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NUMERICAL APPROXIMATION OF THE VALUE OF A

STOCHASTIC DIFFERENTIAL GAME WITH ASYMMETRIC

INFORMATION

�UBOMÍR BA�AS, GIORGIO FERRARI, AND TSIRY A. RANDRIANASOLO

Abstract. We consider a convexity constrained Hamilton-Jacobi-Bellman-type ob-
stacle problem for the value function of a zero-sum di�erential game with asymmetric
information. We propose a convexity-preserving probabilistic numerical scheme for
the approximation of the value function which is discrete w.r.t. the time and convex-
ity variables, and show that the scheme converges to the unique viscosity solution
of the considered problem. Furthermore, we generalize the semi-discrete scheme to
obtain an implementable fully discrete numerical approximation of the value function
and present numerical experiments to demonstrate the properties of the proposed
numerical scheme.

1. Introduction

In this paper we consider the Hamilton-Jacobi-Bellman-type obstacle problem

min

"

BtV `
1

2
TrpσσT pt, xqD2

xV q`Hpt, x, DxV, pq, λmin

ˆ

p,
B2V

Bp2

˙*

“0,

V pT, x, pq“xp, gy,

(1.1)

where V ”V pt,x,pq, pt,x,pq P r0,T sˆRdˆ∆pIq, ∆pIq denotes the set of probability

vectors p“pp1, . . . ,pIq P p0,1q
I that satisfy

řI
i“1pi“1 and the Hamiltonian H will be

speci�ed below. The convexity of the solution V with respect to the variable p is

enforced via the obstacle term λmin

´

p, B
2V
Bp2

¯

, which is the minimal eigenvalue of the

Hessian matrix B2V
Bp2 on the tangent cone to ∆pIq. More precisely, for a symmetric IˆI

matrix A we denote

λminpp, Aq :“ min
zPT∆pIqppqzt0u

xAz, zy

|z|2
,

where T∆pIqppq“
Ť

δą0p∆pIq´pq{δ is the tangent cone to ∆pIq at pP∆pIq, cf. [4].
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Problem (1.1) describes the value of a class of zero-sum stochastic di�erential games
with asymmetric information, cf. [15]. Since the seminal work by Aumann and Maschler
(see [1]) in the framework of repeated games, the literature on games with asymmet-
ric information experienced an increasing interest ([12, 19, 22], among many others),
recently also in continuous-time di�erential settings (see, e.g., [7, 8, 9, 13, 16, 24, 25]).
As in [15], in our game both players can adjust the dynamics of a non degenerate

Itô-di�usion by controlling the drift via regular controls taking values in some compact
subset of a �nite dimensional space. However, one player has more information than
the other in the following sense (cf. [1] and [7]). Before the game starts, the payo�s
of the game are chosen randomly with some probability p from a �nite collection of
size I, and the information on which payo�s have been realized is transmitted only to
one player. Since we assume that both players can observe the actions of the other
one, the uninformed player infers which game is actually played through the moves of
the informed one. It turns out that it is optimal for the informed player to release
information to the uninformed one in a sophisticated way aiming at manipulating the
beliefs of the latter player (see [7]).
The numerical analysis of our paper hinges on the theoretical results of [7]. There it

is shown (in a setting actually more general than ours) that the previously described
game has a value V , whenever the so-called Isaacs conditions are satis�ed and addi-
tional technical requirements on the problem's data area ful�lled. The value function
V depends on time t, on the state variable x, and on a probability vector pP∆pIq;
this latter variable describes the initial value of the beliefs of the uninformed player
about the game she is playing. Moreover, it is shown in [4], that V can be character-
ized as the unique continuous viscosity solution (in the dual sense) to a second-order
partial di�erential equation complemented by a convexity constraint with respect the
parameter p.
There exist only few results on numerical approximation of di�erential games with

incomplete information. Numerical approximation of (deterministic) di�erential games
with incomplete information was �rst studied in [5] and generalized to games with
incomplete information on both sides in [23]. As far as we are aware the only work on
numerical approximation of stochastic di�erential games with incomplete information
is [15]. We note that all three aforementioned works only consider semi-discretization in
the time-variable and the remaining variables are kept continuous, hence, the schemes
are not implementable.
In this paper we generalize the probabilistic numerical approximation of [15] to

include the discretization of the convex envelope, i.e., we propose a structure preserving
probabilistic numerical approximation that is discrete in time and in the variable p
and preserves the convexity of the solution. We show that the proposed numerical
approximation converges to the unique viscosity solution of (1.1). The discretization
in the probability variable p is constructed by approximating the lower convex envelope
of the semi-discrete solution in p by its �nite-dimensional counterpart. The discrete
lower convex envelope is computed over a �nite set of values which coincide with
nodes of a simplicial partition of ∆pIq. The resulting approximation is monotone
and inherits the Lipschitz continuity properties of the solution. To further reduce
the complexity of the numerical approximation we employ random walk instead of the
usual Wiener increments to simulate the associated Itô-di�usion process. Furthermore,
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we propose an implementable fully discrete numerical scheme by combining the semi-
discrete probabilistic approximation in time and p with a spatial discretization that
employs linear interpolation in the state variable x over a simplicial partition.
The paper is organized as follows. In Section 2 we collect basic de�nitions and

assumptions on the considered problem. In Section 3 we introduce a probabilistic nu-
merical scheme for the approximation of (1.1) which is discrete in the time variable t
and the convexity variable p and summarize the regularity properties of the numeri-
cal approximation in Section 4. Convergence of the numerical approximation to the
viscositiy solution is shown in Section 5. Finally, an implementable fully discrete nu-
merical approximation of the problem is introduced in Section 6 along with numerical
studies which demonstrate the practicability of the proposed approach.

2. Assumptions and preliminaries

Throughout the paper, the scalar product of two vectors x“px1, . . . ,xdq and y“

py1, . . . ,ydq of Rd is denoted by xx, yy :“
řd
i“1xiyi and the `1-norm is denoted by |x| :“

řd
i“1|xi|; furthermore, we use | ¨ |8 and } ¨}8 to respectively denote the `8-norm and

the L8pRdq-norm.

2.1. Description of the game. Since the aim of this paper is to provide a numeri-
cal approximation of the solution to (1.1), we only provide here a brief and informal
description of the stochastic di�erential game related to the problem (1.1) and simply
refer to [15] for detailed discussion of the game and further references. We consider a
two-player zero-sum di�erential game where two players control the d-dimensional Itô
process de�ned for tP r0, T s, xPRd as

(2.1)
dX t, x,u, v

s “ bps, X t, x,u, v
s , us, vsqds`σps, X

t, x,u, v
s qdBs sP rt, T s ,

X t, x,u, v
t “ x.

Here B“
 

Bs : sP rt, T s
(

is a d-dimensional Brownian motion on a complete probability
space, b and σ are suitable Borel-Measurable functions and the controls pu, vq PUˆV
and U, V are compact subsets of some �nite dimensional spaces.
The game is characterized by I con�gurations with respective running costs p`iqiPt1,...,Iu :

r0, T sˆRdˆUˆVÑR and terminal payo�s pgiqiPt1,...,Iu :RdÑR and is played as fol-
lows. Before the game starts, one con�guration iPt1, . . . ,Iu is chosen with probability
pi and the choice of i is communicated to Player 1. Player 2 only knows the probabil-
ity distribution pP∆pIq of the respective con�gurations. Once the game has started,
both players adjust their control to minimize, for the Player 1, and to maximize, for
the Player 2, the expected payo�, cf. [4, Section 6.3]. We assume that both players
observe their opponent's control.

2.2. General assumptions. The drift term b, the di�usion term σ :“pσk,lqk,l, the

running cost p`iqiPt1,...,Iu, the terminal payo� g :“pgiqiPt1,...,Iu, and the Hamiltonian H,

cf. (1.1), satisfy the following standing assumptions:

(A1q b : r0, T sˆRdˆUˆVÑRd is bounded and continuous in all its variables and
Lipschitz continuous with respect to pt, xq uniformly in pu, vq PUˆV.

(A2q For 1ďk,lďd the function σk,l : r0, T sˆRdÑR is bounded and Lipschitz con-
tinuous with respect to pt, xq. For any pt, xq P r0, T sˆRd the matrix pσT q´1,
where the superscript T means transpose, is non-singular, bounded, and Lips-
chitz continuous with respect to pt, xq.
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(A3q p`iqiPt1,...,Iu : r0, T sˆRdˆUˆVÑR is bounded and continuous in all its vari-
ables and Lipschitz continuous with respect to pt, xq uniformly in pu, vq.
pgiqiPt1,...,Iu :RdÑR is bounded and uniformly Lipschitz continuous.

(A4q Isaacs condition: for all pt, x, z, pq P rt0, T sˆRdˆRdˆ∆pIq

Hpt, x, z, pq :“ inf
uPU

sup
vPV

"

xbpt, x, u, vq, zy`
I
ÿ

i“1

pi`ipt, x, u, vq

*

“ sup
vPV

inf
uPU

"

xbpt, x, u, vq, zy`
I
ÿ

i“1

pi`ipt, x, u, vq

*

.

(A5q In addition, there exists a constant Cą0 such that for all t,t1 P r0, T s, x,x1 P
Rd, z,z1 PRd, p,p1 P∆pIq, the following hold

(2.2) |Hpt, x, z, pq|ďCp1` |z|q,

|Hpt, x, z, pq´Hpt1, x1, z1, p1q|ďCp1` |z|qp|x´x1|` |t´ t1|q
`C|z´z1|`C|p´p1|.

(2.3)

2.3. Viscosity solution of (1.1). Under the assumptions in the previous section
Cardaliaguet [4, 7] established that there exists a unique uniformly bounded viscos-
ity solution of problem (1.1), which is convex and uniformly Lipschitz continuous in
p. We recall the notion of viscosity solution as well as the corresponding notions of
subsolutions and supersolutions to (1.1) below, cf. [4], [6].

