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ABSTRACT

Human communication is complex, dynamic and implicit. People know
when others want to interact with them. They know when they are ad-
dressed, whether they need to react, and to whom. This understanding
is learnt early and refined throughout the whole life. Artificial agents,
in contrast, do not grow up. They are not exposed to great amounts
of high quality training in interaction as humans are. Nevertheless, if
we want to interact with artificial agents in as we do with humans, we
need them to understand our communication. They need to recognize
the states we are in, the intentions we pursue, and the behaviours we
display to achieve this. In this thesis, I investigate which human beha-
viours can be observed to infer the conversational state and intentions
of humans in interactions with artificial agents in a smart environment.
After a detailed review of literature on the principles of human inter-
action and the efforts to transfer these to artificial agents and smart
environments, I investigate human conversational cues in interactions
with different kinds of agents. With these investigations I show that (1)
although addressing in unconstrained interactions of single users with
devices and agents is diverse, the addressed entity can be recognized
to a high degree from audio-visual cues, (2) a robot in a human-robot
conversational group can utilize facial information of its interlocutors
to decide whether it is addressed or not, and (3) the conversational
group and role of a virtual agent can be recognized by observing the
motion and facial expressions of the people in its vicinity. The insights
from these investigations and the corresponding models allow an auto-
matic interpretation of human conversational behaviour in interactions
with artificial agents. This can be used to create agents which better
understand and utilize human communication, to make interaction
more natural and effective.
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NOTAT ION

attribution of authorship

I speak of myself using I in case of work originally done bymyself alone.
In case the results of a collaboration with others are presented, I use
we. The respective collaborators are indicated by the co-authors of the
corresponding publication.

margin notes

� Definitions are highlighted with this icon.

footnotes

I use numbered footnotes to give additional, technical information. Fur-
thermore, I repeat research questions and claims in footnotes wherever
applicable. These repetitions are marked with a �.

notation of bayesian networks

When describing Bayesian Networks, I use arrows to mark conditional
dependencies. 𝐴 → 𝐵 ← 𝐶 means that 𝐵 conditionally depends on 𝐴
and 𝐶. Furthermore, I use curly brackets to represent dependencies on
multiple variables. So, 𝐴 → 𝐵 ← 𝐶 can be written as {𝐴, 𝐶} → 𝐵.

confidence intervals

Wherever possible, I calculate 95% confidence intervals for measure-
ments and visualize them as error bars.

quality measures

To assess the quality of classifiers, I calculate the usual measures. For
binary classifications this is done as follows: From the classification
results (predictions) and known, correct results, cases of true positive
(TP), false positive (FP), true negative (TN), and false negative (FN)
can be calculated and shown in the:

� confusion
matrix

confusion matrix = [TP FP
TN FN]
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The numbers of positive and negative observations in the data and
positive and negative predictions can be directly extracted from this
matrix:

condition positive (CP) = TP + FN

condition negative (CN) = FP + TN

predicted positive (PP) = TP + FP

predicted negative (PN) = FN + TN

The proportion of positive observations in the data:

prevalence � prevalence =
CP

CP + CN

The proportion of overall correct classifications:

accuracy � accuracy =
TP + TN
CP + CN

Other measures of classification performance are calculated as follows:

true positive rate (TPR) =recall � recall = sensitivity =
TP
CP

false positive rate (FPR) =fall-out � fall-out =
FP
CN

false negative rate (FNR) =
𝐹𝑁
𝐶𝑃

true negative rate (TNR) = 𝑠𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑁
𝐶𝑁

positive prediction value (PPV) =precision � precision =
𝑇𝑃
𝑃𝑃

false omission rate (FOR) =
𝐹𝑁
𝑃𝑁

false discovery rate (FDR) =
𝐹𝑃
𝑃𝑃

negative prediction value (NPV) =
𝑇𝑁
𝑃𝑁

F1-score � F1-score = 2 ⋅
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

alternative quality measures

For biased data, when the prevalence differs strongly from 0.5, quality
measures that are less sensitive to bias can be calculated. The value of
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diagnostic odds ratio (DOR) can be interpreted as the odds of correctly
classifying divided by the odds of falsely rejecting [Gla+03].

positive likelihood ratio (LR+) =
𝑇𝑃𝑅
𝐹𝑃𝑅

negative likelihood ratio (LR-) =
𝐹𝑁𝑅
𝑇𝑁𝑅

� DORdiagnostic odds ratio (DOR) =
𝐿𝑅+
𝐿𝑅−

Furthermore, markedness and informedness can be used as prevalence-
free precision and recall alternatives [Pow11]. Markedness indicates
how trustworthy the decision of a model is. A value of zero signifies
that the decision is random, one means that it is fully trustworthy—all
classifications are correct.

� markednessmarkedness = 𝑃𝑃𝑉 + 𝑁𝑃𝑉 − 1

Informedness indicates how informed the classifier is about the classes
in the data. A value of zero signifies that the model is uninformed about
the data, one means that it is fully informed—positive and negative
cases can both be correctly retrieved.

� informednessinformedness = 𝑇𝑃𝑅 + 𝑇𝑁𝑅 − 1





Part I

RESEARCH TOP IC

In this part of the thesis, I introduce the overarching goal,
deduce the research questions that guide this work, and
give an overview of the remaining document. Furthermore,
I present the relevant literature from social and computer
sciences to create an understanding of human behaviour in
focused and unfocused interaction with humans, artificial
agents, and interactive devices. In doing so, I additionally
introduce required terms and concepts.





1
INTRODUCT ION

In this chapter I present the context and overall aim of this thesis. After
a short introduction to the subject, I highlight the problems that can
evolve in human interaction with artificial agents in a smart environ-
ment. I formulate the overarching goal of this thesis and derive four
research questions to approach this goal. Furthermore, I introduce a
smart environment which allows this research and inwhich the relevant
experiments take place. Finally, I give an overview of the structure of
this thesis.

1 .1 interaction in smart environments

In recent years, smart home technologies and robots not only receive a
lot of interest in research communities but get increasingly widespread
in daily living. Private homes can be equipped with many sensors and
actuators. Movement detectors, temperature sensors, heating systems,
doors, lights, shutters, dishwashers, and more can be connected to
automate insignificant and tedious tasks. While general purpose so-
cial robots, which do chores and serve guests at parties are neither
affordable nor available yet, many specialized solutions emerge. Fully
automatic vacuum-cleaners, litter-boxes, pet-feeding machines, and
cooking machines perform their task sufficiently good for people to
buy and use them in their private homes. Simultaneously, Intelligent
Personal Assistants (IPAs)—like the Mycroft AI, Amazon Alexa, Mi-
crosoft Cortana, Google Assistant, and Apple’s Siri—in smart speakers,
phones or TVs allow us to retrieve information, or control lights and
media playback with simple verbal commands.

When people interact in a smart environment, they do not always
interact with an artificial agent in the form of a robot, virtual assistant,
or smart speaker. They usually interact with other people or do not want
to communicate at all (example situations can be seen in Figure 1.1).
Additionally, there may be multiple groups of conversing people at
the same time, each of them trying to interact with an agent or not.
However, gestures and sounds are perceived by everyone in the vicinity,
not only by the addressed persons or agents. A permanently present
agent is required to cope with these problems. It needs to respondwhen
a person expects it to do so and ignore communication which is not
directed at it. Furthermore, according to The Media Equation [RN96],
people treat systems that show characteristics associated with humans
in a human like manner. This applies to Human-Computer-Interaction
(HCI) [NST94] and IPAs [LW18]. The interaction with such systems

3
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(a) A group interacting with a robot (b) People interacting with each other

Figure 1.1: Two situations as they happen in a smart environment. The first
picture (1.1a) shows a group of people interacting with a robot.
The second picture (1.1b) shows a scene where people speak with
each other while the robot stands in the background. It is excluded
from their interaction.

elicits social responses in people. When agents have an embodiment
that supports this effect, it gets even stronger. A virtual agent presented
by Cassell et al. [CT99] uses turn taking signals to enhance the per-
ceived efficiency of the interaction. According to Mutlu et al. [Mut+09],
a robot can be used to manipulate the conversational roles in an inter-
action. The robot Kismet1 can express synthetic emotions to persuade
people into nurturing it [BV99]. Furthermore, in a tutoring scenario
with a robot presented by Lohan et al. [Loh+12], the human tutors
elicit more social communication when the robot shows contingent
gaze behaviour. Consequently, Kerstin Dautenhahn et al. show that
people want robots to communicate in a human-like way and argue for
arobotiquette � robotiquette to make Human-Robot-Interaction (HRI) acceptable and
comfortable to human interaction partners [Dau+05; Dau07]. However,
this robotiquette does not just require robots to react when addressed.
It poses a set of requirements with increasingly complex challenges
from not standing in the way, to showing interest andwaiting for an adequate
moment to talk to being considerate and polite. To have a chance at fulfilling
these requirements, agents need a detailed understanding of human
behaviour and expectations towards them.

Therefore, the goal of this thesis is to investigate how the sensors of
a smart environment and contained agents can be used to analyse the
conversational state and expectations of inhabitants. In the following
section, I formulate this goal in detail and derive research questions to
guide the contributions of this thesis.

1 .2 research questions

People are likely to elicit social behaviours when confronted with a
device that shows human like characteristics [RN96]. However, the
level of this effect greatly depends on the persons expectations and the

1 http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/
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appearance and behaviour of the artificial agent [Heg+08]. Therefore,
a varying amount of elicited conversational cues can be expected for
different kinds of agents. However, as different agents and devices have
different sensors, they often do not have the sensory means to recognize
such cues. A smart environment though, has access to much broader
sensing capabilities than its individual agents and the possibility to
combine its sensors with the agent’s. Therefore, the overall goal of this
dissertation can be stated as follows:

goal Use the perception of a smart environment and its agents to recognize
the conversational state and expectations of inhabitants towards different kinds
of artificial agents.

To approach this goal, I investigate the following research questions:

rq 1 (individual addressing) Which behaviours in naïve human in-
teraction with a smart environment can be observed to distinguish which agent
is addressed with a deliberate communicational act?

Traditionally, lights and multi-media devices are controlled by pushing
switches and buttons on the device or a remote. The addressee of the
touch, thereby, is never ambiguous. This does not apply to gestures and
speech. In multi-modal interactions the addressee of a communicative
act is inherently ambiguous and needs to be resolved. As speech and
gestures can be observed by everyone in the vicinity, people need to
indicate the addressee of their communicative acts. The same problem
arises when people multi-modally control the functionality of a smart
environment. Therefore, a set of cues must exist which people use to
indicate the addressee in such a situation.

rq 2 (addressing in groups) How can an artificial agent visually re-
cognize whether it was addressed by a person within its conversational group
or not?

An interaction of a group of people with a robot, naturally does not only
contain communication directed towards the latter. While addressees
in verbal interactions are sometimes explicitly stated, this is usually
not needed. To know who is addressed, people utilize their knowledge
about the interaction and the behaviour of others. Therefore, it is ne-
cessary for an artificial agent to know who is speaking and monitor
the conversational cues of its interlocutors to be able to distinguish if a
statement was addressed at it or not.

rq 3 (conversational groups) How can focused interactions of people
with artificial agents be automatically recognized in a smart environment?

Artificial agents are not always part of an interaction. People dynamic-
ally create and change conversational groups in which the agent may
or may not participate. Depending on whether the agent is part of an
interaction, it can have different options and duties. On the one hand, it
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should be open for interactions but not intrusive when nobody wants to
interact. On the other hand, it should actively participate and support
the interaction when this is desired. To be able to fulfil these conflicting
requirements, the agent needs to know whether someone (and who)
intends to interact with it.

rq 4 (conversational roles) How to determine conversational roles
of artificial agents in dynamically changing interactions in a smart environ-
ment?

Speaker and addressee are not the only roles participants of a conver-
sation can assume. Furthermore, these roles do not only exist when
one person stops to talk and another begins. In a conversation, all parti-
cipants assume a role at any given time. When an artificial agent can
recognize its conversational role, it not only knows when it needs to
listen and when to speak. It can use conversational cues to influence
the distribution of roles in a more informed manner. Furthermore, it
can compare its recognition to its expectations. It can detect deviations
between them, to start repair strategies.

1 .3 research environment

To specify what asmart en-
vironment

� smart environment is, I use the definition of Diane Cook
and Sajal Das:

A smart environment is a small world where all kinds of
smart devices are continuously working to make inhabit-
ants’ lives more comfortable. [. . .] [It] is able to acquire and
apply knowledge about an environment and also to adapt
to its inhabitants in order to improve their experience in that
environment. [CD04, p. 3]

To be able to investigate the presented research questions, a smart en-
vironment is needed that not only allows the observation of human
interactions with devices, but also with virtual agents, and robots. Fur-
thermore, the execution and recording of corresponding interaction
studies should be supported. TheCognitive Ser-

vice Robotics
Apartment
as Ambient

Host (CSRA)

� Cognitive Service Robotics Apartment
as Ambient Host (CSRA)2 [Wre+17] is a laboratory in the Cluster of
Excellence Cognitive Interaction Technology (CITEC)3 at Bielefeld Uni-
versity which meets these requirements. If not stated differently, I refer
to the CSRA whenever I use the termapartment � apartment. It is furnished as a flat
with the capabilities of a smart environment—so it is asmart home � smart home—and
additionally has the observation and recording capabilities of an in-
teraction laboratory. Photographs of the apartment, its agents and a
layout plan be seen in Figures 1.2 and 1.3. It is a suitable environment

2 https://www.cit-ec.de/csra
3 https://cit-ec.de
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Figure 1.2: Photographs of the Flobi agents on the left (Flobi Entrance behind
the half open door at the top, Flobi Assistance from within the
kitchen at the bottom). The right picture shows the apartment from
the outer right end of the living room. In this image, two persons
are chatting at the table while another is interacting with the Floka
robot.

to investigate human behaviour and interaction with humans, robots,
virtual agents and computers for the following reasons:

artificial agents & interactive appliances: The apartment has
multiple interactive devices, virtual agents and a robot (shown
in Figures 1.2 and 1.3). The two virtual Flobi heads [Lüt+10;
LSW14]—one in the corridor (Flobi Entrance) and one in the
kitchen (Flobi Assistance)—function as the apartment’s hosts to
welcome and introduce people. The mobile robot Floka [Wac+17]
is based on the MekaBot M1.4 It features an anthropomorphic up-
per body with manipulation capabilities. Moreover, for its head
between the original sensor head and an adapted version of the
Flobi head can be chosen [SBW19]. Furthermore, the apartment
contains lights, speakers, screens, door-handles, a pan-tilt beamer,
and an interactive plant which can be used to unobtrusively in-
form people, interact with them or guide their attention.

variety of situations: As a fully integrated smart flat on a univer-
sity campus, it is used in diverse ways. Therefore, various kinds of
interactions can be observed in it. In the first place, it constitutes
a workspace for the involved staff and students who develop, in-
tegrate and test new functionalities and interaction metaphors.
However, demonstrations introduce people to the apartment who
are not familiar with it and its possibilities. Meetings and socializ-
ing events take place regularly, and finally, it is used to conduct
studies. These can range from human interaction with the smart

4 https://robots.ieee.org/robots/m1/
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Kitchen

Hallway

Living Room

Bath
Robot
Room

Figure 1.3: On the left, the layout of the apartment can be seen. The robot
Floka is highlighted in green, Flobi Entrance in blue, and Flobi
Assistance in red. The right picture shows the robot Floka mounted
with it’s adapted Flobi head. The sensor head is placed on the floor
in front of the robot.

environment to research that is not concerned with smart envir-
onments but utilizes the recording and analysis facilities.

sensors & introspection: The apartment features various sensing
and recording capabilities. Four cameras in the corners of the
apartment provide an overview of the whole situation. Eight
RGBD-Cameras capture the apartment from a top-down perspect-
ive. Three Web-cameras provide high resolution video captures
from the Flobis’ viewpoints and for a screen in the living room.
Furthermore, a sensitive floor in the kitchen can detect peoples
positions to enrich the apartment’s person sensing capabilities.
Microphones capture the global sound and interactions at desig-
nated interaction zones in particular.Movement detectors, sensors
for temperature, light, the opening of doors, windows, cupboards,
and drawers can be used to follow human physical interaction
with the apartment.

availability & recording The apartment is operational 24/7 and
can automatically record interactions as they occur. High level
information about the apartment’s state, the contained agents,
and people are available through the Robotics Service Bus (RSB)
by Sebastian Wrede et al. [RSB]. Compressed video and audio
streams are created and accessible viaGStreamer byWim Taymans
et al. [gstreamer] and the RTP protocol [Sch+03]. All this data



1.4 document overview 9

can be recorded on demand for studies [Hol+16] or started and
stopped automatically based on usage in a 24/7 operation [RK18].

1 .4 document overview

The remaining document is composed as follows. In the next chapter, I
introduce the topic of human conversational behaviour in focused and
unfocused interaction from the viewpoint of social sciences. While at it,
I define the relevant terms andmodels. Furthermore, I give an overview
of the topic of human interaction and Human-Agent-Interaction (HAI)
from the viewpoint of computer sciences. To this end, I additionally
establish a taxonomy for the distinction of interactive entities that is
applies throughout this thesis.

The central two parts of this thesis, are concerned with the four
research questions stated in Section 1.2. In Part II, I investigate human
addressing in smart environments. To this end, I present a study of
naïve interactions of people with a smart environment (Chapter 3). I
examine RQ 1 by performing an in-depth investigation of the resulting
corpus and creating a model for human addressing behaviour towards
artificial agents in smart environments. In Chapter 4, I present a mixed
HRI scenario with the anthropomorphic robot Floka. On this basis, I
investigate RQ 2. In Part III, I aim at a more global understanding of
human behaviour in copresence with artificial agents. To this end, I
present a scenario and interaction study that allows the analysis of free,
dynamically changing conversations of humans with artificial agents
(Chapter 5). On this basis, I explore RQ 3 in Chapter 6 by creating and
evaluating a detection framework for mixed human-agent conversa-
tional groups in a smart environment. In Chapter 7, I use the models
resulting from Chapter 4 and Chapter 6 to investigate the recognition
of conversational roles and assess RQ 4.

In the final part (Part IV), I summarize the contributions and impact
I make with this thesis to research on human interaction with smart en-
vironments and artificial agents. Furthermore, I discuss the limitations
of this work, present possibilities for improvement, and give ideas for
applications and future research.





2
PR INC IPLES OF HUMAN INTERACT ION

Humans are social beings. We communicate our thoughts and ideas
through speech and coordinate our actions and behaviour to accomplish
more than a single individual can achieve. We share our knowledge and
strengthen our social bonds through multi-modal interaction. To make
these interactions fluent and successful, people coordinate through
behavioural cues. This coordination is fundamental for human commu-
nication. Therefore, and according to The Media Equation [RN96], it
can be assumed that people will produce such cues when interacting
with robots, virtual agents presented on a screen or smart speakers.
People understand whether others in their vicinity are open for commu-
nication, and who they address with their speech, by observing their
behaviour. Similarly, an artificial agent needs to observe the communic-
ative cues, directed at it—or others—to better understand and utilize
human behaviour and expectations. In their book on The Media Equa-
tion, Byron Reeves and Clifford Nass already point out the necessity
of politeness for computers [RN96]. They argue that systems need to
greet, use eye contact and match the users’ modality. This is especially
important in long-term and in the wild interactions, where the agent
is a potential interaction partner, but one of many. For an agent to be
acceptable to humans not onlywithin a single interaction but in the long-
term it needs to behave socially appropriate. This robotiquette [Dau07]
means that an agent needs to behave appropriately even when it is
not interacted with. In such a situation it—for example—may leave the
interaction and orient somewhere else to show civil inattention [Gof63].

To be able to better satisfy human expectations, and simplify inter-
actions in smart environments for naïve persons, knowing these ex-
pectations is crucial. Knowledge about human interactive behaviour
towards one another can be used to reason about themotives and causes
of communication signals in human behaviour. Additionally, this al-
lows understanding which signals and behaviours would be naturally
comprehensible for humans and therefore can effectively be used by
artificial agents in interaction. Therefore, I start the literature review by
outlining how people interact with each other. Furthermore, interac-
tion can not always be focused. An artificial agent that is in copresence
with humans for an extended period needs to handle both focused
interaction and unfocused interaction. To account for the different re-
quirements of these two types of interaction, I divide the literature
on human interaction with other humans, artificial agents, and smart
environments along this distinction.

11



12 principles of human interaction

In the first part of this chapter, I investigate everyday interactions
between humans. I illustrate the difference between unfocused and
focused interaction, and how people behave in such situations. Fur-
thermore, I analyse focused interactions with regard to conversations
and the roles that can be taken by the participants in this process. In
the second part, I present a taxonomy of interactive entities that I use
throughout this work. With a literature review on human interaction
with artificial agents and smart homes, I investigate how far human
interaction principles can be, or already are, applied in such scenarios.
Finally, I assess to what extent the presented effects and patterns in
human interaction are transferable to people with different cultural
backgrounds.

2.1 interaction between humans

As of today, there is an ever growing set of ways for people to inter-
act with each other, even without being physically collocated. Emails,
telephones, and other technical solutions allow communication across
great distances or even distributed through time. However, depending
on the applied solution, such interactions are restricted. The restriction
can be in the available modalities, as in communication via telephone.
Moreover, a distribution over longer time periods—as when using text-
messaging—can be an intended property or just a side effect of the
technical solution. Although these ways of interaction and the way
people utilize them are interesting in themselves, they often strongly
differ from direct interaction. For example, people speaking on the
telephone introduce themselves and exhibit a set of other verbal inter-
actions which would be clumsy, or otherwise redundant for people
who have unobstructed physical access to each other [Aue17a]. Ac-
cording to Schegloff [Sch68] these additional interactions are intro-
duced to gather information which otherwise would be transmitted
multi-modally or known from the situational context. These additional
interactions show which information the participants need to be able
to successfully communicate with each other. As I focus on collocated
communication in this thesis, I only consult other types when they
highlight crucial parts of the interaction.

The kind of interaction in focus of this work happens when people
have direct, physical access to each other without any obstructions.
Erving Goffman termed thiscopresence � copresence:

[To be copresent] persons must sense that they are close
enough to be perceived in whatever they are doing, includ-
ing their experiencing of others, and close enough to be
perceived in this sensing of being perceived. [Gof63, p. 17]

Goffman further states: ‘Copresence renders persons uniquely access-
ible, available, and subject to one another.’ [Gof63, p. 22]. In copresence
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people can interact in a focused or unfocused manner but they can not
avoid interaction. Additionally, people perceive the presence of others
differently depending on their distance. The subdivision of the space
which people claim around them and concede to others is investig-
ated in the field of proxemics and has an effect on both focused and
unfocused interaction.

2.1 .1 Proxemics

Proxemics are important in both focused and unfocused interaction
between people. Edward T. Hall coined the term proxemics while invest-
igating peoples usage of public space [Hal69]. � proxemicsProxemics define four
circularly extending distances—intimate distance, personal distance,
social distance and public distance— around a person with different
physiological and interactional implications (see Table 2.1). Within

Distance Close Phase Far Phase

Intimate distance ≤ 0.15m ≤ 0.46m
Personal distance ≤ 0.76m ≤ 1.22m
Social distance ≤ 2.13m ≤ 3.66m
Public distance ≤ 7.62m 7.62m and more

Table 2.1: The different proxemic radii around a person and their properties
according to Hall [Hal69]. Each distance is further divided into
an inner and outer phase. The exact distances vary depending on
culture, age, gender and other characteristics of the person and
situation.

