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Abstract: We extend the analysis of van Damme (1987, Section 7.5) of the famous

smoothing demand in Nash (1953) as an argument for the singular stability of the

symmetric Nash bargaining solution among all Pareto efficient equilibria of the Nash

demand game. Van Damme’s analysis provides a clean mathematical framework where

he substantiates Nash’s conjecture by two fundamental theorems in which he proves

that the Nash solution is among all Nash equilibria of the Nash demand game the only

one that is H–essential. We show by generalizing this analysis that for any asymmetric

Nash bargaining solution a similar stability property can be established that we call

Hα–essentiality. A special case of our result for α = 1/2 is H1/2–essentiality that

coincides with van Damme’s H–essentiality. Our analysis deprives the symmetric

Nash solution equilibrium of Nash’s demand game of its exposed position and fortifies

our conviction that, in contrast to the predominant view in the related literature, the

only structural difference between the asymmetric Nash solutions and the symmetric

one is that the latter one is symmetric.

While our proofs are mathematically straightforward given the analysis of van Damme

(1987), our results change drastically the prevalent interpretation of Nash’s smoothing

of his demand game and dilute its conceptual importance.
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1 Introduction

In the abstract of Serrano in Homo Oeconomicus, Sixty-Seven Years of the Nash

Program: Time for Retirement? Roberto Serrano writes: “The program is thus

turning sixty-seven years old, but I will argue it is not ready for retirement, as it

is full of energy and one can still propose important directions to be explored.”

The last two passages in the introduction of Nash (1953) beginning with the sen-

tence: “We give two independent derivations of our solution of the two-person

cooperative game” are the origin of what is now called Nash program. The solu-

tion referred to here is the Nash bargaining solution.

After a description and formalization of his Negotiation Model, Nash provided

the object of our analysis by the following passage:

“What we have is actually a two move game. Stages two and four do not in-

volve any decisions by the players. The second move choices are made with full

information about what was done in the first move. Therefore, the game of the

second move alone may be considered separately (it is a game with a variable pay-

off function determined by the choices made at the first move) . . . The demand

game defined by these payoff functions will generally have an infinite number of

inequivalent equilibrium points. . . Thus the points do not lead us immediately to

a solution of the game. But if we discriminate between them by studying their

relative stabilities we can escape from this troublesome non–uniqueness.
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To do this we “smooth” the game to obtain a continuous payoff function and

then study the limiting behavior of the equilibrium points of the smoothed game

as the amount of smoothing approaches zero.

A certain general class of natural smoothing methods will be considered here.

This class is broader than one might at first think, for many other methods that

superficially seem different are actually equivalent.”

While Nash’s own analysis provides a clear picture of what he has in mind it

is lacking a complete formal model and a precise analysis that would result in

a mathematical theorem. Nevertheless, Luce and Raiffa write in Section 6.9 on

the Nash demand game:

“as Nash is well aware, there is in general a continuum of other inequivalent

equilibrium pairs [of payoffs].The weak link in the argument is to single out this

particular pair. Nash offers an ingenious and mathematically sound argument

for doing so, but we fail to see why it is relevant. Nash then shows that this

“solution” is the only necessary limit of the equilibrium points of smooth games.”

Several authors have later, despite some critical remarks, disagreed with this

statement regarding the relevance of Nash’s smoothing and also regarding the

mathematical soundness of Nash’s treatment, and have attempted to remedy

the deficiencies or to just give a concise presentation of Nash’s analysis. Despite

some small differences in their modellings they all confirm the stability.

Osborne and Rubinstein (1990) write in their Section 4.3.2: The Perturbed De-

mand Game: “Given that the notion of Nash equilibrium puts so few restrictions

on the nature of the outcome of a demand game, Nash considered a more discrim-

inating notion of equilibrium, which is related to Selten’s (1975) [trembling hand]

perfect equilibrium”. They confirm Nash in their Proposition 4.3. Other formal

treatments can be found in Binmore (1987, Section 4), van Damme (1987, Section
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7.5), Peters (1992, Section 9.3), Roemer (1998, Section 2.2). See also Carlsson

(1991), Kaneko (1981, Section 3) and Malueg (2010) for further comments on

Nash’s smoothing.

