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Abstract

In this thesis we investigate the concentration of measure phenomenon, especially
with a focus on higher order concentration. The term higher order serves to
emphasize that we are interested in multilevel concentration inequalities of a
function 𝑓(𝑋) = 𝑓(𝑋1, . . . , 𝑋𝑛) of many random variables 𝑋1, . . . , 𝑋𝑛 in terms of
quantities which resemble higher order partial derivatives. More precisely, we aim
for inequalities of the form

P
(︀
|𝑓(𝑋) − E 𝑓(𝑋)| ≥ 𝑡

)︀
≤ 2 exp

(︁
− 𝑐 min

𝑘=1,...,𝑑

𝑡2/𝑘

𝐶𝑘

)︁
for all 𝑡 ≥ 0 and some constants 𝐶1, . . . , 𝐶𝑑 depending on 𝑓 , and 𝑐 which might
depend on the distribution of 𝑋. Up to a constant depending on 𝑑 only these can
be understood as extensions of Bernstein-type inequalities, i. e. we can equivalently
prove concentration inequalities of the form

P
(︀
|𝑓(𝑋) − E 𝑓(𝑋)| ≥ 𝑡

)︀
≤ 2 exp

(︁
− 𝑐

𝑡2

𝐶1 + 𝐶2𝑡+
∑︀𝑑

𝑘=3 𝐶𝑘𝑡
2−2/𝑘

)︁
.

We begin by proving Bernstein-type inequalities, i. e. the case 𝑑 = 2, in Chapter
3. We show how the Bobkov–Götze theorem [BG99] can be used to deduce
Bernstein-type inequalities for functions 𝑓 with “derivatives” (in some precise
sense) bounded by some sub-Gaussian random variable 𝑔. Secondly, we show
how to leverage an inequality by Gao–Quastel [GQ03] to obtain concentration
inequalities on the symmetric group.

To include the cases 𝑑 ≥ 3, in Chapter 4 we consider two different, but closely
related frameworks. The first situation are finite spin systems, i. e. probability
measures on finite product spaces with dependence among the coordinates. We
make use of an approximate tensorization property of the entropy proven by
Marton [Mar15] to establish a logarithmic Sobolev inequality, from which we
deduce concentration inequalities. We demonstrate its usefulness in general Ising



vi

models and in the exponential random graph model primarily, but also provide
other examples. In the situation of independent random variables, building upon
results of [BBLM05] and [BGS19], we prove analogous concentration inequalities
for bounded functions.

Thereafter, in Chapter 5 we restrict ourselves to polynomials in independent
random variables 𝑋1, . . . , 𝑋𝑛, but allow the 𝑋𝑖 to be unbounded. This is not
covered by the results in Chapter 4. However, we only deal with random variables
with sub-exponentially decaying tails, i. e. P(|𝑋𝑖| ≥ 𝑡) ≤ 𝑐 exp(−𝐶𝑡𝛼), and prove
multilevel concentration inequalities. This generalizes results of Adamczak–Wolff
[AW15] from sub-Gaussian to 𝛼-sub-exponential random variables. We complement
it with several generalizations of inequalities proven in the sub-Gaussian case.

This thesis is concluded with some open questions, which could serve as starting
points for future research projects.
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CHAPTER 1

Introduction

Since the inception of probability theory as a mathematical subject, a driving
force of its development has been the desire to understand the behavior of functions
of independent random variables. To illustrate the transition from the arguably
most famous theorems in probability theory to the content of this thesis, let
us consider the simple random walk given by 𝑆𝑛 =

∑︀𝑛
𝑖=1 𝑋𝑖 for independent,

identically distributed (i. i. d.) centered random variables 𝑋1, . . . , 𝑋𝑛. The law of
large numbers (LLN) ensures the convergence 𝑛−1𝑆𝑛 → 0 either in probability or
almost surely, depending on the integrability conditions of the summands. However,
as the theorem is very general, it is unsatisfactory due to two disadvantages. Firstly,
it is an asymptotic result, i. e. it does not provide any information for a fixed
𝑛 ∈ N and thus no rigorous results for finite sample sizes. And secondly, it does
neither give any information on the fluctuations, nor any hint at the scale of
fluctuation of 𝑆𝑛 around its mean.

A sharpening of the LLN is given by the central limit theorem (CLT), arguably
the single most important result in probability theory. Applied to the random walk
𝑆𝑛, it states that under under a finite second moment of the 𝑋𝑖 the random variable
𝑛−1/2𝑆𝑛 tends to a non-deterministic limit, the normal distribution. Equivalently,
the scale at which one can see stochastic fluctuations is

√
𝑛 instead of 𝑛, i. e. at

the scale of the standard deviation. This does solve the second issue, but not
the first one, as the CLT is also an asymptotic result. These issues lead to the
investigation of properties of finite sample sizes.

1.1 Concentration of measure

There are now two leading questions which arise:

(𝑎) Is it possible to bound the tails of 𝑆𝑛 for finite 𝑛? If we expect the fluctuations
to be of order

√
𝑛, can we provide upper bounds on its tail behavior?

(𝑏) What can be said about more general functions 𝑓(𝑋1, . . . , 𝑋𝑛) and their
concentration properties? Is the special structure of the sum important or is
it possible to provide similar descriptions for a wider class of functions, i. e.
the probability P(|𝑆𝑛 − E𝑆𝑛| ≥ 𝑡) for some 𝑡 > 0?
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Obviously the first question is too general in the class of all random variables, even
under a finite variance assumption. It is reasonable to consider random variables
that themselves have light tails, i. e. for which the tails decay sufficiently rapidly.

There are many possible routes one can take to shed some light on these questions.
In the case of 𝑆𝑛, a straightforward approach is applying Markov’s inequality to
the function 𝑥 ↦→ exp(𝜆𝑥) for any 𝜆 > 0 and optimization. For example, assuming
that all the random variables 𝑋𝑖 are sub-Gaussian with constant 𝜎2 in the sense
that for all 𝜆 ∈ R it holds

E exp(𝜆𝑋𝑖) ≤ exp
(︁𝜎2𝜆2

2

)︁
, (1.1)

we obtain by straightforward calculations

P
(︀
𝑆𝑛 ≥ 𝑡

)︀
≤ exp

(︁
− 𝑡2

2𝜎2𝑛

)︁
. (1.2)

As −𝑋𝑖 also satisfies (1.1), by a union bound this easily yields

P
(︀
|𝑆𝑛| ≥ 𝑡

)︀
≤ 2 exp

(︁
− 𝑡2

2𝜎2𝑛

)︁
. (1.3)

The implications of (1.3) are far-reaching. Indeed, for any (failure probability)
𝜀 ∈ (0,1) the inequality implies that with probability at least 1 − 𝜀 we have

|𝑆𝑛| ≤
√︀

2𝜎2𝑛 log(2/𝜀).

Here, the
√
𝑛 scale also appears naturally, as (up to a set of probability less than

𝜀) 𝑆𝑛 only takes values of order
√
𝑛. Furthermore, if we want to increase the

probability that the inequality holds, i. e. decrease 𝜀, we only pay a logarithmic
price for that. A naive application of Chebyshev’s inequality would result in a
bound of the form

√︀
𝜎2𝑛/𝜀.

The deviation inequality (1.2) and the concentration inequality (1.3) are instances
of what can be called concentration of measure, as it gives non-asymptotic bounds
on deviations of a random variable from a deterministic value (in this case, the
mean). However, the big drawback of this approach is its strong reliance on the
function 𝑆𝑛 being linear, allowing to factorize the moment generating function
and use the sub-Gaussian property of its components.

A more successful way to prove concentration of measure is by using functional
inequalities, or more specifically an approach which is nowadays known as the
entropy method. It has emerged as a way to prove several groundbreaking concen-
tration inequalities in product spaces by Talagrand [Tal91a; Tal96b], mainly in
the papers of Ledoux [Led97], Bobkov and Ledoux [BL97], and Massart [Mas00].
Before explaining it in the general setting, let us recall the logarithmic Sobolev
inequality (LSI) for the standard Gaussian measure 𝛾 on R𝑛. In [Gro75], Gross
established an inequality for 𝛾 which is able to capture (and actually is equivalent
to) hypercontractivity results of Nelson [Nel73], which he coined the logarithmic
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Sobolev inequality. It states that for any 𝑓 ∈ 𝐶∞
𝑐 (R𝑛) the inequality

Ent𝛾(𝑓 2) ≤ 2
ˆ

|∇𝑓 |2𝑑𝛾 (1.4)

holds, where

Ent𝛾(𝑓 2) =
ˆ
𝑓 2 log 𝑓 2𝑑𝛾 −

ˆ
𝑓 2𝑑𝛾 log

ˆ
𝑓 2𝑑𝛾

is the entropy functional (also known as Boltzmann–Shannon entropy, or Kullback–
Leibler divergence). Informally, (1.4) bounds the disorder of a function 𝑓 (under 𝛾)
by its average local fluctuations, measured in terms of the length of the gradient.
Actually, the LSI is a very strong inequality, as it implies the famous Gaussian
Poincaré inequality as proven by Chernoff [Che81] (see also [Kla85]), which itself
implies that Lipschitz functions have variance at most 1 with respect to the
Gaussian measure.

Furthermore, the inequality (1.4) can be used to prove concentration of measure
for Lipschitz functions. One possible way is known as Herbst argument and we
briefly sketch it. In essence, it provides a differential inequality for the moment
generating function. Assume that 𝑓 is bounded, smooth and 𝐿-Lipschitz for some
𝐿 > 0 and let 𝑔 := exp(𝜆𝑓/2). Applying (1.4) to 𝑔 yields

Ent𝛾(𝑔2) ≤ 2
ˆ

|∇𝑔|2𝑑𝛾 = 𝜆2

2

ˆ
|∇𝑓 |2𝑒𝜆𝑓𝑑𝛾 ≤ 𝜆2𝐿2

2

ˆ
𝑒𝜆𝑓𝑑𝛾.

If we denote by 𝐻(𝜆) :=
´
𝑒𝜆𝑓𝑑𝛾 the moment generating function (mgf) of 𝑓 , this

inequality can be written as

(𝜆−1 log𝐻(𝜆))′ ≤ 𝐿2

2 .

By elementary tools, it can be seen that 𝜆−1 log𝐻(𝜆) →
´
𝑓𝑑𝛾 as 𝜆 → 0, so that

the differential inequality can be integrated to prove

log𝐻(𝜆) ≤ 𝜆2𝐿2

2 + 𝜆

ˆ
𝑓𝑑𝛾.

Thus, the growth of the mgf can be bounded, and Markov’s inequality provides
deviation inequalities of the form 𝛾(𝑓 −

´
𝑓𝑑𝛾 ≥ 𝑡) ≤ exp(−𝑡2/(2𝐿2)). Repeating

the argument for −𝑓 yields a sub-Gaussian bound

𝛾
(︁

|𝑓 −
ˆ
𝑓𝑑𝛾| ≥ 𝑡

)︁
≤ 2 exp

(︁
− 𝑡2

2𝐿2

)︁
. (1.5)

A remarkable feature of (1.5) is the fact that the right hand side does not depend
on 𝑛, which is termed dimension-free concentration inequality. Moreover, it is
easily seen that (1.5) is a more general form of (1.3), as 𝑓(𝑥1, . . . , 𝑥𝑛) =

∑︀𝑛
𝑖=1 𝑥𝑖
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satisfies |∇𝑓 | =
√
𝑛. Finally, note that this approach does not use any specific

properties of the Gaussian measure 𝛾, so that this argument is valid in a broader
range. Indeed, whenever any probability measure 𝜈 satisfies the inequality (1.4),
Lipschitz functions have sub-Gaussian tail decay under 𝜈. We say that 𝜈 satisfies
an LSI(𝜎2) if the constant 2 in (1.4) is replaced by 2𝜎2. Hence we have sketched
the proof of the following well-known theorem.

Theorem 1.1. Assume that a probability measure 𝜈 satisfies an LSI(𝜎2). For any
smooth Lipschitz function 𝑓 with |∇𝑓 | ≤ 𝐿 and any 𝑡 ≥ 0 it holds

𝜈
(︁

|𝑓 −
ˆ
𝑓𝑑𝜈| ≥ 𝑡

)︁
≤ 2 exp

(︁
− 𝑡2

2𝜎2𝐿2

)︁
.

Comparing this to the concentration properties of the random walk 𝑆𝑛, we also
have that for any 𝜀 ∈ (0,1), with probability at least 1 − 𝜀 we have

|𝑓 −
ˆ
𝑓𝑑𝜈| ≤

√︀
2𝜎2𝐿2 log(2/𝜀).

After having observed some prime examples of the concentration of measure
phenomenon, let us provide a famous description of what it actually is. To
paraphrase Talagrand [Tal96a], it can be described as the phenomenon that
any function 𝑓 = 𝑓(𝑋1, . . . , 𝑋𝑛) of independent random variables 𝑋1, . . . , 𝑋𝑛

tends to be very close to a deterministic quantity1, if it is not too sensitive
to one of its parameters. The function is usually assumed to be Lipschitz in
some sense, depending on a suitably adapted notion of a gradient. In other
words, the distribution of any Lipschitz function of independent random variables
shows strong (more precisely: sub-Gaussian) concentration properties. Since it
is most successful in high dimensions, it is best described as a high-dimensional
phenomenon.

Theorem 1.1 is quite satisfactory, as it provides bounds on the fluctuations and
is yet general enough to cover the class of Lipschitz functions. Nevertheless, it
falls short of providing estimates for non-Lipschitz functions, such as polynomials.
Of course there is a perfectly good reason for that, as non-Lipschitz functions
need not satisfy sub-Gaussian estimates. For example, if 𝑋 has a standard normal
distribution, then 𝑋2 has a 𝜒2(1) distribution, which has exponentially decaying
tails. However, before we begin presenting concentration of measure results for
non-Lipschitz functions in Sections 1.2 and 1.3, let us remark on the “classical”
case described so far.

Firstly, to make sense of the term logarithmic Sobolev inequality, it is helpful
draw a connection to the theory of partial differential equations. In PDE theory,
a Sobolev inequality is any type of inequality that compares some norm of a
function 𝑓 with some (possibly different) norm of its gradient ∇𝑓 2. For example,

1This is usually its expected value or its median.
2Or, more generally, its weak derivative. For our purposes, we always think of smooth

functions.
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both norms could be 𝐿𝑝 or 𝐿𝑞 norms with respect to the Lebesgue measure. Let us
write ‖𝑓‖𝑝 for the 𝐿𝑝 norm of a measurable function with respect to the Lebesgue
measure on R𝑛. The celebrated Gagliardo–Nirenberg–Sobolev inequality states that
for any 𝑝 ∈ [1,𝑛) (with its conjugate (𝑝*)−1 = 𝑝−1 − 𝑛−1) there is a constant
𝐶 = 𝐶(𝑛,𝑝) such that the inequality

‖𝑓‖𝐿𝑝* ≤ 𝐶‖|∇𝑓 |‖𝐿𝑝

holds for any 𝑓 ∈ 𝐶∞
𝑐 (R𝑛). In the case 𝑝 = 2 and 𝑝* = 2𝑛/(𝑛 − 2) > 2 we

can deduce 𝑓 ∈ 𝐿𝑝
* from |∇𝑓 | ∈ 𝐿2. However, there are two disadvantages:

the constant 𝐶 depends the dimension 𝑛, and for 𝑛 → ∞ there is hardly any
information, i. e. it basically reduces to the Poincaré inequality

ˆ (︁
𝑓 −
ˆ
𝑓𝑑𝑥

)︁2
𝑑𝑥 ≤ 𝐶

ˆ
|∇𝑓 |2𝑑𝑥.

In contrast, the constant 2 in (1.4) is independent of the dimension, but it only
provides a weaker estimate. Indeed, if |∇𝑓 | ∈ 𝐿2(𝛾), then 𝑓 is contained in the
Orlicz space

𝐿2 log𝐿(𝛾) =
{︁
𝑔 : R𝑛 → R :

ˆ
𝑔2 log(𝑔2)𝑑𝛾 < ∞

}︁
.

Note that for any probability measure 𝜈 the (strict) inclusion 𝐿2+𝜀(𝜈) ⊂ 𝐿2 log𝐿(𝜈)
holds for any 𝜀 > 0. Consequently, the logarithmic Sobolev inequality merely
implies an improvement of the integrability of 𝑓 by a logarithmic order, when
compared to the Poincaré inequality.

Secondly, aside from the approach outlined above there is a second ansatz to
deduce concentration inequalities from (1.4). We want to stress that the Herbst
argument is easier to digest for a first reading, and thus we have chosen to present
it, although the second approach is closer to the content of this thesis. It is possible
to derive from (1.4) 𝐿𝑝 norm inequalities for 𝑝 ≥ 2 of the type

‖𝑓 − E 𝑓‖𝑝 ≤
√︀

2(𝑝− 1)‖|∇𝑓 |‖𝑝. (1.6)

Such inequalities were initially proven by Aida and Stroock [AS94] and can similarly
be used to prove sub-Gaussian concentration under the condition |∇𝑓 | ≤ 1.1
Furthermore, the Aida–Stroock approach has the added benefit that (1.6) allows
for estimates going beyond the setting of Lipschitz functions, as it compares the
𝐿𝑝 norm of the function under consideration to the 𝐿𝑝 norm of its gradient. Now,
it is possible to iterate this by considering the function 𝑔 := |∇𝑓 |. As this thesis
will make use of inequalities of the type (1.6) and an iteration procedure, we omit
the details for now.

Thirdly, concentration of measure has become an established part of probability

1One needs to recall the classical fact that the sub-Gaussian property is equivalent to
sup𝑝≥1 𝑝−1/2‖𝑋‖𝑝 < ∞, see e. g. [Ver18, Proposition 2.5.2].
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theory within the last 40 years with applications in numerous fields, as is witnessed
by the monographs [MS86], [Led01], [BLM13], [RS14], [Han16]. The focus of this
exposition shall not be the concentration of measure phenomenon for Lipschitz-
type functions, as this is by now a rather classical topic and many excellent
descriptions can be found in the above mentioned sources or in the PhD thesis of
Chatterjee [Cha05, Chapter 2]. Nevertheless, we believe it is appropriate to briefly
mention some landmark works.

The first result that could be considered within the framework of concentration
of measure is Lévy’s isoperimetric inequality on the sphere, stating that the
solutions of the isoperimetric problem on the sphere are spherical caps1 (see e. g.
[MS86, Appendix I]2). It is fair to assume that Lévy did not aim for concentration
of measure results, but for a solution of the (very classical) isoperimetric problem.
Hence, the birth of the theory is sometimes attributed to V. Milman3, who
reproved a famous result on almost Euclidean subspaces of high-dimensional
spaces in [Mil71], for which we again refer to the monograph [MS86]. Some years
later, Borell [Bor75] and Ibragimov, Sudakov and Tsirelson [CIS76; ST74] proved
similar inequalities in the theory of Gaussian processes, which helped popularizing
the concept. Afterwards it was further developed in a series of remarkable works
in the nineties by Talagrand, proving a variety of different isoperimetric and
concentration inequalities on general product spaces in [Tal88; Tal91a; Tal91b;
Tal95; Tal96a; Tal96b]. As mentioned above, some of the results were reproven
using the entropy method in [BL97; Led97], and the method was developed in
[Mas00] and [BLM03] for general functions of independent random variables.

The reader might be inclined to ask whether the concentration of measure
phenomenon is fully characterized by an inequality similar to (1.5), or whether
there are generalizations of it. We argue that the results considered so far are
first order concentration of measure in the sense that we have control of a first
order difference (the gradient), leading to sub-Gaussian estimates. In contrast, the
term higher order concentration of measure shall emphasize that we are concerned
with functions which are not of Lipschitz type, and in turn obtain multilevel
concentration inequalities which are of the form

P(|𝑓(𝑋) − E 𝑓(𝑋)| ≥ 𝑡) ≤ 2 exp
(︁

− min
𝑘=1,...,𝑑

𝑡2/𝑘

𝐶𝑘

)︁
for some order 𝑑.

The problem of applying results leading to sub-Gaussian estimates in the wrong
situation can be seen in the following toy example. A handy and easy-to-use tool
to prove concentration of measure is the so-called bounded differences inequality.
It states that for any function 𝑓 : 𝒳1 × . . .× 𝒳𝑛 → R satisfying |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑐𝑖
whenever 𝑥 and 𝑦 differ in the 𝑖-th coordinate only, and independent random

1Spherical caps are balls with respect to the geodesic distance.
2Milman also proved a generalization of an inequality of Lévy for manifolds with positive

Ricci curvature.
3For example by Michel Talagrand, see [Tal91a; Tal96b].
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variables 𝑋𝑖 with values in 𝒳𝑖, we have

P
(︀
|𝑓(𝑋1, . . . , 𝑋𝑛) − E 𝑓(𝑋1, . . . , 𝑋𝑛)| ≥ 𝑡

)︀
≤ 2 exp

(︁
− 2𝑡2∑︀𝑛

𝑖=1 𝑐
2
𝑖

)︁
. (1.7)

It was originally formulated and proven by McDiarmid [McD89], although it
is a simple application of Azuma’s inequality [Azu67]. Now, if we consider the
function 𝑓(𝑥) = 𝑥1

∑︀𝑛
𝑗=2 𝑥𝑗 and [−1,+ 1]-valued, centered i. i. d. random variables

𝑋1, . . . , 𝑋𝑛, a short calculation shows 𝑐1 = 2(𝑛− 1) and 𝑐2 = . . . = 𝑐𝑛 = 2. Thus,
(1.7) yields

P
(︀
|𝑓(𝑋1, . . . , 𝑋𝑛) − E 𝑓(𝑋1, . . . , 𝑋𝑛)| ≥ 𝑡

)︀
≤ 2 exp

(︁
− 𝑡2

2(𝑛− 1)2 + 2(𝑛− 1)

)︁
.

The right hand side does not vanish as 𝑛 → ∞ if we choose 𝑡 of order 𝑛, which
is equivalent to multiplying 𝑓 by 𝑛−1. However, the variance of 𝑓(𝑋1, . . . , 𝑋𝑛) is
given by Var(𝑋1)2(𝑛− 1), and so a normalization of 𝑛−1 is of the wrong order; in
this case, by Chebyshev’s inequality we obtain for any 𝑡 > 0

P
(︀
𝑛−1|𝑓(𝑋1, . . . , 𝑋𝑛) − E 𝑓(𝑋1, . . . , 𝑋𝑛)| ≥ 𝑡

)︀
≤ Var(𝑋1)

𝑛𝑡2
→ 0.

The wrong order in the bounded differences inequality is due to the fact that we
need to uniformly bound the function 𝑔1(𝑋) = |

∑︀𝑛
𝑗=2 𝑋𝑗|, and the only possible

bound is of order 𝑛. On the other hand, the variance of 𝑔1(𝑋) is of order 𝑛 as
well, so that a normalization of 𝑛−1/2 should suffice. In this example, one can find
the correct normalization by considering the following well-known Hanson–Wright
inequality, which was originally proven in [HW71; Wri73], with a modern proof
given in [RV13].

Theorem 1.2. Consider independent, centered random variables 𝑋1, . . . , 𝑋𝑛

which are sub-Gaussian in the sense of (1.1) for some constant 𝐾, let 𝐴 = (𝑎𝑖𝑗)
be a symmetric matrix and define 𝑓(𝑋) = 𝑓(𝑋1, . . . , 𝑋𝑛) =

∑︀𝑛
𝑖,𝑗=1 𝑎𝑖𝑗𝑋𝑖𝑋𝑗. There

is a universal constant 𝑐 > 0 such that for any 𝑡 ≥ 0 it holds

P
(︀
|𝑓(𝑋) − E 𝑓(𝑋)| ≥ 𝑡

)︀
≤ 2 exp

(︁
− 𝑐min

(︁ 𝑡2

𝐾4‖𝐴‖2
HS
,

𝑡

𝐾2‖𝐴‖op

)︁)︁
. (1.8)

Here, ‖𝐴‖HS = (
∑︀

𝑖𝑗 𝑎
2
𝑖𝑗)1/2 is the Hilbert–Schmidt norm and ‖𝐴‖op = sup|𝑥|≤1|𝐴𝑥|

the operator norm of 𝐴 (with respect to the Euclidean norm |·|).

For the above example, we can choose the matrix 𝐴 to be 1 for all indices (𝑖,𝑗)
such that either 𝑖 = 1 or 𝑗 = 1, and calculate ‖𝐴‖HS ∼

√
𝑛 and ‖𝐴‖op ∼

√
𝑛.1

Nevertheless, the Hanson–Wright inequality is only valid for quadratic forms, and
cannot be applied to 𝑑-homogeneous forms such as 𝑓(𝑥) = 𝑥1𝑥2

∑︀𝑛
𝑗=3 𝑥𝑗, which

necessitates different concentration inequalities.
1The sub-Gaussian property with 𝐾 = 1 follows from Hoeffding’s lemma.
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We want to highlight two main differences between the sub-Gaussian bound
(1.5) and the bound in the Hanson–Wright inequality (1.8). Firstly, the scales at
which the quadratic form fluctuates are determined by two norms of the matrix 𝐴,
instead of the supremum of the gradient. And secondly, there are multiple levels
of decay; for large values of 𝑡 (more precisely, for 𝑡 ≥ 𝐾2‖𝐴‖2

HS‖𝐴‖−1
op ) we have an

exponential tail decay instead of a Gaussian one.

1.2 Our contribution

First, we want to mention the papers from which this thesis draws most of its
results.

• [GSS19b]: Friedrich Götze, Holger Sambale and Arthur Sinulis. ’Higher
order concentration for functions of weakly dependent random variables’. (pub-
lished in Electron. J. Probab.)

• [SS18]: Holger Sambale and Arthur Sinulis. ’Logarithmic Sobolev in-
equalities for finite spin systems and applications’. (accepted for publication in
Bernoulli)

• [GSS18]: Friedrich Götze, Holger Sambale and Arthur Sinulis. ’Con-
centration inequalities for bounded functionals via generalized log-Sobolev in-
equalities’. (submitted)

• [GSS19a]: Friedrich Götze, Holger Sambale and Arthur Sinulis. ’Con-
centration inequalities for polynomials in 𝛼-sub-exponential random variables’.
(submitted)

• [SS19]: Holger Sambale and Arthur Sinulis. ’Modified log-Sobolev inequal-
ities and two-level concentration’. (submitted)

Chapter 2 contains mostly technical results, and these haven been proven in
[GSS19b] and [SS18]. The third Chapter is based on [SS19], although some
applications to the symmetric group as well as the concentration inequalities for
polynomials in [0,1] random variables do not appear therein. We have implemented
results from [SS18] and [GSS18] into Chapter 4. Our last chapter, Chapter 5, is
completely based on the article [GSS19a].

Now let us provide a panoramic view of some of the results we prove in this
thesis. The first concentration inequality that will be proven in Chapter 3 is the
following theorem. We refer to Chapter 3 for the definitions of a difference operator
and the 𝛤−mLSI(𝜌), which are both taken from [BG99]. At first reading, one
can think of the Euclidean length of the gradient, 𝛤 (𝑓) = |∇𝑓 |, as a difference
operator whenever the probability measure 𝜇 is defined on R𝑛.

Theorem 3.1. Assume that a probability measure 𝜇 on a measurable space (𝒳 ,𝒜)
satisfies a 𝛤−mLSI(𝜌) for some difference operator 𝛤 and 𝜌 > 0. Let 𝑓, 𝑔 : 𝒳 → R
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be two measurable functions such that 𝛤 (𝑓) ≤ 𝑔, and 𝑔 fulfills 𝛤 (𝑔) ≤ 𝑏 for some
constant 𝑏 > 0. Then for all 𝑡 ≥ 0 the inequality

𝜇
(︀
𝑓 − E𝜇 𝑓 ≥ 𝑡

)︀
≤ 4

3 exp
(︁

− 1
8𝜌 min

(︁ 𝑡2

(E𝜇 𝑔)2 ,
𝑡

𝑏

)︁)︁
.

holds. If moreover 𝛤 (𝜆𝑓) = |𝜆|𝛤 (𝑓) for all 𝜆 ∈ R, then for all 𝑡 ≥ 0 we have

𝜇
(︀
|𝑓 − E𝜇 𝑓 | ≥ 𝑡

)︀
≤ 2 exp

(︁
− 1

12𝜌 min
(︁ 𝑡2

(E𝜇 𝑔)2 ,
𝑡

𝑏

)︁)︁
.

Informally, Theorem 3.1 states that under the modified logarithmic Sobolev
condition one can always control the right tail of a function 𝑓 by its majorizing
function 𝑔. If the difference operator also satisfies an additional property, then
the left tail can also be controlled, resulting in concentration inequalities.

To get a better understanding of Theorem 3.1, we present two examples. The
first example is the 𝑛-sphere 𝑆𝑛−1 := {𝑥 ∈ R𝑛 : |𝑥| = 1}, where |𝑥| is the Euclidean
norm. It has been known since the contribution of Mueller and Weissler [MW82]
that 𝑆𝑛−1 satisfies a logarithmic Sobolev inequality with respect to the spherical
gradient (see also [BCG17]), which leads to the following application.

Proposition 3.7. Consider 𝑆𝑛−1 equipped with the uniform measure 𝜎𝑛−1 and let
𝑓 : 𝑆𝑛−1 → R be a 𝐶2 function satisfying sup𝜃∈𝑆𝑛−1‖𝑓 ′′

𝑆(𝜃)‖op ≤ 1. For any 𝑡 ≥ 0
it holds

𝜎𝑛−1
(︀
|𝑓 − E𝜎𝑛−1 𝑓 | ≥ 𝑡

)︀
≤ 2 exp

(︁
− (𝑛− 1)

12 min
(︁ 𝑡2

(E𝜎𝑛−1|∇𝑆𝑓 |)2 , 𝑡
)︁)︁
.

In particular, if 𝑓 is orthogonal to all affine functions, then

𝜎𝑛−1
(︀
(𝑛− 1)|𝑓 − E𝜎𝑛−1 𝑓 | ≥ 𝑡

)︀
≤ 2 exp

(︁
− 1

12 min
(︁ 𝑡2

E𝜎𝑛−1‖𝑓 ′′
𝑆‖2

HS
, 𝑡
)︁)︁
.

This proposition shows that functions 𝑓 : 𝑆𝑛−1 → R which are orthogonal to
all affine functions are strongly concentrated. In particular, given any 𝜀 ∈ (0,1),
with probability at least 1 − 𝜀 (with respect to the uniform distribution) it holds

|𝑓 − E𝜎𝑛−1 𝑓 | ≤ (𝑛− 1)−1 max
(︁√︁

12E‖𝑓 ′′
𝑆‖2

HS log(2/𝜀), 12 log(2/𝜀)
)︁
.

Our second example is the symmetric group 𝑆𝑛. We let 𝜏𝑖𝑗 denote the transpo-
sition of the 𝑖-th and the 𝑗-th element. A consequence of a result in [GQ03] is the
following proposition.

Proposition 3.14. Let 𝑛 ∈ N, 𝑆𝑛 be the symmetric group and 𝜋𝑛 be the uniform
distribution on 𝑆𝑛. Define the difference operator 𝛤 via

𝛤 (𝑓)(𝜎) =
(︁
𝑛−1

∑︁
𝑖,𝑗

(𝑓(𝜎) − 𝑓(𝜎𝜏𝑖𝑗))2
)︁1/2

for 𝑓 : 𝑆𝑛 → R .
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Then a 𝛤−mLSI(1) holds.
Proposition 3.14 makes it possible to apply Theorem 3.1 to the symmetric

group and obtain concentration inequalities. For example, in Chapter 3 we provide
results for Lipschitz functions with respect to different metrics. An easy corollary
of Proposition 3.14 is the following concentration inequality.
Corollary. Let 𝑆𝑛 be the symmetric group, 𝜋𝑛 be the uniform measure and
𝐹 (𝜎) =

∑︀𝑛
𝑖=1 1𝜎(𝑖)=𝑖 be the number of fixed points. For any 𝑡 ≥ 0 it holds

𝜋𝑛(|𝐹 − 1| ≥ 𝑡) ≤ 2 exp
(︁

− 𝑡2

32 + 8𝑡/3

)︁
.

In particular, this implies that for any 𝜀 ∈ (0,1), with probability at least (1 − 𝜀)
(which amounts to saying that for at least (1 − 𝜀) · 𝑛! permutations) we have

|𝐹 − 1| ≤ 16
3 log(2/𝜀) +

√︀
32 log(2/𝜀).

The asymptotic distribution of the number of fixed points is known to be a Poisson
distribution, so that for large values of 𝑡 we lose a logarithmic factor in 𝑡 in the
exponential. On the other hand, this result is non-asymptotic, i. e. it can be
applied to any 𝑛 ∈ N. Similar results have been derived using different methods
in [Cha05].

Furthermore, Chapter 3 also contains a proof of a slightly weaker version of
the famous convex distance inequality by Talagrand for the symmetric group. As
far as we aware, there has been no proof of either the weak of the strong version
in this setting using the entropy method. We defer the definition of the convex
distance to Chapter 3.
Proposition 3.3. Let 𝑆𝑛 be the symmetric group and 𝜋𝑛 be the uniform distribu-
tion on 𝑆𝑛. For any set 𝐴 ⊆ 𝑆𝑛 with 𝜋𝑛(𝐴) ≥ 1/2 and all 𝑡 ≥ 0 we have

𝜋𝑛(𝑑𝑇 (·, 𝐴) ≥ 𝑡) ≤ 2 exp
(︁

− 𝑡2

64

)︁
.

Chapter 4 contains concentration inequalities for probability measures satisfying
a specific logarithmic Sobolev inequality. Here, we refrain from giving the necessary
definitions and the general concentration result (Theorem 4.1 and Proposition 4.3),
and rather concentrate on some applications. The first one is a uniform version
of the Hanson–Wright inequality for the Curie–Weiss model, which we briefly
describe. Given a parameter 𝛽 ≥ 0 (physically, up to a multiplicative constant,
the inverse temperature), it is the probability measure on {−1,+ 1}𝑛 given by

𝜇𝛽(𝑥) = 𝑍−1 exp
(︁ 𝛽

2𝑛
∑︁
𝑖 ̸=𝑗

𝑥𝑖𝑥𝑗

)︁
,

where 𝑍 is the normalization constant (also known as partition function). Applied
to this model, we obtain the following theorem.
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Theorem 4.4. Let 𝜇𝛽 be the Curie–Weiss model with parameter 𝛽 ∈ (0,1), and
fix some set 𝒯 with elements of the form 𝑡 = (𝑡𝑖1...𝑖𝑑)1≤𝑖1<...<𝑖𝑑≤𝑛, 𝑡𝑖1...𝑖𝑑 ∈ R. Set

𝑓(𝑥) := 𝑓𝒯 (𝑥) := sup
𝑡∈𝒯

⃒⃒⃒ ∑︁
𝑖1<...<𝑖𝑑

𝑡𝑖1...𝑖𝑑𝑥𝑖1 · · ·𝑥𝑖𝑑
⃒⃒⃒
.

There are 𝑑 functions 𝑊1, . . . ,𝑊𝑑 (for the exact definition, see (4.7)) and a constant
𝜎2 = 𝜎2(𝛽), which is independent of 𝑛 ∈ N, such that for any 𝑡 ≥ 0 it holds

𝜇𝛽
(︀
𝑓(𝑥) − E𝜇𝛽

𝑓 ≥ 𝑡
)︀

≤ 𝑒 exp
(︁

− 1
4𝜎2 min

𝑘=1,...,𝑑

(︁ 𝑡

𝑑𝑒E𝑊𝑘

)︁2/𝑘)︁
.

In essence, Theorem 4.4 provides the counterpart of some known concentration
inequalities for independent Rademacher random variables (such as the ones in
[BBLM05]) to the case of dependent random variables. The non-uniform case can
also be treated, and we even prove concentration inequalities for such multilinear
functions.

Theorem 4.9. Let 𝜇𝛽 be the Curie–Weiss model with temperature 𝛽 ∈ (0,1). Let
𝐴 = (𝑎𝑖1,...,𝑖𝑑) be a symmetric 𝑑-tensor with vanishing diagonal and bounded entries
sup𝑖1,...,𝑖𝑑 |𝑎𝑖1...𝑖𝑑| = 1, and define 𝑓 : {−1,+ 1}𝑛 → R via

𝑓 := 𝑓(𝑥) :=
∑︁

𝐼=(𝑖1,...,𝑖𝑑)

𝑎𝐼𝑥𝑖1 · · ·𝑥𝑖𝑑 .

There is a constant 𝜎2 = 𝜎2(𝛽) such that for all 𝑡 ≥ 0 it holds

𝜇𝛽
(︀
|𝑓(𝑥) − E𝜇𝛽

𝑓 | ≥ 𝑡
)︀

≤ 2 exp
(︁

− 1
𝜎2𝑛

min(𝑡2, 𝑡2/𝑑)
)︁
.

In particular, this theorem shows that the fluctuations of 𝑑-forms with bounded
coefficients are of order 𝑛𝑑/2, as by rescaling we obtain

𝜇𝛽(|𝑓(𝑥) − E𝜇𝛽
𝑓 | ≥ 𝑛𝑑/2𝑡) ≤ 2 exp

(︁
− 1
𝜎2 min(𝑛𝑑−2𝑡2, 𝑡2/𝑑)

)︁
.

As the maximal value of 𝑓 could be of order 𝑛, this shows that such functions
are strongly concentrated with respect to 𝜇𝛽. Consequently, for 𝛽 ∈ (0,1) the
dependence between the spins that is introduced in the Curie–Weiss model does
not lead to significantly different behavior than in the independent case. This is
in good accordance with limit theorems in this regime, see e. g. [EN78], [Ell06],
[EL10]. Theorem 4.9 has been generalized by Adamczak and co-workers [AKPS19].

Another application is counting triangles in an exponential random graph model.
For the exact definition of this model, see Section 2.6. It is a model of a random
graph which incorporates dependencies among the (random) connections between
the vertices. We let

(︀ℐ𝑛

3

)︀
be the set of all possibilities of choosing three distinct
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edges and

𝒯𝑛 :=
{︁

{𝑒,𝑓,𝑔} ∈
(︂

ℐ𝑛
3

)︂
: 𝑒,𝑓,𝑔 form a triangle

}︁
.

The statistic we are interested in is the number of triangles

𝑇3(𝑥) :=
∑︁

{𝑒1,𝑒2,𝑒3}∈𝒯𝑛

𝑥𝑒1𝑥𝑒2𝑥𝑒3 .

Furthermore, we let 𝑓1(𝑥) :=
∑︀

𝑒∈ℐ𝑛
(𝑥𝑒 −E𝜇𝛽

(𝑥𝑒)) be the number of edges in such
a graph, and 𝜇2 := E𝜇𝛽

𝑥𝑒𝑥𝑓 (for some edges 𝑒 ̸= 𝑓 ∈ ℐ𝑛, 𝑒 ∩ 𝑓 ̸= ∅).

Theorem 4.11. Under certain technical conditions on the exponential random
graph model 𝜇𝛽, there exists a constant 𝐶 > 0 such that for all 𝑡 ≥ 0 we have the
multilevel concentration bounds

𝜇𝛽(|𝑇3 − E𝜇𝛽
𝑇3| ≥ 𝑡) ≤ 2 exp

(︁
− 1
𝐶

min
(︁(︁ 𝑡

𝑛3/2

)︁2/3
,

𝑡

𝜇1𝑛3/2 ,
(︁ 𝑡

𝜇2𝑛2

)︁2)︁)︁
𝜇𝛽(|𝑇3 − E𝜇𝛽

𝑇3 − (𝑛− 2)𝜇2𝑓1| ≥ 𝑡) ≤ 2 exp
(︁

− 1
𝐶

min
(︁(︁ 𝑡

𝑛3/2

)︁2/3
,

𝑡

𝜇1𝑛3/2

)︁)︁
.

In Chapter 4 we give a detailed discussion of this result, but for this expository
outline we restrict to the following histograms.

As a corollary, it is possible to deduce limit theorems for the number of triangles
from those of the number of edges in such models. Clearly one has to still check
whether there is a CLT for the edge count, but this is a much more tractable
random variable, so that the corollary reduces the problem to a “linear” one.

Corollary 4.12. Let 𝜇𝛽 be as above. Assuming
(︀
𝑛
2

)︀−1/2 ∑︀
𝑒∈ℐ𝑛

(𝑥𝑒 − E𝜇𝛽
𝑥𝑒) ⇒

𝒩 (0,𝑣2), we can infer

𝑇3 − E𝜇𝛽
𝑇3

(𝑛− 2)𝜇2

√︁(︀
𝑛
2

)︀ ⇒ 𝒩 (0,𝑣2).

Lastly, in Chapter 5 we prove concentration inequalities for polynomials in
independent random variables 𝑋1, . . . , 𝑋𝑛 which have 𝛼-sub-exponential tails. By
this, we mean that there are two constants 𝑐, 𝐶 > 0 such that for all 𝑡 ≥ 0 it holds

P(|𝑋𝑖| ≥ 𝑡) ≤ 𝑐 exp
(︁

− 𝑡𝛼

𝐶

)︁
.

A simplified version of one of the results in Chapter 5 gives two-level concentration
inequalities for such random variables, which are akin to the Hanson–Wright
inequality (1.8).

Theorem 5.1. Let 𝑋1, . . . , 𝑋𝑛 be independent random variables satisfying E𝑋𝑖 =
0,E𝑋2

𝑖 = 1 and which are 𝛼-sub-exponential with constant 𝑀 for 𝛼 ∈ (0,1] ∪ {2}.
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Figure 4.1: The histograms show roughly 700.000 realizations of the ERGM for
𝑛 = 100 and parameters satisfying the conditions of the above theorem.
It can be seen that 𝑇3 − E𝜇𝛽

𝑇3 takes values on the scale 𝑛2, whereas
by subtracting the linear approximation we see values of order 𝑛3/2.

There is universal constant 𝐶 > 0 such that for any symmetric 𝑛 × 𝑛 matrix
𝐴 = (𝑎𝑖𝑗) and any 𝑡 ≥ 0 it holds

P
(︀⃒⃒∑︁

𝑖,𝑗

𝑎𝑖𝑗𝑋𝑖𝑋𝑗 − tr(𝐴)
⃒⃒

≥ 𝑡
)︀

≤ 2 exp
(︁

− 1
𝐶

min
(︁ 𝑡2

𝑀4‖𝐴‖2
HS
,
(︁ 𝑡

𝑀2‖𝐴‖op

)︁𝛼
2
)︁)︁
.

For the more general result, the sake of clarity we restrict to the case 𝛼 = 1.

Proposition 5.5. Let 𝐴 = (𝑎𝑖𝑗) be a symmetric 𝑛× 𝑛 matrix and let 𝑋1, . . . , 𝑋𝑛

be independent, centered random variables which are sub-exponential and E𝑋2
𝑖 = 1.

There is a constant 𝑀 = 𝑀(𝑐, 𝐶) such that for any 𝑡 ≥ 0 it holds

P
(︁⃒⃒∑︁

𝑖,𝑗

𝑎𝑖𝑗𝑋𝑖𝑋𝑗 − tr(𝐴)
⃒⃒

≥ 𝑡
)︁

≤ 2 exp
(︁

− 1
𝐶 ′𝜂(𝐴,𝑡/𝑀2)

)︁
,

where

𝜂(𝐴,𝑡) := min
(︁ 𝑡2

‖𝐴‖2
HS
,

𝑡

‖𝐴‖op
,
(︁ 𝑡

max𝑖=1,...,𝑛‖(𝑎𝑖𝑗)𝑗‖2

)︁ 2
3
,
(︁ 𝑡

‖𝐴‖∞

)︁ 1
2
)︁
.
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So, in contrast to sub-Gaussian random variables, the bound for sub-exponential
random variables can obtain up to four different regimes. However, in certain
situations these reduce to two; for example, consider the identity matrix 𝐴 = Id,
so that

∑︀
𝑖,𝑗 𝑎𝑖𝑗𝑋𝑖𝑋𝑗 =

∑︀𝑛
𝑖=1 𝑋

2
𝑖 is a sum of squares of sub-exponential random

variables. In this case, we have

P
(︁⃒⃒ 𝑛∑︁

𝑖=1

(𝑋2
𝑖 − E𝑋2

𝑖 )
⃒⃒

≥ 𝑡
)︁

≤ 2 exp
(︁

− 1
𝐶 ′ min(𝑡2/𝑛, 𝑡1/2)

)︁
.

The quadratic part 𝑡2/𝑛 is an expression of the CLT, whereas the part 𝑡1/2 comes
from large fluctuations of the individual summands.

1.3 Discussion of related literature

In this section, we collect a selection of multilevel concentration inequalities.
The first subsection consists of inequalities which can be applied to any function,
whereas the second subsection deals with polynomials only.

1.3.1 Concentration inequalities for general functions

Arguably the easiest non-trivial functions of independent random variables
are weighted sums, which were studied intensively and are well understood, cf.
the paper by Latala [Lat96]. The Hanson–Wright inequality gives concentration
inequalities for quadratic forms in independent, sub-Gaussian random variables.
However, there has been much interest in probability on Banach spaces in the eight-
ies and nineties (see for example the monograph [LT91]), and so a natural question
is to ask for an analogue of the Hanson–Wright inequality on Banach spaces. In
the landmark paper [Tal96a], Talagrand provided concentration inequalities for
quadratic forms in the Banach space case, i. e. for the random variable

𝑍 :=
⃦⃦⃦ 𝑛∑︁
𝑖,𝑗=1

𝑥𝑖𝑗𝜀𝑖𝜀𝑗

⃦⃦⃦
. (1.9)

Here (𝐵, ‖·‖) is a Banach space, 𝑥𝑖𝑗 are elements of 𝐵, 𝑥𝑖𝑖 = 0 for all 𝑖 = 1, . . . , 𝑛
and 𝜀𝑖 are independent Rademacher random variables. To state the result, let 𝐵*

1
be the unit ball in the dual space 𝐵* with respect to the dual norm

‖𝑥*‖* := sup
𝑥∈𝐵:‖𝑥‖≤1

𝑥*(𝑥).

The quantities which control the concentration behavior are

𝑈 := sup
𝑥*∈𝐵*

1

‖(𝑥*(𝑥𝑖𝑗))𝑖,𝑗‖op and 𝑉 := E sup
𝑥*∈𝐵*

1

(︁ 𝑛∑︁
𝑗=1

(︁ 𝑛∑︁
𝑖=1

𝜀𝑖𝑥
*(𝑥𝑖𝑗)

)︁2)︁1/2
.
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Theorem 1.3 (Theorem 1.2 in [Tal96a]). There exists an absolute constant 𝐾 > 0
such that for some median 𝑀 of 𝑍 as in (1.9) and all 𝑡 ≥ 0 we have

P
(︀
|𝑍 −𝑀 | ≥ 𝑡

)︀
≤ 2 exp

(︁
− 1
𝐾

min
(︁ 𝑡2
𝑉 2 ,

𝑡

𝑈

)︁)︁
. (1.10)

The concentration inequality (1.10) can equivalently be considered as a uni-
form version of (1.8). To see this, use the dual formulation of the norm ‖𝑥‖ =
sup𝑥*∈𝐵*

1
𝑥*(𝑥) to obtain

𝑍 = sup
𝑥*∈𝐵*

1

𝑛∑︁
𝑖,𝑗=1

𝜀𝑖𝜀𝑗𝑥
*(𝑥𝑖𝑗),

which is a supremum of quadratic forms indexed by the set 𝐵*
1 (or rather a dense,

countable subset of 𝐵*
1 to avoid measurability problems).

In contrast to other results of Talagrand, a generalization of Theorem 1.3 causes
many technical challenges, and as far as we are aware, there is no proof of the
concentration inequality (1.10) using the entropy method, but only control on the
deviation of the upper bound. For example, Ledoux proved the following deviation
inequality for bounded, independent random variables using the entropy method.

Theorem 1.4 (Theorem 3.1 in [Led97]). Let 𝜀1, . . . , 𝜀𝑛 be independent random
variables satisfying |𝜀𝑖| ≤ 1 and let 𝑍 be as in (1.9). There is an absolute constant
𝐾 > 0 such that for any 𝑡 ≥ 0

P(𝑍 − E𝑍 ≥ 𝑡) ≤ 2 exp
(︁

− 1
𝐾

min
(︁ 𝑡2

𝜎 E𝑍 + 𝑉 2 ,
𝑡

𝑈

)︁)︁
.

Here, we set 𝜎 := sup‖𝑦‖≤1 sup𝛼:|𝛼|≤1 sup𝛽:|𝛽|≤1
∑︀𝑛

𝑖,𝑗=1 𝛼𝑖𝛽𝑗⟨𝑦,𝑥𝑖𝑗⟩.

The quantity 𝜎 is unsatisfactory, as it does not appear in Theorem 1.3, and this
issue has been resolved later by Boucheron, Lugosi and Massart, see Theorem 1.8.

Another very important contribution of Talagrand was an isoperimetric in-
equality for the exponential distribution, see [Tal91a, Theorem 1.2]. In [BL97],
Bobkov and Ledoux proved a functional form thereof using the entropy method,
and generalized it to any probability measure satisfying a Poincaré inequality.

Theorem 1.5 (Corollary 3.2 in [BL97]). Let 𝜇 be a probability measure on a metric
space (𝐸,𝑑) (equipped with the Borel 𝜎-algebra) for which a Poincaré inequality

𝜆1Var𝜇(𝑓) ≤ E𝜇|∇𝑓 |2

for the gradient |∇𝑓 |(𝑥) := lim sup𝑦→𝑥|𝑓(𝑥) − 𝑓(𝑦)|/𝑑(𝑥,𝑦) holds. There is a
constant 𝐾 > 0 depending on 𝜆1 such that for any bounded function 𝑓 on 𝐸𝑛

satisfying
𝑛∑︁
𝑖=1

|∇𝑖𝑓 |2 ≤ 𝛼2 and max
𝑖=1,...,𝑛

|∇𝑖𝑓 | ≤ 𝛽 𝜇𝑛-almost surely
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and any 𝑡 ≥ 0 we have

𝜇𝑛
(︀
|𝑓 − E𝜇𝑛 𝑓 | ≥ 𝑡

)︀
≤ 2 exp

(︁
− 1
𝐾

min
(︁ 𝑡2
𝛼2 ,

𝑡

𝛽

)︁)︁
.

Here, the two-level concentration inequality holds for any (bounded) function 𝑓 ,
and the two regimes of its tail decay are controlled by the 𝐿2 and the 𝐿∞ norm of
its gradient.

Next, we want to mention the concentration inequalities for functions of indepen-
dent random variables as developed by Boucheron, Lugosi and Massart [BLM03] as
well as by the three authors and Bousquet in [BBLM05]. Let 𝑋1, . . . , 𝑋𝑛 be inde-
pendent random variables with values in some measurable space 𝒳 , 𝑓 : 𝒳 𝑛 → R be
a measurable function and 𝑍 := 𝑓(𝑋1, . . . , 𝑋𝑛). Denote by 𝑋 ′

1, . . . , 𝑋
′
𝑛 independent

copies of the 𝑋𝑖, define 𝑍(𝑖) := 𝑓(𝑋1, . . . , 𝑋𝑖−1, 𝑋
′
𝑖, 𝑋𝑖+1, . . . , 𝑋𝑛) and

𝑉+ := E
[︁ 𝑛∑︁
𝑖=1

(𝑍 − 𝑍(𝑖))2
+ | 𝑋

]︁
and 𝑉− := E

[︁ 𝑛∑︁
𝑖=1

(𝑍 − 𝑍(𝑖))2
− | 𝑋

]︁
.

Here, 𝑥+ denotes the positive part and 𝑥− the negative part of a real number. With
the aid of a general modified logarithmic Sobolev inequality they have established
the following theorem.

Theorem 1.6 (Theorem 2 in [BLM03]). For all 𝜃 > 0 and 𝜆 ∈ (0, 𝜃−1) it holds

logE
[︁

exp
(︀
𝜆(𝑍 − E𝑍)

)︀]︁
≤ 𝜆𝜃

1 − 𝜆𝜃
logE

[︁
exp

(︁𝜆𝑉+

𝜃

)︁]︁
,

logE
[︁

exp
(︀

− 𝜆(𝑍 − E𝑍)
)︀]︁

≤ 𝜆𝜃

1 − 𝜆𝜃
logE

[︁
exp

(︁𝜆𝑉−

𝜃

)︁]︁
.

To get a grasp of what this theorem implies, observe that one can easily recover
sub-Gaussian estimate for the upper tail under the condition 𝑉+ ≤ 𝑐 (and for
the lower tail under the condition 𝑉− ≤ 𝑐). Furthermore, it also allows to prove
two-level concentration if the moment generating function of 𝑉+ can be bounded,
which is shown in the following corollary.

Corollary 1.7 (Corollary 4 in [BLM03]). If 𝑉+ is such that for some 𝑎 > 0 and
𝜆 ∈ [0, 𝑎−1) the inequality logE exp(𝜆𝑉+) ≤ 𝜆

1−𝑎𝜆 E𝑉+ holds, then for any 𝑡 ≥ 0

P(𝑍 − E𝑍 ≥ 𝑡) ≤ exp
(︁

− 𝑡2

4E𝑉+ + 2
3(𝑎+ 1)𝑡

)︁
.

Theorem 1.6 was at the heart of many of the applications given in [BLM03]
(arguably too many to give an account of all of them here), out of which we
want to mention the application to the Rademacher chaos (1.9). It gives deviation
inequalities for the upper bound similar to Theorem 1.3, but no lower bound of
the same form.
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Theorem 1.8 (Theorem 17 in [BLM03]). Let ℱ be a finite collection of 𝑛 × 𝑛
symmetric matrices with zeroes on its diagonal and the property that 𝑀 ∈ ℱ
implies −𝑀 ∈ ℱ and set

𝑍 := sup
𝑀∈ℱ

𝑛∑︁
𝑖,𝑗=1

𝑀𝑖𝑗𝜀𝑖𝜀𝑗,

where 𝜀𝑖 are independent Rademacher random variables. For all 𝑡 ≥ 0 it holds

P(𝑍 − E𝑍 ≥ 𝑡) ≤ exp
(︁

− 𝑡2

32E sup𝑀∈ℱ
∑︀

𝑖

(︀∑︀
𝑗𝑀𝑖𝑗𝜀𝑗

)︀2 + 65
3 sup𝑀∈ℱ‖𝑀‖op𝑡

)︁
.

All the theorems presented up to now provide second order concentration
inequalities in the sense that they deal with functions resembling quadratic forms,
and the concentration inequalities are of Hanson–Wright-type. The following
theorems contain inequalities that can be used to prove higher order concentration
inequalities. The first one is a celebrated result from [BBLM05]. We define the
numeric constant 𝜅 :=

√
𝑒/(2

√
𝑒− 2) ≈ 1.271.

Theorem 1.9 (Theorem 2 in [BBLM05]). Let 𝑋1, . . . , 𝑋𝑛 be independent random
variables, 𝑓 a measurable function and set 𝑍 = 𝑓(𝑋1, . . . , 𝑋𝑛). We have for all
𝑝 ≥ 2

‖(𝑍 − E𝑍)+‖𝑝 ≤
√︀

2𝜅𝑝‖
√︀
𝑉+‖𝑝,

‖(𝑍 − E𝑍)−‖𝑝 ≤
√︀

2𝜅𝑝‖
√︀
𝑉−‖𝑝.

As a sanity check, it is helpful to observe that the condition 𝑉+ ≤ 1 leads to a
sub-Gaussian estimate for the right tail:

P
(︀
𝑍 − E𝑍 ≥ 𝑡

)︀
≤ 2 exp

(︁
− 𝑡2

8𝜅𝑒

)︁
.

Analogously, 𝑉− ≤ 1 leads to similar estimates for the left tail.
Among other things, Theorem 1.9 implies Rosenthal and Kahane–Khinchine-

type inequalities (see Theorems 7 and 8 in [BBLM05]). For the purpose of this
exposition, we also want to mention the extension of Theorem 1.3 to arbitrary
degrees 𝑑 ≥ 2, which requires some definitions. Let ℐ𝑛,𝑑 be the set of all subsets of
[𝑛] with 𝑑 elements, and 𝒯 be a set of vectors indexed by ℐ𝑛,𝑑, which is assumed
to be compact as a subset of Rℐ𝑛,𝑑 . Define

𝑍𝒯 := 𝑍 := sup
𝑡∈𝒯

⃒⃒⃒ ∑︁
𝐼∈ℐ𝑛,𝑑

𝑡𝐼
∏︁
𝑖∈𝐼

𝑋𝑖

⃒⃒⃒
.

For 𝑑 = 2, this can also be written as sup𝑡∈ℱ |
∑︀

𝑖<𝑗 𝑡𝑖𝑗𝑋𝑖𝑋𝑗| for some family ℱ of
symmetric 𝑛 × 𝑛 matrices, and is thus a general form of 𝑍 as defined in (1.9).
Indeed, if (𝑡𝑖𝑗)𝑖,𝑗 is a symmetric matrix of vectors in 𝐵 with 𝑡𝑖𝑖 = 0, 𝐷 is a dense
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subset of 𝐵*
1 and we set 𝒯 := {(𝑥*(𝑡𝑖𝑗))𝑖,𝑗 : 𝑥* ∈ 𝐷}, this leads to

𝑍𝒯 = 1
2

⃦⃦⃦ 𝑛∑︁
𝑖,𝑗=1

𝑡𝑖𝑗𝑋𝑖𝑋𝑗

⃦⃦⃦
.

For 𝑘 ∈ {1, . . . ,𝑑} we define the random variables

𝑊𝑘 := sup
𝑡∈𝒯

sup
𝛼1,...,𝛼𝑘

|𝛼𝑖|≤1

⃒⃒⃒ ∑︁
𝐽∈ℐ𝑛,𝑑−𝑘

∏︁
𝑗∈𝐽

𝑋𝑗

∑︁
𝑖1,...,𝑖𝑘:

{𝑖1,...,𝑖𝑘}∪𝐽∈ℐ𝑛,𝑑

𝑘∏︁
𝑗=1

𝛼𝑗𝑖𝑗 𝑡{𝑖1,...,𝑖𝑘}∪𝐽

⃒⃒⃒
,

where |·| denotes the Euclidean norm.
Theorem 1.10 (Corollary 4 in [BBLM05]). Let 𝑋1, . . . , 𝑋𝑛 be independent
Rademacher random variables. With the same notations as above and 𝑐 :=
log(2)/(4𝜅) ≈ 0.1363, for any 𝑡 ≥ 0 it holds

P(𝑍 − E𝑍 ≥ 𝑡) ≤ 2 exp
(︁

− 𝑐 min
𝑘=1,...,𝑑

(︁ 𝑡

2𝑑E𝑊𝑘

)︁2/𝑘)︁
.

Theorem 1.10 provides multilevel deviation inequalities for multilinear functions
in Rademacher random variables, where the constants depend on expectations of
various “lower-dimensional” multilinear functions. Note that this is a special case
of 4.4 if we set 𝛽 = 0.

Another important contribution to the theory of higher order concentration
inequalities was made by Adamczak and Wolff [AW15]. At the heart of their
method are Sobolev-type inequalities of the form

‖𝑔(𝑋) − E 𝑔(𝑋)‖𝑝 ≤ 𝐿
√
𝑝‖∇𝑔(𝑋)‖𝑝, (1.11)

which (for example) can be derived from a logarithmic Sobolev inequality. In
particular, they prove the following concentration result.
Theorem 1.11 (Theorem 1.2 in [AW15]). Assume that a random vector 𝑋 in R𝑛

satisfies (1.11) for all (appropriate) functions 𝑔, and let 𝑓 : R𝑛 → R be 𝐷 times
differentiable, such that the 𝐷-tensor 𝑓 (𝐷) of all partial derivatives of order 𝐷 is
bounded uniformly. Then for all 𝑡 ≥ 0 the inequality

P(|𝑓(𝑋) − E 𝑓(𝑋)| ≥ 𝑡) ≤ 2 exp
(︁

− 1
𝐶𝐷

𝜂𝑓 (𝑡)
)︁

(1.12)

holds for the tail decay function

𝜂𝑓 (𝑡) = min
(︁

min
𝐽∈𝑃𝐷

(︁ 𝑡

𝐿𝐷 sup𝑥‖𝑓 (𝐷)(𝑥)‖𝐽

)︁ 2
|𝐽|
, min

1≤𝑑≤𝐷−1
min
𝐽∈𝑃𝑑

(︁ 𝑡

𝐿𝑑‖E 𝑓 (𝑑)‖𝐽

)︁ 2
|𝐽|
)︁
.

Here, 𝑓 (𝑑) is the 𝑑-tensor of all partial derivatives, 𝑃𝑑 denotes the set of all par-
titions of {1, . . . , 𝑑} and ‖𝐴‖𝐽 are certain tensor-product norms. As the definition
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of these norms is quite involved, we postpone it to Chapter 5.
Albeit very precise, this concentration inequality might be quite difficult to un-

derstand. However, one can see that (1.12) is a multilevel concentration inequality,
and the coefficients are given by some norms of higher order derivatives of 𝑓 . It is
also possible to simplify this expression by estimating the tensor norms by their
Hilbert–Schmidt norms, and this yields a concentration inequality with possibly 𝐷
different regimes. Inequality (1.12) is optimal in the sense that it can be reversed
up to a multiplicative constant for Gaussian measures (see [AW15, Theorem 3]).

