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Preface

This thesis mainly talks about stochastic differential equations (abbreviated as SDEs)
with singular drifts and multiplicative noise. The following four aspects about SDEs are
considered.

e The well-posedness of SDEs driven by continuous multiplicative noise on R, x R?
in mixed norm space. We obtain the existence and uniqueness of a strong global
and continuous solution to SDE in mixed norm space.

e The well-posedness of SDEs driven by continuous multiplicative noise on a general
space time domain @ C R, x R? in mixed norm space. We prove the maximally
defined existence and uniqueness of strong solutions to SDEs driven by multiplicative
noise on general space-time domains Q C R, x R? which have continuous paths on
the one-point compactification @ U9 of ) where 0 ¢ @ and @ U 0 is equipped with
the Alexandrov topology.

e The non-explosion of the solutions to SDEs driven by continuous multiplicative noise
obtained on general space time domains Q C R, x R? in mixed norm space. We
prove that under some Lyapunov type conditions, the explosion time of the solution
to SDE with gradient type drift is infinite and its distribution has sub-Gaussian
tails.

e The well-posedness of SDEs driven by jump processes (a—stable like processes) with
distributional valued drifts. We show the well-posedness of nonlocal elliptic equation
with distributional-valued drift in Besov-Holder spaces first. Then we obtain the
existence and uniqueness for corresponding martingale problem, which is equivalent
to the existence and uniqueness of weak solution to SDE. Moreover, we prove that
the one dimensional distribution of the weak solution has a density in some Besov
space.
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1 Introduction

1.1 Background and Motivation

A stochastic differential equation (abbreviated as SDE) is used in engineering and physics
to describe how random factors ('noise’) can be incorporated into classical dynamical
equations. We consider the following equation on a complete filtered probability space
(Q, F, (Ft)i=0, P) on [0,00) x R%:

t t
Xi==x +/ b(s, Xs)ds + / o(s, Xs)dWs
0 0

t t
+/ / g(s, X Z)N(ds,dz)+/ / g(s, Xs—,2)N(ds,dz), t=>0, (1.1)
0 Jlzl<1 0 Jlz|>1

with measurable coefficients b : [0,00) x RY — R? and o : [0,00) x R? — R¢ x R4,
g:10,00) x R* x RY — R9, (0, ) is the starting point, and (W,)io is a d—dimensional
(F;)—Brownian motion defined on this probability space, and N is an (F;)—Poisson ran-
dom measure with intensity measure dtv(dz), where v is a Lévy measure on R¢, that
is

[P Avidz) < 0. (o) =0,

and the compensated Poisson random measure N is defined as

N(dt,dz) := N(dt,dz) — dtv(dz).
Usually we call fot b(s, Xs)ds the drift term, fga(s,Xs)dWs the continuous noise term,

and fot Ja 9(s, Xs—,2)N(ds,dz) the jump type noise term of the SDE (1.1). If 0 = 0 and
g =0, SDE (1.1) becomes an ordinary differential equation (abbreviated as ODE):

' (t) = b(t,z(t)), x(0)=uz. (1.2)

Thus, we can treat a stochastic differential equation as a generalization of an ordinary
differential equation by adding the effect of noise. An interesting phenomenon of (1.1) is
that the noise term plays some regularization effect such that the SDE (1.1) is well-posed
for quite singular drifts b. For instance, the ODE (1.2) does not have a unique solution
if b is merely Holder continuous (say d = 1, and b(x) := |z|* for some « € (0, 1)), but if
we add a Brownian motion to (1.2), we can obtain the uniqueness of the solution almost
surely in probability. In the past decades, there is an increasing interest in the study of
the SDE (1.1). In this thesis, we mainly study the following aspects about SDEs, we give
each of them an introduction.

1.1.1 Well-posedness of SDEs

Firstly, we want to study the well-posedness of SDEs (i.e. existence and uniqueness of
the solutions to SDEs) with singular coefficients. With regard to whether the noise of
the SDE is continuous or allows jumps, we divide our introduction into the following two
parts.
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e SDE driven by continuous noise

We consider the following SDEs driven by continuous noise (i.e. ¢ =0 in SDE (1.1)):
t t
Xi=z +/ b(s +r, X, )dr —|—/ o(s+rX,)dW,, t=0, (1.3)
0 0

in an open subset Q C R4*!,

There are many known results on studying existence and uniqueness of strong solutions
to the SDE (1.3). In the seminal paper [62], Veretennikov proved that when Q = R, x R?,
if the coefficient ¢ is Lipschitz continuous in the space variable x uniformly with respect
to the time variable ¢, oo™ is uniformly elliptic, and b is bounded and measurable, then
the SDE (1.3) admits a unique global strong solution (i.e. & = oo a.s. where £ is the
lifetime of the solution (X;);>0). In [37], under the assumptions that: ¢ = Ljxg (Lixa
denotes the unit matrix in R?) and blg. € LI™(R; LP™(R?)) for p(n),q(n) € (2,00)
and d/p(n) + 2/q(n) < 1, where Q™ are open bounded subsets of @ with Q» C Q"*!
and ) = U,Q", Krylov and Rockner proved the existence of a unique maximal local
strong solution to the SDE (1.3) when @ is a subset of R4 which says that there exists
a unique strong solution (s + ¢, X;) solving the SDE (1.3) on [0,&) such that [0,00) >
t— (s+1t,X;) €Q :=0QUO0I (Alexandrov compactification of @) is continuous and this
process is defined to be in 0 if ¢ > £. To this end they applied the Girsanov transformation
to get existence of a weak solution firstly and then proved pathwise uniqueness of (1.3)
by Zvonkin’s transformation invented in [79]. Then, the well-known Yamada-Watanabe
theorem [71] yields existence and uniqueness of a maximal local strong solution. Assuming
that for b € L{ (R, LP(R?)) with p,q € (1,00) and d/p+2/q < 1 and 0 = L4, Fedrizzi
and Flandoli [21] introduced a new method to prove existence and uniqueness of a global
strong solution to the SDE (1.3) by using regularizing properties of the heat equation.
This method was extended by von der Liihe to the multiplicative noise case in her work
[64]. Zhang in [73] proved existence and uniqueness of a strong solution to the SDE (1.3)
on Q = Ry xRY for t < 7, where 7 is some stopping time, under the assumptions that o is
bounded, uniformly elliptic and uniformly continuous in x locally uniformly with respect
to ¢, and |b],|Vo| € LU (R, ; L™ (B,)) (Vo denotes the weak gradient of o with respect
to x) with p(n),q(n) € (2,00) satisfying d/p(n) + 2/q(n) < 1, where B, is the ball in
R? with radius n € N, centering at zero. Zvonkin’s transformation plays a crucial role
in Zhang’s proof. In [63], [72], [70] and references therein the well-posedness of the SDE
(1.1) was also studied. The above results include the case where the coefficients of SDE
(1.1) are time dependent. For the time independent case, Wang [65] and Trutnau [41]
used generalized Dirichlet forms to get existence and uniqueness results of the SDE (1.3)
on ) = R4

However, the conditions imposed on the coefficients in the above mentioned results
concerning the strong well-posedness for SDE ([37],[73],[21]) are not unified when we
think an SDE in two ways: as a system (i.e. each component (X/);>0,1 < i < d of the
vector (Xy)is0 = (X}, -+, X?)i=0 € R satisfies an SDE in R') and as a whole SDE in
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R?. Let us illustrate this by a simple example: consider the following SDE in R:
dX} = b (t, XAt +dW},  X; =, €R, (1.4)
dX? =by(t, X})dt + dW?, X =u1z5 € R. '

If we set © := (71, 13) € R X, := (X}, X?), W, := (W}, W?), and define the vector field

_( bult, )
b(t,x) := ( bo(t. ) )
Then SDE (1.4) can be rewritten as
dX, =b(t, X,)dt +dW,, Xo=2€cR?* t>0. (1.5)

According to the above mentioned criterion, we need to assume

be L] (R,;LP(R%) with 2/p+2/¢g<1

loc

to ensure the well-posedness of SDE (1.5). This in particular means that we need

bi,by € L (Ry; LP(RY)) with 2/p+2/q < 1. (1.6)
On the other hand, the two-dimensional SDE (1.4) can also be viewed as single equations
for (X})i>0 and (X?);>0 themselves, because (X});>o and (X?);>0 are not coupled in the
equation. From this point of view, the SDE (1.4) can be well-posed under the weaker
condition that

bi,by € LI (Ry; LP(RY)) with 1/p+2/¢<1,

loc

which does not coincide with the obviously hence not optimal condition (1.6). The point
is that we might have a non-uniformly in integrability of our coefficients with respect
to the component of its variables which need to be taken into account to optimize our
conditions. We point out that such non-uniformity will always appear when we consider
multi-dimensional SDEs, and especially for the degenerate noise cases and multi-scale
models involving slow and fast phase variables, see e.g. [22, 68].

Hence, the one of aims of our work is to take into account the above non-uniformity
by studying SDEs with coefficients in general mixed-norm spaces. It turns out that the
appropriate condition is

where p; is the integrability of each component z; € R of the drift b. The condition
le +- pid —i—% < 1 shows explicitly how much contribution comes from the time variable
t in R, and each component x; of the space variable z = (1, -+ ,z4) € R%. Therefore,
as a generalization of the classical Lebesgue space LP(R?), we will study the SDE (1.3) in
the mixed norm space LP(R?) := LP4(R, LPa-1 (R, (--- , LP*(R)))) where p = (p1,- - , pa).
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Besides, we are also interested in the existence and uniqueness of a maximally defined
local strong solution to (1.3) on Q C [0,00) x R?, especially when @ is not very regular,
say Q = R x (RN\~*), where 7* = {2z € RYdist(z,v) < p}, p = 0, and v is a countable
locally finite subset defined as v = {xx|k € N} C RY, where none of the above results
mentioned can be applied, except for the one in [37]. However, [37] is restricted to the
case where the diffusion term is a Brownian motion. We want to obtain the existence and
uniqueness of a maximally defined local strong solution to (1.3) on Q C [0,00) x R? as
well in the case where the diffusion matrix o is not constant. In the end we show that
if o is bounded, uniformly elliptic and uniformly continuous in z, locally uniformly with
respect to t, and |blgn|, [Volgn| € LI™ (R ; LP™M(R?)) with p(n), ¢(n) € (2, 00) satisfying
d/p(n)+2/q(n) < 1, there exists a maximally defined local strong solution (s+t, X;)>¢ to
(1.3) on @ such that [0,00) 5t — (s+t, X;) € Q' := QUOI (Alexandrov compactification
of @) is continuous and this process is defined to be in 9 if t > .

e SDE driven by jump type noise

In recent years, SDEs on R? driven by pure jump Lévy processes and irregular drifts have
also a lot of attracted interest. For simplicity, we consider the following simplified form
of SDE (1.1)

WV

t t
X, = x+/ g(XS_)dL5+/ b(Xs)ds, t=>0, (1.7)
0 0

where L, is an a-stable process in R?, ¢ is a d x d-matrix-valued measurable function
and b is the drift, which might be very singular. In [60] Tanaka, Tsuchiya and Watanabe
showed that if (L;);>0 is a symmetric a—stable process with « € (0,1), b is time indepen-
dent, bounded and S—Holder continuous with 5 < 1 — «, g = 1, the SDE (1.7) may not
have a unique strong solution. When o € [1,2), g = 1 and b € CJ(R%) with 8 > 1 — S
Priola in [52] proved that there exists a unique strong solution to the SDE (1.7). Under
the same condition, Haadem and Proske [31] obtained the unique strong solution by using
the Malliavin calculus. Zhang [74] proved the pathwise uniqueness to the SDE (1.7) when
a € (1,2), b is bounded and in some fractional Sobolev space. Recently in [5] Athreya,
Butkovsky, and Mytnik obtained uniqueness and existence of strong solution to the SDE
(1.7) when d = 1, g = 1 and b is just in a certain class of Schwartz distributions. See
also [13, 14, 12, 58, 69] for more results related to (1.1). Basicly these works showed
that the SDE (1.7) has a unique strong solution under the conditions that g is bounded,
uniformly nondegenerate and Lipschitz, L; is an a-stable process, b € C# (Hélder space)
with 8 > 1 — §. We can find that (1.7) is a special case of (1.1) with o = 0.

Since the results in [5] considered the additive noise case, i.e. ¢ = 1 with d = 1 only.
A natural question is whether the well-posedeness still holds for the SDE (1.7) with mul-
tiplicative noise for d > 1. In order to answer this question, we study the existence and
uniqueness of the solution to (1.7) with distribution-valued drift in some class and multi-
plicative noise in multiple dimensions.
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1.1.2 Non-explosion of solutions to SDEs driven by continuous noise

We consider the following stochastic differential equation with continuous noise
t t
X, == —I—/ b(s +r, X, )dr —|—/ o(s+r,X,)dW,, t=0, (1.8)
0 0

in an open subset Q C R¥*! with measurable coefficients b : Q — R and o : ) — RIxR.
Here (s,z) € @Q is the starting point, and (W;);>o is a d—dimensional (F;)— Brownian
motion defined on some complete filtered probability space (2, F, (F;)i=0, P). Define

Ei=inf{t>0:(t+s X,) ¢ Q}. (1.9)

¢ is called the explosion time (lifetime) of the process (¢t + s, X;)i>0 in the domain Q. If
€ < 00 a.s., we call the solution (¢ + s, X;);>0 a local solution. If & = 0o a.s., it is called a
global solution. As we introduced already, we can show that there exists a maximal local
strong solution to (1.8). Then it is very natural to ask in which case this maximal local
solution is global.

When Q = R, x RY, there are several well-known results about non-explosion of the
solution to the SDE (1.8). In [62, 63, 79] the assumptions that b and ¢ are bounded and
Lipischitz continuous and oo™ is uniformly elliptic guarantee that the solution will not
blow up. Zhang in [72] obtained that under the conditions that ¢ is continuous, uniformly
nondegenerate and sup;ep 7y | Vol 2@ (p,) < o0, [b] < C + F, for some constants C' and
F € LP([0,00) x R?), p > d, the solution to (1.8) does not explode. Xie and Zhang in [70]
proved that if ¢ is locally uniformly continuous in z and locally uniformly with respect
to t € [0,00), and for some ¢ > d+2, b€ Ll ([0,00) x RY), Vo € L (]0,00) x R?), and

loc loc

for some constants C1,7v; > 0, o’ € [0,a), @ > 0, and for all t > 0, z € RY, £ € RY,

ot 2)¢] > 1€] (aso exp{=Ca(1 + &)} + LamoCr(1 + [of*) ")

and
(,b(t, 2)) + K(1+ |z[*)*o(t, 2)]* < CL(1 + |z]?),

there exists a unique global strong solution to the SDE (1.8). This non-explosion result was
obtained by directly applying Itd’s formula to an exponential function exp{e (1+*)*}
for some positive constant A. The above results are about the case where the coefficients
are time dependent. For the time independent case, Wang [65], Lee and Trutnau [41] used
generalized Dirichlet forms to get non-explosion results.

As mentioned in [37], there are several interesting situations arising from applications,
say diffusions in random media and particle systems, where the domain @ of (1.8) is
not the full space R x R? but a subdomain (e.g. Q = R x (R¥\~*), where v* = {z €
Re|dist(x,v) < p}, p = 0, and v is a locally finite subset of RY), where none of the
results mentioned above can be applied to get global solutions, except for the one in [37].
Moreover, Krylov and Rockner in [37] did not only prove the existence and uniqueness
of a maximal local strong solution of equation on (), but also they obtained that if
b == —Vo¢, where ¢ : [0,00) x RY — R is a nonnegative function, and if there exist a
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constant K € [0,00) and an integrable function h on Q", with Q" as defined as above
such that the following Lyapunov conditions hold in the distributional sense

2D,6 < K¢, 2D6+ Ad < he®, e €[0,2), (1.10)

the strong solution does not blow up, which means £ = oo a.s.. Here D;¢ denotes the
derivative of ¢ with respect to t. This result can be applied to diffusions in random
environment and also finite interacting particle systems to show that the process does not
exit from @) or goes to infinity in finite time.

However, [37] is restricted to the case where equation (1.8) is driven by additive noise,
that is, the diffusion term is a Brownian motion. Our interest is about the case when o
is not only a constant-valued matrix. In this case, the key step is to find the appropriate
Lyapunov conditions generalizing (1.10).

1.1.3 Density of the solutions to SDEs driven by jump noise

Recently Debussche and Fourier in [15] proved that there exists a density of the solution
to the SDE

WV

t t
X = x+/ g(XS_)dLS+/ b(Xs)ds, t=>0, (1.11)
0 0

where (L);>0 is an a—stable process with a € (0,2), g and b are Holder continuous func-
tions, and the density lies in some Besov space. This work can be seen as a probabilistic
approach to the theory of regularity of solutions to non-local partial differential equations.
Indeed, the density of the solution of a stochastic equation satisfies a Fokker-Planck equa-
tion which is, in the jump case, non-local. There is a lot of research in this field in the
PDE community. In particular, some results are available in the case of coefficients with
low regularity. The typical result is that when the initial condition is continuous, the
viscosity solution is immediately Holder continuous, see Barles, Chasseigne and Imbert
[8] and references therein. Concerning the techniques used to prove the existence of the
density, based on Fourier transform and the Plancherel identity, there is one method intro-
duced in [27] to prove the existence of a density for the time-marginals of many stochastic
processes, which can be applied to study one-dimensional SDEs whose coefficients have
low regularity. This method has been refined and generalized in [28] such that it can deal
with multidimensional processes.

However, in [15], they did not show the existence and uniqueness of the solution to
(1.11)which we as indicated above establish the well-posedness to (1.11) in this work. As
a next step we want to study the existence and regularity of the density of the solution
that we obtained for (1.11) with distributional-valued drift and multiplicative jump noise.

1.2 Main results

Firstly we obtain the existence and uniqueness of a strong global solution to SDE driven by
continuous noise in mixed norm space LP(R?) := LP¢(R, LP-1(R, (--- , LP(R)))) where

10
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p = (p1,--+ ,pa). More precisely, in Theorem 3.1 (p.30) we show that if for some
1, Payq € (1,00] and every T > 0,

2 1 1
b],|Vo| € LY([0,T); LP(RY)) with =4 — +-- -+ — < 1,
q D1 Pd

and for every n € N, ¢ is uniformly continuous in z € R? uniformly with respect to
t € [0, 7], and there exist positive constants d; and d, such that for all (¢,2) € [0, T] x R?,

alEl® < |o*(t,2)E? < doe?, VE € RY

Then for any (F;)—stopping time 7 and z € R?, there exists a unique strong continuous
solution (X});>o such that

P{w: / b X, @)l + / o, X (@)Pdr < o0, ¥T € [o,f<w>>} 1,

and
¢ ¢
X, = :17—|—/ b(r, Xr)dr+/ o(r, X,)dW,, Vte|0,7),a.s..
0 0

The condition p% + -4 pi + % < 1 shows the contributions on integrability of b and
Vo with respect to time variable ¢ in R, and each component z; of the space variable
= (21, -+ ,1q) in RY

Based on the existence and uniqueness of a global strong solution to (1.3) that we
obtained on [0, 00) x R? in mixed-norm space, by applying a localization procedure, we
get the existence and uniqueness of a maximally defined local strong solution in ' = QUJ
(one-point compactification of Q) for Q C [0, 00) x R%. Our results Theorem 4.1 (p.57)
show that if for any n € N and some p(n) = (p1(n),--- ,pa(n)), g(n) € (1,00) satisfying
1/pi(n) + -+ +1/pa(n) +2/q(n) < 1,

blgnl,  [Volge| € L1™([0,T]; LP™(RY))

and for 1 <1, j < d, 04;(t, z) is uniformly continuous in = uniformly with respect to ¢ for
(t,x) € Q", and there exists a positive constant ¢,, such that for all (¢,z) € Q",

0" (t, 2)A]> = 0, A?, VA eRY,
then for any (s,x) € @, there exists a unique continuous @' —valued function (z;);>¢ :=

(t, Xi)i=0 and a (F;)—stopping time & =: inf{t > 0: 2z, ¢ Q} such that (X;)i0 is the
unique strong solution to the following SDE

¢ t
X, =x+ / b(s+r, X, )dr + / o(s+r X, )dW,, Vtel0,§),a.s. (1.12)
0 0

11
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and for any ¢ > 0, z; = 0 on the set {w : t > &(w)} (a.s.).

As far as the non-explosion result is concerned, we have to take into account that having
non-constant ¢ instead of I;.4 in front of the Brownian motion in (1.12) means that we
have to consider a different geometry on R?, and that this effects the Lyapunov function
type condition which is to replace (1.10) and also the form of the equation. By comparing
the underlying Kolmogrov operators of the SDEs, in Theorem 5.2 (p.67) we get that
the following type setting SDE should be considered ((a;j)1<ij<d = 00*):

t 1 d t
Xt =x + / (—O'O'*V¢)(S -+ r, Xr)dT' + 5(2/ 8jaij(s -+ T, Xr)dr)lgigd
0 j=1 0

t
+/ o(s+rX,)dW,, t=0 (1.13)
0
which is the ’geometrical’ analogue to the additive noise case
t
X, =x+ / (=Vo)(s+r X, )dr+W;, t=>0,
0

where ¢ is a non-negative continuous function on [0, 00) x R%. To be more specific, since
the Kolmogrov operator £ corresponding to (1.13) is given by

L =div(oo*V) — (6"V¢,0"V) ,

where (-,-) denotes the inner product in R%. Recalling that divoo is the adjoint of the
‘geometric’ gradient ¢*V (i.e. taking into account the geometry given to R¢ through
o). So, the Laplacian A in (1.10) is to be replaced by the Laplace-Beltrami operator
div(oo*V) (= Zf i—10j(a;;0;)) and the right Lyapunov type condition of non-explosion to
the SDE (1.13) is that there exists a constant K € [0, c0) and an integrable function h on
Q", defined as above, such that the following conditions hold in the distributional sense

d
2Dt¢ < K1¢7 2Dt¢ + Z 6](%]81@5) < h6€¢,

ij=1

which then indeed turns out to be the correct analogue to (1.10). This leads to some
substantial changes in the proof of our non-explosion result in comparison with the one
in [37].

For the SDE driven by jump type noise, in Chapter 6 (p.95) we consider the following
SDE

t o] t
X, =Xy + / / / 21(0 n(xs o) (T)N@(dr, dz, ds) + / b(X,)ds, (1.14)
0 JR4 JO 0

where & is a nonnegative measurable function from R? x R¢ to [0, 00) and N (dr, dz, ds) is
a Poisson random measure on R, x R? xR, with intensity measure dr IZIC}% ds. We obtain

12



1 Introduction

the existence and uniqueness of a weak solution for very singular drift b which is maybe
even only a Schwartz distributions. This result essentially follows from the existence and
uniqueness of the solution to the following non-local partial differential equation

A— L2 —b-Vu=f. (1.15)
Here o € (0,2), b € €°(Besov-Holder space, see Definition 6.7 below) with 3 € R, and

221w = [ (a2 1) = V() ) o
where 2(®) .= 21yz1<13la=1 + 2lac2). By applying the Littlewood-Paley theorem we
obtain the existence and uniqueness of the weak solution to (1.15). Then by Zvonkin’s
transformation (which will be introduced in details in Chapter 2.5.1), we get the existence
and uniqueness of a weak solution to SDE (1.14). Furthermore, by refining the method
from [15] (which will be introduced in Chapter 2.5.2) we obtain existence and regularity
estimates for the density of the weak solution to SDE (1.14) in Besov space.

1.3 Structure of this thesis

In order to make the thesis self-contained, in Chapter 2 we collect the basic concepts and
some fundamental results which we will use subsequently.

As the generalization of the classical Lebesgue LP space, we will study the SDEs with
continuous noise in the mixed-norm space in Chapter 3.

Based on the results that we proved in Chapter 3 for Q = [0,00) x R% we apply the
localization procedure to obtain the maximal local strong solution on general domains ) in
Chapter 4. That is to say, we prove existence and uniqueness of maximally defined strong
solutions to SDEs driven by multiplicative noise on general space-time domains @ in R, x
R¢ in mixed norm sapce, which have continuous paths in the one-point compactification
QU of Q where 0 ¢ @ and Q) U 9 is equipped with the Alexandrov topology. Besides,
we give several examples for which we show well-posedness result in Q' = QQ U @ by our
result.

In Chapter 5, our aim is to extend the non-explosion results in [37] to the multiplicative
noise case on a general domain ). We also give two important applications from diffusions
in random media and particle systems respectively. Both are generalizations of examples
in [37, Section 9] to the case of multiplicative noise.

In Chapter 6 by applying Littlewood-Paley theory we first prove that there exists
a weak solution to the equation (1.15) when b is very irregular. Then the existence
and uniqueness of the weak solution (which is equivalent to the martingale solution) to
SDE (1.14) with possibly distributional valued drifts in the multi-dimension follows from
Zvonkin’s transformation. Which extends the result of [76] to jump type noise and [5]
to multiplicative noise. Based on the well-posedness results proved in the first part of
Chapter 6, by a similar argument as in [15], which is refined in our work by applying

13
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Littlewood-Paley theory, we obtain the existence and regularity of the density of the time
marginals of the solutions to the SDE (1.14) with possibly distributional valued drifts.
The Appendix contains technical lemmas used in the proofs of our main results.

1.4 Outlook

As it is shown in the following chapters, all of the studied stochastic differential equations
are assumed to have nondegenerate noise term, and until now it is not clear whether the ex-
istence and uniqueness of strong solution holds for the SDEs with possibly distributional-
valued drifts when d > 2. Noting that Littlewood Paley theory plays a powerful role
during dealing with partial differential equations with singular coefficients. Based on
these considerations, there are four main topics which I would like to study in future
work:

e the existence and uniqueness of strong solutions to the SDEs with distributional-
valued drifts when d > 2,

e the existence and uniqueness of strong solutions to the SDEs with degenerate noise,

e the existence and uniqueness of strong solutions to the SDEs with a mixture of
continuous noise (Brownian motion) and jump type noise (a—stable process),

e the properties (e.g. non-explosion, strong Feller, ergodicity) of solutions to SDEs.

14



2 Preliminaries

Throughout this thesis, we use the following convention: C' with or without subscripts
will denote a positive constant, whose value may change from one appearance to another,
and whose dependence on parameters can be traced from calculations.

2.1 Mixed-norm Lebesgue spaces

For the convenience of reading and also in order to make the thesis self complete, we first
give a brief introduction about the mixed-norm Lebesgue spaces and collect the theorem
which will be used later, for more details we refer to [3] and the references therein.

Let p = (p1,...,pa) € [1,00)? be a multi-index, we denote by LP(R?) the space of all
measurable functions on R¢ with norm

P2 r3

1Fllp = </R (/R|f($1,---,Id)|p1dx1>mdx2)p2...d:cd)pd < 0.

Thus LP(R?) is a Banach space. The order is important when taking the integrals in the
expression above. If we permute the p;s, then increasing the order of p; gives the smallest
norm, while by decreasing the order gives the largest norm. If we define the conjugate
exponent p’ = (pi,---,p}) to p = (p1,--- ,pa) with pil pi,l =1, fori=1,---,d, we
write as % + é = 1, then LP'(RY) is the dual of LP(R?) for p € [1,00)? Without any
surprise, we have Holder’s inequality, Minkowski’s inequality for integrals and dominated
convergence theorem .

Lemma 2.1. (/3, Lemma 2])(Hoélder’s inequality). For any p € [1,00]?, f € LP(R?) and
g € LP(R?), we have

| [ sadx| < 19l
Rd

Lemma 2.2. ([3, Lemma 4])(Minkowski’s inequality). For any p € [1,00]? and a mea-
surable function f € L®L D (RU+42) e have

feay] < [ 1yl

‘ ’ RdQ Rd2

Lemma 2.3. (/3, Theorem 2])(Dominated convergence Theorem). Let (fn)nen be a se-
quence of measurable functions on RY. If f, — f (a.e.) and if there is a dominating
function G € LP(RY) such that |f,| < G (a.e.) for any n, then || f, — f|l» — 0.

Let Z(RY) be the Schwartz space of all rapidly decreasing functions, and .%/(R%) the
dual space of .(R?). Then from the argument in [3] we have

Lemma 2.4. (/3, Throrem 3]) The following inclusions hold
S (RY) — LP — 7' (RY).

Furthermore, they are dense and continuous for p € [1,00).

15



2  Preliminaries

Given f € .Z(R%), let Ff = f be the Fourier transform of f defined by
fle) =m0 [ e g,
Rd

We know that the Fourier multiplier T,, is a linear operator that acts by multiplying the
Fourier transform f by a function m, and then applying the inverse Fourier transform
Z !, which can be said that T}, reshapes the frequencies of f. For complex-valued
function f on R?, we have

(Tof)(z) = F N (mf) = / T (€) f(€)de. 2.1)

R4

For p € [1,00)¢, we denote by M,, the space of all bounded complex finctions m on R?
such that the operator T,,f, which is initially defined for f € .%, can be extended to a
bounded operator on LP(R?), the norm is defined as

HTHMP = ”THE(LP(Rd))-

Then M, is a closed subspace of £(LP(R?)) and thus it is a Bananch space. The elements
of the space My, are called LP Fourier multipliers. In the following we give the Hormander-
Mihlin theorem for mixed norm spaces proved in [3].

Theorem 2.5. ([3, Theorem 7]) Let m € L>®(R¥\{0}) be such that for some A > 0 and
for any multi-index |a| < LgJ + 1, it satisfies on of the following conditions

(a) Mihlin’s condition
|gm(€)] < Al

(b) Hormander’s condition

sup Rd+2|a/ |0¢m(€)[Pde < A? < o0.
R>0 R<|¢|<2R

Then, m lies in My, for any p € (1,00), and we have the estimate

d k—1
Il < 3 ¢ [ max{pas. pa—y — 1) /P 1A+ m]| =)
k=1  j=0
d—1
< ¢ [T max{pa_j, (pa_y — 1) /P Y (A + |m] =),
j=0

where ¢ and ¢ are constants that depend only on d.
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2 Preliminaries

2.2 Lévy processes and non-local pseudo-differential operators

The aim of this section is to give a brief introduction about Lévy processes and pseudo-
differential operators which are related to the knowledge that we will use in the later
chapters. We refer to [2] for more details.

Definition 2.6. For a random variable X defined on probability space (0, F, P) and
taking values in R? with distribution Px its characteristic function ¢x : R? :— C is
defined by

ox(©) = B = |

SN P(dw) = / eV Py (dy)
Q

R4

for each € € R,

We wrote down the characteristic function ¢,(£) = [, €*u(dy) = €"® of distribution
, we call the map n : R? — C a Lévy symbol.

Definition 2.7. For a random variable X taking values in R%, we say that X is infinitely

divisible if, for all n € N, there exists i.i.d random variables Yl(n), e ,Yn(n) such that

Xi}/l(n)+..._|_y(”)'

n

Definition 2.8. Let X = (X;)i=0 be a stochastic process defined on a probability space
(Q, F,P). We say that X is a Lévy process if:

1. Xo=0(a.s.);

2. X has independent and stationary increments, i.e. for each n € N and each
0 <t <ty <:r <tyy < oo the random variables (Xy,,, — X, )1<j<n are in-
dependent and each Xy, ., — X, has the same distribution as X, ..

3. X is stochastic continuous, i.e. for all a > 0 and for all s >0

lim P(| X, — X,| > a) = 0.
t—s

If X is a Lévy process, then X, is infinitely divisible for each ¢t > 0, and we can write
bx, (&) = " for each t > 0, £ € R, where each n(t,-) is a Lévy symbol, and 7(-) is
the Lévy symbol of X;. Before we give the the Lévy-Khintchine formula, which is the
cornerstone for much of what follows, we introduce Lévy measure first:

Definition 2.9. For a Borel measure v defined on R™N\{0} we say that it is a Lévy measure
if
[ P A vty < oc.
RN\ {0}

17



2  Preliminaries

The result given below is usually called Lévy-Khintchine formula with respect to an
infinitely divisible measure.

Theorem 2.10. (Lévy-Khintchine) p € Mi(R?) is infinitely divisible if there erits a
vector b € R%, a positive definite symmetric d x d matrizc A and a Lévy measure v on
RAN{0} such that for all £ € R,

¢u(§)=exp{z’b«§—%,§.,4§+/

€0 =1 —iE ypWd |, (22)
R4\ {0}

where B = By (0).
Conversely, any mapping of the form (2.2) is the characteristic function of an infinitely
divisible probability measure on RY.

Because of the equivalence between Lévy process and infinitely indivisible distribution,
if X is a Lévy process, we also have the Lévy-Khintchine formula for X,

B = o (o] [ g - te-Ag / o [ Ly ).

for each t > 0, £ € R? where (b, A,v) are the characteristics of X;. There are several
typical examples of Lévy processes which we can give the explicit characteristics.

Example 2.11. (The Poisson process, the compensated Poisson process) The Poisson
process of intensity A > 0 is a Lévy process N taking values in N U {0} so that we have

P(N(#) = n) = A o

n!

for each n = 0,1,2,--- . In this case we have EN; = E[N;> = Xt for each t > 0, and

n(§) = A’ —1). o
For later work it is useful to introduce the compensated Poisson process N = (Ny);=o
where each Ny = N; — At. Note that E(N;) = 0 and E[N;*> = M\t for each t > 0.

Example 2.12. (Rotationally invariant stable Lévy processes) A rotationally invariant
stable Lévy process is a Lévy process X where the Lévy symbol is given by

n(§) = —ao*[¢|%,

here o € (0,2] is the index of stability and ¢ > 0. Observe that when a = 2, X is the
well-known Brownian motion.

