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1 Introduction

Research on wireless body sensors is an interdisciplinary field bringing together science
on living and technical systems. It is related closely to biomedical engineering but
relaxes the constraint to be of medical use. Thus, the field of application for body
sensor technology is wide.

The use of body sensors is often intended to satisfy individual needs. In this respect,
an example is found with the Quantified-Self community, which represents a mindset
of gaining “self-knowledge through numbers” [5]. Furthermore, body sensors can be
used in team-sports, e.g. to optimize training [140] or in occupational health, e.g. to
maintain health and well-being [219]. Moreover, they are of general interest in public
or digital health-related issues [18, 179].

As a consequence, body sensors are of great interest in different scientific disciplines,
and their use becomes more and more widespread. This can be seen, for example, in
the steadily rising number of publications [41] relating to the keywords “body sensor”,
“fitness tracker”, or “wearable device” (Figure 1.1).

On the one hand, the construction of wireless body sensors is a challenge in itself
(e.g. energy optimizations or miniaturization) from an engineering point of view. On
the other hand, the application and utilization of the data obtained with body sensors
are valuable in the conduct of experiments in sports-, social- or health sciences, and in
psychology. Likewise, other scientific disciplines like machine learning, data science,
and signal processing have their hands on the data obtained using body sensors.
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Figure 1.1: Interest in “Body Sensor”-technology (including “Fitness Tracker/s”, “Body Sensor/s”
and “Wearable/s”) is growing. This can be seen, for example, in the increasing number of
publications in the PubMed database (publications counts are not normalized per year).
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1 Introduction

1.1 Contribution

The contributions of this thesis cover both the design and the application of wireless
body sensors.

At first, the practical implementation of a compact, highly-integrated, and scalable
wireless body sensor is revealed. With the outline of the design’s implementation,
requirements and matching technological components are identified. In addition,
selected applications or algorithms are evaluated in terms of energy consumption. In
summary, the results provide insights into inevitable trade-offs affecting the design of
wireless body sensors, e.g. concerning the physical dimensions, power consumption.

Moreover, this thesis adds up new results and research data regarding the use of
wireless body sensors for occupational health and safety. Therefore, practical experi-
ments are conducted to estimate cognitive workload and physical activity. The obtained
results complement the scientific consensus and furthermore clarify application-specific
aspects of body sensors, regarding field use. In addition, with a detailed analysis of the
results, it is explained when and why wireless body sensors reach their limits and what
measures can be taken to achieve valid results.

Parts of this thesis were previously presented at international conferences, and
excerpts were published in the corresponding conference proceedings [269, 270, 271,
272, 274, 275], as journal article [273] or book chapter [276]. The main contributions
of this thesis can be summarized as follows:

1. The design process of a wireless body sensor (BI-Vital, Bielefeld-Vitalmonitor,
version 5.0) is presented:

• Specific requirements and design aspects are identified and discussed. Also,
challenges, issues, and trade-offs are pointed out. As a result, a fully-
functional module is realized in practice.

• The device’s functionality is verified. As it follows on from a previous version,
it is compared and evaluated against its predecessor. Its degree of maturity
corresponds to that of a technical prototype or pre-series product.

• The device’s applicability for advanced embedded-inference methods, here
arrhythmia detection, is demonstrated and evaluated in terms of latency
and energy consumption.

• As a by-product of this thesis, a small batch of this module was produced,
which will be used for teaching purposes in the future.

2. The use of body sensor technology in the professional context (occupational
health), to detect or estimate cognitive workload is presented:

• An experiment is conducted, which is highlighting the applicability and
effectiveness of body sensors for psycho-physiological measures.

2



1.2 Outline

• The possibility to realize a fine-grained estimation of cognitive workload on
the basis of short-time signals is illustrated.

• Besides, the presented results add to the scientific community, by highlight
indications of the uncertainty in self-reported cognitive workload, which
was again confirmed in other works.

3. The method of physical activity estimation using wireless body sensors is demon-
strated. This is in the context of occupational safety addressing the user group of
firefighters.

• An experiment is conducted, which has its focus on differences in physi-
cal activity due to the use of personal protective equipment. The results
complement the scientific community with insights on the applicability of
wireless body sensors for physical activity estimation under more realistic
conditions.

• The results strengthen the so far ambiguous scientific consensus on the
necessary complexity of machine learning models for the estimation of
energy expenditure.

• As a secondary outcome, the experimental results provide insights on the
exercise intensity during the physical ability test (G26.6) mandatory for
firefighters in Germany who are using respiratory protective equipment.

1.2 Outline

This thesis is structured (Figure 1.2) as follows:

Design and Application of Wireless Body Sensors

Fundamentals of Body Sensors (Chapter 2)
a) Human Physiology, b) Embedded Systems, c) Signal Processing and Inference

Conclusion and Outlook (Chapter 6)

Application CW
(Chapter 4)

Cognitive Workload

� Background,
Motivation

� Experiment
� Conclusions

Application PA
(Chapter 5)

Physical Activity

� Background, 
Motivation 

� Experiment
� Conclusion

Implementation
(Chapter 3)

BI-Vital Hardware

� Related systems
� Architecture 

(Hardware, Software)
� Evaluation

Figure 1.2: Outline of the Thesis
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1 Introduction

In chapter 2, the fundamentals of body sensors are introduced to provide basic
knowledge of the disjunctive scientific sub-areas that flow into this thesis. In summary,
state-of-the-art knowledge on human physiology is discussed (sec. 2.1), followed by
the origins, design, and technical aspects of body sensors (sec. 2.2). The chapter closes
with an introduction to embedded algorithms and standard machine learning methods.
Both are extensively addressed in the following chapters and thus form the fundamental
basis for the evaluation and analysis of the experimental data presented in this thesis.

The technical design aspects of wireless body sensors are addressed in chapter 3.
Conventional devices available on the market, for consumers or the scientific community,
are presented (sec. 3.1), and an extensive requirement analysis (sec. 3.2) on the re-
design of a predecessor device used at Bielefeld University is given. The implementation
of the newly designed wireless body sensor BI-Vital is outlined in the subsequent
(sec. 3.3). The chapter closes with a prospect on possible future applications and design
extensions of the BI-Vital.

In chapter 4 and chapter 5, the focus is on the practical application of body sensors.
Both chapters address professional use in the field of occupational health and safety.

In chapter 4, firstly, an overview of the concept of cognitive workload and mea-
surement methods is given (sec. 4.2). Afterward, an experimental setup to provoke
cognitive workload in participants who are working on a tablet computer, methods to
process psycho-psychological measures (based on heart rate, heart rate variability and
electrodermal activity), and models to predict cognitive workload by means of machine
learning methods are presented (sec. 4.3). The chapter closes with a conclusion and re-
marks on future work regarding mobile and unobtrusive cognitive workload estimation
(sec. 4.4).

In chapter 5, state-of-the-art methods to estimate physical activity are presented and
applied to the special user-group of firefighters. The chapter gives a detailed overview of
techniques to quantify physical activity (sec. 5.2-5.3). Subsequently, in-depth analysis
of the data recorded, steps to process and utilize the information for physical activity
estimation are revealed (sec. 5.5). The chapter closes with a conclusion and remarks
on future work to the subject of physical activity estimation.

The thesis’s results are concluded in chapter 6. Finally, a prospect for future research
in the field of wireless body sensors is given.
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2 Fundamentals of Body Sensors

Body sensors make up an interdisciplinary field of research that connects science about
living and technical systems. It covers the measurement and analysis of data from the
human body by means of miniaturized wearable electronic devices. The term body
sensor, however, is multifaceted and only vaguely defined [57, 212]. It is used in this
work to distinguish from the branch of biomedical engineering and wearable computing
(or wearable technology). The former has its focus on medical applications, while the
latter does not necessarily involve any sensors at all.

In this work, the term body sensor is used in order to highlight two things: Firstly, it
highlights the use of electronic (and in some circumstance wireless) wearable sensor
systems, which are about to be distinguished from medical or diagnostic equipment.
Secondly, it emphasizes the broader view of the application, including non-medical
use-cases. Following this point of view, the design and application of body sensors
remain closely related to biomedical engineering, however, loosen the restriction of
its scope to medical applications. In contrast, body sensors are designed to satisfy
individual needs [5], can be used in team-sport [140], and are of interest in public
health-related issues [179].

This chapter is intended to provide a basic understanding of the topics of living
systems (i.e. human physiology, sec. 2.1) and technical systems (i.e. wireless electronic
devices or sensor nodes, sec. 2.2). In the following, both branches are brought together
with the introduction of wireless body sensors (sec. 2.2.4). At the end of this chapter,
the general concept of data processing, and specific algorithms for wireless body sensor
(WBS) applications are introduced (sec. 2.3).

2.1 Human Physiology

Physiology is about the characterization of all chemical or physical interactions that
make a living system. The concepts are fundamental for understanding and predicting
the behavior of living systems. In its broadest definition, behavior includes any interac-
tion with the physical environment. It could be defined as the summary of energetic
transduction between a living system (a human) and its physical environment. From a
less physical but more physiologic point of view, (human) behavior is all observable
muscular and secretory responses. An even narrower definition would summarize
behavior as motion. These abstractions set the big picture on the use of body sensors,
which is to observe and reflect human physiology (direct or indirect) in order to make
predictions towards or simply observe human behavior (abstract or specific).
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2 Fundamentals of Body Sensors

Starting from the broadest definition, the energy transfers in a living system, it can be
seen that total energy expenditure indeed is of particular interest. However, due to the
complexity of living systems, and in particular of human behavior, the characterization
of energetic transfers alone does not provide an adequate full picture.

As in biology, the use of body sensors includes the perception of motion not only in
terms of energy expenditure but also in terms of a characterization or classification
of physical activities human activity recognition (HAR). Moreover, in sports science,
the analysis of sequences of movements, the kinetics, seen individually or linked to
bodily functions, is of interest. Finally, not only motion behavior is of interested, but
also psychological effects. An example is the subjectively perceived cognitive workload
(CW) of a person. In addition, more complex behavior like the interaction of individuals
in a group could be of interest in body sensor applications.

This chapter gives a brief overview of the energy use, transfer, and balance in human
from a physiological point of view. The starting point is the top view on energy
transfer, beginning with movement and muscle contraction going over to the control
mechanism in the nervous system. Thereby the working principle of the regulatory
systems is explained, which are involved in controlling observable values such as heart
rate, perspiration, or respiration. This is important to understand the contribution
of physiological and mental strain. In the following, the link between physical and
physiological work is discussed.

2.1.1 Energy Expenditure

Physically speaking, behavior (sports, physical work, or any physical activity (PA) in
general), can be seen as heat transfer (Figure 2.1). This is because any change in the
internal state of an organism (metabolism) is based on chemical processes that have a
certain heat loss. The same applies to external work because the muscle in the human
body needs energy to contract (i.e. move). This energy transfer in the human body
is called the metabolic rate or energy expenditure (EE). Its observable values are the
heat loss, the energy transferred through work, and the energy stored (chemically).
According to the first law of thermodynamics, these are in equilibrium with the energy
up-taken (trough food and oxygen). [111, pp. 393]

Input

Food

Oxygen

Output

Work

Heat loss

Storage

Metabolite

Heat

= +

Figure 2.1: Big picture of the energy flow in the human organism. Chemical energy enters the
system through food, is transformed (metabolized), partly stored in the organism, and finally
transferred by work or dissipated as heat. [111, pp. 393]
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2.1 Human Physiology

The universal physiological energy store is adenosine triphosphate (ATP). Because of
its universal nature, ATP is also used as a unit of energy measure in biological systems
(eq. 2.3 - 2.4). The sum of consumed ATP makes up the entire physiological energy
expenditure (EE). Instead of ATP, EE can also be directly quantified in the physically
derived SI unit joule (J) or kilojoule (kJ) for energy, work, and heat (eq. 2.1). In
conjunction with the energy content of food, often, the outdated unit calorie (cal) or
kilo-calorie (kcal) (eq. 2.2) is found. [111, p. 405]

1 J = 1W/s = 0.2388 cal (2.1)

4.1868J = 4.1868W/s = 1cal (2.2)

AT P +H2O→ ADP + Pi +∆G◦ ∆G◦ = −30.5 kJ/mol = −7.3 kcal/mol (2.3)

AT P +H2O→ AM P + PPi+∆G◦ ∆G◦ = −45.6 kJ/mol = −10.9 kcal/mol (2.4)

Other 2 - 7 %

Thermal Effect of Food 

6 - 13 %

Physical Activity 

Energy Expenditure

15 - 30 %

Basal Metabolic Rate
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Resting Metabolic Rate

110 – 120 % BMR

T
o
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n
e

rg
y
  
E

x
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e
n

d
it

u
re

 (
T

E
E

)

Figure 2.2: Fractions of the
TEE [31][p. 26]

The daily EE of an adult human is in the order of
8000 kJ to 16000 kJ (or 1911 kcal to 3822 kcal). This
is equivalent to an average power of 93 W to 185 W. As
this EE comprises different components, it is also called
total energy expenditure (TEE). It includes the basal
metabolic rate (BMR), the thermic effect of food (TEF)
and the physical activity-related energy expenditure
(PAEE) (Figure 2.2, eq. 2.5) [160, pp. 193]. Other
components affecting TEE are, for instance, growth
or pregnancy, which are usually neglected, since these
only apply in special conditions [31, p. 26]. The BMR
or resting metabolic rate (RMR), the TEF, and other
factors are more or less static. They depend on age,
size, and sex. In contrast, PA is a dynamic fraction of
TEE depending on behavior only.

TEE = BMR+TEF+ PAEE (2.5)

As per definition, the BMR is the amount of TEE needed to keep the organism alive.
Typically, BMR accounts for 60 % to 75 % of TEE. The BMR depends on anthropomorphic
values of a person, like age, weight, sex, or healthiness. It is considered a static
value, although it is not a real constant. Instead, external factors, e.g. environmental
temperature, affect the BMR. This is why, often, RMR is refereed to in experiments and
literature instead of the BMR. The concept of RMR relaxes the strict constraints of BMR
measure, which requires a fixed ambient temperature of 28 ◦C and that the participant
is lying and fasting.
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2 Fundamentals of Body Sensors

The TEF is the fraction needed to convert food into physiological energy by digestion.
It makes up 6 % to 10 % of the TEE. The terms food-induced thermogenesis (FIT),
nutrient-induced thermogenesis (NIT), or diet-induced thermogenesis (DIT) are used
anonymously. In contrast to the RMR and the TEF, PAEE is a highly dynamic component
of the TEE. It depends on behavior only. On average, 15 % to 30 % of the TEE can be
attributed to PA. However, the percentage can be considerably higher or lower for a
particular way of living.

2.1.2 Cellular Respiration

For the human organism to be able to convert energy at all, it must be available in a
physiologically usable form. The universal metabolite to store and provide energy is
ATP. With ATP, energy is stored in the 3 pyrophosphate linkages. It can be released
through hydrolysis, where either only 1 or 2 of the terminal pyrophosphate linkages
are separated from the ATP. These processes yield adenosine diphosphate (ADP) or
adenosine monophosphate (AMP). Both ADP and AMP are re-synthesized to ATP in
different metabolic pathways (Figure 2.3), which are briefly discussed in the following
(based on [252, pp. 79] and [160, pp. 143]).

The energy metabolism starts with the intake of food and its digestion. Besides,
water is a primary component. The main ingredients of food can be separated into
proteins, fats, and carbohydrates. Proteins are further processed into amino acids, fats
into fatty acids and glycerol, carbohydrates into glucose. These ingredients are then
metabolized either aerobically using oxygen or anaerobically without oxygen. On the
cellular level, metabolism is divided into catabolic pathways (catabolism), in which
free energy is released by breaking down complex molecules and anabolic pathways
(anabolism), in which complex molecules are build up consuming free energy.

The aerobic metabolism is a complex combination of multiple (long) metabolic path-
ways. In summary, glucose (from carbohydrates) and glycerol (from fat) enter a process
named glycolysis (or lipolysis), which results in the synthesis of pyruvate. This process
has a positive energy balance, which yields 2 mol ATP. The pyruvate itself is further
metabolized into acetyl coenzyme A (Acetyl-CoA).

In a separate process, the β -Oxidation, fatty acids (non-glycerol parts of fat) are also
cleaved into Acetyl-CoA. This process, however, has a negative energy balance and
requires 2 mol ATP. Amino acids (from proteins) are involved in this process in multiple
ways, adding up to pyruvate or Acetyl-CoA synthesis and other steps of the Krebs-cycle.

In the Krebs-cycle, the Acetyl-CoA complex is broken down step-wise into carbon
dioxide, water, and free hydrogen-ions using oxygen. This process alone yields 2 ATP.
The hydrogen-ions are finally processed by oxidative phosphorylation, which adds to
ATP synthesis mostly. In total, the oxidative metabolism of carbohydrates yields 38 mol
ATP (glucose). In direct comparison, the oxidative metabolism of fats provides several
times more ATP. It, however, depends on the specific fatty acid (i.e. 1 mol palmitic acid
yields 129 mol ATP).
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Figure 2.3: Energy metabolism is about energy transfer in the human body. It roughly consists
of energy intake through food, its digestion and metabolic processing, and final its observable
output, which is work, heat loss, and excretion of metabolic end-products. The metabolic
pathways can be characterized as either aerobic or anaerobic. They differ in energy capacity and
speed. The processes depicted are only excerpts of a much more complex system, which includes
more details and further interactions.

Regarding anaerobic metabolism, phosphorylated creatine (PCr) and lactate are of
interest. PCr is used to phosphorylate ADP back to ATP directly. It is a very fast energy
source, comparable to ATP itself (1 mol PCr yields 1 mol ATP). In the absence (or lack of
sufficient amounts) of oxygen, pyruvate is metabolized into lactate. The metabolism of
lactate (anaerobic glycolysis) yields 2 mol ATP per 1 mol pyruvate. From an energetic
point of view, lactate metabolism is not favorable, but it is advantageous because it is
faster compared to oxidative metabolism.

While in the past, lactate was mainly seen as an end product, today, it is also
understood as a buffer useful during recovery or less exerting exercises. Lactate also
acts as a shuttling metabolite transferring energy from one cell to another.

The metabolites are not always directly converted into ATP or used for other metabolic
pathways. If the ATP and PCr stores in blood and muscles are filled, the remaining
metabolites are stored. Smaller energy stores for carbohydrates are present in the liver
(2.4 MJ) and muscles (5 MJ). Most of the energy is stored in fats, either directly in the
muscles (8.4 MJ) or subcutaneously (427 MJ).

The pathways and energy balance depicted are only excerpts of a much more complex
metabolism. However, it becomes clear that the availability and storage capacities of
specific metabolites and the complexity (e.g., set-up time) of the corresponding path-
ways affect physiological energy transfers. Pre-stored ATP and anaerobic metabolism
of PCr are the quickest and thus firstly depleted storages in case of heavy, short-term
exercise. Metabolism of fats, in contrast, is a slowly progressing process, which in turn
could offer energy for up to several days.
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2.1.3 Cardio-respiratory System

During exercise, high amounts of energy are converted continuously. The short-term
peak performance thereby depends on the ability of the muscles to store energy, namely
in the form of ATP and PCr. The maximum endurance capacity, in turn, depends on
the efficiency of the aerobic metabolisms (glycolysis and β -Oxidation). Both pathways
require oxygen to be transported into the muscles. During exercise, a shift in energy
supply mechanism can be observed from fast to slow energy sources (Figure 2.4).

In order to provide oxygen to the muscles in the first place, oxygen needs to be taken
up through the lungs into the blood. Afterward, oxygen-saturated blood is transported
directly to the (muscle-) cells. Consequently, it can be observed that, during exercise,
the cardiac output and respiratory minute volume increases. Both are the result of
heart or respiration rate multiplied by the stroke volume or tidal volume, respectively.
In turn, the total amount of blood, and within it, the total amount of oxygen pumped
through the body rises. [160, p. 296]

Regarding cardiac output, firstly, the stroke volume increases. After that, heart rate
rises virtually linear in accordance with the intensity of PA. Just like cardiac output,
the respiratory minute volume is firstly increased by raising the tidal volume. While
more air enters the lungs, also the amount of oxygen up-taken from the air is increased
(ventilation equivalent). In addition, the respiration rate accelerates.

Simultaneously to the increased activity of the cardiac and ventilatory system, body
temperature rises. This is partly explained, due to the aerobic metabolic pathways
(glycolysis and β -Oxidation), e.g. the cellular respiration and the muscle activity, which
are excited. As a consequence, the body temperature rises, which in turn causes an
increase in perspiration. Perspiration and blood circulation within the skin is adapted
to establish an equilibrium between produced heat and heat loss, also to prevent a heat
stroke. Additionally, due to vasoconstriction in specific organs and vasodilation in the
muscles used, the blood flow is adapted. In this way, blood flow through the skin and
the muscles is increased. This allows the energy transfer to the muscles to be facilitated
and at the same time, heat loss via the skin to be regulated.

If the intensity of an exercise is not rapidly changed, an equilibrium between internal
stress (physiological energy supply) and external stress (physically performed work)
establishes from a certain point in time (Figure 2.4a). This is known as homeostasis
or steady-state. Thereby, the maximum performance is primarily determined by the
maximal oxygen uptake rate (OUR), which limits the aerobic metabolic pathways and
is also known as aerobic capacity (VO2max).

Before and after the steady-state is reached, a certain time delay between physical
work and OUR can be observed. This is due to the fact that with the onset of a PA, the
different metabolic pathways must be activated first, which takes a specific time. After
exercising, the equilibrium of metabolisms found during resting-conditions needs to
be re-established. This includes re-synthesis of AMP and ADP to ATP or lactate into
glycogen. Among other factors, this causes oxygen uptake to be high after exercise, in
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Figure 2.4: The relative contribution of the energy metabolism pathways shows a temporal
dynamic (b). During exercise, high amounts of energy need to be converted continuously. Due
to the temporal dynamics, PA and oxygen uptake (aerobic energy contribution), however, is not
perfectly aligned. This is explained by the fact that the metabolism needs a specific time to adopt.
This effect is known as excess post-exercise oxygen consumption (EPOC) (a).

resting conditions. This effect is known as excess post-exercise oxygen consumption
(EPOC) [160, p. 171-173]. Likewise, oxygen uptake, cardiac output, and respiratory
minute volume are lagging behind abrupt changes in energy demand.

Despite this lag, a shift from aerobic to anaerobic metabolism can be observed.
Especially in long-lasting PA, e.g. endurance training, the concentration of the anaerobic
metabolite lactate rises. An accumulation of above 4 mmol/L in atrial blood is often
defined as the point where exercise intensity exceeds the aerobic capacity. It is denoted
as the anaerobic threshold. Similarly, this point can be found with ventilation and heart
rate. For instance, it can be observed that the otherwise linear relation between the
ventilation volume (or heart rate) and OUR is broken at a certain point. This point is
known as the ventilatory anaerobic threshold or the heart rate’s deflection point [37].
Both loosely coincide with the anaerobic threshold and are used to characterize the
transition from aerobe to anaerobe endurance capacity [94].
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2.1.4 Control and Regulation

The body reacts to intense PA in a chain of multiple auto-regulations in order to maintain
homeostasis (sec. 2.1.3). To these auto-regulations, specific reflexes and corresponding
receptors are known (Figure 2.5). Regarding exercise response reactions, chemo-,
mechano- and baroreceptors are of interest, which belong to the metabo-, mechano-,
or baroreflex, respectively [39, 77]. The metaboreflex describes the direct reactions to
concentrations changes of metabolites like ATP or PCr. The mechanoreceptors react
to muscle contractions. The baroreflex (triggered by baro-receptors) reduces blood
pressure by decreasing heart rate. All those mechanisms attribute to keep or re-establish
a metabolite equilibrium (i.e. homeostasis) within the (muscle-) cells and to regulate
blood pressure or flow. Moreover, they affect each-others sensitivity. [77]

The homeostatic reflexes are part of the autonomic nervous system (ANS), which
coordinates the control of bodily function. In addition, they provide information to
the central control in the brain or central nervous system (CNS). The ANS itself is not
part of the CNS but the peripheral nervous system. Bodily functions are thus indirectly
controlled through the ANS because it transmits signals from the CNS to the peripheral
organs (as being part of the peripheral nervous system). Because of its mediating
function, it can be understood as a mainly efferent system (transmitting messages
towards the organs and not vice versa). The ANS itself is divided into the sympathetic
nervous system (SNS) and the parasympathetic nervous system (PNS). [51]

The PNS is often summarized as the rest and digest system because it stimulates
salivation and digestion, while it decreases heart rate and respiration The SNS, in
contrast, is typically denoted as the fight or flight system since it inhibits digestion but
stimulates energy metabolism in the liver, enhances respiration and increases heart
rate. Additionally, the SNS excites sweat glands and thus increases perspiration. The
PNS and SNS are sometimes seen as antagonists. However, this is a simplified view.
While some bodily functions are exclusively excited through either the SNS or PNS for
other systems, e.g. the cardiovascular system, this does not apply. The cardiovascular
system is not simply turned on or off by the SNS or PNS. Instead, interactions of both
systems contribute to the control of heart rate. In this respect, it can be found that
during exercise, heart rate is firstly increased solely due to the missing inhibition of the
PNS. Later, as PA continues, heart rate is further increased due to additional activation
through the SNS. [51, 164]

In addition to the described auto-regulations, higher brain regions affect the re-
sponses of the ANS. This control is often addressed as the central command, triggering
the adaptation of bodily functions through the ANS. However, the exact working mech-
anisms (due to the complexity of the brain), are unknown [255]. What is known is that
signals from the various receptors are combined in the brain or CNS1. Thus, regulatory
responses can be observed even in the absence of PA. Taking, i.e. stressful situations,

1Mechano-, metabo- and baroreceptors were mentioned here as they affect heart rate the most. Besides,
other receptors (e.g. thermo or pulmonary) and mechanism (e.g. pulmonary activity) do have influence.
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Figure 2.5: Excerpt on the regulation of heart rate during rest, exercise, and recovery. Higher
brain centers activate muscles and ANS through central command. This causes anticipatory
adaptations of bodily functions: Changes in heart rate, stroke volume, and vasoconstriction
are causing blood pressure variations, which affects the baroreflex. Together with the metabo-,
and mechanoreflex (caused by activation of the muscles), this attributes to the compensating
adaption of bodily functions. During exercise, the anticipatory effect firstly decreases the activity
of the PNS, which in turn raises the heart rate. Later with increasing intensity, SNS predominates
control on heart rate. The reverse pattern is found during recovery. Adopted from [164]

which require increased arousal the metabolism is adapted beforehand. These mecha-
nisms are beneficial in order to prepare the body to excessive PA. A well-known example
is the fight-or-flight reflex, initiated by central command and controlled by the SNS.

Also, in athletes, an anticipatory effect on heart rate and blood pressure prior to PA can
be observed [160, p. 331]. It can be summarized that bodily functions are regulated in
a compensatory and anticipatory way. The central command from higher brain centers
(CNS) to the locomotive system, e.g. the muscles, that induce movements (or to plan
them) do also activate the ANS, which in turn adapts metabolism. This is the anticipatory
effect on homeostasis. With increased or prolonged PA, the compensatory mechanisms
(auto-regulation) predominate control. This is the compensatory regulation of bodily
functions.

In a first approximation, the observable bodily reactions, however, remain the same:
The heart beats faster, respiration increases, and most often also perspiration occurs.
However, due to the different chains of action, variations can be observed, especially in
heart rate (which is controlled by the PNS and the SNS) and perspiration (controlled
exclusively by the SNS). One the one hand, these reactions allow, at least partially, to
make conclusions on the activation of the SNS and PNS. On the other hand, when
estimating energy expenditure, the non-activity related responses of the cardiovascular
system must be taken into account, in order to avoid overestimation.
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2.2 Wearable Sensor Systems

In this work, the focus is on sensor systems known as wireless body sensors (WBSs).
These devices are specialized entities of embedded systems worn closely or directly on
the human body. They are used to recording physiological, kinematic, or environmental
data. Research on the design and application of such devices has a long history, reach-
ing from simple and more sophisticated mechanical devices, over first, yet unwieldy,
electronic variants, up to the miniaturized devices that are available today.

The history of body sensors is resumed in short as part of this chapter (sec. 2.2.1).
This is done in order to classify the different device categories, their fields of application,
and the research paradigms associated with WBS. Therefore, for instance, the concepts
of Wearables, Handhelds, or Mobile Devices are distinguished from each other (sec. 2.2.2).
From a technological perspective, however, WBS can be seen as a subgroup of wireless
sensor nodes (sec. 2.2.3). At the end of this section, related categories, paradigms,
and technological aspects are brought together in order to define the domain of WBSs
(sec. 2.2.4).

2.2.1 Origin and History

Today, many WBS exist, some of which are sold as commercial products. Most devices
are designed for private use or research and development purpose. However, having
devices that keep track of bodily functions is not a new idea. The first examples of
devices that can be described as (non-wireless) wearable body sensors can already
be found as early as in the 15th century. One often found example is the sketch of a
mechanical pedometer shaped like a pendulum by Leonardo da Vinci. It was intended
to be used as a military device to track the daily distance soldiers had traveled and
built up maps. Most likely, however, it was never built.

Later, in the 18th century, Abraham-Louis Perrelet invented the first automatic pocket
watch. It was self-winding in the user’s pocket while it is walking. Shortly after his
invention, Perrelet re-used this principle to build a pedometer in the year 1780. Maybe
this was the first truly wearable body sensor. However, the invention of the pedometer
is also attributed to other well-known historical figures like Thomas Jefferson or Robert
Hooke. Presumably, an exact inventor cannot be named. [150]

What is certainly known, is that in 1965, with the release of the manpo-kei mechanical
pedometer (developed and produced by Yamasa Tokei Keiki Co., Ltd.; today YAMAX
[260], Figure 2.6a) the idea of pedometry was reinvented as an instrument for public
health use [238]. Back then, it was motivated by a scientific study exposing the number
of 10000 steps per day to be the ideal value for a healthy or active way of life. The
name manpo-kei literally translates to 10,000 steps meter. Still today, the guideline of
walking 10,000 steps a day to promote a healthy way of living is prevailing [238].

This physical viewpoint, quantifying external work or behavior of a person, is only
one aspect of body sensors. Also, the underlying physiological processes can be of
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(a) Manpo-Kei (1965) (b) Mechanical Pedometer (1987)

Housing
wrist-band

Sensor
MEMS-
Accelerometer

Radio-Dongle
Bluetooth 

Charger
USB
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Figure 2.6: Evolution of the Pedometer (step counting or motion tracking). The pocket-watch
sized, mechanical manpo-kei was brought to marked in 1965 (a). Alongside an image of the
insides of a successor device (Digiwalker) illustrating the mechanical working principle (b).
In comparison, a micro-electromechanical system (MEMS) based, wrist-band sized electronic
Pedometer (FitBit Flex) (c). Alongside a scanning electron microscopy (SEM) image of a
MEMS-accelerometer design (d).

(a) Yoshida1338, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=65782173

(b) Reprinted with permission, ©1987, Springer [27]
(c) Sam Lionheart, CC BY-NC-SA 3.0, cropped and annotations added to original,

https://www.ifixit.com/Guide/Image/meta/dfmmiupZ2B3fWLnd

(d) He et al., CC BY 4.0, [107]
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Figure 2.7: Sphygmograph by Étienne-Jules Marey (1863). The mobile, mechanical device
captured pulse waves from blood pressure changes and allowed for heart rate measurement
Wellcome Collection, CC BY 4.0, https://wellcomecollection.org/works/r89k5uqm

direct interest. Besides body temperature, sweat rate, or respiration, heart rate is one
of the most interesting vital signs.

Humans probably ever reasoned the influence of emotions and physical activity on
the heartbeat intuitively and through observation. As with the pedometer, blood flow
and heart rate have been scientifically studied several times in the past centuries, partly
independently of each other.

A look at history reaches back to the ancient Greeks or Chinese, who described
frequency and rhythm of the heart, the 13th century naming Ibn al-Nafis, who foretold
the existence of capillaries and William Harvey, who explained and experimentally
examined blood flow in 1518 [160, p. xvii]. The first documented use of simple
mechanical devices to monitor heart rate (from blood pressure) dates back to the
16th or early 17th century [160, p. xvii]. More robust mechanical devices, like the
Sphygmograph (Figure 2.7) were developed in the mid-19th century.

By the time the Sphygmograph was developed, cardiac activity was already verified
as an electrical phenomenon. Carlo Matteucci experimentally showed the electrical
activity of the heart muscle in 1842. Therefore, he used a frog’s leg and demonstrated
that its muscles would contract when connected to the heart nerve. Also, the first
instruments to visualize such electrical phenomena (galvanometers) were existent,
however not sensitive enough. Both areas of research only came together with the
invention of Bernstein’s Differential Rheotome in 1873. [45, pp. 22]

After this synergy of physiology and technology findings, the development of devices
to record the electrical activity of the heart rapidly advanced. Starting from Lippmann’s
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invention of the capillary electrometer in 1873, over the first commercial string gal-
vanometer presented in 1911 (Figure 2.8a), towards the first mobile electrocardiogram
(ECG) monitor presented in 1949 by Holter (Figure 2.8b). [130]

Being able to measure external and internal processes of and on the human body
influenced physical exercise experiments. For instance, in 1919, Magne [152] already
investigated the relationship between steps and energy expenditure. Similarly, [68]
examined a change in heart rate shortly after exercise in 1935. However, at that time,
measuring steps, body acceleration, or heart rate was a difficult task. It was merely
possible to obtained data during exercise and, if so, under laboratory conditions only.
Developments of smaller, unobtrusive devices like the manpo-kei paved the path for new
scientific experiments even for non-physicians. It was now more feasible to measure
and research the effects of bodily functions outside the laboratory and without costly
equipment under free-living conditions.

It takes another 20 years after the manpo-kei release until advantages in the area of
micro-electronic development from the mid-’60s [114] impacts the design of WBS. In
the year 1987, YAMAX, which initially put the manpo-kei onto the market, introduced
its first electronic version of a pedometer. About the same time, in 1982, the Sport
Tester PE2000 was introduced to the market by Polar Electro [80]. It was the first
consumer-grade wireless heart rate monitor (HRM), which followed a first fingertip
device from 1977.

Another 10 years later, the first integrated acceleration sensor, based on MEMS
technology (ADXL50), was brought to market by Analog Devices Inc. in the year
1992 [32, 216]. The device was originally designed as a sensor for automotive airbag
systems. Finally, 13 years after the first fully integrated MEMS accelerometer, MEMS-
technology based pedometers, nowadays named fitness trackers, successfully emerged
on the market (Figure 2.6c). One example can be found with the FitBit Flex released
in 2011 by, identically named, FitBit Incorporation. These developments mark the
beginnings of WBSs.

Today, numerous WBSs are present. Their use goes beyond counting steps and
accessing heart rate but is extended to classify activities, estimate energy expenditure,
or track one’s quality of sleep. Devices primarily designed for personal use are often
called fitness trackers or health trackers (Quantified Self). Evermore, smartphones
and smartwatches also emerge as digital-health tools for daily use [18]. An excellent
example of this is the Apple Watch ECG-app2, which allows to spot-check for cardiac
arrhythmia. Moreover, it was successfully certified as a Class II device by the FDA at
the end of 20183.

2Apple Inc., https://www.apple.com/healthcare/apple-watch/
3The FDA clearance says that a detection of atrial fibrillation is possible. Albeit, it is underlined that the

device cannot replace medical consultation and clinical findings. The FDA Device Classification can be
found under De Novo Number DEN180044, “Electrocardiograph Software For Over-The-Counter Use”,
https://www.accessdata.fda.gov/cdrh_docs/pdf18/DEN180044.pdf
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(a) String Galvanometer (1911) (b) Mobile ECG (1949)
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(Coin Cell)
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(c) HRM radiograph (2010). Side- (top) and frontal-view (bottom)

Figure 2.8: Evolution of heart rate monitors. The first commercial device to measure ECG was
based on Einthoven’s String Galvanometer and presented in 1911 (a). A first mobile ECG was
developed by Norman J. Holter in 1949 (b). It was the size of a back-pack and weighed about
40 kg. A miniaturized, consumer-grade electronic HRM was presented in 1982 by Polar Electro.
It consisted of a chest strap transmitter (c), which recorded ECG. The heart rate was calculated
online and transmitted to a wrist-watch-like receiver to display it to the wearer.
(a) Public Domain,

https://commons.wikimedia.org/wiki/File:Willem_Einthoven_ECG.jpg

(b) CardioNetworks 2012, CC BY-SA 3.0, https://commons.wikimedia.org/wiki/File:
De-Norman_Holter_(CardioNetworks_ECGpedia).jpg

(c) SecretDisc 2010, CC BY-SA 3.0, annotations added to original, https://commons.

wikimedia.org/wiki/File:X-ray_heart_rate_monitor_sensor_belt.jpg,
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Besides personal use, such devices have also become accepted and validated research
tools for application, e.g. in epidemiological or intervention research [76, 179]. Here,
simple pedometers, accelerometers, or HRMs are used to support subjective measures.
Moreover, they are also used as a cost-effective alternative to otherwise elaborate
laboratory methods.

2.2.2 Paradigms and Ontology

For electronic devices that have the property of being worn on or close to the body,
various terms were coined. Also, different paradigms exist that lead to conceptual
partitions of (wearable sensors) systems, e.g. in respect to their application or used-case.

A frequently used term is Wearables Computing. This term is widely used in the
scientific context and beyond. Devices belonging to this category are also briefly called
Wearables. Following this vivid description, it covers all objects, devices, and helpers of
everyday life that are worn on the body, such as glasses, watches, or even a bunch of
keys. However, the term Wearables explicitly refers to the digitized (smart) variants
of the respective predecessors, i.e. to smart-glasses or smart-watches. Some of these
devices are already commercialized, e.g. smartwatches. The Wearables family also
includes accessories extended by sensors such as bracelets, ear-studs, or belts up to
complete garments (e.g. jackets, trousers), and even tattoos or sticking plaster [19]
are considered. However, the latter is still a prospect of future wearable applications.

The connecting element of all Wearables is the personal relationship and the imme-
diate proximity to the wearer’s body. Indeed, they can be classified by their location,
which is either inside, on, or next to the body. In this respect, Wearables share properties
of garments. Indeed, parallel to the work on Wearables, research is also being carried
out on garments, namely Smart Cloth, which integrates electronics. Both share common
use-cases.

Wearables and Smart Cloth must be clearly distinguished from Mobile Devices. This is
mainly because those devices are not worn but only held in hands during use. Such
devices are typically referred to as Handhelds. Handhelds such as the smartphone or
devices that are designed for mobile use (being portable), such as the laptop, are not
part of the Wearable family. In the field of Mobile Devices, the technological perspective
is addressed primarily. The term Mobile Computing [86] is also used as a substitute.
Most often, Mobile Computing is about concrete technological concepts, especially
concerning wireless communication.

The Wearable Computing paradigm, however, merely defines the topic of wireless
communication and portability as a necessary design criterion. Essentially, it is about
designing the devices in such a way that it is suitable for ubiquitous use and integrates
seamlessly (unobtrusively or inconspicuously for the user) in their daily routine. In this
manner, Wearable Computing has its roots in the paradigm of Ubiquitous Computing
and other relatives, like Pervasive Computing, Ambient Intelligence, Internet of Things.
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The term Ubiquitous Computing was first used by Weiser [251]. In his essay, he
describes the idea of ubiquitous technology (computers), which integrates itself un-
obtrusively (i.e. in the ideal case completely transparently) into everyday life. He
predicted that the ongoing miniaturization of digital circuits would lead to their integra-
tion into everyday objects, e.g. into a pen or a mirror, which would then increase their
original usefulness. As a consequence, he proclaims that ubiquitous systems would
replace classic computers in the 21st century. Laptops or similar devices, according
to Weiser, are only precursors of this development. The same applies to modern tech-
nologies such as smartphones and tablet computers. He furthermore emphasizes the
potentials and challenges of interlinking ubiquitous systems of his time.

Building on this aspect of Ubiquitous Computing, in the 1990s, the industry formulated
a more pragmatic, primarily technology-driven variant of the Ubiquitous Computing
paradigm under the keyword Pervasive Computing [100]. With reference to the available
technologies of the time, the focus was initially on the conception of new business
models for web-based and mobile applications but also the miniaturization of devices.

In contrast, research in the field of Ambient Intelligence focuses neither directly
on hardware or software, but on social implications, i.e. the role of the participant
interacting with technology [249]. It is about research and development of technological
systems that respond to and support people. Ambient Intelligence is based on the
technological concepts of Ubiquitous or Pervasive Computing.

With the field of home automation or smart home, Ambient Intelligence examples
are found. Here, intensive research is carried out on scenarios and applications, e.g.
concerning the design of furniture or other everyday objects, in such a way that they
adapt to the user. Research is not limited to the digitalization of the environment,
but also takes up ideas and developments from the field of Wearable Computing (e.g.
integrate wearables into a smart home-environments).

At the turn of the millennium, a partial return to the scenario of intelligent and
interlinked everyday objects, initially forecast by Weiser, took place. The keyword
coined in 1999 by Ashton [25] is “Internet of Things”. Against the background of the
massive increase in data and computer capacity, Ashton notes that the full potential of
the Internet is not yet exhausted. This would only be achieved by closing the information
gap between the real and virtual worlds. This idea of having information-processing
systems globally interlinked (i.e. Internet of Things) is the consequent continuation of
the development of wireless sensor systems, including Wearables.

2.2.3 Technological Aspects

In the following, technological aspects of body sensors are outlined. These comprise
the use of embedded systems (sec. 2.2.3.1), wireless communication (sec. 2.2.3.2), and
the application of sensors or electrodes (sec. 2.2.3.3). This section closes with general
remarks on the architecture of wireless sensor nodes (sec. 2.2.3.4) and more specific
aspects regarding wireless body sensors (sec. 2.2.4).
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2.2 Wearable Sensor Systems

2.2.3.1 Embedded Systems

First body sensors were mechanical or, if based on electronic components, stationary,
i.e. non-portable apparatus. In comparison, if WBSs are referred to today, it is about
miniaturized electronic devices. In this regard, they are understood as an embedded
system (ES). More generally, ESs make up the information processing part of a WBS.

Commonly, ESs are defined as electronic computing devices build for a specific
application. This is in contrast to general-purpose computing, e.g. personal computers,
which are used to virtually run any kind of software application. The development of
ES thereby includes both hardware and software components of the system. Also, input
(sensors) and output (actors) components are considered as part of ESs. Multiple ESs
that are connected to each other and measure or manipulate their physical environment
are also known as cyber-physical systems (CPSs). All CPSs are ESs, but the term is used
to highlight the connection of an ES and its physical environment.

