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Abstract
Super-resolution (SR) fluorescencemicroscopy is typically carried out on researchmicroscopes
equippedwith high-NATIRF objectives and powerful laser light sources. Super-resolution optical
fluctuation imaging (SOFI) is a fast SR technique capable of live-cell imaging, that is compatible with
manywide-fieldmicroscope systems.However, especially when employing fluorescent proteins, a key
part of the imaging system is a very sensitive andwell calibrated camera sensor. The substantial costs of
such systems precludemany research groups from employing SR imaging techniques. Here, we
examine towhat extent SOFI can be performed using a range of imaging hardware comprising
different technologies and costs. In particular, we quantitatively compare the performance of an
industry-gradeCMOS camera to both state-of-the-art emCCDand sCMOSdetectors, with SOFI-
specificmetrics.We show that SOFI data can be obtained using a cost-efficient industry-grade sensor,
both on commercial and home-builtmicroscope systems, though our analysis also readily exposes the
merits of the per-pixel corrections performed in scientific cameras.

1. Introduction

The ability to quantitatively and specifically image biological structures of interestmakesfluorescence
microscopy an essential tool in the life sciences. However, its spatial resolution is limited in a conventional
imaging systemdue to the diffraction of light. To overcome this limitation, a range of super-resolution (SR)
techniques has been developed and enhanced over the last two decades [1, 2]. These techniques offer a
tremendous improvement in spatial resolution, though they typically have at least one trade-off: methods like
stimulated emission depletion or variants of structured illuminationmicroscopymaintain high temporal
resolution, but require highly complex additions to themicroscopes illumination system. Techniques in the
group of singlemolecule localizationmicroscopy (SMLM), on the other hand, require thousands of images to be
recorded, and thus yield very low temporal resolution. They also typically require high-end imaging systems,
with powerful laser light sources and high-NAobjectives, limiting their use to those scientists who have access to
such equipment. Driven by this observation, several initiatives have been started over the past years to
‘democratize’fluorescencemicroscopy. These aim for a careful trade-off between performance and cost, instead
ofmaximizing systemperformance. This goal can be achieved by a combination of open-source/open-access
software and hardware blueprints, as well as repurposing commodity industrial or consumer hardware [3–9].

Highly sensitive cameras often pose a substantial portion of amicroscope’s cost. A high-end sCMOS camera,
for example, can exceed 10.000 Euro at the time of this writing. In comparison to conventional industry-grade
cameras, priced under 1000 Euro, the value of these scientific-grade cameras lies in their higher performance in
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terms of signal-to-noise-ratio (SNR), increased acquisition speed, higher detection sensitivity and extensive
manufacturer-provided calibration. Nevertheless, recent work has shown that evenwithin the demanding realm
of SRmicroscopy, acceptable to good performance can be obtainedwith industry-grade components. For
example, an industry-grade camera is sufficient for SR techniques based on SMLMsuch as dSTORMand
fPALM,whichwas confirmed by extensive analysis and characterization of these camera systems [5, 10]. A key
reason for this success is the fact thatmost organic fluorophores are very bright, emittingmany photons before
photo-destruction occurs, which reduces the overall sensitivity requirements for the camera. Furthermore, the
magnification in these systems is typically tuned so that the point-spread function is sampled bymultiple
detector pixels at once, which can reduce the impact of imperfect pixelwise calibration.While localization
microscopy provides a very high spatial resolution it does so at a cost to temporal resolution, with the labeling
strategies leading to the highest resolutions even requiring fixation of the sample. However, a vast amount of
biological questions requires the use of SR live-cell imaging techniques. It is therefore important to question to
what extent the inexpensive detectors can also be employed for this purpose.

Super-resolutionopticalfluctuation imaging (SOFI) [11] is an establishedSRmicroscopymethod,workingnot
onlywithquantumdots [11] andorganic dyes [12], but alsowith genetically-encodedfluorescent proteins [13, 14],
which is a great asset for biological research.This technique combines an isotropic increase in spatial resolutionwith a
good temporal resolution, rendering it especially useful for livingbiological samples [13–17]. Like other diffraction-
unlimited techniques, such as SMLM, the key ingredient for SOFImicroscopy is theuse of dynamicfluorescent
labels. SOFI relies on the statistical analysis ofmultiple images acquired fromthe same sample, labeledwith
fluorophores that show independent and transientnon-emissive intermittencies, or ‘blinking’behavior. Probes that
display these dynamics, such as photochromicfluorescentproteins, have been shown to result in a two- to three-fold
spatial resolution improvementover the classical diffraction-limited resolution [13, 14]. The SOFI framework even
allows formultiplexing of several emitters,withhighly similar steady-statefluorescence characteristics, using
differences in their blinkingbehavior [18]. In addition to the conventional visualizationoffluorophoredistributions,
SOFIhas also beenused to visualize biosensor activitieswith similar spatial resolution enhancements [19, 20].

