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Abstract

underlying traffic dynamics into account.

model errors.

which is partly validated based on additional data.

route in the street network.

The prediction of the uncertainty of route travel time predictions for all possible routes in an urban road network is of
importance for example for logistics. Such predictions need to take the essential features of the data set as well as the

In this paper a large floating taxi data set is used in order to derive predictions of route travel time uncertainty based
on link travel time uncertainty predictions. Prediction errors, that is actual travel times minus predicted travel times,
are differentiated from model errors, that is measured travel times minus predicted travel times. These two errors are
related, but not identical, as model errors contain measurement noise while the prediction errors do not. Detailed
models for the variance of the link travel time prediction errors as well as the correlation between the model errors for
different links are derived. The models are validated in depth using two different validation data sets.

Estimates for the variance of prediction errors are obtained. The standardized model error distributions show a
remarkable stability, such that modelling the variance appears to be sufficient for quantifying the uncertainty of the

Furthermore we show that the model errors for adjacent links are highly correlated but correlations fade with
increasing distance. Additionally usage of the road network plays a role with high correlation for links along common

routes and low correlations for links along seldom used routes. We assume identical features for the prediction errors

The paper provides a way to estimate the complete distribution of route travel time prediction errors for any given

Keywords: Taxi floating car, Travel time uncertainty, Travel time prediction

1 Introduction

The quantification of route travel time uncertainty is of
importance for logistics applications as well as for publicly
available routing services (see [3] for a survey of studies
dealing with valuing reliability; compare also [14]). Some
authors even found that travel time reliability is valued
more highly than travel time itself [8]. For logistic appli-
cations planning usually involves pre trip decisions, in
many cases several hours or even days before the trips
are executed. Both private individuals as well as logistics
companies typically have asymmetric costs with being late
implying higher penalties than being early. Accordingly
for cost optimal decisions not only the predicted travel
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time but also the uncertainty involved in the prediction is
of interest.

Typically routing services are based on a directed math-
ematical graph (a set of nodes connected by links) rep-
resenting the street network such that the shortest path
between two points can be obtained using the Dijkstra
algorithm. Here ’shortest’ is to be understood in a broad
sense and could involve predictions of link travel times for
a particular departure time. For such predictions a huge
amount of different methods based on a large number of
different data sets have been obtained, first for highways
(compare the papers contained in the compendium [2]),
subsequently for general road networks. Excellent surveys
of the many contributions can be found in [16, 17]. Usu-
ally in these approaches the predicted route travel time is
obtained as the sum of the predicted link travel times.
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With respect to travel time reliability a number of differ-
ent measures could be used, compare the survey in [6]. It
is important to note that these measures not only depend
on the respective link quantities but also on the relation-
ship between the various link travel times. The most basic
uncertainty measure is constituted by the variance. This
measure for highways has been criticized as not telling
the whole story [10]. Consequently approaches such as
quantile regression for quantifying the whole distribu-
tion of travel time prediction errors have been developed
(see the contributions [7, 11] and the references contained
therein). Often confidence intervals for prediction uncer-
tainty based on standard deviations (that is, square roots
of variances) are constructed assuming Gaussian distribu-
tion of the errors. A more elaborate approach would imply
a constant distribution scaled by standard deviations.
Quantile regression methods replace this simple model by
a detailed model for a number of quantiles depending on
influencing factors. Such methods provide better quantifi-
cations of uncertainty compared to the scaling approach
if the shape of the distribution changes a lot depend-
ing on influencing factors such as the time-of-the-day for
example.

The variance of a sum of random variables (such as the
sum of link travel times) equals the sum of the variances
plus the sum of all possible covariances between pairs
of random variables. In [9] the covariances of prediction
errors are neglected and several different measures for
route travel time variances are compared without reach-
ing a compelling conclusion. It is clear that the omission of
covariances is unjustified if the contribution of the covari-
ances is substantial. It is unclear, however, if this is the
case.

Travel time uncertainty is related to different levels of
congestion. It may be argued that congestion is spread
only along routes driven by many cars while crossing
traffic might be unaffected by congestion in the orthogo-
nal direction. This conjecture will be investigated in this
paper by using a variable called trip count ratio indicating
for each pair of links the proportion of trips along one link
also traversing the second link.

As routing applications potentially build routes includ-
ing all possible combinations of links, the estimation of
the variance of an arbitrary route travel time prediction
error requires the estimation of all covariances between
the link travel time prediction errors for all pairs of links.
For a large map this is impossible and hence a model is
needed that provides an estimate of the correlation of the
travel time prediction errors for any two given links based
on some influential factors such as the distance as well as
the trip count ratio.

An ideal source for modelling is constituted by taxi
floating car data as a large fleet can cover the whole
street network and be active throughout the day. Taxis
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show the advantage — compared to other fleets — to be
operated continuously. Consequently this paper investi-
gates the properties of the uncertainties of link and route
travel time prediction errors based on models developed
for a large floating taxi data set (FCD) in Vienna [15].
In the paper we distinguish prediction errors, that is
actual travel time minus predicted travel time, from
model errors which additionally include measurement
errors. Both errors depend on the traffic state and con-
tain inter-driver and intra-driver variation. In the paper
we discuss the relation between the various components
of the two errors and their impact on the estimation
in detail.

Note that the related paper [13] deals with a slightly dif-
ferent problem by assuming low covering of the floating
car data. This is countered by imposing much struc-
ture (in the form of regression equations) on the rela-
tion between measured variables while our data set is
large enough in order to achieve a good coverage of the
network (see below). However, for a map with several
thousands of links, estimation of the covariances of link
travel time prediction errors for all pairs of links still is
not feasible.

