Creation of Stimulus Sets for Studying Lateral Attitude Change

Ronja Boege, Roman Linne, Tina Glaser, and Gerd Bohner Department of Psychology, Bielefeld University

Recommended citation:

Boege, R., Linne, R., Glaser, T., & Bohner, G. (2020). Creation of stimulus sets for studying Lateral Attitude Change. Research Report, Bielefeld University. https://doi.org/10.4119/unibi/2940775

Author Note

Gerd Bohner (10) https://orcid.org/0000-0002-0564-3625

Roman Linne (1) https://orcid.org/0000-0002-6199-0808

Tina Glaser is now at Department of Psychology, University of Education Karlsruhe. Roman Linne is now at Department of Social Psychology, Helmut-Schmidt University Hamburg

Hamburg.

The reported research was funded by German Research Council (DFG) grants BO 1248/11-1 to Gerd Bohner and GL 803/2-1 to Tina Glaser.

The authors would like to thank Frank Siebler for providing the syntax for MDS as well as helpful discussions and comments, Nina Dragon and Laura Lender for commenting a previous draft.

Correspondence concerning this article should be addressed to Gerd Bohner, Department of Psychology, University of Bielefeld, Postfach 100131, 33501 Bielefeld, Germany. Email: gerd.bohner@uni-bielefeld.de

Abstract

The Lateral Attitude Change Model (LAC) model (Glaser et al., 2015) features two phenomena of attitude change: *generalization* and *displacement*. Generalization occurs when attitude change toward a focal attitude object X (on both implicit and explicit levels) generalizes toward a lateral attitude object Y. Displacement occurs when there is no explicit attitude change toward X, but explicit and implicit attitudes toward Y do change nonetheless. The LAC model specifies conditions leading to each phenomenon and the cognitive processes involved. In a research proposal, Glaser and Bohner (2015) described several experiments designed to test the LAC model. In three studies reported here (total N = 281), 145 attitude objects were pilot-tested for use in those experiments. The focus lay on the similarity between objects, which is the main proposed moderator of LAC. Study 1 featured four sets of dinosaur drawings, which were tested for neutrality and similarity. Study 2 featured eight sets of attitude objects depicted in photographs (e.g., household articles and sports equipment), which were tested for valence and similarity. Studies 3(a) and 3(b) featured socio-political issues, which were tested for valence, importance, similarity, and participants' awareness of similarity. All stimuli and the results of pilot testing are presented.

Keywords: attitude, attitude change, displacement, generalization, lateral attitude change, persuasion, socio-political issues, stimulus sets

Creation of Stimulus Sets for Studying Lateral Attitude Change

Postulates 1 and 2 of the lateral attitude change (LAC) model describe the automatic activation of newly acquired information about a focal attitude object X and its automatic spreading toward a lateral object Y (Glaser et al., 2015). The aim of the present three studies was to create several sets of stimuli to be used in the study of LAC in future experiments. In order to study LAC experimentally, we needed stimuli (e.g., images of animals or products) with a relatively neutral valence to facilitate the observation of both positive and negative experimental effects. Furthermore, we needed stimuli that have a known, pre-existing association and may thus serve as focal and lateral attitude objects. This association may be expressed in terms of similarity. To find several lateral stimuli with different degrees of similarity to one focal stimulus, we decided to identify the focal object beforehand. Then potential lateral objects could be rank-ordered by participants according to their similarity to the focal object. The stimuli were designed to feature different degrees of similarity among one another.

In our research proposal (Glaser & Bohner, 2015) we had planned to test not only the similarity of stimuli, but also participants' awareness concerning such similarity, adapting procedures from Alvaro and Crano (1997, p. 952), who had asked their participants how likely it is that they would change their attitude concerning attitude object Y after having changed their attitude toward attitude object X before. On second thought, however, we realized that this question was only appropriate when used with socio-political issues as attitude objects in a persuasion paradigm, as did Alvaro and Crano. Other attitude objects, such as consumer products or other simple stimuli, as would be used in evaluative conditioning paradigms, however, would not lend themselves to this approach.

Therefore, we decided to use the approach described by Alvaro and Crano (1997) only in Study 3 in order to generate socio-political issues for use in persuasive messages.

Study 1

Originally, it was planned to use *Pokémon* as a first set of stimuli, see Study 1 in our research proposal (Glaser & Bohner, 2015). However, because of the increasing popularity of the game *Pokémon GO* at the time our project started (first half of 2016), we decided to use simple drawings of dinosaurs instead of Pokémon. Like Pokémon, dinosaurs may be assigned to different categories (e.g., pterosaurs or theropods; see Figures 1-4) and may vary gradually in similarity within categories.

Method

Participants and Design

Forty participants were recruited on Bielefeld University campus or via social networks (16 male, 23 female, 1 did not indicate their gender; $M_{age} = 26.15$, $SD_{age} = 5.36$; 97.5 % students). All participants answered the same online questionnaire run by Qualtrics software (https://www.qualtrics.com). Participants received EUR 2.50 for their participation. *Procedure*

Participants read the welcoming page in which the procedure of the survey was explained, and gave their informed consent. The 15-minute survey was divided into three parts. First, participants rated the valence of 42 different dinosaurs that were pre-sorted into four sets (see Figures 1-4), answering the question "How do you like the dinosaur?" on a response scale from 1, *not at all*, to 9, *very much* (in German: "Wie gefällt Ihnen der Dinosaurier?", 1, *gar nicht*, to 9, *sehr gut*). Then, participants sorted the dinosaurs of each of the four sets according to their similarity to one specific dinosaur within the same set that we had previously selected as a focal object. More precisely, participants viewed one *focal* dinosaur and nine to ten *lateral* dinosaurs of the same family (e.g., pterosaurs) beneath. Thereupon, participants dragged and dropped each lateral dinosaur into one of nine to ten empty numbered boxes to indicate how similar it is to the focal one. The closest box was reserved for the most similar dinosaur, the furthest box for the least similar one etc. Third, participants answered demographic questions (age, gender, study subject or occupation). Finally, participants were thanked and remunerated.

Results and Discussion

In order to test the attitude objects for neutrality, one-sample *t*-tests were conducted against the mean of each set for each of the valence ratings. Because of a general positivity trend in ratings, the sample's mean rather than the scale's midpoint was used as a neutral anchor (see Tables 1-4). The similarity rankings were analyzed for each set using Friedman tests to identify the mean rank of each object and analyze the ranking for significant differences between objects, $\chi^2_{Set-A}(8) = 96.609$, p < .001, $\chi^2_{Set-B}(9) = 237.232$, p < .001, $\chi^2_{Set-C}(9) = 89.864$, p < .001, $\chi^2_{Set-D}(8) = 151.029$, p < .001 (see Tables 5-8). Also, Wilcoxon Signed Ranks-tests, which compare the mean ranks of two objects, were conducted in order to identify which ranks differ significantly (see Tables 5-8).

Selection of Attitude Objects for Following Experiments

In order to choose the most suitable of the predetermined focal attitude objects as well as matching lateral objects, we specified two criteria: (a) neutrality, meaning that the dinosaur's mean evaluation must not deviate significantly from the sample's mean of the particular set; (b) sample homogeneity, meaning that the variance must not be above 4.0. Tables 5-8 present the mean rank for each object by set; superscripts indicate which criteria are fulfilled.

Suitable stimuli for future experiments could be found. For Experiment 4 of the LAC proposal (Glaser & Bohner, 2015), for instance, we used stimuli from Set A. The focal attitude object in Set A (M = 4.00, SE = 1.95, $s^2 = 3.80$) fulfilled our criteria, t(39) = -.984, p = .331. Two lateral objects that are of moderate similarity and fulfilled our two criteria were chosen for use in Experiment 4 (reported in Bohner et al., 2020, Study 1): A9, Friedman's mean rank = 5.49, and A7, Friedman's mean rank = 5.64 (see Table 5). Wilcoxon's signed ranks tests showed that both objects are significantly different from the first ranked object,

p < .001. There was no significant difference between the ranks of A7 and A9, p = .431. In Tables 9 – 13, descriptive data and correlations can be viewed. As a result of this pretest, several stimuli could be found with different degrees of similarity and valence. Future studies can use these sets of stimuli to find the ones that best meet the needs of their specific designs.

Study 2

Stimuli created in Study 2 (see Glaser & Bohner, 2015, Experiment 2) were from different families of products. Again, valence and similarity were tested as explained above for Study 1.

Method

Participants, Design, and Procedure

Forty-one participants were recruited on the Bielefeld University campus or via social networks (14 male, 25 female, 2 did not indicate gender; $M_{age} = 24.74$, $SD_{age} = 5.11$). Thirty-eight participants were students of different subjects, one participant was working and two did not indicate their occupation status. All participants answered the same online questionnaire run by Qualtrics software (https://www.qualtrics.com). Participants received EUR 4 for their participation. The procedure was the same as described for Study 1. Participants gave their informed consent on a welcoming page that also explained the procedure. The 30-minute survey was divided into the same three parts as in Experiment 1: valence, similarity, and demographics. The stimuli were 78 different products, divided into eight sets, each containing one predetermined focal object (see Figures 5-12).

Results and Discussion

In order to test objects for valence neutrality, one-sample *t*-tests were conducted against the mean of each set. Again, to counteract a positivity trend in rating, the sample's mean rather than the scale's midpoint was used as a neutral anchor (see Tables 14-21). The similarity rankings were analyzed for each set using Friedman tests to identify the mean rank of each object and analyze the ranking for significant difference between objects, χ^2_{Set} -

household(9) = 224.269,
$$p < .001$$
, χ^2 Set-hygiene(7) = 139.050, $p < .001$, χ^2 Set-kitchen(7) = 178.683,
 $p < .001$, χ^2 Set-vegetable(8) = 136.173, $p < .001$, χ^2 Set-cooking(7) = 70.376, $p < .001$, χ^2 Set-
sport(9) = 244.415, $p < .001$, χ^2 Set-dairy(8) = 136.814, $p < .001$ (see Tables 22-29). Also,
Wilcoxon signed ranks tests were conducted in order to identify which ranks differed
significantly from each other (see Tables 22-29). Descriptive data are shown in Table 30,
correlations in Tables 31-38.

Determination of Suitable Attitude Objects for Future Experiments

The same criteria as in Experiment 1 were used to find suitable lateral objects for the predetermined focal objects: (a) neutrality, meaning the product's mean evaluation must not deviate significantly from the sample's mean of the particular set; (b) sample homogeneity, meaning the variance has to be below 4.0.

Several suitable stimuli for future studies could be found: Three focal objects fulfilled our criteria: cake tin (Set *Cooking/Baking supplies*), t(39)=1.38, p = .176, $s^2 = 3.27$, cucumber (Set *Vegetables*), t(39)=1.79, p = .082, $s^2 = 3.65$, and shower gel (Set *Hygiene items*), t(39)=0.05, p = .963, $s^2 = 3.59$ (see Tables 23, 25, & 27). For the Set *Cooking/Baking supplies*, four potential lateral objects that fulfilled our criteria of neutrality and homogeneity could be found in different degrees of similarity: baking dish, Friedman's mean rank = 2.54, pot, Friedman's mean rank = 4.49, wok, Friedman's mean rank = 4.69, and sieve, Friedman's mean rank = 6.36. All ranks are significantly different from the first rank: p < .001, see Table 23). To test the difference between the potential lateral objects, again a Wilcoxon signed ranks test was conducted and showed a significant difference between baking dish and pot, p < .001, no significant difference between pot and wok, p = .771, and a significant difference between wok and sieve, p = .001. In the Set *Vegetables*, two suitable lateral objects could be found: carrots, Friedman's mean rank = 3.63, and salad, Friedman's mean rank = 6.10. Wilcoxon rank tests showed that both are significantly different from the first rank as well as from each other's ranks, p < .001 (see Table 25). In the last Set *Hygiene items*, one suitable lateral object with low similarity could be found: tooth paste, Friedman's mean rank = 5.8, significant difference to the first rank: p < .001 (see Table 27).