1.3.2 Concentration inequalities for polynomials

A special class of functions that has raised considerable attention are polynomials
in independent random variables. Among other fields of application, they are of
importance in probabilistic combinatorics, where the random variables are {0,1}-
valued and determine whether a certain object is present or absent, and many
interesting functions are the number of certain substructures. For example, in the
Erdös–Rényi random graph 𝐺(𝑛,𝑝) we consider independent Bernoulli random
variables (𝑋𝑒)𝑒∈𝐸(𝐾𝑛) with expectation 𝑝, where 𝐸(𝐾𝑛) is the set of edges in the
complete graph on 𝑛 vertices. A classical question is the number of occurrences
of a fixed graph 𝐻 in the random graph, which itself is a polynomial in the edge
variables 𝑋𝑒. As such, the concentration properties of polynomials have been a
major topic of research in the last three decades. Here, we give a brief overview of
some important results.

We begin by presenting the concentration inequalities by Kim and Vu [KV00] and
their extensions by Vu [Vu02]. To do so, we need to introduce some notations. First,
it is always possible to represent a polynomial in random variables 𝑋1, . . . , 𝑋𝑛 with
maximal power 1 using a weighted hypergraph with vertex set 𝑉 = {1, . . . , 𝑛},
edge set ℰ and weights (𝑤𝑒)𝑒∈ℰ as

𝑓(𝑋) =
∑︁
𝑒∈ℰ

𝑤𝑒
∏︁
𝑗∈𝑒

𝑋𝑗. (1.13)

For example, 𝑓(𝑋) = 𝑋1𝑋3 + 2𝑋2𝑋4 + 0.1𝑋5 can be represented by ℰ =
{{1,3}, {2,4}, {5}} and weights 1, 2 and 0.1. Clearly, 𝑓 can be considered as
a function on R𝑛, and for any subset 𝐴 ⊂ {1, . . . , 𝑛} we let 𝑌𝐴 be the |𝐴|-fold
partial derivative with respect to all indexes from 𝐴, and for 𝑖 ∈ {0, . . . , 𝑛} we
define

𝐸𝑖 = max
𝐴⊆{1,...,𝑛}:|𝐴|=𝑖

E(𝑌𝐴).

Lastly, set 𝐸 = max𝑖=0,...,𝑛𝐸𝑖 and 𝐸 ′ = max𝑖=1,...,𝑛𝐸𝑖.

Theorem 1.12 (Main Theorem in [KV00]). Let 𝑋1, . . . , 𝑋𝑛 be independent ran-
dom variables with values in {0,1}, and 𝑓(𝑋) be as in (1.13) for some hypergraph
𝐻 with positive weights. For any 𝜆 ≥ 1 it holds

P
(︀
|𝑓(𝑋) − E 𝑓(𝑋)| > 8𝑘

√
𝑘!

√
𝐸𝐸 ′𝜆𝑘

)︀
≤ 𝐶𝑛𝑘−1 exp(−𝜆).
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Equivalently, for any 𝜂 ≥ 8𝑘
√
𝑘!𝐸𝐸 ′ we have

P
(︀
|𝑓(𝑋) − E 𝑓(𝑋)| ≥ 𝜂

)︀
≤ 𝐶𝑛𝑘−1 exp

(︁
− 𝜂1/𝑘

8(𝐸𝐸 ′)1/(2𝑘)

)︁
. (1.14)

Theorem 1.12 has been enormously successful, and it has been applied in many
different situations. Although the definitions might seem intricate, they are quite
natural candidates to obtain concentration of measure results, being the maximum
average effect of a set of coordinates. Actually, it is the presence of an average
effect that is appealing in applications, as the maximum effect can be much larger
than the average one.

The results have been generalized in [Vu02] (see [Vu02, Theorems 4.2 and 4.11]),
but we do not give an account of these results, as they require more definitions
and are difficult to describe. From the perspective of multilevel concentration
inequalities, (1.14) is quite unnatural, as it provides one level of concentration,
which also does not correspond to the “natural” choice of order 𝑘 (as these would
produce a decay of 𝜂2/𝑘), but order 2𝑘. As such, it is unfortunately hardly possible
to compare the Kim–Vu inequality to other concentration results for polynomials.

The two papers of Schudy and Sviridenko [SS11; SS12] contain concentra-
tion inequalities for polynomials in so-called moment bounded random variables
𝑋1, . . . , 𝑋𝑛. Therein, 𝑋 is called moment bounded with parameter 𝐿 > 0, if for
all 𝑖 ≥ 1

E|𝑋|𝑖 ≤ 𝑖𝐿E|𝑋|𝑖−1. (1.15)
The multilevel concentration inequalities are expressed in terms of quantities
similar to the expectations of the partial derivatives in the Kim–Vu inequalities.
More precisely, set for 𝑟 ∈ {1, . . . , 𝑞}

𝜇𝑟 = max
ℎ0⊂{1,...,𝑛}:|ℎ0|=𝑟

E 𝜕ℎ0𝑓(|𝑋|).

Theorem 1.13 (Theorem 1.2 in [SS12]). Let 𝑋1, . . . , 𝑋𝑛 be independent, moment
bounded random variables with parameter 𝐿, and 𝑓 = 𝑓(𝑋) be a multilinear
polynomial as in (1.13) with non-negative coefficients (𝑤𝑒)𝑒∈𝐸 and total degree 𝑞.
For all 𝑡 ≥ 0 it holds

P(|𝑓 − E 𝑓 | ≥ 𝑡) ≤ exp
(︁

2 − min
(︁

min
𝑟=1,...,𝑞

𝜆2

𝜇0𝜇𝑟𝐿𝑟𝑅𝑞
, min
𝑟=1,...,𝑞

(︁ 𝜆

𝜇𝑟𝐿𝑟𝑅𝑞

)︁1/𝑟)︁)︁
,

where 𝑅 ≥ 1 is some absolute constant.

Similar inequalities hold for general polynomials in moment-bounded random
variables, one only needs to replace 𝐿𝑟 in the denominator by 𝐿𝑟𝛤 𝑟, where 𝛤 is
the maximal power of any random variable, and it is also possible to remove the
non-negativity assumption of the coefficients.

Theorem 1.13 appears to be stronger than the Kim–Vu inequalities, see [SS12,
Section 1.5], and it is applicable for a wider class of random variables. However, it
is unclear what kind of random variables satisfy (1.15); in [SS12, Section 7] the
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authors provide examples of moment-bounded random variables, such as bounded
random variables, continuous and log-concave ones, and discrete distributions on
Z satisfying 𝑝2

𝑖 ≥ 𝑝𝑖−1𝑝𝑖+1 (a form of log-concavity for discrete distributions). It is
clear that (1.15) implies that 𝑍 is sub-exponential, but we are not sure whether
this is also a sufficient condition (see also the open question at the end of this
thesis).

Thirdly, we want to mention concentration inequalities proven by Adamczak
and Wolff in [AW15]. For a random variable 𝑋 define the sub-Gaussian norm as

‖𝑋‖𝜓2 := inf
{︁
𝑡 > 0 : E exp(𝑌 2/𝑡2) ≤ 2

}︁
.

It is easy to see that ‖𝑋‖𝜓2 < ∞ is equivalent to a sub-Gaussian tail decay of
the form P(|𝑋| ≥ 𝑡) ≤ 𝑐 exp(−𝐶𝑡2) for some constants 𝑐, 𝐶 > 0 (see for example
[Ver18]). With the same notation of 𝑃𝑑 and ‖·‖𝐽 as in Theorem 1.11, they prove
the following result.

Theorem 1.14 (Theorem 1.4 in [AW15]). Let 𝑋1, . . . , 𝑋𝑛 be independent random
variables with ‖𝑋𝑖‖𝜓2 ≤ 𝐿 for all 𝑖 ∈ {1, . . . , 𝑛}. For every polynomial 𝑓 : R𝑛 → R
of degree 𝐷 and 𝑡 ≥ 0 we have

P(|𝑓(𝑋) − E 𝑓(𝑋)| ≥ 𝑡) ≤ 2 exp
(︁

− 1
𝐶𝐷

min
𝑑=1,...,𝐷

min
𝐽∈𝑃𝑑

(︁ 𝑡

𝐿𝑑‖E 𝑓 (𝑑)(𝑋)‖𝐽

)︁ 2
|𝐽|
)︁
,

where 𝐶𝐷 is a constant depending on 𝐷 only.

Finally, concentration properties of polynomials have also been investigated
for random vectors 𝑋 with log-concave distributions. Let 𝑋 = (𝑋1, . . . , 𝑋𝑛) be a
random vector with values in R𝑛 and assume that its distribution 𝜇 is absolutely
continuous with respect to the Lebesgue measure 𝑑𝜇(𝑥) = 𝑝(𝑥)𝑑𝑥 and that the
logarithm of 𝑝 is concave. For example, the uniform distribution on any convex
set 𝐾 in R𝑛 is log-concave. The first result in this regard was proven by Bourgain
[Bou91].

Theorem 1.15 (Theorems 1.1 and 1.3 in [Bou91]). For any positive integer 𝑑
and 𝑝 ≥ 1 there is a constant 𝑐(𝑑,𝑝) such that if 𝑓 is any polynomial in 𝑛 variables
of degree 𝑑 and 𝐾 is any convex body in R𝑛 of volume 1, then

‖𝑓‖𝑝 ≤ 𝑐𝑑,𝑝‖𝑓‖1.

More precisely, there are absolute constants 𝑐, 𝐶 > 0 such that

‖𝑓‖𝛹𝑐/𝑑
≤ 𝐶‖𝑓‖1.

Here, 𝛹𝑐/𝑑 is the Orlicz (quasi-)norm (see Appendix B for details).

This theorem has been generalized by Bobkov [Bob00]. Building upon earlier
works of Prokhorov [Pro92; Pro93] and a localization technique developed in
[KLS95; LS93], the following extension of Theorem 1.15 was proven.
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Theorem 1.16 (Theorems 1 and 2 in [Bob00]). Let 𝜇 be a log-concave probability
measure on R𝑛. There is a constant 𝐶 > 0 such that for any polynomial 𝑓 of
degree 𝑑 and any 𝑝 ≥ 2 it holds

‖𝑓‖𝑝 ≤ 𝑝𝐶𝑑‖𝑓‖1.

Furthermore, for some universal constant 𝐶 > 0 we have

‖𝑓‖𝛹1/𝑑
≤ 𝐶𝑑‖𝑓‖0 = 𝐶𝑑 exp

(︁ ˆ
log|𝑓 |𝑑𝜇

)︁
.

Thus far, we have been unable to connect the 𝛹1/𝑑 norm estimates of Theorem
1.16 with the multilevel concentration inequalities of Theorem 1.14. As Theorem
1.14 can be reversed for the Gaussian measure, these estimates are tight. On the
other hand, the class of log-concave measures is clearly more general.

1.3.3 Further topics

The selection of the results given in last two sections is highly subjective, and
we are sure that it does not cover all concentration inequalities, or even topics.
For example, there are many results on empirical processes1, which we have not
mentioned at all. This will be discussed in some detail in Chapter 3.

A second subject that was have not touched upon are concentration prop-
erties for 𝑈 -statistics. Some results prior to the year 2000 can be found in
the monograph [PG99], and moment and tail inequalities have been proven
in [GLZ00],[Ada06],[AW15]. Since the most precise results require quite involved
definitions, we choose not to include these here. In Proposition 4.8 we consider
𝑈 -statistics in not necessarily independent random variables.

Thirdly, we have not mentioned the topic of the exact 𝐿𝑝 norm and tail behavior,
i. e. two-sided inequalities. For example, there are some results on random variables
with log-convex or log-concave tails.2 The log-convex case is well-understood and
was described in [HMO97] for sums of independent random variables and in
[KL15] for multilinear forms of higher order. On the other hand, the log-concave
case appear to be more difficult to handle, and only partial results are available,
see [AL12; GK95; Lat96; Lat99; LŁ03]. Moreover, two-sided estimates for non-
negative random variables have been derived in [Mel16] and for chaos of order
two in symmetric random variables satisfying the inequality ‖𝑋‖2𝑝 ≤ 𝐴‖𝑋‖𝑝 in
[Mel19].

1An empirical process is a random variables of the type 𝑍 = sup𝑓∈ℱ |𝑓(𝑋1, . . . , 𝑋𝑛)| for a
(countable) class ℱ of measurable functions

2A random variable 𝑋 is said to have log-convex (resp. log-concave) tails if the function
𝑡 ↦→ − logP(|𝑋| ≥ 𝑡) is convex (resp. concave).
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1.4 Outline of the thesis

In Chapter 2, after introducing all the necessary notations, we define difference
operators and recall the notion of functional inequalities with respect to a difference
operator. We focus our attention on two special difference operators denoted by
d and h, which will be used throughout this thesis. Furthermore, we show how
logarithmic Sobolev inequalities imply 𝐿𝑝 norm estimates, and how these in
turn can be translated into concentration inequalities (see Propositions 2.8 and
2.10). Section 2.4 provides almost identical 𝐿𝑝 norm estimates for functions of
independent random variables, allowing for similar proofs of the concentration
inequalities for dependent and independent random variables later. We close the
chapter by defining the notion of a weakly dependent spin system and provide
concrete examples of such systems, including the Ising and the exponential random
graph models.

Afterwards we present Bernstein-type inequalities in Chapter 3. In particular,
these results can be interpreted as second order concentration inequalities, i. e.
they consist of a sub-Gaussian and a sub-exponential regime. Similar properties
hold for so-called self-bounding functions. We also prove a variant of a bounded
difference inequality in the special case of multilinear polynomials in independent
random variables with values in [0,1] and show some consequences. Finally, we
give a proof of Talagrand’s concentration inequality for the convex distance on
the symmetric group.

Chapter 4 presents concentration inequalities for bounded functions in two
different settings: The weakly dependent spin systems, which satisfy a logarithmic
Sobolev inequality with respect to d, and independent random variables. In
particular, we obtain multilevel concentration inequalities of any order 𝑑, as well
as tail estimates for the upper bound for empirical processes in weakly dependent
random variables (see Theorem 4.4). In Section 4.2 we provide some applications
of the general results, yielding concentration inequalities for 𝑈 -statistics with a
bounded kernel, and for a specific set of polynomials in the Ising model. In the
case of exponential random graph models, the general results imply concentration
properties of the number of triangles around a first order correction, which in turn
can be used to deduce a CLT for the triangle count from the CLT of the number
of edges in such models.

Thereafter, in Chapter 5, we shift our focus and consider concentration inequal-
ities for polynomials in independent random variables 𝑋1, . . . , 𝑋𝑛 which have
𝛼-sub-exponential tails, i. e. which satisfy P(|𝑋𝑖| ≥ 𝑡) ≤ 𝐶1 exp(−𝐶2𝑡

𝛼) for some
𝛼 ∈ (0,1]. We first present some simplified inequalities for polynomials in such
random variables, with an emphasis on quadratic forms 𝑓(𝑋) =

∑︀
𝑖,𝑗 𝑎𝑖𝑗𝑋𝑖𝑋𝑗 and

multilinear 𝑑-forms 𝑓(𝑋) =
∑︀

𝑖1,...,𝑖𝑑
𝑎𝑖1,...,𝑖𝑑𝑋𝑖1 · · ·𝑋𝑖𝑑 . Section 5.1 contains the

refined concentration inequalities, including Hanson–Wright-type inequalities for
quadratic forms in Proposition 5.5 and multilevel concentration inequalities in the
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spirit of Adamczak–Wolff in Theorem 5.6. Again, these results are complemented
by several applications in Section 5.2, which extend some known concentration
inequalities from the sub-Gaussian to the 𝛼-sub-exponential case.

Finally, we formulate a few open questions. Some of these could lead to im-
provements of our results, or extension to more general settings, whereas others
are of more fundamental nature and ask for connections between some of the
methods of proving concentration inequalities. For example, an intriguing question
is to shed some light on connection between the entropy method and the method
of exchangeable pairs as developed by Chatterjee [Cha05]. The former is now
well-understood and provides ways of establishing higher order concentration, and
the latter one yields explicit constants and can be applied under a Dobrushin
uniqueness type condition, but appears to be limited to first order results and
Bernstein-type inequalities.

The thesis contains an addendum of three appendices and a bibliography.



CHAPTER 2

Preliminaries

In this chapter, we provide some notations as well as preliminary results that
will be used throughout this thesis. This includes the notion of difference operators
and logarithmic Sobolev inequalities (LSIs) with respect to these, as well as the
approach to translate the LSIs to concentration inequalities. Finally we give the
definition of a weakly dependent spin system and provide examples thereof.

2.1 Notations

Measure theoretic notations. We assume that all the random variables
under consideration are defined on a common probability space (𝛺,𝒜,P). The
expectation with respect to P will be denoted by E. If we work with another
probability space (𝒴 ,ℱ , 𝜇) we also write E𝜇 for the expectation with respect to 𝜇.
The 𝐿𝑝 (quasi-)norms for 𝑝 ∈ (0,∞) of a random variable 𝑓 are given by

‖𝑓‖𝑝 :=
(︀
E|𝑓 |𝑝

)︀1/𝑝
.

However, if it is more convenient, we shall switch to the measure theoretic notation´
𝑓𝑑𝜇 = E𝜇 𝑓 .
Usually 𝒴 will denote a product space of the form 𝒴 = ⊗𝑛

𝑖=1𝒳𝑖 (equipped with
the product 𝜎-algebra), and we let 𝑋 = (𝑋1, . . . ,𝑋𝑛) be a 𝒴-valued random vector
with distribution 𝜇. To shorten the notation, given any vector 𝑥 = (𝑥𝑗)𝑗=1,...,𝑛 ∈ 𝒴 ,
we write 𝑥𝑖 = (𝑥𝑗)𝑗 ̸=𝑖, and use the notation (𝑥𝑖, 𝑦𝑖) ∈ 𝒴 for 𝑥𝑖 ∈ ⊗𝑗:𝑗 ̸=𝑖𝒳𝑗 and
𝑦𝑖 ∈ 𝒳𝑖.

To focus on the task of showing concentration inequalities, we ignore any
measurability issues that may arise. This includes the assumption that all the
suprema used in this work are measurable.

Tensors and norms. On the finite dimensional vector space R𝑛 we define the
𝑝-norm for 𝑝 ∈ [1,∞] for any 𝑥 = (𝑥1, . . . , 𝑥𝑛) as

|𝑥|𝑝 :=

⎧⎨⎩
(︁∑︀𝑛

𝑖=1|𝑥𝑖|𝑝
)︁1/𝑝

𝑝 ∈ [1,∞),
max𝑖=1,...,𝑛|𝑥𝑖| 𝑝 = ∞.
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The case 𝑝 = 2 is the Euclidean norm and we will simply write |𝑥| instead of |𝑥|2.
We denote by ⟨𝑥,𝑦⟩ =

∑︀𝑛
𝑖=1 𝑥𝑖𝑦𝑖 the standard scalar product in R𝑛. Given any

linear operator 𝐴 : R𝑛 → R𝑛, represented by the matrix 𝐴 = (𝑎𝑖𝑗)𝑖,𝑗=1,...,𝑛 we let

|𝐴|𝑝→𝑞 := sup
𝑥∈R𝑛:|𝑥|𝑝=1

|𝐴𝑥|𝑞.

The operator norm |𝐴|2→2 will also be denoted by |𝐴|op. Lastly, we define the
Hilbert–Schmidt norm (also known as Frobenius norm)

|𝐴|HS =
(︁ 𝑛∑︁
𝑖,𝑗=1

𝑎2
𝑖𝑗

)︁1/2
.

We frequently deal with 𝑑-tensors 𝐴 = (𝑎𝑖1...𝑖𝑑)𝑖1,...,𝑖𝑑=1,...,𝑛 for 𝑑 > 2. 𝐴 represents
the unique multilinear map 𝐴 : R𝑛 ⊗ . . .⊗ R𝑛 → R satisfying 𝐴(𝑒𝑖1 ⊗ . . .⊗ 𝑒𝑖𝑑) =
𝑎𝑖1...𝑖𝑑 , where ⊗ denotes the tensor product of vector spaces and (𝑒𝑖)𝑖=1,...,𝑛 is the
standard basis of R𝑛. We define the operator norm of 𝐴 as

|𝐴|op := sup
𝑣1,...,𝑣𝑑

|𝑣𝑗 |≤1

⟨𝑣1 · · · 𝑣𝑑, 𝐴⟩ = sup
𝑣1,...,𝑣𝑑

|𝑣𝑗 |≤1

∑︁
𝑖1,...,𝑖𝑑

𝑣1
𝑖1 · · · 𝑣𝑑𝑖𝑑𝐴𝑖1...𝑖𝑑 , (2.1)

using the outer product (𝑣1 · · · 𝑣𝑑)𝑖1...𝑖𝑑 =
∏︀𝑑

𝑗=1 𝑣
𝑗
𝑖𝑗

. Usually we do not need the
interpretation of 𝐴 as a multilinear map and simply think of 𝐴 as an array of real
numbers. The (generalized) diagonal 𝛥 = 𝛥𝑑 comprises all indices which are not
pairwise distinct, i. e.

𝛥𝑑 :=
{︀

(𝑖1, . . . , 𝑖𝑑) ∈ {1, . . . ,𝑛}𝑑 : |{𝑖1, . . . ,𝑖𝑑}| < 𝑑
}︀
.

If 𝐴𝑖1...𝑖𝑑 = 0 for all (𝑖1, . . . , 𝑖𝑑) ∈ 𝛥𝑑, we say that 𝐴 has vanishing diagonal. We
call a 𝑑-tensor 𝐴 symmetric if for any 𝜋 ∈ 𝑆𝑑 (the perutation group of {1, . . . ,𝑑})
we have 𝐴𝑖1...𝑖𝑑 = 𝐴𝑖𝜋(1)...𝑖𝜋(𝑑) . If 𝐴 is a random 𝑑-tensor we write for any 𝑝 ∈ (0,∞]

‖𝐴‖op,𝑝 =
(︀
E|𝐴|𝑝op

)︀1/𝑝 and ‖𝐴‖HS,𝑝 = (E|𝐴|𝑝HS)1/𝑝 .

Miscellaneous For any 𝑑 ∈ N, [𝑑] := {1, . . . , 𝑑} denotes the “integer interval”.
Given a finite set ℐ we let 𝒫(ℐ) be the set of all partitions of ℐ and set 𝒫𝑑 := 𝒫[𝑑].
Throughout this work, we denote by 𝐶 an absolute constant and by 𝐶𝑙1,...,𝑙𝑘 a
constant that depends on some parameters 𝑙1, . . . , 𝑙𝑘 only. In the proofs, the
constants may change from line to line.

We let 𝑥+ := max(𝑥,0) be the positive part of 𝑥 ∈ R and 𝑥− = min(𝑥,0) be its
negative part. For the purpose of brevity we set 𝑥2

+ := (𝑥+)2. Finally, we define
𝑥 ∧ 𝑦 := min(𝑥,𝑦).
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2.2 Difference operators and functional inequalities

In the introduction we outlined the entropy method, but in the formulation
(1.4) we restricted ourselves to probability measures on R𝑛. The approach can
be generalized to an arbitrary metric space (𝑋,𝑑) if we define the modulus of the
gradient as in Theorem 1.5

|∇𝑓 |(𝑥) = lim sup
𝑦→𝑥

|𝑓(𝑦) − 𝑓(𝑥)|
𝑑(𝑦,𝑥) , (2.2)

and set |∇𝑓 |(𝑥) = 0 for any isolated point 𝑥 ∈ 𝑋. Nonetheless, even this general-
ization still does not capture all spaces of interest. For example, if we consider
discrete sets such as N, any point is isolated and thus a logarithmic Sobolev
inequality with a gradient of the form (2.2) cannot hold. However, there have
been successful replacements for (1.4) in the discrete setting. In the framework of
Markov chains on finite spaces, [DS96] replaced the gradient |∇𝑓 | by making use
of the generator of a (continuous-time) Markov chains. Furthermore, in [BT06]
several forms of (modified) logarithmic Sobolev inequalities were investigated.

Continuing these ideas, we work in the framework of difference operators, which
were introduced in [BG99].

Definition 2.1 (Difference operator). Let (𝒴 ,𝒜, 𝜇) be a probability space, and
let ℱ be a subset of 𝐿∞(𝜇) satisfying 𝑎𝑓 + 𝑏 ∈ ℱ for any 𝑓 ∈ ℱ and 𝑎 ≥ 0, 𝑏 ∈ R.
An operator 𝛤 : ℱ → 𝐿∞(𝜇) is called a difference operator (on ℱ), if for all 𝑓 ∈ ℱ ,
𝑎 ≥ 0 and 𝑏 ∈ R we have |𝛤 (𝑎𝑓 + 𝑏)| = 𝑎 |𝛤 (𝑓)|.

Accordingly, we say that 𝜇 satisfies a 𝛤−LSI(𝜎2), if for any 𝑓 ∈ ℱ it holds

Ent𝜇(𝑓 2) ≤ 2𝜎2
ˆ
𝛤 (𝑓)2𝑑𝜇. (2.3)

The smallest 𝜎2 > 0 such that (2.3) holds is known as the logarithmic Sobolev
constant (of 𝜇 with respect to 𝛤 ).

From the two properties of a difference operator we can infer that a 𝛤−LSI(𝜎2)
implies a (𝛤 -)Poincaré inequality with constant 𝜎2. Let Var𝜇(𝑓) =

´
𝑓 2𝑑𝜇 −(︀´

𝑓𝑑𝜇
)︀2 be the variance functional.

Lemma 2.2. Let 𝜇 be a probability measure and 𝛤 difference operator on ℱ such
that 𝛤−LSI(𝜎2) holds. For any 𝑓 ∈ ℱ we have the Poincaré-type inequality

Var𝜇(𝑓) ≤ 𝜎2
ˆ
𝛤 (𝑓)2𝑑𝜇. (2.4)

Proof. The proof is very classical and can be deduced from (2.3) by a Taylor
expansion of 𝛹(𝑥) := 𝑥 log 𝑥, and we follow the proof of [DS96, Lemma 3.1]. Fix
an arbitrary 𝑓 ∈ ℱ , and observe that due to the properties of ℱ and 𝛤 , for any
𝜀 > 0 we have 𝑓𝜀 := 1 + 𝜀𝑓 ∈ ℱ and 𝛤 (𝑓𝜀)2 = 𝜀2𝛤 (𝑓)2. Furthermore, the Taylor
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expansion 𝛹(1 + 𝑥) = 𝑥+ 𝑥2

2 + 𝑜(𝑥2) as 𝑥 → 0 implies

Ent𝜇(𝑓 2
𝜀 ) =

ˆ
𝛹(1 + 2𝜀𝑓 + 𝜀2𝑓 2)𝑑𝜇− 𝛹

(︁
1 + 2𝜀

ˆ
𝑓𝑑𝜇+ 𝜀2

ˆ
𝑓 2𝑑𝜇

)︁
= 2𝜀2

ˆ
𝑓 2𝑑𝜇− 2𝜀2

(︁ ˆ
𝑓𝑑𝜇

)︁2
+ 𝑜(𝜀2)

= 2𝜀2Var𝜇(𝑓) + 𝑜(𝜀2).

Consequently, for any 𝑓 ∈ ℱ and any 𝜀 > 0 we have by (2.3)

2𝜀2Var𝜇(𝑓) + 𝑜(𝜀2) ≤ 2𝜎2𝜀2
ˆ
𝛤 (𝑓)2𝑑𝜇.

Dividing both sides by 2𝜀2 and letting 𝜀 → 0 yields the claim.

We use a certain 𝐿2-type difference operator d to apply the entropy method
to weakly dependent random variables. Actually, there is an intimate connection
to the framework of Markov chains, which we briefly discuss to illustrate the
definition. Let 𝒳1, . . . ,𝒳𝑛 be finite spaces, set 𝒴 := 𝒳1 × . . . × 𝒳𝑛, and let 𝜇 be
a probability measure on 𝒴 (not necessarily a product measure, for which many
of the concepts can be significantly simplified). To any probability measure on
a product space, we can associate a reversible Markov chain (𝑋(𝑘))𝑘∈N0 , which
is known as Glauber dynamics. It is constructed as follows: Starting at some
𝑥 ∈ 𝒴 (i. e. 𝑋(0) = 𝑥), select an index 𝑖 ∈ {1, . . . , 𝑛} uniformly at random, set
𝑋

(1)
𝑗 = 𝑋

(0)
𝑗 for all 𝑗 ̸= 𝑖, and sample 𝑋(1)

𝑖 according to the conditional probability
measure 𝜇(· | 𝑥𝑖). So, its transition probability is given by

𝑃 (𝑥,𝑦) = 𝑛−1
𝑛∑︁
𝑖=1

𝜇(𝑦𝑖 | 𝑥𝑖)1∀𝑗 ̸=𝑖:𝑥𝑗=𝑦𝑗
,

and the Dirichlet form (see e. g. [DS96]) is

ℰ(𝑓,𝑓) :=
∑︁
𝑥∈𝒴

𝜇(𝑥)𝑓(𝑥)(𝑓(𝑥) − 𝑃𝑓(𝑥)) = 1
2
∑︁
𝑥∈𝒴

𝜇(𝑥)
∑︁
𝑦∈𝒴

𝑃 (𝑥,𝑦)(𝑓(𝑥) − 𝑓(𝑦))2

= 1
2𝑛

𝑛∑︁
𝑖=1

∑︁
𝑥∈𝒴

𝜇(𝑥)
∑︁
𝑦𝑖∈𝒳𝑖

𝜇(𝑦𝑖 | 𝑥𝑖)(𝑓(𝑥) − 𝑓(𝑥𝑖, 𝑦𝑖))2

=: 1
𝑛

ˆ
|d𝑓 |2𝑑𝜇.

Thus, we have a “natural” difference operator arising from the Glauber dynamics
on 𝒴 , if we let

|d𝑓 |(𝑥)2 = 1
2

𝑛∑︁
𝑖=1

ˆ
(𝑓(𝑥) − 𝑓(𝑥𝑖,𝑦𝑖))2𝑑𝜇(𝑦𝑖 | 𝑥𝑖).
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We can consider this operator in a broader setting. Let ℐ be a finite set and let
𝒴 := ⊗𝑖∈ℐ𝒳𝑖 be a product of Polish spaces. We recall the disintegration theorem
in a special form for product spaces - for the existence we refer to [DM78, Chapter
III] and for a modern formulation to [AGS08, Theorem 5.3.1].

Proposition 2.3. Let (𝒳𝑖)𝑖∈ℐ be Polish spaces and 𝒴 := ⊗𝑖∈ℐ𝒳𝑖 its product. Let
𝜇 be a Borel probability measure on 𝒴 and 𝐼 ( ℐ arbitrary. There exists a Markov
kernel (𝜇(· | 𝑥𝐼))𝑥𝐼∈𝒴𝐼

such that for any Borel set 𝐴 ∈ ℬ(𝒴) we have

𝜇(𝐴) =
ˆ
𝜇(𝐴 | 𝑥𝐼)𝑑𝜇𝐼(𝑥𝐼).

Moreover, the Markov kernel is a family of probability measures on 𝒴𝐼 :=
⨂︀

𝑖∈𝐼 𝒳𝑖

and for any 𝑓 ∈ 𝐿1(𝜇)
ˆ
𝑓𝑑𝜇 =

ˆ
𝒴𝐼

ˆ
𝒴𝐼

𝑓(𝑥𝐼 , 𝑦𝐼)𝑑𝜇(𝑦𝐼 | 𝑥𝐼)𝑑𝜇𝐼(𝑥𝐼).

This leads to the following definition.

Definition 2.4. Let (𝒳𝑖)𝑖∈ℐ be Polish spaces and 𝜇 a measure on 𝒴 = ⊗𝑖∈ℐ𝒳𝑖.
For any 𝑓 ∈ 𝐿2(𝜇) let

d𝑖𝑓(𝑥) :=
(︁1

2

ˆ
(𝑓(𝑥) − 𝑓(𝑥𝑖, 𝑥′

𝑖))2𝑑𝜇(𝑥′
𝑖 | 𝑥𝑖)

)︁1/2
,

d+
𝑖 𝑓(𝑥) :=

(︁1
2

ˆ
(𝑓(𝑥) − 𝑓(𝑥𝑖, 𝑥′

𝑖))2
+

)︁1/2

and for any 𝑓 ∈ 𝐿∞(𝜇) define

h𝑖𝑓(𝑥) := ‖𝑓(𝑥𝑖,𝑥′
𝑖) − 𝑓(𝑥𝑖,𝑥′′

𝑖 )‖𝐿∞(𝜇(·|𝑥𝑖)⊗𝜇(·|𝑥𝑖)),

h+
𝑖 𝑓(𝑥) := sup

𝑥′
𝑖∈supp(𝜇(·|𝑥𝑖))

(𝑓(𝑥) − 𝑓(𝑥𝑖, 𝑥′
𝑖))+.

To any 𝛤 ∈ {d, d+, h, h+} we associate the vector 𝛤𝑓 = (𝛤𝑖𝑓)𝑖∈ℐ and the
difference operator 𝛤 (𝑓) := |𝛤𝑓 | = (

∑︀
𝑖∈ℐ(𝛤𝑖𝑓)2)1/2. Using h, it is possible to

define higher order difference operators h(𝑑) for any 𝑑 ∈ N by iteration. More
precisely, by setting

h𝑖1...𝑖𝑑𝑓 = h𝑖1(h𝑖2...𝑖𝑑𝑓)

we obtain a 𝑑-tensor h(𝑑)𝑓(𝑥) with coordinates h𝑖1...𝑖𝑑𝑓(𝑥), and their Euclidean
norm gives rise to a difference operator again. In the next lemmas, we collect some
elementary properties.

Lemma 2.5. For any 𝑓 ∈ 𝐿∞(𝜇) and any 𝑑 ≥ 1 we have the pointwise estimate

|h|h(𝑑)𝑓 || ≤ |h(𝑑+1)𝑓 |.
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Proof. Let 𝑖 ∈ ℐ and 𝑥 ∈ 𝒴 be fixed and write ‖·‖𝑖,𝑥 for the 𝐿∞ norm with respect
to 𝜇(· | 𝑥𝑖) ⊗ 𝜇(· | 𝑥𝑖). Using the (reverse) triangle inequality for |·| and ‖·‖𝑖,𝑥 we
obtain

(h𝑖|h(𝑑)𝑓 |)2 =
⃦⃦⃦⃒⃒
h(𝑑)𝑓

⃒⃒
(𝑥𝑖,𝑦) −

⃒⃒
h(𝑑)𝑓

⃒⃒
(𝑥𝑖,𝑧)

⃦⃦⃦2

𝑖,𝑥
≤

⃦⃦⃦
|h(𝑑)𝑓(𝑥𝑖,𝑦) − h(𝑑)𝑓(𝑥𝑖, 𝑧)|

⃦⃦⃦2

𝑖,𝑥

=
⃦⃦⃦ ∑︁
𝑖1,...,𝑖𝑑

(h𝑖1...𝑖𝑑𝑓(𝑥𝑖, 𝑦) − h𝑖1...𝑖𝑑𝑓(𝑥𝑖,𝑧))2
⃦⃦⃦
𝑖,𝑥

≤
∑︁
𝑖1,...,𝑖𝑑

(h𝑖h𝑖1...𝑖𝑑𝑓)2 .

Summing over 𝑖 ∈ ℐ and taking the square root yields the result.
Lemma 2.6. For any 𝑑 ≥ 1 it holds

|h+|h(𝑑)𝑓 |op| ≤ |h(𝑑+1)𝑓 |op.

Proof. To shorten the notation, let 𝑇𝑖 be the formal operator that replaces 𝑥𝑖 by 𝑥′
𝑖,

and 𝑇𝑖𝑓(𝑥) = 𝑓(𝑥𝑖, 𝑥′
𝑖). For any 𝑥, by inserting the vectors ̃︀𝑣1, . . . , ̃︀𝑣𝑑 maximizing

the supremum (in the operator norm) and using the monotonicity of 𝑥 ↦→ 𝑥+ we
obtain

|h+|h(𝑑)𝑓 |op|2 =
∑︁
𝑖∈ℐ

⃦⃦⃦(︀
|h(𝑑)𝑓 |op − |h(𝑑)𝑇𝑖𝑓 |op

)︀
+

⃦⃦⃦2

𝑖,∞

=
∑︁
𝑖∈ℐ

⃦⃦⃦(︁
sup
𝑣𝑗

⟨𝑣1 · · · 𝑣𝑑, h(𝑑)𝑓⟩ − sup
𝑣𝑗

⟨𝑣1 · · · 𝑣𝑑, h(𝑑)𝑇𝑖𝑓⟩
)︁

+

⃦⃦⃦2

𝑖,∞

≤
∑︁
𝑖∈ℐ

⃦⃦⃦(︁
⟨̃︀𝑣1 · · · ̃︀𝑣𝑑, h(𝑑)𝑓 − h(𝑑)𝑇𝑖𝑓⟩

)︁
+

⃦⃦⃦2

𝑖,∞
.

The triangle inequality and the dual formulation of the Euclidean norm |𝑥| =
sup𝑦:|𝑦|≤1⟨𝑥,𝑦⟩ yield

|h+|h(𝑑)𝑓 |op|2 ≤
∑︁
𝑖∈ℐ

⃦⃦⃦ ∑︁
𝑖1,...,𝑖𝑑

̃︀𝑣1
𝑖1 · · · ̃︀𝑣𝑑𝑖𝑑 ⃦⃦⃦(Id − 𝑇𝑖)

𝑑∏︁
𝑗=1

(Id − 𝑇𝑖𝑠)𝑓
⃦⃦⃦
𝑖1···𝑖𝑑,∞

⃦⃦⃦2

𝑖,∞

≤
∑︁
𝑖∈ℐ

(︂ ∑︁
𝑖1,...,𝑖𝑑

̃︀𝑣1
𝑖1 · · · ̃︀𝑣𝑑𝑖𝑑h𝑖𝑖1···𝑖𝑑𝑓

)︂2

=
(︁

sup
𝑣𝑑+1:|𝑣𝑑+1|≤1

∑︁
𝑖𝑑+1∈ℐ

∑︁
𝑖1,...,𝑖𝑑

̃︀𝑣1
𝑖1 · · · ̃︀𝑣𝑑𝑖𝑑𝑣𝑑+1

𝑖𝑑+1
h𝑖1···𝑖𝑑+1𝑓

)︁2

≤
(︁

sup
𝑣1,...,𝑣𝑑+1:|𝑣𝑗 |≤1

∑︁
𝑖1,...,𝑖𝑑+1

𝑣1
𝑖1 · · · 𝑣𝑑+1

𝑖𝑑+1
h𝑖1···𝑖𝑑+1𝑓

)︁2

= |h(𝑑+1)𝑓 |2op.

Lemma 2.7. Assume that 𝜇 satisfies a d−LSI(𝜎2). Then it also satisfies a
h+−LSI(𝜎2) and a h−LSI(𝜎2/2).
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Proof. The h+−LSI(𝜎2) property follows from
ˆ

|d𝑓 |2𝑑𝜇 =
∑︁
𝑖∈ℐ

ˆ ¨
(𝑓(𝑥𝑖, 𝑥′

𝑖) − 𝑓(𝑥𝑖, 𝑥′′
𝑖 ))2

+𝑑𝜇(𝑥′
𝑖 | 𝑥𝑖)𝑑𝜇(𝑥′′

𝑖 | 𝑥𝑖)𝑑𝜇𝑖(𝑥𝑖)

≤
∑︁
𝑖∈ℐ

¨
h+
𝑖 𝑓(𝑥𝑖, 𝑥′

𝑖)2𝑑𝜇(𝑥′
𝑖 | 𝑥𝑖)𝑑𝜇𝑖(𝑥𝑖)

=
∑︁
𝑖∈ℐ

ˆ
(h+
𝑖 𝑓)2𝑑𝜇 =

ˆ
|h+𝑓 |2𝑑𝜇.

To see the second implication, we write
ˆ

|d𝑓 |2𝑑𝜇 = 1
2
∑︁
𝑖∈ℐ

ˆ ¨
(𝑓(𝑥𝑖, 𝑥′

𝑖) − 𝑓(𝑥𝑖, 𝑥′′
𝑖 ))2𝑑𝜇(𝑥′

𝑖 | 𝑥𝑖)𝑑𝜇(𝑥′′
𝑖 | 𝑥𝑖)𝑑𝜇𝑖(𝑥𝑖)

≤ 1
2
∑︁
𝑖∈ℐ

ˆ
(h𝑖𝑓)2𝑑𝜇 = 1

2

ˆ
|h𝑓 |2𝑑𝜇.

2.3 The approach of Aida–Stroock and Adamczak: From
functional to concentration inequalities

As mentioned in the introduction there is a second approach to obtaining
concentration inequalities from logarithmic Sobolev inequalities proven by Aida
and Stroock [AS94]. It allows to control the growth of the 𝐿𝑝 norms of a function
𝑓 in terms of the 𝐿𝑝 norms of its gradient |∇𝑓 |, or more generally 𝛤 (𝑓) for any
operator 𝛤 satisfying a chain rule. The aim of this section is to show how to mimic
this in the framework of the difference operator d and how to deduce multilevel
concentration inequalities.

The first proposition is based on a result by Bobkov, showing in [Bob10, Theorem
2.1] how to adapt the Aida–Stroock argument to “non-local” notions of gradient
on graphs.

Proposition 2.8. Let 𝜇 be a measure on a product of Polish spaces satisfying a
d−LSI(𝜎2). For any 𝑓 ∈ 𝐿∞(𝜇) and any 𝑝 ≥ 2 it holds

‖𝑓‖2
𝑝 − ‖𝑓‖2

2 ≤ 2𝜎2(𝑝− 2)‖d𝑓‖2
𝑝, (2.5)

‖𝑓‖2
𝑝 − ‖𝑓‖2

2 ≤ 𝜎2(𝑝− 2)‖h+|𝑓 |‖2
𝑝 ≤ 𝜎2(𝑝− 2)‖h𝑓‖2

𝑝. (2.6)

Consequently, for any bounded function 𝑓 we have

‖𝑓 − E 𝑓‖𝑝 ≤ (2𝜎2(𝑝− 3/2))1/2‖d𝑓‖𝑝 ≤ (𝜎2(𝑝− 3/2))1/2‖h𝑓‖𝑝, (2.7)
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and for any positive, bounded function 𝑓

‖(𝑓 − E 𝑓)+‖𝑝 ≤ (𝜎2(𝑝− 1))1/2‖h+𝑓‖𝑝. (2.8)

Proof. Let 𝑝 > 0, and 𝑓 be any measurable function on an arbitrary probability
space such that 0 < ‖𝑓‖𝑝+𝜀 < ∞ for some 𝜀 > 0. We have the formula (see e. g.
[AS94])

𝑑

𝑑𝑝
‖𝑓‖2

𝑝 = 2
𝑝2 ‖𝑓‖2−𝑝

𝑝 Ent(|𝑓 |𝑝). (2.9)

Moreover, note that for any 𝑖 ∈ ℐ it holds

E𝜇(d𝑖𝑓)2 = 1
2

¨
(𝑓(𝑥) − 𝑓(𝑥𝑖, 𝑦𝑖))2𝑑𝜇(𝑦𝑖 | 𝑥𝑖)𝑑𝜇(𝑥) =

ˆ
Var𝜇(·|𝑥𝑖)(𝑓(𝑥𝑖, ·))𝑑𝜇𝑖(𝑥𝑖)

=
˚

(𝑓(𝑥𝑖, 𝑦𝑖) − 𝑓(𝑥𝑖,𝑧𝑖))2
+𝑑𝜇(𝑧𝑖 | 𝑥𝑖)𝑑𝜇(𝑦𝑖 | 𝑥𝑖)𝑑𝜇𝑖(𝑥𝑖)

=
¨

(𝑓(𝑥) − 𝑓(𝑥𝑖, 𝑧𝑖))2
+𝑑𝜇(𝑦𝑖 | 𝑥𝑖)𝑑𝜇(𝑥).

Therefore, it follows that

E𝜇|d𝑓 |2 =
∑︁
𝑖∈ℐ

¨
(𝑓(𝑥) − 𝑓(𝑥𝑖,𝑧𝑖))2

+ 𝑑𝜇(𝑧𝑖 | 𝑥𝑖)𝑑𝜇(𝑥). (2.10)

Now let 𝑝 > 2 and 𝑓 be non-constant. (The assumption ‖𝑓‖𝑝+𝜀 < ∞ is always
true since 𝑓 ∈ 𝐿∞(𝜇).) Applying the d−LSI(𝜎2) to 𝑔 := |𝑓 |𝑝/2 and rewriting this
in terms of (2.10) yields

Ent(|𝑓 |𝑝) ≤ 2𝜎2
∑︁
𝑖∈ℐ

¨
(𝑔(𝑥) − 𝑔(𝑥𝑖,𝑦𝑖))2

+𝑑𝜇(𝑦𝑖 | 𝑥𝑖)𝑑𝜇(𝑥) (2.11)

= 2𝜎2
∑︁
𝑖∈ℐ

˚
(𝑔(𝑥𝑖, 𝑥𝑖) − 𝑔(𝑥𝑖, 𝑦𝑖))2

+𝑑𝜇(𝑥𝑖 | 𝑥𝑖)𝑑𝜇(𝑦𝑖 | 𝑥𝑖)𝑑𝜇𝑖(𝑥𝑖).

(2.12)

Using the inequality (𝑎𝑝/2 − 𝑏𝑝/2)2
+ ≤ 𝑝2

4 𝑎
𝑝−2(𝑎− 𝑏)2 for all 𝑎,𝑏 ≥ 0 and all 𝑝 ≥ 2,

we obtain

(𝑔(𝑥)−𝑔(𝑥𝑖,𝑦𝑖))2
+ ≤ 𝑝2

4 (|𝑓 |(𝑥)−|𝑓 |(𝑥𝑖,𝑦𝑖))2
+|𝑓 |𝑝−2 ≤ 𝑝2

4 (𝑓(𝑥)−𝑓(𝑥𝑖,𝑦𝑖))2|𝑓 |𝑝−2(𝑥),

from which it follows in combination with (2.11) that

Ent(|𝑓 |𝑝) ≤ 𝑝2𝜎2
ˆ

|𝑓 |𝑝−2
∑︁
𝑖∈ℐ

(d𝑖𝑓)2𝑑𝜇 = 𝑝2𝜎2 E𝜇|𝑓 |𝑝−2|d𝑓 |2
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and in combination with (2.12) that

Ent(|𝑓 |𝑝) ≤ 𝑝2𝜎2

2 E𝜇|𝑓 |𝑝−2|h+|𝑓 ||2.

Hölder’s inequality with exponents 𝑝
2 and 𝑝

𝑝−2 applied to the last integral yields

Ent(|𝑓 |𝑝) ≤ 𝑝2𝜎2‖d𝑓‖2
𝑝‖𝑓‖𝑝−2

𝑝

Ent(|𝑓 |𝑝) ≤ 𝑝2𝑝
2𝜎2

2 ‖h+|𝑓 |‖2
𝑝‖𝑓‖𝑝−2

𝑝 .

Plugging this into (2.9), we arrive at the differential inequality 𝑑
𝑑𝑝

‖𝑓‖2
𝑝 ≤ 2𝜎2‖d𝑓‖2

𝑝

and 𝑑
𝑑𝑝

‖𝑓‖2
𝑝 ≤ 𝜎2‖h+|𝑓 |‖2

𝑝 respectively, which after integration gives (2.5) and
(2.6). (2.7) can then be deduced using the Poincaré inequality.

Next, let us prove (2.8). (2.6) shows that for any positive function 𝑔 we have

‖𝑔‖2
𝑝 ≤ ‖𝑔‖2

2 + 𝜎2(𝑝− 2)‖h+𝑔‖2
𝑝. (2.13)

If we set 𝑔 = (𝑓 − E𝜇 𝑓)+, it remains to estimate the right hand side. First off,
the Poincaré inequality for h+ gives

‖𝑔‖2
2 =
ˆ

(𝑓 − E𝜇 𝑓)2
+𝑑𝜇 ≤ Var𝜇(𝑓) ≤ 𝜎2

ˆ
|h+𝑓 |2𝑑𝜇 ≤ 𝜎2‖h+𝑓‖2

𝑝 (2.14)

Secondly, the inequality ((𝑎− 𝑏)+ − (𝑐− 𝑏)+)+ ≤ (𝑎− 𝑐)+ yields

h+
𝑖 𝑔(𝑥) = sup

𝑥′
𝑖

(︀
(𝑓(𝑥) − E𝜇 𝑓)+ − (𝑓(𝑥𝑖, 𝑥′

𝑖) − E𝜇 𝑓)+
)︀

+ ≤ h+
𝑖 𝑓(𝑥),

so that
‖h+𝑔‖2

𝑝 ≤ ‖h+𝑓‖2
𝑝. (2.15)

Plugging in (2.14) and (2.15) into (2.13) proves the assertion.

Remark. Clearly the inequality (2.5) can be proven under the more general
assumption that the difference operator 𝛤 satisfies for any 𝑓 ∈ 𝐿∞(𝜇) and 𝑝 ≥ 2
the inequality ˆ

𝛤 (|𝑓 |𝑝/2)2𝑑𝜇 ≤ 𝑐𝑝2
ˆ
𝛤 (𝑓)2|𝑓 |𝑝−2𝑑𝜇

for some 𝑐 > 0. As we are not aware of any other difference operator satisfying
this class of inequalities, we chose to present Proposition 2.8 in this form.

There are at least two ways to deduce concentration inequalities of exponential
type from growth conditions on the 𝐿𝑝 norms of a function 𝑓 . The first one uses
the Taylor series of the exponential function to bound the moment generating
function of 𝑓 , and was proven and used in [GS19] and [BGS19].

Proposition 2.9. If 𝑓 is a random variable satisfying for some 𝛾 > 0 and all
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𝑘 ∈ N0 the inequality
‖𝑓‖𝑘 ≤ 𝛾𝑘, (2.16)

then we have
E exp

(︁ |𝑓 |
2𝛾𝑒

)︁
≤ 2 (2.17)

Proof. For any 𝑐 > 0, the Taylor series of the exponential function and (2.16)
yield

E exp(𝑐|𝑓 |) = 1 +
∞∑︁
𝑘=1

𝑐𝑘
E|𝑓 |𝑘

𝑘! ≤ 1 +
∞∑︁
𝑘=1

(𝑐𝛾)𝑘 𝑘
𝑘

𝑘! ≤
∞∑︁
𝑘=0

(𝑐𝛾𝑒)𝑘,

where the last inequality follows from 𝑘! ≥ (𝑘
𝑒
)𝑘 for all 𝑘 ∈ N. Inserting 𝑐 = (2𝛾𝑒)−1

we arrive at (2.17).

Remark. Actually, using the slightly better estimate 𝑘! ≥ (𝑘
𝑒
)𝑘

√
2𝜋 the constant

1/(2𝛾𝑒) can be replaced by
√

2𝜋/((
√

2𝜋 + 1)𝛾𝑒).
The second method was proven in [Ada06; AW15] and applied to many classes

of functions (such as 𝑈 -statistics in independent random variables, functions
of random vectors satisfying Sobolev-type inequalities and polynomials in sub-
Gaussian random variables), and provides multilevel concentration inequalities (see
equation (2.18)). Here, it is stated in the form given in [SS18, Proof of Theorem
3.6] with minor modifications.

Proposition 2.10. Let 𝐼 be a finite set, (𝛼𝑖)𝑖∈𝐼 and (𝐶𝑖)𝑖∈𝐼 be a collection of
positive real numbers and 𝑠 ∈ [0,2). Assume that a random variable 𝑓 satisfies for
all 𝑝 ≥ 2 the inequality

‖𝑓‖𝑝 ≤
∑︁
𝑖∈𝐼

𝐶𝑖(𝑝− 𝑠)𝛼𝑖 .

For all 𝑡 ≥ 0 we have

P(|𝑓 | ≥ 𝑡) ≤ 2 exp
(︁

− min
(︁ log(2)

2 − 𝑠
,1
)︁

min
𝑖∈𝐼

(︁ 𝑡

𝐶𝑘𝑒|𝐼|

)︁ 1
𝛼𝑖

)︁
. (2.18)

Proof. By Chebyshev’s inequality we have for any 𝑝 ≥ 1

P(|𝑓 | ≥ 𝑒‖𝑓‖𝑝) ≤ exp(−𝑝). (2.19)

Define the function
𝜂𝑓 (𝑡) := 𝑠+ min

𝑖∈𝐼

(︁ 𝑡

𝐶𝑖𝑒|𝐼|

)︁ 1
𝛼𝑖 ,

and observe that for all 𝑡 > 0 satisfying 𝜂𝑓 (𝑡) ≥ 2 we can estimate

𝑒‖𝑓‖𝜂𝑓 (𝑡) ≤ 𝑒
∑︁
𝑖∈𝐼

𝑡

|𝐼|𝑒
= 𝑡,
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so that an application of equation (2.19) with 𝑝 = 𝜂𝑓 (𝑡) yields

P(|𝑓 | ≥ 𝑡) ≤ P(|𝑓 | ≥ 𝑒‖𝑓‖𝜂𝑓 (𝑡)) ≤ exp (−𝜂𝑓 (𝑡)) .

Combining it with the trivial estimate in the case 𝜂𝑓 (𝑡) ≤ 2 gives

P(|𝑓 | ≥ 𝑡) ≤ exp(2 − 𝜂𝑓 (𝑡)).

To pass from exp(2 − 𝜂𝑓 (𝑡)) to 2 exp(−𝑐min𝑖∈𝐼( 𝑡
|𝐼|𝑒𝐶𝑖

)
1

𝛼𝑖 ) requires a bit of analysis,
but the constant 𝑐 = min( log(2)

2−𝑠 ,1) can be chosen (in the non-trivial regime
𝜂𝑓 (𝑡) ≥ 2).

2.4 Independent random variables

In the case of independent random variables (or, equivalently, product measures),
it is unfortunately not true that these satisfy a d−LSI with some universal constant,
so that both cases can be treated in the same way. Indeed, as can be seen in a
slightly more in-depth analysis of the d−LSI(𝜎2) property in Appendix C, it is
very restrictive in the sense that it is only true for random variables attaining
finitely many values.

Another route to obtain concentration inequalities is to modify the entropy
method, which was done in the framework of so-called 𝜙-entropies. The idea to
replace the function 𝜙0(𝑥) := 𝑥 log 𝑥 in the definition of the entropy Ent𝜙0

𝜇 (𝑓) =
E𝜇 𝜙0(𝑓) − 𝜙0(E𝜇 𝑓) by other functions 𝜙 is present in [Cha04]. In the seminal
work [BBLM05] the authors prove inequalities for 𝜙-entropies for power functions
𝜙(𝑥) = |𝑥|𝛼, 𝛼 ∈ (1,2], leading to moment inequalities for independent random
variables.

Recall that for independent random variables 𝑋1, . . . , 𝑋𝑛 with values in some
measurable space (𝒳 ,𝒜) and copies 𝑋 ′

1, . . . , 𝑋
′
𝑛 (i. e. 𝑋 ′

1, . . . , 𝑋
′
𝑛 are independent

of 𝑋1, . . . , 𝑋𝑛 and 𝑋 ′
𝑖 has the same distribution as 𝑋 ′

𝑖), and some measurable
function 𝐹 : 𝒳 𝑛 → R we set

𝑉+ = 𝑉+(𝐹 ) := E
(︁ 𝑛∑︁
𝑖=1

(𝐹 (𝑋1, . . . , 𝑋𝑛) − 𝐹 (𝑋 𝑖, 𝑋
′
𝑖))2

+ | 𝑋
)︁

(2.20)

and 𝜅 :=
√
𝑒/(2

√
𝑒− 2) ≈ 1.2707.

Theorem 2.11 (Theorem 2 in [BBLM05]). Let 𝑋1, . . . , 𝑋𝑛 be independent random
variables, 𝐹 = 𝐹 (𝑋1, . . . , 𝑋𝑛) a measurable function and 𝑉 + as in (2.20). For
any 𝑝 ≥ 2 we have

‖(𝐹 − E𝐹 )+‖𝑝 ≤
√︀

2𝜅𝑝‖
√
𝑉 +‖𝑝.

The theorem is proven using an elaborate form of the entropy method, and we
choose not to reproduce it. The arguments have been simplified and embedded
into the framework of difference operators in [BGS19, Section 2], more precisely
[BGS19, Theorem 2.3, Corollary 2.6]. Note that there is a slightly different choice



36 Chapter 2 Preliminaries

of normalization for h± in [BGS19] leading to other constants. The next theorem
uses the normalization of h given in the Section 2.2.

Theorem 2.12 (Corollary 2.6 in [BGS19]). Let 𝑋1, . . . , 𝑋𝑛 be independent random
variables and 𝑓 = 𝑓(𝑋1, . . . , 𝑋𝑛) ∈ 𝐿∞(P). For any 𝑝 ≥ 2 it holds

‖(𝑓 − E𝑓)+‖𝑝 ≤
√︀

2𝜅𝑝 ‖h+𝑓‖𝑝 and ‖(𝑓 − E𝑓)−‖𝑝 ≤
√︀

2𝜅𝑝 ‖h−𝑓‖𝑝.

Consequently, we have

‖𝑓 − E 𝑓‖𝑝 ≤
√︀

8𝜅𝑝‖h𝑓‖𝑝. (2.21)

The advantage of Theorem 2.12 is that the difference operators h are much
easier to iterate. However, there is a price to pay: the function needs to be bounded.
Moreover, the difference operator h cannot be used to prove statements about
functions of supremum-type, i. e. 𝑓(𝑋) = sup𝑡∈𝒯 𝑔𝑡(𝑋). This issue will be discussed
in detail in Chapter 4.

2.5 (Weakly dependent) Spin systems

Spin systems are ubiquitous in the modeling of various phenomena, ranging
from toy models to explain ferromagnetism (the Ising and the Potts model, or
more generally the random cluster model) to voter models (e. g. interpreting
the Ising model as a social choice with binary options and interactions between
the agents), various random network models (such as the Erdös-Renyi or the
exponential random graph model) and models with hard constraints such as the
random proper coloring model or the hard-core model.

From the physical viewpoint, a spin system models a collection of particles
attaining different states and interacting with each other, so that the complete
system consists of a set of configurations of the form 𝒳 ℐ . Mathematically, a spin
system can be described as a probability measure 𝜇 on such a product space
𝒴 := 𝒳 ℐ , and hard constraints translate into conditions on the support of the
probability measure. Here we consider finite spin systems, i. e. the sets 𝒳 (the
spins) and ℐ (the sites) are finite.

Albeit very elementary, these finite spin systems can have a rich dependence
structure among the sites. Indeed, many toy models of statistical mechanics are
defined as finite spin systems. We are interested in the regimes in which the sites
exhibit behavior typical of independent random variables. To this end, we define
suitable notions of weak dependence which, on the technical side, lead to (modified)
logarithmic Sobolev inequalities.

Clearly it is in general not possible to observe strong concentration properties
in an arbitrary sequence of probability measures. The trivial example 𝒴 = {0,1}𝑛
and 𝜇 = 1

2(𝛿(0,...,0) + 𝛿(1,...,1)) shows that the linear form 𝑓(𝑥) =
∑︀𝑛

𝑖=1 𝑥𝑖 is not con-
centrated on a

√
𝑛 scale. This, however, cannot be expected, as the concentration

of measure phenomenon arises in the independent setting due to the disability of
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the individual random variables to “align”, whereas the spins are perfectly aligned
under 𝜇. This leads to the notion of weakly dependent spin systems.

Let 𝜇 be a spin system on 𝒴 = 𝒳 ℐ . Define an interdependence matrix (𝐽𝑖𝑗)𝑖,𝑗∈ℐ
as any matrix with 𝐽𝑖𝑖 = 0 and such that for any 𝑥, 𝑦 ∈ 𝒴 with 𝑥𝑗 = 𝑦𝑗 we have

𝑑TV(𝜇(· | 𝑥𝑖), 𝜇(· | 𝑦𝑖)) ≤ 𝐽𝑖𝑗. (2.22)

Here, 𝑑TV is the total variation distance. The matrix 𝐽 (or any norm thereof)
may be interpreted as measuring the strength of the interactions between the
spins in the spin system 𝜇. In particular, 𝐽 = 0 is an interdependence matrix for
product measures 𝜇. Moreover, we need to control the minimal probabilities of
the marginal distributions of the spin system 𝜇, and hence define for any subset
𝑆 ( ℐ and 𝑖 /∈ 𝑆

̃︀𝛽𝑖,𝑆(𝜇) := inf
𝑥𝑆∈𝒳 𝑆

𝜇(𝑥𝑆)>0

inf
𝑦𝑆𝑐 ∈𝒳 𝑆𝑐

𝜇(𝑦𝑆𝑐 ,𝑥𝑆)>0

𝜇((𝑦𝑆𝑐)𝑖 | 𝑥𝑆). (2.23)

If 𝑆 = ∅, this reads ̃︀𝛽𝑖,∅(𝜇) = inf𝑦∈𝒴:𝜇(𝑦)>0 𝜇(𝑦𝑖). The interpretation of ̃︀𝛽𝑖,𝑆(𝜇) is
straightforward: For any admissible partial configuration 𝑥𝑆 ∈ 𝒳 𝑆 all possible
marginals are supported on points with probability at least ̃︀𝛽𝑖,𝑆(𝜇). Now let

̃︀𝛽(𝜇) := inf
𝑆(ℐ

inf
𝑖/∈𝑆

̃︀𝛽𝑖,𝑆(𝜇). (2.24)

For example, if 𝜇 is a product measure, then ̃︀𝛽(𝜇) is the minimal probability of
any atom of the marginals.

