
ar
X

iv
:2

00
4.

09
91

9v
1 

 [
m

at
h.

N
A

] 
 2

1 
A

pr
 2

02
0

THE PARABOLIC p-LAPLACIAN WITH FRACTIONAL

DIFFERENTIABILITY

DOMINIC BREIT, LARS DIENING, JOHANNES STORN, AND JÖRN WICHMANN

Abstract. We study the parabolic p-Laplacian system in a bounded domain.
We deduce optimal convergence rates for the space-time discretization based
on an implicit Euler scheme in time. Our estimates are expressed in terms
of Nikolskii spaces and therefore cover situations when the (gradient of) the
solution has only fractional derivatives in space and time. The main novelty is
that, different to all previous results, we do not assume any coupling condition
between the space and time resolution h and τ . The theoretical error analysis
is complemented by numerical experiments.

Dedicated to the memory of John W. Barrett

1. Introduction

Let Ω ⊂ R
n with Lipschitz boundary, n ≥ 2, N ≥ 1, T > 0 be finite and assume

that f : Q → R
N and u0 : Ω → R

N are given and let Q := I × Ω with I := (0, T ).
We are interested in the parabolic p-Laplace system

∂tu− div
(

(κ+ |∇u|)p−2∇u
)

= f in Q,

u = 0 on I × ∂Ω,

u(0, ·) = u0 in Ω.

(1.1)

with κ ≥ 0 and p ∈ (1,∞). The existence of a unique weak solution to (1.1) in the
function space

C(I;L2(Ω)) ∩ Lp(I;W 1,p
0 (Ω))

can be shown by standard monotonicity arguments under very weak assumptions
on the data. We are concerned with its numerical approximation by finite elements.
For this purpose we choose discrete subspace Vh of W 1,p

0 (Ω), which consists of piece-
wise polynomials on a quasi-uniform triangulation of mesh size h. Furthermore, we
use an implicit Euler scheme with step size τ = T

M+1 for the time discretization.
The discrete solution um,h is given at time points tm = mτ , m = 0, . . . ,M of the
time grid.

Many authors have studied the error of these discretization, e.g. [Wei92, BL94,
EL05, DER07, BDN18]. A variety of quantities has been used to express the error
and many error estimates have been deduced under different regularity assumptions
on the solution u. It turned out that the natural quantity to measure the error
between the discrete and continuous solution is

max
0≤m≤M

‖u(tm)− um,h‖
2
L2(Ω)+

M
∑

m=1

‖V(∇u(tm))−V(∇um,h)‖
2
L2(Ω),(1.2)

where V(ξ) = (κ+ |ξ|)
p−2
2 ξ.
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The term ‖V(∇u(tm))−V(∇um,h)‖
2
L2(Ω) is natural to problems involving the

p-Laplacian and captures the nonlinear character of the equation. It has been
introduced by [BL94] for the numerical analysis of the stationary problem (p-Poisson
problem)

− div
(

(κ+ |∇u|)p−2∇u
)

= f in Ω,

u = 0 on ∂Ω
(1.3)

in a slightly different but equivalent form under the name quasi-norm. Note that
if κ = 0 (1.3) is the Euler-Lagrange equation of the energy

J (v) :=

∫

Ω

(1

p
|∇v|p − v · f

)

dx.

It has been observed in [DK08] that the quantity ‖V(∇u) −V(∇uh)‖
2
L2(Ω) is equiv-

alent to the energy error J (uh)− J (u). This explains that the quantities in (1.2)
are the natural way to express the error. The variational approach using J has
been also used in [BDK12] to prove optimal convergence of the adaptive finite ele-
ment method for the p-Poisson problem using Dörfler marking. It has been shown,
starting with the seminal paper by Barrett and Liu [BL93] and with the subsequent
extensions by Ebmeyer and Liu [EL05] and by Diening and Růžička [DR07], that
solutions to (1.3) satisfy

‖V(∇u(tm))−V(∇um,h)‖L2(Ω) . h ‖∇V(∇u)‖L2(Ω).

The required regularity ∇V(∇u) ∈ L2(Ω) for the continuous solutions is well-
known for problems involving the p-Laplacian. It arises naturally when testing
the equation by ∆u. This test can be made rigorous by the method of difference-
quotients under appropriate assumptions on the data (for instance for convex Ω
or Ω with C1,α-boundary).

In the instationary setting the natural regularity using difference-quotients in
time and space is

V(∇u) ∈ L2(I;W 1,2(Ω))) ∩W 1,2(I;L2(Ω)),(1.4a)

u ∈ L∞(I;W 1,2(Ω)) ∩ C0,1(I ;L2(Ω)).(1.4b)

It is well-known that weak solutions to (1.1) enjoy the properties (1.4) provided the
data is regular enough and Ω is either convex or has C1,α boundary.

The expected optimal convergence result for linear elements under the regularity
assumption (1.4) is

max
0≤m≤M

‖u(tm)− um,h‖
2
L2(Ω)+τ

M
∑

m=1

‖V(∇u(tm))−V(∇um,h)‖
2
L2(Ω)

. h2 + τ2.

(1.5)

The analysis of implicit Euler schemes for (1.1) started with the work of Wei [Wei92],
who considered the planar case for p ≥ 2 and obtained sub-optimal estimates for the
first part of the error only. In particular, he showed that maxm ‖u(tm)− um,h‖

2
L2(Ω)

is of order h
1

(p−1) + τ provided that u ∈ C(I,W 2,p(Ω)). Liu and Barett derived
in [BL94] significantly better estimates for all 1 < p < ∞ , but still sub-optimal
compared to (1.5). Instead of h2 + τ2 in (1.5) they obtained hmin {p,2} + τ for
maxm ‖u(tm)− um,h‖

2
L2(Ω) under strong regularity assumptions of the solution.

The optimal rate (1.5) has been obtained by Diening, Ebmeyer and Růžička
in [DER07] for piece-wise linear elements under the assumption p > 2n

n+2 .1 However,

1The restriction p > 2n

n+2
comes from the use of Gelfand triples, which requires W 1,p(Ω) →֒

L2(Ω); but could be avoided.
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their analysis has the drawback that there is an unnatural coupling of the time-step
size τ and h. In particular, for their optimal convergence result it is required that

hβ(p,n) . τ,(1.6)

where β(p, n) = 2−n(1− p
2 ) if p ∈ (n+2

2n , 2] and β(p, n) = n+ 2(2−n)
p for p ∈ [2,∞).

The bound for p ≤ 2 has been recently improved in [BR20] to β(p, n) = 4
p′ , where

p′ = p
p−1 . Note that different from the well-known CFL condition this is an upper

bound for h in terms of τ . Nevertheless, this artificial condition is very much
undesired. It is well known that for the linear case p = 2 such a condition is not
needed. The main contribution of this paper is to remove such artificial restriction
completely and to prove that the error estimate (1.5) holds for any choice of h and
τ under the regularity assumption (1.4).

The reason for the coupling between h and τ in (1.6) is the use of the Scott-Zhang
interpolation Π1

SZ operator [SZ90] in the numerical analysis. This operator has very
nice local properties which have been used in [DR07] to control the approximation

error ‖V(∇u)−V(∇Π1
SZu)‖

2

L2(Ω) in terms of h2‖∇V(∇u)‖2L2(Ω). However, the

operator Π1
SZ is not self-adjoint and the treatment of the new term arising from ∂tu

in the instationary setting becomes harder to estimate. To overcome this problem
we rather employ the L2-projection Π2 onto the finite element space Vh. This,

however, requires a control of the new term ‖V(∇u)−V(∇Π2u)‖
2
L2(Ω). Since Π2

is not a local operator, the latter control is rather delicate. We are able to over-
come the arising problems by the use of sophisticated decay estimates for the L2-
projection due to Eriksson and Johnson [EJ95] and Boman [Bom06]. Our estimates

for ‖V(∇u)−V(∇Π2u)‖
2
L2(Ω) are summarized in Theorem 7.

