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1 Introduction

Picture of a human and a robot walk-
ing hand in hand. Source: CITEC

Action learning is a vital requirement for
many intelligent systems that have to act in
their environment either alone or together
with a human partner in order to achieve
common goals. Especially with human part-
ners in the loop language is of particular
importance to plan and synchronize the exe-
cution of actions in an interactive setting.

Learning of action capabilities and commu-
nicative skills in the context of autonomous
systems is often approached using statistical
machine learning techniques, that relate the
frequency of an experience with the associa-
tions that can be learned, such as an object’s

name. In general, most of these machine learning algorithms learn by inducing
categories. These categories capture the essence of what is characteristic for instances
of that particular category along with the acceptable variation.

Learning of language is closely tied to the learning of cognitive categories the linguistic
constructions refer to. Intentional goal-directed actions are a special kind of categories
that can be seen as a characteristic sequence of physical states of objects involved in
the action and the spatial and semantic relations between them along with pre- and
post-conditions that constitute the goal state.

For example, an action where an athlete is jumping over a hurdle could manifest
in the following typical sequence: The athlete (A) approaches the hurdle (H), A
converges to H and begins to jump, A is above H, A touched grounds again and
continues to run.

In language, the respective action is referred to as “jumping over” the hurdle and could
be represented by a general syntactic construction <ACTOR> jumps over <OBJECT>.
However, the linguistic category jumps over does not only refer to the characteristic
sequence of physical states but also refers to the goal semantics as pre- and post-
conditions. First there is an actor that is in front of an obstacle and after the action is
successfully performed the actor is behind the obstacle. The meaning of the symbols
in front of and behind in this example is dependent on some notion of direction
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1 Introduction

which is grounded in a concept of the physical world, in this example the direction
of the actor’s velocity vector.

Learning such categories involves inducing compact representations of characteristic
sequences of states in the physical domain that capture the essence of the jumps over
action along with the acceptable variation in the execution of the action to separate
instances within that particular class from instances that belong to different classes.
Learning categorical representations of action is complicated by the circumstance that
the observation of a given action is often not complete within that single modality.
For example, in the physical domain, there is no representation of the intentional goal
that was to be reached. Linguistic representations of the same concept often suffer
from ambiguities in the usage of language that cannot be resolved without involving
the physical meaning that is represented by some linguistic symbol. For example,
the sentences <ACTOR> jumps over <OBJECT> and <ACTOR> hops over <OBJECT>

are likely to describe the same concept, while <ACTOR> jumps on <OBJECT> refers
to a different category of action. While the syntactic constructions look very similar,
the physical observations differ substantially.

In this thesis we propose a cross-modal approach to learn linguistic constructions
together with their meaning in the physical domain with the potential to resolve
synonym relations between surface forms at the linguistic level (e.g. “jumps over”
and “hops over”) by exploiting similarities in the coupled physical realization of the
corresponding action, while also preventing possible over generalization, for example
falsely grouping “jumps over” and “jumps on”, that differ in a single word only
but refer to different actions. The proposed model consists of three components:
A component for action learning (see chapter 3), a component to learn linguistic
constructions (see section 2.6) and the generalization coordinator that integrates
information from both learning components to drive the learning and generalization
process. Figure 1.1 illustrates how the model would generalize two coupled examples
of action and corresponding sentences.

A suitable component for action knowledge does not exist to the best of our knowl-
edge. The component for language learning is based on an existing model (Gaspers
and Cimiano 2014) (introduced in section 2.6) and was extended according to the
requirements of multi-modal grounded learning (see section 4.2). Many technological
advances are inspired by natural archetypes. Also many advances in machine learning
were inspired by the human brain and human cognition, such as the neural networks
that model interactions between virtual neurons based on a very simple abstraction
of the interaction of neurons in the human brain. We approach the multi-modal
learning problem by adopting theories of early language acquisition in children and
transferring them also to the domain of action.

Children tackle the problem of learning how to actively shape their environment
through goal directed action mostly by imitating actions presented by parents or
other tutors. According to Tomasello et al. (1993), there are three main approaches
children take to learn actions from observations. First, they may start by simply
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Figure 1.1: The model for multi modal learning learns from coupled examples of
language and action given as a trajectory of objects involved in the
action together with a sentence that describes the action verbally. The
model consists of three components, a component for action learning,
a component for language learning and a component that coordinates
the learning process and drives the cross-modal induction of general
categorical representations through merging similar structure. The figure
shows how concrete examples are generalized into abstract linguistic
constructions such as “X jumps over Y” and a generalized graphical model
that probabilistically represents the two constituting action trajectories.

mimicking the movements of other actors without paying attention to the goal of
the action. Second, they may establish generalized action-reaction patterns, e.g.
realizing that some event causes changes in the environment in reaction to something
the actor has done. And third, they combine both, the attention to action-reaction
patterns and the goals an actor is trying to achieve, engaging in imitative learning of
the intentional action as a whole.

According to Huttenlocher et al. (1983), children start with categories that are specific
to either self action or observed action. The first category refers to actions children
perform on their own and observe change in the environment induced by their actions.
The second category refers to actions performed by others that are passively observed,
in the case of adult tutors often accompanied by a verbal explanation of what is
done. When children develop the ability to note parallels between self and observed
action they extend these categories to encompass both kinds of instances. Briefly
put children develop early action concepts where they are either involved as subjects
or as observers and later merge concepts from both categories.

However, the detailed mechanisms that are involved in the co-emergence of linguistic
and conceptual structures have not received prominent attention so far. Compu-
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tational models can contribute to enhance our understanding of such processes by
providing an implementable and thus explicit theory that can account for the phe-
nomenon of co-emergence of representations across different modalities. Compared
to descriptive models, computational models can be easily evaluated on experimental
data, providing insights into both, computational learning and theories of early
language acquisition.

We propose a computational model and thus an implemented theory of multi-modal
action and language learning that partly emulates the learning through simulated self-
action and observed-action with language guided generalization. The model observes
actions performed by others together with a sentence describing the same action
in natural language and incrementally develops generalized and grounded multi-
modal categorical representations across both modalities. The generalization process
builds on the knowledge acquired by observation and gradually generalizes specific
representations into more general ones through simulated self-action. The mental
simulation of action is based on already acquired categorical knowledge and simulates
prototypical actions and utterances for existing categories based on which the model
proposes to merge categories that are similar in simulation. Graphical models have
recently been proposed to partially explain the nature of human cognition in a unified
framework (Danks 2014). The usefulness of this approach has been demonstrated
by reinterpreting a variety of cognitive theories in terms of graphical models. Our
proposed model is inspired by this framework in that it is based on probabilistic
graphical models to support mental simulation and merging of categories.

We focus in particular on the case of action verbs and develop the model such that
it can learn the grounded meaning of a verbal construction without assuming the
prior existence of a corresponding concept. Our model spells out how a learner
can distill the essence of the meaning of a verbal construction as a process of
incremental generalization of the meaning of action verbs, starting from a meaning
that is specific to a certain context in which the verb has been encountered. We
understand the meaning of verbs as evoking a simulation rather than a static concept
and propose to capture the meaning of verbs via generative probabilistic graphical
models. The generative action models represent the essence of the verb’s meaning
and can capture linguistic variation at the surface level to account for variation in
action performance.

The developed model is further inspired by usage-based theories of language acquisi-
tion that assume that language learning proceeds from specific to general with specific
constructions being incrementally generalized and entrenched, leading to different
levels of generalization for different words (Behrens 2017). This is empirically backed
up by findings demonstrating different levels of generalization in development within
the same part-of-speech, e.g. for verbs (Tomasello 2000) or for determiners (Pine et al.
1997). The level of generalization is thus word-specific rather than category-specific.
We attempt to carry this idea over to the conceptual domain to yield comparable
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principles describing linguistic and conceptual development and how they interact
with each other.

This is reflected in that our component for action learning also implements a usage-
based approach to learning actions in the sense that action learning starts with
specific items that are incrementally generalized, yielding gradual abstraction over
similar action trajectories. The component for action learning builds on the Hidden
Markov models based representation of actions that is introduced in chapter 3. The
action models develop in an incremental merging procedure to yield more general
models. We hypothesize that linguistic and conceptual development might rely on
akin principles, i.e. the incremental merging of specific models to yield more general
models or concepts. In the case of action models this generalization is driven by the
desire of a learner to yield a compact description of these domains while not losing
too much descriptional accuracy.

The desire to yield compact representations corresponds to Ockham‘s razor principle
and is implemented in our model as a prior that prefers simpler models. Maintaining
descriptional accuracy is implemented through the model merging procedure that
merges specific models guided by the desire to yield generalizable models while at
the same time maximizing the likelihood of generating the observed action sequences
under the generalized model in order to avoid over-generalization (see chapter 3).

The principles of usage-based learning are reflected in the component for language
learning in the sense that structures of small complexity are learned first, emerging
into more complex structure as learning proceeds. In language, structure of low
complexity can for example be sequences of words associated with their corresponding
meanings. As learning proceeds the model develops specific sequences of words into
more abstract productive slot and frame patterns. The component to induce linguistic
construction networks is based on the model published in Gaspers and Cimiano
2014 but was extended to represent the grounded meaning of verbal constructions in
terms of the previously developed action model instead of the originally proposed
purely symbolic representation based on predicate logic. The linguistic model in its
original form is introduced in section 2.6. The extensions to the model are detailed
in section 4.2.

Many computational models and theories of language acquisition so far assumed that
concepts are available prior to learning the meaning of a certain linguistic construction
and that novel words or constructions are merely mapped onto these existing or
innate concepts. This so called mapping paradigm is a large simplification when
learning the grounded meaning of verbal constructions. In contrast, our proposed
model attempts to develop generalized categories in a bottom-up fashion, starting
with concrete examples that are incrementally generalized without assuming prior
categorical knowledge to exist. However, the model assumes the learner to have basic
perceptual capabilities. For the learning of action this is the ability to recognize
objects and their positions in the environment and for language we assume that the
system can decompose utterances to the word level.
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To our knowledge, our model is the first model that explains how linguistic verbal
constructions and the action concepts they represent co-emerge, following similar
principles relying on incremental generalization driven by the desire to yield more
compact models that maintain predictive accuracy. Our model spells out these
mechanisms in detail and thus provides a detailed implemented theory modeling how
linguistic and conceptual development go hand in hand. Further, we provide a model
that can both be used to ‘understand’ but also to ‘generate’ language. Our model
allows a learner both to ‘talk’ about observed actions, being able to categorize actions
and verbalize them, but also to ‘simulate’ an action given an (input) utterance that
describes the action. In this sense our model is one of the few (cognitive) models
of language acquisition bringing also comprehension and generation together in the
sense of Pickering and Garrod (Pickering et al. 2013). Further, it is to the best of
our knowledge the first model that explains how synonyms emerge as a byproduct of
grouping similar action models.

In a second experiment we propose the desire to induce change as a primary driving
force for a learner to develop basic perceptual capabilities as those required by the
model for multi-modal learning. We demonstrate exemplarily how an agent can
co-develop basic perceptual and motor skills during the autonomous exploration
of affordances of a complex object, guided by the desire to induce change in the
configuration of the object. To do so we implemented a reinforcement learning based
model that interacts with a simulated environment. The model is introduced and
evaluated in chapter 5.

In the following we define the learning problems for the multi-modal and the rein-
forcement learning based model and structure the development of both models along
research questions.

1.1 Learning grounded representations from coupled
examples of action and language

The learning problem for the multi-modal model can be stated as follows: Presented
with coupled examples of language and observed action, the task of the learning
system is to incrementally develop cross-modal categorical representations of action
and language grounded in each other. In the example of the athlete, the input given
to the system would be presented as a sentence describing the action in natural
language and the perception of the scene in terms of the classified objects and their
trajectories given as sequences of coordinates, such as in the following example:

Language The athlete jumps over the hurdle

Object 1 athlete [(x1
1, y

1
1), . . . , (xt11 , y

t1
1 )]

Object 2 hurdle [(x1
2, y

1
2), . . . , (xt22 , y

t2
2 )]
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1 Introduction

The sentence is given as a string of characters with no further information. Objects
are given as a unique identifier (athlete, hurdle) and a sequence of their x and y
coordinates sampled during the action recording. The resulting representations of
action and language should endow the system with the capacity to reliably classify
examples given in language or as action trajectories as well as generate prototypical
examples of both modalities given either a class or an example of the concept in one
of the modalities.

As the model is conceptually based on emergentist and usage-based theories of
language acquisition in the special case of action verbs, the model should, in ad-
dition to several technical challenges, be compatible with the requirements of this
theoretical foundation, which is particularly reflected in the way the model develops
abstract representations of data and the inferential possibilities offered by those
representations.

The multi-modal model for joint action and language learning consists of components
that model action, language and a third component that coordinates the cross-modal
generalization. The component for language is based on an existing model that
was build around emergentist and usage-based theories of language acquisition. A
suitable model for action does not exist to the best of our knowledge.

The design and implementation of the envisioned multi-modal model can particularly
be structured along the lines of the following research questions:

1. How can categorical knowledge of action be represented under the prerequisite
that those representations should be emergent and learned in an item-based
manner?

2. Can general and simple concepts like simplicity and likelihood be applied to
guide the incremental model-merging process in action learning and how do
the resulting models compare to models that are learned in batch mode?

3. How can cross-modal learning of grounded action concepts and linguistic
constructions be orchestrated in an emergentist learning process?

1.2 Learning perceptual and movement primitives by the
desire to induce change

The learning problem for the second model is fundamentally different from the
previous model as it receives no direct supervision in terms of training examples.
The model learns by taking action in a simulated environment and observing change
induced as a reaction to its own actions. The environment consists of a simulated
toy clock and a simulated fingertip the the learning system can use to interact with
the environment. The task of the system is to induce change in the environment, e.g.
rotating the hands of the simulated clock with the fingertip.

7



1 Introduction

Initially the system starts without knowledge about the environment, the clock or it’s
capacity to interact with the environment. In order to induce change in a targeted
manner the system has to learn how to interpret observations from the environment
and on that basis how to move the fingertip towards the clock hands. Learning occurs
when the system receives a reward at certain rare occasions and has to attribute
the reward to specific actions taken in the past in order to develop a predictive
model that it can later be used to estimate the utility of its actions given the current
situation.

The design and implementation of the model is structured along the following research
questions:

1. How can a model be designed in the framework of reinforcement learning that
exemplifies a possible path to how basic perceptual and movement primitives
can develop without complex assumptions to begin with?

2. Is simulated curiosity or more specifically the desire to induce change in the
environment sufficient to guide a learning system that is primarily based on
random parallel exploration and exploitation of knowledge that was gained in
the process?

3. What are possible co-factors that influence the exploration or learning process?

1.3 Contributions

The contributions of the thesis are as follows:

• We propose a model for action learning based on Hidden Markov Models
that is in line with recent approaches to understand human cognition as
being fundamentally explainable by graphical models (Danks 2014). The
proposed model is based on graphical models that are incrementally learned
from experience starting with very simple models that gradually evolve into
more general models to represent a whole class of actions. The proposed model
is incremental, supports simulation and allows to categorize observed actions
very early in the progression of the observation sequence.

• The graphical model approach to action modeling is contrasted with an action
model based on a Long-Short Term Memory recurrent neural network. It is
shown that the HMM based approach is not only favorable because of the
aforementioned properties but also performs comparably to the LSTM based
approach in experiments that evaluate different aspects that are highly relevant
in intelligent systems.

• We propose a cross-modal model for language guided action learning and
categorization by observation that models the joint emergence of linguistic
constructions and conceptual categories guided by the desire to produce compact
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models of both modalities while not reducing the accuracy of the predictions
made by the model on already observed sequences. We show that cross-modal
learning can provide an advantage over uni-modal models especially when
observations are ambiguous and hard to differentiate.

• The proposed model for cross-modal grounded language learning serves as an
implemented theory that accounts for emergentist and usage-based hypothesis
of the co-emergence of linguistic and conceptual structure. As a deterministic
computational model it can be refined and tested on the basis of different
datasets or replicable experiments.

• We propose a model for curiosity driven exploration of object affordances and
properties. The model is a reinforcement learning approach that is similar to
deep Q-networks but differs in aspects regarding strategies to explore the state-
action space and a network layout optimized for learning settings with very
sparse goal corresponding reward signals. We investigate several approaches
to guide the exploration process through reward signals and probabilistic
exploration strategies.

1.4 Outline

The remainder of this thesis is structured as follows: In the next chapter we present
background information and introduce existing techniques and models that are
applied in this thesis. First we introduce the concept of probabilistic time-series
modelling and Hidden Markov models that are used to model action sequences
in the component for action learning (chapter 3). We introduce model-merging
as a technique to incrementally develop Hidden Markov models and present Long
Short-Term memory networks as a state of the art baseline model for comparison
(subsection 3.4.1). The Qualitative Trajectory Calculus is introduced as a basic
scheme that symbolically encodes the relation between two moving objects in the
component for action learning. section 2.6 introduces a model for the item-based
induction of linguistic constructions that serves as the basis for the component for
language learning in the multi-modal learning model that we develop in chapter 4. In
a second model (chapter 5) we demonstrate exemplarily how an autonomous agent
can develop basic perceptual an motor skills such as those that are presupposed
by the multi-modal learning system. The thesis concludes with a summary of the
proposed models and gives an outlook towards future work.
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2 Preliminaries

In this chapter we establish the foundation the proposed models are based on in
terms of algorithms and notations. The chapter begins with a brief introduction to
time-series modelling and its mathematical formulation and based on that introduces
Hidden Markov models that are used to model action dynamics and the traditional
expectation maximization parameter optimization procedure. This is followed by an
introduction to Long Short-Term Memory that provide a state-of-the-art baseline
model from the recurrent neural networks family of models. The representation of
the semantic relation between two objects is based on the Qualitative Trajectory
Calculus (QTC) which is introduced in section 2.5. The model for joint action and
language learning is based on an existing model for the item-based induction of
linguistic constructions whose original formulation is introduced in section 2.6.

The second model proposed for learning perceptual and movement primitives by the
desire to induce change is based on deep Q-networks, a neural networks implementa-
tion of the classical Q-learning approach, which is introduced in section 2.7.

2.1 Probabilistic time-series modeling

Time-series data, as a special case of sequential data, is given as an ordered series of
observations ot1 = {o1, o2, ...ot}, from the first observation in the sequence to the cur-
rent observation at time t. More precisely time-series are a set of (time, observation)
tuples, that are ordered in time in ascending order, but as most time-series data is
sampled in fixed time intervals (e.g. temperature values measured every second) the
time information is implicitly given and can be omitted. Time-series data is often
highly structured in the sense that observations arriving in a certain sequence are
usually strongly correlated to subsequent observations. Although not all sequential
data is time-series data, e.g. gene sequences, the time-series notation and perspective
is used throughout this thesis as all of the action data is time-indexed data.

There are several algorithmic options for the classification of sequence data, which
can (among other categorizations) be divided into three major categories (Xing et al.
2010):

• Feature based classification transforms the sequence into a (fixed sized)
vector and then applies conventional classification methods. For example Bag
of Words methods condense a natural language text of variable length into
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2 Preliminaries

a frequency distribution over individual words or tokens. A recent method
for feature based classification is to use a recurrent neural network to digest
a sequence into a fixed size vectorial representation1 that is then used for
classification in subsequent feedforward layers.

• Distance based classification derives a distance measure between sequences
which is then used to classify the sequences. A prominent representative of
this class of algorithms is the Dynamic Time Warping (DTW) (Keogh et al.
2000), which is used to measure the similarity of sequences which mainly vary
in speed. The similarity measure is then for example used in a distance-based
classifier (e.g. nearest neighbor classifier).

• Model based classification is often implemented using generative models,
such as Hidden Markov models (HMM) (see section 2.2), which assume that the
sequences belonging to a certain class are generated by an underlying process
that can be approximated by the model. Recurrent neural networks, although
they do not model a generative distribution directly, are also often used to infer
a generative distribution.

The approach taken in this thesis is to represent time-indexed action sequences in
probabilistic sequential models, more specifically Hidden Markov models.

The most basic approach to probabilistic time-series modeling is modeling the
probability of the current observation given all past observations p(ot|ot−1, ot−2, ...).
The joint probability distribution for a given sequence can be factored as:

P (ot1) = P (o1)
T∏
t=2

P (ot|ot−1
1 ) (2.1)

The complexity of a model that depends on the complete history of past events
or observations ot−1

1 will grow arbitrarily large for longer sequences therefore it is
necessary to limit the conditional horizon of the model to keep it computationally
tractable. Different computational models employ different approaches. Two of the
most prominent approaches are 1) to simply truncate the conditional horizon to
the last n observations or 2) assume that the statistical process that generates the
observations has an underlying internal hidden state that is not directly visible to
the observer but contains all information necessary to predict future observations in
the sequence. Both approaches are introduced in the following:

1A common approach to yield such a representation is to use a RNN to summarize the information
of a given sequence into a low dimensional fixed-size vector and let a second RNN decode
the fixed-size representation into the original sequence. This scheme is often referred to as
autoencoders with the first RNN being the encoder and the second the decoder. In case of a
space constrained representational vector in the middle the encoder has to learn a compression
that captures the essence of the input sequence such that the decoder can reconstuct the original
sequence from the compressed fixed-size representation.
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Truncate the conditional horizon

When limiting the number of observations to consider to the previous time-step ot−1

we would model the density p(ot|ot−1), which is often referred to as a first-order
Markov Model. A Markov Model represents a stochastic process that is characterized
by the property that knowing the full history of a process does not necessarily result
in better predictions about the future state of the process than knowing only the
present state of the process. This is known as the Markov assumption, sometimes
also referred to as the the “memoryless” property, because the lower the order of the
Markov Model the less memory of past events the process has to predict the future
state.

The Markov assumption can be formalized as the next state of a system X is
independent from the previous states the system was in X0:(t−1) conditional on the
current state Xt:

Xt+1⊥X0:(t−1)|Xt (2.2)

Markov models rely on two fundamental assumptions:

Limited Horizon: The probability of the next state Qt+1 being si only
depends on the previous state si−1.

P (Qt+1 = si|Q1, . . . , Qt) = P (Qt+1 = si|Qt)

Temporal invariance: The probability of the model being in state si is
independent of the time t.

P (Q2 = si|Q1 = sj) = P (Qt+1 = si|Qt = sj);∀t, i, j

The first exploits to the Markov assumption and the second refers to the inability of
the model to follow concept drift that is not explicitly represented in the data.

Higher order Markov Models seem favorable as they can remember more history,
with potentially predictive value, but the number of parameters grow exponentially
with the order n, which is undesirable when the parameters are to be estimated from
data2. Although it is generally possible to decompose an n− th order Markov Model
over the Alphabet A into a first order Markov Model by concatenating symbols into
n-tuples this approach is also not generally applicable as the size of the alphabet
would grow exponentially with the order n of the model.

Furthermore the Markov property represents the rather strong assumption that
events outside of the conditional window do not influence the distribution of future
observations, which could be unrealistic especially when the stochastic process that
generates the observations is non-stationary (changing over time).

2The more parameters are to be estimated from a given dataset the less reliable the parameter
estimates tend to be be as there are less independent examples for each individual parameter
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Modeling a statistical process with an underlying hidden state structure

Another approach to make the learning problem tractable without explicitly limiting
the conditional horizon is to introduce latent ’hidden’ variables into the model and
assume that the observations have been generated from a statistical process that can
be decomposed into a sequence of subprocesses which are modeled as underlying
hidden states. This assumption does not always hold for every statistical process but
it is often sufficient to assume that the past sequence can be summarized concisely
into a hidden state variable, which carries all the information from ot−1

1 that is
relevant to describe the distribution of the next observation ot (S. Bengio et al. 1996).
This is the fundamental assumption in Hidden Markov Models that are introduced
in the following.

2.2 Hidden Markov Models

Hidden Markov Models are a popular method for modeling time series and sequen-
tial stochastic processes with an (assumend) underlying finite-state structure and
found widespread application in part-of-speech tagging and probabilistic modeling
of genome sequences, as well as diverse applications in other fields. Hidden Markov
Models represent probability distributions over sequences of observations under the
assumption that the data generating process can be decomposed into subprocesses
with an underlying finite state structure.

Hidden Markov Models can be viewed from at least two different perspectives. From
the first perspective they can be considered a simple instance of dynamic bayesian
networks where the network layout is simplified by the assumption that an event
can only cause other events in the future but not vice versa. They can also be
considered a probabilistic generalization of nondeterministic finite automata (NFA)
(Stolcke et al. 1993), because as NFAs they generate or accept strings over the output
alphabet by performing nondeterministic walks over the graphical structure of the
model. HMMS are generative models in a sense that they can be used to generate
typical data according to the model (Danks 2014, p44).

The mathematical foundation of Hidden Markov Models was developed by Baum
et al. (1970) but it was Andrei Markov who gave his name to stochastic processes
satisfying the Markov property, the assumption that knowing the full history of the
process provides no more information about the future state of the system than
knowing just the present state. The future state of a Hidden Markov Model thus
only depends on the current state the model is in (see Figure 2.1).
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ot-2 ot-1 ot ot+1 ot+2

q t-2 q t-1 q t q t+1 q t+2

Figure 2.1: Bayesian network representing the independence assumptions of a first
order Hidden Markov Model. The hidden markov process composed of
the sequence of hidden states is denoted by q1, . . . , qt, . . . and the “visible”
observations o1, . . . , ot, . . . generated while being in the respective state.

2.2.1 Definition

Hidden Markov Models are defined as a tuple

λ = (A,B, π) (2.3)

with the discrete set of states S and the observation alphabet V :

S = (s1, s2, . . . , sN ) (2.4)

V = (v1, v2, . . . , vM ) (2.5)

We define Q to be a state sequence of length T and the corresponding sequence of
observations O:

Q = q1, q2, . . . , qT (2.6)

O = o1, o2, . . . , oT (2.7)

The transition matrix is given as A ∈ Rn×n, where aij denotes the probability to
transition from state i to state j:

A = [aij ], aij = P (qt = sj |qt−1 = si) (2.8)

B ∈ Rn×m is the observation probability matrix, where bi(o) specifies the probability
to make a certain observation o ∈ V while being in state qi:

B = [bi(o)], bi(o) = P (o = vj |qt = si) (2.9)

The probability of the initial state q1 being si is given by:

π = [πi], πi = P (q1 = si) (2.10)
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As a first-order Markov model HMMs satisfy the Markov assumption that the current
state is only dependent on the previous state:

P (qt|qt−1
1 ) = P (qt|qt−1) (2.11)

where qt−1
1 denotes state sequence q1, . . . , qt−1. Along with the states the observations

also satisfy an independence assumption that states that the observation at time
t is only dependent on the current state qt and independent from past states and
observations:

P (ot|ot−1
1 , qt−1

1 ) = P (ot|qt) (2.12)

Observations can be either discrete or continuous. Discrete observation densities could
be modeled as parametric densities or by simple normalized histograms. Continuous
densities can be represented as gaussian densities or even as neural networks (Y.
Bengio, De Mori, et al. 1992) that model the observation density p(o|s) directly .

The matrices π,A and B are row stochastic, which means that every element is a
probability and each row represents a distribution.

Many variants of Hidden Markov Models have been proposed that can be obtained
by imposing additional constraints on the transition model A. For example the
left-to-right HMM, which is often applied to speech recognition, can be obtained by
constraining the parameters Aij to be zero if j < i.

In the following we introduce definitions and solutions to some of the common
inference problems Hidden Markov models are often applied for:

2.2.2 Probabilistic Inference in HMMs

There are three fundamental questions an HMM is often used to answer (Koller et al.
2009; Manning et al. 1999; Stamp 2004):

• Evaluation: Estimate the probability of a given observation sequence when
the sequence of hidden states of the underlying statistical process cannot be
observed.

• Decoding: Given an observation sequence Q and the model λ, find the most
likely sequence of hidden states that best explains a sequence of observations.

• Learning: Given the observation sequence and the space of possible model
parameters λ = (A,B, π) , find the parameters that maximize the likelihood of
the observations under the model.

In the following we introduce common algorithms to find solutions to those ques-
tions.
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Computing the probability of a sequence of observations

The process of computing the probability of a sequence of observations is often referred
to as evaluation, because this problem can be viewed as evaluating how well a given
observation sequence is predicted by the model. The problem can be formalized
similar to (Manning et al. 1999; Stamp 2004) as follows: Let O = o1, . . . , oT be the
sequence of observations and λ = (A,B, π) a given model, compute the probability
P (O|λ).

For a given state sequence Q = q1, . . . , qT we can calculate the probability of the
observation given a known sequence of states Q and the model λ:

P (O|Q,λ) =
T∏
t=1

P (ot|Qt, Qt+1, λ)

= bq1(o1) . . . bqT (oT )

(2.13)

using the definition of the observation probability matrix B. And the probability of
the state sequence Q under the model λ:

P (Q|λ) = π(q1)a(q1 → q2), . . . , a(qT−1 → qT ) (2.14)

where π(qi) is the probability of starting the sequence in state qi and a(qi → qj) is the
probability to transition from state qi to qj . The joint probability of the observation
sequence and the hidden state sequence can now be written as:

P (O,Q|λ) = P (O|Q,λ)P (Q|λ) (2.15)

and therefore
P (O|λ) =

∑
Q

P (O|Q,λ)P (Q|λ)

=
∑

Q1,...,QT

π(q1)
T∏
t=1

a(qt → qt+1)bqt(ot)

(2.16)

This derivation is straightforward but generally infeasible to calculate as it requires
(2T + 1)NT+1 calculations (Stamp 2004) 3. Fortunally most of these calculations
consist of partial results that have been calculated before. The key to making this
calculations tractable is thus memorizing these partial results instead of repeatedly
recomputing them. The general technique to avoid this complexity is known as
dynamic programming (see Cormen et al. 1990 for a in depth introduction). In the
context of HMMs the dynamic programming problem is often formulated in terms of
trellises or lattices, which in this case is a matrix of states versus time. Each entry
represents the probability of being in a certain state at a certain instant in time.

3There are NT+1 different state sequences of length N . Calculating the probability for the
observation sequence O given a sequence of states requires 2T + 1 multiplications, 2 for each
time-step (transition times emission probability) plus one multiplications for the initial state.
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The forward algorithm

The forward algorithm calculates the forward probability, the probability of ending
up in state si at time t given the sequence of observations o1, . . . , ot−1.

αi(t) = P (o1, . . . , ot−1, Qt = i, λ) (2.17)

The forward variable αi(t) is stored in the trellis at (si, t) and expresses the total
probability of ending up in state si at time t. The value is calculated by summing all
incoming arcs at the corresponding trellis node. The forward algorithm begins with
initializing the α array at the first time step t = 1 with the probabilities to start the
sequence at a specific state:

αi(t = 1) = πi, 1 ≤ i ≤ N. (2.18)

and then recursively calculates

αj(t+ 1) =
N∑
i=1

αi(t)a(qi → qj)bqi(ot), 1 ≤ t ≤ T, i ≤ j ≤ N. (2.19)

The probability to reach state sj at time t+1 is defined as the sum of the probabilities
to come from an arbitrary state si to sj while observing ot. The total probability is
then

P (O|λ) =

N∑
i=1

αi(T + 1) (2.20)

This recursive formulation is computationally much more tractable as it only requires
2N2T calculations.

The backward algorithm

The backwards algorithm computes the backward variables which represent the
probability of observing a certain sequence given that we are already in state si at
time t. The backwards variables are defined as follows:

βi(t) = P (ot, . . . , oT |Qt = i, λ). (2.21)

Then the variables are calculated backwards working from right to left through the
trellis by first initializing the last step of the calculation

βi(T + 1) = 1, 1 ≤ i ≤ N (2.22)

Recursion

βi(t) =
N∑
j=1

a(qi → qj)bi(ot)βj(t+ 1), 1 ≤ t ≤ T, 1 ≤ i ≤ N (2.23)
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Total

P (O|λ) =

N∑
i=1

πiβi(1) (2.24)

With the definition of the forward and backward recursion we can use any combination
of these two algorithms to calculate the probability of an observation sequence. The
joint probability of observing the sequence O and being in state si at time t can be
derived as:

P (O,Qt = i|λ) = P (o1 . . . oT , Qt = i|λ)

= P (o1 . . . ot−1, Qt = i, ot . . . oT |λ)

= P (o1 . . . ot−1, Qt = i|λ)P (ot . . . oT |o1, . . . , ot−1, Qt = i, λ)

= P (o1 . . . ot−1, Qt = i|λ)P (ot . . . oT |Qt = i, λ)

= αi(t)βi(t)

(2.25)

Therefore we get the general formulation:

P (O|λ) =

N∑
i=i

αi(t)βi(t), 1 ≤ t ≤ T + 1 (2.26)

Estimating the optimal state sequence to explain a given sequence of
observations

The process of estimating the best state sequence to explain a given sequence of
observations is often also referred to as decoding because it decodes the hidden state
sequence that was most likely to have produced the given sequence of observations.
The problem can be formalized as: Let λ = (A,B, π) be a hidden Markov model
and O = o1, . . . , oT be a sequence of observations, find the best sequence of states
Q = qi, . . . , qT that maximizes P (Q|O, λ).