Definition 2.13. Let 𝜇 be a finite spin system on 𝒴 = 𝒳 ℐ . 𝜇 is called (𝛼1, 𝛼2)-
weakly dependent for some 𝛼1, 𝛼2 ∈ (0,1), if there exists an interdependence matrix
𝐽 satisfying ̃︀𝛽(𝜇) ≥ 𝛼1 and |𝐽 |2→2 ≤ 1 − 𝛼2.

Remark. If there are no hard constraints, i. e. 𝜇 has full support, then ̃︀𝛽(𝜇) can
be simplified to ̃︀𝛽(𝜇) = 𝐼(𝜇) := min

𝑖∈ℐ
min
𝑦∈𝒴

𝜇(𝑦𝑖 | 𝑦𝑖).

This can be shown by conditioning for any 𝑆 ⊂ ℐ and any 𝑥𝑆 ∈ 𝒳 𝑆

𝜇(𝑦𝑖 | 𝑥𝑆) = 𝜇(𝑥𝑆)−1
∑︁

𝑧∈𝒳 ℐ∖(𝑆∪𝑖)

𝜇(𝑦𝑖 | 𝑥𝑆, 𝑧)𝜇(𝑥𝑆, 𝑧) ≥ 𝐼(𝜇),

and the reverse inequality follows by taking 𝑆 = ℐ∖{𝑗}.
The significance of this definition of weak dependence is provided by the following

theorem.

Theorem 2.14. Let 𝜇 be an (𝛼1, 𝛼2)-weakly dependent spin system.
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1. For any function 𝑓 : 𝒴 → R+ vanishing outside of supp𝜇 = {𝑥 ∈ 𝒴 : 𝜇(𝑥) >
0} we have

Ent𝜇(𝑓) ≤ 1
𝛼1𝛼2

2

∑︁
𝑖∈ℐ

ˆ
Ent𝜇(·|𝑥𝑖)(𝑓(𝑥𝑖, ·))𝑑𝜇(𝑥). (2.25)

2. 𝜇 satisfies a d−LSI(𝜎2) for 𝜎2 := log(𝛼−1
1 )(log(2)𝛼1𝛼

2
2)−1.

Proof of Theorem 2.14. (1): The entropy tensorization property is proven in Ap-
pendix A, see Theorem A.2.

(2): For all 𝑖 ∈ ℐ and 𝑦 ∈ 𝒴 with 𝜇(𝑦) > 0, 𝜇(· | 𝑦𝑖) is a measure on 𝒳 with
min𝑥∈𝒳 𝜇(𝑥 | 𝑦𝑖) ≥ 𝛼1, and so [BT06, Remark 6.6] yields

Ent𝜇(·|𝑦𝑖)(𝑔
2) ≤ 2log(𝛼−1

1 )
log(2) Var𝜇(·|𝑦𝑖)(𝑔),

which plugged into equation (2.25) leads to

Ent𝜇(𝑓 2) ≤ 2 log(𝛼−1
1 )

log(2)𝛼1𝛼2
2

∑︁
𝑖∈ℐ

ˆ
Var𝜇(·|𝑦𝑖)(𝑓(𝑦𝑖,·))𝑑𝜇(𝑦) = 2𝜎2

ˆ
|d𝑓 |2𝑑𝜇.

In the next section, we collect various instances of spin systems that satisfy the
conditions of Theorem 2.14.

2.6 Examples of weakly dependent spin systems

The results in Chapter 4 are phrased for arbitrary weakly dependent spin systems.
More precisely, we formulate the concentration properties for spin systems which
satisfy a d−LSI(𝜎2). At the same time, we put a special focus on a number of
models for which we establish sufficient conditions for weak dependence and
apply our general results. Let us emphasize that any of the models depends on a
parameter 𝑛 ∈ N, so that we are tacitly considering a sequence of spin systems
with a growing number of sites. We will usually suppress this dependence.

It is often easier to define a spin system by its Hamiltonian, i. e. by a function
𝐻 : 𝒴 → R. The spin system associated to 𝐻 is given by the Gibbs measure

𝜇(𝜎) = 𝜇𝐻(𝜎) = 𝑍−1 exp(𝐻(𝜎)) for 𝑍 =
∑︁
𝜎∈𝒴

exp(𝐻(𝜎)).

Note that since −∞ is not in the range of 𝐻, Gibbs measures always have full
support.
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2.6.1 Finite product measures

Maybe the easiest example of a weakly dependent spin system is the setting of
independent spins. For finite sets 𝒳1, . . . ,𝒳𝑛 and probability measures 𝜇1, . . . , 𝜇𝑛,
their product 𝜇 = ⊗𝑛

𝑖=1𝜇𝑖 is a weakly dependent spin system. We can choose 𝐽 = 0
and ̃︀𝛽(𝜇) = min𝑖∈[𝑛] min𝑥𝑖:𝜇𝑖(𝑥𝑖)>0 𝜇𝑖(𝑥𝑖).

2.6.2 The Ising and the Potts model

Our first model - and arguably the most famous one - with dependent spins is
the Ising model on 𝑛 sites, labeled with [𝑛], with interaction matrix 𝐽 = (𝐽𝑖𝑗)𝑖,𝑗∈[𝑛]
and external field ℎ ∈ R𝑛. It is the spin system on 𝒴 := {−1,+ 1}𝑛 given by the
Hamiltonian

𝐻(𝜎) := 𝐻𝐽,ℎ(𝜎) = 1
2⟨𝜎, 𝐽𝜎⟩ + ⟨ℎ, 𝜎⟩ = 1

2
∑︁
𝑖,𝑗∈[𝑛]

𝐽𝑖𝑗𝜎𝑖𝜎𝑗 +
∑︁
𝑖∈[𝑛]

ℎ𝑖𝜎𝑖.

Note that due to 𝜎2
𝑖 = 1 the choice of 𝐽𝑖𝑖 = 0 is arbitrary (at least on the level

of the measure), and we choose it according to the application we have in mind.
Thus, the Ising model with interaction 𝐽 and external field ℎ is the spin system

𝜇(𝜎) = 𝜇𝐽,ℎ(𝜎) = 𝑍−1 exp(𝐻(𝜎)) where 𝑍 =
∑︁

𝜎∈{−1,+1}𝑛

exp(𝐻(𝜎)).

For example, the case 𝐽 = 0 gives rise to 𝑛 independent random variables
𝜎1, . . . , 𝜎𝑛 with 𝜇(𝜎𝑖 = 1) = exp(ℎ𝑖)/(exp(ℎ𝑖) + exp(−ℎ𝑖)). On the other hand, the
case ℎ = 0 and 𝐽𝑖𝑗 = 𝛽 for some 𝛽 ∈ (0,1) is the Curie–Weiss model mentioned in
Chapter 1.

Proposition 2.15. If 𝜇 denotes the Ising model for (𝐽,ℎ) satisfying |ℎ|∞ ≤ ̃︀𝛼
and 𝐽𝑖𝑖 = 0 and

|𝐽 |∞→∞ = max
𝑖∈[𝑛]

𝑛∑︁
𝑗=1

|𝐽𝑖𝑗| ≤ 1 − 𝛼, (2.26)

then 𝜇 is a (𝛼1, 𝛼2)-weakly dependent spin system, where 𝛼1 and 𝛼2 depend on 𝛼
and ̃︀𝛼 only (but not on 𝑛).

Condition (2.26) appears in various contexts, especially in the infinite dimen-
sional setting 𝒴 = {−1,+1}Z𝑑 (see for example [Kül03], equations (2.1) and (2.2)).
We stick to the common notion and call it the Dobrushin uniqueness condition.
Remark. By Theorem 2.14, this can be seen as a generalization of the LSI on
{−1,+1}𝑛 equipped with the uniform measure, which corresponds to the Ising
model without any interactions and external field. Furthermore, for 𝐽 = 0 we
obtain 𝑛 independent random variables 𝜎1, . . . , 𝜎𝑛 with P(𝜎𝑖 = 1) = 1

2(1+tanh(ℎ𝑖)).
Thus the logarithmic Sobolev constant necessarily depends on |ℎ|∞. Indeed, it is
known that the LSI constant diverges as 𝑝 → 0 or 𝑝 → 1, see e. g. [DS96, Theorem
A.1].
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In the proof we will need the fact that the conditional probabilities of the Ising
model are given by

𝜇(1 | 𝜎𝑖) = 1
2

(︁
1 + tanh

(︁
𝜎𝑖

∑︁
𝑗

𝐽𝑖𝑗𝜎𝑗 + ℎ𝑖𝜎𝑖

)︁)︁
. (2.27)

Proof of Proposition 2.15. First, let us show that |𝐽 | = (|𝐽 |𝑖𝑗)𝑖,𝑗 can be used as
an interdependence matrix. Fix 𝑖 ̸= 𝑘 and 𝑧,𝑦 ∈ 𝒴 satisfying 𝑦𝑘 = 𝑧𝑘, i. e. 𝑦 = 𝑇𝑘𝑧.
Define 𝜎 := (𝑧𝑖, 1) and 𝑚𝑖(𝜎) := 𝜎𝑖

∑︀
𝑗 𝐽𝑖𝑗𝜎𝑗 + ℎ𝑖𝜎𝑖. We have by equation (2.27)

and the 1-Lipschitz property of tanh

𝑑𝑇𝑉 (𝜇(· | 𝑧𝑖), 𝜇(· | 𝑦𝑖)) = 1
2 |tanh(𝑚𝑖(𝜎)) − tanh(𝑚𝑖(𝑇𝑘𝜎))|

≤ 1
2 |𝑚𝑖(𝜎) −𝑚𝑖(𝑇𝑘𝜎)| = |𝐽𝑖𝑘|.

Now for the interdependence matrix 𝐽 we have

|𝐽 |2→2 ≤
√︀

|𝐽 |∞→∞|𝐽𝑇 |∞→∞ ≤ 1 − 𝛼,

which follows from the general estimate |𝜆𝑖(𝐴𝐴𝑇 )| ≤ ‖𝐴𝐴𝑇‖ ≤ ‖𝐴‖‖𝐴𝑇‖ for any
matrix norm ‖·‖.

The lower bound on the conditional probability follows easily from equation
(2.27) and the estimate max𝑖|𝑚𝑖|∞ ≤ |𝐽 |∞→∞ + |ℎ|∞.

A well-known extension of the Ising model (which corresponds to two states
−1 and +1) to 𝑞 > 2 states is the so-called Potts model. For any 𝑞 ≥ 2 and
𝛽 > 0 consider the probability measure 𝜇 = 𝜇𝑞 = 𝜇𝛽,𝑞 on [𝑞]𝑛 induced by the
Hamiltonian

𝐻(𝜎) = 𝛽

2𝑛
∑︁
𝑘∈[𝑞]

𝑚𝑘(𝜎)2 = 𝛽

2𝑛
∑︁
𝑖 ̸=𝑗

𝛿𝜎𝑖=𝜎𝑗
+ 𝛽

2 ,

where 𝑚𝑘(𝜎) =
∑︀

𝑖∈[𝑛] 𝛿𝜎𝑖=𝑘 denotes the number of spins with color 𝑘. The
parameter 𝛽 will be called the (inverse) temperature of the model, so that the
Potts model depends on the two parameters 𝑞 and 𝛽.

Proposition 2.16. Let 𝑞 ≥ 2 and 𝜇 = 𝜇𝛽,𝑞 be the Potts model with parameters
satisfying 2(𝑞 − 1)𝑒𝛽𝛽 < 1. For 𝑛 large enough, 𝜇 is an (𝛼1, 𝛼2)-weakly dependent
system, where 𝛼1, 𝛼2 depend on 𝛽 and 𝑞.

Proof. Fix two distinct sites 𝑟, 𝑠 ∈ [𝑛], define 𝑚𝑟𝑠,𝑘(𝜎) :=
∑︀

𝑖/∈{𝑟,𝑠} 𝛿𝜎𝑖=𝑘 and
decompose the Hamiltonian as

𝐻(𝜎) = 𝛽

2𝑛
∑︁
𝑘∈[𝑞]

(𝑚𝑟𝑠,𝑘(𝜎) + 𝛿𝜎𝑟=𝑘 + 𝛿𝜎𝑠=𝑘)2
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= 𝛽

2𝑛

(︁∑︁
𝑘∈[𝑞]

𝑚𝑟𝑠,𝑘(𝜎)2 + 2𝑚𝑟𝑠,𝑘(𝜎)(𝛿𝜎𝑟=𝑘 + 𝛿𝜎𝑠=𝑘)
)︁

+ 𝛽

𝑛
+ 𝛽

𝑛
𝛿𝜎𝑟=𝜎𝑠

= 𝛽

2𝑛
∑︁
𝑘∈[𝑞]

𝑚𝑟𝑠,𝑘(𝜎)2 + 𝛽

𝑛

(︁
𝑚𝑟𝑠,𝜎𝑟(𝜎) +𝑚𝑟𝑠,𝜎𝑠(𝜎) + 1 + 𝛿𝜎𝑟=𝜎𝑠

)︁
.

Note that the first sum does not depend on 𝜎𝑟 and 𝜎𝑠, and so we can express the
conditional probability given 𝜎𝑟 by

𝜇(𝑘 | 𝜎𝑟) =
exp

(︁
𝐻(𝜎𝑟, 𝑘)

)︁
∑︀̃︀𝑘∈[𝑞] exp

(︁
𝐻(𝜎𝑟,̃︀𝑘)

)︁
=

exp
(︁
𝛽
2𝑛

∑︀𝑞
𝑘′=1 𝑚𝑟𝑠,𝑘′(𝜎)2 + 𝛽

𝑛
𝑚𝑟𝑠,𝑘(𝜎) + 𝛽

𝑛
𝑚𝑟𝑠,𝜎𝑠(𝜎) + 𝛽

𝑛
𝛿𝜎𝑠=𝑘

)︁
∑︀̃︀𝑘∈[𝑞] exp

(︁
𝐻(𝜎𝑟,̃︀𝑘)

)︁
= 1

1 +
∑︀̃︀𝑘:̃︀𝑘 ̸=𝑘 exp

(︁
𝛽
𝑛
(𝑚𝑟𝑠,̃︀𝑘(𝜎) −𝑚𝑟𝑠,𝑘(𝜎) + 𝛿𝜎𝑠=̃︀𝑘 − 𝛿𝜎𝑠=𝑘)

)︁
= ℎ

(︁ ∑︁
̃︀𝑘:̃︀𝑘 ̸=𝑘

exp
(︁𝛽
𝑛

(𝑚𝑟𝑠,̃︀𝑘(𝜎) −𝑚𝑟𝑠,𝑘(𝜎) + 𝛿𝜎𝑠=̃︀𝑘 − 𝛿𝜎𝑠=𝑘)
)︁)︁
.

Here, ℎ(𝑥) = 1/(1 + 𝑥). In the next step, consider two configurations 𝜎, 𝜏 which
differ at the site 𝑠 only, i. e. 𝜎𝑠 ̸= 𝜏𝑠 and 𝜎𝑠 = 𝜏 𝑠. Set ̃︀𝛽 := 𝛽/𝑛. We have by the
1-Lipschitz property of ℎ

𝑑TV(𝜇(· | 𝜎𝑟), 𝜇(· | 𝜏 𝑟)) = 1
2
∑︁
𝑘∈[𝑞]

|𝜇(𝑘 | 𝜎𝑟) − 𝜇(𝑘 | 𝜏 𝑟)|

≤ 1
2
∑︁
𝑘 ̸=̃︀𝑘

exp
(︀̃︀𝛽(𝑚𝑟𝑠,̃︀𝑘(𝜎) − 𝑚𝑟𝑠,𝑘(𝜎))

)︀⃒⃒
exp

(︀̃︀𝛽(𝛿𝜎𝑠=̃︀𝑘 − 𝛿𝜎𝑠=𝑘)
)︀

− exp
(︀̃︀𝛽(𝛿𝜏𝑠=̃︀𝑘 − 𝛿𝜏𝑠=𝑘)

)︀⃒⃒
≤ 1

2𝑒𝛽
∑︁
𝑘 ̸=̃︀𝑘

⃒⃒
exp

(︀̃︀𝛽(𝛿𝜎𝑠=̃︀𝑘 − 𝛿𝜎𝑠=𝑘)
)︀

− exp
(︀̃︀𝛽(𝛿𝜏𝑠=̃︀𝑘 − 𝛿𝜏𝑠=𝑘)

)︀⃒⃒
=: 1

2𝑒𝛽
∑︁
𝑘 ̸=̃︀𝑘

𝐼(𝑘,̃︀𝑘)

= 1
2𝑒𝛽

(︁ ∑︁
̃︀𝑘 ̸=𝜎𝑠

𝐼(𝜎𝑠,̃︀𝑘) +
∑︁
̃︀𝑘 ̸=𝜏𝑠

𝐼(𝜏𝑠,̃︀𝑘) +
∑︁

𝑘 ̸=𝜎𝑠

𝐼(𝑘, 𝜎𝑠) +
∑︁
𝑘 ̸=𝜏𝑠

𝐼(𝑘, 𝜏𝑠)
)︁

.

In the last step, we have used the fact that 𝐼(𝑘,̃︀𝑘) vanishes whenever 𝑘 /∈ {𝜎𝑠, 𝜏𝑠}
and ̃︀𝑘 /∈ {𝜎𝑠, 𝜏𝑠}. By a Taylor expansion, we easily see

𝐼(𝜎𝑠, 𝜏𝑠) = 𝐼(𝜏𝑠,𝜎𝑠) = 2̃︀𝛽 + 𝑜(̃︀𝛽2)
𝐼(𝜎𝑠, 𝑟) = 𝐼(𝜏𝑠,𝑟) = 𝐼(𝑟, 𝜎𝑠) = 𝐼(𝑟, 𝜏𝑠) = ̃︀𝛽 +𝑂(̃︀𝛽).
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Hence we have

|𝐽 |∞→∞ = max
𝑟∈[𝑛]

∑︁
𝑠∈[𝑛]

|𝐽𝑟𝑠| ≤ 1
2𝑒

𝛽(4̃︀𝛽(𝑞 − 1)(𝑛− 1) +𝑂𝛽,𝑞(𝑛−1))

≤ 2(𝑞 − 1)𝑒𝛽𝛽 +𝑂𝛽(𝑛−1),

and for 2(𝑞−1)𝑒𝛽𝛽 < 1 and large enough 𝑛 this gives an upper bound on the norm
of an interdependence matrix. The lower bound on the conditional probability can
be easily obtained from the representation of 𝜇(𝑘 | 𝜎𝑟) in terms of the function ℎ
given above, and we omit the details.

2.6.3 Random networks: The (vertex-weighted) exponential random
graph model

The third spin system we consider is a model of a randomly formed network
known as the exponential random graph model. These models have been introduced
in [HL81] for directed graphs and further developed in [FS86; Str86]. For a
thorough historical overview and asymptotic results we refer to the well-written
survey [Cha16] or the lecture notes [Cha17]. The basic idea is to use a weight
function on the space of all graphs of size 𝑛 to increase the probability of certain
substructures, such as the number of triangles. As such, the model is able to
incorporate dependence between the edges.

We denote by 𝒢𝑛 the set of all simple graphs on 𝑛 vertices labeled with [𝑛],
and set ℐ𝑛 := {(𝑖,𝑗) ∈ [𝑛]2 : 𝑖 < 𝑗}. For two simple graphs 𝐺1 = (𝑉1, 𝐸1) and
𝐺2 = (𝑉2, 𝐸2) let 𝑁𝐺1(𝐺2) be the number of graph homomorphisms from 𝐺1 to
𝐺2, i. e. edge-preserving injective maps 𝜙 : 𝑉1 → 𝑉2.

The exponential random graph model is a parametric family of probability
distributions on 𝒢𝑛 for some fixed 𝑛 ∈ N. Let 𝛽 = (𝛽1, . . . , 𝛽𝑠) ∈ R𝑠 be a weight
vector and 𝐺1 = (𝑉1, 𝐸1), . . . , 𝐺𝑠 = (𝑉𝑠, 𝐸𝑠) simple, connected graphs. The ERGM
with parameters (𝛽, 𝐺1, . . . , 𝐺𝑠), denoted by 𝜇𝛽, is defined as the spin system on
{0,1}ℐ𝑛 associated to the Hamiltonian

𝐻𝛽(𝑥) := 𝑛2
𝑠∑︁
𝑖=1

𝛽𝑖
𝑁𝐺𝑖

(𝑥)
𝑛|𝑉𝑖|

.

By convention, we take 𝐺1 to be the complete graph 𝐾2 on two vertices. Note
that for 𝑠 = 1 we obtain the Erdös–Rényi model with parameter 𝑝 = 𝑒𝛽(1 + 𝑒𝛽)−1.

In essence, the Hamiltonian 𝐻 favors all subgraphs 𝐺𝑖 with positive constants 𝛽𝑖,
and penalizes graphs that contain many subgraphs 𝐺𝑗 with negative 𝛽𝑗. Thus, it
produces an exponential tilt towards graphs which are of the prescribed structure,
i. e. contain many desirable graphs and few undesirable ones. A special role is
assigned to 𝛽1, which decides whether the model favors a large number of edges
(𝛽1 ≥ 0) or not (𝛽1 < 0); it can be seen as an external field in the Ising model,
with the same sign for every edge.
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Figure 2.1: Two possible realizations of a random graph on 𝑛 = 10 nodes - the
edges that constitute a triangle are colored in red. For example, if
𝛽1 = 0.2, 𝛽2 = 0.3 and 𝐺2 is the triangle graph, then the Hamiltonian is
given by 𝐻(𝑥) = 0.4𝐸(𝑥) + 0.18𝑇 (𝑥), where 𝐸(𝑥) denotes the number
of edges and 𝑇 (𝑥) the number of triangles. If we denote by 𝑥1 the left
graph and by 𝑥2 the right graph, then 𝐻(𝑥1) = 5.34 and 𝐻(𝑥2) = 3.38,
and so it is roughly seven times more likely to see 𝑥1 than 𝑥2.

For any set of parameters (𝛽, 𝐺1, . . . , 𝐺𝑠) we define the functions 𝛷𝛽, 𝜙𝛽 :
[0,1] → R via

𝛷𝛽(𝑥) =
𝑠∑︁
𝑖=1

𝛽𝑖|𝐸𝑖|𝑥|𝐸𝑖|−1 = 𝛽1 +
𝑠∑︁
𝑖=2

𝛽𝑖|𝐸𝑖|𝑥|𝐸𝑖|−1

𝜙𝛽(𝑥) = exp(2𝛷𝛽(𝑥))
1 + exp(2𝛷𝛽(𝑥)) = 1

2(1 + tanh(𝛷𝛽(𝑥))),

and set |𝛽| := (|𝛽1|, . . . , |𝛽𝑠|).

Proposition 2.17. If 𝛽 is such that 1
2𝛷

′
|𝛽|(1) < 1, then 𝜇𝛽 is a weakly dependent

spin system, where 𝛼1 and 𝛼2 depend on 𝛷′
|𝛽|(1).

To prove the proposition, it is convenient to introduce some notation first.
For any graph 𝑥 ∈ 𝒢𝑛 and any edge 𝑒 = (𝑖,𝑗) ∈ ℐ𝑛 let 𝑥𝑒+ (resp. 𝑥𝑒−) be the
graph with edge set 𝐸(𝑥𝑒+) = 𝐸(𝑥) ∪ 𝑒 (𝐸(𝑥𝑒−) = 𝐸(𝑥)∖𝑒 respectively). For any
function 𝑓 : 𝒢𝑛 → R we define the discrete derivative in the 𝑒-th direction as
𝜕𝑒𝑓(𝑥) = 𝑓(𝑥𝑒+) − 𝑓(𝑥𝑒−). More generally, given edges 𝑒1, . . . , 𝑒𝑘 we define 𝜕𝑒1···𝑒𝑘
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recursively, i. e. 𝜕𝑒1···𝑒𝑘
𝑓 = 𝜕𝑒1 (𝜕𝑒2···𝑒𝑘

𝑓) . The partial derivatives of the Hamiltonian
are given by

𝜕𝑒𝐻(𝑥) = 2𝛽1 + 𝑛2
𝑠∑︁
𝑖=2

𝛽𝑖
𝑛|𝑉𝑖|

(𝑁𝐺𝑖
(𝑥𝑒+) −𝑁𝐺𝑖

(𝑥𝑒−)).

Now, if 𝜙 : 𝐺𝑖 → 𝑥𝑒− is a graph homomorphism, then so is 𝜙 : 𝐺𝑖 → 𝑥𝑒+ , and
so the sum is only nonzero if the edge 𝑒 is essential for the injection. We write
𝑁𝐺𝑖

(𝑥,𝑒) to denote the number of injections of 𝐺𝑖 into 𝑥 which use the edge
𝑒 ∈ 𝐸(𝑥), so that 𝜕𝑒𝐻(𝑥) = 2𝛽1 + 𝑛2 ∑︀𝑠

𝑖=2
𝛽𝑖

𝑛|𝑉𝑖|𝑁𝐺𝑖
(𝑥,𝑒). Especially this gives

|𝜕𝑒𝐻(𝑥)| = 𝑂(1). Moreover, for two distinct edges 𝑒, 𝑓 ∈ ℐ𝑛 we let 𝑁𝐺𝑖
(𝑥,𝑒,𝑓) be

the number of graph homomorphisms that make use of the edges 𝑒 and 𝑓 . We
shall require the following lemma, which can be found in [BBS11] and is based on
a counting argument.

Lemma 2.18. With the above notation, for any fixed edge 𝑒 ∈ ℐ𝑛 and simple
graph 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖) we have∑︁

𝑓 :𝑓 ̸=𝑒

𝑁𝐺𝑖
(𝐾𝑛,𝑓,𝑒) = (|𝐸𝑖| − 1)𝑁𝐺(𝐾𝑛,𝑒) ≤ 2|𝐸𝑖|(|𝐸𝑖| − 1)𝑛|𝑉𝑖|−2.

Proof of Proposition 2.17. We drop the subscript 𝛽 and set 𝜇 := 𝜇𝛽. The lower
bound on the conditional probabilities is easy to check, since for any 𝑒 ∈ ℐ𝑛 and
any 𝑦 ∈ 𝒴

𝜇(𝑦𝑒 | 𝑦𝑒) = 1
2(1 + tanh(𝜕𝑒𝐻(𝑦)/2))

and 𝜕𝑒𝐻(𝑦) = 𝑂(1), where the constant depends on (|𝛽|, 𝐺1, . . . , 𝐺𝑠) only. Hence
it remains to prove the second condition. To this end, let 𝑥 = 𝑥𝑓+, 𝑦 = 𝑥𝑓− be two
graphs which differ in one edge 𝑓 only, and observe that for each other edge 𝑒

𝑑TV(𝜇(· | 𝑥𝑒), 𝜇(· | 𝑦𝑒)) = 1
2 |tanh(𝜕𝑒𝐻(𝑥𝑓+)/2) − tanh(𝜕𝑒𝐻(𝑥𝑓−)/2)|

≤ 1
4 |𝜕𝑓𝑒𝐻(𝑥)| ≤ 𝑛2

4

𝑠∑︁
𝑖=2

|𝛽𝑖|
𝑁𝐺𝑖

(𝑥,𝑓,𝑒)
𝑛|𝑉𝑖|

≤ 𝑛2

4

𝑠∑︁
𝑖=2

|𝛽𝑖|
𝑁𝐺𝑖

(𝐾𝑛,𝑓,𝑒)
𝑛|𝑉𝑖|

,

where 𝐾𝑛 is the complete graph on 𝑛 vertices, and we can choose

𝐽𝑓𝑒 := 𝑛2

4

𝑠∑︁
𝑖=2

|𝛽𝑖|
𝑁𝐺𝑖

(𝐾𝑛,𝑓,𝑒)
𝑛|𝑉𝑖|

.
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Consequently, after summation in 𝑓 ∈ ℐ𝑛 we obtain by Lemma 2.18

∑︁
𝑓 :𝑓 ̸=𝑒

𝐽𝑓𝑒 ≤ 𝑛2

4

𝑠∑︁
𝑖=2

|𝛽𝑖|
𝑛|𝑉𝑖|

∑︁
𝑓 ̸=𝑒

𝑁𝐺𝑖
(𝐾𝑛,𝑓,𝑒) ≤ 1

2

𝑠∑︁
𝑖=2

|𝛽𝑖||𝐸𝑖|(|𝐸𝑖| − 1) = 1
2𝛷

′
|𝛽|(1).

Since the right-hand side is independent of 𝑒 ∈ ℐ𝑛, this yields |𝐽 |∞→∞ ≤ 1
2𝛷

′
|𝛽|(1) <

1. Moreover, 𝐽 is a symmetric matrix, so that we have |𝐽 |2→2 ≤ |𝐽 |∞→∞.

Another random graph model - the vertex-weighted ERGM - was recently intro-
duced in [DEY19]. The parameter-space is three-dimensional, i. e. 𝛽 = (𝛽1, 𝛽2, 𝑝) ∈
R2 ×(0,1), and the model is the spin system on 𝒴 = {0,1}𝑛 defined via the
Hamiltonian

𝐻(𝜎) := log
(︂

𝑝

1 − 𝑝

)︂∑︁
𝑖

𝜎𝑖 + 𝛽1

𝑛

∑︁
𝑖 ̸=𝑗

𝜎𝑖𝜎𝑗 + 𝛽2

𝑛2

∑︁
𝑖 ̸=𝑗 ̸=𝑘

𝜎𝑖𝜎𝑗𝜎𝑘.

Note that it resembles the Hamiltonian in the exponential random graph model.
On the other hand, it can also be seen as an extension of the Curie–Weiss model
on the complete graph with interactions given by a quadratic and a cubic form.
We define the function

𝜙𝛽(𝑥) := exp(ℎ𝛽(𝑥))
1 + exp𝛽(ℎ(𝑥)) = exp (𝛽1𝑥+ 𝛽2𝑥

2 + log(𝑝/(1 − 𝑝)))
1 + exp (𝛽1𝑥+ 𝛽2𝑥2 + log(𝑝/(1 − 𝑝))) .

Similarly to the ERGM, the derivative of 𝜙𝛽 determines whether the system is
weakly dependent.

Proposition 2.19. Let 𝜇𝛽 be the vertex-weighted exponential random graph model
and assume that sup𝜆∈(0,1)|𝜙′

𝛽(𝜆)| < 1. For 𝑛 large enough 𝜇𝛽 satisfies the condi-
tions of Theorem 2.14.

Proof of Proposition 2.19. Since 𝑥𝑖 ∈ {0,1} implies 𝑥𝑘𝑖 = 𝑥𝑖 for all 𝑘 ∈ N, we can
rewrite the Hamiltonian using the order parameter 𝑆 :=

∑︀𝑛
𝑖=1 𝑥𝑖 as

𝜇(𝑥) = 𝑍−1 exp
(︂
𝛽1

𝑛
𝑆(𝑆 − 1) + 𝛽2

𝑛2𝑆(𝑆 − 1)(𝑆 − 2) + log 𝑝

1 − 𝑝
𝑆

)︂
.

Observe that we have (with the same notations as in the ERGM)

𝜇(1 | 𝑥𝑖) = exp(𝜕𝑒𝐻𝑛(𝑥𝑒,1))
1 + exp(𝜕𝑒𝐻𝑛(𝑥𝑒,1)) = 1

2 (1 + tanh (𝜕𝑒𝐻𝑛(𝑥)/2)) ,

where in this case |𝜕𝑒𝐻𝑛(𝑥)| = |2𝛽1
𝑛

∑︀
𝑖 ̸=𝑒 𝑥𝑖 +

3𝛽2
𝑛2

∑︀
𝑖 ̸=𝑗,𝑖,𝑗 ̸=𝑒 𝑥𝑖𝑥𝑗 + log(𝑝/(1 −𝑝))| is

bounded by a constant depending on 𝛽, so that a lower bound on the conditional
probabilities holds. The upper bound on the interdependence matrix is already
implicitly proven in the proof of [DEY19, Lemma 6], which we modify. Fix a site
𝑒 ∈ ℐ𝑛 and two configurations 𝑥,𝑦 differing solely at 𝑓 ∈ ℐ𝑛, i. e. 𝑥𝑓 = 1, 𝑦𝑓 = 0,
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and let 𝑆 :=
∑︀𝑛

𝑖=1 𝑦𝑖. We have

𝑑TV(𝜇(· | 𝑥𝑒), 𝜇(· | 𝑦𝑒)) = 1
2 |tanh(𝜕𝑒𝐻𝑛(𝑥𝑒, 1)) − tanh(𝜕𝑒𝐻𝑛(𝑦𝑒,1))|

and since 𝐻𝑛 (and as a consequence 𝜕𝑒𝐻𝑛) only depends on 𝑆, by defining
ℎ𝑛(𝜆) := 𝛽1𝜆+ 𝛽2𝜆

2 − 𝛽2
𝑛
𝜆+ log(𝑝/(1 − 𝑝)) we can estimate for some 𝜉 ∈ (0,1)

𝐽𝑓𝑒 ≤
⃒⃒⃒⃒

exp(ℎ𝑛((𝑆 + 1)/𝑛))
1 + exp(ℎ𝑛((𝑆 + 1)/𝑛)) − exp(ℎ𝑛(𝑆/𝑛))

1 + exp(ℎ𝑛(𝑆/𝑛))

⃒⃒⃒⃒
= 1
𝑛

⃒⃒⃒⃒(︂
exp ∘ℎ𝑛

1 + exp ∘ℎ𝑛

)︂′

(𝜉)
⃒⃒⃒⃒
.

(2.28)

Lastly, if we define ℎ(𝜆) = 𝛽1𝜆+𝛽2𝜆
2 +log(𝑝/(1−𝑝)), using the Lipschitz property

of the function exp(𝑥)/(1 + exp(𝑥)) it can be shown that⃒⃒⃒⃒
exp ∘ℎ𝑛

1 + exp ∘ℎ𝑛
− exp ∘ℎ

1 + exp ∘ℎ

⃒⃒⃒⃒
= 𝑂(𝑛−1)

and ℎ𝑛 can be replaced by ℎ in (2.28) with an error of 𝑂(𝑛−2). By summing up
over 𝑓 ̸= 𝑒, we obtain for 𝑛 large enough and all parameters such that

sup
𝜆∈(0,1)

⃒⃒⃒⃒
exp ∘ℎ

1 + exp ∘ℎ

′ ⃒⃒⃒⃒
< 1 (2.29)

that there is an interdependence matrix satisfying ‖𝐽‖2→2 < 1.

Remark. Condition (2.29) can be written in terms of the functions defined for
ERGMs. More specifically, we have for any 𝑥 ∈ R

exp(ℎ(𝑥))
1 + exp(ℎ(𝑥)) = 𝜙̃︀𝛽1,̃︀𝛽2,̃︀𝛽3

(𝑥)

for the ERGM 𝜇𝛽 given by the three parameters ̃︀𝛽1 = log(𝑝/(1−𝑝))
2 , ̃︀𝛽2 = 𝛽1

4 ,
̃︀𝛽3 = 𝛽2

6
and the three graphs 𝐺1 an edge, 𝐺2 a 2-star and 𝐺3 a triangle.

2.6.4 Models with exclusion: Random coloring and hard-core model

Given a finite graph 𝐺 = (𝑉,𝐸) and a set of colors 𝐶 = [𝑘], the configuration
space in the random coloring model is the set of all proper colorings 𝛺0 ⊂ 𝐶𝑉 , i. e.
the set of all 𝜎 ∈ 𝐶𝑉 such that {𝑣,𝑤} ∈ 𝐸 ⇒ 𝜙𝑣 ̸= 𝜙𝑤, and 𝜇 = 𝜇(𝐺,𝐶) denotes
the uniform distribution on 𝛺0.

Proposition 2.20. Let 𝐺 = (𝑉,𝐸) be a simple graph with maximum degree 𝛥
and 𝑘 ≥ 2𝛥+1. Then the conditions of Theorem 2.14 hold for the random coloring
model 𝜇𝐺 with 𝛼1, 𝛼2 depending on 𝛥 and 𝑘 only.

Proof of Proposition 2.20. Let us first show that 𝐽𝑣,𝑤 := 1
𝛥+11𝑣∼𝑤 can be used as

an interdependence matrix. To see this, let 𝑐1, 𝑐2 ∈ 𝛺0 be two colorings that differ
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only in one vertex 𝑣1, and 𝑣2 ̸= 𝑣1. In the case 𝑣1 ∼ 𝑣2 the measures 𝜇(· | 𝑐𝑖𝑣2) are
uniform on 𝐶∖{𝑐𝑖𝑣𝑘

: 𝑣𝑘 ∼ 𝑣1} for 𝑖 = 1,2, and hence

𝑑TV(𝜇−𝐺(· | 𝑐1
𝑣2), 𝜇𝐺(· | 𝑐2

𝑣2))

= 1
2

(︂
1

𝑘 − |{𝑐1
𝑣2 : 𝑣2 ∼ 𝑣1}|

+ 1
𝑘 − |{𝑐2

𝑣2 : 𝑣2 ∼ 𝑣1}|

)︂
≤ 1
𝑘 −𝛥

≤ 1
𝛥+ 1 .

On the other hand, if 𝑣2 ̸∼ 𝑣1, then 𝜇𝐺(· | 𝑐𝑖𝑣2) are equal and thus 𝐽𝑣1,𝑣2 = 0. So,
by the symmetry of 𝐽 we have

|𝐽 |2→2 ≤ |𝐽 |∞→∞ ≤ max
𝑣∈𝑉

∑︁
𝑤∈𝑉

𝐽𝑣,𝑤 ≤ 𝛥

𝛥+ 1 < 1.

Moreover, we have to show ̃︀𝛽(𝜇𝐺) ≥ 𝑐(𝑘,𝛥) . Let 𝑆 ( 𝑉 be a nonempty collection
of vertices, 𝑣1 /∈ 𝑆 and 𝑐𝑆 ∈ 𝐶𝑆 be a proper coloring of the induced graph
𝐺 |𝑆= (𝑆,𝐸𝑛 ∩ 𝑆 × 𝑆) and 𝑐𝑣1 ∈ 𝐶∖{𝑐𝑣2 : 𝑣2 ∈ 𝑆, 𝑣2 ∼ 𝑣1}. Using the definition
𝛺0(𝐻) for the set of all proper colorings of an arbitrary graph 𝐻 with a fixed
number of colors 𝑘, we have

𝜇𝐺(𝑐𝑣1 | 𝑐𝑆) = 𝜇𝐺(𝑐𝑣1 , 𝑐𝑆)
𝜇𝐺(𝑐𝑆) = |𝛺0(𝐺 |𝑆)|

|𝛺0(𝐺 |𝑆∪𝑣1)| . (2.30)

It is clear that |𝛺0(𝐺 |𝑆)| = 𝑘−1|𝛺0(̃︁𝐺𝑆)|, where ̃︁𝐺𝑆 is obtained by adding an
isolated vertex 𝑣1 to 𝑆. Hence we fix the vertex set 𝑆 ∪ 𝑣1 and rewrite equation
(2.30) as follows. Let 𝑁(𝑣1, 𝑆) = {𝑣2 ∈ 𝑆 : 𝑣2 ∼ 𝑣1} = {𝑒1, . . . , 𝑒𝑙} be the neighbors
of 𝑣1 in 𝑆 and for any 𝑤1, . . . , 𝑤𝑘 ∈ 𝑁(𝑣1, 𝑆) we let 𝑒𝑗 = {𝑣1, 𝑤𝑗} and 𝐺𝑒1,...,𝑒𝑘

be
the graph with edge set (𝐸𝑛 ∩ 𝑆 × 𝑆) ∪ {𝑒1, . . . , 𝑒𝑘}. This leads to

𝜇𝐺(𝑐𝑣1 | 𝑐𝑆) = 𝑘−1
𝑙∏︁

𝑘=1

|𝛺0(𝐺𝑒1,...,𝑒𝑘−1)|
|𝛺0(𝐺𝑒1,...,𝑒𝑘

)| ≥ 𝑘−1
(︂
𝛥+ 1
𝛥+ 2

)︂𝑙

≥ 𝑘−1
(︂
𝛥+ 1
𝛥+ 2

)︂𝛥

,

where the inequality follows from [Jer95, equation (2)], stating that the ratios are
bounded from below by a constant 𝑐(𝛥).

Finally, the case 𝑆 = ∅ is much easier, as 𝜇(𝑐𝑖) = 𝑘−1 due to the invariance of
the random coloring model induced by a relabeling of the colors 𝐶.

Another model with hard constraints is the hard-core model with fugacity
parameter 𝜆. Given a graph 𝐺 = (𝑉,𝐸) and 𝜆 > 0, the hard-core model 𝜇 = 𝜇𝐺,𝜆
is the spin system on 𝒴 = {0,1}𝑉 satisfying

𝜇(𝜎) =
{︃
𝑍−1 ∏︀

𝑖 𝜆
𝜎𝑖 𝜎 admissible

0 otherwise
.

Here, an admissible configuration satisfies 𝜎𝑣𝜎𝑤 = 0 for all {𝑣, 𝑤} ∈ 𝐸.
Let us first consider the following example, in which the partition function 𝑍
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can be easily calculated.
Example 2.21. Consider the star 𝑆𝑛 with 𝑛 neighbors and a hub vertex ℎ. In this
case, it is easy to calculate that the normalizing constant is given by

𝑍 = 𝜆+
𝑛∑︁
𝑘=0

(︂
𝑛

𝑘

)︂
𝜆𝑘 = 𝜆+ (1 + 𝜆)𝑛.

Here, the 𝜆 corresponds to a particle being at the hub and the sum is over all
possible configurations of particles at the leaves.

Proposition 2.22. Let 𝐺 = (𝑉,𝐸) be any graph with maximum degree 𝛥 and
𝜆 < (𝛥− 1)−1. The conditions of Theorem 2.14 hold for the hard core model 𝜇𝜆
with fugacity 𝜆, and 𝛼1, 𝛼2 depend on 𝛥 and 𝜆.

Proof of Proposition 2.22. Since we are going to require hard-core models corre-
sponding to various graphs, we write 𝜇𝐺 to emphasize the graph under considera-
tion. The fugacity 𝜆 will not change.

Firstly, let us show that 𝐽𝑣1,𝑣2 = 𝜆
1+𝜆1𝑣1∼𝑣2 can be used as an interdependence

matrix. Let 𝑣1 ∈ 𝑉 be a site, 𝜎1, 𝜎2 ∈ 𝒴 be two admissible configurations differing
only at 𝑣1, i. e. 𝜎1

𝑣1 = 1, 𝜎2
𝑣1 = 0, and 𝑣2 ∈ 𝑉 be another site. If 𝑣2 ∼ 𝑣1, then

𝜇𝐺(1 | 𝜎1
𝑣1) = 0, whereas 𝜇𝐺(1 | 𝜎1

𝑣1) = 𝜆
1+𝜆 . If 𝑣2 ̸∼ 𝑣1 we have 𝜇𝐺(· |

𝜎1
𝑣1) = 𝜇𝐺(· | 𝜎2

𝑣1) and so 𝐽𝑣1,𝑣2 = 0. Now, by the symmetry of 𝐽 the inequality
|𝐽 |2→2 ≤ |𝐽 |∞→∞ ≤ 𝛥 𝜆

1+𝜆 < 1 holds, where the last step is a consequence of
𝜆 < 1

𝛥−1 .
Secondly, to see that there is a lower bound on the conditional probabilities,

let us first consider the case 𝑆 = ∅. Let 𝑣 ∈ 𝑉 be arbitrary, write 𝑁(𝑣) for the
neighborhood of 𝑣 and 𝐴 for the complement of 𝑣 ∪𝑁(𝑣), and observe that

𝜇𝐺(𝜎𝑣 = 1) = 𝜇𝐺(𝜎𝑣 = 1, 𝜎𝑁(𝑣) = 0) = 𝑍−1
∑︁
̃︀𝜎𝐴

𝜆1+|̃︀𝜎𝐴|

= 𝜆𝑍−1
∑︁
̃︀𝜎𝐴

𝜆|̃︀𝜎𝐴| =: 𝜆𝑍−1𝑍𝐴,

where the summation is over all admissible (partial) configurations ̃︀𝜎𝐴 such that
the configuration (̃︀𝜎𝐴, 1, 0, . . . ,0) is admissible. Note that due to 𝜎𝑁(𝑣) = 0 these
are actually all admissible configurations of the graph 𝐺 |𝐴 induced by 𝐴. The
normalization constant 𝑍 can be bounded from above and below by

(1 + 𝜆)𝑍𝐴 ≤ 𝑍 =
∑︁

̃︀𝜎𝐴 adm.

𝜆|̃︀𝜎𝐴|
∑︁
̃︀𝜎𝐴𝑐

𝜆|̃︀𝜎𝐴𝑐 |
1(̃︀𝜎𝐴,̃︀𝜎𝐴𝑐 ) adm. ≤ (1 + 2𝛥)𝑍𝐴.

Here, the first inequality follows by considering the two configurations 𝜎𝑣 =
1, 𝜎𝑁(𝑣) = 0 and 𝜎𝑣∪𝑁(𝑣) = 0 only, and the second one is a consequence of the fact
that there can be at most 1 + 2𝛥 admissible configurations for 𝑣 ∪ 𝑁(𝑣). This
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leads to the bounds

𝜆

1 + 2𝛥 ≤ 𝜇𝐺(𝜎𝑖 = 1) ≤ 𝜆

1 + 𝜆
. (2.31)

The case 𝑆 ̸= ∅ follows by a reduction argument. Let ̃︀𝜎𝑆 be an admissible
configuration of 𝐺 |𝑆, 𝑇 := {𝑤 ∈ 𝑆 : 𝜎𝑤 = 1} ⊂ 𝑆 be the occupied sites in 𝑆
and 𝑁(𝑇 ) = ∪𝑣∈𝑇𝑁(𝑣) be the neighborhood of 𝑇 . For any 𝑣 ∈ 𝑁(𝑇 ) we have
𝜇𝐺(𝜎𝑣 = 1 | ̃︀𝜎𝑆) = 0, so that we only need to consider 𝑣 /∈ 𝑁(𝑇 ).

However, it is an elementary calculation to show that conditional on 𝜎𝑁(𝑇 ) =
0, 𝜎𝑣 and 𝜎𝑇 are independent random variables (the easiest way to see this
heuristically is to observe that 𝜇 only excludes two particles at neighboring
vertices, and 𝑣 and 𝑇 have distance at least 2). More precisely, we have

𝜇𝐺(𝜎𝑣 = 1 | 𝜎𝑆 = ̃︀𝜎𝑆) = 𝜇𝐺(𝜎𝑣 = 1 | 𝜎𝑁(𝑇 ) = 0).

The probability on the right hand side is equal to the probability that 𝑣 is occupied
in the graph 𝑅 induced by [𝑛]∖𝑁(𝑇 ), i. e.

𝜇𝐺(𝜎𝑣 = 1 | 𝜎𝑆 = ̃︀𝜎𝑆) = 𝜇𝐺|𝑅(𝜎𝑣 = 1).

From inequality (2.31) we obtain an upper and lower bound on the probability,
leading to ̃︀𝛽(𝜇𝐺) ≥ 𝑐(𝛥,𝜆).





CHAPTER 3

Bernstein-type inequalities

The goal of this chapter is to establish concentration bounds which are akin to
Bernstein or Hanson–Wright inequalities. By this, we mean upper bounds of the
type

𝜇
(︀
𝑓 ≥ E𝜇 𝑓+𝑡

)︀
≤ exp

(︁
− 𝑡2

2(𝑎+ 𝑏𝑡)

)︁
or 𝜇

(︀
𝑓 ≥ E𝜇 𝑓+𝑡

)︀
≤ exp

(︁
−min

(︁𝑡2
𝑎
,
𝑡

𝑏

)︁)︁
.

As both inequalities show two different levels of tail decay (the Gaussian one
for 𝑡 ≤ 𝑎𝑏−1 and an exponential one for 𝑡 > 𝑎𝑏−1), we use the terminology of
Adamczak [ABW17; AKPS19] and call them two-level deviation inequalities (or
concentration inequalities, if a lower bound holds as well).

Let us first provide some historical remarks on the term Bernstein inequality. As
it was not possible to find the original publication of Bernstein [Ber24], we refer
to the work of Bennett [Ben62] (however, note that Bennett also did not have
access to the publication, but in turn relied on the two works of Craig [Cra33]
and Godwin [God55]). In its simplest form (for bounded random variables), it
states that if 𝑋1, . . . , 𝑋𝑛 are centered random variables satisfying |𝑋𝑖| ≤ 1 for all
𝑖 ∈ [𝑛], then for 𝑆𝑛 :=

∑︀𝑛
𝑖=1 𝑋𝑖 and all 𝑡 ≥ 0 we have

P(𝑆𝑛 ≥ 𝑡) ≤ exp
(︁

− 𝑡2

2Var(𝑆𝑛) + 2
3𝑀𝑡

)︁
,

so that in this case 𝑎 = Var(𝑆𝑛) and 𝑏 = 1
3𝑀 .

It is striking that Bernstein inequalities appear in many different contexts.
Apart from the classical example above, they appear in the study of empirical
processes, i. e. random variables of the form

𝑍 := sup
𝑓∈ℱ

⃒⃒⃒ 𝑛∑︁
𝑗=1

𝑓(𝑋𝑗)
⃒⃒⃒
, (3.1)

where 𝑋𝑖 are independent random variables and ℱ is a (countable) class of
functions. It was initiated in [Tal96b, Theorem 1.4] using the powerful induction
method and convex distance-type inequalities (see [Tal96b, Theorem 4.2]). In



52 Chapter 3 Bernstein-type inequalities

subsequent works [Mas00, Theorem 3], [Rio02, Théorème 1.1], [Bou02, Theorem
2.3], [KR05, Theorems 1.1 and 1.2] [Ada08, Theorem 4] either the entropy or
the martingale method was applied to prove similar inequalities. For example,
it can be deduced from Bousquet’s result that for independent and identically
distributed random variables 𝑋1, . . . , 𝑋𝑛 and a class of functions ℱ such that
E 𝑓(𝑋1) = 0 for all 𝑓 ∈ ℱ it holds

P(𝑍 − E𝑍 ≥ 𝑡) ≤ exp
(︁

− 𝜈ℎ
(︁ 𝑡
𝜈

)︁)︁
for 𝜈 = 𝑛 sup𝑓∈ℱ Var(𝑓(𝑋1)) and ℎ(𝑥) = (1 + 𝑥) log(1 + 𝑥) − 𝑥. As ℎ(𝑥) ≥
𝑥2/2(1 + 𝑥3), this especially implies

P(𝑍 − E𝑍 ≥ 𝑡) ≤ exp
(︁

− 𝑡2

2(𝜈 + 1
3𝑡)

)︁
,

so that the bound holds with 𝑎 = 𝜈 and 𝑏 = 1
3 . Note that in this case a stronger

estimate, i. e. Bennett’s inequality, holds. If one drops the assumption of identical
distributions, the result with the best constants was obtained by Klein and Rio,
who prove a Bernstein-type inequality for the right tail. We omit the details.

Furthermore, van de Geer and Lederer [GL13] have defined a norm which can
precisely capture such Gaussian and exponential behavior, which they termed
Bernstein–Orlicz norm. It is defined in terms of the increasing, convex function
𝛹𝐿(𝑥) := exp

(︁
𝐿−1(

√
1 + 2𝐿𝑧− 1)2

)︁
− 1 for some fixed 𝐿 > 0, i. e. for any random

variable 𝑋 they set

‖𝑋‖𝛹𝐿
= inf{𝑡 > 0 : E𝛹𝐿(|𝑋|/𝑡) ≤ 1}.

Many of the results given below can be phrased in terms of these Bernstein–Orlicz
norms, but for readability’s sake we choose not to do so.

Lastly, we want to mention that Bernstein inequalities are not restricted to
real value random variables. Oliveira [Oli10] and Tropp [Tro12] independently
developed Bernstein-type inequalities for a sum of random matrices, which give
concentration inequalities for the largest eigenvalue of a sum of random Hermitian
matrices. As we will not need these results, we refer the interested reader to the
monograph [Tro15].

3.1 General results

Let (𝛺,ℱ , 𝜇) be a probability space and let 𝛤 be a difference operator on
𝒜 ⊆ 𝐿∞(𝜇). We say that 𝜇 satisfies a 𝛤−mLSI(𝜌), if for all 𝑓 ∈ 𝒜 we have

Ent𝜇(𝑒𝑓 ) ≤ 𝜌

2 E𝜇 𝛤 (𝑓)2𝑒𝑓 . (3.2)
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We will suppress the dependence of this definition on the class 𝒜, as it should be
clear from the context.

The first main result are the following Bernstein-type deviation and concentra-
tion inequalities.

Theorem 3.1. Assume that 𝜇 satisfies a 𝛤−mLSI(𝜌) for some difference operator
𝛤 and 𝜌 > 0. Let 𝑓, 𝑔 be two measurable functions such that 𝛤 (𝑓) ≤ 𝑔, and 𝑔
fulfills 𝛤 (𝑔) ≤ 𝑏 for some constant 𝑏 > 0. Then for all 𝑡 ≥ 0 the inequality

𝜇
(︀
𝑓 − E𝜇 𝑓 ≥ 𝑡

)︀
≤ 4

3 exp
(︁

− 1
8𝜌 min

(︁ 𝑡2

(E𝜇 𝑔)2 ,
𝑡

𝑏

)︁)︁
≤ 4

3 exp
(︁

− 𝑡2

8𝜌((E𝜇 𝑔)2 + 𝑏𝑡)

)︁ (3.3)

holds. If moreover 𝛤 (𝜆𝑓) = |𝜆|𝛤 (𝑓) for all 𝜆 ∈ R, then for all 𝑡 ≥ 0 we have

𝜇
(︀
|𝑓 − E𝜇 𝑓 | ≥ 𝑡

)︀
≤ 2 exp

(︁
− 1

12𝜌 min
(︁ 𝑡2

(E𝜇 𝑔)2 ,
𝑡

𝑏

)︁)︁
≤ 2 exp

(︁
− 𝑡2

12𝜌((E𝜇 𝑔)2 + 𝑏𝑡)

)︁
.

(3.4)

Let us provide some remarks on Theorem 3.1.
Remark. 1) The fact that 𝛤−mLSI(𝜌) provides sub-Gaussian concentration for

functions 𝑓 satisfying 𝛤 (𝑓) ≤ 1 is well known. More precisely, [BG99] shows
that in this case

𝜇(𝑓 − E𝜇 𝑓 ≥ 𝑡) ≤ exp
(︁

− 𝑡2

2𝜌

)︁
.

Furthermore, if 𝛤 is a derivation (i. e. if satisfies 𝛤 (𝑢 ∘ 𝑓) = 𝑢′(𝑓)𝛤 (𝑓) for
any differentiable function 𝑢, see also Section 3.2), [BG99] also proves that
the exponential moments of 𝜆𝑓 2 can be controlled for 𝑡 ∈ [0,1/(2𝜌)), which is
expressed in the inequality

ˆ
exp(𝑡𝑓 2)𝑑𝜇 ≤ exp

(︁ 𝑡

1 − 2𝑐𝑡

ˆ
𝑓 2𝑑𝜇

)︁
.

In contrast, Theorem 3.1 does neither assume 𝛤 to be a derivation, nor that
there is a uniform bound on 𝛤 (𝑓).

2) The somewhat unsatisfactory factor 4/3 cannot be improved using our method.
It is possible to modify our proofs in order to apply [KZ18, Lemma 1.3], which
leads to an inequality of the form

𝜇
(︀
𝑓 − E𝜇 𝑓 ≥ 𝑡

)︀
≤ exp

(︁
− 𝑐min

(︁ 𝑡2

𝜌(E𝜇 𝑔)2 + 2𝑏2𝜌2 ,
𝑡√
2𝜌𝑏

)︁)︁
for some absolute constant 𝑐 (the same one as in [KZ18]). However, this is at
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the cost of a weaker denominator in the Gaussian term as compared to (3.3),
and so we choose to present it in the form (3.3).

3) It is easy to see that for any 𝑎,𝑏 ≥ 0 such that 𝑎𝑏 ̸= 0 the function 𝜙𝑎,𝑏(𝑡) =
𝑡2/(2𝑎+ 2𝑏𝑡) is invertible with inverse 𝜙−1

𝑎,𝑏(𝑡) = 𝑏𝑡+
√
𝑏2𝑡2 + 2𝑎𝑡, so that the

Bernstein-type inequality can equivalently be written as

𝜇
(︁
𝑓 − E𝜇 𝑓 ≥ 𝑏𝑡+

√
𝑏2𝑡2 + 2𝑎𝑡

)︁
≤ exp(−𝑡) for 𝑡 ≥ 0.

In the same way, 𝜓𝑎,𝑏(𝑡) = min(𝑡2/𝑎2, 𝑡/𝑏) has inverse max(
√
𝑎2𝑡, 𝑏𝑡), which

allows to rewrite the Hanson–Wright-type inequality in a similar fashion.
Next, we consider a special class of functions, for which analogue results can

be obtained - the self-bounding functions. In our framework, given a difference
operator 𝛤 , we say that 𝑓 ≥ 0 is a (𝑎,𝑏)−self-bounding function (with respect to
𝛤 ) for some 𝑎, 𝑏 ≥ 0, if

𝛤 (𝑓)2 ≤ 𝑎𝑓 + 𝑏.

For a product measure 𝜇, there are various sources that provide deviation or
concentration inequalities for self-bounding functions, see e. g. [BLM00, Theorem
2.1], [Rio01, Théorème 3.1], [BLM03, Theorem 5], [BBLM05, Corollary 1], [Cha05,
Theorem 3.9], [MR06, Theorem 1] and [BLM09, Theorem 1]. As many of the proofs
rely on the entropy method, it is an easy task to generalize some of the results to
the framework of difference operators and obtain Bernstein-type inequalities.

Proposition 3.2. Assume that 𝜇 satisfies a 𝛤−mLSI(𝜌) and let 𝑓 ≥ 0 be a
(𝑎,𝑏)−self-bounding function. Then we have for all 𝑡 ≥ 0

𝜇
(︀
𝑓 − E𝜇 𝑓 ≥ 𝑡

)︀
≤ exp

(︁
− 𝑡2

𝜌(4𝑎E𝜇 𝑓 + 4𝑏+ 2
3𝑎𝑡)

)︁
.

Furthermore, if 𝛤 (𝜆𝑓) = |𝜆|𝛤 (𝑓) for all 𝜆 ∈ R, then for all 𝑡 ∈ [0,E 𝑓 ] it holds

𝜇
(︀
E𝜇 𝑓 − 𝑓 ≥ 𝑡

)︀
≤ exp

(︁
− 𝑡2

𝜌(4𝑎E 𝑓 + 4𝑏+ 2
3𝑎𝑡)

)︁
.

As we will show in Proposition 3.10, product measures always satisfy an mLSI
with respect to the difference operator used in the works mentioned above. This
is a well-known fact and was first proven in [Mas00].

We are also able to prove a version of Talagrand’s famous concentration in-
equality for the convex distance for random permutations by similar means as
used in the proofs of the upper results. To this end, recall that for any measurable
space 𝛺 and any 𝜔 = (𝜔1, . . . , 𝜔𝑛) ∈ 𝛺𝑛, we may define the convex distance of 𝜔
to some measurable set 𝐴 ⊂ 𝛺𝑛 by

𝑑𝑇 (𝜔,𝐴) := sup
𝛼∈R𝑛:|𝛼|2=1

𝑑𝛼(𝜔,𝐴), 𝑑𝛼(𝜔,𝐴) := inf
𝜔′∈𝐴

𝑑𝛼(𝜔, 𝜔′) := inf
𝜔′∈𝐴

𝑛∑︁
𝑖=1

|𝛼𝑖|1𝜔𝑖=𝜔′
𝑖
.
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Proposition 3.3. Let 𝑆𝑛 be the symmetric group and 𝜋𝑛 be the uniform distribu-
tion on 𝑆𝑛. For any set 𝐴 ⊆ 𝑆𝑛 with 𝜋𝑛(𝐴) ≥ 1/2 and all 𝑡 ≥ 0 we have

𝜋𝑛(𝑑𝑇 (·, 𝐴) ≥ 𝑡) ≤ 2 exp
(︁

− 𝑡2

32

)︁
. (3.5)

Talagrand’s celebrated convex distance inequality (see [Tal95, Theorem 5.1])
states that for any subset 𝐴 ⊆ 𝑆𝑛 it holds

𝜋𝑛(𝐴)E𝜋𝑛 exp
(︁ 1

16𝑑𝑇 (·, 𝐴)2
)︁

≤ 1, (3.6)

which, in particular, easily implies (3.5) with a constant 16 instead of 32. An
inequality similar to (3.6) was deduced for product measures in [Tal95], and
reproven using the entropy method in [BLM09]. Furthermore, [Pau14] extended
Talagrand’s inequality to weakly dependent random variables. However, it does
not seem possible to adjust the method therein to the case of the symmetric group
and so we are not aware of any proof of either of the inequalities using the entropy
method. In [Sam17] the author has proven the convex distance inequality for the
symmetric group using weak transport inequalities.

