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Abstract: This paper is concerned with Field Programmable Gate Arrays (FPGA)-based systems for
energy-efficient high-throughput string comparison. Modern applications which involve comparisons
across large data sets—such as large sequence sets in molecular biology—are by their nature
computationally intensive. In this work, we present a scalable FPGA-based system architecture
to accelerate the comparison of binary strings. The current architecture supports arbitrary lengths in
the range 16 to 2048-bit, covering a wide range of possible applications. In our example application,
we consider DNA sequences embedded in a binary vector space through Locality Sensitive Hashing
(LSH) one of several possible encodings that enable us to avoid more costly character-based operations.
Here the resulting encoding is a 512-bit binary signature with comparisons based on the Hamming
distance. In this approach, most of the load arises from the calculation of the O(m ∗ n) Hamming
distances between the signatures, where m is the number of queries and n is the number of signatures
contained in the database. Signature generation only needs to be performed once, and we do
not consider it further, focusing instead on accelerating the signature comparisons. The proposed
FPGA-based architecture is optimized for high-throughput using hundreds of computing elements,
arranged in a systolic array. These core computing elements can be adapted to support other string
comparison algorithms with little effort, while the other infrastructure stays the same. On a Xilinx
Virtex UltraScale+ FPGA (XCVU9P-2), a peak throughput of 75.4 billion comparisons per second—of
512-bit signatures—was achieved, using a design with 384 parallel processing elements and a clock
frequency of 200 MHz. This makes our FPGA design 86 times faster than a highly optimized CPU
implementation. Compared to a GPU design, executed on an NVIDIA GTX1060, it performs nearly
five times faster.

Keywords: FPGA; bioinformatics; multiple string matching; parallel computing; Hamming distance;
locality sensitive hashing; hardware acceleration; parallel system architecture

1. Introduction

The rapid proliferation of data is a major challenge in many scientific and business domains:
data may often be gathered faster than it can currently be processed [1]. This applies particularly
in molecular biology, where sequencing costs have fallen exponentially since the initial public
genome projects, with human genomes costing less than USD 1000 [2] in 2019. This leads to
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a substantial bottleneck in storing and processing the data [3]. Initial analysis, annotation and
subsequent research—perhaps targeting disease mechanisms or drug targets—all rely crucially on
rapid sequence comparison.

Sequence comparison is an active and long-established branch of bioinformatics research, and here
we provide only a brief sketch of the field. Broadly speaking, sequence comparison algorithms utilize
one of two main strategies, although the most commonly used approaches share a number of important
ideas. The most widely used approaches are based on sequence alignment, with scoring based on a
generalized edit distance between the strings, with calculations relying on dynamic programming [4,5]
or a range of heuristics [6,7]. The principal alternatives are so-called alignment-free methods [8]
which usually involve some indexing of the substrings or k-mers which make up the sequence,
most commonly based on a bag of words model. Our example in this paper follows this latter
approach but avoids direct character comparison by embedding the sequences as elements of a binary
vector space. There are many alternative methods available to generate this representation, with the
simplest a straightforward bit vector indicating the presence or absence of a particular k-mer in the
sequence lexicon. A full survey of these alternatives is beyond the scope of the present work, but these
ideas are well-known. The application of Locality Sensitive Hashing (LSH) to sequence analysis is
a natural extension of its familiar use in text processing and information retrieval. Binary signature
encodings of this kind have a number of advantages over alternative methods, most pertinently here
the ability to encode sequences of varying lengths to a representation of the same width to enable
straightforward comparison and the availability of bit-level operations for rapid evaluation of the
Hamming distance. The effectiveness of these methods in sequence comparison has been demonstrated
in, e.g., [9], and related work has been considered in [10] and elsewhere. Here we are concerned with
rapid, energy-efficient and scalable computation of a very large number of comparisons.

LSH was initially introduced by Indyk and Motwani [11] for nearest neighbor search in
high-dimensional spaces, and subsequently improved and generalized by Gionis [12] to find the
nearest or the k-nearest neighbors to detect (near) duplicates. It has been widely used in applications
such as web crawlers, ensuring that only pages that contain new information are added to an existing
search index [13]. The same can be achieved for any large collection of documents [14].

As the name suggests, LSH uses specialized hash functions, which are optimized to maintain
similarities between related input data by causing hash collisions. The outputs of the hash
functions form the (binary) signatures mentioned above. In general, the signatures only have to
be constructed once.

In [9] Buckingham et al. showed that LSH provides a suitable representation to support
comparison of sequences with large DNA databases and analysis of the content for similarity and
variation. Given this representation, the basic Hamming distance [15] between two signatures is
sufficient to determine the similarity of the underlying DNA sequence. Equation (1) depicts the
definition of the Hamming distance.

D(x, y) := |{jε{1, ..., n}|xj 6= yj}|, where

x = (x1, ..., xn) and y = (y1, ..., yn)
(1)

The Hamming distance of two signatures s1 and s2 is defined as the number of bits that differ
between s1 and s2. Therefore, we first compute s1 xor s2. In the result, the one bits indicate the positions
at which s1 and s2 differ. Subsequently, the one bits in the result are counted; this procedure is called
population count, which is essential for many other fields of applications such as error detection or even
clustering of biological sequences [16].

