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SUMMARY

In photosynthetic organisms many processes are light dependent and sensing of light requires light-sensi-

tive proteins. The supposed eyespot photoreceptor protein Babo1 (formerly Vop1) has previously been clas-

sified as an opsin due to the capacity for binding retinal. Here, we analyze Babo1 and provide evidence that

it is no opsin. Due to the localization at the basal bodies, the former Vop1 and Cop1/2 proteins were

renamed V.c. Babo1 and C.r. Babo1. We reveal a large family of more than 60 Babo1-related proteins from a

wide range of species. The detailed subcellular localization of fluorescence-tagged Babo1 shows that it accu-

mulates at the basal apparatus. More precisely, it is located predominantly at the basal bodies and to a les-

ser extent at the four strands of rootlet microtubules. We trace Babo1 during basal body separation and cell

division. Dynamic structural rearrangements of Babo1 particularly occur right before the first cell division. In

four-celled embryos Babo1 was exclusively found at the oldest basal bodies of the embryo and on the corre-

sponding d-roots. The unequal distribution of Babo1 in four-celled embryos could be an integral part of a

geometrical system in early embryogenesis, which establishes the anterior–posterior polarity and influences

the spatial arrangement of all embryonic structures and characteristics. Due to its retinal-binding capacity,

Babo1 could also be responsible for the unequal distribution of retinoids, knowing that such concentration

gradients of retinoids can be essential for the correct patterning during embryogenesis of more complex

organisms. Thus, our findings push the Babo1 research in another direction.

Keywords: basal bodies, basal apparatus, Volvoxrhodopsin, Chlamyrhodopsin, Vop1, Cop1/2, tubulin, Vol-

vox carteri, Chlamydomonas reinhardtii, photoreceptor.

INTRODUCTION

The multicellular, spherical green microalga Volvox carteri

(Volvox) serves as a model for the investigation of devel-

opmental processes including cell division, morphogene-

sis, and cellular differentiation (Kirk, 1998; Hallmann, 2006;

Herron et al., 2009; Matt and Umen, 2016). A close unicellu-

lar relative of Volvox, Chlamydomonas reinhardtii, has lar-

gely been used for studying photosynthesis, phototaxis,

and light perception (Harris, 2001; Manuell and Mayfield,

2006; Harris et al., 2009; Sasso et al., 2018). However, if

phototaxis and light perception of multicellular organisms

with differentiated cells is under review, Volvox also is a

well suited model organism (Drescher et al., 2010; Ueki

et al., 2010; Goldstein, 2015).

Volvox shows a complete germ-soma division of labor

between approximately 16 asexual reproductive cells (go-

nidia) and approximately 2000 somatic cells. The small

somatic cells are arranged as a monolayer at the surface of

a transparent sphere of extracellular matrix (ECM),

whereas the large reproductive cells are embedded in the

ECM just beneath the somatic cells. The mortal somatic

cells are equipped with two flagella and an eyespot appa-

ratus for light perception. These cells are thus responsible

for light-regulated movement of the spheroid, whereas the

potentially immortal reproductive cells represent the germ-

line.

In Volvox many cellular processes are light dependent,

including photosynthesis, phototaxis, sexual reproduction,

circadian clock, and developmental processes such as initi-

ation of cell division, cellular differentiation, and cell cycle

control (Starr, 1980; Kirk and Kirk, 1985; Kirk, 1998; Kianian-

momeni and Hallmann, 2014). To explore the molecular

basis of light perception, 13 putative photoreceptor genes

have been identified so far in the Volvox genome
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(Kianianmomeni, 2015). Most of these genes show a cell-

type specific expression in somatic cells that could imply a

function in phototaxis and light-dependent orientation.

Only one of the putative photoreceptor genes shows a cell-

type specific expression in reproductive cells and it is even

highly overexpressed in this cell-type (Ebnet et al., 1999;

Kianianmomeni, 2015; Klein et al., 2017). This gene has

previously been called vop1 (Ebnet et al., 1999; Kianianmo-

meni, 2015; Klein et al., 2017) in Volvox and its homolog in

the related algae Chlamydomonas was called Chlamyrho-

dopsin, cop or cop1/2 (Deininger et al., 1995; Fuhrmann

et al., 1999; Fuhrmann et al., 2001; Greiner et al., 2017).

However, we now felt obliged to rename vop1 and cop1/2

as babo1 because, as described below, the corresponding

protein is no opsin-based photoreceptor at the eyespot but

a basal body protein. From this point forward, therefore,

we use only the new name ‘babo1’.

The babo1 gene of V. carteri and the corresponding

Babo1 amino acid sequence (formerly Vop1) (Ebnet et al.,

1999) have been identified through the amino acid

sequence similarity between V.c. Babo1 and the earlier

known Chlamydomonas reinhardtii Babo1 (formerly Cop1/

2, Cre01.g002500; not to be confused with the E3 ubiquitin-

protein ligase Cop1, Cre02.g085050) (Tilbrook et al., 2016).

Even if three splice variants have previously been pre-

dicted for C.r. babo1 (formerly cop1/2), only one of these

variants shows reasonable expression (Fuhrmann et al.,

2003) and this is also the only splice variant that is indi-

cated in the current version of the C. reinhardtii genome

(v5.5; gene ID Gene ID: Cre01.g002500). Therefore, we here

refer to the latter variant, which corresponds to GenBank

entry AF295371. The Babo1 amino acid sequences of

C. reinhardtii and V. carteri share 71% sequence identity

and 83% similarity. Babo1 (Cop1/2) protein of C. reinhardtii

was initially purified from eyespot membrane preparations

based on the binding of [3H]retinal (Deininger et al., 1995).

Because only a single band appeared after gel elec-

trophoresis of [3H]retinal-labeled cell extracts and subse-

quent fluorography, Babo1 (Cop1/2) has been considered

to be the first and only retinal-binding protein of C. rein-

hardtii (Kr€oger and Hegemann, 1994; Deininger et al.,

1995). Based on the fact that the polyene chromophore

retinal is an integral component of rhodopsins and due to

the much earlier result that the photoreceptor for photo-

taxis must be a rhodopsin (Foster et al., 1984), C.r. Babo1

was suggested to be the rhodopsin that triggers the organ-

ism’s phototactic behavior (Kr€oger and Hegemann, 1994;

Deininger et al., 1995). However, later RNAi experiments

showed that C. reinhardtii Babo1 (Cop1/2) is definitely not

the photoreceptor that is required for phototaxis (Fuhr-

mann et al., 2001) and soon afterwards two retinal-binding

channelrhodopsins were identified in C. reinhardtii (Nagel

et al., 2002; Sineshchekov et al., 2002; Nagel et al., 2003;

Suzuki et al., 2003), which actually mediate photomove-

ment responses (Sineshchekov et al., 2002).

Once it was clear that Babo1 cannot be the photorecep-

tor for phototaxis, the intriguing question arose what was

the real function of this protein. It also requires clarification

that Babo1 proteins of C. reinhardtii and V. carteri were

postulated to have, at most, four hydrophobic membrane-

spanning segments (Deininger et al., 1995; Ebnet et al.,

1999), even though all known rhodopsins have at least

seven transmembrane helices (Gao et al., 2015). Our atten-

tion was also attracted by the fact that we were not able to

detect any convincing sequence similarity between Babo1

proteins and experimentally confirmed photoreceptor

domains. Another peculiarity of Babo1 is its cell-type speci-

fic expression: babo1 mRNA was shown to be approxi-

mately 10-fold overexpressed in reproductive cells when

compared with somatic cells (Kianianmomeni and Hall-

mann, 2015) and a similar cell-type specific distribution

has been shown for the Babo1 protein (Ebnet et al., 1999).

This distribution is remarkable because both a whole tran-

scriptome RNA-seq analysis of separated cell types (Klein

et al., 2017) and a cell-type specific expression analysis of

selected genes (Kianianmomeni and Hallmann, 2015)

showed that the known photoreceptor genes of Volvox are

predominantly expressed in somatic cells (or in rare cases

show no cell-type-specific expression), whereas babo1 is

the only (putative) photoreceptor gene that is overex-

pressed in reproductive cells.

In addition to these conspicuous features, the previous

information about the localization of Babo1 within the cell

is ambiguous. Initially, C.r. Babo1 was purified from eye-

spot membrane preparations (Deininger et al., 1995) and

assigned with an eyespot localization also due to

immunolocalization experiments (Deininger et al., 1995),

GFP-tagging (Fuhrmann et al., 1999) and due to its identifi-

cation within the eyespot proteome (Schmidt et al., 2006;

Wagner et al., 2008). However, V.c. babo1 shows only weak

expression in the eyespot-containing somatic cells of Vol-

vox, whereas the reproductive cells, which actually have

no eyespot at all, show strong expression of babo1 (Kiani-

anmomeni and Hallmann, 2015). The situation becomes

even more confusing by the fact that C.r. Babo1 was also

identified in thylakoid-enriched fractions (Allmer et al.,

2006) and was suggested to be part of the Ycf4-photosys-

tem I assembly complex (Ozawa et al., 2009). It also was

proposed that Babo1 is a sensory light receptor, which

influences biosynthesis of chloroplast-related proteins and

photosynthetic activity in a light-dependent manner (Kiani-

anmomeni and Hallmann, 2014).

So far, no rigorous in vivo localization study of Babo1

has been performed and the previously suggested localiza-

tions of Babo1 mainly resulted from indirect observations

that even contradicted each other.
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In this study, we analyze the sequence of Babo1 (Vop1,

Cop1/2) and provide evidence that Babo1 is no transmem-

brane protein and, thus, cannot be an opsin. We also

reveal a large family of more than 60 Babo1-related pro-

teins from a wide range of green algae species (Chloro-

phyta) and we perform a molecular phylogenetic analysis.