Lastly, we show Bernstein-type concentration inequalities for multilinear poly-
nomials in independent random variables with values in [0,1]. We consider a
𝑘-homogeneous multilinear form 𝑓 as follows. Let 𝐻 = (𝑉,𝐸, (𝑤𝑒)𝑒∈𝐸) be a
weighted hypergraph, such that every 𝑒 ∈ 𝐸 consists of exactly 𝑘 vertices, assume
that (𝑋𝑣)𝑣∈𝑉 are independent, [0,1]-valued random variables, and set

𝑓(𝑋) = 𝑓((𝑋𝑣)𝑣∈𝑉 ) =
∑︁
𝑒∈𝐸

𝑤𝑒
∏︁
𝑓∈𝑒

𝑋𝑓 =
∑︁
𝑒∈𝐸

𝑤𝑒𝑋𝑒. (3.7)

Define the maximum first order partial derivative ML(𝑓) as

ML(𝑓) := sup
𝑣∈𝑉

sup
𝑥∈[0,1]𝑉

𝜕𝑣𝑓(𝑥). (3.8)

Proposition 3.4. Let (𝑋𝑣)𝑣∈𝑉 be independent, [0,1]-valued random variables and
𝑓 : [0,1]𝑉 → R given as in (3.7) and assume that 𝜕𝑣𝑓(𝑥) ≥ 0 for all 𝑣 ∈ 𝑉 and
𝑥 ∈ [0,1]𝑛. We have for any 𝑡 ≥ 0

P(𝑓(𝑋) − E 𝑓(𝑋) ≥ 𝑡) ≤ exp
(︁

− 𝑡2

2𝑘ML(𝑓)(E 𝑓(𝑋) + 𝑡/2)

)︁
. (3.9)

Furthermore, for 𝑡 ∈ [0,E 𝑓 ] it holds

P(E 𝑓(𝑋) − 𝑓(𝑋) ≥ 𝑡) ≤ exp
(︁

− 𝑡2

2𝑘ML(𝑓)

)︁
.

For example, the monotonicity in every variable condition 𝜕𝑣𝑓(𝑥) ≥ 0 is fulfilled
if the weights 𝑤𝑒 are non-negative.
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The following corollary can be easily deduced from Proposition 3.4

Corollary 3.5. Let (𝑋𝑣)𝑣∈𝑉 be independent, [0,1]-valued random variables and
𝑓 =

∑︀𝑘
𝑙=1 𝑓𝑙 for some 𝑙-homogeneous functions (𝑓𝑙) of the form (3.7) with positive

weights. For any 𝑡 ≥ 0 we have

P(𝑓(𝑋) − E 𝑓(𝑋) ≥ 𝑡) ≤ 𝑘 exp
(︁

− min
𝑙=1,...,𝑘

(︁ 𝑡2

2𝑙ML(𝑓𝑙)(𝑘2 E 𝑓𝑙(𝑋) + 𝑘𝑡/2)

)︁)︁
.

A slight modification of the proof of Proposition 3.4 also allows for deviation
inequalities for suprema of such homogeneous polynomials. For example, this can
be used to prove concentration inequalities for maxima of linear forms.

Proposition 3.6. Let (𝑋𝑣)𝑣∈𝑉 be independent, [0,1]-valued random variables,
ℱ ⊂ {𝑎 ∈ R𝑉 : 𝑎𝑖 ∈ [0,1]𝑛} and define 𝑓(𝑋)ℱ := sup𝑎∈ℱ

∑︀
𝑖∈𝑉 𝑎𝑖𝑋𝑖. For any 𝑡 ≥ 0

we have

P(𝑓ℱ(𝑋) − E 𝑓ℱ(𝑋) ≥ 𝑡) ≤ exp
(︁

− 𝑡2

2 sup𝑎∈ℱ‖𝑎‖∞(E 𝑓ℱ(𝑋) + 𝑡/2)

)︁
.

In particular, for any 𝑝 ∈ [1,∞] it holds

P(‖𝑋‖𝑝 − E‖𝑋‖𝑝 ≥ 𝑡) ≤ exp
(︁

− 𝑡2

2(E‖𝑋‖𝑝 + 𝑡/2)

)︁
.

3.2 Applications

In this section, we describe various situations which give rise to mLSIs with
respect to “natural” difference operators, and show some consequences of the main
results.

3.2.1 Derivations

If 𝛤 satisfies the chain rule, i. e. for all differentiable 𝑢 : R → R and 𝑓 ∈ 𝒜 such
that 𝑢 ∘ 𝑓 ∈ 𝒜 we have 𝛤 (𝑢 ∘ 𝑓) = |𝑢′ ∘ 𝑓 |𝛤 (𝑓), then (3.2) is equivalent to the
usual logarithmic Sobolev inequality

Ent𝜇(𝑓 2) ≤ 2𝜌E𝜇 𝛤 (𝑓)2.

Using this, one can derive second order concentration inequalities similar to the
ones given in [BCG17] from Theorem 3.1. Let 𝑆𝑛−1 := {𝑥 ∈ R𝑛 : |𝑥| = 1} be
the unit sphere equipped with the uniform measure 𝜎𝑛−1. It is known that for
𝜌𝑛 := (𝑛− 1)−1

Ent𝜎𝑛−1(𝑒𝑓 ) ≤ 𝜌𝑛
2 E𝜎𝑛−1|∇𝑆𝑓 |2𝑒𝑓 (3.10)

holds for all Lipschitz functions 𝑓 and the spherical gradient ∇𝑆𝑓 (see [BCG17,
Formula (3.1)] for the logarithmic Sobolev inequality, from which the modified
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one follows as above). This leads to an alternative proof of [BCG17, Theorem 1.1]
with some constant 𝑐 = 𝑐(𝑏).

Proposition 3.7. Consider 𝑆𝑛−1 equipped with the uniform measure 𝜎𝑛−1 and let
𝑓 : 𝑆𝑛−1 → R be a 𝐶2 function satisfying sup𝜃∈𝑆𝑛−1‖𝑓 ′′

𝑆(𝜃)‖op ≤ 1. For any 𝑡 ≥ 0

𝜎𝑛−1
(︀
|𝑓 − E𝜎𝑛−1 𝑓 | ≥ 𝑡

)︀
≤ 2 exp

(︁
− 1

12𝜌𝑛
min

(︁ 𝑡2

(E𝜎𝑛−1|∇𝑆𝑓 |)2 , 𝑡
)︁)︁
. (3.11)

In particular, if 𝑓 is orthogonal to all affine functions, then

𝜎𝑛−1
(︀
(𝑛− 1)|𝑓 − E𝜎𝑛−1 𝑓 | ≥ 𝑡

)︀
≤ 2 exp

(︁
− 1

12 min
(︁ 𝑡2

E𝜎𝑛−1‖𝑓 ′′
𝑆‖2

HS
, 𝑡
)︁)︁
. (3.12)

In a similar manner, one may address open subsets of R𝑛 equipped with some
probability measure 𝜇 satisfying a logarithmic Sobolev inequality with respect to
the usual gradient ∇. This situation has been sketched in [BCG17, Remark 5.3]
and was discussed in more detail in [GS20].

Proposition 3.8. Let 𝐺 ⊆ R𝑛 be an open set, equipped with a probability measure
𝜇 which satisfies a ∇−mLSI(𝜌), and let 𝑓 : 𝐺 → R be a 𝐶2 function satisfying
sup𝑥∈𝐺‖𝑓 ′′(𝑥)‖op ≤ 1. We have for any 𝑡 ≥ 0

𝜇
(︀
|𝑓 − E𝜇 𝑓 | ≥ 𝑡

)︀
≤ 2 exp

(︁
− 1

12𝜌 min
(︁ 𝑡2

(E𝜇|∇𝑓 |)2 , 𝑡
)︁)︁
.

If we require the first order partial derivatives 𝜕𝑖𝑓 to be centered (which
translates into orthogonality to linear functions if 𝜇 is the standard Gaussian
measure, for instance), a simple application of the Poincaré inequality yields
E𝜇|∇𝑓 |2 ≤ 𝜌E𝜇‖𝑓 ′′‖2

HS, which may be used to get back [GS20, Theorem 1.4].

Corollary 3.9. Let 𝐺 ⊆ R𝑛 be an open set, equipped with a probability measure
𝜇 satisfying a ∇−LSI(𝜌), 𝑓 : 𝐺 → R be a 𝐶2 function and set 𝑔(𝑥) := ⟨𝑥 −
E𝜇(𝑥),E𝜇 ∇𝑓⟩. If we have

sup
𝑥∈supp(𝜇)

‖𝑓 ′′(𝑥)‖op ≤ 𝑏 and
ˆ

‖𝑓 ′′(𝑥)‖2
HS𝑑𝜇(𝑥) ≤ 𝑎2,

then for any 𝑡 ≥ 0 it holds

𝜇
(︀
|𝑓 − E𝜇 𝑓 − 𝑔| ≥ 𝑡

)︀
≤ 2 exp

(︁
− 1

12 min
(︁ 𝑡2

𝜌2𝑎2 ,
𝑡

𝜌𝑏

)︁)︁
.

Thus, if we recenter a function and its derivatives, the two conditions on
the Hessian ensure two-level concentration inequalities. For functions 𝑓(𝑋,𝑌 )
of independent Gaussian vectors, two-level concentration inequalities have been
studied in [Wol13] using the Hoeffding decomposition instead of a centering of
the partial derivatives.
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3.2.2 Weakly dependent product measures

Next, we show that another functional inequality implies (3.2) with respect
to the difference operators d and d+ (see Definition 2.4). Let 𝜇 be a probability
measure on a product of Polish spaces 𝒳 = ⊗𝑛

𝑖=1𝒳𝑖 satisfying

Ent𝜇(𝑒𝑓 ) ≤ 𝜎2
𝑛∑︁
𝑖=1

ˆ
Cov𝜇(·|𝑥𝑖)(𝑓(𝑥𝑖, ·), 𝑒𝑓(𝑥𝑖,·))𝑑𝜇(𝑥). (3.13)

Here, 𝜇(· | 𝑥𝑖) is the regular conditional probability (for the existence see e. g.
[AGS08, Theorem 5.3.1]). This functional inequality is (also) known as a modified
logarithmic Sobolev inequality in the framework of Markov processes, and it
is equivalent to exponential decay of the relative entropy along the Glauber
semigroup, see for example [BT06] or [CMT15].
Proposition 3.10. If 𝜇 satisfies (3.13), then a d+−mLSI(2𝜎2) and a d−mLSI(𝜎2)
hold. Consequently, for any 𝑓 : 𝒳 → R and any 𝛼 > 𝜎2 we have

E𝜇 exp
(︀
𝑓 − E𝜇 𝑓

)︀
≤

(︀
E𝜇 exp

(︀
𝛼|d+𝑓 |2

)︀)︀ 𝜎2
𝛼−𝜎2 . (3.14)

The same is true for d with 𝜎2 replaced by 𝜎2/2. This especially holds for product
measures 𝜇 = 𝜇1 ⊗ . . .⊗ 𝜇𝑛 with 𝜎2 = 1.

Here, choosing 𝛼 = 2𝜎2 or 𝛼 = 𝜎2 respectively leads to the exponential
inequalities

E𝜇 exp(𝑓) ≤ E𝜇 exp
(︀
2𝜎2|d+𝑓 |2

)︀
and E𝜇 exp(𝑓) ≤ E𝜇 exp

(︀
𝜎2|d𝑓 |2

)︀
.

The first inequality might be considered as a generalization of [Mas00, Lemma 8].
The second inequality is well-known in the case of the discrete cube, cf. [BG99,
Corollary 2.4] with a better constant. On the other hand, the proof presented
herein is remarkably short and does not rely on some special properties of the
measure 𝜇, but can be derived under (3.13).

The property (3.13) is satisfied for a large class containing non-product measures.
Note that a sufficient condition (due to Jensen’s inequality) for (3.13) is the
approximate tensorization property

Ent𝜇(𝑒𝑓 ) ≤ 𝜎2
𝑛∑︁
𝑖=1

ˆ
Ent𝜇(·|𝑥𝑖)(𝑒𝑓(𝑥𝑖,·))𝑑𝜇(𝑥). (3.15)

There are at least two ways of establishing (3.15). The first one is akin to the
perturbation argument of Holley and Stroock as outlined in [HS87] (see also
[Roy07, Proposition 3.1.18] for a similar reasoning). Assume that 𝑑𝜇 = 𝑍−1𝑒𝑓𝑑𝜈,
where 𝑓 : 𝒳 → R is a measurable function, 𝜈 = ⊗𝑛

𝑖=1𝜈𝑖 is some product measure
and 𝑍 = E𝜈 𝑒𝑓 . If we require 𝑓 to be bounded, we clearly have osc(𝑓) < ∞
for its (maximal) oscillation osc(𝑓) = sup𝑥∈𝒳 𝑓(𝑥) − inf𝑥∈𝒳 𝑓(𝑥). Under these
assumptions, 𝜇 satisfies (3.15) with 𝜎2 = exp(2osc(𝑓)).
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Furthermore, under weak dependence conditions on the local specifications of
a measure 𝜇 on a product space 𝒴, sufficient conditions to obtain (3.15) were
established in [CMT15; Mar13; Mar15].

Note that Proposition 3.10 implies Theorem 1.6, as product measures satisfy
(3.13) with 𝜎2 = 1. Taking the logarithms on both sides of (3.14) gives for any
𝛼 > 1 and 𝜆 ≥ 0

logE𝜇 exp
(︁
𝜆(𝑓 − E𝜇 𝑓)

)︁
≤ 1
𝛼− 1 logE𝜇 exp

(︁
𝜆2𝛼|d+𝑓 |2

)︁
.

It remains to choose some fixed 𝜃 > 0 and set 𝛼 = (𝜆𝜃)−1.
The next result contains deviation inequalities for suprema of quadratic forms

in the spirit of [KZ18] in the weakly dependent case.

Proposition 3.11. Let 𝜇 be supported in [−1, + 1]𝑛 and satisfy (3.13). Let 𝒜
be a countable class of symmetric matrices, bounded in operator norm and with
zeroes on its diagonal. Define ℎ(𝑥) := sup𝐴∈𝒜⟨𝑥,𝐴𝑥⟩, 𝑓𝒜(𝑥) := sup𝐴∈𝒜‖𝐴𝑥‖ and
𝛴 := sup𝐴∈𝒜‖𝐴‖op. We have for any 𝑡 ≥ 0

𝜇(ℎ− E𝜇 ℎ ≥ 𝑡) ≤ 4
3 exp

(︁
− 1

128𝜎2 min
(︁ 𝑡2

2(E𝜇 𝑓𝒜)2 ,
𝑡

𝛴

)︁)︁
. (3.16)

For a single symmetric matrix 𝐴 with zeroes on its diagonal and the quadratic
form 𝑓(𝑥) = ⟨𝑥,𝐴𝑥⟩ similar arguments lead to concentration inequalities for 𝑓 .
The case of a product measure 𝜇 = ⊗𝑛

𝑖=1𝜇𝑖 is well-known and we have collected
some previous results in the Chapter 1.

Moreover, (3.13) implies an mLSI for convex functions in the spirit of [Led97,
Theorem 1.2], and in fact one can recover the results in [Led97] this way with the
same proof. A function 𝑓 : 𝐾 → R on a convex set 𝐾 is called separately convex,
if its restriction to one coordinate is convex.

Corollary 3.12. Assume that 𝜇 is supported in [−1, + 1]𝑛 and satisfies (3.13).
For any differentiable, separately convex function 𝑓 : [−1,+ 1]𝑛 → R we have

Ent𝜇(𝑒𝑓 ) ≤ 4𝜎2 E𝜇|∇𝑓 |2𝑒𝑓 .

Especially, if 𝑓 is separately convex and 1-Lipschitz, this yields

𝜇(𝑓 − E𝜇 𝑓 ≥ 𝑡) ≤ exp
(︁

− 𝑡2

8𝜎2

)︁
.

This can be extended to a class of convex functions with bounded Hessian as
follows.

Proposition 3.13. Let 𝜇 be a probability measure supported in [−1,+1]𝑛 satisfying
(3.13) and 𝑓 be a convex function such that sup𝑥∈[−1,+1]𝑛|𝜕𝑖𝑗𝑓(𝑥)| ≤ 𝑐𝑖𝑗. For any
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𝑡 ≥ 0 it holds

𝜇
(︀
𝑓 − E𝜇 𝑓 ≥ 𝑡

)︀
≤ 4

3 exp
(︁

− 1
64𝜎2 min

(︁ 𝑡2

(E|∇𝑓 |)2 ,
𝑡

‖𝑐‖op

)︁)︁
.

3.2.3 Symmetric group

Consider the space 𝑆𝑛 of all permutations of [𝑛] equipped with the uniform
measure 𝜋𝑛. We write the group operation on 𝑆𝑛 as 𝜏𝜎 for 𝜏,𝜎 ∈ 𝑆𝑛. We define
two difference operators (on 𝒜 = 𝐿∞(𝜋𝑛) = R𝑆𝑛)

𝛤 (𝑓)(𝜎)2 = 1
𝑛

𝑛∑︁
𝑖,𝑗=1

(𝑓(𝜎) − 𝑓(𝜎𝜏𝑖𝑗))2,

𝛤+(𝑓)(𝜎)2 = 1
𝑛

𝑛∑︁
𝑖,𝑗=1

(𝑓(𝜎) − 𝑓(𝜎𝜏𝑖𝑗))2
+.

We can easily deduce two logarithmic Sobolev inequalities from [GQ03, Theorem
1] as follows. The proof is postponed to Section 3.3.

Proposition 3.14. Let (𝑆𝑛, 𝜋𝑛) be the symmetric group equipped with the uniform
measure. Then a 𝛤−mLSI(1) and a 𝛤+−mLSI(2) hold.

Proposition 3.14 enables us to deduce concentration inequalities for some
well-known functions on 𝑆𝑛. Recall that the standard Herbst argument leads to
sub-Gaussian concentration results under Lipschitz assumption 𝛤 (𝑓)2 ≤ 𝑐2, and
Proposition 3.2 provides concentration inequalities for self-bounding functions.
Example 3.15. Given a matrix 𝑎 = (𝑎𝑖𝑗) of real numbers satisfying 𝑎𝑖𝑗 ∈ [0,1],
define 𝑓(𝜎) =

∑︀𝑛
𝑖=1 𝑎𝑖,𝜎(𝑖). By elementary computations one can show 𝛤 (𝑓)2 ≤

4𝑓 + 4E𝜋𝑛 𝑓 , i. e. 𝑓 is self-bounding, and furthermore we have 𝛤 (𝜆𝑓) = |𝜆|𝛤 (𝑓).
As a consequence, Proposition 3.2 leads to the estimate

𝜋𝑛
(︀
|𝑓 − E𝜋𝑛 𝑓 | ≥ 𝑡

)︀
≤ 2 exp

(︁
− 𝑡2

32E𝜋𝑛 𝑓 + 8𝑡/3

)︁
.

Concentration inequalities for 𝑓 have been proven using the exchangeable pair
approach in [Cha05, Proposition 3.10] (see also [Cha07, Theorem 1.1]), with the
denominator being 4E𝜋𝑛 𝑓 + 2𝑡.

For example, if 𝑎 is the identity matrix, 𝑓 is the number of fixed points of
a random permutation, which satisfies E𝜋𝑛 𝑓 = 1 for all 𝑛 ∈ N. In this case, 𝑓
converges to a Poisson distribution with mean 1 as 𝑛 → ∞ (see e. g. [Dia88]).

In the sequel, we consider concentration properties of Lipschitz functions with
respect to some natural metrics on 𝑆𝑛. In particular, we define the four metrics
on 𝑆𝑛:

𝐻(𝜋, 𝜎) =
𝑛∑︁
𝑖=1

1𝜋(𝑖) ̸=𝜎(𝑖)
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𝐷(𝜋, 𝜎) =
𝑛∑︁
𝑖=1

|𝜋(𝑖) − 𝜎(𝑖)|

𝑆(𝜋, 𝜎) =
(︁ 𝑛∑︁
𝑖=1

|𝜋(𝑖) − 𝜎(𝑖)|2
)︁1/2

𝐼(𝜋, 𝜎) = min{𝑘 ≥ 0 : there are 𝑘 adj. transpositions from 𝜎−1 to 𝜋−1}.

The next table collects some basic properties of these functions. We say that
a metric is right invariant, if for any 𝜋, 𝜎, 𝜏 ∈ 𝑆𝑛 we have 𝑑(𝜋, 𝜎) = 𝑑(𝜋𝜏, 𝜎𝜏),
and left invariant if 𝑑(𝜋, 𝜎) = 𝑑(𝜏𝜋, 𝜏𝜎). It is bi-invariant, if it is right and left
invariant.

function 𝑑 invariance mean E 𝑑(id,·) Var(𝑑(id,·)) limit theorem

H bi-invariant 𝑛− 1 1 𝑛−𝐻 ⇒ Poi(1)

D right invariant 𝑛2−1
3

(𝑛+1)(2𝑛2+7)
45 CLT

𝑆2 right invariant 𝑛(𝑛2−1)
6

𝑛2(𝑛−1)(𝑛+1)2

36 CLT

I right invariant 𝑛(𝑛−1)
4

𝑛(𝑛−1)(2𝑛+5)
72 CLT

Table 3.1: Invariance and probabilistic properties of the four functions 𝐷 (Spear-
man’s footrule), 𝑆2 (Spearman’s rank correlation), 𝐻 (Hamming dis-
tance) and 𝐼 (Kendall’s 𝜏). This table has been extracted from infor-
mation in [Dia88, Chapter 6].

In the examples below we will make use of the equality∑︁
𝑖 ̸=𝑗

(𝜎(𝑖) − 𝜎(𝑗))2 = 𝑛2(𝑛2 − 1)
6 ,

which holds for any permutation 𝜎 ∈ 𝑆𝑛. We will not give a proof, as it is an easy
calculation using

∑︀𝑛
𝑖=1 𝑖

2 = 𝑛(𝑛+ 1)(2𝑛+ 1)/6 and
∑︀𝑛

𝑖=1 𝑖 = 𝑛(𝑛+ 1)/2.
Example 3.16. Recall that by the Bobkov–Götze theorem [BG99, Theorem 2.1]
(see Theorem 3.25) the 𝛤−mLSI(1) implies for any 𝑓 : 𝑆𝑛 → R, any 𝜆 ∈ R and
any 𝛼 > 1/2 the inequality

ˆ
exp

(︀
𝜆(𝑓 − E𝜋𝑛 𝑓)

)︀
𝑑𝜋𝑛 ≤

(︁ ˆ
exp

(︀
𝛼𝜆2𝛤 (𝑓)2)︀𝑑𝜋𝑛)︁ 1

2𝛼−1
.

We consider locally Lipschitz functions 𝑓 in the sense that for any 𝜎 ∈ 𝑆𝑛 and
any 𝑖,𝑗 ∈ [𝑛] we have |𝑓(𝜎) − 𝑓(𝜎𝜏𝑖𝑗)| ≤ 𝑑(𝜎, 𝜎𝜏𝑖𝑗). In this case, we clearly
have 𝛤 (𝑓)2 ≤ 𝑛−1 ∑︀

𝑖,𝑗 𝑑(𝜎, 𝜎𝜏𝑖𝑗)2, so that if we define the observable diameter
ObsDiam(𝑆𝑛,𝑑) := max𝜎 𝑛−1 ∑︀

𝑖,𝑗 𝑑(𝜎, 𝜎𝜏𝑖𝑗)2, this in turn yields
ˆ

exp
(︀
𝜆(𝑓 − E𝜋𝑛 𝑓)

)︀
𝑑𝜋𝑛 ≤ exp

(︀
𝜆2ObsDiam(𝑆𝑛,𝑑)/2

)︀
.
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Here, to obtain the constant 1/2, one has to let 𝛼 → ∞. Thus, any locally Lipschitz
function 𝑓 satisfies the sub-Gaussian tail estimate

𝜋𝑛(|𝑓 − E𝜋𝑛 𝑓 | ≥ 𝑡) ≤ 2 exp
(︁

− 𝑡2

2ObsDiam(𝑆𝑛,𝑑)

)︁
. (3.17)

Especially, by integration by parts this also implies a variance estimate

sup
𝑓

Var(𝑓) ≤ 𝐶ObsDiam(𝑆𝑛, 𝑑),

where the supremum runs over all 1-Lipschitz functions with respect to 𝑑.
Furthermore, if the distance 𝑑 is right invariant, then ObsDiam(𝑆𝑛, 𝑑) =

𝑛−1 ∑︀
𝑖,𝑗 𝑑(id, 𝜏𝑖𝑗)2.

1) For the Hamming distance 𝑑𝐻 it is clear that 𝑑𝐻(𝜎, 𝜎𝜏𝑖𝑗) = 2, which implies
ObsDiam(𝑆𝑛,𝑑𝐻) = 4(𝑛−1). This is not sharp in many situations; for example,
if we consider the function 𝑑𝐻(·, id), the true variance is 1 and not of order 𝑛.
On the other hand, the number of fixed points is a locally Lipschitz function
with respect to 𝑑𝐻 , which converges weakly to a Poisson random variable, so
that a variance estimate of order 1 in the class of Lipschitz functions cannot
hold.

2) If we define for 𝑝 ∈ [1,∞) a distance 𝑑𝑝 on 𝑆𝑛 by the induced ℓ𝑝 norm

𝑑𝑝(𝜎, 𝜋) =
(︁ 𝑛∑︁
𝑘=1

|𝜎(𝑘) − 𝜋(𝑘)|𝑝
)︁ 1

𝑝
,

this yields 𝑑𝑝(𝜎, 𝜎𝜏𝑖𝑗) = 21/𝑝|𝜎(𝑖) − 𝜎(𝑗)|. Consequently we have

ObsDiam(𝑆𝑛,𝑑𝑝) = 22/𝑝

6 𝑛(𝑛2 − 1).

The case 𝑝 = 1 gives Spearman’s footrule and 𝑝 = 2 Spearman’s rank correla-
tion.

3) Considering Kendall’s tau, we can readily see that for two indices 𝑖,𝑗 and any
𝜎 ∈ 𝑆𝑛 it holds 𝐼(𝜎, 𝜎𝜏𝑖𝑗) ≤ 2|𝜎(𝑖) − 𝜎(𝑗)|, since 𝜏𝑖𝑗𝜎−1 can be brought to 𝜎−1

by first taking 𝜎−1(𝑖) to its place, and then 𝜎−1(𝑗). So, as above, this leads to

ObsDiam(𝑆𝑛, 𝐼) ≤ 2
3𝑛(𝑛2 − 1).

4) In a more general setting, let 𝜌 : 𝑆𝑛 → GL(𝑉 ) be a faithful, unitary repre-
sentation of 𝑆𝑛 and let ‖·‖ be a unitarily invariant norm on GL(𝑉 ). Then
𝑑𝜌(𝜎, 𝜏) := ‖𝜌(𝜎) − 𝜌(𝜏)‖ defines a bi-invariant metric on 𝑆𝑛, and in this case
we have

ObsDiam(𝑆𝑛, 𝑑𝜌) = 𝑛−1
∑︁
𝑖,𝑗

‖Id − 𝜌(𝜏𝑖𝑗)‖.
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5) To see the limitations of this method, consider Cayley’s distance 𝑇 (𝜋, 𝜎) defined
as the minimal number of transpositions required to bring 𝜋 to 𝜎. Clearly we
have 𝑇 (𝜎, 𝜎𝜏𝑖𝑗) = 1 for any 𝜎 and 𝑖 ̸= 𝑗, and

ObsDiam(𝑆𝑛, 𝑇 ) = 𝑛− 1.

On the other hand, it is known that 𝑇 (id, ·) has variance of order log(𝑛) (see
[Dia88, Chapter 6B]), so that the variance proxy 𝑛− 1 is grossly inaccurate.

Example 3.17. Define the random variable 𝑓(𝜎) = 𝑆2(𝜎, id) =
∑︀𝑛

𝑖=1(𝜎(𝑖) − 𝑖)2 =∑︀𝑛
𝑖=1(𝑖2 − 2𝑖𝜎(𝑖) + 𝜎(𝑖)2). We have

𝛤 (𝑓)2(𝜎) = 𝑛−1
𝑛∑︁

𝑖,𝑗=1

(𝑓(𝜎) − 𝑓(𝜎𝜏𝑖𝑗))2 = 4𝑛−1
𝑛∑︁

𝑖,𝑗=1

(𝜎(𝑖) − 𝜎(𝑗))2(𝑖− 𝑗)2.

If we define the matrix 𝐴(𝜎) = (𝑎𝑖𝑗(𝜎))𝑖,𝑗 by setting 𝑎𝑖𝑗 = (𝜎(𝑖) − 𝜎(𝑗))(𝑖 − 𝑗),
then the right hand side is (up to the factor 4𝑛−1) the squared Hilbert–Schmidt
norm of 𝐴(𝜎). It is clear that |𝐴(𝜎)|HS = |𝐴(𝜎−1)|HS, and one can also easily see
that it is invariant under right multiplication with any transposition 𝜏𝑘𝑙. As any
permutation can be written as a product of transpositions, can evaluate it at
𝜎 = id. Consequently,

𝛤 (𝑓)2(𝜎) = 4𝑛−1
𝑛∑︁

𝑖,𝑗=1

(𝑖− 𝑗)4 ≤ 4
15𝑛

5.

This leads to the concentration inequality

𝜋𝑛(|𝑓 − E𝜋𝑛 𝑓 | ≥ 𝑡) ≤ 2 exp
(︁

− 𝑡2

8𝑛5/15

)︁
.

Actually, the term 𝑛5 is natural, as the variance of 𝑓 is of order 𝑛5 (see the table
above). Incorporating the variance of 𝑓 into the inequality above yields

𝜋𝑛(|𝑓 − E𝜋𝑛 𝑓 | ≥ Var(𝑓)1/2𝑡) ≤ 2 exp
(︁

− 𝑡2

19.2

)︁
,

and so apart from the overestimated variance, it yields the correct tail behavior.
Example 3.18. Let us consider the 1-Lipschitz function 𝑓(𝜎) = 𝐼(𝜎, id). For any
𝑡 ≥ 0 we have by (3.17) and Var𝜋𝑛(𝑓) = 𝑛(𝑛− 1)(2𝑛+ 5)/72

𝜋𝑛(|𝑓 − E𝜋𝑛 𝑓 | ≥ Var𝜋𝑛(𝑓)1/2𝑡) ≤ 2 exp
(︁

− 𝑡2

48

)︁
,

which is consistent with the central limit theorem for 𝑓 .
Example 3.19. We define the number of ascents 𝑓(𝜎) =

∑︀𝑛−1
𝑗=1 1𝜎(𝑗+1)>𝜎(𝑗). It can

be easily shown that for any 𝑖 ̸= 𝑗 the number of ascents is not sensitive to
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transpositions, i. e. it holds |𝑓(𝜎) − 𝑓(𝜎𝜏𝑖𝑗)| ≤ 2. Consequently, this leads to
𝛤 (𝑓)2 ≤ 4(𝑛− 1), implying the concentration inequality

𝜋𝑛(|𝑓 − E𝜋𝑛 𝑓 | ≥ 𝑡) ≤ 2 exp
(︁

− 𝑡2

8(𝑛− 1)

)︁
.

Again, the variance term of order
√
𝑛 is of the right order, as in [CKSS72] the

authors have shown a central limit theorem for the number of ascents. More
precisely, the sequence 𝑔𝑛 = (𝑓 − E𝜋𝑛 𝑓)/(

√︀
(𝑛+ 1)/12) converges to a standard

normal distribution. The above calculations lead to

𝜋𝑛(|𝑔𝑛| ≥ 𝑡) ≤ 2 exp
(︁

− 𝑡2

96

)︁
.

Example 3.20. A closely related statistic is given by the sum of the ascents defined
as 𝑓(𝜎) =

∑︀𝑛−1
𝑗=1 (𝜎𝑖+1 − 𝜎𝑖)+. A short calculation shows

𝛤 (𝑓)2 = 𝑛−1
∑︁
𝑖 ̸=𝑗

(𝑓(𝜎) − 𝑓(𝜎𝜏𝑖𝑗))2 ≤ 4(𝑛− 1)2𝑛−1
∑︁
𝑖 ̸=𝑗

= 4(𝑛− 1)3.

Indeed, if we let 𝛥𝑖,𝑗 := (𝜎(𝑖) − 𝜎(𝑗))+, then

(𝑓(𝜎) − 𝑓(𝜎𝜏𝑖𝑗))2

= (𝛥𝑖,𝑖−1 +𝛥𝑖+1,𝑖 +𝛥𝑗,𝑗−1 +𝛥𝑗+1,𝑗 −𝛥𝑗,𝑖−1 −𝛥𝑖+1,𝑗 −𝛥𝑖,𝑗−1 −𝛥𝑗+1,𝑖)2

≤ max
(︁
𝛥𝑖,𝑖−1 +𝛥𝑖+1,𝑖 +𝛥𝑗,𝑗−1 +𝛥𝑗+1,𝑗, 𝛥𝑗,𝑖−1 +𝛥𝑖+1,𝑗 +𝛥𝑖,𝑗−1 +𝛥𝑗+1,𝑖

)︁2
.

Now each of the terms 𝛥𝑖,𝑖+1 + 𝛥𝑖+1,𝑖, 𝛥𝑗,𝑗−1 + 𝛥𝑗+1,𝑗 is less than (𝑛 − 1), and
the same holds true for the two other sums. Therefore this yields

𝜋𝑛(|𝑓 − E𝜋𝑛 𝑓 | ≥ 𝑡) ≤ 2 exp
(︁

− 𝑡2

8(𝑛− 1)3

)︁
.

Clark [Cla09] has calculated the variance of the sum of ascents, and it is of order
𝑛3, which is in good accordance with the concentration inequality (again, up to
the factor).
Example 3.21. Finally, consider the random variable 𝑇 (𝜎) = 𝐷(𝜎) + 𝐷(𝜎−1),
where 𝐷(𝜎) =

∑︀𝑛−1
𝑖=1 1𝜎(𝑖+1)>𝜎(𝑖) is the number of descents. In [CD17] the authors

calculated the expectation and variance of 𝑇 and proven a central limit theorem.
As in the above example one can easily see that 𝛤 (𝑇 )2 ≤ 4(𝑛 − 1), as well as
𝛤 (𝑇 ∘ inv)2 ≤ 4(𝑛 − 1), where inv : 𝑆𝑛 → 𝑆𝑛 denotes the inverse map. Since
𝛤 (𝑓 + 𝑔)2 ≤ 2𝛤 (𝑓)2 + 2𝛤 (𝑔)2 holds true for any functions 𝑓,𝑔, we also have
𝛤 (𝑇 )2 ≤ 16(𝑛− 1), showing that for all 𝑡 ≥ 0 it holds

𝜋𝑛(|𝑇 − E𝑇 | ≥ 𝑡) ≤ 2 exp
(︁

− 𝑡2

32(𝑛− 1)

)︁
.
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Again, the variance is of order 𝑛, so that it is consistent with the CLT. Unfortu-
nately, the constant 4 at 4𝑛 for 𝛤 (𝑇 ) cannot be improved (asymptotically), which
can be seen at ̃︀𝜎(𝑖) = 𝑛+ 1 − 𝑖.

3.2.4 Homogeneous polynomials in [0,1]-random variables

One possible application of Proposition 3.4 is to understand the finite 𝑛 concen-
tration properties of the so-called d-runs on the line as follows.

Proposition 3.22. Let 𝑑 ∈ N, 𝑛 > 𝑑, (𝑋𝑖)𝑖=1,...,𝑛 be independent, identically
distributed random variables with values in [0,1] and mean 𝜂 := E𝑋1 > 0. Define
the random variable 𝑓𝑑(𝑋) :=

∑︀𝑛
𝑖=1 𝑋𝑖 · · ·𝑋𝑖+𝑑−1, where the indices are to be

understood modulo 𝑛. For any 𝑡 ≥ 0 it holds

P
(︁
𝑓𝑑(𝑋) − E 𝑓𝑑(𝑋) ≥ 𝑛1/2𝜂𝑑/2𝑡

)︁
≤ 2 exp

(︁
− 𝑡2

2𝑑2(1 + 𝑛−1/2𝜂−𝑑/2𝑡)

)︁
. (3.18)

If we consider 𝑑 to be fixed, the bounded difference inequality provides wrong
bounds for 𝑓𝑑(𝑋), as we have |𝑓𝑑(𝑋) − 𝑓𝑑(𝑋 𝑖, 𝑋

′
𝑖)| ≤ 𝑑 for any 𝑖 ∈ [𝑛], yielding

P(|𝑓𝑑(𝑋) − E 𝑓𝑑(𝑋)| ≥ 𝑡) ≤ 2 exp
(︁

− 2𝑡2
𝑛𝑑2

)︁
.

This suggests of a normalization of 𝑓(𝑋) by 𝑛−1/2. On the other hand, in [RR09,
Theorem 4.1], the authors prove a CLT for the 𝑑-runs on the line for Bernoulli
random variables 𝑋𝑖 with success probability 𝑝, by normalizing 𝑓 by 𝑝−𝑑/2𝑛−1/2.
This is also the reason for the choice 𝑛1/2𝜂𝑑/2𝑡 in inequality (3.18). In other words,
under the assumption 𝑛𝜂𝑑 → ∞ as 𝑛 → ∞, this yields sub-Gaussian tails for
𝑛−1/2𝜂−𝑑/2𝑓 . This is in good accordance with the CLT proven in [RR09, Theorem
4.1].
Example 3.23. If (𝑋𝑣)𝑣∈𝐸(𝐾𝑛) is the Erdös–Rényi model with parameter 𝑝, for any
fixed graph 𝐻 with 𝑣 vertices and 𝑒 edges, the subgraph counting statistic 𝑇𝐻 can
be written in the form (3.7) with 𝑤𝑒 = 1, and 𝑘 = 𝑒. Furthermore, it is easy to
see that ML(𝑓) ≤ 𝑛𝛥−1 for the maximum degree 𝛥, so that Corollary 0.2 yields

P(𝑇𝐻(𝑋) − E𝑇𝐻(𝑋) ≥ 𝜀E𝑇𝐻(𝑋)) ≤ exp
(︁

− 𝐶𝑘,𝜀𝑛
𝑣−𝛥+1𝑝𝑒

)︁
.

For example, this gives nontrivial bounds in the triangle case whenever 𝑛2𝑝3 → ∞
as 𝑛 → ∞. This bound is clearly suboptimal, and the optimal decay is known, see
[Cha12; DK12]. However, this is better than the bound obtained by the bounded
differences inequality. In general, if we consider subgraph counting statistics
for some subgraph 𝐻 with 𝑣 vertices and 𝑒 edges on an Erdös–Rényi model
(𝑋𝑣)𝑣∈𝐸(𝐾𝑛), the bounded difference inequality yields the estimate

P(𝑓(𝑋) − E 𝑓(𝑋) ≥ 𝜀E 𝑓(𝑋)) ≤ exp
(︁

− 𝐶𝜀,𝐻
𝑛2𝑣𝑝2𝑒

𝑛2𝑛2𝛥−2

)︁
.
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Thus, to obtain non-trivial estimates in the limit 𝑛 → ∞, one has to assume that
𝑛𝑣−𝛥𝑝𝑒 → ∞. With the above inequality, this can be weakened to 𝑛𝑛𝑣−𝛥𝑝𝑒 → ∞.
Example 3.24. Let (𝑋𝑖𝑗)𝑖,𝑗=1,...,𝑛 be a random matrix with independent and [0,1]-
valued entries 𝑋𝑖𝑗 , and let 𝑎 = (𝑎𝑖)𝑖=1,...,𝑛 be a vector with positive entries. Consider
the random variable

𝑓(𝑋) := max
𝜋∈𝑆𝑛

𝑛∑︁
𝑖=1

𝑎𝑖𝑋𝑖,𝜋(𝑖).

(For a complete bipartite graph 𝐺 = (𝑉,𝐸) with vertex set 𝑉 = 𝑉0 ∪ 𝑉1 for
𝑉0 = {1, . . . , 𝑛} and 𝑉1 = {𝑛+1, . . . , 𝑛}, equipped with the weights 𝑤𝑖𝑗 = 𝑎𝑖𝑋𝑖,𝑗−𝑛,
𝑓(𝑋) is the value of the matching of 𝐺 maximizing the total weight.)

Now, for any pair (𝑖,𝑗) set 𝑓𝑖𝑗(𝑥{𝑖𝑗}𝑐) := 𝑓(𝑥(𝑖,𝑗)𝑐 , 0). For a fixed 𝑥 ∈ [0,1]𝑉 let ̃︀𝜋
be the permutation attaining the maximum and observe that

𝑛∑︁
𝑖,𝑗=1

(𝑓(𝑋) − 𝑓𝑖𝑗(𝑋(𝑖,𝑗)𝑐))2 ≤
𝑛∑︁

𝑖,𝑗=1

(︁ 𝑛∑︁
𝑘=1

𝑎𝑘(𝑋𝑘,̃︀𝜋(𝑘) − (𝑋(𝑖,𝑗)𝑐 ,0)𝑘,̃︀𝜋(𝑘))
)︁2

≤
𝑛∑︁

𝑖,𝑗=1

1𝑗=̃︀𝜋(𝑖)𝑎
2
𝑖𝑋

2
𝑖,̃︀𝜋(𝑖) ≤ ‖𝑎‖∞𝑓(𝑋).

Consequently, [BLM09, Theorem 1] yields

P(𝑓(𝑋) − E 𝑓(𝑋) ≥ 𝑡) ≤ exp
(︁

− 𝑡2

2‖𝑎‖∞(E 𝑓(𝑋) + 𝑡/2)

)︁
.

3.3 Proofs and auxiliary results

We begin by proving Theorem 3.1. Before we start, let us recall a result proven
in [BG99, Theorem 2.1], relating the exponential moments of 𝑓 − E𝜇 𝑓 to those of
𝛤 (𝑓)2.

Theorem 3.25. Assume that (𝛺, 𝜇, 𝛤 ) satisfies the 𝛤−mLSI(𝜌) (3.2) with con-
stant 𝜌 > 0. Then for any 𝑓 ∈ 𝒜 and any 𝛼 > 𝜌

2 we have

E𝜇 exp(𝑓 − E𝜇 𝑓) ≤
(︀
E𝜇 exp(𝛼𝛤 (𝑓)2)

)︀ 𝜌
2𝛼−𝜌 .

Furthermore, we need an elementary inequality to adjust the constants in
concentration or deviation inequalities: for any two constants 𝑐1 > 𝑐2 > 1 we have
for all 𝑟 ≥ 0 and 𝑐 > 0

𝑐1 exp(−𝑐𝑟) ≤ 𝑐2 exp
(︁

− log(𝑐2)
log(𝑐1)

𝑐𝑟
)︁

(3.19)

whenever the left hand side is smaller or equal to 1.
Lastly, for the proof of Proposition 3.2 we require a lemma which provides

concentration inequalities for random variables with a certain growth condition
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of their moment generating function. Define ℎ(𝑥) := 1 + 𝑥 −
√

1 + 2𝑥 = 1
2(1 −√

1 + 2𝑥)2.

Lemma 3.26 (Lemma 11 in [BLM03]). Let 𝐶 and 𝑎 denote two positive real
numbers. Then

sup
𝜆∈[0,1/𝑎)

(︁
𝜆𝑡− 𝐶𝜆2

1 − 𝑎𝜆

)︁
= 2𝐶

𝑎2 ℎ
(︁ 𝑎𝑡

2𝐶

)︁
≥ 𝑡2

2(2𝐶 + 𝑎𝑡/3) .

Proof of Theorem 3.1. First, by making use of Theorem 3.25 in the first and
𝑎2 ≤ 2(𝑎− 𝑏)2

+ + 2𝑏2 for any 𝑎,𝑏 ≥ 0 in the third step, for all 𝜆 ≥ 0 we obtain

E𝜇 exp
(︀
𝜆(𝑓 − E𝜇 𝑓)

)︀
≤ E𝜇 exp

(︀
𝜆2𝜌𝛤 (𝑓)2)︀ ≤ E𝜇 exp

(︀
𝜆2𝜌𝑔2)︀

≤ exp
(︀
2𝜆2𝜌(E𝜇 𝑔)2)︀E𝜇 exp

(︀
2𝜆2𝜌(𝑔 − E𝜇 𝑔)2

+
)︀
.

To estimate the right hand side further, we apply Theorem 3.25 to 𝑓 := 𝜆𝑔, use
Markov’s inequality and optimize to show that for all 𝑡 ≥ 0

𝜇(𝑔 − E𝜇 𝑔 ≥ 𝑡) ≤ exp
(︁

− 𝑡2

2𝜌𝑏2

)︁
. (3.20)

Here, to obtain the factor 2 in the denominator, one has to let 𝛼 → ∞ in Theorem
3.25. Thus, if we define ℎ := 2𝜆2𝜌(𝑔 − E𝜇 𝑔)2

+ this leads to

E𝜇 exp(ℎ) ≤ 1 +
ˆ ∞

0
exp

(︁
− 𝑡

(︁ 1
4𝜌2𝑏2𝜆2 − 1

)︁)︁
𝑑𝑡 = 1

1 − 4𝜌2𝑏2𝜆2

if 𝜆2 < 1/(4𝜌2𝑏2). Let us set 𝑐 := 2𝜌𝑏 and 𝑎2 := (E𝜇 𝑔)2. Consequently, for all
𝜆 ∈ [0,𝑐−1) we have by Markov’s inequality

𝜇(𝑓 − E𝜇 𝑓 ≥ 𝑡) ≤ exp
(︁

− 𝜆𝑡+ 2𝜆2𝜌𝑎2
)︁ 1

1 − 𝜆2𝑐2 . (3.21)

Now we distinguish the two cases (𝑖) : 𝑡 ≤ 𝑎2𝑏−1 and (𝑖𝑖) : 𝑡 > 𝑎2𝑏−1. In the first
case, set 𝜆 := 𝑡

4𝜌𝑎2 (which implies 𝜆2𝑐2 ≤ 1/4 and thus is in the range) to obtain

exp
(︀

− 𝜆𝑡+ 2𝜆2𝜌𝑎2)︀ 1
1 − 𝜆2𝑐2 ≤ 4

3 exp
(︁

− 𝑡2

4𝜌𝑎2 + 𝑡2

8𝜌𝑎2

)︁
= 4

3 exp
(︁

− 𝑡2

8𝜌𝑎2

)︁
,

(3.22)

where we have used that 1
1−𝑥 is increasing and is less than 4/3 for 𝑥 ≤ 1/4. In the

second case, we set 𝜆 := 1
4𝜌𝑏 (which is equivalent to 𝜆2𝑐2 = 1/4) to arrive at

exp
(︀

− 𝜆𝑡+ 2𝜆2𝜌𝑎2)︀ 1
1 − 𝜆2𝑐2 ≤ 4

3 exp
(︀

− 𝑡

4𝜌𝑏 + 𝑡

8𝜌𝑏
)︀

≤ 4
3 exp

(︀
− 𝑡

8𝜌𝑏
)︀
. (3.23)

Combining (3.22) and (3.23) finishes the proof of (3.3). From here, (3.4) follows
by considering −𝑓 instead of 𝑓 and using (3.19) to change the constant 8/3 to 2.
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Finally, the Bernstein-type inequalities can be easily derived from (3.3) and
(3.4) respectively. Indeed, a short calculation shows that for all 𝑎, 𝑏 > 0 and 𝑡 ≥ 0
we have

𝑡2

𝑎2 + 𝑏𝑡
≤ min

(︁ 𝑡2
𝑎2 ,

𝑡

𝑏

)︁
= 𝑡2

max(𝑎2,𝑏𝑡) ≤ 2𝑡2
𝑎2 + 𝑏𝑡

.

Proof of Proposition 3.2. Again, the proof is based on Theorem 3.25. Choosing
𝛼 = 𝜌, applying the exponential inequality to 𝜆𝑓 and using the monotonicity leads
to

E𝜇 exp
(︀
𝜆(𝑓 − E𝜇 𝑓)

)︀
≤ exp

(︀
𝜆2𝜌(𝑏+ 𝑎E𝜇 𝑓)

)︀
E𝜇 exp

(︀
𝜆2𝜌𝑎(𝑓 − E𝜇 𝑓)

)︀
.

Thus for 𝜆 ∈ (0,(𝑎𝜌)−1), by Jensen’s inequality applied to the concave function
𝑥 ↦→ 𝑥𝜆𝜌𝑎 we have(︀

1 − 𝜆𝜌𝑎
)︀

log
(︀
E𝜇 exp

(︀
𝜆(𝑓 − E𝜇 𝑓)

)︀)︀
≤ 𝜆2𝜌(𝑏+ 𝑎E𝜇 𝑓).

Finally, Markov’s inequality and Lemma 3.26 yield the claim.
For the lower bound, assume without loss of generality 𝜌 = 1, which can

always be achieved by defining 𝛤𝜌 := √
𝜌𝛤 . 𝑓 is (𝑎,𝑏)-self-bounding with respect

to 𝛤 if and only if it is (𝜌𝑎, 𝜌𝑏)-self-bounding with respect to 𝛤𝜌. Now by the
self-boundedness assumption, we have for any 𝜆 > 0

E exp
(︀
𝜆(E 𝑓 − 𝑓)

)︀
≤ E exp

(︀
𝛤 (−𝜆𝑓)2)︀ ≤ E exp

(︀
𝜆2𝛤 (𝑓)2)︀ ≤ E exp

(︀
𝜆2(𝑎𝑓 + 𝑏)

)︀
≤ exp

(︀
𝜆2(𝑎E 𝑓 + 𝑏)

)︀
E exp

(︀
𝜆2𝑎(𝑓 − E 𝑓)

)︀
.

We estimate the second factor as follows: For 𝜆𝑎 < 1, concavity of the function
𝑥 ↦→ 𝑥𝜆𝑎 and the estimate from the first part give

E exp
(︀
𝜆2𝑎(𝑓 − E 𝑓)

)︀
≤

(︀
E exp

(︀
𝜆(𝑓 − E 𝑓)

)︀)︀𝜆𝑎 ≤ exp
(︁
𝜆𝑎

𝜆2

1 − 𝜆𝑎
(𝑎E 𝑓 + 𝑏)

)︁
.

Combining these estimates yields

E exp
(︀
𝜆(E 𝑓 − 𝑓)

)︀
≤ exp

(︁ 𝜆2

1 − 𝜆𝑎
(𝑎E 𝑓 + 𝑏)

)︁
,

from which the concentration inequalities follow from Lemma 3.26 as above.

Proof of Proposition 3.3. The proof is a slight modification of the proof for inde-
pendent random variables in [BLM03]. As stated in Proposition 3.14, the uniform
measure 𝜋𝑛 on 𝑆𝑛 satisfies a 𝛤+−mLSI(2) with respect to

𝛤+(𝑓)2(𝜎) = 1
𝑛

𝑛∑︁
𝑖,𝑗=1

(𝑓(𝜎) − 𝑓(𝜎𝜏𝑖𝑗))2
+.
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Writing 𝑓𝐴(𝜎) := 𝑑𝑇 (𝜎,𝐴), it is well known (see [BLM03]) that we have

𝑓𝐴(𝜎) = inf
𝜈∈ℳ(𝐴)

sup
𝛼∈R𝑛:|𝛼|2=1

𝑛∑︁
𝑘=1

𝛼𝑘𝜈(𝜎′ : 𝜎′
𝑘 ̸= 𝜎𝑘),

where ℳ(𝐴) is the set of all probability measures on 𝐴. To estimate 𝛤+(𝑓𝐴)2(𝜎),
one has to compare 𝑓𝐴(𝜎) and 𝑓𝐴(𝜎𝜏𝑖𝑗). To this end, for any 𝜎 ∈ 𝑆𝑛 fixed,
let ̃︀𝛼, ̃︀𝜈 be parameters maximizing 𝑓𝐴(𝜎), and let 𝜈 = 𝜈𝑖𝑗 be a minimizer of
inf𝜈∈ℳ(𝐴)

∑︀𝑛
𝑘=1 ̃︀𝛼𝑘𝜈(𝜎′ : 𝜎′

𝑘 ̸= (𝜎𝜏𝑖𝑗)𝑘). This leads to

𝛤+𝑓𝐴(𝜎)2 ≤ 1
𝑛

𝑛∑︁
𝑖,𝑗=1

(︀ 𝑛∑︁
𝑘=1

̃︀𝛼𝑘(𝜈(𝜎′
𝑘 ̸= 𝜎𝑘) − 𝜈(𝜎′

𝑘 ̸= (𝜎𝜏𝑖𝑗)𝑘))
)︀2

+

= 1
𝑛

𝑛∑︁
𝑖,𝑗=1

(︀̃︀𝛼𝑖(𝜈(𝜎′
𝑖 ̸= 𝜎𝑖) − 𝜈(𝜎′

𝑖 ̸= 𝜎𝑗)) + ̃︀𝛼𝑗(𝜈(𝜎′
𝑗 ̸= 𝜎𝑗) − 𝜈(𝜎′

𝑗 ̸= 𝜎𝑖))
)︀2

+

≤ 2
𝑛

𝑛∑︁
𝑖,𝑗=1

(̃︀𝛼2
𝑖 + ̃︀𝛼2

𝑗 ) ≤ 4.

Hence, by similar arguments as in the proof of Theorem 3.1 we have for any 𝜆 ≥ 0

E𝜋𝑛 exp
(︀
𝜆(𝑓𝐴 − E𝜋𝑛 𝑓𝐴)

)︀
≤ exp(4𝜆2), (3.24)

implying the sub-Gaussian estimate

𝜋𝑛(𝑓𝐴 − E𝜋𝑛 𝑓𝐴 ≥ 𝑡) ≤ exp
(︁

− 𝑡2

16

)︁
.

Fix a set 𝐴 ⊆ 𝑆𝑛 satisfying 𝜋𝑛(𝐴) ≥ 1/2. As a 𝛤+−mLSI(2) implies a Poincaré
inequality (see [BT06, Proposition 3.5], or Lemma 2.2 for a similar reasoning), we
also have (by Chebyshev’s inequality)

𝑡2𝜋𝑛
(︀
𝑓𝐴 − E𝜋𝑛 𝑓𝐴 ≤ −𝑡

)︀
≤ Var𝜋𝑛(𝑓𝐴) ≤ E𝜋𝑛 𝛤+(𝑓𝐴)2 ≤ 4,

which evaluated at 𝑡 = E𝜋𝑛 𝑓𝐴 yields (E𝜋𝑛 𝑓𝐴)2 ≤ 8. Thus, for any 𝑡 ≥
√

8 it holds

𝜋𝑛(𝑓𝐴 ≥ 𝑡) ≤ exp
(︁

− (𝑡−
√

8)2

16

)︁
≤

√
𝑒 exp

(︁
− 𝑡2

32

)︁
≤ 2 exp

(︁
− 𝑡2

32

)︁
, (3.25)

where the second-to-last inequality follows from (𝑡 −
√

8)2 ≥ 𝑡2/2 − 8 for any
𝑡 ≥

√
8. For 𝑡 ≤

√
8 the inequality (3.25) holds trivially.

Proof of Proposition 3.4. We show that 𝑓 is weakly (𝑘ML(𝑓),0)-self bounding in
the language of [BLM09]. To see this, for any 𝑣 ∈ 𝑉 let 𝑓𝑣(𝑥𝑣𝑐) :=

∑︀
𝑒∈𝐸:𝑣/∈𝐸 𝑤𝑒𝑋𝑒 =
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𝑓(𝑋𝑣𝑐 , 0). Now we have∑︁
𝑣∈𝑉

(𝑓(𝑥) − 𝑓𝑣(𝑥𝑣𝑐))2 =
∑︁
𝑣∈𝑉

(︁
𝑋𝑣

∑︁
𝑒∈𝐸:𝑣∈𝐸

𝑤𝑒𝑋𝑒∖𝑣

)︁2
≤

∑︁
𝑣∈𝑉

𝑋𝑣𝜕𝑣𝑓(𝑋)2

≤ ML(𝑓)
∑︁
𝑣∈𝑉

𝑋𝑣𝜕𝑣𝑓(𝑋) = 𝑘ML(𝑓)𝑓(𝑋).

Here, the first inequality follows from 𝑋𝑣 ∈ [0,1] and the last step is a consequence
of Euler’s homogeneous function theorem. Consequently, [BLM09, Theorem 1]
yields for any 𝑡 ≥ 0

P(𝑓(𝑋) − E 𝑓(𝑋) ≥ 𝑡) ≤ exp
(︁

− 𝑡2

2𝑘ML(𝑓)(E 𝑓(𝑋) + 𝑡/2)

)︁
.

For the lower bound, apply [BLM09, Theorem 1] on ̃︀𝑓 = ML(𝑓)−1𝑓 which satisfies
0 ≤ ̃︀𝑓(𝑥)− ̃︀𝑓𝑣(𝑥𝑣𝑐) ≤ 1 for all 𝑣 ∈ 𝑉 and 𝑥 ∈ [0,1]𝑉 and is weakly (𝑘ML(𝑓)−1,0)-self
bounding.

Proof of Proposition 3.6. The first part follows as above. As for the second part,
if we choose ℱ = ℱ𝑞 = {𝑎 ∈ R𝑉 : 𝑎𝑣 ≥ 0, ‖𝑎‖𝑞 ≤ 1} for some 𝑞 ∈ [1,∞] this leads
to

𝑓ℱ(𝑋) = sup
𝑎∈ℱ𝑞

∑︁
𝑣∈𝑉

𝑎𝑣𝑋𝑣 =
(︁∑︁
𝑣∈𝑉

|𝑋𝑣|𝑝
)︁1/𝑝

for the Hölder conjugate 𝑝, which is due to the nonnegativity of the 𝑋𝑖 and the
dual formulation of the 𝐿𝑝 norm in R𝑉 .

Remark. Actually, in the case 𝑎𝑖 ∈ [0,1]𝑛 we can also invoke [BLM00, Theorem 2.1]
to obtain Poisson tail bounds for 𝑓 . Indeed, if we set 𝑍 = 𝑓(𝑋) and 𝑍(𝑣) = 𝑓(𝑋𝑣𝑐),
it is easy to verify 0 ≤ 𝑍 − 𝑍(𝑣) ≤ 1 as well as

∑︀
𝑣∈𝑉 (𝑍 − 𝑍(𝑣)) ≤ 𝑍, so that

[BLM00] can be applied, yielding

P(𝑍 − E𝑍 ≥ 𝑡) ≤ exp
(︁
𝑡− (E𝑍 + 𝑡) log

(︁
1 + 𝑡

E𝑍

)︁)︁
.

For similar calculations, see [BLM00, remark (1) on page 281].

Proof of Proposition 3.7. Inequality (3.11) follows immediately from Theorem 3.1
and the inequality

|∇𝑆|∇𝑆𝑓 || ≤ ‖𝑓 ′′
𝑆‖op,

proven in [BCG17, Lemma 3.1]. Now, if 𝑓 is orthogonal to all affine functions (in
𝐿2(𝜎𝑛−1)), [BCG17, Proposition 5.1] shows

E𝜎𝑛−1|∇𝑆𝑓 |2 ≤ 𝜌𝑛 E𝜎𝑛−1‖𝑓 ′′
𝑆‖2

HS,

from which (3.12) can readily deduced.
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Proof of Proposition 3.8. The proof is similar to the proof of Proposition 3.7. It
only remains to see that |∇|∇𝑓 || ≤ ‖𝑓 ′′‖op, cf. [GS20, Lemma 7.2], and argue as
above.

Proof of Corollary 3.9. This is an immediate consequence of Theorem 3.1 and
the Poincaré inequality upon noticing that for 𝑔(𝑦) := 𝑓(𝑦) − E𝜇 𝑓(𝑥) − ⟨𝑦 −
E𝜇(𝑥),E𝜇 ∇𝑓(𝑥)⟩ we have ∇𝑔 = ∇𝑓 − E𝜇 ∇𝑓 and 𝑔′′ = 𝑓 ′′.

Proof of Proposition 3.10. The idea of the proof of the mLSIs is already present
in [BG07]. Let (𝛺,ℱ , 𝜈) be any probability space. For any function 𝑔 we have due
to the inequality (𝑎− 𝑏)+(𝑒𝑎 − 𝑒𝑏)+ ≤ 1

2(𝑎− 𝑏)2
+(𝑒𝑎 + 𝑒𝑏) ≤ (𝑎− 𝑏)2

+𝑒
𝑎

Cov𝜈(𝑔, 𝑒𝑔) ≤
¨

(𝑔(𝑥) − 𝑔(𝑦))2
+𝑑𝜈(𝑦)𝑒𝑔(𝑥)𝑑𝜈(𝑥).

Applying this to 𝜈 = 𝜇(· | 𝑥𝑖) and 𝑔 = 𝑓(𝑥𝑖, ·) and using (3.13) yields

Ent𝜇(𝑒𝑓 ) ≤ 𝜎2
𝑛∑︁
𝑖=1

¨
(𝑓(𝑥) − 𝑓(𝑥𝑖, 𝑥′

𝑖))2
+𝑑𝜇(𝑥′

𝑖 | 𝑥𝑖)𝑒𝑓(𝑥)𝑑𝜇(𝑥) = 𝜎2
ˆ

|d+𝑓 |2𝑒𝑓𝑑𝜇.