This work targets a simple but realistic scenario in which 100,000 signatures of partially sequenced
genomes (m) are compared to an existing database of 100 million entries (n). In this work, we are
concerned only with performance, and so it is sufficient to use synthetic data of the same dimension
as the biologically derived signatures. Finding the matching or nearest neighbor signatures requires
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O(n ∗m), 100 billion comparisons. On a state-of-the-art workstation CPU, this process takes a few
minutes, using a highly optimized application and employing specialized intrinsic functions.

Since the calculation of Hamming distances between signatures can be executed in parallel,
this work focuses on leveraging the inherent parallelism of Field Programmable Gate Arrays (FPGAs)
to enable greater throughput. For the results of the comparisons often only the signature indices and
the Hamming distance of the best x-results are of interest. These calculations can also be parallelized
and performed very efficiently on FPGAs.

This work focuses on the implementation of a scalable architecture for binary string comparisons,
optimized for high-throughput with configurable bit widths.

In general, the architecture is capable of supporting bit widths ranging from 16-bit to 2048-bit.
In this work, only the most significant bit widths of 128-bit and 512-bit have been analyzed in detail.
However, acceleration of a variety of applications such as Google simhash [13], computing 64-bit
Hamming distances or image duplicate retrieval [17] with 128-bit comparisons are also possible with
our design. This is also the case for the above-mentioned LSH for DNA sequence analysis, for which
signature lengths of 512-bit and greater may allow the representation of longer sequences.

The architecture has been designed to make the calculation units for the string comparisons as
easily interchangeable as possible, to support other algorithms besides the Hamming distance.

2. Related Work

A brief overview of sequence comparison in computational biology was provided in the
introduction, and here we highlight only those questions pertinent to the present study. Sequence
comparison has been dominated for many years by alignment-based methods, exact algorithms which
rely on dynamic programming such as the Smith-Waterman algorithm [4] for local alignments, or
heuristics such as BLAST, the Basic Local Alignment Search Tool [6], which relies on a series of hit
extension and scoring heuristics to identify rapidly the most promising matches and is highly parallel.
As discussed above, the dramatic rise in the availability of sequence data has led to an increasing
demand for faster and more scalable alternatives.

We have earlier considered the division between alignment-based and alignment-free approaches,
but we would emphasize that performance improvements in this domain have usually relied on two
main strategies: (i) careful selection of the computations that need to be performed—and equally
careful rejection of those that may be avoided, thereby, limiting the computational cost; and (ii) careful
attention to the underlying representation of the sequence, thus, reducing the unit cost of each
comparison. BLAST is a perfect example of the former strategy, with seed matches and score-based hit
extensions dramatically limiting the regions to be explored. USearch [7] takes these ideas even further,
offering database searches potentially orders of magnitude faster than BLAST for a modest reduction
in accuracy. The present work, based on binary embeddings of the sequence data, belongs more to the
second camp, with these encodings allowing the pairwise Hamming distance-based comparisons to be
implemented through bit-level operations, offering dramatic reductions in the time required for each
computation. The remainder of this paper is concerned with supporting these rapid comparisons to
allow exploration of extreme-scale collections. While our work remains motivated by embeddings
obtained via LSH, we again note the more general utility of the approach, there exist numerous other
methods leading to a binary representation of the sequence.

In general, there are three different approaches to accelerate these kinds of computationally
intensive tasks. The first is the usage of CPUs in combination with, e.g., SIMD-instructions (Single
instruction, multiple data), many-core CPUs or distributed computing [18,19]. The second is the
usage of either high-performance compute or consumer-grade GPUs as accelerators [20,21]. The last
approach is the usage of FPGA-accelerators which, although they are not as fast as systems based on
high-performance GPUs, tend to be more energy-efficient [22–24]. However, these systems have started
to reach their limits in terms of performance, therefore, current research focuses on heterogeneous and
cluster-based systems, e.g., multi-GPU clusters [25] or CPU-GPU co-systems [26].
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As noted above, the use of Locality Sensitive Hashing allows us to represent sequences through
a fixed-length binary signature and to replace alignment-based scoring with the Hamming distance.
Moreover, methods of this nature are alignment-free [8], offering some advantages in scalability to
large collections, and greater robustness in the presence of structural re-arrangements in the sequences
being compared.

While various implementations on CPU and FPGA target architectures for calculating Hamming
distances have been described in the literature, the authors are not aware of any publications that
analyze the suitability of GPU architectures for this purpose.

In [27] Pappalardo et al. published results on the possible speed of Hamming distance calculations
on CPUs. They used three different lookup table (LUT)-based calculation methods, implemented in
ANSI C. For the evaluation 108 calculations with signature lengths up to 64-bit were performed on
three different platforms, an Intel Xeon, an IBM Power 5 and an AMD Opteron. The best performance
with up to 167 MH/s (Million Hamming distance calculations per second) was achieved on the AMD
Opteron, using its intrinsic functions for population counting.

The publications from Pedroni [28] and Parhami [29] on Hamming weight comparators should
be mentioned here, as both implementations were used as a basis for the presented FPGA-based
solution. Pedroni proposed a Hamming weight comparator with O(n) delay (logic gate levels) and
O(n2) complexity. The optimizations by Parhami reduce the run-time to O(log(n)) using up/down
counters, achieving a complexity of O(nlog2(n)). Additionally, for the comparison of Hamming
weights, a sorting mechanism is used, and only the signatures with the highest or lowest similarity are
determined. Therefore, these results cannot be compared to those in the current study as here we are
concerned with the set of best matches returned.