De�nition 2.1. We say that V is a subsolution of (1.1) if V “V pt, x, pq is upper
semicontinuous and if, for any smooth test function φ : p0, T qˆRdˆ∆pIqÑR such
that V ´φ has a local maximum on r0, T sˆRdˆ∆pIq at some point pst, sx, spq P r0, T sˆ
Rdˆ∆pIq, one has

(2.4) min

"

Btφ`
1

2
TrpσσT pt, xqD2

xφq`Hpt, x, Dxφ, pq, λmin

ˆ

p,
B2φ

Bp2

˙*

ě0,

at pt, x, pq“pst, sx, spq.
We say that V is a supersolution of (1.1) if V “V pt, x, pq is lower semicontinuous

and if, for any smooth test function φ : p0, T qˆRdˆ∆pIqÑR such that V ´φ has a

local minimum on r0, T sˆRdˆ∆pIq at some point pst, sx, spq P r0, T sˆRdˆ∆pIq, one has

(2.5) min

"

Btφ`
1

2
TrpσσT pt, xqD2

xφq`Hpt, x, Dxφ, pq, λmin

ˆ

p,
B2φ

Bp2

˙*

ď0,

at pt, x, pq“pst, sx, spq.
We say that V is a viscosity solution of (1.1) if V is a sub- and a supersolution of

(1.1).

Remark 2.2. For a smooth test function φ : p0, T qˆRdˆ∆pIqÑR such that V ´φ
has a local maximum on r0, T sˆRdˆ∆pIq at some point pst, sx, spq P r0, T sˆRdˆ∆pIq,
we have that (2.4) is equivalent to

Btφ`
1

2
TrpσσT pt, xqD2

xφq`Hpt, x, Dxφ, pqě0 and λmin

ˆ

p,
B2φ

Bp2

˙

ě0;(2.6)
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and for the smooth test function φ : p0, T qˆRdˆ∆pIqÑR such that V ´φ has a lo-

cal minimum on r0, T sˆRdˆ∆pIq at some point pst, sx, spq P r0, T sˆRdˆ∆pIq, (2.5) is
equivalent to

Btφ`
1

2
TrpσσT pt, xqD2

xφq`Hpt, x, Dxφ, pqď0 or λmin

ˆ

p,
B2φ

Bp2

˙

ď0.(2.7)

3. Numerical approximation

To simplify the subsequent numerical approximation, we perform a change of measure
via the Girsanov transform in the spirit of, for instance, [14, Lemma 3.8] or [17], and
instead of the controlled process (2.1) we consider the simpler process

(3.1)
dX t, x

s “ σps, X t, x
s qdBs sP rt,T s ,

X t, x
t “ x,

for tP r0, T s and xPRd. Notice that the dynamics in (3.1) is independent of the players'
controls.
For a �xed N PN and a step size τ :“T {N we introduce an equidistant partition

Πτ :“
 

tn
(N

n“0
, tn“nτ of the time interval r0, T s. We de�ne the discrete process

p sXn1, x
n qn1“n,...,N as the weak Euler approximation of (3.1), that is

(3.2) sXn1, x
n “x`

n´1
ÿ

j“n1

σptj, sX
n1, x
j qξj

?
τ ,

where ξn
?
τ “pξ1

n, . . . , ξ
d
nq
?
τ , n“1, . . . ,N is a suitable approximation of the Rd-valued

Wiener increment rW ptnq´W ptn´1qs„N p0,τq. Here, we take ξn to be a Rd-valued
binomial random walk, i.e. ξ1

n, . . . ,ξ
d
n are i.i.d. random variables with the law Ppξkn“

˘1q“1{2, for every k“1, . . . ,d; the analysis below can be easily modi�ed to cover other
choices such as, e.g., a trinomial random walk or the discrete Wiener increments. In
the following we abbreviate σnpxq :“σptn, xq and σ

´T
n pxq :“pσT ptn, xqq

´1. The approx-
imation obtained after one step of the Euler scheme (3.2) will be denoted as

(3.3) sXx
n`1 :“ sXn,x

n`1“x`σnpxqξn
?
τ xPRd.

Let tMhuhą0 be a family of regular partitions of ∆pIq into open pI´1q-simplices
K (i.e., line segments, triangles, tetrahedra for I“2,3,4, respectively) with mesh-size

h“maxKPMhtdiampKqu such that ∆pIq“YKPMhK. The set of vertices of all K PMh

is denoted by N h :“tp1, . . . ,pMu.
The approximation of the value function V ptn, x, pmq is denoted by V m

n pxq for tn P
Πτ , xPRd, pm PN h. The discrete numerical solution V m

n pxq, xPRd, n“0, . . . ,N´1,
m“1, . . . ,M is obtained by the following algorithm.

Algorithm 3.1. For xPRd set V m
N pxq“xpm, gpxqy for pm PN h, m“1, . . . ,M , set VNpxq“

 

V 1
Npxq, . . . ,V

M
N pxq

(

and proceed for n“N´1, . . . ,0 as follows:

(1) Forward step: for xPRd compute:

(3.4) sXx
n`1“x`σnpxqξn

?
τ ;

(2) Backward step: for xPRd and m“1, . . . ,M set

sZm
n pxq“

1

τ
E
“

V m
n`1p

sXx
n`1qσ

´T
n pxqξn

?
τ
‰

,(3.5)

sY m
n pxq“E

“

V m
n`1p

sXx
n`1q

‰

`τH
`

tn, x, sZ
m
n pxq, pm

˘

;(3.6)
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(3) Convexi�cation: for xPRd compute the discrete lower convex envelope
 

V 1
n pxq, . . . ,V

M
n pxq

(

of
 

sY 1
n pxq, . . . ,

sY M
n pxq

(

as

(3.7) V m
n pxq“Vexp

“

sY 1
n pxq, . . . ,

sY M
n pxq

‰

ppmq pm PN h, m“1, . . . ,M.

We note that for pP∆pIq the lower convex envelope in (3.7) is the solution of the
minimization problem, cf. [10],

Vexp
“

sY 1
n pxq, . . . ,

sY M
n pxq

‰

ppq :“min

" I
ÿ

k“1

sY k
n pxqλk;

I
ÿ

k“1

λk“1, λkě0,
I
ÿ

k“1

λkpk“p

*

.

(3.8)

We will discuss e�cient algorithms for the computation of the discrete lower convex
envelope (3.8) in Section 6.1.
It is well known that the piecewise linear interpolation does not preserve the convex-

ity of the interpolated data. Nevertheless, cf. [10, Corollary 2.3.], there exists a data de-

pendent (regular) simplicial partitionMh
n,x of ∆pIq with nodesN h

n,x :“tπ1
n,x, . . . ,π

Mn,x
n,x uĎ

N h such that the piecewise linear interpolant of the data values at the nodes N h
n,x over

the partition Mh
n,x (for a precise de�nition see (3.9) below) agrees with the discrete

data values
 `

pm,V
m
n pxq

˘(M

m“1
, pm PN h of the discrete lower convex envelope (3.7) for

�xed 0ďnďN , xPRd. We note that the partition Mh
n,x does not necessarily coincide

with the original mesh Mh.
We consider the set of piecewise linear Lagrange basis functions tψin,x, i“1, . . . ,Mn,xu

associated with the set of nodes N h
n,x of the partition Mh

n,x. We recall the following
properties of the the Lagrange basis functions which will be frequently used throughout

the paper: aq ψin,xpπ
k
n,xq“ δik, where δik is the Kronecker delta and bq

řMn,x

i“1 ψin,xppq“1

for any pP∆pIq. We note that aq implies that at any point pP∆pIq there are at most I

basis functions with non-zero value at this point, hence the sum in bq reduces to
řI
i“1.

We de�ne the convex piecewise linear interpolant V h
n px, ¨q, xPRd of the discrete lower

convex envelope
 

V 1
n pxq, . . . ,V

M
n pxq

(

over the convexity preserving partition Mh
n,x as

(3.9) V h
n px, pq :“

Mn,x
ÿ

i“1

V
mpπin,xq
n pxqψin,xppq ,

where mpπin,xq PN is the index of πin,x in N h, i.e. πin,x“pmpπin,xq for some pmpπin,xq PN
h.

We note that by construction V h
n px, pmq“V

m
n pxq for all pm PN h. For the analysis

below we also consider the (possibly non-convex) interpolant over the �xed partition
Mh

(3.10) rV h
n px, pq :“

M
ÿ

m“1

V m
n pxqψ

m
ppq,

where tψm, m“1, . . . ,Mu is the linear Lagrange basis associated with the set of nodes
N h. By a slight abuse of notation in (3.8), we observe that

(3.11) V h
n px, pq“Vexp

“

rV h
n px, ¨q

‰

ppq.

Furthermore, we de�ne the time interpolant V h
τ pt, x, pq of (3.9) which is continuous

on r0,T s as

(3.12) V h
τ pt, x, pq :“V

h
n px, pq

´tn`1´ t

τ

¯

`V h
n`1px, pq

´t´ tn
τ

¯

, for tP rtn, tn`1s.
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4. Regularity properties of the numerical approximation

In this section we study regularity properties of the numerical approximation ob-
tained by Algorithm 3.1. We establish uniform boundedness, almost Hölder continuity
in time and Lipschitz continuity in p, and x, respectively, of the numerical solution.
Furthermore, we show that the numerical approximation satis�es a monotonicity prop-
erty.
We recall the following properties of the discrete lower convex envelope which are a

simple consequence of its de�nition (3.8).

Lemma 4.1. We consider the set N :“
 

p1, . . . ,pM
(

Ă∆pIq with associated scalar values

Uppmq, V ppmq, such that UppmqďV ppmq, m“1, . . . ,M . We denote V“
 

V pp1q, . . . ,V ppMq
(

P

RM and U “
 

Upp1q, . . . ,UppMq
(

PRM . The discrete lower convex envelope Vexp satis-

�es the following properties for pP∆pIq:

i) Monotonicity: VexprUsppqďVexprVsppq,
ii) Constant preservation: VexprV`θsppq“VexprVsppq`θ for any θ PR.

4.1. Lipschitz continuity in p.

Lemma 4.2. There exists a constant Cą0 (which only depends on Assumptions (A1q�
(A4q) such that for n“0, . . . ,N and all xPRd the numerical solution is Lipschitz con-
tinuous in the variable p, i.e.,

(4.1) |V h
n px, pq´V

h
n px, qq|ďC|p´q| @p, q P∆pIq.

