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1  | INTRODUC TION

Accurate species identifications are important for biomonitoring, 
and many environmental indices rely on identification to the genus 

or species level. Small organisms, such as nematodes, contribute 
substantially to the planet's biodiversity. However, their identifica-
tion is particularly challenging and often possible only by taxonomic 
experts (Geiger et al., 2016). Nematodes are estimated to exceed one 
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Abstract
Biomonitoring approaches and investigations of many ecological questions require 
assessments of the biodiversity of a given habitat. Small organisms, ranging from 
protozoans to metazoans, are of great ecological importance and comprise a major 
share of the planet's biodiversity but they are extremely difficult to identify, due to 
their minute body sizes and indistinct structures. Thus, most biodiversity studies that 
include small organisms draw on several methods for species delimitation, ranging 
from traditional microscopy to molecular techniques. In this study, we compared the 
efficiency of these methods by analyzing a community of nematodes. Specifically, we 
evaluated the performances of traditional morphological identification, single-speci-
men barcoding (Sanger sequencing), and metabarcoding in the identification of 1500 
nematodes from sediment samples. The molecular approaches were based on the 
analysis of the 28S ribosomal large and 18S small subunits (LSU and SSU). The mor-
phological analysis resulted in the determination of 22 nematode species. Barcoding 
identified a comparable number of operational taxonomic units (OTUs) based on 28S 
rDNA (n = 20) and fewer OTUs based on 18S rDNA (n = 12). Metabarcoding identified 
a higher OTU number but fewer amplicon sequence variants (AVSs) (n = 48 OTUs, 
n = 17 ASVs for 28S rDNA, and n = 31 OTUs, n = 6 ASVs for 18S rDNA). Between the 
three approaches (morphology, barcoding, and metabarcoding), only three species 
(13.6%) were shared. This lack of taxonomic resolution hinders reliable community 
identifications to the species level. Further database curation will ensure the effec-
tive use of molecular species identification.
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million species (Blaxter et al., 2005; Lambshead, 1993) and account 
for numerous critical functions in the ecosystem, ranging from nu-
trient production and nutrient cycling to key links in food webs and 
catalysts in decomposition processes (Majdi & Traunspurger, 2015; 
Schmid-Araya et al., 2002; Traunspurger, Bergtold, & Goedkoop, 
1997; Weber & Traunspurger, 2015). Previous studies have rec-
ognized the importance of this organismal group and investigated 
nematode diversity, but the characterizations were restricted to the 
genus level, as identification problems limited species-level deter-
minations (Fontaneto, Flot, & Tang, 2015; Hebert, Ratnasingham, & 
deWaard, 2003).

With the decline in taxonomic expertise, newly developed mo-
lecular methods are being increasingly used in species identifica-
tion, especially of organisms at the microscopic and microbial scales 
(Creer et al., 2016). Other applications of molecular methods include 
whole-genome analyses, the determination of evolutionary patterns 
in phylogeographic and phylogenetic studies (Blaxter et al., 2005; 
Derycke et al., 2008; Holterman et al., 2006; Junqueira et al., 2016), 
and initiatives aimed at collecting the planet's biodiversity in molec-
ular databases. The latter relies on species identification using a sin-
gle short gene fragment, the so-called barcoding approach (Hebert 
et al., 2003; Stoeckle & Stoeckle, 2003). The short fragments are 
usually from gene regions that evolve fast enough to enable differen-
tiations of closely related species, but are also conservative enough 
to allow universal primer design (Floyd, Abebe, Papert, & Blaxter, 
2002). For example, the large ribosomal subunit (LSU) evolves con-
servatively but still accumulates differences between closely related 
species (Markmann & Tautz, 2005). Its utility in distinguishing be-
tween nematode species has been demonstrated in several studies 
(Geiger et al., 2016; Ristau, Steinfartz, & Traunspurger, 2013; Schenk, 
Hohberg, Helder, Ristau, & Traunspurger, 2017). The small ribosomal 
subunit (SSU) evolves more conservatively and is therefore often 
used to distinguish between species that are not closely related 
(Armenteros et al., 2014; Nassonova, Smirnov, Fahrni, & Pawlowski, 
2010; Prosser, Velarde-Aguilar, Leon-Regagnon, & Hebert, 2013). 
The use of the 18S gene in molecular studies is currently well-ac-
cepted in NGS studies (Chariton et al., 2014; Fonseca et al., 2010) 
and phylogenetic analyses (Holterman et al., 2006; van Megen et al., 
2009). The cytochrome c oxidase I (COI) gene fragment was initially 
considered as the marker of choice for barcoding purposes (Hebert 
et al., 2003) due to its ubiquity, as the COI gene is present in all cells, 
as well as its high interspecific and low intraspecific genetic vari-
ation (Derycke, Vanaverbeke, Rigaux, Backeljau, & Moens, 2010). 
However, while the COI gene is suitable for many organisms, its per-
formance in several animal groups is poor because of the low ampli-
fication success resulting from mutations in primer-binding regions 
(Blaxter et al., 2005; De Ley et al., 2005).

Barcoding studies based on the use of short gene fragments for 
metazoa have investigated tardigrades, rotifers, mites, collembo-
lans, and nematodes (Ball, Hebert, Burian, & Webb, 2005; Blaxter, 
Elsworth, & Daub, 2004; Fontaneto et al., 2015). The emergence of 
NGS has revolutionized the field of molecular taxonomy. Among its 
applications are the sequencing of short gene fragments, so-called 

amplicons (metabarcoding), mitogenomic analyses, and the genera-
tion of whole genomes (Ji et al., 2013; Junqueira et al., 2016; Tang 
et al., 2015). NGS, and specifically metabarcoding, allows biodiver-
sity to be captured at an unprecedented level of detail. Furthermore, 
the bulk DNA extraction method used in NGS can simplify the anal-
ysis of complete communities (Elbrecht & Leese, 2017). However, 
although NGS amplicon sequencing has been in use for more than 
a decade (Porazinska et al., 2009), its methods have yet to be stan-
dardized, including for nematode communities. Additional shortcom-
ings currently include a lack of a reliable quantification methods and 
the problem of PCR bias, which can result in an over- or under-am-
plification of the DNA of certain species (Geisen, Laros, Vizcaíno, 
Bonkowski, & Groot, 2015; Kebschull & Zador, 2015; Tang et al., 
2015), as well as incomplete reference databases (Abad et al., 2016; 
Holovachov, 2016).

Metabarcoding has facilitated studies of small multicellular or-
ganisms, either whole communities or specific groups, with marine 
eukaryotes being a frequent focus (Brannock & Halanych, 2015; 
Dell'Anno, Carugati, Corinaldesi, Riccioni, & Danovaro, 2015; 
Haenel, Holovachov, Jondelius, Sundberg, & Bourlat, 2017). It can 
also be used in combination with morphological analyses, as demon-
strated in studies of estuarine plankton (Abad et al., 2016; Harvey, 
Johnson, Fisher, Peterson, & Vrijenhoek, 2017; Leasi et al., 2018) and 
nematodes (Holovachov, 2016; Macheriotou et al., 2019) in marine 
habitats but also diatoms and other small organisms in freshwater 
habitats (Keck, Vasselon, Rimet, Bouchez, & Kahlert, 2018; Rimet, 
Vasselon, A.-Keszte, & Bouchez, 2018). For nematodes in soil and 
marine habitats, however, combined microscopy and metabarcoding 
investigations have been carried out only at the family level (Darby, 
Todd, & Herman, 2013; Griffiths, Groot, Laros, Stone, & Geisen, 
2018; Holovachov, Haenel, Bourlat, & Jondelius, 2017; Treonis et al., 
2018), and direct comparisons of the performances of morphological 
identification, barcoding, and metabarcoding at the species level are 
still scarce (Leasi et al., 2018).

Therefore, in this study, we compared the results of a morpho-
logical analysis with those from single-specimen barcoding and me-
tabarcoding to determine the most accurate approach to specimen 
identification. We predicted that the three methods would iden-
tify a similar number of species and certainly all dominant species 
contributing to the community. In addition, we expected that the 
proportion of species identified morphologically and by single-spec-
imen barcoding would be comparable, whereas species abundance 
estimates obtained with metabarcoding would differ due to PCR and 
sequencing biases.