Several suitable focal and lateral objects could be found in different degrees of similarity. In Studies 1 and 2, we thus provided visual stimuli that could be used in future studies examining LAC (and other attitude change phenomena). Although simple drawings and products can be viewed as suitable stimuli in basic research, they lend themselves mainly to specific attitude change methods such as evaluative conditioning or mere exposure. In addition, we also wanted to create a stimulus set more suitable to persuasion paradigms and more amenable to applied research in Studies 3(a) and 3(b).

Study 3

Study 3 was designed to find different socio-political issues that could be used in later experiments addressing displacement effects, see Experiment 3 in our research proposal (Glaser & Bohner, 2015). Alvaro and Crano (1997) investigated indirect attitude change caused by minorities. These authors pretested the similarity between focal and lateral attitude objects by applying multidimensional scaling (MDS) methods to semantic differential ratings. Based on these aggregated semantic differential ratings, they arranged their stimuli (sociopolitical issues such as attitudes toward gun control or gay men in the military) in *N*dimensional space while maximizing the goodness of fit. Finally, they defined the similarity between attitude objects as their Euclidean distance in multidimensional space. To investigate whether participants were aware of the stimuli's similarity, they asked them to indicate the likelihood that personal attitude change in one issue would lead to attitude change in the other. Interestingly, they found a dissociation between the MDS-based similarity measure and the participants' subjective similarity judgments: Only the former predicted displacement between objects as a consequence of persuasion by a minority, whereas the latter did not. Hence, MDS may uncover a level of similarity that participants may not be aware of. Following this research, our Studies 3(a) and 3(b) were designed to find a set of sociopolitical issues representing different grades of similarity as well as different grades of participants' similarity awareness. Also, the socio-political issues were intended to be rather neutral in their valence, so that creating persuasion effects in both directions would be possible.

Study 3(a)

In Study 3(a), a set of different socio-political issues in the form of statements was pretested for neutrality and similarity.

Method

Participants and Design. Participants were recruited on Bielefeld University campus or via social networks. One hundred and forty participants completed the online questionnaire (92 female, 47 male, 1 diverse; $M_{age} = 24.28$, $SD_{age} = 8.05$; 96.4 % students), which was run by Qualtrics software (https://www.qualtrics.com). Participants received a 5-EUR-BestChoice coupon for their participation.

Procedure. Participants read the welcoming page in which the procedure of the survey was explained, and gave their informed consent. The 20-minute survey was divided into two parts. First, participants read and evaluated 25 statements (and one example statement) that indicated a certain position (e.g., "Every nation should strive for a multicultural society", in German: "Jede Nation sollte eine multikulturelle Gesellschaft anstreben"). Participants answered the questions "How much do you agree to this statement?" and "How important is this topic to you?", each on a response scale from 1, *not at all* to 9, *absolutely* (in German: "Wie sehr stimmen Sie dieser Aussage zu?" and "Wie wichtig ist Ihnen dieses Thema?", 1, *Gar nicht*, to 9, *Absolut*). Also, participants rated the socio-political issues on four semantic differentials: "bad-good", "weak-strong", "quiet-loud", "liberal-conservative" (in German: "schlecht - gut", "schwach - stark", "leise - laut", "liberal -konservativ"), again on a nine-point response scale. All statements used are shown in Table 39; correlations and descriptives

are shown in Tables 40 to 42. Then, participants answered demographic questions (age, gender, study subject or occupation), were thanked and dismissed.

Results and Discussion

Neutrality. In order to test the socio-political issues' neutrality, again, one-sample *t*-tests were conducted against the scale's mean ($M_{scale} = 5$). This way, eleven issues of neutral valence and seven of moderate importance could be extracted (see Tables 43 and 44).

Similarity. Euclidean distances among the issues were calculated based on the four semantic differential ratings. The Goodness of fit value for the two-dimensional solution was between excellent and perfect, Normalized Raw Stress = .013; Stress-I = .113; Stress-II = .245 (Kruskal, 1964); therefore, a two-dimensional graphical depiction (see Figure 13) was used to extract similarities among the attitude objects from the two-dimensional space.

In Study 3(a), we successfully extracted neutral attitude objects in terms of sociopolitical issues in different degrees of similarity toward each other. However, the question remained whether participants would be aware of the similarity between these issues. This was tested in Study 3(b).

Study 3(b)

The current study is based on Alvaro and Crano (1997). These authors had asked their participants: "If you changed your mind regarding your position on [...], what is the probability that you would also change your position on [...]?" We adapted this wording for our purposes by changing it into the third person, as we had suspected that a question in the first person might induce a bias toward attitudinal consistency (Cialdini et al., 1995). The question asked thus was about the likelihood that another person would change their attitude toward a given topic after having changed their attitude toward a related topic.

Method

Participants and Design. Participants were recruited on Bielefeld University campus or via social networks. Forty-nine participants completed the online questionnaire (33 female,

16 male; $M_{age} = 24.90$, $SD_{age} = 3.71$; 95.06 % students), which was run by Qualtrics software (https://www.qualtrics.com).

Procedure. Participants read the welcoming page in which the procedure of the survey was explained and gave their informed consent. The 5-minute survey encompassed 90 paired comparisons between 10 different socio-political issues (45 in one direction of wording, 45 in the other wording direction, e.g., *fasting* compared to *homoeopathy* and *homoeopathy* compared to *fasting*). The 10 statements were chosen from the results of Study 3(a) according to their neutrality. Participants were randomly allocated to one of two groups, meaning that each participant only worked on five issues to be compared to all others. Group 1 consisted of 22 participants that answered paired comparison items of five issues (fasting, homoeopathy, team-work, online supermarkets, and prolonged primary school) that were compared with all other issues. Group 2 consisted of 27 participants that worked on paired comparison items of five other issues (inclusion, basic income, speed limit, women quota, and religious symbols in public buildings) that were again compared with all other issues. In each task, participants read the question: "Imagine a person changes their attitude concerning [...]. How high is the probability in percent that this person will change their attitude concerning the following statements?" (in German: Stellen Sie sich vor, eine Person ändert Ihre Meinung zu [...]. Wie hoch ist die Wahrscheinlichkeit in Prozent, dass diese Person auch ihre Meinung zu folgenden Aussagen ändert?). Responses were made on a scale from 0 to 100 % in intervals of tens for the nine other statements (for an example, see Figure 14). Finally, they reported their age, gender, and study subject or occupation.

Results and Discussion

The distribution of the variables was checked visually via histograms and proved to be mostly positively skewed. Therefore, we used the median to aggregate the two different wording directions of the comparisons. To aggregate the wording directions, medians of all variables were calculated and then the median of the two medians was calculated (e.g., $Mdn_{fasthomp} = 54.00$ %, $Mdn_{hompfast} = 50.50$ %, $M_{Mfasthomp} = 52.25$ %,). Figure 15 shows all aggregated medians.

Our analyses yielded nine rather neutral stimuli with different degrees of similarity toward each other and different degrees of participants' similarity awareness. Those sociopolitical issues can be used in future studies to investigate LAC. Within the LAC project (Glaser & Bohner, 2015), we used stimuli created in the present set of studies in different experiments, see Experiment 4 (Dinosaurs), Experiment 7 (products), Experiment 9, 10, and 14 (socio-political issues). We are also making these stimuli available to other researchers.

References

- Alvaro, E. M., & Crano, W. D. (1997). Indirect minority influence: Evidence for leniency in source evaluation and counterargumentation. *Journal of Personality and Social Psychology*, 72 (5), 949–964. https://doi.org/10.1037/0022-3514.72.5.949
- Bohner, G., Elleringmann, L., Boege, R. M. J., Glaser, T., & Linne, R. (2020). Priming as a moderator of Lateral Attitude Change. Research Report, Bielefeld University. https://doi.org/10.4119/unibi/2940773
- Cialdini, R. B., Trost, M. R., & Newsom, J. T. (1995). Preference for consistency: The development of a valid measure and the discovery of surprising behavioral implications. *Journal of Personality and Social Psychology*, *69* (2), 318–328. https://doi.org/10.1037/0022-3514.69.2.318
- Glaser, T., & Bohner, G. (2015). Laterale Einstellungsänderung: Beschreibung eines Vorhabens.
- Glaser, T., Dickel, N., Liersch, B., Rees, J., Süssenbach, P., & Bohner, G. (2015). Lateral Attitude Change. *Personality and Social Psychology Review: An Official Journal of the Society for Personality and Social Psychology, Inc*, 19 (3), 257–276. https://doi.org/10.1177/1088868314546489
- Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. *Psychometrika*, 29 (1), 1–27. https://doi.org/10.1007/BF02289565
- Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. *Psychonomic Bulletin & Review*, 16 (2), 225–237. https://doi.org/10.3758/PBR.16.2.225

-	-		,	, 0	*	
			Sig.	Mean	95 % Confidence Inter	val of the Difference
Stimulus	t	df	(2-tailed)	Difference	Lower	Upper
A1 ^a (Focal)	984	39	.331	303	93	.32
A2	2.716	39	.010	1.022	.26	1.78
A3	4.054	39	<.001	1.297	.65	1.94
A4	2.868	39	.007	.997	.29	1.70
A5	-5.410	38	<.001	-1.303	-1.79	82
A6	-2.585	38	.014	816	-1.46	18
A7 ^a	806	38	.425	226	79	.34
A8 ^a	928	39	.359	328	-1.04	.39
A9 ^a	.824	39	.415	.247	36	.85
A10	-2.761	39	.009	803	-1.39	21

Exp. 1. One-Sample t-Test:	Stimulus-Set A (Pterosaurs) against Sample Mean

Note. Test Value = 4.303214. ^a = fulfillment of criterion 1: neutrality (no significant deviation from sample mean), acceptance of null hypothesis with Bayes factor (http://pcl.missouri.edu/bf-one-sample), (Rouder et al., 2009).

Table 2

Table 1

Exp. 1. One-Sample t-Test: Stimulus-Set B (Stegosaurs and Ceratops) against Sample Mean

			Sig.	Mean	95 % Confidence Inte	rval of the Difference
Stimulus	t	df	(2-tailed)	Difference	Lower	Upper
B1 ^a (Focal)	594	39	.556	186	82	.45
B2 ^a	1.682	39	.101	.514	10	1.13
B3 ^a	410	38	.684	121	72	.48
B4	-2.793	38	.008	788	-1.36	22
B5 ^a	1.017	39	.315	.339	33	1.01
B6 ^a	1.341	39	.188	.464	24	1.16
B7 ^a	035	39	.972	011	68	.65
B8 ^a	191	39	.849	061	71	.59
B9ª	-1.181	39	.245	386	-1.05	.28
B10 ^a	.694	39	.492	.214	41	.84
B11 ^a	038	39	.970	011	62	.59

Note. Test Value = 5.736458. ^a = fulfillment of criterion 1: neutrality (no significant deviation from sample mean), acceptance of null hypothesis with Bayes factor (http://pcl.missouri.edu/bf-one-sample), (Rouder et al., 2009).

1	1			/ 0	1	
			Sig.	Mean	95 % Confidence Int	erval of the Difference
Stimulus	t	df	(2-tailed)	Difference	Lower	Upper
C1 (Focal)	2.965	39	.005	.826	.26	1.39
C2+	606	39	.548	174	76	.41
C3+	1.489	38	.145	.466	17	1.1
C4+	.682	39	.499	.201	39	.8
C5+	.016	38	.988	.005	59	.6
C6+	211	39	.834	074	79	.64
C7+	.002	39	.998	.001	69	.69
C8	-3.589	39	.001	-1.174	-1.84	51
C9+	.321	39	.75	.101	53	.74
C10+	1.392	39	.172	.451	2	1.11
C11	-1.991	39	.054	574	-1.16	.01

_	-		~				
Frn	1	<i>One-Sample t-Test:</i>	Stimulus_Set	$C(I \cap n\sigma_N)$	orks) no	ainst Samnle Meau	1
$L_{\Lambda p}$.	1.	One sumple i resi.	Simulus Sei	C (Long II	cens) ug	unsi sumple mean	ı

Note. Test Value = 6.149242. ^a = fulfillment of criterion 1: neutrality (no significant deviation from sample mean), acceptance of null hypothesis with Bayes factor (http://pcl.missouri.edu/bf-one-sample), (Rouder et al., 2009).