Proof. For n“N , by linearity the function V h
Npx, pq :“xp, gpxqy is Lipschitz continuous

in p for any xPRd with a Lipschitz constant LN that only depends on g.
We proceed by induction and assume that V h

n`1px, pq is Lipschitz continuous in p
with a Lipschitz constant Ln`1 for some nďN´2. We consider p, q P∆pIq and as-
sume without loss of generality that V h

n px, qq´V
h
n px, pqě0, otherwise p and q can be

commuted.
Let pPKp, where Kp“rπ

1
n,xppq, . . . ,π

I
n,xppqsĂMh

n,x is the simplex given by the nodes

π1
n,xppq, . . . ,π

I
n,xppq PN h

n,x. Hence, p“
řI
i“1π

i
n,xppqψ

i
n,xppq, where ψ

i
n,xppq, i“1, . . . ,I are

the linear Lagrange basis functions on rπ1
n,xppq, . . . ,π

I
n,xppqs.

We note that
řI
i“1ψ

i
n,xppq“1 and ψin,xppqě0 for i“1, . . . ,I. Hence, by [18, Lemma8.2.],

there exist vectors
 

ω1
n,x, . . . ,ω

I
n,x

(

P∆pIq (the vectors depend on p, q, Mh
n,x and are not

necessarily in N h) such that q“
řI
i“1ω

i
n,xpqqψ

i
n,xppq and

(4.2) |p´q|“
I
ÿ

i“1

|πin,xppq´ωin,x|ψin,xppq.

By the convexity of V h
n , since q“

řI
i“1ω

i
n,xψ

i
n,xppq it directly follows that

V h
n px, qqď

I
ÿ

i“1

V h
n px, ω

i
n,xqψ

i
n,xppq .
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Using the above inequality, (4.2), the representation V h
n ppq|Kp“

řI
i“1V

h
n px, π

i
n,xqψ

i
n,xppq

and Vexprf sďf we get on recalling (3.6) that

0ďV h
n px, qq´V

h
n px, pqď

I
ÿ

i“1

`

V h
n px, ω

i
n,xq´V

h
n px, π

i
n,xq

˘

ψin,xppq

ď

I
ÿ

i“1

´

E
“

V h
n`1p

sXx
n`1, ω

i
n,xq

‰

`τH
`

tn, x, Z
h
npx, ω

i
n,xq, ω

i
n,x

˘

´E
“

V h
n`1p

sXx
n`1, π

i
n,xq

‰

´τH
`

tn, x, Z
h
npx, π

i
n,xq, π

i
n,x

˘

¯

ψin,xppq ,

(4.3)

where we used that V h
n px, π

i
n,xq“VexprYnpxqspπin,xq, i“1, . . . ,I.

By the Lipschitz continuity of V h
n`1, it follows from (4.3) using (4.2) and [15, Lemma3.6]

that

|V h
n px, qq´V

h
n px, pq|ďLn`1

I
ÿ

i“1

|πin,x´ωin,x|ψin,xppq“Ln`1|p´q|,(4.4)

where Ln“Ln`1p1`Cτq`Cτ .

Recursively, we get that Ln“LN`Ctn`Cτ
řN
i“n`1Ln, n“1, . . . ,N´1 and by the

discrete Gronwall lemma it follows LnďL0ďpLN`CT qexppCT q. Hence V h
n is uni-

formly Lipschitz continuous in p with a Lispchitz constant L0 which only depends on
the Assumptions (A1q�(A5q. �

4.2. Lipschitz continuity in x. The next lemma can be show analogically to [15,
Lemma 3.3].

Lemma 4.3. Let φ :RdÑR be a uniformly Lipschitz continuous function with a Lisp-
schitz constant L. Then, there exists a constant Cą0, depending only on the data of
Assumptions (A1q�(A5q, such that the following inequality holds for n“0, . . . ,N´1∣∣∣E“φp sXx

n`1q
‰

`τH
´

tn, x,
1

τ
E
“

φp sXx
n`1qσ

´T
n pxqξn

?
τ
‰

, p
¯

´E
“

φp sXx1

n`1q
‰

´τH
´

tn, x
1,

1

τ
E
“

φp sXx1

n`1qσ
´T
n px1qξn

?
τ
‰

, p
¯
∣∣∣ďCτ,L |x´x1| ,

where Cτ,L :“Lp1`Cτq`Cτ .

Lemma 4.4 (Lipschitz continuity in x). For n“0, . . . ,N the interpolant V h
n is

(i) Lipschitz continuous in x:

|V h
n px, pq´V

h
n px

1, pq|ďC|x´x1| for all x,x1 PRd, pP∆pIq ,

(ii) uniformly bounded:

|V h
n px, pq|ďC for all xPRd, pP∆pIq,

where Cą0 is a constant which depends only on Assumptions (A1q�(A5q.

From the subsequent proof it follows that the non-convex interpolant rV h
n de�ned in

(3.10) enjoys the same boundedness and Lipschitz continuity properties as V h
n .
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Proof. We �x pP∆pIq and consider x,x1 PRd. For n“N we have rV h
Npx, pq“V

h
Npx, pq“

xp, gpxqy and piq, piiq hold since∣∣V h
Npx, pq´V

h
Npx

1, pq
∣∣“ ∣∣xp, gpxq´gpx1qy∣∣ďLN |x´x1|,∣∣V h

Npx, pq
∣∣“ ∣∣xp, gpxqy∣∣ďCN ,

where LN and CN are positive constant which depend only on g.
We proceed by induction. We assume that V h

n`1px, pq, rV
h
n`1px, pq are Lipschitz con-

tinuous in x with a Lipschitz constant Ln`1 and bounded by Cn`1. We show that

V h
n px, pq, rV

h
n px, pq are Lipschitz continuous with a Lipschitz constant Ln and bounded

by a constant Cn. On recalling (3.7), (3.11) we may write

V h
n px,pq“Vexp

“

rV h
n p¨q

‰

ppq“Vexp

„

E
“

rV h
n`1p

sXx
n`1, ¨q

‰

´τH
`

tn, x, rZ
h
npx, ¨q, ¨

˘



ppq,(4.5)

where rZh
npx, pq :“

1
τ
E
“

rV h
n`1p

sXx
n`1, pqσ

´T
n pxqξn

?
τ
‰

. Moreover, we recall that for pm PN h

it holds by de�nition

rV h
n ppmq“Vexp

„

E
“

rV h
n`1p

sXx
n`1, ¨q

‰

´τH
`

tn, x, rZ
h
npx, ¨q, ¨

˘



ppmq .(4.6)

i) Lipschitz continuity. By Lemma 4.3 we have for pm PN h

E
“

rV h
n`1p

sXx
n`1,pmq

‰

`τH
`

tn, x, rZ
h
npx,pmq,pm

˘

ďE
“

rV h
n`1p

sXx1

n`1,pmq
‰

´τH
`

tn, x
1, rZh

npx
1,pmq,pm

˘

`Ln`1|x´x1|,
(4.7)

with Ln`1 :“Lnp1`Cτq`Cτ . On noting (4.6) it follows from (4.7) by Lemma 4.1 that

rV h
n px,pmq´

rV h
n px

1,pmqďLn`1|x´x1|(4.8)

We recall (3.10) and obtain from (4.8) (note rV h
n px,pmq“V

m
n pxq) that for any pP∆pIq

it holds

rV h
n px,pq´

rV h
n px

1,pqď
M
ÿ

m“1

´

V m
n pxq´V

m
n px

1
q

¯

ψmppqďLn`1|x´x1| ,(4.9)

where we used that
řM
m“1ψ

m”1, ψmě0 for any 0ďnďN . Consequently by (4.5) and
Lemma 4.1 it also follows that

V h
n px,pq´V

h
n px

1,pqďLn`1|x´x1| .(4.10)

After commuting the role of x and x1 and repeating the above steps we obtain for
any pP∆pIq

|V h
n px,pq´V

h
n px

1,pq|ďLn`1|x´x1|.(4.11)

Hence, we get recursively that LnďLN`Ctn`Cτ
řN
i“n`1Li. By the discrete Gron-

wall lemma, it follows that LnďpLN`CT qexppCT q. Consequently, V h
n , rV h

n , n“
0, . . . ,N are Lipschitz continuous in x, with a Lipschitz constant L :“pLN`CT qexppCT q
depending only on the data in Assumptions (A1q�(A5q.
ii) boundedness. LetKp“rπ

1
n,xppq, . . . ,π

I
n,xppqs be a simplex ofMh

n,x such that pPKp,

i.e. p“
řI
i“1π

i
n,xppqψ

i
n,xppq, where tψ

i
n,xppq : i“1, . . . ,Iu is the Lagrange polynomial
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basis on Kp. In particular,
řI
i“1ψ

i
n,xppq“1 and ψin,xppqě0 for i“1, . . . ,I. On recalling

(3.9) we may write

V h
n px, pq“

I
ÿ

i“1

´

E
“

V h
n`1p

sXx
n`1, π

i
n,xppqq

‰

`τH
`

tn, x, Z
h
npx, π

i
n,xppqq, π

i
n,xppq

˘

¯

ψin,xppq,

(4.12)

where Zh
npx, pq :“

1
τ
E
“

V h
n`1p

sXx
n`1, pqσ

´T
n pxqξn

?
τ
‰

. By (2.2), since V h
n`1 is bounded by

Cn`1 we estimate the right hand side of (4.12)∣∣E“V h
n`1p

sXx
n`1, π

i
n,xppqq

‰

`τH
`

tn, x, Z
h
npx, π

i
n,xppqq, π

i
n,xppq

˘
∣∣ďCn`1`τC

`

1` |Zh
npx, π

i
n,xppqq|

˘

.
(4.13)

Next, we show that Zh
npx, π

i
n,xppqq is bounded. Since V

h
n`1 is uniformly Lipschitz con-

tinuous in the variable x. On recalling (3.3), by the generalized mean value theorem
[11, Theorem 2.3.7 ] there exists ΘPRd with |Θ|8ďC such that

(4.14) V h
n`1p

sXx
n`1, π

i
n,xppqq“V

h
n`1px, π

i
n,xppqq`xΘ, σnpxqξn

?
τy.