In [30] the authors developed a method to determine the population count of the Hamming
distance calculations using an LUT-based counting network, based on a Xilinx Zynq XC7Z020.
The proposed solutions are either using 8- or 36-bit input vectors for the calculation. In the case of
an 8-bit input vector, two LUTs are required. For 36-bit inputs two LUT stages (with 6 and 3 LUTs) and
two adder stages are used. The LUTs are configured with the predefined values and pipeline registers
are located between all stages to achieve high-throughput. For longer signatures, several compute units
with input vectors of 8 or 36-bit are combined and the intermediate results are summed up in further
adder stages. For 512-bit signatures the lowest presented combinatorial path delay is approximately
8 ns (125 MHz); for 256-bit signatures, it is about 6 ns (166 MHz). Due to an exponentially increasing
number of used slices, the authors decided to not continue the experiments for signatures >256-bit.

The design proposed in [31] is based on a population count calculation on the Xilinx 7-series
DSP (Digital Signal Processor) blocks. The authors state that DSP slices should be used because they
are located on most modern FPGA-architectures, but are usually unused. In their design, only one
signature, with a configurable length between 16 and 2048-bit, is processed at a time. The population
count itself is realized in a parallel computation by DSP blocks, with 48-bit input each. To evaluate
their design, the authors used a Nexys 4 prototyping board, containing a Xilinx Artix-7 XC7A100t-3
FPGA. This approach achieved a speed-up of about 10% compared to the LUT-based design using the
same target architecture while requiring less LUT.

As a follow-up from the last two implementation variants, a mixed design based on lookup
tables and DSP blocks was developed in [32]. The focus of this work was to realize population counts
for relatively large signatures widths between 210 and 225-bit. The best results were achieved with
a signature length of 220-bit, with one computation requiring 22 544 µs.

In Table 1 the three approaches from Sklyarov and Skliarova using FPGAs as an accelerator for
population counts are summarized. The given values were based on the maximum combinational path
delays. The implementations focus on the population count itself, aiming for a short delay and low
resource use and not for high-throughput, which is essential for our targeted application. Therefore,
these results cannot be directly compared to the proposed architecture, which also includes the data
management, the xor calculation of two binary strings and the collection and storing of multiple results.
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Table 1. Comparison of three FPGA implementations to determine population counts. All designs
leverage only one computation unit.

Design Bit Width Clock Frequency (1) Throughput (2)

LUT-based [30]

16 400 MHz 6.40 GBit/s
256 166 MHz 42.50 GBit/s
512 125 MHz 64.00 GBit/s

1024 110 MHz 112.60 GBit/s

DSP-based [31]

16 476 MHz 7.62 GBit/s
256 133 MHz 34.13 GBit/s
512 108 MHz 55.05 GBit/s

1024 91 MHz 93.94 GBit/s

LUT & DSP-based [32] 220 4.4 MHz (3) 4.65 TBit/s
(1) Based on maximum combinational path delays. (2) Theoretical maximum throughput in counted bits per
second. (3) Frequency at which results can be calculated by the design, calculated from the values provided in
the publication.

An accelerator for Hamming distance comparison is used as the core component of the duplicate
image retrieval engine proposed in [17]. The authors state that finding and calculating the minimum
Hamming distance accounts for most of the execution time of their application. A peak performance
of 40 GH/s has been achieved on an Altera Stratix V FPGA running at 200 MHz, using a design with
64 parallel processing elements for the calculation of 128-bit Hamming distances.

3. Reference Implementations on CPU and GPU

For further comparisons, we also performed software-based CPU and OpenCL-based GPU
implementations of the Hamming distance calculation. The performance of both implementations is
listed in Table 2. Both implementations were optimized for the calculation of 512-bit signatures and
all performance tests were performed using one million static and ten million dynamic, randomly
generated 512-bit signatures.

Table 2. Overview of CPU and GPU Implementations.

Platform Throughput Parallelism System Power Energy Eff.

CPU (ANSI C) [27] 167 MH/s (1) - AMD Opteron - -
CPU (C++) 868 MH/s 8 Thr., AVX/SSE Intel E3-1505M v6 56.05 W (2) 15.49 MH/s/W

GPU (OpenCL) 15.46 GH/s loopunroling NVIDIA P100 69 W (3) 224.06 MH/s/W
(1) With 64-bit signature length. (2) From Datasheet [33]. (3) Measured using NVIDIA SMI.

The software implementation of the Hamming distance calculation for CPUs is realized using
C++. It was optimized for and build with the GCC (GNU Compiler Collection). First, an unoptimized
straight-forward implementation was developed, which achieved a quite low performance of 2.8 MH/s.
Therefore, in the next step, different optimizations were applied to the code to improve the performance.
These optimizations ranged from compiler flags to improved function access (pass by reference instead
of pass by value) to the use of the processor’s AVX (Advanced Vector Extensions) and SSE (Streaming
SIMD Extensions) instruction sets in combination with OpenMP (Open Multi-Processing) to achieve
maximum parallelism. On an Intel E3-1505M v6 [33] CPU with a clock speed of 3.0 GHz and eight
threads the fully optimized implementation achieved a performance of 868 MH/s.