2  | MATERIAL AND METHODS

Samples were collected at the extensively studied Furlbach stream 
(51.895392°N, 8.715517°E; Traunspurger, Threis, & Majdi, 2015) in 
May 2017. Sediment samples (~4 m2) were decanted directly in the 
field by skimming the upper 10 cm of sediment, transferring it into 
a bucket and stirring it for 30  s. After the suspension was left to 
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stand for 15 s, the supernatant was poured over a 10-µm sieve and 
the contents of the sieve were transferred to a sampling bottle. This 
procedure was repeated three times. The sample was stored at 4°C 
until used in nematode isolation.

Living nematodes were selected under stereomicroscopic guid-
ance (40 × magnification). From the 1,500 nematodes in the sedi-
ment sample, 500 were randomly selected and assigned to each of 
the three treatments to generate comparable subsets (Figure 1). 
The 500 nematodes to be identified morphologically were fixed fol-
lowing the method of Seinhorst (1962) and prepared on permanent 
glycerin slides. In many diversity analyses (Hodda & Abebe, 2006; 
Rzeznik-Orignac et al., 2017), 100 nematodes are identified; thus, 
our inclusion of 500 nematodes ensured that similar communities 
were achieved although only one subset would be analyzed mor-
phologically. The 500 nematodes for single barcoding were indi-
vidually transferred into small tubes containing 20 µl of lysis buffer 
(50 nM KCl, 10 mM Tris (pH 8.5), 2.5 mM MgCl2, 0.5% Triton X-100, 
0.5% Tween 20) and stored at − 20°C for at least 24 hr, while those 
for metabarcoding (NGS) were transferred as a whole community 
into the DNA extraction buffer provided with the NucleoSpin XS 
DNA extraction kit (Macherey and Nagel, Düren, Germany).

2.1 | Morphological analyses

A Leica Dialux 20 microscope and a magnification of 400- to 
1,200 × were used to identify nematode individuals to the species 
level. The morphological identification was conducted by Prof. Dr. 
Traunspurger, mainly following the method of Andrássy (2005, 2007, 
2009 and reference therein). A detailed list of the species inventory, 
including life stage and sex, is given in the (Table S1).

2.2 | Barcoding

Prior to sequencing, a reference dataset for taxonomic assignment was 
compiled from an NCBI search to retrieve sequences corresponding to 

the species identified in the morphological analysis as well as typical 
freshwater nematode sequences (Table S2). This avoided uninforma-
tive assignments such as “uncultured eukaryote” and “Nematoda envi-
ronmental sample.” In addition, for each species detected in our study, 
the number of deposited sequences was noted in order to assess the 
current status of reference database curation.

Single nematodes frozen in barcoding lysis buffer were 
thawed, and 1.5  µl of proteinase K (20  mg/ml) was added to 
each sample, followed by lysis for 70  min at 65°C and 10  min 
at 95°C. The gene fragments were then amplified using the 
primer pair 1274/706 (5’–GACCCGTCTTGAAACACGGA-3’/5’-
GCCAGTTCTGCTTACC-3‘) designed by Markmann &  Tautz (2005) 
for the D3–D5 region of the LSU (28S gene region hereafter) and 
the primer pair F04/R22 (5′-GCTTGTCTCAAAGATTAAGCC-3′/5′-
GCCTGCTGCCTTCCTTGGA-3′) designed for the V1–V2 region of 
the SSU (18S gene region hereafter; Fonseca et al., 2010). PCRs for 
the 28S gene region were carried out in 20-µl volumes consisting of 
2 µl of genomic DNA, 14.2 µl of ultrapure water, 0.6 µl of each primer 
(10 µM), 2 µl of reaction buffer Y (Peqlab, Erlangen), 1 µl of dNTPs 
(Roth, Karlsruhe), and 0.1 µl of Taq-DNA-polymerase (Peqlab). PCRs for 
the other gene region differed by the addition of 2 µl of MgCl2 to each 
reaction and the use of only 1.5 µl of genomic DNA. PCR conditions 
were 94°C for 2.5 min, followed by 30 cycles of 30 s at 95°C, 30 s at 
55°C, and 60 s at 72°C, a final extension at 72°C for 7 min and cooling 
at 6°C.

Amplification results were checked by electrophoresis on an aga-
rose gel (2%) and ethidium bromide staining. If the amplification was 
successful, evidenced by a positive band in the gel, the reaction prod-
uct was cleaned using ExoSap exonuclease I (20 U/µl; Thermo Fisher 
Scientific, Waltham, MA) and shrimp alkaline phosphatase (1 U/µl; 
Affymetrix, Santa Clara, CA) in an 18-min incubation at 37°C and a 
15-min incubation at 80°C. Sequencing was carried out on ABI PRISM 
377, 3,100, and 3,700 sequencers (Applied Biosystems, Weiterstadt, 
Germany) at the CeBiTec Bielefeld, using BigDye Terminator v3.1 
chemistry and the same primer pairs as used for sequencing.

Forward and reverse sequences were merged into contigs with 
an overlap of at least 20  bp using ChromasPro (Technelysium Pty 
Ltd, South Brisbane, Australia) and manually checked for ambiguous 
bases. All sequences of sufficient quality (no N-characters) were 
further processed with the RDP classifier (Wang, Garrity, Tiedje, & 
Cole, 2007). The RDP classifier was trained using the curated ref-
erence database (see above). Taxonomic assignments were made 
based on the lowest level that provided a confidence score of at 
least 80%. Only classifications at the genus or species level were 
considered; others were regarded as uncertain. The sequences 
were collapsed into haplotypes and sorted into OTUs using the R 
(R Core Team, 2013) package “splits” (http://splits.r-forge.r-proje​
ct.org/) with the gmyc function. The Jukes–Cantor model was used 
for both genetic markers, as previously described, and defined by 
jModelTest (Posada, 2008). New sequences were deposited at the 
NCBI under the accession numbers MK379606-MK379948 and 
MK382985-MK383328. A detailed overview of the taxonomic as-
signments for the barcoded specimens is given in (Table S3).

F I G U R E  1   Overview of nematode sorting for the three 
approaches to species identification

http://splits.r-forge.r-project.org/
http://splits.r-forge.r-project.org/
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TA B L E  1   List of species identified for morphology, barcoding, and metabarcoding of 18S and 28S rDNA, as is whether 28S, 18S, or 
COI sequences were found in the ncbi database, as well as the according number of deposited sequences. The abundance (%) of the total 
nematodes identified morphologically is given (n = 485), OTU assignments for the 28S and 18S gene fragments are shown as well, together 
with the annotation via RDP classifier. The proportion of the OTUs for 28S and 18S barcoding is based on the total number of successfully 
amplified sequences (n = 344 for 28S and n = 343 for 18S). For metabarcoding, OTU and ASV percentage is based on the number of 
reads remaining after bioinformatics pipeline. Classifications below the genus level are summoned due to overview reasons, if the same 
classification was reached; the number of OTUs/ASVs for each marker in given in parentheses

Species ncbi
Nb of 
sequences

Microscopy Barcoding_28S NGS_28S Barcoding_18S NGS_18S

(%) (%) % % (%) % %

n = 485 n = 344 OTUs ASVs n = 343 OTUs ASVs

Achromadora terricola 
(de Man, 1880)

18S 1 1.24            

Allodorylaimus _1               0.03  

Anaplectus 
grandepapillatus 
(Ditlevsen, 1928)

18S 2 18.56            

Anaplectus granulosus 
(Bastian, 1865)

28S 4   18.6 3.42 1.1      

Anaplectus porosus 
Allen & Noffsinger, 
1968

28S&18S 4         17.25 5.1 5.81

Anaplectus_2               0.02  

Aphelenchoides sp. 28S&18S&COI >100 0.21            

Chromadorita leuckarti 
(de Man, 1876)

