller than ¢, and
thus the claim follows.

The only cases of D2;) which require additional reasoning to the above ar-
guments are when there are two time derivatives and only one or two frequency
derivatives. Else, the smallness is immediate from . In the case of two time
derivatives and few frequency derivatives we have to consider combinations 97 85255 ,
0y P¢, and 07, ¢, . 8ft8§§¢ and higher frequency derivatives are controlled by prop-
erty D21) of ¢ and above we have seen that 9;®¢, is controlled quantitatively
through of ¢. The control over 97 ®¢, follows from considering one further
time derivative:

0™ (M1, 23 60): €0) + 0050 (B (¢, 73 0)) 0,
+ 0107 (DM, 25 €0)5 §0) @™ (¢, 73 §0) + 02, 060™ (Dt 23 €0)3 €0) (0 @Y) (7.24)
+ 070707, = 0.
Hence, we find |0%0¢¢1|, |8§t8€25q~5 1| < C independent of ¢ with dependence only
on the parameters in the definition of type 1 data. After invoking Lemma[7.2.2| with

some constant independent of ¢ provided that ¢ is a datum of type 1, the proof is
complete. 0O

Finally, we deal with the case of a general phase function. The proof is essentially
a reprise of the proof of Lemma [7.2.3] However, the implicit constants are now
allowed to depend on ¢, and since we are not dealing with a normalized datum
from the beginning, the constants may become arbitrarily large.
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Proof. First, we use the trivial rescaling from Lemma ¢ — ¢t = Ag(z/A,€)
to ensure that

& ar
020 6ll1= < Jopis for [B] = 1,2,

Later, we shall see how to choose A = A(¢). Next, we break the support of g into
p~!-balls, and again we will choose p > 1 later in dependence of ¢.

We carry out the changes of coordinates from the proof of Lemma and
again arrive at the representations

5 1
ot 3 8) = (2,€) + /0 (1= r)(0F 0™ (P4 (1, D)y 1) &0 + 1€/ p)E, E)dr,  (T.25)
¢ (t, ;) = pPo™ (D4, (t, D)y 1); €0 + €/ p), (7.26)

and we define ¢4 analogous to the proof of Lemma We check H1p) from

(7.25)) which shows that ~
0ze07 = In + Ou(p™). (7.27)

We also find ||8xk8§£¢||mo = Oy4(p~1) also follows from (7.26]). Moreover, for higher
order derivatives in ¢ we get additional factors of p~!
Likewise, we verify D1?) for sufficiently large p.

For the proof of H 2[1k]) we write again

which proves property D11).

00207 — IF = 0,020 (1, ; €) — 0,0%:67(0,0; 0) (7.28)

and estimate the difference deploying the fundamental theorem of calculus. The
above arguments already yield atag&qsf = Oy(p~ 1), for positional derivatives we

choose A = A(¢) large enough, so that 8,5326625(5‘3 < frer and we can also control

100n
this contribution. Note that here we also need |03®*| = O,(A~!) which follows
from (7.24).
We check D24) like in the proof of Lemma after choosing A = A(¢) suffi-
ciently large. O

7.2.3 Approximation by extension operators

Let (¢, a) be a datum of type 1 giving rise to the oscillatory integral operator 72
and recall that we assume the amplitude function to be of product type: a(z;¢§) =
a1(z)az(€). Further, recall that

€= (Va19) (2 U2 (7:€))
is a graph parametrisation of a hypersurface ¥z. Thus, we have
(2, (Va9 (7 0N (z:6))) = (2, €) + thz(€) (7.29)
for all z = (z,t) € R*! with 2/ € Z where h=(&) = (0,0 (z; A (%;€))).
Moreover, from the definition of ¥* we have
€ = 0:0™(z, 97 (7:9)),
I = 0267 (7, WA (2:€)) (9, U7 (7: ). (7.30)
0= 5ecd(Z UNE)) (0 W (7€) + 02:0™ (75 WA (€))9Z ¥ (7€)
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And consequently, we find for 1-normalized data
0 UMz 6) — I, < 1,
20 -

Let Ez denote the extension operator associated to ¥z given by

Ezg(x,t) = /n e (@O Fth=(0) o (€)g(€)dE,

where az(£) = ag o A (z; €)| det O U (7; €)|.

We shall see that on small spatial scales T? is effectively approximated by Ex
and vice versa. We record the following consequence of dealing with 1-normalized
data:

Lemma 7.2.4. Let (¢,a) be a type 1 datum. FEach eigenvalue u of 8?5113 satisfies
|| ~ 1 on supp(az). For elliptic phase functions of type 1 we have u ~ 1 on
supp(az).
Proof. From the definition of hz we find

Deh=(€) = (010¢0™ (2, U(%:€))0c U7 (7€),

Oech=(6) = (01050 (7 WA (7)) (0¥ (7:€))° + 010 (7 W7 (7: €)) 0 ¥ (3 €),
and the claim follows from ((7.31)). O

This becomes useful when it comes to applying the constant-coefficient ¢2-
decoupling theorem, which we repeated in Theorem [7.1.1] because Lemma [7.2.4]
ensures uniformity of the constant from the decoupling inequality.