The main contribution of this paper thus is the thor-
ough investigation of link and route travel time predic-
tion and model errors. First, it is shown that for our
data set the model error variances for the link travel
time models show a strong dependence on the mea-
surement conditions. In particular the number of single
taxi observations for one link and one time interval as
well as the current traffic conditions influence the vari-
ance of the model errors. Second, the distribution of
the standardized model errors (such that the conditional
mean is zero and the conditional variance equal to one)
is remarkably stable such that quantifying the variance
is sufficient in order to obtain the whole model error
distribution. Third, the correlations of link travel time
model errors for different pairs of links are investigated
in detail, identifying two influencing factors: the driving
distance between the two links and the trip count ratio.
Fourth, all models are thoroughly validated by means
of two separate validation data sets: the first consists
of a second period of the floating taxi measurements
which is not used for modelling. The second comprises
an even tougher test by comparing the estimated route
travel time uncertainty obtained from the models to the
uncertainty of the measured route travel time based on
trajectory data for single taxi observations for a collection
of routes.

The paper is organized as follows: In the next section the
data set is described while Section 3 provides the method-
ology for the estimation of the route travel time uncer-
tainty. The empirical results are described in Section 4.
Finally Section 5 concludes the paper.
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2 Dataset

In Vienna the movement of some taxis is observed using
low frequent (with a sampling frequency of about 1
minute) GPS sensing since 2004 with a fleet of approxi-
mately 3500 taxis in total of which around 2000 are on the
road at any one time. These raw data are used in different
ways as discussed in the following two subsections.

2.1 Floating taxi data

The floating taxi dataset used in this paper covers the time
period from July 1st 2008 until July 31st 2010, a total of 761
days. For each GPS observation information on the status
of the taxis is available which allows to filter out only those
movements that are made when carrying a passenger.

The raw data set is map matched (using trajectory to
route map matching; a commercial map is used to encode
the street network and hence the location and length of
the links are given exogenously; note that the links in the
map are directed such that two way segments of a street
are represented by two links in opposite direction in the
map) and interpolated between observations in order to
obtain an estimated route as a continuous sequence of
links in combination with an estimated entry and exit time
for each link. Additionally the routes found are assessed
and unreliable routes (implying very high speeds) are
excluded from further analysis. Details on data collection
and preprocessing can be found in [15].

The corresponding obtained route data is aggregated
to obtain link specific average travel times within a given
time interval by using arithmetic averaging. The time
intervals have been chosen heuristically to equal 15 min-
utes leading to 96 time intervals per day.

This procedure results in the generation of two separate
data sets:

1. One data set contains estimated taxi routes including
the estimated timing of link entry and exit events
providing direct measurements of route travel times.

2. The second one consists of average travel time
measurements ﬁfi ; for each link I and each fifteen
minute interval i on any given day d.

2.2 Linktravel time data sets

In this paper the averaged travel time measurements lxlfi,i
for four different locations are used: (the location is pre-
sented in Fig. 1):!

(a) Hietzing (H): 191 links around the main arterial in
the West of the city leading past the tourist attraction
Schonbrunn castle.

I The same data set is also used in a companion paper [1] dealing with a
different research question. Figure 1 is reprinted from this article.
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(b) Westbahnhof (WBH): 122 links in the area of the
Westbahnhof rail station. This area is adjacent to the
shopping street Mariahilferstrasse.

() Ring (R): 79 links in the innermost city with lots of
tourist attractions.

(d) Sidosttangente (SOT): 58 links on the largest (in
terms of traffic) inner city highway including a
number of feeder links.

The four sites are selected as a compromise of including
many different traffic environments such as city highway,
main arterial as well as inner city regions on the one hand
and respecting time restrictions for analysis with the soft-
and hardware tools available to the authors.

In total the dataset covers 38.9km of roads (approxi-
mately 19.4km in Hietzing, 6.1km at site WBH, 6.4km at R
and 7.0km at SOT) containing approximately 32.9 million
taxi observations. All four datasets include a varying num-
ber of missing observations in all dimensions. On 8.5% of
days no observation exists at all due to coding errors either
in the data collection or extraction from the database. The
missing days occur on a continuous stretch of adjacent
days, therefore there does not appear to be a systematic
pattern of missing observation days. The fraction of miss-
ing observations per link (that is time intervals in which
no taxi is observed on the corresponding link) varies
from 10% to 80%. 19% of all measurements are based on
only one taxi observation. For more details on the data
set see [1].

Figure 2 provides information on the typical travel time
measurements: (a) provides the empirical cumulative dis-
tribution function (ECDF) of all local travel time obser-
vations l:[ii,i = l:[i“/Dl (where D; denotes the length in
meter of the /-th link, d the day of observation, i the time-
of-day-interval of the measured link travel time ﬁél,i)'
Note that dealing with local travel time given in seconds
per meter travelled helps in interpreting the results. As an
example note that a travel speed of 50km/h corresponds
to a local travel time of 0.072 seconds per meter.

It can be seen that on the city highway Siiddosttangente in
general smaller local travel times (corresponding to larger
speeds) are observed while in the inner city larger local
travel times are observed (R). Plot (b) provides a boxplot
grouped across time-of-day-intervals for a link in WBH
showing a number of characteristic features: Throughout
the day congestion causes larger local travel times. Fur-
thermore the standard deviation in general is large and
varies a lot over the course of the day. During the after-
noon peak period the standard deviation is a substantial
fraction of the average local travel time.

In addition to ﬁii,i in the dataset also the empirical vari-
ance of local speed observations within one (link, day,
time of day interval) combination before aggregation is
provided for the Ring dataset. This information will be
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used in order to estimate the measurement error variance

in Section 3.2.

2.3 Link distance data

Driving distances (denoted with D;;) between the mid-
dle points of two links are obtained from the underlying

map. Intersection information such as turning restric-
tions are not used. Correspondingly the distance between
two links is static over time. Two issues might arise in
particular for links close to the boundary of the consid-
ered regions: As only the subgraphs in the four regions
are used, there might exist shorter paths outside the
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considered region connecting the two links. Second, the
missing turning restrictions might reduce the driving dis-
tance. Both effects are considered minor problems for the
chosen regions. In addition the number of links is rela-
tively large such that such problems for a small number
of pairs of links should be ’averaged out’ for all results
presented below.

