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The agrarian polytope of two-generator one-relator groups

Fabian Henneke and Dawid Kielak

Abstract

Relying on the theory of agrarian invariants introduced in previous work, we solve a conjecture
of Friedl–Tillmann: we show that the marked polytopes they constructed for two-generator
one-relator groups with nice presentations are independent of the presentations used. We also
show that, when the groups are additionally torsion-free, the agrarian polytope encodes the
splitting complexity of the group. This generalises theorems of Friedl–Tillmann and Friedl–
Lück–Tillmann.

1. Introduction

A focal point of much activity in low-dimensional topology in the recent years was the Virtually
Fibred Conjecture of Thurston. The conjecture, now confirmed by Agol [1], stipulated that
every (closed connected oriented) hyperbolic 3-manifold virtually fibres over the circle. Thanks
to a classical result of Stallings [26], the statement can be recast in the language of group
theory:

Theorem [1]. Let G be the fundamental group of a closed connected oriented hyperbolic
3-manifold. Then G admits a finite index subgroup which maps onto Z with a finitely
generated kernel.

The study of finiteness properties of kernels of epimorphisms to Z is the cornerstone of
the Bieri–Neumann–Strebel theory. In particular, the specific question of which epimorphisms
ϕ : G → Z have finitely generated kernels is encoded by the first BNS invariant Σ1(G), a subset
of H1(G; R).

If G is the fundamental group of a connected orientable 3-manifold, then Σ1(G) is controlled
by the Thurston polytope (see [3, 27]). More explicitly, there exists a compact convex polytope
P ⊂ H1(G; R) with some vertices marked, such that an epimorphism ϕ : G → Z belongs to
Σ1(G) if and only if it attains its minimum when restricted to P uniquely at a marked vertex.
In this case, the kernel has to be a surface group, and the thickness of the polytope P in the
direction of ϕ, denoted thϕ(P ), gives us the genus of the surface.

A similar picture was conjectured by Friedl–Tillmann [12] to hold for two-generator one-
relator groups. They start with a nice presentation π of such a group G, which in particular
requires H1(G) to be of rank 2, and using the presentation they construct a polytope Pπ ⊂
H1(G; R). Then they mark some of the vertices of Pπ, and obtain a marked polytope Mπ which
controls Σ1(G) in a way analogous to the Thurston polytope. The process of obtaining Mπ is
very similar to Brown’s algorithm [5], a method of computing Σ1(G) of one-relator groups.
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Friedl–Tillmann made two conjectures related to Mπ: First, they conjectured that the
polytope Mπ depends only on G and not on π; second, the thickness thϕ(Mπ) for an
epimorphism ϕ : G → Z is supposed to compute the (free) splitting complexity of G relative to
ϕ, a number informing about the ‘smallest’ way G can be written as an HNN extension with
induced character ϕ. They proved their conjectures in [12] under the additional hypothesis
that the group G is residually –torsion-free elementary amenable˝; later the first conjecture
was confirmed by Friedl–Lück [10] under the weaker assumption that G is torsion-free and
satisfies the strong Atiyah conjecture.

Here a complete resolution of the first conjecture is offered:

Theorem 5.12. If G is a group admitting a nice (2, 1)-presentation π, then Mπ ⊂
H1(G; R) ∼= R2 is an invariant of G (up to translation). Moreover, if G is torsion-free, then
Pπ = PDr (G) for any choice of an agrarian embedding ZG ↪→ D.

The notation PDr (G) stands for the agrarian polytope, as introduced in [14], defined over
the rationalisation Dr of a skew field D. In fact, PDr(G) is an invariant defined for any torsion-
free two-generator one-relator group G other than the free group on two generators, even if
b1(G) = 1.

The second conjecture is also confirmed, assuming that G is torsion-free:

Theorem 6.4. Let G be a torsion-free two-generator one-relator group other than the free
group on two generators. Then for every epimorphism ϕ : G → Z, we have

c(G,ϕ) = cf (G,ϕ) = thϕ(PDr (G)) + 1.

Here, c(G,ϕ) stands for the splitting complexity, and cf (G,ϕ) for the free splitting complex-
ity.

Both of these theorems are proven using the machinery of agrarian invariants, introduced
by the authors in [14].

(After the first version of this article appeared, Jaikin-Zapirain and López-Álvarez [16]
published a proof of the strong Atiyah conjecture for torsion-free one-relator groups. This
provides an alternative proof of the torsion-free case of our results as remarked in [10,
Remark 5.5] and [11, Theorem 5.2]).

2. Agrarian invariants

The second author introduced the notion of an agrarian group in [17]. In [14], the authors then
developed a theory of algebraic invariants of nice spaces with an action of an agrarian group,
which proceeds in analogy to the construction of L2-invariants. In this section, we will review
the constructions and properties of these invariants, namely agrarian Betti numbers, agrarian
torsion and agrarian polytopes, inasmuch as they are relevant to the proofs of our main results.
For a full introduction, which also contain comparisons to L2-invariants and a discussion of
the dependence of agrarian invariants on the choice of an agrarian embedding, we refer the
reader to [14]. We will mostly follow the presentation therein, but use a different approach to
the definition of agrarian torsion that is better suited for our computational purposes.

2.1. Agrarian groups and associated Ore embeddings

The key player in our story will be an integral group ring ZG. Throughout the paper, all tensor
products will be understood to be taken over ZG unless explicitly indicated otherwise.
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Definition 2.1. Let G be a non-trivial group. An agrarian embedding for G is an injective
ring homomorphism α : ZG ↪→ D with D a skew field. If G admits an agrarian embedding (into
a skew field D), it is called a (D-)agrarian group.

An agrarian group is always torsion-free. Examples of agrarian groups are given by torsion-
free groups satisfying the Atiyah conjecture over Q [20, Theorem 10.39] as well as by torsion-
free one-relator groups [18]. For a more detailed discussion of examples and the inheritance
properties enjoyed by agrarian groups, see [17].

In order to construct new agrarian embeddings out of given ones, we will need to consider
twisted group rings:

Definition 2.2. Let R be a ring and let G be a group. Let functions c : G → Aut(R) and
τ : G×G → R× be such that

c(g) ◦ c(g′) = cτ(g,g′) ◦ c(gg′)
τ(g, g′)τ(gg′, g′′) = c(g)(τ(g′, g′′))τ(g, g′g′′),

where g, g′, g′′ ∈ G, and where cr ∈ Aut(R) for r ∈ R× denotes the conjugation map x �→
rxr−1. The functions c and τ are called structure functions. We denote by RG the free R-
module with basis G and write elements of RG as finite R-linear combinations

∑
g∈G λg ∗ g

of elements of G. When convenient, we shorten 1 ∗ g to g. The structure functions endow RG
with the structure of an (associative) twisted group ring by declaring

g · (r ∗ 1) = c(g)(r) ∗ g and g · g′ = τ(g, g′) ∗ gg′

and extending linearly.

The usual, untwisted group ring is obtained from the definition by taking the structure
functions to be trivial. In the following, group rings with R = Z will always be understood to
be untwisted.

The fundamental example of a twisted group ring arises in the following way:

Example 2.3. Let ϕ : G � H be a group epimorphism with kernel the normal subgroup
K � G. We choose any section s : H → G of the map of sets underlying ϕ, that is, a map
such that ϕ ◦ s = idH . We denote by (ZK)H the twisted group ring defined by the structure
functions c(h)(r) = s(h)rs(h)−1 and τ(h, h′) = s(h)s(h′)s(hh′)−1. The untwisted group ring
ZG is then isomorphic to the twisted group ring (ZK)H via the map

g �→ (
g · (s ◦ ϕ)(g)−1

) · ϕ(g).

The twisted group ring construction will enable us to construct out of a given agrarian
embedding for a group G new agrarian embeddings with better properties.

Recall that a ring R without non-trivial zero divisors satisfies the Ore condition if for every
p, q ∈ R with q 	= 0 there exists r, s ∈ R with s 	= 0 such that

ps = qr.

This identity enables the conversion of a left fraction q−1p into a right fraction rs−1, which
in turn makes it possible to multiply fractions (in the obvious way). The Ore condition also
guarantees the existence of common denominators, and thus allows for addition of fractions.
Thanks to these properties, the ring R embeds into its Ore field of fractions

Ore(R) :− {q−1p | p, q ∈ R, q 	= 0},
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which is evidently a skew field. We refer the reader to the book of Passman [22, Section 4.4]
for details and proofs.

Lemma 2.4. Let α : ZG → D be an agrarian embedding for a finitely generated group G,
and let K � G be a normal subgroup such that H :− G/K is free abelian. Then α induces an
injective ring homomorphism

(ZK)H ↪→ DH,

where (ZK)H is as defined in Example 2.3, and DH is a twisted group ring with the same
structure functions as (ZK)H. Furthermore, DH admits an Ore field of fractions Ore(DH)
and we obtain an agrarian embedding

αK : ZG ∼= (ZK)H ↪→ DH ↪→ Ore(DH),

which we call the K-rationalisation of α.

Proof. See [14, Definition 2.6] and the preceding discussion. �

Observe that while the map αK certainly depends on the choice of a section of the projection
G → G/K, it follows from [14, Lemma 2.5] that the target skew field is unique up to
isomorphism. For the purposes of this paper, we will assume that such a section has been
chosen once and for all for any group under consideration, and therefore always speak of the
K-rationalisation of an agrarian embedding for G.