� intimate dis-
tance

intimate distance physical contact is probable. It may only be entered by
partners. The used voice is low or whispered. People that know each
other well can discuss personal topics within � personal dis-

tance
personal distance. Here the

other is within arm’s reach but not touched and the voice level is moder-
ate. The close phase of the � social distancesocial distance is used for less personal interac-
tions between colleagues or during social gatherings. The voice level is
normal and the distance can be interpreted as a hint to the participants’
involvement. In the far phase of the social distance people can easily
engage and disengage without being rude. The voice level becomes
louder. At � public distancepublic distance the voice gets loud and the phrasing more
formal. Non-verbal communication is performed through gestures and
bodily stance since facial expressions cannot be perceived [Hal69, p.117-
125]. The distances are not exact but vary depending on the culture,
relationship, context, age, gender and size of the participants.

2.1 .2 Unfocused Interaction

Being physically copresent not only allows people to multi-modally
sense others but obliges them to communicate and interact. Each action
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that is performed in copresence can, and will be perceived by others
and interpreted in the situational and social context. As Adam Kendon
notes: ‘[A]ll aspects of behaviour in a situation of co-presence must
be considered at least, potentially, to have a role in the communication
process.’ [Ken90, p. 27] The purpose ofunfocused

interaction
� unfocused interaction is the man-

agement of copresence. To this end, people adjust their movements,
gestures, sound level, and overall displayed involvement in the situation
at hand [Gof63].

2.1 .2.1 Coordination and Social Communication

When people in copresence do not actively participate in a mutual activ-
ity, they still interact with each other—albeit unfocused. Two persons
that pass each other on the pavement in opposite directions, are com-
municating. They at least require some coordination to not bump into
each other. Simultaneously, there is more communication happening
between them than necessary for this task alone. As they approach each
other, they traverse through different proxemic distances, where dif-
ferent behaviours are perceived as adequate (see Section 2.1.1). While
being in the public distance, both may look at each other freely but
will—according to Goffman [Gof63]—avert their gaze at around 2.4m.
This is near the boundary of the close phase of the social distance (see
Table 2.1). A similar pattern is observed in an investigation of human
greeting behaviour at a social event by Kendon: ‘[W]e note that people
do not usually look at one another continuously as they approach one
another, and they may often look sharply away just prior to the close
salutation.’ [Ken90, p. 163]

2.1 .2.2 Civil inattention

In many situations, not engaging in a focused interaction becomes
an active process in itself. Being copresent in a lift or in facing seats
on a bus causes people to actively divert their attention. They stare
out of the window, accurately examine their fingernails or play with
their mobile phones. This actively displayed non-perception of others,
is often referred to ascivil in-

attention
� civil inattention [Gof63, p. 84]. It can be used

to maintain the unfocused nature of an interaction although, e.g. the
distance or orientation of the participants favours focused interaction
(see Sections 2.1.1 and 2.1.3).

2.1 .2.3 Initiation of Focused Interaction

As the actions of people in copresence are subject to observation by oth-
ers, individuals can use the situation to signal their intent to transition
into a focused interaction. To this end, they need to establish a situation
in which both are ready and willing to perform this transition: ‘An en-
counter is initiated by someone making an opening move, typically by
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means of a special expression of the eye but sometimes by a statement
or a special tone of voice at the beginning of a statement.’ [Gof63, p. 91]
It can even be much more tentative according to Kendon [Ken90] who
observes two individuals p and q prior to a greeting:

[W]e see p orienting to q, but not approaching him until q
has oriented his eyes to p. p by his orientation to q may be
said to announce his intention to approach, but he does not
do so until q has given his ”clearance”. [Ken90, p. 170]

Similarly, an investigation of customer-bartender interactions shows
that customers fully orient towards the bartender—using their gaze
and body orientation—to show their intention to initiate an interac-
tion [GHG12]. When ever people are in copresence with others their
behaviour is observed and interpreted. To behave in a socially accepted
manner, they need to recognize the intentions of the people in their
vicinity and recognizably show their intentions.

2.1 .3 Focused Interaction

The area in front of a person is best suited for focused interaction. This
is where their capabilities of manipulation and reception can be applied
most efficiently and parsimoniously. Furthermore, it is the area of which
the person has the most control. Whenever people interact with their
environment in a focused way—e.g. when they read a book or look
into a shop window—they naturally create a distinctive space between
them and the object of interest. This space is called the � transactional

segment
transactional

segment [CK80, p. 240]. Other people in the situation will try to avoid
crossing this area to not disrupt the interaction. The transactional seg-
ment of people can vary with their size and activity, but is always a
narrow region in front of them (examples can be seen in Figure 2.1).

2.1 .3.1 Face Engagements

While people can interact with many things in a focused manner, the
interaction with other persons has a special significance. Goffman uses
the term � face engage-

ment
face engagement or encounter for instances of focused interaction

between people. He defines them as follows:

Face engagements comprise all those instances of two or
more participants in a situation joining each other openly in
maintaining a single focus of cognitive and visual attention—
what is sensed as a single mutual activity, entailing preferen-
tial communication rights. [Gof63, p. 89]

When talking about both face engagements and single, unengaged per-
sons, the term � participation

unit
participation unit can be used [Gof63, p.91]. The definition

of face engagement addresses many properties of focused interactions
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Figure 2.1: Transactional segments, F-Formations and o-spaces, p-spaces and
r-spaces as known from Ciolek et al. [CK80]. The transactional
segments of persons are shown as green cones in front of them
(individually presented in ts). Usual F-Formations are shown for
groups (circular) and dyadic interactions (H)–(I). The formations
(H)–(V) are also known as vis-à-vis and (L)–(I) as side-by-side. The
o-spaces, p-spaces and r-spaces of each formation are highlighted
in orange, blue and brown and marked with letters (o, p and r)
respectively.

between humans. First of all, it naturally requires two or more persons
to participate. These persons cooperate on a common task, which re-
quires them to focus their cognitive and visual attention to the same
target. Because all participants need to share the same, single focus
of attention, one person can not be in multiple participation units at
the same time. Finally, this cooperation is exhibited openly. Therefore,
other people in copresence can observe and distinguish participation
units and to which of them each person in the situation belongs. If not
stated differently, I use the term focused interaction as a synonym to
face engagement.

2.1 .3.2 Conversational Groups

The arrangements that people take over when forming a face engage-
ment, depend on factors such as the task at hand, the spacial structure,
and the crowdedness of the environment. It is more probable to find
face engagements in places that already are spatially distinct or identifi-
ably separated from the rest of the environment. Furthermore, when in
an open space—as on a pavement or a campus—the participants of a
focused interaction may move closer together than in a confined private
room.

When people want to communicate efficiently over a prolonged time,
the communication itself is the focus of attention. Therefore, parti-
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cipants need to optimize their mutual reception of each other. They
enter an � F-FormationF-Formation: ‘An F-formation arises whenever two or more
people sustain a spatial and orientational relationship in which the
space between them is one to which they have equal, direct, and exclus-
ive access.’ [Ken90, p. 209] The more cognitively stressful or critical
the conversation gets, the higher the preference to establish such a con-
figuration [Aue17a, p. 10]. Being in an F-Formation entails, that the
participants orient in a way that their transactional segments overlap
and create a ‘joint interaction space’. They cooperate and dynamically
adapt their position and orientation to maintain this space. They en-
sure that members have equal access to it and restrict the access of
non-members. This separates the environment into three actively main-
tained spaces (exemplary visualizations of these spaces can be seen in
Figure 2.1). The � o-spaceo-space is the joint interaction space of the F-Formation
with equal access by all participants. The � p-spacep-space is the space occupied by
the participants bodies, limbs and belongings. It functions as a barrier
that shields the joint interaction space from the environment. Finally,
the group is surrounded by the � r-spacer-space. The r-space functions as an extra
buffer between the group and other people or groups in copresence.
Other participation units avoid this space or—if they need to cross
it—show significant avoidance behaviours [CK80, p. 241–260]. When
non-participants do not avoid the r-space of an F-Formation, this has a
situational meaning. On the one hand, people can enter the r-space to
announce their intention to participate [Ken90, p. 231]. On the other
hand, people can stay in the r-space as a ratified associate of the focused
interaction. In this role they have no direct access to the o-space and
can not play an active role—they still are non-participants. They can
passively follow the interaction [Ken90, p. 233].

F-Formations can manifest in different forms (see Figure 2.1). When
a group of more than two persons enters an F-Formation, they arrange
in a circular or semi-circular manner. This ensures, that each member
has equal access to the o-space and excludes external persons to the
highest possible degree. Deviations from the circular arrangement and
from a uniform distribution of participants within the p-space have
a situational meaning [Ken90, p. 216]. Such a deviation is often ob-
served when one or more participants of the group have a special
role in the interaction—as e.g. a tour-guide. In addition to the circular
arrangement, a set of dyadic F-Formations, as they are known from Ci-
olek et al. [CK80], are shown in Figure 2.1. It can be seen that the
H-configuration the maximally closed dyadic case. This way the parti-
cipants achieve the best exclusion of others and have the most control
over their o-space. By gradually changing the configuration through
N, V, L and C the interaction becomes more open to the environment.
The interaction occupies less of the visual attention of the participants
and allows them to display more attention towards the environment.
This allows more control over environment and simplifies joining for
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non-participants [Ken90, p. 226]. The I- or side-by-side-configuration
represents the most open F-Formation. The participants look into the
same direction while standing close enough that their transactional
segments overlap. While an o-space is still maintained, the participants
loose the ability to observe many of the others non-verbal commu-
nication. Instead, they gain the ability to look at the same part of the
environment—creating a joint view of the world [Ken90, p. 251].

2.1 .3.3 Conversational Roles

This work focuses onconversation � conversations, verbal interactions that are per-
formed in focused interaction. Conversations are highly organized in-
teractions, in which a set of roles is negotiated, assumed and switched
by the participants. Every conversation has aspeaker � speaker. This is the only
person—at a moment—who has the right to speak. The roles of the
other participants and associates of the conversation depend on the
speaker. The speaker in a conversation produces speech acts, which are
directed towardaddressee � addressees. In a dyadic conversation the person that is
not the speaker automatically assumes the role of addressee [SSJ78]. In
a multi-party conversation—when more than two persons converse—
the addressee is less obvious. Consequently, the speaker can select the
participant or participants that ought to be addressee by naming, point-
ing, gazing or a multi-modal combination of cues—e.g. by using second
personal pronouns and gaze [Aue17b]. Nevertheless, often only one
participant ismainly addressedwith a speech act. The other participants
of the conversational group areside-

participant
� side-participants (ratified listeners). They

are an active part of the conversation and share the responsibility for
its success. Although the speech is not directly addressed at them it
is produced with them in mind. Finally, people that are not part of
the conversational group have a role regarding the group too. Ratified
associates can reside in the r-space of the conversational group. In this
role they can attend the conversation and may be considered by the
speaker during speech production but can neither become speaker nor
addressee without first fully entering the conversation [Tra04]. Other
people, that are not ratified by the speaker but can hear what is said in
the conversation can be called overhearer. Therefore, every person in
copresence, that is not part of the conversation or a ratified associate,
is a potential overhearer. In this work, I use the rolenon-

participant
� non-participant

for both ratified associates and overhearers. An exemplary scene with
conversing people and their assumed roles can be seen in Figure 2.2.

2.1 .3.4 Turn-Taking System

The right to speak is a resource of the conversation. This resource is
often called theturn � turn or conversational floor [Hay88]. It is not owned
by one participant throughout the conversation but taken, yielded, and
competed for [SSJ78]. The transition of the turn from one participant of
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Speaker
Addressee

Side-Participant

Non-Participants

Figure 2.2: An exemplary conversational group in the front (red triangle)
and a second group in the back (white triangle). The group in
the front consists of a speaker (red dot), addressee (green dot),
and a side-participant (blue dot). Other copresent persons are
non-participants regarding this group.

the conversational group to another is organized through the � turn taking
system

turn taking
system. According to Sacks et al. [SSJ78], it is a system that is ‘inter-
actionally managed’. Hence, it is the responsibility of the participants
of a conversation to coordinate and ensure its effective application.
Furthermore, it considers the transition between the current and next
speaker but not the previous and next turn. Therefore, it is a ‘local
system’. As a result of the turn taking system, only one person can be
the speaker at a point of time. Exceptions, occur in case of errors (e.g.
miscommunication of the turn transition between the participants),
deliberate violations of the system (e.g. interruptions) or termination
sequences of an interaction (where people change into simultaneous
speech and rhythmical alignment) [Aue17a, p. 3]. In case of an error, a
set of repair mechanisms can be applied to resolve the situation—e.g.
one of the simultaneous speakers will prematurely stop speaking and
leave the turn to the other. The next speaker is negotiated between the
participants during the current turn. While current speakers can use
their role to select the next speaker—this is often the addressee—and
release the turn, all other participants can compete for the next turn.
They can apply turn-allocation techniques to communicate their intent
to speak or use other means to show their preference for next speaker.
This can effectively constraint the current turn by shortening or length-
ening the conceded time. Finally, as participants of a conversation are
highly trained in applying the turn taking system, the gaps between
turns can get as small as 200ms and even smaller. This suggests that
the next speaker is not only established before the end of a turn but
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can estimate the time of transition and prepare an own contribution to
minimize the gap [HE10].

2.1 .3.5 Role of Gaze in Conversation

Gaze is an important conversational cue. It has multiple, often compet-
ing functions in conversation. It can be used to monitor the non-verbal
behaviour of co-participants, express own attitudes and feelings, or
regulate the conversational floor [Ken67]. As a result, gaze can be used
as a predictor for conversational attention and addressing behaviours
of speakers. Vertegaal et al. [Ver+01] show that speakers look more
often at the addressee of their utterance than at other participants of the
interaction. This still applies when the speaker is addressing multiple
persons. In this case—although the speaker’s attention gets divided
betweenmultiple addressees—the speaker’s overall amount of attention
towards addressees increases and each addressee gets more attention
than people who are not addressed. Similarly, there is a high chance of
88% that a listener will look at the speaker instead of a ratified parti-
cipant according to Vertegaal et al. [Ver+01]. Listeners in a conversation
show a set of further interesting behaviours. They use their gaze to show
their level of participation [Aue17b]. It can be observed that listeners
shift their visual attention to the next speaker around 50ms prior to the
end of a turn, according to Holler et al. [HK15]. The author argues that
his shows their ability to predict the time of the transition and the next
speaker in advance. As already discussed in 2.1.3.4, such changes of
gaze can have further reasons, as gaze does not only indicate a person’s
attention but additionally is an important cue in the negotiation of the
next speaker. This is even more important for speakers, as their influ-
ence on the negotiation of the next speaker is higher. A speaker, who
looks at a participant at the end of the turn grants privileged access
to the counterpart. This privilege can even become an urge if the gaze
remains on the participant and no one else self-selects [Aue17b].

2.2 interaction with artificial agents

Before I expand on the current state of research on human interaction
with different kinds of non-human entities, I want to establish which
kinds of entities may be interesting for human interaction in smart
environments andwhich terms I use for the different groups throughout
this work. For a visualization see Figure 2.3.

In Section 2.1, I present properties of human interaction with other
humans in copresence. The non-human entities that a person can in-
teract with in a smart environment, and which are in the focus of this
work, can be categorized into devices, robots, and virtual agents. With

interact-
ive entity

� interactive entity, I indicate any entity that can perceive the actions of an-
other entity and change its internal state on that account. This includes
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Interactive Entities

Device Autonomous Agent

Human Artificial Agent

Robot Virtual Agent

Figure 2.3: The taxonomyof interactive entity groups as used in this document.
Subsets are represented as sub-trees and leaves.

devices, robots, virtual agents, and humans. In case of � devicedevices, the action
can be as simple as pressing a button, performing a fixed gesture or
speaking a command. The resulting state change can be a change of
the lighting if the device is a lamp or the volume if the device is an
amplifier. To distinct � autonomous

agent
autonomous agents from other kinds of interactive

entities, the definition of Dautenhahn [Dau98] can be used: ‘Autono-
mous agents are entities inhabiting our world, being able to react and
interact with the environment they are located in and with other agents
of the same and different kinds.’ [Dau98]. Furthermore, an autonomous
agent has its own believes, and goals and the interaction is a way to
achieve these goals. Although, many � artificial agentartificial agent are not designed in a
way that explicitly models their goals and how to approach them, they
are always designed by humans for a specific purpose which is served
trough interaction. A � robotrobot is an artificial agent associated with an em-
bodiment that occupies physical space. Robots may manipulate things,
navigate through space, or reconfigure themselves—thus, altering the
availability of space. A � virtual agentvirtual agent does not occupy physical space as
such—thus, its movements do not necessarily change the availability
of space. Nevertheless, virtual agents can have an embodiment that is
visualized in some way—e.g. on a screen, as a spot of light, or in form
of a loudspeaker—and where attention can be directed to. According
to this taxonomy, IPAs are virtual agents. For simplicity, the term agent
is used synonymously with artificial agent throughout this work. If not
explicitly stated, the term Human-Agent-Interaction (HAI) is used for
interactions with both robots and virtual agents while Human-Robot-
Interaction (HRI) is used for interactions with robots only. Whether the
smart environment as such can act as a single device, as an agent, or a
combination of both strongly depends on its interface and the intended
way of usage. It may be perceived as a single device with many function-
alities or just as a casing for other devices and agents. Similarly, it can
be perceived as one big artificial agent or as a device that is controlled
by an agent.
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2.2.1 Agents in Unfocused Interaction

Humans communicate mainly with other humans. Therefore, it feels
natural for us to model robots and their communication skills according
to our understanding and expectations of communication. Social spaces
and unfocused interaction as known from Human-Human-Interaction
(HHI) can—to some extent—be similarly applied to human interactions
with robots or virtual agents. The following works illustrate that the
copresence of artificial agents has an impact on human behaviour and
show ways to handle such situations.

People apply proxemic rules to artificial agents. It has been shown
that people concede a personal distance to robots and virtual agents
and react to intrusions of artificial agents into their own personal dis-
tance similarly as one could expect it in Human-Human-Interaction
(HHI). Takayama et al. [TP09] evaluated how mutual gaze influences
the distance people feel comfortable when approaching a robot and
when a robot approaches them. Their results support the idea that
the proxemic rules regarding the size of the personal distance people
employ in interaction with robots are similar to the rules in HHI. In
a comparison of reactions to approaching humans and robots, Sardar
et al. [Sar+12] show that people tend to show even more compensatory
behaviour with robots than with other humans when they enter their
personal distance. A similar investigation of human interaction in a
virtual reality is done by Bailenson et al. [Bai+01]. They compare the
proxemic behaviour of people in interaction with a humanoid virtual
agent and with a geometric object (a pylon). They show that people
grant the agent more personal distance than they grant the pylon. Fur-
thermore, this personal space grows when the agent’s gaze behaviour
gets more realistic. This shows that the copresence, form, and actions
of artificial agents in unfocused interaction affect human behaviour.

Like people, robots can use the public space to initiate conversations.
Holthaus [Hol14] investigated how a robot can behave towards people
in different personal and social distances to support a dyadic interac-
tion. He shows that the user interaction can be enhanced by employing
strategies such as gradually increasing attention towards approach-
ing people and proactively greeting at appropriate distances. Shi et
al. [Shi+11] present a model for the initiation of a conversation by a
robot. To this end, they observe a scenario in HHI, where a shop owner
welcomes customers and presents a product. They use these observa-
tions to develop a set of positioning rules that can be utilised in different
phases of the interaction. Their robot’s positioning is rated better, when
it behaves according to the found rules in contrast to always greeting
and always standing by the product. Satake et al. [Sat+09] present a
robot that approaches people in a mall to give recommendations. By
approaching people from the front at public distance, the robot shows
its presence and intention to interact. It prompts the initiation of con-
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versation non-verbally by facing them directly at social distance. Verbal
interaction is only initiated when people stop by the robot. The authors
can show that this approach results in more successful interactions than
approaching on the shortest path and directly starting to talk at social
distance. With their behaviour in copresence, robots can prompt people
to initiate a focused interaction. Therefore, it is important for robots in
unfocused interaction to behave in a manner that signals their intention.

Even when not intending to communicate with humans, an artificial
agent in copresence needs to understand human communication to
behave in a socially acceptable manner. This is actively investigated in
the field of social navigation. To this end, Lindner et al. [LE11] created
a taxonomy of social spaces by defining five types of spaces. In this
taxonomy, Proxemic space1 describes the zones used in Hall’s prox-
emics. The activity space corresponds to the activity of one or more
agents. The affordance space corresponds to a potential activity. Ter-
ritory space—e.g. a fenced area or closed room—may not be entered
without permission. Furthermore, the space affected by an activity—e.g.
by noise or odour—is described as the penetrated space. These spaces
may overlap but do not necessarily need to fully contain each other in
contrast to proxemics. Knowledge about these spaces is used to navig-
ate while better respecting the personal space and activities of other
agents. Similarly, Rios-Martinez et al. [Rio+12] generate navigation
plans by considering the personal distance, information process space
and o-space of people to reduce discomfort. An overview of different
notions of social spaces and robot navigation in copresence with people
is presented by Rios-Martinez et al. [RSL15]. These works intend to
enhance the acceptability of the way robots navigate based on inter-
actional, conversational, and social aspects of the usage of space in
copresence.

2.2.2 Agents in Focused Interactions

It is widely accepted, that the principles of human conversation (Sec-
tion 2.1.3) can be transferred to human interactionswith artificial agents.
Spexard et al. emphasize that ‘[t]he user should be able to communic-
ate with the system by, e.g., natural speech, ideally without reading
an instruction manual in advance’ [SHS07]. Similarly, Dautenhahn et
al. [Dau+05] found that 71% of the participants of their study wished
that a robot companion would communicate in a ‘human-like’ manner.
She further discusses:

The fact that subjects wanted a robot companion to have
humanlike communication was not a surprising one, as it
is a natural human instinct to want to communicate using

1 Original term personal space changed to proxemic space to avoid confusion.
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speech and gestures that are recognisable by humans.
[Dau+05]

In the following, I show that the effect of an agent’s behaviour on the
course of a focused interaction can not be ignored. Agents need to under-
stand the social signals humans show and how their own behaviour is
perceived by humans. Furthermore, I present literature on the problems
of addressee recognition, turn taking behaviour generation, and the
detection and utilization of conversational groups from the perspective
of computer sciences.

2.2.2.1 Impact on the Perception of Interaction and Human Behaviour

As in HHI, in focused interactions in HAI, a common goal must be ap-
proached in a collaborative manner—otherwise there would be no need
for interaction. Simultaneously, because people are highly trained to
observe their interaction partners and assess their beliefs and intentions,
every property of the agent’s behaviour is under evaluation and can
affect the interaction. When an agent does not perceive its interaction
partner, its behaviour still has implications.

In a comparison of affective behaviour generation in story-telling per-
formed by a humanoid robot, Rosenthal-von der Pütten et al. [RKH18]
find that human-like—and in parts robot-specific—non-verbal beha-
viour can increase the perceived animacy of the robot and the parti-
cipant’s willingness for self-disclosure. Furthermore, when an agent can
observe its interaction partner it can dynamically adjust its behaviour.
Kopp et al. [Kop+18], present a virtual agent that recognizes human
backchannel signals and producesmulti-modal conversational cues pre-
viously extracted from human interactions. In a user study, the authors
show that the approach allows participants to successfully apply repair
strategies. A robot that observes the participants gaze and—anticipating
a choice—reaches for objects in a collaborative ordering task is created
by Huang et al. [HM16]. The authors show that such a behaviour con-
veys the impression that the robot is aware of the users choice. It is
apparent that the behaviour of agents during a focused interaction with
humans can have a strong influence on the development of the interac-
tion and the human perception of the agent. As gaze plays an important
role in conversation (Section 2.1.3.5), the generation of eye-gaze has
a high impact on the interaction too. It can be used to generate turn
taking-cues, greatly enhancing the efficiency and perceived quality of
the interaction with a virtual agent [CT99]. Andrist et al. [And+14]
present a humanoid robot that shows gaze aversions. A gaze aversion
at the beginning of an utterance is thereby ought to display internal
processing. By displaying aversions between two utterances the agent
tries to hold the conversational floor. In a corresponding interaction
study, the authors show that such a behaviour not only increases the
perceived thoughtfulness of the robot but also allows the robot to keep
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the turn longer before getting interrupted. An in-depth overview on
generation of eye-gaze for virtual agents and its effects is performed by
Ruhland et al. [Ruh+15]. All of these works investigate dyadic interac-
tions between an artificial agent and a person. Therefore, their need for
the distinction of addressees and conversational roles is limited.