The most common approach to this problem is the Viterbi algorithm, which is
another trellis algorithm very similar to the forward algorithm, except that instead
of summing, the transition probabilities are maximized at each iteration.

Viterbi algorithm

The Viterbi algorithm defines

δj(t) = max
q1...qt−1

P (q1 . . . qt−1, o1 . . . ot−1, qt = sj |λ) (2.27)

as the probability of the most probable state sequence path for the given observation
sequence. The algorithm stores for each point in the trellis the probability of the
most probable path that leads to that particular node. The corresponding variable ψ
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stores the backtrace, the node of the incoming arc that leads to this most probable
path.
The algorithm is defined as follows:

1. Initialization:
δj(1) = πj , 1 ≤ j ≤ N. (2.28)

2 . Recursion:

δj(t+ 1) = max
1≤i≤N

δi(t)a(qi ⇒ qj)b(qi ⇑ ot), 1 ≤ j ≤ N (2.29)

Store the backtrace

ψj(t+ 1) = argmax
1≤i≤N

δi(t)a(qi ⇒ qj)b(qi ⇑ ot), 1 ≤ j ≤ N. (2.30)

3. Termination:
Q̂T+1 = argmax

1≤i≤N
δi(T + 1)

Q̂t = ψQ̂T+1
(t+ 1)

P (Q̂) = max
1≤i≤N

δi(T + 1)

(2.31)

When multiple paths have the same probability we choose one of these paths at
random. It is possible to extend this algorithm to not only determine the best state
sequence but to determine the n-best sequences by storing the m < n best previous
states at a node.

Learning by optimizing the model parameters

So far we discussed the various inference problems Hidden Markov models are
frequently applied to answer. However before the model can be applied, its parameters
have to be estimated from data, in machine learning terminology often referred to as
learning.

In case of Hidden Markov models learning from sequential data D is composed of
two subproblems. Picking a model structure M (network layout) and optimizing
the parameters θ = (A,B, π) which comprise the transition and emission densities as
well as the initial state probabilities.

The Baum Welch Algorithm (Baum et al. 1970; Welch 2003) is a frequently applied
iterative algorithm for calculating a maximum likelihood 4 estimate of the parameters

4Optimizing the likelihood of the model is probably the most common approach but there are
also other approaches that optimize based on other quantities, e.g. gradient based methods
(S. Bengio et al. 1996) that are frequently applied when observation distributions are modeled
based on neural networks.
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of a hidden Markov model. More specifically given an HMM λ = (...) and a set of
observation sequences D = {O1, . . . , Ok} suggest a new HMM λ′ that explains the
observations in D at least as good as the the previous one such that:

P (D|λ′) >= P (D|λ). (2.32)

The algorithm was first described in the late 1960s in a series of articles by L. Baum
and was later formalized as an instance of the Expectation Maximization (EM) family
of algorithms.

The initial set of parameters θ = (A,B, λ) is often chosen randomly, however it is
possible to use the k-means algorithm to find initial model parameters that are closer
to the maximum likelihood estimate than randomly selected parameters are for most
applications (Juang et al. 1990). A good initial estimate for the parameters can
drastically reduce the number of required EM iterations to converge and thus speed
up the learning process.

The result of the iterative procedure would ideally be the model that maximizes
P (D|λ) but practically Baum-Welch often results in a solution that represents a
local minimum. To reach a global optimum the algorithm depends on having a
good initial starting point in a region of parameter space that is already close to the
desired optimal solution. To mitigate the effect of the initialization the algorithm is
often run multiple times and the best solution is picked afterwards. In practice the
emission densities B are found to be more sensitive to the initialization than the A
and π parameters for which different starting points often result in less variance in
the found soulution (Manning et al. 1999).

Baum-Welch algorithm

The basic idea of the algorithm is to keep track of the transitions and emissions that
were most frequently used in calculating the probability of the observation sequence
to construct a revised model in the subsequent iteration that assigns larger parts of
the probability mass to frequent transitions and emissions and thus increases the
overall probability of accepting the observation sequences under the revised model.

The learning problem is stated as follows: Given a HMM λ and N sequences of
observations O = {[o1, . . . , oT (1)], [o

n
1 , . . . , o

n
T (N)]}, find a model λ that maximizes

the likelihood.

P (O|λ) =

N∏
n=1

p(on|λ) = L(λ|O) (2.33)

The process begins with a preselected (e.g. by k-means initialization) or randomly
chosen model λ and calculates expectations on the transitions between states and
updating model parameters using those estimates. The process is repeated until it
converges, re-estimating the parameters in each iteration as follows:

21



2 Preliminaries

Estimation-Step In the expectation step the algorithm calculates the following
quantities given a sequence of observations O by summing over time:

T∑
t=1

γi(t) = expected number of transitions from state i while emitting O (2.34)

T∑
t=1

pt(i, j) = expected number of transitions from state i to j while emitting O

(2.35)

with pt(i, j) and γi(t) being defined as follows:

Let pt(i, j), 1 ≤ t ≤ T, 1 ≤ i, j ≤ N be the probability of transitioning from state i
to j at time t given the observation sequence O:

pt(i, j) = P (Qt = i, Qt+1 = j|O, λ)

=
P (Qt = i, Qt+1 = j,O|λ)

P (O|λ)

=
αi(t)a(qi ⇒ qj)b(qi ⇑ ot)βj(t+ 1)∑N

m=1 αm(t)βm(t)

=
αi(t)a(qi ⇒ qj)b(qi ⇑ ot)βj(t+ 1)∑N

m=1

∑N
n=1 αm(t)a(qmn⇒ qj)b(qm ⇑ ot)βn(t+ 1)

(2.36)

and

γi(t) =

N∑
j=1

pt(i, j) (2.37)

denotes the probability to reach state i at time t with the symbol observed at that
time being O.

Maximization-Step In the maximization step the algorithm recalculates the model
parameters based on previously calculated expectations.
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π̂i = expected frequency in state i at time t = 1 (2.38)

= γi(1)

â(qi ⇒ qj) =
expected number of transitions from state i to j

expected number of transitions from state i
(2.39)

=

∑T
t=1 pt(i, j)∑T
t=1 γi(t)

b̂(qi ⇑ ok) =
expected number of observations of ok while in qi

expected number of visits to qi
(2.40)

=

∑
{t:ot=k,1≤t≤T} γt(j)∑T

t=1 γt(j)
(2.41)

The algorithm proceeds iteration between the expectation and the maximization
steps until convergence.

2.3 Bayesian model merging for Hidden Markov model
induction

In this section we introduce the model merging approach to inducing Hidden Markov
models from data that constitutes the basis for the incremental learning procedure in
the component for action learning. Model merging is an active field of research and
not limited to Hidden Markov models but applicable to a variety of complex model
types that can be created by merging simpler ones. There is ongoing research to
unify model merging approaches, e.g. Brunet et al. (2006) propose unified operators
for different model types such as Entity Relationship Models and State Machines, as
a basis for a more general formalization of the model merging paradigm.

Here we follow the best-first bayesian model merging approach (Omohundro 1993;
Stolcke et al. 1993) that is mainly characterized by the greedy optimization that drives
the optimization using a bayesian criterion. In contrast to the Baum-Welch algorithm
(section 2.2.2), which optimizes model parameters given a fixed model structure,
model merging optimizes the model topology along with the model parameters to fit
the available training data. In essence, the bayesian model merging proceeds in a
bottom up fashion from specific models representing concrete examples to general
models that abstract from concrete examples.

Training examples are first modeled as individual HMMs that are maximally specific
to their respective training instance. The individual models can be merged to a single
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large model, which then consists of maximally specific sub-path that correspond to
the individual training examples. The resulting models are thus unable to generate
or accept any other sequence, that was not in the constituting data. In order to yield
general models, the approach searches for similar structure within the model that
can be collapsed into a more abstract and thus general sub-structure. Learning, as
abstraction from concrete examples, results from structure merging in contrast to
directly optimizing a fixed set of model parameters as in the Baum-Welch algorithm.
In the following we introduce the intuition and concrete implementation of the
bayesian model merging approach in detail.

HMM induction as guided search through the space of possible models

Learning a Hidden Markov model typically involves first choosing the model structure
and second the estimation of optimal model parameters given an optimization criterion
based on the chosen fixed structure. A good choice of structural and model parameters
usually yields a good model to represent the distribution or process assumed to have
generated the data. Model merging makes the choice of structure an integral part
of the learning and optimization process. Traditional training procedures perform
a search through the parameter space of the chosen model along the optimization
landscape that is defined by the optimization criterion. The model merging approach
on the other hand induces complex models by gradually merging simpler models and
thus performing a search through the space of possible model structures in addition
to the space of possible model parameters within the given family of models. By
merging two simple models and collapsing similar structure within the resulting
model, the approach automatically adapts the representational power of the model
to the characteristics of the underlying data and is thus less prone to overfitting,
without requiring explicit regularization other than the optimization criterion.

In essence, model merging can be considered a guided search through model space
starting with very concrete models and proceeding to more general models that
represent a concept on a high level of abstraction. The search has no intrinsic
stopping criterion in the sense that there is a single best model to be found as a
result to the search. Instead there is a set of models that fits the optimality criterion
in between highly specialized item-based (specific to a single item) models that are
prone to overfitting and very general models that could probably underfit the real
data distribution. A proper criterion is crucial to guide the search for an optimal
solution. Since every merging step is a potential generalization step in the model
search, the optimization criterion effectively determines the degree of generalization
in the resulting models.

There is no principled limitation on the methodology the stopping criterion is based
on. It could be for example based on the global characteristics of the target model,
e.g. the model size or the complexity of the resulting models. Other options include
measures that determine the fit of the data given the model in terms of a loss measure,
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e.g. squared error or the negative log likelihood. It is also possible to use simple
heuristic based approaches like thresholding which impose fixed bounds on the loss.

The model merging method for Hidden Markov models relies on five major elements:

1. A method to construct initial HMMs from data.

2. A method to merge sub-structure within the model that has the potential to
represent a more general construct when collapsed.

3. An error measure that ranks the utility of several candidate sub-structures to
be merged and limits the generalization.

4. A search strategy that selects sub-structure to be merged and thus guides the
search for the optimal model in the space of all possible models.

In line with Stolcke (Stolcke et al. 1993) we translate these elements to the domain
of Hidden Markov models as follows:

1. Each new sample sequence is translated to a Hidden Markov model where each
symbol in the sequence is represented by a dedicated state in the model such
that the resulting model generates all and only the symbols in the sequence.

2. Merging sub-structure within HMMs can essentially be reduced to merging two
individual states. Merging two states gives the resulting merged state emission
and transition characteristics that are a weighted average of the corresponding
distributions from the states which have been merged.

3. While there is no principled limitation on the shape of the error measure,
we follow Omohundro (1993) and formalize the error in terms of a bayesian
probability that provides a flexible basis to limit generalization based on
cognitively plausible considerations.

4. We employ a search strategy based on the greedy best-first approach that at
each step merges the states with the highest score according to an evaluation
function. We extend this strategy with a lookahaed mechanism as described in
section 3.3.3.

The concrete implementation of how initial models for individual training examples
are constructed is further explained in section 3.3.3. Merging of states within a given
model relies on the concrete distributions that govern the transition and emission
within the model to be mergeable as well. The concrete implementation of the state
merging procedure is detailed in section 3.3.3. The implementation of the search
strategy in the component for action learning is based on the best-first strategy as
originally proposed but differs in a lookahead strategy that continues the search for a
few more steps even when the originally proposed strategy would stop the search.
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Generalization and inductive bias

Bayesian model merging as it is employed in this thesis can be seen as a guided
search for the optimal model in the space of all possible models. The search is guided
by a criterion that assesses the goodness or optimality of found solutions.

Optimizing exclusively using a criterion that corresponds to the likelihood of the
found solution given the data (maximum likelihood) would not necessarily result in a
model that generalizes well because the Hidden Markov models in our approach are
conceptually unrestricted in size while being expressive enough to simply duplicate
the training data. Duplication of training data generally leads to models that merely
cover examples which are very close to the memorized examples but the model
would be unable to generalize from the data by abstracting common properties
that comprise the essence of what defines the training examples conceptually. This
corresponds to the well known over-fitting effect. On the other hand, generalizing too
much would lead to under-fitting the data, which in the extreme, results in models
that would take their decisions independent from evidence.

Generalization in machine learning is often achieved by introducing a set of assump-
tions on the relation of input to output values. This is often referred to as the
inductive bias or learning bias of a learning algorithm. In essence these assumptions
prefer one generalization over the other (Mitchell 1980). There are many classical
examples for inductive bias applied in a variety of models and learning algorithms.
The nearest neighbor classifier for example relies on the assumption that examples
that are similar to each other according to some metric tend to belong to the same
class. The support vector machine on the other hand relies on the assumption that
distinct classes tend to be separable by large margin boundaries.

Following Omohundro (1993) and Stolcke et al. (1993) we take the bayesian per-
spective, which can be considered a joint approach combining the data dependent
likelihood with a prior that constitutes a global data independent measure.

Bayesian model merging

Bayesian model merging (Omohundro 1993; Stolcke et al. 1993) is an instance
of model merging that is based on a bayesian inductive bias as the optimization
criterion to guide the optimization process. In general, learning from data is gen-
eralizing from it and the inductive bias is the measure that separates wanted from
unwanted generalization, usually by introducing a set of assumptions to the learning
algorithm.

A simple maximum likelihood approach to identify the optimal model in the space of
all possible models (including structural parameters) would result in a model which
could simply duplicate the training data as the class of models is usually rich enough
and leaving the model structure open to the optimization process grants enough
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model capacity in terms of free parameters to perform rote learning. This is different
from traditional optimization with fixed model structure which imposes a constraint
on the form of the maximum likelihood solution by forcing it to abstract from data
in order to represent complex knowledge in a constrained set of parameters. Richer
models with higher model capacity often result in over-fitting models that essentially
perform rote-learning by explicitly memorizing parts of the training data. Without
this implicit bias towards more general models (e.g. by having a fixed model size) the
model merging approach requires an explicitly given bias that drives the optimization
towards more general models while effectively limiting over-generalization.

In bayesian statistics this bias can elegantly expressed as a prior that favors particular
models over the others without considering actual evidence in addition to optimizing
the likelihood alone.

Each optimization step then maximizes the model’s posterior according to the
bayesian definition:

posterior ∝ likelihood× prior. (2.42)

The model merging approach can be seen as a search through the space of all possible
models, in this figure the goal of the search is finding a model for which the posterior
probability reaches its maximum. The bayesian perspective offers an elegant solution
to expressing the wanted degree of generalization as prior and likelihood can be
chosen such that they constitute two opposing forces, with the likelihood having its
maximum at the initial model comprising only the maximally specific sub-paths that
represent concrete training examples. As this model by definition would maximally
over-fit, the role for the prior is then to drive the generalization process towards more
abstract models.

The bayesian perspective also simplifies the task to stop the generalization process
at the optimal degree of generalization and thus to effectively prevent under-fitting
of data. The generalization process can simply be stopped when no further increase
in posterior is possible through any of the available merging steps, as this essentially
corresponds to the equilibrium between prior and likelihood or, assuming a good
choice of the prior, between over- and under-fitting.

A good prior results in models that constitute a good compromise between over-
and under-generalization and in addition are compatible with emergentist theories
of concept acquisition. The latter also demands not to introduce any strong biases
that can not be justified when modeling early language acquisition. In the following
we discuss the relation between complexity and generalization as these concepts are
helpful tools in defining such a prior.

Minimum description length The notion of minimum description length gives
an alternative interpretation of bayesian inference based on information theoretic
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concepts. Maximizing the joint probability of having a model M to explain the data
X is

P (M,X) = P (M)P (X|M) (2.43)

is equivalent to minimizing

− logP (M,X) = − logP (M)− log(P (X|M)). (2.44)

In information theory the negative logarithm of the probability of a discrete event
E can be interpreted as the optimal code word length for communicating instances
of E. The terms in the above equation can be interpreted accordingly, which leads
to interpreting − logP (M) as the description length of the model under the prior
distribution (of possible models) and − logP (X|M) as the description length of the
data when using a code that is optimal for M . The minimization of the description
length can be interpreted as compressing the training data, describing it using fewer
symbols by exploiting regularities in the data without sacrificing accuracy compared
to describing the data literally (lossless encoding).

This interpretation opens up the correspondence to cognitive theories of learning.
A complexity and space limited learning system such as the human brain has to
inevitably seek for the most compressed representations of concepts possible in order
to cover as many diverse concepts as possible while still being so specific to allow
us to make good decisions in specific situations. The description length essentially
describes how much information a given message or event actually conveys, which
quantifies the degree of surprise or unexpectedness.

Kolmogorov complexity There is another popular approach towards the definition
of complexity or simplicity which is highly related to the description length principle,
the so called algorithmic complexity also known as the Kolmogorov complexity. The
main idea of this complexity measure is that the complexity of a string of characters
reflects the degree of incompressibility, which can be measured by the length of an
algorithmic expression or computer program that can generate that string. Simple
strings that bear a high degree of regularity can be expressed by very simple programs
while strings without any regularities have to be printed verbatim by the program.

Shannon information Both interpretations relate also to Shannon (1949), who
defines complexity as surprisingness given the model. In this interpretation having
a model that precisely predicts future outcomes of a statistical process reduces the
surprisingness of new data, because the model can already accurately predict what
data would be seen next.
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Mutual information and sufficient statistics Kolmogorov and Shannon have a
different view on information content of a single object. For Shannon information
can be represented in terms of a random variable. Kolmogorov puts an individual
sequence as the conveyer of information. Both interpret information content (and
thus complexity) in terms of mutual information, the information that one object
gives about the other. Another concept that is related to mutual information is the
notion of sufficient statistics, which in an algorithmic setting describes the meaningful
information that can be extracted from data, leaving the rest of the data as noise.

Optimizing a model for maximum likelihood with unconstrained model complexity
likely results in complex models that, in the worst case, simply duplicate their
underlying training data. Intuitively, having a prior based on a notion that strives
towards models that are smaller and simpler in general would be a good choice
as it effectively limits the tendency towards over-fitting in maximum likelihood
optimization by penalizing overly complex models.

With a simplicity prior, the product of prior and likelihood P (M)∗P (X|M) represents
that compromise between the simplicity that is embodied in the prior and the fit to
the data that is reflected in a high model likelihood that provides the model with
good coverage of the target domain.

The information theoretic viewpoint provides a good basis to derive a notion of
complexity from. The choice of the prior for the component for action learning is
further discussed in section 3.3.3.

Likelihood computation The likelihood can be exactly calculated relative to a
given dataset X as the product of the individual sample probabilities:

P (X|M) =
∏
x∈X

P (x|M) (2.45)

with

P (x|M) =
∑

q1...ql∈Ql

p(qI → q1)p(q1 ↑ x1) . . . p(ql ↑ xl)p(ql → qF ) (2.46)

where l is the length of the sample and q1 . . . ql denotes a path through the model
with qI , qF being the initial and final states.

The calculation of the exact likelihood requires iterating over the complete dataset
X. Omohundro (1993) suggests to simplify this calculation using the Viterbi ap-
proximation, the assumption that the generation probability of a given sample is
largely dominated by a single generation path in the HMM. In model merging this
assumption is justified by the process that develops complex models from simple
models that are maximally specific to a given training instance x ∈ X and thus
constitute Viterbi paths in themselves. Furthermore, the likelihood computation is
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only used to compare models before and after merge operations, which makes the
compared models structurally highly similar. Applying the Viterbi approximation
replaces the inner summation with the term with the highest contribution. The
likelihood can now be calculated as:

P (X|M) ≈
∏
x∈X

max
q1...ql

p(qI → q1)p(q1 ↑ x1) . . . p(ql ↑ xl)p(ql → qF ) (2.47)

Grouping the terms in this expression by states, leads to the form:

P (X|M) ≈
∏
q∈Q

∏
q′∈Q

p(q → q′)c(q→q′)
∏
σ∈Σ

p(q ↑ σ)c(q↑σ)

 (2.48)

where c(q → q′) and c(q ↑ σ) correspond the total counts of transitions and emissions
occurring along the Viterbi path associated with the samples in the underlying
dataset. The emission and transition counts along the viterbi paths (viterbi counts)
can be tracked implicitly without having to reparse the complete dataset after each
merge operation. Assuming that merges preserve the viterbi paths, viterbi counts
can be optimistically updated as follows: When initial models are created, the viterbi
counts are set to one, corresponding to the single sample any initial path was created
for. After merging any two states q1 and q2 the corresponding counts are simply
added and recorded for the resulting merged state. For example given the transition
counts c(q1 → q′) and c(q2 → q′) in the current model, the resulting merged state q3

would be assigned
c(q3 → q′) = c(q1 → q′) + c(q2 → q′) (2.49)

as the new transition counts. Emission counts are updated accordingly. This
optimistic update is correct as long as all Viterbi paths that include the transitions
q1 → q and q2 → q′ retain their most likely paths with the merged states q1 and
q2 being simply replaced by the resulting state q3. This update could introduce
errors if other samples change their paths to include q3 → q′ as a result of the merge
operation. Incorrect counts will eventually be replaced by counts that are more
recent as new data is incorporated into the model.

Example

As an example we consider a sequence of models obtained by merging samples from
an exemplary language (ab)+. This example was reproduced from Omohundro (1993).
All transitions and emissions in the example that are not specifically labelled have a
probability of 1.0.

The model induction process starts with a model M0 that is constructed from two
sequences X = {ab, abab} obtained by sampling from the regular language (ab)+.
These two sequences constitute the data for the example.
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To incorporate the sequences into a (initially empty) model we first transform
both sequences into maximally specific Markov chains that produce their respective
sequences with probability 1.0 and integrate them into a new Markov model by
introducing transitions from the start state of the model to the first states in the
data sequences. As both sequences are observed once, the transition probability
mass of the start state is equally distributed. The last states of the sequences are
terminated by transitioning to the final state of the Markov model.

The resulting model M0 can be seen in the following figure:

The likelihood of model M0 can be calculated according to Equation 2.48. Note that
all calculations are done in log-space to improve numerical stability (see section 3.3.3).
The log likelihood of the initial model can be calculated as

logP (X|M0) = log(0.5) + log(0.5) = −0.602.

As most transitions have a probability of 1.0, only the two transitions emanating
from the initial state contribute to the result.

Starting from the first model the algorithm would select the first two states to
be merged according to their emission and transition similarities. This similarity
measure can be seen as an approximation to the expected drop in likelihood of the
resulting model. Merging both highlighted states (see section 3.3.3) yields model
M1:

The overall model likelihood does not change, because we have again only two paths
contributing to this measure, both having a probability of 0.5.

After merging the next two highlighted candidates, both emitting a b symbol, we
yield model M2 again without a drop in model likelihood:
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The next merge yields M3 where we suffered a first drop in likelihood, but as we
have a prior favoring less states, M3 is still more preferable compared to M0:

This model is now cyclic and able to generate more sequences than the original
sequences ab, abab it was created from. In fact being cyclic enables M3 now to
generalize to the whole language (ab)+ which was used to generate the constituting
samples in the first place.

The last merge simplifies the model further to the most compact form to generate
the example language, again without a drop in likelihood.

2.4 Long Short-Term Memory

Long Short Term Memory networks (LSTM) are generative recurrent neural networks
to model sequences of arbitrary length. Recurrent neural networks differ from regular
feed-forward networks in that they introduce loops into the network structure which
allows information to persist from one step to the other. While loops are a powerful
tool to model long term dependencies by connecting previous information to current
tasks, traditional RNNs had difficulties learning how to connect that information
when the number of intermediate steps was large. The fundamental problem is
associated with the vanishing gradient effect, that was analyzed in detail in Y.
Bengio, Simard, et al. (1994) and Hochreiter (1991).
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While Hidden Markov models decompose an assumed statistical process into sub-
processes and embed them into a graphical structure that mediates the transition
between sub-processes, a neural network models an assumed functional relation
between input and output variables as a computational graph that incrementally
transforms the input as it flows through the graphical structure by applying basic
mathematics operations at each node. The graphical structure thus constitutes a
decomposition of a larger functional interrelation between input and output predic-
tions.

Unlike the Hidden Markov Model, LSTMs condition on the complete history of the
sequence using an explicit memory mechanism. The amount of memory is limited
and fixed but the model can learn which parts of the history are relevant for future
predictions and how to efficiently encode the relevant information. For this purpose
the model has a tunable gating mechanism to control the flow of information into and
out of the memory. This gating mechanism is the reason why LSTMs are much more
stable with regard to the vanishing or exploding gradient effect, which drastically
limited the applicability of recurrent networks for many complex problems.

LSTM networks found widespread application in, e.g. recognizing patterns in
sequential data, such as text, handwriting, genomes or analysis of numerical time-
series. Depending on the task at hand, LSTMs are either applied as standalone
predictors or together with other types of neural networks in a layered (deep)
architecture.

Several variants of the block architecture of LSTM memory cells have been proposed
(Gers et al. 2000; Greff et al. 2015) that mainly differ in the configuration of the
multiplicative gates that regulate information flow. An example of a simple recurrent
network unit and a LSTM block with peephole connections can be seen in Figure 2.2.
The implementation in this thesis is based on the original architecture proposed by
Hochreiter and Schmidhuber (1997) with input, output and forget gates.

LSTM network architecture

As a special kind of RNNs, Long-Short Term Memory networks are capable of
remembering long-term dependencies. In fact they were originally proposed by
Hochreiter and Schmidhuber (1997) to specifically tackle the problem of long-term
dependencies that were difficult to learn by traditional RNNs due to the vanishing
gradient problem. While the latter has a single loopback connection, that carries
information from the current time-step over to the next time-step verbatim, LSTMs
introduce a sophisticated gating mechanism that enables the network to learn when
to carry information over to the next time-step and to what extent. Furthermore,
the mechanism allows the network to learn to protect its memory from changes
and also to completely forget past information. The unit composed of a traditional
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Figure 2.2: This Figure shows a traditional RNN/SRN (simple recurrent network)
on the left and a LSTM Block on the right. The Figure originates from
Greff et al. (2015). The blue connections refer to the so called peephole
that are not part of the originally proposed architecture. Information
flows from bottom to top through the cell and is, in the case of an LSTM
cell, modified and remembered controlled by the gating mechanism.

feedforward sigmoid connection and the gating mechanism is referred to as a memory
cell.

While information flows through a memory cell, the LSTM has the ability to remove
or add information to the cell state regulated by the so called gates.

Multiplicative gating mechanism

Gates consist of a sigmoid connection followed by a pointwise multiplication operation.
As the sigmoid function σ outputs numbers between zero and one, the following
pointwise multiplication can essentially decide how much of the original information
is allowed to pass the gate. A value of zero means that no information is allowed
to pass and a value of one lets information flow unchanged. The original LSTM
memory was proposed with three gates to control to forget past information and
control the input of new information into the cell state or the output of information
to the current prediction. Figure 2.2 depicts a single LSTM cell together with the
much simpler traditional RNN unit.
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Forward pass

The activations of the input(it), forget(ft) and output(ot) gates in a forward pass at
time t are calculated as:

it = σ(wi[ht−1, xt] + bi)

ft = σ(wf [ht−1, xt] + bf )

ot = σ(wo[ht−1, xt] + bo).

Where xt represents the input at the current timestamp. Each of the gates have
their respective tunable weights wi, wf , wo and bias vectors bi, bf , bo.

The output ht of the LSTM cell is calculated as:

ĉt = tanh(wc[ht−1, xt] + bc)

ct = ft ∗ ct−1 + ii ∗ ĉt
ht = ot ∗ tanh(ct)

The calculation proceeds in two steps, first a candidate cell state ĉt is calculated,
which in turn is used to calculate the actual cell state ct considering the previous
cell state weighted by the forget gate activation and the amount of information to
input from the current candidate state. How much information is allowed to exit the
cell is determined by applying the activation function on the current cell state and
multiplying the result with the activation of the output gate.

2.5 Qualitative Trajectory Calculus

The qualitative trajectory calculus (QTC) is a representation scheme to logically
express the relation between moving objects with respect to each other 5. It provides
a sound mathematical formulation to reason about moving objects qualitatively by
abstracting from raw euclidean coordinates and their temporal dynamics. Different
types of spatial QTC have been defined, belonging to two main categories: QTC
- Basic (QTCB) and QTC - Double Cross (QTCC). The two categories and their
subtypes consider pairs of objects (o1, o2) and mainly differ in the number and
type of physical factors considered (e.g. relative speed, distance, directions, etc.)
and in the dimensionality of the underlying data. The two objects are represented
as point-objects (e.g. their center of mass) and their physical extent is neglected.
The QTC framework defines a state descriptor (C1, . . . , Cn) to express the relation
between the two objects qualitatively, where each Ci represents a so called constraint
with the following interpretation:

5There is ongoing effort to extend the QTC family of representations to other domains, such as
networks or higher dimensional spaces. In this thesis we consider only QTC types that represent
two dimensional spatial relations between two objects.
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Figure 2.3: This figure shows two moving objects k and l at two different time points
t1 and t2. In this example k is moving towards l at time t1 on the left
hand side of the reference line RL from k to l, l is moving away from k
on the left hand side of the reference line from l to k. The corresponding
QTCC1 relation is (−+−−). Reproduced from (Weghe et al. 2005)

(A) Distance constraint: movement of k with respect to l at time t1:

- k is moving towards l

0 k is not moving relative to l

+ k is moving away from l

(B) movement of l with respect to k at time t1: same as above but with k and l
interchanged

(C) Speed constraint: Difference in speed of k and l.

- k is moving slower than l

0 k and l move with equal speed

+ k is moving faster than l

(D) Side constraint: Movement of k with respect to the reference line RL at time t1

- k is moving to the left-hand side of RL

0 k is moving along RL or not moving at all

+ k is moving to the right-hand side of RL

(E) Side constraint: Movement of l with respect to RL at time t1: same as above
but with k and l swapped
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Figure 2.4: Example sequence of a “circles around” action. The blue rectangle circles
around the green circle on a smooth elliptic trajectory. The QTCC1

relations only change at the marked positions P2, P4, P6 and remain
unchanged in between.

(F) Angle constraint: Minimal angle θk, θl between speed vector of the objects k, l
and the reference line RL

- θk is less than θl

0 θk is equal to θl

+ θk is greater than θl

The basic QTCB1 type only considers distance and relative speed (difference of
distances) and thus can be easily applied also in non-cartesian spaces (e.g. joint
space in robotics) where only a distance metric is known. QTCC1 also considers the
direction of movement with respect to a reference frame between the two objects,
which takes the form of a double-cross (Freksa 1991; Freksa 1992b; Freksa and
Zimmerman 1992; Zimmermann and Freksa 1993; Zimmermann and Freksa 1996).
The double-cross is defined by a reference line RL between the object centers and
one line perpendicular to RL (RL ⊥ 1, RL ⊥ 1) for each of the object centers (see
Figure 2.3).

As an illustration of the action representation, consider Figure 2.4, which depicts a
rectangle circling once around a circle on an elliptic trajectory. At the first marked
position, P1, the square is moving on the top left of the circle, corresponding to the
QTC descriptor (-,0,-,0). At P2, the square is on top of the circle and instead of
approaching the circle the rectangle veers away from the circle now, resulting in the
first constraint of the QTC relation to change from − to + yielding (+,0,-,0) as the
new relation. In this illustration of very smooth trajectory, the QTC relations would
only change at the positions P2, P4, P6 and remain unchanged in between, leading
to subsequences with many repeated QTC relations in between which are subject to
a logarithmic compression scheme that is introduced in section 3.3.1. Trajectories
from actions performed by humans however are much more cluttered and thus the
sequences of QTC relation contain many additional transitions.
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QTC Basic A B C D E F

QTCB1 X X
QTCB2 X X X

QTC Double-Cross A B C D E F

QTCC1 X X X X X
QTCC2 X X X X X X

Table 2.1: Four variants of spatial QTC as combinations of the six basic constraints

2.6 Item-based induction of linguistic constructions

In the following we introduce a model for the item-based induction of linguistic
constructions that serves as the basis for the component for language learning in
the proposed multi-modal learning model. In this section we describe the model
as it was originally proposed by Gaspers and Cimiano (2014). The extensions to
the model that are necessary for the model for multi-modal grounded action and
language learning are described in section 4.2.