The smallest choice for K in Lemma 2.4 is clearly the kernel of the projection of G onto the
free part of its abelianisation. Since the K-rationalisation for this particular choice of K will
be most useful for us, we introduce special notation for it:

Definition 2.5. Let α : ZG → D be an agrarian embedding for a finitely generated group
G. Further let H be the free part of the abelianisation of G and K the kernel of the projection
of G onto H. The K-rationalisation of α for this particular choice of K is simply called the
rationalisation and is denoted by αr. The target skew field of αr is also denoted by Dr.

The following lemma essentially states that taking iterated ‘partial’ rationalisations with
respect to a chain K � K ′ � G of normal subgroups is naturally equivalent to the ‘full’
rationalisation:

Lemma 2.6. Let G be a finitely generated agrarian group with agrarian embedding α : ZG ↪→
D. Denote by pr: G → H the projection onto the free part H of the abelianisation of G.
Let ϕ : G → H ′ be an epimorphism onto a finitely generated free abelian group, inducing the
following commutative diagram of epimorphisms:

Denote the kernels of pr, ϕ and ϕ by K, Kϕ and Kϕ, respectively. Further let s and t be
sections of the epimorphisms pr and ϕ, respectively. Then

β : (DKϕ)H ′ → DH

∑
h′∈H′

⎛⎝ ∑
k∈Kϕ

uk,h′ ∗ k
⎞⎠ ∗ h′ �→

∑
h′∈H′
k∈Kϕ

uk,h′ ∗ kt(h′)
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is an isomorphism between twisted group rings constructed using the sections s, t and s ◦ t. It
extends to an isomorphism

β : Ore(Ore(DKϕ)H ′)
∼=−→ Ore(DH)

of skew fields.

Proof. Left D-bases of (DKϕ)H ′ and DH are given by k ∗ h′ and kt(h′), respectively, for k ∈
Kϕ and h′ ∈ H ′. These bases are identified bijectively by β with inverse h �→ ht(ϕ(h)−1) ∗ ϕ(h).
It follows that β is an isomorphism of left D-modules. Checking that β respects the twisted
group ring multiplication is a tedious but direct computation that we will omit.

Since DKϕ is a subring of DH, and since the rings have no non-trivial zero divisors, β extends
to an injection Ore(DKϕ)H ′ ↪→ Ore(DH) that contains DH in its image. Ore localising again,
this implies that β extends to an isomorphism Ore(Ore(DKϕ)H ′) → Ore(DH). �

2.2. Agrarian Betti numbers

Given an agrarian embedding ZG ↪→ D for a group G, we can associate to any ZG-chain
complex the D-dimensions of its D-homology groups, which can be viewed as equivariant
analogues of Betti numbers:

Definition 2.7. Let G be an agrarian group with a fixed agrarian embedding α : G ↪→ D.
For a ZG-chain complex C∗ and n ∈ Z, the nth D-Betti number of C∗ with respect to the
agrarian embedding α is defined as

bDn (C∗) :− dimD Hn(D ⊗ C∗) ∈ N � {∞},
where D becomes a right ZG-module via α. If bDn (C∗) = 0 for all n ∈ Z, then C∗ is called
D-acyclic.

We will usually consider agrarian Betti numbers of suitably well-behaved spaces with an
action of an agrarian group G. Recall that a G-CW-complex is a CW-complex with a (left)
G-action that maps p-cells to p-cells in such a way that any cell mapped into itself is already
fixed pointwise. A G-CW-complex is called free if its G-action is free. A G-orbit of a cell in the
underlying CW-complex is called a G-cell, with respect to which we understand the qualifiers
finite and of finite type. Note that the cellular chain complex of a G-CW-complex naturally
has the structure of a (left) ZG-chain complex.

If we take C∗ to be the cellular ZG-chain complex of a G-CW-complex, we obtain a notion
of agrarian Betti numbers for such spaces. It turns out that these invariants satisfy most of
the well-known properties of non-equivariant Betti numbers. For example, at least for finite
free G-CW-complexes, they are homotopy invariant, compute the same Euler characteristic
and are bounded from above by the number of equivariant cells. They also behave similarly to
L2-Betti numbers as they vanish in dimension 0 and, if G is amenable, in every dimension. As
these properties will not be used in the present work, we refer the reader to [14, Theorem 3.9]
for the precise statements.

2.3. Agrarian torsion

Let G be an agrarian group with a fixed agrarian embedding α : ZG ↪→ D. We write D×

for the group of units of D and denote its abelianisation by D×
ab. The canonical projection

D× → D×
ab can be extended uniquely to a non-commutative notion of a determinant, the

Dieudonné determinant, as follows. We denote by GL(D) the group of all finite invertible
matrices with entries in D, where every matrix is identified with any matrix obtained from it
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by adding an identity block in the bottom-right corner. Then by [25, Theorem 2.2.5], there is
a unique group homomorphism detD : GL(D) → D×

ab with the following properties.

(1) detD is invariant under elementary row operations.
(2) detD maps the identity matrix to 1.
(3) detD(μ ·A) = μ · detD(A) for A ∈ GL(D) and μ ∈ D× with image μ ∈ D×

ab.

If C∗ is now a finite free ZG-chain complex that is D-acyclic with respect to α, then the
D-chain complex D ⊗ZG C∗ will be contractible. In [14], the agrarian torsion ρD(C∗) of such
a chain complex C∗ together with a choice of a basis was defined as a non-commutative D×

ab-
valued Reidemeister torsion in the sense of [6]. First, out of a chain contraction of C∗, an
element of the reduced K-group K̃1(D) is constructed, which is then mapped to D×

ab via a
map induced by the Dieudonné determinant of D. For the details of this definition, we refer
the reader to [14, Section 4].

While the construction of agrarian torsion in [14] is well suited for the comparison to L2-
torsion, for our current purposes a slightly different way of computing agrarian torsion is
more convenient.

We will use concepts and notation from [28, I.2.1]. Assume that we are given a D-acyclic
finite free ZG-chain complex C∗ concentrated in degrees 0 through m, which is equipped with
a choice of a preferred basis. By fixing an ordering of the preferred basis, we identify subsets
of {1, . . . , rkCp} with subsets of the preferred basis elements of Cp. We then denote by Ap,
for p = 0, . . . ,m− 1, the matrix representing the differential cp+1 : Cp+1 → Cp in the preferred
bases. Note the shift in grading between Ap and cp+1, which is needed in order to bring our
notation in line with that of Turaev. The matrix Ap consists of the entries apjk ∈ ZG, where
j = 1, . . . , rkCp+1 and k = 1, . . . , rkCp.

Definition 2.8. A matrix chain for C∗ is a collection of sets γ = (γ0, . . . , γm), where γp ⊆
{1, . . . , rkCp} and γ0 = ∅. Write Sp = Sp(γ) for the submatrix of Ap formed by the entries apjk
with j ∈ γp+1 and k 	∈ γp. A matrix chain γ is called a τ -chain if Sp is a square matrix for
p = 0, . . . ,m− 1. A τ -chain γ is called non-degenerate if detD(Sp) 	= 0 for all p = 0, . . . ,m− 1.

We want to point out that the reference [28, I.2.1] only considers chain complexes over a
commutative field F. Nonetheless, all statements and proofs directly carry over to our setting
of chain complexes over a skew field D if we throughout replace the commutative determinant
detF : GL(F) → F× with the Dieudonné determinant detD. In particular, there is still a well-
behaved notion of the rank of a matrix A over a skew field D, which can be defined in any of
the following equivalent ways.

• The largest number r such that A contains an invertible r × r-submatrix.
• The D-dimension of the image of the linear map of left D-vector space given by right

multiplication by A.
• The D-dimension of the right D-vector space spanned by the columns of A (the column

rank).
• The D-dimension of the left D-vector space spanned by the rows of A (the row rank).

With this convention, the proofs in [28, I.2.1] carry over verbatim.
Taken together, Theorem I.2.2 and [28, Remark I.2.7] imply that any non-degenerate

τ -chain can be used to compute the agrarian torsion of C∗ as defined in [14, Definition 4.7] and
such a τ -chain always exists if the complex is D-acyclic. Note though that Turaev’s convention
for torsion differs from the one used in [14] in that he writes torsion multiplicatively instead
of additively and uses the inverse of the torsion element in K̃1(D) we construct, see [28,
Theorem I.2.6]. Correcting for these differences by inserting a sign, we obtain
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Theorem 2.9. For any non-degenerate τ -chain γ of a D-acyclic finite free ZG-chain complex
C∗ with a choice of a preferred basis, we have

ρD(C∗) =
m−1∑
p=0

(−1)p detD(Sp(γ)) ∈ D×
ab/{±1}.

Furthermore, any D-acyclic finite free ZG-chain complex with a choice of a preferred basis
admits a non-degenerate τ -chain.

In the following, we will use the formula in Theorem 2.9 as the definition of the agrarian
torsion ρD(C∗).

If X is a finite free G-CW-complex that is D-acyclic, then its cellular ZG-chain complex
C∗(X) will be a D-acyclic finite free ZG-chain complex. Up to orientation and the choice
of representatives for the free G-orbits, the cell structure of X determines a preferred choice
of a basis for C∗(X). This observation leads to the following notion of agrarian torsion for
G-CW-complexes:

Definition 2.10. Let X be a D-acyclic finite free G-CW-complex. The D-agrarian torsion
of X is defined as

ρD(X) :− ρD(C∗(X)) ∈ D×
ab/{±g | g ∈ G},

where C∗(X) is endowed with any ZG-basis that projects to a Z-basis of C∗(X/G) consisting
of unequivariant cells.