2.4 Trip count ratios
In the analysis it will turn out that an influential factor for
the size of spatial correlation of the link travel time model
errors is given by a measure of connectedness between
two links called trip count ratio (tcr) inthe fol-
lowing. The calculation of tcr is based on trip data from
9 days? in 2012 (Sunday 1.1.-Wednesday 4.1., Sunday 8.1.
- Tuesday 10.1., Wednesday 1.2., Tuesday 24.7.). Here the
trip count ratio is defined as
max (&, &ji)
‘E,,,‘ =
Gi
where ¢; denotes the total number of trips via link i and ;;
the number of trips leading first via link i and then via link
j for the whole nine days.
Note that this definition of the trip count ratio produces
a symmetric measure in the sense that t; j = T This
measure will be used in order to model the correlation of
model errors which inherently are symmetric. Typically
high values of ¢;; where link i lies upstream of link j imply
low values of gj; in the reverse direction. Alternatively in
the model both the maximum and the minimum value of
¢ij and gj; could be used. This is left for future research.
Two instances of this measure for two links in the R and
the H data set can be seen in Fig. 3. From these plots it is
clearly visible that adjacent links on major routes reach t
values close to 1 while remote links show 7 values of zero.

2The selection of days was due to a lack of data availability.

As detailed trip record data was not available for the
same time span as the speed data, it is necessary to investi-
gate the dependence of the 7 values on the nine evaluation

days. To this end a separate trip count ratio 7,'( ) is calcu-

lated for each of the 9 days. Figure 4 provides an ECDF for

the absolute differences |T(]) 7;j| for all days and pairs

of links. The WBH and H datasets show less variability
with the 90% percentile of the deviation from the mean
being equal to 0.05. For SOT (0.06) and R (0.08) we obtain
a slightly larger — while still small — value.

Therefore using the overall trip count ratio 7;; appears
to be justified, where we have to be more careful with
interpretation of the results for the R dataset.

3 Methods for uncertainty modelling
The main goal of this paper is to propose and validate a
model for the distribution of the errors of the route travel
time prediction along a given route R = (L;)j—1,..; (seen
as a set of J links with indices L;). The focus here is on
long-term predictions, say at least one hour ahead, such
that temporal correlation between deviations from "usual’
circumstances are no longer significantly different from
zero. Therefore route travel time prediction and the corre-
sponding uncertainty is modelled as a function of the time
when embarking onto the route.

One of the difficulties related to our data set is that we
don’t have observations of actual link travel times Hii of

a (single) taxi on given link / on day d and tlme of the-
day interval i. We only have given an aggregate?, I i Sy
of noisy measurements of (single) taxi travel times for a
(random) number, N' é,i say, of taxis.

As a prediction for the link travel times we simply
use an estimate '&52’,;‘ for the (link and time dependent)

expectation ,uﬁii = Elzlfi i+ We call
vl ! ~l
g =y, =1y, 1)

3The aggregate is computed via the geometric mean of the respective link
speeds.
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the prediction error. Note that uii,i and Ijtii,i are closely

related but they are not identical.
Based on the link travel time predictions the predicted

route travel time on day d in time interval i equals the sum
of the predicted link travel times:
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Fig. 4 Variability in trip count ratios. ECDF of absolute deviation of the
single day measurements from total values over all 9 days. H (blue),
WBH (black, dotted), R (red, dashed), SOT (green, dash-dotted)

, . R _ Y L
The actual travel time will be denoted as IT; ; = Zj:l n,;
and the route travel time prediction error is ”5 ;= Hs ;=

equals the sum of all variances and covariances of link
travel time prediction errors:

Cov(ufl"i, ufi”) (3)

i

Corr (s, uf)\ Vi)V (). (4)

As has been noted above we do not have direct observa-
tions of the link travel times and hence it is not possible to
directly estimate the variances and correlations of the link
travel time prediction errors ué,i. Instead we propose esti-
mates of these quantities which are based on the model

>l
errors ”d,i'

The uncertainty in the measured travel time of an indi-
vidual taxi include three components (cf. [12]):

M~
M~

Vs ) =

Q
Il
—
S
I
—_

Il
M\
™M~

1

S
Il
—

N
Il

e inter driver variability: under free flow conditions
every driver sets his/her free speed which differs
between drivers.

e varying traffic conditions: congestion is not
identical on different days leading to deviations (that
is random variables with zero mean) from the
expected travel times. Additionally weather
conditions and further noise factors might lead to
deviations from usual traffic conditions.

® measurement errors: as link travel times are only
measured based on low frequent GPS signals there is
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a measurement error. We assume that these
measurement errors are independent of the traffic
state and of the time-of-day.

These three factors are all mixed in the observations.
It is hard to separate them based only on the (aggre-
gated) link travel time observations. Due to the aggrega-
tion the first and the third factor (inter driver variability
and measurement errors) diminish with increasing num-

ber of observations (N é’i> per time-of-day-interval while

the second (varying traffic conditions) does not.

For the prediction uncertainty of a single (taxi-) driver
travel time the first two components are relevant, while
the third is not. Therefore in the following we will need
to provide a detailed model for the variance of link travel

time model errors Iftiﬁ as a function of time, traffic condi-

tions as well as the number N f“ of observed taxis on day d
in time interval { on link /:
v ~2 I 1

Vi) = 0}, (g Ng)- ®)

If w; denotes the variance of the measurement errors
(which is assumed to be independent of the time) then the
variance of the travel time prediction errors is

V) = Vi)

The correlations of the prediction errors are estimated
via the correlations of the normalized (with the inverse of

— o =680,y 1) — o1, (6)

the standard deviation , /V(thi l.)) model errors. These are

seen as proxies for the correlations of the prediction errors
to which we do not have to access.

In the following we will explain these modelling steps in
more detail:

e in Section 3.1 we discuss the modelling of the mean
travel time ué,,i.

e in Section 3.2 we present a model for the variances of
the measured link travel times and discuss how to
construct estimates for the variance of the link travel
time predictions from this model and suitable
estimates of the measurement error variance.

e in Section 3.3 a model for the (spatial) correlations
Corr(z1? a0 it 4, for all pairs of links a, b is presented.

e finally Section 3.4 shows how these pieces are put
together to get an estimate of the variance of the
route travel time prediction error.