Having these basic concepts in mind we are going to simply introduce the pseudo-
differential operators which are quite related the Lévy processes introduced above. Actu-
ally there is a larger class of processes called Markov processes which usually are intro-
duced and shown to be determined by the associated generator, resolvent and semigroup.
Here we focus on Lévy processes only and we introduce two key representations for the gen-
erator: first, as a pseudo-differential operator; second, in 'Lévy-Khintchine form’, which

18



2 Preliminaries

is the sum of a second-order elliptic differential operator and a (compensated) integral of
difference operators.

Let X be a (F;)-Lévy process in a probability space (€2, F, P). For each t > 0, ¢; denote
the law of X; and for each f € By(R?), x € R?, define

(ﬂﬁ@ﬂzﬁﬂﬂ&+wﬂzlwﬂx+w%ww,

then we can get that actually 7} is a Feller semigroup, i.e. T} is a contracted semigroup
in Banach space Cy(R?). we have the following important theorem in the analytic study
of Lévy processes.

Theorem 2.13. ([2, Theorem 8.3.3]) Let X be a Lévy process with Lévy symbol n and
characteristics (b, a,v), let (13)i=0 be the associated Feller semigroup and A be its infinites-
tmal generator.

1. Foreacht >0, f € #(R%), z € R4,

1

(Tif)(x) = o

/ 57O (6,
Rd

so that Ty is a pseudo-differential operator with symbol €.

2. For each f € S (RY), x € RY,

_ 1 eif-:{: £
(AN = s [, 7m0

so that A is a pseudo-differential operator with symbol 7).
3. For each f € S (RY), x € RY,

d
(Af)(x) =b-Vf(x)+ Y a;oid; f(z)

i,j=1

+ / Faty) — f@) —y- Vi),  (23)
R4\{0}

We will now give a number of examples of specific forms of (2.3) corresponding to
important examples of Lévy processes.

Example 2.14. (Standard Brownian motion) Let X be a standard Brrownian motion in
Re. Then X has characteristics (0,1,0), and so we see from (2.3) that

1< 1
A=-N"9=-A
22;’ 97

where A is the usual Laplacian operator.
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2  Preliminaries

Example 2.15. (Brownian motion with drift) Let X be a Brownian motion with drift in
R?. Then X has characteristics (b,a,0) and A is a diffusion operator of the form

d
A= bV"‘ Z aij@(?j.

,j=1

Example 2.16. (Rotationally invariant stable processes) Let X be a rotationally invariant
stable process of index o € (0,2). Its symbol is given by n(€) = —[€|* for all u € R?, then

A= (-0,

i.e. the fractional Laplacian operator.

2.3 Strong solutions, weak solutions and martingale solutions to
SDEs

In order to make the definition of solutions to the SDEs clear, we recall some classical
terminology. Let (€2, F, P) be a probability space equipped with a filtration F; that
satisfies the usual conditions. Let W be an d-dimensional standard Brownian motion and
N an independent Poisson random measure on R, x R4\ {0} with associated compensator
N and intensity measure v, where we assume that v is a Lévy measure. We always assume
that W and N are independent of F;,. We consider the following SDE: for ¢t > 0,

t t t
Xt:er/ b(s,Xs)ds+/ a(s,Xs)dWer// g(s,X,_, 2)N(ds,dz)
0 0 0 Jlz|<1

t
+/ / g(s,Xs_,z)N(ds,dz), t=0,
0 |z|>1
(2.4)

Here the mappings b: R, x R? - R? o : Ry x R? - R? x R, g : R. x RY x R? — RY
are all assumed to be measurable. Then

1. weak existence holds for SDE (2.4) if one can construct a filtered probability space
(Q, F, (Ft)i=0, P), and an adapted Brownian motion W and an adapted Poisson
measure N and an adapted process X on this space which satisfies SDE (2.4).

2. Uniqueness in law holds if every solution X to (2.4), possibly on different probabil-
ity space, has the same law.

3. Strong existence means that one can find a solution to (2.4) on any given filtered
probability space equipped with any given adapted Brownian motion.

20
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4. pathwise uniqueness means that, on any given filtered probability space equipped
with any given Brownian motion and Poisson measure N, any two solutions to (2.4)
with the same given Fy-measurable initial condition = coincide.

Notice that, in contrast to strong solutions, where the noise is prescribed in advance, for
weak solutions the construction of the noise is part of the problem. Finding weak solution
to SDE is intimately related to martingale problems. For linear operator £; defined as

d
L) = blta) VI @)+ > oult.)oult 000, (w)

'ﬁﬂklj@+gWx¢»—f@ﬂ—Mt%@-Vﬂ@>W“>
i / [ gtt2) = 1la))vids) (2:5)

The definition about the martingale solution goes as following.

Definition 2.17. A probability measure P on (C[0,00), B(C[0,00)%)) which is cddldyg,
under which

M = Fuw(®)) — f(w(0)) / (Caf)(w)ds, 0<t< oo, (2.6)

is a continuous, local martingale for every f € C?*(R?), is called a martingale solution to
the local martingale problem associated with L;.

2.4 Estimates of the fundamental solutions to second order
parabolic equations

Because of the crucial role of the estimate of fundamental solution of parabolic equation
in Chapter 5, in this subsection we collect the results that we will use. For the detailed
discussion we refer to [40, IV] and [55].

First we consider the Cauchy problem with terminal data for equation in the domain
[0, 7] x R

Let there be given in the domain Q7 := (0,7) x R¢ a parabolic operator £(x,t
defined as

o 0
) B0 5)

2

8@-81:]-

d
L(z,t, g Q)u _Ou_ Z a;u(t,x)

=5 +b(z,t) - Vu+c(t,x)u

ij=1

with coefficients (ay;)1<ij<a, b and ¢ belonging to the Hélder space CY/%1(Qr), where the
Holder space CY/21(Qr) is the Bananch space of functions u(t, z) that are continuous in
Q7 with a finite form

U , = (u + max |u(t,x
Hcl/21(QT) (u)Qr (t’x)eéT’( )l
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where
<U>QT = <u>x,QT + <u>t7QT7
u(t, ) — u(t, z')|

(Wagr = sup

9

(w.), (' 1)@ |z — 2|
rHx
lu(t, ) — u(t, z)|
(Wi gr = sup .
" o near |t — |12
£t

We assume that this operator is uniformly elliptic, i.e. there exist two positive numbers
41 and 9y such that for all (¢,z) € Qr

d
562 <Y aylt,x)6k; < 562, VE= (61, ,€) ERY

3,7=1
We consider the following Cauchy problem on Qr

o 0

E(az,t, %, a u

(2.7)

[40, Theorem 5.1] implies that (2.7) has a unique solution v € C**(Qr) (actually u can
be smoother but more lengthy and such regularity is enough for use), i.e. wu(t,z) is
1—order differentiable with respect to ¢ € [0, 7] with |4 bounded on Q7 and is 2—orders

differentiable with respect to x € R? with ]gﬂ, 1 <i<d, and |agiaicj )1 <i<j<d,

bounded on @7, and these bounds are controlled by sup,cga |¢(x)].
We call function Z(t,x;s,y) : Qr X Qr — R a fundamental solution if Z satisfies the
equation

Lo D)2t 5,y) = S — )3t~ 5)

and is bounded for |z| — co. The functlon Z plays the same important role for the operator

L(z,

L as the function g(t,z;s,y) = e s|)d/2 exp(‘4|t S|) for the heat operator H = & — A.
If ¢ is continuous, [40, 14.1] says the solution to (2.7) can be written in the form of a

potential with kernel Z:

ult, ) = / 2(t,:0,9)6(0)dy 28)

Besides, the following estimates of Z were obtained in [40, 13.1,13.2], which says: for
2Zm+n <2, t > s

2
Dy D22 (ks 5,9)] < Ot — )% exp (- 2200, (2.9)

t—s
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for 2m+n=2(i.em=0n=2and m=1,n=0),0<y<1,0< <1, t>s,

D" Dy Z(t, w5 5,y) — D DY Z (L 25 5,y)

-1 — 2
< C’[|x — 2t —s)” Ty lz —2'|°(t — 5)~ 5 w} exp ( - u), (2.10)
s

and for 2m+n=1,2 and t > t' > s,

<C[(t—t’)(t—s)’ L (t—t)

d+2m+s+2 2— 27‘ s+a
2

(' — s) dﬂexp( %) (2.11)

For fixed time T" € [0, 00), if we denote v(T' —t,x) = u(t,x), then v solves the following
backward equation

, o 0
L (z,t, E E)U(t’ x) =0,

(T, z) = ¢(z).

(2.12)

Where £’ is defined as

2

E'(mtﬁ,g _3 —i—Zawtx) + b(x,t) - Vo +c(t, x)v.

" Oz 8t)

= 0z;0x;

Corresponding to (2.8), the solution v to the backward equation (2.12) can be represented
as

vit) = [ 2Tyt 2oty

In this case the estimates (2.9), (2.10) and (2.11) still holds for the equation (2.12) with
the similar form, i.e. for 2m+n <2, t < T

P
Dy D2 Z(T, y; t, )| < C(T — )75 exp ( lec ytl >
7 <

for2m+n=2(ie. m=0n=2and m=1,n=0),0 < ,0<pB<1L,t<T,
DDy Z (T, y;t,x) — DY DR Z(T, y; ¢, 2'))|

B _ 2
<0[|x—x'|v(T—t) t o — '|B(T—t)_d+221+6}exp(—|? yt| )

a+2 +"/

and for 2m+n=1,2and T >t > t/,
| D" Dy Z(T,yt,x) — D" Dy Z(T, y; t', )

2
F(t— )T (T — ) ﬂexp( |‘CT_yJ).

d+2m+s+2

< c[(t )T — 1)
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As the second part of this subsection, we consider the first boundary problem to
the following parabolic equation on the cylindrical domain Q™" with surface QQTz’T =
((0,7%) x 9B,) U ({r*} x B,) for r € (0,1] assuming that f is a continuous function on

Q"

d
Lu(t,x) = Dyu(t, z) + % Z 0i(a;(t,x)0;u(t,x)) =0 on Q"
ij=1

u(t,z) = f(t,x) on 8Qr2’r,

(2.13)

where (a;;)1<ij<a 1S assumed to be real, symmetric and uniformly elliptic, i.e. for some

=1, forall (tz) € Q7" and all £ € RY, 1/u€? < szzl aij(t,2)&& < pg?, with
p-Lipschitz coefficients with respect to the parabolic distance, i.e. for all 1 < 1,5 <d

|aij(t,2) — aij(s,y)| < pllz —y| V[t — s|'/?).

[55, Corollary 3.2] says there exists a Possion kernel p(t,z;s,y) : Q7" x 9Q"" — Ry
such that the potential

)= [, pltais ) S n)is(ey

represents the solution to (2.13), where dS denotes the surface measure on 9Q"". And
[55, Theorem 3.1] says that this Possion kernel p satisfies the following estimates: there
exists a constant k£ > 0 depending only on d, pu, Q”Q”" such that

[z —yl?
|t — s

lz —y|?
)

1 21
Zlt— s C
LIt = s[7= exp( T

< plt,as,y) < K|t —s|~F exp(C

);
for all (¢,x) € Q" and (s,y) € Q"""

2.5 Main methods

We are going to introduce the main methods applied in this thesis.

2.5.1 Zvonkin's transformation

Originally invented in the paper [79], Zvonkin’s transformation is one of the main tool
to prove existence and uniqueness of the solution in most of the papers mentioned above
and it also plays a crucial role in our work. We now give the introduction about the idea
behind. Let £y be the second order differential operator related to diffusion coefficients
o which is defined as

d
L f = Z o (t, 2)oj(t, )00, f(t,x), f € CE(RM),
1

1,j=1,k=1

l\l)lr—A
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let P be the first order differential operator related to drift coefficients b as
LY f(tx) =0b(t,x) Vf(tx), feCTR™,

and let £ be the nonlocal operator associated with the jump coefficient g whereas

22f(t) = |

» (£t + glt,2,2)) = f(t,2) = glt,,2) - Vf{t,2) ) (d2)
+ /|>1 (f(to+ gt ,2) = [(t,2)))v(d2).
: (2.14)

Consider the following equation
ou+ (L + L+ Lu=0, u(T,z)=0¢eR?, (2.15)

if this equation has a regular enough solution u such that for each t € [0,7], the map
®(x) := x + u(x) forms a C?—diffeomorphism on R?, then by applying Itd’s formula to
the solution (X;);>o to (1.1)

B(X) = B(X0) + [ V(K)o (s, X)W,
O(Xs_ +g(s, X, 2)) — D(X,_))N(ds, d=
+/O/Iz<l<< Tl ) — (X, )N (ds, d2)

¢
+/ / (®(Xo_ + g(s, Xo_, 2)) — D(X,_))N(ds, d=).
0 |z|>1
If we denote Y; := ®(X;),t > 0 and

o(t,y) == (VO-o(t,)) o @' (y), g(t,y,2) = (D (y) +g(t, 2 ' (y)2)) — v,

then Y; satisfies the following new SDE without irreqular drift:
t t
Y; = ®(x) +/ (s, Ys)dW, +/ / G(s,Ys—, z)N(ds,dz)
0 0 Jlzl<1

t
—i—/ / g(s,Ys_,z)N(ds,dz), t=>0. (2.16)
0 |z|>1

Hence it is equivalent to solve SDE (1.1) via solving SDE (2.16) instead, which has
no irregular drift term and the coefficients of the noise term could be a bit continuous
because of the second order regularization effect of equation (2.15). Then the main task
is to solve equation (2.15) such that ® has the desired properties. To this purpose a key
step is to show the following Krylov’s estimate: for any solution Y, and any 7" > 0 and
f € Li,.([0,00); LP(R)),

B( [ 1w vone) <ef |

T

( [ Isc, ) " pdt>1/ ’ (2.17)
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When g = 0, such estimate was established in [37] by Krylov and Rockner when o = I,
and % + % < 2. Zhang and other authors showed it for the case when o is nonconstant

matrix-valued functions in [73, 70, 76, 77] and references therein. In [69, 58, 5] they ob-
tained the estimate for the SDE with jump noise.

2.5.2 Density of the solution to SDE driven by Lévy noise

The idea is from [15] to prove the existence and regularity of density to jump type SDEs
in our work. The method therein is to apply the following crucial lemma:
Define, for f:R? = R, for z, h € R and n > 1,

(ALf)(@) = flz+h) = fx), (ARf)(2) = AR(AL (=),
M(R?) denotes the set of probability measures on R%. The lemma says

Lemma 2.18. ([15, Lemma 2.1]) Let p € M(R?). Assume that there are 0 <n < a < 1,
n > 1 and a constant K such that for all ¢ € C"(R?), all h € R* with |h| < 1,

enl 2.

I [, Ato@ptan < Kl

Then p has a density in By /(R%) (Besov space) and 1ol go—n < p(RY) + CyonnkK.

Then the strategy to apply this lemma to jump type SDE

t t
Xi=z +/ g(Xs-)d L +/ b(Xs)ds, t=>0,
0 0

is the following:
e For e € (0,1), consider
Xf =X+ €b(the) + g(the)(Lt - Lt—e)-

e Study the error E[|X; — X;|"] for n > 0. We get something like E[|X; — X{|"] < Ce”
with v depending on 7, a, and on the Holder regularity of the coefficients g and b.

e Conditionally on X;_., X; has an infinitely divisible distribution, for which many
known results are available. We can get the bound of any derivatives of the density
fxe in LY(RY), which will explodes when ¢ — 0 but the rate of the growth is

—n/a'

controlled precisely: we obtain that || D" fx¢|| 1 gra) < €

e Use the discrete integration by part:
BAIO(X) = [ Ajs()fxp(o)ds = [ o)A fx; (o).
R R
To obtain

| B(ARSXN] < 101D Fxg | oy [B]" < [l oo™ ||

26



2 Preliminaries

e Last step is to write

[E(ARe(X))| < [E(AR(XD))| + [E(AL0(X)) — E(AR¢(X]))]

Cllgllz=e|h|" + Clilien BI X, — X",

NN

For each h, choose € suitable enough to end the results like

I [, Aot e)del = | B@G0)] < ol 1P

for some ¢ depending on «, on the Holder regularity of the coefficients g and b, and
n, 17, about which 7 is suitable enough to guarantee that the above lemma could be
applied.
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3 Existence and Uniqueness of a global strong solution
to an SDE driven by continuous noise in mixed-norm
Lebesgue spaces on () = [0, 00) x R?

3.1 Preliminaries and main results

Consider the following SDE in R¢:
dXt = b(t, Xt)dt + th, XO =T, (31)

where d > 1, b: R, x R? — R? is a Borel measurable function, and (WW;)>¢ is a standard
Brownian motion defined on some probability space (2, %, (%#;)i=0,P). The remarkable

result from N. V. Krylov and M. Rockner [37] shows that if
be L]

loc

(Ry; Ly,

loc

(RY)  with p,q € (2,00) and d/p+2/q < 1, (3.2)

then for each 2 € R?, there exists a unique strong solution (X;)>o for SDE (3.1) up to the
explosion time. Later, X. Zhang [73] extend this result to SDEs driven by multiplicative
noise

dXt = b(t, Xt)dt + O'(t, Xt)th, XO =T (33)

under the assumptions that ¢ is a bounded, uniformly elliptic matrix-valued function
which is uniformly continuous in x locally uniformly with respect to ¢, and

b],|Vo| € LE (Ry; LP (RY))

loc

with p,q € (1,00) satisfying (3.2). Here and below, V denotes the weak derivative with
respect to = variable. Note that when ¢ = 0 in (3.3), the corresponding deterministic
ordinary differential equation is far from being well-posed under the above condition on
the drift coefficient. This is known as the regularization effect of noises, we refer to [2§]
for a comprehensive overview. From then on, there are increasing interests of studying
the strong well-posedness as well as properties of the unique strong solution for SDE (3.3)
with singular coefficients, see e.g. [21, 49, 65, 69, 75] and references therein.

However, there seems to be one non-uniform place in the above mentioned results
concerning the strong well-posedness for SDE (3.1) and (3.3): the conditions imposed
on the coefficients will not be consistent. Let us specify this by the following example:
consider the following SDE in R2:

{ AX)! = b (t, XHdt +dW}!, X} =z €R, 5.4)

AX2 = bo(t, X2)dt + dW?2,  XZ=um, €R.

If we denote z := (z1,79)* € R?, X; := (X}, X})*, W, := (W}, W2)*, and define the

vector field b )
. 1(t, x4
b(t,z) := ( bo(t, ) ) :
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Then SDE (3.4) can be rewritten as
dX, = b(t, X;)dt +dW;, X,=x € R% (3.5)
According to the above mentioned results, we need to assume

be LY

loc

(R Ly,

loc

(R?)) with 2/p+2/¢<1
to ensure the well-posedness of SDE (3.5). This in particular means that we need

bl,bg S Lq (R+,Lp

loc loc

(RY)) with 2/p+2/q < 1. (3.6)

On the other hand, the two-dimensional SDE (3.4) can also be viewed as single equations
for X} and X7 their-self, because X} and X} are not involved together in the equation.
From this point of view, SDE (3.4) can be well-posed under the condition that

bi,by € LI (Ry; LV

loc loc

(RY)) with 1/p+2/¢<1, (3.7)

which do not coincides with (3.6). We point out that such ununify will always appear
when we consider SDEs in multi-dimensional, and especially for degenerate noise cases
and multi-scales models involving at least slow and fast phase variables, see e.g. [22, 68].

The results of this chapter is based on the joint work [44] from author and X. Long.
The main aim of this work is to get rid of the above unreasonableness by studying SDE
(3.3) with coefficients in general mixed-norm spaces (cf. [44]). To this end, let p =
(p1,-++ ,pa) € [1,00)¢ be a multi-index, we denote by LP(R?) the space of all measurable
functions on R¢ with norm

no \ ra
N fllze == / /|f(x1,...,xd)]p1dx1 dxs o dag < 0.
R R
When p; = oo for some ¢ = 1,--- ,d, the norm is taken as supreme with respect to the

corresponding variable. Notice that the order is important when we take above integrals.
If we permute the p;s, then increasing the order of p; gives the smallest norm, while by
decreasing the order gives the largest norm.

Our main result in this chapter is as follows.
Theorem 3.1. Assume that for some py,--- ,pa,q € (2,00) and every T > 0,

2 1 1
+— 4+ — <1, (3.8)

b|,|Veo| € LY([0,T]; LP(RY)) with =
0], [Vo| ([0, T]; LP(R)) i Py

and o is uniformly continuous in x € R uniformly with respect to t € [0,T], and there
exist positive constants 61 and 8y such that for all (t,x) € [0,T] x R?,

el < lo*(t,2)E? < alef?, VE e RY
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Then for any (F;)—stopping time T and x € R?, there ewists a unique (F;)—adapted
continuous solution (Xy);=o such that

P{wiAﬁMnXm@Wh+ATMMXK@NMW<wNTemjw»}:L (3.9)

and
¢ ¢
Xi=zx +/ b(r, X,.)dr +/ o(r, X, )dW,, Vtel0,7),a.s. (3.10)
0 0

which means that if there is another (F)—adapted continuous stochastic process (Y:)i=o
also satisfying (3.9) and (3.10), then

P{w: X,(w) = Y;(w),Vt € [0,7)} = 1.

Moreover, for almost all w and all t > 0, x — X;(w, ) is a homeomorphism on R? and
for any t > 0 and bounded measurable function v, x, y € RY,

|Ev(Xi(z)) = EY(Xe(y))] < Cilldllclz =y, (3.11)

where Cy > 0 satisfies limy_,q Cy = +00.

Remark 3.2. i) The advantage of (3.8) lies in the flexible for integrability of the coeffi-
cients in different directions. More precisely, it allows the integrability of the coefficients
to be small in some directions by taking the integrability index large for the other direc-
tions. With this condition, the problem of the tricky example mentioned before will not
appear since we can take another index to be co. To be more specific, according to The-
orem 3.1 there exits a unique (F;)—adapted solution to the SDE (3.4) if b = (by,be) €
L([0,T7], LP(R?)) with 2/q + 1/p1 + 1/ps < 1. That is to say, by, by € LI([0,T], LP(R?))
with 2/q + 1/p1 + 1/ps < 1, by the definition of the mized-norm Lebesgue space, for
by € LY([0,T], LP(R?)) we can take (p1,p2) = (p1,00) since by is only defined on R, the
same with by. Hence the integrability conditions of by and by are 2/q + 1/py < 1 and
2/q+ 1/py < 1 respectively, which coincides with (3.7).

ii) As mentioned in [35], the necessity of mized-norm spaces arises when the physi-
cal processes have different behavior in each component. In view of (3.8), it reflects the
classical fact that the integrability of time variable and space variable have the ratio 1:2.
Meanwhile, the integrability of space variables in each direction is the same, which is nat-
ural because the noise is non-degenerate. Such mized-norm spaces will be more important
when studying SDEs with degenerate noise. This will be our future works.

Remark 3.3. In above theorem the condition py,--- ,p4,q € (2,00) is automatically ful-
filled when d > 2 since we also assume 1/p+ -+ 1/pg+2/q < 1. When d =1, we can
refer to the result from Engelbert and Schmidt [18] to obtain the existence and uniqueness
of a strong solution to homogeneous SDE on RY. It proved that if o(x) # 0 for all z € R
and b/o? € L} (R), and there exists a constant C' > 0 such that

loc
jo(z) —o(W)| < CVI]z —yl, zyeR,
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[b(2)| + |o(2)] < C(1 + [z),

then there exists a unique (F;)— adapted process (X;)i=o such that the following SDE hold:
dXt = b(Xt)dt + U(Xt)th, X() =T c Rd.

Now, let us specify the proof briefly. The key tool to prove our main result is the LI-
maximal regularity estimate for the following second order parabolic PDEs on [0, T] x R®:

ou(t,r) = Liu(t,x) + Lrut, ) + f(t,x), u(T,x) =0, (3.12)

where £ + #¢ is the infinitesimal operator of process (X;)>o, i.e.,
1 .. .
Lyu(t,x) = Ea”(t, 2)0yu(t, ), Lru(t,z) = b (t,x)0u(t, x)

with a(t,z) = (a"(t,z)) := oo*(t,x), and 0; denotes the i-th partial derivative respect
to x. Here we use Einstein’s convention that the repeated indices in a product will be
summed automatically. More precisely, for any ¢ € (1,00) and p € (1,00)¢, we want to
establish the following estimate:

||32UH1L§,(T) < Ol fllLa (3.13)

see Section 3.2 for the precise definition of L% (T'). Notice that when p; = -+ = pg = ¢, it
is a standard procedure to prove (3.13) by the classical freezing coefficient argument (cf.
[75]). While for general ¢ € (1,00) and p € (1,00)%, it seems to be non-trivial. When

a* is independent of z and p; = -+ = pg, (3.13) was first proved by Krylov in [35]. In
the spatial dependent case, Kim [38] showed (3.13) only for p; = -+- = p; < ¢. This
was recently generalized to general p; = -+ = p; > 1 and ¢ > 1 in [67] by a duality

method. We shall further develop the dual argument used in [67], and combing with the
interpolation technique, to prove (3.13) for mixed-norms even in the space variable. The
main result is provide by Theorem 3.4, which should be of independent interest in the
theory of PDEs.

This chapter is organized as follows: In section 3.2, we study the maximal regularity
estimate for second order parabolic equations. In section 3.3, we prove the Krylov’s
estimate. The existence and uniqueness of the global strong solution to SDE are shown
in section 3.4.

3.2 Regularity estimates for parabolic type partial differential
equations

Fix T > 0 and let R&™ := [0, 7] x R%. This section is devoted to study the parabolic
equation (3.12) on RdT+1 in general mixed-norm spaces. Let us first introduce some spaces
and notations.

For p = (p1,...,pa) € [1,00)%, let Wg(Rd) be the second order Sobolev space which
consists of functions f € LP(RY) such that the second order weak derivative V2f €
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LP(R?). For q € [1,00) and any S < T, denote by L%(S,T) := L%([S, T]; LP(RY)). For
simplicity, we will write LE(7") := 1L2(0,7'), and L>(T') consists of functions satisfying

| fllzoery :== sup sup |f(t, 2)] < +oo.
te[0,T] zcRd

We also introduce
W3 ,(T) := LU([0, T); W3 (RY)),

and the space #5,(T') consisting of functions u = u(t) on [0, 7] with values in the space
of distributions on R? such that v € Wi (T) and d,u € LE(T). Besides, for v > 0, let

H) = (1- A)72(LP(R%)) be the usual Bessel potential space with norm

11y = 111 = D)2 F]| o gy
and (1 — A)~"/2f is defined through Fourier transform
(1= AP2f = F 4Py,

Let H? , = LY(R, H}), and HZ (T') = L((0,T), H}), and the space 57,(T) consists of
the functions u = u(t) on [0, T] with values in the space of distributions on R? such that
u € HE, (T) and dyu € LL(T).

Throughout this section, we always assume that

(Ha): a(t,z) is uniformly continuous in z € R? locally uniformly with respect to ¢ € R,
and there exists a constant K > 1 such that for all £ € R,

K7l < lat, )] < K[¢f*, Vo € R™

The main result of this section is as follows.

Theorem 3.4. Assume that (Ha) holds and p € (1, ) and q € (1,00). Then for every
feLi(T), if b€ LYT) with b, G satisfying 2/G+1/pr+---+1/pa < 1 and p; € [p;,o0),
q € [q,00) for 1 < i < d, there exists a unique solution u € %?p(T) to the equation
((3.12) ). Moreover, we have the following estimates:

(i) there exists a constant Cy; = C(d, p,q) > 0 such that
10wull gy + lullwg oy < Cullf g (3.14)

(ii) there is a constant Cr = C(d,p,q,T) satisfying limp_,o C7 = 0 such that

lulleoery < Crllfllugery, i 2/a+1/p1+-- +1/pa <2, (3.15)

and
IVulliee(ry < Crl| fllugry,  if 2/q¢+1/pr+---+1/pa < 1. (3.16)

We shall provide the proof of above result in the following subsections.
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3.2.1 Constant diffusion coefficients.

Let us first assume that a(t, z) = a(t) > Iy is independent of x variable and b(t, z) = 0,
where [ is the unit d x d matrix, i.e., consider the following PDE:

owu(t, ) — a;;(t)0ult, ) — f(t,z) =0, w(0,z) =0. (3.17)

Below, a function f (¢, x) defined on RdT+1 will always be extended to the whole space R*+!
automatically by setting f(¢,2) =0 when ¢t < 0 or t > T. Denote by f(&o, &) the Fourier
transform of f with respect to the variables ¢ and z, i.e.,

[e.e]

f&0. &) = ﬁ » e " dy /_oo e~ o f(t, 2)dt.

The following result extends [35, Theorem 2.1] to the general mixed-norm cases. The key
tool that we use here is the Hormander-Mihlin theorem for mixed-norm spaces. We give
the detailed proof for completeness.

Lemma 3.5. Let p € (1,00) and q € (1,00). Then for any f € LL(T), there ezists a
unique strong solution u € Wy’ (T) to equation (8.17). Moreover, estimates (3.14)-(3.16)
hold true.

Proof. (i) It suffices to prove the conclusions when a” = I, 4, the unit matrix in R¢. Then
the general case follows by [35, Theorem 2.2], which says that whatever estimate is true
for the heat equation in translation invariant spaces is also true with the same constant
for (3.17) with the coefficients depending only on ¢ provided (a®(t)) > Tjxq4. In this case,
it is well known that the solution u admits the following representation:

attea) = [ [ ot sie = )1, auds,

2

4/2¢=% . Define the operator A

where ¢ is the Gaussian function given by g¢(t,x) = 27t~

by
T
Af = Viu(t,z) := / Vig(s =tz —y)f(s,y)dyds.
t JRd

Then we have

— £ .
Af (. &) = —mf(foaf)-
One can check that the function m(&y, &) = % satisfies the condition

oFm
i Cina—— | S C
S S e o
fork=1,---,d+1,i;,=0,---,d and i, # i;(m # j), where C' > 0 is a constant. Thus,

according to [3, Theorem 7|, A is a Fourier multiplier mapping from the mixed-norm
Lebesgue space ¢ into itself, which in turn yields (3.14).
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(ii) Let p" = (p},---,p}) be the conjugate exponent to p, ie., 1/¢+ 1/¢ = 1 and
1/pi+1/p,=1,fori=1,--- d. By simple computation, we have

CT A
lg(t, )l Lo ay < C21 2 2,

and

/ _é_é / 7_d
IVt )| por gy < Ot 200 BT

Then, by applying Hélder’s inequality for mixed-norm space (see [3, Lemma 2]), we
find that for any p € (1,00)%, ¢ € (1, c0) satisfying

it holds
-1 (4t 5h)
u(t, )| < Cot @ 2 2ral || fllpg oy,

and for p € (1,00)%, q € (1, 00) satisfying

1 n n 1 . 1 1
2p1 2pa q 2
it holds
[Vu(t, z)| < Cat* 7~ =t 50| fllg ),
therefore we get (3.15) and (3.16). The proof is finished. O
3.2.2 Variable diffusion coefficients.
In this subsection, we consider PDE (3.12) with b =0, i.e.,
aﬂl(t, I) - "%;U(t? x) - f(ta I) = 07 u<57 I‘) = (b(I), (318)

where s < t and ¢ € C°(R?). We shall assume that a is smooth enough, i.e., a satisfies
(Ha) and for all m € N, B
IV™a (t,)|loo < 00.

Motivated by [67], we also need to consider the dual equation for (3.18) as following:
dsw(s,x) + 05 ((a (s, x)w(s, x)) + f(s,2) =0, w(t,z)=Y(z), (3.19)

where s > t and ¢ € C°(R?). For given ¢, 1 € C°(R?) and s > ¢, let u(t) and w(s) be
the unique solution of (3.18) and (3.19) respectively. We shall simply write

Tis@ = u(t), T = w(s).
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In other words, we have
OTrsd = a0y Ts,  OT = —0(a” T ).

By the chain rule and above equations, it is easy to see that

t
(Toat ) = (0.T0) = [ dr{Toun Tt =0,
That is to say
(Test, ¥0) = (&, Tis¥h)- (3.20)

Fix T > 0. For f € L*°([0,T],C°(R?)), define

T
u(t, ) ::/ Tsrf(s,x)ds, w(s,x):= [ Tg f(t z)dt.

0

Then u solves the following forward equation
Ou=a"0yu+ f, u(t)]o =0, (3.21)
and w solves the following backward equation
Osw = —0ij(a’w) — f,  w(s)|ssr = 0. (3.22)
We proceed to show the following a priori estimates.

Lemma 3.6. For any p € (1,00)¢ and q € (1,00), there is a constant C > 0 only
depending on d,p,q and the continuity modulus of a such that for every f € C3°([0,T] x
R%),

IVullisry < Cllfllgery, Nwliyery < Clfllae, ), (3.23)

P

where u and w are solutions of (3.18) and (3.19) respectively. Moreover, for any o €
[07 2— 2)7
q
ullize, ) < Cllfllugery,  Nwllae, @) < Cllfllue, m)- (3.24)

Before giving the proof of the above theorem, following the argument in [36, Lemma 1.6]
we first give the following freezing lemma and Sobolev embedding theorem in Mixed-norm
Lebesgue space (see proof in Appendix A.6) for later use.