28S&18S 54 10.10 9.59 7.65 2.51 10.23 7.11 7.09

Cylindrolaimus 
melancholicus de Man, 
1880

– 0 0.82            

Cylindrolaimus sp. 18S 3         0.29    

Ethmolaimus pratensis 
de Man, 1880

18S&28S 10 1.03         0.02  

Epidorylaimus cf. agilis 
(de Man, 1880)

    0.21            

Eudorylaimus cf. carteri 
(Bastian, 1865)

28S&18S 9 0.21            

Eudorylaimus sp. 28S&18S 22              

Eudorylaimus_28S_a       0.29          

Eumonhystera cf. 
barbata Andrássy, 
1981

– 0 0.21            

Eumonhystera dispar 
(Bastian, 1865)

– 0 0.82            

Eumonhystera filiformis/
hungarica

28S&18S 12   0.29       0.21  

Eumonhystera 
longicaudatula 
(Gerlach & Riemann, 
1973)

18S 1 1.86            

Eumonhystera vulgaris 
(de Man, 1880)

18S 1 2.27         0.04  

Eumonyhstera 
pseudobulbosa (Daday, 
1896)

– 0 0.21            

(Continues)
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Species ncbi
Nb of 
sequences

Microscopy Barcoding_28S NGS_28S Barcoding_18S NGS_18S

(%) (%) % % (%) % %

n = 485 n = 344 OTUs ASVs n = 343 OTUs ASVs

Eumonhystera_18S_a             1.75 0.02  

Eumonhystera_10               0.04  

Eumonhystera_3               0.03  

Filenchus sp. 28S&18S 38 0.21            

Hofmaenneria niddensis 
Schneider, 1940

– 0 1.65            

Ironus longicaudatus de 
Man, 1884

28S&18S 4   0.29 0.13 0.08      

Ironus_18S_a             0.29 0.06  

Mermithidae     0.41            

Monhystera paludicola 
de Man, 1881

28S&18S 15 0.41            

Monhystera stagnalis 
Bastian, 1865

28S&18S 11 0.21            

Monhystera sp. 28S + 18S 32              

Monhystera wangi Wu 
& Hoeppli, 1929

28S 1     0.38        

Monhystera_28S_a       1.16 0.08        

Monhystera_28S_b       0.87          

Monhystera_28S_c       0.58   0.1      

Monhystera_28S_d       0.58          

Monhystera_28S_e       0.29          

Monhystera_10         0.08        

Monhystera_2           0.03      

Monhystera_3               0.06  

Mononchus truncatus 
Bastian, 1865

28S&18S 8   0.29     0.29    

Mononchus_18S_a             0.29    

Plectus aquatilis 
Andrássy, 1985

28S&18S&COI 17           0.09  

Plectus_11           0.83      

Plectus_2         2.83        

Plectus_3         1.69        

Plectus_6         0.08        

Prismatolaimus 
dolichurus De Man, 
1880

28S&18S 10     0.08        

Prismatolaimus 
intermedius (Bütschli, 
1873)

18S 3 0.21            

Rhomborhabditis regina 
(Schulte & Poinar, 
1991)

28S&18S 9     0.08        

Semitobrilus pellucidusa 
(Bastian, 1865)

28S&18S 13 9.07 9.01 31.75 5.79      

Theristus sp. 28S&18S&COI 22         50.88 68.03 69.75

TA B L E  1   (Continued)

(Continues)
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The packages “iNEXT” (Hsieh, Ma, & Chao, 2016) and “fossil” 
(Vavrek, 2011) in R were used to calculate rarefaction curves with 
the iNEXT function and to estimate species richness with the jack1 
function, for both morphological and barcoding data (Figure S1).

2.3 | Metabarcoding

DNA of the metabarcoding sample was extracted using the 
NucleoSpin tissue XS kit (Macherey-Nagel, Düren, Germany) 

Species ncbi
Nb of 
sequences

Microscopy Barcoding_28S NGS_28S Barcoding_18S NGS_18S

(%) (%) % % (%) % %

n = 485 n = 344 OTUs ASVs n = 343 OTUs ASVs

Theristus agilis (de Man, 
1880)

18S 3 37.32         0.02  

Theristus vesentinae 
(Andrássy 1962)

– 0 3.30            

Theristus_5               0.02  

Theristus_7               0.02  

Tridentulus sp. 18S 2           0.07  

Tripyla setifera Bütschli, 
1873

28S 15 9.48 4.36 4.82 1.08      

Triypla sp. 28S&18S 77              

Tripyla_18S_a             5.56 1.86 1.18

Sanger_18S_1 
(Tobrilidae)

            9.94 13.83 12.71

Sanger _28S_1 
(Chromadorea)

      50.29 10.87 0.75      

Sanger _28S_2 
(Chromadorea)

      2.03 2.37 0.95      

Sanger _18S_2 
(Chromadorea)

            2.92 0.06  

Sanger _18S_3 
(Tobrilidae)

            0.29    

Sanger _28S_3 
(Chromadorea)

      0.29          

Sanger _28S_4 
(Triplonchida)

      0.29          

Sanger _28S_5 
(Nematoda)

      0.29          

Sanger _28S_6 
(Monhysteridae)

      0.29          

Sanger _28S_7 
(Nematoda)

      0.29          

Chromadorea (OTU: 
18S = 1,28S = 18; 
ASV: 28S = 4)

        19.45 83.67   0.02  

Plectidae (OTU: 
28S = 4; ASV: 28S = 2)

        6.43 2.06      

Tobrilidae (OTU: 
18S = 7,28S = 2; ASV: 
18S = 1,28S = 1)

        0.25     0.18  

Chromadorida (OTU: 
18S: 1; ASV: 18S: 1)

              3.04 3.45

Nematoda (OTU: 
18S = 1,28S = 9)

        7.53 1.03   0.03  

a28S reference database gave results as Tobrilus pellucidus instead of Semitobrilus pelludicus, although the same species is meant. 

TA B L E  1   (Continued)
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according to the manufacturer's protocol, but with a lysis time in a 
rocking water bath of 10 hr, rather than the suggested 1–3 hr. The 
PCR primers were identical to those used for barcoding (F04/R22 
and 1274/706, see above). PCRs were carried out for 30 cycles using 
a mix of high-fidelity and standard polymerases (MyTaq) and the fol-
lowing conditions: 1 min 96°C predenaturation; 96°C for 15 s, 58°C 
for 30 s, and 70°C for 90 s. Amplicons were quality checked, and an 
individual index adaptor was ligated in a second 10-cycle PCR using 
the same conditions. The PCR products (20 ng each) were submit-
ted for Illumina MiSeq (2 × 300 bp) sequencing with V3 chemistry 
at LGC Genomics (Berlin) in a shared run. One million raw reads of 
the sequencing run were delivered demultiplexed.

Bioinformatics downstream analyses followed two approaches, 
resulting in operational taxonomic units (OTUs) and amplicon se-
quence variants (ASVs). The OTU analyses were performed with mo-
thur and largely followed the MiSeq standard operation procedure 
until taxonomic classification (Kozich, Westcott, Baxter, Highlander, 
& Schloss, 2013; Schloss et al., 2009). Demultiplexed reads were 
combined using mothurs make.contigs with default parameters. Over 
72% of the reads could be merged, showing that the overlap was suf-
ficient. The average Phred score of the forward reads was >30 even 
toward the end of the read, while reverse reads had an average score 
>20 toward the ends. Only reads containing both primer sequences 
were retained in the dataset. Cutadapt (Martin, 2011) was used to 
remove primer sequences from the combined reads with a default 
error rate of 0.1. In a further filtering step, reads with ambiguous 
bases, homopolymers >10 bases, and unexpectedly short or long 
reads (allowed ranges: 333–367 for 18S, and 471–516 for 28S, lower 
and upper limits were selected as the 2.5% and 97.5% percentile, 
respectively) were excluded as well using screen_seqs (default pa-
rameters). The resulting sequences were aligned using the SILVA 132 
reference alignment (Martin, 2011) to determine the spanned 18S 
or 28S rDNA region within the alignment. Sequences not spanning 
this region were eliminated and overhangs were cut. The sequences 
were then clustered into OTUs (pre.cluster with single-linkage) with 
a maximum difference of 4 (18S) or 5 (28S), equivalent to a ~99% 
clustering threshold. The resulting OTUs were then checked for chi-
meras, which were removed using UCHIME (Edgar, Haas, Clemente, 
Quince, & Knight, 2011). The ASVs were generated using the dada2 
pipeline, as described by Callahan et al. (2016). Adapter sequences 
were removed with cutadapt, as described above, and a custom 
dada2 script in R was used as reported in detail at: https​://benjj​neb.
github.io/dada2/​tutor​ial.html. The parameters were slightly changed 
(length cutoff (280,250), maxEE = c (2,2), truncQ = 2).

