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Gravitational Waves in Conformal Theories of

Gravity

Patric Hölscher

Abstract

In this thesis, we consider gravitational radiation in higher-derivative models
of gravity, which are interesting in the context of quantum gravity, and compare
our results to general relativity which explains gravitational wave phenomena very
successfully.

In my first project (P1) [1], I analyze the degrees of freedom of the metric in a
large class of higher derivative gravity models in d ≥ 3 spacetime dimensions. In
addition to the massless helicity-2 field of general relativity this model contains a
massive spin-0 and a massive spin-2 field and consequently eight propagating degrees
of freedom in vacuum. We present the linearized field equations and calculate the
gravitational wave solutions for the special case of constant masses in four spacetime
dimensions. We show that only the two transverse modes of the five degrees of
freedom of the massive spin-2 field are excited if the gravitational waves are created
by a conserved compact source. As a consequence, to leading order only quadrupole
radiation contributes to gravitational wave emission.

In a second project (P2) [2], we restrict to conformal gravity models which are
invariant under local Weyl transformations. These models are based on a unique
action for gravity and only differ by the choice of the matter content, the coupling
constants and their signs. Because of Weyl invariance explicit mass scales are hid-
den, but become manifest after fixing the Weyl gauge. The massive spin-0 field
is nondynamical and hence conformal gravity models only carry seven propagat-
ing degrees of freedom. We calculate the linearized field equations in Teyssandier
gauge describing massless and massive propagating spin-2 modes. Both modes can
be projected into the transverse-traceless gauge and to leading order exhibit only
quadrupole radiation. We find the energy-momentum tensor for gravitational waves
and derive the instantaneous power from an idealized compact binary system of low
eccentricity in the Newtonian approximation. Our results are applied to the indirect
detections of gravitational waves prior to the measurements of the LIGO/VIRGO
Collaboration. We choose the parameters of conformal gravity with a small graviton
mass such that it can fit galaxy rotation curves without dark matter. The decrease
of the orbital period in conformal gravity models with a small graviton mass is much
smaller than in general relativity, so we conclude that it cannot explain the decay
of the orbital period by gravitational radiation. However, for a large graviton mass
conformal gravity reduces to general relativity and as expected the trajectories of
binary systems are in agreement with the data. Nevertheless, conformal gravity
models with a small mass are not completely ruled out by our results, because we
only demonstrated that much less energy compared to general relativity is trans-
ported to the far field of the source.
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For this reason, in a third work (P3) [3] we use the direct measurements of
gravitational waves from the LIGO/VIRGO Collaboration to test conformal gravity
models in the late inspiral phase. Using the results from (P2) we investigate the influ-
ence of gravitational wave emission on the orbit of binary systems. We calculate the
chirp of the frequency and the waveform right before the merger phase. The result
is that for a small graviton mass conformal gravity models cannot explain the chirp
signal for any parameter combination since the amplitude of gravitational waves
decreases as coalescence is approached. For a large graviton mass no significant
deviation from the general relativity result could be found, because modifications
are strongly suppressed on the relevant distance scales. Thus, predictions are in
agreement with LIGO/VIRGO observations and lead to the same chirp masses and
distance estimates as general relativity.
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Notation and Conventions

i, j, . . . latin indices run from 1 to d− 1 in a d-dimensional space

µ, ν, . . . greek indices run from 0 to d− 1 in a d-dimensional space

xµ = (x0,x), x0 = ct coordinate vector and its time component

∂0 = ∂
c∂t
, ∂i = ∂

∂xi
partial derivative with respect to temporal and spatial coordinates

∂µv
ν = ∂vν

∂xµ
= vν,µ partial derivative with respect to the xµ coordinate function

∇µv
ν = vν;µ covariant derivative with respect to the xµ coordinate function

∆ = ∂k∂
k Laplace operator

� = ∇ρ∇ρ d’Alembert operator

˙ = d
dt

time derivative

′ = d
dr

derivative with respect to radial coordinate

a ≡ b a is defined by b

A(µν) = 1
2
(Aµν + Aνµ) symmetrization of indices

A[µν] = 1
2
(Aµν − Aνµ) antisymmetrization of indices∫

dx =
+∞∫
−∞

dx integral over x from −∞ to +∞

ddx = cdt dd−1x d-dimensional infinitesimal spacetime volume∫
ddx =

∫
all space

ddx integral over the whole d-dimensional space

f(x) = O(xn) the leading contribution of f(x) is of order xn

δµν Kronecker-delta: 1 if µ = ν, otherwise zero

εµνρσ totally antisymmetric Levi-Civita symbol with ε0123 = +1

δ(x) Dirac delta function

Θ(x) Heaviside step function: 1 for x ≥ 0, otherwise zero

f̃(k) =
∫
ddxf(x)e−ikρx

ρ
d-dimensional Fourier transformation
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f(x) =
∫

ddk
(2π)d

f̃(k)eikρx
ρ

d-dimensional inverse Fourier transformation

Sign Conventions

Sign conventions can be classified with the help of the scheme given in [4]:

εgg = − (x0)
2

+ (x1)
2

+ (x2)
2

+ (x3)
2

sign of metric tensor

εRiemR
ρ
µσν =∂σΓρµν−∂νΓρµσ+ΓρσλΓ

λ
µν−ΓρνλΓ

λ
µσ sign of Riemann tensor

εRicRµν = Rρ
µρν sign of Ricci tensor

εT8πGTµν = Gµν sign of Einstein equations

Reference εg εRiem εRic εT
Carroll [5] + + + +
Maggiore [6, 7] + + + +
Misner, Thorne, Wheeler [4] + + + +
Mannheim [8] + − + −
Wald [9] + + + +
Weinberg [10] + − + −
This thesis + − + −

The Einstein summation convention (summation over equal indices) is used through-
out this work unless otherwise stated. Three-vectors are indicated by boldface type.

Constants of Nature and Symbols

c speed of light

MPl Planck mass

~ reduced Planck constant

G Newton’s constant

M� mass of the sun

R� radius of the sun

i imaginary unit
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Abbreviations

BH black hole

CG conformal gravity

CGM conformal gravity model

dof degree of freedom

dRGT de Rham-Gabadadze-Tolley

EFE Einstein field equations

FLRW Friedmann-Lemâıtre-Robertson-Walker

GR general relativity

GRB gamma-ray burst

GW gravitational wave

IR infrared

LWT local Weyl transformation

NG Newtonian gravity

MOND modified Newtonian dynamics

NS neutron star

PCG pure conformal gravity

PN Post-Newtonian

PWI principle of Weyl invariance

SR special relativity

SS solar system

TeVeS tensor-vector-scalar gravity

TT transverse-traceless

UV ultraviolet

vDVZ van Dam-Veltman-Zakharov

ΛCDM Lambda cold dark matter
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1 Introduction

On the 25th November in 1915 Albert Einstein presented his theory of general
relativity (GR) to the Royal Prussian Academy of Sciences [11]. With this he
fundamentally changed the way on how to think about gravity. Prior to Einstein’s
ideas the theory of Newtonian gravity (NG) was the commonly well-accepted theory
to describe gravitational effects. NG is based on classical mechanics introduced by
Isaac Newton in his Principia Mathematica in 1687 in combination with the three
laws of classical mechanics. Classical mechanics makes use of an absolute space,
which has three spatial dimensions and one time dimension. Time is treated as
a parameter to order events chronologically at an everlasting constant tick rate
measured by clocks. Absolute space provides a background structure with respect
to which accelerations can be effectively measured. However, Newton’s first law
tells us that positions and velocities are not absolute, but change under Galilean
transformations (the coordinate transformations which leave Newtonian mechanics
form-invariant). This is called the Newtonian principle of relativity.

NG describes gravity as a classical1 force in absolute space. As a consequence
the gravitational force acts instantaneously, that is the gravitational effect between
massive objects is infinitely fast. After the introduction of electromagnetism by
James Clerk Maxwell in 1865 the principle of relativity of classical mechanics was
challenged, because the Maxwell equations, which govern the dynamics of the elec-
tromagnetic field, propose that electromagnetic waves move at the speed of light and
simultaneously are not covariant under Galilean transformations. It was suggested
that there is a privileged reference frame with respect to which light is moving.
Hence, the Aether as the medium for light propagation was introduced. But in the
Michelson-Morley experiment no hint for this hypothetical Aether was found since
the speed of light appeared to be constant. Eventually, Einstein resolved this incon-
sistency between theory and experiment, when he came up with the theory of special
relativity (SR), introduced in a paper published in 1905 [12]. It includes a modified
principle of relativity and thereby abandons the Aether theory. SR and in particular
electrodynamics are invariant under Lorentz transformations. In consequence, the
speed of light in vacuum has the same value in all reference frames. And when it was
realized that every theory in physics should adapt this new principle of relativity (at
least locally), this immediately led to the problem that NG was at odds with SR.

In SR time and space are not separated anymore. The four-dimensional Minkow-
ski spacetime was introduced and time was raised from a parameter to a dimension.
Space and time intervals are no longer absolute but depend on the motion of the
observer. Furthermore, an inherent feature of SR is that no information can travel
faster than the speed of light. To solve these obvious contradictions between NG and
SR, several theories, including scalar or vector fields as the gravitational potential,
were introduced to describe gravity in Minkowski spacetime. One of the most fa-
mous approaches was a scalar theory by Nordstrøm [13, 14]. Nevertheless, all these
approaches could be ruled out by intrinsic inconsistencies or by experiments. Only
the introduction of Einstein’s theory of GR could resolve the inconsistencies.

GR describes the metric tensor as a dynamical tensor field of rank two and grav-
itational effects are no longer treated as classical forces in flat absolute spacetime,

1Classical means not quantum, which has to be distinguished from nonrelativistic, which is the
low-velocity limit defined in Sec. 3.4.



2 1 INTRODUCTION

but as a direct consequence of the curvature of spacetime itself. This fundamen-
tally distinguishes gravity from other forces of nature, because at a single point
of spacetime test particles move as in flat Minkowski space2 and hence get rid of
gravitational effects. This is not possible for electroweak or strong forces.

Although some phenomena in the solar system (SS) cannot be explained within
NG3, experiments show that NG describes gravitational effects on Earth quite ac-
curately, if the observed system does not exhibit large relative velocities (compared
to the speed of light) and the gravitational effects are weak (typical length scales of
the system are much larger than the Schwarzschild radius). This limit is called New-
tonian limit and GR accommodates for this by reducing to NG in this limit. One
of these gravitational phenomena is the bending of light. Since in NG gravitational
forces are only transmitted between objects that carry a mass, light rays from dis-
tant stars would pass the sun of the SS unaffected on a straight line in flat space. In
contrast to that, in the theory of GR also energy and momentum gravitate. Hence,
it was a great success of GR when Arthur Eddington in 1919 confirmed the bending
of light by a measurement during a solar eclipse [15]. Further tests of gravity, like
the precession of mercury, gravitational redshift, clock effects or the Shapiro delay,
provided additional confirmation for GR and its description of gravity as curvature
of spacetime [16].

However, over time several problems arose. With the introduction of quantum
field theories in the nongravitational particle sector, one of the most serious short-
comings of GR became apparent. Quantum field theories describe matter particles
and nongravitational forces as quantum field operators. This means that the mat-
ter, which generates gravitational effects, is described in a fundamentally different
way than the classical non-quantum theory of GR. In this sense, the Einstein field
equations (EFE) describe a classical field theory in the gravitational sector and a
quantum field theory in the matter sector. This indicates that for energies on the
Planck scale the metric tensor field should be quantized to be on the same footing
as matter fields. Unfortunately, applying the standard quantization procedure to
GR is problematic. The perturbatively quantized version of GR leads to infinities
in the ultraviolet (UV) regime and it seems that these cannot be eliminated from
the theory [17, 18].

Another problem of GR appeared when experiments were able to measure the ro-
tational velocities of edge-on spiral galaxies with higher accuracy. GR predicts that,
based on the luminous mass (this is the mass which emits electromagnetic radiation
like stars or hydrogen gas), the rotational velocities in spiral galaxies should de-
crease with the square root of the distance to the center of the galaxy. Surprisingly,
measurements show that rotational velocities do not decrease, but become nearly
constant in the outer regions of spiral galaxies [19]. To explain this phenomenon
within the theory of GR, one way is to predict a large halo of a new unknown type of
matter, which is capable of clustering as ordinary matter, but does not interact via
the electromagnetic or strong force. This unknown material is called dark matter.
Adopting the standard model of cosmology, the Lambda cold dark matter (ΛCDM)

2If we consider a sufficiently small region of spacetime (smaller than the scale of curvature), for
a suitable choice of coordinates one can set gµν(p) = ηµν and ∂ρgµν(p) = 0. But one cannot get rid
of second partial derivatives of the metric. This defines the notion of locally inertial coordinates.

3Nevertheless, numerous solutions within NG were proposed. The most popular alternative
was the proposition of an unobserved planet ’Vulcan’, which would hence lead to the precession of
mercury.
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model, a combined set of cosmological observations shows that dark matter con-
tributes about 27% of the energy content to our universe (about 5 times more than
baryonic matter) [20]. Actually, dark matter is the notion for a larger class of ob-
jects and can be divided into baryonic and non-baryonic dark matter. Baryonic dark
matter is made of cold gas and dust or the so-called Massive astrophysical compact
halo object (MACHO) like brown dwarfs, faint old white dwarfs, neutron stars (NSs)
and black holes (BHs). However, there is evidence that baryonic dark matter only
contributes a very small amount of the total dark matter [21, 22]. Therefore, ex-
periments concentrate on non-baryonic dark matter. Most promising candidates are
weakly interactiong massive particles (WIMPs) (predicted by supersymmetry ; inter-
acts only via gravity and the weak force), axions (hypothetical particles to resolve
the strong CP problem in quantum chromodynamics) [23], sterile neutrinos [24] and
primordial black holes [25]; see [26] for a recent review.

Although a variety of experiments have been performed to detect non-baryonic
dark matter, it could not be found in a direct measurement yet. In addition to
the rotation curves of spiral galaxies more evidence for the existence of dark matter
was found from observations on the velocity dispersion and X-ray observations in
elliptical galaxies [27], gravitational lensing [28], the cosmic microwave background
[20], structure formation or the bullet cluster [29].

Besides dark matter, there is another unsolved problem in the infrared (IR)
energy regime in cosmology. From observations of type Ia Supernovae it was shown
that the recent Universe is in a phase of accelerated expansion [30, 31, 32, 33, 34, 35].
GR naturally predicts solutions of accelerated expansion driven by a cosmological
constant or dark energy contributing 68% of the energy content of the Universe.
In contrast to ordinary matter it does not cluster and violates the strong energy
condition4. Unfortunately, if we assume that we can trust ordinary quantum field
theory up to the Planck scale, the value of the measured acceleration is 120 orders of
magnitude smaller than expected from the standard model of particle physics [36, 37].
This is because gravity couples to the matter energy-momentum tensor, and hence
one expects that also the zero-point energies of the matter sector gravitate in a theory
of quantum gravity. Zero-point energies lead to negative pressure, accelerating the
Universe in the same way as the cosmological constant. This means that if GR and
the standard model of particle physics are correct in the late Universe, one has to
fine-tune a cancellation between these contributions to 120 digits. This problem
is known as the cosmological constant problem [36, 38] and seems to be connected
with the UV incompleteness of GR. A consistent quantum theory of gravity could
resolve both problems simultaneously.

The success of GR in the SS shows that we are already on the right track, but
maybe we are too confident that GR is the correct theory. It could be that we can
find an alternative to GR which works as well as GR in the SS but simultaneously
explains the issues in the IR and UV regimes without predicting unknown types
of matter. Hence, we should definitely be open minded for models modifying GR
on these problematic scales. Many theories of modified gravity had been developed
over the years and must be tested by interaction of experiment and theory. In this
work we concentrate on testing a specific class of theories of modified gravity by
analyzing their gravitational wave sector.

4The strong energy condition states that ρ + P ≥ 0 and ρ + 3P ≥ 0, where ρ is the energy
density and P is the pressure. It implies that gravitation is attractive.



4 1 INTRODUCTION

We organize this thesis as follows: In Chap. 2 we introduce the basic concepts of
differential geometry on smooth (pseudo-)Riemannian manifolds and briefly review
the theory of GR in Chap. 3. After that, we study the creation of gravitational
waves (GWs) in Chap. 4 and the emission of energy from binary systems in GR in
Chap. 5. In the literature there are numerous approaches of theories of modified
gravity. A brief overview will be presented in Chap. 6. We can sort these different
models making use of Lovelock’s theorem, which reduces the immeasurable number
of possible actions for gravity models uniquely to the Einstein-Hilbert action. By
dropping different conditions of Lovelock’s theorem we will investigate several nat-
ural modifications of GR. In this context we are also led to the main focus of this
work which is on higher derivative gravity models.

A brief introduction to the class of higher derivative models will be given in Sec.
6.7. In my first work (P1) [1] the linearized version of these models in Teyssandier
gauge will be presented. The metric carries eight propagating degrees of freedom
(dofs) in vacuum. Two of them are the massless helicity-2 states (massless graviton)
as in GR, five result from a massive spin-2 field (massive graviton) and the last
represents a massive spin-0 field (massive scalar field)5. In this work it will be
shown that if the massive spin-2 field is created by a conserved source, only the two
transverse modes become excited and the total number of dofs is reduced to five.

In Chap. 7 we further restrict the class of higher derivative gravity models
by introducing a new symmetry, namely the local Weyl symmetry ; see Sec. 7.1.
It leads uniquely to the conformal gravity models (CGMs), comprising two very
similar models introduced in Chap. 7. My second work (P2) [2] focuses on testing
these models by their prediction on the GW emission. We will focus here on the
indirect measurements of GWs emitted by stellar binary systems [39, 40]. This
method makes use of the measured decrease of the orbital period of binary systems
indicating that the system loses energy. Assuming that the energy is transferred into
GWs we can test CGMs. Predictions of GR are in very accurate agreement with the
measured data. Hence, we calculate the GWs in CGMs and compare the predictions
with results from GR. As CGMs are a special case of the higher derivative gravity
models, we can use the result of (P1) to reduce the number of dofs in CGMs from
seven to four. In (P2) we investigate two parameter regimes for the partially massive
metric. For a small mass we show that the decrease of the orbital period cannot
be explained by GWs and fitting galaxy rotation curves without dark matter at the
same time. A possible loop hole in this conclusion is that we cannot exclude that
there is another mechanism which carries away the energy from the binary system.
This loop hole will be closed in my third work (P3) [3].

In the limit of a large graviton mass our CGM is interesting since it reduces
to GR. Deviations from GR are exponentially suppressed on macroscopic distance
scales, but become important in the sub-millimeter regime. The reason for this are
the higher derivatives which modify the UV behavior in a way that there is hope
for these theories to be perturbatively renormalizable [41, 42, 43]. Unfortunately,
it seems inevitable that these theories suffer from the Weyl ghost (see [44] or the
discussion in III B in (P2)) leading to negative energies and rendering the vacuum
unstable. But the discussion whether the ghost issue invalidates these theories is
still ongoing and some promising approaches have been investigated and give hope

5Although the classical gravitational field will not be quantized in this work, often we will call
it ”graviton” which is the particle carried by the quantized gravitational field.
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that a solution will be found [45, 46, 47, 48, 49, 50, 51, 45, 52, 53, 54, 44, 52, 55, 56].
To close the loop hole that appears in the analysis of the indirect detection of

GWs with a small graviton mass, in (P3) we investigate the chirp signal measured
in direct detections of GWs by the LIGO/VIRGO Collaboration [57, 58, 59, 60, 61,
62, 63, 64]. Because of measurements it is clear that GWs travel all the way to
Earth and their energy cannot be stored in the near field of the binary source. For
this reason we calculate the chirp of the frequency and the waveform of GWs in
CGMs and compare our results to GR. It turns out that in the small mass case
we cannot reproduce the observed frequency and amplitude evolution in the allowed
parameter space. On top of that, the amplitude is strongly suppressed and decreases
as coalescence is approached. Therefore, CGMs with a small graviton mass can be
ruled out. But in the case of a large mass, predictions are in agreement with GR.
This is because the massive graviton is nondynamical and hence only the massless
graviton travels to the far field. Consequently, modifications to the waveform are
negligible and chirp masses and distance measurements agree with those from GR.

2 Differential Geometry and Gravitation

2.1 Mathematical Setting for Spacetime

We start by introducing a minimal amount of mathematical background and con-
cepts. The key definition underlying all modern physics is the concept of spacetime,
which could be characterized in the following way: Spacetime is a d-dimensional
topological manifold with a smooth atlas carrying an affine connection compati-
ble with a Lorentzian metric and a time orientation satisfying the dynamical field
equations.

To understand this definition, in Appendix A the concept of spacetime based on
the discipline of differential geometry will be developed step-by-step. In the main
text below we will only discuss a sufficient amount of structures and concepts needed
to understand modern theories of gravitation.

2.1.1 Differentiable Manifolds

To describe a theory of physics, we have to introduce some kind of framework to
characterize physical effects. Everyday life guides us to the assumption that we live
in a Universe consisting of three dimensions of space, in which we can move freely in
every direction, and one dimension of time, which elapses just in the future direction
and which we cannot influence. We have an empirical feeling of what is meant by
space, namely the possibility to move, i.e. to change the position in space from
one point to another. This can be done in three directions, which are independent
from each other. We also know how to keep an arrow parallel to a flat surface while
traveling around. Further, the distance traveled in an interval of time provides us
with some feeling of speed. We could go on to describe our Universe in this way,
but it is rather clear that this description of spacetime is not very precise. We
introduced notions like the position and distance in space, independent directions
and an interval of time, which need to be defined in a rigorous way. Fortunately,
it turns out that the mathematical way of describing spacetime does not deviate so



6 2 DIFFERENTIAL GEOMETRY AND GRAVITATION

much from our intuition and hence it is often possible to translate the mathematical
language to concrete pictures of our imagination.

We assume our space to be a differentiable manifold (M, σ,A), which is a con-
nected topological Hausdorff space M equipped with a topology σ and a smooth
atlas A of charts (U, x). (M, σ,A) is locally homeomorphic to Rd, where d < ∞.
This means: ∀p ∈ M: ∃U ⊆ M and a map x =

(
x0, · · · , xd−1

)
: U → Rd,

where x is a homeomorphism from an open subset (open neighborhood) U onto
an open ball in Rd. Points p ∈ M can be represented by their coordinate map
x(p) =

(
x0(p), · · · , xd−1(p)

)
, where x0(p), · · · , xd−1(p) are the coordinate functions

at p.
We further equip the manifoldM with a tangent space TpM (real vector space)

at every point p ∈ M. To define the tangent space, we first need to define the
constituents of the tangent space, namely the tangent vectors. These can be defined
as equivalence classes [γ] of curves γi: (−1, 1) → M with γ(0) = p ∈ M. The
equivalence class is defined by all curves for which (f ◦ γi)′(0) = (f ◦ γj)′(0) holds,
where i 6= j and f : M → R is a smooth (infinitely differentiable) function. Here
the prime denotes the derivative in Rd and is defined in the usual sense. We de-
note the tangent vector at p along the curve γ by vγ,p(f) = (f ◦ γ)′(λ), where λ
parametrizes the curve γ6. Therefore, the tangent space is the space of all tangent
vectors at a point p defined by these equivalence classes. In the following we will use
a more convenient notation for tangent vectors: We write v = vµeµ, where vµ is the
component and eµ is the basis vector. It is common to suppress the basis vectors
in tensor calculations and to work only with the components. Hence, often we just
say tangent vector to the components vµ. Components with upper indices are also
called contravariant vectors.

We can represent the basis vectors in a coordinate basis as partial derivatives
with respect to coordinate functions ∂/∂x0, . . . , ∂/∂xd−1 at the point p ∈ M. This
constitutes a natural basis for the tangent space and turns out to be very convenient
for most calculations. In this basis the components of the tangent vector along a
curve γ(λ) : I ⊆ R → M, where I is an open interval in R, can be written as
vµ = dxµ/dλ. If we assign a tangent vector to every point p ∈M and the transition
between these tangent vectors is smooth7, we speak of a tangent vector field v(x).
In the following for convenience tangent vectors will often just be called vectors.

Along the same line we can define the cotangent space or dual space T∗pM which
contains all cotangent vectors ω = ωµe

µ at the point p ∈M. The components ωµ are
called covariant or dual vectors or also just covectors (also 1-forms). If we represent
the covectors in a coordinate chart, a natural basis is given by the gradients of the
coordinate functions eµ = dxµ. These bases for the tangent and cotangent spaces are
constructed such that eµe

ν = ∂µ (dxν) = δνµ. The action of a covector on a tangent
vector is defined by ω(v) = ωρv

ρ, where ωρ and vρ are the components of ω and v.
From these bases of tangent and cotangent vectors we can build tensors of higher

rank, which are objects with r upper indices and s lower indices

T = T µ1...µr ν1...νseµ1 ⊗ . . .⊗ eµr ⊗ e
ν1 ⊗ . . .⊗ eνs . (1)

6Note that the definition of the tangent vector space via tangent vectors is independent of the
choice of the coordinate map.

7The term ’smooth transition’ between tangent vectors is explained in Appendix A.
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It is obvious that a tensor of rank (1, 0) is a tangent vector and a tensor of rank
(0, 1) is a cotangent vector. Note that we suppress the tensor product between bases
vectors/covectors in the following.

Since any physically reasonable theory must lead to the same predictions inde-
pendent of the coordinate system used, here we present how tensors transform under
general coordinate transformations x → x′(x). The components of tensors of rank
(r, s) transform as

T µ1···µr ν1...νs → T ′µ1...µrν1...νs =
∂x′µ1

∂xρ1
. . .

∂x′µr

∂xρr
∂xσ1

∂x′ν1
. . .

∂xσs

∂x′νs
T ρ1...ρrσ1...σs . (2)

Consequently, the transformation law for the components of tangent vectors is

vµ → v′µ =
∂x′µ

∂xρ
vρ. (3)

Likewise, the components of cotangent vectors transform as

ωµ → ω′µ =
∂xρ

∂x′µ
ωρ. (4)

As vectors and covectors are objects that do not transform under general coordinate
transformations, the transformation law for the bases of tangent and cotangent
vectors has to be

eµ → e′µ =
∂xρ

∂x′µ
eρ (5)

and

eµ → e′µ =
∂x′µ

∂xρ
eρ. (6)

So far, we equipped smooth manifolds with a topology and a smooth atlas. To
speak about straight lines, shortest distances, lengths of vectors or curvature of
spaces additional structure must be given to manifolds. For this aim, in a first step
we introduce the geometric structure.

2.2 Geometric Structure

The importance of geometric structure becomes apparent by realizing that coordi-
nate distances have no meaning in the real world. They are just a choice of our
convenience. The metric tensor field g8,9 is a (0, 2)-tensor field with components
gµν . It is this object which translates a coordinate distance into the distance that
we measure with clocks and meter sticks. A coordinate displacement dx0 leads to a
measured time interval

√
−g00dx

0 and at an instant of time a coordinate displace-
ment dxi leads to measured length dl2 = gijdx

idxj. g00 determines how coordinate
times are related to measured times. It is a (0, 2)-tensor equipped with the following
properties:

1. Symmetry under interchange of indices: gµν = gνµ,

8Note that we will use the symbol g also for the determinant of the metric tensor in Sec. 3
and thereafter. This should not lead to confusion since we will use g as the symbol for the metric
tensor only in the present section.

9Often, we will just say ”metric” since it is obvious that it is a tensor field.
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2. Nondegeneracy: det(gµν) 6= 0.

Because of the second condition it is possible to define the ”inverse” metric gµν10

(which is also symmetric) such that

gµρgρν = δµν . (7)

The metric tensor is also called line element and we will often use the notation

ds2 = gµνdx
µdxν . (8)

We observe that the line element can take negative, zero or positive values. ds2 < 0
is a timelike interval, which means that ds2 determines the proper time τ , that is
the time accumulated during an infinitesimal displacement dxµ. In this case we use
the notation ds2 = −dτ 2. If one describes the motion of objects which travel at the
speed of light, then ds2 = 0, which we call lightlike. Lastly, we speak of spacelike
intervals if ds2 > 0. A very important property of the metric tensor gµν (and its
inverse gµν) is that we can use it to raise or lower indices of (r, s)-tensors

1. Tν1...νs = gν1ρ T
ρ
ν2...νs

= gν2ρ T
ρ

ν1 ν3...νs
= . . .

2. T µ1...µs = gµ1ρ T µ2...µs
ρ = gµ2ρ T µ1 ν3...µs

ρ = . . ..

A special realization of the metric tensor is that of flat Minkowski spacetime.
The Minkowski metric is given by

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (9)

in our sign convention.
Since the metric is a (0, 2)-tensor, it transforms under general coordinate trans-

formations xµ → x′µ(x) as

gµν(x)→ g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x). (10)

We can use this transformation law to make a generic metric tensor gµν equal to the
ηµν at one point of the spacetime

ηµν =
dxρ

dx′µ
dxσ

dx′ν
gρσ. (11)

Since gµν is symmetric, this leads to ten equations for the dxρ/dx′µ. This set of
equations can be solved because we have sixteen of these coefficients. In consequence,
we can always find a local coordinate system with g′µν = ηµν at a point p.

Finally, let us consider geodesics of test particles with respect to gµν . For timelike
motion these are found by the requirement that the proper time functional must be

10Strictly spoken, gµν is not the inverse map to gµν . For details, see Appendix A.
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extremized:

δ

p2∫
p1

dτ = δ

p2∫
p1

√
−gρσ

dxρ

dτ

dxσ

dτ
dτ = 0, (12)

where we paramtetrized the timelike curves by the proper time in the second step.
δ indicates a variation with respect to xµ and p1, p2 ∈M. This leads to the geodesic
equation

d2xµ

dτ 2
+ Γµρσ

dxρ

dτ

dxσ

dτ
, (13)

where
Γµρσ = gµα (∂σgρα + ∂ρgσα − ∂αgρσ) /2 (14)

are the Christoffel symbols, which also appear in the context of the affine structure
in the next section. The curves xµ(τ) defined by eq. (13) are also called shortest
curves. Note that we parametrized the timelike curves by the proper time. But
the geodesic equation is invariant under τ → aτ + b, where a and b are constants.
This means we can use any parameter, which is linearly related to the proper time.
Lightlike curves cannot be parametrized by the proper time, but we can ask if curves
xµ(λ) satisfy the geodesic equation for some parameter λ. The geodesic equation
has the same form, but we cannot use the proper time to parametrize the curves.

To finish this section, let us note that it is always possible to find local coordinates
(at some point p in spacetime) such that, in addition to gµν(p) = ηµν , we have
∂ρgµν(p) = 0. These coordinates are known as locally inertial coordinates, and the
associated basis vectors constitute local inertial frames.