Lemma 3.7. ([76, Lemma 4.1]) Let ¢ be a nonzero smooth function with compact support.
Define ¢,(z) := ¢(x — z). For any o € R and p € (1,00), there ezists a constant C' > 1
depending only on «, p, ¢ such that for all f € HYP,

1 » 1/p
Gl < ([ No-Algz)" < Cl .
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Lemma 3.8. For p € [1,00),
1
I ey < Ol Mgy, o> 2ot 422 (3.25)

where |Hf|HIHIq (T) = SUP,cRrd HXif”Hg,p(T)a |Hf|”JLg(T) ‘= SUP,cRd HXif”JLg(Ty Here x
C°(RY) with X(x) =1 for |z| < 1 and x(z) = 0 for |z| > 2, x,(x) = r~4x(a/r
(1) := xo(x — 2) forr >0 and z € RY.

€
)

Lemma 3.9. ([56, Lemma 1.5]) Let a : R — R? @ R? be a measurable and symmetric
matriz-valued function and there exists a constant 6 > 1 such that for all t € [0, 00)

STHEP < aY(1)&€; < 0E)P,  VE e RY
Let T < o0, pe(1,00), and let u € LP((0,T) x R?) = LE(T) be a solution of the equation
Oru = aijaiju +f, w0,z)=0

with f € LB(T). Then
ullizery < N(dp) || f Il

Lemma 3.10. Let T € [0,00), p € (1,00),n €N. Fork=1,--- n, letay : R - RIQR?
be measurable and there exists a constant 6 > 1 such that for all t € [0,00)

5TMEP < a (€& < B¢, VEeR?
Let A\, € (0,00), v € R, and wy, € HE,_, (T') be the solution to the equation

o = a o u" + ¥, uF(0,2) =0

with f € W, (T). Denote Ay, = (A, — A)®/2 then fori =2, ...,d, we have
/ / / H ||Al€Auk(t7 Yy Lyt )||Lp Ri—1) df[‘ddt
Rp=1
S0 BY A R N ISy
— Jo Jr R
TTIA 8w (i wa)llf ) ey ds - - - dagdt. (3.26)
ik

Proof. Without loss of generality we may assume ~y; = 0. Define vk = Au’f. For fixed ¢ =
{2,...,d}, take X = (2',--+ ,2") € R™ with 2/ € R? and 2} = z; € R, 2], = 7,11 € R,
, 7% =14 € R for 1 < j < n, hence actually X € RHM=DE1 For such X, we define

V(t, X) =o' (t,z") - ... 0" (¢, a").
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then by the fact that a is independent of space variable and

D" (1, 2%) = a9 Dy At (t, %) + Ap fE(t, %), k=1, n,

we get
HV(t,X)=PV(t,X)+ F(t, X),
where
02V
PV = ak —8xk8 it

P(t,X) = ApGH(t, X), G, X) = fo(t 2" [[ v/t 27).
J#k

By classical result, i.e. Lemma 3.9, we have

IVl o (0,7 xR+ (n-16i-1)y < NZHG | 2o (0,1 xRA+ (- 1)1

which is exactly (3.26). The lemma is proved. O
According to [67], we have the following estimate about equations (3.21) and (3.31).

Lemma 3.11. (/67, Theorem 3.2]) For any p € (1,00) and q € (1,00), there is a
constant C' > 0 depending only on d,p,q, T and the continuity modulus of a such that for
every f € C°([0,T] x RY),

IV2ulligry < Cllfllusery,  llwllus e < Ol fllue, o) (3.27)

where u and w are solutions of (3.18) and (3.19) respectively. Moreover, for any o €
0,2 — %), we have

ullag, ) < Crllflluaery,  Nwllee, @ < Orllfllne, (3.28)
where Cp > 0 is a constant satisfying limp_,o Cp = 0.

With the above preparation, we can give:

Proof of Lemma 3.6. Let p = (p1,pa,- -+ ,pa) € (1,00)% and q € (1,00). We divide the
proof into five steps: we first prove estimate (3.27) in step 1-4, and in the fifth step we
show estimate (3.28).

Step 1. [Case py = --- = pg € (1,00) and ¢ € (1,00)]. In this case, the estimate (3.27)
was proved by [67, Theorem 3.3].

Step 2. [Case py =+ =pg—1 € (1,00) and pg = ¢ € (1,00)]. We only prove the estimate
for w since the estimate for u is similar and easier. By duality and the same argument
as in the proof of [67, Theorem 3.3], it is sufficient to prove the desired estimate when
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¢ =Dpq=npg—1 = ---=np; = np forn € Ny and p € (1,00). That is to say, we shall
prove:

HwHL"P ([0,T)xR,LP(R4—1) C”fHan (1) p= (p, Y 2) np).

Take a non-negative smooth function ¢ supported in the ball B,. := {a: eR?: |z| < r} and
Jga |#|Pdz = 1, where r is a small constant which will be determined below. For z, z € R,

s € Ry, define ¢.(x) := ¢(x — 2), w.(s,z) := w(s,x)p.(x), f.(s,x) := f(s,2)p.(z) and

a,(s) :=a(s, z). Then we can write
dw, + 0i5(aw,) +g. =0, w,(T,z)=0, (3.29)

where

9> = J= + 0y (a"w) ¢, — 95 (aYwe.).
Below, for any v € R and fixed x4 € R, we denote by ||f(-,za)||lmy@e—r) = [[((1 -
AV F) (-, za)|| p(ra-1), and drop the time variable for simplicity. Notice that

g. = [, — 28]-(&”10)&-@ — aijw@-aj@ + aié?j((a” — a?)wz).

By the continuity of a, we have

1/p
([ 1Cooalyande) < O 2a)llpgascs

+ G ZH (a“w)(-, 24 N g1 ma-1y
+GC Z law(., xd)HH,;?(Rd—l) + ol za) | o ra-1),
1,J

where C,. > 0 and lim,_,o ¢, = 0. Let p,, be a family of standard mollifiers and a, (¢, x) :=
a(t,-) * pn(z) be the mollifying approximation of a. For every € > 0, we can take n large
enough such that

ZH (0"w0) () L ay + D a0 20l z2 sy

i,
<Cl[(aw)(; za)ll g1 a1y
<SCll(anw) (s 2a) |1 a1y + Cll((@ = an)w) (- 2a)l| g1 -y
SCnllw (- za)l gy a1y + cimllw (- za) | Lo ga-ry

<Cn”w('7xd)||H;2(Rd—1) +ellw(, xa)|| Lo a1,

where the last step is due to the interpolation and Young’s inequalities. Hence, we get

1/p
(TN R R G s
+ ol ) g sy + ot 2oy (330
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Observe that

||w||an(()T]><]RLP Rd-1)) // / ||’U) y L qszLp(Rd 1y ) dq;ddt
_ / / / H||wzk(t,-,xd)||’zp(Rd,1)dzl---dzndxddt. (3.31)
0 JrRJRNd 3

Using Lemma 3.10, we can deduce that

/ / [T 0 ()l gy

k=1

L0 Y [ (TACRERTIARNEN ) (RS

1k

which together with (3.30) and (3.31) implies

n T
1wl oo 71 xR o (-1 <00;/0 // a0t s ) 2 gy

X H ||wzl y L ||Lp Rd— 1)d : dzndxddt
I#k

T
J— ‘ p
_C«On/o /R</Rd g (¢, ,xd)”HI)—Q(Rdfl)dZ)

n—1
/ b)) a2 gl

<o [" [ (10wl )

X Hw< y Ty )”Lp Rd 1 dxddt

T
C/ / Hf(ta '7xd)HZp—2(Rd71)dxddt
0 R P
T
+ C’"/ / HU)(t, ) xd)H?;{p—z Rdfl)d.%ddt

+erllwln, ([0,T] xR, LP (RI~1))

where the last inequality follows from Holder’s inequality and Young’s inequality for
product. Let r be small enough so that ¢, < 1, we can get that

||w||an [0,T]xR,LP(Rd—1 ||7 , s L || a1y dxddt
({0,177 ( ) R
+ /0 / Hw(t, ° Qfd)Hanz(Rd_l)dxddt) . (3.32)
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It remains to control the last term on the right hand side of the above inequality. To this

end, let x2, := [ a.(u)du and

P 1 (30 ta—yl?
z X, T — = e 2(t—s)
s’t( v) (2m)d det (k3 )

Then the solution of equation (3.29) is given by

2(t, @) / / — y)g:(u, y)dydu.

By (Ha) and a standard interpolation technique, we get that for any a € [0, 2),

T
||wz(t,-,xd>||HgZ(Rd—l)éc/ (u=1)"2lg=(u, -, wa)ll g2 a1y du
t

Thus by Minkowski’s inequality we have

1/p
“w(t?'axd)HHg‘*Q(Rd 1) \ / ||wz Y “Ha Q(Rd 1y )

1/p
g/ u_t / ||gz U, , T | —2 Rd 1)dZ> d'U/

Using (3.30) and the similar argument as in the proof of (3.32), we further have

T
ot )l mery < € [ (=078 (1020 s
t
w2y 2y ) o

Let & + nip = 1, then for any a € [0,2 — nlp), we get by Holder’s inequality that

s sy < O [ =050 [ (150 20y

np
w2y ) du

CT/tT(Hﬂu By s 2 )

(3.33)

where C'r > 0 satisfying limy_,o Cr = 0. Then by taking o = 0 and Gronwall’s inequality

we can obtain

T
sup (05, 2a) [ sy < Cr [ 170 ) [ o
t

s€[0,7

which in particular implies that

HwHﬁp‘fQ’ CT”fHan

(3.34)
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Taken this back into (3.32) yields that

”wHL"P ([0,T] xR, LP (R4—1)) OHfHH"P y P= (p, D np).

Step 3. [Case py = -+ = pg—j € (1,00) and pg_j11 = --- = pa = ¢ € (1,00) with any
1 < j < d—1]. This can be proved by following exactly the same arguments as in the
proof of step 2, except that we need to use Lemma 3.10 (3.26) with i = d — j + 1, we omit
the details.

Step 4. [Interpolation] We develop an interpolation scheme to show the following claim:

for every 1 < j < d—1,(3.27) holds with p; = --- = ps_; € (1,00)
and pa—jy1,Pd—j42,° ,Pa,q € (1,00). (3.35)

In particular, when 5 = d — 1, we get the desired result.
Interpolate the results in step 1 and step 2, we can get that (3.27) holds when p; =
- =pg_1 € (1,00) and pg,q € (1,00). Thus, assertion (3.35) holds for j = 1. Assume
that (3.35) holds for some j = n — 1 < d — 2, we proceed to show that (3.35) is true
for n. For this, we first interpolate p; = -+ = pg € (1,00) and ¢ € (1,00) with p; =

- =pa—; € (1,00) and pg_j41 = -+ = pg = q € (1,00) (both of which hold according
to step 3) to get that the (3.27) holds for py = -+ = pg—; € (1,00) and pg_j41 =
Pi—j+2 = -+ = pa,q¢ € (1,00). Then we interpolate py = -+ = ps—; € (1,00) and
Pd—j+1 = Pd—j+2 = -+ = Pa,q € (1,00) with p; = --- = pg_1 € (1,00) and pg,q € (1,00)
(which holds by induction assumption for j = 1) to get that (3.27) holds for p; = --- =
Pi—j € (1,00) and pg_j41 = -+ = pa—1,P4,q € (1,00). Again we interpolate p; = --- =
pa—j € (1,00) and pg_j41 = -+ = pa_1,pa,q € (1,00) with py = -+ = pg_o € (1,00) and
Pa—1,Pa,q € (1,00) (which holds by induction assumption for j = 2) to get that (3.27)
holds for py = -+ = pg; € (1,00) and pg_j41 = -+ = pa—2,pa-1,Pd,q € (1,00). Keep
interpolating Wlth induction assumption for j = 3,--- ,n— 1, we can get that (3.27) holds
for P1="""=DPa—j € (17 OO) and Pd—j+1,Pd—j+25 """ Pd;q € (17 OO)

Step 5. Finally, we proceed to prove estimate (3.28). With the same argument as in the
previous 4 steps, it is sufficient to prove the following estimate:

n 2
”wHHgofz, CTHf”an o P= (p7 oD, np)a € [072 N n_p)a

where limy_,o C7 = 0. In fact, by (3.33) and (3.34), we get for any « € [0,2 — n—p),

sup [ o, 2oy da < [ st s, m) g

s€[0,T] s€[0,T

CT”f”an

The whole proof can be finished. O
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3.2.3 Proof of Theorem 3.4

Now, we can give:

Proof of Theorem 3.4. By standard continuity method, it suffices to establish the a priori
estimates (3.14)-(3.16). We divide the proof into two steps.

(i) (Case b =0) For T' > 0 and p,q € (1,00), let u € #,',(T) and f € LL(T) satisfy
(3.18). Let p, be a family of mollifiers. Define

un(t, z) == ult,") * pu(x), a,(t,x) :=alt,-) *p,(x), fult,z):= f(t,") * pn(x).
It is easy to see that u,, satisfies
atun - agaﬁun + 9n; un(()) = 07

where
Gn = fn+ (aij@ju) * Pp — aflj(()ijun.
Then by (3.27), we have

IVEunlluger) < falligery + (@ 0iu) = pn — @l Opjunllugr,

and by Sobolev embedding theorem (Lemma A.6) and (3.28), for le + -+ pid + %1 < 2,
for small € € (0,2 —2/q), we have

[l ey < Cllnllg,,, .y < Cllifallgcr) + 1(a”0i0) * po — 6] 0sjun L),

2-2/q—¢,p

forpil%—---—i-z%d%—%<1,forsmalle€(0,1—2/q)

Vo) < Cl[Vn|mee @) < CllfullLaery + 1@ Biju) * pn —  sjttnl|Ly ()

1-2/q—e€,p

Letting n — oo, we obtain

I2ulligr) < Cllflgerys Nl . < Cllfllgen, (3.36)
1 1 2
V|l < |l flles s if b+ 3.37
IVullmr) < Ol sy - ot (3.37)
lullizy < CIIF if Loov 200 @a)
w| Lo a7y, i —+ -+ —+ - . .
L=@ = Eo(T) n P q

(ii) Let p%_ = ﬁi@- + ﬁ%- and % = % + %, by Holder’s inequality and Sobolev embedding theory
(Lemma A.6), we get

b vUHILE,(T) < CHbHLg(T)HVUHLg(T) CT“bHLf;(T)||U||H§+97P(T)

Crllbllz ey lullsgs, - (3.39)

NN
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Whereee(lail+-~-+~i,1_2)c(~i+...+
step (3.36) that

11— %) We have by the result of the first

i
IS
s}
]
E
iy

||U||IHI‘1><3Wp

vy < Cr (1 fllgery + 18- Vallgery ) < Cr (I luger) + 16l el ).

By choosing T small enough so that C'T||b||]Lq < 1, we have

HuHHﬁep(T) ( P, g )”fH]Lq(T

) < Cr (HfHL;I,(T) + o VUHL;(:r)) < CT(HfHL;I,(T) + HbHLg(T)HUHHﬁg,p(T))
<CO(d 7P7Q)HfHL;1,(T)~

Which implies

10cullgcry + ullws ) < C(d, P, @) fllug(r)

With the similar argument, combining (3.38) and (3.39) we get estimates (3.15) hold,
combing (3.37) and (3.39) we get (3.16). O

3.3 Krylov estimates and existence of weak solutions

We first give the existence result for weak solutions and Krylov’s estimate, which will play
an important role below.

Theorem 3.12. Assume (Ha) holds and b € LE(T) q,p1, -+ ,pa € (2,00) and 2/q +
1/pr+ -+ 1/ps < 1. Then there exists a weak solution (X;);>o to solution to SDE
(3.8). Moreover, for any non-negative function f € ]Lg(T) with ¢, p1, -+ ,Pa € (1,00) and
2/G+1/p1+ -+ 1/pg < 2, we have

B ([ 176, Xlas) < Clfll g, (3.40)

where C' = C(d, P, q, ||bllLy(r)) is a positive constant.

Proof. Firstly, since we already establish the estimates (3.14), (3.15) and (3.16), by fol-
lowing the same argument as in [73, Theorem 2.1], we can show that (3.40) holds when
b = 0. More precisely, for any 0 < S < T and non-negative function f € LZ;(S, T) with
2/G+1/p1+ -+ 1/pg < 2, there exists a constant C'(d, p,q) > 0 such that

T
e ([ 15600ar) < Ol (341
where Y; solves the following SDE without drift

dY; = o(t, Y)dW,;, Y, = x.
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In order to make our thesis self-complete, we give more details of getting (3.41). By
Theorem 3.4, there exists a unique solution u to the following backward equation on
[0, 7]
O+ a’Oyu=f, u(T,x)=0
for [ € IL%(T) with ¢, p1,- -+ ,pa € (1,00) and 2/¢ + 1/p; + - - + 1/pg < 2. Furthermore
by (3.15) we have
sup u(t, )| < ||f||]Lg(T)

(t,)€[0,T] xRd

Along the same lines of the proof of Theorem 3.4, the above statement also holds for
feLyiiT)n LE(T). Since Lgﬂ(T) NILE(T) is dense in LI(T), so its enough to prove
(3.41) holds for f € L1 (T) N ]L%(T). We take a nonnegative smooth function p defined
on R with support in {z € R™™ : |z| < 1} and [h4,, p(t, ¥)dtdz = 1. Set p,(t,z) =
n*t1p(nt, nz) and extend u(s) on s € R by setting u(s,-) = 0 for s > T and u(s, -) = u(0, -)
for s < 0. Define

U (t, ) = u* pp(t, )

and

fn = Oy, — a” 05y,

Then we have

17 = Fllugszcry < 000G = )l gy )+ K10 = )

Lati) (1)

< |0 (un — )HH“ZIii%( ) + Kllun, — u”Hngﬂ(T) — 0 asn — oo.

So, by classical Krylov’s estiamte (cf. [34, Lemma 5.1]), we have

n—oo

T
i B( [ (5. Y) = FYolds) < i = Fllgpin =0 (342

Now we use 1t6’s formula,
t t ]
un(t,Yt)—un(O,Yo)—l—/ fn(s,YS)der/ O (8,Y)o™ (s, Y )dWPF, vt e0,T].
0 0

In view of

sup |05, (s, )| < Cp,
(s,2)€[0,00) x R4

by Doob’s optional theorem, we have

T
E[/ Dytun(s, )™ (s, Y )dWE] = 0.
S
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Hence

B( [ 1506 Y0105) = B (1, ) (5.5

<2 sup u,(t, 7))
(t,z)€[S, T xR

<2 sup |u(t, @)
(t,z)€[S, T xR

< R
= HfHL%(T)

By (3.42) and letting n — oo, we get (3.41).
Now by applying (3.41) to f = b?, we can get

T
]E(/S \b(t,Yt)|2dt> CHb2HLq/z(ST = C|bllfas.1)-

Then, Khasminskii’s lemma shows that for any constant x > 0,

T
Boxp {n [ (s, Vs < o pu )Py < (3.43)
0

As a result, we have
1

Epr = Eexp{ - /OT (b0 (s, Ys)dW, — 3 /OT [b*(00™)"b] (s,Y;)ds} = 1.

The existence of a weak solution X; to SDE (3.3) follows by Girsanov’s theorem. Fur-

thermore,
T T
B ([ sexoas) =8 (or [ sviar)
T T
a 1/ B 1/8
< (B / sty (B / F2(, ),

where a, § > 1 satisfying 1/a + 1/8 = 1. Since

Ep2 = E[(exp(—m /OT bT (0T) "L (s, Yy)dW, — 202 /OT(bT(JoT)lb)(s, Ys)ds)>

1/2

(esp(tta® ~ ) [ 07 (oo™ M0t o) )

by Holder inequality and the fact that exponential martingale is a supermartingale and
(3.43), we get Ep} < C. Then

5[ Crtxyat < o@E [ £ vdnY

0

C(d. B4, D) 1,
C(d, p, q, ||bHL§,(T))||fHng(T)
C(d. Do, [blleger) Il o

I /A
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holds by choosing /5 close enough to 1 such that 2/G+ 1/py + -+ 1/pa < 2/ and take
p =D/6, ¢ = ¢/B. Thus the above estimate implies (3.40). ]

3.4 1t6’s formula for functions in Sobolve spaces with mixed-norm

In this section, we will formulate It6’s formula for the function u € #57,(T') to the equation
(3.12), T € [0, <.

Theorem 3.13. Assume (Ha) holds and b € LL(T) with q,p1,--- ,pa € (2,00) and
2/qg+1/pr+ -+ 1/pg < 1. (Xi)i=0 is the solution to the SDE (3.3). Then there exists
a version of u such that for 0 < s <t < T we have

u(t, Xy) =u(s, Xy)
t ¢
+/ Oyu(r, Xr)dr+/ Vu(r, X,) - b(r, X, )dr

t
+/ Vu(r, X,) - o(r, X,)dW,

+ = Z &Ju r, X )ou(r, X, )ou(r, X, )dr a.s. (3.44)

’L]ll s

Proof. Let (pn)nen be an sequence of mollifiers, define w,, := ux p,,, then by (3.14), (3.15)
and (3.16), we have wu,, Vu, € L>*°(T), further we have

| Oy, — @uHLqp(T), I, — U||W2‘{p(T) —0asn— oo,

and
|y, — w||Loo(r)y — 0 as n — oo.

By classical It6’s formula for C? function, we have for each n € N,
U (t, Xy) =un(s, Xs)

/ Orun(r, X;) dr—i—/ Vu,(r, X;) - b(r, X,)dr

/Vuan o(r, X,)dW,

+ - Z / it (r, X))ot (1, XYoo (r, X, )dr,  as..

z]l 1
Firstly we have
Elun(t, Xy) —u(t, Xy)| < Cllup — ul|re(ry — 0 as n — o0, (3.45)
it also yields
Elun(s, Xs) — u(s, X)| = 0 as n — 0. (3.46)
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Krylov’s estimate (3.40) yields
t
E\/ Byt — Bye) (1, X, )dr| < COyttn — By — 0 a5 n — oo, (3.47)
And

¢
E|/ (Vu, — Vu)(r, X,) - b(r, X;)dr| < C sup |V, (t, x) — Vu(t, z)||[b]|La 1)

(t,z)€[0,00) xRE

— 0 as n — oo.

(3.48)
Since o is bounded, we get
1 [
Bl > / (Bigttn — Oygu)(r, X, ) (r, X, )or(r, X, )dr|
1,750=
t
< CE/ (0sjun — Ojyu)(r, X, )dr
< Cll0ijun = OijullLgry — 0 as n — oo, (3.49)
By the martingale property, we have
t
£l / V(ty — u)(r, X,) - o(r, X,)dW,| = 0. (3.50)
Then (3.45), (3.46), (3.47), (3.48), (3.49) and (3.50) imply
Eu(t, X;) =Fu(s, X;)
t t
+ E'/ Opu(r, X, )dr + E/ Vu(r, X,) - b(r, X,)dr
t
+ E/ Vu(r, X,) - o(r, X, )dW,
1 L ‘
DN / Dusulr, X, )ou(r X )ou(r, X, )dr. (3.51)

1,,l=1
Therefore there exits a subsequence {ny }ren such that

U, (t, Xt) — U(t, Xt) a.S.

48



3 Existence and Uniqueness of a global strong solution to an SDE driven by continuous
noise in mixed-norm Lebesgue spaces on Q = [0, 00) x R?

and
Un, (5, Xs)

/ g, (1, X) dr+/ Vuy,, (r, X,) - b(r, X, )dr

/ Vo, (r, X;) - o(r, X,.)dW,

+ = Z / Bsjtim, (1, X, )it (, X, )or(r, X, )dr
z]l 1
n—oo

=
u(s, Xs)

;
/

- Z / Oiu(r, Xy )ou(r, X, )oju(r, X, )dr — a.s.,

z]l 1

+ [ Owu(r, X,) dr—i—/ Vu(r, X,) - b(r, X, )dr

+ co(r, X,.)dW,

which implies that (3.44) holds for u € #5" (T).

[
3.5 Pathwise uniqueness of strong solutions
Recall that the Hardy-Littlewood maximal operator M is defined by
Mf(z):= sup 3 flx+y)dy, feLi, (RY,
re(0,00) | | B,
where for r = (ry,rg, -+, 74), By 1= {:c ERY: |zy| <7y, |2a] < 7oy oy |Ta] < rd}. For every

f € Ce(RY), it is known that there exists a constant C; > 0 such that for all z,y € R?
(see [67, Lemma 2.1]),

[f(z) = fW)| < Calz — y[(MIV fI(z) + MIV f](y)), (3.52)
and the following LP(R%)-boundness for p € (1,00)¢ holds (see [32, Theorem 4.1]):
M flle < Call £l e (3.53)

Now, we are in the position to give the uniqueness of the solution, i.e. the proof of our
main theorem:
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Proof of Theorem 3.1. We only need to show the pathwise uniqueness of solutions to SDE
(3.3). To this end, we first assume that (Ha) holds, and for q € (2,00] and p € (2, )¢,

2 1 1
b],|Vo| € L([0,T]; LP(RY)) with =4 — +-- -+ — < 1.
q D1 Pa

By Theorem 3.4, there exists a function u € Hgvp solves
ou(t, x) + Liu(t,x) + Lrult,z) + b(t,x) =0, u(T,x) = 0.
Define ®(t, ) := x + u(t, z). In view of (3.16), we can choose T small such that
1/2 < [|[VO L1y < 2 (3.54)

Assume that SDE (3.3) admits two solutions X} and X?. By the Krylov’s estimate (3.40),
we can use [t0’s formula to get that the process Y;' := ®(t, X}) satisfies

A} = o(t, X))V (t, X)) dW, = W(t, X))dW,, i=1,2.

Let Z, := X} — X}, we have by (3.54) that
t
E|Z? < 2By — Y7 < 2R (/ yzs|2d,43) |
0

where

U(s, X2)P?

A ds.

t 1
aoim [ 120X
0

Let p, be a family of mollifiers on R?, define W"(¢,x) := W(s,-) * p"(x). Then we can
write

FlW(s, X)) — W(s, X2)?
EA; <ImE (/| . 8>\Z ) '1{|Zs|>e}d3>
0 S

‘ 2

el0
Flon(s, X)) — (s, X))
<3(1' lim E s 2, ad
a0 e (A 1Z,2 “%>}5>
t n 2 2\ |2
. . ’\D (SaX)_\IJ(SvX )’

lim lim E s A1, ead
rlim i ([ R
t yn Xl — g XQ 2
Flmsnp ([ ITEXDWEIDE )

el]0 neN 0 |ZS,

By the property of mollification, it is easy to see that

I, (t) + Ip(t) < lime? lim O V" — U|f oy = 0.

E\LO n—oo
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As for the third term, we can use (3.52), the Krylov’s estimate (3.40) and (3.53) to get
that

t
Z3(t) < CsupE (/ [MIVI™|(s, X)) + M|v\1/”|(s,Xg)|}2ds)
0

neN
_ 2
< Cilelg M|V IHL%(T) < O VY|Zg () < oo

Hence, as a result of the stochastic Gronwall’s inequality [69, Lemma 3.7], we can get
E|Z;|* = 0. The pathwise uniqueness is obtained.

Now we are going to prove (3.11), i.e. the strong Feller property. The argument follows
from [74, Theorem 1.1]. It is sufficient to consider the strong Feller property of the process
(Y})i=0, since X; := ®71(¢,Y;), (3.54). We also have that

where U (t,Y;) = (V®-0)(®71(¢,Y;)). By the fact that o is bounded and estimate (3.16),
we get the boundedness of ¥ as well. We give our proof into the following steps.

Step 1. To prove
For any T >0, v € R and all x # y € R?, we have

sup B(|Yi(2) = Yi)") < Cle = yl»

te[0,7

where C' = C(K,6,p,q,d,v,T).
For x # y and € € (0, |x — y|), define

T :=1inf{t > 0: |Yi(z) — Yi(y)| < €}.

Set Zf = Yiar () — Yiar (y). For any v € R, by It6’s formula, we have
tATe
|Z{ PP =z —y[P + 27/ | ZEPOD(ZE [ (s, Ya(x)) — W(s, Yi(y))]dW,)
tATe 0
+ 27/ |ZSPO DU (s, V() — U(s, Ya(y)) | ds
0
tATe
e20=1) [ 2P Vi) — W V0] Zids
0

tATe
= fe— g [z (a4 s(s)ds),
0

where
o(s) = DY Yal@)) = V(s Vi) 2
| ZP
and
Bls) = 29[[9(s, V() — U(s, Ys(@))l| | 290y = DI[¥(s, Ya(2)) — V(s )2

|Z5]? |1Z3]*
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By the Doléans-Dade’s exponential (cf.[54]), we have

tATe 1 tATe tATe
2P =l epl [ aaw— 5 [ lalPds+ [ s(s)ds)
0 0 0

Fix T > 0 below. Using (3.40) and as in the proof of pathwise uniqueness, we have for
any 0 <s<t<T,

t
B( [ 13t nr)ari) < CIVIE(s.1),

where C' = C(K,0,p,q,d,7,T). Thus, by Lemma A.1, we get for any A > 0,

E exp (/\ /OMTE |B(s)|d8> < Eexp ()\ /OT 1B(s A Te)d8|> < +o00.

Similarly we have
tATe
E(exp ()\/ |a(s)|2ds> < oo, YA>0.
0

By Novikov’s criterion,

tATe tATe
t— eXp{2/ a(s)dW, — 2/ lo(s)[Pds} =: M
0 0

is a continuus expential martingale. Hence by Holder inequality, we have

tATe

tATe 1
E\Z:\%\x—yWEM;ﬁ(Eexp{/o afs)?ds +2 | B(s)ds})” < Cla —yf”,

where C' is independent of € and z and y. Noticing that

liﬂ)m'e =7:=inf{t > 0:Y(z) = Yi(y)},

by Fatou’s lemma, we obtain

ElYinr(2) = Yirr (y) [ = tim |Zi]* < Cla —yf™.

Letting v = —1 yields that
T=1t, a.s.

then we get the desired result in the begining of this step.
Step 2. To prove
For any T >0, v € R and all x € R?, we have

B sup (1+ H(@)2)7) < Cull+ a2, (3.55)

t€[0,7]
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where Cy = C1(K,~,T) and for any vy <1 and t,s > 0,

sup E|Y,(z) — Yi(2)|*" < Colt — s|” (3.56)
z€RY
where Cy = Cy( K, 7).
Since o is bounded, we can obtain (3.55) by It6’s formula. For (3.56), by Burkholder-
Davis-Gundy inequality and the fact that o is bounded, we have for v € [1, 00),

t
sup E|Y;(z) = Yi(2)[*" < sup B[ [ o(u, Y, (2))dW|* < Colt — s|".
zeR z€R4 s
Step 3. To prove
For allt > 0,

y — Yi(y)

is a homemorphism on RY.
For x # y € R?, define
Hylw,y) = [Yilz) = Yi(y)|

For any z,y, 7',y € R? with x # 2/, and y # 3/, s # t, it is easy to see that
He(z,y) — Ho(2', )] < Helz,y) - Ho(2!, ) [IVe() = Yol + [Yaly) — Ys(y)]].
By Step 1 and Step 2, for any v > 1 and s,t € [0,T], we have
EHi(x,y) = Ho(a' )" < Clo =yl ' = o/ (|t = s + o = 2| + |z = y/]").

Choosing v > 4(d 4+ 1), by Kolmogrov’s continuity criterion, there exists a continuous
version to the mapping (¢, z,y) — Hi(z,y) on {(t,z,y) € [0,00) x R? x R? : z #£ y}. In
particular, this proves that for almost all w, the mapping © — Y;(w, x) is one-to-one for
all t > 0.

As for the onto property, let us define

A+ Yl )) 2 =0,
Gl y) = {O, x # 0.

As above, using the results from Step 2 and Step 1, one can show that (t,z) — ¢(x)
admits a continuous version. Thus, (¢,z) — Y;(w, ) can be extended to a continuous map
from [0, 00) x R?U {0} to R?U{oc}, where R?U{oc} is the one point compactification of
R?. Hence Y;(w,-) : R?U {00} — R?U {00} is homotopic to the identity mapping Yy (w, -)
so that it is an onto map by the well known fact in homotopic theory. In particular, for
almost w, ¥ — Y;(w,z) is a homeomorphism on R? U {cc} for all t > 0. Clearly, the
restriction of R? is still a homeomorphism since Y;(w, 00) = oo.