The RDP classifier was used to further annotate the OTUs and 
ASVs (using the same model as for the taxonomic classification of 
the sanger sequences). Identical classifications at the species and 
genus level were combined into new OTUs.

The placement of the OTUS and ASVs was checked by building 
phylogenetic trees with MEGA (Kumar, Stecher, & Tamura, 2016) 
based on maximum likelihood (500 generations, Jukes-Cantor 
model as calculated by jModelTest) and using all newly generated 
sequences in this study as well as the reference dataset.

2.4 | Comparisons of the methods

Venn diagrams were used to visualize the concordance between 
morphological, barcoding, and metabarcoding identifications at the 
species level. A genus-level comparison was also conducted, as sev-
eral of the OTUs and ASVs could not be assigned at higher taxo-
nomic levels (Figure S2).

3  | RESULTS

3.1 | Morphological analysis

In the morphological analysis, 483 specimens could be assigned 
taxonomically to the species level and 485 to the genus level. 
Overall, 22 nematode species and one Mermithidae species were 
identified. Among the 22 nematode species, 7 were dominant 
(>2% abundance) while the others were detected only in lower 
abundances (<2%). Seven species were single finds (0.21% abun-
dance). The most abundant species was Theristus agilis (37.32%), 
followed by Anaplectus grandepapillatus (18.56%), Chromadorita 
leuckarti (10.10%), Tripyla setifera (9.48%), Semitobrilus pellucidus 
(9.07%), Theristus vesentinae (3.30%), and Eumonhystera vulgaris 
(2.27%). An overview of all nematode species found is given in 
Table 1. The 22 discovered species were 77.4% of the estimated 
species richness (jackknife estimator), and the rarefaction curve 
showed an estimated increase of 26.1% (6 species) within the next 
500 specimens (Figure S1).

3.2 | Barcoding

From the 500 nematodes genetically analyzed using the 28S and 18S 
rDNA gene regions, a sequence for at least one of the markers was 
obtained for 380 (76%) individuals, including successful amplifica-
tion of both markers in 308 (61.6%) individuals. No sequence was 
obtained for 120 (24%) of the nematodes.

Based on the 520-bp 28S rDNA gene fragment, 20 OTUs 
(66.7% of the estimated species richness) were identified by gmyc. 
However, the most abundant OTU (Sanger_28S_1, 50.29% of all 
successfully amplified specimens) could not be annotated but was 
instead classified as Chromadorea and assigned phylogenetically 
close to Theristus (Figure A1). Other frequent OTUs were Anaplectus 
granulosus (18.60%), Chromadorita leuckarti (9.59%), Tobrilus pelluci-
dus1 (9.01%), Tripyla setifera (4.36%), Sanger _28S_2 (2.03%), which 
was classified as Chromadorea, and Monhystera_28S_a (1.16%). The 
abundances of the remaining OTUs were <1% (Table 1). Sequences 
~400 bp in length and belonging to the V1–V2 region of the 18S 
rDNA gene fragment resulted in 12 OTUs (70.6% of the estimated 
species richness), with those of Theristus sp. (50.88%), Anaplectus 
porosus (17.25%), Chromadorita leuckarti (10.23%), Sanger_18S_1 
(9.94%), Triyla_18S_a (5.56%), Sanger _18S_3 (2.92%), and 
Eumonhystera_18S_a (1.75%) occurring with the highest frequency. 

https://benjjneb.github.io/dada2/tutorial.html
https://benjjneb.github.io/dada2/tutorial.html
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Sanger_18S_1 (Tobrilidae) was placed close to Tobrilus in the phylo-
genetic analysis (Figure A2). The frequency of the remaining OTUs 
was ≤ 1%. A list of all taxonomic assignments based on barcoding 
with both markers is given in Table 1.

3.3 | Metabarcoding

After quality filtering and the removal of chimeric reads, the OTU 
dataset was reduced from 12,955 read pairs to 10,116 merged reads 
(for 18S) and from 12,847 read pairs to 2,365 merged reads (for 28S). 
An overview of the reduction of the read number during the bioinfor-
matic pipeline process is given in the (Table S4). For the 28S marker, 48 
OTUs were identified after RDP classifier annotation, although many 
could not be conclusively resolved at the taxonomic level and only 
class assignments were possible (Table 1). At the species and genus 
levels, the most frequent OTUs were Tobrilus pellucidus (31.75%), 
Sanger _28S_1 (10.87%; as found by Sanger sequencing), Chromadorita 
leuckarti (7.65%), Tripyla setifera (4.82%), Anaplectus granulosus (3.42%), 
and Plectus_2 (2.83%). The dada2 pipeline resulted in 6,006 reads 
that consisted of 17 ASVs. The most frequent was not classified 
(Chromadorea_1; 81.77%), followed by T. pellucidus (5.79%), C. leuckarti 
(2.51%), A. granulosus (1.1), and T. setifera (1.08%) (Table 1).

The OTU-pipeline for the 18S gene fragment resulted in 31 
OTUs classified by the RDP classifier. The highest number of reads 
belonged to Theristus sp. (68.03%), followed by Sanger _18S_1 
(Tobrilidae) (13.83%), C. leuckarti (7.11%), Anaplectus porosus 
(5.10%), Chromadorida_1 (3.04%), and Tripyla_1 (1.86%) (Table 1). 
For the dada2 pipeline, only 6 ASVs were recovered from 1,015 
reads, with the most frequent belonging to Theristus sp_1 (69.75%), 
followed by an unclassified OTU (Tobrilidae; 12.71%), C. leuckarti 
(7.09%), A. porosus (5.81%), Chromadorida (3.45%), and Tripyla 
(1.18%) (Table 1).

3.4 | Comparisons between methods

From the morphologically identified species, six (27.3%) were recov-
ered by one of the molecular approaches (Figure 2). Barcoding and 
metabarcoding recovered three species (13.6%), of which only one 
(4.5%) was detected by both genetic markers. From the 30 OTUs 
found by barcoding, 17 (56.7%) were also recovered by metabarcod-
ing, while 17 (21.5%) of the metabarcoding OTUs (n = 79) were also 
found by barcoding. At the genus level, 62.5% of the morphologi-
cally identified genera were recovered by at least one molecular ap-
proach (Fig. S2b), indicating that taxonomic assignment is hampered 
by missing reference sequences.