2.4. Agrarian Polytope

Building on the notions of agrarian Betti numbers and agrarian torsion, we are now able to
associate to a D-acyclic finite G-CW-complex X a polytope. This polytope, called the agrarian
polytope of X, arises as the convex hull of the support of the associated agrarian torsion,
viewed as a quotient of suitable twisted polynomials. The idea to study the Newton polytope
of a torsion invariant goes back to [10], where the L2-polytope of a certain subclass of all
two-generator one-relator group is defined and used to prove the Friedl–Tillmann conjecture
for them.

We begin with polytope-specific terminology:

Definition 2.11. Let V be a finite-dimensional real vector space. A polytope in V is the
convex hull of finitely many points in V . For a polytope P ⊂ V and a linear map ϕ : V → R,
we define

Fϕ(P ) :− {p ∈ P | ϕ(p) = min
q∈P

ϕ(q)}

and call this polytope the ϕ-face of P . The elements of the collection

{Fϕ(P ) | ϕ : V → R}
are the faces of P . A face is called a vertex if it consists of a single point.

In the following, the ambient vector space V will always be R ⊗Z H for some finitely generated
free abelian group H. For such V , we will consider a special type of polytope:

Definition 2.12. A polytope P in V is called integral if its vertices lie on the lattice H ⊂ V .

Given two integral polytopes P and Q in V , their pointwise or Minkowski sum P + Q =
{p + q | p ∈ P, q ∈ Q} is again an integral polytope. Any vertex of the resulting polytope is a
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pointwise sums of a vertex of P and a vertex of Q. Equipped with the Minkowski sum the set
of all integral polytopes in V becomes a cancellative abelian monoid with neutral element {0},
see [24, Lemma 2]. Hence, the monoid embeds into its Grothendieck group, which was first
considered in [12, 6.3]:

Definition 2.13. Let H be a finitely generated free abelian group. Denote by P(H) the
polytope group of H, that is the Grothendieck group of the cancellative abelian monoid given
by all integral polytopes in R ⊗Z H under Minkowski sum. In other words, let P(H) be the
abelian group with generators the formal differences P −Q of integral polytopes and relations
(P −Q) + (P ′ −Q′) = (P + P ′) − (Q−Q′) as well as P −Q = P ′ −Q′ if P + Q′ = P ′ + Q′.
The neutral element is given by the one-point polytope {0}, which we will drop from the
notation. We view H as a subgroup of P(H) via the map h �→ {h}.

An element of the polytope group that is of the form P − 0, for which we also just write P ,
is called a single polytope and is uniquely represented in this form. Any other element is called
a virtual polytope.

In order to later get well-defined invariants with values in the polytope group, we will mostly
be dealing with the following quotient of the full polytope group:

Definition 2.14. The translation-invariant polytope group of H, denoted by PT (H), is
defined to be the quotient group P(H)/H.

The following simple construction underlies the definition of the L2-polytope in [10] and will
also be used to define the agrarian polytope:

Definition 2.15. Let D be a skew field and let H be a finitely generated free abelian group.
Let DH denote some twisted group ring formed out of D and H. The Newton polytope P (p)
of an element p =

∑
h∈H uh ∗ h ∈ DH is the convex hull of the support supp(p) = {h ∈ H |

uh 	= 0} in R ⊗Z H.

Since H is finitely generated free abelian, we can consider the Ore field of fractions Ore(DH)
of the twisted group ring DH, just as we did in Lemma 2.4. The definition of the Newton
polytope can be extended to elements of Ore(DH) in the following way:

Definition 2.16. The group homomorphism

P : Ore(DH)×ab → P(H)

pq−1 �→ P (p) − P (q)

is called the polytope homomorphism of Ore(DH). It induces a homomorphism

P : Ore(DH)×ab/{±h | h ∈ H} → PT (H).

It is easily verified in [17, Lemma 3.12] (and the discussion following the lemma) that P is
a well-defined group homomorphisms.

We now consider a finitely generated agrarian group G and denote the free part of its
abelianisation by H. Let K be the kernel of the projection of G onto H. In [10], assuming
that the group G satisfies the Atiyah conjecture, the polytope homomorphism is used for the
Linnell skew field D(G), which can conveniently be expressed as an Ore localisation of the
twisted group ring D(K)H. While the target of an arbitrary agrarian embedding α : ZG ↪→ D
is not necessarily an Ore localisation of a suitable twisted group ring, this is true for its
rationalisation, which we introduced in Definition 2.5.
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Definition 2.17. Let ZG ↪→ D be an agrarian embedding for G with rationalisation ZG →
Dr. Let C∗ be a Dr-acyclic finite based free ZG-chain complex C∗. The (Dr-)agrarian polytope
of C∗ is defined as

PDr (C∗) :− P (−ρDr
(C∗)) ∈ P(H),

where we use the polytope homomorphism associated to the skew field Dr = Ore(DH).

The sign in the definition of the Dr-agrarian polytope is a matter of convention, but is
chosen such that we get a single polytope in many cases of interest. It is a consequence of [14,
Lemma 2.5] that the agrarian polytope does not depend on the particular choice of structure
functions involved in the construction of the twisted group ring DH.

In the following, we will always consider the agrarian polytopes associated to cellular chain
complexes of G-CW-complexes, where we have to account for the indeterminacy caused by
choosing a suitable basis made of cells. Since the Dr-agrarian torsion of a G-CW-complex
naturally lives in (D×

r )ab/{±g | g ∈ G}, the associated polytope will only be defined up to
translation.

Definition 2.18. Let ZG ↪→ D be an agrarian embedding for G with rationalisation ZG →
Dr. Let X be a Dr-acyclic finite free G-CW-complex. The (Dr-)agrarian polytope of X is
defined as

PDr(X) :− PDr(C∗(X)) ∈ PT (H).

The property of the agrarian polytope that enables our applications is that it is a G-homotopy
invariant:

Proposition 2.19 [14, Proposition 5.8]. The Dr-agrarian polytope PDr (X) is a G-
homotopy invariant of X.

As a consequence, the Dr-agrarian polytope PDr (X) does not depend on the particular
G-CW-structure of X.

2.5. Thickness of Newton polytopes

The agrarian polytope is usually rather difficult to compute for a concrete group. Its thickness
along a given line is often more accessible. With an approach similar to [9], we will see in
Section 3 that it can be computed in terms of agrarian Betti numbers of a suitably restricted
chain complex.

Definition 2.20. Assume that G is finitely generated and denote the free part of its
abelianisation by H. Let ϕ : G → Z be a homomorphism factoring through H as ϕ : H → Z.
Let P ∈ P(H) be a single polytope. The thickness of P along ϕ is given by

thϕ(P ) :− max{ϕ(x) − ϕ(y) | x, y ∈ P} ∈ Z�0.

Since it respects the Minkowski sum and vanishes on polytopes consisting of a single point, the
assignment P �→ thϕ(P ) extends to a group homomorphism thϕ : PT (H) → Z.

An equivalent way of thinking of a twisted group ring DH constructed from an agrarian
embedding ZG ↪→ D in the case H = Z is as a twisted Laurent polynomial ring D[t, t−1]. In
order to see the correspondence, note that since Z is free with one generator, we can choose a
section s of the epimorphism ϕ : G → Z which is itself a homomorphism. By Lemma 2.4, the
resulting twisted group ring will be independent of the choice of the (group-theoretic or not)
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section. If we stipulate that tdt−1 = s(1)ds(1)−1 for d ∈ D, then the ring D[t, t−1]ϕ, with ϕ
added as an index to indicate the origin of the twisting, will be canonically isomorphic to DZ.

For elements of the Laurent polynomial ring, the Newton polytope will be a line of length
equal to the degree of the polynomial. Here, the degree deg(x) of a non-trivial Laurent
polynomial x is the difference of the highest and lowest degree among its monomials. In
particular, the degree of a single monomial is always 0 and the degree of a polynomial with
non-vanishing constant term coincides with its degree as a Laurent polynomial.

Let now G be a finitely generated agrarian group with agrarian embedding ZG ↪→ D and
denote by K the kernel of the projection of G onto the free part of its abelianisation, which
we denote H. Further let ϕ : G → Z be an epimorphism with kernel Kϕ, and denote the
induced map H → Z by ϕ with kernel Kϕ. Recall that by Lemma 2.6, the iterated Ore field
Ore(Ore(DKϕ)Z) can be identified with the Ore field Ore(DH) via the isomorphism β. We
write Ore(DKϕ)Z as a twisted Laurent polynomial ring Ore(DKϕ)[t, t−1]ϕ. The idea behind
the following lemma is now based on the fact that the Newton polytope of a multi-variable
Laurent polynomial x determines all the Newton ‘lines’ of x when viewed as a single-variable
Laurent polynomial with more complicated coefficients.

Lemma 2.21. In the situation above, for any x ∈ Ore(DKϕ)[t, t−1]ϕ with x 	= 0, we have

thϕ(P (β(x))) = deg(x).

Proof. Since multiplying by a common denominator of all Ore(DKϕ)-coefficients of x does
neither change its degree nor the support of its image under β, we can restrict to the case
x ∈ DKϕ[t, t−1]ϕ. Thus, x will be of the form x =

∑
n∈Z

(
∑

k∈Kϕ
uk,n ∗ k)tn with uk,n ∈ D.

Denoting the group-theoretic section of ϕ used to construct the twisted Laurent polynomial
ring by s, we obtain:

β(x) =
∑
n∈Z

k∈Kϕ

uk,n ∗ ks(n).

