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Dissertation submitted to Supervisor & 1st Examiner

Fakultät für Physik Prof. Dr. Dietrich Bödeker
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Abstract

We develop a framework for obtaining rate coefficients in non-

linear kinetic equations for slowly evolving quantities in a non-

equilibrium system by matching real time correlation functions

of thermal fluctuations computed in an effective description to

those computed in thermal quantum field theory. We apply

this formalism to sterile neutrino occupancies and lepton minus

baryon numbers. After expanding in the sterile-neutrino Yukawa

couplings, the coefficients in the equations are written as real

time correlation functions of Standard Model operators. Our

kinetic equations are valid for an arbitrary number of sterile

neutrinos of any mass spectrum. They can be used to describe,

e.g., low-scale leptogenesis via neutrino oscillations, or sterile

neutrino dark matter production in the Higgs phase. We apply

the formula for linear coefficients to the equilibration of right-

handed electrons in the symmetric phase of the Standard Model,

which happens relatively late in the history of the Universe due

to the smallness of the electron Yukawa coupling. We compute

the equilibration rate at leading order in the Standard Model

couplings by including gauge interactions, the top Yukawa- and

the Higgs self-interaction. The dominant contribution is due to

2→ 2 particle scattering, even though the rate of (inverse) Higgs

decays is strongly enhanced by multiple soft scattering which is

included by Landau-Pomeranchuk-Migdal (LPM) resummation.

Our numerical result for the equilibration rate is substantially

larger than approximations presented in previous literature. We

find that the equilibration of right-handed electrons takes place at

temperatures at which also low-scale leptogenesis can be realized,

and we argue that in this case the two processes do not decouple.
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Notation and conventions

We write four-vectors in lower-case italics, k, and the correspond-

ing three-vectors in boldface, k. Integrals over three-momentum

are denoted by
∫
k ≡ (2π)−3

∫
d3k. When working in imaginary

time we have four-vectors k = (k0,k) with k0 = inπT with n even

(odd) for bosons (fermions), and T is the temperature. We denote

fermionic Matsubara sums by a tilde,
∑̃

k0 . The Bose-Einstein and

Fermi-Dirac distributions are denoted by fB(E) ≡ 1/(eE/T − 1)

and fF(E) ≡ 1/(eE/T + 1), respectively. We use the metric with

signature (+,−,−,−), and the totally antisymmetric tensor with

ε0123 = +1. Covariant derivatives are Dµ = ∂µ + iyαg
′Bµ + · · ·

with the hypercharge gauge coupling g′ and gauge field B, such

that yϕ = 1/2 for the Higgs field ϕ. The quartic term in the Higgs

potential is λ(ϕ†ϕ)2.
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Chapter 1

Introduction

1.1 Some shortcomings of the Standard Model

The Standard Models of particle physics and cosmology have been extremely

successful in explaining various observations, in parts even with an outstanding

precision. There are, however, some observations these widely accepted models

fail to explain. We briefly review three of them here. In the following section 1.2

we introduce sterile neutrinos and outline how they could fill the corresponding

gaps in our theoretical understanding.

1.1.1 Active neutrino masses

The famous Higgs mechanism, although providing masses for the weak gauge

bosons as well as for most of the fermions, leaves the three left-handed Standard

Model neutrinos exactly massless, and the generation of a mass term for these

very light fermions requires physics beyond the Standard Model. An adequate

theoretical description of neutrinos, however, requires such mass terms, because

experiments with solar and atmospheric neutrinos show that there are indeed two

non-zero squared mass differences [3]1

∆m2
atm = 7.37(59) · 10−5 eV2, (1.1)

∆m2
sol = 2.56(13) · 10−3 eV2. (1.2)

These squared mass differences are inferred from neutrino oscillations which can

be easily seen by a quantum mechanical argument as follows. Suppose that

neutrinos have non-vanishing masses. Then there are two eigenbases which are

1The value in (1.2) assumes normal hierarchy, and differs from the one for inverted hierarchy
only on the percent level.
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Chapter 1 Introduction

not simultaneously diagonalizable: the eigenbasis of states produced and detected

in weak interactions, and the mass eigenbasis corresponding to free propagation.

Due to the misalignment of the two eigenbases, the weak interaction eigenstates

|να〉 with α = e, µ, τ contain a mixture of the mass eigenstates |νi〉,

|να〉 =

3∑
i=1

U∗αi|νi〉, (1.3)

where U is the unitary Pontecorvo-Maki-Nakagawa-Sakata matrix. Free propaga-

tion implies for the mass eigenstates

|νi(t)〉 = e−iEi(t−t0)|νi(t0)〉, (1.4)

with Ei = (|k|2 +m2
i )

1/2 and the momentum k. Now consider a weak interaction

eigenstate |να(t0)〉 at some initial time t0. The amplitude for finding an interaction

eigenstate β at a later time t is given by

〈νβ(t)|να(t0)〉 =

3∑
i=1

eiEi(t−t0)UβiU
∗
αi. (1.5)

For ultrarelativistic neutrinos we approximate

Ei ≈ |k|+
m2
i

2|k| , (1.6)

which gives the probability

∣∣〈νβ(t)|να(t0)〉
∣∣2 ≈ 3∑

i,j=1

ei(t−t0)(m2
i−m2

j )/2|k|UβiU
∗
αiU

∗
βjUαj . (1.7)

This implies that, given there are finite squared mass differences and a misalign-

ment of the two eigenbases, the flavor eigenstates oscillate into each other. For

solar neutrinos, e.g., this manifests as a lack of electron neutrinos arriving at

earth-bound observatories, which has been known as the solar neutrino problem.

Neutrino oscillation experiments allow to determine only the squared mass

differences, but they do not make statements about the absolute mass scale.

The upper bound on the latter from measurements of the cosmic microwave

background [4] reads ∑
α

mνα < 0.12 eV. (1.8)

2



1.1 Some shortcomings of the Standard Model

1.1.2 Baryon asymmetry of the Universe

From anisotropies in the cosmic microwave background it has been inferred that

at the decoupling temperature Tdec = O(eV) the ratio of baryon density nB to

entropy density s is given by2

nB
s

= 8.71(4) · 10−11. (1.9)

Here nB is the net baryon density, so that the quantity in (1.9) is called the baryon

asymmetry of the Universe. This quantity can also be probed at the much higher

temperature of big bang nucleosynthesis, TBBN = O(MeV). Here the baryon to

photon ratio enters the various reaction rates determining the processes of the

generation of the light element abundances, and the result [6] is in agreement

with (1.9), providing a robust measurement of nB/s. Within the Standard Models

of particle physics and cosmology the non-vanishing number (1.9) cannot be

explained, unless one assumes initial conditions before inflation.

For a dynamic generation of a baryon asymmetry, generically called baryo-

genesis, three conditions have to be fulfilled. The so-called Sakharov conditions

demand baryon number conservation as well as charge (C) and charge-parity (CP)

symmetry to be broken in thermal non-equilibrium [7]. Within the Standard

Model, baryon number is not conserved in the symmetric phase. CP violation

appears in the Cabibbo-Kobayashi-Maskawa matrix in the quark sector which is,

however, rather small and will be neglected throughout this thesis. In the thermal

history of the Standard Model there is no epoch of strong non-equilibrium. For

sufficiently small values of the Higgs mass mϕ <∼ 80 GeV the electroweak transi-

tion would have been a first-order phase transition providing expanding bubbles

of true Higgs vacua and therefore strong non-equilibrium. At the measured value

of the Higgs mass mϕ ≈ 125 GeV [8, 9], however, the electroweak transition is

only a smooth crossover [10]. Coupling the Higgs doublet to another new scalar

field could generate a first-order phase transition despite the large Higgs mass.

This idea is at the basis of a class of models called electroweak baryogenesis [11],

and it relies on additional CP violation, since the one contained in the CKM

matrix in the Standard Model is insufficient [12–14]. For a review of electroweak

baryogenesis, see e.g. [15].

2The quantity ΩBh
2 has been measured by Planck [4] to a high precision. It is related to the

quantity in (1.9) via nB/s = 3.887 · 10−9 ΩBh
2, see, e.g., chapter 5.2 of reference [5]. The baryon

density is often conveniently normalized to entropy density, because the resulting quantity is
comoving.
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Chapter 1 Introduction

The cosmic QCD transition might have been of first order, if the loosely

constrained lepton asymmetry was large enough [16]. However, at the QCD

temperature baryon number is conserved within the Standard Model, because

electroweak sphalerons are frozen out, and therefore this still open possibility for

a first-order phase transition is not a very attractive setting for baryogenesis.

1.1.3 Dark matter

The energy content of the Universe, according to best fits to the ΛCDM model [4],

consists of only about 5% ordinary matter (the origin of which we do not un-

derstand, see section 1.1.2), while another 23% of gravitating matter is invisible

dark matter which does not interact via the electromagnetic force.

This mysterious type of matter had first been discovered in galaxy clusters in

1933 by making use of the virial theorem [17]. The measurement of rotation curves

of galaxies beginning in the early 1970s has shown that the stars’ angular velocities

approach a finite constant with increasing distance from the galactic center [18],

indicating that the gravitating mass also increases with distance. If most of the

gravitating mass were concentrated near the galactic center, as it seems to be the

case if one considers only ordinary matter, the angular velocity would be expected

to fall off with increasing distance. The observed rotation curves can be explained

by embedding galaxies in spherical halos of dark matter [19]. Today we have proof

of the existence of dark matter also from cosmic microwave background [4, 20]

and gravitational lensing [21] measurements. Currently there is a large landscape

of viable dark matter models containing not only theories with additional bosonic

or fermionic particles, but also primordial black holes, as well as modified theories

of gravity. In analogy with ordinary matter it is easily possible for dark matter

to be comprised of various constituents, especially since the Universe contains

roughly five times as much dark matter as ordinary matter.

1.2 Sterile neutrinos

In this section we introduce the concept of sterile neutrinos. We set up the

corresponding Lagrangian density in subsection 1.2.1, and in subsection 1.2.2

we give a short overview of how these hypothetical particles can in principle

provide answers to all of the open questions raised in section 1.1, even though not

necessarily to full extent at the same time.

4



1.2 Sterile neutrinos

In the Standard Model all fermions appear as pairs of left- and right-chiral

fields, with the exception of neutrinos, which are incorporated only as exactly

massless left-chiral fields. This way their chirality translates into helicity, so

that the projection of their spin onto spatial momentum is exclusively negative,

in accordance with numerous experiments, possibly most notably the famous

Wu experiment3 [22].

One philosophical question that can naturally be asked is why Nature would

single out one species of fermions to appear only left-handedly, generating a

somewhat incomplete particle content. A natural extension of the Standard

Model would then be the introduction of right-handed neutrinos in accordance

with current observational constraints. The right-handed neutrinos need to be

uncharged under Standard Model gauge groups, because they have not been

detected in weak-interaction experiments. Therefore they are coined sterile, as

opposed to the left-handed neutrinos in the Standard Model, which are usually

called active in this context, because they carry weak isospin and hypercharge.

Sterile neutrinos have not been detected at all by now which, if they exist,

poses bounds on their parameters. There are generally two scenarios prohibiting

a simple detection, which are somewhat contrary. If the sterile-neutrino masses

are above energies reached by current accelerators, they cannot be produced in

collisions. If, on the other hand, their coupling to the Standard Model is very weak,

one needs specifically designed experiments, such as high intensity beam dumps, in

order for them to be detected eventually [23]. In principle, a combination of these

two complications is possible, but then one of the main problems motivating their

introduction, namely the explanation of active neutrino squared mass differences,

is not solved,4 so this corner of parameter space is not attractive and is therefore

usually left unconsidered.

1.2.1 Lagrangian

We now consider the Standard Model extended by ns flavors of sterile neutrinos

Ni. For a renormalizable extension, only a Yukawa term is allowed for fermions

along with the kinetic term. Since the new fields are not charged under any gauge

group, they can couple only to currents that are themselves a gauge singlet, in

order not to violate the symmetries of the resulting theory under Standard Model

gauge groups. These considerations leave little freedom, and one possibility to

3In the original experiment antineutrinos with positive helicity have been emitted.
4We will see this below, around (1.16).
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Chapter 1 Introduction

write the full Lagrangian of the system is

L = LSM +
1

2

∑
i=1···ns

Ni(i/∂ −Mi)Ni −
∑
i=1···ns
α=e,µ,τ

(Ni hiα Jα + H.c.) (1.10)

with LSM the Standard Model Lagrangian and the gauge singlet

Jα ≡ ϕ̃† `α, (1.11)

where ϕ̃ ≡ iσ2ϕ∗ with the Pauli matrix σ2 is the isospin conjugate SU(2) Higgs

doublet, and `α =
(
να, α

)>
L

is the left-handed SU(2) lepton doublet of flavor

α. We describe the sterile neutrinos by the Majorana spinors Ni, whose charge

conjugate fields satisfy N c
i = Ni, in a basis in which the mass matrix is diagonal.

In general, the matrix of Yukawa couplings h is then non-diagonal. This is

different from the active lepton Yukawa couplings which are usually diagonalized

simultaneously with their mass matrix. The latter is possible, because the two

are related via the Higgs mechanism. On the other hand, the Majorana masses

and (complex) Yukawa couplings of the sterile neutrinos are ns and 6ns free

parameters,5 respectively, which generally leads to misalignment of the eigenbases

of the corresponding matrices.

1.2.2 Motivation

Apart from the aesthetical motivation of having both chiral fields for all fermions,

the introduction of sterile neutrinos is well-motivated for providing feasible solu-

tions to the three problems discussed in section 1.1, as we show in turn.

In the broken phase of the Standard Model, when the Higgs field acquires the

vacuum expectation value v ≈ 174 GeV, the mass term in the full Lagrangian (1.10)

reads (for simplicity for one sterile and one active flavor)

Lmass = −1

2
NMN − (NvhνL + H.c.). (1.12)

Being its own charge conjugate, we can write the Majorana spinor as N ≡ νR +νc
R

with a chiral field νR. Now (1.12) can be written as

Lmass = −1

2

(
νL νc

R

)( 0 2vh

2vh M

)(
νL

νR

)
+ H.c. (1.13)

5Note, however, that (1.16) reduces the number of degrees of freedom.
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1.2 Sterile neutrinos

For M � 2vh, the eigenvalues of the mass matrix6 are approximately given by

msmall ≈
(2vh)2

M
, (1.14)

mlarge ≈M, (1.15)

and the corresponding eigenvectors are mostly left- and right-handed, respectively.

Due to the inverse relation between the masses in (1.14) this is known as the

(type-I) see-saw mechanism. For the original Lagrangian in (1.10), relation (1.14)

generalizes to a matrix7

m ≈ (2v)2h>M−1h, (1.16)

thus generating masses for the left-handed neutrinos. In the original idea

M >∼ 107 GeV, and then the observed magnitudes of the active neutrino masses

are obtained by choosing Yukawa couplings comparable to those of the µ or the

τ leptons, which provides for a somewhat natural explanation. However, also

smaller M are in principle allowed as long as (1.16) is fulfilled, thus loosening

the naturalness argument in favor of introducing sterile neutrinos whose masses

are not orders of magnitude away of current accelerator energy limits.8 It is this

potential for detection that has made scenarios with lighter sterile neutrinos more

fashionable recently.

Sterile neutrinos could also well be responsible for the observed baryon asym-

metry of the Universe [25]. The main idea relies on introduction of CP violation

in the Yukawa couplings h that allows to produce a lepton asymmetry at some

high scale, which is why these mechanisms are generically called leptogenesis.

This lepton asymmetry is subsequently transformed into baryon asymmetry by

electroweak sphalerons. These are non-perturbative transition processes between

distinct vacua of the chiral SU(2)9 which together with the chiral anomaly violate

the conservation of lepton numbers Lα (with α = e, µ, τ) and baryon number B

individually in such a way that the combinations

Xα ≡ Lα −
B

3
(1.17)

6The small eigenvalue (1.14) is actually negative, but the sign can be absorbed into field
redefinitions.

7See, e.g., reference [24].
8Of course, one could argue that already the hierarchy in Yukawa couplings in the active

lepton sector spans over four orders of magnitude, and the overall set of Yukawa couplings present
in the Standard Model spans over six, so that an extension down by some orders of magnitude
might possibly not raise too much concern.

9See, e.g., reference [26] for a review of electroweak sphalerons.
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Chapter 1 Introduction

are conserved. Electroweak sphaleron processes are efficient only at temperatures

above T >∼ 130 GeV [27], and are virtually unobservable today, since they are ex-

ponentially suppressed. An asymmetry in Xα translates into a baryon asymmetry

in the Higgs phase according to [28]

B = −28

79

∑
α

Xα (1.18)

at leading order in Standard Model couplings.10 Due to the small Yukawa

couplings the sterile neutrinos equilibrate only slowly, if at all, resulting in thermal

non-equilibrium. This way all of the Sakharov conditions are satisfied.

Depending on the masses and couplings of the sterile neutrinos, leptogenesis can

be realized in different stages of the evolution of the Universe. Thermal (or high-

scale) leptogenesis requires very heavy sterile neutrinos with masses larger than

106 GeV [30]. These heavy sterile neutrinos which are produced from the Standard

Model plasma via the Yukawa interaction in (1.10) generate a lepton asymmetry by

out-of-equilibrium decays, and slowly thermalize. CP violation enters the matrix

of Yukawa couplings via a complex phase only for at least two sterile flavors, and

then interference between tree-level and one-loop diagrams gives Xα violating

reactions. Assuming a hierarchy in the Majorana masses of these flavors allows

to integrate out heavier states and work with an effective CP violating vertex.11

Without hierarchy in the Majorana masses, there is the possibility of two nearly

mass-degenerate sterile neutrinos, known as resonant leptogenesis, which lowers the

mass bound to 103 GeV [32]. Leptogenesis through oscillations [33,34] (or low-scale

leptogenesis) can work for even smaller masses, below ∼ 5 GeV, such that these

sterile neutrinos could in principle be experimentally detected [23]. The underlying

mechanism is somewhat more involved. Here CP violation enters already at tree-

level through oscillations between at least two sterile states. Since the Majorana

masses are very small compared to the temperature (this scenario is usually

operative at temperatures somewhere between 130 GeV <∼ T <∼ 105 GeV [35,36]),

the sum of lepton numbers in the active and the sterile sectors is nearly conserved.

Thus, if one of the sterile states couples weakly enough to the Standard Model

such that it does not equilibrate until electroweak sphalerons become inefficient,

some of the lepton number gets carried away by sterile neutrinos, and the same

10All corrections of O(g2) to (1.18), where g denotes a generic Standard Model coupling, have
been obtained in [29].

11See, e.g., reference [31] for a review of thermal leptogenesis.
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1.3 Right-handed electrons

amount with opposite sign remains in the active sector. Then again by means

of (1.18), a net baryon number remains in the Higgs phase.

Dark matter could be comprised of sterile neutrinos with keV masses [37],

either partly or completely. Due to mixing in the Higgs phase, these sterile

neutrinos can decay into a pair of an active neutrino and a photon. While the

original Dodelson-Widrow model [37] cannot generate all of the dark matter given

current gamma ray observations and Lyman-α constraints [38], observations still

leave open the possibility for all of the dark matter being resonantly produced

sterile neutrinos via the Shi-Fuller mechanism [39], see e.g. [40] for a review. This

mechanism requires a non-vanishing lepton asymmetry which generates a peak

in a resummed propagator, therefore boosting the production rate. It is usually

effective around the QCD temperature, see e.g. [41].