4  | DISCUSSION

This study compared three methods of species identification: morpho-
logical inspection and two molecular approaches, barcoding, including 

Sanger sequencing, and high-throughput metabarcoding (NGS). Our 
results showed that the different methods will not discover the same 
diversity, as the molecular methods recovered fewer annotated spe-
cies than obtained by morphological analysis, although more OTUs 
were generated by metabarcoding than by barcoding. Despite reports 
of the high accuracy of molecular methods (Cowart et al., 2015) and 
their ability to recover a higher diversity, as demonstrated in the meta-
barcoding of diatoms (Keck et al., 2018; Rimet, Vasselon, A.-Keszte, & 
Bouchez, 2018; Zimmermann, Glöckner, Jahn, Enke, & Gemeinholzer, 
2014), in many studies a larger number of species or taxa was identi-
fied with traditional microscopy. Examples of the superiority of micros-
copy in species identification include a study of estuarine plankton, in 
which 56 taxa were revealed by microscopy but only 37 by metabar-
coding (Abad et al., 2016); a study of copepods, in which 54 species 
were identified morphologically versus. 40 species by metabarcoding 
(Stefanni et al., 2018); a study of zooplankton, in which 62 species were 
recovered by morphological analysis and 41–56 species by molecular 
methods (Harvey et al., 2017); and a deep sea study, in which 20–33 of 
35 species were recovered using microscopy (Dell'Anno et al., 2015). 
Our results fall within this range, as we obtained a comparable diver-
sity based on single-specimen barcoding for one genetic marker (28S 
rDNA: 20 OTUs) and morphology (23 species), but a lower diversity 
using the other marker (18S rDNA: 12 OTUs). Metabarcoding consist-
ently resulted in higher OTU numbers, but the numbers were again 
higher when 28S rDNA rather than 18S rDNA was used. The 18S gene 
is generally less variable than the 28S gene such that fewer differences 
might have accumulated within the barcode region, resulting in a lower 
resolution and fewer OTUs (Prosser et al., 2013). Several OTUs iden-
tified by barcoding that could not be identified by RDP classification 
could nonetheless be conclusively placed in phylogenetic trees, thus 
allowing their taxonomic assessment. Despite the high OTU numbers 
recovered by NGS (28S: 48 OTUs/17 ASVs, 18S: 31 OTUS/6 ASVs), 
a large proportion could not be classified beyond the genus level. 
However, the phylogenetic trees showed that all OTUs were reason-
ably placed, for example, close to the expected species or to OTUs 
found by single-specimen barcoding (Figures A1 and A2).

As the true species richness could not be determined using 
barcoding and metabarcoding approaches, the validity of the com-
parison with the morphological sample was limited. A more reliable 
comparison would have been possible if the specimens had been 
identified prior to Sanger sequencing or metabarcoding, as was the 
case in other studies (Leasi et al., 2018; Macheriotou et al., 2019). 
However, our aim was to directly compare the three methods as they 
are commonly applied. Thus, we could not expect that the studied 
communities would be identical, but likely very similar and that the 
more abundant species would be detected by all three methods. 
While this was indeed the case, taxonomic assignment problems and 
a lower OTU number obtained with Sanger sequencing limited the 
comparisons.

Molecular methods are highly sensitive and may eventually 
complement traditional taxonomy approaches, but our study and 
those cited above demonstrate the obvious potential of molecu-
lar-based methods to miss species. In our study, the 18S and 28S 
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gene amplifications of the single-specimen approach resulted in an 
average sequencing success of 68.6% and 68.8%, respectively, and 
a combined average of 76%. This rate seems to be typical of sin-
gle-specimen barcoding, as the success rate obtained with the COI 
sequence in an arthropod study was 65.5% (Gibson et al., 2014), 
and that obtained with 28S and 18S markers in a nematodes study 
67% and 98%, respectively (Bhadury et al., 2006; Pereira, Fonseca, 
Mundo-Ocampo, Guilherme, & Rocha-Olivares, 2010). The variabil-
ity in these rates can be attributed to species that lack an adequate 
primer-binding site due to mutations in the primer-binding regions, as 
often described for the COI genes (Piñol, Mir, Gomez-Polo, & Agustí, 
2015; Schloss, Gevers, & Westcott, 2011; Suzuki & Giovannoni, 
1996). A further reason for the varying efficiencies is the insuffi-
cient amounts of DNA often obtained from very small specimens, 
for example, juveniles or small species in general. Moreover, in many 
cases, organisms that in the single-specimen approach could not be 
amplified with one marker and could also not be amplified with the 
other marker, perhaps due to poor DNA quality.

Besides the differences in species and OTU/ASV number ob-
tained with barcoding and metabarcoding, taxonomic assignment 
based on these molecular methods failed in several cases and only 
three species were identified by all three methods (Figure 2). The 
most obvious failure was that the OTU most frequently obtained 
by 28S rDNA barcoding and metabarcoding could not be classified. 
By contrast, specimens identified by their 28S gene sequence as 
Sanger_28S_1 were always identified as Theristus sp. by the 18S gene 
sequence. While the correct identification was probably Theristus 
agilis, this species is missing in the databases for both gene frag-
ment sequences (Table 1). However, phylogenetic trees constructed 

from the two markers placed Sanger_28S_1 and Theristus sp. from 
this study close to the Theristus sequences deposited for the mark-
ers (Figures A1 and A2) with proportions of both OTUs being sim-
ilar to that of the morphologically inspected sample identified as 
Theristus agilis. Moreover, for both the 28S and the 18S rDNA gene 
fragments, some OTUs could only be traced back to the (expected) 
species based on the morphological data, because of the placement 
in the phylogenetic background, or by using a second primer pair. 
Specimens identified as S. pellucidus using the 28S gene region were 
also identified as Sanger_18S_1, and Sanger_28S_7 was identified as 
Cylindrolaimus sp. using the 18S gene fragment. As the latter species 
is completely missing in the 28S rDNA database, the use of a sec-
ond marker was necessary for its identification. As demonstrated 
here, an important cause of poor taxonomic assignments using mo-
lecular methods is incomplete databases. Consequently, species 
represented by several reference sequences were more likely to be 
successfully identified than species lacking accurate species inven-
tories based on a single marker (Table 1). The OTU assignments for 
the 28S gene fragment resulted in reliable annotations for the OTUs 
that could be classified as distinct nematode species, which showed 
that this marker is generally suited for nematode species identifica-
tion. However, missing sequences in the database prevented many 
other species-level assignments (7 of 20 Sanger OTUs classified at 
the species level). For metabarcoding, 48.3% of the 28S rDNA OTUs 
but 80.9% of the 18S rDNA OTUs were resolved to the species level.

The performance of the metabarcoding analysis regarding spe-
cies proportions was to some extent similar to that of the Sanger 
sequencing approach. The correct depiction of abundance is a 
known problem for NGS-based approaches, due to PCR bias and 

F I G U R E  2   Venn diagrams showing 
the overlap in species identification by 
the three approaches. The number of 
species or genera found by each method 
is indicated outside the circles. Species 
identified by 18S rDNA and 28S rDNA 
OTUs are shown in color. OTUs classified 
below the genus level were combined. 
The total number of OTUs is shown in 
parentheses
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other limitations (Bucklin, Lindeque, Rodriguez-Ezpeleta, Albaina, 
& Lehtiniemi, 2016; Elbrecht & Leese, 2015; Vivien, Lejzerowicz, 
& Pawlowski, 2016). In our study, OTU clustering resulted in 
higher OTU numbers than obtained with the dada2 pipeline, al-
though this was an unexpected result (as OTUs are basically ASVs 
clustered at a predefined cutoff). Recently, accurate results with 
the ASV-approach using dada2 have been reported (Macheriotou 
et al., 2019). However, we found that, especially for the 18S gene 
region, the performance of dada2 was not satisfactory, as it led to 
the identification of only six ASVs. A similar result was reported 
in another nematode study, in which a reduced taxonomic as-
signment was obtained using the dada2 pipeline (Waeyenberge, 
Sutter, Viaene, & Haegeman, 2019). As the dada2 pipeline uses a 
more stringent filtering process than the standard OTU-pipeline, 
it might omit several sequences maintained in the OTU approach, 
resulting in a much lower number of reads in the final ASV table 
construction (OTU: 10,150 reads vs. ASV: 1,015 reads). Despite 
this potential loss of important information, the filtering out of 
fewer sequences might result in a high number of OTUs with se-
quencing artifacts. Therefore, the choice of bioinformatic pipeline 
should be considered carefully. As we sequenced isolated nema-
tode communities, the more stringent filtering of dada2 was not 
necessary, but environmental samples (eDNA) might yield differ-
ent results.

Several initiatives have attempted to curate global biodiversity 
in public databases for molecular purposes, but these efforts are 
far from complete (Geiger et al., 2016; Lee et al., 2017). Our study 
highlights the need to quickly expand molecular databases in order 
to allow the full use of molecular methods in accurate species as-
signments. As current databases lack many nematode sequences 
and a large number of OTUs are of low taxonomic resolution, a tax-
onomy-free approach might be preferable until alternative measures 
become available (Cordier et al., 2018).

