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Abstract

In a horizontal differentiated duopoly we compare Nash and Stackelberg
equilibria in which the firms endogeneously choose to behaveas a price or
quantity setter. Using the utility function introduced by Dixit (1979) we
generalize the model of Boyer and Moreaux (1987) and show that it is al-
ways more profitable to strategically set the price (quantity) if the goods
are complements (substitutes). For every degree of productdifferentiation,
consumer surplus and total welfare are maximal in the standard Bertrand
equilibrium, followed by the price Stackelberg, the quantity Stackelberg and
the Cournot equilibrium. In contrast to Boyer and Moreaux weshow that
there is no unique ranking of prices, quantities and profits of the leader and
follower depending on the degree of product differentiation and the type of
competition. Furthermore, we show that the price (quantity) Stackelberg
equilibrium is bounded by the Bertrand and the mixed Nash equilibrium in
which firm 1 sets the price (quantity) and firm 2 the quantity (price).

JEL classification numbers:C72; D43; L13

Keywords: Stackelberg equilibrium; Cournot; Bertrand; strategy space

1 Introduction

The Stackelberg game is a standard model in oligopoly theory, which is one of
the most intensively discussed topics in industrial economics and based on the
pioneering works of Cournot (1838) and Betrand (1883). In the former, the firms
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simultaneously choose quantities while in the latter prices are the strategic vari-
ables. Despite these classical simultaneous move games, the model of Stackelberg
(1934) describes a situation with asymmetric information in which one firm, the
leader, decides first. After observing this, the follower choose its own optimal
strategy. There is a huge volume of these models for homogeneous as well as for
horizontal differentiated goods (see e.g. Amir and Jin (2001), Dastidar (2004),
Kreps and Scheinkman (1983), Vives (1985) and Vives (2005)). It is well estab-
lished that for the goods being perfect substitutes and the firms being quantity
setters, the leader is better off than the follower because the cross-effect is posi-
tive. In case of Bertrand competition the opposite holds.

In most of the literature on industrial organization the strategy space is exo-
geneously given whereas the implications of endogeneouslydetermined strategy
spaces is rarely discussed. Based on a horizontally differentiated duopoly model
by Dixit (1979), Singh and Vives (1984) considered a model inwhich the strat-
egy space (price or quantity) is endogeneously chosen. The firms are allowed to
offer two types of binding contracts to the consumers, i.e. aprice or quantity con-
tract in the first stage and in the second stage, the market stage, the firms compete
simultaneously contingent on the type of contract. They showed that it is a dom-
inant strategy for a firm to strategically set the quantity (price) if the goods are
substitutes (complements). Boyer and Moreaux (1987) transferred the endoge-
neously determined strategy spaces into the leader-follower model and compared
consumer, producer and total surplus with the values for theNash equilibrium
of the corresponding simultaneous move game. Using a very restrictive demand
structure1 they showed that it is always more profitable to be a quantity (price)
setter if the goods are substitutes (complements). Concerning total and consumer
surplus they proved that price competition is dominant for all degrees of product
differentiation. Furthermore, they derive a unique ranking of the leader’s and fol-
lower’s prices, quantities and profits depending on the typeof competition and the
products being complements or substitutes.2

The purpose of this paper is to provide these comparisons fora more gen-
eral demand structure introduced by Dixit (1979) with different cross-effects and
reservation prices for the goods. It is shown that some of Boyer and Moreaux’s
results are still valid in this more general framework, while others are not.

1In this setting the degree of product differentiation and reservation prices are perfectly corre-
lated.

2For further details see Boyer and Moreaux (1987) Propositions 1 and 2.

2



2 The sequential-move game with endogeneous strat-
egy space

Consider an economy with a monopolistic sector and two firms,each one pro-
ducing a horizontal differentiated good, and a competitivenumerairesector as
introduced by Dixit (1979). Following Singh and Vives (1984) and Boyer and
Moreaux (1987) each firm selects whether to behave as a price or quantity setter.
Additionally, it is assumed that the firms move sequentially: Firm 1 is the leader
and firm 2 the follower. In particular, this is a Stackelberg setting with endogenous
strategy spaces. Contingent on the strategy space decision, the price or quantity
is chosen optimally. The game structure and some notations are summarized in
figure 5.1. For instance, if firm 1 sets a price and firm 2 sets a quantity thenπ pq

i
(qpq

i , ppq
i ) denotes firmi’s profit (quantity, price).

Firm 1

Firm 2

(π pp
1 ,π pp

2 )
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2 )

(qqq
1 ,qqq
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Figure 1: The game structure and notation.

The utility function of the representative consumer is assumed to be quadratic
and strictly concave and given by

u(q1,q2) = α1q1+α2q2−
β1q2

1+2γq1q2+β2q2
2

2
−

2

∑
i=1

piqi,

with αi ,βi ∈R+, i = 1,2, β1β2−γ2 > 0 (concavity condition) andαiβ j −α jγ > 0
(positive market size). In order to ensure these conditions, attention is restricted

to γ ∈
(

−
√

β1β2,min
{√

β1β2,
α1β2
α2

, α2β1
α1

})

=: Γ.

