
On the superposition principle
for linear and nonlinear

Fokker–Planck–Kolmogorov equations
on Hilbert spaces

Dissertation
zur Erlangung des akademischen Grades

Doktor der Mathematik (Dr. math.)

Martin Dieckmann

Supervisor: Prof. Dr. Michael Röckner
Faculty of Mathematics
Bielefeld University
January 2020





Contents

1 Introduction 1

2 Mathematical preliminaries 13

I On the superposition principle for linear FPKEs 17

3 Martingale problems on Hilbert spaces 19
3.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Equation, Solution, Assumptions . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Martingale solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Martingale problem and associated SDE . . . . . . . . . . . . . . . 24
3.2.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Infinite-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.2 Finite-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Linear FPKEs in infinite dimensions 45
4.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Equation, Solution, Assumptions . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Notion of solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Superposition principle on Rd 61
5.1 Framework, Equation, Solution, Assumptions . . . . . . . . . . . . . . . . 62

5.1.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.2 Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.3 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 The Ambrosio–Figalli–Trevisan superposition principle . . . . . . . . . . . 64
5.2.1 Ambrosio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.2 Figalli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.3 Trevisan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Generalized integrability condition . . . . . . . . . . . . . . . . . . . . . . 65

iii



Contents

6 On the superposition principle on H 69
6.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2 Equations and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.1 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.1 Auxiliary consistency results on Hn . . . . . . . . . . . . . . . . . . 77

6.4 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7 Application: stochastic Navier–Stokes equations 87

8 Conclusion and perspective 91

II On the superposition principle for nonlinear FPKEs 93

9 Nonlinear FPKEs and MPs associated to McKean–Vlasov equations 95
9.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.2 Nonlinear FPKEs in infinite dimensions . . . . . . . . . . . . . . . . . . . . 97

9.2.1 Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.2.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.3 MPs associated to McKean–Vlasov equations . . . . . . . . . . . . . . . . . 97
9.3.1 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.3.2 Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

10 Nonlinear Version: Superposition principle on H 99
10.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Bibliography 109

iv



Chapter 1

Introduction

Consider the Rn-valued stochastic differential equation (in short: SDE) of the form

dX(t) = b
(
t,X(t)

)
dt+ σ

(
t,X(t)

)
dW (t),

X(0) = x0,n

(SDEn)

on [0, T ] for some T > 0, where (W (t))t∈[0,T ] is an n-dimensional Wiener process with
respect to a normal filtration (Ft)t∈[0,T ] and x0,n is some vector in Rn. Furthermore, b and
σ are Borel measurable mappings from [0, T ]× Rn to Rn and Rn×n, respectively.

This kind of equation appears in various fields of science, where the effects of random
perturbations are decisive for the dynamics of the described phenomenon. Among them
are most prominently physics (e.g. Langevin equations), economics (e.g. the Black–Scholes
model) and biology (e.g. models on population growth or epidemics).

The study of existence and uniqueness of solutions to Equation (SDEn) has been
a very active topic of mathematical research during the last 75 years. Naturally, this
created a variety of approaches with different notions of solution and assumptions on
the coefficients b and σ necessary for it. On the one hand, results considering strong
solutions to Equation (SDEn) go back to those with Lipschitz conditions by K. Itô (see
e.g. [Itô42; Itô46; Itô51]) as part of his original Itô-calculus. From there, plenty of famous
works generalized and improved these assumptions. Some of the most striking ones are
e.g. [Ver80] by A. Y. Veretennikov, where b can be bounded and σ some non-degenerate
multiplicative noise, or for singular drifts [KR05] by N. V. Krylov and M. Röckner, where
equations with locally integrable b and additive noise σ were studied, and [Zha05] by
X. Zhang, where b can again be locally integrable, but σ even a continuous uniformly
non-degenerate Sobolev diffusion.

Tanaka’s example (see e.g. [RW87, Example 16.5, p. 150]), on the other hand, unde-
niably shows the importance of the study of weak solutions to Equation (SDEn). Here,
in particular the results of A. V. Skorokhod (see [Sko61; Sko62]), where the coefficients
b and σ are assumed to be continuous functions of at most linear growth, stand out the
most. The famous Yamada–Watanabe theorem (see [YW71]) is of great importance for
connecting those two notions by only having to prove pathwise uniqueness to obtain a
strong solution from a weak solution.

A variation of the “weak” approach was developed by D. W. Stroock and S.R.S. Varad-
han (see [SV69; SV79]) and is famously known as the martingale problem. While this
method does not involve the SDE explicitly, it is in fact still an equivalent formulation to
the idea of weak solutions (see e.g. [Kur11, p. 114f]). Let us note, that we will be solely
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Chapter 1. Introduction

interested in the notion of a martingale solution in the original sense of Stroock–Varadhan
while working with SDEs throughout this thesis and do not focus on the, in the literature
often naturally established, link to weak solutions.

Instead of considering Equation (SDEn) directly, we setA := 1
2
σσ∗ withA = (aij)1≤i,j≤n

and consider the corresponding Kolmogorov operator L, which is given by

Lϕ(t, y) =
n∑

i,j=1

aij(t, y)∂yi∂yjϕ(y) +
n∑
i=1

bi(t, y)∂yiϕ(y)

if the functions ϕ : Rn −→ R are sufficiently smooth.
The fundamental idea of Stroock–Varadhan’s approach is to study well-posedness of

the martingale problem, i.e. to prove existence and uniqueness of probability measures Pn
on the path space C([0, T ];Rn) satisfying Pn[xn(0) = x0,n] = 1 and ensuring that, for all
f ∈ C∞c (Rn), the process

f(xn(t))− f(x0,n)−
∫ t

0

Lf(s, xn(s)) ds (1)

is a martingale with respect to Pn, where xn is the canonical process on C([0, T ];Rn).
Such a measure Pn is then called martingale solution to the martingale problem for L
with coefficients A and b starting from x0,n.

The operator L is also a cornerstone for another type of equation, namely for Fokker–
Planck–Kolmogorov equations (in short: FPKE), named after A. Fokker (see [Fok14]),
M. Planck (see [Pla17]) and A. Kolmogorov (see [Kol31; Kol33; Kol37]), which are second
order elliptic or parabolic equations for measures. Together with some initial distribution
in a suitable sense, the considered equation is a Cauchy problem (in short: CP), written
in shorthand notation

∂tµn = L∗µn,

µn �t=0 = νn,
(CPn)

where L∗ is the formal adjoint (with respect to the spatial variable) of the operator L and
νn is a Borel probability measure on Rn. A so-called probability solution µn of the form
µn = µt,ndt to Equation (CPn) is a family of Borel probability measures (µt,n)t∈[0,T ] for
which, for every function ϕ ∈ C∞c (Rn), the integral equality∫

Rn
ϕ(y)µt,n(dy) =

∫
Rn
ϕ(y) νn(dy) +

∫ t

0

∫
Rn
Lϕ(s, y)µs,n(dy) ds (2)

is satisfied for all t ∈ [0, T ].
Since the operator L appears both in the martingale problem and Cauchy problem, an

obvious question would be if and how probability and martingale solutions are connected.
Let us mention that this problem is actually most interesting and useful if we have no
information on uniqueness (as we will see below). Hence, we will restrict our considera-
tions within this thesis to a setting with no assumptions on uniqueness, neither for the
martingale problem nor for the Cauchy problem.

One direction of the connection is pretty simple and has been known right from the
start: Assume we are given a martingale solution Pn, then we know that the process in
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Equation (1) is a continuous martingale. Hence, we can take expectations with respect
to Pn yielding (under suitable integrability conditions) that

0 =

∫
f(xn(t)) dPn −

∫
f(x0,n) dPn −

∫ ∫ t

0

Lf(s, xn(s)) ds dPn

=

∫
Rn
f(y) Pn ◦ xn(t)−1(dy)−

∫
Rn
f(y) εx0,n(dy)−

∫ t

0

∫
Rn
Lf(s, y) Pn ◦ xn(s)−1(dy) ds

holds. Consequently, we can choose the measures µt,n := Pn ◦ xn(t)−1 which satisfy
Equation (2) for the initial Dirac measure νn := εx0,n . This means that our probability
solution is directly created by the martingale solution through its 1-marginal laws (also
called time-marginals).

Finite-dimensional superposition principle. The other direction was established by
the Ambrosio–Figalli–Trevisan superposition principle (in short: superposition principle),
which goes back to the work of L. Ambrosio, A. Figalli and D. Trevisan (see especially
[Amb08; Fig08; Tre16]).

Under the assumed integrability condition∫ T

0

∫
Rn

(
‖A(t, y)‖+ ‖b(t, y)‖Rn

)
µt,n(dy) dt <∞,

D. Trevisan proved that existence of a “narrowly continuous” probability solution to an
FPKE implies existence of a martingale solution such that its 1-marginals coincide with
the given probability solution, i.e. that

Pn ◦ xn(t)−1 = µt,n (SPn)

holds for every t ∈ [0, T ]. We refer to Chapter 5 of this thesis for more details.
This seminal result was the starting point for several further articles exploring this

direction in recent times. For example, see [RXZ19] for a version for nonlocal FPKEs,
[BR18a] for a version for nonlinear FPKEs, or [BRS19], in which a weakened integrability
condition is imposed.

For us, Trevisan’s superposition principle on Rn in [Tre16] raised the question if we
can prove an infinite-dimensional analogue. Actually, one could directly answer this in the
affirmative, because there is already a version in [Tre14, Section 7.1] on R∞ equipped with
the product topology (i.e. solutions of the martingale problem are probability measures
on C([0, T ];R∞)), but we are rather interested in the Hilbert space case with respect to
the norm topology, which is in itself a very different approach to the problem. In general,
we have to impose stricter (but still commonly used) compactness assumptions to ensure
that the constructed martingale solutions are supported on a path space with values in
a separable Hilbert space and continuity with respect to the norm topology of e.g. an-
other, larger separable Hilbert space instead of on C([0, T ];R∞) with its componentwise
continuity.

The mentioned interest is substantial because, first of all, many applications typi-
cally have their setting in Hilbert spaces. More importantly, our initial motivation is
to study the following related problem for which the superposition principle on R∞ is
insufficient. In the articles [GRZ09] and [RZZ15], the authors construct a solution to an
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Chapter 1. Introduction

infinite-dimensional martingale problem on a separable Hilbert space as a weak limit of
finite-dimensional solutions. The authors of [BDRS15] (see also [BKRS15, Section 10.4])
construct a solution to a corresponding infinite-dimensional Cauchy problem in a very
similar way. In both cases, we do not have information on uniqueness of such solutions.
This means, that with a solution to the martingale problem we obtain some solution to
the Cauchy problem by simply setting µt := P ◦ x(t)−1, as in finite dimensions, but we
do not know if this is the particular kind of solution, with all of its properties, that has
been constructed with the methods in [BDRS15].

Our approach for an answer is to study both problems simultaneously and to crucially
make use of the finite-dimensional superposition principle. This way we solve the mar-
tingale problem with a solution that is determined by a solution of the FPKE through
the 1-marginals. For a start and for simplicity, we impose the combination of both sets
of respective assumptions, because we are confident that coefficients in potential applica-
tions will satisfy them anyway. We will later see in Chapter 7 that this is e.g. the case for
stochastic Navier–Stokes equations, but there still is obvious potential for improvement.

The aim and content of this thesis is twofold, leading even a bit beyond that described
problem to two versions of a superposition principle. In the first part we will, on the
one hand, prove a joint existence theorem (see Theorem 6.3.1 below) for solutions of
Cauchy problems for (linear) FPKEs and martingale problems on a separable Hilbert
space H via superposition as described above. The constructed solutions then satisfy the
infinite-dimensional analogue of Equation (SPn) (see Equation (SP) below). On the other
hand, from our method of construction, we directly obtain a restricted version of the
superposition principle on H (see Corollary 6.3.4 below) to a subclass of solutions that
can be represented as a limit of some (later specified) weakly convergent sequence. The
second part will be of smaller scope taking up the idea of dealing with nonlinearity via
“freezing”, as presented in [BR18b, Section 2] and also in [BR18a, Section 2]. It contains an
adaptation of our restricted superposition principle (see Theorem 10.2.1 below) to the case
of Cauchy problems for nonlinear FPKEs and martingale problems related to so-called
McKean–Vlasov equations (also called distribution dependent SDEs in the literature).

Before explaining those results in more detail, let us first briefly introduce infinite-
dimensional martingale problems and FPKEs, whose mere concepts carry over from the
finite-dimensional case pretty much analogously.

Martingale problems on Hilbert spaces. Under the assumption that there exists
another separable Hilbert space X such that the embedding X ⊆ H ' H∗ ⊆ X∗ is contin-
uous, dense and compact and that {e1, e2, . . .} ⊆ X for an orthonormal basis {e1, e2, . . .}
of H, we consider the Borel measurable mappings

σ : [0, T ]×H −→ L2(U;H),

b : [0, T ]×H −→ X∗,

where U is another separable Hilbert space. In this setting, we can study the following
martingale problem on H:

Existence of a martingale solution P ∈ P(C([0, T ];X∗) ∩ Lp([0, T ];H))
in the sense of Stroock–Varadhan’s martingale problem for the coefficients

b and σ and with initial value x0 ∈ H.
(MP)

4



An initial difference between the infinite-dimensional and the finite-dimensional case
of being a solution in the sense of Stroock–Varadhan is that, for convenience, we choose to
state the martingale property in the “weak formulation” (as e.g. in [GRZ09]; see Definition
3.2.1 below). This means, that for every ` ∈ span{e1, e2, . . .} the process M` defined by

M`(t, x) := X∗〈x(t), `〉X −
∫ t

0
X∗〈b

(
s, x(s)

)
, `〉X ds, t ∈ [0, T ],

has to be a continuous (Ft)-martingale with respect to P , whose quadratic variation
process is given by

〈M`〉(t, x) :=

∫ t

0

∥∥σ∗(s, x(s)
)
(`)
∥∥2

U ds, t ∈ [0, T ],

where x is the canonical process on C([0, T ];X∗). Later in Corollary 6.3.2 we show that
this “weak formulation” in fact implies the infinite-dimensional analogue of Equation (1)
stated via the Kolmogorov operator L.

We follow the articles [GRZ09; RZZ15] (including their more general setting) in our
considerations and mainly impose assumptions on demicontinuity, coercivity and growth
(see Assumptions (A1)–(A3) in Subsection 3.2.3) on the coefficients. In Chapter 3 of this
thesis we will present an elaborate, combined version of the main theorems in [GRZ09]
and [RZZ15] proving existence of a martingale solution to the martingale problem (MP).

FPKEs in infinite dimensions. The mere concept of infinite-dimensional (linear)
FPKEs also remains basically the same. Now, we identify H with `2, denote by {e1, e2, . . .}
the standard orthonormal basis in `2 and consider the continuous and dense embedding
`2 ⊆ R∞, where R∞ is equipped with the product topology, thus becoming a Polish space.
Then we focus on the Borel measurable mappings

aij : [0, T ]× R∞ −→ R,
bi : [0, T ]× R∞ −→ R

for every i, j ∈ N.
They induce a Kolmogorov operator L that is acting on suitable finitely based func-

tions, i.e. any function ϕ : R∞ −→ R that is, for some d ∈ N, a function of class C2 in
finitely many variables y1, . . . , yd, which is given by

Lϕ(t, y) =
d∑

i,j=1

aij(t, y)∂ei∂ejϕ(y) +
d∑
i=1

bi(t, y)∂eiϕ(y),

for (t, y) ∈ [0, T ]×R∞. Then the infinite-dimensional Cauchy problem can be written in
shorthand notation as

∂tµ = L∗µ,

µ�t=0 = ν,
(CP)

where L∗ is again the formal adjoint (with respect to the spatial variable) of L and ν is
a Borel probability measure on R∞.

5



Chapter 1. Introduction

Now, a probability solution µ on [0, T ]× R∞ of the form µ = µtdt to Equation (CP)
(see Definition 4.2.1 below) is a family of Borel probability measures (µt)t∈[0,T ] on R∞ for
which, for every function ϕ in a suitable space of finitely based functions (depending on
the basis vectors {e1, e2, . . .}), we have∫

R∞
ϕ(y)µt(dy) =

∫
R∞

ϕ(y) ν(dy) +

∫ t

0

∫
R∞

Lϕ(s, y)µs(dy) ds

for dt-a.e. t ∈ [0, T ].
We follow the Monograph [BKRS15, Section 10.4] in our considerations and mainly im-

pose assumptions on symmetry and definiteness of the matrices (aij)1≤i,j≤n, on a compact
function Θ, on a Lyapunov function V, including the Lyapunov condition

LV (t, y) ≤ C0V (y)−Θ(y)

(which we assume to hold on finite-dimensional subspaces), and on the growth and conti-
nuity of the coefficients A = (aij)1≤i,j<∞ and b (see Assumptions (H1)–(H4) in Subsection
4.2.3). In Chapter 4 of this thesis we will present an elaborate version of the main theorem
in [BKRS15, Section 10.4] proving existence of a probability solution to Equation (CP).

Joint existence theorem via superposition. Under the combined assumptions of
Chapters 3 and 4 (see Subsection 6.2.2 below), we prove a joint existence theorem gen-
erating solutions P and µ that satisfy P ◦ x(t)−1 = µt for every t ∈ [0, T ] while keeping
their individual properties/estimates proved before during their separate construction.
For that, we identify the space H with `2 and X with the weighted `2-space `2(λi) for
some sequence (λi)i∈N converging to ∞. Then we can consider the embedding

`2(λi) ⊆ `2 ⊆ `2
(

1
λi

)
⊆ R∞

and extend our given functions b and σ from Chapter 3 to R∞ by 0 to obtain suitable
components bi and aij as in Chapter 4.

The main theorem of the first part (see Theorem 6.3.1 below) is stated as follows:

Theorem. Under the assumptions from Subsection 6.2.2 there exists a probability solu-
tion µ = µt dt on [0, T ]×H to the Cauchy problem (CP) in the sense of Definition 4.2.1
and a martingale solution P ∈ P

(
C([0, T ];X∗)∩Lp([0, T ];H)

)
to the martingale problem

(MP) in the sense of Definition 3.2.1, for which the 1-marginal laws of P coincide with
µt, i.e.

P ◦ x(t)−1 = µt (SP)

holds for every t ∈ [0, T ]. In particular, Estimates (3.3.1) and (4.3.2) as well as Equation
(4.3.3) hold.

From Equation (SP) we also conclude that the mapping t 7−→ µt is continuous with
respect to the topology generated by finitely based functions (see Corollary 6.3.3 below).

As mentioned before, the separate assumptions for the martingale problem (MP) and
Cauchy problem (CP) directly ensure existence for both individual solutions, but without
any additional information (e.g. on uniqueness) we a priori cannot specify their connection.
Hence, the interesting part of the theorem is in fact the method of proof, which is making
use of the finite-dimensional superposition principle to control the 1-marginals in the limit.

6



Idea of proof of Theorem 6.3.1. Let us explain the idea of proof of Theorem 6.3.1
by first showing a figure that describes the scheme which we will follow.

H
{e1, e2, . . .}

projections
Πn

��

(CP)
µt

(MP)
P

Hn
{e1, . . . , en}

(CPn)
µt,n

weak convergence
of subsequence

µ̄t,nk
w−−−→

k→∞
µt

OO

superposition principle
∃Pn with µt,n=Pn◦xn(t)−1

// (MPn)

Pn

weak convergence
of subsequence

P̄nk
w−−−→

k→∞
P

OO

Figure 1.1: Idea and scheme of the proof of the joint existence theorem.

Starting with an infinite-dimensional setting on H, we use Galerkin approximations
and, therefore, project everything via mappings Πn onto the finite-dimensional spaces
Hn, that are defined to be the linear span of {e1, . . . , en}. On Hn we ensure that, for any
n ∈ N, there exist solutions µt,n to the Cauchy problems (CPn) with coefficients Πnb and
ΠnAΠ∗n and that we can apply a version of Trevisan’s finite-dimensional superposition
principle to them, which we present in Chapter 5 of this thesis in detail.

Then we obtain, on the one hand, a family of probability solutions (µt,n)n∈N and, on the
other hand, directly for every n ∈ N constructed by the superposition principle, a family of
martingale solutions (Pn)n∈N, that are connected by Equation (SPn). By using the same
techniques and calculations that we comprehensively study in the existence proofs in
Chapters 3 and 4, we prove tightness of both families. From there, we conclude existence
of subsequences (µt,nk)k∈N and (Pnk)k∈N (by a diagonal argument on a joint index set)
that each converges weakly to a solution of the respective infinite-dimensional equation,
i.e. µt and P from the figure above. Most importantly, we show that the 1-marginal laws
of this infinite-dimensional martingale solution coincide with the probability solution of
the infinite-dimensional Cauchy problem, i.e. that Equation (SP) holds.

In short, we note that the concurrent study of weak convergence of finite-dimensional
Cauchy and martingale solutions, the correspondence of their infinite-dimensional limits µ
and P via Equation (SP) as well as the method by which P is basically “generated” by the
family (µt,n)n∈N of solutions to (CPn) via the finite-dimensional superposition principle
are the key points of this result.

Superposition principle on Hilbert spaces. From the scheme of proof of Theorem
6.3.1, we directly obtain a corollary (see Corollary 6.3.4 below), which is a restricted
superposition principle on H to a subclass of solutions.

Its conditional formulation is closely related to the original statement of Trevisan’s
finite-dimensional superposition principle, but too extensive for an introduction. Let us
break down its core essence as follows:

If we are given any solution µ to the Cauchy problem (CP), for which there already
exists a subsequence (µt,nk)k∈N of finite-dimensional solutions being created by Galerkin

7



Chapter 1. Introduction

approximations and converging weakly to µ as well as the necessary integrability condi-
tions and assumptions for the corresponding martingale problem, we obtain a solution P
to the martingale problem (MP) satisfying Equation (SP).

We acknowledge that this subclass of solutions to Equation (CP) for which the re-
stricted superposition principle holds is difficult to identify. However, we can directly see
that it is a convex set.

Future research. One next step for future research is to unify the collected assumptions
in Subsection 6.2.2. In particular, the coercivity from the part on martingale problems
should be replaced by an assumption similar to the Lyapunov condition seen in the part
on FPKEs.

Obviously, we are also interested in proving the restricted superposition principle from
Corollary 6.3.4 for larger or at least easier to identify subclasses of solutions to an FPKE
than a family of solutions that can be represented as limits of some weakly convergent sub-
sequences of certain finite-dimensional solutions. But, since this requires further research,
we see our result as a first step and “proof of concept” in that direction.

In Chapter 8 of this thesis, we briefly elaborate on more directions of research that
might benefit from our studies. Among them are restricted well-posedness for FPKEs and
martingale problems and existence of flows for FPKEs.

Application: d-dimensional stochastic Navier–Stokes equation. In Chapter 7,
we discuss one possible application for the methods studied in Theorem 6.3.1, namely
d-dimensional stochastic Navier–Stokes equations. We focus on showing the connection
between the already existing example for FPKEs in [BDRS15, Example 3.5, p. 17f], which
can partly also be found in [BKRS15, Example 10.1.6, p. 411f and Example 10.4.3, p. 425f],
and the one for martingale problems in [GRZ09, Chapter 6, p. 1749ff] and [RZZ15, Section
5.1, p. 377f] in order to fit everything into our combined framework. For clarifications on
the basic setting we will refer to the classical book [Tem77] by R. Temam (and also partly
to the article [FG95]).

In short, we will show that the solution to the FPKE of the d-dimensional stochastic
Navier–Stokes equation obtained in [BDRS15, Example 3.5] is indeed identical with the
1-marginals of a solution to the corresponding martingale problem.

Nonlinear superposition principle. In the second part of the thesis we adapt Corol-
lary 6.3.4 to a nonlinear version of the restricted superposition principle onH (see Theorem
10.2.1 below).

For this, we consider coefficients b and σ that can in addition explicitly depend on
measures, i.e.

b : [0, T ]×H× P(H) −→ X∗,
σ : [0, T ]×H× P(H) −→ L2(U,H).

This leads to Cauchy problems for nonlinear FPKEs, where this dependence is on the
solution itself, i.e. we study the Kolmogorov operator Lµ given by

Lµϕ(t, y) =
∑
i,j

aij(t, y, µt)∂ei∂ejϕ(y) +
∑
i

bi(t, y, µt)∂eiϕ(y)
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for sufficiently smooth finitely based functions ϕ : R∞ −→ R. For an extensive list of
applications of nonlinear FPKEs we refer to [Fra05, p. 8].

Now, the conditional formulation of Corollary 6.3.4 allows us to make use of the idea
in [BR18a] and [BR18b, Section 2] on “freezing” of a nonlinear solution. This means, that
if we are given a probability solution µ to a nonlinear FPKE

∂tµ = L∗µ µ,

we fix this µ and consider the linear FPKE

∂t% = L∗µ %

for which µ is a particular solution. This allows us to apply results for linear Cauchy
problems, but now with coefficients depending on some fixed measure µt. In our case,
we will assume that the assumptions on our coefficients are uniform in the measure-
component (see Assumptions (NN), (NA1)–(NA3) and (NH1) in Section 10.1 below)
and, hence, satisfy all assumptions necessary for Corollary 6.3.4.

What’s more, the martingale solution that we obtain for the martingale problem with
coefficients b(·, ·, µ·) and σ(·, ·, µ·) is connected to so-called McKean–Vlasov SDEs (as we
explain in Subsection 9.3.2).

McKean–Vlasov equations are distribution dependent stochastic differential equations
(sometimes also shortly called DDSDEs in the literature) of the form

dX(t) = b
(
t,X(t),LX(t)

)
dt+ σ

(
t,X(t),LX(t)

)
dW (t),

where the coefficients b and σ can explicitly depend on the law of the X(t).
Their name goes back to A. Vlasov (see e.g. the reprinted article [Vla68]), who orig-

inally proposed an idea for this kind of equation in 1938, and H. McKean (see [McK66;
McK67]), who was the first to study them systematically. Besides many classical re-
sults (see e.g. [Fun84], [Szn84], [Sch87]) following up in this direction, there has been
growing interest in this field of research recently, resulting in new finite-dimensional
works like [Wan18], [MV16], [HW19], [HŠS18], [RST18], [BR18a], [HRW19] and [CG19].
Infinite-dimensional results for McKean–Vlasov equations are, however, less common, but
e.g. studied in [AD95], [KX95, Chapter 9] and lately in [BM19] as well as in two master
theses at Bielefeld University, from which the one by R. Heinemann, that also covers
delay, is in preparation to be published in the near future.

Structure of the thesis.
In Chapter 2, we state some basic notation and essentials used throughout the thesis.

Part I:
Chapter 3 begins with a detailed explanation of the framework (see Sections 3.1 and 3.2
below) for martingale problems on Hilbert spaces including the notion of a martingale
solution in Subsection 3.2.1. In Section 3.3 we state the existence theorem (see Theorem
3.3.1 below) for which we need all assumptions imposed before in Subsection 3.2.3. Section
3.4 contains a comprehensive proof for both the infinite-dimensional (see Subsection 3.4.1
below) and the finite-dimensional (see Subsection 3.4.2 below) case. In particular, Lemma
3.4.2 is proved there, which comprises a crucial a priori energy estimate. The main
references for this chapter are [GRZ09; RZZ15].

9



Chapter 1. Introduction

In Chapter 4, we first introduce the necessary framework (see Sections 4.1 and 4.2
below) for infinite-dimensional Cauchy problems including the notion of a probability
solution in Subsection 4.2.2. Imposing the assumption from Subsection 4.2.3, we then
state two existence theorems (see Theorems 4.3.1 and 4.3.2 below) in Section 4.3. Section
4.4 is devoted to an extensive proof of Theorem 4.3.1, which is preceded by a lemma on
countable measure-separating families of functions (see Lemma 4.4.1 below). Section 10.4
of the Monograph [BKRS15] is our reference of choice for this chapter.

Chapter 5 starts with the necessary framework (see Section 5.1.1 below) for FPKEs
and martingale problems in finite dimensions. After a historical overview in Section
5.2 discussing results from the articles [Amb08], [Fig08] and [Tre16], we state a finite-
dimensional superposition principle (see Theorem 5.3.1 below) in Section 5.3, which was
proved in [BRS19] and will be our reference of choice when applying the superposition
principle to probability solutions in finite dimensions later in Chapter 6.

In Chapter 6 we combine our considerations from Chapters 3–5. After recalling the
essential framework (see Sections 6.1 and 6.2), we collect all necessary assumptions in
Subsection 6.2.2. In Section 6.3 we state the main result of this first part of the thesis,
i.e. a joint existence theorem (see Theorem 6.3.1 below), as well as further properties of
the solutions (see Corollaries 6.3.2 and 6.3.3). In addition, we also state Corollary 6.3.4,
a restricted superposition principle on H. We devote Subsection 6.3.1 to following up on
questions concerning consistency, which appeared and were mentioned in the prior chap-
ters, in particular those concerning the definition of martingale and probability solutions
in finite dimensions. Finally, in Section 6.4 we give a comprehensive proof of Theorem
6.3.1.

