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Abstract

This paper establishes conditions for the asymptotic stability of balanced growth
paths in dynamic economic models as typical cases of homogeneous dynamical sys-
tems. Results for common two-dimensional deterministic and stochastic models are
presented and further applications are discussed.
According to Solow & Samuelson (1953) balanced growth paths for deterministic
economies are induced by so-called Perron-Frobenius solutions defined by an eigen-
value λ > 0 (the growth factor) and by an eigenvector x̄, a fixed point of the system
in intensive form. Contraction Lemma A.1 states for continuous deterministic sys-
tems that convergence to a balanced path occurs whenever the product λ ·M(x̄)
of the eigenvalue λ multiplied with the contractivity 0 < M(x̄) < 1 of the stable
eigenvector x̄ of the intensive form is less than one. For λ ·M(x̄) > 1 all unbalanced
orbits in the neighborhood of the balanced path diverge in spite of convergence
in intensive form. This confirms that convergence to a stable eigenvector of the
intensive form is only a necessary condition for convergence in state space.
In the stochastic case, the condition for asymptotic stability of balanced growth
paths (Theorem B.2) uses results from a stochastic analogue of the Perron-Frobenius
Theorem on eigenvalues and eigenvectors. Convergence (divergence) occurs if the
expectation of the product λ(ω) ·M(ω) is less than (greater than) one, i.e. if the
product is mean contractive. This is equivalent to the condition that the sum of
the expectations of the logarithmic values of the stochastic growth rate and of the
contractivity factor of the intensive form are less than (greater than) zero.

JEL codes: C02, C62, E13, E24, E30, E31, O41, O42

Keywords: balanced growth, stability, stochastic balanced growth, random fixed points,
Perron-Frobenius solution
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Introduction 3

1 Introduction

In their early contribution Solow & Samuelson (1953), two of the most prominent Nobel Lau-
reates in economics, provided for the first time the formal definition of a balanced growth path
as the solution of a nonlinear eigenvector problem of a homogeneous dynamical system, also
referred to as the Perron-Frobenius solution of linear systems (see Solow, 1952). It is defined
by a growth factor (the eigenvalue) and by a fixed point of the modified time-one map on the
unit simplex of the state space (the map in so-called intensive form). Orbits along a balanced
growth path of the homogeneous system are defined as a solution exhibiting common constant
geometric contraction or expansion of all state variables in the proportions given by the fixed
point of the intensive form at a rate equal to the eigenvalue.

Solow and Samuelson discuss in detail existence and uniqueness of balanced paths, and what
they call Relative Stability in the Large or Stability in the Small. By this they refer essentially
to convergence in or stability of proportions (Solow & Samuelson, 1953, pp. 418) recognizing
that there remains an issue of pathwise convergence in state space which to them seemed
unobtainable at the time. They express their skepticism by writing (p. 419):

‘The steady growth solution cannot be stable in the absolute sense that changes in
initial conditions have effects ultimately damping to zero’.

In contrast, in his seminal contribution Solow (1956) seems to suggest that under regular
conditions a balanced path is attracting in state space if it is unique and if the intensive form is
stable while divergence in state space occurs under multiplicity of growth paths if the intensive
form assigns instability to one of its paths. In other words, trajectorial convergence holds if
the growth path is stable for the intensive form contradictory to the conjecture of instability
from the joint publication with Samuelson in Econometrica 1953. In almost all publications
succeeding the article of 1965, which initiated the era of neoclassical growth theory, economists
have been examining stability issues in models of growth primarily for intensive form models
supporting the view that stability of the intensive form implies stable balanced growth paths in
state space as well. The highly regarded survey article by Hahn & Matthews (1964) does not
mention the issue. Standard text books of more recent vintage (such as Barro & Sala-I-Martin,
1995; Romer, 1996; Aghion & Howitt, 1998; De La Croix & Michel, 2002) seem to suggest as
in Solow (1956) that convergence in per-capita terms or in growth rates implies convergence in
state space as well.

With two notable exceptions, discussions of stability in growth models after Solow’s 1956 con-
tribution lack an awareness for the need to determine conditions which guarantee convergence
to balanced growth paths in state space. Deardorff (1970)1 shows for the standard Solow model
that without depreciation the distance between the unbalanced and the balanced growth path
is always exploding for any positive growth rate of the population. With such a mathematical
condition for divergence economists should have become aware of the fact that convergence to
a balanced growth path would also fail for low positive levels of depreciation and some ranges
of population growth even when convergence is predicted for intensities. Conversely, conver-
gence to the balanced path might occur for some positive rate of depreciation large enough but
less than one which interacts with the rate of population growth. Unfortunately, the stability
condition of the intensive form does not reveal any such trade-off between the two rates.

If the instability of balanced growth paths (as conjectured in Solow & Samuelson, 1953) were
considered as a structural property of homogeneous dynamic models it implies that it would be

1After Deardorff (1970), Jensen (1994) points out that, in general, path-wise convergence in continuous-time
growth models cannot be obtained from convergence in per-capita quantities.
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Introduction 4

impossible to show convergence of the capital stock of two identical economies to the same
level under growth (with identical consumers, identical labor, and identical initial conditions)
when only their initial capital equipment differs by ±ǫ above/below the growth path. Every-
thing else being identical and in spite of all conditions guaranteeing convergence in intensities,
the instability would imply that the difference of their respective capital stocks would always
grow to infinity, a possibility hard to be conceived of under all general conditions. Solow and
Samuelson themselves did not reconsider a discussion of their original conjecture after Dear-
dorff’s findings. In the sequel, the discussion of whether additional conditions for convergence
exist and could be determined was not pursued by others even in the context of the convergence
debate of trade theory, of development economics, and of comparative systems (as, for example,
in Galor, 1996; Mountford, 1998, 1999).

The opposite conjecture of a general stability of all growth paths under convergence of intensities
alone may also be the result of a misinterpretation of the condition for convergence of the usual
one-dimensional intensive form using per-capita variables. Formally, this intensive form seems
equivalent to assuming that labor supply is constant with n = 0. The growth rate of labor enters
only in the determination of the level of the balanced path and does not seem to matter for the
condition of convergence of the intensive form. Under this ‘as if ’ assumption concavity of the
production function is indeed a sufficient condition for convergence to the (trivial) growth path
with zero growth of the work force. However, concluding from this fact convergence of orbits in
state space to the balanced growth path for all values n > −1 is not warranted. Nevertheless,
this might have lead some researchers to suggest that there is no need for investigating the
stability issue further for n 6= 0.

For models with labor growing endogenously the growth rate along a balanced path k̄ will be a
function of the intensity with value n(k̄) ⋚ 0. In this case concavity of the production is not a
sufficient condition any longer for the stability of the balanced solution k̄ in intensive form. In
models of dimension higher than two (for example, in a trade model with two or more countries,
in a model with two financial assets, etc.) the choice of an intensive form with respect to one
particular variable is arbitrary and needs to be taken with care to exhibit convergence of the
associated ‘real model’. In such cases, it is more appropriate to choose the unit simplex (as
suggested originally by Solow & Samuelson, 1953) or the unit sphere as compact domains for
the time-one map in intensive form.

Figure 1 portrays geometrically the possible sources for the occurrence of convergence or diver-
gence to the balanced path in the standard two-dimensional growth model of the Solow type,
indicated by a decrease or an increase of the distance of an orbit from the balanced path for a
given rate of convergence of the intensive form. The difference between the two outcomes lies in
the size of the expansionary growth rate of labor. This reveals that convergence (divergence) to
the balanced path k̄ ⊂ R2

+ depends on the relative sizes of two dynamic forces: the contractiv-
ity for the intensity and the expansionary one for the growth rate of labor! The examination of
the implications of their interaction on the distance from the growth path provides the answer
to the question of stability.

The conditions for convergence of orbits to a balanced path in two-dimensional growth mod-
els were derived in Böhm, Pampel & Wenzelburger (2005) for models in discrete time and in
Pampel (2009) for continuous time. The results for the general n-dimensional situation for
continuous homogeneous time-one maps in discrete time are given in Appendix A for determin-
istic systems and in Appendix B for stochastic ones. For deterministic dynamic economies, as
in most models of economic growth, of international trade, or monetary macro, conditions of
existence and stability are obtained applying the features of the non-linear generalization of the
Perron-Frobenius Theorem. In the stochastic case, the paper introduces the associated notion
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Figure 1: Convergence/divergence in (L,K)−space: ∆t+1 > ∆t > ∆t+1 for kt → k̄.

of stochastic balanced paths and derives the conditions for their stability using a recent exten-
sion of the Perron-Frobenius Theorem provided by Evstigneev & Pirogov (2010) and Babaei,
Evstigneev & Pirogov (2018). The main two sections of this paper present the application of the
mathematical results to different economic dynamic models and they discuss further extensions
and implications.

2 Stable Expansion in Deterministic Systems

Figure 1 suggests that convergence to a balanced growth path means that the distance of an
orbit of the system F to the growth path tends to zero as t → +∞. Let F : Rn

+ → Rn
+ denote

the time-one map of the homogeneous dynamical system and f : S → S its intensive form
associated with F being given by y 7→ f(y) := F (y)/|F (y)| and S (the positive part of) the
unit sphere. Let x̄ = f(x̄) denote an asymptotically stable fixed point of f and L(x̄) ⊂ Rn

+ the
halfline through x̄ containing all balanced growth paths.

Define the distance of x ∈ Rn
+ from L(x̄) as

∆ := d(x, L(x̄)) = min
α≥0

|x− αx̄| = |x− 〈x, x̄〉x̄| (2.1)

where 〈·, ·〉 denotes the scalar product.

Definition 2.1. An orbit γ(x) of F is said to converge to a balanced growth path (to L(x̄)) if

∆t := d(F t(x), L(x̄)) = |F t(x)− 〈F t(x), x̄〉x̄| (2.2)

converges to zero for t→ ∞.

Contraction Lemma A.1
Let (λ, x̄) denote a Perron-Frobenius solution for F , i.e. λx̄ = F (x̄) with |x̄| = 1 and λ > 0.
Assume that x̄ ∈ S is an asymptotically stable fixed point of f with contractivity 0 < M < 1.
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2.1 The Solow Growth Model 6

Then, for all x0/|x0| in the basin of attraction of x̄ = f(x̄):

If λM > 1, then lim
t→∞

|∆t| = ∞. (2.3)

If λM < 1, then lim
t→∞

|∆t| = 0. (2.4)

In other words if the product of the two factors of contraction and of expansion is less than
one convergence occurs, otherwise divergence from the balanced growth path follows. More
details and the proof for Lemma A.1 are given in Appendix A.

2.1 The Solow Growth Model

Let F : R2
+ → R+ be the concave homogeneous production function inducing the time-one

map of the Solow growth model (Solow, 1956, 1988, 1999) (L,K) : R2
+ → R2

+, (L,K) 7→
(L(L,K),K(L,K)) given by

L′ = L(L,K) := (1 + n)L

K ′ = K(L,K) := (1− δ)K + sAF (K,L)
(2.5)

with parameters (n, δ, A, s). This implies the common one-dimensional mapping in intensity
form

k′ = G(k) :=
1

1 + n
((1− δ)k + sA f(k)) , k := K/L f(k) := F (K/L, 1). (2.6)

A balanced path of the Solow model is induced by a Perron-Frobenius solution of the homoge-
neous system (L,K), i.e. by a triple λ > 0, (L̄, K̄) 	 0, |(L̄, K̄)| = 1, satisfying

λ

(

L̄

K̄

)

=

(

(1 + n)L̄

(1− δ)K̄ + sAF (K̄, L̄)

)

= (1 + n)L̄ ·

(
1

G(k̄)

)

, G(k̄) = k̄ := K̄/L̄. (2.7)

Balanced orbits (or paths) are of the form γ(α(L̄, K̄)) =
{
λt · α(L̄, K̄)

}

t≥0
, α > 0. They are

all contained in the set L(k̄) :=
{
(L,K) ∈ R2

+ |K = k̄L, k̄ := K̄/L̄ 	 0
}

which is the halfline
through (L̄, K̄) 	 0, the balanced ray.