However, in multi-party interactions, agents can have different con-
versational roles and a strong influence on their distribution. Mutlu
et al. [Mut+09] conducted an experiment in which a robot leads two
persons through a travel consultation. The robot leads the participants
through the interaction by talking and occasionally asking questions
about their preferences. While doing so, it communicates different con-
versational roles to the participants by applying gaze behaviour known
from HHI. As a result, the participants of the study nearly always ad-
here to the imposed roles. As a side note, Mutlu et al. [Mut+09] observe
that in some cases repeatedly addressed participants pass their turn to
the side-participant. In these cases the authors assume that the address-
ees feel uncomfortable with the other participant being ignored and try
to involve them in the interaction. In this set-up a wizard recognizes
speech and activates the robots reactions. The system can not automat-
ically recognize the situation to generate appropriate robotic behaviour.
A similar effect on the conversational role distribution can be achieved
with agents in virtual reality as shown by Pejsa et al. [PGM17]. In this
set-up, a participant is interacting with two virtual agents (all three
have fixed positions). By manipulating the agents orientation and gaze
behaviour the conversational role of the human participant is affected.
This manifests in adapting amounts of the participants total speaking
time. In this set-up a speech recognition system is used. The agents take
turns with the participant based on recognitions of single speech acts
and always show the same (inclusive or exclusive) behaviour. As the
agents ask questions and wait for an answer, no distinction of the parti-
cipants addressee is performed. Matsuyama et al. [Mat+15] introduce a
robot-mediator to a conversation that equalizes this distribution. Their
robot takes part in a conversation as a fourth participant. When one
person withdraws from the conversation it acquires the turn and then
draws the person back into the discussion through addressing. They
evaluate this behaviour by showing a recording of such an interaction
and letting people rate the robot’s behaviour. Observers rate the robot’s
behaviour as more acceptable and with a higher level of groupness,
when it acquires the turn and waits for approval before addressing the
other participant. While the generated behaviour is rated effective, the
model for the detection of withdrawing participants and appropriate
moment for intervention are only evaluated on a synthetic data.

People prefer robots that comply with group arrangements which
are known from HHI (as presented in Section 2.1.3.2). In a cross cul-
tural study Joosse et al. [Joo+14] confronted people with images of
a family in circular F-Formation with a robot positioned in changing
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distances to the groups centre. While they found different preferences
in people from China, USA, and Argentina the overall predominant
preference was for configurations where the robot stayed out of the
groups o-space, and somewhere within the p-space. This is in agree-
ment with how humans create F-Formations (Section 2.1.3.2). Similarly,
Hüttenrauch et al. [HTS09] perform a study in which people guide
a robot through their home and present different objects and rooms
to it. An analysis of the recorded interactions reveals that the parti-
cipants prefer to assume vis-à-vis formations and an o-space-size as
known from HHI. Finally, adaptivity of humans when it comes to main-
taining F-Formations, is utilized by a museum-guide robot presented
by Kuzuoka et al. [Kuz+10]. By changing its bodily orientation, the
robot can change its conversational group from a vis-à-vis formation
into an L-shaped formation. Thereby the groups focus can be directed
to the exhibit that the robot is talking about. While these works show
that people form and maintain conversational groups with artificial
agents similar to interactions with other humans, none tries to detect
conversational groups.

The presented works show that many of the observations drawn
from HHI are transferable to HAI. They show that it is possible for
artificial agents to influence the interaction according to their goals.
However, while showing the potential of HAI, the recognition of human
conversational cues is out of the focus of most of these works. To use
these effects autonomously, artificial agents first need to understand
the behaviour of their human interlocutors.

2.2.2.2 Automated Addressee Recognition

Addressee recognition is an important sub-problem in the recognition
of conversational roles and often investigated separately. As RQs 1 and 2
mainly focus on this problem, I present literature that specifically fo-
cuses on addressee recognition. In HHI, the identification of addressees
of an utterance is important for automatic conversation analysis. Jovan-
ovic et al. [JAN06] present a Bayesian Network classifier that predicts
the addressee of an utterance in a four-party meeting. They incorporate
lexical features of the utterance, information about the previous turn,
the type of meeting and how often participants look at each other. Using
all these features they achieve an accuracy of ≈ 82%. They can achieve
≈ 73% accuracy with context information—the speaker, addressee, and
dialogue act of the previous utterance—alone. Furthermore, they note
that gaze is not an important addressee indicator in their set-up. This
may stem from the circular seating arrangement in their corpus and
the existence of external gaze targets as whiteboards and notes. Akker
et al. [AT09] compare this approach with other recognition methods
using the same corpus and an adapted feature set. The authors show
that a simple, rule based addressee recognition can achieve a similar
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accuracy as the Bayesian Network approach—≈ 65% vs ≈ 62% using
their feature set. Furthermore, when using only information about the
gaze distribution of the speaker during the utterance, they already
achieve an accuracy of ≈ 57%. Both approaches use manually annot-
ated information as input for their addressee recognition systems. An
automatic addressee detection system for three-party HHI is presented
by Takemae et al. [TO06]. The authors use a gaze prediction from the
participants head rotations to calculate relative amounts and frequen-
cies of looking at people and mutual gaze between them. These meas-
ures are then combined using Naïve Bayes to estimate whether a single
person was addressed or the whole group. In case of a single addressee,
the person with the largest amount of gaze from the speaker is chosen.
After manually removing back-channel utterances, they achieve an ac-
curacy of ≈ 74% on their dataset. These works concentrate on HHI, so
no non-human entities can be addressed. Additionally, the participants
are equipped with microphones or placed at specific positions, so the
set-ups are rigid. Furthermore, only Takemae et al. [TO06] does not
require pre-annotated information to decide, to whom an utterance is
addressed.

Research on interaction with virtual agents focuses more on fully
automatic recognition systems that potentially can be used in inter-
actions. A mixed multi-party interaction between two humans and a
computer screen is presented by Turnhout et al. [Tur+05]. In this scen-
ario the two persons discuss an excursion through the Netherlands and
fill a corresponding form through verbal interaction with a computer
screen. The system is controlled by a wizard and the interactions annot-
ated afterwards to investigate addressee recognition in such a scenario.
By using a Naïve Bayes classifier to combine information about looking
behaviour, utterance features and the systems dialogue state, the au-
thors achieve an Area Under the Curve (AUC) result of ≈ 0.81 for the
decision whether the agent was addressed or not. They further observe,
that adding the screen into the interaction strongly biases the distri-
bution of the participants’ gaze towards the monitor. When speakers
address the monitor they focus it in ≈ 95% of the observations. When
they address the other participant, they look at them only in 42% of
the cases. A system that does not rely on pre annotated features and
therefore canwork autonomously is presented byHuang et al. [HBN11].
The used scenario is a travel planning set-up with a humanoid virtual
agent. During the study, the agent is controlled by a wizard. The sys-
tem approximates the participants Visual Focus of Attention (VFoA)
by detecting head rotations and uses duration and focus-change fea-
tures in combination with prosodic information. By applying a Support
Vector Machine (SVM), they achieve an accuracy of around 80% on
pre-segmented utterances. Both systems perform addressee recogni-
tion for each recognized utterance. An approach that decides on the
agent’s conversational role while the person speaks and acts accord-
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ingly is proposed by Vertegaal et al. [Ver+01]. The authors transfer
HHI-principles to HAI by investigating three-party HHI-discussions
and extracting addressing behaviours for their virtual agents. They use
their insights to create a multi-agent conversational system—two faces
on a screen—for interaction with single persons. Gaze tracking and
utterance analysis are used to decide the conversational role for each
agent and generate corresponding attentional behaviours (looking at
the speaker when addressed or otherwise at the addressee). In this
set-up the addressee is the agent that the speaker looks at during the
utterance and the other is the side-participant. While this system can
both recognize which agent is addressed and generate corresponding
behaviour, it is created to always interact with a single person. A fully
autonomous virtual agent, that can interact with groups of people, is
presented by Bohus et al. [BH11]. In this set-up the speaker of an utter-
ance is detected through sound source localization and the addressee
is defined as the speakers VFoA. Furthermore, long utterances and
non-understandings are assumed as not addressed towards the agent.
They suggest to combine their sound source localization with visual
cues to enhance their addressee detection.

Similar approaches are made in HRI research. A simple interac-
tion between two persons and robot—consisting of a camera and a
microphone—is presented by Katzenmaier et al. [KSS04]. In this scen-
ario one person presents the robot to the other, directs commands to-
ward it and discusses its advantages and disadvantages. In the analysis
of their recordings, the authors observe a similar effect as Turnhout
et al. [Tur+05]. When the presenter looks at the robot, the robot is
addressed in ≈ 65% of the observations. In the remaining observations,
the other participant is addressed. When the other participant is looked
at, the robot is almost never addressed. They combine an addressee
predictor that uses the presenters head orientation with one that used
acoustic features to achieve an accuracy of ≈ 92%. An interaction with
a humanoid robot can be found in the work of Jayagopi et al. [Jay+13]
and Sheikhi [She14]. This is a Wizard-Of-Oz (WoZ) scenario, in which
the robot performs a quiz with two persons. In this scenario, VFoA of
all participants and the robots dialogue-context information are used
to classify the addressees of utterances. With this feature combination,
an accuracy of ≈ 82% can be achieved, when the possible VFoAs are
reduced to only the participants of the interaction. Both systems do
not recognize the addressee during the interaction. A multi-modal ap-
proach is presented by Lang et al. [Lan+03] where potential interaction
partners in the vicinity of the robot are tracked. Using sound source
localization, the robot directs its attention towards a person that has
a high probability of talking. If the robot is additionally faced by the
person, it is considered addressee. A similar approach with a robotic
head is used by Skantze et al. [SJB15] in a three-party card game scen-
ario. They distinguish speakers by using close talk microphones and
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their addressees from the speakers VFoA. This interaction if further
investigated by Johansson et al. [JS15] to include different information
into the decision. From information about head poses, part of speech,
card movements, prosody and the robots dialogue state they train a
Multilayer Perceptron (MLP) that decides whether the robot should
react to an utterance or not. These systems use acoustic information to
detect the current speaker and information about this participant to
infer the addressee.

Most HAI-research in which addressee recognition is performed,
does that on the basis of utterances. The systems incorporate multiple
sources to decide whether a recognized utterance was addressed at the
agent or not. If people want to participate in such an interaction, the
need to equip themselves with a microphone or reside in the agents
Field of View (FOV). The agent, either assumes all observable people
to be part of the conversation or performs dyadic interaction with the
most prominent person.

2.2.2.3 Turn-taking behaviour generation

As seen in Sections 2.1.3.3 and 2.1.3.4 conversational roles and turn
taking are intertwined problems. An agent that interacts with another
agent necessarily conducts turn taking. Nevertheless, most systems do
not explicitly model this behaviour as such.

A few investigations concentrate on how an agent can generate be-
haviour to actively shape the course of the interaction. Skantze et
al. [SJB15] generate turn taking behaviours with their robot during
a card playing game and show that they can be applied effectively. They
can show that focusing on a participant after asking a question increases
the probability that this participantwill take the turn. They further show
that—by generating filled pauses or smiling and looking away—the
robot can successfully obtain a yielded turn and prevent others from
taking it. Finally, they observe that the robots gaze has an impact on
the next-speaker selection even if the robot is a side-participant. While
this system actively uses turn taking, it only does that after getting
addressed and to overcome its processing times.

Other systems investigate the correct detection of turn changes. To
better recognize the end of an utterance Bilac et al. [BCL17] apply
a multi-modal approach too. They recognize filled pauses and gaze
aversions produced by human interaction partners to better distinguish
between the end of a turn and hesitations. With this approach they can
reduce the number of interruptions made by the robot, allowing their
participants to produce longer utterances. A similar target is pursued
by Lala et al. [LIK18]. In this work, the authors use different types of
dyadic conversations with a remote controlled humanoid robot. They
train models to predict when a turn is transferred from the participant
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to the robot based on acoustic and linguistic features. These systems do
not model turn taking.

A multi-party interaction system with a turn manager is presented
by Żarkowski [Żar19]. In this scenario, a robotic head plays a trivia
game with two persons. Instead of always reacting to speech after a
short silence, the turn manager ensures that the robot has the conver-
sational floor before talking. It assumes to have the turn when the last
speaker looks at the robot or when silence persists. Furthermore, the
robot pays visual attention to both interaction partners and grants them
more discussion time after asking a question. With these changes, the
authors can increase the percentage of correct turn exchanges from
51.5% to 80.5%. An explicitly modelled turn taking system for an ar-
tificial agent is presented by Bohus et al. [BH11]. The agent classifies
peoples gaze and speech as turn management actions. The entity in the
speaker’s VFoA is perceived as addressed and obliged to take the turn at
the end of the utterance. If the addressee rejects the turn, the other par-
ticipant can take it—when the agent was not addressed but no one else
answered for a specific time duration it still can take the turn. The agent
accepts interruptions by yielding the turn. It looks at the speaker when
listening, at the intended addressee when speaking and in between
turns at the participant that ought to be the next speaker. This system
implicitly models the conversational roles speaker, addressee, and side-
participant. The act of taking a turn that is not claimed or yielding in
case of interruptions, can potentially repair misunderstandings in the
turn management. While this approach tackles multiple requirements
of conversations, it is only applied at the end of utterances, when the
conversational floor is transferred from one participant to another. To
generate behaviour during a turn, an explicit model and recognition of
conversational roles is additionally required.

2.2.2.4 Conversational Group Detection

Conversational groups and their detection in computer sciences are in-
vestigated from the side of HHI-conversation analysis as F-Formations.
Most approaches use the positions and orientations of copresent people
to estimate their probable affiliation to groups. Evaluations are per-
formed on corpora that show people freely communicate, create, and
change conversational groups in an open space—e.g. at coffee breaks
or poster presentations. Cristani et al. [Cri+11a] inject uncertainty into
their pose estimations and use a voting algorithm on a regular grid to
find o-spaces and the corresponding participants. They evaluate using a
synthetic and two realistic datasets to achieve a precision of 0.75 and a re-
call of 0.86. They simultaneously optimize these estimations to achieve a
better results than other state-of-the-art approaches. Setti et al. [Set+15]
formulate the problem of detecting F-Formations as a graph-cuts prob-
lem and present an extensive comparison of methods on multiple data-
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sets. Furthermore, their approach achieves the best performance in an
initial evaluation of recognizers on a new dataset [Ala+16]. In the work
of Zhang et al. [ZH16], the notion of F-Formation is extended to consider
ratified associates (Section 2.1.3.2). By detecting persons that are not full
participants of the conversation they can enhance the overall perform-
ance of F-Formation detectors. A multi-modal approach using accelero-
meter data and speech activity information from a worn sensor-device
is presented by Hung et al. [HEC14]. They use the data to recognize
dyadic conversational groups. Ricci et al. [Ric+15] and Varadarajan
et al. [Var+18] argue that the recognition of persons orientations and
affiliation to conversational groups can both benefit from their high in-
terdependency. They usemodel this interdependency to simultaneously
enhance both predictions. Similarly, Alameda-Pineda et al. [ARS18] ex-
ploit the inherent coupling of the human head and body pose together
with their temporal consistency and multi-modal data. They enhance
the prediction of persons head and body orientations by formulating it
as a matrix completion problem and show that this can further increase
the quality of F-Formation detectors. Furthermore, they confirm that
F-Formation detection works better on the basis of body orientations
than head orientations. As Alameda-Pineda et al. [ARS18] propose, the
results of F-Formation detection can be used for further, higher level
analyses of social interactions. Cristani et al. [Cri+11b] correlate the
physical distances of people in an interaction with their social relations.
They can show that there is a high correlation only when one considers
the geometric constraints that F-Formation impose on the situation.
None of these works considers the presence of artificial agents in such
an interaction.

2.2.2.5 Utilizing Conversational Groups

In the context of HAI, the detection of F-Formation is not the focus of
analysis. Therefore, the problem of recognizing conversational groups
is not reported on (this applies to the majority of work presented in
Section 2.2.2.2). Nevertheless, there is some work that tries to utilize
the properties of F-Formation to enhance the acceptability of robots.
Rios-Martinez et al. [RSL11] enable a robot to consider conversational
groups in its navigation. To this end they formulate the crossing of
personal distance and o-space as a navigational risk (the rink of acting
socially inappropriate). This allows their robot to successfully avoid
disturbing conversational groups. As a side effect, when the naviga-
tional goal is set to the centre of an o-space, the robot approaches the
group and positions itself automatically within the groups p-space. A
robot that actively seeks to join conversational groups and blend in is
presented by Althaus et al. [Alt+04]. It follows three simple rules: (1)
approach a person, (2) detect other persons and their orientation in
vicinity, and (3) maintain orientation and distance to the centre of the
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group. A similar effect is achieved by Repiso et al. [RGS18]. In this work
a force model is used to navigate a robot, accompanied by a person, to a
second person to form a group. The robot stops at a specific distance and
rotates towards the centre of the group to optimize engagement. The
authors use proxemics as their quality measure. A transfer from HHI
to HAI of how an F-Formation can be actively assumed is performed
by Yamaoka et al. [Yam+10] and Shi et al. [Shi+15]. The authors ana-
lyse how presenters position themselves when explaining an object to
someone else. They implement a behaviour that positions the robot in a
way that the robot and listener are in each other’s and the object in both
FOV. It furthermore, maintains a specific distance to the listener and
object which results in an L-shaped (see Figure 2.1) F-Formation. The
presented works utilize properties of F-Formation to enhance robotic
navigation or allow them to approach a group of persons. However,
they model these groups implicitly and do not detect F-Formations,
analyse their properties, or use them to distinguish interlocutors of the
robot from copresent people.

When it comes to interactions in virtual environments the genera-
tion of conversational behaviour between multiple agents and their
influence on humans is of high interest. Rehm et al. [RAN05] present a
virtual environment in which virtual agents can wander around and
create conversational groups. In a user study they can show that people
prefer joining open groups over closed formations (see Figure 2.1 for
a visualization of both kinds of groups). Cafaro et al. [CRA16] gener-
ate conversational behaviour of virtual agents and let persons join the
group or navigate to a goal behind it. In this scenario, the agents stand in
a circular F-Formation with differing distances while showing different
signals of friendliness within the group and towards the participant.
The authors of these works do not elaborate on how the detection of
conversational groups in their scenarios could be performed.

2.2.3 Summary

Artificial agents affect the behaviour of people in copresence. On the
one hand, people grand them a form of proxemics by assuming similar
distances as in interactions with other people. Although this effect
depends on the embodiment of the agent, it can be measured with a
wide range of embodiments. On the other hand, agents can actively
influence the interaction with a person. They can signal that they want
to enter or leave a focused interaction. They can assume and change
F-Formations. Within a group, they can regulate the distribution of
conversational roles through their gaze or by acquiring and yielding
conversational turns. Furthermore, human conversational groups can
be detected and the roles an agent assumes in conversations too. The
effects are measurable and the systems can achieve acceptable results
in their respective scenarios. However, there is little work on agents
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that combine all of these possibilities into one system. In the following
section I investigate whether such observations can be transferred to
interactions with devices and smart environments and how human
interaction with them may look like.

2.3 interaction with devices and smart environments

Making the distinction between focused interactions and unfocused
interactions in human interaction with devices and control of smart
environments is not as obvious as it is in HAI. As devices usually only
react to inputs, they are acted upon but can not actively participate
in a focused interaction. However, smart environments can utilize the
presence of inhabitants and use their actuators to engage in ways that
may or may not urge people to actively engage with them. To point out
this difference, I start this section with some examples of unfocused
interaction with smart devices. In the main part of this section, however,
I present how focused interaction with devices and smart environments
can be performed using different modalities and what implications this
has for addressee recognition.

2.3.1 Unfocused Interaction with Devices & Smart Environments

In contrast to HAI, it is not obvious how human unfocused interaction
with devices and smart environments manifests. However, as the Media
Equation applies to interactive and communicative devices, they can
use notions of space. Greenberg et al. [Gre+11] present a variant of
proxemics for human interaction in ubiquitous computing (ubicomp).
In contrast to Hall’s distances between people, this theory aims at inter-
actions between all kinds of entities. The authors distinguish different
dimensions—distance, orientation, movement, identity and location.
An architecture for the creation of interfaces that use this notion of prox-
emics is presented byMarquardt et al. [Mar+11]. The authors present ex-
emplary use cases which analyse peoples relative positions and posture
to adapt the way information is presented on an advertisement display
or for the control of music and games. The idea of an interactive advert-
ising display is further explored by Wang et al. [WBG12]. Their system
tracks people in front of it and presents products by trying to attract and
keep the peoples’ attention. The used strategies changewith the persons
relative position and orientation. Sørensen et al. [Sør+13] present a
multi-room music system. Based on peoples positions and movements,
the music can be automatically adapted to follow them through their
home. The control interface—on a smart phone—additionally adapts
according to their location to allow control of the music in their direct
vicinity. These systems adapt to the behaviour of people in copresence
without actively engaging.
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Additionally, one can take advantage of peoples receptiveness to
their surroundings to design information displays. Cha et al. [CLN16]
present a lamp that unobtrusively shows the inhabitants their amount
of physical activity by changing the transparency of its shades. Leich-
senring et al. [Lei+16] aim to raise people awareness of their of water
consumption. To this end, the sound that is produced by the flowing
water is captured, amplified, and played back. Similarly, Groß-Vogt
et al. [Gro+18] artificially increase the reverberation of a kitchen to
make the average electricity consumption perceptible to inhabitants.
A matrix of led lamps is used to signal recommendations for inhab-
itants to change light, door and blinds states in a work presented by
Domaszewicz et al. [Dom+16]. This way the information can be per-
ceived, but people are not forced to actively engage with it.

2 .3.2 Focused Interaction with Devices & Smart Environments

There is a lot of current research on human interaction with smart
homes, some ofwhich contain artificial agents. However, the recognition
of addressing behaviour and differentiation of addressed entities is
often out of focus. In the following, I give an overview of different ways
an inhabitant can interact with devices in a smart environment in a
focused way using different modalities.

2.3.2.1 Touch & Gui

Touch, especially in the form of switches and buttons, is the preval-
ent way of controlling technical devices. It promotes a strong coupling
between the area that is touched and the controlled functionality—one
switch controls one set of lights. When this coupling is dissolved, e.g.
by using remote controls and Graphical User Interfaces (GUIs), new
metaphors are required to communicate the addressee and functional-
ity. An interesting approach to smart home control with a single, yet
simple remote is presented by Sandnes et al. [San+17]. In this pro-
posal, the remote control—a disk-shaped device with dial and click
possibilities—recognizes the spatially closest device and provides a set
of manipulation possibilities within this context. Therefore, a person
can switch a lamp bymoving close to it and clicking, or change the radio-
volume by moving there and using the dial. This is a good example for
the trade-off that has to be made between simplicity and functionality
in the design of an interaction. The complexity of device selection—
the addressing—is traded for the possibility to control devices from a
remote location. The simplicity of the remote, at the same time, only
allows to control a small set of functionalities of a device.

This trade-off can be addressed by using GUIs. A GUI can ease the
device selection through different metaphors and afterwards present a
dedicated control interface for the device. The selection can be achieved
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by providing a menu, a 2D representation [PLH19],2 or a 3D repres-
entation of the premises [BRT02]. Borodulkin et al. postulate that the
3D view design is realistic and the interaction is intuitive. Augmen-
ted reality can be used to further widen these interaction possibilities.
Seifried et al. [Sei+09] present a system, in which the user sees a live
image of the current room, augmented with control menus on a couch
table-display. Thus, touching a device on the image allows access to its
controls and the live video provides a direct feedback of the results of
the interaction. A similar, but mobile approach is realized by Pohling
et al. [PLH19].3 In this approach a person can freely move around. A
smartphone application shows a live view from the phone’s camera,
augmenting the video stream with menus at the locations of control-
lable devices. GUIs are controlled by touch interaction. Either directly
on a screen or through pointing devices such as a computer mouse. Fur-
thermore, the interaction is not performed directly with the controlled
device, but with its representation in the GUI.