Table 4
Exp. 1. One-Sample t-Test: Stimulus-Set D (Theropods) against Sample Mean

			Sig.	Mean	95 % Confidence Int	erval of the Difference
Stimulus	t	df	(2-tailed)	Difference	Lower	Upper
D1 ^a (Focal)	.685	39	.497	.219	43	.86
D2	-3.764	39	.001	881	-1.35	41
D3 ^a	-1.744	39	.089	506	-1.09	.08
D4 ^a	.567	39	.574	.169	43	.77
D5 ^a	.062	38	.951	.023	71	.76
D6	2.730	39	.009	.844	.22	1.47
$D7^{a}$	-1.138	39	.262	481	-1.34	.37
D8 ^a	644	38	.524	234	97	.50
D9 ^a	.060	39	.952	.019	61	.65
D10	3.108	39	.004	.844	.29	1.39

Note. Test Value = 5.131250. ^a = fulfillment of criterion 1: neutrality (no significant deviation from sample mean), acceptance of null hypothesis with Bayes factor (http://pcl.missouri.edu/bf-one-sample), (Rouder et al., 2009).

	Friedman's mean rank	Wilcoxon's Signed Ranks Test to the next rank p-value	Wilcoxon's Signed Ranks Test to the first rank p-value
A8 ^a	2.74	.756	•
A3	2.92	.159	.765
A6 ^b	3.46	<.001	.141
A9 ^{ab}	5.49	.431	<.001
A7 ^{ab}	5.64	.900	<.001
A2	5.77	.501	<.001
A5 ^b	6.05	.916	<.001
A4	6.15	.396	<.001
A10 ^b	6.77		<.001

Exp.1. Mean Ranks Set A

Note. ^a = criterion 1 fulfilled: valence is *not* significantly different from sample's mean (p < .05); ^b = criterion 2 fulfilled: variance < 4, Focal object: A1^{ab}.

Table 6

Exp.1.	Mean	Ranks	Set B
--------	------	-------	-------

	Friedman's mean rank	<i>Wilcoxon's Signed Ranks Test</i> to the next rank	<i>Wilcoxon's Signed Ranks Test</i> to the first rank
		<i>p</i> -value	<i>p</i> -value
B5 ^a	2.49	.324	
B6 ^a	2.72	.195	.324
${ m B3^{ab}}$	3.33	.446	.122
B4 ^b	3.38	.030	.031
B2 ^{ab}	4.23	<.001	<.001
$B11^{ab}$	6.97	.883	<.001
B10 ^{ab}	7.03	.224	<.001
B9 ^a	7.77	.041	<.001
B7 ^a	8.38	.618	<.001
B8 ^a	8.69		<.001

Note. ^a = criterion 1 fulfilled: valence is *not* significantly different from sample's mean (p < .05); ^b = criterion 2 fulfilled: variance < 4, Focal object: B1^{ab}.

	Friedman's mean rank	Wilcoxon's Signed Ranks Test to the next rank <i>p</i> -value	Wilcoxon's Signed Ranks Test to the first rank p-value
C4 ^{ab}	3.90	.867	k
$C3^{ab}$	3.97	.899	.867
C10 ^a	4.05	.692	.955
C9 ^{a(b)}	4.10	.081	.883
C7 ^a	5.15	.319	.100
${ m C5}^{ab}$	5.77	.510	.010
C6 ^a	6.18	.552	.015
C11 ^b	6.51	.537	<.001
$\mathrm{C2}^{\mathrm{ab}}$	6.97	.001	.001
C8	8.38		<.001

Exp.1. Mea	in Rani	ks Set C
------------	---------	----------

Note. ^a = criterion 1 fulfilled: valence is *not* significantly different from sample's mean (p < .05); ^b = criterion 2 fulfilled: variance < 4, Focal object: C1.

Table 8

Exp.1. Mean Ranks Set D

	Friedman's mean rank	Wilcoxon's Signed Ranks Test to the next rank	Wilcoxon's Signed Ranks Test to the first rank
- Davb	• • •	<i>p</i> -value	<i>p</i> -value
D9 ^{ab}	2.82	.370	
D10 ^b	3.21	.772	.370
D4 ^{ab}	3.36	.622	.223
D2 ^b	3.56	.043	.138
$D3^{ab}$	4.90	.077	.001
$D7^{a}$	5.74	.415	<.001
D5 ^a	6.15	.078	<.001
D6 ^b	7.08	.001	<.001
D8 ^a	8.18		<.001

Note. ^a = criterion 1 fulfilled: valence is *not* significantly different from sample's mean (p < .05); ^b = criterion 2 fulfilled: variance < 4, Focal object: D1^a.

Exp.1. Descriptive Data

stimulus	N	М	s^2	M_{min}	M_{max}
A1 ^{ab}	40	4.00	3.795	1	9
A2	40	5.33	5.661	1	9
A3	40	5.60	4.092	1	9
A4	40	5.30	4.831	1	9
A5 ^b	39	3.00	2.263	1	7
A6 ^b	39	3.49	3.888	1	8
A7 ^{ab}	39	4.08	3.073	1	9
A8 ^a	40	4.55	4.999	1	9
A9 ^{ab}	40	3.98	3.587	1	9
A10 ^b	40	3.50	3.385	1	8
B1 ^{a(b)}	40	5.55	3.946	1	9
B2 ^{ab}	40	6.25	3.731	2	9
B3 ^{ab}	39	5.62	3.401	2	9
B4 ^b	39	4.95	3.103	1	8
B5 ^a	40	6.08	4.430	2	9
B6 ^a	40	6.20	4.779	1	9
B7 ^a	40	5.73	4.307	2	9
B8 ^a	40	5.68	4.122	1	9
B9 ^a	40	5.35	4.285	2	8
B10 ^{ab}	40	5.95	3.792	2	9
B11 ^{ab}	40	5.73	3.589	2	9
C1 ^b	40	6.98	3.102	1	9
C2 ^{ab}	40	5.98	3.307	1	9
C3 ^{ab}	39	6.62	3.822	1	9
C4 ^{ab}	40	6.35	3.464	2	9
C5 ^{ab}	39	6.15	3.397	1	9
C6 ^a	40	6.08	4.943	1	9
C7 ^a	40	6.15	4.644	1	9
C8	40	4.98	4.281	1	9
C9 ^{a(b)}	40	6.25	3.936	1	9
C10 ^a	40	6.60	4.195	1	9
C11 ^b	40	5.58	3.328	1	9
D1 ^a	40	5.35	4.079	2	9
D2 ^b	40	4.25	2.192	1	8
D3 ^{ab}	40	4.63	3.369	1	9
D4 ^{ab}	40	5.30	3.549	2	9
D5ª	39	5.15	5.134	1	9
D6 ^b	40	5.98	3.820	2	9
D7ª	40	4.65	7.156	1	9
D8ª	39	4.90	5.147	1	9
D9 ^{ab}	40	5.15	3.874	2	9
D10 ^b	40	5.98	2.948	2	9

Note. ^a = criterion 1 fulfilled: valence is *not* significantly different from sample's mean (p < .05); ^b = criterion 2 fulfilled: variance < 4, Focal objects are: A1, B1, C1, and D1.

	A1	A2	A3	A4	A5	A6	A7	A8	A9
A1	1								
A2	.050	1							
A3	.540**	.081	1						
A4	.102	.471**	168	1					
A5	.187	.232	.200	.433**	1				
A6	.241	.387*	.290	.340*	.772**	1			
A7	007	056	.339*	080	.279	.339*	1		
A8	049	.506**	.220	.181	.261	.496**	$.380^{*}$	1	
A9	.536**	071	.287	.153	.539**	.474**	.302	015	1
A10	.451**	.296	.255	.380*	.539**	.545**	.250	.199	.284

Table 10Exp. 1. Correlation Table of Set A

Note. * p < .05, two-tailed; ** p < .01, two-tailed.

Table 11

Exp.1.	Exp.1. Correlation Table of Set B											
	B1	B2	В3	B4	В5	B6	B7	B8	В9	B10		
B1	1											
B2	.665**	1										
B3	.502**	.384*	1									
B4	.657**	.652**	.545**	1								
В5	.689**	.752**	.364*	.690**	1							
B6	.340*	.437**	.411**	.633**	.493**	1						
B7	.429**	.478**	.382*	.652**	.533**	.600**	1					
B8	.630**	.531**	.283	.448**	.564**	.362*	.441**	1				
B9	.282	.183	022	.271	.306	.398*	.399*	.467**	1			
B10	.518**	.412**	.135	.436**	.551**	.364*	.250	.294	.386*	1		
B11	.573**	.573**	.121	.570**	.623**	.509**	.469**	.669**	.293	.497**		

<i>Exp.1.</i> (Exp.1. Correlation Table of Set C												
	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10			
C1	1												
C2	.408**	1											
C3	.755**	.535**	1										
C4	.660**	.283	.631**	1									
C5	.202	.249	.075	.348*	1								
C6	.459**	.432**	.558**	.464**	.204	1							
C7	.521**	.315*	.463**	.447**	.171	.763**	1						
C8	.352*	.409**	.503**	.275	.192	.491**	$.570^{**}$	1					
С9	.802**	.634**	.830**	.663**	.259	.693**	.621**	.470**	1				
C10	.623**	.589**	.787**	.609**	.188	.671**	.630**	.657**	$.808^{**}$	1			
C11	.252	$.368^{*}$	$.397^{*}$.302	095	.451**	$.362^{*}$.153	.399*	.475**			

Note. * p < .05, two-tailed; ** p < .01, two-tailed.

Table 13

Exp.1. Correlation Table of Set D

Bupin ee	i entition 1								
	D1	D2	D3	D4	D5	D6	D7	D8	D9
D1	1								
D2	.304	1							
D3	.105	.460**	1						
D4	.437**	.138	.471**	1					
D5	.092	.174	$.440^{**}$.403*	1				
D6	.243	.109	.226	.218	.592**	1			
D7	.431**	.508**	.354*	.261	.086	.038	1		
D8	.427**	.433**	.539**	.252	.213	.179	.513**	1	
D9	.464**	.488**	.421**	.181	.100	.174	.755**	.650**	1
D10	.727**	.204	.306	.510**	.289	.474**	.456**	.372*	.509**

			Sig.	Mean		
Stimulus	t	df	(2-tailed)	Difference	Lower	Upper
Refridgerator ^a	-0.151	39	.881	052	75	.65
Oven	2.786	39	.008	.848	.23	1.46
Iron	-3.415	39	.002	-1.127	-1.79	46
Hair dryer ^a	471	39	.640	127	67	.42
Dish washer	3.429	39	.001	1.098	.45	1.75
Hand vacuum cleaner	-2.598	39	.013	952	-1.69	21
Freezer	-2.136	39	.039	752	-1.46	04
Microwave ^a	.757	39	.454	.273	46	1.00
Vacuum cleaner ^a	1.181	39	.245	.298	21	.81
Ventilator ^a	-1.284	39	.207	452	-1.16	.26
Washing machine	3.383	39	.002	.948	.38	1.51

Exp. 2. One-Sample t-Test: Electronics/Household Items against Sample Mean

Note. Test Value = 5,8523. ^a = fulfillment of criterion 1: neutrality (no significant deviation from sample mean), acceptance of null hypothesis with Bayes factor (http://pcl.missouri.edu/bf-one-sample), (Rouder et al., 2009)).