In conclusion, our study showed that the results obtained using 
two genetic markers in barcoding and metabarcoding analyses will 
improve many of the taxonomic assignments, including those of dom-
inant OTUs, at least to the genus level. This combined approach will 
compensate for the possible failure of one marker in achieving the 
correct annotation (as demonstrated in this study by Sanger_18S_1, 
Sanger_28S_1). Other studies have also emphasized the importance 
of using more than one marker, if possible, from more than one gene 
region (Ahmed, Sapp, Prior, Karssen, & Back, 2015; Fontaneto et al., 
2015). Furthermore, the obtained results may be more reliable if 
the gene regions show concordance. Our study highlights the need 
for fundamental work in species identification and the single bar-
coding of organisms in order to extend and improve current data-
bases. These efforts will provide insights into taxonomy, body traits, 
and phylogeny (Fontaneto et al., 2015; Janzen et al., 2005; Pires & 
Marinoni, 2010). Metabarcoding studies will profit enormously from 
these efforts, by allowing accurate species- or genus-level identifi-
cations. Ecological monitoring, which often relies on exact species 
assignment and abundance determinations, will also greatly benefit 
from these efforts.

An integrated approach to species identification based on mor-
phological and molecular analyses will yield a dataset with even 
greater reliability than based on only one method. Additionally, 
future methods, such as whole-genome sequencing and other 
PCR-free approaches (Junqueira et al., 2016; Orgiazzi, Dunbar, 
Panagos, Groot, & Lemanceau, 2015), will eliminate or at least 
minimize many of the current drawbacks of current molecular ap-
proaches, by obviating the need for primers. However, these meth-
ods require a high sequencing depth and a much larger number of 
whole genomes for nematodes in existing databases (Pompanon 
& Samadi, 2015).
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APPENDIX 