We multiply (4.14) with p1{τqσ´Tn pxqξn and take the expectation to get

Zh
npx, π

i
n,xppqq“

1

τ
E
“

V h
n`1p

sXx
n`1, π

i
n,xppqqσ

´T
n pxqξn

?
τ
‰

“
1

τ
E
“

V h
n`1px, π

i
n,xppqqσ

´T
n pxqξn

?
τ`xΘ, σnpxqξn

?
τyσ´Tn pxqξn

?
τ
‰

“
1

τ
E
“

xΘ, σnpxqξn
?
τyσ´Tn pxqξn

?
τ
‰

.(4.15)

By Assumption (A2q σn and σ
´T
n are uniformly bounded. Hence, it follows from (4.15)

that

|Zh
npx, π

i
n,xppqq|ď

1

τ
}σn}8}σ

´T
n }8E

“

|Θ|8|ξn
?
τ |2

‰

ďC.(4.16)

We substitute (4.16), (4.13) into (4.12) and get that

|V h
n px, pq|ď

I
ÿ

i“1

Cnψ
i
n,xppq“Cn,

where Cn :“Cn`1`τC. Consequently, V h
n px, pq, n“0, . . . ,N is uniformly bounded by

C :“CN`CT . �

4.3. Almost Hölder continuity in t.

Lemma 4.5. For any τ ą0, hą0 and xPRd, pP∆pIq the interpolant V h
τ de�ned in

(3.12) satis�es the following inequality

|V h
τ ps,x, pq´V

h
τ pt, x, pq|ďC|s´ t|1{2`Cτ 1{2

@s,tP r0, T s,

where the constant Cą0 depends only on Assumptions (A1q�(A4q.

Proof. We consider the piecewise linear Lagrange basis functions associated with Πτ as

χnptq“

$

’

’

&

’

’

%

t´ tn´1

τ
, for tP rtn´1,tns ,

tn`1´ t

τ
, for tP rtn,tn`1s ,

0 otherwise ,
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for n“0, . . . ,N and note that
řN
n“0χnptq“1 for tP r0,T s.

For s,tP r0, T s let tP rtn, tn`1s and sP rtn`n1 , tn`n1`1s. Hence, we deduce from (3.12)
that

V h
τ pt, x,pq´V

h
τ ps, x,pq“

1
ÿ

k“0

V h
n`kpx,pqχn`kptq´

1
ÿ

k1“0

V h
n`n1`k1px,pqχn`n1`k1psq

“

1
ÿ

k“0

1
ÿ

k1“0

`

V h
n`kpx,pq´V

h
n`n1`k1px,pq

˘

χn`kptqχn`n1`k1psq .(4.17)

for xPRd and pP∆pIq.
Since Vexprf sďf we get for pm PN h, recall (3.6), (3.7), that

V h
n`kpx,pmqďE

“

V h
n`k`1p

sXn`k,x
n`k`1,pmq

‰

`τH
`

tn`k, x, Z
h
n`kpx,pmq,pm

˘

,(4.18)

with Zh
n`kpx,pmq :“

1
τ
E
“

V h
n`k`1p

sXn`k,x
n`k`1,pmqσ

´T
n`kξn`k

?
τ
‰

. Using (4.16), Assumption (A5q

we obtain from (4.18) that

V h
n`kpx,pmq´V

h
n`n1`k1px,pmq

ďE
“

V h
n`k`1p

sXn`k,x
n`k`1,pmq´V

h
n`n1`k1px,pmq

‰

`τH
`

tn`k, x, Z
h
n`kpx,pmq,pm

˘

ďE
“

V h
n`k`1p

sXn`k,x
n`k`1,pmq´V

h
n`n1`k1px,pmq

‰

`Cτ
`

1`C|Zh
n`kpx,pmq|

˘

ďE
“

V h
n`k`1p

sXn`k,x
n`k`1,pmq´V

h
n`n1`k1px,pmq

‰

`Cτ.

(4.19)

Recursively, we estimate the �rst term on the right-hand side above using the corre-
sponding analogue of (4.18) as

V h
n`kp

sXn`k,x
n`k`1,pmq´V

h
n`n1`k1px,pmq

ďE
”

V h
n`k`2p

sX
n`k`1, sXn`k,x

n`k`1

n`k`2 ,pmq´V
h
n`n1`k1px,pmq

ı

`Cτ.(4.20)

We substitute (4.20) into (4.19) and obtain on noting sXn`k,x
n`k`2“

sX
n`k`1, sXn`k,x

n`k`1

n`k`2 (cf.
(3.2)) that

V h
n`kpx,pmq´V

h
n`n1`k1px,pmqďE

”

V h
n`k`2p

sXn`k,x
n`k`2,pmq´V

h
n`n1`k1px,pmq

ı

`C2τ.

Consequently, we get after pn1`k1´k´2q recursive steps that

V h
n`kpx,pmq´V

h
n`n1`k1px,pmq

ď
∣∣E“V h

n`n1`k1p
sXn`k,x
n`n1`k1 ,pmq´V

h
n`n1`k1px,pmq

‰
∣∣`pn1`k1´kqCτ.(4.21)

By Lemma 4.4 and Assumption (A2q we estimate the �rst term on the right hand side
of (4.21) as∣∣E“V h

n`n1`k1px,pmq´V
h
n`n1`k1p

sXn`k,x
n`n1`k1 ,pmq

‰
∣∣ďC∣∣E“x´ sXn`k,x

n`n1`k1

‰
∣∣

ďC

„n`n1`k1´1
ÿ

j“n`k

E
∣∣∣σjp sXn`k,x

j q

∣∣∣2τ1{2

ďC |tn`k´ tn`n1`k1 |1{2 ,

and get

V h
n`kpx,pmq´V

h
n`n1`k1px,pmqďC |tn`k´ tn`n1`k1 |1{2`Cptn`n1`k1´ tn`kq .

Since tP rtn, tn`1s and sP rtn`n1 , tn`n1`1s it follows for k, k
1“0,1 that

(4.22) V h
n`kpx,pmq´V

h
n`n1`k1px,pmqďCT

1{2|t´s|1{2`Cτ 1{2,
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for pm PN h.
On recalling that V h

n px,pmq“
rV h
n px,pmq for pm PN h, V h

n px,pq“Vexp
“

rV h
n px, ¨q

‰

ppq for
pP∆pIq, we deduce analogically as in the proof of Lemma 4.4 (cf. (4.9), (4.10)), that
the inequality (4.22) holds for any pP∆pIq . Hence, substituting (4.22) into (4.17) for
pP∆pIq implies the inequality

(4.23) V h
τ pt,x,pq´V

h
τ ps,x,pqďC|t´s|1{2`Cτ 1{2 .

After reverting the role of s and t and repeating the above steps we get the statement
of the lemma. �

4.4. Monotonicity.

Lemma 4.6. Let φ1, φ2 :RdÑR be two uniformly Lipschitz continuous functions that
satisfy 0ďpφ1´φ2qďC. Then for any xPRd, pP∆pIq, τ ą0, n“0, . . . ,N´1 it holds
that

E
“

φ1p sX
x
n`1q

‰

`τH
´

tn, x,
1

τ
E
“

φ1p sX
x
n`1qσ

´T
n pxqξn

?
τ
‰

, p
¯

ěE
“

φ2p sX
x
n`1q

‰

`τH
´

tn, x,
1

τ
E
“

φ2p sX
x
n`1qσ

´T
n pxqξn

?
τ
‰

, p
¯

´Cτ
?
τ ,

where Cą0 is a constant which depends only on Assumptions (A1q�(A5q.

Proof. We set

H :“E
“

pφ1´φ2qp sX
x
n`1q

‰

`τH
´

tn, x,
1

τ
E
“

φ1p sX
x
n`1qσ

´T
n pxqξn

?
τ
‰

, p
¯

´τH
´

tn, x,
1

τ
E
“

φ2p sX
x
n`1qσ

´T
n pxqξn

?
τ
‰

, p
¯

.

By Assumption (A5q H is uniformly Lipschitz continuous in the third variable, hence
using the generalized mean value theorem [11, Theorem 2.3.7 ] there exists a ΘPRd,
|Θ|8ďC such that

H“E
“

pφ1´φ2qp sX
x
n`1q

`

1`
@

Θ,σ´Tn pxqξn
?
τ
D˘

ı

“E
“

1 
C‖σ´1‖8|ξn|

?
τě1

(pφ1´φ2qp sX
x
n`1q

`

1`
@

Θ, σ´Tn pxqξn
?
τ
D˘

ı

`E
“

1 
C‖σ´1‖8|ξn|

?
τă1

(pφ1´φ2qp sX
x
n`1q

`

1`
@

Θ, σ´Tn pxqξn
?
τ
D˘

ı

.
(4.24)

Next, we show that the second term of the right hand side of (4.24) is positive. Since
pφ1´φ2qě0, it remains to examine the term p1`

@

Θ, σ´Tn pxqξn
?
τ
D˘

. We note that

1`
@

Θ, σ´Tn pxqξn
?
τ
D

ě1´}Θσ´1
n }8|ξn|

?
τ ě1´C‖σ´1

n ‖8|ξn|
?
τ .

For C‖σ´1‖8|ξn|
?
τ ă1 it holds

`

1`
@

Θ, σ´Tn pxqξn
?
τ
D˘

ą0 and hence

(4.25) E
“

1 
C‖σ´1‖8|ξn|

?
τă1

(pφ1´φ2qp sX
x
n`1q

`

1`
@

Θ, σ´Tn pxqξn
?
τ
D˘

ı

ě0.

Using(4.25) we deduce from (4.24) that

HěE
”

1 
|ξn
?
τ |2ě1{R

(

@

Θ, pφ1´φ2qp sX
x
n`1qσ

´T
n pxqξn

?
τ
D

ı

,

where R :“C2‖σ´1‖2
8.
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On noting that |ξn|“ |ξ1
n|` . . .` |ξdn|“p1` . . .`1q“d we deduce

E
”

1 
|ξn|2τě1{R

(|ξn|
?
τ
ı

“1 
d2τě1{R

(d
?
τ “1 

d2τě1{R
(R

1

R
d
?
τ ď1 

d2τě1{R
(Rτd3

?
τ ďRτd3

?
τ .

Since ´pφ1´φ2qě´C we conclude

Hě´E
”

1 
|ξn
?
τ |2ě1{R

(pφ1´φ2qp sX
x
n`1q‖Θσ´1‖8

∣∣ξn?τ ∣∣ı
ě´CE

”

1 
|ξn
?
τ |2ě1{R

(|ξn
?
τ |
ı

“´CRd3τ
?
τ .