The model for inducing generalized linguistic constructions acquires syntactic con-
structions and a lexicon from examples comprised of input across two different input
channels: a language channel and a visual channel. The language channel presents
utterances as sequences of words to the system while input from the visual channel
is in the original version of the system represented as a symbolic description of the
visual context. The visual meaning representation (MR) is comprised of a set of
actions taking place while the utterance is being uttered. Each action mri ∈ MR is
represented by means of a predicate logic formula, comprising a predicate ξ along
with a set of arguments. The learning process and an example of a verb-specific
construction stored in the network are shown in Figure 2.5.

The model starts with a network that is initially empty and continuously augmented
and refined by dynamically updating the network with each new input example.
Learning in the model proceeds in a bottom-up fashion, starting with representations
of low complexity as sequences of words coupled with a predicate logic representation
of their meaning. Linguistic structures of low complexity are gradually abstracted
from specific words into partially productive slot and frame patterns that are lexically
anchored to yield fully productive constructions when generalization is finished.

In sum, the model is characterized by the following properties:

1. Linguistic knowledge is represented in a network structure that contains linguis-
tic constructions at various levels of abstraction as a result from an incremental
data-driven generalization process.

2. The model does not assume linguistic knowledge to exist in the beginning.
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Figure 2.5: Schematic overview showing an example construction learned from the
two examples of the “pushes” action given as paired input across the
language and visual channel. The figure shows the learned construction
stored in the network.

3. Resulting representations in the model are suitable to both language under-
standing as well as generation of utterances.

4. The model learns on-line in an incremental fashion where each new item causes
direct updates of the learned knowledge and does not need to be explicitly
stored for later consideration.

Having these properties, the model complies with emergentist and item-based theories
of early language acquisition and is thus compatible with the theoretical framework
the multi-modal learning model is situated in. Properties required by the theoretical
framework include the ability to learn on-line in a bottom-up fashion starting with
representations of low complexity that are gradually abstracted into more general
representations. The properties required to be compatible with the theoretical
framework together with their technical implications are discussed in detail in
section 3.2.

The learned linguistic knowledge in the model is stored in a network structure that
evolves over time by continously updating its structure in the light of new data.
The network can be roughly divided into a subnetwork representing lexical, and a
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subnetwork representing syntactic constructions, where the syntactic subnetwork
builds on the lexical subnetwork and is divided into two sublayers: a slot-and-frame
(S&F) pattern layer and a mapping layer. The lexical subnetwork encodes simple
phrases, i.e. (short sequences of) words, as nodes together with the associated
semantic referents, e.g. the sequence “red triangle” and the corresponding semantic
referent ‘red triangle’ in Figure 2.5. The S&F pattern layer represents syntactic
constructions as sequences of nodes that together constitute a path. Paths can
contain variable nodes that represent slots in the syntactic pattern. These slots can
be filled with elements contained in specific groupings. This layer also encodes the
associated semantic frames. For instance, in Figure 2.5, a syntactic construction
is represented as a path p which expresses a pattern “X pushes Y ”, where X and
Y represent syntactic slots in the pattern, which can be filled with groupings of
elements such as “blue circle” and “red triangle” in the case of X or “red circle” and
“red rectangle” in the case of Y . The semantic frame associated with the pattern
is push(trajector,landmark). The mapping layer contains networks representing
construction-specific argument mappings between syntactic patterns and semantic
frames together with mappings of the syntactic arguments to semantic arguments. For
example, in Figure 2.5 an individual mapping network captures the correspondences
between X and the trajector role as well as Y and the landmark role.

In general, the model considers two types of constructions stored in the network that
correspond to different degrees of generalization:

• Constructions at the word level where the construction corresponds to short
sequences of words, e.g. “red triangle” is captured in the word construction
network CONWORD.

• Constructions of higher complexity at the level of slot and frame patterns, e.g.
“X pushes Y” are stored in the slot-and-frame pattern construction network
CONS&F .

Form-meaning mappings as correspondences between linguistic and conceptual en-
tities, are established by capturing their co-occurrence frequencies across observed
examples and contexts in associative networks.

The individual subnetworks and the representations they develop during learning are
detailed in the following:

Lexical subnetwork The lexical subnetwork encodes simple phrases, i.e. (short
sequences of) words along with their associated semantic referents as nodes in the
network, i.e. the sequence “red triangle” and the corresponding semantic referent
‘red triangle’ in Figure 2.5. The underlying network is a left-to-right graph, where
transitions from node ni to node nj are constrained such that there are no transitions
with j < i. The lexical subnetwork thus directly encodes the order in which words
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appear in a sentence. The strict left-to-right constraint also ensures the graph is
loop free and only sentences of finite length can be generated.

S&F pattern layer The S&F pattern layer represents syntactic constructions as
sequences of nodes that together constitute a path. Paths can contain variable nodes
that represent slots in the syntactic pattern. These slots can be filled with elements
contained in specific groupings. This layer also encodes the associated semantic
frames. For instance, in Figure 2.5, a syntactic construction is represented as a path
p which expresses a pattern “X pushes Y ”, where X and Y represent syntactic slots
in the pattern, which can be filled with groupings of elements such as “blue circle”
and “red triangle” in the case of X or “red circle” and “red rectangle” in the case of
Y . The semantic frame associated with the pattern is push(trajector,landmark).

Mapping layer The mapping layer contains networks representing construction-
specific argument mappings between syntactic patterns and semantic frames together
with mappings of the syntactic arguments to semantic arguments. For example, in
Figure 2.5 an individual mapping network captures the correspondences between X
and the trajector role as well as Y and the landmark role.

Co-occurence frequencies in hebbian associative networks

Correspondences between form and meaning are represented in associative networks
as suggested by Rojas (2013) in a Hebbian learning (Hebb 1949) setting, where
connections between simultaneously activated units are strengthened and thus capture
the co-occurence between form and meaning. The graph consists of two bipartite
layers x and y which are fully connected through a matrix W of learnable weights.
Form and meaning are thus organized such that form is represented on one side of
the graph and meaning on the other. Learned associations between both can be
retrieved by

y = Wx (2.50)

and
x = W T y (2.51)

respectively. Gaspers and Cimiano (2014) suggest to use an adjusted learning rule
originally proposed by Schatten (2003):

∆wi,j = η(xi − x
′
i)(yi − y

′
j) (2.52)

with x′i and y′j being the current value of xi and yj after processing the current input
x and y. The update is mediated by the learning rate η.

In order to learn new mappings when they are observed in the data, the network has
to grow over time, introducing new nodes for newly observed associations. When
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new nodes are introduced into the network new connections between those nodes
and the already existing nodes have to be established and their initial weights have
to be determined. Possible initialization strategies are for example to initialize
new connections with a predetermined fixed initial weight or to calculate the initial
weights based on the average of all weights. However, in the case of the associative
network that captures the co-occurrence between lexical units vnl ∈ VNL, the authors
proposed a different initialization strategy, that provides the model with the ability
to quickly associate newly observed words with their meaning on the first occurrence.
This one-shot learning ability is in the context of language learning often referred to
as fast mapping observed in children (Susan Carey et al. 1978). The authors suggest
an initialization strategy based on the intuition that new lexical units or referents
should preferably be associated with referents or lexical units that in the current
state of the network are not associated with other units.

All of the associations stored in the associative networks relate surface forms with
their corresponding meaning.

In summary, associations are tracked to:

• Establish correspondences between lexical units and simple semantic referents

• Relate sets of slot-filling elements in syntactic patterns to argument slots in
semantic frames

• Link semantic frames to syntactic patterns

Learning and Generalization

Learning is organized in an online fashion where each input example causes immediate
changes in the network structure. The learning process is roughly divided into two
steps: i) update of the lexical layer, where connections between lexical units and
semantic referents are established and reinforced, and ii) update of the construction
layer, where the model mainly attempts to merge paths, and thus generalizes over
specific linguistic and action examples observed.

For generalization, the model exploits type variations at the linguistic level in relation
to semantic observations. More specifically, there are two different generalization
steps, both of which are applied to each observed input example, i.e. i) a slot-driven
generalization step and ii) a syntactic generalization step. In the slot-driven general-
ization step, the model searches for sentences and (partially generalized) patterns for
which linguistic variation in a position yields corresponding semantic variation in a
slot in an associated semantic frame. In the syntactic generalization step, the model
searches for patterns which show linguistic variation in a position but are associated
with the same semantic frame. Thus, syntactic generalization may yield groupings of
lexical units which are synonyms.
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To illustrate the intuition behind the learning steps, consider the following example:
A learner hears “the blue circle jumps” and “the red triangle jumps” in the visual
context jump(trajector:blue circle) and jump(trajector:red triangle), respectively. To
learn across situations, during updates of the lexical layer, the model would use
its knowledge that the linguistic phrase “red triangle” refers to the semantic entity
red triangle and that the phrase “blue circle” refers to the semantic entity blue circle.
Such knowledge would, in turn, be applied during updates of the construction
layer in the slot-driven generalization step to bootstrap that the type variation in
the sentences’ first position (“blue circle” vs. “red triangle”) reflects the meaning
difference in the trajector role of jump. The model would use its knowledge to acquire
the more general pattern shown below, where X = [blue circle → blue circle, red
triangle → red triangle].

1.
Syntactic pattern X jumps

Semantic frame jump(trajector)

Mapping X → trajector

Now let’s assume that after observation of some more input examples the model
has also acquired the constructions shown in (2), where again X = [red triangle
→ red triangle, blue circle → blue circle].

2.
Syntactic pattern X hops

Semantic frame jump(trajector)

Mapping X → trajector

Since the two syntactic patterns show linguistic variation in one position (“jumps”
vs. “hops”), but are associated with the same semantic frame, the model would
group these two words and assume that both can be used interchangeably (without
yielding semantic change). The model would thus use its knowledge to acquire the
more general pattern shown in (3), where X = [red triangle → red triangle, blue
circle → blue circle] and SYN 1 = [jumps, hops].

3.
Syntactic pattern X SYN 1

Semantic frame jump(trajector)

Mapping X → trajector

2.7 Deep Q-learning

Reinforcement learning is often applied in learning scenarios where an agent has to
learn how to efficiently achieve a certain goal by taking actions and observing the
resulting changes in the environment in order to take the next action that brings the
agent further to the goal it desires to reach. From time to time the agent receives a
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Agent

Environment

action  
at

reward  
r t-1

state  
st-1

Figure 2.6: The interaction between the agent and the environment is modeled as a
markov decision process, where the agent takes an action at at the current
time t that changes the environment, which, in turn, generates a new
state and a reward that is consecutively observed by the agent to estimate
the next optimal action to take in order to maximize the cumulative
reward over all successive iterations. Reproduced from Richard S Sutton
et al. (2017).

so called reward, e.g. when a certain sub-goal is reached, that is usually only sparsely
given as a result to a sequence of actions that lead to a sequence of changes in the
environment.

The fundamental learning task is now to correlate immediate actions with the delayed
rewards they produce. Many reinforcement algorithms have been proposed across
several fields of research, including control theory, operations research, game theory
and genetic-algorithms. In this section we introduce a variant of the well known
Q-learning (Watkins et al. 1992) algorithm which builds on a deep feed-forward
neural network to calculate the so called Q function which estimates the long-term
return when taking action a in the current state s under the current policy π. The
environment is usually modeled as a function that transforms an action taken in the
current state into a set of observations describing the next state and a reward that
constitutes the weak supervision for the learning process.

Reinforcement learning fundamentally builds on the concepts of agents, environments,
states, actions and rewards (see Figure 2.6) which are described in the following:

Agent(A): The agent is the fundamental abstraction of the learner, which,
in contrast to supervised learning, is not directly told the best action to take in
the current state of the environment, but instead has to explore the state-action
space to discover which actions achieve the most reward.

Action(a): To interact with the environment the agent can choose from
a set of possible actions to take. Applying an action can result not only in
an immediate reward, but can also have an effect on the reward received in
sub-sequent iterations.

Environment(E): The environment is the world the agent interacts with.
The environment can be modeled as a function that takes an action and the
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current state of the world and outputs the next state of the world together
with the reward the agent receives.

State(s): A state encapsulates all information that comprise the immediate
situation the agent is in with regard to the environment. The state can, e.g.
contain information about the position of a mobile agent, or it’s relation to
some reference object. The state is usually not directly observable but instead
manifests in a set of observations.

Reward(r): The reward is the feedback signal the agent receives as supervi-
sion. Reward can be a measure of success or failure or any other signal that
allows the agent to draw conclusions on the utility of the action it has taken in
the past. The reward is not required to reflect the immediate effect of an action
taken but can rather be delayed or a consequence of a sequence of actions taken
in order. The agents goal is to discover the sequence of actions that maximizes
the cumulative reward the agent receives.

Policy(π): The policy is the strategy the agent follows to determine the
next action to choose based on the current state the environment is in. The
policy can usually be seen as a function that takes the current state as an
argument and outputs the expected utility of taking any of the applicable
actions. The policy is usually complemented with an exploration strategy that
decides whether to apply the highest rated action or to explore the environment
along paths (sequences of actions) that appear less favorable under the current
learned policy.

Value(V): The value function Vπ(s) represents the expected long-term reward
in state s under the current policy π, as opposed to the short-term immediate
reward r. Reward expected in the future is usually discounted by a factor γ
per iteration, giving precedence to recent over later rewards.

Q-Value (Q): The Q-value Q(a, s) or action-value refers to the long-term
reward that is expected when taking action a in current state s and following
the optimal action according to the current policy π afterwards.

The environment the agent interacts with can be arbitrarily complex, for example a
real physical robot that performs the actions chosen by the learner in the real world.
In this example the environment would probably be highly non-deterministic, e.g.
when the actions are motor voltages, no sequence of actions would be reproducible
in a sense that it results in the same sequence of real-valued observations of torques
and positions. While the current state of the environment can be observed, the
environment itself is unknown and considered a black box. The task of the agent is
now to attempt to approximate the function that describes the environment such
that the agent can accurately predict the next state st+1 of the environment together
with the received reward tt+1 when taking action at at the current time t.
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The classical Q-learning (Watkins et al. 1992) is a form of temporal difference learning
(Richard S. Sutton 1988) and was one of the most popular reinforcement learning
algorithms that is applicable to a variety of different learning problems. However
the general applicability was limited to domains which are fully observable with
low-dimensional input and state spaces or when a set of low-dimensional input
observations could be handcrafted. Mnih, Kavukcuoglu, Silver, Rusu, et al. (2015)
propose a variant of the classical Q-learning that overcomes this limitation by
employing a deep neural network as an estimator to the Q-function. Neural networks
with many layers are known to work well even in high-dimensional feature spaces and
in many cases develop expressive features for highly structured data. These features
are developed by transforming the data in each of the network’s layers such that,
with each layer, it progressively develops more and more abstract representations
with regard to the learning task. To demonstrate the flexibility of the approach, the
authors showed that their agent could learn to play 49 different Atari 2600 games
on a human level of performance without relying on game specific features. To
learn how to derive relevant features that accurately represent the current state of
the game from raw pixel input, they employed a deep network with convolutional
layers to learn domain specific filter banks. The approach, however, is not limited
to convolutional networks and was successfully applied with many different neural
networks architectures.

Reformulating the classical Q-learning approach with a neural network as Q-function
estimator has the advantage that the state-space can be very large and is not required
to be discrete. However, applying (deep) neural networks in reinforcement learning
poses some challenges regarding the stability of the training target and the correlation
of input observations. These challenges are approached by employing a target network
that is separate from the currently learned live network and experience replay to
decorrelate subsequent observations.

Target network

Neural networks are usually trained in a supervised manner. In reinforcement
learning, however, the correct labels (long-term reward of taking a certain action
in the current state) are usually unknown. In order to derive a training target Yt
(label) for the network, Q-learning builds on it’s own estimation of the Q-function.

Let Q(a, s, θ) be a neural network that represents the Q-function with θ being the
learnable weights of the network, the training target takes the following form:

Yt = rt + γmax
a

Q(s′, a′, θi) (2.53)

with rt being the current reward at time t and a discount factor γ that prefers current
over later rewards. The training target consists of rt as the actual evidence of current
reward and the networks own prediction of cumulated expected reward when taking
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action a in the current state and following the best available actions afterwards.
Updating a neural network with its own predictions can lead to severe overestimation
of state-action utilities. Mnih, Kavukcuoglu, Silver, Rusu, et al. (2015) propose to
mitigate this effect by employing a separate target network θ′ which is structurally
equivalent to the online network except that its parameters are a periodic copy of
the parameters of the online network every τ time-steps. The idea of employing
a decoupled target network has further been extended by Hasselt (2010) based
on the observation that the max operation in Equation 2.53 introduces a positive
bias towards systematically overestimating the expected action value. The authors
propose to decorrelate the selection of the best available action from the estimation
of the expected cumulative reward. The adapted update target decomposes the max
operation by using the online network θt for action selection and the target network
θ′i for action evaluation under a greedy policy:

Yt = rt + γQ(s′, argmax
a

Q(s′, a′; θt), θ
′
i). (2.54)

Experience replay

In supervised learning, input examples are often assumed to be i.i.d (independent and
identically distributed). In reinforcement learning the learner is usually challenged
with observations that are observed in successive states of the environment and
thus highly correlated. Experience replay is a biologically inspired mechanism that
randomizes over data and thereby removes correlations in consecutive observation
sequences.

During the interaction with the environment, the agent repeatedly performs actions
at while the environment is being in a certain state st. In reaction to the agent’s
actions the environment (in it’s functional interpretation) transitions to it’s next
state st+1 and outputs an immediate reward rt+1, that can be the result of any
sequence of past interactions. Instead of updating the Q-network after each iteration
directly and thus learning form subsequent highly correlated samples, experience
replay keeps a windowed replay buffer over the last N transitions and updates the
network with a batch of randomly sampled transitions stored in the buffer.

Policy iteration and random exploration

Neural networks are usually employed in supervised learning problems where the
correct output values are known for a given set of training instances. In deep Q-
learning there are no explicit training instances to learn from, instead the agent
has to rely on exploration to elicit feedback from the environment in terms of a
rarely given reward. Monte Carlo methods that rely on repeated random sampling
can be employed to train the estimator. The method is based on the intuition that
when randomly exploring the environment for enough iterations, better state-action
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Figure 2.7: In the classical Q-learning formulation the action whose expected reward
is to be calculated is given as a parameter of the Q-function. As this
approach is not efficient when the Q-function is estimated by a compu-
tationally more demanding neural-network, the expected rewards of all
actions are calculated at once in a single forward pass.

combinations yield higher rewards on average, due to the law of large numbers. This
way the agent can extract some information about the expected value of a state
without having any prior knowledge about the environment. To efficiently explore
the environment, the agent has to find the optimal trade-off between exploration and
exploitation of gained knowledge.

Efficient action value estimation

In order to efficiently model the Q-function as a neural network, the function has to
be adapted. The classical Q-function represents the maximum discounted reward
that is expected in successive iterations when taking action at in the current state st
and continue with the best actions (receiving the highest awards) afterwards:

Q(st, at) = max
rt,...,rT

rt + γrt+1 + γ2rt+2 + · · ·+ γT rT (2.55)

Having the action as a parameter would require a separate forward pass of the
neural network for each action. As this is not efficient, the Q-values for all possible
actions are output all at once instead (see Figure 2.7). Another difference to the
classical approach that relied on hand-engineered features to represent the information
necessary to solve the learning problem is that when developing these features as part
of the learning problem, some features can not be learned by a single snapshot of the
current state. Velocities of objects for example can only be derived from consecutive
states containing information about the current position of those objects.
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qualitative action models

Movement is the only potential we have to interact with our environment. Even
communication between humans through gestures, facial expressions or even speech
is fundamentally mediated through body movements based on a common code of
communication. This tight coupling between our ability to communicate and our
ability to act in the environment suggests that the development of both abilities in
infants does not happen in isolation but rather as a joint process.

This coupling does not only apply to the development of action skills and concepts
but for conceptual development in general (Bowerman et al. 2001). The theory of
linguistic relativism, more widely known as Sapir-Whorf hypothesis, claims that
language structures thought and shapes the concepts we acquire (Phillip Wolff et al.
2011).

In contrast, however, many computational models and theories of language acquisition
so far assumed that concepts are available prior to learning the meaning of a certain
linguistic construction and that novel words or constructions are merely mapped
onto these existing or innate concepts. This so called mapping paradigm is a large
simplification when learning the grounded meaning of verbal constructions. Gleitman
(1990) has argued that it is not likely “that learning in this regard is always and
only a matter of mapping the words heard onto a preset and immutable set of
concepts priorly available to the prelinguistic child. Rather, there is bound to be
some degree of interaction between the categories lexicalized in a language and the
child’s conceptual organization; moreover, that conceptual organization is changing
during the period of vocabulary growth, to some degree affecting the nature of lexical
entries...”.

In this thesis we propose a cross-modal model for the joint acquisition of action
concepts and linguistic constructions that develops grounded representations of both
modalities in an item-based manner without requiring innate categorical knowledge
to exist. Without innate linguistic knowledge to overcome the possible semantic
underspecification of language, the model has to rely on cross-modal learning to
incorporate categorical learning cues from other modalities. In the model for multi
modal learning (chapter 4) we focus on categories of goal directed actions that
represent the meaning of action verbs. Actions in general can be defined as repeatable
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processes that cause change in the environment that is so important and meaningful
that we assign a name to it.

Goal directed action are defined by Huttenlocher et al. (1983) as follows:

Definition 1. Goal directed actions are actions in which an object moves or
changes state as a result of the actor’s movement, where both the movement
and the effects on the objects are observable

In this chapter we develop the component that is responsible for inducing generalized
representations of action in the multi-modal learning model that is developed in the
next chapter (see chapter 4). As the final model is designed to to be compatible
with emergentist and usage-based theories of language acquisition, the components
the model is composed of, are also required to satisfy the requirements that result
from that theoretic foundation. Briefly put, emergentist and usage-based theories
of language assume that language can be learned from language use by means of
a generalization process that is powerful enough to drive the learning, embedded
in a cultural context of other language users, without relying on innate categorical
knowledge to exist. We discuss the requirements for the action model that result
from this theoretical foundation in section 3.2. The relation between the multi-
modal model, the modality-specific learning components it is composed of and the
theoretical foundation that frames the general context is discussed in chapter 4.

The question how generalized categories can develop solely from experience is still
subject to active research. One of the suggested mechanisms behind emergence is
compositionality. More complex structure can be generated from simpler structure
by means of composition. Combining simple structure into more complex concepts
can also account for the ability of learners to go beyond what is specifically contained
in experience. In computational machine learning this is termed generalization,
referring to the ability of a learning system to extract the regularities and properties
of an underlying process that is not directly specified in the examples the system
learns from, as these processes are usually not directly observable. The examples can
be considered as the surface form of what the assumed underlying process generates.
Human cognition can be considered such an underlying process that generates effects
that surface as a variety of different observations, that all manifest as recognizable
changes in the environment. Communication manifests for example as sound waves
caused by movements of our lungs and vocal cords or as gestures by moving our
arms.

The remainder of this chapter is structured as follows: In the next section we
introduce the learning problem and the corresponding dataset that is used in the
evaluation of the developed action model. Then we investigate the requirements that
result from the theoretical foundation of emergentist and usage-based theories of
language and concept acquisition (section 3.2), followed by section 3.3 that describes
the developed model technically. In section 3.4 we evaluate the model with regard to
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Figure 3.1: Simple game with two geometric objects which can be freely moved on
the game field. In this screen, test subjects are asked to revolve the blue
rectangle around the green triangle (instruction in the lower part of the
screen given in german).

several aspects that are relevant for the multi-modal learning model as well as aspects
that are relevant for a general application of the action model, e.g. in developmental
robotics.

3.1 Learning problem and dataset

We consider a learning scenario in which the system learns from trajectories of objects
corresponding to different actions coupled with utterances describing these actions.
We considered the following four actions (see Figure 3.2):

• jump onto - The object should be placed on top of a reference object

• jump over - The object should move over the reference object

• revolve around (once) - The object should circle once around the reference
object

• pushes - The object should push the other object

These actions were chosen because they can be performed easily in a 2D-scenario
regardless of the types of objects involved and because they also provide some
challenges regarding discriminability, e.g. instances of jump onto and jump over may
have rather similar trajectories in the beginning of the sequence. Instances of the
jumps-over action look similar to the first half of typical circles-around actions.
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Figure 3.2: This figure shows the jumps onto, jumps over, circles around and the
pushes action along with prototypical trajectories that could be expected
a-priori. Some of the trajectories in the dataset differ substantially from
this expectation, e.g. when the objects where first arranged differently
by the participants prior to performing the actual action.

To collect the data, we implemented a simple game in which participants could
slide geometric objects on a screen (see Figure 3.1 for an example screen-shot).
Participants where asked to play 100 game rounds, each corresponding to a unique
combination of action and objects to perform the action with.

In each trial, an utterance expressing an action was displayed on the screen along
with two objects named in the utterance, and subjects were asked to perform the
action described by the displayed utterance accordingly by sliding the corresponding
object(s). Each displayed utterance described one out of the four different actions.
For each action a single syntactic pattern was used to generate utterances describing
the action, with different combinations of the objects appearing in the syntactic slots
of the pattern. For our experiments, the following four patterns were used:

• trajector jumps onto landmark
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• trajector jumps over landmark

• trajector revolves once around landmark

• trajector pushes landmark from left to right

where trajector refers to the object that should be moved and landmark refers to the
object that serves as a reference point for the movement or the object that is pushed
by the object in the trajector role.

We considered a total of 9 objects for trajector and landmark. These objects comprise
3 geometric forms (rectangle, triangle circle) in three different colors (red, blue, green).
For each of the four actions we generated 25 different utterances as instantiations
of the patterns, for example “the red circle pushes the green triangle from left to
right”. In each trial the game recorded the positions of both objects at a fixed rate.
We collected data from 12 subjects with a mean age of 29,4 years, 9 of which were
male and 3 female, yielding 1200 input examples altogether.

The recorded trajectories are given as a sequence of tuples with the current timestamp
and the positions of the two objects associated with the instruction sentence describing
the action. The complete dataset is available for download1.

The data is given as a collection of elements in XML format. The game was designed
to output sequences formatted as predicate logic terms, as this is the native format
for the original model that learns linguistic constructions (section 2.6). The first
statement denotes the time the trial was recorded and the scenario configuration file
which specifies the involved objects, their shapes, color and initial positions. The
initial statement is followed by a sequence of move statements whose arguments
denote: The temporal offset in milliseconds since the beginning of the recording, the
concerned object and it’s position given as x and y coordinates. The data format
looks as follows:

<example id="1">

<nl lang="de">

Das rote Rechteck schubst den blauen Kreis von links nach rechts

</nl>

<mrl lang="gameout">

trial(start="13:56:09", config="configs/scenario0.conf");

move(13698, rectangle,[50:144]);

...

move(18522, rectangle,[412:369]);

</mrl>

</example>

1https://pub.uni-bielefeld.de/download/2904362/2904363
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3.2 Qualitative components of cross-modal language and
concept learning

The multi-modal model for grounded language acquisition that is developed in the
consecutive chapter is based on theories that describe incremental processes to the
early acquisition of language without requiring innate categorical structure to be given
from the beginning. The model comprises two components that are responsible for
the modality specific induction of categorical representations of action and language.
For the item-based acquisition of linguistic constructions, there is an existing model
(see section 2.6) which is already compatible with the theoretical foundation and can
be adapted to serve as the component for language learning (section section 4.2 gives
details on how the model was adapted).

To the best of our knowledge, there is no existing model for action learning that
complies with the requirements resulting from the theoretical foundation the multi-
modal learning model is based on. In the following we categorize these requirements,
identify challenges from a technical perspective and discuss solutions based on the
frameworks of time-series modelling that was introduced starting with section 2.1.

Simulation

As actions are inherently dynamic rather than static concepts we understand the
meaning of verbs as evoking a grounded simulation. Thus, the underlying model must
facilitate dynamic simulations of prototypical actions of a certain category. One of
the key principles underlying the embodied construction grammar (J. Feldman et al.
2009) formalism is that language understanding is a process that heavily relies on
simulation (Bryant 2008) in that the same motor programs that are used to execute
actions are also used to understand language. Simulation plays an important role in
learning because it allows us to mentally test hypothesis without having to actually
realize the necessary actions. This is a key advantage as with mental simulation
we can repeatedly try and optimize the way we perform actions without actually
changing the state of the environment in a way we cannot undo reliably. Having
an accurate simulation model to train our abilities gives us a good starting point
to experiment and optimize our behavior in the real environment, or put in the
words of the theoretical physicist Richard Feynman: “What i cannot create, i do not
understand”.

One class of supervised machine learning algorithms that particularly fits the sim-
ulation requirement are generative models. Generative models try to approximate
an assumed underlying process that generated the observed data in contrast to a
discriminative model that does not adhere to how the data was generated but only
assigns the observations to their respective categories. There are two broad variants
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of generative models, those that take a probabilistic perspective and those that take
a functional approach.

Probabilistic generative models like a Hidden Markov model are generative models
in the sense, that they can be used to generate typical data according to the model
(Danks 2014, p44) and learn a joint distribution p(x, y) of the input data x and target
values y. This is in contrast to a discriminative model, which attempts to model the
distribution of target values conditional on the input observation p(y|x).

Generative models that take a functional perspective, e.g. the Recurrent Neural Net-
work often encode the progression of a sequence in a functional form, sometimes with
a superimposed probabilistic interpretation (e.g. softmax normalization). Functional
models have a different mathematical formulation hn+1 = f(hn, xn, θ) where h is a
hidden latent state and f is usually a nonlinear function that is often referred to as
the non-linearity (Joong et al. 2017).

There are also models that take both perspectives in a single model. Generative
adversarial networks for example consist of two competing neural networks, the first
of these networks generates examples according to its current generative model that
the second model classifies according to its discriminative model (Goodfellow et al.
2014). The task of the generative network is to generate adversarial samples that
the second network would falsely classify as typical samples that came from the real
data distribution. The task for the second model is therefore to correctly distinguish
real examples (from the training data) from adversarial samples that were generated
by the generative network.

On-line incremental learning

As humans we often do not have exhaustive databases of training data to learn from,
rather we have to iteratively gather experience by interacting with our environment.
By interacting with the environment, we induce change that is observable and gives
us hints as to how the underlying processes in the world are structured. From a
cognitive learning perspective, on-line learning additionally means that the learner
does not memorize the learning data explicitly but incorporates the essence of what
can be learned from the new data into the model directly. The component for action
learning should imitate this incremental learning ability by starting with very specific
representations in the early learning phase that gradually develop into more complex
categorical representations as learning continues with the growing number of items
seen.

From a technical perspective, on-line learning refers to the ability of the learning
system to adapt its behavior (e.g. predictions) immediately in response to new
training data. Each new data item is directly used to update the model for future
predictions as opposed to batch learning techniques which obtain their predictive
model by training on the entire data set at once. A stricter variant of on-line learning
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is incremental learning (Gepperth et al. 2016) which adds the additional constraint
that new data points are no longer available for consideration after the model has
updated it’s internal state. This constraint is for example not met by approaches like
k-nearest neighbors which essentially work in batch mode for inference by explicitly
storing all examples seen so far in memory2.

Most of the state of the art algorithms for machine learning are designed to work
on batches of training examples to estimate model parameters that best fit their
learning target. This mode of training is computationally a large simplification that
makes the learning problem easier and computationally more tractable.

Incremental learning on the other hand comes with a variety of algorithmical chal-
lenges. Learning instantaneously with every new data item requires the model to
extract the essence of what can be learned from the training data given the training
target and find a compact representation to represent this essence immediately in
its model parameters. Further, in incremental learning scenarios the training data
originates in a process that produces observation time-series that are not indepen-
dent and identically distributed as required by many batch learning algorithms. As
statistical processes can change their behavior over time, an effect termed concept
drift can further complicate the learning process as later examples can stem from
a process that behaves differently compared to the process that generated earlier
observations. In batch learning it is possible to shuffle training examples such that
examples recorded earlier alternate with later examples in contrast to an on-line
learning algorithm which has to take measures to mitigate the effect of correlated
subsequent samples.

Throughout this thesis we use the term incremental learning in the strict sense that
also includes on-line learning, meaning that all new input examples cause direct
updates of the predictive model and are not explicitly stored afterwards.