392L

376L

397L

383L

469L

260L

302L

323L

365L

428L

488L

243L

231L

ASV Plectus 11

ASV Nematoda 1

ASV Nematoda 4

ASV Chromadorea 1

ASV Tobrilidae 1

OTU Chromadorea 72

OTU Chromadorea 6

OTU Nematoda 49

OTU Nematoda 1

OTU Tobrilidae 1

OTU Chromadorea 67

OTU Plectus 3

OTU Nematoda 21

OTU Nematoda 3

OTU Chromadorea 73

OTU Chromadorea 94

OTU Nematoda 30

OTU Chromadorea 3

OTU Tobrilidae 6

OTU Chromadorea 61

OTU Plectus 2

OTU Plectus 6

OTU Chromadorea 7

OTU Chromadorea 43

OTU Chromadorea 71

28L

27L

293L

OTU Chromadorea 1

52L

328L

130L

403L

OTU Tobrilidae 4

OTU Nematoda 28

ASV Chromadorea 6

 Theristus sp. 28S MKL1 AF210424.1

 Theristus sp. 28S FUM003  KY792386.1

OTU Chromadorea 8

OTU Nematoda 54

 Monhystera sp. BI LSU 205 MF125503.1  

Monhystera paludicola BI LSU 218 MF125497.1

 Monhystera sp. BI LSU 214 MF125511.1

 Monhystera stagnalis BI LSU 210 MF125518.1

 Monhystera stagnalis BI LSU 212 MF125521.1

 Monhystera paludicola BI LSU 201 MF125488.1

136L

481L

438L

218L

492L

OTU Monhystera 17

275L

342L

25L

100L

OTU Monhystera 10

191L

2L

ASV Monhystera 1

Monhystera paludicola BI LSU 199 MF125498.1 

Monhystera paludicola BI LSU 190 MF125499.1  

Monhystera wangi BI LSU 195 MF125522.1

OTU Monhystera wangi

ASV Monhystera 2

 Monhystera stagnalis BI LSU 188 MF125516.1  

Monhystera paludicola BI LSU 187 MF125489.1  

Monhystera stagnalis BI LSU 189 MF125519.1

41L

 Eumonhystera filiformis BI LSU 180 MF125480.1

 Eumonhystera filiformis BI LSU 177 MF125476.1

 Eumonhystera filiformis BI LSU 175 MF125478.1

 Eumonhystera filiformis 28S DQ086658.1  

Allodorylaimus sp.HMM718 2017 KY703629.1  

Eudorylaimus centrocercus 28S AY593007.1

 Eudorylaimus carteri Gr691 28S MF325217.1  

Eudorylaimus altherri Gr1081 28S MF325213.1

 Eudorylaimus sp.1 KH 2018 Gr718 MF325220.1

449L

 Eudorylaimus sp1. KH 2018 Gr721 MF325118.1

 Mononchus sp. HMM2018 28S KY750781.1

356L

168L

 Mononchus tunbridgensis 28S AY593963.1

 Mononchus truncatus BI LSU 230 MF125531.1

 Mononchus truncatus BI LSU 229 MF125530.1

 Mononchus truncatus 28S AY593064.1  

Mononchus maduei BI LSU 224 MF125526.1  

Mononchus aquaticus BI LSU 227 MF125525.1

OTU Chromadorita leuckarti

ASV Chromadorita leuckarti

Chromadorita leuckarti BILSU 73 MF125373.1 

478L

473L

424L

301L

257L

184L

180L

 Chromadorita leuckarti BILSU 51 MF125359.1  

Chromadorita leuckarti BILSU 38 MF125377.1

175L

11L

182L

195L

313L

344L

366L

369L

371L

389L

472L

487L

ASV Plectidae 9

ASV Anaplectus granulosus

OTU Plectidae 21

OTU Anaplectus granulosus

OTU Plectidae 1

OTU Plectidae 26

35L

OTU Plectidae 16

ASV Plectidae 12

 Anaplectus sp.12 28S MG994930.1  

Anaplectus porosus 28S MF622938.1

 Anaplectus granulosus Gr1031 28S MF325171.1

 Anaplectus granulosus Gr457 28S MF325172.1  

Plectus cf.acuminatus JS2019 MK541662.1 

 Plectus aquatilis MK541663.1

 Plectus sp. BILSU258 MF125565.1

 Plectus sp. 1 HMM2018 KY750806.1

 Plectus sp. Gr1049 MF325283.1

 Plectus velox MK541677.1

 Plectus opisthocirculus Po KU759362.1  

Chiloplectus andrassyi KU759360.1

 Plectus cirratus pc KU759359.1

 Plectus aquatilis BILSU 248 MF125549.1

 Acrobeloides tricornis MK541665.1

 Acrobeloides nanus MK541664.1

ASV Chromadorea 5

ASV Chromadorea 4

OTU Chromadorea 9

OTU Chromadorea 81

OTU Chromadorea 55

OTU Chromadorea 63

OTU Nematoda 36

OTU Chromadorea 4

OTU Chromadorea 90

OTU Chromadorea 5

 Ironus longicaudatus BI LSU 182 MF125481.1  

Ironus longicaudatus BI LSU 181 MF125482.1 

89L

ASV Ironus longicaudatus

OTU Ironus longicaudatus

 Ironus tenuicaudatus BI LSU 185 MF125483.1

 Ironus tenuicaudatus BI LSU 184 MF125485.1

 Ironus sp. GR643 MF325228.1  

Ethmolaimus pratensis BI LSU 173 MF125471.1

 Semitobrilus pellucidus Gr1035 28S MF325349.1  

Neotobrilus longus LSU KF144689.1

 Tobrilus longus BI LSU 338 MF125645.1

 Tobrilus longus BI LSU 345 MF125637.1  

Tobrilus medius BILSU 352 MF125659.1  

Tobrilus medius BILSU 359 MF125653.1

 Tripyla setifera Gr1122 28S MF325352.1  

Tripyla setifera BI LSU 390 MF125684.1  

Tripyla setifera Gr1124 28S MF325357.1 

Triypla setifera 28S MF125688.1

42L

211L

370L

461L

462L

497L

ASV Tripyla setifera

OTU Tripyla setifera

4L

 Tripyla sp. 28S KU921601.1

 Tripyla glomerans BI LSU 381 MF125680.1

 Tripyla glomerans BI LSU 379 MF125677.1

 Tripyla sp. LSU 10 MG994928.1.seq  

Prismatolaimus dolichuros Gr1069 28S MF325336.1  

Prismatolaimus sp. DLP005 28S AB477072.1  

Prismatolaimus dolichuros Gr1072 28S MF325339.1

OTU Prismatolaimus dolichurus 

Neotobrilus longus LSU KF144691.1

OTU Tobrilus pellucidus

OTU Nematoda 55

ASV Tobrilus pellucidus

350L

325L

282L

248L

224L

223L

116L

107L

 Tobrilus longus BI LSU 3459 MF125640.1  

Tobrilus pellucidus BI LSU 375 MF125664.1  

Tobrilus pellucidus BI LSU 371 MF125669.1  

Tobrilus pellucidus BI LSU 369 MF125667.1  

Tobrilus pellucidus BI LSU 367 MF125662.1  

Neotobrilus longus LSU KF144687.1  

Neotobrilus longus BI LSU 351 MF125532.1

 Aphanolaimus aquaticus BI LSU 22 MF125323.1  

Aphanolaimus sp. BI LSU 24 MF125325.1  

Aphanolaimus aquaticus BI LSU 25 MF125324.1

86L

 Paroigolaimella bernensis MK541654.1

 Pristionchus entomophagus MK541653.1

 Pristionchus pacificus MK541659.1

 Acrostichus nudicapitatus MK541655.1

 Acrostichus sp.JS2019 MK541656.1

 Panagrellua redivivus MK541658.1

 Filenchus discrepans C172 28S KX156321.1

 Filenchus sp.5 TJP 2012 28S JQ005016.1

 Filenchus vulgaris C179 28S KX156337.1

 Filenchus sp.4 TJP 2012 28S JQ005014.1  

Filenchus sp.3 TJP 2012 28S JQ005013.1

 Filenchus sp.2 TJP 2012 28S JQ80050151  

Filenchus sp.1 TJP 2012 28S JQ005012.1  

Filenchus sp.1 FLSU1 28S MH842879.1

 Poikolaimus regenfussi MK541666.1  

Poikolaimus oxycercus MK541667.1

OTU Rhomborhabditis regina

 Rhomborhabditis regina MK541657.1  

Aphelenchoides sp. AP145 28S KX356825.1  

Aphelenchoides sp.1 ZW2018 28S Mh844703.1

 Aphelenchoides sp. AP026 28S KX356795.1

 Aphelenchoides sp.1 JH 2015 28S KT003987.1

 Aphelenchoides sp. Iran02 28S KU738610.1

 Caenorhabditis elegansMK541660.1  

Diploscpater coronatus MK541668.1

 Macrobiotus canaricus 28S MH063934.1

88

85

79

71

67

76

98

99

84

45

58

17

80

68

91

96

17

91

32

20

63

15

77

94

14

97

85

99

98

81

7

39

96

42

66

46

51

42

25

0

94

62

46

60

32

23

64

7

43

0

2

2

93

5

4

1

0

11

0

4

2

11

0

0

1

48

32

66

15

51

49

0.10

96L

 109L

 274L

 10L

 307L

 16L

 172L

 216L

 59L

 73L

 79L 

127L

 128L 

Sanger

Monhystera sp BI LSU 204 MF125508.1 
21L 

 n

258L

 200L  
434L                 

247L Sanger

Sanger

7L

Sanger_28S_2 (Chromadorea)
                     n=3

F I G U R E  A 1   Maximum likelihood tree based on 500 generations 
for the 28S gene region performed using all newly generated 
Sanger sequences and the reference dataset (highlighted in italics). 
Sequences generated in this study are abbreviated with a number 
(1–500 L) and color-coded according to the OTU they were sorted 
into based on gmyc. The taxonomic assignment by RDP is shown in 
parentheses if the resolution was lower than genus level
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F I G U R E  A 2   Maximum likelihood tree based on 500 generations 
for the 18S gene region, performed for all newly generated Sanger 
sequences and the reference dataset (highlighted in italics). 
Sequences generated in this study are abbreviated with a number 
(1–500 S) and color-coded according to the OTU they were sorted 
into based on gmyc. The taxonomic assignment by RDP is shown in 
parentheses if the resolution was lower than genus level