In contrast to SMLM,however, the key of SOFI-based analysis is its reliance on spatio-temporal correlations in
the signal. To avoid artifacts, this places rather unusual demandson the image sensor, as the acquisition system
itself shouldnot introduce correlations (stemming i.e. from read-out electronics) into the raw images. In thiswork
we set out to establish and characterize towhat extent different camera architectures can beused for SOFI,
investigating both an inexpensive industry-grade camera andhigh-end scientific cameras.We focused on theuse
of genetically-encodedfluorescent proteins,whose overall brightness is considerably lower than those of organic
dyes.We found that SOFI imaging canbeperformedwellwith all three systems, providing goodbaseline imaging
with the industry-grade camera, though the scientific systemsprovide increased quantitative accuracy andhigher
sensitivity in the red regionof the visual spectrum.Ourworkdirectly enhances the accessibility to the scientific
community, and readily enhances the utility of this versatile imaging technique.Weadditionally demonstrate its
use on ahome-built, free-standingmicroscope, in linewith the goal of reducing theoverall systemcosts.

2. Results

Wedirectly compared three different cameras via pairwise evaluation through a 50/50 beam splitting cube (see
table 1 andfigure 1, panels (C) and (E)). This approach allows the same signal (frame by frame image of the
sample) to be detected by two cameras, and thus the quantitative analysis is not influenced by sample variation.
For comparisonwe selected twohigh-end cameras, commonly employed for SR imaging, with two different
sensor architectures: theHamamatsu Fusion (sCMOS) and the Andor Ixon-ultra-897 (EMCCD). As the third
camerawe employed an IDSμEyeUI-3060CP-M-GLRev.2 industry-grade CMOS camera (list price around
650 Euro). This latter camera has been represented, with a similar purpose, as a viable alternative for dSTORM
imaging [5].

2.1. Sample and tuning of data acquisition
To enable a critical assessment of the camera SNRs and their sensitivity, we usedCos-7 cells wheremicrotubules
werefluorescently stained (seeMethods). Thesefiber-like, three-dimensional cytoskeletal structures show a
wide variety of thicknesses and exhibit branching, whichmakes them excellent structures to demonstrate SR
imaging.We stained these structures with a photo-switching protein, photochromic ffDronpa [21], whichwas
linked tomicrotubule-associated protein 4 (MAP4). The emission spectrumof ffDronpa peaks at about 515 nm,
which coincideswell with the region of highest detection efficiency of all three cameras (see figure 1, panels (A)
and (B)). In all cases we adjusted the excitation intensity to obtain an emitter τ-value [18] (decorrelation time) of
around one exposure time (see figure 1, panel (F)). This value offers the highest signal for reconstruction using
conventional second-order SOFI imagingwithout lag time.
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Figure 1.Quantum efficiency and calibration of the SOFI experiments. The raw quantum efficiency curves provided by the
manufacturers (panel (A)) show a high sensitivity for green light. To obtain the detection efficiency for ffDronpa, these curves have
beenweightedwith its emission spectrum [32, 33] (panel (B)) and it becomes obvious all cameras should bewell suited to detect
ffDronpa. For the emCCD, an effectiveQE, weightedwith a factor of 2, is also displayed to account for its readout process [23]. A
sketch (panel (C)) and photograph (panel (E)) of the beamsplitter arrangement illustrated the setup in use. L1 is part of themicroscope
body (gray box) and is normally used to focus on a camera.Here, L2 ( f=125 mm) is utilized to parallelize the detection beamwhich
is needed to avoid aberrationswith the 50/50 beam splitter. The blue tape is used tomake the construction fully light-tight. The
splitting ratio has been tested by swapping cameras between the reflective and transmissive configuration for three samples each and
comparing their count slopes (panel (D)). Slopefitting yields an effective splitting ratio of 49%–51% in the beam splitting device,
which is well within expectation and tolerance for the experiments. Lastly, excitation light levels were tuned so that a τ of around 1was
reached for the 40 ms exposure times used in the experiments (panel (F)).