For each model we will investigate the dependence on
links, days and time-of-day-intervals.

3.1 Model for the expected link travel time
Following [15] we will use the model

=l !

My = g +eqp
/ ’

Hai = x,4B1,i
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for the measured link travel time 1'[1 where the regres-
sor vector x, contains the constant, dummles for the day
category, school holidays and additional cyclical terms to
model potential yearly effects (cos(wjd), sin(wjd),w; =
27j/365,j = 1,...,5).

The regression coefficients g;; are specific to the time-
of-day-interval i and the link /.

According to [15] the models are estimated using step-
wise regression techniques and excessive model selection
in order to identify the most relevant regressors. A model
for the variance of ei,’l. (see the next section) as a func-
tion of the underlying number of observations as well
as the average mean speed reduces the influence of het-
eroskedasticity. For details see [15].

As a result we obtain estimates /i’ di which serve as
predictions for the actual link travel times as explained
above.

3.2 Model for the variance of link travel times
We will use estimates for the variance of eé” = Hfji —

as estimates for the variance of the model errors zfté,i =

ﬁii,i — ﬂél = eii,l. + (“ii,i — ﬂiti). This simplification is
justified since, due to the large data set used for the esti-
mation of /Lii,i, the estimation error (ﬁfi’i — “il,i) is "small"
compared to the noise eﬁi,i.

The link travel time measurements show a pronounced
heteroskedasticity, that depends on the number of mea-
surements as well as the mean travel time. Again following
[15] we model the variance of ! 7 as function of the
number of observations as well as the predicted travel
time:

I
Mg

»

! 2 l 1
Viey) = 0j4, ('U’d,i’Nd,i)
I 1\ V2 <l
= exp |\ i + Viilty; + Pu (Nd,i) + 01Ny ;
where Nl denotes the dummy variable indicating that

the correspondmg measurement is only based on one taxi
observation. This makes the model for one taxi measure-
ment insensitive to misspecifications of the dependence
onN,. !

As m [15] this can be estimated in logarithms using
log((I"Idl — ﬂdz)z) as the dependent variable. Here the
coefficients 81; = 0,¢;; > 0 are restricted to be positive,
since we expect that averaging individual taxi observa-
tions decreases the variance.

Additionally a penalization is introduced in order to
obtain smooth (over time-of-day-intervals) variation of
coefficients. For details on the penalization approach used
see [5]. In the following let &f di denote the estimate for
Gl?d,i'

Note that this variance contains all three components of
the link travel time uncertainty. The inter driver variability
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and the varying traffic conditions act as influencing fac-
tors. The uncertainty related to a single trip from a single
driver is obtained by setting N' cli,i =1

With regard to the third component, the variance
w; of the travel time measurement error for link [ is
assumed to be independent of time while the other com-
ponents of the variance of the travel times vary with
the traffic state: in conditions of synchronized traffic,
inter driver variability vanishes. Varying traffic condi-
tions lead to varying levels of the variance of travel time
measurements. Therefore the measurement error vari-
ance can be bounded by the minimum of all observed
variances. Assuming that in all cases the long data set
contains worst case scenarios we will use the min-
imum of all observed variances as the measurement
error variance.

In this respect note that for the Ring dataset the empir-
ical variances Vﬁi of the speed measurements for each
(link, day, time-of-day) observation is contained in the
data set available for this study. For each link these empir-
ical variances are modelled as

l l l
Vai =Mt Vg,
where v[l“ denotes the error terms deviating from the

expectation nf not depending on the day of measure-
ment. Estimating this model using penalization in order to
obtain smooth curves over time-of-the-day

AV Al
& = min;

estimates the measurement error variance for the speed
measurements specific to link /.

In order to transfer this result obtained for the Ring
dataset to all datasets a nonlinear regression is used for
explaining the measurement error variance @, Y for all links
[ using regressors built from the following variables: (i)
typical speed k; according to the map,?* (ii) the empirical
variance f/lz of the aggregated speed measurements over all
days and time-of-day intervals, (iii) the variance lez of the
number of observations and (iv) the variance 127[2 of the pre-
dicted speeds. With these variables the following model is
estimated:

W) —/30+ﬂvvl+/3k +ﬂzvl+ﬂ3wpl+ﬁppl+,3m +v

The corresponding R? equals 0.88 indicating a very good
fit.

In the final step the Delta method is used to transfer
the estimated variances c?)lv for the speed measurements
to the corresponding variance @; of the travel time mea-
surements.

4The Teleatlas map used contains a classification of roads into classes
characterized by typical speed levels.
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Therefore the estimates of the link travel time prediction
error variances are obtained as

X/ ) ~2 Al ~

\% (”d,i) =0y (Md,i’ 1) — . (7)
We note that this estimate uses a number of assumptions
that are not obvious. Therefore a detailed verification of

the assumptions using thorough validation on different
data sets will be presented below.

3.3 Modelling spatial correlations

The pairwise correlation p;; between the model errors zftﬁi ;
of the link travel time for two links i,j is modelled as a
function of the driving distance D;; between the two links
as well as the trip count ratio ;.

The driving distance depends on the sequence of the
two links (as is immediate from two adjacent links, where
one follows the other in the direction of driving while
getting from the downstream link to the upstream link
requires either two U-turns or driving around a block).
The trip count ratio has been defined already taking a
symmetrization into account such that 7;; = 7;;. This is
necessary since we are modelling correlations p;; which
by definition are symmetric such that p;; = p; ;. Therefore
also for the distance a symmetrization is needed:

dl',/' = min(Dl’,j, D,"L').

Alternative specifications (such as using the average) have
been tested but did not result in superior models.

