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Abstract
We study harmonic functions associated to systems of stochastic differential equations of the
form dXi

t = Ai1(Xt−)dZ1
t +· · ·+ Aid(Xt−)dZd

t , i ∈ {1, . . . , d}, where Z j
t are independent

one-dimensional symmetric stable processes of order α j ∈ (0, 2), j ∈ {1, . . . , d}. In this
article we prove Hölder regularity of bounded harmonic functions with respect to solutions
to such systems.
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1 Introduction

The consideration of stochastic processes with jumps and anisotropic behavior is natural
and reasonable since such objects arise in several natural and financial models. In certain
circumstances Lévy processes with jumps are more suitable to capture empirical facts that
diffusion models do. See for instance [14] for examples of financial models with jumps.

In the nineteen fifties, De Giorgi [15] and Nash [29] independently prove an a-priori
Hölder estimate for weak solutions u to second order equations of the form

div(A(x)∇u(x)) = 0

for uniformly elliptic and measurable coefficients A. In [28], Moser proves Hölder continuity
of weak solutions and gives a proof of an elliptic Harnack inequality for weak solutions to this
equation. This article provides a new technique of how to derive an a-priori Hölder estimate
from the Harnack inequality. For a large class of local operators, the Hölder continuity can be
derived from the Harnack inequality, see for instance [19]. For a comprehensive introduction
into Harnack inequalities, we refer the reader e.g. to [20].

The corresponding case of operators in non-divergence form is treated in by Krylov and
Safonov in [23]. The authors develop a technique for proving Hölder regularity and the
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1136 J. Chaker

Harnack inequality for harmonic functions corresponding to non-divergence form elliptic
operators. They take a probabilistic point of view and make use of the martingale problem
to prove regularity estimates for harmonic functions. The main tool is a support theorem,
which gives information about the topological support for solutions to themartingale problem
associated to the corresponding operator. This technique is also used in [6] to prove similar
results for nonlocal operators of the form

L f (x) =
∫
Rd\{0}

[ f (x + h) − f (x) − 1{|h|≤1}h · ∇ f (x)]a(x, h)dh (1.1)

under suitable assumptions on the function a. In [4] Bass and Chen follow the same ideas to
proveHölder regularity for harmonic functions associated to solutions of systemsof stochastic
differential equations driven by Lévy processes with highly singular Lévy measures. In this
work we extend the results obtained by Bass and Chen to a larger class of driving Lévy
processes.

A one-dimensional Lévy process (Yt )t≥0 is called symmetric stable processes of order ∈
(0,2) if its characteristic function is given by

EeiξYt = e−t |ξ |γ , ξ ∈ R.

The Lévy measure of such a process is given by ν(dh) = cγ |h|−1−γ dh, where cγ =
2γ �

(
1+γ
2

)
/
∣∣� (− γ

2

)∣∣.
Let d ∈ N and d ≥ 2.We assume that Zi

t , i = 1, . . . , d , are independent one-dimensional
symmetric stable processes of order αi ∈ (0, 2) and define Z = (Zt )t≥0 = (Z1

t , . . . , Z
d
t )t≥0.

The Lévy-measure of this process is supported on the coordinate axes and is given by

ν(dw) =
d∑

k=1

⎛
⎝ cαk

|wk |1+αk
dwk

⎛
⎝∏

j �=k

δ{0}(dw j )

⎞
⎠
⎞
⎠ .

Therefore ν(A) = 0 for every set A ⊂ Rd , which has an empty intersection with the
coordinate axes. The generator L of Z is given for f ∈ C2

b (R
d) by the formula

L f (x) =
d∑

k=1

∫
R\{0}

( f (x + hek) − f (x) − 1{|h|≤1}∂k f (x)h)
cαk

|h|1+αk
dh. (1.2)

For a deeper discussion on Lévy processes and their generators we refer the reader to [30].
Let x0 ∈ Rd and A : Rd → Rd×d a matrix-valued function. We consider the system of

stochastic differential equations
⎧⎪⎪⎨
⎪⎪⎩
dXi

t =
d∑
j=1

Ai j (Xt−)dZ j
t ,

Xi
0 = xi0,

(1.3)

where Xt− = lim
s↗t

Xs is the left hand limit.

This system has been studied systematically in the case α1 = α2 = · · · = αd = α ∈ (0, 2)
by Bass and Chen in the articles [3] and [4]. With the help of the martingale problem, Bass
and Chen prove in [3] that for each x0 ∈ Rd there exists a unique weak solution (X =
(X1

t , . . . , X
d
t )t≥0,P

x0) to (1.3). Furthermore the authors prove that the family {X ,Px , x ∈
Rd} forms a conservative strong Markov process on Rd whose semigroup maps bounded
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Regularity of solutions to anisotropic nonlocal equations 1137

continuous functions to bounded continuous functions (see Theorem 1.1, [3]). Consequently
it follows that

L f (x) =
d∑
j=1

∫
R\{0}

( f (x + a j (x)h) − f (x) − h1{|h|≤1}∇ f (x) · a j (x))
cα

|h|1+α
dh

coincides on C2
b (R

d) with the generator for any weak solution to (1.3), where a j (x) denotes
the jth column of thematrix A(x). In [4] the authors proveHölder regularity of harmonic func-
tions with respect to L and give a counter example which shows that the Harnack inequality
for harmonic functions is not satisfied.

In this paper we do not study unique solvability of (1.3) but prove an a-priori regular-
ity estimate for harmonic functions if unique solutions to the system exist. The following
assumptions will be needed throughout the paper.

Assumption (i) For every x ∈ Rd thematrix A(x) is non-degenerate, that is det(A(x)) �= 0.
(ii) The functions x 
→ Ai j (x) and x 
→ A−1

i j (x) are continuous and bounded for all 1 ≤
i, j ≤ d and x ∈ Rd .

(iii) For any x0 ∈ Rd , there exists a unique solution to the martingale problem for

L f (x) =
d∑
j=1

∫
R\{0}

( f (x + a j (x)h) − f (x) − h1{|h|≤1}∇ f (x) · a j (x))
cα j

|h|1+α j
dh (1.4)

started at x0. The operatorL coincides onC2
b (R

d )with the generator for the weak solution to (1.3).

For a comprehensive introduction into the martingale problem we refer the reader to [16].

Notation

Let A be the matrix-valued function from (1.3). Let D be a Borel set. Throughout the paper
	(D) denotes the modulus of continuity of A and we write 
(D) for the upper bound of A
on D. We set αmin := min{α1, . . . , αd} and αmax := max{α1, . . . , αd}. For i ∈ N we write
ci for positive constants and additionally ci = ci (·) if we want to highlight all the quantities
the constant depends on.

In order to deal with the anisotropy of the process we consider a corresponding scale of
cubes.

