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1. Introduction

The essence

In this thesis we study linear nonlocal operators that involve symmetric integral kernels.
The operators under investigation are integro-differential operators of the form

Lku(x) = lim
ε→0

ˆ
Rd\Bε(x)

(u(y)− u(x))k(x, y) dy, (1.1)

where the kernel k : Rd ×Rd → [0,∞] is a measurable function that is symmetric in the
sense that k(x, y) = k(y, x) for all x, y ∈ Rd. Under additional conditions on a pointwise
lower bound of the kernel we establish a coercivity estimate in Ḣ

α
2 , α ∈ (0, 2), of the

bilinear form that is associated to (1.1), and contribute to the regularity theory of weak
solutions of the elliptic equation

−Lku(x) = f(x), x ∈ Ω, (1.2)

where Ω ⊂ Rd is a domain and f is a function. Furthermore, we prove local boundedness
results and deduce Harnack inequalities for weak solutions of the above elliptic equation
provided that the kernel k satisfies an integral bound and a pointwise upper bound of the
form c|x− y|−d−α for almost all x, y ∈ Rd, x 6= y and some uniform constant c > 0.

Motivation

Nonlocal equations have a large number of applications in economics (finance [CT04]),
mathematical physics (kinetic gas theory [Vil02], peridynamics [Sil00]) and enter also
in conformal geometry [CG11]. In mathematics, nonlocal operators lie at the interface
between analysis and stochastic processes. One link that connects these two branches is
given by semigroup theory. Operators of the form (1.1) appear as infinitesimal generators
of semigroups, which correspond to pure-jump symmetric Lévy processes. This connection
has proved very fruitful in recent years since it allows the combination of probabilistic
methods and analytic techniques in order to prove regularity results as well as Harnack
inequalities for solutions of corresponding nonlocal equations.

Let us first fix the terms local operator and nonlocal operator. Let V,W be function
spaces. An operator L : V → W is called a local operator if for all f ∈ V it holds
supp(Lf) ⊂ supp(f). Otherwise L is called a nonlocal operator.
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1. Introduction

Let α ∈ (0, 2). A prominent example of a nonlocal operator of the form (1.1) is the
fractional Laplace operator (−∆)

α
2 . This operator may be defined as

− (−∆)
α
2 : S(Rd)→ L2(Rd),

− (−∆)
α
2 u(x) = C(d, α) lim

ε→0

ˆ
Rd\Bε(x)

(u(y)− u(x))|x− y|−d−α dy, x ∈ Rd.

Here S(Rd) is the Schwartz space and C(d, α) is a normalizing constant. We refer the
reader to [DPV12] and the survey [Kwa19] for more details concerning this operator. The
fractional Laplace operator is the infinitesimal generator of the transition semigroup of the
rotationally symmetric α-stable Lévy process, see [Kwa19, Theorem 4.1] and references
therein. That is why in our work we use the notation (−∆)

α
2 instead of (−∆)s, which

carries over to the notation of fractional Sobolev spaces. Here we write H
α
2 instead of Hs.

As mentioned above, another area of application for operators of the form (1.1) is kinetic
gas theory. This thesis is strongly motivated by nonlocal operators that appear in recent
contributions to the Boltzmann equation.

This equation models the evolution of the density f of particles in an ideal gas, see the
survey by Villani [Vil02] and the original work by Boltzmann [Bol81] for a thoroughly
explanation. The function f depends on time t ∈ R, space x ∈ Rd and velocity v ∈ Rd

of the particles in the gas. The Boltzmann equation has the form

∂tf + (v,∇xf) = Q(f, f), t ∈ R, x ∈ Rd, v ∈ Rd.

The right-hand side Q(f, f) of the equation is the Boltzmann collision operator. This
nonlocal operator depends on the so-called cross section B, which is part of the integrand in
Q. As shown in [Vil02], if B satisfies certain properties, then the operator (f, g) 7→ Q(f, g)
can be decomposed into the sum of two terms Q(f, g) = Q1(f, g) +Q2(f, g) that satisfy
specific properties on which we comment below. This decomposition holds in particular
in the physically relevant model derived from inverse power laws. The interesting part
now is that for a given function f one can show that

Q1(f, g) =

ˆ
Rd

(g(v′)− g(v))kf (t, v, v′) dv′, (1.3)

see [Sil16, Lemma 4.1]. Above kf (t, v, v′) is an integral kernel that depends also on time t
and the solution f of the equation. A key property of this integral kernel is that, under the
assumption that physical quantities such as mass, entropy and energy are bounded, the
kernel is bounded from below in a cone of directions. That is, kf (t, v, v′) is bounded from
below by a constant times |v′ − v|−d−α for α ∈ (0, 2), whenever v′ − v is in some linear
cone Ξ(v) depending on the velocity v, cf. [Sil16, Lemma 4.8] or [IS20, Lemma A.3]. Here
a linear cone Ξ ⊂ Rd is a set that fulfills δΞ = Ξ for any positive δ. We point out that the
kernel kf is not symmetric in our sense, instead it satisfies kf (t, v, v+w) = kf (t, v, v−w)
for almost all t ∈ R, v, w ∈ Rd. However, the example of the Boltzmann kernel shows
that it is important to derive results for operators with very mild assumptions on the
lower bound of the kernel. This is exactly what we do in this work.
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1.1. Coercivity in fractional Sobolev spaces

The results

1.1. Coercivity in fractional Sobolev spaces

In this part of the thesis we study quadratic functionals on L2(Ω) that are associated to
(1.1).

For a certain class of integral kernels k we prove an estimate of the form
ˆ
B

ˆ
B

(f(x)− f(y))2k(x, y) dx dy ≥ c‖f‖2
Ḣ
α
2 (B)

. (1.4)

Here B is any ball in Rd, f ∈ L2(B) and c > 0 is a constant independent of B and f .
The right-hand side refers to the homogeneous fractional Sobolev norm given by

‖f‖
Ḣ
α
2 (B)

=

(ˆ
B

ˆ
B

(f(x)− f(y))2|x− y|−d−α dx dy

) 1
2

.

The above result (1.4) says that the bilinear form

EkB(f, g) =

ˆ
B

ˆ
B

(f(x)− f(y))(g(x)− g(y))k(x, y) dy dx

is coercive in Ḣ
α
2 (B).

Coercivity estimates of the form (1.4) play a key role in the regularity theory of nonlocal
operators. They are needed to adapt the De Giorgi-Nash-Moser techniques to the nonlocal
setting, which in turn lead to a priori Hölder estimates of corresponding weak solutions
of elliptic and parabolic equations that involve the operator (1.1). We refer the reader to
the previous works [FK13], [KS14] and [DK20], where coercivity estimates of the form
(1.4) appear in the assumptions of the main theorems. In the ensuing section of this
introduction, cf. Section 1.2, a version of (1.4) appears in the main result as an assumption
as well. Dyda’s and Kassmann’s article [DK20] can be seen as our initial motivation in
order to derive a result of the form (1.4). The reason for this is that the theory established
in their article allows to deduce a weak Harnack inequality and regularity results for weak
solutions of the elliptic equation (1.2) from (1.4) and additional assumptions. With the
main result in this part of the thesis we contribute to the regularity theory derived by
Dyda and Kassmann. We will again pick up this topic when we discuss applications of
our main result.

Assertions like (1.4) are obviously true for kernels k that fulfill

k(x, y) ≥ c|x− y|−d−α (1.5)

for almost all x, y ∈ Rd, x 6= y and some uniform constant c > 0.
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1. Introduction

In our case the lower bound in (1.5) holds true only if x− y is an element of some cone.
Otherwise the pointwise lower bound of k(x, y) is 0.

Let us fix some notation first. By V we denote a double cone in Rd with apex at 0 ∈ Rd,
symmetry axis v ∈ Rd and apex angle ϑ ∈ (0, π2 ]. Let V = (0, π2 ]×Pd−1

R
denote the family

of all such double cones. Here Pd−1
R

is the real projective space of dimension d− 1. A
shifted double cone is denoted by V [x] = V + x, x ∈ Rd. A mapping Γ : Rd → V is called
a configuration. If a configuration Γ enjoys the property that the infimum ϑ over all apex
angles of cones in Γ(Rd) is strictly positive, then Γ is called ϑ-bounded. A ϑ-bounded
configuration that satisfies

{(x, y) ∈ Rd ×Rd | y − x ∈ Γ(x)} is a Borel set in Rd ×Rd (M)

is called ϑ-admissible. The integral kernels that we consider enjoy for α ∈ (0, 2) the
pointwise estimate

k(x, y) ≥ Λ(1V Γ[x](y) + 1V Γ[y](x))|x− y|−d−α (1.6)

for almost all x, y ∈ Rd, x 6= y, where d ≥ 2 and Λ > 0. Above, V Γ[x] = Γ(x) + x. If Γ is
ϑ-admissible, then (M) is natural, since it just says that the lower bound of k in (1.6) is
a measurable function.

In the remainder of this section we state our main result, explain the ideas of the proof,
discuss similar results and provide applications of the main result.

The main result of this part of the thesis reads as follows.

Theorem (see Theorem 8.1). Let Γ be a ϑ-admissible configuration and α ∈ (0, 2). Let
k : Rd × Rd → [0,∞] be a measurable function satisfying k(x, y) = k(y, x) and (1.6).
Then there is a constant c > 0 such that for every ball B ⊂ Rd and for every f ∈ L2(B),
the inequality

ˆ
B

ˆ
B

(f(x)− f(y))2k(x, y) dx dy ≥ c

ˆ
B

ˆ
B

(f(x)− f(y))2|x− y|−d−α dx dy (1.7)

holds.

The constant c depends on Λ, the dimension d and ϑ. It is independent of k and Γ. For
0 < α0 ≤ α < 2, the constant c may be chosen to depend on α0 but not on α.

The idea of the proof of the above theorem is inspired by [HK07, Theorem 2.4]. Here,
Husseini and Kassmann use the existence of certain chains, see assumption (B) therein, to
establish a comparability result for quadratic forms. Our proof of (1.7) is built on discrete
approximations of the quadratic forms involved. We show how one can approximate a
given quadratic form on L2(B) (B ⊂ Rd a ball) through a sequence of discrete quadratic
forms. Moreover, we provide a discrete analogue of (1.7): We show in Theorem 7.1 that
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1.1. Coercivity in fractional Sobolev spaces

every discrete kernel w(x, y) : Zd × Zd → [0,∞] that satisfies a suitable version of (1.6)
for a ϑ-bounded configuration fulfills∑

x,y∈BκR(x0)∩Zd
|x−y|>R0

(f(x)− f(y))2ω(x, y) ≥ c
∑

x,y∈BR(x0)∩Zd
|x−y|>R0

(f(x)− f(y))2|x− y|−d−α, (1.8)

where the constant κ ≥ 1 is uniform, c > 0 depends on the same quantities as the constant
in (1.7) and R0 > 0 is some given constant.

One can now deduce a version of the above discrete result for every lattice hZd. The
continuous result (1.7) follows then by considering the limit h→ 0.

The proof of (1.8) is challenging. We first show that any two lattice points x, y can
be connected by a path in a graph, where points x, y are directly connected if x − y
lies in the cone attached at y or in the cone attached at x. These paths satisfy certain
additional properties. An important argument in this proof is that one can pass from the
possibly uncountable set of different cones in Γ(Rd) to a finite family of cones. This is
only possible since Γ is ϑ-bounded, which enables us to use the induction principle to
prove the existence of the above mentioned paths.

Let us comment on similar results like (1.7). In the article [DK20] Dyda and Kassmann
treat elliptic equations and provide several examples for kernels and more general families
of measures that satisfy (1.4).

Another similar result comes from recent progress regarding the Boltzmann equation.
As described in (1.3) for fixed f the map g 7→ Q1(f, g) can be understood as a linear
operator g 7→ Lvg in the velocity variable, whereas g 7→ Q2(f, g) turns out to be of lower
order. The operator Lv satisfies

λ

ˆ
Rd

ˆ
Rd

(g(v)− g(v′))2

|v − v′|d+α
dv dv′ ≤ −

ˆ
Rd

(Lvg)(v)g(v) dv + Λ‖g‖2L2(Rd) (1.9)

for any function g : Rd → R supported in BR, R > 1. The constants λ and Λ depend on
physical quantities related to f and on the dimension. For the Boltzmann equation the
above coercivity condition is well known and can be proved using methods from Fourier
analysis, see the references in [IS20]. However, in [IS20, Lemma A.6] Imbert and Silvestre
use a result like (1.7) to prove (1.9). The integral kernel derived from the Boltzmann
equation enjoys a bound from below that is similar to our lower bound. Yet, the class
of cones is different. The cones in [IS20] have the property that they always have an
intersection of positive measure. This property is not an artificial assumption, it comes
from the Boltzmann equation and the assumptions on the solution. In our case, the
intersection of two cones Γ(x) + x and Γ(y) + y for x 6= y may be the emptyset.

Another similar result was obtained recently by Chaker and Silvestre in [CS19, Theorem
1.2]. Here the authors work under the very weak assumption that the nondegeneracy set
{y | k(x, y) ≥ c|x− y|−d−α} has some densities in all directions, see [CS19, Assumption
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1. Introduction

1.1] for a precise statement. Their kernels include our kernels. However, their result is
only formulated on all of Rd. They also provide a localized version, but the balls on
either side of the inequality are of different radii, cf. [CS19, Theorem 1.3].

Applications of the main result

In the following paragraph we provide applications of the coercivity estimate (1.4). For
the applications it is important that we have the coercivity result for every ball B ⊂ Rd.
Our first application concerns function spaces. Let Ω ⊂ Rd be a domain. We denote by

Hk(Ω) = {f ∈ L2(Ω) | ‖f‖Ḣk(Ω) <∞}

the Hilbert space with seminorm

‖f‖Ḣk(Ω) =

(ˆ
Ω

ˆ
Ω

(f(x)− f(y))2k(x, y) dx dy

) 1
2

and corresponding norm ‖f‖Hk(Ω) =
(
‖f‖2L2(Ω) + ‖f‖2

Ḣk(Ω)

) 1
2 . If k(x, y) = |x− y|−d−α,

then we use the notation Hk(Ω) = H
α
2 (Ω).

Theorem (see Theorem 9.1). Let k be a kernel that satisfies (1.4). Then Hk(Rd) ⊂
H

α
2 (Rd).

In addition, let k satisfy

k(x, y) ≤ B|x− y|−d−α for almost all x, y ∈ Rd, x 6= y and B ≥ 1. (1.10)

Let Ω ⊂ Rd be a bounded Lipschitz domain. Then the spaces Hk(Ω) and H
α
2 (Ω) coincide.

The seminorms ‖·‖Ḣk(Ω) and ‖·‖Ḣ α
2 (Ω)

as well as the corresponding norms are comparable

on Hk(Ω). The subspace C∞(Ω) is dense in Hk(Ω).

Moreover, Hk(Rd) = H
α
2 (Rd). The seminorms ‖ · ‖Ḣk(Rd) and ‖ · ‖

Ḣ
α
2 (Rd)

as well as

the corresponding norms are comparable on Hk(Rd). The subspace C∞c (Rd) of smooth
functions with compact support in Rd is dense in Hk(Rd).

The density result gives us another application coming from the theory of Markov jump
processes and its connection to Dirichlet forms. We provide the necessary definitions in
Chapter 5.

Corollary (see Corollary 9.2). Let k be a symmetric kernel that satisfies (1.6) and (1.10).
The Dirichlet form (E ,D(E)) on L2(Rd) with D(E) = H

α
2 (Rd) and

E(f, g) =

ˆ
Rd

ˆ
Rd

(f(y)− f(x)) (g(y)− g(x)) k(x, y) dx dy ,

is a regular Dirichlet form on L2(Rd). There exists a corresponding Hunt process.

10



1.2. Local boundedness from above and elliptic Harnack inequalities

As mentioned in the beginning, we contribute to the theory in [DK20]. If k satisfies (1.10)
and (1.6), then the result (1.7) says in particular that [DK20, Assumption (A)] is true for
µ(x, dy) = k(x, y) dy. Since the existence of cutoff functions (Assumption (B) in [DK20])
is also guaranteed in our case, we have the following theorem.

Theorem (see Theorem 9.3 and Theorem 9.5). Let Ω ⊂ Rd be open. Let α ∈ (0, 2) and
f ∈ Lq(Ω) for q > d

α . Assume the kernel k is symmetric, satisfies (1.6) and (1.10). Then
every weak supersolution u : Rd → R of

− lim
ε→0

ˆ
Rd\Bε(x)

(u(y)− u(x))k(x, y) dy = f(x), x ∈ Ω,

satisfies a weak Harnack inequality. If in addition u is a weak subsolution, then u is
Hölder regular in the interior of Ω.

The author of this thesis has published the results described in Section 1.1 together with
his co-authors in [BKS19]. This thesis contains further details. In particular, we have
added some proofs, which were left out in the published version.

1.2. Local boundedness from above and elliptic Harnack
inequalities

The second topic we treat in this thesis is the study of the local boundedness of weak
solutions of elliptic equations associated to the operator (1.1). In this part the kernel
satisfies an integral bound which replaces the pointwise lower bound in (1.5). Weak
solutions are defined with the help of bilinear forms governed by (1.1), see Section 4.2.
Our studies lead us to the derivation of Harnack inequalities.

The results in this part of the thesis contribute to the question: Which additional
properties of the kernel are needed to ensure that a weak Harnack inequality yields a full
Harnack inequality? To the best of the author’s knowledge, this question is only well
understood for kernels satisfying the pointwise lower bound in (1.5). We comment on
results related to this question further below.

In the following paragraph we state the assumptions that appear in the main theorems.
Fix α ∈ (0, 2). We assume that there is A > 0 such that for every ball Br(x0) ⊂ Rd with
x0 ∈ B1, r ∈ (0, 1], and each v ∈ H

α
2 (Br(x0))

EkBr(x0)(v, v) ≥ A‖v‖2
Ḣ
α
2 (Br(x0))

. (A)

Above
EkBr(x0)(v, v) =

ˆ
Br(x0)

ˆ
Br(x0)

(v(x)− v(y))2 k(x, y) dx dy.

Condition (A) is nothing but a localized version of (1.4).

11



1. Introduction

In addition, we always assume that the kernel k is bounded from above in the following
way

|x− y|−d−α ≥ Bk(x, y) for almost all x, y ∈ Rd, x 6= y, (B)

where B > 0 is a generic constant.

The combination of (A) and (B) implies a weak Harnack inequality for weak supersolutions
corresponding to Lk, see [DK20, Theorem 1.2]. Therefore, a proof of a local boundedness
estimate from above immediately implies a full Harnack inequality for the operator Lk.

As in the first part of our thesis, we do not assume the lower bound in (1.5) to hold true.
Instead, we suppose that the following integral condition, which we refer to as Condition
(C), is fulfilled:

There exists a constant C > 0 such that for almost all x ∈ B1, y ∈ Rd with x 6= y and
every radius 0 < r ≤

(
|x−y|

2 ∧ 1
4

)
it holds

 
Br(x)

k(z, y) dz ≥ Ck(x, y). (C)

Condition (C) is not new in the literature. It can be understood as a localized version of
the (UJS) assumption that appears for example in [CKW20], where it was used in order
to establish equivalent statements to a parabolic Harnack inequality. We comment on
this in more detail further below.

We emphasize that, in general, one cannot expect an elliptic Harnack inequality to hold
true without any assumptions on the lower bound of the kernel. This was shown in
[BS05]. In the latter article Bogdan and Sztonyk present a class of kernels such that weak
solutions to (1.2) with Ω = B1 and f = 0 do not satisfy a Harnack inequality. As it turns
out, these kernels fulfill (A) and (B) but the lower bound in (1.5) is violated. In our work
we give a direct proof that the class of kernels in their example does not satisfy (C).

First, we present the main results in this section. After that, we comment on the proofs
and examples of kernels that satisfy all of our assumptions, provide historical context and
discuss related results.

Our first main result deals with local boundedness from above. It is stated below.

Theorem (see Theorem 11.10 and Corollary 11.11). Let d ≥ 2, α ∈ (0, 2) and Br(x0) ⊂
B1. Assume f ∈ Lq(B1) for some q > d

α and let k be a kernel that satisfies (A), (B) and
(C). Let u ∈ V k(B1|Rd)∩L1((1 + |x|)−d−α dx) such that u ≥ 0 and Ek(u, ψ) = (f, ψ) for
every ψ ∈ Hk

B1
(Rd). For each p ∈ (0, 2] there exists a constant c > 0, depending only on

d, α, q, p and the constants from (A), (B) and (C), such that

sup
Br

8
(x0)

u ≤ c

( 
B r

2
(x0)

up(x) dx

)1
p

+ cr
α− d

q ‖f‖
Lq
(
B 31

64 r
(x0)
).
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1.2. Local boundedness from above and elliptic Harnack inequalities

If α ∈ [α0, 2), then c may be chosen to depend on α0 but not on α.

The combination of the local boundedness result and a weak Harnack inequality, which
can be deduced from [DK20], yields our second main result, a full Harnack inequality.

Theorem (see Theorem 11.14). Let d ≥ 2, α ∈ (0, 2). Assume f ∈ Lq(B1) for q > d
α .

Let k be a symmetric kernel that satisfies (A), (B) and (C). Then there exists a positive
constant c such that for each u ∈ V k(B1|Rd) ∩ L1((1 + |x|)−d−α dx) that satisfies u ≥ 0
in B1 and Ek(u, ψ) = (f, ψ) for every ψ ∈ Hk

B1
(Rd), the following inequality holds for

every Br(x0) ⊂ B1:

sup
B r

8
(x0)

u ≤ c inf
B r

8
(x0)

u+ c sup
x∈B 15

16 r
(x0)

(ˆ
Rd\B1

u−(y)k(x, y) dy

)
+ cr

α− d
q ‖f‖

Lq
(
B 15

16 r
(x0)
).

If α ∈ [α0, 2), then c can be chosen to depend on α0 but not on α.

The proof of the above local boundedness result uses tools from [DKP14] and [DKP16]
adapted to our setting. In their articles Di Castro, Kuusi and Palatucci prove, amongst
other things, a full Harnack inequality for nonlinear operators that involve kernels that
are pointwise comparable to the standard kernel of the fractional p-Laplace operator. The
proof of this result uses a combination of a weak Harnack type inequality with a local
boundedness result for weak solutions u in a domain Ω, which are nonnegative in some
ball BR ⊂ Ω. The local upper bound is stated in the proof of [DKP14, Lemma 4.2] and it
involves an averaged Lp-norm plus some tail term coming from the negative part of the
solution. In particular, if u is nonnegative on all of Rd, then the bound consists only of
localized quantities. In order to show this local boundedness result, Di Castro, Kuusi and
Palatucci combine two ingredients:

• A local boundedness result involving tail terms coming from the positive part of
the solution, that is, an estimate of supB r

2

u in terms of an averaged Lp-norm in
the ball Br ⊂ Ω plus a nonlocal tail term, compare [DKP16, Theorem 1.1].

• An estimate of the nonlocal tail term that involves a local (or more precisely
localized) term plus some tail term from the negative part of the solution. In fact,
the tail function can be estimated by the supremum of u in the ball Br ⊂ BR

2
plus

the tail term from the negative part of the solution, compare [DKP14, Lemma 4.2].

The local boundedness result that we derive in this thesis follows from the two ingredients
above adjusted to our setting. An advantage is that we deal with the linear case p = 2.
This allows us to work with weak solutions that are nonnegative on all of Rd. Thus, in
the proofs we do not have any tail terms coming from negative parts of the solution.
Later on we can use the linearity of the underlying quadratic form to remove the global
nonnegativity assumption. From now on assume p = 2 and Ω = B1. The tail term in
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1. Introduction

[DKP14] is defined by

Tail(v, x0, r) = rα
ˆ
Rd\Br(x)

|v(y)||y − x0|−d−α dy. (1.11)

The proof of the tail estimate in [DKP14] explicitly uses the assumption that the kernel
under consideration is bounded from below by a constant times the standard kernel. This
is also reflected in the definition of the tail function above. The latter was one of the
main challenges within this work, since we do not have this pointwise lower bound of the
kernel.

A consequence is that we cannot work with the tail term in (1.11). We define a new
k-Tail as follows:

Tailk(v, x0, r, λ, µ) = rα sup
x∈Bλ(x0)

ˆ
Rd\Bµ(x0)

|v(y)|k(x, y) dy,

where r > 0, x0 ∈ Rd and 0 < λ < µ ≤ r. This k-Tail can then be reproduced by testing
with a specific function in the definition of weak solutions.

An equivalent formulation of (C) enables us to replace one of the integrals in the proof
of our tail estimate by the kernel, leading to an estimate of the nonlocal quantity Tailk
for globally nonnegative weak supersolutions which contains only localized terms, see
Lemma 11.7.

Using a De Giorgi type iteration and the estimate of Tailk we then show our local
boundedness results Theorem 11.10 and Corollary 11.11.

In this thesis we present examples as well as a counterexample for kernels which satisfy
(C). Mainly we focus on two classes of kernels. The first family of examples is given by
kernels corresponding to a configuration of cones, as discussed in Section 1.1. Here we
provide examples as well as a counterexample.

One of the main motivations for our studies in this part of the thesis was to establish
a Harnack inequality for operators with kernels associated to a configuration of cones.
For this class of kernels it was not possible to adapt the techniques used in [DKP14]. We
prove in this work that Condition (C) is in general neither false nor true for such kernels.
The fact that it is true in some cases leads to the following conjecture.

Conjecture. Let Γ be a ϑ-admissible configuration and k a symmetric integral kernel on
R
d ×Rd satisfying (1.6) and (1.10). Then weak solutions u to −Lku(x) = f(x), x ∈ B1,

which are nonnegative in B1, enjoy an elliptic Harnack inequality.

We expect the conjecture to be true for all ϑ-admissible configurations. A careful analysis
and new results regarding the conjecture may lead to weaker sufficient conditions for
elliptic Harnack inequalities to hold true.

14



1.2. Local boundedness from above and elliptic Harnack inequalities

The second family of examples consists of translation invariant kernels. These kernels are
of special interest for us. The reason for this is given by the already mentioned article by
Bogdan and Sztonyk [BS05]. In this article the authors show that for translation invariant
and (−d− α)-homogeneous kernels an elliptic Harnack inequality holds for the operator
(1.1), if and only if

ˆ
B 1

2
(y)
|y − v|α−dk(v) dv ≤ K

ˆ
B 1

2
(y)
k(v) dv, y ∈ Rd \B1, (RK)

for some K > 0, independent of y, see Appendix B for more precise statements. The
condition (RK) is called the relative Kato condition. In Appendix B we prove that
Condition (C) is sufficient for (RK) to hold true. We also prove that Condition (C) is
not necessary for (RK) in the case d = 3 . We expect that this can be generalized to
any d > 3, leading to the statement that the combination of (A), (B) and (C) is not a
necessary condition in order to have an elliptic Harnack inequality. To the best of the
author’s knowledge the relation of (RK) and (C) has not been studied in the literature
before.

One of our motivations for the studies described in this section was the following conjecture.

Conjecture. Let k, k̃ : Rd×Rd → [0,∞] be nonnegative, symmetric kernels. Furthermore,
let k̃ be translation invariant and (−d− α)-homogeneous, that is, k̃(x, y) = k̃(x− y) for
all x, y ∈ Rd and k̃(t) = |t|−d−αk̃(t/|t|) for every t ∈ Rd \ {0}. Suppose that k̃ satisfies
(RK) and assume that there is c ≥ 1 such that for every x0 ∈ B1, r ∈ (0, 1) and each
v ∈ Hk(Br(x0)) it holds

c−1E k̃Br(x0)(v, v) ≤ EkBr(x0)(v, v) ≤ cE k̃Br(x0)(v, v).

Then weak solutions u of

− lim
ε→0

ˆ
Rd\Bε(x)

(u(y)− u(x))2k(x, y) dy = 0, x ∈ B1,

enjoy an elliptic Harnack inequality.

A proof of this conjecture using only the techniques from [DKP14] and [DKP16] was not
possible due to the appearance of the Green function in the relative Kato condition.

Let us put the results of this section into historical context and discuss further related
results in the literature. We review parts of the regularity theory of elliptic operators and
present results that are related to Harnack inequalities, both elliptic and parabolic. We
focus on the theory of equations in divergence form since the symmetry assumption of
our kernels corresponds to equations of this type.

The De Giorgi-Nash-Moser techniques have their origin in the 1950s. In the celebrated
works [De 57] and [Nas58] De Giorgi and Nash prove Hölder estimates for weak solutions

15



1. Introduction

u of second order differential equations in divergence form:

div(A(x)∇u(x)) = 0, x ∈ Ω. (1.12)

Here A is a quadratic matrix, whose entries are measurable functions and satisfy the
ellipticity condition λ−1I ≤ A(x) ≤ λI for each x ∈ Ω, λ ≥ 1. In 1960, Moser gave a new
derivation of De Giorgi’s result in his note [Mos60]. In [Mos61] Moser proves an elliptic
Harnack inequality for solutions of the above equation and, based upon this, derives
Hölder estimates. For an extensive introduction to the Harnack inequality with historical
details and a discussion of applications in regularity theory and beyond we refer the reader
to the survey [Kas07b].

Equations of the above form (1.12) appear as Euler-Lagrange equations for functionals

F (w) =

ˆ
Ω
f(x,∇w(x)) dx, (1.13)

where f is at least a C2-function. Minimizers w of (1.13) are then solutions of (1.12). In
[GG82] Giaquinta and Guisti prove a priori Hölder regularity for minimizers of (1.13) and
even more general functionals without making use of the Euler-Lagrange equations, that
is, without any differentiability condition on f . Their approach was lately generalized by
Cozzi in [Coz17] and adapted to the setting of the fractional p-Laplace operator. The
author introduces his so-called fractional De Giorgi classes and proves a priori regularity
for functions that satisfy certain Caccioppoli type inequalities. Cozzi also proves a Harnack
inequality using a local boundedness result and a weak Harnack inequality. The proofs of
the latter results are similar to the ones in [DKP14] and [DKP16].

In his habilitation thesis [Kas07a] Kassmann achieves Caccioppoli type estimates for
Lk-subharmonic functions and proves a local boundedness result from above using the
De Giorgi type iteration technique, see Theorem 3.18 therein. However, the structure of
the bound from above cannot be used in order to deduce a Harnack inequality.

Apart from the classical works, the latter references treat nonlocal operators. A notable
difference between the local and the nonlocal case is the appearance of tail terms in the
Harnack inequality. Kassmann showed in [Kas07c] that one cannot obtain a classical
version of the Harnack inequality if one reduces the assumption of nonnegativity of the
solution in the whole space to nonnegativity in the considered ball, compare [Kas07c,
Theorem 1.2]. In [Kas11] Kassmann introduces a new version of the Harnack inequal-
ity involving tail terms, which compensate the fact that the solution is not globally
nonnegative.

As mentioned earlier, in [DK20] Dyda and Kassmann use the Moser iteration technique in
order to obtain a weak Harnack inequality for nonlocal operators. Thus, they can deduce
Hölder estimates. The methods of the latter article have recently be adapted to operators
with singular anisotropic kernels by Chaker and Kassmann in [CK20].

Relations and characterizations of elliptic Harnack inequalities (EHI) have been studied
intensively in the literature. We only state a few references here. The reader may find a
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1.2. Local boundedness from above and elliptic Harnack inequalities

more complete list of references therein. We also include results regarding the stability of
parabolic Harnack inequalities.

As already mentioned above, Bogdan and Sztonyk provide the equivalence of (RK) and
(EHI) in [BS05]. Their result holds for translation invariant and homogeneous kernels
that satisfy the upper bound (B) and appear as density functions of certain measures. In
these cases the nonlocal operator (1.1) corresponds to a stable Lévy process. The main
tool in their proof are estimates of the Green function for the unit ball. In the follow up
article [BS07] Bogdan and Sztonyk give a strengthening of their theorem by dropping the
upper bound of the kernel and considering more general measures.

In [Bas13] Bass obtained a characterization of (EHI) under the assumption of volume
doubling, capacity growth and expected occupation time growth, see [Bas13, Theorem
2.8, Theorem 2.9 and Theorem 7.2]. These assumptions have been relaxed by Barlow
and Murugan [BM18] to a volume doubling property at small scales as well as expected
occupation time growth at small scales. Their characterization of (EHI) can be found as
Theorem 5.15. in [BM18]. We emphasize that in these last two references the authors study
(EHI) for local Dirichlet forms. A result for symmetric nonlocal Dirichlet forms on metric
measure spaces that have the volume doubling property can be found in [CKW19]. In this
article Chen, Kumagai and Wang provide criteria that are both necessary and sufficient
for an elliptic Harnack inequality to hold true, see Corollary 1.12 therein. However, they
work under the assumption that the considered kernel enjoys a pointwise upper and, in
particular, a pointwise lower bound in terms of volume of a ball in the considered metric
space times some scaling function. In our case, that is the Euclidean case, this would
translate to a kernel comparable to |x− y|−d−α.

In the recent article [CKW20] Chen, Kumagai and Wang combine probabilistic properties
of jump processes with PDE techniques used in [DKP16] in order to obtain stability of
parabolic Harnack inequalities for symmetric nonlocal Dirichlet forms on metric measure
spaces which enjoy the volume doubling condition. In their main theorem, Theorem 1.20,
they establish seven statements that are all pairwise equivalent. One of these statements
is a parabolic Harnack inequality. Of particular interest for the author of this thesis is
the equivalence of the considered parabolic Harnack inequality and statement number (7)
of [CKW20, Theorem 1.20]. For the Euclidean space Rd this last mentioned equivalence
is nothing but the combination of the assumptions that a weak Poincaré inequality, a
pointwise upper bound of the kernel and the so-called (UJS) assumption hold true. This
result was first proved for continuous time random walks on graphs in [BBK09, Theorem
1.6].

Our Condition (C) is a localized version of the (UJS) assumption. It is localized in the
sense that we only require it to hold true for every x in the unit ball. We therefore point
out that, if we assume that (A), (B) are satisfied and (C) holds true not only for almost
all x ∈ B1 but for almost all x ∈ Rd, then the validity of the elliptic Harnack inequality
for weak solutions of (1.2) for Ω = B1 and f = 0 is already implied by the result in
[CKW20]. However, the method of proof used in this thesis is new. One strength of
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1. Introduction

the proof is that it uses only techniques from PDE-theory. We do not make use of any
probabilistic arguments. Another advantage of the proof given in this thesis is that it
allows to consider a right-hand side f 6= 0 in (11.1).

In [Str19] Strömqvist adapts the methods of [DKP14; DKP16] to the parabolic setting. He
works with time dependent kernels that satisfy the condition k(t, x, y) � |x− y|−d−2s, s ∈
(0, 1). He proves tail estimates and uses the method of the De Giorgi iteration to prove
local boundedness. As a result, he obtains a parabolic Harnack inequality with negative
tail terms. We emphasize that the lower bound of the kernel is crucial for the estimate
of the positive tail; otherwise an assertion like [Str19, Lemma 2.7] would not have been
possible.

Outline

We finish the introduction with a description of the structure of this thesis.

This thesis consists of three parts. The first part, entitled Basics, contains all the necessary
definitions and theorems that we use throughout this work. This part does not contain
any proofs. Instead, we refer to the literature. In Chapter 2 we repeat basics from measure
and integration theory and review the theory of Lebesgue as well as Sobolev spaces and
provide important properties. Chapter 3 is about function spaces corresponding to a
symmetric kernel. In Chapter 4 we explain the concept of weak solutions. For didactic
purposes we have included a brief chapter about Dirichlet forms and the connection to
stochastic processes, see Chapter 5.

In Part II we derive our coercivity result for bilinear forms corresponding to a configuration
of cones. We derive a result for discrete quadratic forms in Chapter 7. Our main result is
contained in Chapter 8. Applications are discussed in Chapter 9. A more detailed outline
is given at the beginning of Part II.

Part III deals with local boundedness of weak solutions of elliptic PDEs. Our main result
here is contained in Chapter 11. This chapter also includes definitions of tail functions as
well as an estimate of the k-Tail by local(ized) quantities. The reader finds our version of
the elliptic Harnack inequality in Section 11.6. For didactic purposes we provide a local
version of the local boundedness result in Chapter 10. In Appendix B we explain the
relation of Condition (C) to the relative Kato condition. A detailed outline can be found
at the beginning of Part III.
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Notation

If A,B are two sets, then we write A ⊂ B if A is a subset of B. If A is a proper subset,
then we write A ( B. If X is a linear space and A ⊂ X, then we denote by AC = X \A
the complement of A with respect to X.

By N we denote the natural numbers. We use the abbreviation N0 = N ∪ {0}. By Z we
denote the set of all integers.

By Rd we denote the d-dimensional Euclidean space equipped with the Euclidean norm

| · |, that is, for x = (x1, ..., xd) we have |x| =
(∑d

i=1 x
2
i

) 1
2 . The uniform norm on Rd is

denoted by |x|∞ = sup1≤i≤d |xi|.

The open ball in Rd with radius r > 0 and center x0 shall be denoted by Br(x0). Unless
otherwise clarified, we write Br = Br(0).

The d − 1-dimensional unit sphere shall be denoted by Sd−1, that is, Sd−1 = {x ∈
R
d | |x| = 1}.

We write a � b for two quantities a, b if there exists a universal constant c ≥ 1 so that
c−1a ≤ b ≤ ca. Then a and b are called comparable and we refer to c as comparability
constant.

If M is a subset of Rd, then we shall denote by M the closure of M in Rd. The boundary
of a set V ⊂ Rd is denoted by ∂V = V ∩ V C .

If S is a subset of a topological space, then B(S) is the Borel σ-algebra of S.

For the Lebesgue measure on Rd we use the notation λd. If A ⊂ Rd is measurable, then
we write |A| instead of λd(A). For integrals we use the abbreviation λd(dx) = dx. We
use the averaged integral notation 

B
f dx =

1

|A|

ˆ
A
f dx.

If u is a function, then we denote by u− its negative part defined as u−(x) = −min(0, u(x))
and by u+ its positive part u+(x) = max(0, u(x)). We use the notation up(x) instead of
(u(x))p.

Unless otherwise specified, the abbreviations sup and inf denote the essential supremum
and the essential infimum.

The scalar product on L2(Rd) will be denoted by the abbreviated notation

(f, g)L2(Rd) = (f, g), f, g ∈ L2(Rd).

We use several letters (Roman or Greek characters, in upper or lower cases) to denote
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1. Introduction

constants. Sometimes we write the quantities on which constants depend in round brackets.
We often use the letter c to denote a general positive constant. We especially point out
that the value of c may change between different lines of the proof of the same statement.

For β ∈ Nd
0 let |β| = β1 + · · ·+ βd. Let

∂β =
∂|β|

∂β1 · · · ∂βd
.

If β = 0 ∈ Nd
0, then we set ∂βf = f for any function f .

Let Ω ⊂ Rd be open and k ∈ N0. The following function spaces are used in this thesis:

C(Ω) = {f : Ω→ R | f is continuous},
Cc(Ω) = {f : Ω→ R | f is continuous and has compact support in Ω},
Ck(Ω) = {f : Ω→ R | ∂βf ∈ C(Ω) for all β ∈ Nk

0, |β| ≤ k},
Ckc (Ω) = {f : Ω→ R | ∂βf ∈ Cc(Ω) for all β ∈ Nk

0, |β| ≤ k}.

For k ∈ N0 we define

Ck(Ω) = {f ∈ Ck(Ω) | ∀β ∈ Nd
0 with |β| ≤ k : ∂βf has continuous extensions to Ω}.

Moreover,
C∞(Ω) =

⋂
m∈N0

Cm(Ω).

The spaces C∞c (Ω) and C∞(Ω) are defined analogously.
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Abgrenzung des eigenen Beitrags gemäß §10 (2) der Promotionsordnung

Die Resultate aus Part II hat der Autor dieser Arbeit zusammen mit seinen Koautoren
Kai-Uwe Bux und Moritz Kaßmann in dem Artikel [BKS19] veröffentlicht. Die Ergebnisse
aus Chapter 7 wurden dabei im Wesentlichen von Kai-Uwe Bux und dem Autor dieser
Arbeit erarbeitet. An dem Beweis von Theorem 7.20 haben alle drei Autoren mitgewirkt.
Die Idee in Chapter 8 mit den gemittelten Kernen zu arbeiten und so das diskrete Resultat
zum Beweis der kontinuierlichen Koerzivitätsabschätzung zu nutzen, stammt von Moritz
Kaßmann.

Anders als in [BKS19] wird in der vorliegenden Arbeit in den Hauptresultaten aus
Chapter 7 und Chapter 8 keine punktweise obere Grenze an den Kern vorausgesetzt,
da diese in den Beweisen nicht explizit gebraucht wird. Die Sätze Theorem 9.4 and
Theorem 9.5 gehen auf die Arbeit [DK20] zurück und sind in dieser Form nicht in [BKS19]
enthalten.
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Part I.

Basics





2. Basics from measure theory,
integration theory and classical
function spaces

In this chapter we review basic concepts from measure and integration theory, which are
used constantly in this thesis. We include all theorems, lemmata and propositions that
we employ in our work. Another aim of this chapter is to make the reader familiar with
the basic notation used in this thesis.

References for this part are [Ama08, Chapter X],[Bau01, Chapter I and II] and [Ler14,
Chapter I and III]. The use of additional sources is mentioned at the appropriate place in
the text.

Measure spaces

Throughout this chapter we deal with two different kind of spaces. A tuple (X,A) will
always denote a measurable space, that is, A is a σ-algebra on X. A set A ⊂ A will be
called a measurable set or A-measurable whenever we want to keep track of the underlying
σ-algebra. If A is a σ-algebra on X and B is a σ-algebra on Y , then we denote by A×B
the smallest σ-algebra that contains the sets A×B, A ∈ A, B ∈ B.