Chapter 7 consists of the application of the methods studied in Theorem 6.3.1 to
d-dimensional stochastic Navier–Stokes equations. The main references are [BDRS15;
GRZ09; RZZ15] and supplementing basics are taken from [Tem77; FG95].

Finally, in Chapter 8 we give a short outlook on future research.

Part II:
Chapter 9 begins in Section 9.1 with laying out the essential framework for the nonlinear
case. In Section 9.2 we explain all necessary details for Cauchy problems for nonlinear
FPKEs, including the corresponding notion of solution in Definition 9.2.1, which is a
generalization of Chapter 4. Subsequently, in Section 9.3 we concentrate on martingale
problems for coefficients depending explicitly on a fixed measure and their connection to
McKean–Vlasov equations, including the corresponding notion of solution in Definition
9.3.1.

In Chapter 10, after imposing all necessary assumptions in Section 10.1, we state and
prove in Section 10.2 the main result of this second part of the thesis, i.e. a nonlinear
version of the restricted superposition principle on H (see Theorem 10.2.1 below).
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Chapter 2

Mathematical preliminaries

Let us begin by stating some basic notation and essentials used throughout this thesis.
For a topological space U the expression B(U) will denote the Borel-σ-algebra of U .

A map f : U1 −→ U2 between topological spaces U1 and U2 is said to be Borel-measurable
if it is B(U1)/B(U2)-measurable. Sometimes f will also simply be called Borel function.

Spaces of measures. We will use the following notation for spaces of measures on some
measurable space (S,B(S)):

P(S) space of all Borel probability measures,
M+(S) space of all nonnegative finite Borel measures.

Spaces of continuous functions. For an open set Γ ⊆ Rd, two topological spaces U1

and U2, a metric space V2 and a normed space X2, we will use the following notation for
spaces of continuous functions:

C(U1;U2) cont. functions from U1 to U2,
Cb(U1;V2) cont. functions from U1 to V2 that are bounded,
Cc(U1;X2) cont. functions from U1 to X2 with compact support,
Ck(Γ;R) cont. functions from Γ to R with k continuous derivatives

and all types of admissible combinations of the above, supplemented most prominently
by

C∞c (Γ;R) smooth functions from Γ to R with compact support.

The notation C(U1) always refers to the case where U2 = R (analogously for the other
spaces).

For a sequence of Borel measures (µn)n∈N on a measurable space (S,B(S)) that con-
verges weakly to a Borel measure µ on (S,B(S)), i.e. for every f ∈ Cb(S) we have

lim
n→∞

∫
S

f dµn =

∫
S

f dµ,

we write µn
w−−−→

n→∞
µ. If this equation holds for every f ∈ Cc(S), the convergence is called

vague and denoted by µn
v−−−→

n→∞
µ.

13



Chapter 2. Mathematical preliminaries

Furthermore, recall that a family of probability measures M on a topological space U
is called tight if for every ε > 0 there exits a compact set Kε ⊆ U such that

µ(U \Kε) < ε

for every µ ∈M .

Lp/`p-spaces. Let p ∈ [1,∞). For a measure space (S,S, µ) and a normed space
(X,B(X)) with norm ‖ · ‖X , we will use the following notation for Lp-spaces:

Lp(S;X,µ) space of equivalence classes of µ-measurable functions f : S −→ X

such that ‖f‖Lp :=

(∫
S

‖f‖pX dµ

) 1
p

<∞.

The notation Lp(S;X) always refers to the classical Lebesgue measure and Lp(S, µ) means
the case where X = R. If we in particular write Lploc([0, T ]×Rd, µ), we mean Lp-integrable
on compact sets in [0, T ]× Rd.

For p ∈ [1,∞), we use the following notation for the special case of sequence spaces:

`p space of all sequences (yn)n∈N, yn ∈ R, such that
∑
n∈N

|yn|p <∞,

and for the weighted `p-space for some arbitrary sequence (λn)n∈N with λn ≥ 0:

`p(λn) space of all sequences (yn)n∈N, yn ∈ R, such that
∑
n∈N

λn|yn|p <∞.

Spaces of finitely based functions. Let {e1, e2, . . .} be the standard orthonormal
basis in the separable Hilbert space `2. Consider the continuous and dense embedding

`2 ⊆ R∞.

Then we define the following classes of so-called finitely based functions given by

FC2({ei}) :=
{
f : R∞ −→ R

∣∣ f(y) = g
(
y1, . . . , yd

)
, d ∈ N, g ∈ C2(Rd)

}
,

FC∞c ({ei}) :=
{
f : R∞ −→ R

∣∣ f(y) = g
(
y1, . . . , yd

)
, d ∈ N, g ∈ C∞c (Rd)

}
,(

where we can write f(y) = g
(
〈y, e1〉`2 , . . . , 〈y, ed〉`2

)
if y ∈ `2

)
,

(2.0.1)

(see e.g. [MR92, p. 54] or [BKRS15, p. 404f]).
Note that by identifying the finite-dimensional space Hn := span{e1, . . . , en} with

Rn, a vector (y1, . . . , yn, 0, . . .) ∈ Hn can be treated as (y1, . . . , yn) ∈ Rn. In return, we
will tacitly treat any y ∈ Rn whenever necessary as an element in R∞ by considering
(y1, . . . , yn, 0, . . .) in the following.

Sobolev spaces. Let p ∈ [1,∞), k ∈ N ∪ {0} and let Γ ⊆ Rd be an open set. Then we
denote Sobolev spaces as follows:

W k,p(Γ) space of functions f ∈ Lp(Γ) such that all of its mixed partial weak
derivatives up to order k are of class Lp(Γ),

14



i.e. W k,p(Γ) := {f ∈ Lp(Γ) | Dαf ∈ Lp(Γ) for all |α| ≤ k}. The space is equipped with
the norm

‖u‖Wk,p :=
∑
|α|≤k

‖Dαu‖Lp .

For p = 2, the norm is induced by the inner product

〈u1, u2〉Wk,2 :=
∑
|α|≤k

〈Dαu1, D
αu2〉L2

making W k,2(Γ) a Hilbert space. We choose to use the common notation H2,k instead of
W k,2, which in particular helps us to better distinguish from Wiener processes which we
usually denote by W .

Hilbert–Schmidt operators and matrices. If A is an operator, then A∗ denotes
its adjoint operator and trA its trace. For two separable Hilbert spaces H1 and H2,
let L2

(
H1;H2

)
be the space of all Hilbert–Schmidt operators from H1 to H2 with inner

product 〈·, ·〉L2(H1;H2) and norm ‖ · ‖L2(H1;H2). Note that for an operator L ∈ L2

(
H1;H2

)
we have L∗ ∈ L2

(
H2;H1

)
and ‖L‖L2(H1;H2) = ‖L∗‖L2(H2;H1) for its dual operator. For more

information on Hilbert–Schmidt operators we refer to [LR15, Appendix B].
A symmetric matrix M ∈ Rd×d is called positive definite if yTMy > 0 for all y ∈

Rd \ {0}. M is said to be positive semidefinite or nonnegative definite if yTMy ≥ 0 for
all y ∈ Rd.

Miscellaneous. We will use the standard notation for partial derivatives from differen-
tial calculus

∂tf :=
∂f

∂t
, ∂xif :=

∂f

∂xi
, ∂xi∂xjf :=

∂2f

∂xi∂xj
.

On a normed space (X, ‖ · ‖X) we denote by dist(x,A) := inf{‖x− y‖X | y ∈ A} the
distance of a point x ∈ X to a set A ⊆ X. By Br(a) we denote the open ball of radius r
centered at point a. The Kronecker delta will be denoted by

δi,j :=

{
1, i = j,

0, else.

Finally, by span we denote the linear span of a set of vectors in a vector space.
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Part I

On the superposition principle for
linear FPKEs
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Chapter 3

Martingale problems on Hilbert spaces

The study of martingale problems famously goes back to D. W. Stroock and S.R.S. Varad-
han, whose seminal work was initiated in the late 1960s (see e.g. [SV69]) and, after being
further developed and considerably extended, eventually published in the book “Multidi-
mensional Diffusion Processes” in 1979 (see [SV79]).

Assume that we have some given initial value x0 ∈ Rd, some bounded Borel-measurable
function A = (aij)1≤i,j≤d on [0,∞)×Rd taking values in the space of symmetric nonnega-
tive definite real d× d-matrices and some bounded Borel-measurable Rd-valued function
b on [0,∞)× Rd. Furthermore, consider the operator L, which is given by

Lϕ(t, y) =
d∑

i,j=1

aij(t, y)∂yi∂yjϕ(y) +
d∑
i=1

bi(t, y)∂yiϕ(y)

if the functions ϕ : Rd −→ R are sufficiently smooth. Putting it simple, the fundamental
idea of their approach is to study well-posedness (under additional assumptions) of the
martingale problem, i.e. to prove existence and uniqueness of probability measures P
on the path space C([0,∞);Rd) satisfying P [x(0) = x0] = 1 and ensuring that, for all
f ∈ C∞c (Rd), the process

f(x(t))− f(x0)−
∫ t

0

Lf(s, x(s)) ds

is a martingale with respect to P , where x is the canonical process. Such a measure P is
then called martingale solution to the martingale problem for L with coefficients A and b
starting from x0.

This martingale problem a priori does not explicitly involve any stochastic differential
equation, but we can directly associate it via weak solutions (see e.g. [Kur11, p. 114f] or
[Øks03, Section 8.3, p. 146f], where local boundedness of the coefficients is imposed) to
an SDE of the form

dX(t) = b
(
t,X(t)

)
dt+ σ

(
t,X(t)

)
dW (t),

X(0) = x0

by setting A = 1
2
σσT . Hence, it is reasonable and quite common in the literature to

link the martingale solution P directly to this SDE. We refer to [SV79, Chapter 6] and
e.g. [KS91, Section 5.4, p. 311ff] for a detailed description of the origin, framework and

19
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connections of this theory. However, we do not focus on the explicit step to establish the
link to weak solutions within this thesis.

From there, martingale problems became an intensively studied field of research, in
particular due to their strong connection to the theory of semigroups and also to PDEs
(see e.g. [EK86] or [RW87] and the references therein). The approach was extended to
the infinite-dimensional case in the following years (see e.g. [Tud84], [Mét88, Chapter V],
[GG94a; GG94b] and the references therein), while initial results on Hilbert spaces can
even be tracked back to the Thesis of M. Viot (see [Vio76]) and for Banach spaces to the
work of E. Dettweiler (see e.g. [Det89; Det92]) as it is described in [BG99, p. 187].

We are especially interested in results on separable Hilbert spaces with assumptions
on continuity, coercivity and growth of the coefficients. Therefore, this chapter will be
based on two recent articles that are both considering martingale problems and martin-
gale solutions in infinite dimensions. The first one is “Martingale solutions and Markov
selections for stochastic partial differential equations” by B. Goldys, M. Röckner and
X. Zhang, which appeared in SPA in 2009 (see [GRZ09]). The second one is “Existence
and uniqueness of solutions to stochastic functional differential equations in infinite di-
mensions” by M. Röckner, R. Zhu and X. Zhu, which appeared in Nonlinear Analysis in
2015 (see [RZZ15]).

We will present a straightforward combination of both articles in a suitable setting for
its later use in the superposition principle (see Chapter 6 below) and, besides, provide
additional elaboration on key steps of the main proof including some minor modifications
and improvements.

This turned out to be most convenient, because while being very similar (or even
analogue) in many ideas, results and proofs (actually, [RZZ15] is based on [GRZ09]),
there are some small differences that would make it inconvenient to refer to exactly one of
them without explaining a lot of details on results remaining true in our specific setting.
Moreover, since we will be directly applying and repeating techniques and calculations
from the proof of the main theorem (see Theorem 3.3.1 below) in our proof of the main
theorem of Chapter 6 (see Section 6.4 below), it is beneficial to already give a presentation
in all detail at this point.

Let us quickly describe some of the major differences between [RZZ15] and [GRZ09].
On the one hand, stochastic evolution equations with delay are considered in [RZZ15],
which makes proofs and ideas more complicated as well as assumptions on the coefficients
way more complex (and in fact more general) than necessary for our setting without delay.

On the other hand, [GRZ09] is a more extensive article also covering Markov selections
and families. In particular, the authors consider stochastic evolution equations, but only
in the “autonomous case”, i.e. with drift and diffusion coefficients that are not explicitly
depending on t as a parameter. Furthermore, an additional property, which is called (M3)
in [GRZ09, p. 1730], is imposed in the definition of a martingale solution. This property
is dropped as a requirement for being a solution and instead transformed into an a priori
estimate in [RZZ15, Lemma 3.1, p. 368] as well as in our proof (see Lemma 3.4.2 below).
Apart from that, most assumptions and ideas are in a way closer related to our setting.
Therefore, we tend to follow the structure of [GRZ09] more often compared to [RZZ15].

Let us note, that we will not consider any uniqueness results, even though they are
covered in [RZZ15, Chapter 4, p. 373ff].

In short, we will state and prove Theorem 3.3.1, a result on existence of martingale
solutions on a separable Hilbert space H under assumptions on continuity, coercivity and
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3.1. Framework

growth of our coefficients b and σ. The main idea of proof will be Galerkin approximations,
i.e. we will construct a solution as the limit of solutions to finite-dimensional martingale
problems obtained by projecting onto finite-dimensional spaces Hn.

3.1 Framework
Let H be a separable Hilbert space with inner product 〈·, ·〉H and norm ‖·‖H. Furthermore,
let X be another separable Hilbert space and let Y be a separable, reflexive Banach space
with norms ‖ · ‖X and ‖ · ‖Y, respectively, such that we have

X ⊆ Y ⊆ H

continuously and densely as well as X ⊆ Y compactly. By identifying H and its dual space
H∗ via the Riesz isomorphism, we obtain

X ⊆ Y ⊆ H ' H∗ ⊆ Y∗ ⊆ X∗,

where Y∗ and X∗ are the dual spaces of Y and X, respectively.
In addition, let U be another separable Hilbert space with inner product 〈·, ·〉U and

norm ‖ · ‖U and let {u1, u2, . . . } be an orthonormal basis of U.

Remark. The assumption that the embedding X ⊆ Y is compact implies that X ⊆ H
is compact and, therefore, the embeddings Y∗ ⊆ X∗ and H ⊆ X∗ are compact as well.
This follows, on the one hand, from the fact that the composition of a compact and a
continuous embedding operator is again compact (see e.g. [Zei90, Proposition 21.35, p.
265]) and, on the other hand, from Schauder’s theorem (see e.g. [Yos80, p. 282]), which
states that if the embedding operator iX,Y of Banach spaces X and Y is compact, then
its dual operator iY ∗,X∗ is compact as well.

Remark. It follows from Kuratowski’s theorem (see e.g. [Kur66, p. 487f] or [Par67,
Section I.3, p. 15ff]) that we have X ∈ B(Y), Y ∈ B(H) and B(Y) = B(H) ∩ Y,
B(X) = B(Y) ∩ X.

Remark. When later addressing the connection of martingale problems to weak solutions
of an SDE (see Equation (3.2.2) below), U will be the space on which the appropriate
cylindrical Wiener process W (t), t ≥ 0, with respect to a complete filtered probability
space

(
Ω̆, F̆ , (F̆t), P̆

)
is defined.

We denote the dual pairing between X and X∗ by

X∗〈z, v〉X

for z ∈ X∗, v ∈ X. Note that

X∗〈z, v〉X = 〈z, v〉H

holds if z ∈ H and that we always have the Cauchy–Schwarz type inequality

X∗〈z, v〉X ≤ ‖z‖X∗‖v‖X (3.1.1)

for any z ∈ X∗, v ∈ X.
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For an orthonormal basis {e1, e2, . . . } ⊆ X of H we define

Hn := span{e1, . . . , en},

for every n ∈ N, as well as E := span{e1, e2, . . . }, which is a dense subset of X. Let
Πn : X∗ −→ Hn be defined by

Πnz :=
n∑
i=1

X∗〈z, ei〉Xei, z ∈ X∗. (3.1.2)

Since X ⊂ H is compact, and hence so is H ⊂ X∗, we can in fact choose and fix the
orthonormal basis {e1, e2, . . . } ⊆ X in such a way that

‖Πnz‖X∗ ≤ ‖z‖X∗ (3.1.3)

holds for every n ∈ N and z ∈ X∗ (see [AR89, Proposition 3.5, p. 424]). Note that the
restriction Πn�H is in fact the orthogonal projection onto Hn in H, which justifies to refer
to Πn as a projection in the following. In addition, let Π̆n be the orthogonal projection
onto span{u1, . . . , un} in U.

Furthermore, denote by U%, for % ≥ 1, the class of functions N : Y −→ [0,∞] with the
following properties:

(i) N (y) = 0 implies y = 0,

(ii) N (cy) ≤ c%N (y) holds for every c ≥ 0 and y ∈ Y,

(iii) the set {y ∈ Y | N (y) ≤ 1} is compact in Y.

Remark. From properties (i)–(iii) we conclude that, for any α > 0, the sublevel sets
{y ∈ Y | N (y) ≤ α} are compact in Y since elements in {N ≤ α} are also in the set
α

1
%{N ≤ 1}, which is compact as an image of a compact set under a continuous mapping.

Hence, we in particular know that any function in U% is lower semi-continuous on Y.
Furthermore, we can extend a function N ∈ U% to a B(X∗)/B([0,∞])-measurable one

on X∗ by setting N (y) = ∞ for y ∈ X∗ \ Y. Then
∫ t

0
N
(
y(s)

)
ds is defined for every

y ∈ C
(
[0,∞);X∗

)
. Note that N , as a function on X∗, is still lower semi-continuous since

the embedding Y ⊆ X∗ is continuous and compact.

Let the mapping

b : [0,∞)× Y −→ X∗

be B([0,∞))⊗ B(Y)/B(X∗)-measurable and let

σ : [0,∞)× Y −→ L2(U;H)

be B([0,∞))⊗ B(Y)/B
(
L2(U;H)

)
-measurable. Let

Ω := C
(
[0,∞);X∗

)
be the space of all continuous functions from [0,∞) to X∗ equipped with the metric

ρ(z1, z2) :=
∞∑
m=1

1

2m

(
sup
r∈[0,m]

‖z1(r)− z2(r)‖X∗ ∧ 1
)
, z1, z2 ∈ Ω.
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3.2. Equation, Solution, Assumptions

By x : Ω −→ X∗ we denote the canonical process on Ω given by x(t, ω) := ω(t). We define
the σ-algebra

Ft := σ
(
x(s)

∣∣ s ≤ t
)

for every t ≥ 0 and set F :=
∨
t≥0

Ft.

Finally, define

S := C
(
[0,∞);X∗

)
∩ Lploc([0,∞);Y),

where the p ≥ 2 is later to be specified in our assumptions (see Subsection 3.2.3). Note
that S, equipped with the metric given by (z1, z2) 7−→ ρ(z1, z2)+‖z1−z2‖Lp for z1, z2 ∈ S,
is a Polish space.

3.2 Equation, Solution, Assumptions

Based on the framework from Section 3.1 we can now introduce the martingale problem
under consideration, the corresponding notion of a martingale solution and the necessary
assumptions on the coefficients for the existence result in Section 3.3.

3.2.1 Martingale solution

Let us formalize the notion of a martingale solution for the martingale problem in the
sense of Stroock–Varadhan with coefficients b and σ and initial value x0, which is suitable
in our infinite-dimensional setting.

Definition 3.2.1. (martingale solution) A probability measure P ∈ P(Ω) is called martin-
gale solution to the martingale problem with coefficients b and σ and initial value x0 ∈ H
if the following conditions hold.

(M1) P
[
x(0) = x0

]
= 1, and for every k ∈ N

P
[
x ∈ Ω

∣∣∣For ds-a.e. s ∈ [0, k] : x(s) ∈ Y and
k∫
0

∥∥b(s, x(s)
)∥∥

X∗ ds+
k∫
0

∥∥σ(s, x(s)
)∥∥2

L2(U;H)
ds <∞

]
= 1.

(M2) For every ` ∈ E the process M` defined by

M`(t, x) := X∗〈x(t), `〉X −
t∫

0

X∗〈b
(
s, x(s)

)
, `〉X ds, t ≥ 0,

is a continuous (Ft)-martingale with respect to P , whose quadratic variation process
is given by

〈M`〉(t, x) :=

t∫
0

∥∥σ∗(s, x(s)
)
(`)
∥∥2

U ds, t ≥ 0.
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Remark. Assume we consider martingale solutions on the finite-dimensional space Rd.
Since Condition (M2) holds for all ` ∈ E , we in particular have that

x(t)−
∫ t

0

b(s, x(s)) ds =
d∑
i=1

X∗〈x(t), ei〉Xei +
d∑
i=1

t∫
0

X∗〈b
(
s, x(s)

)
, ei〉X ds ei

is an Rd-valued (Ft)-martingale with respect to P .

3.2.2 Martingale problem and associated SDE

With the notion of solution from Definition 3.2.1 in mind, we can now state what we
mean by a martingale problem arising from given coefficients b and σ and an initial value
x0 ∈ H. In concrete terms, we will consider the following martingale problem:

Existence of a martingale solution P ∈ P(S) in the sense of Definition
3.2.1 for coefficients b and σ and with initial value x0 ∈ H, (3.2.1)

where P ∈ P(S) means that we are explicitly searching for solutions that also require
paths from the path space C

(
[0,∞);X∗

)
to be of class Lploc([0,∞);Y).

Remark. To martingale problem (3.2.1) we can associate the infinite-dimensional stochas-
tic differential equation

dX(t) = b
(
t,X(t)

)
dt+ σ

(
t,X(t)

)
dW (t),

X(0) = x0,
(3.2.2)

for t ≥ 0 and some cylindrical Wiener process W (t), t ≥ 0, on U, via weak solutions in a
similar way as in the finite-dimensional case (as explained in [RZZ15, Theorem 2.2, p. 364]
by using [Ond05, Theorem 2, p. 1007]). However, in this thesis we will only consider the
martingale problem in the original sense of Stroock–Varadhan without explicitly involving
this connection to SDEs.

3.2.3 Assumptions

Now let us state our assumptions on the coefficients b and σ necessary for the existence
result in Section 3.3 (see Theorem 3.3.1 below).

(N) There exists a function N ∈ Up for some p ≥ 2 such that for every n ∈ N there
exists a constant Cn ≥ 0 with

N (v) ≤ Cn‖v‖pHn ,

for any v ∈ Hn.

(A1) (Demicontinuity) For any v ∈ X, t ≥ 0 and every sequence (yk)k∈N with yk −−−→
k→∞

y

in Y, we have

lim
k→∞

X∗〈b(t, yk), v〉X = X∗〈b(t, y), v〉X

and

lim
k→∞

∥∥σ∗(t, yk)(v)− σ∗(t, y
)
(v)
∥∥
U = 0.
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(A2) (Coercivity) There exists a locally bounded measurable function λ1 : [0,∞) −→
[0,∞) such that for all v ∈ X and t ≥ 0

X∗〈b(t, v), v〉X ≤ −N (v) + λ1(t)(1 + ‖v‖2
H)

holds.

(A3) (Growth) There exist locally bounded measurable functions λ2, λ3, λ4 : [0,∞) −→
[0,∞) and constants γ′ ≥ γ > 1 such that for all y ∈ Y and t ≥ 0 we have

‖b(t, y)‖γX∗ ≤ λ2(t)N (y) + λ3(t)(1 + ‖y‖γ
′

H )

and

‖σ(t, y)‖2
L2(U;H) ≤ λ4(t)(1 + ‖y‖2

H).

Remark. Note that in finite dimensions, the demicontinuity in Assumption (A1) actually
yields continuity for the mappings y 7−→ b(t, y) and y 7−→ σ(t, y) for every t ≥ 0.

3.3 Results
The following theorem on existence of martingale solutions to the martingale problem
(3.2.1) is the main result of this chapter and is based on [RZZ15, Theorem 2.1, p. 363f]
and [GRZ09, Theorem 4.6, p. 1739]. We will present a comprehensive proof in the next
section.

Theorem 3.3.1. Suppose that the Assumptions (N) and (A1)–(A3) hold. Then there
exists a martingale solution P ∈ P(S) to the martingale problem (3.2.1) with initial value
x0 ∈ H in the sense of Definition 3.2.1. Furthermore, for every q ≥ 1 and T > 0 we have

EP
[

sup
t∈[0,T ]

‖x(t)‖2q
H +

∫ T

0

‖x(t)‖2(q−1)
H N (x(t)) dt

]
<∞. (3.3.1)

3.4 Proof
Before we can start with the proof, we will first introduce a lemma from [GRZ09] that is
the essential tool to prove tightness of a family of probability measures on C([0,∞);X∗)
in the following.

Lemma 3.4.1 (see [GRZ09], Lemma 4.3, p. 1734). Let (Pn)n∈N be a family of probability
measures on Ω = C([0,∞);X∗) and N as in Assumption (N). Assume that X is compactly
embedded into H and that for some β > 0 and any T > 0

sup
n∈N

EPn
[

sup
t∈[0,T ]

‖x(t)‖H + sup
s,t∈[0,T ], s 6=t

‖x(t)− x(s)‖X∗
|t− s|β

+

∫ T

0

N (x(s)) ds

]
<∞.

Then (Pn)n∈N is tight in S
(

= C
(
[0,∞);X∗

)
∩ Lploc([0,∞);Y)

)
.

Proof. A proof is given in [GRZ09, Appendix C.1, p. 1759f].
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Against the first intuition, we will present the infinite-dimensional proof (see Subsec-
tion 3.4.1) before the finite-dimensional one (see Subsection 3.4.2). Hence, for now, we just
have to assume existence of solutions for our martingale problem in the finite-dimensional
case, which is (in itself) a separate matter that we will prove afterwards. This way, we
can reuse an overwhelming part of our methods and calculations (in particular those on
Hn), which is convenient to reduce repetitions, while still presenting it for completeness.

3.4.1 Infinite-dimensional case

The proof in infinite dimensions is mainly based on Galerkin approximations. Recall that
we have defined Πn : X∗ −→ Hn in Equation (3.1.2) by

Πnz =
n∑
i=1

X∗〈z, ei〉Xei, z ∈ X∗.

Recall that Πn�H is the orthogonal projection onto Hn in H and we have

X∗〈Πnb(t, y), v〉X = 〈Πnb(t, y), v〉H = X∗〈b(t, y), v〉X, (3.4.1)

for every y ∈ Y and v ∈ Hn. For v ∈ Hn, the convergence yk −−−→
k→∞

y in Y yields

lim
k→∞

∥∥(Πnσ(t, yk)Π̆n)∗(v)− (Πnσ(t, y)Π̆n)∗(v)‖U = 0, (3.4.2)

where we have defined Π̆n to be the orthogonal projection onto span{u1, . . . , un} in U.
In addition, the estimates

‖Πnσ(t, y)Π̆n‖2
L2(U;H) ≤ ‖σ(t, y)‖2

L2(U;H),

‖Πnb(t, y)‖γX∗ ≤ ‖b(t, y)‖γX∗
(3.4.3)

hold for every y ∈ Y.
Consequently, Assumptions (A1)–(A3) remain valid for the coefficients Πnb and Πnσ

on the finite-dimensional spaces Hn. Then, for each n ∈ N, we consider the finite-
dimensional martingale problem given by

Existence of a martingale solution Pn ∈ P(Ωn) in the sense of Definition
3.2.1 for coefficients Πnb and Πnσ and with initial value Πnx0 ∈ Hn,

(3.4.4)

where we set

Ωn := C([0,∞);Hn).

Furthermore, we denote by xn the canonical process on Ωn given by xn(t, ω) := ω(t) and
define

F (n)
t := B(C([0, t];Hn)) and F (n) :=

∨
t≥0

F (n)
t .

Remark. Let us mention that for

Wn(t) := Π̆nW (t) =
n∑
i=1

〈W (t), ui〉Uui
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3.4. Proof

the finite-dimensional stochastic differential equation on Hn associated to this martingale
problem is given by

dXn(t) = Πnb
(
t,Xn(t)

)
dt+ Πnσ

(
t,Xn(t)

)
dWn(t),

Xn(0) = Πnx0

(3.4.5)

(see e.g. [Kur11, p. 114f]).

In Subsection 3.4.2 below we will prove existence of martingale solutions for the mar-
tingale problem with coefficients b and σ in the finite-dimensional case. Assuming this
result to be true for now, we can conclude (since Equations (3.4.1)–(3.4.2) yield that
Assumptions (A1)–(A3) remain valid under Πn) the same for our martingale problem
(3.4.4) with coefficients Πnb and Πnσ, i.e. there exists a probability measure Pn ∈ P(Ωn)
such that Conditions (M1) and (M2) hold. In order to construct a solution to the mar-
tingale problem (3.2.1) in infinite dimensions, we first need the following a priori energy
estimate for the canonical processes xn with respect to Pn.

Lemma 3.4.2 (see [RZZ15], Lemma 3.1, p. 368). Let the Assumptions (N) and (A1)–
(A3) be fulfilled. Then for every q ≥ 1 and any t ≥ s ≥ 0 there exists a constant
Cq,t,t−s > 0 such that for all n ∈ N we have

EPn
[

sup
r∈[s,t]

‖xn(r)‖2q
H

]
+ EPn

[ ∫ t

s

‖xn(r)‖2(q−1)
H N (xn(r))dr

]
≤ Cq,t,t−s

(
EPn

[
‖xn(s)‖2q

H

]
+ 1
)
.