2.3 Affine Structure

The simplest way to motivate the affine structure is given by the concept of parallel
transport. In a flat manifold like R3 (equipped with the standard topology) we
can choose the standard basis pointing in the direction of a Cartesian coordinate
system. This basis is the same in every tangent space TpR3. Considering two
arbitrary vectors, we can simply move one vector to some point on the manifold by
keeping its direction constant and compare the components of the two vectors to
check whether they are parallel or not. If we move a vector v an infinitesimal distance
dxi along some curve xi(λ) on the manifold, we have kept the vector constant if

dxj

dλ
∂jv

i = 0. (15)

Certainly, in a curved manifold the notion of parallelism is more complex. The
bases of the tangent spaces can differ from point to point on the manifold and hence
we cannot just compare the components of the tangent vectors at different points.
To speak about parallelism, the concept of the parallel transport of vectors has to be
introduced. In flat space a partial derivative is a map from (r, s)-tensors to (r, s+1)-
tensors. However, in a curved space the partial derivative transforms under general
coordinate transformations as

∂µv
ν → ∂′µv

′ν =
∂xα

∂x′µ
∂x′ν

∂xβ
∂vβ

∂xα
+
∂xα

∂x′µ
∂2x′ν

∂xα∂xβ
vβ. (16)
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This is obviously not the transformation law of a tensor, which means that this
expression depends on our choice of coordinates. The first term represents the
appropriate transformation law for a (1, 1)-tensor, but the second term makes it
nontensorial. Hence, the partial derivative is not an adequate object to study the
parallel transport of a vector. Fortunately, one can generalize the partial derivative
to a covariant derivative (also affine connection) ∇̄µ11, which is defined to transform
as a tensor and to cancel the second term in eq. (16)

∇̄µvν = vν ;̄µ =
∂vµ

∂xν
+ {νµα}vα, (17)

where the covariant derivative is written as a semicolon in the second step12. {νµα}
are nontensorial objects known as the affine connection coefficients. Their behavior
under general coordinate transformations is given by

{νµα} → {νµα}′ =
∂x′ν

∂xρ
∂xσ

∂x′µ
∂xλ

∂x′α
{ρσλ}+

∂x′ν

∂xβ
∂2xβ

∂x′µ∂x′α
. (18)

Having introduced the covariant derivative it seems natural to generalize the concept
of force-free movement, which is common to us in flat Euclidean spaces. Newton’s
second law in flat three-dimensional space states that a test particle, on which no
net force is acting, will not change its motion. Hence, it is unaccelerated

d2xi

dt2
= 0. (19)

In a flat Minkowski space this can be generalized to

∂2xµ

∂τ 2
= 0, (20)

where τ is the proper time of the particle. Gravitational effects would appear on the
right-hand side of this equation as force terms. The same concept will apply to a
curved spacetime, but now the gravitational effects are not described as forces, but
as the curvature of that spacetime. Hence, a test particle which moves just under
the effects of gravity, but is force-free otherwise, is called freely falling. This can be
described by the vanishing directional covariant derivative of a tangent vector

dxρ

dλ
∇̄ρ
dxµ

dλ
= 0, (21a)

d2xµ

dλ2
+ {µρσ}

dxρ

dλ

dxσ

dλ
= 0 (21b)

along a curve xµ(λ). Curves xµ(λ) defined by eqs. (21a) or (21b) are called straightest
curves. In general, these are different from shortest curves, which we defined in Sec.
2.2. But in GR both definitions coincide as will become clear in Sec. 3.1.

Using the covariant derivative, we can introduce the concept of curvature on a
manifold. This can be defined by parallel transporting of a tangent vector from

11∇̄µ should be understood as the covariant derivative with respect to the arbitrary affine con-
nection coefficients {µνρ}. The symbol ∇µ will be used for the covariant derivative depending only
on the Christoffel symbols defined in eq. (14).

12See Appendix A for more details on the covariant derivative.



2.3 Affine Structure 11

one point to another along two different paths and observing the difference in the
direction of the tangent vectors in their final positions. In a flat space this difference
will be zero, but in a curved space this difference defines the Riemann curvature
tensor [

∇̄µ, ∇̄ν
]
Xρ = −Rρ

σµν

(
{γαβ}

)
Xσ − T σµν

(
{γαβ}

)
∇̄σXρ, (22)

where Rρ
σµν

(
{γαβ}

)
denote the components of the Riemann tensor and T σµν

(
{γαβ}

)
are the components of the torsion tensor, which depend on the affine connection
coefficients {γαβ}. These tensors are defined by

Rρ
µσν

(
{γαβ}

)
≡ −

(
∂σ{λµν} − ∂ν{ρµσ}+ {ρσλ}{

λ
µν} − {

ρ
νλ}{

λ
µσ}
)
, (23)

T ρµν
(
{γαβ}

)
≡ 2{ρ[µν]}, (24)

where the torsion tensor is the antisymmetric part of the affine connection coeffi-
cients. The antisymmetrization is defined by A[µν] = 1

2
(Aµν − Aνµ) for the compo-

nents of an object Aµν .
The Riemann tensor is obviously antisymmetric in the last two indices13

Rρ
µσν

(
{γαβ}

)
= −Rρ

µνσ

(
{γαβ}

)
. (25)

Contracting the first and third index of the Riemann tensor we find the Ricci tensor

Rµν

(
{γαβ}

)
≡ Rλ

µλν

(
{γαβ}

)
= −Rλ

µνλ

(
{γαβ}

)
(26)

= −
(
∂λ{λµν} − ∂ν{λµλ}+ {λλκ}{κµν} − {λνκ}{κµλ}

)
. (27)

We have to be careful, because contracting the first and the second index of the
Riemann tensor would lead to a different Ricci tensor. Contracting again with the
metric tensor results in the Ricci scalar

R
(
gµν , {γαβ}

)
≡ gρσRρσ. (28)

Note: the Riemann tensor and the Ricci tensor can be defined entirely by the
connection, but the Ricci scalar depends on the connection and the metric tensor.

So far, we have not established any relation between the affine connection and
the metric tensor. But we can do so by the introduction of the following objects.
We define the nonmetricity tensor and the contorsion tensor as

Qµαβ ≡ −∇̄µgαβ, (29)

Kµ
αβ ≡

1

2

(
T µαβ − T

µ
β α − T

µ
α β

)
, (30)

where the former is symmetric in the last two indices (Qµαβ = Qµβα) and the latter
is antisymmetric in the first two indices (Kµαβ = −Kαµβ). Using these tensors the
affine connection coefficients decompose into three parts [65, 66]

{µαβ} = Γµαβ +Kµ
αβ + Sµαβ, (31)

13If we choose the affine connection coefficients to be the Christoffel symbols, there are more
symmetry properties defined in eqs. (34a)-(34c).
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where

Sµαβ ≡
1

2
gµρ (Qβαρ +Qαβρ −Qρβα) (32)

is the segmental connection. We observe that the Christoffel symbols Γµαβ appear
as part of the affine connection, and according to eq. (14), they are completely
determined by the metric tensor. Note however, that eq. (14) is not necessarily
integrable, which means that we will not always be able to find a metric tensor
which satisfies eq. (14) for arbitrarily specified Christoffel symbols. In this sense
we can see the metric tensor as more fundamental than the Christoffel symbols. On
the other hand, we do not have to establish this relation between the metric tensor
and the affine connection. One can treat them as independent quantities, which is
known as the Palatini formalism. A brief discussion for the case of GR is given in
Note 17 in Sec. 3.3 or Note 49 in Sec. 6.8.

In the next section we will point out the assumptions on the affine as well on the
geometric structure which underlie the spacetime of GR. Besides that, in Sec. 6.1
we will introduce theories which have a different geometric structure than GR.

3 General Relativity

After this brief introduction into the mathematical concepts of differential geome-
try in the previous chapter, we are now able to introduce general relativity as the
standard theory of gravity. The idea of this thesis is to first understand GWs in
GR and then to transfer this knowledge to a class of alternative models of gravity
to test their validity.

We discuss the underlying geometric and affine structure and describe properties
of the curvature tensors in Sec. 3.1. After that, in Sec. 3.2 we make use of Lovelock’s
theorem as a unique method to find the Einstein-Hilbert action. On the basis of this
theorem we will classify different theories of modified gravity in Chap. 6. In Sec.
3.3 we use the principle of least action to derive the Einstein field equations (EFE),
which are the field equations for the metric tensor. The Newtonian limit of GR will
be derived in Sec. 3.4 and in Sec. 3.5 we present the static spherically symmetric
solutions of the EFE, the Schwarzschild metric. In the discussion of GW emission
we will need Kepler’s third law in the Newtonian limit, and hence we discuss it in
Sec. 3.6.

3.1 Levi-Civita Connection

The structure of GR is defined by two conditions on the torsion and nonmetricity
tensor:

1. vanishing torsion T µνρ = 0,

2. metric compatibility: Qρµν = 0.

These two properties define the affine connection uniquely. Often it is called Levi-
Civita connection, which we denote by ∇µ. The connection coefficients in eq. (31)
are completely determined by the Christoffel symbols {µνρ} = Γµνρ. Hence, in GR
the affine connection and the Christoffel symbols contain the same information.
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As explained before, in GR the Levi-Civita connection and the metric tensor are
connected and hence we use the metric tensor as the fundamental object. Note that
the equation for straightest curves given in eq. (21b) reduces to

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0, (33)

and thus straightest curves and shortest curves coincide in GR.
For the Levi-Civita connection the following additional symmetry properties of

the curvature tensors hold true:

Rµνρσ = Rρσµν , (34a)

Rµνρσ = −Rνµρσ = −Rµνσρ = Rνµσρ, (34b)

Rµνρσ +Rµσνρ +Rµρσν = 0. (34c)

The Ricci tensor is symmetric
Rµν = Rνµ (35)

and unique due to its antisymmetry properties of the Riemann tensor. But not all
the components of the Riemann tensor are independent. The number of independent
components in d dimensions is [10]

Cd =
1

12
d2
(
d2 − 1

)
. (36)

In one dimension the Riemann tensor always vanishes. In two dimensions the cur-
vature is just described by the Ricci scalar (Cd = 1) and in three dimensions by
the Ricci tensor (Cd = 6). Only in four or more than four dimensions the Rie-
mann tensor has to be invoked to characterize curvature completely. It has twenty
independent components, whereas the Ricci tensor has only ten.

It turns out to be convenient to decompose the Riemann tensor into terms de-
pending on the Ricci tensor, the Ricci scalar and the Weyl tensor (conformal tensor)
Cµνρσ. For d ≥ 3 we find [10]

Rµνρσ ≡
2

d− 2

(
gµ[ρRνσ] − gν[ρRµσ]

)
−

2gµ[ρgνσ]

(d− 1)(d− 2)
R + Cµνρσ. (37)

The Weyl tensor has the same symmetry properties as the Riemann tensor and
additionally, it represents the traceless part of the Riemann tensor

Cρ
µρσ = 0. (38)

Note that the Weyl tensor has d(d + 1)(d + 2)(d− 3)/12 independent components.
Hence, for d = 3 the Weyl tensor vanishes and for d = 4 it has ten independent
components. This proves that the Weyl tensor and the Ricci tensor each contribute
ten independent components to the twenty independent components of the Riemann
tensor in four-dimensional spacetimes.

In addition to the algebraic identities in eqs. (34a)-(34c) there are the differential
Bianchi identities given by

Rµνρσ;λ +Rµνλρ;σ +Rµνσλ;ρ = 0, (39)
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where a semicolon denotes a covariant derivative with respect to the Christoffel
symbols. For later use let us also present the contracted Bianchi identities

Rµν;ρ −Rµρ;ν +Rσ
µνρ;σ = 0, (40a)(

Rρµ − 1

2
gρµR

)
;ρ

= 0. (40b)

3.2 Lovelock’s Theorem

In the previous section we defined the geometric setting and introduced the addi-
tional symmetries of the curvature tensors in GR. As a next step we now derive
the dynamics of spacetime determined by the field equations for the metric tensor.
A very efficient way is to make use of Lovelock’s theorem [67, 68, 69], which leads
uniquely (up to topological terms, which do not contribute to the field equations
(see [66])) to the action of GR. A version of Lovelock’s theorem is given by the
following conditions on the local action for gravity [69]:

L1: spacetime is four dimensional,

L2: the field equations for the metric are second-order partial differential equa-
tions,

L3: the action is diffeomorphism invariant, and

L4: no other field than the helicity-214 metric tensor enters the gravitational
action.

The need for L1 and L2 is obvious since GR is a theory in four spacetime dimension,
and as we will see, the EFE are second-order partial differential equations.

L3 is related to the fact that in GR the metric tensor is a completely dynamical
object determined by the matter content of the theory. This means it contains no
fixed prior geometry. Prior geometry denotes any aspect of a theory, which does not
change when the distribution of gravitational sources is changed, see Sec. 17.6 in
[4]. In GR diffeomorphism invariance is equivalent to general coordinate invariance
(or general covariance) as the metric is dynamical and there is no prior geometry.
For details, see [70]15 or Appendix B of [5].

To discuss L4 it is useful to introduce the notions of gravity fields and matter
fields. Gravity fields couple to the curvature tensors and are sourced by energy and
momentum. By definition, the metric tensor is a gravity field since it is the field out
of which curvature tensors are constructed. However, matter fields, e.g. standard
model Dirac spinors, appear in the matter action and do not couple to energy
and momentum or to the curvature tensors. L3 and the L4 in connection lead to
Einstein’s equivalence principle. This means test particles move on geodesics in a
curved spacetime, i.e. their motion is independent of their mass and composition,
and nongravitational physics in a local Lorentz frame is Poincaré invariant. But
actually, L4 is even stronger, since it does not allow for any other gravity field in
the action. For Einstein’s equivalence principle it would be enough that no other

14The definition of helicity-2 is given in Appendix E.
15This work makes L3 more precise: we demand diffeomorphism invariance, but simultaneously

the theory must not be equivalent to any theory which is non-diffeomorphism invariant.
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field than the metric enters the gravitational action and the matter action at the
same time16. In Chap. 6 we will see illustrative examples of theories which violate
the conditions L1 to L4.

Another important class of theories is found if we drop L1 and L2, and modify
L4 to

L4’: No other field than the metric couples to the matter fields and at the
same time enters the gravitational action (Einstein’s equivalence principle).

This results at the notion of metric theories specified by the following action

I = IG[gµν , ∂ρgµν , ∂ρ∂σgµν , . . . , S, Aµ, Bµν , . . .] + IM [gµν , ∂ρgµν , ψ], (41)

where IG is the gravitational action, S is a scalar field, Aµ is a vector field, Bµν

is a (0, 2)-tensor field and ψ collectively denotes the standard matter fields. L4’
represents the concept commonly known as minimally-coupling. We will discuss
this briefly in Sec. 6.2.

Before closing this section, let us note that the conditions on metric theories can
also be phrased as [16]:

1. the spacetime is endowed with a symmetric metric,

2. the trajectories of freely-falling test bodies are geodesics of that metric, and

3. in local Lorentz reference frames, the nongravitational laws of physics are those
of special relativity,

which emphasizes that metric theories satisfy Einstein’s equivalence principle.

3.3 Einstein Field Equations

Lovelock’s theorem leads to the Einstein-Hilbert action (up to topological terms)

I = IEH[gµν , ∂ρgµν , ∂ρ∂σgµν ] + IM[gµν , ∂ρgµν , ψ]

=
1

16πG

∫
dx4
√
−g (−R + 2Λ) +

∫
d4x
√
−gLM[gµν , ∂ρgµν , ψ], (42)

where G is Newton’s constant, IM is the matter action and LM[gµν , ∂ρgµν , ψ] is the
minimally coupled Lagrange density of the standard model with ψ representing
the collection of matter fields coupling only to the metric tensor field. Variation
with respect to the metric tensor field gµν results in the EFE17, which are the field

16Empirically the only other theory consistent with the strong equivalence principle is Nord-
strøm’s conformally-flat scalar theory [13], which has been ruled out by experiment. In this theory
only the metric tensor enters the gravitational action. But Nordstrøm’s theory violates L3 since
it is based on prior geometry; see Sec. 17.6 of [4]. This indicates, although there is no rigorous
proof, that condition L4 is a necessary condition for the strong equivalence principle.

17Another way to derive the EFE is the Palatini formalism, which treats the metric and
the connection as independent objects. The Einstein-Hilbert action then becomes IEH =∫
d4x
√
−ggµνRµν [Γ], where the Ricci tensor is constructed solely from the connection, as in the

expression in eq. (27). Then, the EFE are found from the variation with respect to the metric and
the relation of the Ricci tensor to the metric is implied by the field equations for the connection.
Hence, in GR both methods are equivalent, but in theories of modified gravity both methods can
lead to different results.
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equations for the metric tensor field,

Gµν ≡ Rµν −
1

2
gµνR = −8πGTµν + Λgµν , (43)

where Gµν is the Einstein tensor. The EFE are second-order nonlinear (but linear
in second derivatives) partial differential equations, and the nonlinearity is the rea-
son for the gravitational field carrying energy and momentum itself. This will be
explained in Sec. 5.3. Tµν is the (Hilbert) matter energy-momentum tensor defined
by

T µν ≡ 2

(−g)1/2

δIM

δgµν
. (44)

We observe that this energy-momentum tensor is symmetric in µ and ν18,19. The
Einstein tensor and hence also the matter energy-momentum tensor are covariantly
conserved

Gρ
µ;ρ = T ρµ;ρ = 0 (45)

as can be taken from eq. (40b)20. For completeness, we contract eq. (43) with the
metric tensor and get

R = 8πGT − 4Λ, (46)

which is an algebraic constraint equation for the Ricci scalar. This means that is
nondynamical in GR. In Chap. 6 we will see examples in which the Ricci scalar
represents a dynamical dof.

3.4 Newtonian Limit

Despite the necessity of relativistic effects to explain several phenomena on SS or
larger distance scales, experiments show that NG is an adequate approximation to
describe gravity in the regime of weak gravitational effects and relative velocities
that are small compared to the speed of light. Since we use c = 1, the last condition
translates to v � 1. Systems satisfying these conditions are said to be in the
Newtonian limit. For a viable theory of gravity it is mandatory to reduce to NG in
the Newtonian limit.

To prove this for GR we look at the geodesic equation (cf. eq. (21b)) for a test
particle in a gravitational field on a curve xµ(τ) parametrized by the proper time τ .
We make the following assumptions on the system:

1. The test particle is slowly moving: dxi/dτ � 1.

2. The gravitational field is static: ∂0gµν = 0.

3. The gravitational field is weak: gµν = ηµν + hµν , where ηµν is the Minkowski
metric and |hµν | � 1.

18The matter energy-momentum tensor contains the energy density T00, the energy flux density
across the xi surface Ti0, the i-th component of the 3-momentum flux density T0i and the i-th
component of the 3-momentum flux across the xj surface Tij .

19In Sec. 5.3.2 we will see that the canonical energy-momentum tensor defined by Noether’s
theorem is not necessarily symmetric.

20The covariant conservation of the matter energy-momentum tensor also follows from Einstein’s
equivalence principle, if the field equations for matter fields reduce locally to the same form as in
flat Minkowski spacetime.
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To first order in hµν the inverse of the metric tensor is defined by

gµν = ηµν − hµν . (47)

Hence, we can raise and lower indices with the Minkowski metric.
The first condition means that spatial velocities are small compared to the speed

of light. The second condition demands that the metric tensor has no explicit
dependence on the time coordinate. In the last requirement we introduced the metric
perturbation hµν , which characterizes the small deviation of the metric tensor from
a flat Minkowski spacetime.

Inserting these assumptions into eq. (21b), using eq. (14) and keeping only
terms up to first order in hµν leads to

dt2

dτ 2
= 0, (48a)

d2xi
dt2

=
1

2
∂ih00, (48b)

which are the equations for the time and space components, respectively. From NG
we know that

d2xi
dt2

= −∂iΦ, (49)

where Φ = −h00/2 + const. is the Newtonian gravitational potential. Applying the
Newtonian limit to the 00-component of the EFE we recover the Poisson equation

∇2h00 = −8πGρ, (50)

where ρ is the mass density representing the 00-component of the matter energy-
momentum tensor in the Newtonian limit. The gravitational potential at a distance
r from the center of a spherical symmetric object of mass m and of radius R < r is
given by

Φ(r > R) = −Gm
r
. (51)

Therefore, by demanding that the coordinate system asymptotes to a Minkowskian
coordinate system for r →∞ we obtain

g00 = − (1 + 2Φ) . (52)

3.5 Schwarzschild Solution

The Schwarzschild solution is a very important solution to the EFE. It is the vacuum
solution for static and spherically symmetric (isotropic) gravitational fields. Static
means that it must be possible to find a coordinate system, such that the metric
tensor is independent of the time coordinate and that time-space cross terms (dtdxi+
dxidt) vanish, since they are not invariant under time reversal, which indicates that
these terms are not independent of time. Imposing spherical symmetry in spherical
coordinates (t, r, θ, φ) requires the angular part to be given by dΩ = dr2 + r2dθ2 +
r2 sin2 θdφ2 and it becomes even more obvious that cross terms dθdt and dφdt have
to vanish, because otherwise the speed of light would depend on θ and φ. Hence,
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we can write the line element as

ds2 = −e2D(r)dt2 + e2E(r)dr2 + e2F (r)r2dΩ2, (53)

where D,E and F are arbitrary functions of

r ≡ (x · x)1/2. (54)

The coefficients are chosen to be exponential functions in order to keep the signature
of the metric unchanged. Before we insert eq. (53) into the EFE and solve for
F,E and D, we are free to reparametrize the metric coefficients by defining new
coordinates. As a result, the line element takes the simpler form

ds2 = −e2D(r)dt2 + e2E(r)dr2 + r2dΩ2, (55)

where the exponential function in the last term disappeared. For this metric the
Ricci tensor becomes

R00 = −e2(D−E)

(
∂2
rD + (∂rD)2 − ∂rD∂rE +

2

r
∂rD

)
, (56a)

Rrr = ∂2
rD + (∂rD)2 − ∂rD∂rE −

2

r
∂rE, (56b)

Rθθ = −e−2E [r(∂rE − ∂rD)− 1]− 1, (56c)

Rφφ = − sin2 θRθθ. (56d)

Solving Rµν = 0 and rescaling the origin of time leads to the Schwarzschild metric

ds2 = −
(

1− Rs

r

)
dt2 +

(
1− Rs

r

)−1

dr2 + r2dΩ2, (57)

where Rs is an integration constant. In the Newtonian limit, g00 has to reduce to
eq. (52) and hence we can identify

Rs = 2GM, (58)

which is called the Schwarzschild radius. Especially, in the discussion of black holes
this is a very important length scale. It is easy to see that grr diverges if r approaches
the Schwarzschild radius meaning radial distances blow up. However, one can show
that this is just a relict of the choice of coordinates and by choosing appropriate
coordinates the line element stays finite. Nevertheless, the Schwarzschild radius
marks an interesting surface in Schwarzschild spacetime. Nothing that falls inside
this radius, not even light, can escape from it. For this reason, the Schwarzschild
radius is also called event horizon and objects with a Schwarzschild radius larger
than the object itself are called black holes.

Note however that at r = 0 Schwarzschild spacetime has a real singularity that
cannot be transformed away by a suitable choice of coordinates. For a meaning-
ful statement about spacetime singularities we should not look at the coordinate-
dependent metric components, but on curvature itself. In particular, curvature
scalars signal the existence of real singularities since they do not depend on the
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coordinates. For Schwarzschild spacetime we see that the Kretschmann scalar

RµνρσRµνρσ =
48G2M2

r6
(59)

blows up indicating that r = 0 represents an honest singularity.
The interpretation of M in the Newtonian limit is just the conventional Newto-

nian mass leading to

ds2 = − (1 + 2Φ) dt2 + (1− 2Φ)−1 dr2 + r2dΩ2, (60)

where Φ is the gravitational potential defined in eq. (51). But for strong fields
M also includes gravitational binding energies. Note also that if M vanishes, one
recovers Minkowski spacetime. This makes sense, since Minkowski spacetime is pure
vacuum. Besides that, also the limit r → ∞ leads to Minkowski spacetime. This
property is called asymptotic flatness.

To finish this section about static spherical solutions of the EFE, let us briefly
discuss Birkoff’s theorem [71]. It states that even if one starts with a time-dependent
spherically symmetric line element of the form

ds2 = −A(t, r)dt2 +B(t, r)(dr2 + r2dΩ2) + 2C(t, r)dtdr, (61)

where A,B and C are some functions on the coordinates, the Schwarzschild metric
is the unique vacuum solution. Although one starts just with spherical symmetry,
the time-dependence drops out in the final result. One can view this as the relativis-
tic generalization of Newton’s theorem which says that the external gravitational
potential of a spherical mass (viz. eq. (51)) does not depend on the size of the mass.
Hence, even if the mass shrinks or expands, the metric stays time-independent.

3.6 Kepler’s Third Law

In this section we derive Kepler’s third law for a binary system on a circular path
in the center-of-mass frame, which is discussed in more detail in Appendix D. In
the center-of-mass frame, the two body system reduces effectively to a one body
description of an object with reduced mass µ = m1m2/(m1 + m2) in the central
potential of an object with a total mass m = m1 + m2. To have a bound orbit the
gravitational force exerted on the test particle has to be balanced by the centripetal
force and hence we can write

µv2

R
= E ′pot(R), (62)

where v is the velocity of the test particle, E ′pot(R) = ∂REpot(R) is the derivative of
the gravitational potential energy Epot with respect to distance between the objects
R and

Epot = −Gµm
R

(63)

is the gravitational potential energy. Using v = 2πR/P , where P is the period for
one orbit, and the time derivative of eq. (62) one can write

Ṗ

P
=

Ṙ

2R
−

Ė ′pot

2E ′pot

, (64)
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where the dot is the derivative with respect to time. Now we insert eq. (51) into
eq. (64) and find

Ṗ

P
= −3

2

|Eorbit|·

|Eorbit|
, (65)

where EGR is the orbital energy

Eorbit = Ekin + Epot = −Gµm
2R

. (66)

4 Gravitational Waves

So far, we introduced the field equations of GR as nonlinear second-order partial
differential equations for the metric tensor field. Without any approximation these
equations are very complicated. We have seen in Sec. 3.5 that we can find exact
solutions if we consider symmetries, like rotation invariance and stationarity which
lead to the Schwarzschild solution. Besides that, most of the classical tests of GR
are on the geodesics in Schwarzschild spacetime [16], but if we give up rotation
invariance and stationarity, it is possible to study more complicated systems, which
emit gravitational radiation. GWs are by definition weak gravitational fields. Hence,
in Sec. 4.1 we derive the weak field expansion of the EFE, which is less restrictive
than the Newtonian limit. In Sec. 4.1 we only keep the weak field approximation,
but allow for relativistic motion of test particles. We will use this expansion to
define the linearized theory and to calculate GWs in vacuum in Sec. 4.2 as well
as GWs produced by quadrupole sources, like black hole or stellar binary systems
in Sec. 4.3. For this reason, we need to fix the coordinate freedom to get rid of
unphysical dofs21.

4.1 Expansion of the Einstein Field Equations

In this section we apply a weak field expansion to the EFE as the full analytic
solution is too complicated and not known. We assume that it is possible to find
a coordinate system in which the metric can be separated into a background part
gBµν(x) and a small perturbation hµν(x) with |hµν | � 1. We write

gµν = gBµν + hµν . (67)

Further, we assume that the coordinates are chosen such that gBµν = O(1) and we
introduce the notation h ≡ O(|hµν |)22.

The condition |hµν | � 1 does not unambiguously fix which part of gµν belongs
to the background and which to the perturbation. In addition to this condition,
we have to assume that the metric perturbation should only represent the GWs
and not x-dependent parts of the Newtonian potential, for instance. Then it is

21The necessity to fix gauge dofs seems to be very clear after the development of gauge theories
in particle physics. But in the beginnings of GR it was not clear at all that GWs even do exist. The
reason for this was the confusion about the coordinate freedom and which coordinates to choose
to calculate GWs. For a short history on this discussion, see [72].

22The inverse metric is given by gµν = gµνB −hµν can be derived from the condition gµρg
ρν = δνµ.

Further, note that indices can be pulled up or down with the background metric if we work to a
certain order in hµν .
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clear that we are able to distinguish the metric perturbation from the background
metric by their scale of change in time and space. We define the background to
be a smooth, slowly varying function, whereas the metric perturbation oscillates
very rapidly compared to the background metric. Thus, we introduce a typical
frequency ωB for the background metric and a characteristic frequency ω for the
metric perturbation. Then, the condition

ω � ωB (68)

fixes hµν for the chosen coordinate system. Analogously for the spatial scales we get

λ̄� LB, (69)

where LB is the spatial scale of the background metric and λ̄ is the reduced wave-
length of the metric perturbation. To distinguish GWs from the background it is
enough that only one condition holds true23. Hence, the following analysis can be
either done with eq. (68) or with eq. (69) and for definiteness we will work with the
frequency condition in eq. (68), which defines a small parameter ωB/ω (analogously
eq. (69) defines λ̄/LB).

The first step to expand the EFE is to insert eq. (67) in eq. (43) which leads to

GB
µν +G(1)

µν +G(2)
µν + h3 = −8πGTµν , (70)

where GB
µν is the Einstein tensor constructed from gBµν , G

(1)
µν depends linearly on hµν

and G
(2)
µν is of second order in hµν . We dropped the cosmological constant term,

because effects of the cosmological expansion are assumed to be negligible for the
analysis of GWs. Besides that, we are not interested in terms ∼ h3, because these are
self-interactions of the gravitational field, which are source terms for nonlinearities
of hµν .

Now, we simplify eq. (70) by decomposing it into an equation for low frequencies
and for high frequencies

GB
µν = −8πG [Tµν ]

low −
[
G(2)
µν

]low
, (71a)

G(1)
µν = −8πG [Tµν ]

high −
[
G(2)
µν

]high
, (71b)

where ”low” and ”high” indicate the low and high frequency parts (analogously

we can do this separation for long and short wavelengths). We shifted G
(2)
µν to the

right-hand side, because its low-frequency part acts effectively as a source term for
the background metric. This will become clear in Sec. 5.3. The high-frequency
part is a source term for the metric perturbation, which will be neglected when we
study the linearized theory in Sec. 4.2. Note that by definition GB

µν only carries

low frequencies, whereas G
(1)
µν contains only high-frequency terms. Since G

(2)
µν is

quadratic in hµν , it contains low and high frequency parts. This is because two
rapidly oscillating modes with nearly identical frequencies could interfere such that
their combination oscillates slowly.

In eq. (71a) and eq. (71b) we equate terms of different order in hµν . This

23Note: the relation between λ̄ and ω will be determined by the wave equation for hµν (see eq.
(82)), but the relation between LB and ωB is undetermined.
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must be compensated by the other small parameter ωB/ω. Using ∂gBµν ∝ ωB and
∂hµν ∝ ωh the low-frequency equation (71a) yields the relation

ω2
B ∼ ω2

M + ω2h2, (72)

where ωM is the characteristic frequency of the slowly oscillating matter contribu-
tion. In vacuum this results in

h ∼ ωB/ω. (73)

On the other hand, if the background curvature is dominated by matter, we get

h� ωB/ω. (74)

From eq. (73) we learn that the condition h � 1 is mandatory for the definition
of GWs, because if we had h = O(1), we cannot distinguish the perturbation from
the background since eqs. (73) and (74) lead to O(ωB) = O(ω). Further, a flat
background metric does not oscillate at all, hence ωB = 0 implies h � 0. But this
is in contradiction with the assumption that hµν has a finite value and thus, the
expansion in hµν does not work in the linearized theory in flat spacetime.

4.2 Linearized Theory

The discussion in the previous section has shown that a flat background metric
is inconsistent if we expand to second order (or higher) in hµν . But if the low-
frequency part of the matter energy-momentum tensor is negligible with respect
to the background Einstein tensor and we neglect the influence of GWs on the
background metric, the solution of eq. (71a) is Minkowski spacetime. Besides that,

we have G
(1)
µν ∼ ω2h, whereas

[
G

(2)
µν

]high

∼ ω2h2. Hence,
[
G

(2)
µν

]high

� G
(1)
µν and we

can neglect the second-order term. Then, eq. (67) and eq. (71b) can be written as

gµν = ηµν + hµν , (75)

G(1)
µν = −8πG [Tµν ]

high . (76)

This approximation is called linearized theory and will be our starting point for the
analysis of GWs.