Table 1.Technical comparison of the three cameras tested, and focal length used in the 50/50 beam splitter. The latter were selected such
that the overallmagnification for each camera (using a 100× objective, and re-magnifying in the relay telescope) yields closelymatching
projected pixel sizes in the range of 100 nm. The pixel sizes quoted are directly calculated from the given focal lengths.

Hamamatsu Fusion Andor Ixon-Ultra 897 IDSμEyeUI-3060CP-M-GLRev.2

Chip type Front-illuminated sCMOS Back-illuminated emCCD Back-illuminatedCMOS (Sony IMX174)
Sensor size (pixel) 2048×2048 512×512 1920×1200
Pixel size (μm) 6.5 16 5.86

Quantum efficiency (@518 nm) 0.79 0.95 (0.48 eff.) 0.77

Read noise 0.7e− <1e−a 7e−

Readoutmode Rolling shutter

global reset option

Frame transfer option Global shutter

Telescope lenses (mm) 125/80 125/200 125/75

Proj. pixel size (nm) 101.5 100.0 97.6

a The read noise of an emCCDcamera is a function of the em-gain; for the IxonUltra, it is specified to 50e− (rms), thus reduced to<1e− by

an em-gain of 50× ormore (seemanufacturer data sheet).
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2.2. Scientificmicroscope system
For the camera comparisonwe started off with a high-end researchmicroscope.We used aNikon Eclipse TI2
microscope body outfittedwith a high-power 200 mW488 nm laser, coupled to themicroscope through afiber
illuminator and a 100× oil-immersion 1.49NAobjective lens (seemethod section for component details). This
setup is in routine use for high-end SR imaging.While the objective and illumination system can provide TIRF
illumination, the imagingwas performed in a standard ‘epi’ configuration. A 50/50 beam splitter (seemethod
section andfigure 1, panels (C) and (E))was inserted, followed by the cameras and their dedicated tube lenses.
These lenses are varied in focal length to obtain a similar projected pixel size in the range of 97–102 nm for all
three cameras (using the 100× objective lens, theNikon tube lens in themicroscope body, and the following (de)
magnification by the beam splitter system, see table 1).Matching the projected pixel sizes is important to ensure
a fair comparison between cameras. The split ratio between the transmission and reflection armof the beam
splitter was verified (seemethod section and figure 1, panel (D)) and found to not introduce amismatch ofmore
than 1%.The cameras were set to an exposure time of 40 ms andwere electronically synchronized (seemethods)
to bothminimize sample bleaching and ensure frame-by-frame comparable data acquisition.

We processed the acquired data sets with the SOFI algorithm. For this the open-source Localizer package
[22], with a user interface and analysis framework in the Igor Pro software package (Wavemetrics, Portland,
USA)was used. An image stack of 250 frames proved sufficient to clearly showcase the resolution improvement
achieved by SOFI and to compare the camera systems both in terms of visual image quality (see figures 2 and 3,
panels (A)–(C) each) and quantitatively (see figures 2 and 3, panels (D)–(F) each).We chose Fourier ring
correlation (FRC) analysis, SNR and a SOFI-specific spatial correlation analysis for extracting the PSF shape
(PSF) as suitablemetrics for the comparison (descriptions of applying FRC to SOFI data and the spatial
correlation analysis are provided inmethods).

Wefind that the current-generation sCMOS camera slightly outperforms theCMOS camera in the achieved
FRC resolution: Briefly, the corresponding FRC graph (figure 2, panel (D)) shows the correlation between two
independentmeasurements of the same sample structure with respect to their spatial frequency, and thus
feature size. The higher this correlation is, themore image quality is to be expected for a certain structure size. By
its correlative nature, FRC incorporates a frequency-dependent estimation of SNR, and is in general a popular
technique to providemodel-free resolution estimates.However, its application to arbitrary datasets and
especially as a tool for camera comparison is not without hurdles (see supplementary figure 5, which is available
online at stacks.iop.org/JPPHOTON/1/044001/mmedia, and the discussion section).

For amore robust comparison, we thus turned to a direct estimation of the image SNR value, by fitting a
model accounting for background, out-of-focus contribution and the desired in-focus signal component to the
data (seemethod section for details).We showcase a typical SNRplot (seefigure 2, panel (C))here, and provide a
full overview of 18 data sets in supplementary figure 1, 2 and 4. From these, we can conclude that the sCMOS
system consistently provides a higher SNR than theCMOS system,with a range of typically 1.5× to 2.4 higher
SNRon the sCMOS system.