All these approaches follow Nash’s idea to define a family of disturbed games

where symmetry is already inherent. The families of perturbations of the simple

demand game are defined with the symmetric Nash product as the funda-

mental ingredient. Consideration of Figure 1 in Nash (1953) illustrates very well

that the perturbations are defined via the symmetric Nash product. From the

picture one cannot see any argument why analogous figures centered at asym-

metric Nash solution points should behave qualitatively differently!

It appears credible that the symmetric Nash solution is stable in the sense of

Nash. So the formal proofs are not surprising. What surprised us is that nobody

tried to check the stability of the other equilibria of the demand game. Only if

they would turn out not to be stable under similar criteria the exposed singu-

lar role of the symmetric Nash equilibrium, accepted without exception in the

literature, would be justified.

In this paper we are making the litmus test. After we had first looked for the

most convincing and rigorous treatment, we decided for van Damme (1987) and

Peters (1992). We choose van Damme (1987) which was earlier and had been

followed and quoted by Peters (1992). Hence, we will follow, also close in our

notation, the analysis in Section 7.5 of van Damme (1987). As he felt Nash’s

stability concept to be close to essentiality of equilibria as defined in Wu and

Jiang (1962) he called it H–essentiality. We will define for any α ∈ (0, 1) the

concept of Hα–essentiality, that coincides for α = 1/2 with van Damme’s H–

essentiality. We extend his Theorems 7.5.4 and 7.5.5 on H1/2–essentiality of the

symmetric Nash solution to Hα–essentiality of α–symmetric Nash solutions for

any α ∈ (0, 1). It is quite obvious that also the other quoted theorems in the

4



literature can mutatis mutandis be extended in analogous ways.

2 Definitions

Our main object of analysis is the two-person cooperative bargaining game de-

fined and analyzed in detail in Nash (1950) and Nash (1953), respectively.

The compact convex subset S of R2 represents the two-player feasible payoff

vectors, the point d ∈ S is the status quo point that describes the players’ payoffs

in the case of disagreement about any other feasible x ∈ S. Like van Damme

(1987), we assume for convenience that S is d–comprehensive which means that

for any y ∈ S, we have that if x ∈ R2 with d ≤ x ≤ y, then x ∈ S.

Moreover, we assume wlog that (S, d) is (0, 1)–normalized, i.e., d = 0 and

max
x∈S

x1 = max
x∈S

x2 = 1. So (1, 1) is the utopia point of S. As S is convex set,

its efficient boundary ∂S is the graph of a continuous function f : [0, 1]→ [0, 1]

such that (x1, f(x1)) ∈ ∂S.

In this framework, we follow as far as possible van Damme (1987) in notation

and terminology. We fix some arbitrary α ∈ (0, 1), and consider wlog the case

α ≤ 1− α. We sometimes denote the bargaining game (S, 0) by S.

Let Γ be the Nash demand game associated with S and described by the following

rules: the players state their demands x1, x2 simultaneously and independently,

and if the demands are feasible, i.e., (x1, x2) ∈ S, then each player receives her

demand, otherwise each player receives her disagreement outcome of 0. Formally

speaking, Γ = (R2
+,R2

+, R1, R2) is the demand game where for all i, Ri(x1, x2) =

xiχS(x1, x2) in which χS denotes the characteristic function of S with χS(x) = 1

if x ∈ S, otherwise χS(x) = 0.

Our class Hα of perturbations of the characteristic function χS is defined in
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Definition 1.

Definition 1. Let Hα = ∪
ε>0
Hε
α be such that for all ε > 0, Hε

α is the set of

functions satisfying

hεα : R2
+ −→ (0, 1] is continous, hεα(x) = 1 for all x ∈ S and

max
{
hεα(x), x2α1 x

2(1−α)
2 hεα(x)

}
< ε if ρ(x, S) > ε,

where ρ denotes the Euclidean distance between x and S.

Like in van Damme (1987), we collect functions which at points near to S still

take values close to 1, but then, as Nash (1950) had called it, ‘taper off very

rapidly towards zero’, as x moves away from S.

We define the disturbed game Γ(hεα) = (R2
+,R2

+, R
ε
α1
, Rε

α2
) with Rε

α1
(x) =

x1(h
ε
α(x))1/2α and Rε

α2
(x) = x2(h

ε
α(x))1/2(1−α). Notice that for α = 1/2 this

amounts to Rε
(1/2)i

(x) = xih
ε
1/2(x) = Rh

i (x) as in van Damme’s framework.