Having fixed the background spacetime to flat Minkowski space, it is easy to
discuss the dofs carried by the metric perturbation. In general, hµν has sixteen
components, but as it is symmetric only ten of them are independent. Moreover,
as a consequence of the invariance of GR under general coordinate transformations
xµ → x′µ(xµ), the metric perturbation contains unphysical dofs. But as the condi-
tion |hµν | � 1 only holds for specific coordinate systems, we cannot use arbitrary
coordinate transformations, but have to restrict to

xµ → xµ + ξµ(x), (77)

where |∂µξν | has to be of order |hµν |. We call these transformations infinitesimal
coordinate transformation. Inserting eq. (77) and eq. (75) into eq. (10) we obtain
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the transformation law for the metric perturbation to first order in hµν

hµν(x)→ h′µν(x
′) = hµν(x)− 2∂(µξν), (78)

where the symmetrization in the last term is defined by A(µν) = 1
2
(Aµν + Aνµ) for

the components of an objects Aµν . Note that h′µν and x′ are mere labels for the
transformed quantities and thus, as a choice of convenience, we can rename x′ as x
and h′µν as hµν .

Using eq. (78) in the linearized version of the Riemann tensor given in eq. (B.4a)
we find that it does not transform under infinitesimal coordinate transformations.
Thus, it is obvious that the linearized EFE are also invariant under eq. (78). Hence,
we use the four arbitrary functions ξµ to fix four components of hµν . This reduces
the number of independent dof to six, but does not fix the coordinate freedom
completely. We will make use of the residual coordinate freedom below and reduce
the number of independent components of hµν to two. A suitable choice is the
harmonic gauge condition24

∂ρhρµ =
1

2
∂µh, (79)

where h = ηρσhρσ is the trace of the metric perturbation. It is convenient to intro-
duce the trace-reversed metric perturbation

h̄µν = hµν −
1

2
ηµνh, (80)

where the trace is given by h̄ = −h. In this notation the harmonic gauge condition
can be written as

∂ρh̄ρν = 0. (81)

Inserting the linearized Ricci tensor and Ricci scalar given in eqs. (B.4b) and
(B.4c) into eq. (76) and using the harmonic gauge condition we find

�h̄µν = −16πGTµν , (82)

were we used the simplified notation [Tµν ]
high = Tµν and � = ∂µ∂

µ is the flat space
d’Alembert operator. This represents a wave equation for the trace-reversed metric
perturbation and justifies that we identify the metric perturbation with GWs.

Note that from eqs. (81) and (82) the linearized conservation of the matter
energy-momentum tensor follows

∂ρTρµ = 0. (83)

As a direct consequence of this we will see in Sec. 5.2 that there is no monopole or
dipole radiation in the linearized GR.

As mentioned above, the freedom of the choice of coordinates is not completely
fixed yet. Thus, we can perform another infinitesimal coordinate transformation
xµ → x′µ = x′µ + ζµ. The trace-reversed metric perturbation transforms as

h̄µν(x)→ h̄′µν(x
′) = h̄µν(x) + ζµν , (84)

24Also called Lorenz gauge, Hilbert gauge or De Donder gauge.
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where ζµν = −2∂(µζν) + ηµν∂ρζ
ρ. We do not want to spoil the harmonic gauge

condition and since the derivative of the metric perturbation transforms as

∂ρh̄ρν →
(
∂ρh̄ρν

)′
= ∂ρh̄ρν −�ζν , (85)

we have to demand �ζν = 0. As a consequence, we have �ζµν = 0 which means the
left-hand side of eq. (82) is invariant under infinitesimal coordinate transformations.
Also, the right-hand side is invariant because we assume that the matter energy-
momentum tensor itself is already of order hµν and hence does not transform to
linear order in hµν . In vacuum h̄µν and ζµ both obey homogeneous wave equations
and thus have the same functional form of a plane wave. Hence, we can use ζµ to
fix four components of h̄′µν : We can use ζ0 to set h̄′ = 0, which immediately leads
to h̄′µν = h′µν . Further, choosing the three functions ζi appropriately we can set h′0i
to zero. Then the harmonic gauge condition for the zeroth component reads

∂0h′00 = 0. (86)

This proves that h′00 is time-independent and in vacuum the 00-component of eq.
(82) becomes ∆h′00 = 0. This is a Poisson equation and thus h′00 represents a
static gravitational potential. Therefore, for the analysis of GWs we set h′00 = 0.
For convenience, again we will drop the primes on hµν in the following. Collecting
this set of conditions on the metric perturbation we find the so-called transverse-
traceless (TT) gauge:

hTT
0i = 0, hTT = 0, ∂ihTT

ij = 0, (87)

where ”TT” indicates that the metric perturbation is given in the TT gauge. In
this gauge the independent components of the metric perturbation are reduced to
two. This represents the fact that GWs are massless waves with two independent
helicity states moving at the speed of light. For details on this, see Appendix E.

The vacuum solution of eq. (82) in TT gauge is given by plane waves

hTTij = εij(k)eikρx
ρ

, (88)

where εij(k) is the polarization tensor and kµ = (ω/c,k) is the four-wavevector with
|k| = ω/c. As usual we have to take the real part at the end of the calculation to
get physical results. In terms of εij and kµ the TT gauge conditions read

ε0i = 0, ηijεij = 0, kiεij = 0. (89)

As a consequence of the third condition, choosing a certain direction n = k/k for
the plane wave, the only nonzero components are in the plane perpendicular to n.

For later use we introduce the Lambda tensor Λijkl(n) which is the projector into
the TT gauge. For a plane wave in the n direction in the harmonic gauge it leads
to hTTij = Λijklh

kl and we can write it as

Λijkl(n) = δikδjl −
1

2
δijδkl − njnlδik − ninkδjl

+
1

2
nknlδij +

1

2
ninjδkl +

1

2
ninjnknl, (90)
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where ni is the i-th component of n. The Lambda tensor has the following properties:

Λijkl = Λklij, (91a)

Λijmn = ΛijklΛ
kl
mn, (91b)

Λi
ikl = Λ k

ij k = 0, (91c)

niΛijkl = 0, (91d)

njΛijkl = 0. (91e)

4.3 Solution with a Source

To study GWs created from binary systems we have to solve eq. (82) for a nonva-
nishing Tµν . Using the Fourier expansion of the trace-reversed metric perturbation
we can convert time derivatives to frequencies, but we keep spatial derivatives25.
Then eq. (82) reads (

ω2 +∇2
) ˜̄hµν(ω,x) = −16πGT̃µν(ω,x). (92)

Now, we can solve eq. (92) by the methods of Green’s function. This means we
write the metric perturbation in the form

h̄µν = −16πG

∫
d4x′G(x− x′)Tµν(x′), (93)

where G(x− x′) is the Green’s function defined by

�G(x− x′) = δ(x− x′). (94)

We can rewrite eq. (93) as

h̄µν = −16πG

∫
d3x′

∫
dω

2π
G̃(ω,x− x′)T̃µν(ω,x

′)e−iω(t−t′), (95)

were the frequency domain Green’s function is given by

G̃(ω,x− x′) =
1

(2π)3

∫
d3k

eik(x−x′)

ω2 − k2

=
−i

2 (2π)2 |x− x′|
lim
δ→0+

∫ ∞
−∞

dk
k

(ω + iδ)2 − k2

(
eik|x−x

′| − e−ik|x−x′|
)
,

(96)

where k ≡ |k| and δ > 0 is a small parameter to shift the poles into the complex
plane. This parameter is introduced to deal with the ambiguity that eq. (82) is
invariant under time-reversal meaning that it has two different kinds of solutions.
There are retarded solutions which respect causality and represent outgoing waves.
However, there are also advanced solutions corresponding to unphysical incoming

25The following calculation can also be done keeping the time derivatives. We present it in
frequency space, because it turns out that the same calculation for a massive metric perturbation
is much simpler if the source is harmonic. We will use this explicitly in (P1) and (P2).
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waves from past null infinity26, which we want to avoid27. Hence, we have chosen δ
in order to obtain the retarded propagator. To find the last expression in eq. (96)
we have integrated over the angles and extended the k-integral to −∞. The poles
are determined by k2 = (ω + iδ)2. Writing k = kR + ikI , we get to first order in δ

kR = ±|ω|, (97a)

kI = ±ωδ
|ω|

. (97b)

Hence, we have to distinguish two cases:

k = ±ω ± iδ for ω > 0, (98a)

k = ∓ω ∓ iδ for ω < 0. (98b)

Thus, the retarded Green’s function is given by one pole shifted in the upper half
and one pole shifted in the lower half of the complex k-plane. The integral along the
path in the complex plane must vanish and hence for the first exponential function
in eq. (96) we have to close the contour in the upper complex plane. This means
only the pole k1 = ω + iδ contributes. For the second exponential function the
contour has to be closed in the lower half-plane and thus only the pole k2 = −ω− iδ
contributes.

Complex integration in the k-plane leads to

G̃R(ω,x− x′) =
−i

(2π)2

2πi

2|x− x′|

{[
−1

2
eiω|x−x

′| − (−1)

(
−1

2
eiω|x−x

′|
)]

θ(ω)

+

[
−1

2
eiω|x−x

′| − (−1)

(
−1

2
eiω|x−x

′|
)]

θ(−ω)

}
= − eiω|x−x

′|

4π|x− x′|
, (99)

where θ(x) is the Heaviside step function. We can simplify eq. (99) by introducing
the far zone (radiation zone) approximation r � |x′|, where r is the distance from
the observer to the source. Thereby, we can write |x − x′| = r − x′ · n + O(R2/r),
where n is the spatial unit vector pointing from the source to the observer and R
is the typical length scale of the source. If we use the far zone approximation in
eq. (99) and keep only the first order in |x′|/r in the exponent and drop terms
∼ O(1/r2), we obtain

G(ω,x− x′) ≈ −e
−iω(r−x′·n)

4πr
. (100)

Inserting eq. (100) into eq. (95) leads to

h̄µν(t,x) = −4G

r

∫
d3x′

∫
dω

2π
e−iω(r−x′·n)Tµν(ω,x

′). (101)

Note that we have not yet made any assumption on the motion of the source and

26This means that no GWs are created at t = −∞ and r =∞ and travel with the speed of light
in the direction of the source.

27This can also be achieved by imposing the Kirchoff-Sommerfeld ”no-incoming-radiation”
boundary condition, see [73].
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thereby eq. (101) is valid for relativistic sources.

5 Gravitational Waves from a Binary System

The detection of the famous Hulse-Taylor binary pulsar PSR1913+16 in 1974 opened
up the opportunity for very precise tests on GR, even in the general relativistic
regime. In this chapter we explain how to use these systems to indirectly test the
existence of GWs. For this reason we give a brief introduction to binary pulsars in
Sec. 5.1. Making use of the results of Chap. 4 we present the multipole expansion
for GWs in Sec. 5.2. We discuss which assumptions and idealizations on the system
we make and why we can use this to make substantiated statements about GW
emission. Using the quadrupole approximation, we calculate the GWs produced by
an idealized binary system. An essential next step is to calculate the energy carried
by GWs, which will be done in Sec. 5.3 by two different methods. We verify that
under certain assumptions both methods give the same result. Lastly, in Sec. 5.4
we use the energy-momentum tensor of GWs in connection with the GWs produced
from binary systems and find the radiated power. The entire analysis will be done
in the theory of GR with the purpose to compare the results found in this chapter
to the predictions made by CGMs. This comparison will be presented in (P2) and
(P3).

5.1 Binary Pulsars

A binary pulsar consists of at least one rapidly spinning compact NS pulsar with
a large magnetic field. The rotation axis and the magnetic field are in general
misaligned, creating the emission of electromagnetic beams in the direction of the
magnetic poles. An observer with a radio telescope pointing in this direction there-
fore receives a radio pulse at the rate of the rotational frequency of the pulsar. This
provides a very accurate clock since the periods of pulsars are extremely stable, be-
cause they have very high moments of inertia. The times of arrival of these pulses
can be measured at very high precision and very rich information about the system
can be extracted. This is because the times of arrival are substantially influenced
by effects from relativistic time dilation, light propagation in the SS, the propa-
gation through the interstellar medium, the orbital motion and light propagating
effects in the binary system. Fitting these effects to the time residuals, Keplerian
and post-Keplerian parameters of the system can be extracted. If all the Keple-
rian parameters and additionally two post-Keplerian parameters can be extracted,
then one obtains the masses of the objects in the binary system. Any further post-
Keplerian parameter that is known from the fit to the time residuals can be used to
test the theory. For the Hulse-Taylor binary these conditions are fulfilled and hence,
the GW emission can be tested by comparing the observed decrease of the orbital
period (corrected for Doppler shift effects) with the one predicted by the emission
of GWs [74]

(Ṗ )measured

(Ṗ )GR

= 0.997± 0.002. (102)

The very accurate agreement can be visualized by plotting the cumulative shift of
the periastron time as a function of the observation time; see Fig. 1. For a detailed
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discussion of this procedure, see Chap. 6 of [6].

Figure 1: Orbital decay of Hulse-Taylor binary pulsar (PSR B1913+16). The data
points show the observed cumulative shift of periastron time. The black solid line
is the prediction of GR. Taken from [74].

Our methodology to test CGMs in (P2) will be to assume that modifications
to Keplerian and post-Keplerian parameters are negligible and that the predicted
decrease of the orbital period in GR is correct. This is justified since CGMs are
constructed to reproduce the results of GR on SS distance scales. We then compare
the GR result with the predictions made in CGMs. If the results agree at least in
order of magnitude, there is a chance for a more accurate calculation to be consistent
with the observed data. But if the leading-order term already deviates by orders
of magnitude, then higher-order corrections of the multipole expansion will not be
sufficient to cure this contradiction and we can rule the theory out (Except for some
other mechanism, which could influence the decrease of the orbital period. This
loop hole will be closed in (P3)).

5.2 Multipole Expansion

In Sec. 4.3 we calculated the GW solutions for a completely general matter energy-
momentum tensor. In this section we become more specific and calculate GWs for
a simple idealized binary system of two non-spinning point particles. Of course,
real astrophysical binary systems, like stellar or black hole binary systems, are more
complicated and do not consist of point particles. Especially, in stellar binary sys-
tems tidal effects, which depend on the equation of state of the stars, influence the
phase of the GW signal. However, these effects are suppressed by a factor (v/c)10,
which is much smaller than other post-Newtonian effects (see Sec. 14.1.1 in [7]) and
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hence are negligible in the early inspiral phase of the binary system. Also, effects
from the spin of the stars can be discarded as long as the rotational period is larger
than 10 ms (see Sec. 14.4.1 in [7]). Therefore, one can use this approximation to
learn about some characteristic properties of GWs and more accurate calculations
are based on the calculations made in this approximation. In (P2) and (P3) we
will use the results, which we derive in this chapter, to compare the key features of
gravitational radiation in GR with the predictions of CGMs.

To interpret the following calculations and results correctly, we have to precisely
define the system we look at and the approximations we use. First of all, we work in
linearized theory and treat the binary system in the Newtonian limit. This means
that the two non-spinning point particles interact via the Newtonian gravitational
force in a flat Minkowski background metric and the velocity is rather small, i.e.
v/c � 1 (v � 1 in natural units). Clearly, these assumptions are not true during
the whole evolution of binary systems. Especially at late times, when the diameter
of binary systems decreases to several Schwarzschild radii of the individual objects,
we approach a regime in which nonlinear effects become important. The strength of
nonlinear effects can be estimated by the ratio RS/R, where R is the characteristic
length scale of the system. Nonlinear effects are the reason why GWs back-react
on the background spacetime via eq. (71a). Also graviton-graviton scattering can
take place. These effects lead to modifications in the propagation behavior of GWs
from the source to the system (for details, see Sec. 5.3.4 of [6]). The stars or
black holes speed up more and more until the system reaches the merger phase
where relativistic corrections to the Newtonian gravitational force are not negligible
anymore. To avoid nonlinear and higher-order relativistic effects we restrict to binary
systems in the quasi-stationary inspiral phase, in which the objects are still very far
apart and slowly moving. This assumption is justified because the inspiral phase
of astrophysical binary systems can last for hundreds of millions of years before
they come close to the merger event where this approximation breaks down28. To
good approximation, we can assume that the decrease of the radius of the system is
negligible and the objects travel on fixed Keplerian trajectories. In Sec. 5.5, in order
to calculate the waveform and the chirp of the frequency, we drop this assumption
and allow for a time-dependent orbital radius.

Further, for reasons of simplicity we assume the orbit of the binary system to
be circular. Certainly, there exist binary systems with non-negligible eccentricities,
hence we can apply the results derived in this section only for binary systems with
very small eccentricities (ε� 1)29,30. It will become clear in (P2) that this does not
restrict the validity of our test of CGMs.

In the linear approximation it is inevitable to assume that the energy lost by the
binary system at retarded time t− r is equal to the energy carried by GWs at time
t and distance r at the location of the observer, since there are no internal dofs of

28Despite the recent direct measurements of GWs by LIGO/VIRGO collaboration we do not
study the merger and ringdown phase of the evolution of binary systems. We refer the reader to
the literature, e.g. see the textbooks [6] and [7] or the publications on the direct measurements of
GWs coming from merging compact binary systems [57, 58, 59, 60, 61, 62, 63, 64].

29The extension to elliptical trajectories with non-negligible eccentricities does not increase the
complexity substantially, but is not necessary for the purposes of this thesis.

30The eccentricity of the famous Hulse-Taylor binary (PSR B1913+16) is ≈ 0.62 [39]. Hence,
our results are not applicable to this system.
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the objects which could relax. Therefore, we can write

Ėorbit(t− r) = −Ėgw(t, r), (103)

where Ėorbit is the energy lost by the source and Ėgw is the power radiated into
GWs.

To introduce a formalism for treating the source of GWs in the Newtonian ap-
proximation we make use of the two ratios, RS/R and v/c, as expansion parameters.
We have to be careful since these parameters are not independent if the source is
self-gravitating, meaning that it is held together by gravitational forces. As a con-
sequence of the virial theorem for self-gravitating systems we find

(v/c)2 ∼ RS/R. (104)

Using eq. (63) in eq. (62) in the center-of-mass frame and for circular orbits we find

v2

c2
=
RS

2R
. (105)

This means we have to consider contributions from both expansions consistently. As
RS/R measures the strength of the gravitational field, and hence parametrizes the
deviation from flat spacetime, we cannot keep the spacetime flat while taking into
account terms of higher order in v/c. The appropriate formalism to analyze this
situation is the Post-Newtonian (PN) formalism31. When the system transits from
the inspiral phase to the merger phase, the PN-formalism breaks down and other
methods like non-perturbative resummations or numerical generation of waveform
templates have to take over (see Chap. 14 of [7]). However, if we restrict to lowest
order in v/c, the assumption of a flat background spacetime is consistent.

Having clarified the assumptions and approximations integrated into our analy-
sis, we are now prepared to derive the multipole expansion for GWs. The typical
velocity of objects in a binary system is v ∼ Rωs, where ωs is the orbital frequency
and R is orbital radius. The characteristic frequency of the GWs ωgw will be of the
same order of magnitude, hence we can write ωgw ∼ ωs ∼ v/R. If we assume that
GWs travel with the speed of light (which will be justified below), we can use the
reduced wavelength λ̄ = 1/ω to write

λ̄ ∼ c

v
R. (106)

For v � c we see that the reduced wavelength is much larger than the characteristic
scale of the source

λ̄� R, (107)

which means that not all details about the motion of the sources are needed for the
calculation of GW emission. It will become clear below that the condition in eq.
(107) justifies the multipole expansion.

We start by defining the mass-energy moments and use them to apply the mul-
tipole expansion, which we cut off after the quadrupole contribution. After that,
we show that monopole and dipole radiation do not contribute to gravitational ra-
diation and that the leading-order contribution comes from the quadrupole term.

31A detailed discussion of the PN-formalism can be found in Chap. 5 of [6].
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Finally, we calculate the power radiated by GWs in the quadrupole approximation.
Let us now consider the GW solution in eq. (101). Since the integral vanishes

for |x′| > R, we use eq. (107) to expand the exponent in ω |x′ · n| < ωR � 1 and
keep terms up to the quadrupole contribution. We obtain (from now on we again
use c = 1)

h̄µν (t,x) = −4G

r

∫
d3x′

∫ ∞
−∞

dω

2π
e−iω(t−r)

(
1− iωx′ · n− ω2

2
(x′ · n)

2

)
T̃µν (ω,x′) .

(108)

This expression is exact up to the quadrupole contribution, which is the third term
in the parentheses. Note that (reinserting c) the quadrupole contribution is of order
∼ ω2/c2 ∼ O(v2/c2) and hence is consistent with a flat background spacetime and
a Newtonian description of the binary system; cf. eq. (104).

We define the three lowest mass-energy moments as

M(t) =

∫
d3xT 00(t,x), (109a)

Di(t) =

∫
d3x xiT 00(t,x), (109b)

M ij(t) =

∫
d3x xixjT 00(t,x). (109c)

These quantities are called monopole, dipole and quadrupole moments and we denote
their Fourier transformations as M̃(ω), D̃i(ω) and M̃ ij(ω). We further introduce
relations between the energy-momentum tensor and the mass-energy moments using
energy-momentum conservation in flat space time (see eq. (83))∫

d3x T̃ ij (ω,x) = −ω
2

2

∫
d3x xixjT̃ 00(ω,x) = −ω

2

2
M̃ ij (ω) , (110a)∫

d3x T̃ 0i(ω,x) = −iω
∫
d3x xiT̃ 00(ω,x) = −iωD̃i(ω), (110b)∫

d3x T̃ ij(ω,x) = −iω
∫
d3x xiT̃ j0(ω,x) = −ω

2

2
M̃ ij(ω). (110c)

Using these relations in eq. (108) we obtain for the components

h̄00 = −4G

r

∫ ∞
−∞

dω

2π
e−iω(t−r)

(
M̃(ω)− iωnkD̃k(ω)− ω2

2
nknlM̃

kl(ω)

)
, (111a)

h̄0i = −4G

r

∫ ∞
−∞

dω

2π
e−iω(t−r)

(
−iωD̃i(ω)− ω

2
ωnkM̃

ki(ω)
)
, (111b)

h̄ij =
2G

r

∫ ∞
−∞

dω

2π
e−iω(t−r)

(
ω2M̃ ij(ω)

)
. (111c)

This shows that all components of the metric perturbation are functions of the form
f(t− r)/r at a distance r � R from the source. Consequently, we can relate spatial
and temporal derivatives by

∂rh̄ij = ∂0h̄ij +O(1/r2), (112)
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where the last term is negligible because the distance to the source is assumed to
be large. Hence, in the following we only consider time derivatives of the metric
perturbation. Taking the time derivative of eqs. (111a)-(111c) we get

˙̄h00 = −4G

r

∫ ∞
−∞

dω

2π
e−iω(t−r)

(
−iωM̃(ω)− ω2nkD̃

k(ω) + iω
ω2

2
nknlM̃

kl(ω)

)
,

(113a)

˙̄h0i = −4G

r

∫ ∞
−∞

dω

2π
e−iω(t−r)

(
−ω2D̃i(ω) + i

ω2

2
ωnkM̃

ki(ω)

)
, (113b)

˙̄hij = −i2G̃
r

∫ ∞
−∞

dω

2π
e−iω(t−r)ω3M̃ ij(ω). (113c)

We observe that monopole, dipole and quadruple momenta contribute. But we can
simplify eqs. (113a)-(113c) using the harmonic gauge condition. If we insert eqs.
(111a)-(111c) into eq. (81) we obtain

−i
∫ ∞

0

dω

2π
e−iω(t−r)ωM̃(ω) = 0, (114a)

−
∫ ∞

0

dω

2π
e−iω(t−r)ω2D̃i(ω) = 0. (114b)

Reinserting this into eqs. (113a)-(113c) shows that monopole and dipole contribu-
tions vanish and we are left only with the quadrupole contribution.

As a next step we calculate the explicit solutions for the GWs that are created
by an idealized binary system as described above. In Appendix D we show that the
quadrupole contribution can be described in the center-of-mass frame as one particle
on a circular orbit with the reduced mass µ and total mass m = m1 +m2. We choose
an orbit in the xy-plane and introduce the relative coordinate vector x0 = x2 − x1,
where x1 and x2 are the coordinate vectors of the two masses. The components of
the relative coordinate vector are then given by

x1
0(t) = −R sin(ωst), (115a)

x2
0(t) = R cos(ωst), (115b)

x3
0(t) = 0, (115c)

where ωs > 0 is the frequency of the source and R is the radius of the source.
Note that we do not need to calculate the 0µ-components of h̄µν , because our

aim is to calculate the radiated energy far away from the source, where the TT
gauge as defined in eq. (87) can be used. Therefore, we restrict here to calculate
only the spatial components in the harmonic gauge and project the solutions into
the TT gauge when needed.

For a point particle of reduced mass µ in the non-relativistic limit we insert eqs.
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(115a)-(115c) into eq. (D.10) and find

M11 = µR2 1− cos (2ωst)

2
, (116a)

M22 = µR2 1 + cos (2ωst)

2
, (116b)

M12 = −µR2 sin (2ωst)

2
, (116c)

M i
i = µR2, (116d)

where M i
i = δijMij is the spatial trace of the quadrupole moment. The Fourier

transforms of these expressions are given by

M̃11(ω) =
µR2π

2
[δ (ω)− δ (ω + 2ωs)− δ (ω − 2ωs)] , (117a)

M̃22(ω) =
µR2π

2
[δ (ω) + δ (ω + 2ωs) + δ (ω − 2ωs)] , (117b)

M̃12(ω) =
µR2π

2i
[δ (ω − 2ωs)− δ (ω + 2ωs)] , (117c)

M̃ i
i (ω) = µR2πδ (ω) . (117d)

Inserting these back into eq. (111c) we find that the spatial components of the
metric perturbation created by an idealized binary system are given by

h11(t, r) = −h22(t, r) =
4GµR2ω2

s

r
cos (2ωstret) , (118a)

h12(t, r) = h21(t, r) =
4GµR2ω2

s

r
sin (2ωstret) , (118b)

where tret = t− r is the retarded time.

5.3 Gravitational Energy-Momentum Tensor

During the mid-1950s many scientists working on GWs still had doubts about
whether GWs transmit energy or not; see [72] for a historical review. We briefly
elaborate on this issue which arises for the definition of the energy of the gravita-
tional field in theories based on a metric. After that in Sec. 5.3.1 we derive the
gravitational energy-momentum tensor from a geometrical point of view using the
the separation of the EFE as presented in eqs. (71a) and (71b). In Sec. 5.3.2
as a second way to define the gravitational energy-momentum tensor, we present
the standard field-theoretical approach using Noether’s theorem and show that in
vacuum both ways result in the same expression.

If we want to define the gravitational energy-momentum tensor, a problem arises
immediately. There is no true local measure of the energy of the gravitational
field in theories based on a metric. This can be seen from Einstein’s equivalence
principle. It outlines that locally at a point in spacetime we can find local inertial
coordinates such that the gravitational field, i.e. the metric perturbation, vanishes
and spacetime is determined just by the flat Minkowski metric. This represents a
crucial difference between gravity and electromagnetism. The local energy density
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of the electromagnetic field is (E2 + B2)/2 and even at a point in spacetime it
cannot be transformed away32. The energy of the gravitational field is therefore not
a local quantity, but is tied into the curvature of spacetime which manifests only
some distance away from the point. For this reason, we will introduce an averaging
procedure over a region in spacetime which integrates out the microscopic dofs and
in this way coarse grains the spacetime.

5.3.1 Gravitational Energy-Momentum Tensor: Geometric Approach

In this section we present the approach to define the gravitational energy-momentum
tensor on the level of the equations of motion for the metric. We make use of the
low-frequency part of the EFE given in eq. (71a). As pointed out in Sec. 4.1 if we
expand the EFE to higher than first order in hµν , it is inconsistent to choose a flat
background spacetime. Thus, we define the gravitational energy-momentum tensor
for a generic background metric gBµν(x) which depends on the spacetime coordinates.
The first step is to define how to extract the low-frequency part mathematically. It
contains all the slowly varying parts of the EFE and hence we integrate out all
rapidly oscillating terms by introducing an averaging process. For this end, we
define an average time and length scale

1

ω
� T̄ � 1

ωB
, (119a)

λ̄� L̄� LB. (119b)

Using these intermediate scales we can define the averaging procedure by 〈. . .〉T̄ =
1/T̄

∫
T̄
. . . dt or 〈. . .〉L̄ = 1/V

∫
V
. . . d3x, where V is the volume corresponding to the

spatial scale L̄33. Since we can average over time or space, we denote the averaging
brackets collectively just by 〈. . .〉. We then rewrite eq. (71a) as

GB
µν = −8πG〈Tµν〉 − 〈G(2)

µν 〉, (120)

where GB
µν is by definition a low-frequency quantity.

This leads us to define two new quantities, namely the macroscopic matter
energy-momentum tensor

T̄µν ≡ 〈Tµν〉 (121)

and the gravitational energy-momentum tensor

TGRAV
µν ≡ 1

8πG
〈G(2)

µν 〉. (122)

The trace of the gravitational energy-momentum tensor can be calculated by con-

32There is another important difference between gravity and electromagnetism. The Maxwell
equations are linear field equations for the electromagnetic field, whereas the EFE are nonlinear
field equations for the metric tensor field. In classical field theory the electromagnetic field does
not source itself, which means that it carries no electric charge. In contrast to that, the metric
tensor carries energy and momentum and hence GWs can be sources of spacetime curvature. This
can be seen in eqs. (71a) and (71b) by the terms second-order in hµν on the right-hand side.

33For a more rigorous treatment of the averaging procedure, see [4].
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tracting with the background metric

TGRAV = g µνB TGRAV
µν = − 1

8πG
〈R(2)〉. (123)

We can reinsert eqs. (122) and (123) into eq. (120) and find

RB
µν −

1

2
gBµνR

B = −8πG
(
T̄µν + TGRAV

µν

)
. (124)

This means that the background metric is determined by the averaged matter
energy-momentum tensor34 and by the gravitational energy-momentum tensor, which
contains the energy carried by GWs. This is a fundamental difference to the theory
of electromagnetism. The electromagnetic field has no electric charge which is a
consequence of the linearity of the Maxwell equations. The EFE are nonlinear
which means that higher-order terms in the hµν-expansion act effectively as a source
in the same way as the matter energy-momentum tensor. This behavior is called
backreaction and is absent in linearized theory.

The left-hand side of eq. (124) is covariantly conserved with respect to the
background metric, because of the contracted Bianchi identities for the Einstein
tensor (see eq. (40b)). In consequence, the right-hand side yields

∇B
ρ

(
T̄ ρµ + T ρµGRAV

)
= 0, (125)

where ∇B
ρ is the covariant derivative with respect to the background metric. This

means matter and gravity can interchange energy and momentum. We will consider
T̄µν as the standard matter energy-momentum tensor and hence we rename T̄µν as
Tµν .

We have seen in Sec. 4.2 that we can calculate GWs in the approximation of
linearized theory by the assumption that the background spacetime is flat. In this
situation the gravitational energy-momentum tensor is not consistently defined, but
we can make the reasonable assumption that the background metric will approach
the flat Minkowski metric far away from the matter source35. If the matter source is
spatially confined in a volume with a characteristic spatial scale R � r, where r is
the coordinate distance between the source and the detector, we have Tµν(r > R) =
0. Additionally, since the background metric approaches flat Minkowski spacetime
for r � R, eq. (125) results in ∂ρT

ρµ
GRAV = 0, which is the conservation of the

gravitational energy-momentum tensor in flat spacetime.
Remember that we have shown that in vacuum we can use the TT gauge. But we

have to be careful here. The expression in eq. (122) is not necessarily invariant under
infinitesimal coordinate transformations. Thus, TGRAV

µν could contain contributions
from the eight spurious gauge dofs and by going to the TT gauge unphysical terms
could appear. But fortunately it is possible to show that TGRAV

µν gauge invariant
inside the averaging brackets (see Sec. 1.4.3 of [6]) and we project eq. (122) into

34A macroscopic matter energy-momentum tensor will already be quite smooth. Hence, one can
use T̄µν ' Tµν .