Today, ESs are found in everyday objects like household devices (e.g. washing-
machines), consumer-electronics, in factory automation, cars, robots, and many more
devices. While in general computing, performance is the often dominating requirement,
with ESs other (conflicting) design criteria can be identified. Most of them are non-
functional, like size, weight, power consumption (run-time or autonomy), or usability
[156, p. 31]. Usually, these requirements can be met given that the use-case of an ES is
defined before its implementation. Besides, a co-design of software and hardware, and
an (at least basic) understanding of the application’s domain is helpful in this respect.

2.2.3.2 Wireless Communication

Any WBS needs a wireless communication interface in order to interchange signals
with other devices or with the wearer. In the context of ESs, mainly radio waves in the
frequency range between 30 Hz–3 GHz are used.

The use of particular frequency-bands (e.g. the maximal power emitted) is reg-
ulated by the International Telecommunication Union (ITU). Free and globally us-
able frequency-bands are collected as industrial, scientific, and medical radio bands
(ISMs). The most used frequency-bands are in the Sub-GHz band (433 MHz, 868 MHz,
915 MHz), the 2.4 GHz-, and the 5 GHz-band. Different technical implementations
are available, which can be categorized by the criteria range, bandwidth, and power
consumption.

In terms of range, the groups of near-field communication (NFC), wireless body-
area (WBAN), personal-area networks (WPAN), and furthermore local- (WLAN), and
wide-area networks (WWAN) are distinguished. The range of these reaches from <1 m
(NFC), over 1 m to 10 m (WBAN and WPAN), up to about 100 m (WLAN) or even
100 km (WWAN).

Regarding data throughput (bandwidth) and power consumption, the different
frequency-bands and the range need to be considered: Firstly, that is because, according
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to the Shannon–Hartley theorem4, the bandwidth is proportional to the frequency.
Secondly, the power consumption in wireless communication is a result of range and
data throughput (bandwidth). In general, lowering both will result in low power
consumption and vice-versa. Theoretical bounds for this rule of thumb are found in
the Inverse-square law5.

Wireless-communications protocols for WPANs are standardized by the IEEE 802.15
working group. These focus but are not limited to radio waves. Besides, light-based
communication (e.g. Infra-red) is part of the WPAN-standard. Also, in contrast to
narrow-band protocols, ultra-wideband (UWB)-technology is used alternatively in
WPANs. Due to the very-wide frequency spectrum used (3 GHz to 10 GHz), the mean
signal power is low, while in turn, the range is limited.

Most wide-spread wireless-communications protocols for WBSs operate in the
2.4 GHz-band. They are not limited to the standards of the IEEE 802.15 but include
other standards as well. Technologies typically found are, for example, Bluetooth Low
Energy (BLE), ZigBee, Z-Wave, ANT, and EnOcean [171].

2.2.3.3 Sensors and Electrodes

Sensors and electrodes connect ESs and the surrounding environment. Therefore, a
physical effect (which is to be measured) needs to be translated or transduced into an
electrical quantity. In fact, this is already a possible definition of the term sensor. In this
respect, also electrodes can be understood as sensors. This is although no translation
takes place since the physical effect is already an electrical quantity.

A variety of stimuli can be of interest in a sensor system, including but not limited to
mechanical, thermal, biological, chemical, or optical stimuli. Likewise, a multitude of
effects exist, that might be utilized to construct a sensor and translate the stimuli into
either a voltage, current a change of resistance or capacitance. These effects are, for
example, thermoelectric, photoelectric, or piezoelectric effects.

From the engineering perspective, an ideal sensor is expected to be sensitive to the
measured quantity only, is not affecting the measured property itself, and to have no
measurement uncertainty. In reality, however, this is not achievable.

Regarding measurement uncertainty, a sensor’s measurement is always affected by
random errors, e.g. noise and systematic errors. Random errors are also described
as precision, while systematic errors are typically denoted as the sensor’s accuracy or
trueness. In addition to these limitations, the sensor’s measurement resolution might
be bounded (e.g. in the upper range due to a saturation effect), or the repeatability
cannot be guaranteed (e.g. because of a hysteresis effect).

4The Shannon–Hartley theorem states, that the channel capacity C/bit/s (data throughput) depends on the
bandwidth B/Hz, and the signal-to-noise ratio. Thus, assuming a fixed noise level N/W, with increasing
the signal power S/W the channel capacity is increased as well: C = B · log2

�

1+ S
N

�

5The Inverse-square law states, that for any physical quantity its intensity is proportional to the inverse of
the squared distance between transmitter and receiver: intensity ∝ 1

distance2
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2.2 Wearable Sensor Systems

2.2.3.4 Wireless Sensor Nodes and Networks

The topics of wireless communication, sensors, and embedded systems come together
in the research area on wireless sensor nodes. Wireless sensor nodes form a subset of
ESs that, per definition, include one or more sensors and a wireless communication
interface. They are of particular interest in a variety of application scenarios in the
industry (e.g. predictive maintenance, structural health monitoring or smart grids),
logistics (e.g. asset tracking), medicine (e.g. e-health, fitness) or private living (e.g.
smart home, gaming, and entertainment).

Initial sketches for the architecture of sensor nodes and their application scenarios
were described in 1993 by Wise [257]. A few years later, Mason et al. [158] introduced
a first functional wireless sensor node (WSN) for monitoring environmental parameters
(temperature, air pressure, humidity, vibration). This prototype had an integration
density of 25 cm3 and an operating time of up to 330 days. Following on from this, in
2001, Warneke et al. [248], sketched the vision of “intelligent dust”. It outlines the
idea of ubiquitous and miniaturized WSN for measuring environmental parameters
such as temperature, humidity, or radiation in the size of dust particles (1 mm3). As an
important result of their work, they specify the key requirements for WSNs (or smart
dust) still existing today: miniaturization and energy efficiency.

It is the ubiquitous and autonomous character demanded by WSNs, which dictates
the requirements for wireless communication and miniaturization of all components.
Only these fundamental criteria enable unrestricted and free placement in the room
(portability) and guarantee a maximum of operating times (trough energy efficiency)
and thus the highest possible autonomy (low maintenance intensity). In extreme cases,
WSNs are entirely based on energy harvesting methods and are thus enabled to sense
their environment autonomously.

In general, the architecture of WSNs includes a microcontroller unit (MCU), a wire-
less interface, an energy store, and one or more sensor elements (Figure 2.9) [261].
Optionally, memory can be added to the architecture.

The design space and optimization criteria of sensor nodes comprise “space require-
ments” (miniaturization), “operating time” (autonomy), and “cost efficiency” [198].
As discussed by Romer et al. [198], these criteria affect each other. Optimizing a
particular dimension often contradicts other functional or non-functional requirements.
For instance, it could be aimed towards making a WSN smaller. However, optimizing
for space might demand more expensive components. Also, this limits the available
space for energy storage. Other requirements mentioned by Romer et al. [198] cover
the communication modalities. These include topology, coverage, and network size,
among other factors. Similar requirements are mentioned by Yang [261]. They also
mention, among other factors, “robustness” and “security” requirements.

Current application scenarios, which are associated with the headlines Digitization,
internet of things (IoT), or Advanced Manufacturing (also known as Industry 4.0),
pick up the Smart Dust-vision utilizing WSN. In the concrete scenarios, sensor nodes
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Figure 2.9: An exemplary architecture of a wireless sensor node. It includes 3 sensors (analog
and digital), a microcontroller unit, a wireless interface, memory, power management, energy
storage, and energy harvesting solution.

(individually or in a network) store or transmit measured values and thus provide
real-time and long-term data that were previously not available.

Often, however, not the recorded raw signals themselves are of interest but derived
information, which can be obtained from the aggregation of the various heterogeneous
sensor signals. Examples include sensor networks that are predicting environmental
disasters (probabilities of forest fires, storms, or tidal waves from) or sensor nodes that
are used for monitoring transported goods (estimating food quality). Other scenarios
describe, for example, the energy optimization of private households (context-specific
switching on or off of domestic appliances). An overview of current developments is
given by Rawat et al. [190].

Many modern sensors available at the market today can already be understood as
smart sensors. These smart sensors not only record signals but also process them. For
instance, modern inertial measurement units free the system designer from the need
to implement fusion or other evaluation algorithms. Instead, these advanced signal
processing steps are already an integral part of the sensor itself. An example is knocking
detection in acceleration sensors, which can be found in mobile phones to switch on
the device when touched.

Besides, a smart sensor can even be fully, freely programmable. In this respect, the
sensor itself could already be considered an ES or system-on-chip (SoC). In this case, it
is furthermore possible to avoid adding additional MCU to the system’s architecture
of a sensor node (Figure 2.9). Instead, the smart sensor is connected directly to the
memory or communications component.

2.2.4 Wireless Body Sensors

Wireless body sensors are a sub-group of WSNs. They are distinguished by the fact
that they are worn directly on the wearer’s body or skin. In addition, devices exist
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Figure 2.10: Relation of WBSs to the domains of Wearables, WSNs, and ESs.

that are implanted. The International Electrotechnical Commission (IEC) strategic
group 10 defined dividing lines of WBS, which can either be near-body (no contact
to the organism), on-body (contact to the organism), or in-body (implanted). They
furthermore identify the separate category of electronic textiles and summarize all with
the umbrella term Wearable Smart Device.

WBS can also be found as part of a network, called wireless body sensor network
(WBSN) or wireless body area network (WBAN) (or in short BAN or BSN without the
prefix wireless). In this respect, WSN can be categorized by the degree of distribution.
Thus, a WBS can either be a stand-alone device (e.g. smartwatch), used combined in
a closed system (e.g. as an additional sensor in a smart textile), or be part of a fully
distributed system, interlinked with other external devices (e.g. furniture in a smart
home). In contrast to a wearable computing device, which could be a smartwatch with
a display only, a WBS necessarily embeds one or more sensors, which capture data
from its wearer.

Regardless of being near, on, or in the body, aspired use of a WBS is to allow for
continuous monitoring of vital, kinematic, and environmental parameters. The domain
of WBS is strongly influenced by the ideas of Wearable, Pervasive, and Ubiquitous
Computing. At the same time, it is technologically grounded on the developments found
in the areas of Mobile Computing and IoT. Thus, WBSs can be seen as specific ESs,
making up the cut set between wearables and WSNs (Figure 2.10). Their purpose is to
1. measure, 2. evaluate, and 3. provide physiological, kinematic, or environmental
data to (and from) the person (wearer) using the WBS.

Due to the miniaturized design, WBSs offer advantages compared to stationary
solutions. What makes WBSs such an interesting technology is their unobtrusiveness
and the fact that they can be used for objective long-term measurements. This opens up
the way towards new findings in medical diagnostics, public health, or sports science.
A list of sensors used in WBSs includes:

• Acceleration, angular velocity or magnetic field sensors
• electrode sensors
• force sensors

25



2 Fundamentals of Body Sensors

• temperature sensors
• humidity sensors

A list of possible raw parameters that could be accessible by WBSs includes:

• Motion, altitude, force of impact
• Electrical activity of the heart or other muscles
• Thoracic movement
• Body and skin temperature
• Sweat level or rate

Based on these raw parameters, extended measures can be calculated, for instance:

• Step count (and cadence), stride length, posture
• Heart rate, its variability, and recovery
• Respiration rate and breathing volume
• Risk of heat stroke
• Dehydration

Some of these measures are derived in multiple-steps. For instance, the electrical
activity of the heart is used to calculate heart rate, which in turn is used to calculate
its variability. Finally, multiple raw or derived measures can be combined in order to
calculate more abstract entities like:

• Absolute orientation of the body
• Running speed and or distance traveled
• Physical activity or energy expenditure
• Cognitive workload or fatigue

Multiple terms exist to address consumer-grade WBSs [184], e.g. activity tracker
or fitness tracker. There is, however, no sharp separation between these terms. In the
simplest case, using one of these terms could describe a pedometer or HRM (sec. 2.2.1).
In this understanding, an activity or fitness tracker is a WBS, embedding an accelerometer
used to count steps or, embedding electrodes used to calculate heart rate. Also, a more
sophisticated device could be covered by these terms, e.g. a WBS capturing both motion
and heart rate in parallel.

2.3 Wearable Algorithms

The final step in body sensor applications is the analysis of the (physiological) data
recorded (Figure 2.11). The goal thereof is to extract information out of the raw data.
This general concept of WBSs computing is also referred to as wearable algorithms [205,
p. 353][52]. In the following, an overview of bio-signal processing in general (sec. 2.3.1-
2.3.2), and selected machine learning methods (sec. 2.3.3) to extract information from
the latter, in particular, is given.
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Figure 2.11: Conceptual flow of data in WBS applications. Data from the biological system
(wearer) enters the technical system (WBS) through sensors (analog or digital). After digitization,
data is either transferred to an external system or processed locally. The data processing typically
covers, pre-processing, feature extraction, and classification or regression steps (not all steps are
needed, and other steps are possible as well, e.g. segmentation or dimension reduction). The
data is finally used for further analysis, visualization, or to trigger other mechanisms (e.g. alert
the user). Based on [205, p. 354]

2.3.1 Digital signal processing

In general, digital signal processing is about processing, storing, and transmitting digital
data. Here data is referred to as a single value or symbol. In this context, a signal is a
series of data indexed in time, that is a time series. Information is the result of applying
specific algorithms to a signal or multiple signals. However, information might serve
as new data for another algorithm in order to extract other information as well. An
example is the body temperature (data), which is used to detect fever (information),
which in turn could be used to calculate a health index (also information). A discussion
of these definitions can be found in [200]. Processing can be executed online, i.e. locally
on the WBS, or offline on an external system, to which the raw data was transmitted.
Nevertheless, the processing steps in both cases are similar.

Firstly, a physical effect has to be chosen that allows observing the quantity of interest.
The effect is considered an analog signal. This means it is a continuous time-varying
quantity. This analog signal (or effect) is then measured using a sensor, which translates
it into an electrical quantity (e.g. current, charge, voltage, or resistance). In case, the
physical effect is already an electrical signal, instead of a sensor, electrodes are used.
Typically, the intended final quantity is a voltage.

For further processing, the voltage (or other electrical quantity) often needs to be
amplified in order to match the voltage domain of the digital system (e.g. 1.8 V to
5 V). Also, filters are used to remove noise or unwanted frequencies. Furthermore, a
sensor could also comprise calibration or justification elements, e.g. to compensate
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for temperature drifts. Amplifiers, filters, and other subsidiary components can come
as part of a sensor or as independent components. The pre-processed signal is then
digitized by means of an analog-digital converter and ready for further digital signal
processing (DSP) operations. This digitization typically comprises two steps, namely
discretization and quantization.

Discretization is the process of sampling a continuous signal over time. Typically,
single instantaneous values of a signal are measured (sampled) at equidistant time
intervals. The result is a time-discrete signal. This process furthermore limits the
bandwidth of the signal, because information on signal changes, i.e. frequencies
higher than the sampling rate, are not preserved. This relationship is expressed in the
Whittaker-Kotelnikow-Shannon or Nyquist-Shannon sampling theorem. It states that
the minimum sample frequency ( fs) must be at least twice as large as the maximal
frequency ( fmax) within the signal under observation (given equidistant samples,
(eq. 2.6)). In real technical systems, however, a higher sampling rate is often chosen
(oversampling), and additional mechanisms are introduced to remove unwanted signal
components at an early stage (alias filter).

The quantization of a signal limits its resolution in the value range. Limitation de-
pends on the chosen maximum value range and the quantization level. Both determine
the smallest value that can be represented by the least significant bit (LSB) (also known
as quantum). Since all values are mapped to multiples of the LSB, a rounding error
in the order of 1 LSB results (±0.5 LSB in a first approximation). This is also called
quantization-noise or -error (eq. 2.7). In binary digital systems, a doubling of the
resolution (which corresponds to a reduction of the quantization noise by half) can
be achieved by increasing the resolution by 1 bit. In real technical realizations, the
quantization-error, e.g. due to noise, is often higher than 1 LSB.

fmax =
1
2
· fs (2.6) Q =

q
2b

(2.7)

fs - sample frequency / Hz
fm - maximal frequency / Hz

Q - least significant bit / -
q - full scale range / -
b - number of bits / bit

2.3.2 Bio-signal processing

The ECG serves as a good example and starting-point for bio-signal processing because
of its central importance and manifold applications in medicine, psychology, and sports.
Heart rate and the electrical activity of the heart have already been mentioned briefly
(sec. 2.1 and sec. 2.2.1). In medicine, the ECG is used to detect pathological changes
in the heart muscle. In psychology, the variability between individual heartbeats is of
interest as a physio-psychological parameter, which allows concluding the activation
of the ANS. Similarly, training overload is studied in sport science, and of course, the
relationship between performance and heart rate is studied in detail.

28



2.3 Wearable Algorithms

0

0.2

0.6

0.4

0.8

1.0

5 10 15 20 25 30 35 40
0

baseline drift

ECG (total)
QRS complex

EMG noise

P/T wave

Frequency / Hz

re
la

ti
v
e
 p

o
w

e
r 

/ 
-

P

R

T

Q S

P

R

Q S

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

a
m

p
lit

u
d
e
 /

 -

0.8 0.9
Time / s

RR interval 0.6 s - 1.1 s

Figure 2.12: Normal morphology of the ECG reflecting the de- and re-polarization of the different
parts of the heart muscle (left). Alongside, a qualitative example of the ECG frequency spectrum
along with selected, isolated components (right). ECG is based on Hank van Helvete, CC BY-
SA 2.0, https://upload.wikimedia.org/wikipedia/commons/0/00/EKG_Komplex.svg.
Spectrum is adopted from [81]; original [235]

The ECG depicts the (summarized) electrical activity of the heart muscle. Therefore,
electrodes are placed on the participant’s chest. Between those electrodes, electrical
changes due to heart muscle contraction become visible. These are reflecting the
de-polarizing and re-polarization of different regions in the heart, namely the atrium
and ventricle muscles (left and right). Although the pause in between to contractions
may change, the transition of depolarization and thus the order of contractions of the
heart muscle takes place according to the ever same scheme.

The prominent waves and peaks are labeled with the letters P, Q, R, S, T in sequence
[130] (Figure 2.12). The origin of depolarization is the sinoatrial or sinus node (in
the right atrium). The depolarization spreads, passing the atrial muscles going into
the atrioventricular node. This leads to contraction of the atria and can be seen as the
P-wave in the ECG. Starting at the atrioventricular node, the depolarization spreads
further into the bundle of His along the ventricles into the Purkinje fibers. The ventricles
contract and the characteristic part of the ECG waveform (QRS)-complex becomes
visible. The re-polarization of the chamber muscles, in turn, becomes visible as the
T-wave in the ECG.

Due to the different waves, the ECG consists of different frequencies. QRS-complex
contributes higher (10 Hz to 17 Hz), while P- and T-wave (0.1 Hz to 7 Hz) contribute
lower frequencies to the complete spectrum. Heart rate emerges in the range of 0.67 Hz
to 3.67 Hz (given heart rate limits of 40 bpm to 220 bpm). [242]

What makes the processing of the ECG challenging is that a multitude of signals is
overlapping the ECG spectrum. For example, other muscles in the human body produce
electromyography (EMG)-noise (5 Hz to 50 Hz), respiration affects the ECG baseline
(0.12 Hz to 0.5 Hz). Also, power line frequency (50 Hz or 60 Hz) interferes. Besides,
motion artifacts introduce high-frequency noise.
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Changes in the morphology of the ECG indicate pathological changes in the heart
muscle6. A distinction is made between unipolar configurations of ECG-electrodes. In
such the voltage of each individual electrode is measured against a common reference
electrode. Each electrode is referred to as a lead. Alternatively, electrical changes can
be measured directly between two electrodes. This is referred to as a bipolar lead. In
textbooks, most often, the so-called Einthoven II lead is depicted. In this configuration,
electrodes are placed between the right hand and left foot. In mobile systems, which
only aim to detect heart rate, electrodes are often placed on the left and right side of
the chest. This is also a bipolar lead. It is similar to the Einthoven I lead, in which
electrodes are placed on the left and right hand.

To obtain heart rate or heart rate variability from electrocardiogram (ECG), the
so-called QRS-complex must be detected within the ECG-signal. The mean distance
between successive QRS-complexes, also known as RR-distance, usually averaged over
5 to 10 complexes, is the heart rate (HR). The calculated variance of these distances,
in turn, is the heart rate variability (HRV)7. The de facto standard for QRS-complex
detection in WSN is the algorithm proposed by Pan et al. [180] in 1985. A revised
open-source implementation was published by Patrick S. Hamilton8.

The algorithm consists of typical DSP operations (Figure 2.13). At first, unwanted
high- and low-frequency components are filtered. Next, a differentiator is used to
emphasize the sign changes of the QRS-complex (compared to T- and P-waves). These
changes are then smoothed by applying a windowed moving-average filter. The resulting
signal is a summary of the QRS-complex, which can now be detected by a simple peak
detection. As an additional step, different detection rules (thresholds) are applied in
order to mark physiologically reasonable peaks only. For instance, these rules take into
account the minimal (physiological) de- and repolarization times of the heart muscles.
Concerning this example, all peaks 200 ms before and after a larger peak are ignored.

2.3.3 Machine learning

WBSs provide physiological and bio-kinematic data, including heart rate or acceleration.
Using these raw data combined with a suitable model allows obtaining abstract infor-
mation, e.g. the physical activity or the running speed of a wearer. For this purpose,
at first, such a model has to be found. This model is intended to provide a mapping
between the sensory data and a given target value. Machine learning (ML) methods
have proven their effectiveness in building such models [97, 189, 205].

6Analyzing the morphology of the ECG, however, requires a standardized positioning of the electrodes since
the observable morphology depends on the relative position of the ECG electrodes to the heart. Also, in
order to allow conclusions about the angel of the heart, at least 3 leads are necessary.

7Variance is only one metric to present heart rate variability (HRV). This topic will be addressed in chapter 4
8Open Source ECG Analysis Software, 2002, licensed under GNU Library General Public License http:
//www.eplimited.com/confirmation.htm
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Figure 2.13: Visualization of the different signal processing steps of the Pan-Tompkins [180]
algorithm for QRS-detection. A low- and high-pass filter form the first two steps of the algorithm
before the signal is squared and smoothed by means of a moving average filter. Finally, the peaks
of the smoothed signal are identified by an adaptive threshold mechanism.

In the classic ML scenario of sensor data processing, sensors are used to sample raw
data on the basis of which features are extracted. A feature could be the mean value or
variance of the raw data. In this way, from the measuring data (or time series), one or
more features are derived. An example is the ECG, from which the mean heart rate
could be calculated or acceleration data from which peaks could be counted. Often
various pre-processing steps are applied to the raw data beforehand.

A prediction (classification or regression) is then made based on these features.
This procedure is known as supervised learning. It requires that for all input patterns
(features) corresponding output patterns (target values or ground truth) are known. In
this way, based on the provided random sample of features, a generalized model or
mapping M is to be found (eq. 2.8) [205].

In this respect, the idea of using ML techniques is to come up with a model that can
be later used for inference based on new unseen data (eq. 2.9). Therefore, a function
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m that maps the features vector xi (independent variable/s) to a corresponding target
value y (depended variable) is needed. Here, each feature vector xi is drawn from the
input space X, while each target yi belongs to the output space y.

In practical application, such a function often cannot be found, e.g. because of
noisy data. The output of the function m (prediction) is therefore affected by certain
deviations ε. Hence, the output of a ML model m is ŷ = y + ε. [11, 174]

M : X→ y : X ∈Ro×n, y ∈Rn (2.8)

m : xi→ ŷi : xi ∈ X, ŷi ∈ y+ ε (2.9)

M - ML task
m - ML model
ε - error or noise

y - target vector
yi - target scalar
ŷi - prediction scalar

X - feature matrix
xi - feature vector

2.3.3.1 Supervised Classification and Regression

Supervised ML-tasks can be divided into regression and classification problems. In
regression, continuous target values (interval scaled) are to be mapped by a function.
The desired target function could, for example, be a simple linear function. This linear
function should now accurately represent the exact shape of the target values. It could,
for example, be chosen such that the mean absolute distance to the data points is
minimized (the linear function is placed in the center of the data points).

Indeed, the deviation or error of a regression is one aspect of evaluating its quality.
Therefore, different metrics, e.g. mean absolute error (MAE), median absolute deviation
(MAD), mean squared error (MSE), root mean squared error (RMSE), coefficient of
determination (R2), or mean absolute percentage error (MAPE) can be used (eq. 2.10 -
2.15).

MAE(y, ŷ) =
1
n

n
∑

i=1

(| ŷi − yi |) (2.10)

MSE(y, ŷ) =
1
n

n
∑

i=1

( ŷi − yi)
2 (2.11)

MAPE(y, ŷ) =
1
n

n
∑

i=1

� | ŷi − yi |
|yi |

�

(2.12)

MAD(y, ŷ) = median(|ŷ− y|) (2.13)

RMSE(y, ŷ) =
Æ

MSE(y, ŷ) (2.14)

R2(y, ŷ) = 1−
MSE(y, ŷ)

variance(y)
(2.15)

In contrast to regression, in classification problems, a function is to be found that
separates discrete target values (nominal or ordinal scaled) from each other. The target
function could again be a simple linear function. However, now the function is chosen
in such a way that it separates certain classes from each other. Therefore, it is also
called the decision boundary.
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Often, the linear function is chosen in such a way that the mean (squared) distance to
the respective classes is minimal (the linear function would then be centered between
the classes). However, in classification, the target values, also known as classes, are
usually categorical (not metric) and therefore do not necessarily have to keep a certain
distance (interval) or have an order at all. Therefore, different loss functions and
measures of quality are applied compared to regression problems.

With regard to classification problems, a common error metric is the accuracy (or hit
rate, eq. 2.16). It is defined as the percentage of matches between the true and the
predicted class label. Those matches are referred to as true positive (TP) ( ŷi = a ∀ yi =
a) or true negative (TN) ( ŷi 6= a ∀ yi = a), while mismatches are referred to as false
positive (FP) ( ŷi = a ∀ yi = b) or false negative (FN) ( ŷi = b ∀ yi = a). Given TP,
TN, FP, and FN, the error type can be specified in more detail. For instance, sensitivity
(true-positive rate (TPR), also known as recall, eq. 2.17), specificity (true-negative
rate (TNR), eq. 2.18) or precision (positive-predictive value (PPV), eq. 2.19) can be
calculated.

Accuracy =
T P + T N

T P + F P + T N + FN
(2.16)

Sensitivity =
T P

T P + FN
(2.17)

Specificity =
T N

T N + F P
(2.18)

Precision =
T P

T P + F P
(2.19)

Moreover, classification and regression problems can be converted into each other.
Given a regression problem, the input values can be transformed into (discrete) class
labels by rounding floats to integers. Likewise, class labels can be modeled by regression
techniques, e.g. by rounding the model’s output to the closest integer value (class
label). The latter, however, is done under the assumption that the class labels are
interval or ordinal scaled. Using regression techniques for classification on nominal
values is likely to produce biased results as there is no natural continuous relationship
among different labels.

Finally, it should be noted that, based on a specific ML algorithm, it may be necessary
to pre-process the input features. The rationale for this is that the input data is
sometimes scaled unevenly, or their distributions differ. Two conventional approaches
for normalization or standardization are min-max normalization (eq. 2.20, scaling to
the value range between 0 and 1) or the z-standardization (eq. 2.21, fix a mean value
of 0 and a standard deviation of 1).

Xn =
X −min (X )

max (X )−min (X )
(2.20) Xz =

X −µ (X )
σ (X )

(2.21)

µ - mean value µ - standard deviation

In the former, a direct representation of a decision boundary or regression function
was described. These approaches are known as discriminative models. In contrast,
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the probability distribution could be modeled as well. Such approaches are known as
generative models.

2.3.3.2 Model Selection: Bias and Variance

Usually, ML algorithms are used to construct models, which can then be used for
inference on new unseen data. The objective is that the model has no, or only a very
small error (i.e. high accuracy). This is not limited to the training of the model but
should apply to new unseen data in particular. Here, the goal is to find a generalization
that fits the entire statistical population using the test samples only.

However, ML algorithms and models differ widely in terms of applicability, flexibility,
and complexity. In general, there is a link between the model’s complexity and its ability
to store information. This is theoretically expressed in the theory of VC-Dimension or
entropic capacity. In simplified terms, the model’s complexity reflects the variance that
it can store.

The trade-off in limiting or extending a model’s complexity is known as the bias-
variance dilemma. It explains the fact that simplistic models (less complex, e.g. linear
regression) tend not to describe the data appropriately. In this manner, not all inter-
relationships and dynamics among different features can be mapped. This is known
as high bias or under-fitting. On the other hand, more complex models tend to be
sensitive to data fluctuation. Hence, they are mapping noise rather than meaningful
relations. Such models are said to have high variance or to be over-fitted.

The result of fitting a model with insufficient or overmuch degree of freedom is a less
adequate mapping of the real underlying relations in the data. In general, a so-called
triple trade-off exists between the complexity of a model, the amount of training data,
and the model’s ability to generalize to new unseen data ([11], Figure 2.14).

To avoid over-fitting, the data sample can be split into a training-, a validation-, and
a test-set. The straight forward approach is to use a hold-out validation. Therefore,
a fixed partition of data for each set, e.g. 60 % for training, 20 % for validation, and
20 % for testing. Training and validation data are used while fitting the model. As
a consequence, the hyperparameters are tuned to match the samples from both sets.
By this means, the effect of over-fitting is regularized. The test set is finally used to
estimate the generalization error (off-training-set error).

To further limit any generalization error, cross-validation (CV) strategies can be used.
In this way, multiple partitions of the training and validation sets are created. E.g.,
with a k-fold strategy, k partitions are randomly drawn from the data set (without test
set). During the hyperparameter optimization, k-different models are trained. Finally,
the hyperparameter set is chosen, which is minimizing the mean deviation among all
splits. Often, class labels are not equally distributed in the data set. Thus stratified
folds should be used to avoid possible over-fitting for a particular class.

Another CV strategy is the leave-one-group-out (LOGO) partition. With LOGO, data
from one specific group, e.g. different measuring days or machines are validated against

34



2.3 Wearable Algorithms

1

0

1

y

MSE:0.29 (D:1, S:10) MSE:0.30 (D:3, S:10) MSE:0.30 (D:10, S:10)

1

0

1

y

MSE:0.11 (D:1, S:50) MSE:0.05 (D:3, S:50) MSE:0.10 (D:10, S:50)

0.00 0.25 0.50 0.75 1.00
x

1

0

1

y

MSE:0.10 (D:1, S:200)

0.00 0.25 0.50 0.75 1.00
x

MSE:0.04 (D:3, S:200)

0.00 0.25 0.50 0.75 1.00
x

MSE:0.10 (D:10, S:200)

True Function Model Samples

Figure 2.14: Example of the bias-variance dilemma. Decision trees (DTs) models are trained on
random samples of a sinusoidal signal superimposed by random noise. The maximum number
of splits of the DT is limited to 1, 3, or 10 splits. The number of samples provided for training
is limited to 10, 50, or 200 samples. The lowest MSE is found when a maximum of training
samples is provided, and the model’s complexity is tuned just right.

each other. This is particularly important if the data set contains data from different
persons. To compensate for inter-personal differences (e.g. age, weight), group-wise
validation is needed. This special case is also known as leave-one-subject-out (LOSO).

Also, combinations of validation schemes can be used, e.g. a k-fold-group-validation.
Still, validation is only an instrument to estimate generalizability on the sample under
consideration. There is no insight on possible out-of-test errors, which result from
violating the assumption of having identically and independently distributed training
and test data.

2.3.3.3 Algorithms

Several ML algorithms exist to deal with linear and non-linear problems. They can be
distinguished from each other by their properties of being parametric or non-parametric
or having a generative or discriminative (conditional) character.

Regarding parametric models, the degree of freedom is fixed. An example is the
degree of a polynomial function that could be used to fit a regression problem. In
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contrast, with non-parametric models, no such limitation exists. Hence, no prior
assumption on the data is needed. These algorithms, however, require larger amounts
of training data, and over-fitting is more likely because no unique solution exists (in
theory, an infinite number of parameters has to be determined).

Generative and discriminative models differ in their perspective on the feature space.
While a generative classifier searches for a decision boundary separating distinct classes,
a generative approach models the feature space’s distribution. As a practical conse-
quence, with generative models, not only class label can be determined but also a
probability for the membership to a particular class.

In fact, no single method or algorithm can be considered optimal or superior against
another9. Instead, they differ in terms of computational complexity, memory demands,
and by the amount of training data necessary or the effort needed to tune hyperparam-
eters. In the following, a brief description of selected ML algorithms used in this work
is given. An in-depth discussion of these and other algorithms can be found in [11,
104].

Naive Bayes The naive Bayes (NB) classifier provides a generative model of the
feature space. It is grounded on Bayes’ Theorem, exploiting the conditional probability
to see a label given a particular feature. In this way, it is used to estimate the probability
distribution of the feature space given a specific class label. Thereby, the estimate is
based on the (naive) assumption that, given a specific class label, the corresponding
predictors are conditionally independent of each other. Thus, if features interact with
each other (e.g. they are correlated), the performance of naive Bayes (NB) most
likely degrades. The inference is inexpensive concerning computational and memory
demands.

Support vector machine The support vector machine (SVM) is a kernel-based dis-
criminative classifier or regression method. Utilizing the kernel trick, a support vector
machine (SVM) constructs a hyperplane that allows non-linear separation of the fea-
ture space. Often polynomial, Gaussian, or radial-basis functions are used as kernel
functions. The hyperplane is chosen such that it maximizes the distance between two
separated classes (or minimizes it in case of a regression problem). Therefore, out of
the feature space, candidates are selected that serve as support vectors. In general, SVM
can be considered robust against over-fitting and capable of fitting highly non-linear
problems. Because support vectors need to be stored, if many are needed for an SVM
model, it is also a memory and computation-intensive. Furthermore, choosing an
appropriate kernel can be difficult.

9In fact, it can be shown that in general given any 2 methods non of them can be superior to the other in
all regards. This is known as the no free lunch theorem [258].
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Gaussian process A Gaussian process (GP) (also known as Kriging), is a generative
non-parametric kernel-based regression and classification method. With Gaussian
process (GP), the observations of the training set are seen as random samples from a
multivariate Gaussian distribution. That is a set of multiple functions, which is defined
by a mean and a covariance matrix. Modeling the distribution function is similar to
the NB idea. GP-based models are typically robust against noise, and inference is fast.
Also, memory requirements are low. Training and hyperparameter tuning, in contrast,
is difficult compared to other methods.

K-nearest neighbor The k-nearest neighbor (KNN) method belongs to the group of
lazy or instance-based learners. Classification or regression is based on a query of the
similarity (or distance) of a new observation and the known samples from the training
set. Typically, a Euclidean distance measure is used. Each new observation is then
classified by a majority vote with respect to its k nearest neighbors. k-nearest neighbor
(KNN) is well suited to solve high-dimensional non-linear problems. However, the
entire feature space needs to be stored, and in case of an exhaustive implementation,
all distances need to be calculated to generate a prediction. That makes KNN both
computational and memory intensive. Furthermore, if the neighborhood k is small, it
is prone to over-fitting.

Decision tree The decision tree (DT) is a discriminative method, which follows a
divide-and-conquer approach, meaning that multiple decision rules are created and
arranged in a tree-like structure. Different metrics to decide on the quality of a split
(decision rule) exist. DTs allow non-parametric modeling, for regression or classification
even on categorical data. Because, only decision rules are stored, and only one path of
a tree is evaluated for a given prediction, they are lightweight in both computationally
and memory demands. Un-constrained trees (unlimited depth, splits with few samples
only) are, however, prone to over-fitting.

Multivariate adaptive regression splines The method of multivariate adaptive regres-
sion splines (MARS) is a discriminative regression technique. It can be written as a
weighted sum of multiple linear regressions, which are called basis functions. Each
basis function is build up as a linear function. It is chosen such that it describes a
local fraction of one specific independent variable from the feature vector. Through
interactions between various basis functions, complex and non-linear relationships can
be modeled. The inference is fast, and memory demands are low.

Artificial neural network Another discriminative method is the artificial neural net-
work (ANN). Here, neurons are interconnected in a graph-like structure. These neurons
are grouped in layers. The internal layers are named hidden layers. An ANN with only
one hidden layer is referred to as a shallow network, whereas ANNs with several hidden
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layers are also referred to as deep neural networks. In the classical fully-connected
(dense) ANN, each neuron is a weighted sum of all its inputs (from the previous layer)
and a bias value. The sum is then used in an activation function (linear, radial basis,
logistic, and others). In regression, often a single neuron is found in the last layer,
which equals the response. In classification, typically one neuron exists for each class.
The class label is e.g. chosen by a majority vote. With ANN, non-linear functions can
be modeled10. Depending on the architecture (e.g. network size), lightweight but also
complex models can be built. That is for both computational and memory demands.
Tuning hyperparameters or forecasting a suitable architecture is difficult.

Ensembles Instead of using a single model, multiple models can be used in combina-
tion, which is then called an ensemble. For instance, with the random forest algorithm,
multiple DTs or decision stumps (that is a tree with a single decision rule) are used in
a majority-vote fashion. The idea is to combine multiple independent weak-learner
or base-learners to construct a stronger model. Ensembles are sub-dived into bagging
and boosting approaches. In the case of bagging, training is on different subsets of
the training data. Either all features are used, but only sub-sections of the data set
(Pasting), or vice versa, i.e. the entire data set but only some features (subspaces).
Also, mixtures of those partitions are possible (random patches). Boosting instead is
an iterative process. Again, training is on different partitions, but errors or misclas-
sification rate is used to weight new estimates. In this way, with each iteration, the
training concentrates on hard data points. Because the base-learners can be very simple,
memory and computational demands are typically acceptable for small ensembles. For
the same reason, the ensemble is often less sensitive to over-fitting.

10In this respect, the universal approximation theorem exists, which points that neural networks can
approximate any continuous function in the euclidean space.
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The very beginning of wireless body sensor (WBS) applications is the sensor node’s
hardware itself. Regarding the design and implementation of WBS different, partly
contradictory, requirements need to be fulfilled. Some essential properties of WBSs
are apparent and can be deduced from their intended use as unobtrusive and portable
devices, which are to be worn directly on or near the wearer’s body.

These properties include miniaturization of the overall system in terms of size and
weight, the presence of wireless communication capabilities and the integration of
an independent power supply, through a (rechargeable) battery or application of an
energy-harvesting method. Therefore, and besides application-specific requirements,
the designer of a WSN has to optimize size, cost, robustness, storage, and computation
needs as well as the total energy demands concurrently.

In the subsequent, the design of the WBS BI-Vital (BI-V5.0) is presented. It is a
follow-up device whose development has already been discussed in [270]. In summary,
the BG-V5 is a highly-integrated, yet scalable WBS for educational use and research,
which supports low-power or high-performance applications.

In this chapter, firstly, related systems are presented (sec. 3.1), and in the following
fundamental requirements are deduced (sec. 3.2). In the following, its implementation
details are outlined (sec. 3.3). This includes the selection of components and other
hardware-specific design decisions like the choice of an antenna, or the enclosure’s
construction are explained (sec. 3.3.2). Moreover, it comprises an outline of the
firmware’s architecture (sec. 3.3.3).

To conclude, the BG-V5 is empirically characterized (in terms of performance and
power consumption) and compared to its predecessor (sec. 3.4). This chapter closes
with an application example of the BG-V5 for the use as an on-line ECG classification
system to detect certain arrhythmias utilizing a convolutional ANN (sec. 3.5). Finally,
the results are summarized, and a prospect on the future development of WBSs is given
(sec. 3.6).

3.1 Related Systems

In the following, a brief overview of modern WBSs’ hardware architecture is given.
Single and multi-sensor architectures are refereed. The explanations focus on specific
design considerations and application or use-case examples.
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3.1.1 Consumer Devices

Today, numerous consumer graded WBS are available and sold using terms like fitness or
activity trackers, health-bands, or heart rate monitors. These devices come in different
shapes and are intended to be worn on the wrist, chest, or hip. In the following, the
design of typical devices is described.

3.1.1.1 Fitness or Activity Trackers

Fitness or activity trackers are brought to marked by different companies already.
Among them are Fitbit Inc., Withing SA, Misfit Inc., or Xiaomi Corporation, to name a
few. In general, the manufacturers do not reveal information on the internal design,
components chosen, nor the algorithms implemented.

However, for the FitBit Flex, which was released in 2013, images of the internals exist
(Figure 3.1). Also, reverse engineering results are available and were briefly discussed
in a presentation at Hack.lu conference in 2015 [23]. Therefore, the device serves as
an example at this point. A comparison of the Fitbit Flex and competing products is
given in [121]. The Fitbit Flex is furthermore an interesting device because it was one
of the first commercially successful WBS.

The devices can be seen as an example of a minimal WBS system (sec. 2.2.4).
It contains a single sensor only. This is a 3-axial MEMS accelerometer (LIS2DE).
The system furthermore contains a 32-bit MCU (STM32L151C6), a BLE radio for
communication (nRF8001), and a battery charger (BQ24040). Along with the lithium
polymer battery (Li-Pol) and vibration motor, the dimension of the overall is around
25 mm x 10 mm (width x height).

All information tracked and provided by the Fitbit Flex is derived from the accelerom-
eter signals. On the one hand, acceleration is used to count steps. On the other hand,
acceleration intensity and frequency are taken as sleep quality indicator. The device
works hand-in-hand with a smartphone application, which is used to visualize and keep
a diary of the information. Regarding step counting, validity was verified by [181].

Similar architectures can be found along with other manufacturers of wrist-band like
fitness trackers. Nearly all of them embed an acceleration sensor (86 %) or heart rate
sensor (33 %) [24]. Some forgo the vibration motor or light-emitting diodes (LEDs)
and make use of tiny displays. Some integrate flash-memory or make use of SoC-
architectures that combine MCU and radio in one chip instead of using independent
solutions.

3.1.1.2 Heart Rate Monitors

As with fitness trackers, consumer graded HRMs are widely available on the market.
They are typically clipped on to a chest strap. These devices then make use of a 1-
lead ECG to capture heart rate. Alternatives can be found with wristbands that use
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(a) Dismantled device (b) printed circuit board (PCB) details

Figure 3.1: A modern pedometer or fitness-tracker, the Fitbit Flex. On the left, the dismantled
device (a). All the physical components of the wristwatch-sized device can be seen: Wristband,
opened enclosure, rechargeable battery, vibration motor, NFC and BLE-antenna, and PCB. Next
to the photograph (b), detail of the internal hardware or PCB. iFixit, CC BY-NC-SA 3.0,
https://de.ifixit.com/Teardown/Fitbit+Flex+Teardown/16050

optical methods, e.g. photoplethysmography (PPG). Well-known manufacturers are
Garmin Ltd., Suunto Oy, Wahoo Fitness LLC, or Polar Electro Oy. The validity of mobile
HRMs was examined by [250]. They found close agreement of RR-Intervals for 2
consumer-grade HRMs compared to a medical 5-lead ECG system.