Moreover, utility maximization of the representative consumer gives rise to a
linear demand structure

q̃i(pi , p j) = ai −bi pi +cpj , i, j = 1,2, i 6= j, (1)
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with ai =
αiβ j−α j γ
β1β2−γ2 > 0, bi =

β j

β1β2−γ2 > 0 andc = γ
β1β2−γ2 . The corresponding

inverse demand system is

p̃i(qi,q j) = αi −βiqi − γq j , i, j = 1,2, i 6= j. (2)

The degree of product differentiation is determined byγ: the goods are comple-
ments, independent or substitutes according to whetherγ S 0. Demand for good
i is downward sloping in its own price and increasing (decreasing) in the com-
petitor’s price if the goods are substitutes (complements). The goods are perfect
substitutes wheneverα1 = α2 andβ1 = β2 = γ. Moreover, forα1 = α2 = 1

1+α
β1 = β2 =

1
1−α2 andγ =− α

1−α2 , the demand structure is equal to the one studied
by Boyer and Moreaux (1987).

Firms have constant marginal costs,c1,c2 ≥ 0. W.o.l.g. it is assumed that
prices are net of marginal costs.3 Then, profit of firmi are given byπi = piqi.
Following Singh and Vives (1984), the firms can offer two different types of con-
tracts with the consumers: a price and a quantity contract. If a firm chooses to
offer the price contract, then the firm will have to supply that amount which the
consumers demand at a predetermined price independently ofthe competitor’s ac-
tion. If a firm chooses to offer the quantity contract, then the firm has to supply a
predetermined quantity independently of the competitor’saction. Moreover, still
following Singh and Vives (1984), it is assumed that the costs associated with
changing the type of contract are extremely high such that firms make the deci-
sion about the type contract once and then stick to it. Hence,each firm faces a
problem two-stages: first the firms decide about the type of contract offered to
the consumers, and afterwards they compete contingent on their chosen types of
contract.

In case of pure quantity competition equation (2) is used forthe profit maxi-
mization of the firms, whereas equation (1) is used in case of pure price competi-
tion. If one firmi acts as price setter and firmj chooses a quantity, a third system
is introduced, which simply can be derived by using equations (1) and (2):

q̂i(pi ,q j) =
αi−γq j−pi

βi
,

p̂ j(pi ,q j) =
a j+cpi−q j

b j
,

i, j = 1,2, i 6= j. (3)

W.o.l.g. firm 1 is the Stackelberg leader and before decidingabout its strategy
space and (based on this) about its optimal contract offeredto the consumers, he

3Sinceci ≥ 0 one may replaceαi and ai by αi − ci and ai − bimi + cmj , i, j = 1,2, i 6= j,
respectively.
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anticipates all possible reactions of the follower. In particular, the leader deter-
mines the follower’s best responses (optimal quantity or optimal price) for both
scenarios: Price or quantity setting of the leader. For instance, if the leader sets
a price and the follower reacts by setting a quantity, then the follower’s best re-
sponse is

q∗2(p1) := argmax
q2≥0

= q2p2(p1,q2) = argmax
q2≥0

q2
a2+cp1−q2

b2
.

Sinceπ pq
2 (p1,q2) = q2

a2+cp1−q2
b2

is strictly concave inq2, the first order condition,
∂π pq

2 (p1,q2)
∂q2

= 0, impliesq∗2(p1) =
a2+cp1

2 . The remaining best responses of the
follower are derived analogously:

Leader

Follower
Price Setting Quantity Setting

Price Setting
p∗2(p1) =

a2+cp1
2b2

= α2β1−α1γ+γ p1
2β2

q∗2(p1) =
a2+cp1

2

= α2β1−γα1+γ p1
2(β1β2−γ2)

Quantity Setting p∗2(q1) =
α2−γq1

2 q∗2(q1) =
α2−γq1

2β2

Table 1: The follower’s best responses.

Next, the leader uses these best responses (of the follower)to derive his own
optimal strategy. In particular, this means that the leaderdetermines the optimal
values of the strategic variable (price or quantity) for allfour cases. For instance,
if the follower sets a quantity and the leader would act as price setter, then the
profit maximizing price is satisfied

ppq
1 = argmax

p1≥0
π pq

1 (p1,q
∗
2(p1)) = argmax

p1≥0
p1q̃1(p1,q

∗
2(p1)).

As for the follower, sinceπ pq
1 (p1,q∗2(p1)) = p1(a1−b1p1+ cq∗2(p1)) is strictly

concave inp1, the first order condition,
∂π pq

1 (p1,q∗2(p1))
∂ p1

=0, yieldsppq
1 = 2a1b2+ca2

2(2b1b1−c2)
.

the remaining optimal values of the leader are derived analogously.
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Leader

Follower
Price Setting Quantity Setting

Price Setting ppp
1 = 2a1b2+ca2

2(2b1b2−c2)
= 2β1β2α1−β1α2γ−α1γ2

2(2β1β2−γ2)
= ppq

1

Quantity Setting qqp
1 = 2β2α1−α2γ

2(2β1β2−γ2)
= qqq

1

Table 2: The leaders optimal values.

Table 2 shows that the value of the optimal strategic variable is independent of
the followers strategy space. This leads to the following result:

Proposition 2.1. Independently of the follower’s decision, the optimal prices,
quantities and profits of both firms are predetermined by the leader’s decision:

(i) If the leader chooses to set a price, then

ppp
i = ppq

i , qpp
i = qpq

i and π pp
i = π pq

i , i = 1,2. (4)

(ii) If the leader chooses to set a quantity, then

pqq
i = pqp

i , qqq
i = qqp

i and πqq
i = πqp

i , i = 1,2. (5)

Proof: Solving the leader’s first order conditions imply equation (4). Plugging
these optimal values into the follower’s best replies implyequation (5). �

After the leader has made the initial decision in the first stage, the follower acts
as a monopolist on the remaining market. Therefore, price and quantity setting of
the follower yield the same outcome. Hence, the maximal profit of the follower
is predetermined by the action of the market leader, who is able to anticipate the
follower’s best replies to the different types of contracts.