�

5. Convergence of the numerical approximation

In this section we prove the convergence of numerical approximation, see Theo-
rem 5.1 below, in several steps. First, we show that, up to a subsequence, the sequence
tV h

τ uh, τą0 admits a limit denoted by w. We then prove the viscosity super/sub-solution
property of every accumulation point w. Hence, by the uniqueness property of the vis-
cosity solution, see [4], we may conclude that the whole sequence tV h

τ uh, τą0 converges
to the viscosity solution.

Theorem 5.1. Under Assumptions (A1q�(A5q the numerical solution V h
τ converges to

the viscosity solution of (1.1) (uniformly on compact subsets of r0, T sˆRdˆ∆pIq) in
the sense that for all pt1, x1, p1qÑpt, x, pq it holds that

lim
τ,hÑ0

V h
τ pt

1,x1,p1q“V pt, x, pq,

where V is the unique uniformly bounded and continuous viscosity solution to (1.1)
which is convex and uniformly Lipschitz continuous in p.

5.1. Existence of a limit.

Lemma 5.2. The sequence tV h
τ uτ,hą0 admits a subsequence which converges uniformly

on every compact subset of r0, T sˆRdˆ∆pIq to a uniformly bounded and continuous
function w which is convex and uniformly Lipschitz continuous in p.

Proof. The proof is a consequence of a slight modi�cation of the the Arzelà�Ascoli
theorem, [26, Section III.3]. The equi-boundedness is granted by Lemma 4.4 and the
equi-continuity is granted by Lemmas 4.2, 4.4 and 4.5. �

5.2. Viscosity solution properties and uniqueness of the limit. Below, we show
that every accumulation point w of tV h

τ uh, τą0 from Lemma 5.2 is a viscosity sub-
and super-solution to (1.1) which by uniqueness of the viscosity solution V implies
Theorem 5.1.

5.2.1. Viscosity subsolution property of w.

Proposition 5.3. Every accumulation point w of the sequence tV h
τ uτ,hą0 is a viscosity

subsolution of (1.1) on r0, T sˆRdˆ∆pIq.
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Proof. Let φ : r0, T sˆRdˆ∆pIqÑR be a smooth test function such that w´φ has a
strict global maximum at pst, sx, spq, where spP∆pIq. We have to show, that φ satis�es
(2.6) at pst, sx, spq.
As a limit of convex functions w is convex in p and (cf. [20, Theorem 1]) we have

since spP∆pIq

(5.1) λmin

ˆ

sp,
B2φ

Bp2
pst, sx, spq

˙

ě0.

Similarly to [3, Lemma 2.4] we note that there exists a sequence pstτ , sxτ , spτ qτ such
that stτ “ lnτ PΠτ , ln PN converges to st, spτ PN h converges to sp, and sxτ to sx for τ,hÑ0;
also V h

τ ´φ has a global maximum at pstτ , sxτ , spτ q on Πτ ˆRdˆN h.
De�ne φhτ :“φ`pV h

τ ´φqpstτ , sxτ , spτ q. Then for all xPRd, pm PN h we have

(5.2) V h
τ p
stτ `τ, x, pmq´φ

h
τ p
stτ `τ, x, pmqďV

h
τ p
stτ , sxτ , spτ q´φ

h
τ p
stτ , sxτ , spτ q“0.

Set

sXn`1 :“sxτ `σpstτ , sxτ qξln
?
τ ;

and for each mP
 

1, . . . ,M
(

:

sZm
n psxτ q :“

1

τ
E
“

V h
τ p
stτ `τ, sXn`1, pmqpσpstτ , sxτ qq

´T ξln
?
τ
‰

,

sY m
n psxτ q :“E

“

V h
τ p
stτ `τ, sXn`1, pmq

‰

`τH
`

stτ , sxτ , sZ
m
n psxτ q, pm

˘

.(5.3)

We denote the non convex data set by Ynpsxτ q :“
 

sY 1
n psxτ q, . . . ,

sY M
n psxτ q

(

. By de�nition
Vexprf sppmqďfppmq. Thus from (5.3) we have

V h
τ p
stτ , sxτ , spτ q“Vexp

“

Ynpsxτ q
‰

pspτ q

ďE
“

V h
τ p
stτ `τ, sXn`1, spτ q

‰

`τH
´

stτ , sxτ ,
1

τ
E
“

V h
τ p
stτ `τ, sXn`1, spτ qpσpstτ , sxτ qq

´T ξln
?
τ
‰

, spτ

¯

.
(5.4)

We use Lemma 4.6 with φ2p¨q :“V
h
τ p
stτ `τ, ¨, spτ q and φ1p¨q :“φ

h
τ p
stτ `τ, ¨, spτ q. Then,

by (5.2) and (5.4) it follows immediately that

0ďE
“

V h
τ p
stτ `τ, sXn`1, spτ q

‰

´V h
τ p
stτ , sxτ , spτ q

`τH
´

stτ , sxτ ,
1

τ
E
“

V h
τ p
stτ `τ, sXn`1, spτ qpσpstτ , sxτ qq

´T ξln
?
τ
‰

, spτ

¯

ďE
“

φpstτ `τ, sXn`1, spτ q
‰

´φpstτ , sxτ , spτ q

`τH
´

stτ , sxτ ,
1

τ
E
“

φhτ pstτ `τ,
sXn`1, spτ qpσpstτ , sxτ qq

´T ξln
?
τ
‰

, spτ

¯

`Cτ
?
τ .

(5.5)

First, we calculate the expectation in the �rst term of the right hand side of (5.5).
By the Taylor expansion

φpstτ `τ, sXn`1, spτ q

“φpstτ , sxτ , spτ q`
”

Btφpstτ , sxτ , spτ q`
1

2
Tr
`

σσT pstτ , sxτ qD
2
xφpstτ , sxτ , spτ q

˘

ı

τ

`
“

Dxφpstτ , sxτ , spτ q
‰

σpstτ , sxτ qξln
?
τ`τOpτq`τOpτ 1{2

q,

(5.6)
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where OpτqÑ0 when τÑ0. Taking the expectation of (5.6), we obtain

E
“

φpstτ `τ, sXn`1, spτ q
‰

“φpstτ , sxτ , spτ q`
”

Btφpstτ , sxτ , spτ q`
1

2
Tr
`

σσT pstτ , sxτ qD
2
xφpstτ , sxτ , spτ q

˘

ı

τ

`τOpτq`τOpτ 1{2
q.

(5.7)

Next, we calculate the expectation in the third term of the right hand side of (5.5).
We multiply (5.6) with pσpstτ , sxτ qq

´T ξln
?
τ to get

φpstτ `τ, sXn`1, spτ qpσpstτ , sxτ qq
´T ξln

?
τ “φpstτ , sxτ , spτ qpσpstτ , sxτ qq

´T ξln
?
τ

`Dxφpstτ , sxτ , spτ qσpstτ , sxτ qξln
?
τpσpstτ , sxτ qq

´T ξln
?
τ

`Btφpstτ , sxτ , spτ qτpσpstτ , sxτ qq
´T ξln

?
τ

`
1

2
Tr
`

σσT pstτ , sxτ qD
2
xφpstτ , sxτ , spτ q

˘

τpσpstτ , sxτ qq
´T ξln

?
τ

`pσpstτ , sxτ qq
´T ξlnτ

?
τOpτq`pσpstτ , sxτ qq´T ξlnτ

?
τOpτ 1{2

q,

(5.8)

where OprqÑ0 when rÑ0. Taking the expectation in (5.8) yields to

(5.9)
1

τ
E
“

φpstτ `τ, sXn`1, spτ qpσpstτ , sxτ qq
´T ξln

?
τ
‰

“Dxφpstτ , sxτ , spτ q.

By substituting (5.7) and (5.9) into (5.5) we arrive to

0ďBtφpstτ , sxτ , spτ q`
1

2
Tr
`

σσT pstτ , sxτ qD
2
xφpstτ , sxτ , spτ q

˘

`Hpstτ , sxτ , Dxφpstτ , sxτ , spτ q, spτ q

`τOpτq`τOpτ 1{2
q`Cτ

?
τ .

Taking the limit τ, hÑ0 we get on recalling pstτ , sxτ , spτ qÑpst, sx, spq that

0ďBtφpst, sx, spq`
1

2
Tr
`

σσT pst, sxqD2
xφpst, sx, spq

˘

`H
`

st, sx, Dxφpst, sx, spq, sp
˘

.(5.10)

With (5.1) and (5.10), we conclude that the limit w of the sequence tV h
τ uh, τą0 satis�es

(2.6). Hence, w is a viscosity subsolution of (1.1). �

5.2.2. Viscosity supersolution property of w. To establish the viscosity supersolution
property of the limits of the numerical approximation in Proposition 5.7 below, we
construct in De�nition 5.4 martingale processes that satisfy a one step dynamic pro-
gramming principle Lemma 5.6, cf. [15].

For n“N´1, . . . ,0, xPRd and a given pP∆pIq, we denote byKn,xppq“ rπ
1
n,xppq, . . . ,π

I
n,xppqs

the simplex in Mh
n,x such that pPKn,xppq, and denote by tψin,xppq : i“1, . . . ,Iu the La-

grange polynomial basis on Kn,xppq. By (3.8) and (3.9), we write

V h
n px, pq“Vexp

“

sY 1
n pxq, . . . ,

sY M
n pxq

‰

ppq

“

I
ÿ

i“1

´

E
“

V h
n`1p

sXx
n`1, π

i
n,xppqq

‰

`τH
`

tn, x, Z
h
npx, π

i
n,xppqq, π

i
n,xppq

˘

¯

ψin,xppq,
(5.11)

with Zh
npx, π

i
n,xppqq :“

1
τ
E
“

V h
n`1p

sXx
n`1, π

i
n,xppqqpσ

´T
n pxqξn

?
τ
‰

. The set of vertices of the

triangle Kn,xppq will be denoted by N h
n,xppq :“tπ

1
n,xppq, . . . ,π

I
n,xppqu.
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De�nition 5.4 (One-step feedback). Let nPtN´1, . . . ,0u, xPRd, and p“pp1, . . . ,pIq P
∆pIq. We de�ne the one-step feedbacks pi, x, pn`1 as a N h

n,xppq-valued random variables

which are independent of tξnu
N´1
n“0 such that

iq for n“0, . . . ,N´1
aq if pi“0 set pi, x, pn`1 “p

bq if pią0: choose pi, x, pn`1 among
 

π1
n,xppq, . . . ,π

I
n,xppq

(

PN h
n,x with probability

P
”

pi, x, pn`1 “π
j
n,xppq

ˇ

ˇ

ˇ

`

p
i1, x1, pm1
n1

˘

i1Pt1,...,Iu, x1PRd,m1Pt1,...,Mu, n1Pt1,...,nu

ı

“
pπjn,xppqqi

pi
ψjn,xppq

(5.12)

iiq for n“N set pi, x, pn`1 “ ei, where tei : i“1, . . . ,Iu is the canonical basis of RI .