Another quality criterium is the introduction of spurious correlations (the signal in a given pixel influencing
its neighbors) by the camera. For a SOFI analysis, these correlations appear when extracting the PSF shape from
the SOFI rawdata, a processing step initially developed and typically employed to cross-check instrument
alignment. Here, no additional correlations stemming from the camera are detected in the sCMOS camera,
while clear spurious correlations are observed in theCMOSwhichwill serve as a (limited) source of bias in the
SOFI imaging (see figure 2, panel (E)), andmight also explain unphysically high correlations in the uncorrected
FRC signals (see supplementary figure 5). Visually, the SOFI reconstructions obtainedwith both cameras
provide a clear resolution improvement and background reduction over thewide-field images, while the CMOS
data arguably appears somewhat noisier and grainier.

Comparing the emCCDand theCMOS system, wefind that, surprisingly, both cameras performmuch
more similar, and that theCMOS camera slightly outperforms the emCCD system, both in the achieved SNR as
in the FRC resolution reached. Again, we have chosen a representative dataset (see figure 3) for a full analysis, and
provide 6 SNRdatasets (see supplemental figures 3 and 4), which consistently show the SNRof theCMOS
camera to be 1.2× to 1.4× higher than on the emCCDcamera. However, the emCCD systemdoes not show
spurious correlations in the extracted PSFs, which theCMOS system continues to introduce them. The results
might seem surprising, given that emCCD systems are typically viewed as very sensitive, but are explained by the
average amount of photons observed per pixel, and the resulting read noise and shot noise statistics (see
discussion).

2.3.Home-builtmicroscope system
Home-built systems offer a combination offlexibility and lower cost compared to commercial systems, and
therefore present attractive avenues for reducing the overall cost of SR imaging.We tested the viability of such a
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system, build from free-standing optics, for SOFImeasurements with the industry-grade CMOS camera. The
system is comprised of a 50 mW, 473 nmdiode laser and a 60×, 1.35NAoil immersion objective in epi-
fluorescence configuration. A 250 mm tube lens was used to obtain a projected pixel size of 70 nm (see figure 4,
panels (A) and (B)). At a given resolution limit of about 195 nm, this slightly oversamples the detection.
However, since the field of view of theCMOS chip is very large, this configurationwas preferred to allow for a
telecentric 2f configuration.Whilemore limited in operation (nomotorized stage, no automated opto-
mechanics) andflexibility (only twofixed laser excitation lines in the case of this system), the image quality is
comparable to a researchmicroscope (seefigure 4, panels (C)–(E)). Overall, this system can be bought and self-
assembled at a total cost of about 16.500 Euro, which ismuch lower than the cost of typical SR instruments.

The SOFImeasurements performed on this systemdo not pass a beam-splitting arrangement, so all photons
are collected on the same camera. This of course greatly improved the raw signal’s SNR, and thus the achieved
FRC resolution of the system (as it relies on an SNR cutoff). However, using a single camera is of course closer to
a ‘real world’ application of the system, and showcases the quality one could reach in SOFI imagingwhen
employing this type of cost-efficient hardware.

The visual results (figure 4, panels (C) and (D)) again show a clear reduction in background and an
improvement in resolutionwhen comparingwide-field and SOFI reconstruction. This ismirrored by the FRC
data obtained for those images (figure 4, panel (E)). Sincewe did not perform a camera comparison on this
system, a SNR analysis is notmeaningful, as it is highly sample-dependent (changingwith staining efficiency,
expression levels and such) and thus requires a direct, frame-by-frame comparison.

3.Discussion

Ourfindings provide a quantitative comparison of both a state-of-the-art sCMOS and an established, high-end
emCCDcamerawith aCMOS solution targeted at industrial applications, withmetrics specific to SOFI SR
imaging.