Proposition 2.1 implies that only two distinct values of thestrategic variables
are possible depending on the leader’s choice: One is for thecase in which firm
1 sets a price, denoted by the upper indexp, and a second case in which firm 1
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chooses a quantity, denoted by upper indexq. This means:

(π p
1 ,π

p
2 ) := (π pp

1 ,π pp
2 ) = (π pq

1 ,π pq
2 ),

(qp
1,q

p
2) := (qpp

1 ,qpp
2 ) = (qpq

1 ,qpq
2 ),

(pp
1, p

p
2) := (ppp

1 , ppp
2 ) = (ppq

1 , ppq
2 ),

(πq
1,π

q
2) := (πqq

1 ,πqq
2 ) = (πqp

1 ,πqp
2 ),

(qq
1,q

q
2) := (qqq

1 ,qqq
2 ) = (qqp

1 ,qqp
2 ),

(pq
1, p

q
2) := (pqq

1 , pqq
2 ) = (pqp

1 , pqp
2 ).

Comparing these two scenarios leads to the following result:

Proposition 2.2.For the goods being substitutes (complements) the leader’sprice,
quantity and corresponding profit are higher under quantity(price) setting than
under price (quantity) setting. Under quantity (price) leadership also the fol-
lower’s profit and price are higher than that under price (quantity) leadership of
firm 1, while its quantity is always lower under quantity leadership than under
price leadership.

The leader’s decision on the type of contract solely dependson the degree of
product differentiation, i.e. whether the goods are complements or substitutes.
The comparison of all variables is summarized in Figure 2.2.

Firm 1
price setting

bb

quantity setting

π p
1

π p
2

qp
1

qp
2

pp
1

pp
2

πq
1

πq
2

qq
1

qq
2

pq
1

pq
2

>
=
<

if γ
<
=
>

0

>
=
<

if γ
<
=
>

0

if γ
<
=
>

0
>
=
<

> for all γ

< for all γ

>
=
<

if γ
<
=
>

0

Figure 2: Comparison of case 1 and 2

A direct implication of Proposition 2.2 is that if goods are substitutes (comple-
ments), then producers’ surplus, i.e. the sum of firms’ profits, is higher in the
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quantity (price) leadership than in price (quantity) leadership. Only if goods are
independent, i.e.γ = 0 (both firms are monopolists), the firms are indifferent to
the strategic variables.

As mentioned above, ifα1 = α2 =
1

1+α , β1 = β2 =
1

1−α2 andγ =− α
1−α2 then

the current demand structure is equal to that studied in Boyer and Moreaux (1987).
Hence, their demand structure is a special case of that by Dixit (1979) which is
applied in the current work. Moreover, it is easy to see that for parameteriza-
tion the reservation prices and the degree of product differentiation are perfectly
correlated. Therefore, the unique rankings of the leader’sand follower’s prices,
quantities and profits purely depend on the type of competition (price or quantity
leadership) and the degree of product differentiation (complements or substitutes).

Result 1(Boyer and Moreaux (1987)).

(i) Price leader:

pp
1 > pp

2 andqp
1 < qp

2 for all γ andπ p
1

{
>
<

}

π p
2 if and only if γ

{
<
>

}

0.

(ii) Quantity leader:

pq
1 < pq

2 andqq
1 > qq

2 for all γ andπq
1

{
>
<

}

πq
2 if an only if γ

{
>
<

}

0.

The following examples show that these rankings do not hold for the more
general demand structure used here.4

Example 1(quantity leader). Setα1 = β1 = 1.

1. Prices: Forβ2 =
1
4 andα2 =

1
2 it is pq

1 > pq
2 ∀ γ.

2. Quantities: Forβ2 = 1 andα2 = 2 it is qq
1 < qq

2 ∀ γ.

3. Profits: (a) Forβ2 = 1 andα2 = 2 it is πq
1 < πq

2 ∀ γ.

(b) Forβ2 = 1 andα2 =
1
2 it is πq

1 > πq
2 ∀ γ.

Example 2(price leader). Setα1 = β1 = 1.

1. Prices: Forβ2 = 4 andα2 = 2 it is pp
1 < pp

2 ∀ γ.

4There are a lot of possible calibrations. The particular parameter calibrations in these exam-
ples are chosen because the rankings hold for all degrees of product differentiationγ.
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2. Quantities: Forβ2 = 1 andα2 =
1
2 it is qp

1 > qp
2 ∀ γ.

3. Profits: (a) Forβ2 = 1/4 andα2 = 1/2 it is π p
1 > π p

2 ∀ γ.

(b) Forβ2 = 4 andα2 = 2 it is π p
1 < π p

2 ∀ γ.

The examples suggest that the ordering of the market sizes, i.e. the reservation
prices of the horizontal differentiated good, is crucial for the profits of the two
duopolists. In particular, in Example 2.3 (a) firm 1 can be interpreted as an estab-
lished firm whereas firm 2 represents a start-up facing a lowerreservation price
due to the fact that consumers are not willing to pay as much asthey do for the hor-
izontal differentiated good offered by the established firm1 (α2 = 0.5< α1 = 1).
Furthermore, the consumers’ sensitivity to small price changes can be measured
by the absolute value of the slope of the (direct) demand function: The steeper the
slope, the more sensitive is the consumers’ demand to small changes in the price.
In 2.3 (a) this means that the consumers’ demand for the ‘start-up product’ is more
sensitive than their demand for the ‘established product’.In this case the profit of
firm 2 is lower than firm 1’s profit. Vice versa in 2.3 (b): the start-up evolves
and firm 2’s market size increases due to more acceptance and marketability of
its product. This comes along with a lower sensitivity of theconsumers’ demand
behaviour related to firm 2. Therefore, the former start-up firm 2 now makes more
profit than the etablished firm 1.