A triple (X,A, µ) shall always denote a measure space. Here A is a σ-algebra on X and
µ : A → [0,∞] is a measure on A. A measure space (X,A, µ) is called complete if for
every N ∈ A with µ(N) = 0 the implication

S ⊂ N ⇒ S ∈ A

holds true. If the measure is normalized, that is µ(X) = 1, then a measure space (X,A, µ)
shall be called a probability space.

By B(X) we denote the Borel σ-algebra of X when we consider X as a topological space
(X, T ). This σ-algebra is defined as the smallest σ-algebra that contains all open sets in
T . If B ∈ B(X), then B shall be referred to as Borel set. One fact that we use without
further mentioning it is that the Borel σ-algebra B(Rd ×Rd) equals B(Rd)× B(Rd).

Let us consider the case X = R
d for d ∈ N and let λd be the Borel-Lebesgue measure

acting on the Borel sets of Rd. Then the measure space (Rd,B(Rd), λd) is not complete.
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2. Basics from measure theory, integration theory and classical function spaces

However, one can extend the measure space to a complete space. The smallest complete
extension is given by (Rd,L(Rd), λ

d
). It consists of the d-dimensional Lebesgue σ-algebra

L(Rd) together with the Lebesgue measure λd. In the remainder we will not distinguish
between the Lebesgue-Borel measure λd and the Lebesgue measure λd and always use
the notation λd. Also, we usually use the notation |A| = λd(A) for the d-dimensional
Lebesgue measure of a set A belonging to the Lebesgue σ-algebra L(Rd).

If (X,A, µ) is a measure space, then we shall often say that an inequality or equality
holds true µ-almost everywhere on X or for µ-almost all x ∈ X meaning that it holds
true for every x ∈ X \N where N ⊂ X is a nullset, i.e. µ(N) = 0. If no confusion can
arise, we sometimes drop the explicit mentioning of the measure.

Measurable functions

In the following we give a brief explanation of the notion of measurable functions and
provide the definition of the Lebesgue integral. Here we use the notation R = R ∪ {±∞}
for a compactification of R. Then the Borel σ-algebra on R is given as

B(R) = {B,B ∪ {∞}, B ∪ {−∞}, B ∪ {−∞,∞} |B ∈ B(Rd)}.

Definition 2.1. Let (X,A) and (Y,B) be two measurable spaces. A function f : X → Y
is called (A,B)-measurable (or measurable with respect to A and B) if B ∈ B implies
f−1(B) ∈ A.
A function f : X → R is called measurable if it is (A,B(R))-measurable or equivalently if
for every t ∈ R one has

{x ∈ X | f(x) ≥ t} ∈ A.

Note that, according to the above definition, a real valued function f on (X,A) is
measurable if it is (A,B(R))-measurable. We shall often say that a function f : Ω→ R

is measurable for an open subset Ω ⊂ R meaning that f is (B(Ω),B(R))-measurable.

Integrable functions

From now on let (X,A, µ) be a complete measure space. A function f : X → R is called
nonnegative if f ≥ 0 almost everywhere on X.

A simple function s : X → R is a nonnegative function that satisfies

s =
m∑
k=1

λk1Ak ,

26



where m ∈ N, λk ≥ 0, λi 6= λj for i 6= j and Ak = s−1({λk}) ∈ A for each k ∈ {1, ...,m}.
Note that

m⋃
k=1

Ak = X

is a disjoint union. The Lebesgue integral over X of a simple function s is defined as
ˆ
X
s(x)µ(dx) =

∑
1≤k≤m
λk≥0

λk µ(Ak).

If A ∈ A, then
ˆ
A
s(x)µ(dx) =

ˆ
X
s(x)1A(x)µ(dx) (2.1)

defines the integral of s over a measurable subset of X. Now we are in a position to define
the integral over X for every function f : X → R.

Definition 2.2. Let f : X → R be a nonnegative measurable function. Then the Lebesgue
(or µ-) integral of f over X is defined as

ˆ
X
f(x)µ(dx) = sup

s simple
0≤s≤f

ˆ
X
s(x)µ(dx).

If A ∈ A, then
´
A f(x)µ(x) is defined analogously using (2.1).

If f : X → R does not satisfy the nonnegativity assumption, then one can write

f = f+ − f−

with f+(x) = max(f(x), 0) and f−(x) = −min(f(x), 0). The integral of f over A ∈ A is
then defined as ˆ

A
f(x)µ(dx) =

ˆ
A
f+µ(dx)−

ˆ
A
f−µ(dx).

We shall say that f is integrable if f is measurable and
´
X |f(x)|µ(dx) is a real number.

In the case where µ = λd is the Lebesgue measure we also use the abbreviated notations
ˆ
A
f dx =

ˆ
A
f(x) dx =

ˆ
A
f(x)λd(dx)

in the text of this thesis.
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2. Basics from measure theory, integration theory and classical function spaces

Convergence theorems

We provide three theorems that are used frequently in our work.

Theorem 2.3 (Monotone Convergence Theorem). Let (fn) be a sequence of nonnegative
measurable functions fn : X → R on a measure space (X,A, µ) such that fn ≤ fn+1

almost everywhere on X for each n ∈ N. Then
ˆ
X

lim
n→∞

fn(x)µ(dx) = lim
n→∞

ˆ
X
fn(x)µ(dx).

Theorem 2.4 (Lemma of Fatou). Let (fn) be a sequence of measurable nonnegative
functions f : X → R on some measure space X with measure µ. Then

ˆ
X

lim inf
n→∞

fn(x)µ(dx) ≤ lim inf
n→∞

ˆ
X
fn(x)µ(dx).

Theorem 2.5 (Dominated Convergence Theorem). Let (X,A, µ) be a measure space.
Let (fn) be a sequence of measurable functions fn : X → R such that fn → f almost
everywhere on X for a measurable function f : X → R. Suppose that g : X → R is
integrable and it holds

sup
n∈N
|fn| ≤ g µ-almost everywhere.

Then f and all fn are integrable,

lim
n→∞

ˆ
X
|fn(x)− f(x)|µ(dx) = 0 and lim

n→∞

ˆ
X
fn(x)µ(dx) =

ˆ
X
f(x)µ(dx).

2.1. Lebesgue spaces

Let (X,A, µ) be a measure space and p ∈ [1,∞]. We denote by Lp(X,µ) the set of all
measurable functions f : X → R, so that

‖f‖Lp(X,µ) =

{(´
X |f(x)|pµ(dx)

) 1
p , if p ∈ [1,∞),

inf{M ∈ [0,∞] |µ({|f | > M}) = 0}, if p =∞

is finite.

The map ‖ · ‖Lp(X,µ) is a seminorm on Lp(X,µ). The triangle inequality

‖f + g‖Lp(X,µ) ≤ ‖f‖Lp(X,µ) + ‖g‖Lp(X,µ)

for f, g ∈ Lp(X,µ) and p ∈ [1,∞) is called Minkowski inequality. For p =∞ it becomes
obvious.
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2.1. Lebesgue spaces

Note that ‖f‖Lp(X,µ) = 0 does not imply f = 0 since f can be different from zero on a
set of measure zero.

We obtain a normed space from Lp(X,µ) in the following way. We identify two functions
f ∼ g with each other if f = g µ-almost everywhere on X. This gives us an equivalence
relation on Lp(X,µ).

Definition 2.6. The factor-space Lp(X,µ)/ ∼ of Lp(X,µ) with respect to the above
equivalence relation shall be denoted by Lp(X,µ) and be refered to as Lebesgue space of
integrable functions of order p.

We usually identify a representative function f in Lp(X,µ) with its equivalence class
[f ] in Lp(X,µ) and write, by abuse of notation, f ∈ Lp(X,µ). In this sense, we refer
to Lp(X,µ) as the Lebesgue space of all functions integrable of order p. The mapping
‖ · ‖Lp(X,µ) is a norm on Lp(X,µ).

Whenever it is clear from the context and no confusion can arise we abbreviate our
notation by Lp(X) = Lp(X,µ). In the case where µ = λd is the Lebesgue measure, we
use the notation Lp = Lp(Rd, λd). If Θ is a measure that is absolutely continuous with
respect to the Lebesgue measure λd and has the density function θ, then we will also use
the notation Lp(Rd,Θ) = Lp(θ(x) dx).

For any open subset Ω of Rd we also define the space of locally integrable functions
Lploc(Ω) of order p as the factor space of{

f : Ω→ R measurable
∣∣∣∣ ˆ

K
|f(x)|p dx <∞ for every compact subset K ⊂ Ω

}
with respect to the aforementioned equivalence relation. Let us remark that every function
in Lp(Ω) is in Lploc(Ω).

In the remainder we collect some basic properties of the Lebesgue spaces.

Basic properties of Lebesgue spaces

Theorem 2.7. The spaces (Lp(X,µ), ‖ · ‖Lp(X,µ)) are Banach spaces.

The case p = 2 is of special interest. The mapping

(·, ·)L2(X) : L2(X)× L2(X)→ R, (f, g)L2(X) =

ˆ
X
f(x)g(x)µ(dx)

defines a scalar product on L2(X). This scalar product induces a norm that is given by
‖ · ‖L2(X). Together with the theorem above we conclude that (L2(X), ‖ · ‖L2(X)) is a
Hilbert space.
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2. Basics from measure theory, integration theory and classical function spaces

One important tool in our work is the Hölder inequality. Let us impose the convention
1
∞ = 0. Then the Hölder inequality has the following form.

Theorem 2.8 (Hölder inequality). Let (X,A, µ) be a measure space. Let 1 ≤ p, p′ ≤ ∞
be conjugate exponents, that is, 1

p + 1
p′ = 1. Suppose f ∈ Lp(X) and g ∈ Lp′(X). Then

the product fg belongs to L1(X) and we have

‖fg‖L1(X) ≤ ‖f‖Lp(X)‖g‖Lp′ (X).

One can easily deduce the following generalized Hölder inequality from the above theorem.

Corollary 2.9 (Generalized Hölder inequality). Let Ω ⊂ R
d open. Let f1, ..., fm be

functions on Ω with fi ∈ Lpi(Ω) for each 1 ≤ i ≤ m and
∑m

j=1
1
pi

= 1. Then the product∏m
i=1 fi is a function in L1(Ω) and∥∥∥∥∥

m∏
i=1

fi

∥∥∥∥∥
L1(Ω)

≤
m∏
i=1

‖f‖Lpi (Ω).

In calculations we often change the order of integration or use suitable substitutions to
calculate integrals. This is possible due to to the next two theorems.

Theorem 2.10 (Theorem of Fubini). Let (X,A, µ) and (Y,B, ν) be two σ-finite measure
spaces. The product X×Y shall be equipped with the σ-algebra A×B. Let f : X×Y → R

be a measurable function. Then the following statements hold true.

1. If ˆ
X

(ˆ
Y
|f(x, y)|ν(dy)

)
µ(dx) <∞,

then f ∈ L1(X × Y ).

2. If f ∈ L1(X × Y ), then f(x, ·) ∈ L1(Y ) for µ-almost every x ∈ X, f(·, y) ∈ L1(X)
for ν-almost every y ∈ Y andˆ

X

(ˆ
Y
f(x, y)ν(dy)

)
µ(dx) =

ˆ
Y

(ˆ
X
f(x, y)µ(dx)

)
ν(dy)

=

ˆ
X×Y

f(x, y) (µ× ν)(d(x, y)).

Theorem 2.11 (Change of variables formula for the Lebesgue measure). Let U, V be
open subsets of Rd, let Φ : U → V be a C1-diffeomorphism and let f ∈ L1(V ). Then the
function

(f ◦ Φ)| det(JΦ)| : U → R,

where det(JΦ) denotes the determinant of the Jacobian matrix JΦ of Φ, belongs to L1(U)
and ˆ

V
f(y) dy =

ˆ
U
f(Φ(x))|det(JΦ(x))| dx.
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2.2. Sobolev spaces

Differentiation Theorem of Lebesgue

We include another convergence theorem. The following theorem is known as Differen-
tiation Theorem of Lebesgue in the literature. It can be proved with the help of the
Hardy-Littlewood maximal function, cf. [SS05, Chapter 3].

Theorem 2.12. If f ∈ L1
loc(R

d), then

lim
r→0

1

λd(Br(x))

ˆ
Br(x)

f(y) dy = f(x) for almost every x ∈ Rd.

We say that a collection of measurable sets {Uα} shrinks regularly to x if there is a
constant c > 0 such that for each Uα there is a ball B with

x ∈ B, Uα ⊂ B and λd(Uα) ≥ cλd(B).

Corollary 2.13. Suppose f ∈ L1
loc(R

d). If {Uα} shrinks regularly to x, then

lim
λd(Uα)→0

x∈Uα

1

λd(Uα)

ˆ
Uα

f(y) dy = f(x).

Here the limit is taken as the volume of the sets Uα containing x goes to 0.

2.2. Sobolev spaces

We define integer Sobolev spaces and Sobolev spaces of fractional order. We review
embedding theorems and present dense subsets of the spaces under consideration. A
reference for this section is [DD12].

Classical Sobolev spaces

In what follows we use the multi-index notation, that is, β = (β1, β2, ..., βd) with βk ∈
N0, 1 ≤ k ≤ d, |β| =

∑d
k=1 βk and ∂β =

∏d
k=1 ∂

βk
k , where ∂k denotes the k-th partial

derivative.

Let Ω be an open subset of Rd. By C∞c (Ω) we denote the space of smooth functions on
R that have compact support in Ω. Let us first give the definition of weak derivatives.

Definition 2.14 (weak derivative). Let f ∈ L1
loc(Ω). A function g ∈ L1

loc(Ω) is called
β-weak derivative (or weak derivative of order |β|) of g ifˆ

Ω
f(x)∂βϕ(x) dx = (−1)|β|

ˆ
Ω
g(x)ϕ(x) dx for all φ ∈ C∞c (Ω).

The function g is then denoted as g = ∂βf .
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2. Basics from measure theory, integration theory and classical function spaces

Definition 2.15. Let 1 ≤ p ≤ ∞ and m ∈ N. The Sobolev space Wm,p(Ω) of integer
order m consists of all p-integrable functions on Ω whose weak derivatives up to order m
exist and are again p-integrable functions. In short,

Wm,p(Ω) = {f ∈ Lp(Ω) | ∀β ∈ Nd
0, |β| ≤ m : ∂βf ∈ Lp(Ω)}.

The mapping

‖ · ‖Wm,p(Ω) : Wm,p(Ω)→ [0,∞),

‖f‖Wm,p(Ω) =


(∑

|β|≤m ‖∂βf‖
p
Lp(Ω)

) 1
p for p ∈ [1.∞),∑

|β|≤m ‖∂βf‖L∞(Ω) for p =∞.

defines a norm on the Sobolev space Wm,p(Ω). For every p ∈ [1,∞] and every m ∈ N
the spaces (Wm,p(Ω), ‖ · ‖Wm,p(Ω)) are complete. We also define

Wm,p
0 (Ω) = C∞c (Ω)

‖·‖Wm,p(Ω)
.

In the case p = 2 we use the notation Wm,2(Ω) = Hm(Ω). These Sobolev spaces are
Hilbert spaces with scalar product given by

(f, g)Hm(Ω) =
∑
|β|≤m

(∂βf, ∂βg)L2(Ω).

Similar we define
Hm

0 (Ω) = C∞c (Ω)
‖·‖Wm,2(Ω)

as the completion of all smooth functions with compact support with respect to the norm
‖ · ‖Wm,2(Ω). Of course, for every m the spaces (Hm

0 (Ω), ‖ · ‖Wm,2(Ω)) are again Hilbert
spaces.

Theorem 2.16 (classical Poincaré inequality, compare [Pon16, Proposition 5.5]). Let Ω
be a bounded open set and 1 ≤ p <∞. Then there exists a constant C > 0 such that for
every function u ∈W 1,p

0 (Ω) one has

‖u‖Lq(Ω) ≤ C‖∇u‖Lq(Ω).

In the following we require Ω ⊂ Rd to be a Lipschitz open set. Since we only work with
bounded Lipschitz open sets in this thesis, we omit a precise definition of the terminology
Lipschitz open set. Instead, we refer the reader to [DD12, Definition 2.65 and Remark
2.67]. In the case that Ω is a bounded Lipschitz open set this definition reduces to the
case that the boundary ∂Ω enjoys the locally Lipschitz property, that is, for every point
on the boundary x ∈ ∂Ω there is a neighborhood Ux such that Ux ∩ ∂Ω is the graph of a
Lipschitz continuous function.

For a proof of the following theorem we refer the reader to [DD12, Theorem 2.72] or
[Ada75, Theorem 5.4].
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2.2. Sobolev spaces

Theorem 2.17 (Sobolev embedding theorem). Let Ω ⊂ Rd be a Lipschitz open set. Let
m ∈ N, p ∈ [1,∞) with d > mp and q ∈ [p, dp

d−mp ]. Then there exists a constant c > 0
such that for every f ∈Wm,p(Ω)

‖f‖Lq(Ω) ≤ c‖f‖Wm,p(Ω).

Remark. The Sobolev embedding theorem covers even more cases for p. One can find a
more comprehensive version in the cited literature.

Applying the classical Poincaré inequality to the above theorem with m = 1, we obtain
the following inequality, which we refer to as Sobolev inequality throughout the rest of this
thesis. In the literature it is sometimes called Gagliardo-Nirenberg-Sobolev inequality.

Theorem 2.18 (Sobolev inequality). Let Ω ⊂ Rd be a bounded Lipschitz open set. If
1 ≤ q < d, then we have W 1,p

0 (Ω) ⊂ L
dp
d−p (Ω) and there exists a constant C > 0 such that

for every f ∈W 1,p
0 (Ω)

‖f‖
L

dp
d−p (Ω)

≤ C‖∇f‖Lp(Ω).

Sobolev spaces of fractional order

Let us also define the Sobolev spaces of fractional order α
2 ∈ (0, 1).

Definition 2.19. For α ∈ (0, 2) and 1 ≤ p < ∞ the fractional Sobolev space W
α
2
,p(Ω)

consists of all functions f ∈ Lp(Ω) such that

‖f‖
Ẇ

α
2 ,p(Ω)

=

(ˆ
Ω

ˆ
Ω

|f(x)− f(y)|p

|x− y|d+(α/2)p
dx dy

) 1
p

<∞.

The mapping ‖ · ‖
Ẇ

α
2 ,p(Ω)

defines a seminorm on W
α
2
,p(Ω). A norm on W

α
2
,p(Ω) is given

by

‖f‖
W

α
2 ,p(Ω)

=

(
‖f‖pLp(Ω) + ‖f‖p

Ẇ
α
2 ,p(Ω)

) 1
p

.

Using this norm, we may write

W
α
2
,p(Ω) = {f : Ω→ R measurable | ‖f‖

W
α
2 ,p(Ω)

<∞}.

Analogous to the integer case we write

W
α
2
,2(Ω) = H

α
2 (Ω), ‖ · ‖

Ẇ
α
2 ,2(Ω)

= ‖ · ‖
Ḣ
α
2 (Ω)

and ‖ · ‖
W

α
2 ,2(Ω)

= ‖ · ‖
H
α
2 (Ω)

.

The spaces (H2(Ω), ‖ · ‖
H
α
2 (Ω)

) are Hilbert spaces. The completion of all smooth functions
with compact support shall be denoted by

H
α
2

0 (Ω) = C∞c (Ω)
‖·‖

H
α
2 (Ω) .
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2. Basics from measure theory, integration theory and classical function spaces

We regularly use embedding theorems. Analogous to the case of the integer Sobolev
spaces the fractional Sobolev spaces are contained in the Lebesgue spaces in the following
way (see e.g. [DD12, Corollary 4.53] or [Ada75, Theorem 7.57] for a version for more
general subsets Ω of Rd).

Theorem 2.20 (fractional Sobolev embedding theorem). Let α ∈ (0, 2), p ∈ (1,∞) with
αp < 2d and q ∈ [p, dp

d−α
2
p ]. Assume Ω ⊂ Rd is a Lipschitz open set. There exists a

constant c > 0 such that for every f ∈W
α
2
,p(Ω)

‖f‖Lq(Ω) ≤ c‖f‖W α
2 ,p(Ω)

.

In our thesis we often use a special version of the fractional Sobolev embedding theorem for
the case when Ω = Br(x0) is a ball. This embedding can be obtained from Theorem 2.20
in the following way. We apply the above theorem to Ω = B1 and q = p = 2. Then we
use a scaling argument (see also Lemma 11.6), which yields the embedding result for
H

α
2 (Br(x0)) that we state below.

Corollary 2.21 (fractional Sobolev inequality). Let d ≥ 2 be a natural number, R > 0,
α ∈ (0, 2) and x0 ∈ Rd. There exists a constant cS > 0 such that for all r ∈ (0, R) and
f ∈ H

α
2 (Br(x0))(ˆ

Br(x0)
|f(x)|

2d
d−α dx

) d−α
d

≤ cS
ˆ
Br(x0)

ˆ
Br(x0)

(f(x)− f(y))2

|x− y|d+α
dx dy

+ cSr
−α

ˆ
Br(x0)

|f(x)|2 dx.

If α ∈ [α0, 2) for some α0 ∈ (0, 2), then cS can be chosen to depend on α0 but not on α.

Dense subsets

The following two theorems give examples for subspaces of W
α
2
,p that are dense in W

α
2
,p.

In the literature they can be found in [DD12] as Proposition 4.27 and Proposition 4.52.

Proposition 2.22. The space C∞c (Rd) is dense in W
α
2
,p(Rd).

Let Ω be a proper subset of Rd. We say that Ω admits an (α2 , p)-extension if there exists
a continuous linear operator Ext (the extension operator) that sends f ∈ W

α
2
,p(Ω) to

Ext(f) ∈W
α
2
,p(Rd) such that for x ∈ Ω one has Ext(f)(x) = f(x). It is well known that

every Lipschitz open set Ω admits an (α2 , p)-extension, cf. [DD12, Proposition 4.42]. If
Ω admits an (α2 , p)-extension, then one can use the proposition above and the extension
operator in order to prove the following proposition.

Proposition 2.23. Let Ω be an open set that admits an (α2 , p)-extension. Then C∞c (Ω),
the space of restrictions to Ω of functions in C∞c (Rd), is dense in W

α
2
,p(Ω).
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3. Generalized function spaces involving
a symmetric kernel

In this work a measurable function k : Rd ×Rd → [0,∞] is called integral kernel or just
kernel. We consider only kernels that satisfy the symmetry assumption k(x, y) = k(y, x)
for almost all x, y ∈ Rd. These kernels are called symmetric kernels. Sometimes we will
omit the adjective symmetric. An integral kernel plays the role of a density function with
respect to the Lebesgue measure λd × λd. Following the article [FKV15] we use integral
kernels to define new function spaces that are custom-made for our purposes.

3.1. Generalization of H
α
2 : The space Hk

The preceding function spaces can be considered as a generalization of H
α
2 .

Definition 3.1. Let Ω ⊂ Rd open and k : Rd → R
d → [0,∞] be a symmetric kernel.

The set
Hk(Ω) =

{
f ∈ L2(Ω)

∣∣∣∣ ‖f‖Ḣk(Ω) <∞
}
,

where

‖f‖Ḣk(Ω) =

(ˆ
Ω

ˆ
Ω

(f(x)− f(y))2 k(x, y) dx dy

) 1
2

,

is a linear space. A norm on Hk(Ω) is given by

‖f‖Hk(Ω) =
(
‖f‖2L2(Ω) + ‖f‖2

Ḣk(Ω)

) 1
2
, f ∈ Hk(Ω).

Remark. For k(x, y) = |x− y|−d−α we have Hk = H
α
2 .

Theorem 3.2. Let Ω ⊂ Rd be open and k : Rd ×Rd → [0,∞] be a symmetric kernel.
The mapping

(f, g)Hk(Ω) = (f, g)L2(Ω) +

ˆ
Ω

ˆ
Ω

(f(x)− f(y))(g(x)− g(y))k(x, y) dx dy,

for f, g ∈ Hk(Ω), defines a scalar product on Hk(Ω). It induces the norm ‖ · ‖Hk(Ω). The
normed space Hk(Ω) is a Hilbert space.

A proof of this result can be obtained similar to the proof of [FKV15, Lemma 2.3], see
also [DRV17, Proposition 3.1].
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3. Generalized function spaces involving a symmetric kernel

3.2. The spaces V k(Ω|Rd) and Hk
Ω(Rd)

In this section we provide the definition of the V -spaces corresponding to a given kernel.
These spaces will be important later when we define solutions of corresponding nonlocal
elliptic equations, see Section 4.2.

Definition 3.3. Let Ω ⊂ Rd open and let k : Rd ×Rd → [0,∞] be a symmetric integral
kernel. The set

V k(Ω|Rd) =
{
f : Rd → R measurable

∣∣ f |Ω ∈ L2(Ω), [f, f ]V k(Ω|Rd) <∞
}
,

where

[f, g]V k(Ω|Rd) =

ˆ
Ω

ˆ
Rd

(f(x)− f(y))(g(x)− g(y))k(x, y) dx dy, (3.1)

is a linear space. A norm on V k(Ω|Rd) is given by

‖f‖V k(Ω|Rd) =
(
‖f‖L2(Ω) + [f, f ]V k(Ω|Rd)

) 1
2
.

Furthermore, define

Hk
Ω(Rd) =

{
f ∈ Hk(Rd)

∣∣∣∣ f ≡ 0 almost everywhere in Rd \ Ω

}
.

We remark that the normed space
(
Hk

Ω(Rd), ‖ · ‖Hk(Rd)

)
is a separable Hilbert space, see

again [FKV15, Lemma 2.3].

From the definition of V k(Ω|Rd) and Hk
Ω(Rd) we see that these spaces are not of local

type anymore, that is, we have some regularity of the elements of these spaces across the
boundary of Ω. This will be important later when we consider nonlocal operators and
corresponding weak solutions.

Note that by the symmetry of the kernel and the Theorem of Fubini, f ∈ Hk
Ω(Rd) implies

‖f‖2Hk(Rd) = ‖f‖2L2(Ω) +

ˆ
Ω

ˆ
Ω

(f(x)− f(y))2k(x, y) dx dy

+ 2

ˆ
Rd\Ω

ˆ
Ω

(f(x)− f(y))2k(x, y) dx dy,

that is, the double integral can be splitted into a local and a nonlocal part.

36



4. Elliptic partial differential equations

In parts of our work we are concerned with partial differential equations of the form{
−Lu = f in Ω,

u = g on ∂Ω.
(4.1)

where f and g are given functions, u is an unknown function (the solution) and L is a linear
operator of second order local type in divergence form or of nonlocal type corresponding
to some integral kernel. We introduce these operators in the following two sections.

4.1. (Local) Elliptic operators in divergence form

Let Ω ⊂ Rd an open bounded set. For i, j ∈ {1, ..., d} let aij : Ω → R be measurable
functions. A second order operator L shall be called operator in divergence form if

Lu(x) =
∑

1≤i,j≤d
∂j (aij(x)∂iu(x)) , x ∈ Ω.

We call L elliptic operator if there exists Λ ≥ 1 such that

Λ−1|ξ|2 ≤
∑

1≤i,j≤d
aij(x)ξiξj ≤ Λ|ξ|2 for all x ∈ Ω, ξ ∈ Rd.

Note that the above line implies aij ∈ L∞(Ω) for all i, j ∈ {1, ..., d}.

Definition 4.1 (weak subsolution, weak supersolution, weak solution). Let f ∈ L2
loc(Ω)

and g ∈ H1(Ω). A function u ∈ H1(Ω) is called a weak subsolution (weak supersolution)
of (4.1) if u− g ∈ H1

0 (Ω) and for every nonnegative (nonpositive) ψ ∈ H1
0 (Ω)

ˆ
Ω

∑
1≤i,j≤d

aij ∂iu ∂jψ dx ≤
ˆ

Ω
fψ dx. (4.2)

A function u that is both a weak subsolution and a weak supersolution of (4.1) is called a
weak solution of (4.1).

We remark that, by a density argument, the space of test functions for which (4.2) shall
be true could be changed from H1

0 (Ω) to C∞c (Ω), the space of smooth functions with
compact support in Ω.
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4. Elliptic partial differential equations

Using the Lemma of Lax-Milgram respectively the Riesz representation theorem (see
[Alt16, 6.2 respectively 6.1]) one can show that (4.1) has a unique weak solution.

4.2. Nonlocal operators corresponding to an integral kernel

In this section we consider the nonlocal analogue to (4.1) and provide the concept of weak
solutions. Let Ω ⊂ Rd be a bounded domain.

Let k : Rd ×Rd → [0,∞] be a symmetric kernel and L be a nonlocal operator defined as
follows

Lku(x) = lim
ε→0+

ˆ
Rd\Bε(x)

(u(y)− u(x))k(x, y) dy, x ∈ Ω.

We now give a definition of weak subsolutions for (4.1) if we replace the local elliptic
operator by the nonlocal operator above. The definition requires the following quadratic
form. We define

Ek(u, v) =

ˆ
Rd

ˆ
Rd

(u(x)− u(y))(v(x)− v(y))k(x, y) dx dy.

Note that the above quantity is well defined for u ∈ V k(Ω|Rd) and v ∈ Hk
Ω(Rd) or vice

versa. Indeed, by the Hölder inequality,

Ek(u, v) =

ˆ
Ω

ˆ
Ω

(u(x)− u(y))(v(x)− v(y))k(x, y) dx dy

+ 2

ˆ
Rd\Ω

ˆ
Ω

(u(x)− u(y))v(x)k(x, y) dx dy

≤
(ˆ

Ω

ˆ
Ω

(u(x)− u(y))2k(x, y) dx dy

) 1
2
(ˆ

Ω

ˆ
Ω

(v(x)− v(y))2k(x, y) dx dy

) 1
2

+ 2

(ˆ
Rd\Ω

ˆ
Ω

(u(x)− u(y))2k(x, y) dx dy

) 1
2

×

(ˆ
Rd

ˆ
Rd

(v(x)− v(y))2k(x, y) dx dy

) 1
2

and due to the properties of V k(Ω|Rd) and Hk
Ω(Rd) all the appearing terms are finite.

Definition 4.2 (weak subsolution, weak supersolution, weak solution). Let f ∈ Lq(Ω)
for some q ≥ 2 and g ∈ V k(Ω|Rd). A function u ∈ V (Ω|Rd) is called a weak subsolution
(weak supersolution) of (4.1) if u− g ∈ Hk

Ω(Rd) and for all nonnegative (nonpositive)
ψ ∈ Hk

Ω(Rd)
Ek(u, ψ) ≤ (f, ψ)L2 .

A function that is both a weak subsolution and a weak supersolution is called a weak
solution of (4.1).

38



4.2. Nonlocal operators corresponding to an integral kernel

Remark. In order to have that every classical subsolution (supersolution) is also a weak
subsolution (supersolution) one would need to replace Ek with 1

2E
k, but we will ignore

the factor 1
2 in this work.

The existence of weak solutions to (4.1) with an operator L of nonlocal type as mentioned
above has been studied in [FKV15]. Under certain conditions on the kernel k one can
prove their existence with the help of the Lax-Milgram lemma, see [FKV15, Section 3].
Let us remark that all the conditions on the kernel for existence and uniqueness of weak
solutions are satisfied in the parts of our thesis that deal with weak solutions.
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5. Dirichlet forms

One application of the theory developed in Part II of this thesis comes from the theory of
Dirichlet forms and its connection to stochastic processes. This short chapter provides
the necessary definitions and theorems. As a reference we use the book [FOT94].

Let (X,B(X), µ) a σ-finite measure space. Consider a bilinear form E : D(E)×D(E)→ R,
where D(E) is a dense subspace of L2(X,µ), called the domain of E .

In what follows we also use the form E1 that is defined as

E1(u, v) = E(u, v) + (u, v)L2(X,µ), u, v ∈ D(E).

Definition 5.1. A bilinear form E : D(E)×D(E)→ R with D(E) ⊂ L2(X,µ) is called a
(symmetric) Dirichlet form if the following properties are satisfied.

1. The form is symmetric in the sense that E(u, v) = E(v, u) for all u, v ∈ D(E).

2. E(u, u) ≥ 0 for every u ∈ D(E).

3. The form is closed, that is, if (un) ⊂ D(E) with E1(un − um, un − um) → 0 for
n,m → ∞, then there is u ∈ D(E) with E1(un − u, un − u) → 0 for n → ∞. In
other words: The subspace D(E) equipped with the inner product E1 is a real Hilbert
space.

4. The unit contraction operates on E, that is, if u ∈ D(E) and v = (0 ∨ u) ∧ 1, then
v ∈ D(E) and E(v, v) ≤ E(u, u).

If in addition D(E) ∩ Cc(X) is dense in D(E) with respect to the norm induced by E1 and
dense in Cc(X) with respect to the uniform norm, then E is called a regular Dirichlet
form.

From the process to the Dirichlet form and back

It is the idea of this short section to describe to the reader some basics of the relation
between Dirichlet forms and stochastic processes via semigroup theory. The following
paragraphs may be considered as a short reminder for everyone that does not usually
work with these objects. In our thesis we do not really use the objects that appear in the
remainder of this section. Therefore, it would not be efficient to include all the precise

41



5. Dirichlet forms

definitions here. We try to be as exact as possible without losing ourselves in details.
Sometimes we only give paraphrases instead of precise definitions. Then we refer to the
appropriate part in [FOT94].

Formally, a stochastic process M on a measurable space (S,B(S)) with time parameter
T ⊂ [0,∞] is given as a quadruple M = (Ω,M, (Xt)t∈T ,P), where Xt : Ω → S is
(M,B(S))-measurable for every t ∈ T and (Ω,M,P) is a probability space. We now add
to S an isolated single point ∂, which plays the role of the cemetery, and replace the
probability measure by a family of probability measures (Px)x∈S∪∂ . Let us assume that the
resulting quadruple (Ω,M, (Xt)t∈[0,∞],Px) is a stochastic process for any x ∈ S ∪ ∂ with
state space (S∪∂,B(S)∂), where B(S)∂ is the corresponding Borel σ-algebra. Furthermore,
let us assume that the family of probability measures satisfies some measurability condition
as well as the following Markov property: There is an admissible filtration {Mt}t≥0 such
that for every x ∈ S, t, s ≥ 0 and E ∈ B(S) we have Px-almost surely

Px(Xt+s ∈ E |Mt) = PXt(Xs ∈ E).

If we additionally assume that P∂(Xt = ∂) = 1 for each t ≥ 0, then

M = (Ω,M, (Xt)t∈[0,∞], (Px)x∈S∪∂)

is called a Markov process on (S,B(S)) with time parameter [0,∞], cf. [FOT94, p. 311]
for a precise definition. One object that plays a crucial role in the relation between
stochastic processes and Dirichlet forms is the transition function. Let us assume that M
is a Markov process. The transition function pt : [0,∞]× B(S)→ [0,∞] of the process
M is defined as

pt(x,E) = Px(Xt ∈ E), x ∈ S, t ≥ 0, E ∈ B(S).

The Markov property of M implies that

ptpsu = pt+su for all t, s > 0

and all bounded B(S)-measurable functions u : S → R. Here

(ptu)(x) =

ˆ
S
u(y)pt(x,dy), x ∈ S.

From now on let (X,B(X), µ) be a σ-finite measure space.

We call a Markov process on (X,B(X)) µ-symmetric if its transition function pt is
symmetric, that is, pt satisfies

ˆ
X
u(x)(ptv)(x)µ(dx) =

ˆ
X

(ptu)(x)v(x)µ(dx)
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for all nonnegative measurable functions u and v. Such a symmetric transition function
enjoys

((ptu)(x))2 =

(ˆ
X
u(y)pt(x,dy)

)2

≤
ˆ
X
pt(x,dy) ·

ˆ
X
u2(y)pt(x,dy)

= (ptu
2)(x)

for every x ∈ X, t > 0. Therefore, for every bounded and B(X)-measurable function
u : X → R with u ∈ L2(X,µ) we have

ˆ
X

((ptu)(x))2 µ(dx) ≤
ˆ
X
u2(x)µ(dx),

where we also used the symmetry of pt.

The above inequality means that pt can be extended uniquely to a symmetric contractive
operator Tt on L2(X,µ). We deduce in particular that every Tt is Markovian, that is,
it holds 0 ≤ Ttu ≤ 1 whenever u ∈ L2(X,µ), 0 ≤ u ≤ 1 µ-almost everywhere. The
family (Tt)t>0 of operators on L2(X,µ) is a semigroup on L2(X,µ). That is, each Tt is a
symmetric operator with domain D(Tt) = L2(X,µ), the semigroup property TtTs = Tt+s
is satisfied for t, s > 0 and the contraction property (Ttu, Ttu)L2(X,µ) ≤ (u, u)L2(X,µ) holds
for t > 0, u ∈ L2(X,µ). The associated Markovian semigroup (Tt)t>0 to the family of
transition functions (pt)t>0 is called the transition semigroup.

Let us assume that the transition semigroup (Tt)t>0 is strongly continuous, that is, for
u ∈ L2(X,µ) we have (Ttu− u, Ttu− u)L2(X,µ) → 0 for t→ 0. Then the generator A of
the semigroup exists. The generator is defined by

A = lim
t→0

Ttu− u
t

, D(A) = {u ∈ L2(X,µ) |Au exists as a strong limit}.

The generator of a strongly continuous semigroup is a nonpositive definite self-adjoint
operator. The catch is now that there exists a one to one correspondence between the
family of nonpositive definite self-adjoint operators and the family of closed symmetric
forms on L2(X,µ), which can be characterized by

D(A) ⊂ D(E), E(u, v) = (−Au, v)L2(X,µ), u ∈ D(A), v ∈ D(E),

cf. [FOT94, Corollary 1.3.1]. According to [FOT94, Theorem 1.4.1] this associated form
E is a Dirichlet form.

From now on let X be a locally compact separable measure space and µ a positive Radon
measure on X such that supp(µ) = X.

A stochastic process M is a Hunt process if it is a strong Markov process that is quasi-left
continuous with respect to the minimum completed admissible filtration, see [FOT94,
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5. Dirichlet forms

Appendix A] for a precise definition. If M is a Hunt process, then, by [FOT94, Lemma
1.4.3 (i)], the associated semigroup is strongly continuous. Hence, each Hunt process
determines a Dirichlet form in the sense of the above paragraph. The reverse statement
is also true under the additional assumption that the given Dirichlet form is regular.

Theorem 5.2 ([FOT94, Theorem 7.2.1]). Given a regular Dirichlet form E on L2(X,µ)
there exists a µ-symmetric Hunt process M on (X,B(X)) whose Dirichlet form is the
given one E.
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Part II.

Coercivity in fractional Sobolev
spaces





Detailed Outline of Part II

This part deals with the functional

f 7→
ˆ
B

ˆ
B

(f(x)− f(y))2k(x, y) dx dy, f ∈ L2(B) (5.1)

where B ⊂ Rd is a ball and k : Rd ×Rd → [0,∞] is a symmetric kernel that satisfies
k(x, y) ≥ Λ|x−y|−d−α for some configuration Γ, some constant Λ > 0 and almost all x, y ∈
R
d, x 6= y. In Chapter 6 we provide all the necessary definitions. In particular we explain

what we mean by the term configuration. As already mentioned in the introduction, our
coercivity result requires some assumptions on the configuration regarding measurability,
compare (M) in Chapter 1. Chapter 6 contains the reason for this assumption.

We present a result on discrete quadratic forms in Chapter 7. The proof of this result is
challenging and involves an induction and a renormalization argument.

Our main result, the coercivity of the bilinear form associated to (5.1) in Ḣ
α
2 (B) on every

ball B ⊂ Rd, is proved in Chapter 8. In this chapter we present a general scheme of how
to approximate functionals of the type (5.1) by discrete quadratic forms. This result is
interesting in itself. As a consequence we can apply our discrete result in order to obtain
the mentioned coercivity. A technicality in the proof is that we need to use a covering
argument. This is provided in Appendix A.

Applications of the main result are discussed in Chapter 9. We present applications with
regard to function spaces, as well as stochastic processes and regularity theory of weak
solution to the elliptic PDE with the underlying operator (1.1).

Comment on the notation used in this part

Let us recall some of the notation that we use in this part. For a complete overview we
refer to the section about notation after the introduction.

By |x| we denote the Euclidean norm on Rd. With |x|∞ we denote the supremum
|x|∞ = sup1≤i≤d |xi|. The notation Br(x0) refers to a ball with radius r > 0 and center
x0 in the Euclidean metric, precisely Br(x0) = {x ∈ Rd | |x− x0| < r}. In case x0 = 0,
we write Br = Br(0).

We write a � b for two quantities a, b if there exists a universal constant c ≥ 1 so that
c−1a ≤ b ≤ ca. Then a and b are called comparable and we refer to c as comparability
constant.

We write Sd−1 for the d− 1-sphere, that is, Sd−1 = {x ∈ Rd | |x| = 1}.
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6. Setting and Preliminaries

In this chapter we define and explain the main objects of Part II of this thesis: cones and
configurations. First and foremost, this chapter is intended to serve as an introduction
to the topic of configurations. Moreover, the chapter includes useful properties that are
needed several times in the remainder of Part II. One of these properties is the fact that
every ϑ-bounded configuration induces a configuration consisting of only finitely many
cone types. This is the key idea on which our coercivity result relies. The statement can
be found at the end of Section 6.1, after the main definitions. In Section 6.2 we explain
the notion of ϑ-admissible configurations. In the last Section 6.3 the reader learns about
favored indices.