Figure 2. SOFI imaging comparing the sCMOS to the CMOS camera. Themicrotubules of theCos-7 cells were stainedwith ffDronpa.
Thewidefield image (panel (A)) is generated as the average of 250 analyzed SOFI frames (stack subsamples in 5× 50 blocks each), here
shown for the sCMOS camera, but visually hardly distinguishable from the correspondingCMOS results (full raw data is provided).
The upper left region shows lots of out-of-focus light as blur, the lower right part features structures of interest. The SOFI
reconstruction of the sCMOS camera (panel (B)) both removes the out-of-focus contribution, and enhances resolution sofibers can
be separatedmuchmore clearly. The SOFI reconstruction of theCMOS camera yields comparable results (panel (C)), whilst also
showing higher noise levels, which is in linewith expectations. The resolution,measured via Fourier ring correlation (seemethods),
reflect this (panel (D)), where theCMOS camera picks upmore noise both in thewide-field and in the SOFI analysis. Similarly, the
signal-to-noise ratio is higher for the sCMOS camera (panel (F)). Importantly, cross-pixel correlations, which are a typical artifact of
CMOS technology, are unsurprisingly present in theCMOSdatasets, but seemheavily reduced in the current-generation sCMOS
chips tested here (panel (E)). Scalebar 10 μmfor themain images, size of the inset region 5 μm×5 μm.
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The industry-grade CMOS camera is clearly capable of acquiring SOFI datasets of sufficient quality on
realistic day-to-day samples, evenwhen using fluorescent proteins as labels. In a direct comparison, its image
quality is not on parwith a current-generation sCMOS system. The images are visually noisier, and the
associated SNR and FRCmetrics (which implicitly includes an SNR-style weighting) reflect this. This is to be
expected, as both cameras share the same sensor technology, but the ‘scientific’CMOS implementation ismuch
more refined in terms of read-out noise and calibration.

In direct comparison of the emCCDand theCMOS systems, both the visual image quality and the SNR and
FRCmetrics are almost on par. TheCMOS camera even performs slightly better than the emCCD system, which
might seem surprising, as the emCCD system is of course equally fine-tuned to scientific applications. However,
the difference in sensor technology, especially the reliance on the electron-multiplication stage, puts the emCCD
system at a disadvantage for the photon count levels used in SOFI imaging.

Looking at both thesefindings and the signal formation aspect of SOFI imaging, two technical characteristics
seem to influence SOFI imaging quality themost:mainly the quantumefficiency of the sensor, and secondarily its
read noise. The Sony sensor employed by the IDSU-3060CMOScamera systemprovides a highquantum
efficiency in the green,with a pronounced fall-off towards red and infrared light (seefigure 1, panel (A)). As the
sensor ismarketed for a broad range of applications, and is available in a variety of industry-grade camera systems,
this is a sensible optimization by themanufacturer. For the application presented here, this alignswellwith the
green (peak at 515 nm) emission spectrumof ffDronpa (seefigure 1, panel (B)) and yields a detection efficiency
almost identical to the sCMOScamera system (for red and far-red emitting dyes, as oftenused indSTORM
microscopy, therewould be a significant difference indetection efficiency). Thedifference between the sensors
manifests in their read noise characteristics,where the sCMOScamera yields 0.7e− to 1.4e−(depending on readout
speed) compared to 7e− for the Sony sensor.We expect that a typical ‘blink’of ffDronpawill a fewhundred
photons distributedover the pixels sampling its PSF, so this change in readnoise is likely themain reason for the
change in SOFI SNR.

The emCCD sensor provides an even higher quantum efficiency over the full spectral range, but at these
typical SOFI photon count levels, the excess read-noise introduced by the electronmultiplying stage cannot be

Figure 3. SOFI imaging comparing the emCCDand theCMOS camera. Again,microtubules inCos-7 cells were labeledwith
ffDronpa. Thewidefield image (panel (A)) is generated as the average of 250 analyzed SOFI frames (stack subsamples in 5× 50 blocks
each), here shown for the emCCD camera, but visually hardly distinguishable from the corresponding CMOS results (full raw data is
provided). The SOFI reconstruction of the emCCDcamera (panel (B)) enhances resolution so twofibers not distinguishable inwide-
field can be separated (seemagnified insets). The SOFI image obtained via theCMOS camera yields the same improvement, with
arguable higher contrast (panel (C)). To understand this performance difference, it is important to know that the pure photon counts
reached in SOFI experiments heavily favors CMOS technology (seemain text discussion). This also reflects in theCMOS
outperforming the emCCD slightly in both FRC resolution (panel (D)) and signal-to-noise ratio (panel (F)). However, the emCCD
does not show spurious pixel correlations typical for CMOS technology (panel (E)). Scale bars 10 μmformain images, size of the inset
region 5 μm×5 μm.
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compensated by the higher quantum efficiency (our plots infigure 1, panels (A) and (B) include the typical [23]
2xweighted quantum efficiency plot for the emCCDchip to account for this effect). This effect is documented in
comparisons of sCMOS and emCCD technologies, where emCCD systems for some time are only
recommended for the lowest photon count levels, and seems to hold even for current-generation, industry-
gradeCMOS technology.