Sequence alignments not only allow for a reassessment of

the conservation of critical amino acid residues, but also

for clarification of the previously supposed similarity to

regular rhodopsins and retinal-binding pockets. Moreover,

the detailed subcellular localization of fluorescence-tagged

Babo1 protein is analyzed in vivo using confocal laser-

scanning microscopy (CLSM). We show that Babo1 is nei-

ther localized in the chloroplast nor in the eyespot of

V. carteri. Instead, Babo1 clearly accumulates at the basal

apparatus of both somatic and reproductive cells. The for-

mer names Vop1 (Volvoxopsin, Volvoxrhodopsin1) and

Cop1/2 (Chlamyopsin1/2, Chlamyrhodopsin1/2) therefore

turned out to be unsuitable and the proteins, therefore,

were renamed V.c. Babo1 and C.r. Babo1 due to their local-

ization at the basal bodies. The localization at the basal

apparatus also verifies that Babo1 is no membrane protein

and that it is not even associated with membrane struc-

tures. Eventually, we were able to trace fluorescence-

tagged Babo1 protein together with the basal apparatus

during basal body separation and cell division. Overall, we

can clarify previous contradictions regarding the structure

and localization Babo1 and we provide implications for its

function.

RESULTS

Gene and mRNA sequences of babo1

The mRNA and genomic sequences of babo1 of V. carteri

(formerly vop1) were investigated for the first time in 1999

by the group of Peter Hegemann (Ebnet et al., 1999) (Gen-

Bank entries Z69301 and Y11204). However, our babo1

sequencing results slightly deviate from these previous

results, but they coincide with the corresponding

sequences of the V. carteri genome project (v.2.1,

Vocar.0024s0227) (Prochnik et al., 2010) in Phytozome 12

(Goodstein et al., 2012). The differences are highlighted in

Figure S1. The babo1 gene is located on scaffold 24, the

start codon is at nucleotide position 1733480 on the

reverse strand, and its genomic size is approximately

3.1 kb including UTRs and promoter region. The predicted

total length of the babo1 mRNA is 1689 bp, which is

slightly larger than stated earlier (1566 bp, accession num-

ber Z69301, (Ebnet et al., 1999)). An alignment of RNA

sequencing data (Klein et al., 2017) and EST data (Prochnik

et al., 2010) to the babo1 gene revealed that the 50UTR of

babo1 has a length of 48 bp, which was predicted correctly

in the V. carteri genome data of Phytozome 12, while the

50UTR is shorter in Ebnet et al., 1999. The 30UTR, however,

is approximately 100 bp shorter than predicted by the

V. carteri genome annotation, but corresponds instead to

the 30UTR presented by Ebnet et al. (1999). The compar-

ison of mRNA and genomic sequences shows that the

babo1 gene contains seven introns with sizes from 69 to

375 bp. The number of seven introns corresponds to the

average number of introns per gene in the V. carteri gen-

ome (v.2.1), which is precisely 7.05 (Prochnik et al.,

2010). However, the sizes of the babo1 introns are all

below the average intron length of all introns in all

nuclear genes, which is 399.5 bp (Hanschen et al., 2016).

The below-average intron sizes might be relevant,

because genes with basic cellular activity (housekeeping

genes) frequently have shorter introns (Eisenberg and

Levanon, 2003; Carmel and Koonin, 2009; Eisenberg and

Levanon, 2013).

Sequence analysis of Babo1

The 735-bp coding sequence of the babo1 mRNA encodes

a polypeptide of 244 amino acids with an expected molec-

ular mass of 26.4 kDa. Babo1 thus belongs to the smaller

proteins of V. carteri. The comparison of the amino acid

composition of Babo1 with the amino acid composition of

the V. carteri (v.2.1) proteome (Prochnik et al., 2010), which

was deduced from all V. carteri genes in Phytozome 12

(Goodstein et al., 2012), revealed that the basic amino acid

lysine is found much more frequently in Babo1 than in the

average of all V. carteri proteins (Figure S2). The lysine

content of Babo1 is 17.2%, which corresponds to every

sixth amino acid of Babo1 and 42 lysine residues in total,

whereas the average lysine content of all proteins is just

3.5% (Figures 1 and S2). In addition to lysine, there are two

other amino acids with side chains that can be positively

charged in aqueous solution (at neutral pH): arginine and

histidine. However, the percentage share of the two latter

amino acids appears to be below average in Babo1, rather

than increased (Figure 1).

Previously, Babo1 (formerly Vop1) was identified as a

30 kDa protein in membrane fractions of V. carteri and,

mainly based on sequence similarities, its presence in

membrane fractions and due to results with antisense

transformants, it was believed to be a membrane receptor

of an algal opsin family (Ebnet et al., 1999). Due to incon-

sistencies that arose from our preliminary CLSM experi-

ments that localized Babo1 away from any membrane

structures and the fact that opsins or other membrane

receptors are necessarily embedded in a membrane, we

reinvestigated the Babo1 amino acid sequence with regard

to transmembrane spanning segments. We used bioinfor-

matics tools that searched for similarities between Babo1

and verified transmembrane proteins, utilized algorithms

that were trained on transmembrane protein datasets, and

also analyzed Babo1 only based on its sequence of amino

acid residues. The battery of applied programs included
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TMSEG (Bernhofer et al., 2016), PolyPhobius (K€all et al.,

2005; K€all et al., 2007), Phobius (K€all et al., 2004; K€all et al.,

2007), MEMSAT3 (Jones et al., 1994), MEMSAT-SVM

(Nugent and Jones, 2009), PHDhtm (Rost et al., 1995; Com-

bet et al., 2000), TMHMM (Krogh et al., 2001), TMpred (Hof-

mann and Stoffel, 1993), DAS-TMfilter (Cserzo et al., 2004),

MINNOU (Cao et al., 2006), TBBpred (Natt et al., 2004),

PRED-TMR2 (Pasquier and Hamodrakas, 1999), and the

Kyte and Doolittle hydrophobicity plot (Kyte and Doolittle,

1982). However, no transmembrane spanning segments

have been identified and all of these programs predicted

that Babo1 is not a transmembrane protein. Moreover,

when yellow fluorescent protein (YFP)-tagged Babo1 of

C. reinhardtii (formerly Cop1/2) was expressed in Xenopus

oocytes, YFP fluorescence was exclusively found in the sol-

uble fraction of oocyte extracts but not in the membrane

fraction (Tian et al., 2018). As a consequence of these

results, Babo1 cannot be an opsin, which would necessar-

ily require a transmembrane structure with generally seven

transmembrane helices. Thus, the former name ‘Vop1’,

which stood for Volvoxopsin 1, was no longer justified and

we renamed the protein Babo1.

Identification of a large family of Babo1-related proteins

Babo1 of V. carteri (formerly Vop1) has previously been

identified due to is similarity with Babo1 of C. reinhardtii

(formerly Cop1/2) (Deininger et al., 1995; Ebnet et al.,

1999). These homologous proteins show 71% identity and

83% similarity. The coding sequences of the corresponding

genes show 77% identity and the number and even posi-

tion of the seven introns is conserved between the two

babo1 sequences. Due to this significant evolutionary con-

servation between Volvox and Chlamydomonas, we

searched for further Babo1-related proteins in other spe-

cies using transcriptome data of the 1000 plants project

(1KP) (Matasci et al., 2014) and the database resources of

the National Center for Biotechnology Information (NCBI

Resource Coordinators, 2018). Identified sequences that

were too short, had gaps, had low similarity values, or that

showed any other types of ambiguity were excluded from

further analysis. Despite this strict quality control, we iden-

tified previously unknown Babo1-related proteins in more

than 60 species. All Babo1-related proteins were identified

in green algae or, more precisely, within the core chloro-

phytes (Turmel et al., 2009). The identified Babo1-related

proteins originated from morphologically and ecologically

divers chlorophytes, which included (i) unicellular and mul-

ticellular genera (e.g. Chloromonas in Chlamydomon-

adales and Codium in Ulvophyceae); (ii) microalgae and

macroalgae (e.g. Hafniomonas in Chlamydomonadales

and Acrosiphonia in Ulvophyceae); (iii) freshwater, marine

and saline algae (e.g. Eudorina in Volvocaceae, Halochloro-

coccum in Ulvophyceae and Dunaliella in Chlamydomon-

adales); and (iv) algae having cells with no, two, or even

four flagella (e.g. Chlorella in Chlorellales, Gonium in

Volvocaceae, and Tetraselmis in Chlorodendrophyceae). A

multiple alignment of all Babo1-related proteins used in

this study is shown in Figure S3. The alignment shows that

the greatest degree of conservation among the Babo1-re-

lated proteins is found between amino acid positions 108

to 129 of the alignment in Figure S3. The amino acids Q80,

P83, P91, and P93 of V.c. Babo1 showed the highest degree

of conservation among all Babo1-related proteins. How-

ever, these amino acids are not conserved in vertebrate

opsins and the corresponding part of the sequence previ-

ously was not thought to be particularly significant (Deinin-

ger et al., 1995; Ebnet et al., 1999); instead it was

considered that K228 in the motif AKA227-229 close to the

C-terminus of V. carteri Babo1 is a conserved retinal bind-

ing lysine (Ebnet et al., 1999). Figure S3 clearly shows that

K228 is not conserved and the sequence area immediately

around K228, which previously has been called retinal bind-

ing site or retinal-binding region (Ebnet et al., 1999), is the

area with the lowest degree of similarity among all 64

Babo1-related proteins. Furthermore, for Babo1 of C. rein-

hardtii (formerly Cop1/2), C21 and C115 were suggested to
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Figure 1. Relative abundance of basic amino acids in Babo1, Babo1-related

protein groups, and the proteomes of Volvox carteri and Chlamydomonas

reinhardtii. The relative abundance of basic amino acids was calculated for

V. carteri Babo1, all Babo1-related proteins shown in Figure 2, for sub-

groups within Figure 2, and for proteomes of V. carteri and C. reinhardtii.

The subgroups are as follows: the Babo1-related proteins of the Volvo-

caceae family, the Babo1-related proteins of the Volvox branch and the

Babo1-related proteins of the Chlamydomonadales order. The Babo1-

related proteins are listed in Table S4. Error bars represent the standard

deviation. The relative abundance data for all 20 canonical amino acids

are shown in Figure S2.
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form an intramolecular disulfide bridge (Deininger et al.,

1995). Not only does the alignment show that there are no

conserved cysteines at these positions or elsewhere, but

even half of the Babo1-related proteins have less than two

cysteines in their entire amino acid sequence. Therefore it

is impossible that these proteins form intramolecular disul-

fide bridges.

