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A B S T R A C T

Given a Chevalley group G of classical type and a Borel subgroup
B ⊂ G we compute the full Σ-invariants of the S-arithmetic groups
Bd(Z[1/p]) for all but finitely many primes p. We introduce a class of
height function X∗ on Euclidean buildings X that naturally extends
the class of Busemann functions on X. If X is thick enough we are able
to determine the essential connectivity properties of the systems of
superlevelsets in X that correspond to the height functions in X∗. In
order to do so we develop a method that allows us to pull cycles that
sit at the boundary at infinity of a Euclidean building into the building
itself. Furthermore we will introduce new techniques in combinatorial
Morse theory which, for the first time in the study of Σ-invariants,
enable us to take advantage of the concept of essential n-connectivity
rather than just n-connectivity.

Z U S A M M E N FA S S U N G

Sei G eine Chevalleygruppe vom klassischen Typ und sei B ⊂ G
eine borelsche Untergruppe. Wir bestimmen die vollständigen Σ-
Invarianten der S-arithmetischen Gruppen Bd(Z[1/p]) für alle bis
auf endlich viele Primzahlen p. Wir führen eine Klasse von Höhen-
funktionen auf euklidischen Gebäuden X ein welche die Klasse der
Busemannfunktionen auf X in natürlicher Weise erweitert. Unter der
Voraussetzung, dass X dick genug ist bestimmen wir die essentiellen
Zusammenhangseigenschaften der Systeme von Superlevelmengen in
X welche durch die Höhenfunktionen in X∗ induziert werden. Um
dies zu bewerkstelligen entwickeln wir eine Methode die es uns er-
laubt Zykel, die sich im unendlichen fernen Rand eines euklidischen
Gebäudes befinden, in das Gebäude selbst hineinzuziehen. Deswei-
teren werden wir neue Techniken im Bereich der kombinatorischen
Morse Theorie entwickeln die es uns, zum ersten mal bei Berechnun-
gen von Σ-Invarianten, ermöglichen den Vorteil aus dem Konzept
des essentiellen n-Zusammenhangs gegenüber des herkömmlichen
n-Zusammenhangs herauszustellen.
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1
I N T R O D U C T I O N

1.1 finiteness properties

There was a time in the history of group theory where it was not
clear whether there are finitely generated groups that are not finitely
presented. This changed in 1937 when B. Neumann showed that there
are uncountably many finitely generated groups [27]. Since there
are only countably many finitely presented groups, he proved the
existence of finitely generated groups that are not finitely presented.
In the following decades it became clear that such groups do not
have to be exotic or pathological. Many natural constructions like the
wreath product and the amalgamated product can be easily applied
to produce finitely generated groups that are not finitely presented.

In 1965 Wall introduced the finiteness properties Fn which generalize
the properties of being finitely generated and finitely presented [32].
A group G is type Fn if it acts freely on a contractible cell complex
X such that the quotient complex G\X has compact n-skeleton. By
looking at the action of a group G on its Cayley graph, respectively on
its Cayley complex, it becomes clear that G is of type F1, respectively
of type F2, if and only if G is finitely generated, respectively finitely
presented.

After the introduction of the finiteness properties Fn the natural
question arose whether for every n ∈ N there is a group of type Fn

but not Fn+1. The first example that went beyond finite presentability
was found by Stallings in 1963 [30] (even before the properties Fn were
defined). He showed that the group

G := 〈a, b, c, x, y : [x, a], [y, a], [x, b], [y, b], [a−1x, c], [a−1y, c], [b−1a, c]〉,

which he constructed as an iterated amalgamated product, has an
infinitely generated third homology group H3(G; Z) which implies
that it cannot be of type F3. In 1976 Bieri realized that G is the second
member of a series of groups (Gn)n∈N where Gn is of type Fn but not
of type Fn+1 [7]. He defined these groups as the kernels

Gn := ker
( n

∏
i=1

F(ai, bi)
φ−→ Z

)
,

where F(ai, bi) is the free group with basis {ai, bi} and φ is the mor-
phism that sends all basis elements ai, bi to 1.

A further major breakthrough was achieved in 1997 by Bestvina
and Brady in their seminal paper [6] in which they show that the
properties Fn do not coincide with their homological counterparts

1



2 introduction

FPn, which are defined via projective resolutions. They replace the

product
n
∏
i=1

F(ai, bi) in Bieris construction by arbitrary right-angled

Artin groups AΓ and show that the finiteness properties of the groups

BBΓ := ker(AΓ
φ−→ Z)

can be translated to connectivity properties of the flag complex of Γ.
Similar achievements were obtained by Abels and Brown in 1985 in

the theory of solvable groups. They studied the finiteness properties of
the subgroups An(p) < GLn+1(Z[1/p]), where p is an arbitrary prime,
consisting of upper triangular matrices (ai,j) with a1,1 = an+1,n+1 = 1
and showed the following.

Theorem 1.1. For every n ∈N and every prime p ∈ P the group An(p) is
of type Fn−1 but not Fn.

It is not hard to see that the finiteness properties of An(p) are the
same of those of the subgroup of SLn+1(Z[1/p]) consisting of upper
triangular matrices with a1,1 = an+1,n+1. The groups An(p), nowadays
called Abels groups, motivated many results of this thesis. To state
some of these results let us fix a bit of notation.

Definition 1.2. Let R be a unital ring. The subgroup of upper triangu-
lar matrices in SLn+1(R) will be denoted by Bn(R). The subgroup of
unipotent matrices in Bn(R) will be denoted by Un(R).

Particularly interesting in the context of finiteness properties are
rings of S-integers, such as Z[1/N]. It is well-known, and also follows
from our results, that Bn(Z[1/N]) is of type Fn for every n ∈ N. In
this case we also say that a group is of type F∞. On the other hand
it is an easy exercise to show that Un(Z[1/N]) is not even finitely
generated if N /∈ Z×.

One of the main goals of this thesis is to find out what happens
between these groups.

Question 1.3. Given any group Un(Z[1/N]) ≤ H ≤ Bn(Z[1/N]), what
are the finiteness properties of H?

Let us first convince ourselves that there are some interesting
phenomena concerning finiteness properties that happen between
Un(Z[1/N]) and Bn(Z[1/N]).

Example 1.4. For every prime p ∈ P the group

H1 :=


pk ∗ ∗

0 p−2k ∗
0 0 pk

 ∈ SL3(Z[1/p]) : k ∈ Z


is finitely generated but not finitely presented.
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Finite generation can be easily checked by hand. To see that H1 is
not finitely presented one can check that the quotient of H1 by its
center is not finitely presented, which again can be done by hand.
Hence the claim follows from the fact that metabelian quotients of
finitely presented solvable groups are finitely presented [11].

The group H1, as well as each group Hi in the following examples,
is a special case of Corollary 10.30.

Example 1.5. For every prime p ∈ P the group

H2 :=


pk ∗ ∗

0 1 ∗
0 0 p−k

 ∈ SL3(Z[1/p]) : k ∈ Z


is of type F∞.

Example 1.6. Let p, q ∈ P be two different primes. The group

H3 :=

{(
pkq−k ∗

0 p−kqk

)
∈ SL2(Z[1/pq]) : k ∈ Z

}
is finitely generated but not finitely presented.

Example 1.7. Let p, q ∈ P be two different primes. The group
pk1 ql1 ∗ ∗

0 pk2 ql2 ∗
0 0 pk3 ql3

 ∈ SL3(Z[1/pq]) : k1 + l1 + 2l2 = 3l3 + k3


is of type F3 but not F4. It will be denoted by H4.

The following theorem was derived by Witzel [34] from the work
of Bux and Wortman on the connectivity of horospheres in Euclidean
buildings [16].

Theorem 1.8. Let p ∈ P be a prime, let n ∈ N, and let d1 ≥ d2 ≥ . . . ≥
dn+1 be integers, not all equal. We consider the morphism

φ : Bn(Z[1/p])→ Z, (ai,j) 7→
n

∑
i=1

divp(ai,i)

where vp denotes the p-adic valuation. The group Γ := ker(φ) is of type
Fn−1 but not of type Fn.

In order to formulate our main result on Question 1.3 we have to
introduce a set of canonical homomorphisms Bn(Z[1/N])→ Z.

Definition 1.9. Let n, N ∈N be arbitrary natural numbers. For every
1 ≤ k ≤ n and every prime factor p of N we define the morphism

χk,p : Bn(Z[1/N])→ Z, (ai,j) 7→ vp(ak+1,k+1)− vp(ak,k),

where vp denotes the p-adic valuation. Let Bn,N denote the union of
these morphisms.
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Example 1.10.

χ1,2

1/4 3 5

0 6 6

0 0 2/3

 = v2(6)− v2(1/4) = 1− (−2) = 3.

Theorem 1.11. Let k, n, N ∈N be natural numbers and let

Un(Z[1/N]) ≤ H ≤ Bn(Z[1/N])

be a subgroup. Suppose that every prime factor p|N satisfies p ≥ 2n−1. Then
H is of type Fk if and only if there is no non-trivial homomorphism of the

form χ =
k
∑

i=1
λiχi with λi ≥ 0 and χi ∈ Bn,N , that vanishes on H.

This theorem is a special case of Corollary 10.30 which considers
Borel groups in Chevalley groups of classical type. Note that the
character φ in Theorem 1.8 can be written as ∑n

i=1 λiχi,p with λi ≥ 0,
using that ∑n+1

i=1 vp(ai,i) = 0. Conversely, not every character ∑n
i=1 λiχi,p

with λi > 0 is an admissible φ in Theorem 1.8. Thus Theorem 1.11

exhibits subgroups of Bn(Z[1/p]) of type Fn−1 but not of type Fn that
are not covered by Theorem 1.8.

In practice it happens quite often that groups with interesting finite-
ness properties appear as kernels of some naturally given ambient
group. Recall for example that this is the case for the Bestvina-Brady
groups BBΓ and for the groups Γn. Furthermore it is an easy obser-
vation that the groups H1, H2, H3, and H4 from the examples above
appear as kernels of appropriate homomorphisms Bn(Z[1/N])→ Z.
Note for example that

H4 = ker(χ1,p + χ2,p + χ1,q + 3χ2,q).

This suggests that there might be a theory that can describe the
finiteness properties of kernels of morphisms to abelian groups. Such
a theory is provided by the theory of Σ-invariants.

1.2 Σ-invariants

As the title suggests, this thesis is about Σ-invariants. These invariants
are also known as BNSR-invariants where the letters represent the
creators of these invariants, namely Bieri, W. Neumann, Strebel, and
Renz.

Originally, Σ-invariants were only defined for metabelian groups [12]
in order to answer a question of G. Baumslag. He asked how finitely
presented metabelian groups can be distinguished from finitely gen-
erated metabelian groups that are not finitely presented [5]. The defi-
nition in [12] involves valuations of modules over finitely generated
abelian groups that come from the structure of metabelian groups.
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After a series of generalizations of this first version of the Σ-invariant
(see e.g. [9], [14], and [25]), the version of Σ-invariants which will be
studied in this thesis was defined by Bieri and Renz in [10].

Unlike most invariants in group theory, the Σ-invariants of a group
are not algebraic structures themselves but rather appear as geometric
structures on the character sphere of the group.

Definition 1.12. Let G be a finitely generated group. The space

S(G) = (Hom(G, R)\{0})/∼

is called the character sphere of G where χ ∼ ψ if ∃λ > 0 s.t. λχ = ψ.

The nth Σ-invariant of a group G, denoted by Σn(G), is a certain
subset of S(G) that satisfies the following property which was proven
by Renz in his thesis [28].

Theorem 1.13. Let G be a group of type Fn and let [G, G] ≤ H ≤ G be a
subgroup. Then

H is of type Fn ⇔ {χ ∈ S(G) : χ(H) = 0} ⊂ Σn(G).

For a precise definition of Σ-invariants we refer to 2.46. Note that
for a given group G of type Fn, Theorem 1.13 implies that the infor-
mation about the finiteness properties Fk, where k ≤ n, of all kernels
ker(G → Z) lies in Σk(G). In particular we could read off the finite-
ness properties of the groups BBΓ and Γn from the Σ-invariants of AΓ

and Bn(Z[1/p]) once they are known.
This also indicates that computing the Σ-invariants of a group is

very difficult in general. In fact there are not many examples of groups
available of which all Σ-invariants are known.

In the case of right-angled Artin groups a full computation of its
Σ-invariants was achieved by Meier, Meinert, and VanWyk in 1998 [24]
and reproved by Bux and Gonzalez with more geometric methods [15].

The main goal of this thesis was the full computation of the Σ-
invariants of the S-arithmetic subgroups of Borelgroups in Chevalley
groups. The most prominent such groups are Bn(Z[1/N]). In this
special case the main result of this thesis can be stated as follows.

Theorem 1.14. Let n, N ∈ N be natural numbers. Suppose that every
prime factor p|N satisfies p ≥ 2n−1. Then the Σ-invariants of the group
Bn(Z[1/N]) are given by

Σk(Bn(Z[1/N])) = S(Bn(Z[1/N]))\∆(k) for every k ∈N,

where ∆(k) denotes the k-skeleton of the simplex ∆ ⊂ S(Bn(Z[1/N])) that
is the convex hull of Bn,N .

This partially confirms the following conjecture of my supervisor
Stefan Witzel.
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Conjecture 1.15. Theorem 1.14 holds without any restrictions on N.

Example 1.16. The complements of the Σ-invariants of the group
B3(Z[1/2]), denoted by Σn(B3(Z[1/2]))c, are given as follows:

1.3 euclidean buildings

In order to prove Theorem 1.14 we will consider the action of the group
Bn(Z[1/N]) on some appropriate Euclidean building X. In Chapter 10

we will see that this action is cocompact and that the cell stabilizers are
of type F∞. This will allows us to translate the problem of determining
the Σ-invariants of Bn(Z[1/N]) to a geometric problem in X.

Let A be an apartment in X, let σ ⊂ ∂∞ A be a chamber at infinity,
and let ρ = ρσ,A : X → A denote the retraction from infinity associated
to σ and A. We will consider the space of functions

X∗σ = {α ◦ ρ : α ∈ A∗}

where A∗ denotes the dual space of A. The subspaces of X we are
going to study are of the form Xh≥r := h−1([r, ∞)) where h ∈ X∗σ. In
order to determine the Σ-invariants of Bn(Z[1/N]) we have to solve
the following question.

Question 1.17. Given any function h ∈ X∗σ, any k ∈ N0, and any r ∈ R.
Is there an s ≤ r such that the canonical morphisms

πk(ι) : πk(Xh≥r, x)→ πk(Xh≥s, x)

are trivial for every x ∈ Xh≥r?

The largest part of this thesis concerns the study of this question.
This study essentially splits into three parts. The first part is about
proving a positive answer to Question 1.17 under certain circumstances.
The idea is to introduce spaces Z that lie between two levels, i.e. that
satisfy Z ⊂ Xr≥h≥s and glue them on the space Xh≥r. Then we will
filter the space Z ∪ Xh≥r with the help of some combinatorial Morse
function. These arguments are given in Chapters 3 and 4. Questions
like 1.17 appear naturally in the theory of Σ-invariants and usually
a proof that provides a confirmative answer to that question already
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shows that the spaces Xh≥r themselves are k-connected. It is worth
mentioning that the proof of the positive direction as given in this
thesis is, as far as I know, the first one in the theory of Σ-invariants
that takes advantage of the choice of s.

The second part is about proving a negative answer to Question 1.17

under certain circumstances. In this part we will develop a method
that allows us to take cycles from infinity and pull them into the space.
This technique will be explained in Chapter 5 and is interesting in its
own right.

The third part of the study of the spaces Xh≥r is about a reduction
process that allows us to restrict ourselves to the cases in the first two
parts.

We will apply a construction for CAT(0)-spaces, which was intro-
duced by Caprace in [17], to Euclidean buildings. More precisely we
will take a vertex at infinity ξ ∈ ∂∞X and consider the space of all rays
[x, ξ) converging to ξ. By identifying two rays if they share a common
point in X, we obtain a quotient space Xξ that carries a canonical
structure of a Euclidean building. This procedure will be described in
Chapter 7.





2
B A S I C N O T I O N S

A large part of this work deals with group actions on spherical and
Euclidean buildings. These are certain cell complexes that carry a
natural metric and appear in the study of Chevalley groups which will
be introduced in Chapter 9. In this section we introduce the necessary
background to deal with buildings. Furthermore, we will introduce
Σ-invariants of groups whose determination in the case of S-arithmetic
subgroups of Borel groups is the main goal of this work.

2.1 metric spaces

In order to introduce CAT(0)-spaces we start by recalling the notions
of geodesic segments, rays, and spaces.

Definition 2.1. Let X be a metric space. A geodesic segment in X is an
isometric embedding γ : [0, l]→ X. A geodesic ray in X is an isometric
embedding γ : [0, ∞)→ X.

Notation 2.2. For convenience, we will often identify geodesic seg-
ments and rays with their images.

Definition 2.3. A metric space X is called geodesic if every two points
of X can be connected by a geodesic segment.

Given a geodesic metric space X and two points x, y, we will denote
by [x, y] a choice of a geodesic segment from x to y. This notation
should not lead to ambiguity since in most spaces we are going to
consider, geodesic segments will be unique.

One of the most prominent classes of geodesic metric spaces is the
class of CAT(0)-spaces. To define CAT(0)-spaces we have to recall
the notion of geodesic triangles and their comparison triangles in the
standard Euclidean space E2 := (R2, 〈·, ·〉).

Definition 2.4. Let (X, d) be a geodesic metric space. A geodesic triangle
in X consists of three points x, y, z ∈ X together with a choice of
geodesic segments [x, y], [y, z] and [z, x] connecting these points. Such
a triangle will be denoted by ∆(x, y, z). One can show that, up to
congruence, there is a unique geodesic triangle ∆(x, y, z) ⊂ E2 such
that

‖ u− v ‖= d(u, v)

for every two points u, v ∈ {x, y, z}. Such a triangle is called a compari-
son triangle of ∆(x, y, z) in E2. For every two points u, v ∈ {x, y, z} and
every point a ∈ [u, v] we define its comparison point in [u, v], denoted
by a, to be the unique point in [u, v] with d(u, a) = d(u, a).

9



10 basic notions

One can think of CAT(0)-spaces as those geodesic metric spaces
in which geodesic triangles cannot be thicker than their correspond-
ing Euclidean comparison triangles. The following definition gives a
precise meaning to this.

Definition 2.5. A geodesic metric space (X, d) is a CAT(0)-space if
for every two points a, b in every geodesic triangle ∆(x, y, z) ⊂ X the
corresponding comparison points a, b in some comparison triangle
∆(x, y, z) ⊂ E2 satisfy the inequality

d(a, b) ≤‖ a− b ‖ .

Remark 2.6. If we replace the comparison triangles in R2 with com-
parison triangles on the unit sphere S2, we obtain the notion of a
CAT(1)-space.

In the following we will work with the boundary at infinity of
CAT(0)-spaces. To define the boundary at infinity, we have to intro-
duce a relation on the set of geodesic rays.

Definition 2.7. Let X be a CAT(0)-space. Two geodesic rays α, β in X
are equivalent if there is a constant c ≥ 0 such that dX(α(t), β(t)) ≤ c
for every t ∈ [0, ∞). The space of these classes, denoted by ∂∞X, is
called the boundary at infinity of X.

In the case of a complete CAT(0)-space X there is a canonical way
of identifying ∂∞X with the set of geodesic rays emanating from an
arbitrary fixed point x ∈ X (see [13, Proposition II.8.2]).

Proposition 2.8. Let X be a complete CAT(0)-space and let γ : [0, ∞)→ X
be a geodesic ray. For every point x ∈ X there is a unique geodesic ray
γ′ : [0, ∞)→ X issuing from x that is equivalent to γ.

In the situation of Proposition 2.8 we denote the geodesic ray issuing
from a point x ∈ X and representing a point at infinity ξ ∈ ∂∞X by
[x, ξ). For such a point ξ it will be useful to have a sort of height
function X → R that increases when moving towards ξ. Such a height
function is provided by the following definition.

Definition 2.9. Let X be a CAT(0)-space, ξ ∈ ∂∞X, and p ∈ X. The
Busemann function associated to ξ and p is given by

βξ,p : X → R, x 7→ lim
t→∞

(t− d(x, [p, ξ)(t))).

Remark 2.10. It can be easily seen that the limit lim
t→∞

(t− d(x, [p, ξ)(t)))

exists and that the difference βξ,p − βξ,q is constant for p, q ∈ X. Some
authors prefer to define Busemann functions corresponding to ξ and
p by x 7→ lim

t→∞
(d(x, [p, ξ)(t))− t). Clearly this only changes the sign of

the Busemann function.
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2.2 polytopes and polyhedra

We quickly recall some basic aspects of the theory of polyhedral cell
complexes. The details of the constructions can be found in [13,
p. I.7.]. For the rest of this section we fix a metric cell complex X
whose cells are isometric to Euclidean polysimplices, i.e. products of
simplices in some Euclidean space. Further, we will assume that, up
to isometry, there are only finitely many cells in X. In order to deal
with polysimplices it is sometimes useful to note that they are simple
polytopes.

Definition 2.11. A d-dimensional convex polytope C is called sim-
ple if every vertex in C is contained in exactly d facets, i.e. faces of
codimension 1.

From this characterization of simple polytopes it follows immedi-
ately that products of simple polytopes are again simple. In particular
we see that polysimplices are simple. In view of this observation the
characterization of simple polytopes given in [35, Proposition 2.16]
tells us the following.

Lemma 2.12. Let A be a face of a polysimplex C of codimension k. Then
there are precisely k facets of C that contain A. In particular, there is a unique
set of facets of C that intersects in A.

From now on, we will use the following notation.

Notation 2.13. Unless otherwise stated, the term cell will always be
used to denote the relative interior of its ambient closed polytope.
Nevertheless we will say that a cell A is a face of a cell B if A is
contained in B.

This has the advantage that for every x ∈ X there is a unique cell
containing x.

Definition 2.14. Let Z be a subcomplex of X and let A be a cell in
Z. The relative star of A in X with respect to Z, denoted by stZ(A),
is the union of cells B ⊂ Z such that A is a face of B. In this case B
is said to be a coface of A. For an arbitrary point x ∈ A we further
define stZ(x) = stZ(A). We will omit the subscript in the case where
Z coincides with X.

Notation 2.15. Let A be a cell in X. The boundary ∂A of A is the com-
plex of proper faces of A. In particular we have ∂(v) = ∅ for each ver-
tex v of X. In the following we will use the convention dim(∅) = −1.

By definition we can embed every polysimplex isometrically as a
convex subspace of some Euclidean vector space. This allows us to
speak about angles between geodesic segments that are contained in a
common cell and emanate from the same point.
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Definition 2.16. Let Z be a subcomplex of X and let x ∈ Z be a point.
The relative link of x with respect to Z, denoted by lkZ(x), is the set of
directions at x, i.e. germs of geodesics emanating from x, that point into
Z. Let further A be a cell in Z. The relative link of A in X with respect
to Z, denoted by lkZ(A), is the set of directions emanating from the
barycenter Å of A that are orthogonal to A and point into Z. If Z
coincides with X we will just speak about the link of x (respectively
A) and write lk(x) (respectively lk(A)).

It will be useful to decompose lk(x) into subspaces of the form
lkB(x) where B is a cell in the star of x. We endow each such space
lkB(x) with the metric that is given by the angle between directions. In
order to define the distance between two arbitrary points p, p′ ∈ lk(x)
we consider the set Γ(p, p′) of all maps γ : [0, t] → lk(x) such that
there is a subdivision 0 = t0 ≤ . . . ≤ tn = t with the property that
each restriction γ|[ti ,ti+1] is a geodesic segment in a space of the form
lkBi

(x) for some cell Bi ⊂ st(x). In this case we define l(γ) = t. The
discussion in [13, p. I.7.38.] tells us that the map

(p, p′) 7→ inf
γ∈Γ(p,p′)

l(γ)

defines a metric on lk(x). Let A be a face of B. The following well
known construction will help us to decompose lkB(Å) into its sub-
spaces lkA(Å) ∼= ∂A and lkB(A).

Definition 2.17. Let Y and Z be two topological spaces. The join
of Y and Z, denoted by Y ∗ Z, is defined to be the quotient space
(Y × Z × [0, 1])/∼ where (y, z, 0) ∼ (y, z′, 0) and (y, z, 1) ∼ (y′, z, 1)
for every y, y′ ∈ Y and z, z′ ∈ Z.

Let x be a point in X and let A be the cell containing x. By choosing
δ > 0 small enough we can ensure that the δ-neighborhood B(x, δ) of
x is contained in the star of A. Let ε := δ√

2
and let U := A ∩ B(x, ε)

be the open ε-neighborhood of x in A. For a given coface B of A let
V denote the set of all y ∈ B ∩ B(x, ε) such that [x, y] is orthogonal
to A. This gives us U × V ⊂ B(x, δ) ∩ B and we see that U × V a
neighborhood of x in B. From the construction we know that U is the
open cone of ∂A over x and that V is the open cone of lkB(A) over
x. On the other hand, the space B ∩ B(x, ε) can be identified with the
open cone over lkB(x). In this situation [13, Proposition I.5.15.] tells us
that lkB(x) can be decomposed as

lkB(x) ∼= ∂A ∗ lkB(A).

By applying this observation to every cell in stZ(A) we obtain the
following.

Lemma 2.18. Let Z be a subcomplex of X. For every cell A ⊂ Z there is a
canonical homeomorphism

∂(stZ(A))→ ∂A ∗ lkZ(A).
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2.3 topology

The following definition will often be convenient for us.

Definition 2.19. A d-dimensional cell complex X is called spherical if
it is (d− 1)-connected.

We will use the following standard gluing lemma.

Lemma 2.20. Let n ∈N0 and let Z be a cell complex that can be written as
a union of subcomplexes Z = X ∪⋃i∈I Yi where I is an index set. Assume
that

1. each Yi is contractible,

2. Yi ∩Yj ⊆ X, and that

3. Yi ∩ X is (n− 1)-connected.

Then the pair (Z, X) is n-connected. The same holds if “n-connected” is
replaced by “n-acyclic”.