Lastly, sensor readout uniformity, linearity and ‘spurious correlation’ influence the quality of a SOFI image.
While uniformity and linearity are alreadywell documented [5], the effect of inter-pixel correlations becomes
very apparent in SOFI imaging: if a signal, typically a high photon count, spatially or temporally influences the
count rate in neighboring pixels, this effect shows up as an unreasonably high correlation in the PSF-estimate
plots (panel (E) infigures 2 and 3). Additionally, anyfixed pattern signal inherent to the camera sensor will
adversely affect FRC as a resolutionmetric, as it introduces (false) correlations into a signal not stemming from
the band-limitedmicroscope. In extreme cases (see supplementary figure 5) this effect yields FRC curves that are
physically impossible and is thus easy to spot. However, in less severe forms, it would yield an unreasonably high
resolution estimate. Thus, we conclude FRC should be appliedwith care in these situations, and have chosen the
more robust SNR estimates for a comparison ofmultiple data sets (see supplementary figures 1–4).

Causes for these correlations can be both non-uniformpixel cross-talk and latent effects in the read-out
electronics. Here, both the emCCDand the sCMOS cameras seem to be highly calibrated and optimized, both
showing no spurious correlations, while the industry-grade CMOS system shows amoderate amount of
correlation not stemming from singlemolecule blinking.While these signals become apparent in an in-depth
quantitative analysis, they still seem to be controlled enough to not have an adverse effect on image quality.

4. Conclusion

In conclusion, we could demonstrate that a current generation industry-grade CMOS camera system can
acquire SOFI rawdatawith enough sensitivity and fidelity to yield convincing image quality on typical biological
samples. A current-generation sCMOS systemprovides enhanced sensitivity in the red range of the spectrum,
lower noise levels both visually and quantitatively, and in-depth analysis shows it acquires datamore faithfully.
We also demonstrate the combination of the cost-effective CMOS camerawith a bare-bones, free-standing
microscope system, which allows for SR live-cell imaging at a total cost of less than 20.000 Euro.We demonstrate
that SNR calculations on SOFI data provide a robust way of assessing the quality of different camera technologies

Figure 4. SOFI imaging on the home-builtmicroscope systemwith theCMOS camera. (Panel (A)) Schematic sketch of the system and
(panel (B)) a photograph of the systemduring ameasurement (for details seemethods). Scale bar, 10 cm. (Panel (C))Averagewidefield
image ofmicrotubules inCos-7 labeledwith ffDronpa. (Panel (D)) SOFI image of 250 reconstructed frames. Exposure time 10 ms.
Scale bar 5 μm, inset 2 μm.Adirect comparison shows clearly the resolution improvement (see insets)which is quantified by the FRC
analysis (panel (E)).
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and sensors, and that both general (FRC) and SOFI-specific (PSF shape) correlation analysis can highlight sensor
behaviors not captured by typical data sheet performance numbers. Beyond the analysis presented here and in
the supplementary information, we provide all raw data in an online repository, so interested readers can run
this own analysis and comparison.

We aim to contribute to the growing efforts of ‘democratizing’ SRmicroscopy and allows for a broader
applicability of SOFI imaging in the scientific community.

5.Materials andmethods

Themicroscope systems and corresponding hardware that we used for ourmeasurements are described below.
For all data acquisitionwe used the open-source and freely availableMicro-Manager software [24, 25] and a
customdevice adapter providing full speed for the IDSCMOS camera [5, 26]. For SOFI data reconstructionwe
made use of the Localizer [22] package.

5.1. Scientificmicroscopewith 50/50 beam splitter
ANikon Eclipse TI2motorizedmicroscopewas used for the direct camera comparison. Excitation light was
provided by anOxxius L6Cc Laser combiner box coupled to aNikon Ti2-LA-BF laser illumination unit, providing
up to 200 mWexcitation light at 488 nm. The sample is imaged through aCFIApo TIRF 100XCOil objective
(1.49NA), excitation and emission light is separated via anAHF/ChromaTechnology Corp. ZT405/488/561/
640rpcv2 imaging-quality dichroic andmatching ZET405/488/561/640 nmemission filters were used.