(3.4.6)

Remark. This a priori estimate is similar to those used in the variational approach for
SPDEs. For example, a mostly analogue lemma and proof can be found in [LR15, Lemma
5.1.5], where SPDEs with locally monotone coefficients are considered.

Proof of Lemma 3.4.2. First, note that by Condition (M2) the equality

xn(t) = Πnx0 +

∫ t

0

Πnb(r, xn(r)) dr +Mn(t, xn), t ≥ 0, (3.4.7)

holds in Hn, where Mn(t, xn), t ≥ 0, is an Hn-valued continuous (F (n)
t )-martingale with

respect to Pn, whose covariation operator process in Hn is given by

�Mn � (t, xn) =

∫ t

0

Πnσ(r, xn(r))Π̆n Π̆∗nσ
∗(r, xn(r))Π∗n dr, t ≥ 0.

By using Itô’s formula for Hn-valued semimartingales, we obtain for s ≤ t the identity

‖xn(t)‖2q
H = ‖xn(s)‖2q

H + 2q

∫ t

s

‖xn(r)‖2(q−1)
H X∗〈Πnb(r, xn(r)), xn(r)〉X dr

+ q

∫ t

s

‖xn(r)‖2(q−1)
H ‖Πnσ(r, xn(r))Π̆n‖2

L2(U;H) dr (3.4.8)

+ 2q(q − 1)

∫ t

s

‖xn(r)‖2(q−2)
H ‖(Πnσ(r, xn(r))Π̆n)∗ (xn(r))‖2

U dr

+M (q)
n (t, xn)−M (q)

n (s, xn),
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where M (q)
n (t, xn) is a continuous real-valued (F (n)

t )-martingale with respect to Pn. In
fact, we have

M (q)
n (t, xn) = 2q

∫ t

0

‖xn(r)‖2(q−1)
H 〈xn(r),Πnσ(r, xn(r)) dWn(r)〉H

and its quadratic variation process is given by

〈M (q)
n 〉(t, xn) = 4q2

∫ t

0

‖xn(r)‖4(q−1)
H ‖(Πnσ(r, xn(r))Π̆n)∗(xn(r))‖2

U dr.

Minding the local boundedness of the functions λi, i = 1, . . . 4, we set

λ∗(t) := sup
i=1,...4
r∈[0,t]

|λi(r)|.

By applying Assumptions (A2) and (A3), we then obtain

‖xn(t)‖2q
H ≤ ‖xn(s)‖2q

H + 2q

∫ t

s

‖xn(r)‖2(q−1)
H

(
−N (xn(r)) + λ1(r)(1 + ‖xn(r)‖2

H)
)

dr

+ q

∫ t

s

‖xn(r)‖2(q−1)
H λ4(r)(1 + ‖xn(r)‖2

H) dr

+ 2q(q − 1)

∫ t

s

‖xn(r)‖2(q−2)
H ‖(Πnσ(r, xn(r))Π̆n)∗‖2

L2(H;U) ‖xn(r)‖2
H dr

+M (q)
n (t, xn)−M (q)

n (s, xn)

≤ ‖xn(s)‖2q
H − 2q

∫ t

s

‖xn(r)‖2(q−1)
H N (xn(r)) dr + Cqλ∗(t)

∫ t

s

(‖xn(r)‖2q
H + 1) dr

+M (q)
n (t, xn)−M (q)

n (s, xn), (3.4.9)

where in the last step the estimate

‖xn(r)‖2(q−1)
H (1 + ‖xn(r)‖2

H) = (‖xn(r)‖2(q−1)
H · 1 + ‖xn(r)‖2q

H )

≤ Cq(‖xn(r)‖2q
H + 1q)

(3.4.10)

follows from Young’s inequality (with coefficients 2q
2(q−1)

and q) and Cq is a constant
(depending on q, but independent of n), that may change from line to line.

For every given n ∈ N define the stopping time

τRn := inf{r ∈ [0, t] | ‖xn(r)‖H > R} ∧ t, R > 0.

Here, as usual, we set inf ∅ :=∞. Then we have

lim
R→∞

τRn = t, Pn-a.s., n ∈ N.

By the Burkholder–Davis–Gundy inequality, Assumption (A3), Estimate (3.4.10), Young’s
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inequality and the stochastic Fubini theorem, we have

EPn
[

sup
r∈[s,t∧τRn ]

∣∣M (q)
n (r, xn)−M (q)

n (s, xn)
∣∣]

≤ Cq EPn

(∫ t∧τRn

s

‖xn(r)‖4(q−1)
H ‖(Πnσ(r, xn(r))Π̆n)∗(xn(r))‖2

U dr

) 1
2


≤ Cq EPn

(∫ t∧τRn

s

‖xn(r)‖2q
H ‖xn(r)‖2(q−1)

H ‖Πnσ(r, xn(r))Π̆n‖2
L2(U;H) dr

) 1
2


≤ Cq EPn

 sup
r∈[s,t∧τRn ]

‖xn(r)‖qH

(
λ∗(t)

∫ t∧τRn

s

(‖xn(r)‖2q
H + 1) dr

) 1
2


≤ 1

2
EPn

[
sup

r∈[s,t∧τRn ]

‖xn(r)‖2q
H

]
+ Cqλ∗(t)EPn

[∫ t∧τRn

s

(‖xn(r)‖2q
H + 1) dr

]

≤ 1

2
EPn

[
sup

r∈[s,t∧τRn ]

‖xn(r)‖2q
H

]
+ Cqλ∗(t)

∫ t

s

EPn
[

sup
r̃∈[s,r∧τRn ]

‖xn(r̃)‖2q
H

]
+ 1 dr,

(3.4.11)

where Cq is again a constant that may change from line to line (depending on q, but
independent of n).

Thus, by first taking suprema and then expectations with respect to Pn on both sides
of Inequality (3.4.9), we obtain

EPn
[

sup
r∈[s,t∧τRn ]

‖xn(r)‖2q
H

]
+ 2qEPn

[∫ t∧τRn

s

‖xn(r)‖2(q−1)
H N (xn(r)) dr

]

≤ EPn
[
‖xn(s)‖2q

H
]

+
1

2
EPn

[
sup

r∈[s,t∧τRn ]

‖xn(r)‖2q
H

]
+ Cq,t

∫ t

s

EPn
[

sup
r̃∈[s,r∧τRn ]

‖xn(r̃)‖2q
H

]
+ 1 dr.

Subtracting the reappearing term
1

2
EPn

[
sup

r∈[s,t∧τRn ]

‖xn(r)‖2q
H

]
, multiplying with factor 2

and omitting (all terms are nonnegative) the second term of the left hand side of this
inequality yields

EPn
[

sup
r∈[s,t∧τRn ]

‖xn(r)‖2q
H

]
≤ 2EPn

[
‖xn(s)‖2q

H
]

+ 2Cq,t

∫ t

s

EPn
[

sup
r̃∈[s,r∧τRn ]

‖xn(r̃)‖2q
H

]
+ 1 dr,

which by using Gronwall’s inequality gives

EPn
[

sup
r∈[s,t∧τRn ]

‖xn(r)‖2q
H

]
≤ EPn

[
sup

r∈[s,t∧τRn ]

‖xn(r)‖2q
H

]
+ 1

≤ exp
(
2Cq,t(t− s)

)(
2EPn

[
‖xn(s)‖2q

H
]

+ 1
)
.

(3.4.12)

29



Chapter 3. Martingale problems on Hilbert spaces

On the other hand, by omitting the first term (after subtracting) and using the previous
Estimate (3.4.12), we have for the second term on the left hand side

EPn
[∫ t∧τRn

s

‖xn(r)‖2(q−1)
H N (xn(r)) dr

]

≤ CqEPn
[
‖xn(s)‖2q

H
]

+ Cq,t

∫ t

s

EPn
[

sup
r̃∈[s,r∧τRn ]

‖xn(r̃)‖2q
H

]
+ 1 dr

≤ Cq

(
EPn

[
‖xn(s)‖2q

H
]

+ 1
)

+ Cq,t

(
EPn

[
‖xn(s)‖2q

H
]

+ 1
)∫ t

s

exp
(
Cq,t(r − s)

)
dr

≤ Cq,t

(
EPn

[
‖xn(s)‖2q

H
]

+ 1
)

exp
(
Cq,t(t− s)

)
,

where Cq and Cq,t are constants that may change from line to line (depending on q (and
t), but independent of n). Hence, we conclude by combining both estimates

EPn
[

sup
r∈[s,t∧τRn ]

‖xn(r)‖2q
H

]
+ EPn

[∫ t∧τRn

s

‖xn(r)‖2(q−1)
H N (xn(r)) dr

]
≤ Cq,t,t−s

(
EPn

[
‖xn(s)‖2q

H
]

+ 1
)

and by letting R→∞, the desired result follows from the monotone convergence theorem.

By using the existence of martingale solutions Pn for the martingale problem on Hn

constructed with the help of Galerkin approximations, i.e. via the projections Πn, and the
provided framework from the beginning of this section, we can now complete the proof of
Theorem 3.3.1 in the infinite-dimensional case.

Proof of Theorem 3.3.1 for H.
We divide this proof into 4 steps.

Step 1: Extend Pn to P̄n
Note that Ωn = C([0,∞);Hn) is a closed subset of Ω. We extend Pn to a probability
measure P̄n on (Ω,F) by setting

P̄n[A] := Pn[A ∩ Ωn], A ∈ F .

Remark. This implies that for the canonical processes x on Ω and xn on Ωn we have, for
suitable measurable functions f , the identity

EP̄n
[
f(x(t))

]
=

∫
Ω

f(x(t)) dP̄n =

∫
Ω

f(ω(t)) dP̄n(ω)

=

∫
Ωn

f(ω(t)) dPn(ω) =

∫
Ωn

f(xn(t)) dPn = EPn
[
f(xn(t))

]
.

In particular we can, therefore, replace terms of the type EPn
[
‖xn(t)‖X∗

]
by EP̄n

[
‖x(t)‖X∗

]
in the upcoming calculations.
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Step 2: Tightness
In the following we show that (P̄n)n∈N is tight on S

(
= C

(
[0,∞);X∗

)
∩ Lploc([0,∞);Y)

)
.

We want to use Lemma 3.4.1 here. The critical part is to prove that for some β > 0
and every T > 0 we have

sup
n∈N

EP̄n
[

sup
s,t∈[0,T ], s 6=t

‖x(t)− x(s)‖X∗
|t− s|β

]
<∞.

For the other two terms we just apply the estimates obtained in Lemma 3.4.2 (and Jensen’s
inequality). First of all, note that by the extension of Pn from Step 1 the equality

sup
n∈N

EP̄n
[

sup
s,t∈[0,T ], s 6=t

‖x(t)− x(s)‖X∗
|t− s|β

]
= sup

n∈N
EPn

[
sup

s,t∈[0,T ], s 6=t

‖xn(t)− xn(s)‖X∗
|t− s|β

]
holds. Therefore, we can use the representation of xn given in Equation (3.4.7).

Furthermore, we have the inequality

(1 + z) ≤ (1 + z)m ≤ 2m(1 + zm), (3.4.13)

for any z ≥ 0 and m ≥ 1.
By using Hölder’s inequality in the first, Inequality (3.4.3) in the second, Assumption

(A3) in the third, Inequality (3.4.13) and the local boundedness of the functions λ2 and
λ3 in the fourth as well as Lemma 3.4.2 in the sixth step, we obtain

EPn
[

sup
s,t∈[0,T ], s 6=t

(
1

|t− s|γ−1

∥∥∥∥∫ t

s

Πnb(r, xn(r)) dr

∥∥∥∥γ
X∗

)]

≤ EPn
[∫ T

0

∥∥Πnb(r, xn(r))
∥∥γ
X∗ dr

]
≤ EPn

[∫ T

0

∥∥b(r, xn(r))
∥∥γ
X∗ dr

]
≤ EPn

[∫ T

0

λ2(r)N (xn(r)) + λ3(r)
(
1 + ‖xn(r)‖γ

′

H
)

dr

]
≤ CTEPn

[∫ T

0

N (xn(r)) +
(
1 + ‖xn(r)‖2γ′

H
)

dr

]
≤ CTEPn

[∫ T

0

N (xn(r)) dr

]
+ CT

(
EPn

[
sup
r∈[0,T ]

‖xn(r)‖2γ′

H

]
+ 1
)

≤ CT

(
EPn

[
‖xn(0)‖2

H
]

+ 1
)

+ Cγ′,T

(
EPn

[
‖xn(0)‖2γ′

H

]
+ 1
)

≤ CT

(
‖Πnx0‖2

H + 1
)

+ Cγ′,T

(
‖Πnx0‖2γ′

H + 1
)

≤ Cγ′,T ,

(3.4.14)

where CT and Cγ′,T are constants (that may change from line to line). Consequently, for
every β1 ∈

(
0, γ−1

γ

)
we have

EPn
[

sup
s,t∈[0,T ], s 6=t

∥∥ ∫ t
s

Πnb(r, xn(r)) dr
∥∥
X∗

|t− s|β1

]
≤ Cγ,γ′,T . (3.4.15)

31



Chapter 3. Martingale problems on Hilbert spaces

For every 0 ≤ s < t ≤ T and any q > 1 we again use the Burkholder–Davis–Gundy
inequality, Hölder’s inequality, Assumption (A3) as well as Equation (3.4.13) and Lemma
3.4.2 to calculate

EPn
[∥∥Mn(t, xn)−Mn(s, xn)

∥∥2q

H

]
≤ CqEPn

[(∫ t

s

‖σ(r, xn(r))‖2
L2(U;H) dr

)q]
≤ Cq|t− s|q−1 EPn

[∫ t

s

‖σ(r, xn(r))‖2q
L2(U;H) dr

]
≤ Cq,T |t− s|q

(
EPn

[
sup
r∈[0,T ]

‖xn(r)‖2q
H

]
+ 1
)

≤ Cq,T |t− s|q
(
EPn

[
‖xn(0)‖2q

H
]

+ 1
)
.

(3.4.16)

Hence, by the Garsia–Rodemich–Rumsey inequality (see e.g. [SV79, Corollary 2.1.4,
p. 49] or [FV10, Theorem A.1, p. 571]) we get for every β2 ∈

(
0, q−1

2q

)
the inequality

EPn
[

sup
s,t∈[0,T ], s 6=t

‖Mn(t, xn)−Mn(s, xn)‖H
|t− s|β2

]
≤ Cq,T . (3.4.17)

Now, by combining Estimates (3.4.15) and (3.4.17), we obtain for some β > 0 (chosen
small enough, i.e. β ∈

(
0, q−1

2q
∧ γ−1

γ

)
for some q > 1) the estimate

sup
n∈N

EPn
[

sup
s,t∈[0,T ], s 6=t

‖xn(t)− xn(s)‖X∗
|t− s|β

]
<∞,

which, as mentioned above, implies that (P̄n)n∈N is tight on S.

Step 3: Prokhorov’s theorem and Skorokhod’s representation theorem
From Prokhorov’s theorem (see e.g. [Bil99, Theorems 5.1 and 5.2, p. 59f]) it follows that
there exists a weakly convergent subsequence. Hence, we have to select this subsequence
here, but, without loss of generality and for simplicity, we keep the notation (P̄n)n∈N for
the sequence and let P ∈ P(S) denote the limit.

Now we can apply Skorokhod’s representation theorem to the law of x under P̄n (see
e.g. [Jak97] or [Bil99, Theorem 6.7, p. 70]), i.e. there exist S-valued random variables x̃n,
n ∈ N, and x̃ on a common probability space (Ω̃, F̃ , P̃ ) such that we have

(i) x̃n (under P̃ ) has the law P̄n for each n ∈ N, i.e. P̃ ◦ x̃−1
n = P̄n,

(ii) x̃ (under P̃ ) has the law P , i.e. P̃ ◦ x̃−1 = P ,

(iii) x̃n −−−→
n→∞

x̃ in S, P̃ -a.s.

Note that the laws P̄n ◦ x−1 and P ◦ x−1 simplify to P̄n and P , respectively, since x is the
canonical process.
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Step 4: (M1) and (M2) for P
First we verify Condition (M1) for P .

We have

P [x(0) = x0]
(ii)
= P̃ [x̃(0) = x0]

(iii)
= lim

n→∞
P̃ [x̃n(0) = Πnx0]

(i)
= lim

n→∞
P̄n[x(0) = Πnx0]

= lim
n→∞

Pn[xn(0) = Πnx0] = 1
(3.4.18)

since Pn satisfies Condition (M1).
For any q ≥ 1 and 0 ≤ s < t, define

ξq(s, t, x) := sup
r∈[s,t]

‖x(r)‖2q
H +

∫ t

s

‖x(r)‖2(q−1)
H N (x(r)) dr. (3.4.19)

Then x 7−→ ξq(s, t, x) is lower semi-continuous on S, which follows from the lower semi-
continuity of the mappings N and z 7−→ ‖z‖H on X∗ (where ‖·‖H is extended to a function
on X∗ by setting ‖z‖H := ∞, if z ∈ X∗ \ H, as e.g. in [LR15, Exercise 4.2.3, p. 90f]). By
Fatou’s lemma and Lemma 3.4.2, we have

EP [ξq(0, t, x)]
(ii)
= EP̃ [ξq(0, t, x̃)]

(iii)

≤ lim inf
n→∞

EP̃ [ξq(0, t, x̃n)]

(i)
= lim inf

n→∞
EP̄n [ξq(0, t, x)] = lim inf

n→∞
EPn [ξq(0, t, xn)]

≤ lim inf
n→∞

Cq,t(EPn [‖xn(0)‖2q
H ] + 1)

= lim inf
n→∞

Cq,t(‖Πnx0‖2q
H + 1) <∞.

(3.4.20)

Thus, the P -a.s. integrability condition in (M1) follows from Assumption (A3) since for
k ∈ N and x ∈ S we have

k∫
0

∥∥b(s, x(s)
)∥∥

X∗ ds ≤
k∫

0

(
1 + λ2(s)N (x(s)) + λ3(s)(1 + ‖x(s)‖γ

′

H )︸ ︷︷ ︸
≥0

) 1
γ

ds

≤ k + Ck

k∫
0

N (x(s)) ds+ Ck,γ′

k∫
0

(1 + ‖x(s)‖2γ′

H ) ds,

(3.4.21)

by using that (1 + z)
1
m ≤ (1 + z) for z ≥ 0 and m ≥ 1 as well as Equation (3.4.13), and

k∫
0

∥∥σ(s, x(s)
)∥∥2

L2(U;H)
ds ≤ Ck

k∫
0

(1 + ‖x(s)‖2
H) ds. (3.4.22)

Now we verify (M2) for P .
Fix ` ∈ E . We will show that M`(t, x), t ≥ 0, in Condition (M2) is a continuous

(Ft)-martingale with respect to P , whose quadratic variation process is given by

〈M`〉(t, x) =

∫ t

0

‖σ∗(s, x(s))(`)‖2
U ds, t ≥ 0.
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First of all, since x̃n −−−→
n→∞

x̃ in S P̃ -a.s., Inequality (3.1.1) implies that we have

lim
n→∞

EP̃
[
|X∗〈x̃n(t)− x̃(t), `〉X|

]
≤ ‖`‖X lim

n→∞
EP̃
[
‖x̃n(t)− x̃(t)‖X∗

]
= 0 (3.4.23)

by dominated convergence, because supn∈N EP̃
[
‖x̃n(t)‖2q

X∗
]
< ∞ holds for any q ≥ 1. In

fact, we have

EP̃
[
‖x̃n(t)‖2q

X∗
]
≤ C EP̃

[
‖x̃n(t)‖2q

H
]
≤ C EPn

[
sup
r∈[0,t]

‖xn(r)‖2q
H

]
≤ Cq,t

by the continuity of the embedding H ⊆ X∗ and Lemma 3.4.2, where C and Cq,t are
constants, that are independent of n.

Now, for the second term of M` in Condition (M2), define

G(t, x) :=

∫ t

0
X∗〈b(s, x(s)), `〉X ds

and, for any R > 0, define the auxiliary term

GR(t, x) :=

∫ t

0
X∗〈b(s, x(s)), `〉X · χR

(
X∗〈b(s, x(s)), `〉X

)
ds,

where χR ∈ C∞c (R) is a cutoff function with

χR(r) =

{
1, if |r| ≤ R,

0, if |r| > 2R.

We want to show that

lim
n→∞

EP̃
[∣∣G(t, x̃n)−G(t, x̃)

∣∣] = 0 (3.4.24)

holds. By inserting two auxiliary terms, it remains to prove

lim
n→∞

EP̃
[∣∣G(t, x̃n)−GR(t, x̃n)

∣∣+
∣∣GR(t, x̃n)−GR(t, x̃)

∣∣+
∣∣GR(t, x̃)−G(t, x̃)

∣∣] = 0.

Since y 7−→ X∗〈b(s, y), `〉X χR
(
X∗〈b(s, y), `〉X

)
is a bounded continuous function on Y

by Assumption (A1) and x̃n −−−→
n→∞

x̃ in S P̃ -a.s., we obtain P̃ -a.s. (e.g. by using the
continuous mapping theorem and dominated convergence)

GR(t, x̃n) −−−→
n→∞

GR(t, x̃).

Furthermore, by using Inequality (3.1.1), Hölder’s inequality and Estimate (3.4.14), we
have

EP̃
[
|GR(t, x̃n)|γ

]
≤ EP̃

[(∫ t

0

‖b(s, x̃n(s))‖X∗‖`‖X ds
)γ]

≤ EP̃
[∫ t

0

‖b(s, x̃n(s))‖γX∗ ds ·
(∫ t

0

‖`‖
γ
γ−1

X ds
) γ−1

γ

]
= Cγ,t EPn

[∫ t

0

‖b(s, xn(s))‖γX∗ ds

]
≤ Cγ′,γ,t.
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Consequently, supn∈N EP̃
[
|GR(t, x̃n)|γ

]
<∞ which implies, since γ > 1, that

lim
n→∞

EP̃
[
|GR(t, x̃n)−GR(t, x̃)|

]
= 0

holds by dominated convergence.
By using Inequality (3.1.1), Hölder’s inequality, the stochastic Fubini theorem, the

Chebyshev–Markov inequality (with power γ) and the calculations from Estimate (3.4.14),
we obtain

lim
R→∞

sup
n∈N

EP̃
[∣∣G(t, x̃n)−GR(t, x̃n)

∣∣]
= lim

R→∞
sup
n∈N

EP̃
[∣∣∣∣∫ t

0
X∗〈b(s, x̃n(s)), `〉X ·

(
1− χR

(
X∗〈b(s, x̃n(s)), `〉X

))
ds

∣∣∣∣]
≤ lim

R→∞
sup
n∈N

EP̃
[∫ t

0

‖b(s, x̃n(s))‖X∗‖`‖X · 1{|X∗ 〈b(s,x̃n(s)),`〉X|≥R} ds

]
≤ ‖`‖X lim

R→∞
sup
n∈N

((
EP̃
[ ∫ t

0

‖b(s, x̃n(s))‖γX∗ ds
]) 1

γ
(∫ t

0

P̃
[
|X∗〈b(s, x̃n(s)), `〉X| ≥ R

]
ds

) γ−1
γ

)

≤ ‖`‖X lim
R→∞

sup
n∈N

((
EP̃
[ ∫ t

0

‖b(s, x̃n(s))‖γX∗ ds
]) 1

γ
(∫ t

0

‖`‖γX
Rγ

EP̃
[
‖b(s, x̃n(s))‖γX∗

]
ds

) γ−1
γ

)

≤ ‖`‖γX lim
R→∞

sup
n∈N

((
EPn

[ ∫ t

0

‖b(s, xn(s))‖γX∗ ds
]) 1

Rγ−1

)
(3.4.25)

≤ ‖`‖γX lim
R→∞

sup
n∈N

(
Cγ′,t

1

Rγ−1

)
= 0.

Similarly, we repeat the estimates from above and use Assumption (A3) as well as
Equation (3.4.20) to obtain

lim
R→∞

EP̃
[∣∣GR(t, x̃)−G(t, x̃)

∣∣]
= lim

R→∞
EP̃
[∣∣∣∣∫ t

0
X∗〈b(s, x̃(s)), `〉X ·

(
χR
(
X∗〈b(s, x̃(s)), `〉X

)
− 1
)

ds

∣∣∣∣]
≤ ‖`‖γX lim

R→∞

((
EP̃
[ ∫ t

0

‖b(s, x̃(s))‖γX∗ ds
]) 1

Rγ−1

)
≤ ‖`‖γX lim

R→∞

(
Cγ′,t

1

Rγ−1

)
= 0.

Altogether, this proves Equation (3.4.24) by combining the calculations for G(t, x̃n),
GR(t, x̃n), GR(t, x̃) and G(t, x̃) from above.

Furthermore, by Inequality (3.1.1) and a calculation analogue to Estimate (3.4.14)
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(i.e. in particular Assumption (A3) and Lemma 3.4.2), we have

lim
n→∞

EP̃
[∣∣∣ ∫ t

0
X∗〈Πnb(s, x̃n(s)), `〉X − X∗〈b(s, x̃n(s)), `〉X ds

∣∣∣]
≤ lim

n→∞
EP̃
[ ∫ t

0

∣∣X∗〈b(s, x̃n(s)), (Πn − Id)`〉X
∣∣ ds]

≤ lim
n→∞

‖(Πn − Id)`‖X EPn
[ ∫ t

0

‖b(s, xn(s))‖X∗ ds
]

= 0.

(3.4.26)

Then, by combining Equations (3.4.23), (3.4.24) and (3.4.26), we obtain that for t > 0
the identity

lim
n→∞

EP̃
[∣∣〈Mn(t, x̃n), `〉H −M`(t, x̃)

∣∣]
= lim

n→∞
EP̃
[∣∣X∗〈Mn(t, x̃n), `〉X −M`(t, x̃)

∣∣]
= lim

n→∞
EP̃
[∣∣∣∣X∗〈x̃n(t)− x̃(t), `〉X − X∗〈Πnx0 − x0, `〉X

−
∫ t

0
X∗〈Πnb(s, x̃n(s))− b(s, x̃(s)), `〉X ds

∣∣∣∣]
= 0

(3.4.27)

holds. Let 0 ≤ s < t and let g be any real-valued bounded (Fs)-measurable continuous
function on S. Then we have

EP
[(
M`(t, x)−M`(s, x)

)
g(x)

]
= EP̃

[(
M`(t, x̃)−M`(s, x̃)

)
g(x̃)

]
= lim

n→∞
EP̃
[(
〈Mn(t, x̃n), `〉H − 〈Mn(s, x̃n), `〉H

)
g(x̃n)

]
= lim

n→∞
EP̄n

[(
〈Mn(t, x), `〉H − 〈Mn(s, x), `〉H

)
g(x)

]
= 0

(3.4.28)

by using Equation (3.4.27). The arbitrariness of g yields by a monotone class argument
that

EP
[
M`(t, x)

∣∣Fs] = M`(s, x)

is fulfilled since Fs = σ(x(r) | r ≤ s). Hence, M`(t, x) is an (Ft)-martingale.

Finally, we will now prove the representation formula of the quadratic variation 〈M`〉
given in Condition (M2) by showing that M2

` − 〈M`〉 is a martingale.
By the Burkholder–Davis–Gundy inequality and a calculation analogue to Estimate

(3.4.16) (i.e. in particular Hölder’s inequality, Assumption (A3) and Lemma 3.4.2), we
have for any q ≥ 1 the inequality

sup
n∈N

EP̃
[
|〈Mn(t, x̃n), `〉H|2q

]
≤ Cq sup

n∈N
EP̃
[(∫ t

0

‖σ∗(s, x̃n(s))(`)‖2
U ds

)q]
≤ Cq,t sup

n∈N
EPn

[∫ t

0

‖σ∗(s, xn(s))(`)‖2q
U ds

]
<∞.

(3.4.29)

36



3.4. Proof

Hence, by using Equation (3.4.27) we obtain that for t ≥ 0 the identity

lim
n→∞

EP̃
[∣∣〈Mn(t, x̃n), `〉H −M`(t, x̃)

∣∣2] = 0 (3.4.30)

holds, i.e. lim
n→∞

EP̃
[∣∣〈Mn(t, x̃n), `〉H

∣∣2] = EP̃
[∣∣M`(t, x̃)

∣∣2]. Furthermore, by the dominated
convergence theorem, we also have

lim
n→∞

EP̃
[ ∫ t

0

∥∥(Πnσ(s, x̃n(s))Π̆n)∗(`)− σ∗(s, x̃(s))(`)
∥∥2

U ds

]
≤ lim

n→∞

(
EP̃
[ ∫ t

0

∥∥(Πnσ(s, x̃n(s))Π̆n)∗(`)− (Πnσ(s, x̃(s))Π̆n)∗(`)
∥∥2

U︸ ︷︷ ︸
−−−−→
n−→∞

0

ds

]

+ EP̃
[ ∫ t

0

∥∥(Πnσ(s, x̃(s))Π̆n)∗(`)− σ∗(s, x̃(s))(`)
∥∥2

U︸ ︷︷ ︸
−−−−→
n−→∞

0

ds

])

= 0.