The elements ks(n) form a basis of the free D-module DH, and thus no cancellation can occur
between the individual uk,n. By the analogous argument for the twisted group ring DKϕ,
cancellation can also be ruled out for the sum

∑
k∈Kϕ

uk,n ∗ k for each n ∈ Z. We conclude:

thϕ(P (β(x))) = max{ϕ(k1s(n1)) − ϕ(k2s(n2)) | k1, k2 ∈ Kϕ, n1, n2 ∈ Z, uki,ni
	= 0}

= max{n1 − n2 | k1, k2 ∈ Kϕ, n1, n2 ∈ Z, uki,ni
	= 0}

= max{n1 − n2 | ∃ki ∈ Kϕ : uki,ni
	= 0 for i = 1, 2}

= max{n1 − n2 |
∑

ki∈Kϕ

uki,ni
∗ ki 	= 0 for i = 1, 2}

= deg(x). �

3. Twisted agrarian Euler characteristic

While the shape of the agrarian polytope introduced in the previous section is often hard to
determine, there is a convenient equivalent description of its thickness along a given line. To this
end, we will introduce the agrarian analogue of the twisted L2-Euler characteristic introduced
by Friedl and Lück in [9]. We assume that G is a finitely generated D-agrarian group with a
fixed agrarian embedding α : ZG ↪→ D. We use H to denote the free part of the abelianisation
of G, and let K be the kernel of the canonical projection of G onto H.
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3.1. Definition of the twisted agrarian Euler characteristic

We now introduce twisted agrarian Euler characteristics, which arise as ordinary agrarian
Euler characteristics of cellular ZG-chain complexes twisted by an epimorphism from G to the
integers:

Definition 3.1. Let X be a finite free G-CW-complex and let ϕ : G → Z be a homo-
morphism. We denote by ϕ∗Z[t, t−1] the ZG-module obtained from the Z-module Z[t, t−1]
by letting G act as g ·∑n∈Z

λnt
n =

∑
n∈Z

λnt
n+ϕ(g), where λn ∈ Z for n ∈ Z. Consider the

ZG-chain complex C∗(X) ⊗Z ϕ∗Z[t, t−1] equipped with the diagonal G-action and set

bDp (X;ϕ) :− bDp (C∗(X) ⊗Z ϕ∗Z[t, t−1]) ∈ N ∪ {∞},

hD(X;ϕ) :−
∑
p�0

bDp (X;ϕ) ∈ N ∪ {∞},

χD(X;ϕ) :−
∑
p�0

(−1)pbDp (X;ϕ) ∈ Z, if hD(X;ϕ) < ∞.

We say that X is ϕ-D-finite if hD(X;ϕ) < ∞, and in this case χD(X;ϕ) is called the ϕ-
twisted D-agrarian Euler characteristic of X. More generally, we will also consider the ϕ-twisted
agrarian Euler characteristic χD(C∗;ϕ) for any finite free ZG-chain complex C∗, with C∗ taking
the role of the cellular chain complex C∗(X).

The aim of this section is to prove that the thickness of the agrarian polytope in a prescribed
direction can be computed as a twisted agrarian Euler characteristic. Recall that G is a finitely
generated D-agrarian group with a fixed agrarian embedding α : ZG ↪→ D and that we denote
by αr : ZG ↪→ Dr the rationalisation of α as introduced in Definition 2.5.

Theorem 3.2. Let X be a Dr-acyclic finite free G-CW-complex and ϕ : G → Z a
homomorphism. Then

thϕ(PDr (X)) = −χDr(X;ϕ).

For universal L2-torsion, the analogous statement has been proved by Friedl and Lück in [10,
Remark 4.30]. Their proof is based on the fact that universal L2-torsion is the universal abelian
invariant of L2-acyclic finite based free ZG-chain complexes C∗ that is additive on short exact
sequences and satisfies a certain normalisation condition. While large parts of the verification
of this universal property are purely formal, in the proof of [10, Lemma 1.5] it is used that the
combinatorial Laplace operator on C∗ induces the L2-Laplace operator on N (G) ⊗ C∗, which
has no analogue over a general skew field D. We instead establish Theorem 3.2 using the matrix
chain approach to the computation of Reidemeister torsion explained in [28, I.2.1].

3.2. Reduction to ordinary Euler characteristics

Before we get to the proof, we will transfer some of the helpful lemmata in [9, Sections 2.2 & 3.3]
to the agrarian setting.

The following lemma allows us to restrict our attention to surjective twists ϕ : G → Z in the
proof of Theorem 3.2:

Lemma 3.3. Let X be a finite free G-CW-complex and let ϕ : G → Z be a group
homomorphism.
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(1) For any integer k � 1, we have that X is (k · ϕ)-D-finite if and only if X is ϕ-D-finite,
and if this is the case we get

χD(X; k · ϕ) = k · χD(X;ϕ).

(2) Denote the trivial homomorphism G → Z by c0. The complex X is c0-D-finite if and
only if X is D-acylic, and if this is the case we get

χD(X; c0) = 0.

Proof. (1) This follows from the direct sum decomposition (k · ϕ)∗Z[t, t−1] ∼=⊕k
i=1 ϕ

∗Z[t, t−1] and additivity of Betti numbers.
(2) This is a direct consequence of C∗(X) ⊗Z c∗0Z[t, t−1] ∼= ⊕

Z
C∗(X) and additivity of Betti

numbers. �

We will now see that twisted D-agrarian Euler characteristics over G can equivalently be
viewed as ordinary D-agrarian Euler characteristics over the kernel of the twist homomorphism.

Lemma 3.4. Let X be a finite free G-CW-complex and let ϕ : G → Z be an epimorphism.

Denote the kernel of ϕ by Kϕ. Then X is ϕ-D-finite if and only if
∑

p�0 b
D
p (resKϕ

G X) < ∞,
and in this case we have

χD(X;ϕ) = χD(resKϕ

G X).

Proof. The proof is based on the following isomorphism of ZG-chain complexes:

ZG⊗ZKϕ
resKϕ

G C∗(X)
∼=−→ C∗(X) ⊗Z ϕ∗Z[t, t−1]

g ⊗ x −→ gx⊗ tϕ(g),

the inverse of which is given by y ⊗ tq �→ g ⊗ g−1y for any choice of g ∈ ϕ−1(q). Using the
isomorphism, we obtain for every p � 0:

Hp(D ⊗ C∗(X) ⊗Z ϕ∗Z[t, t−1]) ∼= Hp(D ⊗ ZG⊗ZKϕ
resKϕ

G C∗(X))

= Hp(D ⊗ZKϕ
resKϕ

G C∗(X)).

We conclude that bDp (X;ϕ) = bDp (resKϕ

G X) by applying dimD, which yields the claim after
taking the alternating sum over p � 0. �

Remark 3.5. Let G be a D-agrarian group of type F. Let ϕ : G → Z be an epimorphism
with kernel Kϕ. If Kϕ is also of type F, then by Lemma 3.4 and [14, Theorem 3.9 (2)]

χD(EG;ϕ) = χD(resKϕ

G EG) = χD(EKϕ) = χ(Kϕ).

In particular, in this case the value of χD(EG;ϕ) does not depend on the choice of
agrarian embedding.

Lemma 3.6. Let C∗ be a D-acyclic ZG-chain complex of finite type. Let ϕ : G → Z be
an epimorphism with kernel Kϕ. Consider the embedding ZG ∼= (ZKϕ)Z ↪→ DZ = D[t, t−1]ϕ
constructed in Lemma 2.4 for K :− Kϕ, where we use that G/K ∼= Z via ϕ. Then

bDn (resKϕ

G C∗) = dimD Hn(D[t, t−1]ϕ ⊗ C∗) < ∞.

In particular, the D[t, t−1]ϕ-modules Hn(D[t, t−1]ϕ ⊗ C∗) are torsion.
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Proof. The proof is analogous to that of [9, Theorem 3.6 (4)] with D taking the role of
D(K). The assumption that C∗ be projective is in fact not used in the proof of the theorem
and hence is not part of the statement of Lemma 3.6. �

Corollary 3.7. Let X be a D-acyclic finite free G-CW-complex. Let ϕ : G → Z be an
epimorphism with kernel Kϕ. Then X is ϕ-D-finite and

χD(X,ϕ) =
∑
p�0

(−1)p dimD Hp(D[t, t−1]ϕ ⊗ C∗(X)).

Proof. Apply Lemmata 3.4, 3.6. �

3.3. Thickness of the agrarian polytope

We are now able to proceed with the proof of Theorem 3.2:

Proof of Theorem 3.2. We will actually prove the more general statement that for every
Dr-acyclic finite based free ZG-chain complex C∗ concentrated in degrees 0 through m

thϕ (P (−ρDr
(C∗))) = −χDr(C∗;ϕ). (1)

Since thϕ and P are homomorphisms, we can drop the signs from both sides. Using Lemma 3.3,
we can further assume that ϕ is an epimorphism.

By Theorem 2.9, we find a non-degenerate τ -chain γ such that

thϕ (P (ρDr
(C∗))) = thϕ

(
P

(
m∑

p=0

(−1)p detDr
(Sp(γ))

))
.