To reveal evolutionary relationships within the family of

Babo1-related proteins, we performed a molecular phylo-

genetic analysis. The generated unrooted bootstrap con-

sensus tree of Babo1 and 63 Babo1-related proteins is

shown in Figure 2. In this tree, V. carteri Babo1 (Volcar857)

branches within the Volvocaceae family, as expected.

Babo1 of C. reinhardtii branches close to the Volvocaceae

family within the Chlamydomonadales order. Other Babo1-

related proteins build subgroups that are consistent with

the evolutionary relationship of the corresponding organ-

isms. The bootstrap values within quite a few subgroups

show a good support (>70%). However, several of the deep

branches are uncertain due to low bootstrap values. As an

example, previous molecular phylogenetic analyses indi-

cate that the Chlamydomonadales are somewhat more clo-

sely related to the Ulvophyceae than to the Chlorellales

within Trebouxiophyceae (Leliaert et al., 2012) but our

molecular phylogenetic analysis can neither support nor

oppose this assumption.

In consideration of our BLAST search results and the

molecular phylogenetic analysis, there is no evidence of

lateral gene transfer or convergent evolution of Babo1-re-

lated genes. There is also no indication of gene loss in any

of the subgroups of the core chlorophytes even if we

excluded some Babo1-related sequences (and thus spe-

cies) due to our strict quality rules. We identified however

babo1 gene duplicates in the genomes of some analyzed

species (marked in Figure 2). The distribution of species

with babo1 gene duplicates is scattered among the ana-

lyzed core chlorophytes. Moreover, the gene copies within

an affected genome are identical or almost identical to

each other. Both observations suggest recent and indepen-

dent babo1-duplication events.

Amino acid composition of Babo1-related proteins

The noticeably high lysine content of V. carteri Babo1

(17.2%) prompted us to investigate the amino acid compo-

sition of all Babo1-related proteins (Figures 1 and S2). The

lysine content of both the Babo1-related proteins of the

Volvocaceae family and of the whole Volvox branch within

the Chlamydomonadales is approximately as high as in

V. carteri Babo1 (Figures 1 and S2). Similarly, when

looking at the Babo1-related proteins of the entire Chlamy-

domonadales order or even at all investigated Babo1-

related proteins, the average lysine content is not less

than 13%. By contrast, the average lysine content of all

proteins both in the V. carteri proteome and the

C. reinhardtii proteome is less than 4% (Figures 1 and

S2). Although the high lysine content is well conserved

among Babo1-related proteins, the exact amino acid posi-

tion of most of the lysines seems to be less important

because the lysine residues do not stand out from the

multiple alignment (Figure S3).

For a better assessment of the high lysine content of

Babo1-related proteins, we sorted all proteins of both the

V. carteri or C. reinhardtii proteomes by their lysine con-

tent. V. carteri Babo1 ranks 36th and C. reinhardtii Babo1

ranks 65th among more than 14 000 predicted proteins

each. As expected, there are predominantly histones and

ribosomal proteins among the most lysine-rich proteins

(Tables S1 and S2) because positively charged lysines bind

nucleic acids by interacting with the negatively charged

phosphate moiety in their backbone. Apart from the

charge-mediated binding potential, the e-amino groups of

lysine residues allow for post-translational modifications.

In fact, lysine is essentially the most highly post-transla-

tionally modified amino acid out of the 20 naturally

encoded amino acids (Zee and Garcia, 2012).

Production of Volvox transformants expressing

fluorescence-tagged Babo1 and b2-tubulin

With regard to a rigorous in vivo localization of Babo1, Vol-

vox is much more suitable than Chlamydomonas because

the reproductive cells of Volvox exceed the volume of

Chlamydomonas cells by more than 100 times, which sig-

nificantly facilitates the accurate localization. To visualize

the expression of Babo1 in living cells of Volvox, a chi-

meric gene was constructed that allows for expression of a

fusion protein in which the C-terminus of V.c. Babo1 is

fused via a pentaglycine interpeptide bridge (Gly5) to a

YFP (Figure 3a). The chimeric gene is driven by the

endogenous V.c. babo1 promoter region and terminated

by the endogenous V.c. babo1 terminator region (Fig-

ure 3a). This construction allows for a babo1/yfp expres-

sion level that is comparable with the babo1 expression

level under natural conditions. In a similar DNA construct,

babo1/yfp is driven by the constitutive and strong LHCBM1

promoter region (Figure 3b). For in vivo co-localization of

Babo1 and microtubules, another chimeric gene was con-

structed that allows for expression of a fusion protein in

which the N-terminus of b2-tubulin is fused to a cyan fluo-

rescent protein (CFP) (Figure 3c). The chimeric gene is dri-

ven by the endogenous tubB2 promoter region. In a

similar DNA construct, cfp/tubB2 was brought under the

control of the constitutive and strong LHCBM1 promoter

region (Figure 3d).

For stable nuclear transformation of V. carteri strain

TNit-1013, three vectors were used simultaneously: babo1

fused to the yfp reporter gene (Figure 3a), the cfp reporter

gene fused to tubB2 (Figure 3c) and pVcNR15 as a select-

able marker. The obtained transformants were investigated
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for stable genomic integration of the DNA constructs and

expression of the desired proteins at sufficient levels,

which was examined by fluorescence microscope-based

screening. Twenty-nine percent of the transformants

expressed only the nitrate reductase but showed no fluo-

rescence. Fifty-nine percent only showed YFP fluorescence,

which originates from the Babo1–YFP fusion protein. The

remaining 14% of the transformants expressed all three

plasmids to sufficient extent. The transformant strains

were synchronized by a light–dark cycle and the integrity

of cell division and embryogenesis was microscopically

verified.
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Figure 2. Phylogenetic tree of Babo1-related proteins. Sequence relationship between Volvox carteri Babo1 (Volcar857) and 63 Babo1-related proteins from

green algae (Chlorophyta), as listed in Table S4. The unrooted bootstrap consensus tree is based on 10 000 replicates calculated using the neighbor-joining

method (Saitou and Nei, 1987). The bootstrap values of the branch points are indicated. Babo1 of V. carteri (Volcar857) can be found in the Volvocaceae sub-

group, which is part of the Volvox branch (dark green circular arc) of the Chlamydomonadales. In most species, babo1 is a single-copy gene, however, in some

species there are one (●) or two (●●) additional, almost identical gene copies in the genome. Cha., Chaetopeltidales; Chlorod., Chlorodendrophyceae; Cyl.,

Cylindrocapsa-clade of Sphaeropleales (M€uller et al., 2004); Oed., Oedogoniales; Oog., Oogamochlamys-clade in Chlorophyceae (Pr€oschold et al., 2001); Spe.,
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Babo1 is not located at the eyespot

Previously, Babo1 was classified as an opsin and it was

thought to be localized at the eyespot (Deininger et al.,

1995; Ebnet et al., 1999; Fuhrmann et al., 1999). However,

when transformed algae expressing Babo1–YFP (and

TubB2-CFP) were excited with 514 nm light, the corre-

sponding YFP signal appeared at the flagellar bases of

somatic cells (Figure 4a,b,d). Such a signal did not occur in

wild-type control cells (Figure 4g,h,j). In the eyespots of

both transformants and wild-type control cells, only an aut-

ofluorescence signal was detectable (Figure 4b,h), which

was much weaker than the YFP signal at the flagellar bases

and, therefore, it was only visible under overexposure con-

ditions. Excitation at 405 nm stimulated the TubB2–CFP flu-

orescence, which shows the cytoplasmic microtubules at

the flagellar base and the axonemal microtubules of the

flagella of somatic cells (Figure 4c,d). The chlorophyll fluo-

rescence shows the position of the single, large chloroplast

with its meshwork-like structure (Figure 4e,k).

In order to unequivocally distinguish YFP fluorescence

from autofluorescence, lambda scans were performed that

allow the separation of spatially overlapping emission sig-

nals. More precisely, mean fluorescence spectra for

selected subcellular regions of somatic cells were mea-

sured and compared both with each other and with the

YFP spectrum. This procedure allowed for an unambigu-

ous assignment of emission signals to the corresponding

fluorescent molecules. After excitation at 514 nm, the fluo-

rescence emitted from the basal bodies peaked at approxi-

mately 530 nm and reached about 1700 rlu (Figure 5a).

Both the peak position and the shape of the spectrum is

typical for the utilized YFP variant (Kremers et al., 2006). By

contrast, the fluorescence emitted from the eyespot had its

maximum at about 557 nm and it reached only about 235

rlu. Moreover, the eyespot fluorescence spectrum of

Babo1–YFP transformants was identical to the eyespot flu-

orescence spectrum of untransformed wild-type cells (Fig-

ure 5b). A pictorial representation of these data was

generated by spectral imaging, also known as lambda

view. Under this method, a color palette, mimicking the

emission wavelength of the channel, is automatically

assigned to the individual lambda images which are then

displayed in a merge-type display. In lambda view, the

flagellar bases appeared in blue-green color (Figure 5d),

whereas the eyespot fluorescence was clearly character-

ized by longer wavelengths and thus appeared as a yellow-

green color (Figure 5e). Thus, our results clearly demon-

strated that only the basal bodies of transformants emitted

the expected YFP spectrum of Babo1–YFP, whereas eye-

spots exclusively exhibit weak autofluorescence. Because
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basal bodies of wild-type cells showed no autofluores-

cence at all, the total amount of detected basal body fluo-

rescence of transformants can be assigned to Babo1–YFP.

Overexpression of Babo1 negatively affects the viability of

transformants

One of our further objectives was to investigate the effects

of an increased expression of Babo1. For this purpose,

transformation of V. carteri was performed using a plas-

mid that drives the expression of Babo1–YFP with the con-

stitutive and strong LHCBM1 promoter region (Figure 3b)

instead of the endogenous babo1 promoter region used

before (Figure 3a). However, with this modified approach

we were not able to generate any transformants and this

indicated that strong overexpression of Babo1 negatively

affects the viability of transformants. Likewise, we obtained

no transformants when we highly overexpressed the fluo-

rescence-tagged TubB2 under the control of the LHCBM1

promoter region (Figure 3d).