35Note that we we cannot go too far from the matter source, since at cosmological distance scales
effects from the expansion of the Universe have to be taken into account.
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the TT gauge

TGRAV
µν =

1

32πG

〈
RTT(2)
µν − 1

2
ηµνR

TT(2) − 1

2
hTT
µν R

TT(1) +
1

2
ηµνh

TTρσRTT(1)
ρσ

〉
. (126)

We can drop the last two terms because in vacuum we have R
TT(1)
µν = RTT(1) = 0.

Further, we can greatly simplify this expression by the following observation. Inside
the average 〈. . .〉 we can integrate by parts neglecting terms of the form 〈∂µ(. . .)〉,
which means making an error of O(ωB/ω)� 1. For details, see Appendix C. Using
eqs. (B.9) and (B.10) together with the vacuum wave equation eq. (82) we get

TGRAV
µν =

1

32πG

〈
∂µh

ρσ
TT∂νh

TT
ρσ

〉
. (127)

In the next section this expression will be compared with the result for the gravita-
tional energy-momentum tensor derived from Noether’s theorem.

5.3.2 Gravitational Energy-Momentum Tensor: Field-Theoretical Ap-
proach

A second way to define the gravitational energy-momentum tensor is via Noether’s
principle. There are at least two reasons why it is useful to study a second method:
First, there is a reason of convenience, because the method presented in Sec. 5.3.1
can be quite cumbersome for theories of modified gravity. Second, we can use this
as a check of consistency and did not miss any term.

First, we derive Noether’s theorem for a general set of fields and find the con-
served currents. We define the canonical energy-momentum tensor for second-order
Lagrange densities and after that also for fourth-order Lagrange densities. Then,
we restrict the set of fields to the metric perturbation and calculate the canonical
gravitational energy-momentum tensor.

Consider a field theory with a generic action

I[φi, ∂µφi, ∂µ∂νφi, . . .] =

∫
d4xL[φi, ∂µφi, ∂µ∂νφi, . . .], (128)

where L is the Lagrange density, which depends on the set of fields represented
by φi(x), where i = 1 . . . N with N the number of fields and a finite number of
derivatives. Using the principle of least action we can derive the Euler-Lagrange
equations from the condition that the classical field configuration is an extremum of
the action. Thus, we demand δI = 0 if we perturb φi(x) by δφi(x)

φi(x)→ φi(x) + δφi(x). (129)

Since most physical theories contain at most second-order partial derivatives36, we
are used to the Euler-Lagrange equations given by

∂ρ

(
∂L

∂(∂ρφi)

)
− ∂L
∂φi

= 0. (130)

We are particularly interested in the case of fourth-order derivative Lagrange den-

36The reason for this is explained by Ostrogradsky’s theorem [75, 76].
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sities. To find the modified Euler-Lagrange equations we use37

δI[φi, ∂µφi, ∂µ∂νφi]

=

∫
d4x

(
∂L
∂φi

δφi +
∂L

∂(∂ρφi)
δ(∂ρφi) +

∂L
∂(∂ρ∂σφi)

δ(∂ρ∂σφi)

)
=

∫
d4x

[
∂L
∂φi

δφi − ∂ρ
(

∂L
∂(∂ρφi)

)
δφi + ∂ρ

(
∂L

∂(∂ρφi)
δφi

)
+∂ρ∂σ

(
∂L

∂(∂ρ∂σφi)

)
δφi − ∂σ

(
∂ρ

∂L
∂(∂ρ∂σφi)

δφi

)
+ ∂ρ

(
∂L

∂(∂ρ∂σφi)
δ(∂σφi)

)]
= 0.

(131)

The third and the last two terms in the square brackets are surface terms, which
do not contribute to the Euler-Lagrange equations if we assume δφi and δ(∂µφi) to
vanish on the temporal and spatial boundaries. Then, since the integral must vanish
for arbitrary δφi, the modified Euler-Lagrange equations are given by

∂L
∂φi
− ∂ρ

(
L

∂(∂ρφi)

)
+ ∂ρ∂σ

(
L

∂(∂ρ∂σφi)

)
= 0. (132)

Noether’s theorem makes the connection between symmetries and conservation
laws. Considering an infinitesimal coordinate transformation

xµ → x′µ = xµ + εaXµ
a (x), (133a)

the fields change as

φi(x)→ φ′i(x
′) = φi(x) + εaYi,a(φ, ∂φ, . . .), (133b)

where εa with a = 1 . . . N are parameters and Xµ
a (x) and Yi,a are generators speci-

fying the transformation. Noether’s theorem then says that for every generator of a
global symmetry a current jµa exists, which is conserved

∂µj
µ
a

(
φcli
)

= 0, (134)

if the field configurations φi = φcli satisfy their classical field equations. The explicit
form of jµa for an action depending on first derivatives of the fields I[φi, ∂µφi] is given
by

jµa =
∂L

∂(∂µφi)
[Xν

a (x)∂νφi − Yi,a(φi, ∂φi)]−Xµ
aL. (135)

Note that if we extend our analysis to curved spacetimes, this expression acquires
an overall factor (−g)−1/2.

As a next step we consider spacetime translations defined by

xµ → xµ + ερδµρ ,

φi(x)→ φ′i(x
′) = φi(x), (136)

where we have chosen Xµ
ρ = δµρ and Yi,a = 0. Now we can introduce the energy-

37Observe that we can always integrate by parts to bring the action (which has at most terms
with four partial derivatives) to the form I[φi, ∂µφi, ∂µ∂νφi].
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momentum tensor from the four conserved currents in defined in eq. (135) by

T µν = − ∂L
∂(∂µφi)

∂νφi + ηµνL. (137)

This can be generalized to actions depending on higher derivatives. In this work
we are especially interested in actions depending on up to second-order derivatives of
the fields.38 Considering the spacetime translations in eq. (136) we have to modify
the four currents in eq. (137) by

T µν =

[
∂ρ

∂L
∂(∂µ∂ρφi)

− ∂L
∂(∂µφi)

]
∂νφi −

∂L
∂(∂µ∂ρφi)

∂ρ∂νφi + ηµνL. (138)

We will use this expression in (P2) to calculate the energy carried by GWs in CGMs.
But for now, let us apply eq. (137) to the linearized version of GR. This means the
set of fields consists of just one field, namely the metric perturbation φi = hµν , and
the second-order Einstein-Hilbert Lagrange density becomes (using integration by

parts and the field equations in vacuum R
(1)
µν = 0)

L(2)
GRAV =

[√
−ggρσRρσ

](2)
= (1 + 2h) (ηρσ − hρσ)

(
R(1)
ρσ +R(2)

ρσ

)
= − 1

16πG

(
1

4
h�h− 1

2
hρσ∂ρ∂σh−

1

4
hρσ�hρσ −

1

2
∂ρh

ρ
σ∂λh

σλ

)
. (139)

Inserting eq. (139) into eq. (137) and using the same averaging procedure as in Sec.
5.3.1 leads to39

(TGRAV)µν =
1

32πG

〈
1

2
∂µhρσ∂νhρσ −

1

2
∂ρh

ρσ∂νh
µ
σ −

1

2
∂ρh

ρµ∂νh−
1

2
∂µh∂νh

+ ηµν

(
1

4
h�h− 1

2
hρσ∂ρ∂σh−

1

4
hρσ�hρσ −

1

2
∂ρh

ρσ∂λh
σλ

)〉
. (140)

Projecting eqs. (139) and (140) into the TT gauge (and using the vacuum field
equations for hTT

µν ) leads to

L(2)TT
GRAV =

1

64πG
∂λh

TT
ij ∂

λhijTT, (141)(
TGRAV

)µ
ν

=
1

32πG

〈
∂µhTTij ∂νh

ij
TT

〉
. (142)

This proves that, at least in vacuum, the geometric and the field-theoretical approach
lead to the same result, cf. eq. (127).

38Actually, the gravity models we consider in (P1), (P2) and (P3) contain terms with four partial
derivatives, but in the action we can always integrate by parts and hence distribute the partial
derivatives in such a way that there are at most second-order derivatives.

39The factor (−g)
−1/2

is not of relevance here (also not in CGMs) because L(2)
GRAV is already of

second-order in hµν .
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5.4 Radiated Energy

In this section we calculate the power radiated by a compact source into GWs.
For this purpose we study the implications of the covariant conservation of the
sum of the matter and the gravitational energy-momentum tensor in eq. (125).
This conservation means that the source and the GWs can exchange energy and
momentum. However, we are interested in the energy carried by GWs in the far
field (for r � R, where R is the characteristic radius of the source). In Sec. 5.3.1 we
argued that we can apply the TT gauge (cf. eq. (87)) in the far field region. Hence,
we can assume that Tµν = 0, neglect the quasi-static part of the gravitational field,
i.e. h00 = 0, and set gBµν = ηµν . In consequence, eq. (125) becomes

∂ρT
ρµ
GRAV = 0, (143)

which is the conservation of the gravitational energy-momentum tensor in flat space-
time. Now, we consider a spherical shell with volume V centered around the source
with both boundaries of the shell lying in the far field. It follows that the energy
inside V is only determined by the GWs since the matter energy-momentum tensor
vanishes in the far field. Then, we integrate the time-component of eq. (143) over
V and find ∫

V

d3x (∂0T
00
GRAV + ∂iT

i0
GRAV) = 0. (144)

The energy of GWs inside the volume V is given by

EV =

∫
V

d3xT 00
GRAV, (145)

and thus combining eqs. (144) and (145) we can write

ĖV = −
∫
V

d3x ∂iT
i0
GRAV = −r2

∫
∂V

dΩniT
i0
GRAV = −r2

∫
∂V

dΩT r0GRAV, (146)

where dΩ = sin θdθdφ is the differential solid angle. ∂V represents here just the
outer surface of the shell of volume V since we are only interested in the energy
flux at a given distance from the source40. ni are the components of n, which is the
spatial unit vector pointing from the source to the observer. In the last step we used
the fact that the surface of V is a sphere and hence n = r̂, which is the unit vector
in radial direction. Now we insert the 0r-component of eq. (142) into eq. (146) and
find

ĖV = − r2

32πG

∫
dΩ
〈
ḣTTij ḣ

ij
TT

〉
, (147)

where we used eq. (112) to rewrite the radial derivative. As a next step, we use the
properties of the Lambda tensor, defined in eqs. (91a) and (91b), to rewrite this
expression with the trace-reversed metric perturbation

ĖV = − r2

32πG

∫
∂V

dΩ Λijkl

〈
˙̄hij ˙̄hkl

〉
. (148)

40Here we assume that there are only outgoing GWs, which is ensured by the choice of the
retarded propagator in Sec. 4.3.
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In this expression only Λijkl depends on n and thus we can use∫
dΩ Λijkl =

2π

15
(11δikδjl − 4δijδkl + δilδjk) (149)

to integrate in eq. (148). We obtain

ĖV = − r2

60G

〈
3 ˙̄hij

˙̄hij − h̄2
〉
. (150)

Now, we explicitly insert the solutions from eqs. (118a) and (118b) into eq. (150).
Note that the metric perturbation, which appears in eq. (150), is not in the TT
gauge. Nevertheless, the trace terms still vanishes since h̄11 = −h̄22 and h̄33 = 0.
Hence, only the first term contributes to the radiated energy. The minus sign in
eq. (150) means that the volume V loses energy which is carried away by outgoing
GWs. Therefore, the change of energy of the GWs is positive and reads

Ėgw =
32Gµ2R4ω6

s

5
=
Gµ2R4ω6

gw

10
, (151)

where ωgw = 2ωs is the frequency of the GW. If we multiply this with P = 2π/ωs,
we get the average energy emitted over one period

Egw,P =
64π

5

Gµ2

R
v5. (152)

This energy carried by GWs influences the background metric via eq. (71a), but we
see that it is suppressed by a factor v5 and therefore enters into the PN-formalism
only at higher order.

The radiated energy in eq. (151) is the main result of this section. In (P2) we
use the same procedure to calculate the radiated energy in CGMs and compare our
results with eq. (151).

5.5 Late Inspiral of Compact Binaries

At the end of Chap. 1 we explained that the analysis in (P2), which uses the
indirect measurements of GWs, is not sufficient to unambiguously rule out CGMs in
the case of a small graviton mass. Hence, in (P3) we study the direct observations
of GWs. In this section we present the necessary techniques in GR which will then
be transferred to CGMs in (P3).

Here we use the same idealizations and approximations as explained in Sec. 5.2,
with the exception that we do not fix the orbit of the binary system. We allow the
radius of the orbit to depend on time, but it stays nearly circular, i.e. the decrease
of the orbital radius is very slow. We call this approximation quasi-circular. Then,
we can calculate the decrease of the orbital period of the binary system induced by
the emission of GWs, which carry away energy. Note that we reintroduce factors of
c in this section.

Remember that we use the center-of-mass frame in which the two-body problem
reduces to a one-body problem for a test particle with reduced mass µ. Using
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v = ωsR in eq. (62) we obtain Kepler’s third law in the form

ω2
s =

Gm

R3
, (153)

where R is the orbital radius and m is the total mass of the system. Taking the
time derivative of eq. (153) we find

Ṙ = −2

3
(ωsR)

ω̇s
ω2
s

. (154)

As long as ω̇s � ω2
s holds true, the radial velocity |Ṙ| can be neglected with respect

to the tangential velocity ωsR. In consequence, the approximation of circular orbits
is still applicable. Then, by introducing the chirp mass

Mc = µ3/5m2/5 =
(m1m2)3/5

(m1 +m2)1/5
(155)

we can rewrite the solutions on eqs. (118a) and (118b) to

h11(t, r) = −h22(t, r) =
4c

r

(
GMc

c3

)5/3 (ωgw

2

)2/3

cos (ωgwtret + φ0) , (156)

h12(t, r) = h21(t, r) =
4c

r

(
GMc

c3

)5/3 (ωgw

2

)2/3

sin (ωgwtret + φ0) , (157)

where ωgw = 2ωs. The angle φ0 introduced in the trigonometric functions was not
necessary in the case of fixed orbits (cf. eqs. (118a) and (118b)), as a rotation
of the source along the orbit of the binary system by an angle ∆φ is identical to
a time translation by an interval ∆t resulting in a rotation ωs∆t. Hence, by a
redefinition of the origin of time this angle could be absorbed. But in the quasi-
circular approximation the radius is not fixed anymore, and we need to specify the
angle φ0 at some reference time. Note also that in our approximation the amplitudes
of the GWs do not depend on the masses m1 and m2 separately but only on the
chirp mass Mc.

Now, we make use of eq. (103). In Sec. 5.4 we have calculated the power
radiated into GWs which traveled to a distance r from the source in the time t.
This power must be equal to the energy lost by the binary system at retarded time
tret. Inevitably, this energy has to be the energy of the orbit of the binary system
which we calculated in eq. (66). Taking the time derivative results into

ĖGR = G
µm

2R2
Ṙ. (158)

Inserting eqs. (151) and (158) into eq. (103) and taking into account eq. (153) we
obtain

ω̇gw =
12

5
21/3

(
GMc

c3

)5/3

ω11/3
gw . (159)

We solve this equation by integrating over the retarded time, which can be viewed
as the local time of the system. Besides that, it is convenient to introduce the time
to coalescence τ ≡ tcoal,ret− tret = tcoal− t, where tcoal is the time of coalescence and



42 5 GRAVITATIONAL WAVES FROM A BINARY SYSTEM

t is the time of the observer at distance r. We see that for a massless wave τ can
be expressed just by the observer time as the retardation effect cancels. This is no
longer true for massive GWs which will become clear in (P3). We obtain

ωgw(τ) = 2

(
5

256

1

τ

)3/8(
GMc

c3

)−5/8

. (160)

Note that the frequency of the GWs diverges at some finite time, namely the time of
coalescence tcoal, when the two point particles collide. But this is no problem since
real extended objects will collide earlier, and anyway we cannot assume that our
Newtonian approximation still works in the merger phase, since velocities become
relativistic and the weak field approximation is violated.

If we take into account numerical values, we can write eq. (160) as

ωgw(τ) ' 842 Hz

(
1.21M�
Mc

)5/8(
1 s

τ

)3/8

, (161)

where we used 1.21M� as a reference value for typical chirp masses and 1 s as a
typical time to coalescence when GWs signals enter the waveband of detectors for
binary systems consisting of NSs or stellar-mass black holes.

In the case of a fixed orbit the phase of the GWs evolves just linear in time and
the frequency is a constant, cf. eqs. (118a) and (118b). In contrast, in the quasi-
circular approximation we have seen that the frequency evolves in time. Hence, we
have to consider that the radius R(t) of the binary system depends on time too.
Thus, the Cartesian coordinates of the binary system are

x1
0(t) = R(t) cos

(
φ(t)

2

)
, (162a)

x2
0(t) = R(t) sin

(
φ(t)

2

)
, (162b)

x3
0(t) = 0. (162c)

The angel φ(t) is defined by

φ(t) =

∫ t

t0

dt′ωgw(t′) = −2

(
5GMc

c3

)−5/8

τ 5/8 + φ0, (163)

where φ0 = φ(τ = 0) is the angle at coalescence.
Actually, to calculate the solutions for the GWs for a binary system in quasi-

circular motion, we need to solve the equations of motion for the test particle of
mass µ under the influence of an effective force, which leads to the decrease of the
orbital radius. Having the trajectory of the the test particle, we could calculate its
energy-momentum tensor. This had to be inserted into eq. (92). The solution of
this equation would lead to terms including time derivatives of the radius R and
the frequency ωgw(t). But as we have seen in eq. (154), we can neglect terms
proportional to Ṙ as long as ω̇s � ω2

s . Thus, we use of a further approximation
here. We can modify the GWs solutions for a fixed orbit, given in eqs. (156) and
(157), by replacing the argument of the trigonometric functions with φ(t). Besides
that, in the amplitude we have to replace ωgw with ωgw(t).
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Finally, inserting eqs. (160) and (163) into eqs. (156) and (157) we obtain

h11(t, r) = −h22(t, r) =
1

r

(
GMc

c2

)5/4(
5

cτ

)1/4

cos (φ(τ)) , (164a)

h12(t, r) = h21(t, r) =
1

r

(
GMc

c2

)5/4(
5

cτ

)1/4

sin (φ(τ)) . (164b)

For later use in (P3) it is important to note that we see from eqs. (160) and
(164a)-(164b) that both, the frequency and the amplitude of the GWs increase as
coalescence is approached. See Figs. 1 and 3 in (P3) for a comparison of the behavior
of GWs in GR and CGMs.

6 Landscape of Theories of Modified Gravity

In this Chap. we provide an overview on different classes of modern theories of mo-
dified gravity. For this purpose we use Lovelock’s theorem which we defined in Sec.
3.2. If all the conditions of this theorem are satisfied, GR is found uniquely. Love-
lock’s theorem also outlines that GR is the unique theory carrying only a massless
helicity-2 field with two independent polarizations. Turning this around it is clear
that modifying GR inevitably introduces additional dofs and different modifications
of GR can be found by violating any of the eight explicit and implicit conditions
Lovelock’s theorem is based on. These are: L1 to L4 (defined in Sec. 3.2), lo-
cality, metric compatibility, vanishing torsion and symmetry of the metric tensor.
Note however that some of the modifications are not completely independent as will
become clear in the following.

We start our tour through the world of modified gravity theories in Sec. 6.1 by
introducing Weyl geometry as an example for non-Riemannian geometries violating
the metric compatibility condition. Then, we enter the branch of scalar-tensor the-
ories in Sec. 6.2. In addition to the metric tensor these theories contain a scalar
field as an additional dynamical dof. After that we briefly investigate modified New-
tonian dynamics (MOND) in Sec. 6.3 and its relativistic generalization known as
tensor-vector-scalar gravity (TeVeS) in Sec. 6.4. TeVeS includes a metric, addi-
tional dynamical and nondynamical scalar field and a vector field. It is obvious that
these theories violate condition L4. The branch of theories with extra dimensions
(violating L1) will be investigated in Sec. 6.5. Subsequently, we present models
which violate the diffeomorphism invariance (L3) in Sec. 6.6. An interesting class
are the models of massive gravity which, as the name already says, describe a mas-
sive gravitational field. Lastly, we introduce a class of higher derivative models
(violating L2) in Sec. 6.7. This leads us to my first publication (P1) in which the
dynamical dofs in this class of theories are investigated. As a subclass of higher
derivative models we also investigate f(R)-gravity in Sec. 6.8 and show that it is
equivalent to a scalar-tensor theory. Before we discuss CGMs as another model as
part of the class of higher-derivative theories in Chap. 7, we briefly elaborate on the
recent possibility to constrain a huge number of modified theories of gravity with
the NS binary merger measured by the LIGO/VIRGO collaboration [63] in Sec. 6.9.

Although models violating the locality condition are not less interesting, we do
not study them in this thesis. The same holds for models with nonvanishing torsion
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and with some limitation also for models with nonsymmetric metrics.
For extensive reviews on theories of modified gravity, see [66, 77, 78].

6.1 Weyl Geometry

Weyl geometry represents a non-Riemannian structure, which endows the spacetime
manifold with an additional frame invariance. The norm of vectors is not constant
under parallel transport which is expressed by a violation of the metric compatibility
condition. This means the nonmetricity tensor (defined in eq. (29)) does not vanish
and reads

Qρµν = σρgµν , (165)

where σρ is a 1-form. The affine connection defined in eq. (31) can be written as

{αµν} = Γµνρ +
1

2
gαρ(σνgµρ + σµgνρ − σρgµν), (166)

where the contorsion Kµ
νρ is set to zero. Note that for σµ = 0 we are back at

Riemannian spacetime.
The nonmetricity condition in eq. (165) and the connection in eq. (166) are

invariant under the following transformations

g̃µν = efgµν , (167)

σ̃µ = σµ + f,µ, (168)

where f is a scalar function. If σ is an exact 1-form σµ = ∂µφ, where φ is a scalar
field, then we call this manifold Weyl integrable [79].

Weyl geometric gravity, developed shortly after GR in 1918 by Hermann Weyl
[80, 81, 82], is an example of a theory of modified gravity that is based on Weyl
integrable geometry as a generalization of the Riemannian geometry. It was used
as an attempt to geometrically unify gravity with electromagnetism. It is based on
the following Lagrange density

L =
√
−g
(
αRµ

νρσR
νρσ
µ + βR2 − 1

4
fµνf

µν

)
, (169)

where α and β are constants and fµν = ∂µσν − ∂νσµ resembles the tensor for the
electromagnetic field strength. Remember that the curvature tensors depend on the
connection in eq. (166) and thus, considering eqs. (167) and (168) we find the
following transformation laws

√
−g → Ω4

√
−g, (170a)

Rµ
νρσ → Rµ

νρσ, (170b)

Rµ
νρσR

νρσ
µ → Ω−4Rµ

νρσR
νρσ
µ . (170c)

This points out that the action in eq. (169) is a scalar under these transformations.
Note that eq. (169) obviously also violates L2.

Originally, Weyl investigated two special cases for α = 0 [83] and β = 0 [81].
Although Einstein admitted the beauty of Weyl’s generalization of Riemannian ge-
ometry, he criticized Weyl geometry mainly for two reasons: In non-integrable Weyl
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geometries clocks depend on their past history and thereby the existence of sharp
spectral lines is not possible [84]. However, this argument is not true for Weyl
integrable geometries and hence in the recent past Weyl integrable geometry has
attended some attention in the context of cosmology (see e.g. [85, 86, 87]) with the
aim to make some progress on the singularity problem in the ΛCDM model or to
explain the effects of dark matter and dark energy by geometric properties.

Weyl integrable geometry provides one explicit option to modify gravity via
the geometric structure. Another very interesting way is to consider nonvanishing
torsion. However, we do not study these theories in this thesis and refer the reader
to a recent review [88].

Note that we assume metric compatibility and vanishing torsion for all following
calculations.

6.2 Scalar-Tensor Theory

In this section we analyze scalar-tensor theories of gravity as a natural but simple
extension of GR. Lovelock’s theorem points out that GR is the unique interacting
theory of Lorentz invariant massless helicity-2 particle [89, 90]. Therefore, adding a
dynamical scalar field leads to a violation of L4 and hence to a modification of GR.

Scalar-tensor theories can be represented in different conformal frames (see [] for
a detailed discussion). This led to longstanding discussions and confusion about
which frame should be considered as the physical frame. Here we present a general
class of scalar-tensor theories in the Jordan frame in Sec. 6.2.1 and subsequently
show the transformation to the Einstein frame in Sec. 6.2.2.

6.2.1 Jordan Frame

We investigate the action of a class of scalar-tensor theories in the Jordan frame.
Its action is given by

I =
1

16πG

∫
d4x
√
−g
[
−f(S)R− ω(S)

2
gρσ∇ρS∇σS − V (S)

]
+ IM[gµν , ψi], (171)

where S(x) is a scalar field and IM =
∫
d4x
√
−gLM [gµν , ψi] is the matter action

with LM the Lagrange density of matter. For convenience, if we deal with minimally
coupled matter Lagrange densities, we will often suppress the explicit dependence
of LM on derivatives of the metric and the matter fields. The ψi represent a set of
generic matter fields and f(S) > 0, ω(S) and V (S) are functions that define the
theory. V (S) is a potential for the scalar field. Variation with respect to gµν leads
to the field equations for the metric

Gµν = −16πGf−1(S)

[
1

2
Tµν +

1

2
T Sµν

]
−f−1(S)∇µ∇νf(S)+f−1(S)gµν�f(S), (172)

where Tµν is the usual matter energy-momentum tensor and

T Sµν =
1

16πG

{
ω(S)∇µS∇νS − gµν

[
1

2
ω(S)gρσ∇ρS∇σS + V (S)

]}
(173)
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is the energy-momentum tensor for the scalar field. Contracting eq. (172) with gµν

results in
R = 8πGf−1(S)

[
T + T S

]
− 3�f(S), (174)

where T is the trace of Tµν and T S = − [3ω(S)∇ρS∇ρS + 4V (S)] /16πG is the trace
of T Sµν . The diffeomorphism invariance of the matter action IM leads to covariant
conservation of the matter energy-momentum tensor

T ρµ;ρ = 0. (175)

This means that eq. (171) represents a metric theory, i.e. test particles move on
geodesics and Einstein’s equivalence principle is satisfied [16]. Note that we recover
GR if we choose the scalar field to be constant, set f(S) = 1 and V (S) = 0. On
the other hand, if S(x) is not constant, we can interpret G/f(S) as an effective
spacetime-varying Newton’s constant.

The field equations for the scalar field can be derived by varying eq. (171) with
respect to S(x). We obtain

ω�S +
1

2
ω′∇ρS∇ρS − V ′ − f ′R = 0. (176)

The prime denotes the derivative with respect to S. For ω = 1 the second term drops
out and we find a conventional wave equation for the scalar field with a coupling to
the Ricci scalar. From gravitational tests in the SS (or on cosmological scales) it is
known that f(S) cannot vary too much. One possibility to ensure this is to give the
scalar field a huge mass. This can be achieved by constructing V (S) such that it has
a minimum and the V ′-term becomes large. This means as long as the kinetic energy
of S is not too large, the V ′-term dominates and the scalar field cannot escape from
the minimum. Another possibility is to keep the changes in the effective Newton’s
constant small by an appropriate choice of f(S) and ω(S).

One of the most famous and best motivated scalar-tensor theories is the Brans-
Dicke model [91], which corresponds to the choice

f(S) = S, ω(S) =
2ω̃

S
, (177)

where ω̃ is a constant41.
Using eq. (177) in eq. (171) we find

IBD =
1

16πG

∫
d4x
√
−g
(
−SR− ω̃

S
gρσ∇ρS∇σS − V (S)

)
. (178)

Variation with respect to the metric yields

Gµν = −8πG

S
Tµν−

ω̃

S2
gµν

[
∇µS∇νS −

1

2
gρσ∇ρS∇σS

]
− 1

S
[∇µ∇νS − gµν�S]−gµν

V

2S
,

(179)

41Actually, in the original Brans-Dicke theory the potential V (S) was zero.
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and the field equation for S is given by

ω̃

S
�S − ω̃

S2
∇ρS∇ρS − V ′ −R = 0. (180)

Combining eq. (180) with the trace of eq. (179) we can write

(2ω̃ + 3)�S − SV ′ − 2V = 8πGT, (181)

which shows that the scalar field is sourced by the trace of the matter energy-
momentum tensor. This points out that the scalar field is a gravity field according
to our definition in Sec. 3.2.

Brans and Dicke were motivated by Mach’s principle, which says that inertial
masses arise from accelerations with respect to the average mass of the Universe,
which is represented by a scalar field. In consequence, masses of particles cannot
be constant, but arise from the interaction with this cosmic scalar field. However,
the absolute scale of masses of elementary particles can only be measured by grav-
itational acceleration, which is proportional to G. Hence, we can reinterpret the
situation as if G is determined by an average value of some scalar field 〈S〉 repre-
senting the mass of the Universe. Precision measurements imply [16]

ω̃ > 40000 (182)

for massless scalar fields. A large value for ω̃ is consistent with the fact that Brans-
Dicke theory reduces to GR in the limit ω̃ →∞, see Sec. 7.2 in [10]42.

6.2.2 Einstein Frame

The scalar-tensor theory defined by eq. (171) can be transformed into the Einstein
frame. After a Weyl transformation only on the metric gµν → g̃µν = f(S)gµν we can
rewrite eq. (171) as

I =
1

16πG

∫
d4x
√
−g̃
[
−R̃− 1

2
K(S)g̃ρσ∇̃ρS∇̃σS −

V (S)

f 2(S)

]
+ IM[g̃µν , ψi], (183)

where we have integrated by parts and introduced

K(S) ≡ 1

f 2

[
fω +

3

2
(f ′)2

]
. (184)

In this frame the scalar field is decoupled from the Ricci scalar and the field equations
for the transformed metric g̃µν take the form of the EFE. This is the reason for this
frame to be called Einstein frame. We can further simplify the action in eq. (183)
by redefining the scalar field as

λ =

∫
K1/2dS. (185)

42Note that it has been criticized in [92] that the limit to GR does not work when the trace of
the matter energy-momentum tensor vanishes.
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Then the action in eq. (183) becomes

I =
1

16πG

∫
d4x
√
−g̃
[
−R̃− 1

2
g̃ρσ∇̃ρλ∇̃σλ− U(λ)

]
+ IM [g̃µν , ψi], (186)

where

U(λ) =
V (S(λ))

f 2(S(λ))
(187)

and

IM [g̃µν , ψi] =

∫
d4x
√
−g̃f−2LM [g̃µν , ψi]. (188)

Varying with respect to g̃µν we obtain the field equations

G̃µν = −8πG̃
(
T̃µν + T̃ (λ)

µν

)
, (189)

where

T̃µν = f−1Tµν , (190a)

T̃ (λ)
µν =

1

16πG

{
∇̃µλ∇̃νλ− g̃µν

[
1

2
g̃ρσ∇̃ρλ∇̃σλ+ U(λ)

]}
. (190b)

Here we have assumed that IM only depends on g̃µν and not on derivatives of the
transformed metric.

Note that although eq. (189) looks exactly like the EFE with an additional
energy-momentum tensor for the scalar field, it is not the same theory as GR, since
IM in the Einstein frame depends on the scalar field λ. Test particles that move
on geodesics with respect to gµν in the Jordan frame, will in general not move on
geodesics with respect to g̃µν in the Einstein frame. The geodesic equation in the
Jordan frame is a consequence of the covariant conservation of the matter energy-
momentum tensor. This conservation is violated in the Einstein frame

∇̃ρT̃ µρ = −1

2
T̃ g̃µρ∇̃ρ ln(f(λ)). (191)

Only radiation matter with T̃ = 0 is conformal invariant and moves on geodesics
with respect to g̃µν .