The last result in this section compares the consumers’ and total surplus under
price and quantity leadership:5

Proposition 2.3. Total and consumers’ surplus are always higher under price
leadership than under quantity leadership, regardless of the goods being comple-
ments or substitutes. Only if the goods are independent quantity competition is as
good as price competition in terms of total and consumer surplus.

This result confirms and generalizes the result of Boyer and Moreaux (1987)
who showed that consumers’ and total surplus are higher under price leadership
than under quantity leadership independently of the goods being substitutes or
complements. Singh and Vives (1984) show, that that the analogue true in their
simultaneous move game: price competition dominates quantity competition in
terms of consumers’ and total surplus.

5Here total surplus is equivalent to welfare, i.e. the sum of profits and consumer surplus.
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3 Comparison between sequential and simultaneous
move game

The previous section has shown that some but not all of the results of Boyer and
Moreaux (1987) can be confirmed in the current model. In particular, the pre-
vious section compared the two possible Stackelberg equilibria, given bypp

i , qp
i

andπ p
i in case of price leadership andpq

i , qq
i andπq

i under quantity leadership.
Still following Boyer and Moreaux (1987) this section provides a comparison of
these Stackelberg equilibria and the Nash equilibria of theunderlying simultane-
ous move games as introduced by Singh and Vives (1984). Therefore, the analysis
again must distinguish between four different cases: both set quantities, both set
prices and two cases in which firmi sets the price and firmj sets the quantity.
Following Singh and Vives (1984) it is:

Type of Competition Optimal Values

Price Competition

(Bertrand Competition)

pBB
i =

2aibj+caj

4bibj−c2 =
2αiβi β j−αiγ2−βiα j γ

4βi β j−γ2 ,

qBB
i = bi pB

i =
β j(2αi βiβ j−βiα j γ−αiγ2)

4β2
i β2

j −5βiβ j γ2+γ4 ,

πBB
i = pBB

i qBB
i for i, j = 1,2, i 6= j.

Quantity Competition

(Cournot Competition)

pCC
i =

βi (2αiβ j−α j γ)
4βiβ j−γ2 ,

qCC
i =

2αiβ j−α j γ
4βiβ j−γ2 ,

πCC
i = pCC

i qCC
i for i, j = 1,2, i 6= j.

Price vs. Quantity Setter

(firm i price, firm j quantity)

Firm i: pBC
i =

2aibj+aj c
4bibj−3c2 =

2αiβi β j−αiγ2−α j βiγ
4βi β j−3γ2 ,

qBC
i =

bibj−c2

bj
pBC

i =
2αiβi β j−α j βi γ−αiγ2

βi(4βiβ j−3γ2)
,

πBC
i = pCB

i qCB
i

Firm j: pBC
j =

2aj bi+aic−
aj c

2

bj

4bibj−3c2 =
(2α j βi−αiγ)(βiβ j−γ2)

βi(4βi β j−3γ2)
,

qBC
j = b j pBC

j =
2α j βi−αiγ
4βiβ j−3γ2 ,

πBC
j = pBC

j qBC
j for i, j = 1,2, i 6= j.

Table 3: The optimal values of the simultaneous move game.
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The comparison of these equilibrium values of the simultaneous move game
and the equilibrium values of the Stackelberg game confirms Boyer and More-
aux’s result that the equilibrium prices and quantities of the Stackelberg game are
bounded from above and below by the equilibrium prices and quantities of the
simultaneous move game, respectively. In particular,

Proposition 3.1.

1. Under price leadership in the Stackelberg game the following holds

pBB
1 < pp

1 < pBC
1 and qBC

1 < qp
1 < qBB

1 ∀ γ, (6)

pBB
2

(>)
< pp

2

(>)
< pBC

2 and qBB
2

(>)
< qp

2

(>)
< qBC

2 for γ
(<)
> 0, (7)

πBC
1 < πBB

1 < π p
1 and πBB

2

(>)
< π p

2

(>)
< πBC

2 for γ
(<)
> 0. (8)

2. Quantity leadership implies

qCC
1 < qq

1 < qCB
1 and pCB

1 < pq
1 < pCC

1 , (9)

pCC
2

(<)
> pq

2

(<)
> pCB

2 and qCC
2

(<)
> qq

2

(<)
> qCB

2 for γ
(<)
> 0, (10)

πCB
1 < πCC

1 < πq
1 ∀ γ and πCB

2

(>)
< πq

2

(>)
< πCC

2 for γ
(<)
> 0. (11)

This result partially confirms Boyer and Moreaux (1987) under weaker condi-
tions in which no correlations between cross-effects and market size exist (com-
pare Proposition V in Boyer and Moreaux (1987)). Moreover, since the leader’s
profit is larger than the profit in the simultaneous move game (compare equation
(8) and (11)), the advantage of being the leader (compared tothe situation in the
simultaneous move game) is also reflected the leader’s profit. A further impli-
cation of Proposition 3.1 is that if the goods are substitutes (complements), then
the producers’ surplus is higher in the Stackelberg game under price (quantity)
leadership than in the Bertrand (Cournot) equilibrium of the simultaneous move
game. For an illustration of Proposition 3.1 consider the following example.