These results are in accordance with previous reports

where overexpression of GFPa2-tubulin in S. pombe was

lethal, whereas moderate expression had no negative

effects (Ding et al., 1998). In the green alga C. reinhardtii,

the attempt to express GFP fusions of 10 different basal

body and flagella proteins was almost without success:

only one construct resulted in viable transformants that

showed successful expression of the desired fusion protein

(Schoppmeier et al., 2005). Therefore, overexpression of

basal body and cytoskeletal components may have a nega-

tive impact on cell division and, thus, also on the viability

and survival rate of transformants.

High-resolution localization of Babo1 at the basal

apparatus

The two distinct cell types of V. carteri significantly differ

in structure and function (Kirk, 1998) (Figure 6d). In trans-

formants expressing Babo1–YFP under the control of the

babo1 promoter region (Figure 3a), Babo1 can be found in

both cell types, the small biflagellated somatic cells and

the large flagella-less reproductive cells (gonidia). Because

we utilized the original, endogenous promoter region, it

reflects the natural expression pattern of Babo1. Figure 6(a,b)

shows young daughter spheroids of transformed algae

expressing Babo1–YFP. When viewed from outside onto

the surface of the spheroid, each somatic cell exhibits two

distinct fluorescent dots at the center of the cells just

below the plasma membrane that correspond to Babo1–
YFP at the two basal bodies (Figure 6a). The basal bodies

of neighboring cells show the same orientation, which is a

fundamental precondition for ensuring that the flagella

beat into the same direction and that the whole spheroid

swims in one specific direction. Even though the reproduc-

tive cells are flagella-less, they still have basal bodies. Con-

sequently, each reproductive cell exhibits two fluorescent

dots, which correspond to the Babo1–YFP at the basal bod-

ies (Figure 6b). The basal bodies appear brighter in the

large reproductive cells than in the small somatic cells

and, therefore, seem to contain more Babo1–YFP protein.

The highest fluorescence intensity is detected in the center

of each basal body, which might indicate, that Babo1 is

located in the lumen of the basal bodies.

Even if most of the Babo1–YFP fluorescence co-localizes

with the basal bodies, a smaller proportion of the
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Figure 4. CLSM images of a Babo1–YFP/TubB2–CFP co-transformant and of the wild-type. (a–f) Side view of a somatic cell of a Volvox carteri co-transformant

expressing both Babo1–YFP and TubB2-CFP. (g–l) Side view of a somatic cell of the untreated V. carteri wild-type. (a, b, d, g, h, j) For YFP localization, excitation

was at 514 nm and detection was at 517–553 nm (green). (c, d, i, j) For CFP localization, excitation was at 405 nm and detection was at 460–500 nm (magenta).

(e, k) For chlorophyll localization, excitation was at 405 nm and detection was at 651–700 nm (blue). (a–e and g–k) In vivo CLSM images. (f, l) In vivo images

detected by transmitted light photomultiplier tube (trans-PMT). (a–l) The positions of the basal bodies (arrow) and the eyespot (asterisk) are indicated. Scale

bars = 5 µm.
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fluorescence can be found in the surrounding area of the

basal bodies. Because reproductive cells are considerably

larger than somatic cells, fine structures are much easier to

observe in reproductive cells. In these larger cells, straight

strands of fluorescent material were visible that lead out-

wards from a center at the basal bodies. The location of

these strands matches the expected position of the four

microtubular rootlets (Figure 6b,f). At this point in develop-

ment, an unambiguous detection of microtubules was not

possible, because the TubB2-CFP signal was too weak.

However, later in development, shortly before embryogen-

esis, a more compact arrangement of microtubules arose

that could be visualized by detection of TubB2–CFP. This
also allowed for disclosure of the microtubule organizing

center (MTOC) with its microtubules emerging close to the

basal bodies (Figure 6c). The MTOC and the basal bodies

are localized just beneath the surface of the mature repro-

ductive cell. A light microscopic image of V. carteri in Fig-

ure 6(d) illustrates the arrangement of cells and a

schematic cross-section of part of a spheroid in Figure 6(e)

indicates the viewing direction for easier orientation. A

schematic representation of the basal apparatus of V. car-

teri is shown in Figure 6(f). Each basal body is attached to

two microtubular rootlets (MTRs): the two-membered d-

root and the four-membered s-root (Moestrup, 1978). Stri-

ated microtubule-associated fibers (SMAFs) overlay the

proximal part of the four microtubular rootlets (Geimer

and Melkonian, 2004). The distribution of SMAFs at the

microtubular rootlets correlates with that of Babo1–YFP.
This becomes even clearer at the stage immediately before

the two basal bodies separate from each other (to be

described later). The strongest signal of Babo1–YFP was
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Figure 5. Fluorescence spectra of basal bodies and eyespots of Babo1–YFP transformants compared with the wild-type. (a) Fluorescence spectra (lambda scans)

of basal bodies and eyespots were recorded in vivo in somatic cells of two independent Babo1–YFP transformants (15-1 and 39-4) and the wild-type. The fluores-

cence intensity was determined simultaneously in 15 different channels during excitation at 514 nm. Mean fluorescence intensities were plotted against the mean

emission wavelength for each channel. Error bars represent the standard deviation (n ≥ 25 cells per sample). Because basal bodies of wild-type cells show no flu-

orescence when excited at 514 nm, both adjustment of the focal plane for the measurement and selection of an adequate region of interest for lambda scanning

is impossible in the wild-type. (b) Enlarged view of the framed section of (a) showing the fluorescence spectra of eyespots. (c) Schematic side view of a somatic

cell showing the positions of the imaged focal planes. (d, e) Spectral imaging: in vivo CLSM scans operated in lambda mode showing a somatic cell of a Babo1–
YFP transformant. The viewing direction is from outside of the Volvox spheroid onto the flagellar end of the somatic cell. The positions of the focal planes are

shown in (c). Regions of interest (ROIs; black squares) within the basal bodies and eyespots were manually selected for measurement of the fluorescence spectra.

The displayed colors are equivalent to the actual fluorescence wavelengths. Scale bars = 2 µm.
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observed at the beginning of the first cell division. Babo1

was exclusively found on the two oldest basal bodies and

on their MTRs.

Small amounts of Babo1 are detectable in ectosomes

above the basal apparatus

Before and during the first cell division, Babo1–YFP was

also observed in a pair of tiny dots just above the strong

signals at the basal apparatus (Figure 7). The localization

of these tiny dots is outside of the plasma membrane

within the extracellular matrix (ECM), which raised the

question of how Babo1–YFP could get there. It is known

that undifferentiated reproductive cells develop short tran-

sient flagellar stubs, which are surrounded by the plasma

membrane and protrude out of the cell body into the ECM

of the gonidial ‘vesicle’ (Figure 7d) (Kirk, 1998). In addition,

it has been shown that the flagella of C. reinhardtii release

small, protein-filled membrane vesicles, called ectosomes,

into the surrounding space and this budding of vesicles

frequently happens at the flagellar tips (Wood et al., 2013;

Wood and Rosenbaum, 2015). The ectosomes contain both

membrane and flagellar proteins and their release appears

to be linked to the flagellar resorption (Long et al., 2016).

Taken together, our results indicate that ectosomes

with some Babo1–YFP protein are released from the flag-

ellar stubs when these stubs are retracted from the

maturing cell. The released ectosomes remain at their ini-

tial position within the ECM throughout the first cell divi-

sion (Figure 7c,f). However, the distance between

ectosomes and the basal bodies increases during cell
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Figure 6. In vivo localization of Babo1–YFP in somatic cells and gonidia of Volvox carteri. (a) Somatic cell layer. Co-localization of Babo1–YFP (green) and

chlorophyll (blue). The two punctiform Babo1–YFP signals within each cell are located immediately beneath the plasma membrane at the position of the two

basal bodies. Note the regular arrangement of the basal body pairs in all cells. (b) Immature gonidium expressing Babo1–YFP (green). The two, bright circular,

filled areas with the strongest fluorescence in the center indicate Babo1–YFP localization at the basal bodies. Babo1–YFP also localizes to the position of the stri-

ated microtubule-associated fibers (SMAFs), which overlay the microtubular rootlets (arrows). (c) Mature gonidium (about 24 h older than the gonidium in (b)).

Co-localization of Babo1–YFP (green), TubB2–CFP (magenta) and chlorophyll (blue). At this developmental stage, microtubule fibers originating from the micro-

tubule-organizing center (MTOC) at the basal body root complex are clearly visible. (a–c) CLSM images. The viewing direction is from outside onto the surface

of the spheroid. Scale bars = 5 µm. (d) Light microscopic image of V. carteri illustrating the arrangement of cells. Scale bar = 100 µm. (e) Schematic cross-sec-

tion of part of a V. carteri spheroid. A gray arrow indicates the viewing direction in (a–c) and (f). BB, basal body; ch, chloroplast; N, nucleus; ECM, extracellular

matrix. (f) Schematic representation of the basal apparatus (Kirk, 1998; Geimer and Melkonian, 2004; Geimer and Melkonian, 2005). Each basal body (BB) con-

sists of nine triplet microtubules that constitute the walls of a hollow cylinder. Basal bodies are connected both with a two-membered MTR (d-root, d for dexter)

and a four-membered MTR (s-root, s for sinister) via a set of different fibers (light blue). Note that the proximal end of one s-root microtubule is located below

the other three. SMAFs (yellow green) are overlaying only the proximal part of the MTRs, which are actually much longer than shown here.
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division because once the cleavage furrow appears and

then deepens, the basal bodies move together with the

midcell constriction of the plasma membrane. The diame-

ter of the ectosomes is roughly about 50–200 nm and

this number is in accordance with earlier reports in

C. reinhardtii (Wood et al., 2013).

Babo1–YFP uncovers variations of basal apparatus

morphology in maturing reproductive cells

Because Babo1–YFP stains significant parts of the basal

apparatus, it allows the study of the morphology of the

basal apparatus in more detail. As Volvox cultures can be

maintained in synchronous growth and development

under an 8 h dark/16 h light regime, synchronized individu-

als can be easily compared with each other. The structure

of the basal apparatus was found to be very variable in

reproductive cells at the stage shortly before onset of the

first cell division (Figure 8). In some reproductive cells, a

prominent central axis was visible (see arrows in Figure 8a).