One-shot early learning

Goal directed actions are often learned in interaction with tutors. To support this
mode of learning, the system has to quickly adapt to the tutoring in order to receive
further training input. If the system was unable to learn from single tutoring examples
it would be stuck with the same behavior, eliciting the ever same tutoring signals
until the tutors eventually cease their efforts. To support this mode of learning,
the system is thus required to adapt its behavior with each new training example
instantaneously. In a technical context this is often referred to as one-shot learning.
In cognitive psychology a similar concept is known as fast mapping (Susan Carey et al.
1978), a hypothesized mental process that allows a learner to acquire a novel category

2There are also extensions of the k-nearest neighbors algorithm that find the nearest neighbors
with (model-based) approximate search, which do not need to store every single training example
explicitly
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after the first exposure to an informative sample. Fast-mapping is of particular
importance to many theories of early language acquisition in children.

Supporting one-shot learning in technical systems is often approached in the learning
algorithm itself or in the way data is represented, both of which are briefly discussed
in the following.

In algorithmic learning, every single sample is important when coverage of a new
domain is low (Stolcke et al. 1993). Slight adaptations, such as in many traditional
algorithms (e.g. back propagation) make no good use of the first available examples
and thus need many examples to converge. One of the reasons for this effect is that
many of these traditional algorithms start with a model that is wrong initially and
gradually improve with more data.

Furthermore these techniques usually have no representation of the strength of
evidence supporting a certain conclusion. In early learning it can be better to first
remember the evidence in detail rather than use the evidence to slightly modify model
parameters. Furthermore, early in the learning process the learner has no experience
about the importance and information content (uniqueness) of the individual samples
unless the learner has good prior knowledge of the domain. Without prior knowledge,
early generalization can only be driven based on the similarity of the samples.

Shepard (Shepard 1987) shows that this kind of similarity based generalization
decays exponentially in animals as they accumulate experience. When the animal
has enough data to validate models from more complex classes it does not need to
remember individual experiences explicitly but rather can discover general rules as
generalities in the data. This mode of learning allows a learner to develop more
complex models while maintaining a measure of confidence in its predictions.

In technical systems, similar behavior is often implemented in terms of a bias that is
either encoded in the fundamental assumptions of the model or given explicitly as
a prior favoring certain model configurations over others. An example of the first
can be seen in Markov random fields and Bayesian networks which encode sparse
interaction patterns by exploiting conditional independence relations (a certain state
is influenced only by limited set of predecessors). For example convolutional Neural
Networks (CNN) that are mainly used in image recognition assume that interaction
between pixels is limited to nearby pixels, because pixel values are affected by only a
small number of localized objects. More examples can be found in physics, where
many theories assume that objects are only affected by other objects that are close
by.

In order to support early-learning, the action model should smoothly transition from
the memory-based early learning behavior into a learning mode with more complex
parameterized models that generalize also to yet unseen examples by exploiting
commonalities in the data.

57



3 Item-based induction of generalized qualitative action models

Technically, this behavior is implemented in the component for action learning in
the so called model merging approach (see section 2.3), where complex models are
constructed from combining and integrating simpler ones. Simpler models in this
case are models that mainly memorize parts of the input data explicitly while more
complex models usually abstract from concrete data.

Additionally, we improve training convergence by choosing a data representation
scheme that is closer to the innate semantics of the learning problem compared to
the raw input data. For example when the learning task is to classify if a given
image depicts apples or bananas, a color histogram could be a better representation
of input data (given the particular learning task) than raw pixels, because it focuses
on color and abstracts away information about where the colored pixels occur in the
image. Simplifying the learning task in such a way utilizes background knowledge
(that can not necessarily be learned from the same data) of an expert to speed up
the learning process. In the model for action learning we represent the relation
between objects symbolically in the QTC (qualitative trajectory calculus) encoding
scheme (see section 2.5) based on the assumption that basic perceptual capabilities
are learned prior to learning complex goal directed actions.

Early sequence anticipation

Early sequence anticipation refers to the ability of a system to make predictions over
time-series data early in the progression of the sequence. This is of great importance
especially when the system is deployed in an interactive learning environment where
it acts and gets new training stimuli in response. This ability is also related to
the predictive coding (Clark 2013) theorem, a hypothesized framework to explain
human cognition where the brain constantly follows and updates multiple hypothesis
simultaneously at varying levels of abstraction.

Most classic time-series prediction algorithms extract features from the complete
sequence (e.g. bag representations, such as bag of words) to make their prediction and
are thus not directly applicable to classify incomplete or partial sequences. However,
by explicitly training on incomplete sequences many algorithms can be also applied
in this setting. This adaptation may require to alter the optimization target for those
models to not only include the classification accuracy but also the earliness at which
the sequence can be classified with satisfactory accuracy.

In the multi-modal model for action and language learning, early sequence anticipation
is required to verbalize actions while they are currently being performed. The
component for action should thus give correct and stable predictions about the
category an ongoing action belongs to very early in the progression of that action.
The foundation for this ability is the early formation of categories when only few
training data is available as discussed in the previous section. Hidden Markov models
are a suitable foundation for early sequence anticipation, as they can estimate the
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probability to generate any given sequence regardless of the completeness of the
sequence.

Cross modal learning

Human cognition does not develop in isolation but rather in environmental and
cultural interaction, both of which are inherently cross-modal modes of learning as
they span multiple senses and modalities.

As the action learning component is part of a larger experiment to investigate cross
modal co-emergence of categorical structure in both action and language, the action
model is required to support cross-modal interactive learning, where action and
linguistic structure co-develops by shaping and influencing each other.

From a technical perspective a model that facilitates cross-modal learning and
simulation should either represent concepts from different modalities in the same
representational structure or expose training signals that can be used by companion
models that are responsible for the other modalities to drive their learning process.
The first would be more favorable from a cognitive perspective as we as humans also
represent concepts from different modalities in the same neural substrate. The second
could be favorable from a computational perspective as it simplifies the learning
problem for computational models that are less powerful than the human brain,
because it omits the necessity to learn a transformation from modality specific data
into a shared representational framework (e.g. neural activations and interconnection
strengths).

3.3 Implementing the component for action learning

For each of the above defined requirements there are several well established models
to achieve the desired properties. However, developing a model that exhibits all of
the required properties is challenging.

The requirement to simulate actions within a given category suggests a generative
model, which supports the simulation of prototypical actions and also the completion
of sequences when only the beginning of the sequence is given. The family of
generative models offer a variety of models that are suitable for action modeling in
principle, however many of these models fall short in supporting all of the above
requirements. Recurrent neural networks and generative adversarial networks for
example usually require a large body of examples to converge, as they start with a
model that is random initially and gradually improved with more training data. Many
generative models can be incrementally trained or adapted accordingly, however,
learning actionable representations (that allow to classify with adequate accuracy)
from single training instances is very challenging for most models, especially in
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conjunction with incremental learning, which constrains the learning process to
consider each training example at most once.

Another aspect related to early sequence anticipation is that a model that performs
well in later learning phases, when enough training data is available, does not
necessarily also perform well in the early phases with sparse data to learn from.
In computational models this is reflected in the choice of the model itself and the
hyperparameters that modify its properties. Hyperparameters of a model are those
parameters that are set before training begins, in contrast to the model parameters
that are optimized as part of the training procedure. The choice of a certain
model can also be considered a hyperparameter of the overall learning problem.
Choosing a model and selecting suitable hyperparameters can be automatized by
performing random or exhaustive search over all possible hyperparameters to find
the optimal model-parameter configuration. There are several approaches to perform
this search, one is the so called gridsearch which samples different combinations of
hyperparameters in pre-defined intervals. The drawback of this approach is that the
model has to be re-trained with each new set of hyperparameters, which can quickly
become computationally prohibitive. For some models there are more specialized
approaches, e.g. LASSO (Tibshirani 1996) to pick regularization parameters for
regression models, but for most models this boils down to performing uninformed
(brute force) search, which requires the data to be explicitly memorized for batch-mode
training and thus fails to comply with the requirement to learn incrementally.

A model that fulfills most of the requirements is the Hidden Markov model (see
section 2.2). As generative models, HMMs support simulation in terms of generating
prototypical realizations of learned action concepts. The graphical structure of
the model allows one-shot learning by introducing paths specific for novel training
examples when coverage of a given action category is low. As probabilistic sequential
models they readily provide confidence values which can be used to orchestrate
learning across modalities and can estimate the probability of generating sequences
even when they are incomplete as required by early sequence anticipation. HMMs
also provide means to adapt their structural properties to support memory-based
early learning as well as learning generalized representations of action when more
data is available. For example Hidden Markov models regress to the simpler Markov
chains when emission densities are constrained to emit a single symbol, which can be
exploited in early learning to limit the complexity of learned representations.

Traditionally, HMMs are trained using the Baum-Welsh (section 2.2.2) re-estimation
method, which is an instance of expectation maximization training. Expectation
maximization iteratively optimizes the parameters of the model in batches over the
training data. However, on-line incremental learning in the strict definition requires
that no examples other than the current one should be explicitly stored for the
training process. Additionally, the early learning and classification requirements
presuppose a different training scheme to yield good initial models even when only a
few training examples are available.
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The proposed solution to the challenge of incremental learning is a model training
procedure that differs from traditional batch learning techniques in that it simulates
the emergence of categorical representations as suggested by the theoretical foun-
dation. A technique that fits this mode of learning is the model merging approach
(see section 2.3), a family of algorithms that begin the modeling process with simple
models that are specific to only a few initial training examples. More complex models
that abstract from the underlying data are achieved by combining multiple simple
models and collapsing similar substructure within the resulting model.

This approach solves the model structure selection and the optimization of model
parameters in a joint optimization process as opposed to most traditional training
schemes that optimize parameters given a fixed model structure in batch mode.
From a cognitive perspective, this approach is more plausible as the amount of brain
capacity assigned to individual learning problems is likewise not fixed but is rather
subject to a global optimization process (e.g. when one sense is impaired the brain
assigns more capacity to processing signals from the unimpaired ones).

In the following we develop the incrementally learned graphical model for action
learning that is the foundation of the action learning component in the multi-modal
model for grounded language acquisition. First we define the model in terms of its
architecture and the incremental procedure used to develop generalized models from
specific ones. Followed by a brief introduction to the implementation of the model
merging approach that realizes the emergence of categorical representations starting
with very specific models, representing individual examples that are gradually merged
into more general models. This approach is contrasted with a baseline implementation
that follows the traditional expectation maximization learning scheme and briefly
evaluated in terms of the required properties.

3.3.1 Data model and preprocessing

The model learns from sequential data of object positions sampled at a fixed rate
along with a label that represents the class of action the participant was asked
to perform (see section 3.1). Object positions are given in terms of the x and y
coordinate of the objects center of mass, yielding a sequence of positions alternating
between the two objects (x1 and x2) involved.

pi = . . .

[
x1
t

y1
t

]
,

[
x2
t

y2
t

]
,

[
x1
t+1

y1
t+1

]
,

[
x2
t+1

y2
t+1

]
. . . , pi ∈ D (3.1)

In a preprocessing step the sequences of coordinates are transformed into a sequence of
discrete qualitative relations between the objects following the QTC encoding scheme
(see section 2.5). In order to calculate these relations we first have to reconstruct the
velocity vectors as the difference of two subsequent positions. The velocity vectors
are used in QTC in order to determine whether the objects approach or distance
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from each other and whether this happens to the left or to the right of the reference
line between their centers. The velocity vector for object j is reconstructed as:

vjt =

[
xjt+1

yjt+1

]
−

[
xjt
yjt

]
(3.2)

The corner case at t = tn with t ∈ 1, . . . , n where no consequent position at t = tn+1

exists is treated by duplicating the velocity from t = tn.

From the positions coupled with the reconstructed velocities of two objects, the
corresponding QTCC1 relations can be calculated as follows:

The side constraints in the QTC framework rely on the indication to which side
of the reference line RL an object will have moved to in the consecutive time-step
(see Figure 3.3). The consecutive position at at+1 of object a is calculated from the
current position at and the velocity vat . The reference line is spanned between the
positions of two objects a and b.

To decide whether the subsequent position of the object is on the left or on the right of
the reference line RL we use a property of the cross-product between two points. The
cross-product is positive iff the angle of the points and the origin is counter-clockwise,
or stated differently if the reference line has to be turned counter-clockwise in order
to align all three points on the line. We term the two object positions at time t
that form the reference line as at and bt. The position of object a at the subsequent
time-step is given as at+1. To apply the cross product we translate the coordinates
such that at lies at the origin (0, 0) and calculate the cross product.

d = (xat+1 − xat )× (ybt − yat )− (yat+1 − yat )× (xbt − xat ) (3.3)

The sign of d indicates whether RL has to be turned counter-clockwise (d < 0) or
clockwise (d > 0) in order to align with at+1. We do not explicitly test for colinearity
because float math is subject to rounding issues and having +0 or −0 as a result of
real valued calculations is highly improbable.

QTC comes with two numeric interpretations, the state descriptor and a numeric
identifier derived by interpreting the QTC descriptors as a number in a ternary
number system. If not specifically mentioned otherwise, we use the interpretation as
symbolic identifiers for experiments.

Compression of sub-sequences

As QTCC1 is a rather coarse discretization, the associated discretization error is
considerable, leading to sub-sequences in the data where similar continuous values all
map to the same QTC symbol. This results in sub-sequences where the qualitative
relation between the two objects can hold for a longer portion of the trajectory
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Figure 3.3: To decide whether a moves to the left of the reference line RL we calculate
the subsequent position at+1, translate the coordinates such that at lies
at the origin and calculate the cross-product between at+1 and b (whose
position vectors now base at the origin (0,0)) and use the property that
the cross-product is positive iff at+1 lies on the left of the reference line.

and is, due to the fixed rate sampling, repeated many times. In the case of goal
directed actions, we assume that much of the goal semantics could be represented
as pre- and post-conditions that mainly manifest in the beginning and the end of a
sequence. Following this assumption, reducing the overall length of action sequences
by reducing the number of recurring symbols could improve the performance of the
model. This assumption is verified in the experiment in section 3.4.2.

Unlike many spatial reasoning systems where repeating states are simply omitted,
we use a logarithmic compression of repetitive sub-sequences:

|ŝ| = min(|s|, 10 ln(|s|+ 1)) (3.4)

where |s| is the original number of repeated symbols in the sequence and |ŝ| is the
resulting number of repeated symbols. The logarithmic compression of repetitive
symbols in a sequence preserves some information about the relative speed of move-
ments and is in line with findings from psychophysics known as the Weber-Fechner
law (Bruss et al. 2010).

The learning problem for a model specific to action category C can now be formally
stated as follows: Given a set of sequences SC as examples of category specific QTC
relations representing action trajectories from the dataset D, the task is to estimate
the model parameters λC = (A,B, π) of the class specific HMMs.

3.3.2 Model definition

The component for action learning implements a usage-based approach to learning
actions in the sense that the approach starts with simple models that are very specific
for a limited set of actions and is incrementally generalized, driven by the objective
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to yield compact representations while trying to maintain most of the predictive
accuracy. The preference for simpler models corresponds to Occam’s razor principle
and is implemented as a prior that prefers simpler models. Maintaining the predictive
accuracy is implemented through a model merging procedure (see section 2.3) that
merges specific models guided by the desire to yield generalizing models while
at the same time maximizing the likelihood of generating the observed actions
sequences under the generalized model in order to avoid over-generalization. The
relations between objects involved in the modeled actions are represented qualitatively,
corresponding to the QTCC1 encoding scheme of the qualitative trajectory calculus
(QTC), which was introduced in section 2.5.

Model merging for HMMs can be formulated by means of basic operators that work
on the graphical structure of the model. As these operators introduce, modify or
evaluate structure in the model they are interrelated with the choice of the HMM’s
structural parameters, which are reflected in the way emission and transitions are
represented3.

Model structure

The Hidden Markov models (see section 2.2) that form the foundation of this approach
represent a stochastic process with an assumed underlying structure of discrete hidden
states the process alternates between. The hidden states (nodes) are connected to
each other forming an undirected graph of nodes. Each node in the model represents
a sub-state of the statistical process the model approximates. These sub-processes
are usually implemented as probability distributions.

The model is free to alternate between the nodes governed by the transition probability
distributions that constitute the probability to transition to any given state sj
while currently being in state si. When being in a given state the model emits or
accepts observations with a certain probability, governed by the emission probability
distributions. During training, the learning procedure collapses similar structure
within the model into more general and compact structure.

Collapsing structure in HMMs primarily means joining similar states into a new
joint state that represents transition and emission characteristics from both ancestor
states. This operation relies on the transition and emission representations to be
mergeable as well. Furthermore, both densities should define a similarity measure
that is used in discovering similar structure.

3When learning HMMs through model merging, the number of hidden states of the model is not a
structural parameter as it is determined as a byproduct of the model induction process
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Transition densities The transition probabilities are encoded in the transition ma-
trix A (see subsection 2.2.1). In the traditional formulation, the transition matrix is
unrestricted except for the requirement that it has to be row stochastic, such that
each row constitutes a proper probability distribution. Imposing constraints on the
transitions introduces a bias towards different model structures, e.g. assuming tran-
sitions from state si → sj , i < j to be a-priori more probable than other transitions
introduces a bias towards the so called left-to-right HMMs often applied in speech
recognition. Although this seems favorable for action learning, as actions, similar to
speech, strictly progress forward in time, we leave the transitions unconstrained as
those constraints would have to be justified under the proposition that the model
relates to emergentist theories of language acquisition.

Transitions are represented in terms of frequency histograms of observed transition.
For each state si ∈ S in the model there is a dedicated transition histogram repre-
senting transition from si to all other states sj ∈ S including self transitions. For
similarity computation and for inference, the histogram is normalized to obtain a
probabilistic interpretation. Merging of two transition histograms is implemented as
simple addition of the underlying transition frequencies.

Emission densities The probabilities to emit or accept a certain observation (or
symbol in the discrete case) are encoded in the observation probability matrix B (see
subsection 2.2.1). The observations in the model are given as symbolic representations
describing the relation between two objects in the qualitative trajectory calculus.
In principle every discrete probability distribution for which a merge operation
can be derived is applicable for a model merging based training procedure. How-
ever, QTC defines no immediate distance relationship between relation descriptors
from which sufficient statistics like mean and variance could be derived. As QTC
behaves more like categorical symbols, we represent the observations densities as
non-parametric categorical distributions, which essentially correspond to histograms
that are normalized to sum to one.

An important side effect of the categorical distributions is that they can easily assign
all of their probability mass to a single symbol, and thus effectively turn hidden
states of the model with those single symbol emissions into visible states, as there is
effectively no hidden process involved that could generate other symbols. This is an
important property for the early phases of learning because it allows the model to
switch between simpler and more complex representations within the same model.

3.3.3 Item-based learning and generalization

The learning procedure for the action model differs from the traditional expectation
maximization in that it operates in a strictly incremental fashion, updating the
state of the model with each new data item received. The learning procedure
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Figure 3.4: Introducing a virtual node for the initial and final state of the model
simplifies expressing the model merging operations as pure graph op-
erations. In this example the probabilities to begin in a certain state
π = {0.4, 0.6, 0, 0, 0} is indicated on the nodes in the figure on the left.
With the introduction of virtual nodes (blue nodes) these probabilities
become transitions from the initial node I.

is implemented adopting the model merging approach for HMMs with bayesian
optimization (Stolcke et al. 1993). Model merging for HMMs can be interpreted as a
search through the space of possible models to find the optimal model to represent
the available data. This search is governed by a generalization strategy that decides
which model variations to explore and an optimality criterion that estimates the
goodness of any found solution.

To simplify the graphical interpretation of HMMs we take a slightly different per-
spective on the graphical structure of the Hidden Markov Models. In the original
formulation, the initial state probabilities are given in terms of the π = {π1, . . . , πn}
array (see subsection 2.2.1) which encodes the probability to begin a sequence in
a certain state. Differing from this perspective we introduce virtual initial and
final states and encode the probabilities to start the sequence in a certain state as
transition probabilities when leaving the initial state (see Figure 3.4).

The model learns from labeled tuples (x, l) where x denotes the sequence of QTC
relations that represent a single action trajectory and l denotes the category of action
(target label) the sequence was observed for. The label information is used to train
the HMM specific to the action category denoted by l.

Inducing generalized models from data proceeds in two phases:

Memorization phase Construct a maximally specific model for a newly
received data item. In case of the action models, this is a Markov chain where
each state in the chain represents (emits/accepts) a single symbol in the input
sequence. The constructed chain is inserted into the existing (possible empty)
model between the initial and final state. Memorization monotonically adds to
the model size, introducing paths that are maximally specific for a single item
and thus are unable to generalize. More specifically, a model that consists only
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of specific paths that generate all of the observed sequences, but no other than
those that were observed.

Generalization phase To abstract from concrete observed sequences, similar
structure within the model is collapsed into more compact representations
that abstract from the concrete data. The generalization phase begins with
computing a set of candidate merges C among all states of the model Mi in
the current generalization iteration i. For each candidate merge c ∈ C, the
merged model c(Mi) and its posterior probability is calculated and the best
merge c∗ is selected. The generalization process enters the next iteration with
the new model Mi+1 = c∗(Mi) until a stopping criterion is reached.

The process alternates between those two phases until all data items are processed.
In the following we describe both phases in detail.

Memorization phase

Learning in the action model starts with integrating a new training sequence into
the existing model. If no model exists for the category given by the labelled sample,
a new HMM is created that is empty except for the virtual initial and final states.

Integration of new data starts by first obtaining a Markov Chain that is maximally
specific for the new data sequence. Given a sample sequence x = x1, . . . , xl ∈ X
of length l we can construct a sequence of states q1, . . . , ql with a dedicated state
for each symbol in x. All new states are chained with probability 1, such that
P (qi → qi+1) = 1; 1 ≤ i < l. To integrate the newly constructed Markov chain into
the model we introduce a new transition from the initial state qI to the first state in
the sequence q1 and a transition from the last state in the sequence ql to the final
state in the model qT with probability 1. As all of the probabilities in the initial
model are 1, the model constitutes a maximum likelihood model for the sequence
x. If no model exists for the given category a new model is created that is empty,
except for the virtual initial and final states. If a new sample is already represented
by an existing path in the model we simply reuse the existing path and update the
transition probability from the initial state accordingly.

For example consider the following sequence of a circle jumping over a rectangle:

The trajectory is given as a time-indexed sequence of coordinates for both objects.
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(1, green_circle, [10,5]); (1, blue_rectangle, [150,5]);

(2, green_circle, [15,5]); (2, blue_rectangle, [150,5]);

....

(1053, green_circle, [190,5]); (1, blue_rectangle, [150,5]);

The raw coordinates are first translated into a sequence of QTC symbols according
to the preprocessing procedure described in subsection 3.3.1:

(0000) (-000) (-0-0) (00-0) (+0-0) (0000)

The QTC symbols correspond to the following interpretation: First the circle moves
towards the rectangle, then it moves to the left of the reference line between the
two objects until it is on top of the rectangle. From there, it moves away from the
rectangle on the left until it reaches its final position and stops. The QTC relations
corresponding to the rectangle are 0 during the progression of the sequence, since
the rectangle did not move.

The sequence of QTC symbols is translated into an equivalent Markov Chain. Markov
chains differ from HMMs in that their states directly represent visible observations in
contrast to the hidden states in the HMMs which correspond to a hidden statistical
process, that is not directly observable but generates visible observations. The
resulting Markov Chain

is then integrated into an existing (already partly generalized) model. The integration
is done by introducing a new transition from the initial state to the first state in the
new sequence. The last state of the new sequence is attached to the final state of the
model accordingly.

For each transition we explicitly record how often this particular transition was
observed in data as their statistical support and update the transition probabilities
accordingly. For newly integrated paths the support is always 1, generalized paths
that where obtained by collapsing structure accumulate their support values.
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Generalization phase

The generalization phase proceeds in alternation with the memorization phase. While
memorization adds new knowledge to the model as paths that are specific to a single
sequence, in the generalization phase the systems abstracts from those specific
sequences by collapsing similar structure into more general representations that
abstract from specific sequences.

Generalization is implemented as an incremental process that identifies similar
structure as pairs of states in the model that are similar with respect to their emission
and transition characteristics. In each turn the generalization strategy identifies a set
of candidate state pairs to be merged and ranks them according to their similarity.
The strategy picks the most promising candidate pair and replaces them with a new,
merged state that represents the emission and transition characteristics from both
ancestor states. The merging process continues until a given stopping criterion is
reached.

On the one hand, merging states distributes probability mass and thus establishes
novel transitions between paths in the model that had zero probability before (see
section 2.3), enabling the model to generate or accept sequences that were not
explicitly observed during training. On the other hand the merging procedure also
reduces the capacity of the model as with each merge operation the model has one
less state to represent knowledge in. This approach is based on the framework of
bayesian model merging that was introduced in section 2.3.

As in most generalization processes, it is essential to control the degree of general-
ization to yield an optimal model. Too general models tend to under-fit the data,
e.g. always predicting the majority class without considering actual evidence. On
the other extreme, over-fitting models often result from too little generalization, e.g.
memorizing training instances without inducing abstract representations.

In the framework of bayesian model merging, the degree of generalization is mainly
controlled by:

• The posterior, composed of a prior that assesses the current model a-priori
(before actual data is seen as evidence) and the likelihood of the observed data
under the model.

• The generalization strategy that governs the search for the optimal model
and most importantly determines when the optimal degree of generalization is
reached to break from the incremental generalization process.

For the likelihood calculation we follow (Omohundro 1993; Stolcke et al. 1993) and
employ an efficient approximation that considers only the paths with the highest
contributions and assumes that the so called viterbi paths are largely preserved
during the state merging process.
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Model prior

Generalization is closely tied to the notion of complexity, as learning can be interpreted
as a process of incrementally reducing complexity by abstracting from data. The
amount of generalization that occurs during merging can be measured as a drop in
likelihood relative to the training data. The drop in likelihood is caused by the model
distributing probability mass to similar sequences that are not explicitly represented
in the training data. In turn, the merging process can be interpreted as trading off
likelihood against a bias towards simpler, less complex models. Simplicity could for
example be reflected in the resulting models having a lower number of states.

The key issue in controlling the amount of wanted generalization is to specify
the optimal relation between the preference towards less complex models and the
likelihood of the model representing the training data.

This trade-off can elegantly be expressed in terms of a bayesian posterior4:

P (M |X) ∝ P (M)P (X|M) (3.5)

composed of the prior P (M) and the likelihood P (X|M) terms. The likelihood
can be efficiently calculated according to the approximation introduced in section
section 2.3. The prior is not defined by the employed model merging approach and
can be chosen according to the domain.

In bayesian statistics the prior is defined as one’s belief about a certain quantity
before actually having evidence to base an informed decision on. Priors to govern the
generalization process in model merging can be for example based on measures that
describe the structure of the model or on measures that additionally incorporate
model parameters. The prior should be chosen such that it does not introduce
any systematic bias towards a particular model as this would affect the learning
process.

In line with the description length principle that defines simplicity as an attempt to
yield a good compression for conceptual knowledge, the action model is based on
a prior that reflects this concept in that it explicitly states its preference towards
simpler models in general:

P (M) = e−|M | (3.6)

with |M | being the number of states and thus the capacity of the current model M . In
this perspective simplicity essentially relates to compressibility and therefore simple
concepts likely result from high compression of the corresponding representations in
the model.

While the model prior favors simpler models, its antagonist, the model likelihood,
has its maximum at the initial unmerged model which consists only of maximally

4Since the data is fixed (P (X) = 1), the posterior can be defined as the product of the prior and
the likelihood, the normalization is not needed
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specific paths. As both measures are biased approximations, the pareto-optimal
solution is not necessarily the solution that maximizes the model’s accuracy.

To further improve the controllability of the generalization procedure we introduce
the parameter λ to balance between the effects of prior and likelihood. With the
balancing parameter added, the posterior becomes a model score that is defined as:

score(M) = λP (M) + (1− λ)P (X|M) (3.7)

We evaluate the effect of the λ parameter on the model performance in subsec-
tion 3.4.3.

Generalization strategy

During generalization, each merging step attempts to maximize the model’s posterior
P (M |X) (or the model score respectively), iterating until the optimal model is found,
i.e. when no combination of remaining possible merges yields a model with higher
posterior than the current one. The endeavor to find the best possible model is
driven by a generalization strategy that attempts to perform the search efficiently.

The originally proposed best-first generalization strategy is a greedy strategy in
that in each iteration it explores the merge with the highest estimated utility and
continues to merge further states until the posterior of the resulting model with
respect to the data no longer increases (P (Mi+1|X) ≤ P (Mi|X)). A loss in posterior
essentially corresponds to over-generalization in the model as with each merging step
the available capacity of the model is reduced and the model is forced to discover
more abstract representations in order to represent the contained knowledge with
less capacity.

Greedy strategies can easily get stuck in local optima where the only potential
to further improve the found solution is to accept less optimal solutions for a few
iterations in order to find a better local or global optimum.

We extend the greedy heuristic with a look-ahead strategy that continues the merging
process even when the posterior of the resulting models degrades at first. This effect
is also present in numerical optimization of e.g. neural networks using plain gradient
descent. The proposed lookahead strategy is similar to adding momentum in gradient
descent based optimization.

We further extend the strategy to explore up to three merge paths in parallel, given
by the top three merge candidates, until the first path results in a better model which
is then accepted as the new model. The final strategy is formalized in algorithm 1.
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Data: current model M
current best model Mbest = M
current best model score Sbest = P (X|M)
candidates: C ⊂ (|M |x|M |) \ {(s1, s2)|s1 = s2}
C ← retieve three candidates(Mbest)
for c ∈ C do

M̂ ← new model with (s1, s2) merged
SM̂ = P (M̂ |X)
if SM̂ ≤ Smax then

M̂ = lookahead(M̂); recurse for another merge
SM̂ = P (X|M̂)

end
if SM̂ > Smax then

Mbest := M̂ ; current best model
Sbest := P (X|M̂); current best score

end

end
return Mbest

Algorithm 1: State merging algorithm. Initialize the resulting model (Mbest)
with the current model and set the score for Mbest to the score of the current
model. Generate a list of candidate state tuples (s1, s2) to merge according to
the similarity of their emission and transition densities. Construct a new model
M̂ from M with states (s1, s2) merged and check if the model scores higher than
the current best model according to Equation 3.7. If the model scores higher it
is remembered as the current best model, if not, the algorithm tries one further
merge as lookahead.

Computing merge candidates

A model with |M | states has 1
2 |M |(|M | − 1) pairs of states that could potentially be

merged. The almost quadratic cost in the number of states suggests a strategy that
efficiently computes a list of candidate merges to try. In the component for action
modeling the strategy is implemented as follows:

During early merging we only consider pairs of states with simple emission distri-
butions that assign all of their probability mass to a single symbol. These states
likely correspond to states that are part of newly introduced Markov chains. If no
states with simple emission characteristics are left, the candidate retrieval begins
to suggest pairs of states that are similar according to their emission distributions.
Most of the computational complexity for computing candidate merges comes from
the computation of the similarity between emission densities, which, in our case is
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Figure 3.5: When two states qi and qj are merged, a new state q̂i is recruited as a
replacement that inherits the emission and transition characteristics from
both of its ancestor states. Incoming transitions have to be re-routed to
target q̂i and outgoing transitions are adjusted such that they begin in q̂i.

calculated as the symmetrized5 Kullback-Leibler divergence.

Preferring states with the same (single) output does not only speed up the algorithm
as we do not need to compute the similarity between distributions, it also helps in
preventing premature merges that would likely be assessed differently in the light of
new data.

Merging states in Hidden Markov models

Merging two states qi and qj requires two independent operations. First, a new
state has to be introduced as a replacement for the merged states and the associated
transitions have to be consolidated. Second, the emission densities associated with
those two states have to be merged as well. We detail the process in the following.

The merge operation starts with recruiting a new state q̂i that replaces qi and inherits
its incoming and outgoing transitions. The incoming transitions to qj are re-routed
to target q̂i and also the outgoing transitions from qj have to be adjusted to begin in
q̂i (Figure 3.5 shows an example of this process). The result of the operation is a new
state which inherits all incoming and outgoing transitions from the merged states and
thus connects paths in the model that previously could have been independent.

To conclude the process, both emission densities associated with the merged states
have to be consolidated into a single density for q̂i. The categorical distributions we
employ in this component correspond to histogram of counts c1, . . . , cn which counts
how often each of the possible QTC symbols have been observed in the constituting
data. These counts are only normalized on demand, when samples are drawn from
the distribution, which simplifies the merging of these two distributions to simply
adding observation counts for each of the possible QTC symbols (see Figure 3.6).

5The Kullback-Leibler divergence D(·) is not symmetric, e.g. let P,Q be probability distributions
D(P ||Q) 6= D(Q||P ). The divergence can be trivially symmetrized by taking the sum D(P ||Q) +
D(Q||P ). While being computationally expensive we found that the symmetrized variant reduces
the variance of resulting models especially in experiments with little training date.
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Figure 3.6: When two states qi and qj are merged, the probability distributions that
govern the symbol emissions are merged too. Merging of categorical
distributions corresponds to simply adding frequencies that are recorded
for each observed symbol in the underlying data.