To summarize, in the Jordan frame we have a modified gravitational field since
the scalar field couples to the Ricci scalar, but test particles move on geodesics.
In the Einstein frame the field equations for the metric have the same form as in
GR with an additional energy-momentum tensor for the scalar field, but Einstein’s
equivalence principle is violated and consequently test particles do not move on
geodesics in general.

In literature there is an ongoing discussion about which frame should be consid-
ered as the physical frame. We do not want to enter this discussion here, but refer
to Faraoni, who discusses this issue in detail in [93, 94].

Besides that, calculations in the Einstein frame can be much simpler. Especially,
in vacuum the theory is just GR plus a minimally coupled scalar field. However,
note that conformally invariant quantities can be calculated in both frames and give
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the same result.
There are also generalizations of the class of scalar-tensor theories which we

presented here. The action in eq. (171) is the most general action with second-
order derivatives of the scalar field (up to boundary terms). But if one asks for the
most general action which leads to second-order field equations one finds Horndeski’s
theory [95]. A discussion of this theory goes beyond the scope of this thesis. For
more details we refer the reader to [96, 97].

6.3 Modified Newtonian Dynamics

Modified Newtonian Dynamics was introduced to explain galaxy rotation curves
without dark matter. It is based on a modification of Newton’s second law given as

F = mf

(
a

a0

)
a, (192)

where a = |a| and f is a positive, smooth and monotonic function with

f(x) = 1 for x� 1, (193a)

f(x) = x for x� 1. (193b)

a0 defines an acceleration scale at which the modification of Newton’s second law
becomes effective. If one assumes that dark matter does not exist, one can de-
termine its value by measurements of galaxy rotation curves. This leads to a0 ≈
1.2× 10−10 ms−2 [98] and seems to connect this acceleration scale with cosmology,
as this value agrees within an order of magnitude with the present-day Hubble ac-
celeration cH0, where H0 is the Hubble parameter measured today. This was first
recognized in [99].

In literature different functional forms of µ are discussed. Reasonable examples
are f(x) = x/(x + 1) or f(x) = x/

√
1 + x2. Since accelerations in the SS fall into

the regime a � a0, we do not observe this modified behavior and hence MOND
does not violate SS test of gravity. But for stars in the outer part of galaxies the
situation is different. Here we write

f

(
a

a0

)
a =

GM

r2
, (194)

where M is the mass of the galaxy. r is the distance between the center of the
galaxies and the stars. In the regime a/a0 � 1 we get f(a/a0) ≈ a/a0, which leads
to

a =

√
GMa0

r
. (195)

From the equality of centripetal and gravitational forces we obtain

v =
√
GMa0. (196)

This means that the rotational velocity becomes a constant and only depends on the
galaxy mass M . This reflects the behavior of the dark matter halo that is needed
to fit galaxy rotation curves in GR.

From an observational point of view the MOND hypothesis seems to be incon-
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sistent with observations of mergers of galaxy clusters like the Bullet Cluster. In
this phenomenon two galaxy clusters collide and pass through each other. During
the collision stars were affected very little and just passed through. But the hot
baryonic gas of both clusters interacted electromagnetically and slowed down. By
gravitational lensing one can find the gravitational center. MOND predicts that the
center of lensing is where most of the baryonic matter resides, i.e. the baryonic hot
gas. However, it was shown that the lensing is strongest in the outer regions where
the stars reside. Hence, it seems problematic to explain the bullet cluster within
the MOND hypothesis, but it was claimed that dark matter naturally explains this
behavior, since it barely interacts and just passes through [100]. Nevertheless, it
was shown by N-body simulations that the bullet cluster also cannot be naturally
explained within the λCDM model [101].

Besides that, MOND also faces theoretical problems: it was not derived from
an action principle and it is based on Newtonian dynamics, and hence is not a
relativistic theory. To cure these issues a relativistic extension of the MOND theory,
namely the TeVeS was introduced [102]. We present this theory briefly in the next
section.

6.4 Tensor-Vector-Scalar Gravity

TeVeS is a generalization of MOND and reproduces the MOND acceleration formula
in eq. (194) in the weak-field approximation for the spherically symmetric, static
solution. It is a relativistic theory based on an action principle and hence it exhibits
gravitational lensing. The action was introduced by Bekenstein in 2004 and is given
by [102]

ITeVeS =

∫
d4x
√
−g̃(Lg̃ + Ls + Lv), (197)

where

LGR = − 1

16πG̃
R̃, (198a)

Ls = − 1

16πG̃

[
µhρσ∇̃ρφ∇̃σφ+ F (µ)

]
, (198b)

Lv = − K

32πG̃

[
g̃ρσg̃αβBραBσβ − 2

λ

K
(g̃ρσAρAσ + 1)

]
, (198c)

where LGR is the usual Einstein-Hilbert action with respect to the metric g̃µν , Ls is
the action for a dimensionless scalar field φ and Lv is the action for a dimensionless
vector field Aµ. µ is a nondynamical scalar field, because no kinetic term is present.
Note that G̃ is the bare gravitational coupling constant, which has a certain relation
to Newton’s constant G. ∇̃ are covariant derivatives with respect to g̃µν and F
is the dimensionless MOND-function chosen to reproduce the MOND equation in
Eq. (194) in the Newtonian limit. Further, we define hµν = g̃µν − AµAν , Bµν =
∇̃µAν − ∇̃νAµ and the length scale l. K is a dimensionless vector coupling constant.
λ represents a spacetime dependent Lagrange multiplier leading to the condition

g̃ρσAρAσ = −1. (199)



6.5 Extra Dimensions 51

Eqs. (198a)-(198c) are defined with respect to the Einstein metric g̃µν , which repre-
sents the Bekenstein frame (Einstein frame). The physical metric gµν is related to
g̃µν by the disformal transformation as

gµν = e−2φg̃µν − 2AµAν sinh(2φ). (200)

It is called the physical metric because it is the metric which couples to the matter
fields in the matter action

IM =

∫
d4x
√
gLM(gµν , ψ,∇µψ, . . .), (201)

where ∇ denotes the covariant derivative with respect to gµν . Hence, particles move
on geodesics with respect to gµν and Einstein’s equivalence principle is satisfied. But
this theory obviously violates L4 of Lovelock’s theorem. The field equations can be
found by variation with respect to µ, g̃µν , Aµ and φ. We obtain

hρσ∇̃ρφ∇̃σφ = −dF
dµ

, (202a)

−G̃µν = 8πG̃
[
Tµν + 2

(
1− e−4φ

)
AρTρ(µAν)

]
+ µ

[
∇̃µφ∇̃µφ− 2Aρ∇̃ρφA(µ∇̃ν)φ

]
+

1

2
(µF ′ − F ) g̃µν

+K

[
Bρ
µBρν −

1

4
BρσBρσg̃µν

]
− λAµAν , (202b)

K∇̃ρBρ
µ = −λAµ − µAρ∇̃ρφ∇̃µφ+ 8πG

(
1− e−4φ

)
AρTρµ, (202c)

∇̃ρ
[
µhρσ∇̃σφ

]
= 8πG̃e−2φ

[
gρσ + 2e−2φAρAσ

]
Tρσ, (202d)

where G̃µν is the Einstein tensor with respect to g̃µν . Eq. (202a) is a constraint
equation to find the relation between µ and ∇µφ. The set of field equations is
completed by the constraint equation for Aµ in eq. (199).

In this thesis we do not discuss any details of the theory. For an extensive
discussion of properties and problems of TeVeS, see e.g. [103].

6.5 Extra Dimensions

In this section we discuss a class of theories with d spacetime dimensions. Obviously
these models violate L2 of Lovelock’s theorem. The first attempt to extend the
four dimensional spacetime by extra dimensions was by Kaluza and Klein in 1921
[104, 105]. They had the idea to unify gravity and electromagnetism by adding a
compactified extra dimension, such that spacetime appears to be four-dimensional
on large scales while effects of the extra dimension become important only on small
scales, i.e. on the scale of the extra dimension.

Here we investigate the (4+d)-dimensional Einstein-Hilbert action coupled with
the standard matter action

I =

∫
d4+dx̂

√
−ĝ
(
− 1

16πG4+d

R[ĝAB] + LM
)
, (203)

where ĝAB is the (4 + d)-dimensional metric, ĝ = det(ĝAB) denotes its determinant
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and G4+d is the (4 + d)-dimensional gravitational coupling constant.
√
−ĝLM rep-

resents the matter Lagrange density. It depends on the set of matter fields ψi, and
in general can depend on the full metric tensor.

The (4 + d)-dimensional line element can be written as

ds2 = ĝABdx̂
Adx̂B = gµνdx

µdxν + b2(x)γab(y)dyadyb (204)

where x̂A are the coordinates of the (4 +d)-dimensional spacetime, gµν is the metric
and xµ are the coordinates of the four-dimensional spacetime, and γab is the metric
and ya are the coordinates on the extra dimensional manifold, which is a maximally
symmetric spacetime43. Capital latin indices run from 0 to 3 + d, greek indices run
from 0 to 3 and small latin indices run from 4 to 3+d. b(x) is the extra dimensional
scale factor depending only on the coordinates xµ of the four-dimensional spacetime.

The standard procedure to deal with the higher-dimensional spacetimes is to
integrate over the extra dimensions. Here, this is simple because b does not depend
on the y-coordinates. Therefore, we are able to expand the Ricci tensor according
to the metric in eq. (204)

R[ĝµν ] = R[gµν ] + b−2R[γij] + 2db−1gρσ∇ρ∇σb+ d(d− 1)b−2gρσ∇ρb∇σb, (205)

where ∇µ is the covariant derivative with respect to gµν . For the metric determinant
we find √

−ĝ = bd
√
−g
√
−γ. (206)

We also define the four-dimensional gravitational coupling constant G4 by

1

16πG4

=
V

16πG4+d

, (207)

where

V =

∫
ddy
√
γ (208)

represents the volume in the extra dimensionsional spacetime if b = 1. Inserting eq.
(205) into eq. (203) and integrating over the extra dimensions leads to

I =

∫
d4x
√
−g
[
− 1

16πG4

(
bdR[gµν ]− d(d− 1)bd−2gρσ(∇ρb)(∇σb)− d(d− 1)kbd−2

)
+bdV LM

]
,

(209)

where we used integration by parts to combine the third and fourth term in eq.
(205). We introduced the curvature parameter k which depends on the metric γab.
It is defined as

k = − R[γab]

d(d− 1)
. (210)

It is an important observation that the action in eq. (209) takes the form of a scalar-
tensor theory in the Jordan frame (cf. eq. (171)) if we treat the extra-dimensional

43This means that the extra dimensional manifold has 1/2d(d− 1) Killing vectors.
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scale factor b as a scalar field. This confirms our former statement that not all
modifications according to Lovelock’s theorem are completely independent. Making
the a redefinition of b and a conformal transformation on the metric we can rewrite
eq. (209) in the Einstein frame as

I =

∫
d4x
√
−g̃
{
− 1

16πG4

R[g̃µν ]−
1

2
g̃ρσ(∇̃ρS)(∇̃σS)

+
kd(d− 1)

16πG4

e−
√

2(d+2)/dS/(8πG4) + V e−
√

2d/(d+2)S/(8πG4)LM
}
, (211)

where g̃µν = ed ln b and S = [d(d+ 2)/(16πG4)]1/2 ln b is usually called the dilaton or
radion.

We can study what happens if we assume that there is no matter, i.e. LM = 0.
For k = 0 we are left with a massless scalar field, which would be inconsistent with
the constraints on Brans-Dicke theories if we compare with the constraint on ω̃ given
in eq. (182).

For nonvanishing curvature the potential has the shape of an exponential function
and hence has no minimum. For k < 0 the scalar field will asymptote to +∞ whereas
for k > 0 it approaches −∞. Since the S is proportional to ln b, this means the extra
dimensional scale factor blows up to infinity or shrinks down to zero. Therefore, we
must conclude that this kind of extra dimensional theory without matter is unstable.
However, the situation can be changed if one adds an appropriate matter sector, see
[106].

When String theory, which needs extra spatial dimensions, was developed, the
idea of higher-dimensional spacetimes and especially the brane-world scenarios be-
came of great interest. Brane world models investigate the possibility that at low
energies gravity and the matter fields are trapped to the (1 + 3)-dimensional space-
time, embedded in a higher (1 + 3 + d)-dimensional spacetime. At high energies
gravity can leak into the extra dimensional brane which potentially leads to testable
implications for black holes, high-energy astrophysics or cosmology. For a review on
brane-world models, see [107].

6.6 Massive Gravity

In GR the metric is an exactly massless helicity-2 field. In consequence, it seems
reasonable to consider a metric with a non-zero mass as a natural modification to
GR. This idea was first introduced by Fierz and Pauli in 1939 [108]. In Fierz-Pauli
gravity the way to think about gravitation is inspired from classical field theories in
flat spacetime. A classification of fields can be given based on their mass and spin
(for details, see Appendix E). Along the same line we can treat the linearized version
of GR as a classical field theory in flat Minkowski spacetime. Linearized GR satisfies
infinitesimal diffeomorphism invariance which is defined by the transformation given
in eq. (78). But in general, models based in the Fierz-Pauli approach violate this
symmetry. In terms of Lovelock’s theorem this means L3 is not satisfied. Hence,
considering a metric with a nonvanishing mass is a crude modification that does not
come without pathologies as will become clear below in this section.

The Fierz-Pauli theory is based on an action for a massive spin-2 particle in flat
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spacetime given by

IFP =

∫
d4x

[
−1

2
∂ρhµν∂

ρhµν + ∂µhνρ∂
νhµρ − ∂µhµν∂νh+

1

2
∂µh∂

µh

−1

2
m2
g(hµνh

µν − h2) + 16πG̃hµνT
µν

]
, (212)

where hµν is the metric perturbation defined by gµν = ηµν + hµν , mg is a constant
representing the graviton mass, G̃ is the gravitational coupling constant and T µν is
a conserved matter energy-momentum tensor44. A massive spin-2 particle carries
five dofs, thus there are three massive extra dofs.

Let us briefly discuss some additionaly motivation for the Fierz-Pauli action:
First, the Lagrange density contains all terms which appear in the linearized ver-
sion of the Einstein-Hilbert action. These are all possible scalars quadratic in the
metric perturbation hµν with two derivatives and invariant under infinitesimal dif-
feomorphisms. In addition to these terms, the most general Lorentz-invariant mass
term is added as a combination of hµνh

µν and h2. It is clear that it is this mass
term which violates the infinitesimal diffeomorphism invariance. Thus, the relative
sign between the mass terms cannot be motivated by infinitesimal diffeomorphism
invariance. Rather, only the combination chosen in eq. (212) avoids a spin-0 ghost
field45. If one replaces h2 with (1 − a)h2 for a 6= 0, a massive scalar field appears
with negative kinetic energy and with mass m2

g = [(3− 4a)/2a]m2. For a → 0 the
ghost becomes nondynamical since m2

g →∞. The relative coefficient of −1 between
the mass term is called the Fierz-Pauli tuning.

The field equations are found by variation with respect to hµν and read

�hµν − 2∂(µ∂ρh
ν)ρ + ηµν∂ρ∂σh

ρσ + ∂µ∂νh− ηµν�h = −16πG̃T µν +m2
g(h

µν − ηµνh).
(213)

Using the trace-reversed metric perturbation h̄µν = hµν − ηµνh we can rewrite this
as

�h̄µν − 2∂(µ∂ρh̄
ν)ρ + ηµν∂ρ∂σh̄

ρσ = −8πG̃T µν +m2
g(h

µν − ηµνh). (214)

Since infinitesimal diffeomorphism invariance is violated, we cannot use it to impose
conditions on the ten components of the metric perturbation. On the other hand,
we know that a massive spin-2 field should have five independent dofs and hence,
we look for dynamical conditions which imposed by the field equations. Contracting
eq. (214) with ∂µ yields

m2
g∂ρ(h

ρµ − ηρµh) = 0. (215)

This equation represents four conditions on the components of hµν reducing the
independent number of components to six. A second condition is found by taking
the trace of eq. (213) and use the condition in eq. (215) leading to

− 3m2
gh = 16πG̃T. (216)

44Higher self-interactions of the gravitational field can be neglected because we work in linearized
theory.

45A ghost field is a field that enters the action with the wrong sign for the kinetic term leading
to an energy spectrum unbounded from below. For a discussion of the ghost problem, see Sec. 6.7
and the references given there, and also the discussion in Sec. III B and in Appendix of C (P2).
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This results in a condition on the trace of hµν and, as desired, reduces the number
of independent dofs to five. In particular, in vacuum for Tµν = 0 eq. (216) leads to
h = 0 and eq. (215) reduces to ∂ρhρµ = ∂ρh̄ρµ = 0.

If we now consider the case for Tµν 6= 0 and T 6= 0, the limit mg → 0 is
problematic. In order to keep T unchanged the product m2

gh in eq. (216) must be
constant. But this means h → ∞ rather than h = 0 as in the vacuum case. To
investigate this peculiar behavior we rewrite eq. (213) with the help of eq. (215)
and eq. (216). We obtain (

�−m2
g

)
hµν = Sµν , (217)

where Sµν ≡ −8πG̃
(
Tµν − 1

3
ηµνT + 1

m2
g
∂µ∂νT

)
. In the limit mg → 0 the left-hand

side is unproblematic, but on the right-hand side the second term has a wrong
coefficient with respect to GR, where it is −1/2, and the last term even diverges.
We can analyze these effects with the help of the propagator by inverting the part
of eq. (212) which is quadratic in hµν and then analyze it in Fourier space

Ãµνρσ(k;mg) =

(
1

2
Πµ(ρΠνσ) −

1

3
ΠµνΠρσ

)(
−i

k2 +m2
g − iε

)
, (218)

where Πµν ≡ ηµν+kµkν/m
2
g and kµ is the four-wavevector. We can use this expression

to write the Fierz-Pauli action in the form

SFP =

∫
d4x

(
hµνAµνρσh

ρσ + 16πG̃hµνT
µν
)
. (219)

The first term shows that physical amplitudes are proportional to

T̃ µν(−k)Ãµνρσ(k)T̃ ρσ(k). (220)

Using the matter energy-momentum conservation (kρT̃
ρµ = 0), we see that the

divergent contributions drop out and we are left with a finite propagator

Ãµνρσ(k;mg) =

(
1

2
ηµ(ρηνσ) −

1

3
ηµνηρσ

)(
−i

k2 +m2
g − iε

)
. (221)

However, compared to the massless propagator

ÃGR
µνρσ(k) =

1

2

(
ηµ(ρηνσ) − ηµνηρσ

)( −i
k2 − iε

)
(222)

we see that the different coefficient for the ηµνηρσ-term remains. This can be illus-
trated by writing the physical amplitude in the massless limit as

lim
mg→0

T µν(−k)Ãµνρσ(k;mg)T
ρσ(k) = T µν(−k)ÃGR

µνρσ(k)T ρσ(k) +
1

6
T (−k)

−i
k2
T (k).

(223)
The first term on the right-hand side is the same as in GR and describes the exchange
of a massless helicity-2 graviton, which couples to the energy-momentum tensor.
The second term represents an additional scalar particle coupled to the trace of
the energy-momentum tensor. Thus, it is clear that Fierz-Pauli gravity does not
reduce to massless GR in the limit mg → 0. This phenomenon is called van Dam-
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Veltman-Zakharov (vDVZ) discontinuity. We discuss this issue for CGMs briefly
in (P2).

Let us have a brief look at the consequences of this additional scalar field. The
potential energy in the Newtonian limit for two point masses m1 and m2 can be
derived from Ã0000. It is given by

V = −4

3
G̃
m1m2

R
e−mgR, (224)

where R is the distance between the point masses. We have the freedom to define
G̃ = 3G/4, where G is Newton’s constant and observe that we have reproduced the
Newtonian potential of GR if we expand the exponential function to lowest-order
in mgR � 1. So at first glance, the Newtonian limit seems consistent. However,
considering light bending we run into trouble. In GR the deflection angle is given
by α = 4GM�/R� [16], where M� and R� are the mass and the radius of the
sun, respectively. In massive gravity we rather find α = 3GM�/R� [109]. This
is because the trace of the energy-momentum tensor of the electromagnetic field is
zero, and hence the additional contribution in eq. (223) vanishes. This is clearly in
contradiction with experiments, and thus would invalidate massive gravity. However,
a systematic investigation of a nonlinear extension of massive gravity revealed a
possible solution. Vainshtein showed that in the limit mg → 0 nonlinearities blow
up. He found a new length scale which appears near a massive sources of mass m.
This length scale is denoted as the Vainshtein radius defined by rV ∼ (Rs/m

4
g)

1/5.
The analog to the Schwarzschild solution in a nonlinear extension of Fierz-Pauli
gravity can be expanded in powers of rV /mgr, showing that nonlinearities dominate
on distances r < rV , where the linear theory is no longer applicable. In the limit
mg → 0 the Vainshtein radius diverges and we cannot trust the linear theory on any
distance scale. This opens the possibility that nonlinearities will finally solve the
problems introduced by the vDVZ discontinuity.

Massive gravity is also interesting for cosmology. The graviton mass introduces
a length scale ∼ 1/mg. Thus, if one chooses the graviton mass to be of the order as
the Hubble constant mg ∼ H0, it results into modifications in the IR regime. This
could lead to a natural explanation of the accelerated expansion of the Universe.
For a recent review on this, see [110].

Although we did not add a cosmological constant term into the action, it reap-
pears via the graviton mass term and is given by Λ ∼ mgG

1/2. However, one can
ask why this should be advantageous for the cosmological constant problem, since
we still have to fine tune mg to a small value. But it is blieved that a small value
of Λ in massive gravity is more natural, because a small graviton mass is protected
from quantum corrections due to the infinitesimal diffeomorphism invariance. The
quantum corrections have to be proportional to mg itself as the infinitesimal diffeo-
morphism invariance must be restored if mg → 0, see [109]. But still, this does not
solve the problem that vacuum energies would lead to a huge cosmological constant,
which must be added to the small cosmological constant from the gravity sector.
Hence, to solve the complete cosmological constant problem, massive gravity still
has to assume some unknown mechanism which forces the vacuum energies to be
non-gravitating or to cancel each other.

Besides that, breaking diffeomorphism invariance is a rude modification to GR
and comes along with some pathologies. Adding generic self-interaction terms to
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the linear massless helicity-2 action in GR, in the end terms can be summed up just
to find the full nonlinear theory of GR [89, 111, 112, 113, 114]46. The same has been
done by Boulware and Deser in 1972 for a large class of models of massive gravity
with a mass term m2

gf(hµν−h2). They found that the nonlinearities reintroduce the
scalar ghost, which was avoided by the Fierz-Pauli tuning in (212), see [115]. For
this reason this ghost is called Boulware-Deser ghost. Later, the most general mass
term was analyzed in [116] and it was concluded that the Boulware-Deser ghost
always appears. Nevertheless, in 2010 de Rham, Gabadadze, and Tolley were able
to construct an action for massive gravity without any ghostlike instability. They
tuned the coefficients of the terms in such a way that ghostlike terms were gathered
into total derivatives, which do not contribute to the equations of motion. This
theory is called de Rham-Gabadadze-Tolley (dRGT) massive gravity [117, 118]. A
proof that this theory is ghost-free to all orders is given in [119, 120].

It is interesting that in dRGT, in addition to the usual metric, a second reference
metric was introduced to construct the mass term which avoids the Boulware-Deser
ghost. This concept was extended in a way such that also the second metric becomes
dynamical, leading to the so-called bigravity theories or also bimetric gravity. We
do not discuss those theories in this work, but want to hint the reader on this recent
review on bimetric theories [121]. Note also that there is an interesting discussion
about the connection between partially massless massive gravity theories and CGMs
in [121].

6.7 Higher Derivative Gravity

Theories of higher derivatives naturally appear in the context of quantum gravity. It
is well-known that GR seems to be non-renormalizable because of standard power-
counting arguments [17, 18]47. However, if one adds quadratic curvature terms to the
Einstein-Hilbert action, it has been shown that these theories become renormalizable
[41]. Unfortunately, higher derivative models are beset with a severe problem: the
theorem by Ostrogradsky [75] states that field equations with higher than second-
order time derivatives contain unbounded kinetic terms leading to pathologies in
classical as well as quantum theory [76]. At classical level the Ostrogradsky insta-
bility can manifest by exponentially growing modes or, if the theory is interacting,
the vacuum field configurations can be unstable to small perturbations. At the
quantum level the ghost problem becomes even worse. There are two possibilities:
A negative norm can be assigned to the ghostly quantum states. Then, the energy
spectrum is bounded from below, but the theory becomes non-predictive since it
leads to negative probabilities [122]. The other possibility is to choose a positive
norm which implies a standard probabilistic interpretation, but leads to an energy
spectrum which is unbounded from below. In this case the vacuum decays sponta-
neously without the need for any initial perturbation as in the classical theory. For
a detailed discussion on this issue, see [123].

46In this sense, if Einstein had not found GR guided by the equivalence principle and general
coordinate invariance, it probably would have been found anyway by studying the gauge theory of
a massless helicity-2 particle by adding self interactions consistently.

47Although it is possible to absorb quadratic and quartic divergences into renormalizations of
the cosmological constant and Newton’s constant, the logarithmic divergence cannot be absorbed
into any parameter.
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Different methods have been developed to circumvent the ghost issue, e.g. mod-
ifying the quantization scheme [55, 56] as is PT-symmetric quantization (where P
stands for parity and T for time) [45, 46, 47, 48, 49, 50, 51, 52] or nonlocal theo-
ries [44, 53, 54]. It has also been addressed in partially massless theories [124] and
in critical gravity [125], which tunes the coefficients of the higher curvature terms
such that the massive spin-2 ghost is absent. However, at least the modifications
schemes are to be criticized [126] and hence we take an agnostic point of view on
this problem.

Another possibility to avoid the Ostrogradsky instability is to treat the higher
derivative models as effective theories, only valid up to some energy scale where
new, more fundamental physics should arise. Propagators do not develop additional
poles and hence no ghost can appear [127]. But unfortunately the absence of ghosts
dofs comes along with the loss of renormalizability again.

Besides that, a very promising property of higher-derivatives models is that they
can preserve spacetime from forming singularities [128, 129] which cannot be avoided
in GR [130].

6.7.1 Gravitational Waves and Degrees of Freedom in Higher Derivative
Gravity

In my first work (P1) [1] we consider the most general d-dimensional (d ≥ 3) action
which includes up to quadratic-order curvature tensors. It is given by [131]

I =

∫
ddx

√
−g

64πG
[−4εR +RF1(�)R +RµνF2(�)Rµν +RµνρσF3(�)Rµνρσ] + IM [gµν , ψi],

(225)

where ε is a parameter which takes the values ±1 and IM represents the standard
minimally coupled matter action. F1(�), F2(�) and F3(�) are functions of the
covariant d’Alembert operator � = gµν∇µ∇ν . Note that for d = 4, ε = +1 and
F1 = F2 = F3 = 0 one recovers the Einstein-Hilbert action. As another example,
for ε = −1, F1 = 128πGαg/3, F2 = −128πGαg and F3 = 0 the action reduces to
conformal gravity [2].

Although effects of higher derivative models are usually supposed to become
apparent for UV energies, there are some studies of measurable effects in the low-
energy regime. See for example [56, 129, 132, 133].

In Sec. II of (P1) we investigate GWs and their dynamical dofs in the linearized
version of eq. (225)48. It was shown that this theory contains eight propagating
dofs [134]: a massive scalar field φ, a massless helicity-2 field Hµν and a massive
spin-2 field Ψµν . In consequence, it turns out to be convenient to define the metric
perturbation as hµν = ε(ηµνφ+Hµν + Ψµν). The corresponding wave equations are

48Note that without loss of generality we can set F3 = 0 by a redefinition of F1 and F2. For
details, see [134].
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found by variation with respect to each of the fields[
�− εm2

φ(�)
]
φ =

16πG

(d− 1)(d− 2)
T, (226a)

�H̄µν = −16πGTµν , (226b)[
�− εm2

Ψ(�)
]

Ψ̂µν = 16πGTµν , (226c)

where mφ(�) and mΨ(�) represent the effective masses of the massive scalar and
the massive spin-2 field, and we have introduced H̄µν ≡ Hµν − 1/2ηµνH, its trace

H = ηµνHµν and Ψ̂µν ≡ Ψµν−ηµνΨ with its trace Ψ = ηµνΨµν . Note that mφ(�) and
mΨ(�) depend on the d’Alembert operator and hence their Fourier representation
depends on ω and k. In analogy to the harmonic gauge, which we used in the
linearized version of GR (see eq. (79)), we fixed the coordinate freedom by the
Teyssandier gauge [134, 135] which in linearized form reads

∂ρH̄ρµ = 0, (227a)

∂ρ∂σΨρσ = 0. (227b)

A detailed derivation of the Teyssandier gauge can also be found in Appendix B
of (P2). Note also that the coefficient of matter energy-momentum tensor in eq.
(226c) has a relative sign compared to eq. (226b). This indicates, depending on the
sign of ε, the presence of a massless or massive ghost.

Counting the number of independent components, we notice that the massless
spin-2 field is given in the harmonic gauge. Hence, in vacuum we can project it
into the TT gauge as in GR, which means that it carries two dofs. However, the
components of the massive spin-2 field are fixed by eq. (227b). This is just one
constraint equation for Ψ̂µν and points out why the massive spin-2 field contains
three dofs more than the massless field. Lastly, the massive scalar field carries one
dof, summing up to a total number of eight. Contracting eq. (226b) with ∂µ and
using eq. (227a) we find that the matter energy-momentum tensor is conserved in
linearized theory

∂µTµν = 0. (228)

In Sec. III of (P1) we at first derive the solutions to eqs. (226a)-(226c) in d
dimensions and for arbitrary F1(�) and F2(�). After that, in subsections A and B
we restrict to four spacetime dimensions (d = 4) and to the case in which F1(�) = F1

and F2(�) = F2 are just constants, independent of the d’Alembert operator (and
hence independent of ω and k in the Fourier representation). GWs are investigated
in the same idealized binary system and under the same approximations as defined
in Chap. 5. We look at a binary system of two test particles in the center-of-mass
frame in the Newtonian limit for circular trajectories. Applying the quadrupole
approximation we find as the first main result that monopole and dipole radiation
vanish and, as in GR, to leading order only the quadrupole moment contributes to
gravitational radiation.

In Sec. III B of (P1) we derive the second main result. For this purpose we
keep the situation more general. For arbitrary F1(�) and F2(�) in d dimensions
we analyze the dynamical dofs of the massive spin-2 field which are excited by a
conserved source and propagate to the far field. For this analysis it is essential that
in linearized theory the matter energy-momentum tensor is conserved as we have
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seen in eq. (228). Then, in eq. (33) of (P1) the massive spin-2 field can be projected
into the harmonic gauge without using any coordinate transformations. It just fol-
lows dynamically from the linearized field equations. Thus, it is clear that using the
residual coordinate freedom we can project both, the massless helicity-2 field and
the massive spin-2 field into the TT gauge. This has major influence on the power
emitted by binary systems into GWs and leads to interesting results described in
(P2), where we apply this outcome to the special case of CGMs. A detailed discus-
sion of these results is given in the following publication.

(P1) arXiv:1806.09336 [gr-qc]: Gravitational Waves and Degrees of Freedom
in Higher Derivative Gravity

https://arxiv.org/abs/1806.09336

https://arxiv.org/abs/1806.09336
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6.8 f(R) Gravity

In this section we discuss metric f(R) gravity49 as an example of theories with
higher than second-order derivatives. It is special among other theories with higher
derivatives since it avoids Ostrogradsky instabilities [75, 139].