Proof. To prove the first claim we have to show that for each 0 ≤ k ≤ n
every map (Bk, Sk−1) → (Z, X) is homotopic relative Sk−1 to a map
whose image lies in X. Thus for k = 0 it suffices to check that each
point p ∈ Z can be connected by a path to a point in X. But this is
clear since each Yi is path-connected by (1) and its intersection with X
is non-empty by (3). Note that this allows us to restrict ourselves to
the case where X and Z are path-connected. For k = 1 the homotopy
part of the claim follows from the van Kampen theorem. In view of
Hurewicz’s theorem it remains to show that the relative homology
groups H̃k(Z, X) vanish for 1 ≤ k ≤ n. Since taking colimits commutes
with the homology functor (see e.g. [23, Theorem 14.6.]) it follows
from assumption (3) that it is sufficient to consider the case where
I = {i} is a singleton. We write Y := Yi and consider the part

0 = H̃k(Y)→ H̃k(Y, Y ∩ X)→ H̃k−1(Y ∩ X)→ H̃k−1(Y) = 0

of the long exact sequence for the pair (Y, Y ∩ X). By (2) we see that
H̃k(Y, Y∩X) ∼= H̃k−1(Y∩X) = 0 for k ≤ n. Since Z = X∪Y it remains
to observe that excision gives us H̃k(Z, X) ∼= H̃k(Y, Y ∩ X).

The following result tells us that the topological properties of cell
complexes behave well under taking joins (see e.g. [26, Lemma 2.3.]).

Lemma 2.21. Let X and Y be two cell complexes. If X is m-connected and
Y is n-connected then their join X ∗Y is (m + n + 2)-connected.

In order to show that certain complexes are not contractible we will
produce several topdimensional chains that have the same boundary.
The following easy observation tells us that this is already sufficient.
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Lemma 2.22. Let X be a contractible cell complex of dimension d. Let
z ∈ Zd−1(X; R) be a cycle of dimension d − 1. Then there is a unique
d-chain b ∈ Cd(X; R) such that ∂b = z.

Proof. First, observe that Zd(X; R) = 0 since there are no cells of
dimension d + 1 and H̃d(X; R) = 0. Suppose that there are d-chains
B, B′ such that ∂B = ∂B′ = Z. Then ∂(B − B′) = 0 and therefore
B− B′ ∈ Zd(X; R) = 0.

The following notation will be useful in order to deal with subspaces
of cell complexes that are not necessarily subcomplexes.

Notation 2.23. Let X be a cell complex and let M ⊂ X be an arbitrary
subset. The largest subcomplex of X contained in M will be denoted
by X(M). We will say that X(M) is the subcomplex of X supported by M.

2.4 coxeter complexes and buildings

The spaces we are going to look at will mainly be subcomplexes of
spherical and Euclidean buildings. Most of the time we will think of
spherical (resp. Euclidean) buildings as metric spaces, more precisely
as CAT(1)-spaces (resp. CAT(0)-spaces). In order to obtain this metric
we will think of a spherical Coxeter complex as the standard sphere
Sd of the appropriate dimension whose simplicial structure is given
by the hyperplane arrangement associated to the Coxeter group. Anal-
ogously, we will think of a Euclidean Coxeter complex as the standard
Euclidean space which is partitioned into bounded cells by a locally
finite arrangement of hyperplanes. It will be convenient to have a
decomposition of Coxeter complexes in their irreducible parts (see [29,
Proposition 1.15.]).

Lemma 2.24. Every spherical Coxeter complex Σ decomposes as a join

Σ = ∗n
i=1Σi

of irreducible, isometrically embedded, pairwise orthogonal, spherical Coxeter
complexes Σi. Every Euclidean Coxeter complex Σ decomposes as a product

Σ =
n

∏
i=1

Σi

of irreducible, pairwise orthogonal, Euclidean Coxeter complexes Σi.

Note that Euclidean Coxeter complexes are polysimplicial but not
necessarily simplicial.

Definition 2.25. Let Σ be a Euclidean Coxeter complex and let H be
the corresponding set of hyperplanes. A vertex v ∈ Σ is called special
if for every hyperplane H ∈ H there is a parallel hyperplane H′ ∈ H
such that v ∈ H′.
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It is not difficult to show that every Euclidean Coxeter complex has
a special vertex.

The following definition of a building is a slight variation of Defini-
tion [2, p. 4.1]. The difference is, that we do not require apartments to
be irreducible.

Definition 2.26. A building is a cell complex ∆ that can be expressed
as the union of subcomplexes Σ (called apartments) satisfying the
following axioms:

(B0) Each apartment Σ is a Coxeter complex.

(B1) For every two simplices A, B ⊂ ∆, there is an apartment Σ
containing both of them.

(B2) If Σ1 and Σ2 are two apartments containing two cells A and B,
then there is an isomorphism Σ1 → Σ2 fixing A and B pointwise.

The building ∆ is called spherical (respectively Euclidean) if its apart-
ments are spherical (respectively Euclidean) Coxeter complexes.

Definition 2.27. Let ∆ be a building. A cell A ⊂ ∆ of maximal dimen-
sion is called a chamber. A cell A ⊂ ∆ of codimension 1 is called a
panel.

One of the main features of Euclidean buildings is that they posses
a natural CAT(0)-metric (see [2, Theorem 11.16.]).

Theorem 2.28. Let X be a Euclidean building and let d : X×X → R be the
function given by (x, y) 7→ dΣ(x, y) where Σ is any apartment containing
x and y and dΣ is the Euclidean metric on Σ. Then the function d is a
well-defined CAT(0)-metric on X.

The same procedure allows us to view a spherical building as
a metric space. In this case the building becomes a CAT(1)-space
(see [13, II.10A.4]) but we shall not use this fact. In particular we can
speak about geodesics in spherical and Euclidean buildings so that
the following definition makes sense.

Definition 2.29. Let X be a Euclidean building and let A, B ⊂ X be
two cells in X. Let further a ∈ A, b ∈ B be any two points. The
projection of A to B, denoted by prB(A), is the unique cell that contains
an initial part of the open geodesic (a, b). Projections are also defined
in spherical buildings. In this case one has to impose the condition
that there is no apartment Σ that contains A and B as antipodal faces.

Definition 2.30. Let ∆ be an arbitrary building. A finite sequence of
chambers E1, . . . , En in ∆ is called a gallery if every two consecutive
chambers Ei, Ei+1 share a common panel. In this case we will also
write E1| . . . |En.
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In the following we will mainly be interested in thick buildings.
These are defined as follows.

Definition 2.31. Let ∆ be a building. The thickness of ∆, denoted by
th(∆), is the largest number such that each panel P ⊂ ∆ contains at
least th(∆) chambers in its star. If there is no such number we will
write th(∆) = ∞. If th(∆) ≥ 3 we will just say that ∆ is a thick building.

An important feature of spherical buildings is that there is a notion
of opposition. We say that two points x, y in a spherical building are
opposite to each other if there is an apartment Σ containing these points
such that the antipodal map defined on Σ maps x to y and vice versa.
Analogously, we say that two cells are opposite to each other if they
are antipodal in some apartment.

Lemma 2.32. Let ∆ be a spherical building and let Σ be an apartment of
∆. For each simplex A ⊂ Σ and every opposite simplex B of A there is an
apartment Σ′ containing B and the star stΣ(A) of A.

Proof. Let A and B be a pair of opposite simplices in ∆. Let C ⊂ stΣ(A)

be a chamber and let D ⊂ stΣ(A) be the opposite chamber of C in
stΣ(A). Let Σ′ be an (in fact the unique) apartment containing C and
the projection chamber prB(D). From Proposition [2, p. 4.69] it follows
that prA(prB(D)) = D. Since apartments are closed under taking
projections we get D ⊂ Σ′. Now the claim follows since the convex
hull conv(C, D) coincides with stΣ(A).

2.5 the spherical building at infinity

In this section we will recall the construction of the spherical building
at infinity of a Euclidean building.

Definition 2.33. Let X be a Euclidean building and let Σ be an
apartment in X. For every special vertex v ∈ Σ and every proper
coface A ⊂ stΣ(v) let KΣ

v (A) denote the union of all open rays
(v, ξ) := [v, ξ)\{v} that have an initial segment in A. We say that
two such subsets K1 := KΣ1

v1 (A1) and K2 := KΣ2
v2 (A2) are equivalent,

denoted by K1 ∼ K2, if their boundaries at infinity ∂∞K1 and ∂∞K2

coincide.

Definition 2.34. Let X be a Euclidean building. The set of subsets
∂∞KΣ

v (A) ⊂ ∂∞X, where Σ ⊂ X is an apartment, v ∈ Σ is a special
vertex, and A ⊂ Σ is a proper coface of v will be denoted by S∞(X).

The following result tells us that the boundary ∂∞X of a Euclidean
building X can be endowed with the structure of a spherical building
(see [2, Theorem 11.79.]). This will be especially useful in Chapter 5.

Theorem 2.35. Let X be a Euclidean building. The space ∂∞X can be
endowed with the structure of a spherical building where the set of closed
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cells is given by S∞(X) and the full system of apartments consists of the
boundaries at infinity of the apartments of X.

For our purposes it will be helpful to have a more flexible version
of the subsets KΣ

v (A), in the sense that it allows v to be an arbitrary
point rather than a special vertex.

Definition 2.36. Let X be a Euclidean building and let σ ⊂ ∂∞X be a
simplex at infinity. For each point p ∈ X let Kp(σ) denote the subset
of X given by

Kp(σ) =
⋃
ξ∈σ

(p, ξ).

If σ is a chamber, we say that Kp(σ) is a sector.

If p is a special vertex of X, then for every sector Kp(σ) there is
a unique chamber E ⊂ st(p) such that Kp(σ) = KΣ

p (E) for some
appropriate apartment Σ. On the other hand, for every chamber E in
st(p) there is a chamber σ ⊂ ∂∞X such that KΣ

p (E) = Kp(σ). Note that,
in the case of sectors, the equivalence relation given in Definition 2.33

can be written as follows.

Remark 2.37. Two sectors K, K′ are equivalent if and only if their
intersection K ∩ K′ contains a sector.

2.6 the opposition complex

An important subcomplex of a spherical building is the complex of
chambers which are opposite to a given chamber.

Definition 2.38. Let ∆ be a spherical building and let C be a chamber
in ∆. The subcomplex of ∆ that consists of all cells A that are opposite
to some face of C will be denoted by Opp∆(C).

For our purposes it will be crucial to understand the topological
properties of Opp∆(C). If the spherical building ∆ is non-exceptional
and thick enough, it is a result of Abramenko (see [1, Theorem B]) that
Opp∆(C) is highly connected.

Theorem 2.39. Let ∆ be an arbitrary building of type An+1, Cn+1 or Dn+1

but not an exceptional C3 building. Assume that th(∆) ≥ 2n + 1 in the
An+1 case, respectively th(∆) ≥ 22n+1 + 1 in the other two cases. Then
Opp(C) is spherical but not contractible for every chamber C ⊂ ∆.

Remark 2.40. Recall that the Coxeter groups that appear as the Weyl
groups of the root systems of type Bn and Cn coincide. In the theory
of buildings it is a common convention to speak of buildings of type
Cn in this case.
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2.7 Σ-invariants

Unlike most invariants in group theory, the Σ-invariants of a group are
not algebraic structures themselves. Instead they live on the so-called
character sphere of a group which consists of equivalence classes of
non-trivial characters of the group.

Definition 2.41. Let G be a finitely generated group. A group homo-
morphism χ : G → R is called a character of G. Two characters χ and ψ

of G are equivalent, denoted by χ ∼ ψ, if there is a real number r > 0
such that χ = rψ. The character sphere of G, denoted by S(G), is given
by the quotient space (Hom(G, R)\{0})/∼ of classes of non-trivial
characters of G.

Note that Hom(G, R) is a finite dimensional real vector space and
thus S(G) carries a natural topology which turns S(G) into a sphere
of dimension dim(Hom(G, R))− 1.

More generally if V is a finite dimensional real vector space we
denote by S(V) the space of positive homothety classes of non-trivial
elements of V.

Definition 2.42. Let (Xλ)λ∈Λ be a directed system of cell complexes

where (Λ,≤) is a directed poset and let Xα

fα,β−→ Xβ be continuous
maps for α ≤ β. The system (Xλ)λ∈Λ is essentially n-connected for some
n ∈ N0 if for every index α ∈ Λ there is an index β ∈ Λ with α ≤ β

such that the induced maps

πk( fα,β) : πk(Xα, x)→ πk(Xβ, x)

are trivial for every x ∈ Xα and every 0 ≤ k ≤ n. Analogously, we
say that the system (Xλ)λ∈Λ is essentially n-acyclic for some n ∈ N0

if for every α ∈ Λ there is a β ≥ α such that H̃k( fα,β) = 0 for every
0 ≤ k ≤ n.

The notion of essential connectivity appears naturally if one has to
deal with group actions that are not cocompact.

Definition 2.43. A group G is said to be of type Fn if it acts freely on a
contractible cell complex X such that the quotient of the n-skeleton of
X by the group action is compact.

In the following, we will often suppress the class of a character
by just writing χ ∈ S(G). This will not cause any problems since all
properties of characters we are going to look at are invariant under
scaling with positive real numbers. In order to define the Σ-invariants
of a group G we have to extend its characters equivariantly to an
appropriate cell complex on which G acts.

Definition 2.44. Let G be a group acting on a topological space X.
Let further χ be a character of G. A continuous function h : X → R is
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called a height function associated to χ if it is equivariant with respect to
the action of G on R via χ, i.e.

h(g(x)) = χ(g) + h(x) for every g ∈ G, x ∈ X.

In the following, we will consider superlevelsets in X with respect
to h. These are subsets of the form Xh≥r := h−1([r, ∞)) for r ∈ R.
Analogously we define Xh≤r, Xh=r etc.

If the action is free, then it is always possible to find height functions
for characters (see [28, Konstruktion II.2.2.]).

Proposition 2.45. Let G be a group. Suppose that G acts freely on a con-
tractible cell complex X such that G\X has finite n-skeleton. For every
character χ : G → R there is a height function h : X → R associated to χ.

We are now ready to define what Σ-invariants are.

Definition 2.46. Let G be a group that acts freely on a contractible cell
complex X such that the quotient of the n-skeleton of X by the group
action is compact. For every character χ of G let hχ be a height function
associated to χ. The nth Σ-invariant of G, denoted by Σn(G), is defined
to be the subset of the character sphere that consists of characters χ

such that the system (Xhχ≥r)r∈R is essentially (n− 1)-connected.

Note that the invariant Σn(G) is only defined for groups of type
Fn. It can be shown (see [28, Bemerkungen 3.5]) that the definition
of Σ-invariants does not depend on the choices made in it. The next
theorem, which is a special case of [8, Theorem 12.1], tells us that the
assumption of the freeness of the action can be considerably weakened.

Theorem 2.47. Let G be a group that acts on a contractible cell complex X
such that the quotient of the n-skeleton of X by the group action is compact.
Suppose that the stabilizer of each p-cell is of type Fn−p for p ≤ n− 1. Let χ

be a non-trivial character of G. Suppose further that there is a height function
h : X → R associated to χ. Then χ lies in Σn(G) if and only if the system
(Xh≥r)r∈R is essentially (n− 1)-connected.

The following result of Bieri and Renz reduces the problem of
determining finiteness properties of groups H that sit between some
ambient group G and its commutator subgroup [G, G], to the problem
of determining the Σ-invariants of G (see [28, Satz C]).

Theorem 2.48. Let G be a group of type Fn and let [G, G] ≤ H ≤ G be a
subgroup. Then

H is of type Fn ⇔ {χ ∈ S(G) : χ(H) = 0} ⊂ Σn(G).

The following notation is often useful to describe the geometry of
the subsets Σn(G) ⊂ S(G).
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Definition 2.49. Let V be a finite dimensional real vector space and
let M ⊂ S(V) be an arbitrary subset. For every n ∈ N we define
convn(M) ⊂ S(V) to be the set of elements that are represented by

non-trivial vectors of the form
n
∑

i=1
λivi with λi ≥ 0 and [vi] ∈ M. The

union of these sets will be denoted by conv(M) =
⋃

n∈N

convn(M).



3
D E C O N S T R U C T I N G S U B C O M P L E X E S O F C O X E T E R
C O M P L E X E S

Throughout this section we fix a Euclidean Coxeter complex Σ of

dimension d. Let Σ =
s

∏
i=1

Σi be the decomposition of Σ into its irre-

ducible factors. Further, we fix a special vertex v ∈ Σ. This allows us
to view Σ as a vector space with origin v. Let σ ⊂ ∂∞Σ be a chamber
at infinity and let E ⊂ stΣ(v) be the unique chamber that lies in Kv(σ).
Let further {P1, . . . , Pd} be the set of panels of E that contain v. For
each panel Pi let αi be a linear form on Σ such that αi(Pi) = 0 and
αi(E) > 0. For convenience, we choose αi so that the set of walls
in Σ that are parallel to α−1

i (0) are given by Wi,k := α−1
i (k) where

k ∈ Z. Note that for each i there is a unique vertex ξi of σ such that
the ray [v, ξ) does not lie in Wi,0. The Busemann function associated
to ξi and v will be denoted by βi. It is an easy exercise to see that
βi : Σ → R is the linear form characterized by βi([v, ξi)(t)) = t and
βi(ξi(1)⊥) = 0 (see [13, II.8.24.(1)]). Our goal in the next sections will
be to study height functions on Euclidean buildings that are given
by precomposing linear forms on a fixed apartment with a retraction
from infinity onto that apartment. In this section we will study combi-
natorial properties of the superlevelsets in Σ that come from certain
linear forms on Σ. We fix a non-trivial linear form h : Σ→ R such that
the composition h ◦ [v, ξ) : [0, ∞) → R is strictly decreasing for each
ξ ∈ σ.

Remark 3.1. Let η = ∂∞(h−1((−∞, r])) which does not depend on
r ∈ R. The condition that h ◦ ξ is strictly decreasing for each ξ ∈ σ can
also be expressed by saying that σ ⊆ η◦ where η◦ denotes the interior
of η or equivalently that η ∩ σop = ∅.

We will denote by σ = ∗s
i=1σi the join decomposition of σ into

its irreducible join factors. Recall that there is a way of projecting
simplices at infinity to cells in Σ.

Definition 3.2. Let A be a cell of Σ and let τ be a simplex in ∂∞Σ.
The projection of τ to A, denoted by prA(τ), is the unique cell in st(A)

such that for some (equivalently for every) point ξ ∈ τ and some
(equivalently for every) point x ∈ A, there is an initial segment of
(x, ξ) lying in prA(τ).

The following definition specifies the idea of moving towards a
chamber at infinity.

Definition 3.3. Let τ ⊂ ∂∞Σ be a chamber and let Γ = C1| . . . |Cn

be a gallery in Σ with Ci 6= Ci+1 for every 1 ≤ i < n. We say that

21
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Γ is τ-minimal if for every two consecutive chambers Ci, Ci+1 of Γ,
separated by a panel P, the condition prP(τ) = Ci+1 is satisfied. In
this case we also say that Γ is moving towards τ.

Lemma 3.4. Let A be a cell in Σ and let τ be a chamber in ∂∞Σ. If Γ =

C1|. . .|Cn is a minimal gallery in st(A) terminating in prA(τ) then Γ is
τ-minimal.

Proof. Let 1 ≤ i ≤ n− 1 and let P be the panel separating Ci and Ci+1.
Let W be the wall spanned by P and let R be the half space bounded
by W that contains Ci+1. Since Γ is minimal and terminating in prA(τ)

it follows that prA(τ) lies in R. Let ξ ∈ τ and a ∈ A be arbitrary
points. By definition of the projection we have [a, ξ)((0, ε)) ⊂ prA(τ)

for some ε > 0. In particular we see that the open segment [a, ξ)((0, ε))

is contained in the halfspace R and hence for every point x ∈ P the
translate [x, ξ)((0, ε)) of [a, ξ)((0, ε)) is also contained in R. Thus it
follows that prP(τ) = Ci+1.

Lemma 3.4 gives us the following characterization of prA(τ).

Corollary 3.5. Let A be a cell in Σ and let τ be a chamber in ∂∞Σ. Let C be
a chamber in the star of A. We have C = prA(τ) if and only if prP(τ) = C
for every panel A ≤ P < C.

Lemma 3.6. Let C ⊂ Σ be a chamber and let I = {F ≤ C : prF σ = C}.
There is a unique minimal proper non-empty face in I. In other words there
is a face ∅ 6= U < C such that A ∈ I if and only if U ≤ A ≤ C.

Proof. Let A, B ∈ I be two cells and let PA and PB be the sets of
panels of C that are cofaces of A respectively B. Corollary 3.5 tells
us that prP(σ) = C for every P ∈ PA ∪ PB. On the other hand, we
know from Lemma 2.12 that A =

⋂
P∈PA

P and B =
⋂

P∈PB

P and therefore

A ∩ B =
⋂

P∈PA∪PB

P. Thus the uniqueness statement in Lemma 2.12

implies that every panel A ∩ B ≤ P < C is contained in PA ∩ PB and
therefore satisfies prP(σ) = C. In view of Corollary 3.5 it remains

to show that A ∩ B is not empty. To see this let C =
s

∏
i=1

Ci be the

decomposition of C into simplices Ci ⊂ Σi and let 1 ≤ j ≤ s be a
fixed coordinate. We claim that there is a panel P of Cj such that the
corresponding panel

C1 × . . . Cj−1 × P× Cj+1 . . .× Cs

of C is not contained in PA ∪ PB. Indeed, otherwise the ray [x, ξ)

would stay in
Σ1 × . . . Σj−1 × Cj × Σj+1 . . .× Σs

for every x ∈ C and ξ ∈ σ. In this case [x, ξ) is constant in the
coordinate j which contradicts our assumption that ξ lies in the open
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chamber σ. Note further that the intersection over a set of panels
of a simplex is empty if and only if the set consists of all panels
of the simplex. Together with the observation above this shows that
A ∩ B =

⋂
P∈PA∩PB

P is not empty.

Definition 3.7. For each chamber C in Σ we define the upper face C↑ of
C to be the intersection of all panels P < C such that prP(σ) = C (the
face U in Lemma 3.6). Analogously, the lower face C↓ of C is defined to
be the intersection of all panels P < C such that prP(σ) 6= C or, which
is equivalent, prP(σ

op) = C where σop ⊂ ∂∞Σ denotes the chamber
opposite to σ.

We recall the so-called gate property for Coxeter complexes. See for
example [2, Proposition 3.105].

Proposition 3.8. Let A be a cell of Σ and let C be a chamber of Σ. Then the
projection chamber prA(C) has the following property. For every chamber
D ⊆ st(A) the equality

d(D, C) = d(D, prA(C)) + d(prA(C), C)

is satisfied.

In particular, there is a minimal gallery from D to C passing through
prA(C). Recall from section 2.5 that for each point x ∈ Σ and each
simplex τ ⊂ ∂∞Σ we denote by

Kx(τ) =
⋃
ξ∈τ

(x, ξ)

the (open) cone corresponding to τ with tip in x.

Remark 3.9. By our choice of α1, . . . , αd, every sector Kx(σ) can be
described as the set of points y ∈ Σ such that αi(y) > αi(x) for every
1 ≤ i ≤ d. Analogously, Kx(σop) can be described as the set of points
y ∈ Σ such that αi(y) < αi(x) for every 1 ≤ i ≤ d.

Lemma 3.10. For every point x ∈ Σ and every r ∈ R the intersection

Kx(σop) ∩ h−1((−∞, r])

is compact.

Proof. The polyhedron Kx(σop) ∩ h−1((−∞, r]) has boundary

∂∞(Kx(σop) ∩ h−1((−∞, r])) = ∂∞(Kx(σop)) ∩ ∂∞(h−1((−∞, r]))

= σop ∩ η = ∅,

see Remark 3.1. It is therefore compact.
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Note that Lemma 3.10 implies, in particular, that the supported
complex

Σ(Kx(σop) ∩ h−1((−∞, r]))

is also compact.

Lemma 3.11. Let Z be a bounded subset of Σ. There is a special vertex
w ∈ Σ such that Z is contained in the sector Kw(σop).

Proof. Since Z is bounded there is an integer n such that αi(z) < n for
every point z ∈ Z and every index 1 ≤ i ≤ d. In view of Remark 3.9 it
suffices to define the vertex w ∈ Σ by αi(w) = n for all 1 ≤ i ≤ d.

The following lemma provides us with a lower bound for the special
vertex in Lemma 3.11 in the case where Z consists of a single point.

Lemma 3.12. There is a constant ε > 0 such that for every point x ∈ Σ
there is a special vertex w ∈ Σ of height h(w) > h(x)− ε such that the
sector Kw(σop) contains x.

Proof. Let C ⊂ Σ be a chamber with x ∈ C and let u1 be a special
vertex of C. We consider the points zi = αi(u1) for every 1 ≤ i ≤ d.
Let u2 be the special vertex characterized by αi(u2) = zi + 1 for every
1 ≤ i ≤ d. Then the subcomplex Ku1(σ

op) ≤ Σ lies in the (open)
sector Ku2(σ

op). It follows that the star st(u1) is contained in Ku2(σ
op).

In particular we see that x ∈ st(u1) ⊂ Ku2(σ
op). If we apply the

construction a second time we see that the vertex w ∈ Σ, characterized
by αi(w) = zi + 2 for every 1 ≤ i ≤ d, satisfies the second claim. Let
δ1 be the h-distance between u1 and u2 and let δ2 be the h-diameter of
the star of a special vertex. Then by the above construction there is a
special vertex w ∈ Σ such that h(w) ≥ h(x)− ε for ε = 2δ1 + 2δ2 and
such that x is contained in Kw(σop).

Definition 3.13. A subcomplex Z ≤ Σ is called σ-convex if for every
two cells A, B ⊂ Z the following is satisfied. Every σ-minimal gallery
Γ from prA(σ) to prB(σ

op) is contained in Z.

We emphasize that Definition 3.13 does not require the existence of
a σ-minimal gallery in Z.

Remark 3.14. Note that we could replace σ by σop in the definition of
σ-convexity.

Definition 3.15. Let Z be a subcomplex of Σ. The non-separating bound-
ary of Z, denoted by R(Z), is the union of cells A ⊂ Z such that
prA(σ

op) * Z.