Implementation considerations

Multiplying many very small probabilities is numerically unstable on machines with
limited numerical precision, as rounding errors accumulate with each operation.
There is a variety of approaches to tackle problems associated with limited floating
point precision, such as fixed point math or log probabilities. If not mentioned
specifically we employ log-space math for all applicable calculations. In case of the
forward-backward algorithm, log-space math is not applicable as the calculation
relies on the addition of probabilities, which has no corresponding operation in log
space. We employ a rescaling strategy as suggested in Rabiner et al. (1993) for
forward-backward calculation. We calculate forward probabilities in the baseline
model trained with EM and the proposed incremental model based on the assumption
that in the physical domain there are no events that are impossible and thus have
a probability of exactly zero. This is achieved by having virtual pseudo-counts in
emission and transition densities which are effective when drawing samples from
the distribution, but not for similarity computation or the compilation of merge
candidates.

This approach relates to Cromwell’s rule, named by statistician Dennis Lindley
(Jackman 2009), which states that prior probabilities of zero or one should be avoided
unless when applied to statements that can logically be assessed as being either true
or false, e.g. in math.

3.4 Experimental evaluation

In the following we analyze the properties of the proposed model for action learning
with respect to the requirements on the model as discussed in section 3.2. The
evaluation begins with an experiment that compares the proposed incremental
learning approach with a baseline model that conforms to the proposed model
except that it is trained traditionally with the Baum-Welch algorithm as detailed
in section 2.2.2. We show that although learning in an incremental fashion is
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conceptually more challenging, the results of the proposed model on a classification
task are comparable to the traditionally trained baseline model.

The subsequent experiments investigate the impact of the compression scheme
(section 3.3.1) for repetitive sub-sequences and the sensitivity of the proposed model
to the λ parameter that balances the propensity to yield more compact models
encoded in the prior that penalizes complexity against the likelihood that seeks to
accurately represent the constituting training data.

We conclude the experimental evaluation by contrasting the proposed model with a
state of the art representative from the recurrent neural networks family of models.
The neural model is based on a Long-Short-Term Memory (LSTM) network. We
evaluate the incrementally trained HMMs against the LSTM model on the classi-
fication task. In line with the requirements on the model that were discussed in
section 3.2, we evaluate the performance of both models with regard to the number
of training instances needed to accurately predict the target class and the anticipa-
tion of incomplete sequences. As the LSTM network is trained in batch mode, the
requirement to learn online is not met by that model. However, there is no principled
limitation to the incremental learning of LSTM based models.

3.4.1 Comparing incrementally trained HMMs with a non-incremental
baseline

Inducing Hidden Markov models by model merging is a strategy that fundamentally
differs from the traditional training regime for Hidden Markov models that is based
on iterative Baum-Welch reestimation of the model parameters given a fixed model
structure that is priorly defined. As the proposed model learns incrementally from
each individual training example without ever having a global view on the complete
data, the learning problem is more challenging than the traditional batch scheme
that has access to the complete data during training.

In this experiment we seek to validate the incremental learning scheme by evaluating
the performance of the incremental process against a baseline that is trained by Baum-
Welch parameter estimation. In the following we refer to the two training regimes
as incremental for the model merging approach and batch for the traditionally
trained model. We consider a setting where the system is trained on action instances
corresponding to 11 of the 12 individual performers in the dataset (see section 3.1).
We evaluate the system by presenting it with samples from a 12th performer.

Following this evaluation scheme, the dataset is partitioned into 12 folds with
1100 examples to train and 100 examples to test in each fold. The partitioning is
implemented such that examples from an individual performer in a given fold are
either in the training set or in the test set but not distributed among both.
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Model
Compressed Not compressed

F1 P R σ F1 P R σ

Batch 0.86 0.82 0.90 0.11 0.82 0.75 0.91 0.11
Incremental 0.86 0.82 0.90 0.12 0.82 0.75 0.91 0.10

Table 3.1: Results of the 12-fold cross-validation for the batch and the incremental
approach with and without repetitive sub-sequence compression.

For both of the models we trained a dedicated HMM for each of the four action
classes. Test sequences were classified according to the action specific HMM having
the highest probability to have produced the respective sequence.

Both training approaches show very similar performance characteristics, having
almost identical results (see table 3.1 left) with both having an averaged F1 score
(harmonic mean of precision and recall) of 0.86. The most notable difference is a
slightly higher standard deviation between the individual results of the 12 folds
for the incrementally trained models. Also when considering the class confusion
matrices in figure 3.7 there are merely slight differences in class specific classification
performance for both approaches.

The reason for the higher standard deviation most likely lies in premature merges
that would have been assessed differently with more data available. When early
on during training the system is presented with weak examples, the incremental
approach had a tendency to introduce weakly generalized substructure specific to
those weak examples and possibly a small amount of successive examples that, later,
with more data, is abandoned in favor of properly generalized parallel structure. This
effect leads to a under-utilization of training data and thus to higher sensitivity to

Figure 3.7: Averaged class confusion matrix for the batch (left) and the incremental
(right) approach.
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Figure 3.8: Effect of the logarithmic compression of repetitive sub-sequences. The
logarithmic compression is effective starting at sequence length with more
than x ≈ 36 symbols

weak examples in the early phase of training.

In the following we investigate the effects of the compression of sub-sequences and
the sensitivity of both training procedures to their most effective hyperparameters.

3.4.2 Compression of repetitive sub-sequences

This experiment investigates how the compression of repetitive sub-sequences (see
section 3.3.1) affects the classification performance of both models. In total, the
compression reduces the length of trajectories in the dataset to 150 QTC symbols
on average which corresponds to a compression rate of 21.3%. The effect of the
compression can be seen in Table 3.1, compression rates are visualized in Figure 3.8.

Both approaches perform considerably better with compressed sequences with an
averaged F1 score that is 4% higher in the compressed condition. Precision and
recall are as in the previous condition unaffected by the training procedure, but the
incremental approach had a slightly lower standard deviation between the results of
the individual folds.

The compression scheme reduces the number of repeated successive symbols in the
sequence and thus the length of the sequence in total. As the numbers of positions
where successive symbols change remains the same, this compression puts more
attentions to those changing positions in relation to the overall sequence length.

3.4.3 Parameter sensitivity

Most machine learning techniques introduce model parameters that are either opti-
mized in the actual training procedure or that have to be specified beforehand. The
first are often termed model parameters, the latter are often referred to as hyperpa-
rameters of the model that affect the training and thus the search for an optimal
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Figure 3.9: Development of F1 scores as the number of hidden states is increased
for the batch training approach. The errorbars indicate the standard
deviation of the F1 scores across the 12 folds.

configuration of model parameters. The model merging approach, as implemented
in the incremental model, has a single tunable hyperparameter λ that weights the
prior against the models likelihood. For the models trained in batch mode the most
relevant structural parameter is the number of states, as the family and shape of
transition and emission distributions is given by the learning problem.

In this experiment we investigate the impact of the λ parameter and the capacity of
the traditionally trained model on the resulting classification performance. We also
investigate how sensitive both models are with respect to those two parameters.

As can be seen in Figure 3.9 the classical Baum-Welch approach to HMM parameter
estimation is highly sensitive to limited model capacity as a result to a limited
number of states available to the model. If chosen too low, the optimization results in
suboptimal models. The F1 scores range from 0.03 to 0.86 as the number of hidden
states in the model is increased.

The incremental approach on the other hand displays an almost linear response
over the whole range of values for the λ parameter (Equation 3.7). While the F1

score is stable with respect to λ, the number of hidden states in the model decreases
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Figure 3.10: Sensitivity to the λ parameter of the incremental approach.
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drastically (see Figure 3.10) from 170 to 39 (at λ = 0.95). Setting λ = 1 and thus
evaluating the model only with respect to the prior favoring simpler models leads to
poorly performing models with just a single hidden state. A slight peak score was
achieved at λ = 0.4.

As a result we can conclude that the incremental training procedure performs
comparably to the traditionally trained baseline, with the exception of a slightly
higher standard deviation between training data folds. Also the compression of
repetitive sub-sequences improves the classification performance considerably. In
consequence the following experiments are conducted with incrementally trained
models at λ = 0.4 and compression of repetitive sub-sequences enabled.

3.4.4 Comparing incrementally trained HMMs with a LSTM Baseline

In the previous section we evaluated the proposed component for action learning
against a baseline that was trained using a traditional expectation maximization
approach. In this section we evaluate the proposed model against a state of the art
representative of the sequential neural networks family of models.

LSTM based action model

The LSTM based model is a discriminatively trained recurrent neural network
that consists of a 128 node LSTM layer followed by a fully connected linear layer
with softmax normalization and one output unit per target class. The softmax
normalization allows the network output to be interpreted as class probabilities by
constraining individual components of the output vector representing class scores to
range between zero and one. The sum of all components is also constrained to sum
to one.

In contrast to the HMM based approach which trains models specific to each of the
individual classes of action, the LSTM based model learns a joint representation of
the sequences of all 4 classes.

The model is trained by minimizing the cross-entropy

H(p, q) = −
∑
x

p(x) log(q(x)) (3.8)

between the predicted and target class-distributions (p and q) using RMSprop
(Tieleman et al. 2012) with learning rate lr = 0.001 and decay factor ρ = 0.9 over
batches of 50 sequences. Minimization of the cross-entropy is equivalent to minimizing
the negative log-likelihood of the data, which, in turn is equivalent to maximizing
the likelihood of the data under the model, since the logarithm is monotonic.
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Model
Compressed Not compressed

F1 P R σ F1 P R σ

HMM 0.86 0.82 0.90 0.12 0.82 0.75 0.91 0.10
LSTM 0.88 0.88 0.88 0.18 0.88 0.88 0.88 0.18

Table 3.2: Results of the 12-fold cross-validation for the HMM and the LSTM ap-
proach with and without sequence compression (Equation 3.4). Results
are given as F1 score, precision, recall and standard deviation σ.

We randomly select 10 percent of the training data available per class as a validation
set to asses the performance of the model in each individual training epoch. After
training a fixed number of epochs, we select the model having the highest accuracy
on the validation set as the model for the subsequent experiments. Other than model
selection we do not apply regularization techniques as the models had no tendency
to over-fit and preceding experiments did not reveal any improvements in applying
any further regularization techniques.

The network layout was optimized in a separate experiment to give the best trade-off
between classification performance and training time. Training with 1100 sequences
over 150 epochs takes about 4 hours on a single GTX-770 GPU while the incremental
HMM model required only a few minutes to train. The selected best LSTM parameter
set usually comes from the third quarter of training episodes.

The input to the network consists of sequences of QTC relations but in contrast
to the HMM model the input to the network is not purely symbolic (the id of the
relation as a single integer) but decomposed into a 4 element vector corresponding
to the basic QTC constraints. The QTC relation (-1, 0, -1, 1) is thus represented as
the vector [-1, 0, -1, 1].

HMM vs. LSTM

In this experiment we evaluate the performance of the HMM based model against
the LSTM based baseline. The incremental HMM approach was specifically tailored
to meet the set of requirements discussed in section 3.2, while an LSTM network
is a state of the art representative for recurrent neural networks. The goal of this
experiment is to evaluate whether the incremental approach can compete with the
LSTM approach when trained in a novel-performer condition where the system was
(as in the previous experiment subsection 3.4.1) trained on data from 11 participants
and evaluated on data from the 12th. Additionally we evaluated both models in the
early learning (paucity of data) and the early sequence anticipation condition.
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Figure 3.11: Averaged class confusion matrix for the HMM (left) and the LSTM
network (right).

As can be seen in Table 3.2 both approaches perform comparably well. The LSTM
network had a considerably higher standard deviation between the results of the 12
folds. We assume that the LSTM network gives higher precedence to differences in
relative pace of the action performance, which is the factor which varies the most
across participants in the data.

Note that only the HMM approach had a reject option, when none of the class specific
HMMs assigned a probability higher than zero to the respective sequence. As the
LSTM approach learns a joint representation across all 4 classes there is no implicit
reject option, because the model will always assign softmax normalized confidences to
each class. The case that more than one class is assigned the exact same confidence
is highly improbably due to rounding issues in computer implemented floating point
math.

Figure 3.11 shows the class confusion matrices for both approaches. The HMM
approach frequently misclassifies jumps over sequences as sequences corresponding
to circles around actions, for which the first half of the movement is identical to
jumps over. This could be caused by the limitation of temporal context HMMs are
able to take into consideration due to the markov assumption.

Early learning behavior

In this experiment we evaluate the performance of the two models when they are
presented with little training data per class. Both networks are not trained from
scratch when more training sequences are added to the training set, instead the
incremental model is trained as usual with the novel training instance. The LSTM
based model is re-trained on the set of training sequences in the current training set
extended with the novel example. The parameters of the model from the previous
training iteration are retained instead of being initialized with random values.
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Figure 3.12: Early learning behavior, averaged over 10 random folds. HMMs out-
perform the LSTM network where very little training data is available,
while the latter performs better with more than 28 training sequences.
Note that the x-axis is scaled logarithmically.

Figure 3.12 shows that with an F1 score of 0.44 the HMMs perform notably better
than the LSTM network which starts at chance level after being trained on a
single sequence per class. When trained with more than 28 sequences, the LSTM
outperforms the HMMs clearly.

This condition is especially challenging for neural networks because they have many
parameters to estimate from data and are known to require rather large amounts of
data compared to models that were specifically tailored to operate under paucity of
data conditions.

Early Sequence Anticipation

Applications in the field of human robot interaction often require the robot to
produce action hypothesis when the respective action sequence is not yet completed.
This experiment simulates this condition by letting the models classify incomplete
sequences. We evaluate the classification performance with sequences truncated after
1 to 100 percent of their original length. The LSTM network has been trained for
only 100 epochs to prevent it from striving too much towards relying on late parts of
the sequences. Apart from that both approaches were not specifically trained for the
classification of truncated sequences.

The HMM based model was quicker in capturing the concept of the pushes action,
which was the only action where both objects moved. This is most likely the result
of having a dedicated model per class in case of the HMM model. The LSTM based
model performed better with jumps upon actions, supporting the suspicion that the
LSTM assigns more weight on the pace of actions, which is also the case for the
circles around action. Because jumps over is the first part of an circles around action,
both models need about half of the trajectory to separate these actions as can be
seen in Figure 3.13.
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Figure 3.13: Early sequence anticipation behavior of the HMM and LSTM network for
each of the four action categories. The x-axis represents the percentage
of the sequence presented to the classifier and the y-axis the percentage
of correctly classified sequences for which their classification result will
not change if more of the sequence was presented (stable classification
results).

3.5 Discussion

In this chapter we proposed a model for action learning that is designed to serve as a
component in the multi-modal learning model that is developed in the next chapter.
Induction of generalized categorical representations of action in the proposed model
is implemented by incrementally merging specific HMMs into more general HMMs
that have a higher entropy compared to the very specific initial HMMs. At the
same time, the generalized HMMs should still assign substantial probability mass
to the observed examples while minimizing model complexity. The incremental
model merging approach is inspired by the observation that when faced with new
situations, humans and animals alike drive their learning process by first storing
individual examples (memory based learning) where few data points are available
and gradually switch to a parametric learning scheme for better generalization as
more and more data becomes available (Shepard 1987). Our approach mimics this
behavior by starting with simple models that generate exactly one sequence which
gradually evolve into more complex models as more data becomes available. With
the incremental learning approach, the model continuously adapts its structural
parameters parallel to the adaptation of the model parameters and thus strives to
represent learned concepts at an optimal degree of complexity with respect to the
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model score given as training objective.

The models are optimized using a bayesian criterion that drives the induction and
generalization process by two opposing forces, the prior and the likelihood. Initially,
every new observation only adds to the model size, because the new samples are
simply accommodated into the HMM. If the data is similar enough, however, the
algorithm starts to collapse similar sequences into shared structure and thus decreases
the model size. This way the model structure is determined in a purely data-driven
fashion as a byproduct of the incremental generalization process.

The preceding experiments found that the proposed incremental action model is
suitable to model actions of the types that occur in the dataset. The model performs
well under conditions where only little training data is available to learn from or when
sequences are to be classified early in their progression. The proposed model complies
with all of the requirements (section 3.2) that result from a learning scheme that is
compatible with usage-based and emergentist theories of early concept acquisition,
which is a prerequisite for modality specific learning components in the multi-modal
model (chapter 4).

The incremental model was evaluated against a traditionally trained baseline model
and finally contrasted with a state of the art representative from the recurrent neural
networks family of neural models. The proposed action model performed comparable
to both baselines even though the learning problem in case of incremental learning
is more challenging than it is for the two models that are trained in batch mode.
Incrementally learned models receive training input one by one and update their
internal state with each example. In contrast, models trained in batch mode receive
their training input all at once and thus have the advantage of having a global view
on the learning problem.

The proposed model is generative in that it supports to generate prototypical
instances of the classes of action it represents based on a probabilistic framework.
The generative nature of the model enables it to (mentally) simulate consequences of
action, in that it can anticipate the typical progression of an action even when only
the beginning of the sequence is given. When classifying incomplete sequences, both
models have different strengths and weaknesses. The HMMs proved to be better in
capturing strongly discriminative features, as in the pushes action where two objects
were moving. The LSTM model was slightly better on average and proved to be more
accurate in making predictions earlier in the sequence for all four action categories.

The model merging approach endows the system with the ability to learn on-line
in the strict sense that each training example causes direct updates of the model
structure and is not explicitly memorized for later consideration afterwards. The
model has been shown to induce well performing representations of action even in
conditions where very little training data is available. These early representations
already reach about half of the peak performance starting with just a single training
example in the classification task. The LSTM based model in contrast required about
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23 examples to catch up with the classification performance of the class specific
HMMs and took about 50 seconds of training time to converge while the proposed
model took about three seconds. While the LSTM was implemented using a highly
optimized code generation strategy based on the theano symbolic math compiler
library, no particular effort was taken to optimize the runtime characteristics of the
proposed model. It can be assumed that training times on our dataset could be
reduced to fractions of a second when properly optimized.

Compression of repetitive sub-sequences

We proposed a logarithmic compression scheme for sub-sequences in which the same
symbol is repeated many times. The compression reduces the overall length of
sequences in the dataset by 21.3% on average (subsection 3.4.2), while preserving
information about the acceleration along the trajectory, which increases the overall
performance especially for very similar actions like jumps over and jumps upon,
while still allowing to generalize over high variations in relative pace of the action
performances.

Prior weighting

To offer more control over the learning process and specifically over the degree of
generalization, we introduced a weighting parameter λ that weights the prior favoring
simpler models against the model’s likelihood. Especially in the early phase of the
learning procedure when the models are based on little training data, this prevents
the system from over-generalizing too early and inducing generalized sub-structure
that would not have been induced in the light of more complete data. The experiment
in subsection 3.4.3 evaluates how the λ parameter affects the model’s complexity and
performance. The experiment revealed that the parameter effectively controls the
degree of complexity in the resulting models in terms of the number of states that
are recruited to fit the learned representations in the model. The model has been
shown to be relatively insensitive to different assignments of its value on the dataset.
Due to the incremental nature of the model induction process and the approach that
merges specific models into more general ones, the structural and model parameters
are optimized in a joint process in which the model capacity (number of states) is
continuously adapted to the complexity of the data. In contrast, the number of states
in a traditionally trained model is fixed. If chosen too low, the resulting models tend
to under-fit the training data. If chosen too high, the model often had a tendency to
over-fit (Bishop 2006).
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Applications

The model was specifically tailored to act as a companion model in an experiment that
investigates the co-development of action and language. However it has properties
that could be of use also in other fields of application, such as robotics and intelligent
systems.

Learning from human tutors

Tutoring scenarios in robotics or intelligent systems are characterized by the cir-
cumstance that the system is mostly deployed in situations where it has to learn
new concepts or capabilities in interaction with human tutors. To perform well
in this mode of learning, the system has to quickly adapt to the tutoring in order
to receive further training input. If the system was unable to learn from single
tutoring examples it would be stuck with the same behavior, eliciting the ever same
tutoring signals until the tutors eventually cease their efforts. We could show (see
section 3.4.4) that the proposed model can immediately learn new actions with the
first exposure to a corresponding example. Conceptually this is achieved by introduc-
ing specific structure for every new example that is then incrementally generalized
through state merging. In contrast, e.g. neural models have to adapt their model
parameters starting with an assignment that is mostly random (and thus probably
wrong) initially. The adaptation process takes several examples, also because most
gradient descent based learning algorithms try to adapt the parameters slowly to
prevent the learning from simply skipping a good solution.

Realtime learning

Realtime learning refers to a mode of operation where the learning system is required
to be fast enough to process new observations and experiences at least at the rate
they arise in the environment the system is deployed in. The component of the
action model that is computationally most demanding is the state merging procedure
that occurs in the generalization phase. However, the two phases (memorization
and generalization) of the induction process do not need to alternate strictly. In
realtime scenarios, the model could first memorize data and let a background process
generalize the model whenever there is time to do so.

Life-long learning in robotics

Life-long learning is not only a requirement humans are faced with. Also many
intelligent systems are required to adapt to changing environments and novel concepts
they are exposed to. For example, in the domain of elderly people care, it seems
intractable to train a system for all possible situations that could occur. Instead,
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it would be preferable if the system could continuously self-adapt to changes in the
environment, e.g. a different layout of furniture that is required to compensate for
mobility challenges of residents. Life-long learning is also relevant in many other
domains of applications ranging from cognitive robotics (Cangelosi et al. 2015), self
driving cars or surveillance systems. Due to the incremental nature of the proposed
model, the model is applicable in life-long learning scenarios even in conditions such
as concept drift that are often associated with life-long learning.

Learning under concept drift

Concept drift is a phenomenon that is characterized by an unpredictable shift in the
characteristics of some target variables the system predicts. Predictive modelling is
faced with the challenge to learn a model of a concept from historical data that is
then applied to the prediction of new data for which the correct answer is not known
in advance. If the data distribution is non-stationary, novel examples can behave
differently from the historical data the system was trained with.

LSTMs for example are sensitive to concept-drift because with each training-run
they update their entire state in contrast to the incrementally trained HMMs, which
only update paths directly related to the input example. Updating the entire model
harbours the risk of overwriting existing knowledge, continuously shifting the model
towards recent training data. Many machine learning algorithms are based on the
assumption that the training data is i.i.d. (independent and identically distributed)
meaning that successive examples are statistically independent but originate from a
similar statistical process that produces identically distributed examples.

Concept drift can be approached from many different angles. One family of approaches
often applied in cognitive robotics is the two-layered memory architecture that consists
of short-term and long-term memory layers. The short term (STM) layer quickly
adapts to changing distributions in input data and can sacrifice existing knowledge
in the process. The long term memory (LTM) is parameterized to be more resilient
against short term drift in input data and thus represents general knowledge acquired
during longer time. STM and LTM are linked such that knowledge from STM slowly
manifests in general representations in LTM over time.

The incremental model approaches concept drift by retaining paths that were previ-
ously established. Even if the input data distribution changes the knowledge about
the previous characteristics of the statistical process is still represented in those
paths. The model merely shifts probability mass towards the newer paths according
to the evidence (counts) the model acquired. The incremental model thus unifies
short-term and long-term representations in shared structure.
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Limitations

The proposed action model proved to be suitable to serve as a component in the
multi-modal model to learn grounded representations of action and language that
is developed in the next chapter. However, the model has some limitations that
potentially need to be addressed in order to make the model generally applicable.

Premature merges

The model merging approach as it is implemented in the present model corresponds
to a monotonic search from models very specific to a single example to more general
models. There is currently no mechanism that can undo merges that appeared
advantageous at first but would have been assessed differently in the light of new
evidence. If parts of the model were merged prematurely, the only compensation
mechanism the current model provides is to introduce new specific paths that are
again incrementally generalized, leading to parallel substructure in the model that
represents conceptually similar action trajectories. Having parallel structure to
represent similar data could potentially lead to under-utilization of training data and
thus suboptimal performance of the model, as the probability mass is distributed
among separate substructures.

As a rough measure, on our data we found that approximately 7% of the structure
in the models were abandoned, meaning that the respective paths were only used to
explain a single example during prediction. In our experiments, premature merges
did not have a major effect on the performance of the models as the dataset contains
only a few hours of recorded action trajectories. However, in different applications
the effect could be considerable. For example in life-long learning scenarios where
the system adapts continuously to new and changing actions, abandoned structure
can accumulate over time. As the simplicity prior (favoring simpler models that have
less states in general) does not consider if those states are actually used in explaining
current data, this effect would drive the model into inducing more and more compact
representations.

An unmerge operation could potentially be implemented driven by, e.g. confidences
that are tracked during classification. When, for a given sequence, the most probable
sequence of states in the model has been estimated, the model could, for each state
along the path, record the contribution to the overall confidence. When a state
is identified that reduces the confidence significantly more than others, this could
potentially signify a premature merge.

In the following experiment we investigate how language and action can co-emerge
in an emergentist framework. The incremental approach for action learning serves as
the component to induce categorical representations of actions.
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In this chapter we implement the computational model to investigate how linguistic
and conceptual structure can co-emerge by shaping and influencing each other. The
model exemplifies how grounded representations of action and language can develop
inspired by emergentist and usage-based theories of grounded concept acquisition.

It has been well established that conceptual and linguistic development go hand in
hand (Bowerman et al. 2001). For one, language structures thought and shapes the
concepts we acquire. This is the main claim behind the theory of linguistic relativism,
more widely known as the Sapir-Whorf hypothesis (Philip Wolff et al. 2011). For
another, linguistic development does not happen in isolation but rather conceptual
development is also a prerequisite for language learning as linguistic constructions
need to be “mapped” to concepts that represent the meaning of the constructions.
This so called mapping paradigm underlies most of the work on associational language
learning involving cross-situational analysis (see McMurray et al. 2012; Siskind 1996;
L. B. Smith 2000; L. Smith et al. 2008). However, the detailed mechanisms that are
involved in the co-emergence of linguistic and conceptual structures have not received
prominent attention so far. Computational models can contribute to enhance our
understanding of such processes by providing an implementable and thus explicit
theory that accounts for the phenomenon of co-emergence of representations across
different modalities.

The proposed model accounts for the co-emergence of linguistic and conceptual
structure for the case of action verbs and the grounded action concepts they denote.
In chapter 3 we defined actions as repeatable processes that are so important, that
we assign a name to them. We focus in particular on the case of action verbs and
actions that can compactly be described by corresponding utterances and develop
a system composed of two aligned components to learn the grounded meaning of
a verbal construction without requiring the prior existence of corresponding action
concepts. The model can distill the essence of the meaning of a verbal construction as
a process of incremental generalization starting from a meaning that is very specific
to a certain context in which the verb has been encountered. The meaning of verbs
in this model are understood as evoking a simulation of the grounded process rather
than being a static concept.
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The approach is inspired by usage-based and emergentist (Behrens 2017) theories of
language acquisition that are based on the assumption that language learning proceeds
from specific to general where the specific constructions are incrementally generalized
and entrenched by means of social joint-attention and continuous generalization.
This approach thus mitigates the necessity for children to have innate categorical
structure to map novel linguistic constructions upon. Increasing generalization also
assists in resolving possible underspecification in linguistic input as the formation of
general constructions can be delayed until enough experience is gathered.

The theoretical framework of emergentism assumes the existence of a powerful gener-
alization process that drives the incremental emergence of categorical knowledge from
observed examples. With increasing linguistics experience, more abstract patterns
evolve from the learning process, but these abstract patterns are assumed to be still
grounded in usage, e.g. in a prototypical generative model of the corresponding
action. A central phenomenon in usage-based linguistics is entrenchment, the obser-
vation that repeated encounter of specific stimuli stabilize corresponding cognitive
representations. However, repetition alone can not account for increasing abstraction
of general categorical information. In order to form generalized categories, a learner
has to recognize and exploit similarities as well as dissimilarities, by filtering out
aspects that do not recur, while registering commonalities between new stimuli
and already learned specific or general cognitive representations. Behrens (2017)
describes emergentism as the term that emphasizes the idea that qualitatively new
and more complex structures can emerge from simpler, basic facts, thus positioning
emergence as a central component in human language learning. The emergence of
complex structure is the result of the powerful generalization processes that is re-
quired by usage-based theories as a replacement to the necessity for innate categorical
knowledge.

The categorical representations the proposed model induces can be used to recognize
and generate sentences describing actions and their grounded meaning in terms of
qualitative action trajectories. The model learns incrementally from coupled examples
of action sequences together with a sentence that describes the corresponding action.
Starting with very specific examples observed from the environment, the model
gradually develops new and more complex structure by incremental generalization.
Figure 4.1 shows an example where the model learns from two coupled examples of
language and action.

We evaluate the model with respect to its generalization abilities both at the linguistic
and conceptual level. The experiments are carried out on a dataset consisting of
performed actions corresponding to four types of actions (jump on, jump over, circle
around and push) performed by subjects when prompted with sentences verbalizing
the action in question. The evaluation is conducted on three tasks i) a matching task
consisting of deciding whether a given utterance describes a given action instance,
ii) a selection task consisting in selecting one out of three action instances that is
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Figure 4.1: The model for multi-modal learning learns from coupled examples of
language and action given as a trajectory of objects involved in the
action together with a sentence that describes the action verbally. The
model consists of three components, a component for action learning,
a component for language learning and a component that coordinates
the learning process and drives the cross-modal induction of general
categorical representations through merging similar structure. The figure
shows how concrete examples are generalized into abstract linguistic
constructions such as “X jumps over Y” together with a generalized
graphical model that probabilistically represents the two constituting
action trajectories.

described by a given utterance and iii) a generation task consisting in generating a
sentence describing a given action instance.

Model

The model consists of three components. The component for language learning
and the component for action learning induce categorical representations of
knowledge corresponding to their respective modality. The third component, the
generalization controller, coordinates the incremental learning process such that
linguistic and action concepts can co-emerge by shaping and influencing each other.
Figure 4.2 gives an overview over the components the model is composed of.

The component for language learning is based on an existing model for the
“item based induction of linguistic constructions” (Gaspers and Cimiano 2014) (see
section 2.6) that is extended such that it can accommodate the multi-modal learning
process. The component for action learning transfers ideas from emergentist
and usage-based theories of language acquisition to the domain of action in that it
also learns in an incremental and item-based fashion. The component is identical to
the action model developed in chapter 3.
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Figure 4.2: The model consists of three components. The component for action and
language learning induce abstract categorical representations of concepts
in their respective domain. The generalization controller drives the
learning process, such that grounded abstract conceptual representations
can co-develop in cross-modal learning.

Learning in the proposed model is organized such that language and action concept
acquisition go hand in hand in the sense that generalization steps are not applied
only separately, but generalization at the linguistic level should trigger the learner to
also look for potential generalizations of actions observed in the context of the same
generalized utterance. Equivalent linguistic constructions are thus expected to denote
equivalent or unifiable grounded action concepts. Generalization at the conceptual
level forces a learner to induce near-synonym relations, that is to postulate relations
between linguistic constructions that look different at the surface level, but clearly
have commonalities in their meanings. For example, actions denoted by the words
jump and hop might look similar in the corresponding action but are very different
in their linguistic surface form. This procedure allows to acquire equivalence classes
of linguistic constructions for which the evoked action concepts can be unified in one
model, for instance because the underlying action concepts are sufficiently similar.

Learning in the model is completely unsupervised utilizing only unification cues in
the sense that if two concepts (or single examples) can be unified into a more general
abstract representation in one modality, unifying the corresponding grounded repre-
sentations in the other modality would also yield meaningful abstraction. Unification
is only carried out on both ends of a grounding relation, e.g. when two concepts in
action can be unified, the corresponding two grounded concepts in language are also
unified. This way the original coupling of action and language that is present in the
training examples persists during the training process.

An important aspect when modeling human language acquisition is the ability to
learn online, where each example causes direct updates of the model’s internal
representations instead of storing the training examples for later batch processing.
Learning online allows to dynamically adapt to changes in the environment and it
enables learning under the premise that the learner is constrained with respect to
memory. Pearl et al. (2011) assume that learning in humans is inherently memory
constrained and in case of language only one utterance coupled to a representation
of it’s meaning can be processed at a time.
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This mode of learning is reflected in the model by the incremental learning process
that proceeds in two phases. In the first phase, the model memorizes observed
examples consisting of action trajectories together with sentences describing the
corresponding action that, in the second phase, are subsequently unified and gen-
eralized by successively abstracting from concrete memorized examples through
structure merging and recombination. This two-phased approach further endows
the model with the capacity to learn new concepts based on a single exposure to
a given informative example. This is often referred to as fast-mapping or one-shot
learning.