With early HRMs, the electronic components were placed in an enclosure together
with the electrodes. Today’s models are often mounted on top of a chest strap using
snap fasteners. The shape of these devices is very similar, typically realized as round or
oval nodes. This design has the advantage that the electrode belt is washable without
the electronics.

Regarding chest straps, textile or polymer-based electrode material is used. This also
often causes differences in signal quality as electrode polarization, impedance, and
noise are worse compared to medical electrodes1. Nevertheless, heart rate detection is
typically in close agreement, as most distortions can be handled by filtering the raw
signal accordingly [54].

The device itself functions almost exclusively as a data sink for the heart rate. The
1-lead ECG is amplified, converted by an analog-digital converter (ADC), and then
further processed by the MCU. The calculated heart rate (HR) information is then
transmitted wirelessly. Standards used are based on the 5.3 kHz band (gym equipment)
or 2.4 GHz ISM-band (Protocols used, e.g. BLE or ANT to allow for operation with a
smartphone). [191]

In addition, some models also have integrated GPS, motion sensors, or memory
units. An example of a modern HRM can be found with the Wahoo Fitness TICKRx. The

1Medical-grade electrochemical electrodes use silver-silver chloride pairs (short Ag-AgCl).
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TICKRx outer dimensions are 70 mm x 38 mm x 13 mm (width x height x depth). It
weighs 8.5 g and is powered by a coin cell. Its enclosure is waterproof (IPX7). Details
on the internals are not provided2.

3.1.2 Research Devices

Besides commercial products, WBSs that are designed for research purposes are avail-
able on the market as well. Those systems can also be referred to as multi-modal WBSs
because they often combine multiple sensor elements. In the following, the design of
WBSs marketed for application in research is outlined.

3.1.2.1 ActiGraph

The ActiGraph is a WBS widely used in research. Looking up the search term “Acti-
Graph” in the NCBI PubMed Central database alone, results in 24393 publications from
sociology, epidemiology, or sports science referring to the device.

The most recent device is the wrist-watch like wGT3X-BT4 (2018). It can be worn on
the wrist, waist, ankle, or thigh. The enclosure is water-proof, has a physical dimension
of 33 mm x 46 mm x 15 mm (width x height x depth) and weighs 19 g. It has a 4 GB
built-in memory storing data for up to 180 days (1-Minute samples, approximately
256 B/min). It offers a USB-interface and a wireless interface via BLE.

The wGT3X-BT uses 3-axis MEMS accelerometer (±8 g) to track physical activity and
sleep. An ambient light sensor is integrated as well to support the distinction between
activity and sleep. Additionally, a heart rate monitor (sec. 3.1.1.2) can be connected
wirelessly to the device via BLE. Its data is then additionally recorded. To reliably detect
if the device is worn, a wear-sensor is integrated into the device, which is based on a
capacitive coupling to the wearer’s skin. Moreover, the device can detect and log the
presence of other nearby ActiGraph devices.

3.1.2.2 Shimmer 3

Another manufacturer of WBSs for research purposes is Shimmer. Its development
started around 2008 continues to this day.

The Shimmer 3 ECG5 is a WBS that combines 9-DoF inertial measurement unit (IMU)
and 5-lead ECG analog front end. The analog front-end can also be adapted to 3, or 2
lead use, as well as to record EMG signals. The IMU consists of 4 different sensors: The
LSM303DLHC from STMicroelectronics serves as a wide-range accelerometer (±2 g to

2Some internal details can be deduced from images published by the Federal Communications Commission
(FCC) in report PADWF109 available to the public domain https://fccid.io/PADWF109.

3September 2019, https://www.ncbi.nlm.nih.gov/pubmed/?term=ActiGraph
4ActiGraph LLC, https://www.theactigraph.com/actigraph-wgt3x-bt/
5Shimmer, http://www.shimmersensing.com/products/ecg-development-kit

42

https://fccid.io/PADWF109
https://www.theactigraph.com/actigraph-wgt3x-bt/
http://www.shimmersensing.com/products/ecg-development-kit


3.1 Related Systems

±16 g) and magnetometer (±130µT to ±810µT). Besides, a low-noise accelerome-
ter, the Kionix KXRB5-2042, is build-in. The gyroscope and the pressure sensor are
the Invensense MPU9150 (±250 DPS to ±2000 DPS) and Bosh BMP180 (300 hPa to
1100 hPa), respectively.

It is powered by a Li-Pol (450 mAh, 3.7 V, 1.7 W h). The device’s physical dimension
is 65 mm x 32 mm x 12 mm (width x height x depth) and weighs 31 g. Typically, the
device is worn with a necklace or is fixated by a strap on to the origin of interest (e.g.,
leg or arm). Processing in the Shimmer is done by a 16-bit MSP430 MCU (24 MHz,
16 kB RAM, 256 kB ROM). For communication, the RN42 from Microchip6is used,
which implements a Bluetooth 2.1 protocol stack.

The Shimmer is an excellent example of a WBS acting as a data-logger or sink node.
It is available as a commercial product yet was designed with research and development
purposes in mind. Its design can be taken as a reference example of optimizing size,
cost, storage capabilities, robustness, and flexibility.

3.1.2.3 MoviSense

The development of the MoviSense sensor started as a research project and was com-
mercialized as a spin-off from KIT Karlsruhe University in 2009. The newest version of
the MoviSense is the EcgMove 47.

Embedded sensors include a 1-lead ECG analog front end, 6-DoF inertial mea-
surement (accelerometer ±16 g and gyroscope ±2000 DPS), air pressure (300 hPa
to 1100 hPa) and temperature. The internal memory of the device offers 4 GB of stor-
age. The wireless communication is realized utilizing BLE. The device’s enclosure is
water-proof (IP67) and has a physical dimension of 62 mm x 39 mm x 12 mm (width x
height x depth). It weighs 26 g and is powered by a Li-Pol. The device is worn at the
chest, clipped onto an electrode-belt.

The MoviSense is designed to fit different research applications. It is mainly used as
a data-logger, storing all sensor data for subsequent off-line analysis. It is thus a good
example of a WBS acting as a data sink. Just like the Shimmer 3 (sec. 3.1.2.2), it is
a commercial product designed for research and development use. In comparison to
Shimmer 3 it offers a water-proof enclosure and extended storage capabilities.

3.1.3 Previous version: BG-V4.2

The BI-Vital version 4.2 (BG-V4.2) is the predecessor of the new version 5 that is
developed as part of this work. Its development is originally described in [64, 254].
It is a WBS that combines 1-lead ECG analog front end, a wide-range accelerometer
(LIS331HH8, ±6 g to ±24 g), and additional analog circuits to connect a temperature

6Microchip RN42, https://www.microchip.com/wwwproducts/en/RN42
7movisens GmbH, https://www.movisens.com/en/products/ecg-sensor
8STMicroelectronics N.V., www.st.com/en/mems-and-sensors/lis331hh.html
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sensor (NTC), electrodermal activity (EDA) electrodes or a respiration sensor [269].
It is powered by a non-rechargeable coin-cell (CR2025, approximately 140 mAh to
170 mAh, 3 V, 0.4 W h to 0.5 W h). The enclosure was adopted from a commercially
available product with the dimensions of 63 mm x 47 mm x 12 mm (width x height x
depth). The module weighs 31 g and is worn on top of an ECG chest strap (electrode
belt) or compatible clothing.

As with the Shimmer, the processing is done by a 16-bit MSP430FG4618 MCU
(16 MHz, 8 kB RAM, 116 kB ROM). Data can be stored into the embedded S25FL064K
NOR-flash (64 Mbit) or transmitted wirelessly with the nRF24L01 based on a proprietary
protocol in the 2.4 GHz ISM-band.

3.2 Requirements

Due to the close relationship between WBSs and WSNs, they share a common design
space. Operating time (or power consumption) and space requirements are as important
for WBS as they are for WSN. Developing a WBS for research or educational use also
implies covering a broad spectrum of functionalities and applications. However, as the
device is not necessarily intended to be produced in high quantities, cost efficiency is
less critical.

In order to cover a wide range of use-cases, it is intended to integrate more than a
single sensing element. Also, components should be selected or designed in a way that
they offer the highest accuracy. These requirements dominate cost, yet energy and size
constraints must not be violated.

Likewise, communication remains essential, although with a different focus than in
WSN. In contrast to WSNs, WBSs do not primarily interface with other devices. Instead,
they need to communicate with the wearer9. Communication, therefore, needs to be
thought of as part of the user interface because it is usually triggered by the user or
intended to notify him or her.

All these requirements affect each other. For instance, specifying the device’s dimen-
sion limits size for components and energy storage. Therefore, and besides application-
specific requirements, the designer of a WSN has to concurrently optimize size, cost,
robustness, storage- and computation needs while keeping the total energy demands
low. The considerations taken into account during the design phase of the BG-V5 are
given in the following.

3.2.1 Shape and Enclosure

Before components can be selected or the shape of the enclosure can be discussed, the
measuring position must be determined. Different positioning for a WBS can be thought

9Communication might happen through a mediating device, e.g. a wrist-watch.
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off. Following the use case, many body parts for wearing a WBS are conceivable. These
include the wearer’s head, shoulders, chest, waist, arms, hands, legs, or feet. In some
applications, the position is of lesser importance, e.g. if only environmental data (e.g.
air quality) is to be measured.

Other examples of WBS (e.g. presented in sec. 3.1), need to be attached to the chest,
in order to enable the recording of an ECG or to the hip to allow detection and counting
of steps. In order to analyze not only steps but record gait parameters, a wearable is
most probably best positioned on the wearer’s feet or legs. If, however, an analysis
of, e.g. throwing movements is intended, a device must be placed on the shoulder,
arm, hand, or on all these positions. Apart from that, other measures could determine
distinctive positioning, e.g. the wearers’ ear is a good choice in case that the body’s
core temperature estimation is intended.

The chest is an appropriate choice because it allows to include a wide range of
parameters. From own experience [269] and other work [14], it is already known
that accelerometer signals recorded from the chest (i.e. body’s center of mass) are
well suited to perform activity recognition and estimate EE. If it is intended to obtain
heart rate, and ECG is assumed to be the most precise method, this also determines
the positioning at the chest (for the complete device or at least electrodes). The
use of an ordinary chest strap equipped with ECG-electrodes is suitable. Also, other
parameters can be obtained from the chest, like respiration [269] or skin temperature.
The possibility to place the module at other body parts, e.g. through hook and loop
fasteners, remains unaffected.

Placing the sensor on the chest, i.e. clipping it onto a chest strap, limits the overall
dimensions of the device. The examples of other body sensors, like the BI-V4.2 or
Shimmer (sec. 3.1), can serve as orientation. Also, it is needed to keep the electrodes’
distance of around 45 mm, which is found in commonly available chest straps. It is
furthermore intended to keep the sensor’s dimensions in the same order as it is found
with comparable devices. This is setting a limit for the absolute maximum dimensions
of about 70 mm x 40 mm x 15 mm (width x height x depth). In this way, it should be
possible to hold the device in hand and to attach it not only to a chest strap but as well
to other parts of the body (like foot or arm) without disturbing the wearer.

3.2.2 Energy supply

Regarding the energy supply of a WSN, having a fully self-sustainable solution would
be ideal. It would maximize mobility and prevent the need to replace depleted batteries
(primary cells) or the need to recharge a secondary cell. Such solutions, known as
energy-harvesting-systems, have recently been presented for WSN [129]. In their
experiment Kim et al. [129] yield around 1 mW from a 2 W-RF source (0 dBm). This
was for a wearable device positioned at the chest. However, this required a radio device
(i.e. a smartphone) permanently radiating energy nearby to the wearable device.
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Typically, the amount of harvestable energy from other sources (except solar energy),
e.g. vibration or thermal differences is even lower. For vibration or thermal differences
on the human body, it is about 4µW/cm2 to 30µW/cm2 [74, p. 56]. Facing these lim-
itations, it can be concluded that energy-harvesting methods are applicable for specific
use-cases only. Due to their unpredictable and thus unreliable nature, they are mostly
applicable in adaptive or event-driven applications, where sensing or transmitting
information is rarely needed.

For other applications, in general, the power consumption of a WSN will exceed the
harvestable amount of energy by orders of magnitude. For instance, power consumption
for continuously transmitting raw data with a Shimmer 3 ECG sensor (sec. 3.1.2.2) is
reported to be around 30 mW [229]10.

The intended application of the BG-V5 as a data-logger pinpoints the use of a battery.
Taking the assumption of a maximum volume of 42 mL for the overall system (outer
dimensions) a volume of 1 mL to 10 mL can be reasoned for the battery. This would
result in a maximal capacity of 0.55 W h to 5.46 W h given a lithium-ion manganese-
oxide (Li-MnO2) based cell or 1.35 W h to 13.5 W h assuming the use of zinc-air primary
cells, which have a typical energy density of 546 W h/L or 1350 W h/L), respectively.

Referring to the Shimmer 3 streaming application, this would allow a run-time of 18 h
to 450 h. In reality, however, different challenges reaching these theoretical run-times
using primary cells are faced. That is explained by the fact that, although the energy
density of primary cells (such as Li-MnO2 or zink-air) is high, their power density is
limited in comparison to secondary cells (e.g. Li-Pol). For embedded applications,
even if the mean power consumption is low, the peak consumption thus might exceed
the maximum tolerable discharge current (power) of a primary cell. Secondary cells,
solve the issue of low power density as they are more tolerable to high peak discharge
currents. However, their energy density is typically lower.

It can be concluded that the optimal choice of an energy source strongly depends on
the application. Energy harvesting is best for autonomous applications but is applicable
for a limited set of use cases only. Primary cells are advantageous in scenarios where
there is low power consumption, but only if no peak loads exceeding the maximal
discharge current appear. Also, due to the low self-discharge and high energy density of
primary cells, the run-time of a device can be maximized. However, given an application
with higher power consumption or peak loads, the self-discharge rate is negligible, and
the higher energy density is canceled due to the lower power density.

Another problem with primary cells is that they need to be replaced once they are
depleted. Also, it can be challenging to determine the exact state of charge because
of the flat discharge curve. In general, secondary cells provide more flexibility. Their
power density is high, and they can be recharged and thus reused many times. Their
use also reduces maintenance costs by avoiding the need to open the device and replace
a depleted primary cell.

10The exact reported value is 9.46 mA with no battery voltage specified, but assumed to be 3 V.
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3.2.3 Wireless Communication

Wireless communication is needed to transmit data from one device to another. In WBS,
often light-weight information is transferred, e.g. HR or temperature to a displaying
device. These can be compactly represented (8 bit) and are transmitted at a relatively
low sampling rate (1 Hz). The data-rate is thus low (8 bit/s). Raw data, however, such
as the ECG, are larger both in the representation (16 bit), but above all, the typical
sampling rate is higher (100 Hz). Correspondingly, the data-rate increases (1600 bit/s).

Simple broadcasting methods are suitable for data transmission when low latency
and high data-rate is needed. The data packets consist of nothing more than a preamble,
the payload, and an optional checksum. In consequence, the overhead is low, and
the net rate (or goodput) is often close to the maximum theoretical throughput. The
advantages of broadcasting go hand in hand with the lack of advanced or comfort
functions, such as addressing, whitening, re-transmission, channel-hopping, encryption,
and others on the link-layer level. Furthermore, there is a lack of interoperability
regarding the application-layer level.

The selection of a wireless-communication technology in WBS is constrained by the
fact that the sensor is applied to the human body. This is because the tissue causes
shadowing or absorption of the electromagnetic waves emitted. Here the frequency is
the deciding factor. For instance, in [262], it is shown that with 820 MHz damping is
typically lower (42.05 dB to 54.60 dB) compared to the application of radio waves in
the 2.4 GHz domain (44.46 dB to 64.72 dB)11. For the sake of interoperability, existing
standards like Bluetooth Low Energy (BLE) somewhat enforce to adapt to the 2.4 GHz
band.

BLE has become a wide-spread wireless protocol standard for IoT, WSN, or WBS [98]
on the 2.4 GHz ISM-band. The first specification for BLE has been available since 2010.
It was specified with low computing power and low data-rate applications in mind.
Therefore, it is primarily suitable for communication with devices such as sensors or
beacons.

The theoretical maximum transfer rate of BLE (version 4) is 1 Mbit/s. Due to the
protocol overhead, as mentioned before, the actual maximum transmission rate is
significantly lower. Communication between two BLE devices is organized in connection
events, which happen at fixed intervals. In each event, a limited number of packages is
allowed (typically 6) with a maximum payload of 20 B. Having set, the lowest possible
connection interval of 7.5 ms (approximately 133 packages per second), the maximal
throughput under ideal conditions is limited to 15960 B/s or 0.12 Mbit/s.

Modern MCUs for wireless transmission purposes are designed as multi-protocol
SoCs that offer software-defined protocol stacks. Thus, it is possible to use existing
standards, but keep full flexibility concerning the use of the transceiver for proprietary

11Presented values are minimum and maximum of the measurements from experiment “CM4”, comparing
path loss in line-of-sight conditions, where the receiver is located 1 m to 4 m away from the sender
attached to the human body [262].
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protocol development. This typically relaxes constraints on the choice for a specific
solution because this offers the possibility for adaptation to future protocols (of course,
the restriction remains that these must possibly be developed by oneself.). Moreover,
multi-band solutions are available as well.

3.2.4 Non-Functional requirements

Interfacing with the wearer is the key non-functional requirements in WBS. Thinking
of the user interface of a WBS, wireless communication can be sufficient as a single
interface solution to the user. With WBS tactile interfaces (e.g. vibration motors), LEDs
or even smaller displays and devices for acoustic feedback (e.g. a piezo buzzer) are
also commonly found.

While the latter only allow for indication, gesture recognition, or tap-detection are
other user interface elements, which also provide an input channel. Besides, speech
recognition is a way of communicating with the wearer. As with all interfaces, they
must be designed with the user in mind. However, even simple solutions, like colored
Morse code like interfaces can transmit valuable information to the wearer with only a
short learning phase [49]

Besides wearer (user) interaction, other non-functional requirements exist in WBS
design, including:

• a mechanism to uniquely identify the device.
• data security, e.g. prevent unauthorized access.
• wearer safety, e.g. the device must not endanger the wearer.
• mechanical robustness, e.g. device must withstand sweat, heat, and minor

crashes.
• an internal timer to synchronize measurements.

3.3 Implementation

In the following, the implementation details of the BG-V5 are given. This includes the
selection of hardware components and sensors (sec. 3.3.1), the design aspects of the
enclosure (sec. 3.3.2), and a summary of the firmware architecture (sec. 3.3.3).

From the precluding requirements discussion above, it is inferred that the device:

• must be attachable onto a chest strap (ECG-electrodes, body’s center of mass).
• must not exceed dimension of 70 mm x 40 mm x 15 mm (width x height x depth).
• must be powered by a secondary cell.

Moreover, because different use-cases exist, it must provide a scalable set of sensors,
computational resources, and communication protocols in order to fit multiple research
applications.
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Figure 3.2: Hardware architecture of the BG-V5. All Sensors, the power management, and
indication components are connected and controlled by the STM32 MCU. Data is either stored
in the flash or transferred to the nRF51 transceiver for wireless transmission.

3.3.1 Hardware Design

The hardware design and the selection of components become apparent, having the
requirements identified (sec. 3.2). The BG-V5’s design follows one of a classical sensor
node. As such it combines a central MCU (sec. 3.3.1.1), sensors (sec. 3.3.1.2 - 3.3.1.4),
storage (sec. 3.3.1.5), wireless connectivity (sec. 3.3.1.6) and a power management
(sec. 3.3.1.7). Subsequently, the selection of components and other design decisions
are discussed (Figure 3.2).

3.3.1.1 Microcontroller

The fields of application of WBS are very different. In the simplest case, they act
as a data-logger, but complex systems with embedded inference are also possible.
Thus, also the requirements regarding the MCU vary, which is why a scalable MCU is
favorable. Thereby, it must be possible to balance performance and power consumption.
In this sense, the MCU must be capable of operating in a low-power state but also
offer adequate performance. That is to allow for high autonomy (low-power) and high
performance (embedded algorithms, e.g. inference). Moreover, it must be available
in a small package (wearable design) and offer required interfaces (e.g. digital and
analog).

A priori comparison of performance and power consumption trade-offs are difficult
and task-dependent. It is often not sufficient to rely solely on benchmark results.
This is because benchmarks typically fail to attribute specific characteristics of the
later application. For example, on the computational level, a benchmark could lack a
comparison of architectural differences like the presence or absence of a floating-point
unit (FPU) or single instruction multiple data (SIMD) operations [192].
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Table 3.1: Comparison of different MCUs based on benchmark results (ULPMark). The best
models available at design time (2016) are listed below. In addition, more recent benchmarks
are given that also take into account the efficiency of the peripherals (Per.). Vendors are ON
Semiconductor (ONS), Ambiq Micro (AM), Microchip Technology (MT), STMicroelectronics
(STM), Texas Instruments (TI)

Device Vendor Family Chip ULPMark Year
Core Per.

ONS RSL10 Rev 1.0 C.-M3 1090 2018
AM APOLLO512-KBR Rev.A3 C.-M4 395 33 2017
MT ATSAML11E16A rev B C.-M23 282 2018
STM STM32L552 Rev1 C.-M33 267 34 2018
STM STM32L433RC-P C.-M4 264 107 2017
STM STM32L476ZG-P C.-M4 227 81 2017
TI MSP432P401R Rev. C C.-M4 164 7 2018
STM STM32L476 C.-M4 152 63 2018

AM APOLLO512-KBR Rev.A3 C.-M4 378 2015
STM STM32L476RG C.-M4 188 2015
MT SAML21J18A-UES Rev.A-DC C.-M0+ 186 2015
TI MSP430FR6972 Rev.A MSP430 124 2015

Also, in ESs, the efficient use of peripheral components is an issue. Here, efficiency
depends on whether a specific peripheral can be used without other components,
especially the central processing unit (CPU), being active. Furthermore, it is preferable
to have a wide range of peripheral components embedded, to reduce the total count of
components. Moreover, this keeps the PCB’s floor plan compact, reduces the costs, and
avoids communication overhead between additional components.

New benchmarks like the ULPMark12 address these issues. The ULPMark is a family
of 3 different benchmarks. It is designed to compare the energy efficiency of MCUs
in battery-powered applications. The ULPMark-CoreProfile targets the core’s power
consumption only (active and low-power mode). With ULPMark-PeripheralProfile ADC,
pulse-width modulation (PWM), serial peripheral interface (SPI), and real-time clock
(RTC) peripherals are included in the benchmark as well. To limit the list of possible
MCU-candidates, the ULPMark results were taken into consideration (Table 3.1).

The STM32L476 [223] combines high performance and power-efficiency. Moreover,
it offers a multitude of peripherals, among them, quad serial peripheral interface
(QSPI) flash-memory interface, pulse-density modulation (PDM) microphone interface,
USB-connectivity (2.0), 12-bit resolution ADC and digital-analog converter (DAC).

12ULPMark (Ultra-Low-Power Benchmark) provided by EEMBC (Embedded Microprocessor Benchmark
Consortium, www.eembc.org/ulpmark/)
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Its core clock can be scaled from 0.1 MHz to 80 MHz, which allows for low-power or
high-performance applications. The internal flash-memory is up to 1 MB with 128 kB
static random-access memory (SRAM). It is available in a 72-ball WLCS-package (wafer
level chip scale), with dimensions of 4.4 mm x 3.6 mm (width x height).

Another possible candidate is the Apollo 512 [22], which is furthermore superior in
terms of core efficiency. However, the internal ADC is less accurate (10-bit vs. 12-bit
resolution), nor does it embed USB connectivity. Another argument in favor of the
STM32L4 is its efficiency in terms of peripheral usage (Table 3.1). This is because the
STM32L4 core and peripherals are clocked independently. Thus, the CPU can run in
low power mode or be turned off, while peripherals, e.g. the ADC, are sampled. [194]

It should be noted that as of today, more promising candidates can be identified.
Among them, the RSL10 is an interesting alternative. This is because it combines
MCU and radio transceiver in one chip. However, it was not available when the BG-V5
was designed. Based on the benchmark results, size, and peripheral available, the
STM32L476 is chosen as the main or central MCU for the BG-V5.

3.3.1.2 Motion Sensors

Motion is a crucial entity of interest in wearable applications. It is either used to detect
user-interaction (e.g. the user picks up the device) or to measure the wearer’s motion
(e.g. step counting). Modern IMUs typically combine 3 different sensors, namely an
acceleration sensor, a gyroscope, and a magnetometer:

• Acceleration sensors have a build-in proof mass. Its displacement is proportional
to the acceleration in the given axis. The sensing elements are passive. The mea-
suring principle is typically capacity based. On earth, measurements are always
affected by the earth’s gravitational field, which allows calculating inclination
(pitch and roll). [213]

• Gyroscopes are used to measure angular velocity. They are often realized as
Coriolis vibratory gyroscopes, utilizing tuning forks configurations in which two
proof masses vibrate in opposed direction. Rotation of this configuration results
in an orthogonal vibration due to Coriolis force that is proportional to the angular
velocity. The sensing elements are active. The measuring principle is typically
capacity based. Measurements can be used to calculate angular displacement
around the sensitive axis. [213]

• Magnetometers measure magnetic fields. Internally, they are often realized as
hall sensors. Thus, a current that flows perpendicular to a magnetic field will
result in a proportional voltage, measurable across the magnetic field’s axis
(Hall effect). Within an IMU, a magnetometer can be used to find the north
pole position, thus enable absolute orientation. Its measurement is affected by
auxiliary electromagnetic field or metal. [234]
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Today’s accelerometer, gyroscope, or magnetometer sensors are sensitive on all
3 room axes. Thus combining them leads to 9-dimensions of freedom. For simple
applications, a single accelerometer can be sufficient. If the orientation is of interest, the
combined use of gyroscope and accelerometer is preferable. If the absolute orientation
is of interest, an additional magnetometer can provide north pole direction, thus give
absolute orientation.

The power consumption in MEMS accelerometers is a function of output data-rate,
noise level, and measurement resolution. For the BG-V5, an acceleration sensor is
selected out of 18 different devices from 5 manufacturers (Figure 3.3)13.

The LIS2DW12 was found to be most suitable as it has the lowest power consumption
in the intended data output range (≤100 Hz). A possible alternative is found with the
mCube MC3672. However, no information on low-sampling power consumption is
available from the datasheet. The LIS2DW12 is thus chosen in favor. In the BG-V5, a
variant, the LIS2DE12 [143] was chosen, which provides 8-bit resolution instead of
16-bit resolution.

The physical dimension of the LIS2DE12 is 2.0 mm x 2.0 mm (width x height). Its
active power consumption is specified with 15µW given an output data-rate of 50 Hz.
Standby current is 1µW. Its full-scale range covers ±2 g to ±16 g.

To fit for other applications, which require absolute orientation, an additional IMU
was integrated into the design. It is intended for applications that require low-error and
high-resolution, but in return, accept higher demands regarding power consumption.
For such applications, the BNO055 [36] IMU was selected. The decision is based on
practical experience and comparison.

The BNO055 offers the benefit of having a fully integrated motion processor, which
offloads the main MCU from having to calculate fused motion and orientation infor-
mation, e.g. as quaternions or Euler angles. Therefore, it can be considered a SoC. Its
core is based on an ARM Cortex-M0 design.

The physical dimension of the BNO055 is 5.2 mm x 3.8 mm (width x height). Its ac-
tive power consumption with all sensors active is specified with 37 mW given an output
data-rate of 100 Hz. Standby current is 120µW. The full-scale range of the accelerom-
eter, gyroscope, and magnetometer covers ±2 g to ±16 g, ±125 °/s to ±2000 °/s or
±1300µT to ±2500µT, respectively.

3.3.1.3 Environmental Sensors

Environmental data, such as temperature, humidity, or atmospheric pressure, provide
auxiliary information of the wearer’s environment. For instance, pressure sensors can
be used to add a dimension of freedom to IMU measurements (That is, combining
the high-frequency components of changes in atmospheric pressure measurements

13Devices under consideration are: Analog ADXL312, ADXL362; Bosch BMA253, BMA423, BMA456, BMA280,
ST LIS3DH, LIS3DSH, LIS2DW12, KIONIX KX022, KX126, KXCNL-1010, KXTJ3; NXP MMA8652FC,
MMA8453Q, FXLS8471Q; mCube MC3672; TDK IAM20381
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Figure 3.3: Comparison of energy consumption and data output rate of 18 different accelerome-
ters from 5 different manufacturers.

to calculate altitude). Other environmental factors of interest could be luminosity,
acoustic noise, or the presence of hazardous or harmful substances e.g. volatile organic
compounds or carbon monoxide or carbon dioxide, to name a few.

For the BG-V5, environmental MEMS sensors to measure temperature, relative hu-
midity, atmospheric pressure, and acoustic noise (microphone) were selected and
integrated. Due to size constraints, only MEMS components are considered. As with
motion sensors (sec. 3.3.1.2), many MEMS sensors to measure environmental informa-
tion are available on the market. For instance, regarding air pressure sensors only, 34
different sensors from 18 different manufacturers were identified in a market analysis
by [162]. Likewise, a broadly spread market landscape exists for temperature and
humidity sensors as well as for MEMS microphones. A comparative analysis is thus
impractical.

Regarding air pressure, relative humidity, and temperature, the BME280 [35] was
selected because it combines all these sensors in a single package. No other device could
be identified. Moreover, a pin compatible-variant (BME680) exists, which additionally
allows measuring air pollutants, i.e. volatile organic compounds. A coarse comparison
of the BME280 and other sensors revealed that it is comparable or outperforms them
in terms of accuracy or power consumption (Table 3.2).

The physical dimension of the BME280 is 2.5 mm x 2.5 mm (width x height). Its
active power consumption with all sensors active is specified with 15µW given an
output data-rate of 1 Hz. Standby current is<1µW. The temperature, relative humidity,
and air-pressure full-scale range cover −40 ◦C to 85 ◦C, 0 % to 100 %, or 300 hPa to
1100 hPa, respectively.

Regarding, the acoustic sensor, the digital MEMS microphone MP34DT04 [168] was
selected. Because it is primarily intended to be used as a SPL instrument only, no
extensive comparison in terms of noise or sensitivity was carried out. The selected
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Table 3.2: Comparison of MEMS environmental sensors (temperature “T”, relative humidity
“H” and absolute air pressure “P”) in terms of precision, maximal, and typical (sampled at 1 Hz)
power consumption. Information is taken from the corresponding devices’ datasheet.

Device Type Precision Power con. /µW
(Manuf.) max. typ.

Bosch BME280 T ±1.0 ◦C 630 2
H ±3 % 612 3
P ±1.0 hPa 1285 5

Sensirion SHT85 T ±0.1 ◦C
1980 6

H ±1.5 %

Sensirion SHTC3 T ±0.2 ◦C
1419 20

H ±2.0 %

TE-Connectivity HTU21D T ±0.3 ◦C
1350

-
H ±2.0 %

STMicroelectronics LPS25H P ±0.1 hPa 63

TE-Connectivity MS5637 P ±0.1 % 3750 3

MP34DT04 has an acoustic overload point of 120 dBSPL and an equivalent input noise
of 30 dBSPL [20]. The physical dimension of the MP34DT04 is 3.0 mm x 4.0 mm
(width x height). Its power consumption is 1.08 mW if sampled at 2.4 MHz.

3.3.1.4 Vital-sign Sensors

Vital sign monitoring, e.g. capturing bodily functions of the wearer, is a key-function
with respect to health- or sports-related applications. In BG-V5 analog circuits are
implemented to record respiration rate from an external force sensor [269] and heart
rate from a 1-lead (bipolar) ECG.

The components used for analog signal processing are the ADA4505-4 [3], which
combines 4 operational amplifiers (OpAmps) in a single component. Additionally, the
AD8235 [2] instrumentation amplifier (InAmp) is used. The components physical
dimensions are 1.5 mm x 3 mm (width x height) or 1.6 mm x 2.1 mm (width x height)
for the ADA4505-4 or AD8235, respectively.

The functional principles of the circuits are outlined in the following (the details of
the circuit can be found in appendix A).

Respiration Rate The BG-V5 provides connectors for the respiration sensor described
in [269]. It is based on a force-sensitive resistor, which is attached to a chest strap.
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Figure 3.4: Attenuation of the ECG filter used in BG-V5. Here the median response from Monte-
Carlo analysis is depicted together with results from a worst-case analysis. The circuit’s reference
design is found in [254], while here, the components used are different (Appendix A, Figure A.3).

It is based on the measurement of force changes between the chest and chest strap,
due to thoracic movement. The resistance of the sensor is low during inhalation or
high during expiration. To capture these changes in resistance, the sensor is used in
a voltage divider configuration combined with an active low-pass filter (AD4505-4,
Sallen-Key, cutoff-frequency: 0.80 Hz, gain: 1).

Heart Rate The heart rate measurement is based on ECG recording with a resolution
of 12-bit. The analog pre-processing aims at amplifying the electric potential of the ECG,
which is around 1±5 mV. Moreover, only relevant frequencies in the range of 0.05 Hz
to 100 Hz should be passed. For the practical application of a mobile ECG monitor,
in order to reduce high-frequency noise and motion artifacts, bandwidth is typically
limited to 1 Hz to 35 Hz. In addition, due to the electrode offset, high common-mode
rejection is required.

The analog pre-processing used in BG-V5 is based on the previous design used in
BG-V4.2. It is described in detail in [254]. The BG-V5’s design differs in terms of the
chosen components. Also, further adaptations in the discrete filter stages exist. This
is due to the lower system voltage (1.8 V instead of 3 V) of the BG-V5 and general
improvements of the overall power consumption. Also, a reduction of the total number
of different components used (bill of material) is intended. The filters architecture and
frequency response (Figure 3.4), however, remains unchanged:

In its input stage, passive RC-filters (common mode and differential mode) are used
to remove the DC-offset and radio frequency interference. In this way, a high common-
mode rejection ratio is maintained at the InAmp’s input stage [115]. In order to avoid
a dual supply solution, the signal is shifted towards an adjustable reference voltage
provided by the DAC from the host MCU (sec. 3.3.1).
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Following the passive RC-filter stage, the signal is amplified using the AD8235 InAmp.
The InAmp’s amplification factor is set to 5. It can be adjusted through an external
resistor. Its maximal amplification gain is 200.

The pre-amplified differential ECG signal is then further filtered and amplified.
Therefore, a 3-staged active filter configuration is used. This makes use of the ADA4505-
4. At first, an integrator is added to the InAmp’s reference input, which acts as an active
high-pass (cutoff-frequency: 1.33 Hz, gain: −1). The 2nd stage is implemented as a
low-pass multiple feedback filter (cutoff-frequency: 33.84 Hz, gain: −100). Finally, the
low-pass filter in the 3rd stage is based on a Sallen-Key architecture (cutoff-frequency:
33.86 Hz, gain: 1).

The system’s expected analog current consumption can be calculated as the sum
of the static quiescent current of the active filters, attenuation stages, and power
supply (AD8235 [2], AD4505-4 [3], BQ25120 [42, p. 11]). Furthermore, the current
consumption of DAC and ADC also adds to this sum (STM32L476, DAC: [223, p. 178],
ADC: [223, p. 178]). In total, the power consumption is expected to be 1.4 mW
(worst-case scenario, eq. 3.1). Here, the power loss induced by the low-dropout (LDO)
regulator used for the analog power supply also needs to be considered (eq. 3.2).

PECG = ULiPo · (IAD8235 + IAD8235 IADC + IDAC + ILDO)

= 3.7 V · (30µA+ 21µA+ 16.6µA+ 315µA+ 0.9µA)

= 3.7 V ·383.5µA

≈ 1.4mW

(3.1)

νLDO =
ULiPo

UAnalog
=

3.7V
1.8V

= 0.49 (3.2)

The final design is configured to fulfill requirements, as stated in [254] and has the
following characteristics:

• gain factor 500 to 1000 (approximately 250 mV to 1500 mV)
• signal filter to the range of 1.3 Hz to 33.8 Hz
• adjustable reference voltage
• high common-mode rejection (94 dB).
• low power (1.4 mW)

For future re-design, a fully integrated analog ECG front-end could be used. Such
components are already available on the market. As an example, the AD823214 or
ADS1291I15 can be cited. Both offer advantages since they are smaller and offer
extended features, e.g. adaptable filter or advanced noise rejection techniques. Their
use was considered, and both were evaluated. However, re-using the BG-V4.2 solution
was favored to build upon existing knowledge for the BG-V5 design.
14Analog Semiconductors, AD8232, https://www.analog.com/en/products/ad8232.html
15Texas Instruments, ADS1291I, www.ti.com/product/ADS1291
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3.3.1.5 Flash memory

Regarding the design of ESs, flash-memory can either be integrated as a chip (part of the
PCB) or a removable component. With the micro-SD standard removable flash-memory
is available in a package as small as 15 mm x 11 mm (width x height). Matching sockets
typically add 1 mm to 2 mm, which must be considered in PCB design. These devices
are managed variants of bare NOR- or NAND-flashes. These facilitate the access to
the underlying memory cells or blocks because they allow an abstract file-system like
access to the memory.

In contrast, with un-managed memory, the pages and blocks (groups of pages) must
be accessed manually16. However, this often allows using the memory more power
efficiently [136] due to the flexible memory access. Furthermore, un-managed memory
is typically available in smaller packages (BGA, ball grid array), which is important to
match size-constraints.

Regarding the different architecture of NAND and NOR-flash, the choice for one or
the other depends on the application. NOR-flash offers advantages in data retention
(up to 20 years) and higher read speed (due to random access) compared to NAND
(sequential read). It is thus preferably used to add additional memory for code storage
and execution.

In contrast to NOR-flash, the use of NAND-flash is advantageous for general data
storage. That is because typically, the capacity is high, and the power consumption is
low. Yet, write and erase operations are slow. Another disadvantage is that the memory
access has to happen block-wise. That effects each read and write operation. Moreover,
memory can only be erased in full pages, which affects multiple blocks at once. This
requires caching data and thus comes with the additional need for temporal memory
on the host MCU. [232]

To store sensory data, a 1 Gbit flash-memory, the Winbond W25N01GWBIG [244] is
integrated into the BG-V5 design. This is because of the higher memory density and
advantages in power consumption of the NAND architecture compared to NOR-flash.

The W25N01 is an un-manged NAND-flash, organized in pages of 2 kB, which are
grouped into blocks of 64 pages (128 kB). The component has an additional page
buffer for read or write operations. Therefore, the data of a single page does not need
to be temporarily stored by the host MCU. Instead, the buffer can be used to simulates
random access to a page.

The physical dimensions of the W25N01 are 8 mm x 6 mm (width x height). Its active
power consumption is specified with 45 mW for read, write, or erase operations. The
standby power-consumption is 18µW. No comparable flash-memory was identified
during the design process.

16This means that an additional flash-transaction layer (FTL) must be added to the hosts firmware, in order
to manage memory access.
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3.3.1.6 Wireless Connectivity

To realize wireless connectivity, a transceiver and antenna need to be selected.
Regarding the transceiver, it is intended to keep compatible with the legacy hardware

(receiver) and software used with BG-V4.2. This sets the use of a 2.4 GHz transceiver,
which is furthermore compatible with the former used ShockBurst (SB) protocol. This
limits the pool of potential devices to the Nordic Semiconductor17 family. As it is also
intended to support inter-operable wireless protocols such as BLE, ANT, or ZigBee, a
multi-protocol transceiver is favorable.

The Nordic nRF51822 [176] was identified to fit those requirements. It offers
flexibility in terms of available protocols, which are realized in software (BLE and SB).
Furthermore, it is available in a small (weaver-level chip-scale) package and optimized
for low-power battery-operated devices.

The nRF51822 is a SoC. Its core is based on an ARM Cortex-M0 design. Its physical
dimensions are 3.8 mm x 3.8 mm (width x height). The average active power consump-
tion is 19 mW or 23 mW if the device is configured to transmit (output power 1 mW)
or receive data (1 Mbit/s), respectively. The power consumption when the dive is in
off-mode is <3µW.

In the BG-V4.2 a chip antenna18 was used, offering a maximum antenna gain of
0.5 dB with physical dimensions of 6.5 mm x 2.2 mm x 1.0 mm (width x height x depth).
In the BG-V5, instead, a PCB-antenna19 was realized, which has a physical dimension
of 25.7 mm x 7.5 mm (width x height) and offers a maximum gain of 3.3 dB.

The antenna’s length and height are near to the maximum, which is limited by the
largest metal-free area of the final device. This, in turn, is determined by the ECG
electrodes distance of 45 mm and the batteries dimensions, which is about to be placed
beneath the PCB. Given the diameter of the snap-fasteners used (10 mm), this leaves
an absolute maximum of 35 mm in length. The final height of the device is determined
by the sum of the battery’s and antenna’s height.

3.3.1.7 Power supply

To power the BG-V5, a rechargeable Li-Pol is used. This decision is based on previous
experience with the BG-V4.2, where primary cells (coin cells) were used. In contrast to
primary cells, Li-Pol batteries offer a compromise between power and energy density.
For this reason, the maximum discharge rate with a Li-Pol is higher. Thus, the energy
stored can be used more efficiently.

17Nordic Semiconductor, https://www.nordicsemi.com
18Linx ANT-2.45-CHP-x, https://linxtechnologies.com/wp/wp-content/uploads/

ant-fff-chp-x.pdf
19Based on the Design Note DN0007 (SWRU120B) provided by Texas Instruments, https:

//e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/
158/swru120b.pdf
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It was already discussed that the physical dimensions are mainly constrained by
the ECG electrodes distance and snap-fasteners diameter (35 mm). Likewise, the final
height of the device is a sum of the battery’s and antenna’s height. Commercially
available off-the-shelf batteries, matching the physical dimension constraints are (width
x height x depth):

• ICP501421PS-0120 : 22.5 mm x 14.1 mm x 5.2 mm, 115 mAh, 3.7 V

• ICP402025PC-0121 : 27.5 mm x 20.5 mm x 4.3 mm, 155 mAh, 3.7 V

• LPP 402025 CE22 : 25.5 mm x 20.5 mm x 4.3 mm, 150 mAh, 3.7 V

The given details refer to the typical capacitance and the nominal voltage.
All components in BG-V5 design have been selected to operate at a minimum supply

voltage of 1.8 V, except for the Bosch BNO055. This IMU, which requires a 3 V supply,
but is capable of operating its input-output pins with a separate voltage domain. The
3 V domain is also needed to support the native USB functionality of the STM32L4
MCU and to drive the status LED as well as other indication components (buzzer and
vibration motor).