Definition 1.1 Let r ∈ (0, 1] and α1, . . . , αd ∈ (0, 2). For k > 0, we define

Mk
r (x) :=

d×
i=1

(
xi − (krαmax/αi ), xi + (krαmax/αi )

)
.

For brevity we write Mr (x) instead of M1
r (x).

Note that Mk
r is increasing in k and r . For z ∈ Rd and r ∈ (0, 1], the set Mr (z) is a ball with

radius r and center z in the metric space (Rd , d), where

d(x, y) = sup
k∈{1,...,d}

{|xk − yk |αk/αmax1{|xk−yk |≤1}(x, y) + 1{|xk−yk |>1}(x, y)}.

This metric is useful for local considerations only, that is studies of balls with radii less or
equal than one. The advantage of using these sets is the fact that they reflect the different
jump intensities of the process Z and compensate them in an appropriate way, see for instance
Proposition 2.4.
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1138 J. Chaker

The purpose of this paper is to prove the following result.

Theorem 1.2 Let r ∈ (0, 1], s > 0 and x0 ∈ Rd . Suppose h is bounded inRd and harmonic
in M1+s

r (x0) with respect to X. Then there exist c1 = c1(
(M1+s
r (x0)),	(M1+s

r (x0))) > 0
and β = β(
(M1+s

r (x0)),	(M1+s
r (x0))) > 0, independent of h and r, such that

|h(x) − h(y)| ≤ c1

( |x − y|
rαmax/αmin

)β

sup
Rd

|h(z)| for x, y ∈ Mr (x0).

We want to emphasize, that in the case α1 = · · · = αd the set Mr (x0) reduces to a cube
with radius r and hence this result coincides with [4, Theorem 2.9], when one chooses cubes
instead of balls.

Let us briefly discuss selected related results in the literature.
As previously mentioned, in [6] the authors study operators of the form (1.1) for coeffi-

cients a : Rd × Rd → R which are assumed to be symmetric in the second variable and
satisfy a(x, h) � |h|−d−α for all x, h ∈ Rd , whereα ∈ (0, 2). Using probabilistic techniques
they prove aHarnack inequality and derive Hölder regularity estimates for bounded harmonic
functions. The results of this work have been extended to more general kernels by several
authors. For instance, in [5] the authors establish a Hölder estimate for harmonic functions
to operators of the form (1.1), where they replace the jump measure a(x, h) dh by a family
of measures n(x, dh), which is not required to have a density with respect to the Lebesgue
meaure. Furthermore, [32] extends the method of [6] to prove the Harnack inequality for
more general classes of Markov processes. In [7] the authors construct and study the heat
kernel a class of highly anisotropic integro-differential operators, where the Lévy measure
does not have to be absolutely continuous with respect to the Lebesgue measure.

This article studies regularity for operators in non-divergence form given by (1.4). Hölder
regularity results have intensively been studied for linear and nonlinear nonlocal equations
governed by operators in non-divergence form. [31] provides a purely analytic proof ofHölder
continuity for harmonic functionswith respect to a class of integro differential equations given
by (1.1), where no symmetry on the kernel a is assumed. In [9], the authors study viscosity
solutions to fully nonlinear integro-differential equations and prove a nonlocal version of
the Aleksandrov-Bakelman-Pucci estimate, a Harnack inequality and a Hölder estimate.
There aremanymore important results concerningHölder estimates andHarnack inequalities
for integro-differential equations in non-divergence form including [1,8,10,22,27] and [33].
Hölder regularity estimates have also been intensely studied for operators in divergence
form. We would like to mention two works, where the corresponding jump intensities are
similar to the ones we study in this article. In [12] and [13] the authors study nonlocal elliptic
resp. parabolic equations for families of operators which can be of the form (1.2). They
prove a weak Harnack inequality and Hölder regularity estimates for weak solutions to the
corresponding equations.

Let us give a short survey to known results related to systems of stochastic differential
equations given by (1.3). We first discuss some results in the case α1 = · · · = αd . In [3] the
authors prove unique weak solvability for (1.3). [4] shows Hölder regularity estimates for
bounded harmonic functions. Furthermore, in [26] the authors prove the strongFeller property
for the corresponding semigroup for (1.3). Sharp lower bounds for the transition densities
for the process Zt = (Z1

t , . . . , Z
d
t ) are studied in [17] and sharp upper bounds in [21].

The existence of a unique solution to the martingale problem for (1.3) in the case of
different orders of differentiability, i.e. αi �= α j for i �= j , is shown in [11] under the
additional assumption that the matrix A is diagonal. [24] also studies the system (1.3) in the
case of diagonalmatrices A. The authors prove sharp two-sided estimates of the corresponding
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Regularity of solutions to anisotropic nonlocal equations 1139

transition density pA(t, x, y) and prove Hölder and gradient estimates for the function x 
→
pA(t, x, y). In [18] the authors study the existence of densities for solutions (1.3) with
Hölder continuous coefficients. They allow for a wide class of Lévy processes including
the anisotropic processes Zt with different orders of differentiability. In [25] the authors
study systems of the form (1.3) where Z1

t , . . . , Z
d
t are independent one-dimensional Lévy

processes with characteristic exponentsψ1, . . . , ψd . Under scaling conditions and regularity
properties on the characteristic function they prove semigroup properties for solutions.

Structure of the article

This article is organized as follows. In Sect. 2 we provide definitions and auxiliary results.
We constitute sufficient preparation and study the behavior of the solution to the system. In
Sect. 3 we study the topological support of the solution to the martingale problem associated
to the system of stochastic differential equations. The aim of this section is to prove a support
theorem. Sect. 4 contains the proof of Theorem 1.2.

2 Definitions and auxiliary results

In this section we provide important definitions and prove auxiliary results associated to the
solution of the system (1.3).

Let Aτ (x) denote the transpose of thematrix A(x) and (aτ
j (x))

−1 the jth row of (Aτ (x))−1.
For a Borel set D, we denote the first entrance time of the process X in D by TD := inf{t ≥
0 : Xt ∈ D} and the first exit time of X of D by τD := inf{t ≥ 0 : Xt /∈ D}.

Let us first recall the definition of harmonicity with respect to a Markov process.

Definition 2.1 A bounded function h : Rd → R is called harmonic with respect to X in a
domain D ⊂ Rd if for every bounded open set U with U � D

h
(
Xt∧τU

)
is a Px -martingale for every x ∈ U .

For R = Ms(y) we use the notation R̂ = M3
s (y). The next Proposition is a pure geometrical

statement and not related to the system of stochastic differential equations. We skip the proof
and refer the reader to [2, Proposition V.7.2], which can be easily adjusted to our case.