(3.4.31)

In fact, the convergence∥∥(Πnσ(s, x̃(s))Π̆n)∗(`)− σ∗(s, x̃(s))(`)
∥∥2

U −−−−→n−→∞
0

follows directly from the definition of Πn and Π̆n. Moreover, by Assumption (A1) we
have

∥∥σ∗(s, x̃n(s))(`)− σ∗(s, x̃(s))(`)‖U −−−−→
n−→∞

0 and, hence,∥∥(Πnσ(s, x̃n(s))Π̆n)∗(`)− (Πnσ(s, x̃(s))Π̆n)∗(`)
∥∥2

U

=
∥∥Π̆nσ

∗(s, x̃n(s))Πn(`)− Π̆nσ
∗(s, x̃(s))Πn(`)

∥∥2

U

≤
∥∥σ∗(s, x̃n(s))Πn(`)− σ∗(s, x̃(s))Πn(`)

∥∥2

U

≤ C
∥∥σ∗(s, x̃n(s))Πn(`)− σ∗(s, x̃n(s))(`)

∥∥2

U + C
∥∥σ∗(s, x̃n(s))(`)− σ∗(s, x̃(s))(`)

∥∥2

U

+ C
∥∥σ∗(s, x̃(s))(`)− σ∗(s, x̃(s))Πn(`)

∥∥2

U

≤ C
∥∥σ∗(s, x̃n(s))

∥∥2

L2(H;U)︸ ︷︷ ︸
≤λ4(s)(1+‖x̃n(s)‖2H)

∥∥(Πn − Id)(`)
∥∥2

H + C
∥∥σ∗(s, x̃n(s))(`)− σ∗(s, x̃(s))(`)‖2

U

+ C
∥∥σ∗(s, x̃(s))

∥∥2

L2(H;U)

∥∥(Id−Πn)(`)
∥∥2

H

−−−−→
n−→∞

0

is fulfilled since x̃n −−−→
n→∞

x̃ in S P̃ -a.s. and ` ∈ E , where C is a constant. Altogether,
Equations (3.4.30) and (3.4.31) imply that

EP
[
M2

` (t, x)−
∫ t

0

‖σ∗(r, x(r))(`)‖2
U dr

∣∣∣Fs] = M2
` (s, x)−

∫ s

0

‖σ∗(r, x(r))(`)‖2
U dr

holds by applying the same technique as in Equation (3.4.28). Now the result follows,
because (by the Doob-Meyer decomposition) the increasing continuous adapted process
〈M`〉, for which M2

` − 〈M`〉 is a martingale, is unique (see e.g. [RY99, Theorem 1.3, p.
120]).
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3.4.2 Finite-dimensional case

As explained before, we will now go back and consider the martingale problem only in
finite dimensions. The main idea is to use cutoff functions for the coefficients b and σ in
order to apply well-known results on existence of martingale solutions, in particular those
from [SV79], where assumptions on boundedness and continuity of b and σ are imposed.

Then, after proving tightness, we will again show that the probability measure P ,
which has been constructed as a limit, satisfies Conditions (M1) and (M2). These
calculations are almost completely analogous to those presented before in infinite di-
mensions. Hence, we will refer to equations from Subsection 3.4.1 frequently in order
to shorten the length of this proof and focus on the differences between the finite- and
infinite-dimensional case instead.

Proof of Theorem 3.3.1 for Rd.
Let U = H = Y = X = Rd. In this case we have Ω = C([0,∞);Rd). Define for m ∈ N,
t ≥ 0 and y ∈ Rd the measurable functions bm and σm by

bm(t, y) := 1{t≤m}χm(y)b(t, y),

σm(t, y) := 1{t≤m}χm(y)σ(t, y),

where 0 ≤ χm ∈ C(Rd;R) is a decreasing cutoff function with

χm(y) =

{
1, for ‖y‖Rd ≤ m,

0, for ‖y‖Rd > 2m.

Hence, for each t ≥ 0, the mappings y 7−→ bm(t, y) and y 7−→ σm(t, y) are continuous,
since (A1) yields continuity in y for b and σ themselves in finite dimensions.

Furthermore, minding Assumptions (A3) and (N), the inequalities

‖σm(t, y)‖2
L2(Rd;Rd) ≤ ‖σ(t, y)‖2

L2(Rd;Rd) ≤ λ4(t)(1 + ‖y‖2
Rd),

‖bm(t, y)‖γRd ≤ ‖b(t, y)‖γRd ≤ λ2(t)N (y)︸ ︷︷ ︸
≤Cd‖y‖pRd

+λ3(t)(1 + ‖y‖γ
′

Rd) (3.4.32)

hold by construction for every (t, y) ∈ [0,∞) × Rd. Hence, for m ∈ N, the functions bm
and σm are bounded, since for any ball B2m(0) they are bounded on [0,m]×B2m(0) and
zero on the complement.

Consequently, by applying [SV79, Theorem 6.1.7, p. 144], we conclude that for every
m ∈ N there exists a probability measure Pm ∈ P(Ω) such that Pm[x(0) = x0] = 1 and

Mm(t, x) := x(t)− x(0)−
∫ t

0

bm(s, x(s)) ds, t ≥ 0,

is a continuous Rd-valued (Ft)-martingale, whose covariation operator process is given by

�Mm � (t, x) =

∫ t

0

(σm)∗(s, x(s))σm(s, x(s)) ds, t ≥ 0.

Analogue to Lemma 3.4.2:
First of all, we need an analogue to the a priori energy estimate in Lemma 3.4.2.
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However, for the coercivity condition, we can only estimate

〈bm(r, y), y〉Rd = 1{r≤m}χm(y)〈b(r, y), y〉Rd ≤ λ1(r)(1 + ‖y‖2
Rd) (3.4.33)

by dropping the negative N -term in Assumption (A2). Therefore, we have to modify our
calculations slightly, but we still apply Itô’s formula for Rd-valued semimartingales as in
Equation (3.4.8). For any q ≥ 1, the identity

‖x(t)‖2q
Rd = ‖x(0)‖2q

Rd + 2q

∫ t

0

‖x(r)‖2(q−1)

Rd 〈bm(r, x(r)), x(r)〉Rd dr

+ q

∫ t

0

‖x(r)‖2(q−1)

Rd ‖σm(r, x(r))‖2
L2(Rd;Rd) dr

+ 2q(q − 1)

∫ t

0

‖x(r)‖2(q−2)

Rd ‖σ∗m(r, x(r)) (x(r))‖2
Rd dr

+M (q)
m (t, x)

follows, where M (q)
m (t, x) is a continuous real-valued (Ft)-martingale with respect to Pm,

whose quadratic variation process is given by

〈M (q)
m 〉(t, x) = 4q2

∫ t

0

‖x(r)‖4(q−1)

Rd ‖σ∗m(r, x(r))(x(r))‖2
Rd dr.

Hence, we conclude by using Inequality (3.4.32) that

‖x(t)‖2q
Rd ≤ ‖x(0)‖2q

Rd + 2q

∫ t

0

‖x(r)‖2(q−1)

Rd 〈bm(r, x(r)), x(r)〉Rd dr

+ q

∫ t

0

‖x(r)‖2(q−1)

Rd ‖σ(r, x(r))‖2
L2(Rd;Rd) dr

+ 2q(q − 1)

∫ t

0

‖x(r)‖2(q−2)

Rd ‖σ(r, x(r))‖2
L2(Rd;Rd)‖x(r)‖2

Rd dr

+M (q)
m (t, x)

holds and proceed as in Estimate (3.4.9) (by applying Inequality (3.4.33) and Assumption
(A3)) to obtain

‖x(t)‖2q
Rd ≤ ‖x(0)‖2q

Rd + Cqλ∗(t)

∫ t

0

(‖x(r)‖2q
Rd + 1) dr +M (q)

m (t, x). (3.4.34)

Next, the application of Gronwall’s inequality is obviously easier without the N -term.
After defining the stopping time

τR := inf{r ∈ [0, t] | ‖x(r)‖Rd > R} ∧ t, R > 0,

a repetition of the calculations from Estimate (3.4.11) yields

EPm
[

sup
r∈[0,t∧τR]

∣∣M (q)
m (r, x)

∣∣]

≤ CqEPm

(∫ t∧τR

0

‖x(r)‖4(q−1)

Rd ‖σ∗m(r, x(r))(x(r))‖2
Rd dr

) 1
2


≤ 1

2
EPm

[
sup

r∈[0,t∧τR]

‖x(r)‖2q
Rd

]
+ Cqλ∗(t)

∫ t∧τR

0

EPm
[

sup
r̃∈[0,r∧τR]

‖x(r̃)‖2q
Rd

]
+ 1 dr.
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Hence, by again first taking suprema and then expectations with respect to Pm on both
sides of Inequality (3.4.34), we obtain

EPm
[

sup
r∈[0,t∧τR]

‖x(r)‖2q
Rd

]
≤ 2EPm

[
‖x(0)‖2q

Rd
]

+ 2Cq,t

∫ t

0

EPm
[

sup
r̃∈[0,r∧τR]

‖x(r̃)‖2q
Rd

]
+ 1 dr,

which by using Gronwall’s inequality as in Estimate (3.4.12) and letting R −→∞ gives

EPm
[

sup
r∈[0,t]

‖x(r)‖2q
Rd

]
≤ exp

(
2Cq,tt

)(
2‖x0‖2q

Rd + 1
)

= Cq,t <∞.

Since we have dropped the negativeN -term, we use Assumption (N) as a finite-dimensional
replacement instead in order to control the growth of bm in Assumption (A3). We then
have

EPm
[ ∫ t

0

N (x(r)) dr

]
≤ Cd EPm

[ ∫ t

0

‖x(r)‖pRd dr

]
≤ Cd t Cp,t <∞.

Tightness as in Step 2:
We will show that (Pm)m∈N is tight on C

(
[0,∞);Rd

)
analogous to the infinite-dimensional

case by using Lemma 3.4.1.
By using Estimate (3.4.32), we can reproduce Estimate (3.4.14) to obtain

EPm
[

sup
s,t∈[0,T ], s 6=t

∥∥ ∫ t
s
bm(r, x(r)) dr

∥∥
Rd

|t− s|β1

]
≤ Cp,γ,γ′,T

for every β1 ∈
(
0, γ−1

γ

)
as well as Equation (3.4.16), which yields

EPm
[

sup
s,t∈[0,T ], s 6=t

‖Mm(t, x)−Mm(s, x)‖Rd
|t− s|β2

]
≤ Cq,T

for every β2 ∈
(
0, q−1

2q

)
. Combining both estimates yields that for some β > 0 (chosen

small enough) the estimate

sup
m∈N

EPm
[

sup
s,t∈[0,T ], s 6=t

‖x(t)− x(s)‖Rd
|t− s|β

]
<∞

holds, which, as we mentioned above, implies tightness of (Pm)m∈N.

Theorems of Prokhorov and Skorokhod as in Step 3:
We follow Step 3 from the infinite-dimensional proof. First, we again use Prokhorov’s
theorem and select a subsequence if necessary. Then, we apply Skorokhod’s representation
theorem to the law of x under Pm, i.e. there exist C

(
[0,∞);Rd

)
-valued random variables

x̃m, m ∈ N, and x̃ on a common probability space (Ω̃, F̃ , P̃ ) such that we have

(i) x̃m (under P̃ ) has the law Pm for each m ∈ N, i.e. P̃ ◦ x̃−1
m = Pm,

(ii) x̃ (under P̃ ) has the law P , i.e. P̃ ◦ x̃−1 = P ,
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(iii) x̃m −−−→
m→∞

x̃ in C
(
[0,∞);Rd

)
, P̃ -a.s.

Note that the laws Pm ◦ x−1 and P ◦ x−1 simplify to Pm and P , respectively, since x is
the canonical process.

Conditions (M1) and (M2) for P as in Step 4:
First, we will verify Condition (M1) for P . We have, similar to Equation (3.4.18) in
infinite dimensions,

P [x(0) = x0] = P̃ [x̃(0) = x0] = lim
m→∞

P̃ [x̃m(0) = x0] = lim
m→∞

Pm[x(0) = x0] = 1

since Pm satisfies Condition (M1). Furthermore, for any q ≥ 1 and t ≥ 0, define

ξq(t, x) := sup
r∈[0,t]

‖x(r)‖2q
Rd +

∫ t

0

N (x(r)) dr.

As in Equation (3.4.20) we then have

EP [ξq(t, x)] = EP̃ [ξq(t, x̃)] ≤ lim inf
m→∞

EP̃ [ξq(t, x̃m)] = lim inf
m→∞

EPm [ξq(t, x)]

≤ lim inf
m→∞

Cp,q,t <∞,

which also yields the required integrability in Condition (M1).

Now we will prove that Condition (M2) holds for P . Fix ` ∈ E = span{e1, . . . , ed}. We
will show that M`(t, x), t ≥ 0, in Condition (M2) is a continuous (Ft)-martingale with
respect to P , whose quadratic variation process is given by

〈M`〉(t, x) =

∫ t

0

‖σ∗(s, x(s))(`)‖2
Rd ds, t ≥ 0.

As in Equation (3.4.27) we first prove that for t > 0

lim
m→∞

EP̃
[∣∣〈Mm(t, x̃m), `〉Rd −M`(t, x̃)

∣∣] = 0 (3.4.35)

holds by considering

EP̃
[∣∣∣∣〈x̃m(t)− x̃(t), `〉Rd −

∫ t

0

〈bm(s, x̃m(s))− b(s, x̃(s)), `〉Rd ds

∣∣∣∣].
On the one hand, by repeating the calculations from Inequality (3.4.23), we have

lim
m→∞

EP̃
[
|〈x̃m(t)− x̃(t), `〉Rd |

]
= 0.

On the other hand, we split the integral for the second term as follows

EP̃
[∣∣∣∣ ∫ t

0

〈bm(s, x̃m(s))− b(s, x̃(s)), `〉Rd ds

∣∣∣∣]
= EP̃

[∣∣∣∣ ∫ t

0

〈bm(s, x̃m(s))− b(s, x̃m(s)), `〉Rd + 〈b(s, x̃m(s))− b(s, x̃(s)), `〉Rd ds

∣∣∣∣].
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Since, by a calculation similar to Estimate (3.4.14), we have

EP̃
[ ∫ t

0

‖b(s, x̃m(s))‖γRd ds

]
= EPm

[ ∫ t

0

‖b(s, x(s))‖γRd ds

]
≤ Cγ′,t, (3.4.36)

we can proceed similar to Estimate (3.4.25) for the first summand, i.e.

lim
m→∞

EP̃
[∣∣∣∣ ∫ t

0

〈bm(s, x̃m(s))− b(s, x̃m(s)), `〉Rd ds

∣∣∣∣]
≤ lim

m→∞
EP̃
[ ∫ t

0

∣∣〈b(s, x̃m(s)), `〉Rd
∣∣ ∣∣∣1{s≤m}χm(x̃m(s))− 1

∣∣∣ ds]
≤ ‖`‖Rd lim

m→∞
EP̃
[ ∫ t

0

‖b(s, x̃m(s))‖Rd
(

1{s≥m} + 1{
‖x̃m(s)‖Rd≥m

}) ds

]
≤ ‖`‖Rd lim

m→∞

((
EP̃
[ ∫ t

0

‖b(s, x̃m(s))‖γRd ds
]) 1

γ
(∫ t

0

1

m
EP̃ [s] ds

) γ−1
γ

(3.4.37)

+

(
EP̃
[ ∫ t

0

‖b(s, x̃m(s))‖γRd ds
]) 1

γ

·
(∫ t

0

1

m2
EP̃
[

sup
0≤r≤s

‖x̃m(r)‖2
Rd

]
ds

) γ−1
γ

)

≤ ‖`‖Rd lim
m→∞

(
(Cγ′,t)

1
γ

(
Ct

1

m

) γ−1
γ

+ (Cγ′,t)
1
γ

(
Ct

1

m2

) γ−1
γ

)
= 0.

The convergence of the second summand, i.e.

lim
m→∞

EP̃
[∣∣∣∣ ∫ t

0

〈b(s, x̃m(s))− b(s, x̃(s)), `〉Rd ds

∣∣∣∣] = 0

follows from Assumption (A1) and again Estimate (3.4.36) since γ > 1.
Consequently, by using a calculation similar to Equation (3.4.28), a monotone class

argument yields

EP
[
M`(t, x)

∣∣Fs] = M`(s, x).

Finally, we will prove the representation formula of the quadratic variation 〈M`〉 given
in Condition (M2). We proceed as in the infinite-dimensional proof. Repeating the
calculations from Estimate (3.4.29) for q ≥ 1 yields

sup
m∈N

EP̃
[
|〈Mm(t, x̃m), `〉Rd|2q

]
≤ Cq sup

m∈N
EP̃
[(∫ t

0

‖σ∗m(s, x̃m(s))(`)‖2
Rd ds

)q]
≤ Cq,t sup

m∈N
EP̃
[∫ t

0

‖σ∗(s, x̃m(s))(`)‖2q
Rd ds

]
= Cq,t sup

m∈N
EPn

[∫ t

0

‖σ∗(s, x(s))(`)‖2q
Rd ds

]
<∞
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giving us an analogue of Equation (3.4.30), i.e.

lim
m→∞

EP̃
[∣∣〈Mm(t, x̃m), `〉Rd

∣∣2] = EP̃
[∣∣M`(t, x̃)

∣∣2],
which follows directly from Equation (3.4.35).

Furthermore, as in Equation (3.4.31) we have

lim
m→∞

EP̃
[ ∫ t

0

∥∥σ∗m(s, x̃m(s))(`)− σ∗(s, x̃(s))(`)
∥∥2

Rd ds

]
= 0.

In fact, we split the integrand into∥∥σ∗m(s, x̃m(s))(`)− σ∗(s, x̃(s))(`)
∥∥2

Rd

≤ 2
∥∥σ∗m(s, x̃m(s))(`)− σ∗(s, x̃m(s))(`)

∥∥2

Rd + 2
∥∥σ∗(s, x̃m(s))(`)− σ∗(s, x̃(s))(`)

∥∥2

Rd .

Then, for the first term we have∥∥σ∗m(s, x̃m(s))(`)− σ∗(s, x̃m(s))(`)
∥∥2

Rd

≤
∣∣∣1{s≤m}χm(x̃m(s))− 1

∣∣∣ ∥∥σ∗(s, x̃m(s))(`)
∥∥2

Rd

≤
(

1{s≥m} + 1{
‖x̃m(s)‖Rd≥m

})∥∥σ∗(s, x̃m(s))(`)
∥∥2

Rd

and can proceed as in Estimate (3.4.37). For the second term we use Assumption (A1).
Altogether, we have

EP
[
M2

` (t, x)−
∫ t

0

‖σ∗(r, x(r))(`)‖2
Rd dr

∣∣∣Fs] = M2
` (s, x)−

∫ s

0

‖σ∗(r, x(r))(`)‖2
Rd dr

by applying the same technique as before in Equation (3.4.28). Hence, as in the infinite
dimensional case, the result follows since we have shown that M2

` − 〈M`〉 is a martingale.
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Chapter 4

Linear FPKEs in infinite dimensions

Fokker–Planck–Kolmogorov equations are second order elliptic or parabolic equations for
measures, that have been extensively studied by A. Kolmogorov (see [Kol31], [Kol33],
[Kol37]) since the 1930s and prior to this (independently) in the physics literature by
A. Fokker (see [Fok14]) and M. Planck (see [Pla17]) as well as authors like M. von Smolu-
chowski (see [Smo16]) or S. Chapman (see [Cha28]).

The close connection to physics is explained by its relevance in various fields of research.
This includes most prominently statistical mechanics, where the corresponding equation
for densities traditionally arises to describe time evolution of a probability density function
(e.g. of the velocity of a small particle) under influence of drift and diffusion forces (in
particular Brownian motion).

In the following, we will lay our focus on Cauchy problems for parabolic linear FPKEs
(also called weak parabolic equations for measures with initial data) and refer to Section
9.2 for an explanation about the difference between linear and nonlinear FPKEs. The
distinction between elliptic and parabolic equations follows as usual from the distinction
between elliptic and parabolic operators that appear in the equation (in our case the
operator L introduced below). Note that in the parabolic case the coefficients (appearing
in L) may explicitly depend on the time parameter t.

Putting it simple, for some T > 0, some domain Γ ⊆ Rd, some Borel function A =
(aij)1≤i,j≤d on [0, T ]×Γ taking values in the space of nonnegative symmetric Rd×d-matrices
and some Rd-valued Borel function b on [0, T ]× Γ, a finite-dimensional parabolic FPKE
for Borel measures on [0, T ]× Γ is generally of the form

∂tµ = L∗µ,

understood in the weak sense (via test functions)∫
∂tϕ+ Lϕ dµ = 0,

where L∗ is the formal adjoint of the operator L, which is given by

Lϕ(t, y) =
d∑

i,j=1

aij(t, y)∂yi∂yjϕ(t, y) +
d∑
i=1

bi(t, y)∂yiϕ(t, y)

if the functions ϕ : [0, T ] × Γ −→ R are sufficiently smooth. Together with an initial
distribution µ0 in a suitable sense, the considered equation is a Cauchy problem. We refer
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to Section 4.2 below for an explanation on the precise understanding of this shorthand
notation of the equation.

Let us note (as it is explained in [BKRS15, p. ix]) that it is beneficial to consider
FPKEs a priori as equations for measures and not for functions. Of course, in finite
dimensions, the measure µ can indeed have a density with respect to Lebesgue measure,
which induces a corresponding equation for functions. But in infinite dimensions (with
the absence of a Lebesgue measure) or in the case of singular or degenerate coefficients
this approach via functions reaches its limits, which gives significant importance to the
approach via measures.

Consequently, after being studied in finite dimensions, the research on infinite-dimen-
sional FPKEs in this general (measure-based) setting received growing attention in the
1990s (see e.g. [BR94], [BR95], [BKR96]) and intensified since the beginning of the 21st
century (see e.g. [BR01], [RS06], [BDR09], [BDR10], [BDR11], [Tre14], [BKRS15] and
the references therein). Going back, it was initially motivated by diffusion processes and
stochastic analysis in infinite dimensions, where in particular [AH77] and the work of
A. Kirillov (e.g. [Kir91; Kir93; Kir94a; Kir94b]) were named by the authors of [BKR09,
p. 975] and [BKRS15, p. x] as being formative.

This chapter will be mainly based on Chapter 10 of the AMS Monograph “Fokker–
Planck–Kolmogorov equations” by V. Bogachev, N. V. Krylov, M. Röckner and S. Sha-
poshnikov from 2015 (see [BKRS15]). In Section 10.4, the authors prove two theorems
(which originally have been proved in their prior work [BDRS15]) on existence of so-called
probability solutions (see Definition 4.2.1 below) to the Cauchy problem for linear FPKEs
in infinite dimensions.

The aim of this chapter is to present a slightly modified and more elaborate version
of the main theorem from Section 10.4, i.e. Theorem 10.4.1 in [BKRS15], by providing
additional details and clarification on key steps of the proof.

Moreover, as in Chapter 3, we will be directly applying and repeating techniques and
calculations from the proof of the main theorem (see Theorem 4.3.1 below) later in the
proof of the main theorem of Chapter 6 (see Section 6.4 below), which benefits from
presenting all details at this point already.

The proof will heavily rely on finite-dimensional a priori estimates, calculations and
results on existence of probability solutions to Cauchy problems. Hence, we will be refer-
ring to the two articles [BDR08a] and [BDR08b], which are closely related to the ideas
and results of [BDRS15] and, therefore, fit perfectly in our setting.

In short, we will prove existence of probability solutions to the Cauchy problem for
linear Fokker–Planck–Kolmogorov equations on infinite-dimensional spaces under assump-
tions on continuity and growth of our coefficients b and A and further assumptions on a
so-called Lyapunov function V . As the main idea of the proof, we will use Galerkin ap-
proximations, i.e. construct a solution as a limit of solutions to finite-dimensional Cauchy
problems by projecting onto finite-dimensional spaces Hn.
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4.1 Framework

Let H be a separable Hilbert space with inner product 〈·, ·〉H and norm ‖ · ‖H. Recall
that all infinite-dimensional separable Hilbert spaces are isometrically isomorphic to `2

(see e.g. [Bre11, Remark 10, p. 144]) and that we can treat `2 as a subspace of R∞, where
R∞, equipped with the product topology, is a Polish space. This means we consider the
continuous and dense embedding

`2 ⊆ R∞.

As in [BKRS15, Section 10.4], we let {e1, e2, . . . } be the standard orthonormal basis in
`2. Again, for any n ∈ N, define Hn := span{e1, . . . , en}. Let Π∞n be the projection onto
Hn in R∞ given by

Π∞n y :=
n∑
i=1

yiei = (y1, . . . , yn, 0, . . .)

(
=

n∑
i=1

〈y, ei〉`2 ei, for y ∈ `2

)
,

for any y ∈ R∞ with y = (yi)i∈N.
Fix T > 0. For every i, j ∈ N, let the mappings

aij : [0, T ]× R∞ −→ R,
bi : [0, T ]× R∞ −→ R

be B([0, T ])⊗ B(R∞)/B(R)-measurable. In addition, we set

bn := (b1, . . . , bn) and An := (aij)1≤i,j≤n (4.1.1)

and A := (aij)1≤i,j<∞.
We can then consider the associated Kolmogorov operator L to our FPKE, acting on

functions ϕ ∈ FC2({ei}), i.e. finitely based functions defined in Section 2 (see Equation
(2.0.1)), which is given by

Lϕ(t, y) =
d∑

i,j=1

aij(t, y)∂ei∂ejϕ(y) +
d∑
i=1

bi(t, y)∂eiϕ(y),

for (t, y) ∈ [0, T ]× R∞ and some d ∈ N depending on ϕ.

Remark. As usual, L obviously also acts on finitely based functions that are in addition
explicitly depending on time, because this time-dependence is “irrelevant” for the partial
derivatives appearing in the operator. But we will not need the often used classes of
time-dependent test functions and rather mostly apply L to functions ϕ ∈ FC∞c ({ei}) in
the following.

Furthermore, denote by νn the projection onto Hn of a Borel probability measure ν
on R∞ (which will serve as our initial condition in the following), i.e. νn := ν ◦ (Π∞n )−1.

Let us introduce the terms compactness and non-degeneracy for real-valued functions,
which we will later use in the assumptions (see Subsection 4.2.3 below) for the main
theorem.
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Definition 4.1.1 (compact function, see e.g. [BKRS15, Definition 2.3.1, p. 62]). A real-
valued function f on a topological space is called compact if the sublevel sets {f ≤ R} are
compact for any R ∈ R.

Remark. Let us note that, for real-valued continuous functions f on Rn, this definition
is equivalent to the condition lim‖y‖Rn→∞ f(y) = ∞. In the following, we will mainly
assume Borel functions f : R∞ −→ [0,∞] to be compact, which means that in this case
the sublevel sets {f ≤ R} have to be compact for any R <∞.

Definition 4.1.2 (non-degenerate function, see e.g. [BDR08a, p. 410]). A compact func-
tion f ∈ C2(Rn) is called non-degenerate if there exists a sequence (ck)k∈N of numbers
with ck −−−→

k→∞
∞ such that the level sets f−1(ck) = {y ∈ Rn | f(y) = ck} are C1-surfaces.

Example (see [BDR08a, p. 410]). If a function f is convex, then it is non-degenerate. If
f(y) = f0((y, y)), where f0 ∈ C2([0,∞)) is increasing to ∞, it is also non-degenerate.

Finally, we consider (strongly) Lindelöf spaces, which are generalizing the notion of a
compact space by weakening the requirement that the subcover has to be finite to only
countability.

Definition 4.1.3 (Lindelöf). A topological space in which every open cover has a countable
subcover is a Lindelöf space.

Example. Every compact space is a Lindelöf space.

Definition 4.1.4 (strongly Lindelöf). A topological space is a strongly Lindelöf space if
every open subspace is Lindelöf.

Example. Every Polish space is a strongly Lindelöf space.

4.2 Equation, Solution, Assumptions

Based on the framework from Section 4.1 we can now introduce the considered Cauchy
problem, the corresponding notion of a probability solution and the necessary assumption
for the existence result in Section 4.3.

4.2.1 Equation

Consider the following shorthand notation for a Cauchy problem for a linear Fokker–
Planck–Kolmogorov equation given by

∂tµ = L∗µ,

µ�t=0 = ν
(4.2.1)

with respect to a nonnegative finite Borel measure µ of the form µ(dt dy) = µt(dy) dt on
[0, T ]×R∞, where (µt)t∈[0,T ] is a family of Borel probability measures on R∞. Furthermore,
ν is a Borel probability measure on R∞ and L∗ is the formal adjoint of the operator L
introduced before in Section 4.1.
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4.2.2 Notion of solution

Let us formalize the abbreviated notation of Equation (4.2.1) into a definition of a prob-
ability solution, which inherently contains the initial condition for the Cauchy prob-
lem. This can be done mostly analogously to the case of finite-dimensional FPKEs (see
e.g. [BKRS15, Definition 6.1.1 and Proposition 6.1.2, p. 242f]).