6.1. Cones, ϑ-bounded configurations and reference cones

Definition 6.1 ((double) cone, family of (double) cones, shifted (double) cone, double
half-cone). Given v ∈ Sd−1 and ϑ ∈ (0, π2 ] a cone is defined by

Ṽ = Ṽ (v, ϑ) =
{
h ∈ Rd

∣∣∣ h 6= 0,
〈v, h〉
|h|

> cos(ϑ)
}
.

Let Ṽ denote the family of all cones. The corresponding double cone is denoted by V ,
that is,

V = V (v, ϑ) = Ṽ ∪ (−Ṽ ).

The set V of all double cones is simply the manifold (0, π2 ] × Pd−1
R

, where Pd−1
R

is the
real projective space of dimension d− 1. For x ∈ Rd, a shifted cone shall be defined by
Ṽ [x] = Ṽ + x and a shifted double cone shall be defined by V [x] = V + x.
For a given cone Ṽ = Ṽ (v, ϑ) and r > 0 we define

Ṽr = Ṽr(v, ϑ) = {y ∈ Ṽ |Br(y) ⊂ Ṽ }.

For a double cone V we define the set Vr analogously,

Vr = Vr(v, ϑ) = Ṽr ∪
(
−Ṽr

)
,

and call it a double half-cone.
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6. Setting and Preliminaries

v

ϑ

r

Figure 6.1.: Example of a cone V (v, ϑ) and a double half-cone Vr(v, ϑ) for d = 2

Figure 6.2.: A possible configuration Γ

We are now in the position to define a family of double cones Γ(Rd), which we shall call
a configuration.

Definition 6.2 ((ϑ-bounded) configuration). A mapping Γ : Rd → V is called a configu-
ration. If Γ is a configuration with the property that the infimum ϑ over all apex angles of
cones in Γ(Rd) is positive, then Γ is called ϑ-bounded. For x ∈ Rd and Γ a configuration,
we define V Γ[x] = x+ Γ(x) and analogously for r > 0,

V Γ
r [x] =

{
y ∈ V Γ[x]

∣∣ Br(y) ⊂ V Γ[x]
}
.

Throughout the rest of this part we sometimes write that two cones have the same type.
The precise meaning of this statement is given below.
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6.1. Cones, ϑ-bounded configurations and reference cones

Definition 6.3 (cone type, points of the same type). Let Γ be a configuration. A point
x ∈ Rd is of cone type V if V = Γ(x). Two points x, y ∈ Rd have the same type if
Γ(x) = Γ(y).

The boundedness property of ϑ is crucial in our work. This assumption guarantees that
we can pass over from the possible uncountable family of cones Γ(Rd) generated by a
ϑ-bounded configuration Γ to a finite family of cones as described in the following lemma.
In order to obtain this finite family of cones we just have to cover up the sphere and use
a compactness argument.

Lemma 6.4. Let Γ be a ϑ-bounded configuration. There are numbers L ∈ N and
θ ∈ (0, π2 ], and double cones V 1, ..., V L centered at 0 with apex angle θ and symmetry axis
v1, . . . , vL ∈ Sd−1 such that

for every x ∈ Rd there is an index m ∈ {1, . . . , L} with V m ⊂ Γ(x).

The constants L and θ depend on the dimension d and ϑ but not on Γ itself.

Proof. Obviously

Sd−1 ⊂
⋃

v∈Sd−1

V

(
v,
ϑ

3

)
.

Since Sd−1 is compact and the right-hand side is an open cover of Sd−1, one can choose
finitely many symmetry axis v1, ..., vL ∈ Sd−1 such that

Sd−1 ⊂
L⋃

m=1

V

(
vm,

ϑ

3

)
.

Define V m = V
(
vm, ϑ3

)
for m = 1, ..., L. Now the claim follows with θ = ϑ/3.

Remark. Note that in the above proof any choice θ ∈ (0, 2
3ϑ) would have been possible.

In the following we write V m[x] instead of V m + x.

Definition 6.5 (reference cones). The set {V m|1 ≤ i ≤ L} shall be called a family of
reference cones associated to Γ. Each element is called a reference cone. Analogous to
Definition 6.1 set

V m
r =

{
u ∈ V m

∣∣Br ⊂ V m
}
, V m

r [x] = V m
r + x.

Obviously a family of reference cones is not unique. There can be uncountably many
families of reference cones associated to a ϑ-bounded configuration.

With the help of Lemma 6.4 we can define a new configuration that has useful properties.
The following corollary is the key tool for our reasoning in Chapter 7.
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6. Setting and Preliminaries

Corollary 6.6. Let Γ be a ϑ-bounded configuration. Then there exists another configura-
tion Γ̃ that fulfills #Γ̃(Rd) <∞ and for every x ∈ Rd

Γ̃(x) ⊂ Γ(x).

The infimum of apex angles of cones in Γ̃(Rd) is ϑ.

Proof. Let V 1, ..., V L be a family of reference cones corresponding to Γ. Define sets

M1 = {x ∈ Rd | V 1 ⊂ Γ(x)}
M2 = {x ∈ Rd | V 2 ⊂ Γ(x)} \M1

...

ML = {x ∈ Rd | V L ⊂ Γ(x)} \ML−1.

Now it holds
R
d =

⋃
1≤i≤L

Mi

and this union is disjoint. Define Γ̃ : Rd → V, x 7→ V i for x ∈ Mi and arrive at the
assertion.

We want to achieve that all the above sets M1, ...,ML are Lebesgue measurable sets.
In general, this does not have to be the case. It depends heavily on the underlying
configuration Γ. Therefore, it is necessary to impose another condition on Γ.

6.2. Admissible configurations

In this part we give a sufficient condition on Γ so that the problem of measurability
explained above is solved. Recall that we denote by B(Rd) the Borel σ-algebra and by
L(Rd) the Lebesgue σ-algebra. Our aim is to prove the next proposition.

Proposition 6.7. Let Γ be a configuration. If the set

{(x, y) ∈ Rd ×Rd | y − x ∈ Γ(x)}

is a Borel set in Rd ×Rd, then for each double cone V ∈ V the set {x ∈ Rd |V ⊂ Γ(x)}
is an element of L(Rd).

The theorem below is the basis for the proof of the above proposition. This theorem can
be traced back to an article by Debreu [Deb67, (4.4)]. An easier accessible, however more
general, version for Suslin spaces1 can be found in an article by Himmelberg [Him75,
Theorem 3.4]. We also refer to [Aum69, Projection Theorem]. However, in the last
reference Aumann omits the proof.

1A Suslin space is the image of a Polish space under a continuous mapping.
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6.2. Admissible configurations

Theorem 6.8. Let T be a complete measure space with σ-algebra A. Let X be a Polish
space2 with Borel algebra B. If F ⊂ T ×X is A× B-measurable and B ∈ B, then

FB = {t ∈ T | (t, b) ∈ F for some b ∈ B} ∈ A.

For a proof we advise the reader to check one of the above mentioned references.

Corollary 6.9. Let T and X be as in the previous Theorem. If F ⊂ T ×X is A× B-
measurable and B ∈ B, then F (B) = {t ∈ T | (t, b) ∈ F for each b ∈ B} ∈ A.

Proof. We have

F (B) = {t ∈ T | @b ∈ B : (t, b) ∈ FC}
= {t ∈ T | ∃b ∈ B : (t, b) ∈ FC}C

=
(
(FC)B

)C
.

We know FC is A × B-measurable since this holds for F . According to Theorem 6.8
this implies measurability of (FC)B . Then the complement of this set is also measurable.

Proof of Proposition 6.7. Let G = {(x, y) ∈ Rd × Rd | y − x ∈ Γ(x)} and F =
{(x, y) ∈ Rd ×Rd | y ∈ Γ(x)}. Then we see that F = {(x, y − x) | (x, y) ∈ G}, that is, F
is B(Rd)× B(Rd)-measurable if and only if G is B(Rd)× B(Rd)-measurable.

Let us now assume that F is B(Rd)× B(Rd)-measurable. Choose T = R
d, A = L(Rd)

as the Lebesgue σ-algebra and X = R
d, B = B(Rd) as the Borel algebra. Then T is a

complete measure space (together with the Lebesgue measure λd) and X is a polish space.
Let V ∈ V be any double cone. We have

F (V ) = {x ∈ Rd | ∀y ∈ V : (x, y) ∈ F}
= {x ∈ Rd | ∀y ∈ V : y ∈ Γ(x)}
= {x ∈ Rd |V ⊂ Γ(x)}.

Since F is B(Rd)× B(Rd)-measurable, we know in particular that F is L(Rd)× B(Rd)-
measurable. By Corollary 6.9 we deduce F (V ) ∈ L(Rd) and the proof is finished.

Equipped with this background knowledge we can now define admissible configurations.

Definition 6.10 (ϑ-admissible configuration). If Γ is a ϑ-bounded configuration and{
(x, y) ∈ Rd ×Rd

∣∣ y − x ∈ Γ(x)
}

is a Borel set in Rd ×Rd, (M)

then Γ is called ϑ-admissible.
2A Polish space is a separable completely metrizable topological space.
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6. Setting and Preliminaries

Remark. Of course, there might be weaker sufficient conditions than (M) so that the
assertion of Proposition 6.7 still holds true. In our approach (M) is somehow a natural
assumption because it is equivalent to the measurability of the function

v : Rd ×Rd → R, v(x, y) = 1V Γ[x](y).

This function appears later in the lower bound of our integral kernels. It needs to be
measurable since we often use it inside of integrals.

6.3. Cubes and favored indices

Let Γ be an admissible configuration and {V 1, ..., V L} a family of reference cones according
to Lemma 6.4.

Definition 6.11 (open cube, half-closed cube). For h > 0 and u = (u1, ..., ud) ∈ Rd let

Ah(u) =

{
x ∈ Rd

∣∣∣ |x− u|∞ <
h

2

}
the open cube with center u. The half-closed cube with center u will be denoted by

Ãh(u) =

d∏
i=1

[
ui −

h

2
, ui +

h

2

)
.

Recall that we denote by |A| = λd(A) the Lebesgue measure of a measurable set A ⊂ Rd.

Definition 6.12 (h-favored index). Given h > 0, u ∈ Rd and m ∈ {1, ..., L}, we set

Amh (u) = {x ∈ Ah(u) |V m ⊂ Γ(x)}.

An index m ∈ {1, ..., L} is called h-favored by majority at u (or short: h-favored index at
u) if

|Amh (u)| = max
1≤i≤L

|Aih(u)|.

Note that |Amh (u)| ≥ L−1|Ah(u)| for every h-favored index m at u. This follows directly
from

Ah(u) =
⋃

1≤i≤L
Aih(u) .

It is clear that the choice of an h-favored index is, in general, not unique.

Now we state an elementary result for the intersection of cones which will be very helpful
for us. A consequence of the following lemma is that every intersection of double cones
with apex in some cube contains a double half-cone.
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6.3. Cubes and favored indices

Lemma 6.13. Let Ṽ be a cone with apex angle ϑ. Then:

1. For ` > 0 it holds
Ṽ` =

⋂
x∈B`

Ṽ [ξ].

2. For h > 0 the following holds true for each x ∈ Rd and every ξ ∈ Ah(x):

Ṽh
√
d[ξ] ⊂ Ṽh

2

√
d[x] ⊂ Ṽ [ξ].

In other words ⋃
ξ∈Ah(x)

Ṽh
√
d[ξ] ⊂ Ṽh

2

√
d[x] ⊂

⋂
ξ∈Ah(x)

Ṽ [ξ] .

Proof. Let ` > 0. Observe

ζ ∈
⋂
ξ∈B`

Ṽ [ξ] ⇔ ∀ξ ∈ B` : ζ − ξ ∈ Ṽ

⇔ ζ −B` ⊂ Ṽ

⇔ B`(ζ) ⊂ Ṽ

⇔ ζ ∈ Ṽ`.

This means

Ṽ` =
⋂
ξ∈B`

Ṽ [ξ], (6.1)

which proves our first claim.

On the other hand, for ζ ∈ Ṽ2`, we have B`(ζ) ⊂ Ṽ`. This is equivalent to

∀ζ ∈ Ṽ2` ∀ξ ∈ B` : ζ + ξ ∈ Ṽ` .

In other words ⋃
ξ∈B`

Ṽ2`[ξ] ⊂ Ṽ` . (6.2)

From (6.1) and (6.2) we conclude for every ξ ∈ B`

Ṽ2`[ξ] ⊂ Ṽ` ⊂ Ṽ [ξ] .

Translation by x ∈ Rd yields

Ṽ2`[ξ] ⊂ Ṽ`[x] ⊂ Ṽ [ξ] ∀ξ ∈ B`(x) .

Now set ` = h
2

√
d and observe that Ah(x) ⊂ B`(x).
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7. A result for discrete quadratic forms

The aim of this chapter is to prove the following discrete result.

Theorem 7.1. Let Γ be a ϑ-bounded configuration and α ∈ (0, 2). Let ω : Zd × Zd →
[0,∞] be a function satisfying ω(x, y) = ω(y, x) and

ω(x, y) ≥ Λ
(
1V Γ[x](y) + 1V Γ[y](x)

)
|x− y|−d−α (7.1)

for all x, y ∈ Z
d with |x − y| > R0, where R0,Λ > 0 are given constants. There

exist constants κ ≥ 1, c > 0 such that for every R > 0, x0 ∈ Rd and every function
f : (BκR(x0) ∩ Zd)→ R, the inequality∑

x,y∈BκR(x0)∩Zd
|x−y|>R0

(f(x)− f(y))2ω(x, y) ≥ c
∑

x,y∈BR(x0)∩Zd
|x−y|>R0

(f(x)− f(y))2|x− y|−d−α (7.2)

holds.

The constant c depends on Λ, ϑ,R0, α and on the dimension d. It does not depend on ω
and Γ.

We point out that we have to enlarge the ball on the left-hand side of the inequality (7.2).

In the following short paragraph we explain the idea of the proof. This passage is also
meant to explain the structure of this chapter to the reader.

Idea of the proof and structure of this chapter

We define a graph G on Zd (cf. Section 7.2) and show that every pair of points x, y ∈
BR(x0) ∩ Zd can be connected by a path pxy given by

x = z1 − z2 − · · · − zN−1 − zN = y

not leaving the larger ball BκR(x0). This is done via an induction argument in Section 7.3.
Since we always have to work with lattice points, the proofs are rather technical and the
reader may easily get distracted. For this reason, in a short prologe in Section 7.1, we
have worked out the induction argument also in Rd .
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7. A result for discrete quadratic forms

We proceed by showing that we can find a collection of paths (pxy)x,y∈Zd , which has
additional properties: Every path has length bounded by a universal number N ∈ N
independent of x and y. The distance of neighboring vertices |xi−xi+1| shall be comparable
to |x− y| with comparability constant λ. Every edge of the graph G shall be used in only
M ∈ N paths of the collection, where M is a universal number. These properties enable
us to use the lower bound of w(x, y) in (7.1) in the following way:

(f(x)− f(y))2|x− y|−d−α ≤ 2λd+α
N−1∑
i=1

(f(xi+1)− f(xi))
2|xi+1 − xi|−d−α

≤ 2Λ−1λd+α
N−1∑
i=1

(f(xi+1)− f(xi))
2w(xi+1, xi).

The technical challenging part of the proof is to show the existence of the collection of paths
pxy that have our desired properties. The proof of this result relies on a renormalization
argument, which we carry out in Section 7.4. We need to define new objects that we
call blocks and towns, which are basically subsets and families of subsets of Zd . On such
a town we define a graph (the favored graph) with vertex set given by the blocks. Our
results corresponding to the connection of any two lattice points can now be carried over
to the connection of any two blocks. Finally, in Section 7.5, we show in Theorem 7.20
the existence of the paths with the desired properties. This theorem is one of our main
results in this chapter.The proof of Theorem 7.1 follows then as a corollary in Section 7.6.

7.1. Prologe: A chaining argument in Rd

The proof of Theorem 7.1 uses the existence of paths connecting any pair of arbitrary
points in Zd. The main task in Chapter 7 is to prove the existence of these paths. In
order to understand better the rather technical proof in the discrete case, we show in
this subsection how one can connect two arbitrary points in Rd. The procedure in the
continuous setting is less technical than in the discrete setting and a lot of ideas from
this subsection can be carried over to the discrete case.

The graph G on Rd

From a configuration Γ : Rd → V we construct a directed graph G as follows: the vertex
set is Rd and there is a directed edge from x to y if y ∈ V Γ [x]. Note that there are no
loops in G as Γ(x) is open and does not contain the origin.

We shall be concerned with the question whether G is connected as an undirected graph if
the underlying configuration is ϑ-bounded. In this case, Corollary 6.6 allows us to assume
without loss of generality that the image of Γ contains only a finite number of elements.
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7.1. Prologe: A chaining argument in Rd

Thus, crucial parts of the argument can be proved by induction on the number of cones
in Γ(Rd). As it often happens, one needs to strike the right balance and the statement
suitable for induction is a little bit stronger (and more technical) than the primary target.
We are led to consider subgraphs GU defined by open subsets U ⊂ Rd as follows: the
vertex set of GU is still Rd and the rule for oriented edges is the same, however, we only
put in the edges issuing from vertices in U. Note that vertices outside U still can be used
in edge paths since we are interested in undirected connectivity.

In this section we always assume that the configuration Γ is ϑ-bounded.

Our main result is given in the next theorem.

Theorem 7.2. For any connected open set U ⊂ Rd , any two points x, y ∈ U are vertices
in the same connected component of GU.

For the proof of Theorem 7.2 we need some auxiliary results.

Auxiliary results

Lemma 7.3. If two points x, y ∈ U have the same type, then there is an edge path in GU
of length at most two connecting them.

Proof. Let V = Γ(x) = Γ(y). Then the translated double cones V [x] and V [y] intersect.
We pick a point of intersection (it may lie outside of U). It has an edge incoming from x
and another edge incoming from y. These two edges form the desired edge path.

Definition 7.4. A point x is called well-connected in U if there is an open neighborhood
W of x that, considered as a set of vertices in GU, lies entirely in a single connected
component of GU. That is, the point x is connected by edge paths in GU to all points of
an open neighborhood.

The following lemma lists inter alia some important features of well connected points.

Lemma 7.5. The following hold:

(1) For y ∈ U, any point x ∈ U ∩ V Γ [y] is well-connected in U.

(2) If U ′ ⊂ U is an inclusion of open sets, then any point x ∈ U ′ that is well-connected
in U ′ is also well-connected in U.

(3) Any non-empty open set U contains a point that is well-connected in U. In fact, the
well-connected points are dense in U.
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7. A result for discrete quadratic forms

Proof. For (1) we may choose U∩V Γ [y] as the open neighborhood. Any two points therein
are connected via an edge path of length two with y as the middle vertex. Therefore (1)
follows.

Enlarging the open set U ′ only adds edges to the graph. Hence connectivity can only
improve. This proves (2).

For the proof of (3) note that existence of a well-connected point follows from (1). Ap-
plying the existence statement to smaller open sets U ′ ⊂ U, density follows in view of (2).

Lemma 7.6. Consider two points x, y ∈ U and let V = Γ(y) be the cone type of y.
Assume that the translated double cone V [x] contains a point z of cone type V . Then x
and y are connected.

Note that we do not assume that V = Γ(x). One may also note that in the situation of
the lemma, the point x is well-connected in U.

Proof. Since y and z have the same type, they are connected by an edge path of length
at most two. Now, z ∈ V [x] implies x ∈ V [z] = V Γ [z]. Hence, there is an edge from z
to x.

The induction proof

Proof of Theorem 7.2. According to Lemma 6.4, we may assume that the image of Γ has
at most L different elements since Γ is ϑ-bounded. Therefore, we can use induction on
the number #Γ(U) of cones realized in U. If there is only a single cone type throughout
U, any two points x, y ∈ U are connected in GU by an edge path of length at most two.
This settles the base of the induction.

For #Γ(U) > 1, we start with the following observation:

There is a constant λ > 0 depending only on the minimum apex angle ϑ such
that for any double cone V ∈ V and any two points x, y ∈ Rd of distance
|x − y| < λ, the intersection V [x] ∩ V [y] contains a point in B1(x).

Now assume that x is well-connected in U and that the r-ball Br(x) lies entirely in U.
We claim that x is connected to any point y ∈ Bλr(x). Indeed, consider the cone type
V = Γ(y) of y. If V [x] contains a point of cone type V , the points x and y are connected
by Lemma 7.6.

Otherwise, within the open set U ′ = U ∩ V [x] 6= ∅ the cone type V is not realized. We
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7.2. The graph G on the set of lattice points

infer by induction that all points in U ′ are mutually connected in GU ′ and hence in GU .
However, V [y] = V Γ [y] intersects U ′ ⊃ Br(x) ∩ V [x] by the opening observation. Hence
y is connected to a point in U ′ and therefore to any point in U ′, which contains points
arbitrarily close to x. Since x is well-connected in U, the points y and x are connected in
GU .

It follows that a well-connected point x ∈ U whose r-neighborhood lies in U is actually
connected to any point in its λr-neighborhood. Now density of well-connected points
in U (cf. Lemma 7.5 (3)) implies that U is covered by overlapping open well-connected
subsets.

7.2. The graph G on the set of lattice points

Similar to the graph with vertex set Rd defined in the section above, we can define a
graph with vertex set Zd. Every configuration Γ : Rd → V induces naturally a mapping
Γ|Zd , which we again call configuration and denote by Γ. A configuration defines a
directed graph G = G(Γ), where the set of vertices is given by Zd and there is an oriented
edge from x to y if y ∈ V Γ[x]. Our main task is to prove that G is connected as an
undirected graph provided that the configuration Γ is ϑ-bounded. Therefore, throughout
the remainder of Chapter 7, we assume without further notice that Γ is ϑ-bounded. Since
in this chapter we deal with questions of connectivity of components of graphs, we may
assume without further notice that the image of Γ contains only L ∈ N double cones, cf.
Corollary 6.6 .

A sequence of points (xk)k∈I , I ⊂ N, written as

x1 − x2 − · · · − xk − . . . ,

is called a path of edges (or (edge) path) in the undirected graph G if for each k ∈ I there
is an oriented edge from xk to xk+1 or vice versa. It is essential to keep track of how far
an edge path connecting two points might take us away from the end points in question.
This will later lead to the constant κ in Theorem 7.1.

7.3. The induction

Preparation for the induction

Given that we consider Γ restricted to Zd a technicality is that we always have to work
with lattice points. The following lemmata are based on simple geometric properties. The
assertions are all needed for the ensuing induction.
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7. A result for discrete quadratic forms

Since any closed ball of radius
√
d

2 contains a lattice point, we have:

Lemma 7.7. Let Ṽ be a cone of apex angle at least ϑ.

(1) Fix r > 0 and assume R > r+
√
d

sin(ϑ) . Then, for x ∈ Rd , the intersection BR(x)∩ Ṽ [x]

contains a lattice point y ∈ Zd with Br(y) ⊂ Ṽ [x].

(2) Let x, y ∈ Rd . Fix r > |x − y| and R > r+
√
d

sin(ϑ) + r. Then the intersection

BR(x) ∩ Ṽ [x] ∩ BR(y) ∩ Ṽ [y]

contains a lattice point.

Proof. Let R > r+d
sin(ϑ) . Within distance r+

√
d/2

sin(ϑ) of x, we find a point z with Br+√d/2(z) ⊂
Ṽ [x]. Within the closed ball of radius

√
d/2 around z, we find the desired lattice point y.

Therefore,

y ∈ B r+(
√
d/2)

sin(ϑ)
+
√
d

2

(x) ⊂ BR(x) and Br(y) ⊂ B
r+
√
d

2

(z) ⊂ Ṽ [x].

The second assertion can be seen as another way of looking at the same phenomenon. Let
now R > r+d

sin(ϑ) +r and let ε > 0 such that R > ε+r+ r+
√
d

sin(ϑ) . According to statement (1) of

this lemma, there is a lattice point z ∈ Zd with z ∈ B r+
√
d

sinϑ
+ε

(x)∩ Ṽ [x] and Br(z) ⊂ Ṽ [x].

Now, z ∈ Ṽ [y] since Ṽ [y] is obtained from Ṽ [x] via translation by a distance less than r.
By triangle inequality, z ∈ BR(y).

A quantitative version of Lemma 7.3 follows immediately.

Corollary 7.8. Any two lattice points x, y ∈ Zd with Γ(x) = Γ(y) = V and of distance
less than r are connected via a path of two edges of length bounded from above by
R = r+

√
d

sin(ϑ) + r.

The following definition matches the definition of well-connected points in Rd.

Definition 7.9. For r ≤ R, we call a lattice point x ∈ Zd r-R-connected, if any lattice
point y ∈ Br(x) is connected in G to x via an undirected edge path not leaving BR(x).

The following lemma is the discrete version of the density of well-connected points
(Lemma 7.5 (3)).

Lemma 7.10. For any r > 0, any R > r+
√
d

sin(ϑ) , and any lattice point x ∈ Zd, there is an
r-R-connected lattice point y ∈ BR(x).
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7.3. The induction

Proof. Let ε > 0 so that R = ε+
√
d+r

sin(ϑ) . From Lemma 7.7 we know that BR(x) ∩ V Γ [x]

contains a lattice point y whose r-ball Br(y) lies within the double cone V Γ [x]. Thus,
any two points in Br(y) are connected via x, and x has distance less than R from y,
which yields the claim.

Our discrete variant of Lemma 7.6 reads as follows:

Lemma 7.11. Consider two lattice points x, y ∈ Zd of distance less than r. Let V = Γ(y)

be the cone type of y and let R > 3r+ 2r+
√
d

sin(ϑ) . Assume that Br(x)∩V [x] contains a lattice
point z of cone type V . Then there is an edge path from y to x not leaving BR(x).

Proof. There is a directed edge from z to x with length less than r. Note that the distance
of y and z is at most 2r. Hence with R̃ > 2r+

√
d

sin(ϑ) + 2r, we conclude from Lemma 7.7 (2)
that

B
R̃

(z) ∩ V [z] ∩B
R̃

(y) ∩ V [y] = B
R̃

(z) ∩ V Γ [z] ∩B
R̃

(y) ∩ V Γ [y]

contains a lattice point. Through this point, y and z are connected. Now we see that the
choice of R guarantees that(

B
R̃

(y) ∩ V [y] ∩B
R̃

(z) ∩ V [z]
)
⊂ (BR(x) ∩ V [z] ∩ V [y]) ,

that is, the edge path from y to x does not leave BR(x).

Lemma 7.12. There is a constant δ > 0, depending only on ϑ and the dimension d, such
that for any double cone V ∈ Γ(Zd) the following condition holds:

If for a lattice point x ∈ V , there is a lattice point in V closer to 0, then there
is such a lattice point in V ∩Bδ(x).

That is, we can go from x within V to a lattice point of minimum distance to the apex via
a chain of jumps (not a path in the graph) each bounded in length from above by δ.

Proof. Alternatively, we may show that we can reach any lattice point in V via a chain
of jumps starting at the apex where each jump is bounded in length from above by δ.
Let V ∈ Γ(Zd) be any double cone. It is enough to prove the result for the single cone Ṽ
that has the same symmetry axis as V and the same apex angle. Let x̂ ∈ Zd be a point
that is contained in Ṽ and has minimal distance to the apex at 0 overall lattice points
in Ṽ . We know that every point λx̂ for λ > 0 is in Ṽ . It is also clear that every λx̂ for
λ ∈ N gives us another lattice point in Ṽ . Now note that by the properties of the lattice
Z
d itself every point y ∈ V ∩ Zd can be obtained by a chain of jumps of length less or

equal to
√
d

2 starting from one point on the line {λx̂ |λ ∈ N}. Therefore, it is sufficient to

choose δ > |x̂|+
√
d

2 . Since
√
d

2 sinϑ ≥ |x̂|, we can choose δ >
√
d

2

(
1 + 1

sin(ϑ)

)
.

63



7. A result for discrete quadratic forms

The Induction-Theorem

It is our aim to prove that every two lattice points in a given ball of radius r are connected
via an edge path that does not leave a larger ball of radius R. Here the radius R shall
depend only on r, ϑ and d. In the following lemma we show this for a series of values for
r respectively R. The proof uses similar ideas as the proof of the corresponding result in
the continuous setting, cf. Theorem 7.2.

In this subsection the constant δ always refers to the constant established in Lemma 7.12.

Theorem 7.13. There are constants r1 ≤ ρ1 ≤ R1, r2 ≤ ρ2 ≤ R2, . . ., depending only on
ϑ and d, with δ < r1 and ri < ri+1, ρi < ρi+1, Ri < Ri+1 for every i ∈ N such that any
lattice point x ∈ Zd is rk-Rk-connected provided #Γ(Bρk (x) ∩ Zd) ≤ k.

Idea of the proof. The proof uses an induction argument, where one inducts on the
number of cone types that are realized in the given ball. The key point in the induction
step is that we can choose rk large enough so that Brk(x) contains a lattice point x̂ that
is well-connected (meaning here, s-S-connected for certain radii s < S around x̂). The
task is then to connect any lattice point in Brk(x) with x̂ . In this step the induction
hypothesis helps. This way x is connected to any other lattice point in Brk(x) through
the well-connected point x̂ , see Figure 7.1. Keeping track of the length of the edge paths
allows to choose Rk.

Proof of Theorem 7.13. We use an induction argument on the number of realized cone
types k. The case k = 1 follows directly from Corollary 7.8: Choose ρ1 = r1 > δ and
R1 >

r1+
√
d

sin(ϑ) + r1.

For the induction step, assume that constants up to ρk−1, rk−1, and Rk−1 have already
been found. Choose

s >
2ρk−1 +

√
d

sin(ϑ)
and S >

s +
√
d

sin(ϑ)
.

Note that by Lemma 7.7 (1) for x̂ ∈ Zd any set Bs(x̂) ∩ V [x̂ ] contains a lattice point
z with B2ρk−1

(z) ⊂ V [x̂ ]. In particular, Bρk−1
(z) ⊂ V [x̂ ]. In other words z lies in the

double half-cone Vρk−1
[x̂ ]. If x̂ is s-S-connected, there is an edge path from x̂ to z not

leaving BS(x̂). These observations will be important later.

We put rk = S. Let x ∈ Zd. By Lemma 7.10, there is an s-S-connected lattice point
x̂ ∈ Brk (x). Consider an arbitrary lattice point y ∈ Brk (x). It suffices to choose Rk and
ρk large enough so that we can ensure the existence of an edge path from x̂ to y within
BRk (x). Then, since x is also a lattice point in Brk(x), x is connected to y through the
point x̂ .

Let V = Γ(y) be the cone type of y. The distance of y and x̂ is less than 2S. We are
interested in the double half-cone Vρk−1

[x̂ ]. Either apex of the double half-cone is within
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distance ρk−1

sin(ϑ) < s < S of x̂ and thus within distance less than 3S of y. Let now ẑ ∈ Rd

be any apex of x̂ + Vρk−1
. By Lemma 7.7 (2), for any ŝ > 3S+

√
d

sin(ϑ) + 4S the intersection(
Bŝ−S(ẑ) ∩ Vρk−1

[x̂ ] ∩ V [y]
)
⊂
(
Bŝ (x̂) ∩ Vρk−1

[x̂ ] ∩ V [y]
)

contains a lattice point.

Choosing ρk > S + ŝ + ρk−1, we can use the induction hypothesis as follows. If no lattice
point in the region Bŝ+ρk−1

(x̂) ∩ V [x̂ ] ⊂ Bρk (x) is of cone type V , then we see that
there are at most k − 1 different cone types realized within Bŝ+ρk−1

(x̂) ∩ V [x̂ ]. Hence,
each lattice point in Bŝ (x̂) ∩ Vρk−1

[x̂ ] is rk−1-Rk−1-connected. Since rk−1 > δ, we get by
Lemma 7.12 that all these well-connected balls overlap and are therefore connected to
the lattice point z that lies in the double half-cone. Recall that z is within distance s
of x̂ and that x̂ is s-S-connected. Hence, all the lattice points in Bŝ (x̂) ∩ Vρk−1

[x̂ ] are
connected to x̂ .

On the other hand, one of these lattice points lies within the double cone V [y] = V Γ [y]
and is hence directly connected to y. Thus, y is connected to x̂ . Each edge path used will
take us at most S or Rk−1 outside of Bŝ (x̂). Thus, we might choose Rk > 2S+Rk−1 + ŝ .
We might need to increase this number to ensure ρk ≤ Rk , but the increase incurred in
treating the remaining case is much worse.

It remains to deal with the possibility that there is a lattice point of cone type V in the
region Bŝ+ρk−1

(x̂) ∩ V [x̂ ]. Since x̂ and y are of distance at most 2S < ŝ , Lemma 7.11

applies and we choose Rk > 3(ŝ + ρk−1) +
2(ŝ+ρk−1)+

√
d

sin(ϑ) .

Brk(x)

Vρk−1[x̂]

x

x̂

GHI

y

RSTU

z

ẑ

z1
zn

Figure 7.1.: The path y − ẑ − ...− z1 − ...− zn − ...− z − x̂.
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Corollary 7.14. For every r > 0 there is R ≥ r, depending only on r, ϑ and d, such
that for any configuration Γ : Zd → V with apex angles bounded from below by ϑ any
lattice point x ∈ Zd is r-R-connected.

Proof. By Corollary 6.6 we may and do assume without loss of generality that #Γ(Zd) = L,
where L ∈ N is a constant that depends only on ϑ and d. Now the claim follows from
Theorem 7.13 and the following observation: If x is r-R-connected, it is r′-R-connected
for any r′ ≤ r.

7.4. Renormalization: Blocks and Towns

Since the proof of Theorem 7.1 involves a renormalization argument, it is important to
restate Corollary 7.14 for structures at large scale (see Proposition 7.19). To this end, we
introduce what we call blocks and towns. Recall our notation

A`(x) =

{
y ∈ Rd

∣∣∣∣ |y − x|∞ <
`

2

}
for cubes.

Lemma 7.15. For any apex angle ϑ, there is a constant δ = δ(ϑ) > 0 such that the
following holds for each ` > 0 and any two points x, y ∈ Rd of distance at least δ`:

If Ṽ is a cone of apex angle ϑ
2 and y ∈ Ṽ [x], then

A`(y) ⊂
⋂

z∈A` (x)

V [z]

for the cone V with apex angle ϑ and the same symmetry axis as Ṽ .

Proof. Let Ṽ be a cone of apex angle ϑ
2 and symmetry axis v and let V be a cone with

apex angle ϑ and symmetry axis v. Let x ∈ Rd and ` > 0. According to Lemma 6.13 we
know ⋂

z∈A` (x)

V [z] ⊃ V `
2

√
d [x].

It is also known that
B `

2

√
d
(y) ⊃ A`(y)

for any y ∈ Rd .
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Therefore, we choose a point ỹ ∈ ∂(Ṽ [x]) on the boundary of Ṽ [x] with the property

B `
2

√
d
(ỹ) ⊂ V `

2

√
d [x],

that is, B`√d(ỹ) ⊂ V [x]. The claim follows now with δ = |x−ỹ|
` ≥

√
d

sin(ϑ/2) .

In the remainder we will always refer to the smallest possible δ that satisfies the claim of
Lemma 7.15, that is, δ =

√
d

sin(ϑ/2) .

Definition 7.16 (block, town at scale, sparsely populated). A block

Q`(x) = Z
d ∩A`(x)

is a collection of lattice points inside a cube.

Let h, ` > 0. The town at scale (h, `) is the collection

T(h, `) =

{
Q`(x)

∣∣∣∣x ∈ hZd} .
If the constant δ from Lemma 7.15 is less than h

` , then the town is called sparsely
populated (or ϑ-sparsely populated when we want to recall that δ depends on ϑ).

In order to employ geometric language, we implicitly may identify the block Q`(x) with
its center x. This way, we think of the distance between two blocks as the distance of
their centers. If h is large compared to `, the distance between the centers is a good
approximation to any distance between points from the two blocks.

Definition 7.17 (favored by majority). Let Γ : Zd → V be a ϑ-bounded configuration. A
double cone V ∈ V shall be called favored by majority in Q for a block Q ⊂ Zd if the
preimage

Γ−1
Q (V ) =

{
x ∈ Q

∣∣∣∣Γ(x) = V

}
has maximal size, that is,

#Γ−1
Q (V ) ≥ #Γ−1

Q (V ′) for every V ′ ∈ V.

Remark. Given a block Q, the choice of a cone V ∈ V that is favored by majority in Q,
in general, is not unique.

In the following we want to establish a result similar to the one of Corollary 7.14 but for
blocks instead of lattice points. In order to do that we first have to define a graph with
vertices given by the blocks. This enables us to study paths in this new graph.
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Definition 7.18 (favored graph). Given a town T = T(h, `), a directed graph is defined
as follows. The vertices are given by the blocks in T. There is an edge from a block Q to
a block P if there is a cone V ∈ V favored by majority in Q with

y ∈ V [x] for all x ∈ Q, y ∈ P.

The corresponding undirected graph is called the favored graph.

We derive a connectivity result for the favored graph of a sparsely populated town from
Corollary 7.14.

Proposition 7.19. For any radius r > 0 there exists R ≥ r depending only on ϑ and d,
such that in a ϑ-sparsely populated town T of scale (h, `) any two blocks Q and P within
distance hr of some point z ∈ hZd are connected by an undirected edge path in the favored
graph. This path does not pass through blocks farther away from z than hR.

Proof. Let r > 0 and T = T(h, `) be a sparsely populated town. Let Q,P ∈ T = T(h, `)
be two blocks within distance hr of some point z ∈ hZd . Denote by W(Q) ∈ V one of
the cones that are favored by majority in Q. Let us show the existence of a path in the
favored graph that connects Q and P and does not leave the ball BhR(z). In order to
invoke Corollary 7.14, note that

Z
d −→ T(h, `)

x 7→ Q`(hx)

provides an identification of the town T with the integer lattice Zd . Denoting by W 1
2
(Q)

the double cone with apex angle ϑ
2 and the same axis as W(Q), let us consider the

following configuration:

Z
d −→ V
x 7→W 1

2
(Q`(hx)).

If there is an edge from x to y in this configuration, then by Lemma 7.15, there is an edge
from the block Q`(hx) to the block Q`(hy) in the favored graph. Indeed, |x − y| ≥ 1
and thus |hx− hy| ≥ h > δ`. Then Lemma 7.15 shows that ỹ ∈W (Q`(hx)) + x̃ for all
x̃ ∈ A`(hx), ỹ ∈ A`(hy) or vice versa with exchanged roles of x and y.

Choose x, y ∈ Zd so that P = Q`(hx) and Q = Q`(hy). Now the claim follows from
Corollary 7.14.

7.5. Connecting points at scale: The discrete heart

From Corollary 7.14 it is clear that, for any ϑ-bounded configuration Γ : Zd → V the
associated directed graph G = G(Γ) is connected when considered as an undirected graph.
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7.5. Connecting points at scale: The discrete heart

Thus, there is a set of paths, which is large enough to connect every given pair x, y. As
described in the introduction of Chapter 7, we want to identify a collection of paths that
has additional properties. The aim of this section is to prove quantitative estimates on
the length of paths and the number of edges. The following contains our main result in
this direction. This theorem is the basis for the proof of Theorem 7.1 and it is the reason
for all the effort we invested in the previous sections. That is why we refer to it as the
discrete heart.

Theorem 7.20. Let Γ : Zd → V be a configuration with apex angles bounded from below
by ϑ > 0. Let R0 > 0. There exist positive numbers N and M and a constant λ ≥ 1, all
independent of Γ, and a collection (pxy)x,y∈Zd of unoriented edge paths in G such that
the following is true:

1. The path pxy starts at x and ends at y.

2. Any path pxy has at most N edges.

3. Any edge of G is used in at most M paths pxy .

4. Any edge in pxy has length strictly bounded from below by R0. Moreover, each edge
is bounded from below by λ−1|x − y| and from above by λ|x − y|.

Before we state the proof, we first explain the setup and describe the basic idea of the
proof.

Setup of the proof. Let us provide the setup of the proof of Theorem 7.20. We pick an
odd integer ∆ larger than the constant max{δ,R0, 1} with the property that

∆

L
∈ N, (7.3)

where δ is as in Lemma 7.15 and L is as in Lemma 6.4 and we may and do assume without
loss of generality that L is odd (otherwise (7.3) cannot be realized). Hence, the towns
Tn = T(∆n ,∆n−1) are all ϑ-sparsely populated so that Proposition 7.19 applies. The
distance |x − y| for x, y ∈ Zd lies in exactly one of the intervals

[∆0,∆1), [∆1,∆2), [∆2,∆3), . . .

Assume |x − y| ∈ [∆n−1,∆n). In this case, we will consider Tn to be the appropriate
town for connecting x and y. We call n the logarithmic scale of the town Tn .

Assume that #Γ(Zd) ≤ L. Since ∆ is an odd integer, each block Q = Q∆n−1(x) contains

at least ∆d(n−1)

L lattice points z ∈ Q, where the associated cone Γ(z) is favored by majority
in Q.
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7. A result for discrete quadratic forms

Idea of the proof. We fix a logarithmic scale n and identify one big path in the favored
graph that connects all the blocks of Tn that lie in some ball not leaving a larger ball.
This big block path gives rise to a collection of paths in the graph G. We then show that
any two lattice points in a certain range with distance depending on the scale n can be
connected to a certain path in G arising from the big path. In that way we obtain the
collection of paths (pxy)x,y∈Zd . With help of the logarithmic scale we can deduce the
existence of M and N and prove the assertion on the length of the edges.
Remark. Let us recall that we implicitly always identify the distance of two blocks in
Tn with the distance of their center points. Since Tn is sparsely populated the distance of
any two points in two blocks of Tn is comparable to the distance of their centers, where
the comparability constant only depends on the dimension.