Definition 2. An equilibrium x of Γ is called Hα-essential if for any (hεα)ε→0+

with hεα ∈ Hε, there exists (xεα)ε→0+ such that xεα → x as ε → 0 and xεα is an

equilibrium of Γ(hεα).

Let x∗α be the maximizer of xα1x
1−α
2 on S, i.e., the α–symmetric Nash solution of

the game (S, d) for the given α. Our first theorem generalizes Theorem 7.5.4 in

van Damme (1987).

Theorem 1. x∗α is an Hα-essential equilibrium of Γ.

Proof. Note that (x∗α1
)α(x∗α2

)1−α > 0 and that for hεα ∈ Hε
α when ε ∈

(0, (x∗α1
)2α(x∗α2

)2(1−α)), there exists a point xε where by continuity of the function

x2α1 x
2(1−α)
2 hεα reaches its maxiumum. By the definition of Hε

α, we get ρ(xε, S) ≤ ε.

The maximality of xε implies for all x1 ∈ R+, x2α1 (xε2)
2(1−α)hεα(x1, x

ε
2) ≤

(xε1)
2α(xε2)

2(1−α)hεα(xε1, x
ε
2). By cancelling (xε2)

2(1−α) > 0, we get x2α1 h
ε
α(x1, x

ε
2) ≤
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(xε1)
2αhεα(xε1, x

ε
2), hence Rε

α1
(x1, x

ε
2) ≤ Rε

α1
(xε) for all x1 ∈ R+. Similarly, one

derives Rε
α2

(xε1, x2) ≤ Rε
α2

(xε) for all x2 ∈ R+. This establishes that xε is an

equilibrium of Γ(hεα).

Now, consider the (generalized) sequence (xε)ε. We get (x∗α1
)2α(x∗α2

)2(1−α) ≤

lim
ε→0

(xε1)
2α(xε2)

2(1−α), since (x∗α1
)2α(x∗α2

)2(1−α) = (x∗α1
)2α(x∗α2

)2(1−α)hεα(x∗α) ≤

(xε1)
2α(xε2)

2(1−α)hεα(xε) ≤ (xε1)
2α(xε2)

2(1−α). Moreover, lim
ε→0

(xε1)
2α(xε2)

2(1−α) ≤

(x∗α1
)2α(x∗α2

)2(1−α) since lim
ε→0

xε ∈ ∂S. Thus, lim
ε→0

xε = x∗α.

We describe the distance of a point x ∈ R2 outside S to S by the Minkowski

functional or gauge of S, denoted γS which is defined as γS : R2
+ \ S → R+

where γS(x) = inf{t > 0 | x/t ∈ S}. As S is fixed in our analysis, we skip S

and denote this gauge γ. Since the set S is convex and closed with 0 ∈ S, the

function γ is continuous [cf. Aliprantis and Border (1994, Theorem 4.37)]. In

order to make the analysis simpler, we assume that the function f defined above

is differentiable. Then ∂S becomes smooth and γ differentiable on R2
+ \ S due

to its positive linear homogeneity.

As for any x ∈ ∂S, we have f(x1/γ(x)) = x2/γ(x) and we get by partial differ-

entiation with respect to x1 and x2

f ′(x1/γ(x))(γ(x)− x1γ1(x)) = −x2γ1(x) (1)

f ′(x1/γ(x))x1γ2(x) = x2γ2(x)− γ(x), (2)

where γi(x) =
∂γ(x)

∂xi
for i = 1, 2.

By Eq. 1 and Eq. 2, one can derive in few steps

γ(x) = x1γ1(x) + x2γ2(x).

7



Define

hεα(x) =

1 if x ∈ S,

e−(γ(x)−1)
2/ε otherwise.

Analogously to van Damme (1987), one can show that hεα ∈ Hε
α for all ε > 0.

Theorem 2. For ε > 0, Γ(hεα) has a unique equilibrium xε, and xε → x∗α as

ε→ 0.

Proof. Clearly, an interior point of S cannot be an equilibrium point.

∂Rε
α1

(x)/∂x1 = (hεα(x))1/2α + x1(1/2α)(hεα(x))−1+1/2α∂hεα(x)/∂x1

= (hεα(x))1/2α[1− x1γ1(x)(γ(x)− 1)/αε],

∂Rε
α2

(x)/∂x2 = (hεα(x))1/2(1−α) + x2(1/2(1− α))(hεα(x))−1+1/2(1−α)∂hεα(x)/∂x2

= (hεα(x))1/2(1−α)[1− x2γ2(x)(γ(x)− 1)/(1− α)ε].