Crucially,

Ore(Ore(DKϕ)[t, t−1]ϕ) ∼= Ore(DH) = Dr

via the isomorphism β constructed in Lemma 2.6, where Kϕ is the kernel of the epimorphism
ϕ : H → Z induced by ϕ. The subring

Ore(DKϕ)[t, t−1]ϕ

of the left-hand side, which contains β−1(ZG) and thus all entries of Sp = Sp(γ), is a (non-
commutative) Euclidean domain. This means that we can diagonalise the matrices Sp by
multiplying them from the left and right with permutation matrices and elementary matrices
over this twisted Laurent polynomial ring. This diagonalisation procedure occurs as part of
an algorithm that brings a matrix into Jacobson normal form, which is a non-commutative
analogue of the better-known Smith normal form for matrices over commutative PIDs. For
details, we refer to the proof of [15, Theorem 3.10]. Recall that a permutation matrix is
a matrix obtained from an identity matrix by permuting rows and columns. An elementary
matrix over a ring R is a matrix differing from the identity matrix in a single off-diagonal entry.
The determinant of either type of matrix is 1 or −1, and thus the thickness in direction of ϕ of
their polytopes vanish. Hence, thϕ(P (det(Sp))) = thϕ(P (det(Tp))) for the diagonal matrix Tp

obtained from Sp in this way. We denote the diagonal entries of Tp by λp,i ∈ Ore(DKϕ)[t, t−1]ϕ
for i = 1, . . . , |γp| and note that all the entries λp,i are non-zero since all matrices Sp become
invertible over Dr. Using that both thϕ and P are homomorphisms, and applying Lemma 2.21
once more, we compute:

thϕ (P (ρDr
(C∗))) = thϕ

(
P

(
m∑

p=1

(−1)p detDr
(Sp(γ))

))
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=
m−1∑
p=0

(−1)p
|γp|∑
i=1

thϕ(P (β(λp,i)))

=
m−1∑
p=0

(−1)p
|γp|∑
i=1

deg(λp,i).

We will now consider the right-hand side of (1). For this, we use that the agrarian embedding
ZKϕ ↪→ Dr = Ore(Ore(DKϕ)Z) factors through the agrarian embedding ZKϕ ↪→ Ore(DKϕ),
and thus the embedding ZG ∼= (ZKϕ)Z ↪→ Dr[t, t−1]ϕ introduced in Lemma 3.6 factors through
ZG ∼= (ZKϕ)Z ↪→ Ore(DKϕ)[t, t−1]ϕ. Since Dr is flat over the skew field Ore(DKϕ), we
conclude from Corollary 3.7 that

χDr(C∗;ϕ) =
m∑

p=0

(−1)p dimDr
Hp(Dr[t, t−1]ϕ ⊗ C∗)

=
m∑

p=0

(−1)p dimOre(DKϕ) Hp(Ore(DKϕ)[t, t−1]ϕ ⊗ C∗).

Since C∗ is Dr-acyclic, we have Hm(Dr ⊗ C∗) = 0. But Cm+1 is trivial, which means that the
differential cm must be injective. In particular, the summand corresponding to p = m vanishes.

In order to establish (1), we are now left to prove that

|γp|∑
i=1

deg(λp,i) = dimOre(DKϕ) Hp(Ore(DKϕ)[t, t−1]ϕ ⊗ C∗) (2)

holds for p = 0, . . . ,m− 1. In order to not overload notation, we abbreviate Ore(DKϕ)[t, t−1]ϕ
as R. Recall that the homology modules Hp(R⊗ C∗) consist solely of R-torsion elements by
Lemma 3.6. Furthermore, since R⊗ Cp−1 is a free R-module, any R-torsion maps into it
trivially. We are thus able to express the homology modules as torsion submodules of a cokernel
in the following way:

Hp(R⊗ C∗) = ker(idR ⊗cp)/ im(idR ⊗cp+1)

∼= ker (idR ⊗cp : (R⊗ Cp)/ im(idR ⊗cp+1) → R⊗ Cp−1)

= torsR((R⊗ Cp)/ im(idR ⊗cp+1))

= torsR(coker(idR ⊗cp+1)).

Instead of performing elementary operations on the matrix Sp to obtain the diagonal matrix
Tp, we can instead apply them to the entire matrix Ap representing idR ⊗cp+1. This procedure
will not change the isomorphism type of the cokernel of the map given by right multiplication
with this matrix. Applying further elementary operations over R, we can achieve that all the
entries not contained in Sp consist only of zeros with the submatrix Sp now being of the form
Tp. This is possible since Sp has the same rank as Ap over the field of fractions of Ore(R) by
the same rank counting argument used to prove [28, I.2.2]. Hence,

Hp(R⊗ C∗) ∼= torsR(coker(idR ⊗cp+1)) ∼= ⊕|γp|
i=1R/(λp,i),

which yields (2) after applying dimOre(DKϕ). �
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4. The Bieri–Neumann–Strebel invariants and HNN extensions

In order to discuss some application of the theory of agrarian invariants, we need to first cover
the BNS invariants and the HNN extensions.

Definition 4.1. Let G be a group generated by a finite subset S, and let X denote the
Cayley graph of G with respect to S. Recall that the vertex set of X coincides with G. We
define the Bieri–Neumann–Strebel (or BNS) invariant Σ1(G) to be the subset of H1(G; R) \ {0}
consisting of the non-trivial homomorphisms (the characters) ϕ : G → R for which the full
subgraph of X spanned by ϕ−1([0,∞)) ⊆ G is connected.

The BNS invariants were introduced by Bieri, Neumann and Strebel in [3] via a different,
but equivalent definition. It is an easy exercise to see that Σ1(G) is independent of the choice
of the finite generating set S.

We now aim to give an interpretation of lying in the BNS invariant for integral characters
ϕ : G → Z. To do so, we need to introduce the notion of HNN extensions.

Definition 4.2. Let A be a group and let α : B
∼=−→ C be an isomorphism between two

subgroups of A. Choose a presentation 〈S | R〉 of A and let t be a new symbol not in S. Then
the group A∗α defined by the presentation

〈S, t | R, tbt−1 = α(b) ∀b ∈ B〉

is called the HNN extension of A relative to α : B
∼=−→ C. We call A the base group and B the

associated group of the HNN extension.
The HNN extension is called ascending if B = A.
The homomorphism ϕ : A∗α → Z given by ϕ(t) = 1 and ϕ(s) = 0 for every s ∈ S is the

induced character.

Proposition 4.3 [3, Proposition 4.3]. Let G be a finitely generated group, and let ϕ : G → Z

be a non-trivial character. We have ϕ ∈ Σ1(G) if and only if G is isomorphic to an ascending
HNN extension with finitely generated base group and induced character ϕ.

Definition 4.4. Suppose that G is finitely generated. Let P be a single polytope in the
R-vector space H1(G; R), and let F be a face of P . A dual of F is a connected component of
the subspace

{ϕ ∈ H1(G; R) \ {0} | Fϕ(P ) = F}.
A marked polytope is a pair (P,m), where P is a single polytope in H1(G; R), and m is a

marking, that is a function m : H1(G; R) → {0, 1}, which is constant on duals of faces of F ,
and such that m−1(1) is open.

The pair (P,m) is a polytope with marked vertices if m−1(1) is a union of some duals of
vertices of P .

The marking m will usually be implicit, and the characters ϕ with m(ϕ) = 1 will be called
marked.

In [12], Friedl–Tillmann use a different notion of a marking of a polytope, which corresponds
to a polytope with marked vertices in our terminology where the marking m is additionally
required to be constant on all duals of a given vertex. Thus, our notion is more general, and
the two notions differ when the polytope in question is a singleton in a 1-dimensional ambient
space: with our definition of marking, such a polytope admits four distinct markings (just as
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every compact interval of non-zero length does), whereas with the Friedl–Tillmann definition
such a polytope admits only two markings in which either every character is marked or none is.

5. Application to two-generator one-relator groups

Definition 5.1. A (2,1)-presentation is a group presentation of the form 〈x, y | r〉, that is,
with two generators and a single relator. A group that admits a (2, 1)-presentation is called a
two-generator one-relator group.

The story of the usefulness of agrarian invariants for two-generator one-relator groups begins
with the following result of Lewin–Lewin.

Theorem 5.2 [18, Theorem 1]. Torsion-free one-relator groups are agrarian.

In the following, for a group presentation π, we will denote the groups it presents by Gπ.
In order to describe the cellular chain complex of the universal coverings of classifying spaces

for two-generator one-relator groups, we will use Fox derivatives, which were originally defined
in [8]. Let F be a free group on generators xi, i ∈ I. The Fox derivative with respect to xi is
then defined to be the unique Z-linear map ∂

∂xi
: ZF → ZF satisfying the conditions

∂1
∂xi

= 0,
∂xi

∂xj
= δij and

∂uv

∂xi
=

∂u

∂xi
+ u

∂v

∂xi

for all u,w ∈ F , where δij denotes the Kronecker delta. The fundamental formula for Fox
derivatives [8, (2.3)] states that for every u ∈ ZF we have

u− 1 =
∑
i∈I

∂u

∂xi
· (xi − 1).

In the particular case of a two-generator one-relator group G = 〈x, y | r〉, the fundamental
formula applied to r implies that the following identity holds in ZG, since there r − 1 = 0:

∂r

∂x
· (x− 1) = −∂r

∂y
· (y − 1). (3)

We will need the following non-triviality result for Fox derivatives in two-generator one-
relator groups:

Lemma 5.3. Let π = 〈x, y | r〉 be a (2, 1)-presentation with cyclically reduced relator r, and
take z to denote either x or y. Denote the number of times z or z−1 appears in the word
r by s. Then the Fox derivative ∂r/∂z ∈ ZF2 is a sum of the form

∑s
j=1 ±wj for words wj

representing mutually distinct elements gj ∈ Gπ. In particular, ∂r/∂z 	= 0 in ZGπ if s > 0.