An important step in the construction of pxy is to connect x and y to blocks of Tn . The
following lemma deals with this problem. It can be seen as the initial step of the proof of
Theorem 7.20.

Lemma 7.21. There is a constant R1 ≥ 1 such that for any point x ∈ Rd and any
n ∈ N there is a block Q ∈ Tn entirely contained in B∆nR1 (x) ∩ V Γ [x]. In particular,
the radius R1 can be chosen in such a way that the distance of x and Q is bounded from
below by ∆n times a universal constant, only depending on the dimension.

Proof. There is a radius r such that for any cone Ṽ of apex at least ϑ
2 and each point

z ∈ Rd , the intersection Br(z) ∩ Ṽ [z] contains a lattice point y with |z − y| ≥ 1. Now
the claim follows by rescaling from Lemma 7.15 applied to ∆nz and ∆ny. As we want to
encircle the whole block and not just its center, we choose R1 > r +

√
d

2 .

Now we are in the position to prove the main result of this section.

Proof of Theorem 7.20. Let R1 be the radius from Lemma 7.21, put r = 1 +R1 , and let
R be the radius resulting with this value from Proposition 7.19. The proof consists of
several steps. The radius r is chosen in such a way that one has

B∆n (x) ⊂ B∆nR1 (x) ⊂ B∆nr(z), (7.4)

whenever x ∈ B∆n (z) ∩ Zd for some z ∈ Rd. This property is used in Step 2.

Step 1: Construction of paths in the favored graph for a fixed scale. We fix some
logarithmic scale n. For every z ∈ ∆n

Z
d , we construct a path Pnz in the favored graph that

traverses every block of Tn that is a subset of B∆nr(z). By taking the union
⋃
z∈∆nZd

Pnz
we construct paths in the favored graph for a fixed scale.

Let z ∈ ∆n
Z
d . Proposition 7.19 allows us to connect every block Q ∈ Tn , Q ⊂ B∆nr(z)

with every other block P ∈ Tn , P ⊂ B∆nr(z) so that the corresponding path traverses
not more than #(BR ∩Zd) � Rd blocks of Tn , which can be chosen to lie in B∆nR . If we
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7.5. Connecting points at scale: The discrete heart

apply Proposition 7.19 successively to all blocks of Tn , which are subsets of B∆nr , then
we obtain a path

Pnz = Q1 −Q2 − ...−Qt (7.5)

in the favored graph of blocks of Tn with

rd � #(B∆nr ∩∆n
Z
d) ≤ t ≤ #(B∆nr ∩∆n

Z
d)(B∆nR ∩∆n

Z
d) � rdRd

such that the following assertions hold:

1. For each i ∈ {1, ..., t} we have Qi ⊂ B∆nR(z).

2. The blocks Q1 and Qt are subsets of B∆nr(z).

3. If Q is any block of Tn with Q ⊂ B∆nr(z), then Q = Qi for some i ∈ {1, ..., t}.

Q1

Qt

B∆nR(z)

B∆nr(z)

Figure 7.2.: The path Q1 − ....−Qt

For an illustration of the path (7.5) see Figure 7.2.
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7. A result for discrete quadratic forms

Finally, set
Pn =

⋃
z∈∆nZd

Pnz .

Step 2: Construction of paths in the graph G for a fixed scale. For a logarithmic
scale n and x, y ∈ Zd with |x − y| ∈ [∆n−1,∆n) we construct a path in the graph G
connecting x and y.

Fix a logarithmic scale n. Let z ∈ ∆n
Z
d . Choose for every block in (7.5) a favored

cone and call the corresponding set of points in the block where this cone is associated a
majority set. Each majority set contains at least

a =
∆d(n−1)

L
∈ N

points. Without loss of generality, we may and do assume that every majority set contains
exactly a different elements. Then we identify a block in (7.5) with its majority set, that
is, if Qk is the k-th block in (7.5), then

Qk = (qki )1≤i≤a.

Starting from (7.5) we now fix certain paths in the graph G, which then give rise to the
collection (pxy). Let i ∈ {1, ..., a}. Without loss of generality we may and do assume
that t is an even number (for odd t just erase the last edge in the following scheme). We
construct a set M of paths in the graph G. Let us first fix i ∈ {1, ..., a}. Consider the
following paths in G:

q1
i − q2

i − q3
i − q4

i − . . . − qti
q1
i − q2

i+1 − q3
i − q4

i+1 − . . . − qti+1

q1
i − q2

i+2 − q3
i − q4

i+2 − . . . − qti+2

q1
i − q2

i+3 − q3
i − q4

i+3 − . . . − qti+3
...

...
...

...
...

...
q1
i − q2

i+a−1 − q3
i − q4

i+a−1 − . . . − qti+a−1,

(7.6)

where the lower index is to be read modulo a, that is, k + a = k for every k. The scheme
(7.6) gives us a different paths in G. Let us collect them in the set Mi. Then we set

M =

a⋃
i=1

Mi.

The set M consists of a2 paths.

Now we associate to every pair of lattice points (x, y) ∈ A with

A =
{

(x, y) ∈ (B∆n (z) ∩ Zd)× (B∆n (z) ∩ Zd)
∣∣ |x− y| ∈ [∆n−1,∆n)

}

72



7.5. Connecting points at scale: The discrete heart

one path of M . Since the number #A can be bounded from above by Ka2, where K ≥ 1
is a universal constant independent of the logarithmic scale n (but depending on ∆, L),
this can be realized by a function

φz : A→M

with

#φ−1
z (p) ≤ K for every p ∈M (7.7)

where, K is as above and does not dependent on p. In order to use the path φz(x, y)
to connect x and y, it remains to make sure that x and y are both connected in G to
one element in φz(x, y) respectively. This follows from (7.4) combined with Lemma 7.21,
which guarantees that every x ∈ B∆n (z) is connected to every point in some block Qk

of Pnz . Note in particular that, by the supplement in Lemma 7.21, the distance of Qk

and x is bounded from below by ∆n times some universal constant. In this way the path
φz(x, y) induces a path in G that starts in x and ends in y (cf. Figure 7.3).

... φz(x, y)

B∆n (z)

q1
1

q2
2

q3
1

qt−2
2qt−1

1

qt2

x

y

Figure 7.3.: Construction of a path using φz(x, y)

Using this construction scheme, we have constructed a path for each pair of lattice points
(x, y) ∈ B∆n (z) × B∆n (z) with |x − y| ∈ [∆n−1,∆n). Let Mn

z be the set of all these
paths. We can carry out this principle of construction of the paths for every z ∈ ∆n

Z
d.

Step 3: Construction of pxy. Note that the whole construction process of Step 2 has
been performed for an arbitrary n ∈ N. We define pxy for x, y ∈ Zd as follows. Choose
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7. A result for discrete quadratic forms

n ∈ N such that |x − y| ∈ [∆n−1,∆n). Next, choose any z ∈ ∆n
Z
d such that φz(x, y)

represents a path connecting x and y. In this way,

pxy ∈
⋃

z∈∆nZd

Mn
z .

Step 4: Bounds of the length of each edge path. The second claim of Theorem 7.20
follows immediately from t ≤ #(Br ∩ Zd) ·#(BR ∩ Zd).

Step 5: Bounds of the length of each edge. By construction, all edges used in pxy
for some x, y ∈ Zd with |x − y| ∈ [∆n−1,∆n) have lengths bounded from below by
∆n−1 > R0 and from above by 2∆nR. Ergo, the fourth claim follows with λ = 2R∆.

Step 6: Bounds of the multiplicity of edges. According to Step 5, it is enough to
proof the third claim of Theorem 7.20 for one fixed logarithmic scale. Therefore, we fix
n. Assume e is an edge of length in [∆n−1, 2∆nR). Then there exists a point z ∈ ∆n

Z
d

so that e ⊂ B∆nR(z). Since the number of lattice points in B2R bounds from above the
number of block centers z ∈ ∆n

Z
d for which B∆nR(z) contains e, it is enough to bound

the number of times e is used by paths belonging to a fixed z. But now by construction
(cf. Step 1) for every edge in B∆nR(z) the usage of paths that start in some point x and
end in some other point y with x, y ∈ B∆n (z) so that |x − y| ∈ [∆n−1,∆n), is bounded
by K and this number is independent of the scale.

7.6. Proof of Theorem 7.1

Finally, we are in the position to prove Theorem 7.1. The proof is just an easy consequence
of Theorem 7.20.

Proof. Let R > 0 and x0 ∈ Rd. For x, y ∈ BR(x0) ∩ Zd denote by

x = z1 − z2 − ...− zN−1 − zN = y

the path pxy that satisfies properties (1)-(4) of Theorem 7.20. For the sake of readability
we suppress the dependence on (x, y) in the notation of the path. The reader should keep
in mind that zi = z

(x,y)
i for each i. For simplicity we assume that every path in (pxy) is of

length N . Then with use of the properties (1)-(4) of Theorem 7.20 and of (7.1) we find:∑
x,y∈BR(x0)∩Zd
|x−y|>R0

(f(x)− f(y))2|x− y|−d−α
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≤ 2λd+α
∑

x,y∈BR(x0)∩Zd
|x−y|>R0

N−1∑
i=1

(f(zi+1)− f(zi))
2|zi+1 − zi|−d−α

≤ 2λd+α
∑

x,y∈BR(x0)∩Zd
|x−y|>R0

(N − 1) max
i∈{1,...,N−1}

[
(f(zi+1)− f(zi))

2|zi+1 − zi|−d−α
]

≤ 2Λ−1λd+α
∑

x,y∈BR(x0)∩Zd
|x−y|>R0

(N − 1) max
i∈{1,...,N−1}

[
(f(zi+1)− f(zi))

2ω(zi+1, zi)
]

≤ 2Λ−1λd+α(N − 1)M
∑

x,y∈B(N−1)λR(x0)∩Zd
|x−y|>R0

(f(x)− f(y))2ω(x, y).

Therefore, we choose c =
(
2Λ−1λd+α(N − 1)M

)−1 and κ = (N − 1)λ.
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8. The coercivity result

The purpose of this chapter is to prove the following coercivity estimate.

Theorem 8.1. Let Γ be a ϑ-admissible configuration and α ∈ (0, 2). Let k : Rd ×Rd →
[0,∞] be a measurable function satisfying k(x, y) = k(y, x) and

k(x, y) ≥ Λ
(
1V Γ[x](y) + 1V Γ[y](x)

)
|x− y|−d−α (8.1)

for almost all x, y ∈ Rd, x 6= y, where Λ > 0 is some constant. Then there is a constant
c > 0 such that for every ball B ⊂ Rd and for every f ∈ L2(B), the inequality

ˆ
B

ˆ
B

(f(x)− f(y))2k(x, y) dx dy ≥ c

ˆ
B

ˆ
B

(f(x)− f(y))2|x− y|−d−α dx dy (8.2)

holds.

The constant c depends on Λ, the dimension d and ϑ. It is independent of k and Γ. For
0 < α0 ≤ α < 2, the constant c may be chosen to depend on α0 but not on α.

We remark that f ∈ L2(B) does not imply that any of the two terms in (8.2) is finite.
The result in particular says that the term on the left-hand side is infinite if the term on
the right-hand side is infinite.

Idea of the proof and structure of this chapter

In Section 8.1 we first derive a version of the discrete result on every lattice hZd for h > 0.
The idea is then to consider a discrete version of the kernel k that can be plugged into
our discrete result. The claim follows by considering the limit h→ 0 on each side of the
inequality.

The discrete version of the kernel is introduced in Section 8.2. In this section we also
show that this discrete version satisfies the conditions of the discrete result Theorem 7.1.

The limiting argument and the proof of Theorem 8.1 are presented in Section 8.3. One
issue is that the balls in either side of (7.2) in Theorem 7.1 are of different size. This
carries over to the limit. With the help of a Whitney-type covering argument one can
obtain the same ball on either side of the resulting inequality. In order not to disturb the
flow of reading, we explain this covering result in the Appendix, see Lemma A.2.
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8.1. A result in hZd

By scaling we can deduce the following hZd-Version from Theorem 7.1.

Corollary 8.2. Let Γ be a ϑ-bounded configuration and let h > 0. Let ω : hZd × hZd →
[0,∞] be a function satisfying ω(x, y) = ω(y, x) and

ω(x, y) ≥ Λ
(
1V Γ[x](y) + 1V Γ[y](x)

)
|x− y|−d−α (8.3)

for x, y ∈ hZd with |x − y| > R0h, where R0,Λ > 0 are some constants. There exist
constants κ ≥ 1 and c > 0, such that for every R > 0, every x0 ∈ Rd, and every function
f : (BκR ∩ hZd)→ R, the inequality∑

x,y∈BκR∩hZd
|x−y|>R0h

(f(x)− f(y))2ω(x, y) ≥ c
∑

x,y∈BR∩hZd
|x−y|>R0h

(f(x)− f(y))2|x− y|−d−α

holds. The constant c depends on Λ, ϑ,R0 and on the dimension d. It does not depend on
ω,Γ and h.

Proof. Let

M =

{
ω : hZd × hZd → [0,∞]

∣∣∣∣∣ ω(x, y) = ω(y, x) and
(8.3) for some configuration Γ with ϑ > 0

}
,

N =

{
ω : Zd × Zd → [0,∞]

∣∣∣∣∣ ω(x, y) = ω(y, x) and
(7.1) for some configuration Γ with ϑ > 0

}
.

Every element ω ∈M is of the form

h−d−αω̃(h−1x, h−1y) for some ω̃ ∈ N.

If R > 0, x0 ∈ Rd and f : BκR(x0) ∩ hZd → R is a function, we define a function on Zd

by
g : BκR(x0) ∩ Zd → R, g(x) = f(hx).

Then with use of Theorem 7.1:

c
∑

x,y∈BR(x0)∩hZd
|x−y|>R0h

(f(x)− f(y))2|x− y|−d−α

= c
∑

x,y∈BR(x0)∩Zd
|x−y|>R0

(g(x)− g(y))2h−d−α|x− y|−d−α

≤
∑

x,y∈BκR(x0)∩Zd
|x−y|>R0

(g(x)− g(y))2h−d−αω̃(x, y)
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=
∑

x,y∈BκR(x0)∩hZd
|x−y|>R0h

(f(x)− f(y))2h−d−αω̃(h−1x, h−1y)

=
∑

x,y∈BκR(x0)∩hZd
|x−y|>R0h

(f(x)− f(y))2ω(x, y).

This proves the claim.

8.2. The discrete version of the kernel

In the remainder we always assume that Γ is a fixed ϑ-admissible configuration and
{V m}1≤m≤L is an associated family of reference cones. We always denote the symmetry
axis of a reference cone V m by vm for m ∈ {1, ..., L}.

For k : Rd ×Rd → [0,∞] a nonnegative measurable function and h > 0, we define

ωkh : hZd × hZd → [0,∞] by ωkh(x, y) = h−2d

ˆ
Ah(x)

ˆ
Ah(y)

k(s, t) dsdt.

Note that ωkh(x, y) may be infinite for x and y from neighboring cubes.

We want to apply Corollary 8.2 to ω = ωkh. Therefore, we need to make sure that the
function ωkh satisfies (8.3). The idea is to show this claim first for the case h = 1 and then
deduce the assertion for any h > 0 from a scaling argument.

The next three technical lemmas are custom-made for the proof of (8.3) in the case h = 1.

Lemma 8.3. For all x, y ∈ Zd, all 1-favored indices m at x and n at y, all t ∈ An1 (y),
and all s ∈ Am1 (x), the inequality

1Vm√
d/2

[x](t) + 1V n√
d/2

[y](s) ≥ 1Vm√
d
[x](y) + 1V n√

d
[y](x)

holds.

Proof. Let x, y ∈ Zd and let m be a 1-favored index at x. Assume y ∈ V m√
d
[x]. Then,

B√d/2(y) ⊂ V m√
d/2

[x]. Therefore

An1 (y) ⊂ A1(y) ⊂ B√d/2(y) ⊂ V m√
d/2

[x]

and the claim follows.
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Lemma 8.4. For every h > 0, all x, y ∈ hZd with |x− y| >
√
dh and all s ∈ Ah(x), t ∈

Ah(y), the following holds:

1

2
√
d
|x− y| < |s− t| < 2

√
d|x− y|.

Proof. This is about comparing the Euclidean norm to the maximum norm | · |∞ on Rd.
Note that for any vector v ∈ Rd we have

|v|∞ ≤ |v| ≤
√
d|v|∞. (8.4)

Let h = 1 and x, y ∈ Zd with |x− y| >
√
d. Since the maximum norm takes only integer

values on lattice points and |x− y| >
√
d, it follows that |x− y|∞ ≥ 2. As a consequence

of the triangle inequality, we have for s ∈ A1(x) and t ∈ A1(y)

1

2
|x− y|∞ ≤ |x− y|∞ − 1 < |s− t|∞ < |x− y|∞ + 1 ≤ 2|x− y|∞.

Using (8.4), we conclude:

|s− t| ≤
√
d|s− t|∞ < 2

√
d|x− y|∞ ≤ 2

√
d|x− y|,

|x− y| ≤
√
d|x− y|∞ < 2

√
d|s− t|∞ ≤ 2

√
d|s− t|.

The general case for arbitrary h > 0 follows by a scaling argument.

Lemma 8.5. Let r > 0 and let V be a cone of apex angle ϑ > 0. There is an apex angle
θ > 0, depending only on d, ϑ and r, such that for some cone V (θ) of angle θ we have(

V (θ) ∩ Zd
)
⊂
(
Vr ∩ Zd

)
.

Proof. Let V be any cone of apex angle ϑ and Ṽ be the cone that has the same axis as V
but the apex angle is ϑ/2. We start with the following observation: There exists a radius
R > 0, depending only on ϑ and r, such that Ṽ ∩ (Rd \BR) ⊂ V . Indeed, one can choose
R = r

sin(ϑ/2) . The ball BR contains only finitely many lattice points. Let us now consider
all these lattice points in BR as vectors and refer to them as BR-vectors. We choose an
apex angel ε > 0 such that 2ε is smaller than every angle between two arbitrary BR-vectors.
If now V (ε) is a cone with apex angel such that V (ε)∩BR contains a lattice point z, then
every other lattice point in V (ε) ∩BR lies on the line through z and the origin. Thus, if
we consider any cone with apex angle ε/3, then the intersection with this cone and BR
cannot contain a lattice point. Setting θ = min(ϑ, ε/3) we obtain the claim of the lemma.
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BR

The cone V

The cone Ṽ

V (θ)

Figure 8.1.: Construction of Vθ

Remark. The above lemma in particular yields the following: For every m ∈ {1, ..., L}
there exists an axis v(m) ∈ Rd so that(

V (v(m), θ) ∩ Zd
)
⊂
(
V m
r ∩ Zd

)
,

where θ is as above. In this way we use the lemma in the upcoming proposition.

We are now in a position to prove (8.3) for ωkh. We start by considering the case h = 1.
A technicality is that we need to modify the configuration Γ, which also leads to a possibly
smaller infimum ϑ′ of all apex angles of the cones in the new configuration. However, this
new constant ϑ′ depends only on ϑ.

Proposition 8.6. Let k : Rd×Rd → [0,∞] be a symmetric and measurable function satis-
fying (8.1) for a ϑ-admissible configuration Γ. Then there are constants C = C(d, ϑ) > 0
and ϑ′ ∈ (0, π2 ] and a ϑ′-bounded configuration Γ′ such that for all x, y ∈ Z

d with
|x− y| >

√
d it holds

ωk1 (x, y) ≥ CΛ
(
1V Γ′ [x](y) + 1V Γ′ [y](x)

)
|x− y|−d−α.
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The angle ϑ′ does only depend on the infimum ϑ of the apex angles of all cones in Γ.
There is no further dependence on Γ.

Proof. Note that

ωk1 (x, y) ≥ Λ

ˆ
A1(x)

ˆ
A1(y)

[
1V Γ(s)(t) + 1V Γ(t)(s)

]
|t− s|−d−α ds dt.

Therefore, we just need to concentrate on the integral. Let m be a 1-favored index at x
and n be a 1-favored index at y. Then, using Lemma 6.13, Lemma 8.3, Lemma 8.5, and
Lemma 8.4, we estimate

ˆ
A1(x)

ˆ
A1(y)

[
1V Γ[s](t) + 1V Γ[t](s)

]
|t− s|−d−α ds dt

≥
ˆ
Am1 (x)

ˆ
An1 (y)

[
1Vm[s](t) + 1V n[t](s)

]
|t− s|−d−α ds dt

≥
ˆ
Am1 (x)

ˆ
An1 (y)

[
1Vm√

d/2
[x](t) + 1V n√

d/2
[y](s)

]
|t− s|−d−α ds dt

≥ 1

(2
√
d)d+α

|Am1 (x)×An1 (y)|
[
1Vm√

d
[x](y) + 1V n√

d
[y](x)

]
|x− y|−d−α

≥ 1

(2
√
d)d+α

|Am1 (x)×An1 (y)|
[
1V (v(m),θ)[x](y) + 1V (v(n),θ)[y](x)

]
|x− y|−d−α.

Here θ is the constant from Lemma 8.5, which does only depend on ϑ and the dimension
d. Now the claim follows with C = 1

(2
√
d)d+2·L2

≤ 1
(2
√
d)d+α

|Am1 (x)×An1 (y)| and some
appropriate choice of Γ′. We can choose ϑ′ = θ.

Corollary 8.7. Let k : Rd × Rd → [0,∞] be a symmetric and measurable function
satisfying (8.1) for a ϑ-admissible configuration Γ. Then there are ϑ′ > 0 and C > 0 so
that for each h > 0 there is a configuration Γh on Rd with the following properties:

(i) The infimum of the apex angles of all cones in Γh(Rd) equals ϑ′.

(ii) For all x, y ∈ hZd with |x− y| >
√
dh, the inequality

ωkh(x, y) ≥ C
(
1
V Γh [x]

(y) + 1
V Γh [y]

(x)
)
|x− y|−d−α (8.5)

holds.

Proof. For h > 0 define a new configuration Γh on Rd by Γh(x) = Γ(hx). Note that the
infimum of the apex angles of all cones in Γh(Rd) is the same as the infimum of the apex
angles of all cones in Γ(Rd). It does not depend on h. Note also that (M) holds true for
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8.2. The discrete version of the kernel

Γ if and only if (M) holds true for Γh. Therefore, Γh is a ϑ-admissible configuration.
Define kh : Rd ×Rd → [0,∞] via kh(x, y) = k(hx, hy)hd+α. Since k satisfies (8.1), we
also have for almost all x, y ∈ Rd the inequality

k(hx, hy)hd+α ≥ Λ
(
1V Γ[hx](hy) + 1V Γ[hy](hx)

)
|x− y|−d−α. (8.6)

Fix some h > 0. We note that for all x, y ∈ Rd the statement hy ∈ V Γ[hx] is equivalent
to y ∈ V Γh [x]. Indeed,

hy ∈ V Γ[hx]⇔ h(y − x) ∈ Γ(hx)⇔ y − x ∈ Γ(hx)⇔ y ∈ V Γh [x].

This together with (8.6) shows that (8.1) is satisfied if we plug in k = kh and Γ = Γh.
Therefore, we can apply Proposition 8.6 to Γ = Γh and k = kh. We obtain a configuration
(Γh)′ with a positive infimum of the apex angles of all cones ϑ′ and some constant C > 0
such that for all x, y ∈ Zd with |x− y| >

√
d, we have

ωkh1 (x, y) ≥ CΛ
(
1
V (Γh)′ [x]

(y) + 1
V (Γh)′ [y]

(x)
)
|x− y|−d−α. (8.7)

Note that ϑ′ does only depend on the infimum of the apex angles of all cones in Γ.
We define a new configuration (Γh)′h−1 via (Γh)′h−1(x) = (Γh)′(h−1x). The infimum of
the apex angles of all cones in this new configuration is obviously still ϑ′. Since for all
x, y ∈ Zd

y ∈ V (Γh)′ [x] ⇔ hy ∈ V (Γh)′
h−1 [hx] ,

inequality (8.7) is equivalent to

ωkh1 (x, y) ≥ CΛ

(
1
V

(Γh)′
h−1 [hx]

(hy) + 1
V

(Γh)′
h−1 [hy]

(hx)

)
|x− y|−d−α (8.8)

for all x, y ∈ Zd with |x− y| >
√
d.

Now let x, y ∈ hZd with |x− y| >
√
dh. Then h−1x, h−1y ∈ Zd with |h−1x−h−1y| >

√
d.

With use of (8.8) and a change of variables we obtain

CΛ

(
1
V

(Γh)′
h−1 [x]

(y) + 1
V

(Γh)′
h−1 [y]

(x)

)
|x− y|−d−α

= CΛ

(
1
V

(Γh)′
h−1 [h(h−1x)]

(h(h−1y))

+1
V

(Γh)′
h−1 [h(h−1y)]

(h(h−1x))

)
|h−1x− h−1y|−d−αh−d−α

≤ ωkh1 (h−1x, h−1y)h−d−α

= ωkh(x, y).

Now one may rename the constant CΛ to C. The claim follows with Γh = (Γh)′h−1 .
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8. The coercivity result

8.3. The limiting argument and the proof of the main result

Lemma 8.8. Let B ⊂ Rd be a ball. Let α ∈ (0, 2) and Γ be a ϑ-admissible configuration.
Let k : Rd ×Rd → [0,∞] be a measurable function satisfying k(x, y) = k(y, x) and (8.1).
Then Hk(B) ⊂ H

α
2 (B). Furthermore,

‖f‖Ḣk(B) ≥ c‖f‖
Ḣ
α
2 (B)

for f ∈ Hk(B),

where c > 0 is a constant which is independent of the ball B. In the case 0 < α0 ≤ α < 2
the constant may be chosen to depend on α0 but not on α.

Proof. Let R > 0, x0 ∈ Rd and κ as in Corollary 8.2. Troughout the proof we use the
notation B = BR(x0) and B∗ = BκR(x0). Let f ∈ Hk(B∗). For h ∈ (0, 1) we consider the
following piecewise constant approximation of f . We define for x ∈ hZd ∩B∗ a function
fh via

fh(x) = h−d
ˆ
Ah(x)∩B∗

f(s) ds .

Because of Corollary 8.7, there is a constant C > 0 and a configuration Γh with ϑ′ > 0
such that for all x, y ∈ hZd with |x− y| >

√
dh the inequality

ωkh(x, y) ≥ C
(
1V Γh [x](y) + 1V Γh [y](x)

)
|x− y|−d−α

holds. Thus, ω = ωkh together with Γ = Γh fulfill (8.3) for R0 =
√
d and Λ = C.

Corollary 8.2 implies the existence of c > 0, independent of f,R, α and h, so that∑
x,y∈B∗∩hZd
|x−y|>

√
dh

(fh(x)− fh(y))2ω(x, y) ≥ c
∑

x,y∈B∩hZd
|x−y|>

√
dh

(fh(x)− fh(y))2|x− y|−d−α.

Using Lemma 8.4 we obtain∑
x,y∈B∗∩hZd
|x−y|>

√
dh

(fh(x)− fh(y))2

ˆ
Ah(x)

ˆ
Ah(y)

k(s, t) dsdt

≥ c
∑

x,y∈B∩hZd
|x−y|>

√
dh

(fh(x)− fh(y))2

ˆ
Ah(x)

ˆ
Ah(y)

|s− t|−d−α ds dt, (8.9)

for a constant c > 0 that differs from the one above by a factor only depending on the
dimension d.

For technical reasons we need the property that every x ∈ Rd is contained in some cube.
Therefore, we consider half-closed cubes. Given x = (x1, ..., xd) ∈ Rd and h ∈ (0, 1), we
recall the notation

Ãh(x) =

d∏
i=1

[
xi −

h

2
, xi +

h

2

)
.
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8.3. The limiting argument and the proof of the main result

For h ∈ (0, 1), we define a function gh : Rd ×Rd → R via

gh(s, t) =
∑

x,y∈hZd

[
(fh(x)− fh(y))2k(s, t)1

Ãh(x)×Ãh(y)
(s, t)1{x,y∈B∗|

√
dh<|x−y|}(x, y)

]

and claim that gh converges for h→ 0 almost everywhere to the function g : Rd×Rd → R

with
g(s, t) = (f(s)− f(t))2k(s, t)1B∗×B∗(s, t).

Indeed, gh(s, t) = (fh(xh)− fh(yh))2k(s, t) for appropriate points xh and yh, whenever
s 6= t and h is sufficiently small. We conclude with the help of Lemma A.3, gh(s, t)→ g(s, t)
for almost every (s, t) ∈ B∗ × B∗. In the same way we can show that the function
g̃h : Rd ×Rd → R with

g̃h(s, t) =
∑

x,y∈hZd

[
(fh(x)− fh(y))2|s− t|−d−α 1

Ãh(x)×Ãh(y)
(s, t)

× 1{x,y∈B|√dh<|x−y|}(x, y)
]

converges for h→ 0 pointwise a.e. to

g̃ : Rd ×Rd → R,

g̃(s, t) = (f(s)− f(t))2|s− t|−d−α1B×B(s, t).

For the left-hand side in (8.9) this implies with the help of the Dominated Convergence
Theorem, see Theorem 2.5,∑

x,y∈B∗∩hZd
|x−y|>

√
dh

(fh(x)− fh(y))2

ˆ
Ãh(x)

ˆ
Ãh(y)

k(s, t) ds dt

=

ˆ
Rd

ˆ
Rd

gh(s, t) ds dt
h→0−→

ˆ
Rd

ˆ
Rd

g(s, t) ds dt

Note that gh is dominated by the integrable function g + 1B∗×B∗ ∈ Hk(B∗) for sufficient
small h.

With regard to the right-hand side of (8.9), note that the Lemma of Fatou (see Theorem 2.4)
implies

lim inf
h→0

∑
x,y∈B∩hZd
|x−y|>

√
dh

(fh(x)− fh(y))2

ˆ
Ãh(x)

ˆ
Ãh(y)

|s− t|−d−α ds dt

= lim inf
h→0

ˆ
Rd

ˆ
Rd

g̃h(s, t) ds dt ≥
ˆ
Rd

ˆ
Rd

g̃(s, t) ds dt.
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8. The coercivity result

In conclusion, we have shown that the discrete inequality (8.9) yields the continuous
version

‖f‖Ḣk(B∗) ≥ c‖f‖
Ḣ
α
2 (B)

for all f ∈ Hk(B∗).

This is true for every ball B since c is independent of B. Using Lemma A.2, we conclude
for each ball B ⊂ Rd and each f ∈ Hk(B)

‖f‖Ḣk(B) ≥ c∗‖f‖
Ḣ
α
2 (B)

for some c∗ > 0, independent of the ball B. This proves the claim of the lemma.

Proof of Theorem 8.1. The inequality (8.2) is obviously true if the left-hand side is
infinite. Hence, we can restrict ourselves to functions f ∈ Hk(B). The above Lemma 8.8
yields the existence of c > 0 such that ‖ · ‖Ḣk(B) ≥ c‖ · ‖Ḣ α

2 (B)
on Hk(B), which implies

(8.2). The proof is complete.

86



9. Applications of the main result

In this chapter we provide statements that are based on our main result Theorem 8.1
respectively on Lemma 8.8.

Function Spaces

Theorem 9.1. Let k be a kernel as in Theorem 8.1. Then Hk(Rd) ⊂ H
α
2 (Rd).

In addition, let k satisfy

k(x, y) ≤ C|x− y|−d−α for almost all x, y ∈ Rd, x 6= y and C ≥ 1. (9.1)

Let Ω ⊂ Rd be a bounded Lipschitz domain. Then the spaces Hk(Ω) and H
α
2 (Ω) coincide.

The seminorms ‖·‖Ḣk(Ω) and ‖·‖Ḣ α
2 (Ω)

as well as the corresponding norms are comparable

on Hk(Ω). The subspace C∞(Ω) is dense in Hk(Ω).

Moreover, Hk(Rd) = H
α
2 (Rd). The seminorms ‖ · ‖Ḣk(Rd) and ‖ · ‖

Ḣ
α
2 (Rd)

as well as

the corresponding norms are comparable on Hk(Rd). The subspace C∞c (Rd) of smooth
functions with compact support in Rd is dense in Hk(Rd).

Proof of Theorem 9.1. The constant c in Lemma 8.8 is independent of the radius R of
the respective ball. Thus the result for the whole space is obtained in the limit R→∞
using the Monotone Convergence Theorem, compare Theorem 2.3.

Now let Ω be a bounded Lipschitz domain. In view of Lemma 8.8 and Lemma A.2 we
conclude

‖ · ‖Ḣk(Ω) ≥ c‖ · ‖
Ḣ
α
2 (Ω)

on Hk(Ω)

for a constant c > 0, which leads to Hk(Ω) ⊂ H
α
2 (Ω). Since the inclusion H

α
2 (Ω) ⊂ Hk(Ω)

is obvious by the properties of k, one obtains Hk(Ω) = H
α
2 (Ω). For the assertions con-

cerning density of smooth functions, we note that C∞(Ω) is a dense subset of H
α
2 (Ω),

see Proposition 2.23. Furthermore, C∞c (Rd) is a dense subset of H
α
2 (Rd), see Proposi-

tion 2.22.
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9. Applications of the main result

Stochastic Processes

Corollary 9.2. Let k be as in Theorem 8.1 and, additionally, let k satisfy the pointwise
upper bound (9.1). The Dirichlet form (Ek,D(Ek)) on L2(Rd) with D(Ek) = H

α
2 (Rd) and

Ek(f, g) =

ˆ
Rd

ˆ
Rd

(f(y)− f(x)) (g(y)− g(x)) k(x, y) dx dy ,

is a regular Dirichlet form on L2(Rd). There exists a corresponding Hunt process.

Proof. It is obvious that Ek satisfies the first two conditions in Definition 5.1. The inner
product Ek1 (·, ·) induces the norm ‖ · ‖Hk(Rd), which is comparable to ‖ · ‖

H
α
2 (Rd)

by

Theorem 9.1. As mentioned in Section 2.2, the space
(
H

α
2 (Rd), ‖ · ‖

H
α
2 (Rd)

)
is a Hilbert

space. Together this shows that the third condition in Definition 5.1 is true. An easy
case analysis shows that condition 4 in Definition 5.1 holds true.

Since the norm induced by Ek1 is comparable to ‖ · ‖
H
α
2 (Rd)

, we conclude from Proposi-

tion 2.22 that C∞c (Rd)
‖·‖

Hk(Rd) = (D(Ek) ∩ Cc(Rd))
‖·‖

Hk(Rd) = H
α
2 (Rd). It is well known

that C∞c (Rd) is dense in Cc(Rd) with respect to uniform convergence.

The above reasoning shows that (Ek,D(Ek)) is a regular Dirichlet form on L2(Rd). The
existence of the Hunt process follows from Theorem 5.2.

Weak Harnack inequality and regularity theory for corresponding weak
(super-)solutions

A very strong consequence of our coercivity result Theorem 8.1 is that we can apply
the regularity theory developed in [DK20] and obtain a weak Harnack inequality as well
as Hölder estimates for weak solutions, provided that we assume an upper bound of
the kernel as in (9.1). First, let us mention that the results in [DK20] are very general
and apply for a wider class of measures. Let k : Rd × Rd → [0,∞] be a kernel and
α ∈ (0, 2). Dyda and Kassmann require two assumptions to hold true in order to have a
weak Harnack inequality:

(A) Comparability of seminorms on every scale locally in the unit ball, that is,

‖v‖Ḣk(Br(x0)) � ‖v‖Ḣ α
2 (Br(x0))

for every r ∈ (0, 1), x0 ∈ B1 and each v ∈ H
α
2 (Br(x0)), where the comparability

constant is independent of v, r and x0, cf. [DK20, Assumption (A)].
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(B) The existence of cutoff functions, cf. [DK20, Assumption (B)].

For symmetric kernels that satisfy (8.1) and (9.1) we know that (A) holds true by
Theorem 8.1. In our case (B) does not impose an additional restriction because we
can always choose the standard cutoff function given on page 4 of [DK20]. Therefore,
we conclude from [DK20, Theorem 1.2] combined with a scaling argument (see also
Lemma 11.6) the following weak Harnack inequality using the notations inf respectively
sup for the essential infimum respectively essential supremum.

Theorem 9.3 (Weak Harnack inequality). Let r > 0, x0 ∈ Rd. Assume α0 > 0, α ∈
[α0, 2), and the kernel k is as in Theorem 8.1 and satisfies (9.1). Suppose f ∈ Lq(Br(x0))
for some q > d

α . Let u ∈ V k(Br(x0)|Rd), u ≥ 0 in Br(x0) and assume u satisfies
Ek(u, ψ) ≥ (f, ψ) for every nonnegative ψ ∈ Hk

Br(x0)(R
d). Then

inf
B r

4
(x0)

u ≥ c

( 
B r

2
(x0)

u(x)p0 dx

) 1
p0

− sup
x∈B 15

16 r
(x0)

ˆ
Rd

u−(z)k(x, z) dz

− r
α− d

q ‖f‖Lq(B 15
16 r

(x0))

]
, (9.2)

with constants p0 ∈ (0, 1), c > 0 depending only on d, α0,Λ and ϑ.

The aim now is to show that the weak Harnack inequality already implies the Hölder
continuity of corresponding weak solutions. In order to do that, we need a result on the
decay of the oscillation, which we state below in a rather general form. It is a version of
[DK20, Theorem 1.5] adapted to our setup. In Theorem 1.5 of Dyda’s and Kassmann’s
article the authors only treat the situation where the right-hand side of the equation f
is equal to 0. For this reason we give a full prove of the oscillation estimate including a
right-hand side f . Nevertheless, the proof is just an adaptation of [CK20, Theorem 4.1]
to our setting.

Theorem 9.4. Let α ∈ (0, 2), x0 ∈ Rd, r0 > 0. Suppose 1 < θ < λ < Θ. Assume k is a
symmetric kernel so that the weak Harnack inequality holds true in Br(x0) with constants
θ, λ,Θ, that is, there are constants p ∈ (0, 1), cH > 0 such that the following holds: If
0 < r ≤ r0, f ∈ Lq(Br(x0)) for q > d

α , and u ∈ V
k(Br(x0)|Rd) satisfies u ≥ 0 in Br(x0)

as well as Ek(u, ψ) = (f, ψ) for every ψ ∈ Hk
Br(x0)(R

d), then

( 
B r
λ

(x0)
up(x) dx

) 1
p

≤ cH

 inf
B r

Θ
(x0)

u+ rα sup
x∈B r

θ
(x0)

ˆ
Rd

u−(z) k(x, z) dz


+ cHr

α− d
q ‖f‖

Lq
(
B r
θ

)
(x0)

. (9.3)

Then there exists β ∈ (0, 1) such that for 0 < r ≤ r0, u ∈ V k(Br(x0)|Rd) satisfying
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9. Applications of the main result

Ek(u, ψ) = (f, ψ) for every ψ ∈ Hk
Br(x0)(R

d), it holds

osc
Bρ(x0)

u ≤ 2Θβ‖u‖L∞
(ρ
r

)β
+ c

(ρ
r

)β
r
α− d

q ‖f‖
Lq
(
B r
θ

(x0)
) (0 < ρ ≤ r),

where oscB u = supB u− infB u for B ⊂ Rd.

Proof. We follow the lines of the proof of [CK20, Theorem 4.1], which is a modification of
the proof of [DK20, Theorem 1.5]. In the following we may and do assume x0 = 0. We
abbreviate our notation by Br = Br(0) for r > 0 and F = ‖f‖Lq(B r

θ
). We remark that

we may assume ‖u‖L∞ <∞, because otherwise the assertion is obviously true. Let cH
and p be the constants from the weak Harnack inequality (9.3). We set κ = (2cH2

1
p )−1

and choose β ≤ − ln(1− 2
κ)

ln(Θ) , which implies

1− κ

2
≤ Θ−β. (9.4)

The last inequality will be important in the remainder.

Suppose 0 < r ≤ r0 and u ∈ V k(Br|Rd) satisfies u ≥ 0 in Br and Ek(u, ψ) = (f, ψ) for
every ψ ∈ Hk

Br
(Rd). Set

ũ =
u

‖u‖L∞ + 2
κr

α− d
qF

.

Furthermore, we set

M0 = ‖ũ‖L∞ , m0 = inf
x∈Rd

ũ, M−n = M0 and m−n = m0.

Claim (♥): There is an increasing sequence (mn) and a decreasing sequence (Mn) such
that for all n ∈ Z{

mn ≤ ũ ≤Mn almost everywhere on BrΘ−n ,
Mn −mn ≤ 2Θ−nβ.

(9.5)

Let us first show that (9.5) implies the claim of the theorem. Let 0 < ρ ≤ r. We can
find j ∈ N0 such that rΘ−j−1 ≤ ρ ≤ rΘ−j , which implies Θ−j ≤ ρΘ/r. With (9.5) we
estimate

osc
Bρ

ũ ≤ osc
B
rΘ−j

ũ ≤Mj −mj ≤ 2Θ−βj ≤ 2Θβ
(ρ
r

)β
.

After plugging in the definition of ũ, we obtain the desired decay of oscillation.

It remains to prove Claim (♥). The idea is to use the method of complete induction.
Assume there exists i ∈ N and there are Mn,mn such that (9.5) hols true for n ≤ i− 1.
Then we need to choose Mk and mk in a way so that (9.5) is satisfied for n = i.
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For z ∈ Rd set

v(z) =

(
ũ(z)− Mi−1 +mi−1

2

)
Θβ(i−1).