Step 4. To prove

For any bounded measurable function ¢, T > 0 and x,y € RY,

[E(o(Yi(x))) — E(¢(Yi(y))) < %||¢||oo|l“ —yl, vte(0,T]
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We define W,,(t, ) := U(t,-) x p,(x), where p, is a mollifier in R then we have for all
(t,z) € [0,00) x RY,

SIAZ < W (L )N < KA, VA€ RY
Let Y;"(x) be the unique strong solution to SDE dY;* = VU, (¢,Y;*)dW;, Y* = Yy. By
monotone class theorem, it suffices to prove (3.11) for any bounded Lipschitz continuous

function ¢. First of all, by Bismut-Elworthy-Li’s formula (cf.[19]), for any h € R?, we
have

ViEO ) = 1B [0 ) [ s ) @], @
where for a smooth function f, we denote V,,f := (V f, h). Noting that
NP = bt [ VY E) T
by Ito’s formula, we have
VY =Ih 2 [ (V) T,V 0) - Vi
b IV 2 Wl

=+ [ PR (eI, + A (s)ds).

where

i) e V@) V(s Y2 (2) - V()
e Ak

and

V(s Y)Y (@)
Pils) = SAROL '

By the Doléans-Dade’s exponential again, we have
t 1 t t
V@) = P esol [ o)~ 5 [ lago)Pds+ [ gs)ds)
0 0 0
Fix T > 0. By (3.40), we have for any 0 < s <t < T,
t
B( [ IBG)IR) < OVl < CIVUR ),

where C' = C(K, d,p,q,d,T) is independent of n, x and h. Thus by Lemma A.1 we get
for any A > 0,

T
sup sup Eexp <>\/ ]ﬁ2(5)|ds> < 00.
0

n  heRd
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With the same argument we get

T
sup sup Eexp ()\/ ]aﬁ(s)\ds) < 00.
0

n  hcRd

Hence,

sup sup sup E|V,Y"(x)]> < C|hf?>, Vhe€RY,

n  t€[0,T] zeR4
and by boundedness of ¥ and (3.57),

1

VB2 ()] < 1= (i s 2@ Vi wpds)

t 1
< ol (5 [ ,vropas)”
t 0

o Crllol=lh]
Vit

which implies that for all t € [0,7] and z, y € R,

E(G(Y(2) — @Y7 (1)) < %nmrmm _yl (3.59)

where C'r is independent of n.
Now for the completeness of our proof, we only need to take limit for (3.58) by proving
that for any = € R?,

lim E|Y"(x) — Yi(z)| = 0. (3.59)

n—o0

Set

Z{(x) ==Y (x) = Yi(x)

and

a(s) = (MIV,(s, Y (@) + MIV (5, Yi(@)) ).
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For any A > 0, by It6’s formula, we have
BIZ ) exp(A [ m(s)a
=5 [ 96,72 - W v P exn(- [ (e
38 [z @ e [ mian
< [ 105,200~ s, Ve P espt A [ty
+8 [ 19006, 7300) — s, @) exp A [ ol
38 [z @ e [ mian

0

<<od—A>E/O (122 @) Pesp(= ol

LB / 105, Y (2)) — W (s, Va(a)) 2.

Then by (3.40), we obtain that for any A > Cy,

¢
lim E\Zf(x)ﬁexp(—A/ Nu(s)ds < lim [|[W,, — Wl|pq ) = 0.
0 n—00 P

n—oo

Furthermore, by (3.40), (3.53) and Lemma A.1, we have

T
sup E exp ()\/ nn(s)ds> <oo, VAT >0.
n 0

Hence by Holder’s inequality,

t

tim 51701 < [(Few (3 [ natons) ) (B en [ mis)as)

which yields (3.11). Now we proved all of the desired results. O

N
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4 Existence and uniqueness of a maximally defined local
strong solution to an SDE driven by continuous noise
in mixed-norm Lebesgue spaces on a general space
time domain Q C [0, 0) x R?

There are several interesting situations arising from diffusions in random media and par-
ticle systems (see [37] and references therein) that the studied domain @ of equation is
not the full space R, x R? but a subdomain (e.g. Q@ = R\ {z € R4 : |z| < p}, p > 0).
In order to deal with this kind of situation in applications, it is important to extend the
obtained result in Chapter 3 to the case where the studied domain () is not necessary the
whole space but just a subset of R, x RY.

4.1 Preliminaries and main results

Let Q be an open subset of Ry x R? and Q™, n > 1, be bounded open subsets of Q
such that Q" C Q"' and U,Q" = Q. We add an object & ¢ @ to Q and define the
neighborhoods of 0 as the complements in ) of closed bounded subsets. Then Q' = QU
becomes a compact topological space, which is just the Alexandrov compactification of
Q. For p = (p1, -+ ,pq) € [0,00)¢, g € [0,00) and 0 < S < T < oo, we denote LL(S,T)
the space of all real Boreal measurable functions on [S,T] x R? with the norm

Hfulg,(s,ﬂ—:( / ( / ( / rf<t,x1,...,xd>\pldx1) de) dx) dt) < +oo.
S R R

For simplicity, we write
Jdoc __ rloc d
LL =1L75(0,00), LI(T)=LL(0,T), LI = LRy, Ly(RY)).
The following theorem is the main result that we want to prove.

Theorem 4.1. Assume that for any n € N and some p(n) = (p1(n),--- ,pa(n)), q¢(n) €
(2, 00) satisfying 1/pi(n) + -+ -+ 1/pa(n) +2/q(n) <1,

(i)lblg-|. [Volo:| € Loc).
(11)oi;(t, x) is uniformly continuous in x uniformly with respect to t for (t,x) € Q™, and
there exist positive constants 6, such that for all (t,z) € Q,

lo(t,2)*A\? = 6, A%, VA e R
Then for any (s,x) € @Q, there exists a unique continuous Q'—valued function z =:
(t, Xy) and a Fy—stopping time & =:inf {t > 0: z; ¢ Q} such that X, is the unique strong
solution to the following SDFE
¢ t
X, =ux +/ b(s+r, X, )dr +/ o(s+r X, )dW,, Vtel0,£),a.s. (4.1)
0 0

and for anyt >0, z; = 0 on the set {w : t > £(w)} (a.s.).
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4.2 Proof of Theorem 4.1

Now we are going to prove the local well-posedness result on an arbitrary domain ) C
R, x R? by applying the localization technique, which is a modification of the proof of
Theorem 1.3 in [73]. Furthermore we will give a precise description about the continuity
of the solution on the domain @, especially around the boundary 0Q).

Proof. By Lemma A.4, for each n € N, we could find a nonnegative smooth function
Xu(t,z) € [0,1] in R4 such that y,(t,z) = 1 for all (t,x) € Q" and x,(t,z) = 0 for all
(t,z) ¢ Q"*'. Let

bi(t,z) = xn(t +s,2)b(t + s, 2)

and

ol (t,x) = X1 (t+s,2)o(t+s,2)+ (1 —xn(t+s,2))(1+  sup  |o(t+ s,2)|)Lixa
(t+s,x)eQn+?

By Theorem 3.1 there exists a unique strong continuous solution X/ satisfying
t t
X' == —i—/ b" (r, XM dr +/ o"(r, X")dW,, ¥t e [0,00),a.s. (4.2)
0 0

More precisely, for conditions in Theorem 3.1, for any (¢,z) € R,

05t )| < [(blgne2)(s + ¢, 2)],

Vo (t, o)l < [(VXns10)(t +5,2)| + [(Xn12 Vo) (E + 5, 2) [ + | Vn(t + 5, 2)|
<N(Vxnp10lgne2)(t + s, 2)| + |(Volgne)(t + 5, 2)| + |V (t + 5, 2)],

which means we can take p =: P12, ¢ =: @nio. For condition (ii), o(¢,z) is uniformly
continuous in z uniformly with respect to ¢ for (¢t,z) € Q"3 then (x,4110)(s +t, ) is
uniformly continuous in z € R? locally uniformly with respect to t € R, and o" as well.
Further there exist constants K(n) and §(n) such that for all (t,z) € R and Y\ € R?,

o (6, 2)A? < [(oIgniz+ 1+ sup  |o(s+t,2)|)axa) (s + £, 2)A < K(n)|AP,
(s+t,x)eQn+2

and
|O'g(t, SL’))\‘2 2|(0[Qn+1 + I(Qn+1)chn+2 + I(Qn+2)c(1
+  sup  o(s+t,2)]) axa)(s + t, ) AP
(s+t,x)eQmt?
>(0(n) A 1)|/\|2.
Thus conditions in Theorem 3.1 are fulfilled. For n > k. define

Top = inf {t > 0: 20 = (s +1, X7") ¢ Q"},
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then it is easy to see X', X} satisfy

tATh & tATh k
Xt/\Tn,k =T+ / b];(rv Xr)dr + / Jf(?", XT>dW7”7 a.s.
0 0

By the local uniqueness of the solution in Theorem 3.1, we have
Plw: X} (w) = XFw), vt € [0, T r(w))} =1,

which implies 741 < T < 7o @.5.. Thus if we take & =: 741, then &, is an increasing
sequence of stopping times, and

Plw: X' (w) = X[(w),Vt € 0,&,(w))} = 1.
Now for each k& € N, the definitions
Xi(w) = Xi(w) for t <&, €= lim g,
and
2= (t,Xy), t<§ 2z=0 (<t<x

make sense almost surely. We may throw the set of w where the above definitions do not
make sense and work only on the remaining part of Q2. Then X; satisfies SDE (4.1) and
¢ is the related explosion time.

The next thing is to prove that z; is continuous on ()’. Since z; coincides with (¢, X}")
on any Q" before &, the continuity on any Q" of z; follows from the continuity of (¢, X}*),
which can be obtained by Theorem 3.1. So we only need to show that z; is left continuous
at & (a.s.). The argument essentially follows from [37]. we first need to prove the following
lemma in order to show that (z;);>¢ has the strong Markov property. In the following we
use P, to denote the distribution of process (z{")i=0 = (2{'(8, 7))r=0 := (s +1t, X{(0,7))s0
on C([0,00), R41), where (X7(0,2))>0 means the process (X[');so defined above with
initial point (0, ) € R B, denotes the expectation corresponding to Py,

The following argument is based on Proposition 4.3.3 of [46].

Define the space Wy := {w € C(Ry,RY|w(0) = 0} equipped with the supremum norm
and Borel o—algebra B(W), the class £ collects all the maps F : R? x Wy — C(R,,R?)

w
such that for every probability measure y on (R, B(R?)) there exists a B(R?) x B (WO)MP
/B(R?) measurable map F, : RY x Wy — C(R,,R?) such that for u — a.e.x € R? we have

w
F(z,w) = F,(z,w) for PV —a.e. w € W,. Here B(R9) x B(WO)MXP means the comple-
tion of B(R?) x B(W,) with respect to u x P", and PV denotes the distribution of the
standard d-dimensional Wiener process (W;);=o on (Wy, B(Wy)). For each n € N, since
we already have the pathwise uniqueness and existence of strong solution (X7*):>o to (4.2),
by applying Theorem E.8 in [46], we obtain that there exists a map F' € & such that for
u <t we have X['(s, (0,2))(w) = Fpoxn(s,0.0))-1 (Xy (5, (0,2))(w), (W. = Wy)(w))(t) for
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P —a.e. w € Q. Then for every bounded measurable function f and all u,¢ € [0, 00) with
u <t we have for P —a.e. w € ()

E[f(X7 (s, (0,2)) | Ful(w) = Elf (Fpoxy(s.0a)-1 (X5 (s, (0, 2)) (w), W. = W) (1))]
E[f(F5xn(s (, z))(@( u( (0 ))(w) Wu)(t))]
= B[f(X{(s, (u, X (s, (0, 2))))(w))], (4.3)
which shows the Markov property of the process (X}");>o. Here X[*(s, (u, X7 (s, (0,2))))
means the solution (X[");so to (4.2) with starting point (u, X"(s, (0,7))) € R¥*!. Com-
bining with the Feller property of (X/")¢o yielding from the second statement of Theorem
3.1 and well known results about Markov processes (see e.g. [11, Theorem 16.21]), we get
that (X")i=0 is a strong Markov process.
Now we are going to prove that (27 )0 is a strong Markov process. Observing that for
u =0, (Wi)i=0 : = Wity — Way)eso is still a Brownian motion. For any (s, ) € @, and for
any Borel bounded function f on R**! by (4.3), we have for any u,t > 0, P — a.e.

X?—&-u( (uv X;l(sa (07 ZL’))))

— X7, 0.0) + [ o, X0 (s, (0, 2)))d(W, — W)
+ /u+ b (r, XM (s, (0,2)))dr

= X0 00 + [ 0 X 5. 0,2,

+ /0 by(r +u, X', (s, (0,2)))dr,
and
X' (s +u, (0, X, (s, (0,2))))

= X005, 0.0)+ [ ot X+, (0.0 0,0,
+ /Ot b (u+ 7, X (u+s,(0, X (s, (0,2)))))dr
= X0 0,0) + [ 1 X502 (0.,
[ B X0 5,02 (0.2

Since o (u+r,-) = 07, (r,-), and b (u +7,-) = by, (r,-), by the pathwise uniqueness of
the the following equation

AX, = o7 (b X)dW, 4+ B2y (6 X0, Xo = X0 (s, (0,2)),
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we have for arbitrary Borel bounded function h on R?, Eh(X7, (s, (u, X(s, (0,))))) =
Eh(X[] (s +u,(0,X](s,(0,2))))). Hence for P — a.e. w € Q,

Elf (2 (s, )| F)(w) = E[f(s + t + u, X[, (5, (0,2))) | Fu] (w)
= E[f(s +t 4 u, X[, (s, (u, X (5, (0,2)))) ()]
E[f(s +t4u, X' (s +u, (0, X} (s, (0,2))))) (w))]
= z"(s x)(w)f(zt )-
So (2]')t=0 is @ Markov process. Furthermore, for any (s,z) € @, by applying Ito’s formula

to process X (s, (0,z)), we get that u”(t,x) = Ef(X](s,(0,x))) is the solution to the
following equation

—_

d
- Z asw r, x)0;0;uy (r,x) + bl (r,x) - Vui (r,x) on (0,00) X R?,

ug(0,7) = f(fr),

with (al;)1<ij<a = 0% - (0F)*, and Borel bounded continuous function f on R?. Let
u™(t, z) be the solution to the following equation

[\]

(4.4)

d
1
D" (r,z) = 5 Z ag;(r, x)0;0;u" (r, x) + 0" (r, z) - Vu"(r, x) on (s,00) X R?,
irj=1
u'(s,z) = f(x),
with (a})1<ij<ca = 0™ - (0")", and 0™ and b" are defined as following

b (r,x) :==b(r,z), o"(r,z) = oy(r,z).

Then it is easy to see that u™(s + ¢, x) also satisfies (4.4), which by using uniqueness of
solution to (4.4) implies u?(t,z) = u"(s+t,z) = Ef(X}'(s,(0,2))). By Remark 10.4 [37]
(or see Theorem 3.1 [67]),we know that the unique solution u" (¢, z) to the above equation
(4.5) has a version u} (¢, x) which is continuous on ¢ € [0, 00). Then for any s € [0, 00), we
have u”(s +t,z) = Eh(X"(s,(0,2))) a.e. on (t,z) € [0,00) x R% Combining with the
Feller property of (X['):>o yielding from the second statement of Theorem 3.1, we obtain
that for a.e. t € [0,00), u(s + t,z) = Eh(X[(s,(0,z))) holds for all z € R?. Following
from the fact that Eh(X] (s, (0,x))) is continuous with respect to t € [0, 00), then we get
that u”(s + t,z) = Fh(X](s,(0,2))) holds for all (t,z) € [0,00) x R%, which yields the
continuity of Eh(X (s, (0,x))) with respect to (s,x) € [0,00) x R? from u”. Combining
dominated convergence theorem we get that for any Borel bounded continuous function
g on R4 and for any (s,z) € [0, 00) x R?

lim B g(z') = 11II1 Eg(u+t, X{'(u,(0,y)))

(4.5)

(u,y)—(s,z) (u,y)—(s,)
= hm Eg(Sth,Xf( 7(0,?/)))
(u,y)—(5,2)
+ ( l)m% : (Eg(u + 6, X (u,(0,y))) — Eg(s + ¢, X{"(u, (0, y))))
u,y)—(s,x

= Eg(t + s, X[ (s,(0,2))).
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It shows that (2}");>0 also has Feller property, hence (z]');~0 is a strong Markov process.
Then for any (s, z) € @Q, for any (F;)-adapted stopping time 1 and for any Borel bounded
function f on R+,

Es,mf<zn+t> = f(0) + Es,x(f(szrt) - f(a))fg>n+t- (4.6)

Since

Esof (Zpie) lesnt = llm Es o f (znre) Len>nve
= nh_{lgo E;L,xf( n+t)fﬁn>n+t[£n>n
= nlglgo E?,xf(n +t, X +t)[£n>n+tl§n>m

and {&, > n} C F,, by the strong Markov property of (z}");>0, we get

lim Es xI§n>T)E(n X")f(t X )If 21 1111’1 Es mlénZHEn f(Zz?)Ién%

n—00
:Es,x[£>nE(n7Xn)f(ta Xt>[§>17'
:Es,zf£>nEzy,f(Zt)]£>n

Then (4.6) yields

Es,xf<zn+t) = ES,sznf(Zt)- (4.7)

We can find that (4.7) also holds if we replace (s,z) with 0. Hence we get the strong
Markov property of the process (z;)¢o.

In the following we will prove another two auxiliary lemmas in order to show that our
solution does not bounce back deep into the interior of ) from near 9¢) too often on
any finite interval of time. The proof of the following two lemmas follow from a similar
argument as [37]. By shifting the origin in R without losing generality, we assume

(s,z) = (0,0).
Lemma 4.2. For arbitrary n > 0, define vy = 0,

e =inf{t > vp: (6, X)) ¢ Q" }, v =inf {t > 2 (¢, X;) € Q7). (4.8)

Then for any S € (0,00) there exists a constant N, depending only on d, p, q, S,
[bIgn+1 Ly, SUD (¢ pyeqnit |0(t, )|, and the diameter of Q"*, such that

S (B Xsnm — Xsan P <N S (BIS A — S A < 8%
k=0 k=0

Proof. We have E|Xgnu, — Xsan|? < 205 + 2J;, where
SAp SApg

I = E| o(s, X)AW,2,  Jp = E| b(s, X,)ds|>.

SAvg SAvg
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Observe that on the set {S A vy < S A .} we have SAvy, = v and (v, X,,) € Q™ C Q™.
Furthermore, (t, X;) € Q"™ for S Ay, <t < S Ay, and we have

SApg d Sy
E| o(s, X)dW,[> = ) E o%(s, X,)ds| < C?E|S A p, — S A v,
SAvg ij=1 SAvg

[]? < Od4E’S/\[Lk —SA I/k|2 = Cd4f_k < Cd4SE|S /\,uk —SA Vk|,

00 S o ®©
> (B o(s, X)dW,[*)? < Cd*S?, Y (L)< (O L) < S
k=0 SAvE k=0 k=0
Moreover, by Holder’s inequality we have
SApk o
Ji gE’S/\/Lk—S/\VH |b<S,Xs>’2dS, Jl? < I Jy,
S/\Vk

where

_ SApk
T = E(/ 1b(s, X,)[%ds)?.
S

AV

Let 7,, =:inf{t > 0: z; ¢ Q"}. By the strong Markov property of z; on @ it follows that

SATn+1
< s Bl st L X)Pa,
0

(s,z)eQntl

Since before 7,1, X; = X!, we see that the latter expression will not change if we
change arbitrarily b outside of Q™*! only preserving the property that new b belongs to
7. We choose to let b be zero outside of Q™! and then get the desired estimate from
(3.40). The lemma is proved.

O

Lemma 4.3. We say that on the time interval [vy, g the trajectory (t, X;) makes a run
from Q™ to (Q"T1)¢ provided that puy < oo. Denote by v(S) the number of runs which
(t, X;) makes from Q" to Q"' before time S. Then for any o € [0,1/2), Ev®(S) is domi-
nated by a constant N, which depends only on «, d, p, q, S, |[blgn+1||Lg, SUP pyeqnr |0(t, )],
the diameter of Q", and the distance between the boundaries of Q" and Q"+!.

Proof. For any integer k > 1
kP (k-1 < 9) < P*uo < S) + oo + PP (1 < S) + ... (4.9)
Since

FE {‘XS/\Mk — XSAyk’2 + ‘S VAN HE — S A I/k|2}
> B {|Xsnp, = Xspu [ + e — vi*} Ty <s > dist*(0Q", 0Q" ) Py < S).

From Lemma 4.2 we see that series in (4.9) converges and its sum is bounded by a
constant with proper dependence on the data. After that it only remains to note that
P(v(S) 2 k) = P(ug—1 < 9). O
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Now we go back to prove that z; is left continuous at € (a.s.). We denote v4(S) is the
number of runs of z, from QF to (Q**1)¢ before SAE. For n > k+ 1 obviously, v4(S A&,)
is also the number of runs that (¢, X*) makes from Q* to (Q**)¢ before S A &,, which
increase if we increase the time interval to S. By Lemma 4.3 EV;M(S A &) is bounded

by a constant independent of n. By Fatou’s theorem EI/;/ 4(S A &) is finite. In particular,
on the set {w: &(w) < oo} (a.s.) we have 14(§) < oo. The latter also holds on the set
{w: &(w) = oo} because 2 is continuous on [0,€) and QF is bounded. Thus v4(£) < oo
(a.s.) for any k. Since (", X[.) € JQ™ we conclude that (a.s.) there can exist only

finitely n such that z visits QF after exiting from Q™. This is the same as to say that
2z — dast?1€ (as.).

About the uniqueness, if there is another continuous '—valued solution z; = (s+1t, X/)
to equation (4.1) with explosion time &', furthermore for ¢ < £ it is Q—valued. Then for
any n > 1

(X)) =mf{t=0:(s+¢X])¢Q"} <¢ (4.10)
and
£ = li_)m ™XH)=¢ (as.). (4.11)

Precisely £ < & by (4.10). On the other hand, on the set where £ < ¢, we have zé— €Q
since £ < ¢, we also have 2% = 0 since z- is the limit of points getting outside of any Q".
Observe that before 7(X”), X] also satisfies SDE (4.2), from local strong uniqueness of

equation (4.2) proved by Theorem 3.1, we get X' = X] for t < 7"(X!), so 7"(X!) = 7o,
and by (4.11) we see that
¢ =¢=lim (X)) = lim 7,,, =¢ (a.s.),
n—oo

n—0o0

which implies that for t < & = ¢, and z; coincides with z; from our above construction in
the existence part. O

4.3 Examples

Example 4.4. Consider the equation (1.1) when d = 1, b(t,x) = —a7', o(t,x) = (1 +
)72 0 =R, x (0,00), and Q" = (0,n) x {x : 1/n <z < n}.

For any (s,x) € Q, for any n € N, if we take g(n) = oo and p(n) € (2,00), then
1/p(n)+2/q(n) < 1. We can also easily check that HMQ"”JL;?M < 00, and HVUIQnHL;?n) <
oo. Furthermore, o(t,x) is uniformly continuous in x uniformly with respect to t for
(t,x) € Q", and there exist positive constants 8,(= (1 4+ n?)~"Y2919) such that for all
(t,z) € Q",

lo*(t, 2)A]* = 6, A7, VA €RL

Hence by Theorem 4.1 there exists a unique local strong solution to the following equation

t 1 t
Xt:x—/ —dr+/(1+Xf)‘20119dWT.
0 XT 0
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Example 4.5. If d = 2 ,we consider SDE in Q = Ry x R?\ {zM) =0} with b(t,z) =
rin|zM| = (2 In |zMW], 23 In |2V]) and o(t,z) = I, - In(2 + |[2]?) in Q, Q" = (0,n) x
{z eR?:1/n < |zW] <n, 2P| < n}, where 219 denotes the i—th exponent of the vector
x € R? and I, is the identity matriz in R?. Then by Theorem 4.1 there exists a unique
local strong solution to the following SDE for (s,x) € @

t t
X0 = 0 4 / X1 [ XO|dr + / In(2 + [ X, [*)dW ),
0 0
t t
X = 0y / X I | X0 |dr + / In(2 + X, [2)dw,
0

0

which can be rewrite as
t ¢
X;=z+ / X, In | XW|dr 4 / ILyn(2 + X?)dW,.
0 0
More precisely, for n € N, we can take p(n) = (p1(n),p1(n)) € (2,00)% and q(n) = oo,

then HbIQ"”Lfon) < 00, and ||VO'IQn||]L;<En) < 00. Put 0 < 4, <In(2+ 2n?), then condition
(i) in Theorem 4.1 also is fulfilled.
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5 Non-explosion of the solutions to SDEs driven by
continuous noise in mixed-norm Lebesgue spaces

Our aim in this Section is to extend the non-explosion results in [37] to the multiplicative
noise case on general space-time domains () in mixed-norm Lebesgue spaces. Besides, we
also give two applications to diffusions in random media and particle systems. Both are
generalizations of the examples in [37, Section 9] with multiplicative noises.

5.1 Preliminaries and main result

Let Q be an open subset of Ry x R? and Q", n > 1, be bounded open subsets of Q
such that Q" C Q"' and U,Q" = Q. We add an object & ¢ @ to Q and define the
neighborhoods of 0 as the complements in ) of closed bounded subsets. Then Q' = QU
becomes a compact topological space, which is just the Alexandrov compactification of Q.
For p = (p1,-++ ,pa) € [0,00)%, ¢q € [0,00) and 0 < S < T < oo, we denote by LL(S,T)
the space of all real Borel measurable functions on [S,T] x R? with the norm

1 fllLe (s, = (/ (/ (/ |f(t,951,-~,$d)|p1d$1> de) "'dId) dt) < +o00.
s R R

For simplicity, we write
Li =1L4(0,00), L&(T)=L&(0,T), L& = LRy, Lp(RY)).

Let C([0, 00), R%) denote the space of all continuous R¢-valued functions defined on [0, 00),
by C([0,00), Q") we denote all continuous Q'—valued paths, C'(R?) denotes the set of all
bounded n times continuously differentiable functions on R¢ with bounded derivatives
of all orders. Set (a;j)i1<ij<a := oo*, where o* denotes the transpose of . For f €
L} (R?) we define 0;f(z) = %(l‘) and Vf := (0;f)i<i<a denotes the gradient of f.
Here the derivatives are meant in the sense of distributions. For a real valued function
g € C}([0,00)), D;g denotes the derivative of g with respect to t. L(R?) denotes all d x d
real valued matrices.

As mentioned in [37], there are several interesting situations arising from applications,
say diffusions in random media and particle systems, where the domain () of SDE is
not the full space R x R? but a subdomain (e.g. Q = R x (R¥\~*), where 7* = {z €
R|dist(z,7) < p}, p > 0, and « is a locally finite subset of R?), where none of the
above results mentioned can be applied to get global solutions, except for the one in [37].
Moreover, Krylov and Rockner in [37] not only proved the existence and uniqueness of
a maximal local strong solution of the equation on (), but also they obtained that if
b= —V¢, i.e., bis minus the gradient in space of a nonnegative function ¢ and if there
exist a constant K € [0,00) and an integrable function h on @) defined as above such that
the following Lyapunov conditions hold in the distributional sense

2D < K¢, 2D;¢+ A¢ < he®, €€ 0,2), (5.1)
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the strong solution does not blow up, which means £ = oo a.s.. Here D;¢ denotes the
derivative of ¢ with respect to ¢t. This result can be applied to diffusions in random envi-
ronment and also finite interacting particle systems to show that if the above Lyapunov
conditions hold, the process does not exit from ) or go to infinity in finite time. However,
[37] is restricted to the case where the equation is driven by additive noise, that is, the
diffusion term is a Brownian motion.

As far as the non-explosion result is concerned, we have to take into account that hav-
ing non-constant o instead of ;44 in front of the Brownian motion means that we have
to consider a different geometry on R?, and that this effects the Lyapunov function type
conditions which are to replace (5.1) and also the form of the equation. In Remark 5.7 by
comparing the underlying Kolmogrov operators, we explain why the SDE (5.5) should be
considered and why (5.3) states the right Lyapunov type conditions which are analog to
the ones in (5.1). This leads to some substantial changes in the proof of our non-explosion
result in comparison with the one in [37].

Below we will give the non-explosion result of the solution in a special form of (4.1) on
domain @ C R, x R? under the following assumptions.

Assumption 1. (%) The function ¢(t,z) is a nonnegative continuous function defined on

Q.
(ii) For each n there exist p = p(n),q = q(n) satisfying

pi(n), -+, pa(n), q(n) € (2,00), and 1/py(n) +--- +1/pa(n) +2/q(n) <1,  (5.2)

such that [blgn|, [Volgn| € LY.
(iit) For each 1 < i,j < d, 04(t, ) is uniformly continuous in x € R? locally uniformly
with respect to t € Ry, and there exists a positive constant K such that for all (t,z) € Q,

1
=P <o (Lo < KR, VA€ R

(iv) For some constants Ky € [0,00) and € € [0,2) in the sense of distributions on Q) we
have

d
2Dy < K1, 2D+ Y 9;(aij0i0) < he, (5.3)
ij=1
where h is a continuous nonnegative function on Q) satisfying the following condition:
(H) For any a >0 and T € (0,00) there is an r =1r(T,a) € (1,00) such that

H(T,a,r):=Hg(T,a,r) := / h"(t,x) 101 (t)e= " dtdr < .
Q

(v) For all 1 <i,j <d, for all (t,z), (s,y) € [0,00) x R?,
|aij(t,2) — ayi(s,y)] < K(Jz —y| V|t —s['/?), (5.4)
and for all n € N, for (t,x), (s,y) € Q", there exists C,, € [0,00) such that

1005 (t, ) — 0jai5(s,y)| < Cul|x — y| V [t — s[*?).
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(vi) The function ¢ blows up near the parabolic boundary of Q, that is for any (s, x) €
Q, 7 € (0,00), and continuous bounded R¥—valued function x; defined on [0,7) and such
that (s +t,x;) € Q for allt € [0,7) and

1ir£1Tinf dist((s +t,x;),00Q) =0,
we have

limsup ¢(s + t, z;) = o0.
thr

Remark 5.1. Observe that H(T,a,r) < 0o if h is just a constant. Moreover, Assumption
1 (iii) shows that o(t,x) is uniformly bounded for (t,x) € Q, invertible on Q, and the
inverse o~ (t, x) is also bounded in (t,z) € Q.

Theorem 5.2. Let Assumption 1 be satisfied and let (W})i=0 be a d-dimensional Wiener
process defined on a complete probability space (U, F, (F;)is0, P). Then for any (s, x) € Q
there exists a continuous R¥*-valued and (F;)-adapted random process (X;)i=o such that
almost surely for allt >0, (s +1t,X;) € Q,

t

t 1 d t
Xt = J}+/ 0(3—1—7’, XT)dWT—F/ (—O'O'*ng)(S‘i‘T’, Xr>d7’+§(2/ 5’jaij(s+r, Xr>dT)1<i<d-
0 0 j=1 0

(5.5)

Furthermore, for each T € (0,00) and m > 1 there exists a constant N, depending

only on K, Ky, d, p(m + 1), gqm + 1), €, T, |[VopIgmii|| smrr), dist(0Q™,0Q™),
p(m+1)

supgm+1 1¢ + h}, and the function H, such that for (s,r) € Q™, t <T we have
Esupexp(ug(s +t, X;) + | X*) < N,
t<T

where
p=(6/2)e TEV@) 5 =1/2 —¢/4, v=p/(12KT). (5.6)

Remark 5.3. Obviously, the Kolmogrov operator L corresponding to (5.5) is given by
L = div(co*V) — (c"V¢,0"V), (5.7)

where (-,-) denotes the inner product in RY. Recalling that divoo is the adjoint of the
‘geometric’ gradient (i.e. taking into account the geometry given to R? through o) o*V,
we see that (5.5) is the geometrically correct analog of the SDE

studied in [37]. So, the Laplacian A in [37] is replaced by the Laplace-Beltrami operator
div(oo*V)(= ch'l,j:1 0;(a;;0;)) and the Euclidean gradient NV in [37] is replaced by the
‘geometric’ gradient o*V. Also condition (5.3) is then the exact analog of condition (5.1)

above, which was assumed in [37].

In order to show that under certain conditions our solutions will not blow up, we need
certain auxiliary proofs and we will show it in the later several sections.
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5.2 Probabilistic representation of solutions to parabolic partial
differential equations

In this subsection, we first give an implicit representation of the solution to the following
backward parabolic partial differential equation with a potential term V' (t,z) : [0,7] x
R¢ — R,

{ Dyu(t,z) + Lu(t,z) + V(t, 2)u(t,z) =0, 0<t<T, 58)

Here T' € (0, 00) and

d 2
Lf(t, x): %Z (t, ) 8zéij<t z)+b(t,z) - Vf(t,z), ueCCH(R™,

*

where (a;j)1<ij<a = 0o*. We first give the assumptions which make the representation
formula hold.

Assumption 2. (i) o € C([0,T] x R?),
(ii) there exist positive constants K and § such that for all (t,x) € [0,T] x R,

AP < [o*(t, 2)AP < KA, VA ERY,

(iii) b, V € Cy([0, T] x R%),
(iv) for all (t,7), (s,y) € [0,T] x RY, there exists constants Cy, Cy and Cs such that

Jaij(t, ©) — ayi(s,y)| < Cillw =yl V [t = s['/?),
b(t, ) = b(s,y)| < Callz =yl V|t = s]'2),
V(t,2) = V(s,9)l < Cslla =yl V[t —s]'?).

(v) f € C2(RY).

Theorem 5.4. If Assumption 2 holds, then there ezists a unique solution u(t,x) to equa-
tion (5.8) and it can be represented by the following formula

u(t.z) = E[f(X(T t el VXm0 T xR (59)
where X (T,t,x) is the solution to the following SDE
t s
X,==x —l—/ b(t +r, X, )dr —l—/ o(t+rX,)dW,, s=0, (5.10)
0 0

with initial point (t,x). Furthermore, fort € [0,T) we have

u(t,”), Dwul(t,-), Vu(t,-), VZu(t,-)ec L'(RY). (5.11)
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Proof. On one hand by classical results from partial differential equation, we know that
under our assumption there exists a unique solution u(t,z) € C2([0,T], R%) to equation
(5.8) (see [40, Theorem 5.1]), which can be written in the form of a potential with kernel
k (see [40, (14.2)]):

u(t, z) =/ KT y;t,2) f(y)dy, (t,x) €[0,T] x R
R4
satisfying
limu(z,t) =lim [ k(T,y;t,2)f(y)dy = f(z),
t—T =T JRrd

and for s =0, 1,2 there exists a constant C' such that for 0 <t < T (see [40, (13.1)])

2
Bk(T,y;t, ) gC(T—t)*% exp(—C‘yT _xt\ )

Then for s =0,1,2, for t € [0,T) we have
[ ozuttaiis < [ [ 15)05k Tyt dys
Rd Rd JRd
= [ W) [ oK it )l dody
R4 R4
<c@-ut [ 15wy <.
R

which implies that for ¢ € [0,7")

u(t,-), Vu(t,-), V3u(t,-) e L*(R?). (5.12)

Since b is bounded, we get D;u(t,-) € L'(R?) easily following from the equation (5.8) and
(5.12). On another hand, since b and ¢ are bounded and continuous, by a known result
(eg. see [33, IV Theorem 2.2]) we get the existence and uniqueness of the global solution
X, then by [50, Theorem 8.2.1] we get that (5.9) solves equation (5.8). Hence combining
these two sides we get the desired result and also (5.11) holds. ]

5.3 Some auxiliary proofs

In order to show that under certain conditions our solutions will not blow up, we need
some auxiliary proofs which we collect in this subsection. We fix a T' € (0,00), t € [0, 7]
define

Qr = (0,T) xR% Q" :=10,t) x B,.