Table 15

Exp. 2. One-Sample t-Test: Cooking/baking Items against Sample Mean

					95 % Confidence Interva	l of the Difference
Stimulus	t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper
Baking dish ^a	0.611	39	.545	0.169	-0.39	0.73
Baking tray ^a	-0.871	39	.389	-0.281	-0.93	0.37
Cake tin ^a	1.379	39	.176	0.394	-0.18	0.97
Grate	-3.982	39	<.001	-1.231	-1.86	-0.61
Measuring cup ^a	-1.571	39	.124	-0.531	-1.21	0.15
Pan	2.716	39	.01	0.669	0.17	1.17
Pot ^a	1.706	39	.096	0.444	-0.08	0.97
Sieve ^a	-0.204	39	.839	-0.056	-0.61	0.50
Wok ^a	1.514	39	.138	0.419	-0.14	0.98

Note. Test Value = 6.0056. ^a = fulfillment of criterion 1: neutrality (no significant deviation from sample mean), acceptance of null hypothesis with Bayes factor (http://pcl.missouri.edu/bf-one-sample), (Rouder et al., 2009).

					95 % Confidence In	terval of the Difference
Stimulus	t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper
Blender	2.137	39	0.039	0.656	0.04	1.28
Coffee maker ^a	-1.618	39	.114	-0.644	-1.45	0.16
Electric kettle	2.001	39	.052	0.531	-0.01	1.07
Hand blender	3.702	39	.001	0.881	0.40	1.36
Hand mixer ^a	0.817	39	.419	0.231	-0.34	0.80
Milk frother	-3.684	39	.001	-1.294	-2.00	-0.58
Mini oven ^a	-0.597	39	.554	-0.194	-0.85	0.46
Toaster ^a	-0.527	39	.601	-0.169	-0.82	0.48

Exp. 2. One-Sample t-Test: Kitchen Ware against Sample Mean

Note. Test Value = 5.9938. ^a = fulfillment of criterion 1: neutrality (no significant deviation from sample mean), acceptance of null hypothesis with Bayes factor (http://pcl.missouri.edu/bf-one-sample), (Rouder et al., 2009).

Table 17

Exp. 2. One-Sample t-Test: Vegetables against Sample Mean

					95 % Confidence Inte	erval of the Difference
			Sig.	Mean		
Stimulus	t	df	(2-tailed)	Difference	Lower	Upper
Aubergine ^a	-0.809	39	.423	-0.285	-1	0.43
Bell pepper ^a	1.811	39	.078	0.615	-0.07	1.3
Carrots ^a	0.717	39	.478	0.215	-0.39	0.82
Cauliflower ^a	-0.995	39	.326	-0.36	-1.09	0.37
Cucumber ^a	1.787	39	.082	0.54	-0.07	1.15
Leek ^a	-1.435	39	.159	-0.46	-1.11	0.19
Potatoes	0.419	39	.678	0.14	-0.54	0.82
Radishes	-2.171	39	.036	-0.735	-1.42	-0.05
Salad ^a	1.804	39	.079	0.49	-0.06	1.04
Zucchini ^a	432	39	.668	160	91	.59

Note. Test Value = 6.6600. ^a = fulfillment of criterion 1: neutrality (no significant deviation from sample mean), acceptance of null hypothesis with Bayes factor (http://pcl.missouri.edu/bf-one-sample), (Rouder et al., 2009).

					95 % Confidence Interval of the Difference		
			Sig.	Mean	_		
Stimulus	t	df	(2-tailed)	Difference	Lower	Upper	
Butter ^a	-0.183	39	.856	-0.07	-0.84	0.7	
Condensed milk	-2.49	39	.017	-0.895	-1.62	-0.17	
Cream ^a	-1.058	39	.297	-0.32	-0.93	0.29	
Cream cheese	2.118	39	.041	0.73	0.03	1.43	
Crème fraîche ^a	-0.876	39	.387	-0.295	-0.98	0.39	
Milk ^a	1.691	39	.099	0.705	-0.14	1.55	
Mozzarella	2.307	39	.026	0.83	0.1	1.56	
Quark ^a	-0.915	39	.366	-0.32	-1.03	0.39	
Ricotta	-2.821	39	.007	-0.82	-1.41	-0.23	
Yoghurt ^a	1.285	39	.206	0.455	-0.26	1.17	

Exp. 2. One-Sample t-Test: Dairy Products against Sample Mean

Note. Test Value = 4.6450. ^a = fulfillment of criterion 1: neutrality (no significant deviation from sample mean), acceptance of null hypothesis with Bayes factor (http://pcl.missouri.edu/bf-one-sample), (Rouder et al., 2009).

Table 19

Exp. 2. One-Sample t-Test: Hygiene Items against Sample Mean

					95 % Confidence Int	erval of the Difference
			Sig.	Mean		
Stimulus	t	df	(2-tailed)	Difference	Lower	Upper
Bathing foam ^a	-0.466	39	.644	-0.186	-0.99	0.62
Deodorant ^a	-0.233	39	.817	-0.086	-0.83	0.66
Facial lotion ^a	-0.711	39	.481	-0.236	-0.91	0.44
Facial tonic ^a	0.221	39	.826	0.089	-0.72	0.9
Lip balm ^a	0.173	39	.863	0.064	-0.68	0.81
Liquid Soap ^a	0.372	39	.712	0.139	-0.62	0.89
Shower gel ^a	0.046	39	.963	0.014	-0.59	0.62
Toilet paper ^a	-0.1	39	.921	-0.036	-0.76	0.69
Tooth paste ^a	0.799	39	.429	0.239	-0.37	0.84

Note. Test Value = 4.5111. ^a = fulfillment of criterion 1: neutrality (no significant deviation from sample mean), acceptance of null hypothesis with Bayes factor (http://pcl.missouri.edu/bf-one-sample), (Rouder et al., 2009).

					95 % Confidence Interval of the Differen			
Stimulus	t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper		
Binoculars ^a	-0.408	39	.686	-0.136	-0.81	0.54		
Compass ^a	-0.637	39	.528	-0.237	-0.99	0.51		
GPS-device ^a	-0.327	39	.746	-0.112	-0.8	0.58		
Jacket ^a	1.543	39	.131	0.489	-0.15	1.13		
Penknife ^a	0.664	39	.511	0.263	-0.54	1.07		
Rucksack	3.132	39	.003	1.088	0.39	1.79		
Shoes ^a	0.942	39	.352	0.388	-0.45	1.22		
Torch ^a	-0.039	39	.969	-0.011	-0.61	0.58		
Waist pack	-3.87	39	<.001	-1.362	-2.07	-0.65		
Walking sticks	-3.616	39	.001	-1.261	-1.97	-0.56		

Exp. 2. One-Sample t-Test: Outdoor Equipment against Sample Mean

Note. Test Value = 5.2115. ^a = fulfillment of criterion 1: neutrality (no significant deviation from sample mean), acceptance of null hypothesis with Bayes factor (http://pcl.missouri.edu/bf-one-sample), (Rouder et al., 2009).

Table 21

Exp. 2. One-Sample t-Test: Sports Products against Sample Mean

					95 % Confidence Interval of the Difference			
Stimulus	t	df	Sig. (2-tailed)	Mean Difference	Lower	Upper		
Aerobic-stepper ^a	-1.832	39	.075	-0.646	-1.36	0.07		
Bike ^a	-0.054	39	.957	-0.021	-0.79	0.75		
Dumbbells ^a	1.498	39	.142	0.479	-0.17	1.13		
Gymnastic ball	2.649	39	.012	0.88	0.21	1.55		
Skipping rope ^a	0.094	39	.926	0.029	-0.61	0.66		
Stair stepper big ^a	0.275	39	.785	0.104	-0.66	0.87		
Stepper small ^a	-1.838	39	.074	-0.67	-1.41	0.07		
Swinging rod	-3.983	39	<.001	-1.321	-1.99	-0.65		
Treadmill ^a	1.218	39	.231	0.43	-0.28	1.14		
Weight bench ^a	-0.058	39	.954	-0.021	-0.74	0.7		
Yoga mat	2.274	39	.029	0.755	0.08	1.43		

Note. Test Value = 5.0705. ^a = fulfillment of criterion 1: neutrality (no significant deviation from sample mean), acceptance of null hypothesis with Bayes factor (http://pcl.missouri.edu/bf-one-sample), (Rouder et al., 2009).

	Friedman's mean rank	Wilcoxon's Signed Ranks Test to the next rank <i>p</i> -value	Wilcoxon's Signed Ranks Te to the first rank <i>p</i> -value		
Freezer	1.38	<.001			
Dishwasher	3.18	.537	<.001		
Oven ^b	3.35	.041	<.001		
Washing machine ^b	4.08	.050	<.001		
Microwave ^a	5.10	<.001	<.001		
Vacuum cleaner ^{ab}	7.05	.314	<.001		
Ventilator ^a	7.50	.978	<.001		
Iron	7.75	.724	<.001		
Hair dryer ^{ab}	7.80	.870	<.001		
Hand vacuum cleaner	7.83				

Exp. 2. Electronics/Household Items (Focal Object: Refrigerator)

Note. Bonferroni corrected level of significance: .006 (.05/8); ^a = valence rating neutral (p > .05; one-sample t-test to sample's mean).

Table 23

Exp. 2. Cooking/Baking (Focal Object: Cake Tin)

	Friedman's mean rank	Wilcoxon's Signed Ranks Test to the next rank	Wilcoxon's Signed Ranks Test to the first rank		
		<i>p</i> -value	<i>p</i> -value		
Baking dish ^{ab}	2.54	.170	*		
Baking tray ^a	3.08	.077	.170		
Pan ^b	4.23	.385	.003		
Pot ^{ab}	4.49	.771	<.001		
Wok ^{ab}	4.69	.396	<.001		
Grate ^b	5.10	.486	<.001		
Measuring cup ^a	5.51	.042	<.001		
Sieve ^{ab}	6.36		<.001		

Note. Bonferroni corrected level of significance: .007 (.05/7); ^a = valence rating neutral (p > .05; one-sample t-test to sample's mean).

	Friedman's mean rank	Wilcoxon's Signed Ranks Test to the next rank p-value	Wilcoxon's Signed Ranks Tes to the first rank p-value		
Hand blender ^b	1.85	.347	p vulue		
Hand mixer ^{ab}	2.03	<.001	.347		
Milk frother	3.23	.001	<.001		
Electric kettle ^b	4.58	.415	<.001		
Coffee maker ^a	4.90	.002	<.001		
Sandwich toaster	6.28	.983	<.001		
Toaster ^a	6.35	.107	<.001		
Mini oven ^a	6.80		<.001		

Exp. 2. Kitchen Ware (Focal Object: Blender)

Note. Bonferroni corrected level of significance: .007 (.05/7); ^a = valence rating neutral (p > .05; one-sample t-test to sample's mean).

Table 25

Exp. 2. Vegetables (Focal Object: Cucumber)

	Friedman's mean rank	Wilcoxon's Signed Ranks Test to the next rank	Wilcoxon's Signed Ranks Test to the first rank
71.:	1.60	p-value	p-value
Zucchini ^a	1.60	<.001	
Carrots ^{ab}	3.63	.308	<.001
Leek ^a	4.08	.887	<.001
Aubergine ^a	4.20	.013	<.001
Bell pepper ^a	5.60	.957	<.001
Radishes	5.68	.353	<.001
Salad ^{ab}	6.10	.102	<.001
Cauliflower ^a	6.90	.426	<.001
Potatoes ^a	7.23		<.001

Note. Bonferroni corrected level of significance: .006 (.05/8);

^a = valence rating neutral (p > .05; one-sample t-test to sample's mean).