The second inequality follows by similar reasoning, by observing that
¨

(𝑔(𝑥) − 𝑔(𝑦))2
+(𝑒𝑔(𝑥) + 𝑒𝑔(𝑦))𝑑𝜈(𝑥)𝑑𝜈(𝑦) =

ˆ
𝑒𝑔(𝑥)
ˆ

(𝑔(𝑥) − 𝑔(𝑦))2𝑑𝜈(𝑦)𝑑𝜈(𝑥).

The exponential inequalities are a consequence of Theorem 3.25.

For the next proofs, recall the duality formula |𝑥| = sup𝑦∈𝑆𝑛−1⟨𝑥,𝑦⟩.

Proof of Proposition 3.11. Let us bound |d+ℎ|2. Fix 𝑥, choose some ̃︀𝐴 maximizing
sup𝐴∈𝒜⟨𝑥,𝐴𝑥⟩ and use the monotonicity of 𝑦 ↦→ 𝑦+ to obtain

|d+ℎ(𝑥)| =
(︁ 𝑛∑︁
𝑖=1

ˆ
(ℎ(𝑥) − ℎ(𝑥𝑖, 𝑥′

𝑖))2
+𝑑𝜇(𝑥′

𝑖 | 𝑥𝑖)
)︁1/2

≤
(︁ 𝑛∑︁
𝑖=1

sup
𝑥′

𝑖

(︁
2(𝑥𝑖 − 𝑥′

𝑖)
𝑛∑︁
𝑗=1

̃︀𝐴𝑖𝑗𝑥𝑗)︁2

+

)︁1/2

≤ 4‖ ̃︀𝐴𝑥‖2 ≤ 4𝑓𝒜(𝑥).

Now, for some maximizer ̃︀𝐴 of sup𝐴∈𝒜‖𝐴𝑥‖ and ̃︀𝑣 for sup𝑣∈𝑆𝑛−1⟨ ̃︀𝐴𝑥, 𝑣⟩ it holds

|d+𝑓𝒜|2 ≤
∑︁
𝑖

sup
𝑥′

𝑖

(︀
sup
𝑣

⟨ ̃︀𝐴𝑥,𝑣⟩ − sup
𝑣

⟨ ̃︀𝐴(𝑥𝑖, 𝑥′
𝑖), 𝑣)⟩

)︀2
+

≤
∑︁
𝑖

sup
𝑥′

𝑖

(︀
(𝑥𝑖 − 𝑥′

𝑖)⟨ ̃︀𝐴𝑒𝑖, ̃︀𝑣⟩
)︀2

+ ≤ 4
∑︁
𝑖

⟨ ̃︀𝐴𝑒𝑖, ̃︀𝑣⟩2

≤ 4
(︀

sup
𝑤

∑︁
𝑖

𝑤𝑖⟨ ̃︀𝐴𝑒𝑖, ̃︀𝑣⟩
)︀2 ≤ 4 sup

𝐴∈𝒜
‖𝐴‖2

op.
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Here, the suprema of 𝑣 and 𝑤 are taken over the 𝑛-dimensional sphere. We can
now apply Theorem 3.1 with 𝛤 = d+, 𝜌 = 2𝜎2, 𝑔 = 4𝑓𝒜 and 𝑏 = 8𝛴 to finish the
proof.

Proof of Corollary 3.12. The inequality (𝑓(𝑥) − 𝑓(𝑦))2
+ ≤ 𝑓 ′(𝑥)2(𝑥− 𝑦)2 holds for

any convex function 𝑓 , which readily implies

|d+𝑓 |2 ≤
𝑛∑︁
𝑖=1

𝜕𝑖𝑓(𝑥)2
ˆ

(𝑥𝑖 − 𝑥′
𝑖)2𝑑𝜇(𝑥′

𝑖 | 𝑥𝑖) ≤ 4|∇𝑓 |2.

The statements now follow from Proposition 3.10.

Proof of Proposition 3.13. In the notation of Theorem 3.1, by Corollary 3.12 and
its proof we can take 𝑔 := 2|∇𝑓 | (if 𝛤 = d+). For fixed 𝑥 ∈ [−1, + 1]𝑛 and a
𝑦 ∈ 𝑆𝑛−1 such that |∇𝑓 |(𝑥) = ⟨𝑦,∇𝑓(𝑥)⟩ we have by the mean value theorem

|d+|∇𝑓 || ≤
∑︁
𝑖

sup
𝑥′

𝑖

(︀
⟨𝑦,∇𝑓(𝑥) − ∇𝑓(𝑥𝑖, 𝑥′

𝑖)⟩
)︀

+ ≤ 2 sup
𝑦,𝑧∈𝑆𝑛−1

∑︁
𝑖,𝑗

𝑦𝑖𝑧𝑗𝑐𝑖𝑗 = 2‖𝑐‖.op

Now apply Theorem 3.1 to 𝛤 = d+, 𝜌 = 2𝜎2, 𝑔 := 2|∇𝑓 | and 𝑏 = 4‖𝑐‖op.

Proof of Proposition 3.14. Using and rewriting [GQ03, Theorem 1] we obtain for
any 𝑓 : 𝑆𝑛 → R

Ent(𝑒𝑓 ) ≤ 1
2𝑛𝑛!

𝑛∑︁
𝑖,𝑗=1

∑︁
𝜎∈𝑆𝑛

(𝑓(𝜎𝜏𝑖𝑗) − 𝑓(𝜎))(𝑒𝑓(𝜎𝜏𝑖𝑗) − 𝑒𝑓(𝜎)).

Now, using the inequality (𝑎− 𝑏)(𝑒𝑎 − 𝑒𝑏) ≤ 1
2(𝑒𝑎 + 𝑒𝑏)(𝑎− 𝑏)2 and the fact that

𝜎 ↦→ 𝜎𝜏𝑖𝑗 is an automorphism of 𝑆𝑛 leads to 𝛤−mLSI(1). The 𝛤+−mLSI(2) follows
in the same manner from the inequality (𝑎− 𝑏)+(𝑒𝑎 − 𝑒𝑏) ≤ (𝑎− 𝑏)2

+𝑒
𝑎.

Proof of Proposition 3.22. Clearly, 𝑓𝑑 is 𝑑-homogeneous and has positive weights
in the sense of (3.7), if we set 𝑉 = [𝑛] and 𝐸 = {{𝑗, 𝑗 + 1, . . . , 𝑗 + 𝑑 − 1}, 𝑗 =
1, . . . , 𝑛}, 𝑤𝑒 = 1. Furthermore, the partial derivatives can be easily bounded: For
any fixed 𝑙 ∈ [𝑛] there are exactly 𝑑 terms which depend on 𝑋𝑙, and the product
is bounded by 1. Consequently, ML(𝑓𝑑) = max𝑙∈[𝑛] max𝑥∈[0,1]𝑛 𝜕𝑙𝑓(𝑋) = 𝑑. Thus,
Proposition 3.4 yields for all 𝑡 ≥ 0

P(𝑓𝑑(𝑋) − E 𝑓𝑑(𝑋) ≥ 𝑡) ≤ exp
(︁

− 𝑡2

2𝑑2(E 𝑓𝑑(𝑋) + 𝑡/2)

)︁
.

The assertion follows easily from E 𝑓𝑑(𝑋) = 𝑛𝜂𝑑.



CHAPTER 4

Concentration inequalities for bounded functions of
independent and weakly dependent random
variables

The aim of this chapter is to prove concentration of measure results for general
bounded functions in independent and weakly dependent random variables. In
the first section we formulate concentration inequalities in these two settings.
Afterwards, in Section 4.2, we provide various applications, such as

1. deviation inequalities for functions of suprema type of the form 𝑓(𝑋) =
sup𝑡∈𝒯 ‖

∑︀
𝑖1 ̸=... ̸=𝑖𝑑 𝑡𝑖1...𝑖𝑑𝑋𝑖1 · · ·𝑋𝑖𝑑‖ for a compact set of vectors 𝒯 from some

Banach space (ℬ, ‖·‖),

2. concentration properties of 𝑈 -statistics 𝑓(𝑋) =
∑︀

𝑖1 ̸=... ̸=𝑖𝑑 ℎ(𝑋𝑖1 , . . . , 𝑋𝑖𝑑)
for bounded kernels ℎ,

3. concentration inequalities for polynomials in the Ising model.

All the results will be proven in Section 4.3.
In this and the next chapter we choose to work with random variables instead

of measures. By abuse of language we say that a random vector 𝑋 = (𝑋1, . . . , 𝑋𝑛)
satisfies a 𝛤−LSI(𝜎2) for some difference operator 𝛤 , if its distribution does.

4.1 General results

The first theorem provides general concentration inequalities for bounded func-
tions of independent random variables 𝑋1, . . . , 𝑋𝑛 or a random vector 𝑋 =
(𝑋1, . . . , 𝑋𝑛) satisfying a d−LSI(𝜎2). Recall that 𝒴 is some generic product space
in the independent case and a product of finite spaces for dependent random
variables. Furthermore, recall the definition of the higher order difference operators
h(𝑘) from Section 2.2 and the definitions of the operator norms from Section 2.1.

Theorem 4.1. Let 𝑑 ∈ N, 𝑋 = (𝑋1, . . . , 𝑋𝑛) be a random vector and 𝑓 : 𝒴 → R
a measurable function satisfying 𝑓 = 𝑓(𝑋) ∈ 𝐿∞(P).
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1. If 𝑋1, . . . , 𝑋𝑛 are independent random variables, we have for any 𝑡 ≥ 0

P (|𝑓 − E 𝑓 | ≥ 𝑡)

≤ 2 exp
(︁

− 1
217 min

𝑘∈[𝑑−1]

(︁ 𝑡

𝑑‖h(𝑘)𝑓‖op,1

)︁ 2
𝑘 ∧

(︁ 𝑡

𝑑‖h(𝑑)𝑓‖op,∞

)︁ 2
𝑑
)︁
.

(4.1)

2. If 𝑋 satisfies a d−LSI(𝜎2), then for any 𝑡 ≥ 0 it holds

P (|𝑓 − E 𝑓 | ≥ 𝑡)

≤ 2 exp
(︁

− 1
11𝜎2 min

𝑘∈[𝑑−1]

(︁ 𝑡

𝑑‖h(𝑘)𝑓‖op,1

)︁ 2
𝑘 ∧

(︁ 𝑡

𝑑‖h(𝑑)𝑓‖op,∞

)︁ 2
𝑑
)︁
.

(4.2)

Here, the order 𝑑 can be chosen freely and depending on the situation at hand,
as the differences of order 𝑑 need to be bounded uniformly. For example, we use
Theorem 4.1 to prove concentration inequalities for 𝑈 -statistics in Proposition 4.8
and for polynomials in the Ising model in Theorem 4.9. In both cases, 𝑑 will be
equal to the order of the function.

The special case 𝑑 = 2 can be considered as a generalized form of the Hanson–
Wright inequality for any bounded function 𝑓 . Indeed, for 𝑑 = 2 we can write
(4.1) and (4.2) as

P(|𝑓 − E 𝑓 | ≥ 𝑡) ≤ 2 exp
(︁

− 1
𝐶

min
(︁ 𝑡2

‖h𝑓‖2
op,1

,
𝑡

‖h(2)𝑓‖op,∞

)︁)︁
.

In Chapter 5 we prove a Hanson–Wright-type inequality for 𝛼-sub-exponential
random variables which allows to treat unbounded random variables as well.
Theorem 4.1 produces Hanson–Wright-type inequalities for bounded 𝑋𝑖 only.

Using straightforward estimates for the norms of 𝑑-tensors (i. e. |𝐴|op ≤ |𝐴|HS
for any 𝑑-tensor 𝐴), the following corollary easily follows, which in particular
allows to recover the results in [GSS19b]. As this is an immediate consequence of
the above inequality and Jensen’s inequality, we omit the proof.

Corollary 4.2. Let 𝑑 ∈ N, 𝑋 = (𝑋1, . . . , 𝑋𝑛) be a random vector satisfying a
d−LSI(𝜎2) and 𝑓 = 𝑓(𝑋) ∈ 𝐿∞(P). For any 𝑡 ≥ 0 we have

P(|𝑓 − E 𝑓 | ≥ 𝑡) ≤ 2 exp
(︁

− 1
11𝜎2 min

𝑘∈[𝑑−1]

(︁ 𝑡

𝑑‖h(𝑘)𝑓‖HS,2

)︁ 2
𝑘 ∧

(︁ 𝑡

𝑑‖h(𝑑)𝑓‖HS,∞

)︁ 2
𝑑
)︁
.

Next, we prove concentration inequalities for functions in weakly dependent
random variables which resemble multilinear polynomials, constructed in the
following way. Suppose that 𝒴 = 𝒳 ℐ for some finite sets 𝒳 and ℐ equipped with
some probability measure 𝜇. Let 𝑓 : 𝒳 → R and 𝐴 be a 𝑑-tensor with vanishing
diagonal. For any 𝐽 ⊂ ℐ we write

𝑓𝐽(𝑦) =
∏︁
𝑖∈𝐽

𝑓(𝑦𝑖) and ̃︀𝑓𝐽(𝑦) =
∏︁
𝑖∈𝐽

(︁
𝑓(𝑦𝑖) −

ˆ
𝑓(𝑦𝑖)𝑑𝜇

)︁
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and introduce the short-hand notations

𝜇𝐽 := E𝜇 𝑓𝐽 and ̃︀𝜇𝐽 := E𝜇 ̃︀𝑓𝐽 .
Recall that for any finite set 𝒥 we denote by 𝒫(𝒥 ) the set of all partitions of 𝒥 .
We let 𝑁 : 𝒫(𝒥 ) → N0 be the number of singletons in a partition 𝑃 (i. e. the
number of sets {𝑖𝑗}, 𝑖𝑗 ∈ 𝒥 ), and 𝑀 : 𝒫(𝒥 ) → N0 the number of subsets with
more than one element. Finally, we define a polynomial-like function 𝑓𝑑,𝐴 : 𝒴 → R
as

𝑓𝑑,𝐴 =
∑︁
𝐼∈ℐ𝑑

𝐴𝐼
∑︁

𝑃∈𝒫(𝐼)

𝑔𝑃 :=
∑︁
𝐼∈ℐ𝑑

𝐴𝐼
∑︁

𝑃∈𝒫(𝐼)

(−1)𝑀(𝑃 )
∏︁
𝐽∈𝑃
|𝐽 |=1

̃︀𝑓𝐽 ∏︁
𝐽∈𝑃
|𝐽 |>1

̃︀𝜇𝐽 . (4.3)

Note that if 𝒳 ⊂ R, one choice of the spin function is the identity 𝑓(𝑥) = 𝑥, for
which 𝑓𝑑,𝐴 becomes a multilinear polynomial in 𝑥1, . . . , 𝑥𝑛.

Proposition 4.3. Let 𝑑 ∈ N, 𝑋 = (𝑋1, . . . , 𝑋𝑛) be a random vector satisfying
a d−LSI(𝜎2), 𝐴 a 𝑑-tensor with vanishing diagonal and 𝑓 : 𝒳 → R be such that
sup𝑥,𝑦|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑐. Then, 𝑓𝑑,𝐴 = 𝑓𝑑,𝐴(𝑋) as in (4.3) is a centered random
variable, for all 𝑝 ≥ 2 we have

‖𝑓𝑑,𝐴‖𝑝 ≤ 𝜎𝑑𝑐𝑑|𝐴|HS 𝑝
𝑑/2, (4.4)

and consequently for any 𝑡 ≥ 0 it holds

P(|𝑓𝑑,𝐴| ≥ 𝑡) ≤ 2 exp
(︁

− 1
22𝜎2𝑐2

(︁ 𝑡

|𝐴|HS

)︁ 2
𝑑
)︁
. (4.5)

Proposition 4.3 will be used to prove statements about the number of triangles
in exponential random graph models, see Theorem 4.11, Corollary 4.12 and
Proposition 4.13. See also the discussion of the polynomials in the Ising model
with an external field after Corollary 4.10.

4.2 Applications

4.2.1 Deviation inequalities for empirical processes

First we consider a uniform version of polynomial chaos. Let ℐ𝑛,𝑑 denote the
family of subsets of [𝑛] with 𝑑 elements, fix a Banach space (ℬ, ‖·‖) with its
dual space (ℬ*, ‖·‖*), a compact subset 𝒯 ⊂ ℬℐ𝑛,𝑑 and let ℬ*

1 be the 1-ball in ℬ*

with respect to ‖·‖*. Let 𝑋 = (𝑋1, . . . , 𝑋𝑛) be a random vector with support in
[−1,+ 1]𝑛 and define

𝑓(𝑋) := 𝑓𝒯 (𝑋) := sup
𝑡∈𝒯

⃦⃦⃦ ∑︁
𝐼∈ℐ𝑛,𝑑

𝑋𝐼𝑡𝐼

⃦⃦⃦
, (4.6)
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where 𝑋𝐼 :=
∏︀

𝑖∈𝐼 𝑋𝑖. For any 𝑘 ∈ [𝑑] we let

𝑊𝑘 := sup
𝑡∈𝒯

sup
𝑣*∈ℬ*

1

sup
𝛼1,...,𝛼𝑘∈R𝑛

|𝛼𝑖|≤1

𝑣*
(︁ ∑︁
𝑖1,...,𝑖𝑘
distinct

𝛼1
𝑖1 · · ·𝛼𝑘𝑖𝑘

∑︁
𝐼∈ℐ𝑛,𝑑−𝑘

𝑖1,...,𝑖𝑘 /∈𝐼

𝑋𝐼𝑡𝐼∪{𝑖1,...,𝑖𝑘}

)︁

= sup
𝑡∈𝒯

sup
𝛼1,...,𝛼𝑘∈R𝑛

|𝛼𝑖|≤1

⃦⃦⃦ ∑︁
𝑖1,...,𝑖𝑘
distinct

𝛼1
𝑖1 · · ·𝛼𝑘𝑖𝑘

∑︁
𝐼∈ℐ𝑛,𝑑−𝑘

𝑖1,...,𝑖𝑘 /∈𝐼

𝑋𝐼𝑡𝐼∪{𝑖1,...,𝑖𝑘}

⃦⃦⃦
,

(4.7)

where for 𝑘 = 𝑑 we use the convention ℐ𝑛,0 = {∅} and 𝑋∅ := 1. One can interpret
the quantities 𝑊𝑘 in the following way: If 𝑓𝑡(𝑥) =

∑︀
𝐼∈ℐ𝑛,𝑑

𝑥𝐼𝑡𝐼 is the corresponding
polynomial in 𝑛 variables, and 𝜕𝑘𝑓𝑡(𝑥) is the 𝑘-tensor of all partial derivatives of
order 𝑘, then 𝑊𝑘 = sup𝑡∈𝒯 |𝜕𝑘𝑓𝑡(𝑋)|op.

Furthermore, the concentration inequalities are phrased with the help of the
quantities

̃︁𝑊𝑘 := sup
𝛼1,...,𝛼𝑘∈R𝑛

|𝛼𝑖|≤1

∑︁
𝑖1,...,𝑖𝑘
distinct

𝛼1
𝑖1 · · ·𝛼𝑘𝑖𝑘 sup

𝑡∈𝒯
sup
𝑣*∈ℬ*

1

𝑣*
(︁ ∑︁
𝐼∈ℐ𝑛,𝑑−𝑘

𝑖1,...,𝑖𝑘 /∈𝐼

𝑋𝐼𝑡𝐼∪{𝑖1,...,𝑖𝑘}

)︁

= sup
𝛼1,...,𝛼𝑘∈R𝑛

|𝛼𝑖|≤1

∑︁
𝑖1,...,𝑖𝑘
distinct

𝛼1
𝑖1 · · ·𝛼𝑘𝑖𝑘 sup

𝑡∈𝒯

⃦⃦⃦ ∑︁
𝐼∈ℐ𝑛,𝑑−𝑘

𝑖1,...,𝑖𝑘 /∈𝐼

𝑋𝐼𝑡𝐼∪{𝑖1,...,𝑖𝑘}

⃦⃦⃦
.

Clearly ̃︁𝑊𝑘 ≥ 𝑊𝑘 holds for all 𝑘 ∈ [𝑑]. Concentration properties for functions as
in (4.6) have been studied in the case of Rademacher random variables and in
the real case in [BBLM05, Theorem 14] for all 𝑑 ≥ 2, and under certain technical
assumptions in [Ada15]. We prove deviation inequalities in the weakly dependent
setting, and afterwards discuss how these compare to the particular result in
[BBLM05].

Theorem 4.4. Let 𝑋 = (𝑋1, . . . , 𝑋𝑛) be a random vector in R𝑛 with support in
[𝑎,𝑏]𝑛 satisfying a d−LSI(𝜎2). For 𝑓 = 𝑓(𝑋) as in (4.6) and all 𝑝 ≥ 2 we have

‖(𝑓 − E 𝑓)+‖𝑝 ≤
𝑑∑︁
𝑗=1

(𝜎2(𝑏− 𝑎)2(𝑝− 1))𝑗/2 E𝑊𝑗, (4.8)

‖𝑓 − E 𝑓‖𝑝 ≤
𝑑∑︁
𝑗=1

(𝜎2(𝑏− 𝑎)2(𝑝− 1))𝑗/2 Ẽ︁𝑊𝑗. (4.9)

Consequently, for any 𝑡 ≥ 0 the following inequalities hold:

P (𝑓 − E 𝑓 ≥ 𝑡) ≤ 𝑒 exp
(︁

− 1
𝜎2(𝑏− 𝑎)2 min

𝑘∈[𝑑]

(︁ 𝑡

𝑑𝑒E𝑊𝑘

)︁2/𝑘)︁
, (4.10)

P (|𝑓 − E 𝑓 | ≥ 𝑡) ≤ 𝑒 exp
(︁

− 1
𝜎2(𝑏− 𝑎)2 min

𝑘∈[𝑑]

(︁ 𝑡

𝑑𝑒Ẽ︁𝑊𝑘

)︁2/𝑘)︁
. (4.11)
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The upper bound (4.10) in the case of Rademacher random variables has been
treated in [BBLM05] and yields similar results. For a compact set of vectors 𝒯 in
Rℐ𝑛,𝑑 , [BBLM05, Theorem 14, Corollary 4] provides deviation inequalities for

𝑓 = 𝑓(𝑋) := 𝑓𝒯 (𝑋) := sup
𝑡∈𝒯

⃒⃒⃒ ∑︁
𝐼∈ℐ𝑛,𝑑

𝑋𝐼𝑡𝐼

⃒⃒⃒
(4.12)

by showing that for all 𝑝 ≥ 2

‖(𝑓 − E 𝑓)+‖𝑝 ≤
𝑑∑︁
𝑗=1

(4𝜅𝑝)𝑗/2 E𝑊𝑗,

where 𝜅 ≈ 1.27 is a numerical constant (cf. Theorem 2.12) and 𝑊𝑘 is the quantity
from equation (4.7) in the special case of ℬ = R. Theorem 4.4 is comparable to this
result. On the one hand, it is less general for independent random variables, but
on the other hand it is valid in any Banach space and without the independence
assumption on 𝑋1, . . . , 𝑋𝑛. If we consider Rademacher random variables, the
following corollary follows from Theorem 4.4.

Corollary 4.5. Let 𝑋1, . . . , 𝑋𝑛 be independent Rademacher random variables
and 𝑓 = 𝑓(𝑋) as in (4.12). We have for any 𝑝 ≥ 2

‖(𝑓 − E 𝑓)+‖𝑝 ≤
𝑑∑︁

𝑘=1

(4(𝑝− 1))𝑘/2 E𝑊𝑘.

Consequently, for any 𝑡 ≥ 0

P (𝑓 − E 𝑓 ≥ 𝑡) ≤ 𝑒 exp
(︁

− 1
4 min
𝑘∈[𝑑]

(︁ 𝑡

𝑑𝑒E𝑊𝑗

)︁2/𝑘)︁
.

Apart from Rademacher random variables, possible applications of Theorem
4.4 include the weakly dependent spin systems. One such example is given by the
Curie–Weiss model on 𝑛 sites with inverse temperature 𝛽 < 1, i. e. the probability
measure on {−1,+ 1}𝑛 defined by

𝜇(𝑥) := 𝑍−1 exp
(︁
𝛽𝑛−1

∑︁
𝑖 ̸=𝑗

𝑥𝑖𝑥𝑗

)︁
where𝑍 =

∑︁
𝑥∈{−1,+1}𝑛

exp
(︁
𝛽𝑛−1

∑︁
𝑖 ̸=𝑗

𝑥𝑖𝑥𝑗

)︁
.

It can be easily seen that 𝜇 satisfies the conditions of Proposition 2.15 and thus a
d−LSI(𝜎2(𝛽)) holds.

As a second corollary, Theorem 4.4 can be used to partly recover Talagrand’s
Theorem 1.3 on concentration properties of quadratic forms in Banach spaces,
and extend it to weakly dependent random variables. Considering the case 𝑑 = 2,
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we can write

𝑇1 := E𝑊1 = E sup
𝑡∈𝒯

sup
𝑣*∈ℬ*

1

(︁ 𝑛∑︁
𝑖=1

(︁ 𝑛∑︁
𝑗=1

𝑋𝑗𝑣
*(𝑡𝑖𝑗)

)︁2)︁1/2

𝑇2 := E𝑊2 = sup
𝑡∈𝒯

sup
𝑣*∈ℬ*

1

‖(𝑣*(𝑡𝑖𝑗))𝑖,𝑗‖op.

Corollary 4.6. Assume that 𝑋 = (𝑋1, . . . , 𝑋𝑛) satisfies a d−LSI(𝜎2) and is
supported in [𝑎,𝑏]𝑛 and let 𝑓𝒯 = 𝑓𝒯 (𝑋) be as in (4.6) with 𝑑 = 2. We have for all
𝑡 ≥ 0

P (𝑓𝒯 (𝑋) − E 𝑓𝒯 (𝑋) ≥ 𝑡) ≤ 𝑒 exp
(︁

− 1
30(𝑏− 𝑎)2𝜎2 min

(︁ 𝑡2
𝑇 2

1
,
𝑡

𝑇2

)︁)︁
.

Finally, let us remark that the case of independent Rademacher random variables
𝑋1, . . . , 𝑋𝑛, there is a connection between multilevel concentration and quantities
arising Boolean analysis. Recall that any function 𝑓 : {−1, + 1}𝑛 → R can be
decomposed using the orthonormal Fourier–Walsh basis given by (𝑥𝑆)𝑆⊆[𝑛] for
𝑥𝑆 :=

∏︀
𝑖∈𝑆 𝑥𝑖. More precisely, we have

𝑓(𝑥) =
∑︁
𝑆⊆[𝑛]

𝑓𝑆𝑥𝑆 =
∑︁
𝑗∈[𝑛]

∑︁
𝑆⊆[𝑛]:|𝑆|=𝑗

𝑓𝑆𝑥𝑆,

where (𝑓𝑆)𝑆⊆[𝑛] are the Fourier coefficients of 𝑓 given by 𝑓𝑆 =
´
𝑋𝑆𝑓(𝑋)𝑑P. For

any 𝑗 ∈ [𝑛] we define the Fourier weight of order 𝑗 as 𝑊𝑗(𝑓) :=
∑︀

𝑆⊆[𝑛]:|𝑆|=𝑗 𝑓
2
𝑆. It

is clear that ‖𝑓‖2
2 =

∑︀𝑛
𝑗=0 𝑊𝑗(𝑓). The following multilevel concentration inequality

can now be easily deduced.

Proposition 4.7. Let 𝑋1, . . . , 𝑋𝑛 be independent Rademacher random variables
and let 𝑓 : {1, + 1}𝑛 → R be a function given in the Fourier–Walsh basis as
𝑓(𝑥) =

∑︀𝑑
𝑗=0

∑︀
𝑆⊂[𝑛]:|𝑆|=𝑗 𝑓𝑆𝑥𝑆 for some 𝑑 ∈ N, 𝑑 ≤ 𝑛. For any 𝑡 ≥ 0 we have

P(|𝑓(𝑋) − E 𝑓(𝑋)| ≥ 𝑡) ≤ 𝑒 exp
(︁

− min
𝑗∈[𝑑]

(︁ 𝑡

𝑑𝑒𝑊𝑗(𝑓)1/2

)︁2/𝑗)︁
.

In other words, the event |𝑓(𝑋) − E 𝑓(𝑋)| ≤ 𝑑𝑒max𝑗∈[𝑑](𝑊𝑗𝑡
𝑗)1/2 holds with

probability at least exp(1 − 𝑡).

4.2.2 Concentration properties of U-statistics

Next, we use Theorem 4.1 to prove concentration properties of so-called 𝑈-
statistics which frequently arise in statistical theory. We refer to [PG99] for an
excellent monograph. More recently, concentration inequalities for 𝑈 -statistics
have been considered in [Ada06], [AW15, Section 3.1.2] and [BGS19, Corollary
1.3].
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Let 𝒴 = 𝒳 𝑛 and assume that 𝑋1, . . . , 𝑋𝑛 are either independent random
variables, or the vector 𝑋 = (𝑋1, . . . , 𝑋𝑛) satisfies a d−LSI(𝜎2). Let ℎ : 𝒳 𝑑 → R be
a measurable, symmetric function with ℎ(𝑋𝑖1 , . . . , 𝑋𝑖𝑑) ∈ 𝐿∞(P) for any 𝑖1, . . . , 𝑖𝑑,
and define 𝐵 := ‖ℎ(𝑋𝑖1 , . . . , 𝑋𝑖𝑑)‖𝐿∞(P). We are interested in the concentration
properties of the 𝑈 -statistic with kernel ℎ, i. e. of the random variable

𝑓(𝑋) =
∑︁

𝑖1 ̸=... ̸=𝑖𝑑

ℎ(𝑋𝑖1 , . . . , 𝑋𝑖𝑑). (4.13)

Proposition 4.8. Let 𝑋 = (𝑋1, . . . , 𝑋𝑛) be as above and 𝑓 = 𝑓(𝑋) be as in
(4.13). There exists a constant 𝐶 > 0 depending on 𝑑 (and 𝜎2 in the weakly
dependent case) such that for any 𝑡 ≥ 0 the inequalities

P
(︁

|𝑓 − E 𝑓 | ≥ 𝐵𝑡
)︁

≤ 2 exp
(︁

− 1
4𝐶𝑑

min
𝑘∈[𝑑]

(︁ 𝑡(︀
𝑑
𝑘

)︀
𝑛𝑑−𝑘/2

)︁2/𝑘)︁
(4.14)

P
(︁
𝑛1/2−𝑑|𝑓 − E 𝑓 | ≥ 𝐵𝑡

)︁
≤ 2 exp

(︁
− 1

4𝐶𝑑
min

(︁
𝑡2, 𝑛1−1/𝑑𝑡2/𝑑

)︁)︁
(4.15)

hold.

The normalization 𝑛1/2−𝑑 in (4.15) is in good agreement for 𝑈 -statistics gener-
ated by a symmetric, non-degenerate kernel ℎ in independent random variables
(where non-degeneracy means Var(E𝑋1 ℎ(𝑋1, . . . , 𝑋𝑑)) > 0). Indeed, in the i. i. d.
case [PG99, Remarks 4.2.5] states that

𝑛1/2−𝑑
∑︁

𝑖1 ̸=... ̸=𝑖𝑑

ℎ(𝑋𝑖1 , . . . , 𝑋𝑖𝑑) ⇒ 𝒩 (0, 𝑑2 Var(E𝑋1 ℎ(𝑋1, . . . , 𝑋𝑑)))

whenever Eℎ(𝑋𝑖1 , . . . , 𝑋𝑖𝑑) = 0 and Eℎ(𝑋1, . . . , 𝑋𝑑)2 < ∞. Actually, (4.15) shows
that for 𝑡 ≤

√
𝑛 we have sub-Gaussian tails for any finite 𝑛 ∈ N for bounded kernels

ℎ, although the variance of the limit distribution might be grossly overestimated.

4.2.3 Polynomials in the Ising model

Yet another application of Theorem 4.1 and Proposition 4.3 are concentration
results for homogeneous polynomials in spins in the Ising model with bounded
coefficients, and suitably recentered versions of a 𝑑-th order chaos. To begin with,
let us consider the case of a weakly dependent Ising model without external field.

Theorem 4.9. Let 𝜇 be an Ising model as in Proposition 2.15 with ℎ = 0, and
𝑋 ∼ 𝜇. Let 𝐴 = (𝑎𝑖1,...,𝑖𝑑) be a symmetric 𝑑-tensor with vanishing diagonal and
sup𝑖1,...,𝑖𝑑 |𝑎𝑖1...𝑖𝑑| = 1, and define 𝑓 : {−1,+ 1}𝑛 → R via

𝑓 := 𝑓(𝜎) :=
∑︁

𝐼=(𝑖1,...,𝑖𝑑)

𝑎𝐼𝜎𝐼 .
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There is a constant 𝑐 = 𝑐(𝑑, 𝛼) > 0 such that for all 𝑡 ≥ 0 it holds

P
(︁

|𝑓(𝑋) − E 𝑓(𝑋)| ≥ 𝑡
)︁

≤ 2 exp
(︁

− 1
𝑐𝑛

min(𝑡2, 𝑡2/𝑑)
)︁
. (4.16)

This result improves upon [GLP18, Theorem 1] as well as on [DDK17, Theorem
5] by removing the logarithmic dependence in the exponential. More precisely,
in [GLP18] it is shown that for some weakly dependent Ising models 𝜋 without
external field, every degree 𝑑 polynomial 𝑓 with coefficients in [−𝐾,𝐾] satisfies

𝜋
(︀
|𝑓 − E𝜋 𝑓 | ≥ 𝑡

)︀
≤ 𝐶𝑛𝑑

2 exp
(︁

− 𝑡2/𝑑

𝐶𝑛𝐾2/𝑑

)︁
.

Similar concentration inequalities have been proven in [DDK17]; given a degree 𝑑
multilinear polynomial 𝑓 in the spin variables of an Ising model 𝜋 (in an 𝛼-high
temperature regime without external field, i. e. for models satisfying the weak
dependence condition) with coefficients in [−𝐾,𝐾], [DDK17, Theorem 5] states
that there are two constants such that for any 𝑡 ≥ 𝐶𝐾(𝑛 log2 𝑛)𝑑/2 we have

𝜋
(︀
|𝑓 − E𝜋 𝑓 | ≥ 𝑡

)︀
≤ 2 exp

(︁
− 𝛼𝑡2/𝑑

𝐶𝐾2/𝑑𝑛 log 𝑛

)︁
.

In contrast, (4.16) is optimal in terms of the dependence on 𝑛 and with respect
to the power of 𝑡. To see this, note that the uniform measure 𝜇 = ⊗𝑛

𝑖=1
1
2(𝛿−1 + 𝛿+1)

can also be interpreted as an Ising model. In this case, for the tensor 𝐴 = (𝑎𝑖1,...,𝑖𝑑)
with entries 𝑎𝑖1,...,𝑖𝑑 = 1 if 𝑖1 ≠ . . . ≠ 𝑖𝑑 and 0, else, we have Var(𝑓) ∼ 𝑛𝑑, so
that 𝑓 needs to be normalized by 𝑛−𝑑/2. Regarding the power of 𝑡, the invariance
principle in [MOO10, Theorem 2.1] shows that for the same multilinear form 𝑓
as above the distributions of 𝑓(𝑋) and 𝑓(𝐺) for a Gaussian vector 𝐺 are close
in Kolmogorov distance. On the other hand, the behavior of a Gaussian chaos is
known (see e. g. [Lat06]). Consequently, the decay 𝑡2/𝑑 is the correct one for large
values of 𝑡.

Note that in the case of Rademacher random variables (i. e. ℎ = 0, 𝐽 = 0) we
have Var(𝑓) = |𝐴|2HS, so that a normalization of 𝑓 by |𝐴|HS should be sufficient.
On the other hand, Theorem 4.9 suggests a normalization by 𝑛𝑑/2|𝐴|∞, which
might of a different order.

We can invoke Proposition 4.3 to strengthen the result slightly. At the same
time, we consider Ising models with external fields ℎ ̸= 0. Note that the major
difference to the Ising model without an external field is the loss of spin symmetry,
i. e. the map 𝜎 ↦→ −𝜎 does not preserve the measure 𝜇 (more precisely, the
push-forward is an Ising model with external field −ℎ). Thus, the odd degree
polynomials 𝜎𝑖1 · · ·𝜎𝑖2𝑘+1 are not centered.

The next corollary is an immediate consequence of Proposition 4.3.

Corollary 4.10. Let 𝜇 be an Ising model as in Proposition 2.15, with an external
field ℎ and let 𝑋 ∼ 𝜇. Suppose that 𝑑 ∈ N and 𝐴 = (𝐴𝑖1,...,𝑖𝑑)𝑖1,...,𝑖𝑑 is a symmetric
𝑑-tensor with vanishing diagonal and 𝑓𝑑,𝐴 as in (4.3). There exists a constant
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𝐶 = 𝐶(𝛼,̃︀𝛼,𝑑) > 0 such that for all 𝑡 ≥ 0 it holds

P (|𝑓𝑑,𝐴(𝑋)| ≥ 𝑡) ≤ 2 exp
(︁

− 𝑡2/𝑑

𝐶|𝐴|2/𝑑HS

)︁
. (4.17)

Thus, (4.17) shows that 𝑓𝑑,𝐴 needs to be normalized by the Hilbert–Schmidt
norm of the 𝑑-tensor 𝐴. For 𝑑 ∈ {1,2,3,4} the functions 𝑓𝑑,𝐴 are very explicit,
since we have

𝑓1,𝐴(𝑋) =
𝑛∑︁
𝑖=1

𝑎𝑖̃︁𝑋𝑖,

𝑓2,𝐴(𝑋) =
𝑛∑︁

𝑖,𝑗=1

𝑎𝑖𝑗( ̃︀𝑋𝑖𝑗 − E ̃︀𝑋𝑖𝑗),

𝑓3,𝐴(𝑋) =
𝑛∑︁

𝑖,𝑗,𝑘=1

𝑎𝑖𝑗𝑘
(︀ ̃︀𝑋𝑖𝑗𝑘 − E ̃︀𝑋𝑖𝑗𝑘 − 3 ̃︀𝑋𝑖 E( ̃︀𝑋𝑗𝑘)

)︀
,

𝑓4,𝐴(𝑋) =
𝑛∑︁

𝑖,𝑗,𝑘,𝑙=1

𝑎𝑖𝑗𝑘𝑙
(︀ ̃︀𝑋𝑖𝑗𝑘𝑙 − E ̃︀𝑋𝑖𝑗𝑘𝑙 − 4̃︁𝑋𝑖 E ̃︀𝑋𝑗𝑘𝑙 − 6 ̃︀𝑋𝑖𝑗 E ̃︀𝑋𝑘𝑙 + 6E ̃︀𝑋𝑖𝑗 E ̃︀𝑋𝑘𝑙

)︀
.

The 𝑑 = 3 case has an interesting interpretation. Assume that ℎ = 0, so that
the 𝑋𝑖 are centered random variables. Equation (4.17) states that a polynomial
of order three is not concentrated around its mean (which in this case would be
zero), but around a first order correction. For example, for the 3-tensor 𝐴 = (𝑎𝑖𝑗𝑘)
given by 𝑎𝑖𝑗𝑘 = 𝑛−3/2

1𝛥3(𝑖,𝑗,𝑘), we obtain concentration inequalities for

𝑓(𝑋) = 𝑛−3/2
∑︁
𝑖 ̸=𝑗 ̸=𝑘

𝑋𝑖𝑗𝑘 − 3𝑛−3/2
𝑛∑︁
𝑖=1

𝑋𝑖

∑︁
𝑗 ̸=𝑘:𝑗 ̸=𝑖,𝑘 ̸=𝑖

Cov(𝑋𝑗, 𝑋𝑘) =: 𝑓3(𝑋) + 𝑓1(𝑋).

Here, the correction term 𝑓1 is sub-Gaussian, as a short calculation shows that we
have |h𝑓1|2 = 2𝑛−3 ∑︀𝑛

𝑖=1 𝑐
2
𝑖 for 𝑐𝑖 := 3E

∑︀
𝑗 ̸=𝑘:𝑗 ̸=𝑖,𝑘 ̸=𝑖𝑋𝑗𝑋𝑘, and [GLP18, Lemma

3.1] yields 𝑐2
𝑖 ≤ 𝐶𝑛2 for any 𝑖 ∈ {1, . . . , 𝑛}.

4.2.4 Number of triangles in exponential random graph models

The last application will be the extension of a rather classical question in
random graph theory to the setting of dependent edges. In the Erdös–Rényi
model, the asymptotic properties of the number of triangles are quite classical and
well-studied. For example, there are various conditions ensuring that the subgraph
counts are asymptotically normal, see [Ruc88]. Therefore, it is an interesting task
to find analogous results for the exponential random graph model.

Although the edges in this model are dependent, a weak dependence condition
should suffice to expect a similar behavior as in the case of independent edges.
For example, the large deviation results in [CD13] imply that in certain cases an
exponential random graph model is indistinguishable from an Erdös–Rényi model
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in the limit. Although large deviation results are purely asymptotic, one can still
hope for similar behavior concerning certain statistics for finite 𝑛.

Recall that the exponential random graph model 𝜇𝛽 is a spin system with sites
ℐ𝑛 := {(𝑖,𝑗) ∈ [𝑛]2 : 𝑖 < 𝑗}. We let

(︀ℐ𝑛

3

)︀
be the set of all possibilities of choosing

three distinct edges and

𝒯𝑛 :=
{︁

{𝑒,𝑓,𝑔} ∈
(︂

ℐ𝑛
3

)︂
: 𝑒,𝑓,𝑔 form a triangle

}︁
. (4.18)

The statistic we are interested in is the number of triangles

𝑇3(𝑥) :=
∑︁

{𝑒1,𝑒2,𝑒3}∈𝒯𝑛

𝑥𝑒1𝑥𝑒2𝑥𝑒3 . (4.19)

We prove multilevel concentration inequalities for 𝑇3 and a linear approximation
thereof. Define 𝜇2 := E𝜇𝛽

𝑥𝑒𝑥𝑓 (for some edges 𝑒 ̸= 𝑓 ∈ ℐ𝑛, 𝑒 ∩ 𝑓 ≠ ∅) and
𝑓1 :=

∑︀
𝑒∈ℐ𝑛

(𝑥𝑒 −E𝜇𝛽
(𝑥𝑒)). From the definition of the ERGM it is clear that 𝜇2 is

well-defined.

Theorem 4.11. Let 𝜇𝛽 be an ERGM satisfying a d−LSI(𝜎2). There exists a
constant 𝐶 = 𝐶(𝜎2) > 0 such that for all 𝑡 ≥ 0 we have the multilevel concentration
bounds

𝜇𝛽(|𝑇3 − E𝜇𝛽
𝑇3| ≥ 𝑡) ≤ 2 exp

(︁
− 1
𝐶

min
(︁(︁ 𝑡

𝑛3/2

)︁2/3
,

𝑡

𝜇1𝑛3/2 ,
(︁ 𝑡

𝜇2𝑛2

)︁2)︁)︁
(4.20)

𝜇𝛽(|𝑇3 − E𝜇𝛽
𝑇3 − (𝑛− 2)𝜇2𝑓1| ≥ 𝑡) ≤ 2 exp

(︁
− 1
𝐶

min
(︁(︁ 𝑡

𝑛3/2

)︁2/3
,

𝑡

𝜇1𝑛3/2

)︁)︁
.

(4.21)

It is interesting to observe effect of subtracting the random variable (𝑛− 2)𝜇2𝑓1.
As the variance of 𝑇3 is of order 𝑛4, a normalization by 𝑛−2 is necessary to obtain
a stable variance, and (4.20) gives suitable tail estimates. However, the random
variable 𝑇3 − E𝜇𝛽

𝑇3 − (𝑛 − 2)𝜇2𝑓1 concentrates on a narrower range, since the
variance is of order 𝑛3, and (4.21) yields stretched-exponential tails in this case.
In the Erdös–Rényi model, a short calculation shows

Var (𝑇3) =
(︂
𝑛

3

)︂
𝑝3(1 − 𝑝3) + 1

2𝑛(𝑛− 1)(𝑛− 2)(𝑛− 3)𝑝5(1 − 𝑝)

Var
(︀
𝑇3 − (𝑛− 2)𝑝2𝑓1

)︀
=

(︂
𝑛

3

)︂
𝑝3(1 − 𝑝3).

To complement these observations, inspecting (4.20), we see that the normalization
𝑛−2 corresponds to the factor 𝑛−4 in the Gaussian part, whereas the exponential
and stretched-exponential part require a normalization by 𝑛−3/2 only.

The inequality (4.21) shows that 𝑇3 fluctuates around the linear term 𝑓1 on a
lower order. This leads to the idea of mimicking the method of Hájek projection
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Figure 4.1: A comparison of the distributions of 𝑇3 − 𝜇𝛽(𝑇3) (left) and 𝑇3 −
𝜇𝛽(𝑇3) − (𝑛 − 2)𝜇2𝑓1 (right) for 𝑛 = 100, 𝛽1 = −0.1, 𝛽2 = 0.05 and
𝐺1 = 𝐾2 (an edge), 𝐺2 = 𝐾3 (a triangle) using the Glauber dynamics
and roughly 2 million simulations.
The sample standard deviation of 𝑇3 is approximately 725, whereas
for the linear approximation it is 94.

to deduce a central limit theorem for the triangle count from a CLT for the edge
count. As far as we are aware, there are hardly any theoretical results on the
distributional limits of the subgraph counts as 𝑛 → ∞ barring certain special
cases. (One such example is the edge two-star model, which can also be interpreted
as an Ising model, see [Muk13a; Muk13b].)

Corollary 4.12. Let 𝜇𝛽 be an ERGM satisfying a d−LSI(𝜎2). Assuming the
central limit theorem

(︀
𝑛
2

)︀−1/2 ∑︀
𝑒∈ℐ𝑛

(𝑥𝑒 − E𝜇𝛽
𝑥𝑒) ⇒ 𝒩 (0,𝑣2), we can infer

𝑇3 − 𝜇𝛽(𝑇3)

(𝑛− 2)𝜇2

√︁(︀
𝑛
2

)︀ ⇒ 𝒩 (0,𝑣2).

The formulation of Corollary 4.12 is slightly sloppy, as we actually consider the
sequence of probability measures induced on the graphs on 𝑛 vertices.

Furthermore, the convergence can be quantified in the Wasserstein distance.
Let us recall that for two probability measures 𝜇, 𝜈 on R with finite first moment
(i. e.

´
|𝑥|𝑑𝜇(𝑥) < ∞,

´
|𝑥|𝑑𝜈(𝑥) < ∞) the Wasserstein distance is defined as

𝑑𝑊 (𝜇,𝜈) = sup
{︁ˆ

𝑓𝑑𝜇−
ˆ
𝑓𝑑𝜈 : 𝑓 ∈ Lip1

}︁
,

where Lip1 denotes the set of all Lipschitz-continuous functions with Lipschitz
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constant at most 1. For two random variables 𝑋,𝑌 we define 𝑑𝑊 (𝑋,𝑌 ) as the
Wasserstein distance between their distributions. Define

̃︀𝑇3(𝑥) := (𝑛− 2)−1𝜇−1
2

(︂
𝑛

2

)︂−1/2 ∑︁
{𝑒,𝑓,𝑔}∈𝒯𝑛

(𝑥𝑒𝑥𝑓𝑥𝑔 − E𝜇𝛽
(𝑥𝑒𝑥𝑓𝑥𝑔))

̃︀𝐿(𝑥) :=
(︂
𝑛

2

)︂−1/2 ∑︁
𝑒∈ℐ𝑛

(𝑥𝑒 − E𝜇𝛽
𝑥𝑒).

Proposition 4.13. Let 𝜇𝛽 = 𝜇
(𝑛)
𝛽 be an ERGM satisfying a d−LSI(𝜎2) and let

𝑍 ∼ 𝒩 (0,𝑣2) for some 𝑣2 > 0. There exists a constant 𝐶 = 𝐶(𝜎2) such that

𝑑𝑊 ( ̃︀𝑇3, 𝑍) ≤ 𝑑𝑊 (̃︀𝐿,𝑍) + 𝐶𝑛−1/2.

Consequently, a rate of convergence in the Wasserstein distance for the number
of edges immediately implies a rate of convergence for the number of triangles. As
the number of edges is a linear function in the random variables (𝑥𝑒)𝑒∈ℐ𝑛 , this is a
much easier object to handle than the third order polynomial 𝑇3.

4.3 Proofs

In the next proofs, we need the inequality

‖𝑊‖𝑝 ≤ E𝑊 + ‖(𝑊 − E𝑊 )+‖𝑝 (4.22)

for any positive random variable 𝑊 , which is an immediate consequence of the
pointwise inequality 𝑊 ≤ (𝑊 − E𝑊 )+ + E𝑊 and the Minkowski inequality.

Proof of Theorem 4.1. (1): Since 𝑋1, . . . , 𝑋𝑛 are independent, Theorem 2.12 and
(4.22) yield

‖𝑓 − E 𝑓‖𝑝 ≤ (8𝜅𝑝)1/2‖h𝑓‖𝑝 ≤ (8𝜅𝑝)1/2‖h𝑓‖op,1 + (8𝜅𝑝)1/2‖(|h𝑓 | − E|h𝑓 |)+‖𝑝.

The second term can be estimated using Theorem 2.12 again, which in combination
with Lemma 2.6 gives

‖(|h𝑓 | − E|h𝑓 |)+‖𝑝 ≤
√︀

2𝜅𝑝‖h+|h𝑓 |‖𝑝 ≤
√︀

2𝜅𝑝‖h(2)𝑓‖op,𝑝.

This can be iterated to obtain for any 𝑑 ∈ N

‖𝑓 − E 𝑓‖𝑝 ≤
𝑑−1∑︁
𝑗=1

(8𝜅𝑝)𝑗/2‖h(𝑗)𝑓‖op,1 + (8𝜅𝑝)𝑑/2‖h(𝑑)𝑓‖op,∞.

Now it remains to apply Proposition 2.10.
(2): The proof of the second part is very similar. In the first step, using
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Proposition 2.8 and (4.22) leads to

‖𝑓 − E 𝑓‖𝑝 ≤ (𝜎2(𝑝− 3/2))1/2‖h𝑓‖op,1 + (𝜎2(𝑝− 3/2))1/2‖(|h𝑓 | − E|h𝑓 |)+‖𝑝.

Equation (2.8) can be used to estimate the second term on the right hand side.
So, for any 𝑑 ∈ N we have by an iteration

‖𝑓 − E 𝑓‖𝑝 ≤
𝑑−1∑︁
𝑗=1

(𝜎2(𝑝− 1))𝑗/2‖h(𝑗)𝑓‖op,1 + (𝜎2(𝑝− 1))𝑑/2‖h(𝑑)𝑓‖op,∞

Again we can apply Proposition 2.10 to obtain the concentration inequality.

To prove Proposition 4.3, it is convenient to introduce some notations. For
any distinct indices 𝑘1, . . . , 𝑘𝑠 ∈ [𝑑] and 𝑙1, . . . ,𝑙𝑠 ∈ ℐ let 𝐴𝑘1=𝑙1,...,𝑘𝑠=𝑙𝑠 be the
(𝑑− 𝑠)-tensor with fixed entries 𝑘𝑖 = 𝑙𝑖 for all 𝑖 ∈ [𝑠]. For example, if 𝐴 = (𝐴𝑖𝑗𝑘𝑙) is
a 4-tensor, 𝐴2=𝑗,3=𝑖 is the 2-tensor given by 𝐴2=𝑗,3=𝑖

𝑘𝑙 = 𝐴𝑘𝑗𝑖𝑙. Clearly, the symmetry
and vanishing diagonal property are inherited.

Proof of Proposition 4.3. To see that 𝑓𝑑,𝐴 has mean zero, fix 𝑑 distinct indices
𝑖1, . . . ,𝑖𝑑 and an arbitrary partition 𝑃 ∈ 𝒫({𝑖1, . . . , 𝑖𝑑}). If 𝑁(𝑃 ) = 1, then 𝑔𝑃 has
mean zero by construction, as the only stochastic term is a factor ̃︀𝑓𝑖𝑗 . Otherwise,
for 𝑁(𝑃 ) ≥ 2, the partition is of the form 𝑃 = {{𝑖1}, . . . , {𝑖𝑁(𝑃 )}, 𝐼1, . . . , 𝐼𝑙},
and ̃︀𝑃 = {{𝑖1, . . . , 𝑖𝑁(𝑃 )}, 𝐼1, . . . , 𝐼𝑙} is also a valid partition and 𝑔 ̃︀𝑃 = E 𝑔𝑃 . As a
consequence, E 𝑓𝑑,𝐴 = 0.

For any 𝑙 ∈ ℐ write 𝑇𝑙 for the formal operator that replaces 𝑥𝑙 by 𝑥̂𝑙. First off,
we have

h𝑙𝑓𝑑,𝐴(𝑋) = sup
𝑥𝑙,𝑥̂𝑙

⃒⃒⃒∑︁
𝐼

𝐴𝐼
∑︁

𝑃∈𝒫(𝐼)

(−1)𝑀(𝑃 ) (𝑔𝑃 (𝑋𝐼) − 𝑔𝑃 (𝑇𝑙(𝑋𝐼)))
⃒⃒⃒

= sup
𝑥𝑙,𝑥̂𝑙

⃒⃒⃒
(𝑓(𝑥𝑙) − 𝑓(𝑥̂𝑙))

𝑑∑︁
𝑘=1

∑︁
𝐼=(𝑖1,...,𝑖𝑑−1)

𝐴𝑘=𝑙
𝐼

∑︁
𝑃∈𝒫(𝐼)

(−1)𝑀(𝑃 )𝑔𝑃 (𝑋𝐼)
⃒⃒⃒

≤ 𝑐
⃒⃒⃒ 𝑑∑︁
𝑘=1

∑︁
𝐼=(𝑖1,...,𝑖𝑑−1)

𝐴𝑘=𝑙
𝐼

∑︁
𝑃∈𝒫(𝐼)

(−1)𝑀(𝑃 )𝑔𝑃 (𝑋𝐼)
⃒⃒⃒

= 𝑐
⃒⃒⃒ 𝑑∑︁
𝑘=1

𝑓𝑑−1,𝐴𝑘=𝑙

⃒⃒⃒
.

Here, the second equality follows from the fact that 𝑇𝑙(𝑥𝑖1 , . . . ,𝑥𝑖𝑑) = (𝑥𝑖1 , . . . , 𝑥𝑖𝑑)
unless 𝑖𝑗 = 𝑙 for some 𝑗 and the definition of 𝑔𝑃 , and the inequality in the third
line is a consequence of the assumptions. We can assume 𝑐 = 1, since the general
case follows by rescaling 𝑓 by 𝑐−1. Now, by the d−LSI(𝜎2) property it holds for
any 𝑝 ≥ 2

‖𝑓𝑑,𝐴‖2
𝑝 ≤ ‖𝑓𝑑,𝐴‖2

2 + 𝜎2(𝑝− 2)‖h𝑓𝑑,𝐴‖2
𝑝.
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Using the Poincaré inequality (2.4) with respect to h gives

‖𝑓𝑑,𝐴‖2
2 ≤ 𝜎2

∑︁
𝑙1

E(h𝑙1𝑓𝑑,𝐴)2 ≤ 𝜎2
∑︁
𝑙1

E(̃︀h𝑙1𝑓𝑑,𝐴)2 ≤ 𝜎2‖̃︀h𝑓𝑑,𝐴‖2
𝑝,

where ̃︀h𝑙 replaces sup𝑥𝑙,𝑥̂𝑙
|𝑓(𝑥𝑙)−𝑓(𝑥̂𝑙)| by 1. Clearly, since h𝑙𝑓𝑑,𝐴 ≤ ̃︀h𝑙𝑓𝑑,𝐴 pointwise,

the 𝐿𝑝-norms can be estimated as well, resulting in ‖𝑓𝑑,𝐴‖2
𝑝 ≤ 𝜎2(𝑝− 1)‖̃︀h𝑓𝑑,𝐴‖2

𝑝.
We have ̃︀h𝑙1𝑓𝑑,𝐴 =

⃒⃒⃒ 𝑑∑︁
𝑘1=1

∑︁
𝐼=(𝑖1,...,𝑖𝑑−1)

𝐴𝑘1=𝑙1
𝐼

∑︁
𝑃∈𝒫(𝐼)

(−1)𝑀(𝑃 )𝑔𝑃

⃒⃒⃒
,

which itself is the absolute value of a sum of centered random variables, so that
the process can be iterated; in each step, the Poincaré inequality (2.4) can be
used and

̃︀h𝑙1 · · ·̃︀h𝑙𝑠𝑓𝑑,𝐴 =
⃒⃒⃒ 𝑑∑︁
𝑘1=1

· · ·
𝑑−𝑠∑︁
𝑘𝑠=1

∑︁
𝐼=(𝑖1,...,𝑖𝑑−𝑠)

𝐴𝑘1=𝑙1,...,𝑘𝑠=𝑙𝑠
𝐼

∑︁
𝑃∈𝒫(𝐼)

(−1)𝑀(𝑃 )𝑔𝑃

⃒⃒⃒
.

Thus, using the inequality |̃︀h|̃︀h(𝑑)𝑓 || ≤ |̃︀h(𝑑+1)𝑓 | and taking the square root yields

‖𝑓𝑑,𝐴‖𝑝 ≤ 𝜎𝑑|𝐴|𝑝𝑑/2

The concentration inequality follows from Proposition 2.10.

Proof of Theorem 4.4. Let us first consider the case that 𝑋 satisfies a d−LSI(𝜎2).
Recall that we have by (2.8)

‖(𝑓 − E 𝑓)+‖𝑝 ≤ (𝜎2(𝑝− 1))1/2‖h+𝑓‖𝑝.

Next, we prove the inequality |h+𝑓 | ≤ (𝑏 − 𝑎)𝑊1. To see this, let (̃︀𝑡, ̃︀𝑣*) be the
tuple satisfying sup𝑡∈𝒯 sup𝑣*∈ℬ*

1
𝑣*(

∑︀
𝐼∈ℐ𝑛,𝑑

𝑋𝐼𝑡𝐼) = ̃︀𝑣*(
∑︀

𝐼∈ℐ𝑛,𝑑
𝑋𝐼

̃︀𝑡𝐼), and observe
that

|h+𝑓(𝑋)|2 =
𝑛∑︁
𝑖=1

sup
𝑥′

𝑖

(︁
sup
𝑡,𝑣*

𝑣*
(︁ ∑︁
𝐼∈ℐ𝑛,𝑑

𝑋𝐼𝑡𝐼

)︁
− sup

𝑡,𝑣*
𝑣*
(︁ ∑︁
𝐼∈ℐ𝑛,𝑑

(𝑋 𝑖, 𝑥
′
𝑖)𝐼𝑡𝐼

)︁)︁2

+

≤
𝑛∑︁
𝑖=1

sup
𝑥′

𝑖

(︁
(𝑋𝑖 − 𝑥′

𝑖)
∑︁

𝐼∈ℐ𝑛,𝑑−1:𝑖/∈𝐼

̃︀𝑣*(𝑋𝐼
̃︀𝑡𝐼∪{𝑖})

)︁2

≤ (𝑏− 𝑎)2
𝑛∑︁
𝑖=1

̃︀𝑣*
(︁ ∑︁
𝐼∈ℐ𝑛,𝑑−1:𝑖/∈𝐼

𝑋𝐼
̃︀𝑡𝐼∪{𝑖}

)︁2

= (𝑏− 𝑎)2 sup
𝛼1:|𝛼1|≤1

̃︀𝑣*
(︁ 𝑛∑︁
𝑖=1

𝛼1
𝑖

∑︁
𝐼∈ℐ𝑛,𝑑−1:𝑖/∈𝐼

𝑋𝐼
̃︀𝑡𝐼∪{𝑖}

)︁2
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≤ (𝑏− 𝑎)2
(︁

sup
𝑡,𝑣*

sup
𝛼1:|𝛼1|≤1

𝑣*
(︁ 𝑛∑︁
𝑖=1

𝛼1
𝑖

∑︁
𝐼∈ℐ𝑛,𝑑:𝑖/∈𝐼

𝑋𝐼𝑡𝐼∪{𝑖}

)︁)︁2

= (𝑏− 𝑎)2𝑊 2
1 .

Consequently,

‖(𝑓 − E 𝑓)+‖𝑝 ≤ (𝜎2(𝑏− 𝑎)2(𝑝− 1))1/2 (E𝑊1 + ‖(𝑊1 − E𝑊1)+‖𝑝) .

As in [BBLM05], this can now be iterated, i. e. we have for any 𝑘 ∈ [𝑑 − 1]
|h+𝑊𝑘| ≤ (𝑏− 𝑎)𝑊𝑘+1. Here we may argue as above, where the only difference is
to choose (̃︀𝑡, ̃︀𝑣*) and ̃︀𝛼1, . . . , ̃︀𝛼𝑘 which maximize 𝑊𝑘. This finally leads to

‖(𝑓 − E 𝑓)+‖𝑝 ≤
𝑑∑︁
𝑗=1

(𝜎2(𝑏− 𝑎)2(𝑝− 1))𝑗/2 E𝑊𝑗,

using that 𝑊𝑑 is constant. This proves (4.8).
Secondly, to prove (4.9), let us first consider why we cannot argue as before.