Then |v(z)| ≤ 1 for almost every z ∈ BrΘ−(i−1) . The definition of v implies also that

Ek(v, ψ) = (f̃ , ψ)

for every ψ ∈ Hk
B
rΘ−(i−1)

(Rd), where

f̃(x) =
Θ(i−1)β

‖u‖L∞ + 2
κr

α− d
qF

f(x), x ∈ BrΘ−(i−1) . (9.6)

Our aim is to show that (9.3) implies either v ≤ 1− κ or v ≥ κ− 1 on BrΘ−i . This will
enable us to choose mi and Mi.

Given z ∈ Rd \BrΘ−(i−1) , there is j ∈ N such that z ∈ BrΘ−(i−j−1) \BrΘ−(i−j) . For such
j and z we conclude, using the induction hypothesis and the properties of the sequences,

v(z) ≤
(
Mi−j−1 −mi−j−1 +mi−j−1 −

Mi−1 +mi−1

2

)
Θβ(i−1)

≤
(
Mi−j−1 −mi−j−1 +

mi−1 −Mi−1

2

)
Θβ(i−1)

≤ (Mi−j−1 −mi−j−1) Θβ(i−1) − v(z)

≤ 2Θβj − v(z).

This implies

v(z) ≤ Θjβ ≤ Θjβ − 1 + Θjβ ≤ 2Θjβ − 1. (9.7)

In the same way we get v(z) ≥ 1− 2Θβj .

We distinguish two cases:

Case 1: |{x ∈ BrΘ−(i−1)/λ | v(x) ≤ 0}| ≥ 1
2 |BrΘ−(i−1)/λ|

In this case we show

v(z) ≤ 1− κ for almost every z ∈ BrΘ−i . (9.8)

This is sufficient for (9.5) to hold true. Indeed, recalling (9.4),

ũ(z) = Θ−(i−1)βv(z) +
Mi−1 +mi−1

2

≤ Θ−(i−1)β(1− κ) +
Mi−1 −mi−1

2
+mi−1

≤ mi−1 +
(

1− κ

2

)
2Θ−(i−1)β
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9. Applications of the main result

≤ mi−1 + 2Θ−iβ.

Choosing mi = mi−1 and Mi = mi−1 + 2Θ−iβ, we obtain, by the induction hypothesis,
u(z) ≥ mi−1 = mi and, by the above calculation, u(z) ≤Mi.

It remains to prove (9.8). Let w = 1 − v ∈ V k(Br|Rd). Then w satisfies w ≥ 0 in
BrΘ−(i−1) as well as Ek(w,ψ) = (−f̃ , ψ) for every ψ ∈ Hk

B
rΘ−(i−1)

(Rd). We may apply the

weak Harnack inequality to w for the radius r1 = rΘ−(i−1). This gives us 
B r1
λ

wp(x) dx

 ≤ cH
 inf
B r1

Θ

w + rα1 sup
x∈B r1

θ

ˆ
Rd

w−(x)k(x, z) dz

+ cHr
α− d

q

1 ‖f̃‖
Lq
(
B r1
θ

).
The left-hand side can be estimated using the assumption of Case 1 in the following way 

B r1
λ

wp(x)

 1
p

≥
( |{x ∈ Br1/λ | v(x) ≤ 0}|

|Br1/λ|

) 1
p

≥ 2
− 1
p . (9.9)

If we choose β ≤ α− d
q , then

r
α− d

q

1 ‖f̃‖
Lq
(
B r1
θ

) ≤ ‖f‖Lq(B r1
θ

)Θ(i−1)(β−α+ d
q

)

2
κF

≤ κ

2
. (9.10)

Let us also take a closer look at the tail term. We deduce with the help of (9.7) and

|z|
|x− z|

≤ 1 +
rΘ−i+1/θ

rΘ−i+j − rΘ−i+1/θ
≤ 1 +

1

Θj−1(θ − 1)
≤ 1 +

1

θ − 1
= c(θ)

for every x ∈ BrΘ−(i−1)/θ and z ∈ Rd \BrΘ−i+j the estimate

ˆ
Rd\B

rΘ−(i−1)

w−(z)k(x, z) dz =
∞∑
j=1

ˆ
B
rΘ−(i−j−1)\B

rΘ−(i−j)

(1− v(z))−k(x, z) dz

≤
∞∑
j=1

(2Θjβ − 2)

ˆ
Rd\B

rΘ−(i−j)

k(x, z) dz

≤
∞∑
j=1

(Θjβ − 1)c(θ, d, α)

ˆ
Rd\B

rΘ−(i−j)

|z|−d−α dz

≤
∞∑
j=1

(Θjβ − 1)c(θ, d, α)(rΘ−i+j)−α
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for every x ∈ BrΘ−(i−1)/θ, where the constant c(θ, d, α) may differ from line to line. Thus,
for every ` ∈ N

(rΘ−i+1)α
ˆ
Rd

w−(z)k(x, z) dz ≤ c
∑̀
j=1

(Θjβ − 1)(Θ−j+1)α + 2c

∞∑
j=`+1

Θjβ(Θ−j+1)α

= I1 + I2,

where the constant c > 0 depends only on θ, d and α. First, we assume β < α
2 . Second,

we choose ` sufficiently large so that I2 ≤ κ
4 . Third, we decrease β in such a way that

I1 ≤ κ
4 . The constant β may be chosen to depend only on ϑ,Θ, α and d. This shows

sup
x∈B

rΘ−(i−1)

(rΘ−i+1)α
ˆ
Rd

w−(z)k(x, z) dz ≤ κ

2
(9.11)

for arbitrary i. If we combine (9.9), (9.10) and (9.11), then we obtain from the weak
Harnack inequality for w on B r1

Θ
the estimate

2
− 1
p ≤ cH

(
inf
B r1

Θ

w + κ

)
≤ cHw + cHκ,

which implies, recalling the definition of κ, 1− v = w ≥ κ on B r1
Θ

= BrΘ−i . The proof of
(9.8) is finished.

Case 2: |{x ∈ BrΘ−(i−1)/λ | v(x) > 0}| ≥ 1
2 |BrΘ−(i−1)/λ|

In this case one can show that

v(z) ≥ κ− 1 for almost every z ∈ BrΘ−i. (9.12)

The proof of the above inequality is similar to the proof of (9.8) in Case 1. Here one has
to use the auxiliary function w = 1 + v. We omit the details.

It remains to show that (9.12) implies Claim (♥). For almost every z ∈ BrΘ−i we deduce

ũ(z) =
v(z)

Θ(i−1)β
+
Mi−1 +mi−1

2

≥ κ− 1

Θ(i−1)β
+Mi−1 −

Mi−1 −mi−1

2

≥Mi−1 − 2Θ−iβ.

We choose Mi = Mi−1 and mi = Mi−1 − 2Θ−iβ . Then, by the induction hypothesis and
the previous calculation for almost every z ∈ BrΘ−i , we find

mi ≤ ũ(z) ≤Mi.

The proof is finished.
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9. Applications of the main result

Remark. Without studying the proof carefully one may wonder why the above theorem
is formulated for solutions u instead of supersolutions as in the previous weak Harnack
inequality. The reason is the case analysis in the proof. In Case 1 one needs to consider
the function w = 1− v and if v was only a supersolution, then w would be a subsolution.

From Theorem 9.4 we can now deduce our Hölder regularity result. The proof uses a
standard covering argument as it was also used in the proof of [DK20, Corollary 5.2].

Theorem 9.5. Let k be a kernel as in Theorem 8.1 and assume k satisfies (9.1). Let
Br = Br(x0) be a ball in Rd. Suppose f ∈ Lq(Br) for some q > d

α . Assume u ∈ V k(Br|Rd)
fulfills

Ek(u, ψ) = (f, ψ) for every ψ ∈ Hk
Br(R

d).

Then there are constants c ≥ 1 and β ∈ (0, 1), independent of u, such that for almost all
x, y ∈ Bδr, δ ∈ (0, 1), it holds

|u(x)− u(y)| ≤ c
(
|x− y|
r − δr

)β (
‖u‖L∞ + r

α− d
q ‖f‖

Lq
(
B 15

16 r

)) .
Proof. In the proof we abbreviate our notation of balls by writing Br = Br(x0). Let
x, y ∈ Bδr. If |x − y| ≥ (r − δr)/4, then the claim of the lemma is obviously true. Let
us therefore consider the case |x − y| < (r − δr)/4. The idea now is to use a covering
argument. There exists a number ρ ∈ (0, (r − δr)/8) such that ρ ≤ |x− y| ≤ 2ρ. Then
r − δr > 4|x− y| ≥ 4ρ, which implies y ∈ Br−4ρ. We cover Br−4ρ ⊂ Bδr by a countable
family (Bn) of balls with radius ρ. Each Bn may be chosen as a subset of Br−(7/2)ρ. Denote
by 3Bn the ball with the same center as Bn but of radius 3ρ. Then Bn ⊂ 3Bn ⊂ Br−ρ.

We conclude from Theorem 9.3 in combination with Theorem 9.4 that there is β ∈ (0, 1)
and c ≥ 1 so that

osc
3Bn

u ≤ c
(

3ρ

r − ρ

)β (
‖u‖L∞ + r

α− d
q ‖f‖

Lq
(
B 15

16 r

))
≤ c(r − δr)−β|x− y|β

(
‖u‖L∞ + r

α− d
q ‖f‖

Lq
(
B 15

16 r

)) .
We observe that x, y ∈ 3Bn for some n ∈ N. Therefore, |u(x)− u(y)| ≤ osc3Bn u. Hence,
the claim of the theorem is proved.
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Part III.

Local boundedness from above
and elliptic Harnack inequalities





Detailed outline of Part III

This part deals with weak solutions u of the equation

− lim
ε→0

ˆ
Rd\Bε(x)

(u(y)− u(x))k(x, y) dy = f(x), x ∈ B1.

Here k is a given symmetric kernel. We propose additional assumptions on k (a coercivity
estimate, an upper bound and a specific mean value integral bound, compare Section 11.2)
that allow to prove a local boundedness result of corresponding weak solutions. In order
to do that, we modify techniques from [DKP14] and [DKP16], which enable us to bound
nonlocal tail terms by local quantities.

The purpose of Chapter 10 is to make the reader familiar with the technique of the De
Giorgi iteration. Here we consider local elliptic operators in divergence form and prove
local boundedness. The following Chapter 11 contains the main part. Here we prove the
tail estimate and the local boundedness of weak solutions of the above equation. Applying
a result from [DK20] we conclude that weak solutions enjoy a Harnack inequality. In
Chapter 12 we discuss examples of kernels that satisfy our assumptions. Here we also
provide kernels that are used in Part II of this thesis.

Appendix B pertains to this part of the thesis. This chapter deals with a connection of
our result to a condition of Bogdan and Sztonyk given in [BS05]. In the latter article they
derive an equivalent statement to the elliptic Harnack inequality for nonlocal operators
of (1.1) where the measure k(x, y) dy is replaced by a homogeneous Lévy measure. We
consider translation invariant and homogeneous kernels and show directly, under additional
assumptions, that our Condition (C) implies the so called relative Kato condition, see
Section B.2. Moreover, we prove that the combination of all our assumptions is only a
sufficient condition for the elliptic Harnack inequality in the case d = 3, see Section B.3.

Comment on notation used in this part

Let us recall some of the notation we need in this part. For an overview we refer to the
section on notation at the end of Chapter 1. By Br(x) we denote the ball with center
x ∈ Rd and radius r > 0 with respect to the norm | · |. If nothing else is said, Br = Br(0).
If u is a function, then we denote by u− its negative part defined as u−(x) = −min(0, u(x))
and by u+ its positive part u+(x) = max(0, u(x)). Whenever we use the abbreviations
sup and inf, we mean the essential supremum and the essential infimum.

We use several letters (Roman or Greek characters, in upper or lower cases) to denote
constants. Sometimes we write the quantities, on which constants depend, in round
brackets. We often use the letter c to denote a general positive constant. We especially
point out that the value of c may change between different lines of the proof of the same
statement.
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10. A local prelude: Local boundedness
for solutions of local elliptic PDEs

In this chapter we study solutions of local elliptic PDEs in divergence form and obtain
a local boundedness result of corresponding solutions, where the bound depends on the
Lp-norm of the solution and the right-hand side of the equation. This chapter serves as
a motivation to the local boundedness result for solutions of nonlocal PDEs, which will
be established in the next chapter. Moreover, it satisfies didactic purposes as we want
to make the reader familiar with the technique of the so-called De Giorgi type iteration.
This iteration method is also used in the nonlocal setting, however, because of nonlocal
terms, the proofs are more technical. We emphasize that the results in this section are
well known.

The De Giorgi iteration technique is part of the so-called De Giorgi-Nash-Moser techniques.
As mentioned in the introduction of this thesis, these techniques were originally introduced
in [De 57; Nas58; Mos60] to study regularity of solutions of elliptic equations with rough
coefficients. For further reading on this subject, we refer the reader to the overview
[Vas16]. Here the De Giorgi iteration is contained in the proof of [Vas16, Lemma 5] and
the local boundedness result is stated in [Vas16, Corollary 6].

Our local boundedness result is a bit more technical than [Vas16, Corollary 6]. We include
a parameter δ ∈ (0, 1], which allows interpolation between the Lp norm of u and the
Lq norm of f . In the local case this parameter is only a technicality, which is not very
momentous. However, when passing to the case of nonlocal operators, this interpolation
parameter is crucial since it allows to interpolate between local and nonlocal terms. That
is why we also include it in the local case.

The results of this chapter are based on the monograph [HL11, Chapter 4].

Toolbox

Since we do not want to disturb the flow of reading, we first collect some auxiliary results,
which will be important in the remainder.

The following iteration lemma can be traced back to [GG82, Lemma 1.1]

Lemma 10.1. Let 0 ≤ T0 ≤ T1 and f : [T0, T1]→ R be a nonnegative bounded function.
Assume there are nonnegative constants A,B, ν, θ with θ < 1 such that for T0 ≤ t < s ≤ T1
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10. A local prelude: Local boundedness for solutions of local elliptic PDEs

one has

f(t) ≤ A

(s− t)ν
+B + θf(s).

Then there exists a constant c, depending only on ν and θ such that for every ρ,R with
T0 ≤ ρ < R ≤ T1 it holds

f(ρ) ≤ c A

(R− ρ)ν
+ cB. (10.1)

Proof. Let θ
1
ν < ε < 1. Consider the sequence {τi}i∈N0 given inductively by

τ0 = ρ, τi+1 − τi = (1− ε)εi(R− ρ).

By induction we see that for every n ∈ N0 it holds

f(τ0) ≤ θnf(τn) +

(
A

(R− ρ)ν
+B

)
(1− ε)−ν

n−1∑
k=0

(
θ

εν

)k
.

Taking the limit n→∞ we recover (10.1) with c = εν

(εν−θ)(1−ε)ν .

Lemma 10.2. Let ε, κ > 0, C > 1 and (Aj)j∈N0 be a sequence of nonnegative integers.
If Aj satisfies for each j ∈ N0 the inequality

Aj+1

`
≤ κCj

(
Aj

`

)1+ε

,

and ` ≥ A0κ
1
εC

1
ε2 , then Aj → 0 for j →∞.

Proof. By induction we see that for each j ∈ N0 we have

Aj

`
≤ κ−

1
εC−

1
ε2
− j
ε .

Since C > 1, we deduce

C−
j
ε → 0 for j →∞,

which implies the claim of the lemma.
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Proof of the local boundedness result

We consider an elliptic operator in divergence form and the corresponding equation on
the unit ball, that is,

−
∑

1≤i,j≤d
∂j(aij(x)∂iu(x)) = f(x), x ∈ B1, (10.2)

As explained in Section 4.1 the coefficients aij satisfy

Λ−1|ξ|2 ≤
∑
i,j

aij(x)ξiξj ≤ Λ|ξ|2, x ∈ B1, ξ ∈ Rd (10.3)

for some constant Λ ≥ 1, and (10.3) implies that 2Λ−1 ≤ aij(x) ≤ 2Λ for each pair i, j
and every x ∈ B1.

Our aim is to prove that weak subsolutions of (10.2) are locally bounded and satisfy an
(L∞-Lp)-estimate in the following sense.

Theorem 10.3. Let f ∈ Lq(B1) for q > d
2 . Assume u ∈ H1(B1), u ≥ 0, satisfies for

every nonnegative η ∈ H1
0 (B1)

ˆ
B1

∑
i,j

aij∂iu ∂jη dx ≤
ˆ
B1

fη dx. (10.4)

Let p ∈ (0, 2]. There exists a constant C > 0, independent of u, such that for every ball
Br(x0) ⊂ B1

sup
B r

4
(x0)

u ≤ C

( 
Br(x0)

|u(x)|p dx

) 1
p

+ r
2− d

q ‖f‖Lq(Br(x0)).

Remark. The constant 1
4 appearing in the radius of the ball in the left-hand side of the

inequality is arbitrary. One may choose any constant less than 1. Of course C blows up
if the constant tends to 1.

The proof of Theorem 10.3 consists of the following steps:

• Caccioppoli inequality: A reverse Poincaré inequality, which enables us to give a
priori estimates of the L2-norm of the derivatives of a weak subsolution u in terms
of the L2-norm of u.

• L2-upper-level-set inequality: An estimate of the L2-norm of a weak subsolution on
a certain upper level set by the L2-norm of the same weak subsolution on a larger
upper level set. This inequality is the starting point of our iteration procedure.
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10. A local prelude: Local boundedness for solutions of local elliptic PDEs

• (L∞-L2)-estimate: We take the L2-upper-level-set inequality and plug in sequences
for the radii and the different cutoff levels and consider the limit. Here the so called
De Giorgi iteration takes place. As a result, we obtain a local bound for weak
solutions that consists of an L2-term of u plus some norm of f .

• (L∞-Lp)-estimate: By a covering argument and a standard iteration lemma we
recover the claim of the theorem starting from the (L∞-L2)-estimate.

Lemma 10.4 (Caccioppoli inequality). Let f ∈ L2
loc(B1). Let u ∈ H1(B1) satisfy (10.4)

for each nonnegative η ∈ H1
0 (B1). Then there exists a constant c > 0, independent of u,

such that for every ball Br(x0) ⊂ B1, each ` > 0 and every φ ∈ C∞c (Br(x0))

ˆ
Br(x0)

|∇(wφ)|2 dx ≤ c

(ˆ
Br(x0)

w2|∇φ|2 dx+

ˆ
Br(x0)

fwφ2 dx

)
, (10.5)

where w(x) = (u(x)− `)+.

Proof. We abbreviate our notation by writing Br = Br(x0). Let φ ∈ C∞c (Br). We plug
η = wφ2 as a test function into the definition of a weak subsolution (10.4). This yields

ˆ
B1

∑
i,j

aij ∂iu
[
∂jwφ

2 + 2φw ∂jφ
]

dx ≤
ˆ
B1

fwφ2 dx.

Note that ∇u = ∇w almost everywhere in B1 for u ≥ ` and w = 0,∇w = 0 almost
everywhere in B1 ∩ {u ≤ `}. That is, in the above inequality we integrate over the set
B1 ∩ {u ≥ `}. Using this and the ellipticity condition (10.3) the above inequality yields

ˆ
B1

∑
i,j

aij ∂iu [∂jwφ
2 + 2φw ∂jφ] dx

≥ Λ−1

ˆ
B1

|∇w|2 φ2 dx− 4d2Λ

ˆ
B1

|∇w| |∇φ| |φ|w dx

≥ Λ−1

2

ˆ
B1

|∇w|2φ2 dx− 2d2Λε−1

ˆ
B1

w2|∇φ|2 dx,

where we applied the Young inequality with ε = Λ−1

4d2Λ
in the last line, that is,

4d2Λ (|∇w||∇φ||φ|w) ≤ 4d2Λ

(
|∇w|2φ2

2
ε+

w2|∇φ|2

2ε

)
.

Hence, we obtain
ˆ
B1

|∇w|2φ2 dx ≤ c
(ˆ

B1

w2|∇φ|2 dx+

ˆ
B1

fwφ2 dx

)
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from which the inequality
ˆ
B1

|∇(wφ)|2 dx ≤ c
(ˆ

B1

w2|∇φ|2 dx+

ˆ
B1

fwφ2 dx

)
follows. Note that the value of the constant c changes between the above two inequalities.
Recalling that supp(φ) ⊂ Br, we obtain the assertion.

Lemma 10.5 (L2-upper-level-set inequality). Let f ∈ Lq(B1) for some q > d
2 and let

u ∈ H1(B1) satisfy (10.4) for each nonnegative η ∈ H1
0 (B1). There are constants c, ε > 0,

independent of u, such that for all 0 < λ < µ ≤ 1 and all L > ` ≥
√
|B1|‖u‖L2(B1)

‖(u− L)+‖L2(Bλ) ≤ c
(

1

µ− λ
+
‖f‖Lq(B1)

L− `

)
1

(L− `)ε
‖(u− `)+‖1+ε

L2(Bµ)
.

Proof. Here we use the notation 2∗ = 2d
d−2 for d > 2 and 2∗ may be any number greater

than 2 if d = 2. In the following computations we focus on the case d > 2. The case
d = 2 can be treated analogously. Let w be as in Lemma 10.4 for ` > 0.

Recall the Sobolev inequality, see Theorem 2.18, for wφ ∈ H1
0 (B1):

(ˆ
B1

(wφ)2∗ dx

) 2
2∗

≤ c
ˆ
B1

|∇(wφ)|2 dx.

If φ ∈ C∞c (B1) and φ ≤ 1, then we deduce with the help of the Hölder inequality, the
Sobolev inequality and the Young inequality with δ > 0:

ˆ
B1

fwφ2 dx ≤
(ˆ

B1

|f |q dx

) 1
q
(ˆ

B1

|wφ|2∗ dx

) 1
2∗

|{wφ 6= 0}|1−
1

2∗−
1
q

≤ c‖f‖Lq(B1)‖∇(wφ)‖L2(B1) |{wφ 6= 0}|
1
2

+ 1
d
− 1
q

≤ δ‖∇(wφ)‖2L2(B1) + c(δ)‖f‖2Lq(B1) |{wφ 6= 0}|1+ 2
d
− 2
q . (10.6)

Let us assume

|{wφ 6= 0}| ≤ 1 (10.7)

in the following calculations. Later on, we will show that we can choose the level ` > 0
sufficiently large so that (10.7) holds true.
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10. A local prelude: Local boundedness for solutions of local elliptic PDEs

Combining (10.5) with (10.6) and using 1 + 2
d −

2
q > 1− 1

q for q > d
2 gives

ˆ
B1

|∇(wφ)|2 dx ≤ c
(ˆ

B1

w2|∇φ|2 dx+ ‖f‖2Lq(B1)|{wφ 6= 0}|1−
1
q

)
. (10.8)

We obtain by the Hölder inequality and by the Sobolev inequality
ˆ
B1

(wφ)2 dx ≤
(ˆ

B1

(wφ)2∗ dx

) 2
2∗

|{wφ 6= 0}|1−
2

2∗

≤ c
ˆ
B1

|∇(wφ)|2 dx |{wφ 6= 0}|
2
d .

Thus, we have by (10.8) with F = ‖f‖Lq(B1)ˆ
B1

(wφ)2 dx ≤ c
(ˆ

B1

w2|∇φ|2 dx |{wφ 6= 0}|
2
d + F 2|{wφ 6= 0}|1+ 2

d
− 1
q

)
.

Since |{wφ 6= 0}| ≤ 1, we conclude that there exists ε > 0 such thatˆ
B1

(wφ)2 dx ≤ c
(ˆ

B1

w2|∇φ|2 dx |{wφ 6= 0}|ε + F 2|{wφ 6= 0}|1+ε

)
. (10.9)

Now we specify the choice of the cutoff function. For fixed 0 < λ < µ ≤ 1 choose
φ ∈ C∞c (Bµ) such that φ = 1 in Bλ and 0 ≤ φ ≤ 1. Furthermore, we require |∇φ| ≤ c

µ−λ
in B1. We introduce the upper level set notation

A(`, r) = {x ∈ Br |u ≥ `},

which we will use frequently throughout the rest of this part. Note

|A(`, µ)| ≤ 1

`

ˆ
A(`,µ)

udx ≤
√
|B1|
`
‖u‖L2(B1).

Hence, we conclude that (10.7) is satisfied if ` ≥
√
|B1|‖u‖L2(B1). In particular we have

|A(`, µ)| ≤ 1 if ` ≥ `0 =
√
|B1|‖u‖L2(B1). Furthermore, we use the following properties.

If L > ` > 0, then obviously A(L, r) ⊂ A(`, r) for every 0 < r ≤ 1. Hence, we have for
each 0 < r ≤ 1 ˆ

A(L,r)
(u− L)2 dx ≤

ˆ
A(`,r)

(u− `)2 dx,

and
|A(L, r)| = |Br ∩ {u− ` ≥ L− `}| ≤

1

(L− `)2

ˆ
A(`,r)

(u− `)2 dx.

We go on from (10.9) and obtain for all 0 < λ < µ ≤ 1 and ` ≥
√
|B1|‖u‖L2(B1) the

estimate
ˆ
A(`,λ)

(u− `)2 dx ≤ c

(
|A(`, µ)|ε

(µ− λ)2

ˆ
A(`,µ)

(u− `)2 dx+ F 2|A(`, µ)|1+ε

)
. (10.10)
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Using the above mentioned properties of the upper level sets we conclude from (10.10)
for all 0 < λ < µ ≤ 1 and L > ` ≥

√
|B1|‖u‖L2(B1)

ˆ
A(L,λ)

(u− L)2 dx ≤ c

(
1

(µ− λ)2

ˆ
A(L,µ)

(u− L)2 dx+ F 2|A(L, µ)|

)
|A(L, µ)|ε

≤ c
(

1

(µ− λ)2
+

F 2

(L− `)2

)ˆ
A(`,µ)

(u− `)2 dx |A(L, µ)|ε

≤ c
(

1

(µ− λ)2
+

F 2

(L− `)2

)
1

(L− `)2ε

(ˆ
A(`,µ)

(u− `)2 dx

)1+ε

,

which implies our claim.

Theorem 10.6. (local (L∞-L2)-estimate) Suppose that u ∈ H1(B1), u ≥ 0 is a weak
subsolution of (10.2), that is, u satisfies (10.4) for every η ∈ H1

0 (B1). If f ∈ Lq(B1) for
some q > d

2 and Br(x0) ⊂ B1, then for every δ ∈ (0, 1]

sup
B r

2
(x0)

u ≤ C
[
δ−

1
ε r−

d
2 ‖u‖L2(Br(x0)) + r

2− d
q δ‖f‖Lq(Br(x0))

]
, (10.11)

where C = C(d,Λ) is a positive constant, independent of u, and ε > 0 is as in Lemma 10.5.

Proof. First, we prove the assertion for r = 1 and x0 = 0. Define for j ∈ N0

`0 =
√
|B1|‖u‖L2(B1), `j = `0 + `

(
1− 2−j

)
for some ` to be specified later,

rj =
1

2
(1 + 2−j), Aj = ‖(u− `j)+‖L2(Brj ).

We have
`j+1 − `j = 2−j−1`, rj − rj+1 =

1

2j+2
.

We use Lemma 10.5 with

L = `j+1, ` = `j , µ = rj , λ = rj+1,

and set F = ‖f‖Lq(B1) in order to get for j ∈ N0

Aj+1 ≤ c
(

2j +
2j+1F

`

)
2ε(j+1)

`
ε A1+ε

j . (10.12)

For a given δ ∈ (0, 1] we specify the choice of the constant `. We choose

` ≥ δF. (10.13)
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Then (10.12) implies for j ∈ N0

Aj+1

`
≤ c2j(2+ε)δ−1

(
Aj

`

)1+ε

≤ Cjcδ−1

(
Aj

`

)1+ε

for C = 22+ε, where we again point out that the value of c changes between the lines
of this proof. Now we are in a position to use Lemma 10.2, which tells us that we get
Aj → 0 for j →∞ if

` ≥ A0δ
− 1
ε c

1
εC

1
ε2 .

Since we need to make sure that also (10.13) is satisfied, we choose

` = δF + C̃A0δ
− 1
ε ≤ δF + δ−

1
ε C̃‖u‖L2(B1),

where C̃ = c
1
εC

1
ε2 . From Aj → 0 we conclude

sup
B 1

2

u ≤ C̃δ−
1
ε ‖u‖L2(B1) + `0 + δF ≤ Cδ−

1
ε ‖u‖L2(B1) + CδF,

for some appropriate C ≥ 1. This finishes the proof for the case r = 1 and x0 = 0.

The claim for arbitrary Br(x0) ⊂ B1 follows now from a scaling argument. Let
J : B1 → Br(x0), J(x) = rx+ x0. Define for x ∈ B1

ũ(x) = u(J(x)), ãij(x) = aij(J(x)), f̃(x) = r2f(J(x)).

Then one can easily see that ũ is a weak subsolution of

−
∑
i,j

∂j(ãij(x)∂iũ(x)) = f̃(x), x ∈ B1,

and that (10.3) holds also if we replace aij with ãij . We apply what we have just proved
and rewrite the result in terms of u and f . This leads to

sup
B r

2
(x0)

u ≤ C
[
δ−

1
ε r−

d
2 ‖u‖L2(Br(x0)) + r

2− d
q δ‖f‖Lq(Br(x0))

]
,

what we claimed.

Proof of Theorem 10.3. We apply Theorem 10.6 and choose δ = 1 in (10.11). Let
1
2 ≤ t < s ≤ 1. Observe that this implies s− t ≤ t. Then

sup
Bt r2

(x0)
u ≤ C

[(
1

tr

) d
2

‖u‖L2(Btr(x0)) + (tr)
2− d

q ‖f‖Lq(Btr(x0))

]
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≤ C

[(
2s

tr

) d
2

‖u‖L2(Bsr(x0)) + r
2− d

q ‖f‖Lq(Br(x0))

]

≤ C

( 1

s− t

) d
2

( 
Bsr(x0)

u2 dx

) 1
2

+ r
2− d

q ‖f‖Lq(Br(x0))

 . (10.14)

For p ∈ (0, 2) we have by the Young inequality

sup
Bt r2

(x0)
u ≤ C

( sup
Bsr(x0)

u

) 2−p
p 1

(s− t)
d
2

( 
Bsr(x0)

up dx

) 1
2

+ r
2− d

q ‖f‖Lq(Br(x0))


≤ 1

2
sup

B r
2

(x0)
u+ C

 1

(s− t)
d
p

( 
Br(x0)

up dx

) 1
p

+ r
2− d

q ‖f‖Lq(Br(x0))

 . (10.15)

Note that in the last line the constant C depends on p. We remark that (10.15) holds
obviously true for p = 2 by (10.14). Now we are in the position to apply Lemma 10.1 and
conclude

sup
B r

4
(x0)

u ≤ C

( 
Br(x0)

up dx

) 1
p

+ r
2− d

q ‖f‖Lq(Br(x0))

 ,
which is the assertion.
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11. Local boundedness and Harnack
inequalities for nonlocal operators

In this chapter we study properties of weak solutions u of the nonlocal equation

− lim
ε→0

ˆ
Rd\Bε(x)

(u(y)− u(x))k(x, y) dy = f(x), x ∈ B1, (11.1)

cf. Section 4.2, where we always assume that u is equal to some arbitrary function on the
boundary ∂B1. Here the function k : Rd ×Rd → [0,∞] is a symmetric kernel.

Let us recall that the quadratic form Ek is defined as

Ek(u, v) =

ˆ
Rd

ˆ
Rd

(u(x)− u(y))(v(x)− v(y))k(x, y) dx dy,

which is finite for u ∈ V k(B1|Rd) and v ∈ Hk
B1

(Rd), see Definition 3.3 for the definition
of these spaces.

Toolbox

As in the previous chapter we collect some auxiliary results in order to allow a better
flow of reading.

Lemma 11.1. Let a, b ≥ 0. For each ε > 0 it holds

b2 − a2 ≤ εb2 +
(b− a)2

ε
.

Proof. Assuming 0 ≤ a ≤ b we have

b2 − a2 = (b− a)(b+ a) ≤ 2b(b− a).

Now we use the Young inequality with ε > 0 to deduce

2(b− a)b ≤ 2

(
b− a
ε

1
2

)
bε

1
2 ≤ ε−1(b− a)2 + b2ε. (11.2)

On the other hand, if 0 ≤ b < a, then the assertion of the lemma is obvious.
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Lemma 11.2. Let a, b, c, d ∈ R. Then

(ab− cd)2 ≤ 2(a2 + c2)(b− d)2 + 2(a− c)2(b2 + d2).

Proof. We have

(ab− cd)2 = (ab− cb+ cb− cd)2

≤ 2(a− c)2b2 + 2(b− d)2c2

≤ 2(a− c)2(b2 + d2) + 2(b− d)2(a2 + c2),

which is what we wanted to prove.

11.1. Nonlocal tail functions

An object that plays a crucial role in the proof of the local boundedness of solutions is
the ensuing tail function. Following [DKP16] we define this purely nonlocal function as
follows:

Tail(v, x0, r) = rα
ˆ
Rd\Br(x0)

|v(x)|
|x− x0|d+α

dx,

whenever the quantity is finite.

Lemma 11.3. Let r > 0 and x0 ∈ Rd. If v ∈ L1((1 + |x|)−d−α dx), then Tail(v, x0, r) <
∞.

Proof. An easy application of the Hölder inequality combined with the facts

1 + |x− x0| ≤
(

1

r
+ 1

)
|x− x0| for every x ∈ Rd \Br(x0),

and
1 + |x+ x0| ≤ (1 + |x0|)(1 + |x|) for all x, x0 ∈ Rd,

shows that
ˆ
Rd\Br(x0)

|v(x)|
|x− x0|d+α

dx ≤ c(r)
ˆ
Rd\Br(x0)

|v(x)|
(1 + |x− x0|)d+α

dx

≤ c(r)
ˆ
Rd\Br(0)

|v(x+ x0)|
(1 + |x|)d+α

dx

≤ c(r, x0)

ˆ
Rd

|v(x)|
(1 + |x|)d+α

dx,
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that is, Tail(v, x0, r) is finite for every r > 0 and x0 ∈ R, whenever v ∈ L1((1 +
|x|)−d−α dx).

In [DKP16] the authors show in the case of the nonlinear fractional p-Laplace oper-
ator how the nonlocal tail can be bounded from above by a local term, precisely the
essential supremum of weak supersolutions over some ball. This is the key ingredient in
their proof of the Harnack inequality for nonnegative solutions.

In our work we consider only the case where the nonlocal operator is linear. However, our
integral kernels are allowed to be from a wider class of functions. The main difference is
that the kernels are not pointwise almost everywhere comparable to the standard kernel
k(x, y) = |x − y|−d−α. A consequence is that we need to introduce a different kind of
nonlocal tail, which we will call k-Tail. The idea is now to modify the proofs in [DKP14;
DKP16] in order to show a local boundedness result of the k-Tail. It turns out that this
bound requires additional assumptions on the kernel. These we state after the definition
of the k-Tail.

Definition 11.4 (k-Tail). Let α ∈ (0, 2) and k : Rd × Rd → [0,∞] be a kernel. Let
r > 0, x0 ∈ Rd, 0 < λ < µ ≤ r and v ∈ L1(1 + |x|−d−α) dx). The function

Tailk(v, x0, r, λ, µ) = rα sup
x∈Bλ(x0)

ˆ
Rd\Bµ(x0)

|v(y)|k(x, y) dy

is called the nonlocal k-Tail.

Of course, if k(x, y) ≤ c|x− y|−d−α for some c > 0, then

Tailk(v, x0, r, λ, µ) ≤ c(µ, λ) Tail(v, x0, µ)

for all 0 < λ < µ ≤ r, that is, the function Tailk(·, x0, r, λ, µ) : L1((1 + |x|)−d−α dx)→ R

is well defined.

11.2. Assumptions on the kernel

In this part we state the assumptions on the considered integral kernels. The different
conditions are listed below for a given α ∈ (0, 2). Throughout this section we assume that
k : Rd ×Rd → [0,∞] is a symmetric integral kernel.

Condition (A) (local coercivity estimate on every scale). There exists a constant A > 0
such that for every ball Br(x0) ⊂ Rd with x0 ∈ B1, 0 < r ≤ 1 and each v ∈ H

α
2 (Br(x0))

it holds

EkBr(x0)(v, v) ≥ A‖v‖2
Ḣ
α
2 (Br(x0))

. (A)
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11. Local boundedness and Harnack inequalities for nonlocal operators

Condition (B) (pointwise upper bound). The kernel k is pointwise bounded from above
by a constant times |x− y|−d−α, that is, there exists a constant B > 0 such that

|x− y|−d−α ≥ B k(x, y) for almost all x, y ∈ Rd. (B)

The local coercivity assumption Condition (A) is the central assumption in this part. It
guarantees that we can make use of functional inequalities, e.g., the Sobolev inequality.

The second assumption, Condition (B), will prove necessary for us because later on we
want to separate nonlocal integrals in Rd ×Rd into two separate integrals in Rd in order
to make an iteration process work.

We remark that the combination of Condition (A) and Condition (B) implies that the
main assumptions in [DK20, Theorem 1.2] hold true. Provided that f satisfies specific
assumptions, this immediately leads to a weak Harnack inequality for weak supersolutions
of (11.1).

We show that Condition (A) and Condition (B) together imply a local boundedness
result for solutions of the underlying elliptic equation (11.1). However, the bound on the
solution here depends on nonlocal quantities such as a nonlocal tail function as defined in
the previous Section 11.1.

We aim to prove a Harnack inequality for solutions of the elliptic equation (11.1). In
general we cannot expect that such a result holds true if we only presuppose that
Condition (A) and Condition (B) hold true. A well known counterexample is given in
[BS05, p. 148]. Therefore, we have to propose another condition on our kernel concerning
its lower bound. This new assumption replaces the pointwise lower bound in [DKP14] as
well as [Coz17]. In this way our result is more general than the result for the linear case
in [DKP14]; however, the method used in our proof is the same.

The pointwise lower bound on the kernel in [DKP14] is essential to bound the nonlocal tail
only by localized quantities. The authors use this lower bound in order to bound a double
integral with nonlocal parts from below by the nonlocal tail times the volume of some
ball. Our Condition (C) enables us to copy exactly this behavior of the decomposition of
the double integral.

The assumption reads as follows.

Condition (C) (averaged integral bound on every scale). There exists a constant C > 0

such that for almost all x ∈ B1, y ∈ Rd with x 6= y and every radius 0 < r ≤
(
|x−y|

2 ∧ 1
4

)
it holds  

Br(x)
k(z, y) dz ≥ Ck(x, y). (C)

We often say that k satisfies (X) for X ∈ {A,B,C} meaning that Condition (X) holds for
k.
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11.2. Assumptions on the kernel

Remark. For some time we worked with an equivalent formulation of Condition (C),
see Proposition 11.5 below. We realized that these assumptions were equivalent after
discovering the article [CKW20]. In this article the authors use a similar assumption as
Condition (C) in order to prove a parabolic Harnack inequality, which they call (UJS)
assumption. Our Condition (C) is nothing but a localized version of (UJS) (compare also
with the remark after the scaled version of Condition (C), see Section 11.3). After our
discovery, we decided to use also the analogous formulation of (UJS) since it seems to
be the most accessible version of the equivalent statements. To the best of the author’s
knowledge, the (UJS) assumption can be traced back to [BBK09], where it first appeared
in the setup of discrete graphs.
Remark. We stress that Condition (C) is neither necessary nor sufficient for the validity
of Condition (A). Indeed, from Part II of this thesis we know that any quadratic
form belonging to a kernel generated by an admissible configuration of cones satisfies
Condition (A). But we can easily construct a configuration of cones such that Condition (C)
does not hold true. This is done in Section 12.1. It shows that Condition (C) is not
necessary for Condition (A) to hold true. On the other hand, the kernel k(x, y) =
1B5\B4

(x − y)|x − y|−d−α satisfies, according to Lemma 12.4, Condition (C). To show
that Condition (A) does not hold for this kernel, take a function u ∈ C∞c (Rd) such that
u(x) = x on B1. Then ˆ

B1

ˆ
B1

(u(x)− u(y))2k(x, y) dx dy = 0.

But ˆ
B1

ˆ
B1

(u(x)− u(y))2|x− y|−d−α dx dy ≥
ˆ
B 1

2

ˆ
B 1

2
(y)
|x− y|2−d−α dx dy

= c

(
1

2

)2−α
> 0.

Equivalent formulations of Condition (C)

The following proposition provides equivalent formulations of Condition (C). The second
version of the condition is especially important since it is used later on to prove the
localized estimate of the k-Tail.

Proposition 11.5. The following statements are equivalent.

1. Condition (C).

2. There exists a constant C > 0 such that for each x0 ∈ B1 and every pair of radii
(λ, µ) with 0 < λ < µ ≤ 1

2 the following holds true for almost every y ∈ Rd \Bµ(x0):
ˆ
Bµ+λ

2
(x0)

k(z, y) dz ≥ C|µ− λ|d sup
x∈Bλ(x0)

k(x, y). (11.3)
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3. There exists a constant C > 0 such that for each x0 ∈ B1 and every pair of radii
(λ, µ) with 0 < λ < µ ≤ 1

2 the following holds true for almost every y ∈ Rd \Bµ(x0)
and almost every x ∈ Bλ(x0):

ˆ
Bµ(x0)

k(z, y)|y − z|d+α dz ≥ C|µ− λ|dk(x, y)|x− y|d+α. (11.4)

Remark. We intentionally use the representation (11.3) with the larger term on the
left-hand side of the inequality because this is exactly the direction in which we use the
estimate later on in our localized estimate of the tail. This Proposition 11.5 is also the
reason why we chose to put the larger term on the left-hand side in (C).