Proof. This follows from [12, Corollary 3.4]. While the statement of the corollary only
asserts the distinctness of the group elements gj together with their scalar factors of ±1, the
proof actually shows that the elements themselves are distinct. Also note that, in the proof of
the corollary, ns is actually always strictly smaller than l, which is crucial for the correctness
of the penultimate sentence. �

We are now able to show that the agrarian torsion of torsion-free two-generator one-relator
groups is defined and can be calculated explicitly:
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Lemma 5.4. Let π = 〈x, y | r〉 be a (2, 1)-presentation with r cyclically reduced. Denote the
universal covering of the presentation 2-complex of Gπ associated to this presentation by EGπ.
Then EGπ is contractible and D-acyclic with respect to any agrarian embedding ZGπ ↪→ D.
If x or x−1 appears as a letter in r, then

ρD(EGπ) = −
[
∂r

∂x

]
+ [y − 1] ∈ D×

ab,

where [−] : D× → D×
ab is the canonical quotient map. If y or y−1 appears in r, then the

analogous statement holds with the roles of x and y interchanged.

Proof. That EGπ is contractible follows from [19, Chapter III, Proposition 11.1]. The
cellular ZGπ-chain complex of EGπ takes the following form in terms of the Fox derivatives
∂r
∂x and ∂r

∂y , see [8]:

ZGπ

(
∂r
∂x

∂r
∂y

)

−−−−−−→ ZG2
π

⎛
⎝x− 1
y − 1

⎞
⎠

−−−−−−→ ZGπ.

We will now construct a non-degenerate τ -chain for the associated D-chain complex and
simultaneously obtain that the complex is acyclic. Note that acyclicity is also a general
consequence of the existence of a non-degenerate τ -chain by [28, Lemma I.2.5].

Since r is assumed to be cyclically reduced, the only case in which any of the generators
is trivial in ZGπ is when r consists of a single letter. Let us suppose for now that this is the
case, and without loss of generality let us take r = x. In this case, the chain complex under
investigation becomes

ZGπ

(
1 0

)

−−−−→ ZG2
π

⎛
⎝ 0
y − 1

⎞
⎠

−−−−−−→ ZGπ.

Since y 	= 1 as G = 〈y〉, we immediately see that the complex is D-acyclic and comes with an
obvious choice of a non-degenerate τ -chain.

We will now assume that both generators represent non-trivial elements of Gπ.
By Lemma 5.3, the Fox derivative ∂r

∂x , respectively, ∂r
∂y represents the trivial element of ZGπ

and hence of D only if x, respectively, y does not appear in the word r, possibly inverted. Since
Gπ is not the free group on two generators, at least one of the letters x and y appears in this
way, and hence at least one of the Fox derivatives represents an invertible element in D.

In conclusion, both differentials in D ⊗ C∗(EGπ) have maximal rank, namely 1, and so the
complex is acyclic, since it is a complex of modules over a skew field.

We obtain a non-degenerate τ -chain by choosing the submatrices S1 and S0 to correspond to
a non-trivial Fox derivative and the generator which is not the one with respect to which that
Fox derivative was taken, respectively. With this choice, the formula for the agrarian torsion
is obtained from Theorem 2.9. �

By the work of Waldhausen [29, Theorem 17.5 & Theorem 19.4], two presentation complexes
associated to two (2,1)-presentations of isomorphic torsion-free two-generator one-relator
groups are always simple homotopy equivalent. Since agrarian Betti numbers are homotopy
invariant and agrarian torsion is a simple homotopy invariant by [14, Lemma 4.9], Lemma 5.4
actually implies that EG is D-acyclic for every torsion-free two-generator one-relator group
G and its agrarian torsion can be calculated from any (2, 1)-presentation 〈x, y | r〉 with r
cyclically reduced.

Since the agrarian polytope is homotopy invariant by Proposition 2.19, we obtain the
following result even without appealing to the work of Waldhausen:



THE AGRARIAN POLYTOPE OF TWO-GENERATOR ONE-RELATOR GROUPS 739

Proposition 5.5. Let G be a torsion-free two-generator one-relator group that is not
isomorphic to the free group on two generators, and let ZG ↪→ D be an agrarian embedding.
Denote the free part of the abelianisation of G by H. If π = 〈x, y | r〉 is any (2,1)-presentation
of G such that r is cyclically reduced and x or x−1 appears as a letter in r, we have

PDr (G) = PDr (EGπ) = P ([∂r/∂x]) − P ([y − 1]) ∈ PT (H).

If y or y−1 appears in r, then the analogous statement holds with the roles of x and
y interchanged.

Since the space EG is unique up to G-homotopy equivalent, the polytope PDr (G) is an
invariant of the group G and does not depend on the choice of a (2,1)-presentation.

In [12], Friedl and Tillmann associate a polytope to nice (2, 1)-presentations, which are
defined as follows:

Definition 5.6. A (2, 1)-presentation π = 〈x, y | r〉 giving rise to a group Gπ is called nice
if

(1) r is a non-empty word;
(2) r is cyclically reduced; and
(3) b1(Gπ) = 2.

Their construction of the polytope is equivalent to the following definition by [12,
Proposition 3.5]:

Definition 5.7. Let π = 〈x, y | r〉 be a nice (2,1)-presentation giving rise to a group Gπ.
Denote by H the free part of the abelianisation of G and write w for the image of an element
w ∈ ZG under the projection to ZH. Then we set

Pπ :− P

(
∂r

∂x

)
− P

(
y − 1

)
= P

(
∂r

∂y

)
− P

(
x− 1

) ∈ PT (H).

It is shown in [12, Proposition 3.5] that the element Pπ ∈ PT (H) defined in this way is
indeed a single polytope.

For a nice (2,1)-presentation π, Friedl and Tillmann also endow Pπ with a marking of vertices,
turning it into a marked polytope Mπ. A vertex of Pπ is declared marked if any of its duals
contains a character lying in Σ1(G). Friedl–Tillmann prove in [12, Theorem 1.1] that every
character lying in any dual of a marked vertex lies in Σ1(G), and hence the markings of Pπ

and Σ1(G) determine one another.
If π = 〈x, y | r〉 and π′ = 〈x, y | r′〉 are two (2,1)-presentations such that there exists an

automorphism f : 〈x, y〉 → 〈x, y〉 of the free group on two generators satisfying f(r) = r′,
then the two presentations clearly define isomorphic groups. The automorphism f induces
an isomorphism f : Hπ → Hπ′ between the free parts of the abelianisations of Gπ and Gπ′ .

Proposition 5.8. Let π = 〈x, y | r〉 and π′ = 〈x, y | r′〉 be two nice (2,1)-presentations.
Assume that there exists an automorphism f : 〈x, y〉 → 〈x, y〉 with f(r) = r′. Then

Pπ′ = PT (f)(Pπ) ∈ PT (Hπ′).

Proof. The automorphism group of a finitely generated free group is generated by the
elementary Nielsen transformations, which in the case of two generators x and y consist of the
following operations.

(1) Interchange x and y: f1(x) = y, f1(y) = x.
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(2) Replace x with x−1: f2(x) = x−1, f2(y) = y.
(3) Replace x with xy: f3(x) = xy, f3(y) = y.

Since the statement of the proposition is functorial in f , we are thus left to show that
Pπ′ = PT (f)(Pπ) holds whenever f is one of f1, f2 and f3.

The chain rule for Fox derivatives [8, (2.6)] applied to f takes the following form:

∂

∂x
f(r) = f

(
∂

∂x
r

)
· ∂

∂x
f(x) + f

(
∂

∂y
r

)
· ∂

∂x
f(y).

For the three elementary Nielsen transformations, we obtain

∂

∂x
f1(r) = f1

(
∂

∂x
r

)
· 0 + f1

(
∂

∂y
r

)
· 1 = f1

(
∂

∂y
r

)
∂

∂x
f2(r) = f2

(
∂

∂x
r

)
· (−x−1) + f2

(
∂

∂y
r

)
· 0 = f2

(
∂

∂x
r

)
· (−x−1)

∂

∂x
f3(r) = f3

(
∂

∂x
r

)
· 1 + f3

(
∂

∂y
r

)
· 0 = f3

(
∂

∂x
r

)
.

When f = f2 or f = f3, we read off that ∂r′/∂x and f(∂r/∂x) differ only by a factor of the form
±g for some g ∈ Gπ′ . It follows that P (∂r′/∂x) and P(f)(P (∂r/∂x)) agree up to translation
and hence define the same class in PT (Hπ′). Since f(y) = y in these cases, the same holds true
for the polytopes Pπ and Pπ′ .

For f1, we obtain using (3) that

Pπ′ = P

(
∂

∂x
f1(r)

)
− P (y − 1) = PT (f1)

(
P

(
∂

∂y
r

))
− PT (f1)(P (x− 1))

= PT (f1)
(
P

((
∂

∂y
r

)
(y − 1)

)
− P (y − 1) − P (x− 1)

)

= PT (f1)
(
P

((
∂

∂x
r

)
(x− 1)

)
− P (x− 1) − P (y − 1)

)

= PT (f1)
(
P

(
∂

∂x
r

)
− P (y − 1)

)
= PT (f1)(Pπ),

which concludes the proof also in this case. �

There are (2,1)-presentations π = 〈x, y | r〉 and π′ = 〈x, y | r′〉 giving rise to isomorphic
groups, such that no isomorphism lifts to an automorphism of 〈x, y〉 mapping r to r′. The first
examples of such pairs of presentations appeared in [21], one of which is 〈x, y | x2y−2x2y−3〉 ∼=
〈x, y | x2y−5〉. This raises the question whether the (marked) polytopes associated to π and
π′ are still related. A possible answer to this question has been formulated as a conjecture by
Friedl and Tillmann:

Conjecture 5.9 [12, Conjecture 1.2]. If G is a group admitting a nice (2, 1)-presentation
π, then Mπ ⊂ H1(G; R) is an invariant of G (up to translation).