In the following we analyze T*f(z) for = € B"*1(z; K) C B(0,3\/4) and 1 <
K < A2, The containment property can be assumed due to the margin condition.
We see that the desired approximation identity holds on this spatial scale: we
perform a change of variables & = ¥*(%; &) and expand ¢* around % to find

T> f(2) :/ el’((zfzvx,m*(f;‘lf*(E;E)HS?(%E;S))%\(z)az(g)fz(g)dg
where fz = i@ EY () £ o U (7;+) and

E20:6) = 5 [ (1= @O + o) W E )i ).

Lemma 7.2.5. Let T* be an operator associated to a 1-normalized datum (¢,a),
0<0<1/2, 1<K <A/279 andZ/\ € Z so that B(z; K) C B(0,3)\/4).
Then, we find the estimates
HT)\fHL”(wB(E;K)) 51\7 HE?f?HLP(wB(O;K)) + )‘_6N/2||f||2’ (7-32)
1Bz Foll o wioney) SN IT ey + A7 21 F]2: (7.33)

to hold provided that N is chosen sufficiently large depending on n,é and p. Here,
the constant N is the same for the weight functions, the conditions on the derivatives
D1}), D12), D21) and in the exponent of \ in the above estimates. Moreover, in

case of sharp cutoff (7.32) becomes
IT* fll e (B0 SN 1 Ef2llir (s T AN 211 £]l2- (7.34)
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Proof. We can replace f by fp, where in view of the definition az and the fact
that we are dealing with a datum of type 1, we can assume that ¢ is supported in
[0,27]™. After performing a Fourier series decomposition of eig?(v’ﬁ)gp(f), one may

write o .
ezS?(v,ﬁ)(p(g) — Z ak(v)eﬂkwf)’ (7.35)
kezm

where ak(u) = f[072ﬂ_]n e*l<k75>ez£§\(v»5)¢(§)d§
Since K < A\/2 we find the favourable bound

B oA |U|2
sup 0 &2 (v; )| SN

(v;€)€B(0,K) Xsuppaz A

as long as f € N with 1 < |5| < 2N by virtue of property D2;) and the computa-
tion in ([7.30) showing that |8§\Il>‘(§; &) <laslongasl<|B] <2N.
Consequently, integration by parts yields

Jar(v)] Sx (1 + k),

whenever |v] < 2X\1/2. We derive the following pointwise identity from (7.35):

T fE+ o)l < Y larn@IE=(fze" ) (0)] S Y (1 + k)N Ex(fze" ™ (0)].

kezm kezn

We decompose further:

||TAfHLp(1UB(z;K)) < H(T)\f)lB(E;Q)\l/z)HLP(wB(;;IQ)
+ ||(T/\f)1Rn+1\B(z;2A1/2) 22 (wp ey -

The second term leads to the error term, that is
2 —6(N—(n
(T £)Xrm\ BEor/) | Lowaeae) S A PN 7O £ L2 @), (7.36)

In fact, we have ||T*f||z~ < ||f|l2, and consequently,

1/p .
([ s m a2 P ) S KOs A% e

and the factor A9(N=(+2)) stems from the additional decay of the weight (1 +
K~1z|)~" we are actually considering.
This gives (|7.36)), and since the operator Fx is translation-invariant,

Efet™)g)(t,x) = Ezg(t,z + k) V(t,z) € R"*! and k € R™. (7.37)
Minkowski’s inequality yields

HT)\le(E;Q)\l/Q)HLp(wB(E;K)) SN Z (1 + |kj|)7NHEEfZHLp(’wB((kyo),K))' (738)
kezn
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Next, observe that
Z (1 + ‘k|)7NHEEf?HLP(wB((k,o),K))

kezn
_N 1_
= > @HE)TT @+ KDY ONEF 2l 2o w0y
kezn
1/p 1/p’
<> a+ kl)N||Ezfz||’;p(w3((,€,0m] (Z (1+ |k|>N<p-1>p> (7.39)
kezn kezn
1/p
=C(n,p,N) </ | Bz fz|P Z (1+ k|)NwB((k,0),K)>
kezn

Sm,p HEEf?HLP(wB(O,K))'
For the ultimate estimate one observes
Z (1+ |k|)7NwB((k,0),K) S WB(0,K)-
kezn
In order to prove (7.33)), we write

B f=(v) = / ei¢k(2+v;‘1'*(?;€)e—5§(v;ﬁ)az(g)f o UN(z; £)de.

Again, we insert a smooth cutoff ¢(&) supported in [0, 27]™ so that

D) = 3 by (),
kezn
where b (v) = f[o - e i(k€) e=i€2 (viE) (£ dE.
Once more, integration by parts yields the pointwise bound
[ (0)] S (14 [k[) 72,
and inverting the change of variables gives
B=f=(0)| Sv Y (1+ [K)) 72N |7 [50-0G) f](7,0)|.
keZ’Vl ~
fr
From a similar argument to the one from the proof of ([7.33)), we have
IB=foll Lo waon) SN Y KDV IT fo)xBEone) e s o) A2 fll2-
kezn
(7.40)

The k = 0 term is alright because it yields the desired quantity. For the higher
order terms we use the estimate (|7.32)) and ([7.39) to conclude

ST @+ )T FxsEam s

kezZn k#0

S 2N A E) TN IE L (wn e o)
keZN k#£0

<N 2_N||Ezf2\|LP(wB(o,K>)'

Choosing N large enough depending on n and p this quantity can be absorbed into
the lefthandside of ((7.40) which yields the claim. O
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7.2.4 Conclusion of the proof

Proof of Proposition|7.2.1] To show Proposition for fixed parameters n, € and
N = N(n,¢), it is enough to prove that

SeNR) Sclforalll <R <A/ (7.41)

We perform an induction on the radius, and with the base case (small R) readily
settled, we contend the following induction hypothesis:

There is a constant C > 1 such that @ik()\’; R') < C. holds for all 1 < R’ <
R/2 and all \ satisfying R’ < (\)'~¢/™.