Example 3. Considerα1 = α2 = 4, β1 = β2 = 2. This implies that γ2

β1β2
= γ2

4 >

0 measures the degree of product differentiation. For this parametrization the
equations (6), (7) and (8) yield the following figures 3, 4 and5.6
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Figure 3: Quantity and price of firm 1.
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Figure 5: Profits of firm 1 and 2.
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Finally, the last result compares total and consumers’ surplus in the Stackel-
berg game with those in the simultaneous move games. Looselyspeaking it is
shown that consumers’ and total surplus are increasing in the number of price-
setting firms.

Proposition 3.2. Total and consumer surplus are always highest in the Bertrand
equilibrium and lowest in the Cournot equilibrium. In between, Stackelberg equi-
librium under price leadership dominates quantity leadership.7

This generalizes the results of Boyer and Moreaux (1987), i.e. total and con-
sumer surplus increase in the number of price-setting firms.Moreover, both,
Proposition 3.2 and the result of Vives (1985), imply that simultaneous Bertrand
competition is optimal in terms of welfare and consumer surplus.

4 Concluding Remarks

In this paper the model by Boyer and Moreaux (1987) is generalized by using a
less restrictive utility function introduced by Dixit (1979). The implications of this
more general utility function are twofold: First, the demands for the two goods as
a function of prices do not coincide and second, the cross-effects are different. In
contrast to Boyer and Moreaux (1987) it is shown that the leader’s price (quantity)
in the price Stackelberg model is not necessarily higher (lower) than the follower’s
one. In contrast to Boyer and Moreaux (1987), the ordering ofprice, quantity and
profit of the different simultaneous move (Cournot, Bertrand, mixed) and leader-
follower games by Boyer and Moreaux (1987) are verified only for firm 1. For
firm 2 these orderings depend on both: the market size and the nature of the goods
(substitutes or complements). Last, it is shown that price setting of at least one
firm is preferable in terms of welfare and consumers’ surplusindependently of
the game structure (simultaneous or sequential). Or loosely speaking: consumers’
and total surplus are increasing in the number of price-setting firms.

6Examples for (9), (10), and (11) are omitted.
7The rankings of the mixed Nash equilibria and the Stackelberg equilibria depend on the exact

parameterization.
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A Proofs and algebraic manipulations

Proof of Proposition 2.2 Simple algebraic calculations lead to the following
differences in prices, quantities and profits of case 1 and 2:

∆π1 := π p
1 −πq

1 = γ3

<0
︷ ︸︸ ︷

β1α2
2γ +β2α2

1γ −2β1β1α1α2

8β1β2(β1β2− γ2)(2β1β2− γ2)
︸ ︷︷ ︸

>0

,

∆π2 := π p
2 −πq

2 = γ5

<0
︷ ︸︸ ︷

β1α2
2γ +β2α2

1γ −2β1β1α1α2

16β1β2(β1β2− γ2)(2β1β2− γ2)2

︸ ︷︷ ︸

>0

,

∆p1 := pp
1 − pq

1 = γ3

<0
︷︸︸︷

−α2

4β2(2β1β2− γ2)
︸ ︷︷ ︸

>0

,

∆p2 := pp
2 − pq

2 = γ2

<0
︷ ︸︸ ︷

α1γ −2α2β1

4β1(2β1β2− γ2)
︸ ︷︷ ︸

>0

,

∆q1 := qp
1 −qq

1 = γ3

<0
︷ ︸︸ ︷

α1γ −α2β1

β1(β1β2− γ2)(2β1β2− γ2)
︸ ︷︷ ︸

>0

,

∆q2 := qp
2 −qq

2 = γ2

>0
︷ ︸︸ ︷

2β1β2α2−β2α1γ −α2γ2

4β2(2β1β2− γ2)(β1β2− γ2)
︸ ︷︷ ︸

>0

.

By using this it follows

∆π1







< 0 for γ > 0

= 0 for γ = 0

> 0 for γ < 0,

∆π2







< 0 for γ > 0

= 0 for γ = 0

> 0 for γ < 0,
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∆p1







< 0 for γ > 0

= 0 for γ = 0

> 0 for γ < 0,

∆p2 < 0 for all γ,

∆q1







< 0 for γ > 0

= 0 for γ = 0

> 0 for γ < 0,

∆q2 > 0 for all γ.

Proof of Proposition 2.3 Consumers’ surplus:The idea of the proof is to
show that the difference in consumers’ surplusd(γ) = u("price leadership")−
u("quantity leadership"), as a function ofγ has a global minimum atγ = 0. Since
d(0) = 0 this implies the claim.

For l ∈ {p,q} define

ul (γ) := u
(

ql
1,q

l
2

)∣
∣
∣
p1=pl

1, p2=pl
2

.

For l = p (l = q), thenup(γ) (up(γ)) describes the consumer’s utility in equilib-
rium as a function ofγ if firm 1 acts as price (quantity) setter. Now, by using the
equilibium values it follows

up(γ) =
1

32β1(2β1β2− γ2)2(β1β2− γ2)

[

−3α2
1γ6+2α1α2β1γ5+(16α2

1β1β2+5α2
2β 2

1 )γ
4

−4α1α2β 2
1 β2γ3− (28α2

1β 2
1 β 2

2 +20α2
2β 3

1 β2)γ2+16(α2
1β 3

1 β 3
2 +α2

2β 4
1 β 2

2 )

]

and

uq(γ) =
1
32

1
(2β1β2− γ2)2β2

[

5α2
2γ4+4α1α2β2γ3− (20α2

2β1β2+12α2
1β 2

2 )γ
2

+16(α2
1β1β 3

2 +α2
2β 2

1 β 2
2)

]

.