In order to guarantee the lowest noise, regarding the analog signal-processing of
the ECG, a separate low-noise analog voltage-domain is recommendable. The optimal
component would thus combine a battery charger, 2 high-efficient switching-converters
(step-down DC-DC convert) for the digital low- (1.8 V) and high-voltage (3.0 V) domain
and 1 low-noise linear LDO regulator for the analog voltage-domain (1.8 V). No such
component was identified during the design process.

The next best candidates are the LTC355323 or BQ25120A [42]. Both components
are integrated battery-charge and power-management solutions, which meet all re-
quirements but misses a second switching converter.

Otherwise, the components are virtually identical. Comparing both devices, the
BQ25120A is smaller by 0.5 mm (2.5 mm x 2.5 mm (width x height)). Furthermore,
quiescent current consumption is better in BQ25120A (<1µA compared to 12µA).
For these reasons, BQ25120A is chosen in favor. It is used in combination with a
TPS6274324 buck convert, which is used to provide the secondary high voltage digital
power domain (3 V).

20Renata, ICP501421PS-01: https://www.renata.com/fileadmin/downloads/productsheets/
lithium_polymer/ICP501421PS-01.pdf

21Renata, ICP402025PC-01: https://www.renata.com/fileadmin/downloads/productsheets/
lithium_polymer/ICP402025PC-01.pdf

22Varta, LPP 402025 CE: https://products.varta-microbattery.com/applications/mb_
data/documents/data_sheets/DS56416.PDF

23Linear Technology, LTC3553, https://www.analog.com/media/en/
technical-documentation/data-sheets/3553fc.pdf

24Texas Instruments, TPS62743, http://www.ti.com/lit/ds/symlink/tps62743.pdf
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Figure 3.5: Explosion view render and assembly drawing of the BG-V5’s enclosure, PCB, battery,
and additional mechanical components (i.e. snap-fasteners and vibration motor).

3.3.2 Enclosure and Indication

The BG-V5’s enclosure is 3D-printed using transparent polylactic acid (PLA) filament.
This material offers a good trade-off between surface quality, printing speed, and price.
It is furthermore compatible with the use of polyvinyl alcohol (PVA) as support material.
This facilitates the post-production process as PVA can be easily dissolved in water. The
support material is thus not needed to be broken out or filed off.

The dimensions of the enclosure follow the absolute minimum dimensions, which
are determined by 1. the distance of the ECG-electrodes and 2. the total height of
both the battery and the PCB-antenna. Its final dimension is 61 mm x 31 mm x 11 mm
(width x height x depth).

The final enclosure (Figure 3.5) consists of a base (bottom) and a cover (top). At the
base’s bottom, the battery is inserted. The PCB is placed on top. It press-fits into the
corresponding cut-out. The breaking edges at the PCB help to fasten it. Besides, optional
fixing screws can be used at the same height as the ECG contact areas on the PCB.
Conventional spring snap fastener (as used in the textile sector) serve as electrodes.
These are pressed into the enclosure. The ECG electrodes and corresponding PCB
contact areas are soldered manually.

The enclosure’s cover is press-fit onto the bottom part. This is suitable for the
use of prototypes because the enclose can easily be opened and closed. This allows
presenting the insides of the BG-V5. Other enclosure variants are prepared, which
allow a permanent fixation of the cover through snap-hook connectors. Alternatively,
screws can be used.

In the base of the enclosure, there are openings for the USB-port and the reset button
at the bottom. On top of the snap fasteners, extra space is reserve to mount the vibration
motor and piezo buzzer.
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Figure 3.6: Software architecture of the BG-V5. It includes two firmware components, the nRF51
firmware for wireless communication and the STM32L4 firmware for signal acquisition and
processing. Both rely on the use of Software Development Kits (SDK) and Hardware Abstraction
Libraries (HAL) provided by the manufacturers. The STM32L4 firmware is based on a real-time
operating system (FreeRTOS), which allows encapsulating different software components into
tasks. The nRF51 firmware is realized as an event-driven application.

The enclosure’s cover also acts as a trigger for the push-button on the PCB of the
BG-V5. For this purpose, there is a nose on the inside of the cover, which is placed
above and is precisely aligned towards the push-button on the PCB.

Having control of the manufacturing process of the enclosure offers full flexibility to
change the shape and material in future revisions. For instance, an alternative variant
is available, which offers additional attachment loops. These allow using hook and
loop fasteners, e.g. to attach the BG-V5 at the wearer’s wrist or ankle (for motion
monitoring).

Moreover, other variants can be thought off. For instance, the enclosure could be
printed using a more flexible filament that offers less tensile stiffness. This could be
beneficial to avoid harming the wearer. Additionally, a fully closed enclosure could be
printed that would allow under-water use.

3.3.3 Software Design

The BG-V5 software (Figure 3.6) splits up into the firmware for the wireless transceiver
nRF51 (sec. 3.3.1.6) and the STM32L4 MCU (sec. 3.3.1.1). The STM32L4 is running
the main application and is coordinating all access to the peripheral components, which
includes sensors, power management, and USB-connectivity. In this respect, the nRF51
also acts as a peripheral (or slave) device for wireless communication. Its firmware is
developed separately. It allows forwarding received messages to the STM32L4.
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Address Payload CRC

Preamble, 1 byte
3-5 byte 1-32 byte 1-2 byte

Figure 3.7: Packet structure for a message transmitted with the SB-protocol.

Both firmware components rely on the use of corresponding hardware abstraction
library (HAL) or software development kit (SDK) provided by the manufacturers, i.
e. Nordic Semiconductor or STMicroelectronics. The firmware development is on the
middleware level (adaptations, extensions) and the application level (Figure 3.6).

The nRF51 firmware is built on top of the nRF51 SDK25, and the SoftDevice S11026.
The SoftDevice is a closed-source firmware component with interface-level access (ap-
plication programming interface, API). It offers an abstraction of the BLE stack. The
SDK is open-source and provides abstractions to access the radio and other peripherals.

Regarding nRF51 an interrupt-based firmware is implemented. Events can be trig-
gered by incoming BLE messages, which are internally handled by the SoftDevice and
conceivably are forwarded to the STM32L4, or a request from the STM32L4. A unique
feature is the concurrent use of the radio as a shared resource. Incoming messages (if
enabled in the configuration) are transmitted via broadcasting using the SB protocol.
While BLE is still active, SB packages are transmitted in the spare time between two
BLE connection events. The SB communication can either be configured manually at
any time or is automatically turned off when a BLE connection is established.

The SB package format (Figure 3.7) is adapted from the BG-V4.2 and was imple-
mented for legacy reasons to maintain compatibility with the BG-V4.2 revision’s system
setup (PC receiver and software). Each package consists of 21 B payload, which con-
tains the module’s ID, a package counter, the sensor data (HR, ECG, acceleration data
and more) as well as a cyclic redundancy check (CRC).

In contrast to the original protocol specification, it uses only 2 address bytes (instead
of 3 to 5). In addition to the proprietary CRC (as part of the payload), the protocol-
specific CRC is included as well (1 B).

In each package, signals with low- and high- temporal resolution (e.g. HR and ECG)
are transferred together. Thus, redundancy is high. However, the protocol’s over-head
is smaller compared to BLE packages (Figure 3.8). As a consequence, SB can be used
for low latency, high throughput data transfer, while BLE can be used to transmit other
data and configuration parameters.

The inter-MCU communication is based on a proprietary universal asynchronous
receiver transmitter (UART) protocol with serial line internet protocol (SLIP)-like

25nRF51 SDK v10.0.0, https://infocenter.nordicsemi.com/topic/com.nordic.infocenter.
sdk51.v10.0.0/index.html

26S110 SoftDevice v8.0.0, https://infocenter.nordicsemi.com/pdf/S110_SDS_v2.0.pdf
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Address Protocol Data Unit CRC

Preamble, 1 byte
4 byte 2-39 byte 3 byte

Header Payload (address, length, ... )

Figure 3.8: Simplified view on the packet structure for a message transmitted with the BLE-
protocol. The payload (or Protocol Data Unit, PDU) can be of different types (advertising or
data). It again contains auxiliary fields like address, payload length, or a checksum.

encoding. The first byte in the message indicates the message’s type (4 different types
encoded in the first 2 bits), and its content (6 content fields, one-hot-encoded in the last
6 bits). The content has a fixed order and pre-defined length. In this way, a compact
protocol with flexible payload is realized27.

The main application is running on the STM32L4. It is an event-driven application
that is built on top of the FreeRTOS28. By default, all tasks (i.e. threads) are in a blocked
state and wait indefinitely for a notification or message (event). All events are triggered
by interrupts, which either occur due to user interaction (motion, button) or are
triggered by a timer or other peripheral (e.g. the ADC). The application’s functionality
is encapsulated in different tasks:

The sensor-task is responsible for enabling or disabling the sensors. In this respect,
it takes control of the hardware-timers associated with a sensor, and it samples and
forwards the raw data. The task also triggers the transceiver- or flash-task. These tasks
are responsible for transmitting or storing the data, respectively.

Auxiliary features are handled by additional, low-priority tasks: The button-task
counts short and long clicks of the user-button. The indication-task is responsible for
updating the LED, the buzzer, and the vibration motor. the power-task controls the
battery charging, the power-status, and system voltage-levels. The USB-connectivity of
the BG-V5 is used for debugging purposes (UART-over-USB terminal) and file-transfer.
Both are handled in the terminal-task.

Besides those tasks, a default-task is implemented. It takes control of the BG-V5’s state-
machine and forwards events to the other tasks. This is also where forwarded events
from the other tasks are collected and passed on again. As an example, connecting the
USB (interrupt forwarded to the default-task) will change the systems state to charging
(power-task) and stop all sensors (sensor-task).

27In SLIP encoding, each message starts and ends with two pre-defined characters (START or STOP character).
If START and STOP are part of the message they are replaced by an escape character (ESC) followed by a
corresponding replacement character for START (ESC-START) or STOP (ESC-STOP).

28FreeRTOS Kernel V10.0.1, ©2017 Amazon.com, http://www.FreeRTOS.org
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3.4 Design Evaluation

The BG-V5 was developed as part of this thesis to serve as a WBS prototype platform
for future work. In the following, the fundamental features of the design are evaluated.
This includes a test and verification of the ECG circuit (sec. 3.4.1), a comparison of the
inertial sensors (sec. 3.4.2), and wireless communication (sec. 3.4.3). It is concluded
with the creation of a power profile for typical applications (sec. 3.4.4), which is
intended to provide guidelines towards run-time estimations.

3.4.1 Electrocardiogram

The ECG circuit used in the BG-V4.2 has already proven its effectiveness in practical
experiments. The schematic design for the ECG’s filter and amplification used in BG-V5
is based on that very circuit.

However, with the new layout, also adaptations of the PCB design were carried
out, and some components were exchanged. Moreover, the electrode’s connection is
different, as the housing was changed, which is now based on a custom design. The
simulation results already showed that both systems are equivalent (sec. 3.3.1.4). To
verify this, both systems are empirically compared to each other (Figure 3.9).

For the comparison of the new design, two ECGs were recorded by one participant
using two chest straps at the same time. Inspecting the result, firstly, it is noticed
that the ECG morphology is different. This can be explained by the slightly different
placement of the electrodes, which are positioned one above the other. Thus different
ECG leads are visible.

The spectrum analysis, however, reveals that both recorded ECGs compare. The
spectrum of both systems is nearly alike. This is expected due to the fact that both
systems share the same circuit design. Also, an unwanted damping around 7 Hz is
found in both systems. It is less distinctive in the BG-V5. In return, considering the
BG-V5, a ringing is observed around 5 Hz.

Comparing the ECG’s quality using the method described in [53], it can be shown
that the spectrum contains most energy in the relevant frequency domain. It can thus
be concluded that both devices provide accurate ECG readings.

3.4.2 Inertial Sensors

From previous and related work, acceleration is identified as the most important
modality for different WBS applications. For some applications, e.g. activity recognition
[84, 131] a low-resolution and high-noise, but low-power configuration is preferable
(same results with lower power consumption). With the BNO055 integrated into the
BG-V5, moreover, the absolute orientation is available. This is interesting, e.g. to
experiment with precise indoor navigation [290].
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(a) ECG recorded with BG-V4.2
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(b) ECG recorded with BG-V5

Figure 3.9: Comparison of 2 simultaneously recorded ECGs with separate chest straps in a
resting condition. In the first row, the raw ECG data is depicted, followed by normalized and log
amplitude spectrum from fast Fourier transform (FFT). The last row shows the ECG’s Cepstrum
(logarithmic frequency spectrum) and the corresponding quality index as proposed in [53]

The direct comparison of the accelerometer readings of both sensors reveals that they
agree in terms of absolute values (Figure 3.10). Differences are in the measurement res-
olution. For the final application, the designer can choose between both accelerometers.
It is thus possible to trade-off resolution (or modality) and power consumption.

3.4.3 Wireless communication

The transceiver used in BG-V5 implements a physical 2.4 GHz radio and comes with a
software-defined protocol stack (nRF51). This has the advantage that common standard
interfaces (Bluetooth, ANT) are supported. However, the 2.4 GHz band is not optimal
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Figure 3.10: Comparison of the low-power accelerometer LIS2DE and the high-accuracy IMU
BNO055 (acceleration only). Both sensors were moved and sampled in parallel (upper image).
The agreement of the absolute readings and the different resolutions of the two sensors can be
seen (lower image).
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Figure 3.11: Comparison of wireless communication in BG-V4.2 and BG-V5. To compare both, a
basic range test was carried out in a sports hall with different receivers (whip or PCB antenna).
In each test, 100 packages were sent per second. The packet loss rate is calculated by counting
gaps in the package counter.
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in terms of range. Consequently, the antenna in the BG-V5 was explicitly granted more
space in order to achieve a high range still.

To test the antenna’s and transceiver’s performance, a simple range test was carried
out. Therefore, 2 different receivers were used at the receiving side. That is a small PCB
antenna ( 0 dB, nRF51 Dongle29) and a 19 cm whip antenna ( 4 dB, Linx ANT-2.4-OC-
LG-SMA30). The senders were placed at the experimenter’s chest, who has positioned
himself at different distances to the receiver (6 m to 40 m, line-of-sight conditions).
At each distance, 30 s of data were recorded, where the devices were configured to
transmit an incremental package counter in the payload. Based on this counter, the
package loss rate at the receiving side is calculated in % (by counting gaps in the
incremental package counter).

As a result, it can be seen that for both transmitting devices, the packet loss rate is
low up to a range of approximately 40 m. That is if the whip antenna is used at the
receiving side only. If the gain at the receiving side is lower, only with the BG-V5, the
transmission rate remains acceptable.

The direct comparison of the BG-V5 and the BG-V4.2 shows the effectiveness of
the changed antenna selection (Figure 3.11). The improved antenna performance
becomes critical when the receiving antenna is small. As a consequence, the BG-V5
can also be used with conventional receivers (e.g. a BLE antenna embedded into a
smartphone or laptop). That relaxes the constraint to use custom hardware for wireless
communication.

3.4.4 Power profile

Average power consumption is crucial in WBS design. It must be kept at a minimum
in order to allow long run-times (autonomy of the WBS). In the following, a power
profile of the BG-V5 for different use-cases is given (Table 3.3).

All measurement results presented were made using a Source Measurement Unit31,
which allows acting as a power source and measurement device simultaneously. The
measurement results are averaged over a period of 60 s. To identify the individual
components’ power consumption (sensors, transceivers, signal processing), they were
switched off one after the other. Based on the differences between the separate mea-
surements, the power consumption of the respective isolated component is calculated.

Two different use-cases are considered. First, the use-case as a high-resolution
diagnostic data-logger with a sample rate of 100 Hz is considered. In this case, the
same behavior as in the predecessor version (BG-V4.2) is replicated. The packet size of
the wireless data transmission is 22 B. As a comparison, also, the application of the
BG-V5 as a simplistic BLE based HRM is considered. In this mode only ECG and QRS

29nRF51 Dongle, https://infocenter.nordicsemi.com/pdf/nRF51_Dongle_UG_v1.0.pdf
30https://linxtechnologies.com/wp/wp-content/uploads/ant-2.4-oc-lg-fff.pdf
31Source Measurement Unit, Keithley 2450, https://www.tek.com/

keithley-source-measure-units/keithley-smu-2400-series-sourcemeter
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Table 3.3: Power profile of the BG-V5 for typical application as a data-logger (100 Hz) or BLE
HRM (advertising only). Average (avg) and standard deviation (std) for each scenario are given.
Power consumption for each component is calculated from differential measurements.

Scenario or component power consumption / mW
avg. std.

BLE HR-Monitor 10.936 0.812

Data-Logger (100 Hz) 13.185 0.819

Environmental sensor (temperature) 0.028 -
QRS-Detection 0.016 -
ECG (sampling, ADC and DAC) 0.199 -
ECG (dissipation, calculated) 0.116 -
Low-power acceleration sensor 0.465 -
Transceiver (2200 B/s) 2.609 -
Micro-controller 5.168 -

detection are active. The transceiver is used in advertising mode only (advertising
interval is 1 s).

The average power consumption of the BG-V4.2, used as a data-logger for HR,
acceleration, and temperature, is 19.87±0.21 mW. In comparison, the average power
consumption of the BG-V5 is 13.18±0.81 mW. In this example, 19.8 % is accountable
for the wireless transmission of the data. A further 6.3 % can be assigned to the sensors.
The remaining power consumption is due to the operation of the MCU and static power
losses. The average power consumption as a HRM is found to be 10.9362±0.8120 mW.

The comparison of the HRM and data-logger scenario highlights the dominant power
consumption of the MCU. In conclusion, it can be seen that further optimization of the
MCU code is required to reduce the power consumption of the BG-V5. In the current
version, the MCU (STM32L476) is running clocked with 16 MHz in active mode, and
switches to sleep mode, which turns off CPU only. Specified current consumption in
active mode is 2.150 mA and 0.671 mA in sleep mode [223, p. 25]. Optimizing code to
use, e.g. STOP modes, would allow better power savings, as current consumption can
be as low as 0.007 mA or 0.001 mA in STOP1 or STOP2 mode, respectively.

Considering these measurements, the BG-V5’s operating time can be calculated.
The energy capacity of the Li-Pols used for the BG-V5 is in the range of 370 mW h to
555 mW h (sec. 3.3.1.7, capacity 100 mAh to 150 mAh, nominal voltage 3.7 V). Thus,
the estimated operating time is in the range of 33.8 h to 50.3 h for the HRM scenario,
28.1 h to 41.7 h for the data-logger scenario, or 8.5 h to 12.6 h for the data-logger
scenario using the high-accuracy IMU.
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In summary, the power consumption for the data-logger scenario is reduced by 33.7 %,
comparing the BG-V5 to the BG-V4.2. Moreover, there is potential to further reduce the
power consumption by optimizing the low-power management of the controlling MCU.

The change from coin cell to Li-Pol battery also increases the operating time, as
the energy storage can now be better used. The theoretically estimated operating
times thus correspond to the real actual times. Further optimization of the power
consumption can thus be regarded as a secondary goal. Since the current version of
the BG-V5 already offers an operating time of more than one day, for most scenarios,
this creates space to concentrate more on the implementation of future applications.

3.5 Selected Application: Wearable ECG Classification

The BG-V5 is designed to fit a wide range of application use-cases. For instance, it is
possible to select the low-power accelerometer for motion analysis [285] or to select
the high-resolution absolute orientation IMU for indoor navigation [290]. Likewise,
the ECG sample-rate could be changed depending on the accuracy needed by a specific
application.

As a consequence, the respective application can either benefit from lower power
consumption, which furthermore goes with increased recording time, or prefer a higher
temporal resolution instead (with the drawback of having a higher power consumption
and lower recording time). Here it can be seen that power consumption, storage
capacity, and autonomy (run-time) mutually influence each other. A trade-off has to be
found concerning these variables. For instance, this applies to the selection of a sensor
or its sample rate.

Moreover, the architecture of an application is affected by this very same trade-off as
well. More precisely, it especially exists for computational-expensive applications and
the use of embedded algorithms. This is highlighted in the work of Rault et al. [189],
where different scenarios are identified:

1. Sampling, and transmission of the raw sensor data.
2. Sampling, feature extraction, and transmission of compressed data.
3. Sampling, classification, and transmission of extracted information.

The benefit of embedded signal-processing or feature-extraction becomes appar-
ent with the example of embedded QRS-detection using the Pan-Tomkins algorithm
(sec. 2.3.2). From the power profile of the BG-V5 (sec. 3.4.4), it can readily be seen
that forgoing raw ECG data transmission saves energy consumed by the transceiver. At
the same, the increased power consumption of the MCU (due to the QRS-detection) is
negligible. In total, power consumption is decreased by approximately 17.1 %. Indeed,
a similar effect is also described by Rault et al. [189], using the Shimmer 3 platform
(sec. 3.1.2.2) for an activity recognition scenario using DT based on accelerometer data
(HAR, sec. 5.2). There, power consumption was decreased by 63.5 %.
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Yet, power consumption is only one argument for the implementation of wearable
algorithms. Another reason is that WBSs are primarily used to record private (and
possibly sensible) data of their wearer. It is thus easily argued that it is beneficial to
keep the data private and avoid any transmission. This is a topic that is already broadly
discussed in the literature [166]. A real-world example where this can be learned from
is the application of embedded cardiac arrhythmia detection for WBS equipped with
an ECG based heart rate sensor [202].

In this section, the example of an embedded classification for cardiac arrhythmia
detection is demonstrated as an excursus. In this way, the necessity of having a power-
efficient yet high-performance WBS like the BG-V5 is highlighted. In the following,
specific characteristics of the ECG indicating cardiac arrhythmia, public databases
containing exemplary data, and related work on classifying cardiac arrhythmia are
presented. Subsequently, a method is selected, re-implemented for the BG-V5, and
evaluated in terms of latency and power consumption.

3.5.1 Problem statement: cardiac arrhythmia

In HRM, the raw ECG sensor data is compressed, leaving heart rate information only.
This can be done in multiple ways [82]:

1. Simplistic peak detection using amplitude only.
2. Advanced peak detection using multiple thresholds.
3. Peak detection combined with pre-processing (e.g. filtering).
4. Approximation methods, like template matching or wavelet transformation.

An example of the 3. method, the Pan-Tompkins algorithm that is also used in BG-V5,
has already been addressed in (sec. 2.3.2). An overview of these methods and their
qualitative computational complexity can be found in [82].

All QRS detection algorithms aim at extracting the position of the QRS complex and
thus derive heart rate from the raw ECG signal. Indeed, this compressed information
can readily be used to extract more than heart rate alone. It can be seen as a first step
towards detecting cardiac arrhythmia that become apparent in the form of abnormal
heart rhythms.

A common example is atrial fibrillation (AF). Typically, the signal from the sinus node
leads to a synchronized contraction of the atrial muscles, followed by a contraction
of the ventricular muscles (sec. 2.3.2). With AF and other abnormal rhythms, this
ever same process is disturbed. It can be analyzed inspecting the apparent (distorted)
changes in the characteristic of the ECG.

With the example of AF, electrical spiral waves, chaotically propagating in the atrial
occur. This fact leads to a distinguishable set of methodologies to detect AF, either
by inspecting atrial activity (chaotic electrical activity in the atrial) or by inspecting
irregular ventricular response (contractions of the ventricular muscles following the
chaotic electrical activity). [153]
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(a) Second-degree (partial) block (b) Ventricular tachycardia

(c) Atrial fibrillation (d) Ventricular fibrillation

Figure 3.12: Cardiac arrhythmias show certain distortions or missing parts compared to the
normal waves and peaks (P, Q, R, S, T). E.g., in (a) not every P wave is followed by a QRS
complex, in (b) the shape of the QRS complex is distorted, (c) is irregular and shows electrical
fluctuations (f-waves), and in (d) no normal electrical activity can be seen at all. Illustrations
are based on OpenStax, 19.2 Cardiac Muscle and Electrical Activity. OpenStax CNX. 2. Mai 2019
http://cnx.org/contents/302812e9-2d2d-4e44-8075-4bb75db53f36@8, CC BY 4.0

With the ventricular response analysis, QRS detection is a first step to identify AF
episodes, characterized by the irregular rhythms of the heart rate. An example can be
found with Poincaré-, or Lorenz plot analysis [204]. They can be used to visualize and
classify cardiac arrhythmia that become visible by the irregular distances of successive
heartbeat intervals (RR-intervals, sec. 2.3.2). Yet, such methods are discarding any other
abnormalities besides irregular QRS complexes. Therefore, these could be considered
a lossy compression technique, preserving only a fraction of the raw ECG signal, where
other significant information is lost.

With the atrial activity analysis, morphological features or generalized stochastic
metrics are extracted from the ECG. As an example of AF detection, atrial fibrillation
waves (F-waves) are of interest, which become visible as a sinusoidal like waveform in
the ECG.

All types of cardiac arrhythmia can be detected based on the ECG (Figure 3.12), some
of which require multiple-lead analysis to allow for spatial analysis of the ECG. The
procedures can be based on using certain thresholds, template matching, or wavelet
transformation, just like it is done with QRS detection. However, in the case of cardiac
arrhythmia detection, the ECG analysis is more challenging since fluctuations or ab-
normalities can become apparent in merely any patterns. Therefore, today, often ML
techniques are used for such classifications tasks.

Cardiac arrhythmia classification from ECG gained massive attention with a Physionet
challenge exposed in 2017 [66]32. The task was to classify Atrial Fibrillation against
other, normal (healthy) and noisy rhythms from 1-lead raw ECG signals recorded with

32AF Classification from a Short Single Lead ECG Recording - The PhysioNet Computing in Cardiology
Challenge 2017, https://www.physionet.org/content/challenge-2017/1.0.0/
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a WBS. Among the submitted solutions, the top-4 solutions produced scores in the
range of F1 = 0.825 to 0.83133. This is remarkable since these results are close to the
performance of cardiologists.

The latest work focus on the use of recurrent or convolutional ANNs. For instance,
Kamaleswaran et al. [122] presented a 13-layer convolutional neural network (CNN)
to classify Atrial Fibrillation using the PhysioNet 2017 challenge’s data set. With this
approach, they achieve the same accuracy as the original winners of the challenge.
The success of CNN generalizes for multiple problems related to ECG classification [7].
For instance, Strodthoff et al. [226] state that their work “outperforms state-of-the-art
approaches and reaches the performance level of human cardiologists for the detection
of myocardial infarction” on the PTB Diagnostic ECG Database34.

From the engineering perspective, it is also to be highlighted that these solutions
do not require elaborate pre-processing steps but are suitable to process the raw data
directly. As stated by Kamaleswaran et al. [122], that makes these solutions more
applicable and robust. Remarkably, they find that the accuracy of their approach can
be reproduced using 2.5 ECG segments only. This is in agreement with the findings
presented by Kachuee et al. [120]. In their work, a generalized network is presented
that allows detecting different arrhythmia on the level of single heartbeats using
PhysioNet MIT-BIH Arrhythmia Database35, as well as myocardial infections using the
PhysioNet PTB ECG Database. Their solution allows to “accurately classify five different
arrhythmias in accordance with the AAMI EC57 standard” [120] (93.4 % arrhythmia).

If it is intended to port an ANN for use by an ES (MCU), its size (i.e. memory
requirements) is a crucial constraint. The model’s size is also a reasonable estimate for
its computational complexity because, in a first approximation, these can be assumed
proportional to each other. In this respect, the model’s size has a direct influence on
the latency and energy consumption.

Regarding state-of-the-art MCUs, Zhang et al. [267] defined 3 classes of neural
network complexities that are either small (limit of 80 kB, 6 MOps), medium (limit
of 200 kB, 20 MOps) or large (limit of 500 kB, 80 MOps). Zhang et al. [267] compare
these different sized models, which are either utilizing fully-connected, convolutional,
or recurrent layers. This comparison is in terms of the accuracy for a key-word spotting
task (classify audio streams and detect key-words, e.g. “Yes”, “No”, “Stop”). The
STM32L476 used in the BG-V5 (sec. 3.3.1.1), is part of this comparison.

As a result of the work of Zhang et al. [267], it can be concluded that the STM32L476
is capable of processing small to medium-sized models. Larger models could be imple-
mented as well. However, this would require to use external flash-memory in order to
store the model’s weights. Nevertheless, given the use-case considered by Zhang et al.

33The F1-score is a combined measure of both, sensitivity (or recall) and precision of a binary classification.
It is defined as F1 = 2 · precision·recall/precision+recall. In the PhysioNet challenge the F1 is the mean of the F1
scores for all classes except noisy, which was excluded.

34PhysioNet PTB Diagnostic ECG Database, https://physionet.org/content/ptbdb/1.0.0/
35PhysioNet MIT-BIH Arrhythmia Database, https://physionet.org/content/mitdb/1.0.0/
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[267], small- to medium-sized models already resulted in an accuracy of up to 94.9 %.
This is close to the best results found with larger models (95.4 %).

Likewise, for arrhythmia classification, it can be seen that an optimal region for the
complexities of beat-level classification models exists [128]. This complexity is in the
region of 1000 to 100000 trainable parameters, which is a result of a benchmark com-
paring F1-scores against trainable parameters in CNNs. In comparison, the complexity
of methods using longer episodes of the ECG is approximately larger by 1 to 2 orders of
magnitude. For instance, re-implementing the architecture presented by [122] (input
of 60 s of raw ECG data points sampled at 300 Hz), it is found that the model consists
of 5491 136 trainable parameters.

For the subsequent analysis, the model presented by [120] is chosen because it
perfectly falls into the complexity sweet-spot of beat-wise ECG classification (atrial
activation) having 55 013 trainable parameters. The 13-layer CNN architecture is
similar to other presented methods and showed excellent performance in arrhythmia
detection [120]36.

3.5.2 Latency and power consumption

The approach presented in [120], is stacked on top of a QRS-detection, which is used to
provide beat-synchronized inputs to the CNN classifier. In this respect, the input of the
classifier is a normalized ECG signal with a length of 1.5 s. The network architecture
consists of multiple convolutional layers with 32 filters of size 5 (Figure 3.13).

The output of this first layer is forwarded to a block of a convolutional layer followed
by rectified linear unit activation and another convolutional layer. The output of this
block and its former input are then summed up and again forwarded to a rectified linear
unit activation and pooling layer using the maximal function. This block is repeated
5 times before its output is passed to a 3-staged fully-connected layer. The output is
finally forwarded to a softmax activation layer.

The final model (Figure 3.13, [120]) is translated into C-code using the X-CUBE-AI37

expansion pack provided by STMicroelectronics. It allows analyzing memory footprints
and estimating the count of multiply-accumulate operations needed to carry out the
inference of a given ANN model.

In the following analysis, the fitted model is directly tested on the BG-V5 MCU
(STM32L476). Power and energy consumption are calculated on the values provided
in [223, p. 25] (80 MHz - 19.08 mW; 48 MHz - 11.52 mW; 16 MHz - 3.33 mW). The
clock cycles are obtained from the internal clock cycle registers of the MCU. These are
used to calculate the duration of each inference, assuming a perfectly stable clock. The
inference is tested with different clock settings. All results are averaged for 5 runs of

36An example implementation can for instance be found here: https://github.com/CVxTz/ECG_
Heartbeat_Classification

37STM32Cube.AI, https://www.st.com/resource/en/data_brief/x-cube-ai.pdf
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Figure 3.13: The CNN architecture, as proposed by Kachuee et al. [120], to classify cardiac
arrhythmia. The classification allows detecting arrhythmia according to the EC57 standard with
an accuracy of 93.4 %. It consists of a residual block of 2 convolutional layers, which is repeated
5 times. Its output is forwarded to 2 dense layers and is finally activated by a softmax layer. The
model contains 50853 trainable parameters using 32-bit floating-point representation.

blocks of 16 inferences. As a result, memory, latency, and energy requirements can be
analyzed.

The number of trainable parameters in the model presented by [120] is 55013 and
requires 3614 635 multiply-accumulate operations for a single inference. The static
memory needed for the model is 220052 B (32-bit float values) of read-only memory
(ROM) and additionally 71040 B in the random-access memory (RAM). It should be
noted that by using fixed-point representations, these memory requirements can be
reduced by a factor of approximately 4. This, however, comes with the risk of loss in
terms of accuracy, which in turn must be examined separately. It is thus not part of this
excursus.

The average number of clock-cycles, needed to process a block of 16 inferences
reaches from 35667 037.2±103.0 at 80 MHz, over 32079 040.0±124.8 at 48 MHz to
32 079050.8±119.0 at 16 MHz. Noticeably, the clock cycles needed with 80 MHz are
higher (Figure 3.14). This can be explained by additional wait-cycles needed to load
data from ROM. Still, the inference’s latency lower bound of 27.9 ms is found with the
clock set to 80 MHz. With the lowest clock rate of 16 MHz latency is 125.3 ms.

Taking the latency and the static power consumption of the MCU (given a certain
clock-rate), the energy per inference can be calculated. In summary, the energy required
for a single inference is 476.7µJ on average. Due to the increased number of clock
cycles, energy consumption is highest when the MCU is running at 80 MHz (531.7µJ).

Moreover, the MCU’s efficiency is maximal if it is running with a reduced internal
voltage (RUN2 mode with approximately 0.21 nJ per cycle, compared to RUN1 mode
with approximately 0.24 nJ per cycle). This mode, however, allows clock-rates smaller
than 26 MHz only. Consequently, the minimal energy consumption per inference is
found with the MCU utilizing RUN2 mode. Here, this is the case for inference running
at 16 MHz. This is the default setting of the BG-V5.
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Figure 3.14: Characterization of the ANN-based inference for ECG classification in terms of
clock cycles, duration (latency), the average power consumption of the MCU, and finally, the
estimated energy per single inference.

3.5.3 Summary and Discussion

Within this excursus, an embedded ML application example utilizing the BG-V5 was
shown. It goes beyond classical state-of-the-art heart rate detection but allows for
embedded detection of cardiac arrhythmia on the level of distinctive heartbeats. It
outlines the future application of WBS like the BG-V5 using advanced embedded signal
processing techniques, here ANN-based inference, that allow for an online-detection of
critical events.

Having real-time constrains on the ECG analysis, it can be seen that assuming a
typical heart rate in the range of 60 bpm to 200 bpm, each inference must be completed
within 1000 ms to 300 ms. The inference on the BG-V5 (STM32L476) is completed
within 28 ms to 125 ms on average, which matches the time constraint. Thus, real-
time applications are enabled. Furthermore, the additional power consumption of
approximately 3.3 mW (assuming repeated ongoing inference), still allows run-times
above 24 hours (comparable to that of the data-logger scenario, sec. 3.4.4).

Still, the detection presented here is on the beat level only. For future applications, it
would be interesting to examine the feasibility of analyzing longer time-series online.
By this means, more complex arrhythmia could be detected. However, this increases the
complexity of the models by 1 to 2 orders of magnitude (since the time-series changes
by this order of magnitude). Thus, memory and latency constraints are violated.
In this regard, the question arises if the extracted beat level information (as it was
demonstrated here) could itself be forwarded and used in a subsequent classification
step. In this step, additional information, e.g. the RR-intervals (distance between two
successive QRS-complexes) could be added.

The use of ANN in this manner, i.e. to pre-process or compress raw data is also
interesting for other WBS applications. A related example, i.e. the compression of
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motion data by means of ANN-based auto-encoders, was examined in student’s work
[291] and showed promising results on which future work can be based.

For the future design of WBS and WSN in general, specialized hardware compo-
nents, e.g. CNN accelerators could make a significant contribution. An initial approach
towards these direction can be found in [145], who are working on accelerators for
approximate feature-based methods. Also, hardware accelerators for specialized ap-
plications like key-word spotting (speech recognition) were presented recently. An
example is found with the Syntiant NDP10038. These components allow building hetero-
geneous architectures using MCU combined with a programmable accelerator. Indeed,
research results on this topic were already presented and demonstrated offloading an
STM32L476, which is also used in BG-V5. In this way, they are boosting efficiency
for matrix multiplications, which are heavily used in CNN applications. The energy
efficiency is increased by 2 orders of magnitude from approximately 1 GOPS/W to
100 GOPS/W.

Optimizing energy consumption in this way paves the path for autonomous real-
time classification of the ECG. Taking the results here (476.7µJ per classification) and
assuming further advantages in power-efficiency (approximately 2 orders of magnitude)
as was just discussed, an online classification system with an energy consumption of
approximately 5µJ is realistic. The heart itself has an energy turn-over of approximately
1.6 J per beat [147]39. By taking both numbers into account, it can be seen that
harvesting about just one-millionth (0.000312 %) of the heart’s energy turnover would
be sufficient to operate an online ECG classification system permanently.

3.6 Conclusion and Future Directions

The BG-V5 presented in this chapter is a compact, highly-integrated, and scalable
WBS (Figure 3.15, Table 3.4). It can be used as a low-power heart rate monitor, high-
frequency data-logger, or experimental platform for advanced wearable algorithms (e.g.
embedded CNN for ECG analysis or HAR). Its total dimensions are 61 mm x 31 mm
x 11 mm (width x height x depth), it weighs less than 16 g and has a typical power
consumption of 14 mW (data-logger scenario).

The evaluation of the BG-V5 has only shown its basic functionality, with the pri-
mary intention to compare the BG-V5 against its predecessor. It could be shown that
both modules provide comparable readings and are interchangeable in this regard.
Also, advantages of the BG-V5 were highlighted, namely the standardized wireless
communication interface using BLE or the availability of a full IMU.

Moreover, different secondary requirements were improved. That, for instance,
includes maintainability, as the enclosure can be manufactured in-house. Also, the

38Syntiant Corp., NDP100 Neural Decision Processor™, https://www.syntiant.com/ndp100
39Here the cardiac work is estimated based on mechanical work, chemical energy conversion efficiency and

heat dissipation.
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BQ25120

Inertial Motion Unit
BNO055 / LIS2DE

Environmental Sensors
BME280 / MP34

2.4 GHz ANT/BLE Radio
nRF51822

32-Bit ULP-µController
STM32L476

1 Gbit NAND-Flash 
W25N01G

ECG Electrodes
Analog Front End (Back)

61mm

31 mm

Power (Typ.).:
14 mW

LiPo-Battery:
3.7 V, 110 mAh

Weight (Tot.):
16 g

Figure 3.15: Annotated photograph of the BG-V5 with outer dimensions. The electronic compo-
nents of the ECG circuit and the LIS2DE accelerometer are located on the back of the PCB and
are thus not visible.

BG-V5 has USB-connectivity, which allows reading out the internal flash in future
software revisions. That facilitates the work with the module, as no expert is needed to
read out the module.

Regarding the design of the BG-V5, it can be considered a scalable research platform
suitable for a broad range of body sensor applications. Its design was carried out
with priority to ultra-low power consumption in mind but offering capabilities for
high-performance applications as well. An example is the integration of the low-
power accelerometer and the advanced, high-precision IMU. Depending on the specific
application and power constraints, they can be used in exchange.

Scalability is likewise found with the MCU, which offers spare computational ca-
pacities. These can be used for advanced wearable algorithms, e.g. machine learning
inference, which was already touched in [285]40 or in the excursus on embedded
ECG classification (sec. 3.5). Another example of the computational capacity of the
STM32L4 can be found with [267], who demonstrated inference for key-word spotting
utilizing deep ANN.

Currently, 3 MCUs are part of the system’s design. That is 1 MCU based on the ARM
Cortex-M4 architecture (STM32L4) and additionally 2 MCUs, which are based on the
ARM Cortex-M0 architecture (nRF51, BNO055). The latter, however, are not used

40In that work ML was applied for inference on the MCU utilizing DT or SVM based on data taken from [65].
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for signal processing nor to control the application flow. They belong to the nRF51
transceiver and the BNO055 IMU, both as part of their SoC-architecture.

The nRF51 is freely programmable, and its feature set can be extended on the basis
of the software-defined protocol stack. Thus, the design can be adapted to other, new
wireless protocols. In contrast, the BNO055 is not freely programmable (although
firmware updates that are provided by the manufacturer can be uploaded to the chip),
but embeds a software motion-processing unit. Both off-loads the main MCU from
handling protocol specifics (wireless communication) or sensor fusion tasks. This is
beneficial since it makes room for advanced, computationally intensive applications.

Here, it must be mentioned, that in future WBS designs, even the computational
aspect could be outsourced by integrating specialized hardware accelerators to increase
inference and furthermore boost power-efficiency (sec. 3.5). On the downside of
integrating more and more accelerators, the system’s overall complexity increases.

The latest developments focus on the integration of multiple devices on a single
chip (SoC). A first example is found with the nRF51 transceiver used for the design of
the BG-V5. It combines a radio and a freely programmable MCU (Cortex-M0). Other
examples are the STM32WB41 or CC2652R42, to name a few. In contrast to the nRF51,
both offer a co-processor design similar to the one presented here (Cortex-M4 and
Cortex-M0), but on a single chip (big-little architecture). Similarly, smart-sensor hubs
are on the rise (e.g. BMF05543 or KX23H-103544) combining an MCU and a MEMS
sensor on a single chip.

It is becoming apparent that with upcoming MCU generations, co-processors, radios,
MEMS sensors, or accelerators (e.g. for ANN-based inference), will most probably
become default peripheral components just like ADCs, DACs, hardware timers, and
others are already today. These architectures are certainly interesting for the design
of upcoming WSN generations and WBS in particular because they allow to further
reduce cost, size, and architectural complexity all at the same time.

41STMicroelectronics, STM32WB series, https://www.st.com/en/microcontrollers-microprocessors/
stm32wb-series.html

42Texas Instruments, CC2652R, http://www.ti.com/product/CC2652R
43Bosch Sensortec, BMF055, https://www.bosch-sensortec.com/bst/products/all_

products/bmf055
44Kionix, KX23H-1035, https://www.kionix.com/product/KX23H-1035
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Table 3.4: Summary of the BG-V5 components and characteristics. Power consumption values
are to be understood as limits (<) or typical value for the data logging application (100 Hz.