Proof of Proposition 11.5. Suppose Condition (C) holds true. Let 0 < λ < µ ≤ 1
2 be

given and let x0 ∈ B1. Assume y ∈ Rd \ Bµ(x0) and x ∈ Bλ(x0) so that k(x, y) > 0.
Then (

|x− y|
2

∧ 1

4

)
≥ µ− λ

2
,

and thus (C) yields ˆ
Bµ−λ

2
(x)
k(z, y) dz ≥ C(µ− λ)dk(x, y).

Taking into account that Bµ−λ
2

(x) ⊂ Bµ+λ
2

(x0) we deduce that (11.3) holds true.

It is easy to see that (11.3) implies (11.4) . Indeed, we have |x − y| � |z − y| for
x ∈ Bλ(x0), z ∈ Bµ+λ

2
(x0) and y ∈ Rd \ Bµ(x0). Thus, we have for almost every

x ∈ Bλ(x0)

ˆ
Bµ(x0)

k(z, y)|z − y|d+α dz ≥
ˆ
Bµ+λ

2
(x0)

k(z, y)|z − y|d+α dz

�
ˆ
Bµ+λ

2
(x0)

k(z, y)|x− y|d+α dz

≥ C|µ− λ|d|x− y|d+αk(x, y).

For the remaining direction assume (11.4) holds true and take x ∈ B1, y ∈ Rd with x 6= y

and k(x, y) > 0. Let 0 < r ≤
(
|x−y|

2 ∧ 1
4

)
be given. Choose x0 = x, λ = r

2 and µ = r.

Then we have y ∈ Rd \Bµ(x0) = R
d \Bµ(x). Thus, by (11.4)

ˆ
Br(x)

k(z, y)|z − y|d+α dz ≥ 2dCrd|x− y|d+αk(x, y).

Condition (C) follows now after using |x− y| � |z − y|. The proof is complete.
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11.3. Behavior of the conditions under scaling

Let us give the analog version of Condition (A) for solutions on arbitrary balls.

Condition (A, ξ0, R). Given ξ0 ∈ Rd, R > 0, we say that the kernel k satisfies (A, ξ0, R)
if: There exists A > 0 such that for every ball Br(x0) with 0 < r ≤ R, x0 ∈ BR(ξ0) and
every v ∈ H

α
2 (Br(ξ0)) we have

EkBr(x0)(v, v) ≥ A‖v‖
Ḣ
α
2 (Br(x0))

. (A, ξ0, R)

A scaled version of Condition (C) looks as follows.

Condition (C, ξ0, R). Given ξ0 ∈ Rd and R > 0 we say that the kernel k satisfies
(C, ξ0, R) if the following holds: There exists a constant C > 0 such that for almost all
x ∈ BR(ξ0), y ∈ Rd with x 6= y and every radius 0 < r ≤ R

(
|x−y|

2 ∧ 1
4

)
we have

 
Br(x)

k(z, y) dz ≥ Ck(x, y). (C, ξ0, R)

Remark. If we assume validity of (C, ξ0, R) for every R > 0, then we end up with the
(UJS) assumption as in [CKW20]. That is why, for some fixed R, Condition (C, ξ0, R)
can be seen as a localized version of (UJS).

The next lemma shows the behavior of the underlying operator with respect to rescaled
functions.

Lemma 11.6. Suppose ξ0 ∈ Rd, R > 0 and f ∈ L2
loc(BR(ξ0)). Let k be a symmetric

kernel and let u ∈ V k(BR(ξ0)|Rd)∩L1((1+ |x|)−d−α dx) fulfill Ek(u, ψ) = (f, ψ) for every
ψ ∈ Hk

BR(ξ0)(R
d). Let J : Rd → R

d, J(x) = Rx+ ξ0. Define rescaled versions of u, f and
k on B1 by

ũ(x) = u(J(x)), f̃(x) = Rαf(J(x)) and k̃(x, y) = Rα+dk(J(x), J(y)).

Then the following holds.

1. The function ũ is an element of V k̃(B1|Rd)∩L1((1 + |x|)−d−α dx) and satisfies for
all ψ ∈ H k̃

B1
(Rd) the following equality

E k̃(ũ, ψ) =

ˆ
Rd

ˆ
Rd

(ũ(x)− ũ(y))(ψ(x)− ψ(y))k̃(x, y) dx dy = (f̃ , ψ).

2. If k satisfies (A, ξ0, R) for some ξ0 ∈ Rd, R > 0, α ∈ (0, 2) and some A > 0, then k̃
satisfies (A) with the same constant A.

3. If k satisfies (B) for some α ∈ (0, 2) and some B > 0, then k̃ satisfies (B) with the
same constant B.
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4. If k satisfies (C, ξ0, R) for some ξ0 ∈ Rd, R > 0 and some C > 0, then k̃ satisfies
(C) with the same constant C.

Proof. Let us first show that ũ ∈ V k̃(B1|Rd). According to the change of variables
formula (cf. Theorem 2.11) we haveˆ
B1

ˆ
Rd

(ũ(x)− ũ(y))2k̃(x, y) dx dy = Rα−d
ˆ
BR(ξ0)

ˆ
Rd

(u(x)− u(y))2k(x, y) dx dy <∞

because u ∈ V k(BR(ξ0)|Rd). It is obvious that ũ is measurable and that ũ|B1 is an
L2-function. Also,ˆ

Rd

|ũ(x)|
(1 + |x|)d+α

dx = R−d
ˆ
Rd

|u(x)|
(1 + |J−1(x)|)d+α

dx

≤ R−dc(R, d, α, |ξ0|)
ˆ
Rd

|u(x)|
(1 + |x|)d+α

dx

<∞,

where we made use of
1 + |x|

1 +R−1|x− ξ0|
≤ 1 + |x− ξ0|+ |ξ0|

1 +R−1|x− ξ0|
≤ 1 + |ξ0|+R.

Now let ψ ∈ H k̃
B1

(Rd). Define ψJ−1 ∈ Hk
BR(ξ0)(R

d) by ψJ−1 = ψ ◦ J−1. We conclude
again by a change of variablesˆ
Rd

ˆ
Rd

(ũ(x)− ũ(y))(ψ(x)− ψ(y))k̃(x, y) dx dy

= Rα+d

ˆ
Rd

ˆ
Rd

(u(J(x))− u(J(y)))(ψJ−1(J(x))− ψJ−1(J(y)))k(J(x), J(y)) dx dy

= Rα−d
ˆ
Rd

ˆ
Rd

(u(x)− u(y))(ψJ−1(x)− ψJ−1(y))k(x, y)) dx dy

= Rα−d
ˆ
Rd

f(x)ψJ−1(x) dx

= Rα
ˆ
Rd

f(J(x))ψ(x) dx

=

ˆ
Rd

f̃(x)ψ(x) dx.

Let us now prove that k̃ satisfies (A) provided that k satisfies (A, ξ0, R). Let x0 ∈ B1 and
0 < r ≤ 1. Then Rx0 + ξ0 ∈ BR(ξ0) for R > 0. Let v ∈ H

α
2 (Br(x0)). Then the function

v̂ : BRr(Rx0 + ξ0)→ R
d with v̂ = v ◦ J−1 is an element of H

α
2 (BRr(Rξ0 + x0)). In the

following computation we use the abbreviations Br = Br(x0) and BRr = BRr(Rx0 + ξ0).
Using the change of variables formula and (A, ξ0, R) we arrive at

E k̃Br(v, v) =

ˆ
Br

ˆ
Br

(v(y)− v(x))2 k̃(x, y) dx dy
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= Rα+d

ˆ
Br

ˆ
Br

(v̂(J(x))− v̂(J(y))2 k(J(x), J(y)) dx dy

= Rα−d
ˆ
BRr

ˆ
BRr

(v̂(x)− v̂(y))2 k(x, y) dx dy

≥ ARα−d
ˆ
BRr

ˆ
BRr

(v̂(x)− v̂(y))2

|x− y|d+α
dx dy

= AR−2d

ˆ
BRr

ˆ
BRr

(v(J−1(x))− v(J−1(y)))2

|J−1(x)− J−1(y)|d+α
dx dy

= A

ˆ
Br

ˆ
Br

(v(x)− v(y))2

|x− y|d+α
dx dy

= A‖v‖
Ḣ
α
2 (Br)

.

Thus, we have shown that (A) holds with the same constant.

Suppose k satisfies (C, ξ0, R) for some ξ0 ∈ Rd, R > 0 and C > 0. Consider x ∈ B1, y ∈
R
d. We have J(x) ∈ BR(ξ0). If 0 < r ≤

(
|x−y|

2 ∧ 1
4

)
, then by (C, ξ0, R)

ˆ
Br(x)

k̃(z, y) dz = Rα+d

ˆ
Br(x)

k(J(z), J(y)) dz

= Rα
ˆ
BRr(J(x))

k(z, J(y)) dz

≥ CRα(Rr)dk(J(x), J(y))

= Crd k̃(x, y),

which proves the fourth item of our assertion.

The third claim is obviously true.

Remark. If R > 0 and ξ0 ∈ Rd are given so that BR(ξ0) ⊂ B1 and a kernel k satisfies
(A) and (C), then k obviously satisfies (A, ξ0, R) and (C, ξ0, R). In this case both k and
k̃ satisfy (A) and (C).

11.4. A local tail estimate

The statement of the following lemma is oriented on [DKP14, Lemma 4.2]. The aim is
to bound the nonlocal k-Tail by localized quantities coming from supersolutions. The
proof of the lemma uses the same split up idea of the double integral as it was used in
the proof of Lemma 4.2 in [DKP14]. Furthermore, it relies heavily on assumption (C). In
fact, this lemma is the reason for establishing (C) in the first place.
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Lemma 11.7. Assume α ∈ (0, 2) and f ∈ Lq(B1) for some q > d
α . Let (λ, µ) be a pair

of radii with 1
4 ≤ λ < µ ≤ 1

2 . Suppose k is a symmetric kernel that satisfies (A), (B) and
(C). Assume u ∈ V k(B1|Rd) ∩ L1((1 + |x|)−d−α dx) is a nonnegative function satisfying
Ek(u, ψ) ≥ (f, ψ) for every nonnegative ψ ∈ Hk

B1
(Rd). Then there exists a constant c > 0,

depending only on the dimension d, α, q and the constants from (A), (B) and (C), such
that

Tailk

(
u, 0,

1

2
, λ, µ

)
≤ c(µ− λ)−2d−α

(
sup
Bµ

u+ ‖f‖
Lq
(
B 3µ+λ

4

)) .
If α ∈ [α0, 2) for some α0 ∈ (0, 2), then c can be chosen to depend on α0 but not on α.

Proof. We borrow ideas of [DKP14, Lemma 4.2]. Let us emphasize that in the computa-
tions we often use the letter c to denote a generic positive constant. The value of c may
change between different lines of the proof.

Choose some (λ, µ) with 1
4 ≤ λ < µ ≤ 1

2 . The claim of the lemma is obvious if
supBµ u =∞. Thus, we may assume supBµ u <∞. Set

ρ =
µ+ λ

2
, ρ̃ =

ρ+ µ

2
.

Let φ ∈ C∞c (Bρ̃) with 0 ≤ φ ≤ 1, φ = 1 in Bρ and |Dφ| ≤ c|ρ̃− ρ|−1 = 4c(µ− λ)−1. In
the case supBµ u > 0 we consider the following nonpositive test function

η = (u− 2S)φ2,

where S = supBµ u. We have

(f, η) ≥
ˆ
Bµ

ˆ
Bµ

(u(x)− u(y))(η(x)− η(y))k(x, y) dx dy

+ 2

ˆ
Rd\Bµ

ˆ
Bµ

(u(x)− u(y))(u(x)− 2S)φ2(x)k(x, y) dx dy

= I1 + 2I2.

We treat the integrals separately. We start with I2:

I2 =

ˆ
Rd\Bµ

ˆ
Bµ

(u(x)− u(y))(u(x)− 2S)φ2(x) · 1{u(y)≥S}(y) k(x, y) dx dy

+

ˆ
Rd\Bµ

ˆ
Bµ

(u(x)− u(y))(u(x)− 2S)φ2(x) · 1{u(y)<S}(y) k(x, y) dx dy

≥
ˆ
Rd\Bµ

ˆ
Bµ

(u(y)− u(x))(2S − u(x))φ2(x) · 1{u(y)≥S}(y) k(x, y) dx dy
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11.4. A local tail estimate

−
ˆ
Rd\Bµ

ˆ
Bµ

2S(u(x)− u(y))+φ
2(x) · 1{u(y)<S}(y) k(x, y) dx dy

≥
ˆ
Rd\Bµ

ˆ
Bµ

(u(y)− S)Sφ2(x) · 1{u(y)≥S}(y) k(x, y) dx dy

−
ˆ
Rd\Bµ

ˆ
Bµ

2S(u(x)− u(y))+φ
2(x) · 1{u(y)<S}(y) k(x, y) dx dy

= I2,1 − I2,2.

Let us further estimate I2,1. For the calculation we use the fact that 1
4 ≤ µ ≤

1
2 and

|y|
|x− y|

≤
(

1 +
ρ̃

µ− ρ̃

)
=

(
µ

µ− ρ̃

)
≤ c(µ− λ)−1 for x ∈ Bρ̃, y ∈ Rd \Bµ. (11.5)

Using these estimates together with (B),(C) and Proposition 11.5, we obtain

I2,1 ≥ S
ˆ
Rd\Bµ

ˆ
Bρ

u(y) k(x, y) dx dy −B−1S2

ˆ
Rd\Bµ

ˆ
Bρ̃

|x− y|−d−α dx dy

≥ S
ˆ
Rd\Bµ

u(y)

(ˆ
Bρ

k(x, y) dx

)
︸ ︷︷ ︸

≥C|µ−λ|d+α supx∈Bλ
k(x,y)

dy − (µ− λ)−d−αcS2|Bρ̃|
µ−α

α

≥ cS|µ− λ|d Tailk

(
u, 0,

1

2
, λ, µ

)
− (µ− λ)−d−α cS2|Bµ|

µ−α

α

≥ cS(µ− λ)d Tailk

(
u, 0,

1

2
, λ, µ

)
− (µ− λ)−d−α cS2.

Next, we estimate I2,2. With use of (11.5) we obtain
ˆ
Rd\Bµ

ˆ
Bµ

2S(u(x)− u(y))+φ
2(x) · 1{u(y)<S}(y) k(x, y) dx dy

≤2cS2

ˆ
Rd\Bµ

ˆ
Bρ̃

|x− y|−d−α dx dy

≤cS2(µ− λ)−d−α.

Let us now treat the localized integral I1. Let w(x) = u(x)− 2S. Then

−2S ≤ w(x) ≤ −S (11.6)

for every x ∈ Bµ. We note that the following algebraic inequality holds:

(a− b)(aα2 − bβ2) = (bβ − aα)2 − ba(α− β)2 ≥ −ba(α− β)2, a, b, α, β ∈ R.
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11. Local boundedness and Harnack inequalities for nonlocal operators

Choosing a = w(x), b = w(y), α = φ(x) and β = φ(y) for (x, y) ∈ Bµ × Bµ, we obtain
using the algebraic inequality and (11.6)

(w(x)− w(y))(w(x)φ2(x)− w(y)φ2(y))

≥ −|w(x)||w(y)|(φ(x)− φ(y))2

≥ −4S2(φ(x)− φ(y))2.

With the help of (B) this directly implies

I1 ≥ −cS2

ˆ
Bµ

ˆ
Bµ

|φ(x)− φ(y)|2|x− y|−d−α dx dy

≥ −cS2(ρ̃− ρ)−2

ˆ
Bµ

ˆ
Bµ

|x− y|2−α−d dx dy

≥ −cS2(ρ̃− ρ)−2µ2−α|Bµ|
≥ −cS2(µ− λ)−2

Putting these three estimates together and using the fact that u is a supersolution we get

(f, η) ≥− cS2
(

(µ− λ)−2 + (µ− λ)−d−α
)

+ cS(µ− λ)d Tailk

(
u, 0,

1

2
, λ, µ

)
.

We obtain by the Hölder inequality with q′ = q
q−1 the inequality

(f, η) =

ˆ
Bρ̃

f(x)(u(x)− 2S)φ2(x) dx ≤ cS ‖f‖Lq(Bρ̃)µ
d
q′ .

Therefore,

Tailk

(
u, 0,

1

2
, λ, µ

)
≤ cS

[
(µ− λ)−2 + (µ− λ)−d−α

]
(µ− λ)−d

+ c(µ− λ)−d‖f‖Lq(B 3µ+λ
4

)

≤ c(µ− λ)−2d−α
(
S + ‖f‖Lq(B 3µ+λ

4
)

)
,

which is what we wanted to prove.

In the case S = 0 the claim of the lemma follows easily if we test with η = φ, where φ is
defined as above.
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11.5. Local boundedness of solutions

11.5. Local boundedness of solutions

The aim of this section is to prove that weak solutions of corresponding elliptic equations
are locally bounded. We use the same methods as we did in the local setting. The
statements and the computations are a little more complicated because of the nonlocal
terms. For the readers convenience we proceed in the same order as we did in the local
case.

A Caccioppoli type estimate

The following theorem is a version of [DKP16, Theorem 1.4] in our setup. The proof is
also adapted from there. It is the nonlocal version of Lemma 10.4.

Theorem 11.8 (Caccioppoli inequality). Assume f ∈ L2
loc(B1) and let k be a symmetric

kernel. Let u ∈ V k(B1|Rd) so that Ek(u, ψ) ≤ (f, ψ) for each nonnegative ψ ∈ Hk
B1

(Rd).
Let w = (u− `)+ for ` ∈ R. There exists a constant c > 0, independent of u and `, such
that the following inequality holds true for every Br(x0) ⊂ B1 and each φ ∈ C∞c (Br(x0)):

ˆ
Br(x0)

ˆ
Br(x0)

|w(x)φ(x)− w(y)φ(y)|2k(x, y) dx dy

≤ c
ˆ
Br(x0)

ˆ
Br(x0)

(
w2(x) + w2(y)

)
|φ(x)− φ(y)|2k(x, y) dx dy (11.7)

+ c

ˆ
Rd\Br(x0)

ˆ
Br(x0)

w(y)w(x)φ2(x)k(x, y) dx dy

+ (f, wφ2).

Proof. Let Br(x0) ⊂ B1 and u ∈ V k(B1|Rd) satisfy Ek(u, ψ) ≤ (f, ψ) for every admissible
nonnegative test function ψ. We plug ψ = wφ2 into the definition of a weak subsolution.
Here φ ∈ C∞c (Br(x0)) is a nonnegative function. We obtain with Br = Br(x0) the
estimate

(f, wφ2) ≥
ˆ
Br

ˆ
Br

(u(x)− u(y))(w(x)φ2(x)− w(y)φ2(y))k(x, y) dx dy

+ 2

ˆ
Rd\Br

ˆ
Br

(u(x)− u(y))w(x)φ2(x)k(x, y) dx dy

= I1 + 2I2. (11.8)

Let us further investigate the nonlocal term I2. We see that

I2 ≥ −
ˆ
Rd\Br

ˆ
Br

(u(y)− u(x))+(u(x)− `)+φ
2(x)k(x, y) dx dy
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11. Local boundedness and Harnack inequalities for nonlocal operators

≥ −
ˆ
Rd\Br

ˆ
Br

(u(y)− `)+(u(x)− `)+φ
2(x)k(x, y) dx dy

= −
ˆ
Rd\Br

ˆ
Br

w(y)w(x)φ2(x)k(x, y) dx dy. (11.9)

Next, let us consider the localized term I1. An easy case analysis shows that

(u(x)− u(y))(w(x)φ2(x)− w(y)φ2(y)) ≥ (w(x)− w(y))(w(x)φ2(x)− w(y)φ2(y)).

We obtain by Lemma 11.1 for ε > 0 the estimate

φ2(x) ≥ φ2(y)(1− ε)− 1

ε
(φ(x)− φ(y))2.

Assuming w(x) > w(y) and plugging in ε = 1
2
w(x)−w(y)

w(x) gives

(w(x)− w(y))w(x)φ2(x)

≥ (w(x)− w(y))w(x)φ2(y)− 1

2
(w(x)− w(y))2φ2(y)

− 2w2(x)(φ(x)− φ(y))2. (11.10)

It is also obviously true that

(w(x)− w(y))w(x)φ2(x)

≥ (w(x)− w(y))w(x)φ2(x)− 1

2
(w(x)− w(y))2φ2(y)

− 2w2(x)(φ(x)− φ(y))2. (11.11)

Therefore, combining (11.10) and (11.11) leads to

(w(x)− w(y))w(x)φ2(x)

≥ (w(x)− w(y))w(x) max{φ(x), φ(y)}2

− 1

2
(w(x)− w(y))2 max{φ(x), φ(y)}2

− 2w2(x)(φ(x)− φ(y))2, (11.12)

for w(x) > w(y). Note that (11.12) is obvious for w(x) = w(y). Hence, we may assume
w(x) ≥ w(y) in the following computation. From (11.12) we obtain

(w(x)− w(y))(w(x)φ2(x)− w(y)φ2(y))

≥ (w(x)− w(y))w(x) max{φ(x), φ(y)}2 − (w(x)− w(y))w(y) max{φ(x), φ(y)}2

− 1

2
(w(x)− w(y))2 max{φ(x), φ(y)}2 − 2w2(x)(φ(x)− φ(y))2

=
1

2
(w(x)− w(y))2 max{φ(x), φ(y)}2 − 2w2(x)(φ(x)− φ(y))2
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≥ 1

4
(w(x)− w(y))2(φ2(x) + φ2(y))− 2(w2(x) + w2(y))(φ(x)− φ(y))2, (11.13)

whenever w(x) ≥ w(y). Note that the inequality (11.13) is symmetric in x and y, i.e., we
can exchange the roles of x and y to obtain the estimate (11.13) for the case w(y) > w(x).
In conclusion,

I1 ≥
ˆ
Br

ˆ
Br

1

4
(w(x)− w(y))2(φ2(x) + φ2(y))k(x, y) dx dy

−
ˆ
Br

ˆ
Br

2(w2(x) + w2(y))(φ(x)− φ(y))2k(x, y) dx dy. (11.14)

By Lemma 11.2 we observe that

(w(x)φ(x)− w(y)φ(y))2 ≤ 2(w(x)− w(y))2(φ2(x) + φ2(y))

+ 2(w2(x) + w2(y))(φ(x)− φ(y))2

or equivalently

1

4
(w(x)− w(y))2(φ2(x) + φ2(y)) ≥ 1

8
(w(x)φ(x)− w(y)φ(y))2

− 1

4
(w2(x) + w2(y))(φ(x)− φ(y))2.

Combining the last estimate with (11.14) we obtain the following lower bound for the
localized double integral

I1 ≥
ˆ
Br

ˆ
Br

1

8
(w(x)φ(x)− w(y)φ(y))2k(x, y) dx dy

−
ˆ
Br

ˆ
Br

9

4
(w2(x) + w2(y))(φ(x)− φ(y))2k(x, y) dx dy. (11.15)

Putting together (11.8),(11.9) and (11.15) gives

(f, wφ2) ≥
ˆ
Br

ˆ
Br

1

8
(w(x)φ(x)− w(y)φ(y))2k(x, y) dx dy

−
ˆ
Br

ˆ
Br

9

4
(w2(x) + w2(y))(φ(x)− φ(y))2k(x, y) dx dy

− 2

ˆ
Rd\Br

ˆ
Br

w(y)w(x)φ2(x)k(x, y) dx dy,

which yields the claim of the theorem.
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An L2-upper-level-set inequality

The following lemma is the starting point of our iteration. It is the nonlocal analogue of
Lemma 10.5.

Lemma 11.9. Let d ≥ 2, α ∈ (0, 2). Assume f ∈ Lq(B1) for some q > d
α . Let k be a

symmetric kernel that satisfies (A) and (B). Suppose u ∈ V k(B1|Rd)∩L1((1+|x|)−d−α dx)
is nonnegative and fulfills Ek(u, ψ) ≤ (f, ψ) for every nonnegative ψ ∈ Hk

B1
(Rd). Then

there are constants c > 0, depending only on d, α, q and the constants from (A)and (B)
and ε ∈ (0, 1), depending only on d, α and q, such that the following estimate holds true
for all radii 1

2 ≤ κ < λ < µ ≤ 1 and all constants L > ˜̀> ` >
√
|B1|‖u‖L2(B1) :

(˜̀− `)ε‖(u− L)+‖L2(Bκ)

≤ c

[
(λ− κ)−2 + (µ− λ)−d−α

Tail
(
u, 0, 1

2

)
˜̀− `

+
‖f‖2Lq(Bλ)

(˜̀− `)2

] 1
2

‖(u− `)+‖1+ε
L2(Bµ)

. (11.16)

If in addition k satisfies (C) and u fulfills Ek(u, ψ) = (f, ψ) for every ψ ∈ Hk
B1

(Rd), then
for all 1

4 ≤ κ < λ < µ ≤ 1
2 and all constants L > ˜̀> ` >

√
|B 1

2
|‖u‖L2(B 1

2
):

(˜̀− `)ε‖(u− L)+‖L2(Bκ)

≤ c

[
(λ− κ)−2 + 1 +

(µ− λ)−2d−α˜̀− `
sup

B 1
2

u+ ‖f‖
Lq
(
B 3µ+λ

4

)
+
‖f‖2Lq(Bλ)

(˜̀− `)2

] 1
2

‖(u− `)+‖1+ε
L2(Bµ)

, (11.17)

where c also depend on the constant from (C). If α ∈ [α0, 2), then the constants c and ε
in (11.16) respectively (11.17) may be chosen to depend on α0 but not on α.

Proof. Let ˜̀> 0 and 0 < µ ≤ 1 and φ ∈ C∞c (Bµ) with 0 ≤ φ ≤ 1. We use the notation
w = (u− ˜̀)+ and 2∗ = 2d

d−α . The Sobolev embedding, compare Corollary 2.21, and the
Caccioppoli inequality, see Theorem 11.8, yield(ˆ

Bµ

|w(x)φ(x)|2∗
) 2

2∗

≤ c
ˆ
Bµ

ˆ
Bµ

(w(x)φ(x)− w(y)φ(y))2k(x, y) dx dy

+ c

ˆ
Bµ

|w(x)φ(x)|2 dx

≤ c
ˆ
Bµ

ˆ
Bµ

w2(x)(φ(x)− φ(y))2k(x, y) dx dy
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+ c

ˆ
Bµ

ˆ
Rd\Bµ

w(x)φ2(x)w(y)k(x, y) dy dx

+ c

ˆ
Bµ

w2(x)φ2(x) dx+ c

ˆ
Bµ

f(x)w(x)φ2(x) dx. (11.18)

Using the Hölder inequality and the Young inequality with δ ∈ (0, 1) we estimate the last
term on the right-hand side in the following way

ˆ
Bµ

f(x)w(x)φ2(x) dx ≤ ‖f‖Lq(suppφ)

(ˆ
Bµ

|w(x)φ(x)|2∗
) 1

2∗

|wφ 6= 0|1−
1

2∗−
1
q

≤ δ

(ˆ
Bµ

|w(x)φ(x)|2∗
) 2

2∗

+ c(δ)‖f‖2Lq(suppφ)|wφ 6= 0|2(1− 1
2∗−

1
q

)
. (11.19)

Combining (11.18) and (11.19) we receive(ˆ
Bµ

|w(x)φ(x)|2∗
) 2

2∗

≤ c

[ˆ
Bµ

ˆ
Bµ

w2(x)(φ(x)− φ(y))2k(x, y) dx dy

+

ˆ
Bµ

w(x)φ2(x)

ˆ
Rd\Bµ

w(y)k(x, y) dy dx (11.20)

+

ˆ
Bµ

w2(x)φ2(x) dx+ ‖f‖2Lq(suppφ)|wφ 6= 0|2(1− 1
2∗−

1
q

)
.

]
Now (11.20) implies

ˆ
Bµ

(w(x)φ(x))2 dx ≤

(ˆ
Bµ

|w(x)φ(x)|2∗ dx

) 2
2∗

|wφ 6= 0|1−
2

2∗

≤ c
[ˆ

Bµ

ˆ
Bµ

w2(x)(φ(x)− φ(y))2k(x, y) dx dy

+

ˆ
Bµ

w(x)φ2(x)

ˆ
Rd\Bµ

w(y)k(x, y) dy dx (11.21)

+

ˆ
Bµ

w2(x)φ2(x) dx+ ‖f‖2Lq(suppφ)|wφ 6= 0|1+α
d
− 2
q

]
|wφ 6= 0|

α
d .

From now on let us assume

|wφ 6= 0| ≤ 1, (11.22)

which will be verified later. Note that q > d
α is equivalent to 1 + α

d −
2
q > 1 − 1

q . By
(11.22) we therefore have

|wφ 6= 0|1+α
d
− 2
q |wφ 6= 0|

α
d ≤ |wφ 6= 0|1+α

d
− 1
q .
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Also, q > d
α implies α

d −
1
q > 0. Thus, there exists ε ∈ (0, 1) such that

|wφ 6= 0|1+α
d
− 2
q |wφ 6= 0|

α
d ≤ |wφ 6= 0|1+ε

and
|wφ 6= 0|

α
d ≤ |wφ 6= 0|ε.

Our estimate (11.21) becomes
ˆ
Bµ

(w(x)φ(x))2 dx ≤ c
[ˆ

Bµ

ˆ
Bµ

w2(x)(φ(x)− φ(y))2k(x, y) dx dy

+

ˆ
Bµ

w(x)φ2(x)

ˆ
Rd\Bµ

w(y)k(x, y) dy dx

+

ˆ
Bµ

w(x)φ2(x) dx+ ‖f‖2Lq(suppφ)|wφ 6= 0|
]
|wφ 6= 0|ε

= c|wφ 6= 0|ε
[
I1 + I2 + I3 + F 2|wφ 6= 0|

]
, (11.23)

where F = ‖f‖Lq(suppφ).

Let now 1
2 ≤ κ < λ < µ ≤ 1. We specify our choice of the cutoff function φ. We take

φ ∈ C∞c (Bµ) so that supp(φ) ⊂ Bλ, 0 ≤ φ ≤ 1, φ = 1 in Bκ and Dφ ≤ C
λ−κ . Let us

introduce the notation

A(`, r) = {x ∈ Br|u ≥ `} for `, r > 0.

The next step is to bound the terms in the right-hand side of (11.23). By applying
Condition (B) we estimate

I1 ≤
c

(λ− κ)2

ˆ
A(µ,˜̀)

ˆ
Bµ

(
u(x)− ˜̀)2

|x− y|−d−α+2 dy dx

≤ c

(λ− κ)2

µ2−α

2− α

ˆ
A(µ,˜̀)(u(x)− ˜̀)2 dx

≤ c

2− α
(λ− κ)−2

ˆ
A(µ,˜̀)(u(x)− ˜̀)2 dx (11.24)

and

I2 ≤
ˆ
A(µ,˜̀)(u(x)− ˜̀) sup

x∈Bλ

ˆ
Rd\Bµ

u(y)|x− y|−d−α dy dx

Now note that for x ∈ Bλ, y ∈ Rd \Bµ

|y|
|x− y|

≤|x− y|+ |x|
|x− y|

≤ 1 +
λ

µ− λ
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⇒ |x− y|−d−α ≤
(

µ

µ− λ

)d+α

|y|−d−α. (11.25)

Thus, we have

I2 ≤
(

µ

µ− λ

)d+α ˆ
A(µ,˜̀)(u(x)− ˜̀) dx

ˆ
Rd\Bµ

u(y)|y|−d−α dy

≤ (µ− λ)−d−α Tail

(
u, 0,

1

2

)ˆ
A(µ,˜̀)(u(x)− ˜̀) dx. (11.26)

Obviously

I3 ≤
ˆ
A(µ,˜̀)(u(x)− ˜̀)2 dx. (11.27)

The left-hand side of (11.23) can be estimated by
ˆ
A(µ,˜̀)(u(x)− ˜̀)2φ2(x) dx ≥

ˆ
A(κ,˜̀)(u(x)− ˜̀)2 dx. (11.28)

The combination of (11.23) with (11.24), (11.26), (11.27) and (11.28) yields
ˆ
A(κ,˜̀)(u(x)− ˜̀)2 dx ≤ c

[ (
(λ− κ)−2 + 1

) ˆ
A(µ,˜̀)(u(x)− ˜̀)2 dx

+ (µ− λ)−d−α Tail

(
u, 0,

1

2

)ˆ
A(µ,˜̀)(u(x)− ˜̀) dx

+ F 2|A(λ, ˜̀)|]|A(λ, ˜̀)|ε. (11.29)

Let now L > ˜̀> `, where a lower bound for ` will be given later. Then we have

|A(λ, ˜̀)| ≤ |A(µ, ˜̀)|,ˆ
A(κ,L)

(u(x)− L)2 dx ≤
ˆ
A(κ,˜̀)(u(x)− ˜̀)2 dx,

ˆ
A(µ,˜̀)(u(x)− ˜̀) dx ≤

ˆ
A(µ,`)

(u(x)− `) dx,

ˆ
A(µ,˜̀)(u(x)− ˜̀)2 dx ≤

ˆ
A(µ,`)

(u(x)− `)2 dx,

ˆ
A(µ,˜̀)(u(x)− ˜̀) dx ≤ 1˜̀− `

ˆ
A(µ,`)

(u(x)− `)2 dx,

and

|A(µ, ˜̀)| = |Bµ ∩ {u ≥ ˜̀}|
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= |Bµ ∩ {u− ` ≥ ˜̀− `}|
≤ 1

(˜̀− `)2

ˆ
A(µ,`)

(u(x)− `)2 dx.

From (11.29) we obtain

ˆ
A(κ,L)

(u(x)− L)2 dx ≤ c

[
(λ− κ)−2 + 1 + (µ− λ)−d−α

Tail
(
u, 0, 1

2

)
˜̀− `

+
F 2

(˜̀− `)2

]
1

(˜̀− `)2ε

(ˆ
A(µ,`)

(u(x)− `)2 dx

)1+ε

(11.30)

or

‖(u− L)+‖L2(Br) ≤ c

[
(λ− κ)−2 + 1 + (µ− λ)−d−α

Tail
(
u, 0, 1

2

)
˜̀− `

+
F 2

(˜̀− `)2

] 1
2 1

(˜̀− `)ε ‖(u− `)+‖1+ε
L2(Bµ)

. (11.31)

We recall that (11.31) only holds true if (11.22) is satisfied. But

|wφ 6= 0| = |A(λ, ˜̀)| ≤ 1˜̀
ˆ
Bλ

u(x) dx ≤
√
|B1|
`
‖u‖L2(Bµ).

Therefore, we choose in (11.31)

L > ˜̀> ` >
√
|B1|‖u‖L2(B1). (11.32)

This finishes the proof of (11.16). The proof of (11.17) works analogously, we just need
to modify the estimate of the term I2. Here we we take 1

4 ≤ κ < λ < µ ≤ 1
2 and start

from the inequality (11.23).

We obtain the estimate

I2 ≤
ˆ
A(µ,˜̀)(u(x)− ˜̀) dx sup

x∈Bλ

ˆ
Rd\Bµ

u(y)k(x, y) dy

≤
ˆ
A(µ,˜̀)(u(x)− ˜̀) dxTailk

(
u, 0,

1

2
, λ, µ

)
From the first assertion of the lemma we already know supB 1

2

u <∞. With the help of

Lemma 11.7 we compute

I2 ≤
ˆ
A(µ,˜̀)(u(x)− ˜̀) dxTailk

(
u, 0,

1

2
, λ, µ

)
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≤ c(µ− λ)−2d−α

sup
B 1

2

u+ ‖f‖
Lq
(
B 3µ+λ

4

)ˆ
A(µ,˜̀)(u(x)− ˜̀) dx.

Since the estimates of I1, I3 stay the same, we get analogously to the derivation of (11.31)
for 1

4 ≤ κ < λ < µ ≤ 1
2 and L > ˜̀> ` >

√
|B 1

2
|‖u‖L2(B 1

2
) the inequality

‖(u− L)+‖L2(Bκ)

≤ c

[
(λ− κ)−2 + 1 + (µ− λ)−2d−α

supB 1
2

u+ ‖f‖
Lq
(
B 3µ+λ

4

)
˜̀− `

+
F 2

(˜̀− `)2

] 1
2 ‖(u− `)+‖1+ε

L2(Bµ)

(˜̀− `)ε .

This implies (11.17).

Control of the L∞-norm

The L2-upper-level-set inequality given in Lemma 11.9 is the starting point for our
iteration procedure. This De Giorgi type iteration is done in the proof of the next theorem
below. Note that the upcoming estimates contain an interpolation parameter δ ∈ (0, 1].
This δ is important because it allows us later to reabsorb the supremum on the right-hand
side of inequality (11.34). The local analogue of this result is stated in Theorem 10.6. For
the nonlinear setting of the fractional p-Laplace operator, the analogous result can be
found in [DKP16, Theorem 1.1]. The idea of our proof is taken from there.

Theorem 11.10. Let d ≥ 2, α ∈ (0, 2). Assume f ∈ Lq(B1) for some q > d
α . Let k be a

symmetric kernel that satisfies (A) and (B). Suppose u ∈ V k(B1|Rd)∩L1((1+|x|)−d−α dx)
is nonnegative and satisfies Ek(u, ψ) ≤ (f, ψ) for every nonnegative ψ ∈ Hk

B1
(Rd). Then

there is a constant c > 0, depending only on d, α, q and the constants from (A) and (B),
and ε ∈ (0, 1), depending only on d, α and q, such that the following estimate holds true
for each Br(x0) ⊂ B1 and every δ ∈ (0, 1]:

sup
Br

2
(x0)

u ≤ cδ−
1
ε

( 
Br(x0)

u2(x) dx

)1
2

+ cδTail(u, x0,
r
2)

+ cδr
α− d

q ‖f‖
Lq
(
B 7

8 r
(x0)
). (11.33)
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If in addition k satisfies (C) and u fulfills Ek(u, ψ) = (f, ψ) for every ψ ∈ Hk
B1

(Rd), then

sup
Br

4
(x0)

u ≤ cδ−
1
ε

 
Br

2
(x0)
|u(x)|2 dx

 1
2

+ cδ sup
Br

2
(x0)

u+ cδr
α− d

q ‖f‖
Lq
(
B 31

64 r
(x0)
), (11.34)

where the constant c also depends on the constant from (C). If α ∈ [α0, 2), then c and ε
in (11.33) resp. (11.34) can be chosen to depend on α0 but not on α.

Proof. Let us first prove (11.33) and (11.34) for the case r = 1, x0 = 0. We start with the
proof of (11.33). Let

rj =
1

2

(
1 +

1

2j

)
, `j = `0 +

(
1− 1

2j

)
`

with `0 = c(d)‖u‖L2(B1) and ` > 0 to be specified later. We want to apply Lemma 11.9
with

L = `j+1, ˜̀=
`j+1 + `j

2
, ` = `j ,

and
κ = rj+1, λ =

rj+1 + rj
2

, µ = rj .

This gives us ˜̀− ` = c2−j`, λ− κ = µ− λ =
1

4
2−j .

Thus, by (11.16) with Aj = ‖(u− `j)+‖L2(Brj ) and ε ∈ (0, 1) as in Lemma 11.9

2−jε`
ε
Aj+1 ≤ c

[
22j + 2j(d+α)+j`

−1
Tail

(
u, 0,

1

2

)
+ 22j`

−2‖f‖Lq(Bλ)

] 1
2

A1+ε
j

≤ c2j(d+α+1)

[
1 + `

−1
Tail

(
u, 0,

1

2

)
+ `
−2‖f‖2Lq(B 7

8
)

] 1
2

A1+ε
j . (11.35)

Let δ ∈ (0, 1] be given. Choose

` > δTail

(
u, 0,

1

2

)
+ δ‖f‖Lq(B 7

8
). (11.36)

Then (11.35) implies

`
ε
Aj+1 ≤ c2j(d+α+1+ε)δ−1A1+ε

j ,

or with C = 2(d+α+1+ε) (
Aj+1

`

)
≤ cCjδ−1

(
Aj

`

)1+ε

.
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We want to argue that ` can be chosen in such a way that (11.36) holds and that Aj → 0
for j →∞.

If

` ≥ A0δ
− 1
ε c

1
εC−

1
ε2 + δTail

(
u, 0,

1

2

)
+ δ‖f‖Lq(B 7

8
), (11.37)

then we obtain from Lemma 10.2 that Aj → 0 for j →∞.

By the Dominated Convergence Theorem, see Theorem 2.5, and continuity of the maximum
function we get for almost every x ∈ B 1

2

0 = lim
j→∞

(u− `j)+ = (u− (`+ `0))+,

that is

sup
B 1

2

u ≤ cδ−
1
ε

(ˆ
B1

u2(x) dx

) 1
2

+ δTail

(
u, 0,

1

2

)
+ δ‖f‖Lq(B 7

8
). (11.38)

The proof of (11.34) works now analogously. Here we choose

rj =
1

4

(
1 +

1

2j

)
, `j = `0 +

(
1− 1

2j

)
`

with `0 = c(d)‖u‖L2(B 1
2

) and ` > 0 to be specified later. We apply Lemma 11.9 with

L = `j+1, ˜̀=
`j+1 + `j

2
, ` = `j ,

and
κ = rj+1, λ =

rj+1 + rj
2

, µ = rj .

Then ˜̀− ` = c2−j`, λ−κ = µ−λ = 2j

8 and (11.17) with Aj = ‖(u− `j)+‖L2(Brj ) gives us

Aj+1

`
≤ c2j(2d+α+1+ε)

[
supB1/2

u+ ‖f‖Lq(B31/64)

`
+
‖f‖2Lq(B31/64)

`
2

] 1
2 (

Aj

`

)1+ε

. (11.39)

For a given δ ∈ (0, 1] we now choose

` ≥ δ sup
B 1

2

u+ δ‖f‖
Lq
(
B 31

64

).
Note that this choice is possible since by the first assertion (11.16) we know supB 1

2

u <∞.