The emission light forms a 100xmagnified intermediate image through the tube lens, present in the
microscope. A f 125 mm1 = lens (AC-254-125A, Thorlabs; L2 infigure 1, panel (C)) is used to re-collimate
the light, which then passes the 50/50 beam-splitting cube (ANR: 236513,Qioptiq). It is re-imaged onto the
cameras through a second lens, which focal length is varied depending on the camera’s physical pixel size
( f 80 mm, 75 mm, 200 mm2 = for the sCMOS, CMOS and emCCD, respectively; L3 and L4 infigure 1, panel
(C)). In this way, the projected pixel sizes of all three cameras are closelymatched to 100 nm (see table 1). The
lenses employed here are Thorlabs AC-254-080A, AC-254-075A andAC-254-200A respectively.

The split ratio of the beam-splitting devicewas tested experimentally, to ensure that any imbalancewas small
enough to not impact the experiments. For this test, three datasets were analyzed forwhich the sCMOS camera
wasmounted on the transmission armof the beam splitter, and theCMOS camera on the reflective arm, and
three datasets where these positionswere switched. For each dataset, the average frame brightness (in raw
counts)was calculated for both cameras, and added to a scatter plot. A linear fit was performed, and the slopes
were compared. Any imbalance between the transmission and the reflection armwould showup in a difference
in slope between these configurations. Fromour data (see figure 1, panel (D))we can verify the imbalance of the
splitter to be notmore than 1%.

To enable frame-by-frame comparison, an electronic triggering and light source gating systemwas used. The
exposure time and frame rate of the industry-grade CMOS camera can be set independently (introducing non-
active delays if the frame rate is lower than the exposure timewould allow). This camerawas used as a ‘master
clock’, as its exposure outputwas used as a trigger of either the sCMOSor emCCDcamera. As the sCMOSdevice
uses a rolling shutter readout, its global reset featurewas turned ‘on’ to enable thismode. The excitation laser was
gated through itsmodulation input andwas only activatedwhen both cameras were light sensitive. A
microcontroller (ATMEL328, ArduinoUno)was used for this signal processing, and the timing schemewas
continuouslymonitored using a digital storage oscilloscope (Rigol DS1054Z).

5.2.Home-builtmicroscopewith industry-grade CMOS
The home-built systemwas equippedwith a 473 nm, 50 mWdiode laser for excitation (Spectra Physics
Excelsior, SN 50001,USA). The second laser attached to this systemwas not used for the experiments.
Nevertheless, due to this second laser additional lenses were implemented in the excitation pathway of the
473 nm laser, whichwould not be necessary if only ffDronpa is used. An acousto-optic tunable filter (‘AOTF’,
AAOptoElectronic AOTF, SN26074 and 25278, France)was used to enable fast switching rates of the laser, only
illuminating the sample during data acquisition, reducing photobleaching effects to aminimum.After passing
through the AOTF, the excitation beam is coupled into a singlemodefiber and then focused into the objective
(UPLSAPO60XO60×, 1.35NAoil objective, Olympus). Thefluorescence signal was collectedwith the same
objective and the emissionwas separated from the excitation source by a dichroicmirror (HCDual Line—BS
R488/561, Semrock). The emission is then focused on the industry-grade CMOS camera using a 250 mm tube
lens and after filteringwith an emission filter (593/40BrightLineHC, Semrock), resulting in an overall projected
pixel size of 70 nm.
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5.3. Transfection and sample preparation
Cos-7 cells were cultured inDMEMsupplementedwith FBS, glutamax and gentamycin at 37 °Cwith 5%CO2.
Cells werewashed and detached from the growthflask using a 0.05%Trypsin solution. The cell suspensionwas
then seeded on 35 mmglass bottom culture dishes (#1.5 thickness,MatTek) to ensure a confluency of 50%–

80% for transfection. Cells were then transfectedwith pcDNA::MAP4-ffDronpa [18] using FuGENE6
(Promega) according tomanufacturer’s instructions, and cells were incubated for amaximumof 24 h before
imaging. For the imaging process themediawas replacedwith PBS.