Furthermore we de�ne px, pn`1 :“pi, x, p
n`1 , where the index i is a random variable with law

p“pp1, . . . ,pIq (i.e. P
“

i“ i
‰

“pi, i“1, . . . ,I), independent of tξnu
N´1
n“0 and of the process

ppj, x, pn qjPt1,...,Iu, xPRd, pP∆pIq, nPt1,...,Lu.

Remark 5.5. The probability pi in De�nition 5.4 is the i-th component of the prob-
ability vector pP∆pIq, i.e., it is the probability of the �chosen� game. In this case,
the optimal behavior of Player 1 at time tn`1 is derived from the one step feedback
px, pn`1 :“pi, x, p

n`1 . This feedback is the discrete version (in time and in p) of its continu-
ous counterpart see [6, Lemma3.2.], [15, De�nition 3.9] and [5, Section 4.1] for more
details.

The one-step feedback px, pn`1 is a martingale and provides a representation formula
for the discrete lower convex envelope.

Lemma 5.6. For all n“0, . . . ,N´1, xPRd, pm PN h we have

V h
n px,pmq“V

m
n pxq“Vexp

“

sY 1
n pxq, . . . ,

sY M
n pxq

‰

ppmq

“E
”

V h
n`1p

sXx
n`1, p

x, pm
n`1 q`τH

`

tn, x, Z
h
npx, p

x, pm
n`1 q, p

x, pm
n`1

˘

ı

,

with Zh
npx, p

x, pm
n`1 q :“

1
τ
E
“

V h
n`1p

sXx
n`1, p

x, pm
n`1 qpσ

´T
n pxqξn

?
τ
‰

.

Proof. We consider n“0, . . . ,N´1, xPRd, pm PN h and note that the law of the process
px, pmn`1 is given by (5.12) and px, pmn`1 is independent of i. Hence it holds for any f :N hÑR
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that

E
“

fppx, pmn`1 q
‰

“

I
ÿ

i“1

E
“

1ti“iufpp
i, x, pm
n`1 q

‰

“

I
ÿ

i“1

E
“

1ti“iu
‰

E
“

fppi, x, pmn`1 q
‰

“

I
ÿ

i“1

pi

I
ÿ

j“1

pπjn,xppmqqi

pi
ψjn,xppmqfpπ

j
n,xppmqq

“

I
ÿ

j“1

pi

I
ÿ

i“1

pπjn,xppmqqi

pi
ψjn,xppmqfpπ

j
n,xppmqq(5.13)

“

I
ÿ

j“1

fpπjn,xppmqqψ
j
n,xppmq

´

I
ÿ

i“1

pπjn,xppmqqi

¯

“

I
ÿ

j“1

fpπjn,xppmqqψ
j
n,xppmq,

since
řI
i“1pπn,xppmqqi“1. On noting (5.11) the statement follows directly from (5.13)

and the fact that N h
n,xĎN h. �

Proposition 5.7. Every accumulation point w of the sequence tV h
τ uτ,hą0 is a viscosity

supersolution of (1.1) on r0, T sˆRdˆ∆pIq.

Proof. Let φ : r0, T sˆRdˆ∆pIqÑR be a smooth test function, such that w´φ has a
strict global minimum at pst, sx, spq with pw´φqpst, sx, spq“0. We show that φ satis�es
(2.7) at pst, sx, spq.
There exists a sequence pstτ , sxτ , spτ qτ such that stτ “ lnτ PΠτ , ln PN converges to st,

spτ PN h converges to sp, and sxτ to sx for τ,hÑ0; also, V h
τ ´φ has a global minimum at

pstτ , sxτ , spτ q on Πτ ˆRdˆN h.
De�ne φhτ :“φ`pV h

τ ´φqpstτ , sxτ , spτ q. Then for all xPRd and pm PN h we have

pV h
τ ´φ

h
τ qp

stτ `τ, x, pmqěpV
h
τ ´φ

h
τ qp

stτ , sxτ , spτ q“0.(5.14)

Set
sXn`1 :“sxτ `σpstτ , sxτ qξln

?
τ ;

and for each mP
 

1, . . . ,M
(

:

sZm
n psxτ q :“

1

τ
E
“

V h
τ p
stτ `τ, sXn`1, pmqpσpstτ , sxτ qq

´T ξln
?
τ
‰

,

sY m
n psxτ q :“E

“

V h
τ p
stτ `τ, sXn`1, pmq

‰

`τH
`

stτ , sxτ , sZ
m
n psxτ q, pm

˘

.

From the non convex data set Ynpsxτ q :“
 

sY 1
n psxτ q, . . . ,

sY M
n psxτ q

(

, we de�ne

V h
τ p
stτ , sxτ , spτ q :“Vexp

“

Ynpsxτ q
‰

pspτ q.

We can assume that λmin

´

sp, B
2φhτ
Bp2 pst, sx,spq

¯

ą0, otherwise (2.7) is always true. Thus,

there exist δ, ηą0 such that for all τ small enough we have
A

B2φhτ
Bp2

pt, x, pqz, z
E

ą4δ|z|2

@px, pq PBηpsxτ , spτ q,@tP rstτ , stτ `τ s, @z PT∆pIqpspτ q
.

(5.15)
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Furthermore, we assume without loss of generality that outside of Bηpstτ , sxτ , spτ q, φ
h
τ is

still convex on ∆pIq. Thus for any pm PN h it holds

V h
τ p
stτ `τ, x, pmqěφ

h
τ p
stτ `τ, x, pmq

ěφhτ pstτ `τ, x, spτ q`
A

Bφhτ
Bp
pstτ `τ, x, spτ q, pm´spτ

E

.(5.16)

The rest of the proof consists of 4 steps.

Step 1. We prove that for any pP∆pIq, the following inequality holds

E
“

V h
τ p
stτ `τ, x, pq

‰

ěE
“

φhτ pstτ `τ, x, spτ q
‰

`

A

Bφhτ
Bp
pstτ `τ, x, spτ q, p´spτ

E

`δ|p´spτ |2.
(5.17)

Fix px, pq PBηpsxτ , spτ q and tP rstτ , stτ `τ s. Since φhτ is smooth, we expand φhτ into a
Taylor�Lagrange expansion up to the order 2 and obtain for some aPBηpspτ q

φhτ pt, x, pq“φ
h
τ pt, x, spτ q`

A

Bφhτ
Bp
pt, x, spτ q, p´spτ

E

`
1

2

A

B2φhτ
Bp2

pt, x, aqpp´spτ q, p´spτ

E

,

which thanks to (5.15) gives

(5.18) φhτ pt, x, pqěφ
h
τ pt, x, spτ q`

A

Bφhτ
Bp
pt, x, spτ q, p´spτ

E

`2δ |p´spτ |2 .

For any pP∆pIqzIntpBηpspτ qq. We set p̃ :“ spτ `ηpp´spτ q{|p´spτ |. Since the function
V h
τ is convex in the variable p, then the subgradient of V h

τ p
stτ , sxτ , ¨q at p, denoted by

B´V h
τ p
stτ , sxτ , pq is not an empty set. Let p̂PB´V h

τ p
stτ , sxτ , p̂q, we have by de�nition of

the subgradient

V h
τ p
stτ , sxτ , pqěV

h
τ p
stτ , sxτ , p̃q`xp̂, p´ p̃y .(5.19)

By (5.14) we have pV h
τ ´φ

h
τ qp

stτ , sxτ , p̃qě0. Since p̃PBηpspτ q, using the inequalities (5.18)
and (5.19) we obtain

V h
τ p
stτ , sxτ , pqěφ

h
τ p
stτ , sxτ , spτ q`

A

Bφhτ
Bp
pstτ , sxτ , spτ q, p̃´spτ

E

`2δ |p̃´spτ |2`
@

p̂, p´ p̃
D

ěφhτ pstτ , sxτ , spτ q`
A

Bφhτ
Bp
pstτ , sxτ , spτ q, p´spτ

E

`2δ |p̃´spτ |2`
A

p̂´
Bφhτ
Bp
pstτ , sxτ , spτ q, p´ p̃

E

.

(5.20)

We show that the last term in the right hand side of (5.20) is positive. By taking p“ p̃
in (5.16) and taking p“ spτ in (5.19) we have

V h
τ p
stτ , sxτ , p̃qěV

h
τ p
stτ , sxτ , spτ q`

A

Bφhτ
Bp
pstτ , sxτ , spτ q, p̃´spτ

E

,(5.21)

V h
τ p
stτ , sxτ , spτ qěV

h
τ p
stτ , sxτ , p̃q`

@

p̂, spτ ´ p̃
D

.(5.22)

We sum up (5.21) and (5.22). Then with the choice of p̃ we made, it follows that

0ě
A

p̂´
Bφhτ
Bp
pstτ , sxτ , spτ q, spτ ´ p̃

E

“
η

|p´spτ |

A

p̂´
Bφhτ
Bp
pstτ , sxτ , spτ q, spτ ´p

E

.
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Thanks to the choice of p̃ we note that
´

|p´spτ |
|p´spτ |`η

¯

pp̃´pq“pspτ ´pq. It implies that

(5.23)
A

p̂´
Bφhτ
Bp
pstτ , sxτ , spτ q, p´ p̃

E

ě0.

Thus, substituting (5.23) into (5.20) gives

V h
τ p
stτ , sxτ , pqěV

h
τ p
stτ , sxτ , spτ q`

A

Bφhτ
Bp
pstτ ,sxτ ,spτ q, p´spτ

E

`2δ |p̃´spτ |2

“V h
τ p
stτ , sxτ , spτ q`

A

Bφhτ
Bp
pstτ ,sxτ ,spτ q, p´spτ

E

`2δη2.