Domain Material /
Component

Dimension (w x h x t) / mm Weight

PCB - 26.5 to 49.5 x 28.0 x 0.9 3.3 g
Battery LPP 402025 CE 25.5 x 20.5 x 4.3 3.9 g
Enclosure PLA filament 31 x 61 x 11 8.6 g
Total <16.1 g

Information processing, communication, and storage Interface Power

System MCU ST
STM32L476

Cortex M4 80 MHz, 512 kB ROM,
128 kB SRAM (FPU, ADC, DAC, I2C,
QSPI, PDM, USB)

<40 mW

Wireless Nordic
nRF51822

2.4 GHz transceiver (SB, BLE) UART <23 mW

Flash-memory Winbond
W25N01GW

1 GB, NAND-flash QSPI <45 mW

Sensors: analog and digital; typical data output rate 100 Hz

Inertial ST LIS2DE12 acceleration (±2 g to ±16 g) I2C 15µW
Bosch BNO055 acceleration (±2 g to ±16 g) I2C 0.3 mW

angular velocity (±2000 deg /s) 12.0 mW
magnetic field (2500 mT, 16-bit) 11.8 mW
orientation (Euler angel, 16-bit) 36.9 mW

Physiological discrete ECG (1-Lead, 12-bit) DAC, ADC 315µW
respiration curve (prototype, 12-bit) DAC, ADC <1.4 mW

Sensors: analog and digital; typical data output rate 1 Hz or event-based

Physiological calculated heart rate (Pan-Tompkins algo.) CPU 16.1µW
Environmental Bosch BME280 temperature (−40 ◦C to 85 ◦C) I2C 3.2µW

relative humidity (0 % to 100 %) 5.0µW
air pressure (300 hPa to 1200 hPa) 6.5µW

ST MP34DT04 sound pressure level (max. 120 dB) PDM 1.1 mW

Indication: user indication and interaction

RGB-LED SML-
LX0404SIG

30 mcd, 40 mcd and 20 mcd (red,
green, blue)

Soft-PWM 4.7 mW

Vibration motor C1026B002F 9000 rpm GPIO 270 mW
Piezo buzzer CPE-163 20 Hz to 20.000×103 Hz, max 80 dB

at 4.8 kHz
PWM 30 mW

Push-button KSR223GNCL user event GPIO -
Push-button PTS840 GK hardware reset GPIO -
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This chapter provides insights into the use of body sensors to estimate psychological
or cognitive workload (CW). At first, the concept of CW is outlined (sec. 4.1). In the
following, a summary of possible methods to measure CW (sec. 4.2) is presented.

Subsequently, the potentials and limitations of using WBS to estimate CW are pre-
sented and discussed on the basis of experimental data collected for this thesis (sec. 4.3).
Parts of this chapter (software environment, selection, and comparison of sensors) are
based on the master’s thesis of Christian Menßen [163]. Experimental work was done
in collaboration with Torben Tönniges, who made use of the data set for a vision-based
affective computing approach. The results presented here already have been partially
published in [273, 274]. Since then, the data set was expanded with an additional test
run to increase the number of participants and give more detailed insights regarding
different dimensions of CW.

4.1 Background and Motivation

Cognitive workload is of interest in public and occupational health. Topics linked to
CW are arousal or fatigue as well as the catchphrase stress. The concept of “stress”
was originally proposed by Selye [210]. It was used to summarize bodily responses
to external stressors, e.g. cold, heat, or fear [210, 211]. Before the term became
part of everyday language, in its original definition, it was summarized as “general
adaptation syndrome” [210]. Thus, in its broadest definition, stress is understood as
the “nonspecific response of the body to any demand made upon it” [211]. It is a
collective term nowadays often associated with the idea of an over-strain in regard to
mental work. As such, the term stress has predominantly negative connotations. In
its original understanding, it was seen more neutrally, as an activation of the body. In
this way, stress is a normal reaction of the body that is found often as a response to
a potentially dangerous situation. Therefore, the stress reaction is to be considered
quite positive since the body is prepared in such a way that allows reacting optimal
(sec. 2.1).

Concepts related to stress are the psychological, mental, or cognitive workload. It
should be noted that these terms are often used synonymously. Also, there is no single
definition of one of these terms to date. The phrase “cognitive load”, however, is based
on the work of Sweller [230]. In his work, Sweller focused on the capacity of cognitive
processing in reference to learning. Later Sweller et al. proposed the “cognitive load
theory” [231], in which it is assumed that the working memory (in the brain) is limiting
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success in learning. Cain [48], however, proposed to summarize the term mental
workload as “the capabilities and effort of the operators [or users] in the context of [a]
specific [situation]”. Hence, CW is not a uni-variate, but a “multifaceted” [48] entity.

Following this definition, it becomes evident that CW is a subjective quantity, as
it depends on personal capabilities. Also, the definition is broad, as it encapsulates
any situation and task. Correspondingly, the comprehensible definition of [40] states
workload (as a cause of “occupational stress”) to be: “an all-encompassing term that
includes any variable reflecting the amount or difficulty of one’s work”. This chapter
will follow that definition and refer to it as CW. Its definition is close to the one used
for stress. However, in this chapter, the cause of the stress-reaction is focused on, which
is the execution of specific tasks that differ in their difficulty. The type of task and
difficultly remains without restriction and could be of any kind, e.g. memory or time
demands, clear or unclear presentation of information but also frustration, e.g. caused
by an unsolvable task.

The operationalization of stress (here understood as a general concept of CW) is
of uttering importance because chronic stress is linked to cardiovascular diseases,
headaches, and long-term effects like depression. It is also known that excessive stress
causes a majority of work-related illnesses. According to Chisholm et al. [59], the
annual loss in the global economy is 2.5 to 8.5 trillion USD per year. In this respect,
the effects of both constant over- and under-load are addressed in research [34, 87].

In occupational contexts, the opposite of stress is boredom, which is often found
due to monotony. Like stress, boredom is causing mental fatigue. In conjunction with
work-related illnesses, the extreme is often referred to as burn-out syndrome [157]. In
German literature also the contrary phrase “bore-out” [224] was coined. Both are seen
to restrict performance at the workplace. An often-cited model depicting this effect
is the so-called Yerkes-Dodson Law [263]. In a simplified version, it is explained as
an inverted U-shaped relation between arousal and performance. In that way, there
is an optimal point between arousal and performance. Under- or over-load would
decrease performance. That, however, as stated by Diamond et al. [75], is an often
misunderstood and over-simplified view. According to the original version presented
by Yerkes et al. [263], it applies to difficult tasks only. For simple tasks, higher arousal
would further increase performance instead.

Regardless of the conceptual model used to explain CW, it can be seen that tools
allowing to measure the same are needed. For example, to improve workplace design,
processes, or occupational health management.

In addition to the long-term consequences (health-related effects) of stress, short-
term effects are of interest as well. This is in the area of human factors or affective
computing, which addresses the design and development of human-machine interfaces
or emotion aware computing software, respectively1. Short-term effects are important
since estimating a person’s affective state or CW can be seen as an enabler towards

1As a source of further information on this topic is the book by [117]
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responsive affective computing applications. These include the realization of adaptive
Human-Machine-Interaction [273] or building “empathic machines” [207] (the latter is
more about estimating emotion than CW).

The idea behind this is to allow or qualify software (and technical systems in general)
to reacting user-oriented. For instance, a software application could provide additional
explanations, or a robot could interrupt its current task if the user reacts with a particular
emotion or change in CW. Also, in regard to the improvement of software, feedback
on CW perceived when using individual software components can potentially provide
valuable feedback for usability optimizations [127].

In the context of modern working environments, the interaction of arousal and
performance is actively discussed [264], i.e. to improve the use of assistant systems. A
modern working environment here is understood as a workplace that requires time
and task-related flexibility (sequence of processes cannot be planned ahead because
of on-demand production). An assistant system here is understood as any technical
system (computer or robot) that assists a human worker. It is argued that for the
human user to fulfill the requirement of flexibility, an assistant system needs to know
the human user’s cognitive capacity. Therefore, in order to adjust correspondingly to
the user’s needs, it is important to precisely model the user’s perceived CW in detail and
in real-time. A similar but more common example or use-case for real-time estimation
of CW is car driving [201]. In order to prevent accidents, a driver needs to keep a
constant high level of arousal. A technical system (car) being capable of monitoring
CW or estimating a decrease in arousal could warn its driver beforehand.

4.2 Operationalization of Psychological Workload

The measurement of CW is as divergent as its definition. Firstly, CW can either be
measured subjectively (e.g. by a self-report) or objectively via performance measures
(e.g. hours on the job). Since CW is of a subjective nature, the subjectively reported
perceived CW is of primary interest. Here again, objective measures are sought that
can be used or serve as a predictor, e.g. the error rate or time-on-task. This information
can then be compared and brought together with subjectively perceived CW.

Also, measuring brain activity through electroencephalography (EEG) or utilizing
psycho-physiological measures [48] (heart rate, pupillary diameter, perspiration) are
commonly found and used as predictors for CW. In addition to psycho-physiological
responses, behavioral changes, like facial expressions or the use (interaction) with a
device, e.g. a smartphone or computer-mouse as well as contextual information, i.e.
location, e-mail usage are used as predictors as well [8].

Self-reported measures are typically questioned in the form of a Likert scale. They
are used in an uni-variate manner, e.g. asking a single question on the perceived
difficulty of a task, the perceived stress level, the level of fatigue, or the emotion. Also,
multidimensional tools for stress or CW assessment are available. Commonly found
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tools, inventories scales or indices are the “Perceived Stress Inventory” (PSI) and its
predecessors, e.g. the “Perceived Stress Questionnaire” (PSQ), the “Stress Response
Inventory” (SRI) or relative tools like the “State-Trait Anxiety Inventory” (STAI) or the
“Perceived Stress Scale” (PSS), to name a few [135]. In addition to these tests, which
explicitly measure stress, the “NASA-Task Load Index” (TLX), as proposed by Hart et al.
[103], is also used. As the naming suggests, its focus is on workload consisting of
multiple dimensions including, mental, physical, and temporal demands as well as
performance, effort, and frustration.

Psycho-physiological measures are based on the physiological responses of the human
body. Because CW is a process of the CNS (i.e. the brain), direct observation of the
brain’s activity through imaging methods like positron-emission tomography, near-
infrared spectroscopy, magneto-encephalography or electrical methods (i.e. EEG) are
used. These methods differ in their temporal and spatial resolution. For instance, EEG
offers high temporal resolution but cannot be used to distinguish activity in different
brain areas. Furthermore, most methods are limited to lab-use only as the devices are
too big, costly, or require the participant not to move.

Because of its relatively good availability, size, and cost, EEG is an often-used tech-
nique in stress or workload studies. The EEG is used to measure the electrical activity
of the brain. Several electrodes are placed on the head for this purpose. For optimal
signal quality, additional electrode gels must be used. The recorded EEG signals are
then typically examined using frequency analysis. Often, 5 frequency bands are dis-
tinguished, including alpha (8 Hz to 13 Hz), beta (13 Hz to 30 Hz), delta (0.1 Hz to
4 Hz), and theta (4 Hz to 8 Hz) band. The frequency bands are associated with different
mental states, e.g. alpha waves are found in relaxed participants, while beta waves are
more frequently observed when the participant is in a stressful situation [8]. However,
the construction of a wearable EEG-system to reliably capture EEG in every-day life is
still a challenging and active research object.

Instead of analyzing brain activity directly, bodily functions can serve as an indirect
measure of CW. In CW studies, what one would like to observe is the shift of predomi-
nant PNS to SNS control over bodily functions. Since these are controlled by the ANS
or CNS (sec. 2.1), they allow making conclusions on CW. It is the anticipatory effect, i.e.
adjustment of bodily functions, e.g. the stress-reaction as presented by Selye, which is
observed and allows to make conclusions on the arousal, emotion, stress, or CW.

Well known and most used signals of bodily functions to quantify stress or estimate
CW are based on HR or HRV [118] as well as on the EDA2 [116]. Additionally, other
physiological signals are used, namely blood pressure, skin temperature, or respiration
rate. In addition, hormone levels can be monitored in order to capture CW. The most
common method is to measure the salivary cortisol level. A comprehensive overview of
these methods is given in [8, 215].

2electrodermal activity is also referred to as “galvanic skin response” (GSR). This notation however is
outdated.
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4.2.1 Electrodermal Activity

To reflect the activity of the SNS, i.e. arousal or CW, EDA is a well-known and often-used
psycho-physiological parameter. An introduction is given in [47], which will be briefly
summarized here. The term electrodermal activity (EDA) is a general term, which
reflects all electrical changes of the skin. It is an interesting estimator for the activity
of the SNS because EDA changes in response to sweat secretion, which is exclusively
controlled by the SNS. It is usually measured using a bipolar electrode configuration
(2 electrodes). Therefore, electrodes are placed on the index and middle finger or
the palm. A constant voltage is then applied between the electrodes. The resulting
current flow, which is the skin conductivity, is measured. The corresponding SI unit
is Siemens (S). With respect to EDA, typically reported in the order of µS. Also, skin
resistance is reported instead. It is given in Ohm (Ω), which is the reciprocal value of
the conductivity.

For later analysis, the raw EDA signal is typically separated into a low- and a high-
frequency component, which are named tonic- or phasic-level3. The energy of the tonic-
and phasic-level ranges from 0 Hz to 0.05 Hz or 0.05 Hz to 1.5 Hz, respectively [266].

The tonic level, the skin conductance level (SCL), changes very slowly, and strong
inter- and intra-individual differences can be found. It is often observed that SCL
decreases during resting conditions, while it slowly rises with increased arousal. In
contrast, the skin conductance response (SCR) denotes rapid changes in EDA. It is
observed as a short peak in the signal, which occurs about simultaneously with an
external stimulus. The latency between the stimulus and the SCR is about 1 s to 3 s. In
the absence of an external stimulus, these peaks are referred to as a nonspecific SCR
(NS-SCR).

To analyze EDA, absolute values are normalized participant wise, e.g. in an initial
learning phase. Afterward, statistical measures such as mean, median, standard de-
viation, or kurtosis and skew are calculated to examine the signals. Regarding SCR,
the peaks are analyzed with respect to their rise time (duration from minimum to
maximum value), recovery time (duration from the maximum to half of the maximum
value), amplitude, or area.

4.2.2 Heart Rate Variability

Heart rate variability (HRV) is another widely used parameter to reflect the activity
of the ANS in general. In contrast to EDA, HRV is doubly controlled by SNS and PNS.
It is measured on the basis of an ECG recording, calculating the distance between 2
successive QRS-complexes, known as RR-interval. The variation in the RR-interval
reflects changes in the ANS, which in turn are used to estimate stress. The maximal

3In physiology, receptors that are slowly or rapidly adapting to a stimulus are referred to as tonic or phasic
receptors, respectively.
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energy of the HRV signal is in the range of 0.003 Hz to 0.4 Hz [154, 214]. In general,
the low or high frequencies band is associated with SNS or PNS activity, respectively.

HRV is influenced by a multitude of physiological effects. For instance, HRV is
directly linked to respiration, which is known as respiratory sinus arrhythmia. This is
an effect where the heart rate increases while the participant inhales and decreases
while the participant exhales. It is explained as an effect of atrial pressure, which is
also lowered when the participant inhales. This triggers the baroreflex, and in turn, it
can be observed that HR is modulated by and synchronized with respiration. Likewise,
other causes for a change in blood pressure act directly on HRV. [188]

To analyze HRV, multiple measures have been proposed in the literature. Among
them are statistical measures in the time domain (e.g. standard deviation, or root-
mean-square), frequency analysis (e.g. as a ration of low and high frequencies), or
geometrical features (e.g. utilizing histogram information) [154, 188].

4.3 Experimental estimation of Cognitive Workload

In this section, the use of WBS to estimate CW is presented.
At first, related work is summarized (sec. 4.3.1). Afterward, the methods are outlined

(sec. 4.3.2). This includes sensors used to measure psycho-physiological data and the
hardware used for the conducted tablet-interaction study (sec. 4.3.2.1 - 4.3.2.2). In
summary, subjective cognitive workload reports are queried during the experiment
(sec. 4.3.2.3), and in parallel, HR, and EDA are measured. Based on these data, ML-
models that allow for detailed estimation of short-term changes in cognitive workload
are presented (sec. 4.3.2.4 - 4.3.2.6).

As parts of the result section (sec. 4.3.3), a detailed analysis of the perceived CW is
given (sec. 4.3.3.1), feasible psycho-physiological features are identified (sec. 4.3.3.2),
and fine-grained estimation models with 5 levels of graduation are introduced
(sec. 4.3.3.3). In the discussion (sec. 4.3.4), the results are critically reflected. Also,
uncertainties in both the subjectively reported CW and the measurement data obtained
through WBS are discussed. This section concludes with a summary of the results and
a prospect of the future use of WBS for CW estimation (sec. 4.4).

4.3.1 Related Work

The possibility of estimating CW has been presented frequently in recent research. The
estimated demands or strain are often referred to as “mental workload”, “cognitive
workload”, “cognitive load”, or more generally, as stress. A survey of recent work on
the estimation of stress can be found in the methodological review given by Alberdi
et al. [8]. Selected results of related work are presented in the following:

The effectiveness of HRMs in detecting mental stress was demonstrated by Choi et al.
[62]. They highlighted the importance of an unobtrusive design to obtain a high user
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acceptance rates. With their approach, they were able to distinguish between stressed
and non-stressed mental states with an accuracy of 69 %.

The feasibility of using ultra-short-term HRV features was also investigated by
Salahuddin et al. [203]. They validated numerous short-term metrics and evaluated
the minimum duration of RR-Intervals needed (10 s to 50 s) to distinguish between
stress and non-stress situations in 24 participants. To induce stress, they made use of a
Stroop test.

Within the work of Wijsman et al. [253] and Choi et al. [61], it was shown that the
combination of HR and additional predictors (here respiration rate and EDA) improves
the estimation’s accuracy (79 % and 81 %). The effectiveness of EDA was also verified
against objective measures (salivary cortisol) by Amalan et al. [17] in a controlled
setting. They further highlighted the importance of labeling false-positive EDA peak
signals that are introduced by physical activity, in the form of motion artifacts.

Looking at physical activity the other way around, the problem of detecting CW (or
stress) by considering physical activity as an additional predictor is emphasized by
Karthikeyan et al. [123]. They used physical activity information in order to prevent it
from becoming a confounding factor, and report an accuracy of up to 92.4 %.

Additionally, Sun et al. [228] focused on short-term signal processing, which enables
the detection of short-term stress events. They presented remarkable results with a
classification accuracy of up to 95 %. Moreover, fine-grained estimation of stress has
been addressed in the work of Healey et al. [109]. They estimated the perceived stress
level of drivers in 3 distinct gradations with an accuracy of up to 97 %.

Similar work was presented by Li et al. [141]. They reported an accuracy of 96 % for a
5-leveled classification task. The reported accuracies, however, differ. For instance, the
very same problem was also examined by Manawadu et al. [155]. They considered the
fine-grained estimation of CW in the setting of semi-autonomous driving and reported
an accuracy of 74.5 %.

The outlined experiment aims towards a combined contemplation of CW estimation.
It is intended to provide a detailed (or fine-grained) estimation that is also based on
short-term signals and non-laboratory but consumer-grade sensor equipment. The
solution to be found is also intended to be suitable for non-laboratory use and, in this
respect, has to be portable onto a consumer-oriented device (e.g. WBS). This chapter
thus focuses on both the short-term signal processing of multiple parameters and the
fine-grained estimation of CW. Both are mandatory requirements in order to enable
adaptive assistant technology.

4.3.2 Methods

In the following, the hardware (sec. 4.3.2.1) and experimental setup (sec. 4.3.2.2) is
described. This is followed by an explanation of the assessment of ground truth data
(sec. 4.3.2.2) and the methods used to extract (sec. 4.3.2.4) and select (sec. 4.3.2.5)
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Figure 4.1: Comparison of two concurrent measures of EDA by a mobile (Mindfield eSense)
and a reference system (Brainproducts QuickAmp). Signals differ in absolute values but show
a high linear correlation (Pearson correlation coefficient > 0.8. Previously presented in [163].
Reprinted with permission, ©2017, Springer Nature, [273]

important features. Finally, an overview of the methods used to classify the data is
given (sec. 4.3.2.6).

4.3.2.1 Hardware Setup

The hardware setup is based on the Google Nexus 10 tablet computer4, which has
sufficient computing power for the desired task and allows easy integration of the
external sensors. It was used to run the experiment’s software, log the sensor data, and
retrieve the participants’ perceived stress level.

The EDA is captured by using the Mindfield eSense Skin Response system, which is
a portable solution designed for tablet computers and smartphones. It is connected
to the tablet computer by the microphone jack. On the participant’s side, electrodes
(hook and loop) are placed around the participant’s index and middle finger.

In order to validate the functionality of the Mindfield system, it was compared to
a Brainproducts EDA sensor connected to an appertaining QuickAmp Amplifier5 as
a reference system (Figure 4.1). Both systems showed different outputs in terms of
absolute value. Nevertheless, signals showed close agreement (Pearson correlation
coefficient > 0.8). Therefore, the mobile and inexpensive Mindfield system is used for
this study.

4GT-P8110; Google Inc., Samsung Electronics
5Brain Products GmbH, http://www.brainproducts.com
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Figure 4.2: Comparison of two concurrent measures of heart rate by an optical sensor (Mio
Alpha) and an ECG-based system (Polar H6). The signals show a temporal delay, which is why it
is assumed that the optical measures are smoothed. Previously presented in [163].

The HR was captured using two redundant systems. Firstly, the ECG-based Polar
H66 HRM is used, which is attached to a chest strap. Secondly, the PPG-based Mio
Alpha watch7 was used, which is worn around the wrist. Both HR sensors communicate
wirelessly with the tablet computer via BLE. Measurement readings from both devices
were comparable (mean deviation of 3.85 %). However, it was noted that the Mio
Alpha smooths the measured values (Figure 4.2). In contrast to the Polar H6, it does
not provide R-peak intervals, which are necessary for HRV calculation. Albeit initial
methods to extract HRV features from PPG signals were presented in the past [30],
these are still under development. The current consensus is that they cannot fully
replace ECG-based measurements [183]. For this reason, only data obtained from the
Polar H6 module is used in the following.

4.3.2.2 Experimental Setup

The conducted experiment was designed to induce different levels of CW during the
interaction with a tablet computer. In total, 31 participants volunteered to participate
in the experiment (20 male, 11 female, mean age 28.2±9.1 a). Of the 31 participants,
15 or 16 were recruited during the 1st or 2nd test run, respectively. In the 1st test run,
participants were mainly male students (14 male, 1 female, mean age 25.9±2.1 a). In
the 2nd test, more female participants could be recruited (6 male, 10 female, mean
age 30.4±12.3 a).

6Polar Electro Oy, http://www.polar.com
7Physical Enterprises Inc. (Mio Global), http://www.mioglobal.com
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All participants were informed about the experiment’s design and gave their informed
consent. The experiment lasted approximately 20 to 25 minutes for each participant
and was repeated after a short break. During the break, the sensors were reapplied to
increase robustness in terms of repeatability concerning the differences in the sensors’
attachment. The participants’ hands were filmed during recording to find possible
motion artifacts in the EDA-signal afterward. The electrodes were applied to the index
and middle finger of the non-dominant hand.

Each trial of the experiment was divided into the following 5 phases:

1. Relaxation video (2 minutes)
2. Memorize items (3 to 4 minutes)
3. Stroop test (3 to 4 minutes)
4. Recall items (4 to 5 minutes)
5. Memory and reaction test (3 to 4 minutes)

At the beginning of the experiment, the equipment was introduced to the participants.
The sensors were then attached by the participants themselves and tested afterward
by the experimenter. After this setup, the experiment started with a presentation of
short sequences of relaxation videos. This was done in order to prevent possible effects
resulting from the excitement of the ongoing experiment. Thereby, the participants
were given the possibility to test the tablet computer and to familiarize themselves with
the sensors attached to them. The participants were then asked to select the video they
found to be the most relaxing. Afterward, the measurements were started.

At the beginning of the experiment (phase 1, Figure 4.3a), the previously selected
relaxation video was presented to the participant (phase 1, video duration 90 s). It is
intended to record a baseline measure of HR and EDA in this way.

Next, a memory test was initiated (phase 2). During this phase, 12 items of learning
content were provided to the participant. The learning content consisted of demo-
graphic and economic data of the United States (during the 1st trial) or the Czech
Republic (during the 2nd trial). For each item, the time to memorize the provided
information was limited to 10 s. Before the memorized content had to be recalled by
the participant (phase 4, Figure 4.3b), a Stroop test [227] was carried out (phase 3).

During the Stroop test (phase 3, Figure 4.3c), the participant had to touch the
button with the color that is identical to the color of a text shown on the screen. The
background color, the number of possible solutions (buttons), and the time available to
answer were altered randomly. Hence, the Stroop test challenged the user with varying
intensity levels. Overall, the participant was asked to reply to 90 Stroop items during 6
repetitions (15 items each). A short break preceded every repetition.

Subsequently, the participant was asked to recall (phase 4) the learning content from
phase 2. This was done by offering multiple-choice questions. In total, 7 questions
were composed into 3 blocks of varying difficulties. To increase the CW for the multiple-
choice test in each block, the available time to answer was reduced (7 s, 6 s, and 5 s).
Additionally, in the last block, only invalid answers were provided.
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(a) Relaxation video; phase 1 (b) Memorize and recall; phase 2/4

(c) Stroop test; phase 3 (d) Memorize and reaction; phase 5

Figure 4.3: Screenshots of the relaxation video (a), memory test (b), Stroop test (c), and the
checkerboard (d) presented to the participants during the tablet-based CW experiment. Previously
presented in [163]. Reprinted with permission, ©2017, Springer Nature, [273]

At the end of the experiment (phase 5), the participant had to perform a mixed
memory and reaction test. For this test, colored circles were consecutively drawn
on to the screen. The participant’s task was to memorize the color sequence and to
recall it afterward immediately. The difficulty was altered by changing the number and
duration of the circles shown (3 to 7 circles were shown for a duration of 700 ms to
500 ms each). Moreover, the number of colors used was changed randomly (3 to 7). A
checkerboard was presented to the participant (Figure 4.3d), which allowed them to
enter the recalled color sequence. The checkerboard was sparsely filled with colored
circles (randomly distributed). The participant was asked to recall the color sequence,
which was shown beforehand, by touching the corresponding circles.

The proposed experiment abstractly covers typical tasks with which workers are faced.
The abstraction focuses on the tasks to memorize and recall various working steps, e.g.
while assembling a workpiece or wiring a cable harness at the production line (mixed
reaction and recall test, phase 5). The worker has to recall a new working process under
time pressure. Another example is performing and following a diagnostic sequence. In
this case, the worker has to memorize facts and later on recall and compare the results
(memory test: phase 2 and 4).
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4.3.2.3 Ground Truth

In order to obtain ground truth data, all participants were asked to self-report their
perceived CW on a scale from 1 (lowest) to 5 (highest). This self-report was in-
quired directly after a specific task was finished during every phase of the experiment
(sec. 4.3.2.2). Thereby, during each trial of the experiment, each participant was asked
17 times to give a self-report of the perceived CW. This self-report was then assigned as
ground truth (target label) for the previously performed task.

In addition, in the new (2nd) test run of this experiment, the participants were
asked in more detail about their perceived CW. Therefore, the NASA-TLX score ([103],
sec. 4.2) was used. Questions were out-handed to the participants on a printed piece of
paper, and the different dimensions (items) were briefly explained to the participants
(Table 4.1). In the tablet’s application, only the short title was mentioned as a reference.

The NASA-TLX items were added to examine the source of CW in more detail. This
is because there is a suspicion that the uni-modal Likert scale, which was used during
the 1st test run [273], was maybe too unspecific. However, in order to compare both
test runs, both metrics are kept. Thus, also in the 2nd test run, the participants were
asked to answer the more general question of perceived CW (Likert scale) without
modification. Moreover, difficulties were not adapted (e.g. for the Stroop, or memory
and reaction test), although it was found that only a few participants reported very
high CW during the 1st test run. This was also done to keep both runs comparable.

4.3.2.4 Pre-Processing and Feature Extraction

The utilized Polar H6 provides HR and the RR-interval for each recognized heartbeat.
For this reason, the data stream is recorded in non-uniform time intervals. To enable a
conventional frequency-based analysis of the data, it is re-sampled to 4 Hz as proposed
by Singh et al. [217]. For this transformation into the frequency-domain, Welch’s
method, in combination with a Hamming-window, is used. Prior to the feature extrac-
tion, the RR-interval is normalized, and polynomial trends are removed (detrending), as
demonstrated by Tarvainen et al. [233]. Furthermore, HR and EDA for each participant
are min-max normalized (sec. 2.3.3.2, eq. 2.20), to increase inter-subject comparability.

The EDA is captured with a sample rate of 10 Hz. In order to remove outliers, a low
pass filter with a cut-off frequency of 0.5 Hz is applied to the raw signal. Furthermore,
the raw EDA signal is decomposed into SCL and SCR, as described by Choi et al. [61].
Their method is based on the approach from Tarvainen et al. [233], which was also
used for detrending the RR-interval beforehand.

Statistical data (minimum, maximum, mean, standard deviation) is calculated from
HR, HRV, EDA, SCL, and SCR. In addition, amplitude, duration, area, and frequency
of the EDA and SCR signals are computed. Furthermore, commonly known features
based on HRV are used [154, 243]. To extract those, the HRV-Toolbox8 was used.

8HRV-Toolbox by Marcus Vollmer, version 1.0 www.github.com/MarcusVollmer/HRV[243].
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Table 4.1: Title and description of the NASA-TLX items used in the 2nd test run of the experiment
and presented to the participants.

Title Description

Physical Demand How much physical activity was required (e.g., pushing,
pulling, turning, controlling, activating, etc.)? Was the task
easy or demanding, slow or brisk, slack or strenuous, restful
or laborious?

Effort How hard did you have to work (mentally and physically) to
accomplish your level of performance?

Mental Demand How much mental and perceptual activity was required (e.g.,
thinking, deciding, calculating, remembering, looking, search-
ing, etc.)? Was the task easy or demanding, simple or complex,
exacting or forgiving?

Frustration Level How insecure, discouraged, irritated, stressed and annoyed
versus secure, gratified, content, relaxed and complacent did
you feel during the task?

Temporal Demand How much time pressure did you feel due to the rate of pace
at which the tasks or task elements occurred? Was the pace
slow and leisurely or rapid and frantic?

Performance How successful do you think you were in accomplishing the
goals of the task? How satisfied were you with your perfor-
mance in accomplishing these goals?

Table 4.2: Overview of all signals used and corresponding features extracted.

Source Feature

HR mean, standard deviation, minimum, maximum

HRV
meanNN, pNN50, RMSSD, SD1, SD2, SD1/2, SI, skew, kurtosis,
TRI, TINN, RRmed, RRqr, VLF, LF, HF, nLF, nHF, LF/HF

EDA, SCL, SCR mean, minimum, maximum, standard deviation

SCR peak
count, duration mean, duration sum, amplitude mean, ampli-
tude sum, area mean, area sum
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The experiment was carried out using a tablet computer. Therefore, the mean
pressure, mean duration, and the total count of touch events on the screen were
additionally recorded during the experiment. These features were intended to be used
to reflect behavioral changes of the users. However, as already noted in previous work
[274], these features show a spurious relationship with the different experimental
phases. This is because no normalization strategy was applied to adjust the number of
interaction events, neither during the experiment nor for later analysis. For this reason,
there is a correlation between the number of touch events and the task or its difficultly.
Hence, touch features are excluded from the analysis9.

In total, 42 features are extracted (Table 4.2; Detailed information and explanations
can be found in Table 4.5 located at the end of this chapter.) from the different sensor
elements (HR, EDA). Because the extracted features are not all commensurate, min-
max scaling or z-transformation is used (depending on the classifier used, sec. 2.3.3.1,
eq. 2.20 - 2.21).

4.3.2.5 Feature Selection

To identify the optimal window size and overlap, multiple feature subsets are derived
based on the corresponding sensory element (HR, EDA). These subsets are then em-
pirically explored by comparing the predictive performance for each combination of
subset, window size, and overlap in a grid search. The window size was set to 10 s to
120 s in steps of 5 s. The overlap was set to 0 % to 75 % in steps of 12.5 %. To evaluate
the predictive performance, the mean accuracy from a stratified 10-fold CV of DTs with
a maximum of 100 splits is refereed to.

4.3.2.6 Classification

With a comparative analysis, the potential of the selected feature set for fine-grained and
short-term estimation of CW is to be analyzed. The analysis consists of a comparison
of multiple fine-grained supervised classification models. These models make use of
the same feature set and window size configuration, which was evaluated beforehand
(sec. 4.3.2.5).

For comparison, well-known classifiers are selected. The ML-models are trained
using the correspondent MATLAB10 toolbox implementations. The evaluated methods
are: naive Bayes (NB), decision tree (DT), k-nearest neighbor (KNN), support vector
machine (SVM), and Gaussian process (GP). For each method, hyper-parameters were
tuned using Bayesian optimization.

The predictive performance measures referred to are accuracy, sensitivity, specificity,
and precision (sec. 2.3.3.1). In order to prevent an over-fitting of the classifier, 10-fold

9It is to be noted that, using a normalization strategy touch input could be used to estimate CW as
demonstrated in Hernandez et al. [112]

10The MathWorks, Inc., Version 2018b, https://www.mathworks.com/products/matlab.html
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Figure 4.4: Distribution of the self-reported CW level (ground truth) during the 1st and 2nd
trial of the experiment, grouped by the experimental phase. The phases are: 1. relaxation video,
2. memorize items, 3. Stroop test, 4. Recall items, 5. memory and reaction test.

CV is applied. To evaluate the generalization of the classifier, results utilizing LOGO CV
are considered additionally.

4.3.3 Results

In this section, findings from the experiment are presented (sec. 4.3.2.2), and the
selected feature subset is revealed (sec. 4.3.3.2). Finally, a comparison of the trained
classifiers is given (sec. 4.3.3.3).

4.3.3.1 Experiment

To verify that the participants were adequately challenged (i.e. CW was induced)
during the experiment, the self-reported CW (ground truth) from all phases of the
experiment is compared (Figure 4.4).

As expected, a significant difference between the relaxation phase (phase 1) and all
other phases of the experiment can be observed. Also, it is noticed that the participants
rate the CW for the phases 2 (memorize items, CW: 3.0±0.9) and 3 (Stroop test, CW:
2.7±0.9) equally (no significant difference). The same applies to the phases 4 (recall
items, CW: 3.4±1.0) and 5 (memory and reaction test, CW: 3.3±0.9). It is concluded
that the participants were equally challenged during both tasks or groups of tasks
(phases 2 and 3, or phases 4 and 5, respectively).

Moreover, it was observed that only a few participants reported very high CW during
any of the phases, e.g. level 5. This was already observed in the 1st run of the
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Figure 4.5: Tukey plot for each TLX item during both trials of the experiment grouped by the
experimental phase. The phases are: 1. relaxation video, 2. memorize items, 3. Stroop test, 4.
Recall items, 5. memory and reaction test.

experiment. However, to keep both runs comparable, the difficulty was not increased.
In all, 41.9 % of the participants reported 5 different levels of CW during the experiment,
and 84.4 % of the participants reported at least 4 different levels of CW during the
experiment. The remaining participants reported 2 or 3 different levels of CW.

Additionally, the repeatability of the experiment is verified by comparing the 1st
and the 2nd trial of the experiment (both runs). Similar mean and variance are
found concerning the self-reported CW levels during the different experimental phases
(Figure 4.4). With paired t-test, the null hypothesis that the self-reported CW between
both trials is equal was not rejected (p = 0.93). Thus, it is concluded that there is
no significant difference in the perceived CW during both trials of the experiment.
It should be noted that in the 1st trial of the experiment, the mean CW during the
relaxation phase was higher and also showed higher variance (1.3±0.5) compared to
the 2nd trial (1.2±0.2). From this, it can be reasoned that a longer relaxation phase is
necessary to allow the participants to accustom themselves to the situation.

Regarding the NASA-TLX items, group differences were tested using analysis of
variance (ANOVA) (Figure 4.5).

Significant differences for physical demands were reported between phase 1 and the
last 3 phases (p<0.05), and also between phase 2 and 3. The first 2 phases did not
require any interaction with the tablet computer, but clicking to get to the next screen.
For all other phases, however, interaction with the tablet computer was needed.

Besides, differences between the Stroop test (phase 3) and the other phases are
striking. Regarding the Stroop test, effort was rated higher than for any other phase.
This applies vice versa to the mental, frustration, temporal, and performance item. Here,
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Figure 4.6: Comparison of the unimodal CW metric and the median of all NASA-TLX items.

the Stroop test was rated the lowest (excluding the relaxation phase). The differences
for phase 3 are significant (p < 0.04) compared to phases 4 and 5, given the mental
and frustration item. For all remaining items (physical, effort, temporal, performance),
no significant differences between the phases of the experiment could be found.

Furthermore, by comparing the uni-modal CW item against the median of all NASA-
TLX items, no difference could be found (Figure 4.6). It can be concluded that the
details with respect to the different items of the NASA-TLX are limited. Also, from
the 1st run, it was seen that a more precise estimation of CW, i.e. with a gradation of
more than 5 classes, is hardly possible. Thus the uni-modal CW measure is used in the
following as ground truth.

4.3.3.2 Feature subset

Based on the data of the 1st run alone, the best feature subset was found using sliding
windows with an overlap of 75 %. This result was reported in [274]. It applied to all
tested feature subsets, including HR and EDA features, regardless of the window size
(grid search between 10 s to 60 s).

Concerning the window size, however, the results were not equally consistent. For
the feature set containing HR alone, a significant trend or correlation between the
classifier’s performance and the window size could be identified (Pearson’s r= 0.9503, p
< 0.05). However, with regard to the EDA feature subset, no trend, but a local optimum,
was found around 40 s to 45 s. It was concluded that there is no all-encompassing
optimal window size or overlap, but each subset has its own optimum.

The data set under consideration in this chapter contains additional raw data from
16 participants. It is thus about twice as large as the data set used in [274]. Similar to
how it was done in [274], in order to estimate usability and to determine the optimal
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Figure 4.7: CW estimation accuracies found with grid search across window size and overlap (a).
Results were generated using pruned DTs trained on the complete feature set. Evaluated results
were interpolated using locally weighted scatterplot smoothing (LOESS). Alongside, the detailed
view on the distribution of accuracies with altering total window sizes (length + overlap) and
amounts of re-used data due to window overlapping.

window size and overlap in advance, the accuracy of 10-fold CV DTs are evaluated for
each feature set.

In general, the findings on the here evaluated data set are in agreement with previous
findings from [274] (Figure 4.7a). Previously, a local optimum was found around a
sliding window with a length of 40 s and maximum overlap (75 %). Again, it can be
seen that the window size does have little influence on the classification’s accuracy (for
the range that is part of the grid search). Instead, the window’s overlap determines
the classification’s accuracy. Here again, a trend is found, which is that the accuracy
increases at the same time as the overlap is increased. The region with the highest
accuracy is found for window sizes between 30 s to 70 s and overlaps between 50 %
to 75 % (found during a grid search). Differences regarding HR and EDA features are
found to be negligible.
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Table 4.3: Average ranking with standard deviation for the top 24 ranked features based on
relative entropy. Selected features for the final sparse feature subset are printed bold.

Feature avg. rank

HR, minimum 1.0±0.0
HR, mean 2.5±0.5
SCR, peak amp. sum 3.6±1.1
HR, maximum 4.4±0.6
EDA, minimum 4.7±2.3
HRV, meanNN 5.8±1.5
SCR, peak area sum 7.1±1.7
SCR, max 9.0±2.2
HRV, RMSSD 10.1±2.8
HRV, SD1 10.6±1.9
HRV, SD2 12.8±3.5
SCR, minimum 13.6±2.0

Feature avg. rank

SCL, mean 13.6±2.0
EDA, mean 13.8±2.1
SCL, minimum 14.4±1.5
SCR, std. 16.0±1.7
EDA, maximum 16.8±2.9
SCR, peak amp. mean 16.8±1.5
SCL, max 17.3±1.7
HRV, RRmed 21.4±1.8
SCR, peak dur. sum 21.4±0.8
SCR, peak area mean 22.4±2.2
HRV, pNN50 22.5±0.9
SCR, peak count 22.6±1.6

Regarding the total window size and accuracy, which is the window’s length plus
its overlap (Figure 4.7b), no trend can be found. This is in accordance with previous
results. However, it is found that the estimation results on longer windows (around
50 s) show more variability. Peak accuracy is found for total window sizes of 50 s to
120 s, re-using between 20 s to 50 s of data (overlap).

For further analysis, the window size is therefore adjusted. It is extended from 40 s
used in [274] to 60 s. This is done in accordance with the procedure in [228] and
[123]. The overlap is kept and fixed at 75 %. In this way, a smoothing between the
feature windows and the CW is achieved. With the given settings of a window size of
60 s and an overlap of 75 %, a new estimation of CW is possible every 15 s.

In total, 42 features have been included in the comparison. In order to reduce
inter-dependencies and redundancies within the full feature set, the most important
features are identified to deduce a sparse feature subset. Ranking of the features is
based on Kullback-Leibler divergence (relative entropy). The topmost relevant features
are based on both sensors, EDA, and HR. Furthermore, simplistic features like minimum,
maximum, or mean values, derived on the raw data outperform sophisticated features.

Due to the redundancy between minimum, maximum, and mean values, only the
corresponding top-ranked feature is kept. The same applies to the mean or the sum
(integral) of the peak area of the SCR. Also, for other features that are correlated to
each other, e.g. RMSSD and SD1 (or SD2), only the top-ranked are kept. For the final
sparse feature subset, the 10 top-ranked (and not correlated) features were selected
(Table 4.3).
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Table 4.4: Comparison of the results (mean and standard deviation) found with the different
classifiers using 10-fold CV and LOGO CV.

Accuracy / %
Classifier 10-fold CV LOGO CV

5-class 2-class 5-class 2-class

KNN 72.60±1.97 93.87±1.09 30.33±08.79 81.38±17.25
SVM 69.35±2.17 90.07±1.04 37.93±13.62 83.63±19.30
GP 66.83±1.14 94.57±1.05 32.53±09.51 83.68±15.69
DT 52.91±3.28 87.51±2.17 35.80±13.31 81.87±17.42
NB 50.45±2.13 85.10±1.44 38.68±13.96 80.51±18.17

Mean 62.43±9.00 90.22±3.63 35.05±3.18 82.21±1.25

4.3.3.3 Classification accuracy

For evaluation, multiple classifiers are used to train models, given the selected sparse
feature subset (Table 4.4). Results are obtained using 10-fold and LOGO CV. First,
results from 10-fold CV are presented:

The lowest accuracy was found with NB classification (50.5±2.1 %). The maximum
average sensitivity is found on level 1 (60.17±6.08 %). Lowest average sensitivity
is found on level 5 (7.97±5.21 %). Mean sensitivity considering levels 2, 3, and
4 is 48.90±6.47 %. For these mid-level CWs also specificity on average is lower
(80.93±8.05 %) than for level 1 (90.25±1.50 %) and 5 (99.60±0.22 %).