As the dependent variable the empirical correlation of
the normalized model errors is considered accounting for
the observed heteroskedasticities:

pij =f(dij, Tij) + wij = pij + uij. (8)

Note that we model the correlation of the normalized
model errors, whereas for the estimation of the uncer-
tainty of the route travel times the correlations of the
normalized prediction errors would be needed.

Since we do not have access to the latter, we assume here
that the two correlations show similar features such that
the correlations of model errors are indicative of the cor-
relations of the prediction errors. Limitations in our data
set do not allow a detailed investigation.

3.4 Estimation of the route travel time variance
The travel time variance is estimated as
J T oL
(/ R _ o Yta YLtb () ()
V(ud,l.) = Z Z Corr (ud’l., ud,i> \% (”d;) \% (”d;)
a=1 bh=1
)

with \A/(ufi“l.) computed according to (7).
With respect to the estimation of the correlations five
different versions are tested:
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® NC: no correlation, Cor’r\(lftflf‘i, itfif’l.) =0forL, # L. 1t
is expected that this underestimates variability by
neglecting typically positive correlations.

e EM: empirical correlation matrix including all
pairwise estimates. It is to be expected that the
corresponding estimates are noisy in particular for
pairs of links with only a few joint observations.

e ET: using the information in Fig. 9 below empirical
correlations are used for all pairs of links with
distance smaller than 1km and correlations are set to
zero for higher distances.

® MI: the correlations are estimated with an individual
model according to Eq. 8 for each of the four datasets

e MJ: correlations are predicted from a model according
to Eq. 8, estimated based on all datasets jointly

® SD: at the opposite end of the spectrum lies the case
of perfect correlation: Cor?(itfif‘i, itffl.) =1 forall
Ly, Ly which provides an upper bound of uncertainty.

3.5 Validation procedures

All components of the model are validated carefully in
the most appropriate context. The predictions for the
observed (aggregated) link travel times as well as the
corresponding variance estimates 61?{1’ i(ﬁﬁi, o N 111 L.) are eval-
uated on a validation data by splitting the dataset into the
first 701 days as the estimation data and the last 60 days as
the validation data.

Secondly, we achieve a detailed validation of the esti-
mation procedure from comparing the route travel time
predictions as well as the variance estimates f/(us,l.) to
estimation of single trip observations based on the addi-
tional trip data.

4 Results and discussion

4.1 Mean and variance model

Figure 5 presents the mean (over links) root mean square
errors (in sample, over all observed days) of (scaled) model
errors (lilii,l. - lclfu) /Dy for the four datasets over all time
intervals. The strong dependence on the time of the day is
clearly visible with RMSE varying between 0.04 s/m and
0.11 s/m.

Second, the models for the variances as given in (7)
are estimated and specified. The results can be seen
in Fig. 6 that provides the average of estimated stan-
dard deviation 6l,d,i(r‘l£1,i'Nél,i) /Dy over days and links in
the four datasets. In order to put the scale into per-
spective note that 50 km/h correspond to 0.072 seconds
per meter. It can be seen that for the urban highway
the estimated uncertainty is high in the two rush hour
periods while it is comparatively low during the day.
For the highway also an increase of uncertainty during
night-time is visible due to a drop in the number of
observations.
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Fig. 5 Root mean square errors of local travel time per meter (in s/m)

over time-of-day-intervals on the estimation sample. H (blue), WBH
(black, large dots), R (red, dashed), SOT (green, dash-dotted)

Figure 7 demonstrates that the model for the variance
is appropriate for all datasets. Plot 7(a) provides the
boxplot of percentile values (computed over days and
time of the days intervals) for normalized model errors
Ijtii,i /6l-d:i(ﬁfi,i’Nzli,i) for all links on the four test sites for
the estimation data (left columns) and the validation data
(right columns). In all cases a skew distribution is visible.
Except for the H data, estimation and validation data are
in reasonable agreement with more variability over links
on the shorter validation data as expected. For H a larger
difference occurs due to a few outlying observations being
present in the validation data.

Plot (b) of Fig. 7 provides the (2.5%, 50%, 97.5%) per-
centiles (computed over days and links) grouped into
time-of-day-intervals (validation data is plotted in bold,
estimation data in thin lines; the results on the valida-
tion data set being almost identical to the ones on the

014
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0.04 : - - ’
00:00 06:00 12:00 18:00 00:00
Fig. 6 Estimated standard deviations [s/m] of local link travel times
averaged over links. H (blue), WBH (black, large dots), R (red, dashed),
SOT (green, dash-dotted)
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Fig. 7 Percentiles (2.5%, 50%, 97.5%) for normalized model errors: a range over links: left column estimation data, right column validation data.
b range over time-of-day-intervals: thin lines: estimation data, thick lines: validation data. H (blue), WBH (black, dotted), R (red, dashed), SOT (green,
dash-dotted)

estimation data which are hence almost invisible). Only
the H data shows deviations over time-of-day-intervals for
the morning and the evening peak in the validation data
set. The three percentiles are located at approximately -
1 (2.5%), 0 (50%) and 2.5 (97.5%). The location of the
given percentiles of the normalized residuals is very stable
across different datasets, links and time-of-day-intervals.
This indicates that the distribution of the normalized
model errors is identical in all cases such that the whole
distribution can be characterized by the normalized dis-
tribution times the scaling using the estimated standard
deviation.

Note, however, that the prediction errors equal model
errors minus measurement errors. Since measurement
errors cannot be measured directly, it is unclear whether
prediction errors also equal standard deviation times a
random variable with distribution not depending on the
factors influencing the standard deviation. This is left for
future research.