Our approach turns out to be flexible enough to even accommodate problems
with fractional differentiability. If the data (initial datum, forcing term or bound-
ary of the domain) is not regular enough, weak solutions fail to enjoy the proper-
ties (1.4). Consequently, an error estimate of the form (1.5) cannot be expected.
In many cases, however, there is at least some fractional differentiability available
and one has

V(∇u) ∈ L2(I;Nαx,2(Ω)) ∩Nαt,2(I;L2(Ω)),(1.7a)

u ∈ L∞(I;Nαx,2(Ω)) ∩ C0,αt(I;L2(Ω)),(1.7b)

for some αx, αt ∈ (0, 1]. Here Nα,2 denotes the Nikolskĭı space with differentiability
α ∈ (0, 1], see Section 2 for details. The corresponding error estimate under these
assumptions for αt >

1
2 is

max
0≤m≤M

‖u(tm)− um,h‖
2
L2(Ω)+τ

M
∑

m=1

‖V(∇u(tm))−V(∇um,h)‖
2
L2(Ω)

. h2αx + τ2αt .

(1.8)

The condition αt > 1
2 is necessary for the point evaluation of V(∇u) using the

embedding Nαt,2(I;L2(Ω)) →֒ C(I ;L2(Ω)). Indeed, such an error estimate has
been shown by Breit and Mensah [BM19] in the more general situation of variable
exponents p = p(t, x) but again under some condition coupling h and τ . In par-

ticular, they require that h . τ
1+2αt
2αx . They also require a very weak form of the

CFL-condition, namely that τr . h for some arbitrary, large r > 0.
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For general αt ∈ (0, 1] we switch to the following averaged version of the error
estimate

max
1≤m≤M

‖〈u〉Jm
− um,h‖

2
L2(Ω)+

M
∑

m=1

tm+1
∫

tm−1

‖V(∇u(s)) −V(∇um,h)‖
2
L2(Ω) ds

. h2αx + τ2αt ,

(1.9)

where 〈u〉Jm
is a time average of u over the intervall Jm = [tm−1, tm+1] for m ≥ 1.

This error estimate is the main result of this paper under the assumption

V(∇u) ∈ L2(I;Nαx,2(Ω)) ∩Nαt,2(I;L2(Ω)),(1.10a)

u ∈ L∞(I;Nαx,2(Ω)).(1.10b)

All exponents αx, αt ∈ (0, 1] are allowed and a coupling between h and τ is not
needed. The precise statement can be found in Theorem 9. If additionally u ∈
C0,αt(I;L2(Ω)), then we have also control on the pointwise error (see Remark 11)

max
1≤m≤M

‖u(tm)− um,h‖
2
L2(Ω) . h2αx + τ2αt .(1.11)

A main motivation for considering a low time-regularity of the solution comes from
stochastic PDEs. In this case the equations are driven by a Wiener process which
only belongs to the class C0,αt(I) for all αt < 1

2 . Consequently, only a regular-

ity of the form (1.7) with αt < 1
2 is expected. Thus, point evaluations in time

like V(∇u(tm)) as they appear in (1.8) may not be possible in the stochastic case.
This problem was circumvented in [BH19] by the use of randomly perturbed time
grids. In expectation this corresponds to the time averages that we use in this
paper.

The paper is organised as follows. In Section 2 we introduce the analytical
setup for equation (1.1) followed by the discrete version in Section 3. Section 4 is
devoted to the study of the L2-projection Π2 with respect to the approximability
of V(∇u). The result can be found in Theorem 7. The main error analysis and
the prove of the main result (1.9) without any h and τ coupling can be found in
Section 5 in Theorem 9. Section 6 contains the results of a numerical simulation
study concerning the discretisation error. In the appendix we recall some well-
known results on Orlicz functions which are needed throughout the paper.

2. The continuous equation

In this section we introduce the analytical setup for equation (1.1) including the
function spaces. Let Ω ⊂ R

n for n ≥ 2 be a bounded Lipschitz domain (further
assumptions on Ω will be needed for the regularity of solutions and the numerical
analysis respectively). For some given T > 0 we denote by I = (0, T ) the time
interval and write Q := I × Ω for the space time cylinder. We write f . g for
two non-negative quantities f and g if we f is bounded by g up to a multiplicative
constant. The relations & and h are defined accordingly. We denote by c a generic
constant which can change its value from line to line.

As usual Lq(Ω) denotes the Lebesgue spaces and W 1,q(Ω) the Sobolev spaces,

where 1 ≤ q ≤ ∞. We denote by W 1,q
0 (Ω) Sobolev spaces with zero boundary val-

ues. It is the closure C∞
0 (Ω) (smooth functions with compact support) in W 1,q(Ω).

We denote by W−1,q′(Ω) the dual of W 1,q
0 (Ω). In order to express higher regular-

ity of the solutions we need the notation of Nikolskĭı spaces. For q ∈ [1,∞) and
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α ∈ (0, 1] we define the semi-norm and norm

[u]Nα,q(Ω) := sup
h∈Rn\{0}

|h|−α

( ∫

Ω∩(Ω−h)

|u(x+ h)− u(x)|q dx

)
1
q

,

‖u‖Nα,q(Ω) := ‖u‖Lq(Ω) + [u]Nα,q(Ω).

The Nikolskii space Nα,q(Ω) is now defined as the subspace of Lq(Ω) consisting
of functions having finite ‖·‖Nα,q(Ω)-norm. We call [·]Nα,q(Ω) the semi-norm of

Nα,q(Ω). Vector- and matrix-valued functions will usually be denoted in bold
case, whereas normal case will be adopted for real-valued functions. We do not
distinguish in the notation for the function spaces.

For a separable Banach space (X, ‖ · ‖X) let Lq(I;X) be the Bochner space of
(Bochner-) measureable functions u : I → X satisfying t 7→ ‖u(t)‖X ∈ Lq(I).
Moreover, C(I ;X) is the space of function u : I → X which are continuous with
respect to the norm-topology. We also use C0,α for the space of Hölder continuous
functions and its generalization Ck,α for higher order derivatives. Similarly to the
above, we can define fractional derivatives in time for functions u : I → X , where
(X, ‖ · ‖X) is a separable Banach space. We define for q ∈ [1,∞) and α ∈ (0, 1] the
semi-norm and norm

[u]Nα,q(I;X) := sup
τ∈I

|τ |−α

( ∫

I∩(I−τ)

‖u(σ + τ) − u(σ)‖qX dσ

)
1
q

,

‖u‖Nα,q(I;X) := ‖u‖Lp(I;X) + [u]Nα,q(I;X).

The Nikolskii space Nα,q(I;X) is now defined as the subspace of the Bochner space
Lq(I;X) consisting of the functions having finite ‖·‖Nα,q(I;X)-norm.

For a given force f : Q → R
N and initial value u0 : Ω → R

N we are interested in
the parabolic p-Laplace system

∂tu− div
(

S(∇u)
)

= f in Q,

u = 0 on I × ∂Ω,

u(0, ·) = u0 in Ω

(2.1)

with κ ≥ 0 and p ∈ (1,∞), where

S(∇u) := (κ+ |∇u|)p−2∇u.(2.2)

We will also later need

V(∇u) := (κ+ |∇u|)
p−2
2 ∇u.(2.3)

It is easy to see that both S and V are monotone and invertible.
As usual we use the following notion of weak solutions.