It has been suggested [42] that with three generations of sterile neutrinos, two

nearly degenerate flavors with GeV masses could be responsible for the baryon

asymmetry via low-scale leptogenesis, while at the same time providing enough

residual lepton asymmetry to fuel the production of a third, lighter flavor with

keV mass, which then constitutes the dark matter. A recent study has shown

that this model (while at the same time reproducing active neutrino masses in

accordance with experimental observations) can generate only about 10% of the

dark matter abundance [43]. Keeping in mind that there is no theoretical reason

for dark matter to consist of one single species of particles, these sterile neutrinos

could still be part of a more complicated composition of the dark matter content

of the Universe.

We obtain kinetic equations applicable to scenarios with sterile neutrinos

describing low-scale leptogenesis and/or dark matter production in chapter 2.

1.3 Right-handed electrons

On first sight, the right-handed electrons eR contained in the Standard Model

might not have too much connection with the problems discussed in section 1.1, let

alone with the notion of sterile neutrinos which we have introduced in section 1.2.

In this section we shortly recall the place of right-handed electrons in the Standard

Model and their evolution in the early Universe and motivate why they might

play a role in the generation of the baryon asymmetry of the Universe.

Right-handed electrons eR are charged only under the weak hypercharge U(1) in

the Standard Model. Among gauge interactions with the corresponding B bosons,

9



Chapter 1 Introduction

they also have a Yukawa interaction, such that the part of the Standard Model

Lagrangian containing the eR field reads

LSM 3 eR i /D eR − (eR he ϕ
†`e + H.c.) (1.19)

with the covariant derivative Dµ = ∂µ + iyeRg
′Bµ, with yeR = −1, and he is the

electron Yukawa coupling, with the value he = 2.9 · 10−6 at the Z boson mass [3].

Note that, unlike in the Lagrangian for sterile neutrinos (1.10) containing ϕ̃ in the

Yukawa interaction, ϕ appears in (1.19). At the classical level, the gauge invariant

kinetic term in (1.19) conserves the right-handed electron lepton number

LeR ≡
∫
d3x eRγ

0eR, (1.20)

which is, on the other hand, violated by the Yukawa interaction in (1.19).

The electron Yukawa coupling he is the smallest coupling constant of the

Standard Model. Therefore thermal equilibrium between right- and left-handed

electrons (the equilibration of the charge LeR) is achieved relatively late in the

evolution of the Universe.12 Nevertheless, it happened in the symmetric phase,

while electroweak sphaleron processes were still effective. Because baryogenesis

scenarios usually rely on the B violation induced by these processes, the equili-

bration of right-handed electrons can play an important role in the creation of

the matter-antimatter asymmetry of the Universe.

The interplay between right-handed electron equilibration and baryogenesis

through neutrino oscillations [33, 34], which we have shortly discussed in sec-

tion 1.2.2, is one central topic of this work. The exact choice of the sterile-neutrino

Yukawa couplings and the Majorana masses in (1.10) determines the temperature

regime at which the leptogenesis mechanism operates,13 and for certain values

of these parameters the generation of the matter-antimatter asymmetry and the

equilibration of right-handed electrons take place around the same time. Then

the latter is part of the leptogenesis process, and the dynamics of the variable LeR

must be accounted for in the kinetic equations. At leading order, the equilibration

of right-handed electrons proceeds purely via Standard Model interactions. The

temperature Teq at which the Yukawa interaction of eR effectively equilibrates the

quantity LeR is among the results of chapter 3.

12The temperature Teq at which LeR comes into equilibrium is parametrically given by
Teq ∼ h2

eg
2mPl with an appropriate Standard Model coupling g and the Planck mass mPl, see

section 2.1.1.
13Roughly speaking, increasing the Yukawa couplings leads to the leptogenesis process hap-

pening earlier in the evolution of the Universe.
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1.3 Right-handed electrons

A connection between the equilibration of right-handed electrons and the

generation of the matter-antimatter asymmetry had been suggested earlier in

the context of baryogenesis at some very high temperature, like e.g. in GUT

baryogenesis. If a matter-antimatter asymmetry is created at that temperature,

it can be protected from washout if the right-handed electrons are not yet in

equilibrium [44,45].

A lepton asymmetry in right-handed electrons may also generate hypermagnetic

fields [46] which is due to the so-called abelian anomaly from which the quantity

LeR suffers. It converts the helicity stored in LeR to circularly polarized modes of

the hypercharge gauge field, which is energetically more favorable. In particular

this implies that the Yukawa interaction in (1.19) is not the only source of LeR

violation in the Standard Model. Therefore this phenomenon plays a role in the

determination of the equilibration rate of LeR in chapter 3.
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Chapter 2

Effective kinetic equations

for out-of-equilibrium processes

In this chapter we derive general formulae for the rate coefficients appearing in

effective kinetic equations of a certain class of non-equilibrium problems which

we define in section 2.1. In section 2.1.1 we briefly discuss the emergence of this

specific class of problems in the dynamics of the early Universe. We generalize

the considerations of reference [47] to include non-linear terms in the kinetic

equations and obtain master formulae in terms of real time correlation functions

in section 2.2. We discuss the relations between charges and chemical potentials

in various temperature regimes in section 2.3, and apply the formalism to sterile

neutrinos (section 2.4) and the linearized version which had been obtained in [47]

to the dynamics of right-handed electron lepton number LeR (section 2.5).

2.1 General setup

In general, the description of non-equilibrium systems is a complex task which we

simplify by making two central assumptions. We consider a situation in which

there is a separation of time scales in such a way that some reactions in the

plasma happen considerably more often than others. Then these fast interactions

keep most of the degrees of freedom in equilibrium, with a frequency we call ωfast,

while some other quantities relax much more slowly with frequency ω, and we

call these quantities slow. Then for ω � ωfast the time evolution of the departure

from equilibrium of the slow quantities, which we denote by ya, can only depend

on the values of the slow quantities themselves and the details of the thermal

system. In a canonical description these are the temperature T , the volume V ,

13



Chapter 2 Effective kinetic equations for out-of-equilibrium processes

and the values of the strictly conserved charges Qc̄, such that generally

ẏa = ẏa({yb}, T, V, {Qc̄}). (2.1)

Additionally, we assume the situation to be close to full equilibrium, so that the

deviations of all slow quantities from equilibrium are small. In this case we can

expand (2.1) in departures from equilibrium, yielding

ẏa = − γab yb −
1

2
γabc yb yc −

1

3!
γabcd yb yc yd − · · · , (2.2)

where now the dependence on the details of the thermodynamic state of the

fast degrees of freedom enter the coefficients, so that γab = γab(T, V, {Qc̄}) and

analogously for the coefficients multiplying the non-linear terms. We assume that

the ya as well as the coefficients in (2.2) are real-valued.

2.1.1 Applicability to early Universe dynamics

In a considerable temperature range during the evolution of the early Universe a

large amount of degrees of freedom is in equilibrium. This is due to the fact that

the Hubble expansion rate

H =

√
4π3g∗

45

T 2

mPl
, (2.3)

with g∗ the number of relativistic degrees of freedom, and mPl = 1.22 · 1019 GeV

the Planck mass, albeit its apparent large size, is actually much smaller than most

of the rates mediated by Standard Model interactions, i.e. the ratio ωfast/H is

much larger than unity. Let us briefly illustrate this for Standard Model gauge

interactions. The frequency of such an interaction with gauge coupling g is given

by ωfast = ag4T with a a numerical prefactor. Then we have

ωfast

H
≈ ag4 7 · 1017 GeV

T
(2.4)

in the symmetric phase of the Standard Model where g∗ = 106.75. In the following

we will be interested mainly in temperatures well below T � 109 GeV so that the

ratio (2.4) is indeed large, and all gauge interactions are in equilibrium. Depending

on the temperature additional interactions, e.g. Yukawa interactions, may be in

equilibrium, and for these interactions one has ωfast = O(h2g2T ), with h the

respective Yukawa coupling and g a generic gauge coupling. We elaborate on

the fast interactions in section 2.3. If we now consider slowly varying charges

14



2.2 Derivation of rate coefficients

whose deviations from equilibrium are small,14 the two assumptions facilitating

the description of the non-equilibrium system are met. The latter is neither

a prediction nor an observation, however, it can be checked for consistency a

posteriori. For example, one can compare the linear rates γaa (no summation

over a) in (2.2) to the Hubble rate (2.3). Equating the two gives an expression for

the temperature which we call the equilibration temperature of the quantity ya. Due

to efficient equilibration around this temperature, the deviations from equilibrium

can be assumed to be small, as long as coefficients γab much larger than γaa,

efficiently driving the quantity ya away from equilibrium, are absent.

We will assume spatial homogeneity, in which case the covariant time derivative

for occupancies f(t,k) in a Hubble expanding background reads [48]

∂tf(t,k)→
(
∂t −H|k|∂|k|

)
f(t,k). (2.5)

By integration by parts the corresponding one for densities n(t) is given by

∂tn(t)→ (∂t + 3H)n(t), (2.6)

in which the second term on the right-hand side reflects dilution. Hubble expansion

enters the effective kinetic equations (2.2) on the left-hand sides through (2.5)

and (2.6).

2.2 Derivation of rate coefficients

We make use of Landau’s theory of quasi-stationary fluctuations [49] to obtain

the coefficients γa··· in (2.2). This has been done for the linear case in [47], and

the reasoning has been extended to CP violating rates in [50]. Here we generalize

the approach to apply also to (potentially CP violating) non-linear coefficients.

2.2.1 Correlators in the effective theory

The thermal fluctuations of the slow variables ya satisfy the same type of equations

as (2.2), but with an additional Gaussian noise term on the right-hand side,

representing the effect of rapidly fluctuating quantities.15

From these equations one can compute real time correlation functions of the

fluctuations such as

Cab(t) = 〈ya(t)yb(0)〉 (2.7)

14Deviations from equilibrium are said to be small, if they are smaller than their thermal
fluctuations. We discuss this issue in detail in section 2.2.

15See, e.g., §118 of reference [49] on correlations of fluctuations in time.
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Chapter 2 Effective kinetic equations for out-of-equilibrium processes

by solving these equations and then averaging over the noise and over initial

conditions.16

In [47] the rates γab have been found by taking the one-sided Fourier transform

of the correlator Cab after the exact solution of the linear equations of motion had

been inserted. The non-linear equation of motion (2.2) can generally not be solved

analytically. We solve it perturbatively by directly taking the one-sided Fourier

transform of the non-linear equation of motion. We encounter the one-sided

Fourier transformation of the slow variable ya,

y+
a (ω) ≡

∫ ∞
0

dt eiωtya(t). (2.8)

At linear order in y in (2.2) we obtain

y+(0)
a (ω) =

[
(−iω + γ)−1

]
ab
yb(0) + · · · , (2.9)

where the ellipsis represents a term linear in the noise. Inserting this into the

one-sided Fourier transform of (2.7) one obtains [47]

C+
ab(ω) =

[
(−iω + γ)−1

]
ac

Ξcb. (2.10)

Here the noise term has dropped out. When averaging over the initial conditions at

t = 0, one encounters the real and symmetric susceptibility matrix with elements

Ξab ≡ 〈yayb〉, (2.11)

i.e., the equal time correlators Cab(0). As in (2.7), the average in (2.11) is canonical,

that is, at fixed values of the conserved charges.

The rate matrix γab can be extracted from (2.10) by considering frequencies ω

which are parametrically much larger than the elements of the matrix γ. Then

one can expand (2.10) in γ/ω. For real ω the leading term in this expansion is

purely imaginary. Thus by taking the real part of (2.10) one can extract the next

term which is linear in γ [47],

Re C+
ab(ω) =

1

ω2
γac Ξcb +O(ω−3) (for real ω). (2.12)

16Non-linear terms in the equation of motion could potentially lead to non-vanishing expec-
tation values of ya. Therefore in general one also has to include y-independent terms on the
right-hand side to ensure that the expectation values vanish. Eventually we want to describe
deviations from thermal equilibrium with (2.2). Then the ya are much larger than their thermal
fluctuations, and the y-independent term will be small compared to the non-linear terms in (2.2)
and can be neglected.
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2.2 Derivation of rate coefficients

Here it is important that we take the one-sided Fourier transform instead of the

Fourier transform because the latter only depends on the symmetric part of γ.

Now we go beyond linear order. We include the non-linear terms in the

equation motion, and expand

y = y(0) + y(1) + y(2) + · · · (2.13)

where y(n) is of order (y(0))n+1 and vanishes at the initial time t = 0. We will

encounter the generalization of (2.11),

Ξa1a2···an ≡ 〈ya1ya2 · · · yan〉C , (2.14)

where the subscript ‘C’ indicates that we only include the connected part, for

which we assume

(Ξa1···am)1/m � (Ξa1···an)1/n (m > n ≥ 2). (2.15)

This can be seen as a consequence of our assumption that we can expand the

right-hand side of equation (2.2), since the time evolution of the fluctuations also

determines their equal time correlations (see, e.g., [51]). For the occupancies

of sterile neutrinos we have checked the assumption (2.15) in appendix A. The

coefficient γabc of the quadratic term in equation (2.2) can then be extracted from

the correlation function

Ca(bc)(t) ≡ 〈ya(t)ybyc(0)〉 (2.16)

as follows (for details see appendix B).17 We have

Ca(bc)(t) = 〈y(0)
a (t)ybyc(0)〉+ 〈y(1)

a (t)ybyc(0)〉. (2.17)

The first term on the right-hand side is very similar to (2.10), one only has to

replace (2.11) with the expectation value of three factors of y(0). Again we take

the one-sided Fourier transform. Our assumption (2.15) allows us to neglect the

contribution from Ξabcd, which gives

〈y+(1)
a (ω)ybyc(0)〉C =

1

ω2
γade Ξdb Ξec +O(ω−3). (2.18)

Thus we obtain

Re C+
a(bc)(ω) =

1

ω2

[
γade Ξdb Ξec + γai Ξibc

]
+O(ω−3), (2.19)

17Note that (2.16) is connected, because the expectation value of a single y vanishes.
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Chapter 2 Effective kinetic equations for out-of-equilibrium processes

which allows us to extract γabc. Similarly we obtain the coefficient multiplying

the cubic term in (2.2) by solving the equation of motion for ya perturbatively

up to linear order in γabc and γabcd and successively computing the connected

correlation function

Ca(bcd)(t) ≡ 〈ya(t)ybycyd(0)〉C . (2.20)

Following the same line of arguments, we obtain

Re C+
a(bcd)(ω) =

1

ω2

[
γaijk Ξib Ξjc Ξkd +

1

2
γaij Ξijbcd + γai Ξibcd

]
+O(ω−3).

(2.21)

2.2.2 Correlators in the microscopic theory

The one-sided Fourier transforms of the correlators (2.7), (2.16), and (2.20)

as well as the susceptibilities (2.14) can also be computed in the microscopic

quantum theory. In the range of validity ω � ωfast of the effective equations

of motion (2.2) they have to match their counterparts in the effective theory.

This way the coefficients in (2.2) can be computed from (2.12), (2.19) and (2.21)

with the quantum correlators on the right-hand side, evaluated in the regime

γ � ω � ωfast. In this regime C+
ab has to match the one-sided Fourier transform

of the microscopic correlation function

Cab(t) ≡
1

2

〈{
ya(t), yb(0)

}〉
. (2.22)

Since ωfast <∼ T ,18 we are dealing with frequencies ω much smaller than the tem-

perature. In this regime the one-sided Fourier transform of (2.22) is approximately

given by [50]

C+
ab(ω) = −iT

ω

[
∆ab(ω)−∆ab(0)

]
, (2.23)

where

∆ab(ω) ≡
∫
dω′

2π

ρab(ω
′)

ω′ − ω . (2.24)

The two-point function in (2.24) is an analytic function off the real axis, and

ρab(ω) ≡
∫
dt eiωt

〈[
ya(t), yb(0)

]〉
(2.25)

18Or even ωfast � T for certain combinations of the process underlying ωfast and the temper-
ature (e.g. processes due to hµ at temperatures well below 109 GeV [52]).
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2.3 Charges and chemical potentials

is the spectral function of the bosonic operators ya and yb. For real ω, the

function ∆ab(ω + i0+) equals the retarded two-point function ∆ret
ab (ω). Matching

C+ and C+, and using (2.12) as well as the fact that ∆ab(0) is real one obtains

the master formula [50]

γab = Tω Im ∆ret
ac (ω)(Ξ−1)cb (γ � ω � ωfast). (2.26)

For real spectral functions it agrees with the Kubo-type relation in [47]. Following

the same steps with (2.19) and (2.21) we obtain the master formulae

γabc =
[
Tω Im ∆ret

a(de)(ω)− γaf Ξfde

]
(Ξ−1)db(Ξ

−1)ec, (2.27)

γabcd =

[
Tω Im ∆ret

a(efg)(ω)− 1

2
γaij Ξijefg − γai Ξiefg

]
(Ξ−1)eb(Ξ

−1)fc(Ξ
−1)gd,

(2.28)

where in both cases γ � ω � ωfast. As in (2.20), we include only the connected

piece of the correlator ∆ret
a(efg) in (2.28). In general the operators inside the

retarded correlators will not necessarily commute at equal times.

In some cases it is more convenient to compute the correlators of time deriva-

tives of one or both of the operators, and then use the relations

∆ret
AB(ω) =

1

ω

[
i∆ret

ȦB
(ω) +

〈
[A(0), B(0)]

〉]
, (2.29)

∆ret
AB(ω) =

1

ω2

[
∆ret
ȦḂ

(ω) + i
〈
[A(0), Ḃ(0)]

〉
+ ω

〈
[A(0), B(0)]

〉]
(2.30)

for bosonic operators A and B which are easily obtained via integration by parts.

2.3 Charges and chemical potentials

In the equations of motion (2.2) the slow charges appear on the right-hand

side, along with the susceptibilities (2.11) and (2.14) after the master formu-

lae (2.26), (2.27) and (2.28) have been inserted. Once the susceptibilities and the

n-point functions have been determined, the set of equations is closed. Sometimes

it can be more comfortable to express the right-hand sides in terms of chemical

potentials instead of the charges. Here we make a connection between the two

via the susceptibilities, focusing on temperatures in the symmetric phase of the

Standard Model.

We restrict ourselves to the determination of the susceptibilities Ξab, since

the dependence on the generalized susceptibilities Ξabc and Ξabcd of Standard
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Chapter 2 Effective kinetic equations for out-of-equilibrium processes

Model charges will drop out once we express our equations in terms of chemical

potentials, as we will see in section 2.4. The generalized susceptibilities will play

a role, if the indices label sterile neutrino occupancies, see appendix C.

Denoting the slow charges by Qa and their departures from equilibrium playing

the role of the ya in (2.2) by δQa ≡ Qa −Qeq
a , we have the relation

δQa = Ξab
µb
T

+
1

2
Ξabc

µb
T

µc
T

+O(µ3). (2.31)

The susceptibilities can be obtained by switching from an ensemble in which the

conserved charges, which we denote by Qā, have fixed values to a grand-canonical

one [47]. In the latter all charges, collectively denoted by QA fluctuate, not only

the slowly varying ones. Then we have a relation similar to (2.31), but for all

charges,

QA =
∑
B

χAB
µB
T

+O(µ3). (2.32)

Here χ is the susceptibility matrix in the full grand-canonical ensemble, in which

the charges are odd functions of the chemical potentials. Therefore, unlike in (2.31),

no terms of order µ2 and no equilibrium values appear in (2.32). The susceptibility

matrix χ is related to the pressure P (T, µ) via

χAB = TV
∂2P (T, µ)

∂µA∂µB

∣∣∣∣
µ=0

. (2.33)

Considering A = a in (2.32) and comparing with (2.31), we find that the inverse

susceptibilities satisfy

(Ξ−1)ab = (χ−1)ab, (2.34)

where a and b label slowly varying charges only. The equilibrium values are

obtained analogously,

Qeq
a = − Ξab (χ−1)bc̄Qc̄. (2.35)

The computation of the susceptibilities χ in the symmetric phase in terms of

the pressure is described in [47], where the leading order (in Standard Model

couplings) contributions to the pressure have been obtained. There also the O(g)

corrections and some of the O(g2) contributions can be found, and the remaining

O(g2) contributions have been obtained in [29]. All gauge charges are strictly
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2.3 Charges and chemical potentials

conserved, and in principle chemical potentials have to be added for all of them.