By projecting a GUI into the environment simple objects can be aug-
mentedwith further functionalities. Such a system that supports people
in preparing a meal is presented by Neumann et al. [Neu+17]. To this
end, a projector is used to highlight ingredients on the kitchen counter.
Cookware is augmented with information about as the current and re-
quired level of filling or temperature. The interaction is done implicitly
by performing the required cooking steps or explicitly by via touch and
gestures. A projected GUI for smart home control is presented by Pizza-
galli et al. [Piz+18]. In this case the projection allows the control of
basic functionalities like light and temperature via touch.

2.3.2.2 Gestures

When an interaction is desired, that is independent from the persons
position but not performed with a remote control, gestures can be used.
To switch lights and open or close curtains, Kim et al. [KK06] propose
eight distinct gestures. In this case, a gesture encodes the addressee
and desired action simultaneously. However, combining the selection
of the addressee and the action into one single gesture results in a steep
combinatoric growth, requiring a distinct gesture for each combination
of device and functionality. Therefore, most systems keep the addressee
selection and control action separated. Mayer et al. [MS14] extract the
addressed device from the inhabitants gaze using smart glasses. Sim-
ilarly, Budde et al. [Bud+13] detect pointing gestures using a Kinect.
Both suggest using a smartwatch or smartphone to further control
the selected device. Although they rely on a GUI, they allow selecting
the addressee with a different modality. The GUI can automatically
show the interface of the addressed entity. Carrino et al. [Car+11] use a

2 BCozy - A Location Based Smart Home User Interface by Marian Pohling et al. [BCozy]
3 Augmented Reality Smart Home Control App by Julian Daberkow et al. [BComfy]



36 principles of human interaction

dedicated pointing device to specify the addressee, which then can be
interacted with using gestures or speech. They argue that communica-
tion through deictic gestures, symbolic gestures and speech commands
is natural. Inversely, Kühnel et al. [Küh+11] select the addressee via
a smartphone screen and control the functionality through gestures.
This way they can use the same gesture for lowering the blinds as for
lowering the volume. An interesting alternative—presented by Verweij
et al. [Ver+17]—is to visualize unique movements, which a person can
follow with a gesture to activate a specific functionality. The addressee
is found by correlating the gesture with the displayed movement. In
this case, gestures do not need to be learnt beforehand and work with
all devices that can display some kind of motion.

To efficiently communicate using gestures, a vocabulary of gestures
is needed. Most of the presented systems, therefore, combine ges-
tures with other modalities to reduce the size of the required vocab-
ulary. Nevertheless, for most people this is not the primary way of
communicating—neither with devices nor with other people. There-
fore, such interactions create the need for prior training. Furthermore,
as the addressee is not necessarily inherent to the gesture, the problem
of communicating the addressee gains additional importance.

2.3.2.3 Speech

For verbal communication, people already have a huge vocabulary and
know how to use it to convey their intentions. Although, arbitrarily
complex information can be transmitted via speech, the addressee in
human conversations is often not included in the words but displayed
with other modalities or inferred from the context (Section 2.1.3.3).
Portet et al. [Por+13] perform a WoZ study, in which the participants
need to trigger some smart home functionalities during an interview.
To solve this task, most participants use indirect speech acts like ‘it’s
time to lower the blinds’ or direct commands like ‘lower blinds’. While
they say they would prefer directly stating their intent ‘to the home’
instead of speaking with a device or robot, it is not further investigated
how they would address the home. Modern artificial agents can not
cope with the complexity of free human speech. They need to narrow
down the possible interactions and simplify the problem. Therefore,
most IPAs are activated using a keyword. Although this keyword is not
always a name, it is a direct, verbal addressing from the agents point of
view. The speech that is following the keyword can be interpreted as
a command or question directed at the agent. For human interaction
with a smart home, Potamitis et al. [Pot+03] recognize combinations of
<agent> and <command> which can be surrounded and interleaved by
arbitrary words. The recognized <command> is then passed to the chosen
<agent>. The authors argue that interaction via speech is user-friendly
and that calling the agent by name is robust. Authors often do not
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further elaborate on how the distinction of addressees can be performed
in robot inhabited smart homes. In the work of Park et al. [Par+07] and
Park et al. [Par+08], different agents can be addressed to control a smart
home by ‘naming or pointing’. Similarly, Seung-Ho Baeg et al. [Seu+07]
andGross et al. [Gro+12] presentHRI scenarios in smart homes but give
no information on how they decide who is addressed. Other scenarios
present GUIs for smart home control that can be used with verbal
commands [VKH13; ZZC16] but do not distinguish between different
addressees. A study that investigates the addressing behaviour of naïve
users in a smart robotic flat is presented by Bernotat et al. [Ber+16]. The
study shows empirically which modalities and interfaces people prefer
to use for a set of daily tasks. It is not further investigated in which ways
the participants convey the addressee of their communication.

If one does not want to have a remote, gesture, or name for each
function of a smart environment, the coupling between addressee and
command needs to be eliminated. Therefore, command and addressee
need to be encoded separately. In contrast to touch, gestures and speech
in general do not contain the addressee. Therefore, the addressee needs
to be actively encoded in the command, localized using additional
modalities or inferable from the situation. While different ways of dis-
playing the addressee in communication with a smart environment are
presented, none of these works explores which metaphors naïve users
conceive in such a situation.

2.4 cross-cultural applicability

Most of the HHI-behaviours presented in this chapter are drawn from
observations of interactions between people from central European
or North American countries. Their applicability to interactions from
different countries or cultures is not necessarily given. Gaze beha-
viours and formations of conversational groups can vary strongly. Two
good examples for such cultural variances are compiled by Rossano et
al. [RBL09]: In question-answer interactions between native speakers in
Tzeltal—aMayan language spoken in Tenejapa, a region inMexico—the
participants sit side by side and almost never exchange gazes. On the
contrary, in similar interactions in Yèlî Dnye—spoken on Rossel Island,
in eastern Papua New Guinea—mutual gaze can be sustained even
during silence and speaker changes [RBL09]. This difference can be ob-
served in the way the participants of an interaction form conversational
groups. While people from Tenejapa prefer sitting side-by-side, people
from Rossel Island prefer sitting face-to-face. Furthermore, this entails
different ways of showing recipiency. As Tzeltal speakers do not see
the others face, the addressee regularly produces phrasal back-channel
acts, repeating whole parts of the previously said. Conversations in Yèlî
Dnye use an inventory of visual, facially performed feedback [RBL09].
According to Hayashi [Hay88], the rules for turn management can be



38 principles of human interaction

different too. Japanese speakers often deliberately talk simultaneously
for a duration of multiple sentences. They do this in a coordinated and
rhythmically synchronized manner. This behaviour is recognized as
supportive and emphasizing the harmony of the interaction. Amer-
ican speakers on the contrary, use simultaneous talk when competing
for the conversational floor. Such conflicting conventions can result
in misunderstandings, repair, and eventual adaptation of behaviour
between people. The turn taking system as presented in Section 2.1.3.4
on page 18, results from culture specific assumptions and must be adap-
ted when assumptions change. Nevertheless, it stays a coherent system
with simple rules. As Meyer writes: ‘[T]he resulting conversational
organization is by no means “chaotic” or “anarchic”. To the contrary,
it is not less well ordered and comprehensible than the classical pat-
tern.’ [Mey18, p. 304]. An artificial agent, designed with a specific
cultural background in mind and faced with unpredicted conventions
would make similar mistakes as people do in such a situation. In the
best case scenario the agent would need to recognize such mistakes and
adapt its behaviour—as people do. Although conversation depends
on the participants cultural background, similarities and patterns can
be found between the presented literature on HHI and HAI. In this
work I focus on the observability of addressing behaviour in smart
environments, the formation of conversational groups in HAI, and the
conversational roles an artificial agent can assume in such a situation. I
aim to create models that can work or be adapted for interactions with
people from different backgrounds. Nevertheless, the models presen-
ted in this work are biased towards the characteristics of interaction
between central European adults, as they are the main group of subjects
I have access to.

2.5 summary

The aim of this chapter is to create an idea of how people interact
with others and what their expectations towards an interaction with
an artificial agent, smart environment or device may be. I first give an
overview of how humans interact with other humans in Section 2.1. To
this end, I introduce what copresence is and the notion of proxemics
(Section 2.1.1) as a generally accepted partitioning of space around a
person with corresponding types of social interaction. In Section 2.1.2,
I collect observations on what copresence means beyond proxemics
and which kinds of interaction take place in unfocused interactions. I
give an overview of focused interactions in Section 2.1.3. After a defin-
ition of face engagements (Section 2.1.3.1), I present an inspection of
human interaction in conversations. This comprises how people form
and maintain conversational groups (Section 2.1.3.2), which roles they
assume within and regarding such groups (Section 2.1.3.3) and the
rules by which they negotiate these roles (Section 2.1.3.4). Finally, I
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discuss gaze as a prominent conversational cue in Section 2.1.3.5. In the
second part of this chapter, I present research on human interaction
with artificial agents (Section 2.2). To this end, I first establish a tax-
onomy of the agents that are relevant for this thesis (Figure 2.3). I show
that effects, known from unfocusedHHI, can be reproduced or similarly
observed in human interaction with artificial agents (Section 2.2.1). In
the context of focused interaction, I show the importance of the beha-
viour of artificial agents on the overall and perceived quality of HAI
(Section 2.2.2.1). Subsequently, I present how addressee recognition is
performed (Section 2.2.2.2) and how turn taking behaviour generation
can be modelled (Section 2.2.2.3). After summarizing how human con-
versational groups can be automatically detected (Section 2.2.2.4), I
show how conversational groups are harnessed in recent research on
human interaction with artificial agents (Section 2.2.2.5). In the third
section of this chapter, I deal with human interaction in present smart
environments (Section 2.3). I show how proxemics can be used formore
situated and automatic adaptation of device functionalities and inter-
faces (Section 2.3.1). In Section 2.3.2, I present work on focused human
interaction with smart environments (Section 2.3.2) and how different
modalities affect the problem of determining the addressee of commu-
nication. I conclude this chapter by expanding on the cross-cultural
applicability of the presented works, observations, and models and
establishing the bounds of generalizability of this thesis (Section 2.4).





Part II

ADDRESSEE IN COMMUNICAT IVE ACTS

In this part, I investigate human addressing behaviour in
interactions with smart environments and robots. To this
end, I evaluate the importance of different features for ad-
dressee recognition in interactions of naïve people with a
robot inhabited smart home. Furthermore, I present and
evaluate a visual approach for speaker detection and ad-
dressee recognition for a robot in interaction with a group
of people.





3
ADDRESS ING BEHAVIOUR IN SMART
ENV IRONMENTS

We tend not to recall the spacial organization of the event,
how we decided when it was our turn to speak, how we
organized ourselves when we did so and how the others
showed that they did, or did not understand what we said.
[Ken90, p. 1]

In this chapter, I investigate RQ 1: ‘Which behaviours in naïve human
interaction with a smart environment can be observed to distinguish
which agent is addressed with a deliberate communicational act?’. To
this end, I describe a study of naïve user interactions in a smart home
that was carried out jointly by the contributors of the CSRA project
[Ber+16]. The resulting corpus is published byHolthaus et al. [Hol+16].
On the basis of this corpus, I investigate how the available informa-
tion and different modalities correlate with the addressee for different
mundane tasks. I use the collected insights to create and evaluate an
initial addressee recognition model for multi-modal single user inter-
actions in a smart environment. Finally, I discuss the relevance of the
obtained insights for the research question of this chapter.

3.1 introduction

As discussed in Section 2.1.3, a conversation is a dynamic yet highly
organized process between the participants of a focused interaction.
People use multiple modalities, conversational cues and information
from the overall situational context to distinguish the addressee of a
conversational act. As people communicate with each other on a regular
basis, they have an elaborate understanding of which information needs
to be acquired, processed or inferred to reliably know the addressee of
speech. Speakers knowwhich information they must provide for others
to understand who their addressee is. If visitors want to change the
illumination settings of a smart environment, they are confronted with
a problem. They do not know how to control the environment. They
can only draw on their experiences and choose the control metaphors
that they think are the most appropriate. For people to be able to solve
such a problem, the control metaphor needs to be reasonably inferable.
A smart environment therefore, needs to provide control metaphors
that are obvious and memorable. A smart environment or artificial
agent needs to be able to interact efficiently with people who did not
undergo a special training to be able to understand and control it. By
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recognizing human conversational cues, they can better understand
the expectations of human interaction partners. If a smart environment
can correctly recognize the content and addressee of naïve inhabitants
communication, it can better fulfil their expectations. It can work as
expected.

In the literature about human interaction with smart environments
(summarized in Section 2.3) different ways are proposed, how a person
can select the agent to be addressed in a smart environment. While the
presented research evaluate the selection accuracy or task completion
rate, none investigates whether the chosen approach is one that a naïve
user spontaneously would have chosen. How naïve people convey
the addressee of their commands is not investigated. Furthermore, as
suggested in the introductory quote of this chapter, people find it hard
to explain which cues they use to understand and control an interaction.

Therefore, it is important to investigate which behaviours can be
observed in naïve human interaction with a smart environment to dis-
tinguish which agent is addressed with a deliberate communicational
act. We performed an initial attempt to such an analysis, with manually
extracted observations and a simple model [RK16]. In this chapter I
present a fully reproducible way of extracting observations of interac-
tions from a corpus, and a detailed analysis of the resulting data and
derived models.

3.2 interaction corpus

We collected a corpus of multi-modal interactions of naïve users with
a robot-inhabited smart flat [Hol+16]. It was compiled in conjunction
with a user study in the CSRA [Ber+16]. In the following, I call this the

address-
ing study

� addressing study. The aim of the addressing studys was to observe how
naïve users would solve everyday tasks in a smart environment and
whom they would address for that. This corpus constitutes a unique
basis for investigating how people convey their addressee in such a
situation. Therefore, in this section I present the user study and original
corpus, and how I extract the data needed for the following investigation.
For further information regarding the original corpus and study, please
refer to the corresponding publications [Hol+16; Ber+16].

3.2.1 Experimental Set-up

The study presented by us [Ber+16] was created to investigate how
naïve people would address a smart robotic apartment when solving
everyday tasks. In particular, the questionwaswhich entity (robot, light,
apartment) would be addressed and which modality (speech, gesture,
touch) used thereby. It was conducted in the CSRA in a collaborative
effort by the contributors of the corresponding project. The layout of
the apartment during the study can be seen in Figure 3.1. The 47 study-
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Figure 3.1: The layout of the CSRAduring the study. The robot (green) stayed
at its position in the living room. The safety person sat in the arm-
chair (yellow). The lamp from the first two tasks is 𝐿𝐻 (purple)
and the lamp from the seventh task is 𝐿𝐹 (orange).

participants (25 women, 22 men, 18 ≤ age ≤ 50, 𝜇𝑎𝑔𝑒 = 25.26, 𝜎𝑎𝑔𝑒 =
5.69) were recruited from the campus of Bielefeld University, gave
consent to the recording of video and audio material and received 6 €
compensation for their attendance.

3.2.1 .1 Study Procedure

An experimenter brought the participants into the apartment, intro-
duced them to the task, and left the apartment for the duration of the
task. After completion, the same experimenter escorted the participant
to the post-trial procedure, which encompassed a questionnaire, the
possibility to freely ask questions, and the monetary compensation.
A second experimenter (WoZ) observed the participants’ behaviour
during the trial from an adjoining room and executed reactions of the
apartment or the robot as required (Section 3.2.1.4). Due to safety reas-
ons a third experimenter needed to stay in the apartment during the
trials. This person monitored the robot, was introduced as such, and
did not further interfere with the experiment.

3.2.1 .2 Briefing

The experimenter escorted each participant through the entrance, hall-
way, and kitchen into the living room (Figure 3.2), while introducing
the apartment (a map can be seen in Figure 3.1). The participants were
told they are in a smart flat, which rooms are the hallway, kitchen and
living room, showed the robot and explained the role of the security
person. Whenever a room was mentioned by the experimenter, the
ceiling light of this room was turned on by the wizard for a short time.
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Figure 3.2: A scene in the living room, during the introduction of a participant
from the perspective of camera 𝐶1 (top) and the cameras 𝐶2, 𝐶3
and 𝐶4 (bottom left to right). The camera positions can be found in
the apartmentmap (Figure 3.1). From left to right in 𝐶1 can be seen:
the security person (yellow) with the emergency shut-down, the
lamp from the seventh task 𝐿𝐹 (orange), the experimenter (grey)
introducing the robot, the participant (pink) of the trial, the robot
(green) waving at them. The screens display the text ‘Welcome’.

When the robot was introduced, it raised its left arm and waved. Seven
mundane tasks, written on a set of cards, were handed to the participant.
The participant was told to solve the tasks intuitively and in the order
given by the cards. It was forbidden to contact the security person, or to
use light switches and remote controls. Then the experimenter escorted
the participant back into the hallway, left the apartment and waited
outside to be approachable in case of a problem.

3.2.1 .3 Participant’s Tasks

The tasks of the addressing studys are specifically designed tomeet a set
of requirements. (1) They had to be reasonably simple and (2) required
in a home environment on a regular basis. At the same time (3) they
needed to be diverse enough to allow participants to consider different
approaches and addressees for their solution. To further increase the
variability of the results, some solutions were discouraged. To this end,
light switches were non-functional, and there were no visible clocks
and radios. Furthermore, the participants were prohibited to use their
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own clocks or phones. After the introduction, the participants started
in the hallway (Figure 3.1), holding their task-cards in their hands (a
list of the tasks and their order can be found in Table 3.1).

Id A V Task

1 1 Turn on the light in the hallway, then go to the kitchen.
2 2 Turn off the light in the hallway.
3 3 Listen to music.
4 6 * Find out if a parcel was delivered.
5 4 * Find out if there was a phone call.
6 5 * Find out the current time.
7 7 Alter the brightness of the floor lamp in the living

room without talking.

Table 3.1: The tasks that participants needed to solve in the study. Id: shows
the original order of the tasks. A: shows the alternative order of
the tasks that was used for randomization. V: marks the tasks that
elicited a verbal response of the apartment or robot in the verbal
condition with a ’*’.

The first two tasks, switching light in the current and adjoining room,
allow insight on how people address daily appliances from different
distances. The third task, listening to music, requires the participants to
control an entity that has no visible embodiment. Tasks (4-6) require
the retrieval of information, which is expected to encourage verbal
interaction. The last task (7) allows for a continuous control of the
result through a closed-loop interaction while enforcing a non-verbal
solution. Within the information retrieval tasks, the order of was altered
(4, 5, 6 vs. 5, 6, 4). The order of the remaining tasks fixed to prevent the
information retrieval tasks from biasing the solution of the first three
tasks towards verbal interaction.

3.2.1 .4 Task solution

The wizard audio-visually observed the participants’ actions and ac-
tivated the corresponding actions. A task solving action was triggered,
when the wizard observed an action of the participant and recognized
it as dedicated to the solution of a task. Additionally, the wizard chose
whether the robot or apartment should react to the action. The reaction
was split into a verbal and a non-verbal condition for the information
retrieval tasks (4-6). In the verbal condition, the robot or apartment
verbally answered the questions. In the non-verbal condition, the apart-
ment printed information on the screens (seen Figure 3.2) and the robot
used deictic gestures.
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3.2.2 Recording & Annotation

The trials were observed by the wizard through four parallel video
streams (Figure 3.2) and an audio stream, which all were recorded for
later analyses. Additionally, system events were recorded using the com-
munication middleware [RSB]. System recordings contain all control
instructions from the wizard, determining when the wizard decided
that a task was solved, which addressee (robot or apartment) they selec-
ted and which functionality was executed subsequently. Furthermore,
they contain two additional audio streams (hallway and living room),
motion sensor observations, and power consumption data. Finally, re-
cordings inform about when doors, cupboards, drawers and windows
were opened and closed.

For the manual annotation of the corpus, the ELAN Linguistic An-
notator by Birgit Hellwig [ELAN] was used. To this end, we created
overview videos by combining the four camera perspectives (Figure 3.2)
and the audio stream into a single video file. Furthermore, we created
annotation templates in coordination with the final annotators and pre-
filled themusing a subset of the recorded system events. An overview of
the kinds of generated and manually annotated tiers of interest for this
chapter can be found in Table 3.2. A detailed description of the record-
ing and annotation process is presented by Holthaus et al. [Hol+16].

Tier Type Annotated

Addressee final C *
Focus of attention C *
Expression (facial, gestural, verbal) C *
Expression specific F *
Method C *
Method specific F *
Speech form of address C *
Speech politeness C *
Speech type of sentence C *
Speech specific F *
Speech intention C *
Study progress coarse C *
Study progress fine C *
Wizard C

Table 3.2: A selection of the tiers, available in the annotations [ELAN]. Type
depicts the kind of annotation: categorical (C), or free-text (F);
Source depicts whether the tiers were manually annotated (*) or
extracted from system events. A detailed table with all tiers can be
seen in Table A.1 on page 139.
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3.3 analysis of addressing behaviour

Our original aim with the study was to investigate how naïve users
would intuitively interact with a robot inhabited smart home to solve
simple daily tasks [Ber+16]. To this end, interactions were recorded, an-
notated and analysed. The study showed that the participants preferred
to solve the given tasks using speech when allowed. The method used
to solve the tasks 1 − 6 was speech in more than 50% of the cases in
each task separately. In case of information requests and control of the
radio—which lacks an embodiment—the proportion of verbal solutions
was much higher (88%). When an appliance had to be controlled, and
it had a distinct physical location and extent, people more often ad-
dressed it directly than through some other entity (56% in tasks 1 and 2
and 89% in task 7). On the other hand, the robot was addressed around
30% of the time in the information request tasks, while only 10.6% in
the lighting tasks and 12.8% in the radio task. Finally, the addressee
was unspecific in a high proportion of the task solutions (37% in tasks 4
and 6 and 52% in tasks 3 and 5). In the original publication [Ber+16]
we analyse which entities of a smart home people address to solve
different kinds of daily tasks and which modalities they use thereby.
In the following, I use the resulting corpus to investigate how people
address these entities.

3.3.1 Observations of Addressing Behaviour

The corpus annotations are a good starting point for the investigation
of how people display the addressee of their deliberate communication.
To this end, I further examine the participants’ behaviour at themoment
of addressing. This moment can be determined from the tiers Wizard
and Study progress fine (Table 3.2). Study progress fine shows when the
participants attempted to communicate with their environment. Such
time periods are tagged as Attempt to a solution. The annotation tier Wiz-
ard is automatically generated from the reactions of the Wizard during
the trial. It depicts the point in time, where the Wizard activated the
solution of a task. Furthermore, it tells which the entity—robot or apart-
ment—was responsible for its realization. The action implies that the
wizard has the necessary information to understand that a task solution
is attempted and which addressee is more appropriate. Furthermore,
it means that the wizard perceived the action of the participant as in
so far complete, that a reaction is advisable. This makes the time of the
Wizard’s action the best moment for the smart environment to react to
the communication of an inhabitant from an observers point of view.
To extract observations of interaction in a fully automatic and repro-
ducible way, I apply the following approach: For each Wizard action
the corresponding Attempt to a solution annotation is searched and the
associated manual annotations extracted. To correspondwith a solution
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attempt, a wizard action needs to overlap with it in time or happen
not later than 2 s after its end. The maximum of 2 s was chosen on the
basis of a sighting of the recordings, which revealed that annotations
with a higher difference occurred due to misunderstandings. Repeated
wizard actions, that correspond to the same solution are ignored for
the same reason. A visualization of the matching process can be seen
in Figure 3.3.