Definition 1. Assume that f ∈ L1(Q) and u0 ∈ L1(Ω). We call

u ∈ C(I;L2(Ω)) ∩ Lp(I;W 1,p
0 (Ω))

a weak solution to (2.1) if

∫

Ω

u(t) · ξ dx−

∫

Ω

u0 · ξ dx+

t
∫

0

∫

Ω

S(∇u) : ∇ξ dxdσ =

t
∫

0

∫

Ω

f · ξ dxdσ(2.4)

for all ξ ∈ C∞
0 (Ω) and all t ∈ I.
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The formulation in (2.4) is equivalent to

(2.5) −

∫

Q

u · ∂tξ dxdt−

∫

Ω

u0 · ξ(0) dx+

∫

Q

S(∇u) : ∇ξ dxdt =

∫

Q

f · ξ dxdt

for all ξ ∈ C∞
0 ([0, T ) × Ω). It is well known that a weak solution exists provided

f ∈ Lp′

(I;W−1,p′

0 (Ω)) and u0 ∈ L2(Ω).
The following regularity result is a special case of [BM19, Thm. 4.1] (note that

the second inclusion in (2.9) is not explicitly stated in [BM19] but follows directly
from the proof).

Theorem 2. Let αx, αt ∈ (0, 1] be given and let Ω be a bounded C1,αx -domain. Let
u be the unique weak solution to (1.1) in the sense of Definition 1 with

f ∈ Lp′

(I;Nαx,p
′

(Ω)) ∩Nαt,2
(

I;L2(Ω)),(2.6)

u0 ∈ Nαx,2(Ω), divS(∇u0) ∈ L2(Ω).(2.7)

Then we have

V(∇u) ∈ L2(I;Nαx,2(Ω)) ∩Nαt,2
(

I;L2(Ω)),(2.8)

u ∈ L∞(I;Nαx,2(Ω)) ∩ C0,αt(I;L2(Ω)).(2.9)

In the case αx = αt = 1 the result from Theorem 2 is classical and follows
formally by testing the equations with ∆u and ∂2

t u (see, for instance, [DSS19] for
an easy proof). See also [CM20] for sharp, regularity results from testing with the
p-Laplacian. Results in a similar spirit concerning the fractional differentiability
of nonlinear parabolic systems can be found in [DM05] and [DMS11]. Results
concerning the fractional differentiability of related elliptic problems can be found
in [AKM18], [DDH+16], [EF01] and [Sav98].

3. The discrete equation

From now on let Ω ⊂ R
n be a polyhedral domain. By Th denote a regular par-

tition (triangulation) of Ω (no hanging nodes), which consists of closed n-simplices
called elements. For each element (n-simplex) T ∈ Th we denote by hT the diam-
eter of T , and by ρT the supremum of the diameters of inscribed balls. By |T | we
denote the Lebesgue measure of T . By −

∫

T
g dx we denote the mean value integral

over the set T . We also abbreviate 〈g〉T = −
∫

T
g dx for the mean value.

We assume that Th is shape regular, that is there exists a constant γ (the shape
regularity constant or chunkiness constant) such that

max
T∈Th

hT

ρT
≤ γ.(3.1)

We define the maximal mesh-size by

h = max
T∈Th

hT .

We assume further that our triangulation is quasi-uniform, i.e.

hT h h for all T ∈ Th.(3.2)

For T ∈ Th we define the set of neighbors ωT , which consists of all elements T ′ ∈ Th
with T ∩ T ′ 6= ∅. We define

Ω(ωT ) :=
(

⋃

{T : T ∈ ωT }
)◦

.

We also assume that Ω(ωT ) is a connected domain for each T . This only excludes
some strange triangulations and is only a small technicality.
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To simplify notations we will use ambiguously ωT instead of Ω(ωT ) for the do-
main for integrals.

It is easy to see that the shape regularity of Th implies the following properties,
where the constants are independent of h:

(a) |ωT | h |T | for all T ∈ Th.
(b) There exists m1 ∈ N such that #ωT ≤ m1 for all T ∈ Th.

For ℓ ∈ N0 we denote by Pℓ(Ω) the polynomials on Ω of degree less than or
equal to ℓ. Moreover, we set P−1(Ω) := {0}.

For fixed r ∈ N we define the the finite element space Vh as

Vh := {v ∈ (W 1,1
0 (Ω))N : v|T ∈ (Pr(T ))

N ∀T ∈ Th}.(3.3)

Remark 3. For the numerical analysis it is only important that Vh contains all
continuous, locally linear functions, and that the functions are locally polynomials
of a fixed maximal degree. Thus it would for example also be possible to use velocity
spaces like the MINI-element (locally linear functions enriched by bubble functions.
This might be of interest if our results should be applied to the corresponding fluid
system.

Let {0 = t0 < · · · < tM = T } be a uniform partition of [0, T ] with mesh size
τ = T/M . For m ≥ 1 define Im := [tm−1, tm] and Jm := [tm−1, tm+1].

For a discrete sequence am we define the backwards-in-time discrete time deriv-
ative dt by

dtam := τ−1(am − am−1).

Then

dtam · am = 1
2dt|am|2 + τ

2 |dtam|2.(3.4)

Let u0,h := Π2u0, where Π2 is the L2-projection to Vh. Now for some given time-
discrete force fm, we define um,h as the solution of the implicit Euler scheme

dtum,h − div
(

S(∇um,h)
)

= fm in V ∗
h(3.5)

in the discrete weak sense, i.e. for all ξh ∈ Vh and m = 1, . . . ,M it holds

∫

Ω

dtum,h · ξh dx+

∫

Ω

S(∇um,h) : ∇ξh dx =

∫

Ω

fm · ξh dx.(3.6)

Notice that we discretize in space and time simultaneously and avoid an interme-
diate step with only time or only space discretization. This has the advantage that
we do not need to derive regularity properties of additional intermediate problems.

Let us compare our discrete equation to the continuous one. We start with the
time steps m ≥ 2. We first take the average over (s− τ, s)

u(s)− u(s− τ)

τ
− −

∫

(s−τ,s)

div
(

S(∇u)(σ)
)

dσ = −

∫

(s−τ,s)

f(σ) dσ.

Now, take the mean value over Jm with respect to s. Then

dt〈u〉Jm
− −

∫

Jm

−

∫

(s−τ,s)

div
(

S(∇u)(σ)
)

dσ ds = −

∫

Jm

−

∫

(s−τ,s)

f(σ) dσ ds.
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We define θm : [0,∞) → [0,∞) for m = 2, . . . ,M by

θm(σ) := −

σ+τ
∫

σ

1Jm
(s)

2τ
ds =

1

2τ2

min {σ+τ,tm+1}
∫

max {σ,tm−1}

ds

=
(σ − tm−2)1Im−1(σ) + 1Im(σ) + (tm+1 − σ)1Im+1 (σ)

2τ2
.

(3.7)

Then θm is a weight with total mass one. Let us define weighted averages by

〈g〉θm :=

∫

R

θm(s)g(s) ds.

We obtain for m ≥ 2

dt〈u〉Jm
− div

(

〈S(∇u)〉θm
)

= 〈f〉θm .(3.8)

For m = 1 we have to proceed slightly differently. We start with our equation (2.1),
take the integral over (0, s) and divide by τ to obtain

u(s)− u0

τ
− τ−1

∫

(0,s)

div
(

S(∇u)(σ)
)

dσ = τ−1

∫

(0,s)

f(σ) dσ.

Now, we take the mean value over J1 with respect to s and obtain

〈u〉J1 − u0

τ
− −

∫

J1

τ−1

s
∫

0

div
(

S(∇u)(σ)
)

dσ ds = −

∫

J1

τ−1

s
∫

0

f(σ) dσ ds,

Let us define the weight θ1 : [0,∞) → [0,∞) by

θ1(σ) :=
1

2τ2

∞
∫

σ

1J1(s) ds =
2τ − σ

2τ2
1J1(σ).(3.9)

Then θ1 has total mass one and we may write

〈u〉J1 − u0

τ
− div

(

〈S(∇u)〉θ1
)

= 〈f〉θ1 .