A well-known f(R) model is the curvature-driven Starobinsky inflation [140],
which modifies GR in the UV regime and predicts an era of cosmic inflation.
Starobinsky noticed that quantum corrections in GR lead to higher curvature terms
which become important for large curvature values in the early Universe. The higher-
curvature terms lead to an effective cosmological constant inducing a de Sitter phase
of exponential growth of the scale factor. It was realized that in this way cosmologi-
cal fine tuning problems like the horizon or flatness problem can be solved [141, 142].
Starobinsky inflation can be tested by observables like the spectral tilt ns and the
tensor-to-scalar ratio r and is in agreement with current data [143].

To be more general, we allow the action to depend on a function of the Ricci
scalar. This leads to the following action

I = − 1

16πG

∫
d4x
√
−gf(R) + IM [gµν , ψi]. (229)

The field equations for the metric are found, as usual, by variation with respect to
gµν and read

fRRµν −
1

2
gµνf −∇µ∇νfR + gµν�fR = −8πGTµν , (230)

where fR ≡ df/dR, � = ∇ρ∇ρ and Tµν is the matter energy-momentum tensor.
These field equations are fourth-order partial differential equations for the metric.
Contracting eq. (230) with the metric tensor results into

3�fR +RfR − 2f = −8πGT, (231)

where T = gµνTµν is the trace of the matter energy-momentum tensor. In the metric
formalism (i.e. the affine connection is not treated independently), the only case in
which f(R)-gravity leads to second-order field equations is for the choice f(R) = R
(plus a possible cosmological constant), which is the case of GR50.

In order to express the difference to the EFE it is convenient to rewrite eq. (230)
as

Gµν = −8πG

fR
Tµν −

1

2fR
gµν [fRR− f ] +

1

fR
[∇µ∇νfR − gµν�fR] . (232)

This equation looks quite complicated with respect to the EFE since there appear
additional curvature terms on the right-hand side. But observe that, as a conse-
quence of the higher derivatives, f(R) gravity contains more dofs than GR. In GR
the trace of the EFE is just an algebraic constraint, cf. eq. (46). Here the situa-
tion is different. eq. (231) is a dynamic second-order differential equation for fR,
which is sourced by the trace of the matter energy-momentum tensor (and by other

49There also exists a Palatini formulation [136] (metric and connection are treated as indepen-
dent) or metric-affine formulation [137, 138] (as in the Palatini formalism, but the connection can
also enter into the matter action) of f(R) models leading to different theories.

50This is not true for the Palatini formalism; see [144].
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curvature self-interactions). In consequence, this represents a dynamical scalar dof.
This means the curvature terms on the right-hand side of eq. (232) can be seen
as additional source terms for the metric. This additional dof disappears in GR,
because in the GR limit the first term in eq. (231) drops out and fR becomes a
constant.

Then, by introducing the following notation51

S ≡ fR, (233a)

V (S) ≡ f(R(S))−R(S)fR, (233b)

we can rewrite eqs. (231) and (232) to

3�S − 2V (S) + SV ′ = 8πGT, (234a)

Gµν = −8πG

S
Tµν −

1

2S
gµνV (S)− 1

S
[∇µ∇νS − gµν�S] . (234b)

We see that eq. (234a) resembles the equation for a scalar field found in Brans-Dicke
theory (cf. eq. (181)) for the choice ω̃ = 052. Therefore, we see that f(R) gravity
can be reformulated into a scalar-tensor theory, which points out that these two
different modifications of GR are actually not independent. Further, this clarifies
why f(R) theories do not suffer from Ostrogradski’s instability. As these theories can
be reformulated as GR plus an additional scalar field with second-order derivatives,
this theory is actually devoid of the problematic of higher derivatives. Nevertheless,
it is not useless to study f(R) models, since sometimes calculations are easier in
the f(R) formulation than in the scalar-tensor language or vice versa. Besides that,
Brans-Dicke theory with ω̃ = 0 contains no kinetic term for the scalar field. This
prevented it from being studied as a scalar-tensor theory. Only after the discovery
of the equivalence between both theories, this case was investigated in more detail.
Therefore, without f(R) gravity this sector of the Brans-Dicke theory possibly would
have remained unexplored. For more details on f(R) gravity, see e.g. [144].

6.9 Constraints from the Speed of Gravitational Waves

Before the detection of the NS-NS merger GW170817/GRB170817A no useful con-
straints on the speed of GWs existed. The detection of BH-BH mergers and the
measurement of the travel time of the GWs between the two LIGO detectors speci-
fied only an upper limit on the speed of GWs. For vgw the speed of GWs and c the
speed of electromagnetic waves (in vacuum) it was found (vgw − c)/c ≤ O(1).

The detection of GW170817/GRB170817A changed this situation dramatically.
In addition to the GW measurement, a gamma-ray burst (GRB) coming from the
same system was observed. The electromagnetic signal from this GRB arrived 1.7 s
later than the GW signal53. This leads to very stringent constraints on the speed of
GWs. If we assume that the electromagnetic waves and the GWs were emitted at
the same time t = 0, we can conclude vgwtgw = D = ctem, where D is the distance

51To construct the potential V (S) it is necessary that f ′(R) is invertible [145].
52In turn, if one starts with Brans-Dicke theory for the case of ω̃ = 0 and wants to find f(R)

gravity, the requirement is that dV (S)/dS = R must be invertible [145].
53There were follow-up measurements across the electromagnetic spectrum, see e.g. [64, 146,

147, 148, 149, 150, 151].
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to the source, and tgw and tem are the corresponding arrival times for the GW and
electromagnetic signal54. We can write

∆v

c
=
vgw∆t

D
≈ c∆t

D
, (235)

where ∆v ≡ vgw − c and ∆t ≡ tem − tgw. In the second step we used vgw ≈ c. For
a typical time delay ∆t = 1 s and a characteristic distance of D = 40 Mpc we can
rewrite eq. (235) as

∆v

c
' 2.43× 10−16

(
∆t

1 s

)(
40 Mpc

D

)
. (236)

The validity of this expression depends on the mechanism of GRB emission. We note
that the observed delay of 1.7 s is consistent with ∆v = 0 for typical mechanisms
of GRB emission. If we assume that the GRB emission is after the merger time
(which is common for all known emission mechanisms), we can study two different
cases: ∆v > 0 or ∆v < 0. In the first case GWs are faster than light55 and we
have ∆t > 0. If we associate the whole delay of ∆t = 1.7 s with the difference
in propagation speed ∆v and use the luminosity distance DL ≈ 40.4 Mpc, we can
derive an upper limit ∆v/c . 4× 10−16. In the second case the speed of GWs is
smaller than that of light, which can partially compensate for the time lack between
the merger and the emission of the GRB. If we assume 10s for this difference, we
find ∆t = 1.7 s − 10 s = −8.3 s. This leads to a lower bound on ∆v/c and we can
constrain the difference in propagation speed to

−2× 10−15.
∆v

c
. 4× 10−16. (237)

Using these constraints on the speed of GWs one can rule out many theories of
modified gravity. For details on this issue, see [152, 153, 154, 155, 156, 157, 158, 159].

7 Conformal Gravity Models

In this chapter we discuss conformal gravity models (CGMs) as another special case
of higher derivative theories and therefore violating L2 of Lovelock’s theorem. CGMs
are fourth-order derivative theories which are based on an additional invariance prin-
ciple, namely the principle of Weyl invariance (PWI). In analogy to the coordinate
invariance we demand that CGMs are invariant under local Weyl transformations
(LWTs). These transformations change proper distance intervals locally. Time and
space intervals can be compressed or stretched but the physics of these theories is
unchanged. LWTs and their difference to conformal coordinate transformations will
be discussed in Sec. 7.1.

There are several reasons to introduce LWTs as an additional symmetry of na-
ture: First, we know that GR needs to be modified to describe physics at the
Planck scale since it cannot be consistently quantized. Besides that, the matter

54To good approximation, we can ignore the expansion of the Universe since the redshift is only
z ≈ 0.0097. A discussion on the propagation of tensor modes in a Friedmann-Lemâıtre-Robertson-
Walker (FLRW) background is given in Sec. 19.5 of [7].

55In this case, the gravitational field is tachyonic.
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energy-momentum tensor as the source of gravity in the UV regime is described by
quantum fields. Therefore, it seems obvious that also the gravitational field must be
quantized. Simultaneously, hopefully the quantization of gravity also helps to solve
the problems of GR that we mentioned in Chap. 1.

On the other hand, for esthetical reasons one seeks a unification of gravity with
the rest of the fundamental forces. Using a broader symmetry to unify physical
theories has been very successful for the standard model of particle physics and
hence it is a reasonable starting point for a unification of gravity with particle
physics. If we drop the Higgs mass term, the standard model is invariant under
LWTs (it does not contain any mass or length scales) which implies that local
Weyl symmetry is a promising candidate. Assuming that the Higgs field acquires a
nonvanishing expectation value when the Universe cools down to the temperature of
the electroweak phase transition, then at energies above this phase transition physics
should be Weyl invariant. Even if particles have rest masses, in the ultrarelativistic
limit these are negligible and Weyl symmetry should be approached anyway.

Besides that, local Weyl symmetry has the appreciated property to be much more
restrictive than coordinate invariance. In principle, coordinate invariance allows
for an infinite amount of terms in the gravitational action. This is not the case
for Weyl symmetry. The unique curvature expression, which is solely based on
the metric tensor, is the square of the Weyl tensor. We will investigate conformal
gravity (CG)56 based on this action in Sec. 7.2. After that in Sec. 7.3 we introduce
an extension to this pure Weyl tensor squared action by introducing a conformally
coupled real scalar field.

7.1 Weyl Transformations

The underlying concept of CGMs is the PWI. To make this concept precise and to
distinguish it from the related notion of conformal invariance we will describe both
terms and explain their difference.

Conformal transformations are a special class of general coordinate transfor-
mations. ”Conformal” in this context means ”having the same shape”. They are
defined by

xµ → x′µ, gµν(x)→ g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) = Ω2(x)gµν(x), (238)

where Ω is the conformal factor which is a smooth, real function with 0 < Ω < ∞.
Since conformal transformations are mere coordinate transformations, they do not
change the geometry. It was shown that conformal transformations form a subgroup
of LWTs and thus, Weyl invariance implies conformal invariance, but not necessarily
vice versa [160].

In contrast, local Weyl transformations are not related to coordinate transfor-
mations. They are only transformations on the fields (of any type), which transform
as

φ(x)→ φ′(x) = Ω−∆φφ(x), (239)

56The name ”conformal gravity” is somehow confusing as the relevant symmetry is not the con-
formal coordinate symmetry but local Weyl symmetry. Conformal invariance and Weyl invariance
are often confused in the literature.
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where ∆φ is called the conformal weight. The transformation of the metric tensor
is defined by

gµν(x)→ g′µν(x) = Ω2(x)gµν(x). (240)

This outlines that the conformal weight of the metric tensor is ∆g = −2. Conformal
weights of other fields can be found by the inspection of the kinetic terms, which
should be Weyl invariant. This implies

scalar fields S(x) : ∆S = 1, (241a)

vector fields Aµ(x) : ∆A = 0, (241b)

spinors ψ(x) : ∆ψ = 3/2, (241c)

vierbeins V µ
a (x) : ∆V = 1. (241d)

Note that partial derivatives have the conformal weight zero. Local Weyl trans-
formations change the geometry, meaning they stretch or shrink space and time
intervals, but keep the angles between two vectors as v ·w/

√
v2w2 is invariant. The

causal structure of the spacetime is kept, i.e. time (space)-like vectors are still time
(space)-like after the transformation and the light cone is unchanged.

In the following we present a list of transformation laws for relevant objects (Note
that the signs depend on the conventions defined in Appendix B.):

√
−g → Ω4

√
−g, (242a)

Γρµν → Γρµν + Ω−1(δρµ∇νΩ + δρν∇µΩ− gµνgρλ∇λΩ) (242b)

Cλ
µνκ (x)→ Cλ

µνκ (x) , (242c)

CλµνκCλµνκ → Ω−4CλµνκCλµνκ, (242d)

Rρ
σµν → Rρ

σµν + 2
(
δρ[µδ

α
ν]δ

β
σ − gσ[µδ

α
ν]g

ρβ
)

Ω−1(∇α∇βΩ)

− 2
(

2δρ[µδ
α
ν]δ

β
σ − 2gσ[µδ

α
ν]g

ρβ + gσ[µδ
ρ
ν]g

αβ
)

Ω−2(∇αΩ)(∇βΩ), (242e)

Rσν → Rσν +
[
(d− 2)δασδ

β
ν + gσνg

αβ
]

Ω−1(∇α∇βΩ)

−
[
2(d− 2)δασδ

β
ν − (d− 3)gσνg

αβ
]

Ω−2(∇αΩ)(∇βΩ), (242f)

R→ Ω−2R + 2(d− 1)gαβΩ−3(∇α∇βΩ)

+ (d− 1)(d− 4)gαβΩ−4(∇αΩ)(∇βΩ). (242g)

Note that shifting indices up or down introduces additional factors of Ω. For an
extended list of local Weyl transformations, see [161].

7.2 Pure Conformal Gravity

In this section we present the theory of pure conformal gravity (PCG), which is
based on the PWI. This requires that the action of the theory must be invariant
under LWTs defined in eq. (240). As long as we consider the metric as the only
gravity field57 this principle leads to a unique expression for the action of gravity.

57Note that it has been shown in [162] that PCG contains six dynamical dofs.
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It is called the C2-action and is given by

IW = −αg
∫
d4x
√
−g CλµνκCλµνκ, (243)

where αg is a dimensionless coupling constant. The Gauss-Bonnet term (Lanczos
Lagrangian) [163]

√
−gLL =

√
−g(RλµνκR

λµνκ − 4RµνRµν +R2) (244)

is a total derivative in four dimensional spacetimes. If fields are kept constant on
the boundary, it does not contribute to the field equations and can be discarded.
Then, we can rewrite eq. (245) as

IW = −αg
∫
d4x
√
−g
[
2

(
RµκR

µκ − 1

3
R2

)
+ LL

]
. (245)

and neglect the last term for the variation. From the transformation laws in eqs.
(242a) and (242d) it is obvious that this action is locally Weyl invariant. If we add
a standard matter action IM [gµν , ψi] to eq. (243), the field equations, known as the
Bach equations, can be found by variation with respect to the metric gµν [164]

4αgW
µν = 4αg

[
2Cµλνκ

;λ;κ − C
µλνκRλκ

]
= T µν , (246)

where T µν is defined by eq. (44) and

W µν = −1

6
gµνR;β

;β +Rµν;β
;β −R

µβ;ν
;β −R

νβ;µ
;β − 2RµβRν

β

+
1

2
gµνRαβR

αβ +
2

3
R;µ;ν +

2

3
RRµν − 1

6
gµνR2 (247)

is the Bach tensor. Note that the Bach tensor and the matter energy-momentum
tensor transform as

W µν → Ω−6W µν , (248)

T µν → Ω−6T µν (249)

under LWTs. We observe that since the trace of the Bach tensor vanishes, the matter
energy momentum tensor has to be traceless in this model. This implies that PCG
can only describe massless matter, which is in contradiction with experiments if we
assume that Tµν is the energy-momentum tensor of the standard model of particle
physics.

The tracelessness of the matter energy-momentum tensor is an inevitable prop-
erty of locally Weyl invariant theories. This is stated in the following theorem [165]:
”On shell”, that is, assuming the matter fields to satisfy their field equations of mo-
tion, the matter field action is locally Weyl invariant if and only if the corresponding
energy-momentum tensor is traceless.
This can be proven in the following way: Assume that we have a clear-cut separation
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between the gravitational term and the matter term in the Lagrange density

L[gµν , ∂ρgµν , ∂ρ∂σgµν , ψi, ∂µψi] = Lg[gµν , ∂ρgµν , ∂ρ∂σgµν ]
+ LM [gµν , ∂ρgµν , ψi, ∂µψi]. (250)

Then, the variation of the matter action with respect to an infinitesimal LWTs
gµν → Ω2(x)gµν ≈ (1 + 2ω(x))gµν leads to

δωIM =

∫
ddx

(
δ(
√
−gLM)

δgρσ
δωgρσ +

δ(
√
−gLM)

δψi
δωψi

)
= −

∫
ddx
√
−g T ω(x),

(251)
where we used that the second term in the brackets vanishes if we assume that the
field equations are on shell. For the second equality we used the definition of Tµν
(cf. eq. (44)). Then, for δωIM = 0, which is the condition for local Weyl invariance,
and for arbitrary ω(x) we find T = 058.

Besides that, the PWI is even more restrictive as it does not allow for any kind
of scale to appear explicitly in the Weyl action. Especially, a cosmological constant
term −

∫
d4x
√
−g 2Λ is forbidden. Moreover, other higher curvature terms violate

local Weyl invariance and thus, even in the UV regime these terms cannot appear.
PCG had been first introduced by Bach [164] in 1921, but was abandoned because

of lack of theoretical and observational necessity. At that time there was no need
to study a theory that is much more complicated than GR. Spontaneous symmetry
breaking to generate masses dynamically was not yet known and therefore, a theory
that does not allow for ordinary matter to have mass seemed to be in contradiction
with observations.

In 1989 this theory was revived by Mannheim and Kazanas who found an ex-
act static spherical symmetric vacuum solution to the Bach equations [168, 169,
170, 171]. Making an ansatz for the most general static spherically symmetric line
element we can write (in spherical coordinates (t, r, θ, φ))

ds2 = −B(r)dt2 + A(r)dr2 + r2dΩ2, (252)

where A and B depend only in the radial coordinate and dΩ2 = dθ2 + sin2θ dφ2 is
the infinitesimal surface line element. Using the freedom to perform a LWT we can
fix A by A = B−1 leading to

ds2 = −B(r)dt2 +
dr2

B(r)
+ r2dΩ2. (253)

Inserting this line element into the Bach equations, given in eq. (246), combining
the (00) and (rr) components and using that B(r) ≈ 1 + 2Φ(r) we obtain [168]

∇4Φ(r) = h(r), (254)

where Φ(r) is the gravitational potential and h(r) ≈ −3ρ/8αg (ρ is the mass density)

58Treating PCG as a gauge natural theory [166] it has been shown that the Noether current as-
sociated with the local Weyl symmetry also vanishes, which shows that local Weyl transformations
are nondynamical [166, 167]. This is in agreement with our findings in Sec. 7.3, where we show
that fixing the Weyl symmetry eliminates the scalar dof.
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in the Newtonian limit. The vacuum solution to this equation is given by [168]

Φ(r > R) = −β − 3βγ/2

r
− 3βγ

2
+
γr

2
− kr2

2
, (255)

where R is the radius of the galaxy. β, γ and k are constants of integration59. We
observe that in addition to the Newtonian 1/r-term there is a term linear and a
term quadratic in r.

The interior solution, which is the solution to eq. (254) in the presence of a
source, is given by [170]

Φ(r) = −r
2

∫ r

0

dr′r′2h(r′)− 1

6r

∫ r

0

dr′r′4h(r′)− 1

2

∫ ∞
r

dr′r′3h(r′)− r2

6

∫ ∞
r

dr′r′h(r′).

(256)

We see that the last two terms lead to a global contribution from material in the
region r < r′ < ∞. Consistency of interior and exterior solutions requires that
2β =

∫ R
0
dr′r′4h(r′)/3 and γ = −

∫ R
0
dr′r′2h(r′).

Eq. (255) can be used to fit galaxy rotation curves without dark matter, pro-
vided that γ = γ0 + (M/M�)γ∗, where M is the mass of the galaxy. The first term
represents a universal contribution which can be motivated in the following way:
Galaxies are embedded in a cosmological FLRW background. Hence, if one trans-
forms a dynamic FLRW background to the static coordinate system of the galaxy,
one finds a contribution which resembles the γ0-term; for details, see [43, 173]. Be-
sides that, it has been shown that terms proportional to βγ can be safely neglected
on astrophysical and galactic distance scales [169].

In order to satisfy SS tests it is convenient to parametrize eq. (255) as

Φ(r) = −GM
r

+
GM

R2
0

r +
GM0

R2
0

r − kc2r2

2
, (257)

where M0 = (γ0/γ
∗)M� = 5.6× 1010M� and R0 = (2GM�/γ

∗c2)1/2 = 24 kpc
[174, 175, 176, 177]. In this form it is obvious that if we choose γ = k = 0, the
Schwarzschild solution is reproduced; cf. eq. (57). Besides that, on small distance
scales the linear and the quadratic term are negligible with respect to the Newtonian
1/r-term. This outlines that PCG is consistent with the classical tests of gravity in
the SS.

The term linear in r becomes comparable to the Newtonian term on the kpc-scale
and can be used to model the observed plateau of rotational velocities [173, 175].
The k-term becomes important on even larger scales. It is used to model a slight
decrease of the rotational velocities observed in the outer regions of large galaxies
[178, 179]. In addition, it is claimed that this term could resemble the influence of
a de Sitter background geometry, which is present on cosmological scales. This is
interesting since the de Sitter metric is a vacuum solution of PCG although we did
not allow for a cosmological constant term in the action.

The potential given in eq. (255) has been used to fit a large number of galaxy ro-

59Note that there exists a Birkoff theorem for CG [172] stating that this solution is the unique,
static and spherically symmetric solution to the Bach-Maxwell equations (including the electro-
magnetic field in the matter part).
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tation curves (> 130) without resorting to dark matter, using the universal, galaxy-
independent set of parameters G, M0, R0 and k. In addition, using data for the
perihelion precession observations, similar constraints on γ have been found; see
[193].

However, here appear several problems: The solution to the inhomogeneous Bach
equations seems problematic. The coefficient of the 1/r-term does not just depend
on the total mass, but on the fourth moment of the mass density. This stands in stark
contrast to Cavendish-type experiments60 [183]. Besides that, Perlick and Xu [184]
criticized that the matching of interior and exterior solutions leads to contradictions
if one makes the reasonable assumption that the energy density satisfies the weak
energy condition61. The way to solve these inconsistencies is to assume that the
gravitational source of an elementary particle is not just a point source but has
a more complex structure; see [174]. This disagrees with our intuition from GR
but cannot be excluded and thus, cannot be used as an argument to invalidate the
theory.

Secondly, for the interior solution we have to assume that the matter energy-
momentum tensor in eq. (246) represents a galaxy. But we have also demonstrated
that this energy-momentum tensor has to be traceless, which is obviously not sat-
isfied by an appropriate energy-momentum tensor for a galaxy. Hence, the whole
calculation is based on an inconsistent assumption.

Besides that, light bending is controversial in PCG. Different results for the
deflection angle have been derived [185, 186, 187], using the standard method for
asymptotically flat spacetimes [10]. This led to erroneous results since the potential
in eq. (255) does not vanish for r → ∞, i.e. it is not asymptotically flat. The
analysis of the deflection angle has been improved [188, 189, 190] by adopting the
approach of Rindler and Ishak [191] for non-asymptotically flat spacetimes. But
still the results are ambiguous, because the lens mass, which is not locally Weyl
invariant, was arbitrarily identified with combinations of the metric parameters. A
possible clarification of this issue has been presented in [192]. Interpreting PCG as
a gauge natural theory [166], in order to avoid fine-tuning, the parameter γ has to
vanish identically. Therefore, the appealing property to fit galaxy rotation curves
without dark matter is no longer valid.

Besides that, PCG seems to fail on explaining the observed properties of X-
ray clusters since it predicts a too large mean temperature. In addition, the gas
temperature increases with the square of the distance to the center of the cluster,
which stands in stark contrast with observations [176, 177].

Another problem of PCG is that the Weyl tensor and hence also the Bach tensor
vanish in conformal to flat spacetimes62. This implies that if we want to describe
cosmology in PCG with a FLRW Universe, we end up with the equation

Tµν = 0, (258)

60Cavendish-type experiments are based on a torsion balance apparatus. They are used to test
the gravitational force law and to measure the gravitational coupling constant [181, 182].

61The weak energy condition is given by ρ ≥ 0 and ρ + P ≥ 0, which means that the energy
density is nonnegative and the pressure cannot be too large compared to the energy density.

62This becomes obvious if we consider the transformation behavior under LWTs given in eq.
(242c). For gµν = ηµν the Weyl tensor vanishes. After a LWT ηµν → Ω2(x)ηµν the Weyl tensor
transforms into itself and hence still has to be zero in the conformal to flat metric. Since the Bach
tensor transforms as in eq. (248) the proof works analogously.
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which means that the Universe is empty.
Finally, the investigation of GWs in PCG is also inconsistent with observations.

The linearized version of eq. (246) in the Lorenz gauge ∂ρĥµρ = 0 results in the
wave equation [194]

�2ĥµν = − 1

2αg
Tµν , (259)

where ĥµν = hµν − 1
4
ηµνh . The vacuum solutions are

ĥµν = Aµνe
±ikρxρ +Bµνnρx

ρe±ikρx
ρ

, (260)

where Aµν and Bµν are polarization tensors constrained by the harmonic gauge. ĥµν
is given by a sum of a plane wave (which is also a solution to �hµν = 0 as in GR) and
a wave that grows linearly in time and with distance representing Ostrogradsky’s
instability (cf. Sec. 6.7). This would lead to

The inhomogeneous solution of eq. (259) reads [194]

ĥµν =
1

16παg

∫
d4x′Θ(t− t′)Θ [(t− t′)− |x− x′|]Tµν(x′). (261)

We see that the amplitude does not decrease with the distance, which differs sig-
nificantly from the 1/r dependence of GWs in GR. Besides that, the GWs are
supported on the whole past light cone. This is obviously in contradiction with
observations since it violates the constraints on the speed of GWs which we derived
in Sec. 6.9. See also [195] for an interesting method to derive the GW solutions.

All these problems together imply that PCG cannot be the final answer. There-
fore, in the next section we present an extension of PCG, which solves the problem
with the traceless matter and leads to a non-empty cosmology, but on the other
hand introduces a (tachyonic) ghost particle.

7.3 Extended Conformal Gravity

In the previous section we discussed pure conformal gravity. We illustrated sev-
eral problems of PCG which seem to invalidate the theory. For this reason, in this
section we present an extended theory of conformal gravity. We have seen that
the C2-action in PCG leads to a gravitational potential which can fit galaxy ro-
tation curves without dark matter and reduces to the Newtonian potential in the
Newtonian limit. We illustrated that the gravitational action exhibits interesting
experimental and theoretical features. However, the traceless energy-momentum
tensor is in contradiction with the standard model of particles physics. Therefore,
in this extended theory we keep the gravitational action untouched, but modify the
matter energy-momentum tensor. We need an energy-momentum tensor that is lo-
cally Weyl invariant and contains the standard model of particle physics in such
a way that its energy-momentum tensor is not traceless. For this purpose we in-
troduce a real scalar field S(x), which is conformally and nonminimally coupled63

63It enters the gravitational and the matter action at the same time. In this sense one actually
sees that it modifies both, the matter action and the gravitational action since the coupling term
between the scalar field and the Ricci scalar is a term describing spacetime and hence contributes
to the gravitational action.
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to gravity. As we discussed in Sec. 3.2, a nonminimal matter-curvature coupling
actually implies that Einstein’s equivalence principle is violated, but after fixing the
Weyl gauge it becomes apparent that Einstein’s equivalence principle still is valid.

Additionally, we use a spinor field ψ(x) coupled to S(x) as a representative of the
fermionic sector. We do not include gauge bosons or a Higgs sector here since it is
not relevant for our analysis of GWs in (P2) and (P3). Hence, this action represents
a toy model, but it can be easily extended to the standard model of particle physics,
since before the gauge symmetry SU(3) × SU(2) × U(1) is spontaneously broken,
i.e. before masses are generated via the Higgs mechanism, the standard model of
particle physics is locally Weyl invariant. Therefore, we need to find a way to couple
a locally Weyl invariant Higgs sector to the other standard model fields. We discuss
this briefly in Sec. II of (P2). For a more detailed discussion of this issue, see e.g.
[196, 197, 198, 199].

The most general local matter action IM for the scalar field S and the spin-1/2

fermion field ψ is thus given by [180]

IM = −
∫
d4x
√
−g
[
ε

(
−S

,µS,µ
2

+
S2R

12

)
+ λS4 + iψ̄γµ (x) [∂µ + Γµ (x)]ψ − ξSψ̄ψ

]
,

(262)
where ξ and λ are dimensionless coupling constants, γµ(x) are the vierbein-dependent
Dirac-gamma matrices, ψ̄ = ψ†γ0 and Γµ(x) is the fermion spin connection64. To
be invariant under LWTs the fields have to transform as shown in Sec. 7.1. We
observe that the scalar field couples to the Ricci scalar in a similar way as in the
scalar-tensor theory, which we presented in Sec. 6.2.1. Thus, the action in eq. (262)
is given in the Jordan frame.

Note that only the combination of the two terms in the parentheses is Weyl
invariant. Hence, we introduced the parameter ε, which can assume values of −1
or +1, in eq. (262). In the first case, the theory corresponds to CG, while in the
second it corresponds to a Weyl invariant version of Einstein-Weyl gravity, which
after fixing the Weyl gauge resembles Einstein-Weyl gravity [200], as will become
clear later65.

For εR < 0 and λ > 0 the potential V (S) = ε S2R/12 + λS4 can lead to a
spontaneous breaking of Weyl symmetry, although in our simple toy model we do
not need to break the Weyl symmetry since we can just fix it by a gauge condition.
Nevertheless, as discussed above in a more realistic version of the matter action,
including also additional scalar fields, this could become relevant since we can only
fix one dof via the Weyl gauge. Hence, this is an interesting topic for further studies.

Variation of eq. (262) with respect to S and ψ leads to the field equations

ε

(
−S,µ;µ −

1

6
SR

)
− 4λS3 + ξψ̄ψ = 0, (263)

iγµ(x) [∂µ + Γµ(x)]ψ − ξSψ = 0. (264)

64We have used a simplified notation. The kinetic part of the fermionic action is given by

iψ̄γµ(x) [∂µ + Γµ(x)]ψ − iψ̄
[←−
∂µ + Γµ(x)

]
γµ(x)ψ in order to be Hermitian.

65Note that this case is called massive conformal gravity (MCG) in (P2). But it was realized
that there is a very similar, but still different theory with the name massive conformal gravity. To
avoid confusion we will not use this name in this thesis.
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Variation of the action given in eq. (245) in connection with eq. (262) with respect
to gµν leads formally to the Bach equations as in eq. (246), but with a modified
matter energy-momentum tensor. Using eq. (264) the matter energy-momentum
tensor can be written as

TMµν = T fµν + ε

[
−2S,µS,ν

3
+
gµνS

,αS,α
6

+
SS,µ;ν

3
−
gµνSS

,α
;α

3
+

1

6
S2Gµν

]
− gµνλS4,

(265)
where

T fµν ≡
1

2

[
iψ̄γµ(x) [∂ν + Γν(x)]ψ + (µ↔ ν)

]
(266)

is the energy-momentum tensor of the fermion. Note that in eq. (265) the Einstein
tensor appears. This is an important difference to PCG since the complete trace of
TMµν has to vanish and hence the fermionic part, representing the standard model
of particle physics, does not have to be traceless. The consequences of this will be
discussed below.