Plugging this into (11.39) leads to

Aj+1

`
≤ cδ−12j(2d+α+1+ε)

(
Aj

`

)1+ε

. (11.40)
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By Lemma 10.2 and the same reasoning as in the proof of (11.33) we conclude

sup
B 1

4

u ≤ cδ−
1
ε

ˆ
B 1

2

u2(x) dx

 1
2

+ δ sup
B 1

2

u+ δ‖f‖
Lq
(
B 31

64

), (11.41)

which finishes the proof for the case r = 1 and x0 = 0.

Let now Br(x0) ⊂ B1. Consider J : B1 → Br(x0), J(x) = rx+ x0 and set

ũ(x) = u(J(x)), f̃(x) = rαf(J(x)) and k̃(x, y) = rα+dk(J(x), J(y)).

Note that since u is a weak subsolution in B1, it in particular is a weak subsolution in
Br(x0) ⊂ B1. Therefore, we can apply Lemma 11.6. This together with (11.38) and
(11.41) gives us

sup
B r

2
(x0)

u = sup
B 1

2

ũ

≤ cδ−
1
ε

(ˆ
B1

ũ2(x) dx

) 1
2

+ δTail

(
ũ, 0,

1

2

)
+ δ‖f̃‖Lq(B 7

8
)

= cδ−
1
ε

( 
Br(x0)

u2(x) dx

) 1
2

+ δTail
(
u, x0,

r

2

)
+ δr

α− d
q ‖f‖Lq(B 7

8 r
(x0))

and

sup
B r

4
(x0)

u = sup
B 1

4

ũ

≤ cδ−
1
ε

ˆ
B 1

2

ũ2(x) dx

 1
2

+ δ sup
B 1

2

ũ+ δ‖f̃‖
Lq
(
B 31

64

)
= cδ−

1
ε

( 
B r

2
(x0)

u2(x) dx

) 1
2

+ δ sup
B r

2
(x0)

u+ δr
α− d

q ‖f‖
Lq
(
B 31

64 r
(x0)
),

which finishes the proof of the theorem.

In the next corollary we derive our desired local boundedness result, the counterpart of
the weak Harnack inequality. The idea of the proof is to choose the free parameter δ in
the estimate (11.34) in the right way, so that well known interpolation tools lead to an
inequality of the form mentioned in the iteration Lemma 10.1. The proof is analogous
to the version in the local setting, see Theorem 10.3 and it is also analogous to parts
of the proof of [DKP14, Theorem 1.1], see the paragraph Proof of the nonlocal Harnack
inequality in Section 4 of [DKP14].
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Corollary 11.11. Let d ≥ 2, α ∈ (0, 2) and Br(x0) ⊂ B1. Assume f ∈ Lq(B1) for some
q > d

α and let k be a kernel that satisfies (A), (B) and (C). Let u ∈ V k(B1|Rd)∩L1((1 +
|x|)−d−α dx) such that u ≥ 0 and Ek(u, ψ) = (f, ψ) for every ψ ∈ Hk

B1
(Rd). For each

p ∈ (0, 2] there exists a constant c > 0, depending only on d, α, q, p and the constants from
(A), (B), (C), such that

sup
Br

8
(x0)

u ≤ c

( 
B r

2
(x0)

up(x) dx

)1
p

+ cr
α− d

q ‖f‖
Lq
(
B 31

64 r
(x0)
).

If α ∈ [α0, 2), then c can be chosen to depend on α0 but not on α.

Proof. Let 1
2 ≤ t < s ≤ 1, which in particular implies s− t < t. Then we know from the

first assertion of Theorem 11.10 that

sup
B s

2 r
(x0)

u ≤ sup
B r

2
(x0)

u <∞.

From the second assertion of Theorem 11.10 we conclude with γ = 1
ε

sup
Bt r4

(x0)
u ≤ cδ−γ

( 
Bt r2

(x0)
u2

) 1
2

+ cδ sup
Bt r2

(x0)
u+ cδr

α− d
q ‖f‖

Lq
(
B 31

64 tr
(x0)
)

≤ cδ−γ
(

2s

2t

) d
2

( 
Bs r2

(x0)
u2 dx

) 1
2

+ cδ sup
Bs r2

(x0)
u+ cδr

α− d
q ‖f‖

Lq
(
B 31

64 tr
(x0)
)

≤ cδ−γ
(

1

s− t

) d
2

( 
Bs r2

(x0)
u2 dx

) 1
2

+ cδ sup
Bs r2

(x0)
u+ cδr

α− d
q ‖f‖

Lq
(
B 31

64 tr
(x0)
)

≤ c δ−γ

(s− t)
d
2

 sup
Bs r2

(x0)
u


2−p

2 ( 
Bs r2

(x0)
up(x) dx

) 1
2

+ cδ sup
Bs r2

(x0)
u+ cδr

α− d
q ‖f‖

Lq
(
B 31

64 tr
(x0)
), (11.42)

where p ∈ (0, 2]. If p ∈ (0, 2) we can choose δ = 1
4c and apply the Young inequality with

p̃ = 2
2−p and q̃ = 2

p to obtain

sup
Bt r4

(x0)
u ≤ 1

2
sup

Bs r2
(x0)

u+
1

4
r
α− d

q ‖f‖
Lq
(
B 31

64 tr
(x0)
) +

c(p)

(s− t)
d
p

( 
Bs r2

(x0)
up(x) dx

) 1
p

≤ 1

2
sup

Bs r2
(x0)

u+
1

4
r
α− d

q ‖f‖
Lq
(
B 31

64 r
(x0)
) +

c(p)

(s− t)
d
p

( 
B r

2
(x0)

up(x) dx

) 1
p

.

(11.43)
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Note that the constant in front of the averaged Lp-norm depends on p. If p = 2, then
(11.43) follows from (11.42) by choosing δ = 1

4c .

Now we can apply Lemma 10.1 with

T0 =
r

8
, T1 =

r

4
, f(t) = sup

Bt r4
(x0)

u, ν =
d

p
,

B =
1

4
r
α− d

q ‖f‖
Lq
(
B 31

64 r
(x0)
), A = c

( 
B r

2

up(x) dx

) 1
p

in order to get

sup
B r

8
(x0)

u ≤ c

( 
B r

2
(x0)

up(x) dx

) 1
p

+ cr
α− d

q ‖f‖
Lq
(
B 31

64 r
(x0)
),

which is what we claimed.

11.6. Harnack inequalities

In this section we prove a full Harnack inequality for weak solutions. The proof combines
our local boundedness result with the weak Harnack inequality established in [DK20],
which we also used in Part II of this thesis. For our own convenience we recall the weak
Harnack inequality using the notation inf for the essential infimum.

Theorem 11.12 (weak Harnack inequality). Let d ≥ 2, α ∈ (0, 2). Assume f ∈ Lq(B1)
for q > d

α . Let k be a symmetric kernel that satisfies (A) and (B). Suppose u ∈ V k(B1|Rd)
is a nonnegative function that fulfills Ek(u, ψ) ≥ (f, ψ) for each nonnegative ψ ∈ Hk

B1
(Rd).

Then there exist constants c > 0 and p0 ∈ (0, 1), independent of u, such that for every
Br(x0) ⊂ B1

inf
B r

4 (x0)

u ≥ c

( 
B r

2
(x0)
|u(x)|p0 dx

) 1
p0

− crα−
d
q ‖f‖Lq(B 15

16 r
(x0)).

Proof. The claim follows from [DK20, Theorem 4.1] and a scaling argument.

Theorem 11.13. Let d ≥ 2, α ∈ (0, 2). Assume f ∈ Lq(B1) for q > d
α . Let k be a

symmetric kernel that satisfies (A), (B) and (C). Then there exists a positive constant
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c such that for each nonnegative u ∈ V k(B1|Rd) ∩ L1((1 + |x|)−d−α dx) that has the
property Ek(u, ψ) = (f, ψ) for every ψ ∈ Hk

B1
(Rd), the following inequality holds for every

Br(x0) ⊂ B1:

sup
B r

8
(x0)

u ≤ c inf
B r

8
(x0)

u+ cr
α− d

q ‖f‖
Lq
(
B 15

16 r
(x0)
). (11.44)

If α ∈ [α0, 2), then the constant c may be chosen to depend on α0 but not on α.

Proof. We write Br = Br(x0). The combination of Corollary 11.11 with Theorem 11.12
gives us

sup
Br

8

u ≤ c

( 
B r

2

|u(x)|p0 dx

) 1
p0

+ cr
α− d

q ‖f‖
Lq
(
B 31

64 r

)
≤ c inf

B r
4

u+ cr
α− d

q ‖f‖
Lq
(
B 15

16 r

)
≤ c inf

B r
8

u+ cr
α− d

q ‖f‖
Lq
(
B 15

16 r

),
what we wanted to prove.

Note that (11.44) reduces to the classical Harnack inequality if we consider the case
f = 0.

Let us now drop the assumption that u is nonnegative almost everywhere on Rd and
replace it with a nonnegative assumption on the unit ball.

Theorem 11.14. Let d ≥ 2, α ∈ (0, 2). Assume f ∈ Lq(B1) for q > d
α . Let k be a

symmetric kernel that satisfies (A), (B) and (C). Then there exists a positive constant
c such that for each u ∈ V k(B1|Rd) ∩ L1((1 + |x|)−d−α dx) that satisfies u ≥ 0 in B1

and Ek(u, ψ) = (f, ψ) for every ψ ∈ Hk
B1

(Rd), the following inequality holds for every
Br(x0) ⊂ B1:

sup
B r

8
(x0)

u ≤ c inf
B r

8
(x0)

u+ c sup
x∈B 15

16 r
(x0)

(ˆ
Rd\B1

u−(y)k(x, y) dy

)
+ cr

α− d
q ‖f‖

Lq
(
B 15

16 r
(x0)
).

(11.45)

If α ∈ [α0, 2), then c can be chosen to depend on α0 but not on α.

Proof. We prove the claim for Br(x0) = B1. The assertion then follows by a scaling
argument. Set u = u+ − u−, where u+ = max(0, u) and u− = −min(0, u). Then

Ek(u+, φ) = Ek(u−, φ) + (f, φ)
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=

ˆ
B1

f(x)φ(x) dx− 2

ˆ
B1

ˆ
Rd\B1

u−(y)φ(x)k(x, y) dy dx

=

ˆ
B1

φ(x)

[
f(x)− 2

ˆ
Rd\B1

u−(y)k(x, y) dy

]
dx

for every φ ∈ Hk
B1

(Rd). Set

f̂ : Rd → R, f̂(x) = f(x)− 2

ˆ
Rd\B1

u−(y)k(x, y) dy.

Suppose that f̂ ∈ Lq(B1). Then the function u+ satisfies all conditions of Theorem 11.13
with f replaced by f̂ . On the other hand, if supB 15

16

f̂ = ∞, then the assertion of

Theorem 11.13 is obvious for u+. In any case we can deduce

sup
B 1

8

u = sup
B 1

8

u+ ≤ c inf
B 1

8

u+ + c‖f̂‖
Lq
(
B 15

16

)
≤ c inf

B 1
8

u+ c sup
B 15

16

(ˆ
Rd\B1

u−(y)k(x, y) dy

)
+ c‖f‖

Lq
(
B 15

16

).
The statement of the theorem follows now by scaling.

Remark. Using Lemma 11.6 one can replace the unit ball B1 in all the assertions of
Section 11.6 by some arbitrary ball BR(ξ0) ⊂ R

d and the assumptions (A), (C) by
(A, ξ0, R) and (C, ξ0, R). Then one will recover a full Harnack inequality with tail terms
for weak solutions in BR(ξ0). The constant c in (11.45) however stays the same as in the
case of the unit ball. We emphasize in particular that there is no dependence of c on R.

At the end of this section we provide a more classical version of the Harnack inequality
for nonnegative solutions to equations without a right-hand side.

Theorem 11.15. Let d ≥ 2, α ∈ (0, 2) and BR(ξ0) ⊂ Rd any ball. Let k be a symmetric
kernel that satisfies (A, ξ0, R), (B) and (C, ξ0, R). Assume u ∈ V k(BR(ξ0)|Rd) ∩ L1((1 +
|x|)−d−α) is nonnegative and satisfies Ek(u, ψ) = 0 for every ψ ∈ Hk

BR(ξ0)(R
d). Suppose

Ω ⊂ Rd and Ω ⊂ BR(ξ0). There is a constant c > 0, independent of u, such that

sup
Ω
u ≤ c inf

Ω
u. (11.46)

Proof. The proof uses a standard covering argument. Set ρ = dist(Ω, BR(ξ0)) > 0. Cover
up Ω with a finite family of balls Bi ⊂ BR(x0) of radius ρ

8 so that for every ball Bi there
is another ball Bj with Bi ∩ Bj 6= ∅. From Theorem 11.13 and a scaling argument we
know supBi ≤ c infBi for every i. If now x, y ∈ Ω, then we can construct a chain of points
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x = x1, x2, ..., xn = y so that for every i ∈ {1, ..., n}, xi and xi+1 are in the same ball Bi
of the family {Bi}. Now

u(x) ≤ sup
B1

u(x) ≤ c inf
B1

u(x) ≤ · · · ≤ cn−1 inf
Bn−1

u(x) ≤ cnu(y).

The assertion of the theorem follows.
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12. Examples and a counterexample

In this chapter we provide examples of kernels that satisfy our Condition (A), Condition (B)
and Condition (C). We refer to these examples as positive examples. A consequence from
the previous chapter is that corresponding weak solutions satisfy a Harnack inequality.

We also present a class of kernels that does not satisfy Condition (C).

In the following we often consider d-regular sets.

Definition 12.1. A nonempty set F ⊂ Rd is called d-regular if there exists γ ≥ 1 such
that for all x ∈ F and all 0 < r ≤ 1

γ−1rd ≤ |F ∩Br(x)| ≤ γrd. (12.1)

Remark. A reference for further reading on d-regular sets is [JW84]. Here the authors
first define d-measures on nonempty closed sets F . Then F is called a d-set if such a
d-measure exists on F . In our definition we simplify the situation by taking always the
Lebesgue measure on F as d-measure, that is, F is a d-set (in the sense of [JW84, Chapter
II.1] with d-measure 1F (x) dx.

12.1. Kernels corresponding to a configuration

This section deals with kernels corresponding to admissible configurations Γ as defined in
Part II of this thesis. As in Part II we use the notation V Γ[x] = Γ(x) + x. For α ∈ (0, 2)
we consider kernels of the following form

k : Rd ×Rd → [0,∞], k(x, y) �
(
1V Γ[x](y) + 1V Γ[y](x)

)
|x− y|−d−α.

Obviously, Condition (B) is satisfied for k. From Theorem 8.1 it follows that Condition (A)
is also fulfilled. Therefore, we only need to investigate wheter Condition (C) holds true
or not.

A positive example. Let us assume that Rd is split by a hyperplane H into two regions
H1 and H2. Let Γ be an admissible configuration such that Γ(Rd) = {V 1, V 2} and
Γ(H1) = {V 1},Γ(H2) = {V 2}. Let k : Rd ×Rd → [0,∞] be measurable with

k(x, y) �
(
1V Γ[x](y) + 1V Γ[y](x)

)
|x− y|−d−α. (12.2)
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12. Examples and a counterexample

Since V 1 and V 2 are both d-regular sets, we can choose a constant γ ≥ 1 such that (12.1)
holds for F = V 1 respectively F = V 2 with the same constant γ. Then γ depends on the
minimum of both apex angles of the cones. Let us emphasize that the radius in (12.1)
needs not to be bounded from above by 1, that is, (12.1) holds true for all radii r > 0.

A consequence of the ensuing lemma is that the kernels above enjoy Condition (C).

Lemma 12.2. Let k be an integral kernel as in (12.2). There is a constant c > 0 such
that for every x, y ∈ Rd and every radius 0 < r ≤ |x−y|2 it holds 

Br(x)

(
1V Γ[z](y) + 1V Γ[y](z)

)
dz ≥ c

(
1V Γ[x](y) + 1V Γ[y](x)

)
.

Proof. Let x, y ∈ Rd and 0 < r ≤ |x−y|2 . Suppose 1V Γ[x](y) + 1V Γ[y](x) ≥ 1. Then we can
distinguish two cases. First, we assume 1V Γ[y](x) = 1, that is, x ∈ V Γ[y]. Since a double
cone is d-regular, this implies |Br(x) ∩ V Γ[y]| ≥ γ̃rd, where the constant γ̃ > 0 depends
only on the dimension d and on the apex angle of Γ(y). Thereforeˆ

Br(x)

(
1V Γ[z](y) + 1V Γ[y](z)

)
dz ≥

ˆ
Br(x)

1V Γ[y](z) dz

= |Br(x) ∩ V Γ[y]|
≥ γ̃rd

≥ γ̃rd
(
1V Γ[x](y) + 1V Γ[y](x)

)
.

Now let us consider the second case. We assume x, y ∈ Rd are given such that 1V Γ[x](y) = 1

and 1V Γ[y](x) = 0. This implies y ∈ V Γ[x] and Γ(x) 6= Γ(y).

We may and do assume Γ(x) = V 1 and Γ(y) = V 2.

For simplicity we restrict ourselves to the case that V1[z]∩H1 is a connected set for every
z ∈ H. The other case can be treated similarly.

We easily find a single cone Ṽ that satisfies the following property: If y ∈ H2, then
Ṽ [z] ⊂ V 1[y] for every z ∈ H, see Figure 12.1. The cone Ṽ does only depend on the
configuration Γ. As a consequence, the set Ṽ is d-regular and the constant γ ≥ 1 in (12.1)
depends only on Γ.

Assume now 1V Γ[x](y) = 1V 1[x](y) = 1. Then x ∈ V 1[y] and there exists z ∈ H such that
x ∈ Ṽ [z]. By the d-set property of Ṽ [z] we concludeˆ

Br(x)

(
1V Γ[z](y) + 1V Γ[y](z)

)
dz ≥ |Br(x) ∩ V 1[y]| ≥ |Br(x) ∩ Ṽ [z]| ≥ γ−1rd.

The claim of the lemma follows with c = γ̃ ∧ γ−1, which depends only on Γ.
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12.1. Kernels corresponding to a configuration

Br(x)

V1[y]

H [z]

H1H2

x

y

z

Figure 12.1.: The set H[z] (in blue)

If now x ∈ B1, y ∈ Rd and z ∈ Br(x) for 0 ≤ r ≤
(
|x−y|

2 ∧ 1
4

)
, then |x − y| � |z − y|.

This yields the upcoming corollary.

Corollary 12.3. Let k be an integral kernel as in (12.2). Then k satisfies Condition (C).

A counterexample. In general, we cannot expect Condition (C) to hold true for kernels
arising from configurations. In the following paragraph we give a counterexample. The
verification of this counterexample seems rather technical but the idea behind it can easily
be understood. We consider a configuration that separates Rd into two regions. The
catch is that our Condition (C) does not allow the boundary of any of the regions to
differ to much from a hyperplane. Our counterexample even includes corner points.

We consider d = 2. We look at the admissible configuration Γ with Γ(R2) = {V 1, V 2}
and

H1 = Γ−1(V 1) = {(x, y) |x1 ≥ 0, x2 ≥ 0}, H2 = R
2 \H1.

Denote by {e1, e2} the standard basis of R2. The double cone V 2 shall have symmetry
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12. Examples and a counterexample

axis v2 = λe1 and a very small apex angle ϑ2 � π
4 . The double cone V 1 shall have

symmetry axis v1 = e1 cos
(

5
8π
)

+ e2 sin
(

5
8π
)
and angle ϑ1 ≤ π

8 .

Before we state the formal proof we want to give a brief explanation of the phenomenon
behind this counterexample. Note that we can take a point y ∈ ∂V 1 so that |(V 1 + y) ∩
H1| = 0, see Figure 12.2. Moreover, since ϑ2 is small, y can be chosen so that y /∈ V 2 + z

for any z ∈ Br(x), where 0 < r ≤ |x−y|
2 . This already gives a hint that Condition (C)

cannot hold in this case. Since we exclude nullsets in Condition (C), we have to work a
little bit more to prove that Condition (C) is violated. Our hint from Figure 12.2 can be
understood as the limit case for n→∞ in the formal proof that follows below.

Cone of type II

H2

Cone of type I

H1

x

y

Figure 12.2.: Counterexample for kernels generated by a configuration

We aim at showing the following assertion.

For every C > 0 there are 0 < λ < µ ≤ 1
2 , x0 ∈ B1 and sets of positive measure

M1 ⊂ Bλ(x0),M2 ⊂
(
R

2 \Bµ(x0)
)
such that for each x ∈M1 and every y ∈M2 it holdsˆ

Bµ+λ
2

(x0)

(
1V Γ[x](y) + 1V Γ[y](x) dx

)
< C|µ− λ|2

(
1V Γ[x](y) + 1V Γ[y](x)

)
. (12.3)

Then it follows from Proposition 11.5 that Condition (C) cannot hold for k.

For the present example we can even show that there are universal constants λ, µ and a
universal x0 ∈ B1 such that (12.3) holds for all C > 0. Take x0 = 0, µ = 1

2 , λ = 1
4 . Let
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12.2. Translation invariant kernels

n ∈ N. We consider the cube A 1
n

( 1
2n ,

1
2n) with center ( 1

2n ,
1

2n) and side length 1
n and set

M1 = A 1
n

( 1
2n ,

1
2n). The latter is a subset of Bλ(x0) provided that n is large enough. Now

we construct the set M2. Let V =
⋂
x∈M1

(V 1 + x). We know from Lemma 6.13 that V
contains the double half cone V 1√

2
2n

+ ( 1
2n ,

1
2n). We only consider a subset of this double

half cone, namely

Ṽ = V 1√
2

2n

+

(
1

2n
,

1

2n

)
∩ {(x, y) |y ≥ 0}.

Then Ṽ is a (single) cone with apex at some point x̃ ∈ R2 and symmetry axis v1. We
can write the straight line {λv1 + x̃ |λ ∈ R} as a graph of some function g. For ε > 0
consider the set Ṽ (ε) of all points in Ṽ that have distance at most ε to the boundary of
Ṽ and that lie below the straight line {λv1 + x̃ |λ ∈ R}, that is,

Ṽ (ε) = {x ∈ Ṽ |dist(x, ∂Ṽ ) < ε} ∩ {(x1, x2) ∈ Ṽ |x2 < g(x1)}.

Now set

M2 = M2(n) =
(
R

2 \B1

)
∩ Ṽ

((
1

n
− 1

2n

)√
2

)
=
(
R

2 \B1

)
∩ Ṽ

(√
2

2n

)
.

This construction guarantees that every y ∈ M2 is in particular an element of V 1√
2

2n

+(
1

2n ,
1

2n

)
but not of V 1√

2
n

+
(

1
2n ,

1
2n

)
. Thus, we have for each y ∈M2 the property

M1 = A 1
n

(
1

2n
,

1

2n

)
⊂ V1 + y ⊂ A 2

n

(
1

2n
,

1

2n

)
. (12.4)

Suppose now that C > 0 is some given number. We see that the right-hand side of
(12.3) is equal to C4−2 for x ∈ M1 and y ∈ M2. We note that 1V Γ[y](x) = 0 for all
x ∈M1, y ∈M2 by construction. For the left-hand side we conclude from (12.4)ˆ

B 3
8

(x0)

(
1V Γ[z](y) + 1V Γ[y](z) dz

)
≤
ˆ
B 3

8
(x0)

1V Γ[z](y) dz ≤ c

n2
, (12.5)

whenever x ∈ M1, y ∈ M2. Here c is a constant depending only on ϑ1. If we choose n
sufficiently large, then we see that (12.3) is satisfied.

This counterexample can easily be generalized to any dimension greater than two.
Remark. The above example is important. In contrast to the assertions made in [CKW20,
Example 1.3] it shows that the parabolic Harnack inequality for the corresponding kernel
does not hold true.

12.2. Translation invariant kernels

A function f on the product space Rd ×Rd is called translation invariant if the value of
f at the point (x, y) ∈ Rd ×Rd depends only on the difference x− y ∈ Rd. In that case,
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12. Examples and a counterexample

f can be considered as a function on Rd and by a slight abuse of notation we may write
f(x, y) = f(x− y).

In this short subsection we consider translation invariant kernels.

Positive examples

For α ∈ (0, 2) we deal with kernels of the form

k(x) � 1S(x)|x|−d−α, (12.6)

where the set S is symmetric in the sense S = −S.

Lemma 12.4. If k is a kernel of the form (12.6), where S ∈ B(Rd) is symmetric, then k
satisfies Condition (C) if and only if there is C > 0 so that for almost every x ∈ Rd, x 6= 0

and all 0 < r ≤
(
|x|
2 ∧

1
4

)
:

If x ∈ S, then rd ≤ C|Br(x) ∩ S|. (12.7)

Proof. Let x ∈ B1, y ∈ Rd with x 6= y. Assume 0 < r ≤
(
|x−y|

2 ∧ 1
4

)
. Note that |x− y| is

comparable to |z − y| for all z ∈ Br(x). Thus, we have for some C > 0

(C)⇔ rd1S(x− y) ≤ C
ˆ
Br(x)

1S(z − y) dz

⇔ rd1S(x− y) ≤ C|Br(x− y) ∩ S|.

Renaming x− y by x leads to (12.7). Starting from (12.7) one can use the display above
to deduce Condition (C) for k.

Remark. We point out that (12.7) trivially holds true if S is d-regular.

Condition (B) is obviously satisfied for kernels of the form (12.6). In order to have condition
(A) satisfied, we can apply recent results from [DK20, Theorem 1.6 and Proposition 6.13].
Putting everything together we obtain the following corollary.

Corollary 12.5. Let S be symmetric and assume S satisfies (12.7). Furthermore, suppose
that S fulfills one of the following two conditions:

1. The measure ν∗(dz) = 1S(z)|z|−d−αdz is nondegenerate and satisfies ν∗(rB) =
r−αν∗(B) for any measurable set B ⊂ Rd.

2. There exist a > 1, a positive constant C and xn ∈ (a−nξn, a
−n+1ξn) for ξn ∈

Sd−1, n ∈ N0, such that
⋃
n∈N0

BCa−n(xn) ⊂ S.
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12.2. Translation invariant kernels

Then the kernel k with k(z) � 1S(z)|z|−d−α satisfies (A), (B) and (C).

Remark. The notation for the measure ν∗ is chosen such that it is consistent with the
notation in [DK20].

Note that the condition (12.7) is automatically fulfilled if S is equal to the the symmetrized
union of balls as described in item 2. This is the statement of the next corollary.

Corollary 12.6. Let a > 0 and C > 0. Let (xn) be a sequence with xn = Cnξn for some
ξn ∈ Sd−1, Cn ∈ (a−n+1, a−n), n = 0, 1, ... Assume S =

⋃
n∈N0

BCa−n(xn). Then every
kernel

k(z) � 1S∪(−S)(z)|z|−d−α

satisfies (A), (B) and (C).

Proof. By definition the kernel k is symmetric. Let x ∈ S ∪ (−S). Then there is n ∈ N0

so that x ∈ BCa−n(xn). It follows

|Br(x) ∩ (S ∪ (−S))| ≥ |Br(x) ∩BCa−n(xn)| ≥ crd

for every 0 < r < Ca−n and some constant c > 0, depending only on d. But
|x| ≤ |xn| + |x − xn| ≤ 2Ca−n. Therefore, the above estimate holds in particular
true for 0 < r ≤ |x|2 . This shows, that (12.7) is valid. By construction of the sequence we
immediately see that item 2 holds. The claim follows from Corollary 12.6.

Figure 12.3.: Example for S ∪ (−S) with a = 3
2 and C = 1

5
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A. Auxiliary results for the coercivity
estimate

First, let us recall the Whitney decomposition technique for open sets. The following
proposition is taken from [Gra14, Appendix J]

Proposition A.1. Let Ω be an open nonempty proper subset of Rd. Then there exists a
family of closed dyadic cubes {Qj}j (called the Whitney cubes of Ω) such that

1.
⋃
j Qj = Ω and int(Qi) ∩ int(Qj) = ∅ for i 6= j, where int denotes the interior.

2.
√
d(diameter Qj) ≤ dist(Qj ,Ω

C) ≤ 4
√
d(diameter Qj). Thus 10

√
dQj meets Ωc.

3. If the boundaries of Qj and Qk touch, then

1

4
≤ diameter Qj

diameter Qk
≤ 4.

4. For a given cube Qj there exist at most 12d − 4d cubes Qk that touch Qj.

The next lemma is a version of [DK20, Lemma 6.9] that matches our integral kernels.
Note that [DK20, Lemma 6.9] is concerned with translation invariant expressions. The
proof also applies to our case.

Lemma A.2. Let α ∈ (0, 2) and κ ≥ 1. For B = BR(x0), R > 0, x0 ∈ Rd we set
B∗ = BκR(x0). Let k : Rd ×Rd → R be a symmetric kernel that satisfies (8.1). Suppose
that for some c > 0

c

ˆ

B

ˆ

B

(f(x)− f(y))2|x− y|−d−α dx dy ≤
ˆ

B∗

ˆ

B∗

(f(x)− f(y))2k(x, y) dx dy

for every ball B ⊂ Rd and every f ∈ Hk(B∗). Then for every bounded Lipschitz domain
Ω ⊂ Rd there exists a constant c̃ = c̃(d, κ, α,Ω) > 0 such that for every f ∈ Hk(Ω)

c̃c

ˆ

Ω

ˆ

Ω

(f(x)− f(y))2|x− y|−d−α dx dy ≤
ˆ

Ω

ˆ

Ω

(f(x)− f(y))2k(x, y) dx dy.

The constant c̃ depends on the domain Ω only up to scaling. In particular, if Ω is a ball,
the constant can be chosen independently of Ω. For 0 < α0 ≤ α < 2, the constant c̃ may
be chosen to depend on α0 but not on α.
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A. Auxiliary results for the coercivity estimate

Proof. Let Ω be a bounded Lipschitz domain. The Whitney decomposition technique
provides a family B of balls with the following properties.

(i) There exists a constant c = c(d) such that for every x, y ∈ Ω with |x − y| <
cdist(x, ∂Ω) there exists a ball B ∈ B with x, y ∈ B.

(ii) For every B ∈ B, B∗ ⊂ Ω.

(iii) The family {B∗}B∈B has the finite overlapping property, that is, each point of Ω
belongs to at most M = M(d) balls B∗.

Thus, we have for each f ∈ Hk(Ω),ˆ

Ω

ˆ

Ω

(f(x)− f(y))2k(x, y) dx dy

≥ 1

M2

∑
B∈B

ˆ

B∗

ˆ

B∗

(f(x)− f(y))2k(x, y) dx dy

≥ c

M2

∑
B∈B

ˆ

B

ˆ

B

(f(x)− f(y))2|x− y|−d−α dx dy

≥ cc̃

M2

ˆ

Ω

ˆ

Ω

(f(x)− f(y))2|x− y|−d−α dx dy, (A.1)

where we applied inequality (13) in [Dyd06, proof of Theorem 1] to derive the last in-
equality, see also [PS17, Theorem 1.6]. For a scaled version of Ω we can scale all balls in
the family B by the same factor and arrive at the same constant c̃. The constant stays
bounded when α ∈ [α0, 2) for α0 > 0.

The next lemma follows from the Differentiation Theorem of Lebesgue, see Theorem 2.12.

Lemma A.3. Let ϕ : Rd → R be locally integrable. The following holds for almost every
s ∈ Rd. If (xh)h>0 is a sequence in hZd such that s ∈ Ãh(xh) for every h > 0, then

1

|Ah(xh)|

ˆ

Ah(xh)

ϕ(t) dt
h→0−→ ϕ(s).

Proof. The cube Ãh(xh) is contained in the ball B2h
√
d(s) and we know |Ãh(xh)| =

c|B2h
√
d(s)| for a constant c only depending on the dimension d. Thus, it follows from

the Differentiation Theorem of Lebesgue for almost every s ∈ Rd

1

|Ah(xh)|

ˆ

Ah(xh)

|ϕ(t)− ϕ(s)|ds ≤ 1

|B2h
√
d(s)|

ˆ

B2h
√
d(s)

|ϕ(t)− ϕ(s)| ds h→0−→ 0.

This implies our claim.
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B. The relative Kato condition, the
Harnack inequality and Condition (C)

In [BS05] Bogdan and Sztonyk present a condition that is equivalent to the elliptic
Harnack inequality. They call this condition the relative Kato condition. In the following
short paragraph we present the setup of [BS05] and state and explain the relative Kato
condition. In the remainder of the paragraph we give a direct proof of the statement that
the relative Kato condition holds, provided that Condition (C) is satisfied, the kernel
is as in [BS05] and satisfies a pointwise comparability assumption. Moreover, we also
explain that (C) is not necessary for the relative Kato condition to hold true at least in
the case d = 3.

B.1. Preliminaries

We provide definitions of the Hausdorff and the spherical measure, which are only needed
in this part of the thesis. After that we introduce the relative Kato condition, derive
equivalent formulations and explain the relationship to the Harnack inequality.

The Hausdorff and the spherical measure

In this part of our thesis we work with the spherical measure. Let us first give a formal
definition.

Definition B.1 (Hausdorff measure, spherical measure, compare [Ama08, p. 29 and p.
36]). Let (X, ρ) be a separable metric space with induced topology T . For any set O ⊂ X
let

diam(O) = sup{ρ(x, y) |x, y ∈ O}.

For s > 0, ε > 0 and A ⊂ X define

Hsε(A) = inf

{ ∞∑
i=1

diam(Oi)
s |A ⊂

∞⋃
i=1

Oi, Oi ∈ T ,diam(Oi) < ε for all i

}

and set
Hs(A) = sup

ε>0
Hsε(A).

149



B. The relative Kato condition, the Harnack inequality and Condition (C)

Then Hs is a measure on the Borel σ-algebra of X. It is called the s-dimensional Hausdorff
measure.

For X = Sd−1 the d-dimensional unit sphere with respect to the Euclidean metric in Rd,
let

σ(A) = Hd−1(A)

for any A ∈ B(Sd−1). This measure is called spherical measure.

The relative Kato condition

We start with a short description of the result of Bogdan and Sztonyk. In the following
we only consider kernels k that have the ensuing properties. Our first assumption is that
k 6= 0 is translation invariant. In this case k can be considered as a function on Rd.
Second, we assume that k is (−d− α)-homogeneous for α ∈ (0, 2), that is,

k(z) = |z|−d−αk
(
z

|z|

)
, z ∈ Rd \ {0}.

Definition B.2. A kernel k satisfies the relative Kato condition if there exists a constant
K > 0 such that for every y ∈ Rd \B1ˆ

B 1
2

(y)
|y − v|α−dk(v) dv ≤ K

ˆ
B 1

2
(y)
k(v) dv. (RK)

Note that the reverse inequality to (RK) is always true if d ≥ 2.

The authors show in [BS05, Theorem 1] the following result using tools from potential
theory.

Theorem B.3 (compare [BS05, Theorem 1]). The kernel k satisfies the relative Kato
condition (RK) if and only if there exists a constant C = C(α, k) such that for every
nonnegative harmonic function u in B1 the following Harnack inequality holds for all
x1, x2 ∈ B 1

2
:

u(x1) ≤ Cu(x2). (B.1)

The next lemma provides equivalent formulations of (RK), which will be useful later on.
It includes a spherical version of (RK).

Equivalent statements to (RK)

Theorem B.4. Let d ∈ N, d > 2, α ∈ (0, 2). Let k 6= 0 be a symmetric kernel that is
(−d − α)-homogeneous and satisfies k(z) � κ( z

|z|)|z|
−d−α for a bounded function κ on
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B.2. Condition (C) implies the relative Kato condition

Sd−1. Denote by σ the spherical measure on Sd−1 and by Bξ,r = Br(ξ) ∩ Sd−1 the ball of
radius r > 0 and center ξ ∈ Sd−1 intersected with the unit sphere. Let σ̃(dη) = κ(η)σ(dη).
The following statements are pairwise equivalent:

1. The kernel k satisfies (RK).

2. There are constants K1 > 0 and r0 ∈ (0, 1) such that for each ξ ∈ Sd−1 and every
r ∈ (0, r0)

ˆ
Bξ,r

(
|η − ξ|
r

)α−(d−1)

σ̃(dη) ≤ K1 σ̃(Bξ,r). (B.2)

3. There are constants K2 and r0 ∈ (0, 1) such that for each ξ ∈ Sd−1 and every
r ∈ (0, r0)

ˆ 1

0

σ̃(Bξ,rs)

sd−α
ds ≤ K2 σ̃(Bξ,r). (B.3)

Proof. The equivalence of the first two assertions is part of [BS05, pp. 146]. It remains to
prove the equivalence of the last two statements. This follows from the ensuing equality:

ˆ
Bξ,r

(
|η − ξ|
r

)α−d+1

σ̃(dη) =

ˆ
Bξ,r

(
1 + (d− α− 1)

ˆ 1

|η−ξ|
r

sα−dds

)
σ̃(dη)

=

(
σ̃(Bξ,r) + (d− α− 1)

ˆ 1

0

σ̃(Bξ,sr)

sd−α
ds

)
.

In the last line we used the theorem of Fubini, which is allowed since the integrand is
nonnegative.

B.2. Condition (C) implies the relative Kato condition

We note that under the homogeneity assumption on the kernel Condition (C) expands to
the whole Rd.

Lemma B.5. Let k be a translation invariant, (−d − α)-homogeneous kernel. Then
Condition (C) is equivalent to: There exists a constant C > 0 so that for almost all
x, y ∈ Rd with x 6= y and every 0 < r ≤ |x−y|2

 
Br(x)

k(z, y) dz ≥ Ck(x, y).
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B. The relative Kato condition, the Harnack inequality and Condition (C)

The proof uses a simple substitution combined with the homogeneity of k. We omit it
here.

Now let us assume that k fulfills in addition Condition (A) and Condition (B). Then we
know from Theorem B.3 and Theorem 11.13 that the following holds true:

Condition (C)⇒ Harnack inequality⇔ (RK).

Therefore, it would be nice to have a direct proof of the fact that Condition (C) implies
(RK). In the case were k satisfies some comparability assumption, this is done in the next
proposition.

Theorem B.6. Let M be a Borel set that is symmetric in the sense M = −M . If k is a
(−d− α)-homogeneous kernel that is translation invariant, satisfies k 6= 0, (C) and

k(z) � 1M (z)|z|−d−α for almost all z ∈ Rd, (B.4)

then k satisfies the relative Kato condition.

Proof. For nullsets M the assertion is trivial. Therefore, we assume |M | > 0. Let
y ∈ Rd \B1.

Since |z| � |y| for each z ∈ B 1
2
(y) it is sufficient to prove the existence of K > 0

independent of y so that

ˆ
B 1

2
(y)
|y − z|α−d1M (z) dz ≤ K

ˆ
B 1

2
(y)
1M (z) dz. (B.5)

We derive from Condition (C) in its equivalent formulation (11.4) with λ = 1
4 , µ = 1

2 and
x0 = 0 the inequality

4−dC sup
x∈B 1

4

1M (x− y) ≤
ˆ
B 1

2

1M (z − y) dz,

where above and in the remainder of this proof sup denotes the essential supremum.
Using the symmetry of M we see that the above line is equivalent to

4−dC sup
x∈B 1

4
(y)
1M (x) ≤

ˆ
B 1

2
(y)
1M (z) dz. (B.6)

Denote the essential distance dist∗ of y and M by

dist∗(y,M) = inf {` > 0 | |B`(y) ∩M | > 0} .
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First, we consider the case dist∗(y,M) < 1
4 . Then |B 1

4
(y) ∩M | > 0, which gives

sup
x∈B 1

4
(y)
1M (x) = 1.

Therefore, by (B.6)

4−dC = 4−dC sup
x∈B 1

4
(y)
1M (x) ≤

ˆ
B 1

2
(y)
1M (z) dz. (B.7)

Also, for some c > 0 depending only on the dimension d
ˆ
B 1

2
(y)
|y − z|α−d1M (z) dz ≤

ˆ
B 1

2
(y)
|y − z|α−d dz

≤ c

α
2−α. (B.8)

We can choose K1 > 0 so that

c

α
2−α ≤ 4−dCK1 (B.9)

holds. Then putting together (B.7) and (B.8), we arrive at the estimate (B.5) with
K = K1.

Now suppose dist∗(y,M) ≥ 1
4 . Then we have |B 1

8
(y) ∩M | = 0 and by a decomposition

of the integral we simply get
ˆ
B 1

2
(y)
|y − z|α−d1M (z) dz =

ˆ
B 1

8
(y)∩M

|y − z|α−d dz +

ˆ
B 1

2
(y)\B 1

8
(y)
|y − z|α−d1M (z) dz

≤ 8d−α
ˆ
B 1

2
(y)
1M (z) dz.

In this case, we can take K2 = 8d−α and arrive at (B.5) with K = K2. Now the claim
follows if we choose K as the maximum of K1 and K2.

Remark. In [BS05, p. 148] Bogdan and Sztonyk provide a family of examples of kernels
for which the relative Kato condition fails. The support of these kernels contains a
countably infinite union of cones, where the apex angle degenerates at some point. With
Theorem B.6 we provide a (more or less) direct proof that Condition (C) also fails for
these kernels.
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B.3. The relative Kato condition does not imply
Condition (C)

We want to show that our Condition (C) does not follow from the relative Kato condition.
We provide a counterexample of a class of kernels where each kernel satisfies (RK), (A)
and (B), but violates (C) in the case α ∈ (1, 2). It follows from Theorem B.3 that weak
solutions of the corresponding PDE enjoy a Harnack inequality.