With 〈u〉J0 := u0 the initial equation is now given by

dt〈u〉J1 − div
(

〈S(∇u)〉θ1
)

= 〈f〉θ1 .(3.10)

4. Projections operators

In this section we consider projections onto the finite element space Vh introduced
in the previous section. In particular, we recall some known properties of the Scott-
Zhang interpolation operator and prove a gradient estimate for the error of the
L2-orthogonal projection Π2 in Theorem 7. The latter one is crucial for the error
analysis in the subsequent section.

Let Π1
SZ : W 1,1

0 (Ω) → Vh denote the standard Scott-Zhang interpolation opera-
tor [SZ90] that preserves zero boundary values, where the values of Π1

SZv on ∂Ω are
obtained by averaging over edges in ∂Ω. Then this operator is stable in W 1,1 but
unfortunately not in L1 or L2. Therefore, we use slight variant of the Scott-Zhang
operator: Given a function v ∈ L1(Ω) we extend it by zero outside of Ω on an addi-
tional layer of triangles. Now, we take the Scott-Zhang operator that averages only
over n-simplices. At the boundary the n-simplices, where the average is calculated,
are chosen to lie outside of Ω. In such a way we obtain zero boundary values and
preserve the L1-stability, see the remark after (4.6) in [SZ90]. Note that Π0

SZ does
not preserve general polynomial boundary data.

These operators have the following nice properties:



THE PARABOLIC p-LAPLACIAN WITH FRACTIONAL DIFFERENTIABILITY 9

(a) (Projection) Π0
SZ and Π1

SZ are linear projections onto Vh.
(b) (Local Stability) There holds uniformly in T ∈ Th

−

∫

T

|Π0
SZv| dx . −

∫

ωT

|v| dx for v ∈ L1(Ω),

−

∫

T

|Π1
SZv| dx . −

∫

ωT

|v| dx+ −

∫

ωT

hT |∇v| dx for v ∈ W 1,1
0 (Ω).

(4.1)

It is well-known that these properties imply the following Lp stability results for
1 ≤ p < ∞, e.g. [DR07],

(

−

∫

T

|Π0
SZv|

p
dx

)
1
p

.

(

−

∫

ωT

|v|p dx

)
1
p

(

−

∫

T

|Π1
SZv|

p
dx

)
1
p

.

(

−

∫

ωT

|v|p dx

)
1
p

+

(

−

∫

ωT

hp
T |∇v|p dx

)
1
p

.

(4.2)

For p = ∞ the mean value integrals have to be exchange by maxima.
The following local estimate has been shown by Diening and Růžička in [DR07,

Thm. 5.7].

Proposition 4. For all v ∈ W 1,p(Ω) and all T ∈ Th it holds that

−

∫

T

∣

∣V(∇v) −V(∇Π1
SZv)

∣

∣

2
dx . inf

Q∈RN×n
−

∫

ωT

∣

∣V(∇v) −V(Q)
∣

∣

2
dx

= −

∫

ωT

∣

∣V(∇v) − 〈V(∇v)〉ωT

∣

∣

2
dx.

(4.3)

The implicit constant only depends on p and the shape regularity constant γ.

If follows by a simple application of Poincaré’s inequality that

−

∫

T

∣

∣V(∇v) −V(∇Π1
SZv)

∣

∣

2
dx . h2

T −

∫

ωT

∣

∣∇V(∇v)
∣

∣

2
dx(4.4)

and by summation over all T
∥

∥V(∇v) −V(∇Π1
SZv)

∥

∥

L2(Ω)
. h

∥

∥∇V(∇v)
∥

∥

L2(Ω)
.(4.5)

Let us make a short remark on local estimates in Nikolskii spaces. For all g ∈
Nα,q(T ) with α ∈ (0, 1] and q ∈ [1,∞) it follows by Jensen’s inequality and the
definition of Nα,q(T ) that

(

−

∫

T

|g − 〈g〉T |
q dx

)
1
q

≤

(

1

|T |2

∫

|z|≤hT

∫

T∩(T−z)

|g(y + z)− g(y)|q dy dz

)
1
q

(4.6)

. hα
T

[g]Nα,q(T )

|T |
1
q

.(4.7)

It is possible to replace T by ωT .
The next theorem extends (4.4) and (4.5) to the case of Nikolskii spaces.

Theorem 5. Let α ∈ (0, 1]. For all T ∈ Th it holds that


−

∫

T

∣

∣V(∇v) −V(∇Π1
SZv)

∣

∣

2
dx





1
2

. hα
T

[V(∇v)]Nα,2(ωT )

|ωT |
1
2

.(4.8)
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Assume additionally that Th is quasi-uniform. Then we have
∥

∥V(∇v) −V(∇Π1
SZv)

∥

∥

L2(Ω)
. hα[V(∇v)]Nα,2(Ω).(4.9)

Proof. Estimate (4.8) follows directly from Proposition 4 and (4.7). Similarly
with (4.6) we obtain

∥

∥V(∇v) −V(∇Π1
SZv)

∥

∥

2

L2(Ω)

.
∑

T∈Th

∫

ωT

∣

∣V(∇v) − 〈V(∇v)〉ωT

∣

∣

2
dx

.
1

hn

∫

|z|≤h

∫

Ω∩(Ω−z)

|V(∇v)(y + z)−V(∇v)(y)|2 dy dz

.
(

hα[V(∇v)]Nα,2(Ω)

)2
.

This proves (4.9). �

Lemma 6. Let α ∈ (0, 1]. For all T ∈ Th it holds that

‖v −Π0
SZv‖L2(Ω) . hα[v]Nα,2(Ω).

Proof. Arguing similarly as in the proof of (4.9) we have for all v ∈ Nα,p(Ω)
∫

Ω

∣

∣v −Π0
SZv

∣

∣

2
dx .

∑

T∈Th

∫

T

|v − 〈v〉ωT
|2 dx +

∑

T∈Th

∫

T

∣

∣Π0
SZ

(

v − 〈v〉ωT

)∣

∣

2
dx

.
∑

T∈Th

∫

ωT

|v − 〈v〉ωT
|2 dx . h2α [v]

2
Nα,2(Ω)

using the projection property and the local stability estimate (4.2). �

Although the Scott-Zhang operator has wonderful properties it is not always the
best choice for parabolic problems. In particular, the lack of self-adjointness makes
serious problems with the discretization of term ∂tu. For the latter one it is much
better to use the L2-projection Π2 : L2(Ω) → Vh.

In fact, we will later use the following identity for the error em (see Section 5 for
the exact definition of the error em)

∫

Ω

dtem ·Π2em dx =

∫

Ω

dtΠ2em ·Π2em dx

=
1

2
dt‖Π2em‖2L2(Ω) +

τ

2
‖dtΠ2em‖2L2(Ω).

(4.10)

This important identity relies strongly on the self-adjointness of Π2, which is not
available for Π1

SZ. This was the reason for the h and τ coupling in previous papers.
In the following we will extend (4.5) to the L2-projection Π2. In particular, we

want to prove the following theorem.

Theorem 7. Let Th be quasi-uniform and α ∈ (0, 1]. Then

‖V(∇v) −V(∇Π2v))‖L2(Ω) . hα[V(∇v)]Nα,2(Ω).

Before we get to the proof of the theorem let us make a few remarks. The
case p = 2 reduces to

‖∇v −∇Π2v‖L2(Ω) . hα[∇v]Nα,2(Ω).(4.11)
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Since Th is quasi-uniform, this special case can be easily shown with the help of
the Scott-Zhang operator. Indeed, using Π2Π

1
SZ = Π1

SZ, inverse estimates and the
approximation properties of Π1

SZ, in particular (4.9), we can estimate

‖∇v−∇Π2v‖L2(Ω) ≤ ‖∇(v −Π1
SZv)‖L2(Ω) + ‖∇Π2(v −Π1

SZv)‖L2(Ω)

. ‖∇(v −Π1
SZv)‖L2(Ω) + h−1‖Π2(v −Π1

SZv)‖L2(Ω)

. ‖∇(v −Π1
SZv)‖L2(Ω) + h−1‖v −Π1

SZv‖L2(Ω)

. ‖∇(v −Π1
SZv)‖L2(Ω)

. hα[∇v]Nα,2(Ω).