Proposition 2.2 Let r ∈ (0, 1], q ∈ (0, 1) and x0 ∈ Rd . If A ⊂ Mr (x0) and |A| < q, then
there exists a set D ⊂ Mr (x0) such that

(1) D is the union of rectangles R̂i such that the interiors of the Ri are pairwise disjoint,
(2) |A| ≤ |D ∩ Mr (x0)| and
(3) for each i , |A ∩ Ri | > q|Ri |.
Following the ideas of the proof of [6, Proposition 2.3], we next prove a Lévy system type
formula.

Proposition 2.3 Suppose D and E are two Borel sets with dist(D, E) > 0. Then

∑
s≤t

1{Xs−∈D,Xs∈E} −
∫ t

0
1D(Xs)

∫
E

d∑
k=1

⎛
⎝ |(aτ

k (Xs))
−1|1+αk cαk

|hk − Xk
s |1+αk

dhk

⎛
⎝∏

j �=k

δ{X j
s }(dh j )

⎞
⎠
⎞
⎠ ds

is a P
x -martingale for each x.
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1140 J. Chaker

Proof Let f ∈ C2
b (R

d) with f = 0 on D and f = 1 on E . Moreover set

M f
t := f (Xt ) − f (X0) −

∫ t

0
L f (Xs)ds.

ByAssumption (iii) for each x ∈ Rd the probabilitymeasurePx is a solution to themartingale
problem forL. Since the stochastic integral with respect to a martingale is itself a martingale,

∫ t

0
1D(Xs−)dM f

s

is a Px -martingale. Rewriting f (Xt ) − f (X0) = ∑
s≤t ( f (Xs) − f (Xs−)) leads to

∑
s≤t

(1D(Xs−)( f (Xs) − f (Xs−))) −
∫ t

0
1D(Xs−)L f (Xs)ds

is a Px -martingale. Since Xs �= Xs− for only countably many values of s,

∑
s≤t

(1D(Xs−)( f (Xs) − f (Xs−))) −
∫ t

0
1D(Xs)L f (Xs)ds (2.1)

is also a Px -martingale. Let w = (w1, . . . , wd) and u = (u1, . . . , ud). By definition of f ,
for x ∈ D we have f (x) = 0 and ∇ f (x) = 0. Hence

L f (x) =
d∑

k=1

∫
R\{0}

f (x + ak(x)h)
cαk

|h|1+αk
dh

=
d∑

k=1

∫
Rd\{0}

⎛
⎝ f (x + Aτ (x)w)

cαk

|w|1+αk

⎛
⎝∏

j �=k

δ{0}(dw j )

⎞
⎠
⎞
⎠ dwk

=
d∑

k=1

∫
Rd\{0}

f (u)
|(aτ

k (x))−1|1+αk cαk

|u − x |1+αk

⎛
⎝∏

j �=k

δ{x j }(du j )

⎞
⎠ duk .

Note, that cαk /|h|1+αk is integrable over h in the complement of any neighborhood of the
origin for any k ∈ {1, . . . , d}. Since D and E have a positive distance from each other, the
sum in (2.1) is finite. Hence

∑
s≤t

(1D(Xs−)(1E (Xs) − 1E (Xs)))

−
∫ t

0
1D(Xs)

∫
E

d∑
k=1

⎛
⎝ |(aτ

j (Xs))
−1|1+α j cαk

|hk − Xk
s |1+αk

dhk

⎛
⎝∏

j �=k

δ{X j
s }(dh j )

⎞
⎠
⎞
⎠ ds

is a Px -martingale, which is equivalent to our assertion. ��
The next Proposition gives the behavior of the expected first exit time of the solution to (1.3)
out of the set Mr (·). This Proposition highlights the advantage of Mr (·) and shows that the
scaling of the cube in the different directions with respect to the jump intensity compensates
the different jump intensities in the different directions.
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Regularity of solutions to anisotropic nonlocal equations 1141

Proposition 2.4 Let x ∈ Rd and r ∈ (0, 1]. Then there exists a constant c1 =
c1(
(Mr (x)), d) > 0 such that for all z ∈ Mr (x)

E
z [τMr (x)

] ≤ c1r
αmax .

Proof First note

E
z [τMr (y)

] = E
z
[
min
1≤i≤d

inf{t ≥ 0 : Xi
t /∈ (yi − r (αmax/αi ), yi − r (αmax/αi ))}

]

≤ 1

d

d∑
i=1

E
z
[
inf{t ≥ 0 : Xi

t /∈ (yi − r (αmax/αi ), yi − r (αmax/αi ))}
]

=: 1

d

d∑
i=1

E
z [ϒi ] .

(2.2)

Let j ∈ {1, . . . , d} be fixed but arbitrary. The aim is to show that there exists c2 > 0 such
that

E
z(ϒ j ) ≤ c2r

αmax . (2.3)

Since we reduced the problem to a one-dimensional one, we may suppose by scaling r = 1.
Let

κ := inf
{
|A(x)e j | : x ∈ M1(x)

}
.

By Assumption (i), we have κ > 0. There exists a c3 ∈ (0, 1) with

P
z(∃s ∈ [0, 1] : �Z j

s ∈ R \ [−3/κ, 3/κ]) ≥ c3.

The independence of the one-dimensional processes implies that with probability zero at
least two of the Zi ’s make a jump at the same time. This leads to

P
z(∃s ∈ [0, 1] : �Z j

s >
3

κ
and �Zi

s = 0 for i ∈ {1, . . . , d} \ { j}) ≥ c3. (2.4)

Our aim is to show that the probability of the process X for leavingM1(x) in the jth coordinate
after time m is bounded in the following way

P
z(ϒ j > m) ≤ (1 − k j )

m for all m ∈ N.

Suppose there exists s ∈ [0, 1] such that �Z j
s > 3

κ
, �Zi

s = 0 for i ∈ {1, . . . , d} \ { j}, and
Xs− ∈ M1(x). Then

|�X j
s | = |�Z j

s | |A(Xs−)(e j )| > 3.

Note, that we leave M1(x) by this jump. By (2.4)

P
z(ϒ j ≤ 1) ≥ c3 ⇔ P

z(ϒ j > 1) ≤ (1 − c3).

Let {θt : t ≥ 0} denote the shift operators for X . Now assume Pz(ϒ j > m) ≤ (1− c3)m . By
the Markov property

P
z(ϒ j > m + 1) ≤ P

z(ϒ j > m;ϒ j ◦ θm > 1)

= E
z[PXm (ϒ j > 1);ϒ j > m]

≤ (1 − c3)P
z(ϒ j > m)

≤ (1 − c3)
m+1.
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1142 J. Chaker

Assertion (2.3) follows by

E
x [ϒ j ] =

∫ ∞

0
P
z(ϒ j > t)dt ≤

∞∑
m=0

P
z(ϒ j > m) ≤

∞∑
m=0

(1 − c3)
m = c2,

where we used the fact that the sum on the right hand side is a geometric sum. Thus the
assertion follows by (2.2) and (2.3). ��

We close this section by giving an estimate for leaving a rectangle with a comparatively
big jump.