4.2 Spatial correlation models
In this section the spatial correlation of the normalized
model errors

- oI a0 y
Uy; =Uy;:/014i(Tai Ny ;)

is investigated. Empirical correlations for all link pairs for
each of the 95 time-of-day-intervals are calculated on the
estimation data set. In this way a time series of 95 obser-
vations of the correlation matrices is obtained which is
subjected to a Giraitis, Kokoszka, Leipus and Teyssiere
test [4] for time constancy. In the majority of the cases the
test does not find evidence (at significance level « = 0.01)
for variation over time: for the H data set evidence is found
only in 15%, 51% for R, 36% for SOT and 43% for WBH.
Thus for the inner city settings there is some evidence of
changes in correlation structure for a sizeable fraction of

link pairs. Changing temporal aggregation to hourly val-
ues reduces the rejection rates to 4% (H), 25% (WBH), 20%
(R) and 19% (SOT). Going to aggregation for two hours,
however, eliminates all rejections. Based on these results,
in the following we will use the assumption of constant
correlation over time-of-day-intervals.

It might be suspected that there are a few factors driving
the deviation from normal conditions such as an unex-
pectedly high level of congestion uniformly on the whole
urban region (corresponding for example to weather inci-
dents such as snowfall, heavy rain etc.). The data in all four
regions do not support this hypothesis. In all four regions
approximately 60% of the factors are needed to reach a
cumulative explanation of 90% of the variance in a factor
model.

Spatial correlations are low with an average of 0.10 to
0.05 (at a standard deviation of 0.12 to 0.18). For high val-
ues of trip count ratio 7;;, however, substantial correlation
exists in particular for the urban highway and the arterial
in Hietzing. For 7;; > 0.8 we obtain mean values of 0.41
(H, standard deviation: 0.29), 0.35 (WBH, std: 0.35), 0.61
(R, std: 0.26) and 0.56 (SOT, std: 0.29). This demonstrates
that the 7;; values influence the correlation.

Figure 8 provides four 3D scatter plots showing the
dependence structure of the correlation on the 7;; val-
ues and the driving distances for the four datasets. In all
cases almost only positive correlations are observed. The
minimum value of all correlations over all four datasets
amounts to -0.04. Most of the correlations are small with
some cases reaching almost perfect correlation values
equal to 1.

The H dataset shows the expected behaviour with high
correlations occurring exclusively for links with small dis-
tances and high 7;; values. Note that this dataset shows
mainly two arterials in and out of the city with few alter-
native routes. A similar behaviour can be seen for the
urban highway dataset SOT where, however, very few
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Fig. 8 3D-scatter plots of t;;, distance in meters and correlation. 3D impression might be enhanced by comparing the fitted function in Fig. 10.a H,

(d)sot

pairs of links with larger distance and high 7;; values
are contained. The same behaviour also occurs in the R
dataset.

The urban WBH dataset shows distinctly different
patterns with a cloud of few points corresponding to
small 7;; values and high correlations, the remaining
points possessing very small correlations. Such data
points are occasionally seen also in the H dataset
for small distances. Many instances of such pairs of
links occur on segments of streets in opposite direc-
tion which indicates influences of common disturbances
affecting both directions. On the urban highway SOT
and the arterials in the H data set such scenarios do
not occur. Interestingly this also does not occur in the
R dataset.

We fit feedforward neural networks with the logistic
function as the activation function with two hidden layers
with two nodes each and additionally a constant as input
variable to the data (compare (8))

pij =f(dij, Tij; 0) + u;j

for all pairs i, j of links. A separate model is fitted for each
data set. As for all but the H data set only data for distances
less than 2km are contained, the property that correlations
tend to zero for increasing distance is explicitly imposed
in these data sets by data augmentation methods.

The results can be seen in Fig. 9. As expected, high
correlations are obtained only for small distances and high
values of t. For 7 of 0.8 correlations already are smaller
than 0.2 in all four datasets except for extremely small
distances. Also for distances of 0.5km correlations are
smaller than 0.4.

Again the WBH dataset is special: The pseudo-R? value
for H (0.93), R (0.92) and SOT (0.91) are quite high while
for WBH we achieve only R? = 0.31.

For the comparisons in the next section a joint model
for data from all four datasets is computed and presented
in Fig. 10. The R? values for the four datasets decrease
slightly to 0.91 (H), 0.88 (R), 0.89 (SOT) and 0.21 (WBH).

4.3 Comparison to single trips

The previous discussion led to the development of a num-
ber of models for the variance of travel time prediction
errors which are validated in this section using trip data of
single taxis obtained out of sample after the modeling took
place. Here nine days (Sunday 1.1.-Wednesday 4.1., Sun-
day 8.1.-Tuesday 10.1., Wednesday 1.2. and Tuesday 24.7)
in 2012 of trip data are used. These days contain weekdays
and weekends, holiday periods (1.1.-4.1., 24.7.) and school
periods.

On these days for a total of 8 heavily used routes in
the four data sets single trip start and end points are esti-
mated. Details on the routes are given in Table 2 of [1], the
location of the routes is presented in Fig. 7 in [1].
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The thus measured travel times are classified into time-
of-day-intervals using the estimated time of entry to the
route. Subsequently the corresponding predicted route
travel time is subtracted in order to obtain deviations
from predictions. One example for each setting is given
in Fig. 11. It is visible that the route travel times are not
estimated unbiased in all cases: For the urban settings the
predictions appear to be slightly larger than the measured

T
T
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Fig. 10 Model for the correlation as a function of distance and t

values jointly for the four datasets

travel times, for the urban highway SOT the contrary is
visible.

The average bias as a percent of mean measured travel
times amounts to 12 and 13% for H, 32 and 23% for
WBH, 10 and 12% for R. For the SOT we underesti-
mate travel time on average by 8 and 19%. This holds
although on the validation sample no bias in the predic-
tions has been detected (see Fig. 7). Note, however, that
the validation period is limited to a few days in January
2012 where the weather conditions might interfere with
predictions.

Corresponding to the various routes the travel time vari-
ance is estimated according to Eq. 9. For each single trip
we calculate the deviation between the measured and the
predicted route travel time and divide by ./ \A/(usli). If
the variance is correctly estimated then the correspond-
ing sample should show unit variance. If the variance
is underestimated then the normalized prediction errors
have empirical variance larger than one; if the variance
is overestimated the normalized prediction errors show
empirical variance smaller than unity. Naturally the route
travel time measurements are also subject to measure-
ment errors.