However, in the non-linear case p 6= 2, where ∇v has to be replaced by V(∇v), such
a simple trick is not possible. To overcome this problem we will use sophisticated
decay estimates of the L2-projection which are due to Eriksson and Johnson [EJ95]
and refined by Boman [Bom06]. In the following we will derive from their re-
sults decay estimates of the L2-projection for our simple situation of quasi-uniform
meshes.

Let us define the mollifier

η(x) := cν exp(−ν|x|),

with cν such that ‖η‖L1(Rn) = 1. Then ηh(x) := h−nη(x/h) satisfies ‖ηh‖L1(Rn) = 1

as well.

Lemma 8 (Decay estimates of the L2-projection). Let Th be quasi-uniform. Then
for every x ∈ T and all v ∈ L1(Ω) and all w ∈ W 1,1(Ω) we have

|(Π2v)(x)| .
(

ηh ∗ (1Ω|v|)
)

(x),(4.12)

|(∇Π2w)(x)| .
(

ηh ∗ (1Ω|∇w|)
)

(x).(4.13)

The implicit constants only depend on n and the shape regularity γ.

Proof. We begin with the proof of (4.12)

|(Π2v)(x)| . −

∫

T

|Π2v| dy

.

∫

Ω

ηh(x− y)|(Π2v)(y)| dy = ‖ηh(x− ·)Π2v(·)‖L1(Ω).

Since our triangulation is quasi-uniform we may choose a constant regularized mesh
function h(x) := h in order to apply the results of [EJ95] and [Bom06]. In particular,
by Lemma 2.3 of [Bom06] (applied to the case p = 1) it follows that

|(Π2v)(x)| . ‖ηh(x− ·)v(·)‖L1(Ω) .
(

ηh ∗ (1Ω|v|)
)

(x).

This proves (4.12). Let us remark that the results of Boman are unfortunately not
properly displayed. In particular, they define

δTh
:= max

T∈Th

max
T ′∈ωT

|1 − h2
T /h

2
T ′ |.

Thus, only a uniform mesh gives δTh
= 0. It would have been better to use

δTh
:= max

T∈Th

max
x∈T

max
y∈ωT

|1− h(x)2/h(y)2|,

which is zero for all quasi-uniform meshes with constant regularized mesh function.
In the paper of Eriksson and Johnson [EJ95] this was done properly and the case
of quasi-uniform meshes is included. A careful inspection of the proofs by Boman
shows that it is enough to use the alternative definition of δTh

, so that quasi-uniform
meshes are included.
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The proof of (4.13) is analogously using Lemma 2.5 of Boman [Bom06], i.e.

‖ηh(x− ·)∇Π2w(·)‖L1(Ω) . ‖ηh(x− ·)∇w(·)‖L1(Ω).

This proves the claim. �

Closely related to (2.2) and (2.3) is the shifted Orlicz function ϕa defined by

ϕa(t) :=

t
∫

0

(κ+ a+ s)p−2s ds(4.14)

for a ≥ 0 (see also the appendix). We are now prepared for the proof of Theorem 7.

Proof of Theorem 7. We estimate using Lemma 13

I :=

∫

Ω

|V(∇v) −V(∇Π2v)|
2
dx

h

∫

Ω

ϕ|∇v| (|∇v −∇Π2v|) dx

.

∫

Ω

ϕ|∇v|

(

|∇v −∇Π1
SZv|

)

dx +

∫

Ω

ϕ|∇v|

(

|∇Π2(v −Π1
SZv)|

)

dx

=: II + III.

Now, by Lemma 13 and Theorem 5

II h

∫

Ω

|V(∇v) −V(∇Π1
SZv)|

2
dy . h2α [V(∇v)]

2
Nα,2(Ω) .

Moreover, by Lemma 8, Jensen’s inequality

III .

∫

Ω

ϕ|∇v(x)|

(

ηh ∗ (1Ω|∇(v −Π1
SZv|)

)

(x) dx

=

∫

Ω

ϕ|∇v(x)|

(∫

Ω

ηh(x− y)|∇(v −Π1
SZv)(y)| dy

)

dx

.

∫

Ω

∫

Ω

ηh(x− y)ϕ|∇v(x)|

(

|∇(v −Π1
SZv)(y)|

)

dy dx.

Now, by the shift-change Lemma 15 and Lemma 13

.

∫

Ω

∫

Ω

ηh(x− y)ϕ|∇v(y)|

(

|∇(v −Π1
SZv)(y)|

)

dy dx

+

∫

Ω

∫

Ω

ηh(x− y)|V(∇v)(x) −V(∇v)(y)|2 dy dx

.

∫

Ω

|V(∇v) −V(∇Π1
SZv)|

2
dy

+

∫

Ω

∫

Ω

ηh(x− y)|V(∇v)(x) −V(∇v)(y)|2 dy dx

=: III1 + III2.

Again by Theorem 5

III1 . h2α [V(∇v)]2Nα,2(Ω) .
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We estimate further

III2 =

∫

Ω

∫

Ω

ηh(x − y)|V(∇v)(x) −V(∇v)(y)|2 dy dx

=

∫

Rn

∫

Ω∩(Ω−z)

ηh(z)|V(∇v(y + z))−V(∇v(y))|2 dy dz

.

∫

Rn

ηh(z)|z|
2α

dz [V(∇v)]
2
Nα,2(Ω)

= h2α

∫

Rn

η(z)|z|2α dz [V(∇v)]2Nα,2(Ω)

. h2α [V(∇v)]
2
Nα,2(Ω) ,

which proves the claim. �

5. Error analysis

Our aim now is to establish the convergence rate of the difference between the
solution to the continuous problem solving (2.4), and that of the discrete prob-
lem (3.6). To do this, we first collect the following assumptions on the data.
Throughout the rest of this section we assume that

u0 ∈ L2(Ω), f ∈ Lp′

(0, T ;W−1,p′

(Ω)).(5.1)

Recall the definition of weighted averages

〈g〉θm :=

∫

R

θm(σ)g(σ) dσ

with θm given by (3.7) resp. (3.9).
In the following we state the main result of the paper.

Theorem 9. Suppose that (5.1) holds. Let u be the unique weak solution to (1.1)
in the sense of Definition 1. Assume that

V(∇u) ∈ L2(I; Nαx,2(Ω)) ∩ Nαt,2(I;L2(Ω)),

u ∈ L∞(I;Nαx,2(Ω))
(5.2)

for some αx, αt ∈ (0, 1]. Let Th be quasi-uniform. Then we have uniformly in τ
and h

max
1≤m≤M

‖〈u〉Jm
− um,h‖

2
L2(Ω) +

M
∑

m=1

∫

Jm

‖V(∇u(s))−V(∇um,h)‖
2
L2(Ω) ds

. h2αx



 sup
s∈[0,T ]

[u(s)]
2
Nαx,2(Ω) +

T
∫

0

[V(∇u(s))]
2
Nαx,2(Ω) ds





+ τ2αt [V(∇u)]
2
Nαt,2(I;L2(Ω)) ,

where um,h is the solution to (3.5) with fm = 〈f〉θm and u0,h := Π2u0, where Π2 is
the L2-projection to Vh. The hidden constant is independent of T .

Proof. Define the averaged error by em := 〈u〉Jm
− um,h.