Both modality specific components for action and language comply with theories
of usage-based and emergentist acquisition of categorical structure in that they are
item-based and incremental in nature by updating their internal representations
directly with each new observation. The model does not assume innate linguistic
and categorical knowledge to pre-exists. However, it relies on the assumption that
the learner has already formed basic perceptual capabilities to detect objects and
their spatial relations in the scene as well as being able to represent speech signals as
sequences of discrete symbols, e.g. characters. The generalization process required
by emergentism is present in the model in the form of the incremental generalization
procedure that incrementally unifies similar structure within one modality while
preserving valid grounding relations across modalities that have been observed during
training.

4.1 Learning scenario and input data

We consider a learning scenario in which the system learns from utterances describing
different actions coupled with trajectories of object positions corresponding to these
actions (see Figure 4.3). The scenario corresponds to the dataset as introduced in
section 3.1 with the exception that for this experiment we modified the collected data
in that we used two different verbs for each of the four actions. More specifically,
for each action instance in the dataset we randomly choose one out of two possible
utterances as the descriptions. The following patterns were used to generate the
descriptions:

• trajector [pushes|shoves] landmark from left to right

• trajector [jumps|hops] onto landmark

• trajector [jumps|hops] over landmark

• trajector [revolves|circles] once around landmark

Notice that the patterns were chosen such that the synonym relation could not be
revealed using language alone. For instance, taking solely linguistic variation into
account could also yield an incorrect merging of patterns “trajector jumps onto
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Figure 4.3: The input to the system consists of coupled examples of sentences describ-
ing an action given as a sequence of words and the corresponding action
trajectory as it was performed by a participant after being given the sen-
tence as an instruction. The input sentences are coupled with identifiers
of involved objects and their role in the action. In this case trajector is
the object that is actively moved during the action and landmark refers
to the object that is not actively moved.

landmark” and “trajector jumps over landmark” into “trajector jumps [onto|over]
landmark”. Hence, the system has to take similarity at the meaning level into account
in order to establish correct synonym relation.

4.2 Model Definition

In this section, we describe in detail our model for accounting for the co-emergence
of linguistic constructions and the action concepts they denote. In essence, the model
consists of two learning components corresponding to the two modalities action
and language and a central component that coordinates the multi-modal learning
using signals from both learning components (see Figure 4.4). Both modality-specific
components incrementally develop representations that are grounded in each other
and participate in a joint learning process where new knowledge extracted in one
component causes direct updates also in both components. The superordinate
generalization and grounding coordinator coordinates the cross modal generalization
and grounding process using similarity signals from both modalities.

The component for action learning corresponds to the incremental action model
developed in section 3.3. The component is responsible for inducing generalized
action concepts from specific examples of performed actions following an incremental
model merging approach based on generative probabilistic models, in our case Hidden
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Figure 4.4: The multi modal generalization process is hierarchically organized, using
signals from both modalities to orchestrate the unification of representa-
tions within the modalities by merging similar structure as well as the
grounding of structure from one modality in structure from the other
modality that is similar in meaning.

Markov Models, where the observation alphabet corresponds to a set of qualitative
QTC (see section 2.5) relations that a learner is assumed to be able to recognize in a
visual context.

For action, the learning problem can be defined as:

• Learn typical patterns of relative movements of trajector and landmark that
are indicative for any given category of action.

• Induce generalized paths capturing movements that are typical for the given
category of action.

• Generalize action concepts abstracting from specific action instances.

The component for language learning is based on a model that was published
before and models the acquisition of syntactic constructions using symbolic meaning
representations (see section 2.6). For this experiment we extended that model to use
concepts from the action model to represent the conceptual meaning of sentences.

For language, the learning problem can be defined as follows:

1. Learn the names for objects through associational learning by tracking co-
occurances of objects and mentions.

2. Induce generalized linguistic constructions by associational learning and the
postulation of slots in general constructions.

The third component that coordinates the multi modal learning and grounding process
uses signals from both components to control the degree of generalization within
the learned representations. The component for multi-modal learning uses signals
exposed by both learning components to accomplish the following generalization
tasks.

• Establish grounding relations between modalities starting with early examples
that are maintained during the generalization process.
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Figure 4.5: Two sentences that appear to be (falsely) mergeable on the surface level
into the more general pattern “the green circle jumps [over—on] the blue
rectangle” but that are grounded in very different action trajectories.
The generalization controller in this case would follow the grounding
relations to the action domain and determine that the two associated
action instances denote incompatible actions that can not be unified. The
grounding coordinator would not carry out the proposed merge in this
case and thus prevent the system from establishing an incorrect synonym
relation between over and on.

• Coordinate the gradual generalization process by evaluating similarity signals
from both learning components and eventually instruct the components to
merge structures that have similar meaning across modalities. This process
enables to resolve synonyms in language and to bootstrap the unsupervised
learning in action.

The learning process is organized in two phases that are successively run for each
individual training example. In the memorization phase, both components create
a representation that is very specific to that particular example. The grounding
coordinator establishes a grounding relation between the newly created specific
representations. In the subsequent generalization phase, the components for
language and action propose to collapse similar structure within their modality into
more general representations.

The overarching coordinator component evaluates the proposed generalization opera-
tions and performs only those operations that also yield meaningful results when
also generalizing the representations in the other modality that have a grounding
relation to the proposed generalization candidates in the first modality.

For example “the green circle jumps over the blue rectangle” and “the green circle
jumps on the blue rectangle” could, on the language level be proposed to be falsely
merged into the more general pattern “the green circle jumps [over—on] the blue
rectangle”. In this case the coordinator would recognize that the action those
sentences are grounded with, denote incompatible actions, specifically the “jumps
over” and “jumps on” actions (see Figure 4.5).

The implementation of the incremental multi-modal learning procedure relies on
signals from both learning components to drive the generalization process that are
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described in the following section. The definition of generalization signals is followed
by the description of how the language model was extended to facilitate establishing
grounding relations between action and language. In section 4.3 we describe how the
incremental learning and generalization process is organized.

Generalization signals

Both learning components expose signals that are used to communicate the fact that
similar structure developed within a modality specific model that has the potential
to be further generalized. Similarity of structure is measured in both modalities by
adopting the idea of relative entropy. The term signal refers to the learning process
being fundamentally asynchronous, meaning that all three components proceed
independent from each other and coordinate the multi-modal learning by exchanging
signals. As can be seen in Figure 4.4 the generalization coordinator listens for the
generalization signals to coordinate the learning process in the generalization phase
(see section 4.3).

Action The action model defines a similarity relation between induced represen-
tations that is based on the notion of how probable a second model would accept
sequences that the model generates. The similarity was derived from a distance metric
between HMMs that is based on the Kullback-Leibler distance between distributions.
This procedure is similar to the one proposed by Juang et al. (1985) and based on
the intuition that the similarity between discrete Hidden Markov models can be
estimated by letting the first model generate a number of sequences OT (probabilistic
walks from the initial to the final state) and then measure the difference between the
log probabilities of both models to accept those sequences.

D(λ1, λ2) = logP (Ot|λ1)− logP (Ot|λ2) (4.1)

To evaluate this measure we generate 10 sequences with a maximal length of 1000
symbols or less if the final state was reached and take the average of the resulting
distances.

Language The generalization signal for the language component is based on a
mergeability condition that states that two paths are mergeable if they differ in at
most k positions. As introduced in section 2.6, the model distinguishes between two
sets of elements that group similar entities in a path. Sets of slot filling elements
represent elements that play a role in the grounded meaning, e.g. objects that either
occur in the trajector or landmark role. Sets of linguistically optional elements
are groups of elements that are not associated with any meaning in the observed
context, more specifically these elements can differ across sentences that are observed
together with similar meaning in terms of action trajectories. Generalization across
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those two types of sets is performed independently in the slot driven and syntactic
generalization step of the language model.

Grounding syntactic constructions in qualitative action models

In order to facilitate cross modal learning, the component for inducing generalized
linguistic constructions is extended to incorporate the action models captured by the
HMMs.

Original model The model for language learning as originally proposed assumes the
situational context in which the sentence was uttered to be given in terms of predicate
logic formulas. The model assumes further that the meaning of the sentence in the
conceptual domain is among the facts given as part of this context. For instance in
the following example

NL utterance The green circle jumps over the blue rectangle.

mr1 participate(SUBJECT:p1, STUDY:mml1)
mr2 jumps over(TRAJECTOR:green circle, LANDMARK:blue rectangle)

the sentence “The green circle jumps over the blue rectangle” would be accompanied
with the meaning “jumps over(TRAJECTOR:green circle, LANDMARK:blue rectangle)”
in addition to possibly other aspects of the context that are unrelated to the meaning
of the sentence, such as the fact that the action was performed by participant p1
while participating in the study mml1.

Extended model The model is extended to represent the grounded meaning of
verbal constructions in terms of the Hidden Markov models that are induced by
the component for action learning via grounding relations that are established from
single examples and maintained during the process of incremental generalization.

In essence, the symbolic predicates ‘observed’ in context are replaced by (time-
indexed) observations describing the movement of detected objects and the role they
appear in.

NL utterance blue circle jumps over green rectangle.

Objects trajector : blue circle
landmark: green rectangle

Moves/positions move(1234,blue circle,[11:12]);
move(1277,blue circle,[12:13]);. . .
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When observing such an example, both a specific construction ‘The green circle jumps
over the blue rectangle‘ and a specific HMM capturing that particular movement
sequence are generated. We assume that a learning system is already able to recognize
particular objects, e.g. green circle and blue rectangle as well as the role they play
(e.g. trajector or landmark). Note that we do not assume that the system already
knows the names for such objects, for instance there is no direct correspondence
between the identifier of an object green circle and it’s surface form “green circle” in
the sentence. Establishing these correspondences is part of the learning problem.

On the representational level, the language model captures learned utterances as paths
in a graphical network. Each path constitutes a (generalized) pattern as a sequence
of lexical items or words. Replacing the predicate based meaning representation with
a meaning representation based on the previously developed action models associates
each path in the slot and frame network with an action concept represented as a
Hidden Markov model in the action domain.

As we focus on actions in which some trajector moves or is moved relative to some
landmark or ground, we assume that the system is able to observe positions and
identities of trajector and landmark. Our Hidden Markov Models in essence thus
model the action specific probability of a given sequence of qualitative relations de-
scribing the relation between a trajector and a landmark over time as the fundamental
meaning of encountered verbal expressions.

4.3 Multi modal learning of language and action

Cross-modal learning is organized differently compared to how learning was organized
in the individual components. In the multi-modal model, learning is driven by an
independent process that uses signals from both modalities to drive the generalization
and grounding process. The actual learning is still performed by the individual
components. The acquired knowledge is also local to the respective component.
However, learned concepts in one modality always maintain a grounding relation to
another concept in the other modality.

The induction and generalization process proceeds, as in the model for action learning,
in two phases

Memorization phase Upon the first exposure of a certain example, both
modalities create a representation that is very specific to the given example.
In action this is a Markov Chain accepting/generating the respective sequence
with a probability of 1. In language, each example first causes an update of the
lexical layer, where connections between lexical units (words as surface forms)
and semantic referents (unique identifiers) are established and reinforced if the
network already contains the necessary information to decompose the sentence
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accordingly. When the lexical layer is updated, the sentence is memorized
verbatim to update the construction layer in the generalization phase.

Generalization phase Generalization as abstraction from concrete examples
is organized in two layers. At the top layer, the generalization coordinator
gathers signals from the two learning components that indicate the existence
of similar structure in the respective modality which can be merged into more
general representations within that modality. As in the multi-modal model,
learning is not modality specific but instead conceptual structure should co-
emerge by shaping and influencing each other. Not every generalization step that
would produce meaningful results in one modality is directly applied, instead,
the generalization coordinator follows the grounding relations between modality-
specific representations and evaluates if merging the grounded representations
would also produce meaningful results. If that is the case, the coordinator
instructs both components to execute the merge on the affected structure.

In the following we describe how the memorization and generalization phases proceed
in detail:

Memorization phase

In the memorization phase, the multi-modal learning component would first ask
both components to incorporate the given sample into their internal models and
then establish a link between the newly introduced representations that grounds
one modality in the other. Training instances consist of an action trajectory given
as a sequence of QTC relations and the sentence that describes the action verbally
together with detected object identities and their role in the action (trajector or
landmark).

Action The memorization phase for the action model is similar to the procedure
described in section 3.3.3 but differs in that new examples are not instantaneously
included into existing models, as in this experiment there is no categorical information
attached to the examples that could be used as supervision. Roughly summarized,
memorization is implemented by first introducing a Markov Chain having a dedicated
state for each QTC relation in the sequence. Each of those states emit their respective
symbol of the sequence with a probability of 1 and is chained to transition to the next
state, representing the successive symbol in the sequence. The resulting sequence
constitutes a maximum likelihood model for the given example.

Language Similar to the memorization mechanism in the action model, the language
model first creates a path specific to the given input sentence, e.g. for the sentence
“The green circle jumps over the blue rectangle” the following construction would be
generated and introduced into the network. In a subsequent step, the component
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Figure 4.6: During the generalization phase, the generalization coordinator collects
candidates that comprise similar structure within the learning models
that can be merged to yield more general representations. For example,
in the figure above, the two circled concepts on the left side are merge
candidates in one modality and connected to respective concepts in the
other modality via a grounding relation. The generalization coordinator
would only merge structure if the grounded structure is also similar
enough to be mergeable.

would track co-occurences of the lexical units appearing in the sentence and semantic
referents (objects and the role they appear in). Co-occurences between lexical units
and their referents are tracked in the word construction network as described in
section 2.6. Co-occurrences are not tracked as raw frequencies but rather rescaled
using an extended hebbian learning mechanism (Gaspers and Cimiano 2014) that
strengthens associations between units and referents that were observed together but
at the same time weakens other associations.

Generalization phase

In the generalization phase the model searches for commonalities between similar
structure within each modality specific model and on the grounding level.

At first, both modalities search for similar structure within their modality and compile
a list of sub-structures that are similar and constitute good candidates to be merged
into a more general representation. More specifically, merge candidates are tuples
of modality-specific representations (HMMs for action and patterns in the slot and
frame network for language) that, if collapsed into a more abstract representation,
would render the model to be a more general representation for the concepts it
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denotes. The fact that mergeable structure developed within a modality-specific
model is communicated to the generalization controller asynchronously as signals.

The generalization coordinator takes the list of merge candidates from both modalities
and for each candidate merge cm ∈ Cm from modalitym follows the grounding relation
to concepts in the other modality ¬m to estimate whether those representations
c¬m ∈ C¬m could be merged too. This estimation is based on the same mergeability
criterion that both learning models use to propose merge candidates (see section 4.2).
If structure is mergeable at both ends of the grounding relation, the generalization
controller would instruct both learning models to perform the merge accordingly.

The bidirectional interaction between the two learning components that results from
the central coordination process can be summarized as follows:

• When the component for language learning encounters two specific constructions
that can be merged into a generalized slot-and-frame pattern by abstracting
from parts of the sentence through the introduction of slots, it performs this
generalization only if the HMMs associated to the specific constructions are
mergeable as well. Figure 4.6 depicts how representations of action and language
are grounded in each other.

The similarity measure is derived from a distance metric between HMMs that
is similar to the Kullback-Leibler distance between distributions. We let both
HMMs generate sequences and for each of these sequences accumulate the
difference between the likelihood of that sequence given the generating model
and the likelihood given the other model. This procedure is similar to the one
proposed by Juang et al. (1985). If the models are mergeable, then both HMMs
are merged into a new HMM that represents a more general action concept in
the sense of accounting for more variability in action performance.

• In case the component for inducing generalized actions detects that two HMMs
associated with different syntactic constructions are similar in the sense that
they very likely represent the same action, then it is inferred that both con-
structions are synonyms of each other.

• In case two sentences are exactly the same, the two HMMs are directly merged.

Action The component for action learning represents individual memorized ex-
amples as maximally specific Hidden Markov models. As learning proceeds the
component accumulates many individual HMMs at various degrees of abstraction
that are incrementally generalized at the level of individual models and within
each model. The first corresponds to merging sufficiently similar models. The
second corresponds to the state merging procedure within models (see section 3.3.3).
Generalization is always triggered by the generalization controller, however each
component searches for similar structure that can be merged and sends a signal to
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the coordinator if such structure is found. In the component for action learning the
search for generalizeable structure is triggered on two occasions:

• After a new trajectory is memorized

• After structure within the action model is collapsed and generalized through
state merging

Mergeability between action models is defined as the similarity 0 ≤ sim(M1,M2) ≤ 1
between the action models being above a given threshold of 0.86 which was optimized
independently using randomized grid search. The similarity measure corresponds to
the symmetrized Kullback-Leibler divergence as introduced in section 4.2.

Language Generalization in language is similar to the originally proposed procedure
as described in section 2.6 with the exception that the language model does not
directly merge mergeable paths but instead emits a signal to the generalization
coordinator that mergeable paths exists. The coordinator then decides if the merge
is to be performed based on whether it is also meaningful to merge the action models
the linguistic constructions are grounded in.

A mergeability criterion mediates between specificity of constructions and possible
over-generalization. Two paths are assumed to be potentially mergeable if they differ
in at most k positions.

There are two types of sets of elements (SE): slot filling elements represent sets of
lexical units (short sequences of words) that have a role in the associated meaning
(e.g. act as trajector or landmark). Sets of linguistically optional elements are
characterized by the fact that if they are replaced, they do not cause a change in the
associated meaning. Both categories develop in independent generalization steps.

Sets of slot filling elements are identified by searching for differences in the patterns
which lead to corresponding differences in corresponding meanings. For example two
sentences “The green circle jumps ...” and “The red triangle jumps ...” would be
associated with an action where the objects identified by green circle and red triangle
would appear in the trajector role.

Cross-modal interaction in learning

In essence, both models take as input sequences of words and qualitative relations
describing the relations between a trajector and some reference object, respectively.
For example, in the following figure, the sentence “the green circle jumps over the blue
rectangle” would be accompanied with a sequence of QTC relations that correspond
to the semantic relations the two objects were in. Those relations were calculated
using the position and velocity vectors sampled at regular intervals (see section 2.5).
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Upon first occurrence of a certain utterance together with an action sequence, both
models create a category most specific for that given sequences of words and action.
In case of the action model the sequence is represented as maximally specific Markov
chain and the sentence is represented as a path in the construction network. Later,
these most specific categories are generalized as more and more similar examples
are observed, leading to entrenchment and generalization. A schematic overview
over the model was depicted in Figure 4.1. It depicts the following example of two
input sentences from the dataset: ‘The green circle jumps over the blue square.’ and
‘The blue triangle jumps over the red square’ as well as two corresponding action
sequences.

Learning, as generalization from data, can be initiated by either one of the two
modality-specific components:

Generalization driven by action The component for learning generalized action
concepts from sequences of qualitative relations would, in the mentioned example,
generate the hypothesis that both action sequences can be merged into a more gener-
alized action category based on the assessment that both sequences are sufficiently
compatible or similar. The system could infer that their corresponding utterances
or linguistic instructions might also be regarded as equivalent. In this way, our
model can also discover synonym relations, that could not be resolved using language
alone.

Generalization driven by language At the same time, the interaction between both
components can be reversed: Our component for learning generalized constructions
from sequences of words could generate the hypothesis that both sentences can be
merged into a more general construction ‘X jumps over Y’, abstracting from the
specific slot fillers of the corresponding verbal construction. This mergeability of both
utterances into a more general utterance would trigger the second action concept
learning component to try to unify both action sequences into a more generalized
action sequence in terms of a probabilistic model that still generates both sequences
with high likelihood while not being overly complex.
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Confidence

For a learning system it is crucial to have an estimate how confident the system is
about it’s acquired knowledge. This measure is very different from the confidence of
the system about a certain prediction and does not necessarily have the same scale
or (e.g. probabilistic) interpretation. The confidence about acquired knowledge is
rather a measure that states how confident the system would be on average when
faced with novel examples from already learned categories. The computation of this
measure follows very different approaches in action and language.

Action The confidence measure of the action model is identical to the bayesian
measure (see section 3.3.3) composed of a prior favoring simpler models in general
and the likelihood estimate (see section 2.3) based on viterbi paths. This measure
can simply be averaged across all models in the action component.

Language The component for language learning exposes a measure of confidence
that estimates how accurate the mappings learned at different representational levels
are. The confidence is based on a similar notion of relative entropy, not between
models but relative to the maximum entropy. The intuition behind this measure
is that, if a certain amount of information is acquired, this results in a reduction
of entropy (or uncertainty) in the mapping between two sets x, y in the associative
network. According to Gaspers and Cimiano (2014) the entropy of a certain mapping
between form nl ∈ x and it’s associated meaning j ∈ y is computed as

H(nl) = −
|y|∑
j=1

ω′nl,j logω′nl,j (4.2)

where ω′nl,j denotes the association strength between nl and j in the associative
network. The network weights are normalized to sum to one. H(nl) is then compared
to the maximal entropy obtained by assigning equal probability to each meaning in
y:

Hmax(nl) = −
|y|∑
j=1

1

|y|
log

1

|y|
(4.3)

A construction nl is considered to be learned if the relative entropy is below a
threshold θE :

H(nl)

Hmax(nl
< θE (4.4)
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4.4 Experimental evaluation

Since we explore grounded language learning, we are interested in the system’s
generalization abilities both at the linguistic and conceptual (action) level. That is,
the main goals of the system are to i) understand and generate novel utterances, and
to ii) abstract over concrete trajectories of actions, in particular to also recognize
actions performed by novel subjects. Thus, we consider two evaluation scenarios:

1. novel-performer: 12-fold cross-validation over all subjects, where the system is
trained on data collected for 11 subjects and tested on the data of the 12-th
subject.

2. novel-utterances: 25-fold cross-validation in which all utterances observed
during testing are novel, i.e. none of them has been observed during training
and thus cannot be understood or generated by performing rote-learning. Folds
are generated by first collapsing data from all 12 subjects and then partitioning
into 25 folds so that in each fold we have the same number of examples for
each of the 4 action categories and 4 utterances which are not contained in
any other fold. The sentence “the blue circle jumps on the green rectangle”
could be exclusive for one fold while the sentence “the red triangle jumps on
the green rectangle” could be included in multiple folds.

The developed system is evaluated in two different experimental settings, one con-
cerning the understanding and one concerning the generation abilities. To measure
the system’s performance we compute precision, recall and F1-measure (the harmonic
mean of precision and recall). Recall is computed as the percentage of testing exam-
ples for which the system generates the correct result and precision as the percentage
of correctly generated results of the number of testing examples for which the system
actually generates a result (i.e. the system may choose that it cannot determine the
result, for instance, because it has not been able to determine a suitable syntactic
pattern and/or action model).
In order to estimate to what extent the system is able to detect synonyms for actions,
we present a (mainly qualitative) analysis of the learned grammars.
In the following, we will first focus on language understanding abilities using a match-
ing and a choosing test, and subsequently explore a language generation experiment.
Afterwards, we discuss our results and put them into context.
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4.4.1 Matching test

In the first experiment, we evaluate the system’s understanding abilities in a matching
task. The test is depicted in the Figure above. The system receives as input pairs
of utterances and action performances, presented as QTC sequences. The system
has then to decide whether the utterance describes the action. These testing data
are generated such that the action corresponds to the utterance in about 50% of the
examples. More specifically, we keep the appropriate action for half of the testing
examples and shuffle the action sequences for the other half such that the action
does not correspond to the utterance. Any system has thus a 50% chance level of
providing the correct response.

The matching test is implemented using our model as follows: given an input sentence,
the system retrieves a generalized syntactic construction from the construction
network that matches the input sentence. It then retrieves the associated HMM. If
this HMM is the model that has the highest likelihood of generating the specific
QTC sequence, then the system determines that the utterance matches the action.

4.4.2 Choosing test

This task is schematically depicted in the Figure above. When presented with
an utterance paired with three action instances represented as QTC relations, the
system has to decide which of the three actions the utterance refers to. Hereby, it is
guaranteed that the utterance refers to exactly one action. The other two actions
are confounder actions that either depict an action type that is unrelated to the
utterance or an action of the same type as described by the utterance but with
other objects. Given the sentence ‘The blue circle jumps over the red rectangle’, one
example would indeed encode a blue circle jumping over a red rectangle, while the
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others would encode, e.g., a blue triangle jumping over a red rectangle as well as a
green circle jumping on a blue rectangle. For this task we define the baseline at 33%
which corresponds to the chance to pick the correct action randomly.

4.4.3 Language generation test

To evaluate the system’s language generation abilities we first generate utterances
for given testing actions. The utterances are generated by extracting all learned
knowledge from the construction network – i.e. syntactic patterns, lexical units
and groupings of elements – along with their associated HMMs and subsequently
reversing the associations. For example, we might extract a pattern “X pushes Y ”
associated with a meaning comprising an HMM and the information what lexical
units can occur in positions X and Y along with their corresponding role in the
meaning (such as trajector). Given a testing action, the system first determines
the HMM that has the highest likelihood of generating the sequence. Based on the
grammar, it can then retrieve the corresponding syntactic pattern along with the
information about lexical units and their roles. The generated utterance is considered
correct only if it is identical with the example’s actual utterance or the alternative
utterance describing the same action.

We compare our results against a baseline that was established by choosing an
utterance from the training data that has been observed with a similar meaning
representation. Similarity is rated on both the involved objects (referents) and the
action sequences. For the action sequences we implemented a simple matching score
based on the Levenshtein distance between the compressed QTCc sequences. For all
pairs of trajectories t1, t2 we calculate a matching score as the Levenshtein distance
normalized with respect to its theoretical upper bound lev(t1, t2)/max(|t1|, |t2|).
Because the distances are calculated over the compressed sequences it can also be
considered similar to Dynamic Time Warping1. This baseline can however only yield
matches in the novel-performer condition; in the novel-utterances condition none of
the testing utterances has been observed during training and thus cannot be found
by simply taking an utterance observed with a similar meaning.

1Dynamic Time Warping is an algorithm used to measure the similarity between temporally aligned
sequences that may vary in speed.
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Table 4.1: Results for the matching (language understanding), the choosing (language
understanding) and the language generation test in the novel-performer
and novel-utterance conditions with and without synonym detection.

Matching test

Setting Synonym Detection F1 Precision Recall

Baseline 50% chance

novel-performer No 75,42 75,42 75,42
novel-performer Yes 99,08 99,08 99,08
novel-utterance No 47,32 90,11 32,08
novel-utterance Yes 86,50 88,69 84,42

Choosing test

Setting Synonym Detection F1 Precision Recall

Baseline ∼33% chance

novel-performer No 67,70 100,00 51,17
novel-performer Yes 99,33 100,00 98,76
novel-utterance No 55,86 88,00 40,92
novel-utterance Yes 80,62 92,00 71,75

Language generation test

Setting Synonym Detection F1 Precision Recall

Baseline 89% Levenshtein Distance

novel-performer No 68,67 68,67 68,67
novel-performer Yes 74,00 74,00 74,00
novel-utterance No 54,82 79,49 41,83
novel-utterance Yes 64,09 67,63 61,08

4.4.4 Results

Results for all three tests along with their corresponding baseline values are pre-
sented in Table 4.1. The results reveal that the system achieves a large increase
in performance over the random baseline, i.e. performing well above chance level,
in both language understanding tests when synonym detection is active. Without
synonym detection the system considers utterances as mergeable without considering
if merging the grounded actions would yield consistent results as well.

For the matching test in the novel-performer condition, F1, precision and recall are
alike, since the system answers ’yes’ if the HMM, retrieved for the sentence, has the
highest likelihood of generating the observed action sequence, otherwise the system
answers with ’no match’, thus yielding an answer for each testing example. Since
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most utterances were parsed correctly (as indicated by high values for precision and
recall), the system appears to have induced suitable grammar and action models in
most cases, i.e. for most folds. The learned action models appear to generalize well
to a novel performer for most human subjects. For the novel-utterances condition
values are slightly lower, especially when the synonym detection is not used, which
likely results from an insufficient determination of syntactic patterns, i.e. syntactic
patterns may not have been learned before testing. When faced with utterances
which are instances of unknown syntactic patterns, the system would not generate
an answer, resulting in the low recall of 32% in the condition without synonym
detection. But even in this condition, 90% of the actually generated answers were
correct. With synonym detection the system is mostly able to respond even to
unknown utterances, resulting in an F1 score of 84%, which is clearly above the
baseline of 50%. Taken together, the results are promising, showing a large increase
in performance over the baseline. It is remarkable that in both, the novel-performer
as well as the novel-utterance case, performance increases substantially when the
synonym detection condition is active, by between 25% and almost 40% F1-measure.
The reason for the impact of the synonym detection is clearly due to the way the
dataset has been constructed, replacing 50% of the utterances by synonym utterances
that could not be reliably learned by language alone. Nevertheless, the results on
the novel-utterance show that inducing synonyms by considering both sides of a
grounding relation across modalities is indeed working very well.

On the choosing test, the system outperforms the baseline condition by large
(67,70% and 55,86% vs. 33% on the novel-performer and novel-utterance conditions
without synonym detection). Especially in the novel-performer condition the precision
is 100%, indicating that if the system is given several potential meanings for an
utterance and cannot determine the correct match it does not confuse the utterance
with distractor meanings, even if these are also somewhat similar to the observed
utterance, i.e. corresponding to the same action or involving the same objects.
The impact of the synonym detection is also very large with increases in terms of
F1-measure by over 30% (from 67,70% to 99,33%) for the novel performer setting
and close to 25% (from 55,86% to 80,62%) for the novel-utterance setting. Thus,
taking the results for both tests together, the learned models appear to be suitable to
yield generalized linguistic constructions and action models that generalize to unseen
sequences as well as a reasonable discrimination ability between different actions.

In the language generation test, the system performs only slightly below the
baseline in the novel-performer condition, showing that by merging observed action
trajectories for several subjects into generalized action models the discriminative
power is mostly retained. However, the learned grammar and models yield the
additional benefit that the system is able to also generate utterances not observed
during training. In particular, in the novel-utterances condition the system is still
able to generate several utterances correctly, even though it has never observed
them or their corresponding meanings before, which corroborates the generalization
abilities of our model.
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4.5 Discussion

We have presented a model that accounts for the co-emerge of linguistic constructions
as well as corresponding grounded action concepts, mutually influencing each other
to abstractly model the observed reality. At both levels, representation learning
is performed in a bottom-up incremental fashion, unifying and merging specific
instances into generalized representations that capture the essential characteristics of
linguistic structures and action concepts that are ‘generative’ in the sense of being able
to produce different surface forms. The model is based on similar representational
concepts for both modalities in a sense that both modalities are represented in a
graphical structure and learning is partly based on tracking co-occurence statistics
between distinctive states in the course of an action performance or between words
and their meaning. The model learns in an unsupervised fashion, such that categorical
structure develops through similarity based unification of grounded structure across
modalities.

The mutual influence of emerging representations across both modalities is bidi-
rectional in our model. On the one hand, recognition of equivalent or mergeable
linguistic structures drives the model towards merging/unifying action representa-
tions into equivalence classes, that is, into one generative model. This allows to learn
the essence of action concepts denoted by action verbs. On the other hand, similarity
in action models leads our system to the inference that two verbal constructions
might indeed be synonymous, e.g. as in the case of ‘X jumps over Y’ and ‘X hops
over Y’.

To our knowledge, our model is the first model that depicts how linguistic verbal
constructions and the action concepts they represent co-emerge, following similar
principles relying on incremental generalization driven by the desire to yield more
compact models that maintain predictive accuracy. Our model spells out these
mechanisms in detail and thus provides a detailed implemented theory explaining
how linguistic and conceptual development go hand in hand. Further, we provide a
model that can both be used to ‘understand’ but also to ‘generate’ language. Our
model allows a learner both to “talk” about observed actions, being able to categorize
actions and verbalize them, but also to ’simulate’ an action given an (input) utterance
that describes the action. In this sense our model is one of the few (cognitive) models
of language acquisition bringing also comprehension and generation together in the
sense of Pickering et al. (2013). Further, it is the first model that depicts how
synonyms emerge as a byproduct of grouping similar action models.

We presented a dataset that is on the one hand concise enough to probably facilitate
discussion in emergentist linguistics but on the other hand is challenging enough to
propose the model for further use in developmental robotics, e.g. in a scenario where
the robot performs two dimensional manipulation operations on a table guide by
language commands.
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For action it is challenging to classify whether novel instances belong to an already
formed category of action as, for instance, the jumps over action looks like the
beginning of the circles around action and jumps over and jumps upon have a
very similar overall trajectory. Jumps over and jumps upon mainly differ in their
semantics in terms of the postcondition, i.e. in the first action the moved object
lies on top of the landmark and in the other action the trajector is at the other
side of the landmark. As the learning is completely unsupervised, the action model
has to develop these categories autonomously by similarity based unification and by
exchanging signals from the language learning component.