Lemma 3.16. Let Z ≤ Σ be a σ-convex subcomplex. The non-separating
boundary R(Z) is a subcomplex of Z.



deconstructing subcomplexes of coxeter complexes 25

Proof. Let B be a cell in R(Z) and let A be a face of B. Let Γ be a
minimal gallery from prA(σ

op) =: C to prB(σ
op) =: D. Note that Γ

is contained in st(A) and can be extended to a minimal gallery Γ′

from C to prA(σ). Indeed, since the chambers prA(σ) and prA(σ
op)

are opposite in st(A) this follows from the well-known fact that every
chamber in a spherical Coxeter complex is contained in a minimal
gallery connecting two given opposite chambers. In particular this
implies that Γ is σ-minimal by Lemma 3.4. In order to apply the σ-
convexity of Z we note that C = prC↑(σ) and D = prD↓(σ

op). Further
Lemma 3.6 tells us that B is a coface of D↓. In particular we see that
D↓ lies in Z. Suppose that A is not a cell of R(Z). Then by definition
we have C ⊆ Z and thus C↑ ⊆ Z. Now the σ-convexity of Z implies
that the entire gallery Γ is contained in Z. In particular D is a chamber
in Z, which is a contradiction to B ∈ R(Z). Thus we see that A is a
cell of R(Z).

Definition 3.17. Let Z be a subcomplex of Σ. For each chamber C
of Z its σ-length in Z, denoted by `Z(C), is the length of the longest
σ-minimal gallery in Z starting in C. If there are arbitrarily long
σ-minimal galleries in Z starting in C, we define `Z(C) = ∞.

Lemma 3.18. Let Z be a σ-convex subcomplex of Σ and let C ⊂ Z be a
chamber with `Z(C) = 0. Then the following are satisfied.

1. st(C↓) ∩ Z ⊂ C.

2. Z\ st(C↓) is σ-convex.

3. R(Z\ st(C↓)) = R(Z).

Proof. To prove the first claim let A be a cell in st(C↓) ∩ Z and let
D := prA(σ

op). Let further Γ be a minimal gallery from D to C. Note
that D is contained in st(C↓) and thus that Γ is contained in st(C↓).
Since C = prC↓(σ

op) it follows form Lemma 3.4 that Γ is σop-minimal.
On the other hand, we have C = prC↑(σ) and thus the σ-convexity
of Z implies that Γ is contained in Z. Now the condition `Z(C) = 0
implies that C = D and thus A is contained in C.

For the second claim let A and B be two cells in Z\ st(C↓) such that
there is a σ-minimal gallery Γ from prA(σ) to prB(σ

op). We have to
show that Γ lies in Z\ st(C↓). By the first claim it thus suffices to show
that Γ does not contain C. Suppose that Γ contains C and let Γ′ be the
subgallery of Γ starting at C. The σ-convexity of Z implies that Γ′ is
contained in Z and therefore `(Γ′) = `Z(C) = 0, i.e. C = prB(σ

op). On
the other hand if C = prB(σ

op), then B is a coface of C↓ by Lemma 3.6.
But this is a contradiction since there are no cofaces of C↓ lying in
Z\ st(C↓).

To prove the third claim let A be a cell in R(Z). By definition
prA(σ

op) * Z and hence in particular prA(σ
op) * Z\ st(C↓). To prove

that A is contained in R(Z\ st(C↓)) it suffices to show that A * st(C↓).
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Otherwise the first claim tells us that A is a coface of C↓ lying in C
and hence by applying Lemma 3.6 we see that

prA(σ
op) = prC↓(σ

op) = C ⊂ Z.

This is a contradiction since by our assumption we have prA(σ
op) * Z.

Suppose now that A is a cell in R(Z\ st(C↓)). Thus by definition
prA(σ

op) * R(Z\ st(C↓)). Then by the first claim either prA(σ
op) = C

or prA(σ
op) * Z. We only have to consider the first case. But in this

case Lemma 3.6 tells us again that A is a coface of C↓ and hence does
not lie in Z\ st(C↓).

An inductive application of Lemma 3.18 provides us with a filtration
of compact σ-convex complexes.

Corollary 3.19. Let Z be a compact σ-convex subcomplex of Σ and let n be
the number of chambers in Z. There is a filtration

Z0 � Z1 � . . . � Zn = Z

of Z by subcomplexes Zi such that

1. Z0 = R(Z),

2. Zm+1 = Zm ∪ Cm+1 for some chamber Cm+1 ⊆ Z with
`Zm+1(Cm+1) = 0, and

3. st(C↓m+1) ∩ Zm+1 ⊂ Cm+1.

Proof. Without loss of generality we may assume that n > 0. Indeed,
otherwise it follows directly from the definition of the non-separating
boundary that R(Z) = Z. Let Zn := Z. For every 0 ≤ m < n we
inductively define Zm := Zm+1\ st(C↓m+1) where Cm+1 ⊂ Zm+1 is some
chamber with `Zm+1(Cm+1) = 0. Note that the existence of such cham-
bers follows from the compactness of Z. In this situation Lemma 3.18

tells us that Zm is a compact, σ-convex subcomplex of Z that satisfies
R(Zm) = R(Zm+1) and st(C↓m+1) ∩ Zm+1 ⊂ Cm+1 for every 0 ≤ m < n.
Note that the latter inclusion implies (2) and that the former equality
gives us

R(Z) = R(Zn) = R(Zn−1) = . . . = R(Z1) = R(Z0) = Z0

which proves the claim.

For short reference we note the following easy property of sectors.

Lemma 3.20. Let w ∈ Σ be a special vertex and let τ be a chamber in
∂∞Σ. Let A be a cell in the closed sector Kw(τ). Then the projection chamber
prA(τ) lies in Kw(τ).

Proof. This follows directly from the fact that for every ξ ∈ τ and
every x ∈ Kw(τ) the ray [x, ξ) stays in Kw(τ).
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In particular Lemma 3.20 implies that for every panel P that lies in
a wall of a sector Kw(τ), the projection chamber prP(τ) lies in Kw(τ).
This gives us the following.

Corollary 3.21. Let w ∈ Σ be a special vertex and let τ be a chamber in
∂∞Σ. Let Γ = E1| . . . |En be a τ-minimal gallery in Σ. If E1 lies in Kw(τ)

then the whole gallery Γ lies in Kw(τ).

Lemma 3.22. Let w ∈ Σ be a special vertex. Let A be a cell in the sector
complement Σ\Kw(σ). Then the projection prA(σ

op) lies in Σ\Kw(σ).

Proof. Suppose that prA(σ
op) ⊂ Kw(σ). Then A is a cell in Kw(σ) and

by Lemma 3.20 prA(σ) ⊂ Kw(σ). The convexity of the subspace Kw(σ)

implies that
conv(prA(σ), prA(σ

op)) = st(A)

lies in Kw(σ). Since st(A) is an open neighborhood of A it follows that
A lies in the (open) sector Kw(σ). This contradicts the choice of A.

Proposition 3.23. Let w ∈ Σ be a special vertex. The closed sectors Kw(σ),
Kw(σop) and the complements Σ\Kw(σ) and Σ\Kw(σop) are σ-convex.

Proof. In view of Remark 3.14 it suffices to show that the complexes
Kw(σ) and Σ\Kw(σ) are σ-convex. Since Kw(σ) is a convex subcomplex
it follows that it is also σ-convex. Next we consider the complement
Σ\Kw(σ). Let A and B be cells in Σ\Kw(σ) and suppose that there is a
σ-minimal gallery Γ = E1|. . .|En from E1 = prA(σ) to En = prB(σ

op).
By Lemma 3.22 the chamber prB(σ

op) is contained in Σ\Kw(σ). Sup-
pose that Γ contains a chamber Ei0 in Kw(σ). Then the subgallery
Γ′ := Ei0 |. . .|En is σ-minimal and hence by Lemma 3.21 stays in Kw(σ).
A contradiction to En = prB(σ

op) ⊂ Σ\Kw(σ).

Note that the property of being σ-convex behaves well under taking
intersections.

Lemma 3.24. The intersection of σ-convex complexes is σ-convex.

The non-separating boundary of the intersection of two subcom-
plexes can easily be described in terms of the subcomplexes as follows.

Lemma 3.25. Let Y and Z be two subcomplexes of Σ. Then

R(Y ∩ Z) = Y ∩ Z ∩ (R(Y) ∪ R(Z)).

Proof. This follows from the definition.

Definition 3.26. Let r ∈ R be a real number and let M(r) be the set
of special vertices w ∈ Σ of height h(w) ≥ r. We define

Uh(r) =
⋃

w∈M(r)

Kw(σop)
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to be the union of closed sectors corresponding to the vertices in
M(r) and the chamber σop. We will say that Uh(r) is the upper complex
associated to h and r. The lower complex associated to h and r, denoted
by Lh(r), is the complement of the interior of Uh(r) in Σ, i.e.

Lh(r) = Σ\
⋃

w∈M(r)

Kw(σ
op).

The following proposition summarizes some properties of the lower
complex Lh(r).

Proposition 3.27. There is a constant ε > 0 such that for every r ∈ R

1. Lh(r) is σ-convex,

2. h−1((−∞, r]) ⊂ Lh(r),

3. Lh(r) ⊂ h−1((−∞, r + ε]), and

4. R(Lh(r)) ⊂ h−1([r, r + ε]).

Proof. Note that we can write the lower complex as an intersection

Lh(r) = Σ\
⋃

w∈M(r)

Kw(σ
op) =

⋂
w∈M(r)

Σ\Kw(σ
op)

of sector complements. Now the first claim follows directly from
Lemma 3.24 and Corollary 3.23. To see the second claim recall that our
choice of h implies that w is the lowest point of Kw(σop) and therefore

Kw(σ
op) ⊂ h−1((r, ∞)) for every vertex w ∈ M(r).

Thus the sublevelset h−1((−∞, r]) is completely contained in the sec-
tor complement Σ\Kw(σop) for every vertex w ∈ M(r). Therefore
h−1((−∞, r]) ⊂ Lh(r). Let ε > 0 be the constant from Lemma 3.12.
To prove the third claim let x ∈ Lh(r) be an arbitrary point. By
Lemma 3.12 there is a special vertex w ∈ Σ with h(w) ≥ h(x) − ε

such that x ∈ Kw(σop). Suppose that h(x) ≥ r + ε. In this case we have
w ∈ M(r) and therefore x /∈ Lh(r + ε) which is a contradiction. To
see that the last claim is true, let A be a cell in Lh(r). Suppose that
prA(σ

op) is not contained in Lh(r). That is, there is a vertex w ∈ M(r)
such that prA(σ

op) ⊂ Kw(σop). Then

A ⊂ Kw(σop) ⊂ h−1([h(w), ∞)) ⊂ h−1([r, ∞)).

On the other, hand the third claim gives us

A ⊂ Lh(r) ⊂ h−1((−∞, r + ε]).

Lemma 3.28. There is a constant ε > 0 such that for every real number
r ∈ R and every special vertex w ∈ Σ the intersection

Kw(σop) ∩ Lh(r)

is σ-convex and its non-separating boundary satisfies

R(Kw(σop) ∩ Lh(r)) ⊂ h−1([r, r + ε]).
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Proof. The complexes Kw(σop) and Lh(r) are σ-convex by Proposi-
tion 3.23 respectively by Proposition 3.27. Thus their intersection is
σ-convex by Lemma 3.24. Let ε be as in Proposition 3.27. Lemma 3.25

tells us that

R(Kw(σop) ∩ Lh(r)) = Kw(σop) ∩ Lh(r) ∩
(

R(Kw(σop)) ∪ R(Lh(r))
)

.

Further, it follows from Lemma 3.20 that R(Kw(σop)) = ∅. Together
with claim (4) of Proposition 3.27 this gives us

R(Kw(σop) ∩ Lh(r)) = Kw(σop) ∩ Lh(r) ∩ R(Lh(r))

⊂ R(Lh(r)) ⊂ h−1([r, r + ε]).

For future reference we note the following feature of the non-
separating boundary.

Lemma 3.29. Let r ∈ R and let w ∈ Σ be a special vertex. Let further

P ⊂ R
(

Kw(σop) ∩ Lh(r)
)
∩ Kw(σ

op)

be a panel. The chamber prP(σ) lies in Kw(σop) ∩ Lh(r).

Proof. Suppose that prP(σ) does not lie in Kw(σop) ∩ Lh(r). Since by
assumption P lies in the (open) sector Kw(σop) it follows that prP(σ)

is contained in Kw(σop). Therefore prP(σ) is not contained in Lh(r).
Hence there has to be a vertex w ∈ M(r) such that prP(σ) lies in
Kw(σop). On the other hand Lemma 3.20 tells us that prP(σ

op) lies in
Kw(σop). Thus it follows that the star st(P) is contained in Kw(σop).
Clearly this implies that P lies in Kw(σop) which shows that P is not
contained in Lh(r). Since this contradicts our choice of P we see that
prP(σ) has to lie in Kw(σop) ∩ Lh(r).

Proposition 3.30. Let r ∈ R be a real number, w ∈ Σ a special vertex, and
let Z = Uh(r) ∪ Kw(σop). Then there is a filtration

Uh(r) = Z1 � Z2 � . . . � Zn = Z

of Z by subcomplexes Zi such that the following is satisfied for every
1 ≤ m < n.

1. Zm+1 = Zm ∪ Cm+1 for some chamber Cm+1 ⊂ Zm+1 with
`Zm+1(Cm+1) = 0.

2. st(C↓m+1) ∩ Zm+1 ⊂ Cm+1.

Proof. Let ε be as in Proposition 3.27. The third claim of Proposi-
tion 3.27 gives us Lh(r) ⊂ h−1((−∞, r + ε]). Since the intersection
Kw(σop) ∩ h−1((−∞, r + ε]) is compact by Lemma 3.10, it follows that
there are only finitely many cells in Uh(r)∪Kw(σop) not lying in Uh(r).
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We saw in Lemma 3.28 that Y = Lh(r) ∩ Kw(σop) is σ-convex. Hence
by Proposition 3.19 there is a filtration

R(Y) = Y1 � Y2 � . . . � Yn = Y

such that for each 1 ≤ m < n

1. Ym+1 = Ym ∪ Dm+1 for some chamber Dm+1 ⊂ Ym+1 with
`Ym+1(Dm+1) = 0 and

2. st(D↓m+1) ∩Ym+1 ⊂ Dm+1.

We claim that we obtain the desired filtration be setting Cm = Dm,
Z1 = Uh(r), and Zm+1 = Zm ∪Cm+1 for every 1 ≤ m < n. To prove the
first claim it suffices to show that `Zm+1(Cm+1) = 0. By construction
we know that `Ym+1(Dm+1) = 0. Suppose that `Zm+1(Cm+1) > 0. Then
there is a panel P of Cm+1 such that Cm+1 6= prP(σ) ⊂ Zm+1. This
shows that Cm+1 = prP(σ

op). Since `Ym+1(Dm+1) = 0 it follows that
prP(σ) does not lie in Ym+1 and hence that prP(σ) ⊂ Uh(r). Thus there
is a vertex u ∈ M(r) such that prP(σ) is a chamber of Ku(σop). On the
other hand Lemma 3.20 tells us that prP(σ

op) = Cm+1 lies in Ku(σop).
But this is a contradiction to our assumption that Cm+1 is a chamber
in Lh(r).

To prove the second claim let A ⊂ st(C↓m+1) ∩ Zm+1 be a cell. Since

st(C↓m+1) ∩Ym+1 ⊂ Cm+1

it suffices to consider the case where A does not lie in st(C↓m+1)∩Ym+1.
Then A is a coface of C↓m+1 that lies in Uh(r). Hence there is a vertex
u ∈ M(r) such that A ⊂ Ku(σop). In particular C↓m+1 ⊂ Ku(σop) and
Lemma 3.20 implies that

Cm+1 = prC↓m+1
(σop) ⊂ Ku(σ

op) ⊂ Uh(r).

But this is a contradiction to Cm+1 ⊂ Y ⊂ Lh(r).
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T H E P O S I T I V E D I R E C T I O N I N T O P D I M E N S I O N

In the previous chapter we considered filtrations of certain subcom-
plexes of Euclidean Coxeter complexes. In this chapter we will apply
this filtration to filter subcomplexes of Euclidean buildings that ap-
pear as preimages of retractions from infinity. We start by fixing some

notation. Let X =
s

∏
i=1

Xi be a product of thick, irreducible, Euclidean

buildings Xi and let d = dim(X). We fix an apartment Σ =
s

∏
i=1

Σi ⊆ X

and a chamber σ ⊂ ∂∞ Σ. Recall that we view X as a CAT(0)-space
and endow its boundary at infinity ∂∞X with the structure of a spher-
ical building. As in the last chapter we fix a special vertex v ∈ Σ and
think of Σ as a Euclidean vector space with origin v. Further, we fix a
non-trivial linear form h : Σ→ R such that for every point ξ ∈ σ and
every x ∈ Σ the function h ◦ [x, ξ) : [0, ∞)→ R is strictly decreasing.

4.1 the height function on x

Our first goal is to extend h to a function on X. In order to do so
we recall how to construct a retraction ρ : X → Σ with respect to a
chamber at infinity.

Definition 4.1. Let Aσ be the set of apartments of X that contain a
subsector of Kv(σ) ⊂ Σ. For each Σ ∈ Aσ let fΣ : Σ → Σ denote the
isomorphism given by the building axiom (B2).

The following definition makes sense since X is covered by the
apartments in Aσ (see [2, Theorem 11.63.(1)]).

Definition 4.2. Let ρ := ρσ,Σ : X → Σ be the map given by x 7→ fΣ(x)
where Σ is any apartment in Aσ containing x.

It can be easily seen that fΣ(x) = fΣ′(x) for every two apartments
Σ, Σ′ ∈ Aσ that contain x. Therefore ρ is well defined. In the following
we will study the function h ◦ ρ : X → R and its superlevelsets in X.
For convenience, we will just write h instead of h ◦ ρ. This should not
lead to confusions since the restriction of h ◦ ρ to Σ coincides with h.
Note that the vector space structure on Σ allows us to consider the
dual space Σ∗ = Hom(Σ, R) for Σ. The following definition provides
us with a vector space of height functions of X.

Definition 4.3. We define X∗σ,v = {α ◦ ρ : α ∈ Σ∗} to be the space of
ρ-invariant linear forms on Σ.

31
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Remark 4.4. Note that indeed every function f : X → R that is invari-
ant under ρ, i.e. that satisfies f ◦ ρ = f , and is linear on Σ lies in X∗σ,v.
Note further that X∗σ,v can be described as the space of ρ-invariant
functions X → R that are affine on some apartment Σ ∈ Aσ and
vanish on v.

For the rest of this chapter we will often just write X∗ := X∗σ,v. Many
of the spaces we are going to study involve the ρ-preimages of certain
subsets of Σ. In order to switch easily between subsets of Σ and their
ρ-preimages in X we introduce the following notation.

Notation 4.5. For each subset Z ⊆ Σ we define Ẑ := ρ−1(Z).

4.2 removing relative stars

Lemma 4.6. Let A be a cell in X and let C := prA(σ) be the projection
chamber.

1. For every chamber D ⊂ st(A) there is an apartment Σ ∈ Aσ such
that C, D ⊂ Σ.

2. If Γ = C1| . . . |Cn ⊂ st(A) is a minimal gallery terminating in C then
the projection gallery ρ(Γ) is also minimal in Σ.

Proof. Observe that the second claim follows from the first claim.
Indeed, let Σ ∈ Aσ be an apartment containing C1 and Cn = C.
Since Σ ∈ Aσ it follows that the restriction ρ|Σ : Σ → Σ is an isomor-
phism. In particular, the minimal gallery Γ is mapped to the minimal
gallery ρ(Γ).

To prove the first claim let Σ ∈ Aσ be an apartment containing D.
Let further x ∈ A and ξ ∈ σ be (interior) points. Since σ ⊂ ∂∞Σ
it follows that the ray [x, ξ) is contained in Σ. On the other hand,
there is an initial segment of the open geodesic ray (x, ξ) that lies in
prA(σ) = C. Thus we see that Σ contains a point of C and therefore
we have C ⊂ Σ.

Notation 4.7. Let A ⊂ X be a cell of codimension ≥ 1. We say that
two cofaces B, C ⊂ st(A) of A are opposite to each other, denoted by
B opst(A) C, if their corresponding simplices in lk(A) are opposite to
each other.

The following consequence of Lemma 4.6 will help us to identify
certain subcomplexes of X with complexes of the form Opp∆(C) for
some spherical buildings ∆ and some chamber C ⊂ ∆.

Corollary 4.8. Let A ⊂ X be a cell of codimension ≥ 1 and let C = prA(σ)

denote the projection chamber of σ. We have prρ(A)(σ) = ρ(C) and the
equality

{D ⊂ st(A) : D opst(A) C} = {D ⊂ st(A) : ρ(D) opst(A) ρ(C)}
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is satisfied. This can be phrased more compactly by saying that the retraction
commutes with taking opposite chambers of prA(σ).

The following definition extends Definition 3.7 to the case of Eu-
clidean buildings.

Definition 4.9. For each chamber C in X we define the upper face C↑

of C to be the intersection of all panels P < C such that prP(σ) = C
(the face U in Lemma 3.6). The lower face E↓ of E is defined to be the
intersection of all panels P < C such that prP(σ) 6= C.

We can rewrite Corollary 4.8 in terms of links rather than stars as
follows.

Corollary 4.10. Let Z ≤ Σ be a subcomplex. Suppose that Z contains a
chamber C such that st(C↓) ∩ Z ⊂ C and let A be a cell in ρ−1(C↓). Let
a ⊂ lk(A) be the chamber induced by prA(σ). Then

lkẐ(A) = OpplkX(A)(a).

The following definition will be crucial for showing that the system
of superlevelsets (Xh≥r)r∈R is essentially (dim(X)− 2)-connected.

Definition 4.11. A spherical building ∆ satisfies the spherical opposition
link property, SOL-property, if the complexes Opplk(A)(B) and Opp∆(C)
are spherical and non-contractible for every cell A ⊂ ∆, every chamber
B ⊂ lk(A), and every chamber C ⊂ ∆.

Similarly we say that a Euclidean building Y satisfies the SOL-
property if all of its links satisfy the SOL-property.

Lemma 4.12. Assume that X satisfies the SOL-property. Let Z ⊆ Σ be a
subcomplex. Suppose that Z contains a chamber C such that st(C↓)∩ Z ⊂ C
and let Y := Z\ st(C↓). The inclusion ι : Ŷ → Ẑ induces monomorphisms

πk(ι) : πk(Ŷ)→ πk(Ẑ)

for every 0 ≤ k ≤ d− 2.

Proof. Let I be the set of cells in ρ−1(C↓). Then Ẑ can be written as
Ẑ = Ŷ ∪ ⋃

A∈I
stZ(A). Note that we have

stẐ(A) ∩ stẐ(B) ⊂ Ŷ

for all cells A, B ∈ I with A 6= B. Thus, in order to apply Lemma 2.20,
we need to verify that

stẐ(A) ∩ Ŷ

is (d− 2)-connected for every cell A ∈ I. Recall that by Remark 2.18

we have
stẐ(A) ∩ Ŷ = ∂ stẐ(A) ∼= ∂A ∗ lkẐ(A).
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Let c be the chamber in lkΣ induced by prC↓(σ) and let a ⊂ lkA be the
chamber induced by prA(σ). On the other hand we have lkẐ(A) =

OpplkX(A)(a) by Corollary 4.10. The SOL-property of X tells us that
the complex OpplkX(A)(prA(σ)) is (dim(lkX(A))− 1)-connected. Since
∂(A) is homeomorphic to a sphere of dimension dim(A)− 1 it follows
from Lemma 2.21 that OpplkX(A)(prA(σ)) ∗ ∂(A) is k-connected for

k = (dim(lk(A))− 1) + (dim(A)− 2) + 2.

Now the claim follows from the simple observation

dim(A) + dim(lk(A)) = d− 1.

Theorem 4.13. Suppose that X satisfies the SOL-property. Let r ∈ R be a
real number and let v ∈ Σ be a special vertex. The canonical inclusion

ι : Ûh(r)→ Ûh(r) ∪ K̂v(σop)

induces monomorphisms

πk(ι) : πk(Ûh(r))→ πk(Ûh(r) ∪ K̂v(σop))

for every 0 ≤ k ≤ d− 2.

Proof. By Proposition 3.30 there is a filtration

Uh(r) = Z1 � Z2 � . . . � Zn = Uh(r) ∪ Kv(σ
op)

by subcomplexes Zi such that the following is satisfied for each
1 ≤ m < n.

1. Zm+1 = Zm ∪ Cm+1 for some chamber Cm+1 ⊂ Zm+1 with
`Zm+1(Cm+1) = 0.

2. st(C↓m+1) ∩ Zm+1 ⊂ Cm+1.

In view of Lemma 4.12 this gives us a filtration

Ûh(r) = Ẑ1 � Ẑ2 � . . . � Ẑn = Ûh(r) ∪ K̂v(σop)

such that the each inclusion induces a monomorphism

πk(ι) : πk(Ẑm)→ πk(Ẑm+1)

for every 0 ≤ k ≤ d− 2. Now the claim follows by composing these
monomorphisms.

Corollary 4.14. Suppose that X satisfies the SOL-property. Then Ûh(r) is
(d− 2)-connected for every r ∈ R.
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Proof. Let 0 ≤ k ≤ d − 2 be an integer and let f : Sk → Ûh(r) be a
continuous function. Since X is a CAT(0)-space it is contractible. Hence
there is a compact subspace Z ⊂ X such that f can be contracted in Z.
Then ρ(Z) ⊂ Σ is also compact and Lemma 3.11 implies that there is
a special vertex v ∈ Σ such that ρ(Z) is contained in the closed sector

Kv(σop). In particular we see that f is contractible in Ûh(r) ∪ K̂v(σop)

and hence represents the trivial element in πk(Ûh(r) ∪ K̂v(σop)). On
the other hand Theorem 4.13 says that the inclusion

ι : Ûh(r)→ Ûh(r) ∪ K̂v(σop)

induces monomorphisms

πk(ι) : πk(Ûh(r))→ πk(Ûh(r) ∪ K̂v(σop))

for each 0 ≤ k ≤ d − 2. Thus f represents the trivial element in
πk(Ûh(r)) and therefore can be contracted in Ûh(r). Since f and k
were chosen arbitrarily it follows that Ûh(r) is (d− 2)-connected.

Theorem 4.15. Suppose that X satisfies the SOL-property. Then the system
of superlevelsets (Xh≥r)r∈R is essentially (d− 2)-connected.

Proof. Let r ∈ R be a real number. According to Proposition 3.27 there
is a number ε > 0 such that we get a chain of inclusions

Xh≤r−ε → ̂Lh(r− ε)→ Xh≤r.

By considering the complements of these sets we see that the inclusion
ι : Xh≥r → Xh≥r−ε factorizes as

Xh≥r
ι1−→ ̂Uh(r− ε)

ι2−→ Xh≥r−ε.