However, non-abelian gauge charges, i.e. color charge or weak isospin, are not

correlated with the slowly varying or the strictly conserved non-gauge charges.

Therefore, non-abelian gauge charges decouple from the others (and also among

each other), such that they can be neglected. Weak U(1) hypercharge Y , despite

being a gauge charge, is correlated with all charges we consider, and therefore

has to be considered in the set of strictly conserved charges. In the imaginary

time formalism the temporal component of the hypercharge gauge field B0 is

purely imaginary. It has a non-zero expectation value [28] which plays the role of

a hypercharge chemical potential,

µY = ig′B0, (2.36)

ensuring hypercharge neutrality of the plasma.

At leading order in Standard Model couplings, and when we have only diagonal

charges,19 the pressure reads [47]

12

T 2

[
P (T, µ)− P (T, 0)

]
= 18µ2

Q + 9µ2
uR

+ 9µ2
dR

+ 2
∑
α

µ2
`α +

∑
α

µ2
αR

+ 4µ2
ϕ +O(µ4), (2.37)

The chemical potentials carried by particles which appear in (2.37) are functions

of the chemical potentials of all charges, and therefore depend on the temperature

regime. Throughout all temperature regimes in the symmetric phase discussed in

the following, we have

µϕ =
µY
2
. (2.38)

Some quark Yukawa couplings come into equilibrium at temperatures in

the regimes we consider, analogous to he. However, strong sphalerons are in

equilibrium in the symmetric phase up to temperatures well above the ones

considered here [53]. They violate the conservation of chiral quark charges like∫
x uRγ

0uR, such that these quantities are fast, and do not enter the sets of slow

or conserved charges.

The slow charges we are interested in in the following sections 2.4 and 2.5

are violated by interactions whose scale is set by the temperature T , up to

19When the Yukawa interaction of the µ or the one of the τ lepton is slow, also flavor non-
diagonal charges have to be considered. In this case the particle chemical potentials are matrices,
and (2.37) contains traces [47].
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Chapter 2 Effective kinetic equations for out-of-equilibrium processes

dimensionless couplings. The Hubble rate (2.3), on the other hand, behaves

like H ∼ T 2, such that in the evolution of the Universe the slow charges we

consider eventually come into equilibrium at the equilibration temperature, they

are said to freeze in [48]. The opposite is the case for electroweak sphalerons

which effectively violate baryon and lepton numbers with a rate much larger than

the Hubble rate only above the freeze out temperature (see below).

8.5 · 104 GeV � T � 109 GeV The lepton number LeR carried by right-

handed electrons is not yet efficiently violated by the electron Yukawa coupling

so that it constitutes a strictly conserved charge, and we have to introduce a

corresponding chemical potential in (2.32). Interactions mediated by µ and τ

Yukawa couplings are in equilibrium [52], and constitute fast processes, which do

not give rise to conserved charges. Inserting the particle chemical potentials

µQ =
µY
6
− µX

3
, µuR =

2µY
3
− µX

3
, µdR = −µY

3
− µX

3

µ`α = −µY
2

+ µXα , µeR = −µY + µXe + µLeR , µµR = −µY + µXµ

µτR = −µY + µXτ , µϕ =
µY
2

(2.39)

with µX ≡ 1
3

∑
α µXα into the pressure (2.37) and using (2.33), we obtain the

inverse susceptibilities

χ−1 =
2

481T 3V


666 0 0 −555 111

0 533 52 156 156

0 52 533 156 156

−555 156 156 2133 135

111 156 156 135 246

 (2.40)

for the ordering {Xe, Xµ, Xτ , LeR, Y }. If all the Xα are slow the matrix Ξ−1 is

given by the upper left 3×3 block of (2.40) due to (2.34), and then

Ξ =
T 3V

180

 65 0 0

0 82 −8

0 −8 82

 (2.41)

for the ordering {Xe, Xµ, Xτ}. According to (2.35), the equilibrium values read

Xeq
e =

5

6
LeR, (2.42)

Xeq
α = − 4

15
LeR (α = µ, τ). (2.43)
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2.3 Charges and chemical potentials

Hypercharge neutrality implies

µY =
1

11
µLeR +

8

33

∑
α

µXα , (2.44)

and the relation between LeR and its chemical potential reads

µLeR = −5

6
µXe +

4

15

(
µXµ + µXτ

)
+

33

5T 2V
LeR. (2.45)

T ∼ 8.5 · 104 GeV Interactions mediated by the electron Yukawa coupling

happen at a rate comparable to the Hubble rate, so that LeR is slowly varying

(we obtain the equilibration temperature in chapter 3). The relation between

charges and chemical potentials remains the same as in (2.40), and also (2.44)

and (2.45) are valid. If all four charges are slowly varying, i.e., if Xα generation

and equilibration of right-handed electrons happen at the same time, we have

vanishing equilibrium values for all slow variables, because there is no strictly

conserved non-zero charge. In this case the matrix Ξ−1 is given by the upper left

4×4 block of (2.40), and then we have

Ξ =
T 3V

594


277 −20 −20 75

−20 277 −20 −24

−20 −20 277 −24

75 −24 −24 90

 (2.46)

for the ordering {Xe, Xµ, Xτ , LeR}. In particular, even though the sterile-neutrino

interactions do not violate the conservation of LeR, and the electron Yukawa

coupling does not violate the one of Xα, the evolution equations of LeR and

the Xα are coupled through the matrix of susceptibilities. In case the only slow

variable is LeR, we have the 1×1 matrix

Ξ =
481

4266
T 3V, (2.47)

and LeR obtains an equilibrium value for non-vanishing Xα, see section 2.5.

160 GeV� T � 8.5 · 104 GeV Here all Standard Model interactions are in

equilibrium. The particle chemical potentials are given by (2.39) with µLeR = 0.
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Chapter 2 Effective kinetic equations for out-of-equilibrium processes

Repeating the same steps as above, the inverse susceptibility matrix reads [47]20

χ−1 =
2

237T 3V


257 20 20 72

20 257 20 72

20 20 257 72

72 72 72 117

 (2.48)

for the ordering {Xe, Xµ, Xτ , Y }. If all Xα are slow, the matrix Ξ−1 is given by

the upper left 3×3 block of (2.48), and we have

Ξ =
T 3V

594

 277 −20 −20

−20 277 −20

−20 −20 277

 (2.49)

for the ordering {Xe, Xµ, Xτ}. Here hypercharge neutrality imposes [54]21

µY =
8

33

∑
α

µXα . (2.50)

T ∼ 130 GeV Around this temperature electroweak sphalerons freeze out [27].

Well below this temperature not only the differences between baryon and lepton

numbers Xα, but also their sum is conserved, such that the latter is a slow variable

here. As above, there is some freedom in the choice of the slow charges in this

temperature regime. We will see in section 2.4.2 that it is convenient to introduce

a chemical potential µB for baryon number B, instead of a chemical potential for

the sum B + L. Neglecting the Higgs vacuum expectation value, which is a small

quantity at this temperature, the chemical potentials carried by the particles read

µQ =
µY
6
− µX

3
+
µB
3
, µuR =

2µY
3
− µX

3
+
µB
3
, µdR = −µY

3
− µX

3
+
µB
3

µ`α = −µY
2

+ µXα , µαR = −µY + µXα , µϕ =
µY
2
, (2.51)

again with µX ≡ 1
3

∑
α µXα , and the inverse susceptibilities are given by

χ−1 =
1

36T 3V


88 16 16 28 24

16 88 16 28 24

16 16 88 28 24

28 28 28 79 6

24 24 24 6 36

 (2.52)

20See equation (63) of reference [47].
21See equation (4.2) of reference [54].

24



2.4 Kinetic equations for sterile neutrinos

for the ordering {Xe, Xµ, Xτ , B, Y }. If all Xα are slow, the matrix Ξ−1 is given

by the upper left 4×4 block of (2.52), and we have

Ξ =
T 3V

594


277 −20 −20 −84

−20 277 −20 −84

−20 −20 277 −84

−84 −84 −84 360

 (2.53)

for the ordering {Xe, Xµ, Xτ , B}. In [55] the developing Higgs expectation value

is taken into account.22 Hypercharge neutrality yields the relation [54]23

µY =
8

33

∑
α

µXα −
2

11
µB. (2.54)

T � 130 GeV Deep in the Higgs phase the susceptibilities have a non-trivial

temperature dependence because of the fact that not all particles are ultra-

relativistic, which is assumed in the approach of [47]. They have been studied

in [56].24

2.4 Kinetic equations for sterile neutrinos

Leptogenesis through oscillations has been described by Boltzmann equations, and

in the relativistic case with several flavors with generalizations thereof [57]. The

momentum spectrum of sterile neutrinos is non-thermal and it can be important

to keep the full momentum dependence [58], but for parameter space scans usually

momentum space averages are considered.25 There have been various approaches

which start from first principles to avoid some ad-hoc assumptions inherent in

the Boltzmann equation, and to systematically include medium effects [61–64].

Our generalization of the approach of [47] makes use of the slowness of the sterile

neutrino’s interaction right from the start. The resulting relations (2.26), (2.27),

and (2.28) are valid to all orders in fast Standard Model couplings, and can thus

be used to compute higher order corrections allowing to estimate the accuracy of

the approximations [50].

In [47] the linear coefficient for Xα equilibration, also called the washout rate,

has been obtained. It was applied to the production of a single sterile-neutrino

22See equations (3.8) and (3.9) of reference [55].
23See equations (4.5) and (4.6) of reference [54].
24See appendix A of reference [56].
25For recent work see, e.g., [59, 60].
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Chapter 2 Effective kinetic equations for out-of-equilibrium processes

flavor in [65]. In [58] it has been pointed out that non-linear terms in the kinetic

equations may also play an important role. We obtain these non-linear terms in

the remainder of this section by applying the formulae (2.27) and (2.28), along

with (2.26) for the linear ones. In [54] the rates for leptogenesis including non-

linear terms have been obtained using a quite different approach. There the

sterile-neutrino masses have been neglected, and in [43] non-linear equations have

been obtained also for the massive case.

Kinetic equations for the resonant production of a sterile-neutrino dark matter

candidate in the Higgs phase have been obtained, e.g., in [41, 43, 66]. Here the

need for non-linear kinetic equations arises naturally because of the dependence

of the active neutrino propagator on active lepton number chemical potentials.

It is conceivable that the dark matter content of the Universe be comprised of

several flavors of sterile neutrinos (either completely, or along other constituents),

which has not yet been systematically studied, to the best of our knowledge. The

kinetic equations we obtain in this chapter can be applied to sterile neutrinos in

such scenarios.

Now we proceed to use the formalism developed in section 2.2 to derive kinetic

equations for slow quantities in the Standard Model extended by ns flavors of sterile

neutrinos, as described by (1.10). We consider temperatures at which the muon

Yukawa interaction is in equilibrium, which is the case when T � 109 GeV [52].

Then there are two types of slow variables we are interested in. The first type

are the charges Xα, see (1.17). In the presence of conserved charges26 the Xα can

have a non-vanishing equilibrium value Xeq
α , so that the ya in (2.2) correspond to

δXα ≡ Xα −Xeq
α . We discuss the equilibrium expectation values in section 2.3.

At T ∼ 8.5 ·104 GeV, when the rate of electron Yukawa interactions is comparable

to the Hubble rate,27 the lepton number carried by right-handed electrons LeR

is a slow variable, and at T ∼ 130 GeV, when electroweak sphalerons freeze

out [27], baryon number is slow. The conservation of LeR and B is not violated

by the sterile-neutrino Yukawa interaction. However, the Xα, LeR and B are

individually correlated with U(1) hypercharge Y , see section 2.3, so that their

evolution equations are coupled through the matrix of susceptibilities Ξ. When

T >∼ 109 GeV the muon Yukawa coupling causes slow interactions and additional,

26At the temperatures we consider, only right-handed electron number LeR can be conserved
and non-vanishing, if all Xα are violated by the sterile-neutrino Yukawa interaction. This can be
the case between 8.5 · 104 GeV� T � 109 GeV, see section 2.3.

27We obtain the equilibration temperature of right-handed electron number LeR in section 3.3,
see (3.57).
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2.4 Kinetic equations for sterile neutrinos

flavor non-diagonal charges have to be taken into account [61]. Specifically, then,

the symmetry group of slow charges is non-abelian. In our case, however, all of

the charges Xα, LeR, and B commute at equal times.

We consider a finite volume V and take V → ∞ in the end. Without the

Yukawa interaction, the sterile neutrino fields Ni in (1.10) would be free and the

equation of motion would give

Ni(x) =
∑
kλ

1√
2EkiV

[
eikx ukiλ akiλ(t) + e−ikx vkiλ a

†
kiλ(t)

]
(2.55)

with akiλ(t) = exp(−iEkit)akiλ(0) and Eki = (k2 +M2
i )1/2. The spinors u and v

are chosen such that a†ki± creates a sterile neutrino with helicity ±1/2. The

sterile neutrinos can not be expected to be in kinetic equilibrium since kinetic

and chemical equilibration are due to the same processes. Therefore the other

type of slow variables consists of the phase space densities, or occupancies, of

the sterile neutrinos. For each k and λ the occupation number operators form a

matrix, called matrix of densities, or density matrix, with elements28

(fkλ)ij ≡ a†kiλakjλ. (2.56)

In the presence of the Yukawa interaction in (1.10) we define the occupation

number operators through equations (2.55) and (2.56).29 Their equilibrium values

read

(f eq
kλ)ij = δijfF(Eki). (2.57)

The variables appearing in the effective kinetic equations (2.2) are real, such

that the theory in section 2.2 is not applicable to all of the operators in (2.56) for

ns > 1. Therefore we consider the Hermitian operators

fakλ ≡ T aija†kiλakjλ, (2.58)

and go back to kinetic equations for the (fkλ)ij in the end. The T a in (2.58) are

the Hermitian U(ns) generators satisfying the normalization and completeness

relations

tr(T aT b) =
δab

2
,

∑
aT

a
ijT

a
kl =

δilδjk
2

. (2.59)

28In the literature there are several conventions for the order of the indices. We use the one
of [54].

29This definition slightly differs from the one in [65]. The definition in [65] and our present
definition are equivalent to the first and the second definition in [54], respectively.
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Chapter 2 Effective kinetic equations for out-of-equilibrium processes

We write δf ≡ f − f eq for both (fkλ)ij and fakλ. The δfakλ appear as slow

variables ya in the equations of motion (2.2).

We will expand the kinetic equations (2.2) to order h2, and to second order

in the deviations δX of the charges (1.17), including the terms of order (δX)2δf .

Terms with more than one factor of δf do not enter the kinetic equations at

order h2, as we show in appendix C.

The fluctuations of the occupancies are comparable to the deviation of f

from equilibrium, and the higher susceptibilities (2.14) of f do not satisfy (2.15).

Strictly speaking, the theory in the preceding sections is therefore not applicable

to the occupancy. However, one can coarse-grain the operators f over a certain

momentum region, and the resulting operators satisfy the requirements of the

framework developed in the above sections. The dependence on the momentum

averaging volume drops out in the end. This way we can effectively use the original

operators f instead of their smeared versions in our equations. We elaborate on

the details of this procedure in appendix A.

2.4.1 Correlation functions

With a certain degeneracy of the vacuum masses in (1.10), the sterile neutrinos

undergo oscillations, which appear already at order h0. They are described

by the off-diagonal matrix elements in (2.56). One can obtain the equation of

motion simply by taking the time derivative of the operators (2.56) and taking the

expectation value. However, it is also instructive to use the Kubo relation (2.26).

The equilibrium contribution cancels the disconnected contractions, such that we

can replace δf → f in (2.65) and consider only the connected two-point function

∆fakλf
b
pλ′

(t) ≡
〈
T fakλ(t)f bpλ′(0)

〉
C
. (2.60)

The time t in (2.60) is imaginary, t = −iτ with real τ , and T denotes time ordering

with respect to τ , see (D.2). We encounter the 2-point functions of the operators

appearing in (2.55), for which we find (for both positive and negative τ)

〈
T a†ikλ(−iτ)ajpλ′(0)

〉
= δij δkp δλλ′ T

∑̃
p0

ep
0τ

p0 − Eik
. (2.61)

The retarded correlators appearing in (2.26) are obtained by Fourier transform-

ing (2.60) with imaginary bosonic Matsubara frequency ω = iωn ≡ inπT (with

even n), and then continuing ω to the real axis, ∆ret(ω) = ∆(ω + i0+) with real ω.
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2.4 Kinetic equations for sterile neutrinos

One encounters factors like 1/(ω + Eki − Ekj). To give a contribution to (2.26)

this has to be approximately 1/ω when ω � ωfast. This requires

|δM2
ij |/Eki ∼ |δM2

ij |/T � ω (2.62)

with

δM2
ij ≡M2

i −M2
j , (2.63)

which means that the frequency for the oscillations between sterile flavors i and

j has to be small compared to ωfast. After a simple computation we obtain at

order h0

ω∆ret
fakλf

b
pλ′

(ω) = − δkp δλλ′
∑
(ij)

f ′F(Eki)
δM2

ij

2Eki
T aijT

b
ji +O

(
ω, h2, δM4

)
, (2.64)

The notation (ij) indicates that we only sum over indices with |δM2
ij |/T � ωfast.

After expanding in δM2 and h, the retarded correlator entering (2.26) no longer

knows about the scale γ, and we can set ω → 0.

At order h2 only the first terms in square brackets in (2.27) and (2.28) survive

in the kinetic equations (2.87) and (2.88), if we expand to quadratic order in

chemical potentials. Therefore we only discuss these terms in the following.

Terms with ΞXXX are canceled once the slow charges are expressed through

their chemical potentials, see (2.31), and the terms containing Ξfff or Ξffff

lead to cancellation of the coefficients γfff and γffff , which we demonstrate in

appendix C. Since they are defined as the connected pieces, the contributions from

the susceptibilities (2.14) with mixed indices f and X vanish at leading order in h,

since the correlators they multiply in the master formulae are already of order h2.

We keep the dependence on the absolute Majorana mass scale in all expressions.

This is important in order to be able to obtain kinetic equations describing light

sterile neutrino dark matter production during the QCD epoch, because here

the O(h2) terms actually go like h2M2 [41]. This dependence emerges from the

retarded active neutrino self-energy, which appears in the kinetic equations in

the Higgs phase. At order h2 we neglect terms of order δM2, because both h2

and δM2 are small quantities.