The number of fluorescent strands in one optical section of

the CLSM varied greatly from three to six. In the course of

the transition from interphase to mitosis, the microtubular

cytoskeleton undergoes major structural rearrangements

and the probasal bodies elongate into mature basal bodies

(Gould, 1975). The observed variations in basal apparatus

morphology are presumably linked to these processes.
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Figure 7. Babo1–YFP localization in ectosomes above the basal apparatus of gonidia. (a) Shortly before the first cell division, a small amount of Babo1–YFP
(green) was localized in a pair of ectosomes above the basal bodies, in addition to its localization in the lumen of the basal bodies and at the MTRs. The basal

apparatus is also visible but appears blurry because it is localized below the focal plane. The viewing direction is from outside obliquely onto the surface of the

gonidium. (b) Same mature gonidium and same viewing direction as in (a) but in this image the basal apparatus is in the focal plane. (c) Top view onto the area

above the basal apparatus of a metaphase gonidium expressing Babo1–YFP. The ectosomes are in the focal plane, whereas the basal bodies and the spindle are

located deeper inside the cell. The basal bodies and spindle of this gonidium are shown in Figure 10(a). (a–c) In vivo CLSM images. Scale bars = 2 µm. (d–f)
Schematic depiction of the localization of ectosomes in side view. The focal planes of the images in (a–c) are indicated. The position of the Z-stack in Figure 10(a)

is also shown. PM, plasma membrane; BB, basal body; FL, flagellar stubs; ECM, extracellular matrix. (d) Immature gonidium. Flagellar stubs protrude out of the

cell into the ECM of the gonidial ‘vesicle’, which corresponds to the cellular zone 1 (CZ1) of the ECM (Kirk et al., 1986; Hallmann, 2003). (e) Mature gonidium.

Ectosomes have been released at the tips of the flagellar stubs before or during retraction of the flagellar stubs. (f) Metaphase gonidium. The ectosomes persist

in the ECM while the basal bodies separate from each other and cell division is initiated. The viewing directions of images in (d–f) (side view) are roughly per-

pendicular to the viewing directions of images (a–c) (top view).
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When the first cell division approached, the Babo1–YFP
signal was more concentrated at the two basal bodies, the

fluorescent strands were hardly visible and a very distinct

central axis was present in all cells (Figure 8b). Immedi-

ately before the two basal bodies separated from each

other, the central axis disappeared and the four strands of

rootlet microtubules became clearly visible (Figure 8c). At

this developmental stage, the basal apparatus clearly

showed point symmetry, as known from other species

(Melkonian, 1978). The d-roots formed a straight line,

whereas the s-roots were slightly displaced against each

other. The Babo1–YFP signal appeared clearly brighter on

the d-roots than on the s-roots (Figure 6f). This distribution

is similar to the position of the SMAFs in C. reinhardtii,

which are thicker on the d-roots and less pronounced on

the s-roots (Geimer and Melkonian, 2004).

Babo1–YFP allows the monitoring of basal body

separation during prophase

During prophase, the basal bodies separate from each

other and the MTRs remain attached to their respective

basal body. Babo1–YFP is again localized predominantly at

the basal bodies and the two-membered d-roots (Figure 9).

On the four-membered strands of microtubules (s-roots)

Babo1–YFP exhibits an irregular, patchy pattern. However,

the degree of patchiness on the s-roots varies between dif-

ferent dividing cells (compare Figure 9a–i,k). During the

separation of basal bodies, the s-roots slide along each

other and the basal bodies with their associated micro-

tubular roots exhibit a clockwise rotation (Figure 9a–i). The
basal bodies also move slightly with the midcell constric-

tion of the plasma membrane into the cleavage furrow, as

is indicated by the changing chlorophyll signal of the

chloroplast. At first, the s-roots slide along each other with

a parallel movement while keeping a distance of approxi-

mately 0.5 µm between each other (Figure 9c). Later, they

gradually come closer together (Figure 9d–f) until the

s-roots contact each other (Figure 9g). Initially, the angle

by which the s-root and the d-root are connected to the

corresponding basal body measures approximately 100°
(Figure 9a). During the movement it widens to approxi-

mately 150° coinciding with a significant curvature of the

MTRs (Figure 9a–h). The idealized overlay in Figure 9(j)

summarizes the movements of both basal bodies with

their associated MTRs.

During the separation of the basal bodies, their distance

increases continuously from approximately 1 µm (Fig-

ure 9a) to approximately 8.7 µm (Figure 9i). In Figure 9(k),

which shows the separation shortly after that in Figure 9(i),

the distance reached approximately 9.7 µm. Later, during

formation of the spindle, the distance grew to approxi-

mately 13.4 µm (see Figure 10a).

Localization of Babo1 during spindle and phycoplast

formation

Later in cell division when the mitotic spindle forms, the

spindle poles are localized somewhat below the MTOCs

(Figure 10). Babo1–YFP is still localized at the basal bodies,

on the d-roots and, to a lesser extent, on the s-roots. The

dark area between the MTOC and the spindle pole (Fig-

ure 10a7) most probably corresponds to the nucleus–basal
body connector (NBBC). During cytokinesis, the basal bod-

ies with their associated MTRs are localized above the

newly formed nuclei and close to the leading edge of the

emerged division furrow (Figure 10b). At this stage, the

d-roots are almost parallel to the division furrow, whereas

the s-roots are roughly perpendicular to the division fur-

row (Figure 10b2). Figure 10(c,d) schematically shows top

and side views of the cell division apparatus during meta-

phase to better illustrate the three-dimensional arrange-

ments and spatial relationships of the basal bodies, MTOC,

MTRs, and spindle. Remarkably, the new mature basal

bodies, which must have reached their full length before

basal body separation, did not show any Babo1–YFP fluo-

rescence. The same applies to the d- and s-roots of the

new basal bodies. Later in the two-celled embryos, when

the first division was completed, the Babo1–YFP fluores-

cence was still limited to the oldest basal bodies and their

roots. Neither the probasal bodies, nor the newly formed

mature basal bodies, nor any of their corresponding MTRs

contained detectable amounts of Babo1–YFP. Apparently,

during and after the first cell division, no new Babo1–YFP
was synthesized.

Distribution of Babo1 in four-celled embryos

Even after the second cell division, Babo1–YFP was exclu-

sively found on the oldest basal bodies of the four-celled

embryo and on the corresponding d-roots (Figure 11). The

position of the basal bodies and the orientation of the

d-roots are typical for this developmental stage. Also dur-

ing the second cell division no new Babo1–YFP was

expressed and, thus, only two of the four cells contained

Babo1–YFP. Again, neither the probasal bodies nor the

newly formed mature basal bodies nor any of their corre-

sponding MTRs showed Babo1–YFP fluorescence. All focal

planes of four-celled embryos were repeatedly investigated

to confirm this result. Thus, we were able to prove that

there is an unequal protein distribution among the cells of

a four-celled Volvox embryo.

Because the overall signal intensity of Babo1–YFP
decreased during the progression of embryogenesis, we

were not able to clearly monitor the localization of Babo1–
YFP after the third cell division. Thus, Babo1–YFP either

could be gradually degraded in these later embryonic

stages or it could gradually detach from the basal bodies
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and dilution of Babo1–YFP in the cytoplasm might be the

reason for the steady decrease of structured fluorescence.

DISCUSSION

Previously supposed opsin characteristics of Babo1

Earlier reports on Babo1 stated that this protein is an opsin

that contains not only multiple transmembrane helices but

also a conserved retinal-binding domain (Deininger et al.,

1995; Ebnet et al., 1999; Fuhrmann et al., 1999; Deininger

et al., 2000; Fuhrmann et al., 2001; Fuhrmann et al., 2003;

Ozawa et al., 2009; Greiner et al., 2017). To re-examine this

statement, we initially performed sequence similarity

searches and we were able to identify more than 60 pro-

teins from a wide range of algae species that are clearly

related to Babo1. A multiple sequence alignment of the

family of Babo1-related proteins demonstrates that the ear-

lier proposed opsin-like retinal binding site of Babo1

(Ebnet et al., 1999) is not conserved. Even after a thorough

investigation of the multiple alignment of Babo1-related

proteins we could not identify those amino acids positions

that are conserved or functionally important for microbial

opsins. In addition, no seven transmembrane (7TM) helix

core architecture has been identified in Babo1, which

would be a decisive part of a rhodopsin. Actually, we were

not even able to identify a single transmembrane spanning

segment in Babo1 and all of the numerous applied pro-

grams predicted that Babo1 is not a transmembrane pro-

tein. It is fitting, therefore, that we localized Babo1 away

from any membrane structures at the basal bodies. Fur-

thermore, when C.r. Babo1 was expressed in Xenopus

oocytes, it was not found in the membrane fraction (Tian

et al., 2018). Given that all rhodopsins known to date have

at least seven transmembrane helices and also contain a

conserved retinal binding site (Gao et al., 2015), it is obvi-

ous that Babo1 is not an opsin. Because binding of [3H]reti-

nal led to the initial identification and purification of Babo1

(Deininger et al., 1995), it is still possible that Babo1 binds

retinal by a mechanism and binding site different from

known retinal binding proteins. It can be assumed that reti-

nal molecules form Schiff bases with the e-amino groups

of the abundant lysyl residues of Babo1. In this context, it

should be noted that retinal binding of Babo1 has only

been shown in vitro and, thus, its retinal-binding capacity

should also be investigated under in vivo conditions to

exclude possible artifacts.

(b) (c)

(a)

d

d

s

s

Figure 8. Babo1–YFP highlights the basal apparatus

morphology of maturing gonidia. Maturing gonidia

of Babo1–YFP transformants were analyzed for

basal apparatus morphology. The strongest Babo1–
YFP fluorescence (green) localizes to the two circu-

lar-shaped basal bodies. In addition, strands of

Babo1–YFP fluorescence protrude radially from the

basal apparatuses. (a) The six images of Babo1–YFP
localization in gonidia illustrate the diversity in mor-

phology approximately 1 h before the first cell divi-

sion. (b) Shortly before the first cell division begins,

basal apparatus morphology in gonidia eventually

becomes harmonized. (c) Immediately before the

basal bodies are separated from each other, the

appearance of the basal apparatus is almost per-

fectly point-symmetrical. Note that the d-roots

appear brighter than the s-roots, which correlates

with thicker SMAFs on the d-roots (see Figure 6f). s,

s-root; d, d-root. (a, b) Some basal apparatuses

show a central axis (arrow), which is perpendicular

to an imaginary line connecting the basal bodies.