If f(k) satisfies the Inada conditions (Inada, 1963), then, for every (n, δ, A, s), there exists a
unique Perron-Frobenius solution λ > 0, (L̄, K̄) ≫ 0 satisfying

f(k̄)

k̄
:=

n+ δ

sA
, k̄ := K̄/L̄

λ := 1 + n,

M := lim
k→k̄

G(k)−G(k̄)

k − k̄
=: G′(k̄).

(2.8)

(1) The steady state k̄ = G(k̄) of the model in intensive form is asymptotically stable if and
only if the elasticity of f , Ef (k̄) := k̄f ′(k̄)/f(k̄) < 1. Since

G′(k̄) =
1

1 + n

(
1− δ + Asf ′(k̄)

)
=

1

1 + n

(

1− δ + (n+ δ)
k̄f ′(k̄)

f(k̄)
)

)

= 1 +
δ + n

1 + n

(
Ef (k̄)− 1

)
< 1 ⇐⇒ Ef (k̄) < 1,

(2.9)

this is guaranteed by the concavity of F (respectively of f) for every (n, δ, A, s).

Volker Böhm Revised May 12, 2020 Stability in Homogeneous Systems



2.1 The Solow Growth Model 7

(2) The condition (2.9) is only necessary to guarantee convergence of the orbit in state space
to the balanced ray L(k̄). According to Lemma A.1 orbits γ(L0, K0) of the Solow model
converge to the halfline through (L̄, K̄) if and only if λM = λG′(k̄) < 1 which is satisfied
if and only if

Ef (k̄) <
δ

n+ δ
. (2.10)

In other words, convergence to the balanced ray (halfline) is guaranteed only for levels of the
elasticity Ef smaller than the relative rate of depreciation δ/(n+ δ). Surely, if n ≤ 0 stability
holds for all pairs 0 ≤ (Ef (k̄), δ) ≤ 1. Conversely, if n > 0, all orbits are diverging from the
balanced path if δ = 0, which was the result established by Deardorff (1970).

Figure 2 shows the outcome of a numerical example of how a marginal change of the rate of
population growth changes the asymptotic behavior near the growth path. Let Ef (k̄) = .5 and
0 < δ = n < 1. Then, for every small ǫ > 0 :

δ/(n + ǫ + δ) < Ef (k̄) < δ/(n − ǫ + δ) (2.11)

implying that unbalanced growth paths converge for n− ǫ while they diverge from the balanced
path for an increase to n+ ǫ .

b

b

bc

bc

1

1

PSfrag replacements

0
L

K

K0

K̄

L0 L̄

k0

k1

k̄

∆0

∆1

∆1

Figure 2: Convergence/divergence in (L,K)−space: ∆1 > ∆0 > ∆1 for k0 → k̄.

In general, for 0 ≪ (δ, n, Ef (k̄)), equality of condition (2.10) describes the trade-off between
(δ, n) and Ef (k̄) to maintain stability. Near the boundary of the stability region a decrease in
capital depreciation has to be offset by a decrease in elasticity to maintain stability. Figure 3
displays the bifurcation curve and the ranges of (Ef (k̄), δ) ∈ [0, 1]2 (shaded region) for which
unstable positive balanced growth occurs for given n > 0. In such economies orbits diverge
from the balanced path whenever initial conditions are not equal to k̄, 0 < Ef (k̄) < 1 is only
a necessary condition for convergence. This occurs in particular for the respective cases with
Cobb-Douglas production functions with constant elasticity Ef (k̄). Under more general tech-
nologies or savings functions monotonic homogeneous systems (L,K) with multiple balanced
paths may exist, all of which may be unstable for large open sets of parameters according to
the conditions of Lemma A.1.
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stable

δ

1

1

unstable

Ef (k̄)

Figure 3: Regions of (Ef (k̄), δ) ∈ [0, 1]2 with unstable balanced growth; n > 0

2.2 Economic Growth with an Aging Workforce and Vintage Capital

Consider a workforce with an overlapping generations structure where the productivity of each
generation diminishes with age. Assume that total lifetime of each generation is finite, identical,
and equal to some length N > 2. Let L = (L1, L2, . . . , LN) denote the typical vector of the
number of workers in an arbitrary period grouped by age, where Li, i = 1, . . . , LN denotes the
number of workers with remaining lifetime i.

Assume that the evolution of the workforce follows a linear regeneration process of population
dynamics defined by a matrix L′ = NL such that

L′ =














0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 0 0
...

...
...

...
...

0 0 0 0 1 0
0 0 0 0 0 1

1 + n1 1 + n2 1 + n3 · · · 1 + nN














L (2.12)

where n := (1+n1, 1+n2, · · · , 1+nn) ≥ 0 are the fertility rates or growth factors from surviving
generations, i.e. the contributions of each generation to the next youngest cohort. The matrix
N contains an N − 1 dimensional unit matrix I in the upper right hand corner while the
first column is often assumed to consist of zeroes only. A more elaborate model could include
differential death rates 0 ≤ d := (0, d2, d3, · · · , dn) ≤ 1 of generations altering the population
matrix to

L′ =














0 1− d2 0 0 · · · 0
0 0 1− d3 0 · · · 0
0 0 0 1− d4 0 0
...

...
...

...
...

0 0 0 0 1− dN−1 0
0 0 0 0 0 1− dN

1 + n1 1 + n2 1 + n3 · · · 1 + nN














L. (2.13)

Assume that capital has a fixed finite life timeM > 2 and that it is non-malleable once produced

Volker Böhm Revised May 12, 2020 Stability in Homogeneous Systems



2.2 Economic Growth with an Aging Workforce and Vintage Capital 9

in time. Let K = (K1, K2, · · · , KM) denote the vector of the capital equipment in the economy,
where Kj is the number of machines with remaining operating life time j, j = 1, . . . ,M .

Output across time is homogeneous and produced using a homogeneous production function
F : RM

+ × RN
+ → R+, (K,L) 7→ F (K,L). Then, the formation of new capital under a Solow

savings hypothesis implies that

K ′
M = sF (K,L), 0 < s < 1. (2.14)

The development of the vintage composition follows a linear decay process. Let the list of
rates of decay of each vintage machine be given as δ := (0, δ2, δ3, . . . , δM) with 0 ≤ δj ≤ 1,
j = 2, . . . ,M . Then, the one-step mapping for the change of the vintage capital becomes
K ′ = MK where

K ′ =














0 1− δ2 0 0 · · · 0
0 0 1− δ3 0 · · · 0
0 0 0 1− δ4 0 0
...

...
...

...
...

0 0 0 0 1− δM−1 0
0 0 0 0 0 1− δM
0 0 · · · kM(K,L)














K. (2.15)

Under the Solow hypothesis with a given propensity to save the entry kM(K,L) = sF (K,L)/KM

denotes the growth factor of new capital with respect to the previous/latest capital generated
from aggregate savings. Thus, one obtains a homogeneous time-one map (K,L) : RM

+ ×RN
+ →

RM
+ × RN

+ of a dynamical system defined by

K ′ = K(K,L) := M (K,L)K

L′ = L(K,L) := NL
(2.16)

which is linear except for the last component in the vintage capital formation. It describes the
joint evolution of capital accumulation and of the demographic development of the work force
of a real (non-monetary) economy under a constant aggregate savings propensity 0 < s < 1
according to a Solow-type savings assumption. The demographic structure of workers as well
as the vintage composition of capital is modeled in a linear parametrized form with arbitrary
finite lengths of lifetimes of workers and vintage capital which induces a multidimensional Solow
model. For N =M = 1 and malleability (additivity) of new and old capital the model reduces
to the standard one-dimensional model defined by (2.5).

The results for existence, sustainability, and stability from the two-dimensional case can be
generalized almost in a one-to-one fashion to the multidimensional model after defining an
appropriate intensive form with the positive unit sphere or simplex as state space.

(1) A balanced path of the extended Solow model is defined by a triple (λ, K̄, L̄) ≫ 0,
|(K̄, L̄)| = 1 which solves

λ

(

K̄

L̄

)

=

(

M (K̄, L̄)

N L̄

)

. (2.17)

Thus, balanced orbits of (K,L) are of the form γ(α(K̄, L̄)) =
{
λtα(K̄, L̄)

}

t≥0
, α > 0,

which are all contained in the half line {(K,L) | (K,L) = α(K̄, L̄), α > 0}.

Volker Böhm Revised May 12, 2020 Stability in Homogeneous Systems



2.2 Economic Growth with an Aging Workforce and Vintage Capital 10

Since N is a matrix with constant coefficients independent of capital accumulation, λL̄ =
N L̄ must hold. Thus, λ is an eigenvalue and L̄ is an eigenvector of the population matrix
N defining the stationary distribution of the workforce along balanced orbits. Both are
determined parametrically by (d,n). Therefore, λ can be greater or less than one and
L̄ exhibits typically a non-uniform age distribution of workers across generations. The
specific structure of the population matrix N of (2.13) implies a simple test for the size of
the growth factor λ which turns out to be a leading real eigenvalue of N with multiplicity
one2.
Proposition 2.1. Let the population matrix N be given by (2.13) and define

p̄ :=
∑N

ℓ=1

(

(1 + nℓ) ·
∏N

k=ℓ+1 (1− dk)
)

. Then:

if 0 < p̄ < 1, then p̄ < λ̄ < p̄
1

N < 1,

if 1 < p̄, then 1 < p̄
1

N < λ̄ < p̄.
(2.18)

(2) Let S ⊂ RM+N
+ denote the nonnegative subset of the unit sphere and define the ‘intensive

form’ of this Solow model by the mapping g : S → S, k 7→ g(k) where k : (K,L)/|(K,L)|
and

g(k) :=
(K(K,L),L(K,L))

|(K(K,L),L(K,L))|
. (2.19)

By construction k̄ := (K̄, L̄) = g(k̄) ∈ S is a fixed point of g and (λ, K̄, L̄) defines a
balanced path with λ = |(K(K̄, L̄),L(K̄, L̄))|.

Let the production function F be strictly monotonically increasing and strictly concave
for all x, y, y 6= αx (off rays), and satisfy a generalized weak Inada condition. Then, there
exists a unique interior fixed point of g(k̄) = g(K̄, L̄) = (K̄, L̄) = k̄ ∈ S for all (s,d,n, δ).
This condition is satisfied in particular when F is isoelastic, i.e. of the Cobb-Douglas
type.

(3) If k̄ is asymptotically stable under g, for every k, k′ ∈ B(k̄) ⊂ S, the basin of attraction
of k̄, one has |gm(k) − gm(k′)| < |k − k′| for some m ≥ n, and lim kn = lim gn(k) =
lim gn(k′) = k̄. This implies a contractivity factor M(k̄) as

M(k̄) := lim
kn→k̄

|g(kn)− k̄|

|kn − k̄|
< 1, (2.20)

whose size depends jointly on the curvature features of the production function and on
(d,n, δ), see Lemma A.1.