Because of the local Weyl invariance, it is always possible to choose a frame in
which the scalar field is constant

S(x)→ S ′(x) = Ω−1(x)S(x) = S0 = const., (267)

with Ω(x) = S(x)/S0. We call this the unitary gauge. This points out that the scalar
field S(x) is just an auxiliary field and we do not need to worry about its stability
properties [196, 201]. Nevertheless, in Appendix C of (P2) we briefly discuss ghosts
and tachyons for a scalar field. For a detailed discussion on the ghost issue, see also
[123]. In order to connect this theory to GR, i.e. to see similarities and differences,
we choose the scalar field such that the coefficient in front of the Einstein tensor
becomes that of the EFE (multiplied by ε):

8πG ≡ 6

S2
0

, (268)

Λ ≡ 6λS2
0 , (269)

where G denotes Newton’s constant and Λ is the cosmological constant. For a
constant scalar field all terms with derivatives on S vanish and thus the matter
energy-momentum tensor reduces to

TMµν = T fµν +
ε

8πG
Gµν −

Λ

8πG
gµν . (270)

We observe that we have transformed the theory into the Einstein frame represen-
tation, since we have eliminated the dependence on the scalar field. In the unitary
gauge, fermions have a constant mass given by mf = ξS0. Since it is known from
experiments that fermions have positive masses, we choose ξS0 > 0. In consequence,
eqs. (263) and (264) read

−εR + 4Λ

8πG
+mf ψ̄ψ = 0, (271)

Tf −mf ψ̄ψ = 0, (272)
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where Tf denotes the trace of the fermion energy-momentum tensor. Combining
these two equations we find

εR + 4Λ = 8πGTf . (273)

We note that it is convenient to introduce a ”graviton mass” mg via

m2
g ≡

1

32πGαg
. (274)

Besides having the dimensions of a mass, at this point it is not obvious that mg does
indeed play the role of a mass for the graviton. This will become clear in Sec. III
of (P2). Using eqs. (270) and (274) in eq. (246) we obtain [202, 203]

− εGµν + gµνΛ +
1

m2
g

Wµν = 8πGT fµν . (275)

The limit which reproduces the EFE is given by mg → ∞ (αg → 0) for ε = +1.
This is equivalent to IW = 0 in eq. (245). For a detailed discussion of the limits
of CGMs, see Table I in (P2) and the text below it. Observe that the fermion
energy-momentum tensor is covariantly conserved,

T µρf ;ρ = 0, (276)

due to the Bianchi identities for the Bach and Einstein tensors. This means that test
particles move on geodesics and nongravitational physics is locally Lorentz invariant.
Thus, Einstein’s equivalence principle becomes manifest in the unitary gauge. For
a more detailed derivation of the field equations, see Sec. II of (P2).

Looking at eq. (275) it is obvious that this extended model of CG also improves
the field equations for FLRW spacetimes. The Bach tensor vanishes in conformally
flat spacetimes and thus, for ε = +1 eq. (275) agrees with the EFE for isotropic and
homogeneous FLRW models. If we consider cosmological perturbation theory, the
situation is different. The perturbation of the Bach tensor δWµν does not vanish and
hence there appear modifications to the linearized Friedmann equations [204, 205].

For ε = −1 the Einstein tensor has the wrong sign and thus gravity is repulsive66.
In this case the composition of the Universe has to be very different from the ΛCDM
model. Nevertheless, it is claimed that the Hubble diagram can be explained for
the following density parameters of the current Universe [8, 206]: matter density
parameter ΩM = O(10−60), curvature density parameter Ωk = 0.63 and dark en-
ergy density parameter ΩΛ = 0.37. On this other hand, an analysis of gamma ray
bursts and quasars exhibits that ΛCDM is favored on high redshifts by the data
[207]. Besides that, cosmological problems, like the singularity, horizon, flatness
and cosmological constant problems, can be solved [8, 180, 204, 208, 209, 210]. It
turns out that the Universe must be open (negative curvature) and the decelera-
tion parameter is always negative [208], which means it always expands accelerated.
However, to be consistent with the expansion rate observed today, the expansion
during primordial nucleosynthesis must have been much slower than in the standard
FLRW model. Consequently, the deuterium burning lasted much longer, imply-
ing that almost no deuterium is left, which is in contradiction with lower limits on

66Note that the gravitatioanl force on local scales is still attractive and hence there is no obvious
contradiction with SS tests.
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the deuterium abundance [211, 212]. On the other hand, conformal cosmology is
singularity-free meaning that the Universe has a minimum size [208]. Moreover,
there is no analysis of the cosmic microwave background yet. Only some early stud-
ies on cosmological perturbation theory have been worked out [204, 205], but no
compelling results are derived yet. On top of that, structure formation has not been
investigated yet, and it is not clear if it is possible to explain the formation of larger
structures, like galaxies and galaxy clusters, without dark matter. Nevertheless,
these results are still under debate [207].

Concerning the gravitational potential, another problem immediately appears.
In PCG we have used the gravitational potential in eq. (255) to fit galaxy rotation
curves. To derive this potential it was necessary to choose a specific Weyl gauge. If
we choose the same gauge in the extended CGMs, we cannot set the scalar field to
a constant as in the unitary gauge. The scalar field would be dynamical and masses
of standard model particles would depend on spacetime coordinates; cf. eq. (264).
Thus, it is not clear whether these models still can fit galaxy rotation curves without
dark matter. This is heavily debated in the literature [201, 213, 214, 215, 216, 217,
218, 219].

7.4 Astrophysical Gravitational Waves in Conformal Gra-
vity

In (P2) we test the presented models utilizing the indirect measurements of GWs.
The content of (P2) can be summarized in the following way: In Sec. I we introduce
CGMs, give background about the history and discuss interesting properties and
problems. Sec. II contains a more detailed derivation of the field equations and
we also briefly discuss how to couple a Higgs doublet conformally to gravity. After
that, in Sec. III the linearized theory is investigated. We derive the linearized field
equations for the metric in Sec. III A and fix the coordinate freedom using the
Teyssandier gauge (For a detailed derivation, see Appendix B in (P2).)[

�2 − εm2
g�
]
hµν = 16πGm2

gT̄µν , (277)

where T̄µν = (Tµν − 1/2ηµνT ) + ε/(6m2
g)ηµν�T . Additionally, several limits of the

theory are discussed and summarized in Table I. In Sec. III B we derive the propa-
gator for the metric and discuss the appearance of the inevitable Weyl ghost which
is a consequence of the fourth-order derivative structure of the theory. Accordingly,
in Sec. III C we demonstrate that the metric can be separated into a massless and
a massive mode hµν = ε (Hµν + Ψµν). and we derive the wave equations in the
Teyssandier gauge

�H̄µν = −16πGTµν , ∂ρH̄
ρ
µ = 0, (278)(

�− εm2
g

)
Ψ̂µν = 16πGTµν , ∂ρ∂σΨ̂ρσ = 0, (279)

where H̄µν ≡ Hµν − ηµνH/2 and Ψ̂µν ≡ Ψµν − ηµνΨ. We solve these in the presence
of a source in Sec. III D. At this point we have to distinguish different cases since
the propagator of the massive mode is different for small or large masses. In the
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case of a small mass we get

G (ω,x− x′) = −e
ikω,ε|x−x′|θ(ω −mg) + e−ikω,ε|x−x

′|θ(−ω −mg)

4π |x− x′|
, (280)

where kω,ε ≡
√
ω2 − εm2

g. For ε = +1 with a large graviton mass the propagator
becomes

G (ω,x− x′) = −e
−kω,>|x−x′|

4π |x− x′|
θ(mg − |ω|), (281)

where kω,> ≡
√
m2
g − ω2. Note that we did not study the case ε = +1 with a large

mass, since this leads to oscillating gravitational potentials in the Newtonian limit.
After that, in Sec. IV we use the same idealizations and approximations as

discussed in Sec. 5.2 to compute GWs which are created from binary systems. We
start by deriving the modifications to Kepler’s third law and demonstrate that these
are negligible on distance scales of binary systems. This means that the physics of
binary systems is the same as in GR and we can concentrate on the modifications
of GWs, which are calculated in Sec. IV B. Using the method described in (P1),
which shows that monopole and dipole radiation vanishes for the massive mode, we
find the GW solutions for small graviton masses

h11(t, r) = −h22(t, r) =
4GεµR2ω2

s

r
[cos (2ωstret)− cos (2ωstm)] , (282)

h12(t, r) = h21(t, r) =
4GεµR2ω2

s

r
[sin (2ωstret)− sin (2ωstm)] , (283)

where tret = t − r is the retarded time of the massless mode and tm = t − vg,εr is

the retarded time of the massive mode. vg,ε ≡
√

1− εm2
g/(4ω

2
s) is the speed of the

massive GW. The GWs are composed of a sum of the massless and the massive
modes, which have the same form but are different by a relative sign. Besides that,
they deviate in their speed of propagation. This can lead to cancellations between
both modes. Hence, we understand that the bounds on the speed of GWs derived
in Sec. 6.9 do not constrain CGMs in by this simple analysis. For ε = +1 in the
large mass case we obtain

h11 (t, r) = −h22(t, r) =
4GµR2ω2

s

r

[
cos(2ωstret)− e−kω,>r cos(2ωst)

]
, (284)

h12(t, r) = h21(t, r) =
4GµR2ω2

s

r

[
sin(2ωstret)− e−kω,>r sin(2ωst)

]
, (285)

where kω,> ≡
√
m2
g − 4ω2

s . This is just the GR solution modified by an exponentially
damped term. Hence, the contribution from the massive mode is exponentially
suppressed and nonpropagating. Consequently, only the massless mode propagates
and it is clear that the constraints from Sec. 6.9 are satisfied.

Sec. V is dedicated to the calculation of the energy-momentum tensor of GWs
in the TT gauge using the procedure that we described in Sec. 5.3.2 and we find(

T
(2)
GRAV

)λ
α

=
1

32πG

〈
2ΨTT

ρσ ∂α∂
λhρσTT + ε ∂αh

TT
ρσ ∂

λhρσTT
〉
. (286)
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Finally, following the steps derived in Sec. 5.4 we calculate the power that is
radiated from the binary system into GWs. The main results of (P2) are that the
radiated power in the case of small graviton masses (for ε = ±1) is much smaller
than in GR

Ė ≈
m2
g

8ω2
s

ĖGR � ĖGR, (287)

where ĖGR = 32Gµ2R4ω6
s/5. For ε = −1 we find m2

g/(8ω
2
s) ≈ 9 × 10−6 and for

ε = +1 we obtain m2
g/(8ω

2
s) < 10−5. Hence, the radiated energy is several orders

of magnitude smaller than in GR. Thus, we can rule out the theory, except for the
case that there is another mechanism which could explain the decrease of the orbital
period of binary systems.

In the large mass case no deviations from GR are found (in the quadrupole
approximation); i.e. Ė = ĖGR. We can conclude that the large mass case seems
interesting for future work, since it represents a theory which passes laboratory
and SS tests, agrees with GWs observations and is power-counting renormalizable.
However, we should not forget that it still suffers from the ghost problem, which
has to be solved in order to consider this theory as a serious alternative to GR.
A detailed discussion of gravitational radiation in CGMs is given in the following
publication:

(P2) Phys. Rev. D 98, 084002 (2018): Astrophysical Gravitational Waves in
Conformal Gravity

I have been the main contributor to the following publication. Part of the work
was conducted at the IPhT in Paris/Saclay as a visiting scientist in June and July
2016 in collaboration with Dr. Chiara Caprini. To be precise, we made substantial
progress in improving the calculations to find the GW solutions and in calculating
the radiated energy. All calculations have initially been performed by myself and
then revised and edited by Dr. Chiara Caprini and Prof. Dominik J. Schwarz. The
main text was written by myself and edited by Dr. Chiara Caprini and Prof. Do-
minik J. Schwarz.

https://doi.org/10.1103/PhysRevD.98.084002

https://doi.org/10.1103/PhysRevD.98.084002
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We have shown in (P2) that in the case of small graviton masses the energy carried
by GWs is much smaller than in GR, and hence the decrease of the orbital period
cannot be explained just by GW emission. However, these indirect measurements
of GWs only prove that binary systems lose energy. They do not rigorously prove
the existence of GWs. Therefore, it could happen that there is another mechanism
which forces the binary system on a decaying orbit. This situation changed with
the recent direct detections of GWs. The data shows the time evolution of the
frequency and the amplitude of GWs in the last few seconds before the NSs or BHs
collide. Thus, we can use this data to compare it with the waveform predicted by
CGMs. Even if there is another mechanism that stores the energy lost by the binary
system, then still the predictions of CGMs have to be consistent with the measured
waveform of GWs. For this reason, we now present our third work (P3) [3].

It is important to note that for the first few cycles of the detector signal our
idealizations and approximations for the binary system are still applicable, since the
velocities of the system are not highly relativistic and the gravitational field is still
quite weak. Thus, to leading-order the quadrupole approximation delivers accurate
results.

We need to mention that we make use of the fact that GR is in accurate agree-
ment with the data. Thus, our methodology is to compare the waveform predicted
by CGMs with the GRresult that we derived in Sec. 5.5 in and not to the raw data
itself.

(P3) is organized as follows. We give a brief derivation of the field equation and
their linearized version in Secs. II and III. We also remind on the GW solutions
derived in (P2) for the situation of a binary system on a fixed circular orbit. Analo-
gously to the method described in Sec. 5.5 for GR, we calculate the time evolution
of the frequency and the waveform of GWs. In Sec. IV we analyze Kepler’s third
law and show that on distance scales of usual binary systems modifications to GR
can be neglected. In Sec. IV A we use the procedure presented in Sec. 5.5 to first
analyze the large mass case of CGMs. In this case the massive graviton is expo-
nentially suppressed and hence our findings are in agreement with the data. In the
small mass case, which we analyze in IV B, the situation is very different. We have
seen that the radiated power which we calculated in (P2) is much smaller than in
GR (cf. (5.4)). Using this in the equation for the energy balance in eq. (103), we
obtain a result for the frequency seen by an observer near to the source that deviates
from GR,

ωgw(τ) =

(
mgc

2

~

)−3
1

32

(
5

τ

)3/2(
GMc

c3

)−5/2

, (288)

where τ = tcoal − t is the time to coalescence and tcoal is the time of coalescence.
We plot the time evolution of this frequency for different graviton masses and chirp
masses in Fig. 1. As SS tests constrain the graviton mass to mg < 10−58 kg, we
have to choose chirp masses as high as 1011M� to lie in the waveband of the GW
detectors. In a next step we need to take into account the different propagation
speeds of the massless and the massive mode in order to calculate what an observer
on earth would see. This is illustrated in Fig. 2. The resulting waveform in this
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case reads

h11(t, r) = −h22(t, r)

≈ 4

(
mgc

2

~

)3(
GMc

c3

)5/2(τ
5

)1/2

sin[Φ(τ)], (289)

h12(t, r) = h21(t, r)

≈ −4

(
mgc

2

~

)3(
GMc

c3

)5/2(τ
5

)1/2

cos[Φ(τ)], (290)

where the phase is given by

Φ(τ) =
5

16

(
mgc

2

~

)−3(
GMc

c3

)−5/2
[(

5

τi

)1/2

−
(

5

τ

)1/2
]

+ Φi. (291)

Φi = Φ(τi) is an initial phase. Interestingly, the GWs in CG with a small mass are
independent of the distance to the source. Besides that, we show in Fig. 3 that
the amplitude of the GWs for small graviton masses decreases towards coalescence.
Moreover, to match typical amplitudes of the detected signals, we would need fre-
quencies on the order of 1021 Hz, which cannot be observed in the frequency band
of the aLIGO or aVirgo detectors.

In consequence, we have shown that CG with a large graviton mass is in accor-
dance with the data and leads to the same estimates on chirp masses and distances
as GR. On the other hand, on the basis of our combined studies in (P2) and (P3)
we can rule out CG with small graviton mass.

(P3) arXiv:1902.02265 [gr-qc] (to appear in Phys. Rev. D): Gravitational
waves from inspiralling compact binaries in conformal gravity

I have been the main contributor to the following publication. All calculations have
initially been performed by myself and then substantially revised and edited by Prof.
Dominik J. Schwarz. Fig. 1 and Fig. 3 have been produced by Prof. Dominik J.
Schwarz. The main text was written by myself and edited by Prof. Dominik J.
Schwarz.

https://arxiv.org/abs/1902.02265

https://arxiv.org/abs/1902.02265
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In this thesis, we have studied the GW emission in higher derivative theories of
gravity. The structure of this work can be described as follows: Firstly, we discussed
the theory of general relativity and its underlying mathematical concepts in Sec. 2.1
and Chap. 3, and the emission of GWs created from binary systems in Chap. 4 and
Chap. 5. After that, we presented an overview on the landscape of modified gravity
models in Chap. 6, and in particular we discussed a class of higher derivative
models in Sec. 6.7. Lastly, we restricted this class of models by imposing local
Weyl invariance as a symmetry of nature. This led us to the fourth-order derivative
conformal models of gravity in Chap. 7. We used the framework, which we presented
in Chap. 5 in the context of GR, to calculate the emission of GWs waves created
from binary systems and compared our results with those from GR as a test of these
models of modified gravity.

The concept of this thesis was to initially get familiar with the necessary math-
ematical techniques, idealizations and approximations of the GW phenomenology
in the context of GR as the standard theory of gravity. For this reason, in Chap.
2 we discussed the underlying concepts of modern theories of gravity based on the
metric tensor as the carrier of the gravitational field. In Chap. 3 we made use of
Lovelock’s theorem to find a simple way to derive the Einstein-Hilbert action, and in
consequence the EFE. Very briefly we investigated some important results for GR
which helped us understand how gravity works on Solar System distance scales. We
have seen that GR reduces to Newtonian gravity in the weak field and low-velocity
approximation and hence is consistent with Earth-based experiments. Besides that,
the Schwarzschild solution for a static spherically symmetric spacetime was derived.
This is a very important result, since most tests of gravity are weak-field tests of
the Schwarzschild metric where relativistic corrections to the Newtonian potential
become important. We discussed Kepler’s third law in the case of a binary system
and in the center-of-mass frame. These results of GR were presented with the inten-
tion to show which requirements theories of modified gravity need to satisfy within
the nonrelativistic weak-field regime. Any theory that deviates too much from the
Schwarzschild solution on Solar System distance scales or fails to reproduce the
Newtonian limit of GR, can immediately be invalidated.

Therefore, in the next chapter we presented an overview on theories of modi-
fied gravity, which deviate from GR in the infrared or ultraviolet regime, but are
able to reproduce the Solar System results. As a scheme for these models we used
Lovelock’s theorem, which basically consists of eight conditions and only allows for
a massless metric with two independent helicity states. Violating any of these con-
ditions leads to a class of modified gravity models containing additional degrees of
freedom. Following this scheme, we presented some illustrative examples for differ-
ent classes of alternatives to GR. Among these we discussed a model based on Weyl
geometry, which is a modification of the Riemannian geometry that underlies GR.
It violates the metric compatibility and hence introduces the nonmetricity tensor as
a new dof. Another way to modify GR is to add new fields by hand. Along this
line we discussed the famous scalar-tensor theories and also modified Newtonian
dynamics with its relativistic generalization (TeVeS) containing also an additional
vector field. Besides that, we discussed a simple model of extra dimensions. We
have seen that this can be written in the form of a scalar-tensor theory, more pre-
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cisely a Brans-Dicke theory. This points out that not all classes of modified gravity
theories defined by Lovelock’s theorem are independent. As an example for a theory
which is not diffeomorphism invariant we studied massive gravity. Its name already
indicates, that the graviton is massive in this theory. These mass terms actually
violate the diffeomorphism invariance, and for some time it was believed that these
theories are invalid because of the presence of ghost fields. But recently a specific
model (de Rham–Gabadaze–Tolley massive gravity), which evades the ghost issue,
was found and thus has to be considered viable. Finally, we introduced a class of
higher derivative theories, which have the advantageous property of being power-
counting renormalizable. Unfortunately, they suffer from the inevitable Weyl ghost
which marks a severe problem and, without any further arguments, invalidates these
theories. Nevertheless, it has been argued that treating these models as effective the-
ories can still lead to reasonable results. However, this issue is still under debate
and may finally get solved.

In the context of this class of higher derivative models, we presented our first
work (P1) [1] in Sec. 6.7. In the linearized version of this model it is obvious
that it contains, in addition to a massless helicity-2 field, a massive scalar field
and a massive spin-2 field, summing up to a total of eight propagating degrees of
freedom. We calculated the wave equations for these fields in the linearized version
of this class of models. Using the methods presented in Chap. 4 to find the GW
solutions, we have shown two main results: Firstly, we have shown that within
our approximations (cf. Sec. 5.2) and for the special case of constant masses no
monopole and dipole radiation contribute to the emitted energy. Secondly, we proved
that it is an inherent feature of this class of theories that only the two transverse
modes of the massive spin-2 field are excited by a conserved matter source. This
has fundamental consequences for the emission of GWs, which should be taken into
account for GW tests.

In a next step we imposed local Weyl invariance to be a symmetry of nature.
This further restricts the class of higher derivative theories to fourth-order derivative
conformal gravity models and makes the massive scalar field nondynamical. Hence,
only the massless and massive spin-2 fields are propagating degrees of freedom.
These models are special since they do not allow for any scale-featured terms in the
action. The pure gravitational action, solely based on the metric, is given by the
square of the Weyl tensor, and a cosmological constant as well as particle masses
become manifest only after fixing the Weyl gauge or after a spontaneous breaking
of the Weyl symmetry. The local Weyl symmetry actually allows for two different
fourth-order derivative theories which differ by a relative sign for the Einstein-Hilbert
term in the matter part of the action. Besides that, these models are also equipped
with power-counting renormalizability, but still suffer from the Weyl ghost.

In the context of these models we presented our second work (P2) [2] in which
we studied the emission of GWs in the framework of indirect measurements. Here
it becomes apparent that two parameter regimes have to be distinguished. We
considered the case of a small graviton mass for both signs of the Einstein-Hilbert
term. The graviton mass was fixed in order to agree with Solar System tests, and for
the model with a wrong sign for the Einstein-Hilbert term we fixed that mass to fit
galaxy rotation curves without dark matter. In this case we found that the radiated
power from a binary system is much smaller than in GR and hence the decrease of the
orbital period is not in agreement with the observations. On the other hand, in the
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case of a large graviton mass the modifications to the GW solutions are exponentially
suppressed and consequently, the decay of the orbit of binary systems is in agreement
with the data.

However, the indirect tests on the GW emission are not sufficient to invalidate
conformal gravity models in the small mass case, since it could happen that there
are other mechanisms which force the orbital period of binary systems to decrease.
Hence, the energy lost by the binary system would never arrive at Earth, and GWs
would not need to carry large amounts of energy. To close this loophole we inves-
tigated the direct measurements of GWs recently performed by the LIGO/VIRGO
collaboration in a third work (P3) [3] presented in Sec. 7.5. Using the methods
presented in Sec. 5.5, we calculated the time evolution of the frequency and the
waveform of GWs in the late inspiral phase and compared our results to GR. Again,
we distinguished the small and the large graviton mass case. For the small mass
the difference between the propagation speed of the massless and the massive mode
is very small. This leads to an almost cancellation between both contributions and
results into predictions which are in contradiction with observations: first, to push
the frequencies into the waveband of the detectors we need to assume chirp masses
which are on the order of the mass of a galaxy. Secondly, the amplitude of the
GWs decreases when coalescence is approached and on top of that is independent
of the distance to the binary system. These results finally invalidate conformal gra-
vity models in the small mass case. On the other hand, results in the case of large
graviton masses are in agreement with the data (within the error of measurement)
and therefore predictions on chirp masses and distances are the same as in GR.

To sum up, this thesis demonstrated that conformal gravity models with a small
graviton mass can be invalidated on the basis of our investigations of GWs. On the
other hand, the case of a large graviton mass represents an interesting model for
future work. It is consistent with Solar System and GW experiments. Furthermore,
it is better behaved in the UV regime and thus gives hope for a consistent theory
of quantum gravity, which stays finite even at the Planck scale. The lower bound
for the large graviton mass mg > 10−2 eV is still well below the Planck mass MPl ≈
1.2× 1019 GeV. Thus, we can think of a scenario in which the graviton mass is of the
order of the Planck mass mg .MPl. Then, for energies at the Planck scale the large
mass becomes effectively a small mass and thus, we expect new physics to appear.
Ideas like this have been mentioned in [220]. This makes it interesting to study
inflation and especially the tensor modes in conformal gravity as this could lead to a
mechanism that naturally explains the small value of the tensor-to-scalar ratio r (cf.
[143]). In the small mass case of conformal gravity the massless and massive modes
cancel to leading-order, which could lead to a small r. Nevertheless, we should
remember that in this regime the Weyl ghost becomes effective. Hence, as long as
the ghost problem is still unsolved, we are not able to make reliable predictions. All
of this makes conformal gravity with a large mass to a very interesting model for
future investigations.
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A Differential Geometry

Differential geometry is the mathematical structure underlying modern theories of
gravity.
We start by introducing the mathematical environment and the mathematical
concepts needed to describe gravitation as theories based on a metric tensor field.
The mathematical structure which describes gravity in a suitable way is the
spacetime, which is basically a collection of several mathematical structures which
will be introduced in the following step-by-step.
Gravity is described in the realm of differential geometry in a Riemannian space,
which is a differentiable manifold M endowed with topological and geometric
structure. For our purposes the crucial feature of manifolds is that they can have a
complicated topological structure, but locally just look like Rd, where d is the
dimension of the space. The topology makes statements about how different parts
of the spacetime are connected with each other and it defines the notion of
continuity. For spacetime physics one focuses on topological spaces which can be
charted. This means every point of M can be mapped to a point in Rd. To make
this precise we introduce some definitions.
Let M be a set67. A topology is a subset σ ⊆ P(M), where P(M) is the power
set of M, which is the set of all subsets of M. σ has to satisfy

1. ∅ ∈ σ, where ∅ is the empty set.

2. U ∈ σ, V ∈ σ ⇒ U
⋂
V ∈ σ

3. Uα ∈ σ ⇒
( ⋃
α∈A

Uα

)
∈ σ.

Then we say that (M, σ) is a topological space. Next, we introduce the notion of a
map f between two sets U, V defined by

f : U → V, (292)

which assigns to every element in M (domain) an element in N (target). Hence, a
map is just a generalization of a function. Whether a map is continuous depends
on the topologies chosen in the domain and the target. Thus, let (M,σM) and
(N, σN) be two topological spaces. A map

f : M → N (293)

m 7→ f(m) (294)

is called continuous with respect to σM and σN if ∀V ∈ σN : preimf (V ) ∈ σM ,
where preimf (V ) is the preimage of f . On a subset V ⊂ N is the set of elements of
M that get mapped to V under f . The composition of two maps is defined by

g ◦ f : U → W (295)

(g ◦ f)(p) = g(f(p)), (296)

67We assume that the reader is familiar with the notion of sets, at least in an informal way.
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where p ∈ U and g : V → W . With this we can define a d-dimensional topological
manifold, which is a topological space (M, σ) (R is equipped with the standard
topology) with the property ∀ p ∈M : ∃U ∈ σ : ∃x : U ⊆M→ x(U) ⊆ Rd with

1. x invertible x−1 : x(U)→ U

2. x continuous

3. x−1 continuous.

This introduces the terminology of a chart (U, x) of (M, σ) which is composed of
an open set U and the chart map

x : U → x(U) ⊆ Rd (297)

p 7→ x(p) =
(
x1(p), · · · , xd(p)

)
, (298)

where xi : U → R(i = 1 . . . d) are called coordinate maps. If a chart map is
continuous and k-times differentiable, we call it a Ck-map. A continuous and
infinitely differentiable map is called C∞-map or smooth map. We also introduce
an atlas A of (M, σ) which is a collection of charts
A = {(U(α), x(α))|α ∈ 1 . . . number of charts} with

⋃
α

U(α) =M. To define the

differentiability of an atlas we have to look at chart transition maps, which have to
be sewn together smoothly. If we have two charts that overlap, i.e. U(α)

⋂
U(β) 6= ∅,

we can define the chart transition map

(x(β) ◦ x−1
(α)) :x(α)(U(α)

⋂
V(β)) ⊆ Rd → x(β)(U(α)

⋂
V(β)) ⊆ Rd (299)

(x(α) ◦ x−1
(β)) :Rd → Rd. (300)

The transition from one chart to another is therefore just the change of
coordinates. If all chart transition maps of an atlas are infinitely differentiable, we
call it a C∞-atlas or smooth atlas. And subsequently, a C∞-differentiable manifold
(also called smooth manifold) is a topological space with a smooth atlas (M, σ,A).
So far, we have constructed the groundwork of physical space time, which is a
differentiable manifold. Now, we provide further structure to describe physical
objects, which live in this manifold. These objects are tensors, which are described
in the tangent space TpM at a point p ∈M. Let γ(λ) : R→M be a curve, which
is at least C1 and γ(λ0) = p, and f :M→ R a C∞-map. The tangent space is a
real vector space defined by the velocities

νγ,p : C∞(M)→ R (301)

f 7→ νγ,p(f) :=
d

dλ
(f ◦ γ)(λ0), (302)

of all curves γ which pass through p. Hence, the tangent space at a point p is given
by

TpM := {νγ,p|γ smooth curves}. (303)

Using the chain rule, we can write a tangent vector X ∈ TpM as

X = Xµ

(
∂

∂xµ

)
p

, (304)
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at the point p, where Xµ = dxµ/dλ ∈ R are the components of the tangent vector
and

(
∂
∂xµ

)
p

the coordinate basis (holonomic basis) of TpM. Because of this it is

clear that dim(TpM) = dim(M). The components of a tangent vector X with an
upper index are called contravariant and transform under general coordinate
transformations xµ → x′µ(xµ) as

Xµ → X ′µ =
∂x′µ

∂xν
Xν . (305)

Having introduced the tangent space at point p it makes sense to also introduce the
cotangent space as the set of linear maps defined by (TpM)∗ := {ω : TpM→ R},
which has the same number of dimensions as M. A natural example is the
gradient of a function f . Its action on a tangent vector is given by

df ∈ (TpM)∗ : TpM→ R
X 7→ df(X) := X(f). (306)

That is just the directional derivative of f . The gradients dxµ of the coordinate
functions xµ provide a natural basis for (TpM)∗, hence we can write

ω = ωµ (dxµ)p , (307)

where ωµ is the component of the cotangent vector and dxµ is defined by its action
on the basis of the tangent space at the point p

dxµ
(

∂

∂xν

)
=
∂xµ

∂xν
= δµν . (308)

The components of a cotangent vector with a lower index are called covariant
vector and have the transformation law

ωµ → ω′µ =
∂xµ

∂x′ν
ων . (309)

Generalizing this concept, we can define (r, s)-tensors at the point p ∈M as
elements of the tensor product space

(TpM)rs ≡ TpM⊗ · · · ⊗ TpM︸ ︷︷ ︸
r

⊗ (TpM)∗ ⊗ (TpM)∗︸ ︷︷ ︸
s

, (310)

where ⊗ is the tensor product. From this definition it is obvious that a tangent
vector is a (1, 0)-tensor and a cotangent vector is a (0, 1)-tensor or a 1-form. This
implies that (r, s)-tensors transform as

T µ1···µrν1···νs → T ′µ1···µrν1···νs =
∂x′µ1

∂xρ1
· · · ∂x

′µr

∂xρr
∂xσ1

∂x′ν1
· · · ∂x

σs

∂x′νs
T ρ1···ρrσ1···σs . (311)

So far, we only defined tensors at a point p ∈M, but it seems natural to extend
this concept to tensor fields which means that we associate a tensor to every point
p ∈M . To have a smooth (r, s)-tensor field T , we have to define it as a C∞(M)
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multi-linear map

T : Γ(T ∗M)× · · · × Γ(T ∗M)︸ ︷︷ ︸
r

×Γ(TM)× · · · × Γ(TM)︸ ︷︷ ︸
s

→ C∞(M), (312)

where TM is a smooth manifold called tangent bundle defined by
TM :=

⋃̇
p∈MTpM, which is the disjoint union of all tangent spaces in M.