The ’utility-difference-function’ is defined by

d(γ) :=up(γ)−uq(γ)

=
γ2

32
1

β1β2(2β1β2− γ2)2(β1β2− γ2)

[

(5α2
2β1−3α2

1β2)γ4+6α1α2β1β2γ3

+(4α2
1β1β 2

2 −20α2
2β 2

1 β2)γ2−8α1α2β 2
1 β 2

2 γ +16α2
2β 3

1 β 2
2

]

. (12)
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The first and second derivatives are equal to

d′(γ) =
γ
16

1
(β1β2− γ2)2(2β1β2− γ2)3

[

−3α1α2γ7+11(β1α2
1 −5β1α2

2)γ
6

−9β1β2α1α2γ5+(38β 2
1 β2α2

2 −26β1β 2
2 α2

1)γ
4+34β 2

1 β 2
2 α1α2γ3

+(16β 2
1 β 3

2 α2
1 −64β 3

1 β 2
2 α2

2)γ
2−24β 3

1 β 3
2 α1α2γ +32β 4

1 β 3
2 α2

2

]

and

d′′(γ) =
1

16(β1β2− γ2)3(2β1β2− γ2)4

[

6α1α2γ11+(15α2
2β1−33α2

1β2)γ10+66α1α2β1β1γ9

+(53α2
1β1β 2

2 −155α2
2β 2

1 β2)γ8−216α1α2β 2
1 β 2

2 γ7+(68α2
1β 2

1 β 3
2 +340α2

2β 3
1 β 2

2 )γ
6

+152α1α2β 3
1 β 3

2 γ5− (228α2
2β 4

1 β 3
2 −180α2

1β 3
1 β 4

2 )γ
4+80α1α2β 4

1 β 4
2 γ3

+(96α2
1β 4

1 β 5
2 −32α2

2β 5
1 β 4

2 )γ
2−96α1α2β 5

1 β 5
2 γ +64α2

2β 6
1 β 5

2

]

.

Sinced′(0) = 0 andd′′(0) = α2
2

4β1β 2
2
> 0 it follows thatd(0) = 0 is a local minimum

of d(γ), i.e.∃ε > 0 s.t.up(γ)> uq(γ) ∀ γ ∈ (−ε,ε).
Moreover, sinceα1,α2,β1,β2 ∈R andγ ∈ Γ, Lemma A.1 (which is stated directly
below this proof) implies

d(γ) = 0 ⇔ up(γ) = uq(γ) ⇔ γ = 0,

i.e. γ = 0 is the only root ofd(γ) in Γ. This implies thatγ = 0 is a global minimum
of d(γ) which proves the claim.

Total surplus:Analog to the proof for consumers’ surplus. �

�

The proof of Proposition 2.3 makes use of the following Lemma:

Lemma A.1. d(γ)> 0 for all γ ∈ Γ\{0}.

Proof of Lemma A.1 Define

h(γ) :=(5α2
2β1−3α2

1β2)
︸ ︷︷ ︸

=:A1

γ4+6α1α2β1β2
︸ ︷︷ ︸

=:A2

γ3+(4α2
1β1β 2

2 −20α2
2β 2

1 β2)
︸ ︷︷ ︸

=:A3

γ2

−8α1α2β 2
1 β 2

2
︸ ︷︷ ︸

=:A4

γ +16α2
2β 3

1 β 2
2

︸ ︷︷ ︸

=:A5

.
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Equation (12) implies

d(γ) = 0 for γ 6= 0 ⇔ h(γ) = 0.

1. α1
α2

≤
√

β1
β2

: In this caseΓ = (−
√

β1β2,
α1
α2

β2).

A) 0 < γ ∈ Γ: Since

h′(γ) = 4A1
︸︷︷︸
+

γ3+ 3A2
︸︷︷︸
+

γ2+ 2A3
︸︷︷︸
−

γ + A4
︸︷︷︸
−

Descarte’s rule (see e.g. David J. Grabiner: Descartes’ Rule of Signs. Another
Construction. In: American Mathematical Monthly, Jg. 106 (1999), S. 854–855),
implies thath′(γ) has exactly one positive root. Since

h′(0) =−8α1α2(β1β2)
2 < 0

and

h′(
α1

α2
β2) =

2α1β 2
2

α3
2

[
23α2

1α2
2 −24α4

2β 2
1 −6α4

1β 2
2

]
< 0 (13)

this impliesh′(γ)< 0 for all γ ∈ (0, α1
α2

β2). Hence,

h(γ)> h(
α1

α2
β2) =−β 2

2

α4
2

︸ ︷︷ ︸
−

(α2
1β2−α2

2β1)
︸ ︷︷ ︸

−

(
3α4

1β 2
2 −12α2

1α2
2β1β2+16α4

2β 2
1

)

︸ ︷︷ ︸
+

> 0,

where

3α4
1β 2

2 −12α2
1α2

2β1β2+16α4
2β 2

1 = (α1+x1)(α1−x1)(α1+x2)(α1−x2)> 0

with x1 :=
√

6+2I
√

3
3

β1
β2

α2 andx2 :=
√

6−2I
√

3
3

β1
β2

α2, holds because

lim
α1→0,α1>0

3α4
1β 2

2 −12α2
1α2

2β1β2+16α4
2β 2

1 = 16α4
2β 2

1 > 0.