Now the claim follows since ̂U(r + ε) is (d− 2)-connected by Corol-
lary 4.14 and therefore the functoriality of πk gives us

πk(ι) = πk(ι2) ◦ πk(ι1) = 0 for every 0 ≤ k ≤ d− 2.

Remark 4.16. As far as I know this is the first time that a part of the
computation of the Σ-invariants of a group benefits from the concept
of essential n-connectedness. All the computations I am aware of show
that the superlevelsets themselves are already n-connected.
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T H E N E G AT I V E D I R E C T I O N I N T O P D I M E N S I O N

In the previous chapter we proved that certain systems of super-
levelsets in an appropriate Euclidean building X are essentially
(dim(X)− 2)-connected. In this chapter we prove that these systems
are not essentially (dim(X)− 1)-connected.

As in the previous chapter we fix a product X =
s

∏
i=1

Xi of irreducible,

Euclidean buildings Xi and let d = dim(X) denote its dimension.
Further, we fix an apartment Σ, a special vertex v ∈ Σ, and a chamber
at infinity σ ⊂ ∂∞ Σ. The set of apartments in X that contain a subsector
of Kv(σ) will be denoted by Aσ.

5.1 the abstract cone

We start by constructing some cell complexes that are going to help us
to transfer subcomplexes of ∂∞X into subcomplexes of X.

Lemma 5.1. For each chamber δ ⊂ Opp∂∞X(σ) there is a unique apartment
Σ ∈ Aσ such that δ ⊂ ∂∞Σ.

Proof. Since Opp∂∞X(σ) is a spherical building, the existence follows
from the building axiom (B1). The uniqueness statement follows from
the easy observation that every apartment is the convex hull of every
pair of its sectors that correspond to opposite chambers.

In view of Lemma 5.1 the following definition makes sense.

Definition 5.2. For every chamber δ ⊂ Opp∂∞X(σ) let Σδ ∈ Aσ denote
the unique apartment with δ ⊂ ∂∞Σδ.

For the rest of this chapter we fix a compact subcomplex S of
Opp∂∞X(σ) in which all maximal simplices are chambers.

Lemma 5.3. There is a special vertex v ∈ ⋂
δ∈Ch(S)

Σδ.

Proof. This follows inductively from the observation that the intersec-
tion of two subsectors of Kv(σ) contains a common subsector.

From now on we fix a special vertex v as in Lemma 5.3. Note that v
can be regarded as the tip in the following construction.

Notation 5.4. For each subcomplex Y ⊂ X let Ch(Y) denote the set of
chambers in Y.

37
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Definition 5.5. Let KS,v ⊂ X be the subcomplex consisting of the
closed sectors in X that correspond to the chambers in S with tip in v,
i.e.

KS,v =
⋃

δ∈Ch(S)

Kv(δ).

Recall that we use the notation Ẑ := ρ−1(Z) where ρ = ρσ,Σ is the
retraction from infinity defined in Definition 4.2.

Remark 5.6. Note that KS,v is a subcomplex of K̂v(σop) where σop

denotes the opposite chamber of σ in ∂∞ Σ. Note further that

ρ|Kv(τ)
: Kv(τ)→ Kv(σop)

is an isomorphism for every chamber τ ⊂ S.

In order to understand the structure of KS,v we introduce an auxil-
iary complex K̃S,v. This complex can be realized as a quotient space
of the disjoint union ä

δ∈Ch(S)
Kv(δ) of closed sectors with tip in v that

correspond to the chambers in S.

Definition 5.7. We say that two points (p, δ), (p′, δ′) ∈ ä
δ∈Ch(S)

Kv(δ)

are equivalent, denoted by (p, δ) ∼ (p′, δ′), if p = p′ ∈ ∂Kv(P) for
some panel P ⊂ Opp∂∞X(σ). We define the abstract cone to be the
quotient space

K̃S,v := ä
δ∈Ch(S)

Kv(δ)/∼ .

Further we define the map π : K̃S,v → KS,v, [(p, δ)] 7→ p.

From now on we will often abbreviate the complexes K̃S,v and KS,v
by K̃ = K̃S,v respectively K = KS,v.

5.2 homology of superlevelsets

We keep the notations from the previous section. As always we regard
Σ as a Euclidean vector space with origin v. Recall from Definition 4.3
that X∗ := X∗σ,v = {α ◦ ρ : α ∈ Σ∗} denotes the space of ρ-invariant
functions on X whose restrictions to Σ are linear. For the rest of this
chapter we fix a function h ∈ X∗ such that h ◦ [x, ξ) : [0, ∞) → R is
strictly decreasing for every x ∈ Σ and every ξ ∈ σ.

Definition 5.8. Let A be a cell in K. The branching number of A, denoted
by b(A), is the number of chambers τ ⊂ S such that A is contained in
Kv(τ).

Note for example that b(v) = |Ch(S)|.

Remark 5.9. If E is a chamber in K then b(E) is the number of cham-
bers in the fiber π−1(E).
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In order to prove that (Xh≥r)r∈R is not essentially (d− 1)-connected
we will construct sequences of cycles in the (cellular) chain com-
plex Cd−1(Xh≥r; F2) of X. These cycles will appear as boundaries of
d-chains in Cd(X; F2) whose coefficients will depend on branching
numbers.

Definition 5.10. For every k ∈N0 and every k-chain

c = ∑
A⊂X(k)

λA · A ∈ Ck(X; F2)

let supp(c) denote the set of all k-cells A with λA = 1.

A nice feature of working with affine cell complexes is that the
attaching map is a homeomorphism for each closed cell. Thus the
cellular boundary formula (see [20, Section 2.2]) gives us the following
easy way of computing boundary maps.

Lemma 5.11. For every k ∈ N0 the k-dimensional cellular boundary map
of X is given by

∂k : Ck(X; F2)→ Ck−1(X; F2), c 7→ ∑
A⊂X(k−1)

λA · A

where λA denotes the number of k-dimensional cofaces of A in supp(c).

Lemma 5.12. For every chamber δ ⊂ S there is a special vertex w ∈ Kv(δ)

such that Kw(δ) ∩ Στ = ∅ for every chamber τ ∈ Ch(S)\{δ}.

Proof. Let ξ ∈ δ be an arbitrary point. Since v lies in Σδ it follows that
the ray [v, ξ) is contained in Σδ. On the other hand we have ξ /∈ τ for
every τ ⊂ S with τ 6= δ. Since τ is the unique chamber in ∂Στ that is
opposite to σ we obtain ξ /∈ ∂Στ. Hence for every τ ∈ Ch(S)\{δ} there
is a number Tτ > 0 such that the point [v, ξ)(Tτ) is not contained in
Στ. Since S is finite we can choose T such that p := [v, ξ)(T) /∈ Kv(τ)

for every τ ⊂ S\{δ}. Let x ∈ Kp(δ) be an arbitrary point. Suppose that
x is contained in Στ for some τ ⊂ S with τ 6= δ. From the description
of sectors given in Remark 3.9 it follows that Kx(σ) contains p. Since
σ lies in ∂∞Στ we see that the closed sector Kx(σ) is contained in Στ

and in particular that p ∈ Στ. But this contradicts our observation
above. Since x ∈ Kp(δ) was chosen arbitrarily it follows that Kp(δ)

is disjoint from Στ for every τ ∈ Ch(S)\{δ}. Now the claim follows
since Kw(δ) ⊂ Kp(δ) for every special vertex w ∈ Kp(δ).

Corollary 5.13. For every chamber δ ⊂ S there is a special vertex w ∈ Kv(δ)

such that b(A) = 1 for every cell A ⊂ Kw(δ).

In order to formulate the following definition we consider the func-
tion K̃ → R, [(p, τ)] 7→ h(p) which we will also denote by h.

Definition 5.14. For every real number r ∈ R we define the space
Kr := K ∩ Xh≤r. Analogously we define K̃r to be the set of all points
p ∈ K̃ with h(p) ≤ r.
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Lemma 5.15. The subspace Kr ⊂ X is compact. In particular there are only
finitely many chambers in Kr.

Proof. Recall that Kρ(v)(σ
op) ∩ Xh≤r ⊂ Σ is compact by Lemma 3.10.

Since S is finite it follows from Remark 5.6 that Kr is the union of
finitely many subcomplexes homeomorphic to Kρ(v)(σ

op)∩Xh≤r. Thus
we see that Kr is compact.

In view of Lemma 5.15 the following definition makes sense.

Definition 5.16. For every real number r ∈ R we define the d-chain

cr := ∑
E∈Ch(Kr)

b(E) · E ∈ Cd(X; F2).

Remark 5.17. Note that the cycle cr can also be described as the image
of c̃r := ∑

E∈Ch(K̃r)

E ∈ Cd(K̃; F2) under the induced morphism

Cd(π) : Cd(K̃; F2)→ Cd(K; F2).

Proposition 5.18. There is a real number R ∈ R such that the boundary
∂d(cr) ∈ Cd−1(X; F2) is non-zero for every r ≥ R.

Proof. Let δ ⊂ S be a chamber. By Corollary 5.13 there is a special
vertex w ∈ Kv(δ) such that b(A) = 1 for every cell A ⊂ Kw(δ). Let
R ∈ R be high enough such that KR contains at least one chamber of
Kw(δ) and let r ≥ R. Since Kw(δ) is not bounded above with respect
to h we can find a pair of adjacent chambers E, F ⊂ Kw(δ) such that
E ⊂ Kr but F * Kr. Let P be the common panel of E and F. Note that
E is the unique chamber in Kr that lies in the star of P. In this case
Lemma 5.11 tells us that the coefficient of P in the chain ∂d(cr) is equal
to 1 which proves the claim.

5.3 essential non-connectedness

We keep the definitions from the previous section. Further we make
the assumption that the set of chambers Ch(S) consists of the support
of a cycle

z := ∑
δ∈Ch(S)

δ ∈ Zd−1(Opp∂∞X(σ); F2).

Note that such a cycle exists if the complex ∂∞X satisfies the SOL-
property. Since z is a cycle it follows from Lemma 5.11 that every
panel in S is a face of an even number of chambers of S. Note that, by
construction of K̃, this tells us that every panel P ⊂ K̃ is a face of an
even number of chambers in K̃. This observation immediately implies
the following.
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Lemma 5.19. Let r ∈ R be a real number and let P ⊂ K̃r be a panel. If P
is contained in an odd number of chambers in K̃r then there is a chamber
E ⊂ st(P) that contains a point p of height h(p) > r. In particular we see
that the height of every point of P is bounded below by r− ε where ε denotes
the diameter of a chamber.

We now return to the chains cr from the last section. In Proposi-
tion 5.18 we showed that ∂(cr) ∈ Bd−1(K; F2) is non-zero. The next
proposition gives us a lower bound for the height of the panels in the
support of ∂(cr).

Proposition 5.20. There is a number ε > 0 such that for every r ∈ R the
panels P ∈ supp(∂(cr)) are contained in Xr≥h≥r−ε.

Proof. Recall from Remark 5.17 that cr is the image of the chain

c̃r = ∑
E∈Ch(K̃r)

E ∈ Cd(K̃; F2)

under the morphism Cd(π). We consider the commutative diagram:

Cd(K̃r; F2) Cd(Kr; F2)

Cd−1(K̃r; F2) Cd−1(Kr; F2)

Cd(π)

Cd−1(π)

∂d ∂d

From Lemma 5.19 we know that the height of all panels in supp(∂d(c̃r))

is bounded below by r− ε. In particular, we see that the height of all
panels in supp(Cd−1(π) ◦ ∂d(c̃r)) is bounded below by r− ε. On the
other hand, the above diagram tells us that

∂d(cr) = ∂d ◦ Cd(π)(c̃r) = Cd−1(π) ◦ ∂d(c̃r)

which proves the claim.

By combining Proposition 5.20 and Proposition 5.18 we get the
following result.

Theorem 5.21. For every real number t > 0 there is a level s ∈ R such that
the inclusion

ι : Xh≥s+t → Xh≥s

induces a non-trivial morphism

H̃d−1(ι) : H̃d−1(Xh≥s+t; F2)→ H̃d−1(Xh≥s; F2)

Proof. From Corollary 5.13 it follows that there is a number s ∈ R and
a chamber E ⊂ Xh≤s such that E is contained in the support of cr for
every r ≥ s. Note further that on the one hand Proposition 5.18 tells us
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that the boundary ∂d(cr) is non-zero for every sufficiently large r ∈ R

and on the other hand Proposition 5.20 provides us with an ε > 0
such that every panel in the support of ∂d(cr) is contained in Xr≥h≥r−ε.
Thus we get a non-zero cycle ∂d(cr) ∈ Zd−1(Xh≥s+t; F2) for some
r > s + t + ε. Suppose that ∂d(cr) is a boundary in Bd−1(Xh≥s; F2) and
let c ∈ Cd(Xh≥s; F2) be a chain with ∂d(c) = ∂d(cr). Since the chamber
E ⊂ Xh≤s is not contained in the support of c ∈ Cd(Xh≥s; F2) it follows
that c 6= cr. But this is a contradiction to the uniqueness statement on
filling discs given in Lemma 2.22.

In the following definition we recall a typical property of groups
acting on buildings.

Definition 5.22. Let ∆ be a building and let Aut(∆) denote the group
of type preserving, cellular automorphisms of ∆. We say that a sub-
group G ≤ Aut(∆) acts strongly transitively on ∆ if G acts transitively
on the set of pairs (Σ, E) where Σ is an apartment of ∆ and E is a
chamber of Σ.

It turns out that Theorem 5.21 is exactly what is needed to show
that the system (Xh≥r)r∈R is not essentially (d− 1)-connected. To see
this we have to find isometries of X that act on the set of superlevelsets
of X.

Lemma 5.23. Suppose that Aut(X) acts strongly transitively on X. There
is a non-zero constant a ∈ R and an isometry α ∈ Aut(X) such that

h(α(x)) = h(x) + a, ∀x ∈ X.

Proof. Let T : Σ → Σ be a type preserving cellular translation such
that a := h(T(v)) − h(v) 6= 0. Let E ⊂ Σ be a chamber. Since the
action of Aut(X) on X is strongly transitive there is an automorphism
α : X → X such that α(Σ) = Σ and α(E) = T(E). Since T, as a
translation, is completely determined by its action on E it follows that
α|Σ = T. Recall that we denote the retraction associated to Σ and σ

by ρ. We claim that ρ ◦ α = α ◦ ρ. Since X is covered by apartments in
Aσ it suffices to prove this claim for every apartment in Aσ. Thus we
fix Σ ∈ Aσ. Note that the restrictions of the maps ρ ◦ α and α ◦ ρ to
Σ are isomorphisms to Σ. In view of the obvious observation that a
type preserving isomorphism between Coxeter groups is determined
by the image of any chamber it is sufficient to find a chamber C ⊂ Σ
with ρ ◦ α(C) = α ◦ ρ(C). By definition there is a sector Kw(σ) lying
in the intersection Σ ∩ Σ. In particular, we see that there is a chamber
C ⊂ Σ ∩ Σ and that

ρ ◦ α(C) = ρ ◦ T(C) = T(C) = α(C) = α ◦ ρ(C).

We claim that h(α(x))− h(x) = a for every x ∈ X. Note that this is
clear for x ∈ Σ. Recall that h lies in X∗. Thus we have h(ρ(x)) = h(x)
for every x ∈ X which gives us
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h(α(x))− h(x) = h(ρ ◦ α(x))− h(ρ(x)) = h(α ◦ ρ(x))− h(ρ(x))

= h(T(ρ(x)))− h(ρ(x)) = a

for every x ∈ X.

Corollary 5.24. Suppose that Aut(X) acts strongly transitively on X. There
is a non-zero constant a ∈ R such that for every r ∈ R and every s < r there
is a homeomorphisms of pairs (Xh≥r, Xh≥s)→ (Xh≥r+a, Xh≥s+a).

We are now ready to prove the main theorem of this chapter. For
easier reference we recall the assumptions on X we made along the
way.

Theorem 5.25. Let X be a d-dimensional Euclidean building, let σ ⊂ ∂∞X
be a chamber, and let v ∈ X be a special vertex. Let further h ∈ X∗σ,v be
such that h ◦ [x, ξ) is strictly decreasing for every x ∈ X and every ξ ∈ σ.
Suppose that

1. Aut(X) acts strongly transitively on X and that

2. ∂∞X satisfies the SOL-property.

Then the system (Xh≥r)r∈R is not essentially (d− 1)-acyclic.

Proof. Suppose that (Xh≥r)r∈R is essentially (d− 1)-acyclic. Then there
is some r ∈ R such that the morphism

H̃d−1(ι) : H̃d−1(Xh≥r+R; F2)→ H̃d−1(Xh≥r; F2)

is trivial for some R > 0. In view of Corollary 5.24 this implies that
there is a constant a 6= 0 such that the canonical morphisms

H̃d−1(Xh≥r+R+a·k; F2)→ H̃d−1(Xh≥r+a·k; F2)

are trivial for every k ∈ Z. From Theorem 5.21 we know that there is
some s ∈ R such that the morphism

H̃d−1(Xh≥s+t; F2)→ H̃d−1(Xh≥s; F2)

is non-trivial for t := a + R. By choosing k ∈ Z to be the smallest
integer such that r + a · k ≥ s we obtain the inequalities

s ≤ r + a · k ≤ r + R + a · k ≤ s + t.

Note that this gives us the following commutative diagram where
all maps are induced by inclusions.

H̃d−1(Xh≥s+t; F2) H̃d−1(Xh≥s; F2)

H̃d−1(Xh≥r+R+a·k; F2) H̃d−1(Xh≥r+a·k; F2)
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But this is a contradiction since the morphism at the bottom is trivial
but the morphism at the top is not.



6
C O N V E X F U N C T I O N S O N C AT ( 0 ) - S PA C E S

To prepare ourselves for some arguments appearing in the next chapter
it will be useful to consider convex functions on CAT(0)-spaces in
general. Our goal will be to find mild sufficient conditions under
which convex functions on CAT(0)-spaces are continuous.

Definition 6.1. Let (X, d) be a CAT(0)-space. A function f : X → R

is called convex if for every two points a, b ∈ X with a 6= b and every
point x on the geodesic segment [a, b] the inequality

f (x) ≤ d(x, a)
d(a, b)

f (b) +
d(x, b)
d(a, b)

f (a)

holds.

Lemma 6.2. Let (X, d) be a CAT(0)-space and let f : X → R be a convex
function. Let a, b ∈ X, a 6= b, let 0 < t < t′ < d(a, b), and put x = [a, b](t),
y = [a, b](t′). Then the following inequalities are satisfied:

f (x)− f (a)
d(x, a)

≤ f (y)− f (x)
d(y, x)

≤ f (b)− f (x)
d(b, x)

.

Proof. Since y lies on the geodesic segment [x, b] we may apply the
convexity of f which gives us

f (y) ≤ d(y, x)
d(x, b)

f (b) +
d(y, b)
d(x, b)

f (x).

This gives us

f (y)− f (x) ≤ d(y, x)
d(x, b)

f (b) +
d(y, b)
d(x, b)

f (x)− f (x)

=
d(y, x)
d(x, b)

f (b) +
d(y, b)− d(x, b)

d(x, b)
f (x)

=
d(y, x)
d(x, b)

f (b)− d(y, x)
d(x, b)

f (x)

=
d(y, x)
d(x, b)

( f (b)− f (x)).

We therefore obtain the second inequality

f (y)− f (x)
d(y, x)

≤ f (b)− f (x)
d(b, x)

.

To obtain the first inequality we note that x lies on the geodesic
segment [a, y] and thus another application of the convexity of f gives
us

f (x) ≤ d(x, a)
d(a, y)

f (y) +
d(x, y)
d(a, y)

f (a).
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By rearranging this inequality we see that

f (y) ≥ f (x) · d(a, y)
d(x, a)

− d(x, y)
d(x, a)

f (a)

and hence by substracting f (x) on both sides we obtain

f (y)− f (x) ≥ f (x) · d(a, y)
d(x, a)

− d(x, y)
d(x, a)

f (a)− f (x)

= f (x) · d(a, y)− d(x, a)
d(x, a)

− d(x, y)
d(x, a)

f (a)

= f (x) · d(x, y)
d(x, a)

− f (a)
d(x, y)
d(x, a)

.

This implies
f (y)− f (x)

d(x, y)
≥ f (x)− f (a)

d(x, a)
.

In general there is no need for a convex function on a CAT(0)-space
to be continuous. For example, it is easy to define linear (and hence
convex) functions on infinite-dimensional topological vector spaces
that are not continuous. The following definition aims to exclude such
examples.

Definition 6.3. Let X be a topological space and let f : X → R be an
arbitrary (not necessarily continuous) function. The function f is called
locally bounded above if for every point x ∈ X there is a neighborhood
U of x in X such that f (U) ⊂ R is bounded above.

Another type of convex non-continuous functions on CAT(0)-spaces
can be defined on those CAT(0)-spaces that have some kind of a
boundary. Consider for example the unit interval I. The function
f : I → I that maps 1 to 1 and is constantly 0 elsewhere is convex but
not continuous. In order to exclude such behavior we introduce the
following property of geodesic metric spaces.

Definition 6.4. A geodesic metric space (X, d) is locally uniformly ex-
tendible if for every point x ∈ X there are constants δ > 0 and ε > 0
such that following property is satisfied. For every point y ∈ Bε(x)
there is a geodesic segment [a, b] ⊂ X containing some segment [x, y]
such that d(a, x), d(b, y) ≥ δ. In this case the constant δ will be called
an extendibility constant of x in X.

Remark 6.5. Note that if δ is an extendibility constant of x in X then
so is every number in the interval (0, δ].

It turns out that being locally bounded above for a function on
a locally uniformly extendible CAT(0)-space is already enough to
guarantee that the function is continuous.
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Proposition 6.6. Let (X, d) be a locally uniformly extendible CAT(0)-space.
A convex function f : X → R is continuous if and only if it is locally bounded
above.

Proof. It is clear that continuous functions are locally bounded. Thus
let us assume that f is locally bounded above. Let x ∈ X be an arbitrary
point. Since f is locally bounded there are constants ε > 0 and c ∈ R

such that f (y) ≤ c for every y ∈ Bε(x). By the above remark we can
choose an extendibility constant δ ∈ (0, ε

2 ) for x ∈ X.
Let y ∈ B ε

2
(x) be a point with y 6= x. By the choice of δ it follows

that there are two points a, b ∈ Bε(x) such that the geodesic segment
[a, b] contains the segment [x, y] and that d(a, x) = d(b, y) = δ. Thus
an application of Lemma 6.2 gives us

f (x)− c
δ

≤ f (x)− f (a)
d(x, a)

≤ f (y)− f (x)
d(y, x)

≤ f (b)− f (x)
d(b, x)

≤ c− f (x)
δ

.

Note that c1 := f (x)−c
δ and c2 := c− f (x)

δ do not depend on y and so it
follows from the above inequality that

d(y, x) · c1 ≤ f (y)− f (x) ≤ d(x, y) · c2

which shows that f is continuous in x.

The following application of Proposition 6.6 will be used in the next
chapter.

Corollary 6.7. Every convex function f on a locally compact Euclidean
building X is continuous. In particular, convex functions on Euclidean vector
spaces are continuous.

Proof. Since (X, d) is a locally uniformly extendible CAT(0)-space,
Proposition 6.6 tells us that it is sufficient to show that f is locally
bounded above. Let x ∈ X be a point. Since X is locally compact
there is a compact neighborhood U of x such that U is covered by
finitely many apartments {Σ1, . . . , Σk}. For every index i ∈ {1, . . . , k}
let Ui := Σi ∩U. Since Ui is a bounded subset of the Euclidean space
Σi we can find a finite set of points Vi ⊂ Σi such that Ui lies in the
convex hull of Vi. Thus every point in Ui can be written as a convex
combination of the points in Vi. From this it follows that the restriction
of f to Ui is bounded by ci := max

v∈Vi
f (v). Now the claim follows since

the restriction of f to U is bounded above by max
i∈{1,...,k}

ci.





7
PA R A B O L I C B U I L D I N G S

Let X be a Euclidean building and let d = dim(X)− 1. In Chapter 4

and Chapter 5 we considered height functions h ∈ X∗σ,v for some
chamber σ ⊂ ∂∞X and some special vertex v ∈ X. We showed that,
under certain conditions, the system of superleverlsets (Xh≥r)r∈R is
(d− 1)-connected but not d-acyclic. One of these conditions was about
h. We restricted ourselves to the case where the function h ◦ [x, ξ) is
strictly decreasing for every point ξ ∈ σ and every x ∈ X. In this
chapter we relax this condition by requiring that h ◦ [x, ξ) : [0, ∞) is
non-increasing. We will see that none of the previous results hold in
this generality. Nevertheless we will be able to apply the previous
results on a building Xτ that is associated to some simplex τ ⊂ ∂∞X.
The idea of the construction of Xτ is to identify points in X that lie
on a common geodesic ray [x, ξ) where ξ ∈ τ is such that h ◦ [x, ξ)

is constant. In the case where τ is a panel this is well-known as the
associated panel tree. In fact we will not so much speak about Xτ itself
but rather about an isomorphic Euclidean building Xτ that appears
as a convex subspace of X. Further it turned out to be convenient to
introduce an auxiliary subbuilding Xτ,τ′ of X where τ′ ⊂ ∂∞X is some
simplex opposite to τ. Most of the time we restrict ourselves to the
case where τ is a vertex and obtain the general case by iterating the
construction. The buildings discussed in this chapter are described
from an algebraic point of view in [22].

Definition 7.1. Let X be a Euclidean building and let ξ ∈ ∂∞X be
a vertex. Consider the set X̂ξ of geodesic rays [x, ξ) ⊆ X with the
pseudo-distance

d([x, ξ), [y, ξ)) = inf{d(x′, y′) | x′ ∈ [x, ξ), y′ ∈ [y, ξ)}.

The parabolic building Xξ is the metric space obtained from X̂ξ by
identifying points of distance zero.

Remark 7.2. The space Xξ can be constructed in much larger general-
ity (see [17, Section 4.1]).

Definition 7.3. Let X be a Euclidean building and let ξ, ξ ′ ∈ ∂∞X be
opposite vertices. The Levi building associated to ξ and ξ ′, denoted by
Xξ,ξ ′ , is the set of geodesic lines connecting ξ and ξ ′ equipped with
the distance function given by

d(`, m) = inf{d(x′, y′) | x′ ∈ `, y′ ∈ m}.