Γ(TM) = {χ :M→ TM|smooth vector fields}, where a smooth vector field is a
smooth map χ :M→ TM.
Up to now, we have defined the topology and the field content of the manifold. But
a smooth manifold in itself has no curvature. We have to provide further structure
in order to define curvature. Hence, we introduce the geometric structure, which
separates into affine geometry and metric geometry. First, we will treat the affine
geometry, which defines straight and parallel lines by using the notion of parallel
transport. In flat space we intuitively know what it means to parallel transport a
vector along some curve in the space. If the curve is a closed loop, there is no
difference between the vector at the beginning and after it traveled along the loop.
But if you parallel transport a tangent vector around a closed curve in a curved
space, the direction of the tangent vector will differ after the round trip.
On the other hand, we have the concept of the metric tensor, which measures
distances between points in space or the length of tangent vectors. Hence,
comparing the radius of a circle to the area defined by this circle, we will find a
different relation between them than in a flat space.
First, we introduce the affine connection, which is needed to talk about
differentiation on a manifold. Using the partial derivative applied on cotangent
vector ωµ does not result into a tensor again. This is because the partial derivative
compares the cotangent vector at two different points on the manifold

∂ωµ
∂xν

= lim
δx→0

ωµ(x+ δx)− ωµ(x)

δxν
(313)

and from the transformation law eq. (309) it is clear that the numerator does not
transform as a cotangent vector. Hence, to subtract cotangent vectors at the same
point one first has to parallel-transport ωµ(x) to the point x+ δx, which yields
ωµ(x) + δωµ(x). A parallel transport of a tangent vector along some curve by δxµ

leads to
δωµ = {αµβ}ωαδxβ, (314)

where {αµβ} are called affine connection coefficients. Likewise, for the parallel
transport of a cotanget vector we get

δXµ = −{µαβ}X
αδxβ. (315)

With this notion of parallel transport it is now possible to define a derivative which
transforms as a tensor. Therefore, we rewrite the right-hand side of eq. (313) to

lim
δx→0

ωµ(x+ δx)− ωµ(x)− δωµ
δxν

=
∂ωµ
∂xν
− {αµν}ωα, (316)

where ωµ(x) has been parallel transport from x to x+ δx. The differentiation of the
cotangent vector ωµ defined in this way is called covariant derivative. To indicate a
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covariant derivative we use two different notations, namely ∇µ or a semicolon. A
comma in the following denotes a partial derivative. Hence, we can write

∇ν ωµ = ωµ;ν = ωµ,ν − {αµν}ωα. (317)

For a tangent vector we find

∇νXµ = Xµ
;ν = Xµ

,ν + {µαν}Xα. (318)

The covariant derivatives of vector can be generalized to (r, s)-tensors

∇ρT µ1···µrν1···νs = T µ1···µrν1···νs;ρ = T µ1···µrν1···νs,ρ + {µ1αρ}Tα···µrν1···νs;ρ + · · ·+ {µrαρ}T µ1···αν1···νs;ρ

− {αν1ρ}T
µ1···µr
α···νs;ρ − · · · − {

α
νsρ}T

µ1···µr
ν1···α;ρ. (319)

Note that the covariant derivative is a map from (r, s)-tensor fields to
(r, s+ 1)-tensor fields and has the following properties (in a chart):

1. linearity: (αSµν + βT µν);ρ = αSµν;ρ + T µν;ρ

2. Leibniz rule: (SµνX
ρ);σ = Sµν;σX

ρ + SµνX
ρ
σ

3. reduces to partial derivative on scalar fields: ∇µφ ≡ ∂µφ

4. commutes with contractions: (∇T ) ρ
µ ρν = ∇µ(T ρρν)

(320)

Note that the affine connection coefficients are not the components do not
transform like the components of a tensor.
As mentioned above this enables us to define curvature. Whether a space is curved,
it can be tested by the parallel transport of a vector from a point p in the space to
another point p′ in two different ways. In a flat space the direction in which the
vector points at point p′ is the same for both ways, but differs in a curved space.
Besides that, it could happen that the parallel transported vector does not end at
the same point for the two different paths. Mathematically, we can express this by
the commutator of two covariant derivatives applied on a vector field

[∇µ,∇ν ]Xρ = −Rρ
αµν({···})Xα + Tαµν({···})∇αXρ, (321)

where Rρ
αµν denote the components of the Riemann tensor and Tαµν are the

components of the torsion tensor, which are defined by

Rλ
µνκ = −

(
∂νΓ

λ
µκ − ∂κΓλµν + ΓλναΓαµκ − ΓλκαΓαµν

)
, (322)

Tαµν = {ανµ} − {αµν}. (323)

From eq. (323) we see that the torsion tensor is the antisymmetric part of the
affine connection.
Lastly, we introduce the geometric structure to our manifold, which allows us to
assign a length to a vector, as well as an angle between vectors in the same tangent
space. (We also want this structure to define the length of a curve in order to be
able to speak about shortest curves). This can be done by introducing the metric
tensor field g on our manifoldM. The metric tensor serves for measuring time and
length intervals, as well as angles, areas and volumes. In formal language the
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metric tensor field is a (0, 2)-tensor field defined by

g : Γ(TM)× Γ(TM)→ C∞(M). (324)

and has the following properties:

1. symmetric: g(X, Y ) = g(Y,X)

2. positive definite

3. nondegenerate, i.e. g(X, Y ) = 0 ∀X ∈ TpM⇔ Y = 0.

The last property makes sure that we can define the ”inverse” metric as a
(2, 0)-tensor field

g−1 : Γ(T∗M)× Γ(T∗M)→ C∞(M), (325)

where T∗M is the cotangent vector bundle. This implies that it is not really
inverse of g, because the inverse should be a map from
C∞(M)→ Γ(TM)× Γ(TM). Furthermore, it is useful to introduce the signature
of the metric. It is defined by the number of positive and negative eigenvalues of
the metric. If all eigenvalues are positive we speak of Euclidean or Riemannian
metrics. If there is one negative eigenvalue we call it Lorentzian or
pseudo-Riemannian metric. If there are more than one positive and at the same
time more than one negative eigenvalues the metric is called indefinite. A smooth
topological manifold equipped with such a metric is called (Pseudo-) Riemannian
manifold. Often the metric tensor is called line element, which is defined by

ds2 = gµνdx
µdxν . (326)

Note that dxµ is not an infinitesimal displacement, but an honest (0, 1)-tensor.
Nevertheless, in nearly all relevant cases one can treat the basis covectors as
infinitesimals. This simplifies many calculations a lot, and hence we will make use
of this quite often in this work. Following this line of thought, in the following we
will be more pragmatic and less mathematically rigorous. It is not necessary to
exploit the full mathematical apparatus of differential geometry. In a chart the
first and the third properties of the metric tensor translate to

1. gµν = gνµ

2. (g−1)µρgρν = δµν .

To simplify the notation we will understand the metric tensor field with upper
indices gµρ as the inverse metric tensor field. We will use the metric tensor and its
inverse to raise or lower indices in a coordinate chart, i.e.

∂µ = gµν∂ν (327a)

dxµ = gµνdx
ν (327b)

T µνσ··· = gµρT νσ...ρ (327c)

T µ;ν = gνρT µρ . (327d)
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B Curvature Tensors

In this section we define we present useful expressions of curvature tensors. For the
affine connection we use the Levi-Civita connection.
The Christoffel symbols are defined by

Γλκµ =
1

2
gλρ (∂κgρµ + ∂µgρκ − ∂ρgκµ) . (B.1)

The Riemann tensor reads

Rλ
µνκ = −

(
∂νΓ

λ
µκ − ∂κΓλµν + ΓλναΓαµκ − ΓλκαΓαµν

)
, (B.2)

and the Weyl tensor in terms of the Riemann tensor, the Ricci tensor and the
Ricci scalar is given by

Cλµνκ = Rλµνκ +
1

6
R [gλνgµκ − gλκgµν ]−

1

2
[gλνRµκ − gλκRµν − gµνRλκ + gµκRλν ] .

(B.3)
In the following we give a list of the curvature tensors, expanded around flat
Minkowski spacetime, at first order in hµν

Rµ(1)
νρσ =

1

2

(
−∂ν∂ρhµσ − ∂µ∂σhνρ + ∂µ∂ρhνσ + ∂ν∂σh

µ
ρ

)
, (B.4a)

R(1)
µν =

1

2

(
�hµν − ∂ρ∂µhρν − ∂ν∂ρhρµ + ∂µ∂νh

)
, (B.4b)

R(1) = �h− ∂µ∂νhµν . (B.4c)

To second order in hµν the Ricci tensor is given by

R(2)
µν

(
h(1)
)

=− 1

2
hρσ (∂µ∂νhρσ − ∂ν∂ρhµσ − ∂σ∂µhρν + ∂ρ∂σhµν)

+
1

4

(
2∂σh

σ
ρ − ∂ρh

) (
∂νh

ρ
µ + ∂µh

ρ
ν − ∂ρhµν

)
− 1

4
(∂ρhσν + ∂νhσρ − ∂σhρν)

(
∂ρhσµ + ∂µh

σρ − ∂σhρµ
)
. (B.5)

For the Ricci scalar we obtain

R(2)
(
h(1)
)

=− 1

2
hρσ
(
�hρσ − 2∂λ∂ρh

λ
σ + ∂ρ∂σh

)
+

1

4

(
2∂σh

σ
ρ − ∂ρh

) (
2∂λhρλ − ∂

ρh
)

− 1

4

(
∂ρh

λ
σ + ∂λhσρ − ∂σhλρ

)
(∂ρhσλ + ∂λh

σρ − ∂σhρλ) . (B.6)

Using TT gauge we find

R(2)TT
µν =− 1

2
hρσTT∂µ∂νh

TT
ρσ +

1

2
hρσTT∂σ∂µh

TT
νρ +

1

2
hρσTT∂ρ∂νh

TT
µσ −

1

2
hρσTT∂ρ∂σh

TT
µν

− 1

2
ησλ∂ρh

TT
σν ∂

ρhTT
λµ −

1

4
∂µh

TT
σρ ∂νh

σρ
TT +

1

2
∂ρhTT

σν ∂
σhTT

ρµ . (B.7)
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The Ricci scalar in TT gauge is given by

R(2)TT = −1

2
hρσTT�h

TT
ρσ + hρσTT∂σ∂

λhTT
λρ −

3

4
∂λh

TT
ρσ ∂

λhρσTT +
1

2
ηλγ∂ρhTT

σλ ∂
σhTT

ργ . (B.8)

If we are allowed to use integration by parts, the Ricci tensor and Ricci scalar read

R(2)TT
µν =

1

4
∂µh

ρσ
TT∂νh

TT
ρσ +

1

2
�hTT

µσ h
TTσ
ν . (B.9)

R(2)TT =
1

4
�hTTρσ h

ρσ
TT . (B.10)

C Integration by Parts

In this appendix we verify that we can integrate by parts inside the averaging
brackets 〈. . .〉 defined in Sec. 5.3.1, which we use to calculate the gravitational
energy-momentum tensor. Thereby, we make an error of order O(ωB/ω).
First, note that if hµν is a solution to eq. (82), it travels with the speed of light
and its functional form is given by hµν ∼ f(t− r). This means temporal and
spatial derivatives are related by ∂rhµν = ∂0hµν +O(1/r2). Consequently, the
following analysis works for temporal and spatial averaging. For definiteness we
just analyze the temporal case. Further, we assume that we are always far away
from the source which emits the GWs. This allows us to assume a flat background
spacetime. Without this assumption we have to deal with the complication that
the sum of tensors at different points in spacetime does not result into a tensor.
Thus, also the integral over time or space is not a tensor. To solve this problem
one first has to parallel transport the tensors along geodesics to a common point.
In principle, this is possible, and we refer the reader to the appendix of [221].
As an example, we demonstrate the procedure for the term ∂σhνα∂

αhµσ, which

appears in R
(2)
µν ; cf. eq. (B.8). Using the product rule we can write

〈∂σhνα∂αhµσ〉 = −〈∂α∂σhναhµσ〉+ 〈∂α (∂σhναhµσ)〉. (C.1)

Hence, to justify integration by parts we have to show that the second term on the
right-hand side is negligible with respect to the first term. So we rewrite this last
term as

1

T̄

∫
T̄

dt ∂α [∂σhναhµσ] =
1

T̄

∞∫
−∞

dtf(t) ∂α [∂σhναhµσ] , (C.2)

where T̄ is the time interval we use for the averaging (see eq. (119a)). f(t) ∼ O(1)
is a function such that

f(t)→ 0 for |t| > T̄ and

∞∫
−∞

dtf(t) = 1. (C.3)
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Then we can rewrite the integral as

〈∂σhνα∂αhµσ〉 = −〈∂α∂σhναhµσ〉+
1

T̄

∞∫
−∞

dt{∂α [f(t)∂σhναhµσ]− ∂αf(t)∂σhναhµσ}.

(C.4)
The first term in the curly brackets can be converted into a surface integral that
vanishes since f(t) goes to zero on the boundary. In the last term we have
∂αf ∼ O(f/T̄ ) ∼ O(1/T̄ ). Using T̄ = 2π/ω̄ we find that this term is of order
O(ωω̄h2). The other term on the right-hand side and the term on the left-hand
side are of the order O(ω2h2). This means we get the relation

O
(
ω2h2

)
∼ O

(
ω2h2

[
1 +

ω̄

ω

])
. (C.5)

Since ω̄ � ω we have proved that we can integrate by parts inside the averaging
brackets and neglect the second term on the right-hand side in eq. (C.1) by
making an error of order ω̄/ω. The same procedure can also be applied to all other
terms which appear inside the averaging brackets.

D Center-of-Mass Frame

In this appendix we want to define and investigate the center-of-mass frame. For a
system of N particles the center-of-mass coordinate is defined by the sum of the
coordinates of each particle weighted by their mass and normalized by the total
mass m = m1 + · · ·+mN . We write

xCM =
m1x1 + · · ·+mNxN

m
. (D.1)

We want to investigate the special case of two gravitationally bound particles with
masses m1 and m2. Then eq. (D.1) reduces to

xCM =
m1x1 +m2x2

m
, (D.2)

were m = m1 +m2. Additionally, we introduce the relative coordinate vector x0 as

x0 = x2 − x1. (D.3)

The reduced mass µ is defined as

µ =
m1m2

m
. (D.4)

The energy-momentum tensor for a set of n free point particles moving on
trajectories xµn(t) is given by

T µν(t,x) =
∑
n

γnmn
dxµn
dt

dxνn
dt

δ(3)(x− xn(t)), (D.5)
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where γn = (1− v2
n/c

2)−1/2 and vn = |dxn/dt| is the absolute value of the 3-velocity
of the n-th particle. Observe that we cannot simply use eq. (D.5) in Sec. 5.2. This
energy-momentum tensor is only conserved if particles move on geodesics of flat
spacetime. However, since binary systems are gravitationally bound, we need to
include gravitational binding energies. Then, in the Newtonian limit the
energy-momentum tensor for two particles on a bound orbit takes the form

T µν(t,x) =
∑
n=1,2

mn
dxµn
dt

dxνn
dt

δ(3)(x− xn(t)) +O(v2/c2), (D.6)

since the gravitational potential energy −Gm1m2/r is of order v2, indicated by eq.
(104). To lowest order we find T 00 = O(v0/c0), T 0i = O(v/c) and T ij = O(v2/c2).
Hence, we can consistently neglect gravitational binding energies in T 00 and T 0i.
To lowest order we obtain

T 00 =
∑
n=1,2

mnc
2δ(3)(x− xn(t)), (D.7)

T 0i =
∑
n=1,2

mnc
dxin
dt

δ(3)(x− xn(t)). (D.8)

These terms are consistent with energy-momentum conservation ∂0T
00 + ∂iT

0i = 0.
This is not true for T ij, since the lowest order free particle expression as well as
the gravitational binding energy are of order (v2/c2), which means that they are
not negligible.
However, in eqs. (110a)-(110c) we use energy-momentum conservation for the full
relativistic energy-momentum tensor, containing all interactions of the system, to
relate it to the mass-energy moments, which only depend on T 00. Thus, it is
consistent to use the free-particle energy-momentum tensor throughout Sec. 5.2.
This means it is consistent to calculate the mass moments to lowest-order in v/c
using eq. (D.7). Since monopole and dipole contributions vanish in the time
derivative of the metric perturbation (see eqs. (113a)-(114b)), we only calculate
the second mass moment. We insert eq. (D.7) into eq. (109c) and obtain

M ij = m1x
i
1x

j
1 +m2x

i
2x

j
2 = mxiCMx

j
CM + µxi0x

j
0. (D.9)

It is convenient to choose the origin of the coordinate system such that xiCM = 0.
This is reasonable since in an isolated system its second time derivative vanishes
ẍCM = 0 and thus it does not contribute to the creation of GWs. Then, eq. (D.9)
simplifies to

M ij = µxi0x
j
0, (D.10)

which describes a single particle with mass µ and coordinate xi0(t). Finally, let us
note that the mass density in the center-of-mass frame reads

ρ(t,x) = µδ(3)(x− x0(t)). (D.11)
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E Degrees of Freedom and Spin

In this appendix we classify fields in flat Minkowski background spacetime in four
spacetime dimensions. Since we are most interested in the metric tensor field, we
start with an analysis of the decomposition of second rank tensors under spatial
rotations. After that, we briefly discuss the classification of particles (quantized
fields) by two quantum numbers which are generated from the Casimir operators
of the Poincaré group. These quantum numbers are the mass and the spin for
massive particles and the helicity for massless particles. Thereafter, we identify the
physical dofs of the metric perturbation in Minkowski spacetime making use of its
transformation behavior under spatial rotations around a fixed propagation axis,
i.e. we decompose the components into longitudinal and transverse contributions.
This naturally leads to the introduction of dynamical (radiative) dofs, which obey
wave equations, and nondynamical (nonradiative) dofs, that are governed by
Poisson-like equations. GWs are by definition always dynamical.
As a starting point, we briefly introduce the Lorentz group. We write a Lorentz
transformation on the spacetime coordinates as

xµ → Λµ
ρx

ρ, (E.1)

where Λµ
ν are proper orthochronous Lorentz transformations (det(Λ) = +1 and

Λ0
0 ≥ 1) defined by the condition ηµν = Λρ

µΛσ
νηρσ, which means that spacetime

distances are left invariant. Then, a (2, 0)-tensor transforms as68

tµν → Λµ
ρΛν

σt
ρσ. (E.2)

The elements of the Lorentz group can be written in exponential form

Λ = e−
i
2
ωρσJρσ , (E.3)

where ωµν is antisymmetric and thus has six independent components, which are
the parameters of the Lorentz group. The Jµν are the generators of Lorentz
transformations and are also antisymmetric. They correspond to three spatial
rotations (the rotations group SO(3)) and three spacetime boosts. The four-vector
representation of Jµν is given by

(Jµν)ρσ = 2iη[µρδν]
σ , (E.4)

where the inner indices µ, ν identify the generator and the outer indices ρ, σ label
the matrix element. We can use Jµν to form two spatial vectors

J j =
1

2
εijkJ jk and Ki = J i0. (E.5)

The J i represent the angular momentum vector and the Ki are the boosts
corresponding to the three spatial directions. Using the expression in eq. (E.4) we

68We could do the same discussion with a (0, 2)-tensor since we can raise or lower indices with
the Minkowski metric.
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find the commutator

[Jµν , Jρσ] = 2i
(
η[νρJµ]σ − η[νσJµ]ρ

)
, (E.6)

which is the Lie algebra of SO(3, 1).
After this brief excursion to the Lorentz group, let us now discuss the
transformation behavior of tensors. A generic (2, 0)-tensor tµν is a reducible
representation of the Lorentz group. It decomposes into an antisymmetric
representation Aµν = t[µν] with six independent components, a symmetric traceless
representation Sµν = t(µν) − 1/4ηµνηρσS

ρσ with nine independent components and
the one-dimensional trace S = ηρσS

ρσ. From eq. (1) it is clear that tµν can also be
represented as the tensor product of two four-vectors. If we denote the irreducible
representations by their number of independent components, we can write

4⊗ 4 = 1⊕ 6⊕ 9, (E.7)

where ⊗ is the tensor product and ⊕ denotes the direct sum.
Since we are interested in the spin of fields, it is obvious that we have to
investigate their angular momentum. The angular momentum operators are the
generators of the group of spatial rotations SO(3), which is a subgroup of the
Lorentz group. Representations of SO(3) can be labeled by the angular
momentum index j = 0, 1, 2, . . . and have dimensionality 2j + 1. We then have to
ask how irreducible representations of the Lorentz transformations behave under
spatial rotations. For a Lorentz scalar it is obvious that it is also a scalar (j = 0)
under SO(3). But in general, irreducible representations of the Lorentz group are
reducible under SO(3). A four-vector V µ decomposes into a scalar V 0 (j = 0) and
a spatial vector V i (j = 1), which are irreducible representations of SO(3). In
contrast to the representations of the Lorentz group it is convenient to label
irreducible representations of SO(3) by their angular momentum j and not by
their dimensionality 2j + 1. Thus, V µ can be written as the direct sum

V µ ∈ 0⊕ 1. (E.8)

Combining eq. (E.8) and eq. (E.7) we can write for a (2, 0)-tensor

tµν ∈ (0⊕ 1)⊗ (0⊕ 1) = (0⊗ 0)⊕ (0⊗ 1)⊕ (1⊗ 0)⊕ (1⊗ 1) (E.9a)

= 0⊕ 1⊕ 1⊕ (0⊕ 1⊕ 2), (E.9b)

where we have used 0⊗ 0 = 0, 0⊗ 1 = 1, 1⊗ 0 = 1 and 1⊗ 1 = 0⊕ 1⊕ 2 in the
last step. This is a consequence of the addition rule for angular momenta, which
states that if one adds two angular momenta j1 and j2, the resulting angular
momentum can take all discrete values between |j1 − j2| and |j1 + j2|. Hence, it is
clear that the first 0 in eq. (E.9b) comes from the trace S since it is a scalar under
SO(3). The antisymmetric representation Aµν has six independent components
and thus decomposes into the direct sum of two spatial vectors A0i and 1/2εijkAjk

and we can write
Aµν ∈ 1⊕ 1. (E.10)

Hence, the first two representations with j = 1 in eq. (E.9b) come from Aµν . In
consequence, the traceless symmetric tensor Sµν is given by the direct sum of the
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last three terms in eq. (E.9b)

Sµν ∈ 0⊕ 1⊕ 2, (E.11)

which is a decomposition into a j = 0, j = 1 and j = 2 representation of SO(3).
So far, we analyzed what happens to classical fields under Lorentz transformations
and in particular we studied spatial rotations. But in the end, in order to be able
to speak about particles we have to quantize the classical fields. Therefore, we
make a brief excursion to quantum mechanics and investigate how the notion of
spin and helicity of particles arise.
The full symmetry group of a relativistic quantum field theory is the group of
Poincaré transformations xµ → Λµ

ρx
ρ + aµ, where aµ is the parameter of

translations (Lorentz transformations plus spacetime translations), and particles
are described by irreducible unitary representations of this group. Here we consider
representations of the Poincaré group in a basis of the Hilbert space of free
particles. We classify particles using the Casimir operators of the Poincaré group.
The first Casimir operator is pρp

ρ, where pµ is the four-momentum of the particle.
It separates the representations into massless and massive states. The second is
WρW

ρ, where W µ = −1/2εµνρσJνρpσ is the Pauli-Lubanski pseudovector. It is the
generator of the little group of the Poincaré group. The little group is the group
that leaves the four-momentum vector pµ invariant. We use these two Casimir
operators to label particle states (〈p,m|) which have momentum p and mass m:
1. For massive particles we have pρp

ρ = −m2 < 0 (pρp
ρ = m2 > 0 corresponds to

tachyons). In the rest frame the four-momentum is given by pµ = (m, 0, 0, 0). If we
consider bosonic particles, the little group is SO(3) since it leaves particles with
p = 0 at rest. This also means that the orbital angular momentum is zero in the
rest frame and only the spin contribution is left over. Then, the eigenvalues of the
Pauli-Lubanski pseudovector acting on a one-particle state with mass m and spin
quantum number s = 0, 1, 2, . . . (for bosons) are given by −m2s(s+ 1). Each s the
states can take the values sz = −s,−s+ 1 . . . , s. Thus, massive particles can be
labeled by their spin s and have 2s+ 1 dofs.
2. For massless particles we have pρp

ρ = 0. Thus, there is no rest frame, which
means that their little group cannot be SO(3). Instead the four momentum is left
invariant under the abelian group SO(2)69. If we choose pµ = (ω, 0, 0, ω), it is left
invariant by spatial rotations in the xy-plane, which are generated by J3. The
eigenvalues of J3 are the helicities h = p̂ · J (p̂ = p/p is the unit vector in the
direction of propagation) and hence represent the angular momentum projected in
the direction of the propagation. These helicities are quantized and can take the
values h = 0,±1,±2, . . . (for bosons). Actually, the irreducible representations of
SO(2) are one dimensional and a specific ±h represents two independent particles.
But if the theory is also invariant under parity transformations, +h and −h must
appear symmetrically in the theory and one says that ±h is just one particle with
two polarization states, i.e. left-handed and a right-handed polarization.
This clarifies why we speak about spin for massive particles and helicity states for
massless particles.
Let us now resume the discussion of the metric perturbation as a classical field.

69Actually, there are also two Lorentz boosts, which leave pµ invariant, but these are not of
relevance here. For details, see Sec. 2.27 in [222].
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Until now, we analyzed a generic (2, 0)-tensor field. However, we are interested
into GWs and thus we now study the metric tensor gµν in this framework. For this
reason, we expand gµν in flat Minkowski background

gµν = ηµν + hµν , (E.12)

and analyze the decomposition of the metric perturbation hµν under spatial
rotations. The inverse metric to linear order in hµν is given by gµν = nµν − hµν and
hence we can lower and raise indices with the Minkowski metric. It is obvious that
the antisymmetric part in eq. (E.9b) drops out since hµν is symmetric and we can
write

hµν ∈ 0⊕ (0⊕ 1⊕ 2), (E.13)

which is the direct sum of the trace and the traceless symmetric contribution. If we
consider instead eq. (E.9a), we see that h00 forms a scalar, h0i and hi0 are vectors
and hij is a symmetric tensor under spatial rotations. We can further decompose
these into longitudinal and transverse parts with respect to the direction of the
propagation axis p̂. Using the Helmholtz-decomposition (which decomposes tensor
fields into longitudinal and transverse components) we can write

h00 = 2φ, (E.14)

h0i = Zi + ∂iZ, (E.15)

hij = −2ψδij +

(
∂i∂j −

1

3
δij∆

)
E +

1

2
(∂iWj + ∂jWi) + hTT

ij , (E.16)

where ∆ = ∂k∂
k is the flat space Laplace operator. The above equations are a

decomposition into irreducible representations of SO(2). Under SO(2)
transformations φ, Z, ψ, and E behave as scalar fields, Zi and Wi behave as vector
fields and hTT

ij is a symmetric tensor field in the TT gauge (∂khTTki = 0 and
hTTii = 0). The two vector fields are constrained by ∂kZk = 0, ∂kWk. Thus, Zi and
Wi are transverse vector fields and ∂iZ is the longitudinal part of h0i.
As we have seen before, we can classify irreducible representations of SO(2) by
their helicity. In order to find the helicity of the fields it is convenient to go to
Fourier space, such that ∂i → iki, where ki is the wave vector of hµν . Further, we
set up an orthonormal frame (u,v, p̂). Then, the rotation by an angle α around
the p̂-axis leads to

u→ u cos(α) + v sin(α), (E.17)

v→ v cos(α)− u sin(α). (E.18)

If we write the Fourier transform of the transverse vector Zi in this basis, we get

Z̃(k) = Z̃1(k)u + Z̃2(k)v. (E.19)

After the rotation by an angle α around p̂ we find

Z̃1(k)→ Z̃1(k) cosα− Z̃2(k) sinα, (E.20)

Z̃2(k)→ Z̃2(k) cosα + Z̃1(k) sinα. (E.21)
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If we now introduce the combination Z± = Z1 ± iZ2, we see that it transforms as

Z̃±(k)→ e±iαZ̃±(k), (E.22)

which means that Z± are helicity eigenstates with h = ±1. We can use the same
method for the TT tensor. We represent the polarization tensors defined in eq.
(88) in the orthonormal frame and find

ε+ij = uivj − viuj, (E.23)

ε×ij = uivj + viuj. (E.24)

Analogously, we combine ε+ij and ε×ij to a new polarization tensor ε±ij which
transforms as

ε±ij → e±2iαε±ij. (E.25)

This points out that the transverse traceless part of the metric perturbation is a
helicity eigenstate with h = ±2. For completeness let us note that scalar quantities
transform as φ→ e0iαφ = φ and thus have helicity h = 0.
For the rest of this appendix we demonstrate how we can find the physical dofs of
the metric perturbation. For this reason, we perform an infinitesimal coordinate
transformation xµ → xµ + ξµ and figure out the invariant quantities. It is useful to
decompose ξµ also in irreducible representations under SO(2)

ξ0 = A, (E.26)

ξi = Bi + ∂iC, (E.27)

where Bi is the transverse part and ∂iC is the longitudinal part of ξi. A and C are
scalars under spatial rotations. Using this decomposition of ξµ in the
transformation of the metric perturbation defined in eq. (78) we can write the
transformations of hµν in terms of A, Bi and C

φ→ φ− Ȧ, (E.28a)

ψ → ψ +
1

3
∆C, (E.28b)

Z → Z − A− Ċ, (E.28c)

E → E − 2C, (E.28d)

Zi → Zi − Ḃi, (E.28e)

Wi → Wi − 2Bi, (E.28f)

hTT
ij → hTT

ij . (E.28g)

We observe that hTT
ij is invariant. This is clear from the fact that ξ0 transform as a

scalar and ξi as a spatial vector under SO(2). Since hTTij is a helicity-2 tensor under
SO(2), it must be invariant. To find the other gauge invariant dofs we can either
fix the gauge by gauge conditions or we can simply build gauge invariant quantities
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out of the fields given in eqs. (E.28a)-(E.28f). The gauge invariant quantities are

Φ = −φ+ Ż − 1

2
Ë, (E.29)

Ψ = −ψ − 1

6
∆E, (E.30)

Vi = Zi +
1

2
Ẇi, (E.31)

where Vi is a transverse vector field (∂kVk = 0). To decide whether these physical
dofs are dynamical or nondynamical we need to find the field equations. For this
reason, it is convenient to also decompose the matter energy-momentum tensor Tµν
in the same way as hµν

T00 = ρ, (E.32)

T0i = Si + ∂iS, (E.33)

Tij = pδij

(
∂i∂j −

1

3
δij∆

)
σ + ∂(iσj) + σTT

ij , (E.34)

where p is the pressure, pδij is the isotropic part of Tij and the other three terms in
Tij define the anisotropic stress tensor. It depends on a scalar σ, a transverse
vector σi (∂kσk = 0) and a transverse traceless tensor σTT

ij (∂kσTT
ki = 0 and

δklσTT
kl = 0). Si is the transverse part (∂kS

k = 0) and ∂iS is the longitudinal part
of T0i. Now, one can insert the decompositions for the metric perturbation and the
matter energy-momentum tensor into the EFE to find the field equations for the
gauge invariant quantities. We skip the details of the calculations here and refer
the reader to Sec. 18.1 of [7] for more information. Finally, we get

∆Φ = −4πGρ, (E.35)

∆Ψ = 4πG (ρ− 2∆σ) , (E.36)

∆Vi = −16πGSi, (E.37)

�hTT
ij = −16πGσTT

ij . (E.38)

We observe that the scalar and vector fields satisfy Poisson equations and only the
transverse traceless tensor hTT

ij obeys a wave equation. Hence, hTT
ij contains two

dynamical dofs. The scalar fields Φ and Ψ represent two nondynamical dofs and Vi
is a transverse nondynamical vector field containing two dofs. This means after
quantization only the dynamical TT tensor describes a particle, namely the
graviton. Therefore, this clarifies the notion that GR is the unique theory of
gravity which contains just a massless gravitational field with helicity-2.
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