Table 1 presents standard errors of the normalized pre-
diction errors. It can be seen that assuming zero correla-
tions underestimates the uncertainty in almost all cases.
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Fig. 11 Predicted (for all reference days) and measured route travel times for the first route in each of the four settings..a H, b WBH, ¢ R, d SOT

On the other end of the spectrum assuming total correla-
tion leads to the smallest variances in almost all cases. The
normalizations assuming perfect correlation over all links
in most cases overestimate the variances, in many cases
substantially so. All other four methods lie in between
these two extremes. The differences between EM and ET
are negligible. The individual models and the joint model
(MI and MJ) perform similar.

In more detail one observes that the normalization
works better during daytime and underestimates variabil-
ity at night-time to a higher degree, see Fig. 12: in (a)
the normalized (using model MI) residuals and all routes
are plotted. It can be seen that during daytime (between

Table 1 Standard deviation of normalized travel time prediction

errors
NC EM ET MI MJ SD

H1 133 0.73 0.76 0.67 0.69 0.33
H2 112 0.65 0.67 0.65 0.67 0.32
WBH1 0.96 0.74 0.75 0.59 0.57 0.32
WBH2 119 0.72 0.73 0.64 0.61 0.34
R1 1.22 0.88 0.88 0.75 0.79 0.52
R2 1.19 0.79 0.79 0.73 0.78 0.51
SOT1 1.50 1.08 1.08 1.25 1.19 091
SOT2 1.67 142 142 1.55 149 1.22

6:00 and 18:00) the mass of the residuals approximately
lies in an interval of length 6 (corresponding roughly to a
three sigma confidence interval), while for night-time the
interval is larger. Plot (b) confirms this by providing the
standard deviation in all eight routes only during daytime.
Here the lower bound given by SD is substantially smaller
than 1 for H, WBH and R, while the four methods EM,
ET, MI, MJ all show standard deviations between 0.6
and 1.

Note that Fig. 12a indicates that the normalized predic-
tion errors for all links and all time instants show stable
distributions over time. Figure 13 investigates this in more
detail by providing kernel density estimates of the normal-
ized route travel time prediction errors which have been
centered by subtracting the mean for better comparability.
The normalized distributions are similar for one route in
Hietzing and Westbahnhof, slightly different for the Ring
dataset and completely different for SOT. These plots add
to the evidence that the heteroskedasticity can be adjusted
for by modelling the standard deviation while the shape
of the distribution appears to be less affected. However,
it also shows that this is not necessarily the case as some
distributions deviate.

This also provides some indication that the assumption
of correlations between model errors being similar to cor-
relations between prediction errors is realistic. However,
more research based on more appropriate data sets is
needed.
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Somewhat of an outlier in these comparisons is the
SOT data set. Here as can be seen in Fig. 12d the vari-
ability is overestimated heavily during daytime with all
approaches while it is underestimated close to midnight.
Fig. 11d shows that the observed route travel times do
not contain observations of heavy congestion on the SOT
during typical peak hours. Therefore the failure to match
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Fig. 13 Kernel density estimates of normalized (using method MI)
prediction errors adjusted for the bias for all routes

uncertainty might be an artefact of too few validation
measurements.

5 Conclusion

In this paper, based on a large real world data set, models
for the estimation of route travel times and the cor-
responding associated uncertainty have been obtained.
Application of the models demonstrates that predictions
of link travel times show considerable heteroskedasticity
that needs to be taken into account for accurate esti-
mation of route travel time uncertainties. We find that
heteroskedasticity is related to the number of vehicles
observed on each link in each time-of-day-interval but
also to the traffic conditions. Explicit models for the
dependency are derived.

Investigating the model errors in link travel time esti-
mates further we found significant correlations between
residuals on adjacent links that additionally have been
shown to depend on the joint usage of roads. In this
respect the trip count ratio is used as an indicator of
joint usage and shown to have an impact on the spatial
correlation.

Based on models for the correlation of link travel times
as a function of the distance and the trip count ratio, for-
mulas for the route travel time prediction error variance
are suggested. Using directly measured route travel times
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we find that including the correlation into the calculation
of the route travel time uncertainty appears to result in
partially superior results compared to simple assumptions
of zero or perfect correlation. However, we also found that
explicit modelling of the correlation only leads to minor
performance enhancements compared to simple models
using sample correlations for nearby links and setting the
correlation to zero for distances larger than 1km.

Concluding this leads to the suggestion to quantify route
travel time uncertainty based on empirical spatial corre-
lation estimates which can be confined to adjacent links
and hence do not face the same data problems that empir-
ical estimates in the whole network face. Using empirical
correlation has the advantage of not requiring any other
information (such as trip count ratios, location of traffic
lights and so forth). Moreover this might also allevi-
ate the restriction to correlations of model errors which
needed to be imposed in this paper due to data availabil-
ity. Alternatively prediction error correlations for adjacent
links could be measured directly based on high frequent
taxi FCD. The analysis in this paper justifies the usage
of this simple method over more complex model based
approaches.

Our model uses a simple scaling approach by modelling
the model error being distributed according to a unique
distribution scaled by a standard deviation depending on
the current traffic conditions. This assumption has been
verified empirically in the paper for the model errors. For
the prediction errors a partial verification is contained
in Fig. 13. However, this figure also contains substantial
deviations that need to be investigated in more depth.

Summing up a model for the estimation of route travel
time variability can be obtained based on the material in
this paper which is also operational for a large street net-
work without relying on excessive amounts of other data
than the floating taxi measurements.

Acknowledgments

Part of the work has been done while the first author was with the AIT Austrian
Institute of Technology GmbH.

We gratefully thank Taxi 31300 (taxi31300.at) and Taxi 40100 (taxi40100.at) for
providing the taxi data used in this study and the AIT Austrian Institute of
Technology (in particular Hannes Koller has been very helpful with the details)
for processing the raw data and making the data available. We acknowledge
support for the Article Processing Charge by the Deutsche
Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld
University.