We use the approximation lemma on a small spatial scale and lift the resulting
estimates to the correct spatial scales through parabolic rescaling: Let By denote
a family of finitely-overlapping K-balls covering By for some 2 < K < \/%. After
breaking Bg into B(Z; K)-balls the estimate from Lemma implies

1/p
T fll o By S S AT sz
B(z;K)eBk
» (7.42)
p
S Z IE= =120 (w010,
B(z;K)eBk

We apply the constant-coefficient decoupling theorem (Theorem [7.1.1]) to each
small scale and find after reverting the change of coordinates (again using that we
are dealing with 1-normalized data):

Bz 2l Lo (wpo.n)) Se K&/ Hek) HEEf?HLZ;K(

¢ wB(o,K))
1/2
a(p,k)+e/2 A 2
< Kowk)te/ Z T fﬂHLP(wB(E.,K)) (7.43)
o:K—1/2—ball
+ AN 2.
Moreover, this estimate holds uniformly in Z by virtue of the uniform estimates on
the Hessian of hz derived in Lemma [7.2.4]
We plug ([7.43]) into (7.42)) to find after using Minkowski’s inequality:

1/2

||T)\f||LP(BR) < olpk)+e/2 Z HT/\fO'H%p(U)BR) +)\_N/8K2an||fHL2-
o:K—1/2—ball
(7.44)
Next, apply Lemma to each T™ f, which gives the estimate
IT* follLr (wp ) < DT (N (CK?), R/(CK?)(R/K?)*PPF T fo ]

ec (wBR)
+ RECFD O R) TN fol| 2 (g
(7.45)
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We note that 33?7,6()\/(61(2), R/(CK?)) <. 1 according to our induction hypothesis.
Plugging (7.45)) into (7.44) gives after applying orthogonality

1/2

A Vai 2 2\ a(p,k A o2
I lurioy < COKPEENI 52 o,

+ RO RN £
< OO 2R

ec (wBR)

+ ROV RN Fl 2 ey,
and we see that induction closes. O

Proof of Theorem[7.1.2 To finish the proof of Theorem [7.1.2] we break the support
of f € L3(B™(0,1)) into p~t-balls, p = p(¢), so that after parabolic rescaling we
are dealing with a normalized phase function ¢. We can apply Proposition to
q’;, and the proof is completed using Lemma [7.2.3 O

7.3 Applications of variable-coefficient decoupling

Below, we state consequences of the variable-coefficient decoupling. Mainly, we
argue how phenomena from the constant- coefficient case lift to variable coefficients.
In the following we shall occasionally refer to normalized initial data. This means
that after we fix the parameters cpq, small and N large enough depending on n,
we find the stated estimates to hold uniformly. The claims extend to unnormalized
phase functions by parabolic rescaling.

7.3.1 Discrete L?-restriction theorem

We generalize the following discrete L?-restriction theorem proved in [BDI5]:

Theorem 7.3.1. [BD15, Theorem 2.1] Let S be a compact C-hypersurface in R"+1
with positive definite second fundamental form. Let A C S be a §~'/?-separated set,
and let R > 6~1. Then, for each € > 0, we find the following estimate to hold

p\ 1/p

1 ,
age'®S) S5 P lag|l2 (7.46)

|B" (0, R)| Jpn+1(0,R) g\

provided that p > @ and a(p) = a(p,0) from (7.7)).

The proof relies on the ¢2-decoupling theorem for elliptic surfaces and approxi-
mating delta-functions on small caps with bump functions. Also recall the estimate
for R > §~1/2

> age!™ ~ B2 g, (7.47)

EeEA LQ(Bngl)
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which is a consequence of Plancherel’s theorem. Indeed, take ¢(x) to be a bump
function ¥ (z) = 1 on By(0) and supp(y) C B2(0), and ¥ g(x) = ¢(x/R). Then, we
compute

Za§6i<z’£> ~ Z age“z’awR(x)

cen L2(riio.R) IS L2(R")

Now we use Plancherel’s theorem to find that JF(age®®%)¢r) is essentially a
bump function on scale R~! centered at &. The separation condition lets the bumps
behave decoupled so that

2
S e () ~ 3 Jaef / |G () 2dn
EEN L2(R™) EEN
~ | Bg| Z |a5‘27
EEA

which yields the claim.
The estimate in the above display generalizes as follows. The below lemma is a
special case of [GHI17, Lemma 11.5].