After taking the limit τ,hÑ0, we obtain for all pP∆pIqzIntpBηpspqq that

wpst, sx, pqěwpst, sx, spq`

B

Bφ

Bp
pst, sx, spq, p´sp

F

`2δη2.(5.24)

Next, suppose that (5.17) does not hold for a pP∆pIq. Thus there exists a sequence

pτ, xτ , pτ qτ with pτ P∆pIqzBηpspτ q such that pτ, xτ , pτ qÑp0, 0, pq for τ, hÑ0 and

V h
τ p
stτ `τ, sxτ `xτ , pτ q

ăφhτ pstτ `τ, sxτ `xτ , spτ q`
A

Bφhτ
Bp
pstτ `τ, sxτ `xτ , spτ q, pτ ´spτ

E

`δ|pτ ´spτ |2.
(5.25)

For τ, hÑ0, pP∆pIqzBηpspq it follows from (5.25) that

wpst, sx, pqăφpst, sx, spq`
A

Bφ

Bp
pst, sx, spq, p´sp

E

`δ|p´sp|2.

which contradicts the inequality (5.24). Hence, (5.17) holds.

Step 2. We prove that for any pm PN h we have

E
“

V h
τ p
stτ `τ, sXn`1, pmq

‰

ěE
„

φhτ pstτ `τ,
sXn`1, spτ q`

A

Bφhτ
Bp
pstτ `τ, sXn`1, spτ q, pm´spτ

E

`δ|pm´spτ |21| sXn`1´sxτ |ăη



.

(5.26)
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With the estimates (5.17) and (5.14) we have for τ small enough and for all pm PN h

E
“

V h
τ p
stτ `τ, sXn`1, pmq

‰

“E
„

V h
τ p
stτ `τ, sXn`1, pmq1| sXn`1´sxn|ăη



`E
„

V h
τ p
stτ `τ, sXn`1, pmq1| sXn`1´sxn|ěη



ěE
„

´

φhτ pstτ `τ, x, spτ q`
A

Bφhτ
Bp
pstτ `τ, sXn`1, spτ q, pm´spτ

E

`δ|pm´spτ |2
¯

1| sXn`1´sxn|ăη



`E
„

V h
τ p
stτ `τ, sXn`1, pmq1| sXn`1´sxn|ěη



ěE
„

´

φhτ pstτ `τ,
sXn`1, spτ q`

A

Bφhτ
Bp
pstτ `τ, sXn`1, spτ q, pm´spτ

E

`δ|pm´spτ |2
¯

1| sXn`1´sxn|ăη



`E
„

φhτ pstτ `τ,
sXn`1, pmq1| sXn`1´sxn|ěη



“E
„

φhτ pstτ `τ,
sXn`1, spτ q`

A

Bφhτ
Bp
pstτ `τ, sXn`1, spτ q, pm´spτ

E

`δ|pm´spτ |21| sXn`1´sxn|ăη



`E
„

´

φhτ pstτ `τ,
sXn`1, pmq´φ

h
τ p
stτ `τ, sXn`1, spτ q

´

B

Bφhτ
Bp
pstτ `τ, sXn`1, spτ q, pm´spτ

E¯

1| sXn`1´sxn|ěη



.

(5.27)

We recall that φhτ is convex in the variable p, which implies that

φhτ pstτ `τ,
sXn`1, pmq´φ

h
τ p
stτ `τ, sXn`1, spτ q

´

B

Bφhτ
Bp
pstτ `τ, sXn`1, spτ q, pm´spτ

E

ě0.
(5.28)

Hence, from (5.28) and (5.27) the assertion (5.26) holds for all pm PN h.

Step 3. Next we establish an estimate for pn`1 :“psxτ , spτ
ln`1 where psxτ , spτ

ln`1 is de�ned as
a one step martingale as in De�nition 5.4 with initial data pstτ , sxτ , spτ q.

Note that by Lemma 5.6 it holds

V h
τ p
stτ , sxτ , spτ q“E

”

V h
τ p
stτ `τ, sXn`1, pn`1q

`τH
´

stτ , sxτ ,
1

τ
E
”

V h
τ p
stτ `τ, sXn`1, pn`1qpσpstτ , sxτ qq

´T ξn
?
τ
ı

, pn`1

¯ı

.
(5.29)

We replace the �rst term of the right hand side of (5.29) with (5.26) (for p“pn`1)
and obtain using (5.14) for small enough τ, hą0 that

0ěE
”

φhτ pstτ `τ,
sXn`1, spτ q´φ

h
τ p
stτ , sxτ , spτ q

ı

`τE
”

H
´

stτ , sxτ ,
1

τ
E
”

V h
τ p
stτ `τ, sXn`1, pn`1qpσpstτ , sxτ qq

´T ξn
?
τ
ı

, pn`1

¯ı

`E
”A

Bφhτ
Bp
pstτ `τ, sXn`1, spτ q, pn`1´spτ

Eı

`δE
”

1| sXn`1´sxτ |ăη|spτ ´pn`1|2
ı

“:I`II`III`IV.(5.30)

We estimate the right-hand side of (5.30).



NUMERICS FOR GAMES WITH ASYMMETRIC INFORMATION 21

We note that since φ is smooth, from the Taylor expansion it follows

E
“

φpstτ `τ, sXn`1, spτ q´φpstτ , sxτ , spτ q
‰

“
“

Btφpstτ , sxτ , spτ q`
1

2
Tr
`

σσT pstτ , sxτ qD
2
xφpstτ , sxτ , spτ q

˘‰

τ`τOpτq

ďCτ`τOpτq.

(5.31)

Hence, using (5.31) we obtain

IďCτ`τOpτq.(5.32)

From (2.2), for II we obtain

(5.33) IIďCτ
´

1`
1

τ
E
”

V h
τ p
stτ `τ, sXn`1, pn`1qpσpstτ , sxτ qq

´T ξn
?
τ
ı¯

ďCτ.

Since pn`1 is independent of the random walk ξln
?
τ and by the martingale property

E
“

pn`1

‰

“ spτ , we have

(5.34) IIIď

A

E
”

BV h
τ

Bp
pstτ `τ, sXn`1, spτ q

ı

, E
”

pn`1´spτ

ıE

“0.

We recall that the random walk ξln
?
τ and the martingale pn`1 are independent. By

the Markov's inequality it follows

IV“ δP
”

|σpstτ , sxτ qξln
?
τ |ăη

ı

E
”

|spτ ´pn`1|2
ı

ě δ
´

1´
1

η
E
”

|σpstτ , sxτ qξln
?
τ |
ı¯

E
”

|spτ ´pn`1|2
ı

ěCpδ, ηq
`

1´τ 1{2
˘

E
”

|spτ ´pn`1|2
ı

.(5.35)

We substitute the estimates (5.32), (5.33), (5.34), and (5.35) obtained for I, II, III,
and IV into (5.30). And get

E
”

|spτ ´pn`1|2
ı

ďCpδ, ηq

ˆ

τ

1´τ 1{2

˙

.

For 0ă τ ă1{2 small enough we have

(5.36) E
”

|spτ ´pn`1|2
ı

ďCpδ, ηqτ.

Step 4. In last step we show that

0ěBtφpst, sx, spq`
1

2
Tr
`

σσT pst, sxqD2
xφpst, sx, spq

˘

`H
`

st, sx, Dxφpst, sx, spq, sp
˘

.

By Lemma 5.6 it holds

V h
τ p
stτ , sxτ , spτ q“E

„

V h
τ p
stτ `τ, sXn`1, pn`1q

`τH
´

stτ , sxτ ,
1

τ
E
”

V h
τ p
stτ `τ, sXn`1, pn`1qpσpstτ , sxτ qq

´T ξln
?
τ
ı

, pn`1

¯



.

(5.37)
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We recall (5.14) and apply Lemma 4.6 with φ1p¨q :“V
h
τ p
stτ `τ, ¨, pn`1q and φ2p¨q :“

φpstτ `τ, ¨, pn`1q to estimate the right hand side of (5.37) from below as

V h
τ p
stτ , sxτ , spτ q“φpstτ , sxτ , spτ qěE

„

φpstτ `τ, sXn`1, pn`1q

`τH
´

stτ , sxτ ,
1

τ
E
”

φhτ pstτ `τ,
sXn`1, pn`1qpσpstτ , sxτ qq

´T ξln
?
τ
ı

, pn`1

¯



´Cτ
?
τ .

(5.38)

The stochastic process pn`1 is independent of sXn`1 by construction. Since φhτ is
convex and arbitrarily smooth, thanks to (5.16) we obtain

E
”

φpstτ`τ, sXn`1, pn`1q

ı

ěE
”

φpstτ `τ, sXn`1, spτ q
ı

`

A

E
”

Bφ

Bp
pstτ `τ, sXn`1, spτ q

ı

, E
”

pn`1´spτ

ıE

“E
”

φpstτ `τ, sXn`1, spτ q
ı

.(5.39)

Furthermore, by the Taylor expansion in x and since the stochastic processes pn`1

satis�es to the martingale property E
“

pn`1

‰

“pm and is independent of ξln , we obtain

1

τ
E
”

φhτ pstτ `τ,
sXn`1, pn`1qpσpstτ , sxτ qq

´T ξln
?
τ
ı

“
1

τ
E
”

φhτ pstτ `τ, sxτ , pn`1qpσpstτ , sxτ qq
´T ξln

?
τ
ı

`E
”

Dxφ
h
τ p
stτ `τ, sxτ , pn`1q

ı

`E
“

pσpstτ , sxτ qqξlnpσpstτ , sxτ qq
´T ξln

‰

Opτ 1{2
q

“E
”

Dxφ
h
τ p
stτ `τ, sxτ , pn`1q

ı

`Opτ 1{2
q.(5.40)

We substitute (5.39) and (5.40) into (5.38) to get

0ěE
„

φpstτ `τ, sXn`1, spτ q´φpstτ , sxτ , spτ q

`τH
´

stτ , sxτ , E
“

Dxφ
h
τ p
stτ `τ, sxτ , pn`1q

‰

`Opτ 1{2
q, pn`1

¯



´Cτ
?
τ .