Recall the solution u satisfies (3.8) and (3.10), whereas the discrete solution um,h

satisfies (3.5). Therefore it holds for m = 1, . . . ,M as an equation in V ∗
h

dtem − div (〈S(∇u)〉θm − S(∇um,h)) = 〈f〉θm − fm = 0.(5.3)
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Let us also recall that the L2-projection Π2 : L2(Ω) → Vh is defined by

(Π2v − v, ξh) = 0(5.4)

for all ξh ∈ Vh. In particular for ξh = Π2v it holds

(Π2v,Π2v) = (v,Π2v).(5.5)

Let m ∈ {1, . . . ,M} and choose ξh = Π2em in (5.3) and get

I + II :=

∫

Ω

dtem · Π2em dx+

∫

R

∫

Ω

θm(σ)(S(∇u(σ)) − S(∇um,h)) : ∇em dxdσ

=

∫

R

∫

Ω

θm(σ)(S(∇u(σ)) − S(∇um,h)) : ∇(em −Π2em) dxdσ

=: III.

Keep in mind that the weights θ1 and θm are supported in I1 ∪ I2 and Im−1 ∪
Im ∪ Im+1 respectively, see (3.7) and (3.9). Consequently, the integrals over R are
well-defined.

Due to (5.5) and (3.4) the first term can be written as

I =

∫

Ω

dtΠ2em ·Π2em dx =
1

2
dt‖Π2em‖2L2(Ω) +

τ

2
‖dtΠ2em‖2L2(Ω).

We split the second term into two parts and use Lemma 13

II =

∫

R

−

∫

Jm

∫

Ω

θm(σ)(S(∇u(σ)) − S(∇um,h)) : ∇(u(s) − um,h) dxds dσ

h −

∫

Jm

∫

Ω

|V(∇u(s)) −V(∇um,h)|
2
dxds

+

∫

R

−

∫

Jm

∫

Ω

θm(σ)(S(∇u(σ)) − S(∇u(s))) : ∇(u(s) − um,h) dxds dσ

=: II1 + II2.

The latter is estimated using Lemma 14

II2 ≤ δ −

∫

Jm

∫

Ω

|V(∇u(s)) −V(∇um,h)|
2
dxdσ

+ cδ

∫

R

−

∫

Jm

∫

Ω

θm(σ)|V(∇u(s)) −V(∇u(σ))|2 dxds dσ.
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The next step is to decompose III in an analogous way. Due to Lemma 13 and 14
it holds

III = −

∫

Jm

∫

Ω

(S(∇u(s)) − S(∇um,h)) : ∇(u(s)−Π2u(s)) dxds

+

∫

R

−

∫

Jm

∫

Ω

θm(σ)(S(∇u(σ)) − S(∇u(s))) : ∇(u(s)−Π2u(s)) dxds dσ

≤ δ −

∫

Jm

∫

Ω

|V(∇u(s)) −V(∇um,h)|
2
dxds

+ cδ −

∫

Jm

∫

Ω

|V(∇u(s)) −V(∇Π2u(s))|
2
dxds

+ cδ

∫

R

−

∫

Jm

∫

Ω

θm(σ)|V(∇u(σ)) −V(∇u(s))|2 dxds dσ

=: III1 + III2 + III3.

Recall the definition of the weights (3.7) and (3.9) and estimate

III2 ≤

∫

R

−

∫

Jm

∫

Ω

θm(σ)|V(∇u(s)) −V(∇u(σ))|2 dxds dσ

.
1

τ

∫

|z|≤τ

∫

supp θm

‖V(∇u(σ + z))−V(∇u(σ))‖2L2(Ω) dσ dz.
(5.6)

Now, sum over m and multiply by τ ,

‖Π2em‖2L2(Ω) + τ

m
∑

l=1

τ‖dtΠ2el‖
2
L2(Ω)

+ τ

m
∑

l=1

−

∫

Jl

∫

Ω

|V(∇u(s)) −V(∇ul,h)|
2
dxds

. τ

m
∑

l=1

−

∫

Jl

∫

Ω

|V(∇u(s)) −V(∇Π2u(s))|
2
dxds

+ τ

m
∑

l=1

∫

R

−

∫

Jl

∫

Ω

θl(σ)|V(∇u(σ)) −V(∇u(s))|2 dxds dσ

=: K1 +K2.

The non-linear stability Theorem 7 for the L2-projection yields

K1 . h2αx

T
∫

0

[V(∇u(s))]2Nαx,2(Ω) ds.

The second term is bounded using (5.6) by

K2 .

m
∑

l=1

∫

|z|≤τ

∫

supp θl

‖V(∇u(σ + z))−V(∇u(σ))‖2L2(Ω) dσ dz

. τ2αt [V(∇u)]2Nαt,2(I;L2(Ω)) .
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We have obtained uniform estimates for the projected averaged error Π2em

‖Π2em‖2L2(Ω) + τ

m
∑

l=1

−

∫

Jl

∫

Ω

|V(∇u(s)) −V(∇ul,h)|
2
dxds

. h2αx

T
∫

0

[V(∇u(s))]
2
Nαx,2(Ω) ds+ τ2αt [V(∇u)]

2
Nαt,2(I;L2(Ω)) .

However, we are interested in the error em := 〈u〉Jm
− um,h. Thus, we estimate

‖em‖2L2(Ω) . ‖〈u〉Jm
−Π2〈u〉Jm

‖2L2(Ω) + ‖Π2em‖2L2(Ω)

=: K3 +K4.

The first term can be bounded using Jensen’s inequality and Lemma 6

K3 . −

∫

Jm

‖u(s)−Π2u(s)‖
2
L2(Ω) ds ≤ −

∫

Jm

‖u(s)−Π0
SZu(s)‖

2

L2(Ω) ds

. h2αx sup
s∈Jm

[u(s)]
2
Nαx,2(Ω).

The bound for K4 has already been established.
Collecting all terms and taking the maximum over m, we arrive at the desired

estimate

max
1≤m≤M

‖〈u〉Jm
− um,h‖

2
L2(Ω) +

M
∑

m=1

∫

Jm

‖V(∇u(s))−V(∇um,h)‖
2
L2(Ω) ds

. h2αx



 sup
s∈[0,T ]

[u(s)]
2
Nαx,2(Ω) +

T
∫

0

[V(∇u(s))]
2
Nαx,2(Ω) ds





+ τ2αt [V(∇u)]2Nαt,2(I;L2(Ω)) .

This proves the claim. �

It is not that important that we choose fm = 〈f〉θm . Indeed, we can allow for a
certain class of discrete forces fm in our numerical scheme and still have convergence
of order αt.

Corollary 10. Let the assumption of Theorem 9 be satisfied. Additionally, assume
that there exists cf ≥ 0 independent of τ such that

τ

M
∑

m=1

‖〈f〉θm − fm‖2L2(Ω) ≤ cf τ
2αt .(5.7)

Then we have uniformly in τ and h

max
1≤m≤M

‖〈u〉Jm
− um,h‖

2
L2(Ω) +

M
∑

m=1

∫

Jm

‖V(∇u(s)) −V(∇um,h)‖
2
L2(Ω) ds

. h2αx



 sup
s∈[0,T ]

[u(s)]
2
Nαx,2(Ω) +

T
∫

0

[V(∇u(s))]
2
Nαx,2(Ω) ds





+ τ2αt

(

[V(∇u)]
2
Nαt,2(I;L2(Ω)) + cf

)

.

In particular, we can use fm := f(tm) for f ∈ C0,αt(0, T ;L2(Ω)). The hidden
constant may depend exponentially on T .
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Proof. The proof is essentially the same as for Theorem 9. But we do not have the
the cancellation of 〈f〉θm and fm as in (5.3). Instead it holds for all m ∈ {1, . . . ,M}
and ξh ∈ Vh

∫

Ω

dtem · ξh dx+

∫

R

∫

Ω

θm(σ)(S(∇u(σ)) − S(∇um,h)) · ∇ξh dxdσ

=

∫

R

∫

Ω

θm(σ) (f(σ) − fm) · ξh dxdσ.