Lemma 7.3.2. Let A C B}(0) be a A\~1-separated set and ¢ be a 1-normalized
elliptic phase function. Then, we find the estimate

D aget () S BN el
€A L2(B;L+l)
to hold.
The discrete L2-restriction theorem generalizes as follows:
Theorem 7.3.3. Letn > 1, 0 < k < n/2 and suppose that ¢ is a phase function
satisfying H1') and HQE,C]) A C B™(0,1) be a \~/?-separated set, p > W
and a(p, k) like in . Then, we find the following estimate to hold:
1/p 1/2
(2 x; al(p, 2
|BA\ D age'® 9 Se.e XPTELY ae]

Bx lgca ceA

Proof. As initial data choose

fr=>ag|B" N1, 8)1pn-1(re).

EeA
It follows that
lB v
T/\fT(t,SC) / Z (57 (t ,5 ) )\(t7ﬂ7;£l)d§/
Qeea

- 0 ETE) A (e ) dE!
= ag / e a”(t,x; &) dE

% ‘B(£57)| B(&,T)
— Z agaA(t, T; f)ewk(t’z;g)

E€EA
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and for the frequency localized pieces

Laer) s ire
T)\fO FOT t ZC / Z 5 B(£ l¢)\(t’1?y§ )a)\(t,f;fl)lg(ﬁl)dfl

gcA
- agei‘bk(t’”“g,)a’\(t x;&)de’
|B(0,7)| /B, o

— agei‘z’k(t””;e)a’\ (t,z;0)

and
1o, o (wsy) — lasllIL]Loqus,) ~ laol| BAI'?,
which yields the claim by applying Theorem O

7.3.2 Decoupling inequalities imply Strichartz inequalities
and smoothing inequalities for variable coefficients

Already in [Wol00] was pointed out how decoupling inequalities for the cone im-
ply LP-smoothing estimates; in [BHSIS8] this was extended to the variable-coefficient
case.

Purpose of this section is to point out how a localization property of the kernel
(IRS10l LeeO6b]) implies LP-smoothing and Strichartz estimates without further ar-
guments (e.g. dispersive estimates for the propagator or multilinear considerations)
for elliptic and hyperbolic phase functions from decoupling estimates. We detail the
argument in the next section to avoid repetition. The obtained estimates do not
recover the classical range, but the Tomas-Stein restriction theorem in the elliptic
case. We phrase this as a conditional result.

Proposition 7.3.4. Letn € N, 2 < p < oo and suppose that (¢,a) satisfies H1')

and H2’[k]) and the decoupling inequality
1/2
1T fllo(By) Segarn APHTS Yo T ellEewn,y | ATV
0:\—1/2—balls
(7.48)
Then, we find the Strichartz estimate
nt2 _n
1T fllior) Sessnr,w AVEOTAZNTE | £ (7.49)
to hold for any f € L?.
Furthermore, we find the local smoothing estimate
1Tl (By) Separy N EOTEAEGR| £ (7.50)

to hold for any f € LP.

Proof. In both cases, after applying the decoupling inequality one uses parabolic
rescaling on T fy (cf. the proof of Lemma [7.2.3) which deforms the By-ball into a
M2 5 ox AY2 x 1-ellipse.

Following the computation of the proof in Lemma we find

nt2 =
1T foll r(y) So A2 1T gollLr (e, )
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where gg(&') = \=/2f (&9 + A71/2¢'), & denoting the center of . Without loss of
generality we can suppose that the phase function qg under rescaling is of type 1.

Next, cover Q(A'/?) with cubes of sidelength 1 and as detailed in the next
section, we find from a kernel estimate

1/p

||T199||LP(CA1/2) N Z ||T1(g9XQk)“iP(QZ><[—171]) +/\_N||99”2
LE:XQrNQ#D

and the estimate

1T (90x@0) o (@ix-1.1)) S llgoxaullzs for ¢ € {2:p}

is trivial due to the normalized domain of integration. Due to ¢ < p, we find

1/p
1T g0l Lo (e, n) Se A° (Z ||99XQL||ZI;,Q> + A Vg0l
l

(7.51)
Se Xllgollze + 2"V gollo-
We find from inverting the change of coordinates
lgoll e = A~ || fol| o-
To prove ([7.49)) after using (7.48)) and (7.51) with ¢ = 2, we find
1/2
1Tl Seprn PRS0 AT ol Tay) | +AMIF 2
0:\—1/2—balls
1/2
nt2 =~
Se6.M,N N Ww:k)+e ) T35 Z HT199H%1’(0X1/2)
0:\—1/2_balls
+ AT £l2
1/2
nt2 —
Sepaarn APRTEN T 0/ > el +AM S

0:\—1/2—balls

nt2
Sty NERTENTZE T g,

where in the ultimate estimate almost orthogonality is applied. For the proof of

let X
(Pof)(&) = xof (&),

where x is a smooth version of the characteristic function on 6. Following along the
above lines gives together with Holder’s inequality

1/p

T Fll o r) Sessn,n NP FTNP > RSl +ATM fl2
0:\—1/2—balls

1/p
Se.b M.N \B(@:R)+e 1/ )5 (5—3) <Z P@fﬂ) + /\—M”fH2
0

n(l_ 1 _
Seap,n APPTENPAEETD| £l + AT £,
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where the estimate was concluded by the following estimate

1/p
(Zpefl’ip> Se 1 fllze,
0

which holds for 2 < p < oo. This can be inferred from Plancherel’s theorem for
p = 2 and from Young’s inequality for p = co. The remaining cases follow from
interpolation. O

7.4 [P-smoothing estimates for elliptic phase func-
tions with variable coefficients

Purpose of this section is to point out how the frequency localized estimates from
[RS10], which was proved via bilinear methods, generalize to the variable-coefficient
case.