Definition 4.2.1 (probability solution). A finite Borel measure µ on [0, T ]× R∞ of the
form µ(dt dy) = µt(dy) dt, where (µt)t∈[0,T ] is a family of Borel probability measures on
R∞, is called probability solution to Equation (4.2.1) if the following conditions hold.

(i) The functions aij, bi are integrable with respect to the measure µ, i.e.

aij, bi ∈ L1([0, T ]× R∞, µ).

(ii) For every function ϕ ∈ FC∞c ({ei}) we have∫
R∞

ϕ(y)µt(dy) =

∫
R∞

ϕ(y) ν(dy) +

∫ t

0

∫
R∞

Lϕ(s, y)µs(dy) ds (4.2.2)

for dt-a.e. t ∈ [0, T ].

Remark. Note that the integrability condition for the coefficients in infinite dimensions
(see (i) in Definition 4.2.1) is stronger than the local integrability condition usually as-
sumed in finite-dimensional definitions (see e.g. [BDR08a, p. 397f] or [BKRS15, Definition
6.1.1, p. 242]).

4.2.3 Assumptions

We impose the following assumptions on the coefficients A and b associated to Equation
(4.2.1), which actually had to be modified slightly from [BKRS15] (i.e. Assumptions (H2)
and (H3)) in order to prove Theorem 4.3.1 below:

(H1) For all n ∈ N, the matrices An = (aij)1≤i,j≤n are symmetric and nonnegative definite.

(H2) Let Θ: R∞ −→ [0,∞] be a compact Borel function, bounded on bounded sets on
each space Hn, n ∈ N, such that, for every i ∈ N and j ≤ i,

• the functions y 7→ aij(t, y), t ∈ [0, T ], are equicontinuous on every set {Θ ≤ R}
with R <∞ and also on every fixed ball in each Hn,

• for every t ∈ [0, T ] the function y 7→ bi(t, y) is continuous on every set {Θ ≤ R}
with R <∞ and also on each Hn.

(H3) There exist numbers M0, C0 ≥ 0 and a compact Borel function V : R∞ −→ [1,∞]
whose restrictions to Hn are of class C2(Hn) and non-degenerate such that for all
y ∈ Hn, n ∈ N, t ∈ [0, T ], we have

n∑
i,j=1

aij(t, y)∂eiV (y)∂ejV (y) ≤M0V (y)2, (4.2.3)

LV (t, y) ≤ C0V (y)−Θ(y). (4.2.4)
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(H4) There exist constants Ci ≥ 0 and ki ≥ 0 such that for all i ∈ N and j ≤ i we have

|aij(t, y)|+ |bi(t, y)| ≤ CiV (y)ki
(
1 + δi(Θ(y))Θ(y)

)
, (4.2.5)

for every (t, y) ∈ [0, T ]× R∞, where δi is a bounded nonnegative Borel function on
[0,∞) with lim

s→∞
δi(s) = 0.

Remark. We note that these assumptions are not supposed to be perfectly optimal and
leave room for improvement. As stated before, we had to modify the assumptions from
[BKRS15] on the functions Θ and V slightly to guarantee that the finite-dimensional
existence results from [BDR08a], that we intend to use for our proof, will be applicable
in this situation.

In any way, further improvements should always be made within the wider scope of
simplifying and unifying all collected assumption from Chapters 3–5 (see Subsection 6.2.2)
for their later combined use in Chapter 6.

4.3 Results

Let us now state the main result of this chapter on existence of solutions to the Cauchy
problem for linear FPKEs in infinite dimensions.

Theorem 4.3.1 (see [BKRS15, Theorem 10.4.1, p. 422]). Assume that conditions (H1)–
(H4) hold. Then, for every Borel probability measure ν on R∞ satisfying the condition

Wk := sup
n∈N
‖V (·)k ◦ Π∞n ‖L1(ν) <∞ (4.3.1)

for all k ∈ N, the Cauchy problem (4.2.1) with initial condition ν has a solution of the
form µ = µt dt with Borel probability measures (µt)t∈[0,T ] on R∞ such that for all t ∈ [0, T ]
and k ∈ N we have∫

R∞
V (y)k µt(dy) + k

∫ t

0

∫
R∞

V (y)k−1Θ(y)µs(dy) ds ≤ NkWk, (4.3.2)

where Nk := Mke
Mk + 1 and Mk := k(C0 + (k − 1)M0). In particular,

µt(V <∞) = 1 (4.3.3)

holds for all t ∈ [0, T ] and µt(Θ <∞) = 1 for dt-a.e. t ∈ [0, T ].

A direct consequence is the following theorem, where the inequalities in Assumptions
(H3) and (H4) are changed to make it applicable in the case where V and Θ are e.g. ex-
ponentials of quadratic functions (with added constants). Despite not being used in the
upcoming chapters, we still want to state it for completeness.

Theorem 4.3.2 (see [BKRS15, Theorem 10.4.2, p. 425]). Suppose that in Theorem 4.3.1
Inequality (4.2.4) in Assumption (H3) is replaced by

LV (t, y) ≤ V (y)− V (y)Θ(y)
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and Inequality (4.2.5) in Assumption (H4) is replaced by

|aij(t, y)|+ |bi(t, y)| ≤ Ci
(
1 + δ

(
V (y)Θ(y)

)
V (y)Θ(y)

)
for (t, y) ∈ [0, T ]× R∞. Then, for every Borel probability measure ν on R∞ with

W1 := sup
n∈N
‖V ◦ Π∞n ‖L1(ν) <∞,

the Cauchy problem (4.2.1) with initial distribution ν has a solution of the form µ = µt dt
with Borel probability measures (µt)t∈[0,T ] on R∞ such that for t ∈ [0, T ] we have∫

R∞
V (y)µt(dy) +

∫ t

0

∫
R∞

V (y)Θ(y)µs(dy) ds ≤ 4W1.

Proof of Theorem 4.3.2. We refer to [BKRS15] for an explanation on how to modify the
proof of Theorem 4.3.1 in this case.

4.4 Proof
Before we can actually start with the proof of Theorem 4.3.1 we will first introduce this
auxiliary lemma on countable point and measure-separating families of finitely based
functions, which is proved by using similar techniques as in [MR92, p. 119].

Lemma 4.4.1. There exits a countable family F of functions in FC∞c ({ei}), which

i) separates points in R∞,

ii) separates measures on B(R∞) (i.e. for any two measures µ1, µ2 ∈ B(R∞) with µ1 6=
µ2 there exists f ∈ F such that

∫
R∞ f dµ1 6=

∫
R∞ f dµ2).

Proof. Let us begin by first leaving out the countability and showing the following sim-
plified claim instead.
Claim: There exists a family F̃ ⊆ FC∞c ({ei}) that separates points in R∞.
Proof of Claim: Let y1, y2 ∈ R∞ with y1 6= y2. Consequently, there exists some d ∈ N
such that their d-th component differs, i.e. yd1 6= yd2 . We consider

Π∞d y1 = (y1
1, . . . , y

d
1) ∈ Rd,

Π∞d y2 = (y1
2, . . . , y

d
2) ∈ Rd,

where Π∞d is the projection onto Rd, and obtain Π∞d y1 6= Π∞d y2. By using the fact
that points in Rd can be separated by functions of class C∞c (Rd), there exists some
f ∈ C∞c (Rd) such that f(Π∞d y1) 6= f(Π∞d y2) (choose e.g. f with f(Π∞d y1) = 1 and
supp(f) ⊆ Bdist{Π∞d y1,Π

∞
d y2}/2(Π∞d y1)). Hence, we can just consider the finitely based

function ξ : R∞ −→ R given by

ξ(y) := f(Π∞d (y)) = f(y1, . . . , yd), y ∈ R∞,

i.e. we constructed a function ξ ∈ FC∞c ({ei}) that separates the points y1 and y2 in R∞.
The family F̃ is then chosen to be the collection of all such functions ξ.
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Chapter 4. Linear FPKEs in infinite dimensions

Now let us start with i): By using the claim from above, it remains to show that there
exists a subset F of the family F̃ that is in fact countable.

For any function f ∈ FC∞c ({ei}), let (f, f) : R∞ × R∞ −→ R × R be the function
given by (f, f)(y1, y2) := (f(y1), f(y2)). Set DR∞ := {(y1, y2) ∈ R∞ × R∞ | y1 = y2} to
be the diagonal of R∞ × R∞ and analogously let DR be the diagonal of R × R. Then,
since the functions f ∈ F̃ separate points in R∞, the equation(

R∞ × R∞
)
\DR∞ =

⋃
f∈F̃

(f, f)−1(R× R \DR) (4.4.1)

holds.
Furthermore, note that R∞ × R∞ is a Polish space and, hence, a strongly Lindelöf

space (see Definition 4.1.4). Since
(
R∞× R∞

)
\DR∞ is an open subset of R∞× R∞, the

open cover on the right hand side of Equation (4.4.1) has a countable subcover, i.e. there
exists a countable family F ⊆ FC∞c ({ei}) such that(

R∞ × R∞
)
\DR∞ =

⋃
f∈F

(f, f)−1(R× R \DR).

The assertion follows.
Finally let us prove ii): Without loss of generality we can assume that F is a multi-

plicative system. By a monotone class argument it then remains to prove that F generates
B(R∞). Since the functions in F are continuous, we immediately have σ(F) ⊆ B(R∞).

In addition, we consider the measurable function id mapping from the Polish space
(R∞,B(R∞)) to the space (R∞, σ(F)) equipped with the countably generated σ-algebra
σ(F). By Kuratowski’s theorem (see e.g. [Kur66, p. 487f] or [Par67, Section I.3, p. 15ff])
it follows that id−1 is σ(F)/B(R∞)-measurable, which implies that B(R∞) ⊆ σ(F).

For the proof of Theorem 4.3.1 we will follow [BKRS15] up to some minor modifica-
tions.

Proof of Theorem 4.3.1. Let us divide the proof into five steps. Note that we identify Hn

with Rn.

Step 0: Existence of µt,n on Hn

In this preliminary step, we will prove existence of Borel probability measures µt,n on Hn

such that the measure µn := µt,n dt solves the Cauchy problem with coefficients An and
bn on [0, T ]×Hn and initial distribution νn. Therefore, for any m ≥ 1, consider the m-th
power of V , i.e. the restriction of the mapping

V (·)m : R∞ −→ [1,∞]

to the subspace Hn, as our Lyapunov function. We define

Mm := m(C0 + (m− 1)M0).

By using the definition of L in this finite-dimensional case in the first and Assumption
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(H3) in the third step, we then have

LV m(t, y) =
n∑

i,j=1

aij(t, y)∂ei∂ejV (y)m +
n∑
i=1

bi(t, y)∂eiV (y)m

= mV (y)m−1
(
LV (t, y) + (m− 1)V (y)−1

n∑
i,j=1

aij(t, y)∂eiV (y)∂ejV (y)
)

≤ mV (y)m−1
(
C0V (y)−Θ(y) + (m− 1)M0V (y)

)
= MmV (y)m −mV (y)m−1Θ(y)

for (t, y) ∈ [0, T ] × Hn. Since the function V m inherits all necessary properties from the
Lyapunov function V , we can make use of the existence result given in [BDR08a, Corollary
3.4, p. 415]. Consequently, we obtain the desired probability measures µt,n on Hn, where
µ0,n = νn, with the property that the function

t 7→
∫
Hn
ζ(y)µt,n(dy) (4.4.2)

is continuous on t ∈ [0, T ] for every ζ ∈ C∞c (Hn).

Step 1: Extension of µt,n on Hn to µ̄t,n on R∞
Since the measures µt,n are yet only defined on the finite-dimensional space Hn, we have
to naturally extend them to measures µ̄t,n on R∞ to be precise in the upcoming steps.
Since Hn is a closed subspace of R∞, we extend the measures by setting

µ̄t,n(A) := µt,n(A ∩Hn), A ∈ B(R∞).

This enables us to consistently use both µt,n in finite-dimensional and µ̄t,n in infinite-
dimensional calculations in the following.

Step 2: Tightness of (µ̄t,n)n∈N
Now let us show that the family of Borel probability measures (µ̄t,n)n∈N is tight on R∞
for every fixed t ∈ [0, T ]. For m ≥ 1 define

Nm := Mme
Mm + 1.

Then, since the function V m introduced in Step 0 inherits all necessary properties from
the Lyapunov function V (in particular it is νn-integrable by assumption since Wm <∞),
we have by [BDR08b, Lemma 1, p. 544], for each m ≥ 1 and for dt-a.e. t ∈ [0, T ], the
estimate ∫

Hn
V (y)m µt,n(dy) +m

∫ t

0

∫
Hn
V (y)m−1Θ(y)µs,n(dy) ds

≤ Nm

∫
Hn
V (y)m νn(dy)

≤ NmWm.

(4.4.3)

Actually, let us show that Inequality (4.4.3) is even true for every t ∈ [0, T ]. In fact
(compare e.g. [BDR08a, Proof of Lemma 2.2, p. 402]), since the continuity of t 7→
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∫
Hn ζ(y)µt,n(dy) on [0, T ] holds for every ζ ∈ C∞c (Hn), by approximation it also holds
for every ζ ∈ Cc(Hn). Then, we obtain the same for every ζ ∈ Cb(Hn) that is constant
outside of a compact set because subtracting this constant gives a function in Cc(Hn)
(and µt,n being a probability measure allows us to conclude continuity). Furthermore, for
any fixed k ∈ N, Inequality (4.4.3) implies that∫

Hn
min(k, V (y)m)µt,n(dy) +m

∫ t

0

∫
Hn

min(k, V (y)m−1Θ(y))µs,n(dy) ds ≤ NmWm

holds for dt-a.e. t ∈ [0, T ]. Since the sublevel set {V m ≤ k} is compact by Assumption
(H3) and we have continuity in t of both summands on the left-hand side, it follows
that this inequality is fulfilled for every t ∈ [0, T ]. By letting k → ∞, the monotone
convergence theorem yields the assertion.

Now, by [Bog07, Example 8.6.5, p. 205], we can use Equation (4.4.3) and the compact-
ness of the sublevel sets {V m ≤ R}, R < ∞, to conclude that for every fixed t ∈ [0, T ]
the family of measures (µ̄t,n)n∈N is tight on R∞.

Step 3: Weakly convergent subsequence of (µ̄t,n)n∈N
Next, we will deduce existence of a weakly convergent subsequence from the family of
Borel probability measures (µ̄t,n)n∈N on R∞, converging for every t ∈ [0, T ].

In fact, by using Prokhorov’s theorem and a diagonal argument (recall that subsets of
tight sets of measures are by definition still tight), there exists a subsequence of (µ̄t,n)n∈N
that converges weakly on R∞, but only for every rational t ∈ [0, T ]. Let us denote this
subsequence by (µ̄t,n`)`∈N and its limit, for t ∈ [0, T ]∩Q, by µt in the following. However,
in order to obtain a subsequence of (µ̄t,n)n∈N that converges weakly for every t ∈ [0, T ],
we first have to prove a series of auxiliary claims making use of pointwise convergence of
their respective integrals for functions from a countable measure-separating family.

For our finite-dimensional solutions µt,n we know (see e.g. [BDR08a, Lemma 2.1, p.
399] including the explanation about the limit on p. 400) that, for all ζ ∈ C∞c (Rn), the
identity ∫

Rn
ζ(y)µt,n(dy) =

∫ t

0

∫
Rn
Lζ(s, y)µs,n(dy) ds+

∫
Rn
ζ(y) νn(dy) (4.4.4)

holds for every t ∈ [0, T ].

Claim 1: Equation (4.4.4) remains true for all ζ ∈ C∞b (Rn).
Proof of Claim 1: First of all, consider an arbitrary function ϑ ∈ C∞c (Rn). Now set
m(n) := max(1, k1, . . . , kn) and δ(n) := δ1 + . . . + δn. Then by Assumptions (H1), (H4)
and the boundedness of partial derivatives of C∞c (Rn)-functions we have

|Lϑ(t, y)| ≤
n∑

i,j=1

|aij(t, y)||∂ei∂ejϑ(y)|+
n∑
i=1

|bi(t, y)||∂eiϑ(y)|

≤ 2
n∑
i=1

∑
j≤i

|aij(t, y)||∂ei∂ejϑ(y)|+
n∑
i=1

|bi(t, y)||∂eiϑ(y)|

≤ KϑV (y)m(n) +KϑV (y)m(n)δ(n)(Θ(y))Θ(y),

(4.4.5)

for (t, y) ∈ [0, T ]×Rn, where Kϑ is some constant that depends on ϑ (and, therefore, also
on n).
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This is the basis for an approximation argument via C∞c -bump functions, i.e. for every
l ≥ 0 we consider cutoff functions χl ∈ C∞c (Rn) with

χl(y) =

{
1, if ‖y‖Rn ≤ l,

0, if ‖y‖Rn > 2l.

Hence, for ζ ∈ C∞b (Rn) we have χl ζ ∈ C∞c (Rn) and χl ζ −−−→
l→∞

ζ pointwise. Now the
assertion follows from Lebesgue’s dominated convergence theorem, by minding Estimate
(4.4.5) and Inequality (4.4.3) for the integral∫ t

0

∫
Rn
L(χl ζ)(s, y)µs,n(dy) ds.

In fact, we also use the product rule for the Kolmogorov operator L to conclude that

L(χl ζ) = χlLζ︸︷︷︸
−→Lζ

+ζ Lχl︸︷︷︸
−→0

+2
n∑

i,j=1

aij ∂eiχl︸︷︷︸
−→0

∂ejζ −−−→
l→∞

Lζ

holds pointwise.
We want to make use of Lemma 4.4.1 in the following. It guarantees existence of a

countable, measure-separating family F of functions in FC∞c ({ei}). Hence, it suffices to
reduce our calculations to the case where ζ ∈ C∞c (Rd), for some d ∈ N.

If n ≥ d, we can treat ζ as a function on Rn, which means that it then belongs to the
class C∞b (Rn). We can repeat the calculations from Equation (4.4.5), but now m and δ
only depend on d instead of n. Hence, we have

|Lζ(t, y)| ≤ KζV (y)m +KζV (y)mδ(Θ(y))Θ(y), (4.4.6)

for (t, y) ∈ [0, T ]×Rn, where Kζ is some constant that depends on ζ (but is independent
of n since ζ is a function of y1, . . . , yd).

Now, for those ζ ∈ C∞c (Rd), let

ϕζn(t) :=

∫
Rn
ζ(y)µt,n(dy), t ∈ [0, T ],

and

Gζ
n(t) :=

∫ t

0

∫
Rn
Lζ(s, y)µs,n(dy) ds, t ∈ [0, T ].

Going back to the index set (n`)`∈N of the subsequence on which (µ̄t,n`)`∈N converges
weakly for every rational t ∈ [0, T ], we want to prove that there exits a subsequence of
(ϕζn`(t))`∈N converging pointwise for t ∈ [0, T ]. Since Equation (4.4.4) can be rewritten as

ϕζn`(t) = Gζ
n`

(t) +

∫
Rn`

ζ(y) νn`(dy)

and νn`
w−−−→

`→∞
ν by construction, we only have to prove pointwise convergence of a subse-

quence in (Gζ
n`

)`∈N.
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Claim 2: The family of functions (Gζ
n)n∈N is equicontinuous on [0, T ] and uniformly

bounded.
Proof of Claim 2: Let us show, for any t ∈ [0, T ], that for any sequence (tl)l∈N with
lim
l→∞

tl = t we have

lim sup
l→∞

sup
n∈N,
n≥d

|Gζ
n(tl)−Gζ

n(t)| = 0.

Note that for every n ≥ d we have, by using Inequality (4.4.6) in the second and Inequality
(4.4.3) in the fourth step, the estimate

|Gζ
n(tl)−Gζ

n(t)|

≤
∫ t∨tl

t∧tl

∫
Rn
|Lζ(r, y)|µr,n(dy) dr

≤
∫ t∨tl

t∧tl

∫
Rn

(
KζV (y)m +KζV (y)mδ(Θ(y))Θ(y)

)
µr,n(dy) dr

≤ Kζ

∫ t∨tl

t∧tl

∫
Rn
V (y)m µr,n(dy)︸ ︷︷ ︸
≤NmWm

dr +Kζ

∫ t∨tl

t∧tl

∫
Rn
V (y)mδ(Θ(y))Θ(y)µr,n(dy) dr︸ ︷︷ ︸

=: I1(tl,n)

≤ Kζ |t− tl|NmWm +KζI1(tl, n).

We can split the inner integral in I1(tl, n), for any c ≥ 1, into the disjoint sets
{V m < c} ∩ {Θ < c} and {V m ≥ c} ∪ {Θ ≥ c}. Then we obtain

I1(tl, n) ≤ c2 sup
r∈R
|δ(r)||t− tl|+

∫ t∨tl

t∧tl

∫
{Vm≥c}∪{Θ≥c}

V (y)mδ(Θ(y))Θ(y)µr,n(dy) dr︸ ︷︷ ︸
=:I2(tl,n,c)

.

It remains to show that

lim
c→∞

lim sup
l→∞

sup
n∈N,
n≥d

I2(tl, n, c) = 0

holds. By again splitting the inner integral in I2(tl, n, c) into the sets {V m ≥ c} and
{Θ ≥ c} as well as using Inequality (4.4.3), we obtain

I2(tl, n, c) ≤
∫ t∨tl

t∧tl

∫
{V≥c

1
m }
V (y)m+1Θ(y)

δ(Θ(y))

V (y)
µr,n(dy) dr

+

∫ t∨tl

t∧tl

∫
{Θ≥c}

V (y)mδ(Θ(y))Θ(y)µr,n(dy) dr

≤ sup
r∈R
|δ(r)|c−

1
m

∫ T

0

∫
Rn
V (y)m+1Θ(y)µr,n(dy) dr︸ ︷︷ ︸
≤Nm+2Wm+2

+ sup
r∈[c,∞)

|δ(r)|
∫ T

0

∫
Rn
V (y)mΘ(y)µr,n(dy) dr︸ ︷︷ ︸
≤Nm+1Wm+1

,
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which tends to zero for c→∞ because, by Assumption (H4), the bounded nonnegative
Borel function δ satisfies lim

r→∞
δ(r) = 0 .

The uniform boundedness follows by using Inequality (4.4.6) in the second and In-
equality (4.4.3) in the third step, because we obtain

|Gζ
n(t)| ≤

∫ t

0

∫
Rn
|Lζ(r, y)|µr,n(dy) dr

≤
∫ t

0

∫
Rn

(
KζV (y)m +KζV (y)mδ(Θ(y))Θ(y)

)
µr,n(dy) dr

≤ Cζ(NmWm +Nm+1Wm+1)

for any n ≥ d, where Cζ is a constant.

Therefore, for each ζ ∈ F , we can apply the Arzelà–Ascoli theorem to (Gζ
n`

)`∈N and
obtain existence of a subsequence (Gζ

n`
)`∈N1(ζ), where we call the set (that is depending on

ζ) of remaining indices of that subsequence N1(ζ) ⊆ N in order to simplify the notation,
and a function Gζ ∈ C([0, T ]) such that lim

N1(ζ)3`→∞
Gζ
n`

(t) = Gζ(t) uniformly on [0, T ].

Consequently, for every ζ ∈ F , the subsequence
(
ϕζn`(t)

)
`∈N1(ζ)

converges pointwise
for every t ∈ [0, T ] to some limit called ϕζ(t).

By a diagonal argument, we can in fact choose a further subsequence that is inde-
pendent of ζ since F is countable. For simplicity, let us denote this subsequence by(
ϕζn`(t)

)
`∈N2

, where we call the set of remaining indices N2 ⊆ N. Hence, we have

ϕζ(t) := lim
N23`→∞

ϕζn`(t) = lim
N23`→∞

∫
R∞

ζ(y) µ̄t,n`(dy), ζ ∈ F . (4.4.7)

Let us now use this pointwise convergence, which holds for every t ∈ [0, T ], in connec-
tion with the tightness of the family (µ̄t,n`)`∈N2 to conclude weak convergence to a limit
measure µt, even for the irrational t ∈ [0, T ].

Claim 3: The chosen subsequence (µ̄t,n`)`∈N2 of probability measures on R∞ converges
weakly for any t ∈ [0, T ] \Q to a limit, that we call µt.
Proof of Claim 3: Fix any t0 ∈ [0, T ]\Q. Then the family (µ̄t0,n`)`∈N2 is tight, i.e. there
exists a further subsequence (µ̄t0,n`l )l∈N such that µ̄t0,n`l

w−−−→
l→∞

µt0 , for some limit called
µt0 . In particular, by using Equation (4.4.7), we have

ϕζ(t0) = lim
l→∞

∫
R∞

ζ(y) µ̄t0,n`l (dy) =

∫
R∞

ζ(y)µt0(dy) (4.4.8)

for all ζ ∈ F , since F is a subset of the space of bounded and continuous test functions
required for weak convergence.

Now, assume that the whole sequence (µ̄t0,n`)`∈N2 does not weakly converge to µt0 . By
again using the tightness of this family of probability measures, there would exist another
subsequence (µ̄t0,ñ`l )l∈N, which would be weakly convergent to some limit measure called
µ̃t0 and there would exist some ζ0 ∈ F with∫

R∞
ζ0(y)µt0(dy) 6=

∫
R∞

ζ0(y) µ̃t0(dy)

57



Chapter 4. Linear FPKEs in infinite dimensions

since F separates measures. But then, by using Equations (4.4.8) and (4.4.7), we would
obtain ∫

R∞
ζ0(y)µt0(dy) = ϕζ0(t0) = lim

l→∞

∫
R∞

ζ0(y) µ̄t0,n`l (dy)

= lim
l→∞

∫
R∞

ζ0(y) µ̄t0,ñ`l (dy) =

∫
R∞

ζ0(y) µ̃t0(dy),

which is a contradiction.

Hence, we can conclude that we found a subsequence (µ̄t,n`)`∈N2 , which converges
weakly to probability measures µt for every t ∈ [0, T ]. This proves the assertion stated at
the beginning of Step 3.

Step 4: µ is solution to Cauchy problem in the sense of Definition 4.2.1
For simplicity of notation, let us refer to the subsequence (µ̄t,n`)`∈N2 from Step 3, that is
weakly convergent for every t ∈ [0, T ], just by (µ̄t,n)n∈N in the following.

First of all, Estimate (4.3.2) follows from Estimate (4.4.3) by using that the compact
functions V ≥ 1 and Θ ≥ 0 are lower semicontinuous, hence V k and V k−1Θ, for any
k ∈ N, are also lower semicontinuous. In fact, we have∫

R∞
V (y)k µt(dy) + k

∫ t

0

∫
R∞

V (y)k−1Θ(y)µs(dy) ds

≤ lim inf
n→∞

(∫
Hn
V (y)k µt,n(dy) + k

∫ t

0

∫
Hn
V (y)k−1Θ(y)µs,n(dy) ds

)
≤ NkWk

by Portmanteau’s theorem. In particular, Equation (4.3.3) follows.

Now let us prove that the measure µ = µt dt, where (µt)t∈[0,T ] is the family of Borel
probability measures we obtained in the previous step, is the desired solution.

By Assumption (H4) and Estimate (4.3.2) we immediately have aij, bi ∈ L1([0, T ] ×
R∞, µ), since∫

[0,T ]×R∞
|aij(t, y)|+ |bi(t, y)|µ(dt dy)

≤ Ck

∫ T

0

∫
R∞

V (y)k µt(dy) dt+ Ck

∫ T

0

∫
R∞

V (y)kΘ(y)µt(dy) dt

≤ CkTNkWk + CkNk+1Wk+1

for some constant Ck ≥ 0, that may change from line to line.
Fix ζ ∈ FC∞c ({ei}). According to Equation (4.2.2), the crucial remaining part is to

show that for µ̄n := µ̄t,n dt∫ t

0

∫
R∞

Lζ(s, y) µ̄n(ds dy) −−−→
n→∞

∫ t

0

∫
R∞

Lζ(s, y)µ(ds dy) (4.4.9)

holds for dt-a.e. t ∈ [0, T ].
By definition of L, this reduces to only proving such convergence for functions of the

type (s, y) 7→ bi(s, y)∂eiζ(y) and (s, y) 7→ aij(s, y)∂ej∂eiζ(y), which we will simply call f
in the following.
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Claim 4: It suffices to prove Equation (4.4.9) for functions fN := max(min(f,N),−N).
Proof of Claim 4: In order to prove that we can extend the convergence from fN back
to the original functions f , we will show that for every ε > 0 there exists a number N ∈ N
such that ∫ t

0

∫
R∞

1{|f |>N} |f(s, y)| µ̄s,n(dy) ds < ε.