(a–c) In vivo CLSM images. The viewing direction is

from outside onto the surface of each gonidium.

Scale bars = 2 µm.
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Figure 9. In vivo observation of basal body separation in prophase by Babo1–YFP. (a–i) Time-series of in vivo CLSM images showing a gonidium expressing

Babo1–YFP in the prophase of the first cell division when the two basal bodies with attached MTRs separate from each other. The basal body separation is

accompanied by a clockwise rotation of the MTRs. During the separation process, Babo1–YFP (green) is predominantly localized at the basal bodies and on

the two-membered MTRs (d-roots). On the four-membered MTRs (s-roots), Babo1–YFP is only detectable to a lesser extent and its distribution appears irreg-

ular and patchy. The viewing direction is from outside onto the surface of the gonidium. Chlorophyll (blue) is displayed for orientation. The image sequence

covers 15 min. s, s-root; d, d-root. Scale bars = 5 µm. (Insets in a–i) Schematic representation of the situation in (a–i) illustrating the spatial arrangement of

basal bodies (yellow), d-roots (magenta) and s-roots (orange). White arrows indicate steady movements between the illustrations. (j) Schematic summary of

the sequence shown in (a–i). The transparency is increasingly reduced beginning with the arrangement in (a). Colored arrows indicate the arc-like move-

ments of the basal bodies (yellow) and changing angular positions of their associated d-roots (magenta) and s-roots (orange). (k) In vivo CLSM image pre-

senting the appearance of basal bodies with attached MTRs shortly after the sequence shown in (a–i). Plus and minus ends of the microtubular rootlets are

indicated. Scale bar = 5 µm.
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Previously supposed eyespot localization of Babo1

By analyzing fluorescence spectra, we were able to prove

that YFP-tagged Babo1 protein is clearly not localized at

the eyespot area, but at the basal bodies. The eyespots of

both babo1-expressing transformants and wild-type con-

trol cells only showed an autofluorescence signal but no

YFP signal. Any quenching of Babo1–YFP fluorescence by

carotenoid pigments of the eyespot apparatus is virtually

impossible because all validated eyespot photoreceptors

are located in the plasma membrane above the carotenoid

layer (Melkonian and Robenek, 1980; Kreimer, 2009) and

our viewing direction was from outside of the Volvox

spheroid onto the eyespot of the corresponding somatic

cell. Furthermore, the performed spectral imaging in

lambda mode makes it possible to separate superimposed

signals if they exist and, thus, any existing YFP at the eye-

spot would have been identified and clearly discriminated

from the autofluorescence of the eyespot. In the past, tech-

nical difficulties in differentiating between reporter fluores-

cence and autofluorescence seem to have produced

misleading in vivo localization results regarding Babo1 (Dei-

ninger et al., 1995; Fuhrmann et al., 1999). Possible causes

might be that in this previous work an earlier, less advanced

generation of CLSM devices without spectral imaging detec-

tors was utilized and that Babo1 has previously been tagged

with GFP. Unfortunately, eyespots of both Volvox and

Chlamydomonas cells showed a quite high level of back-

ground autofluorescence when GFP is excited at its optimal

wavelength. By contrast, this autofluorescence does not

apply to YFP. In earlier experiments, Babo1 also was

detected by FITC-conjugated antibodies using glutaralde-

hyde-fixed cells (Deininger et al., 1995), whereby glutaralde-

hyde is known to cause especially high autofluorescence

(Lee et al., 2013). Moreover, FITC fluorescence intensity

peaks at 541 nm, which strongly overlaps with eyespot aut-

ofluorescence. Thus, eyespot autofluorescence also appears

to have been misinterpreted as FITC fluorescence.

Even though both previous Babo1 localization studies

had made efforts to deal with autofluorescence issues (Dei-

ninger et al., 1995; Fuhrmann et al., 1999), it was techni-

cally not possible to separate autofluorescence from FITC

or GFP fluorescence. The previous incorrect fluorescence-

based localization of Babo1 at the eyespot has then been

viewed as a confirmation of the circumstances in which

Babo1 was originally extracted from eyespot membrane

preparations of V. carteri and C. reinhardtii (Deininger

et al., 1995; Ebnet et al., 1999). However, in the knowledge

of our results, the presence of Babo1 in any eyespot frac-

tions can also be explained by the fact that the eyespot

and the basal bodies are connected with each other by the

D4 MTR (Mittelmeier et al., 2015) and, thus, basal bodies

could attach to the eyespot or components of it during eye-

spot isolation. It should also be noted that Babo1 has been

identified in several other cellular fractions (Allmer et al.,

2006; Goold et al., 2016; Long et al., 2016) and this might

indicate that Babo1 tends to bind unspecifically to other

cellular components during cell fractionation.

Functional implications of sequence analysis and

subcellular localization of Babo1

Our results demonstrate that Babo1 clearly accumulates at

the basal apparatus of both somatic and reproductive cells.

More precisely, it is located predominantly at the basal

bodies and, to a lesser extent, at the four strands of rootlet

microtubules. Generally, basal bodies serve as microtubule

organizing centers. The building block of a basal body or

any microtubule is the tubulin subunit, a heterodimer of a-
tubulin and b-tubulin. These tubulins both possess a glu-

tamic acid-rich ‘E-hook’ at their C-terminal ends and these

negatively charged segments protrude out of the micro-

tubule filaments. The E-hooks can be bound by proteins

(e.g. kinesins) with positively charged, poly-lysine contain-

ing K-loops (Okada and Hirokawa, 2000). In general terms,

a high content of positively charged residues is a common

feature of microtubule binding motives (Zhou et al., 2015).

Markedly, the lysine content of Babo1 is at the consider-

able value of 17.2%, which corresponds to every sixth

amino acid. Furthermore, sequence analysis using the

Microtubule-Associated Protein Analyzer (MAPanalyzer)

(Zhou et al., 2015) identified six different motifs that are

known to be enriched in microtubule binding sites and that

are spread over the entire amino acid sequence of Babo1.

These findings suggest a direct interaction between Babo1

and the tubulins of microtubules or basal bodies.

In C. reinhardtii cells, and in the somatic cells of Vol-

vox, basal bodies provide the basis for flagellar assembly

because they serve to nucleate the growth of axonemes

(Kirk, 1998; Dutcher and O’Toole, 2016). However, knock-

down experiments in C. reinhardtii suggested that Babo1

is not essential for flagellar function (Fuhrmann et al.,

2001). Furthermore, Babo1 of V. carteri is clearly overex-

pressed in the flagella-less reproductive cell-type when

compared with the somatic cell-type (Ebnet et al., 1999;

Kianianmomeni and Hallmann, 2015; Klein et al., 2017).

Those aspects make it unlikely that Babo1 has a relevant

role in flagellar assembly, function, or stabilization. The

observed overexpression in reproductive cells suggests,

however, a role for Babo1 in cell division or cell cycle-as-

sociated functions. In fact, basal bodies are related to

metazoan centrioles, which aid in mitosis and nucleate

and organize the centrosomes. Basal bodies and related

centrioles are also known to be an important signaling

center of the cell (Arquint et al., 2014; Loncarek and Bet-

tencourt-Dias, 2018). Basal bodies of C. reinhardtii are

also known to be relevant for the spatial and temporal

coordination of karyokinesis and cytokinesis. Mutants of
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C. reinhardtii that lack basal bodies are not able to deter-

mine the right time and place for formation of the spin-

dle and the division furrow (Ehler et al., 1995). Thus,

Babo1 could play a critical role in influencing such pro-

cesses. Our subcellular tracking of Babo1 during the first

cell divisions showed that Babo1 is only present on the

MTOC
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Figure 10. Topology of the Babo1–YFP localization relative to MTOC, spindle and division furrow. (a, b) Z-stack of a Babo1–YFP expressing gonidium in meta-

phase (a) and during cytokinesis (b). In vivo CLSM images displaying the localization of Babo1–YFP (green), TubB2-CFP (magenta) and chlorophyll (blue). The

viewing direction is from outside onto the surface of the gonidium. Scale bars = 5 µm. (a) Gonidium during the metaphase of the first cell division. The distance

between the Z-layers is approximately 0.7 µm. The basal bodies and MTRs are localized at the MTOC, which is localized slightly above the spindle poles. The

unstained region between the MTOC and the spindle pole in (a7) (see arrowhead) corresponds to the location of the nucleus–basal body connector. (b) Gonid-

ium during cytokinesis of the first cell division. The basal bodies with their associated MTRs are located at the edge (‘shoulder’) of the division furrow, right

above the newly formed nuclei (dashed lines in b6). The d-roots are almost parallel to the division furrow and the hardly visible s-roots are roughly perpendicu-

lar to the division furrow. The distance between the Z-layers is approximately 1.7 µm. (c, d) Schematic depiction of the cell division apparatus in metaphase

showing basal bodies (BB, dark green), microtubular rootlets (MTR, light green), astral and other microtubules (AM, magenta), microtubule-organizing centers

(MTOC, light magenta) and the nucleus–basal body connectors (NBBC, brown). (c) Top view. (d) Side view. s, s-root; d, d-root.
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oldest basal bodies and on the corresponding d-roots.

Four-celled embryos therefore show an unequal alloca-

tion of Babo1: Only two of the four cells contained

Babo1–YFP-stained basal bodies and d-roots. This finding

demonstrates a controlled temporal and unequal spatial

distribution of Babo1 in dividing embryos.