Study progress fine a b c

Wizard 1 2 3 4 5

Figure 3.3: Matching between actions in the Wizard tier and instances of At-
tempt to solution (highlighted in orange) in the Study progress fine tier.
Green time periods highlight wizard actions that can be assigned
to a task solution (1 matches a, 2 matches b, and 3 matches c).
Blue wizard actions (4) are not assigned because the task solution
is already observed (3). Red wizard actions (5) are not assigned
because they are more than 2 s after a solution attempt. Vertical
lines show the boundaries of time periods for better comparability.

The resulting annotations are further filtered: Entries whereAddressee
final is not discernible (the annotator could not see the person) are unus-
able for this investigation and therefore removed. Furthermore, in case
of redundant entries, only one attempt is kept. Redundant entries arise
from trials that were annotated by multiple raters or from repeated
solutions to the same task by the same participant. This results in a set
of 307 annotations of peoples addressing attempts.

In contrast to this approach, the initial evaluation [RK16] was per-
formed based on the information at the moment of the wizards actions
for all actions of the wizard. Missing annotations of addressee and
attention were subsequently manually annotated. This resulted in a dif-
ferent set of observations. I use the approach presented in this chapter
to achieve reproducible and fully automatic results.

To assess the quality of the annotations, I calculate the inter-rater
agreement for the extracted observations. Seven trials contain annota-
tions of both raters and therefore, can be used for this analysis. As
inter-rater agreement, I calculate Cohen’s Kappa [Coh60] using the
categorical annotations. Free form annotations were not sufficiently
formalized beforehand and therefore cannot be compared objectively.
Furthermore, the tiers Study progress coarse, Study progress fine, and
Speech intention are constant after the data extraction. They are excluded
from this calculation. The annotators achieve a good [Alt91] Kappa of
𝜅 = 0.78.
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3.3.1 .1 Content of Observations

In the following, I describe which information is extracted from the
addressing observations in the original data to form the addressing
corpus. Annotations and tiers in the original corpus will be called values
and variables in the extracted corpus to clarify the distinction.

First of all, information from the tiers Study progress coarse, and Study
progress fine can not be used in the observations because their values are
always the sameduring task solution attempts. Similarly, Speech intention
is always Communication attempt or not applicable in the observation. It
is subsumed by Method. Expression specific is empty in most cases and
therefore ignored too. The following variables (abbreviations in square
brackets) are derived from the manually annotated tiers:

addressee final reduced [ar]: Is created from Addressee final by
combining parts of the apartment into a single group Parts of
the apartment. This encompasses furniture, switches, and screens
but not the task relevant lights. Furthermore the entities self (ad-
dressed four times) and not discernible (never addressed) are
included in Unspecific. The mapping can be seen in Table A.2.
This is a reasonable pooling that allows quantitative analyses by
greatly reducing the amount of possible addressees. The resulting
variable can assume five different values: Unspecific [U], Parts of
the Apartment [Ap], Robot [R], Light in the hallway [LH], or Floor
lamp [LF].

focus of attention reduced [fr]: Is created from Focus of atten-
tion. Targets are grouped with the same mapping as in Addressee
final reduced (Ar). The entity self is focused eight times and not
discernible is focused once.

addressee equals focus [aef]: Is created by checking whether the
annotations in Addressee final and Focus of attention have the same
value.

expression reduced [er]: Is created from Expression (facial, gestural,
verbal) by clustering emotions into negative, neutral, and positive.

method [m]: Encodes the used modality—speech, gesture or touch.

method specific reduced [msr]: Is created by extracting the usage
of gestures (clap, wave, wipe, and point) from the textual descrip-
tions in Method specific.

speech form of address [sf]: Tells whether the entity is named or
not, when speech is used.

speech politeness [sp]: Tells whether the phrasing is polite or not,
when speech is used.
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speech type of sentence reduced [str] Is extracted from the tier
Speech type of sentence. It can take the values Command, Question,
or Statement.

speech phrasing [sph]: Is extracted from the tier Speech type of sen-
tence. It tells whether a full Sentence is said or single Words.

speech specific reduced [ssr]: Is drawn from the speech of the par-
ticipants, encoded in Speech specific, by detecting the first appear-
ance of addressing terms. It can take the values you, light, robot,
and none.

Furthermore, the following variables are extracted from annotations in
the Wizard tier and meta information about the trial:

wizard addressee [aw]: Encodes which entity is chosen by the wiz-
ard to react to a communication attempt. It can take the values
Apartment, Floor lamp, or Robot.

wizard task [t]: Tells which task is solved in a specific observation.

condition [c]: Encodes whether the participant is in the verbal or
non-verbal condition.

order [o]: tells whether the tasks were be solved in normal or altern-
ative order.

participant id [pid]: Numerically identifies the participant.

The resulting 16 dimensional set of observations of human interactions
with a smart environment is theaddress-

ing corpus
� addressing corpus that is used in the

following analyses.

3.3.2 Predictability of Addressee

In this chapter, I want to find out how naïve people narrow down the
addressee of their communicative actions. With the newly generated
corpus of addressing-behaviour observations (addressing corpus), I
can perform this investigation. The addressee in each observation in
this corpus is encoded in the Addressee final reduced-variable. This is the
dependent variable that needs to be predicted. Other variables encode
observable behaviour of the participants or information that is not part
of the displayed behaviour. Both types of information can correlate with
the choice of addressed entities. In the following sections, I investigate
the connections between the variables of the addressing corpus with a
special focus on Addressee final reduced.
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3.3.2.1 Correlations between Variables

For a better understanding of the addressing corpus, I test the variables
for statistical independence. To this end—for each combination of two
variables—a contingency table is created. Applying the null hypothesis
that the rows and columns of the table are independent, the variables
are tested for independence and a level of significance is calculated. The
significance tests are performed using Pearson’s chi-square test with
Monte Carlo simulation.1 The Monte Carlo simulation is performed to
account for small expected cell counts for some variable combinations.
The resulting p-values are binned into intervals and visualized in Fig-
ure 3.4. To better understand the impact of correlations, I additionally
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Figure 3.4: The p-values obtained from Pearson’s chi-square test with Monte
Carlo simulation and 1e+05 replicates, binned into intervals. Small
p-values (blue and white colours) for a combination of variables
suggest that there is a correlation between them. The variables are
sorted and abbreviated as presented in Section 3.3.1.1.

examine the effect sizes (association) between the variables. To this end
Cramér’s Ṽ2 is visualized in Figure 3.5. The following observations can
be made from correlations and effect sizes between the variables:

addressee final reduced [ar]: The dependent variable shows cor-
relations with most other variables in the corpus. The only ex-
ceptions are Order [O] and Expression reduced [Er]. The strongest
effect size can be found in combination withWizard addressee [Aw]

1 using chisq.test from the stats package (v3.5.1) in R [stats] with 1e+05 replicates.
2 Cramér’s V with bias correction (Cramér’s Ṽ) is used to prevent overestimation.
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Figure 3.5: The Cramér’s Ṽ for each combination of variables in the addressing
corpus. High values (red) represent high association (strong effect
size), low values (blue) represent low association (weak effect
size). The matrix is symmetric and has a value of 1 on the diagonal
as �̃�(𝐴, 𝐵) = �̃�(𝐵, 𝐴) and �̃�(𝐴, 𝐴) = 1. The variables are sorted
and abbreviated as presented in Section 3.3.1.1.

and Focus of attention reduced [Fr]. Furthermore, Wizard task [T]
shows a considerable effect size. This confirms that the wizard
and annotators recognize the participants’ addressee in a similar
way and that the task at hand has an influence on the addressee—
as expected in the study design. The Participant-Id [Pid] is a strong
cue for the recognition of the addressed entity too, showing that
participants had different preferences. Furthermore, the strong
correlations and effect sizes with Method [M] and the speech re-
lated variables [Sf, Sp, Str, Sph, Ssr] show that these can be used
as predictors too.

focus of attention reduced [fr]: This shows correlations and ef-
fect sizes that are similar to Addressee final reduced [Ar]. This obser-
vation supports the expectation that they are strongly correlated.

addressee equals focus [aef]: Knowing this value together with
the participants’ focus of attention is informative for addressee
inference. However, it depends on the addressee and therefore
can not be directly observed. The correlations with Focus of at-
tention reduced [Fr] and Participant id [Pid] indicate that whether
an addressed entity is looked at strongly depends on the entities
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involved in an interaction. The independence between C and Aef
is in disagreement with the results in the initial evaluation [RK16].
This has mainly two reasons. (1) The original analysis was done
based on a reduced set of addressees (similar to Ar). (2) The
automatic corpus creation process 3.3.1 additionally produces not
exactly the same observations as the manually annotated obser-
vations [RK16].

method & speech [msr, sf, sp, str, sph, ssr]: All the method and
speech related variables show similar correlations. Nevertheless,
differences in correlations and effect sizes are still present. Fur-
thermore, a compound effect from the choice of the modality is
possible. This suspicion is confirmed by the correlations between
Method specific reduced [Msr]—which encodes gestures—and the
speech specific variables. Nevertheless, as the effect sizes between
these variables and the addressee vary, they still can provide in-
formation that is not encoded in the chosen modality. A short
inspection by only considering the verbal part of the dataset shows
that the speech based variables still strongly correlate with ad-
dressee after removing the influence of Method (not visualized).
This means that the type of gesture, the chosen sentence, the po-
liteness, and the form of addressing all inform about which entity
is addressed.

participant id [pid]: correlates with all variables except Wizard task
[T]. The non-correlation with the task and the strong correlations
with Order and Condition result from the study design. The other
correlations suggest that the participant’s preferences can have a
strong influence on the interaction.

other variables [aw, t, c, o]: The variables Wizard addressee [Aw],
Wizard task [T], Condition [C], and Order [O] are inherent to the
study and can not normally be used directly for addressee recog-
nition. Nevertheless, they show some interesting correlations. The
strong correlations of Wizard Task show that the task at hand is
important for the way participants approach an interaction. The
correlation of Condition [C] with the addressee shows that the
participants adapt to the capabilities of their environment.

To sum up, this analysis shows that there are multiple cues pointing at
the addressee of naïve users communication attempts in a smart envir-
onment. While the task at hand influences which entity is addressed,
the participant’s focus of attention and chosen modality are strong
hints for its recognition. Furthermore, multiple other cues that can be
considered to further narrow down the addressee.
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3.3.2.2 Addressee and Attention

In the previous section, a high of correlation and the strongest effect size
can be seen between the addressee and focus of attention. In this section,
I further investigate the distributions of these variables. The frequencies
of Addressee final reduced and Focus of attention reduced are visualized in
Figure 3.6. It can be seen that the entities are not addressed equally often.
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Figure 3.6: The reduced set of entities, as they can be observed in the address-
ing corpus, for the variables Addressee final reduced [Addressed] and
Focus of attention reduced [Attention]. Addressees are distributed
on the x-axis (Unspecific [U], Parts of the apartment [Ap], Robot [R],
Light in the hallway [LH], and Floor lamp [LF]).

Although, Parts of the apartment [AP] combines different addressees, in
more than 76.55% of the interactions, the addressed entity is Unspecific
[U], Robot [R], Light in the hallway 𝐿𝐻 [LH], or Floor lamp 𝐿𝐹 [LF]. Addi-
tionally, in Figure 3.7a it can be seen that the distribution of addressees
is different for the task sets 1–2, 3–6, and 7. We [Ber+16] suggest that
there are multiple reasons for this distribution. (i) The study design
requires the participants to control embodied entities in tasks 1, 2, and
7. In such cases people tend to directly address the entity that needs to
be controlled, which results in the high proportion of addressed Light
in the hallway and Floor lamp. Furthermore, (ii) when participants do
not address the controlled device directly they address something that
resembles a control interface (e.g. screens and switches) or an entity
that may be able to control the device for them (like the robot). The
same applies to cases where no embodiment for a functionality can be
spotted as in task 3. (iii) If the participants need to retrieve information
(as in tasks 4–6) they prefer addressing an entity that may be able to
provide information. One option in such cases is the robot. However,
especially in the non-verbal condition, where the answers are presented
on the screens, people often interacted with the screens. Additionally,
the addressee is often Unspecific [U] in the tasks 3–6. The participants
addressed something, often verbally, but it is hard to tell what because
they spoke into the room or towards the ceiling. This suggests that they
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addressed the apartment as a single entity or a non-embodied agent,
which they expected to exist and be able to control the apartment.

In addition to the distribution of addressed entities, Figure 3.6 shows
how often they were the participant’s focus of attention during in-
teractions. The similarity of the distributions confirms the observed
correlation between the variables. Calculating the overall proportion
of observations with matching addressee and attention (87.3%) fur-
ther verifies this observation. This is in sync with the literature, as
people look at their counterpart when they interact (Section 2.1). The
equality between addressee and attention is represented by the vari-
able Addressee equals focus [Aef] in the corpus. A visualization of the
distributions of Addressee equals focus [Aef] for different Focus of attention
reduced [Fr] with the corresponding confidence intervals can be found
in Figure 3.7b. This visualization suggests that the addressee in the
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Figure 3.7: (a) shows proportions of Addressee final for different Wizard task.
The colour codes for the different entities can be found in 3.7b.
(b) shows the probability of matching Addressee final and Focus of
attention given Focus of attention reduced for the addresseesUnspecific
[U], Parts of the apartment [Ap], Robot [R], Light in the hallway [LH],
and Floor lamp [LF]. The bars are augmented with 95% confidence
intervals.

observed interactions is predominately equal to the focus of attention
for all types of addressees. A difference can be found between interac-
tions with Robot, and Unspecific or Parts of the apartment. The robot is
always addressed when looked at in this corpus. The difference may be
caused by the diverse embodiment of the anthropomorphic robot and
the devices, switches, and screens that are combined in Parts of the apart-
ment. These different embodiments result in differently strong social
reactions. The lower equality of addressee and attention for Unspecific
may additionally be caused by the inherent difficulty of recognizing
Unspecific as addressee or focus of attention. Differences between the
other entities are within the confidence interval.
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3.3.2.3 Summary

In this section I investigated the interdependences of the variables of
the addressing corpus showing observations of human interactions
with changing entities in a smart environment. I have shown that fo-
cus of attention not only correlates with addressee with a strong effect
size but is predominantly equal to the addressee in many interactions.
Knowledge about peoples attention is therefore informative of their
addressee. Another information that can indicate the addressee is the
modality (Method [M]) that the person uses to conduct this interaction.
Naturally, the content of speech—if applied—informs about the inter-
action and therefore the addressee too. On the one hand, the addressee
can directly be stated. On the other hand, properties like the type of the
used sentence, the politeness, or the form of address can narrow the
amount of probable addressees. When people interact using gestures,
the type of gesture can be informative—to a small amount. However, it
can not be assumed that the variables of the corpus independently con-
tribute to addressee recognition. Naturally, the Method that is applied
by a participant always limits the options for method-specific—speech
and gesture related—variables. Furthermore, dependencies between
variables can be caused by deeper relations rooted in interaction or other
properties of the interaction that are not encoded in this corpus. How
the variables can be utilized for addressee recognition is investigated in
the following section.

3.4 addressee modelling & recognition

In this section, I evaluate the recognizability of the addressee in in-
teractions of the addressing corpus. To this end, I create models for
addressee recognition and evaluate them using subsets of the corpus
variables. The chosen subsets represent different capabilities of an auto-
matic recognizer for the variables. Because of the high dimensionality
of Addressee final and Focus of attention, their reduced versions Addressee
final reduced (Ar) and Focus of attention reduced (Fr) are used in this
section.

3.4.1 Modelling Addressing Behaviour

I use three different Bayesian Network structures to evaluate the recog-
nizability and deepen the understanding of the interdependencies of
the corpus variables. Bayesian Networks are especially suitable for this
purpose. On the one hand, their structure can be used to impose or
interpret the reasoning behind recognition results. On the other hand,
they can cope with missing or uncertain input data and, therefore, be
used in changing environments.



3.4 addressee modelling & recognition 59

The most simple network is based on the observation that addressee
and attention are strongly correlated. In this baseline model (BF), Focus
of attention reduced [Fr] is conditionally dependent on Addressee final
reduced [Ar] (𝐴𝑟 → 𝐹𝑟). A graphical representation of the model can
be seen in Figure 3.8. Because of the distribution of addressees and

Ar Fr

Figure 3.8: Simple Bayesian Network structure (BF) that uses only Fr to infer
addressee. The nodes depict variables in the corpus, the arrows
show dependency relationships. The colour of the arrow (blue)
matches the network colour in further analyses. The output variable
Ar is highlighted in purple.

the high probability of equality between addressee and focus, it can
be expected that this network always returns the participants’ focus of
attention as the most probable addressee. If Focus of attention reduced
[Fr] can not be observed, the resulting addressee is the overall most
probable addressee. As can be seen in Figure 3.6, this is Unspecific [U].

For the second and third Bayesian Network, I use all variables of
the corpus. Based on expert knowledge about the study and the ob-
servations made during the analysis of correlations (Section 3.3.2), I
manually craft the structure of the BN network. A detailed reasoning for
the chosen structure is presented in Figure A.1. The resulting structure
(shown in Figure 3.9a) is intuitive and in agreement with the observed
correlations (see Section 3.3.2). Not all correlations are represented
directly in this network as this would create circular dependencies
within the graph and amplify the effect of correlations within the in-
put variables—e.g. between Method and the speech variables. However,
other plausible configurations can be created.

The third network structure—BA—is automatically extracted from
the corpus data using the aHill Climbing approach.3 The structure of BA
can be seen in Figure 3.9b. It is interesting to examine the automatically
extracted structure and compare it to the manually created model and
intuition. Both networks have a common core structure:

𝐴𝑒𝑓 → 𝐹𝑟 ← 𝐴𝑟 → 𝐴𝑤

Furthermore, they both show the connection between modality and
gesture (𝑀 → 𝑀𝑠𝑟). This suggests that these connections are character-
istic for the scenario and data used in this chapter. The observed strong
interdependence between the speech related variables can be found in
the auto generated network too, although in a different structure. In
𝐵𝐴 the correlation between addressee and the speech related variables
is represented by Sph → Ar. The only speech related information con-
sidered for addressee recognition is, therefore, whether the participants

3 Using bnlearn::hc from the bnlearn package (v4.4) in R [bnlearn] with 1000 restarts
and 1000 perturbations.
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(a) Bayesian Network structure (BM) created based on analyses in Section 3.3.2.
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(b) Bayesian Network structure automatically extracted from corpus data (BA).

Figure 3.9: Manual (BM) and auto-generated (BA) Bayesian Network struc-
tures. The nodes depict variables in the corpus, the arrows show
dependency relationships. The colours of the arrows match the
network colour in further analyses (green for BM, red for BA).
The node positions are fixed for better comparability between the
networks. Node styles depict their type: The output variable Ar
is purple, Speech related nodes orange, Visual nodes yellow, and
non-observable nodes are gray with dashed outlines.

use full sentences, single words, or no verbal interaction at all. When
all input variables are observed, the addressee is inferred from {Aef, Fr,
Aw, Sph} only. Method only contributes when Str and Sph are unknown.
Furthermore, the connection

𝑀𝑠𝑟 ← 𝑀 → 𝑆𝑡𝑟 → 𝑆𝑝ℎ → 𝐴𝑟

suggests that the only information in method that hints at the addressee
is whether speech is used or not. Similarly,

𝐶 ← 𝑃𝑖𝑑 ← 𝑂 ← 𝑆𝑓 ← 𝑆𝑝ℎ → 𝐴𝑟

are chained in a way that an observation can provide information for
addressee recognition only if all other variables between it and Ar are
unknown. The participants’ expressions (Er) are independent from
other observations in the corpus according to BA.

For comparison, I additionally create a Random Forests4 based clas-
sification model—RF.

4 Using randomForest package (v4.6-14) [randomForest] in combination with the mlr
package (v2.13) [mlr] in R.
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3.4.2 Evaluation Procedure

For the analysis of recognizability of addressee Addressee final reduced
[Ar] is used as the target variable. I compile four sets of input variables
to represent different capabilities of the underlying system. The first set
Speech represents data that can be deduced when auditory sensor data
is available. It contains the speech specific variables Sf, Sp, Str, and Ssr.
The second set Visual represents data that can be deduced visually. It
contains the variables Fr, M, Msr, Pid, and Er. By combining Speech and
Visual, the Observable set is created. It used data that can be observed
visually or auditory. The final set All uses all information available from
the corpus. These sets are used to evaluate the proposed models.

The evaluation is based on a leave-one-out Cross-Validation (CV).
The parameter tuning for the RFmodel is performed in each iteration of
the CV, within the training set. To this end, an additional sub-sampling
with 100 iterations is performed in the training of the RF model to op-
timize the parameters ntree ∈ [1, 2000], mtry ∈ [1, 𝑛𝑢𝑚𝑉𝑎𝑟], nodesize
∈ [1, 100], and maxnodes ∈ [2, 100]—with numVar being the amount
of input variables. The predictions of Addressee final reduced for each
iteration of the CV are compared to their ground truth annotations to
estimate the performance of the models.

3.4.3 Results & Discussion

Using the predictions of the created models (BF, BM, BA, and RF) with
the presented variable sets (conditions Speech, Visual, Observable, and
All) in the CV, the model performances with corresponding confidence
intervals can be calculated. For this evaluation a confidence interval of
95% is used. I use the following notation: 𝐵𝑁𝐴 refers to the BN model in
the All condition. The other conditions are abbreviated with S (Speech),
V (Visual), and O (Observable). The results can be seen in Table 3.3 and
are visualized in Figure 3.10.

Speech Visual Observable All

BF 0.30 ± 0.10 0.89 ± 0.07 0.89 ± 0.07 0.89 ± 0.07
BM 0.55 ± 0.11 0.88 ± 0.07 0.87 ± 0.08 0.96 ± 0.04
BA 0.42 ± 0.11 0.89 ± 0.07 0.88 ± 0.07 0.94 ± 0.05
RF 0.37 ± 0.11 0.90 ± 0.07 0.89 ± 0.07 0.95 ± 0.05

Table 3.3: Accuracy with 95% confidence interval of the Bayesian Network
based BF (focus only/baseline), BM (manual), BA (auto generated)
models, and the Random Forests based classifier RF. The perform-
ance is measured using CV with the four sets of input variables
(Speech, Visual, Observable, and All).

In the Speech condition, BF performs worse than the other Bayesian
Networks and BM performs better than all other models. In the All
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Figure 3.10: Accuracy of the BayesianNetwork basedBF (focus only/baseline),
BM (manual), BA (auto generated) models, and the Random
Forests based classifier RF. The performance is measured using
CV with the four sets of input variables (Speech, Visual,Observable,
and All). Confidence intervals (95%) are shown at each bar.

condition, BM and RF perform better than BF. When using the Visual or
Observable sets of variables, no differences in the recognition results of
different models can be found.When only Speech variables are observed,
all models perform worse than in the other configurations. The BM and
RF networks show better results in All than in the other conditions.