Let ¢ : R™ — R be a smooth elliptic phase function and y be a smooth function
supported in U C @Q(2), which denotes the cube with side-length 2 centered at the
origin. Let S denote the operator

55(t.a) = S¢10.) = s [ x(©eH O freget g

so that u = Sf describes the solution to the dispersive PDE

{ w4+ p(V/i)u =0, (t,z)eRxR",
u(0) =/

where f has Fourier support in U.
In [RS10] was shown the following estimate:

Proposition 7.4.1 ([RS10, Proposition 3.1., p. 51]). Letp > 2+ %4-1’ X € CU),
and let ¢ be an elliptic phase function on U. Then, we find the following estimate

to hold:
IS Fll=anx ey Se A" 2P Fll o ny.

By rescaling and interpolation this estimate implies LP-smoothing estimates for
Schrodinger-like equations, which are sharp with respect to the Sobolev regularity
of the initial data (cf. [RS10, Section 2]):

Theorem 7.4.2. Letp € (2+4/(n+ 1),00) and o > 1. Then, for any compact
time interval I,

1/p
. B (1 1\ 1
(1 rigpa) < Crpallfligers £ =n(3-1) -1

This section is devoted to the proof of the variable-coefficient generalization of
Proposition

In [RS10] Proposition [7.4.1| was proven by the bilinear adjoint Fourier restricition
theorem for elliptic surfaces by Tao (cf. [Tao03]) and orthogonality considerations.
Purpose of this section is to prove the same result for variable coefficients as stated
in Theorem [.T.3

For the proof we reduce to normalized phase functions by parabolic rescaling.
It is enough to prove the following proposition:

190



Proposition 7.4.3. Letp > 2+ niﬂ and ¢ be a normalized elliptic phase function

giving rise to the Hormander operator T*. Then, for any e > 0, we find the following
estimate to hold:

1T fll o nry Se AP 27YPFEY £l oy, (7.52)

For a phase function ¢ satisfying H1) let q(t,x;€) = 0id(t, z; [0.H(t, ;)] ~1(€))
denote the local parametrization of the surface associated to the adjoint Fourier re-
striction operator. To prove the LP-smoothing estimate for variable-coefficient phase
functions, crucial use is made of the following bilinear estimate using transversality,
which is a generalization of the theorem from [Tao03]:

Theorem 7.4.4 ([Lee06b, Theorem 1.1, p. 58]). For i = 1,2, let ¢; be smooth
functions satisfying H1). Suppose that the Hessian 8525%- satisfies

det 0Zcqi(t, x; 0ui(t, ;€:)) # 0
on the support of a; and for (t,x;&;) € supp(a;)
(0203 (t, 23 &)O(t, 561, &),
[02e0i(t, ;&) 07 qi (£, w5 u3)] 7 6(t, 3€1,&2))| > ¢ >0
fori=1,2, where u; = 0,¢;(t,x;&) and
6(t,2561,82) = Oequ (t, w3 u1) — Ogqa(t, myuz).

Then, for any e > 0, there is a constant C = C(eg) such that for p > (n+3)/(n+
1),
IT FT3 gl Loy < CX°| fll2llgll2,

where T denotes the Hormander-operator associated to the data (¢, a;).
For normalized elliptic phase functions this yields the following corollary:

Corollary 7.4.5. Let ¢ be a normalized elliptic phase function and suppose for
f1, f2 € L2(R™) with supp(f;) € Q(2). Then, for any € > 0 there is C. such that
forp> (n+3)/(n+1) we find the following estimate to hold:

1T LT foll Lo re xry < CX¥| fall2]] f2l2-

Proof. We check that the assumptions of the more general Theorem [7.4.4] are sat-
isfied: Indeed, from normalization we infer 8%5(;5 ~ In, 0(x,t81,82) ~ & — &,
8§§qi ~ I,, and consequently,

(OZed (@, t:6:)d(x, 1561, &), [02e b, €)] " [OFeai (v, wi)] ™1 0(w, #5641, &2))
~ e =&l >
This yields the claim. O

Due to a localization property of the kernel, this yields the following LP-estima-
tes.
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Lemma 7.4.6. Let p > 2%_;3), Bi1,Bs C Q(1) balls with dist(B1,B2) > ¢ > 0

and ¢ be a normalized elliptic phase function. Then, for fi, fo with supp(ﬁ) C B;,
1=1,2, we find the following estimate to hold:

”T)\flT)\fZHLP/Z(Rx]R") Spe An(=2/)FE £y | e ey | f2 || e (R -

Proof. First, we note the localization property for

n

K(taiy) = a)(t.o) [ e €0 0D5(6)ae,

In fact,
t/A
De[oM(t, 256) — (y,€)] = 9™ (0,5 €) + /0 ODep(t',x/X; E)dt' —y

t/2 1

=z—y+ )\/ dt’/ dsatagggé(t’,x/)\; s€) - &
0 0

=z —y+O(N).