(4) Lemma A.1 of the appendix states that orbits γ(K0, L0) in state space converge to the
half line {(K,L) ∈ RM+N

+ | (K,L) = α(K̄, L̄), α > 0} if λM(k̄) < 1. They diverge if
λM(k̄) > 1. Therefore, as in the two-dimensional case without demographic or vintage
structures, the convergence to balanced growth depends on an interplay between produc-
tion elasticities embedded in the technology F and the parameters of decay or renewal
for capital and for the work force. The product of the eigenvalue with the contractivity
of the intensive mapping must be less than one, showing again that contractivity of the
latter is only a necessary condition for convergence under growth.

There are obvious further applications of Lemma A.1 to examine the conditions for stable
balanced growth in models with more general savings behavior than the one of the Solow type:

2I am indebted to T. Pampel for pointing out this result.
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2.3 Examples of Monetary Models 11

• all models with endogenous determination of the savings behavior, – as in optimal growth,
under differential savings by heterogeneous agents or by income groups (as in Kaldor,
1957; Pasinetti, 1962; Samuelson & Modigliani, 1966), or in OLG models –;

• two-sector growth models (as in Drandakis, 1963; Inada, 1963; Uzawa, 1961, 1963; Galor,
1992);

• models of international trade (Oniki & Uzawa, 1965; Mountford, 1998, 1999);

• models with additional assets other than capital such as public debt (Diamond, 1965);

• models with expanded commodity spaces induced by heterogeneous inputs, natural re-
sources, or public goods;

• convergence to balanced growth in general multisector growth models of the von Neu-
mann type (see von Neumann, 1937; Solow & Samuelson, 1953; Gale, 1956; Kemeny,
Morgenstern & Thompson, 1956; Evstigneev & Schenk-Hoppé, 2008) could be examined.

2.3 Examples of Monetary Models

All consistent and complete intertemporal macroeconomic models which describe time series
of monetary data (satisfying the principles of national income accounting) belong to the class
of homogeneous systems: the AS-AD macroeconomic model, any complete Keynesian IS-LM
model, all complete New-Keynesian models with consistent policies, models of the so-called
monetary approach in international trade (for example the Mundell-Fleming Model and others,
as in Dornbusch, 1976; Frenkel & Razin, 1987; Gandolfo, 2016, or most models in Krugman,
Obstfeld & Melitz, 2015). If their time series are generated by forward recursive time-one maps
these will be homogeneous of degree one. The conditions of Lemma A.1 apply and conver-
gence/divergence in state space occurs if the Perron-Frobenius solution and the contractivity
of the intensive form satisfy the product rule.

• The two versions of the AS-AD Model with money (Chapters 4.1-4.2 in Böhm, 2017,
or with money and sovereign debt in Böhm, 2018) provide explicit applications of these
results. They are micro-based completions of the Keynesian IS-LM Model.

• Claas (2019) presents a detailed analysis in a macroeconomic model with efficient bar-
gaining showing how the parameters of taxation, consumption, production, and of union
power influence convergence to or divergence from the balanced inflationary path.

3 The Stochastic Solow Growth Model

The stochastic version of the Solow model arises when one or several of the parameters (n, δ, A, s)
are subjected to a recurring exogenous random perturbation. Schenk-Hoppé & Schmalfuß
(2001) analyze the standard one-dimensional model in its intensive form with general ergodic
perturbations of all four parameters. They show existence and convergence to a stationary ran-
dom orbit defined by a random fixed point of the one-dimensional Solow model. The random
fixed point induces a balanced random growth path of capital and labor in R2

+. As in the de-
terministic case convergence of the intensive form is only a necessary condition for convergence
to a balanced growth path in state space3. The appendix provides the framework, concepts of

3The convergence conditions were presented originally in Böhm, Pampel & Wenzelburger (2005). Here they
use the more recent results from Babaei, Evstigneev & Pirogov (2018).
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3.1 State Space vs. Intensive Form 12

balancedness, and conditions for convergence for finite dimensional stochastic growth models.
It derives the conditions for convergence to balanced growth paths in state space (Theorem
B.2) from the relationship between the intensive and the state space form of the model.

Let the random variation be a production shock to a standard concave production function
given by a bounded positive multiplicative (Hicks neutral) perturbation defined by a random
variable A : Ω → [Amin, Amax], 0 < Amin < Amax < ∞, and by a random growth rate of the
working population n : Ω → [nmin, nmax], −1 < nmin < nmax < ∞ for a given probability space
(Ω,F ,P), ω = (. . . ,−1, 0, 1, . . .) ∈ Ω is the set of two-sided infinite sequences, F its Borel
sigma-algebra, and P is a probability measure. The dynamics of the noise process is given by
the so-called left shift, ω 7→ ϑ(ω), an invertible map ϑ : Ω → Ω, defined as (ϑω)s = ωs+1, s ∈ Z,
see Appendix B.

3.1 State Space vs. Intensive Form

If (At−1, nt−1) = (A(ωt−1), n(ωt−1)) = (A(ϑt−1ω), n(ϑt−1ω)) is a pair of realizations of the noise
process at time t−1 within the above frame work for an arbitrary ω ∈ Ω, the standard formula
(2.5) of the Solow model defines a pair of homogeneous random difference equations

Lt = (1 + nt−1)Lt−1

Kt = (1− δ)Kt−1 + sAt−1 F (Kt−1, Lt−1)
(3.1)

determining the one-step realization of capital and labor. They induce a random family of
homogeneous mappings4 G(ω) := (L(ω),K(ω)) : R2

+ → R2
+, (L,K) 7→ G(ω)(L,K),

G(ω)(L,K) :=

(

L(ω)(L,K)

K(ω)(L,K)

)

:=

(

(1 + n(ω))L

(1− δ)K + sA(ω)F (K,L)

)

P-a.s.. (3.2)

The standard intensive form of the stochastic Solow model is given by the maps g(ω) : R+ → R+

g(ω)k :=
1

1 + n(ω)
((1− δ)k + sA(ω) f(k)) , k := K/L f(k) := F (K/L, 1). (3.3)

Homogeneity implies the relation between the two mappings G(ω) = (1+n(ω))

(
1

g(ω)

)

,P-a.s.,

since

G(ω)(L,K) =(1 + n(ω))L






1

(1− δ)k + sA(ω) f(k)

1 + n(ω)




 = (1 + n(ω))L

(

1

g(ω)
(
K
L

)

)

. (3.4)

It provides a convenient way to compare orbits in state space with those of the intensive form.
With the definition of the two random families of maps G (respectively g), the list (Ω,F ,P, ϑ)
forms a random dynamical system in the sense of Arnold (1998) allowing the usage of the
methods of the associated theory.

Given ω and any initial condition (L0, K0), the state (Lt, Kt) of the system G after t > 0 periods
is generated by the mapping

C(t, ω)(K0, L0) :=







G(ω)(ϑt−1ω) ◦ · · · ◦G(ω)(K0, L0) t > 0

idR2
+

t = 0
(3.5)

4The notational convention for the result of the application of the function F (ω) to the point x will be F (ω)x
instead of F (ω)(x).
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3.1 State Space vs. Intensive Form 13

which satisfies

C(t+ s, ω) = C(t, ϑsω) ◦ C(s, ω) for all t, s. (3.6)

Therefore, for any ω ∈ Ω, the orbit of capital and labor in state space with initial condition
(L0, K0) ∈ R2

+ is given by γ(ω, (L0, K0)) := {C(t, ω)(L0, K0)}
∞

t . Similarly, for any initial
condition k0 ∈ R+, orbits of the intensive form g(ω) are given by γ(ω, k0) := {c(t, ω)k0}

∞

t

since the state kt of the intensive form system is generated by the one-dimensional mapping
c(t, ω) : R+ → R+

c(t, ω)k0 :=







g(ϑt−1ω) ◦ · · · ◦ g(ω)k0 t > 0

idR+
t = 0

(3.7)

which also satisfies c(t + s, ω) = c(t, ϑsω) ◦ c(s, ω), for all t, s. For notational consistency the
normalized mapping c̃(t, ω) := (1, c(t, ω)) : S → S, S :=

{
(x1, x2) ∈ R2

+ | x1 = 1
}
, will also be

used.

c̃(t, ω)

(
1
k0

)

:=







(

1

c(t, ω)k0

)

t > 0

idS t = 0

(3.8)

satisfying c̃(t+ s, ω) = c̃(t, ϑsω) ◦ c̃(s, ω), for all t, s.

PSfrag replacements

0

xt

xt+1

x0 x x

id

g(ξ)

g(ξ)

Figure 4: A random orbit γ(ω, x0) for ω = (. . . , ξ, ξ, ξ, ξ, ξ, ξ, . . .)

Figure 4 portrays the evolution of parts of an orbit of g(ω) ≡ (g(ξ), g(ξ)), with a discrete
two-point perturbation Ω = · · · ×

{
ξ, ξ
}
×
{
ξ, ξ
}
× · · · . Observe that an orbit is a sequence of

successive points on the two graphs of the maps (g(ξ), g(ξ)). If both are contractions with fixed
points (x, x), the interval [x, x] is a forward invariant set of the random dynamical system.

Stationary solutions of intensive form growth models are given by random fixed points which
are the stochastic analogue for stochastic difference equations of the concept of a deterministic
fixed point (see Schenk-Hoppé & Schmalfuß, 2001, or Definition B.2).
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3.2 Balanced Random Growth Paths 14

Definition 3.1. A random fixed point of the Solow growth model (3.3) in intensive form is a
measurable mapping (i.e. a random variable) k∗ : Ω → R+ solving

k⋆(ϑω) = g(ω)k⋆(ω) :=
(1− δ)k⋆(ω) + sA(ω) f(k⋆(ω))

1 + n(ω)
, P-a.s. (3.9)

Under the usual assumptions (Inada conditions and concavity of the production function, and
boundedness of stationary perturbations) a unique fixed point k⋆ exists (see Schenk-Hoppé &
Schmalfuß, 2001).

3.2 Balanced Random Growth Paths

Definition 3.2. A pair of measurable mappings λ : Ω → R++ and ξ : Ω → S is called a
Perron-Frobenius solution for the Solow model G(ω) if P-a.s.:

G(ω)ξ(ω) = λ(ω) · ξ(ϑ(ω)), (3.10)
(

1
g(ω)

)

ξ(ω) = ξ(ϑ(ω)), ξ(ω), ξ(ϑω) ∈ S. (3.11)

Condition (3.11) imposes that the random variable ξ : Ω → R2
+ is a random fixed point of the

normalized map (1, g(ω)) : Ω → S, which is the intensive form of G(ω), while (3.10) states that
the two random forces of expansion/contraction and of deviation of intensity act in a separable
way on scale and on intensity. They are factorized in a multiplicative way, where the randomness
of intensity is governed by the intensive form map alone while the random expansionary force,
the growth factor λ(ω), is independent of the state and of the intensity, i.e. randomness of
intensity and randomness of scale are processes depending only on the perturbation.

b

b

b

bc

bc

bc

bc
S

1

1

PSfrag replacements

0
L

K

k⋆0

k⋆1

k⋆2

k⋆t

λ(ω)ξ1

λ(ω)λ(ϑω)ξ2

Λ(ϑtω)ξt =
∏t

1
λ(ϑτ−1ω)ξt

K0

K̄
L0

L̄
k0
k1

k̄
∆0

∆1

∆1

Figure 5: A balanced growth path {C(t, ω)ξ(ω)} of the Solow model for the random fixed
point ξ(ω) ≡ (1, k⋆(ω)) and Perron-Frobenius solution λ(ω)ξ(ϑω) = G(ω)ξ(ω).
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3.3 Stable Balanced Growth Paths 15

Definition 3.3. An orbit γ(ω, (L0, K0)) := {C(t, ω)(L0, K0)}
∞

t of G(ω) is called balanced if
there exists a Perron-Frobenius solution (λ, ξ), λ : Ω → R+, ξ : Ω → R2

+, such that

C(t, ω)ξ(ω) =

(
t∏

τ=1

λ(ϑτ−1ω)

)

· c̃(t, ω)ξ(ω) =: Λ(ϑtω) · c̃(t, ω)ξ(ω). (3.12)

In other words, each state along a balanced growth path is given by the state of a random
eigenvector multiplied by the product of the cumulative growth factors of the preceding states.
Thus, the balanced growth factors depend on the previous growth factors but not on the current
or previous states along the path. By construction, one obtains the following lemma.
Lemma 3.1. A random fixed point k⋆ of the intensive form of the Solow model induces a
balanced growth path with growth factor λ(ω) = (1 + n(ω)).