B) 0> γ ∈ Γ: Since

h′(−γ) =−4A1
︸ ︷︷ ︸

+

γ3+ 3A2
︸︷︷︸
+

γ2+−2A3
︸ ︷︷ ︸

−
γ + A4

︸︷︷︸
−

Descarte’s rule implies thath′(γ) has exactly one negative rootγ̄. Since

h′(0)< 0< h′(−
√

β1β2) = 2β1β2

[

2
√

β1β2(α2
1β2+5α2

2β1)+5α1α2β1β2

]
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this impliesγ̄ ∈ (−
√

β1β2,0). In combination with

H(−
√

β1β2) = (β1β2)
2
[

2
√

β1β2α1α2+α2
1β2+α2

2β1

]

> 0 and h(0)> 0

this impliesh(γ)> 0 for all γ ∈ (−
√

β1β2,0).

2.
√

β1
β2

< α1
α2

≤
√

5
3

β1
β2

: In this caseΓ = (−
√

β1β2,
α2
α1

β1). The rest of the proof is

analogue to 1.

3.
√

5
3

β1
β2

< α1
α2

≤
√

5β1
β2

: In this caseΓ = (−
√

β1β2,
α2
α1

β1).

A) 0 < γ ∈ Γ: Since

h′(γ) = 4A1
︸︷︷︸
−

γ3+ 3A2
︸︷︷︸
+

γ2+ 2A3
︸︷︷︸
−

γ + A4
︸︷︷︸
−

Descarte’s rule implies thath′(γ) has either 2 or no positive roots. Ifh′ has no
positive root, thenh′(γ) < 0 and, hence,h(γ) > h(α2

α1
β1) > 0. If h′ has 2 positive

roots, then there existγ1 < γ2 such that

h′(γ)
{

≥ 0 for γ ∈ [γ1,γ2]
< 0 else.

Therefore, there must beγ3 ∈ (γ1,γ2) such thath′′′(γ3) = 0 andhiv(γ3) < 0. The
solution ofh′′′(γ) = 0 is

γ̄1/2 =
9α1α2β1β2±

√

72α4
1β1β 3

2 −399(α1α2β1β2)2+600α4
2β 3

1 β2

6(3α2
1β2−5α2

2β1)
> 0.

Since

hiv(
9α1α2β1β2+

√

72α4
1β1β 3

2 −399(α1α2β1β2)2+600α4
2β 3

1 β2

6(3α2
1β2−5α2

2β1)
)

=−4
√

3
√

24α4
1β1β 3

2 −133(α1α2β1β2)2+200α4
2β 3

1 β2 < 0

and

hiv(
9α1α2β1β2+

√

72α4
1β1β 3

2 −399(α1α2β1β2)2+600α4
2β 3

1 β2

6(3α2
1β2−5α2

2β1)
)

=4
√

3
√

24α4
1β1β 3

2 −133(α1α2β1β2)2+200α4
2β 3

1 β2 > 0
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we getγ3 =
9α1α2β1β2+

√
72α4

1β1β 3
2−399(α1α2β1β2)2+600α4

2β 3
1 β2

6(3α2
1β2−5α2

2β1)
. Now,

γ3−
α2

α1
β1 =

9α2
1α2β1β2−30α3

2β 2
1 −

√
3α1

√

24α4
1β1β 3

2 −133(α1α2β1β2)2+200α4
2β 3

1 β2

6(3α2
1β2−5α2

2β1)
> 0

(14)

impliesγ3 6∈ Γ. This impliesγ1,γ2 6∈ Γ and, hence,h′(γ)< 0 for all 0< γ ∈ Γ. The
rest of the proof is analogue to the 1.A).

B) 0> γ ∈ Γ: Since

h(−γ) = A1
︸︷︷︸
−

γ4+−A2
︸︷︷︸
−

γ3+ A3
︸︷︷︸
−

γ2+−A4
︸︷︷︸
+

γ + A5
︸︷︷︸
+

Descarte’s rule implies thath has exactly one negative root. In combination with

0< H(0) and h(−
√

β1β2) = β 2
1 β 2

2

[

14
√

β1β2α1α2+α2
1β2+α2

2β1

]

> 0

this impliesh(γ)> 0 for all γ ∈ (−
√

β1β2,0).

4.
√

5β1
β2

< α1
α2

: In this caseΓ = (−
√

β1β2,
α2
α1

β1).

A) 0 < γ ∈ Γ: Since

h′(γ) = 4A1
︸︷︷︸
−

γ3+ 3A2
︸︷︷︸
+

γ2+ 2A3
︸︷︷︸
+

γ + A4
︸︷︷︸
−

Descarte’s rule implies thath′(γ) has either 2 or no positive roots. The rest of the
proof is analogue to part 3.A).

B) 0> γ ∈ Γ: Analogue to part 3.B). �

The results stated in Proposition 2.2 follow immediately.

Proof of Proposition 3.1 First, consider the equations (6), (7), and (8). The profit
of firm 1 for the case if firm 2 chooses also price competition isgiven by table 1 :

π̃ pp
1 (p1) := π pp

1

(
p1,R

pp
2 (p1)

)

= p1 q̃1
(
p1,R

pp
2 (p1)

)

= p1
(
a1−b1p1+cRpp

2 (p1)
)
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with Rpp
2 (p1) =

a2+cp1
2b2

= α2β1−α1γ+γ p1
2β2

being the best reply. The first order condi-
tion can be written to

∂ π̃ pp
1

∂ p1
=

∂π pp
1

∂ p1
︸ ︷︷ ︸

Direct e f f ect

+
∂π1

∂ p2

∂Rpp
2

∂ p1
︸ ︷︷ ︸

Strategic e f f ect

=
∂π pp

1

∂ p1
+

γ
β1β2− γ2

γ
2β1

p1.