The extended Levi building Xξ,ξ ′ is a subspace of X. It is the union of all
geodesic lines in Xξ,ξ ′ .
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We use the words parabolic and Levi since in the case where X is the
Bruhat–Tits building associated to a Chavalley group G, the spaces Xξ

and Xξ,ξ ′ correspond to the Bruhat–Tits buildings of the semisimple
part of a parabolic respectively Levi subgroup of G. Note that a priori
it is not clear that Xξ and Xξ,ξ ′ are Euclidean buildings. This will we
shown in the first sections of this chapter. The above buildings are
related by the following commutative diagram.

Xξ,ξ ′ Xξ,ξ ′

X Xξ
p

q

i j

The maps p and q in the diagram are the quotient maps from
Definition 7.1 and Definition 7.3 respectively. The map i denotes
the inclusion and j is the map that takes a biinfinite line which is
parametrized by a geodesic c : R → X towards ξ and maps it to the
class in Xξ that is represented by the ray c|[0,ξ).

One of the goals in this chapter is to construct continuous sec-
tions for the maps p and q. Furthermore we will show that j is an

isomorphism and that Xξ,ξ ′ is a strong deformation retract of X.

7.1 apartments in the parabolic building

Our first goal is to show that the spaces Xξ , Xξ,ξ ′ , and Xξ,ξ ′ defined
above can be naturally endowed with the structure of Euclidean build-
ings. For the rest of this chapter we fix a Euclidean building X, an
apartment Σ, a pair of opposite vertices ξ, ξ ′ ∈ ∂∞ Σ, and a chamber
σ ⊂ ∂∞ Σ that has ξ as a vertex. Further we fix a special vertex v ∈ Σ
which will allow us to view Σ as a vector space with origin v. The full
apartment system of X will be denoted by A. The following types of
apartments will be important for us.

Definition 7.4. An apartment Σ ∈ A is called horizontal if it contains
the two opposite rays [x, ξ) and [x, ξ ′) for some (and hence every)
point x ∈ Σ. The set of horizontal apartments of X will be denoted by
Ahor. Analogously we say that a wall H ⊂ X is horizontal if [x, ξ) and
[x, ξ ′) are contained in H for some (and hence every) x ∈ H.

Note that our fixed apartment Σ is horizontal.

Definition 7.5. Let H denote the set of walls in Σ and let Hhor ⊂ H
be the subset of horizontal walls. Let further H(v) ⊂ H denote the set
of walls that contain v and let Hhor(v) = Hhor ∩H(v).

By extending the geodesic germs in the link of the (special) vertex v
to geodesic rays, we get an isomorphism lkΣ(v)→ ∂∞ Σ. In particular,
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it follows that the ray [v, ξ) contains a vertex w ∈ Σ that is incident
to v via an edge e. Let e be fixed from now on. For the rest of this
chapter let E = prv(σ) ⊂ stΣ(v). Note that by construction we further
have E ⊂ stΣ(e). Let (W, S) be the Euclidean Coxeter system where
S corresponds to the set of reflections in the hyperplanes of Σ that
are spanned by the panels of E. Let further (Wv, Sv) be the spherical
Coxeter system where Sv corresponds to the set of reflections in the
hyperplanes H ∈ H(v) that are spanned by the panels of E. The
theory of Euclidean Coxeter groups provides us with a decomposition
W = Wv n L where L denotes the group of translations in W (see for
example [2, Proposition 10.17.]).

Notation 7.6. The subgroup of W that is generated by the reflections
sH with H ∈ Hhor will be denoted by Wξ .

Our next goal is to construct a natural complex for Wξ to act on. In
order to define that complex we will consider the Busemann function
β : X → R that corresponds to ξ and v (see 2.9). We will frequently
use the fact that Σ∩β−1(0) is a hyperplane in Σ that is orthogonal to
the ray [x, ξ) for every x ∈ Σ∩β−1(0). This is an easy exercise and can
be found in [13, II.8.24.(1)]).

Lemma 7.7. The group Wξ stabilizes the sets Σ∩β−1(0) and Hhor. Further
Wξ fixes the point ξ ∈ ∂∞ Σ.

Proof. Let H be a horizontal wall and let sH be its corresponding
reflection. By definition sH fixes H pointwise. Let x ∈ H be a point.
Since H is horizontal it follows that the ray [x, ξ) lies in H and gets
fixed as well. This shows that sH fixes ξ. Recall that Σ∩β−1(0) is a
hyperplane that is orthogonal to the ray [x, ξ). Since the isometry sH

fixes [x, ξ) pointwise it has to stabilize its orthogonal complement
Σ∩β−1(0) in order to respect the orthogonal decomposition. Since
sH fixes ξ it follows that sH([x, ξ)) = [sH(x), ξ). This implies that
the image of a horizontal hyperplane under the action of sH is also
horizontal.

Note that Wξ does not have to be a parabolic subgroup of W. Yet we
will see that Wξ it is a Coxeter group in its own right and the natural
space for it to act on is given by Σ∩β−1(0). For the rest of this chapter
it will be convenient to write d = dim(X)− 1.

Definition 7.8. Let B = {α0, . . . , αd} be a set of linear forms in Σ∗ such
that

Kv(σ) = {x ∈ Σ : αk(x) ≥ 0 for every 0 ≤ k ≤ d}.
Suppose further that α−1

0 (0) is the unique non-horizontal wall of
Kv(σ).

Clearly B is a basis of the dual space Σ∗. It will be important for us
to note that this is still the case if we replace α0 by the restriction of β

to Σ. For convenience, we will denote this restriction by β as well.
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Lemma 7.9. The set of linear forms {β, α1, . . . , αn} is a basis of Σ∗.

Proof. Note that the walls that bound Kv(σ) are the kernels of the
maps αk ∈ B. Since α0 is the unique linear form in B whose kernel is
non-horizontal it follows that

ξ ∈ ∂∞(
d⋂

k=1

ker(αk)).

On the other hand, basic linear algebra tells us that L :=
d⋂

k=1
ker(αk)

is a one dimensional linear subspace of Σ and therefore consists of
the linear span of [v, ξ). Since Σ∩β−1(0) is a hyperplane in Σ that is
orthogonal to [v, ξ) it further follows that

ker(β) ∩
d⋂

i=1

ker(αi) = {v}

and hence that {β, α1, . . . , αd} forms a basis of Σ∗.

Definition 7.10. Let Σξ = Σ∩β−1(0) denote the zero level set of β in
Σ. Let further

Hξ = {H ∩ Σξ : H ∈ Hhor}

be the hyperplane arrangement that consists of the intersections of Σξ

with the horizontal hyperplanes in Σ.

Remark 7.11. Note that it follows from Lemma 7.9 that Hξ is indeed
a system of hyperplanes in Σ. From the construction we see that the
map Hξ → Hhor that maps a hyperplane H to the affine span of H
and [x, ξ) for some x ∈ H, is the inverse map of the restriction map
Hhor → Hξ , H 7→ H ∩ β−1(0).

Proposition 7.12. The space Σξ can be endowed with the structure of a
Euclidean Coxeter complex whose set of walls is given by the hyperplane
arrangement Hξ . Its Coxeter group Wξ is canonically isomorphic to Wξ via
the restriction map

φ : Wξ →Wξ , f 7→ f|Σξ
.

Proof. The local finiteness of Hξ follows directly from the local finite-
ness of H. Let C ⊂ Σξ \

⋃
H∈Hξ

H be a connected component. Since the

kernels of the linear forms αk are horizontal for every 1 ≤ k ≤ d it
follows that C lies between two parallel walls of ker(αk) for every
such k. Since these walls appear as preimages of certain real numbers
it follows that the set αk(C) ⊂ R is bounded for every 1 ≤ k ≤ d.
Since C is a subset of Σξ we further have β(C) = 0. In particular,
we see that the image of C under the linear forms in {β, α1, . . . , αd}
is bounded. From Lemma 7.9 we know that this set is a basis of Σ∗

which implies that C is a bounded subset of Σξ . It remains to show
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that Hξ is stable under the action of Wξ . To see this let H1, H2 ∈ Hξ

and let s1 = sH1 ∈ Wξ . We have to show that s1(H2) lies in Hξ . Let
further H1, H2 ∈ Hhor be hyperplanes with Hi = Hi ∩ Σξ and let
s1 = sH1

∈Wξ . We claim that the restriction of s1 to Σξ coincides with
s1. In view of Lemma 7.7 it follows that s1 restricts to an isometry
s′1 : Σξ → Σξ . From the construction it follows immediately that s1

and s′1 are fixing H1 pointwise. Thus in order to show that s′1 equals
s1 it suffices to prove that s′1 has order 2. Suppose that s′1 is not of
order 2. Since the order of s′1 divides the order of s1 it follows that s′1
is trivial. Thus it follows from Lemma 7.7 that s1 fixes the ray [x, ξ)

for every x ∈ Σξ . This shows that s1 is trivial on Σ and hence we get a
contradiction to the assumption that s1 is a reflection. This argument
shows in particular that the restriction map

φ : Wξ →Wξ , f 7→ f|Σξ

is injective. Next we prove that s1(H2) lies inHξ . To see this we observe
that

s1(H2) = s1(H2 ∩ Σξ) = s1(H2) ∩ s1(Σξ) = s1(H2) ∩ Σξ .

And thus the claim follows since s1(H2) is a horizontal hyperplane
by Lemma 7.7. Note that in particular we have proven that φ is also
surjective.

Corollary 7.13. Let Φ̃ be the Coxeter diagram of W and let Ψ̃ be the Coxeter
diagram of Wξ . The diagram Ψ is a subdiagram of Φ.

Proof. Note that the map φ in Proposition 7.12 restricts to an isomor-
phism of stabilizers

stWξ (e)→ stWξ
(v).

Since every element in W that fixes e pointwise also fixes its linear
span and hence the point ξ, it follows that the group stWξ (e) coincides
with the group stW(e). From our construction it follows that stW(e)
is canonically isomorphic to the stabilizer of w in Wv. The group
stWv(w) in turn can be described with the help of the well known-
result on Coxeter groups that stWv(w) is generated by all the standard
generators of Wv that fix w pointwise (see e.g. [2, Theorem 1.104.]). In
particular we see that stWξ

(v) is canonically isomorphic to a standard
parabolic subgroup of the spherical Coxeter complex Wv and thus the
claim follows.

7.2 a subbuilding of x

Our next goal is to show that the extended Levi building Xξ,ξ ′ is a
subbuilding of X. We keep the previous notations from this chapter.
The following lemma will be crucial in order to reach that goal.
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Lemma 7.14. For every point x ∈ X there is a real number t ∈ [0, ∞) such

that [x, ξ)(t) ∈ Xξ,ξ ′ .

Proof. From [2, Theorem 11.63.(1)] it follows that x is contained in
an apartment Σ with the property σ ⊂ ∂∞Σ. Since S := ∂∞Σ is an
apartment in ∂∞X Lemma 2.32 tells us that there is an apartment
S′ ⊂ ∂∞X containing the star stS(ξ) of ξ and the opposite vertex ξ ′

of ξ. By [2, Theorem 11.79] there is an apartment Σ′ of X such that
∂∞Σ′ = S′. In particular Σ′ is a horizontal apartment and thus it
suffices to show that [x, ξ)(t) ∈ Σ′ for some t ≥ 0. For every chamber
δ ⊂ stS(ξ) let xδ ∈ Σ′ be such that the sector Kxδ

(δ) is contained in
Σ′ ∩ Σ. It is easy to see that [x, ξ) runs into the convex hull of these
sectors. Now the claim follows since Σ′ is a convex subcomplex of
X.

By regarding X as a CAT(0)-space we may define the flow in X
towards a point at infinity as follows.

Definition 7.15. Let η ∈ ∂∞X be a point at infinity. The flow in X
towards η is defined by

Φη : X× [0, ∞)→ X, (x, t) 7→ [x, η)(t).

The following simple observation will help us to see that for every

two points in Xξ,ξ ′ there is a horizontal apartment containing both of
them.

Lemma 7.16. The complex Xξ,ξ ′ is closed under taking the flows Φξ and Φξ ′ .

Further these flows commute on Xξ,ξ ′ in the sense that for every x ∈ Xξ,ξ ′

and every t ≥ 0

Φξ ′(Φξ(x, t), t) = Φξ(Φξ ′(x, t), t) = x.

Proof. Clearly this property holds on every line connecting ξ ′ and ξ.

Hence the claim follows since Xξ,ξ ′ is the union of such lines.

Corollary 7.17. For every two points x, y ∈ Xξ,ξ ′ and every real number
t ∈ [0, ∞) we have

d(x, y) = d(Φξ(x, t), Φξ(y, t)) = d(Φξ ′(x, t), Φξ ′(y, t)).

Proof. In view of Lemma 7.16 we only have to show that the inequal-
ity d(x, y) ≥ d(Φη(x, t), Φη(y, t)) holds for all x, y ∈ X, every point
η ∈ ∂∞X, and every t ≥ 0. Indeed, in this case Lemma 7.16 gives us

d(x, y) ≥ d(Φξ(x, t), Φξ(y, t))

≥ d(Φξ ′(Φξ(x, t), t), Φξ ′(Φξ(y, t), t))

= d(x, y).
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Since every CAT(0)-metric is convex (see [13, Proposition II.2.2]) it
follows that the function t 7→ d([x, η)(t), [y, η)(t)) is convex. Thus
it remains to observe the simple fact that every convex, bounded
function [0, ∞)→ [0, ∞) is non-increasing.

Definition 7.18. For every point x ∈ Xξ,ξ ′ let cx : R → Xξ,ξ ′ be the
unique geodesic that is determined by cx(0) = x, cx(−∞) = ξ ′, and
cx(∞) = ξ.

Note that cx(R) = q(x) ∈ Xξ,ξ ′ where q is as in the introduction. In

order to see that Xξ,ξ ′ is a subbuilding of X we recall the following
well-known fact about Euclidean buildings which can be found in [2,
Theorem 11.53].

Theorem 7.19. Let Y be a subset of X. Assume either that Y is convex or
that Y has non-empty interior. If Y is isometric to a subset of Rd, then Y is
contained in an apartment.

We are now ready to show that Xξ,ξ ′ is a Euclidean building.

Lemma 7.20. The space Xξ,ξ ′ is a subbuilding of X. In particular, Xξ,ξ ′ is a

convex subspace. An apartment system for Xξ,ξ ′ is given by Ahor.

Proof. It suffices to show that every two points in Xξ,ξ ′ lie in some

horizontal apartment. Let x, y ∈ Xξ,ξ ′ be arbitrary points and let
cx, cy : R → X be the corresponding isometric lines. Since cx and cy

converge to the same ends at infinity it follows that the function

R→ R, t 7→ d(cx(t), cy(t))

is bounded. Thus by the flat strip theorem (see [13, Theorem II.2.13])
it follows that the convex hull conv(cx(R), cy(R)) is isometric to the
strip R× [0, D] for some D ≥ 0. Hence conv(cx(R), cy(R)) ⊂ X is a
convex subspace which is isometric to a subset of the Euclidean space
Rd+1. In this case Theorem 7.19 implies that there is an apartment
Σ of X containing conv(cx(R), cy(R)). In particular we see that Σ is
a horizontal apartment that contains x and y which proves the first
claim. The second claim follows from the first since apartments are
known to be convex subspaces of X.

Lemma 7.21. Let H ⊂ Xξ,ξ ′ be a wall and let P ⊂ H be a panel.

1. If H is a non-horizontal wall then there are exactly two chambers in

Xξ,ξ ′ that are incident to P.

2. If H is a horizontal wall then st
Xξ,ξ′ (P) = stX(P).

Proof. We start with the first claim. Thus let H be a non-horizontal
wall. Let P ⊂ H be a panel and let p ∈ P be a point. The definition of
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horizontal apartments tells us that the two chambers C respectively D
that contain some initial segments of (p, ξ) respectively (p, ξ ′) lie in
every horizontal apartment that contains p. Since every chamber in
st

Xξ,ξ′ (P) is contained in a horizontal apartment (that contains p) by
Lemma 7.20, we see that C and D are the only chambers in st

Xξ,ξ′ (P).

Suppose now that H is a horizontal wall. Since Xξ,ξ ′ is a building

Theorem [2, 11.63.(1)] tells us that there is an apartment Σ in Xξ,ξ ′ that
contains P and such that σ ⊂ ∂∞Σ. Let R be the closed halfspace in
Σ with P ⊂ ∂R and σ ⊂ ∂∞R. Let D any chamber in stX(P) and let
Z = R ∪ D. Since σ ⊂ ∂∞Σ we see that the retraction ρσ,Σ restricts to
an isometric isomorphism Z → ρσ,Σ(Z). Thus Theorem 7.19 provides

us with an apartment Σ′ ⊂ Xξ,ξ ′ that contains that contains Z which
proves the claim.

Corollary 7.22. The full apartment system of Xξ,ξ ′ is given by Ahor.

Proof. In view of Lemma 7.20 it remains to show that every apartment

that is contained in Xξ,ξ ′ is already a horizontal apartment. To see this

let Σ ⊂ Xξ,ξ ′ be an arbitrary apartment and let x ∈ Σ be a point in
some (open) chamber. We have to show that the rays [x, ξ) and [x, ξ ′)

are contained in Σ. Let Σ′ be a horizontal apartment that contains x.
Recall that Σ∩Σ′ is non-empty and convex since it is the intersection of
convex spaces. In general one can show that every convex subcomplex
of a Coxeter complex Π can be written as an intersection

⋂
R∈R(Π)

R,

whereR(Π) is the set of all half spaces in Π that are bounded by walls
(see e.g. [2, Proposition 3.94]). Since Σ is a Euclidean space it is clear
that in each parallel class of a half space in R = R(Σ) there is at most
one half space in that is necessary for the equality

⋂
R∈R

R = Σ ∩ Σ′.

Hence the finiteness of parallel classes of half spaces allows us to
assume that R is finite and minimal, which we will do from now on.
Let H be a wall that corresponds to some R ∈ R, let P ⊂ H ∩ Σ ∩ Σ′

be a panel, and let p ∈ P be an (interior) point of P. Suppose that
H is non-horizontal. Then exactly one of the rays (p, ξ) and (p, ξ ′)

has trivial intersection with Σ ∩ Σ′. This implies that there are at least
three chambers incident to P which contradicts Lemma 7.21. Hence
Σ ∩ Σ′ is the intersection of horizontal half spaces, i.e. half spaces
corresponding to horizontal walls, and therefore it follows that the
rays [x, ξ) and [x, ξ ′) are contained in these half spaces. Indeed, by
assumption x lies in all of these half spaces and thus the claim follows
from the trivial observation that neither [x, ξ) nor [x, ξ ′) can leave a
half space that corresponds to a horizontal wall.
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7.3 a new structure for the extended levi building

In 7.1 we saw that Σξ = Σ∩β−1(0) can be naturally endowed with
the structure of a Euclidean Coxeter complex. Our next goal is to

endow the space Xξ := Xξ,ξ ′ ∩ β−1(0) with the structure of a Euclidean
building in a way that Σξ is an apartment in Xξ .

Definition 7.23. Let Hhor(X) denote the set of horizontal walls in X
or, which is equivalent, the set of horizontal walls in Xξ,ξ ′ . Let further
Λ be the union of all horizontal walls.

In order to define a building structure on Xξ we have to introduce a
new cell structure on Xξ . The following lemma will help us to do so.

Lemma 7.24. Let C be a component in Xξ,ξ ′\Λ. There is a horizontal
apartment Σ of X such that C is a connected component in Σ\Λ.

Proof. Let D ⊂ Xξ,ξ ′ be a chamber that is contained in C. By Lemma 7.20

there is a horizontal apartment Σ that contains D. We have to show
that C is entirely contained in Σ. To see this let F ⊂ C be a further

chamber of Xξ,ξ ′ . Since C is open and connected it follows that there is
a gallery Γ in C that starts in D and ends in F. Suppose that Γ leaves
Σ at some point. In view of Lemma 7.21 there has to be a horizon-
tal panel P that separates two chambers in Γ. By construction these

two chambers lie in different components of Xξ,ξ ′\Λ. Hence we get a
contradiction to our assumption that Γ is contained in C.

Definition 7.25. Let Aξ := {Σ ∩ Xξ : Σ ∈ Ahor} denote the set of
intersections of horizontal apartments with Xξ .

Lemma 7.26. Let Σ ∈ Ahor be a horizontal apartment. The intersection
Σ := Σ ∩ Xξ ∈ Aξ is a hyperplane in Σ. It can be naturally endowed with
the structure of a Euclidean Coxeter complex by defining the chambers to be
the connected components in Σ\Λ.

Proof. Recall that we have proven the claim for Σξ = Σ∩β−1(0) in
Proposition 7.12. Thus the general case follows from the observation
that Σ was an arbitrary horizontal apartment.

Thus we see that Xξ is a cell complex that is covered by the Euclidean
Coxeter complexes in Aξ . We are now ready to show that Xξ is a
Euclidean building.

Proposition 7.27. The space Xξ is a Euclidean building. Its full apartment
system is given by Aξ .

Proof. Since Xξ,ξ ′ is covered by horizontal apartments it follows that
Xξ is covered by the apartments in Aξ . In order to check building
axiom (B1) let A, B be cells in Xξ and let a, b be points in A respectively
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B. From Proposition 7.12 we know that there is a horizontal apartment
Σ that contains a and b. Thus we get a, b ∈ Σ := Σ ∩ β−1(0) ∈ Aξ .
Since Σ is a subcomplex of Xξ it follows that A and B are contained
in Σ. To check building axiom (B2) let Σ1, Σ2 be two apartments in
Aξ and let Σ1 and Σ2 be the corresponding horizontal apartments.
Suppose that Σ1 and Σ2 contain a chamber c of Σ1 and let C ⊂ Σ1\Λ
be the component that contains c. From Lemma 7.24 it follows that

Σ1 and Σ2 contain C. Since Xξ,ξ ′ is a building it follows that there
is an isomorphism f : Σ1 → Σ2 that fixes the intersection Σ1 ∩ Σ2

pointwise (see [2, Remark 4.5]). Since f fixes C pointwise it follows
that f restricts to a map Σ1 → Σ2 that maps horizontal walls to
horizontal walls. In particular we see that the restriction of f to Σ1 is
an isomorphism that fixes the intersection Σ1 ∩ Σ2 pointwise. In view
of [2, Remark 4.4.] it follows that Xξ is a Euclidean building. Note that

the proof in particular implies that Xξ is a convex subspace of Xξ,ξ ′ .

Indeed, let x, y be a arbitrary points in Xξ,ξ ′ and let Σ ∈ Aξ be an
apartment containing them. Then Σ is a hyperplane of an (horizontal)

apartment in Xξ,ξ ′ and thus the geodesic segment [x, y] is contained
in Σ. To prove the second claim let Σ ⊂ Xξ be an arbitrary apartment.

Since Σ ⊂ Xξ ⊂ Xξ,ξ ′ is a chain of convex subspaces it follows that

Σ is convex in Xξ,ξ ′ . Theorem 7.19 therefore implies that there is an

apartment Σ̃ ⊂ Xξ,ξ ′ that contains Σ. From Corollary 7.22 we know
that Σ̃ is horizontal and thus Σ = Σ̃ ∩ Xξ ∈ Aξ .

Since our buildings are not necessarily irreducible it usually happens
that some panels are faces of more chambers than others. Thus we can
only estimate on the thickness of Xξ .

Remark 7.28. The thickness of Xξ can be bounded below by the
thickness of X, i.e. th(Xξ) ≥ th(X). If X is locally finite then so is Xξ .

Since the cell structure on Xξ is obtained by intersections of horizon-
tal walls with Xξ we get the following consequence of Lemma 7.21.

Corollary 7.29. For every cell A ⊂ Xξ there is a cell B ⊂ X such that
lkXξ

(A) ∼= lkX(B). In particular we see that if Φ̃ is the Coxeter diagram of
X and Ψ̃ is the Coxeter diagram of Xξ then Ψ is a subdiagram of Φ.

Remark 7.30. By analogue arguments we can also see that ∂∞Xξ is
isomorphic to lk∂∞X(ξ).
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In this chapter we reduce the question of deciding whether (Xh≥s)r∈R

is essentially k-connected for some k ∈ N0 to the question whether
some corresponding system of superlevelsets (Xξ

h≥r)r∈R in Xξ is es-
sentially k-connected.

As in the last chapter we fix a Euclidean building X, an apartment
Σ, a pair of opposite vertices ξ, ξ ′ ∈ ∂∞ Σ, and a chamber σ ⊂ ∂∞ Σ
that has ξ as a vertex. Further we fix a special vertex v ∈ Σ which will
allow us to view Σ as a vector space with origin v. The full apartment
system of X will be denoted by A.

In this chapter we further fix a height function h ∈ X∗σ,v with
σ ⊂ ∂∞ Σh≤0 (see 4.3 for the definition of X∗σ,v). Suppose further that
ξ ∈ ∂∞ Σh=0, or equivalently, that h ◦ [x, ξ) is constant for every x ∈ X.

In view of Lemma 7.14 the following definition makes sense.

Definition 8.1. Let T : X → R, x 7→ T(x) be the function where T(x)
is the smallest real number such that [x, ξ)(T(x)) ∈ Xξ,ξ ′ . Let further

M : X → Xξ,ξ ′ be the map given by x 7→ [x, ξ)(T(x)).

One can think of M as a merging function. Note that the restriction

of M to Xξ,ξ ′ is the identity.

Lemma 8.2. The functions T : X → R and M : X → Xξ,ξ ′ are continuous.

Proof. Since X is a cell complex that is covered by apartments Σ with
σ ⊂ ∂∞Σ it suffices to show that the restrictions of T and M to every
such apartment are continuous. Thus let Σ be an apartment with
σ ⊂ X. Note that this condition implies in particular that Σ is closed
under the flow towards σ. Since apartments are convex, Lemma 7.20

implies that the intersection Σ ∩ Xξ,ξ ′ is convex. By combining these
facts we see that the restriction T|Σ : Σ→ R is a convex function. Thus
the continuity of T follows from Corollary 6.7 which tells us that
convex functions on finite dimensional Euclidean vector spaces are
continuous. Next we prove the continuity of the merging function
M. Let (xn)n∈N be a sequence in Σ converging to some point x ∈ Σ.
We have to show that [xn, ξ)(T(xn)) converges to [x, ξ)(T(x)). By the
triangle inequality we have

d([xn, ξ)(T(xn)), [x, ξ)(T(x)))

≤ d([xn, ξ)(T(xn)), [x, ξ)(T(xn))) + d([x, ξ)(T(xn)), [x, ξ)(T(x))).