For language the challenges are similar in that the category formation is also organized
in an unsupervised process based on linguistic similarity, exploiting invariances
between similar linguistic constructions and compatibility to the grounded meaning
(action models). Another challenging issue for language is synonym resolution to
prevent from incorrectly building a category from sentences like “X jumps over Y”
and “X hops on Y”.

In what follows we discuss possible connections of our work with respect to work on
i) grounded cognition and in particular computational models of cognitive grammar,
as well as, ii) linguistic relativity and the role of language in cognitive development,
thinking and category/concept formation. We also discuss the relation of our work
to current theories and models of language acquisition.

Grounded Cognition and Cognitive Grammar Our work is related to work that pos-
tulates that conceptual knowledge is grounded in modality-specific systems (Lawrence
W. Barsalou 2008; Lawrence W. Barsalou et al. 2003)). As a special case of con-
ceptual knowledge, language is also regarded as being grounded in perception and
modality-specific systems (Pulvermüller 2013). In fact, our generative models are
able to generate modality-specific simulations of perception and are thus inherently
modal.

As learning proceeds, our system develops a grounded representation of the action
denoted by the verb in form of a generative model, a Hidden Markov Model in our
case. These Markov Models can be seen as intensional - vs. extensional - meaning
representations that are grounded in perception and allow to perceptually ‘simulate’
the action denoted by the verb in question. Our HMMs can to some extent be seen
as a specific implementation of the perceptual symbol systems proposed by Barsalou
(Lawrence W Barsalou 2003).

Our work is also related to attempts to provide a simulation-based and embodied
semantics for natural language. Feldman et al. have proposed X-Schemas as a way
to capture the (embodied) meaning of a certain linguistic construction. The work by
Feldman et al. on Embodied Construction Grammar (ECG) (Chang et al. 2004; J. A.
Feldman 2006) is very related to our approach. However, the X-Schemas in which
the meaning of linguistic constructions are represented are very symbolic compared

112



4 Implemented theory of the coupled co-emergence of linguistic constructions and action concepts

to our qualitative models. Our qualitative models are still far away from a full
grounding in the sensoric and actuator systems of an embodied system, but clearly
go one step further than the X-Schemas used in Embodied Construction Grammar
(ECG). The closest related work is the one of van Trijp et al. (Van Trijp et al. 2012),
who have developed approaches by which robots can learn linguistic knowledge in the
framework of Fluid Construction Grammar (FCG). However, as far as we know, they
have not developed any approach that can actually induce these X-Schemas from
observation. Further, the work of Feldman and colleagues has neither considered how
synonym relations could be inferred by a system on the basis of detecting similarity
between X-Schemas. This would indeed presuppose a notion of similarity between
X-Schemas. Such a notion of similarity is inherent in our model, operationalized as
’unifiability’ of two models. In general, there are to our knowledge no models that
make detailed predictions how synonyms or near-synonyms are acquired.

Our work is related both to approaches to grounded acquisition of language in robots
and cognitive systems, but also to approaches to the representation and acquisition
of actions. With respect to approaches to grounded acquisition of language, there
has been a lot of work on developing models which can acquire single words and their
meanings (e.g. Fazly et al. 2010; Siskind 1996). In some approaches, this meaning is
grounded in perception, but is typically limited to objects (Hsiao et al. 2008; Roy et al.
2002). Other approaches (e.g. Dominey et al. (2005) and Hinaut et al. (2014)) deal
with the acquisition of syntactic constructions as we do, but typically do not ground
these constructions in qualitative action models. With respect to the representation
and acquisition of actions, different approaches based on prototypes (Kruse et al.
1997), Markov models (Sugiura et al. 2011) and neural networks (Droniou et al. 2014)
have been proposed.

Many authors have emphasized the cognitive interaction between action and language
(Anna M. Borghi 2014; A. Cangelosi et al. 2007; Glenberg et al. 2007; Willems et al.
2007). We have attempted to provide a detailed model that explains how action and
language structures emerge in interaction, influencing each other.

Linguistic Relativity and Language as Enhancer of Cognitive Abilities Our pro-
posal is further in line with the paradigm of linguistic relativity, corresponding to the
claim that the language one speaks or hears influences one’s own conceptualization
and the categories one forms. While the strong claim that language determines
thought has been largely abandoned (Philip Wolff et al. 2010), there is increasing
empirical evidence showing that language influences thought. Wolff and Holmes
(Philip Wolff et al. 2010) have described four ways in which language could influence
thought, or more accurately, an emerging conceptualization:

• Language as Meddler: the effects of language on conceptualization or cogni-
tion occur by the spontaneous recruitment of linguistic codes and its meddling
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with observed non-linguistic categories to support decision making. Evidence
for this comes from motion perception and color cognition domains.

• Language as Augmenter: in this case, language as symbolic system enhances
our cognitive abilities by facilitating to conceptualize things that can not be
purely grounded in perception or in a mechanistic/procedural routine. An
example is conceptualizing larger quantities or understanding false statements,
drawing spatial analogies.

• Language as Spotlight: having the effect of hinting at certain distinctions
that are relevant in the given cultural context (such as grammatical gender,
spatial frames of reference, spatial relations as well as the distinction between
objects and substances).

• Language as Inducer, with the function of language as inducing people to
conceptualize experience in a relatively schematic manner.

The understanding of language as a tool that enhances the computational and
cognitive abilities of humans has lucidly been spelled out by Clark and Toribio
(2012). In our account, language acts both as a spotlight as well as as an inducer
of a schematic representation of experience. In fact, as suggested by Waxman and
Markow (Waxman et al. 1995), language might serve as an invitation to form a
new category. In our case, hearing an utterance for the first time leads to induce
a category specific for that utterance. Generalization of several utterances leads to
recognizing a schema and to induce a cognitive schema that represents the essence
of the action category denoted by the generalized verbal construction. Language is
thus playing the role of triggering the search for a schematic category, in our case a
HMM that supports conceptualizing experience.

Category Formation There is indeed a lot of empirical evidence showing that
language can facilitate category formation in the above sense. Xu (Xu 2002) found
that the presence of distinct labels facilitated object individuation. Xu concludes
that language may play an important role in the acquisition of sortal/object kind
concepts in infancy and that words may play as ‘essence placeholders’. This is exactly
what is happening in our model. On encountering an utterance the first time, our
system creates a placeholder for the essence of this utterance. This early ‘essence’ is
very specific for the given situation in which the utterance was heard and lacks any
generalization. Latter, when hearing similar utterances, the corresponding essences
are generalized by merging them into more general essences. Other researchers have
shown that language can help to acquire the distinction between approachable and
non-approachable creatures (Lupyan et al. 2007). Gentner and Boroditsky (Gentner
et al. 2001) have suggested two processes that are active in learning the concepts that
are denoted by words. They refer to cognitive dominance when concepts emerge from
cognitive-perceptual processes and later the name for these categories is acquired.
They refer to linguistic dominance when ‘the world presents perceptual bits whose
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clumping is not pre-defined and language has a say how the bits get conflated into
concepts’. Clearly, as argued by Gentner and Boroditsky, this is not a dichotomy,
but a continuum that spans a space in which the acquisition of a certain concept
for a name can be located. According to Gentner and Borodtiksy, the acquisition of
categories denoted by proper names or concrete nouns rather lies on the cognitive
dominance side of the continuum. While kinship terms and verbs lie somewhere in
the middle of the continuum, prepositions, conjunctions and determiners are rather
positioned at the right side of the continuum. Our model explains the acquisition of
categories towards the right end of continuum. The formation of such categories is
triggered by the fact that learners are confronted with a new construction or name.
It is certainly an open question where on the dominance continuum our specific
actions such as pushing, jumping on, circling around are positioned at. This could
be certainly determined experimentally. For the sake of providing a proof-of-concept
for our model, we have assumed that the categories are not available previous to
encountering the corresponding verbal constructions. While this is a mere assumption,
our model is certainly not depending on that.

Emergence of meaning as a mapping Some researchers have criticized the ‘map-
ping metaphor’, that is the idea that language needs to be mapped to some priorly
existing ’concept’. As mentioned in the introduction, Lila Gleitmann has emphasized
that the assumption that language acquisition consists in the acquisition of (new)
names for existing concepts is clearly an over-simplification. Our model overcomes
this simplifying assumption by grounding concepts from one modality in correspond-
ing concepts in another modality, starting with single multi-modal training items.
Using similarity cues across modalities enables the model to incrementally general-
ize concepts even in conditions where categorical equivalence could not have been
established within a single modality alone, i.e. when faced with synonyms.

Tomasello (Tomasello 2001) has criticized the ‘mapping metaphor’ on the grounds
that it neglects that learning the meaning of words is actually a process of contextual
inference in which the intentional structure of an action is considered to infer what
the speaker is actually referring to. Rohlfing and colleagues (Rohlfing et al. 2016)
have recently criticized the mapping metaphor on other grounds arguing that children
would not necessarily remember the connection between the word and the referent
unless it is framed pragmatically, that is, it is introduced in the context of a recurring
interactional pattern with the purpose of achieving a joint goal between tutor and
learner. While presented as an alternative to the mapping paradigm, they rather
hypothesize that a communicative pragmatic frame facilitates to learn which concept
a certain word evokes. The work of Rohlfing et al. and the proposal of pragmatic
frames can be regarded as an elaboration of the general theory of Tomasello claiming
that recognition of intention, shared attention and goals as well as the ability to
simulate others as intentional agents are crucial ingredients by which children infer
the meaning of a certain word or expression in context.
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Part of the above mentioned criticisms on the mapping approach stem from the
fact that the term ‘mapping’ is not clearly defined. As lucidly highlighted by
McMurray et al. (2012), there are two notions of meaning: the referential meaning
of an utterance or expression in a given situation and the intensional meaning of an
expression. The referential meaning is inferred in a particular situation on the basis
of an understanding of the situation. The intensional meaning corresponds to the
situation-independent meaning of a linguistic expression, that is to its ‘essence’.

Neither the theory of Tomasello nor the work of Rohlfing et al. make any predictions
about how the intensional aspects of the meaning are learned over time and across
situations as a byproduct of experiencing the word in different contexts. In a standard
formal semantics paradigm, the intensional or situation-independent meaning aspects
of a sentence can be captured using a truth-conditional approach, capturing the
logical constraints that need to be fulfilled for the sentence to be true in a given
world or situation. In this sense, our model tries to capture the essential meaning
of a linguistic expression, albeit not using a standard truth-conditional semantics
approach. In contrast, in our model intensional meaning is captured via probabilistic
models that, instead of modelling logical conditions on the worlds in which the
sentence is true, models the distribution or likelihood of observing a certain action
sequence in a world or situation described by a verbal construction that is associated
with the given HMM.

Most works dealing with the question how systems can learn the intensional meaning
of a word have investigated how systems distill the meaning of a word by cross-
situational learning, that is contrasting the different situations in which a word has
been heard (McMurray et al. 2012; L. Smith et al. 2008). First, as argued above,
referential and intensional meaning is often confounded. Second, according to our
understanding of the notion of mapping, it does not imply that the corresponding
concept pre-exists independently. In particular, our understanding of the term
“mapping” does not necessarily imply that the category to which a word is mapped to
exists already. In our approach, upon first encounter of a construction, it is ‘mapped’
to a maximally specific novel category that is created in the very moment in which
the utterance and action are observed.

Nevertheless, the term mapping is not only problematic for the above reasons, but for
the fact that it suggests that the meaning of words can be ‘mapped’ to a static symbol
or handle. In contrast, we prefer to talk about ‘evocation’ of a situation-independent
meaning following the theory of Frame Semantics (Fillmore 1976) that postulates
that words evoke more than just a static referent or handle, but more complex
semantic frames, cognitive schemas or, in our case, grounded representations of the
essence of the word’s meaning that can be used to simulate. This is compliant with
the view of Taylor and Zwaan (Taylor et al. 2009), who argue that: ‘when a person
hears or reads text involving action, there is activation of the motor systems in his or
her brain, which corresponds to the referential semantic content of the description’.
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Regarding how a learner infers the meaning of a novel verb in context, Gleitman
(see above) has proposed the syntactic bootstrapping theory according to which
a syntactic construction (e.g. a transitive construction) can give cues about the
potential meaning of a transitively used verb in context. However, for bootstrapping
mechanisms to work, a learner needs to have learned a generic transitive construction
and the general concept of an agent that does something to another agent. Gaspers,
Foltz, et al. (2014) have provided an account for how such abstract constructions
and categories might emerge. They presuppose that thematic roles such as agent,
patient, etc. are already acquired.

Surely, syntactic knowledge as well as inference about the intentions of others plays an
important role in inferring the meaning of unknown words in context. The recognition
of intentions and of the teleology of actions emerges very early in childhood (Gergely
et al. 2003). So far, our model is limited in that it neither models how pre-existing
linguistic knowledge nor reasoning about the intentions of others or of the purposes
of actions are factored in into the task of figuring out the meaning of a new verbal
constructions. In fact, our model so far only considers the spatio-temporal structure
of action concepts. The incorporation of these factors into our model is an obvious
avenue for future work, albeit a very challenging one.

Analogy making Hofstädter and Sanders (Hofstadter et al. 2013) have recently ar-
gued that analogy making is a fundamental process in cognitive processing. According
to their theory, category formation and language learning is driven by analogy-making,
that is by fitting previously acquired categories to a given observation and then
extending the category to the new observation, leading to generalization, which can
be possibly perceived as an over-generalization for mature systems the language of
which is heavily influenced by conventions. Take the example of the utterance ‘I
undressed the banana’, which for mature speakers is an overt over-generalization,
while from a cognitive perspective it makes a lot of sense. In some sense, this is what
our model is making: it is constantly making analogies. It induces very specific action
categories for a very specific utterance and then, when observing a similar utterance,
it attempts to extend both the linguistic construction and the category to cover the
new observation as well. In doing this, it is guided by the desire to minimize the
complexity of the model, that is the number of bits needed to store the action model,
while not loosing predictive power, that is not over-generalizing. This mechanism
could be regarded as a direct implementation of the theory of Hofstädter and Sanders.
We have provided the proof-of-concept in simulated experiments that this principle
works for the case of simple verbal constructions denoting actions in which some ob-
ject (an agent) moves with respect to some reference object. Whether our principles
could be extended to other constructions and more complex cognitive models and
simulations is an open question. However, there seems to be no principled reason
why our approach would not extend to other categories. Arguably, HMMs would
not be able to model all kinds of representations. But we stress that our proposal
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is not specific to HMMs. Our proposal requires that there is some (probabilistic)
generative model that represents some (induced) category. For dynamic categories
such as (action) verbs that involve a spatio-temporal signature (what linguistically is
called often ’path’) surely a sequential model will be needed, while for other static
categories (e.g. objects denoted by nouns) a static prototype as simulation might
be sufficient. Most likely, however, even object representations have a non-static
meaning component what the representation of the potential to act on is and which
objects are concerned. The latter has been often referred to as so called ‘affordances’
(Gibbson 1977). In terms of the theory of Hofstädter and Sanders, our generative
models capture the ‘essences’ of concepts of which we see a specific realization or
‘surface’ in the real world.
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5 Learning to act by curiosity driven self
exploration

Many theories of early language acquisition rely on basic perceptual capabilities
such as the ability to segment speech signals into separate tokens (e.g. phonemes
or words) or the ability to interact with the environment through basic manual
skills. While this is no principled limitation to the understanding of early language
acquisition, however, it can be assumed that early concept and motor skill acquisition
that accompanies the pre-verbal language acquisition has a relevant impact on how
we communicate.

Extending computational models of early language acquisitions such that they
encompass the early concept acquisition in the pre-verbal phase may reveal findings
that could lead to better understanding of the impact that the pre-verbal phase has
on the shape of linguistic representations and constructions.

In the previous experiment we investigated how linguistic constructions could be
developed from parallel examples of action and language assuming that the learner
already developed the perceptual capabilities to observe language and action. The
system learned purely by observing actions involving two objects performed by human
participants of a study in reaction to an instructive sentence that described the
action to be performed.

This experiment is concered with exploratory self-action and the observation of
consequences to learn a joint model that covers early perception and action cababilities.
Many attempts exist to cover very early phases of learning where only little pre-
existing perceptual and conceptual knowledge can be assumed to be available. Also
the capacity to interact with the environment is only rudimentarily developed at that
stage. The early phase of concept and skill acquisition can be modeled by employing
childlike robots that provide the learning system with similar experiences that
human children of comparable age are exposed to when exploring their environment.
Equipping the learning system with a fully embodied robot system goes beyond
simple cross-modal learning, since modality overarching experience can not only be
consumed but rather the experience can be actively shaped through the interaction
with the environment. However, embodied systems are still very expensive and thus
unavailable to a wide group of researchers.
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Simulations can fill the gap in research that targets specific independent aspects of
developmental processes or in situations where a physically embodied system would
introduce unnecessary complexity or world noise1.

In this chapter we exemplify in simulation how a very simple intrinsic motivation
signal such as the desire to induce change can lead to the learning of complex behavior
in an environment where a learning system explores the properties of a complex
articulated object and its own capacity to interact with that object. We show that
this very simple signal can drive the exploratory learning process into behavior that
can be termed as “playful exploration” when visually examined.

There are many theories to how children acquire the knowledge how to induce change
in the world in order to achieve a goal. We employ the behaviorist view, which
postulates that there is only minimal innate structure infants start with and that they
have a simple capacity to generalize in order to improve their abilities. Huttenlocher
et al. (1983) argue that in this view infants action categories should involve only
perceptually similar stimuli and categories get reinforced by common responses (e.g.
physical effects, linguistic designation).

This experiment is related to cognitive and developmental robotics in that we are
interested in developing models that allow a system to self-familiarize with a non-
trivial articulated object by exploring a huge continuous space with discrete action
possibilities guided by the desire to induce change in the object. The model is
developmentally inspired in the sense that a system learns action categories by
performing actions on an object and observing the consequences, relying on intrinsic
motivation to induce change. In fact, some authors in the field of developmental
psychology have argued that young infants have a propensity to systematically
explore the connection between their own actions and the perceptual consequences
in order to support inter-modal calibration of their bodies (Rochat 1998).

We realize the propensity to systematically explore the connection between own
actions and their perceptually observed consequences through a bias that leads
learning systems to attempt to induce change to maximize encounters with objects
in which something ‘happens’, thus maximizing the situations in which the system
can learn something about the effects of its own actions on the environment. We
incorporate this bias for inducing change via a reward function that rewards a learning
system for inducing movement in an object that the system is familiarizing with.

We implement the system as a deep reinforcement learning model (see section 2.7)
relying on a neural network to compute the action-value function in terms of expected
discounted future reward. As a reward is needed to guide the search for an interesting
policy, we investigate the structure of rewards that are suited to guide the effective

1World noise is an often used term to refer to uncertainty and sensor noise introduced by real
environments that are not as highly controlled as laboratory setups or physical simulations.
Complex physical platforms usually suffer from world noise introduced by to some degree
unpredictable response characteristics of actuator and sensor systems.
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self-exploration of a system towards understanding the effects of their own actions
on an object having the sole goal of inducing movement on the object.

5.1 Learning with intrinsic motivation

In this section we briefly introduce the concept of intrinsic motivation with regard to
curiosity driven exploration. A comprehensive conceptual overview on how intrinsic
motivation is applied in cognitive robotics as an inductive signal that drives the
learning process can be found in Cangelosi et al. (2015).

Intrinsic motivation as a learning signal is often used in autonomous learning where
the agent is free to choose what to learn based on its own agenda. In psychology,
intrinsically motivated behaviors are often defined as actions that are chosen by the
organism “freely” without having external incentives or consequences. In contrast,
extrinsically motivated behaviors are produced in response to external signals or
cues.

In autonomous learning, there are no external primary (goal driven) training targets
given to the learner. Instead, the learner has to actively explore its environment in
order to elicit interesting signals or observations to learn from. In order to effectively
explore the environment, the agent needs a strategy that guides the exploration
process (see section 2.7). In essence, the exploration strategy has to decide which
actions to take based on experiences received from the environment and to weigh the
available options in terms of their utility with regard to the goal or with regard to
what can be learned when taking a novel path. The trade-off between reaching a
defined goal and exploration of novel options is termed the “exploration exploitation
dilemma” and is introduced in subsection 5.2.1. Intrinsic motivation provides a basis
to formulate goals such that the system is not only focused to achieve a certain well
defined goal but is rather focused on the goal of learning itself and provides the
system with a form of artificial curiosity.

5.2 Learning problem

The experiment in this chapter is performed in simulation. However, the design of
the experiment was inspired by a robot that tries to explore meaningful ways to
manipulate objects lying on a table in front of it. This research was embedded in
the FAMULA2 project (Deep Familiarization and Learning Grounded in Cooperative
Manual Action and Language), which is concerned with developing approaches
by which a bimanual robotic platform can acquaint itself with the properties and
affordances of objects by (guided) autonomous self exploration. The platform

2https://www.cit-ec.de/en/deep-familiarization-and-learning
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Figure 5.1: The FAMULA platform: A bimanual robotic platform supporting the
investigation and development of approaches by which a cognitive sys-
tem can familiarize itself with new objects and concepts through the
interplay of manual action and language (https://www.cit-ec.de/en/
deep-familiarization-and-learning).

combines rich bimanual actuation with anthropomorphic hands allowing for dexterous
object manipulation (Figure 5.1).

Due to availability constraints and considering that having to monitor the robot
personally during the long-running experiments would have seriously limited the
amount of experiments that could have been carried out, the experiments were
performed in simulation rather than on the physical platform. However, we assume
that findings from experiments in simulation will prove qualitatively comparable to
experiments on the platform that are scheduled for future work. In the simulated
environment, the actuator is modeled after the tip of a finger of a robotic hand
sliding over the table in front of the robot. To evaluate the exploration driven object
familiarization, we placed a complex object with rich physical dynamics in the center
of the simulated table (see Figure 5.2). The object was modeled after a toy clock
that is available as a physical object and is robust enough to perform follow-up
experiments on the real platform.

The robot can explore its simulated environment (Figure 5.2) by taking physical
action and observing the results of its actions in terms of change in the environment
and a sparse reward signal indicating how well the robot performed with respect to
a measure of object-familiarization (see subsection 5.4.1 for the definition of reward
signals). The simulated table provides rich and accurate physics with dynamics that
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Figure 5.2: A simulated clock-like object consisting of two hands rotating around
a centre. A simulated fingertip can move the object and observes its
environment through 10 star-shaped distance scans to other objects or
the boundary of the operation space.

are not only reactive in a sense that changes in the environment only happen in
response to actions the robot takes, but reactions can also sustain for a longer period
of time due to, e.g., the interplay between inertia and friction in moving objects. The
robot can not observe the full state of the simulation at once, but instead has to infer
the state of the simulation from partial observations in terms of a two dimensional
circular distance scan to objects in its current vicinity.

The simulated clock has one large and one small hand which both are freely movable
on a circular path around the clock center. A key challenge for the robot in learning
the motion dynamics of the clock lies in the special non-euclidean way the clock
hands move. In order to build a forward model which projects the current state
to future states of the moving clock hands, the system has to learn to map the
euclidean coordinate system it operates in into the polar coordinate system in which
the motion of the clock hands can be described linearly. The simulated clock has
some more interesting properties for the robot to discover. One side of a clock hand
is fixed to the clock center and can not be moved, while the other side is freely
movable. Applying a force to the outer side of a clock hand makes it easier to induce
movement than applying a force somewhere in the middle of the clock hand due to
static friction and the law of the lever.

Actions

To interact with its environment the robot can take one out of 6 actions including
actions that accelerate the simulated fingertip in one of 5 equally partitioned directions
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(0, 72, 144, 216, 288) and one additional action which does nothing and can be used
by the robot to fine-control the movement speed of the fingertip or the force applied
to another object. Consequent to the actions being inert accellerations rather than
direct movements and due to the high control frequency of 10 controller updates per
second the fingertip can render smooth movements by blending the available discrete
actions.

Observations

The robot observes its environment through 10 circular distance scans (Figure 5.2)
scanning the vicinity of the fingertip. The distance scans have been implemented
as raycasts emanating from the fingertip’s center position measuring the distance
to the first object they reach. This observation scheme is consistent with the state
representation of the robotic platform which has an internal model of object positions
and extents allowing to steer the fingertip even when the hand blocks the sight of the
visual system. The fingertips are also equipped with force sensors that detect when
the robot has contact with another object. Having contact with an object would in
this setting correspond to at least one of the distance scans being zero.

Reinforcement learning with neural networks has been shown to work well also when
the input to the system comprises only raw visual information (Arulkumaran et al.
2017). Using a distance scan as input is presupposed by followup experiments that
are planned to be conducted on the physical platform. However, we assume that
learning from visual input would primarily affect the training time and has a lesser
effect on the task of developing basic motor skills to interact with complex objects.

5.2.1 The Exploration/Exploitation dilemma

Exploring the environment at random will eventually converge to the optimal policy,
as valuable states get higher reward on average. However the state-action space
can get arbitrarily large. Visiting every trajectory3 possible in that space is often
infeasible in finite time. This is often approached by exploration strategies that
perform random walks and thus sub-sample the space of possible trajectories. Utilizing
already acquired information about the value of state-action pairs can focus the
exploration to the most promising trajectories. There is a variety of strategies that
organize the exploration process based on different notions. One of the simplest and
most often applied strategies is the ε-greedy exploration. It chooses a random action
with probability ε or the best action, according to the current learned policy, with
probability (1− ε). Usually the exploration factor ε is annealed over time to privilege
exploitation of already gained knowledge over random exploration.

3A trajectory is a list of successive states visited and actions chosen in those states coupled with
the received reward
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The exploration/exploitation dilemma is fundamental to reinforcement learning and
represents a trade-off between slower convergence but higher chance of concluding
with the optimal policy on the one hand and faster convergence to a probably
sub-optimal policy on the other hand.

In deep Q-learning the approximation of the Q-function becomes increasingly accurate
while the training proceeds and the exploration can be focused on higher rated paths.
As the ε-greedy strategy does not consider acquired knowledge in the decision of
whether or not to take a random action next (other than fixed annealing factors)
we also investigate an exploration strategy that utilizes the uncertainty in the value
assessments of available actions.

5.3 Model

Model free early motor skill acquisition is implemented as a reinforcement learning
approach where the agent has minimal prior knowledge about the environment it
operates in or about the extent and shape of its own physical manifestation.

Reinforcement learning is a machine learning framework where learning is driven
by the desire to maximize some notion of cumulative reward R (Equation 5.1)
by iteratively exploring the state-action space of the learning environment through
performing actions and observing changes in the environment as a result of the robot’s
actions. Q-learning (Watkins et al. 1992), a form of temporal difference learning
(Richard S. Sutton 1988), is one of the most popular reinforcement learning algorithms
but it quickly becomes infeasible when the discretized state-space becomes large due
to the curse of dimensionality (Lillicrap et al. 2015). Further, a naive discretization
of state and action space can hide information that may be crucial to solving the task.
In our model we build on Deep Q-Networks (Mnih, Kavukcuoglu, Silver, Graves,
et al. 2013), which replace the discrete Q-function with a continuous deep neural
network, thus acting as universal function approximator, with Double Q-Learning
(Hasselt et al. 2015), which improves performance by limiting the overestimation
of action-values conventional Q-learning is known for. Deep Q-learning problems
consist of three components.

• A scalar reward function which gives the system positive or negative feedback
r ∈ R on how well it performs. Future rewards are discounted by a factor γ
per time-step, giving precedence to current over later rewards.

R =
∑
t

γtrt. (5.1)

• A policy π which determines the optimal action given the current state-action
value assessment.
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Figure 5.3: Layout of the neural network. The robot perceives its environment in
terms of a 5-fold circular distance scan yielding a vector of 5 real valued
distances to the closest object (including border of operational area) in the
corresponding direction. Two successive observations are concatenated
into one 10 dimensional vector which is fed as input into the 6-layer
network with 96 nodes per layer. Each node in the network is fully
connected to all other nodes in the preceding layer. The network uses
exponential linear units (ELU) in the first 5 layers and linear units in
the output that projects the network output into the space of expected
long-term rewards.

• An action-value function which assesses the value of the current states’
partial observation s ∈ Rd in terms of expected discounted future reward a
robot can maximally achieve when taking action a in current state s and
following the policy π afterwards

Qπ(s, a) = E[rt + γrt+1 + ...+ γnrn|st = s, at = a]. (5.2)

Q network

To estimate the Q-function we implemented a 6 layer neural network (Figure 5.3)
similar to the deep q-learning network (DQN) in (Mnih, Kavukcuoglu, Silver, Graves,
et al. 2013), which estimates the expected discounted future reward for each of
the 6 actions. For deterministic policies we can reformulate Q(s, a) (Equation 5.2)
recursively by the so called Bellmann equation:

Qπ(s, a) = E[rt + γQ(s, a)|st = s, at = a] (5.3)

Instead of having a second parameter to the neural network along with the state
vector, the Q network Q(s, a; θ) is implemented to directly output the value of
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all 6 actions at once Q(s, ·; θ), where θ are the current parameters of the network.
This saves 5 additional forward passes per iteration and is equivalent to calculating
the value of each state-action pair separately because in this setting all actions
are possible regardless of the current state. The target for deep Q-learning (Mnih,
Kavukcuoglu, Silver, Rusu, et al. 2015) is

Yt = Rt+1 + γmax
a

Q(St+1, a; θ−t ). (5.4)

This training target employs a separate target network θ− which is structurally
equivalent to the online network except that its parameters are a periodic copy of the
parameters of the online network every τ time-steps. A separate target network is
used to decouple the update from the target Q-values that are used to compute the
training loss and thus reducing the probability for the training to fall into a feedback
loop between the target and the estimated Q-values. Because of the max operation
in the target, Q-learning and DQN tend to overestimate action values (Hasselt et al.
2015). We adapt the idea of Double Q-learning (Hasselt 2010) and decompose the
max operation in the target into action selection and action evaluation. The update
for Double DQN uses the online network (θt) for action selection and the target
network (θ−t ) for action evaluation under a greedy policy

Yt = Rt+1 + γQ(St+1, argmax
a

Q(St+1, a; θt), θ
−
t ). (5.5)

As activation functions for the inner layers we use exponential linear units (ELU)
(Clevert et al. 2015)

f(x) =

{
x if x > 0

α(ex − 1) if x ≤ 0
(5.6)

instead of the originally proposed ReLU

f(x) = max(0, x) (5.7)

activations because we found that due to the sparse but strong updates in this setting,
the activations of up to 25% of the network became constantly negative. ReLUs can
not recover from constantly negative input because the gradient is zero for x < 0,
which leads to vanishing updates.

To enable the network to estimate dynamic properties such as the speed of the
fingertip or the clock hands we provide not only the current observation but also the
observation of the last time-step as history. As input the last two observations are
concatenated

st = ot−1 ⊕ ot (5.8)

and normalized to zero mean and unit variance with per-batch normalization (Ioffe
et al. 2015). We trained in batches of 32 examples sampled uniformly from buffered
experiences which consists of transitions from the last 1500 time-steps. This so called
‘experience replay’ breaks correlation in strongly correlated data such as time-series
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Method scoremax scoreavg σavg

Goal derived reward 47 38 4.0
Goal derived + tutoring 69 53 6.8
Goal derived + tutoring + penalty 65 59 3.16

ε-greedy exploration 46 39 3.5
Boltzmann exploration 65 59 3.16

No regularization 60 53 7.4
L1 Regularization 65 59 3.16
Dropout (ρ=.5) 10 5 1.8

Table 5.1: Evaluation of method combinations with their score (percentage of time-
steps the object was moving) and standard deviations. Bold results
represent the same configuration

in reinforcement learning by storing samples in a fixed-size buffer and training on
random (mostly non-successive) subsamples. We use Adam (Kingma et al. 2015)
as optimizer, which combines ideas from RMSProp (Tieleman et al. 2012) to deal
with non-stationary objectives and AdaGrad (Duchi et al. 2011) to deal with sparse
gradients as they particularly occur in reinforcement learning.

5.4 Experiments

To evaluate the ability of the system to develop basic motor skills and familiarize
itself with a complex object like the toy clock, we trained the system in various
conditions and evaluated the system’s performance by measuring the percentage of
time-steps within an episode in which the clock hands were actively or passively
moving. Active movement in this case is caused by the agent applying a force to
the clock hands, while passive movement is due to inertia and friction. In other
words, the agent’s task was to learn to induce as much change as possible in the
environment.