Consider the SDE (5.10) in R? First we recall two results from [73], which are corre-
sponding to Theorems 3.1 and 3.12 in mixed-norm Lebesgue space.
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Lemma 5.5. ([73, Theorem 1.1]) Assume that p, q € (0,00) satisfying d/p+2/q < 1,
(i) I, Vo] € Lyt

(i) for all 1 < 4,5 < d, 04(t,x) is uniformly continuous in x € R? locally uniformly
with respect to t € Ry, and there exist positive constants K and 6 such that for all
(t,z) € Ry x RY,

SIAP < |or(t, o)A 2 < KIN?, VA eR% (5.13)

Then for any F,—stopping time T and x € R?, there exists a unique strong continuous
solution X, such that

P{w:ATmeM@»Ww+ATmeMwm%h<OQWTGmﬁ@w}:1, (5.14)

and
t t
X;=ux +/ b(r, X, )dr —l—/ o(r, X,)dW,, Vte|0,7),a.s. (5.15)
0 0

which means that if there is another continuous stochastic process Yy also satisfying (5.14)
and (5.15), then

Plw: X,(w) = Yy(w),Vt € [0,7)} = 1.

Moreover, for almost all w and all t > 0, x — X(w,x) is a homeomorphism on R¢ and
for any t > 0 and bounded measurable function v, x, y € R%,

|EY(Xi(z)) — BY(Xe(y)] < Cil[¢]o|w — yl,
where Cy > 0 satisfies lim;_,o Cy = +00.

Krylov’s estimate plays a crucial role in the well-posedness proof and also our later
work.

Lemma 5.6. (/73, Theorem 2.1, Theorem 2.2]) Suppose o satisfies the condition in
Lemma 5.12 and continuous process X, satisfies (5.14) and (5.15). Fiz an F;—stopping
time T, Ty > 0,

(1) if b is bounded measurable, for p, q € (1,00) with

d 2
4+ Z<2,
p 9

there exists a positive constant N = N(K,d,p,q,To, ||bl|os) such that for all f € LI(Tp)

and 0 < S < T < Ty,
TNAT
E (/ f(s, X5)ds
SAT

&)ngmWw (5.16)
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(2) if b € LY provided with

d 2
-+ -<1, (5.17)
P q

there exists a positive constant N = N(K, d, p, q, To, ||bl|Ly(z,)) such that for all f € LI(Tp)

and 0 < S < T < Ty,
TAT
E (/ f(s, Xs)ds
SAT

We note that actually condition f € IL4(Tp) with p,q € (1,00) and % + % < 1 in the

above Lemma 5.6 can be improved to f € Lq/ (Ty) with p’ € (1,00)%, ¢ € (1,00) and
pL, + e pi, —|— = < 2 without assuming that b is bounded in Lemma 5.7 below, which we

shall prove in the following lemma. Let Ky and Ty be some positive constants and we
give the following assumption.

fs) < N Fllgsim.

Assumption 3. (i) For all1 < i,j < d, [0,00) x R? 3 (t,x) — 04;(t, ) € R is uniformly
continuous in x locally uniformly with respect to t € [0,00), and there exist positive
constants K and & such that for all (t,x) € [0,00) x R?

SIA? < Jo*(t, o)A 2 < K|\, VA eR% (5.18)

And |Vo| € L& with p € (1,00)%, ¢ € (1,00) satisfying pil + - pid + % < 2.
(ii) b(t, z) is Borel measurable with ||bl|Ly < Ko and b(t,z) =0 fort > Tj.

Lemma 5.7. Let Assumption 3 hold. Let (X;);=0 be a continuous (F;)-adapted process
such that (5.14) and (5.15) are satisfied. Then for any Borel function f € Lg,(S, T) with
p’ € (1,00)¢, ¢ € (1,00) andpi,l—l—-~-pi,+%<2, and for 0 < S <T < Ty, we have

d

T
B 170Xl < N K Bl I g s (5.19)

Furthermore, for any constant k > 0 and g € LL(Tp),

To
Eexp(/ﬁ/ lg(t, X;)|dt) < oc. (5.20)
0

Proof. By Lemma 5.5 we obtain that there exists a unique (F;)-adapted R%-valued process
(M;)i=0 such that M; = = + f (s, My)dW,, t > 0. By (3.40) we have for any p!

(pi, -+ ,ph) € (1,00)4, q1 € (1,00) satisfying
1 1 2

-+ +—+—<2
pl pd Q1
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for 0 < S <T <Tp, and f € LE (S, T)

T
B ([ 166 M| 7 ) < N1 ligy s, (5.21)

where N depends only on d, K, p', q1, To. Applying (5.21) to f = |g|* we get

ay " lott, M)

By Lemma A.1, for any x € [0,00) we have

2 o 2
.FS) < Nlg ||Lf)//22(S7T) = NHQH]L;I,(S,T)-

To
Eexp(/{/ |g(ta Mt)lzdt) < N(Hv K7 da b, q, TOa ”g”Lqp(To)))
0
then
To
Eexp(ﬁ/ |g(ta Mt)|2dt) < N(/{a K7 d7 P, q, TOa ||g||L%(To)) (522)
0
And also
To
EeXp<l€/ |b<t7 Mt)|2dt) < N(’%?Ka K07d7p7Q7T0)' (523)
0

The integral over (0, 7p) in (5.23) can be replaced with the one over (0, co) since b(t, z) =0
for t > T,. Thus for any x € [0, 00)

Eexp(/@/ |b(t, M) |*dt) < oo, (5.24)
0

which and (5.18) implies that for any ¢ € [0, c0)
Eexp(c/ (b*(oa*)7b) (t, My)dt) < Eexp(g/ |b(t, My)|2dt) < oo. (5.25)
0 0

For f € ]Lqpl,(S, T) with p’ € (1,00)4, ¢’ € (1,00), we can choose 3 > 1 sufficiently close to
1 such that

1 1 2 2
TS <g
Pl Pa B
By Theorem 3.12 we obtain the existence of process (X;);>o which satisfies (5.14) and

(5.15). By Lemma A.3, we have
T T T T
E / X))t = E / olf (¢, My)|de < (E / o dt)V (B / (M) Pde) P
S S S S

< (B /OTO ptdt)Ye(E /ST m Mt)‘ﬁdt)l/(,z .
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where «, f > 1 satisfying 1/a+1/8 =1, and

p = exp(— /Ooo b (o) (s, M.)dWW, — %/Ooo(b*w*)lb)(s, M,)ds).
Since
£ = B[ exp(~20 /0 T (o) (s, M)W, — 202 /0 " (5 (00" B (s, Ms)ds))l/ ’
(exp((20 ) /0 " (5 (0B (s, M,)ds)) Y 2], (5.27)

by Hélder’s inequality and the fact that exponential martingale is a supermartingale and
(5.25), we get

Ep® < N. (5.28)

Then
T

E/T] [t Xp)|dt < N(To)(E/ |F(t, M,)|Pdt)"/?

1/8
<N P K 6] 1 sy
N<d7 P1,; 41, K? ||bHILg,(TO))HfH]L5q1 (S,T)

Bp1 \7?

for 1/pt + -+ 1/ph +2/q1 < 2, where p; = p'/83, ¢ = ¢'/B. Thus the above estimate
implies (5.19).
Furthermore, according to Lemma A.3 and (5.22),

To TO
Besp( [ lgft, X0Pdt) =E(pexp( [ ot Mo )
0 0
To
(B (Bexp(2n [ 1g(t M) Pd0)? < o
0
Lemma 5.8. Let b (t,z), i = 1,2 satisfy Assumption 3 and let [bV(t,z) — bP) (¢, )| <
b(t,x), where b € LY. Let (X, Wt(z)) satisfy:
) t t ) ]
x :x—l—/ b (s, X{ )ds—i—/ o(s, X)dw®,
0 0

Then for any bounded Borel functions f@(z), i = 1,2 given on C := C([0,00), R?) we
have

EFOXD) - BfDXE)| < NEIFOO) — fPM)R)Y + Nsup £ By (5.29)
c

where M; = fo s, My)dWy and N is a constant independent of f.
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Proof. According to Lemma A.3 and (5.20), we know that
BFO(X®) = BfO(X)p,
where Ab(t, XV) == b@ (¢, XY — 60 (¢, X and

t t
o= esxpl | A8 (") (s, XA = 0 [ (80 (o) ) 5, X)),
0 0

also Ep, = 1 by a similar argument as the proof of Lemma 3.4. Hence the left-hand side
of (5.29) is less than

ElfY |(X(1))Poo+sup|f |Elpo — 1] —11+128up|f()|

Since all moments of the exponential martingale p, are finite by a similar argument as the
proof in Lemma 3.4, we get

ji”/2 < NE\f(l) _ f(2)|3/2(X.(1))

and the latter is controled by the first term on the right hand side of (5.29) by a similar
argument as the proof of Lemma 3.4. To estimate I, we use [to’s formula to get

T
pr=1+ [ (A (e) (s XD)p, .
0

It follows that for any g > 1

To

B <Elpy, 1P <E | (A6 (00") Ab)(s X{V)pids (5.30)
0
To To
<N( / Ep2/6-1) 4g)i-1/3 (g / 52 (5, XY ds) /8. (5.31)
0 0

To estimate the second factor we use Lemma 5.7 with 8 > 1 close to 1 such that 2/q +
1/p1+ -+ 1/ps < 1/5. The first factor is controlled by means of Epw /=D Thus the
result follovvs O

Assumption 4. (i) v is a positive function on R*! such that ¢ € C°(R4),

(i) |Vy| € L&' with p and q satisfying (5.2),

(111) o satisfies the conditions in Lemma 5.5,

(iv) for all (t,7), (s,y) € [0,T] x RY, there ewists constant Ky, K € [0,00) such that

K(lz —y| V[t = s['?),
Ko(lz —y| v [t = s|'/%).

la;;(t, ) — a;j(s,y)

| <
|0ja:;(t, x) — 0ja;;(s,y)| <

76



5 Non-explosion of the solutions to SDEs driven by continuous noise in mixed-norm
Lebesgue spaces

Let W; be a d—dimensional Wiener process on a given complete probability space (2, F,
(Ft)i=0, P), denote (aij)1<ij<a = 00*. We introduce the process Y (t, s, x) satisfying

t 1 d t
Y(t,s,x) =z +/ o(r,Y(r,s,x))dW, + (5 Z/ O;a;;(r,Y (r,s,x))dr)i<i<a, (5.32)
s j=1Ys
and process X (t, s, x) satisfying
t 1 d t
X(t,s,z) == +/ o(r, X(r, s,:v))dWr—i-(é Z/ Ojai;j(r, X (r,s,x))dr)i<i<a
s j=1Ys

- / (0™ Y)(r, X (r,s,x))dr.

Since for 1 < i < d, 0ja;; = ZZ=1 oik(0;041) + Zzzl(ﬁjaik)ajk, and |do| € Lqp’l"c from
Assumption 4 (iii), we get ijl |0ja;;] € LL'°. Then Lemma 5.5 can be applied here to
guarantee the existence and uniqueness of global strong solutions Y; and X; to this two
corresponding SDEs under Assumption 4.

Lemma 5.9. Let Assumption 4 be satisfied. Take a nonnegative Borel function f on
R4, For t € [0,T] introduce

T 1 (7
pr(t,z) = exp( — / Vro(s, Y (s, t,x))dWs — 5/ |V ao™Vi|(s,Y (s, t,x))ds

T
. / Diap(s, Y (s,t, x)ds),

vr(t2) = Bfp(t, ) f(T.Y (T.1, 7)), c(ﬂ::u/‘e_mM“@vT(@aﬁdx.
R4

Then c(t) is a constant fort € [0,T].

Proof. Using a standard approximation argument it suffices to prove the result for f €
C°(R41). First observe that by Assumption 4 (i) and (iii), we have

T
Eexp(%/ Vi oo™ Vi|(s,Y (s, t,x))ds) < oo.

Girsanov transformation yields

W@@_EmmilQQM%WMJWMﬂﬂX@m@)
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Observe that from the Assumption 4 (i), (iii) and (iv), (3 2?21 0jai;)1<i<a and —oo* V)
is bounded and also satisfy condition (iv) in Assumption 2. By Theorem 5.4, vp(t, z) is
the solution to the following Kolmogrov equation with a potential term —2D,):

Der(t,2) + 5 3 0y(aydiwn(t, ) — (00" V) Tor)(t, )

=1 (5.33)
- UT(t7 l’)?th(t, ZL‘) = 07

vp(T,x) = f(T,z).

And Theorem 5.4 shows that vy (¢, ), Dyvr(t,-), Vur(t, ), V2ur(t, ) € LY(R?). Also there
exists a kernel k(T y;t, z) such that

or(t.r) = [ KTyitn)f(Ty)dy
R4
where satisfying that there exists a constant C' such that for 0 < ¢ < T ([40, 13.1])

2
Dik(T,y;t,x) < C(T—t)’# exp(— C|?{T _xt| )

Then by mean value theorem for h € R with ¢t + h € (0,7T) there exists § € (0,1) such
that

\k(T,y;t 4 h,x) — k(T, y;t, )|

= Dik(T,y;t + 6h, x)

h
_ag2 ly — o/
< —t— > B -l N
< C(T —t - 0h) exp( CT—t—6h>’
then
UT<t+h7x)_UT(t7‘r) / k<T7y7t+h7x)_k(T7y7t7x)‘
< T,
- </ - F(T.y)dy
a2 ly — |?
< - > L A
< C(T —t — 0h) /Rdexp< O ) F(Ty)dy
z|?

<C(T - t)_¥ / exp ( — C|?{T_ n
Ré -

J(Tdy — (5:34)
for small k. Denote g(t,z) = e~ up(t, 1), we have for t € [0,7), t + h € (0,T),

gt + h,z) —g(t,x) ‘
h

6*¢(t+h,x) (UT(t _I,_ h’ x) — UT(t, :I/‘)) 'UT(t, x)(efdj(t‘i’h,x) _ eflﬁ(t,x))
‘ |
h h
vr(t+ h,z) —vp(t, x) vp(t, z)(e P EHha) _ o=v(tn)y
< i |

_ 2
<om-0F [ ew(- D)y + e
Rd —t
=: Gr(t,x),
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the last inequality holds because of (5.34) and mean value theorem. Since vp(t,-) € L*(R?)
and

/Rd(T 4 /Rd exp ( - (J’yT__xf>f(T, y)dydzr < C(T — 1)~ /Rd F(T,y)dy < oo,

it yields that Gr(t,-) € L'(R?), then by dominated convergence theorem, we have

t+ha)— gt z)d t+hx) — g(t,
h—0 h h—0 Jrd h Rd
That is to say
Dt/ e 2Dyt 2)de = | Dy(e”up)(t, x)dx. (5.35)
R4 R4

Besides, we can write the first equation in (5.33) in an equivalent form as
1
Dt(eimva) + 5 Z 8i(e*2d’aij(9jvT) =0. (536)

Now we are going to prove

/ div(F)(t, x)dz —/ Z di(e *Yay05vr)(t, x)dx =0, t€[0,T).
R4

i,7=1

Since 1 is positive, 09 and a;; are bounded for 1 < ¢,j < d, then there exists constants
C4 and C5 such that

d
= Ze aljﬁ vr < O} Z |0;vr],
=1
and
d
div(F Z e Y a;;0;v7)

d
— Z 20@6 aijajvT + Giaije_wajvT + e_waijai@jvT)

’L"j:

d
Z 0,07 + |9;0;07]).

Following from (5.11) we know that F(t,-) and divF(t,-) are L'—integrable on R? for
any t € [0,7). For n € N, take smooth function y, on R? such that x,(z) = 1 when
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|z| < n and x,(z) = 0 when |z| > n + 2. Then by dominated convergence theorem and
integration by parts formula for ¢ € [0,7)

/Rd div(F)(t,z)dz = lim Xn(x)div(F)(t,z)dx = — lim Vxn(z) - F(t,z)dz = 0.

n—oo R4 n—oo R4

Hence from (5.36) and (5.35) we get
Dt/ e_w(t’x)v;p(t,:v)d:v =0.
R4

This yields that ¢(t) is a constant for ¢ € [0,7"). Since ¢(t) is continuous for t € [0, 7], it
shows that ¢(t) is a constant for ¢ € [0, 7. O

The Theorem 5.4 talks about Cauchy problem with terminal data for equation (5.8) in
the domain [0, 7] x R?. In the cylindrical domain Q™" with surface Q™" for r € (0,1],
we consider the first boundary problem to the following parabolic equation on Q"*" with
assuming that f is a continuous function on Q"""

d
Lu(t,z) = Dyu(t,x) + % Z 0;(aij(t, x)0ju(t, z)) =0 on QU

ij=1
u(t,x) = f(t,x) on 0Q"",
where (a;;) = oo* . If Assumption 4 (iii) and (iv) hold, from [55, Theorem 3.1] and [55,

Corollary 3.2] the solution u(t,z) has a representation as following:

t)= | Fe eyt 2S(),

where dS denotes the surface measure on Q""" := ((0,72) x dB,) U ({r*} x B,), and
p(s,y;t, x) is the Poisson kernel on Q™" corresponding to the above partial differential
equation, which has the following upper bound estimation on Q”z”’ ([55]) with a constant
k independent of f

a2
exp(—c%)

o n0 (5.37)

p(s,yit,x) <k
for all (t,z) € Q”", (s,y) € 0Q" ", 0 < t < s.
On the other hand, we can solve the above equation in a probabilitical way. Let
7, = inf {s >0:(s,Y(s,t,z)) ¢ Qrz’r} ,

applying Itd’s formula to u(s, Y (s, t, z)) and taking expectation, we have for (¢, z) € Qr,

u(t,r) = B4 u(r,., Y (1,,t,2))] — E®2) [/tTT Lu(s,Y (s,t,2))ds| = EYD[f(r,, Y (1., t,1))].
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Hence

P (Y ()] = o, TS0, ) 5,0),

We take (0, 0) as the start point of the process (s,Y (s, t,z)), then denote Y; =: Y'(s,0,0)
and E[f (1., Y5,)] = [o02. f(5,9)p(s,50,0)dS (s, y).

Lemma 5.10. If Assumption 4 (iii) and (iv) hold, then on an extension of the probability
space there is a stopping time y such that the distribution of (v,Y,) has a bounded density
concentrated on Qb'.

Proof. Let n = d+3. On an extension of our probability space there exists a random vari-
able p with values in [0, 1] and density function h(r) = nr"~" such that p is independent
of all F;. Then p is also independent to Y;, since Y; is adapted to F;. Let .7-} FiVao(p),
and define v as the first exit time of (¢,Y;) from Q?*. Then v is a bounded F; stopping
time. We claim that « is a random variable of the type that we are looking for.

Actually, according to independence and the above potential knowledge, for a nonneg-
ative continuous function f(¢,x) on [0,00) x R? we have

Ef(/%Y’Y> :E[Ef(TWY;'r>

= ELf , Suls, 0,086 |

p=r p=r

1
= [ hwdr [ s (s, 50.01dS(s.0)
0 QT
1
_ / h(r)dr / F(s,9)p(s, 4; 0,0)dS (s, 9)
0 (0,r2)x 9B

1
+/ h(?“)d?" f(?"2,y)p(7"2,y; 07 O)dy = Il + I2'
0 B

Then (5.37), and the fact that exp(—c%)s_(d“)/2 is bounded by Nr=?~! on (0,7?) x OB,

yield
|2
exp( )
I < / / [ 1) S as(e.)

=4 tdr S S
<N/O h(r) d/o [ Hs.pasts.y

1 r2
<N// / = f (s, ry)h(r)rttd(OBy ) dsdr
o Jo Jop

1 1
<N / / F(s,ry)rtd(@By)dsdr < N [ f(s,y)dsdy,
0B, Ql,l
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and
! 2 eXp<_C¥)
pet [ [ st onn ™ dydr
0 JB, r
1
<N [ [ st e agar
o JB,
1
=N/ / fF? )" dydr < N f(s,y)dsdy
0 B, Q1
Hence

Ef(v,Y,) <N f(t, z)dzdt
Qi

and N is independent of f.
For arbitrary nonnegative function fIgi: € Li, we can use a standard method to
approximate f via continuous functions. The conclusion is proved. O

Lemma 5.11. Let Assumption 4 hold. Let Ky € [0,00) be a constant. Assume that for
some p, q satisfying (5.2) we have

Plgian < Koy, valQl,IH]Iﬂp < K.

Take an r € (1,00) and a nonnegative Borel function f = f(t,z) on (0,00) x R? such
that f(t,x) =0 fort >T. For 0 < s <t <T and x € R? introduce

pi(s,x) = exp(—/ Vro(u,Y (u, s, x))dWs — %/ Vi oo™ Vil(u, Y (u, s, x))du),
(s, ) = exp(—2/ (D)) (u, Y (u, s,x))du),
ui(s, ) = Ep(s, x)ay(s, ) f(t,Y(t, s, x)).

Then there is a constant N, depending only on K, r, p, q, Ky and T, such that

T
/ u (0,0)dt < N( / fre~2Pdtdz)" + N( [ fi3dtda)Y/ @) (5.38)
0 (0,00) xR4 QL1

Proof. By the strong Markov property of Y, which can be obtained by the same argument
as in the proof of Theorem 4.1 which was derived from the strong Feller property of Y; to
SDE (5.32), for any stopping time 7 we have

E]T<tpt(07 0)at<0a O)f(t7 }/t> = E[T<tp7'(07 0)047—(0, O)U/t(7—7 YT')

Therefore, upon assuming without losing generality that 7" > 1, for v from Lemma 5.10,

T 0% T
/ u(0,0)dt = E/ p:(0,0)0(0,0) f(t,Y;)dt+Ep,(0,0)c (0, O)/ (7, Y,)dt =: [i+1s.
0 0 v
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Observe that a; < 1 and for ¢ < v we have (£,Y;) € Q! so that, in particular, in
the formula defining p;(0,0) we can replace Vi with ViIp11 and hence all moments of
p+(0,0) i<, and p,(0,0) are finite and uniformly bounded in ¢. Since by (5.19) we have

1 t
Blexp( / IV 00" Vi Tou (u, Y (u, 5, 2))du)] < O VpIoulug, K) < o0

for all ¢ € [0,7]. For the moments of p;(0,0)l;<, and p,(0,0), by using the same way of
treating (5.27) we get the desired results. With the same argument we can also replace

(3 25m1 [, Oy (.Y (1,5, 2))drrcica by (53500 J,"" Osa(r, Y (r, 5,2))dr) i<iza in SDE
(5.32), it follows by Holder’s inequality and (5.20) that for any v € (1, 00)

T
I < N(E / £t Yo Toua (£, Y2)dDY < N fToua ]| L2 -
0

We can choose v so that v(d +5/2) = d + 3, and get that [; is less than the second term
on the right in (5.38).

In what concerns I, we again use o, (0,0) < 1 and the finiteness of all moments of
p~(0,0). Then we find

I < N(/O1 /ST(/B ul (s, x)dx)dtds)"". (5.39)

To estimate the interior integral with respect to = we insert there exp(—2¢(s,z)) and
again use Holder’s inequality and the fact that Ep;(s,x) < 1. This yields

I(s,t) ::/ u:(s,x)dx<e2K2/ e~ 205, (s, 1) da
B RY
where

Oy(s,2) = Ep(s,x)au(s,x) fr(t,Y(t,s,2)) < EB(s,x) fT(t, Y (t,s,x)).

Hence by Lemma 5.9,

I(s,t) < 62K2/ e 2O fr(t ) da,
R4
which shows that I, is less than the first term on the right in (5.38). The Lemma is

proved. O

Lemma 5.12. Let the assumptions of Lemma 5.11 be satisfied and let € € [0,2) be a
constant and h a nonnegative Borel function on bounded domain Q C RYT! such that on

Q,
d
2Dt1/1 —+ Z 8j (ama{(ﬂ) < heew. (540)

ij=1
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Then for any § € [0,2 —¢€), r € (1,2/(0 + €)|, there exists a constant N, depending only
on K, T, p, q, Ky, € 6 and r (but not Q) such that for any stopping time 7 < 7o(Y.) we
have

Ed. < N+ N( / hre” Y dtdx)Y" 4+ N sup h, (5.41)
Q QU

where n =6 + € so that rn < 2 and
t 1 t
buimep(— [(Voo)s V)aw. — 5 [ V000 Tul(s, vods
0 0

~2 [ (D)5, Y ds + 00t ),

Proof. By Ito’s formula,

T ) d
(I)T ZCDO + m., —|— / @t[éDt@D —|— 5 Z 8j (CL”@Z’;Z}) — 2(Dt¢)+
0 ij=1

+ (|6 — 112 = 1)|V oo™ Va||(t, Y,)dt

N | —

where m; is a local martingale starting at zero. By using (5.40), and the inequality
|0 — 1] < 1 we obtain

O, <Dy + 5/ O, h(t, Y:) exp(ey(t, Yi))dt +m.. (5.42)
0

Since ®; > 0 we take the expectations of both sides and drop Em.. More precisely,
we introduce 7, := inf{t > 0: |m;| > n} and substitute 7 A 7, in place of 7 in (5.42).
After that we take expectations, use the fact that Em.,,,, = 0, let n — oo, and finally
use Fatou’s Lemma with monotone convergence theorem. Furthermore, we denote f =
Ighexp(ny) and notice that 7 < 7. Then in the notation of Lemma 5.11, we find that

E@<N+NE/pmmmmmvwmﬁ
0

T T
<N+ N/ Epy(0,0)04(0,0) f(t, Y;)dt = N + N/ (0, 0)dt.
0 0

It only remains to note that the first term in the right-hand side of (5.38) is just the
second one on the right in (5.41) and the second integral on the right in (5.38) is less than
0ol Q" sup i b2 exp[nKy(d + 3)]. The Lemma is proved. O

Theorem 5.13. Let Assumption j hold. Let Ki, Ky € [0,00) and € € [0,2) be some
constants and let Q) be a bounded subdomain of Qr and h be a nonnegative Borel function
on Q. Assume that for some p, q satisfying (5.2) we have

hlgin < Ko, igia < Ko, HVl/J]@l,lHLg < K.
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Also assume that on Q)

¢ > 07 2Dt¢ < Klqu)?
d
2Dt’¢ + Z 8j (awﬁﬂ/z) < ]’L@Ew.
1,7=1

Denote by X, t € [0,T], the solution of

t t 1 d t
Xt = / O'(S, Xs)dWS + / (—00*v¢)(8, XS)dS + (5 Z/ 8j(lij<87 Xs>d8)1<i<d.
0 0 =1 /0

Then for any r € (1,4/(2+ €)] there exists a constants N, depending only on K, K, K,
r,d, T, p, q, and €, such that

E sup explu(lt, Xo) + X)) < N+ NHo(T,a,1) (5.43)
téTQ(XA)

where Hg is introduced in Assumption 1, a = (2—rn)v, n =25+¢€, u, v and § are taken
from (5.6). Here 7o(X.) :=inf{t > 0: (¢, X;) ¢ Q}.

Proof. Define ¢ = 1 + v|z|?,

“ K t,
M, = exp(d(t, Xy) — 71/ U(s, Xs)ds), M,= sup M,.
0

t<TQ (X)

Then for t < 179(X.),

~

K, [t -
U(t, Xy) glnMj/5+2—51/ U(s, X,)ds
0

and hence by Gronwall’s inequality
ﬂ(t, X;) < K1/ (20) 1y M*l/é < eTHE/(20) M*l/é.

Take p = $e~TK1/(29) then )
explui(t, X)) < /.. (5.0

Therefore, to prove (5.43), it suffices to prove that E\/M, < N. It turns by a well known
result on transformations of stochastic inequalities (see Lemma 3.2 in [30]), if EM, < N,
for all stopping times 7 < 7o(X.). Then Ev/M, < 3N;. Thus, it suffices to estimate
EM,.

On a probability space carrying a d—dimensional Wiener process W, introduce X, as
the solution of the equation

tAto(X.) 1

R t R A trto(X.) . .
X; :/ U(S,XS)dWS—/ oa*Vw(s,XS)ds+(/
0 0 0

d
5 > 95ai) (s, X,)ds)1<i<a.
j=1

(5.45)
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Also set .
M, = exp(269)(t, X;) — 2 / (Dyth)+ (s, X,)ds).
0

Write F for the expectation sign on the new probability space and observe that on @)

d d d d
2Dt121 + Z @(am&gﬂ) = 2Dt’¢ —|— Z @(aw@l@/z) + 2V Z xiajaij + 21/ Z ﬁjaij

1,j=1 1,j=1 1,j=1 1,j=1

< (h+ O)e. (5.46)

Here 2v Zijzl x;0ja;5 + 2v szzl Oja;; < (h+ C)e® holds because of Assumption 4,
which means |0;a;;| is bounded. Then after an obvious change of measure (cf. Lemma
A.3 ) inequality (5.41) with 20, E, zﬂ, and W, in place of 8, E, 1, and W,, respectively,
n=20+¢ and r € (1,4/(2+¢€)] C (1,2/(20 + €)] is written as

EM, < N+ N( / W Lore” @ dtdz) "
Q

and since ¥ > v|z|? on Q, we obtain

~

EM, < N + N(/ hTI(OVT)e_(Q_r”)”l’”Pdtdx)l/r =N+ NH&)/T(T, (2 —rn)v,r) =: Ny
Q

for all stopping times 7 < TQ(X .), which yields

EA/ M, < 3N,.

Combining this with the inequality

~ ~

t
exp(200(t, X,) — K, / O, X)ds) < Vi, £ < 10(X),
0

the left-hand side of which is quite similar to M; but with 2@@ in place of 1[]’ the above
argument deduce

E sup expuv|Xi’) <E sup exp(2ui(t, X;)) < NN (5.47)
t<rg(X.) t<ro(X.)

We now estimate £ M., through EM. by using Girsanov’s theorem and Holder’s inequality.
We use a certain freedom in choosing X; and W, and on the probability space where W;
and X, are given we introduce a new measure by the formula:

A

P(dw) = exp(—2v / X7 0(t, X Tyergyxy AW 207 / X7 (007) (b X0) X Tycry . 0) P(de).
0 0
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Since @ is a bounded domain, then we have
00 T
Eexp (2u2 / X;"(ao*)(t,Xt)XtIKTQ(X‘)dt) < Eexp (21/2[( / X;XJKTQ(XA)dt) < 0,
0 0

which implies that Pisa probability measure. Furthermore, as is easy to see, for t <
TQ (X)

R t TQ(X.)
Xi = XiTrcrg(x) + / a(s, X;)dW, — / 0 (8, Xs)dWs + Xrg(x) izro(x)
0 0

coincides with X; and satisfies (5.45) for ¢t < 7o (X.) with

R tATQ (X))
W, =W, + 2y/ o*(s, Xs)Xsds
0

~

which is a Wiener process with respect to P. In this situation for 7 < 79(X.) = 79(X.)

~

EM, < EMY? exp(2u/ )A(t*a(t,Xt)IKTQ(X)th - 21/2/ X (00*)(t, X)X, I x)at)
0 0

t<71Q

t<tQ

< (EM)YV*(Ep'? exp(120” / X (00" (t, X)XiI, ., xdt)"?
0
where

t<TQ t<TQ

p = exp(8v / Xio(t, X1, x,dW; — 327 / X (00™)(t, X)X, x)db).
0 0

Observe that Ep — 1 and EM, < Ny. Therefore,

A

R TQ(X.) oA
EM, < NY2(E exp(241? / (X*(00)(t, X,)X,)de)) 4.
0
It only remains to refer to (5.47) after noticing that
T(X.) AR
24y2/ (X[ (oo)(t, X)) Xy)dt < 240°KT sup | X|> =2urv sup |X;|?
0 t<rq(X.) t<rg(X.)

and use the inequality :* < 14 ¢if ¢ >0, 0 < a < 1, where v = p/(12KT'). The theorem
is proved. O

5.4 Proof of Theorem 5.2

By Theorem 4.1 the strong solution X; to (5.5) is defined at least until the time £ when
(s +t, X;) exits from all Q™. We claim that in order to prove £ = 0o (a.s.) and also to
prove the second assertions of the theorem, it suffices to prove that for each T' € (0, c0)
and m > 1 there exists a constant N, depending only on K, K1, d, p(m+1), g(m+ 1), €,
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T, [[V¢Igme|l atnsr, dist(OQ™,0Q™F), supgm+1 {¢ 4+ h}, M and the function H, such
p(m+1)
that for (s,z) € @™ we have

E sup exp(ug(s +t, X;) + pv|Xi|*) < N. (5.48)

t<ENT

To prove the claim notice that (5.48) implies

sup (p(s+1t, X;) + | Xi*) < o0 (a.s.). (5.49)

t<EAT

It follows that (a.s.) there exists an n > 1 such that up to time & A T the trajectory
Zy = (s +t,X;) lies in Q™. Indeed, on the set of all w where this is wrong, for the exit
time " of Z; from Q™ we have ™ < T for all n. However owing to (5.49), the sequence
Xen should be bounded, then the sequence Zgn has limit points on the boundary 0Q).
According to the Assumption 1 (vi), it only happens with probability zero. Hence, (a.s.)
there is n > 1 such that T" < £". Since this happens for any 7" and " < £ we conclude
that £ = 0o (a.s.), which proves our intermediate claim.