By Assumption (H4), as in the calculations of Inequality (4.4.5), we can estimate |f | by
the function G := V k(1 + δi(Θ)Θ), i.e. it suffices to show that we have∫ t

0

∫
{G≥N}

G(y) µ̄s,n(dy) ds < ε (4.4.10)

for N sufficiently large. Let ε > 0. Take n1 ≥ 0 such that 1/n1 + δi(r) < cε for all r ≥ n1,
where the constant c > 0 is so small that cNk+1Wk+1 < 1/2. Without loss of generality,
we can assume that δi ≤ 1. Then we split up the integral in Estimate (4.4.10) into∫ t

0

∫
{G≥N}

G(y) µ̄s,n(dy) ds

≤
∫ t

0

∫
{Θ≥n1}

G(y) µ̄s,n(dy) ds+

∫ t

0

∫
{G≥N,Θ≤n1}

G(y) µ̄s,n(dy) ds.

For the first summand we calculate that∫ t

0

∫
{Θ≥n1}

G(y) µ̄s,n(dy) ds =

∫ t

0

∫
{Θ≥n1}

(
Θ(y)−1 + δi(Θ(y))

)︸ ︷︷ ︸
<cε

V (y)kΘ(y) µ̄s,n(dy) ds

≤ cε

∫ t

0

∫
R∞

V (y)kΘ(y) µ̄s,n(dy) ds

≤ ε

2

holds by using Inequality (4.4.3) in the last step. For any N ≥ n1 and s we have∫
{G≥N,Θ≤n1}

G(y) µ̄s,n(dy) ≤ (1 + n1)

∫
{V k≥N/(1+n1)}

V (y)k µ̄s,n(dy)

≤ (1 + n1)2

N
N2kW2k,

which can be made smaller than ε/2 uniformly in s for all sufficiently large N to estimate
the second summand.

Claim 5: Equation (4.4.9) holds for functions fN .
Proof of Claim 5: By Assumption (H2) the restriction of such functions fN to the
sets [0, T ]× {Θ ≤ R} is continuous in y. Without loss of generality, we can assume that
|fN | ≤ 1 because we would otherwise divide by N .

If the function fN was continuous in y on the whole space R∞, the claim would follow
directly by weak convergence of µ̄s,n for every fixed s. We can reduce our situation to
this by using a continuous extension of fN to approximate. Let ε > 0. Recall that, by
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Chapter 4. Linear FPKEs in infinite dimensions

using the equivalence on Polish spaces in Prokhorov’s theorem, Step 3 gives us tightness
of the family of measures {µ̄s,n | n ∈ N, s ∈ [0, t]} and that the sublevel sets {Θ ≤ R}
are compact in R∞ for any R < ∞ by Assumption (H2). Hence, we can choose R so
large that the set [0, t] × {Θ > R} has measure less than ε with respect to all measures
µ̄s,n ds and µs ds. Furthermore, the mapping s 7→ fN(s, · ) from [0, t] to C({Θ ≤ R}) is
Borel-measurable. Then, by Dugundji’s theorem (see e.g. [Bor67, Chapter III, Section 7,
p. 77ff]), there exists a linear extension operator E : C({Θ ≤ R}) −→ Cb(R∞) such that

Eϕ(y) = ϕ(y) for all ϕ ∈ C({Θ ≤ R}), y ∈ {Θ ≤ R} and ‖Eϕ‖∞ = ‖ϕ‖∞.

By setting g(s, y) := EfN(s, · )(y), we obtain a Borel function (since it is Borel-
measurable in s and continuous in y, see e.g. [Bog07, Lemma 6.4.6, p. 16]) with |g| ≤ 1
and g(s, y) = fN(s, y) for every y ∈ {Θ ≤ R}. Hence, we have∫ t

0

∫
R∞

g(s, y) µ̄s,n(dy) ds −−−→
n→∞

∫ t

0

∫
R∞

g(s, y)µs(dy) ds

and∫ t

0

∫
R∞
|fN(s, y)− g(s, y)| µ̄s,n(dy) ds =

∫ t

0

∫
{Θ>R}

|fN(s, y)− g(s, y)|︸ ︷︷ ︸
≤ 2

µ̄s,n(dy) ds < 2ε,

∫ t

0

∫
R∞
|fN(s, y)− g(s, y)|µs(dy) ds =

∫ t

0

∫
{Θ>R}

|fN(s, y)− g(s, y)|︸ ︷︷ ︸
≤ 2

µs(dy) ds < 2ε.

Consequently, the measure µ = µt dt satisfies our Cauchy problem (4.2.1) with initial
distribution ν.
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Chapter 5

Superposition principle on Rd

The topic of this chapter is the Ambrosio–Figalli–Trevisan superposition principle, to
which we will simply refer as “superposition principle” in the following, i.e. the seminal
result arising from the work of L. Ambrosio, A. Figalli and D. Trevisan (see in particular
[Amb08; Fig08; Tre16]) that significantly improved the characterization of the connection
between finite-dimensional martingale problems in the sense of Stroock–Varadhan and
Cauchy problems for Fokker–Planck–Kolmogorov equations. In Section 5.2 we will discuss
the individual contributions of those three authors in more detail.

Let us begin by briefly explaining the meaning of the term “superposition principle” in
the case of stochastic differential equations and its implications for martingale problems
and FPKEs. First of all, the terminology itself originates in the deterministic literature of
ordinary differential equations, where superposition for linear systems essentially describes
the property that the net response produced by multiple inputs is the sum of the responses
that would have been caused by each input individually. The extended usage of this
terminology in the setting of SDEs and diffusion processes is explained in [Tre16, p. 7] and
[Amb17, p. 431f]) by (simply put) pointing out that the considered probability measures
arise from weighted superpositions of deterministic paths. In the introduction of [Tre16,
p. 3], D. Trevisan describes the superposition principle for diffusions as a “(non-canonical)
way to lift any probability-valued solution of a Fokker–Planck equation to some solution
of the corresponding martingale problem”, where lifting means that “the 1-marginals of
the process which solve the martingale problem coincide with the given solution of the
Fokker–Planck equation”.

Let us point out, that it is well known (see e.g. [Tre16, p. 7] or [BDRS15, p. 14]) that
if we have a martingale solution to a martingale problem, we can directly obtain some
probability solution to the associated FPKE.

The superposition principle, however, finally gives us a counterpart establishing the
opposite implication. This is of course the significantly more involved direction, because
only under (in comparison quite strong) global assumptions it has been shown (see Sec-
tions 5.2 and 5.3 below) that existence of a probability solution to an FPKE implies
existence of a martingale solution with the characterizing property that its 1-marginals
coincide with the given probability solution.

In Chapter 6, we will be directly applying this result to the finite-dimensional solutions
of the Cauchy problems created by Galerkin approximations. Therefore, the aim of this
chapter is to present the superposition principle in such a way that it is easily applicable
in our setting, which has been introduced in the previous chapters.
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Chapter 5. Superposition principle on Rd

In short, after a historical overview in Section 5.2 discussing results from the articles
[Amb08], [Fig08] and [Tre16], we will state Theorem 5.3.1 in Section 5.3 below, which was
proved in [BRS19] and will be our reference of choice when applying the superposition
principle to probability solutions in finite dimensions later in Chapter 6.

5.1 Framework, Equation, Solution, Assumptions
Let us now focus on the necessary framework for the considered equation, including in
particular the corresponding notion of solution, which will be relevant for the main the-
orem in Section 5.3 below. Of course, we will base everything on the same setting as
in the previous chapter, where in Sections 4.1 and 4.2 an infinite-dimensional version of
most of this section can be found. But, in order to be as rigorous as possible (there are
some minor apparent differences, that we will discuss later in Chapter 6) and to keep this
chapter mostly self-contained, let us quickly recall the crucial parts of the setting for the
finite-dimensional space Rd.

5.1.1 Framework

Let {e1, . . . , ed} be the standard basis of Rd. By 〈·, ·〉Rd we denote the inner product and
by ‖ · ‖Rd the norm on the Euclidean space Rd. Denote by ‖ · ‖ the operator norm of an
Rd×d-matrix. Assume that the mapping

σ : [0, T ]× Rd −→ Rd×d

is B([0, T ])⊗ B(Rd)/B
(
Rd×d)-measurable and that

b : [0, T ]× Rd −→ Rd

is B([0, T ]) ⊗ B(Rd)/B(Rd)-measurable. We set A := 1
2
σσ∗ with A = (aij)1≤i,j≤d for the

diffusion matrix and obtain the mappings

aij : [0, T ]× Rd −→ R,
bi : [0, T ]× Rd −→ R

as components of A and b.
The Kolmogorov operator associated to the FPKE (and to the martingale problem),

acting on functions ϕ ∈ C2(Rd), is given by

Lϕ(t, y) =
d∑

i,j=1

aij(t, y)∂ei∂ejϕ(y) +
d∑
i=1

bi(t, y)∂eiϕ(y)

for (t, y) ∈ [0, T ] × Rd. Again, we will mainly use test functions ϕ ∈ C∞c (Rd) in the
following.
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5.1.2 Equation

We consider the following shorthand notation for a Cauchy problem for a linear Fokker–
Planck–Kolmogorov equation on Rd (as in Chapter 4, see Equation (4.2.1), but now only
in finite dimensions) given by

∂tµ = L∗µ,

µ�t=0 = ν,
(5.1.1)

with respect to a nonnegative finite Borel measure µ of the form µ(dt dy) = µt(dy) dt on
[0, T ]×Rd, where (µt)t∈[0,T ] is a family of Borel probability measures on Rd. Furthermore,
ν is a Borel probability measure on Rd and L∗ is the formal adjoint of the differential
operator L introduced before in Subsection 5.1.1.

5.1.3 Solution

The notion of solution to Equation (5.1.1) can of course be introduced directly as the
finite-dimensional analogue of the one given in Definition 4.2.1.

However, let us state the precise formulation that is given in Section 1 of [BRS19] and
which we will later use in Section 5.3 below. This will help us (see Lemma 6.3.6 below) to
point out the minor apparent differences and to establish consistency between the various
results presented in the previous chapters.

Definition 5.1.1 (see [BRS19, p. 1]). A finite Borel measure µ of the form µ(dt dy) =
µt(dy) dt, where the mapping t 7→ µt from [0, T ] to P(Rd) is continuous with respect to
the weak topology, is called probability solution to the equation ∂tµ = L∗µ if the following
conditions hold.

(i) The functions aij, bi are locally (i.e. on compact sets in [0, T ]×Rd) integrable with
respect to the measure µ, i.e.

aij, bi ∈ L1
loc([0, T ]× Rd, µ).

(ii) For every function ϕ ∈ C∞c (Rd), the integral equality∫
Rd
ϕ(y)µt(dy) =

∫
Rd
ϕ(y) ν(dy) +

∫ t

0

∫
Rd
Lϕ(s, y)µs(dy) ds

is satisfied for all t ∈ [0, T ].

5.1.4 Assumptions

We assume that the following condition holds throughout the whole chapter:

(S1) The diffusion matrix A = (aij)1≤i,j≤d is symmetric and nonnegative definite.

To avoid confusion, we will state additional specific assumptions in the respective
sections below (e.g. Assumptions (S2) and (S3) in Section 5.3).
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5.2 The Ambrosio–Figalli–Trevisan superposition prin-
ciple

Since the superposition principle is the name-giving topic of this thesis, let us shortly
review the historical development of the theorem itself by presenting the respective con-
tribution of the three authors Ambrosio, Figalli and Trevisan. This overview is based on
[BRS19, Chapter 1] and [Amb08; Fig08; Tre16].

5.2.1 Ambrosio

Continuing the work from [Amb04], L. Ambrosio considered in his article [Amb08] the
case where the diffusion matrix is zero, i.e. A = 0. Here, the Cauchy problem reduces for
a time-dependent vector field b in Rd to an equation of the form ∂tµt + div(b µt) = 0, also
referred to as the “continuity equation”. In short, by starting with a solution µt dt of the
continuity equation and assuming∫ T

0

∫
Rd

‖b(t, y)‖Rd
1 + ‖y‖Rd

µt(dy) dt <∞,

he proved existence of a measure η ∈M+

(
Rd × C([0, T ];Rd)

)
concentrated on the set of

pairs (x0, ω) such that ω is an absolutely continuous solution of the integral equation

ω(t) = x0 +

∫ t

0

b(s, ω(s)) ds

and the measure µt coincides with the image of η under the evaluation mapping (x0, ω) 7→
ω(t) (see Theorem 3.2 and additionally Definition 3.1 and Remark 3.1 in [Amb08] on pages
9 and 10).

5.2.2 Figalli

Generalizing Ambrosio’s result to possibly non-zero diffusion matrices A, A. Figalli con-
sidered in his article [Fig08] the case of bounded coefficients.

He proved, by assuming uniform bounds for the coefficients A and b on [0, T ]×Rd, that
for every solution µt ∈M+(Rd) with µt(Rd) ≤ C, t ∈ [0, T ], to the Cauchy problem there
exists a measurable family of probability measures (ηx0)x0∈Rd such that ηx0 is a martingale
solution (of the SDE associated to the same diffusion operator L) starting from x0 (at
time 0) for ν-a.e. x0 ∈ Rd. Furthermore, the representation formula∫

Rd
ϕ(y)µt(dy) =

∫
Rd×C([0,T ];Rd)

ϕ(ω(t)) ηx0(dω) ν(dx0)

holds (see [Fig08, Theorem 2.6, p. 116]).

5.2.3 Trevisan

Based on techniques from PDE developed in the joint work of Ambrosio and Trevisan
(see [AT14]), which had to be adapted from the deterministic to the stochastic theory
and in particular to the Euclidean setting, and his PhD thesis from 2014 (see [Tre14]),
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D. Trevisan widely extended the results of Figalli in [Fig08] by only imposing low regu-
larity and integrability assumptions on the coefficients for the first time. This work has
been published as an article in EJP in 2016 (see [Tre16]).

The main theorem is stated as follows.

Theorem 5.2.1 (Trevisan’s superposition principle, see [Tre16, Theorem 2.5]).
Let µ = (µt)t∈[0,T ] ⊆ P(Rd) be a narrowly continuous solution of Equation (5.1.1). Then
there exists η which is a solution to the martingale problem (associated to the same diffu-
sion operator L) such that, for every t ∈ [0, T ], it holds ηt = µt.

Here, narrowly continuous means that for µ = (µt)t∈[0,T ] ⊆ P(Rd) the map t 7−→∫
f dµt is continuous for every f ∈ Cb(Rd), i.e. that we have continuity with respect to

the weak topology as in Definition 5.1.1, and ηt is the marginal law at t ∈ [0, T ], i.e. ηt is
the pushforward measure of η under the evaluation map at time t ∈ [0, T ].

In particular, for being a solution to the Cauchy problem (5.1.1) it is by definition
assumed in [Tre16] that∫ T

0

∫
Rd

(
‖A(t, y)‖+ ‖b(t, y)‖Rd

)
µt(dy) dt <∞ (5.2.1)

holds.
This integrability condition (5.2.1) on A and b, which as a matter of fact can be seen

as an assumption in Theorem 5.2.1, will be the starting point for a generalization in the
next section.

5.3 Generalized integrability condition
Let us now present the main result of a further generalization of Theorem 5.2.1 from the
article “On the Ambrosio–Figalli–Trevisan superposition principle for probability solutions
to Fokker–Planck–Kolmogorov equations” by V. Bogachev, M. Röckner and S. Shaposh-
nikov (see [BRS19]). In the upcoming chapters, the precise formulation of Theorem 5.3.1
below will be our reference of choice when applying the superposition principle in finite
dimensions in our setting.

First of all, the authors of [BRS19] give a rather simple example, where Condition
(5.2.1) of Trevisan is not fulfilled.

Example (See [BRS19, p. 3]). Consider the one-dimensional case, where ρ ∈ C∞(R),
ρ > 0,

∫
ρ(y) dy = 1 and b(y) = ρ′(y)

ρ(y)
. Then µt(dy) = µ(dy) = ρ dy is a stationary

solution to the Fokker–Planck–Kolmogorov equation

∂tµ = ∂y∂yµ− ∂y(bµ).

In particular, µt = µ satisfies the Cauchy problem with initial data µ. However, it is easy
to find a smooth probability density ρ such that∫

R
|b(y)|ρ(y) dy =

∫
R
|ρ′(y)| dy =∞.

We realize that it is therefore preferable to impose an even weaker integrability condi-
tion replacing Condition (5.2.1). Hence, let us consider the following assumptions on the
coefficients A and b that allow the function ‖A(t, y)‖ + |〈b(t, y), y〉Rd | to be of quadratic
growth (if no additional information on the solution µ is given).
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Chapter 5. Superposition principle on Rd

(S2) For every ball U ⊆ Rd we have

aij, bi ∈ L1([0, T ]× U, µt dt).

(S3) The integrability condition∫ T

0

∫
Rd

‖A(t, y)‖+ |〈b(t, y), y〉Rd |
(1 + ‖y‖Rd)2

µt(dy) dt <∞ (5.3.1)

holds.

Theorem 5.3.1 (see [BRS19, Theorem 1.1, p. 3]). Suppose that (µt)t∈[0,T ] is a solution
to the Cauchy problem (5.1.1) on [0, T ] with initial measure ν and Assumptions (S1) –
(S3) are fulfilled. Then there exists a Borel probability measure Pν on C([0, T ];Rd) such
that the following properties hold:

(m1) For all Borel sets B ⊆ Rd we have Pν
[
ω ∈ C([0, T ];Rd) | ω(0) ∈ B

]
= ν(B).

(m2) For every function f ∈ C∞c (Rd), the function

(ω, t) 7−→ f(ω(t))− f(ω(0))−
∫ t

0

Lf(s, ω(s)) ds

is a martingale with respect to the measure Pν and the natural filtration Ft =
σ(ω(s), s ∈ [0, t]).

(m3) For every function f ∈ C∞c (Rd), the equality∫
Rd
f(y)µt(dy) =

∫
C([0,T ];Rd)

f(ω(t))Pν(dω)

holds for all t ∈ [0, T ].

Proof. We refer to [BRS19], where the proof is given in Chapter 3 starting on page 6.

Remark.

1. Condition (m1) means that ν = Pν ◦ ω(0)−1, i.e. ν is the law of ω(0) under Pν ,
while Condition (m3) means that µt = Pν ◦ ω(t)−1, i.e. µt is the law of ω(t) under
Pν .

2. By satisfying Conditions (m1) and (m2), Pν is by definition a martingale solution
with respect to an initial measure ν. In addition, Condition (m3) is the character-
izing property that the 1-marginal laws under the martingale solution coincide with
the solution of the FPKE.

We can deduce two obvious corollaries from this theorem by directly ensuring Assump-
tion (S3) via simple growth and one-sided estimates on A and b, respectively.
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5.3. Generalized integrability condition

Corollary 5.3.2 (see [BRS19, Corollary 1.2, p. 3]).

i) Assume that the initial measure ν satisfies log
(
1 + ‖y‖2

Rd
)
∈ L1(Rd, ν) and we have

‖A(t, y)‖ ≤ C
(

1 + ‖y‖2
Rd log

(
1 + ‖y‖2

Rd
))
,

〈b(t, y), y〉Rd ≤ C
(

1 + ‖y‖2
Rd log

(
1 + ‖y‖2

Rd
))
,

where C is a constant. Then the hypotheses of Theorem 5.3.1 are fulfilled, hence its
conclusion holds.

ii) Theorem 5.3.1 also holds if we assume

‖A(t, y)‖+ |〈b(t, y), y〉Rd | ≤ C
(
1 + ‖y‖2

Rd
)
,

where C is a constant.
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Chapter 6

On the superposition principle on H

After all preparations in the previous Chapters 3, 4 and 5 we finally combine everything
in order to present the main theorem of this first part of the thesis. In Section 6.3 we will
state Theorem 6.3.1, a joint existence theorem for Cauchy and martingale problems via
superposition.

The idea of proof is based on the extensive use of the finite-dimensional superposition
principle from Chapter 5 and designed to strongly benefit from the already presented in-
dividual existence proofs for both martingale and probability solutions. In short, starting
with an infinite-dimensional setting on a separable Hilbert space H, we will use Galerkin
approximations and, therefore, project everything via the mappings Πn onto the finite-
dimensional spaces Hn on which we can apply Theorem 5.3.1. By using tightness of the
constructed families of finite-dimensional probability and martingale solutions, we will
prove weak convergence of a subsequence (by a diagonal argument on a joint index set)
of each of the two families. This way, we will then show existence of solutions to both
infinite-dimensional equations and that the 1-marginal laws of the martingale solution
coincide with the solution to the Cauchy problem.

Furthermore, from the used scheme of proof, we directly obtain a corollary (see Corol-
lary 6.3.4 below), which is a restricted superposition principle for linear FPKEs and mar-
tingale problems on a separable Hilbert space H. Its conditional formulation is closely
related to the statement of theorems seen in Chapter 5.

In short, this means that for any given probability solution µ to an infinite-dimensional
Cauchy problem, for which there already exists a subsequence of finite-dimensional so-
lutions being created by Galerkin approximations and converging weakly to µ as well
as the necessary integrability conditions and assumptions for the corresponding martin-
gale problem, we immediately obtain a martingale solution P to the infinite-dimensional
martingale problem satisfying P ◦ x(t)−1 = µt.

Let us point out that in Theorem 7.1 in D. Trevisan’s PhD thesis (see [Tre14, Section
7.1, p. 69ff]) a result on R∞ is stated, which is a generalization of Theorem 5.2.1. To our
best knowledge, the proof only yields existence of martingale solutions on C([0, T ],R∞),
where R∞ is equipped with the product topology. As already explained in the introduc-
tion, this setting is very different and should be considered separately from the Hilbert
space case. In fact, we will and have to use stricter (but still commonly used) com-
pactness assumptions (see Section 6.2.2 below) to ensure that our constructed solutions
remain in a Hilbert space. In particular, we obtain a martingale solution on the path
space C([0, T ],X∗) with values even in H, i.e. we have continuity with respect to the norm
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Chapter 6. On the superposition principle on H

topology on X∗ instead of the componentwise continuity on C([0, T ],R∞).
Before beginning with the proof of Theorem 6.3.1 in Section 6.4, we devote Subsection

6.3.1 to following up on questions concerning consistency, which appeared and were men-
tioned in the prior chapters, in particular those concerning the definition of martingale
and probability solutions in finite dimensions.

Let us begin by collecting the essential framework from Chapters 3, 4 and 5. Note
that we will apply our results from Chapter 3 on martingale problems in the simplified
case where H = Y and on [0, T ] instead of [0,∞).

6.1 Framework

Let H be a separable Hilbert space with inner product 〈·, ·〉H and norm ‖·‖H. As explained
in Chapter 4, we use the fact that H is isometrically isomorphic to `2 and consider the
continuous and dense embedding

`2 ⊆ R∞,

where R∞ is equipped with the product topology and thus a Polish space. Let {e1, e2, . . . }
be the standard orthonormal basis in `2. In this setting, we can consider the Cauchy
problem from Chapter 4.

To study martingale problems on H, we introduce another separable Hilbert space X
for which the embedding

X ⊆ H ⊆ X∗

is continuous, dense and compact. In addition, we have to ensure, that {e1, e2, . . . } ⊆ X
holds and we have ‖Πnz‖X∗ ≤ ‖z‖X∗ for every z ∈ X∗, in order to establish the setting
of Chapter 3. Here, the projection Πn : X∗ −→ Hn (as seen before in Equation (3.1.2)) is
again defined by

Πnz :=
n∑
i=1

X∗〈z, ei〉X ei, z ∈ X∗.

We follow [AR89, Proposition 3.5, p. 424] and [Bre11, Remark 3, p. 136f] and identify
X with the weighted `2-space `2(λi) for some sequence (λi)i∈N with lim

i→∞
λi = ∞ and

λi ≥ 0. By considering its dual `2
(

1
λi

)
we arrive at the embedding

`2(λi) ⊆ `2 ⊆ `2
(

1
λi

)
⊆ R∞,

where the dual pairing between `2(λi) and `2
(

1
λi

)
is given by

X∗〈z, v〉X =
∞∑
i=1

zivi,

for any z ∈ X∗ and v ∈ X. Recall that we define Hn := span{e1, . . . , en}, for n ∈ N, and
E := span{e1, e2, . . . }.
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6.1. Framework

Remark. It again follows from Kuratowski’s theorem (see e.g. [Kur66, p. 487f] or [Par67,
Section I.3, p. 15ff]) that we have X ∈ B(H), H ∈ B(X∗), X∗ ∈ B(R∞) and B(X) =
B(H) ∩ X, B(H) = B(X∗) ∩H, B(X∗) = B(R∞) ∩ X∗.

Remark. We see that the projection Πn onto Hn in X∗ in fact simplifies to

Πnz =
n∑
i=1

X∗〈z, ei〉X ei =
n∑
i=1

ziei = (z1, . . . , zn, 0, . . .)

for any z ∈ X∗, which means that it is identical to the restriction to X∗ of the projection
Π∞n onto Hn in R∞. Moreover, Π∞n is actually the continuous extension of Πn to R∞.

Fix T > 0. Let the mappings

σ : [0, T ]×H −→ L2(U;H),

b : [0, T ]×H −→ X∗

be Borel-measurable.
In order to obtain components of those coefficients that are defined on [0, T ] × R∞,

as in Chapter 4, we just extend b and σ by 0 on R∞ \ H. This means we consider the
Borel-measurable mappings

aij : [0, T ]× R∞ −→ R,
bi : [0, T ]× R∞ −→ R,

that are given by

aij(t, y) :=

{
1
2
〈σ(t, y)σ(t, y)∗ei, ej〉H, (t, y) ∈ [0, T ]×H,

0, (t, y) ∈ [0, T ]× R∞ \H

and

bi(t, y) :=

{
X∗〈b(t, y), ei〉X, (t, y) ∈ [0, T ]×H,
0, (t, y) ∈ [0, T ]× R∞ \H.

Then we define A(t, y) :=
(
aij(t, y)

)
1≤i,j<∞ to be our diffusion matrix.

Remark. We note that aij and bi, regardless of our choice to simply extend them by 0 on
R∞\H, will still be admissible mappings to satisfy all necessary assumption from Chapter
4 (see Subsection 6.2.2 below), because Assumptions (H1)–(H4) are either imposed on
Hn anyway or remain unchanged as e.g. symmetry or growth.

Remark. Under the projection Πn the coefficient Πnb reduces for (t, y) ∈ [0, T ] × H by
construction to

Πnb(t, y) =
n∑
i=1

X∗〈b(t, y), ei〉X∗ ei =
n∑
i=1

bi(t, y) ei = (b1, . . . , bn, 0, . . .)(t, y),

which precisely gives us the coefficient bn defined in Chapter 4 (see Equation (4.1.1)).
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Chapter 6. On the superposition principle on H

For the coefficient Πnσ we consider the operator ΠnA(t, y) Π∗n and obtain the restric-
tion of A to the finite-dimensional matrix An = (aij)1≤i,j≤n from Chapter 4, because we
have for (t, y) ∈ [0, T ]×H

ΠnA(t, y) Π∗n(`) = Πn

∞∑
i=1

∞∑
j=1

aij(t, y)〈ej,Π∗n`〉H ei

=
n∑
k=1

∞∑
i=1

∞∑
j=1

aij(t, y) 〈Πnej, `〉H 〈ei, ek〉H︸ ︷︷ ︸
=δik

ek =
n∑
i=1

∞∑
j=1

aij(t, y) 〈Πnej, `〉H ei

=
n∑
i=1

∞∑
j=1

aij(t, y)
n∑
k=1

〈ej, ek〉H︸ ︷︷ ︸
=δjk

〈ek, `〉H ei =
n∑
i=1

n∑
j=1

aij(t, y) 〈ej, `〉H ei

for any ` ∈ H.

In addition, let x0 ∈ H, which means that the Borel probability measure ν will be
given by the Dirac measure εx0 . Then ν(H) = 1, i.e. ν is in fact a probability measure on
H. For any n ∈ N, we then set νn := εx0 ◦ Π−1

n .
Furthermore, we need the complete remaining framework from Chapters 3 and 4. This

means, we refer to Sections 3.1 and 4.1 and refrain from repeating all of it here. However,
let us specifically recall that we have defined the spaces

Ω := C
(
[0, T ];X∗

)
,

Ωn := C
(
[0, T ];Hn

)
,

S := Ω ∩ Lp([0, T ];H).

Furthermore, let x and xn again denote the canonical processes on Ω and Ωn, respectively.

6.2 Equations and Assumptions
For the reader’s convenience (to avoid excessive turning back of pages) we will now recall
the martingale problems and Fokker–Planck–Kolmogorov equations, introduced in the
previous Chapters 3 and 4, to which we will refer frequently in the following.