In more formal terms, the conjecture asserts that if f : Gπ → Gπ′ is an isomorphism of two
groups associated to (2,1)-presentations π and π′, then Pπ′ = PT (f)(Pπ) ∈ PT (Hπ), where
f : Hπ → Hπ′ is the isomorphism of the free parts of the abelianisations of Gπ and G′

π induced
by f .
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As evidence for their conjecture, Friedl and Tillmann prove:

Theorem 5.10 [12, Theorem 1.3]. If G is a torsion-free group admitting a nice (2, 1)-
presentation π and G is residually –torsion-free elementary amenable˝, then Mπ ⊂ H1(G; R)
is an invariant of G (up to translation).

They further remark that the polytope does not change (up to translation) when the relator
is permuted cyclically.

Making use of their construction of universal L2-torsion, Friedl and Lück resolved this
conjecture and provided a construction of Mπ intrinsic to the group G under the additional
assumption that G is torsion-free and satisfies the Atiyah conjecture:

Theorem 5.11 [10, Remark 5.5]. If G is a torsion-free group admitting a nice (2, 1)-
presentation π and G satisfies the Atiyah conjecture, then Mπ ⊂ H1(G; R) is an invariant
of G (up to translation). Moreover, Pπ = PL2(G).

By using agrarian torsion instead of universal L2-torsion, we are able to remove the additional
assumptions on G, thereby resolving Conjecture 5.9:

Theorem 5.12. If G is a group admitting a nice (2, 1)-presentation π, then Mπ ⊂ H1(G; R)
is an invariant of G (up to translation). Moreover, if G is torsion-free, then Pπ = PDr (G) ∈
PT (Z2) for any choice of an agrarian embedding ZG ↪→ D.

Proof. We start by looking at the case of G containing torsion. The solution to this case
was pointed out to the authors by Alan Logan.

First note that in this case, the BNS invariant Σ1(G) is empty — this follows immediately
from Brown’s algorithm [5], or equivalently, from the construction of the marking of Mπ. An
alternative way to see this is to observe that the first L2-Betti number of G is not zero, see [7].

Since Σ1(G) = ∅, we need only worry about Pπ. If one alters the presentation π by applying
an automorphism f of the free group F2 = 〈x, y〉 to the relator r, the polytope remains invariant
in the sense of Conjecture 5.9 by Proposition 5.8. But it was shown by Pride [23] that when
G contains torsion, every two two-generator one-relator presentations of G are related by an
automorphism of F2, up to possibly replacing the relator r in one of the presentations by
r−1. This last operation does not alter the class of the polytope since, as a consequence of
the product rule for Fox derivatives, we get ∂r−1/∂x = −r−1∂r/∂x, and thus the polytopes
associated to ∂r−1/∂x and ∂r/∂x agree up to translation.

Now suppose that G is torsion-free. Then the equality Pπ = PDr (G) follows directly from
the definitions of Pπ and PDr (G) by the computation done in Proposition 5.5, and the agrarian
polytope is an invariant of the group by construction. We conclude from [12, Theorem 1.1]
that once Pπ is known to be an invariant of G, the same is true for the marked version Mπ

since marked vertices are determined by the BNS invariant Σ1(G) of the group G. �

As a consequence of the equality Pπ = PDr(Gπ) for a (2,1)-presentation π giving rise to
a torsion-free group, we conclude that PDr (Gπ) is actually independent of the choice of
agrarian embedding.

Friedl and Tillmann claim in [12, Proposition 8.1] and the subsequent two paragraphs that
they can associate a single polytope Pπ to any (2, 1)-presentation π = 〈x, y | r〉, where r is non-
trivial and cyclically reduced, even without assuming the presentation to be nice. If b1(Gπ) = 1,
x represents a generator of the free part of the abelianisation of Gπ and y represents the
trivial element therein, they call such a presentation simple. For a simple presentation π, the
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polytope Pπ is computed by the formula involving the Fox derivative of r with respect to x
from Definition 5.7, and therefore agrees with PDr (Gπ) if Gπ is torsion-free.

The statement and proof of [12, Proposition 8.1] are not fully correct, as the following
example shows:

Example 5.13. Consider the simple (2, 1)-presentation π = 〈x, y | y2〉. Then the associated
polytope Pπ is only a virtual polytope, more specifically the additive inverse of the class of a
unit interval in PT (Z) = PT (〈x〉).

In the proof of [12, Proposition 8.1], the assumption that the relator r is either of the form
xm1yn1 · · ·xmkymk or yn1xm1 · · · ymkxmk for non-zero integers m1, n1, . . . ,mk, nk is incorrect;
in our example, k = 1, m1 = 0 and n1 = 2.

In order to fix the statement and the proof of the proposition, it is necessary to consider
the case of group presentations 〈x, y | yn〉, n ∈ Z, n 	= 0 separately. These presentations are the
only simple ones for which any of the mi is zero. In this case, the polytope P (∂r/∂x) is an
interval of length D = 0, which means that Pπ is the additive inverse of a unit interval in
PT (Z).

With this additional case considered, we now observe that the correct result of [12,
Proposition 8.1] should be that Pπ is a single polytope for a simple (2, 1)-presentation π if
and only if Gπ is not isomorphic to Z ∗ Z/nZ for any n ∈ Z. The polytope Pπ can be turned
into a marked polytope Mπ in the Friedl–Tillmann sense if and only if Gπ is neither isomorphic
to Z ∗ Z/nZ nor to B(±1, n) :− 〈x, y | xy±1x−1y−n〉 for n ∈ Z.

The problem with the Baumslag–Solitar groups B(±1, n) is that the resulting polytope is
a singleton lying in a 1-dimensional R-vector space. Since Σ1(B(±1, n)) is non-trivial and
proper in H1(B(±1, n); R), there is no marking of Pπ in the Friedl–Tillmann sense which
would correctly control the BNS invariant. Our notion of marking of vertices of a polytope
circumvents this problem, and allows for a definition of Mπ also for these groups by marking
one of the duals of the only face and not marking the other.

The groups Z ∗ Z/nZ arising from the presentations 〈x, y | yn〉 all admit a virtual polytope
which is the additive inverse of the unit interval in PT (Z〈x〉). The notion of a marked polytope
readily extends to additive inverses of single polytopes by describing a marking for the single
polytope. Since Z ∗ Z/nZ is an ascending HNN extension along any of the two possible
epimorphisms to Z if n = ±1 and contains torsion otherwise, the polytope will have all duals
of its only face marked if n = ±1 and not marked if n 	= ±1.

6. Polytope thickness and splitting complexity

We continue with the notation of the previous section. Our aim now is to show that the thickness
of Pπ controls the minimal complexity of certain expressions of G as an HNN extension over
a finitely generated group. Before we state the precise connection, we need to introduce the
following concept:

Definition 6.1 [11, Section 5.1]. Let Γ be a finitely presented group and let ϕ : Γ → Z be
an epimorphism. A splitting of (Γ, ϕ) is a presentation of Γ as an HNN extension with induced
character ϕ and finitely generated base and associated groups.

It is proved in [4, Theorem A] that any pair (Γ, ϕ) admits a splitting. Hence we can define
the splitting complexity of (Γ, ϕ) as

c(Γ, ϕ) :− min{rk(B) | (Γ, ϕ) splits with associated group B},
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where rk(B) denotes the minimal number of generators of B. We also define the free splitting
complexity of (Γ, ϕ) as

cf (Γ, ϕ) :− min{rk(F ) | (Γ, ϕ) splits with associated free group F},
which may be infinite. We always have c(Γ, ϕ) � cf (Γ, ϕ).

Friedl and Tillmann observed the following connection between the thickness of Pπ and the
(free) splitting complexity of G:

Theorem 6.2 [12, Theorem 7.2]. Let G be a residually –torsion-free elementary amenable˝
group admitting a nice (2, 1)-presentation π. Then for any epimorphism ϕ : G → Z, we have

c(G,ϕ) = cf (G,ϕ) = thϕ(Pπ) + 1.

Note that every residually –torsion-free elementary amenable˝ group must itself be torsion-
free. Friedl, Lück, and Tillmann then noted in [11, Theorem 5.2] that the original proof could
be adapted to the setting of [9], thereby giving the same formula for groups satisfying the
Atiyah conjecture.

We will now present a common generalisation of these results. For this, we require the
following strengthened form of a proposition of Harvey, which is evident from the last sentence
of its original proof:

Proposition 6.3 [13, Proposition 9.1]. Let D be a skew field and D[t, t−1] a twisted Laurent
polynomial ring with coefficients in D. Let M = A + tB, where A and B are two l ×m matrices
over D. Then the map rM : D[t, t−1]l → D[t, t−1]m given by right multiplication by M satisfies

dimD tors(coker(rM )) � rkD B.

We are now in a position to improve upon both [12, Theorem 7.2] and [11, Theorem 5.2]
by recasting the proof of [12, Theorem 7.2] in the agrarian world. In the statement of the
following theorem, the agrarian polytope PDr (G) can be replaced by Pπ for any nice or simple
(2, 1)-presentation π of G in the sense of [12, Section 8.1].

Theorem 6.4. Let G be a torsion-free two-generator one-relator group other than the free
group on two generators. Then for every epimorphism ϕ : G → Z, we have

c(G,ϕ) = cf (G,ϕ) = thϕ(PDr (G)) + 1.