The structure, regulation, and inheritance pattern of

basal bodies and related centrioles is conserved in all

branches of the eukaryotic tree of life, from unicellular

algae all the way to mammals (Holmes and Dutcher, 1989;

Wang et al., 2009). In multicellular organisms, the strict

allocation of these structures during division therefore

offers a suitable option for unequal distribution of attached

cellular components among daughter cells, which leads to

asymmetric cell division and, finally, to different cell types

(Nigg and Stearns, 2011). For example, when mammalian

centrioles separate in embryonic divisions, a centrosome-

based mechanism is responsible for asymmetric distribu-

tion of certain proteins between daughter cells (Fuentealba

et al., 2008). Due to the controlled temporal and unequal,

spatial distribution of Babo1 in four-celled embryos, Babo1

could serve as a marker for asymmetry at this early stage

of embryonic development. The relevance of Babo1 for

proper embryogenesis of V. carteri is also supported by

the characteristics of a transgenic strain with knocked-

down expression of babo1. The corresponding algae grew

and divided only slowly and their division pattern has been

described as totally uncoordinated (Ebnet et al., 1999).
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Figure 11. In vivo localization of Babo1–YFP in four-celled embryos. (a–c) Overview of a four-celled Volvox carteri embryo expressing Babo1–YFP. The viewing

direction is from outside onto the surface of the embryo. (d–f) Zoomed view onto the central part of a four-celled V. carteri embryo. (a, d) Babo1–YFP fluores-

cence. (b, e) Overlay of Babo1–YFP-signal and transmitted light detected by a photomultiplier tube (trans-PMT). (c, f) Same as in (b) and (e) but with additional

dashed lines indicating the approximate positions of the cell boundaries. (a–f) The Babo1–YFP fluorescence is found only in two opposing cells of the four-celled

embryo and within these two cells it is localized exclusively at the older basal bodies and their associated d-roots. Note that each of these cells actually contains

two basal bodies and four MTRs, but only components with Babo1–YFP fluorescence are visible. (a–c) Scale bars 10 µm. (d–f) Scale bars 5 µm. (g–i) Schematic

depiction of the basal apparatuses viewed from outside onto the surface of the gonidium. The two oldest basal bodies with their respective d-roots are associ-

ated to Babo1–YFP and are shown in green. Basal bodies and microtubular roots that show no fluorescence are shown in orange. The two oldest s-roots lose

fluorescence between the first and the second cell division. (g) First mitosis. (h) Second mitosis. (i) Four-celled embryo after the second cell division. BB, basal

body; s, s-root; d, d-root; d*, d-root associated with Babo1–YFP. Other structures are described in Figure 10.
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In view of the unequal distribution of Babo1, it might

also be crucial that Babo1 has the capacity to bind retinal

(Kr€oger and Hegemann, 1994; Deininger et al., 1995). In

vertebrates, retinal derivatives such as retinol and retinoic

acid are well known signaling molecules that play a major

role in embryogenesis. During embryonic development, a

concentration gradient of retinoic acid is established along

the body axis (Shimozono et al., 2013) that is essential for

correct patterning of embryos (Niederreither and Dolle,

2008). In a close relative of Volvox, C. reinhardtii, the pres-

ence of endogenous retinal has been demonstrated (Beck-

mann and Hegemann, 1991). Furthermore, this alga can

convert retinal into retinol, which was assumed to be a

storage form of retinal (Beckmann and Hegemann, 1991).

The reaction is catalyzed by retinol dehydrogenases and

our genome searches confirmed that also V. carteri (Proch-

nik et al., 2010) has potential retinol dehydrogenase genes.

At least one of these genes is well transcribed based on

RNA-seq data (Klein et al., 2017). For conversion of retinal

into retinoic acid, a retinal oxidase is required. Two poten-

tial retinal oxidase genes have been identified in the V. car-

teri genome and at least one of these genes is well

transcribed (Klein et al., 2017). We also identified a well

transcribed but yet unannotated gene, Vocar.0007s0453,

which codes for a protein that shows similarity to the

human retinoic acid induced protein 1. Thus, retinoids

seem to be relevant for Volvox. If the concentration of reti-

noids in dividing Volvox embryos is decisive for the cell

fate, Babo1 could be responsible for the unequal distribu-

tion of these retinoids.

Morphology of the basal apparatus and in vivo

observation of basal-body separation

Both the morphology of the basal apparatus and the

separation process of basal bodies or centrioles are sig-

nificant fields of research in cell biology, in particular as

numerous disorders are associated with centriolar, cen-

trosomal, or ciliary dysfunctions (Chavali et al., 2014;

Nigg et al., 2014; Kempeneers and Chilvers, 2018; Schat-

ten and Sun, 2018; Wang and Dynlacht, 2018). Because

Babo1 co-localizes with basal bodies and rootlet micro-

tubules, Babo1–YFP can be utilized as a fluorescent stain

for in vivo investigation of these cellular structures. Our

method and equipment allow not only for high-resolu-

tion in vivo imaging of the fine structures of the basal

apparatus but also for in vivo tracing of their develop-

mental dynamics. By contrast, many previously used

methods require chemical fixation, dehydration, cutting,

and staining. Dyes may infiltrate insufficiently or can

potentially interfere with the specimen and cause experi-

mental artifacts. Immunostaining with antibodies conju-

gated with fluorescent ligands is also an error-prone

method. Moreover, these earlier methods provided only

a snapshot of the dynamic developmental processes and

they did not allow continuous following of the fate of

one and the same cell and its components. Basal-body

separation of V. carteri embryos has never been

observed in vivo before and the observations in the

related unicellular alga C. reinhardtii did not reach our

temporal and optical resolution (Kirk et al., 1991; Kirk,

1998; Lechtreck et al., 2002). Our results also show that

Babo1–YFP forms a prominent central axis between the

two basal bodies just before first basal body separation.

Although there are several investigations of basal bodies

in C. reinhardtii (Dutcher and O’Toole, 2016), this struc-

ture has not been reported previously. One reason why

it remained undiscovered could be that the structure is

detectable only for a very short period of time. We were

also able to show that the angle, in which the two

microtubular rootlets are connected to the corresponding

basal body, widens from approximately 100° to approxi-

mately 150° during separation of basal bodies. This is

probably attributable to the force that is applied to the

rootlets at the regions where the two s-roots come close

together and are likely to touch each other. We assume

that this force pushes the basal bodies away from each

other and it might also be sufficient to induce rotational

movement.

CONCLUSION

The protein Babo1 (formerly Vop1 or Cop1/2) has previ-

ously been classified as an eyespot-photoreceptor, but is

neither localized at the eyespot nor is it an opsin. It is

not even a transmembrane protein. We revealed a large

family of more than 60 Babo1-related proteins from a

wide range of algae species and showed their relation-

ship in a molecular phylogenetic analysis. Our high-reso-

lution in vivo imaging demonstrates that Babo1 is

localized at the basal bodies and, to a lesser extent, at

the four strands of rootlet microtubules. Dynamic struc-

tural rearrangements of Babo1 particularly occur right

before the first cell division. In four-celled embryos,

Babo1 was exclusively found on the two oldest basal

bodies of the embryo and on the corresponding d-roots.

The coordinated asymmetric distribution of Babo1 in

four-celled embryos is the first molecular evidence for

differences in protein composition among cells of such a

very early stage of embryonic development in V. carteri.

The spatial and temporal distribution of Babo1, therefore,

suggests a role in cell division. The unequal distribution

of Babo1 in four-celled embryos could be an integral part

of a geometrical system in early embryogenesis, which

establishes the anterior–posterior polarity and influences

the spatial arrangement of embryonic structures and

characteristics. Due to its retinal-binding capacity, Babo1

could also be responsible for the unequal distribution of

retinoids, knowing that concentration gradients of reti-

noids can be essential for the correct patterning of
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embryos. Our findings, therefore, push Babo1 research in

another direction and provide a promising basis for func-

tional analyses.

EXPERIMENTAL PROCEDURES

Strains and culture conditions

The wild-type Volvox carteri f. nagariensis strain Eve10 (female)
(Starr, 1969; Starr, 1970; Adams et al., 1990; Kianianmomeni
et al., 2008), which originates from Japan, was used to produce
a nitrate-reductase deficient (nitA�) descendant for transforma-
tion experiments. The nitA� descendant of Eve10 was gener-
ated by random mutagenesis and chlorate selection as
previously described (Huskey et al., 1979; Harper et al., 1987;
Adams et al., 1990). The obtained non-revertible mutant strain,
TNit-1013 (Tian et al., 2018), contains a deletion of 1013 bp in
the nitA gene and, therefore, is not able to grow in medium
containing nitrate as the sole source of nitrogen. V. carteri
strain TNit-1013 was therefore grown in Volvox medium (Prova-
soli and Pintner, 1959; Starr, 1969) supplemented with 1 mM

ammonium chloride (NH4Cl) as a nitrogen source. Strain Eve10
was grown in standard Volvox medium (Provasoli and Pintner,
1959; Starr, 1969). Transformation and CLSM analyses required
synchronization of development of Volvox cultures that was
achieved by growth under a light–dark cycle. Synchronous cul-
tures were grown at 28°C in a cycle of 8 h dark/16 h cool fluo-
rescent white light (Starr and Jaenicke, 1974) at an average of
approximately 100 µmol photons m�2 sec�1 photosynthetically
active radiation. Cultivation was performed in glass tubes with
caps that allow for gas exchange or in Fernbach flasks, which
were aerated with approximately 50 cm3 sterile air/min. For
synchronous growth, culture density was no more than 10
spheroids/ml.