This evaluation reveals which properties of the investigated interac-
tion are especially relevant for addressee recognition. The strong in-
crease in recognition quality that is introduced with the variables in the
Visual condition shows how informative vision is for such a task. There
is no difference between the results in Visual and Observable—neither
within the conditions nor in between. This entails, that when Visual
information is known Speech does not provide enough information to
strongly enhance the recognition model in this scenario. Furthermore,
BF produces results that are as good as the other models in Visual and
Observable and can compete with BA in the All condition. Therefore, it
can be assumed that the results in these configurations are primarily
based on the values of Focus of attention reduced. The interaction between
the results of the Bayesian Networks in All and Speech reveals an inter-
esting difference between the models. On the one hand, BM performs
better than BF in both the Speech and All condition. On the other hand,
BM is better than BA in the Speech condition but not in the All condition.
This means that there is an effect of the Speech variables on 𝐵𝑀 which is
not strong enough to outperform 𝐵𝐴 in the All condition but sufficient
in the Speech condition. This difference indicates that 𝐵𝑀 can draw
additional information compared to 𝐵𝐴 from the Speech variables. As
these differences in the results can already be observed in the Speech
condition, it is probable that the interaction between the addressee and
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the Speech variables produces this difference. However, it is hard to say
how this enhancement is achieved without an in depth analysis of the
structures of the networks, the resulting conditional independences
given the sets of variables, and the influences of changes in the structure.
The results of the Random Forests model do not strongly differ from
the results of 𝐵𝐴. This means that for the task of addressee recognition,
both automatically tuned models are equally good. Nevertheless, the
Bayesian Network approach can produce better results when created by
a domain expert as in 𝐵𝑀. The low overall performance of the addressee
recognition models in the Speech condition confirms the importance of
visual information for this task. Nevertheless, the Bayesian Network
models are better than the baseline (𝐵𝐹) and can infer the addressee
from speech information alone in 34%–60% of the observations.

3.5 summary

In this chapter I investigated RQ 1�. To this end, I presented a study and
a corpus of unconstrained human interactions with entities in a smart
home. The corpus was especially suitable because it contained inter-
actions with all types of non-living entities including a robot and did
not limit the way in which participants may approach the interaction.
From this data, I extracted an addressing corpus with 307 observations
of successful interactions, consisting of sixteen categorical variables.
An in depth analysis of the mutual covariances between the variables
of the corpus, showed that the participants’ focus of attention is the
most informative cue for addressee recognition. This is followed by the
used modality and the content of the speech—when speech is used.
Subsequently, an inspection of the values of addressee and focus of at-
tention revealed that people predominately focus the addressed entity.
This was observed for all types of addressees but especially true for
interactions with the robot. Using the gained knowledge, I manually
created a Bayesian Network structure for addressee recognition. I eval-
uated the model’s recognition performance and compared it with a
model based only on focus of attention and two data-driven recognition
models. The evaluation was performed on four sets of input variables
which represent different levels of capabilities of a smart environment.
A manually created Bayesian Network structure performed equally
well or better than the other models for all presented combinations of
input variables. The performance of the automatically learnt models
was always on par. While the content of speech informed about the
addressee of an interaction, its effect was not strong enough to create
differences when focus of attention was likewise observed. A recogni-
tion performance, that is better than a model that always returns the

� RQ 1: Which behaviours in naïve human interaction with a smart environment can be
observed to distinguish which agent is addressed with a deliberate communicational
act?
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focus of attention as addressee, only was achieved with the manually
created Bayesian Network structure or Random Forests based approach
when using all available variables.

The results of this chapter provide some answers to the underly-
ing research question (RQ 1). People that were not trained to interact
with a specific smart environment construct interactions that emerge
from their own background and previous experiences. In doing so,
they exhibit a set of multi-modal cues that can be used to infer who
is addressed. A human observer naturally interprets these cues and
distinguishes the addressees. However, to provide an artificial system
with such a capability an in-depth understanding of these cues and
their interaction is needed. In this chapter I have shown that visual
observation of inhabitants and especially their focus of attention is an
important and strong cue for addressee recognition. Whether verbal,
gestural or touch interaction with lamps, switches, robots, or the smart
environment as an integrated, interactive entity—the attention often
can be used to infer who is addressed. If the environment can not ob-
serve a person’s attention—e.g. because of blind spots, occlusions or
privacy concerns—it is still, to some degree, possible to recognize the
addressee using only speech information. Furthermore, if the amount
of fully annotated data for learning is small, as in the presented corpus,
a recognition model that is manually tuned by an expert in human in-
teraction outperforms automatically learnt models. This is a reasonable
result as an expert can provide the model with background knowledge
that cannot be extracted from scarce data.



4
ADDRESS ING IN HUMAN-ROBOT
CONVERSAT IONAL GROUPS

From p’s point of view then, p may be said to be ’offering’ q
the floor, for in looking steadily at him he indicates that he
is now ‘open’ to his actions, whatever they may be.
[Ken67, p. 36]

In this chapter I investigate RQ 2�. To this end, I present a scenario
in which a robot participates in a conversational group with multiple
people in the CSRA to solve tasks verbally directed at it. The collected
observations are used to evaluate an approach to addressee recognition
in multi-party Human-Robot-Interaction. Finally, I discuss the results
of the evaluation and the implications for the research question.

4.1 introduction

In dyadic HRI scenarios, it can by definition be assumed that only one
person interacts with the robot. Therefore, robots can assume to always
be the addressee of speech [Hol14; CSW14; HM16]. For instance, a poll
questioning robot—presented by Bruce et al. [BNS02]—pays attention
to a person from the moment its area of interest is entered and until the
end of the interaction. All other persons are ignored during that time.
However, the assumptions that conversations are always dyadic and
that all utterances are produced to cause a verbal response from the
conversational partner do not hold in most interaction scenarios. When
several persons are present, they can not only speak to a robot. They
dynamically create and change conversational groups and converse
with each other (see: Section 2.1.3.1). Even when the robot knows that
it is in a conversational group and with whom,1 it still needs to actively
participate in this group. At least, it needs to know when to react to
an utterance and when not. As presented in Section 2.2.2.2, different
approaches to automatic addressee recognition are possible. Most of
the approaches used in HRI employ information about the participants
VFoA and acoustic information to decidewhether the robot is addressed
by a speaker or not. To distinguish which person speaks at a particular
time, techniques for sound source localization or close-talkmicrophones

1 the problem of conversational group detection with artificial agents is investigated in
Chapter 6

� RQ 2: How can an artificial agent visually recognize whether it was addressed by a
person within its conversational group or not?

65
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are often applied [Lan+03; SJB15]. In this chapter, I present a multi-
party, Human-Robot-Interaction scenario, designed to confront the
robot with the problems of participation in a conversational group
and autonomous decision whether to react to an utterance within the
group or not. We designed this scenario, implemented it on the Floka,
and applied it in an experimental study in the CSRA [Ric+16]. While
the study design and execution was collaboratively perfomed by the
authors of the paper, I was responsible for the addressee recognition
that was applied during the study and is evaluated in this chapter.
This scenario is particularly suitable for the evaluation of addressee
recognition approaches for artificial agents. A description of the study
set-up, recording and annotation, used platform, implemented attention
and dialogue management systems, as well as an initial evaluation of
the used addressing recognition can be found in the corresponding
publication [Ric+16]. On the basis of the collected data, I investigate
RQ 2 by examining the following claims:

claim 4.1 (speaker detection) By visually observing movements of
lips, an agent can recognize if a person has the role of speaker in a conversational
group.

claim 4.2 (next speaker detection) Recognizing mutual gaze with
a participant of the conversational group at the end of an utterance, can be
interpreted by an agent as a prompt to take the next turn.

claim 4.3 (addressee detection) Mouth movement and gaze inform-
ation about a participant of a conversational group can be combined and put
into context to recognize if a robot is addressed with an utterance or not.

I investigate RQ 2 by incorporating these claims into an addressee
recognition system and evaluating its applicability in a multi-party HRI
scenario.

4.2 human-robot addressing corpus

The evaluation of addressee recognition approaches in HRI poses mul-
tiple challenges to the design of the interaction. Addressee recognition
is the distinction of utterances addressed towards the agent from ut-
terances exchanged between other people in the situation. Therefore,
a scenario needs to be chosen that encourages both: interactions with
the agent and with other people. Furthermore, the interaction should
encourage that both the speaker and the addressee change on a regu-
lar basis and both addressing and non-addressing of the robot can be
regularly observed. In this section, I present a HRI scenario and imple-
mented robot behaviour that satisfies these requirements. Subsequently,
I describe the corresponding experiment and annotation procedure.
The resulting corpus is presented at the end of this section.
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4.2.1 Multi-Party Interaction Scenario

We designed a multi-party HRI scenario in the CSRA in which human
participants ask a robot questions and make it control the environment.
To this end, the participants are equipped with a set of notes, containing
tasks for the robot. To enforce a better balance between addressing of
the robot and other participants, a two-step communication of the tasks
is performed. The procedure is as follows:

1. Participant 𝑃𝑎 uncovers a note.

2. 𝑃𝑎 communicates the task to a second participant 𝑃𝑏.

3. 𝑃𝑏 takes the turn and communicates the task to the robot 𝑅.

4. The robot 𝑅 accepts and solves the task.

5. 𝑃𝑏 takes the role of 𝑃𝑎.2

6. This is repeated until all notes are uncovered.

The communication of the task from one participant to another not only
enforces interaction between the participants. It additionally confronts
the robot with utterances that verbally match its expectations but ad-
dress someone else. To further support a uniform distribution of the
conversational roles in the interaction, we recommend a closed, circular
conversational group configuration. To this end, we chose interactions
with three human participants and one robot, distributed around a
table in the CSRA’s living room (see Figure 4.1). This allows the parti-
cipants to interact with each other and with the robot without the need
to rearrange between turns. Therefore, there is no need for changes
in the conversational group arrangement. When the interactants pos-
ition themselves at the edges of the table, their resulting distribution
in the p-space of the conversational group is uniform. Therefore, all
participants have the same access to the conversational group and no
particular distribution of roles is imposed on the interaction (see Sec-
tion 2.1.3.2). With this approach we create a suitable scenario for the
evaluation of robotic addressee recognition with (1) a clear motivation
for the participants, (2) a fixed conversational group, and (3) a good
ratio between addressing of the robot and other participants.

4.2.2 System Set-Up

Literature suggests that the behaviour of an agent influences the beha-
viour of participants (see Section 2.2.2.1). Therefore, it is important to
consider which behaviours of the robot are desirable and how thesemay
influence the course of the interaction. We used the anthropomorphic

2 Participants naturally ensure a uniform distribution of participation in the group in
such a tash. This can be expected based on the literature and is confirmed in this study.
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(a) Scene during the briefing.
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(b) Map of the study set-up.

Figure 4.1: (a) The left image shows a scene during the briefing of participants,
recorded by the camera 𝐶1. The participants and robot are already
correctly placed for the study. The experimenter is standing next to
the robot and describing the study procedure. (b) The right image
shows a map of the apartment’s living room during the study. The
participants 𝑃1, 𝑃2, and 𝑃3 are seated on the armchairs and sofa
(yellow). They and the robot (green) surround a table (gray) on
which the task notes (red) are spread.

robot Floka with its sensor head (as presented in Figure 1.3 on page 8).
The human-like upper body of the robot allows a clear recognizability
of its front, and therefore allows people to estimate its transactional
segment. Furthermore, by turning its head—pan and tilt—the robot
can show attention.

To allow Floka to actively participate in the interaction, we provided
it with an attention management system. It integrates multi-modal
sensor information from the robots camera and microphones to direct
its visual attention to salient areas. This allows Floka to (1) focus on
participants of the interaction by looking at their faces and (2) shift
its attention towards a speaker by turning towards sound sources. The
robot continuously exhibits this attentive behaviour to provoke the im-
pression that it is following the interaction. Furthermore, this should
allow the robot to focus on the current speaker of the conversational
group. The implementation of the attention management system is
presented in the corresponding publication [Ric+16]. The dialogue
management system, presented by Carlmeyer et al. [CSW14], utilizes
the results of the addressee recognition component to only processes
utterances when the robot considers itself addressed. In this case the
robot implicitly takes the turn, produces a verbal response to the re-
cognized task, and finally yields its turn by ending speech production
and continuing with its gazing behaviour. The addressee recognition
component is presented in detail in the following section.
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4.2.3 Addressee Recognition

To investigate the Claims 4.1 to 4.3 I implemented a system for addressee
recognition that incorporates the detection of mouth movements and
mutual gaze to distinguish utterances addressed towards the robot
from other utterances. It combines two kinds of information (Claim 4.1)
whether a person is speaking, and (Claim 4.2) whether this person
maintains mutual gaze with the robot. To this end, I extended the gaze
detector created by Schillingmann et al. [SN15] to make its gaze recog-
nition results and the results of the facial landmark detection [Sag+13]
available within the CSRA. The used features are visualized in Fig-
ure 4.2. The gaze detection provides the horizontal and vertical angle

Figure 4.2: Visualization of the features used in the addressee recognition.
The person on the left maintains mutual gaze and is speaking, the
person on the right does neither of it. The upper images show the
results of the gaze recognition system—horizontal and vertical
angle—from Schillingmann et al. [SN15], augmented with the
default thresholds for mutual gaze (blue bars) and the current
estimation (green bars). The centred images show visualizations
of the estimated head orientation (blue), and a red rectangle in case
of mutual gaze. The inner corner-points of the eyes are highlighted
in pink. The lower images show the facial landmarks (cyan lines) in
the region of themouth and highlight the central mouth landmarks
(red dots) and corresponding distances (yellow lines).

between the participants gaze direction and the image centre. Because
the robot’s camera is located at the centre of its head, the person is look-
ing directly into the robots face when both angles are zero. Therefore,
to decide whether a person 𝑝 maintains mutual gaze with the robot, I
compare the magnitude of both their horizontal (𝛼𝑝) and vertical (𝛽𝑝)
gaze angles to a threshold 𝜃.

𝐺(𝑝) = |𝛼𝑝| < 𝜃 ∧ |𝛽𝑝| < 𝜃 (4.1)
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For the recognition of mouth movements, distances between the central
points of the inner mouth (see Figure 4.2) are observed during a sliding
time window Δ𝑡. This results in a set of distances Dp for each person 𝑝.
A person is recognized as speaking if the variance of these distances
exceeds a threshold 𝑑.

𝑆(𝑝) = Var(Dp) > 𝑑 (4.2)

To decide whether a person 𝑝 is addressing the robot at a particular
time, the results of both Equation (4.1) and Equation (4.2) are then
combined.

𝐴(𝑝) = 𝐺(𝑝) ∧ 𝑆(𝑝) (4.3)

The thresholds 𝜃 = 12°, 𝑑 = 1.5, and the time window Δ𝑡 = 600ms
were selected based on a pre-study with the same set-up.

4.2.4 Study Procedure

After the participants gave their consent to the recording, they were
accompanied into the apartment’s living room by the experimenter
and asked to take a seat in the armchairs and sofa. The robot was
already waiting at the table. The following tasks were laid out on the
table: (i) Turn the light on. (ii) Turn the light off. (iii) What time is it?
(iv)Has a parcel arrived? (v)Has anyone called? (vi)Which data is recorded?
(vii)What exhibits are there? (viii)What’s with the garden?All tasks except
Turn the light off existed twice. This added up to 15 tasks to allow each
participant to solve five tasks. After the participants took a seat, the
experimenter explained the task by giving an example of an iteration
of the interaction (see Section 4.2.1). Additionally, the participants
received two hints: (1) They need to acquire the robot’s attention when
they want to talk to it. (2) They do not need to repeat a task more than
three times when the robot does not solve it. When the participants
had no further questions, the experimenter left the room, activated the
robot, and monitored the interaction from an adjoining room. When all
tasks were solved, the experimenter entered the room for an informal
debriefing. The typical duration of an interaction was around 10min,
resulting in around 15min for the whole trial with briefing and de-
briefing.

The study was performed in German, with groups of three parti-
cipants at the CSRA. The 15 study participants (2 female, 13 male)
were all native German speakers from the CITEC. The participants
gave consent to the recording of audio and video material and received
confectionery as compensation for their attendance.
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4.2.5 Contents of the Corpus

The recordings of the study sum up to 53min of multi-party HRI. They
contain overview video recordings from the camera perspectives of
𝐶1 and 𝐶4 (see Figure 4.1b), and Floka’s perspective using its head
camera. Audio data was recorded for the apartment’s living room and
hallway. Furthermore, system events of the apartment, the communic-
ation between the apartment and robot, and the internal, high-level
states of the robot were recorded.

The robot’s speech, mouth-movement and mutual-gaze recognition
results were extracted from the recordings into ELAN Linguistic Annot-
ator [ELAN] tiers [Ber+16]. This strongly simplified the ground-truth
annotation of the robot’s addressee recognition. In sum, the robot re-
cognized 841 dialogue acts. A large proportion of these acts consists
of confirmations and negations which were irrelevant for the task at
hand and ignored by the robot. Therefore, the manual annotations and
remaining analyses focus on the dialogue acts that had the potential
of causing a response from the robot. These interactions were annot-
ated with the annotation tool [ELAN] to manually distinguish whether
(i) the robot was looked at by the focused person, (ii) the focused per-
son was speaking, (iii) the robot was addressed, and (iv) the robot
was looking at the wrong person (not the speaker) at the moment the
speech act was recognized by the robot. The resulting corpus consists
of 176 dialogue acts that were recognized by the robot as task relevant.
The sum of utterances addressed at the robot can be expected to be at
least the number of trials times the number of repetitions of the task.
Additionally, recognized tasks can stem from communication between
the participants, repetitions, and mis-classifications of tasks. Similarly,
mis-classifications can result in tasks being recognized less often than
expected. The overall distribution of these tasks, the expected number
of addressing, and the proportion of tasks addressed to the robot can be
seen in Figure 4.3. As apparent in Figure 4.3, the amount of recognized
light and time tasks is much higher than expected while exhibits and data
requests happened less frequent than expected. This is mainly because
these utterances often were wrongfully understood as light and time
requests.

The corpus provides observations of HRI and a ground truth annota-
tion of whether a focused person was speaking, looking at the robot,
and whether the robot was addressed at the time of a recognized dia-
logue act. In the following sections I use this data to assess the claims
stated for this chapter.

4.3 visual speaker detection

In Claim 4.1, I suggest that a person can be visually identified as having
the role of speaker by observing mouth movements. The corresponding
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Figure 4.3: This plot shows how often each relevant dialogue act was recog-
nized by the robot during the study over all trials. The utterances
that were addressed at the robot are highlighted in blue, the other
in red. A black, horizontal line shows the amount of tasks that were
expected to be addressed at the robot during the trials.

model is defined in Equation (4.2), and applied during the user study.
For the evaluation of visual speaker detection, I call this model the study-
model. Additionally, I create an accept-all-model that always assumes that
there is a speaking person in front of the robot. This is a reasonable
approach because a proportion of 0.699 (prevalence) of the observa-
tions shows a speaking focused person. On the basis of the relevant
utterances, recognized during the study, and the created ground truth
annotations, I assess the models’ performances. To this end, I calcu-
late their precision, recall, and accuracy with 95% confidence intervals
according to Clopper et al. [CP34]3 and F1-score as commonly used
measurements for classifier performance. To account for the preval-
ence of the data, I additionally calculate the measurements markedness,
informedness, and DOR. The results are visualized in Figure 4.4.

The precision and accuracy of the accept-all-model are both 0.699, and
its recall is 1. This results directly from the prevalence of the data and
the model design, which classifies all observations as speaking. The
study-model, in contrast, achieves a higher precision of 0.87 and a lower
recall of 0.85. Although the study-model achieves a higher proportion
of correct classifications (accuracy: 0.81), the difference is small. In
the F1-score—the harmonic mean between precision and recall, the
models show a similar performance too. The markedness of the accept-
all-model can not be determined because it never rejects. Furthermore,
this is not an informed decision. Therefore, it’s informedness is zero.
The study-model’s markedness and informedness are 0.54 and 0.55. This
means that it makes informed decisions that can be trusted to be correct.
Nevertheless, there is still room for improvement on both sides. Finally,
the DOR of the accept-all-model is undefined because it does not reject.
The study-model’s DOR means that the odds of correct classifications of
mouth movements are 13.49 higher than the odds of false rejections.

3 Using binom.test from the stats package (v3.5.1) in R [stats].
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Figure 4.4: Precision, recall, accuracy, F1-score, markedness, informedness
and DOR for the classification of speaking persons during the
study. 95% confidence intervals are shown for precision, recall,
and accuracy. markedness, and DOR are undefined for the accept-
all-model because it does not reject. Its informedness is zero. The
scale on the right side corresponds to DOR. Red bars present the
results of the accept-all-model. Blue bars show the results of the
model that was used during the study (Equation (4.2)).

4.3.1 Discussion

The presented observations show that, because of the prevalence of
the data, a simple accept-all-model already achieves high measures. A
threshold based model, as used during the study (study-model), in-
creases the precision of the model at the cost of a decreased recall. How-
ever, themarkedness, informedness, andDORmeasurements show that
this model can decidewhether a focused person is currently speaking or
not in a trustworthy and informed way. Therefore, it can be confirmed
that, by observing movements of a persons lips in a conversational
group, it can be visually recognized whether this person is currently
speaking or not (Claim 4.1).

4.4 turn-release detection

In the presented scenario the robot is addressed with task related ut-
terances and in anticipation of a response. A prompt to take the next
turn in combination with a task-related utterance should, therefore,
identify the robot as the addressee of the utterance. In Claim 4.2, I
suggest that detecting mutual gaze can be interpreted as such a prompt.
In this section I use the mutual gaze recognition results and ground
truth annotations of the corpus to investigate (1) whether the mutual
gaze recognition performs successfully and (2) whether mutual gaze at
the end of an utterance is a good cue for addressee recognition during
the study.
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4.4.1 Mutual Gaze Detection

The model that was used for mutual gaze recognition during the study
is defined in Equation (4.1). Therefore, I call it the study-model in this
evaluation. Its performance is visualized in Figure 4.5 using the same
metrics as in the speaker detection and with an accept-all-model which
always assumes mutual gaze for comparison.
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Figure 4.5: Precision, recall, accuracy, F1-score, markedness, informedness
and DOR for the classification of mutual-gaze during the study.
95% confidence intervals are shown for precision, recall, and accur-
acy. Markedness, and DOR are undefined for the accept-all-model
because it does not reject. Its informedness is zero. The scale on
the right side corresponds to DOR. Red bars present the results of
the accept-all-model. Blue bars show the results of the model used
during the study.

The precision and accuracy of the accept-all-model are both 0.83, and
its recall is 1. Like in the mouth movement detection, this results from
the prevalence of the data and themodel design (always assumemutual
gaze). The study-model for mutual gaze recognition achieves a higher
precision (0.94) and a lower recall (0.89) than the accept-all-model. The
accuracy and F1-score measure show negligible differences. The qual-
ity measures that are not biased by prevalence—markedness (0.52),
informedness (0.62) and DOR (22.34)—indicate that the mutual gaze
detection performs better than the speaker classification. The strong bias
for mutual gaze in the corpus does not leave much room for enhance-
ments in accuracy and F1-score. Nevertheless, the models results are
more precise. It is trustworthy and informed. From the observations, it can
be concluded that the model for mutual gaze recognition, which was
used during the study, can decide whether a focused person maintains
mutual gaze with the robot or not.

4.4.2 Addressee Deduction from Mutual Gaze

To investigate whether mutual gaze at the end of an utterance is a good
cue for addressee recognition during the study, I test the annotations
(annotation-model) and classifications (recognition-model) of mutual gaze
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as an indicator of whether the robot is addressed. The recognition-model
is defined in Equation (4.1). The performances of these approaches for
addressee recognition can be seen in Figure 4.6.
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Figure 4.6: Precision, recall, accuracy, F1-score, markedness, informedness
and DOR for the classification of addressee from mutual gaze. 95%
confidence intervals are shown for precision, recall, and accuracy.
The scale on the right side corresponds to DOR. Red bars present
the results based on annotations of mutual gaze. Blue bars show
the results of the classifier used during the study (Figure 4.5).