Proof. The equality G(ω) = (1 + n(ω))

(
1

g(ω)

)

from (3.4) and ξ(ω) =

(
1

k⋆(ω)

)

imply

λ(ω)ξ(ϑ(ω)) = G(ω)ξ(ω) = (1 + n(ω))

(
1

g(ω)

)

ξ(ω)

= (1 + n(ω))

(
1

g(ω)

)(
1

k⋆(ω)

)

= (1 + n(ω))

(
1

k⋆(ϑω)

)

= (1 + n(ω))ξ(ϑω),

(3.13)

so that λ(ω) = 1 + n(ω) follows.

Figure 5 shows the relationship between the orbit {k⋆t } ≡ {k⋆(ϑtω)} = {c(t, ω)k⋆(ω)} of the
random fix point k⋆ and the balanced growth path γ(ω, ξ(ω)) = {C(t, ω)ξ(ω)}.

3.3 Stable Balanced Growth Paths

In order to discuss convergence and stability of random orbits in the Solow model the notion
of the stability of a random fixed point is used (for more details see Appendix B).
Definition 3.4. A random fixed point k⋆ : Ω → R+ of the Solow model in intensive form is
called asymptotically stable if

lim
t→∞

|c(t, ω)k0 − k⋆(ϑtω)| = 0 P-a.s. (3.14)

for all k0 ∈ B(k⋆(ω)), the basin of attraction of k⋆, where c(t, ω) is the mapping (3.7) associated
with g(ω).

Let {(Lt, Kt) = C(t, ω)(L0, K0)} denote an orbit in state space and {kt = c(t, ω)k0} one of the
intensive form with K0 = k0L0 and S := {(x1, x2) ∈ R2

+ | x1 = 1}.
Definition 3.5. The distance of {C(t, ω)(L0, K0)} of G to the balanced one {C(t, ω)ξ(ω)}
associated with the random fixed point ξ(ω) ≡ (1, k⋆(ω)), ξ : Ω → S is given by

∆t = ∆(t, ω)(L0, K0) :=|C(t, ω)(L0, K0)− C(t, ω)ξ(ω))|

=|C(t, ω)(L0, K0)− Λ(ϑtω)ξ(ϑtω))|.
(3.15)

An orbit {C(t, ω)(L0, K0)} is said to converge to the balanced orbit associated with k∗ if for
all k0 ∈ B(ξ(ω)) ⊂ S and for all (L0, K0) = (1, k0) 6= ξ(ω):

lim
t→∞

|c(t, ω)k0 − ξ(ϑtω)| = 0 and lim
t→∞

|∆(t, ω)(L0, K0)| = 0, P-a.s.. (3.16)
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Figure 6 displays the implications of a large versus a small expansionary growth factor of labor
for a given contractionary effect of intensity for the Solow model implying an increase or a
decrease of the induced distance.

PSfrag replacements
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∆t+1

∆t+1

Figure 6: Convergence/divergence to balanced path in (K,L)-space: ∆t+1 > ∆t > ∆t+1

Theorem 3.1.
Let k⋆ : Ω → R+ be an asymptotically stable random fixed point of g(ω) inducing the rate of
contraction

M(ω, ξ⋆(ω)) := lim
k0→k⋆(ω)

∣
∣
∣
∣

|g(ω)k0 − g(ω)k⋆(ω)|

|k0 − k⋆(ω)|

∣
∣
∣
∣
< 1, P-a.s. (3.17)

of g(ω) at ξ⋆(ω) = (1, k⋆(ω)). For almost all ω ∈ Ω and any (L0, k0L0), k0 ∈ B(g(ω)),
k0 6= k⋆(ω) with limt→∞ |c(t, ω)k0 − k⋆(ϑtω)| = 0, the distance ∆t := |C(t, ω)(L0, K0)−Λ(t, ω) ·
ξ⋆(ϑtω))| satisfies P-a.s.:

lim
t→∞

|∆t| =0 if E log(λ(ω, ξ⋆(ω)) + E logM(ω, ξ⋆(ω)) < 0 (3.18)

lim
t→∞

|∆t| =∞ if E log(λ(ω, ξ⋆(ω)) + E logM(ω, ξ⋆(ω)) > 0. (3.19)

The proof is identical to the one given in the appendix for Theorem B.2 by replacing the unit
simplex S as the domain for the intensive form in Theorem B.2 by the set S = {(x1, x2) ∈
R2

+ | x1 = 1} in Theorem 3.1.
Corollary 3.1. Let g(ω) : R+ → R+ be monotonically increasing and differentiable and assume
that k⋆ : Ω → R+ is an asymptotically stable random fixed point of g(ω). The derivative of g(ω)
at k⋆(ω) is given by

g′(ω)k⋆(ω) = lim
k0→k⋆(ω)

∣
∣
∣
∣

|g(ω)k0 − g(ω)k⋆(ω)|

|k0 − k⋆(ω)|

∣
∣
∣
∣
=:M(ω, ξ⋆(ω)), P-a.s.. (3.20)

For almost all ω ∈ Ω and any (L0, k0L0), k0 ∈ B(g(ω)), k0 6= ξ⋆(ω) with limt→∞ |c(t, ω)k0 −
k⋆(ϑtω)| = 0, the distance ∆t := |C(t, ω)(L0, K0)− Λ(t, ω) · ξ⋆(ϑtω))| satisfies P-a.s.:

lim
t→∞

|∆t| =0 if E [(1 + n(ω)) · g′(ω)ξ⋆(ω)] < 1 (3.21)

lim
t→∞

|∆t| =∞ if E [(1 + n(ω)) · g′(ω)ξ⋆(ω)] > 1 (3.22)
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Proof. Conditions (B.24) and (B.25) in the proof of Theorem B.2 imply convergence or diver-
gence for the linear maps ∆t and ∆t if the expectation of the product (1 + n(ω)) ·M(ω, ξ(ω))
is less than one or bigger than one. Since, ∆t ≤ ∆(t, ω) ≤ ∆t, (3.21) and (3.22) hold.

The corollary reveals that the random eigenvalue of the Perron-Frobenius solution has the
product form λ(ω) = (1+n(ω)) ·M(ω, ξ(ω)). Its expectation plays a critical role for upper and
lower bounds of the growth factor λ(ω) near balanced paths.

As in the deterministic case, pointwise convergence to the random fixed point k⋆ is only a
necessary condition for convergence of an orbit in state space to the balanced growth path, the
structural reason being the same:

Convergence in state space depends on the interplay of the contracting forces in
intensity and the expanding forces of the growing labor supply. Convergence of the
intensive form evaluates the contractionary forces of intensities only and disregards
the size of the expansionary forces of labor supply.

Formally, mean-contractivity does not require that either of the two interacting variables must
be contractive almost surely (see Arnold & Crauel, 1992). Nevertheless, a sufficient degree
of contractivity of the intensive form is needed to assure its convergence. It is a challenge to
investigate the consequences of both of these observation for other models of economic growth.

There are direct further applications of these results to more general growth models.

• The multidimensional stochastic version of the extended Solow model with an aging work-
force, i.e. with OLG consumers, and vintage capital (as introduced in Section 2.2) arises
when the coefficients (d,n, δ) of the two matrices M and N are random. Their properties
together with those of the production function determine the conditions for convergence
to their random balanced growth paths in state space according to Theorem B.2.

• Questions of viability or sustainability in models with public debt, financial assets, with
insurance, or pension systems are connected to the convergence issue under expansion in
homogeneous models. Böhm & Hillebrand (2007) presents an application of an intensive
form model examining the efficiency of Pay-As-You-Go pension systems in a stochastic
economy with multiperiod overlapping generations of consumers where compulsory public
retirement savings coexists with private savings and assets. The convergence issue is not
treated.

• Multisector models with heterogeneous resources, of countries, industries, or of the envi-
ronment are further examples for applications of the features of the theorem.

• Last but not least, Theorem B.2 and 3.1 could be used to determine how the mean
contractivity rule translates into specific conditions for stable random paths in optimal
growth and in models with overlapping generations.

4 A Stochastic AS-AD Model with Money

Monetary macroeconomic models make up another important area where methods of an orbit-
oriented approach are useful when stability or convergence of time series are to be investigated.
This seems to be particularly desirable for stochastic models with rational expectations. One
such model was presented in Böhm (2017) which is a particular tractable version of a closed
demand consistent temporary equilibrium model with a stochastic aggregate supply function
of the Lucas-type. The introduction of a multiplicative random production shock in the de-
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terministic model with perfect foresight turns the parametrized deterministic AS-AD-system
(see Chapter 4 in Böhm, 2017) into a two-dimensional homogeneous random dynamical system
under rational expectations. Its dynamic properties are reanalyzed here applying the properties
of random Perron-Frobenius solutions from Babaei, Evstigneev & Pirogov (2018).

Let the random perturbation be given by a bounded positive multiplicative (Hicks neutral)
production shock defined by a random variable Z : Ω → [Zmin, Zmax], 0 < Zmin < Zmax <∞ for
a given probability space (Ω,F ,P) with time-shift ϑ : Ω → Ω, see Appendix B. This implies two
homogeneous stochastic difference equations under rational expectations in the state variables
money balances Mt and the mean of expected future prices pet given by

(

Mt+1

pet+1

)

=

(

M(Mt, p
e
t , Zt)

Ψ(Mt, p
e
t , Zt)

)

:=






Mt

(
c̃− τ ⋆

c̃

)

(1 + ḡP(1, ψ∗(1, pet/Mt), Zt))

Mt ψ
∗(1, pet/Mt)




 (4.1)

inducing a random family of mappings G(ω) : R2
+ → R2

+, (M, pe) 7→ G(ω)(M, pe),

G(ω)(M, pe) =






M

(
c̃− τ ⋆

c̃

)

(1 + ḡP(1, ψ∗(1, pe/M), Z(ω))

M ψ∗(1, pe/M)




 , P-a.s.. (4.2)

Here, P is the random equilibrium-price law, a mapping which is homogeneous of degree one
in (Mt, p

e
t ) for each level of Z, with ḡ > 0 being the level of government real demand. (c̃− τ ∗)(c̃

denotes the net consumption multiplier of aggregate demand arising from isoelastic consump-
tion characteristics. Therefore, the first equation of (4.1) describes the evolution of monetary
growth.

The variable pet ≡ pet−1,t denotes the prediction made in t−1 for the mean price in period t, and
ψ∗ is the unbiased predictor (a homogeneous forecasting rule depending on money balances and
the previous prediction) making the mean prediction unbiased along orbits5. Thus, the second
equation guarantees rational expectations along orbits in the usual sense. For simplicity it is
assumed that the noise is an i.i.d. process. This makes the unbiased predictor ψ∗ a deterministic
function independent of Z(ω).