(5.8)

We choose ξh = Π2em and proceed as in the proof of Theorem 9. The additional
term involving the difference in f is bounded using Hölder’s and Young’s inequality
by

∫

Ω

∫

R

θm(σ) (f(σ) − fm) dσ · Π2em dx ≤ ‖〈f〉θm − fm‖L2(Ω)‖Π2em‖L2(Ω)

≤ ‖〈f〉θm − fm‖2L2(Ω) + ‖Π2em‖2L2(Ω).

The summation over m and the multiplication by τ yield

‖Π2em‖2L2(Ω) + τ

m
∑

l=1

τ‖dtΠ2el‖
2
L2(Ω)

+ τ
m
∑

l=1

−

∫

Jl

∫

Ω

|V(∇u(s)) −V(∇ul,h)|
2 dxds

. τ

m
∑

l=1

−

∫

Jl

∫

Ω

|V(∇u(s)) −V(∇Π2u(s))|
2
dxds

+ τ
m
∑

l=1

∫

R

−

∫

Jl

∫

Ω

θl(σ)|V(∇u(σ)) −V(∇u(s))|2 dxds dσ

+ τ

m
∑

l=1

‖〈f〉θl − fl‖
2
2 + τ

m
∑

l=1

‖Π2el‖
2
L2(Ω).

The same arguments as in Theorem 9, an application of the discrete Gronwall in-
equality (with constants that depend exponentially on the time horizon T ) and (5.7)
allow to close the argument. �

Remark 11. If additionally u ∈ C0,αt(I;L2(Ω)), then we can replace

max
1≤m≤M

‖〈u〉Jm
− um,h‖

2
L2(Ω)

in the error estimate of Theorem 9 and Corollary 10 by the point-wise error

max
1≤m≤M

‖u(tm)− um,h‖
2
L2(Ω).

This follows immediately from

‖u(tm)− um,h‖L2(Ω) . ‖〈u〉Jm
− um,h‖L2(Ω) + ταt [u]C0,αt(I;L2(Ω)) .

6. Numerical Experiments

This section underlines the theoretical results of this paper and exploits the
practical behaviour of the proposed numerical scheme. The experiments base on the
open source tool for solving partial differential equations FEniCS [LMW12]. The
supplementary material of this paper contains the implementations of the following
three experiments.
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6.1. Constant force on slit domain. The first experiment approximates the
solution to the p-heat equation (1.1) on the slit domain Ω = (−1, 1)2 \ (−1, 0] ×
{0} with constant right-hand side f ≡ 2. The experiment applies the numerical
scheme of this paper with the discrete spaces Vh from (3.3) with r = 1 (piece-wise
affine polynomials) and r = 2 (piece-wise quadratic polynomials) for a sequence
of uniformly refined meshes Th and halved time steps τ . For r = 1, the smallest
space Vh is of dimension dimVh = ndof = 12 and the computation utilizes M = 4
time steps, the largest space Vh is of dimension dimVh = ndof = 82689 and the
computation utilizes M = 512 time steps (33 ≤ dimVh ≤ 82689 and 4 ≤ M ≤ 256
for r = 2). Since the exact solution to this problem is unknown, we compare the
solutions um,h ∈ Vh to a reference solution uref ∈ L2(I;V ref

h ). The space V ref
h

is of polynomial degree r + 1 and dimension dimV ref
h = 1337107 for r = 1 and

dimVh = 875467 for r = 2. The underlying triangulation of V ref
h results from an

adaptive finite element loop (see [CFPP14, Sec. 5.1]) for the Poisson model problem
−∆u ≡ 1 in H−1(Ω). The reference solution uref results from this paper’s scheme
with M = 1024 (r = 1) and M = 512 (r = 2) time steps. We expect from regularity
theory that

V(∇u) ∈ L2(I;N
1
2 ,2(Ω)) ∩N1,2(I;L2(Ω)),

u ∈ L∞(I;N1,2(Ω)) ∩ C0,1(I;L2(Ω)).
(6.1)

Thus, the solution is smooth in time (αt = 1) but rough in space (αx = 1/2).
The convergence history plots in Figure 1 displays the convergence of the error
contributions

errL∞L2 := max
1≤m≤M

‖uh,m − 〈uref〉Jm
‖2L2(Ω),

errL2V := τ

M
∑

m=1

‖V(∇uh,m)−V(∇〈uref〉Jm
)‖2L2(Ω)

≈ 1
2

M
∑

m=1

∫

Jm

‖V(∇uh,m)−V(∇uref)‖
2
L2(Ω) dσ.

(6.2)

The resulting rate is in agreement with the a priori estimate in Theorem 9, that is,
the error errL2V h h h τ . The fast convergence of the error errL∞L2 h h2

h τ2

might result from the higher regularity of u in (6.1).

6.2. Rough in time. This experiment solves the p-heat equation (1.1) on the
unit square domain Ω = (0, 1)2 in the time interval I = (−0.1, 0.1) with right
hand side f(t) ≡ sgn(t)|t|−β for fixed parameter β ∈ {0.1, 0.5, 0.9} and all t ∈ I.
The discrete space Vh is of polynomial degree r = 1. The experiment compares
the discrete solutions to a reference solution uref that results from a computation
with M = 1024 time steps and a discrete space V ref

h of higher polynomial degree
r+1 = 2 with dimension dimV ref

h = 263169. Besides the squared errors from (6.2),
the convergence history plots in Figure 2 display the squared error

errLp′S :=

(

τ

M
∑

m=1

‖S(∇uh,m)− S(∇〈uref〉Jm
)‖p

′

Lp′(Ω)

)2/p′

.

We expect that u is smooth in space (αx = 1) but rough in time. In particular,
u ∈ C1−β(I;L2(Ω)). Thus, Remark 11 would apply with αt = 1 − β. However, if
we only look at averaged errors, Theorem 9 shows that the restriction for αt comes
from V(∇u) ∈ Nαt,2(I;L2(Ω)). Inspired by the regularity of [CM20], we expect
that ∂tu behaves similar to f . Hence, heuristic calculations suggest for p = 1.5
that V(∇u) ∈ Nαt,2(I;L2(Ω)) with αt = 0.575 for β = 0.9 and αt = 0.875 for
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Figure 1. Convergence history plots for the experiment in Section
6.1 with p = 1.5 (left) and p = 3 (right) as well as polynomial
degrees r = 1 (solid) and r = 2 (dotted). The dashed line ( )

indicates rate errtotal h ndof−1/2
h h and the dash-dotted line

( ) the rate ndof−1
h h2.

101 102 103 104
10−10

10−7

10−4

10−1

ndof

err
L2V

err
Lp′S

err
L∞L2

101 102 103 104
10−8

10−5

10−2

ndof

err
L2V

err
Lp′S

err
L∞L2

Figure 2. Convergence history plots of the experiment from Sec-
tion 6.2 with β = 0.9 (solid), β = 0.5 (dotted), and β = 0.1
(dash-dotted) for p = 1.5 (left) and p = 3 (right). The dashed line

( ) indicates the rate ndof−1/2
h h h τ and the dash-dotted

lines ( ) indicate the rate ndof−1
h h2

h τ2.

β = 0.5 and αt = 1 for β = 0.1. For p = 3, we expect αt = 1 for β = 0.5, 0.1 and
αt = 0.65 for β = 0.9. Indeed, the convergence history plot in Figure 2 indicates
rates of convergence far better than 1 − β. For p = 1.5, the convergence of the
error errL2V agrees with our heuristic calculations and Theorem 9. For p = 3,
the rate for β = 0.9 and β = 0.5 seems to be slightly worse than our heuristic
predicts. Either the heuristic is inexact, or we observe a pre-asymptotic effect.
Such a pre-asymptotic effect might also lead to the slightly worse convergence rate
in the experiment of Figure 3 with p = 3. The rate of the errors errLp′S h errL2V

is similar in all computations. The error errL∞L2 converges with a better rate than
the error errL2V.
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6.3. Known solution. This experiment designs the right-hand side f and the
inhomogeneous Dirichlet boundary conditions such that the solution reads

u(x, t) = p′|t|1/2|x|1/p
′

(with 1/p+ 1/p′ = 1),

∂tu(x, t) = p′/2 sgn(t)|t|−1/2|x|1/p
′

,

V(∇u(x, t)) = |t|p/4|x|−1/2 x
|x| ,

S(∇u(x, t)) = |t|(p−1)/2|x|−1/p′ x
|x| .