Since dist(0Q™, Q™) > 0 we can find x € (0, 1] sufficiently small so that (s,z) +
Q~*F Q™ for all (s,z) € Q™. Therefore, by translation and dilation, without losing
generality, we may assume that s = 0, z = 0 and Q%' C Q™.

Next we notice that obviously, to prove (5.48) it suffices to prove that with N of the
same kind as in (5.48) for any n > m + 2,

E sup exp(ué(t, X;) + | X[*) < N. (5.50)
t<EnAT

Fix an n > m+2. By virtue of Theorem 4.1, notice that the left-hand side of (5.50) will
not change if we change —00*V¢ + (3 Z;.izl 0jaij)1<i<a outside of Q™. Therefore we may
replace ¢ with ¢n and replace %Z;l:l 0;a;; with %Z?Zl 0;a;;n for each 1 <@ < d, where
n is an infinitely differentiable function equal 1 on a neighborhood of ™ and equals 0
outside of Q"*!. To simplify the notation we just assume that ¢ and % Z?Zl 0j;a;; vanishes
outside of Q" and (5.3) holds in a neighborhood of Q". This is harmless as long as we
prove that N depends appropriately on the data.

Now we mollify ¢ by convolving it with a d—like nonnegative smooth function (7 (¢, z) =
v~41¢(t ), x/7), ¢ has compact support in Q. Denote by ¢ the result of the convo-
lution and use an analogous notation for the convolution of {7 (¢, z) with other functions.
Also denote by X, the solution of the following SDE

t t 1 d t
X/ :/ o(s, X))dW, —i—/ (—o0* Vo) (s, X7)ds + (52/ djaij(s, X7)ds)i<i<a-
0 0 = Jo

For z. € C([0,0), R?) we define &,(z.) :=inf {t > 0: (¢, ;) & Q"}. Consider the bounded
function f on C([0,00), R?) given by the formula

flz)=sup exp(uo(t,z;) + pv|z|?),
t<€n(z. )AT
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and let 7 be defined by the same formula with ¢ in place of ¢. Since oo* is bounded,
by using Lemma 5.8 we conclude that the left-hand side of (5.50) is equal to the limit as

v 0 of

Eff(X")=E sup exp(ug”(t, X]) + | X] ). (5.51)
t<€n(X)AT

In fact, if we denote M; = fo o(s, Mg)dWs, according to Lemma 5.8

(BIF(M) = fIM)P)2 + N flloolloo™ (Ve — Vo) Ign g

[Ef(X) - Eff(X7)] <N
N'(B|f(M.) = f/(M)P)? + KN'[[(Vo = Vo) Ign | g,

<
<

which of course tends to 0 when v — 0, since ¢ is continuous and bounded on @Q",
Vlgn € L4, then f¥ — f and Vo Ign — Vel in L as v — 0.

In the light of the fact that (5.3) holds in a neighborhood of @™ we have that on Q"
for sufficiently small

d
2D+ 3 0y(ag00) < (1) 1+ 3" [0,0,00) - (000 e

2,7=1 2,7=1

= e, (5.52)

Since h is continuous, then (he®®)e=*"’ — b uniformly on Q™. Besides Zf i1 |0;(a;;0;6)—
(9;(ai;j0:9))]) — 0 pointwise. Hence if we denote

Hyu(T, (2 =rn)v,7) = / (R7)"(t, )L 0,1 (t)e~ @R grdy,

we have

lim H (T, (2 — rn)v,7) < Hon (T, (2 — r)v, 7).

¥—0

Furthermore, the conditions 2D,¢0(") < K¢ also hold in a neighborhood of Q" for
sufficiently small .
We now apply Theorem 5.13 for Q™ N Qr in place of ) to conclude that

E sup exp(ud(t, X;) + p|Xo[*) =lmE  sup  exp(ud™ + pv| X7 %)
t<€nAT WO pcen(X)AT

S Um(N + NHgu (T, (2 = rn)v.v))
Y

<N+ NHo (T, (2 —rn)v,r)
<N+ NHo(T, (2 —rn)v,r),

where the values of all the parameters are specified in 5.13 and the constants N depend
onlyonr, d, pim+1),¢qm+1),¢ T, K, Ky, ||qu5]Qm+1||Lq<(m+1))7 and supgm+1 {¢ + h}.
p(m+1
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We finally use condition (H) from Assumption 1 . Fix any ro € (1,2/(2§ + €)), set
a=(2—ron)v (>0) and take r = r(T,a) from condition (H). Holder’s inequality shows
that if condition (H) is satisfied with r = ' where r’ > 1, then it is also satisfied with
any r € (1,7']. Hence without losing generality we may assume that r = (T, a) € (1,7¢].
Then (2 —r)v > a and Ho(T, (2 — m)v,r) < Ho(T,a,r(T,a)) < co. Thus, Theorem
5.13 yields (5.50). The theorem is proved.

O

Remark 5.14. We can add another drift term to (5.5), it does not have to be the
gradient of a function. Under Assumption 1 take a Borel measurable locally bounded R¢
valued function b(t, ) defined on R**! satisfying the condition |b(t, z)| < ¢(1+|z|), where
c is a finite positive constant, then it turns out that the first assertion of Theorem 5.2
still holds with the equation

t t .
X, =2+ / o(s+r, X, )dW, + / (—00*V @) (s + 1, X, )dr + / b(s + 7, X, )dr
0 0 0
t 1 d
* b 2 > Qs + 1, X, )dr)1cica (5.53)
j=1

in place of (5.5). To prove this we follow the proof in [37] Remark 8.2. The only needed
material is the Markov property of solution to equation (5.5), which we already get from
the proof of Theorem 4.1. By applying Girsanov theorem we get the non-explosion result
for the equation (5.53).

Further we can carry our results in Theorem 5.2 to the cases in which ¢ is not necessarily
nonnegative but ¢ > —C(1 + |z|?), C' > 0. Since the equation (5.5) is equivalent to the
following

t 1 [t d
Xt =x+ /[; O'(S -+ T, XT)dWr + (5 A Z Gjaij(s -+ T, Xr>dr)1<i<d
j=1

t t
+ / 2Coo* (s +r, X,) X,dr — / oo*V[C(1 + |z*) + ¢|(s +r, X,)dr,
0 0

obviously |oo*(t,z)z| < K(1 + |z|). We conclude that SDE (5.5) has a unique solution
defined for all times if (s,z) € @ provided that ¢ + C(1 + |z|?) rather than ¢ satisfies
Assumption 1.

5.5 Diffusions in random media

We apply our results to a particle which performs a random motion in R?, d > 2, inter-
acting with impurities which are randomly distributed according to a Gibbs measure of
Ruelle type. So, the impurities form a locally finite subset v = {xx|k € N} C RY. The
interaction is given by a pair potential V' and diffusion coefficient o to be specified below
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defined on {x eR?: |z| > ,0}, where p > 0 is a given constant. The stochastic dynamics
of the particle is then determined by a stochastic equation type (5.5) as in Theorem 5.2
above with

Q=R x (R\Y), ¢(t,x):=) V(z—y), (Lz)eQ, (5.54)

where 7” is the closed p—neighborhood of the set v, i.e., the random path X; of the
particle should be the strong solution of

X, ==x +/0 o(Xs)dW, + (% Z;/O 0;a5(Xs)ds)1<i<a — Z/o (00™)(Xs)VV (X — w)ds.
(5.55)

Below we shall give conditions on the pair potential V' and diffusion coefficient o which
imply that this is indeed the case, i.e. that Theorem 5.2 above applies, for all v outside a
set of measure zero for the Gibbs measure. Here the original case is from [37] section 9.1,
we generalize it to the multiplicative noise case. Similarly the set of admissible impurities
v we can treat is

Loa = {y CRYVr > 03c(y,7) > 0: |y N B, (z)| < e(7y,7)log(1 + |z]), vz € R}, (5.56)

where B,.(z) denotes the open ball with center x and radius r, | A| denotes the cardinality of
a set A. From [37] we know that for essentially all classes of Gibbs measure in equilibrium
statistical mechanics of interacting infinite particle systems in R¢ the set ',y has measure
one, this is also true for Ruelle measures.

We fix a v € I'yy. The necessary conditions on the pair potential V' and diffusion
coefficient o go as follows (the typical case when p = 0 is also included):
(V1) The function V is positive and once continuously differentiable in R? N {|z| > p},
limy,,, V(z) = oo.
(V2) There exist finite constants a@ > d/2, C' > 0, € € [1,2) such that with U(z) =:
C(1 + |z]*)™ we have

V()| +|VV(z)| <U(x) for |z]>p, (5.57)
and for any |y| > p
d
Z(aja“(x)aiwy) + ai;(2)9;0;V (y)) < C(es VW _ 1) (5.58)
i,j=1

in the sense of distributions on {z € R?: |z| > p} where o(z) = (04j(2))1<ij<a : R? —
R? x R? satisfies the following conditions:
(01) There exists a positive constant K such that for all z € R?

1
EW < A{(oo*) ()N N) < K[\, YA€ R (5.59)
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(02) For 1 <4, j < d, 0;; € CZ(RY).

We emphasize that above conditions are fulfilled for essentially all potentials of interests
in statistical physics.
Introduce V' (z) = V(x) + 2U(z), |x| > p, and for (¢,x) € Q let

Owing to (5.57), (5.59) and the fact that v € I'yq4, the function ¢ is continuously differ-
entiable in @ and |b(t,z)| < NK log(2 + |x|), where N is independent of (¢,z) (See [37]
Section 9.1). Meanwhile for appropriate constants N on @) we have for |y| > p

d
2> " (95ai;(x)0:U (y) + ai;(2)2;0,U (y)) < N(eV™ — 1)
ij=1
because of conditions (c1) and (¢2). Combing this with the fact that V +U is positive and
(e —1) < eX® — 1, ag > 0, we find that there exists a constant N’ > 0 independent
of (t,z) such that

d
Z (ai;0:0)(x Z ZE) (a;j(x (x —w) 4+ 2U(x — w)))
7,7=1 i,j=1 wey
< NZ ((ee(V(z—w)—‘rZU(x—w)) . 1) + (eeU(a:—w) . 1)) < Nl(ee&z) . 1)
wey

It shows that all conditions on ¢ and ¢ in Theorem 5.2 are fulfilled and therefore by
Remark 5.14 the equation

t t ~ 1 d t t
Xt =x + / O'(XS)dWS — / (O'O'*ng) (XS)dS + (5 Z/ @-aij(Xs)ds)Kigd + / b(XS)dS
0 0 =170 0

(5.60)

has a unique strong solution defined for all times if x € R*\7*. Since equation (5.60)
coincides with SDE (5.55), we get the desired conclusion.

5.6 M-particle systems with gradient dynamics

In this subsection we consider a model of M particles in R? interacting via a pair potential
V' and diffusion coefficient ¢ satisfying the following conditions:
(V1) The function V is once continuously differentiable in R\ {0}, lim;—0 V(z) = oo,
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and on R?\ {0} we assume that V > —U, where U(z) := C(1 + |z|?), C is a constant.
(V2) There exists a constant € € [1,2) such that for arbitrary z,y € R%\ {0},

d
Z (8;0;.:(2)0;V () + a;.;(2)0:0;V () < CeVFOW (5.61)

1,j=1

in the sense of distributions.

Here (a;;)i<ij<a := 00* and o(z) = (0;;(7))1<ijca : RY — R? x R? is the diffusion
coefficient satisfying:

(1) There exists a positive constant K such that for all z € R?

1
?|/\|2 < A{(oo") ()N N) < KA\, VA€ RY,

(02) For 1 < i, j < d, 0;; € CZ(RY).
Introduce V :=V 4+ 2U,

Q =Ry x (RMN\ Uigpejen {2 = (2D, .., M) e RM?; () = x(j)}) :
Q"= (0,n) x {x = (W, ..., aM) e RM: |z| < n,a® £ 29 for 1 <k < j < M},
and let the function ¢, ¢, &, @ and b be defined on @ by

o(t,x) = Z V(z® — 20 bt x) = Z V(z® — 29,

1<k<j<M 1<k<j<M
o(zM) 0 0 (oo*)(xM) 0 0
(2) e
stry= | 0T = | 0 D
0 0  o(x™) 0 0 (oo*)(z™M))
b=, bM)W (¢t 2) = 4C(00)(@®) D @® —2"), k=1, M
1<j#k<M
Observe that for arbitrary y, z € R4\ {0},
d
2 Z (050,(x)0U (y) + a; j(2)0;0,U (y)) < NV
ij=1

for an appropriate constant N which is independent of y, x. Besides ¢ and ¢ are con-

tinuously differentiable on Q. If we use the notation 0% f(z) := 9% f((x™,--- , M) :=
—af((gﬂz,-(;),m(M))) fork=1,---,M and r=1,--- ,d, then for z € RM4,
M
a;j(t,z) = Z i (k-1)d - (-1 (@) (o 1)dij<ids (5.62)
k=1

OFa; ;(t,x) = 0 a;_ (- 1yaj—e-1a( @) I h_1ya<ijera = Orih1)dj—e1)a( @) Ik 1)a<i jckds
(5.63)
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where 1 < 4,5 < Md, and

oot,r) =Y V(@™ -z D)sign(q— k))sign(q — k) +4C Y (2 - 2(®),
1<q#k<M 1<g#k<M
furthermore,

arolota) = Y (Im:kan&V((a:(’“) — a\D)sign(q - k))

1<q#k<M

— L D0V (2% — 2 sign(q — k))) + 4C(Inconr — Lttons)-

Combining the above equalities with our assumptions of V' and o, by algebraic calculation

we get that on @) there exists a large number C);4 depending on Md and a constant
C" € (0,00) such that

Md

2D,(t, ) + Y | 0;(a:;0,0)(t, )

ij=1
d
d

M:

<8ka,] O)FG(t, z) + ai i (w <k>>afaf*(t,x))

—

k=1

=

]:

2.

M:

(5’jai,j(w(k))[@‘/((w(’“) — 2\9)sign(q — k))sign(q — k)

1,7=1 k=1 1<q#k<
+ 40" - )]
d M
+ ai,j(zv(k))[ﬁjaﬂ/((:v(k) — 29D)sign(q — k:))]) + Z Z ai,j(x(k))ZLC’Ii:j
ij=1 k=1
e(V(2(® -2+ U (2(D) —£(9) e(U(z(D) —x(9) ! ed(t.x
Cua Y (CeV J+U( ) 4 N DY < Cledtn).

1<g<gsM

The continuity of @; ;(t,z) on @ and d}a;;(t,x) on Q™ can be easily checked from (5.62)
and (5.63) and conditions about ¢. In order to reduce the lengthy algebraic computa-
tion, we only show the part for a; (¢, x), similarly we can get the desired continuity for
dFa;;(t,z) on Q". For any (t,z) and (s,y) € Q, by (5.62) we have for 1 <i,j < Md,

| 5(t, @) — @i (s, y)l

< Cud Z @i (1) j— - 1)a(T™) = @i e 1ya— k-1 (Y T 1)a<i ja
=1
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5 Non-explosion of the solutions to SDEs driven by continuous noise in mixed-norm
Lebesgue spaces

We can adjust constants C” and K such that there is still a positive constant such con-
dition (o1) satisfied.

It follows that all conditions on ¢ and & in Theorem 5.2 are fulfilled and therefore by
Remark 5.14 the corresponding stochastic equation for a process X; = (Xt(l) s s Xt(M))
has a unique strong solution defined for all times whenever for the initial condition x we
have (0,z) € Q. The corresponding equation is the following system

t t
Xt(k) — :[;(k) —|—/ U(ng))dwgk)_/ (UU*)(XS(k))akQE(S,XS)dS
0 0
1< ¢ ¢
+(§Z/O 3jai,j(Xs(k))d3)1<i<d+/o b (s, X,)ds.
=1

We rewrite it as following with &k =1,..., M

t
—/ )(X ) Z VV((XE — XD)sign(j — k))sign(j — k)ds
j=1j#k

/ 0; CLZJ X ds)1<J<d,

which has a unique strong solution defined for all times whenever (0, (z(), ..., 2())) € Q.
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6 Existence and uniqueness of weak solutions to SDEs
with distributional valued drifts and jump type noise

In this chapter, the well-posedness of nonlocal elliptic equation with singular drift is
investigated in Besov-Holder spaces. In the end, we show the existence and uniqueness
for corresponding martingale problem, which is equivalent to show the existence and

uniqueness for corresponding weak solution. Moreover, we prove that the one-dimensional
distribution of the weak solution has a density in some Besov space.

6.1 Preliminaries and main results
We consider the following nonlocal elliptic equation in R%:
M—ZLiu—b-Vu=Ff. (6.1)

Here a € (0,2), b € €% (Besov-Holder space, see Definition 6.7 below) with 3 € R, k is a
nonnegative measurable function from R? x R? to [0, 00) and

L f (@) = / (o +2) — fla) = V() - 2) D82 g,
8 B
where z(®) .= 21«1y Lozt + 21laeq2)-

The first aim of our work is to establish a Schauder’s type estimate for the solution
to (6.1) with irregular coefficients. There are many literatures studied this problem in
different settings. When « € (1,2), b is a Holder continuous function and £ is some
a-stable type operator, Priola in [52] and [53] studied the a priori estimate by using
classic perturbation argument. Similarly, Athreya, Butkovsky and Mytnik in [5] showed
the global estimate for £ = A%/? with a € (1,2) and b € €* with 8 > 152, Indeed,
the analytic result in [5] also holds for any non degenerate a-stable operators. For av > 1,
in [48], Mikulevicius and Pragarauskas also studied the nonlocal Cauchy problem with
first order term in Hélder space. And recently, in [17], Dong, Jin and Zhang studied the
Dini and Schauder estimate for nonlocal fully nonlinear equations. However, when o < 1,
both [48] and [17] must assume b = 0. To our best knowledge, when a € (0,1), the
interior estimate for the solution to (6.1) with non divergence free drift was first obtained
by Silvestre in [57]. He used the extension method for £ = A%/? when a € (0,1) and
b € €° with f > 1 — « to reduce the nonlocal problem to the local case. Recently, similar
result was extended for stable-like operators in [78] by using Littlewood-Paley theory. Let
us also mention that there are much more works for nonlocal equation without first order
term, for instance [6], [16] and the references therein.

In this work, we will show the global estimates in more general setting. Our assumption
on K is:

Assumption 5. There are constants 1o, A1, Ay, A3 > 0, 9 € (0,1) such that

/ K(z,2z)dz > M, zeRre (0,70); (Hy)

r
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k(z,2) < Ay, 1,2 € RY lazl/ z-k(x,z2)dz =0, 0 <r < R < o0; (Hy)
{r<|z|<R}
|K<$,Z>—/{(y,2’)| <A3|{E—y|ﬁ, l’,yGRd,’19€ (071) (H3)

The following is our first main result:
Theorem 6.1. Suppose k(z,z) satisfies (Hy)-(H3) and max{0, (1 —a)} <9 < 1.
1. Ifa€(0,1], B€ (1—a,¥) and b € €P, then there are constants \g, C > 0 such that
for any X\ = \g and f € €7, equation (6.1) has a unique solution in €°*** satisfying
(A = Ao)llulles + [lullgars < Cllfllge, (6.2)
where Ao, C' only depend on d, ., 3,9,19, A1, Ao, As, ||b]|«s-

2. Ifae € (1,2), B e (—(%2 ANV),0) and b € €7, then the above conclusions also hold.

Notice that our condition (H;) is much weaker than the usual lower bounded assumption
k(z,z) 2 A > 0 and also weaker than Assumption A(i) in [48]. A typical example is take

Kz, z) = 1y(g)(2).

Here V(z) € R? is a conical set of the form V(z) = {z € R : |(z/|z],&(z))| > §} with
measurable ¢ : R? — S and § > 0 is fixed.

Like in [78], our approach of getting the Schauder type estimate is based on Littlewood-
Paley theory. For the first case in Theorem 6.1, the key step is to establish a frequency
localized maximum inequality(see Lemma 6.11 below). This kind of maximum principle
appeared in [66] for k = 1. We extend their result for any x(z, 2) = k(z) satisfying (Hy)
below. When o > 1 and 8 € (—(O‘Tf1 A 9),0], the main problem is how to prove the
boundedness of £ : €8 — €7, where the Bony’s decomposition plays a crucial rule
in our proof.

As one of the motivations of considering the regularity estimate for (6.1), we want to
investigate the well-posedness of the following SDE in R¢:

t t
X, = Xo+/ o(Xs_)dZs +/ b(X,)ds (6.3)
0 0
in weak sense. Here Z, is an a-stable process in R?, ¢ is a d x d-matrix-valued measur-

able function and b is the drift, which might be very singular. Suppose Z, is rotational
symmetric, LY + b - V is the generator of X, for any o satisfies (6.5) below, we have

L5 1(@) +b- V1) = [ (et o@)2) = o) = V@) - o)) s+ V(@)
dz

:/Rd<f(x +2) + f(x) = Vf(x)- =)
+b-Vf(x) =L f(x),

| det o ()] - o=t (z)z[ "+
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where

’d—&-a

K(z,2) : 12

= Tdeto(@)] - o1 (@)a = 6.4

Since the well-posedness of the resolvent equations or backward Kolmogorov equations
associated with L2 +b-V are closely related to the weak solutions(or martingale solutions)
of (6.3), our analytic result Theorem 6.1 has direct applications to SDE driven by a-stable
process.

On the other hand, pathwise uniqueness and strong existence for (6.3) with irregular
coefficients have already been studied in a large number of literatures, see [60] for one
dimensional case and [52], [73], [53], [12], [14], etc for more general Lévy noises in R
Roughly speaking, these works showed that the SDE (6.3) has a unique strong solution
under the conditions that ¢ is bounded, uniformly nondegenerate and Lipschitz, Z; is a
non degenerated a-stable process, b € €° with 8 > 1 — 5. However, when we consider the
existence and uniqueness of weak solutions to (6.3) or the well-posedness of corresponding
martingale problem, the regularity assumptions on the coefficients can be released. In
[76], the 1auuthors considered (6.3) driven by Brownian motion, they showed that if o = I

b € Hy,? with p > 2d one can still give a natural meaning of “ fg b(Xs)ds” (see also
[77]). The drift term may not be a process with finite variation any more but an additive
functional of X with zero energy. In [5], they considered the similar SDEs driven by one
dimensional additive a-stable noise with singular drifts in Besov-Hélder space. The above
works are motivated by Bass and Chen’s earlier works [9], [10].

In this chapter, we will study the martingale problem associated with £, := Z*+0-V.
When o < 1, since we assume b € €° with 8 > 0, there is no issue about the definition
of martingale or weak solution. However, when o > 1 and b € ¥? with 8 < 0, like
in [76], [5], we need to give an appropriate definition of solutions to (6.3)(see Definition
6.22). Combining Theorem 6.1 and some standard techniques in probability theory, we
can obtain the following result. We distribute the proof in Lemma 6.23 and Lemma 6.24.

Corollary 6.2. Suppose max{0, (1 —a)} <V < 1, k(z, 2) satisfies (Hy)-(H3), and b €
¢P, where f € (1 —a,9) if a € (0,1] and B € (—(%5* AN 9),0] if @ € (1,2). Then,
for each x € R?, there is a unique probability measure P, with starting point x on the
Skorokhod space D, which solves the martingale problem associated with £, and satisfies
the Krylov’s type estimate(see Definition 6.20).

Our corollary above implies:

Proposition 6.3. Suppose Z; is a rotational symmetric a-stable process, o satisfies
Az < o(x)z] < Alzl, A>0,z€R% (6.5)
then

(i) If a € (0,1], B € (1 —a,1). a,b € EP, there is a unique weak solution to (6.3).
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(i) If € (1,2), B € (52,0, e > 0. 0 € €°%, b e 6P, there is a unique weak
solution to (6.3).

Another interesting problem we attempt to study in this chapter is the regularity es-
timates for the one dimensional distribution of the solutions to martingale problem as-
sociated with £, Debussche and Fournier in [15] proved that the law of the solution
to (6.3) has a density in some Besov space, under some non-degeneracy condition on the
driving Lévy process and some Hélder-continuity assumptions on the coefficients. We
following the arguments in [15], but instead of using the crucial Lemma 2.1 therein, we
use the Littlewood-Paley description of Besov spaces to simplify the proof and get a bit
more general result(see Lemma 6.30).

Theorem 6.4. Under the same conditions in Corollary 6.2 for each x € R?, suppose P,
is the unique solution in Corollary 6.2. Then, for each t > 0 the distribution of canonical
process w; under P, has a density in Besov space B) . with v and q satisfying

q,00
d
d+~v—ala+p8-1)

O<y<ala+p—-1), 1<qg<

if a € (0,1] and
d

O<y<(a+p-1DAL 1<qg<
v<latf-1Ag 1 d+vy—(a+B8-1)A2

ifae(1,2).

Let 2(R?) be the collection of all probability measures on R?. Combining Corollary
6.2 and Theorem 6.4, we obtain the following interesting corollary:

Corollary 6.5. Under the same conditions in Corollary 6.2 for any x € R%, the following
nonlocal Fokker-Planck equation:

(01, ®) = d(x) —I—/O (05, Zyo)ds, Vo € CF (6.6)

has a unique solution {¢;} € P(R?). Moreover, for each t > 0, oy € B] ., with v
and q satisfying 0 < v < ala+ 5 —-1), 1 < ¢ < m if « € (0,1] and

O<’y<(0é+/8—].)/\§, 1<q<mlf&€(l,2)

Remark 6.6. The above result can also be seen as a probabilistic approach to the theory
of regularity of solutions to non-local partial differential equations. We give a probabilistic
proof for the well-posedness as well as reqularity estimates for linear Fokker-Plank equation
with singular coefficients and initial data.

This chapter is organized as follows: In Section 6.2, we recall some basic knowledge from
Littlewood-Paley theory for later use. We establish apriori estimates for (6.1) in Holder-
Besov spaces in Section 6.3. In Section 6.4, we prove the well-posedness of martingale
problem associated with Z,. In Section 6.5, we show the one dimensional distribution
of the martingale solution has a density in some Besov space. For the completeness of the
paper we add the equivalence between martingale solution and weak solution in Appendix.
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6.2 Preparations

In this section, we recall some basic concepts and properties of Littlewood-Paley decom-
position that will be used later.

Let .7(R?Y) be the Schwartz space of all rapidly decreasing functions, and .%/(R%) the
dual space of .Z(R%). Given f € .Z(R%), let .Zf = f be the Fourier transform of f
defined by

~

fle) = m) o [ sy
R4
Let y : R — [0,1] be a smooth radial function with
x(©) =1, [§] <1, x(§) =0, [¢] >3/2.
Define
C:= Bypp\Bijp = {zx € R?: 1/2 <[z < 3/2}; (&) := x(§) — x(2€).
It is easy to see that ¢ > 0 and supp ¢ C C and

X(26) + 3 p(2776) = x(271) " L, (6.7)

In particular, if |j — 5| > 2, then

suppg(277-) Nsuppp(277-) =0

In this paper we shall fix such x and ¢ and also introduce another nonnegative function
¢ € C>(R?) supported on By\Bj,s and ¢ =1 on C for later use.
We introduce the definition of Besov space below.

Definition 6.7. The dyadic block operator A; is defined by

[ F@En, G-
si={ FGa 0w, 150

For s € R and p,q € [1,00], the Besov space By , is defined as the set of all f € S (RY)

with
1/q
Bs, = (Z 2]S‘I||Ajf||g> < o0;

j>—1

/]

If p=q = oo, we denote ¢° := B3, .

Let 3
hi=F"Yo, h:=2"'¢, h_:=F"x2);

hji=F tp(279.) = 274p(27.),  j=0.

By definition it is easy to see that

A f(x) = (hy + f)(z) = / by — ) fw)dy, §> 1. (6.8)

Rd
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Definition 6.8. The low-frequency cut-off operator S; is defined by

- Y A

7'<g—1

The paraproduct of f and g is defined by

Tyg:= Y Si-1fA9.

Jjz—1

The remainder of f and g is defined by

> AvfAg.

|k—j]<1
The following two Lemmas can be found in [61].

Lemma 6.9. If s > 0,s ¢ N, then

¢ =B, = C°,

where C*° is the usual Holder space.

Lemma 6.10 (Bernstein’s inequalities). For any 1 < p < ¢ < oo and j > 0, we have
V58 flly < G225 G| A f k=01, (6.9)
and

I(=2)7225flly < G2 G~ Al s> 0. (6.10)

6.3 Schauder estimates for (6.1)

In this section, we establish the Schauder type estimate for (6.1) and its well-posedness
in Besov-Holder space.

6.3.1 The case k(z,2) = Kk(2)

The following assumptions will be needed in this subsection.

Assumption 6. There are constants rq,dg, A, Ao > 0 such that

{z:k(2) > A} N B,| = 6r?, 7€ (0,r); (Hy)
k(z) < Ay, z € RY 1a:1/ z-Kk(2)dz=0, 0<r <R < 0. (H;)
{r<|z|<R}
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Recalling that C := {z € R?: 1/2 < |z| < 3/2}. Define
B = {u c Z(RY) :supp @ € C}, J(u) = {m cRY: u(x)| = ||u||oo}

We have the following important frequency localized maximum principle.

Lemma 6.11. There ezists a number ¢ = c(d, a, 1o, 0) > 0 such that for any k satisfying
(Hy), the following mazximal inequality holds:

inf inf {sgn@(x))-(—z:u(x))} > ¢ Ao (6.11)

uch reJ(u)
The following simple lemma is needed in the proof of Lemma 6.11.

Lemma 6.12. Suppose f is a real analytic function on R?, if f vanishes on a measurable
subset of RY whose Lebesque measure is positive, then f =0 on RY.

Proof. We prove the lemma by induction. Let m; be the Lebesgue measure on R¥.

e If d =1, then f is analytic with f|g = 0 and m;(F) > 0, which implies zero points
of f must have an accumulation point on the line, by identity theorem, f = 0.

e Assume the claim holds for d — 1. If my(E) > 0, then by Fubini theorem, there is
a set F1 C R with mq(E) > 0, such that for any x; € Ey,

mg_1(E N {x} x R > 0.

By induction hypothesis, for each x; € Ej, function z +— f(z1, 2) vanishes identi-
cally. Since m(FE;) > 0, we can find 27 € Ey, 27 — a. Now for each z € R,
function x; — f(x1, 2) is real analytic, its zero points has an accumulation point a.
By the conclusion for 1 dimensional case, we get f(x1,2) =0.

]

Proof of Lemma 6.11. Without loss of generality, we can assume A = 1. Define

4 (rg,00) := {k : k satisfies (Hy) with A =1},
P T {sen(u(@)) - (~Z2u(@)) }/lull.

We emphasize that the constant ¢ only depends on d, «, rg, dg. By the definition of ¢, there
exists a sequence of smooth functions w, € . (R?) satisfying suppw, C C, z, € J(w,)
and k,(z) € o7 (rg,dp) such that

wTL(xn) = I;é%z( |wn| = 17 nh—g)lo [— f,f;wn(a:n)} = C.

Let u,(z) := wy(x, + ), it’s easy to see that u,, € & and

u,(0) = max |u,|(z) =1, lim [ — £ u,(0)] =c (6.12)

zeRE n—o00
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Notice that
w@) = [ b=y )y
R4
where I is defined in section 2. For any k € N|
IV n]loo = IVER % ]| < VR ][tn]lo0 < Ch-

By Ascoli-Azela’s lemma and diagonal argument, there is a subsequence of {u,}(still
denoted by wu,, for simple) and u € C° such that V*u, converges to V¥u uniformly on
any compact set. Let xg(-) = x(-/R), where x is the same function in section 2. For any

¢ € (R,
‘ [ #tan =

Let n — oo and then R — oo, we get
(6, un) = (¢,u), Vo€ SR

ie. u, — uin .¥(R%) and consequently, @, — 4 in #'(R%). For any ¢ € . (R%)
supported on RN\C, we have

</|¢XR-<un—u>|+/|¢<l—xR><un—u>|

<||¢||Ll ||u7l - u||L°°(B3R/2) + 2 ‘S|L11:1)% |¢<CL’)|
x|>

(¢,0) = lim (¢, dy,) =0,
n—00
which means u is also supported on C. Thus the complex-valued function
Uz (2m) "4 0)

is a holomorphic function on C% and u = U|ga. This implies u is a real analytic function.