Note that the argument heavily relies on the positive part of the difference operator
h+, which allows us to choose the maximizers ̃︀𝑡, ̃︀𝑣 independent of 𝑖 ∈ [𝑛]. This is
no longer possible for the concentration inequality. Here, Proposition 2.8 yields

‖𝑓 − E 𝑓‖𝑝 ≤ (𝜎2(𝑝− 3/2))1/2‖h𝑓‖𝑝
‖(𝑓 − E 𝑓)+‖𝑝 ≤ (𝜎2(𝑝− 1))1/2‖h+𝑓‖𝑝.

Thus this argument fails in the first step if we try to use these inequalities. However,
we can rewrite h𝑖𝑓(𝑥) = sup𝑥′

𝑖,𝑥
′′
𝑖
(𝑓(𝑥𝑖, 𝑥′

𝑖) − 𝑓(𝑥𝑖, 𝑥′′
𝑖 ))+ = sup𝑥′

𝑖
h+
𝑖 𝑓(𝑥𝑖, 𝑥′

𝑖), where
the sup is to be understood with respect to the support of 𝑋 ′

𝑖. As a consequence,
we have for each fixed 𝑖 ∈ [𝑛] (again choosing ̃︀𝑡 by maximizing the first summand
in the brackets)

h𝑖𝑓(𝑥)2 = sup
𝑥′

𝑖

sup
𝑥′′

𝑖

(︁
sup
𝑡∈𝒯

⃦⃦⃦ ∑︁
𝐼∈ℐ𝑛,𝑑

(𝑋 𝑖, 𝑥
′
𝑖)𝐼𝑡𝐼

⃦⃦⃦
− sup

𝑡∈𝒯

⃦⃦⃦ ∑︁
𝐼∈ℐ𝑛,𝑑

(𝑋 𝑖, 𝑥
′′
𝑖 )𝐼𝑡𝐼

⃦⃦⃦)︁2

+

≤ sup
𝑥′

𝑖

sup
𝑥′′

𝑖

⃦⃦⃦
(𝑥′

𝑖 − 𝑥′′
𝑖 )

∑︁
𝐼∈ℐ𝑛,𝑑−1:𝑖/∈𝐼

𝑋𝐼
̃︀𝑡𝐼∪{𝑖}

⃦⃦⃦2

≤ (𝑏− 𝑎)2 sup
𝑡∈𝒯

⃦⃦⃦ ∑︁
𝐼∈ℐ𝑛,𝑑−1:𝑖/∈𝐼

𝑋𝐼𝑡𝐼∪{𝑖}

⃦⃦⃦2
.

This implies

|h𝑓 | ≤ (𝑏− 𝑎) sup
𝛼1∈R𝑛

|𝛼1|≤1

𝑛∑︁
𝑖=1

𝛼1
𝑖 sup
𝑡∈𝒯

⃦⃦⃦ ∑︁
𝐼∈ℐ𝑛,𝑑−1

𝑖/∈𝐼

𝑋𝐼𝑡𝐼∪{𝑖}

⃦⃦⃦
= (𝑏− 𝑎)̃︁𝑊1.
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The proof is now easily completed as in the first part, with 𝑊𝑘 replaced by ̃︁𝑊𝑘.

Proof of Corollary 4.5. Since the uniform distribution on {−1,+ 1}𝑛 satisfies a
d−LSI with constant 1 (see e. g. [Gro75, Theorem 3] or [DS96, Example 3.1]), this
follows immediately from Theorem 4.4.

Proof of Proposition 4.7. The proposition can be proven using a similar technique
as before, since the Hilbert–Schmidt norms of higher order difference act as Fourier
projections. We choose to take an alternate route as follows. The proof of [ODo14,
Theorem 9.21] shows that for any 𝑓 with degree at most 𝑑 and any 𝑝 ≥ 2 it holds

‖𝑓(𝑋) − E 𝑓(𝑋)‖𝑝 ≤
𝑑∑︁
𝑗=1

(𝑝− 1)𝑗/2𝑊𝑗(𝑓)1/2. (4.23)

Thus the assertion follows from Proposition 2.10.

Proof of Proposition 4.8. Without loss of generality assume 𝐵 = 1, as otherwise
we can replace ℎ by ℎ𝐵−1. We apply Theorem 4.1 in the respective cases and make
use of the general bound ‖h(𝑘)𝑓‖op,1 ≤ ‖h(𝑘)𝑓‖HS,∞. For any distinct 𝑗1, . . . , 𝑗𝑘
write ‖·‖ = ‖·‖𝑗1,...,𝑗𝑘,∞, so that

h𝑗1...,𝑗𝑘𝑓 =
⃦⃦⃦
𝑓 +

𝑘∑︁
𝑙=1

(−1)𝑙
∑︁

1≤𝑠1<...<𝑠𝑙≤𝑘

𝑇𝑗𝑠1 ...𝑗𝑠𝑙
𝑓
⃦⃦⃦

=
⃦⃦⃦ ∑︁
𝑖1 ̸=... ̸=𝑖𝑑

ℎ(𝑋𝑖1 , . . . , 𝑋𝑖𝑑) +
𝑘∑︁
𝑙=1

(−1)𝑙
∑︁

𝑠1<...<𝑠𝑙

𝑇𝑗𝑠1 ...𝑗𝑠𝑙
ℎ(𝑋𝑖1 , . . . ,𝑋𝑖𝑑)

⃦⃦⃦
=:

⃦⃦⃦ ∑︁
𝑖1 ̸=... ̸=𝑖𝑑

𝑆𝑖1,...,𝑖𝑑(ℎ,𝑋)
⃦⃦⃦
.

Now it is easy to see that 𝑆𝑖1,...,𝑖𝑑(ℎ,𝑋) = 0 unless {𝑗1, . . . , 𝑗𝑘} ⊂ {𝑖1, . . . , 𝑖𝑑} (for
example, this follows if one writes the sum inside of the norm as

∏︀𝑘
𝑖=1(Id − 𝑇𝑗𝑖)𝑓),

and in these cases one can upper bound the supremum by 2𝑘𝐵, from which we
infer

h𝑗1...,𝑗𝑘𝑓 ≤
(︂
𝑑

𝑘

)︂
2𝑘(𝑛− 𝑘) · · · (𝑛− 𝑑+ 1) ≤

(︂
𝑑

𝑘

)︂
2𝑘𝑛𝑑−𝑘.

Consequently, this leads to

‖h(𝑘)𝑓‖HS,∞ ≤
(︂
𝑑

𝑘

)︂
2𝑘𝑛𝑑−𝑘𝑛𝑘/2 =

(︂
𝑑

𝑘

)︂
2𝑘𝑛𝑑−𝑘/2.

Thus, Theorem 4.1 yields for some 𝐶 = 𝐶(𝑑,𝜎2) and any 𝑡 ≥ 0

P
(︁

|𝑓 − E 𝑓 | ≥ 𝑡
)︁

≤ 2 exp
(︁

− 1
𝐶

min
𝑘∈[𝑑]

(︁ 𝑡(︀
𝑑
𝑘

)︀
2𝑘𝑛𝑑−𝑘/2

)︁2/𝑘)︁
.
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For the second part, choose 𝑛𝑑−1/2𝑡 for 𝑡 ≥ 0 to obtain

P
(︁
𝑛1/2−𝑑|𝑓 − E 𝑓 | ≥ 𝑡

)︁
≤ 2 exp

(︁
− 1

4𝐶𝑑
min
𝑘∈[𝑑]

𝑛
𝑘−1

𝑘 𝑡2/𝑘
)︁
.

A short calculation shows that the minimum is attained at 𝑘 = 1 in the range
𝑡 ≤

√
𝑛 and at 𝑘 = 𝑑 otherwise, i. e.

P
(︁
𝑛1/2−𝑑|𝑓 − E 𝑓 | ≥ 𝑡

)︁
≤ 2 exp

(︁
− 1

4𝐶𝑑
min(𝑡2, 𝑛1−1/𝑑𝑡2/𝑑)

)︁
. (4.24)

Proof of Theorem 4.9. Theorem 4.1 implies for 𝑓 = 𝑓(𝑋) the multilevel concen-
tration inequality

P(|𝑓−E 𝑓 | ≥ 𝑡) ≤ 2 exp
(︁

− 1
𝐶𝑑𝜎2 min

𝑘∈[𝑑−1]

(︁ 𝑡

‖h(𝑘)𝑓‖HS,2

)︁2/𝑘
∧ 𝑡2/𝑑

‖h(𝑑)𝑓‖2/𝑑
HS,∞

)︁
. (4.25)

Now for any 𝑘 ∈ [𝑑− 1] we have

(h𝑗1,...,𝑗𝑘𝑓)2 ≤ 22𝑘
(︂
𝑑

𝑘

)︂2(︁ ∑︁
𝑖1,...,𝑖𝑑−𝑘

𝑖1,...,𝑖𝑑−𝑘 /∈{𝑗1,...,𝑗𝑘}

𝑎𝑖1,...,𝑖𝑑−𝑘,𝑗1,...,𝑗𝑘𝜎𝑖1 · · ·𝜎𝑖𝑑−𝑘

)︁2
.

Thus, ignoring the constants depending on 𝑑 and 𝑘, [GLP18, Lemma 3.1] gives

‖h(𝑘)𝑓‖HS,2 =
(︁ ∑︁
𝑗1,...,𝑗𝑘

‖h𝑗1,...,𝑗𝑘𝑓‖2
2

)︁1/2
≤ 𝑐𝑘,𝑑𝑛

𝑘/2,

as for each fixed 𝑗1, . . . ,𝑗𝑘 we integrate a polynomial of degree at most 2(𝑑− 𝑘)
with coefficients bounded by 1.

For 𝑘 = 𝑑 we have ‖h(𝑘)𝑓‖∞ ≤ 𝑐𝑑𝑛
𝑑/2 as well, since h𝑗1...𝑗𝑑𝑓(𝑋) ≤ 2𝑑. Conse-

quently, plugging in the estimates into (4.25) yields the claim.

To prove Theorem 4.11, we apply the general result on the concentration of the
polynomials 𝑓𝑑,𝐴 (see (4.3)) with the spin function 𝑓(𝑥) = 𝑥. Before we do so, let
us give a simple example which already demonstrates some of the arguments we
will use.
Example. Let 𝜇𝛽 be an ERGM satisfying a d−LSI(𝜎2), and let 𝑇1(𝑥) :=

∑︀
𝑒∈ℐ𝑛

𝑥𝑒
be the number of edges. We have for any 𝑡 ≥ 0

𝜇𝛽(|𝑇1 − E𝜇𝛽
𝑇1| ≥ 𝑡) ≤ 2 exp

(︁
− 𝑡2

11𝜎2𝑛(𝑛− 1)

)︁
. (4.26)

In particular, setting 𝜂 := E𝜇𝛽
(𝑥𝑒) for an arbitrary𝑒 ∈ ℐ𝑛, we obtain a strong law

of large numbers, i. e. 𝑇1/|ℐ𝑛| → 𝜂 a.s.
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Moreover, for any two disjoint subsets 𝑆1, 𝑆2 ⊂ [𝑛], write 𝐶(𝑆1,𝑆2) := {𝑒 =
(𝑖,𝑗) ∈ ℐ𝑛 : {𝑖,𝑗} ∩ 𝑆1 ̸= ∅, {𝑖,𝑗} ∩ 𝑆2 ̸= ∅} and let 𝑇𝑆1,𝑆2 :=

∑︀
𝑒∈ℐ𝑛

1𝐶(𝑆1,𝑆2)(𝑒)𝑥𝑒
be the number of edges between 𝑆1 and 𝑆2. For any 𝑡 ≥ 0 it holds

𝜇𝛽(|𝑇𝑆1,𝑆2 − E𝜇𝛽
(𝑇𝑆1,𝑆2)| ≥ 𝑡) ≤ 2 exp

(︁
− 𝑡2

22𝜎2|𝑆1||𝑆2|

)︁
. (4.27)

Proof. Noting that 𝑇1 − E𝜇𝛽
(𝑇1) = 𝑓1,𝐴 for 𝐴 = (1, . . . ,1), (4.26) readily follows

from Proposition 4.3.
To show (4.27), write 𝐵 = (𝐵𝑒)𝑒 := (1𝐶(𝑆1,𝑆2)(𝑒))𝑒 to see that we have 𝑇𝑆1,𝑆2 −

E𝜇𝛽
(𝑇𝑆1,𝑆2) =

∑︀
𝑒∈ℐ𝑛

𝐵𝑒̃︀𝑥𝑒 = 𝑓1,𝐵. Noting that |𝐶(𝑆1,𝑆2)| = |𝑆1||𝑆2| leads to
|𝐵|2 =

∑︀
𝑒∈ℐ𝑛

𝐵2
𝑒 = |𝑆1||𝑆2|. Applying Proposition 4.3 then yields (4.27).

To prove the strong law of large numbers, first note that by the intrinsic
symmetry (i. e. a relabeling of the vertices [𝑛] and a respective relabeling of the
edges will result in the same probability law), it is easy to see that E𝜇𝛽

𝑥𝑒 does not
depend on 𝑒 ∈ ℐ𝑛. Thus, 𝜂 is well-defined and E𝜇𝛽

(𝑇1) = |ℐ𝑛|𝜂. Now, (4.26) yields
𝑇1/|ℐ𝑛| → 𝜂 in probability, and the rate of convergence is of order exp(−𝛺(𝑛2)),
which in turn implies convergence almost surely by the Borell-Cantelli lemma.

In a similar vein, we may now prove Theorem 4.11.

Proof of Theorem 4.11. We shall express the number of triangles as a linear
combination of polynomials of the type 𝑓𝑑,𝐴. For the proof fix 𝑛 ∈ N and let
𝑋 ∼ 𝜇𝛽. Moreover, for any triangle (in 𝐾𝑛) {𝑒1, 𝑒2, 𝑒3} we define 𝜇𝛥 := E𝑋𝑒1𝑒2𝑒3

and ̃︀𝜇𝛥 := E ̃︀𝑋𝑒1𝑒2𝑒3 , for two neighboring edges 𝑒1 ̸= 𝑒2 we let

𝜇2 := E𝑋𝑒1𝑒2 , ̃︀𝜇2 := E ̃︀𝑋𝑒1𝑒2

and 𝜇1 := E𝑋𝑒. Finally, (𝑒1, 𝑒2, 𝑒3) ∈ 𝒯𝑛 shall indicate that {𝑒1, 𝑒2, 𝑒3} ∈ 𝒯𝑛 and
𝑒1 < 𝑒2 < 𝑒3 (with some fixed partial ordering of the edges).

Now it is not hard to verify that we have the decomposition

𝑇3(𝑋) − E𝑇3(𝑋) = 𝑓3(𝑋) + 𝜇1𝑓2(𝑋) + (𝑛− 2)𝜇2𝑓1(𝑋), (4.28)

using the auxiliary functions

𝑓1(𝑋) :=
∑︁
𝑒∈ℐ𝑛

̃︀𝑋𝑒, 𝑓2(𝑋) :=
∑︁
𝑒1<𝑒2
𝑒1∩𝑒2 ̸=∅

(︁ ̃︀𝑋𝑒1𝑒2 − ̃︀𝜇𝑒1𝑒2

)︁
,

𝑓3(𝑋) :=
∑︁

(𝑒1,𝑒2,𝑒3)∈𝒯𝑛

(︁ ̃︀𝑋𝑒1𝑒2𝑒3 − ̃︀𝜇𝛥 − ̃︀𝑋𝑒1̃︀𝜇2 − ̃︀𝑋𝑒2̃︀𝜇2 − ̃︀𝑋𝑒3̃︀𝜇2

)︁
.

Hence, after symmetrization of the sum, the triangle count is the sum of
three terms 𝑓𝑑,𝐴 for different tensors 𝐴3, 𝐴2, 𝐴1. More precisely, we have (𝐴3)𝑒𝑓𝑔 =
1
6 ·1{𝑒,𝑓,𝑔}∈𝒯𝑛 , (𝐴2)𝑒𝑓 = 𝜇1

2 1𝑒∩𝑓 ̸=∅ and (𝐴1)𝑒 = (𝑛−2)𝜇2. An easy counting argument
shows |𝐴3| ∼ 𝑛3/2/6, |𝐴2| ∼ 𝜇1𝑛

3/2/2 and |𝐴1| ∼ 𝜇2𝑛
2/

√
2.



4.3 Proofs 91

Finally, an application of Proposition 4.3 yields for 𝑇3 = 𝑇3(𝑋)

‖𝑇3 − E𝑇3‖𝑝 ≤ (𝜎2|𝐴3|2/3𝑝)3/2 + (𝜎2|𝐴2|𝑝) + (𝜎2|𝐴1|2𝑝)1/2,

‖𝑇3 − E𝑇3 − (𝑛− 2)𝜇2𝑓1‖𝑝 ≤ (𝜎2|𝐴3|2/3𝑝)3/2 + (𝜎2|𝐴2|𝑝).

As always, the concentration inequalities now follow from Proposition 2.10.

Proof of Corollary 4.12. Theorem 4.11 can be used to show that for any 𝑡 ≥ 0

𝜇𝛽

(︁⃒⃒⃒𝑇3 − E𝜇𝛽
𝑇3 − (𝑛− 2)𝜇2𝑓1

(𝑛− 2)𝜇2

√︁(︀
𝑛
2

)︀ ⃒⃒⃒
≥ 𝑡

)︁
→ 0 for 𝑛 → ∞, (4.29)

and thus by [Bil68, Theorem 3.1] and the assumption

𝑇3 − E𝜇𝛽
𝑇3

(𝑛− 2)𝜇2

√︁(︀
𝑛
2

)︀ =
𝑇3 − E𝜇𝛽

𝑇3 − (𝑛− 2)𝜇2𝑓1

(𝑛− 2)𝜇2

√︁(︀
𝑛
2

)︀ + 1√︁(︀
𝑛
2

)︀𝑓1 ⇒ 𝒩 (0,𝜎2).

Remark. Actually equation (4.29) can be quantified; by (4.21), the rate of conver-
gence is of order exp(−𝛺(𝑛1/3)), which also implies almost sure convergence.

Proof of Proposition 4.13. By the triangle inequality for 𝑑𝑊 it suffices to prove
𝑑𝑊 ( ̃︀𝑇3, ̃︀𝐿) ≤ 𝐶𝑛−1/2 for some constant 𝐶 depending on 𝜎2. For any 1-Lipschitz
function we have due to |𝑓(𝑥) − 𝑓(𝑦)| ≤ |𝑥− 𝑦|, Theorem 4.11 and a change of
variables 𝑠 = 𝜇2𝑛

1/2𝑡⃒⃒
E𝜇𝛽

𝑓( ̃︀𝑇3) − E𝜇𝛽
𝑓(̃︀𝐿)

⃒⃒
≤ E𝜇𝛽

| ̃︀𝑇3 − ̃︀𝐿| =
ˆ ∞

0
𝜇𝛽(|̃︀𝑇3 − ̃︀𝐿| ≥ 𝑡)𝑑𝑡

≤
ˆ ∞

0
𝜇𝛽

(︁
|𝑇3 − (𝑛− 2)𝜇2𝑓1| ≥ (𝑛− 2)𝜇2

(︂
𝑛

2

)︂1/2

𝑡
)︁
𝑑𝑡

≤ 2
ˆ ∞

0
exp

(︁
− 1
𝐶

min
(︁

(𝜇2𝑛
1/2𝑡)2/3, 𝜇2𝑛

1/2𝑡
)︁)︁
𝑑𝑡

≤ 2𝑛−1/2𝜇−1
2

ˆ ∞

0
exp

(︁
− 1
𝐶

min(𝑠2/3, 𝑠)
)︁
𝑑𝑠.

Taking the supremum over all 𝑓 ∈ Lip1 finishes the proof.





CHAPTER 5

Concentration inequalities for polynomials in
independent random variables

In this chapter we study concentration properties of polynomials in independent
random variables 𝑋1, . . . , 𝑋𝑛. It differs from Chapter 4 by allowing them to
be unbounded, but its applicability is reduced in two ways: We cannot recover
concentration inequalities for weakly dependent random variables, and we only
consider polynomials instead of arbitrary functions. We use the notation ‖𝐴‖HS
for the Hilbert–Schmidt norm of a 𝑑-tensor 𝐴, ‖𝐴‖op for its operator norm as
defined in (2.1) and ‖𝐴‖∞ = max𝑖1,...,𝑖𝑑 |𝑎𝑖1...𝑖𝑑 | for the supremum norm. Moreover,
we let ‖𝑥‖2 be the Euclidean norm of a vector 𝑥 ∈ R𝑛.

Compared to the Hanson–Wright inequality Theorem 1.2 presented in Chapter
1, our aim is to weaken the hypothesis of sub-Gaussianity. We consider independent
random variables 𝑋1, . . . , 𝑋𝑛 which have an 𝛼-sub-exponential tail decay in the
sense that there exist two constants 𝑐, 𝐶 and a parameter 𝛼 > 0 such that for all
𝑖 ∈ [𝑛] and 𝑡 ≥ 0

P(|𝑋𝑖| ≥ 𝑡) ≤ 𝑐 exp
(︁

− 𝑡𝛼

𝐶

)︁
. (5.1)

There are many interesting choices of 𝑋𝑖 of this type, such as bounded random
variables (for any 𝛼 > 0), random variables with a sub-Gaussian (for 𝛼 = 2) or
sub-exponential distribution (𝛼 = 1), or “fatter” tails such as Weibull random
variables with shape parameter 𝛼 ∈ (0,1].

Another suitable name for random variables satisfying (5.1) is sub-Weibull(𝛼),
since if 𝑌 has a symmetrized Weibull distribution with shape parameter 𝛼 and
scale parameter 1 (i. e. has Lebesgue-density 𝑓𝛼(𝑥) = 𝛼/2|𝑥|𝛼 exp(−|𝑥|𝛼)) we have

P(|𝑌 | ≥ 𝑡) = exp(−𝑡𝛼).

This terminology has been used in [KC18, Definition 2.2].
We reformulate condition (5.1) in terms of so-called exponential Orlicz norms,

but we emphasize that these two concepts are equivalent. For any random variable
𝑋 on a probability space (𝛺,𝒜,P) and 𝛼 > 0 define the (quasi-)norm

‖𝑋‖𝜓𝛼
:= inf

{︁
𝑡 > 0: E exp

(︁ |𝑋|𝛼

𝑡𝛼

)︁
≤ 2

}︁
, (5.2)
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adhering to the standard definition inf ∅ = ∞. Strictly speaking, this is a norm
for 𝛼 ≥ 1 only, since otherwise the triangle inequality does not hold. Nevertheless,
the above expression makes sense for any 𝛼 > 0, and we choose to call it a
norm in these cases as well. For some properties of the Orlicz norms in the case
𝛼 ∈ (0,1] we refer to Appendix B. First we concentrate on values 𝛼 = 2/𝑞 for
some 𝑞 ∈ N, and later prove results for 𝛼 ∈ (0,1]. For illustration, we start with
a simplified version of some of our results which may already be sufficient for
certain applications. The first result is a concentration inequality which can be
considered as a generalization of the Hanson–Wright inequality (1.8) to quadratic
forms in random variables with 𝛼-sub-exponential tail decay.

Proposition 5.1. Let 𝑋1, . . . , 𝑋𝑛 be independent random variables satisfying
E𝑋𝑖 = 0,E𝑋2

𝑖 = 𝜎2
𝑖 , ‖𝑋𝑖‖𝛹𝛼 ≤ 𝑀 for some 𝛼 ∈ (0,1] ∪ {2}, and 𝐴 = (𝑎𝑖𝑗) be a

symmetric 𝑛× 𝑛 matrix. There exists a constant 𝐶 = 𝐶(𝛼) > 0 such that for any
𝑡 ≥ 0 we have

P
(︀⃒⃒∑︁

𝑖,𝑗

𝑎𝑖𝑗𝑋𝑖𝑋𝑗−
𝑛∑︁
𝑖=1

𝜎2
𝑖 𝑎𝑖𝑖

⃒⃒
≥ 𝑡

)︀
≤ 2 exp

(︁
− 1
𝐶

min
(︁ 𝑡2

𝑀4‖𝐴‖2
HS
,
(︁ 𝑡

𝑀2‖𝐴‖op

)︁𝛼
2
)︁)︁
.

The symmetry assumption can clearly be removed. Indeed, if 𝐴 = (𝑎𝑖𝑗) is
not symmetric, we can apply Proposition 5.1 to its additive symmetrizatioñ︀𝐴 = 1

2(𝐴 + 𝐴𝑇 ). Note that
∑︀

𝑖,𝑗 𝑎𝑖𝑗𝑋𝑖𝑋𝑗 =
∑︀

𝑖,𝑗 ̃︀𝑎𝑖𝑗𝑋𝑖𝑋𝑗, ‖ ̃︀𝐴‖2
HS ≤ ‖𝐴‖2

HS and
‖ ̃︀𝐴‖op ≤ ‖𝐴‖op. As we will see in Proposition 5.5, the tail decay exp(−𝑡𝛼/2‖𝐴‖−𝛼/2

op )
(for large 𝑡) can be sharpened by replacing the operator norm by a smaller norm.
Actually, the technical result contains up to four different regimes instead of two
as above.

The next theorem provides tail estimates for general polynomials. Note that this
is not a generalization of Proposition 5.1 due to the use of the Hilbert–Schmidt
instead of the operator norms.

Theorem 5.2. Let 𝑋1, . . . , 𝑋𝑛 be independent random variables with ‖𝑋𝑖‖𝛹𝛼 ≤ 𝑀
for some 𝛼 ∈ (0,1] ∪{2} and let 𝑓 : R𝑛 → R be a polynomial of total degree 𝐷 ∈ N.
Then for all 𝑡 ≥ 0 it holds

P(|𝑓(𝑋) − E𝑓(𝑋)| ≥ 𝑡) ≤ 2 exp
(︁

− 1
𝐶𝐷,𝛼

min
1≤𝑑≤𝐷

(︁ 𝑡

𝑀𝑑‖E𝑓 (𝑑)(𝑋)‖HS

)︁𝛼
𝑑
)︁
.

In particular, if ‖E𝑓 (𝑑)(𝑋)‖HS ≤ 1 for 𝑑 = 1, . . . , 𝐷, then

E exp
(︁𝐶𝐷,𝛼
𝑀𝛼

|𝑓(𝑋) − E 𝑓(𝑋)| 𝛼
𝐷

)︁
≤ 2,

or equivalently
‖𝑓(𝑋) − E 𝑓(𝑋)‖𝛹 𝛼

𝐷
≤ 𝐶𝑑,𝛼𝑀

𝐷.

Informally, Theorem 5.2 states that a polynomial in random variables with tail
decay as in (5.1) also exhibits 𝛼-sub-exponential tail decay whenever the Hilbert–
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Schmidt norms are not too large. Moreover, the tail decay is “as expected”, i. e.
one just needs to account for the total degree 𝐷 by taking the 𝐷-th root.

In particular, we can consider 𝑑-th order chaoses. That is, given a symmetric
𝑑-tensor 𝐴 = (𝑎𝑖1...𝑖𝑑), we let

𝑓𝑑,𝐴(𝑋) :=
∑︁
𝑖1,...,𝑖𝑑

𝑎𝑖1...𝑖𝑑(𝑋𝑖1 − E𝑋𝑖1) · · · (𝑋𝑖𝑑 − E𝑋𝑖𝑑). (5.3)

In this situation, Theorem 5.2 reads as follows:

Corollary 5.3. Let 𝑋1, . . . , 𝑋𝑛 be independent random variables with ‖𝑋𝑖‖𝛹𝛼 ≤
𝑀 for some 𝛼 ∈ (0,1] ∪ {2} and let 𝐴 be a symmetric 𝑑-tensor with vanishing
diagonal such that ‖𝐴‖HS ≤ 1. Then

E exp
(︁𝐶𝑑,𝛼
𝑀𝛼

|𝑓𝑑,𝐴(𝑋)|𝛼
𝑑

)︁
≤ 2.

As in Theorem 5.2, the conclusion is equivalent to a 𝛹𝛼/𝑑-norm estimate.

5.1 General results

In comparison to the aforementioned results, the main concentration inequalities
provide more refined tail estimates. Here, we focus on the case 𝛼 = 2/𝑞 for some
𝑞 ∈ N, which is sufficient for many applications, like products or powers of sub-
Gaussian or sub-exponential random variables. The general case 𝛼 ∈ (0,1] will be
treated in Section 5.6. The results will be stated using a family of tensor-product
matrix norms ‖𝐴‖𝒥 for a 𝑑-tensor 𝐴 and a partition 𝒥 ∈ 𝑃𝑞𝑑 of [𝑞𝑑]. For the
exact definitions, we refer to (5.11). Using these norms, we may formulate our
first result for chaos-type functions.

Theorem 5.4. Let 𝑋1, . . . , 𝑋𝑛 be independent random variables such that for
some 𝑞 ∈ N and 𝑀 > 0 we have ‖𝑋𝑖‖𝜓2/𝑞

≤ 𝑀 , and let 𝐴 be a symmetric 𝑑-tensor
with vanishing diagonal. Consider 𝑓𝑑,𝐴(𝑋) as in (5.3). Then, for any 𝑡 ≥ 0,

P(|𝑓𝑑,𝐴(𝑋)| ≥ 𝑡) ≤ 2 exp
(︁

− 1
𝐶𝑑,𝑞

min
𝒥 ∈𝑃𝑞𝑑

(︁ 𝑡

𝑀𝑑‖𝐴‖𝒥

)︁ 2
|𝒥 |

)︁
.

To give an elementary example, consider the case 𝑑 = 1 and 𝑞 = 2. Here,
𝐴 = 𝑎 = (𝑎1, . . . , 𝑎𝑛) is a vector, and 𝑓1,𝐴(𝑋) =

∑︀𝑛
𝑖=1 𝑎𝑖(𝑋𝑖 − E𝑋𝑖) is a linear

functional of random variables with sub-exponential tails, i. e. ‖𝑋𝑖‖𝜓1 ≤ 𝑀 . It
easily follows from the definition that ‖𝐴‖{1,2} = |𝑎| (i. e. the Euclidean norm of
𝑎) and ‖𝐴‖{{1},{2}} = max𝑖 |𝑎𝑖|. As a consequence, for any 𝑡 ≥ 0

P
(︁⃒⃒ 𝑛∑︁

𝑖=1

𝑎𝑖(𝑋𝑖 − E𝑋𝑖)
⃒⃒

≥ 𝑡
)︁

≤ 2 exp
(︁

− 1
𝐶

min
(︁ 𝑡2

𝑀2|𝑎|2
,

𝑡

𝑀 max𝑖 |𝑎𝑖|

)︁)︁
.

Hence, up to constants, we get back a classical result for the tails of a linear form
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in random variables with sub-exponential tails. For more general functions 𝑓 and
similar results under a Poincaré-type inequality, we refer to [BL97] (the first order
case) and [GS19] (the higher order case).

Moreover, Theorem 5.4 can be used to give Hanson–Wright-type bounds for
quadratic forms in (2/𝑞)-sub-exponential random variables. Here we provide a
sharpened version of Proposition 5.1.

Proposition 5.5. Let 𝑞 ∈ N, 𝐴 = (𝑎𝑖𝑗) be a symmetric 𝑛 × 𝑛 matrix and let
𝑋1, . . . , 𝑋𝑛 be independent, centered random variables with ‖𝑋𝑖‖𝛹2/𝑞

≤ 𝑀 and
E𝑋2

𝑖 = 𝜎2
𝑖 . For any 𝑡 ≥ 0

P
(︁⃒⃒∑︁

𝑖,𝑗

𝑎𝑖𝑗𝑋𝑖𝑋𝑗 −
𝑛∑︁
𝑖=1

𝜎2
𝑖 𝑎𝑖𝑖

⃒⃒
≥ 𝑡

)︁
≤ 2 exp

(︁
− 1
𝐶
𝜂(𝐴,𝑞,𝑡/𝑀2)

)︁
,

where

𝜂(𝐴,𝑞,𝑡) := min
(︁ 𝑡2

‖𝐴‖2
HS
,

𝑡

‖𝐴‖op
,
(︁ 𝑡

max𝑖∈[𝑛]‖(𝑎𝑖𝑗)𝑗‖2

)︁ 2
𝑞+1
,
(︁ 𝑡

‖𝐴‖∞

)︁ 1
𝑞
)︁
.

Consequently, for any 𝑥 > 0 we have with probability at least 1 − 2 exp(−𝑥/𝐶)

|⟨𝑋,𝐴𝑋⟩ − E⟨𝑋,𝐴𝑋⟩| ≤ 𝑀2 max
(︀√

𝑥‖𝐴‖HS, 𝑥‖𝐴‖op, 𝑥
𝑞+1

2 max
𝑖∈[𝑛]

‖(𝑎𝑖𝑗)𝑗‖2, 𝑥𝑞‖𝐴‖∞
)︀
.

It is possible to replace 2/𝑞 by a general 𝛼 ∈ (0,1] ∪ {2} (see Section 5.6). In
this case, we have to replace 2/(𝑞 + 1) by 2𝛼/(2 + 𝛼) and 1/𝑞 by 𝛼/2.
Remark. In comparison to the Hanson–Wright inequality (1.8) and Proposition 5.1,
the more refined version contains two additional terms. The norms max𝑖∈[𝑛]‖(𝑎𝑖𝑗)𝑗‖2
and ‖𝐴‖∞ can no longer be written in terms of the eigenvalues of 𝐴 (in contrast to
‖𝐴‖HS and ‖𝐴‖op). Indeed, as we see later, we have max𝑖∈[𝑛]‖(𝑎𝑖𝑗)𝑗‖2 = ‖𝐴‖2→∞,
and ‖𝐴‖∞ = max𝑖,𝑗|⟨𝑒𝑖, 𝐴𝑒𝑗⟩| for the standard basis (𝑒𝑖)𝑖 of R𝑛. Moreover, the
norms might have a very different scaling in 𝑛. For example, if 𝑒 = (1, . . . ,1) and
𝐴 = 𝑒𝑒𝑇 − Id, then ‖𝐴‖HS ∼ ‖𝐴‖op ∼ 𝑛, max𝑖∈[𝑛]‖(𝑎𝑖𝑗)𝑗‖2 ∼ 𝑛1/2 and ‖𝐴‖∞ = 1.
Remark. For the various forms of the Hanson–Wright inequality for quadratic
forms in sub-Gaussian random variables we refer to [Ada15; ALM18; CY18; HW71;
HKZ12; RV13; VW15; Wri73].

Finally, let us state the result for general polynomials in (2/𝑞)-sub-exponential
random variables. To fix some notation, if 𝑓 : R𝑛 → R is a function in 𝒞𝐷(R𝑛),
for 𝑑 ≤ 𝐷 we denote by 𝑓 (𝑑) the (symmetric) 𝑑-tensor of its 𝑑-th order partial
derivatives.

Theorem 5.6. Let 𝑋1, . . . , 𝑋𝑛 be independent random variables such that for
some 𝑞 ∈ N and 𝑀 > 0 we have ‖𝑋𝑖‖𝜓2/𝑞

≤ 𝑀 . Let 𝑓 : R𝑛 → R be a polynomial
of total degree 𝐷 ∈ N. Then, for any 𝑡 ≥ 0, it holds

P(|𝑓(𝑋) − E𝑓(𝑋)| ≥ 𝑡) ≤ 2 exp
(︁

− 1
𝐶𝐷,𝑞

min
𝑑∈[𝐷]

min
𝒥 ∈𝑃𝑞𝑑

(︁ 𝑡

𝑀𝑑‖E𝑓 (𝑑)(𝑋)‖𝒥

)︁ 2
|𝒥 |

)︁
.
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Note that if 𝑓(𝑋) = 𝑓𝐷,𝐴(𝑋) as in (5.3), only the 𝐷-th order tensor gives a
contribution, i. e. we retrieve Theorem 5.4. A variant of Theorem 5.6 for polynomi-
als in independent random variables with ‖𝑋𝑖‖𝜓𝛼 ≤ 1 for any 𝛼 ∈ (0,1] is derived
in Section 5.6.
Remark. With the help of these inequalities, it is possible to prove many results
on concentration of linear and quadratic forms in independent random variables
scattered throughout the literature. For example, [NSU19, Lemma A.7] is an
immediate consequence of Theorem 5.4 (combined with Lemma B.1 for 𝑓(𝑋,𝑋 ′) =∑︀𝑛

𝑖=1 𝑎𝑖𝑋𝑖𝑋
′
𝑖). In a similar way, one can deduce [Yan+19, Lemma C.4] by applying

Theorem 5.4 to the random variable 𝑍𝑖 := 𝑋𝑖𝑌𝑖, whenever (𝑋𝑖, 𝑌𝑖) is a vector with
sub-exponential marginal distributions. More generally, one can consider a linear
form (or higher order polynomial chaoses) in a product of 𝑘 random variables
𝑋1, . . . , 𝑋𝑘 with sub-exponential tails, for which Lemma B.1 provides estimates
for the 𝛹 1

𝑘
norm.

Lastly, the results in [EYY12, Appendix B] can be sharpened for 𝛼 ∈ (0,1] ∪ {2}
by a more general version of Proposition 5.5, using the same arguments as in
[RV13, Section 3] to treat complex-valued matrices. We omit the details.

5.2 Applications

In the following, we provide some applications of our main results. In particular,
all the results in this section follow from either Proposition 5.1 or 5.5. For any
collection of random variables 𝑋1, . . . , 𝑋𝑛 we write 𝑋 = (𝑋1, . . . , 𝑋𝑛).

5.2.1 Euclidean norm of a vector with independent components

As a start, Proposition 5.1 can be used to prove concentration properties of the
Euclidean norm of a linear transformation of a random vector 𝑋 consisting of
independent, normalized random variables with 𝛼-sub-exponential tails. We give
two different forms thereof. The first form is inspired by the results in [RV13] for
sub-Gaussian random variables.

Proposition 5.7. Let 𝑋1, . . . , 𝑋𝑛 be independent random variables satisfying
E𝑋𝑖 = 0,E𝑋2

𝑖 = 1, ‖𝑋𝑖‖𝛹𝛼 ≤ 𝑀 for some 𝛼 ∈ (0,1] ∪ {2} and let 𝐵 ̸= 0 be an
𝑚× 𝑛 matrix. For any 𝑐 > 0 and any 𝑡 ≥ 𝑐‖𝐵‖HS we have

P
(︁

|‖𝐵𝑋‖2 − ‖𝐵‖HS| ≥ 𝑡
)︁

≤ 2 exp
(︁

− min(𝑐2−𝛼,1)
𝐶𝑀4‖𝐵‖𝛼op

𝑡𝛼
)︁
. (5.4)

Note that in the case 𝛼 = 2 the constant 𝑐 is not present on the right hand
side of (5.4) and thus we can choose any 𝑡 ≥ 0, which is exactly the statement
of [RV13, Theorem 2.1]. In the general case, we need to restrict 𝑡 to the order
‖𝐵‖HS.

Proof. First off, it suffices to prove the inequality for a matrix 𝐵 such that
‖𝐵‖HS = 1 and 𝑡 ≥ 𝑐, since the general case follows by considering ̃︀𝐵 := 𝐵‖𝐵‖−1

HS.
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Let us apply Proposition 5.1 to the matrix 𝐴 := 𝐵𝑇𝐵. An easy calculation
shows that tr(𝐴) = trace(𝐵𝑇𝐵) = ‖𝐵‖2

HS = 1, so that we have

P
(︁

|‖𝐵𝑋‖2
2 − 1| ≥ 𝑡

)︁
≤ 2 exp

(︁
− 1
𝐶𝑀4 min

(︁ 𝑡2

‖𝐵‖2
op
,
(︁ 𝑡

‖𝐵‖2
op

)︁𝛼
2
)︁)︁

= 2 exp
(︁

− 1
𝐶𝑀4‖𝐵‖𝛼op

min
(︁ 𝑡2−𝛼

‖𝐵‖2−𝛼
op

𝑡𝛼, 𝑡
𝛼
2

)︁)︁
≤ 2 exp

(︁
− min(𝑐2−𝛼𝑡𝛼, 𝑡

𝛼
2 )

𝐶𝑀4‖𝐵‖𝛼op

)︁
≤ 2 exp

(︁
− min(𝑐2−𝛼,1)
𝐶𝑀4‖𝐵‖𝛼op

min(𝑡𝛼, 𝑡𝛼
2 )
)︁
.

(5.5)

Here, in the first step we have used the estimates ‖𝐴‖2
HS ≤ ‖𝐵‖2

op‖𝐵‖2
HS = ‖𝐵‖2

op
and ‖𝐴‖op ≤ ‖𝐵‖2

op as well as the fact that by Lemma B.2, E𝑋2
𝑖 = 1 for any 𝑖

implies 𝑀 ≥ 𝐶𝛼 > 0. The second inequality follows from 𝑡 ≥ 𝑐 ≥ 𝑐‖𝐵‖op and the
third inequality is a consequence of min(𝑐2−𝛼𝑡𝛼, 𝑡

𝛼
2 ) ≥ min(𝑐2−𝛼,1) min(𝑡𝛼, 𝑡𝛼

2 ).
Now, as in [RV13], we use the inequality |𝑧 − 1| ≤ min(|𝑧2 − 1|, |𝑧2 − 1|1/2),

giving for any 𝑡 ≥ 0

P
(︁

|‖𝐵𝑋‖2 − 1| ≥ 𝑡
)︁

≤ P
(︁

|‖𝐵𝑋‖2
2 − 1| ≥ max(𝑡,𝑡2)

)︁
. (5.6)

Hence, a combination of (5.5), (5.6) and min(max(𝑟,𝑟2),max(𝑟1/2,𝑟)) = 𝑟 yields
for 𝑡 > 𝑐

P
(︁

|‖𝐵𝑋‖2 − 1| ≥ 𝑡
)︁

≤ 2 exp
(︁

− min(𝑐2−𝛼,1)
𝐶𝑀4‖𝐵‖𝛼op

𝑡𝛼
)︁
.

The next corollary provides an alternative estimate for ‖𝐵𝑋‖2 if the 𝑋𝑖 are
sub-exponential.

Corollary 5.8. Let 𝑋1, . . . , 𝑋𝑛 be independent, centered random variables satis-
fying ‖𝑋𝑖‖𝛹1 ≤ 𝑀 and E𝑋2

𝑖 = 𝜎2
𝑖 . For an 𝑛 × 𝑛 matrix 𝐵 with real entries let

𝐴 = 𝐵𝑇𝐵 = (𝑎𝑖𝑗). Then, for any 𝑥 > 0, with probability at least 1 − 2 exp(−𝑥/𝐶)
we have

‖𝐵𝑋‖2
2 ≤

𝑛∑︁
𝑖=1

𝜎2
𝑖

𝑛∑︁
𝑗=1

𝑏2
𝑗𝑖 + 𝑀2 max

(︀√
𝑥‖𝐴‖HS, 𝑥‖𝐴‖op, 𝑥3/2 max

𝑖∈[𝑛]
‖(𝑎𝑖𝑗)𝑗‖2, 𝑥2‖𝐴‖∞

)︀
.

Corollary 5.8 can be compared to various bounds on the norms of ‖𝐵𝑋‖2 for a
sub-Gaussian vector 𝑋 (see [HKZ12] or [Ada15]). For example, if the sub-Gaussian
constant is 1, in the sub-Gaussian case, with probability at least 1 − exp(−𝑥) it
holds

‖𝐵𝑋‖2
2 ≤ tr(𝐵𝑇𝐵) + 2‖𝐵𝑇𝐵‖HS

√
𝑥+ 2‖𝐵𝑇𝐵‖op𝑥.

In Corollary 5.8 we have similar terms corresponding to
√
𝑥 and 𝑥, whereas in
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the sub-exponential case we need two additional terms to account for the heavier
tails of its components.

Proof. Define the quadratic form

𝑍 := ‖𝐵𝑋‖2
2 = ⟨𝐵𝑋,𝐵𝑋⟩ = ⟨𝑋,𝐵𝑇𝐵𝑋⟩ = ⟨𝑋,𝐴𝑋⟩.

Using Proposition 5.5 with the matrix 𝐴 gives with probability 1 − 2 exp(−𝑥/𝐶)

|𝑍 − E𝑍| ≤ max
(︁√

𝑥‖𝐴‖HS, 𝑥‖𝐴‖op, 𝑥
3/2 max

𝑖=1,...,𝑛
‖𝐴𝑖·‖2, 𝑥

2‖𝐴‖∞

)︁
.

From these inequalities and |𝑥| ≥ 𝑥 the claim easily follows by taking the square
root. Note that E𝑍 = E⟨𝑋,𝐴𝑋⟩ =

∑︀𝑛
𝑖=1 𝜎

2
𝑖

∑︀𝑛
𝑗=1 𝑏

2
𝑗𝑖.

5.2.2 Projections and distance to a fixed subspace

It is possible to apply Proposition 5.5 to any matrix 𝐴 associated to an orthog-
onal projection onto some lower-dimensional subspace. In these cases, the norms
can be explicitly calculated and do not depend on the structure of the subspace,
but merely on its dimension. This leads to the following application, where we
replace a fixed projection by a random one.

Corollary 5.9. Let 𝑋1, . . . , 𝑋𝑛 be independent random variables satisfying E𝑋𝑖 =
0,E𝑋2

𝑖 = 𝜎2
𝑖 and ‖𝑋𝑖‖𝛹1 ≤ 𝑀 . Furthermore, let 𝑚 < 𝑛 and 𝑃 be the (random)

orthogonal projection onto an 𝑚-dimensional subspace of R𝑛, distributed according
to the Haar measure on the Grassmanian manifold 𝐺𝑚,𝑛, and independent of 𝑋.
For any 𝑥 > 0, with probability at least 1 − 2 exp(−𝑥/𝐶), we have⃒⃒⃒

‖𝑃𝑋‖2
2 − 𝑚

𝑛

𝑛∑︁
𝑖=1

𝜎2
𝑖

⃒⃒⃒
≤ 𝑀2 max

(︁√
𝑥𝑚, 𝑥2

)︁
.

Proof. This is an application of Proposition 5.5. To see

E‖𝑃𝑋‖2
2 = 𝑚

𝑛

𝑛∑︁
𝑖=1

𝜎2
𝑖 ,

we use [Ver18, Lemma 5.3.2] conditionally on 𝑋, i. e. we have

E‖𝑃𝑋‖2
2 = EE

(︀
‖𝑃𝑋‖2

2 | 𝑋
)︀

= 𝑚

𝑛
E‖𝑋‖2

2 = 𝑚

𝑛

𝑛∑︁
𝑖=1

𝜎2
𝑖 .

Moreover, for any projection 𝑃 onto an 𝑚-dimensional subspace, one can see that
‖𝑃‖2

HS =
∑︀𝑛

𝑖=1 𝜆𝑖(𝑃 )2 = 𝑚. Moreover, we clearly have

‖𝑃‖∞ ≤ max
𝑖=1,...,𝑛

‖(𝑝𝑖𝑗)𝑗‖2 ≤ ‖𝑃‖2→2 = 1,
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which finishes the proof.

A very similar result which follows from Proposition 5.7 is the following variant
of [RV13, Corollary 3.1]. We use the notation 𝑑(𝑋,𝐸) = inf𝑒∈𝐸 𝑑(𝑋,𝑒) for the
distance between an element 𝑋 and a subset 𝐸 of a metric space (𝑀,𝑑).

Corollary 5.10. Let 𝑋1, . . . , 𝑋𝑛 be independent random variables satisfying
E𝑋𝑖 = 0,E𝑋2

𝑖 = 1 and ‖𝑋𝑖‖𝛹𝛼 ≤ 𝑀 for some 𝛼 ∈ (0,1] ∪ {2}, and let 𝐸
be a subspace of R𝑛 of dimension 𝑑. For any 𝑡 ≥

√
𝑛− 𝑑 we have

P
(︁

|𝑑(𝑋,𝐸) −
√
𝑛− 𝑑| ≥ 𝑡

)︁
≤ 2 exp

(︁
− 𝑡𝛼

𝐶𝑀4

)︁
.

Proof. This follows from Proposition 5.7 exactly as in [RV13, Corollary 3.1].

5.2.3 Spectral bound for a product of a fixed and a random matrix

We can also extend the second application in [RV13] to any set of 𝛼-sub-
exponential random variables. For some 𝑚× 𝑛 matrix 𝐵 define the stable rank as
𝑟(𝐵) := ‖𝐵‖2

𝑚𝑎𝑡ℎ𝑟𝑚𝐻𝑆/‖𝐵‖op.

Proposition 5.11. Let 𝐵 be a fixed 𝑚 × 𝑁 matrix and let 𝐺 = (𝑔𝑖𝑗) be a
𝑁 × 𝑛 random matrix with independent entries satisfying E 𝑔𝑖𝑗 = 0,E 𝑔2

𝑖𝑗 = 1
and ‖𝑔𝑖𝑗‖𝛹𝛼 ≤ 𝑀 for some 𝛼 ∈ (0,1]. For any 𝑢, 𝑣 ≥ 1 with probability at least
1 − 2 exp(−𝑢𝛼𝑟(𝐵)𝛼 − 𝑣𝛼𝑛) we have

‖𝐵𝐺‖op ≤ 4𝐶𝛼𝑀4/𝛼
(︁
𝑢‖𝐵‖HS + 𝑣𝑛1/𝛼‖𝐵‖op

)︁
.

Proof. We mimic the proof of [RV13, Theorem 3.2]. For any fixed 𝑥 ∈ 𝑆𝑛−1

consider the linear operator 𝑇 : R𝑁𝑛 → R𝑚 given by 𝑇 (𝐺) = 𝐵𝐺𝑥, and (by
abuse of notation) write 𝑇 for the matrix corresponding to this linear map in the
standard basis. Using Proposition 5.7 applied to the matrix 𝑇 we have

P
(︁

|‖𝐵𝐺𝑥‖2 − ‖𝑇‖HS| ≥ 𝑡
)︁

≤ 2 exp
(︁

− 𝑡𝛼

𝐶𝑀4‖𝑇‖𝛼op

)︁
.

Now, since ‖𝑇‖HS = ‖𝐵‖HS and ‖𝑇‖op ≤ ‖𝐵‖op, this yields for any 𝑡 ≥ ‖𝐵‖HS

P
(︁

‖𝐵𝐺𝑥‖2 > ‖𝐵‖HS + 𝑡
)︁

≤ 2 exp
(︁

− 𝑡𝛼

𝐶𝑀4‖𝐵‖𝛼op

)︁
.

If we define 𝑡 = (2𝐶𝑀4)1/𝛼
(︁
𝑢‖𝐵‖HS + (log(5) + 1)1/𝛼𝑣𝑛1/𝛼‖𝐵‖op

)︁
for arbitrary

𝑢,𝑣 ≥ 1 and use the inequality 2(𝑟+ 𝑠)𝛼 ≥ 𝑟𝛼 + 𝑠𝛼 valid for all 𝑟, 𝑠 ≥ 0, we obtain

P
(︁

‖𝐵𝐺𝑥‖2 > ‖𝐵‖HS + 𝑡
)︁

≤ 2 exp
(︁

−
𝑢𝛼‖𝐵‖𝛼HS + 𝑣𝛼𝑛(log(5) + 1)‖𝐵‖𝛼op

‖𝐵‖𝛼op

)︁
≤ 2 exp

(︁
− 𝑢𝛼𝑟(𝐵)𝛼 − 𝑣𝛼𝑛− 𝑣𝛼𝑛 log(5)

)︁
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≤ 5−𝑛2 exp
(︁

− 𝑢𝛼𝑟(𝐵)𝛼 − 𝑣𝛼𝑛
)︁
.

The last step is a covering argument as in [RV13]. Choose a 1/2-covering 𝒩
(satisfying |𝒩 | ≤ 5𝑛, see [Ver12, Lemma 5.2]) of the unit sphere in R𝑛, and note
that a union bound gives

P
(︁ ⋂︁
𝑥∈𝒩

‖𝐵𝐺𝑥‖2 ≤ ‖𝐵‖HS + 𝑡
)︁

≥ 1 −
∑︁
𝑥∈𝒩

P
(︁

‖𝐵𝐺𝑥‖2 > ‖𝐵‖HS + 𝑡
)︁

≥ 1 − 2 exp
(︁

− 𝑢𝛼𝑟(𝐵)𝛼 − 𝑣𝛼𝑛
)︁
.

Now, [Ver12, Lemma 5.3] yields

‖𝐵𝐺‖op ≤ 2 max
𝑥∈𝒩

‖𝐵𝐺𝑥‖2 ≤ 2(‖𝐵‖HS + 𝑡),

from which the assertion easily follows by upper bounding and simplifying the
expression 2‖𝐵‖HS + 2𝑡.

5.2.4 Concentration properties for fixed design linear regression

It is possible to extend the example of the fixed design linear regression in
[HKZ12] to the situation of a sub-exponential noise (instead of sub-Gaussian).

To this end, let 𝑦1, . . . , 𝑦𝑛 ∈ R𝑑 be fixed vectors (commonly called design vectors),
𝑌 = (𝑦1, . . . , 𝑦𝑛) (the 𝑑 × 𝑛 design matrix) and assume that the 𝑑 × 𝑑 matrix
𝛴 = 𝑛−1 ∑︀𝑛

𝑖=1 𝑦𝑖𝑦
𝑇
𝑖 is invertible; in this case, define 𝐵 := 𝑛−1𝛴−1/2𝑌 ∈ 𝑀(𝑑× 𝑛).

Let 𝑋1, . . . , 𝑋𝑛 be independent random variables with ‖𝑋𝑖‖𝛹1 ≤ 𝑀 and define

𝛽 := 𝑛−1
𝑛∑︁
𝑖=1

E𝑋𝑖𝛴
−1𝑦𝑖 and 𝛽(𝑋) := 𝑛−1

𝑛∑︁
𝑖=1

𝑋𝑖𝛴
−1𝑦𝑖.

𝛽 is the coefficient vector of the least expected squared error and 𝛽(𝑋) is its
ordinary least squares estimator (given the observation 𝑋). The quality of the
estimator 𝛽 can be judged by the excess loss

𝑅(𝑋) = ‖𝛴1/2(𝛽(𝑋) − 𝛽)‖2
2 =

∑︁
𝑖,𝑗

𝑎𝑖𝑗(𝑋𝑖 − E𝑋𝑖)(𝑋𝑗 − E𝑋𝑗),

where 𝐴 = (𝑎𝑖𝑗) = 𝐵𝑇𝐵 = 𝑛−2𝑌 𝑇𝛴−1𝑌 , as can be shown by elementary calcula-
tions. Observe that this is a quadratic form in 𝑋𝑖 with coefficients depending on
the vectors 𝑦𝑖. Thus, Proposition 5.5 yields the following corollary.

Corollary 5.12. In the above setting, for any 𝑥 > 0 the inequality

|𝑅(𝑋)| ≤ 4𝑀2 max
(︁√

𝑥‖𝐴‖HS, 𝑥‖𝐴‖op, 𝑥
3/2 max

𝑖=1,...,𝑛
‖(𝑎𝑖𝑗)𝑗‖2, 𝑥

2‖𝐴‖∞

)︁
holds with probability at least 1 − 2 exp(−𝑥/𝐶).
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5.2.5 Special cases

It is possible to apply all results to random variables having a Poisson distri-
bution, i. e. 𝑋𝑖 ∼ Poi(𝜆𝑖) for some 𝜆𝑖 ∈ (0,∞). By using the moment generating
function of the Poisson distribution, it is easily seen that

‖𝑋𝑖‖𝛹1 = 1
log

(︁
log(2)𝜆−1

𝑖 + 1
)︁ =: 𝑔(𝜆𝑖).

The function 𝑔 is increasing and satisfies 𝑔(𝑥) ∼ log(1/𝑥) (for 𝑥 → 0) and
𝑔(𝑥) ∼ 𝑥/ log(2) (for 𝑥 → ∞). More generally, if the random variable |𝑋| has
a moment generating function 𝜙|𝑋| in a neighborhood of 0, it can be used to
explicitly calculate the 𝛹1-norm. Indeed, we have E exp(|𝑋|/𝑡) = 𝜙|𝑋|(𝑡−1), and
so ‖𝑋‖𝛹1 = 1/𝜙−1

|𝑋|(2).
Thus, as a special case of Proposition 5.5, we obtain the following corollary.

Corollary 5.13. Let 𝑋𝑖 ∼ Poi(𝜆𝑖), 𝐵 := 𝑔(max𝑖∈[𝑛] 𝜆𝑖) and 𝐴 = (𝑎𝑖𝑗) be a
symmetric 𝑛× 𝑛 matrix. We have for any 𝑡 ≥ 0

P
(︁⃒⃒⃒∑︁

𝑖,𝑗

𝑎𝑖𝑗𝑋𝑖𝑋𝑗 −
𝑛∑︁
𝑖=1

𝑎𝑖𝑖𝜆𝑖

⃒⃒⃒
≥ 𝐵2𝑡

)︁
≤ 2 exp

(︁
− 1
𝐶

min
(︁ 𝑡2

‖𝐴‖2
HS
,

𝑡

‖𝐴‖op
,
(︁ 𝑡

max𝑖‖(𝑎𝑖𝑗)𝑗‖2

)︁ 2
3
,
(︁ 𝑡

‖𝐴‖∞

)︁ 1
2
)︁)︁

≤ 2 exp
(︁

− 1
𝐶

min
(︁ 𝑡2

‖𝐴‖2
HS
,
(︁ 𝑡

‖𝐴‖op

)︁ 1
2
)︁)︁
.

For Poisson chaos of arbitrary order 𝑑 ∈ N, one may derive similar results by
evaluating Theorem 5.4 or Corollary 5.22 (both for 𝛼 = 1). Note though that
already for 𝑑 = 1, we lose a logarithmic factor in the exponent. However, we are
not aware of any more refined fluctuation estimates for 𝑑 ≥ 2.

Another interesting example of a sub-exponential random variable arises in
stochastic geometry. If 𝐾 ⊆ R𝑛 is an isotropic, convex body and 𝑋 is distributed
according to the cone measure on 𝐾, then ‖⟨𝑋,𝜃⟩‖𝛹1 ≤ 𝑐 for some constant 𝑐 and
any 𝜃 ∈ 𝑆𝑛−1. For the details and the proof we refer to [PTT19, Lemma 5.1].

5.3 The multilinear case: Proof of Theorem 5.4

To begin with, let us introduce some notation. Let i = (𝑖1, . . . , 𝑖𝑑) ∈ [𝑛]𝑑 be a
multiindex. For any subset 𝐶 ⊆ [𝑑] with cardinality |𝐶| > 1, we may introduce
the “generalized diagonal” of [𝑛]𝑑 with respect to 𝐶 by

{i ∈ [𝑛]𝑑 : 𝑖𝑘 = 𝑖𝑙 for all 𝑘,𝑙 ∈ 𝐶}. (5.7)

This notion of generalized diagonals naturally extends to 𝑑-tensors 𝐴 = (𝑎i)i∈[𝑛]𝑑

(obviously, the generalized diagonal of 𝐴 with respect to 𝐶 is the set of coefficients
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𝑎i such that i lies on the generalized diagonal of [𝑛]𝑑 with respect to 𝐶). If 𝑑 = 2
and 𝐶 = {1,2}, this gives back the usual notion of the diagonal of an 𝑛×𝑛 matrix.
Moreover, write

[𝑛]𝑑 := {i ∈ [𝑛]𝑑 : 𝑖1, . . . , 𝑖𝑑 are pairwise different}.

If 𝐴,𝐵 are 𝑑-tensors, we define ⟨𝐴,𝐵⟩ =
∑︀

i∈[𝑛]𝑑 𝑎i𝑏i. Given a set of 𝑑 vectors
𝑣1, . . . , 𝑣𝑑 ∈ R𝑛, we write 𝑣1 · · · 𝑣𝑑 for the outer product

(𝑣1 · · · 𝑣𝑑)𝑖1...𝑖𝑑 :=
𝑑∏︁
𝑗=1

𝑣𝑗𝑖𝑗 .

In particular, we may regard 𝐴 as a multilinear form by setting 𝐴(𝑣1, . . . , 𝑣𝑑) :=
⟨𝐴, 𝑣1 · · · 𝑣𝑑⟩ for any 𝑣1, . . . , 𝑣𝑑 ∈ R𝑛. The latter idea may be generalized by noting
that any partition 𝒥 = {𝐽1, . . . , 𝐽𝑘} of [𝑑] induces a partition of the space of
𝑑-tensors as follows. Identify the space of all 𝑑-tensors with R𝑛𝑑 and decompose

R𝑛𝑑 ∼=
𝑘⨂︁
𝑖=1

R𝑛𝐽𝑖 ∼=
𝑘⨂︁
𝑖=1

⨂︁
𝑗∈𝐽𝑖

R𝑛. (5.8)

For any 𝑥 = 𝑥(1) ⊗ . . . ⊗ 𝑥(𝑘), the identification with a 𝑑-tensor is given by
𝑥i =

∏︀𝑘
𝑙=1 𝑥

(𝑙)
i𝐽𝑙

. For example, for 𝑑 = 4 and ℐ = {{1,4}, {2,3}} we have two
matrices 𝑥,𝑦 and 𝑥𝐽1,𝐽2,𝐽3,𝐽4 = 𝑥𝐽1𝐽4𝑦𝐽2𝐽3 . Using this representation, any 𝑑-tensor
𝐴 can be trivially identified with a linear functional on R𝑛𝑑 via the standard scalar
product, i. e.