Construction of vectors for expression of fusion proteins

in V. carteri

For construction of expression vectors carrying the V.c. babo1
gene (Vocar.0024s0227) fused to the yfp reporter gene (plasmid
pBlue_Babo1_YFP; Figure 3a) and the cfp reporter gene fused to
tubB2 (Vocar.0007s0229) (plasmid pBlue_CFP_TubB2; Figure 3c),
recombinant PCRs were performed using the oligonucleotides
shown in Table S3 as primers and both genomic DNA of V. carteri
and plasmids carrying yfp or cfp genes as a template. The ampli-
fied PCR products were assembled within pBluescript II SK(�)
(Stratagene) vector backbones. Both yfp (mVenus) (Kremers et al.,
2006) and cfp (mCerulean3) (Markwardt et al., 2011) were previ-
ously engineered to match the codon usage of C. reinhardtii
(Lauersen et al., 2015). On plasmid pBlue_Babo1_YFP, expression
of babo1 is driven by the endogenous babo1 promoter. The corre-
sponding DNA fragment is 215 bp in size, ends 15 bp upstream of
the babo1 start codon, contains the remaining 33 bp of the 50UTR
and is flanked by artificial KpnI and ApaI sites (Figure 3a). The
babo1 start codon is preceded by a 6-bp Kozak sequence. A 1959-
bp babo1 genomic fragment with all introns included (artificial
ApaI to artificial EcoRV; Figure 3a) was amplified in two parts
(ApaI to XhoI and XhoI to EcoRV; Figure 3a) making use of an
endogenous XhoI site. Artificial EcoRV sites were added on both
sides of the intronless yfp and, simultaneously, a short linker
sequence, which codes for a flexible pentaglycine interpeptide
bridge, was inserted in front of the yfp gene (0.7 kb, EcoRV to
EcoRV; Figure 3a). The utilized babo1 terminator region is within a
1-kb fragment (artificial EcoRV to artificial BamHI; Figure 3a)

containing 0.9 kb of 30UTR and 100 bp of downstream sequence.
In plasmid pBlue_CFP_TubB2, expression of tubB2 is driven by the
endogenous tubB2 promoter. The corresponding DNA fragment is
462 bp in size, ends 19 bp upstream of the start codon, contains
the remaining 99 bp of 50UTR, and is flanked by two artificial XhoI
sites (Figure 3c). The artificial XhoI site in front of the start codon
is immediately (after 1 bp) followed by an artificial ClaI site. To
facilitate cloning, artificial ClaI sites were added on both sides of
cfp and, simultaneously, a short linker sequence, which codes for
a flexible pentaglycine interpeptide bridge, was inserted behind
the cfp gene (0.7 kb, ClaI to ClaI; Figure 3c). The cfp start codon is
preceded by a 6-bp Kozak sequence. A 1879-bp tubB2 genomic
fragment with all introns included was amplified (artificial ClaI to
artificial BamHI, Figure 3c) and used for vector construction. The
terminator region comes from the V. carteri LHCBM1 gene
(Vocar.0001s0479) and is localized within a 0.3-kb fragment (artifi-
cial XbaI to artificial NotI; Figure 3c) containing 173 bp of the
30UTR and 116 bp of downstream sequence.

Both fusion proteins were additionally brought under control of
the LHCBM1 (Vocar.0001s0479) promoter (Figure 3b,d). The
LHCBM1 gene is a chlorophyll a/b binding protein in the light-har-
vesting complex II. In previous RNA-seq studies, the LHCBM1 pro-
moter demonstrated strong expression and the expression levels
were similar in both cell types (Klein et al., 2017; Tian et al., 2018).
A 0.9 kb DNA fragment containing the LHCBM1 promoter region
was introduced in front of the fused genes using KpnI/ApaI for
babo1/yfp and XhoI/XhoI for cfp/tubB2, resulting in the plasmids
pBlue_LHCBM1_Babo1_YFP (Figure 3b) and pBlue_LHCBM1_CFP_
TubB2 (Figure 3d).

Stable nuclear transformation of V. carteri

The nitA� V. carteri strain TNit-1013 (Tian et al., 2018) was grown
on a larger scale in Volvox medium supplemented with 1 mM

NH4Cl. In preparation of particle bombardment, 3 mg of gold
microprojectiles (1.0 µm in diameter, Bio-Rad, Hercules, CA, USA)
were coated as previously described (Lerche and Hallmann, 2009;
Lerche and Hallmann, 2013) using 5 µg of plasmid pVcNR15 (Gru-
ber et al., 1996), which allows for expression of the nitA gene for
selection, and 5 µg of each plasmid that expresses fused gene
constructs for subcellular localization (Figure 3). The DNA-coated
microprojectiles were suspended in 60 µl ethanol and kept at 4°C
for use within 1 h. About 24 000 spheroids of strain TNit-1013
were harvested on a 40-µm stainless steel mesh and washed thor-
oughly with 3 L of standard Volvox medium, which lacks NH4Cl
and, therefore, allows the selection of nitA+ transformants. Trans-
formation was performed using a Biolistic PDS-1000/He particle
gun (Bio-Rad). The transformation procedure was as previously
described (Schiedlmeier et al., 1994; Hallmann and Wodniok,
2006; Lerche and Hallmann, 2009; Lerche and Hallmann, 2013;
Lerche and Hallmann, 2014), with the subsequent modifications.
One-sixth of the suspension with DNA-coated microprojectiles
(10 µl) was evenly spread on a macrocarrier (Bio-Rad) that was
placed in a macrocarrier holder (Bio-Rad). The ethanol was
allowed to evaporate from the surface of the macrocarrier. The
burst pressure of the rupture disks was 900 psi, the rupture disk–
macrocarrier distance was adjusted to 7 mm, the macrocarrier-
stopping screen distance was 8 mm, the stopping screen-target
cell distance was 11 cm, and the bombardment chamber was
evacuated to 28 inches of mercury. After each bombardment, the
algae were briefly immersed in standard Volvox medium. The
bombardment procedure was performed six times in total. The
algae were then incubated in ammonium-free standard Volvox
medium under standard conditions. From the fifth day on after
particle bombardment, algae cultures were examined for green
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and living transformants (nitA+) on a background of numerous
bleaching, unaltered organisms (nitA�). Each identified trans-
formant was transferred to fresh selective medium for further
culture. Aside from the expression of nitA, expression of the
co-transformed fused gene constructs was verified by fluores-
cence microscopy.

Confocal laser scanning microscopy

For life cell imaging, algae were synchronously grown under
standard conditions and examined using an inverted LSM780
confocal laser scanning microscope (Carl Zeiss GmbH, Ger-
many) equipped with a 639 LCI Plan-Neofluar objective (Carl
Zeiss GmbH). The confocal pinhole diameter was set to 1 Airy
unit, which corresponds to an optical section of 0.8 µm. The
YFP fluorescence was excited using an argon ion (Ar+) laser at
514 nm and the emitted fluorescence was detected at 517–
553 nm. The CFP fluorescence was excited by a diode laser
(Diode 405-30) at 405 nm and the emitted fluorescence was
detected at 460–500 nm. Chlorophyll fluorescence also was
excited by the diode laser at 405 nm and detection was at 651–
700 nm. Fluorescence intensity was recorded in bidirectional
scan mode for YFP, CFP, and chlorophyll in three channels
simultaneously. Transmission images were obtained in a fourth
channel using a transmission-photomultiplier tube (trans-PMT)
detector. An incubation device was used to keep the algae sus-
pension on the microscopic slides at 28°C and to prevent evap-
oration. All images were captured with a bit depth of 12.
Images were analyzed using the ZEN black digital imaging soft-
ware (ZEN 2011, Carl Zeiss GmbH). Image processing and anal-
ysis was carried out using Fiji (ImageJ 1.51w) (Schindelin et al.,
2012). Figures 6(b), 8, and 9 were gamma adjusted with a value
of 0.5–0.7 to improve the overall visibility. The lambda scan
function of ZEN and a gallium arsenide phosphide (GaAsP)
QUASAR photomultiplier detector (Carl Zeiss GmbH) were used
for simultaneous 20-channel readouts. Emission spectra
between 517 and 695 nm were recorded for each pixel with a
spectral resolution of 8.9 nm using a main beam splitter MBS
458/514 and 514-nm laser light for excitation. After data acquisi-
tion, spectral analysis for the regions of interest (ROIs) was per-
formed.

Sequence database search

The TBLASTN and PSI-BLAST algorithms (Altschul et al., 1990;
Altschul et al., 1997) were used to search for Babo1-related
sequences in the databases of the NCBI, the China National Gene-
Bank (CNGB) and Phytozome 12 (Goodstein et al., 2012). Most hits
showing sequence similarity to Babo1 referred to translated tran-
scriptome data produced within the framework of the 1000 plants
project (Matasci et al., 2014). Redundant sequences, extremely
short sequences and sequences with obvious flaws such as inter-
nal stop codons, were excluded from further analyses. However, a
few incomplete transcript sequences were completed using geno-
mic data and intron prediction, which was supported by sequence
alignments with confirmed Babo1-related sequences. Whenever
we found protein isoforms of differing lengths within a certain
species, only the longest isoform was chosen for the final protein
alignment. A unique, abbreviated protein identifier was assigned
to all sequences based on the first three characters of both the
genus and the species name (e.g. Volcar for Volvox carteri) and
the last three digits of either the 1KP scaffold number, the NCBI
accession number or the JGI identifier. The final list of Babo1 and
Babo1-related proteins and corresponding identifiers is shown in
Table S4.

Phylogenetic analysis

The protein sequences were aligned using the MUltiple Sequence
Comparison by Log-Expectation program (MUSCLE) (Edgar,
2004). Minor manual optimization of the alignments, trimming,
and management of multialigned data was done using BioEdit
v7.0.5.3 (Hall, 1999). The alignments were illustrated using Gene-
Doc 2.7 (Nicholas et al., 1997). The unrooted phylogenetic tree
was calculated using the PHYLogeny Inference Package (PHYLIP)
(Felsenstein, 1989). In these calculations, 10 000 bootstrap resam-
plings of multiply aligned sequences were generated using Seq-
boot. Distance matrices using Dayhoff’s point accepted mutation
(PAM) were computed with Protdist, trees were constructed using
the neighbor-joining method (Saitou and Nei, 1987) as imple-
mented in Neighbor, and finally, a consensus tree was built using
Consense. Phylogenetic trees were drawn with iTOL 4.2 (Letunic
and Bork, 2016).

Calculation of amino acid composition

Amino acid compositions were calculated for all available protein
sequences in the proteomes of V. carteri and C. reinhardtii, as
well as for the Babo1-related proteins shown in Figure 2 and
Table S4. Proteome data refer to V. carteri v2.1 (Prochnik et al.,
2010) and C. reinhardtii v5.5 (Merchant et al., 2007) in Phytozome
12 (Goodstein et al., 2012). The compositions of amino acids were
calculated using the composition based protein identification
(COPId) program (Kumar et al., 2008).
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