 497S

 479S

 500S

 Triypla sp 2ZQZ-2010a CH09a 18S GQ503064

Triypla sp 2ZQZ-2010a AS03 18S GQ503066

ASV Tripyla 1

 OTU Tripyla 1

 66S

 461S

 445S

 196S

 42S

Triypla sp 2ZQZ-2010a CH014 18S GQ503072

Triypla sp 2ZQZ-2010a WR0118S GQ503071

 Triypla sp Guilan50 18S KU921595.1

Triypla sp 1ZZ-2013 KC485341.1

Tripyla glomerans BFG-Sp9 18S MF409922.1

Triypla sp Guilan138 18S KU921596.1

 50S

 Triypla sp TPS579 18S KF270637.1

 Prismatolaimus intermedius cf JH 2014 18S KJ636352.1

 Prismatolaimus intermedius cf JH 2014 18S KJ636367.1

 Prismatolaimus dolichuros cf JH 2004 18S AY284727.1

 Prismatolaimus dolichuros cf JH 2004 18S AY284728.1

 Achromadora ruricola 18S AY593641.1

 Achromadora sp. JH 2004 18S Ay284717.1

Achromadora terricola cf JH 2004 18S AY593640.1

OTU Chromadorida 1

 OTU Chromadorea 2

 ASV Chromadorida 1

 453S

 Cylindrolaimus sp 18S FJ969121.1

 Cylindrolaimus sp 202149 18S AF202149.1

 86S

 Cylindrolaimus communis 18S AY593939.1

 Poikolaimus regenfussi MK543233.1

 Acrobeloides nanus KX669638.1

 Acrobeloides nanus DQ102707.1

 Acrobeloides tricornus MK543232.1

 Acrobeloides nanus MK543231.1

Filenchus chilensis 18S KJ869411.1

 Filenchus sp.1 WB 2009 18S FJ949564.1.1

 Filenchus sp.2 WB 2009 18S FJ949565.1.1

 Filenchus sp.1 FLSU1 18S MH844388.1

 Filenchus andrassyi 18S KJ869339.1

 Filenchus sp.5 TJP 2012 18S JQ814879.1

Filenchus thornei 18S KJ869336.1

 Filenchus sp.4 TJP 2012 18S JQ814878.1

 Filenchus hamuliger C101 18S KX156304.1

Filenchus sp.1 TJP 2012 18S JQ814875.1

Filenchus aquilonis 18S KJ869412.1

 Filenchus vulgaris 18S KJ869335.1

 Filenchus filiformis 18S AY284592.1

Filenchus sp.2 TJP 2012 18S JQ814876.1

 Filenchus sp.3 TJP 2012 18S JQ814877.1

 Filenchus discrepans 18S AY284591.1

 Filenchus sp.3 JH 2014 KJ869388.1

 Filenchus sp.4 JH 2014 KJ869384.1

 Plectus cf.acuminatus JS 2019 MK543229.1

Plectus velox MK543228.1

 Plectus sp. Rimu JX678607.1

 Plectus sp.1 JS 2018 MF409867.1

Plectus aquatilis GQ892827.1

 Plectus aquatilis MK543230.1

 OTU Plectus aquatilis

 Plectus sp. U61761.1

 Anaplectus grandepaillatus 18S AnaGra1 AY284697.1

Anaplectus porosus 18S AY284696.1

 Anaplectus sp .PDL 2005 18S AJ966473.1

 Anaplectus porosus 18S FJ040453.1

 Anaplectus sp. PDL 2005 18S KY120127.1

 130S

 OTU Anaplectus 2

278S

252S

440S

99S

162S

 159S

 15S

 131S

 71S

 68S

157S

391S

485S

 442S

 OTU Anaplectus porosus

 362S

 ASV Anaplectus porosus

 499S

 487S

 345S

 354S

 199S

 146S

 11S

268S

368S

 77S

 5S

 181S

 190S

 105S

 49S

 156S

 61S

 35S

 110S

 9S

 348S

 275S

 338S

 350S

 ASV Tobrilidae 1

 OTU Tobrilidae 1

 OTU Tobrilidae 10

 122S

 116S

 107S

 285S

 276S

262S

123S

214S

340S

 Neotobrilus longus 18S KF144676.1

Tobrilus sp. ZQZ GQ503073.1

 Neotobrilus longus 18S KF144677.1

 Semitobrilus pellucidus sTobPel1 18 KJ636231.1

 Tobrilus pellucidus 18S KR265052.1

 Tobrilidae sp .JH-2014 KJ636229.1

 247

 Tobrilus sp.1 JH-2014 KJ636244.1

 Tobrius gracilis KF144671.1

 Tobrius gracilis AJ966506.1

 OTU Tobrilidae 17

 OTU Tobrilidae 14

 OTU Ironus 1

 89S

 Ironus macramhis 18S KJ636218.1

 Ironus sp. 1192 18S FJ040496.1

 Ironus dentifurcatus 18S AJ966487.1

 Ironus longicaudatus 18S JQ965925.1

 Ironus longicaudatus 756 18S FJ040495.1

 Ironus sp. PM 2004 18S AY552970.1

 Ironus elegans 18S KC133064.1

Eudorylaimus carteri 18S AJ966484.1

 Allodorylaimus sp.1 WJW-2018 KY942068.1

 OTU Allodorylaimus 1

 Eudorylaimus carteri Gr691 18S MF325111.1

 Allodorylaimus sp.1 PDL-2005 AJ966472.1

 Eudorylaimus coniceps 18S LC457645.1

 Eudorylaimus sp. JH 2004 18S AY284800.1

 Dorylaimus stagnalis DoMuSTa8 18S AY284777.1

 Dorylaimus stagnalis DoMuSTa2 18S AY284776.1

 356S

 Mononchus tunbridgensis 18S AY593954.1

 Mononchus aquaticus 18S AY284764.1

 Mononchus aquaticus 18S AY284765.1

 Mononchus pulcher 18S KJ636382.1

Mononchus aquaticus 18S KJ636383.1

 Mononchus truncatus 18S KJ636355.1

 168S

 Mononchus truncatus 18S AB361451.1

 Mononchus truncatus 18S AY284762.1

 Ethmolaimus pratensis CeMoFe5C10F12 18S MG669774.1

Ethmolaimus pratensis 18S AY593942.1.1

 OTU Ethmolaimus pratensis

Ethmolaimus pratensis 1455 18S FJ040475.1

OTU Tobrilidae 18

 OTU Tobrilidae 7

 OTU Tobrilidae 20

 OTU Tobrilidae 15

 OTU Monhysterida 3

 OTU Theristus agilis

 Theristus agilis TherAgi3 18S AY284695.1

Theristus agilis TherAgi2 18S AY284694.1

 Theristus sp. M1 18S KX944166.1

 Theristus sp. 1 LM 2017 CeMoFe2A7E12 18S MG670070.1

 Theristus acer 18S AJ966505.1

 Theristus sp. 1268 18S FJ040464.1

 OTU Nematoda 9

 OTU Theristus 7

 OTU Theristus sp. 1268

 OTU Theristus 5

 72S

 113S

 251S

 109S

308S

235S

163S

 ASV Theristus sp. 1268

 403S

 401S

 492S

 476S

 415S

 287S

 220S

 193S

 177S

 172S

 244S

 10S

 237S

 8S

 312S

 495S

 17S

 145S

 249S

 112S

 183S

 480S

349S

106S

 102S

 85S

 78S

 120S

 160S

 88S

 16S

 471S

 375S

 271S

 216S

 59S

 490S

 392S

 238S

 18S

 73S

 121S

 79S

 263S

 92S

 93S

 153S

84S

98S

 83S

 80S

 96S

 81S

 74S

 75S

 94S

 62S

Eumonhystera filiformis 18S AY593937.1

OTU Eumonhystera cf. hungarica 1 JH-2014

 56S

 191S

 Eumonhystera sp.1 JH 2014 18S KJ636251.1

 41S

 OTU Eumonhystera cf. vulgaris 1 JH-2014

Eumonhystera hungarica cf JH 2014 18S KJ636237.1

 Eumonhystera longicaudatula cf JH 2014 18S KJ636252.1

 Eumonhystera vulgaris cf JH 2014 18S KJ636250.1

 OTU Eumonhystera 4

 OTU Eumonhystera 10

 Eumonhystera simplex cf JH 2004 18S AY284692.1

 OTU Eumonhystera 3

 21S

 Monhystera paludicola 18S FJ9691301

Eumonhystera filiformis 18S KJ636219.1

 Eumonhystera filiformis cf JH 2014 18S KJ636240.1

 Eumonhystera filiformis 18S KJ636239.1

 Eumonhystera filiformis 18S KJ636238.1

 7S

 Monhystera sp.1 a3 18S MF409851.1

 Monhystera sp.1 LM M16 18S MF409855.1

 Monhystera sp.1 JH 2014 18S KJ636233.1

Monhystera paludicola cf 18S KJ636258.1

Monhystera riemanni 696 497 18S AY593928.1

 Monhystera stagnalis 18S KJ636259.1

 Monhystera stagnalis cf JH2014 18S KJ636246.1

 OTU Tridentulus sp. PDL-2005

 Tridentulus sp.PFL-2005 AJ966507.1

Monhystera sp.2 LR F R8 18S MF409860.1

Monhystera sp.3 LR F R8 18S MF409860.1

 OTU Chromadorea 19

Dichromadora sp.1260 FJ040506.1

Dichromadora sp. cf KJ636253.1

 296S

 115S

 165S

 117S

 346S

 67S

 OTU Chromadorita leuckarti

 ASV Chromadorita leuckarti

Chromadorita leuckarti ChltLeu2Z 18S KJ636254.1

Chromadorita leuckarti ChltLeu1Z 18S KJ636214.1

496S

 475S

 473S

 270S

 139S

 37S

 147S

 257S

Chormadorita leuckarti aff 18S MF409780.1

 Chromadorita leuckarti ChltLeu1 18S FJ969119.1

Prismatolaimus intermedius SSU AF036603.1  Prismatolaimus

intermedius isolate PriMInt1 SSU AY284729.1  Prismatolaimus

dolichuros 831 832 18S AY593957.1

 Acrostichus sp. MK543223.1

 Acrostichus nudicapitatus MK543222.1

 Paraigoliamella bernensis MK543221.1

 Pristionchus pacificus MK543226.1

 Pristionchus entomorphagus MK543220.1

 Panagrellus redivivus MK543225.1

 Rhomborhabditis regina MK543224.1

 Caenorhabditis elegans MK543227.1

 Aphelenchoides sp. KP 18S GU337994.1

 Aphelenchoides sp.1 ZW-2018 18S MH844706.1

 Aphelenchoides sp. YN 18S GU337996.1

 Aphelenchoides sp. HB 18S GU337999.1

Aphelenchoides sp. US02 ZW-2018 18S MH844706.1

99

99

99

94

99

99

97

99

54

17

70

82

28

66

70

52

82

70

97

62

82

68

56

98

96

99

59

79

53

29

99

56

44

44

89

37

63

76

96

94

81

59

99

79

28

94

59

43

48

88

22

25

5

96

19

96

79

95

41

24

60

30

73

66

59

85

73

66

14

99

7

89

24

49

45

16

2

26

47

5

87

73

86

32

90

55

78

11

84

3

94

27

83

78

91

9

8

25

37

6

64

4

39

0

27

19

5

14

1

1

0

56

17

40

1

31

21

21

1

0

0

0

62

0

37

0

38

9

1

40

2

41

25

10

2

18

15

28

1

6

61

5

22

2

18

48

0

0

0

0

6

0

46

30

23

0

0.050

Tripyla_18S_a

 n=9

Sanger

Sanger

Sanger