If x ∈ ∂S, ∂Rα
i (x)/∂xi = 1 for all i = 1, 2. So, an equilibrium point is not an

element of S. At the equilibrium point x∗, ∂Rα
i (x∗)/∂xi = 0 for all i = 1, 2. This

gives us

ε = x1γ1(x)(γ(x)− 1)/α = x2γ2(x)(γ(x)− 1)/(1− α). (3)

By combining this with γ(x) = x1γ1(x) + x2γ2(x), we get

α(1− α)γ(x) = (1− α)x1γ1(x) = αx2γ2(x). (4)

Substituting Eq. 4 into Eq. 3 gives γ(x)(γ(x) − 1) = ε. Hence, γ(x) = (1 +
√

1 + 4ε)/2. Observe that γ(x)→ 1 as ε→ 0.

Plugging Eq. 4 into Eq. 1 gives us

f ′(x1/γ(x)) = −α(1/γ(x))x2/(1− α)(1/γ(x))x1,
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by which we know that the point x/γ(x) ∈ ∂S satisfies f ′(x1) = −αx2/(1−α)x1.

Now, consider x∗α. It maximizes xα1x
1−α
2 = xα1f(x1)

1−α on S. By FOC, we easily

get f ′(x∗α1
) = −αx∗α2

/(1− α)x∗α1
. This shows that γ−1(xε)xε is the α–symmetric

Nash solution of (S, d). Hence, xε = γ(xε)x∗α is the unique equilibrium of Γ(hεα).

Theorem 1 and Theorem 2 established what we wanted to show: Every α–

symmetric Nash solution represents the unique Hα–essential equilibrium of the

Nash demand game. The (symmetric) Nash solution is not “more stable” than

any α–symmetric Nash solution.

3 Concluding Remarks

We have deprived in this article the symmetric Nash bargaining solution of its

exposed role as the unique H–essential (“stable”) equilibrium of Nash’s demand

game. In fact all equilibria of this game are Hα–essential for exactly one α ∈

(0, 1), but none is Hα–essential for more than one α ∈ (0, 1).

Despite the long history of belief in a special structural position of the symmetric

Nash solution, none of the other approaches to the Nash solutions give reason to

this view.

Anbar and Kalai (1978), Binmore et al. (1986), Trockel (1996, 2000), Duman

and Trockel (2016) present different non-cooperative support results for all α–

symmetric Nash solutions, with the symmetric one just as a special case, namely

α = 1/2. Any use of symmetry as a postulate like in the Nash axioms needs

some justification like equity, justice. For a Pareto based justification see Trockel

(2008).
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The similarity of H1/2–essentiality with the trembling hand perfectness of Selten

stressed in the literature like for instance in our above quotation from Osborne

and Rubinstein (1990) or in Kaneko (1981, p. 312) turned out now articulately

to be inadequate. While all efficient equilibria of Nash’s demand game share the

same types of stability (namely Hα–essentiality), this is not the case with a trem-

bling hand equilibrium that is inherently structurally different from non–perfect

equilibria. This fact is nicely demonstrated by the example of Chain Store Game

(see Selten (1978)), where only one of the two Nash equilibria is subgame perfect.

Although in Milgrom and Roberts (1982) and Kreps and Wilson (1982) in cer-

tain perturbations of the chain store game both pendants of Selten’s equilibria

are sequential only the (pendant of) the subgame equilibrium in Selten’s game

is even trembling hand perfect. ‡

Our results document a different direct analogy to Walrasian equilibria and their

efficiency. The well–known pendant of the First Welfare Theorem asserts that

every Nash equilibrium (except the utopia point of the underlying bargaining

problem) of the Nash demand game, hence in particular the H1/2–equilibrium,

is Pareto efficient.

In this article we have proven an analogue of the Second Welfare Theorem:

Every Pareto efficient payoff vector of the Nash demand game results from an

Hα-essential Nash equilibrium for some α ∈ (0, 1).

Analogous results, where prices rather than the alphas act as parameters, had

been proven in Trockel (1996) for (tatonnement–stable) Walrasian equilibria

rather than Hα-essential Nash equilibria.

‡In fact, in order to get sequentiality of both equilibria one does not need any perturbation

of the data of Selten’s game (see Trockel (1986), Duman (2020)).
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