Policies learned by reinforcement learning are shaped by the reward signal, with
which the agent can structure its perception-action mappings in a goal-directed
manner. In other domains like e.g. playing atari video games (Mnih, Kavukcuoglu,
Silver, Graves, et al. 2013), the reward signal is determined by the game and was
specifically designed to give frequent rewards to players to motivate them to keep on
playing and improve their gaming performance. The simulated environment in this
experiment has no intrinsic reward structure. The agent starts without any prior
knowledge about the environment or about itself and its own capabilities, except
that in each time-step it can choose one out of 6 different actions, for which the
agent has no prior information about their possible effects.
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Figure 5.4: Evaluation of the systems score after every training episode with goal
derived, tutoring and penalty rewards in combination with Boltzmann
exploration strategy and L1 regularization of the network. The shaded
area corresponds to one standard deviation from the average across 25
evaluation runs

To discover structure in the observations, the agent has to explore the environment
by taking actions, observing consequences and assess them with regard to the reward
received. In the following experiments we evaluate how different reward structures
shape the exploration process in conjunction with different exploration strategies.

In each of the experiments we trained the network for 100 episodes, where every
episode is a complete run of the simulation for 1500 time-steps. To mitigate the
impact of randomness from the random exploration strategies, we ran each experiment
25 times and calculated the mean scores (time-steps the object was moved) per
experiment. The network topology and hyperparameters have been optimized
separately by a combination of manual optimization and randomized grid search.

Table 5.1 lists results for different combinations of reward signals, exploration strate-
gies and network regularizations. The scores are given in two conditions, scoremax
denotes the peak performance when selecting the best model among the 25 runs of
the experiment, while scoreavg denotes the performance averaged over all of the 25
experiment runs. The peak performance (scoremax) corresponds to a setting where
the agent can be trained multiple times in a separate process (off-task) and the best
performing model is deployed afterwards. The average score (scoreavg) denotes the
expected score when the agent has to be trained on-task, which is probably the
most common case, and σavg denotes the standard deviation over all 25 runs. Bold
results in the table correspond to the same configuration displaying the best average
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performance. Figure 5.4 compares the performance of the best model configuration
along with the standard deviation across different evaluation runs.

5.4.1 Reward Structure

The reward the agent receives from its environment is the primary driving force
of the learning process. We investigate different strategies to structure the reward
signal. As the simulation is compared to e.g. atari games rather unconstrained and
offers many degrees of freedom, we additionally introduce small tutoring reward
signals for the agent to learn promising exploration directions. Without tutoring
signals the rich state space has proven to be too large for pure random exploration
to converge in acceptable time with deep Q-learning.

Tutoring reward (r = 0.15) is given with 10% chance when the agent moves towards
one of the clock hands. Goal derived reward with magnitude r = 1 is given every
time-step the agent achieves to move a clock hand. This reward is directly derived
from the performance measure and is maximal when the clock hands move at every
time-step. Penalty rewards are given when the agent tries to leave its operating
area on the table (r = −1) or when the agent stalls for more than 10 time-steps
(r = −0.15). This also helps to pre-structure the exploration space towards the
center of the operating area. Goal derived reward alone seems to be insufficient to
learn a good policy. Goal derived reward in combination with small tutoring rewards
improves the performance of the learned models significantly and achieves the highest
peak score of all models. But as the peak score is prone to random effects from the
exploration strategies, we put more weight on the average score, which is best when
all three reward signals are combined.

5.4.2 Exploration Strategy

In the domain of atari games the ε-greedy exploration strategy proved valuable to find
a good trade-off between exploration and exploitation of already learned moves. This
policy simply chooses the best action available according to the current action-value
estimates

πt = argmax
a

Q(st, a) (5.9)

for the current state s with a probability of 1− εt or a random action with probability
εt. The exploration factor ε is initially set to 1 and linearly decays to 0.01 within the
first 10 episodes of training.

In contrast, Boltzmann exploration (Richard S Sutton et al. 2017) is an exploration
scheme that takes relative action values into account. In contrast to ε-greedy it is
adaptive in a sense that in states with clearly advantageous actions it behaves like a
greedy strategy and follows optimal actions, while in states where the action-values

130



5 Learning to act by curiosity driven self exploration

are similar, the Boltzmann exploration introduces more randomness. Similar action
values could arise in states that are universal in a sense that it does not matter much
which action to take. Similar values can also arise in poorly explored states where
the network is uncertain about which action is the best action to take. Boltzmann
exploration is similar to drawing samples from a softmax distribution over the Q-
values but takes also a temperature factor T into account which is annealed over the
first 10 episodes of training to privilege exploitation over exploration:

πt(a) =
eQ(st,a)−Q(st,amax)

Tt∑
a
eQ(st,a)−Q(st,amax)

Tt

(5.10)

where amax = argmaxaQ(st, a). With temperatures close to zero, this exploration
scheme behaves like Equation 5.9, while with higher temperature values it selects
actions more randomly. As can be seen in Table 5.1, the Boltzmann exploration
scheme clearly outperforms the ε-greedy exploration strategy in this setting. One
observation from visually inspecting the simulation is that ε-greedy explores only a
limited area of the operation space because the actions available to the agent are
contradictory and selecting them randomly cancels their effect in average. Boltzmann
exploration on the other hand takes already learned action values into account when
randomly selecting actions, which, especially in combination with tutoring rewards,
leads to early movements towards the object and better average evaluation score.

5.4.3 Regularization

In this experiment we investigate the impact of different regularization methods on
the performance of the system. One observation while training different models was
that even when the simulated fingertip was close to a clock hand the Q-values did
not differentiate well. The expectation was that when the current state offers a clear
opportunity to receive reward, the values of actions bringing the fingertip closer to a
clock hand would lead to clear peaks in the action value assessment of the Q-network.
But even in those opportunistic states the Q-values were close to each other and
hence the best action was prone to fluctuate during training.

To measure the closeness of action values we adapted the idea of entropy over
distributions by first performing a softmax normalization and calculating the entropy
as the expectation over the information content

H(A) = −
∑
a

p(a) log p(a)dx (5.11)

as a measure of surprise in the action values. We found that applying L1 regularization
improved differentiation of Q values in opportunistic states and also improved the
behavior of the robot when visually inspecting the simulation. However, this effect
is not well reflected in the performance measure applied in these experiments but
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could be useful for tasks with other goal definitions. The regularization strength
(λ = 0.1) was optimized by grid search. L2 regularization was also applied but
performed minimally worse than L1. Another often applied regularization technique
in deep neural networks is dropout (Srivastava et al. 2014). Dropout randomly
drops nodes from the network with a certain probability during training and thus
simulates the training of many smaller subnetworks, which is similar to the idea of
ensemble methods. This technique was proposed to mitigate overfitting by limiting
the co-adaptation between nodes in the network. Dropout forces the network also
to develop a distributed representation of inputs rather than having parts of the
network specialize on specific stimuli, because when randomly dropping nodes, later
units cannot rely on input from earlier units in the network. Interestingly, applying
dropout with ρ = 0.5 in this setting lowered the performance of the robot drastically
(see Table 5.1), which suggests that there are parts of the network which tend to
specialize on specific (probably location specific) observations. The effect persisted
even when granting more capacity to the network to compensate for the dropped
units during training. The tendency to develop location specific representations could
be investigated further in followup experiments.

5.5 Discussion

We exemplified how a very simple curiosity signal endows an agent to engage in guided
self-exploration of basic perceptual and motor skills with the goal of understanding
the consequences of their own actions on the given object. According to (Huttenlocher
et al. 1983), young children learn categories that are either specific to self-action
or observed action. This experiment corresponds to learning through exploratory
self-action guided by the desire to induce change as an intrinsic motivation. We have
proposed a reinforcement learning based model using deep Q-networks to compute
the state-action values as cumulated future reward. We have applied the model to a
simulated robot environment consisting of a robotic “fingertip” that can slide over
a simulated table-like surface and manipulate the arms of an analog toy clock. We
have shown that deep Q-learning is a suitable framework to support robot object
familiarization and the development of basic perceptual and motor skills that could
be used to further reduce the assertions needed as prerequisite for the development
of models that investigate the early phases of language acquisition.

Our work is related to deep learning models that learn to play video games in that
we use a deep Q-learning model similar to the one proposed by Mnih, Kavukcuoglu,
Silver, Graves, et al. (2013) with additional double Q-learning (Hasselt 2010; Hasselt
et al. 2015) and a Boltzmann exploration strategy instead of the originally proposed
ε-greedy policy. However, it also crucially differs from this line of research in that
we are concerned with learning in environments that have less inherent structure
than video games that have been specifically designed to give frequent reward to
keep human players motivated. In contrast to the aforementioned approach, we do
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not use convolutional layers to learn representations directly from pixels. It has been
shown many times that convolutional layers perform fairly well in related tasks so
that in this experiment we focus on exploration and reward structure and represent
observations in a way that is more suited to robot object manipulation where the
vision is mostly occluded by the robotic hand. Singh et al. (2004) investigate intrinsic
reward signals in a discrete “playroom” environment where the robot can explore the
interactions between different objects such as a light switch, a ball, a bell, movable
blocks, etc. Most of the affordances in the environment only apply in interaction
between the objects, e.g. the bell rings if the ball is kicked onto it. Intrinsic reward
is only generated by unexpected salient events given as error in the prediction of
action outcomes. Schmidhuber (1991) proposed to employ curiosity and boredom as
confidence-based rewards signals, where curiosity is used as a driving force to explore
areas of the action-state space where the predictive model has low confidence.
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We have presented a computational model of language acquisition that models the
joint emergence of linguistic constructions and the conceptual categories they evoke.
The model is motivated by emergentist theories of language acquisition and transfers
the underlying ideas also to the domain of action learning. The connection between
the theoretical foundation and the technical implementation in terms of the proposed
model is bidirectional in this regard. On the one hand, the technical properties of
the model such as the fully incremental and data-driven approach to learn concepts
within a modality that are grounded in concepts with similar semantics of another
modality are relevant in many technical applications such as developmental robotics
and human-computer interaction (see section 3.5). On the other hand technical
implementations that are closely based on key concepts of theoretical frameworks
can as well serve as computer implemented theories that allow other researchers to
interactively test hypothesis that arise from the theoretical foundation. In order to
facilitate the proposed model in follow up research we detailed possible connections
to ongoing interdisciplinary research and related work in the discussion in section 4.5.
In the following we briefly summarize how learning in the model proceeds before
we answer specific research questions that structured the implementation of the
model.

In line with ‘slow mapping’ approaches that claim that the acquisition of the meaning
of a word is a long-term process that starts with the first encounter (S. Carey 1978;
McMurray et al. 2012), we have provided an account of word learning in which, upon
the first encounter of a linguistic construction or expression, a learner induces an
ad-hoc category that is specific for the given utterance and context. From many
encounters of similar utterances, learners distill the essence of the category evoked
by the word through incremental generalization, guided by the desire to produce
compact models while not reducing the accuracy of the predictions made by the
model on sequences observed so far. Concepts in our approach are ‘essences’ evoked
by the linguistic constructions and are generative models that can generate various
‘surfaces’. The goal of a learner is to distill these essences from the many encounters
with a given word or linguistic construction. In doing this, they incrementally stretch
and extend the meaning of early categories to subsume other early categories by a
process that could be understood as one of constant analogy making and extension
of categories. Our proposal is thus very much in line with the understanding of
cognition as analogy making.
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We have looked in particular at the case of verbal constructions and corresponding
actions in which a trajector moves with respect to some reference object along a
characteristic spatio-temporal path. As actions are temporal sequences, the models
evoked by verbs denoting actions have to be, at the very least, sequential models
capturing the likelihood of sequences generated by the model. While there is no
principled choice here, we have decided to capture the embodied meaning of verbs
via Hidden Markov Models that can be used also to anticipate the completion of
actions by following the graphical structure of the model.

Our approach models the first encounter of a word as the start of the acquisition of
a category and thus is in line with the theory of linguistic relativism in the sense
that language triggers the induction of a category. The model is composed of three
components, a component for language learning, a component for action learning
and a component that orchestrates the learning process across both modalities.
Both modality-specific components perform representation learning in a bottom-
up incremental fashion, unifying and merging specific instances into more general
representations that capture the essential characteristics of linguistic structure and
action concepts that are ’generative’ in the sense that they are able to produce
different surface forms.

The component for language learning is based on an existing model (section 2.6)
that represents linguistic constructions as paths in a network of constructions. A
suitable component for learning action representations did not exist to the best of
our knowledge. In order to implement a suitable model we first discussed technical
requirements that result from the principles of usage-based learning (see section
section 3.2), before we detailed the technical implementation of the component based
on the model merging framework.

The component for action (see chapter 3) addresses the task of incrementally inducing
sequential models of action that are learned in an item-based fashion where each
encounter of a new training instance leads to direct adaptation of the learned
representations. The model is based on HMMs that are learned in a model merging
procedure where general category-specific models emerge from gradually merging
more specific models that have a lower entropy (see section 3.3.3). A critical issue in
approaches based on model merging is controlling the complexity of the resulting
models such that the complexity of the model is aligned with the complexity of the
concepts they represent.

The action learning approach is based on a bayesian criterion composed of a prior
that assigns higher probability to smaller models in general and a likelihood that
measures the plausibility of the model to accurately represent the constituting data.
Prior and likelihood represent two opposing forces. The prior has its maximum at the
smallest possible model which represents actions as a single probability distribution of
observations. The likelihood has its maximum at a model that simply duplicates the
constituting data in its graphical structure. It is the task of the learning procedure

136



6 Summary

to control the model complexity during the learning process such that it keeps an
equilibrium between those two extremes.

The bias towards smaller models can be interpreted as a case of Occam’s Razor,
that prefers simpler explanations over more complex ones unless they are required to
explain the data. The preference for compact representations is also incorporated
in human cognition as our cognitive model is fundamentally limited in the volume
of our brains. In order to fit more and more complex knowledge into our cognitive
model we have to represent that knowledge in an increasingly compact and efficient
manner. The way bayesian inference assigns probability inherently leads to simpler
hypothesis by a tendency often referred to as Bayesian occam’s factors (MacKay et al.
2003), which refers to the observation that the more parameters an expression has,
the smaller the probability mass assigned to each subterm, since the joint probability
is by definition constrained to sum to one. Both, the preference for less complex
models and the preference for a good fit of model predictions and training data
fundamentally represent the same trade-off as the under- and overfitting phenomena
in machine learning. To increase the degree of control over the learning process we
introduced a parameter λ that allows to fine tune the trade-off between model size
and likelihood (see section 3.3.3).

The generalization controller gathers signals from the modality-specific learning
components that indicate the existence of similar structure within the respective
modality which can be merged into more general representations. The merging
operation is only performed if merging grounded representations in the other modality
would also yield meaningful results.

The design and implementation of the model was structured along the lines of the
following research questions:

• How can categorical knowledge of action be represented under the
prerequisite that those representations should be emergent and learned in
an item-based manner?

In chapter 3 we answered this question by first identifying the key requirements
that result from a learning process that is emergent and item-based in nature.
In compliance with those requirements we implemented a model that represents
categorical knowledge of action as category specific Hidden Markov models
that are incrementally induced following a model merging approach. Model
merging is a well established approach that realizes the emergence of categorical
representations starting with very specific models, representing individual
examples that are gradually merged into increasingly general models. We
transferred this approach to the domain of action using Hidden Markov models
and simplicity of the resulting models as the inductive bias that drives the
incremental generalization process. This way merging of specific HMMs results
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in more general models that have a higher entropy compared to the very
specific initial models. At the same time, the merging process ensures that
the generalized models still assign substantial probability mass to the observed
examples while minimizing model complexity.

We evaluated the developed model against a well established procedure to
train Hidden Markov models and against a state of the art representative
of the neural networks family of models. We found that models induced by
the incremental learning procedure perform comparable to HMMs learned
by expectation maximization or the LSTM based model. Furthermore we
evaluated the HMM based models in terms of different quality dimensions that
resulted from the analysis of the requirements on the model that result from
the specific incremental learning scheme.

• Can general and simple concepts like simplicity and likelihood be applied
to guide the incremental model-merging process and how do the resulting
models compare to models that are learned in batch mode?

In an incremental learning setting it is often more challenging to control the
optimal degree of generalization as opposed to settings where the complete
data is available to the training procedure at once. Simplicity and likelihood as
optimization targets in learning action models represent opposing forces, that,
considered separately, would drive the optimization process to result in different
extremes of target models. A critical issue in model merging is controlling the
complexity of the resulting models so that the model’s complexity is justified
by the data they are based on.

Simplicity as a separate optimization target would lead to overly simplifying
models that under-fit concepts in the underlying data. Optimizing towards the
point of maximal likelihood on the other hand would result in Markov models
that simply duplicate their constituting data, given that the complexity (size
and family of distributions) of the model is not otherwise restricted. This is
mainly caused by the initial specific models being maximum likelihood models
that exactly reproduce their respective sequence of observations. A larger model
composed of those maximum likelihood models would still be a model that
maximises the likelihood given the underlying data but it could not generalize
to observations it has not been exposed to in training.

We found that contrasting the likelihood with the simplicity (see section 3.3.3)
of the resulting models as a joint criterium that drives the optimization process
leads to well performing models that automatically control their representational
complexity as a byproduct of striving towards a pareto optimal solution between
simplicity and likelihood.
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To answer this question we benchmarked the models that were incrementally
learned driven by the joint criterion against the well established expectation
maximization batch learning scheme. We found that the incrementally trained
models performed comparable to the batch learned models (see subsection 3.4.1)

• How can cross-modal learning of grounded action concepts and linguistic
constructions be orchestrated in an emergentist learning process?

We developed a model that consists of a component for action learning, a
component for language learning and a third component that orchestrates
the cross-modal generalization process. The model learns incrementally by
first inducing simple representations on first encounter of a concept within a
modality that - during generalization - are gradually abstracted into increasingly
complex representations. This questions refers to the challenge how grounding
relations can be established between concepts that develop in independent
modality-specific components. The answer to this question is fundamentally
represented in the way the third component of the model, the cross-modal
generalization controller operates.

In order to establish grounding relations we exploit the circumstance that
the input to the model consists of examples of action that participants of
a study (see section 3.1) provided when challenged with an instruction in
natural language. Although these examples are noisy and not always correct
they provide coupled instances of action and language that refer to the same
action concept in most cases. Upon the first occurrence of a certain utterance
together with an action sequence, both models create a category most specific
for that individual sequence of words and action. The generalization controller
establishes a grounding relation between those categories that is preserved
during the incremental generalization process. Both learning components expose
similarity based unification cues in the sense that two concepts within their
modality could be unified into more abstract representations. The generalization
controller receives those unification cues and validates that the corresponding
concepts in the other modality (connected by grounding relations) can also be
unified, such that unification is only carried out on both ends of a grounding
relation. This way the generalization controller preserves the original coupling
of action and language that is present in the training examples.

The presented model for multi-modal learning required a learner to already have
acquired basic perceptual and motor skills as a prerequisite. To overcome this
limitation we suggest a model (as a proof of concept) that opens a possible path
to how these skills could be learned as a byproduct of guided exploration driven by
the desire to induce change in the environment which can be seen as a simplified
version of curiosity in humans. We have proposed a reinforcement learning based
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model using deep Q-networks as the fundamental abstraction to learn to perceive
and manipulate a toy-clock in a simulated environment.

This experiment is related to deep learning models that learn to play video games
in that we use a deep Q-learning model similar to the one proposed by Mnih,
Kavukcuoglu, Silver, Graves, et al. (2013) with additional double Q-learning (see
Hasselt 2010; Hasselt et al. 2015) and a Boltzmann exploration strategy instead of
the originally proposed ε-greedy policy. However, it also crucially differs from this
line of research in that we are concerned with learning in environments that have less
inherent structure than video games that where specifically designed to give frequent
reward to keep human players motivated.

The design and implementation of the model was structured along the lines of the
following research questions:

• How can a model be designed in the framework of reinforcement learning
that exemplifies a possible path to how basic perceptual and movement
primitives can develop without complex assumptions to begin with?

The model is based on deep Q-learning (see section 2.7, a variant of the
classical Q-learning approach that approximates the Q-function by a (deep)
neural network and thus transfers the ideas of Q-learning to potentially very
large problems with continuous state-space representations.

Reinforcement learning frames the learning problem as a (partially observable)
Markov decision process where an agent autonomously learns a strategy to
manipulate its environment through a defined set of actions in a goal directed
manner. The strategy is not learned according to direct examples of state-action
mappings as in supervised learning but rather the agent receives rewards as
feedback signals at certain points in time. In our model the agent can perceive
its environment in terms of distances to other objects (section 5.2). Compared
to the prerequisite of the first model that required the system to be capable
to perceive distinguishable objects and their positions, this is a very simple
requirement, that does not involve any complex classification. To act in the
environment, the agent was equipped with the capacity to accelerate in discrete
directions.

We found that the agent learned how to move in a goal-directed manner towards
the hands of the simulated toy clock and how to keep them moving through
most of the experiment based on the described simple perceptual and movement
primitives the agent was equipped with.
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• Is simulated curiosity or more specifically the desire to induce change in
the environment sufficient to guide a learning system that is primarily
based on random parallel exploration and exploitation of knowledge that
was gained in the process?

The design of the model was based on the idea that the system should develop
basic perceptual and movement skills by self-action rather than by observed
action as in the previous model (Huttenlocher et al. 1983) . Learning through
self-action is represented in the way the agent explores its environment by
taking action and observing effects in terms of change in the environment. In
order to explore the environment in a goal-directed manner the agent needs to
develop corresponding perceptual capabilities and an internal representation of
the environment together with the state it is currently in.

We found that simulated curiosity as an intrinsic motivation (section 5.1) that
is implemented as the desire to induce change in the environment is sufficient
to guide the exploration and learning process to a point where the agent is
able to maximize the induced change in the environment.

• What are possible co-factors that influence the exploration or learning
process?

We found that conceptual parameters such as the reward structure or the
exploration strategy that mediates between exploration and exploitation of
already acquired knowledge (subsection 5.2.1) have larger effects on the outcome
than technical parameters such as regularization or the model structure and
capacity.

Outlook

Our model so far has concentrated only on modelling the spatio-temporal essence of
actions in which some trajector is moved relatively to some reference object. This
is a very restricted subset of actions. To account for other verbs, the teleological
structure of actions would need to be modeled. A richer modelling of actions will also
require representing thematic roles such as patient and agent in a developmentally
appropriate and grounded fashion. Our model has assumed that a system can
recognize such relations from the input and model them symbolically. In terms of
the abilities of a developing language learner, our system assumes that the following
abilities are already acquired or inborn: the ability to segment and track objects, the
ability to segment and identify words, the ability to recognize and conceptualize basic
scenes as well as the ability to jointly attend to a tutor that demonstrates actions.
All these are in itself complex abilities the emergence of which needs to be explained.
With our second experiment we illustrated a possible path how those abilities could
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develop sub-symbolically as a byproduct of an autonomous agent solving a simple
perception-action task. An interesting follow-up experiment would be to attempt
to develop higher level goal-directed action concepts, such as setting the clock to a
specific time, based on the fundamental object manipulation capabilities acquired
through this approach.

While our proposed computational system for modelling the co-emergence of linguistic
and action representations has been shown to be effective in our experiments, it is
still a very ‘mechanistic’ system, assuming that a system can represent construction
networks and HMMs explicitly, perform statistical inference and merging operations
on these representations, etc. It is indeed an open question if learning systems can
encode and manipulate such representations on a neural substrate. Consecutive
future work could seek to find architectures that show a similar behaviour but do
not postulate the existence of data structures such as proposed in the model but
instead rely on cross-modal deep learning and representational learning to explain the
co-emergence of representations across modalities. An interesting intermediate step
in that direction could be to learn a mapping between sub-symbolic representations
that develop in a neural network such as in the second experiment and symbolic
representations that are used as input for our cross-modal learning system. The work
of Gärdenfors about conceptual spaces (Gärdenfors 2004) constitutes a compromise
between sub-symbolic and symbolic representations in that they offer symbolic
representations as connected regions in a space of quality dimensions (color, shape,
weight, ...) but also postulate that there is a sub-symbolic mapping from points
in qualitative space to sensorimotor experiences. Conceptual spaces also have a
metric in quality space that allows to derive similarity measures between individual
examples, which is a prerequisite for the multi-modal learning system. However, it
is not clear how the quality dimensions can be derived automatically. Furthermore,
mappings from words to categories are likely not static. For example color perception
and naming are subjective and can not easily be captured by static mappings.
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Springer-Verlag (cit. on p. 41).

Roy, Deb et al. (2002). “Learning words from sights and sounds: a computational
model”. In: Cognitive Science 26.1, pp. 113–146 (cit. on p. 113).

Schatten, Rolf (2003). “Systemic architecture for audio signal processing”. In: Euro-
pean Conference on Artificial Life. Springer, pp. 491–498 (cit. on p. 41).

Schmidhuber, Jürgen (1991). “A Possibility for Implementing Curiosity and Boredom
in Model-Building Neural Controllers”. In: Meyer, J.A. and Wilson, S.W. (eds) :
From Animals to animats 1, pp. 222–227 (cit. on p. 133).

147

https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1312.5602
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
https://doi.org/10.1007/s11168-011-9074-5
https://doi.org/10.1007/s002210050550


Bibliography

Shannon, Claude Elwood (1949). The Mathematical Theory of Communication. Bell
System Tech. Journal (cit. on p. 28).

Shepard, R. (1987). “Toward a universal law of generalization for psychological
science”. In: Science 237.4820, pp. 1317–1323. doi: 10.1126/science.3629243
(cit. on pp. 57, 83).

Singh, S. et al. (2004). “Intrinsically motivated reinforcement learning”. In: 18th An-
nual Conference on Neural Information Processing Systems (NIPS) 17.2, pp. 1281–
1288. doi: 10.1109/TAMD.2010.2051031 (cit. on p. 133).

Siskind, Jeffrey Mark (Oct. 1996). “A computational study of cross-situational
techniques for learning word-to-meaning mappings”. In: Cognition 61.1-2, pp. 1–38
(cit. on pp. 89, 113).

Smith, Linda B (2000). “How to learn words: An associative crane”. In: Breaking the
word learning barrier (cit. on p. 89).

Smith, Linda et al. (2008). “Infants rapidly learn word-referent mappings via cross-
situational statistics”. In: Cognition 106.3, pp. 1558–1568 (cit. on pp. 89, 116).

Srivastava, Nitish et al. (2014). “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting”. In: Journal of Machine Learning Research 15, pp. 1929–1958.
doi: 10.1214/12-AOS1000. arXiv: 1102.4807 (cit. on p. 132).

Stamp, Mark (2004). “A revealing introduction to hidden Markov models”. In:
Department of Computer Science San Jose State . . . Pp. 1–20. doi: 10.1.1.136.
137 (cit. on pp. 16, 17).

Stolcke, Andreas et al. (1993). “Hidden Markov model induction by Bayesian model
merging”. In: Advances in neural information processing systems, p. 11 (cit. on
pp. 14, 23, 25, 26, 57, 66, 69).

Sugiura, Komei et al. (2011). “Learning, Generation and Recognition of Motions by
Reference-Point-Dependent Probabilistic Models.” In: Advanced Robotics 25.6-7,
pp. 825–848 (cit. on p. 113).

Sutton, Richard S. (1988). “Learning to predict by the methods of temporal dif-
ferences”. In: Machine Learning 3.1, pp. 9–44. doi: 10.1007/BF00115009. url:
http://dx.doi.org/10.1007/BF00115009 (cit. on pp. 46, 125).

Sutton, Richard S et al. (2017). Reinforcement learning: An introduction. Vol. 2. MIT
press Cambridge (cit. on pp. 44, 130).

Taylor, Lawrence et al. (2009). “Action in cognition: the case of language”. In:
Language and Cognition 1.1, pp. 45–58 (cit. on p. 116).

Tibshirani, Robert (1996). “Regression Shrinkage and Selection via the Lasso”. In:
Journal of the Royal Statistical Society. Series B (Methodological) 58.1, pp. 267–288
(cit. on p. 60).

Tieleman, Tijmen et al. (2012). “Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude”. In: COURSERA: Neural Networks for
Machine Learning 4, p. 2 (cit. on pp. 79, 128).

Tomasello, Michael (2000). “The item-based nature of children’s early syntactic
development”. In: Trends in Cognitive Sciences 4.4 (cit. on p. 4).

– (2001). “Could We Please Lose the Mapping Metaphor, Please?” In: Behavioral
and Brain Sciences 24.6, pp. 1119–1120 (cit. on p. 115).

148

https://doi.org/10.1126/science.3629243
https://doi.org/10.1109/TAMD.2010.2051031
https://doi.org/10.1214/12-AOS1000
https://arxiv.org/abs/1102.4807
https://doi.org/10.1.1.136.137
https://doi.org/10.1.1.136.137
https://doi.org/10.1007/BF00115009
http://dx.doi.org/10.1007/BF00115009


Bibliography

Tomasello, Michael et al. (1993). “Cultural learning”. In: Behavioral and Brain
Sciences 16.3, pp. 495–552 (cit. on p. 2).

Van Trijp, Remi et al. (2012). “Fluid Construction Grammar: The New Kid on
the Block”. In: Proceedings of the Demonstrations at the 13th Conference of the
European Chapter of the Association for Computational Linguistics. EACL ’12.
Stroudsburg, PA, USA: Association for Computational Linguistics, pp. 63–68
(cit. on p. 113).

Watkins, Christopher J. C. H. et al. (1992). “Q-learning”. In: Machine Learning
8.3-4, pp. 279–292. doi: 10.1007/BF00992698 (cit. on pp. 44, 46, 125).

Waxman, S.R. et al. (1995). “Words as invitations to form categories: evidence from
12-to 13-month-old infants”. In: Cognitive Psychology 7.470 (cit. on p. 114).

Weghe, Nico et al. (2005). “A Qualitative Trajectory Calculus and the Composition
of Its Relations”. In: GeoSpatial Semantics SE - 5 3799.Dc, pp. 60–76. doi:
10.1007/11586180\_5 (cit. on p. 36).

Welch, Lloyd R (2003). “Hidden Markov models and the Baum-Welch algorithm”.
In: IEEE Information Theory Society Newsletter 53.4, pp. 10–13 (cit. on p. 20).

Willems, R. M. et al. (2007). “Neural evidence for the interplay between language,
gesture and action: A review”. In: Brain and Language 101, pp. 278–289 (cit. on
p. 113).

Wolff, Philip et al. (2010). “Linguistic Relativity”. In: WIREs Cogn. Sci. (Cit. on
p. 113).

– (2011). “Linguistic relativity”. In: Wiley Interdisciplinary Reviews: Cognitive
Science 2.3, pp. 253–265. doi: 10.1002/wcs.104 (cit. on p. 89).

Wolff, Phillip et al. (2011). “Linguistic relativity”. In: Wiley Interdisciplinary Reviews:
Cognitive Science 2.3, pp. 253–265 (cit. on p. 49).

Xing, Zhengzheng et al. (2010). “A brief survey on sequence classification”. In: ACM
SIGKDD Explorations Newsletter 12.1, p. 40. doi: 10.1145/1882471.1882478
(cit. on p. 11).

Xu, Fei (2002). “The role of language in acquiring object kind concepts in infancy”.
In: Cognition 85, pp. 223–250 (cit. on p. 114).

149

https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/11586180\_5
https://doi.org/10.1002/wcs.104
https://doi.org/10.1145/1882471.1882478

	Introduction
	Learning grounded representations from coupled examples of action and language
	Learning perceptual and movement primitives by the desire to induce change
	Contributions
	Outline

	Preliminaries
	Probabilistic time-series modeling
	Hidden Markov Models
	Definition
	Probabilistic Inference in HMMs

	Bayesian model merging for Hidden Markov model induction
	Long Short-Term Memory
	Qualitative Trajectory Calculus
	Item-based induction of linguistic constructions
	Deep Q-learning

	Item-based induction of generalized qualitative action models
	Learning problem and dataset
	Qualitative components of cross-modal language and concept learning
	Implementing the component for action learning
	Data model and preprocessing
	Model definition
	Item-based learning and generalization

	Experimental evaluation
	Comparing incrementally trained HMMs with a non-incremental baseline
	Compression of repetitive sub-sequences
	Parameter sensitivity
	Comparing incrementally trained HMMs with a LSTM Baseline

	Discussion

	Implemented theory of the coupled co-emergence of linguistic constructions and action concepts
	Learning scenario and input data
	Model Definition
	Multi modal learning of language and action
	Experimental evaluation
	Matching test
	Choosing test
	Language generation test
	Results

	Discussion

	Learning to act by curiosity driven self exploration
	Learning with intrinsic motivation
	Learning problem
	The Exploration/Exploitation dilemma

	Model
	Experiments
	Reward Structure
	Exploration Strategy
	Regularization

	Discussion

	Summary