6.2.1 Equations

Consider the following martingale problem on H given by

Existence of a martingale solution P ∈ P(S) in the sense of Definition 3.2.1
for coefficients b and σ and with initial value x0 ∈ H, (MP)

which has been introduced in Section 3.2 (see martingale problem (3.2.1)).
For each n ∈ N, consider the martingale problem on the finite-dimensional space Hn given
by

Existence of a martingale solution Pn ∈ P(Ωn) in the sense of Definition 3.2.1
for coefficients Πnb and Πnσ and with initial value Πnx0 ∈ Hn,

(MPn)
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6.2. Equations and Assumptions

as in the proof of Theorem 3.3.1 (see martingale problem (3.4.4)).
Furthermore, consider the shorthand notation for the Cauchy problem for an infinite-
dimensional linear FPKE with coefficients b and A given by

∂tµ = L∗µ,

µ�t=0 = εx0 ,
(CP)

which has been introduced in Section 4.2 (see Equation (4.2.1)). The operator L, acting
on functions ϕ ∈ FC2({ei}), is given by

Lϕ(t, y) =
d∑

i,j=1

aij(t, y)∂ei∂ejϕ(y) +
d∑
i=1

bi(t, y)∂eiϕ(y),

for (t, y) ∈ [0, T ]× R∞ and some d ∈ N depending on ϕ.
For each n ∈ N, consider the shorthand notation for the Cauchy problem for a finite-
dimensional linear FPKE on Hn with coefficients Πnb and ΠnAΠ∗n given by

∂tµn = L∗µn,

µn �t=0 = εx0 ◦ Π−1
n .

(CPn)

The operator L, acting on functions ϕ ∈ C2(Hn), is given by

Lϕ(t, y) =
n∑

i,j=1

aij(t, y)∂ei∂ejϕ(y) +
n∑
i=1

bi(t, y)∂eiϕ(y),

for (t, y) ∈ [0, T ]×Hn.

6.2.2 Assumptions

From the previous chapters we impose the following assumptions:

• Chapter 3: Assumptions on N (N), on demicontinuity (A1), on coercivity (A2)
and the growth condition (A3) with Y = H and t ∈ [0, T ].

• Chapter 4: Assumptions on symmetry/definiteness of An (H1), on Θ (H2), the
Lyapunov condition (H3) and the growth condition (H4).

Furthermore, in order to guarantee that our initial measure εx0 satisfies Condition
(4.3.1) in Theorem 4.3.1, we assume that

Wk = sup
n∈N
‖V (·)k ◦ Πn‖L1(ν) = sup

n∈N
‖V (·)k ◦ Πn‖L1(εx0 ) = sup

n∈N
|V k(Πnx0)| <∞

holds for all k ∈ N.

Remark. We note that e.g. in [BKRS15, Proposition 7.1.8, p. 293] we can find the idea for
a transformation of a given Lyapunov function V to one that already satisfies integrability
with respect to the initial measure, i.e. V ∈ L1(Rn, ν), in the finite-dimensional setting.
Adapting this idea would be an option to actually drop the above assumption on Wk.
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Chapter 6. On the superposition principle on H

6.3 Results
The next theorem is the main result of this first part of the thesis. It is a joint existence
theorem for linear FPKEs and martingale problems on a separable Hilbert space H that is
based on the finite-dimensional superposition principle. The proof will heavily use ideas,
calculations and results from the previous Chapters 3 and 4.

Theorem 6.3.1. Under the assumptions from Subsection 6.2.2 there exists a probability
solution µ = µt dt on [0, T ] × H to the Cauchy problem (CP) in the sense of Definition
4.2.1 and a martingale solution P ∈ P(S) to the martingale problem (MP) in the sense
of Definition 3.2.1, for which the 1-marginal laws of P coincide with µt, i.e.

P ◦ x(t)−1 = µt (6.3.1)

holds for every t ∈ [0, T ]. In particular, Estimates (3.3.1) and (4.3.2) as well as Equation
(4.3.3) hold.

Remark. Let us stress once more the two key points of this result. First, we will con-
currently study weak convergence of finite-dimensional Cauchy and martingale solutions
as well as the correspondence of their limits µ and P via Equation (6.3.1). Second, we
will carry out a method by which P is basically “generated” by the family (µt,n)n∈N of
solutions to the Cauchy problem (CPn) via the finite-dimensional superposition principle
(see Theorem 5.3.1) and by controlling the 1-marginals of (Pn)n∈N.

Obviously, the respective assumptions from Chapters 3 and 4 in Subsection 6.2.2 di-
rectly ensure existence for both martingale and probability solutions, but without any
additional information (e.g. on uniqueness) we a priori could not specify any such con-
nection.

For completeness, we will show that the weak formulation of Condition (M2) in
Definition 3.2.1 implies the representation that we have already seen in Condition (m2)
of Theorem 5.3.1 in finite dimensions in Chapter 5 also in the infinite-dimensional case.

Corollary 6.3.2. The martingale solution P ∈ P(S) to the martingale problem (MP) in
the sense of Definition 3.2.1 from Theorem 6.3.1 has the property that for every function
f ∈ FC∞c ({ei}) the process

f(x(t))− f(x0)−
∫ t

0

Lf(s, x(s)) ds

is an (Ft)-martingale with respect to P .

Proof. Let f ∈ FC∞c ({ei}) for some d ∈ N and g ∈ C∞c (Rd), i.e.

f(y) = g(y1, . . . , yd) = g(X∗〈y, e1〉X, . . . , X∗〈y, ed〉X)

for y ∈ X∗. By Condition (M2), we know that

X∗〈x(t), ei〉X = X∗〈x(0), ei〉X +

∫ t

0
X∗〈b(s, x(s)), ei〉X ds+Mei(t, x)

is a real-valued semimartingale. Hence, x(t)d :=
d∑
i=1

X∗〈x(t), ei〉X ei is a d-dimensional

semimartingale and we have f(x(t)) = g(x(t)d).
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By Ito’s formula for semimartingales on Rd we know that

g(x(t)d) = g(x(0)d) +
d∑
i=1

∫ t

0
X∗〈b(s, x(s)d), ei〉X ∂eig(x(s)d) ds

+
1

2

d∑
i,j=1

∫ t

0

∂ei∂ejg(x(s)d) d〈Mei ,Mej〉s

+
d∑
i=1

∫ t

0

∂eig(x(s)d) dMei(s)

holds for every t ∈ [0, T ]. Since
d∑
i=1

∫ t

0

∂eig(x(s)d) dMei(s) is an (Ft)-martingale, we obtain

the same for

g(x(t)d)− g(x(0)d)−
d∑
i=1

∫ t

0
X∗〈b(s, x(s)d), ei〉X ∂eig(x(s)d) ds

− 1

2

d∑
i,j=1

∫ t

0
X∗〈σ(s, x(s)d)σ(s, x(s)d)∗ei, ej〉X ∂ei∂ejg(x(s)d) ds

= f(x(t))− f(x0)−
∫ t

0

Lf(s, x(s)) ds.

The next corollary will highlight the fact that we can directly conclude continuity for
the mapping t 7→ µt with respect to the topology generated by finitely based functions
from Equation 6.3.1.

Corollary 6.3.3. For solutions P and µ constructed in Theorem 6.3.1, Equation (6.3.1)
implies that the mapping t 7→ µt from [0, T ] to P(H) is continuous with respect to the
topology generated by the class FC∞c ({ei}) of finitely based functions, i.e. that the mapping

t 7→
∫
H
f(y)µt(dy)

is continuous for every f ∈ FC∞c ({ei}).

Proof. From Theorem 6.3.1 we are given measures µt ∈ P(H), t ∈ [0, T ], and P ∈ P(S)
that satisfy Equation (6.3.1).

We know that for P ∈ P(S) the canonical process x on S is in particular a mapping in
the path space C

(
[0, T ];X∗

)
. This means that for any f ∈ FC∞c ({ei}), and with it some

d ∈ N and g ∈ C∞c (Rd), the mapping

t 7−→ g ◦ Πd ◦ x(t) = g
(
X∗〈x(t), e1〉X, . . . , X∗〈x(t), ed〉X

)
is continuous. Hence, the mapping t 7→

∫
S f(x(t))P (dx) is continuous for any f ∈

FC∞c ({ei}), which yields the assertion.
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We will see later in Section 6.4 that the next corollary is an obvious consequence of the
proof of Theorem 6.3.1. By upfront assuming existence of a probability solution to (CP)
as well as all desired properties for it (recall that we worked hard to prove them in Chapter
4), we can leave out Assumptions (H2)–(H4). Instead, we only ensure the application of
the superposition principle directly by assumption, where in particular Assumption (H1)
is a part of.

Corollary 6.3.4. Let Assumptions (N), (A1), (A2), (A3) and (H1) be fulfilled. As-
sume there exists a probability solution µ = µt dt on [0, T ] × H to the Cauchy problem
(CP) in the sense of Definition 4.2.1 and a subsequence (µt,nk)k∈N on Hnk of a family of
Borel probability measures on Hn with the following properties:

• The measures (µt,nk)k∈N are solutions to the finite-dimensional Cauchy problems
(CPn) on Hnk with the property that the mapping

t 7→
∫
Hnk

ζ(y)µt,nk(dy)

is continuous on [0, T ] for every ζ ∈ C∞c (Hnk).

• For the family (µ̄t,nk)k∈N of extended measures to H, we have µ̄t,nk
w−−−→

k→∞
µt for every

t ∈ [0, T ].

• The integrability condition∫ T

0

∫
Hnk

‖ΠnkA(t, y)Π∗nk‖+ |〈Πnkb(t, y), y〉Hnk |
(1 + ‖y‖Hnk )2

µt,nk (dy) dt <∞

holds for every k ∈ N.

Then there exists a martingale solution P ∈ P(S) to the martingale problem (MP) in the
sense of Definition 3.2.1, for which Equation (6.3.1) holds for every t ∈ [0, T ].

Remark. The statements of Corollaries 6.3.2 and 6.3.3 remain valid in the setting of this
corollary.

Remark. Let us note, that it is not sufficient to just restrict the measures µt to the
finite-dimensional spaces Hn, by e.g. considering the push-forward measures µt ◦ Π−1

n , in
order to get a weakly convergent subsequence, because these measures not necessarily
form a solution to the Cauchy problems (CPn) with coefficients Πnb and ΠnAΠ∗n. We
refer to [BKRS15, Section 10.2, p. 413ff] for more details on this kind of equation.

Before proceeding with the proofs of Theorem 6.3.1 and Corollary 6.3.4 (see Section
6.4 below), we first have to follow up on two auxiliary results concerning the consistency
of the definitions of martingale solutions (see Lemma 6.3.5) and probability solutions (see
Lemma 6.3.6) used in Chapters 3–5.

76



6.3. Results

6.3.1 Auxiliary consistency results on Hn

Martingale solution:
Comparing the conditions for being a martingale solution in Definition 3.2.1 with those in
Theorem 5.3.1, one might rightfully assert that they differ. For consistency in the proof of
Theorem 6.3.1, we only need that Conditions (m1)–(m3) imply Conditions (M1)–(M2)
on the finite-dimensional spaces Hn, n ∈ N. Actually, Condition (m1) would be stated
equivalently to Condition (M1) in the case where the martingale problem is considered
with respect to arbitrary initial measures instead of some Dirac measure.

Lemma 6.3.5. Let the assumptions from Subsection 6.2.2 be fulfilled. Then, on a finite-
dimensional space Hn, a martingale solution in the sense of Theorem 5.3.1 is also a
solution in the sense of Definition 3.2.1.

Proof of Lemma 6.3.5.
(M1): Condition (M1) follows directly from Condition (m1), because choosing the one-
point Borel set B := {Πnx0} ⊆ Hn yields

Pn
[
xn(0) = Πnx0

]
= Pn

[
ω ∈ Ωn | ω(0) ∈ {Πnx0}

]
= Pn

[
ω ∈ C([0, T ];Hn) | ω(0) ∈ B

]
(m1)
= νn(B) = εx0 ◦ Π−1

n ({Πnx0}) = εx0(x0) = 1.

Furthermore, the Pn-a.s. integrability condition follows from Assumption (A3) and Lemma
3.4.2 (as in Equations (3.4.20)–(3.4.22) in Chapter 3).

(M2): Let us identify Hn with Rn. Comparing both Conditions (M2) and (m2), we
have to consider

M`(t, xn) = 〈xn(t), `〉Rn −
∫ t

0

〈b
(
s, xn(s)

)
, `〉Rn ds, t ∈ [0, T ],

and prove that the following Claim holds.

Claim: For every ` ∈ E the following properties are satisfied:

(1) M` is continuous,

(2) M` is an (Ft)-martingale,

(3) the quadratic variation process of M` is given by

〈M`〉(t, xn) =

∫ t

0

∥∥σ∗(s, xn(s)
)
(`)
∥∥2

Rn ds, t ∈ [0, T ].

Proof of the Claim. Since the continuity is given by construction, we directly have (1).
Now, let us show (2). We will proceed as in [RY99, Chapter VII, §2, p. 293ff], where

a proof for locally bounded coefficients a and b is given, which can be adapted to our
setting by using in particular Assumption (A3) and Lemma 3.4.2.

But first, for any suitable function f and time t ∈ [0, T ], let us introduce the notation

Mf
t := Mf

t (ω) := f(ω(t))− f(ω(0))−
∫ t

0

Lf(s, ω(s)) ds
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for the function under consideration from Condition (m2).
Right now, we only know that Condition (m2) holds for functions in C∞c (Rn). First,

we will show as in the proof of [RY99, Proposition 2.2, p. 295f] thatMf is also a martingale
for any f ∈ C2

c (Rn).

Step 1: Let f ∈ C2
c (Rn).

Then there exists a compact set K ⊆ Rn and a sequence (fl)l∈N of functions in C∞c (Rn)
vanishing on Kc for which we not only have fl −−−→

l→∞
f uniformly on K but also uniform

convergence on K for their first and second derivatives.
In order to show that Mf

t is a martingale, it suffices to prove that Mfl
t

L1

−−−→
l→∞

Mf
t holds

for every t ∈ [0, T ], because then we have

Mf
s = lim

l→∞
L1 Mfl

s = lim
l→∞

L1 EPn
[
Mfl

t | Fs
]

= EPn
[
Mf

t | Fs
]

and, therefore, P -a.s. convergence of a subsequence to those limits yielding the property
directly. Showing that Mfl

t
L1

−−−→
l→∞

Mf
t holds reduces to considering the difference

∫ t

0

Lfl(s, ω(s)) ds−
∫ t

0

Lf(s, ω(s)) ds,

because fl, l ∈ N, and f are continuous on a compact support.
Let cl, l ∈ N, be the constants with cl −−−→

l→∞
0 that can be chosen to estimate the

uniform convergence of the first and second derivatives of fl to those of f on K. Then, as
in Equations (3.4.21)–(3.4.22), we obtain by using Assumption (A3), Lemma 3.4.2 and
the equivalence of norms on Rn that

EPn
[∣∣∣∣ ∫ t

0

Lfl(s, ω(s)) ds−
∫ t

0

Lf(s, ω(s)) ds

∣∣∣∣]
≤ EPn

[ ∫ t

0

∣∣∣ n∑
i,j=1

aij(s, xn(s))
(
∂ei∂ejfl(xn(s))− ∂ei∂ejf(xn(s))

)
+

n∑
i=1

bi(s, xn(s))
(
∂eifl(xn(s))− ∂eif(xn(s))

)∣∣∣ ds]
≤ EPn

[
cl

∫ t

0

n∑
i,j=1

|aij(s, xn(s))|︸ ︷︷ ︸
≤n2 max

i,j=1,...n
|aij(s, xn(s))|

≤C ‖A(s, xn(s))‖L2(Rn;Rn)

+
n∑
i=1

|bi(s, xn(s))|︸ ︷︷ ︸
≤C ‖b(s, xn(s))‖Rn

ds

]

≤ EPn
[
cl

∫ t

0

Ct
(
1 + ‖xn(s)‖2

Rn
)

+ Ct
(
1 +N (xn(s)) + ‖xn(s)‖2γ′

Rn
)

ds

]
≤ cl Cγ′,t EPn

[
1 + ‖xn(0)‖2

Rn + ‖xn(0)‖2γ′

Rn

]
= cl Cγ′,t −−−→

l→∞
0

holds for some constant Cγ′,t (not depending on l) that may change from line to line.

Next, we will show, again as in [RY99, Proposition 2.2, p. 295f], that for any f ∈
C2(Rn) the function Mf is a local martingale.
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Step 2: Let f ∈ C2(Rn).
Then we can find a sequence (fl)l∈N of functions in C2

c (Rn) such that f = fl on an in-
creasing sequence (Kl)l∈N of compact sets with Kl ⊆ int(Kl+1) and

⋃
l∈NKl = Rn. Hence,

the processes Mf and Mfl coincide up to the (increasing to ∞) stopping times describing
the first exit of each Kl. Therefore, Mf is a local martingale.

Next, we conclude as in [RY99, Proposition 2.4, p. 296ff] that M` is a local martingale
for any ` ∈ E .
Step 3: M` is a local martingale
We choose f ∈ C2(Rn) as

f(y) := 〈y, `〉Rn =
n∑
i=1

yi`i,

because then we in particular have∫ t

0

Lf(s, xn(s)) ds =
n∑
i=1

∫ t

0

L(xin(s)`i) ds

=
n∑
i=1

∫ t

0

bi(s, xn(s))`i ds =

∫ t

0

〈b(s, xn(s)), `〉Rn ds

and obtain the local martingale property directly.

Step 4: Proof of (3)
Let us briefly address (3) before finishing with (2). The idea remains unchanged from
the standard proof by considering the function f(y) := 〈y, `〉2Rn and showing that the
covariance is given by the integral∫ t

0

‖σ∗(s, xn(s))(`)‖2
Rn ds =

∫ t

0

〈σ∗(s, xn(s))(`), σ∗(s, xn(s))(`)〉Rn ds

=

∫ t

0

〈`, σσ∗(s, xn(s))(`)〉Rn ds.

We again refer to the proof of [RY99, Proposition 2.4], where on p. 296ff a version is given,
that can be adapted to our setting.

Step 5: M` is a martingale
To conclude that M` is a martingale, we just use Assumption (A3) and Lemma 3.4.2 (by
repeating the calculations from e.g. Equation (3.4.16)) to show that

EPn
[
〈M`〉(t, xn)

]
= EPn

[ ∫ t

0

∥∥σ∗(s, xn(s)
)
(`)
∥∥2

Rn ds

]
≤ CT T

(
EPn

[
‖xn(0)‖2

Rn
]

+ 1
)
<∞

is finite, where CT is a constant.

The proof of this claim finishes the proof of the lemma, because we have ensured that
both Conditions (M1) and (M2) are fulfilled.
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Probability solution:
Let us now focus on the notion of a probability solution in finite dimensions. Considering
the Definitions 5.1.1 and [BDR08a, p. 397f] (in whose sense our measures µt,n are a priori
constructed in Step 0 of the proof of Theorem 4.3.1, see p. 52), we realize that there are
two apparent differences.

As already mentioned in the proof of Theorem 4.3.1, Lemma 2.1 in [BDR08a, p. 399]
(including the explanation about the limit on p. 400) yields that Equation (4.4.4) holds
for every t ∈ [0, T ], which is just as in (ii) of Definition 5.1.1. Hence, it remains to show
that the mapping

[0, T ] −→ P(Rn)

t 7−→ µt,n

is continuous with respect to the weak topology in order to conclude that the solutions
constructed in Theorem 4.3.1 satisfy all properties required in Definition 5.1.1.

Lemma 6.3.6. For every measure µt,n constructed in Step 0 of the proof of Theorem
4.3.1, the mapping t 7→ µt,n is continuous with respect to the weak topology.

Proof. Note that Equation (4.4.2) already gives continuity of

t 7→
∫
Hn
ζ(y)µt,n(dy)

on [0, T ] for every ζ ∈ C∞c (Hn).
Now the assertion follows from a standard approximation argument. The continuity

of Equation (4.4.2) for every ζ ∈ C∞c (Hn) implies that we also have it for ζ ∈ Cc(Hn).
From there we also obtain continuity for functions ζ ∈ Cb(Hn), i.e. with respect to the

weak topology, by using the same arguments from probability theory used to show that
vague convergence implies weak convergence of probability measures.

Assumption (S3):
Finally let us show, that Assumption (S3) already follows from our assumptions from
Subsection 6.2.2.

Lemma 6.3.7. Assumption (S3) on integrability for the projected coefficients Πnb and
ΠnAΠ∗n on Hn, n ∈ N, follows from Assumption (H4).

Proof. Let us show that∫ T

0

∫
Rn

‖ΠnA(t, y)Π∗n‖+ |〈Πnb(t, y), y〉Rn|
(1 + ‖y‖Rn)2

µt,n(dy) dt <∞.

First, by using the Cauchy–Schwarz inequality, the fact that norms are equivalent on
Rn, Assumption (H4) and Estimate (4.4.3), we see that for m := max{1, k1, . . . , kn} the
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estimate ∫ T

0

∫
Rn

|〈Πnb(t, y), y〉Rn|
(1 + ‖y‖Rn)2

µt,n(dy) dt

≤ C

∫ T

0

∫
Rn

n∑
i=1

|bi(t, y)| ‖y‖Rn
(1 + ‖y‖Rn)2︸ ︷︷ ︸

≤ 1

µt,n(dy) dt

≤ C

∫ T

0

∫
Rn
V (y)m + V (y)mΘ(y)µt,n(dy) dt

≤ CTNmWm + CNm+1Wm+1 <∞

holds, where C is a constant that may change from line to line. Similarly, the operator
norm of the matrix ΠnA(t, y)Π∗n can be written as

‖ΠnA(t, y)Π∗n‖ = max
j=1,...,n

n∑
i=1

|aij(t, y)|,

i.e. we can repeat the above estimate for the first summand by again using in particular
Assumption (H4) and Estimate (4.4.3).

Remark. Note that Assumption (S3) on Hn is consistent with both relevant estimates
in Assumptions (A2) and (A3). But it does not directly follow from them, because from
Assumption (A2) we only get an upper bound for the inner product with respect to b.

6.4 Proof

Let us briefly recap which scheme we have followed in the proofs of Theorems 3.3.1 and
4.3.1.

Chapter 3: Martingale solution, Theorem 3.3.1
First, we considered (MPn), the finite-dimensional martingale problem on Hn with coeffi-
cients Πnb and Πnσ being created by the projections Πn. By well-known results in finite
dimensions, we deduced existence of martingale solutions, i.e. some Pn ∈ P(Ωn) satisfying
Conditions (M1) and (M2) of Definition 3.2.1, for any n ∈ N. From there we extended
Pn to P̄n ∈ P(Ω) in Step 1 (see p. 30) and proved tightness of the family (P̄n)n∈N in Step 2
(see p. 31). Then in Step 3 (see p. 32), we extracted a subsequence of (P̄n)n∈N converging
weakly to a probability measure P ∈ P(S) that is a solution to the infinite-dimensional
martingale problem (MP) with coefficients b and σ according to Step 4 (see p. 33).

Chapter 4: Solution to Cauchy problem, Theorem 4.3.1
In Step 0 (see p. 52), we considered Equation (CPn), the finite-dimensional Cauchy prob-
lem on Hn with coefficients An and bn, which consist of the components aij and bi up to
n (see Equation (4.1.1)) for any n ∈ N. We proved existence of solutions µt,n to Equation
(CPn) by using finite-dimensional results. Then, after extending the family (µt,n)n∈N to
(µ̄t,n)n∈N on R∞ in Step 1 (see p. 53) and proving tightness of (µ̄t,n)n∈N in Step 2 (see
p. 53), we extracted a subsequence in Step 3 (see p. 54) that is weakly converging to a
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probability measure µt. Finally, we proved that µ = µt dt is a probability solution to the
infinite-dimensional Equation (CP) with coefficients A and b in Step 4 (see p. 58).

Before beginning with the proof of Theorem 6.3.1, let us try to simplify the idea and
visualize the scheme graphically with the help of the following figure:

H
{e1, e2, . . .}

projections
Πn

��

(CP)
µt

(MP)
P

Hn
{e1, . . . , en}

(CPn)
µt,n

weak convergence
of subsequence

µ̄t,nk
w−−−→

k→∞
µt

(as in proof of
Theorem 4.3.1)

OO

superposition principle
Theorem 5.3.1:

∃Pn with µt,n=Pn◦xn(t)−1

// (MPn)
Pn

weak convergence
of subsequence

P̄nk
w−−−→

k→∞
P

(as in proof of
Theorem 3.3.1)

OO

Figure 6.1: Idea and scheme of the proof of Theorem 6.3.1.

Proof of Theorem 6.3.1. Let us divide the proof into nine steps.

Step 1: Starting point
We are given an initial value x0 ∈ H and coefficients b and σ on [0, T ]×H which directly
allow us to study the martingale problem (MP) on H. As described in Section 6.1, we
then also consider the components bi and aij that are extended to [0, T ] × R∞ by 0 for
Equation (CP) on [0, T ]×R∞ with initial measure εx0 at the same time. Note that these
extensions still satisfy all assumptions that we have imposed in Subsection 6.2.2.

Now, we project the coefficients and initial value/measure down onto Hn, as before
via the projections Πn, to obtain coefficients Πnb and Πnσ for the finite-dimensional
martingale problem (MPn) as well as Πnb and ΠnAΠ∗n for the finite-dimensional Cauchy
problem (CPn).

Since we have assumed (H1)–(H4), we can conclude existence of solutions µt,n to
Equation (CPn) for any n ∈ N as in Step 0 from the proof of Theorem 4.3.1 (see p.
52). In fact, the coefficients An and bn of Chapter 4 are exactly Πnb and ΠnAΠ∗n in our
setting of this chapter. To those probability measures µt,n on Hn we will now apply the
superposition principle from Chapter 5.

Step 2: Application of Theorem 5.3.1
Let us fix some n ∈ N for the moment and specify how to exactly apply the finite-
dimensional superposition principle on Hn. We start with a solution µt,n to Equation
(CPn) with initial distribution νn = εx0◦Π−1

n . Now, let us check the necessary assumptions
for using Theorem 5.3.1. Assumption (S1) follows from Assumption (H1), Assumption
(S2) is fulfilled, since we have aij, bi ∈ L1

loc(µt,n dt) for our solution µt,n by definition,
and Assumption (S3) for the projected coefficients Πnb and ΠnAΠ∗n follows from Lemma
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6.3.7. Furthermore, the continuity in the notion of a probability solution from Chapter
5 holds due to Lemma 6.3.6. Therefore, we can apply Theorem 5.3.1 and conclude that
there exists a probability measure Pn on Ωn such that Conditions (m1) and (m2) hold.
In addition, Pn also satisfies Condition (m3), i.e. for the 1-marginal laws we have

Pn ◦ xn(t)−1 = µt,n

for every t ∈ [0, T ].
This means in particular, that Pn is a martingale solution to the martingale problem

(MPn) satisfying Conditions (M1) and (M2) of Definition 3.2.1, according to Lemma
6.3.5.

Step 3: Tightness of (P̄n)n∈N
Collect the family (Pn)n∈N of all probability measures obtained by the application of the
superposition principle for each n ∈ N. Since they are solutions to (MPn) satisfying
Conditions (M1) and (M2), we are actually in the same situation as in the proof of
Theorem 3.3.1 in Chapter 3. There (see p. 27, right before Lemma 3.4.2), we had to
conclude existence of such probability measures (with no additional property except from
being a solution to (MPn)) from our finite-dimensional results. This time, they are just
directly “created” by the superposition principle. Hence, since we have assumed (A1)–
(A3), we can repeat all calculations starting with Lemma 3.4.2 including the extension
of Pn to P̄n and the proof of tightness of the family (P̄n)n∈N, i.e. Step 2 of the proof of
Theorem 3.3.1 (see p. 31).

Step 4: Tightness of (µ̄t,n)n∈N
In Chapter 4 we extended the measures µt,n on Hn to µ̄t,n on R∞ and proved tightness
of the family of probability measures (µ̄t,n)n∈N for every fixed t ∈ [0, T ], i.e. Step 2 of the
proof of Theorem 4.3.1 (see p. 53). These results remain valid because our considerations
are unchanged and can, therefore, be carried over directly.

Step 5: Weak convergence on a joint subsequence
For this “diagonal argument”, we have to go back and take a close look at the calculations
of the proofs of Theorems 3.3.1 and 4.3.1, in order to justify a modification of the index
set of the two tight families, which is necessary for selecting a joint index set on which
both subsequences converge to a limit helping us to prove that Equation (6.3.1) holds.

First of all, a subset of a tight set of measures is by definition still a tight set and we
lose no additional properties by dropping some indices. More importantly, we can verify
that both proofs remain unchanged after that point by considering a smaller index set.

Now, let us precisely explain the choice of the joint index set. Consider the tight
family (P̄n)n∈N (as in Step 2, see p. 31, Chapter 3). Choose indices for the convergent
subsequence and drop all other indices. Let us call this set of remaining indices N1 ⊆ N.
Now consider the family (µ̄t,n)n∈N that is tight on R∞ for every fixed t ∈ [0, T ] (as in Step
2, see p. 53, Chapter 4). The family (µ̄t,n)n∈N1 remains tight for every fixed t ∈ [0, T ]
if we ignore the dropped indices. Now choose, from the reduced index set N1, indices
for the convergent (for every t ∈ [0, T ]) subsequence precisely as in Step 3 of the proof
of Theorem 4.3.1 (see p. 54) and drop all others again. Let us call this set of remaining
indices N2 ⊆ N1 ⊆ N. Go back to the sequence (P̄n) and drop these indices there as well.
The family (P̄n)n∈N2 still remains tight and this subsequence of course still converges to
the same limit.
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Hence, we haven chosen a set of indices N2, for which both tight families have a
convergent subsequence with the same indices. Let us, for simplicity, denote these joint
subsequences by (P̄nk)k∈N and (µ̄t,nk)k∈N and their limits by P and µt, respectively.