Table 26

Exp. 2. Dairy Products (Focal Object: Milk^a)

	Friedman's mean rank	Wilcoxon's Signed Ranks Test to the next rank	Wilcoxon's Signed Ranks Test to the first rank
		p-value	p-value
Condensed milk	2.03	.004	
Yoghurt ^a	3.03	.460	.004
Cream ^{ab}	3.54	.012	<.001
Quark ^a	4.82	.761	<.001
Crème fraiche	5.10	.076	<.001
Cream cheese	5.95	.197	<.001
Ricotta ^b	6.51	.828	<.001
Butter ^a	6.79	.410	<.001
Mozzarella	7.23		<.001

Note. Bonferroni corrected level of significance: .006 (.05/8); ^a = valence rating neutral (p > .05; one-sample t-test to sample's mean).

	Friedman's mean rank	Wilcoxon's Signed Ranks Test to the next rank	Wilcoxon's Signed Ranks Test to the first rank
		p-value	p-value
Liquid soap ^a	2.45	.675	
Bathing foam ^a	2.48	.025	.675
Facial tonic ^a	3.45	.013	.007
Deodorant ^a	4.53	.984	<.001
Facial lotion ^a	4.60	.233	<.001
Tooth paste ^{ab}	5.08	.043	<.001
Lip balm ^a	5.90	<.001	<.001
Toilet paper ^a	7.53		<.001

Exp. 2. Hygiene Items (Focal Object: Shower Gel^{ab})

Note. Bonferroni corrected level of significance: .007 (.05/7); ^a = valence rating neutral (p > .05; one-sample t-test to sample's mean).

Table 28

Exp. 2. Outdoor Items (Focal Object: Rucksack)

	Friedman's mean rank	Wilcoxon's Signed Ranks Test to the next rank p-value	Wilcoxon's Signed Ranks Test to the first rank p-value
Jacket ^a	2.20	.509	
Shoes ^a	2.43	.582	.509
Waist pack	2.48	<.001	.940
Walking sticks	6.20	.892	<.001
Flashlight ^a	6.23	.914	<.001
Penknife ^a	6.25	.930	<.001
Binoculars ^a	6.28	.673	<.001
Compass ^a	6.45	.973	<.001
GPS-device ^a	6.50		<.001

Note. Bonferroni corrected level of significance: .006 (.05/8); ^a = valence rating neutral (p > .05; one-sample t-test to sample's mean).

Table 29

Exp. 2. Sports Equipment (Focal Object: Stair-Stepper big^a)

	Friedman's mean rank	Wilcoxon's Signed Ranks Test to the next rank p-value	Wilcoxon's Signed Ranks Test to the first rank p-value
Bike ^a	1.59	<.001	F
Treadmill ^a	2.46	.454	<.001
Stepper small ^a	2.69	<.001	.001
Aerobic-stepper ^a	4.64	.104	<.001
Weight bench ^a	5.41	.009	<.001
Skipping rope ^{ab}	6.92	.736	<.001
Dumbbells ^a	7.10	.065	<.001
Gymnastic ball	7.95	.910	<.001
Swinging rod	8.00	.642	<.001
Yoga mat	8.23		<.001

Note. Bonferroni corrected level of significance: .055 (.05/9); ^a = valence rating neutral (p > .05; one-sample t-test to sample's mean).

Exp. 2. Descriptives: Mean, Minimum, Maximum, and Variance for each Object in Alphabetic Order

stimulus			М	Min	Max	s^2			
Aerobic-stepper ^a	4.43	1	9	4.968	Measuring cup ^a	5.48	1	9	4.562
Aubergine ^a	6.38	1	9	4.960	Microwave ^a	6.13	1	9	5.189
Baking dish ^{ab}	6.18	2	9	3.070	Milk ^{a*}	5.35	1	9	6.954
Baking tray ^a	5.73	2	9	4.153	Milk frother	4.7	1	9	4.933
Bathing foam ^a	4.33	1	9	6.381	Mini oven ^a	5.8	1	9	4.215
Bell pepper ^a	7.28	1	9	4.614	Mozzarella	5.48	1	9	5.180
Bike ^a	5.05	1	9	5.794	Oven ^b	6.7	1	9	3.702
Binoculars ^a	5.08	1	9	4.482	Pan ^b	6.68	3	9	2.430
Blender ^{b*}	6.65	2	9	3.771	Penknife ^a	5.48	1	9	6.305
Butter ^a	4.58	1	9	5.842	Pot ^{ab}	6.45	3	9	2.716
Cake tin ^{ab*}	6.4	2	9	3.272	Potatoes ^a	6.8	3	9	4.473
Carrots ^{ab}	6.88	3	9	3.599	Quark ^a	4.33	1	9	4.893
Cauliflower ^a	6.3	1	9	5.240	Radishes	5.93	2	9	4.584
Coffee maker ^a	5.35	1	9	6.335	Refrigerator ^{a*}	5.8	1	9	4.779
Compass ^a	4.98	1	9	5.513	Ricotta ^b	3.83	1	7	3.378
Condensed milk	3.75	1	9	5.167	Rucksack*	6.3	2	9	4.831
Cream ^{ab}	4.33	1	8	3.661	Salad ^{ab}	7.15	2	9	2.952
Cream cheese	5.38	1	9	4.752	Shoes ^a	5.6	1	9	6.812
Crème Fraîche ^a	4.35	1	9	4.541	Shower gel ^{ab*}	4.53	1	8	3.587
Cucumber ^{ab*}	7.2	2	9	3.652	Sieve ^{ab}	5.95	1	9	2.972
Deodorant ^a	4.43	1	9	5.480	Skipping rope ^{ab}	5.1	1	9	3.940
Dish washer	6.95	1	9	4.101	Stair stepper big ^{a*}	5.18	1	9	5.789
Dumbbells ^a	5.55	1	9	4.101	Stepper small ^a	4.4	1	9	5.322
Electric kettle ^b	6.53	3	9	2.819	Swinging rod	3.75	1	8	4.397
Facial lotion ^a	4.28	1	9	4.410	Toaster ^a	5.83	1	9	4.097
Facial tonic ^a	4.6	1	9	6.452	Toilet paper ^a	4.48	1	9	5.180
Freezer	5.1	1	9	4.964	Tooth paste ^{ab}	4.75	1	9	3.576
GPS-device ^a	5.1	1	9	4.657	Torch ^{ab}	5.2	2	9	3.445
Grate ^b	4.78	1	9	3.818	Treadmill ^a	5.5	1	9	4.973
Gymnastic ball	5.95	2	9	4.406	Vacuum cleaner ^{ab}	6.15	1	9	2.541
Hair dryer ^{ab}	5.73	1	8	2.924	Ventilator ^a	5.4	1	9	4.964
Hand blender 1 ^b	6.23	3	9	3.204	Waist pack	3.85	1	9	4.951
Hand mixer ^{ab}	6.88	2	9	2.265	Walking sticks	3.95	1	9	4.871
Hand vacuum cleaner	4.9	1	9	5.373	Washing machine ^b	6.8	2	9	3.140
Iron	4.73	1	9	4.360	Weight bench ^a	5.05	1	9	5.022
Jacket ^a	5.7	1	9	4.012	Wok ^{ab}	6.43	2	9	3.070
Leek ^a	6.2	2	9	4.113	Yoga mat	5.83	1	9	4.406
Lip balm ^a	4.58	1	9	5.429	Yoghurt ^a	5.1	1	9	5.018
Liquid soap ^a	4.65	1	9	5.565	Zucchini ^a	6.5	1	9	5.485

Note. ^a = criterion 1 fulfilled: valence is *not* significantly different from sample's mean (p < .05); ^b = criterion 2 fulfilled: variance < 4, * = focal object.

Exp. 2. Correlation Table of Electronics

		1	2	3	4	5	6	7	8	9	10
1.	Refridgerator ^a	1									
2.	Oven	051	1								
3.	Iron	.504**	.068	1							
4.	Hair dryer ^a	.204	.146	.402*	1						
5.	Dish washer	.368*	.536**	.148	.344*	1					
6.	Hand vacuum cleaner	.294	.033	.445**	.362*	001	1				
7.	Freezer	.715**	.025	.651**	.425**	.405**	.508**	1			
8.	Microwave ^a	.129	.038	.169	.035	.207	.473**	.321*	1		
9.	Vacuum cleaner ^a	.178	.174	.329*	.561**	.114	.420**	.299	.051	1	
10.	Ventilator ^a	.264	043	.283	.420**	.215	.494**	.555**	.510**	.098	1
11.	Washing machine	,234	,463**	,276	,515**	,662**	,064	,486**	,019	,256	.326*

Note. * p < .05, two-tailed; ** p < .01, two-tailed.

Table 32

Exp. 2. Correlation Table of Cooking/Baking Items

	1	2	3	4	5	6	7	8
1. Baking dish ^a	1							
 Baking tray^a 	.351	1						
3. Cake tin ^a	.414	.434	1					
4. Grate	.491	.621	.389	1				
5. Measuring cup ^a	.614	.290	.401	.671	1			
6. Pan	.369	.318	.529	.413	.425	1		
7. Pot ^a	.389	.366	.282	.271	.404	.308	1	
8. Sieve ^a	.393	.069	.319	034	.278	.280	.396	1
9. Wok ^a	.226	.120	.277	.171	.205	.174	.474	.33

Exp. 2. Correlation Table of Kitchen Ware

		1	2	3	4	5	6	7
1.	Blender	1						
2.	Coffee maker ^a	.440**	1					
3.	Electric kettle	.058	.234	1				
4.	Hand blender	.493**	.411**	.240	1			
5.	Hand mixer ^a	.377*	.221	.292	.448**	1		
6.	Milk frother	.474**	.386*	.318*	.196	.379*	1	
7.	Mini oven ^a	.143	.386*	.336*	.199	.661**	.509**	1
8.	Toaster ^a	.206	.465**	.224	.296	.068	.250	.380*

Note. * p < .05, two-tailed; ** p < .01, two-tailed.

Table 34

Exp. 2. Correlation Table of Vegetables

		1	2	3	4	5	6	7	8	9
1.	Aubergine ^a	1								
2.	Bell pepper ^a	.342*	1							
3.	Carrots ^a	.454**	.223	1						
4.	Cauliflower ^a	.475**	.045	.658**	1					
5.	Cucumber ^a	.404**	.286	.523**	.314*	1				
6.	Leek ^a	.522**	.264	.573**	.655**	.466**	1			
7.	Potatoes	.136	055	.326*	.309	.289	.117	1		
8.	Radishes	.571**	.373*	.610**	.528**	.442**	.529**	.246	1	
9.	Salad ^a	.602**	.412**	.675**	.477**	.530**	.462**	.383*	.624**	1
10.	Zucchini ^a	.597**	$.380^{*}$.499**	.402*	.367*	.443**	.223	.412**	.612

Note. * p < .05, two-tailed; ** p < .01, two-tailed.

Table 35

Exp. 2. Correlation Table of Dairy Products

		1	2	3	4	5	6	7	8	9
1.	Butter ^a	1								
2.	Condensed milk	.512	1							
3.	Cream ^a	.236	.184	1						
4.	Cream cheese	.513	.609	.173	1					
5.	Crème fraîche ^a	.418	.537	.443	.600	1				
6.	Milk ^a	.587	.593	.450	.614	.502	1			
7.	Mozzarella	.481	.271	.276	.501	.520	.437	1		
8.	Quark ^a	.401	.547	.271	.559	.525	.459	.427	1	
9.	Ricotta	.364	.407	.432	.426	.330	.346	.241	.399	1
10.	Yoghurt ^a	.439	.499	.459	.580	.551	.750	.438	.620	.31

Елр. 2.	Correlation Tuble	bj Hygiene I	liems						
		1	2	3	4	5	6	7	8
1.	Bathing foam ^a	1							
2.	Deodorant ^a	.692**	1						
3.	Facial lotion ^a	.592**	.664**	1					
4.	Facial tonic ^a	.460**	.598**	.771**	1				
5.	Lip balm ^a	.621**	.542**	.606**	.529**	1			
6.	Liquid Soap ^a	.484**	.677**	.522**	.417**	.509**	1		
7.	Shower gel ^a	.719**	.567**	.433**	.524**	.557**	$.340^{*}$	1	
8.	Toilet paper ^a	.601**	.558**	.444**	.313*	.315*	.524**	.500**	1
9.	Tooth paste ^a	.409**	.557**	.515**	.523**	.470**	.733**	.324*	.463**

Exp. 2. Correlation Table of Hygiene Items

Note. * p < .05, two-tailed; ** p < .01, two-tailed.