Now assume ¢ = 0, for any A € (0, 1), by (6.12) and the fact that Vu,(0) = 0, we have

~Z500) = [ (0(0) = ua(2) [;Tifl d:

dz

> (1 —Un(z))w

=

/;mﬂ{unék}ﬂ{mn>l}
>(1 = \ro (B, A {un <MY {rn > 1},

This yields

limsup | By, N {u, <A} N {k, > 1} < (1= A) '™ lim [— 22 u,(0)] = 0.

n—00 n—00 "
Combining the above estimate and our assumption (Hy), we get
liminf |B,, N {u, > A} N{k, > 1}|
n—oo

=liminf | B,, N {k, > 1}| = limsup | B,, N {u, < A} N {k, > 1} = dord.
n—oo

n—oo
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One the other hand, w,, — w uniformly in B,, implies

|Bry 0 {u > A} = Tim | By, 0 {uy > A}

> liminf | By, N {u, > A} N {k, > 1} = or.
n—oo

Notice that v < 1, let A T 1 in the first term above, we obtain |{x € B,, : u(z) =
1} = dord > 0. Using Lemma 6.12, we obtain u = 1 on R? i.e. 4 = dy, the Dirac
measure. However, as we see before, 4 must be supported on C, this contradiction implies
¢ =c(d,a,rg,d9) > 0. O

Corollary 6.13. Let R > 1. Suppose k satisfies (Hy) and supp @ C RC :={z : /R €

C}, then there is a positive constant ¢ = c(d, «, 19, o) such that

inf {sgn(u(m)) : (—.i”,f‘u(:c))} > ¢ AR ||ul| oo, (6.13)

zeJ(u
where J(u) = {z : |u(z)| = [Jul|}-

Proof. Suppose xy € J(u), define v (x) = u(zo + z/R), kr(z) == R*k(2/R). By our
assumption on u, one can see that supp uj C C and kg satisfies (H,) with constant A
replaced by AR®. Notice that

Ze,070) = [ (uloo + 2/ R) — ulaw)) {5 A/ B

k(2
:/ (u(zo + 2) — u(xp)) <d ) dz = L%u(xy),
R4 | 2]+
by Lemma 6.11, we obtain that

—sgn(u(zo)) - L u(wo) = — sgn(uf' (0)) - £, ui'(0)
Ze AR [ug [0 = ¢ AR |u]|co-

So we complete our proof. O

We need the following simple commutator estimate.

Lemma 6.14. For any j > —1, € (0,1),
114;:6 - V]ulle < C27|blgs ]|Vl o, (6.14)
where C' = C(d, ).

Proof. By (6.8), we have

A b V]u(z) = / hy(0) (b — y) — b(x)) - Vulz — y)dy,

Rd
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hence for any 3 € (0,1),
1850Vl < [ AslIoC =) = ) Vet =l
< Cllles! i [ sl o1y

(6.15)
=Clb

Va2 [ |2h(2) = h(w)ldy
R
< C2 bl |V

©B

]

Theorem 6.15. Suppose k satisfies (Hy), if @ € (0,1] and b € €° with B € (1 — a,1);
ora € (1,2) and b € €° with B € (—O‘T_l, 1). Then there a constant Ny such that for any
A=\ and f € €° (6.1) has a unique solution in €*P. Moreover, we have the following
apriort estimate

(A = Ao)llullgs + l[ullgass < C[lfle, (6.16)

here C = C(d, o, 8,79, 00, A, ||

w) >0, Ao = Xo(d, a, 8,70, 00, A, [[b]lg5) = 0.
Proof. For a € (0,1], we frist assume u € .%(R?). Notice that A; £ = Z*A;, we have
M ju—ZL2Au—b-VAju=A;f+[A;,b- Vl]u.
For j = —1, then
M _qu— LA qu—b- VA ju=A_1f+[A_1,b- V]u.
Suppose A_ju(x_1) = ||A_ju||oo, noticing LA _ju(z_1) < 0 and Vu(z_1) = 0, we get

)\HA,1UHOO g)\A,1U<$,1) — g,iaA,ﬂ,L(l',l)
SNA- 1 flloe + [[A-1,0- V]uflw
<NA-1flloo + Cllbllgs lull 52, -

For j > 0, assume sgn(Aju(z;)) - Aju(z;) = ||Ajulloo, by Lemma 6.11

(A +e2)[|Aullo0 =sgn(Aju(zy)) - [AAju()) + 2% Aju(x;)]
<A ju — ZEAu —b - VAjul o
<A fllso + 1A, 6+ Viuflo
<[4 flloo + C277 bl g5 |lul 52, -

Combining the above inequalities and using interpolation,

(A2% 4+ 2 [ Agulloe < 298 f o + [Bllgs (eluless + Celfulles),
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hence,
(A = C)lullgs + (c — eCllbllge)[[ullgars < | flles-

Choosing ¢y sufficiently small, such that (¢ —¢eo||b|¢s) = 5, letting Aoy = C;,, we get (6.16)
for u € S (R?). Now if u € €7, let u, := n'n(n) * (x(3)u) € L (R?), where x is the

n

same function in section 2 and n € C*(By), [n=1. f, = Ay, — LU, — b+ Vu,. So
(A = 2o)[unllgs + |lunllgars < C| falles,

by this, we obtain

(A = o) lullgs + [Ju

oo limsup | (A = do)llunllgs + [fungess

n—oo

<Climsup || fullgs < C|| fll4s-

n—oo
For a € (1,2), we only prove the case f < 0 here. By choosing v € (-2, O‘T_l), and
Bony’s decomposition, we have
14;(b- V)l
= 14;(TVu) + Aj(Toub) + A;(R(b, Vu))||
< 1Al AV Ul + Y 1Al AV ulloo + D A% ool AV

k<l—2; 1<k—2; lk—1|<1;
li—ll<3 li—k|<3 kil>j—2

<O ||Vl |[bllgs (7277 - 2799 4 2787 4 o= (B4
<O, |lullgra |[b]|o55277.

Notice that,
)\Aju — Q%ISAJ'U = —Aj(b . VU,) + Ajf
Like before, we have

A+ 29))|Agull oo —sgn(Dgu(ay) - NAgu(es) + 2 Agu(ey)]
<[AAju — L7 Ajul|o
<A flloe + 11450 - V)l
<O277(|| fllogs + 1bllg|ulligren)-
Noticing that 1 + v < « + 3, by interpolation, we get (6.16). O

The next lemma will be used later.

Lemma 6.16. Suppose k(z) satisfies (Hs), then there is a constant C = C(a,d) > 0
such that for all f € R and v € €°*P,

Hg,?u”%a < CAQHfHCga-&-B.

107



6 FExistence and uniqueness of weak solutions to SDEs with distributional valued drifts
and jump type noise

Proof. Recall that ¢ is a smooth function supported in By \ By /4 with ¢ = 1 on Bs/s\ By /2
and h := F~1($). Since h € .7, it is easy to see that for some ¢ = ¢(a,d) > 0,

1220l < A < oo,
Let h; == F1(p(277-)) for j =0,1,2,---. By scaling, we have
L2901 < CAs2%9, j=0,1,2,--- .
Since Zj\f = (277 f = @277 )p(277) f, we have A,;f = h; * A, f and
125L8 Flloo = 122 (g % (D5 loo < 1L B3I flloo < CA22|| A f [loo-

Similarly, one can show

|A1 L flloo < CA2||A_1 [l oo

Hence,
122 Flles = sup 298,22 oo < CAs sup 29299, e = Ol e
Jjz— Jjz—
The proof is complete. O

6.3.2 The general case

Denote
0:f(x) == fla +2) = f(x), 02f(x):=f(x+2)— fz) =2 Vf(x).

We need the following lemma.
Lemma 6.17. Suppose a € (0,2) and r(z, z) satisfies (Hy) and (Hj), then

1. for any p € (0,9], we have

[ L ulles < Chollullgars + Colsllullgars, (6.17)
where § € (0, 5).
2. for any B € (—(a A¥),0], we have

[Lullgs < C(Ag + Ag)[ullgars. (6.18)

Proof. (1). Suppose a € (0,1] and 3 € (0,4]. For any xy € R?, define

K(zg, 2)

Lyu(z) = /]Rd du(z) EED dz.

Notice that |-Z*u(zo)| = |-Zfu(zo)|, by Lemma 6.16, we get

|25 ullz < CAallulligass.
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For any x € Bi(x) and 6 € (0, ), by definition

[ drutoe) o),

‘Z|d+a

[Zu(r) = L5 ()] <

<hale—anf” [ 1ozulo)l
<CyAsla — xo|”||ull garo.
Since
| Zou(z) — Loulzo)] < | L0u(z) — Lou(@)| + | Loule) — Loulz),
by the Lemma 6.16, if 5 € (0, 4],
Liu(e) — Loulzo)| < | Loulw) — Louls)] < Chollullgessle — zol?.
Combining the above inequalities, we get (6.17).

(2). We only prove the case a € (1,2) and 5 € (=9, 0], which is harder and the only
case that will be used below. Denote k,(y) := k(y, z), by definite we have

K\Y, 2
8 Zzula) = [ e =) dy [ 8tuty) éfé@ dz
Rd

Rd

:/Rd (/Rd [02u(y)k-(y)] hy(x —y) dy) ‘;ﬁ%-

i) = [ [ty ]hta =) dy,

We drop the index x below for simple. By Bony’s decomposition,

(6.19)

Denote

L) =18, > [(62Aku) - Ak

El>—1

=10 | D0 6 A A+ Y 00w Akt Y 6 A Ak

k<i—2 I<k—2 |k—1<1
< E |5§Aku . Alﬁz{ + E |5‘;Aku . AlliZ’ + E |5‘;Aku . AlliZ’
k<l—2; I<k—2; k,l>7—2;
[l—7]1<3 |[k—j|<3 |[k—1I<1

_. 7 (2) 3)
=017 (2) + ;7 (2) + [;7(2).

J

Roughly speaking, the first inequality above holds because the Fourier transforms of
D kkci—o AufAg and 1< ArfAg are supported around 2!C and 2'B; respectively.
Noticing that by Bernstein’s inequality

162 Aguu(y)] = / o [VAly +t2) — VAu(y)]de

Z|2(1*7)k7

(6.20)
<L202[[VAkulloo < Cllu

L7
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and

102 Aku(y)] < 2PV Apulloo < Cllulln]z?2277F, (6.21)

where v := o + 3. Next we estimate each I J@(z), we only need to care about the case
when j is large, say j > 10.

o If |2] < 277: for I;l)(z), by (6.21) and noticing that 2 — v > 0, we have
I;l)(z) = Z ‘52‘Aku . Amz‘

k<l-2;
ll—jl<3

<Cllu

¢ ||Rz

o0 3 |22k (6.22)
k<i

<Ol |zl o 2?2277,

¢

Similarly, for I ](-2)(,2), by (6.21) and noticing that ¥ > 0, we have
9 Z |Z|22(2—v)j2—19l

155 (6.23)
<O lullgr |20 |22,

IP(2) <Clulgn |||

For I]@(z), we choose € € (0, (8+9) A (2—«)), by (6.20), (6.21) and noticing that
l—-y—v<0and2—a—¢ey >0V (2—v—1), we have

I < Y |0 A Ak + > |02 A - Ayt |

|k—=1|<1; |k—1|<1;
k,l>—log, |2|—2 J—3<k,I<—log, |2
<Ozl | (f( S ety Y |z,22<24>k2ﬂ%>
k>—log; |2| J—2<k<—logy || (624)

<Ollullesllkalleo | 124+ 122 Y 2@k

k<—log, |2|

SCllullen [zl |27

o |z| >27: for I§1)(z), notice that v < 2 and 1 — vy — ¢ < 0, we have

10G) < Clullarlimllee (30 Jzl20k2%

—(1Alog, |2|)<k<j

i 3 |z|22(2_“’)k2_19j>

—1<k<—(1Alogs |2])
<CllulllIwlgo (1541227
+ 1v=1’Z|j2_19j + 1v<1’Z|2(1_V_19)j + |Z|72_§j>

<Cllu e (2] + 17<1]2\2(1_7_ﬁ)j). (6.25)

((a”'Y“Kz
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For ]j(z)(z), by (6.20) noticing that ¥ > 0, we have

IP() < Y (62Aw- Ay
I<k—2;
|k—j1<3

<Cllull Il 3 212072 (6.26)
I<g

<Cllullegn [15:lo 22477
For IJ@(Z), by (6.21), and notice that 1 —~y — 9 < 0, we have

];3)(2) <O ullgv || Kz ¢0 Z 220k
<Cllufl% ||/€zl|<519|2|2(1_7_79)j‘

Combining (6.22)-(6.27) and recalling that v = a + 3, we obtain that for each z € R,

dz
/Rd Ij(l’,Z)W

<Cluller sup ||k <2(2_’Y)j/ |Z’2_d_ad2 +/ |Z’€0_ddz
|2]<27 2| <2

z€R4

+/ |z~ dz + 2(1_”’”/ |z|1_d_adz> (6.28)
2|29 2|23

=Clullgr sup |[Ks4 <2‘5j +1+ 2—ﬁj>
2€R4

AL u(z)] =

<Cllulligr sup [|zls02%.
z€R4

i.e.

|Z2ullgs = sup 27| AL ulloo < Cllulligets sup [|£.]l0-
j=—1 z€R4

So we complete our proof. ]

Before we proving our main results, let us give a brief discussion about our assumptions
on k(x, 2): letA = A1/(2¢,), where cq is the volume of unity ball in R%. By our assumptions
(H,) and (H,), we can see that for any r € (0,r¢], x € R,

|B, N{k(x,-) = A} > AQ_I/ k(z,z)dz
Brn{k(z,")=A}

:A21/ H(LIJ,Z)dZ—Azl/ k(x, z)dz
B,

B,n{x(z, )<A}
A
2
2A,
Thus, for each x € RY, k(x,-) satisfies (Hy) with A = A1/(2cq) and 6 = A1 /(2As).
Now we give the proof for Theorem 6.1.

>0 (A = A|B|) 2
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Proof of Theorem 6.1. (1) Define

Zulo) = [ 52" s

Choose 1 be a smooth function with compact support in By and n(x) = 1, if x € Bi.
Fixed xy € R?, define

no(e) = (=) AP, 2) = e, 2) = wlro, 2) (@)

We omit the supscript zy below for simple. Define v = un., then we have

N —ZLFv—0b- Vo

6.29
:[nef —ub- Vns + Uiﬂfﬁs] + ﬂs(fﬁau - %alo + [ns%au - %a(nsu) - Uiﬂfﬁs]- ( )
Obviously,
[nef = ub- Vne +uZlnellgs < Ce(||fllwo + lullgs). (6.30)
Denote
00 = ) (Zule) — L) = [ ot
Re |2l
By (6.17), for any 6 € (0, 8)
[Wellgs <C'sup [|i5e (-, )| poe|[ullgars + Cosup[re (-, 2)]o|ullgare 6.31)
SOl gass + Cocllu]|garo. ‘
Denote
we(x) = [ L5'u — £ (n-u) — uty'n:](x)
and 6, f(z) = (f(x + z) — f(x)), by definition, we have
K(zo, 2)
we(z) = /]Rd 3.n:(x) du(x) 2] dz, (6.32)
and
k(xo, 2
wi(o) = o) = [ dene(o) Bate) = dea) et
R (6.33)

K(Zo, 2)

+ [ o) = (o)) but) S

In order to estimate the €® norm of wy, for different cases we have to deal it separately.
(i)For a € (0,1), by (6.32),

k(xo, 2) k(x0, 2)
we@ < [ 19l A ez 2 [l s S
lz|<1 2| |z]>1 2|

<Celul| .
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And by (6.33),

‘ws(x) - ws(y)}
dz dz
<Ol —ol (Wl Fnelio | s + sl | o)
z|<

ot 57
dz dz
+Clo =yl (Indersllullm [ oo+ Indloslllas [ 50)
j PR . ) > 2[4
<Cola =yl s
Hence, we have
[wellgs < Ccllul|gs. (6.34)

Let Aj be the constant Ay in Theorem 6.15, by (6.29), (6.30), (6.31), (6.34), Theorem
6.15, interpolation theorem and the discussion before this proof, we have

[ullgats (B (o)) T (A — A0) [[unz® |«
<O vllgats + (A = Ap) [[v]l¢s
<Ce’|[ul|goss + Cocllullgaro + Cl fllge
<Ce’|[ul|coss + Cocllulles + C| flls
(o)) T Cocllulles + Ol fll«s-

<Ce” sup ||ul|carsp

roER4 2

We can fixed gy sufficiently small, such that Ceg < 1/2, so we have

sup (Jlullcess aop + (A = Al llgs ) < Cog(1flles + lulls).

X0 €Rd

This yields

[ullgats < Co, Sup, ullcats(s,, nwo)) < Ceo (lulles + [ fllws)
ToE

and

Ceo([Ifllzs + llulls) = (A = Xg) sup JJunZlles = ceo(A = Ag)[[ulls,

xo €Rd

where c., is a constant larger than 0. Thus,

[ullgars + (A = Ap)lulles < Ceo([fllge + ulls).

Letting A\g = A + C¢,, we obtain (6.2).
(ii)For v = 1, by (6.32) and (6.33), we have

[welloe < Celluller,
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and

|we(2) = w:(y)]

k(xg, 2) ‘ (g, 2) ‘
< 0,m:(z)|0u(x) — d,u dz| + 0.m:(x) [0 u(x) — du(y dz
[, senete) o) — st ,Z,M N n()[ () — ulw)] 5
(2o, 2 K(xo, 2)
+ / o.u(y)|0.m-(x) — 6.m-(y ‘ ‘/ an(x —0.me:(y dz
» (9) [Bere(e) = 8.m:0)| 7 » )= banely) | T
dz dz
<oyl | Tyl /_
O~ e | i + Ol = lulen [ i
-1-8 8 dz B B dz
+ Ce |z — y|”|| V| L= P 5dz + Ce™P|r — yl|”||ul| L i
\z|<5| 2| |z|>6 |Z|
<220 ullgres + C(e,6) ulls ) 2 =y
(6.35)

Hence,
v < Ce20" % |ullgrvs + C(e, 0)|Jull4s.

Choosing § = 5%, by Theorem 6.15, interpolation and above inequality, we get
[ulleres (B, )y w0y + (A = M) |tlligs (B, 5 (o))
<O |ullgars + Cocllullgrro + Ce™26* *|ullgres + Cle, 8)||ullgs + C|| o
<O |lullgreo + Cellullgs + C| flls-
Like the above case, we get (6.2).

(2) For o € (1,2), we only give the proof for 5 < 0 here. Like the previous cases, we
have (6.29). Moreover, notice that § € (—(%5+ A ¥), 0], it is easy to see that

1ef = ub- V. + uZine|lgo < C([| flleo + lullgo),

and
|wellgs < Cllwellze < Clluller-

For ., fixing v € (—3,9), then for any z € RY,

|5 (-, )Ml =[r(+, 2) — K(20, 2)|M= ()[4~
<Oy + [K(, 2)) e (Bo(ao))
<O,

Using Lemma 6.17 (2)(replace ¥ with 7) and above inequality, we obtain
K€<'7 Z)

S u(- d

f

Now by the similar argument as in the previous case, we get (6.2).

[@ellegs =0 (ZLdw = L5 ) |ls =

©B
<Ce"ullgars.
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6.4 Martingale solutions and weak solutions

Before going to the definition of martingale problem associated with £,
introduce the corresponding SDE.

Let (Q,P,F) be a probability space and N(dr,dz,ds) be a Poisson random measure
on R, x R? x R, with intensity measure is dr Méﬁ ds. Define

let us briefly

( N(dr,dz,ds) a € (0,1)
1p,(2)dz B
N@(dr, dz, ds) = N(dr,dz,ds) — dr—Mdm ds a=1 (6.36)
N(dr,dz,ds) — dr% s a€(1,2)

\

Consider the following SDE driven by Poisson random measure N:

t 00 t
X; = Xy +/ / / 2Lon(x. o (r)N@(dr, dz,ds) + / b(X)ds. (6.37)
0 JrdJo 0

As mentioned before, when b is just a distribution, the drift term “ [ b(X,)ds” may
not be a process with finite variation any more but an additive functional of X with zero
energy, which means X may not be a semimartingale but a Dirichlet process. We give
the precious definitions of Dirichlet processes and process of zero energy first.

Definition 6.18. We say that a continuous adapted process (A¢)icor) 95 a process of zero
energy if Ag =0 and

lim sup E( Z | Ay, — Ati|2) =0

§—0 |mr|<é Pyl

where mp denotes a finite partition of [0,T] and |7r| denotes the mesh size of the partition.

Definition 6.19. We say that an adapted process (Xi)icpr) is a Dirichlet process if
Xt = Mt —|— At (638)

where M s a square-integrable martingale and A is an adapted process of zero energy.

Suppose £(+, z), b is smooth and bounded, then the above equation has a unique solution.
By Ito’s formula(see [2, Theorem 4.4.7]), for any f € CF, we have

f(Xi) = f(Xo)
:/0 /R/O [f(Xsm + 21 e(x.— ) (7)) —f(Xs_)]N(dT,dz,ds)+/o b-Vf(X,)ds

t %0 = (6.39)
+ o Jrato [f(Xsf + Zl[O,n(XS,,z))(r)) - f(Xsf) - Zl[O,H(Xs,,z)) (T)]drmmds

=M/ + /t ZLOf(X)ds + /tb -V f(X,)ds,
0 0
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where

Mtf = /0 /Rd/o [f(Xs— + Zl[o’ﬁ(Xs_J))(T‘)) — f(XS_)]N(dT, dZ, dS)

Thus, (6.37) is the SDE associated with operator .Z,%, at least when the coefficients are
regular. However, when b € €” with 8 < 0, we must face up to the problem of how to
define the term “ [; b(X,)ds” in (6.37) and “ [} b- V f(X,)ds” in (6.39). Inspired by [76],
when considering the martingale problem associated with £, if b € ¢*® with 5 <0, we
need restrict ourselves to some probability measures on D := D(R,;R?) satisfying the
following Krylov’s type estimate:

Definition 6.20. (Krylov’s type estimate) We call a probability measure P € (D) satisfy
Krylov’s estimate with indices p if for any T > 0, there are positive constants Cr and vy
such that for all f € C*°, 0 <ty <t < T,

/t F(w,)ds

where the expectation E is taken with respect to P. All the probability measure P with
property (6.40) is denoted by (D).

2

E < Crlty = tol ™| f I (6.40)

We should point out that for arbitrary f € €7, there is no good smooth approximation
sequence in space €°. However, the modifying approximation sequence f, := f * n,
converges to f in €*, for any u < 3. So given f € €” with # < 0, in order to give a
natural definition of fot f(ws)ds under some suitable probability measure P, we have to
restrict ourselves to P € JZ#(D) with pu < .

Proposition 6.21. Let p < <0, P € Z#(D), for any f € €°, there is a continuous
B.(D)-adapted process A,{ with zero energy and such that for any T > 0,

t
lim E ( sup / fu(ws)ds — Af
0

) =0, (6.41)

where Cg° > f,, % ¥. Moreover, the mapping €* > f — Af € L*(D,P;C([0,T7))) is a
bounded linear operator and for all 0 < tg <ty < T,

2

E[4f - Al| < Crit — 1) 111, (6.42)

where the constants Cr and v are the same as in (6.40).

Since the proof for this proposition is just the same with Proposition 3.2 in [76], we
omit the details here.

Now we are on the position to give the definition of martingale problem.
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Definition 6.22 (Martingale Problem). 1. If b € B,(RY), we call a probability mea-
sure P € Z(D) a martingale solution associated with £, starting from x € R? if
for any f € Cp°,

M = fw / o fws)d (6.43)
is a continuous By(D)-martingale with Mg = 0 under P. The set of the martingale
solutions with starting point x is denoted by M ().

2. If u < B <0,be€ €° with B <0, we call a probability measure P € #*(D) a
martingale solution associated with £, starting from x € R if for any f € C5°,

M = flwr) — () - / L0 f(w)ds — AXY (6.44)

is a continuous By(D)-martingale with M({ = 0 under P. The set of the martingale
solutions P € (D) and starting point x is denoted by A, (7).

By Theorem 6.1 (1), immediately, we have

Lemma 6.23. Suppose o € (0,1], k(x, z) satisfies (H;)-(Hs) with
max{0, (1 —a)} <9 <1, and b € €” with 3 € (0,9), then for any x € R?, there is a
unique element in M, ().

Proof. The Existence of martingale solution to (6.43) is trivial, since the coefficients are
globally Holder continuous. We only give the proof for uniqueness. Suppose P, € ., ;(x).
For any f € Cp° and A > )\, where ) is the constant in Theorem 6.1, let u be the solution
to (6.1) and u,, := u*n, = nu*n(n-). By the definition of P, and It6’s formula, we have

t t
e My (wy) — up(wo) = / e M =My, (ws) + Zyun(ws)]ds + / e M dMU,
0 0

which implies

up(z) = E, (/ e_’\t[()\un — ngun)(wt)}ds) =E, (/ e_Atgn(wt)dt) , (6.45)
0 0
where
gn = [0 + (L) x 0y — L3 (wma)] + (b Vu) xn, —b- V(uxn,)].  (6.46)
Noticing that u € €°*# with 3 > 0, we have

(Lu) * 1 — L3 (uwxna)](2)
:/}Rd N7 — y)dy /Rd 5ju(y)( Uk |)z|d+a($ ZDdz

0du
<A3/ Nn(x —y)|x — y|’9dy/ %dz < Cn7|ullgass — 0 (n — 00).
Rd R
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And also [(b- Vu) xn, —b-V(ux*xmn,)] — 0 uniformly in n. Hence, {g,} is uniformly
bounded and converges to f. Taking limit in both side of (6.45), we obtain

u(z) = E, ( I e‘“f(wt)dt) |

which implies the one dimensional distribution of P, is unique and thus the uniqueness
of P, follows(see [20] for details). O

Next we consider the case when a € (1,2) and b is just a distribution.

Lemma 6.24. Suppose a € (1,2), x(z,2) satisfies (H)-(H3) and b € €7 with 3 €
(—(251AD),0]. Then for each x € R, there is a unique probability measure P, € M) (x),
for some p < 3.

Proof. Uniqueness: The proof is similar with the one of Lemma 6.23. Suppose —t} <
p < B, P, € A, (), thanks to the fact P, € #* (D), we only need to show g, — f in
€H, where g, is defined in (6.46). Notice that £%u € €7, u x n, N and by Lemma
6.17 L : €*T" — €* is bounded, we get

(L) * 1 — L5 (w10 gn
o w) 1 — Llullgn + | L7 (uxnn) — Llullgn =0, (n = 00).

x

N
O
Q

Similarly, we have
|(b-Vu)xn, —b-V(uxn,)||lge =0, (n— 00).
Thus we get lim,, o0 [|gn — fllew = | f * 1 — fllex = 0.

Existence: Let b, = b*n,, £,(-,2) = (k(+,2) * n,)(+). Let X;* be the unique solution
to the following SDE:

t [e’s) t
Xr =yt / / / ooy N(dr, dz, ds) + / b(X™)ds,
o JrdJo ° 0

where N and N = N are defined at the beginning of this section. Then the probability
measure P? = P o (X;")™! on D is an element in .#,, ;,(z). For any f € Cs°, let u)) be
the solution to

A « A
Aup, — .,iﬂﬁmbnun = f.

By Ito’s formula, for any stopping times 7 < 7,

up(X7,) — un(X7)

/ /Rd/nn B Z) MNX™ 4 2) — ud(X™)N(dr, dz, ds)

+)\/ X"ds—/ F(X™Md
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Hence,

T T2 kn (XD ,2) _
[oreas= [ [T ) - (¥ de,ds)
1 1 R4 JO

X ) — ;"”2)+)\/72u2(X§)ds.

T1

Denote

t e’}
_ / / / L o P+ 2) — (X7 ) N(dr, dz, ds).
0 R4 JO

By Burkholder-Davis-Gundy’s inequality, we get that for any 6 > 0, m € N, and bounded

stopping time T,
T+0 2
E / f(XMds

<Co {B([M"]r5 — [M"]7) + [lupllZ + (A6]luplloo)? }
SCn {B([M"rs5 = [M"]7) + [1+ (M) ][lunllZ } -

(6.47)

On the other hand,

T+6 - ]

T+
/ / / L e an (X7 + 2) — (X7 P N(dr, dz, ds)
R4 Jo
7+6 Az 6.48
/ / / (=PI 2 A 2N (dr, dz, ds) (648)
Rd

0

T+ Ao ) Ao
:C/ / / an( dr dz;ds) —i—C/ / / g (z d+ad
R4 JO R4 |

9n(2) = 2| VagllZ A llunll%.

where

By Theorem 6.1 and interpolation, we have

lunlloe S AN llens [ VuRlloo S AN fllgn, Vo€ (—(55E A0),5],0 € (0,1 +(§)- )
6.49

This yields

] S A2 (2PA2F 5 AN, Ve (—(52 A9), 8,0 € (0,1+4).  (6.50)
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For any § < \y', choosing A = ! and combining (6.47)-(6.50), we get

f(X{)ds
<Co + C|lul||?
/ 9= Id+a el (6.51)
<C|f11%. (5)\‘29+a / 2> dy 4 A% / 2|7 d2C + /\‘29>
|z|<A—1/ |z|=A—1/
<O fl5udN " = O fll50%,
here C is independent with n. Let A} := fo ))ds and T be the collection of all

bounded stopping time. The above estimate and Burkholder—Daws—Gundy s inequality

yield
T+0
/ / / zN dr,dz, ds)
R4
T+6 Ao
+C’supE(/ / / |z|>N(dr,dz ds))
TeT R4

2 Nf(dz)} +CsupEU 2 Nf(dz)} |
TET |z|>1

sup E| X7, ; — X
TET
<supE (IAM; A7+
TET
T+
<sup | E / bn(Xg)d
TET T

<O||b||4s6% + CsupE [/
T€T ‘Z

<1
where

T+6 Ao
N?(dz) = / N(dr,dz,ds),
0

it is not hard to see that N? is a Poisson random measure on R? with intensity measure
5A2|Zﬁﬁ. Notice that for fixed w € 2, N? is a counting measure, by the elementary

inequality: (3, |ax|?)? < (32, |ax|9)9, Vp = ¢ > 0 and {az} C R, we also have

(/|Z|>1 |z’2Nf(dz)>é < /Z|>1 \Z|Nf(dz).

Thus, for small § < Ay 1 we have

sup E|XT, 5 — X7
TET

1
<Cblly56° + C sup [E/ |212N£(dz)] —|—C’supE/ 12| N3(d2)
T€T |z|<1 T€T |z|>1

C(||b]|458° + 67 + ) < 82,
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and consequently

lImEsup | X*, ; — X*| =0.
510 T€$_| T+6 7'|

By Aldous tightness criterion, we obtain that {P? := P o (X[*)"'},ey is tight. So, upon
taking a subsequence, still denote by n, we can assume that P = P,. By (6.51), we also

have . .
/ Fw)ds / Fw)ds

where € (—(%5* A0),6] and 0 € (0,1 + £), ie. P, € A #(D). Hence, by Proposition
6.21, for any f € Cp°, we can define

2

= lim E?
n—o0

2

E, < C|fl1%ults — to]®,

t

APV () == lim O by - Vf(w)ds, P,—a.s.

Next we verify that P, € ./, (z) with u € (—(22 A D), 8). Let BY := o({ws : w €
D,s < t}), By = Ne=tBY, B = 0(Uier, Bi), Dp, := {t > 0 : Py(w; = w;—) < 1}. For any
8,8t €Dp,, 0 < sy <9<+ < sp <5<t feC®and hy,hy, -, hy € Cy(RY),
denote H := II¥_ hy(w,,) € By, then

[E[(M{ = ML hi(ws,)]

< ‘(Ex - E}) [f(wt) — flws) — /:<$3mf +om- Vf)(“’“)dr] H’

v | [ - msear s [b Vit - A% - 1] oo

[B2 [ = e - [@zr e ] A

e [ 102 - 2005+ 0t V0] 1],

Notice that for any m, the first term on the right side of (6.52) goes to 0 as n goes to 0.
Since P, € ##*(D), by the definition of A?Y/, we have

lim
m—0o0

E, [/t(,%fm — 2 f(w.)dr + /t by - V f(w,)dr — (Af'Vf _ AZ.W)] H‘

t
< bl Jim ([B [ (22, - 220

t
+ E:v / bm : vf(w’/‘)dr - (Ai)Vf - A(;Vf)‘ )

=0.

Similarly, the fourth term goes to 0 uniformly in n as m goes to 0. And by definition, the
third term on the right side of (6.52) is zero. Thus, letting first n — oo and then m — oo
on the right side of (6.52), we get

E,[(M] — MDIT*_ hi(w,,)] =0, Vs,si,t €Dp,,s; <5<t
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By [20, Lemma 7.7 of Chapter 3|, Dp, is at most countable, noticing that Mtf is cadlag
under P,, we obtain

E.[(M] — MIDITF_ hi(w,,)] =0, Vs, s;,t €[0,00),8 <5<t

We close this section by giving the definition of weak solution.

Definition 6.25 (Weak solution). Let 5 € R, a € (0,2). We say that (2, F, F;, P, X, N, A)
1s a weak solution to

t K(Xs—,z) t
X, =x+ / / / zN@(dr,dz, ds) + / b(Xs)ds, (6.53)
0 JrdJo 0

1. (U, F, F,,P) is a complete filtered probability space and X;, A; are cadlag pro-
cesses adapted with F;. N 1is a Poisson random measure and for any compact
set B C Ry x RA\{0}, N(B;t) is a F; adapted Poisson process with intensity

fRd fOOO 1B(T7 Z>d,r |Z|(311a y

t o]
Xi=x+ / / / Zl[o’,{(xsﬂz))N(a)(d?“, dz, dS) + Ay,
0 Rd JO

and for any b, € Cy° and b, ﬁ b, we have

t
/ by (Xa)ds— A,
0

in probability P uniformly over bounded time intervals;
3. there are constant v, C' > 0 such that

E|A, — A < C|t —s|*, s,te€[0,T).