Proposition 2.5 Let x ∈ Rd , r ∈ (0, 1] and R ≥ 2r . There exists a constant c1 =
c1(
(Rd), d) > 0, such that for all z ∈ Mr (x)

P
z(XτMr (x) /∈ MR(x)) ≤ c1

( r
R

)αmax
.

Proof Let

C j := R \ [x j − Rαmax/α j , x j + Rαmax/α j ]
and for 1 ≤ j ≤ d let k j = supx∈R |(aτ

j (x))
−1|cα j . By Proposition 2.3 and optional stopping

we get for c2 = ∑d
j=1((2k j2

α
max)/cα j ) ≤ 8d supx∈R |(aτ

j (x))
−1|

P
z (Xt∧τMr (x) /∈ MR(x)

) = E
z

⎡
⎣
∫ t∧τMr (x)

0

∫
MR (x)c

d∑
j=1

|(aτ
j (Xs))

−1|cα j

|h j − X j
s |1+α j

⎛
⎝∏

i �= j

δ{Xi
s }(dhi )

⎞
⎠ dh j ds

⎤
⎦

≤ E
z

⎡
⎣
∫ t∧τMr (x)

0

d∑
j=1

∫
C j

k j

|h j − X j
s |1+α j

dh j ds

⎤
⎦

≤ E
z

⎡
⎣
∫ t∧τMr (x)

0

d∑
j=1

∫
C j

k j
|h j − (x j + rαmax/α j )|1+α j

dh j ds

⎤
⎦

= E
z[t ∧ τMr (x))]

d∑
j=1

2k j
α j (Rαmax/α j − rαmax/α j )α j

≤ E
z[t ∧ τMr (x))]

d∑
j=1

2k j
α j ((R/2)αmax/α j )α j

= c2
Rαmax

E
z[t ∧ τMr (x))].

Using the monotone convergence on the right and dominated convergence on the left, we
have for t → ∞

P
z(Xt∧τMr (x) /∈ MR(x)) ≤ c2

Rαmax
E
z(τMr (x)) ≤ c2c3

( r
R

)αmax
,

where c3 is the constant showing up in the estimate Ez(τMr (x)) ≤ c3rα of Proposition 2.4. ��

3 The support theorem

In this section we prove the main ingredient for the proof of the Hölder regularity estimate
for harmonic functions. The so-called support theorem states that sets of positive Lebesgue
measure are hit with positive probability.
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Regularity of solutions to anisotropic nonlocal equations 1143

This theorem was first proved in [23] for the diffusion case. In the article [4], Bass and
Chen prove the support theorem in the context of pure jump processes with singular and
anisotropic kernels. They consider the system (1.3) in the case αi = α for all i ∈ {1, . . . , d}
and use the technique by Krylov and Safonov to prove Hölder regularity with the help of the
support theorem.

The idea we use to prove the support theorem is similar in spirit to the one in [4].
The following Lemma is a statement about the topological support of the law of the

stopped process. It gives the existence of a bounded stopping time T such that with positive
probability the stopped process stays in a small ball around its starting point up to time T ,
makes a jump along the kth coordinate axis and stays afterwards in a small ball.

Lemma 3.1 Let r ∈ (0, 1], x0 ∈ Rd , k ∈ {1, . . . , d}, vk = A(x0)ek, γ ∈ (0, rαmax/αmin ), t0 >

0 and ξ ∈ [−rαmax/αmin , rαmax/αmin ]. There exists a constant c1 > 0 = c1(γ, t0, ξ, r ,

(M2

r (x0))),	(M2
r (x0))) > 0 and a stopping time T ≤ t0, such that

P
x0

(
sup
s<T

|Xs − x0| < γ and sup
T≤s≤t0

|Xs − (x0 + ξvk)| < γ

)
≥ c1. (3.1)

Proof Let

‖A‖∞ := 1 ∨
⎛
⎝ d∑

i, j=1

sup
x∈M2

r (x0)
|Ai j (x)|

⎞
⎠ .

We assume ξ ∈ [0, rαmax/αmin ]. The case ξ ∈ [−rαmax/αmin , 0] can be proven similar. Let us
first suppose ξ ≥ γ /(3‖A‖∞) and let β ∈ (0, ξ), which will be chosen later. We decompose
the process Zi

t in the following way:

Z̃ i
t =

∑
s≤t

�Zi
s1{|�Zi

s |>β}, Z
i
t = Zi

t − Z̃ i
t .

Let (Xt )t≥0 be the solution to

dX
i
t =

d∑
j=1

Ai j (Xt−)dZ
j
t , X

i
0 = xi0.

The continuity of A allows us to find a δ < γ/(6‖A‖∞), such that

sup
i, j

sup
|x−x0|<δ

|Ai j (x) − Ai j (x0)| <
γ

12d
. (3.2)

Consider

C =
{
sup
s≤t0

|Xs − X0| ≤ δ

}
,

D =
{
Z̃ k has precisely one jump before time t0 with jump size in [ξ, ξ + δ],

�Z̃ j
s = 0 for all s ≤ t0 and all j �= k

}
,

E =
{
Z̃ i
s = 0 for all s ≤ t0 and i = 1, . . . , d

}
.
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1144 J. Chaker

Since A is bounded, we can find c2 > 0, such that

[
X
i
, X

i
]
t
≤ c2

d∑
j=1

[
Z

j
, Z

j
]
t
.

Note, that β ∈ (0, ξ) ⊂ (0, rαmax/αmin ) ⊂ (0, 1). Therefore, we get

E
x0
[
X
i
, X

i
]
t
≤ c2

d∑
j=1

E
x0
[
Z

j
, Z

j
]
t
= c2

d∑
j=1

∫ t

0

(∫ β

−β

cα j h
2

|h|1+α j
dh

)
dt ≤ c3tdβ2−αmax .

By Tschebyscheff’s inequality and Doob’s inequality, we get

P
x0

[
sup
s≤t0

|Xi
s − X

i
0| > δ

]
≤ 1

δ2
E
x0

[
sup
s≤t0

(
X
i
s − X

i
0

)2] ≤ 1

δ2
4Ex0

[(
X
i
t0 − X

i
0

)2]

≤ c4t0dβ2−αmax

δ2
.