Consequently, integration by parts yields that there is a constant C' which depends
only on the constants in the definition of normalized elliptic phase functions so that
for |y| > CX we find |K(t,7;9)| < OyA"N|z — y|~ from integration by parts.
Let xq be a smooth function which is essentially supported on Q(CX) with Fourier
support in B(0, ¢/10) and decompose f; = xqfi + fiz = fir + fio-

From trivial kernel estimates we find

1T fir |l Lo @xny < AN Fill Lo ey
where C' = C'(n,p) and from the kernel estimate and Young’s inequality
1T fiall o () = H/K(tw;y)fiz(y)dy
LP(RxR™)

< CNA N fizll Lo mny < CNATN | fill Lo ey

We split

IT* AT foll por2(ciny < 1T FrT? forllporz@seny + 1T FraT forll pose iy
FITX i T foall porz ey + 1T FraT> Fazll Lo/ cny
I+ IT+IIT+1V.

II, 111, IV are estimated by the above elementary estimates. For instance,
1T < [T faoll o |7 forll o < ONA™N [ fll o A (| foll o

Only for I we have to invoke the bilinear estimate from above. Due to the
support properties of xq we can still use Corollary [7.4.5]

IT* Fr T for | ore g sy Se Ao fillzz o follze
< CeX¥Ixqfilleellxqfallz2
< C’EAEA”(IQ/IJ)||f1||Lp(Rn)||f2||LP(R")’

and the proof is complete. O
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Lemma [7.4.6] is the most important building block for further arguments. To
utilize it efficiently, we carry out a Whitney decomposition of 7 flT’\ fg in terms
of frequency support and separation.

Precisely, let

B(1)x BO\D= | U 1 X Ql,

<ieil . e .
0<y<j dist(Q}, ,Q},)~277

where for 0 < j < j' = 1log, A!/2 the cubes Qil , Qiz have side length comparable to
277 and are separated with a distance comparable to 277. For j = j’ the separation
is less or equal to 277.

Adapted to the Whitney-decomposition, we write

(TP = Y > TG HTBLS)

0<5<5" k1,k2

= > Bilf.fl,

0<5<y’

where the ﬁi denote a smooth partition of unity adapted to the Whitney-decom-
position.
For j < j' we prove the following estimate by scaling:

Lemma 7.4.7. Let ¢ be a normalized elliptic phase function and f; have Fourier
support in cubes of side length 277 which are also separated with a distance of 277.
Then, we find the following estimate to hold provided that 1 < 227 < \:

PRSI 4j (1
ITX LT foll g Se A°2% (A/22)™ 2P| £ Lo ey | ol o (e - (7.53)

Proof. We use parabolic rescaling to write

T LT foll o2 oty
— 2% 2 2ng Y| /eW(22”'>2jy7€0+2_j5')a*(22jt’, 2y &0 +277¢) filéo +277¢)de!

/eiw(22jt’2jy;5°+27j€/)aA(22jt/7 2y &0 +277¢) fo(o + 277€)dE || Loz @ny

o 2in 4] SIN/220 ey 2j N

=272 27 | / e Ry ) () dE

N2 (¢ ') 2 2% .
/6 N2t ysE )&A/sz (t/ay;5/)92<6/)d§/”LP/2(R“><]R)-
(7.54)

Due to §;(€) = fi(& + 277¢), we have ||g;||z» = 2"j27n7j||fi||Lp. We argue that
the latter expression is amenable to Lemma [7.4.6f Note that

supp(a*/?” (t,-5€)) € Q(\/27).

However, we want to apply Lemma with parameter \/2%. For this purpose

we use again the localization property of the kernel. Note that this holds for (5’\/ 2%
independently of x and in particular, there is no renormalization with an affine
change of coordinates necessary for this property to hold.
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Cover Q(A\/27) by A\/2% cubes @; and let ¢ = >, x0,9, where ¢, are smooth
functions essentially supported on @Q; with Y xg, =1 and

supp(Xq,) € B(0,¢) (7.55)

for some ¢ < 1. This is possible due to the Poisson summation formula and \/2% >
1.
Effectively, we work with the decomposition

N

9= X9+ Xe-9 Xog= > XQ:9-
QINQ(ATTE/29)=0

Like in the proof of Lemma[7.4.6, we find that the terms containing x¢-g can safely
be neglected.
In fact, we find the main contribution of (7.54)) raised to p/2 to be given by

~ j - j p/2
T)\/QZJ = T)\/22j — 756
QkZlm |7 G T (@) sy (756
QNN A0,
O PA Q10

The conditions on @y, I, m in the above display are denoted by Q,l,m : (x) in the
following.

From the supports of m and )@ are still separated of unit order,
and after the change of variables © — zo + z, we find

25 2j , _—
|72 (Xngl)TA/2 (XQm92)||Lp/2( [—/2%9,/2%9] xQx)

A i ——— A i ———
— 1T (@ %aa) T (€ Xamda)ll o ((-x /22 A 2251 x 00

(7.57)

where ¢y = Bt @+ w0:€) — B0, 203 ).