To determine the coefficients γff , γffX , and γffXX we employ (2.26) through

(2.28) directly, without making use of (2.30). The latter relation turns out to be

very inconvenient here if there is more than one sterile flavor due to a UV divergent
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Chapter 2 Effective kinetic equations for out-of-equilibrium processes

contribution from the commutators, which only cancels against a divergence in

the first term in square brackets of (2.30). Thus we consider

∆fakλ(fb
pλ′Xα1 ···Xαn )(t) ≡

〈
T fakλ(t)

(
f bpλ′Xα1 · · ·Xαn

)
(0)
〉
C
. (2.65)

Again, we were able to replace δf → f and here also δX → X on the right-hand side

of (2.65), since we need only the connected correlator. We adopt this procedure

in the remainder of this section, understanding that all expectation values are

connected. As in (2.60), t is imaginary. f bpλ′ and the charge operators Xαi

commute at equal times. The O(h2) contribution to (2.65) becomes

∆fakλ(fbpλXα1 ···Xαn )(t) =

∫
d4x1d

4x2 (2.66)

× tr
{
h†
〈
T N(x2)N(x1)fakλ(t)f bpλ(0)

〉
C

h
〈
T J(x1)J̄(x2)(Xα1 · · ·Xαn)(0)

〉
C

}
,

where the trace refers to both spinor and active flavor indices. Since we consider

the leading order in h, we can neglect the sterile-neutrino Yukawa interaction in

the expectation values on the right-hand side of (2.66). Our definition of a and

a† allows us to substitute them for N and N in the path integral, and then work

with (2.61). The second expectation value in (2.66) is now a correlation function

containing only Standard Model fields. When h is neglected, the charges Xα are

conserved, and one can introduce chemical potentials µXα such that〈
T J(x1)J̄(x2)(Xα1 · · ·Xαn)(0)

〉
C

=

[
T

∂

∂µXα1
· · ·T ∂

∂µXαn
∆JJ̄(x1 − x2, µ)

]
µX=0

(2.67)

with

∆JαJ̄β
(x, µ) ≡ Z−1 tr

{
T Jα(x)J̄β(0) exp

[
1

T

(∑
γ

µXγXγ −HSM

)]}
, (2.68)

where Z ≡ tr exp
[(∑

γ µXγXγ − HSM

)
/T
]

is the partition function at finite

chemical potentials of the slowly varying charges, and HSM is the Hamiltonian

containing all Standard Model interactions which are in equilibrium at the tem-

perature of interest. The traces in (2.68) and in Z run over states with definite

values of the conserved charges, which is why only the slow charges appear in

the exponential. Note that one can introduce chemical potentials for the Xγ only

after expanding in h. Therefore one cannot write ∆ff (ω, µ). We collect some

useful formulae for thermal two-point functions at finite chemical potentials in
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2.4 Kinetic equations for sterile neutrinos

appendix D. For vanishing h, (2.68) is diagonal in the active flavor indices, so

that we can write

∆JαJ̄β
≡ δαβ∆α. (2.69)

The chemical potential of the operator Jα in the sense of (D.5) is µJα = −µXα .

Therefore the function eµXατ∆α(−iτ,x, µ) is anti-periodic in τ , see (D.4), and

the Fourier decomposition of (2.68) reads30

∆α(−iτ,x, µ) = T
∑̃
p0

e−(p0+µXα )τ∆α(p0,x, µ). (2.70)

The Matsubara correlator on the right-hand side of (2.70) can be expressed

through its spectral function31 via

∆α(−iτ, µ) =

∫
dω′

2π
e−ω

′τ ρα(ω′, µ)
{

Θ(τ)
[
1− fF(ω′ − µXα)

]
−Θ(−τ)fF(ω′ − µXα)

}
. (2.71)

The spectral function satisfies

ρα(k, µ) =
1

i

[
∆ret
α (k, µ)−∆adv

α (k, µ)
]
, (2.72)

and according to (D.8), the retarded and advanced correlators are given by

∆ret,adv
α (k, µ) = ∆α

(
k + u[−µXα ± i0+], µ

)
(2.73)

with real k0, where u = (1,0) is the four-velocity of the plasma.

After summing over the Matsubara frequencies we analytically continue ω

towards the real axis which gives the O(h2) contribution to the retarded correlator

ω∆ret
fakλ(fb

pλ′Xα1 ···Xαn )
(ω) = − δkp δλλ′

∑
β (i j l)

f ′F(Eki)

2Eki

[
T

∂

∂µXα1
· · ·T ∂

∂µXαn

×
{
h†βlT

b
ljT

a
jihiβ ukiλ∆ret

β (kj , µ)uklλ − h†βiT
a
ijT

b
jlhlβ uklλ∆adv

β (kj , µ)ukiλ (2.74)

+h†βiT
a
ljT

b
jihlβ vklλ∆ret

β (−kj , µ)vkiλ − h†βlT
b
ijT

a
jlhiβ vkiλ∆adv

β (−kj , µ)vklλ

}]
µX=0

30See, e.g., chapter 8.1 of reference [67].
31The spectral function for fermionic operators is defined as in (2.25), but with an anticom-

mutator instead of the commutator.
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Chapter 2 Effective kinetic equations for out-of-equilibrium processes

with kj ≡ (Ekj ,k). Here and in the following we take ω → 0 on the right-hand

side, as we did in equation (2.64). Due to[
ukjλ∆ret

JαJ̄β
(q, µ)uk′iλ′

]∗
= uk′iλ′∆

adv
Jβ J̄α

(q, µ)ukjλ, (2.75)

the right-hand side of (2.74) is purely imaginary.

The computation of the correlator entering γfX is analogous to the one relevant

for γfXX , with a few less extra steps. In the computation of the latter we make

use of (2.29), where the commutator vanishes, and obtain the contribution

ω Im ∆ret
fakλ(XαXβ)(ω) = −Re

[
∆ret
fakλ(ẊαXβ)

(ω) + ∆ret
fakλ(ẊβXα)

(ω) + ∆ret
fakλ([Xα,Ẋβ ])

(ω)
]

(2.76)

to the master formula (2.27). Since[
∆ret
AB(ω)

]∗
= ∆ret

A†B†(−ω) (2.77)

for bosonic operators A and B, the rightmost term in (2.76) vanishes for ω → 0,

and we are left with the two terms in which the charge X without time derivative

appears to the right of Ẋ. In these terms we can use the same line of arguments

as the one below (2.66) after having expanded the correlators to quadratic order

in h,32 relating averages like 〈T JJ̄X〉 to derivatives with respect to chemical

potentials of 〈T JJ̄〉µ. The time derivative of the charge is obtained from the

Heisenberg equation of motion and reads

Ẋα(t) = i
∑
j

∫
d3x

[
Nj(t,x)hjαJα(t,x)−H.c.

]
. (2.78)

Using (2.75) and omitting terms of order δM2, we obtain (for n = 0, 1)

Re ∆ret
fakλ(ẊαXn

β )
(ω) = −

∑
(i j)

1

4Eki

f ′F(Eki)

fF(Eki)
T aij

[(
T

∂

∂µXβ

)n
(2.79)

×
{fF(Eki − µXα)

fF(−µXα)
h†αihjαukjλρα(ki, µ)ukiλ

−fF(Eki + µXα)

fF(µXα)
h†αjhiαvkiλρα(−ki, µ)vkjλ

}]
µX=0

.

32In contrast to the computation of (2.74), here only one additional interaction is needed,
because Ẋ is already of order h, see (2.78).
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Analogously, we use (2.29) to relate ∆ret
X(fX··· ) to ∆ret

Ẋ(fX··· ), where the com-

mutator vanishes once again. Using (2.75) and (2.72) we obtain the correlators

ω∆ret
Xα(fakλXβ1 ···Xβn )(ω) = i

∑
γ (i j)

f ′F(Eki)

2Eki
T aij

[
T

∂

∂µXβ1
· · ·T ∂

∂µXβn
(2.80)

×
{
h†αihjαukjλρα(ki, µ)ukiλ − h†αjhiαvkiλρα(−ki, µ)vkjλ

}]
µX=0

,

where once again we have dropped terms of order δM2.

The correlators containing only charges X are obtained similarly to the steps

that yield (2.79). Equation (2.30) gives

∆ret
Xα(XβXγ)(ω) =

1

ω2

[
∆ret
Ẋα(XβXγ)˙

(ω) + i
〈
[Xα, (XβXγ )̇ ]

〉
+ ω

〈
[Xα, XβXγ ]

〉]
.

(2.81)

The first commutator on the right-hand side drops out when taking the imaginary

part in (2.27). The second one vanishes because the charges (1.17) commute at

equal times. We rewrite the first term on the right-hand side as

∆ret
Ẋα(XβXγ )̇

= ∆ret
Ẋα(ẊβXγ)

+ ∆ret
Ẋα(ẊγXβ)

+ ∆ret
Ẋα([Xβ ,Ẋγ ])

, (2.82)

where the third term on the right-hand side of (2.82) does not contribute to (2.27)

due to the relation (2.77). Since Ẋ = O(h), at order h2 the first two terms can

be obtained from

∆ret
Ẋα(ẊβXγ)

(ω) =

[
T

∂

∂µXγ
∆ret
ẊαẊβ

(ω, µ)

]
µX=0

. (2.83)

Then we take the thermodynamic limit replacing
∑

k → V
∫
k and we find (the

trace runs over spinor indices)

1

ω
Im ∆ret

ẊαẊβ
(ω, µ) =− δαβ V

∫
k

∑
i

|hiα|2
1

4Eki

f ′F(Eki)

fF(Eki)
(2.84)

× tr
{
/ki

[fF(Eki − µXα)

fF(−µXα)
ρα(ki, µ) +

fF(Eki + µXα)

fF(µXα)
ρα(−ki, µ)

]}
.

2.4.2 Kinetic equations

In [47] the washout rate was written in terms of charges. Here we express all

kinetic equations in terms of the chemical potentials µXα by making use of the

relations between charges and chemical potentials from section 2.3. In this case
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Chapter 2 Effective kinetic equations for out-of-equilibrium processes

one does not need the equilibrium values (2.42) and (2.43). This is not true, if

the right-hand sides of the kinetic equations are expressed in terms of the charges.

From now on we understand the ∆α(k, µ) to be defined in a grand-canonical

description, where the µ label chemical potentials associated with all charges.

We expand our kinetic equations to quadratic order in slowly varying chemical

potentials, then the higher order terms in (2.31) do not contribute. The term

with ΞXXX on the right-hand side of (2.31) cancels the second term in square

brackets in (2.19). The corresponding susceptibility of the occupancies Ξfff ,

which appears only in (2.27), leads to cancellation of the coefficient γfff , see

appendix C, and Ξffff in (2.28) does the same with the coefficient γffff . At

order h0 all other Ξabc vanish identically, and the only other nonzero Ξabcd are

those with four charges δX which, however, enter (2.28) only for a coefficient

multiplying three factors of δX in (2.2), which is beyond our expansion to order µ2.

The (inverse) susceptibilities of the sterile-neutrino occupancy read (without

sum over k or λ)

Ξfakλf
b
kλ

= T aijT
b
ji fF(Eki)[1− fF(Ekj)] , (2.85)

(Ξ−1)fakλf
b
kλ

=
4T aijT

b
ji

fF(Eki)[1− fF(Ekj)]
. (2.86)

Plugging (2.64), (2.74), and (2.79) into the respective master formulae (2.26)

through (2.28) we obtain the kinetic equations

(ḟkλ)mn =
i

2Ekm

{
δM2

mn (fkλ)mn

+
∑
α l

[
uklλ

(
hnα∆ret

α (kl, µ)h†αl
[
(fkλ)ml − δmlfF(Ekl − µXα)

]
− hlα∆adv

α (kl, µ)h†αm
[
(fkλ)ln − δlnfF(Ekl − µXα)

])
uklλ

+ vklλ

(
hmα∆ret

α (−kl, µ)h†αl
[
(fkλ)ln − δlnfF(Ekl + µXα)

]
− hlα∆adv

α (−kl, µ)h†αn
[
(fkλ)ml − δmlfF(Ekl + µXα)

])
vklλ

]}
+ O

(
µ3, h2δM2, δM4, h4

)
, (2.87)

for those elements of the occupancy matrix for which |δM2
mn|/T � ωfast (including,

of course, the diagonal elements). For the other elements the right-hand side
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vanishes in our approximation. The sum is over indices l for which |δM2
ml|/T �

ωfast. fk+ does not appear on the right-hand side of the kinetic equation for fk−,

and vice versa.

In equation (2.84) we express /k through the completeness relation of the u or

v spinors. Together with equation (2.80), and taking the limit V →∞, we obtain

the kinetic equation for the charge density nXα ≡ Xα/V

ṅXα =
∑

(i j)λ

∫
k

1

2Eki

{
ukiλhiαρα(ki, µ)h†αjukiλ

[
(fkλ)ij − δijfF(Eki − µXα)

]
− vkiλhjαρα(−ki, µ)h†αivkiλ

[
(fkλ)ij − δijfF(Eki + µXα)

]}
+ O

(
µ3, h2δM2, h4

)
. (2.88)

When additional processes are slow, one needs additional kinetic equations.

Around T ∼ 130 GeV, this is the case for the B + L violating electroweak

sphaleron processes [27]. Then it is convenient to include a kinetic equation

for B [28,68], since B is not violated by the sterile-neutrino Yukawa interaction

so that only the sphaleron rate enters this equation. When T ∼ 8.5 · 104 GeV, the

lepton number carried by right-handed electrons evolves slowly, and one has to

include the kinetic equation for LeR which we obtain in section 2.5 and chapter 3.

Using a different approach from ours, an equation similar to (2.87) was derived

previously in [54],33 assuming Mi � T for all Majorana masses, so that the

condition (2.62) is satisfied. In [54] the chemical potential for Lα appears in fF

instead of the one for Xα, which is nevertheless consistent: When electroweak

sphalerons are in equilibrium, our statistical operator which determines ∆α

contains µXαXα, but no separate chemical potential for baryon number because

the latter is not conserved. In reference [54] µαLα + µBB appears. However,

using the equilibrium conditions one can match the coefficients which gives

µα = µXα , and µB = −∑α µXα/3. Therefore the chemical potentials appearing

in the distribution functions in our kinetic equations are consistent with those

in [54]. This is also true when baryon number B is slow. In the corresponding

temperature regime our statistical operator contains µXαXα + µBB, while the

one in reference [54] is the same as in the high-temperature regime discussed

above. Matching the chemical potentials again yields µα = µXα , and this time

µthere
B = µhere

B −∑α µXα/3, so that again the chemical potentials in the distribution

functions appearing in the kinetic equations coincide.

33See equation (2.29) of reference [54].
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Chapter 2 Effective kinetic equations for out-of-equilibrium processes

Unlike the equation in [54], our (2.87) contains not only scattering contri-

butions, see appendix E.1, but also dispersive ones, see appendix E.2. In [54]

the latter are incorporated at a later stage. Aside from that, the first term in

the curly bracket in (2.87) (which contains the u-spinors) is equivalent to the

corresponding one in [54].34 For vanishing Majorana masses (2.88) coincides with

the corresponding equation in [54].35 Furthermore, for non-vanishing Majorana

masses, our contributions containing the u-spinors also appear there. The v-spinor

contribution is equivalent, after the replacement described in footnote 34.

In reference [41] kinetic equations for the spin averaged occupancies of sterile

neutrinos without near mass degeneracy and for lepton numbers in the Higgs

phase have been obtained. There the spin asymmetry of the sterile neutrinos has

been neglected.36 In reference [43] the same authors have obtained equations for

a hierarchical system with one light and two heavy sterile neutrinos in the Higgs

phase. There the kinetic equations are given in terms of the retarded correlator

of J as a function of slowly varying chemical potentials, like in our (2.87). The

terms multiplying these correlators are given to linear order in slowly varying

quantities. Using the relation37

vkiλ∆ret
α (−q, µ)vkiλ = − uki,−λ∆adv

α (q,−µ)uki,−λ, (2.89)

(no sum over repeated indices) which is valid when the Standard Model CP
violation is neglected, together with (2.75), we can reproduce the kinetic equations

for the light flavor and the heavy ones,38 as well as the one for the lepton

asymmetries.39

2.4.3 Small Majorana masses & low-scale leptogenesis

In low-scale leptogenesis [33,34] the sterile-neutrino masses are small compared

to the temperature, so that typically Mi � |k|. Then they can be neglected in

the terms containing their (also small) Yukawa couplings, so that the helicity

eigenspinors u and v are purely right- and left-handed. Since the operator J is

purely left-handed, the terms with v+ or u− drop out. Then we also have the

34The helicity diagonal contribution containing the v-spinors in [54] is not consistent with our
equation (2.87). However, it becomes consistent after applying (2.22) of [54].

35See equation (2.32) of reference [54].
36See equations (2.21) and (2.24) of reference [41].
37Since we have made the transition to the grand-canonical description, µ in equation (2.89)

now denotes the chemical potentials of all charges.
38See equations (2.5) and (2.6) of reference [43].
39See equation (2.4) of reference [43].
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2.4 Kinetic equations for sterile neutrinos

relations uki+uki+ = vki−vki− = PR/k with the chiral projector PR ≡ (1 + γ5)/2.

Furthermore, condition (2.62) is trivially satisfied, so that the kinetic equations

simplify to

(ḟk+)mn =
i

2|k|

{[
M2,fk+

]
mn

(2.90)

+
∑
α l

tr
[
/k
(
hnα∆ret

α (k, µ)h†αl
[
(fk+)ml − δmlfF(|k| − µXα)

]
− hlα∆adv

α (k, µ)h†αm
[
(fk+)ln − δlnfF(|k| − µXα)

])]}
,

(ḟk−)mn =
i

2|k|

{[
M2,fk−

]
mn

(2.91)

+
∑
α l

tr
[
/k
(
hmα∆ret

α (−k, µ)h†αl
[
(fk−)ln − δlnfF(|k|+ µXα)

]
− hlα∆adv

α (−k, µ)h†αn
[
(fk−)ml − δmlfF(|k|+ µXα)

])]}
,

and (again nXα ≡ Xα/V )

ṅXα =
∑
(i j)

∫
k

1

2|k|tr
[
/k
{
hiαρα(k, µ)h†αj

[
(fk+)ij − δijfF(|k| − µXα)

]
−hjαρα(−k, µ)h†αi

[
(fk−)ij − δijfF(|k|+ µXα)

]}]
. (2.92)

In (2.90) through (2.92) we have k0 = |k|, the traces refer to spinor indices,

and we have neglected terms of order µ3, as well as terms of order h2M2, M4,

and h4. Similar equations have been obtained in reference [35]. Keeping in

mind that they use the index convention of reference [57], we can reproduce their

kinetic equation40 for the sterile neutrino occupancies by setting tr
[
/k∆ret

α (k, µ)
]

=

tr
[
/k∆adv

α (k, µ)
]∗ → −T 2/4 + i|k|

(
γ(0) + µαγ

(2)
)

in our (2.90) and (2.91), and

neglecting terms quadratic in chemical potentials. Recalling (2.72), we can also

reproduce their kinetic equation41 corresponding to our (2.92) in the same way.

Setting µ = 0 in the spectral function ρα in (2.92) and expanding the Fermi

distribution to linear order in µXα , one obtains the washout term which was found

in [47].

40See equation (2.14) of reference [35].
41See equation (2.18) of reference [35].
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Chapter 2 Effective kinetic equations for out-of-equilibrium processes

eR(k
′)eR(k)

B

Figure 1: Example of a momentum changing process that keeps right-handed
electrons eR in kinetic equilibrium. The wiggly line is a U(1) gauge boson, and
the thick line represents a generic weak-hypercharged particle in the plasma. This
process does not involve the electron Yukawa coupling he, but only the much
larger U(1) gauge coupling g′.

2.5 Kinetic equations for right-handed electrons

Here we apply the formalism of section 2.2 to the equilibration of right-handed

electrons. At temperatures T below 1013 GeV, weak hypercharge interactions

are much faster than the Hubble expansion,42 and the right-handed electrons are

kept in kinetic equilibrium (their spectrum is given by a Fermi-Dirac distribution)

by processes like the one in figure 1. This way, unlike for sterile neutrinos, only

the total number of right-handed electrons LeR in (1.20) is a kinetic variable,

while the momentum-resolved occupancy is not. Due to the smallness of the

electron Yukawa coupling the lepton number LeR carried by eR takes much longer

to equilibrate than the establishment of kinetic equilibrium. For sufficiently small

deviations from equilibrium the time evolution of LeR can be described by the

linearized version of (2.2), which generally reads

L̇eR = − γLeRLeRδLeR − γLeRXαδXα + · · · (2.93)

without Hubble expansion. If the Xα are not slowly varying at the time when LeR

comes into equilibrium, which is the case if low-scale leptogenesis is not realized,43

then the terms with γLeRXα are absent. A term containing the departure from

equilibrium of baryon number δB does not appear in (2.93), because by the time B

is a slow variable LeR has long come into equilibrium, as we will see around (3.57).