Choose β ∈ (0, ξ) such that

c5t0β
2−αmax ≤ δ2

2d
(3.3)

holds. Then by (3.3), we get

P
x0(C) = 1 − P

x0

(
sup
s≤t0

|Xi
s − X

i
0| > δ

)
≥ 1

2
. (3.4)

For Z̃ k to have a single jump before time t0, and for that jump’s size to be in the interval
[ξ, ξ + δ], then up to time t0 Z̃ k

t must have

(i) no negative jumps,
(ii) no jumps whose size lies in [β, ξ),

(iii) no jumps whose size lies in (ξ + δ,∞),

(iv) precisely one jump whose size lies in the interval [ξ, ξ + δ].
We can use the fact, that Z̃ k is a compound Poisson process and use the knowledge about
Poisson random measures. The events descriped in (i)-(iv) are the probabilities that Poisson
random variables P1, P2.P3 and P4 of parameters λ1 = c6t0β−αk , λ2 = c6t0(β−αk − ξ−αk ),
λ3 = c6t0(ξ +δ)−αk , and λ4 = c6t0(ξ−αk − (ξ +δ)−αk ), respectively, take the values 0, 0, 0,
and 1, respectively.

So there exists a constant c7 = c7(αk, t0, δ, ξ, β) > 0 such that

P
x0
(
Z̃ k has a single jump before time t0, and its size is in [ξ, ξ + δ]) ≥ c7.

For all j �= k, the probability that Z̃ j does not have a jump before time t0, is the probability
that a Poisson random variable with parameter 2c6t0β−α j is equal to 0. Using the indepence
of Z̃ j for j = 1, . . . , d , we can find a c8 > 0 such that

P
x0(�Z̃ j

s = 0 for all s ≤ t0 and all j �= k) ≥ c8.

Thus we obtain

P
x0(D) ≥ c9
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Regularity of solutions to anisotropic nonlocal equations 1145

for a c9 = c9(α1, . . . , αd , t0, δ, ξ, β) > 0. Furthermore the Z
i
’s are independent of the Z̃ j ’s

for all i, j ∈ {1, . . . , d}, so C and D are independent and we obtain

P
x0(C ∩ D) ≥ c9/2.

Similary we obtain

P
x0(E) ≥ c10 and P

x0(C ∩ E) ≥ c11. (3.5)

Let T be the time, when Z̃ k jumps the first time, i.e. Zk makes a jump greater then β. Then
Zs− = Zs− for all s ≤ T and hence Xs− = Xs− for all s ≤ T . So up to time T , Xs does not
move away more than δ away from its starting point. Note �XT = A(XT−)�ZT . By (3.2),
we obtain on C ∩ D

|XT − (x0 + ξvk)| ≤ |XT− − x0| + |�XT − ξ A(x0)ek))|
= |XT− − x0| + |A(XT−)�ZT − ξ A(x0)ek)|
≤ |XT− − x0| + ξ |(A(XT−) − A(x0))ek | + |A(XT−)(�ZT − ξek)|
≤ δ + ξdγ

12d
+ δ‖A‖∞ ≤ γ

6

(
1

‖A‖∞
+ γ

2
+ 1

)
≤ γ

2
.

Appling the strong Markov property at time T , we get by (3.5)

P
x0

(
sup

T≤s≤T+t0
|Xs − XT | < δ

)
≥ P

XT (C ∩ E) ≥ c11.

Note, that |XT − (x0 + ξvk)| < γ/2 and |Xs − XT | < δ for all T ≤ s ≤ t0 imply
|Xs − (x0 + ξvk)| < γ.

All in all we get by the strong Markov property

P
x0

(
sup
s<T

|Xs − x0| < γ and sup
T≤s≤t0

|Xs − (x0 + ξvk)| < γ

)
≥ c9c11

2
,

which proves the assertion.
Now suppose ξ < γ/(3‖A‖∞). Then |x0 − (x0 + ξvk)| < γ/3. We can choose T ≡ 0

and by (3.5) we get:

P
x0

(
sup
s≥t0

|Xs − x0| < δ

)
≥ c11,

which finishes the proof. ��
We need two simple geometrical facts from the field of linear algebra, whose proofs can

be found in [4] (Lemmas 2.4 and 2.5).

Lemma 3.2 Suppose u, v are two vectors inRd , η ∈ (0, 1), and p is the projection of v onto
u. If |p| ≥ η|v|, then

|v − p| ≤
√
1 − η2|v|.

Lemma 3.3 Let v be a vector in Rd , uk = Aek, and pk the projection of v onto uk for
k = 1, . . . , d. Then there exists ρ = ρ(
(Rd)) ∈ (0, 1), such that for some k,

|v − pk | ≤ ρ|v|.
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1146 J. Chaker

For a given time t1 > 0 the following lemma shows that solutions stay with positive prob-
ability in an ε-tube around a given line segment on [0, t1]. The case of α1 = · · · = αd was
considered in [4]. We follow their technique.

Lemma 3.4 Let r ∈ (0, 1], x0 ∈ Rd , t1 > 0, ε ∈ (0, rαmax/αmin ), ξ ∈ (0, ε/4) and γ > 0.
Moreover let ψ : [0, t1] → Rd be a line segment of length ξ starting at x0. Then there exists
c1 = c1(
(M2

r (x0))),	(M2
r (x0))), t1, ε, γ ) > 0, such that

P
x0

(
sup
s≤t1

|Xs − ψ(s)| < ε and |Xt1 − ψ(t1)| < γ

)
≥ c1.

Proof Note that ε is chosen such that Bε(x0) ⊂ Mr (x0). Let ρ ∈ (0, 1) be such that the
conclusion of Lemma 3.3 holds for all matrices A = A(x) with x ∈ M2

r (x). Take γ ∈
(0, ξ ∧ ρ) such that ρ̃ := γ + ρ < 1 and n ≥ 2 sufficiently large, such that (ρ̃)n < γ.

Let v0 := ψ(t1) − ψ(0) = ψ(t1) − x0, which has length ξ. By Lemma 3.2, there exists a
k0 ∈ {1, . . . , d} such that if p0 is the projection of v0 onto A(x0)ek0 , then |v0 − p0| ≤ ρ|v0|.
Note, that |p0| ≤ |v0| = ξ. By Lemma 3.1 there exists c2 > 0 and a stopping time T0 ≤ t1/n
such that for

D1 :=
{
sup
s<T0

|Xs − x0| < γ n+1 and sup
T0≤s≤t1/n

|Xs − (x0 + p0)| < γ n+1

}
.

the estimate

P
x0(D1) ≥ c2

holds. Since γ < 1 and γ n ≤ γ for all n ∈ N, we have for T0 ≤ s ≤ t1/n

|ψ(t1) − Xs | ≤ |ψ(t1) − (x0 + p0)| + |(x0 + p0) − Xs |
≤ |v0 − p0| + γ n+1 = ρξ + γ n+1 ≤ ρ̃ξ

(3.6)

on D1. Taking s = t1/n, we have

|ψ(t1) − Xt1/n | ≤ ρ̃ξ.