For the DT, an average accuracy of 52.9±3.3 % was found (Figure 4.8a). This is
comparable to the results of the NB classifier. Again, the maximum average sensitivity
is found for level 1 (61.92±3.94 %), while the lowest average sensitivity is found for
level 5 (24.75±1.06 %). Also, mean specificity considering the mid-level CW (2 to 4)
is low 82.19±4.71 % compared to level 1 (91.64±0.94 %) and 5 (98.50±0.62 %).

Considering the DT and the NB classifier, the remaining models, namely GP, SVM,
and KNN, provide better results in terms of accuracy. With these models accuracies are
66.83±1.14 %, 69.35±2.17 % and 72.6±19.7 %, respectively.

Consistent with the previous results [274] with DT and NB, the lowest sensitivity and
specificity are found for class 5 (GP: 28.48±13.30 %, SVM: 43.51±11.45 %, KNN:
55.17±5.17 %). This class is underrepresented in the data set. Also, the highest
sensitivity and specificity are found for CW level 1 (all classifiers except GP).

With regard to the mid-level CWs (2 to 4), a centering of the sensitivity is observed.
This is, that the sensitivity is maximal for level 3, whereas the classification of levels 2
and 4 is less sensitive. Hence, the confusion is distributed (and centered) around level
3, which is also reflected in the specificity.
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Figure 4.8: Confusion matrix for the DT- (a) and KNN- (b) based CW estimation found with
10-fold CV. Last row (y-axis) contains sensitivity (TPR) and false-negative rate (FNR) (bracketed).
Last column (x-axis) contains specificity (TNR) and false-positive rate (FPR) (bracketed).

Considering this, it can be seen that misclassifications (or inaccuracies) are mainly a
result of the confusion in these CW-levels, namely 2, 3, and 4. This becomes visible by
comparing the results of the DT and KNN (Figure 4.8). In contrast to DT, the classes in
the KNN’s confusion matrix are more clearly separated from each other. Thus the KNN’s
accuracy is higher. In this respect, the classifiers KNN (Figure 4.8b) and SVM show
a similar overall picture regarding the confusion. The same applies to the GP-based
model, which, however, is less sensitive with respect to CW level 1. Therefore, its
accuracy is reduced. The accuracy of KNN and SVM is 3.2 % apart, which is assumed
to be negligible with respect to the variability within the CV (1.97 % to 2.17 %).

Next, results from 10-fold CV are compared to those found with LOGO. Strikingly,
the mean accuracy across all models, for the fine-grained task, is reduced by 27.37 %
(which corresponds to a degradation of 56.17 %). Moreover, the ranking of the methods
changes. The best estimates are now found with NB, whereas the lowest accuracy
is found with KNN. Moreover, the inter-classifier variability in terms of accuracy is
lower using the LOGO validation (3.18 % compared to 9.00 %). These observations
suggest that without personal characteristics flowing into the validation partition, not
all information in the feature set can be used. This is especially true for the inter-class
confusion related to mid-level CW (2 to 4).

Still, not all uncertainties are covered by the evaluated models, which is due to the
confusion between the classes 2 to 4. This can easily be seen by shrinking the classifi-
cation task to a binary problem. In this case, self-reported CW level 1 is interpreted

101



4 Monitoring Cognitive Workload

as no CW. All remaining levels are taken as present CW. With this new binary target
average accuracy in 10-fold CV across all classifiers is found to be 90.22±4.06 %.

Considering the binary classification task, the ranking of the tested classifiers remains
mainly unchanged. However, in the binary setting, GP outperforms SVM and KNN.
Again, the difference between SVM and GP (0.7 %) is minimal with respect to the
variability found within the CV (1.1 %). In contrast to the fine-grained tasks, the NB
and DT-based models also provided acceptable classification results. The accuracy
found with NB or DT is 85.10±1.44 % or 87.51±2.17 %, respectively.

The absolute distance between the 2 lowest-ranked classifiers (NB, DT) and the 3 top-
ranked classifiers (SVM, KNN, GP) is lower in the binary task (6.53 %) compared to the
fine-grained task (16.41 %). This indicates that the mid-level CW variation dominates
the complexity of the classification. This assumption is also supported, connecting it to
the results found with the LOGO CV, where the mean accuracy is 82.21±1.25 %.

The best results are found with the GP or SVM (absolute difference in accuracy is
0.05 %). Compared to the 10-fold CV, that is a difference of 8.01 % or a percentage
deterioration of 9.29 %. Again, this highlights the assumption made on the confusion
in the mid-level CW classes.

By relaxing the fine-grained constraint, and thus separate binary targets only, the
estimation is improved and comparable to that found with 10-fold CV. This result also
suggests that it is possible to generalization across a more diverse set of participants,
even without using personalized characteristics.

4.3.4 Discussion

Within this work, the fine-grained estimation of CW was demonstrated using com-
mercially graded body sensors. By focusing on a fine-grained estimation based on
short-term signals, the complexity of the classification task was extended. Additionally,
state-of-the-art results for the binary classification task were reproduced. For the binary
task, it was shown that, in comparison to the fine-grained classification task, its overall
accuracy is lower. This is explained by a lower sensitivity regarding the mid-level CWs.

One possible explanation for this observed variation could be the nature of the
subjective self-report. Here, a difference between the subjective perception of CW and
the objective bodily response cannot be excluded (e.g. a mismatch between sensation
and self-perception). It was assumed that more detailed self-reports, based on NASA-
TLX ([103], sec. 4.2), could clarify this issue. Therefore, in the 2nd test run of the
experiment, participants were asked to answer the NASA-TLX score in addition to the
uni-modal CW Likert scale (sec. 4.2).

The analysis of the NASA-TLX score revealed that the physical workload was rated
the lowest for all phases of the experiment. This is consistent with the expectation
since the participants didn’t need to be physically active during the experiment. The
effort, mental, and performance workload items were ranked the highest in this order.
In all, no differences between these groups could be identified.
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(a) Training set accuracy – 79.8% (b) Test set accuracy – 74.5%

Figure 4.9: Comparison results of a 5-level CW estimation in an autonomous driving scenario,
as reported by Manawadu et al. [155]. Similar accuracy and variability patterns in respect to
confusion were found in this work. Reprinted with permission, ©2018, IEEE

Comparable rankings could be found for temporal demands and frustration. For
both items, it was also found that the mixed memory and reaction phase was rated
the highest. In general, the items of the NASA-TLX score were ranked equally for all
phases, except for the Stroop test. With regard to effort and physical demand, it was
given the highest rating, whereas, concerning all other items, it was given the lowest
ranking.

It can be concluded that the Stroop test differs significantly from all other phases of the
experiment, while the remaining phases of the experiment are interchangeable to some
extent. In summary, no difference could be found between the uni-modal CW measure
(Likert scale) and the median of all TLX-items. Thus, for further investigation, additional
studies to examine or classify the different tasks would be interesting. Based on these
insights, an experiment could then be controlled in more detail so that it concentrates
on a single item (e.g. frustration or effort) only. Also, it could be helpful to challenge the
participants more and thus allows to have a wider or more evenly distributed range of
perceived difficulties. Besides the more detail view on the dimensions of CW, additional
performance measures like error-rate or time-on-task could help to further clarify the
variation in subjectively perceived CW.

Considering the observed mid-levels CW confusion, it can be inferred that both
the (self-reported) target values and the predictors (EDA, HR) are affected by noise.
Interestingly, there is no concluding answer whether there is noise in the (self-reported)
target values in the predictors (EDA, HR) or both. Nevertheless, it can be seen that
even most advanced methods suffer from this mid-level CW confusion.

103



4 Monitoring Cognitive Workload

An example is found in the work of Manawadu et al. [155]. They implemented a
fine-grained estimation model for CW in the setting of semi-autonomous driving. The
reported accuracy for the 5 leveled fine-grained estimation is similar to that presented
in this chapter (74.5 %, Figure 4.9).

Strikingly, even with the deep ANN-based classification approach presented by Man-
awadu et al. [155], and additional sensory information based on EEG signals, the
confusion for the mid-level CW (i.e. level 2-5) remains. Manawadu et al. [155] work
around this “human error” by altering the ground truth CW labels and use a soft-
threshold approach. With this approach misclassification in the range of ±1 level is
allowed. As a result, accuracy is improved to 96.5 %. This again is in close agreement
with the binary-classification result presented in this chapter (sec. 4.3.3.3).

Taking the assumption of noisy predictors and target values into account, GP was
included in the comparison. This is because GPs are well-known to act as a linear
smoother and, therefore, generally provide good performance in noisy settings [187].
Due to the soft-margin approach, SVM can also act as a linear-smoother, given appro-
priate regularization. Both methods are known to provide a good trade-off regarding
the bias-variance dilemma.

Indeed, GP and SVM-based classification outperformed DT and NB classification.
However, the best results were found using KNN. KNN-based classification, in turn, is
known to be prone to noise (over-fitting), especially if k value is chosen very small. It
was observed that without regularization by using CV, a neighborhood of k = 1 gave
the best accuracy. In the final model, the neighbor value is still small (k = 4). It cannot
be excluded that the high accuracy found is an effect of over-fitting to noise. This also
agrees with the finding of a low accuracy using NB classification. This is because NB
is known to be robust against noise by trading-off towards a bias error. Nevertheless,
another reason why NB could have performed worst is the lack of independence of the
features that are part of the feature set.

For this reason, it is of interest to have a more detailed view of the correlation
between self-reported CW and objective measures, e.g. error rate or time-on-task.
Furthermore, the question arises if using bodily reactions alone, a separation among
different dimensions of CW (i.e. mental demands, effort, time pressure, frustration)
is possible at all [91]. It remains an open challenge for future research to investigate
and clarify on the distortion of self-reported CW toughly. To clarify this, at least a
more controlled experimental setup is required. This is based on the observation that
no significant difference could be found between the NASA-TLX and the simplistic
uni-modal Likert scale. Hence it could be concluded that a setting that exclusively
targets a single dimension, e.g. time pressure, is needed.

Nevertheless, according to the results for the 3 top-rated models, misclassification
rarely exceeded more than one class (or level). Therefore, despite the lower overall
accuracy, the fine-grained estimation should be favorable because it facilitates a detailed
specification of the perceived CW. Although concerning the top 3 models (GP, SVM,
and KNN), comparable accuracy was found, they differ in implementation details.
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For instance, because SVM is more widespread compared to GP and computationally
efficient implementations are commonly available, their use might be preferred. Another
example is found with the KNN method, were memory or computational demands are
quickly exceeded during inference compared to SVM and GP.

According to the feature analysis and classification results (sec. 4.3.3.2), sophisticated
HRV features were found to be less important than simple measures (e.g. mean or
minimum of HR). This could be explained due to a low internal sampling frequency of
the HRM used (Polar H6, sec. 4.3.2.2). In general, a minimum sample rate of 500 Hz
to 1000 Hz is suggested [154]. This is in order to guarantee that the deviation of the
RR-intervals is as low as 1 ms to 2 ms. For the Polar H6, used in this experiment, sample
frequency is unknown.

Additionally, most of the HRV features used are not invariant to translations (spectral
features) or scaling (temporal features). This, however, can occur due to a lag in the
QRS-detection (regarding the HRM used) or simply due to a shift of the mean HR.
However, for earlier HRM-versions of the Polar H6 (from the same manufacturer), a
sound agreement has already been reported regarding the RR-distances [92].

Moreover, features ranking revealed that the HR-based features contribute to the
estimation the most. They are followed by the features based on EDA. As emphasized
by Sun et al. [228], care has to be taken if HR is selected as a predictor because it is
possibly influenced by means of physical activity.

Indeed, the detailed analysis based on NASA-TLX revealed significant differences
in self-reported physical activity between the relaxation phase (task 1) and the more
demanding tasks 3 to 5. It must be noted that the classification results could be
disturbed due to this correlation. In this respect, the differences in physical activity
could have caused similar effects as were already reported in relation to the touch
features.

Yet, this effect would be limited to the binary classification task alone. This is because,
in contrast to the touch features, with the TLX-item physical demands, no significant
differences in-between the stages of 3 to 5 could be found. Thus, if spurious relations
were learned in the models, these are most probably limited to the results of the binary
classification task.

As a final remark on the comparison of HR and EDA features, it should be noted that
the mobile EDA sensor differs in terms of absolute values compared to a laboratory
device. Hence, sophisticated features like the peak-area or -amplitude could be distorted.
This is even though the raw sensor readings were normalized participant-wise.

4.4 Conclusion and Future Work

Stress and mental health are subjects of current research worldwide. In this chapter,
it was shown how physiological signals recorded by means of WBS can be used to
estimate cognitive workload. The conducted experiment mimics the setting of a modern

105



4 Monitoring Cognitive Workload

working environment, in which the participants were asked to perform various tasks
on a tablet computer.

Self-reported subjective CW was questioned directly after each task. These were
used as ground truth information. In order to predict CW, EDA and HR were recorded.
At first, it could be shown that the sensor readings are comparable to those taken from
laboratory reference. In total, 42 features were calculated on the basis of the EDA
and HR sensor. Most significant features and their ideal window sizes and overlaps
were determined with an initial spot-resting approach based on 10-fold CV DTs. The
identified sparse feature subset contains 10 features, which include 5 EDA-based, and
5 HR- or HRV-based features. The feature subset was then evaluated by comparing the
accuracy of multiple well-established ML methods.

By employing the developed and applied models, it was shown that it is possible
to distinguish between stress-free and stressful tasks. Furthermore, the fine-grained
estimation with 5 levels (classes) is possible. In conclusion, a classification accuracy of
94.6 % for the binary CW estimation and an accuracy of 72.6 % for the fine-grained
estimation was found.

Moreover, it was shown that these features can be calculated on a short-term basis.
This is a mandatory requirement in order to set up an adaptive assistive system, which
is capable of balancing the complexity of a given task accordingly to the user’s cognitive
capacity.

It was furthermore observed that the subjective estimation of CW, which serves as
ground truth, is affected by uncertainty. Similar results were described independently
to this work in later published studies [155]. This again highlights the necessity to
compare subjective and objective markers such as the cortisol level in future work.
In this regard, preliminary work on the integration of chemical sensors in WBS has
already been presented [26, 161]. However, before these and comparable sensors
can be reliably integrated into WBS, several challenges still have to be solved, which
include long-term stability and device-skin adherence [161].

Apart from these potentials for future work, the added value of WBS is already evident
today. In psychology, the so-called experience sampling method has been discussed for
some years [70]. A similar concept is found with ecological momentary assessments
[218]. Both aim to capture subjective impressions or emotions as directly as possible.

Today, questionnaires are often no longer designed on paper and retrospectives tools
but are collected as directly as possible, e.g. using a smartphone (or as in this work a
tablet computer). In this way, common biases e.g. a recall bias or recency effect, could be
counteracted11. Although using a smartphone, a question (as part of a questionnaire)
can be asked right after an event, the measurement of physiological parameters takes

11These effects are given here for the sake of illustration. With recall bias, false memory reports are denoted
in general. The recency effect describes a phenomena where the last remembered information is more
present in the short-time memory compared to an information which was remembered earlier. The list of
memory or cognitive biases in psychology is long and an independent branch of research. An overview
can be found in [60].
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place immediately, which is parallel to an event. Using WBS thus allows gathering
insight into the temporal dynamics of emotions and subjective perception in particular.

The use of WBS forms the basis for new research methods in this field, the applicability,
and effectiveness of which was demonstrated in this chapter. In view of decreasing
costs for mobile computing and wearable sensors, a further spread can be expected. For
future work, this means that WBS will open up new research questions. It is moreover
conceivable to use the sensors as indirect markers. In this sense, spontaneous changes
of activity, such as the increase of HR or sudden onset of movement, could be used as
triggers to initiate user surveys. These triggers could then be useful to look at future
psychological questions more closely and from a new perspective, i.e. under the view
of dynamics in activity behavior.
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Table 4.5: Selected methods used for feature extraction.

Signal Category Function Definition

Heart rate
(HR)

time average µ= 1
n

∑n
i=1 x i

standard
deviation

σ =
q

1
n−1

∑n
i=1(x i −µ)2

Heart rate
variability
(HRV)

time average 1/n
∑n

i=1 ai

temporal skew 1/n
∑n

i=1(x i −µ)3

kurtosis 1/n
∑n

i=1(x i −µ)4

heart rate
variability

NN50
∑n−1

i=1(x i − x i+1 > .05)

RMSSD
q

1/n
∑n

i=1(x i − x i+1)2

SDSD σ((x1− x2) . . . (xn−1− xn))

SD1
p

.5 · SDSD2

SD2
Æ

(2 · SDSD2)− (.5 ·σ2(x))
SD12 SD1/SD2

spectral VLF energy 0.00 Hz to 0.04 Hz
LF energy 0.04 Hz to 0.15 Hz
HF energy 0.15 Hz to 0.40 Hz
nLF normalized energy (LF/LF+HF)
nHF normalized energy (HF/LF+HF)
LF/HF LF/HF

geometric TRI relative frequency of mode
TINN triangular fit to histogram
rrHRV median Euclidean distance of suc-

cessive RR towards their mean

Electrodermal-
activity (EDA,
SCR, SCL)

geometric
(peak)

count number of peaks
amplitude amplitude of peak (max)
duration distance between the two mini-

mums surrounding a peak
area integral between the two

minimums surrounding a peak
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In the course of this chapter, the topic of physical activity (PA) estimation utilizing WBS
is addressed. The focus is on the application in a professional context, i.e. firefighting.

After a brief motivation (sec. 5.1), existing reference and alternative methods to
measure PA (or EE) are outlined (sec. 5.2). Thereafter, recent multi-modal approaches
to estimate EE utilizing WBS are introduced (sec. 5.3). Additionally, aspects of the
calibration of WBS are addressed (sec. 5.4). Parts of these chapters were previously
published in [272, 275]. In the following, a multi-modal and robust model to estimate
the PA of firefighters is introduced (sec. 5.5).

5.1 Background and Motivation

Quantifying PA is practiced both in private and in professional contexts [76]. Pro-
fessional examples can be found with soldiers, athletes [140], or ergonomists [179]
(sec. 2.2.1). Today, fitness trackers or activity trackers are used in private for self-
measurement (an extreme can be found in the quantified-self movement) [5].

While private individuals and athletes may initially have an interest in recording their
activities or performance out of a selfish interest, the relevance for the general public
results from the positive health effects of PA. This is because PA and cardio-respiratory
fitness are regarded as key factors in avoiding numerous diseases of affluence [179,
222, 237]. These include obesity, type 2 diabetes, cardiovascular diseases, or mental
health [247]. An active way of life thus promotes the health of each individual and
therefore is of major relevance towards public health [240].

The relevance of PA goes beyond private life and is just as important for other
dimensions of life, such as work. However, different user groups also have different
expectations and requirements. For instance, validity and cost, but also comfort and
functionality, are dimensions that conflict with each other [119]. Here lies the basic
idea of the design and application of WBS and other wearable devices, which is to
construct sensors, technical systems, and algorithms in such a way that these conflicting
expectations are optimized in parallel. Regarding costs and time, WBSs already have
an advantage over laboratory methods. Specifying and maximizing validity, on the
other hand, is the topic of current research work [9, 78].

Estimating PA utilizing WBS is a widespread technique with a long history (sec. 2.2.1).
The approaches used have evolved from simple linear methods based solely on ac-
celerometer data [167] or heart rate [220] towards more sophisticated methods fusing
multiple sensor data using advanced non-linear ML methods [72]. Furthermore, recent
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work engaged architectures that use several activity-specific models rather than develop
one single stand-alone model [12, 72].

Since then, quantifying one’s own PA has emerged into everyday life, having fitness
trackers or specific Apps for smartphones and smartwatches available on the market
[185]. However, for applications apart from being a leisure activity, the validity of the
predicted outcome is more crucial and still a relevant research topic [172].

5.2 Operationalization of Physical Activity

The operationalization of physical activity (PA) can be subdivided into the branches of
human activity recognition (HAR) and estimating energy expenditure (EE).

HAR has its focus on behavior, and in this understanding, PA is a sum of different
activities and their duration. Often, the task is to detect so-called activities of daily
living (ADL), e.g. walking stairs, dancing, or sweeping the floor. The intensity of the
same can also be of interest. Indeed, HAR can be seen as an abstraction of EE. This is
because having HAR combined with information on duration and intensity can be used
to estimate EE. In fact, recording activity diaries, which are created manually through
observation, is a commonly used method to quantify PA and EE.

A comprehensive guideline of specific activity codes and corresponding values for
EE can be found in [4]. It contains intensity information on 821 different activities
of daily living (ADL). It is structured broadly into activities such as cycling, dancing,
or housework. For many activities, there are also more graduated subdivisions. For
example, different speeds are distinguished for cycling or different details for housework
such as wiping, sweeping, making the bed, or watering flowers.

In this work, however, the focus is on accurate EE estimation utilizing WBS. Therefore,
at first, a brief overview of reference and secondary methods is given (sec. 5.2.1 - 5.2.2).
A more comprehensive overview can be found in [113, 137]. In the subsequent, metrics
used to quantify EE are compared (sec. 5.2.3).

5.2.1 Reference Methods

In the following, reference methods to obtain ground truth data for EE estimation are
briefly discussed. These presented methods can be subdivided into direct (sec. 5.2.1.1)
and indirect methods (sec. 5.2.1.2 - 5.2.1.3).

5.2.1.1 Direct Calorimetry

Metabolic energy is converted to external work (e.g. kinetic or potential energy transfer),
or energy is stored in the organism (e.g. heat or chemically bound energy) and
metabolic end-products (e.g. feces). Otherwise, all energy entering the organism is
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finally transferred into heat (sec. 2.1.1). This includes the internal work (e.g. heart
muscle activity), as well as all metabolic processes. [111]

With direct calorimetry (DC), this very amount of heat loss of the body through
conduction, convection, and thermal radiation (evaporative heat loss is measured
separately) is measured. It is considered the most exact method to measure EE. Also,
the temporal resolution of modern systems is good. The difficulties lie in the practical
implementation. [160, p. 179]

One difficulty of DC is to construct a thermally isolated yet observable space. Having
an isolated environment is the only possible way to measure the emitted heat accurately.
However, complete isolation is not possible since, for example, the respiratory gases
in the closed chamber must be continuously renewed. It is even more challenging to
design mobile systems that meet the insulation criterion. [125]

Since the participants have to be enclosed in a chamber (whole-room calorimeters)
or suit, the practical implementation is also more difficult. Its application involves a
great deal of controlling technology and is expensive. For this reason, it is rarely used
for practical experiments, e.g. in sports science. [125]

5.2.1.2 Doubly Labeled Water

Instead of observing heat transfer directly, observation of the metabolism can be used
to measure EE. The rationale behind this is that all produced heat is eventually leaving
the body. Thus heat loss can be measured indirectly by observing or estimating the
heat production (instead of heat loss sec. 5.2.1.1).

Because oxidation contributes the most to energy metabolism, the oxygen uptake
rate is a suitable parameter to measure EE indirectly. One such indirect method is
doubly labeled water (DLW) [160, p. 185]. With the DLW method, isotopic labeling
of water is used, which is taken orally by the participant. The isotopes used are 18O
(normal oxygen: 16O) and 2H (deuterium; normal hydrogen: 1H). Neither of the two
isotopes is radioactive. However, they can be easily distinguished from other isotopes
by other technical means.

In application, the water drunk by the participant mixes with the normal body water
and spreads evenly throughout the body. While 18O can be re-integrated into both
water and carbon dioxide, 2H remains in water only and is excreted in the urine. This
2H excretion will always be higher than that of 18O. The difference is a measure of CO2
formation and thus provides information about the exhaled air. Because urine samples
have to be collected over multiple days, no short-term changes in EE can be measured,
but only means across multiple days. Also, DLW is associated with high costs.

5.2.1.3 Indirect Calorimetry

Similar to the DLW method, indirect calorimetry (IC) is used to observe metabolic heat
production. With IC, however, respiratory gas exchange is measured. More precisely,
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the volume of oxygen uptake (VO2) and produced carbon dioxide (V CO2) is measured.
The quotient of the two measures (V CO2/VO2) is known as the respiratory quotient (RQ),
which can be used to conclude the metabolic activity (sec. 2.1.2), [160, p. 180]

For instance, the metabolism of fatty acids produces significantly less carbon dioxide
than the metabolism of carbohydrates. In turn, the observed RQ is low (0.7). In the
opposite case of predominant oxidation of carbohydrates, the RQ is higher (1.0).

If EE is covered by oxidation of carbohydrates only, the caloric equivalent of oxygen
is 21.1 kJ/LO2. The Weir-equation (eq. 5.1, [241]) can be used to calculate EE1.

EE = (1.106 ·RQ+ 3.941) · V CO2 ·4.1868 (kJ) (5.1)

Technical implementations of IC are often found as spirometry devices (breathing
mask). They are available as mobile devices, consisting of a breathing mask, airflow
sensor, and gas analyzer. The participants breathe through the mask, and samples
of the inhaled and exhaled air are taken breath-by-breath (also known as BxB). Also,
mixing-chamber systems exist, which are known to be more accurate compared to
BxB-systems [28]. With those systems, the complete exhaled air is sampled. Because
of the relatively good validity of IC, its mobility, and low costs compared to DC and
DLW, the method is often used in practice to measure EE. [105]

5.2.2 Secondary Methods

Another starting point to measure EE is the use of WBSs. They can be used to unobtru-
sively measure bodily functions (e.g. respiration rate or heart rate). These can serve as
an abstract view on the EE, i.e. they are used as a proxy (sec. 2.1.2).

Moreover, using accelerometer signals allows to (at least partly) observe external
work, i.e. movement of the body or muscle work. Both techniques can be used as
secondary methods to estimate EE and are presented in the subsequent.

5.2.2.1 Heart Rate

HR is a prominent predictor for EE [1] because HR correlates with oxygen consumption
(sec. 2.1.3). However, inter-individual differences (minimum or maximum HR) must
be compensated [139]. In addition, the relationship between HR and EE is not strictly
linear but, given very low or extreme PA, non-linear relation is observed.

It is also known that HR reacts differently to different activities [21]. This is, e.g.
because of changes in stroke volume due to different postures [56], the influence of
external heat [6], or because different sized muscles are used in certain activities (e.g.
comparing leg and arm work [225]). Moreover, non-linear response of HR, e.g. in

1Regarding IC, it is typically assumed that no proteins are metabolized, although corrections based on
urinary measurements are available.
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sedentary situations due to psychological strain, must be taken into account [56, 89]
(chapter 4).

A first method to estimate the TEE by using HR was presented by Spurr et al. [220].
They made use of a linear model (eq. 5.2, r = 0.87, SEE = 0.91 MJ)2. To overcome
certain shortcomings (i.e. inter-participant variation and nonlinearities) Ceesay et
al. [56] proposed the “FLEX”-HR method. The “FLEX” value is an average of the
highest HR measured while the participant is standing and the lowest HR while the
participant is walking. With this approach, HR below the “FLEX” value is assumed
to equal the RMR, while a HR above is used to estimate EE (e.g. by regression). To
increase robustness for individual differences, Keytel et al. [126] proposed a model
that included anthropometric features as well (eq. 5.3 - eq. 5.4).

In all, HR can only provide an abstraction of EE, because it acts as a proxy (estimating
blood flow and thus oxygen transport to the muscles).

EE = (0.92 ·h+ 1) ·1000 ·1440−1 (5.2)

EEm = −95.7735+(0.271 · a+ 0.394 ·m+ 0.404 · o+ 0.634 ·h) (5.3)

EEw = −59.3954+(0.274 · a+ 0.103 ·m+ 0.380 · o+ 0.450 ·h) (5.4)

EE - energy expenditure kJ/min
EEm - energy expenditure, male kJ/min
EEw - energy expenditure, female kJ/min

h - heart rate beats per minute
a - age year
m - body mass kg
o - VO2max mL/kg

5.2.2.2 Other Physiological

Besides HR, other physiological parameters allow determining EE, as well. For instance,
respiratory rate (RR) can be used as an alternative proxy for oxygen consumption.
However, it is less accurate than HR [12, 275]. This is explained by the wider variety
of modulating respiratory minute volume, compared to the modulation of the heart’s
stroke volume (sec. 2.1.3). Also, skin temperature [133], skin humidity [12], or heat-
flux (in respect to the skin and the environment) [67, 149] can be used as a proxy
towards the direct observation of heat loss (sec. 5.2.1.1). However, those methods
show a lower correlation compared to HR as a predictor for EE [12].

5.2.2.3 Accelerometry

Up to this point, all EE-estimation methods described relied on the measurement of
body heat loss either directly or indirectly through the observation of the metabolism or

2Here, r is the correlation coefficient and SEE is the standard error of estimates [220]. No further
specifications are provided.
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other bodily functions. An alternative approach towards the estimation of EE is based
on the measurement of physical work, e.g. the contraction of muscles or movements of
the body. An objective approach is the use of accelerometers attached to the body.

Similar to pedometers (sec. 2.2.1), initial accelerometry approaches to estimate EE
made use of so-called counts. Both, linear (eq. 5.5, [88]) and non-linear methods
were proposed (eq. 5.6, [58]). To calculate a count, typically, the number of peaks in
the accelerometer signal or the integral (cumulative sum) is calculated. It was soon
found that those models underestimate EE of ADL and at the same time, overestimate
low-intensity activities. To obtain improved estimates, linear combinations of regression
models were proposed for different intensity classes (eq. 5.7, [69])3.

EEk = (0.00094 · cc + 0.1346 ·m−7.37418) ·4.184 (5.5)

EE j = a ·
�Ç

(c2
x + c2

y )
�p1

+ b · cp2
z (5.6)

a = 12.81 ·m+ 843.22 ·1000−1

b = 38.90 ·m−682.44 · g + 692.5 ·1000−1

p1 = 2.66 ·m+ 146.72 ·1000−1

p2 = 3.85 ·m+ 968.28 ·1000−1

EEk =



















1.0 : ca ≤ 10
2.550956 · exp (0.000137466 · ca) : ca > 10∧ Z(ca) ≤ 13%
1.466072 + 0.2107550 · ln ca

−0.0595362 · (ln ca)
2 : ca > 10∧ Z(ca) > 13%

+0.0157002 · (ln c)3

(5.7)

EE j - energy expenditure kJ/min
EEk - energy expenditure kcal/min
cc - accelerometer counts from “CSA Model 5032” [88] 1/min

cx |y|z - accelerometer counts from “Tritrac” [58] (horizontal) 1/min
ca - accelerometer counts from “Actical” [69] 1/min
Z - std. divided by mean from 4 consecutive 15 s epochs of cs %
m - body mass kg
g - sex 1 - men, 2 - woman

It was eventually understood that the direct mapping of physical work (whole-body
accelerometry) to EE is misleading [148]. One reason for this is that no uniform
efficiency coefficient between physical work and EE exists. Also, not all muscles are

3In the original publications [69, 88] EE is given as metabolic equivalent (MET) (eq. 5.5 and 5.7). Here it
is assumed that 1 MET equals1 kcal.
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observed. Instead, measurements are based on a single sensor (or a limited set of
sensors) only. This leads to an oversimplified view of the body as a single mass.

Furthermore, even using multiple accelerometers on all joints of the body would
not guarantee to result in a reasonable abstraction of muscle work. This is because
the accelerometers are usually loosely mounted on to the skin, which is a soft-tissue.
Therefore, damping in the resonance of the measured acceleration signal is present.
Thus, the real acceleration of the human body cannot be measured. [175, 245].

To compensate for such errors, several models based on sophisticated regression
techniques have been presented in the literature, e.g. SVM, DT, ANN, or ensemble
methods [124, 144]. Besides different inference methods, positioning of the sensor
[83] or the use of distributed sensor systems is discussed [14].

5.2.3 Metrics

With reference methods (sec. 5.2.1), the EE is typically given as joule (sec. 2.1.1).
Depending on the method used, other metrics are also used [113, 208]. An example is
found with the abstraction of EE as counts derived from acceleration data (sec. 5.2.2.3).

In the case of using IC (sec. 5.2.1.3), often, MET values for oxygen consumption
are given as a measure of EE (eq. 5.8). The MET corresponds to the amount of
3.5 mL/(kgmin) or 3.15 mL/(kgmin) of oxygen consumed for male or female partici-
pants, respectively. As a simple approximation, 1 MET is often equated with 1 kcal.

Using MET instead of calculating EE (sec. 5.2.1.3) furthermore avoids possible error
propagation. Besides, also a normalization takes place since the oxygen consumption
is weighted according to participants’ body mass and sex. In this way, EE is normalized
and becomes more comparable among different participants.

Instead of normalizing using body mass, EE can be normalized by means of BMR.
In this way, EE is given as a multiple of the BMR (eq. 5.9). This is referred to as the
physical activity ratio (PAR)4. Instead of using BMR, normalization using RMR is also
found in the literature. This is because RMR is easier to measure.

MET =

�

OUR · (3.5mL ·m)−1 (in relation to oxygen)
EE · (1 kcal ·m)−1 (in relation to heat)

(5.8)

PAR = EE ·BMR−1 (5.9)

EE - energy expenditure kJ/min
PAR - physical activity level 1/min
MET - metabolic equivalent 1/(minkg)

BMR - basal metabolic rate kJ
OUR - oxygen uptake rate mL/min

m - body mass kg

PAR and MET are both suitable metrics to reflect EE because they allow for easy
comparison among different participants. In addition, it must be taken into account

4Besides physical activity ratio (PAR) the expression physical activity level (PAL) is used, if the total energy
expenditure (TEE) for a period of 24 h is referred
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that using secondary methods without normalization otherwise addresses 2 problems
at the same time: Firstly, the measurement of BMR and secondly the measurement
of PAEE. Since the BMR is exclusively determined by anthropometric properties (e.g.
height, weight, sex), and secondary-methods cannot measure these properties, the
BMR should be removed.

Nevertheless, EE can still be calculated from the PAR if the BMR is known. Even if the
real BMR is unknown, methods exist to estimate it. One standard approach, still used
today, was already proposed in 1918 by Harris et al. [102] (Harris-Benedict equation:
eq. 5.10 - 5.11). It is based on body mass, height, age, and sex.

A revised model, using the very same anthropometric features, but fitted on a broader
sample, was proposed by Mifflin et al. [165] (Mifflin-St Jeor Equation: eq. 5.12).
Likewise, estimation for the RMR in terms of oxygen consumption has been proposed
[46]. These can be used to calculate EE from MET. Obtaining closer estimates is
possible, but requires additional data, some of which is difficult to collect (e.g. fat-free
mass) [165].

BMRm = 57.36 ·w+ 20.93 ·h−28.47 · a+ 278.42 (5.10)

BMRw = 40.19 ·w+ 7.54 ·h−19.68 · a+ 2742.35 (5.11)

BMR = 10.0 ·w+ 6.25 ·h− 5.0 · a+ 5−166 · g (5.12)

BMRm - BMR, male kJ
a - age year
w - body mass kg

BMRw - BMR, female year
h - body height cm
g - sex 0 - male, 1 - female

5.3 State of the Art: Multi-Modal Models

Uni-modal methods to estimate EE, based on HR (sec. 5.2.2.3) or accelerometer data
(sec. 5.2.2.1) have certain drawbacks in the application. On the one hand, HR tends to
overestimate EE in sedentary settings. On the other hand, accelerometer-based methods
fail to generalize for different types of motion or activities. This applies in particular
for activities that were not part of the sample used to build the corresponding model.
Also, they are incapable of observing motion intensity (e.g. carrying loads) [148]. For
both reasons, they tend to underestimate EE. To overcome these shortcomings, modern
approaches use both acceleration and physiological markers in combination.

In the work of Strath et al. [225], a pedometer was used to distinguish between
leg- and arm-work. For each scenario, a different regression (each based on HR) was
used to estimate EE. Combining the pedometer and the HRM, the agreement of EE
estimation compared to IC could be improved from R2 = 0.54 (pedometer alone) or
R2 = 0.67 (HR alone) to R2 = 0.81. The data set includes data from 30 participants
(16 male, 14 female), who were measured for 15 min each. In proceeding work, it was
shown that a combination of personalized HR and movement features further improves
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the estimation [43]. The agreement reported is up to R2 = 0.96. Here, walking and
running activities were examined, from a total of 20 participants (11 male, 9 female).

In more recent work, ML methods are used instead of classical regression. For
instance, Lin et al. [142] presented an ANN-based model, which used HR features and
data from 3 accelerometers, which were placed on the wrist, waist, and ankle. Activities
in their data set contained, sedentary (e.g. lying, sitting, standing), moderate (e.g.
walking, bicycling), and vigorous (e.g. walking stairs, running) intensities. A total of 26
participants (20 male, 6 female) participated in the experiment. They classified these
activities using DT-based models and trained different ANNs-based regressions using
HR and acceleration features for each activity. They report high agreement (10-fold
CV) for sedentary (R2 = 0.93), or moderate and vigorous activities (R2 = 1.00).

The effectiveness of combining HR, RR, and accelerometer data was again examined
by Altini et al. [12]. Also, other physiological markers were investigated, such as
humidity, temperature, or EDA. In their experiment, a total of 16 participants were
involved (12 male, 4 female). They summarized that HR is the best physiological
marker to estimate EE (R2 = 0.93). Regarding other physiological markers, weak
correlations are reported (RR: R2 = 0.76; EDA: R2 = 0.72; skin humidity: R2 = 0.70).
However, they work well in combination with the acceleration sensor data because
they enable separation of sedentary or active behavior. In general, Altini et al. [12]
recommend combining acceleration sensor data with physiological predictors because
they are “complementary” to each other. In addition, it is argued to position the
acceleration sensor close to the body’s center of mass because this position is most
suitable for a generalized estimation of EE.

In preliminary work [275], also a nearly perfect agreement was found using ac-
celerometer, HR, and respiration features (R2 = 0.97) with a total of 15 participants
(10 male, 5 female). That is for inference based on a MARS-based model trained on
sedentary, walking, and running activities. Furthermore, the presented model was
capable of precisely predict EE even if not all data is available. More precisely, this was
demonstrated for the case that HR is missing due to a corrupted ECG signal because of
motion artifacts, which often occur when the participant is running fast.

However, the problem of estimating EE is not yet completely solved. This is because, if
the validation rules are tightened, it can be seen that the models do not generalize across
all participants nor all activities. With the example of own preliminary work [275], the
agreement decreases from R2 = 0.93 to R2 = 0.82, if the model is validated against
new unseen data. The lesson learned from this experiment was that the challenge in PA
estimation lies in the use of specific features, which allow generalizing across different
individuals and activities.

One common method to cross out inter-individual differences concerning HR is the
FLEX-HR method described in (sec. 5.2.2.1). In recent work, methods comparable
to the FLEX-HR approach were proposed, which act as an automated calibration
procedure. Therefore, running speed (based on acceleration) and HR are sampled
in free-living conditions and later on used to build up individual calibration models
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[15]. Besides, anthropometric features are often embedded into the models, e.g. body
weight, maximal HR, or cardiorespiratory fitness (CRF). Regarding CRF, Altini et al.
[16] showed that it could further improve the estimation of PA up to 18.2 %.

In the work of Altini et al. [16], not only inter-individual differences were considered
but also activity-specific models were used. They furthermore showed that the error in
estimating EE could successfully be reduced using activity-specific models (e.g. one
regression model per activity) [13]. In this way, RMSE was effectively reduced by 57 %
(1.51 kcal/min to 0.86 kcal/min).

This idea was later adopted by Gjoreski et al. [95]. Their data set is available to the
public and contains data from 10 participants. They made use of a special partition
(Standard Deviation Reduction) to construct ensembles of base learners fitted to sub-
partitions of training data. In this way, 49 models were trained not only on different
activities but also on different intensities of these activities. The best ensembles used
ANN as base learners (RMSE = 0.850 MET, MAE = 0.613 MET).

Based on the very same data set, similar results (MAE = 0.52 MET) are reported even
with simplified split criteria, sorting activities into sedentary, and moderate to vigorous
activities only [72]. For the base learners, they used 2 multiple-regression models for
each of these groups. This result is in agreement with the suggestions of Altini et al.
[14], who recommend a partition into sedentary (static values for each: lying, sitting,
and standing) and multiple activity-related regression models (whole-body motion,
walking, biking and running). Even without any specific grouping method, similar
results are reported using boosted DT (RMSE = 0.970 MET, MAE = 0.709 MET) [55].

Constructing such non-group-specific models is essential because the success of
the partitioning methods ([72, 95]) directly depends on the number and diversity of
different activities within the data set. The detection of individual activities thereby
poses a separate challenge. Consequentially, the intermediate step increases the risk of
systematic measurement deviations (due to misclassification) and over-fitting of the
models (too fine partitioning, no generalization)5.

At this point, it could be concluded that sophisticated ML methods are needed to
successfully predict EE, as demonstrated in the literature [16, 55, 72]. However, recent
work [146, 169] again highlighted the effectiveness of more straightforward approaches.
For instance, in the work of Lu et al. [146], a small ANN using 5 neurons in the hidden
layer, and 4 features (HR, RR, wrist and thigh acceleration) was presented. They also
reported a high degree of agreement (R2 = 0.92), however, on a self-created data set.

5.4 Compliance and Calibration

In multi-modal EE estimation, advantages of physiological predictors are combined
with objective observation of motion (e.g. acceleration, sec. 5.3). However, compliance

5Indeed, handling misclassification of unknown activities and transitions in-between certain activities is an
active branch of HAR research [193]
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and calibration issues remain, which was shown in [272]. It was highlighted that
valid measurement of vital signs and reliable measurement of motion depends on prior
calibration and appropriate use of the WBSs. This involves the correct attachment and
application of a WBS, as well as the pre-execution of calibration or validation steps.

Here, a summary of the signal disturbances and countermeasures presented in [272]
is given because they were reused for the experiment presented in sec. 5.5.

5.4.1 Signals and Disturbances

To obtain reliable sensor readings, a variety of disturbances have to be considered.
Taking the functional principle of the sensors into consideration, the necessary steps to
ensure accuracy and precision can be determined. In the subsequent, an overview of
common disturbances affecting the BG-V4.2 is outlined.

5.4.1.1 Electrocardiogram

Typical disturbances affecting the ECG include electrical interference, poor electrode
contact (and skin conductance) as well as the electrode’s positioning [90].

Examples concerning electrical interference are found with the line noise (AC noise
50 or 60 Hz) or high-frequency noise from the electrical activity of the skeletal muscles
(EMG noise). In order to remove such electrical interference, analog filters can be
used [90]. In BG-V4.2 and BG-V5, an analog active low pass filter of 4th order is used
(cut-off frequency 33.86 Hz). To remove the baseline wander, an additional high pass
filter is applied (cut-off frequency 1.56 Hz).