Thus it remains to observe that

d([xn, ξ)(T(xn)), [x, ξ)(T(xn))) ≤ d(xn, x)→ 0, n→ ∞
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and that the continuity of T gives us

d([x, ξ)(T(xn)), [x, ξ)(T(x))) = |T(xn)− T(x)| → 0, n→ ∞.

As a composition of continuous functions we obtain a homotopy
from idX to M.

Corollary 8.3. The function

H : X× [0, 1]→ X, (x, t) 7→ [x, ξ)(t · T(x))

is a homotopy from idX to M relative to Xξ,ξ ′ . Furthermore by restricting
H to the h-superlevel sets of X we see that for every two real numbers

s ≤ t the pair (Xξ,ξ ′

h≥s, Xξ,ξ ′

h≥t) is a strong deformation retraction of the pair
(Xh≥s, Xh≥t).

We close this section by translating Corollary 8.3 to the analogous
statements for the buildings Xξ and Xξ . In order to do so we define a
height function on Xξ by [[x, ξ)] 7→ h(x) which we denote by hξ . Note
that hξ is well defined since h was defined to be constant on every ray
[x, ξ).

Corollary 8.4. The subspace Xξ is a strong deformation retract of Xξ,ξ ′

and hence of X. Furthermore for every two real numbers s ≤ t the pair

((Xξ)h≥s, (Xξ)h≥t) is a strong deformation retract of the pair (Xξ,ξ ′

h≥s, Xξ,ξ ′

h≥t)

and hence of the pair (Xh≥s, Xh≥t). Further we have a homotopy equivalence
of pairs

(Xh≥s, Xh≥t) ' (Xξ

hξ≥s, Xξ

hξ≥t).

Proof. The first claims follow from the simple observation that for
every horizontal apartment Σ the subspace Σ ∩ β−1(0) is a strong
deformation retract. To see that last claim it now suffices to show that
the quotient map p : X → Xξ , which was defined in the introduction,
restricts to an isomorphism on Xξ . This in turn is a direct consequence
of Lemma 7.14.

Note in particular that for every k ∈ N0, the system (Xh≥r)r∈R is
essentially k-connected if and only if the system (Xξ

hξ≥r)r∈R is essen-
tially k-connected, or which is equivalent, if the system ((Xξ)h≥r)r∈R

is essentially k-connected.

8.1 retractions in parabolic buildings

We keep the previous notations from this chapter. Further, we fix
the retraction ρ := ρΣ,σ : X → Σ. Our goal in this section is to study
retraction-invariant height functions on Xξ and to see how these
functions are related to those in X∗ = X∗σ,v.
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Recall from Definition 7.8 that B = {α0, . . . , αd} is a set of linear
forms on Σ such that

Kv(σ) = {x ∈ Σ : αk(x) ≥ 0, for every 0 ≤ k ≤ d}.

Recall further that ξk ∈ σ(0) denotes the vertex that is not contained in
∂∞(ker(αk)) and that ξ0 = ξ.

Definition 8.5. For every point p ∈ Σ we define the cone

Kξ,ξ ′
p (σ) = {x ∈ Σ : αk(x) ≥ αk(p) for every 1 ≤ k ≤ d} ⊂ Σ .

Furthermore, we define Kp,ξ(σ) = Kξ,ξ ′
p (σ) ∩ Σξ if p lies in Σξ .

The complexes Kξ,ξ ′
p (σ) and Kp,ξ(σ) defined above can be seen as

analogous of Kp(σ) for the present setting.

Lemma 8.6. The space Kv,ξ(σ) is a sector in Σξ .

Proof. Recall that E = prv(σ) ⊂ stΣ(v). Let further C be the component
in Σ \Λ that contains E and let Eξ = C ∩ Σξ be the corresponding
chamber in Σξ . Since ker(αi) is a horizontal wall that is spanned by
a panel of E for every 1 ≤ i ≤ n it follows that the wall Σξ ∩ ker(αi)

is spanned by a panel of Eξ for every 1 ≤ i ≤ n. By considering the
dimension of Xξ it follows that every panel of Eξ that contains v spans
a wall of the form Σξ ∩ ker(αi) with 1 ≤ i ≤ n. Now the claim follows
since Kv,ξ(σ) coincides with the sector associated to v and Eξ .

It follows from Lemma 8.6 that Kp,ξ(σ) ⊂ Σξ is a sector for every
p ∈ Σξ . In particular, we can see that the following definition makes
sense.

Definition 8.7. We consider the chamber σξ := ∂∞Kv,ξ(σ) ⊂ ∂∞ Σξ

and let Aσ
ξ denote the set of apartments Σ ∈ Aξ with σ ⊂ ∂∞Σ. The

retraction from infinity corresponding to Σξ and σξ will be denoted by
ρξ := ρΣξ ,σξ

.

Remark 8.8. Recall that Xξ,ξ ′ is a building with σ ⊂ ∂∞Xξ,ξ ′ and that

the full apartment system of Xξ,ξ ′ is given by Ahor. Thus it follows

from [2, Theorem 11.63.] that Xξ,ξ ′ is covered by the union of horizontal
apartments that contain σ in their boundary. In particular, we see that
Xξ is covered by the apartments in Aσ

ξ .

Lemma 8.9. Let Σ ⊂ Xξ,ξ ′ be a (horizontal) apartment with σ ⊂ ∂∞Σ.
There is a point p ∈ Σ ∩ Σξ such that Kp(σξ) is contained in Σ ∩ Σξ . In
particular, we have σξ ⊂ ∂∞(Σ ∩ Σξ).

Proof. By definition σ lies in the boundaries of Σ and Σ. Thus we can
find a sector Kx(σ) in Σ∩Σ. It can be easily seen that Kx(σ) is the
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convex hull of the rays [x, ξi) where 0 ≤ i ≤ n and hence can be
written as

Kx(σ) = {
n

∑
i=0

[x, ξi)(ti) : ti ≥ 0 for 0 ≤ i ≤ n}.

Since Σ and Σ are horizontal it follows that the rays [y, ξ) and [y, ξ ′) lie
in Σ∩Σ for every y ∈ Σ∩Σ. The observation above therefore implies
that

Z := {
n

∑
k=0

[x, ξk)(tk) : t0 ∈ R and ti ≥ 0 for 1 ≤ i ≤ n}

is contained in Σ∩Σ. Let p ∈ Z let cp : R → X be the ray given
Definition 7.18. The construction of the linear forms αi tells us that
αi ◦ cp is constant for every 1 ≤ i ≤ n and can take arbitrary values

for i = 0. This shows that Z coincides with Kξ,ξ ′
x (σ). In particular we

see that Kp,ξ(σ) is contained in Z and hence in Σ∩Σ. Now the claim
follows by choosing p to be in Σξ .

Lemma 8.10. The retraction ρξ : Xξ → Σξ coincides with the restriction of
ρ to Xξ .

Proof. Let Σ̃ ∈ Ahor be an apartment with σ ⊂ Σ̃ and let Σ = Σ̃ ∩ Xξ .
From Lemma 8.9 we know that Σ contains the sector Kp(σξ) ⊂ Σξ

for some p ∈ Σξ . Since β is a Busemann function corresponding to a
point ξ ∈ σ it follows that β ◦ ρ = β. Hence ρ restricts to an isometry
ρ : Σ → Σξ that fixes Kp(σξ). On the other hand it follows from the
definition of ρξ that ρξ : Σ → Σξ is an isometry that fixes Kp(σξ) as
well. Obviously there is just one such isometry and thus the retractions
ρ and ρξ coincide on every apartment Σ ∈ Aσ

ξ . In view of Remark 8.8
this implies that ρξ and ρ coincide on Xξ .

It will be convenient to denote the restriction of h to Xξ by hξ .

Lemma 8.11. The height function hξ : Xξ → R is invariant under ρξ . In
other words we have hξ(ρξ(x)) = hξ(x) for every x ∈ Xξ .

Proof. By definition hξ is the restriction of h to Xξ and from Lemma 8.10

we know that ρξ is the restriction of ρ to Xξ . Therefore the assumption
h ∈ X∗σ,v gives us

hξ(ρξ(x)) = h(ρ(x)) = h(x) = hξ(x)

for every x ∈ Xξ .

Note that hξ : Σξ → R is the restriction of the linear function
h : Σ→ R and hence is linear itself. Thus Lemma 8.11 gives us the
following.

Corollary 8.12. The function hξ lies in (Xξ)
∗
σξ ,v.

In the following we will just write X∗ξ := (Xξ)
∗
σξ ,v.
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8.2 reduction of the horizontal dimension

Recall that the initial goal of this section was to determine whether the
system (Xh≥r)r∈R is essentially k-connected for some given k ∈ N0.
In this final section we reduce this question from the case where
σ ⊂ ∂∞ Σh≤0 to the special case where σ ∩ ∂∞ Σh=0 is empty. Without
loss of generality we may therefore assume that σ ⊂ ∂∞ Σh≤0 is non-
empty.

Note that σ ∩ ∂∞ Σh=0 is the closure of a face σhor of σ. We refer to
σhor as the horizontal face of σ with respect to h.

In order to describe the reduction process, we consider the Euclidean
building Xξ , the chamber σξ ⊂ ∂∞Xξ , and the height function hξ ∈
X∗ξ defined earlier in this chapter. Recall that σξ was contained in
∂∞((Σξ)hξ≤0). As above we can therefore observe that σξ ∩ ∂∞((Σξ)h≥0)

is the closure of a face σhor
ξ of σξ .

Lemma 8.13. With the notation above we have

dim(σhor
ξ ) = dim(σhor)− 1.

Proof. Let B = {αi : 0 ≤ i ≤ d} be as in Definition 7.8 and let j be
any index such that σhor is contained in ∂∞(ker(αj)). The choice of ξ

directly implies that ξ is a vertex of σhor. Note that the dimension of
σhor is given by

dim(σhor) = max
1≤i≤d

(dim(ker(αi) ∩ Σh=0))− 1

= dim(ker(αj) ∩ Σh=0)− 1.

Further, we have a chain of inclusions

ker(αi) ∩ Σh=0 ∩Σξ ⊆ ker(αj) ∩ Σh=0 ∩Σξ ( ker(αj) ∩ Σh=0 . (8.1)

for every 0 ≤ i ≤ d. Indeed, the first inclusion follows from the choice
of j and the properness of the second inclusion follows from the
observation that the ray [v, ξ) is contained in ker(αj) ∩ Σh=0 but not
in Σξ . The fact that Σξ is a hyperplane in Σ thus gives us

dim(ker(αj) ∩ Σh=0 ∩Σξ) = dim(ker(αj) ∩ Σh=0)− 1. (8.2)

Let α
ξ
i denote the restriction of αi to Σξ . From Lemma 8.6 it follows

that the walls bounding the sector Kv(σξ) ⊂ Σξ can be described as
ker(αξ

i ) = ker(αi) ∩ Σξ for 1 ≤ i ≤ d. Since the zero level of hξ in Σξ is
given by Σξ ∩Σh=0 we get

dim(σhor
ξ ) = max

1≤i≤d
dim(ker(αi) ∩ Σξ ∩Σh=0)− 1.

By combining this equation with (8.1) and (8.2) we therefore obtain

dim(σhor
ξ ) = dim(ker(αj) ∩ Σh=0 ∩Σξ)− 1

= dim(ker(αj) ∩ Σh=0)− 2

= dim(σhor)− 1.
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The next theorem summarizes what we have done so far in this
chapter. It provides us one step of the promised reduction.

Theorem 8.14. Let X be a Euclidean building, let Σ ⊂ X be an apartment,
let σ ⊂ ∂∞Σ be a chamber, and let v ∈ Σ be a special vertex. Let further
h ∈ X∗σ,v be a height function such that σ ⊂ ∂∞Σh≤0. Suppose that the
horizontal face σhor of σ with respect to h is non-empty.

Then there is a vertex a Euclidean building Y of dimension dim(Y)− 1,
an apartment Π ⊂ Y, a chamber τ ⊂ ∂∞Y, a special vertex w ∈ Π, and a
height function f ∈ Y∗τ,w with τ ⊂ ∂∞Yf≤0 such that the following properties
are satisfied.

1. For every k ∈ N0, the system (Xh≥r)r∈R is essentially k-connected
if and only if the system (Yf≥r)r∈R is essentially k-connected. The
dimension of the horizontal face τhor of τ with respect to f is given by
dim(τhor) = dim(σhor)− 1.

2. For every cell A ⊂ Y there is a cell B ⊂ X such that lkY(A) ∼= lkX(B).
In particular we see that if Φ̃ is the Coxeter diagram of X and Ψ̃ is
the Coxeter diagram of Y then Ψ is a subdiagram of Φ. The boundary
∂∞Y is isomorphic to the link of a special vertex in ∂∞X.

3. We have th(Xξ) ≥ th(X). If X is locally finite then so is Xξ .

Proof. The first claim is given by Corollary 8.4 and the second claim
is given Lemma 8.13. The claims in the third point are stated in
Corollary 7.29 and Remark 7.30. The last claim is given in Remark 7.28.

By iterating the construction of Theorem 8.14 we get the following
corollary. It allows us to restrict ourselves to the case where σhor is
empty.

Corollary 8.15. Let X be a Euclidean building, let Σ ⊂ X be an apartment,
let σ ⊂ ∂∞Σ be a chamber, and v ∈ Σ be a special vertex. Let h ∈ X∗σ,v
be a height function such that σ ⊂ ∂∞ Σh≥0 and let τ = σhor denote the
maximal horizontal face of σ with respect to h. There is a building Xτ

of dimension dim(X)− dim(τ)− 1, an apartment Στ ⊂ Xτ, a chamber
στ ⊂ ∂∞Στ, a special vertex vτ ∈ Στ, and a height function hτ ∈ (Xτ)∗στ ,vτ

with στ ⊂ ∂∞((Στ)hξ≤0) such that the following properties are satisfied.

1. For every k ∈N0, the system (Xh≥r)r∈R is essentially k-connected if
and only if the system ((Xτ)hτ≥r)r∈R is essentially k-connected.

2. The horizontal face (στ)hor of στ with respect to hτ is empty.

3. If Φ̃ is the Coxeter diagram of X and Ψ̃ is the Coxeter diagram of Xτ

then Ψ is a subdiagram of Φ.

4. The thickness of Xτ satisfies th(Xτ) ≥ th(X). If X is locally finite
then so is Xτ.
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8.3 the geometric main result

We are now ready to prove the main theorem of this chapter. In order to
formulate the result we have to recall that for every finite dimensional
real vector space V we denote by S(V) the space of positive homothety
classes of non-trivial elements of V. In the following this notation will
be used for vector spaces of the form X∗σ,v (see 4.3 for a definition).

Definition 8.16. Let X be a Euclidean building, let σ ⊂ ∂∞Σ be a
chamber, and let v ∈ X be a special vertex. For each panel P of σ let
αP ∈ S(X∗σ,v) be the class of functions that are negative on Kv(σ) and
constant on Kv(P). The set of all such classes will be denoted by

Bv(σ) := {αP : P is a panel of σ}.

Remark 8.17. Every system of representatives of Bv(σ) is a basis of
X∗σ,v. Thus Bv(σ) spans a simplex in S(X∗σ,v).

In view of Remark 8.17 it makes sense to denote the convex hull
of Bv(σ) in S(X∗σ,v) by ∆v(σ). In other words, ∆v(σ) denotes the set
of elements that are represented by non-trivial vectors of the form
∑ λPvP, where λP ≥ 0 and [vP] ∈ Bv(σ). For each 0 ≤ k < dim(V)

it will be useful to consider the k-skeleton ∆v(σ)(k) ⊂ ∆v(σ). It can
be described as the k-convex hull of Bv(σ) (see 2.49 for a definition),
i.e. ∆v(σ)(k) is the set of elements that are represented by non-trivial

vectors of the form
k
∑

i=0
λivi, where λi ≥ 0 and [vi] ∈ Bv(σ).

Theorem 8.18. Let X be a d-dimensional Euclidean building, let Σ be an
apartment in X, let σ ⊂ ∂∞Σ be a chamber, let v ∈ Σ be a special vertex, and
let h ∈ X∗σ,v. Assume that

1. Aut(X) acts strongly transitively on X,

2. X satisfies the SOL-property, and that

3. ∂∞X satisfies the SOL-property.

Then (Xh≥r)r∈R is essentially contractible, i.e. essentially k-connected for
every k ∈N0, if and only if [h] is not contained in ∆v(σ).

If [h] is contained in ∆v(σ) and 0 ≤ k < dim(∆v(σ)) then [h] is con-
tained in ∆v(σ)(k+1)\∆v(σ)(k) if and only if the system (Xh≥r)r∈R is essen-
tially k-connected but not essentially (k + 1)-acyclic.

Proof. Suppose first that [h] is not contained in ∆v(σ), or equivalently,
that σ * ∂∞Σh≤0. It suffices to show that every map Sn → Xh≥s is
null-homotopic. Thus let f be such a map. Let s ∈ R be a fixed
number. Since σ * ∂∞Σh≤0 we see that there is some (interior) point
η ∈ σ such that the ray [x, η) is contained in Xh≥s for every x ∈ Xh≥s.
Thus it follows that for all x, y ∈ Xh≥s there is a number t ≥ 0
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such that [x, η)(t) is contained in Ky(σ). Since Sn is compact, this
implies that there is a sector Kw(σ) and a constant t ≥ 0 such that
[ f (z), η)(t) ∈ Kw(σ) ∩ Xh≥s for every z ∈ Sn. Now the claim follows
from the simple observation that Kw(σ) ∩ Xh≥s is convex. Next we
consider the case where [h] is contained in ∆v(σ), or equivalently, that
σ ⊆ ∂∞Σh≤r. Let τ = σhor be the horizontal face of σ with respect to h.

Recall that the case τ = ∅ was proven in Theorem 4.15 and The-
orem 5.25. Let us therefore assume that τ is non-empty and let
k ∈ N0 be such that [h] ∈ ∆v(σ)(k+1)\∆v(σ)(k). Note that k is given
by k = dim(X)− dim(τ)− 3. In this case Corollary 8.15 equips us
with a (k + 2)-dimensional Euclidean building Xτ, a height func-
tion hτ ∈ (Xτ)∗στ ,vτ

and a chamber στ ⊂ ∂∞((Στ)hτ≤0) such that the
horizontal part of στ with respect to hτ is empty. Furthermore Corol-
lary 8.15 tells us for every m ∈ N0, that the system (Xh≥r)r∈R is
essentially m-connected (respectively m-acyclic) if and only if the sys-
tem ((Xτ)hτ≥r)r∈R is essentially m-connected (respectively m-acyclic).
In view of the third claim in Corollary 8.15 it follows from the spheric-
ity of the links in X and ∂∞X that the links in Xτ and ∂∞Xτ are
spherical as well. This allows us to apply Theorem 4.15 and Theo-
rem 5.25 a second time that tell us that ((Xτ)hτ≥r)r∈R is essentially
(dim(Xτ) − 2)-connected but not essentially (dim(Xτ) − 1)-acyclic.
Thus the claim follows from dim(Xτ) = k + 2.
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C H E VA L L E Y G R O U P S , B O R E L G R O U P S , A N D T H E I R
S - A R I T H M E T I C S U B G R O U P S

In order to apply the topological results on buildings which we ob-
tained so far to the computation of the Σ invariants of a group we
need the group to act on a building. One source of groups acting on
Euclidean buildings is the class of Chevalley groups over valued fields.
To define these groups, we have to recall some classical facts from the
theory of complex Lie algebras. All the details can be found in [21].

9.1 background on lie algebras

For the rest of this chapter we fix a complex semisimple Lie algebra L.
Let κ be its Killing form and let H ⊂ L be a fixed a Cartan subalgebra.
Since the restriction of κ on H is non-degenerate by [21, Corollary
8.2.] we can identify H with its dual H∗ via H 7→ κ(H,−). For each
γ ∈ H∗ let H′γ ∈ H be the corresponding element with respect to this
identification. The set of roots corresponding to H will be denoted by
Φ ⊂ H∗. Let V = 〈Φ〉R be its real span. We will view V as a Euclidean
vector space where the inner product is given by

κ∗(α, β) := κ(H′α, H′β).

The Euclidean space (V , κ∗) is going to be the standard apartment of
the Euclidean building we are going to describe in section 9.4. Let
∆ := {α1, . . . , αl} ⊂ Φ be a system of simple roots, let Φ+ ⊂ Φ be
the corresponding set of positive roots, and let α̃ ∈ Φ+ be the highest
root. The Weyl group associated to Φ will be denoted by WΦ, i.e.
WΦ < Isom(V) is the group generated by the reflections sα through
the hyperplanes

Wα := {v ∈ V : κ∗(α, v) = 0}.

For every two elements v, w ∈ V let

〈v, w〉 := 2
κ∗(v, w)

κ∗(v, v)
.

With this notation we can express reflections by

sα(v) = v− 〈v, α〉α.

Recall that L can be decomposed as a direct sum

L = H⊕
⊕
α∈Φ

Lα

67
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where
Lα = {X ∈ L : [H, X] = α(H)X, ∀H ∈ H}

for every root α ∈ Φ. It can be shown that each Lα is one-dimensional
and that [Lα,L−α] ⊂ H. In order to state the following result (see [31,
Theorem 1]), it will be useful to rescale the elements H′α by defining

Hα :=
2H′α

κ(H′α, H′α)

for each root α. In the case of simple roots we will write Hi = Hαi .

Theorem 9.1. For (Hi)
l
i=1 as above there are elements Xα ∈ Lα for each

α ∈ Φ such that the set

{Hi : i = 1, . . . , l} ∪ {Xα : α ∈ Φ}

is a linear basis of L and the following relations are satisfied.

(a) [Hi, Hj] = 0.

(b) [Hi, Xα] = α(Hi)Xα.

(c) [Xα, X−α] = Hα where Hα is an integral linear combination of the Hi.

(d) [Xα, Xβ] = ±(r + 1)Xα+β if α + β ∈ Φ where

r := max{k ∈N0 : β− kα ∈ Φ}.

(e) [Xα, Xβ] = 0 if α + β 6= 0 and α + β /∈ Φ.

In the following we will refer to

{Hi : i = 1, . . . , l} ∪ {Xα : α ∈ Φ}

as the Chevalley basis of L. In order to define Chevalley groups we
have to consider representations of L. Thus, for the rest of this chapter
we fix an irreducible, faithful, finite dimensional representation

ρ : L → End(V).

By [31, Theorem 3] there is a finite set Ψ ⊂ H∗ of so-called weights
such that V splits into a direct sum

V =
⊕
µ∈Ψ

Vµ

of non-trivial weight spaces

Vµ = {v ∈ V : ρ(H)(v) = µ(H)v, ∀H ∈ H}.

A non-zero vector v ∈ Vµ is called a weight vector with respect to
µ. The following key observation leads to the definition of Chevalley
groups (see [31, Corollaries 1 and 2]).
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Theorem 9.2. The L-module V contains a lattice M, i.e. the Z-span of a
basis of V, such that the following hold.

1. M is invariant under the action of ρ(Xα)n

n! .

2. The lattice M splits as a direct sum M =
⊕

µ∈Ψ
Mµ with Mµ := M ∩Vµ.

3. The part of L that leaves M invariant decomposes as a direct sum

LZ = Hρ ⊕
⊕
α∈Φ

〈Xα〉Z, where

Hρ = {H ∈ H : µ(H) ∈ Z, ∀µ ∈ Ψ}.

9.2 chevalley groups and their associated subgroups

Let L, H, Φ, V , V, M, and Ψ be as above. In order to construct
Chevalley groups there are three choices to make, two of which we
already made. The first choice was the semisimple Lie algebra L which
by [21, Theorem 14.2.] is the same as choosing the root system Φ. The
second choice was the representation ρ of L. The last choice we have
to make is the choice of an arbitrary field K. All the other choices we
made, i.e. the choice of the invariant lattice M, the choice of the Cartan
subalgebra H, as well as the choice of the system of simple roots ∆
do not change the structure of the resulting Chevalley group up to
isomorphism. The Chevalley group G := G(Φ, ρ, K) is defined by its
action on the vector space VK := M⊗Z K. The next theorem helps us
to analyze this action (see [31, Corollary 3]).

Theorem 9.3. The vector space VK decomposes as VK =
⊕

µ∈Ψ
VK

µ where

VK
µ := Mµ ⊗Z K.

When K is clear from the context we will just write V = VK. From
the theory of real Lie groups it is well known that the exponential map
gives us a function from the Lie algebra to the Lie group. A similar
approach can be taken in the case of arbitrary fields. Here we have to
restrict the exponentiation to elements of finite order. The following
observation gives us examples of such elements.

Lemma 9.4. For every α ∈ Φ the element ρ(Xα) ∈ End(V) is nilpotent,
i.e. there is a number n ∈N such that ρ(Xα)n = 0.

Proof. The claim follows directly from [31, Lemma 11].

In view of Lemma 9.4 the following definition makes sense.

Definition 9.5. For every t ∈ K let xα(t) = ∑
n≥0

tn·Xn
α

n! . Here Xα is identi-

fied with its image ρ(Xα) ∈ End(V).
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A quick computation shows that xα(s)xα(t) = xα(s + t) for every
two elements s, t ∈ K. Since xα(0) = idV this shows in particular that
xα(t) ∈ GL(V).

Definition 9.6. The Chevalley group G = G(Φ, ρ, K) is the subgroup of
GL(V) generated by the elements xα(t) for every α ∈ Φ and every
t ∈ K.

The following definition provides us with some families of elements
in G which are of special importance.

Definition 9.7. For every α ∈ Φ and every t ∈ K× we define the
elements wα(t) = xα(t)x−α(−t−1)xα(t), hα(t) = wα(t)wα(1)−1, and
ωα = wα(1).

The following list of relations in G can be proved by analyzing the
action of G on V (see the list below [31, Lemma 20]).

Proposition 9.8. The following relations are satisfied.

(a) xα(s)xα(t) = xα(s + t).

(b) [xα(s), xβ(t)] = ∏
i,j>0

xiα+jβ(ci,j,α,βtisj) if α + β 6= 0 and where the

constants ci,j,α,β ∈ K are suitably defined.

(c) ωαhβ(t)ω−1
α = ∏

γ∈Φ
hγ(tγ) for suitably defined elements tγ ∈ K× that

do not depend on the representation space.

(d) ωαxβ(t)ω−1
α = xωα(β)(ct) where c ∈ {−1, 1}.

(e) hα(t)xβ(s)hα(t)−1 = xβ(t〈β,α〉s).