For the GPU, an OpenCL-based implementation was designed and executed on an NVIDIA
GTX 1060. By using an nd-range kernel in combination with loop unrolling (processing multiple
iterations of a loop simultaneously instead of sequentially), the GPU design achieved a high degree
of parallelism. The 512-bit Hamming distance calculations were performed using OpenCLs vector
data types [34] in combination with the population count function provided by OpenCL. Before the
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calculation starts all data is transferred to the GPUs attached DDR-memory from where it is read
by the kernel. During the calculation of the Hamming distances, the average power consumption
of the GPU was 69 Watt (measured with the SMI tool provided by NVIDIA). When looking at the
performance, the GPU implementation achieved 15.46 GH/s (Giga Hamming distance operations per
second) thus significantly outperforming the CPU implementation. To measure the actual performance,
data transfer times from host to device and back were included.

4. Design Architecture

The design was written in a generic manner to support different signature widths via VHDL
generics at synthesis-time and has been optimized for the Xilinx Virtex UltraScale+ FPGA VCU1525
Acceleration Development Kit. All FPGA designs evaluated in this work were developed using the
Xilinx Vivado Design Suite Version 2019.1.

The focus was to create a scalable design that could be applied and optimized for many possible
use cases. Therefore, it should not only be capable of performing one specific distance calculation but
be applicable for a range of other comparison and distance measuring algorithms.

An overview of the basic design is shown in Figure 1. The PCIe-based connection to the host
is established using the Xilinx XDMA IP-Core. For optimal performance with large numbers of
comparisons, the design works with streamed input signatures and results. Both, input signatures
and the results can either be transmitted directly to and from the host via control units or buffered
in DDR memory. Distance calculation units (DCUs) are the central calculation elements of the
architecture. To ensure the best possible performance, the DCUs and all its components are completely
hand-optimized and implemented in VHDL. The DCUs contain the processing elements (PE) that
perform the distance calculation and result handling. For all contained components, 1547 lines of
VHDL code (counted without comments and blank lines) were implemented. General parameters
like signature length, number of used PE, buffer FIFO sizes and the number of combined results in
every collector stage can be configured as generic parameters. The design will automatically adjust
to the given values. Since the number of logic resources, and thus the maximum number of PEs on
the FPGA is limited, it was decided to store one signature of the query locally in each available PE;
these signatures are therefore called static signatures in the following. The signatures of the database
are streamed between the PE in every clock cycle and are called dynamic signatures.

Figure 1. Overview of the system architecture.

4.1. Distance Comparison Unit

Every DCU contains a generic amount of processing elements, working in a systolic array.
The results calculated by the PE can be filtered by a threshold checker and are then passed on to
the result collector unit.

In the used streaming-based architecture, both signatures are only connected to the first PE of
every DCU, shown as PE1 in Figure 2. However, static and dynamic signatures are treated differently



Algorithms 2020, 13, 47 7 of 18

during further processing. Static signatures are passed via shift register to the next PE until one
signature is assigned to each PE and stored there locally. The dynamic signatures are also streamed to
the first PE and sent from there to the next PE. Each time a dynamic signature is valid, the distance
between it and the static signature of the PE is calculated. With this data flow concept, a new incoming
dynamic signature can be processed by the design in each clock cycle. To avoid delays, a FIFO for the
dynamic signatures is used to buffer the inputs.

DCU 
Systolic Array

𝐴

Results & Indices

DCU

𝐵

<T <T <T

𝑃𝐸1 𝑃𝐸2 𝑃𝐸𝑋
PE: Processing Element
X: Number of PE
A: Static Signatures (stored local)
B: Dynamic Signatures (streamed)
T: Configurable Threshold

Result Collector

𝐵

Figure 2. Architecture of the distance comparison units.

To accommodate lots of PE instances on the FPGA, it was necessary to constrain the maximum
fanout of the reset signal; otherwise, the routing of the design was failing quickly due to timing
violations. Furthermore, the input clock for the PE is gated by a BUFGCE (BUFG with clock enable)
from the AXI clock, to further improve the fanout. The enable for the BUFGCE is generated by the
result collector unit and disabled when no further results can be handled and the design needs to stop
producing new results.

Since the space for PE on the FPGA is limited it is likely that not all static signatures can be
processed in one iteration. Therefore, the PEs have to be reinitialized when all calculations have
finished and dynamic signatures have to be streamed again. This way the static signatures are partially
processed, while the dynamic signatures are streamed multiple times. Despite the very limited local
storage, the streaming-based design results in high-throughput, which directly depends on the number
of parallel used PEs.

Using this technique it is possible to calculate all distances between a large number of signatures
on one FPGA. Furthermore, multiple FPGAs can be used to work in parallel on the sequences. In such a
setup, every FPGA would process different static signatures while the dynamic signatures are streamed
between the FPGAs. This minimizes how often the dynamic signatures have to be streamed from the
DDR. The DCU-based design also enables the partitioning of the design, e.g., for applying one DCU to
every available super logic region (SLR) on an FPGA.

4.1.1. Processing Elements

The central components of the design are a generic number of processing elements, working in
a systolic array. For the interconnection of the two signatures in the design and their associated indices,
the data streams themself and shift ports are required. When the shift signal of the static signature is
set, the signature and corresponding index is valid and stored locally in the PE. The previously stored
value and index are transmitted to the next PE in the systolic array. The procedure is the same for the
dynamic signature. In addition, a valid shift signal also triggers the calculation of the distance between
the stored static and incoming dynamic signature.