𝐴𝑥 = 𝐴
(︀
𝑥(1) ⊗ . . .⊗ 𝑥(𝑘))︀ = ⟨𝐴, 𝑥(1) ⊗ . . .⊗ 𝑥(𝑘)⟩ =

∑︁
i∈[𝑛]𝑑

𝑎i

𝑘∏︁
𝑙=1

𝑥
(𝑙)
i𝐽𝑙
.

These identifications give rise to a family of tensor-product matrix norms: for
any partition 𝒥 ∈ 𝑃𝑑, define a norm on the space (5.8) by

‖𝑥‖𝒥 := ‖𝑥(1) ⊗ . . .⊗ 𝑥(𝑘)‖𝒥 := max
𝑖=1,...,𝑘

‖𝑥(𝑖)‖2.

Now, we may define ‖𝐴‖𝒥 as the the operator norm with respect to ‖·‖𝒥 :

‖𝐴‖𝒥 = sup
‖𝑥‖𝒥 ≤1

|𝐴𝑥|. (5.9)

This family of tensor norms agrees with the definitions in [Lat06] and [AW15]
(among others).

Next we extend these definitions to a family of norms ‖𝐴‖𝒥 where 𝐴 is a
𝑑-tensor but 𝒥 ∈ 𝑃𝑞𝑑 for some 𝑞 ∈ N. To this end, we first embed 𝐴 into the
space of 𝑞𝑑-tensors as follows. We divide i ∈ [𝑛]𝑞𝑑 into 𝑑 consecutive blocks with 𝑞
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indices in each block (𝑖1, . . . , 𝑖𝑞), (𝑖𝑞+1, . . . , 𝑖2𝑞), . . . and only consider such indices
for which all elements of these blocks take the same value. In fact, this is an
intersection of 𝑑 “generalized diagonals”. More formally, we let 𝑒𝑞(𝐴) the 𝑞𝑑-tensor
given by

(𝑒𝑞(𝐴))i :=
{︃
𝑎𝑖1𝑖𝑞+1𝑖2𝑞+1...𝑖(𝑘−1)𝑞+1 if 𝑖𝑘𝑞+𝑗 = 𝑖𝑘𝑞+1 ∀𝑘 = 0, . . . , 𝑑− 1 ∀𝑗 = 2, . . . , 𝑞
0 else.

(5.10)
Now we set

‖𝐴‖𝒥 := ‖𝑒𝑞(𝐴)‖𝒥 . (5.11)
For 𝑞 = 1, this definition trivially agrees with (5.9).
Example. As we have mentioned before, the case 𝑑 = 1 and 𝑞 = 2 is easy to
visualize. Given a vector 𝑎 = (𝑎1, . . . , 𝑎𝑛) we have 𝑒2(𝑎) = diag(𝑎1, . . . , 𝑎𝑛), where
diag denotes a diagonal matrix. More generally, any 𝑞 > 2 gives rise to a 𝑞-tensor
𝐴 = (𝑎𝑖𝑗𝑘) with 𝑎𝑖𝑖𝑖 = 𝑎𝑖 for all 𝑖 ∈ [𝑛] and 0 otherwise.
Remark 5.14. The norms (5.11) are monotone with respect to the underlying
partition in the following sense. For any two partitions ℐ = {𝐼1, . . . , 𝐼𝜇} and
𝒥 = {𝐽1, . . . , 𝐽𝜈} of [𝑞𝑑], we say that ℐ is finer than 𝒥 (and write ℐ 4 𝒥 ) if for
any 𝑗 ∈ [𝜇] there is a 𝑘 ∈ [𝜈] such that 𝐼𝑗 ⊆ 𝐽𝑘. If ℐ 4 𝒥 , we have ‖𝐴‖ℐ ≤ ‖𝐴‖𝒥 .
In particular, we always have

‖𝐴‖{{1},...,{𝑞𝑑}} ≤ ‖𝐴‖𝒥 ≤ ‖𝐴‖{1,...,𝑞𝑑}. (5.12)

In view of (5.12), the two “extreme” norms corresponding to the coarsest and
the finest partition of [𝑞𝑑] deserve special attention. Firstly, it is elementary that

‖𝐴‖{1,...,𝑞𝑑} = ‖𝑒𝑞(𝐴)‖HS = ‖𝐴‖HS =
(︁ ∑︁

i∈[𝑛]𝑑
𝑎2

i

)︁1/2
. (5.13)

Secondly, we have by Lemma 5.17

‖𝐴‖{{1},...,{𝑞𝑑}} = ‖𝑒𝑞(𝐴)‖op =
{︃

‖𝐴‖op 𝑞 = 1
max𝑖,𝑗|𝑎𝑖𝑗| 𝑞 ≥ 2

,

To prove Theorem 5.4, we furthermore need two auxiliary results. The first one
compares the moments of sums of random variables with (2/𝑞)-sub-exponential
decay to moments of Gaussian polynomials and the second one provides the
estimates for multilinear forms in Gaussian random variables.

Lemma 5.15 (Lemma 5.4 in [AW15]). For any positive integer 𝑘 and any 𝑝 ≥ 2,
if 𝑌1, . . . , 𝑌𝑛 are independent symmetric random variables with ‖𝑌𝑖‖𝜓2/𝑘

≤ 𝑀 , then

⃦⃦ 𝑛∑︁
𝑖=1

𝑎𝑖𝑌𝑖
⃦⃦
𝑝

≤ 𝐶𝑘𝑀
⃦⃦ 𝑛∑︁
𝑖=1

𝑎𝑖𝑔𝑖1 · · · 𝑔𝑖𝑘
⃦⃦
𝑝
,
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where 𝑔𝑖𝑗 are independent standard normal random variables.

Theorem 5.16 (Theorem 1 in [Lat06]). Let 𝐴 = (𝑎i)i∈[𝑛]𝑑 be a 𝑑-tensor, and let
𝐺1, . . . , 𝐺𝑑 be i. i. d. standard Gaussian random vectors in R𝑛. Then, for every
𝑝 ≥ 2,

𝐶−1
𝑑

∑︁
𝒥 ∈𝑃𝑑

𝑝|𝒥 |/2‖𝐴‖𝒥 ≤ ‖⟨𝐴,𝐺1 · · ·𝐺𝑑⟩‖𝑝 ≤ 𝐶𝑑
∑︁

𝒥 ∈𝑃𝑑

𝑝|𝒥 |/2‖𝐴‖𝒥 .

As usual, in the proof of Theorem 5.4 we show 𝐿𝑝-estimates for 𝑓𝑑,𝐴(𝑋). Recall
that the concentration inequalities follow easily by Proposition 2.10.

Proof of Theorem 5.4. For simplicity, we always write 𝑓 := 𝑓𝑑,𝐴(𝑋). Moreover,
without loss of generality, we may assume the 𝑋𝑖 to be centered.

Let 𝑋(1), . . . , 𝑋(𝑑) be independent copies of the random vector 𝑋. Take a set of
i. i. d. Rademacher variables (𝜀(𝑗)

𝑖 )𝑖∈[𝑛],𝑗∈[𝑑], which are independent of the (𝑋(𝑗))𝑗.
By standard decoupling and symmetrization inequalities (see [PG99, Theorem
3.1.1] and [PG99, Lemma 1.2.6]),

‖𝑓‖𝑝 ≤ 𝐶𝑑

⃦⃦⃦ ∑︁
i∈[𝑛]𝑑

𝑎𝑖1,...,𝑖𝑑𝑋
(1)
𝑖1

· · ·𝑋(𝑑)
𝑖𝑑

⃦⃦⃦
𝑝

≤ 𝐶𝑑

⃦⃦⃦ ∑︁
i∈[𝑛]𝑑

𝑎𝑖1,...,𝑖𝑑𝜀
(1)
𝑖1
𝑋

(1)
𝑖1

· · · 𝜀(𝑑)
𝑖𝑑
𝑋

(𝑑)
𝑖𝑑

⃦⃦⃦
𝑝
.

An iteration of Lemma 5.15 together with ‖𝑋𝑖‖𝜓2/𝑞
≤ 𝑀 hence leads to

‖𝑓‖𝑝 ≤ 𝐶𝑑𝑀
𝑑
⃦⃦⃦ ∑︁

i∈[𝑛]𝑑
𝑎𝑖1,...,𝑖𝑑(𝑔(1)

𝑖1,1 · · · 𝑔(1)
𝑖1,𝑞

) · · · (𝑔(𝑑)
𝑖𝑑,1 · · · 𝑔(𝑑)

𝑖𝑑,𝑞
)
⃦⃦⃦
𝑝
.

Here, (𝑔(𝑗)
𝑖,𝑘 ) is an array of i. i. d. standard Gaussian random variables. Rewriting

(recall (5.10)) and applying Theorem 5.16 yields

‖𝑓‖𝑝 ≤ 𝐶𝑑𝑀
𝑑‖⟨𝑒𝑞(𝐴),⊗𝑑

𝑗=1 ⊗𝑞
𝑘=1 (𝑔(𝑗)

𝑖,𝑘 )𝑖≤𝑛⟩‖𝑝 ≤ 𝐶𝑑𝑀
𝑑
∑︁

𝒥 ∈𝑃𝑞𝑑

𝑝|𝒥 |/2‖𝐴‖𝒥 .

5.4 Hanson–Wright-type inequality: Proof of Proposition
5.5

The main task in the proof of Proposition 5.5 is explicitly calculating the norms.

Lemma 5.17. For any 𝑑-tensor 𝐴 and 𝑞 ≥ 2 we have

‖𝐴‖{{1},...,{𝑞𝑑}} = ‖𝐴‖∞ = max
𝑖1,...,𝑖𝑑

|𝑎𝑖1,...,𝑖𝑑|.
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Proof. Write 𝒥 = {{1}, . . . , {𝑞𝑑}}. We have

‖𝐴‖𝒥 = sup
{︁⃒⃒⃒ ∑︁

𝑖1...𝑖𝑞𝑑

(𝑒𝑞(𝐴))𝑖1,...,𝑖𝑞𝑑
𝑥1
𝑖1 · · ·𝑥𝑞𝑑𝑖𝑞𝑑

⃒⃒⃒
: ‖𝑥𝑗‖2 ≤ 1 for all 𝑗 = 1, . . . ,𝑞𝑑

}︁
= sup

{︁⃒⃒⃒ ∑︁
𝑖1,...,𝑖𝑑

𝑎𝑖1,...,𝑖𝑑𝑥
1
𝑖1 · · ·𝑥𝑞𝑖1𝑥

𝑞+1
𝑖2

· · ·𝑥2𝑞
𝑖2

· · · 𝑥(𝑑−1)𝑞+1
𝑖𝑑

· · ·𝑥𝑞𝑑𝑖𝑑
⃒⃒⃒

: ‖𝑥𝑗‖2 ≤ 1
}︁

≤ ‖𝐴‖∞ sup
{︁ ∑︁
𝑖1,...,𝑖𝑑

|𝑥1
𝑖1𝑥

2
𝑖1| · · · |𝑥(𝑑−1)𝑞+1

𝑖𝑑
𝑥

(𝑑−1)𝑞+2
𝑖𝑑

| : ‖𝑥𝑗‖2 ≤ 1
}︁

≤ ‖𝐴‖∞.

In the third step, we have iteratively used that for 𝑥𝑗 with ‖𝑥𝑗‖2 ≤ 1 we also have
|𝑥𝑗𝑖 | ≤ 1, and applied the Cauchy–Schwarz inequality 𝑑 times in the last step.

To obtain the lower bound, let 𝑙1, . . . , 𝑙𝑑 be the index which achieves the maxi-
mum. Let 𝑥1 = . . . = 𝑥𝑞 = 𝛿𝑙1 , 𝑥𝑞+1 = . . . = 𝑥2𝑞 = 𝛿𝑙2 and so on, so that

‖𝐴‖𝒥 ≥ |𝑎𝑙1···𝑙𝑑 | = ‖𝐴‖∞.

The following easy observation helps with calculating the norms ‖·‖𝒥 . For any
partition 𝒥 = {𝐽1, . . . , 𝐽𝑘} ∈ 𝑃[𝑞𝑑] we write ̃︀𝒥 = { ̃︀𝐽1, . . . , ̃︀𝐽𝑘} for

̃︀𝐽𝑗 = {𝑖 ∈ [𝑛] : 𝐽𝑗 ∩ {𝑞(𝑖− 1) + 1, . . . ,𝑞𝑖} ≠ ∅}. (5.14)

That is, the sets ̃︀𝐽𝑗 indicate which of the 𝑑 𝑞-blocks intersect 𝐽𝑗. Note that
∪𝑗

̃︀𝐽𝑗 = [𝑑], but ̃︀𝒥 needs not be a partition of [𝑑]. In fact, some sets 𝐼 may even
appear more than once (with a slight abuse of notation, we choose to keep the set
notation in this case anyway). Note that Remark 5.14 extends from partitions to
decompositions (all definitions remain valid, even in case of some sets appearing
multiple times). Nevertheless, we have by definition

‖𝐴‖𝒥 = ‖𝐴‖ ̃︀𝐽 := sup
{︁ ∑︁
𝑖1,...,𝑖𝑑

𝑎𝑖1...𝑖𝑑

𝑘∏︁
𝑗=1

𝑥
(𝑗)
ĩ︀𝐽𝑗

: ‖𝑥(𝑗)
ĩ︀𝐽𝑗

‖2 ≤ 1
}︁
, (5.15)

i. e. the norm does not depend on 𝒥 , but on its “projection” ̃︀𝒥 . We use this
observation in the next lemma to calculate the norms ‖𝐴‖𝒥 for quadratic forms
(i. e. 𝑑 = 2) and any 𝑞 ≥ 2.

Lemma 5.18. Let 𝐴 = (𝑎𝑖𝑗) be a symmetric matrix, 𝑞 ≥ 2 and 𝒥 be a partition
of [2𝑞].

(1) If ̃︀𝒥 contains {1,2} two or more times, then ‖𝐴‖𝒥 = ‖𝐴‖∞.

(2) If ̃︀𝒥 contains {1,2} and {1} and {2}, then ‖𝐴‖𝒥 = ‖𝐴‖∞.

(3) If ̃︀𝒥 = {{1,2}, {𝑗}, . . . , {𝑗}} (𝑗 = 1 or 𝑗 = 2), then ‖𝐴‖𝒥 = max𝑖∈[𝑛]‖𝑎𝑖·‖2.
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(4) If ̃︀𝒥 comprises 𝑙 times {1} and 𝑘 times {2} for 𝑘 ≥ 2, 𝑙 ≥ 2, then ‖𝐴‖𝒥 =
‖𝐴‖∞. On the other hand, if 𝑙 = 1, 𝑘 ≥ 2 or 𝑘 = 1, 𝑙 ≥ 2 we have ‖𝐴‖𝒥 =
max𝑖∈[𝑛]‖𝐴𝑖·‖2.

(5) If ̃︀𝒥 = {{1}, {2}}, then ‖𝐴‖𝒥 = ‖𝐴‖op.

(6) We have ‖𝐴‖{[𝑞𝑑]} = ‖𝐴‖HS.

Proof. To see (1), write ̃︀𝒥 = { ̃︀𝐽1, . . . , ̃︀𝐽𝑘}, use the triangle inequality and the fact
that ‖𝑥‖∞ ≤ ‖𝑥‖HS for any tensor 𝑥:

‖𝐴‖𝒥 = sup
{︁∑︁

𝑖,𝑗

𝑎𝑖𝑗

𝑙∏︁
𝑘=1

𝑥
(𝑘)
ĩ︀𝐽𝑘

}︁
≤ ‖𝐴‖∞ sup

{︁∑︁
𝑖,𝑗

|𝑥𝑖𝑗||𝑦𝑖𝑗|
}︁

≤ ‖𝐴‖∞,

where the supremum is taken over all unit vectors 𝑥(𝑘). The lower bound follows
from (5.12) and Lemma 5.17.

(2) follows immediately from ̃︀𝒥 4 {{1,2}, {1,2}}.
(3) follows from the triangle and Cauchy–Schwarz inequality:

‖𝐴‖𝒥 ≤ sup
{︁∑︁

𝑖

|
𝑙∏︁

𝑘=1

𝑦𝑘𝑖 ||
∑︁
𝑗

𝑎𝑖𝑗𝑥𝑖𝑗|
}︁

≤ sup
{︁∑︁

𝑖

|
𝑙∏︁

𝑘=1

𝑦𝑘𝑖 |‖(𝑎𝑖𝑗)𝑗‖2‖𝑥𝑖·‖2

}︁
≤ max

𝑖
‖(𝑎𝑖𝑗)𝑗‖2 sup

{︁
|
𝑙∏︁

𝑘=1

𝑦𝑘𝑖 |‖𝑥𝑖·‖2

}︁
≤ max

𝑖
‖(𝑎𝑖𝑗)𝑗‖2.

The lower bound is obtained by choosing 𝑦1, . . . , 𝑦𝑙 as Dirac deltas on the row for
which max𝑖∈[𝑛]‖𝐴𝑖·‖ is attained.

To see (4), note that the case 𝑘 ≥ 2, 𝑙 ≥ 2 is very similar to the second part. If
𝑙 = 1, 𝑘 ≥ 2 or 𝑘 = 1, 𝑙 ≥ 2, similar arguments as in the third part give for any
𝑥, 𝑦1, . . . , 𝑦𝑙 with norm at most one

|
∑︁
𝑖,𝑗

𝑎𝑖𝑗𝑥𝑖
∏︁
𝑘

𝑦𝑘𝑗 | ≤
∑︁
𝑗

|
∏︁
𝑘

𝑦𝑘𝑗 ||
∑︁
𝑖

𝑎𝑖𝑗𝑥𝑖| ≤
∑︁
𝑗

|
∏︁
𝑘

𝑦𝑘𝑗 ‖(𝑎𝑖𝑗)𝑗‖2| ≤ max
𝑖

‖(𝑎𝑖𝑗)𝑗‖2.

The lower bound again follows by choosing suitable Dirac deltas.
(5) and (6) are obvious from the definitions.

Actually, we have the equality

max
𝑖∈[𝑛]

‖(𝑎𝑖𝑗)𝑗‖2 = ‖𝐴‖2→∞,

where ‖𝐴‖𝑝→𝑞 := sup {‖𝐴𝑥‖𝑞 : ‖𝑥‖𝑝 ≤ 1} . For the proof, see [CTP19, Proposition
6.1]. Especially this yields max𝑖∈[𝑛]‖(𝑎𝑖𝑗)𝑗‖2 ≤ ‖𝐴‖op.

We are now ready to prove Proposition 5.5. Throughout the rest of this section,
for a matrix 𝐴 let us denote by 𝐴od its off-diagonal and by 𝐴d the diagonal part.
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Proof of Proposition 5.5. Lemma 5.18 shows that we only need to consider the four
norms ‖𝐴‖HS, ‖𝐴‖op,max𝑖∈[𝑛]‖(𝑎𝑖𝑗)𝑗‖2 and ‖𝐴‖∞. It is easy to see that ‖𝐴‖HS ≥
‖𝐴‖op ≥ max𝑖‖(𝑎𝑖𝑗)𝑗‖2 ≥ ‖𝐴‖∞. Thus, we need to determine which partitions
give rise to which norms.

The only partition producing the Hilbert–Schmidt norm is 𝒥1 = {[𝑞𝑑]}, with
|𝒥1| = 1. The operator norm appears for the decomposition 𝒥2 = {{1, . . . ,𝑞}, {𝑞 +
1, . . . , 2𝑞}} with |𝒥2| = 2. Moreover, it is easy to see that all partitions 𝒥3 of
[2𝑞] giving rise to max𝑖∈[𝑛]‖(𝑎𝑖𝑗)𝑗‖2 satisfy |𝒥3| ∈ {2, . . . ,𝑞 + 1}. Finally, for all
𝑘 = 2, . . . , 2𝑞 there are partitions 𝒥4 such that ‖𝐴‖𝒥4 = ‖𝐴‖∞.

Hence for a diagonal-free matrix 𝐴 we have by simply plugging in the norms
calculated in Lemmas 5.17 and 5.18 into Theorem 5.4

P
(︁⃒⃒⃒∑︁

𝑖,𝑗

𝑎𝑖𝑗(𝑋𝑖𝑋𝑗 − E𝑋𝑖 E𝑋𝑗)
⃒⃒⃒

≥ 𝑡
)︁

≤ 2 exp
(︁

− 1
𝐶
𝜂(𝐴,𝑞,𝑡/𝑀2)

)︁
, (5.16)

where

𝜂(𝐴,𝑞,𝑡) = min
(︁ 𝑡2

‖𝐴‖2
HS
,

𝑡

‖𝐴‖op
, min
𝑙=2,...,𝑞+1

(︁ 𝑡

max𝑖‖(𝑎𝑖𝑗)𝑗‖2

)︁ 2
𝑙
, min
𝑙=2,...,2𝑞

(︁ 𝑡

‖𝐴‖∞

)︁ 2
𝑙
)︁

= min
(︁ 𝑡2

‖𝐴‖2
HS
,

𝑡

‖𝐴‖op
,
(︁ 𝑡

max𝑖‖(𝑎𝑖𝑗)𝑗‖2

)︁ 2
𝑞+1
,
(︁ 𝑡

‖𝐴‖∞

)︁ 1
𝑞
)︁
.

In the last two terms, we can choose the largest 𝑙 since we can assume that
𝑡

‖𝐴‖𝒥
≥ 1 for any partition 𝒥 , as the minimum is achieved in 𝑡2

‖𝐴‖2
HS

otherwise.
For matrices with non-vanishing diagonal, we divide the quadratic form into an

off-diagonal and a purely diagonal part, i. e.

∑︁
𝑖,𝑗

𝑎𝑖𝑗𝑋𝑖𝑋𝑗 =
∑︁
𝑖,𝑗

𝑎od
𝑖𝑗 𝑋𝑖𝑋𝑗 +

𝑛∑︁
𝑖=1

𝑎d
𝑖𝑖𝑋

2
𝑖 .

For brevity, let us define 𝑃 (𝑡) := P
(︁⃒⃒∑︀

𝑖,𝑗 𝑎𝑖𝑗𝑋𝑖𝑋𝑗 −
∑︀𝑛

𝑖=1 𝜎
2
𝑖 𝑎𝑖𝑖

⃒⃒
≥ 𝑡

)︁
. Use the

above decomposition and the subadditivity to obtain

𝑃 (𝑡) ≤ P
(︁

|
∑︁
𝑖,𝑗

𝑎od
𝑖𝑗 𝑋𝑖𝑋𝑗| ≥ 𝑡/2

)︁
+ P

(︁
|
𝑛∑︁
𝑖=1

𝑎d
𝑖𝑖(𝑋2

𝑖 − 𝜎2
𝑖 )| ≥ 𝑡/2

)︁
=: 𝑝1(𝑡) + 𝑝2(𝑡).

Equation (5.16) can be used to upper bound 𝑝1(𝑡) as

𝑝1(𝑡) ≤ 2 exp
(︁

− 1
𝐶2
𝜂(𝐴𝑜𝑑,𝑞,𝑡/𝑀2)

)︁
. (5.17)

The diagonal term can be treated by applying Theorem 5.4 for 𝑑 = 1, 𝑞 = 4 and
𝑎 = (𝑎𝑖𝑖)𝑖∈[𝑛]. Moreover, it is easy to see that we have ‖𝑎‖{1,2,3,4} =

∑︀
𝑖(𝑎d

𝑖𝑖)2 (cf.
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(5.13)) and ‖𝑎‖𝒥 = ‖𝐴d‖∞ for any other decomposition 𝒥 . Consequently,

𝑝2(𝑡) ≤ 2 exp
(︁

− 1
𝐶1

min
(︁ 𝑡2

‖𝐴d‖2
HS
,

𝑡

‖𝐴d‖∞
,
(︁ 𝑡

‖𝐴d‖∞

)︁2/3
,
(︁ 𝑡

‖𝐴d‖∞

)︁1/2)︁)︁
= 2 exp

(︁
− 1
𝐶1
𝜂1,𝐴d(𝑡)

)︁
.

(5.18)

Thus, by combining (5.17) and (5.18) we have

𝑃 (𝑡) ≤ 4 exp
(︀
−𝐶 min(𝜂(𝐴od,𝑞,𝑡), 𝜂1,𝐴d(𝑡))

)︀
.

Now it remains to lower bound the minimum by grouping the terms according to
the different powers of 𝑡. This gives

𝑝(𝑡) ≤ 4 exp
(︁

− 1
𝐶
̃︀𝜂(𝐴,𝑞,𝑡/𝑀)

)︁
,

where

̃︀𝜂(𝐴,𝑞,𝑡)

:= min
(︁ 𝑡2

‖𝐴‖2
HS
,

𝑡

max(‖𝐴od‖op, ‖𝐴d‖∞) ,
(︁ 𝑡

max𝑖∈[𝑛]‖(𝑎𝑖𝑗)𝑗‖2

)︁ 2
𝑞+1
,
(︁ 𝑡

‖𝐴‖∞

)︁ 1
𝑞
)︁
.

Lastly, from the characterization ‖𝐴‖op := sup𝑥∈𝑆𝑛−1|⟨𝑥,𝐴𝑥⟩| it can be easily
seen that the inequalities ‖𝐴d‖∞ ≤ ‖𝐴‖op and ‖𝐴od‖op ≤ 2‖𝐴‖op hold, and the
constant 4 can be changed to 2 by adjusting the constant in the exponent.

5.5 The polynomial case: Proof of Theorem 5.6

Let us now treat the case of general polynomials 𝑓(𝑋) of total degree 𝐷 ∈ N.
Before we start, we need to discuss some more properties of the norms ‖𝐴‖𝒥 . To
this end, for two 𝑑-tensors 𝐴,𝐵 we let 𝐴 ∘ 𝐵 := (𝑎i𝑏i)i∈[𝑛]𝑑 be their Hadamard
product. For a set 𝐶 ⊆ [𝑛]𝑑 we may define “indicator matrices” 1𝐶 by setting
1𝐶 = (𝑎i)i with 𝑎i = 1 if i ∈ 𝐶 and 𝑎i = 0 otherwise. If |𝒥 | > 1, we do not have

‖𝐴 ∘ 1𝐶‖𝒥 ≤ ‖𝐴‖𝒥 (5.19)

in general. However, [AW15, Lemma 5.2] shows a number of situations in which
such an inequality does hold.
Lemma 5.19. Let 𝐴 = (𝑎i)i∈[𝑛]𝑑 be a 𝑑-tensor.

1. If 𝐶 = {i : 𝑖𝑘1 = 𝑗1, . . . , 𝑖𝑘𝑙
= 𝑗𝑙} for some 1 ≤ 𝑘1 < . . . < 𝑘𝑙 ≤ 𝑑 (“general-

ized row”), then (5.19) holds.

2. If 𝐶 = {i : 𝑖𝑘 = 𝑖𝑙 ∀𝑘, 𝑙 ∈ 𝐾} for some 𝐾 ⊂ [𝑑] (“generalized diagonal”),
then (5.19) holds.
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3. If 𝐶1, 𝐶2 ⊂ [𝑛]𝑑 are such that (5.19) holds, then so is 𝐶1 ∩ 𝐶2.

There is another situation in which a version of (5.19) holds. For any partition
𝒦 = {𝐾1, . . . , 𝐾𝑎} ∈ 𝑃𝑑 we define

𝐿(𝒦) = {i ∈ [𝑛]𝑑 : 𝑖𝑘 = 𝑖𝑙 ⇔ ∃𝑗 : 𝑘, 𝑙 ∈ 𝐾𝑗}. (5.20)

That is, 𝐿(𝒦) is the set of those indices for which the partition into level sets is
equal to 𝒦.

Lemma 5.20. Let 𝒥 ∈ 𝑃𝑞𝑑, 𝒦 ∈ 𝑃𝑑 and 𝐴 be a 𝑑-tensor. Then,

‖𝐴 ∘ 1𝐿(𝒦)‖𝒥 ≤ 2|𝒦|(|𝒦|−1)/2‖𝐴‖𝒥 .

Proof. This is a generalization of [AW15, Corollary 5.3] which corresponds to the
case 𝑞 = 1. First note that by definition,

‖𝐴 ∘ 1𝐿(𝒦)‖𝒥 = ‖𝑒𝑞(𝐴 ∘ 1𝐿(𝒦))‖𝒥 = ‖𝑒𝑞(𝐴) ∘ 𝑒𝑞(1𝐿(𝒦))‖𝒥 .

Therefore, it suffices to prove that for any 𝑞𝑑-tensor 𝐵,

‖𝐵 ∘ 𝑒𝑞(1𝐿(𝒦))‖𝒥 ≤ 2|𝒦|(|𝒦|−1)/2‖𝐵‖𝒥 .

To see this, observe that 𝑒𝑞(1𝐿(𝒦)) is the indicator matrix of a set 𝐶 which can
be written as an intersection of |𝒦| generalized diagonals (with the cardinality of
the underlying sets of indices in (5.7) always being an integer multiple of 𝑞) and
|𝒦|(|𝒦| − 1)/2 sets of the form {i : 𝑖𝑘𝑞+1 ̸= 𝑖𝑙𝑞+1} for 𝑘 < 𝑙. Recall that

‖𝐵 ∘ 1{𝑖𝑘𝑞+1 ̸=𝑖𝑙𝑞+1}‖𝒥 = ‖𝐵 −𝐵 ∘ 1{𝑖𝑘𝑞+1=𝑖𝑙𝑞+1}‖𝒥 ≤ 2‖𝐵‖𝒥 ,

using Lemma 5.19 (2) in the last step. As a consequence, the claim follows by
applying Lemma 5.19 (2) again and a generalization of Lemma 5.19 (3).

Finally, it remains to note that [AW15, Lemma 5.1] can be generalized as
follows.

Lemma 5.21. Let 𝐴 be a 𝑑-tensor and 𝑣1, . . . , 𝑣𝑑 ∈ R𝑛. Then, for any partition
𝒥 ∈ 𝑃𝑞𝑑, ‖𝐴 ∘ ⊗𝑑

𝑖=1𝑣𝑖‖𝒥 ≤ ‖𝐴‖𝒥
∏︀𝑑

𝑖=1‖𝑣𝑖‖∞.

Proof. Recall equations (5.14) and (5.15). We have

‖𝐴 ∘ ⊗𝑑
𝑖=1𝑣𝑖‖𝒥 = sup

{︁ ∑︁
𝑖1,...,𝑖𝑞𝑑

(𝑒𝑞(𝐴))𝑖1...𝑖𝑞𝑑
(𝑒𝑞(⊗𝑑

𝑖=1𝑣𝑖))𝑖1...𝑖𝑞𝑑

𝑘∏︁
𝑗=1

𝑥
(𝑗)
i𝐽𝑗

: ‖𝑥(𝑗)
i𝐽𝑗

‖2 ≤ 1
}︁

= sup
{︁ ∑︁
𝑖1,...,𝑖𝑑

𝑎𝑖1...𝑖𝑑𝑣
𝑖1
1 · · · 𝑣𝑖𝑑𝑑

𝑘∏︁
𝑗=1

𝑥
(𝑗)
ĩ︀𝐽𝑗

: ‖𝑥(𝑗)
ĩ︀𝐽𝑗

‖2 ≤ 1
}︁

≤ sup
{︁ ∑︁
𝑖1,...,𝑖𝑑

𝑎𝑖1...𝑖𝑑

𝑘∏︁
𝑗=1

𝑥
(𝑗)
ĩ︀𝐽𝑖

: ‖𝑥(𝑗)
ĩ︀𝐽𝑗

‖2 ≤ 1
}︁ 𝑑∏︁
𝑖=1

‖𝑣𝑖‖∞
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= sup
{︁ ∑︁
𝑖1,...,𝑖𝑞𝑑

(𝑒𝑞(𝐴))𝑖1...𝑖𝑞𝑑

𝑘∏︁
𝑗=1

𝑥
(𝑗)
i𝐽𝑗

: ‖𝑥(𝑗)
i𝐽𝑗

‖2 ≤ 1
}︁ 𝑑∏︁
𝑖=1

‖𝑣𝑖‖∞

= ‖𝐴‖𝒥

𝑑∏︁
𝑖=1

‖𝑣𝑖‖∞.

To see the third step, for each 𝑣𝑙 we choose a set 𝒥𝑗 such that 𝑙 ∈ 𝒥𝑗 and then
define vectors ̃︀𝑥(𝑗)

ĩ︀𝐽𝑗

by multiplying 𝑥(𝑗)
ĩ︀𝐽𝑗

by the components of the vectors 𝑣𝑙 which

were attributed to 𝒥𝑗 . In particular, this leads to ‖̃︀𝑥(𝑗)
ĩ︀𝐽𝑗

‖2 ≤
∏︀

𝑙‖𝑣𝑙‖∞‖𝑥(𝑗)
ĩ︀𝐽𝑗

‖2, where

the product is taken over all the vectors 𝑣𝑙 which were attributed to 𝑥(𝑗)
ĩ︀𝐽𝑗

.

Before we begin with the proof of the concentration results for general poly-
nomials, let us give some definitions. Boldfaced letters always represent a vector
(mostly a multiindex with integer components), and for any vector i let |i| :=

∑︀
𝑗 𝑖𝑗 .

For the sake of brevity we define

𝐼𝑚,𝑑 := {(𝑖1, . . . , 𝑖𝑚) ∈ N𝑚 : |i| = 𝑑},
𝐼𝑚,≤𝑑 := {(𝑖1, . . . , 𝑖𝑚) ∈ N𝑚 : |i| ≤ 𝑑}.

Given two vectors i,k of equal size, we write k ≤ l if 𝑘𝑗 ≤ 𝑙𝑗 for all 𝑗, and k < l if
k ≤ l and there is at least one index such that 𝑘𝑗 < 𝑙𝑗. Lastly, by 𝑓 . 𝑔 we mean
an inequality of the form 𝑓 ≤ 𝐶𝐷,𝑞𝑔.

Proof of Theorem 5.6. We assume 𝑀 = 1. For the general case, given random
variables 𝑋1, . . . , 𝑋𝑛 with ‖𝑋𝑖‖𝛹2/𝑞

≤ 𝑀 , define 𝑌𝑖 := 𝑀−1𝑋𝑖. The polynomial
𝑓 = 𝑓(𝑋) can be written as a polynomial ̃︀𝑓 = ̃︀𝑓(𝑌 ) by appropriately modifying
the coefficients, i. e. multiplying each monomial by 𝑀 𝑟, where 𝑟 is its total degree.
Now it remains to see that 𝜕𝑖1...𝑖𝑗 ̃︀𝑓(𝑌 ) = 𝑀 𝑗𝜕𝑖1...𝑖𝑗𝑓(𝑋).

Step 1. First, we reduce the problem to generalizations of chaos-type functions
(5.3). Indeed, by sorting according to the total grade, 𝑓 may be represented as

𝑓(𝑥) =
𝐷∑︁
𝑑=1

𝑑∑︁
𝜈=1

∑︁
k∈𝐼𝜈,𝑑

∑︁
i∈[𝑛]𝜈

𝑐
(𝑑)
(𝑖1,𝑘1),...,(𝑖𝜈 ,𝑘𝜈)𝑥

𝑘1
𝑖1
𝑥𝑘2
𝑖2

· · · 𝑥𝑘𝜈
𝑖𝜈

+ 𝑐0,

where the constants satisfy 𝑐(𝑑)
(𝑖1,𝑘1),...,(𝑖𝜈 ,𝑘𝜈) = 𝑐

(𝑑)
(𝑖𝜋1 ,𝑘𝜋1 ),...,(𝑖𝜋𝜈 ,𝑘𝜋𝜈 ) for any permutation

𝜋 ∈ 𝒮𝜈 . As in [AW15], by rearranging and making use of the independence of
𝑋1, . . . , 𝑋𝑛, this leads to the estimate

|𝑓(𝑋) − E𝑓(𝑋)| ≤
𝐷∑︁
𝑑=1

𝑑∑︁
𝜈=1

∑︁
k∈𝐼𝜈,𝑑

⃒⃒⃒ ∑︁
i∈[𝑛]𝜈

𝑎k
i (𝑋𝑘1

𝑖1
− E𝑋𝑘1

𝑖1
) · · · (𝑋𝑘𝜈

𝑖𝜈
− E𝑋𝑘𝜈

𝑖𝜈
)
⃒⃒⃒
,
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where

𝑎k
i =

𝐷∑︁
𝑚=𝜈

∑︁
𝑘𝜈+1,...,𝑘𝑚>0
𝑘1+...+𝑘𝑚≤𝐷

∑︁
𝑖𝜈+1,...,𝑖𝑚

(𝑖1,...,𝑖𝑚)∈[𝑛]𝑚

(︂
𝑚

𝜈

)︂
𝑐

(𝑘1+...+𝑘𝑚)
(𝑖1,𝑘1),...,(𝑖𝑚,𝑘𝑚)

𝑚∏︁
𝛼=1

E𝑋𝑘𝑖𝛼
𝑖𝛼
.

Step 2. Note that ‖𝑋𝑘
𝑖 ‖𝜓2/(𝑞𝑘) = ‖𝑋𝑖‖𝑘𝜓2/𝑞

≤ 1. Thus, slightly modifying the
proof of Theorem 5.4 (in particular, also using Lemma 5.15 for the non-linear
terms), we obtain the estimate

‖𝑓(𝑋) − E𝑓(𝑋)‖𝑝 .
𝐷∑︁
𝑑=1

𝑑∑︁
𝜈=1

∑︁
k∈𝐼𝜈,𝑑

⃦⃦⃦ ∑︁
i∈[𝑛]𝜈

𝑎k
i (𝑔(1)

𝑖1,1 · · · 𝑔(1)
𝑖1,𝑞𝑘1

) · · · (𝑔(𝜈)
𝑖𝜈 ,1 · · · 𝑔(𝜈)

𝑖𝜈 ,𝑞𝑘𝜈
)
⃦⃦⃦
𝑝
.

Here, (𝑔(𝑗)
𝑖,𝑘 ) is an array of i. i. d. standard Gaussian random variables.

Moreover, the family (𝑎k
i )𝜈∈[𝑑],𝑘∈𝐼𝜈,𝑑,𝑖∈[𝑛]𝜈 gives rise to a 𝑑-tensor 𝐴𝑑 as follows.

Given any index i = (𝑖1, . . . , 𝑖𝑑) there is a unique number 𝑟 ∈ [𝑑] of distinct
elements 𝑗1, . . . , 𝑗𝑟 with each 𝑗𝑙 appearing exactly 𝑘𝑙 times in i. Consequently, we
set 𝑎𝑖1...𝑖𝑑 := 𝑎

(𝑙1,...,𝑙𝑟)
𝑗1,...,𝑗𝑟

, and 𝐴𝑑 = (𝑎i)i∈[𝑛]𝑑 . Note that this is well-defined due to the
symmetry assumption.

For any k ∈ 𝐼𝜈,𝑑 denote by 𝒦(k) = 𝒦(𝑘1, . . . , 𝑘𝜈) ∈ 𝑃𝑑 the partition which is de-
fined by splitting the set [𝑑] into consecutive intervals of length 𝑘1, . . . , 𝑘𝜈 . In other
words, 𝒦(k) = {𝐾1, . . . , 𝐾𝜈} with 𝐾𝑙 = {

∑︀𝑙−1
𝑖=1 𝑘𝑖 + 1,

∑︀𝑙−1
𝑖=1 𝑘𝑖 + 2, . . . ,

∑︀𝑙
𝑖=1 𝑘𝑖},

𝑙 = 1, . . . , 𝜈. Now, recalling the definitions of 𝑒𝑞 (5.10) and of 𝐿(𝒦) (5.20), by
rewriting and applying Lemma 5.19 we obtain

‖𝑓(𝑋) − E𝑓(𝑋)‖𝑝 .
𝐷∑︁
𝑑=1

𝑑∑︁
𝜈=1

∑︁
k∈𝐼𝜈,𝑑

‖⟨𝑒𝑞(𝐴𝑑 ∘ 1𝐿(𝒦(k))),⊗𝜈
𝑗=1 ⊗𝑞𝑘𝑗

𝑘=1 (𝑔(𝑗)
𝑖,𝑘 )𝑖≤𝑛⟩‖𝑝

.
𝐷∑︁
𝑑=1

𝑑∑︁
𝜈=1

∑︁
k∈𝐼𝜈,𝑑

∑︁
𝒥 ∈𝑃𝑞𝑑

𝑝|𝒥 |/2‖𝐴𝑑 ∘ 1𝐿(𝒦(𝑘1,...,𝑘𝜈))‖𝒥

.
𝐷∑︁
𝑑=1

∑︁
𝒥 ∈𝑃𝑞𝑑

𝑝|𝒥 |/2‖𝐴𝑑‖𝒥 .

(5.21)

Step 3. Next, we replace ‖𝐴𝑑‖𝒥 by ‖E𝑓 (𝑑)(𝑋)‖𝒥 . To this end, first note that
for i ∈ [𝑛]𝑑 with distinct indices 𝑗1, . . . , 𝑗𝜈 which are taken 𝑙1, . . . , 𝑙𝜈 times, we have

E
𝜕𝑑𝑓

𝜕𝑥𝑖1 . . . 𝜕𝑥𝑖𝑑
(𝑋) =

∑︁
k:k≥l

𝐷∑︁
𝑚=𝜈

∑︁
𝑘𝜈+1,...,𝑘𝑚>0
𝑘1+...+𝑘𝑚≤𝐷

∑︁
𝑗𝜈+1,...,𝑗𝑚

(𝑗1,...,𝑗𝑚)∈[𝑛]𝑚(︁(︂𝑚
𝜈

)︂
𝜈!𝑐(𝑘1+...+𝑘𝑚)

(𝑗1,𝑘1),...,(𝑗𝑚,𝑘𝑚)

𝜈∏︁
𝛼=1

E𝑋𝑘𝛼−𝑙𝛼
𝑗𝛼

𝑚∏︁
𝛼=𝜈+1

E𝑋𝑘𝛼
𝑗𝛼

𝜈∏︁
𝛼=1

𝑘𝛼!
(𝑘𝛼 − 𝑙𝛼)!

)︁
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= 𝜈!𝑙1! · · · 𝑙𝜈 !𝑎𝑖1,...,𝑖𝑑 +𝑅
(𝑑)
i ,

where the “remainder term” 𝑅(𝑑)
i corresponds to the set of indices k satisfying

k > l. If 𝑑 = 𝐷, we clearly have 𝑅(𝑑)
i = 0, and therefore

E
𝜕𝐷𝑓

𝜕𝑥𝑖1 . . . 𝜕𝑥𝑖𝐷
(𝑋) = 𝜈!𝑙1! · · · 𝑙𝜈 !𝑎𝑖1...𝑖𝐷 = 𝜈!|𝐼1|! · · · |𝐼𝜈 |!𝑎𝑖1...𝑖𝐷 , (5.22)

where ℐ = {𝐼1, . . . , 𝐼𝜈} is the partition given by the level sets of the index i. It
follows that for any partition 𝒥 ∈ 𝑃𝑞𝐷,

‖𝐴𝐷‖𝒥 ≤
∑︁

𝒦∈𝑃𝐷

‖𝐴𝐷 ∘ 1𝐿(𝒦)‖𝒥 ≤
∑︁

𝒦∈𝑃𝐷

‖E𝑓 (𝐷)(𝑋) ∘ 1𝐿(𝒦)‖𝒥 . ‖E𝑓 (𝐷)(𝑋)‖𝒥 ,

using the partition of unity 1 =
∑︀

𝒦∈𝑃𝐷
1𝐿(𝒦) and the triangle inequality in the

first, equation (5.22) in the second and Lemma 5.20 in the last step.
The proof is now completed by induction. More precisely, in the next step

we show that for any 𝑑 ∈ [𝐷 − 1] and any partitions ℐ = {𝐼1, . . . , 𝐼𝜇} ∈ 𝑃𝑑,
𝒥 = {𝐽1, . . . , 𝐽𝜈} ∈ 𝑃𝑞𝑑,

‖𝑅(𝑑) ∘ 1𝐿(ℐ)‖𝒥 .
𝐷∑︁

𝑘=𝑑+1

∑︁
𝒦∈𝑃𝑞𝑘

|𝒦|=|𝒥 |

‖𝐴𝑘‖𝒦. (5.23)

Having (5.23) at hand, it follows by reverse induction and Lemma 5.20 that

𝐷∑︁
𝑑=1

∑︁
𝒥 ∈𝑃𝑞𝑑

𝑝|𝒥 |/2‖𝐴𝑑‖𝒥 .
𝐷∑︁
𝑑=1

∑︁
𝒥 ∈𝑃𝑞𝑑

𝑝|𝒥 |/2‖E𝑓 (𝑑)(𝑋)‖𝒥 .

Plugging this into (5.21) and applying Proposition 2.10 finishes the proof.
Step 4: To show (5.23), let us analyze the “remainder tensors” 𝑅(𝑑) in more

detail. To this end, fix 𝑑 ∈ [𝐷 − 1] and partitions ℐ = {𝐼1, . . . , 𝐼𝜈} ∈ 𝑃𝑑,
𝒥 = {𝐽1, . . . , 𝐽𝜇} ∈ 𝑃𝑞𝑑, and let l be the vector with 𝑙𝛼 := |𝐼𝛼| (note that
this implies |l| = 𝑑). For any k ∈ 𝐼𝜈,≤𝐷 with k > l, we define a 𝑑-tensor
𝑆

(𝑑,k)
ℐ = (𝑠(𝑑,𝑘1,...,𝑘𝜈)

i )i∈[𝑛]𝑑 = (𝑠(𝑑)
i )i∈[𝑛]𝑑 as follows:

𝑠
(𝑑)
i = 1i∈𝐿(ℐ)

𝐷∑︁
𝑚=𝜈

∑︁
𝑘𝜈+1,...,𝑘𝑚>0
𝑘1+...+𝑘𝑚≤𝐷

∑︁
𝑗𝜈+1,...,𝑗𝑚

(𝑗1,...,𝑗𝑚)∈[𝑛]𝑚

(︂
𝑚

𝜈

)︂
𝑐

(𝑘1+...+𝑘𝑚)
(𝑗1,𝑘1),...,(𝑗𝑚,𝑘𝑚)

𝜈∏︁
𝛼=1

E𝑋𝑘𝛼−𝑙𝛼
𝑗𝛼

𝑚∏︁
𝛼=𝜈+1

E𝑋𝑘𝛼
𝑗𝛼

Here, we denote by 𝑗𝛼 the value of i on the level set 𝐼𝛼. Clearly,

𝑅(𝑑) ∘ 1𝐿(ℐ) =
∑︁

k∈𝐼𝜈,≤𝐷

k>l

𝜈! 𝑘1

(𝑘1 − 𝑙1)!
· · · 𝑘𝜈

(𝑘𝜈 − 𝑙𝜈)!
𝑆

(𝑑,k)
ℐ .
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Therefore, it remains to prove that there is a partition 𝒦 ∈ 𝑃𝑞|k| with |𝒦| = |𝒥 |
such that

‖𝑆(𝑑,k)
ℐ ‖𝒥 . ‖𝐴|k|‖𝒦. (5.24)

The tensor will be given by an appropriate embedding of the 𝑑-tensor 𝑆(𝑑,k)
ℐ . To

this end, choose any partition ̃︀ℐ = {̃︀𝐼1, . . . , ̃︀𝐼𝜈} ∈ 𝑃|k| with |̃︀𝐼𝛼| = 𝑘𝛼 and 𝐼𝛼 ⊂ ̃︀𝐼𝛼
for all 𝛼. Embedding the 𝑑-tensor 𝑆(𝑑,k)

ℐ into the space of |k|-tensors is done by
defining a new tensor ̃︀𝑆|k| = (̃︀𝑠|k|

i )i given by

̃︀𝑠|k|
i = 𝑠

(𝑑)
i[𝑑]

1i∈𝐿(̃︀ℐ).

We choose the partition 𝒦 = {𝐾1, . . . , 𝐾𝜇} defined in the following way: for any
𝑗, we have 𝐽𝑗 ⊂ 𝐾𝑗 , so that it remains to assign the elements 𝑟 ∈ {𝑞𝑑+1, . . . , 𝑞|k|}
to the sets 𝐾𝑗 . Write 𝑟 = 𝜂𝑞 +𝑚 for some 𝜂 ∈ {𝑑, . . . , |k| − 1} and 𝑚 ∈ [𝑞]. Sincẽ︀ℐ is a partition of |k|, there is a unique 𝑗 ∈ [𝜈] such that 𝜂 + 1 ∈ ̃︀𝐼𝑗. Take the
smallest element 𝑡 in ̃︀𝐼𝑗 and add 𝑟 to the same set as 𝜋(𝑟) := (𝑡− 1)𝑞 +𝑚. Note
that 𝐼𝑗 ⊂ ̃︀𝐼𝑗 implies 𝑡 ∈ [𝑑], so that the procedure is well-defined.

We claim that
‖𝑆(𝑑,|k|)

ℐ ‖𝒥 ≤ ‖̃︀𝑆|k|‖𝒦. (5.25)

To see this, let 𝑥(𝛽) = (𝑥(𝛽)
i𝐽𝛽

)𝛽∈[𝜇] be a collection of vectors satisfying ‖𝑥(𝛽)‖2 ≤ 1.

This gives rise to another collection of unit vectors 𝑦(𝛽) = (𝑦(𝛽)
i𝐾𝛽

)𝛽∈[𝜇] defined by

𝑦
(𝛽)
i𝐾𝛽

= 𝑥
(𝛽)
i𝐾𝛽∩[𝑞𝑑]

∏︁
𝑟∈𝐾𝛽∖[𝑞𝑑]

1𝑖𝑟=𝑖𝜋(𝑟)

Now, it follows that

∑︁
|i[𝑑]|≤𝑛

𝑠
(𝑑)
i[𝑑]

𝜇∏︁
𝛽=1

𝑥
(𝛽)
(𝑒𝑞(i))𝐽𝛽

=
∑︁

|i[|k|]|≤𝑛

̃︀𝑠|k|
i|k|

𝜇∏︁
𝛽=1

𝑥
(𝛽)
(𝑒𝑞(i))𝐽𝛽

=
∑︁

|i[|k|]|≤𝑛

̃︀𝑠(|k|)
i[|k|]

𝜇∏︁
𝛽=1

𝑦
(𝛽)
(𝑒𝑞(i))𝐾𝛽

.

These equations follow from the definition of the matrix ̃︀𝑆|k| and the fact that if
i ∈ 𝑒𝑞(𝐿(̃︀ℐ)), then for 𝑟 > 𝑞𝑑, 𝑖𝑟 = 𝑖𝜋(𝑟), which implies 𝑦(𝛽)

i𝐾𝛽
= 𝑥

(𝛽)
i𝐾𝛽∩[𝑞𝑑]

= 𝑥
(𝛽)
i𝐽𝛽

. As
this holds true for any collection 𝑥(𝛽), we obtain (5.25).

Finally, we prove
‖̃︀𝑆|k|‖𝒦 . ‖𝐴|k|‖𝒦 (5.26)

for any partition 𝒦 ∈ 𝑃𝑞|k|. To see this, note that if i ∈ 𝐿(̃︀ℐ), we have ̃︀𝑠|k|
i =

𝑎
|k|
i

∏︀𝜈
𝛼=1 E𝑋

𝑘𝛼−𝑙𝛼
𝑖𝛼

. As a consequence,

̃︀𝑆|k| = (𝐴|k| ∘ 1𝐿(̃︀ℐ)) ∘ ⊗|k|
𝛼=1𝑣𝛼,

where the vectors 𝑣𝛼 are defined by 𝑣𝛼 = (E𝑋𝑘𝛼−𝑙𝛼
𝑖 )𝑖∈[𝑛] if 𝛼 ∈ {min 𝐼1, . . . ,min 𝐼𝜈}
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and 𝑣𝛼 = (1, . . . , 1), otherwise. In particular, we always have ‖𝑣𝛼‖∞ . 1, and
therefore, by Lemma 5.21,

‖̃︀𝑆|k|‖𝒦 . ‖𝐴|k| ∘ 1𝐿(̃︀ℐ)‖𝒦,

from where we easily arrive at (5.26) by applying Lemma 5.20.
Now, (5.24) follows by combining (5.25) and (5.26), which finishes the proof.

5.6 The general sub-exponential case: 𝛼 ∈ (0,1]

Using slightly different techniques than in the proofs of Theorems 5.4 and
5.6, we may obtain concentration results for polynomials in independent random
variables with bounded 𝜓𝛼-norms for any 𝛼 ∈ (0,1]. Here, the key difference is
that we will not compare their moments to products of Gaussians but to Weibull
variables.

To this end, we need some further notations. Let 𝐴 = (𝑎i)i∈[𝑛]𝑑 be a 𝑑-tensor
and 𝐼 ⊂ [𝑑] a set of indices. Then, for any i𝐼 := (𝑖𝑗)𝑗∈𝐼 , we denote by 𝐴i𝐼𝑐 = (𝑎i)i𝐼𝑐

the (𝑑− |𝐼|)-tensor defined by fixing 𝑖𝑗, 𝑗 ∈ 𝐼. For instance, if 𝑑 = 4, 𝐼 = {1,3}
and 𝑖1 = 1, 𝑖3 = 2, then 𝐴i𝐼𝑐 = (𝑎1𝑗2𝑘)𝑗𝑘.

For 𝐼 = [𝑑], i. e. we fix all indices of i, we interpret 𝐴i𝐼𝑐 = 𝑎i as the i-th entry
of 𝐴. Moreover, in this case, we assume that there is a single element 𝒥 ∈ 𝑃 (𝐼𝑐)
(which we may call the “empty” partition), and ‖𝐴i𝐼𝑐 ‖𝒥 = |𝑎i| is just the Euclidean
norm of 𝑎i. Finally, note that if 𝐼 = ∅, i𝐼 does not indicate any specification, and
𝐴i𝐼𝑐 = 𝐴.

Using the characterization of the 𝛹𝛼 norms in terms of the growth of 𝐿𝑝 norms
(see Appendix B for details), [KL15, Corollary 2] yields a result similar to Theorem
5.4 for all 𝛼 ∈ (0,1]:

Corollary 5.22. Let 𝑋1, . . . , 𝑋𝑛 be independent, centered random variables sat-
isfying ‖𝑋‖𝛹𝛼 ≤ 𝑀 for some 𝛼 ∈ (0,1], 𝐴 be a symmetric 𝑑-tensor with vanishing
diagonal and consider 𝑓𝑑,𝐴 = 𝑓𝑑,𝐴(𝑋) as in (5.3). We have for any 𝑡 ≥ 0

P
(︁

|𝑓𝑑,𝐴| ≥ 𝑡
)︁

≤ 2 exp
(︁

− 1
𝐶𝑑,𝛼

min
𝐼⊂[𝑑]

min
𝒥 ∈𝑃 (𝐼𝑐)

(︁ 𝑡

𝑀𝑑 maxi𝐼
‖𝐴i𝐼𝑐 ‖𝒥

)︁ 2𝛼
2|𝐼|+𝛼|𝒥 |

)︁
.

The main goal of this section is to generalize Corollary 5.22 to arbitrary
polynomials similarly to Theorem 5.6, which is the following result.

Theorem 5.23. Let 𝑋1, . . . , 𝑋𝑛 be independent random variables with ‖𝑋𝑖‖𝜓𝛼

≤ 𝑀 for some 𝛼 ∈ (0,1] and 𝑀 > 0. Let 𝑓 : R𝑛 → R be a polynomial of total
degree 𝐷 ∈ N. Then, for any 𝑡 ≥ 0, it holds

P(|𝑓(𝑋) − E𝑓(𝑋)| ≥ 𝑡)

≤ 2 exp
(︁

− 1
𝐶𝐷,𝛼

min
𝑑∈[𝐷]

min
𝐼⊂[𝑑]

min
𝒥 ∈𝑃 (𝐼𝑐)

(︁ 𝑡

𝑀𝑑 maxi𝐼
‖(E𝑓 (𝑑)(𝑋))i𝐼𝑐 ‖𝒥

)︁ 2𝛼
2|𝐼|+𝛼|𝒥 |

)︁
.
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To prove Theorem 5.23, note that one particular example of centered random
variables with ‖𝑋‖𝛹𝛼 ≤ 𝑀 is given by symmetric Weibull variables with shape
parameter 𝛼 (and scale parameter 1), i. e. symmetric random variables 𝑤 with
P(|𝑤| ≥ 𝑡) = exp(−𝑡𝛼). In fact, [KL15, Example 3] especially implies the following
analogue of Lemma 5.16. Here, we write 𝐴 ∼𝑑,𝛼 𝐵 for a two-sided inequality
𝐶−1
𝑑,𝛼𝐴 ≤ 𝐵 ≤ 𝐶𝑑,𝛼𝐴.

Lemma 5.24. Let 𝐴 = (𝑎i)i∈[𝑛]𝑑 be a 𝑑-tensor and (𝑤𝑗𝑖 )𝑖∈[𝑛],𝑗∈[𝑑], an array of i. i. d.
Weibull variables with shape parameter 𝛼 ∈ (0,1]. Then, for every 𝑝 ≥ 2,

‖⟨𝐴,𝑤1 ⊗ . . .⊗ 𝑤𝑑⟩‖𝑝 ∼𝑑,𝛼

∑︁
𝐼⊂[𝑑]

∑︁
𝒥 ∈𝑃 (𝐼𝑐)

𝑝|𝐼|/𝛼+|𝒥 |/2 max
i𝐼

‖𝐴i𝐼𝑐 ‖𝒥 .

Moreover, we need a replacement of Lemma 5.15. Here, we use Weibull instead
of Gaussian random variables to compare the 𝑝-th moments:

Lemma 5.25. For any 𝑘 ∈ N, any 𝛼 > 0 and any 𝑝 ≥ 1 the following holds.
For any set of independent, symmetric random variables 𝑌1, . . . , 𝑌𝑛 satisfying
‖𝑌𝑖‖𝜓𝛼

𝑘
≤ 𝑀 we have

⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑎𝑖𝑌𝑖

⃦⃦⃦
𝑝

≤ 2𝑐𝛼,𝑘𝑀
⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑎𝑖𝑤𝑖1 · · ·𝑤𝑖𝑘
⃦⃦⃦
𝑝
,

where 𝑤𝑖𝑗 are symmetric i. i. d. Weibull random variables with shape parameter 𝛼
and 𝑐𝛼,𝑘 := (𝑘/(1 − log(2)))𝑘/𝛼.

Proof. Due to homogeneity we assume 𝑀 = 1, and for brevity we set 𝑐 := 𝑐𝛼,𝑘.
By Markov’s inequality we have P(|𝑌𝑖| ≥ 𝑡) ≤ 2 exp(−𝑡𝛼/𝑘) for any 𝑖 ∈ [𝑛] and all
𝑡 ≥ 0.

The inclusion {𝑐1/𝑘|𝑤𝑖1| ≥ 𝑡1/𝑘, . . . , 𝑐1/𝑘|𝑤𝑖𝑘| ≥ 𝑡1/𝑘} ⊆ {𝑐|𝑤𝑖1 · · ·𝑤𝑖𝑘| ≥ 𝑡} holds
for any 𝑖 ∈ [𝑛] and 𝑡 ≥ 0. This yields for all 𝑡 ≥ 1

P(𝑐|𝑤𝑖1 · · ·𝑤𝑖𝑘| ≥ 𝑡) ≥
𝑘∏︁
𝑗=1

P(𝑐1/𝑘|𝑤𝑖𝑗| ≥ 𝑡1/𝑘) = exp
(︁

− 𝑘
(︁ 𝑡
𝑐

)︁𝛼/𝑘)︁
= exp

(︁
− (1 − log(2))𝑡𝛼/𝑘

)︁
≥ 2 exp

(︁
− 𝑡𝛼/𝑘

)︁
≥ P(|𝑌𝑖| ≥ 𝑡),

where the second inequality requires the condition 𝑡 ≥ 1. Now the rest follows
exactly as in [AW15, Proof of Lemma 5.4].

Alternatively, one can extend the inequality to all 𝑡 ≥ 0 by multiplying the left
hand side by a constant. Indeed, it is easy to see (by observing P(𝑐|𝑤𝑖1 · · ·𝑤𝑖𝑘| ≥
1) ≥ 2/𝑒) that for all 𝑡 ≥ 0 it holds

P(|𝑌𝑖| ≥ 𝑡) ≤ 𝑒

2 P(𝑐|𝑤𝑖1 · · ·𝑤𝑖𝑘| ≥ 𝑡).



5.6 The general sub-exponential case: 𝛼 ∈ (0,1] 117

Thus, the contraction principle [Kwa87, Theorem 1] tells us that for any 𝑝 ≥ 1 we
have ⃦⃦⃦ 𝑛∑︁

𝑖=1

𝑎𝑖𝑌𝑖

⃦⃦⃦
𝑝

≤ 𝑒

2𝑐𝛼,𝑘𝑀
⃦⃦⃦ 𝑛∑︁
𝑖=1

𝑎𝑖𝑤𝑖1 · · ·𝑤𝑖𝑘
⃦⃦⃦
𝑝
.