I first investigate the performance of the annotation-model to evaluate
the applicability of having mutual gaze as a marker for being addressed
in the corpus. The model’s precision reveals that when the robot is
looked at, it is addressed in 89% of observations. In the 17 remaining
cases the robot is the speaker (65%), looking at the wrong participant
(30%), or both (5%). There is a single observation in which the parti-
cipant is oriented towards the robot and speaking but not addressing it.
The high recall (0.98) shows that whenever the robot is addressed, it
was additionally looked at by the person in almost all cases. There are
two observations where the robot is addressed but not looked at by the
person it is focusing. In both cases the robot focused a side-participant
who in turn was looking at the actual speaker. Therefore, mutual gaze is
a strong cue indicating the addressee in the interaction. Accuracy, meas-
uring the proportion of correct classifications, is a direct measure for
the consistency between mutual gaze and addressing. The high value
(0.9) confirms that mutual gaze can be used as a predictor. The F1-score
(0.94) does not provide additional information in this case. The meas-
urements that are not biased by prevalence support the conclusions
that were drawn from the other measurements. The markedness (0.82)
shows that most predictions are correct. The informedness (0.62) of the
model is lower. This is a result of the cases where the robot is looked at
but not addressed. Finally, the DOR shows that it is 113.75 times more
probable that the robot is addressed when it is looked at by the focused
person than when not. Although being looked at by a person does not
always mean that the robot is addressed, it is an indicator that strongly
facilitates the decision.
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The recognition-model, which uses the results of the automatic mutual
gaze recognition to deducewhether the robot is addressed or not, shows
a slightly worse performance. In the basic measures—precision, recall,
accuracy, and F1-score—the results are similar to the annotation-model.
It has a lower markedness (0.59). This means that its classifications
are less trustworthy. As the precision is equally high, this means that
it is more probable that a classification as not-addressed is wrong than
in the other model. Similarly, the DOR tells that it is 17.47 times more
probable that the robot is addressed when the model classifies mutual
gaze than when not. Both the lower markedness and DOR originate in
the higher amount of false negative and lower recall of the mutual gaze
recognition (comp. Figure 4.5).

4.4.3 Discussion

In summary, the data shows that the robot is looked at when addressed
in most interactions of the presented scenario. There is a high correl-
ation between the robot being looked at and being addressed when
it recognizes a task related utterance. Therefore, it is helpful to detect
mutual gaze as a prompt for the robot to take the turn. Furthermore, it
is possible to automatically detect mutual gaze with the focused person
during the study, and the results are a good cue for addressee recogni-
tion. However, looking at the robot serves multiple purposes. It is not
always a prompt to take the turn. This can be seen in the precision of
the Annotation based prediction. Nevertheless, on the basis of the data,
Claim 4.2 can be confirmed. Recognizing mutual gaze at the end of an
utterance can be interpreted as a prompt to take the next turn.

4.5 bayesian addressee recognition

In Claim 4.3, I propose to combine information about the interlocutors
mouth movements and gaze, and context information to predict if
the robot was addressed with an utterance or not. To investigate this
proposition, I use the classifications of mouth movements (Mouth)
and mutual gaze (Gaze) as recognized by the robot during the study.
Additionally, I inspect if the robot was speaking at the moment of
task recognition (Speaking), and which task was recognized by the
robot (Task). I use these features to predict if the robot was addressed
(Addressee)—for which the ground truth can be drawn from the manual
annotations in the corpus. For the evaluation, I combine these five
variables into Bayesian Networks.
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4.5.1 Bayesian Models

The networks use Addressee as a parent node which influences the
outcome of other variables. To evaluate the individual influences of
Mouth and Gaze, I create corresponding models which only use these
variables:

(Mouth) 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑒 → 𝑀𝑜𝑢𝑡ℎ

(Gaze) 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑒 → 𝐺𝑎𝑧𝑒

To assess their combined performance, I create a Bayesian Network
with both variables:

(Both) 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑒 → {𝑀𝑜𝑢𝑡ℎ, 𝐺𝑎𝑧𝑒}

Finally, to investigate the impact of contextual information I extend this
network with knowledge about the robots inner state and recognized
task:

(Both+Self ) 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑒 → {𝑀𝑜𝑢𝑡ℎ, 𝐺𝑎𝑧𝑒, 𝑆𝑝𝑒𝑎𝑘𝑖𝑛𝑔}

(All) 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑒 → {𝑀𝑜𝑢𝑡ℎ, 𝐺𝑎𝑧𝑒, 𝑆𝑝𝑒𝑎𝑘𝑖𝑛𝑔, 𝑇𝑎𝑠𝑘}

The networks are visualized in Figure 4.7.

Addressee

Mouth Gaze Speaking Task

Figure 4.7: Bayesian Network structure used in the evaluation. The nodes
depict variables in the corpus, the arrows show dependency re-
lationships. This visualization encodes five different networks:
(Mouth) orange arrow, (Gaze) violet arrow, (Both) green-lined box,
(Both+Self ) blue-dashed box, and (All) red-dotted box.

To assess if these networks can predict whether the robot is addressed
or not, I perform a CV. To this end, the corpus is split according to
the five trials, trained using four trials and tested on observations
from the remaining trial. Furthermore, to assess the influence of mis-
classifications of the used mouth movement and mutual gaze detection
systems, the same procedure is repeated with annotated inputs. The
strength of the model’s belief for each observation and model is used
to create receiver operating characteristic (ROC) curves and calculate
the corresponding AUC (Figure 4.8). Furthermore, the visualizations
are augmented with the performance of the models that were available
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Figure 4.8: Performance visualizations of addressee recognition models in
the ROC space. Mutual gaze and mouth movement information
is taken from Annotation (left) or Classification (right). The ROC
curves (lines) and corresponding AUC (labels in the gray box
on the lower right side) are visualized for the Bayesian Network
models BN: All, Both+Self, Both, Gaze, and Mouth. Additionally, the
results of the models that were available during the study—Study:
Mouth, Gaze, Either, and Both—are illustrated as shapes.

during the study (Study-Models). These are Mouth (addressed if mouth
movement was detected), Gaze (addressed if mutual gaze was detec-
ted), Either (addressed if either of them was detected, non-exclusive),
and Both (addressed if both of them were detected). These can not be
shown as ROC curves because they provide only a fixed result. As the
observations in the corpus are unbalanced, additionally precision-recall
curves, corresponding AUC and Study-Models results are shown in Fig-
ure 4.9.

4.5.2 ROC Performance

When looking at the ROC curves of the Bayesian Networks with perfect
inputs (Annotation in Figure 4.8) multiple observations can be made.
First of all, mutual gaze alone is not a good predictor for addressing.
The Gaze model achieves an overall AUC of 0.75 and a recall of > 80%
only with ≈ 35% false alarms. At this point, there is a steep increase in
recall, allowing the model to achieve ≈ 0.97 recall at 36% false positives.
The Mouth model achieves a recall of ≈ 0.9 at only ≈ 10% false alarms.
Its recall remains under 0.95 until a high false positive rate (FPR) of
≈ 0.75. The overall better performance is reflected in its AUC (0.87). By
combining both mutual gaze and mouth movement information, the
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addressee prediction can utilize the strengths of both. The Both model
achieves a recall of ≈ 0.9 at ≈ 5% false alarms and shows an increase to
≈ 0.97 at 36% false alarms. Therefore, it can provide the high recall of
the Gaze model and simultaneously improve upon the Mouth models
low FPR. By taking the robots inner state into account, the Both+Self
model shows further recall enhancements in the lower range of the
FPR. It achieves a recall of > 0.95 at 10% false alarms and an AUC of
0.97. The All model that additionally uses the type of the recognized
task achieves a slightly better AUC (0.97) but does not show salient
differences from Both+Self in its curve.

The Bayesian Networks, which utilize results of the models from
the study (Classification in Figure 4.8), all achieve lower AUC results
than the models with perfect inputs. Gaze shows a similar trajectory
but an AUC of 0.74. It has a recall of ≈ 0.9 at 35% false alarms and
only small improvements with a growing FPR. The performance of the
Mouthmodel is much worse on the automatically classified data. It only
achieves anAUC of 0.74 and performsworse than theGaze basedmodel.
The remaining models—Both, Both+Self, and All—use their additional
information to gain further improvements. Nevertheless, the noise in the
classifications has a strong effect on the overall addressee recognition.

The positions of the Study-Models in both the Annotation and the
Classification set-up are located in the vicinity of the BN models optimal
results for equal false positive and false negative costs. As both have
the same input information and the Bayesian Network optimizes for
accuracy, this is a consequence of the models. By choosing the threshold
for the classifications of the BayesianNetworks a trade-off can be chosen
between recall and FPR.

4.5.3 Precision-Recall Performance

To get a better insight in the created models, precision-recall curves,
corresponding AUC, and Study-Models results are shown in Figure 4.9.
With this visualization it is easier to take the prevalence of the corpus
into consideration. The precision of the models for low 𝑟𝑒𝑐𝑎𝑙𝑙 < 0.4 is
noisy, and not of great interest because these configurations reject the
majority of interactions. Therefore, I do not further elaborate on this
range. The interesting area of the visualizations is on the upper left
quarter, where a trade-off is made between the two dimensions.

By looking at the models’ performances in case of perfect input
data (Annotation), some properties of the models can be observed. For
𝑟𝑒𝑐𝑎𝑙𝑙 < 0.85 the precision of all models is nearly constant with grow-
ing recall. This allows optimizing for recall without loosing precision.
The models show a similar development in the precision-recall space
as in the ROC curves. The Gaze model performs worse than Mouth
in case of perfect data until a recall of ≈ 0.9. At this point the Mouth
model exhibits a strong drop in precision while the Gaze model keeps
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Figure 4.9: Performance visualizations of addressee recognition models in
the precision-recall space. Mutual gaze and mouth movement in-
formation is taken from Annotation (left) or Classification (right).
The precision-recall curves (lines) and corresponding AUC (labels
in the gray box on the lower half) are visualized for the Bayesian
Network models BN: All, Both+Self, Both, Gaze, and Mouth. Ad-
ditionally, the results of the models that were available during
the study—Study: Mouth, Gaze, Either, and Both—are illustrated as
shapes. The dashed line represents the results of a baseline model
(precision equals prevalence).

its—overall lower—precision until a recall of ≈ 0.98. The Both model
joins information of mutual gaze and mouth movements to achieve an
overall better precision and compensate for the drops in quality of the
individual models. As a side effect, its results show a drop in precision
at around 𝑟𝑒𝑐𝑎𝑙𝑙 ≈ 0.95. Therefore, for a high recall, the results of the
Both model have a lower precision than the Gaze model. The models
with additional information, Both+Self and All, outperform the other
models throughout the whole range. Their loss in precision for a recall
between 0.95 and 0.99 is only gradual, allowing to accurately choose a
suitable trade-off between these measurements for a specific situation.

The precision-recall curves for the Classification based analysis show
more noise than in the Annotated analysis but an otherwise similar
shape. The Mouth model performs worse than the Gaze model with
classified input. Its precision is lower in the majority of observations,
achieves ≈ 0.87 at recall ≈ 0.8 and decreases for higher values. The
Gaze model achieves ≈ 0.88 at a recall of ≈ 0.9. In the region around
this point (0.86 < 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 < 0.92) it performs better than the Both
model which is otherwise always better. The Both+Self and All models
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achieve a precision of ≈ 0.9 at a recall of ≈ 0.95 and show only a gradual
decrease in precision for higher recall values.

The positions of the Study-Models in the Annotation and the Classifica-
tion set-up are located at points with a high recall, right before a strong
drop in precision. Therefore, they are optimal for an equal weighting
of precision and recall. The Study-Either-Model optimizes for better re-
call and the Study-Both-Model for better precision on the curve of the
Bayesian Network based Both model.

4.5.4 Discussion

The ROC and precision-recall curve analyses show that information
about the gaze and mouth movements of an interlocutor can be used
as a predictor for addressee recognition. The features have different
properties. Mouthmovement information, on the one hand, can achieve
a high recall with few false alarms and an overall high precision. Mutual
gaze information, on the other hand, generates a higher amount of false
alarms but can achieve a higher recall. Its has a lower overall precision
but can keep it at that level for much higher recall values. By taking
both features into account, a model can be created that combines their
advantages to produce overall better results. This model can be further
enhanced by taking other contextual information into account. Further-
more, by choosing an appropriate threshold for the model’s belief, a
trade off between recall, and precision or fall-out can be made. Mis-
classifications in mouth movement or mutual gaze detection directly
result in a degradation of the addressee recognition. This observed ef-
fect is stronger in case of wrong mouth movement detections. However,
in summary it can be said that information about mouth movements
and the gaze of a participant in a conversational group can be combined
with context information to recognize if a robot is addressed with an
utterance or not. Therefore, Claim 4.3 can be confirmed.

4.6 summary

In this chapter, I investigated RQ 2�. To this end, I compiled the claims
that in a mixed human-robot conversational group: mouth movements
assert that a person is the current speaker of the group (Claim 4.1),
mutual gaze at the end of an utterance can be interpreted as a prompt to
take the next turn (Claim 4.2), and these informations can be combined
with context information to create an addressee recognition model for
an artificial agent (Claim 4.3). I presented a HRI scenario, which was
specifically designed to challenge the robot’s addressee recognition
skills. This scenario was conceived and implemented in a study in a

� RQ 2: How can an artificial agent visually recognize whether it was addressed by a
person within its conversational group or not?
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joint effort by me and my colleagues in the CSRA [Ric+16]. I created an
addressee recognition model, based on the stated claims, and applied
it during this study. Furthermore, I augmented the resulting corpus
with ground truth annotations about the robots interlocutors gaze and
speaking state. On the basis of the resulting corpus I was able to test the
presented claims. In Section 4.3 I assessed the recognition performance
of the mouth movement detection. I confirmed Claim 4.1 by showing
that the proposed mouth movement detection model can be used to
distinguish speaking from non-speaking interlocutors. In Section 4.4 I
assessed the recognition performance of the mutual gaze detector and
its applicability as a cue to take the next turn. I confirmed Claim 4.2 by
showing that the proposed model can recognize situations in which
the robot is looked at and that this information can be used to predict if
the robot needs to take the next turn. In Section 4.5 I created multiple
Bayesian Networks and evaluated their performance on annotated and
automatically classified mouth movement and mutual gaze detections
and with additional contextual information. I assessed the individual
power of mouth movement detection and mutual gaze detection for
addressee recognition and the improvements that can be achieved by
combining these features. Furthermore, I examined the effect of errors
in the recognition of these features. I confirmed Claim 4.3 by showing
that a model that combines information from mouth movements and
mutual gaze performs better than models using only one of these fea-
tures and adding contextual information further improves the model’s
performance.

The scenario and corpus that was investigated in this chapter was spe-
cifically designed to challenge robotic addressee recognition. Therefore,
the robot had to continuously take part in an conversationwithmultiple
people and was confronted with utterances that—while having exactly
the same content—may have been addressed towards anyone within
the group. This allowed to investigate the possibilities of visual ad-
dressee detection. Nevertheless, the presented scenario reflects human
addressing behaviour in a narrow field, within a fixed conversational
group, and an explicit task. Addressing behaviour in other scenarios—
e.g. when the participants have no means to establish a conversational
group, or when they converse without having a fixed task—can de-
pend on other forms of establishing the addressee of an utterance and
be much more dynamic. Furthermore, the participants of the study
were all students of a German university and most of them had a tech-
nical background. Observations of people from different age-groups or
with different cultural backgrounds have the possibility to enrich the
obtained insights.

The observations in this chapter, pose some answers to the invest-
igated RQ 2. When a robot in a conversational group recognizes an
utterance, it can visually observe multiple cues of its interlocutors to
decide whether this utterance was addressed at it or not. It can monitor
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its interlocutors mouth movements to decide which participant of the
group speaks, and it can observe their gaze to predict the next speaker.
By combining this information, the robot can make an informed de-
cision and balance the costs of falsely assuming and falsely ignoring
human speech. Considering contextual information can further enhance
the quality of this decision.





Part III

GROUPS & ROLES IN COPRESENCE

In this part, I broaden the social skills of artificial agents
by investigating how mixed human-agent conversational
groups can be detected and how the conversational roles
of the agent within such a group can be recognized. To
this end, I present an appropriate scenario and create a
corresponding corpus. On this basis, I evaluate F-Formation
detection as an approach to detecting conversational gro-
ups in an unconstrained interaction between a group of
people and two virtual agents with changing constellations.
Furthermore, I evaluate different approaches to detecting
the conversational role of the agent in such constellations.





5
HUMAN-AGENT INTERACT ION CORPUS

Bydefinition, an accessible engagement does not exhaust the
situation; [. . .] What we find instead is some obligation and
some effort on the part of both participants and bystanders
to act as if the engagement were physically cut off from the
rest of the situation. [Gof63, p. 156]

To investigate RQ 3� and RQ 4�, a corpus of open, multi-centric
interactions between people and artificial agents is needed. In this
chapter, I discuss the requirements of such a corpus and present a
suitable scenario. On this basis, I create a corpus of interactions between
a group of people and the Flobi agents in the CSRA. This corpus is
utilized in the following chapters to examine the recognition of conver-
sational groups (Chapter 6) and conversational roles (Chapter 7) of
artificial agents.

5.1 introduction

As discussed in Section 2.1, people who are copresent, always interact
with each other in some way. In a focused interaction they turn towards
each other, reduce their distance, and increase the frequency and dura-
tion of mutual gazes (Section 2.1.3). Moreover, they can have different
conversational roles which are dynamically negotiated using the turn
taking system. In an unfocused interaction, people display that they
are part of the situation. They acknowledge the presence of others but
direct their attention somewhere else to show civil inattention. They
reduce mutual gazes, increase their distance and turn away from each
other (Section 2.1.2). It is necessary for people to be able to distinguish
and display whether andwith whom they are in a focused or unfocused
interaction. Otherwise, they are not able to act appropriately and may
be perceived as offensive [Gof63, p. 29, p. 157].

Artificial agents—e.g. in form of robots or virtual agents—are poten-
tial interaction partners. In a smart environment that contains interactive
artificial agents, people are always in their copresence. To be able to be-
have in amanner that is appropriate to the situation, an agent first needs
to understand it. As presented in Section 2.2.2.4, there already exists
work on the detection of human-only conversational groups. However,

� RQ 3: How can focused interactions of people with artificial agents be automatically
recognized in a smart environment?

� RQ 4: How to determine conversational roles of artificial agents in dynamically chan-
ging interactions in a smart environment?

87
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work on the detection of mixed conversational groups in HAI is sparse.
The possible effects of specific formations and the relevance of human
conversational groups for socially acceptable robotic navigation are
more in focus of HAI research (Section 2.2.2.5). As a sub-problem of
conversational role recognition, approaches to the recognition of ut-
terances addressed towards the agent are presented in Section 2.2.2.2.
However, the presented interactions are restricted. The agent is con-
trolled by a wizard, its conversational group is fixed or the participants
are augmented with close-talk microphones. To investigate, how dy-
namically changing conversational groups with people and artificial
agents can be detected and how the conversational roles within such
groups can be recognized, a fitting interaction corpus is required.

In the conversational group detection community there are mul-
tiple, frequently used datasets for the evaluation of recognition models.
The most widely adopted are Synthetic and Coffee Break from Cristani
et al. [Cri+11a], IDIAP Poster Data from Hung et al. [HK11], Cocktail
Party form Setti et al. [Set+13], and GDet from Loris et al. [Lor+13].
They are used for the evaluation of vision based conversational group
detection models as performed by Setti et al. [Set+15] and Vascon et
al. [Vas+16]. Furthermore, there are multi-modal datasets like SALSA
from Alameda-Pineda et al. [Ala+16] and MatchNMingle from Cabrera-
Quiros et al. [Cab+18]. The authors use these datasets to evaluate multi-
modal approaches to conversational group detection and subsequent
analyses of group properties. All these datasets show similar situations:
A crowded place where people stand and interact at a poster present-
ation, coffee break, speed-dating or similar socializing event. These
scenarios are intentionally chosen to allow people to act as natural as
possible while simultaneously allowing the observation of many inter-
actions and changing groups. None of these scenarios feature artificial
agents.

Datasets for the analysis of conversational roles, often use fixed
groups of people without artificial agents [JAN06; Akh+17; MTH18]. If
artificial agents are present in such interactions, they are controlled by
a wizard [Tur+05; Jay+13], or only distinguish utterances addressed at
them from others [BH11; SJB15]. Furthermore, these systems consider
conversational groups only as a distinction between interacting and
non-interacting people, using simple heuristics. Additionally, if people
without experience in HAI find themselves in copresence with an ar-
tificial agent its novelty may lead to a higher amount of attention and
overall amplified measures. Therefore, a scenario is needed in which a
group of people can freely interact with each other and with artificial
agents for an extended time. This way they can get accustomed to the
situation and act more natural.



5.2 scenario 89

5.2 scenario

To fulfil the presented requirements, I collect a new corpus in the CSRA.
For a visualization of the recorded videos see Figure 5.1. The corpus

W
O

T1 T2

Figure 5.1: The 14 perspectives from which videos are recorded during the
study. The overview perspectives are in the top row (O, blue back-
ground), the web-cam perspectives are in the right column (W,
orange background), and the remaining images show top-down
perspectives (T1: kitchen and hallway with green background and
T2: living-room with violet background).

contains the following scenario: A group is invited into the apartment
for a demonstration composed of three parts.

briefing In the first part, the presenter—a person that is acquainted
with the environment and realizes the demonstration—and the
guests gather in front of the apartment. The participants get an
explanation about what the apartment is, what is being recorded
during the study, and their rights regarding data privacy. After the
participants gave their consent, themain part of the demonstration
begins.

presentation The presenter enters the apartment together with the
participants and guides them through the hallway, living room
and kitchen. In each room the group stops and the presenter gives
information about the apartment or shows interaction possibilities.
In the hallway and kitchen, respectively an interaction with the
virtual agent Flobi—the host of the apartment—is performed. The
living room is used to give information about the apartment’s
actuation and introspection capabilities.

free interaction In the third part of the demonstration, the parti-
cipants are allowed to freely chat, test the different control meta-
phors of the apartment or interact with the virtual agents. During
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this period, the presenter remains in the apartment to answer
further questions.

The scenario is recorded using the apartment’s study facilities. The
recording is started before the apartment is entered and stopped after
the last participant left.

5 .3 recording

With this approach I perform a long demonstration for a group of stu-
dents and their lecturers. The recording contains (1) four overview
videos from the apartment’s corners, (2) two web-cam videos from the
agents’ perspective, (3) eight top-down videos, (4) two audio streams,
and (5) the communication between software components of the CSRA.
To see the video perspectives, refer to Figure 5.1. This resulting 57min
of unconstrained, mixed human and human-agent interaction are com-
posed of 20min presentation and 37min free interaction. The parti-
cipants are 8 women and 3 men—including the presenter. This dataset
is a good basis for the analysis of mixed, human-agent interactions. Be-
fore it can be used to evaluate automatic conversational group detection
and conversational role recognition in mixed human-agent interactions,
some processing and annotation is required. A visualisation of the
annotations can be seen in Figure 5.2.

 

Flobi Assistance
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Flobi Entrance
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Demonstrator

𝐶3

Figure 5.2: Annotations of the scene from Figure 5.1. The participant’s and
agent’s poses are shown as triangles with annotated participant-id.
Conversational groups are highlighted in yellow. Conversational
roles are shown in red (speaker), green (addressee), blue (side-
participant), and white (non-participant).

5.4 annotation

The study recording containsmultiple video streams, audio streams and
communication between software components of the CSRA. To be able
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to examine RQs 3 and 4, a set of ground truth annotations is required.
A visualization of the annotations for the scene in Figure 5.1 can be
seen in Figure 5.2. To this end, the required information is annotated
on the basis of the top-down videos of the hallway and kitchen T1.
The remaining areas (T2) of the apartment are not annotated because
they are not relevant for interactions with the Flobis. The following
information is manually annotated: (1) Pose (position and rotation) of
all participants and Flobis, (2) participant ids, (3) all conversational
groups the Flobis participate in, and (4) conversational roles for all
annotated conversational groups. Annotations are done whenever a
change in the participants pose, a group, or a role can be observed. In
comparison to annotating fixed time intervals, this reduces the amount
of needed annotations and allows an arbitrary sampling of annotations.
Participants poses can be interpolated between annotations and groups
and roles are static between changes. Furthermore, poses of the same
person, when annotated from multiple viewpoints, can be averaged to
further enhance estimations of the participants pose. The final dataset
is created by sampling these annotations at a fixed rate of 15Hz. The
overall distribution of group-sizes for the two agents at this sampling
rate can be seen in Figure 5.3.
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Figure 5.3: The distribution of observed group sizes for the two agents in
the group annotations of the corpus. The counts are additionally
shown on top of the bars. A group size of 1 means that the agent is
alone—not in a group with others.