Table 37

Exp. 2. Correlation Table of Outdoor Equipment

		1	2	3	4	5	6	7	8	9
1.	Binoculars ^a	1								
2.	Compass ^a	.351	1							
3.	GPS-device ^a	.228	.537	1						
4.	Jacket ^a	.441	.244	.066	1					
5.	Penknife ^a	.152	.224	113	.355	1				
6.	Rucksack	049	.026	044	.423	.461	1			
7.	Shoes ^a	.089	.090	.126	.369	.460	.442	1		
8.	Torch ^a	.381	.125	088	.389	.480	.305	.472	1	
9.	Waist pack	.378	.176	050	.473	.270	.182	.356	.448	1
10.	Walking sticks	.413	.326	.303	.223	.129	.045	.099	.084	.150

Exp. 2. Correlation Table of Sport Products

		1	2	3	4	5	6	7	8	9	10
1.	Aerobic-stepper ^a	1									
2.	Bike ^a	.297	1								
3.	Dumbbells ^a	.203	.399*	1							
4.	Gymnastic ball	.284	005	.278	1						
5.	Skipping rope ^a	.489**	.246	.445**	.235	1					
6.	Stair stepper big ^a	.234	.813**	.417**	003	.163	1				
7.	Stepper small ^a	.320*	.481**	.292	.100	.153	.509**	1			
8.	Swinging rod	.298	.302	.226	.102	.394*	.100	.276	1		
9.	Treadmill ^a	.369*	.669**	.471**	.263	.336*	.485**	.334*	.143	1	
10.	Weight bench ^a	148	.289	.463**	.202	.010	.360*	.170	.063	.308	1
11.	Yoga mat	.115	.245	.500**	.213	.275	.235	.243	051	.326*	.269

CREATION OF STIMULUS SETS FOR STUDYING LAC Table 39

Exp. 3 (a). Item Wordings: Socio-Political Statements.

Item (short version)	Wording
Asyl (Restriction of asylum law)	"Das Asylrecht in Deutschland sollte beschränkt werden."
Buil (Usage of old buildings)	"Alte Gebäude sollten lieber anderweitig genutzt werden, anstatt sie für einen Neubau abzureißen."
Byps (Bypss)	"Überlastete Verkehrsknotenpunkte sollten immer durch eine Umgehungstraße entlastet werden."
Carp (Car parks)	"In Innenstädten sollten mehr unterirdische Parkhäuser gebaut werden."
Cult (Intercultural events at	
University)	"Universitäten sollten mehr Geld für interkulturelle Veranstaltungen ausgeben."
Exmp (Example item: Veggie-	"In Kantinen sollte an mindestens einem Tag pro Woche ausschließlich vegetarisches Essen
Day)	angeboten werden."
Fast (Fasting)	"Heilfasten ist eine effiziente Methode für die innere Reinigung des Körpers."
Green (Green spaces)	"Das Anlegen neuer Grünflächen würde auch kleine Städte attraktiver für Touristen machen."
Heat (Sensor controlled heating)	"Sensorgesteuerte Heizungen sollten zukünftiger Standard sein."
Homp (Homoeopathy)	"Homöopathische Behandlungen sollten von den gesetzlichen Krankenkassen übernommen werden."
· • /~ • · • • • · ·	"Kinder mit geistigen Behinderungen sollten nicht in der Förderschule, sondern - im Sinne der
incl (Inclusive schooling)	Inklusion - zusammen mit nicht behinderten Kindern unterrichtet werden."
Inm (Basic income)	"In Deutschland sollte ein bedingungsloses Grundeinkommen eingeführt werden."
Mult (Multicultural society)	"Jede Nation sollte eine multikulturelle Gesellschaft anstreben."
	"Die Regierung sollte die sozialen Medien auf falsche Nachrichtenerstattung (sog. Fake-News)
News (Fake-news control)	kontrollieren."
	"In Deutschland sollte der Wechsel von der Grundschule auf weiterführende Schulen erst nach der
Prim (Prolonged primary)	6. Klasse erfolgen."
Quot (Women quota)	"Es sollte in der Führungsebene jedes Unternehmens eine Frauenquote geben."
Reli (Religious symbols in state- owned buildings)	"In staatlichen Einrichtungen sollten jegliche religiösen Symbole verboten werden."
Rivr (River exposure)	"Flussfreilegungen führen dazu, Städte und Dörfer zu verschönern."
Smut (Smutherner)	"Es sollten mehr Smart-Häuser gebaut werden, in denen alle elektronischen Geräte über das
Smrt (Smart houses)	Smartphone gesteuert werden können."
Sovr (National sovereignty in EU)	"Auch in Staatenbündnissen wie der EU sollte ein großes Maß an nationaler Souveränität erhalten
	bleiben."
Spee (Stricter speed limits)	"Auf Autobahnen sollten strengere Tempolimits eingeführt werden."
Sprt (Sport breaks in school)	"Während des Unterrichts sollte es kurze Pausen geben, in denen ein paar Sportübungen gemacht werden."
Supm (Online supermarket)	"Mehr Supermärkte sollten die Möglichkeit zur Online-Bestellung und Lebensmittellieferung anbieten."
Team (Teamwork)	"In der Berufswelt sollte es mehr Gruppenarbeit geben."
Valu (Defense of European values)	"Europäische Werte sollten verteidigt werden, auch wenn dies zu Konflikten führt."
Vote (Online voting)	"Zukünftig sollte man auch online wählen können."
· •	y used in Experiment 3 (a) in alphabetical order.

Note. All items in exact wording used in Experiment 3 (a) in alphabetical order.

Table	40
-------	----

Exp. 3 (a). Correlations Between Participants' Agreement to all Items

	asyl	buil	byps	carp	cult	exmp	fastn	green	heat	homp	incl	incm	mult	news	quot	reli	rivr	schl	smrt	sovr	spee	sprt	supm	team	valu
Asyl	1																								
Buil	022	1																							
Byps	.063	121	1																						
Carp	.224**	055	.199*	1																					
Cult	405**	.265**	.143	.104	1																				
exmp	115	.048	.041	076	.067	1																			
Fastn	.039	054	.283**	088	007	.187*	1																		
green	038	.127	.112	.071	.349**	.065	.057	1																	
Heat	.222**	034	.210*	.471**	.197*	101	067	.111	1																
homp	.001	.019	.121	.100	.165	.078	.415**	.243**	003	1															
Incl	264**	.095	037	090	.343**	.123	115	.222**	.009	.003	1														
Incm	054	006	.256**	.048	$.176^{*}$.057	090	.059	.054	.071	.268**	1													
Mult	368**	.136	.186*	.131	.415**	.150	018	.176*	.160	.158	.203*	.250**	1												
news	.076	.061	.183*	.142	.264**	099	.105	.248**	.193*	.159	.069	.217*	.224**	1											
Quot	.087	003	.041	.070	.147	.063	.027	.172*	.031	$.188^{*}$.117	.253**	.167*	.199*	1										
Reli	.202*	.175*	015	.119	056	005	264**	050	.133	186*	048	.101	027	090	.156	1									
Rivr	067	.155	.117	.211*	.087	.066	$.188^{*}$.133	.057	.078	.012	.078	.279**	.003	.049	.018	1								
Schl	178*	039	.027	.027	004	.153	088	143	104	028	.183*	$.180^{*}$	102	030	053	.062	.113	1							
Smrt	.194*	078	$.178^{*}$.173*	.085	.042	177*	.110	.367**	049	.095	.096	071	.122	.083	.196*	.004	.005	1						
Sovr	.362**	.105	.131	.166*	020	156	.108	075	.221**	.056	173*	075	258**	.103	.053	.037	001	.039	.046	1					
Spee	125	.176*	218**	129	.061	.126	138	.088	067	069	.164	.056	.127	145	.066	.125	009	.022	157	180*	1				
Sprt	068	057	.148	.112	.104	.287**	.064	.132	.156	.081	.184*	.025	.103	.141	.128	013	$.170^{*}$.190*	.126	175*	.146	1			
Supm	.128	.113	.070	.126	.074	173*	253**	021	.233**	.015	.028	.213*	.057	.150	.250**	.269**	026	.032	.397**	.018	.012	.096	1		
Team	087	057	.036	.043	.266**	053	.110	.307**	.215*	.261**	.174*	.047	.086	.097	.219**	073	.028	.043	007	.042	.148	.276**	.038	1	
Valu	.101	.095	058	.136	029	.070	097	015	.248**	172*	067	073	006	144	.044	.221**	.224**	.018	.001	.238**	.091	028	.097	.074	1
Vote	.059	.030	.128	035	.141	.146	101	.019	.052	.023	.073	.177*	.172*	.038	.095	.218**	013	.094	.161	.065	.103	051	.175*	.139	.145

Note. * p < .05, two-tailed; ** p < .01, two-tailed. For item list see Table 39.

Exp. 3 (a). Descriptive Statistics of Importance and Agreement Concerning the 25 (+ one Example Item) Socio-Political Issues.

	Impo	rtance	Agree	ement
-	M	sd ²	М	sd^2
Asyl (Restriction of asylum law)	6.71	3.19	4.47	6.8
Buil (Usage of old buildings)	4.69	4.23	5.87	5.26
Byps (Bypss)	4.74	4.24	6.4	3.02
Carp (Car parks)	4.1	5.26	5.83	3.8
Cult (Intercultural events at University)	5.09	4.35	5.87	4.26
Exmp (Example item: Veggie-Day)	5.29	6.34	5.12	8.45
Fast (Fasting)	3.74	5.95	5.11	5.73
Green (Green spaces)	5.29	5.1	6.54	4.48
Heat (Sensor controlled heating)	4.4	5.97	5.84	4.93
Homp (Homoeopathy)	5.7	6.77	5.47	8.21
Incl (Inclusive schooling)	6.36	4.33	5.08	6.32
Inm (Basic income)	6.25	3.9	5.54	6.42
Mult (Multicultural society)	6.51	4.38	6.66	4.9
News (Fake-news control)	6.21	3.94	5.97	6.39
Prim (Prolonged primary)	5.28	4.65	4.91	5.94
Quot (Women quota)	6.06	5.4	4.99	7.44
Reli (Religious symbols in state-owned buildings)	5.38	4.8	5.16	8.34
Rivr (River exposure)	3.94	4.76	5.95	4.18
Smrt (Smart houses)	4.07	6.1	4.08	4.84
Sovr (National sovereignty in EU)	5.6	4.18	5.66	3.88
Spee (Stricter speed limits)	5.41	5.06	4.65	7.81
Sprt (Sport breaks in school)	4.83	6.88	5.71	6.8
Supm (Online supermarket)	4.29	5.17	5.52	5.52
Team (Team work)	5.45	4.05	5.11	5.58
Valu (Defense of European values)	5.86	4.94	6.11	4.3
Vote (Online voting)	5.71	6.23	4.82	9.39

Note. Means and variances of indicated importance and of agreement with the 25 (+ one example) socio-political issues in alphabetical order. N = 140.