Note that the ¢, are normalized elliptic phase functions after an additional affine
transformation, which is close to the identity mapping. Hence, is amenable
to Lemma with parameter A\/2%7, and we conclude the bound by means of
Cauchy-Schwarz:

A J /227 , —— 2
Z ”T /% (XQ gl)T /2 (XQmQQ)”Iz/p/z([,A/sz1)\/22j]><Qk)

Qe l,m:(x)
S S )2y 221y, gal B2
Qk,l,m:(*)
1/2 1/2
<o (A/2%)n(=2/p)+ 26l (p/2) (waﬂm) (ZIX%@IZ)
l m
<o (A/22) =20 42e /D)) g 1272 o B2,
and the proof is complete. O

1/2

For possibly vanishing separation for cubes with side length A™"/% we have the

following lemmas:
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Lemma 7.4.8. Let supp(f) C B, where B is a ball of radius A\=/2. Then, we find
the following estimate to hold:

T fll o Ry Se APl pogn)
Proof. We use parabolic rescaling to write like in the proof of Lemma
||T’\f||Lp(Ran) N Afn/Q/\n/Qp)\l/p||T1§||Lv(Ran),
where ||g||z» = A"/2A7"/2P|| f||». Tt is enough to prove

1T 4| Lo mxcn) Se AN9]l 2o -

Again, we use the localization property of the kernel to consider cubes of unit size
and adapted functions with localized Fourier transform xg. Decompose like in the

proof of Lemma [7.4.7]
g= Z X@i9 t X@+9-
LQINQ(AL/2+e)#£0
Like in the proof of Lemma [7.4.7 one finds
||T19||I£p([_1,1]XQ) S Z ||T1>@21\9H§p([_171]x@ + CN)‘_N||9||LP~
Qi1

The proof is concluded following along the lines of the proof of Lemma [7.4.7] O

To separate the contribution of the different k;, we use a natural orthogonality
of the oscillatory integrals, which was used in a similar context in [Lee06b].

Lemma 7.4.9 ([Lee06b, Lemma 3.3, p. 82]). Let ¢* be a normalized elliptic phase
function, 1 < p/2 < 2 and j > %logQ A. Then, we find the following estimate to
hold:

> (B, )T (BL, f)
dist(Qy,,Q7,,)~2~7 p/2
2/p

< 0N | ST HTNBL I

ki1,k2
+CnANIER

For the error term recall that we can always suppose that f in position space is
localized to a cube of length A from the kernel estimate. Hence, using the estimate
from [Lee06b, Lemma 3.3] with r» = 2 yields the claim after applications of Holder’s
inequality and Plancherel’s theorem.

We prove the following bound for Bj.

Proposition 7.4.10. Let 0 < j < %logz()\) and B like above. Then, we find the
following estimate to hold:

)\524j/17()\/22j)n(1—2/11)||f||2Lp’ 24+ 24:11 <p<4,

, : 7.58
A=243/P () /220 n(=2/P)| £, 4 < p < o0 (7.58)

IB;(f, flll o2 e {
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Proof. We have to distinguish between 1 < p/2 < 2 and p > 4. In fact, for
1 < p/2 < 2 we can apply Lemma but for p > 4 we use instead the trivial
observation

> ™6 H)T(BL f) <2ﬂ”ksu£ IT*(B], HYT*(B], F)llL=
dist(Q} @], )~2 Lo b

and interpolation yields

| S TG DT, Pl s < CormO—4/P)

2/p

N p (7.59)
> ITNBLHTNBL, DI
k1,k2
Consequently, for 1 < p/2 < 2:
[ > B, HTNBL, )l sz
dist( g;l,Qg;z)szj
2/p
o o
Se AE( > ITBLHTA i2f)||’£/p/z>
dist~2—J
2/p
i inn(l— 2 2
Se AZ24 /(3 920 )n0=2/w) | N BRSPS
k1,k2
1/p 1/p
<. )\25243/11()\/223)71(172/17) (Z ||p’§1f||2£p> <Z png”zip)
k}l k2

< CAF29/P (/22O f o | £ o
and for p > 4 by the above means, but appealing to (7.59) than Lemma

Z T( ZlfA)T’\(ﬁizf) <_ A2egin(1=4/p)
dist(Qy,,Q7,,)~2~7 o
20973/ 22) 02 £
O

Proof of Proposition[7.4.3 We conclude that for small p the main contribution
comes from j = 0 and summing a geometric series yields the bound

1/2
1/2 ~
T Flloe = 1T A5 < | S 1B All o
0<5<j"
1/2
. Z AEAn(1=2/P)94i/pg=2i(n(1=2/P))| £|2,
0<5<y5’

SAN2ZLD)| £l .
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The same argument works for p — oo and interpolation between the bounds for
small p and large p proves the claim. O

Conclusively, we argue how Proposition [7.4.3| implies Theorem [7.1.3

Proposition [7.4.5 = Theorem[7.1.3 Let f be supported in a p~!-ball centered at
po. It follows from parabolic rescaling (cf. Section

ei>\¢(‘1’sg(p2t/>\7pw/>\);€o)T>\f ° q)g\ oD, = TA//JZQ
0 b

where 2
T/\/ng(t’x):/ GidM (t,z;E)&A/PQ(t7x;f)g(g)dg,

n

and the phase ¢ is given by

1
(2,6) + / (1= 1) (02 0(@ey (1, D, 1), o + 1€/ p)E, €)dE.