4.1 State Space vs. Intensive Form

As for the two-dimensional Solow growth model the following concepts and definitions are to
be used. The one-dimensional intensive form g(ω) : R+ → R+, of the AS-AD model with
qe := pe/M is defined as

g(ω)qe :=
Ψ(M, pe, Z(ω))

M(M, pe, Z(ω))
=

(
c̃

c̃− τ ⋆

)
ψ∗(1, qe)

1 + ḡP(1, ψ∗(1, qe), Z(ω))
, P-a.s. (4.3)

which implies the pointwise relationship between the two mappings P-a.s.

G(ω)(M, pe) =M

(
c̃− τ ⋆

c̃

)

(1 + ḡP(1, ψ∗(1, qe), Z(ω))

(
1

g(ω)qe

)

, pe = qeM. (4.4)

5For an i.i.d. perturbation Z(ω) with measure µ ∈ Prob [Zmin, Zmax], an unbiased predictor is a recursive
mapping ψ∗ : R2

+ → R+, (M,pe) 7→ ψ∗(M,pe) = pe1 which solves (EµP)(M,ψ∗(M,pe)) = pe for every (M,pe).
Thus, ψ∗ is an inverse of the mean-price law (EµP) with respect to pe.
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Given ω and any initial condition (M0, p
e
0), the state (Mt, p

e
t ) of the system G at date t > 0

periods is generated by the mapping

C(t, ω)(M0, p
e
0) :=







G(ω)(ϑt−1ω) ◦ · · · ◦G(ω)(M0, p
e
0) t > 0

idR2
+

t = 0
(4.5)

which satisfies

C(t+ s, ω) = C(t, ϑsω) ◦ C(s, ω) for all t, s. (4.6)

Therefore, for any ω ∈ Ω, the orbit of money balances and price expectations in state space
with initial condition (M0, p

e
0) ∈ R2

+ is given by γ(ω, (M0, p
e
0)) := {C(t, ω)(M0, p

e
0)}

∞

t . Similarly,
for any initial condition qe0 ∈ R+, orbits of the intensive form g(ω) are given by γ(ω, qe0) :=
{c(t, ω)qe0}

∞

t since the state qet of the intensive form system is generated by the one-dimensional
mapping c(t, ω) : R+ → R+

c(t, ω)qe0 :=







g(ϑt−1ω) ◦ · · · ◦ g(ω)qe0 t > 0

idR+
t = 0

(4.7)

which also satisfies c(t + s, ω) = c(t, ϑsω) ◦ c(s, ω), for all t, s. For notational consistency the
two-dimensional mapping c̃(t, ω) := (1, c(t, ω)) : S → S, S := {1} × R+

c̃(t, ω)

(
1
k0

)

:=







(

1

c(t, ω)k0

)

t > 0

idS t = 0

(4.8)

will also be used satisfying c̃(t+ s, ω) = c̃(t, ϑsω) ◦ c̃(s, ω), for all t, s as well.

4.2 Balanced Monetary Growth

As for the growth model in the previous section, stationary solutions of the real part of the
AS-AD model are generated by random fixed points of the intensive form (4.3), see Definition
B.2 in Appendix B.
Definition 4.1. A random fixed point of the intensive form (4.3) of the AS-AD model is a
random variable q∗ : Ω → R+ solving

q⋆(ϑω) = g(ω)q⋆(ω) :=

(
c̃

c̃− τ ⋆

)
ψ∗(1, q⋆(ω))

1 + ḡP(1, ψ∗(1, q⋆(ω)), Z(ω))
, P-a.s. (4.9)

= ψ∗(1, q⋆(ω))

(
c̃

c̃−τ⋆

)

1 + ḡP(1, ψ∗(1, q⋆(ω)), Z(ω))
, P-a.s.. (4.10)

In other words, the fixed point is the mean prediction deflated by the money growth rate. This
implies the following definition of a Perron-Frobenius solution of G(ω).
Definition 4.2. A pair of random variables λ : Ω → R++ and ξ : Ω → S is a Perron-Frobenius
solution for the AS-AD model G(ω) if P-a.s.:

G(ω)ξ(ω) = λ(ω)ξ(ϑ(ω)), (4.11)
(

1
g(ω)

)

ξ(ω) = ξ(ϑ(ω)), ξ(ω), ξ(ϑω) ∈ S. (4.12)
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This provides the prerequisites for the definition of a balanced monetary path.
Definition 4.3. An orbit γ(ω, (M0, p

e
0)) := {C(t, ω)(M0, p

e
0)}

∞

t of G(ω) is called balanced if
there exists a Perron-Frobenius solution (λ, ξ), λ : Ω → R+, ξ : Ω → R2

+, such that P-a.s. :

C(t, ω)ξ(ω) =

(
t∏

τ=1

λ(ϑτ−1ω)

)

· c̃(t, ω)ξ(ω) =: Λ(ϑtω) · c̃(t, ω)ξ(ω). (4.13)

b

b

b

bc

bc

bc

bc

1

1
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∆1

Figure 7: A balanced monetary path {C(t, ω)ξ(ω)} of the AS-AD model for the random fixed
point ξ(ω) ≡ (1, q⋆(ω)) and Perron-Frobenius solution λ(ω)ξ(ϑω) = G(ω)ξ(ω).

By definition, each state along a balanced monetary path is given by the state of the random
eigenvector multiplied by the product of the cumulative growth factors of money (the eigenval-
ues at the preceding dates). The eigenvalue λ(ω) depends on the noise process alone so do their
cumulative products of the preceding dates. Therefore, balanced factors of monetary expansion
depend on the previous growth factors but not on the current nor on previous states along the
path. Thus, along the balanced path the expansionary forces of scale and the contractionary
forces governing stationary intensities are uncoupled stochastically. By construction their in-
teraction follows from the associated random fixed point of the intensive form, as stated in the
next lemma (which is identical to Lemma 3.1 of the Solow growth case).
Lemma 4.1. A random fixed point q⋆ : Ω → R++ of the intensive form of the AS-AD model
induces a balanced monetary path with growth factor

λ(ω) =

(
c̃− τ ⋆

c̃

)

(1 + ḡP(1, ψ∗(1, q⋆(ω)), Z(ω)) . (4.14)

.

Proof. According to Lemma B.2, a random fixed point induces a Perron-Frobenius solution
with eigenvalue equal to the growth factor of the fixed point.

Lemma 4.1 together with Definition 4.3 imply geometrically that each state of the fixed point
in S is the radial projection of an orbital state onto S, as shown in Figure 7. Loosely speaking,
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the orbit of the fixed point is the radial projection of the balanced orbit in state space. Figure
7 and Figure 5 portray identical features for two very similar two-dimensional models.

To understand the properties of balanced monetary expansion, it is useful to reveal some further
properties of the random fixed point. For all t ≥ 0, one has

pet
Mt

= qet = q⋆(ϑtω). (4.15)

Equations (4.2) and (4.14) imply that along the balanced path money holdings and rational
mean price predictions are generated by two linear random difference equations in diagonal
form

(

pet+1

Mt+1

)

=








ψ∗(1, q⋆(ϑtω))

q⋆(ϑtω)
0

0

(
c̃− τ ⋆

c̃

)

(1 + ḡP(1, ψ∗(1, q⋆(ϑtω)), Z(ϑtω)))








(

pet

Mt

)

=:

(

π(ω) 0

0 µ(ω)

)(

pet

Mt

)

(4.16)

with growth rates pet+1/p
e
t ≡ π : Ω → R+, Mt+1/Mt ≡ µ : Ω → R+, and µ(ω) ≡ λ(ω). In other

words, the eigenvalue of the Perron-Frobenius solution, induced by the random fixed point
(4.14), is the monetary growth factor which is perfectly correlated with the mean forecast of
the price level. In addition, the two growth factors satisfy

π(ω)q∗(ω) = ψ∗(1, q⋆(ω)) =
1 + ḡP(1, ψ∗(1, q⋆(ω)), Z(ω))

(
c̃

c̃−τ⋆

) q∗(ϑω) = µ(ω)q∗(ϑω), P-a.s.. (4.17)

This also implies

g(ω)q∗(ω) = q∗(ϑω) =
π(ω)

µ(ω)
q∗(ω), P-a.s., (4.18)

i.e. orbits of the random fixed point q∗ : Ω → R+ satisfy a one-dimensional linear difference
equation with random coefficient π(ω)/µ(ω),

q⋆t+1 =
pet+1

Mt+1

=
π(ϑtω)

µ(ϑtω)

pet
Mt

=
π(ϑtω)

µ(ϑtω)
q⋆t (4.19)

In other words, in this highly nonlinear AS-AD model, rational mean predictions deflated by
money growth are generated by a linear random difference equation if the underlying process
of productivity shocks is multiplicative and i.i.d.. The formulas (4.15) - (4.19) reflect the
typical serial correlation of expected inflation rates and money balances for balanced monetary
expansion under rational expectations due to the expectational lead in consumption demand
of the AS-AD model.

4.3 Stable Monetary Growth

Orbits in state space of the AS-AD system (4.2) are defined as sequences generated by the
mapping (4.5). Let C(t, ω) = (M(t, ω), pe(t, ω)), C(t, ω) : R2

+ → R2
+ denote its two component

maps for money balances and price predictions, i.e.

C(t, ω)(M0, p
e
0) ≡

(

M(t, ω)

pe(t, ω)

)

(M0, p
e
0). (4.20)
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Then, given ω and any initial condition (M0, p
e
0), an orbit in state space can be written as

γ(ω)(M0, p
e
0) = {M(t, ω)(M0, p

e
0), p

e(t, ω)(M0, p
e
0)}

∞

0 . Define the distance of an orbit of (4.2) to
the balanced path associated with q⋆ as

∆t = ∆(t, ω)(M0, p
e
0) := pe(t, ω)(M0, p

e
0)− q⋆(ϑtω) ·M(t, ω)(M0, p

e
0). (4.21)

Definition 4.4. A balanced orbit associated with the random fixed point q⋆ : Ω → R+ of g(ω)
is called asymptotically stable if, for all qe0 ∈ B(q⋆(ω)), (the basin of attraction of q⋆), and
(M0, p

e
0) in a neighborhood U(M̄0, p̄

e
0, ω), p̄

e
0 = M̄0 q

∗(ω), pe0 = qe0M0:

lim
t→∞

|c(t, ω)qe0 − q⋆(ϑtω)| = 0 and lim
t→∞

|∆(t, ω)(M0, p
e
0)| = 0, P-a.s.. (4.22)

The first condition imposes that all orbits from the basin of attraction of the random fixed
point in intensive form converge to the orbit of the fixed point. The second one requires in
addition that the associated orbit in state space {C(t, ω)(M0, p

e
0)}

∞

0 converges pointwise to the
balanced path.

Figure 8 displays the convergence issue in state space. The two rays q⋆(ω) and q⋆(ϑω) describe
the one-step movement of the stochastic fixed point moving within the cone of the two blue
dashed lines (an attracting set of the fixed point). The one-step move of the orbit in intensive
form converging to the random fixed point is indicated by the pair qet and qet+1. For (Mt, p

e
t )

with distance ∆t ≡ ∆(t, ω) the two possible cases of convergence ∆t+1 or of divergence with
∆t+1 > ∆t > ∆t+1 are indicated for the same ω ∈ Ω. The diagram visualizes the possibility
of convergence or divergence depending on the rate of monetary expansion (given the rate
of contraction of the fixed point) which is shown to be larger for ∆t+1 than for ∆t+1 in the
one-step description for an arbitrary point (Mt, p

e
t ) along the orbit. Theorem 4.1 states that

PSfrag replacements

0
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pe

qet qet+1

q⋆(ω)

q⋆(ϑω)

m̄

∆t

∆t+1
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Figure 8: Convergence/divergence to balanced path in (M, pe)-space: ∆t+1 > ∆t > ∆t+1

convergence (divergence) occurs when the expansionary forces are appropriately dominated (or
not dominated) on average by the rate of contraction of the random fixed point, i.e. keeping
the random intensity sufficiently bounded relative to the rate of expansion along the random
fixed point.
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Theorem 4.1.
Let g be differentiable and increasing with respect to qe and let q⋆ : Ω → R+ be an asymptotically
stable random fixed point of (4.3)

qet+1 = g(ϑtω)qet :=

(
c̃

c̃− τ ⋆

)
ψ∗(qet )

1 + ḡP(1, ψ∗(qet ), Z(ϑ
tω))

.