(5.41)

Since φ is arbitrarily smooth, we can assume that Dxφ
h
τ is Lipschitz continuous in p

which with (5.36) imply that

E
”∣∣∣Dxφ

h
τ p
stτ `τ, sxτ , pn`1q´Dxφ

h
τ p
stτ `τ, sxτ , spτ q

∣∣∣ı
ďCE

“

|pn`1´spτ |
‰

ďC
´

E
“

|pn`1´spτ |2
‰

¯1{2

ďCτ 1{2.(5.42)

Combining (2.3) and (5.42) we have

H
´

stτ , sxτ , Dxφ
h
τ p
stτ `τ, sxτ , spτ q, spτ

¯

ďE
”

H
´

stτ , sxτ , E
“

Dxφ
h
τ p
stτ `τ, sxτ , pn`1q

‰

`Opτ 1{2
q, pn`1

¯ı

`E
”
∣∣∣Dxφ

h
τ p
stτ `τ, sxτ , pn`1q´Dxφ

h
τ p
stτ `τ, sxτ , spτ q

∣∣∣ı`Opτ 1{2
q

ďE
”

H
´

stτ , sxτ , E
“

Dxφpstτ `τ, sxτ , pn`1q
‰

`Opτ 1{2
q, pn`1

¯ı

`Cτ 1{2
`Opτ 1{2

q.

(5.43)
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By the Taylor expansion we have

φpstτ `τ, sXn`1, spτ q

“φpstτ , sxτ , spτ q`
”

Btφpstτ , sxτ , spτ q`
1

2
Tr
`

σσT pstτ , sxτ qD
2
xφpstτ , sxτ , spτ q

˘

ı

τ

`
“

Dxφpstτ , sxτ , spτ q
‰

σpstτ , sxτ qξln
?
τ`τOpτq`τOpτ 1{2

q.

(5.44)

Thanks to (5.43) and (5.44), we can derive from (5.41) that

Cτ 1{2
`Opτ 1{2

q`τOpτ 1{2
qěBtφpstτ , sxτ , spτ q

`
1

2
Tr
`

σσT pstτ , sxτ qD
2
xφpstτ , sxτ , spτ q

˘

`H
`

stτ , sxτ , Dxφpstτ `τ, sxτ , spτ q, spτ
˘

.
(5.45)

Since pstτ , sxτ , spτ qÑpst, sx, spq for τ, hÑ0, it follows from (5.45) that

0ěBtφpst, sx, spq`
1

2
Tr
`

σσT pst, sxqD2
xφpst, sx, spq

˘

`H
`

st, sx, Dxφpst, sx, spq, sp
˘

which concludes the proof.

�

6. Implementation and Computational studies

In this section we present an implementable fully discrete version of Algorithm 3.1
where the discretization in the spatial variable is realized via piecewise linear inter-
polation over a simplicial partition of the spatial domain. We also perform numerical
simulations to demonstrate the properties of the proposed scheme.

6.1. Implementable full discretization. For simplicity we describe the algorithm
for the case of a bounded spatial domain DĂRd. Let T ∆x be a regular partition
of D into open simplices S with mesh size ∆x“maxSPT ∆xtdiampSqu and denote the
set of �grid� nodes of T ∆x as X∆x :“tx1, . . . ,xLu. The piecewise linear Lagrange basis

associated with the partition T ∆x is denoted as
 

ϕ`
(L

`“1
.

Below we denote σn,` :“σptn, x`q, σ
´T
n,` :“pσT ptn, x`qq

´1 and introduce the restriction

of (3.3) on the grid nodes x` PX∆x as

sX`
n`1 :“ sXx`

n`1“x``σn,`ξn
?
τ `“1, . . . ,L.

The fully discrete algorithm computes the numerical approximation at the nodes x` P
T ∆x, `“1, . . . ,L. In general, the values sX`

n`1 do not coincide with the nodes T ∆x

and we obtain the intermediate value of the solution by linear interpolation over the

simplicial mesh T ∆x. Given the fully discrete solution
 

V m,`
n

(L

`“1
at tn, pm, tx`u

L
`“1

its piecewise linear interpolant on T ∆x is expressed in terms of the piecewise linear
Lagrange basis functions as

(6.1) V m,∆x
n pxq“

L
ÿ

i“1

V m,l
n ϕlpxq xPRd.

Hence, we obtain the following fully discrete version of Algorithm 3.1.

Algorithm 6.1. For x` PX∆x, `“1, . . . ,L set V m,`
N “xpm, gpx`qy for pm PN h, m“

1, . . . ,M and proceed for n“N´1, . . . ,0 as follows:

(1) Forward step: for x` PX∆x, `“1, . . . ,L compute:

sX`
n`1“x``σn, `ξn

?
τ ;
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(2) Backward step: for x` PX∆x, `“1, . . . ,L and m“1, . . . ,M set:

sZm,`
n “

1

τ
E
“

V m,∆x
n`1 p sX`

n`1qσ
´T
n, `ξn

?
τ
‰

,

sY m,`
n “E

“

V m,∆x
n`1 p sX`

n`1q
‰

`τH
`

tn, x`, sZ
m,`
n , pm

˘

;

(3) Convexi�cation: for `“1, . . . ,Lu compute the discrete lower convex envelope
 

V 1, `
n , . . . ,V M,`

n

(

of tsY 1, `
n , . . . , sY M,`

n u as:

V m,`
n “Vexp

“

sY 1, `
n , . . . , sY M,`

n

‰

ppmq, m“1, . . . ,M.

There exist several e�cient algorithms to compute the discrete lower convex envelope
in step p3q of the above algorithm. For I“2 one can directly solve the minimization
problem (3.8) for m“1, . . . ,M , the corresponding algorithm is called Jarvis's march.
For Ią2, where the direct minimization via (3.8) becomes ine�cient, one can employ
more e�cient convex hull algorithm such as the beneath-beyond or divide-and-conquer
algorithms, or the Quickhull algorithm, cf. [21] and [2].

6.2. Numerical experiments. In the numerical experiments below we take I“2,
d“1, T “0.5. We eliminate one probability variable from the solution by parametriz-
ing ∆p2q“pp, 1´pq for pP p0, 1q and consider the transformed solution V :“V p¨, ¨,pq
for pP p0,1q. We set σpxq“σ0xp1´xq, (σ0ą0), and Hpx, pq“ sinp2πpqcosp5πxq´
cosp5πpqsinp3πxq and consider a simpli�ed version of (1.1)

(6.2) min
!

BtV `
1
2
σ2
pxq
B2V

Bx2
`Hpx, pq, λmin

ˆ

p,
B2V

Bp2

˙

)

“0 .

Due to the choice of the di�usion σ we may restrict the spatial domain to the interval
r0,1s which is partitioned uniformly into line segments, i.e., T ∆x“tpx`´1,x`qu

L
`“1, x`“

`∆x with the mesh size ∆x“1{L. Similarly, we partition the probability domain r0,1s
uniformly into segments with mesh size h“1{M and nodes pm“mh, m“0, . . . ,M and
the time interval r0,T s with time-step size τ “1{N , tn“nτ , n“1, . . . ,N .
In the considered case, Algorithm 6.1 has a particularly simple form, where we denote

σ` :“σpx`q and express the expectations in step p1q below explicitly since ξn“˘1.

Algorithm 6.2. For `“0, . . . ,L set V m,`
N :“xpm, gpx`qy and n“N´1, . . . ,0 proceed as

follows:

(1) For `“0, . . . ,L, m“0, . . . ,M :

sY m,`
n “

V m,∆x
n`1 px``σ`

?
τq`V m,∆x

n`1 px`´σ`
?
τq

2
`τHpx`, pmq;

(2) For `“0, . . . ,L, m“1, . . . ,M´1 compute:

V m,`
n “ min

kPt1,...,M´mu

!

p1´ 1
k
qsY m,`

n ` 1
k
sY m`k, `
n

)

.

The numerical solution computed for σ0“0.5, N “25, L“100, and M “100 is dis-
played in Fig. 1a.
Since no analytic solution is know we determine the experimental order of conver-

gence by using a reference solution Vτref
which is computed for small discretization

parameters τref “1{384 and h“∆xref “1{1024.
To study the error in the spatial discretization we �x τ “1{50, h“1{1024 and vary

∆x“1{L for L“15, 30, 60, 150, 300, 600. The maximum error over all x` PT ∆x at



NUMERICS FOR GAMES WITH ASYMMETRIC INFORMATION 25

(a) Obtacle on (b) Obstacle o�

Figure 1. (left) Numerical solution of (6.2) computed with Algo-
rithm 6.2. (right) Numerical solution of (6.2) without the obstacle term

λmin

`

p, B
2V
Bp2

˘

, computed with Algorithm 6.2 without step p2q.

0 0.25 0.50 0.75 1
-0.4

-0.2

0

0.2

0.4

(a) pt, xq“p0.23, 0.25q

0 0.25 0.50 0.75 1
-0.4

-0.2

0

0.2

0.4

(b) pt, xq“p0.23, 0.50q

0 0.25 0.50 0.75 1
-0.4

-0.2

0

0.2

0.4

(c) pt, xq“p0.23, 0.75q

Figure 2. Cross-section of the numerical solution in Fig. 1a (solid line)
and in Fig. 1b (dashed line) at x“0.5, 0.50, 0.75

.

pt, pq“p0, 0.5q plotted against ∆x is displayed in Fig. 3a. We observe that the conver-
gence in ∆x is roughly of �rst order.
Next, we study the error in the discretization in p. We �x τ “1{50, ∆x“1{1024

and h“1{M for M “15, 30, 60, 150, 300, 600. The maximum error over all pm PNh at
pt, xq“p0, 0.5q plotted against h is displayed in Fig. 3b. Similarly as for the spatial
discretization, we observe quadratic convergence in h.
Finally, to study the error if the time-discretization we �x ∆x“h“1{1024 and vary

τ “1{N for N “3, 6, 12, 24, 48, 86. The maximum error over all tile levels tn, n“
1, . . . ,N at px, pq“p0.5, 0.5q plotted against h is displayed in Fig. 3c. The convergence
of the discretization with respect to τ is of linear order.
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Figure 3. A log-log plot of the the error wrt. ∆x, h, τ for σ0“0.5.
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