Since ρ̃ < 1 and |ψ(t1) − x0| = |v0| = ξ, then (3.6) shows that on D1

Xs ∈ B(x0, 2ξ) ⊂ B(x0, ε/2) if T0 ≤ s ≤ t1/n.

If 0 ≤ s < T0, then |Xs − x0| < γ n+1 < ξ, and so we have on D1

{Xs, s ∈ [0, t1/n]} ⊂ B(x0, 2ξ) ⊂ B(x0, ε/2).

Now let v1 := ψ(t1) − Xt1/n . When Xt1/n ∈ B(x0, ε/2), then by Lemma 3.3, there exists
k1 ∈ {1, . . . , d} such that if p1 is the projection of v1 onto A(Xt1/n)ek1 , then |v1−p1| ≤ ρ|v1|.
Let T1 ∈ [t1/n, 2t1/n] be a stopping time, determined by Lemma 3.1, and

D2 :=
{

sup
t1/n≤s<T1

|Xs − Xt1/n | < γ n+1 and sup
T1≤s≤2t1/n

|Xs − (Xt1/n + p1)| < γ n+1

}
.

By the Markov property at the time t1/n and Lemma 3.1, there exists the same c2 > 0 such
that

P
x0(D2|Ft1/n) ≥ c2
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Regularity of solutions to anisotropic nonlocal equations 1147

on the event {Xt1/n ∈ B(x0, ε/2)} and hence especially on D1. So

P
x0(D1 ∩ D2) ≥ c2P

x0(D1) ≥ c22.

Let s ∈ [T1, 2t1/n]. Then on D1 ∩ D2

|ψ(t1) − Xs | ≤ |ψ(t1) − (Xt1/n + p1)| + |(Xt1/n + p1) − Xs |
≤ ρ|v1| + γ n+1 ≤ ρρ̃ξ + γ n+1 ≤ (ρ̃)2ξ + γ n+1

≤ ρ̃2ξ.

In particular, by choosing s = 2t1/n, we get on D1 ∩ D2

|ψ(t1) − X2t1/n | ≤ (ρ̃)2ξ.

On D1 ∩ D2, we have for s ∈ [T1, 2t1/n]: |ψ(t1) − Xs | < ξ and |ψ(t1) − x0| = ξ , which
implies

Xs ∈ B(x0, 2ξ) ⊂ B(x0, ε/2) on D1 ∩ D2.

In particular,

|X2t1/n − x0| < 2ξ on D1 ∩ D2.

If s ∈ [t1/n, T1], then |Xs − Xt1/n | < ξ and |Xt1/n − x0| < 2ξ on D1 ∩ D2, which yields to

Xs ∈ B(x0, 3ξ) ⊂ B(x0, 3ε/4) on D1 ∩ D2.

Let v2 := ψ(t1) − X2t1/n, and proceed as above to get events D3, . . . , Dk for k ≤ n. At the
kth stage

P
x0(Dk |F(k−1)t1/n) ≥ c2 and so P

x0

⎛
⎝ k⋂

j=1

Dj

⎞
⎠ ≥ ck2.

For kt1/n ≤ Tk ≤ s ≤ (k + 1)t1/n

|ψ(t1) − Xs | ≤ (ρ̃)k+1ξ < ξ ;
on the event

⋂k
j=1 Dj . Since |ψ(t1) − x0| = ξ.

Xs ∈ B(x0, 2ξ) ⊂ B(x0, ε/2) on
k⋂
j=1

Dj .

If kt1/n ≤ s < Tk , we obtain at the kth stage

|Xkt1/n − x0| < ε/2 on
k⋂
j=1

Dj .

Thus

|Xs − x0| ≤ |Xs − Xkt1/n | + |Xkt1/n − ψ(t1)| + |ψ(t1) − x0| ≤ γ n+1 + ξ + ξ < 3ξ,

and therefore Xs ∈ B(x0, 3ξ) ⊂ B(x0, 3ε/4). We continue this procedure n times to get
events D1, . . . , Dn . On

⋂n
k=1 Dk , we have

(1) Xs ∈ B(x0, 3ξ) for s ≤ t1,
(2) |Xt1 − ψ(t1)| < (ρ̃)nξ < (ρ̃)n < γ, and
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1148 J. Chaker

(3) P
x0

⎛
⎝ n⋂

j=1

Dj

⎞
⎠ ≥ cn2 .

For s ∈ [0, t1],

|Xs − ψ(s)| ≤ |Xs − x0| + |x0 − ψ(s)| < 3ξ + ξ <
3

4
ε + 1

4
ε = ε on

n⋂
j=1

Dj .

Hence

P
x0

(
sup
s≤t1

|Xs − ψ(s)| < ε and |Xt1 − ψ(t1)| < γ

)
≥ P

x0

⎛
⎝ n⋂

j=1

Dj

⎞
⎠ ≥ cn2 =: c1.

��
We can now prove an important theorem, which will be the main ingredient in the proof of
the Hölder regularity. It states that the solution to (1.3) stays with positive probability in a
ε-tube around a given continuous function.

Theorem 3.5 Let r ∈ (0, 1], x0 ∈ Rd , ε ∈ (0, rαmax/αmin ), t0 > 0 and x0 ∈ Rd . Let ϕ :
[0, t0] → Rd be continuous with ϕ(0) = x0 and the image of ϕ contained in Mr (x0). Then
there exists c1 = c1(
(M2

r (x0)),	(M3
r (x0)), ϕ, ε, t0) > 0 such that

P
x0

(
sup
s≤t0

|Xs − ϕ(s)| < ε

)
> c1.

Proof Let ε > 0. We define

U := {x ∈ Rd : ∃s ∈ [0, t0] such that |x − ϕ(s)| < ε/2}
and approximate ϕ within U by a polygonal path. Hence we can assume that ϕ is polygonal
by changing ε to ε/2 in the assertion. We subdivide [0, t0] into n subintervals of the same
length for n ≥ 2 such that

r := L

(
ϕ

((
kt0
n

,
(k + 1)t0

n

)))
<

ε

4
,

where L denotes the length of the line segment. Let

Dk :=
{

sup
(k−1)t0/n≤s≤kt0/n

|Xs − ϕ(s)| <
ε

2
and |Xkt0/n − ϕ(kt0/n)| <

ε

4
√
d

}
.

Using Lemma 3.4, there exists a constant c2 > 0 such that

P
x0(D1) ≥ c2.

By the strong Markov property at time t0/n we get

P
x0(D2|Ft0/n) ≥ c2.