Step 6: µ is a solution
Step 4 from Chapter 4 (see p. 58) remains unchanged for proving that µ = µt dt is a
probability solution to the Cauchy problem (CP) on [0, T ]×R∞ in the sense of Definition
4.2.1. In particular, Estimates (4.3.2) and Equation (4.3.3) hold.

Step 7: P is a solution
Step 4 from Chapter 3 (see p. 33) also remains unchanged for proving that P ∈ P(S) is
a solution to the martingale problem (MP) in the sense of Definition 3.2.1 with initial
measure εx0 . In particular, Estimate (3.3.1) holds.

Step 8: 1-marginal laws for the limit
Finally, we have to prove that

P ◦ x(t)−1 = µt

holds for every t ∈ [0, T ]. In fact, let f ∈ F , where F ⊆ FC∞c ({ei}) is a measure-
separating family on R∞ as in Lemma 4.4.1. Then f is of the form

f(y) = g
(
y1, . . . , yd

)
, y ∈ R∞,

for some d ∈ N and g ∈ C∞c (Rd).
Note that Condition (m3) not only holds for functions in C∞c (Rn), but also by ap-

proximation for functions in C∞b (Rn). Furthermore, for n ≥ d, a function in C∞c (Rd)
treated as a function on Rn is of class C∞b (Rn).

Since we have µ̄t,nk
w−−−−→

k−→∞
µt on R∞, we know that

∫
R∞

h(y)µt(dy) = lim
k→∞

∫
R∞

h(y) µ̄t,nk(dy)

is fulfilled for every h ∈ Cb(R∞), i.e. in particular for the mapping given by y 7−→
g ◦ Π∞d (y) = g

(
y1, . . . , yd

)
. In addition, we have that P̄nk

w−−−−→
k−→∞

P on Ω, which means
that ∫

Ω

h(ω)P (dω) = lim
k→∞

∫
Ω

h(ω) P̄nk(dω)

holds for every h ∈ Cb(Ω). Consequently, it is also true for the mapping given by ω 7−→
g ◦ Πd ◦ x(·, t)(ω) = g

(
ω(t)1, . . . , ω(t)d

)
for every t ∈ [0, T ].
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Then we obtain ∫
R∞

f(y)µt(dy) =

∫
R∞

g
(
y1, . . . , yd

)
µt(dy)

= lim
k→∞

∫
R∞

g
(
y1, . . . , yd

)
µ̄t,nk(dy)

= lim
k→∞

∫
Hnk

g
(
y1, . . . , yd

)
µt,nk(dy)

= lim
k→∞

∫
Ωnk

g
(
ω(t)1, . . . , ω(t)d

)
Pnk(dω)

= lim
k→∞

∫
Ω

g
(
ω(t)1, . . . , ω(t)d

)
P̄nk(dω)

=

∫
Ω

g
(
ω(t)1, . . . , ω(t)d

)
P (dω)

=

∫
Ω

f(ω(t))P (dω) =

∫
S
f(x(t))P (dx)

for any t ∈ [0, T ]. Since f ∈ F separates measures on R∞ (and all of its subsets), the
assertion follows.

Step 9: µt are probability measures on H
From Estimate (3.3.1) (see also Equation (3.4.19)) we know that

EP
[

sup
t∈[0,T ]

‖x(t)‖2q
H

]
<∞

holds for every q ≥ 1, where we made use of the lower semi-continuity of the norm ‖ · ‖H
as an extended function on X∗ and, therefore, of the supremum. Consequently, P ◦x(t)−1

is a probability measure on H for every t ∈ [0, T ], hence by Step 8 so is µt.

Finally, we show that Corollary 6.3.4 follows directly from the proof of Theorem 6.3.1.

Proof of Corollary 6.3.4. We can just repeat the proof of Theorem 6.3.1, because this
time we are simply given an explicit family (µt,nk)k∈N of solutions to the finite-dimensional
Cauchy problem (CPn) on Hnk for which we already know that (µ̄t,nk)k∈N converges weakly
to the given solution µ of the Cauchy problem (CP).

In particular, all steps from the proof of Theorem 4.3.1 are redundant, because we
have directly assumed all desired properties for µ and µ̄nk . Furthermore, we can apply
the finite-dimensional superposition principle, because we have ensured Condition (S3)
directly by assumption.
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Chapter 7

Application: stochastic Navier–Stokes
equations

In this chapter, we will discuss one possible application for the methods studied in Theo-
rem 6.3.1, namely d-dimensional stochastic Navier–Stokes equations. This kind of equa-
tion is the most obvious candidate for us, because it has already been discussed in the
main references of both Chapters 3 and 4 with their respective focus on martingale and
Cauchy problems. Since the referenced articles contain extensive calculations that remain
valid in our case, we will focus on showing the connection between them in order to fit
everything into our combined framework. Hence, we will on the one hand study the elab-
oration for FPKEs of [BDRS15, Example 3.5, p. 17f], which can partly also be found
in [BKRS15, Example 10.1.6, p. 411f and Example 10.4.3, p. 425f]. On the other hand,
we will supplement all necessary details for the “martingale problem”-part from [GRZ09,
Chapter 6, p. 1749ff] and [RZZ15, Section 5.1, p. 377f].

We also want to highlight the article [FG95] of F. Flandoli and D. Gatarek, in which
martingale solutions for stochastic Navier–Stokes equations on a separable Hilbert space
were studied, and the famous book [Tem77] by R. Temam on Navier–Stokes equations at
this point, because both serve as foundation concerning the general setting.

Let us begin by stating the equation under consideration. We note, that it should
be regarded as a heuristic expression with no need for further interpretation because we
are rather interested in the coefficients of the equation that we need for the martingale
problem as well as in the specific form of the corresponding Kolmogorov operator L that
can be derived from them (recall that Theorem 6.3.1 does not explicitly involve the SDE).

We will adopt predominant portions of notation and approach of [BDRS15, Example
3.5, p. 17f] in the following.

Stochastic Navier–Stokes equations. Let d ∈ N, T > 0 and let D ⊆ Rd be a
bounded domain with smooth boundary. The stochastic Navier–Stokes equation under
consideration is formally written as

du(t, z) = ΠH

(
∆zu(t, z)−

d∑
j=1

uj(t, z)∂zju(t, z)
)

dt+
√

2 dW (t, z), (SNS)

where we have chosen the “force” F for simplicity to be 0, and are hence in the case of
the “classical” stochastic Navier–Stokes equation.

87



Chapter 7. Application: stochastic Navier–Stokes equations

Setting. We begin by explaining the occurring framework.
For the space L2(D;Rd), we denote the L2-inner product by 〈·, ·〉L2 and the corresponding
L2-norm by ‖ · ‖L2 . Let

V := C∞c,div(D)d :=
{
u = (u1, . . . , ud)

∣∣uj ∈ C∞c (D), div u = 0
}

be the space of all smooth d-dimensional vector fields on D with compact support in D
and divergence free. By H2,1

0 (D) we denote the closure of C∞c (D) in the Sobolev space
H2,1(D). As in [BDRS15], we define the space

V2 := H2,1
0,div(D)d :=

{
u = (u1, . . . , ud)

∣∣uj ∈ H2,1
0 (D), div u = 0

}
of Rd-valued mappings. Then V2 is equipped with its natural Hilbert norm ‖ · ‖V2 given
by

‖u‖2
V2

:=
d∑
j=1

‖∇zu
j‖2
L2 .

Note that V2 is identical to the closure of V in H2,1
0 (D)d (see e.g. [Tem77, Theorem 1.6, p.

18 and Remark 2.1(ii), p. 23]). Let H be the closure of V in H2,0
0 (D)d as in [GRZ09]. Then

H is clearly a separable Hilbert space and is identical to the closure of V2 in L2(D;Rd) as
it is constructed in [BDRS15]. As in [GRZ09], let X be the closure of V in the Sobolev
space H2,2+d

0 (D)d and let X∗ be its dual.
It is well-known that there exist eigenfunctions ηi ∈ X of the Laplace operator ∆z

with eigenvalues −λ2
i , i.e. ∆zηi = −λ2

i ηi, λ > 0, such that {ηi | i ∈ N} is an orthonormal
basis in H. Define Hn := span{η1, . . . ηn}.

Altogether, we consider the embedding

X ⊆ V2 ⊆ H ⊆ V ∗2 ⊆ X∗.

Furthermore, ΠH denotes the orthogonal projection onto H in L2(D;Rd). Let W be a
Wiener process of the form

W (t, z) =
∞∑
i=1

√
αiwi(t)ηi(z),

where αi ≥ 0,
∑∞

i=1 αi <∞ and wi, i ∈ N, are independent real Wiener processes.

Coefficients. For t ∈ [0, T ] and v ∈ V set

b(t, v) := ΠH∆zv − ΠH

d∑
j=1

vj∂zjv.

Note that the following lemma holds, which can be proved by similar calculations as in
[GRZ09, Lemma 6.1, p. 1750].

Lemma 7.0.1 (see [RZZ15, p. 378]). For any v1, ṽ1, v2, ṽ2 ∈ V we have∥∥ΠH∆zv1 − ΠH∆zv2

∥∥
X∗ ≤ C‖v1 − v2‖H,∥∥∥ΠH

d∑
j=1

ṽj1∂zjv1 − ΠH

d∑
j=1

ṽj2∂zjv2

∥∥∥
X∗
≤ C

(
‖ṽ1‖H‖v1 − v2‖H + ‖v2‖H‖ṽ1 − ṽ2‖H

)
.
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Since 〈ΠHw, ηi〉L2 = 〈w, ηi〉L2 holds for any w ∈ L2(D;Rd), we can, however, directly
consider the components bi of our coefficient b given by

bi(t, v) = 〈ΠH(∆zv), ηi〉L2 −
d∑
j=1

〈ΠH(vj∂zjv), ηi〉L2 = 〈v,∆zηi〉L2 −
d∑
j=1

〈∂zjv, vjηi〉L2 .

It follows from the last step that those mappings are defined for every v ∈ V2. Since v is
divergence free, we can further rewrite bi by using integration by parts as

bi(t, v) = 〈v,∆zηi〉L2 +
d∑
j=1

〈v, vj∂zjηi〉L2 ,

which is actually defined for all v ∈ H. Furthermore, for the coefficient σ, we set

σij :≡

{√
2αi, i = j,

0, i 6= j

on H and obtain for A the components

aij :≡

{
αi, i = j,

0, i 6= j.

Hence, the treatment of σ and A as constant coefficients is straightforward and for b we
know, that the components bi are defined on the whole space H and their representation
on V2 is directly derived from the stochastic Navier–Stokes equation (SNS). Recall that
both Hn and E = span{η1, η2, . . .}, which is used in the definition of a martingale solu-
tion, are subspaces of V2, simplifying many calculations even more. We realize that we
can mimic the proof of Theorem 6.3.1 by constructing a probability solution via Galerkin
approximations as in [BDRS15] while simultaneously obtaining finite-dimensional mar-
tingale solutions and studying their limit.

Kolmogorov operator L. Now, we can consider the Kolmogorov operator L given by

Lϕ(t, u) =
∞∑
i=1

αi ∂ηi∂ηiϕ(u) +
∞∑
i=1

bi(t, u) ∂ηiϕ(u),

for any ϕ ∈ FC∞c ({ηi}).

On the assumptions from Subsection 6.2.2. Note that we have only changed two
small parts of the assumptions that were already checked in [BDRS15; BKRS15]. The
rest of them as well as all assumptions from [GRZ09; RZZ15] remain unchanged.

First of all, since we choose the Lyapunov function V : R∞ −→ [1,∞] as

V (u) =

{
‖u‖2

L2 + 1, u ∈ H,
∞, else,

the restriction of V to Hn is non-degenerate, because it is a convex function.
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Second, the function Θ: R∞ −→ [0,∞], which we have chosen as

Θ(u) =

{
C1‖u‖2

V2
, u ∈ V2,

∞, else,

is bounded on bounded sets on each space Hn. Hence, Assumptions (N), (A1)–(A3)
and (H1)–(H4) can still be proved as in the references.

Conclusion. The application of our methods from Theorem 6.3.1 extends the individual
results of [BDRS15] and [GRZ09] on existence of a probability measure µ solving the
Cauchy problem (CP) and a martingale solution P solving the martingale problem (MP)
by their connection through Equation (6.3.1). This means that the solution constructed
in [BDRS15, Example 3.5, p. 17f] is in fact identical with the 1-marginals of a solution
to the corresponding martingale problem. In particular, this implies that the mapping
t 7−→ µt is continuous with respect to the topology generated by finitely based functions.
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Chapter 8

Conclusion and perspective

We have seen in Chapter 6 that the idea of proof of Theorem 6.3.1 is essentially the careful
combination of three separate (but related) results. By design, this approach creates a
“modular” scheme allowing us to replace assumptions and, therefore, leaving room for
improvements and simplifications.

As mentioned before, one obvious goal for future research would be to unify the col-
lected assumptions in Subsection 6.2.2. In fact, at the start of this PhD project, the
initial leading question raised for martingale problems and SPDEs was, if one could drop
Assumption (A2) on coercivity in the setting of Chapter 3 and replace it e.g. with a
Lyapunov condition similar to Assumption (H3) as we have seen in Chapter 4. The cor-
responding Lyapunov function could, as a further possible generalization of Assumption
(H3), even explicitly depend on time. With an application in Theorem 6.3.1 in view,
such a simplification would be of high interest and might, therefore, again become a focus
of future work. In addition, it would be a quite natural extension and, thus, a beneficial
contribution to the research on SPDEs in itself.

Concerning Corollary 6.3.4 we would obviously be interested in proving such a su-
perposition principle on H for larger classes of solutions to an FPKE than a family of
solutions that can be represented as the limit of a weakly convergent subsequence of
certain finite-dimensional solutions. As a next step, this means that we should focus
on finding specific properties to identify this subclass or even developing assumptions to
ensure the existence of such a weakly convergent subsequence for any given probability
solution to an infinite-dimensional Cauchy problem.

Continued research in this direction might also impact some more distant but related
topics. For example, the idea of Lemma 2.12 in [Tre16] has recently been picked up in the
preprint [RRW19] for a finite-dimensional study of so-called restricted well-posedness for
FPKEs and martingale problems and their equivalence. Their restriction is with respect
to the class of initial conditions as well as to the class of solutions of the FPKE. For a
generalization to the infinite-dimensional case it could be a good starting point to restrict
the class of solutions of the FPKE even further to those which have been constructed by
Galerkin approximations as in Theorem 6.3.1.

Another interesting question would be what consequences follow for a.s. Markov fami-
lies (as they are e.g. considered in [GRZ09]) and flows for FPKEs. In [Reh19], M. Rehmeier
studied existence of flows for FPKEs, but yet only in finite dimensions. The flow property
is a weaker property than satisfying the Chapman–Kolmogorov equation, which would
yield the Markov property, allowing only to select an a.s. Markov family. Note that an
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Chapter 8. Conclusion and perspective

association between martingale and probability solution is important in the considered
setting of [Reh19] because there is no uniqueness assumed. A martingale solution that
is directly constructed through its 1-marginals from a probability solution to an FPKE,
i.e. a smaller class of solutions, might be beneficial to generalize the result to infinite
dimensions.
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Part II

On the superposition principle for
nonlinear FPKEs
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Chapter 9

Nonlinear FPKEs and martingale
problems associated to McKean–Vlasov
equations

As a generalization of Chapter 4, we now consider nonlinear Fokker–Planck–Kolmogorov
equations in infinite dimensions. The term “nonlinear” means that the coefficients A and
b can depend on the solution itself. This gives an operator Lµ of the form

Lµϕ(t, y) =
∑
i,j

aij(t, y, µt)∂ei∂ejϕ(y) +
∑
i

bi(t, y, µt)∂eiϕ(y),

for sufficiently smooth functions ϕ : R∞ −→ R, which induces a nonlinear equation

∂tµ = L∗µ µ.

These nonlinear FPKEs (and their corresponding equations for functions) arise in various
fields of research. Among them are e.g. condensed matter and material physics, nonlin-
ear hydrodynamics or surface physics. We refer to [Fra05, p. 8] for an extensive list of
applications.

The aim and content of this chapter are two-part preparations allowing us to state
and prove the main theorem of this second part of the thesis later in Chapter 10 (see
Theorem 10.2.1 below). First, in Section 9.2 below, we explain the necessary framework for
nonlinear FPKEs. In contrast to Chapter 4, we will not present an existence result in this
case. Instead, we refer to the article [Man15] by O. Manita, which is a further development
from prior finite-dimensional results obtained by O. Manita and S. Shaposhnikov (see
[MS13]), for conditions ensuring existence of solutions for nonlinear Cauchy problems.

Second, in Section 9.3 below, we work out the other crucial part of a nonlinear version
of the superposition principle, i.e. martingale problems for coefficients depending on fixed
measures, and focus on their connection to so-called McKean–Vlasov equations. McKean–
Vlasov equations are distribution dependent stochastic differential equations, whose name
goes back to H. McKean (see [McK66; McK67]) and A. Vlasov (see e.g. the reprinted
article [Vla68], whose idea was originally proposed in 1938), of the form

dX(t) = b
(
t,X(t),LX(t)

)
dt+ σ

(
t,X(t),LX(t)

)
dW (t),

where the coefficients b and σ can explicitly depend on the law of the process X(t). Some-
times these equations are also just called DDSDEs in the literature. Let us note, that there
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is growing interest in the field of McKean–Vlasov SDEs with recent finite-dimensional
works (see e.g. [Wan18], [MV16], [HW19], [HŠS18], [RST18] and the references therein)
as well as growing interest in their connection to FPKEs (see e.g. [BR18a], [HRW19],
[CG19] and the references therein). Infinite-dimensional results are however less common,
but e.g. studied in [AD95] for semilinear equation with additive noise, in [KX95, Section
9.1] on duals of nuclear spaces and lately in [BM19] as well as, with a setting closely re-
lated to ours, in two master theses at Bielefeld University. One of them by R. Heinemann,
that also covers delay, is in preparation to be published in the near future.

Let us begin with the essential framework. Note that the only difference to the frame-
work of the linear case in Subsection 6.1 is the explicit dependence of the coefficients b
and σ on a measure.

9.1 Framework
As in Subsection 6.1 we start with a separable Hilbert space H, which we identify with
`2, and let {e1, e2, . . . } be the standard orthonormal basis in `2. Then all consideration
on embeddings remain unchanged. Again, recall that we define Hn := span{e1, . . . , en},
for n ∈ N, and E := span{e1, e2, . . . }.

Now, let us focus on what changed in the nonlinear case. For some fixed T > 0, let
the mappings

b : [0, T ]×H× P(H) −→ X∗,
σ : [0, T ]×H× P(H) −→ L2(U,H)

be Borel-measurable.
By extending those mappings by 0 as in Chapter 6, we again obtain mappings

aij : [0, T ]× R∞ × P(R∞) −→ R,
bi : [0, T ]× R∞ × P(R∞) −→ R

as coefficients. To be more precise, we now set

bi(t, y, %) :=

{
X∗〈b(t, y, %), ei〉X, (t, y, %) ∈ [0, T ]×H× P(H),

0, else

and

aij(t, y, %) :=

{
1
2
〈σ(t, y, %)σ(t, y, %)∗ei, ej〉H, (t, y, %) ∈ [0, T ]×H× P(H),

0, else.

Again, let A(t, y, %) :=
(
aij(t, y, %)

)
1≤i,j<∞ be our diffusion matrix.

Consider the Kolmogorov operator associated to our nonlinear FPKE called Lµ, acting
on functions ϕ ∈ FC2({ei}), which is given by

Lµϕ(t, y) =
d∑

i,j=1

aij(t, y, µt)∂ei∂ejϕ(y) +
d∑
i=1

bi(t, y, µt)∂eiϕ(y)

for (t, y) ∈ [0, T ]× R∞ and for some d ∈ N depending on ϕ.
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9.2 Nonlinear FPKEs in infinite dimensions

In this section, we will adapt Section 4.2 to the nonlinear case. Note that we keep the
suggested setting of [Man15] as an example, but we are in particular working in the special
case, where the coefficients depend on the single probability measure µt rather than the
whole family (µt)t∈[0,T ].

9.2.1 Equation

Consider the following shorthand notation for a Cauchy problem for a nonlinear Fokker–
Planck–Kolmogorov equation given by

∂tµ = L∗µ µ,

µ�t=0 = εx0 ,
(NCP)

with respect to a nonnegative finite Borel measure µ of the form µ(dt dy) = µt(dy) dt on
[0, T ]×R∞, where (µt)t∈[0,T ] is a family of Borel probability measures on R∞. Furthermore,
L∗ is the formal adjoint of the operator L defined in Section 9.1 and the initial measure
ν is given by the Dirac measure εx0 .

9.2.2 Solution

The notion of a probability solution in the nonlinear case is completely analogue to Defi-
nition 4.2.2. We only have to consider coefficients explicitly depending on a measure.

Definition 9.2.1. (probability solution, nonlinear) A finite Borel measure µ on [0, T ]×R∞
of the form µ(dt dy) = µt(dy) dt, where (µt)t∈[0,T ] is a family of Borel probability measures
on R∞, is called probability solution to the Cauchy problem (NCP) if

(i) The functions aij, bi are integrable with respect to the measure µ, i.e.

aij(·, ·, µ·), bi(·, ·, µ·) ∈ L1([0, T ]× R∞, µ).

(ii) For every function ϕ ∈ FC∞c ({ei}) we have∫
R∞

ϕ(y)µt(dy) =

∫
R∞

ϕ(y) ν(dy) +

∫ t

0

∫
R∞

Lµϕ(s, y)µs(dy) ds

for every t ∈ [0, T ].

9.3 Martingale problems associated to McKean–Vlasov
equations

In this section we will recall Section 3.2 in the special case, where the coefficients b and σ
also depend on a fixed measure µt that will be a solution to a nonlinear FPKE.
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9.3.1 Solution

The notion of a martingale solution remains unchanged from Chapter 3, but we choose
to implement Corollary 6.3.2 into Condition (M2). Since we are also working on [0, T ]
instead of [0,∞), let us restate the definition before we consider coefficients that will
explicitly depend on some fixed measure.

Definition 9.3.1. A probability measure P ∈ P(Ω) is called martingale solution to the
martingale problem with coefficients b̃ and σ̃ and initial value x0 ∈ H if the following
conditions hold.

(M1) P
[
x(0) = x0

]
= 1 and

P
[
x ∈ Ω

∣∣∣For ds-a.e. s ∈ [0, T ] : x(s) ∈ H and
T∫
0

∥∥b̃(s, x(s)
)∥∥

X∗ ds+
T∫
0

∥∥σ̃(s, x(s)
)∥∥2

L2(U;H)
ds <∞

]
= 1.

(M2) For every function f ∈ FC∞c ({ei}) the process

Mf (t, x) := f(x(t))− f(x0)−
∫ t

0

Lf(s, x(s)) ds, t ∈ [0, T ],

is an (Ft)-martingale with respect to P .

As mentioned before, we will consider martingale problems with “special” functions
b̃ and σ̃ that explicitly depend on a fixed measure, i.e. b(·, ·, µ·) and σ(·, ·, µ·), in the
following. Let us now elaborate on how this kind of martingale problem is connected to
McKean–Vlasov equations.

9.3.2 Equation

Consider the martingale problem with coefficients explicitly depending on fixed measures
µt, which can be stated as:

Existence of a martingale solution P ∈ P(S) in the sense of Definition 9.3.1
for the coefficients b(·, ·, µ·) and σ(·, ·, µ·) and with initial value x0 ∈ H. (NMP)

Then, for a martingale solution P to martingale problem (NMP) we can conclude, as in
Chapter 3 by using [RZZ15, Theorem 2.2, p. 364] and [Ond05, Theorem 2, p. 1007], that,
for some cylindrical Wiener process W (t), t ∈ [0, T ], on U with respect to a complete
filtered probability space

(
Ω̆, F̆ , (F̆t), P̆

)
, there exists a weak solution to the McKean–

Vlasov equation

dX(t) = b
(
t,X(t),LX(t)

)
dt+ σ

(
t,X(t),LX(t)

)
dW (t),

X(0) = x0,
(MVE)

for t ∈ [0, T ], with the law P̆ ◦X−1 = P . In particular, we have for the 1-marginal laws

LX(t) = P̆ ◦X(t)−1 = µt,

for t ∈ [0, T ] (see e.g. [BR18a, p. 5f] for the finite-dimensional analogue).
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Nonlinear Version: Superposition
principle on H

In this chapter, we will adapt Corollary 6.3.4 to the nonlinear case and make it the main
theorem of this second part of the thesis. By using the framework from Chapter 9, it
remains to modify the necessary assumptions.

10.1 Assumptions

The following assumptions on the coefficients b and σ are directly adapted from those in
Chapters 3 and 4 (see Subsections 3.2.3 and 4.2.3) by making the estimates uniform in
the newly added dependence on measures.

(NN) Assume there exists a function N ∈ Up for some p ≥ 2 such that for every n ∈ N
there exists a constant Cn ≥ 0 with

N (y) ≤ Cn‖y‖pHn ,

for any y ∈ Hn.

(NA1) (Demicontinuity) For any v ∈ X, t ∈ [0, T ], % ∈ P(H) and every sequence (yk)k∈N
with yk −−−→

k→∞
y in H, we have

lim
k→∞

X∗〈b(t, yk, %), v〉X = X∗〈b(t, y, %), v〉X

and

lim
k→∞

∥∥σ∗(t, yk, %)(v)− σ∗(t, y, %)(v)
∥∥
U = 0.

(NA2) (Coercivity) There exists a bounded measurable function λ1 : [0, T ] −→ [0,∞)
such that for all y ∈ X, t ∈ [0, T ] and % ∈ P(H)

X∗〈b(t, y, %), y〉X ≤ −N (y) + λ1(t)(1 + ‖y‖2
H)

holds.
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(NA3) (Growth) There exist bounded measurable functions λ2, λ3, λ4 : [0, T ] −→ [0,∞)
and constants γ′ ≥ γ > 1 such that for all y ∈ H, t ∈ [0, T ] and % ∈ P(H) we
have

‖b(t, y, %)‖γX∗ ≤ λ2(t)N (y) + λ3(t)(1 + ‖y‖γ
′

H )

and

‖σ(t, y, %)‖2
L2(U;H) ≤ λ4(t)(1 + ‖y‖2

H),

where N is defined in Assumption (NN).

(NH1) For all n ∈ N, % ∈ P(H), the matrices (aij(·, ·, %))1≤i,j≤n are symmetric and nonneg-
ative definite.

10.2 Result
Let us state the main result of this second part of the thesis, which is an adaption of
Corollary 6.3.4. To be more precise, it is a superposition principle for a given probability
solution µ on [0, T ]×H to a nonlinear Cauchy problem yielding existence of a martingale
solution whose 1-marginals are equal to µt.

Theorem 10.2.1. Let the assumptions from Section 10.1 be fulfilled. Assume there exists
a probability solution µ = µt dt on [0, T ]×H to the nonlinear Cauchy problem (NCP) in the
sense of Definition 9.2.1 and subsequence (µt,nk)k∈N on Hnk of a family of Borel probability
measures on Hn with the following properties:

• The measures (µt,nk)k∈N are solutions to the finite-dimensional nonlinear Cauchy
problems with coefficients Πnkb(·, ·, µ·,nk) and ΠnkA(·, ·, µ·,nk)Π∗nk on Hnk with the
property that the mapping

t 7→
∫
Hnk

ζ(y)µt,nk(dy)

is continuous on [0, T ] for every ζ ∈ C∞c (Hnk).

• For the family (µ̄t,nk)k∈N of extended measures to H, we have µ̄t,nk
w−−−→

k→∞
µt for every

t ∈ [0, T ].

• The integrability condition∫ T

0

∫
Hnk

‖ΠnkA(t, y, µt,nk)Π
∗
nk
‖+ |〈Πnkb(t, y, µt,nk), y〉Hnk |

(1 + ‖y‖Hnk )2
µt,nk (dy) dt <∞

holds for every k ∈ N.

Then there exists a martingale solution P ∈ P(S) to the martingale problem (NMP) in
the sense of Definition 9.3.1, for which

P ◦ x(t)−1 = µt

holds for every t ∈ [0, T ].
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Proof of Theorem 10.2.1. Given solutions µ to the nonlinear Cauchy problem (NCP) and
µnk , k ∈ N, to the finite-dimensional nonlinear Cauchy problems, we “freeze” all of these
measures and consider linear FPKEs of the form

∂t% = L∗µ %

and, for k ∈ N,

∂t% = L∗µnk
%.

But then, µ and µnk , for k ∈ N, are again particular solutions of these linear FPKEs.
Since our assumptions from Section 10.1 are uniform in the dependence on the measure,
all assumptions from Corollary 6.3.4 hold for our new coefficients b(·, ·, µ·) and σ(·, ·, µ·)
in the linear case. Consequently, we can just apply Corollary 6.3.4 and obtain the desired
martingale solution P in the sense of Definition 9.3.1.
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