We work in three dimensions. The idea is to construct a set C ⊂ R
3 that involves

a cusp. Then the corresponding kernel k(x, y) = 1C(x − y)|x − y|−d−α cannot satisfy
Condition (C).

The counterexample. Consider the two dimensional set

D = {(x1, x2) | 0 < x1 < 1, 0 < x2 < x2
1}.

We can map it to the upper unit sphere
(
S2 ∩ {x3 > 0}

)
⊂ R3 via the map

Φ : (x1, x2) 7→ (x1, x2, 1) 7→ (x1, x2, 1)/|(x1, x2, 1)|. (B.10)

We set D = Φ(D) ∪ (−Φ(D)), which is a symmetric set on the sphere S2. Let k be a
translation invariant, (−d−α)-homogeneous kernel that satisfies k( x

|x|) � 1D( x
|x|) for each

x ∈ R3 \ {0}, with a comparability constant independent of x.

Our idea now is to use (B.3) in order to verify the relative Kato condition for this specific
kernels. Therefore, we set from now on

σ̃(dη) = 1D(η)σ(dη).

We aim at the following statement.

Proposition B.7. The measure σ̃ satisfies (B.3) for α ∈ (1, 2). In particular, every
translation invariant and (−d− α)-homogeneous kernel k with k(x) � 1D( x

|x|)|x|
−d−α has

the property (RK) provided that α ∈ (1, 2).

Reducing the claim of the proposition to a two-dimensional problem

In order to prove the claim we only need to work in two dimensions and afterwards use
the properties of the map Φ. The following statement yields Proposition B.7. A proof
follows after the proof of the lemma.

Lemma B.8. Let ν(dz) = 1D(z)dz. There exist constants C, r0, s0 > 0 such that for all
r ∈ (0, r0), s ∈ (0, s0) and x ∈ R2

ν(Bsr(x)) ≤ Cs ν(Br(x)). (B.11)
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Proof. The proof consists of three different cases. In the proof we estimate the volume of
balls by the volume of cubes. Therefore, we first recall our notation for cubes

A`(x) =

{
y ∈ R2

∣∣∣∣ |x− y|∞ <
`

2

}
, ` > 0, x ∈ R2.

Furthermore, we denote by

D∗ =
{

(x1, x2) ∈ R2
∣∣ 0 < x1 <

1

2
, 0 < x2 < x2

1

}
⊂ D.

The set D∗ has the property that y = (y1, y2) ∈ D∗ implies (y1 + r
2 , y2) ∈ D for each

r ∈ (0, 1). We use this property in the Case 3. Let r0 = 1
2 and let r ∈ (0, 1

2). Let x ∈ R2.

Case 1: dist(x,D) > r
2 . In this case we always have ν(Bsr(x)) = 0 for s ∈ (0, 1

2). Thus,
the assertion is obviously true.

Case 2: There exists y ∈ B r
2
(x)∩(D\D∗). SinceD\D∗ is a 2-set, we know ν(B r

2
(y)) ≥ cr2

for a constant c > 0 independent of y and r. In this case we have ν(Br(x)) ≥ ν(B r
2
(y)) ≥

cr2 and ν(Bsr(x)) ≤ |Bsr(x)| ≤ c̃s2r2 for any s ∈ (0, 1) and c̃ > 0 depending only on the
dimension d. Thus,

ν(Bsr(x))

ν(Br(x))
≤ c1s

2 ≤ c1s

for c1 depending only on the dimension d and on D∗.

Case 3: Let us assume that Case 1 and Case 2 are not satisfied. First, we consider
any y ∈ D∗ and find a lower bound for ν(B r

2
(y)) and an upper bound for ν(Bsr(y)) for

s ∈ (0, s0), where s0 is to be determined later.

We use the fact that every ball contains a cube of side length comparable to r
2 . Therefore,

ν(B r
2
(y)) ≥ ν(Aδ r

2
(y)) for δ ∈

(
0, (
√

2)−1
)
. In the following calculation we use the

quantities h1 and h2. In order to understand these quantities we refer the reader to
Figure B.1 and Figure B.2. Note that the definition of h2 depends on the upper edge of
the cube and its relation to the set D. Now

ν(B r
2
(y)) ≥ ν(Aδ r

2
(y))

≥ c(δ)h1
r

2
+ c̃(δ)

([
1

6

(r
2

)3
+ y1

(r
2

)2
]

︸ ︷︷ ︸
=:A1

∧
[

1

2
h2

(r
2

)]
︸ ︷︷ ︸

=:A2

)
(B.12)

≥ c(δ)r
(
h1

2
+

[
1

48
r2 +

y1

4
r

]
∧ h2

4

)
,

where we used the notation a ∧ b = min{a, b}. Let us explain the estimate in (B.12). Let
ỹ = (y1, y

2
1). The term A1 is the arithmetic mean of the following two numbers:

1. The area inside the cube between the translated normal parabola with apex ỹ and
the line f(x) = y2

1 , see the red dashed area in Figure B.1.
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2. The area inside the cube between the tangent in ỹ and the line f(x) = y2
1, see the

green dashed area in Figure B.1.

The term A2 takes into account that the upper edge of the cube can lie below the graph
of x2. It describes the area of the green dashed triangle in Figure B.2.

Also we have for any s ∈ (0, 1
2δ )

ν(Bsr(y)) ≤ ν(A2sr(y))

≤ 2h1sr +
([

(y1 + rs)r2s2
]︸ ︷︷ ︸

=:A3

∧ [h2rs]
)

(B.13)

= sr
(
2h1 +

(
y1rs+ r2s2

)
∧ h2

)
.

The above values of h1 and h2 correspond to the cube A2sr(y). But, since A2sr(y) ⊂ Aδ r
2
(y)

for s ∈ (0, 1
2δ ), we may estimate them by the corresponding values for h1 and h2 for

Aδ r
2
(y), that is, h1 and h2 have the same value in (B.12) and (B.13). The term A3

describes the area of the triangle with edge points ỹ, (y1 + sr, y2
1) and (y1 + sr, f(y1 + sr)).

Here f is the linear function with slope 2(y1 + sr) and ỹ ∈ graph(f), that is, the tangent
at (y1 + sr, (y1 + sr)2) translated such that ỹ ∈ graph(f).

Let us now again turn to x ∈ R2. Since the first two cases are not satisfied, the intersection
B r

2
(x) ∩D contains only elements in D∗. Since ν(Brs(x)) = 0 for dist(x,D) ≥ sr, we

only need to consider the case where dist(x,D) < sr. In this case we find y ∈ D∗ ∩Bsr(x)
and Bsr(x) ⊂ B2sr(y). Then we have for s ∈ (0, 1

4δ )

ν(Bsr(x)) ≤ ν(B2sr(y)) ≤ 2sr(2h1 + (2y1rs+ 4r2s2) ∧ h2) (B.14)

and

ν(Br(x)) ≥ ν(B r
2
(y)) ≥ c(δ)r

(
h1

2
+

[
1

48
r2 +

y1

4
r

]
∧ h2

4

)
. (B.15)

Now from (B.14) and (B.15) we deduce (B.11).

In the end we define C as the maximum of both constants that we found in Case 2 and
in Case 3. The claim follows then with r0 = 1

2 and s0 = 1
4δ .
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}h2

}h1

ỹ

y

Figure B.1.: The cube Aδ r
2
(y), situation 1.

h2}

h1

y

ỹ

Figure B.2.: The cube Aδ r
2
(y), situation 2.

Proof of Proposition B.7. The claim follows from the above lemma combined with
properties of the map Φ defined in (B.10). Because of the symmetry, it is sufficient to
prove the claim for the measure 1Φ(D)(η)σ(dη) on S2 ∩ {x3 > 0}, which we will, by a
slight abuse of notation, again denote by σ̃(dη). From [BBI01, Theorem 5.5.5] we know
for any Borel set A ⊂ R2

σ̃(Φ(A)) =

ˆ
A
1D(x)JacΦ(x) dx, (B.16)

where JacΦ(x) = JacΦ(x1, x2) =
√

det [(JΦ(x1, x2))T JΦ(x1, x2)] and JΦ denotes the
Jacobian matrix. We have

(JΦ(x1, x2))T JΦ(x1, x2) =
1

(x2
1 + x2

2 + 1)2

(
x2

2 + 1 −x1x2

−x1x2 x2
1 + 1

)
,
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which yields

JacΦ(x1, x2) =
1

(x2
1 + x2

2 + 1)
3
2

.

Thus, 1
C ≤ JΦ(x) ≤ C for x ∈ Ω for any bounded domain Ω ⊂ R2 and C > 0 depending

only on Ω. From (B.16) we conclude for measurable sets A ⊂ Ω

σ̃(Φ(A)) � |A ∩D|, (B.17)

where the comparability constant is given by the above C.

In the remainder of the proof we use the notation B̃r(x) for balls in R2 and Br(x) for balls
inR3 and since we restrict ourselves to the upper sphere we write Bξ,r = Br(ξ)∩S2∩{x3 >
0}.

By continuity of Φ we know that the preimage of any disc Bξ,r on the upper sphere
contains an open set. Note that the set

D1 =
⋃
x∈D

B̃1(x)

is compact. Therefore, Φ is uniformly continuous on D1. Choose ρ0 ∈ (0, 1) small enough
so that |Bξ,ρ0 ∩Φ(D)| > 0 implies Bξ,ρ0 ⊂ Φ(D1). For r ∈ (0, ρ0) we deduce the existence
of a constant c ≥ 1 such that for any spherical ball Bξ,r that satisfies |Bξ,r ∩ Φ(D)| > 0
we have the following assertion:

Φ(B̃c−1r(Φ
−1(ξ))) ⊂ Bξ,r ⊂ Φ(B̃cr(Φ

−1(ξ))). (B.18)

Simple geometric observations show that c can be chosen independently of r. Thus, the
constant c depends only on the set D.

Let r0, s0 be as in Lemma B.8. We additionally assume that cr0 ≤ ρ0, which may be
realized, if necessary, by decreasing r0. If ξ ∈ S2 and r ∈ (0, cr0) are chosen so that
|Bξ,r ∩ Φ(D)| > 0, then we have by Lemma B.8, (B.17) with Ω = D1, and (B.18) for all
s ∈ (0, s0

c2
)

σ̃(Bξ,sr) ≤ C|B̃csr(y) ∩D|

= C|B̃c2sc−1r(y) ∩D|

≤ Cc2s|B̃c−1r(y) ∩D|
≤ c̃sσ̃(Bξ,r),

where y = Φ−1(ξ) and c̃ > 0 does not depend on r or ξ. On the other hand, if
|Bξ,r ∩ Φ(D)| = 0 for every r ∈ (0, cr0), then σ̃(Bξ,sr) ≤ c̃sσ̃(Bξ,r) is trivially true for
each s ∈ (0, 1). Renaming the constants cr0 to r0 and s0/c

2 to s0 we conclude: There
are constants C > 0, r0 ∈ (0, 1) and s0 ∈ (0, 1) such that for all ξ ∈ S2 ∩ {x3 > 0}, s ∈
(0, s0), r ∈ (0, r0)

σ̃(Bξ,sr) ≤ Cs σ̃(Bξ,r).
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Thus,
ˆ 1

0

σ̃(Bξ,sr)

s2−α ds ≤ C
ˆ s0

0

sσ̃(Bξ,r)

s2−α ds+

ˆ 1

s0

σ̃(Bξ,r)

s2−α ds

≤ C
(ˆ s0

0
sα−1 ds+

ˆ 1

s0

sα−2 ds

)
σ̃(Bξ,r).

The claim follows with K2 = C
(´ s0

0 sα−1 ds+
´ 1
s0
sα−2 ds

)
<∞ for α ∈ (1, 2).

Remark. The inequality (B.11) is crucial for the range of α in Proposition B.7. It is
possible that more precise estimates in the proof of Lemma B.8 allow for a larger range of
α. One could also try to modify the set D by changing the cusp at the origin in order to
find a larger range of α. Since we were only interested in finding an example of a kernel
that satisfies (RK) and violates Condition (C), we will not investigate this topic further.

We remark that kernels of the type k(z) � 1D( z
|z|)|z|

−d−α satisfy Condition (A) by [DK20,
Theorem 1.6] and, obviously, Condition (B), but they do not satisfy Condition (C), as
shown in the next proposition.

Proposition B.9. Every translation invariant and (−d− α)-homogeneous kernel k with
k( x
|x|) � 1D( x

|x|) for x ∈ R3 \ {0} violates Condition (C).

The proof uses a contradiction argument. Since Condition (C) is formulated with respect
to nullsets, the proof becomes rather technical. The reader may keep the following idea
in mind while reading the proof. Let

C = R+D = {λξ |λ > 0, ξ ∈ D}.

Take x = (0, 0, 1) ∈ D. Then
|Br(x) ∩ C| � r4,

by the construction of D as a set below the graph of z 7→ z2. This leads to a contradiction
to |Br(x) ∩ C|C ≥ r3 for C > 0 if we consider the limit r → 0. But, provided that
(C) is satisfied, according to Lemma 12.4 the last inequality holds true (at least almost
everywhere) for sufficiently small r.

Proof of Proposition B.9. In this proof we work with balls in R2 as well as balls in R3. In
order to avoid any confusion, we denote by B̃r(x) the ball with respect to the Euclidean
metric in R2 and use the notation Br(x) for the ball with respect to the metric in R3.

Assume k satisfies (C). Similar to the proof of Lemma 12.4 we derive from Lemma B.5
the assertion: There exists a constant C > 0 such that for almost every x ∈ R3, x 6= 0
and all 0 < r ≤ |x|2 : (

x

|x|
∈ D⇒ r3 ≤ C|Br(x) ∩ C|

)
. (B.19)
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Now let C > 0 be any given constant. We construct a set Aε ⊂ C of positive measure
and a sequence (rε) of radii, so that (B.19) is false for ε > 0 depending on C.

Let ε ∈ (0, 1
3) and consider the set Dε = {x ∈ R2 | 0 < x1 < ε, 0 < x2 < x2

1}. Set
Dε = Φ(Dε), where Φ is as in (B.10). Similar to the reasoning leading to (B.18) we find a
constant cΦ ≥ 1 so that for every ξ ∈ Dε and sufficiently small r > 0 there is y ∈ Dε with

Bξ,r ⊂ Φ(B̃cΦr(y)). (B.20)

Choose rε = 2(cΦ)−1ε
√

1 + ε2. Then cΦrε
2 is large enough so that for every x ∈ Dε we

have |B̃ cΦrε
2

(x) ∩D| � ε3 with a comparability constant independent of x and ε. With
the same reasoning as in the proof of Proposition B.7 we obtain for each x ∈ Dε

σ̃(Φ(B̃ cΦrε
2

(x))) � |B̃ cΦrε
2

(x) ∩D| � ε3, (B.21)

where all comparability constants are independent of x and ε.

Set Aε = {λξ | ξ ∈ Dε, 2 < λ < 3}. If x ∈ Aε, then x
|x| ∈ Dε. Now it follows from (B.20)

and (B.21) for ε small enough that there is c ≥ 1, independent of x and ε, such that

|Brε(x) ∩ C| = |x|3
∣∣∣∣B rε
|x|

(
x

|x|

)
∩ C

∣∣∣∣
≤ |x|3

∣∣∣∣[1− rε, 1 + rε] ·
(
B rε
|x|

(
x

|x|

)
∩D

)∣∣∣∣
≤ crεσ̃

(
B x
|x| ,

rε
2

)
≤ crεσ̃(Φ(B̃ cΦrε

2
(y))

≤ crεε3.

Since rε ≤ 1 < |x|
2 , we have by (B.19) the inequality r3

ε ≤ Crεε3, that is,

4

(cΦ)2
ε2(1 + ε2) ≤ Cε3 ⇔ 1

ε
+ ε ≤ C(cΦ)2

4
.

But this cannot hold true if we choose ε small enough.

Corollary B.10. Let k : R3×R3 → [0,∞] be a symmetric kernel that has the properties
(A) and (B). Then Condition (C) is sufficient but not necessary for the validity of the
elliptic Harnack inequality (B.1).

Remark. We expect that the results of this last section and especially the statement
from the above corollary can be generalized to any d > 3.

160



Bibliography

[Ada75] Robert A. Adams. Sobolev spaces. Pure and Applied Mathematics, Vol. 65.
Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New
York-London, 1975, pp. xviii+268 (cit. on pp. 32, 34).

[Alt16] Hans Wilhelm Alt. Linear Functional Analysis. eng. Universitext. London:
Springer London, 2016, XII, 435 p. 19 illus. isbn: 978-1-4471-7280-2. url:
https://link.springer.com/book/10.1007%2F978- 1- 4471- 7280- 2
(cit. on p. 38).

[Ama08] Herbert Amann. Analysis III. ger. Ed. by Joachim Escher. Zweite Auflage.
Grundstudium Mathematik. Basel: Birkhäuser Basel, 2008. isbn: 978-3-7643-
8884-3. url: https://link.springer.com/book/10.1007%2F978-3-7643-
8884-3 (cit. on pp. 25, 149).

[Aum69] Robert J. Aumann. “Measurable utility and the measurable choice theorem”.
In: La Décision, 2: Agrégation et Dynamique des Ordres de Préférence (Actes
Colloq. Internat., Aix-en-Provence, 1967). Éditions du Centre Nat. Recherche
Sci., Paris, 1969, pp. 15–26 (cit. on p. 52).

[BBK09] Martin T. Barlow, Richard F. Bass, and Takashi Kumagai. “Parabolic Harnack
inequality and heat kernel estimates for random walks with long range jumps”.
In:Math. Z. 261.2 (2009), pp. 297–320. issn: 0025-5874. doi: 10.1007/s00209-
008-0326-5. url: https://doi.org/10.1007/s00209-008-0326-5 (cit. on
pp. 17, 113).

[BM18] Martin T. Barlow and Mathav Murugan. “Stability of the elliptic Harnack
inequality”. In: Ann. of Math. (2) 187.3 (2018), pp. 777–823. issn: 0003-486X.
doi: 10.4007/annals.2018.187.3.4. url: https://doi.org/10.4007/
annals.2018.187.3.4 (cit. on p. 17).

[Bas13] Richard F. Bass. “A stability theorem for elliptic Harnack inequalities”. In:
J. Eur. Math. Soc. (JEMS) 15.3 (2013), pp. 857–876. issn: 1435-9855. doi:
10.4171/JEMS/379. url: https://doi.org/10.4171/JEMS/379 (cit. on
p. 17).

[Bau01] Heinz Bauer. Measure and integration theory. eng. Vol. 26. De Gruyter studies
in mathematics ; 26. Berlin [u.a.]: de Gruyter, 2001, XVI, 230 S. isbn: 3-11-
016719-0 (cit. on p. 25).

161

https://link.springer.com/book/10.1007%2F978-1-4471-7280-2
https://link.springer.com/book/10.1007%2F978-3-7643-8884-3
https://link.springer.com/book/10.1007%2F978-3-7643-8884-3
https://doi.org/10.1007/s00209-008-0326-5
https://doi.org/10.1007/s00209-008-0326-5
https://doi.org/10.1007/s00209-008-0326-5
https://doi.org/10.4007/annals.2018.187.3.4
https://doi.org/10.4007/annals.2018.187.3.4
https://doi.org/10.4007/annals.2018.187.3.4
https://doi.org/10.4171/JEMS/379
https://doi.org/10.4171/JEMS/379


BIBLIOGRAPHY

[BS07] Krzysztof Bogdan and Paweł Sztonyk. “Estimates of the potential kernel and
Harnack’s inequality for the anisotropic fractional Laplacian”. In: Studia Math.
181.2 (2007), pp. 101–123. issn: 0039-3223. doi: 10.4064/sm181-2-1. url:
https://doi.org/10.4064/sm181-2-1 (cit. on p. 17).

[BS05] Krzysztof Bogdan and Paweł Sztonyk. “Harnack’s inequality for stable Lévy
processes”. In: Potential Anal. 22.2 (2005), pp. 133–150. issn: 0926-2601. doi:
10.1007/s11118-004-0590-x. url: https://doi.org/10.1007/s11118-
004-0590-x (cit. on pp. 12, 15, 17, 97, 112, 149–151, 153).

[Bol81] Ludwig Boltzmann. Vorlesungen ueber Gastheorie. Erw. Nachdr. d. 1896 -
1898 bei Barth in Leipzig ersch. Ausg. Vol. 1. Gesamtausgabe / Boltzmann,
Ludwig ; 1. Graz: Akad. Druck- u. Verlagsanst., 1981. isbn: 3-201-01168-1,
3-528-08550-9 (cit. on p. 6).

[BBI01] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry.
Vol. 33. Graduate Studies in Mathematics. American Mathematical Society,
Providence, RI, 2001, pp. xiv+415. isbn: 0-8218-2129-6. doi: 10.1090/gsm/
033. url: https://doi.org/10.1090/gsm/033 (cit. on p. 157).

[BKS19] Kai-Uwe Bux, Moritz Kassmann, and Tim Schulze. “Quadratic forms and
Sobolev spaces of fractional order”. In: Proc. Lond. Math. Soc. (3) 119.3
(2019), pp. 841–866. issn: 0024-6115. doi: 10.1112/plms.12246. url: https:
//doi.org/10.1112/plms.12246 (cit. on pp. 11, 22).

[CK20] Jamil Chaker and Moritz Kassmann. “Nonlocal operators with singular
anisotropic kernels”. In: Comm. Partial Differential Equations 45.1 (2020),
pp. 1–31. issn: 0360-5302. doi: 10.1080/03605302.2019.1651335. url:
https://doi.org/10.1080/03605302.2019.1651335 (cit. on pp. 16, 89,
90).

[CS19] Jamil Chaker and Luis Silvestre. “Coercivity estimates for integro-differential
operators”. In: arXiv (2019). eprint: arXiv:1904.13014 (cit. on pp. 9, 10).

[CG11] Sun-Yung Alice Chang and María del Mar González. “Fractional Laplacian
in conformal geometry”. In: Adv. Math. 226.2 (2011), pp. 1410–1432. issn:
0001-8708. doi: 10.1016/j.aim.2010.07.016. url: https://doi.org/10.
1016/j.aim.2010.07.016 (cit. on p. 5).

[CKW19] Zhen-Qing Chen, Takashi Kumagai, and Jian Wang. “Elliptic Harnack inequal-
ities for symmetric non-local Dirichlet forms”. In: J. Math. Pures Appl. (9)
125 (2019), pp. 1–42. issn: 0021-7824. doi: 10.1016/j.matpur.2017.10.011.
url: https://doi.org/10.1016/j.matpur.2017.10.011 (cit. on p. 17).

[CKW20] Zhen-Qing Chen, Takashi Kumagai, and Jian Wang. “Stability of parabolic
Harnack inequalities for symmetric non-local Dirichlet forms”. In: J. Eur.
Math. Soc. (JEMS) (to appear in 2020) (cit. on pp. 12, 17, 113, 115, 143).

[CT04] Rama Cont and Peter Tankov. Financial modelling with jump processes.
Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC,
Boca Raton, FL, 2004, pp. xvi+535. isbn: 1-5848-8413-4 (cit. on p. 5).

162

https://doi.org/10.4064/sm181-2-1
https://doi.org/10.4064/sm181-2-1
https://doi.org/10.1007/s11118-004-0590-x
https://doi.org/10.1007/s11118-004-0590-x
https://doi.org/10.1007/s11118-004-0590-x
https://doi.org/10.1090/gsm/033
https://doi.org/10.1090/gsm/033
https://doi.org/10.1090/gsm/033
https://doi.org/10.1112/plms.12246
https://doi.org/10.1112/plms.12246
https://doi.org/10.1112/plms.12246
https://doi.org/10.1080/03605302.2019.1651335
https://doi.org/10.1080/03605302.2019.1651335
arXiv:1904.13014
https://doi.org/10.1016/j.aim.2010.07.016
https://doi.org/10.1016/j.aim.2010.07.016
https://doi.org/10.1016/j.aim.2010.07.016
https://doi.org/10.1016/j.matpur.2017.10.011
https://doi.org/10.1016/j.matpur.2017.10.011


BIBLIOGRAPHY

[Coz17] Matteo Cozzi. “Regularity results and Harnack inequalities for minimizers and
solutions of nonlocal problems: a unified approach via fractional De Giorgi
classes”. In: J. Funct. Anal. 272.11 (2017), pp. 4762–4837. issn: 0022-1236.
doi: 10.1016/j.jfa.2017.02.016. url: https://doi.org/10.1016/j.jfa.
2017.02.016 (cit. on pp. 16, 112).

[De 57] Ennio De Giorgi. “Sulla differenziabilità e l’analiticità delle estremali degli
integrali multipli regolari”. In: Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat.
Nat. (3) 3 (1957), pp. 25–43 (cit. on pp. 15, 99).

[Deb67] Gerard Debreu. “Integration of correspondences”. In: Proc. Fifth Berkeley
Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II:
Contributions to Probability Theory, Part 1. Univ. California Press, Berkeley,
Calif., 1967, pp. 351–372 (cit. on p. 52).

[DD12] Françoise Demengel and Gilbert Demengel. Functional spaces for the theory
of elliptic partial differential equations. eng. Universitext. London: Springer
[u.a.], 2012, XVIII, 465 S. isbn: 978-1-4471-2806-9, 978-2-7598-0698-0 (cit. on
pp. 31, 32, 34).

[DKP16] Agnese Di Castro, Tuomo Kuusi, and Giampiero Palatucci. “Local behavior
of fractional p-minimizers”. In: Ann. Inst. H. Poincaré Anal. Non Linéaire
33.5 (2016), pp. 1279–1299. issn: 0294-1449. doi: 10.1016/j.anihpc.2015.
04.003. url: https://doi.org/10.1016/j.anihpc.2015.04.003 (cit. on
pp. 13, 15–18, 97, 110, 111, 121, 129).

[DKP14] Agnese Di Castro, Tuomo Kuusi, and Giampiero Palatucci. “Nonlocal Harnack
inequalities”. In: J. Funct. Anal. 267.6 (2014), pp. 1807–1836. issn: 0022-1236.
doi: 10.1016/j.jfa.2014.05.023. url: https://doi.org/10.1016/j.jfa.
2014.05.023 (cit. on pp. 13–16, 18, 97, 111, 112, 117, 118, 132).

[DPV12] Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci. “Hitchhiker’s
guide to the fractional Sobolev spaces”. In: Bull. Sci. Math. 136.5 (2012),
pp. 521–573. issn: 0007-4497. doi: 10.1016/j.bulsci.2011.12.004. url:
https://doi.org/10.1016/j.bulsci.2011.12.004 (cit. on p. 6).

[DRV17] Serena Dipierro, Xavier Ros-Oton, and Enrico Valdinoci. “Nonlocal problems
with Neumann boundary conditions”. In: Rev. Mat. Iberoam. 33.2 (2017),
pp. 377–416. issn: 0213-2230. doi: 10.4171/RMI/942. url: https://doi.
org/10.4171/RMI/942 (cit. on p. 35).

[Dyd06] Bartłomiej Dyda. “On comparability of integral forms”. In: J. Math. Anal.
Appl. 318.2 (2006), pp. 564–577. issn: 0022-247X. doi: 10.1016/j.jmaa.
2005.06.021. url: http://dx.doi.org/10.1016/j.jmaa.2005.06.021
(cit. on p. 148).

[DK20] Bartłomiej Dyda and Moritz Kassmann. “Regularity estimates for elliptic
nonlocal operators”. In: Analysis & PDE (to appear in 2020) (cit. on pp. 7, 9,
11–13, 16, 22, 88–90, 94, 97, 112, 134, 144, 145, 147, 159).

163

https://doi.org/10.1016/j.jfa.2017.02.016
https://doi.org/10.1016/j.jfa.2017.02.016
https://doi.org/10.1016/j.jfa.2017.02.016
https://doi.org/10.1016/j.anihpc.2015.04.003
https://doi.org/10.1016/j.anihpc.2015.04.003
https://doi.org/10.1016/j.anihpc.2015.04.003
https://doi.org/10.1016/j.jfa.2014.05.023
https://doi.org/10.1016/j.jfa.2014.05.023
https://doi.org/10.1016/j.jfa.2014.05.023
https://doi.org/10.1016/j.bulsci.2011.12.004
https://doi.org/10.1016/j.bulsci.2011.12.004
https://doi.org/10.4171/RMI/942
https://doi.org/10.4171/RMI/942
https://doi.org/10.4171/RMI/942
https://doi.org/10.1016/j.jmaa.2005.06.021
https://doi.org/10.1016/j.jmaa.2005.06.021
http://dx.doi.org/10.1016/j.jmaa.2005.06.021


BIBLIOGRAPHY

[FK13] Matthieu Felsinger and Moritz Kassmann. “Local regularity for parabolic
nonlocal operators”. In: Comm. Partial Differential Equations 38.9 (2013),
pp. 1539–1573. issn: 0360-5302. doi: 10.1080/03605302.2013.808211. url:
https://doi.org/10.1080/03605302.2013.808211 (cit. on p. 7).

[FKV15] Matthieu Felsinger, Moritz Kassmann, and Paul Voigt. “The Dirichlet problem
for nonlocal operators”. In: Mathematische Zeitschrift 279.3 (Apr. 2015),
pp. 779–809. issn: 1432-1823. doi: 10.1007/s00209- 014- 1394- 3. url:
https://doi.org/10.1007/s00209-014-1394-3 (cit. on pp. 35, 36, 39).

[FOT94] Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda. Dirichlet forms
and symmetric Markov processes. Vol. 19. De Gruyter Studies in Mathematics.
Walter de Gruyter & Co., Berlin, 1994, pp. x+392. isbn: 3-11-011626-X. doi:
10.1515/9783110889741. url: https://doi.org/10.1515/9783110889741
(cit. on pp. 41–44).

[GG82] Mariano Giaquinta and Enrico Giusti. “On the regularity of the minima of
variational integrals”. In: Acta Math. 148 (1982), pp. 31–46. doi: 10.1007/
BF02392725. url: https://doi.org/10.1007/BF02392725 (cit. on pp. 16,
99).

[Gra14] Loukas Grafakos. Classical Fourier Analysis. eng. 3rd ed. 2014. Graduate
Texts in Mathematics ; 249. New York, NY: Springer New York, 2014, XVII,
638 p. 14 illus., 2 illus. in color. isbn: 978-1-4939-1194-3. url: https://link.
springer.com/book/10.1007%2F978-1-4939-1194-3 (cit. on p. 147).

[HL11] Qing Han and Fanghua Lin. Elliptic partial differential equations. eng. Second
edition. Vol. 1. Courant lecture notes ; 1. New York, New York: Courant
Institute of Mathematical Sciences, 2011, 147 Seiten. isbn: 9781470411367.
url: http://www.ams.org/books/cln/001/ (cit. on p. 99).

[Him75] C. Himmelberg. “Measurable relations”. eng. In: Fundamenta Mathematicae
87.1 (1975), pp. 53–72. url: http://eudml.org/doc/214809 (cit. on p. 52).

[HK07] Ryad Husseini and Moritz Kassmann. “Markov chain approximations for
symmetric jump processes”. In: Potential Anal. 27.4 (2007), pp. 353–380. issn:
0926-2601. doi: 10.1007/s11118-007-9060-6. url: https://doi.org/10.
1007/s11118-007-9060-6 (cit. on p. 8).

[IS20] Cyril Imbert and Luis Silvestre. “The weak Harnack inequality for the Boltz-
mann equation without cut-off”. In: J. Eur. Math. Soc. (JEMS) 22.2 (2020),
pp. 507–592. issn: 1435-9855. doi: 10.4171/jems/928. url: https://doi.
org/10.4171/jems/928 (cit. on pp. 6, 9).

[JW84] Alf Jonsson and Hans Wallin. “Function spaces on subsets of Rn”. In: Math.
Rep. 2.1 (1984), pp. xiv+221. issn: 0275-7214 (cit. on p. 139).

[Kas07a] Moritz Kassmann. “Analysis of symmetric Markov jump processes. A localiza-
tion technique for non-local operators”. Habilitationsschrift. Universität Bonn,
2007 (cit. on p. 16).

164

https://doi.org/10.1080/03605302.2013.808211
https://doi.org/10.1080/03605302.2013.808211
https://doi.org/10.1007/s00209-014-1394-3
https://doi.org/10.1007/s00209-014-1394-3
https://doi.org/10.1515/9783110889741
https://doi.org/10.1515/9783110889741
https://doi.org/10.1007/BF02392725
https://doi.org/10.1007/BF02392725
https://doi.org/10.1007/BF02392725
https://link.springer.com/book/10.1007%2F978-1-4939-1194-3
https://link.springer.com/book/10.1007%2F978-1-4939-1194-3
http://www.ams.org/books/cln/001/
http://eudml.org/doc/214809
https://doi.org/10.1007/s11118-007-9060-6
https://doi.org/10.1007/s11118-007-9060-6
https://doi.org/10.1007/s11118-007-9060-6
https://doi.org/10.4171/jems/928
https://doi.org/10.4171/jems/928
https://doi.org/10.4171/jems/928


BIBLIOGRAPHY

[Kas11] Moritz Kassmann. “Harnack inequalities and Hölder regularity estimates for
nonlocal operators revisited”. In: SFB 701 preprint No. 11015 (2011), pp. 1–25
(cit. on p. 16).

[Kas07b] Moritz Kassmann. “Harnack inequalities: an introduction”. In: Bound. Value
Probl. (2007), Art. ID 81415, 21. issn: 1687-2762. doi: 10.1155/2007/81415.
url: https://doi.org/10.1155/2007/81415 (cit. on p. 16).

[Kas07c] Moritz Kassmann. “The classical Harnack inequality fails for nonlocal opera-
tors”. In: SFB 601 preprint No. 360 (2007), pp. 1–7 (cit. on p. 16).

[KS14] Moritz Kassmann and Russell W. Schwab. “Regularity results for nonlocal
parabolic equations”. In: Riv. Math. Univ. Parma (N.S.) 5.1 (2014), pp. 183–
212. issn: 0035-6298 (cit. on p. 7).

[Kwa19] Mateusz Kwaśnicki. “Fractional Laplace operator and its properties”. In:
Handbook of fractional calculus with applications. Vol. 1. De Gruyter, Berlin,
2019, pp. 159–193 (cit. on p. 6).

[Ler14] Nicolas Lerner. A Course on Integration Theory. eng. Basel: Springer Basel,
2014, XVIII, 492 p. 15 illus., 3 illus. in color. isbn: 978-3-0348-0694-7. url:
https://link.springer.com/book/10.1007%2F978-3-0348-0694-7 (cit.
on p. 25).

[Mos60] Jürgen Moser. “A new proof of De Giorgi’s theorem concerning the regularity
problem for elliptic differential equations”. In: Comm. Pure Appl. Math. 13
(1960), pp. 457–468. issn: 0010-3640. doi: 10.1002/cpa.3160130308. url:
https://doi.org/10.1002/cpa.3160130308 (cit. on pp. 16, 99).

[Mos61] Jürgen Moser. “On Harnack’s theorem for elliptic differential equations”. In:
Communications on Pure and Applied Mathematics 14.3 (1961), pp. 577–591.
doi: 10.1002/cpa.3160140329. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/cpa.3160140329. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/cpa.3160140329 (cit. on p. 16).

[Nas58] J. Nash. “Continuity of solutions of parabolic and elliptic equations”. In: Amer.
J. Math. 80 (1958), pp. 931–954. issn: 0002-9327. doi: 10.2307/2372841.
url: https://doi.org/10.2307/2372841 (cit. on pp. 15, 99).

[Pon16] Augusto C. Ponce. Elliptic PDEs, measures and capacities. Vol. 23. EMS
Tracts in Mathematics. From the Poisson equations to nonlinear Thomas-Fermi
problems. European Mathematical Society (EMS), Zürich, 2016, p. 453. isbn:
978-3-03719-140-8. doi: 10.4171/140. url: https://doi.org/10.4171/140
(cit. on p. 32).

[PS17] Martí Prats and Eero Saksman. “A T(1) Theorem for Fractional Sobolev
Spaces on Domains”. In: J. Geom. Anal. 27.3 (2017), pp. 2490–2538. issn:
1050-6926. doi: 10.1007/s12220-017-9770-y. url: http://dx.doi.org/
10.1007/s12220-017-9770-y (cit. on p. 148).

165

https://doi.org/10.1155/2007/81415
https://doi.org/10.1155/2007/81415
https://link.springer.com/book/10.1007%2F978-3-0348-0694-7
https://doi.org/10.1002/cpa.3160130308
https://doi.org/10.1002/cpa.3160130308
https://doi.org/10.1002/cpa.3160140329
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.3160140329
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.3160140329
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160140329
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160140329
https://doi.org/10.2307/2372841
https://doi.org/10.2307/2372841
https://doi.org/10.4171/140
https://doi.org/10.4171/140
https://doi.org/10.1007/s12220-017-9770-y
http://dx.doi.org/10.1007/s12220-017-9770-y
http://dx.doi.org/10.1007/s12220-017-9770-y


BIBLIOGRAPHY

[Sil00] S.A. Silling. “Reformulation of elasticity theory for discontinuities and long-
range forces”. In: Journal of the Mechanics and Physics of Solids 48.1 (2000),
pp. 175–209. issn: 0022-5096. doi: https://doi.org/10.1016/S0022-
5096(99 ) 00029 - 0. url: http : / / www . sciencedirect . com / science /
article/pii/S0022509699000290 (cit. on p. 5).

[Sil16] Luis Silvestre. “A new regularization mechanism for the Boltzmann equation
without cut-off”. In: Comm. Math. Phys. 348.1 (2016), pp. 69–100. issn: 0010-
3616. doi: 10.1007/s00220-016-2757-x. url: https://doi.org/10.1007/
s00220-016-2757-x (cit. on p. 6).

[SS05] Elias M. Stein and Rami Shakarchi. Real analysis. eng. Vol. 3. Princeton
lectures in analysis / Elias M. Stein & Rami Shakarchi ; 3. Princeton [u.a.]:
Princeton Univ. Press, 2005, XIX, 402 S. : graph. Darst. isbn: 978-0-691-
11386-9, 0-691-11386-6 (cit. on p. 31).

[Str19] Martin Strömqvist. “Harnack’s inequality for parabolic nonlocal equations”.
In: Ann. Inst. H. Poincaré Anal. Non Linéaire 36.6 (2019), pp. 1709–1745.
issn: 0294-1449. doi: 10.1016/j.anihpc.2019.03.003. url: https://doi.
org/10.1016/j.anihpc.2019.03.003 (cit. on p. 18).

[Vas16] Alexis F. Vasseur. “The De Giorgi method for elliptic and parabolic equations
and some applications”. In: Lectures on the analysis of nonlinear partial
differential equations. Part 4. Vol. 4. Morningside Lect. Math. Int. Press,
Somerville, MA, 2016, pp. 195–222 (cit. on p. 99).

[Vil02] Cédric Villani. “A review of mathematical topics in collisional kinetic the-
ory”. In: Handbook of mathematical fluid dynamics, Vol. I. North-Holland,
Amsterdam, 2002, pp. 71–305. doi: 10.1016/S1874-5792(02)80004-0. url:
https://doi.org/10.1016/S1874-5792(02)80004-0 (cit. on pp. 5, 6).

166

https://doi.org/https://doi.org/10.1016/S0022-5096(99)00029-0
https://doi.org/https://doi.org/10.1016/S0022-5096(99)00029-0
http://www.sciencedirect.com/science/article/pii/S0022509699000290
http://www.sciencedirect.com/science/article/pii/S0022509699000290
https://doi.org/10.1007/s00220-016-2757-x
https://doi.org/10.1007/s00220-016-2757-x
https://doi.org/10.1007/s00220-016-2757-x
https://doi.org/10.1016/j.anihpc.2019.03.003
https://doi.org/10.1016/j.anihpc.2019.03.003
https://doi.org/10.1016/j.anihpc.2019.03.003
https://doi.org/10.1016/S1874-5792(02)80004-0
https://doi.org/10.1016/S1874-5792(02)80004-0

	Introduction
	Coercivity in fractional Sobolev spaces
	Local boundedness from above and elliptic Harnack inequalities

	Basics
	Basics from measure theory, integration theory and classical function spaces
	Lebesgue spaces
	Sobolev spaces

	Generalized function spaces involving a symmetric kernel
	Generalization of the fractional Sobolev spaces
	Generalized spaces

	Elliptic partial differential equations
	(Local) Elliptic operators in divergence form
	Nonlocal operators corresponding to an integral kernel

	Dirichlet forms

	Coercivity in fractional Sobolev spaces
	Setting and Preliminaries
	Cones, bounded configurations and reference cones
	Admissible configurations
	Cubes and favored indices

	A result for discrete quadratic forms
	A chaining argument in the Euclidean space
	The graph on the set of lattice points
	The induction
	Renormalization: Blocks and Towns
	Connecting points at scale: The discrete heart
	Proof of Theorem 7.1

	The coercivity result
	A discrete comparability result on lattices
	The discrete version of the kernel
	The limiting argument and the proof of the main result

	Applications of the main result

	Local boundedness from above and elliptic Harnack inequalities
	A local prelude: Local boundedness for solutions of local elliptic PDEs
	Local boundedness and Harnack inequalities for nonlocal operators
	Nonlocal tail functions
	Assumptions on the kernel
	Behavior of the conditions under scaling
	A local tail estimate
	Local boundedness of solutions
	Harnack inequalities

	Examples and a counterexample
	Kernels corresponding to a configuration
	Translation invariant kernels

	Appendices
	Auxiliary results for the coercivity estimate
	The relative Kato condition, the Harnack inequality and Condition (C)
	Preliminaries
	Condition (C) implies the relative Kato condition
	The relative Kato condition does not imply Condition (C)

	Bibliography