Exp. 3 (a). Descriptive Statistics of Semantic Differentials for 25 (+one Example Item) Socio-Political Issues.

	good	– bad	weak –	strong	quiet -	– loud	liberal – c	onservative
	М	sd²	М	sd ²	М	sd^2	М	sd^2
Asyl (Restriction of asylum law)	4.27	6.13	4.62	5.99	6.07	4.58	6.96	4.57
Buil (Usage of old buildings)	5.99	4.32	5.41	3.42	5.04	2.93	5.35	3.44
Byps (Bypss)	6.41	3.15	5.85	2.83	5.29	3.78	4.81	2.4
Carp (Car parks)	5.99	3.9	5.49	3.35	4.86	2.69	4.81	2.39
Cult (Intercultural events at University)	6.54	4.54	6.12	4.04	5.73	3.65	3.19	2.97
Exmp (Example item: Veggie-Day)	5.56	6.42	5.26	5.4	5.35	4.72	3.6	4.39
Fast (Fasting)	5.48	4.7	5.21	4.48	4.44	4.19	4.53	3.7
Green (Green spaces)	7.34	3.66	6.43	4.26	4.65	4.79	4.49	3.88
Heat (Sensor controlled heating)	6.33	3.39	5.7	3.32	4.76	3.51	4.61	2.95
Homp (Homoeopathy)	5.65	8.2	5.16	6.05	4.7	4.7	3.58	4.02
Incl (Inclusive schooling)	5.9	6.67	5.77	5.96	5.92	4.75	3.34	3.59
Inm (Basic income)	5.66	6.33	5.5	4.93	5.75	3.76	3.53	4.41
Mult (Multicultural society)	7.11	4.04	6.86	4.11	6.56	3.31	2.89	4.63
News (Fake-news control)	6.14	6.16	5.86	5.2	5.97	4.43	5.32	4.62
Prim (Prolonged primary)	5.42	5.55	5.06	4.72	4.87	2.82	4.32	2.98
Quot (Women quota)	5.31	6.72	5.37	6.11	6.09	4.77	3.86	5.4
Reli (Religious symbols in state- owned buildings)	4.52	7.26	4.8	6.02	5.76	5.33	4.8	6.71
Rivr (River exposure)	5.99	4.01	5.39	4.02	5.16	3.81	4.74	2.51
Smrt (Smart houses)	4.8	4.32	4.91	4.06	4.69	3.41	3.56	3.56
Sovr (National sovereignty in EU)	5.79	3.56	5.72	3.45	5.76	3.13	6.26	4.56
Spee (Stricter speed limits)	5.11	6.07	5.1	4.95	5.17	4.24	5.5	4.57
Sprt (Sport breaks in school)	6.12	6.58	5.85	5.09	5.86	4.45	3.92	4.53
Supm (Online supermarket)	5.52	5.52	5.05	3.99	5	3.37	3.8	3.24
Feam (Team work)	5.48	4.57	5.6	3.85	5.6	3	3.94	2.49
Valu (Defense of European values)	6.46	3.99	6.18	3.92	6.1	3.75	5.32	5.34
Vote (Online voting)	4.96	8.29	5.00	6.82	4.77	5.69	3.14	4.61

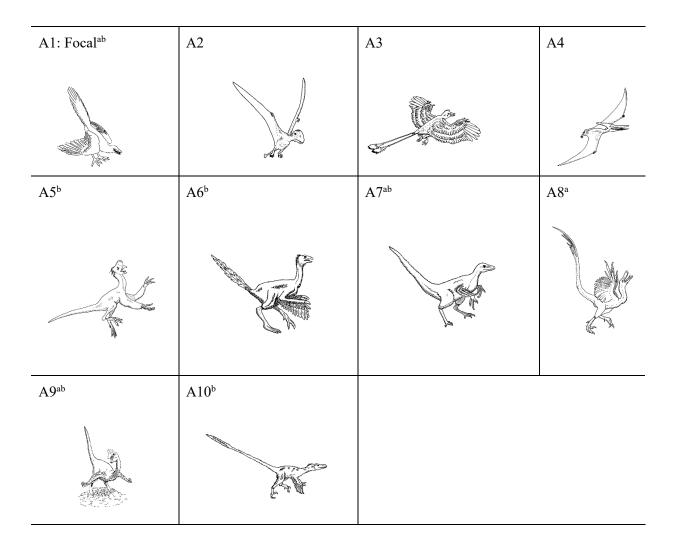
Note. Means and variances for four semantic differentials (bad-good, weak-strong, quiet-loud, liberal-conservative) for the 25 (+one example) socio-political issues in alphabetical order. N = 140.

Table 43

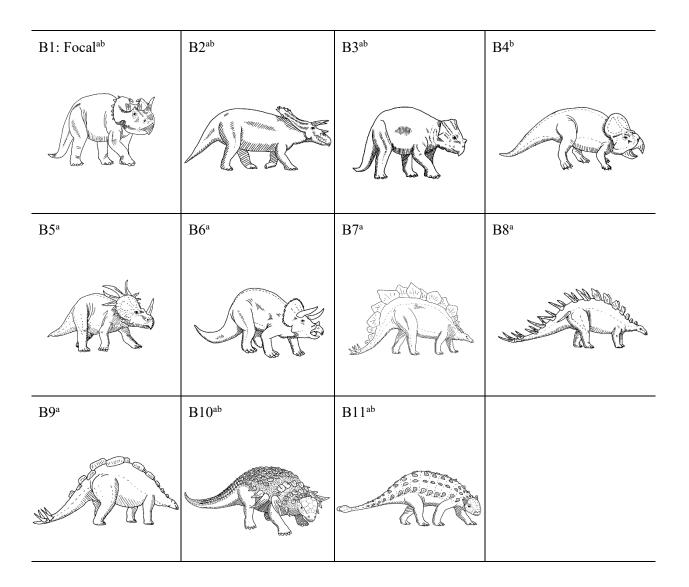
Exp. 3 (a). Non-Significant Results from One-Sample t-test: Agreement to Socio-Political Issues Compared with Scale Mean

		df	Sig. (2-tailed)	Mean	95 % Confidence Interval of the Difference	
Торіс	t				Lower	Upper
Fasting	.565	139	.573	.114	29	.51
Homoeopathy	1.947	139	.054	.471	01	.95
Team work	.572	139	.568	.114	28	.51
Online supermarket	1.217	139	.226	.264	16	.69
Prolonged Primary school	416	139	.678	086	49	.32
Inclusion	.370	139	.712	.079	34	.50
Online voting	690	139	.492	179	69	.33
Speed limits	-1.482	139	.141	350	82	.12
Women quota	062	139	.951	014	47	.44
Religious symbols in state-run facilities	.673	139	.502	.164	32	.65

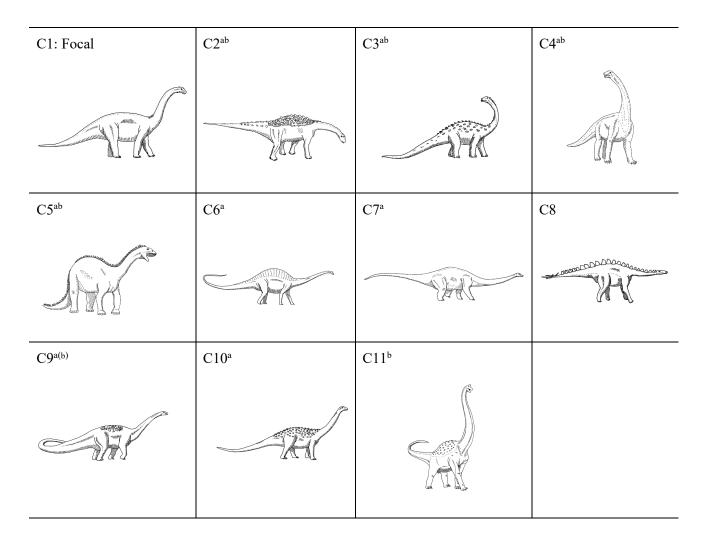
Note. Only those issues are displayed which can be viewed as mediocre in valence. One-sample t-test, test-value = 5. Acceptance of null hypothesis with Bayes factor (http://pcl.missouri.edu/bf-one-sample), (Rouder et al., 2009).

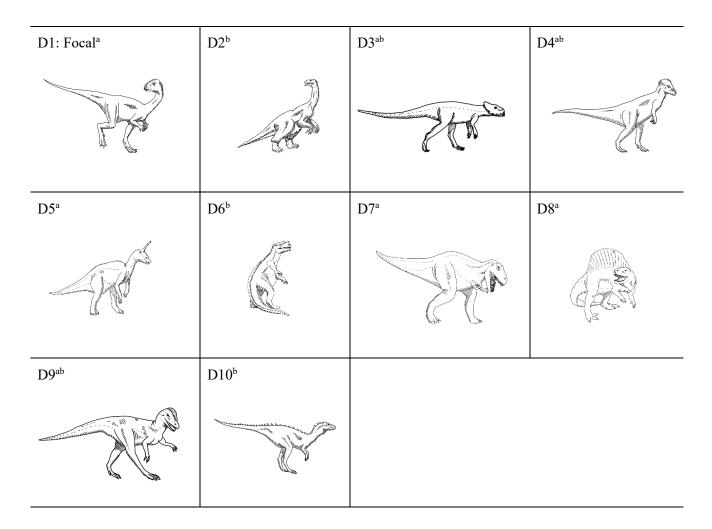

Table 44

Exp. 3 (a). Non-Significant Results from One-Sample t-test: Importance of Socio-Political Issues Compared with Scale Mean


					95 % Confidence Interval of the Difference	
			Sig.	Mean	· · ·	
Торіс	t	df	(2-tailed)	Difference	Lower	Upper
Green space	1.534	139	.127	.293	08	.67
Bypass	-1.478	139	.142	257	60	.09
Usage of old buildings	-1.808	139	.073	314	66	.03
Prolonged primary school	1.529	139	.129	.279	08	.64
Sport breaks in school Intercultural events of	773	139	.441	171	61	.27
universities	.486	139	.628	.086	26	.43

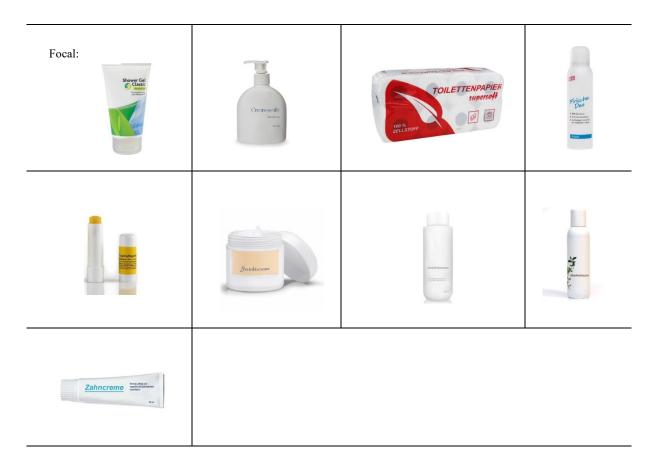
Note. Only those issues are displayed which can be viewed as mediocre important to subjects. One-sample t-test, test-value = 5. Acceptance of null hypothesis with Bayes factor (http://pcl.missouri.edu/bf-one-sample), (Rouder et al., 2009).