In principle there are also non-linear terms, like, e.g., the ones we took into account

42To see this, let us apply our argument from section 2.1.1 to the weak hypercharge gauge
coupling g′. Setting the ratio in (2.4) equal to unity and evolving the coupling g′ we obtain the
equilibration temperature ∼ a 3.2 · 1016 GeV, such that for a not much smaller than 10−3, the
claim holds.

43This is also the case, if low-scale leptogenesis is realized, but at temperatures much lower
than the equilibration temperature of LeR.
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2.5 Kinetic equations for right-handed electrons

in the kinetic equations for the Xα in section 2.4. Here we work only in the linear

regime.

To keep the discussion of the kinetic equation of LeR as general as possible,

it is convenient to strip off the dependence of the susceptibilities in the master

formulae, and to work with a kinetic equation that contains chemical potentials

on the right-hand side. This is possible by making use of the relation (2.31), such

that together with (2.26) the general kinetic equation (2.2) reads at linear order

ṅa = − Γabµb (2.94)

for the charge densities na ≡ Qa/V , with

Γab ≡
1

V
lim
ω→0

ω2 Im∆ret
ab (ω). (2.95)

For the purpose of determining the rates in (2.93), we will only need the coefficient

Γ ≡ ΓLeRLeR , (2.96)

which we demonstrate in turn for three scenarios in which the equilibration of

LeR plays a role. Therefore we need the inverse susceptibilities χ−1 treated in

section 2.3.

1. Only Standard Model interactions, LeR is the only slow variable. Then

the terms γLeRXα are absent in (2.93). Assume Xe to be non-zero, and

Xµ = Xτ = 0. Then (2.32) gives

µLeR
T

= (χ−1)LeRLeR(LeR − Leq
eR) (2.97)

and using (2.35) and (2.47) we obtain

Leq
eR = − ΞLeRLeR(χ−1)LeRXeXe = − (χ−1)LeRXe

(χ−1)LeRLeR
Xe (2.98)

Combining this with (2.94) yields

ṅLeR = − γLeRLeR(nLeR − neq
LeR

) (2.99)

with

γLeRLeR = TV (χ−1)LeRLeRΓ. (2.100)

Collecting the susceptibilities from equation (2.40) then gives

γLeRLeR =
4266

481T 2
Γ, (2.101)

neq
LeR

=
185

711
nXe . (2.102)
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Chapter 2 Effective kinetic equations for out-of-equilibrium processes

2. Only Standard Model interactions, LeR is the only slow variable, so that

again terms containing γLeRXα vanish in (2.93). Now allow for all Xα to be

non-vanishing, with the constraint B − L =
∑

αXα = 0. Then, by means

of (2.32) and (2.40), we have

ṅLeR = −T−2Γ

[
4266

481
nLeR −

30

13
nXe +

24

37

(
nXµ + nXτ

)]
. (2.103)

This equation can be recast in the form of (2.99) with (2.101) and now

neq
LeR

=
1

3
nXe , (2.104)

which agrees with the result in [45].

3. Type-I see-saw models realizing low-scale leptogenesis, like in section 2.4.

We reiterate the fact that if leptogenesis takes place around the same time as

the equilibration of right-handed electrons, then both the Xα and LeR have

to be treated as slow variables, and both terms appear on the right-hand side

of (2.93). We make use of (2.30) to relate the retarded two-point functions

of the charges to those of their time derivatives. The one of LeR is due to

the Yukawa interaction in (1.19) and reads

L̇eR = − i
∫
d3x

(
eRheϕ

†`e −H.c.
)
. (2.105)

Noting that the two commutators on the right-hand side of (2.30) do not

contribute, the time derivatives of Xα in (2.78) are uncorrelated with (2.105),

and therefore the rate coefficients ΓLeRXα vanish. Now (2.103) holds again,

and so does (2.101). This time the terms with nXα do not contribute to

neq
LeR

, but constitute individual source terms, so that neq
LeR

= 0 and

γLeRXe = − 30

13T 2
Γ, (2.106)

γLeRXα =
24

37T 2
Γ (α = µ, τ). (2.107)

These considerations imply that in the kinetic equation (2.93) for LeR can be

written as

ṅLeR = − ΓµLeR . (2.108)
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2.5 Kinetic equations for right-handed electrons

In order to obtain Γ we make use of (2.30) again to relate the retarded two-point

function of LeR to the one of its time derivative (2.105). Here the commutators

on the right-hand side of (2.30) vanish trivially, and we have

Γ =
1

V
lim
ω→0

1

ω
Im ∆ret

L̇eRL̇eR
(ω). (2.109)

The determination of the coefficient Γ at leading order in Standard Model couplings

is the subject of the following chapter 3.
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Chapter 3

Equilibration rate of right-handed electrons

In this chapter we improve on previous calculations of the equilibration rate

γLeRLeR of right-handed electrons eR by correctly treating various thermal effects,

including for the first time contributions from multiple soft gauge interactions in

collinear emission processes. We also compute the conversion rates γLeRXα in the

scenario of low-scale leptogenesis around the eR equilibration temperature. Both

of these rates factorize into the mutual rate coefficient Γ in (2.96) and different

inverse susceptibilities, see section 2.5. The latter are determined by equilibrium

thermodynamics, see section 2.3, and the more intrigued coefficient Γ, which we

compute here, encodes the kinematics. According to (2.109), this quantity is

determined by the correlator ∆ret
L̇eRL̇eR

which can most generally be visualized as

in figure 2. The imaginary part in (2.109) corresponds to cutting the diagram.

The processes contributing to the rate coefficient Γ are very similar to those

in the production of ultrarelativistic sterile neutrinos [69, 70], which we briefly

discuss in appendix E.1. There are two different types of contributions at leading

order, which is h2
eg

2 where g denotes a generic Standard Model coupling and he is

the electron Yukawa coupling. The first type includes the (inverse) 1↔ 2 decay

of Higgs bosons into right-handed electrons and lepton doublets, corresponding to

including only the thermal mass resummations in the gray blob in figure 2. This

decay is kinematically allowed when the thermal Higgs mass is sufficiently large.

One also has to take into account 1n ↔ 2n scatterings with soft gauge boson

exchanges, which can be visualized as below in figure 4. Due to their collinear

nature these processes are not suppressed. On the contrary, they lead to strong

enhancement compared to the rate for Higgs decay, because they open several

new channels, which also happens in sterile neutrino production [70]. Therefore

the multiple scatterings of 1n↔ 2n particles with arbitrary n have to be included,
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Chapter 3 Equilibration rate of right-handed electrons

eR

ℓe

ϕ
L̇eR(0)L̇eR(t)

Figure 2: Diagrammatic representation of the correlator entering the rate coeffi-
cient Γ. In order to give a contribution, the gray blob must contain additional
(self-) interactions. There is also a contribution from the same diagram but with
reversed direction of fermion number flow, according to the two terms in (2.105),
which we do not show.

which is known as Landau-Pomeranchuk-Migdal (LPM) resummation [71–73].

A complication compared to sterile neutrino production is that right-handed

electrons have Standard Model gauge interactions, because they carry weak

hypercharge. Therefore they are also affected by multiple scattering, similar

to gluons in QCD [74–76]. We discuss the (inverse) 1 ↔ 2 Higgs decays and

the generalization to multiple soft scattering in section 3.1. The second type of

processes are 2→ 2 scattering processes, which we discuss in section 3.2, where

we also show the diagrams that result from cutting the corresponding versions of

the one in figure 2.44

The chiral anomaly violates LeR conservation in the Standard Model. Therefore

LeR can be converted into hypercharge electromagnetic fields, changing the value of

LeR, and leading to terms including the hypercharge gauge fields on the right-hand

side of (2.93). In the absence of long-range gauge fields this is a non-linear effect.

However, complete equilibration may in fact lead to long-range hypermagnetic

fields [77]. These effects can be neglected as long as the growth rate of the gauge

fields is smaller than γLeRLeR in (2.93). In the Standard Model this requires that

the chemical potential conjugate to LeR satisfies (see appendix F)

|µLeR | <∼ 1.4 · 10−3 T (3.1)

when γLeRLeR is comparable to the Hubble rate, i.e. around T ∼ 8.5 · 104 GeV,

see (3.57).

44See figure 5 below.
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3.1 Higgs decay and multiple soft scattering

The importance of electron equilibration was first pointed out in [44], where

it was noted that the final baryon asymmetry is exponentially sensitive to the

equilibration rate. A computation in [44] included only the inverse Higgs decay.

The importance of 2 → 2 scattering was noted in [45]. The equilibration of

heavier lepton flavors in thermal leptogenesis was studied in [61, 78]. It was

pointed out that multiple soft 1n ↔ 2n scattering processes also contribute at

leading order [78], and the corresponding rate was estimated, but it has not been

computed so far.

We evaluate Γ at vanishing chemical potentials, which is appropriate when the

charge densities are small. This way we avoid the problem of infrared divergences

in processes with Higgs bosons in the initial or final state. In [54] this problem is

discussed in the case of rates entering the kinetic equations for sterile neutrinos.

3.1 Higgs decay and multiple soft scattering

The bulk of particles in the plasma have hard momenta, p ∼ T . In the symmetric

phase, the Standard Model particles carry thermal masses. For the Higgs boson

the thermal mass is momentum independent and is given by [79]

m2
ϕ =

1

16

[
3g2 + g′

2
+ 4h2

t + 8λ
]

(T 2 − T 2
0 ), (3.2)

with T0 = 160 GeV. For hard fermions one has to use the so-called asymptotic

thermal masses [79], which for the left- and right-handed leptons are given by45

m2
`e =

1

16

[
3g2 + g′

2
]
T 2, (3.3)

m2
eR

=
1

4
g′

2
T 2. (3.4)

For T � T0 the Higgs bosons have the largest mass, and for certain values of

the couplings their decay into left-handed electron lepton doublets `e and the

right-handed electrons is kinematically allowed. With increasing temperature the

top Yukawa coupling decreases quickly such that above a certain temperature mϕ

becomes smaller than m`e +meR and the channel closes. Since mϕ > m`e > meR

at any temperature well above the electroweak scale, no other 1↔ 2 decay channel

opens up at a higher temperature.

45For fermions the asymptotic mass is a factor
√

2 larger than the one at zero momentum [79].
In [45] the zero-momentum fermion masses are used. The thermal lepton doublet mass in (3.3)
is actually flavor independent, and the same is true for the singlet mass in (3.4).
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e

ℓ̄e

R e

ℓe

R

Figure 3: The interference of these two exemplary 1n→ 2n processes with n = 2
needs to be taken into account. The gauge bosons have soft momenta q ∼ gT ,
and the short lines at the bottom ends of their wiggly lines represent particles in
the plasma.

Since the masses are small compared to T , the particles participating in

the decay process are ultrarelativistic. Furthermore, their momenta are nearly

collinear, with transverse momenta p⊥ of order gT . The wave packets of the decay

products have a width of order 1/p⊥. They overlap for a time of order 1/(g2T ),

the so-called formation time. Here the formation time is of the same order of

magnitude as the mean free time between scatterings with soft momentum transfer

q ∼ gT . Thus the particles typically scatter multiple times before their wave

packets separate, so that the scatterings cannot be treated independently. We show

two exemplary diagrams in figure 3. This situation is similar to bremsstrahlung

in a medium in QED [71–73,80] (see also [81]), and in QCD [74–76,82, 83], where

it leads to a suppression of the emission probability. In the case of sterile neutrino

production, on the other hand, it gives a strong enhancement, because new

kinematic channels are opened [70]. We compute the Higgs decay in section 3.1.1,

and include multiple soft scatterings in section 3.1.2.

3.1.1 Higgs decay

We start from the imaginary time correlator

∆L̇eRL̇eR
(iωn) =

1/T∫
0

dτ eiωnτ 〈L̇eR(−iτ)L̇eR(0)〉, (3.5)

with bosonic Matsubara frequency ωn. Without soft gauge interactions, the

correlator (3.5) reads

∆L̇eRL̇eR
(iωn) = −2V h2

eT
2
∑̃
p0,k0

∫
p,k

tr [S`e(p)SeR(k)] ∆ϕ(p− k + iωnu)

+(iωn → −iωn), (3.6)
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3.1 Higgs decay and multiple soft scattering

with u = (1,0) the four-velocity of the plasma. We write the scalar field propagator

as

∆a(p) =
−1

(v · p)(v · p)− p2
⊥ −m2

a

. (3.7)

Here, v = (1,v) with a unit vector v, which defines the longitudinal direction,

and v = (1,−v). Chiral symmetry is unbroken, even with thermal masses.

Therefore the non-vanishing components of the fermion propagators in the Weyl

representation can be written as 2×2 matrices,

S`e(p) = σ · p∆`e(p), (3.8)

SeR(p) = σ · p∆eR(p), (3.9)

where σµ, σµ are the usual Pauli matrices. There are two different kinematic

situations which we have to take into account: either all momenta satisfy v·p ∼ g2T ,

v · p ∼ T or the same but with v ↔ v. The second case gives the same result

as the first but with iωn → −iωn. For v · p ∼ g2T the scalar propagator can be

approximated as

∆a(p) =
1

2p‖
Da(p) (3.10)

where p‖ ≡ v · p is the large component of p, and

Da(p) ≡
−1

v · p− (p2
⊥ +m2

a)/(2p‖)
. (3.11)

Similarly, the fermion propagators can be written as (see e.g. [70])

S`e(p) = η(p)η†(p)D`e(p), (3.12)

SeR(p) = χ(p)χ†(p)DeR(p) (3.13)

with the spinors

η(p) =

[
1− 1

2p‖
(σ · p⊥)

](
0

1

)
, (3.14)

χ(p) =

[
1 +

1

2p‖
(σ · p⊥)

](
1

0

)
. (3.15)

In (3.12) through (3.15) we keep only the leading order contributions to the

equilibration rate. It is convenient to associate the spinors in (3.12), (3.13) with

the adjacent vertices rather than with the propagators.

47



Chapter 3 Equilibration rate of right-handed electrons

After performing the sum over Matsubara frequencies we encounter a factor

F (p‖, k‖) = f ′F(k‖)
[
fF(p‖) + fB(p‖ − k‖)

]
. (3.16)

We can then analytically continue iωn to arbitrary complex ω which gives

∆L̇eRL̇eR
(ω) = 2h2

eV

∫
k,p

F (p‖, k‖)

k‖ − p‖
η†(p)χ(k)χ†(k)η(p)

δE

δE − ω + (ω → −ω),

(3.17)

where

δE = δE(p⊥,k⊥) ≡ m2
eR

+ k2
⊥

2k‖
−
m2
`e

+ p2
⊥

2p‖
−
m2
ϕ + (k⊥ − p⊥)2

2(k‖ − p‖)
(3.18)

is the change of energy in the decay ϕ→ `e eR. When we take the imaginary part

of the retarded correlator

∆ret
L̇eRL̇eR

(ω) = ∆L̇eRL̇eR
(ω + i0+) (3.19)

with ω real, δE becomes equal to ±ω. For both signs one obtains the same

imaginary part. Since we need this to compute the rate using (2.26) we can drop

terms of order ω2 and higher. Pulling out a factor η†(p)χ(k), corresponding to

the leftmost vertex in figure 4 (without gauge bosons) we may write

Im ∆ret
L̇eRL̇eR

(ω) = 8h2
eV ω Im

∫
k,p

F (p‖, k‖)

k‖ − p‖
η†(p)χ(k) j(p⊥,k⊥) (3.20)

where j satisfies

(
δE − i0+

)
j(p⊥,k⊥) =

1

2
χ†(k)η(p). (3.21)

Note that due to the relation

1

x± i0+
= PV

1

x
∓ iπδ(x) (for real x) (3.22)

in the integrand of (3.20) the delta function δ
(
δE
)

appears which enforces energy

conservation for the (inverse) Higgs decay. The coefficient Γ is then obtained by

plugging (3.20) into (2.109).
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3.1 Higgs decay and multiple soft scattering

eR

ℓe

ϕ

B

V

V

B

B

V
p

k

Figure 4: Typical diagram of multiple soft scattering the imaginary part of which
gives a contribution to the eR equilibration rate. V stands for either a W or a
hypercharge gauge boson B. All gauge bosons are soft and their propagators are
hard thermal loop (HTL) resummed, as indicated by the thick dots. This diagram
is one of the cases contained in the generic diagram in figure 2.

3.1.2 Multiple soft gauge boson scattering

Now we include the effect of multiple scattering mediated by soft electroweak W

or B gauge bosons, as sketched in figure 4.46 The result can again be described

by (3.20), where j now satisfies

δE(p⊥,k⊥) j(p⊥,k⊥)− i
∫

d2q⊥
(2π)2

{
C (q2

⊥)
[
j(p⊥,k⊥)− j(p⊥ − q⊥,k⊥)

]
+ C ′(q2

⊥)
(
yϕ y`e

[
j(p⊥,k⊥)− j(p⊥ − q⊥,k⊥)

]
+ y`e yeR

[
j(p⊥,k⊥)− j(p⊥ − q⊥,k⊥ − q⊥)

]
− yϕ yeR

[
j(p⊥,k⊥)− j(p⊥,k⊥ − q⊥)

])}
=

1

2
χ†(k)η(p). (3.23)

46The range of the gauge interactions is one power of g smaller than the mean free path of
the fermions and the Higgs. Therefore crossed gauge bosons, rainbow self-energies, or gauge
boson vertex corrections do not contribute at leading order.
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Here q⊥ is the transverse momentum of an exchanged gauge boson. We have

introduced

C (q2
⊥) ≡ 3

4
g2T

(
1

q2
⊥
− 1

q2
⊥ +m2

D

)
, (3.24)

C ′(q2
⊥) ≡ g′2T

(
1

q2
⊥
− 1

q2
⊥ +m′D

2

)
(3.25)

with the Debye masses [84]

m2
D =

11

6
g2T 2, m′D

2
=

11

6
g′

2
T 2. (3.26)

In the integral in (3.23) the terms containing j(p⊥,k⊥) correspond to self-energy

insertions, which can be easily checked by an explicit calculation.47 The terms

with C and C ′ correspond to interactions mediated by W or B bosons, respectively.

By themselves, the self-energies are infrared divergent due to the 1/q2
⊥ term in

C and C ′. The subtracted terms in the square brackets in (3.23) correspond to

gauge boson exchange between different particles and render the q⊥-integrals

finite. The first two square brackets in (3.23) also appear in the computation of the

production rate of ultrarelativistic sterile neutrinos [70]. The other two represent

the exchange of weak hypercharge gauge bosons by the right-handed electrons.

Replacing the integral in (3.23) by 0+, one neglects multiple soft scatterings and

one recovers the equation (3.21) describing Higgs decay.