(6.3)

The time interval I = (−1, 1) and the domain is either the centred square domain
Ω1 = (−1, 1)2 or the shifted square domain Ω2 = (1, 3) × (−1, 1). The function u

has singularities in space (at x = 0) and time (at t = 0), which cause the reduced
regularity αt = 1/2 and αx = 1/2 (for the domain Ω1) and αx = 1 (for Ω2). We
include the inhomogeneous Dirichlet boundary conditions by averaging the nodal
interpolation: Let Πh : W 1,p → Vh be the nodal interpolation operator onto the
space of piece-wise affine polynomials Vh from (3.3), then we set at the boundary

um,h|∂Ω := 〈Πhu〉Jm
|∂Ω for all m = 1, . . . ,M.

The convergence history plots in Figure 3 display the squared errors

errL∞L2 := max
1≤m≤M

‖uh,m − 〈uref〉Jm
‖2L2(Ω),

errL2〈V〉Jm
:= τ

M
∑

m=1

‖V(∇uh,m)− 〈V(∇u)〉Jm
‖2L2(Ω),

errL2V :=

M
∑

m=1

∫

Jm

‖V(∇uh,m)−V(∇u)‖2L2(Ω) dσ

= errL2〈V〉Jm
+

M
∑

m=1

∫

Jm

‖V(∇u) − 〈V(∇u)〉Jm
‖2L2(Ω) dσ,

errLp′〈S〉Jm
:=

(

τ

M
∑

m=1

‖S(∇uh,m)− 〈S(∇u)〉Jm
‖p

′

Lp′(Ω)

)2/p′

.

As in the previous experiments, the error errL2V dominates the error errL∞L2 . The
solution to the problem on Ω1 (solid lines) converges with the expected rate h h τ

for p = 1.5. Since S(∇u) ∈ Lp′

(I;N
1
3 ,p

′

(Ω)), the rate of errLp′〈S〉Jm
is worse but

agrees with the possible approximation rate. For p = 3 and Ω1 the rate of the
error errL2V is slightly worse than τ . This might be some pre-asymptotic effect
or it is caused by quadrature errors due to the highly singular right-hand side
f := ∂tu − divS(∇u). The averaged errors in the computation on Ω2 overcome,
as stated in Theorem 9, the reduced regularity of u in t = 0: the squared error
errL∞L2 + errL2V converges with the optimal rate h2

h τ2. As in the previous
experiments, the error errL∞L2 is much smaller than the error errL2V. In addition,
the error errL∞L2 converges faster than errL∞V for p = 1.5 and Ω1. For p = 3 and
Ω1, the rates of errL∞L2 and errL∞V are similar.

Appendix A. Orlicz spaces

The following definitions and results are standard in the theory of Orlicz spaces.
A continuous, convex and strictly increasing function ϕ : [0,∞) → [0,∞) satisfying

lim
t→0

ϕ(t)

t
= lim

t→∞

t

ϕ(t)
= 0
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Figure 3. Convergence history plots for the experiment in Section
6.3 with p = 1.5 (left), p = 3 (right) and domains Ω1 (solid), Ω2

(dotted). The dotted line ( ) indicates the rate ndof−1/3
h h2/3,

the dashed line ( ) indicates the rate ndof−1/2
h h and the

dash-dotted line ( ) indicates the rate ndof−1
h h2.

is called an N -function.
We say that ϕ satisfies the ∆2–condition, if there exists c > 0 such that for all

t ≥ 0 holds ϕ(2t) ≤ c ϕ(t). By ∆2(ϕ) we denote the smallest such constant. Since
ϕ(t) ≤ ϕ(2t) the ∆2-condition is equivalent to ϕ(2t) h ϕ(t) uniformly in t. Note
that if ∆2(ϕ) < ∞ then ϕ(t) h ϕ(c t) uniformly in t ≥ 0 for any fixed c > 0. For
a family ϕλ of N -functions we define ∆2({ϕλ}) := supλ ∆2(ϕλ). By Lϕ and W k,ϕ,
k ∈ N0, we denote the classical Orlicz and Orlicz-Sobolev spaces, i.e. f ∈ Lϕ iff
∫

ϕ(|f |) dx < ∞ and f ∈ W k,ϕ iff ∇jf ∈ Lϕ, 0 ≤ j ≤ k.
By ϕ∗ we denote the conjugate N-function of ϕ, which is given by ϕ∗(t) =

sups≥0(st− ϕ(s)). Then ϕ∗∗ = ϕ.
The following definitions and results are summarized from [DR07, BDK12, DFTW20].

Definition 12. Let ϕ be an N-function. We say that ϕ is uniformly convex, if ϕ
is C1 on [0,∞) and C2 on (0,∞) and assume that

ϕ′(t) h t ϕ′′(t)(A.1)

uniformly in t > 0. The constants hidden in h are called the characteristics of ϕ.

Note that (A.1) is stronger than ∆2(ϕ, ϕ
∗) < ∞. In fact, the ∆2-constants can

be estimated in terms of the characteristics of ϕ.
Associated to an uniformly convex N -function ϕ we define the tensors

S(ξ) :=
ϕ′(|ξ|)

|ξ|
ξ, ξ ∈ R

N×n

V(ξ) :=

√

ϕ′(|ξ|)

|ξ|
ξ, ξ ∈ R

N×n.

We define the shifted N -function ϕa for a ≥ 0 by

ϕa(t) :=

t
∫

0

ϕ′(a+ s)

a+ s
s ds.(A.2)
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In our application (cf. (2.2), (2.3) and (4.14)) ϕ is given by

ϕ(t) =

t
∫

0

(κ+ s)p−2s ds

and the tensors are

S(ξ) = (κ+ |ξ|)p−2
ξ and V(ξ) = (κ+ |ξ|)

p−2
2 ξ.

Lemma 13 (Equivalence lemma). We have
(

S(P)− S(Q)
)

·
(

P−Q
)

h
∣

∣V(P) −V(Q)
∣

∣

2

h ϕ|P|(|P−Q|)

h ϕ′′
(

|P|+ |Q|
)

|P−Q|2

uniformly in P,Q ∈ R
N×n. Moreover, uniformly in Q ∈ R

N×n,

S(Q) ·Q h |V(Q)|2 h ϕ(|Q|)

|S(P)− S(Q)| h
(

ϕ|P|

)′
(|P−Q|).

The constants depend only on the characteristics of ϕ.

Lemma 14. Let ϕ be an uniformly convex N-function. Then for each δ > 0 there
exists Cδ ≥ 1 (only depending on δ and the characteristics of ϕ) such that

(

S(P)− S(Q)
)

·
(

R−Q
)

≤ δ
∣

∣V(P)−V(Q)
∣

∣

2
+ Cδ

∣

∣V(R)−V(Q)
∣

∣

2

for all P,Q,R ∈ R
N×n.

Lemma 15 (Change of Shift). Let ϕ be an uniformly convex N-function. Then for
each δ > 0 there exists Cδ ≥ 1 (only depending on δ and the characteristics of ϕ)
such that

ϕ|a|(t) ≤ Cδ ϕ|b|(t) + δ |V(a) −V(b)|2,

for all a,b ∈ R
N×n and t ≥ 0.
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