The results are output simultaneously with the indexes of the signatures that produced the result.
Currently, the size of one result is 64-bit, where 10-bit are used for the result and 27-bit each are used
to store the index of the input signatures.
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This design allows for the calculation function to be adjusted to any comparison between two
binary strings, while the rest of the design can remain unchanged.

4.1.2. Use Case: Hamming Distance Processing Element

In this design, Hamming distance calculation was implemented inside the processing elements
(see Figure 3). While the xor comparison between two signatures can be evaluated on the FPGA
in one clock cycle, the more complex part is the counting of the ones bits in the xor result, which
gives the resulting Hamming distance. The implementation of this population count was inspired by
the LUT-based Hamming weight counter, developed by Sklyarov and Skilarova in [30]. Therefore,
the calculation is performed in a generic adder tree structure, which is automatically adjusted to
any given input signature length. The first tree stage was optimized to use the 6-Input LUTs of the
Xilinx 7-Series FPGAs. In the next tree stages, two results are added together and transmitted to the
subsequent tree stage; this flow is repeated until the final result is calculated. Pipeline registers are
used between all tree stages to ensure optimal timing. In total dlog2(dSIGNATURE_LENGTH/6e)e
adder stages are used.

𝐻amming Distance 𝑃𝐸

Adder 
Stage 1: 

LUT

Bitwise XOR

STATIC_SIGNATURE

DYNAMIC_SIGNATURE

STATIC_SHIFT_IN

ENABLE

RESULT

RESULT_VALID

XOR_0

LUT6
…

XOR_5

XOR_n

Adder Stage 2-X: Population 
Count Adder Tree

Add

DYNAMIC_SHIFT_IN

Pipeline stages

…

LUT6

LUT6

…

Add

Add

…

Add

…

Figure 3. Hamming distance PE.

4.1.3. Threshold Checker

Since in practical applications only results with a low Hamming distance (highly similar
signatures) are of interest, the threshold checker is used to filter the results by comparing them
with a threshold value, which can be set at runtime. The advantage is that very long distances, which
are not of interest, are omitted, saving memory and time when the results are read. The threshold can
be set dynamically at runtime, which offers the possibility to read all results, e.g., for testing purposes.

4.1.4. Result Collector

Besides the calculation, another major challenge of the design is the collection and storage of
results. After the results have been filtered by the threshold checker, they are forwarded to generic
collector units that control the storage process. All relevant results from the PE are combined in a tree
structure and at the end buffered in a single FIFO.
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Since it depends on the input signatures and the applied threshold value, it is not possible
to predict how many valid results will be found and need to be stored. To solve this problem a
tree structure of collector units was implemented, each containing a priority arbitrator and a FIFO.
In a standard configuration, each collector unit will combine the results of four units from the previous
tree stage. Though, the number of combined results is easily adaptable by a generic parameter for
optimizing designs. The first collector stage contains one input FIFO for every PE in the design to
buffer the results from the threshold checker. Further stages with an automatically instantiated number
of collecting elements are instantiated recursively until all results are merged into a single output FIFO.

As soon as a FIFO contains data, a request is sent to the connected priority arbiter of the next
tree stage. The arbiter uses the Round Robin [35] scheduling to grant access to one of the requesting
FIFOs from the previous stage. The results are read from the FIFO and written to the FIFO in the
next collector stage (see Figure 4). If a FIFO in the tree reaches the almost full state, a special priority
request is sent to the arbiter. Priority requests will always be treated first from the arbiter to prevent
a FIFO from running full. If more than one priority request is active, all of them will be scheduled as
described above. If priority scheduling cannot prevent a FIFO from running full, the connected arbiter
(same stage) that handles the input will be disabled. This way no further input can be written to the
FIFO. This allows for parts of the tree to be disabled, propagating from bottom to top, until one of the
FIFOs with a direct connection to the PE is running full. In this case, the entire calculation is stopped
until there is enough space available to prevent data loss. The basic structure of the priority arbiter
used was developed by Grigori Goronzy [36] and has been published under the MIT License. For this
design it was extended to include the mechanism of priority scheduling.

Figure 4. Connection of the priority arbiter.

4.2. Control Logic

While it is possible to address the design components directly from the host via an AXI4 slave
interface, it is recommended to store input signatures and results in a dedicated DDR memory.
The communication overhead with the DDR is much lower than with the host. Thus, the static
signatures in the processing elements can be easily managed and exchanged, while the dynamic
signatures can be restreamed several times.

In this work, the Xilinx XDMA IP-Core is used to communicate with the board and to access the
attached DDR. A High-Level Synthesis (HLS) core, configured by software, has been developed to
transmit the input signatures from the DDR memory to the calculation units. In addition, the core
also defines basic configurations, such as the threshold size. When all dynamic signatures have been
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streamed through the processing elements, the core automatically sends new static signatures and
restreams the dynamic signatures. This is repeated until all available static signatures are processed.

Another HLS core was developed to handle the transfer of the results to the DDR. It reads
the results from the result collector FIFO as soon as it contains data and transmits them to the
connected DDR.