Dry electrodes or insufficient skin contact are other common reasons for measurement
errors. Regarding textile electrodes, which are commonly used in chest straps, proper
moistening is required. Additionally, a minimal tension of the chest strap is needed to
ensure good skin contact. Setting the chest strap’s tension is also relevant in terms of
motion artifacts, which often occur during vigorous physical activity [173]. Obviously,
the positioning of the electrodes or their contact cannot be corrected by the device
itself. Therefore, these prerequisites must be checked by the experimenter or the wearer
(user) before an experiment is carried out.

5.4.1.2 Accelerometer

Considering motion sensors, the initial calibration by the manufacturer guarantees
precise measurements. Also, random and systematic errors are relatively small. For
instance, the random observational error of the LIS331HH6 accelerometer integrated
into the BG-V4.2 is in the order of magnitude of 10−3 g. Likewise, systematic obser-
vational errors are bounded to approximately 10−4 g (e.g. caused by temperature

6STMicroelectronics, LIS331HH https://www.st.com/resource/en/datasheet/lis331hh.pdf
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fluctuation). However, these systematic observational errors are typically dominated
by an orientation offset. This offset results from a misalignment between the sensor’s
frame and the body’s frame of the wearer. The latter depends on how and where the
chest strap was applied to the wearer’s body [239, 246].

5.4.2 Calibration and Noise Detection

The impacts of noise or other disturbances are widely addressed in recent research.
Likewise, methods to detect or minimize the effects of disturbances are proposed:

Concerning HR estimation, the effect of noise in the ECG-signal was investigated
by Friesen et al. [90]. Within their work, they demonstrated the vulnerability of
common algorithms used to estimate HR, in case the underlying ECG-signal is affected
by different types of noise. Furthermore, concerning mobile HR acquisition, Nikolic-
Popovic et al. [173] explain the effect of motion artifacts for HR variability estimation. In
order to detect noisy signals, and thus to prevent false alarms or misleading information,
several methods are known to detect the quality of the ECG-signal [195].

Likewise, the calibration of accelerometers used for physical activity monitoring is
important. In this respect, Wang et al. [246] examined the impact of the orientation
error of an accelerometer. They showed that an orientation error greater than 3°
adversely affects the PA estimation. Similarly, Alinia et al. [10] examine a scenario
in which the position of a WBS was interchanged. They demonstrated that without
knowing the real position of the WBS, accurate estimation of physical activity was
impossible. This was again confirmed on the example of HAR by Yurtman et al. [265],
who found deviation in accuracy up to 18.8 %. An overview of different approaches to
calibrate accelerometers is given by Won et al. [259].

Taking these examples, it can be argued that without a precedent check-up and
calibration of a WBS, reliable data is unobtainable. As exemplary pictured above, this
applies to accelerometers and ECG recordings. Nevertheless, other sensory elements
can be affected as well (e.g. respiration sensor [269]).

5.4.2.1 Heart Rate Validation

Various methods exist to assess the quality of an ECG recording [73]. However, these
methods are often developed for clinical investigations and are not optimized for
efficiency. Aiming towards an implementation for a WBS, which offers limited resources,
less complex solutions are preferable. In addition, the use-cases associated with WBSs
application typically require valid HR estimation only. A medical examination or quality
criterion is therefore not necessary.

In order to obtain the ECG’s quality in real-time, the solution presented in [138] was
adopted and tuned. In [138], multiple weak metrics are combined into one strong
predictor applicable for clinical usage. Here, this approach was partly reused, but
restricted to use only one of the weak predictors, which is the signal’s kurtosis.
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Because kurtosis is a measure of the probability distribution’s spikiness, it is well
suited to distinguish a valid ECG from white noise. Yet, it is not applicable to detect
scattered spikes, which occur due to motion artifacts (chest strap temporally loses
contact with the skin). Therefore, an additional rule was added, which marks the signal
as invalid if its range exceeds 75 % of the total measuring range (3072 LSB; 12-Bit
resolution). The final quality measure combines the 2 decision rules (eq. 5.13).

QualityECG = K (ECG) ≥ 5.4 ∧ R(ECG) ≤ 3072 (5.13)

Kurtosis: K(X ) = 1
n

∑n
i=1

�

x i− x̄
σ(X )

�4

Range: R(X ) = max(X )−min(X )

To test its feasibility, it is validated against the PhysioNet MIT-BIH Noise Stress Test
Database7 [96]. Each time series in the data set contains 50 % of noise-free and 50 %
of noisy data. As a result, it is found that the quality measure is suitable to detect large
disturbances with a signal-to-noise ratio (SNR) lower than 6 dB (Table 5.1). In the
presence of almost undisturbed signals (SNR ≥ 18 dB), no disturbances are detected.
Thus, the signal is marked as valid. Correspondingly, the accuracy and the positive
predictive value considerably drop. However, given a SNR greater than 6 dB, accuracy
is at least 96 %.

It becomes clear that only prominent disturbances are detected with the presented
approach. Still, the number of false alarms (due to false negatives) is effectively limited.
Therefore, non-acceptable ECG records can be detected and falsely calculation of the
HR can be prevented. Moreover, the metric is a valuable tool for the experimenter and
wearer to evaluate the ECG recording in advance to an experiment.

Table 5.1: Accuracy (ACC), positive (PPV), and negative predictive value (NPV) of the ECG-
quality prediction, evaluated against PhysioNet MIT-BIH Noise Stress Test Database.

data set: 118 data set: 119
SNR ACC PPV NPV ACC PPV NPV

No noise 95 % 100 % 95 % 100 % 100 % 100 %
−6 dB 96 % 100 % 92 % 100 % 100 % 100 %

0 dB 96 % 100 % 92 % 100 % 100 % 100 %
6 dB 96 % 100 % 92 % 97 % 93 % 100 %

12 dB 93 % 95 % 92 % 64 % 28 % 100 %
18 dB 76 % 60 % 92 % 50 % 0 % 100 %
24 dB 51 % 10 % 92 % 50 % 0 % 100 %

7PhysioNet MIT-BIH Noise Stress Test Database, https://physionet.org/content/nstdb/1.0.0/
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5.4.2.2 Acceleration and body posture calibration

Regarding acceleration readings, the sensor’s frame (Figure 5.1) and the user’s body
frame need to be aligned. To correct the alignment, the participants are asked to adjust
the sensors’ position manually. Next, acceleration data is recorded while the user is
holding a reference position. Therefore, the user is asked to keep its back straight while
standing against a wall.

Here, the assumption is made that the deviation between the body’s frame and
the sensor’s frame is high and depends on how the participant applied the sensor. In
contrast, the deviations based on possible variations in the body posture are assumed
to be small. Apparently, with this approach, no definite statement can be made for
the real alignment. Nevertheless, taking a reference posture to distinguish the users’
body frame can improve inter-individual accuracy. Hence, making it more reasonable
to compare data among various participants.

To obtain the rotation matrix between the sensor and the user’s body frame, up to
10 s of sensor readings are recorded during which the participant is asked to keep
the reference posture. If the mean absolute deviation is small (≤10−6 g), the sensor
readings are mapped to a reference vector vr = [0,0,−1]g. Therefore, the method
proposed by [101] based on Rodrigues’ rotation formula is used. An implementation is
found in [178] (eq. 5.14).
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Figure 5.1: Orientation of the BG-V4.28.

R(a, b) = (5.14)

I3 + vx + v2
x ·

1− (a · b)
‖v2‖

v = a× b

vx =





0 −v3 v2
v3 0 −v1
−v2 v1 0





R Rotation matrix
I Identity matrix
a, b acceleration vectors
vx skew-symmetric cross-product
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5.5 Experimental Estimation of Physical Activity in
Firefighters

Commercially available fitness trackers are mainly designed for entertainment or well-
ness purpose. Yet, WBS and the estimation of EE are indeed interesting for occupational
healthcare use. Occupational groups with high physical demands, such as police officers,
military personnel, or firefighters, are a good example. For instance, typical tasks of
firefighters include the recovery and rescue of people and animals and fire protection.
These tasks require a certain level of physical and psychological capacity. This is because
it is necessary to react flexibly, quickly, and situation-specific in operations. Only a
rested, alert, and physically fit person can meet all these requirements.

For these reasons, the operating times and training units of firefighters must be
well-structured [256]. However, the real individual demands (e.g. the number of
actions and their intensity) vary from shift to shift. Here, WBSs can contribute by
objectively recording the PA (e.g. as EE) at work. Based on this, e.g. shift schedules
could be planned individually in order to prevent excessive workload.

In this chapter, the estimation of EE utilizing WBS for the select target group of
firefighters is chosen. Recent scientific results regarding WBS use for EE estimation
were already introduced (sec. 5.3). However, the presented results so far, are solely
based on laboratory tests and focus on ADL.

Here, the focus is on the feasibility and possible pitfalls of using WBS in a professional
context. Primarily, the difference of EE with and without wearing personal protective
equipment (PPE) is explicitly addressed.

At first, related work is presented (sec. 5.5.1), before the experimental and com-
putational methods are outlined (sec. 5.5.2). Subsequently, the results are presented
(sec. 5.5.3) and validated against a publicly available data set (sec. 5.5.4). Finally, an
excursus on condition monitoring for PPE is given (sec. 5.5.5), and the experimental
results are discussed in summary (sec. 5.5.6).

5.5.1 Related Work

The use of commercially available WBS to collect objective EE information is broadly
discussed in the literature [63, 76]. Considering the reported absolute results in terms
of accuracy, it appears that they are often comparable. Interestingly, however, the
conclusions differ widely. For instance, El-Amrawy et al. [79] reported the accuracy of
step counting for various commercial fitness trackers to be in the range of 79.8 % to
99.1 %. This result is in agreement with what was reported in the meta-study provided
by Feehan et al. [85]. However, El-Amrawy et al. [79] conclude that such devices will
thus give sound output for EE estimation, while Feehan et al. [85] state the contrary.

8Based on: YassineMrabet, CC BY 3.0. Planes removed; annotations added.
Original: https://de.wikipedia.org/wiki/Datei:Human_anatomy_planes.svg
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Likewise, other researchers summarize these findings. For instance, Nelson et al.
[172] state that fitness trackers provide valid step counts, however, fail to estimate
EE accurately. Likewise, Edwardson et al. [78] argue that WBSs offer “reliability and
validity” if the specific limitations of WBS are appropriately considered when designing
an experiment (here they refer to the use of the activPAL device (sec. 3.1.2.1) for
sedentary behavior research). It can be said that the application’s use-case determines
the question of applicability.

By taking the experiences and knowledge from related work, it can be assumed that
counting steps is oversimplified and misleading for the EE estimation of firefighters.
At the same time, the validity requirements are less strict compared to diagnostic
medicine or performance measurement in sport science. This is making the use of
consumer-grade devices an option to consider.

An overview of the accuracy of fitness or activity trackers (sec. 3.1.1.1) can be found
in the work of Chowdhury et al. [63]. They investigated the deviations of EE estimation
comparing 4 consumer-grade, and 2 devices used in research. They reported MAPEs in
the range of 27 % to 40 % for the consumer-grade devices. The best agreement was
found with the Actiheart tracker (sec. 3.1.2.1), which showed a MAPE of 20±15 %.

The applicability of WBSs for firefighter investigations in general and specific WBSs
embedded into PPE have recently been presented [151, 219]. Also, algorithms to
classify activities of firefighters (and emergency responders) have been presented [71,
134, 206]. Yet, solutions that provide information and support decision-making for
operations management are still in its beginnings.

Moreover, the estimation of EE for firefighters, in particular, has rarely been addressed
so far. Existing work often focuses on specific measures, e.g. heat stress [209]. Other
methods combine readily accessible external information and use them as a proxy
towards EE. More precisely, they make use of the HR, the air depletion rate from the
respiratory protective equipment (RPE), and the time needed to finish an exercise [256].
In this respect, it was presented that it is possible to compare firefighters’ performance
in training situations objectively.

Furthermore, related work exists, which reports positive effects using WBS [110].
However, validation of the measurements is missing since no laboratory reference
of EE was recorded. Other, more recent work again relies on subjective ratings of
perceived exertion only [132]. Thus, with this work, it is intended to demonstrate the
use of unobtrusive WBS to continuously keep track of firefighters’ EE in order to assess
individual physiological capacity. State-of-the-art methods to estimate EE (sec. 5.3) are
used, and difficulties that need to be deliberated when the participants wear PPE are
highlighted.

5.5.2 Methods

In the following, the experiment’s design is outlined. This comprises the experimental
protocol (sec. 5.5.2.1), the participants’ characteristics (sec. 5.5.2.2), and the utilized
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Table 5.2: Experimental protocol with approximate duration or distance covered in each station.
Station 8 was part of the 1st trial only.

Station Duration Distance Description

1 <10 min - resting (siting)
2 <5 min - resting (standing)

3 20 m endless ladder
4 100 m treadmill (6 km/h, 10 %)
5 1 min - bicycle ergometer (175 W))
6 <10 min 51 m training gallery
7 150 m treadmill (6 km/h, 10 %)

8* <12 min - treadmill ramp (6 km/h to 12 km/h, 10 %)

9 <15 min - resting (siting)

hardware (sec. 5.5.2.3). After that, the pre-processing steps, the calculation of ground
truth, and the extraction of the features are presented (sec. 5.5.2.4). Finally, methods
used to analyze the data set (sec. 5.5.2.5) and the resulting models for EE estimation
are summarized (sec. 5.5.2.6).

5.5.2.1 Experimental Protocol

The experiment’s design closely follows the guidelines of the regular physical ability test
for persons wearing heavy RPE in Germany (G26.3). The protocol includes climbing an
endless leader, running on a treadmill, cycling on a bicycle ergometer, and completing
a run through a training gallery (or maze), which includes climbing various obstacles
on different levels or crawling through tubes (Table 5.2).

In addition, data were recorded while the participants were resting on a chair 10 min
before the first and after the last exercise. In contrast to the real physical ability test,
the test chamber was not darkened nor fogged. Neither distracting noises were used.
This was done to avoid additional psychological strain.

To examine the effect of wearing PPE and RPE, each participant completed the
experiment twice. During the 1st trial, the participants were wearing casual sports
clothing, while during the 2nd trial, they were equipped with PPE and RPE.

The PPE consisted of a helmet, boots, pants, a coat, and gloves. The RPE consisted
of the breathing apparatus only. The face mask was not worn due to the IC that was
worn instead. The additional weight of PPE and RPE was approximately 25 kg for
each participant. During all stations of the experiment, the RPE was worn on the back.
While completing the training gallery, RPE was removed and had to be carried along.
The exact execution (pushing, carrying, or pulling the RPE) was not specified.
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Table 5.3: Mean and standard deviation of the participants’ characteristics, the BORG-scale, and
environmental data. Data for the 1st and 2nd trial is marked with 1 or 2, respectively.
(BMI - Body Mass Index; Exp. - Experience with G26.3, Temp. - Temperature, Hum. - Humidity).

Parameter Mean ± std Unit

Age 37.4±8.4 a
Height 1.85±0.06 m
Mass 84.8±12.3 kg
BMI 24.8±3.0 kg/m2

Exp. 16.2±8.1 a
Smokers 3 -

Parameter Mean ± std Unit

BORG,1 11.3±1.4 −
BORG,2 13.6±1.9 −
Hum.,1 55±7 %
Hum.,2 53±5 %
Temp.,1 17.8±0.6 ◦C
Temp.,2 17.6±0.4 ◦C

Moreover, additional data was recorded (Table 5.3). That includes a BORG-scale9

[38] rating to obtain the subjectively perceived exertion. Also, temperature and hu-
midity were recorded at the beginning of each experiment. Comparing both trials of
the experiment, neither for temperature (p = 0.38) nor for humidity (p = 0.26) a
significant difference was found (paired t-test).

5.5.2.2 Participants

All participants had completed the regular physical ability test for firefighters wearing
heavy RPE in Germany (G26.3) prior to the experiment. Thus, all participants were
familiar with the different stations of the experimental setup, which closely followed
the regular physical ability test.

In total, 13 male, experienced firefighters volunteered to participate in the experi-
ment (Table 5.3). All participants were informed about the experiment’s purpose and
procedure, and the usage of their personal data. They gave their written consent to
participate and agreed to scientific evaluation and publication of the anonymized data.
Also, they were asked not to eat nor to drink anything except water 6 h before the
experiment.

5.5.2.3 Hardware Setup

In order to obtain reference values (ground truth) of the participants’ EE, a mobile
IC, the Cortex MetaMax 3B (R2)10 was used. It allows measuring oxygen uptake
rate (VO2 mL/min) and carbon dioxide production (VCO2 mL/min) breath-by-breath
(sec. 5.2.1.3). Calibration of the device was done before each run.

9The BORG-scale is a subjective, thus relative measure of exertion. Here, the original scale reaching from
level 6 (no exertion) up to 20 (very, very hard) was used [38].

10Cortex Biophysik GmbH, www.cortex-medical.de/
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Furthermore, RR (1/min) and respiratory minute volume (L/min) are recorded.
Taking these measurements, EE is calculated in the unit kJ/min (sec. 5.2.1.3, eq. 5.1),
PAR, and MET (sec. 5.2.1.3, eq. 5.8).

The BG-V4.2 was used during the experiment (sec. 3.1.3), to record the participants’
HR and body acceleration. Additionally, body-near temperature and humidity were
recorded. Therefore, an additional sensor (BME280, sec. 3.3.1.3) was placed next to
the BG-V4.2. The ECG, acceleration, and environmental data were sampled with a
frequency of 200 Hz, 100 Hz, and 1 Hz, respectively.

5.5.2.4 Pre-Processing and Feature Extraction

Target values (ground truth data) is obtained from IC measurements. To compensate
for individual differences, the measured EE was normalized based on the participants’
RMR (sec. 5.2.3). The resulting value is the PAR. To estimate BMR the participants
RMR is divided by the factor 1.2. RMR, in turn, is calculated from the median EE
while the participants were resting on a chair during the first phase of the experiment.
Furthermore, MET was calculated, which was normalized by the participants’ weight,
assuming a constant oxygen consumption of 3.5 mL/(minkg) in resting conditions.

Regarding HR and RR, mean, minimum, maximum, range, variance, and slope of
both raw and normalized data (HR, HRn and RR, RRn) was calculated. Normalization
was done based on the 1 % or 99 % percentile for the lowest or highest value (eq. 5.15),
respectively. To calculate slope, HR and RR were first low-pass filtered using a 10-
second moving mean window. The slope was then calculated as the difference between
the first and last values within a time frame. Artifacts and outliers were removed from
the HR by automatically examining ECG quality (sec. 5.4.2.1).

N(X ) =
X − X1

X99− X1
(5.15)

Multiple features were extracted from the accelerometer data on the X- (GX , lateral)
and Z-acceleration (GZ , anterior-posterior) as well as on the summarized total (GC ,
eq. 5.18), horizontal (GH , eq. 5.17) and vertical acceleration (GV , superior-inferior,
eq. 5.16) and also on the pitch (GP , eq. 5.19) and role (GR, eq. 5.20) [182]. Features
on all these signals in the time domain include: mean, median, minimum, maximum,
variance, kurtosis, skewness, range, and root-mean-squared.

GV = GY (5.16)

GH =
q

G2
X + G2

Z (5.17)

GC =
q

G2
X + G2

Y + G2
Z (5.18)

GP = atan2

 

GZ

sgn (GY ) ·
q

G2
Y + G2

X

!

(5.19)

GR = atan2

 

−GX
q

G2
Z + G2

Y

!

(5.20)
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For all axis, except pitch and roll, additionally features based on the spectrum were
calculated. These were: mean frequency, median frequency, energy in the frequency
bands from 0 Hz to 5 Hz up to 45 Hz to 50 Hz in steps of 5 Hz. Also, all features were
calculated on the 1st derivative of each signal.

Pre-processing of the accelerometer data was done as in previous work [275]. In brief,
the following steps were applied: Accelerometer axis misalignment was compensation
by de-rotation. Therefore, reference position data were recorded while the participants
were asked to align themselves on a wall keeping their back straight (sec. 5.4.2.2). To
reduce noise in the raw accelerometer data, a low-pass filter (Butterworth, 5. order,
cut-off-frequency 20 Hz) was applied.

Regarding the environmental signals, mean humidity, mean temperature, as well as
2 indices derived from these values, were calculated. These are the “Heatindex” [221]
(eq. 5.21, [33]) and the “Humidex” or humidity index [159]. Here a simplified version
neglecting effects of radiation or wind is used (eq. 5.22).

These indices are intended to serve as an estimate of the skin-to-air temperature,
e.g. the micro-climate11. They do account for the fact that heat loss (as a product of
convection, conduction, and radiation) from the body is limited concerning relative
humidity.

Here, it must be considered that the sensor readings are affected by the environmental
temperature, and the heat production (loss) from the body. Moreover, the movement
of the body eventually causes fluctuations in the sensor readings due to changes in
convection. To remove those spurious readings, before further processing, the signal is
low pass filtered (Butterworth, 5. order, cut-off-frequency 0.3 mHz). This is done under
the assumption that environmental temperature changes are by orders of magnitude
slower than the changes due to heat loss from the body (EE).

Hheatidx = −8.784695+ 1.61139411 · t + 2.338549 · r −0.14611605 · t · r (5.21)

−1.2308094 ·10−2 · t2−1.6424828 ·10−2 · r2

+2.211732 ·10−3 · t2 · r + 7.2546 ·10−4 · t · r2

−3.582 ·10−6 · t2 · r2

Hhumidx = t + 0.348 ·
�

r
100
·6.105 · exp

�

17.27 ·
t

237.7+ t

��

−4.25 (5.22)

t - temperature / ◦C r - relative humidity / %

Additionally, the participants’ VO2max is taken into consideration. It is intended to
serve as a coefficient of CRF. It is used in order to compensate individual differences
regarding the HR to exercise intensity response. VO2max is calculated as the maximal
oxygen consumption observed during the treadmill ramp test.

11An overview of thermal discomfort induces is given by Havenith et al. [106] and Blazejczyk et al. [33]
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5.5.2.5 Segmentation and feature selection

In order to select a suitable window size for the data segmentation, the MAE of different
DT-based models is considered. The DT-based models are trained on feature sets
calculated on sliding windows with different combinations of size and overlap.

All evaluated sliding windows are within the range of 4 s to 10 s (step size 2 s), 10 s
to 60 s (step size 10 s), and 60 s to 120 s (step size 30 s). For each sliding window,
also different overlaps are evaluated. These are in the range of 0 % to 90 % (step size
12.5 %). To prevent over-fitting and ensure comparability, the maximum number of
splits of the DTs was limited to 10. During training, a LOGO CV was applied. The
reported accuracy is the average across all splits.

In order to reduce the dimension of the feature vector and to ensure that only
important features are selected, the feature space is evaluated in more detail. Therefore,
features are ranked using RReliefF method described in [197]. The method has proven
to be reliable in selecting relevant features, especially if interactions among the features
are expected. It is based on the KNN idea, searching for pairs of target values, which
are close to each other. If now a feature vector is also close, it is rewarded (ranked
higher), while it is ranked lower if the feature differs in the distance.

Additionally, strongly correlated features are removed to avoid redundancies (Pear-
son’s linear correlation is used). With this process, relevant features are identified. At
the same time, less complex features are favored. To take one example, range and
variance are correlated strongly. The calculation of range, however, is less complex,
hence the range feature is chosen in favor.

All results were obtained using algorithms implemented with Curve Fitting Toolbox
and Statistics and Machine Learning Toolbox provided by MATLAB12.

5.5.2.6 Regression methods

To set up a regression model, ML algorithms from the scikit-learn13 library were used.
The methods chosen for evaluation are: Multiple linear regression (Elastic Net-, Ridge-,
Lasso-Lars- and Bayesian-regression), k-nearest neighbor (KNN), decision tree (DT),
artificial neural network (ANN), support vector machine (SVM) and ensemble methods
based on DTs, namely Gradient Boosting and Bagging.

In addition to these methods provided by the scikit-learn library, MARS-models were
considered. Therefore, the py-earth14 package was used, which is a contribution to
the scikit-learn library. The hyper-parameters of all models were optimized using
Baysian-optimization based on the scikit-optimize15 library.

12The MathWorks, Inc., Version 2018b, https://www.mathworks.com/products/matlab.html
13scikit-learn, Version 0.20.1, BSD Licence, http://scikit-learn.org
14py-earth, version 0.5.2, https://github.com/scikit-optimize
15scikit-optimize, version 0.1.0, https://github.com/scikit-learn-contrib/py-earth
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Different metrics are considered to evaluate the predictive performance of the re-
gression models that are used to estimate EE. These are the root mean squared error
(RMSE), the mean absolute error (MAE), the mean absolute percentage error (MAPE),
and the coefficient of determination (R2).

5.5.3 Results

At the beginning of this section, the overall experimental results are introduced
(sec. 5.5.3.1). Subsequently, analytical results are presented. At first, the segmen-
tation of the data (sec. 5.5.3.2) and the feature selection (sec. 5.5.3.3) is outlined.
Next, the EE regression models are compared (sec. 5.5.3.4), and the best models are
analyzed in detail (sec. 5.5.3.4). Finally, the model is re-validated to highlight common
pitfalls setting up EE estimation models on a small sample (sec. 5.5.3.6).

5.5.3.1 Experimental

The entire data set includes 12.48 h of experimental data. Of these, 7.08 h were spent
on the 1st trial and the remaining 5.40 h hours on the 2nd trial. The 1st trial was longer
due to the additional ramp test performed by all participants. As neither the ramp
test nor the run through the training gallery was timed, the completion times of the
participants are different. On average, the participants completed the 1st and 2nd trial
of the experiment in 0.54±0.05 h or 0.42±0.06 h, respectively.

Due to the malfunction of the environmental sensor, no temperature nor humidity
data are available for 2 of the 26 runs. The malfunction resulted from physical damage
to the sensor. For the later trials with PPE, thus the position of the sensor was changed,
and it was attached to the jackets inside to avoid further data loss. However, this lead to
lower temperature readings as the distance to the participants’ skin was higher. For this
reason, only scaled and normalized temperature readings can be used for comparison.

Evaluation of the EE at first clearly points out the differences between the rest or
recovery phase (sedentary), and the active phases of the experiment. EE increases
rapidly with the beginning of the first active phase (climbing ladders). Subsequently,
between the individual phases, EE remains between a medium or high level and reaches
its maximum at the end of the treadmill test (ramp). In the final recovery phase, the
EE slowly decreases and approximately regains the level at rest.

The EE-curve shows apparent differences among the participants (Figure 5.2). It
is found that the EE for one participant can be about twice as high as for another
participant. Normalizing the absolute EE by converting it to PAR or MET (sec. 5.2.3),
these distances decrease. The weight-related normalization of the OUR, i.e. as MET,
reduces this distance already (coefficient of variation reduces from 0.159 to 0.118). If
normalization is performed using the BMR, i.e. in terms of physical activity level (PAL),
this further reduces the distance with respect to the resting phase (by definition).
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Figure 5.2: EE, PAR, and MET for 3 different participants during the experiment without wearing
PPE. The time interval corresponds to the mean starting point of the different phases, which,
however, are not exactly equal for all participants.

Considering the remaining course of the experiment, the variability increases (co-
efficient of variation 0.236). One possible reason for this is that the RMR was not
determined precisely. In addition, the participants had different final speeds on the
treadmill. Thus the individual demands were different. As a consequence, some par-
ticipants experienced a RQ greater than 1. This implies that anaerobic energy supply
occurred (sec. 5.2.1.3). As a consequence thereof, systematic errors are likely, if the cal-
culation of EE is based on the basis of the RQ. At least this applies to those participants
with anaerobe energy supply. For this reason, MET is used for the following analysis in
favor of the PAR.

In the subsequent, the distribution of the MET values found during the different
stations and trials of the experiment are inspected in more detail (Figure 5.3).

The highest average MET was found with the treadmill exercise. This is for both
trials (1st trial: 8.24±0.73 MET; 2nd trial: 10.55±0.92 MET). With the beginning of
the first exercise (ladder climbing), it can be noticed that MET is rising fast (due to the
warm-up). This phase thus shows the highest variance of EE (±2.64 MET).
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Figure 5.4: Comparison of the raw acceleration data and the median HR between both trials.
The values depicted are from a single participant during the treadmill station.

In general, the average MET significantly increases between both trials of the exper-
iment (Wilcoxon signed-rank test, p < 0.001). The average increase is 17.5±8.3 %
across all stations except resting (stations 2 - 6). An increase in MET is found for all
stations. The smallest increase is found in the training gallery station. The reason is
that in contrast to all other stations, the run through the training gallery is self-paced,
and time to finish is not limited. It is observed that, on average, the participants need
76±27 s (44 %) longer to finish the task with PPE equipped. Consequently, the EE
in this exercise is higher when the participants are wearing PPE, although average
momentarily MET is only slightly increased.

In accordance with MET, HR is found to be increased by 14.8±5.7 %. Similar, RR
increases by 23.8±6.3 %. The mean energy in the raw acceleration data, however, is
decreased by 4.8±7.3 %.
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Figure 5.5: MAD found with DTs (maximum number of splits 10) on feature sets extracted on
sliding windows with different sizes and overlap. Evaluated results were interpolated using
locally weighted scatter-plot smoothing. Local optima are marked with a green line.

A detailed analysis showed that the acceleration patterns are only marginally affected
when the participants wear PPE. No variation in raw acceleration is found for the
bicycle station. Manually reviewing the raw data, only the merest variation in the
gait patterns for some participants can be identified during treadmill run and ladder
climbing (Figure 5.4). Since the participants carried RPE and had to put the device
down and up again several times (e.g. in front of obstacles due to confined space), the
movement patterns differ between both trials.

5.5.3.2 Segmentation

The pre-test carried out to identify a feasible segmentation of the raw data (based on
DTs), revealed that different local optima exist. That is for features that were derived
from the accelerometer (26 s), were related to HR (120 s) or the environmental sensors
(104 s). These differences are again reflected in the results found with the entire
feature set, which contains the features from all sensors (Figure 5.5). It is observed
that differences among the optima cancel each other out. Thus, it can be concluded
that no single best configuration exists.

Nevertheless, models with high accuracy can be found likewise for long and short
windows. Yet, substantial distinctions exist for short and long windows. Regarding
the longest segmentation, it is evident that only a few observations of EE remain.
This results in a low variance in both the target and feature space. In the extreme,
with a window size of 120 s, on average only 14.4 (11 to 19) observations remain.
These observations are then further smoothed out if overlapping features are used. In
consequence, resulting estimations are oversimplified and are no longer reflecting any
variability of the EE.
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It should be noted that choosing a small segmentation size leads to a high range
of variability in the feature space, which must be justified appropriately as well. The
rationale is that high-frequency variability in oxygen consumption reported by mobile
IC most likely reflects measurement noise rather than real physiological interrelations
[196].

These observations highlight, despite the fact that different local optima exist, that
the choice of a suitable window size is not indifferent. As a compromise, for the
subsequent analysis of the data set, a 20 s-window with an overlap of 50 % is chosen.
With this choice, a new estimate is available every 10 s. This window size is also in
agreement with considerations on the smoothing of EE estimates from IC and thus
physiologically feasible.

5.5.3.3 Feature Selection

Before individual features are evaluated, the predictive performance of the feature
(sub)-sets from all sensors is tested by spot-checking (Figure 5.6). For this purpose,
again, DTs are trained on the feature sets derived for each sensor. Additionally, the
activity is used as a predictor. That is the station the participant is currently completing.

All independent feature sets reveal to contain relevant information for EE estimation.
Using LOGO CV, the best fit is found using the accelerometer features (RMSE = 1.36),
followed by HR (RMSE = 1.66), and RR (RMSE = 1.87). The lowest agreement is
found for the environmental features (RMSE = 3.17). Strikingly, these results are
almost reversed when the 10-fold CV is used as the validation strategy instead of LOGO
(Table 5.4). In that case, the best agreement is found with the environmental features
(RMSE = 1.08), followed by HR (RMSE = 1.14) and acceleration (RMSE = 1.16).

At this point, the limited amount of participants in the data set has to be taken into
account. As a consequence thereof, it cannot be excluded that with the 10-fold CV
spurious relations are learned. This effect can clearly be seen when the station (or
activity) is considered as a feature. In that case, the MET values can simply be mapped
to their actual mean value found in the corresponding station of the experiment. In
this way, a fixed mean value for the EE is learned for each station. This is only weakly
affected by the choice of a validation strategy.

Moreover, assuming such a bias, it can be explained why HR falls behind acceleration
data if the LOGO CV strategy is applied. With the LOGO validation, no individual HR
response for the remaining participant under consideration can be learned from the
data. For acceleration data, in contrast, there is no such inter-participant variability
(The same applies to the activity or station features). In summary, it can be said that
utilizing a LOGO validation pattern is a mandatory requirement to reflect the predictive
performance correctly.

In this respect, the temperature or humidity and the specific mean EE of a participant
have to be critically reviewed again. In-depth analysis reveals correlations of the
independent trials of the experiment. That applies to the trials with and without PPE.
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Figure 5.6: Bland-Altman diagrams for the prediction results found with the full feature-set and
subsets containing all features from a single sensor or using the activity (or station) information
as a standalone feature.

There is a lack of convection, while the participants are wearing PPE. Consequently,
the patterns in the time series are different for these trials. Although humidity and
temperature data are normalized, these spurious correlations with EE remain. The data
is excluded from further analysis because of this reason.

In the following, relevant features are selected from the different subsets (Figure 5.7).
Regarding HR, the top-rated feature is the slope followed by the range. Minimum,
maximum, and mean HR are equally weighted, where the distance of the mean value
is slightly higher than the distance between minimum and maximum. The variance
is never selected, thus does not seem to contain meaningful information. In general,
normalized features are chosen in favor of non-normalized features. This was about to
be expected, as the non-normalized features do not take into account inter-participant
variations in HR (sec. 5.2.2.1).

Similar to HR, for RR, minimum, maximum, and mean values are identified as
relevant features. Other features are found to be less relevant. Also, normalization is
found to be less relevant. Indeed, that matches the fact that inter-participant variation
regarding RR is lower compared to HR.

Considering the accelerometer data, the top-ranked features are found to be from
the frequency spectrum. More specifically, band power in the 0.5 Hz to 1.0 Hz, 0.0 Hz
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(b) Respiration Rate
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Figure 5.7: Correlation and ranking (RReliefF) of different features sorted by the sensors.
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Table 5.4: Comparison of the classification results of all sensors and their corresponding feature
subsets. The RMSE and the R2 are presented, which were found using a LOGO or 10-fold CV
(kF) strategy.

Sensor or Feature RMSE (MET) R2 (%)
kF LOGO diff. kF LOGO diff.

Heart Rate 1.14 1.66 −0.52 90.9 81.2 9.7
Respiration Rate 1.62 1.87 −0.25 81.5 76.2 5.3
Environment 1.08 3.17 −2.09 91.9 31.8 60.1
Accelerometer 1.16 1.36 −0.20 90.6 87.5 3.1
Activity (Station) 1.90 1.96 −0.06 74.6 73.9 0.7
All 0.65 1.09 −0.44 91.7 91.9 −0.2

to 0.5 Hz and 1.0 Hz to 1.5 Hz range on the X-axis (lateral movement) are ranked
highest. Regarding the time domain, minimum, and median (calculated on the total
acceleration vector) are also selected frequently. This observation is in agreement with
other reported results regarding HAR problems [199, 206].

This is interesting for two reasons. On the one hand, because it is known that HAR
can be used to estimate EE indirectly. Here, this fact has already been pointed out, by
the use of the station (i.e. activity) as a feature at the beginning of this section. On the
other hand, the use of these features comes with the risk of over-fitting to the specific
data set.

In the present case, only a limited number of different activities are present, and a
clear separation between different activities is not always possible (e.g. in the training
gallery). For this reason, and in order to reduce the risk of over-fitting, only a spare set
of features is selected. In this respect, another group of features is noticeable, namely
the range, and the minimum and maximum value of the pitch and roll. These values are
selected because it is expected that these offer a more abstract view of the participants’
movement.

For the final feature set, physiologically relevant features are selected. Regarding HR,
this is the minimum value, as it is less affected by outliers. Still, the dynamics in HR
are captured by additionally selecting the range feature. In addition, the slope feature
is selected, which reflects the temporal dynamic of HR and EE (sec. 2.1.1). HR features
are calculated on the normalized HR. In this way, inter-participant variations are taken
into account correctly.

Regarding the RR, features are calculated in the same way as it is done for the HR.
Concerning the accelerometer data, the position information is used, namely pitch and
roll calculated from the accelerometer data. Hereby, the absolute position is represented
as mean value, the motion dynamics by the range feature.
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Table 5.5: Comparison of regression methods in terms of minimum RMSE found with Bayesian
optimization given normalized (n) and non-normalized (-) input. For the linear regression (LR)
method, the features were also polynomial transformed (squaring of individual and multiplying
independent features).

Method RMSE (n) RMSE (-)

ANN 1.41 1.61
MARS 1.53 1.59
Boosting-DT 1.84 1.65
Bagging-DT 1.70 1.68

Method RMSE (n) RMSE (-)

SVM 1.77 1.98
LR 1.93 8.40
KNN 2.02 2.01
DT 2.26 2.50

To improve the SNR of the slope and motion features, they are grouped by means of
discretization. In this respect, the slope features (calculated on HR and RR) and the
range of pitch and roll are mapped to 5 distinct values. The body orientation (mean
pitch and roll) is mapped to 12 distinct values. In addition to the features discussed,
the VO2max value is included as a measure of cardio-respiratory fitness (sec. 5.5.2.4).

5.5.3.4 Model Selection

Initially, spot-testing is carried out to select appropriate ML methods, given the pre-
viously defined feature set (sec. 5.5.3.3). In this process, also the effect of further
expanding the feature space by use of polynomial features and scaling the feature space
by standardization and normalization is inspected.

In total, 510 different models are evaluated. Mean RMSE is 3.54 among all tested
configurations. The overall variation is considerably high (RMSE = ±2.11). In most
cases, this can directly be derived from the characteristics of the corresponding methods.
E.g. linear methods take advantage of polynomial features, whereas non-linear methods
intrinsically map inter-dependencies among different features. Also, methods that are
non-invariant to scaling, e.g. SVM or ANN benefit more if standardization is applied
(e.g. in contrast to DT).

The top-performing models found during spot-testing were then selected, and their
hyper-parameters were fine-tuned using Bayesian optimization (Table 5.5).

5.5.3.5 Model Analysis

The 2 most accurate models were found using ANN and MARS. The ANN-based model
uses a logistic activation function and is based on a single layer with 4 neurons (and 11
inputs). The MARS-based model consists of a total of 36 linear basis functions. Hence,
both can be considered light-weight in terms of memory and computational demands.

Both models are comparable in terms of accuracy. That is, regardless of the metric
under consideration. The ANN, however, is slightly better in terms of R2 and RMSE
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Figure 5.8: Bland-Altman diagram showing residuals and mean of the true MET (y) and estimate
MET values ( ŷ). Estimates were generated using the optimized MARS-, and ANN-based model
(Bayesian optimization). Residuals are distributed comparably. Both models show low bias and
variance.

(ANN: R2 = 0.828, RMSE = 1.40; MARS: R2 = 0.820, RMSE = 1.43). The biggest
difference is found regarding the MAE (ANN: MAE = 0.65; MARS: MAE = 0.78).

With respect to EE estimation, it could be argued that the latter is more important.
That is because a low precision (e.g. short-term deviations) is less critical, considering
EE on a daily scale. In the best case, it is averaged out entirely. In contrast, the lower
accuracy in terms of MAE indicates a systematic error (bias), which eventually affects
the mean of the estimated EE.

A more detailed view of the error distribution using Bland-Altman representation
(Figure 5.8) emphasized that the mean residual in both models is also comparable. No
systematical error can be found. That is, the models neither systematically under- nor
over-estimate MET. What is striking, however, are the clusters around 1 MET to 2 MET
(sedentary) and 8 MET (high-intensity or sub-maximal effort). These clusters reflect
the distribution of MET in the data set.

It becomes clear that the data set as a whole has only limited variability concerning
different intensities. This is a consequence of the experiment’s design. In particular,
light-intensity tasks are underrepresented. As a result, a specific over-adaptation to the
surrounding boundary areas becomes visible. Accordingly, the maximum deviation is
found at about 4 MET to 6 MET.

The sole consideration of the error metrics and error distribution does not allow to
draw a clear distinction of both models. The most persuasive argument to select the
ANN-based model instead of the MARS-based model is the slightly improved error so
far. That, however, could also be an effect, which is limited to the particular data set.
This is because it only represents a limited sample of a much more diverse population.

This very problem is likewise stated in related work as well (sec. 5.5.1). As a
consequence, evaluating the error metrics is only helpful to a limited extent. Although
visualizations of the error distribution (e.g. Bland-Altman) help to characterize the
errors, they do not provide detailed insights into the models’ response. For this reason,
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in the subsequent, the model’s response for certain inputs will be analyzed as an
evidence-based check in order to clarify the relationships found.

The final model uses HR (minimum, range, and slope), and RR (minimum, range,
and slope) in combination with body orientation (mean and range of pitch and roll),
and CRF. As a first result, it is observed that with both methods (MARS and ANN),
similar relationships have been learned.

Strikingly, a virtually linear relationship between HR and MET, is represented (Fig-
ure 5.9, upper left), which matches prior expectations given physiological knowledge.
Regarding the MARS-based model, an almost linear representation is found, while the
sigmoid shape (s-curved) becomes clearly visible in the ANN-based model’s response.
Furthermore, interaction with the slope feature is found (which is not present in the
MARS-based model). In this sense, the output is positively offset if lower HR values
are present that also show a sharp positive slope. Likewise, a negative slope does the
same in the case of mid-level HR value.

Considering the CRF feature (Figure 5.9, lower left), another offset regarding the HR
mapping is found. With maximal HR, CRF acts as a limiting or moderating factor. In
this regard, high MET will only be estimated if CRF is high as well. The mapping found
with MARS oscillates, while the ANN (again) shows a smoothed, sigmoid shape. Thus,
considering the ANN-based model, MET is rated higher across the full-scale range of
HR (no such interaction is found with RR).

Next, the ANN’s response given motion dynamic (range of pitch; Figure 5.9, lower
right) is inspected. The pitch and range features add to the MET estimate in non-static
conditions. That is for above low-level HR values. In the opposite case, if no motion
occurs but HR rises, the response curve stays within a lower level.