Using the Iteration as in the proof of Lemma 3.4, we get for all k ∈ {1, . . . , d}

P
x0(Dk |F(k−1)t0/n) ≥ c2 and P

x0

(
n⋂

k=1

Dk

)
≥ cn2 .
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Regularity of solutions to anisotropic nonlocal equations 1149

Hence the assertion follows by

P
x0

(
sup
s≤t0

|Xs − ϕ(s)| <
ε

2

)
≥ P

x0

(
n⋂

k=1

Dk

)
≥ cn2 = c1.

��
We state two corollaries, which follow immediately from Theorem 3.5.

Corollary 3.6 Let r ∈ (0, 1], ε ∈ (0, rαmax/αmin/4), k = 1 − (ε/rαmax/αmin ), δ ∈
(ε, rαmax/αmin/2) and x0 ∈ Rd . Moreover let Q := Mr (x0), Q′ := Mk

r (x0) and y ∈ Rd

such that R := Mδ
r (y) ⊂ Q′. There exists c1 = c1(
(Q),	(Q), ε, δ) > 0 such that

P
x (TR < τQ) ≥ c1, x ∈ Q′.

Proof Note, that

dist(∂Q, ∂Q′) = ∣∣rαmax/αi − krαmax/αi
∣∣ = |ε rαmax/αi

rαmax/αmin
| ≥ ε.

Let x ∈ Q′ be arbitrary and ϕ : [0, t0] → Rd be a polygonal path such that ϕ(0) = x and
ϕ(t0) = y and the image of ϕ is contained in Q′. Then the assertion follows by Theorem 3.5
and

P
x
(
sup
s≤to

|Xs − ϕ(s)| < ε

)
≤ P

x (TR < τQ).

��
Corollary 3.7 Let r ∈ (0, 1], x0 ∈ Rd and ε ∈ (0, rαmax/αmin/4). For x ∈ Mr (x0), we
define R := Ms(x) such that R ⊂ Mr (x0) =: M and dist(∂R, ∂M) > ε. Then there exists
ξ = ξ(ε,
(M), r ,	(M) ∈ (0, 1) such that

P
y(TR < τM ) ≥ ξ = ξ(ε).

for all y ∈ M with dist(y, ∂M) > ε.

Proof Follows immediately by Corollary 3.6. ��
We now prove the main ingredient for the proof of the Hölder regularity. It states, that sets

of positive Lebesgue measure are hit with positive probability.

Theorem 3.8 Let r ∈ (0, 1], x0 ∈ Rd and M := Mr (x0). There exists a nondecreasing
function ϕ : (0, 1) → (0, 1) such that

P
x (TA < τM ) ≥ ϕ(|A|)

for all x ∈ M1/2
r (x0) and all A ⊂ M with |A| > 0.

Proof We will follow the proof of Theorem V.7.4 in [2]. Set

ϕ(ε) = inf
{
P
y(TA < τMR (z0)) : z0 ∈ Rd , R > 0, y ∈ M1/2

R (z0), |A| ≥ ε|MR(z0)|, A ⊂ MR(z0).
}

and

q0 := inf{ε : ϕ(ε) > 0}.
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For ε sufficiently large, we know by Corollary 3.6 ϕ(ε) > 0. We suppose q0 > 0, and we
will obtain our contradiction.

Since q0 < 1, we can choose 1 > q > q0 such that (q + q2)/2 < q0. Moreover let

η := (q − q2)/2, β :=
(
21−dqr−∑d

i=1(αmax/αi )

q + 1

)1/d

and ρ = ξ((1 − β)rαmax/αmin/6),

where ξ is defined as in Corollary 3.7.
Let z ∈ Rd , R ∈ (0, 1], x ∈ M1/2

R (z) and A ⊂ MR(z) such that

q − η <
|A|

|MR(z)| < q and P
x (TA < τMR(z)) < ρϕ(q)2. (3.7)

Without loss of generality, set R = r and z = x0. Hence

P
x (TA < τMr (x0)) < ρϕ(q)2.

By Proposition 2.2 there exists a set D ⊂ Mr (x0) such that

|A| ≤ q|D ∩ Mr (x0)|.
Since |A| > (q − η)|Mr (x0)|,

|D ∩ Mr (x0)| ≥ |A|
q

>
(q − η)|Mr (x0)|

q
= (q + 1)|Mr (x0)|

2
.

Define E = D ∩ Mβ
r (x0). Since

(q + 1)|Mβ
r (x0)|

2
= (q + 1)2dβdr

∑d
i=1

αmax
αi

2
= q,

we get |E | > q. By the definition of ϕ, we have Px (TE < τMr (x0)) ≥ ϕ(q).

We will first show

P
y(TA < τMr (x0)) ≥ ρϕ(q) for all y ∈ E . (3.8)

Let y ∈ ∂E , then y ∈ R̂i for some Ri ∈ R and dist(y, ∂Mr (x0)) ≥ (1− β)rαmaxαmin . Define
R∗
i as the cube with the same center as Ri but sidelength half as long. By Corollary 3.7

P
y(TR∗

i
< τMr (x0)) ≥ ρ.

By Proposition 2.2 (3) for all Ri ∈ R
|A ∩ Ri | ≥ q|Ri |

and therefore

P
x0(TA∩Ri < τMr (x0)) ≥ ϕ(q) for x0 ∈ R∗

i .

Using the strong Markov property, we have for all y ∈ E

P
y(TA < τMr (x0)) ≥ E

y
[
P
XTR∗

i (TA < τRi ); TR∗
i

< τMr (x0)

]

≥ ρϕ(q).

123



Regularity of solutions to anisotropic nonlocal equations 1151

Now we get our contradiction by

P
x (TA < τMr (x0)) ≥ P

x (TE < TA < τMr (x0))

≥ E
x
[
P
XTE (TA < τMr (x0)); TE < τMr (x0)

]

≥ ρϕ(q)Px [TE < τMr (x0)
] ≥ ρϕ(q)2.

��

4 Proof of Theorem 1.2

In this section we prove our main result.

Proof Let S := Ms(y) ⊂ Mr (x0) and A ⊂ S such that 3|A| ≥ |S|. Those sets will be
specified later. Set k = 1 − (ε/rαmax/αmin ) and S′ := Mk

s (y), where ε is chosen such that
6|S \ S′| = |S|. Then

6|A ∩ S′| ≥ |S|.
Let R be a collection of N equal sized rectangles as in Definition 1.1 with disjoint interiors
and R ⊂ S. Moreover let R to be a covering of S′. For at least one rectangle Q ∈ R

6|A ∩ S′ ∩ Q| ≥ |Q|.
Let Q′ be the rectangle with the same center as Q but each sidelength half as long. By
Corollary 3.6 there exists a c2 > 0 such that

P
x (TQ′ < τS) ≥ c2, x ∈ M1/2

s (y). (4.1)

Using Theorem 3.8 and the strong Markov property there exists a constant c3 > 0 with

P
x (TA < τS) ≥ c3, x ∈ M1/2

s (y). (4.2)

Let R ≥ 2r . By Proposition 2.5 there exists a c4 > 0 such that

P
z
(
XτMr (x0)

/∈ MR(x0)
)

≤ c4
( r
R

)α

max
for all z ∈ Mr (x0).