4.3. Connection/Design Options

The design has been constructed in a scalable way to enable an optimized implementation on
different or multiple FPGAs and for several use cases. Figure 5 sketches two exemplary designs.
Depending on the FPGA-architecture it can be useful to implement more than one DCU, e.g., for
FPGAs containing SLRs. In this case (Figure 5a), a part of the static signatures (one for every processing
element) is sent to every DCU and the dynamic signature is streamed between the daisy chained units.
This implementation also allows the use of a different number of processing elements for each DCU,
e.g., to save more space for the control structure in one SLR. Input signatures are streamed directly via
a custom AXI slave interface or from an onboard DDR. Results of all DCUs are combined and send
back to the AXI slave or DDR. Furthermore, it is possible to use more than one DDR. In example (b)
(Figure 5b), four DDRs are used to provide the input data and store the results. The input signatures are
stored in one DDR while the remaining three DDRs are connected to one DCU each to store the results.

(𝑎) (𝑏)A
X

I_
Sl

av
e 

o
r

D
D

R

DCU

DCU

DCU

𝐴
𝐵
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DDR 3
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𝐵
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𝐴

𝐵
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Figure 5. Two exemplary design options with three DCUs. A: Static signature B: Dynamic signature.
(a) Inputs are streamed from an AXI- or DDR-interface. Results of the DCUs are combined and send
back (b) Four DDRs, one providing the inputs and three to store results.

Example (b) is an appropriate solution for use cases where many results can be expected. To find
only a few results in a huge database example (a) in combination with more DDRs to store the input
signatures is a better choice. The design developed for this work uses one DDR and is connected
similar to example (a).

4.4. Performance Considerations

All components of the architecture were designed for maximum throughput. For validation,
the parameters of individual components, which influence the overall system performance, here
initialization interval, latency, and throughput, have been determined using simulations on a register
transfer level (see Table 3). All components of a DCU allow for initializing one new computation per
clock cycle, which is indicated as Initialization Interval in Table 3. Except for the population count, all
components have a latency of 1 clock cycle. The population count is calculated in a tree structure and
therefore, the latency depends on the signature width.
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Table 3. Performance characteristics of the individual components of a DCU.

Component Initialization
Interval

Latency
(Clock Cycles)

Max. Throughput
(Bit/second)

Systolic Array/Processing Element 1 1

CLK_FREQ ∗ #PE ∗ SIG_LEN
Hamming distance

calculation
XOR 1 1

PopCnt 1 dlog2(dSIG_LEN/6e)e
Threshold Checker 1 1

The number of results to be stored depends on the input data and the configured threshold
value. Each valid 64-bit result of a PE, which passed the threshold check, is buffered in a FIFO and
from there read by the first collector stage. In the used default configuration, each collector stage
merges four result streams into one and passes them to the next collector stage until all results are
combined into a single FIFO, from where it is written into the DDR. In the worst-case scenario, where
all results pass the threshold check and only 8 results can be written to the DDR per clock cycle
(512-bit per transfer), the collector is the bottleneck. In the considered use-case scenario, only a few
results pass the threshold checker which is why the internal FIFOs do not run full and no pipeline
stalls are triggered. In this case, the initialization interval is still one and the latency is determined
by the pipeline depth to log4(d#PEe). The DDR memory controller of the design offers a 512-bit AXI
interface, running at 300 MHz. Hence, the theoretical throughput of read and write transactions
is 512 Bit ∗ 300 MHz = 153.6 Gbit/s. The practical achieved performance using Direct Memory
Access (DMA) is with about 144 Gbit/s for sequential read and about 136 Gbit/s for sequential write
transactions. Applied to the described use-case this means that 281 million signatures per second
can be transferred from the DDR to the DCU and 2,125 billion results per second can be written to
the DDR.

5. Results

The proposed generic system architecture for binary string comparisons allows quick adaptation
via Vivado IP-Integrator to a variety of possible applications, with respect to parameters such as bit
widths, the number of processing elements, clock frequency and internal buffer sizes. Today’s FPGAs,
such as the Xilinx XCVU9P, used in this work, offer enough resources to integrate several hundred
of the implemented processing elements. Since the synthesis times for complex designs increase
significantly with the number of processing elements and can often take several hours, only selected
configurations were created for this work to demonstrate the scalability of the system architecture.
Depending on the configuration, synthesizing the design, presented in this work took between 2 h
(1 DCU and 64 PE for 512-Bit signatures) and 5 h (3 DCU with 128 PE each for 512-Bit signatures).

5.1. Validation

After the hardware components of the design have been carefully verified by simulations on
a functional level, the PCIe-based Xilinx VCU1525 card was used for testing and performance
evaluation. The bitstreams have been generated using Vivado 2019.1 with all configurations for
synthesis and implementation set to default. The Xilinx board was used in a bare-metal manner with
a Xilinx XDMA as an x16 Gen3 PCIe endpoint. The workstation (Intel Core i7 CPU 870 @ 2.93GHz with
12 GByte DDR-3 RAM) communicates via the Xilinx XDMA Linux kernel module with the accelerator
device. The test application supplies the proposed architecture, configured for Hamming distance
calculation, with randomly generated signatures, configures the HLS-based management system,
reads back the results, and compares them with a golden master computed by the CPU. The data
sets used contain one million static and ten million dynamic signatures, resulting in a total of 1013

comparisons. Since the number of processing elements on the FPGA is limited, the static signatures
must be processed in chunks, resulting in several calculation cycles. In each cycle, static signatures are
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loaded into the available processing elements and in each run, the dynamic signatures are streamed
completely from the DDR, by the HLS-core. To cover many relevant test cases and especially trigger
pipeline stalls caused by FIFOs running almost full in the collector stages, different thresholds ranging
from 0 (only exact matches pass) and 512 (all results pass) have been tested.