Then, for almost all ω ∈ Ω and any qe0 ∈ B(q⋆(ω)), qe0 6= q⋆(ω) with limt→∞ |c(t, ω)qe0−q
⋆(ϑtω)| =

0 the distance ∆t := pe(t, ω)(M0, p
e
0)− q⋆(ϑtω)M(t, ω)(M0, p

e
0) satisfies P-a.s.:

limt→∞ |∆t| = 0 if

E log(g′(ω)q⋆(ω) + E log

(
c̃− τ ⋆

c̃

)

(1 + ḡP(1, ψ∗(q⋆(ω)), Z(ω))) < 0 (4.23)

limt→∞ |∆t| = ∞ if

E log(g′(ω)q⋆(ω) + E log

(
c̃− τ ⋆

c̃

)

(1 + ḡP(1, ψ∗(q⋆(ω)), Z(ω))) > 0. (4.24)

The distance function ∆ defines a second random difference equation ∆(ω) : S × R → R,
making the pair (g,∆) a two dimensional random dynamical system (g,∆)(ω) : S×R → S×R
with random fixed point (q⋆, 0) : Ω → S × R.

Proof. Let qe0 ∈ B(q⋆(ω)) with limt→∞ |c(t, ω)qe0 − q⋆(ϑtω)| = 0 and pe0 = qe0M0 such that
(M0, p

e
0) ∈ U(M̄0, p̄

e
0, ω), p̄

e
0 = M̄0 q

∗(ω). From the definition ∆t = Mt(q
e
t − q⋆(ϑtω)) and (4.3)

one has for qet = c(t, ω)qe0:

∆t+1 =Mt+1(q
e
t+1 − q⋆(ϑt+1ω)) =Mt+1(g(ϑ

tω)qet − g(ϑtω)q⋆(ϑtω)))

=
Mt+1

Mt

g(ϑtω)qet − g(ϑtω)q⋆(ϑtω))

qet − q⋆(ϑtω)
∆t

=
c̃− τ ∗

c̃

(
1 + gP(1, ψ∗(qet ), Z(ϑ

tω))
) g(ϑtω)qet − g(ϑtω)q⋆(ϑtω))

qet − q⋆(ϑtω)
∆t

implying

∆t+1

∆t

=
c̃− τ ∗

c̃

(
1 + ḡP(1, ψ∗(qet ), Z(ϑ

tω))
) g(ϑtω)qet − g(ϑtω)q⋆(ϑtω))

qet − q⋆(ϑtω)
. (4.25)

Since limt→∞ |qet − q⋆(ϑtω)| = limt→∞ |c(t, ω) − q⋆(ϑtω)| = 0, P-a.s., there exists an ε > 0
sufficiently small and t0 = t0(ε, ω) > 0 sufficiently large such that

∣
∣P(1, ψ∗(qet ), Z(ϑ

tω))− P(1, ψ∗(q⋆(ϑtω), Z(ϑtω))
∣
∣ < ε (4.26)

∣
∣
∣
∣

g(ϑtω)qet − g(ϑtω)q⋆(ϑtω)

qet − q⋆(ϑtω)
− g′(ϑtω)q⋆(ϑtω)

∣
∣
∣
∣
< ε. (4.27)

By induction one has ∆t ≤ |∆t| ≤ ∆t for all t ≥ t0, for the two linear random dynamical
systems

∆t+1 =

(
c̃− τ ∗

c̃

)
[(
1 + ḡP(1, ψ∗(q⋆(ϑtω)), Z(ϑtω))

)
g′(ϑtω)q⋆(ϑtω) + ε

]
∆t (4.28)

∆t+1 =

(
c̃− τ ∗

c̃

)
[(
1 + ḡP(1, ψ∗(q⋆(ϑtω)), Z(ϑtω))

)
g′(ϑtω)q⋆(ϑtω)− ε)

]
∆t (4.29)
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with ∆t0 = |∆t0 | and ∆t0
= |∆t0|. Therefore, assumption (4.23) implies that the upper bound

(4.28) and ∆t converge to zero P-a.s.. Conversely, condition (4.24) implies that the lower bound
grows to infinity eventually. In this case the distance of an orbit to the balanced path diverges
under assumption (4.24).

The findings of Theorem 4.1 are completely parallel to Theorem 3.1 of the random growth
model, both of which are an application of Theorem B.2 of the appendix. Stable balanced
monetary expansion depends on the size of the product of the eigenvalue of a stochastic Perron-
Frobenius solution with the contractivity of the random fixed point of the underlying intensive
form. The central equation (4.25)

∆t+1 =
c̃− τ ∗

c̃

(
1 + ḡP(1, ψ∗(qet ), Z(ϑ

tω))
)
·
g(ϑtω, qet )− g(ϑtω, q⋆(ϑtω))

qet − q⋆(ϑtω)
·∆t

reveals that, for t→ ∞, the distance function ∆ is given by a linear random dynamical system
whose coefficient consists of the product of the eigenvalue with the contractivity of the intensive
form model. If the expectation of the product λ(ω) ·g′(q⋆(ω)) is less than one, i.e. if the product
is mean contractive, convergence occurs P-a.s. which is equivalent to condition (4.23). As for
the growth model, this means formally that neither of the two interacting variables need to
be contractive almost surely. However, the asymptotic stability of the random fixed point
requires that g′(ω)q⋆(ω) must be less than one sufficiently often. Figure 13 in the appendix
visualizes geometrically the opposing effects of the tradeoff between the expansionary and the
contractionary forces acting along the balanced path.

Some additional qualitative features of the AS-AD economy can be described in a numerical
analysis of a parametric example6. Let this be given by isoelastic production and consumption
characteristics and a production shock with an i.i.d. discrete two point perturbation Z ∼
{Zmin, Zmax} with equal probability. A standard parametrization implies an isoelastic random

PSfrag replacements
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Figure 9: Graph of g(ω)q⋆3(ω) and part of an orbit {c(t, ω)q⋆3(ω)}

aggregate supply function of the Lucas type and a deterministic aggregate demand function

6see Chapter 4 of Böhm (2017) for details.
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with a constant multiplier (c̃ − τ ∗)/c̃. The associated random system G(ω) exhibits three
random fixed points q⋆i , i = 1, 2, 3 of the intensive form g(ω): a stable trivial one q⋆1(ω) ≡ 0
with range I1 ≡ 0 and two strictly positive ones on disjoint intervals I2 ∩ I3 = ∅, satisfying
0 < I2 < I3, where q⋆2 : Ω → I2 with g−1(ω)I2 ⊂ I2 is unstable while q⋆3 : Ω → I3 with
g(ω)I3 ⊂ I3 is stable. Figure 9 shows the two-piece graph of the intensive form map g(ω) with
part of an orbit {c(t, ω)q⋆3(ω)} in (qet , q

e
t+1)-space. For the small shock chosen both graphs are

almost linear maps with slope less than one within the range I3.

Figure 10 displays the convergence features of q⋆3 for six different initial conditions, five converg-
ing to I3 and one diverging from I2. The two invariant sets I2 < I3 are marked as gray bands in
panel (a). Panel (b) indicates that convergence in I3 is relatively fast. Panels (c) and (d) show
the convergence in (qe,∆)-space for the two initial conditions plotted in panel (b) indicating
that the distance ∆ decreases monotonically to zero for the chosen ω. This translates into
monotonic pointwise convergence to the balanced path in state space (M, pe).

For different values of the fiscal parameters with lower government taxes τ ∗ and higher govern-
ment demand ḡ deficits and inflation along orbits increase causing a higher rate of monetary
growth µ⋆(ω) while the contractivity g′(ω)q⋆3(ω) is not strengthened substantially. This causes
the balanced monetary path to become unstable since Eµ⋆(ω) · g′(ω)q⋆3(ω) > 1. Figure 11
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(a) Convergence from I2 and I3 to q⋆ ∈ I3
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Figure 10: Convergence in (qe,∆)-space
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Figure 11: Impact of fiscal policy on monetary growth: T = 2 · 104

displays the sizable mean shift of the distribution of the growth rate of money (the eigenvalue
of the Perron-Frobenius solution) initiating the switch from convergence to divergence caused
by the different values of the policy parameters. If g′(ω)q⋆3(ω) < 1,P-a.s., as in the numerical
example, the stability requirement stipulates that the rate of monetary expansion may well
be larger than one P-a.s. along the whole orbit of q⋆3, as long as it makes the product with
g′(ω)q⋆3(ω) less than one on average. While money grows at a rate of less than 7 percent in the
stable case, subfigure (a), it is about 40 percent in (b) indicating the reason for the balanced
orbit to become unstable.

A Expansion of Deterministic Homogeneous Systems

Let (Fi)
n
i=1 denote a list of continuous mappings Fi : Rn

+ → R+ and define (Fi)
n
i=1 ≡ F :

Rn
+ → Rn

+, x 7→ F (x). F : Rn
+ → Rn

+ is the time-one map of a dynamical system. F is called
homogeneous of degree one if all functions Fi, i = 1, . . . , n, are homogeneous of degree one, i.e.
if for all λ ≥ 0 and all x ∈ Rn

+: F (λx) = λF (x). Depending on applications other properties of
the mapping F like concavity or monotonicity may be defined componentwise.

The mapping in so-called intensive form associated with the homogeneous map F from (the
positive part of) the unit sphere S into itself is defined by f : S → S, y 7→ f(y) := F (y)/|F (y)|.
For most applications the choice of the domain of the time-one map in intensive form is of sec-
ondary importance. Solow & Samuelson (1953) use the unit simplex. In most two-dimensional
homogeneous systems, the ratio of the two variables is convenient and customary. The stability
results presented here are independent of the choice made for the intensive form.

Definition A.1. A pair (λ, x̄) solving λx̄ = F (x̄) with λ > 0 and x̄ ∈ S is called a Perron-
Frobenius solution of F .

λ is called an eigenvalue of F which satisfies λ = |F (x̄)|. x̄ is a fixed point of f and is called
an eigenvector of F .
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Definition A.2. An orbit γ(x) := {F t(x)}t≥0 of F is called balanced if for all t ≥ 0: F t(x) =
λtx, for some λ > 0. Then, γ(αx̄) = {F t(αx̄}∞t=0 = {λt(αx̄)}∞t=0 is a balanced orbit for all α > 0
if and only if (λ, x̄) is a Perron-Frobenius solution for F .

One has the immediate result:
An orbit γ(αx̄) = {F t(αx̄}∞t=0 = {λt(αx̄)}∞t=0 is a balanced orbit for all α > 0 if and only if
(λ, x̄) is a Perron-Frobenius solution for F .

Often, the set
{
xn ∈ Rn

+ | xn = λnαx̄, n = 0, 1, . . .
}

is referred to as a balanced path. The union
of all balanced paths ∪α≥0

{
xn ∈ Rn

+ | xn = λnαx̄
}

is a subset of the ray or halfline L(x̄) :=
{
x ∈ Rn

+ | x = αx̄, α ≥ 0
}

associated with x̄, referred to as the balanced ray or halfline.