Thanks to three-dimensional rotational invariance, the solution to (3.23) can

be found as a function of a single transverse momentum [85],

j(p⊥,k⊥) = J(P), (3.27)

with

P ≡ xkp⊥ − xpk⊥, (3.28)

xk ≡
k‖

p‖ − k‖
, xp ≡

p‖

p‖ − k‖
. (3.29)

In fact, (3.18) now takes the simple form

δE = β
(
P2 +M2

eff

)
(3.30)

47Note that yϕy`e + y`eyeR − yϕyeR =
(
y2ϕ + y2`e + y2eR

)
/2.
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3.1 Higgs decay and multiple soft scattering

with

β ≡
p‖ − k‖
2p‖k‖

, (3.31)

and

M2
eff ≡ β−1

[
m2
eR

2k‖
−
m2
`e

2p‖
−

m2
ϕ

2(k‖ − p‖)

]
. (3.32)

The right-hand side of (3.23) turns into

1

2
χ†(k)η(p) = −β

2
(Px − iPy) . (3.33)

The function J(P) can be expressed as

J(P) =
iβ

4
[fx(P)− ify(P)] , (3.34)

where the two-component vector f is a solution to

−i δE f(P)−
∫

d2q⊥
(2π)2

{
C (q2

⊥)
[
f(P)− f(P− xkq⊥)

]
+ C ′(q2

⊥)
(
yϕ y`e

[
f(P)− f(P− xkq⊥)

]
+ y`e yeR

[
f(P)− f(P + q⊥)

]
− yϕ yeR

[
f(P)− f(P + xpq⊥)

])}
= 2P. (3.35)

This is the same integral equation as in [70] (with the appropriate hypercharge

assignments), but with two additional terms representing the gauge interaction of

right-handed electrons.

Now we choose the unit vector v in the direction of k. Using f(P) ∝ P and

integrating over the transverse momentum k⊥, we obtain

ΓLPM =
h2
e

8π3

∞∫
0

dk

∞∫
−∞

dp‖

(
p‖ − k

)3
p2
‖k

2
F (p‖, k) Re

∫
d2P

(2π)2
P · f(P) (3.36)

for the rate coefficient. We solve (3.35) using the algorithm described in [70] and

numerically integrate (3.36), see appendix G.
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Figure 5: Diagrams for the 2→ 2 processes producing an eR. First line: Quark
contributions, second line: V ϕ → `eeR, third line: V `e → ϕeR, fourth line:
`eϕ → V eR. Here and in the diagrams we denote V = B,W . The exchanged
fermion in t-channel is an `e in the second column and an eR in the third column.
Time runs from left to right.

3.2 2→ 2 processes

At order h2
eg

2 there are also contributions from 2→ 2 scatterings. The correspond-

ing diagrams are shown in figure 5. At leading order all external particles have

hard momenta, p ∼ T , and we can neglect their thermal masses. For s-channel

exchange the internal momenta are hard as well, and we can neglect thermal effects

on the propagators.48 However, momenta exchanged in the t-channel become soft

at leading order. We treat these contributions in section 3.2.2.

Again, the processes are similar to the ones encountered in relativistic sterile

neutrino production in [69]. However, as in the case of the 1n ↔ 2n processes,

in eR equilibration one encounters diagrams in which the produced particle itself

48In [45] the thermal Higgs mass is included in the Higgs propagator for the process tQ3 → `eeR.
This leads to the complication that the propagator can become on-shell, and a subtraction has
to be performed. This problem does not arise in a strict leading order calculation.
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3.2 2→ 2 processes

couples to a gauge boson B, which leads to additional terms in the matrix elements.

In particular, the exchanged particle can be an eR which can become soft in the

t-channel. This contribution has to be treated separately.

3.2.1 Hard momentum transfer

We first consider the case that the exchanged particles have hard momenta. Then

the 2 → 2 scattering contributions to the equilibration rate can be determined

via the Boltzmann equation [86, 87]. We can write the time derivative of the LeR

density as

ṅLeR =

∫
k

∂

∂t

[
fk − f̄k

]
(3.37)

where fk and f̄k are the occupation numbers of right-handed electrons and

positrons, respectively. We replace the time derivatives on the right-hand side by

the collision term for 2→ 2 particle scattering. It contains the occupancies of the

participating particles in the form

f1f2[1± f3][1− fk]− [1± f1][1± f2]f3fk, (3.38)

corresponding to gain and loss term. The upper and lower signs are for bosons

and fermions, respectively.

All Standard Model particles (including the eR) are in kinetic equilibrium due

to their fast gauge interactions. Therefore their occupancies are determined by

the temperature and by the chemical potentials of the slowly varying charges

and of the strictly conserved ones. To compute Γ at lowest order in chemical

potentials, we can set all chemical potentials except µLeR equal to zero. For the

occupancy of right-handed electrons we can therefore write

fk = fF(k0 − µeR) (3.39)

with k0 = |k|, µeR = µLeR , see (2.39), and for the other Standard Model particles

fi = fB,F(p0
i ) (3.40)

where p0
i = |pi|. In thermal equilibrium the gain and the loss term cancel,

f1f2[1± f3][1− fF(k0)]− [1± f1][1± f2]f3fF(k0) = 0, (3.41)

53



Chapter 3 Equilibration rate of right-handed electrons

so that the collision term vanishes. Expanding to first order in µeR and making

use of (3.41) together with

f ′F = − 1

T
fF[1− fF], (3.42)

the contribution to the rate coefficient becomes

Γ2→2,hard =
2

T

∑
processes

∫
k,p1,p2,p3

∑ |M |2
16p0

1 p
0
2 p

0
3 k

0
(2π)4δ(4)(p1 + p2 − p3 − k)

f1f2[1± f3][1− fF(k0)]
∣∣∣
hard

. (3.43)

Both terms on the right-hand side of (3.37) give the same contribution which

gives rise to the factor 2.

One can write (3.43) in terms of the eR production rate at vanishing eR density,

Γ2→2,hard =
2

T

∫
k

[
1− fF(k0)

]
(2π)3 d

4neR
dt d3k

∣∣∣∣
neR=0,hard

, (3.44)

which is closely related to the production rate of sterile neutrinos computed

in [69]. The difference between the two processes is that the sterile neutrinos

have no Standard Model gauge interactions, and therefore do not interact once

they are produced (at leading order in their Yukawa couplings). In contrast, the

right-handed electrons carry weak hypercharge. Scatterings mediated by soft

hypercharge gauge bosons contribute to the leading order rate, as discussed in

section 3.1. However for the 2→ 2 scattering of hard particles the soft scattering

is a higher order effect and can be neglected here.

The diagrams contributing to eR production are shown in figure 5. The matrix

elements for the processes with quarks and W bosons can be read off from [69] by

setting g′ → 0,

quarks : Σ|M |2 = 6h2
t h

2
e, (3.45)

Wϕ→ `eeR : Σ|M |2 = 3g2 h2
e

u

t
, (3.46)

W`e → ϕeR : Σ|M |2 = 3g2 h2
e

−u
s
, (3.47)

`eϕ→WeR : Σ|M |2 = 3g2 h2
e

s

−t , (3.48)
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3.2 2→ 2 processes

where (3.45) holds for any of the processes tQ3 → `eeR, Q3`e → teR, t`e → Q3eR.

For the processes with hypercharge gauge bosons we find

Bϕ→ `eeR : Σ|M |2 = g′
2
h2
e

[
4 +

u

t
+

4t

u

]
, (3.49)

B`e → ϕeR : Σ|M |2 = g′
2
h2
e

[
−4 +

−u
s

+
4s

−u

]
, (3.50)

`eϕ→ BeR : Σ|M |2 = g′
2
h2
e

[
−4 +

s

−t +
4(−t)
s

]
. (3.51)

In (3.45) through (3.51) we have summed over polarizations, color and weak

isospin. The Boltzmann equation can now be integrated as in [69], with some

additional integrals due to the terms containing a factor 4 in (3.49) through (3.51).

We rewrite the contributions proportional to 1/(−u) as a process proportional to

1/(−t) by interchanging the incoming particles, which may change the statistics

of particles 1 and 2.

In the integrals describing lepton exchange in t-channel we need to handle

the infrared divergence appearing when the momentum of the exchanged lepton

becomes small. We proceed as in [69] by introducing a transverse momentum

cutoff qcut for the exchanged particle with gT � qcut � T . We isolate the piece

which is singular for qcut → 0 and integrate it analytically. Its logarithmic qcut

dependence drops out when combined with the soft contribution (see section 3.2.2)

which includes only transverse momenta less than qcut. The remaining finite

integral is then computed numerically. We treat the integrals appearing on the

right-hand side of (3.44) for the various matrix elements (3.45) through (3.51) in

appendix H.

3.2.2 Soft momentum transfer

The soft contribution is obtained from the retarded correlator using (2.109), where

either of the lepton propagators is HTL resummed. The corresponding diagrams

are shown in figure 6. A straightforward computation in imaginary time, in which

we make use of the sum rule found in [69], and analytic continuation to real

frequency leads to

Γsoft =
h2
e T

64π

[
m2
`e log

(
qcut

m`e

)
+m2

eR
log

(
qcut

meR

)]
. (3.52)
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Figure 6: Imaginary time correlator of the time derivative of LeR with one soft
fermion. The corresponding propagator has to be HTL resummed, as indicated
by the respective blob. The diagrams with iωn → −iωn are not shown.

3.2.3 Complete 2→ 2 rate

Adding the hard singular and finite as well as the soft contributions, qcut drops

out, and the contribution from 2→ 2 scatterings to the rate coefficient Γ is finite.

Evaluating the remaining integrals numerically, we find

Γ2→2 =
h2
e T

3

2048π

{
h2
t ct +

(
3g2 + g′

2
)[
c`e + log

1

3g2 + g′2

]

+ 4g′
2
[
ceR + log

1

4g′2

]}
(3.53)

with

ct = 2.82, c`e = 3.52, ceR = 2.69. (3.54)

3.3 Results

For our numerical results we evaluate the 1-loop running couplings at the renormal-

ization scale πT , which is the first eR Matsubara mode, see appendix I. We have

checked that increasing the renormalization scale by a factor 2, corresponding to

renormalization at the first non-zero Higgs Matsubara mode, changes our results

by less than 3% in the entire temperature range we consider.

Figure 7 shows the various contributions to the equilibration rate. The

2→ 2 processes are dominant over the entire temperature range considered. The

largest contribution comes from scatterings off hard gauge bosons. The 1n↔ 2n
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Figure 7: The rate coefficient Γ as function of the temperature. The curve labeled
‘full’ incorporates all leading order contributions, ‘2 → 2 total’ shows the full
result of (3.53) whose contributions by gauge and quark scattering we show as
‘2 → 2 gauge’ and ‘2 → 2 quark,’ respectively. The curve labeled ‘LPM’ shows
the result of (3.36) and is the sum of the resummation of 1n↔ 2n scatterings by
soft gauge boson exchanges and the (inverse) Higgs decay labeled ‘1↔ 2.’ The
dotted vertical line denotes the equilibration temperature (3.57).

contribution is about a factor 0.4 smaller than the total 2→ 2 rate. Except at

very low temperature the (inverse) Higgs decay gives a negligible contribution,

and it vanishes completely above T ' 6 · 104 GeV. In table 1 we show numerical

values for the total 2→ 2 as well as the LPM resummed contribution along with

the full result for Γ.

The LPM resummed rate is a complicated function of the coupling constants

and there is not such a simple expression like (3.53) for the 2→ 2 rate. Inspired by

the form of (3.53) we have fitted the LPM contribution with a similar expression,

ΓLPM ≈ h2
e T

3

2048π

{
h2
tdt + (3g2 + g′

2
)d`e + 4g′

2
deR

}
. (3.55)
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Chapter 3 Equilibration rate of right-handed electrons

Table 1: Numerical values of the contributions from 2→ 2 and LPM resummed
multiple soft scattering to the equilibration rate coefficient Γ. The numerical
uncertainty in the LPM contribution is below 2%.

T/GeV Γ2→2/(h2
eT

3) ΓLPM/(h2
eT

3) Γ/(h2
eT

3)

1.00 · 103 1.26 · 10−3 4.89 · 10−4 1.75 · 10−3

4.00 · 103 1.22 · 10−3 4.75 · 10−4 1.70 · 10−3

1.60 · 104 1.19 · 10−3 4.62 · 10−4 1.65 · 10−3

6.40 · 104 1.17 · 10−3 4.51 · 10−4 1.62 · 10−3

2.56 · 105 1.15 · 10−3 4.43 · 10−4 1.59 · 10−3

1.02 · 106 1.13 · 10−3 4.36 · 10−4 1.57 · 10−3

4.10 · 106 1.11 · 10−3 4.31 · 10−4 1.54 · 10−3

1.64 · 107 1.10 · 10−3 4.26 · 10−4 1.53 · 10−3

6.55 · 107 1.09 · 10−3 4.22 · 10−4 1.51 · 10−3

2.62 · 108 1.07 · 10−3 4.18 · 10−4 1.49 · 10−3

1.05 · 109 1.06 · 10−3 4.14 · 10−4 1.47 · 10−3

We find that with

dt = 1.48, d`e = 0.776, deR = 2.03 (3.56)

the relative error between ΓLPM and the fit (3.55) is much smaller than our nu-

merical uncertainty throughout the temperature range 103 GeV ≤ T ≤ 109 GeV.

We comment on the generalization of our findings to the equilibration of

charges carried by the right-handed µR or τR leptons in appendix J. There we

also obtain the fit parameters analogous to the ones in (3.56) for the higher

temperature ranges.

The right-handed electron lepton number comes into equilibrium around the

temperature Teq at which γLeRLeR equals the Hubble rate49 (2.3). Using (2.101)

we find for the equilibration temperature Teq of the right-handed electron lepton

number in the Standard Model

Teq = 8.5 · 104 GeV. (3.57)

This value lies in the temperature region in which leptogenesis through neutrino

oscillations [33, 34] can take place, see e.g. [35, 36]. In this case Xα and LeR

49In [45] a different definition of the eR equilibration temperature is used.
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3.3 Results

Table 2: Relative increase of Γ when hypercharge gauge interactions are included.

T 103 GeV 106 GeV 109 GeV

LPM 21% 30% 39%

2→ 2 34% 44% 53%

total 30% 40% 49%

are violated on similar time scales, and the kinetic equations must describe the

evolution of all four quantities.

It is interesting to see how hypercharge gauge interactions affect the eR

equilibration, since they give rise to diagrams which are not present in sterile

neutrino production. We find that they substantially boost the equilibration rate.

In table 2 we show the increase in the complete rate compared to the result with

g′ = 0. Despite the relative smallness of g′, its effect on the equilibration rate

is quite significant, and it increases with the temperature due to the different

running of g′ and g.

The first calculation of the eR equilibration rate was performed in [44],

where only the 2 → 1 inverse Higgs decay is taken into account and thermal

fermion masses as well as the final state distribution function are neglected. At

T = 103 GeV our result is about 5 times as large as the one obtained in [44].

Around the equilibration temperature (3.57) the inverse decay is not even kine-

matically allowed when thermal fermion masses are included, here we obtain a

result that is about 6 times the one obtained by the approximations of [44].

Reference [45] includes 2↔ 2 processes as well as the (inverse) Higgs decays

while neglecting 1n↔ 2n scattering. We can compare the 2→ 2 scattering rates

involving quarks. Therefore we recompute ct in (3.53) using Maxwell-Boltzmann

statistics for all particles, leading to cMB
t = 2.14, which is a relative error of 24%

compared to the correct quantum statistics, as anticipated in [45]. Our result for

classical statistics is 9% larger than the one obtained in [45]. We can also compare

the gauge contribution to the 2→ 2 scatterings. With the values for the gauge

couplings of [45], our result is about 50% larger50 which could be due to the use

of classical statistics and of zero-momentum thermal fermion masses in [45].

The equilibration of right-handed muons and taus in a temperature regime

between 107 and 1013 GeV is considered in [78], by including the (inverse) Higgs

decays and 2↔ 2 scatterings. By removing the inverse susceptibilities and the slow

50Cf. equations (25) through (27) in [45].
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Chapter 3 Equilibration rate of right-handed electrons

Yukawa couplings, we can compare our results for Γ/h2
e, because it is lepton-flavor

independent. We find our full rate to be 2.8 times their result. The authors also

estimate the effect of multiple soft scattering.51 The relative magnitude of the

effect of multiple soft scattering is estimated in [78] as γLPM
LeRLeR

/γ2→2
LeRLeR

∼ 0.25,

while we obtain about 0.4. Our result for the quark contribution to 2 → 2

scattering is 2 times the result in [78], and both our logarithmic contributions to

Γ2→2 are 2.2 times as large as the ones in [78].

51See equation (97) in [78].
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Chapter 4

Summary & Outlook

We have developed a framework for obtaining non-linear kinetic equations for a

type of out-of-equilibrium problems in which certain quantities equilibrate much

more slowly than most others. Therefore we have generalized the ideas of [47]. To

determine the coefficients in these equations we have matched not only real time

two-point functions in the effective kinetic equations for thermal fluctuations to

those in thermal field theory, like in [47], but also higher point functions.

We have discussed the strictly conserved charges as well as the susceptibilities

providing relations between the slowly evolving charges (the time derivatives

of which appear on the left-hand sides of our kinetic equations) and chemical

potentials (which we introduce on the right-hand sides) in different temperature

regimes, where we have focused on temperatures in the symmetric phase of the

Standard Model. We have worked at leading order in Standard Model couplings

following the approach of [47].

We have applied the resulting master formulae to sterile-neutrino phase space

densities and charge densities carried by Standard Model particles. The sterile

neutrinos have been integrated out using a path integral over their Fourier

coefficients which correspond to their creation and annihilation operators. We have

included only the leading order in their Yukawa coupling, which is h2, and in their

Majorana mass squared differences δM2, neglecting contributions of order h2δM2.

This way we have obtained relations between the rate coefficients and real time

correlation functions of Standard Model fields, evaluated at finite temperature

and chemical potentials for charges which are conserved or slowly violated (in the

case of LeR or B for certain temperatures) by the Standard Model interactions.

The rate coefficients are infrared safe in the sense that they are well behaved when

a parameter characterizing a slow interaction vanishes. Our kinetic equations are
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Chapter 4 Summary & Outlook

valid to all orders in fast Standard Model interactions, but we have neglected the

very small CP violation inherent in the Standard Model.

The kinetic equations for sterile neutrinos and the relations for the rate

coefficients that we have obtained are mostly consistent with the ones obtained

in reference [54] the authors of which use a different starting point by making

an ansatz with a non-equilibrium density matrix which contains the chemical

potentials from the very start, even though we differ at intermediate steps.

Our equations are valid for an arbitrary number of sterile flavors ns with

any mass spectrum, and they can be applied to low-scale leptogenesis and to

sterile-neutrino dark matter production, resonant or non-resonant, in the Higgs

phase of the Standard Model, as well as to scenarios jointly describing the two.

It would be interesting to apply our equations to theories with more than one

sterile neutrino dark matter candidate and to see, e.g., which role oscillations

between sterile flavors play in this context, or how much lepton asymmetry (if any)

is needed in order to explain all of the dark matter abundance. Ultimately, it

would be desirable to conduct parameter space scans, which is possibly quite

tedious already for ns = 2.

We have computed the leading order correction of departures from equilibrium

of the charges to the dispersion relation of the sterile neutrinos in the symmetric

phase. There we have considered only the leading order contribution from Standard

Model couplings. It would be interesting to measure the effect of this term in

numerical studies of low-scale leptogenesis. Once O(g2µ) terms in this expansion

have been obtained, it could be interesting to numerically compare these terms to

the one we have obtained and to see whether these terms, despite being suppressed

by one additional power of g, have a sizable effect due to their flavor dependence,

which is absent in the leading term we have computed.

We have applied the linearized version of our framework, which coincides with

an equation found in [50] (and in this case also with the one in [47], since here

the spectral function is real), to the dynamics of right-handed electrons. We

have subsequently computed their equilibration rate in the symmetric phase by

including, for the first time, all Standard Model processes at leading order in the

couplings. We have found that the dominant processes are 2 → 2 scatterings.