Let

γ := (1 − c3), ρ :=
(
c3γ 2

4c4

)1/αmax

∧
(γ

2

)1/αmax
and β := log(γ )

log(ρ)
.

By linearity it suffices to suppose 0 ≤ h ≤ M on Rd . We first consider the case r = 1.
Let Mi = Mρi (x0) and τi = τMi . We will show that for all k ∈ N0

osc
Mk

h := sup
Mk

h − inf
Mk

h ≤ Mγ k . (4.3)

To shorten notation, we set ai = infMi h and bi = supMi
h. Assertion (4.3) will be will be

proved by induction. Let k ∈ N be arbitrary but fixed. We suppose bi − ai ≤ Mγ i for all
i ≤ k; then we need to show

bk+1 − ak+1 ≤ Mγ k+1. (4.4)
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By definition Mk+1 ⊂ Mk and therefore in particular ak ≤ h ≤ bk on Mk+1. Set

A′ = {z ∈ Mk+1 : h(z) ≤ (ak + bk)/2}.
Without loss of generality, assume 2|A′| ≥ |Mk+1|. If this assumption does not hold, we
consider M − h instead of h. Let A ⊂ A′ be compact such that 3|A| ≥ |Mk+1|. By (4.2)
there exists a c3 > 0 such that Py(TA < τk) ≥ c3 for all y ∈ Mk+1.

Let ε > 0 and y, z ∈ Mk+1 such that h(y) ≥ bk+1 − ε and h(z) ≤ ak+1 + ε.
Since h is harmonic, h(Xt ) is a martingale. We get by optimal stopping

h(y) − h(z) = E
y (h(XTA ) − h(z); τk > TA

)
+ E

y (h(Xτk ) − h(z); τk < TA, Xτk ∈ Mk−1
)

+
∞∑
i=1

E
y (h(Xτk ) − h(z); τk < TA, Xτk ∈ Mk−i−1 \ Mk−i

)
.

We will now study these three components on the right hand side seperately. Note h(z) ≥
ak ≥ ak−i−1 for all i ∈ N

(1) In the first component, X enters A ⊂ A′ before leaving Mk . Hence

E
y(h(XTA ) − h(z); TA < τk) ≤ E

y
(
ak + bk

2
− ak; TA < τk

)

= bk − ak
2

P
y(TA < τk) ≤ Mγ k

2
P
y(TA < τk).

(2) In the component X leaves Mk before entering A. While leaving Mk , X does not make
a big jump in the following sense: X is at time τk in Mk−1. Hence in this case h(Xτk ) ≤
bk−1. This yields to

E
y (h(Xτk ) − h(z); τk < TA, Xτk ∈ Mk−1

) ≤ E
y (bk−1 − ak−1; τk < TA, Xτk ∈ Mk−1

)
= (bk−1 − ak−1)P

y(τk < TA) ≤ Mγ k−1(1 − P
y(TA < τk)).

(3) In the third component Xτk ∈ Mk−i−1 for i ∈ N. Therefore h(τk) ≤ bk−i−1.

∞∑
i=1

E
y (h(Xτk ) − h(z); τk < TA, Xτk ∈ Mk−i−1 \ Mk−i

)

≤
∞∑
i=1

E
y ((bk−i−1 − ak−i−1); τk < TA, Xτk ∈ Mk−i−1 \ Mk−i

)

=
∞∑
i=1

(bk−i−1 − ak−i−1)P
y(Xτk /∈ Mk−i ) ≤

∞∑
i=1

Mγ k−i−1c4

(
ρk

ρk−i

)αmax

= c4Mγ k−1
∞∑
i=1

(
ραmax

γ

)i

= c4Mγ k−1 ραmax

γ − ραmax

≤ 2c4γ
k−2Mραmax ≤ c3Mγ k

2
,

where we used

ραmax

γ
≤ 1

2
and ρ ≤

(γ

2

)1/αmax ⇔ ραmax

γ − ραmax
≤ 2

ραmax

γ
.
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Note, that the choice of γ = 1 − c3 implies γ−2
2γ c3 + 1

γ
+ c3

2 = γ. Hence

h(y) − h(z) ≤ Mγ k

2
P
y(TA < τk) + Mγ k−1

rβ
(1 − P

y(TA < τk)) + c3Mγ k

2

= Mγ k
(

(
γ − 2

2γ
P
y(TA < τk) + 1

γ
+ c3

2

)

≤ Mγ k
(

γ − 2

2γ
c3 + 1

γ
+ c3

2

)

= Mγ k+1.

We conclude that

bk+1 − ak+1 ≤ Mγ k+1 + 2ε.

Since ε is arbitrary, this proves (4.4) and therefore (4.3). Let x, y ∈ M1(x0) and choose
k ∈ N0 such that M2

ρk (x) is the smallest rectangle with y ∈ Mρk (x).

Then |x − y| ≤ 2
√
dρk and therefore

k ≥
log
( |x−y|

2
√
d

)

log(ρ)
for y ∈ Mρk (x).

Hence

|h(y) − h(x)| ≤ Mγ k = Mek log(γ )

≤ Me(log[|x−y|/(2√d))((αmax log(γ ))/(α log(ρ)))

= M |x − y|log(γ )/ log(ρ)

2
√
d

= c5M |x − y|β .

Now let h be harmonic on M2
r (x0). Then h′(x) := h(rαmax/αmin x) is harmonic on M2

1 (x0).
Let x, y ∈ M1(x0) and x ′, y′ ∈ Mr (x0) such that

x = (x ′
1/r

αmax/α1 , . . . , x ′
d/r

αmax/αd ), y = (y′
1/r

αmax/α1 , . . . , y′
d/r

αmax/αd ) ∈ M1(x0).

Then |x− y| ≤ rαmax/αmin |x ′ − y′|. Set x̃ = x ′/rαmax/αmin and ỹ = y′/rαmax/αmin . We conclude

|h(x ′) − h(y′)| = |h(rαmax/αmin x̃) − h(rαmax/αmin ỹ)| = |h′(̃x) − h′(ỹ)| ≤ c1 |̃x − ỹ|β sup
z̃∈Rd

|h(̃z)|

= c1

∣∣∣∣ x ′

rαmax/αmin
− y′

rαmax/αmin

∣∣∣∣
β

sup
z∈Rd

|h(z)| = c1

( |x ′ − y′|
rαmax/αmin

)β

sup
z∈Rd

|h(z)|.
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