Define the distance of x ∈ Rn
+ from L(x̄) as

∆ := d(x, L(x̄)) = min
α≥0

|x− αx̄| = |x− 〈x, x̄〉x̄| (A.1)

where 〈·, ·〉 denotes the scalar product.

Definition A.3. An orbit γ(x) of F is said to converge to a balanced path (to L(x̄)) if

∆t := d(F t(x), L(x̄)) = |F t(x)− 〈F t(x), x̄〉x̄| (A.2)

converges to zero for t→ ∞.

A.1 A Contraction Lemma for Deterministic Systems

Lemma A.1.
Consider a continuous and homogeneous time-one map F : Rn

+ → Rn
+ and its associated map-

ping in intensive form f : S → S where S :=
{
x ∈ Rn

+ | |x| = 1
}
.

Let (λ, x̄) denote a Perron-Frobenius solution for F , i.e. λx̄ = F (x̄) with |x̄| = 1 and λ > 0.
Assume that x̄ ∈ S is an asymptotically stable fixed point of f with contractivity 0 < M < 1,
i.e. |fm(y)− fm(x)| ≤M |y − x| for m ≥ m0.

Let γ(x0) be an orbit of F and define y0 := x0/|x0| 6= x̄, and ∆0 := |x0 − 〈x0, x̄〉x̄| 6= 0. Let
0 < x̄ ∈ S be an asymptotically stable fixed point of f and y0 ∈ B(x̄) ⊂ S, its basin of attraction.
Then, for all x0/|x0| ∈ B(x̄):

If λM > 1, then lim
t→∞

|∆t| = ∞. (A.3)

If λM < 1, then lim
t→∞

|∆t| = 0. (A.4)

Proof. Since

∆1 = |F (x)− 〈F (x), x̄〉x̄|

=
|F (x)|

|x|
·
|F (x)/|F (x)| − 〈F (x)/|F (x)|, x̄〉x̄|

|x/|x| − 〈x/|x|, x̄〉x̄|
∆

= |F (x/|x|)| ·
|F (x)/|F (x)| − 〈F (x)/|F (x)|, x̄〉x̄|

|x/|x| − 〈x/|x|, x̄〉x̄|
∆

= |F (y)| ·
|f(y)− 〈f(y), x̄〉x̄|

|y − 〈y, x̄〉x̄|
∆ =: D(y,∆), y ∈ S

(A.5)

the last equation defines a time-one map D for ∆ as a function of (y,∆). In other words, the
mapping F induces a time-one map (f,D) : S × R+ → S × R+ of an auxiliary system whose
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fixed points are (x̄, 0). Thus, asymptotic convergence of {yt,∆t} to (x̄, 0) holds if and only if
the orbit γ(x0) converges to L(x̄) in state space of the original dynamical system. Therefore,

lim |F (yn)| = |F (x̄)| = |λx̄| = λ > 0 (A.6)

and

lim
|f(yn)− 〈f(yn), x̄〉x̄|

|yn − 〈yn, x̄〉x̄|
= lim

|f(yn)− 〈x̄, x̄〉x̄|

|yn − 〈x̄, x̄〉x̄|
= lim

|f(yn)− |x̄|2x̄|

|yn − |x̄|2x̄|

= lim
|f(yn)− x̄|

|yn − x̄|
=M

(A.7)

imply

lim
n→∞

∆n+1

∆n

= λM. (A.8)

This means |∆t+1

∆t
− λM | < ǫ for t larger than some t0. Thus,

[λM − ǫ]|∆t| < |∆t+1| < [λM + ǫ]|∆t|, t ≥ t0,

and by induction

[λM − ǫ]τ |∆τ+t0| < |∆t+t0| < [λM + ǫ]τ |∆t0 |, τ > 0.

Therefore, for ǫ sufficiently small,

λM < 1 ⇒ λM + ǫ < 1

so that limt→∞∆t = 0. Conversely,

λM > 1 ⇒ λM − ǫ > 1

so that limt→∞ |∆t| = ∞.

A.2 Stable Balanced Growth in Two-Dimensional Models

The Solow growth model serves as the work horse model for the examination of the stability of
two-dimensional balanced growth paths. Since the induced models in intensive form with their
associated distance functions are equivalent, the statements of Lemma A.1, of Theorem A.1,
and of Corollary A.1 are directly comparable and describe asymptotic convergence/divergence
of hyperbolic fixed points (∆, k) = (0, k̄) ∈ R× S for the respective norm | · |.

Let

L′ = L(L,K) := (1 + n)L

K ′ = Gs(L,K) := (1− δ)K + S(L,K)
(A.9)

denote a Solow growth model with a general monotonic homogeneous savings function S(L,K)
and parameters (n, δ). Such savings functions appear in many models of optimal growth or
with two-period overlapping generations of consumers with perfect foresight. The system (A.9)
induces the one-dimensional mapping in intensive form

k′ = Gs(k) :=
1

1 + n
((1− δ)k + s(k)) , k := K/L s(k) := S(1, k). (A.10)
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If the labor force grows at a constant rate n > −1 so that Lt+1 = (1 + n)Lt, one obtains a
dynamical system for L and K with state space R2

+ governed by the two maps

(L,Gs) : R
2
+ −→ R2

+, (L,K) 7→
(
L(L,K),Gs(L,K)

)
, (A.11)

where L(L,K) := (1 + n)L. Let (L,Gs)
t denote the t-th iterate of the map (L,Gs), i.e.,

(Lt, Kt) = (L,Gs)
t(L0, K0) := (L,Gs) ◦ · · · ◦ (L,Gs)

︸ ︷︷ ︸

t− times

(L0, K0).

Thus, an orbit γ(L0, K0) of the time-one map (A.11) is given by

γ(L0, K0) := {(L,Gs)
t(L0, K0)}t∈N,

where the sequence {(Lt, Kt)}
∞
t=0 is also called a growth path. The theorem and its proof are

taken from Böhm, Pampel & Wenzelburger (2005).
Theorem A.1. Let s be differentiable and let k̄ be an asymptotically stable fixed point of Gs.
Let7 B(k̄) ∩ (Gs)

−1({k̄}) = {k̄}, where B(k̄) is the basin of attraction of k̄ and (Gs)
−1({k̄}) is

the preimage of k̄. Consider the time-one map (L,Gs) as given in (A.11). Let γ(L0, K0) be an
arbitrary orbit of (L,Gs) with K0/L0 ∈ B(k̄), K0/L0 6= k̄, implying △0 = K0 − k̄L0 6= 0. Then
the following holds:

If Es(k̄) <
δ

n+ δ
, then lim

t→∞
△t = 0; (A.12)

If Es(k̄) >
δ

n+ δ
, then lim

t→∞
|△t| = ∞, (A.13)

where Es(k̄) =
k̄s′(k̄)

s(k̄)
denotes the elasticity of the function s at the steady state k̄.

Proof. Let k0 > 0 and k0 6= k̄ arbitrary but fixed. Under the hypotheses of this Theorem, one
has

△t+1 = Kt+1 − k̄Lt+1 = Lt+1[Gs(kt)− k̄], t ∈ N,

where k̄ denotes the steady state of Gs. Then,

△t+1

△t

= (1 + n)
Gs(kt)− k̄

kt − k̄
.

kt converges to k̄ since k0 ∈ B(k̄). Therefore,

lim
t→∞

△t+1

△t

= (1 + n)G′
s(k̄).

This implies that |△t+1

△t
− (1 + n)G′

s(k̄)| < ǫ for all t larger than some t0. It follows that

[(1 + n)G′
s(k̄)− ǫ]|△t| < |△t+1| < [(1 + n)G′

s(k̄) + ǫ]|△t|, t ≥ t0,

and by induction

[(1 + n)G′
s(k̄)− ǫ]τ |△τ+t0| < |△t+t0| < [(1 + n)G′

s(k̄) + ǫ]τ |△t0|, τ > 0.

7This assumption is always satisfied, if s is strictly increasing.
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Now, if (1+n)G′
s(k̄) < 1, then (1+n)G′

s(k̄)+ǫ < 1 for sufficiently small ǫ such that limt→∞△t =
0. On the other hand, if (1 + n)G′

s(k̄) > 1, then (1 + n)G′
s(k̄) − ǫ > 1 for sufficiently small ǫ

and hence limt→∞ |△t| = ∞. The rest of the statement follows from

(1 + n)G′
s(k̄) < 1 ⇐⇒ Es(k̄) <

δ

n+ δ

and the fact that k0 ∈ B(k̄), k0 6= k̄ was arbitrary.

Theorem A.1 applies to functions Gs which are strictly increasing or strictly decreasing in a
neighborhood of an asymptotically stable fixed point. As an immediate implication one obtains
the following corollary.
Corollary A.1. A balanced growth path of the standard Solow model (2.5) is stable if

Ef (k̄) <
δ

n+ δ
, (A.14)

and unstable if

Ef (k̄) >
δ

n+ δ
. (A.15)

For the standard Solow model the elasticity of the savings function always coincides with the
elasticity of the production function. Since the production function f is strictly concave, its
elasticity Ef (k) is always less than one.

B Balanced Expansion of Random Homogeneous Systems

Following Evstigneev & Pirogov (2007, 2010), let (Ω,F ,P, ϑ) denote an ergodic dynamical sys-
tem8with probability space (Ω,F ,P), its automorphism ϑ : Ω → Ω, (i.e. a one-to-one mapping
such that ϑ and ϑ−1 are measurable and preserve the measure P), and F (ω) : Rn

+ → Rn
+ an

associated random family of continuous, homogeneous time-one maps which are F -measurable
in ω. F (ω) induces the random difference equation

xt = F (ϑt−1ω)xt−1 for all t. (B.1)

Random orbits γ(ω, x0) := {C(t, ω)x0}
∞

t of F (ω) are generated by the mapping

xt = C(t, ω)x0 :=

{

F (ϑt−1ω) ◦ · · · ◦ F (ω)x0 t > 0

idX t = 0
(B.2)

which satisfies

C(t+ s, ω) = C(t, ϑsω) ◦ C(s, ω) for all t, s. (B.3)

The mapping C(t, ω) is a cocyle over the dynamical system (Ω,F ,P, ϑ) (see Arnold, 1998). In
the following, the notational convention C(t, ω)x and F (ω)x will be used for the result of the
application of the corresponding function to the point x (as in Evstigneev & Pirogov, 2010).

8For concreteness, let Ω be the space of two-sided infinite sequences of the perturbation, F the Borel-σ-
algebra, and P the probability measure generated by the marginal distributions. ϑ : Ω → Ω is the so-called
left-shift on Ω, i.e. (ϑω)s = (ωs+1), s ∈ Z.
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Definition B.1. If F (ω) : Rn
+ → Rn

+ is homogeneous of degree one, its associated mapping in
intensive form f(ω) ≡ F (ω)/|F (ω)| : S → S, y 7→ f(ω)y is defined as

f(ω)y ≡ (F (ω)/|F (ω)|)y :=
1

|F (ω)y|
· F (ω)y = F (ω)

y

|F (ω)y|
(B.4)

where S :=
{
y ∈ Rn

+ | |y| = 1
}
.