5.4. Fourier ring correlation
Fourier ring correlation [27–29] is an established image analysis technique to provide an experimental spatial
resolution quantification, without relying onmeasuring the separation or size of single, isolated features. As
input, it requires two images of the same structure, but acquired through independentmeasurements. This is
easy to implement for wide-field, confocal and to some extent SMLM-like techniques, but requires a slightly
more involved procedure for SOFI:

To acquire pseudo-widefield input datasets, images 1–5 and 6–10 of each stackwere summedup. This
proved enough to eliminate artifacts introduced by the blinking of the probes, but less enough to not pick up
camera correlation artifacts. These arise when averaging over large amounts of acquired data (e.g. 250 frames of a
SOFI stack) andmanifest in high-frequency correlations far beyond themicroscope’s passband (and thus
unphysical), see also supplementary figure 5. They likely arise due to imperfections in the camera sensor and
read-out electronics, giving rise to static noise patterns that yield high-frequency correlations.

To acquire SOFI input datasets, the full stack of 500 images was split in a blocked fashion, i.e. images 1–50,
101–150,K, 401–450where assigned to dataset A, and 51–100, 151–200,K, 451–500where assigned to dataset
B, and then reconstructed with the SOFI algorithm. This blocking scheme proved necessary, as both of the
simpler alternative introduce artifacts: Splitting the stack in themiddle (1–250 toA, 251–500 to B) yields a
situationwhere dataset B is disproportionally affected by photo-bleaching. Splitting the stack in an even/odd
fashion (1, 3, 5,K, 499 toA, 2, 4, 6,K, 500 to B) avoids this andwould be very suitable for localization
microscopy, but destroys the time correlation inherent to the data and picked up by the SOFI algorithm.

For consistencywith the displayed FRCplots, the SOFI reconstructions shown are the ones that served as
input into the FRC analysis, i.e. these images have been reconstructed from250 frames extracted in 5× 50 blocks
of images.

5.5. Spatial correlation analysis
The theory for cross-correlation SOFIwas introduced inDertinger et al [30]. The formula given there for second
order SOFI can be broken up in three parts: a constant determined by the behavior of the dye, a constant
determined by the separation between the pixels used in the calculation and the shape of the PSF and a term
depending on the location of the emitters in the sample and the PSF (Thisfinal termproves the unbiassed super
resolution imaging performance of the technique). To investigate if additional correlations are introduced by the
instrument, wewant to compare the second constant (determined by the emitter separation)with the theoretical
proposed form.Here, we assume that other sources of correlationwould not show the same dependency. To
make this comparisonwe use the fact that on average the structure being imaged should be uncorrelated to the
camera at a sub-pixel level. Using this information, when for a given shift we average over enough unrelated
virtual SOFI pixels, the sample dependent termbecomes constant compared to other shifts. In practice, the full
SOFI image is calculated for all shifts within a 3 by 3 grid. Afterwards, for each shift, we average the image to yield
a single value. According to theory, to a very good approximation the dependence of this value on the distance
between the pixels is described by a gaussian curve [30]where thewidth of the gaussian is 2 larger than the PSF
width. In practice we see that some points follow this curvewell, while some do not. The assumption at this point
is that the points deviating from this behavior are being caused by additional correlation between the pixels,
deriving from a source beside singlemoleculefluctuations. In practical application of this approach, these points
typically showupwith a higher than expected correlation, and thus do not follow theGaussian fall-off expected
for the SOFI PSF curve. Additionally, since pixel correlations introduced by the camera typically show a
directionality (occurringmore along the x- or y-axis of the sensor), the PSF estimationwill show a ‘spread’ of
points, with only contributions stemming from a direction exhibiting the correlation showing up as too high. In
the analysis we label these points as ‘spurious correlation’whichwe attribute to the camera operation, and
exclude them from theGaussianfit used to extract the PSF parameters.

5.6. SNR analysis
For determining the SNRof the SOFI imageswe used the framework introduced in [31]. Briefly, the images used
as input to the SOFI analysis are resampled to produce an uncertainty estimate of the SOFI image using the
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jackknife algorithm. The actual SOFI Image is then divided by this estimate, which produces a per-pixel estimate
of the SNR. A histogramof the pixel values or this image is then generated, revealingmultiple distinct peaks as
can be seen in ex. figure 3.While aminimumof 2 peaks is expected, relating to the area of the image sensor where
there is no cell (at SNR=0) and relating the area with the expressing cell, in practice often 3 distinct peaks are
observedwhich can be related to out-of-focus parts of the sample, with the in-focus SNR at a higher value. To
compare different histograms afit with the sumof 3 gaussian distributions is preformedwith the highestmean
being reported as the SNRof the histogram. For all histograms in themanuscript the fit is shown in thefigures.
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