Equipped with the elements defined in Definition 9.7 we can now
define some subgroups of G which are of particular importance in the
study of G.

Definition 9.9. For every Chevalley group G(Φ, ρ, K) let

1. Uα be the group {xα(t) : t ∈ K} for some α ∈ Φ,

2. U be the group generated by all subgroups Uα with α ∈ Φ+,

3. T be the group generated by all elements of the form hα(t),

4. B be the group generated by U and T , and

5. N be the group generated by all elements of the form wα(t).

The groups U ,T , and B are called the unipotent, torus, and Borel sub-
group of G.

Lemma 9.10. The following relations between the groups U , T , B, and N
are satisfied.
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(a) U is normal in B and B = T n U .

(b) T is normal in N . If K has more than 3 elements then N is the full
normalizer of T .

(c) The map sα 7→ wα(1)T , where α runs over Φ, extends to an isomor-
phism WΦ → N/T .

The following lemma describes the structure of T (see [31, Lemma
28]).

Lemma 9.11. The function

h : (K×)l → T , (ti)
l
i=1 7→

l

∏
i=1

hi(ti)

is an epimorphism.

9.3 from chevalley groups to rgd-systems and bn-pairs

In order to define the buildings on which G acts we have to recall what
an RGD-system is. A comprehensive treatment of RGD- and VRGD-
systems can be found in [2] and [33]. Before turning to Chevalley
groups again, we define the general notion of an RGD-system for an
arbitrary group G. We start by recalling the notion of an open interval
between two roots.

Definition 9.12. Let (W, S) be a spherical Coxeter system and let
Ω denote the set of roots in the Coxeter complex Σ(W, S). Recall
that in this combinatorial setting, a root is a halfspace in Σ(W, S)
bounded by a wall and is said to be positive if it contains the chamber
corresponding to the identity. For every two roots α, β ∈ Φ we define
[α, β] ⊂ Φ to be the set of roots γ such that α ∩ β ⊂ γ. Let further
(α, β) := [α, β]\{α, β}. The sets [α, β] and (α, β) are called the closed
and the open interval between α and β.

Remark 9.13. If the set of roots Ω in Definition 9.12 comes from a root
system in some ambient Euclidean space, then the closed and open
intervals of every two roots α, β ∈ Ω are given by

[α, β] = {iα + jβ ∈ Ω : i, j ≥ 0}

and
(α, β) = {iα + jβ ∈ Ω : i, j > 0}.

Notation 9.14. For each group G let G∗ denote the set of non-trivial
elements of G.

Definition 9.15. Let (W, S) be a spherical Coxeter system and let Ω
denote the set of roots in the Coxeter complex Σ(W, S). For each
s ∈ S let αs ∈ Ω denote the positive root corresponding to s. A triple
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(G, (Uα)α∈Ω, T) consisting of a group G and subgroups T ≤ G and
Uα ≤ G for every α ∈ Ω is called an RGD-system of type (W, S) if the
following hold.

(RGD 0) For all α ∈ Ω, Uα 6= {1}.

(RGD 1) For all α, β ∈ Ω with α 6= ±β, we have the inclusion
[Uα, Uβ] ≤ 〈Uγ : γ ∈ (α, β)〉.

(RGD 2) For every s ∈ S and every u ∈ U∗αs
there is an element

m(u) ∈ U−αs uU−αs such that m(u)Uαm(u)−1 = Us(α) for
all α ∈ Ω.

(RGD 3) For all s ∈ S, U−αs � 〈Uα : α ∈ Ω+〉 =: U.

(RGD 4) G = T〈Uα : α ∈ Ω〉.

(RGD 5) T ≤ ⋂
α∈Φ

NG(Uα).

We will denote the set of reflections corresponding to the simple
roots by S∆ = {sα : α ∈ ∆}. The following theorem is discussed in [2,
Section 7.9.2].

Theorem 9.16. The triple (G, (Uα)α∈Φ, T ) is an RGD-system of type
(WΦ, S∆). The function m in (RGD 2) can be defined by

m(xα(λ)) = w−α(−λ−1).

It turns out that RGD-systems can by used to construct BN-pairs.
Before we continue we quickly recall what that is (see [2, Definition
6.55]).

Definition 9.17. Let G be a group and let B, N be subgroups of G such
that G is generated by B and N. The pair (B, N) is called a BN-pair
of G if the intersection T := B ∩ N is normal in N, and the quotient
W := N/T admits a set of generators S such that the following
conditions are satisfied.

(BN 1) For s ∈ S and w ∈W, sBw ⊂ BswB ∪ BwB.

(BN 2) For s ∈ S, sBs−1 � B.

The tuple (G, B, N, S) is called a Tits system.

The next theorem describes the transition from RGD-systems to
BN-pairs (see [2, Theorem 7.115.]).

Theorem 9.18. Let (G, (Uα)α∈Ω, T) be an RGD-system of type (W, S).
Let U be the group generated by the groups Uα with α ∈ Ω+. Let further
B = TU and N = 〈T, {m(u) : u ∈ U∗αs

, s ∈ S}〉 where αs ∈ Ω is the
root corresponding to s ∈ S which contains the identity element of W.
Then the tuple (G, B, N, S) is a Tits system, B ∩ N = T, and the map
π : N → Sym(Ω) given by nUαn−1 = Uπ(n)(α) induces an isomorphism
N/T →W where W is identified with its image in Sym(Ω).
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It is important to note that the definition of a BN-pair does not
imply that N/T is a spherical Coxeter group. In fact in section 9.4
we will construct a BN-pair (B̃,N ) for G such that N/(B̃ ∩ N ) is a
Euclidean Coxeter group.

The following corollary summarizes what the notation in the previ-
ous sections suggests.

Corollary 9.19. Let S∆ be as above and let G, B, N , and T be as in
Definition 9.9. The tuple (G,B,N , S∆) is a Tits system.

Proof. In view of Theorem 9.18 and Theorem 9.16, this follows directly
from the construction of the Chevalley group G and its subgroups B,
N , and T .

9.4 from valued root group data to bn-pairs

There is a second BN-pair associated to G in the case where the field
K possesses a discrete valuation.

Definition 9.20. Let K be a field. A function v : K → Z∪ {∞} is called
a discrete valuation if

1. v(x · y) = v(x) + v(y) for all x, y ∈ K,

2. v(x + y) ≥ min{v(x), v(y)} for all x, y ∈ K, and

3. v(x) = ∞⇔ x = 0.

For the rest of this section, we will assume that K has a fixed
discrete valuation v. This valuation can be used to produce a valued
RGD-system.

Definition 9.21. Let (G, (Uα)α∈Ω, T) be an RGD-system. For each
α ∈ Ω let φα : U∗α → Z∪ {∞} be a function such that

φα(u) = ∞⇔ u = id.

The tuple (G, (Uα)α∈Ω, (φα)α∈Ω) is called a valued RGD-system if the
following properties are satisfied.

(VRGD 0) Each φα is surjective.

(VRGD 1) For each α ∈ Ω and each k ∈ Z the set

Uα,k := {u ∈ Uα : φα(u) ≥ k}

is a group.

(VRGD 2) For all α, β ∈ Ω with α 6= ±β and all k, l ∈ Z,

[Uα,k, Uβ,l ] ⊆ ∏
γ∈(α,β)

Uγ,pγk+qγ l ,

where pγ and qγ are suitably defined positive real num-
bers.
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(VRGD 3) For all α, β ∈ Ω and every two elements u ∈ U∗α , x ∈ U∗β,
the number

φsα(β)(m(u)−1xm(u))− φβ(x)

is independent of x, where m is the function given in
(RGD 2).

(VRGD 4) For each α ∈ Ω and all u ∈ U∗α , x ∈ U∗α

φ−α(m(u)−1xm(u))− φα(x) = −2φα(u).

In our case the functions φα can be defined explicitly as follows.

Definition 9.22. For every root α ∈ Φ let φα : Uα → Z, xα(t) 7→ vp(t).

The following definition can be found in [3, Proposition 3.2.].

Proposition 9.23. The triple (G, (Uα)α∈Φ, (φα)α∈Φ) is a VRGD-system.
The function m in (RGD 2) can be chosen as in Theorem 9.16, i.e.

m(xα(t)) = w−α(−t−1) for every α ∈ Φ and every t ∈ K×.

The general construction of the Euclidean BN-pair associated to a
VRGD-system, as described in [33, Chapter 14], involves a choice of
an identification of the abstract set of roots Ω with some explicit root
system in some ambient Euclidean space. Since in our situation, the
Coxeter system (W, S) comes from the Weyl group WΦ ⊂ Isom(V)
together with a set S∆ of generators there is no choice to make. Thus
the following is a simplified version of the construction in [33, Chap-
ter 14]. Before we can move on we have to associate the Euclidean
space (V , κ∗) with the structure of a Euclidean Coxeter complex. This
complex will serve as a metric model for the standard apartment in
the Euclidean building associated to the VRGD-system defined above.

Definition 9.24. Let Φ̃ := Φ×Z. For each (α, k) ∈ Φ×Z, we define
sα,k ∈ Isom(V) to be the reflection given by sα,k(v) = sα(v) + kαV

where αV := 2α
κ∗(α,α) denotes the coroot of α, and let

Hα,k = {v ∈ V : κ∗(v, α) = k}

denote its invariant hyperplane.

A quick calculation shows that the set of all hyperplanes Hα,k is
invariant under the action of the reflections sα,k. Thus the space V can
be endowed with the structure of a Euclidean Coxeter complex whose
set of walls is given by {Hα,k : (α, k) ∈ Φ̃}.

Definition 9.25. Let WΦ̃ be the group generated by all reflections sα,k.
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By [2, Section 10.1.3.], the group WΦ̃ is generated by the set

S∆̃ := {sα,0 : α ∈ ∆} ∪ {sα̃,1}.

Note further that WΦ̃ contains the Weyl group WΦ = 〈{sα,0 : α ∈ ∆}〉
as a subgroup. In order to define the groups involved in the Euclidean
BN-pair, we have to define an action of N on this complex (see [33,
Proposition 14.4.]).

Proposition 9.26. There is an epimorphism π : N → WΦ̃ that satisfies
π(m(u)) = sα,−φα(u) for every α ∈ Φ and every u ∈ U ∗α .

Definition 9.27. Let T̃ denote the kernel of π. Let further Ũ be the
group generated by

⋃
α∈Φ+

Uα,0 and
⋃

α∈Φ−
Uα,1 and let B̃ = T̃ Ũ .

Definition 9.28. For each αi ∈ ∆, let mi ∈ N/T̃ denote the element
represented by mαi(xαi(1)) and let S = {mi : 1 ≤ i ≤ l}. Let further
m0 ∈ N/T̃ be the element represented by m−α̃(u) for some u ∈ U−α̃

with φ−α̃(u) = 1 and let S̃ = {mi : 0 ≤ i ≤ l}.

Now we have all ingredients to define the Tits system which we will
study in the next sections (see [33, Theorem 14.38.]).

Theorem 9.29. The tuple (G, B̃,N , S̃) is a Tits system. Furthermore we
have T̃ = B̃ ∩ N and the map S̃→ S∆̃, defined by mi 7→ sαi ,0 for 1 ≤ i ≤ l
and m0 7→ sα̃,1, extends to an isomorphism N/T̃ ∼= WΦ̃.

9.5 from bn-pairs to buildings

In this section we recall how a BN-pair (B, N) gives rise to a simplicial
building ∆(B, N). The simplices of ∆(B, N) are given by cosets of
standard parabolic subgroups. Recall that for a Coxeter system (W, S)
and a subset J ⊂ S the subgroup of W generated by J is denoted by
WJ . These groups give rise to the construction of standard parabolic
subgroups of G (see [2, Proposition 6.27.]).

Proposition 9.30. Let (G, B, N, S) be a Tits system and let J ⊂ S be a
subset. The union of double cosets PJ :=

⋃
w∈WJ

Bw̃B is a group where w̃ ∈ N

is any representative of w.

The groups of the form PJ will be called standard parabolic subgroups.

Definition 9.31. Let (G, B, N, S) be a Tits system. Let ∆(B, N) be the
poset of the cosets of standard parabolic subgroups gPJ as in Proposi-
tion 9.30, ordered by reverse inclusion. For every s ∈ S let Pŝ be the
parabolic subgroup corresponding to the set S\{s}.

Remark 9.32. It can be shown (see [2, Theorem 6.43.]) that every
group B ≤ P ≤ G is already of the form PJ for some subset J ⊂ S. In
particular, it follows that the poset ∆(B, N) does not depend on the
choice of S.
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The poset ∆(B, N) can be viewed as an abstract simplicial complex
where the set of vertices is given by the cosets of maximal proper
parabolic subgroups and the simplices are given by subsets of the
form {gPŝ : s ∈ J} for some subset J ⊂ S and some element g ∈ G.
Note that the cells of maximal dimension correspond to cosets of the
form gB. Here, the standard parabolic group G is viewed as the empty
face in ∆(B, N). The next theorem summarizes some properties of
∆(B, N). The following result can be easily derived from what we
have seen so far (see e.g. [2, Exercise 6.54] and its solution starting on
page 708).

Theorem 9.33. Let (G, B, N, S) be a Tits system and let W = N/N ∩ B
be the associated Coxeter group. The complex ∆(B, N) satisfies the following
properties.

1. ∆(B, N) is a building.

2. The complex Σ(B, N) := {nP : n ∈ N, B ≤ P < G} is an apartment.

3. A system of apartments is given by AB,N := {gΣ(B, N) : g ∈ G}.

4. The action of G on ∆(B, N) by left multiplication is strongly transitive
with respect to AB,N .

9.6 a metric for the buildings

In this section we equip the buildings ∆(B,N ) and ∆(B̃,N ) with a
canonical CAT(1)- respectively CAT(0)-metric. Furthermore, we will
explain the geometric relationship between these buildings.

Definition 9.34. Let E be the chamber in V defined by

{v ∈ V : κ∗(v, αi) > 0 for every 1 ≤ i ≤ l and κ∗(v, α̃) < 1}.

For every 1 ≤ i ≤ l, let vi be the vertex of E not lying in Hαi ,0 and let
v0 = 0. Let further

K = {v ∈ V : κ∗(v, αi) > 0 for every 1 ≤ i ≤ l}

be the cone corresponding to E and v0.

Recall that the vertices of the complex Σ(B̃,N ) are given by the set
of cosets of the form nPi where n ∈ N and Pi := Pm̂i

is the maximal
parabolic subgroup associated to some mi ∈ S̃.

Definition 9.35. Let Σ(V, WΦ̃) denote the abstract simplicial complex
that is given by the triangulation of V with the hyperplanes Hα,k and
let ιV : |Σ(V, WΦ̃)| → V denote the canonical homeomorphism.

The following result is a translation of [2, Proposition 10.13.] to the
present setting. It allows us to endow the abstract complex Σ(B̃,N )

with the structure of a Euclidean vector space and thus to consider
affine height functions on it.
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Proposition 9.36. The map

f : Σ(B̃,N )(0) → Σ(V, WΦ̃)
(0), nPi 7→ π(n)(vi)

is an incidence-preserving N -equivariant bijection between the vertex sets of
the complexes Σ(B̃,N ) and Σ(V, WΦ̃). By composing | f | with ιV we get an
N -equivariant homeomorphism ι : |Σ(B̃,N )| → V .

In view of Proposition 9.36, there is a canonical metric on |Σ(B̃,N )|
given by the pullback of the metric on V . Since for every apartment Σ
in ∆(B̃,N ), there is an isomorphism fΣ : Σ→ Σ(B̃,N ), we can endow
|Σ| with a metric by pulling back the metric from |Σ(B̃,N )| to |Σ|
via | fΣ|. Since every two points x, y lie in some common apartment,
this gives us a function d∆(B̃,N ) : |∆(B̃,N )| × |∆(B̃,N )| → R. It can
be shown (see [2, Theorem 11.16.]) that this function is a well defined
CAT(0)-metric.

Remark 9.37. Note that under the above identification, the boundary
σ := ∂∞K can be viewed as a chamber in ∂∞(∆(B̃,N )).

In the following we will always think of ∆(B̃,N ) as the geometric
realization equipped with the metric described above. Note that the
boundary ∂∞V can be endowed with the angular metric. Thus, by the
same procedure as above, we can think of ∂∞(∆(B̃,N )) as a spherical
building whose metric is given by pulling back the metric from the
boundary of the standard apartment. The following theorem shows
that the group B appears naturally in the study of the action of G on
∆(B̃,N ) (see [33, Theorem 14.46.]).

Theorem 9.38. The group B is the stabilizer of σ in G.

Note that Theorem 9.38 in particular shows that the map

λ : ∆(B,N )→ ∂∞(∆(B̃,N )), gB 7→ g(σ)

is a well defined embedding. The following result relates the image
λ(∆(B,N )) of this embedding to the complex

∂∞(∆(B̃,N ),AB̃,N ) :=
⋃

Σ∈AB̃,N

∂∞|Σ|.

It will be useful for us to know that λ is an isomorphism (see [33,
Theorem 14.47.])

Theorem 9.39. With the notation above, we have an isomorphism

λ : ∆(B,N )→ ∂∞(∆(B̃,N ),AB̃,N ).

Remark 9.40. Note that since ∂∞(∆(B̃,N ),AB̃,N ) inherits the metric
from ∂∞(∆(B̃,N )), it follows that ∆(B,N ) can be endowed with the
metric given by pulling back the metric from ∂∞(∆(B̃,N ),AB̃,N ) via λ.
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9.7 the case of p-adic valuations

In this section, we will translate the results of the last section to
more concrete groups. We keep the definitions from the previous
sections and consider the case where K = Q. Thus from now on, G is
a Chevalley group defined by generators of the form xα(t) with t ∈ Q.
Let vp denote the p-adic valuation on Q for some prime number p ∈N.
As it is discussed in the previous section this leads to the construction
of a spherical BN-pair (B,N ) and a Euclidean BN-pair (B̃p,N ). We
will denote the corresponding embedding of the spherical building
∆(B,N ) in the boundary of the Euclidean building Xp := ∆(B̃p,N )

by X∞
p . The standard apartments in these buildings will be denoted by

Σ∞
p = Σ(B,N ) and Σp = Σ(B̃p,N ) respectively. In order to formulate

our results we have to choose some embedding of G into the group of
invertible matrices GLd(Q). To do so, we fix a basis {b1, . . . , bd} of the
lattice M and identify G with the matrix representation corresponding
to this basis. It will be important to us to view G and its subgroups
as topological groups. Recall that the p-adic valuation on Q provides
us with a p-adic absolute value given by |pk a

b |p = p−k where a and
b are relatively prime to p and that the p-adic topology on Q is the
topology induced by that absolute value. By associating Md(Q) with
the product topology it follows easily that the subspace topology
turns G and its subgroups into topological groups. The corresponding
topological groups will be denoted by Gp, Np, Up, etc. If there is no
need to refer to p we will just drop the index. The groups we are
interested in appear as groups of R-points in G where R is a subring
of Q containing 1.

Definition 9.41. Let R ≤ Q be a subring containing 1 and let Md(R)
denote the set of d × d matrices with coefficients in R. For every
subgroup H ≤ G let H(R) = H ∩Md(R).

Remark 9.42. The set of R-points of a subgroup of G indeed forms
a group. This follows from the basic rule A−1 = det(A)−1Aadj re-
lating the inverse of a matrix to its adjoint matrix and the fact that
G ≤ SLn(Q) which follows from [31, Lemma 11].

Definition 9.43. For every finite set of prime numbers S ⊂ N let
AS denote the subring of Q consisting of the elements x ∈ Q with
vp(x) ≥ 0 for every p ∈ S. Let further OS denote the subring of Q

consisting of the elements x ∈ Q with vp(x) ≥ 0 for every prime p
that is not contained in S. In the case where S = {p} is a singleton we
will just write Ap and Op.

Remark 9.44. Note that we could also write OS = Z[1/N] where
N = ∏

p∈S
p.

Lemma 9.45. The set Md(Ap) is open in Md(Q) with respect to the p-adic
topology.
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Proof. This follows directly from the observation that there is a positive
number ε > 0 such that Ap is the open ball around 0 with radius
1 + ε.

It will be very useful that many relations between the Chevalley
group G and its subgroups still hold for their R-points if R = AS or
R = OS.

Lemma 9.46. Let R ≤ Q be a subring of the form AS or OS. The following
properties of groups of R-points are satisfied.

(a) G(R) is generated by the set {xα(t) : α ∈ Φ, t ∈ R}.

(b) B(R) = U (R)T (R).

(c) U (R) = { ∏
α∈Φ+

xα(tα) : tα ∈ R}.

(d) T (R) = {
l

∏
i=1

hαi(tαi) : tαi ∈ R×}.

Proof. The statements (b), (c) and (d) are covered by [31, Lemma 49].
Further by [31, Corollary 3] the statement (a) holds in the case where
R is a Euclidean domain. Thus the claim follows from the fact that
localizations of Euclidean domains are Euclidean (see [18, Theorem
3.33]).

Lemma 9.47. For every root α ∈ Φ the element tα,k := s−α,ksα ∈WΦ̃ acts
on V by tα,k(v) = v− kαV .

Proof. Recall that the action of sα can be written down explicitly by
sα(v) = v− κ∗(v, α)αV and that sα,k is given by sα,k(v) = sα(v) + kαV .
Thus

s−α,k(sα(v)) = s−α(sα(v))− kαV = v− kαV .

Recall that T̃p was defined to be the kernel of the map π : Np →WΦ̃
induced by π(m(xα(t))) = sα,−vp(t) for every α ∈ Φ and every t ∈ Q.

The following lemma provides us with an explicit description of T̃p.

Lemma 9.48. With the notation above we have T̃p = {
l

∏
i=1

hi(ti) : ti ∈ A×p }.

Further we have π(hi(ti)) = tαi ,ki where ki = vp(ti).

Proof. By definition the group T̃p fixes V pointwise. In particular
T̃p fixes ∂∞V pointwise and therefore T̃p ⊂ B ∩ N = T . Thus by
Lemma 9.11 it follows that every element of T̃p can be written as a
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product
l

∏
i=1

hi(ti) for some elements ti ∈ Q×. The image of such a

generator hi(ti) under π is given by

π(hi(ti)) = π(wαi(ti)wαi(1)
−1)

= π(wαi(ti))π(wαi(1)
−1)

= π(m−αi(−t−1
i ))π(m−αi(−1))

= s−αi ,−vp(−t−1
i )s−αi ,−vp(−1)

= s−αi ,vp(ti)s−αi ,0

= s−αi ,vp(ti)sαi .

Thus by defining ki = vp(ti) Lemma 9.47 implies π(hi(ti)) = tαi ,ki .

Suppose that w =
l

∏
i=1

hi(ti) lies in T̃p, i.e. π(w) = id ∈ WΦ̃. From the

above equality it follows that

w(v) = π(
l

∏
i=1

hi(ti))(v) =
l

∏
i=1

π(hi(ti))(v)

=
l

∏
i=1

tαi ,ki(v) =
l

∏
i=1

(v− vp(ti)α
V
i ).

Since ∆ = {αi : 1 ≤ i ≤ l} is a basis of V the condition v = w(v)
implies vp(ti) = 0 for every 1 ≤ i ≤ l. Now the claim follows from
the simple fact that an element t ∈ Q is a unit in A×p if and only if
vp(t) = 0.

The following result will be crucial to approximate the canonical
action of ∏

p∈S
Up on the building ∏

p∈S
Xp by the diagonal action of

U (OS).

Theorem 9.49. Let S ⊂N be a finite set of primes. The diagonal embedding

U (OS)→ ∏
p∈S
Up

has dense image.

Proof. This is a direct consequence of the proof of [31, Theorem 20]
where one has to replace G by U .

Lemma 9.50. The intersection B̃p ∩ U coincides with U (Ap).

Proof. Recall from Definition 9.27 that B̃p = T̃pŨp where Ũp is the
group generated by the two sets {xα(t) : α ∈ Φ+, t ∈ Ap} and

{xα(t) : α ∈ Φ−, t ∈ pAp} and where T̃p = {
l

∏
i=1

hi(ti) : ti ∈ A×p }

by Lemma 9.48. It thus follows from Lemma 9.46(c) that U (Ap) is
contained in B̃p ∩ Up. On the other hand the construction gives us
T̃p, Ũp ⊂ G(Ap) which shows that B̃p ∩ U = U (Ap).



10
Σ - I N VA R I A N T S O F S - A R I T H M E T I C B O R E L G R O U P S

For the rest of this chapter let G = G(Φ, ρ, Q) be a Chevalley group,
let B ⊂ G be a Borel subgroup, and let Γ = B(OS) for some fixed
finite set of prime numbers S ⊂ N. Our first goal will be to prove
that the action of G the product XS := ∏

p∈S
Xp satisfies the conditions

of Theorem 2.47 which allows us to compute the Σ-invariants of Γ by
studying certain systems of superlevelsets in XS.

10.1 finiteness properties of the stabilizers

In this section we will determine the finiteness properties of the
stabilizers of the action of Γ on XS.

Lemma 10.1. The group
⋂

p∈S
B̃p ∩ Γ is of type F∞.

Proof. By construction we have B̃p = T̃pŨp ≤ SLd(Ap) and Γ = B(OS).
Thus the intersection of these groups is contained in B( ⋂

p∈S
Ap ∩OS).

Note that
⋂

p∈S
Ap ∩OS = Z and thus

⋂
p∈S
B̃p ∩ Γ ≤ B(Z) = T (Z)U (Z)

by Lemma 9.46. Recall from Proposition 9.8 (a) and (b) that U (Z) is
finitely generated and nilpotent. From Lemma 9.46 if further follows

that T (Z) = {
l

∏
i=1

hαi(tαi) : tαi ∈ {±1}} and hence is finite. In particu-

lar we see that
⋂

p∈S
B̃p ∩ Γ is a subgroup of a finitely generated virtually

nilpotent group and thus is a finitely generated, virtually nilpotent
group itself. Since the property F∞ is invariant under commensurabil-
ity, which follows for example from [4, Corollary 9], it remains to see
that finitely generated nilpotent groups are of type F∞. This follows
from [19, 7.2. Exercise 1.] and the fact that finitely generated abelian
groups are of type F∞.

Proposition 10.2. Let A be a non-empty cell in XS. The stabilizer StΓ(A)

is of type F∞.

Proof. Since XS is locally finite it follows that all cell stabilizers are
commensurable. Since being of type Fn is invariant under commen-
surability (see for example [4, Corollary 9]) it is sufficient to show
that the stabilizer of some non-empty cell is of type F∞. Recall that
the stabilizer of the fundamental chamber in Xp with respect to the
action of G is given by B̃p. Thus the corresponding stabilizer of the

81
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diagonal action of Γ on XS is given by
⋂

p∈S
B̃p ∩ Γ which is of type F∞

by 10.1.