Thanks to the martingale representation theorem for Poisson noise(see II.1.c on p.74 of
[42]), following the argument in [42, Theorem II;o] and [76, Proposition 3.13 |, we have
the equivalence between martingale solution and weak solution without any surprise. In
order to make thesis complete, we show the equivalence in Appendix.

Theorem 6.26. Let P € Z(D),

1 ifa € (0,1], b € €° with B > 0, then P € M, ,(z) if and only if there is a weak
solution (Q, F,F;, P, X, N, A) so that Po X! =P;

2. ifa € (1,2), b € €° with B <0, then P € M) (x) for some p < B if and only if
there is a weak solution (0, F,F;,P, X, N, A) so that Po X' =P € #*(D).
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6.5 Regularity of densities of weak solutions

Thanks to Theorem 6.26, it is equivalent to consider the weak solution of (6.53) and
martingale solution associated with £%. We are going to prove that the law of the weak
solution of (6.53) has a density in some Besov space under some mild assumptions. Most
results in this section are inspired by Debussche and Fournier’s work [15].

Through out this section, we assume v satisfies the following assumption for some

€ (0,2):
Assumption 7. (i) [, [z[Pv(dz) < oo, Vp€E[0,a),
(ii) there exists C' > 0 such that f\z|<a |z]*v(dz) < Ca®*™*, Va € (0,1],

(iii) there exists ¢ > 0 such that f \<a (&, 2)Pr(dz) = ca®> @, VE € ST a € (0,1].

Define
N(dr,dz,ds) € (0,1)
N©@(dr,dz,ds) == { N(dr,dz,ds) — drlp, (z)v(dz)ds a=1
N(dr,dz,ds) — drv(dz)ds €(1,2),

where N is a a Poisson random measure on R, x R¢xR, with intensity measure drv(dz)ds.
We also assume Y; solves the following equation:

Y=Y+ / Yy)ds + / / / 1ok, o (r)N@(dr,dz,ds),  (6.54)
Rd

where a, g, k are bounded measurable functions.

Lemma 6.27. Assume

la(y)] < co, |9y, 2)| < calz], [E(y, 2)| < Ao
and Y solves (6.54). Then for allp € (0,a) and 0 < s <t < s+ 1 we have

E sup [V, = Vi’ + E sup |V, — Yl < C(p,co, 00, M)t — 5|51 (6.55)

vE|[s,t] vE[s,t]
Furthermore, if « € (0,1) and p € [a, 1), then for all 0 < s <t < s+ 1 we have
E ( sup |V, — Y,[P A 1) < C(p, co, c2, )|t — s[P. (6.56)
vE|s,t]
Proof. Forall 0 <p<aand 0 < s <t < s+ 1, we have: if o € (1,2)

l%@@m

p

E < COlt —s]P < Ot — s, (6.57)
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and if a € (0, 1]

p

E < CJt — sl (6.58)

/S t a(Y,)du

Then the inequality (6.55) is a simple consequence of (6.57) and (6.58) and the following

inequality:
P
/ /d/ 0,k (Va2 (1) 9(Yar, 2)N@(dr,dz, du)
R

<C(p, ea, M)t — s]P/, (6.59)

sup
vE|s,t]

for all p € (0,) and 0 < s <t < s+ 1. Actually, if o € (1,2), write

/ /d/ 1[07k(Yu7=2)]<T)g(Yu—7Z)N(a)(dr, dZ,du)
R
k(Yu—,z)
il / / / 9(Yar, 2)N(dr, dz, du)
|z|<|t— 3‘1/04

(Yu—,z2)
//| |// g(Ya, 2)N@(dr, dz, du),
z|>|t—s|1/e

For Iy, notice that £ < 1, by Burkholder-Davis-Gundy’s inequality,

o
2

E | sup |[;(v)|P

vE[s,t]

k(Yu—,2)
<C,E / l9(Y,_, 2)|>N(dr,dz; du)

2|<[t—s|!/®

b
2

t E(Yu_,2)
E/ / / l9(Yue, 2)[*N (dr, dz; du) (6.60)
s Jizl<jt—s/e Jo

b

<Gyt |- sfvlas)] < Clpes e s

|2|<[t—s|/>

For I, similarly, we have

p

k(Y ,2) 2
oE | sup |L(v)[P| <C,E / l9(Yu_, 2) PN (dr,dz; du)
vE[s,t] |z|>|t—s|/> Jo
A2 5
<C,5E / |z|>N(dr, dz; du) ]
|z|>[t—s|t/> JO

Let N (dz) f fo/\2 N(dr,dz;du), then Ny, is a Poisson random measure with intensity
Xo|t — s|v (dz) Notice that N, is a counting measure, by the elementary inequality:
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e lanP)Y? < (X0, Jar| )Y, ¥p = q > 0,{ar} C R and Lemma A.1 of [15], we obtain

E | sup |L())"| <C,dE ‘ / 22N, ,(d2)
vE[s,t] |2|>[t—s|1/@
<C,AE / 2]’ N, ,(dz) (6.61)
|2]>[t—s|t/
<Cphat — 5| |2|Pr(dz) < C(p, ¢, Ao)|t — s|P/.

2] > [t—s1/

Combining (6.60) and (6.61), we get the desired result for a € (1,2). By the similar
argument we get that for0 <p<a<land 0<s<t<s+1
p
sup

/ / / Lo kv_ 2 (1) g(Yae, Z)N(O‘)(dr, dz, du)

vE(s,t] R4
\C(pa Ca, )\2)|t - 8‘]0/&_

Now we only need to show that for p € [a,1) and 0 < s <t < s+ 1, (6.56) holds. Since

ap < p, we have

Y; =Y, PA1
p
< 1 2 Y, ,2)N@(dr,dz, du)| Al
Rd . [0,k(Yu— )g( Z) ( r,dz U) (662)
ap
<Ot —s|P + 1[0 k(Y] (1) g(Yaue, z)N(a)(dr, dz, du)
Rd
By (6.59), we get (6 56). O
Lemma 6.28. Suppose 6; € (0,1),i=1,2,3 and ¢; > 0,5 =0,1,2,3,
a < ¢y, |a —a <c — qo|"
la(y)] 0, la(y) (12)] 1ly1 — v (6.63)

l9(y, 2)| < e2lz], |9(yr,2) — 9(y2, 2)| < cslyr — y2]92\2|,

k satisfies (Hy), (Hs) with A; and 9 replaced by \; and 03, respectively. For any € €
(0,t A1), we can find a F;_c-measurable variable V¢ such that for all p € (0, «)

ElY, — YP < Ce¥r, (6.64)

t o]
Ye=ves / /d / Liokvie,2)](1)g(Yie, 2) N*(dr, dz, ds),
t—e JR? JO

and if a € [1,2),

where

QOZé[(a+«91>/\<1+92)/\(1+%)]7
if a € (0,1) ]

1
1_91 [(OH'Ql) (1+62) A (1+65)],

b0 =
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Proof. We first prove the case when a € (1,2). Take
V;E = Y;S—E + Ea(Y;g_E),
then
t
Voo Vi =ht i / (¥%) = alY;-)lds

/ /d/ 2)okve (1) = 9(Yiee, 2) Lo (v ez)}(T)}N‘)‘(dr, dz, ds).
t—e JR
For all p € (0,1], by Jensen’s inequality,

t P
B[\, "] < [lall's, E (/ m—m*ds)
t—e

' 0 " (6.59) (1+2)
<lalto, ([ BV -y nas) S oot
t—e

If p € (1, ), by Hélder’s inequality,

t p
[ e-vidras ]
t—e

B [ 1Y, — v pds T cent)
||a||c91 | s t—el S X € @,
t—e

E{lL.J") < lal/%, E [

To sum up, for each p € (0, a),

E(|L.["] < Cer+ 2, (6.65)
For Jt,eu
t k(Yiee,2)
Ti. :/ / / [9(Ye, 2) — g(Yre, 2)| N*(dr, dz, ds)
t—e JRA 6.66
k(Ys—, z) ( : )
/ / / ,2)N(dr,dz, ds) =: J}, + J2,,
t—e JRE JE(Yi—e, z) ’ ’
where we abuse the notation [ = — [* when u > v. Notice that p € (0, a), like the proof
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of Lemma 6.27, one can see that

i A2 g
E[|Jt17€|P} <CE / /d/ )—g(Yie, 2 ‘ N(dr,dz,ds) ]
t—e JR
i t Ao 20 %
<CE / / / Yoo = Yoo 7 |2|PN(dr, dz, ds)
t—e JRE JO
[ t A2 20 %
<CE / / 1/ |Y_—Y}_6‘ *12|*N(dr, dz, ds)
|| /t—e |z|<e@ JO
t A2 g
[
t—e |z|>eé
A2
sup |Y,_ — Y,_[r? (/ / / |z|2N (dr, dz ds))
s€t—e,t] t—e J| |<ea
t A2 0
+ CE (/ / X / ‘Y_ — Y| |2|P N (dr, dz,ds))
t—e J|z|>ea JO
A2 iy e
E sup |Y,- -V e\abb (/ / / |z|> N (dr,dz ds))
sE€[t—e,t] t—e |z\<ea

A2 (6.55) v
+ C’/ / / E|Y,_ — Y,_ /%|zPdrv(dz)du < CealF02),
|z\>6a

Similarly, we have

+CE 26}2\z|2N(d7‘, dz,ds)

<CE

<C

ya
2

E[|J7.|"] <CE

/ / / |z|2N dr,dz, ds)
t—e JRE JE(Yi—e,2)
Ys—.2)

/ / / |z]2N (dr,dz,ds)
|z\<ea(lJr k(Yi—e,2)

(Ys—,2)
+ CE/ / / |z|P N (dr,dz, ds)
t—e |z\>eoz<1Jr k(Yi—e,2)

<C U / k(Ya_,2) —k(}ﬁ_e,z)Hz\%(dz)ds]
|<€1(1+
+C’/ / E|k(Ys—, 2) — k(Yi—c, 2)||2|Pv(d2)ds
t—e J| |>e1 a+ 3>

@

¢ {/ /| La+%) B[V, = Yi-o|[z[r(dz)c }
<ea e S
55) » 0

.
—|—C/ / E|Y,_ —Yi_|%|z|Pv(dz)ds < Ceal+a),
t—e |Z|>ea(1+i)

[N4S)

M|
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Combing the above inequalities, we get

E[|J,.|7] < Ceb+0n), (6.67)

Thus we get (6.64) for a € (1,2).

For a € (0,1), let § = /00 s c [t —e,t], ss =t — e+ [ (s — (t —€))/6], here |a] is
the max integer less than or equal to a. Consider the solution to

Vi=Y. —I-/ b(Vs)ds, welt—et]
t—e
One can see that V¢ is well defined and F;_. measurable. Writing
Vi=Yio+ [ bvods [ (o) - vids
t—e t—e

Then for u € [t — €, ],

Vi — Ve < / B(Y,) — b(VE)lds + / (V) — b(V)|ds
t—e t—e

t k(Ys—,2)
s e Nz as
t—e JRI JO

<cre sup Vo= V" e sup |V - Vi™

sE[t—e,u] sE[t—e,u]

A2
+02/ / / |z|N(dr,dz, ds).
t—e JRE
t A2 p
/ / / |z| N (dr,dz, ds)
t—e JRE JO

with the similar argument proving (6.59). Setting Si. = supyep_q|Ys — V| and using
that b € C?(R%) and that |V — V| < Cd, we see that

We can get

E[R, "] = E < Cerlo

Spe < C(eS™ + €™ + Ry.) = C(eS™ + €77 + Ry).

1
Choosing e sufficient small and using the Young inequality, we have S, < C'e™-% —i—%lSt,E—l—
OR@E. Thus,

Sie < ORyo + CeTan. (6.68)

We finally recall that Y,* = Vf—l—f;6 Jra fok(yt_e’z) 9(Yi—e, 2)N(dr,dz,ds) = Y, e+ft b(Vy)ds+

128



6 Existence and uniqueness of weak solutions to SDEs with distributional valued drifts
and jump type noise

ft L(0(Vs) = b(Vy) ds—i—ft - Jga fo (Yime:2) g(Yi_e,z)N(dr,dz,ds) so that
t
Vi ve < [ )~ bvlds
t
+ ‘/ /d/ Lo kv, 20 (1)9(Yeo, 2) = Lo vio,2)(1)9(Yiee, 2) [N (dr, dz, ds)
t—e JR

+ / ‘b(‘/;&) — b(V:)’dS = [t76 + Jt,e + Kt,6~
t—e

First, by (6.68)
! 1
Le<C / Yy — Vi|"ds < C(eRf: + e7),
t—e
thanks to the fact E|R; P < Ce?/,
E[|l; ['] < Cle*= o —|—€pE(Rfil)] Cleto o +ep(1+%)],

Next for J; ., by the same way of dealing with (6.66), we have

A2
E[|J,.]"] <C ‘Y, Y o|*” 2> N (dr, dz, ds)

\ ]
oS )
+CE (/ / ) / Vo — Yt_e‘p *|z[PN(dr, dz,ds))
t—e J|z|>ea JO

Ys— Z) %
/ / / |z]2N (dr,dz,ds)
12<cd 0+99) Jr(y, . 2)
Ys_ Z)
+CE / / / |z[PN (dr,dz, ds)
t—e J|2[>ex 0403 Jr(v;_,z2)

A2 5
sup |Yi_ — Y_ | (/ / / |z]2N(dr, dz,ds)>
sE[t—e,t] t—e \z|<5é 0
t
+C (/ / X E|Y,. - Y. p02|z|p1/(dz)ds)
—e J|z|>ea

+C

z|<ea

<CE

P
2

Lo (E Yoo — Y™ A1)|2>v(d2)ds

03
+C (/t—e /|Z|>€1La<9& E(|Y? - }/;ffe| N 1)’Z‘py(dz)d5>

6§(1+02) + C€§(1+93)'

(6.55),(6.56)
<
1
Finally, since b € C*(R?) and since |V — V5| < C6, we have K; < Ced” = Ce™ as.,

whence E[| K, |P] < Ce™0 . Thus, we get (6.64) for aw € (0,1). The proof for « = 1 is
similar, so we omit it here. O
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Now we are going to prove the regularity of the density of the process Y; defined as in
(6.54). We first give the following lemma about the regularity of Lévy processes.

Lemma 6.29. Suppose Z; is a Lévy process with Lévy measure v, v satisfies Assumption
7. Let p? denote the density of Z;, then for any s >0, ¢ € [1,00] and t € (0, 1),

Ip? 1|55, < Ct=+Ha/e, (6.69)

where C = C(s,d,a), & =1~

q

=

Proof. Notice that

1.f]

(O 181

j>—1

= [ f1lag

5y = sup 2[5, ], <
j=—1
q

where H; is the Bessel potential space. By interpolation theorem, we only need to prove

sup [|0%pe|l, < C(k, d, )t~ *+d/a)/e | e N,
la|=k

and the above inequality is a simple consequence of [56, Proposition 2.3] and [15, Lemma
1.3 and Lemma 3.3]. So we complete our proof. ]

Lemma 6.30. Suppose a, g satisfy (6.63), 6, > 1—a if a € (0,1) and |g(y, z)| = c4|z| for
some ¢y > 0, k satisfies Assumption 5 with A; and ¥ replaced by \; and 05, respectively.
Then Y; has a density pl and pf € BY . with vy, q satisfying

q,0

d

1 6p—1), 1< ’
0<y<(lAa)(aby—1), q<d+7_(1/\a)(a9o—1)

(6.70)
where Oy is the same number in Lemma 6.28.
Proof. Recalling that Cr = R-C, for v > 0 and ¢ € [1, 0o| define

Sq_J = {go € .Z(RY: ¢ € Cy, lelly < 2”} )

Choose ¢ € 8(173, take the constructed process V5, Y, from Lemma 6.28,

t 00
Y=V + / / ) / Lok (1)g(Yee, 2) N©@(dr, dz, ds).
t—e JR® JO
By trangale inequality,

Ep(Y)| < [Ep(Y)] + [Ep(Y:) — Ep(Yy)| =: I{(¢) + I3(p).

Define . -
Zj = / / / Lokt (1)9(y, 2) N©@(dr,dz,ds), ye R
0JRE JO
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Then Z! is a Lévy process with Lévy measure v, = v o [k(y,-)g(y,-)]"*. Under our

assumptions, one can easily check that v, satisfies Assumpiton 7. For I{(yp), recall that
Ve € Z_., we get

Li(p) =[E[(E o(Y)[Fi-o)]]

:'E{ ( (W+/ E/Rd /Ooolok(Yt ) (1)9(Yime, 2 )N (dr, dz’ds)) )‘%_E)H
:'E [E (90 (u+/t E/Rd /OOOIOk(yz (r)g(y, Z)N(“)(dr’dzvds)) u:v;e,y:n)”

Define 7,0(+) == ¢(- + u) for u € RY. By Lemma 6.29 and Bernstein’s inequality, for

q’:q%lands>7

116(90) < sup E()O (u +/ / / Ok(yz (y7 )N(a)<d7”, dZ,dS))
u€eR? t—e JRY

= sup Eryp(2¢) < Cligllpo 107 I35 (6.71)
u€eRd a1
<C20—9i¢malstin),
Choose p € (0,1 A a), by Bernstein’s inequality and Lemma 6.28,
d -
J¢ g ElYE — YV, |P g CQ(IH—?)] , 66'019
5(o) <lipllcrBIY; — ¥ el 672

dn -
<C¢2(p+7+?)J 690;0‘

where 6, keeps the same as in (6.64). Notice that under our assumptions, afy > 1, for
any
€ (0,1 Na), 0<vy<(aby—1)p,

we can choose s, ¢, € such that

N/q aly—s)j
. d e abopy +d(p+ 7 + d/q/)/q L= (613)
d+~v—(abh —1)p abop —p—v—d/q

Then combine (6.71), (6.72) and (6.73), we get

[BEe(Yo)| < Ii(e) + I(e) < C, (6.74)

where C only depends on d, o, 0;, A;, ¢;, v, p, . When « € [1,2), notice that p can infinitely
approach 1, so we have
d

0<vy<(aby—1 1<g< )
7 < (afo—1), 1= 45117 ab

When a € (0,1), p can infinitely approach «, so

O<vy<alady—1), 1<gq

< .
d+ a+v— a2t
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Ajp

For any ¢ € B} and j > —1, define ; = 298,90,

. Notice that ¢; € S, by (6.74),

q.3’
we obtain

Ep(Y)l < Y [EApY)| < Y 1Eoi(Y)] - 27 Aelly < Cliels -

j>—1 j>—1

By duality, pf € B O]
Now suppose k(x, z) satisfies (H;)-(H3) and max{0, (1 —«a)} <9 <1, g € (1 — a,?)

when a € (0,1], 8 € (—(%5+AV), 0] when o € (1,2), and b € 4°. By Theorem 6.1, we can

fix A sufficient large such that u € €**# is the unique solution to the following resolvent
equation in the distribution sense

Au— Zu = b,

and

N | —

V|| poo (ray <

Define ®(x) =: u(z) + x, then ® is a diffeomorphism.

Proposition 6.31. Under the same conditions as in Corollary 6.2, the process Y; :=
O(Xy) satisfies the following SDE

YV, =Y+ /Ota(}/s)ds+/0t /R /Ooog(Ys,2)1[07k(y572)}(T)N(a)(dr, dz,ds),
where Xy is the weak solution to (6.53),
a(y) = (@ (), k(y,2) = K(® ' (y),2) (6.75)
and
9(y,2) = (27 (y) +2) —y =u(® ' (y) +2) + 2 — u(®7}(y)). (6.76)
Furthermore, we have a € €15,
'l <lgly 2l < ealel, gy 2) — g(ye, 2)| < eslyn — 27712 (6.77)
and k satisfies (Hy)-(Hg) with the same 9 as k.

Proof. With the similar argument showed in [5, Proposition 2.7], applying It6’s formula
to ®(x) = u(x) + x with respect to the process X;, we get the desired conclusion. O

Now we are in the position of proving Theorem 6.4.
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Proof of Theorem 6.4. For a € (0, 1], letting a = b, g(y, 2) = z, k = k, we have 0; = 3,
0, can infinitely approach 1, #3 = 9. By Lemma 6.30, we have afy = a+ 3 and p;* € By
with

d
d+~v—ala+p-1)
For a € (1,2), by Proposition 6.31, Y; = ®(X,) satisfies (6.54) and in this case the index
01 can be taken infinitely approach 1, 8; = o+ f — 1 and 03 = ). Therefore, by Lemma
6.30, p; € By, with

O<vy<ala+p-1), 1<qg<

d
< .
d+v—(a+B-1)AL

0<7<(a+/3—1)/\g, 1<q

This implies that there also exists a density pX of the distribution of X; such that p¥ =
p) o ®-det(V®) and p;* € B} . Since the martingale solution P corresponding to SDE
(6.53) can be denoted by P =P o X, we get the desired result. ]

Last we point out that Corollary 6.5 is a consequence of Corollary 6.2, Theorem 6.4
and Proposition 4.9.19 of [20].

133






A Appendix

A.1 Khasminskii’'s lemma

Lemma A.1. ([51, P. 1 Lemma 1.1.]) Let {B(t)},cop be a nonnegative measurable
{F:} —adapted process. Assume that for all0 < s <t < T,

E(/: B(r)dr

where T'(s,t) is a nonrandom interval function satisfying the following conditions:
(Z)F(tla t2> < F(tsa t4> Zf (tlth) (t3a t4)

(1 )limp, 0 SUPg< s pe i—s)<n L (8,8) = A, A = 0. Then for any arbitrary real & < X~ ( if
A =0, then \™! = 00),

T
Ee:vp{/ﬁ/ 5(r)dr} <C=0C(k,I,T) <0
0

) < I(s, ),
Fs

A.2 Non-explosion lemma

Lemma A.2. X, is a processes in (0, F, (Ft)i0, P), 7 =1 inf {t > 0: | X;| = co}. Process
X is non-explosive (i.e. T = 00 a.s.) if for any t > 0 one of the following conditions holds:
(i) E|Xinr| < C(2).

(ii) B|X;| < C(t).

Proof. Q@ = {w:7(w) =00}, Q, = {w:7(w) >n}. Then Q@ = N>°,Q,, and Q, =
{w | Xopr@)(W)] < oo} = {w:|X,(w)| < oo}. Since T is arbitrary in (0,00), for any
N € N, n € [0,N], from condition (i) we get E|X,r,| < C(N), it implies | X, -] < o0
a.s., i.e. P(2,) = 1. Hence P(2) = 1, which implies 7 = 0o a.s.. (i) is proved.
For the second one, from condition (ii) we get E|X,| < C(N), so |X,| < oo a.s., then
P(,)=1,P(Q)=117=00a.s..
[l

A.3 Girsanov transformation

Lemma A.3. Let 0 and b9, i = 1,2 satisfy the requirements in the begmmng of subsection
3.2 and let bV —b@)| < b, where b € LY with p, q satisfying (5.2). Let (X WY satisfy:

X9 = /b@ (s, Xl)ds+/ o(s, XD)aw .
0 0

Then for any bounded Borel functions f(z), given on C =: C([0,00), R?) we have
Ef(X) = Bf(XD)ps
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if
FE exp (% /W(Ab*(aa*)1Ab)(s,X§1))ds> < 00, (7.1)
0

where Ab(t,Xt(l)) =: b(z)(t,Xt(l)) — oM (¢, Xt(l)) and

t ¢
Py =: exp(/ Ab*(o*) (s, XIDYaw D — %/ (Ab*(o0*)"LADb) (s, XM)ds).
0 0

Proof. Theorem 6.1 in [47] says if (7.1) (Novikov condition) holds, then (p;)i=0 is a (F¢)i=0
martingale. Let P = p, P, then P is also a probability on (€2, F). By Theorem 4.1 in
[33],

t
W) = W) — / o1 (s, XD)Ab(s, X)ds
0
is a F; Brownian motion on the probability space (9, F, P) So we can wirte
t t X t
x® = / b (s, XW)ds + / o(s, X dW, + / o(s, XMoo (s, XD Ab(s, XM ds
0 0 0

t t t
:/ b<1>(s,X§1>)ds+/ a(s,X§1>)dW3+/ Ab(s, XMds
0 0 0

¢ t
:/ b(2)(s,XS(1))ds+/ o(s, XW)dw,.
0 0

This implies that (Xt(l), W(t)) is a solution on the probability space (2, F, F, ]5) to the
SDE

t t
Xt(2) _ / b(2)(s,XS(2))dS —I—/ 0<3’X(2))dw(2). (7.2)
0 0

S S

From Lemma 5.5 we know that the solution to SDE (7.2) is unique, hence for any bounded
Borel functions f(z), given on C =: C([0, o), R?) we have

Ef(X®) = Ef(xY) = Ep f(XD).

A.4 Urysohn Lemma

For the convenience of reading, we put the C>* Urysohn Lemma here.

Lemma A.4. (24, 8.18] ) If K C R™ is compact and U is an open set containing K,
there exists smooth function f such that 0 < f <1, f=1 on K, and supp(f) C U.

136



A Appendix

A.5 Equivalence between martingale solutions and weak solutions
Consider the following SDE:

dX; = / / 2l nxe o) (P)N@(dr, dz; dt) + b(X,)dt, Xo =z € R% (7.3)
R2 JO
Where N (dr, dz;dt) is defined in (6.36). b € €°(R?) with 5 € R.

Recall the definition in 6.25, we could not get that the solution X is a semimartingale.
Since condition 3 shows the quadratic variation of A is 0, but A may not be of finite
variation. In order to handle with this case, we introduce a more general class of processes
called Dirichlet processes. We begin with the definition of the processes of zero energy
from [25]

Definition A.5. We say that a continuous adapted process (Ay)icor) @S a process of zero
energy if Ag =0 and

lim sup E( Z |As, — At > =0

§—0 || <6 teme

where T denotes a finite partition of [0, T] and |rr| denotes the mesh size of the partition.
Definition A.6 ([25]). We say that an adapted process (X)icpo,r) is a Dirichlet process
if

X, = M, + A, (7.4)
where M is a square-integrable martingale and A is an adapted process of zero energy.

Let p > 1 and 3 > 0. For a stochastic process (X;)cp,r] and T > 0, we define

T X - XS Lr(Q)
HP(X) = ||Xo||Lp(Q) +  sup 1% HT i ).
s#t,s,t€[0,7T ’t - S’

Lemma A.7 ([78], Lemma 3.12, [5], Lemma 3.10). Let f : R? — R? be a bounded
continuous function with a bounded continuous derivative. Let X be a Dirichlet process
with decomposition (7.4). Letp, q, r € [1,00) with % = %—l—%. Suppose that for any T > 0,
there are v, n € (0,1] with v +n > 1 such that

Hy"(f(X)) < oo, Hp'(A) < oo

Forn € Z, fort € [0,T), t* := k27", the sequence of partial sums I, == > - " J( X))
(Ajirr — Ay) converges in L"(S) and the limit is f f(X)dAs. Moreover there is a
constant C''> 0 depending only on n, v and T such that for allt € [0,7],

125 _/ FIXO)dA| o) < CHP(f(X)) MG (A)2 "0+ Y, (7.5)
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and for all 0 < t<T
n/'f VA1) < CHIP(F(X)HF(A)(E — )7, (7.6)

Further, let (f,)nen be a sequence of functions on R? that a uniformly bounded, continuous,
and have a bounded continuous derivative such that HP(f,(X)) < oo for all n € N. Let
(bp)nen be a sequence of bounded continuous functions. Define A = fot b, (Xs)ds for
t€[0,T]. If H}U(AP) < oo, and if AP converges in probability to A, for eacht € [0,T],
then for any t € [0,T] we have

/ fu(Xs)dA, — / fn(Xs) s)ds — 0, in probability as n — oco. (7.7)

Now we are going to show the equivalence.
Theorem A.8. Suppose

1. a € (0,1], k(x, 2) satisfies (H;)-(H3) with max{0,(1—a)} <9 <1, and b € €”
with 8 € (0,9)

2. a € (1,2), Kz, 2) satisfies (Hy)-(Hs) and b € €° with 8 € (—(%5+ A 9),0].

LetP € P(D), thenP € Mkb( ) if and only if there is a weak solution (Q, F, F;, P, X, N, A)
so that Po X' =P € Kg(D).

Proof. We only show the case when « € (1,2). With the similar argument we get the
result for « € (0, 1].

If (Q, F, F, P, X, N, A) is a weak solution of SDE (7.3) satisfying Po X' = P € Kz(D),
then from Definition 7.4 we know that X is a Dirichlet process. For any f € C™, by
applying Ito’s formula for the Dirichlet process X we get

K@zﬂ@(/ %+/Vf

/ / / f(Xsm + Lok(x, 2)m)7) — f(Xs)>N(dT7 dz; ds)
R4 JO

where the term [ V f(X,)dA, is in the sense of Lemma A.7. In order to show Po X! €
Mg’b(x), by Proposition 4.2 we only need to prove that for any ¢ > 0

t
/ VI(X,)dA, =AY P —as., (7.8)
0

where Ab" = s)ds and
0

t

t
AYYE = Tim | Vf(X,)dAY = lim [ (b, - Vf)(X,)ds in probability.
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Here b, := b x p,. Since we have A’ — A® in the sense of u.c.p., by (7.7) we have
¢ t
/ b, - Vf(Xs)ds — / V f(Xs)dAs in probability as n — oo,
0 0

which yields (7.8).
Now we are going to prove the another way. Suppose that P € be(x) satisfies (6.44),
if we take X;(w) = w(t), A; = A%, then

E|A) — AY? < C|t — s|',

which shows that the condition (ii) in Definition 6.25 is fulfilled. Then by [39, Theorem
2.3], we get the desired result.
[

A.6 The Sobolev embedding theorem in mixed-norm spaces

In order to show Sobolev embedding theorem in Mixed-norm space, we first prove the
following lemma.

Lemma A.9. Let C be an annulus and B a ball. A constant C' exists such that for any
nonnegative integer k, any couple (p,q) € [1,00]*? with ¢; > p; > 1, 1 <i < d, and any
function u of LP, we have

1 1

Ly .
Supp(t)) € AB = || D*ullza 2 sup [|0°ulpa < CFFNTETT 20 G400y o,
|a|=k

Supp(t) € AC = CTFIN¥|Jul| e < || DFulle < CFFINF|ul| 1o

Proof. Using a dilation of size A, we can assume throughout the proof that A = 1. Let ¢
be a smooth function defined on R¢ with value 1 near B. As 4(£) = ¢(€)a(€), we have

0% = 0%¢ * u with g = F 1.

Applying Young’s inequality we get

10%g * ullLa < [|0%

Lr U’HLPWithr:(Tlu'”7rd)7 _:__+_+1, 1<Z<d

And the first assertion follow via

10%gllLr < 110%gllLee + 10%g]| s
<O+ )0l 1=
< Cll(Taxa — A)*((-)*¢)ll e
< Ck—l—l'
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To prove the second assertion, consider a function ¢ € S(RY\{0}) with value 1 on a
neighborhood of C. By the fact that there exists a family of integers (A,)o € N¢ such
that for £ € R,

€= Y &g =Y A (i),

1<g1, ,Jk<d loo|=F
we get that _
W€) = 3 (1) val€)  with va(€) Y AJ;;,E,E ale).
|a|=k

Since @ = ¢, we deduce
e . def _ coNal el —2k T
u= Y go* 0% with go = A F 7 (—i€)*[¢|7*6(9),
|a|=k
and the result follows. O]
Lemma A.10. For p,q € [1,00]? with p; < q1, -+, pa < qa. Then for any real numbers
s> (oA o) = (o o) and v € [1,00),

/1

~lpr et pg )~ (gr gyl < | f]

: By
Bqﬂ‘

Proof. According to Littlewood-Paley theorem which is introduced in Section 6.2, it suf-
fices to prove

[A0fllza < CllAof|ze (7.9)

and

1

18y e < €215 550t al A £ (7.10)

for all j € N, which can be obtained by applying the above Lemma A.9.

Lemma A.11. Let a > 0 and p € (1,00)¢. Then

o d * 1 1 — (L1 1y
(1) Hlp(R) <—>1Lq forallq € [p,p], (s + -+ 52) = (5 + -+ ;) — @, when
(rt ot o) >
o (Tod d 1 1 A . .
(2) Hy(RY) = C(RY), when (- + -+ =) < a. Here C(R") is equipped with the
supremum norm.

Proof. From [1, (1.2.29)], the Bessel potential space H3(R?) can also be defined by

HYRY ={f:f=Gaxg,g€ LP(R))}, a€R,
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and

1fll g = llgllze,
¢il(@.6)

where G, (x) = (2;)d Jra (1+|£‘2)a/2d§ and g :=G of = (I —A)*2f =G _,* f. For a >0,

by [1, (1.2.11)], 1 _ M
a—d _xla® ¢
Gel) = <4w>a/2r<a/2>/o ety

Then by Holder’s inequality,

Ga g < [|Gallprllgllp
if(pil—i—...—i—z%d) < « since in this case G, € LP' Wherepil—i—ﬁzl pid_i_

) Y
1

1. To

=

be more precisely,

|Gallpr :(/R (/R!Ga(x)\p’ldxl)"'l---dxd>P&
:(47)a/21r(a/2)</R"' </R|/Ooota2deﬂlfl2L%lp’ldml)%_“d%)é

1 /°° <€4tt;(p1,1+'~+pl&—d+a)) dt
(4m)e2T (a/2) t
1

N

if p—1,+-~-—|—pi, —d+a>0,ie. (pil+---—|—pid) < «. The continuity of G, * g follows from
1 d
the continuity of translation in the LP norm. Then (2) is proved. O
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