Exp. 1. Stimulus Set A, Pterosaurs


Exp. 1. Stimulus Set B: Stegosaurs and Ceratops

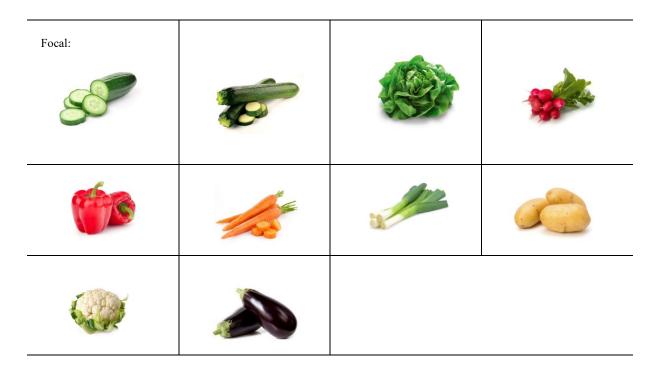
Exp. 1. Stimulus Set C: Long-Necks

Exp. 1. Stimulus Set D: Two-Legged

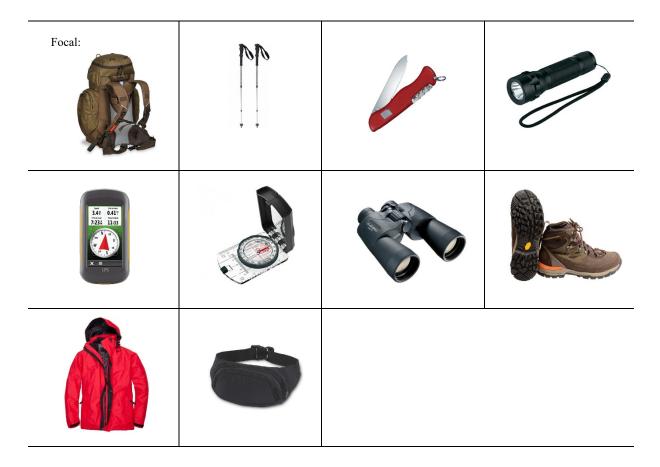


Focal:		
		<u> </u>

Exp. 2. Electronic Devices/Household Items


Note. From left to right: refrigerator^a, washing machine^b, oven^b, freezer, microwave^a, ventilator^a, hair dryer^{ab}, vacuum cleaner^{ab}, hand vacuum cleaner, iron. (^acriterion 1 fulfilled: valence is *not* significantly different from sample's mean (p < .05); ^bcriterion 2 fulfilled: variance < 4).

Exp. 2. Hygiene Articles


Note. From left to right: shower gel^{ab}, liquid soap^a, toilet paper^a, deodorant^a, lip balm^a, facial lotion^a, facial tonic^a, bathing foam^a, tooth paste^{ab}. (^acriterion 1 fulfilled: valence is *not* significantly different from sample's mean (p < .05); ^bcriterion 2 fulfilled: variance < 4).

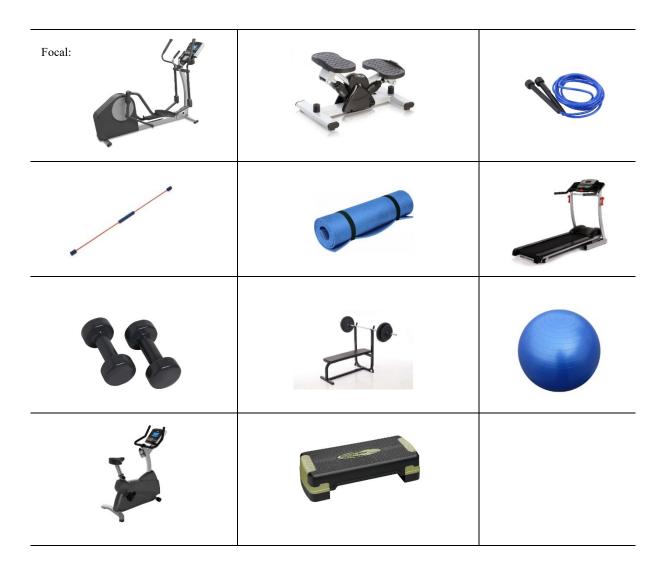
Exp. 2. Vegetables

Note. From left to right: cucumber^{ab}, zucchini^a, salad^{ab}, radishes, bell peppers^a, carrots^{ab}, leek^a, potatoes^a, cauliflower^a, aubergines^a. (^acriterion 1 fulfilled: valence is *not* significantly different from sample's mean (p < .05); ^bcriterion 2 fulfilled: variance < 4).

Exp. 2. Hiking Equipment

Note. From left to right: rucksack, walking sticks, penknife, torch, GPS-devise, compass, binoculars, shoes, jacket, waist pack. (acriterion 1 fulfilled: valence is *not* significantly different from sample's mean (p < .05); ^bcriterion 2 fulfilled: variance < 4).

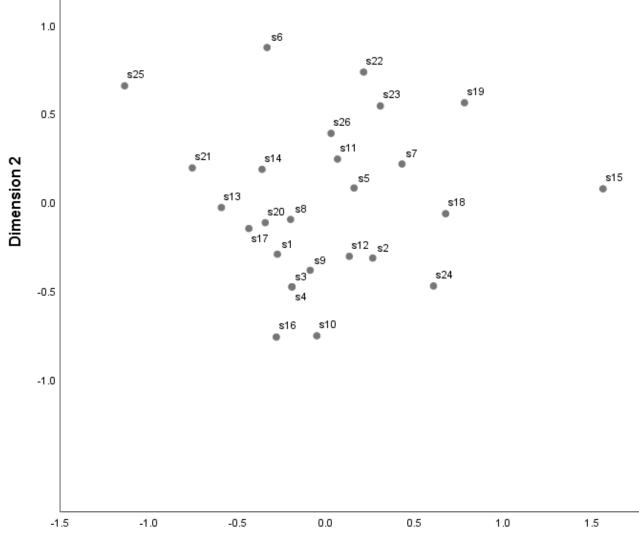
Exp. 2. Kitchen Ware


Note. From left to right: blender^b, electric kettle^b, toaster^a, hand blender^b, sandwich toaster (valence item was missing, item was only used in ranks testing), milk frother, mini oven^a, coffee maker^a, hand mixer^{ab}. (^acriterion 1 fulfilled: valence is *not* significantly different from sample's mean (p < .05); ^bcriterion 2 fulfilled: variance < 4).

Exp. 2. Cooking/Baking Equipment

Note. From left to right: Cake tin^{ab}, wok^{ab}, pot^{ab}, sieve^{ab}, pan^b, grate^b, measuring cup^a, baking tray^a, baking dish^{ab}. (^acriterion 1 fulfilled: valence is *not* significantly different from sample's mean (p < .05); ^bcriterion 2 fulfilled: variance < 4).

Exp. 2. Sports Equipment


Note. From left to right: Stair-stepper big^a, Stepper-small^a, skipping rope^{ab}, swinging rod, yoga mat, treadmill^a, dumbbells^{ab}, weight bench^a, gymnastic ball, bike^a, aerobic-stepper^a. (^acriterion 1 fulfilled: valence is *not* significantly different from sample's mean (p < .05); ^bcriterion 2 fulfilled: variance < 4).

Exp. 2. Dairy Products

Note. From left to right: Milk^a, ricotta^b, quark^a, mozzarella, condensed milk, yoghurt^a, cream cheese, créme fraîche^a, butter^a, cream^{ab}. (^acriterion 1 fulfilled: valence is *not* significantly different from sample's mean (p < .05); ^bcriterion 2 fulfilled: variance < 4).

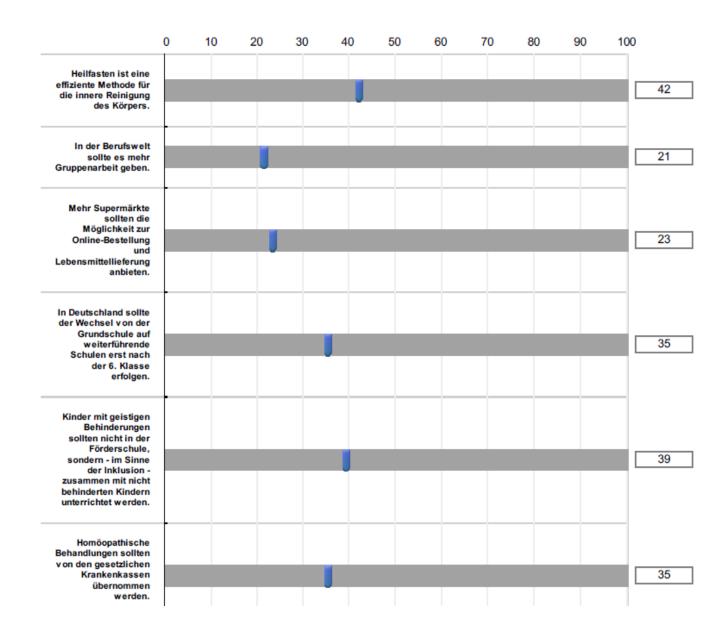
Dimension 1

Note. All 25 (+ one example item) socio-political issues in a two-dimensional space:

- s1 Example: Veggie day Fasting^a s2
- Homoeopathy^a s3
- Car parks s4
- s5
- River exposure
- s6 Green spaces^b
- s7 Usage of old buildings^b
- s8 Team work^a s9 Online supermarket^a
- s10 Smart houses
- Sensor controlled heating s11
- s12 Prolonged primary^{ab}
- s13 Inclusive schooling^a
- Sport breaks in school^b s14
- s15 Restriction of right of
 - asylum
- Online voting^a s16
- s17 Basic income

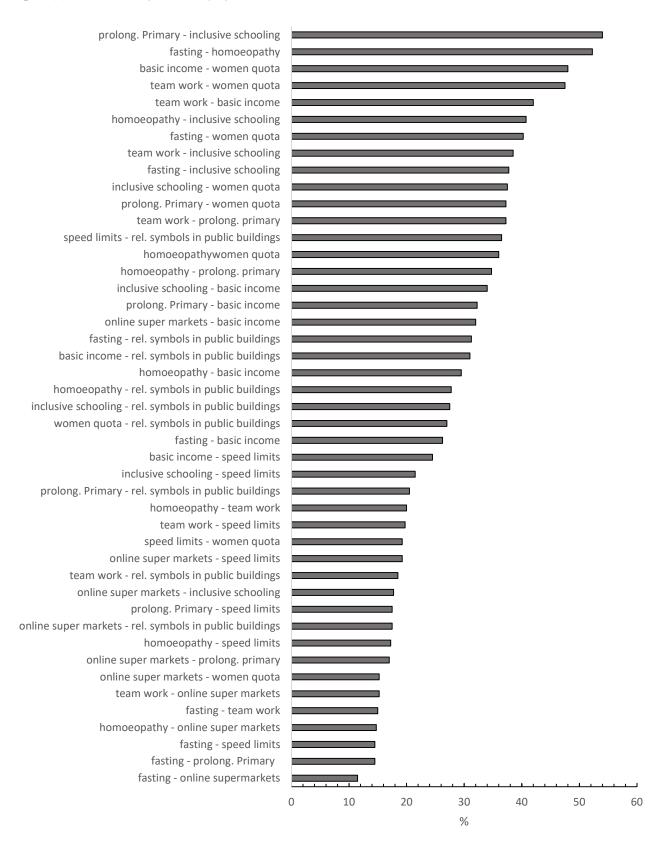
- s18 Stricter speed limits^a
- s19 National sovereignty
- s20 Women quota^a
- s21 Intercultural events at university^b
- s22 European values
- s23 Fake news
- s24 Religious symbols^a
- Multicultural society s25
- s26 Bypass^b

^aagreement is *not* significantly different from scale's midpoint (p < .05), ^bimportance is *not* significantly different from scale's midpoint (p < .05).


Exp. 3 (b). Example Item of the Study to Test Awareness of Similarity Between Nine Different Socio-Political Issues

Grundeinkommen.

Stellen Sie sich vor, eine Person ändert Ihre Meinung zu


"In Deutschland sollte ein bedingungsloses Grundeinkommen eingeführt werden."

Wie hoch ist die Wahrscheinlichkeit in Prozent, dass diese Person auch ihre Meinung zu folgenden Aussagen ändert?

Note. Depicted here: "Basic income. Imagine a person changes their attitude concerning "Basic income should be introduced in Germany." How likely is it in percent that this person also changes their attitude concerning the following statements?" Below, different statements can be viewed on the left. The response scale from 0 to 100 % can be answered via slider. The given answer is depicted on the right hand side.

Exp. 3 (b). Awareness of Similarity of Attitude Socio-Political Issues

Note. Aggregated responses of participants concerning their estimation how probable it is that attitude toward attitude topic B (second topic named in X-axis) changes after attitude A (first topic named in Y-axis) had changed. Medians were aggregated from Experiment 3 (b).