The strategic effect is positive for all feasibleγ. In the equilibrium of the simul-

taneous Bertrand game on the second stage it holds that
∂π pp

1
∂ p1

(pBB
1 ) = 0 which

implies that

∂ π̃ pp
1

∂ p1
(pBB

1 ) =
γ2

2β1(β1β2− γ2)
pBB

1 > 0 for all γ.

As the profit function is concave it follows directly

pBB
1 < pp

1. (15)

The profit of firm 1 for the case if firm 2 chooses quantity competition yields

π̃ pq
1

(
p1
)

: = π pq
1

(
p1,R

pq
2 (p1)

)

= p1 q̂1
(
p1,R

pq
2 (q1)

)

= p1
α1− γRpq

2 (q1)− p1

β1

with Rpq
2 (p1) =

a2+cp1
2 = α2β1−γα1+γ p1

2(β1β2−γ2)
. The first order condition can be written to

∂ π̃ pq
1

∂ p1
=

∂π pq
1

∂ p1
︸ ︷︷ ︸

Direct e f f ect

+
∂π1

∂q2

∂Rpq
2

∂ p1
︸ ︷︷ ︸

Strategic e f f ect

=
∂π pq

1

∂ p1
− γ p1

β1

γ
2(β1β2− γ2)

.

The strategic effect is negative for all feasibleγ. In the equilibrium of the simul-

taneous move it holds that
∂π pq

1
∂ p1

(pBC
1 ) = 0 which implies that

∂ π̃ pq
1

∂ p1
(pBC

1 ) =− γ2

2β1(β1β2− γ2)
pBC

1 < 0 for all γ.
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It follows directly by concavity of the profit function that

pBC
1 > pp

1 (16)

holds. Together with equation (15) this implies inequality(6). The other inequal-
ities follow directly by using simple algebraic manipulations which are omitted
here.

It remains to prove the equations (9), (10), (11). The profit of firm 1 for the
case if both firms select quantity competition is given by:

π̃qq
1 (q1) : = πqq

1 (q1,R
qq
2 (q1))

= q1 p̃1
(
q1,R

qq
2 (q1)

)

with Rqq
2 (q1) =

α2−γq1
2β2

. The first order condition can be written to

∂ π̃qq
1

∂q1
=

∂πqq
1

∂q1
︸ ︷︷ ︸

Direct e f f ect

+
∂π1

∂q2

∂Rqq
2

∂q1
︸ ︷︷ ︸

Strategic e f f ect

=
∂πqq

1

∂q1
+

γ2

2β2
q1.

The strategic effect is positive for all feasibleγ. In the equilibrium of the simulta-

neous Cournot game it holds that
∂πqq

1
∂q1

(qCC
1 ) = 0 which implies that

∂ π̃qq
1

∂q1
(qCC

1 ) =
γ2

2β2
qCC

1 > 0 for all γ.

Concavity of the profit function implies

qCC
1 < qq

1. (17)

The profit of firm 1 for the case if firm 2 chooses price competition yields

π̃qp
1

(
q1
)

: = πqp
1

(
q1,R

qp
2 (q1)

)

= q1 p̂1(q1,R
qp
2 (q1))

with Rqp
2 (q1) =

α2−γq1
2 . The first order condition can be written to

∂ π̃qp
1

∂q1
=

∂πqp
1

∂q1
︸ ︷︷ ︸

Direct e f f ect

+
∂π1

∂ p2

∂Rqp
2

∂q1
︸ ︷︷ ︸

Strategic e f f ect

=
∂πqp

1

∂q1
− γ2

2β2
q1.
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Obviously, the strategic effect is negative for all feasible γ. In the equilibrium of

the simultaneous move it holds that
∂πqp

1
∂q1

(pCB
1 ) = 0 which implies that

∂ π̃ pq
1

∂q1
(qCB

1 ) =− γ2

2β2
qCB

1 < 0 for all γ.

It follows directly by concavity of the profit function that

qCB
1 > qq

1. (18)

Together with equation (17) this implies the second inequality of equation (6).
The other inequalities follow analogoulsy. �

The explicit algebraic expressions of figures 3, 4 and 5 in Example 3:

qq
1 =

16−4γ
2(8− γ2)

, qCC
1 =

16−4γ
16− γ2 , qCB

1 =
16−4γ
16−3γ2 ,

pq
1 =

4− γ
2

, pCC
1 =

8
4+ γ

, pCB
1 =

2(4− γ)(4− γ2)

16−3γ2 ,

qq
2 =

16−4γ − γ2

2(8− γ2)
, qCC

2 =
16−4γ
16− γ2 , qCB

2 =
2(8−2γ − γ2)

16−3γ2 ,

pq
2 =

16−4γ − γ2

8− γ2 , pCC
2 =

8
4+ γ

, pCB
2 =

4(8− γ2)−8γ
16−3γ2 ,

πq
1 =

(4− γ)2

8− γ2 , πCC
1 =

32
(4+ γ)2 , πCB

1 =
8(4− γ)2(4− γ2)

2(16−3γ2)2 ,

πq
2 =

(4− γ)2

8− γ2 , πCC
2 =

32
(4+ γ)2 , πCB

2 =
8(8−2γ − γ2)2

(16−3γ2)2 .

Proof of Proposition 3.2 Analogue to the proof of Proposition 2.3. �
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