Leading order contributions are also given by (inverse) Higgs decays and addi-

tional soft scattering which was included by Landau-Pomeranchuk-Migdal (LPM)

resummation. We obtain an equilibration rate which is substantially larger than

approximations presented in previous literature. Our result shows that the process
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of eR equilibration cannot be neglected in low-scale leptogenesis, if the latter

happens at temperatures not too far from T = 8.5 · 104 GeV.

In the kinetic equation for LeR we have taken into account only the leading

terms γLeRLeR and γLeRXα , where applicable, and it could be interesting to obtain

also a non-linear kinetic equation for this variable. In low-scale leptogenesis we

expect LeR <∼ Xα, and the necessity for non-linear kinetic equations for Xα might

raise the question whether a non-linear kinetic equation for LeR is needed as

well. In this case one should revisit our argument about the ability to neglect the

non-linear dynamics of hypermagnetic fields. Relating the charges to the set of

chemical potentials as we have done in section 2.3 will then make a computation

analogous to the one in chapter 3 necessary, but this time at finite chemical

potentials, which in the context of rates concerning sterile neutrinos is known to

be more complicated due to infrared divergencies associated with soft Higgses

appearing in the 2 → 2 scatterings [54], but we expect the technique of [54] to

apply also to the correlators relevant for eR equilibration.

The kinematic considerations entering the rate coefficient Γ for eR equilibration

also apply to the equilibration of the heavier lepton flavors µR and τR, after

stripping off the Yukawa coupling, because the thermal masses in the symmetric

phase of the Standard Model are flavor-blind. Therefore, by revisiting the relation

between charges and chemical potentials, one can obtain relaxation rates of (non-

abelian) charges broken by the Yukawa couplings hµ and hτ . This could be

especially interesting in scenarios of thermal leptogenesis happening around the

respective equilibration temperatures, usually called flavored leptogenesis, which

are roughly 109 GeV (for µR equilibration) or 1012 GeV (for τR equilibration).

The correct results for the respective equilibration rates have not yet been obtained,

because the contribution from multiple soft scattering had only been estimated

so far, and because, to the best of our knowledge, a correct analysis of the

susceptibilities has not yet been presented. We have made a step towards the

complete result for these rates by evaluating the contribution from multiple soft

scattering also in the corresponding higher temperature regimes. It would be

interesting to complete the derivations of the rates for these heavier flavors and to

check how correctly including the dynamics of the respective right-handed leptons

influences the results of the flavored leptogenesis processes.

Even though we have made a connection between low-scale leptogenesis and the

equilibration of right-handed electrons for the first time, we have not investigated

the quantitative effect of this intertwinement. The task of solving (momentum
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resolved) equations for low-scale leptogenesis is usually more intrigued than solving

the ones describing thermal leptogenesis, because due to the oscillations of sterile

neutrinos there are multiple time scales present. Therefore involved numerical

studies like the one presented in [36] are needed. It would be very interesting

to conduct a detailed study to see, e.g., in which temperature regime including

the dynamics of right-handed electrons changes the produced baryon asymmetry

significantly, how large the effect is maximally, or how it changes the allowed

parameter space for successful baryogenesis, which might potentially be a very

complex problem. From first principles, it is also not obvious whether the effect

of right-handed lepton equilibration on the generation of the baryon asymmetry

of the Universe is larger in the case of eR in low-scale leptogenesis, or in the case

of the heavier leptons in flavored leptogenesis, and it would be interesting to

compare these scenarios.
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whom I learned a great deal in various discussions over the years.

Probably way beyond my comprehension is the amount of ad-

ministrative support I have received from Gudrun Eickmeyer and

Susi v. Reder to whom I would like to extend my very special

thanks, especially for always having a friendly ear.

With pleasure I thank the organizers, above all Sacha Davidson,

and the attendees of the Les Houches 2017 Summer School EFT

in Particle Physics and Cosmology for an outstanding experience.

The memorable times I have had with the members of ÖA Bielefeld
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Appendix A

Smeared occupancies

The theory of quasi-stationary fluctuations and the framework developed in

chapter 2 is applicable to quantities with (no summation over a),√
Ξaa =

√
〈yaya〉 � ya, (A.1)

where the average is taken in an ensemble with fixed values of the strictly conserved

charges. The relation (A.1) is not satisfied by the sterile-neutrino occupancies

the fluctuations of which are not small, Ξff ∼ δf . In order for the approach in

sections 2.2.1 and 2.2.2 to be applicable, we consider occupancies averaged over a

certain momentum space region Ωk around k,

Fk ≡
(2π)3

V |Ωk|
∑

p∈Ωk

fp. (A.2)

The volume of this region |Ωk| is taken to be independent of the spatial volume

V , with (2π)3/V � |Ωk| � T 3. The susceptibilities (2.14) of Fk are of order

(V |Ωk|)−n+1. Now we have
√

ΞFkFk
� δFk, and the assumption (2.15) is satisfied.

We should also consider smeared occupancies in the microscopic correlators

appearing in section 2.4.1. However, since the volume |Ωk| is small compared to

characteristic momentum scales over which the correlators in (2.26)–(2.28) vary,

they can to a good approximation be replaced by

∆ret
Fk(Fk′X···X)(ω) = δkk′

(2π)3

V |Ωk|
∆ret
fk(fkX···X)(ω), (A.3)

so that the dependence on V |Ωk| drops out when plugging (A.3) and ΞFF into the

master formula (2.26), and one can effectively use the unsmeared occupancies f .
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Appendix B

Perturbative solution

of the equations of motion for fluctuations

The fluctuations of ya satisfy (2.2) with an additional Gaussian noise ζ, and a

y-independent term that does not play a role once we consider (2.2) for departures

from equilibrium (see footnote 16 on page 16). We solve the equation of motion by

one-sided Fourier transformation. Neglecting non-linear terms and expanding as

in (2.13), one obtains (2.9). Now inserting (2.13) up to y(1) into (2.2), including

the term with γabc and dropping the one with γabcd, we obtain

y+(1)
a (ω) = −1

2

[
(−iω + γ)−1

]
ab
γbcd

∫
dω′

2π
y+(0)
c (ω′)y

+(0)
d (ω − ω′), (B.1)

where we have used that

ya(t) =

∫
dω′

2π
e−iω

′ty+
a (ω′). (B.2)

Considering now the correlator C+
a(bc) and inserting (2.9) yields averages like

〈ζy(0)〉 which vanish. We then consider frequencies much larger than the rates γab,

approximating
[
(−iω + γ)−1

]
ab
≈ iδab(ω+ i0+)−1. The disconnected contribution

vanishes, and we obtain

C+
a(bc)(ω) 3 − i

2ω
γajk [Ξjb Ξkc + Ξjc Ξkb]

∫
dω′

2π

i

(ω′ + i0+)

i

(ω − ω′ + i0+)
(B.3)

along with a contribution from γab. Solving the integral and making use of the

symmetry γajk = γakj , we arrive at (2.18).

The perturbation caused by γabcd is obtained by inserting (2.13) into (2.2),

this time keeping also y(2). Having obtained already y+(0) and y+(1) we can now
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Appendix B Perturbative solution of the equations of motion for fluctuations

solve for y+(2), which reads

y+(2)
a (ω) =− 1

3!

[
(−iω + γ)−1

]
ab
γbcde

×
∫
dω′

2π

∫
dω′′

2π
y+(0)
c (ω′)y

+(0)
d (ω′′)y+(0)

e (ω − ω′ − ω′′). (B.4)

Considering the same limit ω � γ, we find contributions of orders 1, γab, γabc

and γabcd in the correlator (2.20). The O(1) contribution is time-independent and

does not contribute to the real part. The contributions from γab and γabc are

obtained in the same manner as before. The contribution from γabcd reads

C+
a(bcd)(ω) 3 − i

3!ω
γajkl

[
Ξjb Ξkc Ξld + Ξjb Ξkd Ξlc + Ξjc Ξkb Ξld

+ Ξjc Ξkd Ξlb + Ξjd Ξkb Ξlc + Ξjd Ξkc Ξlb
]

×
∫
dω′

2π

dω′′

2π

i

(ω′ + i0+)

i

(ω′′ + i0+)

i

(ω − ω′ − ω′′ + i0+)
. (B.5)

Because Ca(bcd) contains only the connected pieces, no contractions like ΞjkΞlbΞcd

appear in the square brackets in (B.5), and because of (2.15) we can neglect

the connected part of the six-point function 〈ybycydyjykyl〉. Making use of the

symmetry of γajkl under permutations of the last three indices, (B.5) can be solved

for the rate coefficient. Carrying out the integrals and collecting the contributions

from γab and γabc eventually leads to (2.21).
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Appendix C

Cancellation of the rates γfff and γffff

Here we demonstrate that the coefficients γfff and γffff in the equation of

motion for f vanish at order h2. For simplicity we will assume that the a and

a† appearing in all occupancies in this appendix correspond to sterile neutrino

generations satisfying (2.62). First consider γfff . According to (2.27) it consists

of two pieces containing only f operators (suppressing momentum indices k),

γfafbfc = Tω Im
[
∆ret
fa(fdfe)(ω)−∆ret

fafg(ω)(Ξ−1)fgff Ξfffdfe
]

(C.1)

(Ξ−1)fdfb(Ξ
−1)fefc .

Classically, the kinematic variables commute at equal times, which is not the case

in the microscopic theory. Therefore one should replace the product fdfe in (C.1)

by its symmetrization {fd, fe}/2. In turn we demonstrate the cancellation of the

terms with the ordering as in (C.1), the one with d↔ e is analogous.

We obtain the generalized susceptibility

Ξfafbfc = fF [1− fF]
{

[1− fF] tr
(
T aT bT c

)
− fF tr

(
T aT cT b

)}
, (C.2)

where fF = fF(Ek). The mass in Ek is one of the relevant (nearly) degenerate

masses, and a change in this mass gives only a correction of order h2δM2, which

we neglect. We now consider the correlators as a function of imaginary time

t = −iτ , before Fourier transformation and analytic continuation to real frequency.

Then, using (2.59) and the susceptibility (2.85), the second expression contains a
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term

∆fafg(t)(Ξ
−1)fgffΞfffdfe 3

1

4V Ek
T aij

{
[1− fF(Ek)]

(
T dT e

)
lm

− fF(Ek)
(
T eT d

)
lm

}
∫ 1/T

0
dτ1 dτ2

{〈
a†q(t1)am(0)

〉〈
T ar(t2)a†i (t)

〉〈
aj(t)a

†
l (0)

〉
−
〈
T a†q(t1)aj(t)

〉〈
ar(t2)a†l (0)

〉〈
a†i (t)am(0)

〉}∫
d3x1 d

3x2 uq+hqα
〈
Jα(t1, x1)J̄β(t2, x2)

〉
h†βrur+. (C.3)

To meaningfully define the object ∆fa(fdfe)(t) in the path integral over the

sterile neutrino fields, we separate the quantities at t = 0 by replacing fd(0) by

lim
t′→0+

fd(t′), taking the limit in the end when the ambiguities have resolved, which

is the case after the expectation value has been reduced using Wick’s theorem.

The equivalent expression to the one in (C.3) now contains 8 terms which fall in

either of the following two categories: (i) a product of 4 two-point functions of

operators a and a†, in which exactly one operator is at time t = 0, and the other

one at a time that is integrated over, or (ii) a product of 3 two-point functions

in which the operators are at different times, multiplied by one fF or [1− fF].52

The 4 expressions of type (i) are t-independent, since operators at t are always to

the left of those at time 0 so that they are not affected by time ordering, and the

time evolutions of aj(t) and a†i (t) cancel up to effects of order h2δM2, which we

neglect. Time-independent parts do not contribute to our master formula. The

remaining four terms of type (ii) are canceled by the terms in (C.3). The other

contributions which we have not written in (C.3) are canceled in the same way,

and we obtain γfff = 0.

The master formula for the coefficient γffff also contains only f operators at

order h2. The contribution from γfff vanishes, and the two remaining terms read

γfafbfcfd = Tω Im
[
∆ret
fa(fefffg)(ω)−∆ret

fafh(ω)(Ξ−1)fhf i Ξf ifefffg
]

(C.4)

× (Ξ−1)fefb(Ξ
−1)fffc(Ξ

−1)fgfd .

52Here the time-ordering decides which one of the two expressions fF or [1− fF] is generated,
and the temporal separation of fd and fe plays a role.
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Using (2.59), we obtain the generalized susceptibilities

Ξfafbfcfd = fF [1− fF]
{

[1− fF]2 tr
(
T aT bT cT d

)
− fF [1− fF] tr

(
T aT bT dT c

)
−fF [1− fF] tr

(
T aT cT bT d

)
− fF [1− fF] tr

(
T aT cT dT b

)
−fF [1− fF] tr

(
T aT dT bT c

)
+ f2

F tr
(
T aT dT cT b

)}
. (C.5)

The cancellation is now analogous to the one above, after replacing fe(0)ff (0) by

lim
t′′→0+

lim
t′→0+

fe(t′′)ff (t′) with t′′ > t′. The rates γfffX , γXff , γXffX , and γXfff

are canceled in the same fashion.
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Appendix D

Green’s functions at finite temperature

and chemical potentials

Here we present slight generalizations of some relations in [67] for imaginary time

correlators which we use in our calculation. In the presence of one conserved

charge Q the 2-point function of operators A and B reads

∆AB(−iτ) ≡ Z−1tr
{
e(µQ−H)/TT [A(−iτ)B(0)]

}
(D.1)

with the partition function Z ≡ tr e(µQ−H)/T , and the time ordering T with

respect to τ is defined as

T [A(−iτ)B(0)] ≡ Θ(τ)A(−iτ)B(0)±Θ(−τ)B(0)A(−iτ). (D.2)

The upper/lower sign is for bosonic/fermionic operators. The correlator (D.1) is

defined for −T−1 ≤ τ ≤ T−1. We assume that A carries a definite charge,

[Q,A] = qAA. (D.3)

Then

∆AB(t+ i/T ) = ±e−µA/T∆AB(t) (D.4)

where the chemical potential of A is defined as

µA ≡ qAµ. (D.5)

Therefore the function e−µAτ∆AB(−iτ) is (anti-) periodic, and can be expanded

in a Fourier series with coefficients

∆M
AB(iωn) ≡

∫ 1/T

0
dτ e(iωn−µA)τ∆AB(−iτ). (D.6)
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(D.6) can be analytically continued to arbitrary complex frequencies off the real

axis, and we denote the resulting function by ∆M
AB. We need to calculate the

retarded correlator

∆ret
AB(ω) = i

∫ ∞
0
dt eiωt〈[A(t), B(0)]∓〉 (D.7)

where ω is real. It can be analytically continued to the complex plane. We denote

the resulting function by ∆AB, and then we have ∆ret
AB(ω) = ∆AB(ω + i0+). The

two analytic continuations are related by

∆M
AB(ω) = ∆AB(ω − µA). (D.8)
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Appendix E

Correlators of Standard Model fields for

sterile neutrinos in the symmetric phase

Here we would like to explore the correlators of Standard Model operators that

enter the kinetic equations for sterile neutrinos. We restrict ourselves to the

symmetric phase of the Standard Model. The processes contributing to the

dissipative part share some similarities to the ones responsible for eR equilibration.

However, there are some differences,53 especially in the LPM contribution which

we discuss in the following section. We subsequently discuss the dispersive

contributions in section E.2 where we include the modification of the dispersion

relation of sterile neutrinos due to non-zero charge densities. These contributions

do not appear in the kinetic equations for eR equilibration.

E.1 Dissipative contributions

Deep in the symmetric phase one has to distinguish two temperature regimes.

When Mi � gT , at leading order in the Standard Model couplings the dissipative

(imaginary) part of ∆ret
α (kj , µ) is determined by hard 2↔ 2 scattering processes.

For Mi <∼ gT , nearly collinear 1↔ 2 decays and inverse decays involving a Higgs

boson, a SM lepton and a sterile neutrino, plus the same process with additional

soft scatterings (1n↔ 2n processes), also contribute at leading order [70].

The multiple soft scatterings need to be LPM [71–73] resummed. The result

gives an imaginary contribution to ∆ret
α (kj , µ) which can be computed along the

lines of [66,70]. It can be expressed in terms of a the 2-component vector function

fj(b) and the scalar function ψj(b). Analogously to [70], they are solutions to

two ordinary differential equations which depend on the 2-dimensional impact

53See also chapter 3.
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parameter vector b (we denote b ≡ |b|),

−iβ
(
4−M2

j, eff

)
fj(b) −KN(b) fj(b) = −2i∇δ(2)(b), (E.1)

−iβ
(
4−M2

j, eff

)
ψj(b)−KN(b)ψj(b) = δ(2)(b), (E.2)

with

M2
j, eff ≡

p‖(p‖ − |k|)
|k|2 M2

j −
(p‖ − |k|)
|k| m2

`e +
p‖

|k|m
2
ϕ, (E.3)

and β as in (3.31) and [70]. Here m`e and mϕ denote the thermal masses of the

Standard Model particles [79], see (3.2) and (3.3). In contrast to K in (G.3), the

function KN in (E.1) and (E.2) satisfies [70]

KN(b) ≡ 3g2T

4
D(mDb) + y2

`eg
′2TD(m′Db) (E.4)

with the Debye masses (3.26) and D as in (G.4). Only one term with g′2 appears

in (E.4), because only two particles participate in weak hypercharge interactions

here, unlike all three in the case of eR equilibration. In the latter case also the

analog to the scalar function ψ in (E.2) does not appear, because there is no mass

term for the eR, unlike for the sterile neutrinos. It is straightforward to generalize

the analysis of [70] to non-zero chemical potentials which gives54

∆
LPM
ret
α (kj , µ) =

i

2

∫
dp‖

2π

1

|k| − p‖

[
fB

(
p‖ − |k|+

µY
2

)
+ fF

(
p‖ − µXα +

µY
2

)]
×PL lim

b→0

{(
γ0 − k̂ · γ

)
Reψj(b) +

1

8p2
‖

(
γ0 + k̂ · γ

)
Im∇b · fj(b)

}
. (E.5)

Here PL ≡ (1− γ5)/2 is a chiral projector, and k̂ ≡ k/|k|. The second term in the

curly bracket is of order g2 times the first. Nevertheless, it has to be kept because

when sandwiched between the u- and v-spinors, the first term gets multiplied

by M2
j which is assumed here to be O(g2T 2) or smaller. The LPM contribution

was computed in [54], where the result does not contain a chiral projector.55

Aside from that, it is consistent with equation (E.5) (the second term in the curly

54Note that the Higgs and active lepton chemical potentials appear in the distribution functions
in (E.5). We were able to translate these to the chemical potentials of slow charges Xα and the
one of strictly conserved weak hypercharge Y , because the relation between them is independent
of temperature, cf. equations (2.39) and (2.51) as well as the discussion in between. However, the
expression of µY in terms of slowly varying chemical potentials does depend on the temperature
regime, see (2.44), (2.50), and (2.54).

55See equation (3.4) of reference [54].
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E.2 Dispersive contributions

Jα

ℓα

ϕ

J̄α

Figure 8: Diagram representing the leading correction of the dispersion relation of
sterile neutrinos by non-vanishing charge densities, corresponding to the expression
in (E.6). The thick blob indicates that the Higgs propagator is thermal mass
resummed.

bracket differs from the corresponding one in [54] only by higher orders in g).

Chiral projectors were correctly included in [54] when the result was sandwiched

between the u and v spinors which makes it consistent with ours (cf. footnote 34

on page 36). The 2→ 2 scattering contributions to the rate coefficients have been

computed in [54].

E.2 Dispersive contributions

The imaginary parts of the 2-point functions in (2.90), (2.91) have been computed

in [54] at nonzero chemical potentials. Here we compute the real part in the

symmetric phase which modifies the dispersion relations of the sterile neutrinos.