5.2. Performance

All performance measurements were conducted with the above-mentioned data set, consisting
of one million static and ten million dynamic signatures. For time reasons, only configurations with
512 bit width, which are most relevant for the application under consideration, could be included.
Using a threshold value of 205 about 0.00025 % (24.75 million) of all results passed the filter and were
written to the DDR memory. Per iteration (streaming the dynamic signatures through all available PE)
each static signature produced approximately 25 valid results. The calculation times were measured
including all data transfers from and to the host, but without validation of the results, as this validation
is not required during normal operation in the target application.

The achieved performance for different configurations are displayed in Table 4 and in Figure 6.
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Figure 6. Graphical representation of Table 4.

The results show that the performance of the architecture scales linearly in terms of the number
of processing elements and the clock frequency. For all configurations the measured performance
is within 98.2% to 99.99% very close to the maximum theoretically achievable throughput, which is
determined by Tmax = clock_ f requency ∗ #PE. The highest throughput in terms of compared bits per
second was achieved using 384 PE at 200 MHz with 38.63 Tbit/s.
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Table 4. Measured throughput of several design configurations for 512-bit Hamming
distance calculations.

MHz #PE GH/s TBit/s

100 64 6.38 3.27
100 192 19.20 9.83
100 384 38.23 19.66

150 64 9.52 4.87
150 192 28.71 14.70
150 384 57.48 29.43

175 64 11.13 5.70
175 192 33.49 17.15
175 384 66.68 34.14

200 64 12.76 6.53
200 192 38.26 19.59
200 384 75.45 38.63

5.3. Resource Use

In Figure 7 the resource utilization for different design configurations with 128 and 512-bit
signature Hamming distance calculations at 200 MHz is shown. Typical for FPGAs, the occupied
configurable logic blocks (CLBs), the basic cells, do not scale with the size of the design. The higher the
FPGA utilization of a design, the denser the CLBs are packed. A configuration for 512-bit and 512 PE
at a clock frequency of 150 MHz has also been synthesized. The implemented design revealed a few
timing errors within the PCIe endpoint and was therefore not considered for the measurements. In this
case both the LUT and FF utilization were about 65%, the BRAM usage increased to 41.2%. Especially
for design configurations with a high number of PE (bit width 128, 1150 PE), it is noticeable that the
available BRAMs (2160 for XCVU9P) become the limiting resource. This can be explained by the fact
that the outputs of the PE containing the results are buffered via a FIFO and then further processed
by the result collector, whereby these FIFOs each use one BRAM. For the examples shown here, the
standard collector configuration where four results are combined in every collector unit was used.
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Figure 7. Resource use for bit width 128 and 512.

Table 5 shows the LUT and BRAM utilizations for Hamming distance processing elements for
128-bit and 512-bit signatures. With increasing bit lengths the adder stage, which has five stages for
128-bit and seven for 512-bit, does not have a great impact on the scalability of the system. For a
design with a bit width of 512 and 384 PE almost 50% of the available LUTs of the FPGA are occupied,
which limits further scaling of this configuration in terms of parallelism.
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Table 5. Resource utilization of single Hamming distance processing elements.

Bit Width Components LUTs FFs

128
Input reg. & XOR (% of PE) 128 (57%) 716 (83%)

Adder stage (% of PE) 96 (43%) 144 (17%)
PE total (% of FPGA) 224 (0.019%) 860 (0.036%)

512
Input reg. & XOR (% of PE) 736 (66%) 2444 (84%)

Adder stage (% of PE) 384 (34%) 478 (16%)
PE total (% of FPGA) 1120 (0.0947%) 2922 (0.0012%)

Additionally, the resource utilization of central architecture components (compare Figure 1) is
depicted in Table 6. For a moderate sized design, about 10% of LUTs, 3% of FFs and 5% of BRAM
are required, leaving a significant portion of the FPGAs resources for the actual calculation units.
As mentioned in Section 4.3, more DDR memories can be used to speed up storing the results. With
each DDR requiring about 1.6% of the LUTs, one DDR can be added in trade for about 17 PE of 512-bit
or 85 PE of 128-bit.

Table 6. Resource utilization of the system infrastructure (200 MHz, 512-bit, 64 PE).

Component LUTs (%) FFs (%) BRAM (%) DSPs (%)

AXI interconnect 2.31 1.77 0 0
PCIe endpoint 4.78 0 3.52 0

DDR 1.62 0.88 1.18 0.04
Input control 0.42 0.55 0.55 0
Result control 0.19 0.19 0.19 0

Total 9.32 3.39 5.44 0.04

As mentioned in Section 4, the proposed architecture can easily be tailored towards the used target
FPGA. This includes manual placement optimizations by splitting up one large DCU into multiple
smaller DCUs. The smaller DCUs are interconnected and the dynamic data stream is passed from one
to another in a daisy-chain. Not splitting the designs resulted in timing errors, especially when the
required control signals had to pass SLR boundaries. An optimized design for an XCVU9P-2 FPGA
uses three DCUs, matching the number of available SLRs in the FPGA. Figure 8 shows the floorplan of
a fully routed design including three DCUs, each placed in a separate SLR. Placing each DCU in its
own SLR resulted in a significant reduction of timing and routing issues, thus increasing the number
of possible PE. So far no benefits have been observed from using more than one DCU per SLR.