Proof. The inequality cf (G,ϕ) � thϕ(Pπ) + 1 is proved in [12, Proposition 7.3] for all nice
(2,1)-presentations. The proof of [12, Lemma 7.5] also applies to any simple (2,1)-presentation
〈x, y | r〉 for which r is not a word in just one of the generators and its inverse, since then the
numbers m1 and n1 appearing in the proof are non-zero. Any other simple (2,1)-presentation
π is, up to renaming the generators, of the form 〈x, y | xn〉 for n ∈ N, n 	= 0, and there are only
two different epimorphisms Gπ → Z. It is then easy to see right from the definitions that the
splitting complexity and thickness of Pπ with respect to any of the two epimorphisms are given
by 0 and −1, respectively.

Since every torsion-free two-generator one-relator group G that is not the free group on two
generators admits either a nice or a simple presentation π and PDr (G) = Pπ by Proposition 5.5,
we are left to show that c(G,ϕ) � thϕ(PDr (G)) + 1. By Theorem 3.2, this is further reduced
to the following statement about the ϕ-twisted Dr-agrarian Euler characteristic of G:

c(G,ϕ) − 1 � −χDr (G;ϕ).
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Recall from the proof of Lemma 5.4 that the Cayley 2-complex X associated to a (2, 1)-
presentation of G serves as a model of EG and that the application of Theorem 3.2 is justified
since we constructed a non-degenerate τ -chain. By Lemmata 3.4, 3.6, we can thus compute
χDr (G;ϕ) from the Betti numbers of the complex Dr[t, t−1]ϕ ⊗ C∗(X):

Dr[t, t−1]ϕ

(
∂r
∂x

∂r
∂y

)

−−−−−−→ Dr[t, t−1]2ϕ

⎛
⎝x− 1
y − 1

⎞
⎠

−−−−−−→ Dr[t, t−1]ϕ.

Since Dr[t, t−1]ϕ is a (non-commutative) principal ideal domain, the kernel of the differential
originating from degree 2 is free. It is also seen to be torsion by Lemma 3.6 and hence
dimDr

Hp(Dr[t, t−1]ϕ ⊗ C∗(X)) = 0 for p � 2.
We let c = c(G,ϕ) and choose a splitting

G = 〈A, t | μ(B) = tBt−1〉

of (G,ϕ) with associated group B generated by x1, . . . , xc; in particular A ⊆ ker(ϕ) is finitely
generated. We pick a presentation A = 〈g1, . . . , gk | r1, r2, . . . 〉, which is possible since G and
thus A are countable. Denote the number of relations in this presentation by l ∈ Z�0 ∪ {∞}.
The splitting of (G,ϕ) then gives the following alternative presentation of G:

G = 〈g1, . . . , gk, t | r1, r2, . . . , μ(x1)−1tx1t
−1, . . . , μ(xc)−1txct

−1〉.

Note that the words ri, xj and μ(xj) are words in the generators gi of A. Denote by Y the Cayley
2-complex associated to this presentation. By construction, π1(Y/G) = π1(X/G), and thus Y
can be turned into a model for EG by attaching G-cells in dimension 3 and higher only. Hence,
its homology with arbitrary coefficients agrees with that of X up to dimension 1, which in
particular implies that dimDr

Hp(Dr[t, t−1]ϕ ⊗ C∗(X)) = dimDr
Hp(Dr[t, t−1]ϕ ⊗ C∗(Y )) for

p = 0, 1.
In conclusion, we will know χDr (G;ϕ) if we compute the first two Dr[t, t−1]ϕ-Betti numbers

of the G-CW-complex Y . For this, we need to consider its shape in more detail. The complex
Y is a 2-dimensional free G-CW-complex with one zero-cell, k + 1 one-cells and l + c two-cells,
and its cellular chain complex takes the form

· · · → 0 → ZGl+c

(
M0 M1

)

−−−−−−−→ ZG⊕ ZGk

⎛
⎝v0

v1

⎞
⎠

−−−−→ ZG,

where the (potentially infinite) block matrix M =
(
M0 M1

)
representing the second differential

consists of the Fox derivatives of the relations with respect to t and the gi, respectively, and
v0 = t− 1, v1 = (g1 − 1, . . . , gk − 1)t. Since the relations r1, r2, . . . are words in ZA, their Fox
derivatives with respect to t are trivial and their derivatives with respect to each gi again lie
in ZA. For the other relations, we obtain

∂

∂t
(μ(xj)−1txjt

−1) = μ(xj)−1 − μ(xj)−1txjt
−1 ∈ ZA and

∂

∂gi
(μ(xj)−1txjt

−1) =
∂

∂gi
(μ(xj)−1) + μ(xj)−1t

∂

∂gi
xj ∈ ZA + t · ZA.
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Hence, the matrix M is of the shape

with the block M0 consisting of the first column of M . Now consider the following chain map
of Dr[t, t−1]ϕ-chain complexes, where the vertical maps are given by projections and both
complexes continue trivially to the left and right:

Since multiplication from the right with t− 1 is injective on Dr[t, t−1]ϕ, the chain map
induces an isomorphism on homology in degrees 0 and 1. Since all the homology modules
Hi(Dr[t, t−1]ϕ ⊗ C∗(Y )) are torsion by Lemma 3.6, the same holds true for the homology of
the lower chain complex. Using Proposition 6.3, we thus get the bound

dimDr
Dr[t, t−1]kϕ/(Dr[t, t−1]l+c

ϕ M1) = dimDr
tors(coker(rM1)) � c.

As deg(t− 1) = 1, we also get

dimDr
Dr[t, t−1]ϕ/(t− 1) = 1.

In particular, the lower chain complex consists of finite Dr-vector spaces. Applying the
rank-nullity theorem to its only non-trivial differential, we obtain

thϕ(Pπ) = −χDr (X;ϕ)

= dimDr
H1(Dr[t, t−1]ϕ ⊗ C∗(Y )) − dimDr

H0(Dr[t, t−1]ϕ ⊗ C∗(Y ))

= dimDr
Dr[t, t−1]kϕ/(Dr[t, t−1]l+c

ϕ M1) − dimDr
Dr[t, t−1]ϕ/(t− 1)

� c− 1. �

Example 6.5. For words x, y ∈ 〈a, b〉, we define xy :− y−1xy and [x, y] :− x−1y−1xy.
Consider the two-generator one-relator group G defined by〈

a, b | [a, b] =
[
[a, b], [a, b]b

]〉
,

which can be presented in cyclically reduced form as

π :− 〈
a, b | a−1bab−1a−1bab−2a−1baba−1b−2ab

〉
.
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We see directly from the first presentation of G that the relator becomes trivial in the
abelianisation, hence b1(G) = 2 and π is a nice (2, 1)-presentation. By [19, Proposition II.5.18],
the group G is also torsion-free since the single relator is not a proper power.

We claim that G is not residually solvable, i.e., not every element maps non-trivially into a
solvable quotient of G. Since the element [a, b] can be written as an arbitrarily deeply nested
iterated commutator (using the relation of the first presentation above), it is contained in all
derived subgroups of G and hence of every quotient. But if a quotient is solvable, some derived
subgroup and hence the image of [a, b] will be trivial. It is thus left to show that [a, b] is non-
trivial in G. Assume that [a, b] = 1 in G. Then G is abelian and hence also [b, a] = b−1a−1ba = 1
in G. But [b, a] appears as a proper subword of the relator in π and thus represents a non-trivial
element by [19, Proposition II.5.29].

We conclude that a method such as the one employed in [12, Lemma 6.1] cannot be used
to deduce that G is residually –torsion-free elementary amenable˝ and hence satisfies the
assumptions of Theorem 5.10. We deem it plausible that G is even not residually –torsion-free
elementary amenable˝ and is thus not covered by Theorem 5.10, but to the best of the authors’
knowledge no two-generator one-relator group has been shown to have this property.

If we denote the single relator of π by r, an easy but tedious computation shows that

∂r

∂a
= −

(−1,−1)︷ ︸︸ ︷
b−1a−1 +

(−1,0)︷ ︸︸ ︷
b−1a−1b−

(−1,−1)︷ ︸︸ ︷
b−1a−1bab−1a−1 +

(−1,0)︷ ︸︸ ︷
b−1a−1bab−1a−1b

−
(−1,−2)︷ ︸︸ ︷

(b−1a−1ba)2b−2a−1 +

(−1,−1)︷ ︸︸ ︷
(b−1a−1ba)2b−2a−1b−

(−1,0)︷ ︸︸ ︷
(b−1a−1ba)2b−2a−1baba−1

+

(−1,−2)︷ ︸︸ ︷
(b−1a−1ba)2b−2a−1baba−1b−2,

with the image in the abelianisation of each summand noted in brackets. The convex hull of
these points in R2 corresponds to an interval of length 2 in the b-direction, hence Pπ = PDr (G)
is an interval of length 1 in the b-direction. The marked polytope Mπ has no markings since
all abelianised monomials appear multiple times.

Let ϕb : G → Z be the homomorphism sending a to 0 and b to 1. Since thϕb
(PDr (G)) = 1,

we conclude from Theorem 6.4 that cf (G,ϕb) = c(G,ϕb) = 2. A (free) splitting of G along ϕb

of minimal rank is thus given by

G =
〈
a, b, x, y | x = [x, y], y = xb, x = [a, b]

〉
=
〈
a, x, y, b | x = [x, y], y = xb, ax = ab

〉
.

Note that our example is a nice version of the original example of a two-generator one-relator
group which is not residually finite produced by Baumslag in [2].
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