Our next goal is to adapt Lemmas 5.19, 5.20 and 5.21 to the “restricted” tensors
𝐴i𝐼𝑐 . That is, we examine whether (a modification of) the inequality

‖(𝐴 ∘ 1𝐶)i𝐼𝑐 ‖𝒥 ≤ ‖𝐴i𝐼𝑐
‖𝒥 (5.27)

still holds in this situation, where 𝒥 is a partition of 𝐼𝑐.

Lemma 5.26. Let 𝐴 = (𝑎i)i∈[𝑛]𝑑 be a 𝑑-tensor, 𝐼 ⊂ [𝑑] and i𝐼 ∈ [𝑛]𝐼 fixed.

1. If 𝐶 = {i : 𝑖𝑘1 = 𝑗1, . . . , 𝑖𝑘𝑙
= 𝑗𝑙} for some 1 ≤ 𝑘1 < . . . < 𝑘𝑙 ≤ 𝑑 (“general-

ized row”), then (5.27) holds.

2. If 𝐶 = {i : 𝑖𝑘 = 𝑖𝑙 ∀𝑘, 𝑙 ∈ 𝐾} for some 𝐾 ⊂ [𝑑] (“generalized diagonal”),
then (5.27) holds.

3. If 𝐶1, 𝐶2 ⊂ [𝑛]𝑑 are such that (5.27) holds, then so is 𝐶1 ∩ 𝐶2.

4. If 𝒦 ∈ 𝑃𝑑, then ‖(𝐴 ∘ 1𝐿(𝒦))i𝐼𝑐 ‖𝒥 ≤ 2|𝒦|(|𝒦|−1)/2‖𝐴i𝐼𝑐 ‖𝒥 .

5. For any vectors 𝑣1, . . . , 𝑣𝑑 ∈ R𝑛, ‖(𝐴 ∘ ⊗𝑑
𝑖=1𝑣𝑖)i𝐼𝑐 ‖𝒥 ≤ ‖𝐴i𝐼𝑐 ‖𝒥

∏︀𝑑
𝑖=1‖𝑣𝑖‖∞.

Proof. To see (1), we may assume that {𝑘1, . . . , 𝑘𝑙} ∩ 𝐼 = ∅ (note that in the
case {𝑘1, . . . , 𝑘𝑙} ∩ 𝐼 ≠ ∅, either the conditions are not compatible, in which
case (𝐴 ∘ 1𝐶)𝑖𝐼𝑐 = 0, or we can remove some of the conditions and obtain a
subset with {𝑘1, . . . , 𝑘̃︀𝑙} ∩ 𝐼 = ∅). In this case, if 𝐶 is a generalized row, then
(𝐴 ∘ 1𝐶)i𝐼𝑐 = 𝐴i𝐼𝑐 ∘ 1𝐶′ for some generalized row 𝐶 ′ in 𝐼𝑐. This proves (1).

If 𝐶 is a generalized diagonal, we have to consider two situations. Assuming
𝐾 ∩ 𝐼 = ∅, i. e. 𝐾 is subset of 𝐼𝑐, we immediately obtain (2). On the other hand, if
𝐾 ∩ 𝐼 ≠ ∅, then (𝐴 ∘ 1𝐶)i𝐼𝑐 = 𝐴i𝐼𝑐 ∘ 1𝐶′ for some generalized row 𝐶 ′ in 𝐼𝑐, readily
leading to (2) again.

(3) is clear. To see (4), one may argue as in the proof of Lemma 5.20 (for 𝑞 = 1),
replacing Lemma 5.19 (2) and (3) by their analogues we just proved. Finally, an
easy modification of the proof of Lemma 5.21 yields (5).

We are now ready to prove Theorem 5.23. Here, we recall the notation used in
the proof of Theorem 5.6, with the only difference that now, by 𝑓 . 𝑔 we mean
an inequality of the form 𝑓 ≤ 𝐶𝐷,𝛼𝑔.

Proof of Theorem 5.23. We will follow the proof of Theorem 5.6. In particular,
let us assume 𝑀 = 1.



118 Chapter 5 Polynomials in independent random variables

Step 1. Recall the inequality from the proof of Theorem 5.6

|𝑓(𝑋) − E𝑓(𝑋)| ≤
𝐷∑︁
𝑑=1

𝑑∑︁
𝜈=1

∑︁
k∈𝐼𝜈,𝑑

⃒⃒⃒ ∑︁
i∈[𝑛]𝜈

𝑎k
i (𝑋𝑘1

𝑖1
− E𝑋𝑘1

𝑖1
) · · · (𝑋𝑘𝜈

𝑖𝜈
− E𝑋𝑘𝜈

𝑖𝜈
)
⃒⃒⃒
.

Step 2. Applying Lemma 5.26, we arrive at

‖𝑓(𝑋) − E𝑓(𝑋)‖𝑝 .
𝐷∑︁
𝑑=1

𝑑∑︁
𝜈=1

∑︁
k∈𝐼𝜈,𝑑

⃦⃦⃦ ∑︁
i∈[𝑛]𝜈

𝑎k
i (𝑤(1)

𝑖1,1 · · ·𝑤(1)
𝑖1,𝑘1

) · · · (𝑤(𝜈)
𝑖𝜈 ,1 · · ·𝑤(𝜈)

𝑖𝜈 ,𝑘𝜈
)
⃦⃦⃦
𝑝
.

Here, (𝑤(𝑗)
𝑖,𝑘 ) is an array of i. i. d. symmetric Weibull variables with shape parameter

𝛼. Now we may define 𝑑-tensors 𝐴𝑑 as in the proof of Theorem 5.6. Similarly as
in (5.21), rewriting and applying Lemma 5.24 and Lemma 5.26 (4) yields

‖𝑓(𝑋) − E𝑓(𝑋)‖𝑝 .
𝐷∑︁
𝑑=1

𝑑∑︁
𝜈=1

∑︁
k∈𝐼𝜈,𝑑

‖⟨𝐴𝑑 ∘ 1𝐿(𝒦(𝑘1,...,𝑘𝜈)),⊗𝜈
𝑗=1 ⊗𝑘𝑗

𝑘=1 (𝑤(𝑗)
𝑖,𝑘 )𝑖≤𝑛⟩‖𝑝

.
𝐷∑︁
𝑑=1

𝑑∑︁
𝜈=1

∑︁
k∈𝐼𝜈,𝑑

∑︁
𝐼⊂[𝑑]

∑︁
𝒥 ∈𝑃 (𝐼𝑐)

𝑝
|𝐼|
𝑟

+ |𝒥 |
2 max

i𝐼

‖(𝐴𝑑 ∘ 1𝐿(𝒦(k)))i𝐼𝑐 ‖𝒥

.
𝐷∑︁
𝑑=1

∑︁
𝐼⊂[𝑑]

∑︁
𝒥 ∈𝑃 (𝐼𝑐)

𝑝
|𝐼|
𝑟

+ |𝒥 |
2 max

i𝐼

‖(𝐴𝑑)i𝐼𝑐 ‖𝒥 .

Step 3. In the proof of Theorem 5.6 we have decomposed

E
𝜕𝑑𝑓

𝜕𝑥𝑖1 . . . 𝜕𝑥𝑖𝑑
(𝑋) = 𝜈!𝑙1! · · · 𝑙𝜈 !𝑎𝑖1,...,𝑖𝑑 +𝑅

(𝑑)
i

with a remainder tensor 𝑅(𝑑)
i corresponding to the set of indices k with k > l and

𝑅
(𝑑)
i = 0 for 𝑑 = 𝐷. Again, for any 𝐼 ⊂ [𝐷] and any partition 𝒥 ∈ 𝑃 (𝐼𝑐),

‖(𝐴𝐷)i𝐼𝑐 ‖𝒥 ≤
∑︁

𝒦∈𝑃𝐷

‖(𝐴𝐷 ∘ 1𝐿(𝒦))i𝐼𝑐 ‖𝒥 ≤
∑︁

𝒦∈𝑃𝐷

‖(E𝑓 (𝐷)(𝑋) ∘ 1𝐿(𝒦))i𝐼𝑐 ‖𝒥

. ‖(E𝑓 (𝐷)(𝑋))i𝐼𝑐 ‖𝒥 ,

using Lemma 5.26 (4) in the last step. To complete the proof, we need to show that
for any 𝑑 = 1, . . . , 𝐷− 1, any 𝐼 ⊂ [𝑑] and any partitions ℐ ∈ 𝑃 ([𝑑]), 𝒥 ∈ 𝑃 ([𝑑]∖𝐼),

‖(𝑅(𝑑) ∘ 1𝐿(ℐ))i𝐼𝑐 ‖𝒥 .
𝐷∑︁

𝑘=𝑑+1

∑︁
𝒦∈𝑃 ([𝑘]∖𝐼)

|𝒦|≥|𝒥 |

‖(𝐴𝑘)i𝐼𝑐 ‖𝒦. (5.28)

Actually, analyzing the proof one can see it is possible to restrict the second sum
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on the right-hand side to partitions 𝒦 with |𝒦| ∈ {|𝒥 |, |𝒥 | + 1}. Once having
proven (5.28), it follows from reverse induction that∑︁

𝑝|𝐼|/𝑟+|𝒥 |/2 max
i𝐼

‖(𝐴𝑑)i𝐼𝑐 ‖𝒥 .
∑︁

𝑝|𝐼|/𝑟+|𝒥 |/2 max
i𝐼

‖(E𝑓 (𝑑)(𝑋))i𝐼𝑐 ‖𝒥 ,

where
∑︀

=
∑︀

𝑑∈[𝐷]
∑︀

𝐼⊆[𝑑]
∑︀

𝒥 ∈𝑃 (𝐼𝑐). Here, we use that for any 𝑝 ≥ 2 and any
|𝒦| ≥ |𝒥 | we have 𝑝|𝒥 |/2 ≤ 𝑝|𝒦|/2. In view of Step 2 and Proposition 2.10, this
finishes the proof.

Step 4. Recall the 𝑑-tensor 𝑆(𝑑,k)
ℐ = (𝑠(𝑑,𝑘1,...,𝑘𝜈)

i )i∈[𝑛]𝑑 = (𝑠(𝑑)
i )i∈[𝑛]𝑑 and for any

k ∈ 𝐼𝜈,≤𝐷 with k > l the |k|-tensor ̃︀𝑆|k| from the proof of Theorem 5.6.
In the sequel, we fix the following items:

• 𝑑 ∈ [𝐷 − 1] and k satisfying |k| > 𝑑,

• a set 𝐼 ⊂ [𝑑] and i𝐼 ∈ [𝑛]𝐼 ,

• an admissible partition ℐ ∈ 𝑃 ([𝑑]) and an associated extension ̃︀𝐼 ∈ 𝑃 ([|k|]).

The notion of admissibility was not relevant in Theorem 5.6, as we have not fixed
any indices 𝐼 and values i𝐼 ∈ [𝑛]𝐼 . Here, it simply means that the level sets have
to compatible with the fact that we have fixed some of the partial derivatives by
𝐼 and i𝐼 . Also note that ℐ is a partition of [𝑑] and not of [𝑑]∖𝐼, since it arises from
level sets of partial derivatives and includes the those from 𝐼.

Our aim is to find a partition 𝒦 ∈ 𝑃 ([|k|]∖𝐼) with |𝒦| ∈ {|𝒥 |, |𝒥 | + 1} such
that

‖(𝑆(𝑑,k)
ℐ )i𝐼𝑐 ‖𝒥 . ‖(𝐴|k|)i𝐼𝑐 ‖𝒦. (5.29)

First, set 𝒦 := 𝒥 = {𝐽1, . . . , 𝐽𝜇}, so that it remains to assign the elements
𝑟 ∈ {𝑑 + 1, . . . , |k|}. This is done as follows: Select 𝑟 ∈ {𝑑 + 1, |k|}, and do the
following steps:

• choose 𝑘 ∈ N such that 𝑟 ∈ ̃︀𝐼𝑘,
• take the smallest element 𝑡 =: 𝜋(𝑟) in ̃︀𝐼𝑘 (since 𝐼𝑘 ⊂ ̃︀𝐼𝑘, we have 𝑡 ∈ [𝑑]),

• if 𝑡 ∈ 𝐼𝑐, there is a set 𝐽𝑗 ∋ 𝑡 and we add 𝑟 to 𝐽𝑗; otherwise, we assign 𝑟 to
an “extra set” 𝐾𝜇+1

In particular, it may happen that 𝐾𝜇+1 = ∅. In this case, we ignore 𝛽 = 𝜇+ 1 in
the rest of the proof.

Now we claim that it holds

‖(𝑆(𝑑,|k|)
ℐ )i𝐼𝑐 ‖𝒥 ≤ ‖(̃︀𝑆|k|)i𝐼𝑐 ‖𝒦. (5.30)
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Figure 5.1: An illustration of the procedure of producing the partition 𝒦. Here,
we start with 𝑑 = 6, |k| = 8, 𝐼 = {2,3}. The partition ̃︀ℐ is indicated
by colors, i. e. ̃︀ℐ = {{1,2,5}, {3,6,8}, {4,7}}. {8} belongs to 𝐾4 = 𝐾𝜇+1
since {3} ∈ 𝐼. Changing its color to yellow would produce a partition
𝒦 with 3 subsets.

To see this, let 𝑥 = (𝑥(𝛽))𝛽∈[𝜇] = ((𝑥(𝛽)
i𝐽𝛽

))𝛽∈[𝜇] be a unit vector with respect to 𝒥 ,
i. e. |𝑥|𝒥 = max𝛽∈[𝜇]|𝑥(𝛽)| ≤ 1. We embed it in the unit ball with respect to |𝑥|𝒦
by defining 𝑦 = (𝑦(𝛽))𝛽∈[𝜇+1] via

𝑦
(𝛽)
i𝐾𝛽

=
{︃
𝑥

(𝛽)
i𝐾𝛽∩[𝑑]

∏︀
𝑟∈𝐾𝛽∖[𝑑] 1𝑖𝑟=𝑖𝜋(𝑟) 𝛽 ∈ [𝜇]∏︀

𝑟∈𝐾𝜇+1
1𝑖𝑟=𝑖𝜋(𝑟) 𝛽 = 𝜇+ 1.

As 𝑦(𝜇+1) has a single non-zero entry, it is easy to see that |𝑦|𝒦 ≤ 1. Moreover,
by the definition of the matrix ̃︀𝑆|𝑘| and the fact that if i ∈ 𝐿(̃︀ℐ), then for 𝑟 > 𝑑,
𝑖𝑟 = 𝑖𝜋(𝑟), which implies 𝑦(𝛽)

i𝐾𝛽
= 𝑥

(𝛽)
i𝐾𝛽∩[𝑑]

= 𝑥
(𝛽)
i𝐽𝛽

as well as 𝑦(𝜇+1)
i𝐾𝜇+1

= 1 we have

⟨(𝑆(𝑑,k))i𝐼𝑐 ,⊗𝜇
𝛽=1𝑥

(𝛽)⟩ = ⟨(̃︀𝑆(|𝑘|))i𝐼𝑐 ,⊗𝜇+1
𝛽=1𝑦

(𝛽)⟩.

Hence, the supremum on the left hand side of (5.30) is taken over a subset of the
unit ball with respect to |𝑥|𝒦. Finally, it remains to prove

‖(̃︀𝑆|k|)i𝐼𝑐 ‖𝒦 . ‖(𝐴|k|)i𝐼𝑐 ‖𝒦 (5.31)

for any partition 𝒦 ∈ 𝑃 (𝐼𝑐). This may be achieved as in the proof of Theorem
5.6, replacing Lemma 5.21 by Lemma 5.26 (5).

Combining (5.30) and (5.31) yields (5.29), which finishes the proof.

Finally, we prove Proposition 5.1 and Theorem 5.2, from which Corollary 5.3
follows immediately.

Proof of Proposition 5.1. The case 𝛼 ∈ (0,1] follows from the 𝑑 = 2 case of
Corollary 5.22. 𝛼 = 2 corresponds to the Hanson–Wright inequality.

Proof of Theorem 5.2. Let 𝛼 ∈ (0,1] and consider the bound given by Theorem
5.23. Fix any 𝑑 ∈ [𝐷], and observe that for any 𝐼 ⊂ [𝑑], any i𝐼 and any 𝒥 ∈ 𝑃 (𝐼𝑐)
we have by (5.13)

‖(E𝑓 (𝑑)(𝑋))i𝐼𝑐 ‖𝒥 ≤ ‖(E𝑓 (𝑑)(𝑋))i𝐼𝑐 ‖HS ≤ ‖E𝑓 (𝑑)(𝑋)‖HS
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as well as
𝛼

𝑑
≤ 2𝛼

2|𝐼| + 𝛼|𝒥 |
≤ 2.

If 𝑡 ≥ 𝑀𝑑‖E𝑓 (𝑑)(𝑋)‖HS, this immediately yields the result. Otherwise, note that
the tail bound given in Theorem 5.2 is trivial. (In fact, here one needs to ensure
that 𝐶𝐷,𝛼 is sufficiently large, e. g. 𝐶𝐷,𝛼 ≥ 1.)

In a similar way, it is possible to derive the same results for 𝛼 = 2/𝑞 and any
𝑞 ∈ N from Theorem 5.6. From these results, the exponential moment bound
follows by standard arguments, see for example [BGS19, Proof of Theorem 1.1].





APPENDIX A

Approximate tensorization of entropy in finite
spaces

The concentration results for finite spin systems were based on an approximate
tensorization property of the entropy. Here, we reformulate and provide a complete
proof of a result of Marton [Mar15] and moreover rewrite it in the terms of entropy
of functions instead of relative entropy of measures. Let 𝒳 be a finite set, 𝒳 𝑛 its
𝑛-fold product and fix a probability measure 𝑞𝑛 on 𝒳 𝑛. Define the total variation
distance, the relative entropy and the Wasserstein-2-type distance

𝑑𝑇𝑉 (𝜇,𝜈) := sup
𝐴⊆𝒳 𝑛

|𝜇(𝐴) − 𝜈(𝐴)| = 1
2
∑︁
𝑥∈𝒳 𝑛

|𝜇({𝑥}) − 𝜈({𝑥})|,

𝐻(𝜇 || 𝜈) =
ˆ
𝑑𝜇

𝑑𝜈
log 𝑑𝜇

𝑑𝜈
𝑑𝜈 if 𝜇 ≪ 𝜈

𝑊2(𝜇, 𝜈) = inf
𝜋∈𝐶(𝜇,𝜈)

(︁ 𝑛∑︁
𝑖=1

𝜋(𝑥𝑖 ̸= 𝑦𝑖)2
)︁1/2

,

where 𝐶(𝜇,𝜈) is the set of all couplings of 𝜇 and 𝜈, i. e. probability measures 𝜋 on
𝒳 𝑛 × 𝒳 𝑛 with marginals 𝜇 and 𝜈.
Remark. The infimum in the definition of 𝑊2 is always attained, since 𝐶(𝜇,𝜈)
is a compact subset of 𝒫(𝒳 𝑛 × 𝒳 𝑛) equipped with the weak topology and the
map 𝜋 ↦→ (

∑︀𝑛
𝑖=1 𝜋(𝑥𝑖 ̸= 𝑦𝑖)2)1/2 is lower semicontinuous. This fact and the gluing

lemma for measures with a common marginal [AG13, Theorem 2.1] can be used to
prove that 𝑊2 is a distance function on 𝒫(𝒳 𝑛), see for example [Vil09, Chapter
6] for a similar line of reasoning.

Denote by 𝜇𝑖, 𝜈𝑖 the pushforward of 𝜇 and 𝜈 respectively of the projection onto
the 𝑖-th coordinate. By the subadditivity of the square root (for the upper bound
for 𝑊2) as well as the fact that every 𝜋 ∈ 𝐶(𝜇,𝜈) induces a coupling of 𝜇𝑖, 𝜈𝑖 via
the projection onto the 𝑥𝑖 and 𝑦𝑖 coordinate (for the lower bound), we obtain

𝑛∑︁
𝑖=1

𝑑2
𝑇𝑉 (𝜇𝑖, 𝜈𝑖) ≤ 𝑊 2

2 (𝜇,𝜈) ≤ 𝑛𝑑𝑇𝑉 (𝜇,𝜈). (A.1)
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We need the following lemma, which is a slight improvement of [Mar15, Lemma
2].

Lemma A.1. Let 𝑞 be a probability measure on a finite space 𝒳 and 𝛽𝑞 :=
inf𝑥∈𝒳+ 𝑞(𝑥), where 𝒳+ := {𝑥 ∈ 𝒳 : 𝑞(𝑥) > 0}. For any probability measure 𝑝 ≪ 𝑞
we have

𝐻(𝑝 || 𝑞) ≤ 2𝛽−1
𝑞 𝑑2

𝑇𝑉 (𝑝,𝑞).

Proof. The shifted logarithm 𝑓(𝑥) := log(1 + 𝑥) is a concave function on (−1,∞),
so that for any 𝑥 ≥ −1 the inequality 𝑓(𝑥) ≤ 𝑓 ′(0)𝑥 = 𝑥 holds. Rewrite 𝑝

𝑞
= 1+ 𝑝−𝑞

𝑞

to obtain

𝐻(𝑝 || 𝑞) =
∑︁
𝑥∈𝒳+

𝑞(𝑥)
(︂

1 + 𝑝(𝑥) − 𝑞(𝑥)
𝑞(𝑥)

)︂
𝑓

(︂
𝑝(𝑥) − 𝑞(𝑥)

𝑞(𝑥)

)︂
≤

∑︁
𝑥∈𝒳+

𝑞(𝑥)
(︂

1 + 𝑝(𝑥) − 𝑞(𝑥)
𝑞(𝑥)

)︂
𝑝(𝑥) − 𝑞(𝑥)

𝑞(𝑥) =
∑︁
𝑥∈𝒳+

(𝑝(𝑥) − 𝑞(𝑥))2

𝑞(𝑥)

≤ 𝛽−1
𝑞

∑︁
𝑥∈𝒳+

(𝑝(𝑥) − 𝑞(𝑥))2 ≤ 𝛽−1
𝑞 𝑑𝑇𝑉 (𝑝,𝑞)

∑︁
𝑥∈𝒳

|𝑝(𝑥) − 𝑞(𝑥)|

= 2𝛽−1
𝑞 𝑑2

𝑇𝑉 (𝑝,𝑞).

Unfortunately, the factor 2𝛽−1
𝑞 cannot be removed. To see this, let 𝒳 = {0,1} and

𝑞(0) = 1−𝑞(1) = 𝛼 for a fixed 𝛼 ∈ (0,1/2). Now, considering the family of measures
𝑝𝜀(0) = 𝛼 + 𝜀, an easy calculation yields 𝑑2

𝑇𝑉 (𝑝𝜀,𝑞) = 𝜀2 and 𝐻(𝑝𝜀 || 𝑞) ∼ 2𝛼−1𝜀2.
A consequence of Lemma A.1 is that on finite spaces the relative entropy and

the total variation distance are comparable with a constant depending on the
(fixed) measure 𝑞, i. e. we have

𝑑2
𝑇𝑉 (𝑝,𝑞) ≤ 1

2𝐻(𝑝 || 𝑞) ≤ 𝛽−1
𝑞 𝑑2

𝑇𝑉 (𝑝,𝑞).

Here, the first inequality is the well-known Pinsker inequality (also known as
Csiszár–Kullback–Pinsker inequality), see for example [Tsy09, Lemma 2.5].

Theorem A.2. Let 𝑞𝑛 be a probability measure on a finite space 𝒳 𝑛 with full
support and set 𝛽 := min𝑖∈[𝑛] min𝑥∈𝒳 𝑛 𝑞𝑖(𝑥𝑖 | 𝑥𝑖).

(𝑖) Let 𝑝𝑛 be a probability measure on 𝒳 𝑛. If for all subsets 𝐼 ⊆ [𝑛] and all 𝑦𝐼
we have

𝑊 2
2 (𝑝𝐼(· | 𝑦𝐼), 𝑞𝐼(·, 𝑦𝐼)) ≤ 𝐶

∑︁
𝑖∈𝐼

E𝑝𝐼(·|𝑦𝐼) 𝑑
2
𝑇𝑉 (𝑝𝑖(· | 𝑦𝑖), 𝑞𝑖(· | 𝑦𝑖)), (A.2)

then the approximate tensorization property holds:

𝐻(𝑝𝑛 || 𝑞𝑛) ≤ 𝐶

𝛽

𝑛∑︁
𝑖=1

E𝑝𝑖
𝐻(𝑝𝑖(· | 𝑦𝑖) || 𝑞𝑖(· | 𝑦𝑖)). (A.3)
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In particular, if 𝑓 denotes the density of 𝑝𝑛 with respect to 𝑞𝑛, then this can
be rewritten as

Ent𝑞𝑛(𝑓) ≤ 𝐶

𝛽

𝑛∑︁
𝑖=1

ˆ
Ent𝑞𝑖(·|𝑦𝑖)(𝑓(𝑦𝑖, ·))𝑑𝑞𝑛(𝑦). (A.4)

(𝑖𝑖) Assume that an interdependence matrix 𝐴 of 𝑞𝑛 satisfies ‖𝐴‖2→2 < 1. Then
(A.2) holds with 𝐶 = (1 − ‖𝐴‖2→2)−2. In particular, (A.3) and (A.4) hold
with the same constant.

Proof. (𝑖): We prove the theorem by induction. In the case 𝑛 = 1 there is nothing
to prove if one interprets 𝑞1(· | 𝑦1) = 𝑞. The disintegration theorem for the relative
entropy (see for example [DZ10, Theorem D.13]) yields

𝐻(𝑝𝑛 || 𝑞𝑛) = 1
𝑛

𝑛∑︁
𝑖=1

𝐻(𝑝𝑖 || 𝑞𝑖) + 1
𝑛

𝑛∑︁
𝑖=1

ˆ
𝐻(𝑝𝑖(· | 𝑦𝑖) || 𝑞𝑖(· | 𝑦𝑖))𝑑𝑝𝑖(𝑦𝑖).

We bound the two terms separately. For the first term, using Lemma A.1, equations
(A.1), (A.2) and Pinsker’s inequality gives

1
𝑛

𝑛∑︁
𝑖=1

𝐻(𝑝𝑖 || 𝑞𝑖) ≤ 2
𝛽𝑛

𝑛∑︁
𝑖=1

𝑑2
𝑇𝑉 (𝑝𝑖, 𝑞𝑖) ≤ 2

𝛽𝑛
𝑊 2

2 (𝑝𝑛, 𝑞𝑛)

≤ 2𝐶
𝛽𝑛

𝑛∑︁
𝑖=1

E𝑝𝑛 𝑑2
𝑇𝑉 (𝑝𝑖(· | 𝑦𝑖), 𝑞𝑖(· | 𝑦𝑖))

≤ 𝐶

𝛽𝑛

𝑛∑︁
𝑖=1

E𝑝𝑛 𝐻(𝑝𝑖(· | 𝑦𝑖) || 𝑞𝑖(· | 𝑦𝑖)).

We apply the induction hypothesis to rewrite the second term. For each fixed
𝑖 ∈ [𝑛] and 𝑦𝑖 ∈ 𝒳 we interpret ̃︀𝑞 := 𝑞𝑖(· | 𝑦𝑖) as a measure on 𝒳 𝑖 satisfying

𝛽(̃︀𝑞) = min
𝑗:𝑗 ̸=𝑖

min
𝑥∈𝒳 𝑖

𝑞𝑖(𝑥 | 𝑦𝑖)
𝑞𝑖(𝑥𝑗 | 𝑦𝑖)

= min
𝑗:𝑗 ̸=𝑖

min
𝑥∈𝒳 𝑖

𝑞𝑛(𝑥, 𝑦𝑖)
𝑞𝑛(𝑥𝑗, 𝑦𝑖)

≥ min
𝑗∈[𝑛]

min
𝑧∈𝒳 𝑛

𝑞𝑛(𝑧)
𝑞𝑗(𝑧𝑗)

= 𝛽(𝑞𝑛)

and (A.2) with the same constant 𝐶. To rewrite (A.3) let us denote by 𝑦 ∈ 𝒳 𝑖

a generic vector. A short calculation shows that the conditional probability of
𝑝𝑖(· | 𝑦𝑖) with respect to the projection 𝑝𝑟𝑗 : 𝒳 𝑖 → 𝒳 𝑖𝑗 for some 𝑗 ̸= 𝑖 is given
by 𝑝𝑗(𝑦𝑗 | 𝑦𝑗, 𝑦𝑖), which is the conditional probability of 𝑝𝑛 given (𝑦𝑗, 𝑦𝑖), and the
same holds for 𝑞(· | 𝑦𝑖). Thus we obtain

𝐻(𝑝(· | 𝑦𝑖) || 𝑞(· | 𝑦𝑖)) ≤ 𝐶

𝛽

∑︁
𝑗:𝑗 ̸=𝑖

E𝑝(·|𝑦𝑖) 𝐻
(︀
𝑝(· | 𝑦𝑗, 𝑦𝑖) || 𝑞(· | 𝑦𝑗, 𝑦𝑖)

)︀
.
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Integration with respect to 𝑝𝑖 and summation over 𝑖 yields

1
𝑛

𝑛∑︁
𝑖=1

ˆ
𝐻(𝑝𝑖(· | 𝑦𝑖) || 𝑞𝑖(· | 𝑦𝑖))𝑑𝑝𝑖(𝑦𝑖) ≤ 𝐶

𝛽

𝑛− 1
𝑛

𝑛∑︁
𝑖=1

E𝑝𝑛 𝐻(𝑝𝑖(· | 𝑦𝑖) || 𝑞𝑖(· | 𝑦𝑖)),

which combined with the first term proves the assertion.
(A.4) is a simple rewriting of (A.3), noting that as a consequence of the

disintegration theorem (or in this case Bayes’ theorem) we have

𝑑𝑝𝑖(· | 𝑦𝑖)
𝑑𝑞𝑖(· | 𝑦𝑖)

(𝑦𝑖) = 𝑓(𝑦𝑖, 𝑦𝑖)´
𝑓(𝑦𝑖, 𝑥𝑖)𝑑𝑞𝑖(𝑥𝑖 | 𝑦𝑖)

and 𝑑𝑝𝑖

𝑑𝑞𝑖
(𝑥𝑖) =

´
𝑓(𝑥𝑖, 𝑥𝑖)𝑑𝑞𝑖(𝑥𝑖 | 𝑥𝑖).

(𝑖𝑖): See [Mar15, Theorem 2].

In [Mar15, Theorem 1] it is stated that using the quantity

𝛽 := inf
𝑖=1,...,𝑛

inf
𝑥∈𝒳 𝑛:𝑞𝑛(𝑥)>0

𝑞𝑖(𝑥𝑖 | 𝑥𝑖)

one can deduce 𝑞𝑛(𝑝𝑟𝑖(𝑥) = 𝑥𝑖) ≥ 𝛽 for all 𝑥𝑖 such that the LHS is nonzero. This is
possible only if 𝑞𝑛 has full support. A counterexample is given by the push-forward
of a random uniform permutation under the map 𝜎 ↦→ (𝜎1, . . . , 𝜎𝑛), which satisfies
𝛽 = 1.

Actually, we can modify the condition of Theorem A.2 to allow for measures
without full support. This may be done by using the definition ̃︀𝛽 as in (2.24)
instead of 𝛽. As ̃︀𝛽 is a uniform control, it can be used in any step of the induction,
so that the theorem remains valid. Clearly the inequality (A.3) only holds for
𝑝𝑛 ≪ 𝑞𝑛 only, and (A.4) holds for positive functions vanishing outside the support
of 𝑞𝑛.



APPENDIX B

Properties of Orlicz quasinorms

As mentioned in Chapter 5, the Orlicz norms defined in (5.2) satisfy the triangle
inequality only for 𝛼 ≥ 1. Indeed, the function 𝑔𝛼 : 𝑥 ↦→ exp(𝑥𝛼) is not convex
around 0 for 𝛼 ∈ (0,1), see the following figure. A short calculation yields that 𝑔𝛼
is convex in the region [(𝛼−1 − 1)𝛼−1

,∞) only, and concave around 0.
However, for any 𝛼 ∈ (0,1) this is still a quasinorm, which for many purposes is

sufficient. We shall collect some elementary results on Orlicz quasinorms in this
appendix. The first result is a Hölder-type inequality for the 𝛹𝛼 norms.

Lemma B.1. Let 𝑋1, . . . , 𝑋𝑘 be random variables such that ‖𝑋𝑖‖𝛹𝛼𝑖
< ∞ for

some 𝛼𝑖 ∈ (0,1] and let 𝑡 := (
∑︀𝑘

𝑖=1 𝛼
−1
𝑖 )−1. Then ‖

∏︀𝑘
𝑖=1 𝑋𝑖‖𝛹𝑡 < ∞ and

⃦⃦⃦ 𝑘∏︁
𝑖=1

𝑋𝑖

⃦⃦⃦
𝛹𝑡

≤
𝑘∏︁
𝑗=1

‖𝑋𝑖‖𝛹𝛼𝑖
.
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Figure B.1: The function 𝑔𝛼(𝑥), 𝑥 ∈ [0,3] for four different values of 𝛼.
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Especially for 𝛼𝑖 = 𝛼 for all 𝑖 ∈ [𝑘] this leads to ‖
∏︀𝑘

𝑖=1 𝑋𝑖‖𝛹𝛼/𝑘
≤

∏︀𝑘
𝑖=1‖𝑋𝑖‖𝛹𝛼.

The random variables 𝑋1, . . . , 𝑋𝑘 need not be independent, i. e. we can consider
a random vector 𝑋 = (𝑋1, . . . , 𝑋𝑘) with marginals having 𝛼-sub-exponential tails.

Proof. By homogeneity we can assume ‖𝑋‖𝛹𝛼𝑖
= 1 for all 𝑖 ∈ [𝑘]. We need the

general form of Young’s inequality, i. e. for all 𝑝1, . . . , 𝑝𝑘 > 1 satisfying
∑︀𝑘

𝑖=1 𝑝
−1
𝑖 = 1

and any 𝑥1, . . . , 𝑥𝑘 ≥ 0 we have

𝑘∏︁
𝑖=1

𝑥𝑖 ≤
𝑘∑︁
𝑖=1

𝑝−1
𝑖 𝑥𝑝𝑖

𝑖 ,

which follows easily from the concavity of the logarithm. If we apply this to
𝑝𝑖 := 𝛼𝑖𝑡

−1 and use the convexity of the exponential function, we obtain

E exp
(︁ 𝑘∏︁
𝑖=1

|𝑋𝑖|𝑡
)︁

≤ E exp
(︁ 𝑘∑︁
𝑗=1

𝑝−1
𝑖 |𝑋𝑖|𝛼𝑖

)︁
≤

𝑘∑︁
𝑗=1

𝑝−1
𝑖 E exp

(︁
|𝑋𝑖|𝛼𝑖

)︁
≤ 2.

This is however equivalent to ‖
∏︀𝑘

𝑖=1 𝑋𝑖‖𝛹𝑡 ≤ 1.

To state the other lemmas, for any 0 < 𝛼 < 1 define

𝑑𝛼 := (𝛼𝑒)1/𝛼/2 and 𝐷𝛼 := (2𝑒)1/𝛼.

Lemma B.2. For any 0 < 𝛼 < 1 we have

𝑑𝛼 sup
𝑝≥1

‖𝑋‖𝑝
𝑝1/𝛼 ≤ ‖𝑋‖𝛹𝛼 ≤ 𝐷𝛼 sup

𝑝≥1

‖𝑋‖𝑝
𝑝1/𝛼 . (B.1)

The statement of the lemma remains true for 𝛼 ≥ 1, with (𝛼-independent
constants) 𝑑𝛼 = 1/2 and 𝐷𝛼 = 2𝑒, see [Bob10, Section 8]. We closely follow the
proof therein, but keep track of the 𝛼-dependent constants.

Proof. We begin with the first inequality. By homogeneity, we assume ‖𝑋‖𝛹𝛼 = 1.
First let us show that we have

𝑔(𝑥) := (𝛼𝑒)−1/𝛼 𝑒𝑥
𝛼 − 𝑥 ≥ 0 for 𝑥 ≥ 0. (B.2)

Note that 𝑔 is continuous on [0,∞) and differentiable on (0,∞) with 𝑔(0) > 0
and 𝑔(𝑥) → ∞ as 𝑥 → ∞. Therefore, it suffices to find the critical points. We
can rewrite the condition 𝑔′(𝑥) = 0 as 𝑒𝑦𝑦 = 𝑦1/𝛼(𝛼𝑒)1/𝛼, setting 𝑦 := 𝑥𝛼. From
this representation it can be seen that there can be at most two points 𝑥0 and
𝑥1 satisfying this condition. One of these points is 𝑥𝛼 := 𝛼−1/𝛼, which satisfies
𝑔(𝑥𝛼) = 0. A short calculation shows that 𝑔′′(𝑥𝛼) = 𝛼1/𝛼+1 > 0, so that 𝑥𝛼 is a
global minimum, from which 𝑔 ≥ 0 follows.
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Next, from this we can infer for all 𝑝 ≥ 1 and 𝛼 > 0

𝑥𝑝 ≤
(︁ 𝑝

𝛼𝑒

)︁𝑝/𝛼
𝑒𝑥

𝛼

.

Indeed, by a transformation 𝑦 = 𝑥𝑝 and the change ̃︀𝛼 = 𝛼
𝑝

this is just an application
of (B.2). Consequently, for any 𝑝 ≥ 1 it holds

E|𝑋|𝑝 ≤
(︁ 𝑝

𝛼𝑒

)︁𝑝/𝛼
E exp (|𝑋|𝛼) ≤ 2

(︁ 𝑝

𝛼𝑒

)︁𝑝/𝛼
≤ 2𝑝

(︁ 𝑝

𝛼𝑒

)︁𝑝/𝛼
,

i. e.
‖𝑋‖𝑝 ≤ 2(𝛼𝑒)−1/𝛼𝑝1/𝛼.

For the second inequality, assume sup𝑝≥1
‖𝑋‖𝑝

𝑝1/𝛼 = 1, again by homogeneity. First,
we need to extend the the supremum to 𝑝 ∈ [𝛼,∞), which can be done as follows.
For any 𝑝 ∈ [𝛼, 1) we have

‖𝑋‖𝑝
𝑝1/𝛼 ≤ ‖𝑋‖1

𝑝1/𝛼 ≤ 1
𝑝1/𝛼 ≤ 1

𝛼1/𝛼 =⇒ sup
𝑝≥𝛼

‖𝑋‖𝑝
𝑝1/𝛼 ≤ 1

𝛼1/𝛼 .

Now, by Taylor’s expansion and using the inequality 𝑛𝑛 ≤ 𝑒𝑛𝑛! we obtain

E exp
(︂

|𝑋|𝛼

𝑡𝛼

)︂
= 1 +

∞∑︁
𝑛=1

E|𝑋|𝛼𝑛

𝑡𝛼𝑛𝑛! ≤ 1 +
∞∑︁
𝑛=1

𝑛𝑛

𝑛!𝑡𝛼𝑛 ≤ 1 +
∞∑︁
𝑛=1

(︁ 𝑒
𝑡𝛼

)︁𝑛
= 1

1 − 𝑒/𝑡𝛼
.

For 𝑡 = (2𝑒)1/𝛼 this is less or equal to 2, so that

‖𝑋‖𝛹𝛼 ≤ (2𝑒)1/𝛼 sup
𝑝≥1

‖𝑋‖𝑝
𝑝1/𝛼 .

Lemma B.3. For any 0 < 𝛼 < 1 and any random variables 𝑋,𝑌 it holds

‖𝑋 + 𝑌 ‖𝛹𝛼 ≤ 21/𝛼 (‖𝑋‖𝛹𝛼 + ‖𝑌 ‖𝛹𝛼) .

Proof. Let 𝐾 := ‖𝑋‖𝛹𝛼 and 𝐿 := ‖𝑌 ‖𝛹𝛼 and define 𝑡 := 21/𝛼(𝐾 + 𝐿). We have

E exp
(︂

|𝑋 + 𝑌 |𝛼

𝑡𝛼

)︂
≤ E exp

(︂
(|𝑋| + |𝑌 |)𝛼

𝑡𝛼

)︂
≤ E exp

(︂
|𝑋|𝛼 + |𝑌 |𝛼

2(𝐾 + 𝐿)𝛼

)︂
≤ E exp

(︂
|𝑋|𝛼

2𝐾𝛼

)︂
exp

(︂
|𝑌 |𝛼

2𝐿𝛼

)︂
≤ 1

2 E exp
(︂

|𝑋|𝛼

𝐾𝛼

)︂
+ 1

2 E exp
(︂

|𝑌 |𝛼

𝐿𝛼

)︂
≤ 2.

Here, the second step follows from the inequality (𝑥+ 𝑦)𝛼 ≤ 𝑥𝛼 + 𝑦𝛼 valid for all
𝑥,𝑦 ≥ 0 and 𝛼 ∈ [0,1], and the fourth one is an application of Young’s inequality
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𝑎𝑏 ≤ 𝑎2/2 + 𝑏2/2 for all 𝑎,𝑏 ≥ 0.

Lemma B.4. Let 0 < 𝛼 < 1. For all random variables 𝑋 we have

‖E𝑋‖𝛹𝛼 ≤ 1
𝑑𝛼(log 2)1/𝛼‖𝑋‖𝛹𝛼 .

Proof. Assuming ‖𝑋‖𝛹𝛼 < ∞, an application of Lemma B.2 gives

‖E𝑋‖𝛹𝛼 = |E𝑋|
(log 2)1/𝛼 ≤ ‖𝑋‖1

(log 2)1/𝛼 ≤ 1
𝑑𝛼(log 2)1/𝛼‖𝑋‖𝛹𝛼 .

We can readily infer the following corollary from the last two lemmas.

Corollary B.5. For any 0 < 𝛼 < 1 and any random variable 𝑋 it holds

‖𝑋 − E𝑋‖𝛹𝛼 ≤ 21/𝛼 (︀1 + (𝑑𝛼 log 2)−1/𝛼)︀ ‖𝑋‖𝛹𝛼 .



APPENDIX C
LSIs and difference operators

To conclude this thesis, we discuss the LSI property (2.3) for different choices
of difference operators 𝛤 . Here, we always assume that the probability measure
𝜇 is defined on a product of Polish spaces 𝒴 = ⊗𝑛

𝑖=1𝒳𝑖 (which itself is a Polish
space) and equipped with the product Borel 𝜎-algebra 𝒜 = ℬ(⊗𝑛

𝑖=1𝒳𝑖).
As stated in Chapter 2, we can use the disintegration theorem on Polish spaces

to define the difference operators h and d. For finite spaces, 𝜇(· | 𝑥𝑖) is just the
ordinary conditional probability as used in the definition of the difference operator
d. The setting of Polish spaces is clearly more general than the one of finite spin
systems. However, the next proposition shows that the d−LSI property in fact
enforces the underlying space to be finite. More precisely, in this case we say that
𝜇 has finite support if there is no sequence of sets 𝐴𝑘 ∈ 𝒜 with 𝜇(𝐴𝑘) > 0 for any
𝑘 and 𝜇(𝐴𝑘) → 0.

Proposition C.1. Let 𝒴 = ⊗𝑛
𝑖=1𝒳𝑖 be a product of Polish spaces, and 𝜇 be a

probability measure on 𝒴. If 𝜇 satisfies a d−LSI(𝜎2) for some 𝜎2 < ∞, then 𝜇
has finite support. Moreover, if 𝜇 is a product probability measure, then 𝜇 satisfies
a d−LSI(𝜎2) if and only if 𝜇 has finite support.

Proof. First assume 𝜇 does not have finite support, i. e. there exists a sequence
𝐴𝑘 ∈ 𝒜 with 𝜇(𝐴𝑘) → 0. Choosing 𝑓𝑘 := 1𝐴𝑘

∈ 𝐿∞(𝜇) and assuming a d−LSI(𝜎2)
holds, we obtain

𝜇(𝐴𝑘) log(1/𝜇(𝐴𝑘)) = Ent𝜇(𝑓 2
𝑘 ) ≤ 2𝜎2

ˆ
(d𝑓𝑘)2𝑑𝜇 = 2𝜎2𝜇(𝐴𝑘)(1−𝜇(𝐴𝑘)). (C.1)

This easily leads to a contradiction as 𝑘 → ∞.
On the other hand, let 𝜇 be a product probability measure with finite support.

By tensorization, it suffices to consider 𝑛 = 1, and we may moreover assume 𝒴
to have finitely many elements only. Then, by [BT06, Remark 6.6], 𝜇 satisfies a
d−LSI(𝜎2) with 𝜎2 ≤ 𝐶 log(1/min𝑦:𝜇(𝑦)>0 𝜇(𝑦)), which finishes the proof.

In fact, Proposition C.1 can be adapted to the difference operator h+ as well.
To see this, note that (C.1) can easily be rewritten for the difference operator h+

(with only minor changes) and
´

|d𝑓 |2𝑑𝜇 ≤
´

|h+𝑓 |2𝑑𝜇. In particular, the d- and
h+-LSI properties are not essentially different.
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The situation drastically changes if we consider h−LSIs instead. Here, a sufficient
condition for the h−LSI property to hold is that the measure 𝜇 satisfies an
approximate tensorization (AT) property. As a consequence, for product probability
measures, satisfying an h-LSI is in fact a universal property.

Theorem C.2. Let 𝒴 = ⊗𝑛
𝑖=1𝒳𝑖 be a product of Polish spaces, and 𝜇 be a

probability measure on 𝒴. If 𝜇 satisfies an approximate tensorization property

Ent𝜇(𝑓 2) ≤ 𝐶
𝑛∑︁
𝑖=1

ˆ
Ent𝜇(·|𝑥𝑖)(𝑓 2(𝑥𝑖, ·))𝑑𝜇𝑖(𝑥𝑖),

then 𝜇 also satisfies an h−LSI(𝐶). In particular, any product probability measure
satisfies an h−LSI(1).

For product measures, the theorem might be compared to the Efron–Stein
inequality (see e. g. [ES81; Ste86]) which establishes the tensorization property for
the variance, and can be regarded as a universal Poincaré inequality with respect
to d (see [BGS19] for such an interpretation). However, Theorem C.2 does not
imply the Efron–Stein inequality due to the usage of h instead of d. Unfortunately,
as Proposition C.1 demonstrates, there is no “entropy version” of the Efron–Stein
inequality of the form Ent𝜇(𝑓 2) ≤ 𝐶 E𝜇|d𝑓 |2 valid for product probability measure
𝜇 and some universal constant 𝐶.

Unfortunately, it seems impossible to use the entropy method based on h−LSI.
More precisely, Theorem C.2 cannot be used to estimate the growth of 𝐿𝑝 norms
as in the setting of a d−LSI(𝜎2). Indeed, it is impossible to prove the required
moment inequalities

‖𝑓 − E 𝑓‖𝑝 ≤ (𝜎2𝑝)1/2‖h𝑓‖𝑝 (C.2)

under an h−LSI(𝜎2). For example, the measure 𝜇𝑞 = 𝑞𝛿1 + (1 − 𝑞)𝛿0 satisfies
h−LSI(𝜎2

𝑞 ) with 𝜎2
𝑞 ∼ 𝑞(1 − 𝑞) log(1/𝑞) (for 𝑞 → 0), so that (C.2) would imply for

𝑓(𝑥) = 𝑥 an upper bound on the Orlicz norm associated to 𝛹2(𝑥) = 𝑒𝑥
2 − 1

‖𝑓 − E 𝑓‖𝛹2 ≤ 2𝑒 sup
𝑞≥1

‖𝑓 − E 𝑓‖𝑞
𝑞1/2 ≤ 4𝑒𝜎𝑝.

However, a simple calculation shows that E exp
(︀ (𝑓−E 𝑓)2

16𝑒2𝜎2
𝑝

)︀
→ ∞ as 𝑝 → 0.

The approximate tensorization property in Theorem C.2 is interesting in its
own right, but it is not yet well-studied. We have seen sufficient conditions in
Appendix A. Similar results have been derived in [CMT15], which can be applied
in discrete and continuous settings. For example, if one considers a measure of
the form

𝜇(𝑥) = 𝑍−1
𝑛∏︁
𝑖=1

𝜇0,𝑖(𝑥𝑖) exp
(︁∑︁

𝑖,𝑗

𝐽𝑖𝑗𝑤𝑖𝑗(𝑥𝑖,𝑥𝑗)
)︁

for some countable spaces 𝛺𝑖, 𝑥𝑖 ∈ 𝛺𝑖, measures 𝜇0,𝑖 on 𝛺𝑖 and bounded functions
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𝑤𝑖𝑗, under certain technical conditions 𝜇 satisfies an approximate tensorization
property, which is independent of any functional inequality for 𝜇0,𝑖.

On the other hand, the AT(𝐶) property requires some certain weak dependence
conditions. For example, the push-forward of a random permutation 𝜋 of [𝑛] to N𝑛

cannot satisfy an approximate tensorization property. It is an interesting question
to find necessary and sufficient conditions for the approximate tensorization
property to hold.

Now we prove Theorem C.2. Here we include a simplified proof, for the original
proof we refer to [GSS18, Theorem 5.2].

Proof of Theorem C.2. Our first step is to that for any bounded, measurable
function 𝑓 the inequality

Ent𝜇(𝑓 2) ≤ 2 sup
𝑥,𝑦

(𝑓(𝑥) − 𝑓(𝑦))2 (C.3)

holds. From log(𝑥) + 1 ≤ 𝑥 for all 𝑥 > 0 we can deduce

𝑥2 − 𝑥 log 𝑥− 𝑥 ≥ 0 for all 𝑥 ≥ 0. (C.4)

Let 𝑓 ≥ 0 be a measurable function satisfying
´
𝑓𝑑𝜇 = 1. Integrating (C.4) with

respect to 𝜇 yields ˆ
𝑓 2𝑑𝜇− 1 ≥

ˆ
𝑓 log 𝑓𝑑𝜇,

i. e. by using the definition and the homogeneity of the entropy we obtain for any
measurable function 𝑓

ˆ
𝑓 2𝑑𝜇Ent𝜇(𝑓 2) ≤ Var𝜇(𝑓 2).

Moreover, we have the upper bound

Var𝜇(𝑓 2) = 1
2

¨
(𝑓(𝑥) − 𝑓(𝑦))2(𝑓(𝑥) + 𝑓(𝑦))2𝑑𝜇(𝑥)𝑑𝜇(𝑦)

≤ 2 sup
𝑥,𝑦

(𝑓(𝑥) − 𝑓(𝑦))2
ˆ
𝑓 2𝑑𝜇.

This proves (C.3) and the case 𝑛 = 1.
For arbitrary 𝑛, the proof is now easily completed. Assume that 𝑓 ∈ 𝐿∞(𝜇), i. e.

𝜇𝑖(𝑥𝑖)-a.s. we have 𝑓(𝑥𝑖, ·) ∈ 𝐿∞(𝜇(· | 𝑥𝑖)). For these 𝑥𝑖, the 𝑛 = 1 case yields

Ent𝜇(·|𝑥𝑖)(𝑓 2(𝑥𝑖, ·)) ≤ 2 sup
𝑦′

𝑖,𝑦
′′
𝑖

(︀
𝑓(𝑥𝑖, 𝑦′

𝑖) − 𝑓(𝑥𝑖, 𝑦′′
𝑖 )
)︀2
.

Plugging this into the assumption leads to

Ent𝜇(𝑓 2) ≤ 2𝐶
𝑛∑︁
𝑖=1

ˆ
sup
𝑦′

𝑖,𝑦
′′
𝑖

(︀
𝑓(𝑥𝑖, 𝑦′

𝑖) − 𝑓(𝑥𝑖, 𝑦′′
𝑖 )
)︀2
𝑑𝜇𝑖(𝑥𝑖) = 2𝐶

ˆ
|h𝑓 |2𝑑𝜇.
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As for the second part, it is a classical fact that product measures satisfy the
tensorization property (i. e. AT(1)), see for example [Led01, Proposition 5.6],
[BBLM05, Theorem 4.10] or [Han16, Theorem 3.14]. Moreover, in this case, the
assumption that 𝒴 is a product of Polish spaces can be dropped by simply defining
𝜇(· | 𝑥𝑖) = 𝜇𝑖.



Open questions

Question 1. The approximate tensorization of entropy property for weakly
dependent spin systems has two major drawbacks. First off, it relies on Lemma
A.1 and thus on the comparability of the relative entropy and the total variation
distance. However, these can only be compared in finite spaces, severely limiting
the applicability of Theorem A.2. There are two other works proving approximate
tensorization of entropy:

• in [Mar13] the author has succeeded in proving it for measures of the form
exp(−𝑉 (𝑥))𝑑𝑥 in R𝑛 under technical conditions on 𝑉 , but it relied on
properties of R𝑛,

• [CMT15] used weak dependence condition allowing for the approximate
tensorization for countable spaces as well, but it yields sub-optimal conditions
in the Curie–Weiss model on {−1,+1}𝑛, whereas Theorem A.2 can be applied
in the full regime.

The second problem arises from the fact that the interdependence matrix 𝐽 always
assumes the worst possible configuration 𝑥. However, this does not take into
account the fact that many models tend to be heavily concentrated on “typical
configurations”, and thus weaker conditions should suffice to establish an entropy
tensorization property.

Consequently, there are (at least) two natural questions. How can one relax
the condition on the “worst possible configuration” to account for model-specific
concentration properties? This could lead to the approximate tensorization of
entropy property in larger subsets of the parameter domain, maybe optimal in
more models (e. g. in the exponential random graph model), and thus by the same
approach as taken in this thesis to concentration of measure. And secondly, is it
possible to remove the condition of 𝒳 being finite? As mentioned above, another
method was employed in [CMT15], but the generalization should yield the optimal
range of 𝛽 in the arguably simplest non-product model - the Curie–Weiss model.

Question 2. Theorem A.2 is only applicable for a “true” Glauber dynamic, i. e.
if 𝜇 is a spin system on 𝒳 ℐ , then only one 𝑖 ∈ ℐ is chosen uniformly and updated
with the conditional probability. However, there are many interesting models in
which the Glauber dynamic is actually trivial.

In the first example, take 𝒳 = [𝑛] and ℐ = [𝑛] and let 𝜇 be a spin system on 𝒳 ℐ

which is given by the push-forward of the map 𝑆𝑛 ∋ 𝜎 ↦→ (𝜎(1), . . . , 𝜎(𝑛)) under
the uniform distribution on the symmetric group 𝑆𝑛. It is clear that 𝜇 is supported
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on configurations with 𝑛 distinct numbers, and thus we have 𝜇(· | 𝑥𝑖) = 𝛿𝑦 for
some uniquely determined 𝑦 ∈ [𝑛]. Thus, the Glauber dynamic does not leave its
starting state. However, if we change the choice of the index, the new dynamics
becomes very interesting. Instead of updating a single 𝑖 ∈ ℐ, we can update a pair
(𝑖,𝑗) ∈ ℐ2: In this case, we have 𝜇(· | 𝑥𝑖𝑗) = 1

2𝛿(𝑦,𝑧) + 1
2𝛿(𝑧,𝑦), and so the dynamics

is the (lazy, if (𝑖,𝑖) is allowed) random walk on 𝑆𝑛 (by identification) generated by
the transpositions.

A second example is the random walk on the set of all 𝑑-regular graphs on 𝑛
vertices. Again, if we choose a single edge for an update, the Glauber dynamic
remains in its current state, as all the vertices need to have degree 𝑑. However, if
we choose four edges 𝑒1, . . . , 𝑒4 and consider the conditional probability, a short
calculation shows that there are only two possibilities in each step - either the
original configuration remains, or a simple switching is performed.

In light of these two examples, it is a natural question how to generalize the
approach in Theorem A.2 to such “Glauber-type” dynamics, and provide sufficient
conditions for the system to be weakly dependent. Note that there is an additional
difficulty not present in the one-site Glauber dynamic. If we denote by 𝒥 ⊂ 𝒫(ℐ)
the set of “allowed updates”, then for 𝐽1, 𝐽2 ∈ 𝒥 with 𝐽1 ̸= 𝐽2 we might encounter
𝐽1 ∩ 𝐽2 ̸= ∅. A useful source of inspiration might be [Mar04], where similar
thoughts have been carried out in the R𝑛 setting. However, [Mar04] does not prove
a logarithmic Sobolev, but a Talagrand inequality.

Question 3. Another famous route to obtaining concentration inequalities is
by using the method of exchangeable pairs pioneered by Chatterjee [Cha05; Cha07]
(at least in the framework of measure concentration; the concept was introduced
by Stein to prove distributional limits with explicit rates of convergence in the
seventies). It is applicable in a wide variety of different settings and provides
sub-Gaussian and Bernstein-type inequalities, see [Cha07, Theorem 1.5] and all the
examples discussed in the two works. The main equality which allows for various
identities and concentration of measure statements is that for any exchangeable
pair (𝑋,𝑋 ′), any function 𝐹 : 𝒳 × 𝒳 → R satisfying 𝐹 (𝑥,𝑦) = −𝐹 (𝑦,𝑥) and any
ℎ : 𝒳 → R it holds

Eℎ(𝑋)𝑓(𝑋) = 1
2 E

(︀
(ℎ(𝑋) − ℎ(𝑋 ′))𝐹 (𝑋,𝑋 ′)

)︀
= E

(︀
(ℎ(𝑋) − ℎ(𝑋 ′))+𝐹 (𝑋,𝑋 ′)

)︀
,

where 𝑓(𝑋) := E(𝐹 (𝑋,𝑋 ′) | 𝑋). It is very tempting to set ℎ(𝑋) := exp(𝑓(𝑋))
and understand the left-hand side as the covariance of exp(𝑓(𝑋)) and 𝑓(𝑋) (since
𝑓(𝑋) is centered as shown in [Cha07, Theorem 1.5]), which itself (by Jensen’s
inequality) is at least as large as the entropy of exp(𝑓(𝑋)). There seems to be a
connection between these two concepts, but one cannot set

𝛤𝑓(𝑋)2 := E
[︀
(𝑓(𝑋) − 𝑓(𝑋 ′))+𝐹 (𝑋,𝑋 ′) | 𝑋

]︀
,

as this does not satisfy the conditions of a difference operator. Actually, the set of
all functions 𝑓 : 𝒳 → R possessing an anti-symmetric function 𝐹 does not contain
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the constants, as all such functions satisfy E 𝑓(𝑋) = 0. However, it is clear that
𝛤 (𝜆𝑓)2 = 𝜆2𝛤 (𝑓)2, which might be sufficient to establish a connection to [BG99].

Question 4. In Chapter 3 we have shown modified LSIs for the symmetric group
and established deviation and concentration inequalities using the entropy method.
Furthermore, it was possible to derive a weak form of the convex distance inequality
as proven in [Tal95] by mimicking the approach in [BLM03]. In [BLM09] the
authors have established the strong form of Talagrand’s convex distance inequality
for independent random variables using the entropy method as well. The question
arises whether it is also possible to prove a stronger functional inequality than in
[GQ03] for random permutations to obtain the convex distance inequality in this
setting as well. Additionally, this could shed some light on the question for which
models one can expect an analogue of a convex distance inequality.

Question 5. Concerning Chapter 4 and the deviation inequalities for suprema
type functionals, it is still an open question to provide concentration inequalities
for 𝑓(𝑋) = sup𝑡∈𝒯 ‖

∑︀
𝐼 𝑡𝐼𝑋𝐼‖. The result in [Tal96b] is a “true” concentration

inequality, and not a deviation inequality for the upper tail. However, all the
possible attempts at generalizing this result produce deviation inequalities (see
[BBLM05], [Ada15], [KZ18] and the results in Chapter 4 ). The sole two-sided
concentration result is [Ada15, Theorem 2.10] under rather restrictive conditions
(which – maybe somewhat surprisingly – does not include the Rademacher case).

Question 6. In Chapter 5 we have explicitly calculated all possible norms
‖𝐴‖ℐ in the case 𝑑 = 2, i. e. for a matrix 𝐴. Is it possible to extend this to 𝑑 > 2,
for example in the easiest case 𝑞 = 1? Clearly, there are many more cases to
consider, but all norms should be the maximal ℓ2 norms of any 𝑑− 𝑘-dimensional
sub-tensor, as these quantities appear in [KL15].

Question 7. This question might be the most challenging one, but perhaps the
most interesting as well. There have been many approaches to tackle the triangle
problem in Erdös–Rényi random graphs, and concentration properties for general
polynomials do not seem to catch the behavior for values of 𝑝 very close to the
threshold 𝑛−1. Starting from the papers [KV00; Vu02] concentration properties of
polynomials have been considered in many article, which we have partly mentioned
in this thesis. [AW15] provides exponential inequalities with an optimal exponent,
but the range was limited to 𝑝 ≥ 𝑛−1/4 (up to some logarithmic terms). From
the perspective of concentration of measure, it would be desirable to find general
exponential inequalities for polynomials, which retrieve the well-known optimal
(see [Cha12; DK12]) tail decay in the full range 𝑝 ≥ 𝑛−1. Furthermore, it is very
interesting to establish some kind of connection between multilevel concentration
inequalities for polynomials and the Kim–Vu inequalities.
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