That, however, is for HR in the lower-levels only. Otherwise, HR dominates the
estimation. A similar effect is found with RR (Figure 5.9, upper right). It moderates
the model’s response, which leads to a lower estimate of MET, especially if HR and RR
diverge. Just like the effect of motion, it offsets the estimate, given lower HR values. If
both HR and RR rise evenly, the response equals the case described with the interaction
of CRF and HR.

Considering now the MARS-based model, no interaction between motion and HR
can be found. Furthermore, the moderating effect of RR (fixing MET at a low level), is
more extreme. Compared to the ANN-based model, the MARS-based model’s response
is either more linear (no interaction) or more oscillating (e.g. CRF versus HR).

This observation can be explained, considering the smoothing nature of the sigmoid
activation-function used by the ANN-based model. That is, the model’s response equals
a simple linear combination of all 4 sigmoid responses in the hidden layer (all weights
can be found in sec. C). Not only this smooths the response, but it also limits the output
to fixed boundaries of 1.24 MET to 17.8 MET (including the intercepts). Both findings
are good reasons to choose the ANN-based model instead of the MARS-based model,
although the error (R2 and RMSE), as well as the residual distribution found with
Bland-Altman analysis (Figure 5.8), are comparable.
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(a) Response of the MARS-model.
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(b) Response of the ANN-model.

Figure 5.9: Multivariate analysis of the EE models’ response of MARS (a) and ANN (b) for HR
against 1. HRslope, 2. RR, 3. CRF, and 4. Pitchmean. Remaining features were fixed at their
corresponding mean value for each analysis (HRmin = 0.46, HRrange = 0.07, HRslope = 0.50,
RRmin = 0.39, RRrange = 0.10, RRslope = 0.50, Pitchmean = 0.19, Pitchrange = 0.12, Rollmean =
0.59, Rollrange = 0.50, CRF = 0.62).
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Figure 5.10: Graphical representation of the ANN-based model’s weights from LOGO validation.
Each neuron is represented as a circle. The intercept vectors are represented as squares. Each
line represents a weight, where red or blue lines indicate positive or negative values, respectively.
The lines’ transparency was mapped linearly to the corresponding normalized weights.

A closer look at the ANN-based model’s weights (Figure 5.10) confirms the observa-
tions made from visual inspection of the model’s response. It can furthermore be seen
that HR, RR, pitch, and CRF dominate the model. In this respect, the pitch is the only
factor contributing to a negative offset towards the estimates. In direct comparison,
the slope and range information only contribute little to the estimate. In particular, it
can be seen that the RR’s slope is almost weighted zero. By considering this, the model
could be further shrunken by omitting the RR’s slope.

All models were constructed to provide a MET estimate every 10 s. Depending on
the application, not only the short-term deviations but also the overall mean deviation
is of interest. With Bland-Altman analysis, the mean of all deviations is −0.03 MET,
which corresponds to an error of 0.5 % given a mean of 5.59 MET in the data set.

This result, however, can be misleading because it does not attribute the variability
among the different participants and trials of the experiment. Therefore, the mean
MET estimated for each participant (also separated by trial) is inspected. The MAE
ranges from 0.50 MET to 2.35 MET or 0.62 MET to 2.58 MET for the ANN-based, or
MARS-based model, respectively. The corresponding mean MAE is 0.99±0.45 MET,
or 1.08±0.45 MET, respectively. The mean MAPE for the ANN-based model and the
MARS-based model is 11.00±9.54 % (range 0.00 % to 46.00 %) and 11.86±9.87 %
(range 0.10 % to 49.00 %), respectively.

5.5.3.6 Trial Comparison

The firefighter user group has special requirements for PA estimation. Wearing PPE
and carrying the additional equipment causes extra weight load. In addition, the
micro-climate under the PPE is different compared to casual clothing. This means that
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Figure 5.11: Exemplary response plot of the ANN-based model estimating MET for 2 participants.
The response of the uni-modal (HR or acceleration) and the multi-modal model are compared.
Both models were trained on the data of the 1st trial without PPE only.

the very same activity differs in its intensity. This was already shown, by reflecting the
EE increase comparing both experimental trials (sec. 5.5.3.1).

As a closing test for the ANN-based EE estimation model, the 2 trials are compared
to each other (Figure 5.11). The model is trained on the full feature set and 2 different
sub-spaces of the feature space containing physiological (HR, RR, and VO2max only)
or acceleration data, only.

At first, it is noticed that the error in the combined model is lower, compared to
previous results. This is explained by the missing LOGO CV because here, the 2 trials
are validated against each other. Thus, data from each participant is available in every
set, and inter-individual differences can, therefore, better be balanced.

Comparing the results of the accelerometer- and physiology-based model, strikingly,
there is a difference of 28.3 %. It can also be seen that the accelerometer-based model
lacks certain dynamics. Its estimates show a more stepped pattern, compared to the
physiological model. Also, these steps are identical for both trials (with and without
wearing PPE). Furthermore, in resting conditions, at the end of the experiment, the
accelerometer-based model underestimates EE. In contrast, HR reflects these dynamics
better, however, it tends to overestimate EE during resting conditions. These well-known
drawbacks (sec. 5.3) are successfully avoided by combining the features.

Regarding the previously reported results, it must be noted that the hyperparameters
were optimized for the selected feature-space and validation scheme (LOGO CV).
Hence, the comparison of these solutions is not objective. In order to further support
the findings, the models are re-trained and compared again. However, now, a 2-fold
CV (between the experiment’s trials) is used.
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Table 5.6: Comparison of regression results using physiological or acceleration features only.
Models are optimized using Bayesian optimization given normalized inputs using a 2-fold CV
based on the 1st and 2nd trial of the experiment.

Method Physiological Acceleration Difference / %
RMSE R2 RMSE R2 RMSE R2

ANN 1.57 0.828 2.15 0.670 31.3 21.1
MARS 1.81 0.772 2.29 0.636 23.4 19.3
Boosting (DT) 1.90 0.748 2.26 0.644 17.3 14.9
Bagging (DT) 1.96 0.734 2.31 0.629 16.4 15.4

The top-4 algorithms, namely ANN, MARS, Boosting, and Bagging (both with DT as
base learners), are selected. The models are trained separately using the physiological
features (minimum, maximum, range, and slope of HR and RR, and CRF), and the
acceleration features only. To furthermore increase comparability, the top-11 features
from the acceleration sensor are used (sec. 5.5.3.3, Figure 5.7c). Hence, both feature
spaces are comparable in terms of dimension.

In summary, the RMSE for the physiological and accelerometer-based model errors
found are RMSE = 1.57 to 1.96 against RMSE = 2.15 to 2.31 and R2 = 0.828 to
0.734 against R2 = 0.670 to 0.629 (Table 5.6). In all tested configurations, using the
physiological features leads to better estimates for both RMSE and R2. However, it can
be seen that the re-optimization improved the R2 of the accelerometer-based model
compared to the results reported earlier (Figure 5.11). Still, the physiological-based
model outperforms the accelerometer-based model by at least 14.9 % (based on R2).

It can be concluded that the intensity-information from the physiological data be-
comes more critical if external factors are influencing the activity’s intensity. The
comparison has shown that in these cases, it is advantageous to weight the physiologi-
cal markers higher than body acceleration. Still, a combined model is mandatory to
avoid overestimation during sedentary behavior.

5.5.4 Model Benchmark and Comparison

Models to estimate EE, are based on experimental data, the acquisition of which is
associated with a high experimental cost. In current studies, the number of test persons
is therefore low. Typically, it is in the order of 10 to 30 participants. The number of
participants in this study is also low (N=13). In order to check whether the findings
made in this work are reliable, the previously analyzed ANN-based model (sec. 5.5.3.5)
is re-evaluated on a publicly available data set provided by Gjoreski et al. [95].
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5.5.4.1 Benchmark Data Set

The data set contains a total of 16.55 h of data from 10 participants. In contrast to the
here presented experiment, boundary conditions (e.g. different clothing, weight load)
play no role in this data set. The focus is on method selection. The EE is given as MET
values, recorded by means of a Cosmed K4b2 IC (sec. 5.2.1.3).

Secondary sensors were used to recorded HR, RR, skin-, and body temperature
(sec. 5.3). Also, body acceleration was recorded on the participants’ chest and thigh.
From the acceleration data, peak counts are calculated. For all modalities, pre-processed
data is available in windows of 10 s. The raw sensor data itself, however, is not available.

Because the raw data is not available, the ANN-based model is re-trained on the
given feature sub-set for comparison reasons. However, only HR, RR, acceleration peak
count, and activity features are used. Furthermore, both physiological features are
smoothed using a 2nd order Savitzky-Golay filter using 13 data points. This is done to
remove outliers. In addition, a slope feature is calculated for RR and HR, which is based
on the difference of two successive feature values. These differences are mapped onto
3 discrete values, indicating a negative, positive, or no slope. Similar, the acceleration
peak count is mapped to 5 discrete values.

5.5.4.2 Target value pre-processing

For the following comparison, 3 different target variables are used. First, the unmodified
target (y MET) as originally given in the data set. Secondly, two smoothed variants of
the target variable are used (yb and ys). In order to obtain these, the target variable is
filtered using a 5th order Butterworth filter (yb) with a cut-off frequency of 0.04 Hz.
Additionally, a 2-nd order Savitzky-Golay filter (ys) using 13 data points is used for
comparison. Both are applied because of the assumption that the high-frequency
changes in the physiological EE signal are a result of measurement noise. This pre-
processing is done in accordance with the suggestions given by Robergs et al. [196].

The rationale to expect inevitable noise in the measurement data from IC is based on
previously reported observation of the so-called BxB-noise (from breath-by-breath) [99,
p. 290]. The BxB-noise is explained as a result of the error propagation in respiratory
flow analysis. In this respect, the error is due to the inaccuracy of the volume sensor
and occurs in all open-circuit ICs.

Following the recommendations of Robergs et al. [196], the assumption is made that
high-frequency variability in the IC signal can solely be described as measurement noise.
This is a strong assumption, which, however, is physiologically evident. Following the
physiological principles of EE, its variability must be a reflection of the changes in
the blood flow through the muscles or the oxygen uptake of the cells (sec. 2.1.2).
This relationship can also be directly deduced from Fick’s principle16. In turn, if a

16With Fick’s principle the cardiac output (co) is modeled as a function of oxygen consumption (vO2) and
oxygen difference between arterial and venous blood (adiff). Accordingly, oxygen consumption can be
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spontaneous increase of the EE is observed, an equivalent response of heart rate should
be observed as well.

Considering now the original data set, the mean percentage change (of two successive
values) of the HR is 0.6±1.1 %. The corresponding percentage change of EE (y),
however, is 3.9±0.3 %. Filtering the original data, and thus removing high-frequency
fluctuations, this variation is reduced to 0.7±1.3 % (yb) or 0.3±0.5 % (ys). It can be
seen that the smoothed target variables match the variability found with HR.

However, the noise signals (y − y f and y − ys) are found to be non-Gaussian dis-
tributed, which contradicts the assumption of measurement noise. Instead, the noise
distributions are leptokurtic (Kurtosis

�

y − y f
�

= 7.74, Kurtosis (y − ys) = 8.81), and
their distribution follows a more Laplacian or Cauchy-like shape. In detail revision of
the difference between the smoothed and original target shows a mean deviation of
0.00 MET and a standard deviation of 0.45 MET or 0.35 MET for the Savitzky-Golay or
Butterworth filter.

5.5.4.3 Evaluation

The originally reported accuracy for the data set presented by Gjoreski et al. [95] is
RMSE = 0.850 or MAE = 0.613. It was also used by Catal et al. [55], who reported
RMSE = 0.757 or MAE = 0.709. Using, the 4-neuron ANN-based model, it results in
RMSE = 0.942±0.289 or MAE = 0.719±0.250. These results are obtained using the
data set without body or skin temperature. All reported results are mean values (and
standard deviation) from the individual results of the LOGO validation.

Strikingly, when the ANN-based model is compared to Catal et al., the deviation in
terms of the RMSE (27.9 %) is high, while it is as low as 1.4 % considering the MAE.
However, considering the results presented by Gjoreski et al., the deviation is high for
both error metrics (RMSE: 13.9 %, MAE: 17.3 %). These results show that the model
is not capable of reflecting all variability within the data set. That is, considering the
original target variable (y), only.

Comparing the error metrics of the ANN-based model given the smoothed (ys) or
original signal, these differences change. The model’s accuracy is improved by 13.45 %
or 13.04 %, considering the RMSE or the MAE, respectively. Comparing these new
results to Gjoreski et al. [95] and Catal et al. [55], the deviations in terms of the RMSE
are −1.66 % or 9.9 %, respectively. Making the same comparison, but considering
the MAE, the deviations are 1.9 % or −12.6 %, respectively. Thus, depending on
which metric is considered, the ANN-based model performs better or worse than the
comparison values. In any case, it can be concluded that by using the smoothed target
values, the ANN-based model provides comparable results.

Whether the interpretation of the EE fluctuations as measurement noise is feasi-
ble, cannot be conclusively answered at this point. In order to clarify this issue, the

given as VO2 = co · avO2di f f . According to this assumption, differences in oxygen consumption directly
follow differences in either co or adiff.
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Figure 5.12: Bland-Altman Diagram of the ANN-based model’s response trained on the data set
provided by Gjoreski et al. [95]. On the left side, the original target is used, while on the right
side, it was smoothed using a Savitzky-Golay filter.

smoothed target values are superimposed with a synthetic noise signal and tested again
(Figure 5.12). Therefore, 2 different noise signals are used.

The noise signals are sampled from a normal distribution with zero mean and a stan-
dard deviation in accordance with the standard deviation found in the corresponding
difference signals (n f : 0.35, ns: 0.45). The model’s accuracy is then re-evaluated with
respect to these synthetic-noise targets. The original signal and the synthetic signal are
compared by calculating the difference between the respective accuracy metrics17.

Re-evaluating the model’s accuracy, it is found that the results are similar, regardless
of using the original target or the synthetic variant, which is superimposed with white
noise. Considering the Butterworth filtered target, the difference is limited to the second
or third decimal place (RMSE: 0.027, MAE = 0.004). Moreover, with the Savitzky-
Golay filtered target, there is no difference at all (RMSE: 0.000). Most interestingly,
even a negative deviation is found, i.e. the accuracy has improved (MAE: −0.022).
From these results, it can be learned that the model is invariant to any high-frequency
components in the target values.

At this point, the constricted complexity of the proposed model becomes obvious.
Its entropic capacity is relatively low, as only 4 neurons with 6 different features are
used18. As a consequence, the RMSE using the original unfiltered data is high.

By smoothing the target data in a physiologically feasible way and thus removing high-
frequency fluctuations, it can be seen that the ANN-based model provides reasonable
estimations. In this sense, specific variations of the EE, which are assumed to be not
physiologically evident, are removed from the model’s response. Indeed, this can be
seen as an advantage of the model since an over-fitting towards any noise is virtually
impossible (of course, out-of-test errors are still possible due to over-fitting to the
participant-dependent characteristics present in the sample under consideration.).

17That is, given the metric M (RMSE or MAE): M( ŷ , yo)−M( ŷ , y f + n f ), or M( ŷ , yo)−M( ŷ , ys + ns)
18In sec. 5.5.3.5 the same model with the same hyper-parameters is used, but with 11 features.
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Besides, these findings pinpoint the need for an in-depth analysis of short-term
fluctuations in EE. In this understanding, it is interesting to further elaborate short-term
fluctuations of EE and identify other correlations, e.g. with the accelerometer signals.
Such an analysis requires access to all components of the IC, including the air-flow
meter, O2- and CO2-sensors. However, this is outside the scope of this work.

In summary, the proposed model can be considered a lightweight, low-variance
model for EE estimation. Moreover, the remaining bias affects short-term fluctuations
only. In fact, the mean bias across all predictions is reduced to 0.02 MET (Figure 5.12).
This implies that if the mean PA, across more extended time periods, is of interest,
those missing dynamics do not affect the final estimation results.

5.5.5 Environmental Condition Monitoring

Up to this point, the experimental data (sec. 5.5.2.3) was used to estimate PA only
(sec. 5.5.3). Moreover, the sensor data can also directly be used to provide feedback for
other means of improving occupational health and safety as well. Regarding firefighter
activities, heat stress and heat-related injuries are a major concern. Detecting such
heat problems early is thus critical in order to prevent impending dehydration or heat
strokes. Gaining insights on these issues is also interesting because it can help to
maintain optimal physical and mental performance ability in action. Therefore, the
environmental sensor data is of interest.

In fact, heat is a major problem for firefighters. In this regard, direct external heat
exposure is less of a problem because firefighters wear insulated clothing (PPE). This
acts as an insulating layer and provides proper protection against the external heat.
Because of the very same insulating property, however, the physiologically generated
excess heat (EE as a result of PA), cannot be effectively dissipated any longer. For this
reason, convection and conduction, in particular, are limited, which affect heat loss and
evaporation of sweat. That is for any activity that involves wearing PPE and, therefore,
also applies to operation at non-fire scenes. As a result, the micro-climate under the
PPE clothing changes. This effect was also observed in this experiment and will be
explained in more detail below as an excursus.

Both humidity and temperature were monitored during the experiment (sec. 5.5.2.3).
The micro-climate under clothing (PPE) is a function of heat and sweat production or
loss. Due to the insulating PPE, temperature and humidity loss are limited. Thus, they
are rising slowly in time (Figure 5.13). The increase in humidity is explained with the
effect of the accumulation of moisture due to sweating.

The mean environmental temperature and humidity, measured before the experi-
ment started (2nd trail only), was 17.6±0.4 ◦C and 53±5 %. Mean temperature and
humidity under the PPE was 27.3±1.5 and 74±15 %. Maximal measurements were
30.1 ◦C and 100 %.
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Figure 5.13: Boxplots for the Heatindex (a) and Humidex (b) measured during the different
stages of the 2nd trial of the experiment.
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Figure 5.14: Heatindex (a) and Humidex (b) are combined measures of temperature and
humidity to reflect heat stress or thermal discomfort.

149
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Noticeably, an excessive accumulation of both heat and moisture is observed during
the experiment. Both can be depicted in combination using the Heatindex or Humidex
representation (sec. 5.5.2.4, Figure 5.14)19.

Initially, these indices were designed to provide a better temperature estimation
for weather forecasting. In this sense, they were used to estimate an apparent air
temperature. The rationale behind this idea is that the same physical temperature feels
different in dry or humid conditions. Nevertheless, these and other indices are used in
epidemiologic and public health research. [106]

Overall, Heatindex is barley found to be in the dangerous region and never reaches
extreme danger levels. What is striking, however, is that immediately with the onset of
PA (ladder exercise), the uncritical area is crossed. The mean Heatindex remains at the
level of caution after the bicycle station. This zone is never left. Not even at the end of
the exercise, while the participants are resting. At this point, the index is instead rising
again, after it had temporarily started to decrease lightly (training gallery).

The same trend is found looking at the Humidex index. Again, the uncritical area
is firstly crossed within the first exercise. Also, in the later stages, the mean Humidex
stays in the “noticeable” area. The intense range is reached only sporadically and briefly.
The measurements never touch dangerous or heat stroke levels. In direct comparison,
the limits of the Humidex are higher than those of the Heatindex. For this reason, areas
marked as cautiousness, intense or dangerous are passed later or never at all.

In the work of He et al. [108], temperature and humidity under PPE were recorded
for 6 firefighters similar to how it was done in this work. They furthermore tested
the influence of altered external conditions, e.g. hot and dry, hot and humid but also
cold settings. Regarding heat and humidity accumulation, the curve of both indices
observed is in close agreement with the findings of [108].

The correlation of micro-climate changes and PA was already shown (sec. 5.5.3.3). At
first glance, body-near temperature and humidity appear to be appropriate predictors
for PA. However, spurious relation cannot be neglected. The effects of different clothing
and their permeability to sweat and heat are one aspect.

Besides temperature and humidity, environmental conditions need to be considered
likewise. That is e.g. heat radiation from sunlight or wind. All these conditions
are not present in the laboratory test. It is therefore inferred that micro-climate
measurements do not generalize across different participants, types of clothing, or
external climatic conditions. To be applicable in practice, these influences need to be
removed beforehand, e.g. by using an appropriate normalization factor provided by an
additional external sensor.

Although it was found that the micro-climate (environmental) data is of limited use
for PA estimation, its consideration as a separate index is apparent. For instance, He
et al. [108] reported that the participants’ overall sensation (that is the perceived strain
19The Heatindex representation is only valid for temperatures over 26 ◦C. Also, a simplified version of

Humidex was used, which is calculated on basis of the humidity instead of the dew point temperature
(sec. 5.5.2.4, eq. 5.22)
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during an exercise) strongly depends on the micro-climate. Moreover, early detection
of critical temperature ranges is a useful metric for command and control in training
and the field.

5.5.6 Discussion

With this study, a model to estimate PA using MET representation is presented. The
participants in the study are firefighters. They represent a select interest group for whom
PA estimation as a professional application is of practical relevance, e.g. to promote
occupational safety. The experimental setting highlights differences in metabolic EE
caused by wearing everyday clothing or PPE during the same exercise or activity.

Concerning the experimental setup, it should be noted that no normalization of
clothing nor environmental factors was done. This means that the participants chose
their own clothes for the experiment and also used their own PPE. One example is that
some test persons wore a balaclava (woolen cap) under their helmets, while others did
not.

Moreover, temperature and humidity in the test room were not exactly the same for
all tests. Thus, inter-participant differences are high. This weakens the results from the
comparison of the 2 trials, although it was found that the PA was significantly different.
A reliable conclusion on the additional strain caused by wearing the PPE or the additional
weight load cannot be drawn due to the non-normalized conditions. This, however,
does not affect the assessment and estimation of the PA entirely. The interference
of spurious correlations was counteracted by removing individual predictors, such as
temperature and humidity information, from the estimation model.

With regard to the conduct of the experiment, it should also be noted that no
randomization of the activities was carried out. In addition, the equipment exercises,
i.e. cycling and climbing ladders, are very short. Overall, they make up about only 7 %
of the entire data set. For both reasons, no steady-state of EE was reached. Thus, no
conclusions can be made on the real EE for these activities. This is critical because it
is well-known that cycling is a challenging activity to estimate since only little body
movement can be measured [169]. If cycling would account for a larger part of the data
set, it could easily be that the estimation of the resting phases would be less accurate.

Nevertheless, the data set recorded has substantial distinctions due to the range of
various types of movement. That is walking, crawling, crouching, and climbing. In
this respect, it was noticed that, given the full feature-set, acceleration features on the
X-Axis (lateral, left, and right) were ranked the highest among all other accelerometer
features. This observation partly contradicts previous findings, in which all axes were
found to add information to the model [275]. In this data set, however, it can be seen
that the Z- (anterior-posterior, back and forth) and Y-Axis (vertical, up and down), are
continuously rotated against each other. This happens every time the participants are
switching from walking to crawling and vice versa.
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In other work, for similar reasons, only total acceleration (eq. 5.18) is used [146,
169]. In this work, body orientation (pitch and roll), was used. Both mean and variance
of pitch and roll contribute in deciding if the participant is sitting, lying, or moving.
It could be assumed that this information is also useful to distinguish various other
activities. Consequently, in future work, the use of orientation corrected acceleration
measures should be investigated. This could help to find features that generalize better
because it contains more information than the flattened total acceleration signal.

The experiment also revealed a systematic error if the PA estimation is based on
acceleration data alone. Comparing both trials of the experiment, it was found that
EE differed by 17.5±8.3 %. Likewise, HR and RR followed this trend (14.8±5.7 % or
23.8±6.3 %, respectively). In other words, it is found that the physiological markers
reflect the increase in metabolic EE. In contrast, the acceleration signals are not different
from each other. As a consequence, the percentage difference in RMSE comparing
models based on accelerometer data or physiological information alone is 16.4 % to
31.3 %. This highlights missing information on the intensity given accelerometer data.

In summary, the results underline the necessity of physiological markers to reflect
the dynamics or intensities of PA. Still, prediction relies on having motion information
to distinguish between sedentary and active activities, as it was previously suggested
by Altini et al. [14].

Furthermore, it is noticed that normalization for inter-individual differences is crucial.
That is normalization of physiological markers such as HR, which is partly determined
by genetic factors or individual CRF. Consequently, CRF should be added to every PA
model because otherwise, no predictions of the maximum metabolic EE can be made.

Moreover, slope features turned out to improve the estimations. In the model’s
response, it could be seen that the slope acts as an offset to the estimation with respect
to HR. That is, if the HR rises (positive slope), the EE is also estimated higher. If HR
decreases, EE estimation is slightly lower. That is in agreement with the temporal
characteristics of metabolic EE, which shows certain inertia (sec. 2.1.3). Also, the
model’s response shows a certain plateau with decreasing of the HR. This is likely a
reflection of the EPOC effect taking place during the cool-down phase at the end of the
experiment.

Having a closer look at the feature space, it can be seen that due to the normalization
layer, the use or adaption of input features becomes more flexible. This can be illustrated
by the examples of HR and RR. If one of the two values is missing, they can simply be
replaced (equated) by each other. This eliminates the compensating effect of having
both inputs, but the model itself remains functional. Similarly, this applies to pitch, roll,
and slope features. If these are fixed at their mean value (0.5), the prediction becomes
less accurate, but no extreme outliers are to be expected.

Another vital aspect of the presented model arises from the nature of the utilized
activation function. The ANN-based model uses sigmoid activation functions in the
hidden layer (output layer is not activated, i.e. identity function is used). Because the
sigmoid function is bounded, its use guarantees a fixed limit for the model’s response.
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For this reason, (even though the learned sample is small and thus prone to over-fitting)
the model’s estimates can never drift towards an extreme. Given the weights learned for
the data set used in this work, the estimation will always be in the range of 1.24 MET
to 17.8 MET.

The model presented in this chapter shows close agreement (R2 = 0.82, RMSE =
1.4; sec. 5.5.3.5) to the reference gold standard (IC). Detailed analysis of the residuals,
however, also revealed a certain variance. Therefore, it can be inferred that the model
is not able to fully reveal all dynamics of PA.

Nevertheless, the error across all participants, in terms of mean deviation, is small
−0.03 MET. Given the mean PA during the entire experiment (5.59 MET), this corre-
sponds to an error of 0.5 % across all participants. At this point, however, it must be
noted that this result applies to this very data set only (i.e. the sample under consider-
ation), and does not necessarily hold for another sample population. Also, with this
particular error metric (mean error), negative and positive errors cancel out each other.

Although the model’s response is close to a perfect agreement, with respect to
the sample under consideration, MAPE across all participants is 11.0±9.5 %. This
comparison of the different participants is a better estimate for its out-of-test error
than the Bland-Altman analysis. It must be acknowledged that this error compares in
magnitude to that previously reported in other work (20±15 % [63]).

Here, it must furthermore be noted that it is not advisable to use the model in
another context. The overall sample is too small and comes from a limited set of
participants. Most importantly, no woman participated in the experiment. The model is
thus expected to have a bias error if it would be re-applied onto a new sample without
re-training the weights. Nevertheless, it could be shown that the ANN-based model
(and its hyper-parameters) is a qualified candidate for PA estimation in general. This
is because the model provides accurate estimations for the mean PA in the long term
(averaged across all participants).

Re-Using a data set that was made available to the public by [95], the model was
re-trained. It is found that the presented model does not cover all the dynamics in
the ground truth data. Its variability is limited. Consequently, an inevitable bias error
is observed. Nevertheless, on average, the estimated METs closely match the gold
standards ground truth from IC.

Here, it remains unclear if the variation in the ground truth data comes from real
metabolic changes or instead represent measurement uncertainties. It can be argued
that from a physiological point of view, the dynamics are exceptional. This is in
agreement with considerations for the use of IC data [196]. There is no formal proof
that variability recorded with IC is not reflecting real physiological differences in EE.
However, there is strong evidence that the variability is mainly measurement uncertainty.
In order to trace this assumption of noisy ground truth, it was smoothed using digital
filters. This way, certain dynamics are removed, and the new deviation found is close
to that reported by Gjoreski et al. [95] (RMSE: −0.004, MAE: 0.018) or Catal et al.
[55] (RMSE: 0.089, MAE: −0.078).
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Moreover, that result is achieved, even without using the full feature set provided but
using HR, RR, and acceleration-peak count only. Again, as a matter of the limited sample
size, the model cannot be used in a generalized context. Yet, it becomes clear that the
model’s entropic capacity is a good fit because it is matching the task’s complexity. This
is also consistent with recent findings presented by Lu et al. [146] (sec. 5.3).

5.6 Conclusion and Future Work

In this chapter, the challenges of mobile and unobtrusive PA estimation using WBSs
were outlined. On the basis of data obtained from a self-conducted experiment with 13
professional firefighters, feasibility and limitations of the use of WBS for PA estimation
in a professional context were highlighted. It is concluded that WBSs are well suited for
the prospected use-case, which is to estimate PA. With the extensive study of the data
obtained, common pitfalls in the use of WBSs were identified. This includes uncovering
spurious relations, e.g. the use of environmental data such as temperature or humidity,
as well as the use of motion features that are prone to out-of-test errors.

As a result, a lightweight ANN is presented that uses heart rate (minimum, slope
and range), respiratory rate (minimum, slope and range), body orientation (mean and
range of the pitch and roll), and individual cardiorespiratory fitness in its input. The
11-dimensional input is forwarded to 4 neurons with a sigmoid activation function. Its
architecture is similar to that presented in [146] and thus supports their finding on
the suitability of light-weight estimation models (concerning the entropic capacity).
Other, far more complex models under consideration in this chapter did not contribute
to improving the estimates any further (i.e. larger network architectures or ensemble
methods like boosting). Contrary to this, there are indications that these represent a
distorted view or mapping of the input features and the EE.

The model presented in this chapter is physiologically grounded, and thus reflects
commonly known relationships between exercise intensity, physiological responses, and
individual cardiorespiratory fitness. This is achieved by using prior knowledge, e.g. an
evident normalization of the physiological input parameters was applied. Apart from
that, the physiological relations are learned automatically by the ANN. The agreement is
in the order of magnitude compared to the state-of-the-art. This is an important finding
since the data set poses a challenge because it contains a wide variety of activities and
intensities.

However, it is noticed that the model does not reflect all fluctuations. In other words,
its variability is limited, and for this reason, it provides smoothed MET estimates only.
Nevertheless, by taking the knowledge of human energy metabolism into account
(sec. 2.1.3), this can also be seen as an advantage of the model. That is because it is
known that high-frequency fluctuations of PA are not reflected by the HR or the RR
(sec. 5.5.4). As a consequence thereof, this implies that models with a low entropic
capacity (or variability) already match the entropy (or information content) of these
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physiological features. Moreover, they are not prone to over-fitting. In contrast, other
more complex models could (in the worst-case), be prone to over-fitting to certain
imperfections of the measurement system (e.g. BxB-noise, sec. 5.5.4).

It can be concluded that, given the predictors HR, RR, and acceleration, the presented
model and similar light-weight approaches [12, 146, 169] belong to a near to an optimal
family of solution. Following the principle of parsimony, these models should also be
preferred, as they are less prone to over-fitting.

Yet, the problem of PA estimation cannot be considered fully solved. From sports
science and physiology, other attributes and effects are known that could be used to
estimate PA more precisely.

Firstly, that concerns the use of other sensors than those used in this work. For
instance, the use of sensors embedded into a wearer’s shoes could be used to capture
ground-reaction forces [170]. These could complement whole-body acceleration (as it
was used in this work) to provide load-weight (intensity) information. Furthermore,
heat-flux sensors [149] are an interesting branch to measure pseudo-direct calorimetry
values, which are more promising than environmental measurements used in this work
(micro-climate). Also, biochemical sensors could be interesting to gain insights into
non-aerobic components of EE. Such sensors, furthermore, could be used to derive
information about sweat production or dehydration [26].

Secondly, changes in EE involve more temporal effects than can be coped with
utilizing simple slope features, auto-regressive methods, or lag-features. In this work,
CRF was used as a moderating factor. The average level of PA, however, changes the
dynamics of EE as well [186]. From their insights, also, more general limitations
concerning PA can be drawn. For example, it is known that in the long term, EE cannot
rise above a limit of approximately 2.5 PAR on average [236].

In summary, despite the limitations discussed in this work, the estimation of PA by
means of WBS can be considered a valuable tool for research and other professional
contexts. Moreover, their use is not limited to these fields but concerns everyday life as
well. Indeed, the positive effects of utilizing WBSs were recently reported [44]. In this
respect, Brickwood et al. [44] state that the use of fitness-trackers is a motivating factor,
which helps to increase physical activity and likewise decrease sedentary behavior.
This might be considered the most import contribution of WBSs (apart from being
easy-to-use, yet accuracy tools for PA estimation).
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This thesis has addressed and answered several questions on the design and application
of wireless body sensors (WBSs): What are WBSs, and how are they distinguished
from medical equipment? What are the possible applications and fields of use? Which
methods are suitable and which measures need to be placed in order to reliably predict
abstract concepts such as cognitive workload or physical activity.

In chapter 3, the requirements, and the design aspects of a WBS, the BI-Vital (BG-V5),
were outlined. Its level of maturity matches that of a pilot line product. It was validated
against its predecessor, and a small batch was manufactured, which now is readily
available for upcoming lectures or students’ work.

Due to the scalability of the BI-Vital, it is possible to cover different use-cases. This
starts from serving as a heart rate monitor utilizing the inter-operable Bluetooth Low
Energy protocol, continues with acting as a high-resolution wireless data-logger to
transmit an electrocardiogram (ECG) recording and motion data, and reaches all the
way to the use as a prototyping platform for advanced embedded algorithms.

As an exemplary use-case for embedded inference, the on-line classification of car-
diac arrhythmia through a convolutional neural network was presented and analyzed
energetically. As a result, it is highlighted that an accurate and continuous on-line
inference is achievable for up to 24 h before the device needs to be recharged.

Additional application examples can be found in supervised work. For instance,
embedded inference solutions for running-speeds were compared [285], which is an
import topic in view of the goal of implementing real-world applications. Also, the
use of the BG-V5’s inertial measurement unit was evaluated to support a vision-based
online indoor-tracking system [290]. This example is a first step towards the use of the
BI-Vital within a larger system infrastructure.

Moreover, this thesis provides new experimental results to the scientific community.
In this regard, two select real-world problems taken from the scope of occupational
health and safety were presented:

Within the scope of chapter 4, the concept of cognitive workload was examined, its
operationalization discussed, and measures to estimate cognitive workload (CW) were
presented. To obtain these results, an experiment was conducted to induce CW and
measure psycho-physiological responses, which were then used to predict CW.

Succeeding a statistical inspection, multiple state-of-the-art machine learning meth-
ods were used and compared to each other in order to identify a valid representation
of CW. As a result, models were identified that allow estimating CW in a fine-grained
manner (5 classes) with high temporal resolution (15 s) and an accuracy of up to 72.6 %.
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It was, however, noticed that these methods miss inter-participant generalization. This
highlights the need to clarify this issue in future research.

Considering the results, the question arises to what extent psycho-physiological
responses are suitable to act as a proxy towards the activity of the autonomic nervous
system. More precisely, it is interesting to identify normalization factors (e.g. cardio-
respiratory fitness) and other physiological markers (e.g. salivary cortisol) that could be
measured by WBSs and help to improve the inter-participant agreement or consistency.

Nevertheless, the applicability of WBS for the unobtrusive acquisition of physiological
measures was demonstrated. These can serve as additional real-time markers (recorded
simultaneously to any test) in order to augment the interpretation of experimental
data in psychology. This data is usually not accessible with other methods, e.g. by
retrospectively executed questionnaires.

In contrast, chapter 5 focuses on the estimation of physical activity (PA) (in terms
of energy expenditure), which is a topic that has already become widespread. In this
thesis, it was questioned in which respect WBS can be of practical use in a professional
context. Thereof, an experiment to estimate PA in firefighters was conducted using
state-of-the-art methods, e.g. whole-body accelerometry, heart rate monitoring, and
respiration rate monitoring compared to indirect calorimetry reference measurements.
Thereby, otherwise easily overseen pitfalls were highlighted. These, for instance, arise
from different weight loads due to the use of respiratory protective equipment, which
results in different PA for the same activity. Because these weight loads are invisible to
the acceleration sensor, they can only be overcome by using combined measures.

Having an accurate model to estimate PA, as it was presented in this thesis, the
investigation of long-term effects can be considered for future work. In this way,
temporal effects and methods to re- or auto-calibrate estimation models in order to
match individual characteristics can be addressed.

The model presented in this thesis already provides a simple solution for re-calibration
via the fitness feature, but for future work, more sophisticated (or automated) solutions
are preferable. Besides, the validation of additional sensory information is to be
addressed. This includes but is not limited to the use of heat-flux sensors or sweat
sensors.

The results obtained here moreover support to clarify the so-far inconsistently an-
swered question on the complexity of machine learning models for estimating energy
expenditure. It was found that light-weight models readily provide accurate and physi-
ologically evident estimates. This was uncovered through an extensive analysis of the
final model and an additional validation, which is based on publicly available data.

In summary, the model presented in this thesis is robust due to the combined use of
multiple measures, is light-weight and thus suitable for the use by resource-constrained
WBSs, and physiologically evident, which was shown through the detailed analysis of
the model.
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By summarizing both application examples, the potential future use of WBSs for
practical implementation was demonstrated. Moreover, trough the summary of the
history of WBS and the outline of the development of the BI-Vital, it is learned that
WBSs (and wearable devices in general) have changed in perception regarding non-
engineering scientific disciplines. For instance, the frequent use of step counters or
heart rate monitors in public health and sport science were discussed (sec. 5.1).

Moreover, the application of WBS reaches even further beyond the boundaries of
scientific work. Fitness trackers and heart rate monitors have been used as a hobby and
in sports for many decades. In fact, the first battery-operated wireless and ECG-based
device for heart rate calculation via finger measurement was introduced as early as
1977 (sec. 2.2.1). What is remarkable now is that confidence in technologies and
algorithms has increased, especially among the non-scientific public.

Smartphones or smartwatches, which are used as step-counters or tools to assess
sleep-quality, are examples for this development [18, 19, 179]. Even beyond this, first
digital health-related devices find their way onto the market. An example is the Apple
Watch ECG-app1, which allows detecting cardiac arrhythmia (sec. 2.2.1 and sec. 3.5).
It is not the first device of its kind, but it has a vast area of influence, with an estimated
13 million units sold in 2016 [50]. Considering these signs of progress, it becomes
evident that WBSs are leaving the field of specialized applications in research and are
becoming more widespread instead.

The continuing proliferation of WBSs is a development to be welcomed because it
makes the specific advantages of body sensors available to the public. The application
examples discussed in this thesis demonstrated some of these. Nevertheless, the
limitations have also become apparent, and this work concludes with the hint that the
application of body sensors is still too strongly based on closed-world assumptions.
Therefore, the specific results of many applications presented in the literature are
often hard to reproduce outside the lab. The numerous validation studies, also on
commercially available devices widely used, confirm this.

Moreover, ethical questions also arise. On the one hand, this concerns privacy, but
on the other hand, it also concerns the representation of the data to the wearer, which
is sometimes overly simplified. In this respect, also, the lack of professional support in
interpreting the data is a concern. [166]

Research and development around body sensors, therefore, require more considerable
attention to aspects of validation outside the lab. This, however, does primarily affect
the application of consumer products. Besides, open research questions can also be
found within the scientific communities itself. Regarding machine learning, topics
like online learning or learning from sparse data are of particular interest concerning
the data obtained by WBSs [177]. With respect to material science, the research
on new sensors, which are sensitive to physiological metabolic markers (like lactate
in the sweat), is up to come [26, 161]. Furthermore, miniaturization of electronics

1Apple Inc., https://www.apple.com/healthcare/apple-watch/
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6 Summary and Outlook

and the design of flexible hardware are promising advancements regarding the future
development of WBS [29].

Research is already underway on all of these topics, but work is still in its beginnings.
In this respect, this thesis concludes with the hope that the knowledge accumulated
here (and elsewhere) about the design and application of wireless body sensors can
kindle their future development.
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Figure A.2: Schematic, main micro controller
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Figure A.3: Schematic, wireless transceiver and analog sensors
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Figure A.4: Schematic, digital sensors and indication
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Figure A.5: Top Layer, digital components

Figure A.6: Internal Layer 1, digital ground

Figure A.7: Internal layer 2, digital signal
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Figure A.8: Internal layer 3, supply split plane

Figure A.9: Internal layer 4, analog ground

Figure A.10: Bottom layer, analog components
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B Cognitive workload: detailed results
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Figure B.11: CW classification, 10-fold, DT
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Figure B.12: CW classification, 10-fold, KNN

1 2 3 4 5

True class

1

2

3

4

5

P
re

di
ct

ed
 c

la
ss

477 
 10.8 %

104 
 2.4 %

148 
 3.4 %

91 
 2.1 %

8 
 0.2 %

57.6 %
(42.4 %)

83 
 1.9 %

460 
 10.4 %

217 
 4.9 %

134 
 3.0 %

20 
 0.5 %

50.3 %
(49.7 %)

160 
 3.6 %

285 
 6.5 %

825 
 18.7 %

329 
 7.5 %

56 
 1.3 %

49.8 %
(50.2 %)

67 
 1.5 %

152 
 3.5 %

267 
 6.1 %

448 
 10.2 %

43 
 1.0 %

45.9 %
(54.1 %)

2 
 0.0 %

1 
 0.0 %

8 
 0.2 %

6 
 0.1 %

11 
 0.2 %

39.3 %
(60.7 %)

60.5 %
(39.5 %)

45.9 %
(54.1 %)

56.3 %
(43.7 %)

44.4 %
(55.6 %)

8.0 %
(92.0 %)

50.5 %
(49.5 %)

Figure B.13: CW classification, 10-fold, NB
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Figure B.14: CW classification, 10-fold, SVM
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Figure B.15: CW classification, 10-fold, GP
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Figure B.16: CW classification, LOGO, DT
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Figure B.17: CW classification, LOGO, KNN
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Figure B.18: CW classification, LOGO, NB
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Figure B.19: CW classification, LOGO, SVM
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Figure B.20: CW classification, LOGO, GP
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C Physical activity: detailed results

Neural network model to estimate energy expenditure as metabolic equivalents (METs):
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Figure C.21: PA regression, participant 1
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Figure C.22: PA regression, participant 2
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Figure C.23: PA regression, participant 3
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Figure C.24: PA regression, participant 4
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Figure C.25: PA regression, participant 5
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Figure C.26: PA regression, participant 6
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Figure C.27: PA regression, participant 7
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Figure C.28: PA regression, participant 8
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Figure C.29: PA regression, participant 9
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Figure C.30: PA regression, participant 10
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Figure C.31: PA regression, participant 11
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Figure C.32: PA regression, participant 12
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Figure C.33: PA regression, participant 13
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