Definition B.2. A random fixed point of f(ω) is a measurable mapping ξ : Ω → S such that

ξ(ϑω) = f(ω)ξ(ω) P-a.s. (B.5)

Definition B.3. Let F (ω) be homogeneous and ξ : Ω → S be a random fixed point of f(ω).
An orbit γ(ω, ξ(ω)) = {(C(t, ω)ξ(ω))} of F is called balanced if there exists a random variable
λ : Ω → R++ such that

C(t, ω)ξ(ω) = F (ϑt−1ω) ◦ · · · ◦ F (ω)ξ(ω) =

(
t∏

τ=1

λ(ϑτ−1ω)

)

· c(t, ω)ξ(ω) (B.6)

where c(t, ω) := f(ϑt−1ω)◦ · · · ◦f(ω) is the cocycle associated with the mapping f(ω), see (B.2).

Definition B.4 (Perron-Frobenius). A pair of measurable mappings (λ(ω), ξ(ω)), λ : Ω → R+,
ξ : Ω → RN

+ is called a Perron-Frobenius solution of F (ω) if P-a.s. :

λ(ω)ξ(ϑω) = F (ω)ξ(ω) with |ξ(ω)| = 1 and λ(ω) > 0 (B.7)

(Evstigneev & Pirogov, 2010).

Theorem B.1 (Evstigneev & Pirogov (2010)).
Let F (ω) be homogeneous and strictly monotone9. There exists a unique Perron-Frobenius
solution (λ, ξ) : Ω → R+ × RN

+

λ(ω)ξ(ϑω) = F (ω)ξ(ω) with |ξ(ω)| = 1 and λ(ω) > 0 (B.8)

Lemma B.1.
Every Perron-Frobenius solution (λ, ξ) induces a balanced orbit {C(t, ω)ξ(ω)}∞0 of F (ω).

Proof. The homogeneity of F implies that F (ω)αx = α · F (ω)x for all α > 0 and x 	 0.

9F is called strictly monotone if x 	 y implies F (ω)x≫ F (ω)y, for all ω, see Evstigneev & Pirogov (2010),
Theorem 1.
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Therefore,

C(t, ω)ξ(ω) = F (ϑt−1ω) ◦ · · · ◦ F (ω)ξ(ω)

= F (ϑt−1ω) ◦ · · · ◦ F (ϑω) ◦ λ(ω) · f(ω)ξ(ω)

= λ(ω) · F (ϑt−1ω) ◦ · · · ◦ F (ϑω) ◦ f(ω)ξ(ω)

= λ(ω) · F (ϑt−1ω) ◦ · · · ◦ F (ϑω) ◦ f(ω)ξ(ω)

= λ(ω) · F (ϑt−1ω) ◦ · · · ◦ F (ϑω)ξ(ϑω)

= λ(ω) · F (ϑt−1ω) ◦ · · · ◦ F (ϑ2ω) ◦ F (ϑω)ξ(ϑω)

= λ(ω) · F (ϑt−1ω) ◦ · · · ◦ F (ϑ2ω) ◦ λ(ϑω) · f(ϑω)ξ(ϑω)

= λ(ω) · λ(ϑω) · F (ϑt−1ω) ◦ · · · ◦ F (ϑ2ω) ◦ f(ϑω)ξ(ϑω)

= λ(ω) · λ(ϑω) · F (ϑt−1ω) ◦ · · · ◦ F (ϑ2ω) ◦ f(ϑω) ◦ f(ω)ξ(ω)

and by induction

= λ(ω) · λ(ϑω) · · ·λ(ϑt−1ω) · f(ϑt−1ω) ◦ · · · ◦ f(ω)ξ(ω)

=

(
t∏

τ=1

λ(ϑτ−1ω)

)

· c(t, ω)ξ(ω) =: Λ(ϑtω) · c(t, ω)ξ(ω)

(B.9)

Lemma B.2 (Stochastic Case).
Assume that ξ⋆ : Ω → S is a random fixed point of f(ω). There exists λ : Ω → R+, λ(ω) > 0
such that P-a.s.

F (ω)ξ⋆(ω) = λ(ω) · ξ⋆(ϑω) = λ(ω) · f(ω)ξ⋆(ω) = λ(ω) ·
F (ω)

|F (ω)|
ξ⋆(ω) (B.10)

Proof. Define the random variable

λ⋆(ω) :=
|F (ω)ξ⋆(ω)|

|(F (ω)/|F (ω)|)ξ⋆(ω)|
(B.11)

Then,

λ⋆(ω) · ξ⋆(ϑω) =
|F (ω)ξ⋆(ω)|

|(F (ω)/|F (ω)|)ξ⋆(ω)|
· f(ω)ξ⋆(ω)

=
|F (ω)ξ⋆(ω)|

|(F (ω)/|F (ω)|)ξ⋆(ω)|
·
F (ω)ξ⋆(ω)

|F (ω)ξ⋆(ω)|

=
|F (ω)ξ⋆(ω)|

|f(ω)ξ⋆(ω)|
·
F (ω)ξ⋆(ω)

|F (ω)ξ⋆(ω)|
= F (ω)ξ⋆(ω)

(B.12)

Thus, the pair (λ⋆(ω), ξ⋆(ω)) is a Perron-Frobenius solution inducing random balanced orbits
given by

γ(ω, ξ⋆(ω)) = {C(t, ω)ξ⋆(ω)}∞t=0

C(t, ω)ξ⋆(ω) =

(
t∏

τ=1

λ⋆(ϑτ−1ω)

)

· c(t, ω)ξ⋆(ω).
(B.13)

.

Figure 12 portrays the relationship between the Perron-Frobenius solution λ(ω)ξ(ϑω) = F (ω)ξ(ω),
the orbit of the fixed point {(xt ≡ c(t, ω)ξ(ω))}∞0 , and the associated balanced random orbit.
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Figure 12: A balanced random orbit for the Perron-Frobenius solution λ(ω)ξ(ϑω) = F (ω)ξ(ω).

B.1 A Contraction Theorem for Random Systems

Definition B.5. A random fixed point ξ : Ω → S is called asymptotically stable if

lim
t→∞

|c(t, ω)x0 − ξ(ϑtω)| = 0 P-a.s. (B.14)

for all x0 ∈ B(ξ(ω)), the basin of attraction of ξ, where c(t, ω) is the cocycle associated with
f(ω), see equation (B.2).

Definition B.6. Define the distance of an orbit {C(t, ω)X0} of F with |X0 = 1| to the balanced
one {C(t, ω)ξ(ω)} associated with the random fixed point ξ : Ω → S as

∆t = ∆(t, ω)X0 := |C(t, ω)X0 − C(t, ω)ξ(ω))| = |C(t, ω)X0 − Λ(ϑtω)ξ(ϑtω))|. (B.15)

An orbit {C(t, ω)X0} is said to converge to a balanced orbit if for all x0 ∈ B(ξ(ω)) ⊂ S and
for all X0 = x0 6= ξ(ω):

lim
t→∞

|c(t, ω)x0 − ξ(ϑtω)| = 0 and lim
t→∞

|∆(t, ω)X0| = 0, P-a.s.. (B.16)

Theorem B.2.
Let ξ⋆ : Ω → Rn

+ be an asymptotically stable random fixed point of f(ω) inducing the rate of
contraction

M(ω, ξ⋆(ω)) := lim
x0→ξ⋆(ω)

∣
∣
∣
∣

|f(ω)x0 − f(ω)ξ⋆(ω)|

|x0 − ξ⋆(ω)|

∣
∣
∣
∣
< 1, P-a.s. (B.17)

of f at ξ⋆(ω).

Then, for almost all ω ∈ Ω and any x0 ∈ B(ξ⋆(ω)), x0 6= ξ⋆(ω) with limt→∞ |c(t, ω)x0 −
ξ⋆(ϑtω)| = 0 the distance ∆t := |C(t, ω)X0 − Λ(t, ω) · ξ⋆(ϑtω))| satisfies P-a.s.:

lim
t→∞

|∆t| =0 if E log(λ(ω, ξ⋆(ω)) + E logM(ω, ξ⋆(ω)) < 0 (B.18)

lim
t→∞

|∆t| =∞ if E log(λ(ω, ξ⋆(ω)) + E logM(ω, ξ⋆(ω)) > 0 (B.19)
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Proof. Let γ(ω, ξ⋆(ω)) = {C(t, ω)ξ⋆(ω)}∞t=0 denote the balanced orbit associated with the ran-
dom fixed point ξ⋆ of f given by the two associated cocycles and C(t, ω) resp. c(t, ω)

C(t, ω)ξ⋆(ω) =

(
t∏

τ=1

λ⋆(ϑτ−1ω)

)

· c(t, ω)ξ⋆(ω) ≡ Λ(ϑtω) · c(t, ω)ξ⋆(ω). (B.20)

From definition (B.15) one has

∆t = ∆(t, ω)X0 =|C(t, ω)X0 − Λ(ϑtω) · ξ⋆(ϑtω))|

=Λ(ϑtω) · |c(t, ω)x0 − ξ⋆(ϑtω)|

and

∆t+1 = ∆(t+ 1, ω)X0 =|C(t+ 1, ω)X0 − Λ(ϑt+1ω) · ξ⋆(ϑt+1ω))|

=λ(ϑtω) · Λ(ϑtω) · |c(t+ 1, ω)x0 − ξ⋆(ϑt+1ω)|

=λ(ϑtω) · Λ(ϑtω) · |f(ϑt+1ω) ◦ c(t, ω)x0 − f(ϑt+1ω)ξ⋆(ϑtω)|

(B.21)

implying

∆t+1

∆t

=
λ(ϑtω) · Λ(ϑtω) · |f(ϑt+1ω) ◦ c(t, ω)x0 − f(ϑt+1ω)ξ⋆(ϑtω)|

Λ(ϑtω) · |c(t, ω)x0 − ξ⋆(ϑtω)|

=
λ(ϑtω) · |f(ϑt+1ω) ◦ c(t, ω)x0 − f(ϑt+1ω)ξ⋆(ϑtω)|

|c(t, ω)x0 − ξ⋆(ϑtω)|
.

(B.22)

Since limt→∞ |c(t, ω)x0 − ξ⋆(ϑtω)| = 0,P-a.s., there exists an ε > 0 sufficiently small and
t0 = t0(ε, ω) > 0 sufficiently large such that

∣
∣
∣
∣

|f(ϑt+1ω) ◦ c(t, ω)x0 − f(ϑt+1ω)ξ⋆(ϑtω)|

|c(t, ω)x0 − ξ⋆(ϑtω)|
−M(ϑtω, ξ⋆(ω))

∣
∣
∣
∣
< ε (B.23)

for t ≥ t0. By induction, for all t ≥ t0, there are upper and lower bounds satisfying ∆t ≤ |∆t| ≤
∆t for the two linear random dynamical systems

∆t+1 =
[
λ(ϑtω) · M(ϑtω, ξ⋆(ω)) + ε

]
∆t (B.24)

∆t+1 =
[
λ(ϑtω) · M(ϑtω, ξ⋆(ω))− ε

]
∆t (B.25)

with ∆t0 = |∆t0| and ∆t0
= |∆t0|. Therefore,

E log(λ(ω, ξ⋆(ω)) + E logM(ω, ξ⋆(ω)) < 0

implies that the upper bound (B.24) converges to zero P-a.s. so that limt→∞ |∆t| = 0.

Conversely,

E log(λ(ω, ξ⋆(ω)) + E logM(ω, ξ⋆(ω)) > 0

implies that the lower bound grows to infinity and limt→∞ |∆t| = ∞.

Figure 13 displays the sources of convergence or divergence for two alternative scenarios: one
originating from weak versus strong contractivity of the intensive form map for a given rate
of expansion of the Perron-Frobenius solution (subfigure (a)) or one originating from a weakly
expanding versus a strongly expanding Perron-Frobenius solutions with a given contractivity
factor (subfigure (b)).
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Figure 13: Convergence/Divergence of stochastic balanced paths: ∆1 < ∆0 < ∆1
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