We include the chemical potentials to linear order and we work at leading order

in Standard Model couplings, assuming Mi � |k|. The leading order is contained

in the 1-loop contribution, which reads

∆α(k0,k, µ) = T
∑̃
p0

∫
p

2 PL(/p+ µ`α/u)

(p+ µ`αu)2 [(k − p+ µϕ u)2 −m2
ϕ]

(E.6)

in imaginary time. This expression can be visualized as in figure 8, where

the four-momentum (p0,p) runs in the loop. The factor 2 is the dimension

of the representation of the weak SU(2). The chemical potentials in (E.6) are

the ones carried by the particles. They have the opposite sign compared to

the chemical potentials carried by the field operators which annihilate these

particles, cf. (D.5). Note instead of µϕ̃ we have expressed (E.6) in terms of µϕ

(see (2.38)), corresponding to equations (2.39) and (2.51). The relation between
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the hypercharge chemical potential µY and the chemical potentials of the slowly

varying charges depends on the temperature, see section 2.3.

The leading contribution from (E.6) is due to soft Higgs momenta, which are

cut off by the thermal Higgs mass [79] given by (3.2) in the Higgs propagator,

which gives rise to an infrared enhancement.

After summing over the imaginary fermionic frequency p0 we analytically

continue to real k0 according to (2.73), and obtain

Re tr
[
/k∆ret

α (k, µ)
]

= − T 2

4
− mϕT

4π|k|µϕ +O(g2µ, µ2), (E.7)

with k0 = |k|. The g in the higher order terms in (E.7) stands for a generic

Standard Model coupling. The first term on the right-hand side of (E.7) gives rise

to the thermal mass. The µ-dependent contribution is not simply a correction of

the thermal mass, but it depends on momentum. In particular, it is enhanced at

small k. The leading correction from chemical potentials is independent of α. We

expect higher order, e.g. O(g2µ`α), terms in (E.7) to generate an α dependence,

but we have not computed those terms. Equations (2.38), (E.6), and (E.7) are

consistent with [1], where the Higgs chemical potential is defined as the one carried

by the field operators. In reference [56] an expression corresponding to (E.7) in

the broken phase has been obtained.56

56See equation (5.7) of reference [56].
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Conversion of LeR to

hypercharge gauge fields

Even without the Yukawa interaction in (1.19) the conservation of LeR is violated

by the chiral anomaly57

∂µj
µ
eR = −y

2
eR
g′2

32π2
εµνρσFµνFρσ, (F.1)

with

jµeR ≡ eR γ
µeR, (F.2)

such that LeR =
∫
x j

0
eR(x). In (F.1) Fµν denotes the hypercharge field strength,

and we use the convention ε0123 = +1. This may lead to interesting effects, such

as the generation of primordial magnetic fields [46, 89]. In this appendix we want

to see when the anomaly can affect the long time and large distance behavior of

jeR. Even if there are no gauge fields present initially, there is an instability in the

gauge fields for non-zero µLeR , leading to exponential growth [46]. We compute

the maximal growth rate of the unstable modes in order to derive a bound on

|µLeR | below which the growth is smaller than the equilibration rate γLeRLeR and

can be neglected in the kinetic equation (2.93).

The hypercharge electric and magnetic fields E and B with wavelengths

greater than the particle mean free path are described by magneto-hydrodynamics.

In the presence of the anomaly (F.1), in addition to the usual ohmic current

jOhm = σE with the hyperelectric conductivity σ, one has to take into account

57One can find different prefactors on the right-hand side of (F.1) in the literature, which are
related to different conventions for the weak hypercharge. Ours is the same as in [88].
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the contribution [46,90]

janomaly = −y
2
eRg
′2

4π2
µLeRB. (F.3)

The fields evolve on time scales much larger than σ−1. Therefore Ė is much

smaller than σE, and can be neglected in the equations of motion which become

E =
1

σ

[
∇×B +

y2
eRg
′2

4π2
µLeRB

]
, (F.4)

Ḃ = −∇×E. (F.5)

Using ∇ ·B = 0, these can be recast as

Ḃ +
1

σ

[
−4B +

y2
eRg
′2

4π2
µLeR∇×B

]
= 0. (F.6)

Following [46], we Fourier transform B(t,x) =
∫
k Bk(t)eik·x to obtain

σḂk + k2Bk + i
y2
eRg
′2

4π2
µLeRk×Bk = 0. (F.7)

Now decompose Bk =
∑2

i=1 biei. The ei are an orthonormal basis in the plane

orthogonal to k. The equations for b± ≡ b1 ± ib2 decouple,

σḃ± = −|k|
(
|k| ∓ y2

eRg
′2

4π2
µLeR

)
b±. (F.8)

For

|k| < y2
eRg
′2

4π2
|µLeR | (F.9)

there is an instability with the growth rate

γinst =
|k|
σ

(
y2
eRg
′2

4π2
|µLeR | − |k|

)
. (F.10)

The maximal growth rate is

γmax
inst =

µ2
LeR

y4
eRg
′4

64π4σ
. (F.11)

The linear kinetic equation neglecting the dynamics of the long wavelength

hypermagnetic fields is valid as long as the magnetic dynamics happen on longer
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time scales than the perturbative ones characterized by the equilibration rate

γLeRLeR ,

γmax
inst < γLeRLeR . (F.12)

In the leading logarithmic approximation the hyperelectric conductivity is [91]

σ = C
T

g′2 log(1/g′)
, (F.13)

with C = 7.05 in the Standard Model with one Higgs doublet.58 At the equi-

libration temperature (3.57) in the Standard Model, (F.12) translates into the

condition (3.1).

Consider again the case of low-scale leptogenesis, corresponding to example 3

of section 2.5. Here the constraint (3.1) implies∣∣∣∣YLeR − 1110

4266
YXe +

312

4266

(
YXµ + YXτ

)∣∣∣∣ <∼ 3.4 · 10−6. (F.14)

for the yield parameters Yi ≡ ni/s with the entropy density s. The YXα are

typically on the order of 10−9 . . . 10−8 [35,36]. Since the dominant source terms

in the kinetic equation for LeR are the Xα, we expect YLeR to be of similar size,

and (F.14) is easily satisfied.

58Adding further Higgs doublets decreases the conductivity.
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Appendix G

Solving the LPM integral equation

for LeR equilibration

Here we elaborate on how the integral equation (3.35) resumming multiple soft

gauge boson scatterings contributing to the equilibration of LeR can be solved.

The Fourier transformation

f(B) ≡
∫

d2P

(2π)2
eiP·B f(P) (G.1)

turns the integral equation (3.35) for f(P) into a differential equation for f(B),

iβ
(
4−M2

eff

)
f(B) = K (B) f(B)− 2 i∇δ(2)(B), (G.2)

where the differential operators act on the two-dimensional impact parameter B.

We denote B ≡ |B| and we have introduced

K (B) ≡ 3g2T

4
D(xkmDB) (G.3)

+ g′
2
T
[
yϕy`e D(xkm

′
DB) + y`eyeR D

(
m′DB

)
− yϕyeR D

(
xpm

′
DB
) ]

with

D(y) ≡ 1

2π

[
γE +K0(|y|) + log

∣∣∣y
2

∣∣∣] . (G.4)

γE is the Euler-Mascheroni constant and K0 is a modified Bessel function. In

terms of the Fourier transform the real part in (3.36) becomes

Re

∫
d2P

(2π)2
P · f(P) = lim

B→0
Im∇ · f(B). (G.5)
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Appendix G Solving the LPM integral equation for LeR equilibration

Writing f(B) ≡ Bh(B), we arrive at the following ordinary differential equation

for h(B), valid at B 6= 0,

iβ

{
d2

dB2
+

3

B

d

dB
−M2

eff

}
h(B)− K (B)h(B) = 0. (G.6)

In terms of h, the relation (G.5) becomes

Re

∫
d2P

(2π)2
P · f(P) = 2 lim

B→0
Imh(B). (G.7)

For B → 0 the function h has a singularity which is determined by the delta

function in (G.2),

h(B)
B→0∼ − 1

πβB2
, (G.8)

and which is insensitive to K . Being purely real, this singularity does not

enter (G.7). We write h = hdecay + hscat, where hdecay contains only the (inverse)

Higgs decay contribution. We obtain it by solving (3.35) with
∫
d2q⊥{· · · } →

0+ f(P) and then taking the Fourier transform. This gives [92]

hdecay(B) =


− m

πβB
K1(mB) (M2

eff > 0)

m

2βB
[Y1(mB)− i sign(β) J1(mB)] (M2

eff < 0)
(G.9)

with m ≡
√∣∣M2

eff

∣∣, and the (modified) Bessel functions K1, Y1 and J1. Then we

solve the differential equation for hscat numerically as described in [70].
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Appendix H

Integrals appearing in the

2→ 2 contribution to eR equilibration

In this appendix we handle the integrals describing 2 → 2 scattering processes

contributing to the LeR equilibration rate. After summing over all leading order

processes the production rate on the right-hand side of (3.44) can be written as

d2neR
dt dk0

∣∣∣∣
neR=0

=
h2
efF(k0)

128π5

[
18h2

t I 0
fff

+(3g2 + g′
2
)
{
I 1

bfb + I 1
bbf + I 1

fbb

}
+4g′

2 {
I 1

bfb + I 1
bbf + I 1

fbb + I 0
bbf − 2I 0

bfb

} ]
(H.1)

with k0 = |k|. Here we have already integrated over the direction of k. The I n
123

are the different phase space integrals appearing in (3.43). The lower indices refer

to the statistics of the particles 1, 2, 3 and the upper index n = 0, 1 is the power

of the ratios of Mandelstam variables in equations (3.45) through (3.51). The

exact definitions of the I are given below.

Like in [69] we carry out some integrations analytically until there are two

integrals over the variables q± ≡ (q0 ± |q|)/2 left. If not stated otherwise, q is

the exchanged 4-momentum. For each process we decompose the products of

occupancies in (3.43) as

f1f2[1± f3] = fF(k0)f̃ f̂ , (H.2)

where f̂ is a function of q+ + q− and of the energy of one incoming particle only.

Most of the integrals appear in sterile neutrino production as well. For the sake

of completeness, we list them in this appendix, adopted to our notation. We

also give the analytic integrals which were not computed in [69]. The terms
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Appendix H Integrals appearing in the 2→ 2 contribution to eR equilibration

containing 1/t are infrared divergent when integrated over q±. All divergent

contributions encountered here already appear in sterile neutrino production

(see [69] for details).

The integral Ifff . This integral is exclusive to quark scattering. Since the

squared matrix elements do not depend on the Mandelstam variables, we may

choose q = p3 + k for both s- and t-channel. We find

f̃ = fB(q+ + q−) + fF(q+ + q− − k0) (H.3)

f̂ = 1− fF(q+ + q− − E2)− fF(E2), (H.4)

and we have

I 0
fff =

∞∫
k0

dq+

k0∫
0

dq− f̃

q+∫
q−

dE2 f̂ . (H.5)

Only n = 0 appears, and the integral of f̂ over E2 is given by equation (A.10)

of [69].

The integral Ibfb. This integral appears in s-channel processes, so that q =

p3 + k. We have

f̃ = fF(q+ + q−) + fB(q+ + q− − k0) (H.6)

f̂ = 1 + fB(q+ + q− − E2)− fF(E2), (H.7)

and we need

I n
bfb =

∞∫
k0

dq+

k0∫
0

dq− f̃

q+∫
q−

dE2 f̂

(〈−u〉
s

)n
(H.8)

where 〈−u〉 is the Mandelstam variable u averaged over angles,

〈−u〉
s

=
q2

+ + q2
− − (q+ + q−)(E2 + k0) + 2E2k

0

(q+ − q−)2
. (H.9)

The result of the E2 integration is found in equation (A.13) of [69]. For the n = 0

integral we obtain

q+∫
q−

dE2 f̂ = −(q+ − q−) + T
[
log
(
−1 + e2q+/T

)
− log

(
−1 + e2q−/T

)]
. (H.10)
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The integral Ibbf . This function arises in t-channel processes, so that q =

p1 − p3. We obtain

f̃ = 1 + fB(k0 − q+ − q−)− fF(q+ + q−) (H.11)

f̂ = fB(E1) + fF(E1 − q+ − q−) (H.12)

such that

I n
bbf =

k0∫
0

dq+

0∫
−∞

dq− f̃

∞∫
q+

dE1 f̂

(〈u〉
t

)n
. (H.13)

Here we have

〈u〉
t

=
2q+q− + 2E1k

0 − (q+ + q−)(E1 + k0)

(q+ − q−)2
. (H.14)

The E1 integral with n = 1 is equation (A.24) of [69], while for the case n = 0 we

get

∞∫
q+

dE1 f̂ = q+ + q− + T
[
log
(

1 + e−q−/T
)
− log

(
−1 + eq+/T

)]
. (H.15)

The integral Ifbb. We encounter this integral in t-channel, so again q = p1−p3.

Here

f̃ = 1 + fB(k0 − q+ − q−)− fF(q+ + q−) (H.16)

f̂ = fF(E1) + fB(E1 − q+ − q−) (H.17)

and we have

I 1
fbb =

k0∫
0

dq+

0∫
−∞

dq− f̃

∞∫
q+

dE1 f̂

(〈s〉
−t

)
. (H.18)

We write 〈s〉/(−t) = 1 + 〈u〉/t with 〈u〉/t from (H.14). We only need n = 1, and

the corresponding integral over E1 is found in [69] in (A.20).
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Appendix I

One-loop renormalization group equations

Here we briefly review the renormalization group equations at one-loop level for

the various couplings entering the numerical evaluation of the rates in the kinetic

equation for LeR. For

t ≡ log

(
µ2

m2
Z

)
(I.1)

with the renormalization scale µ and the Z boson mass mZ , and three fermion

generations as well as one complex Higgs doublet, we have the differential equations

for the strong and weak gauge couplings [93]

d

dt
g2

S(t) = − 7

16π2
g4

S(t), (I.2)

d

dt
g2(t) = − 19

96π2
g4(t), (I.3)

d

dt
g′

2
(t) =

41

96π2
g′

4
(t). (I.4)

Because of the independence of (I.3) and (I.4) of Yukawa couplings and the Higgs

self-coupling, these equations can be solved in a first step, yielding

g2
S(t) = g2

S(0)

[
1 +

7g2
S(0)

16π2
t

]−1

, (I.5)

g2(t) = g2(0)

[
1 +

19g2(0)

96π2
t

]−1

, (I.6)

g′
2
(t) = g′

2
(0)

[
1− 41g′2(0)

96π2
t

]−1

. (I.7)
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The renormalization group equations for the Yukawa couplings read [94]59

32π2 d

dt
U2(t) = 3

[
U2(t)−D2(t)

]
U2(t) + 2

[
Σ(t)−AU (t)

]
U2(t), (I.8)

32π2 d

dt
D2(t) = 3

[
D2(t)− U2(t)

]
D2(t) + 2

[
Σ(t)−AD(t)

]
D2(t), (I.9)

32π2 d

dt
L2(t) = 3L4(t) + 2

[
Σ(t)−AL(t)

]
L2(t), (I.10)

for the matrices U = diag(hu, hc, ht), D = diag(hd, hs, hb), L = diag(he, hµ, hτ ).

The determination of the running of the lepton Yukawa couplings necessitates

including all other fermionic Yukawa couplings as well, since in equations (I.8)

through (I.10) we have

Σ(t) ≡ tr
[
3D2(t) + 3U2(t) + L2(t)

]
, (I.11)

AU (t) ≡ 8g2
S(t) +

9

4
g2(t) +

17

12
g′

2
(t), (I.12)

AD(t) ≡ 8g2
S(t) +

9

4
g2(t) +

5

12
g′

2
(t), (I.13)

AL(t) ≡ 9

4
g2(t) +

15

4
g′

2
(t), (I.14)

and therefore quark Yukawa couplings are not power suppressed in (I.10). The

coupled set of renormalization group equations for the Yukawa couplings can

only be solved numerically. Finally, neglecting all but the (dominant) top quark

Yukawa couplings the Higgs self-coupling λ satisfies the renormalization group

equation [93]

16π2 d

dt
λ(t) = 12λ2(t) + 6λ(t)h2

t (t)− 3h4
t (t)−

3

2
λ(t)

[
3g2(t) + g′

2
(t)
]

+
3

16

[
2g4(t) +

(
g2(t) + g′

2
(t)
)2
]
. (I.15)

It is now straightforward to solve the system of renormalization group equations

with the initial conditions [3]

g2
S(0) = 1.488, U2(0) = diag(1.597 · 10−10, 5.363 · 10−5, 0.9874),

g2(0) = 0.4246, D2(0) = diag(7.288 · 10−10, 2.977 · 10−7, 5.764 · 10−4),

g′
2
(0) = 0.1277, L2(0) = diag(8.614 · 10−12, 3.683 · 10−7, 1.042 · 10−4),

λ(0) = 0.1292. (I.16)

59It is more useful for our purposes to work with the squared Yukawa couplings and their
renormalization group equations. They are easily obtained from the equations in [94] by
multiplying with the matrices U,D,L.
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Appendix J

The coefficient Γ at temperatures

relevant for µR or τR equilibration

Our results in chapter 3 can be applied to higher temperatures, corresponding to

the coefficient entering the equilibration rates of right-handed charges carried by

the heavier leptons, to some extent.

The contribution to Γ from 2→ 2 scattering (3.53) remains unchanged, up to

trivial exchange of the corresponding Yukawa coupling (which is, of course, also

needed for generalization of the LPM resummed rate), and one just has to evolve

the large Standard Model couplings appearing in (3.53) to the corresponding

scale. This is due to the fact that in the symmetric phase the particles carry only

thermal masses and these are flavor-blind. The LPM contribution, however, has

to be reevaluated at the higher temperatures, since the couplings enter at various

steps in the numerical computation. Table 3 shows the numerical results for

temperatures between 109 GeV and 1013 GeV, and it constitutes the continuation

of the results found in table 1.

We now revisit the fit to the LPM contribution in (3.55). For the temperature

interval 8.5 · 104 GeV ≤ T ≤ 3 · 1011 GeV which we expect to play a role in the

equilibration of charges violated by hµ, we obtain the fit parameters60

dt = 0.600, d`e = 1.56, deR = 1.08, (J.1)

while in the range 3 · 109 GeV ≤ T ≤ 1013 GeV which we expect to be relevant

for charges carried by the τR, we find

dt = 0.819, d`e = 1.44, deR = 1.18. (J.2)

60We stick to the notation of (3.55), even though in this context the denomination of the fit
parameters d`e and deR might be a bit misleading.
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Table 3: Continuation of table 1 to higher temperatures. Again the numerical
uncertainty in the LPM contribution is below 2%.

T/GeV Γ2→2/(h2
eT

3) ΓLPM/(h2
eT

3) Γ/(h2
eT

3)

4.19 · 109 1.06 · 10−3 4.11 · 10−4 1.47 · 10−3

1.68 · 1010 1.05 · 10−3 4.09 · 10−4 1.46 · 10−3

6.71 · 1010 1.04 · 10−3 4.06 · 10−4 1.45 · 10−3

2.68 · 1011 1.03 · 10−3 4.04 · 10−4 1.43 · 10−3

1.07 · 1012 1.03 · 10−3 4.03 · 10−4 1.43 · 10−3

4.29 · 1012 1.02 · 10−3 4.01 · 10−4 1.42 · 10−3

1.72 · 1013 1.02 · 10−3 4.00 · 10−4 1.42 · 10−3

Like in the electron case, the fits for the heavier flavors have a way smaller error

than our numerical uncertainty in the evaluation of (3.36).

The considerations in this appendix need to be supplied with an analysis of

the relevant (flavor non-diagonal) charges and the respective susceptibilities at

the higher temperatures in order to obtain results for the complete equilibration

rates. We leave this examination to future studies.
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