Authors’ contributions

DB: data analysis modelling, writing of the paper; supervising the work of MT.
MT: data preparation, preliminary analysis, modelling, drafting results section.
WS: structuring, writing and proof reading of the paper; supervising the work
of MT. All authors read and approved the final manuscript.

Funding
The work did not receive any outside funding.

Availability of data and materials
The data set is proprietary.

Competing interests
The authors declare that they have no competing interests.

Page 15 of 15

Author details

Bielefeld University, Universitatsstrasse 25, 33619 Bielefeld, Germany. 2AIT
Austrian Institute of Technology GmbH, Giefinggasse 2, A-1220 Wien, Austria.
3TU Wien, Wiedner Hauptstr. 8/105-2, A-1040 Wien, Austria.

Received: 27 March 2019 Accepted: 6 September 2019
Published online: 13 November 2019

References

1. Bauer, D, &Tulic, M. (2018). Travel time predictions: should one model
speeds or travel times? European Transport Research Review, 10(2), 46.

2. Bovy, P.H, &Thijs, R. (2000). Estimators of travel time for road networks: New
developments, evaluation results, and applications. Netherlands: Delft
University Press.

3. Carrion, C, & Levinson, D. (2012). Value of travel time reliability: A review
of current evidence. Transportation Research Part A: Policy and Practice,
46(4), 720-741. https://doi.org/10.1016/j.tra.2012.01.003.

4. Giraitis, L., Kokoszka, P., Leipus, R, Teyssiere, G. (2003). Rescaled variance
and related tests for long memory in volatility and levels. Journal of
Econometrics, 112(2), 265-294. https://doi.org/10.1016/50304-
4076(02)00197-5.

5. Heinze, C, Leodolter, M., Koller, H., Bauer, D. (2016). Transferring urban
traveling speed model fits across cities. European Transport Research
Review, 8(3), 19. https://doi.org/10.1007/512544-016-0206-8.

6. delJong, G, &Bliemer, M. (2015). On including travel time reliability of
road traffic in appraisal. Transportation Research Part A: Policy and Practice,
73,80-95.

7. Khosravi, A, Mazloumi, E,, Nahavandi, S, Creighton, D., van Lint, JW.C.
(2011). Prediction intervals to account for uncertainties in travel time
prediction. IEEE Transactions on Intelligent Transportation Systems, 12(2),
537-547. https://doi.org/10.1109/TITS.2011.2106209.

8. Lam, T, &Small, K. (2001). The value of time and reliability: measurement
from a value pricing experiment. Transportation Research Part E: Logistics
and Transportation Review, 37,231-251.

9. Li,R, Chai, H, Tang, J. (2013). Empirical study of travel time estimation and
reliability. Mathematical Problems in Engineering, 2013, 1-9. https://doi.
org/10.1155/2013/504579.

10. Lint, J.V, Zuylen, HV, Tu, H. (2008). Travel time unreliability on freeways:
Why measures based on variance tell only half the story. Research Part A:
Policy and Practice, 42(1), 258-277.

11. O'Sullivan, A, Pereira, F.C.,, Zhao, J,, Koutsopoulos, H.N. (2016). Uncertainty
in bus arrival time predictions: Treating heteroscedasticity with a
metamodel approach. IEEE Transactions on Intelligent Transportation
Systems, 17(11), 3286-3296. https://doi.org/10.1109/TITS.2016.2547184.

12. Pattanamekar, P., Park, D., Rilett, L, Lee, J. (2003). Dynamic and stochastic
shortest path in transportation networks with two components of travel
time uncertainty. Transportation Research C, 11(5), 331-354.

13.  Rahmani, M., Jenelius, E., Koutsopoulos, H.N. (2013). Route travel time
estimation using low-frequency floating car data, In 16th International IEEE
Conference on Intelligent Transportation Systems (ITSC 2013). https://doi.
org/10.1109/ITSC.2013.6728569 (pp. 2292-2297).

14. Taylor, M. (2013). Travel through time: the story of research on travel time
reliability. Transportmetrica B: Transport Dynamics, 1(3), 174-194. https://
doi.org/10.1080/21680566.2013.859107.

15. Tulic, M., Bauer, D., Scherrer, W. (2014). Link and Route Travel Time
Prediction Including the Corresponding Reliability in an Urban Network
Based on Taxi Floating Car Data. Transportation Research Record: Journal of
the Transportation Research Board, 2442, 140-149.

16. Vlahogianni, El, Karlaftis, M.G, Golias, J.C (2014). Short-term traffic
forecasting: Where we are and where we're going. Transportation
Research Part C: Emerging Technologies, 43(May 2016), 3-19. https://doi.
org/10.1016/j.trc.2014.01.005.

17. Zheng, F. (2011). Modelling urban travel times. PhD thesis, Delft University.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


https://doi.org/10.1016/j.tra.2012.01.003
https://doi.org/10.1016/S0304-4076(02)00197-5
https://doi.org/10.1016/S0304-4076(02)00197-5
https://doi.org/10.1007/s12544-016-0206-8
https://doi.org/10.1109/TITS.2011.2106209
https://doi.org/10.1155/2013/504579
https://doi.org/10.1155/2013/504579
https://doi.org/10.1109/TITS.2016.2547184
https://doi.org/10.1109/ITSC.2013.6728569
https://doi.org/10.1109/ITSC.2013.6728569
https://doi.org/10.1080/21680566.2013.859107
https://doi.org/10.1080/21680566.2013.859107
https://doi.org/10.1016/j.trc.2014.01.005
https://doi.org/10.1016/j.trc.2014.01.005

	Abstract
	Keywords

	Introduction
	Data set
	Floating taxi data
	Link travel time data sets
	Link distance data
	Trip count ratios

	Methods for uncertainty modelling
	Model for the expected link travel time
	Model for the variance of link travel times
	Modelling spatial correlations
	Estimation of the route travel time variance
	Validation procedures

	Results and discussion
	Mean and variance model
	Spatial correlation models
	Comparison to single trips

	Conclusion
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