A change of spatial variables gives
N nt2 =N/ p2 A
||T fHLP(]RxR") 5¢> prp nHT /e 9||Lv((q>goon)—1(Ran)v

where like above ||g||z» = p"p~ /|| f||Lr-

The support of T’\/p2§1 is essentially a A\/px...x \/px\/p?-ellipse. As argued in
Section  is up to an affine transformation a normalized elliptic phase function.
Note that in the current context, we choose p depending on ¢ so that the phase
function, we arrive at after rescaling and an additional affine change of coordinates,
is actually normalized. Moreover, the magnitude of the Jacobian of ®¢, and L (see
Section for notation) depend on ¢. Thus, the implicit constant depends on
¢ contrary to the applications of parabolic rescaling for normalized elliptic phase
functions. To utilize Proposition we perform an additional decomposition of
the ellipse into \/p?-cubes and use again the orthogonality property which follows
from the localization property of the kernel. The argument is concluded like in
the proofs of Lemma and In order to avoid repetition, the details are
omitted. O

In the case of constant coefficients it was shown in [RS10] how a localization
property of the kernel and an interpolation argument yield globalization.

We point out that the bilinear approach depicted above for variable coefficients
also applies to the hyperbolic Schrédinger equation (cf. [Lee06al [Var0s]) in two
dimensions:

{ i0pu(t, ) + (Oae — Oyy)u(t,z) =0, (t,7) €R X R?, (7.60)

u(0, x) = up(z) € L(R?),
and using the localization and interpolation argument from [RS10, Section 4] which
applies mutatis mutandis yields the following result:

Theorem 7.4.11. For p > 10/3 we find the following estimate to hold:
1 1 2

g || Lo (0,1 xr2) S luollrr w2y, B=4(5;—-)— v (7.61)

Hez’t(azfa
2 p

This covers the endpoint Sobolev regularity, which is not covered in [Rog08].
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Summary

A detailed survey and motivation for our work on quasilinear dispersive equa-
tions is provided in the introductory Chapter

In Chapter [2| notation is fixed. Function spaces, which are suitable for the
analysis in the following chapters, are revisited. References for the function spaces
are [IKTO08, [KT07, HHK09, [CHT12].

Chapter [3] starts with a discussion of linear and bilinear Strichartz estimates.
New linear Strichartz estimates on tori are derived via the decoupling inequalities
from [BD15, BD17a].

We discuss how frequency dependent time localization allows one to recover
linear and bilinear Strichartz estimates on tori. Here, we elaborate on previous
works (cf. [BGTO04, MVO0S8| [Hanl2 [Dini7]). Results from these works are recast
and modestly generalized in a form, which is useful for our purposes.

Next, we point out how to overcome derivative loss and to improve the en-
ergy method (cf. [BS75]) via a novel combination of short-time bilinear Strichartz
estimates with a well-known iteration of perturbative and energy arguments (cf.
[IKTO8]). The results from Chapter [3| were made publicly available in [Sch19b] and
[Schig].

In Chapter [4 the argument to improve the energy method from the previous
chapter is applied to higher-dimensional Benjamin-Ono equations and fractional
variants, which relate to the Zakharov-Kuznetsov equation. Previous local well-
posedness results (cf. [BJUMIO9L [LRRW19, [LPRT19]) are improved and unified
using transversality. The results were made publicly available in [Sch19¢].

In Chapter [5| dispersive equations with cubic derivative nonlinearities on the
circle are analyzed with short-time analysis. New a priori estimates and existence
results are proved for solutions to the modified Benjamin-Ono equation, the deriva-
tive nonlinear Schrodinger equation and the modified Korteweg-de Vries equation.
Here, the arguments from Chapters [3| and 4] are combined with the introduction of
correction terms for the Sobolev energies of the solutions. This argument is closely
related to normal form transformations and the I-method (cf. [CKST02,ICKST03]).

In case of quadratic dispersion relations the regularity results previously known
on the real line (cf. [Guoll]) are extended to the circle. In addition, for the focusing
modified Korteweg-de Vries equation new existence results are shown in Sobolev
spaces with positive regularity index. In the defocusing case this was previously
known making use of complete integrability (cf. [KT05al Mol12]).

Conditional upon conjectured Strichartz estimates we prove existence of solu-
tions to a certain renormalization of the modified Korteweg-de Vries equation for
negative Sobolev regularity. This implies non-existence of solutions to the unrenor-
malized modified Korteweg-de Vries equation for negative Sobolev regularity. The
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results from this chapter were made available in [Schi7a] and [Sch17h].

In Chapter |§| dispersion generalized Benjamin-Ono equations on the circle (cf.
MV15]) are considered. Here, normal form transformations are also utilized to
analyze differences of solutions. New local and global well-posedness results are
proved. The analysis was made available in [Sch19a].

In Chapter [7] oscillatory integral operators related to the short-time linear evo-
lution of dispersive equations on compact manifolds (cf. [ST02, BGT04]) are dis-
cussed. We prove a variable-coefficient decoupling theorem and new LP-smoothing
estimates. The results extend previous theorems for constant coefficients (cf.
[RS10]) to variable coefficients.
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