Figure 8. Routed FPGA design with three 512-bit Hamming DCUs, 128 PE each. Yellow: DCU_0, green:
DCU_1, blue: DCU_2, purple: DDR, red: XDMA.
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5.4. Energy Consumption

For the example design configuration with 512-bit signatures, 200 MHz and 384 PE the Vivado
power estimator calculated a power usage of 24.4 W for the FPGA. The energy consumption was in the
same range (±2 W) for other configurations. Due to technical limitations it was not possible to measure
the power consumption of the entire accelerator card. A reasonable estimate for the total system power
usage can be calculated as depicted in Equation (2). In the equation a power consumption of 4 W for
the DDR and 9 W for the board infrastructure are assumed, additionally, an uncertainty factor of 2 W
is included as well as a power supply loss factor of 0.7.

PowerTotal = (PowerFPGA + PowerUncertainty) / PSULoss + PowerDDR + PowerIn f rastr.

PowerTotal = (24.4 W + 2 W) / 0.7 + 4 W + 9 W

PowerTotal = 50.7 W

(2)

Using the performance listed in Table 4 and the estimated power consumption of 50.7 W an
energy efficiency of 1.49 GH/s/W is calculated.

6. Discussion and Future Work

A scalable streaming-based system architecture for high-throughput bit string comparisons on
FPGAs has been presented. The proposed architecture can be easily adapted to the needs of the
application in terms of applied distance metric, bit widths and parallelism. It is highly optimized
towards FPGA architectures in general and the Xilinx Virtex UltraScale+ architecture in particular.
Using 512-bit signatures and 384 PE in parallel running at 200 MHz the proposed design achieves
a performance of 75.45 billion Hamming distance comparisons per second (GH/s), which is very close
to the theoretical peak performance of 76.8 GH/s. The throughput of up to 38.63 TBit/s significantly
outperforms all other published implementations, which focussed on single population counts for
bit width between 16 and 1024, rather than optimizing for throughput and parallel processing. For
example in [30] for a 512-bit LUT-based population count running at 125 MHz a performance of
64 GBit/s was achieved, which is nearly by three orders of magnitude slower than our implementation
which was measured with data transfers included. Since there were no implementations optimized for
throughput, the authors created reference implementations for CPU and GPU leveraging the platforms
intrinsic (CPU) and parallel programming (OpenCL). The authors FPGA-based implementation
outperforms the CPU by a factor of 86 and the GPU by a factor of 5. Furthermore, when energy
efficiency is considered, a reasonable estimation shows that the FPGA design (1.49 GH/s/W) is six
times as efficient as the GPU implementation (224.06 MH/s/W).

The architecture presented is well suited to serve as a starting point for future research, from the
perspective of developing configurable hardware systems of general utility and as a foundation for a
scalable high-throughput system for biological sequence comparison. At this point, the architectural
bottlenecks remain largely unknown and we have yet to investigate the scalability of the design for
alternative distance metrics, and indeed to examine other domains employing the Hamming distance.
In the context of binary signature-based comparison of molecular sequences, we will in future work
more closely consider the nature of the data set and its relationship to the optimal signature width,
with a design space exploration informed at each stage by the characteristics of the sequence data
set and its encodings. There remains some possibility that for large datasets focused on a particular
taxonomic group—such as the 43,000 Staphylococcus aureus genomes present in Staphopia [37]—that
the signature densities may deviate from the assumption of uniformity.

For example, it is not yet known, where the actual bottleneck is located and related to that,
how well the design scales with alternative distance metrics. For this reason, active research on the
architecture should be pursued, i.e., after an extended design space exploration, e.g., with various
bit widths has been performed. During these extended test series, the energy consumption of the
system will be measured as well. Returning our focus to the architectural components, we note that the
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DDR of the accelerator board delivers 512-bit data every clock cycle and is driven by a 300 MHz clock.
Thus, if the design clock frequency can be increased to 300 MHz, the peak performance for 384 PE,
512-bit signature Hamming distance calculation is expected to rise to over 120 GH/s. Since it has been
shown that the performance scales linearly with the number of used processing elements, it needs
to be investigated, if more PE can be realized with the given FPGA resources. One possible solution
might be to save LUT resources in the adder stages of the population count by combining LUT-based
ternary adders and DSP slices. The number of used LUTs could also be reduced by redesigning the
first stage of the hamming distance PE and combining xor and addition of two 3-bit inputs in one
LUT. Furthermore, the LUTs in the following additions could be substituted by DSP-based adders.
The best possible outcome would be, if both the clock frequency and the number of PE could be
increased simultaneously.

Additionally, the implementation of additional distance metrics (e.g., Euclidean distance) using
the presented architecture is planned. We also intend to optimize the design for further application
scenarios, e.g., finding the best X-matches in a large database. For such scenarios, it might be of
interest to extend the architecture with a sorting mechanism for results. It could also be worthwhile to
investigate optimization strategies on other FPGAs, especially small and low-cost devices. Furthermore
we would like to analyze how the scalability behaves also beyond the limits of single FPGAs in
an FPGA-cluster.
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