10.2 cocompactness of the action

In this section we will show that the diagonal action of Γ = B(OS)

on the product XS = ∏
p∈S

Xp is cocompact. From the construction we

already know that the action of G on Xp is cocompact for every p ∈ S.
Our first goal is to show that this is still the case if we restrict the action
to B. Recall that in Proposition 9.36 we have identified the standard
apartment Σp ≤ Xp with the Euclidean vector space V which was
triangulated by the hyperplane arrangement {Hα,k : α ∈ Φ, k ∈ Z}. In
particular this allows us to speak of the origin op of Σp. Let further

Ep = {x ∈ Σp : κ∗(α, x) ≥ 0 ∀α ∈ ∆}

denote the closed standard chamber in Σp.

Lemma 10.3. The group G(Ap) is the stabilizer of the origin op ∈ Σp.

Proof. We start by proving the inclusion G(Ap) ⊂ StG(op). Lemma 9.46

tells us that G(Ap) is generated by all elements of the form xα(t) with
α ∈ Φ and t ∈ Ap. Thus it suffices to show that these generators fix
op. To see this recall that by construction B̃p is the pointwise stabilizer
of Ep and in particular fixes op. Thus the generators xα(t) of B̃p with
α ∈ Φ+ and t ∈ Ap are contained in the stabilizer of op. On the other
hand Proposition 9.26 tells us that op is fixed by ωα for every α ∈ Φ.
From these two types of generators we obtain from Proposition 9.8
that

ωαxβ(t)ω−1
α = xsα(β)(±t)

stabilizes op for every α ∈ Φ+ and every t ∈ Ap. Thus the inclusion
G(Ap) ⊂ StG(op) follows from the observation that every root α ∈ Φ
can be mapped into Φ+ by an application of the reflection sα̃. To
see the reverse inclusion recall that G(Ap) is a standard parabolic
subgroup by Remark 9.32. On the other hand we have just shown
that G(Ap) contains the maximal parabolic subgroup P0 which by
Proposition 9.36 is the stabilizer of op. Thus the claim follows since
obviously G(Ap) 6= G.

Proposition 10.4. Let A be a cell in Xp. The stabilizer StG(A) is open in
Gp.

Proof. From Lemma 9.45 and Lemma 10.3 it follows that the stabilizer
of the origin op is open. Let v ∈ Σp be a vertex of the same type
as op such that the geodesic [op, v] contains an interior point of Ep.
Since G acts transitively on the set of vertices in Xp of a given type
it follows that stG(v) is a conjugate of G(Ap) and hence open. Thus
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the intersection G(Ap) ∩ stG(v) is an open subgroup of G and fixes
Ep pointwise. Since G is a topological group it follows that every
subgroup of G containing G(Ap) ∩ stG(v) is open. Now the claim
follows from the chamber transitivity of the action of G on Xp.

Corollary 10.5. The stabilizers of the action of ∏
p∈S
Up on XS are open in

∏
p∈S
Up.

Proof. For every p ∈ S let Cp be a cell in Xp. From Proposition 10.4 we
know that the stabilizer StGp(Cp) is open in Gp and thus

StUp(Cp) = Up ∩ StGp(Cp)

is also open. Since every cell in XS can be written as ∏
p∈S

Cp we see that

the stabilizer of C in ∏
p∈S
Up is a product of open subgroups and hence

open.

The following theorem is crucial for showing that the action of Γ on
XS is cocompact (see [31, Theorem 17]).

Theorem 10.6. Let g ∈ G be an arbitrary element. For every prime p there
are elements bp ∈ B and gp ∈ G(Ap) such that g = bpgp.

Proposition 10.7. For every chamber E ⊂ Xp there is an element b ∈ B
such that b(E) is contained in the star stΣp(op) of op in Σp. In particular the
action of B on Xp is cocompact.

Proof. We start by considering the spherical building lkXp(op) and
its apartment lkΣp(op). For every root α ∈ Φ+ let U op

α be the corre-
sponding root group in Aut(lkXp(op)) and let U op denote the group
generated by the groups U op

α with α ∈ Φ+. By [33, Proposition 18.17]
it follows that for every root α ∈ Φ+ and every element u ∈ U op

α there
is an element ũ ∈ Uα,0 ≤ U such that ũ| lkXp (op) = u. On the other
hand [2, Lemma 7.9] tells us that for every apartment A ⊂ lkXp(op)

that contains the chamber in lk(op) that corresponds to Ep, there is
an element u ∈ U op

α such that u(A) = lkΣp(op). Thus we see that for
every chamber F ⊂ stXp(op) there is a chamber G ⊂ lkΣp(op) such that
F = b(G) for some appropriate choice of b ∈ B. By the construction of
Xp every chamber can be written as g(Ep) for some g ∈ G. By Theo-
rem 10.6 we further have g = bk for some appropriate elements b ∈ B
and k ∈ G(Ap). Since k stabilizes op by Lemma 10.3 it follows that
k(Ep) is contained in stXp(op) and thus, by the observation above, can
be written as k(Ep) = b′(G) for some chamber G ⊂ lkΣp(op) and some
element b′ ∈ B. Thus g(Ep) = bb′(G) which proves the claim.

Corollary 10.8. The orbit of Σp under the action of Up covers Xp, i.e.

Xp =
⋃

γ∈Up

γ · Σp.
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Proof. Let E ⊂ Xp be a chamber. By Proposition 10.7 there is a b ∈ B
such that b(E) ⊂ stΣp(op). Recall that B = T U . Thus b = tu for some
appropriate choice of t ∈ Tp and u ∈ U . Since T stabilizes Σp it follows
that

u(E) = t−1tu(E) = tb(E) ⊂ Σp

which proves the claim.

Our goal is to extend this result to the case of the S-arithmetic part
of the Borel group. In order to do so we will approximate the action of
∏

p∈S
U on XS by the diagonal action of U (OS). The next result makes

more clear what we mean if we speak of approximating the action of
a group.

Lemma 10.9. Let G be a topological group acting on a cell complex X.
Suppose that the stabilizers of cells are open in G. If H ≤ G is a dense
subgroup of G then for every g ∈ G and every cell A in X there is an element
h ∈ H such that g(A) = h(A).

Proof. Let g ∈ G be an arbitrary element. Let (hn)n∈N be a sequence
in H converging to g. We claim that there is an element hn such that
hn(A) = g(A). By assumption the stabilizer of A is open. Since G is a
topological group it follows that g StG(A) is an open neighborhood of
g. Thus there is an n such that hn ∈ g StG(A) and the claim follows.

Lemma 10.10. The building XS is covered by the orbit of ΣS = ∏
p∈S

Σp

under the action of U (OS).

Proof. From Corollary 10.8 it follows that the orbit of ΣS under the
action of ∏

p∈S
Up covers XS. On the other hand we know from Corol-

lary 10.5 that the cell stabilizers of the action of ∏
p∈S
Up on XS are open.

In view of Lemma 10.9 the claim follows since the diagonal embedding

U (OS)→ ∏
p∈S
Up

has dense image by Theorem 9.49.

Note that Lemma 10.10 in particular implies that the orbit of ΣS
under the action of Γ = B(OS) = T (OS)U (OS) covers XS. To see that
this action is also cocompact we consider the action of T (OS) on ΣS.
We start with the following easy observation.

Corollary 10.11. The diagonal action of T (OS) on ΣS is cocompact.

Proof. By Lemma 9.48 we have π(hi(ti)) = tαi ,ki where ki = vp(ti) and
tαi ,ki(v) = v− kiα

V
i . Thus we see that the subgroup

{hi(pz) : 1 ≤ i ≤ l, z ∈ Z} < T (Op)
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acts cocompactly on Σp and that T (Ap) fixes Σp pointwise. Thus the
multiplicativity of the functions hi implies that the diagonal action of
T (OS) on ΣS is cocompact.

Theorem 10.12. The diagonal action of Γ on XS is cocompact.

Proof. From Lemma 9.46 we know that Γ = T (OS)U (OS). Hence the
claim follows from Lemma 10.10 and Corollary 10.11.

10.3 the structure of the character sphere

We continue our study of the group Γ = B(OS).

Definition 10.13. Let δ : Γ → T (OS) denote the canonical projection
arising from the splitting Γ = T (OS)U (OS).

Note that the kernel of δ is precisely U (OS). In order to understand
the structure of the character sphere S(Γ) of Γ it will be important
to understand the relationship between U (OS) and the commutator
subgroup of Γ.

Lemma 10.14. The commutator subgroup [Γ, Γ] lies in U (OS). The quotient
Q := U (OS)/[Γ, Γ] is a torsion group.

Proof. By Lemma 9.46 Γ is the semidirect product T (OS)U (OS) where
T (OS) is an abelian group. Thus we get the inclusion [Γ, Γ] ⊂ U (OS).
For the second claim we recall relation (e) in Proposition 9.8 which
tells us that

hα(t)xβ(s)hα(t)−1 = xβ(t〈β,α〉s)

for s ∈ Q and t ∈ Q∗. In the case β = α ∈ Φ+ we thus get

hα(t)xα(s)hα(t)−1 = xα(t2s).

For a prime p ∈ S we thus obtain

[hα(p), xα(s)] = hα(p)xα(s)hα(p)−1xα(s)−1 = xα(p2s)xα(s)−1

= xα(p2s− s) = xα(s)(p2−1).

Thus xα(s)(p2−1) ∈ [Γ, Γ] for every α ∈ Φ+ and every s ∈ OS.
Let q := p2 − 1. Now let u ∈ U (OS) be an arbitrary element. By
Lemma 9.46 we can write

u =
n

∏
i=1

xβi(ti)

for some βi ∈ Φ+ and ti ∈ OS. Let u be the image of u in Q. Since Q
is abelian, relation (a) in Proposition 9.8 gives us

uq = uq =
n

∏
i=1

xβi(ti)
q
=

n

∏
i=1

xβi(t
q
i ).

Now the claim follows since we have just seen that xβi(t
q
i ) ∈ [Γ, Γ].
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Proposition 10.15. The inclusion i : T (OS)→ Γ induces an isomorphism

i∗ : Hom(Γ, R)→ Hom(T (OS), R), χ 7→ χ ◦ i.

The inverse isomorphism is given by

δ∗ : Hom(T (OS), R)→ Hom(Γ, R), χ 7→ χ ◦ τ.

Proof. Let γ ∈ Γ be an arbitrary element. By Lemma 9.46 we can write
γ = tu with t ∈ T (OS) and u ∈ U (OS). By Lemma 10.14 we know
that a power of u lies in [Γ, Γ]. Thus χ(u) = 0 since R is torsion-free.
Hence the restriction of χ to T (OS) can be taken to be the map χ in
the proposition.

In view of Proposition 10.15 it suffices to consider the characters
T (OS)→ R in order to understand the characters of Γ. We want to
split a character T (OS)→ R into a product of basis elements.

Definition 10.16. For every α ∈ ∆ and every p ∈ S let Tα,p denote the
subgroup of T (OS) consisting of elements of the form hα(pn) with
n ∈ Z. Let further TS denote the group generated by the groups Tα,p.

The following lemma describes the structure of TS.

Lemma 10.17. The canonical map

f :
⊕
p∈S

⊕
α∈∆

Z→ TS, (nα,p)(p,α)∈S×∆ 7→ ∏
(p,α)∈S×∆

hα(pnα,p)

is an isomorphism. In particular TS canonically decomposes as
⊕
p∈S

⊕
α∈∆
Tα,p.

Proof. It suffices to show that ker( f ) is trivial. Thus suppose that

γ := ∏
(p,α)∈S×∆

hα(pnα,p) ∈ ker( f ).

Note that in particular γ acts trivially on Σp for every p ∈ S. Recall
from 9.48 and Lemma 9.47 that the action of γ on Σp ∼= V is given by

γ(x) = ∏
α∈∆

π(hα(pnα,p))(x)

= ∏
α∈∆

tα,nα,p(x)

= x− ∑
α∈∆

nα,pαV

and hence nα,p = 0 for every α ∈ ∆ since ∆ is a basis of V . Now the
claim follows since p ∈ S was chosen arbitrarily.

Lemma 10.18. Every element in T (OS) can be uniquely written as tεtS
where tε has finite order and tS ∈ TS.
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Proof. From Lemma 9.46 we know that every element γ ∈ T (OS) can
be written as γ = ∏

α∈∆
hα(tα) with tα ∈ O×S . Thus tα = εα ∏

p∈S
pkα for

some appropriate kα ∈ Z and εα ∈ {±1}. This gives us

γ = ∏
α∈∆

hα(tα) = ∏
α∈∆

(hα(εα) ∏
p∈S

hα(pkp,α)).

The predicted decomposition now follows by setting

tε := ∏
α∈∆

hα(εα) and tS := ∏
α∈∆

∏
p∈S

hα(pkp,α).

For the uniqueness we observe that if γ = tεtS = t′εt′S has two such
decompositions then t′−1

S tS = t′εt−1
ε has finite order. On the other hand

Lemma 10.17 tells us that TS is torsion-free and therefore we have
tS = t′S and hence tε = t′ε.

Corollary 10.19. The inclusion ι : TS → Γ induces an isomorphism

ι∗ : Hom(Γ, R)→ Hom(TS, R).

Proof. From Lemma 10.18 it follows that the inclusion TS → T (OS )
induces an isomorphism

Hom(T (OS ), R)→ Hom(TS, R).

Now the claim follows from Proposition 10.15.

In view of Corollary 10.19 we can now define the following charac-
ters of Γ.

Definition 10.20. For every α ∈ ∆ and p ∈ S let χα,p : Γ → R denote
the unique extension of the character TS → R that is induced by
hβ(t) 7→ 〈β, α〉vp(t) for every α ∈ ∆. Let further

BG,B(S) = {χα,p : α ∈ ∆, p ∈ S}

denote the union of these characters.

The following proposition summarizes the observations above.

Remark 10.21. The set B := BG,B(S) is a basis of Hom(Γ, R).

Proof. This follows from the fact that κ∗ is non-degenerate and that ∆
is a basis of V .

10.4 extending characters to height functions

In this section we will construct equivariant height functions for the
action of Γ on XS . I.e. for a given character χ : Γ→ R we will define
a continuous function h : XS → R such that the diagram
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XS R

XS R

h

h

γ tχ(γ)

commutes for every γ ∈ Γ. Here we denote by tχ(γ) : R → R the
translation given by x 7→ x + χ(γ). In order to formulate the second
restriction that we are going to impose on the height functions h we
have to consider the chamber σ ⊂ ∂∞XS. Recall from Remark 9.37

that σ ⊂ ∂∞V denotes the chamber at infinity which is given as the
boundary at infinity of the sector

K = {v ∈ V : κ∗(v, α) > 0 for every α ∈ ∆}

in V . For each p ∈ S let Kp denote the corresponding sector in Σp and
let σp := ∂∞Kp ⊂ ∂∞Σp be its boundary chamber at infinity. Finally
let σS ⊂ ∂∞ΣS denote the boundary chamber at infinity of the sector
KS := ∏

p∈S
Kp ⊂ ΣS. In the following we want h to be invariant under

the retraction ρ = ρΣS,σ.

Definition 10.22. For each p ∈ S let prp : ΣS → Σp be the canonical
projection. For each α ∈ ∆ let further κα,p : Σp → R, v 7→ κ∗(α, ιp(v))
be the linear form associated to α via κ∗. By composing these two
functions with the retraction ρΣS,σS : XS → ΣS and inverting the sign
we obtain the height functions

htα,p := −κα,p ◦ prp ◦ρΣS,σS : XS → R.

It follows directly from the definition that the functions htα,p are
ρΣS,σS -invariant, i.e. htα,p ◦ρΣS,σS = htα,p, and that the restriction of each
htα,p to ΣS is a linear function. Thus we obtain htα,p ∈ X∗S where X∗S
denotes the real vector space of ρΣS,σS -invariant extensions of the linear
forms in Σ∗S = Hom(ΣS, R) (see Definition 4.3). Since ∆ is a basis of
V it further follows that Bht

G,B(S) := {htα,p : α ∈ ∆, p ∈ S} is a basis of
X∗S.

Definition 10.23. Let ht : Hom(Γ, R) → X∗S, χ 7→ htχ denote the
isomorphism that extends the bijection

BG,B(S)→ Bht
G,B(S), χα,p 7→ htα,p .

In order to describe the functions htα,p more precisely we will
identify the apartments Σp, where p ∈ S, with V via the equivariant
homeomorphism ιp : Σp → V from Proposition 9.36.

Remark 10.24. The diagonal action of an element ∏
α∈∆

hα(tα) on ΣS is

given by
x 7→ x− ∑

α∈∆
∑
p∈S

vp(tα)ι
−1
p (αV).
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Proof. This follows directly from Lemma 9.47 and Lemma 9.48.

We are now ready to prove the equivariance in a specific situation.

Lemma 10.25. Let χ ∈ Hom(Γ, R) be a character. For every element
γ ∈ T (OS) and every point x ∈ ΣS we have

htχ(γ(x)) = htχ(x) + χ(γ).

Proof. By the linearity of ht it suffices to proof the statement for the
basis characters. Thus let χ = χα,p for some α ∈ ∆ and some p ∈ S
and let γ = ∏

β∈∆
hβ(tβ) ∈ T (OS) be an arbitrary element. For every

element x ∈ ΣS we have

htχ(γ.x)

= htα,p(( ∏
β∈∆

hβ(tβ)).x)

= htα,p(x− ∑
β∈∆

∑
q∈S

vq(tβ)ι
−1
q (βV))

= htα,p(x)− ∑
β∈∆

∑
q∈S

vq(tβ) htα,p(ι−1
q (βV))

= htα,p(x) + ∑
β∈∆

∑
q∈S

vq(tβ)κα,p ◦ prp ◦ρΣS,σS(ι
−1
q (βV))

= htα,p(x) + ∑
β∈∆

∑
q∈S

vq(tβ)κα,p ◦ prp(ι
−1
q (βV))

= htα,p(x) + ∑
β∈∆

vp(tβ)κα,p(ι−1
p (βV))

= htα,p(x) + ∑
β∈∆

vp(tβ)κ
∗(α, βV)

= htα,p(x) + ∑
β∈∆

vp(tβ)〈β, α〉

= htα,p(x) + ∑
β∈∆

χα,p(hβ(tβ))

= htα,p(x) + χα,p( ∏
β∈∆

hβ(tβ))

= htχ(x) + χ(γ)

The following lemma summarizes how characters and their height
functions behave under the maps ρ and δ.

Lemma 10.26. Let χ ∈ Hom(Γ, R) be a character. Let further γ ∈ Γ be an
arbitrary element and let γ = tγuγ be the decomposition of γ into its torus
part tγ ∈ T (OS) and its unipotent part uγ ∈ U (OS). For every x ∈ XS we
have
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(a) htχ(ρ(x)) = htχ(x),

(b) χ(δ(γ)) = χ(γ),

(c) ρ(uγ(x)) = ρ(x),

(d) ρ(tγ(x)) = tγ(ρ(x)), and

(e) ρ(γ(x)) = δ(γ)(ρ(x)).

Proof. The properties (a) and (b) follow directly from the construction
of the basis characters and their corresponding height functions. To
prove (c) and (d) let x ∈ X be an arbitrary point and let Σ′ be an
apartment such that x ∈ Σ′ and σ ⊂ ∂∞Σ′. Let K1 be a common sector
of ΣS and Σ′ such that ∂∞K1 = σ. From the construction of U (OS)

we know that there is a subsector K2 of K1 that is fixed pointwise by
uγ. Let further Σ′′ = uγ(Σ′). Note that the restrictions of ρ to Σ′ and
Σ′′ fix K2. Thus the isomorphisms ρ ◦ uγ : Σ′ → ΣS and ρ : Σ′ → ΣS
fix K2 and hence coincide. In particular we obtain ρ(uγ(x)) = ρ(x)
and hence (c). By the same argument we see that the isomorphisms
ρ ◦ tγ : Σ′ → ΣS and tγ ◦ ρ : Σ′ → ΣS coincide since they coincide on a
subsector K2 of K1 which proves (d). By applying the above rules we
can derive (e).

ρ(γ(x)) = ρ(tγuγ(x)) = ρ(tγ(uγ(x)))

= tγ(ρ(uγ(x))) = tγ(ρ(x)) = δ(γ)(ρ(x))

We are now ready to prove the desired equivariance of the height
functions hχ.

Corollary 10.27. Let χ : Γ→ R be a character. With the notation above we
have

hχ(γ(x)) = χ(γ) + hχ(x) for every x ∈ XS and every γ ∈ Γ.

Proof. In view of Lemma 10.25 and the properties in Lemma 10.26 we
have

hχ(γ(x)) = hχ(ρ(γ(x))) = hχ(δ(γ)(ρ(x)))

= hχ(ρ(x)) + χ(δ(γ)) = hχ(x) + χ(γ).

10.5 sigma invariants of S-arithmetic borel groups

In this section we will prove the main results of this paper. In order
to state these results we start by recalling and introducing some
terminology. Let G = G(Φ, ρ, Q) be a Chevalley group, let B ⊂ G be
a Borel subgroup, and let Γ = B(OS) for some finite set of prime
numbers S ⊂ N. Let further ∆ ⊂ Φ be the set of simple roots that
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corresponds to B. We consider the action of G on its corresponding
Bruhat-Tits building XS = ∏

p∈S
Xp that was described in Section 10.1.

Recall from Definition 10.20 and Remark 10.21 that

BG,B(S) = {χα,p : α ∈ ∆, p ∈ S}

is a basis of Hom(Γ, R) and that

Bht
G,B(S) = {htα,p : α ∈ ∆, p ∈ S}

is a basis of X∗S. Thus we see that the subset ∆G,B(S) ⊂ S(Γ) that
is represented by the positive cone of BG,B(S) has the structure of a
closed simplex whose set of vertices is represented by BG,B(S).

We recall the following well-known fact about the thickness of Xp. It
follows for example from an application of the orbit-stabilizer theorem
to the BN-characterization of panels in Xp.

Remark 10.28. The thickness of Xp is given by p + 1.

We are now ready to prove our main result.

Theorem 10.29. Let G = G(Φ, ρ, Q) be a Chevalley group, let B ⊂ G be
a Borel subgroup, and let Γ = B(OS) for some finite set of prime numbers
S ⊂N. Suppose that

1. Φ is of type An+1, Cn+1, or Dn+1 and that

2. every prime factor p ∈ S satisfies p ≥ 2n in the An+1-case, respectively
p ≥ 22n+1 in the other two cases.

Then the Σ-invariants of Γ are given by

Σk(Γ) = S(Γ)\∆G,B(S)(k) for every k ∈N.

Proof. Let ∆ ⊂ Φ be the set of simple roots that corresponds to B. Let
χ : Γ → R be a character and let htχ : XS → R be its corresponding
height function as in Definition 10.23. From Corollary 10.27 we know
that htχ is an equivariant extension of χ. Since the action of Γ on XS is
cocompact by Theorem 10.12 and the stabilizers of cells are of type F∞

by Proposition 10.2, we can apply Theorem 2.47. This theorem tells
us for every k ∈ N0 that χ ∈ Σk+1(Γ) if and only if ((XS)htχ≥r)r∈R is
essentially k-connected. In order to apply Theorem 8.18, our geometric
main result, we have to check that XS and ∂∞XS satisfy the SOL-
property and that Aut(XS) acts strongly transitively on XS. The second
claim follows from the BN-characterization of XS (see Theorem 9.33).
To get the first claim we note that Remark 10.28 implies that the
thickness of th(XS) is given by th(XS) = min

p∈S
p + 1. Thus every link L

in XS satisfies th(L) ≥ 2n + 1 in the An+1 case, respectively th(L) ≥
22n+1 + 1 in the other two cases. This is exactly what we need to apply
Theorem 2.39 which tells us that L satisfies the SOL-property in the
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case where L is irreducible. The SOL-property of the reducible links
follows from the sphericity formula of joins (Lemma 2.21) applied to
the restriction of the join decomposition of spherical buildings ([29,
Proposition 1.15]) to the opposite complex of a chamber in L. Note
that we also may apply Theorem 2.39 to ∂∞XS since the boundary at
infinity of a thick building always satisfies th(∂∞XS) = ∞. Before we
can apply Theorem 8.18 we have to recall from Lemma 10.26, that htχ

is ρΣS,σS -invariant, where ΣS and σS ⊂ ∂∞ΣS are as in Section 10.4. Let
B(σS) ⊂ S((XS)

∗) denote the set of classes αP of functions that are
negative on K0(σS) and constant on K0(P) for some panel P of σS and
the origin 0 ∈ ΣS. The convex hull of B(σS) in S(X∗S) will be denoted
by ∆(σS). An application of Theorem 8.18 to the present setting now
gives us the following.

1. [htχ] /∈ ∆(σS) if and only if ((XS)htχ≥r)r∈R is essentially con-
tractible.

2. If [htχ] ∈ ∆(σS) and 0 ≤ k < dim(∆(σS)) then [h] is contained
in ∆(σS)

(k+1)\∆(σS)
(k) if and only if (Xhtχ≥r)r∈R is essentially

k-connected but not essentially (k + 1)-acyclic.

Note that the construction of the functions htα,p (Definition 10.22)
implies that their union Bht

G,B(S) is a system of representatives of B(σS).
Since htχ is the image of the isomorphism ht : Hom(Γ, R)→ X∗S which
extends the bijection

BG,B(S)→ Bht
G,B(S), χα,p 7→ htα,p

we see that [htχ] ∈ ∆(σS)
(k) if and only if [χ] ∈ ∆G,B(S)(k) which

proves the claim.

In view of Theorem 2.48 we can translate Theorem 10.29 to the
following result about finiteness properties of subgroups of B(OS).

Corollary 10.30. Let G = G(Φ, ρ, Q) be a Chevalley group, let B ⊂ G be
a Borel subgroup, and let Γ = B(OS) for some finite set of prime numbers
S ⊂N. Suppose that

1. Φ is of type An+1, Cn+1, or Dn+1 and that

2. every prime factor p ∈ S satisfies p ≥ 2n in the An+1-case, respectively
p ≥ 22n+1 in the other two cases.

Then for every subgroup [Γ, Γ] ≤ H ≤ Γ and every k ∈N we have

H is of type Fk if and only if H * ker(χ) for every χ ∈ ∆G,B(S)(k).
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