5.5 automatic data extraction

To assess the possibilities of fully automatic recognition of conversation-
al groups and conversational roles, the following features are extracted
from the system communication recordings: (1) Positions of persons
in the apartment (at 30Hz) from the person tracking system. Further-
more, in the FOV of both Flobis (𝑊 perspectives in Figure 5.1): (2) the
Region of Interest (ROI) of each detected face, (3) the recognized gaze-
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directions, and (4) the detected facial landmarks (A visualization of
these features can be seen in Figure 4.2 on page 69). Finally, for each
agent (5) whether it is speaking.

As the person tracking of the CSRA does not provide rotational in-
formation, I additionally apply the OpenPose: Real-Time Multi-Person
Keypoint Detection Library for Body, Face, Hands, and Foot Estimation by
Gines et al. [OpenPose] to the overview recordings (O in Figure 5.1)
to detect 2D key-points of participants in video coordinates (see Fig-
ure 5.4). On the basis of these key-points I create additional person

Accepted Orientation F
Calculated Position F

Rejected Orientations F

I

H

G

Position Points F

Calculated Pose

E
D

C
B

A

Apartment Person Tracking

Figure 5.4: Visualization of the automatic pose extraction. The image shows
the scene in Figure 5.1, from the perspective of 𝐶3 (see Figure 5.2),
augmented with person key-points as they are detected by Gines
et al. [OpenPose]. White circles (𝐴, 𝐶, 𝐸, 𝐺, 𝐻, and the false-positive
𝐼) depict positions as they were detected by the apartment’s person
tracking system. Red arrows (𝐵, 𝐶, 𝐷, 𝐸, and 𝐹) depict poses—
position and rotation—as they were derived from the results
of Gines et al. [OpenPose]. The information used to derive poses is
highlighted for 𝐹. In this case, violet points depict points of the feet
that are used to calculate the position (green point), gray arrows
show rejected orientation hypotheses, and the yellow arrow depicts
which orientation hypothesis was accepted.

hypotheses as follows: For each detected person, the mean of all detec-
ted feet-key-points is calculated as the position in image coordinates.
The person’s orientation is estimated from the following orientation-
candidate vectors:

shoulders perpendicular to left shoulder → right shoulder

hip perpendicular to left hip → right hip

left foot along left heel → left big toe
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right foot along right heel → right big toe

The longest of these vectors is chosen as the most reliable cue and its
direction accepted as the person’s orientation in image coordinates.
Transforming this position and orientation into the floor-plane of the
apartment, results in an additional source for automatic tracking of
persons in the apartment.

To fuse detections from multiple camera perspectives and the per-
son tracking, and select the corresponding annotations, the optimal
assignment is calculated using the C++ Implementation of the Hungarian
Algorithm by Justin Buchanan et al. [hun]. This identification of per-
son percepts allows the evaluation of the fully automatic detections. A
visualization of the annotated and detected overall movements of the
participants in the corpus can be seen in Figure 5.5.
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Figure 5.5: All positions of participants and agents in the T1-region during
the study. Observations are sampled at 15Hz from the annotations
(left) and automatic detections (right). Automatic detections are
created by fusing results of the apartment’s person tracking and
the person detection based on Gines et al. [OpenPose] keypoint
detection. Each side shows ≈ 7⋅105 observations as points with 95%
transparency. Different colours represent the positions of different
persons. Flobi positions are constant.

The annotated and automatically extracted poses and annotations
of conversational groups can be used to examine RQ 3�. The results
of the apartment’s face detection and gaze recognition can be used for
further analyses. Furthermore, RQ 4� can be investigated by combining

� RQ 3: How can focused interactions of people with artificial agents be automatically
recognized in a smart environment?

� RQ 4: How to determine conversational roles of artificial agents in dynamically chan-
ging interactions in a smart environment?
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the results of the conversational group detection with other features.
These investigations are performed in Chapters 6 and 7.

5.6 summary

In this chapter I created the foundation for the investigation of RQ 3�

and RQ 4�. To this end, I presented the requirements a corpus for the
investigation of conversational groups and conversational roles in dy-
namically changing interactions of humans with artificial agents needs
to meet. After showing that available corpora do not meet the require-
ments, I presented a new HAI scenario in the CSRA. I recorded an
extended interaction and created an approach for fully automatic detec-
tion of person positions and orientations. Finally, I created ground truth
annotations of conversational groups and conversational roles, which
can be used for the investigation of the presented research questions.

� RQ 3: How can focused interactions of people with artificial agents be automatically
recognized in a smart environment?

� RQ 4: How to determine conversational roles of artificial agents in dynamically chan-
ging interactions in a smart environment?



6
CONVERSAT IONAL GROUP DETECT ION

The literature presented in Section 2.1.2 suggests that people, who per-
ceive an agent as copresent, show similar behaviours and have similar
expectations towards it as in interactions with humans. To be accepted
in long term interactions, agents therefore need to understand these
behaviours and the implied expectations. They need to know when to
interact and when to show civil inattention (Section 2.2.2.1). Without
distinguishing participants of the agents conversational group from
non-participants, it can not treat them accordingly. The detection of
conversational groups in the presence of humans and artificial agent
is therefore an important basis for conversational role recognition and
behaviour recognition. Therefore, I investigate RQ 3� in this chapter.
To this end, I use the corpus of unconstrained, mixed human-agent
interactions presented in Chapter 5. Because of the discussed similarit-
ies between peoples behaviour towards humans and artificial agents, I
investigate this research question by examining the following claim:

claim 6.1 (group from F-Formation) Mixed conversational groups
of people and artificial agents can be detected using F-Formations as known
from HHI.

It is often sufficient to know if the agent is in a group or not without
identifying the participants of the group. Furthermore, the detection
of F-Formations requires a good understanding of the distribution of
persons in the scene which can be computationally expensive and not
always feasible. Therefore, I propose the following simplifications for
comparison:

claim 6.2 (group from mutual gaze) The detection of peoples gaze
direction in the agents field of view can sufficiently inform about whether it is
in a conversational group or not.

claim 6.3 (group from faces) The detection of faces in the agents field
of view can sufficiently inform about whether it is in a conversational group or
not.

In this chapter I evaluate the detection of conversational groups
for virtual agents in a smart environment. To this end, I first evaluate
Claim 6.1—the portability of F-Formation detection as presented by Setti
et al. [Set+15] from human groups to mixed human-agent groups—on
automatically extracted data (see Section 6.1). Subsequently, I evaluate

� RQ 3: How can focused interactions of people with artificial agents be automatically
recognized in a smart environment?

95
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Claims 6.2 and 6.3 by testing if the agents’ participation in a conversa-
tional group can be deduced from gaze directions and detected face
sizes (see Section 6.2).

6.1 f-formation detection

The participants of a conversational group need to optimize their mu-
tual access to the joint interaction space (o-space). This is achieved by
overlapping their transactional segments (Section 2.1.3). One approach
for F-Formation-detection in HHI, is presented by Setti et al. [Set+15].
It uses 2D positions [𝑥, 𝑦] and orientations 𝜃 of persons in an open
space to estimate the centres of their transactional segments (𝑇𝑆). This
segment is assumed to be in front of the person with its centre at a
fixed distance called stride (𝑆). Based on the distance between the 𝑇𝑆
and the o-space of a potential group and its visibility for a person, a
cost function can be created. This cost-function should be zero for a
perfect overlap of transactional segment and o-space without obstacles,
and grow when they move apart or the o-space is occluded. A good
assignment of persons to conversational groups can then be found by
optimizing the overall costs for a scene. In Figure 6.1 an exemplary
scene can be seen with visualizations of the relevant variables. The used
variables are explained in the next subsection.

 

 

 

 

𝑃1 = [𝑥1, 𝑦1, 𝜃1]

𝑇𝑆1 = [𝑥𝜇1
, 𝑦𝜇1

]
𝑦

stride 𝑆

𝑥

𝑃2 = [𝑥2, 𝑦2, ] = 𝑇𝑆2

𝜃2 unknown
group 𝐺1

𝑃5

o-spaceo-space-centre 𝑂(𝐺1)

𝑃3

𝑑1
1

𝑑1
2

𝜃1
1,2

𝑃4

Figure 6.1: A visualization of a scene in the F-Formation detection. People (𝑃𝑖)
are defined as positions [𝑥𝑖, 𝑦𝑖] (green points) with an optional
orientation 𝜃𝑖. 𝑃2 is shown as a circle because there is no known
orientation. Centres of transactional segments (𝑇𝑆𝑖 = [𝑥𝜇𝑖

, 𝑦𝜇𝑖
],

blue points) are at the distance 𝑆 (stride) in front of persons or—
when orientation is unknown—at their position (𝑇𝑆2 = 𝑃2). 𝑃3
and 𝑃5 form the conversational group 𝐺1 (gray dashed circle) with
the o-space centre 𝑂(𝐺1) (red dot). 𝑃4 is not part of 𝐺1 because
the o-space is occluded by 𝑃3. The transactional segments of 𝑃1
and 𝑃2 are too far away from 𝑂(𝐺1) for them to be part of the
group. The distances 𝑑1

1 and 𝑑1
2 represent the distance between the

o-space centre 𝑂(𝐺1) (superscript index) and the position of 𝑃1
or 𝑃2 (subscript index) respectively. The angle 𝜃1

1,2 is the angle
between 𝑃1 and 𝑃2 (subscript index) regarding the o-space centre
𝑂(𝐺1) (superscript index).
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To investigate if this approach can be used to detect conversational
groups with an artificial agent, I create the open-source group detection
framework fformation [ffm]. It models observations of persons and the
cost of assigning them to conversational groups according to the cost
function presented by Setti et al. [Set+15] with an adaptation to cover
observations with unknown orientation.

6.1 .1 Assignment Costs & Detectors

The cost function is drawn from Setti et al. [Set+15]. The calculation is
done with the following definitions in mind: An observation is defined
as a set of persons 𝑃 = {𝑃1, … , 𝑃𝑛} with 2D positions and orientations—
i.e. 𝑃𝑖 = [𝑥𝑖, 𝑦𝑖, 𝜃𝑖]. From a person’s pose, the transactional segment
𝑇𝑆𝑖 can be computed using the stride (𝑆), which encodes the expected
distance between a persons position and transactional segment. If the
orientation of a person is not known, the 𝑇𝑆𝑖 can not be computed.
Therefore, I extend the 𝑇𝑆𝑖 formula to return the original position of the
person when the orientation is not known. This equals to the mean 𝑇𝑆𝑖
over all possible orientations. The calculation of transactional segments
is visualized in Figure 6.1 and formalized as follows:

𝑇𝑆𝑖 = [𝑥𝜇𝑖
, 𝑦𝜇𝑖

] =
⎧{
⎨{⎩

[𝑥𝑖 + 𝑆cos(𝜃𝑖)], 𝑦𝑖 + 𝑆sin𝜃𝑖], if 𝜃𝑖 is known
[𝑥𝑖, 𝑦𝑖], otherwise

This allows calculating 𝑇𝑆 = {𝑇𝑆1, … , 𝑇𝑆𝑛} from 𝑃 = {𝑃1, … , 𝑃𝑛}.
An assignment of persons to groups is defined as the set of groups

𝐺 = {𝐺1, … , 𝐺𝑚} with each person assigned to exactly one group.
Groups with |𝐺𝑘| = 1 are allowed and represent persons that do not
participate in a conversational group. Consequently, the group of per-
son 𝑃𝑖 is unambiguous and can be defined as 𝑔(𝑃𝑖). The o-space-centre
𝑂(𝐺𝑘) of a group 𝐺𝑘 is calculated from the transactional segments of
its participants.

𝑂(𝐺𝑘) = [𝑢𝐺𝑘
, 𝑣𝐺𝑘

] =
∑𝑖∈𝐺𝑘

𝑇𝑆𝑖

|𝐺𝑘|

The o-space-centre that corresponds to the group of 𝑃𝑖 is therefore:

𝑂(𝑔(𝑃𝑖)) = [𝑢𝑔(𝑃𝑖), 𝑣𝑔(𝑃𝑖)]

a s s i gnmen t co s t The overall cost of an assignment 𝐺 (Equa-
tion (6.1)) is calculated as the sum of o-space-distance costs (Equa-
tion (6.2)), o-space-visibility costs (Equation (6.3)) and an additional
Minimum Description Length (MDL)-prior (Equation (6.4)):

𝐶(𝐺)⏟
assignment cost

= 𝐷(𝐺)⏟
distance cost

+ 𝑉(𝐺|𝑃)⏟
visibility cost

+ 𝑃(𝐺)⏟
MDL-prior

(6.1)
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The different parts of the formula are explained in the following. A
detailed motivation and in-depth analysis of this cost function can be
looked up from Setti et al. [Set+15].

d i s tanc e co s t The distance cost 𝐷(𝐺) penalizes deviations of trans-
actional segment centres from the groups’ o-space. It therefore is zero
when the transactional segments of the participants and the o-space
perfectly overlap and rises when the distance between transactional
segment and o-space centre grows. A high distance cost, means that
the o-space is too far away from the person to be maintained effectively.
The distance cost is calculated as follows:

𝐷(𝐺) = ∑
𝑖∈𝑃

(𝑢𝑔(𝑃𝑖) − 𝑥𝜇𝑖
)2 + (𝑣𝑔(𝑃𝑖) − 𝑦𝜇𝑖

)2 (6.2)

v i s i b i l i t y co s t The visibility cost ensures that the o-space 𝑂(𝑔(𝑃𝑖))
of a person 𝑃𝑖’s conversational group is not occluded by any other
person 𝑃𝑗≠𝑖. Because the visibility can be occluded by any other person
in the scene, the overall visibility cost for an assignment is the sum over
the visibility constraint for all two-person permutations from 𝑃:

𝑉(𝐺) = ∑
𝑖,𝑗∈𝑃,𝑖≠𝑗

𝑅𝑖,𝑗(𝑔(𝑃𝑖))⏟⏟⏟⏟⏟
visibility constraint

(6.3)

The visibility constraint can be calculated for a combination of two per-
sons 𝑃𝑖, 𝑃𝑗, and a group centre 𝑂(𝐺𝑘). To not disrupt 𝑃𝑖’s visibility to
the o-space-centre, 𝑃𝑗 must either stand farther away than 𝑃𝑖 or on a
different side of it. The first can be ensured by comparing their dis-
tances to 𝑂(𝐺𝑘), and the second by considering the angle between them
regarding the same 𝑂(𝐺𝑘). To this end, 𝑑𝑘

𝑖 is defined as the distance
between the position of 𝑃𝑖 and 𝑂(𝐺𝑘), and 𝜃𝑘

𝑖,𝑗 is the angle between 𝑃𝑖
and 𝑃𝑗 regarding 𝑂(𝐺𝑘). An exemplary visualization of these measure-
ments can be seen in Figure 6.1. The relevance of occlusions can be
adjusted with a constant factor 𝐾 for angles between 0 and a cut-off ̂𝜃.
As applied in the evaluations by Setti et al. [Set+15], these are chosen as

̂𝜃 = 0.75 and 𝐾 = 100 for the evaluations in this chapter. On this basis,
the visibility constraint for any combination of 𝑃𝑖, 𝑃𝑗, and 𝐺𝑘 calculates
as follows:

𝑅𝑖,𝑗(𝐺𝑘) =
⎧{{
⎨{{⎩

0, if 𝜃𝑘
𝑖,𝑗 > ̂𝜃 or 𝑑𝑘

𝑖 < 𝑑𝑘
𝑗

exp(𝐾cos(𝜃𝑘
𝑖,𝑗))

𝑑𝑘
𝑖 −𝑑𝑘

𝑗

𝑑𝑘
𝑗

, otherwise

md l - p r i o r Finally, Equations (6.2) and (6.3) both result in zero
assignment costs for |𝐺𝑘| = 1. Therefore, an additional term is required
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to penalize small groups. This is achieved by adding anMDL-prior over
the amount of groups, which can be adapted with the parameter 𝑀:

𝑃(𝐺) = 𝑀|𝐺| (6.4)

An assignment of persons in a scene to conversational groups can be
created by optimizing the cost function in Equation (6.1). To this end, I
implement three different detectors: (1) DetectorGco from fformation-gco
[ffm-gco]: uses GCoptimization - Software for Energy Minimization with
Graph Cuts Version 3.0 by Nuno Subtil et al. [gco-v3.0] to implement the
approach from Setti et al. [Set+15]. For comparison, the original imple-
mentation can be found in Graph-Cuts for F-Formation by Francesco Setti
[GCFF]. The detectors (2) Shrink and (3) Grow from fformation [ffm]
use k-means to find the best assignment for a fixed number of groups.
To find the best number of groups, shrink increases it starting from
one—thereby shrinking the group size—as long as the cost decreases.
Grow starts with one group for each person and reduces the amount of
groups as long as the cost decreases. Finally, two dummy detectors are
available: None always returns a group for each person and One always
assigns all persons to a single group [ffm]. By applying these detectors
to the created corpus, I can investigate Claim 6.1�.

6 .1 .2 Evaluation

To evaluate Claim 6.1, I use the ground truth annotations of group
assignments and person positions from both the annotations and the
automatic detections. An evaluation of the F-Formation detection for
HHI is already done by Setti et al. [Set+15]. Because the evaluation
in this section is concerned with the quality of detected conversation-
al groups of artificial agents, a quality metric is required that can be
applied to a single agent in the scene separately. To this end, I use the
definition of a tolerant match by Setti et al. [Set+15]:

definition 1 (tolerant match) With a threshold 𝑇 ∈ [0, 1] (toler-
ance threshold), a predicted group 𝐺𝑘 is a tolerant match if at least 𝑇|𝐺𝑘|
participants of the group are correctly assigned and less than 1 − 𝑇|𝐺𝑘| parti-
cipants are falsely assigned to it [Set+15].

The choice of 𝑇 determines how exact the detected group must match
the ground truth to be correct.

corollary 1 Tolerant matches for 𝑇 < 1
2 classify groups with more than

50% wrong or missing persons as correct.

With this definition, a confusion matrix can be calculated. In contrast
to Setti et al. [Set+15], the confusion matrices in this section are cal-

� Claim 6.1: Mixed conversational groups of people and artificial agents can be detected
using F-Formations as known from HHI.
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culated for each agent separately. The matrix is calculated as sums of
observations where:

TP: the agent is correctly assigned to a group and the group matches
the annotation according to the tolerant match.

FP: the agent is falsely assigned to any group.

TN: the agent is correctly classified as not in a group.

FN: the agent is falsely classified as not in a group or assigned to the
wrong group according to the tolerant match.1

By definition, the agent is always a participant of it’s own group: 𝑃𝑖 ∈
𝑔(𝑃𝑖). Therefore, it is always correctly assigned and the match is always
greater than 0.

corollary 2 With 𝑇 = 1
|𝑃|+1 the confusion matrix measures the detection

of the agent being in a group or not, regardless the other participants of the
group.

On the basis of these measures, four detector configurations are chosen
from a grid search on MDL, stride, and algorithm. For the range of 𝑇 ∈
[0.5, 1] (Corollary 1), the usual quality measurements are calculated
over the whole corpus and visualized for each agent on annotated and
detected person percepts. The detected percepts are the fusion results
from the apartment’s person tracking andGines et al. [OpenPose] based
detections. The resulting plot can be seen in Figure 6.2 and is analysed
in the following.

6.1 .3 Results

A set of observations and conclusions can be drawn from the perform-
ance visualization in Figure 6.2: (i) Group detections on the basis of
automatically detected person percepts show worse performance for all
configurations and tolerance thresholds in all quality metrics—except
for recall in case of Flobi Entrance and a small 𝑇. The strongest perform-
ance decrease can be observed for Flobi Entrance in the precision and
markedness measurements. Only 20%-40% of the groups detected for
the Flobi Entrance correctly match the annotation in case of automatic
person detections while 65%-80% based on the annotations. The effect
is much smaller for recall, and informedness at Flobi Entrance and
for all metrics in case of Flobi Assistance. It is consequential that the
group detection results are worse with automatically detected person
percepts than with manually annotated person positions. Especially

1 Counting an assignment to the wrong group when the agent is in a group as false
negative may seem counter-intuitive. However, false positive implies that the agent
is not in a group. This case can be interpreted as: falsely not assigning to the correct
group (false negative).
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Figure 6.2: The values of performance metrics precision, recall, F1-score,
markedness, and informedness, plotted over different choices of
𝑇 (Threshold). The results for Flobi Assistance are shown in the
upper row, Flobi Entrance can be seen in the lower row. Solid lines
represent the results of group detections based on annotated per-
son positions. Dashed lines show group detection results from
automatically detected person percepts. The detector names con-
sist of the name of the algorithm, the used MDL and the stride.
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the strong, decrease in case of Flobi Entrance suggests problems in
the detection of persons. Indeed, both person detection approaches
are challenged by the used corpus. For the Gines et al. [OpenPose]
based approach, the positions of the agents and camera perspectives
(𝑂 perspectives in Figure 5.1) are problematic. The feet of people inter-
acting with Flobi Assistance can not be detected as they stand behind
the kitchen unit. This is not a problem in case of Flobi Entrance, but
the corridor is crowded, which results in occlusions between the per-
sons. The person detection of the apartment, works on the basis of
top-down perspectives (𝑇1 and 𝑇2 in Figure 5.1). Therefore, people
neither can occlude each other nor be occluded by furniture. Neverthe-
less, this system does not perform well in crowded situations, because
it often can not separate the percepts of people who are standing close
to each other. Especially problematic is the hallway, which is narrow
and crowded. (ii) The overall performance in case of Flobi Entrance is
worse than in case of Flobi Assistance. This can have multiple reasons.
First of all, the prevalence for being in a group for Flobi Entrance (0.15)
is much lower than for Flobi Assistance (0.39). Therefore, with the
same classifier-quality, a lower precision can be expected. This is con-
firmed by the fact that the classifiers’ markedness—which is less prone
to the prevalence—is on a similar level for both agents. For recall and
informedness this is different. They are both worse for Flobi Entrance.
Therefore, the classifiers are less qualified in correctly distinguishing
group and non-group configurations for Flobi Entrance. (iii) While
the precision decreases slightly for a growing tolerance threshold, the
impact is much stronger for recall, markedness, and informedness in
case of Flobi Assistance. This is rooted in the definitions of false positive
and false negative for these evaluations. Correctly detecting that an
agent is in a group, but assigning it to the wrong group is counted
as false negative. Therefore, these cases have no impact on the classi-
fier’s precision. The markedness metric accounts for false negative and
therefore shows a decline. A much smaller decline can be seen in case
of Flobi Entrance. This is rooted in the overall smaller group sizes ob-
served for the hallway. (iv) Gco-4500-50 achieves the best precision, and
markedness for both agents. This means that the classifier configuration
can be chosen in an agent-agnostic way. Furthermore, it shows that
the results of the graph cuts based approach are the most trustworthy.
(v) The recall and informedness results are best in case of Grow-6000-50.
The k-means based approach can correctly find more of the annotated
groups and non-groups than the other configurations when using a
higher MDL. This underlines the trade-off that has to be made between
precision and recall. (vi) Finally, the plots of precision and recall show
only small differences to markedness and informedness. This means
that the probabilities of false omissions (FOR) and false alarms (FPR)
are small. The only exception here is precision andmarkedness for Flobi
Assistance witch indicates ≈ 20% false omissions. The results can not
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be directly compared to the performance of F-Formation detections in
HHI [Set+15; Vas+16] because the quality measures in this chapter
had to be calculated for each agent separately. Nevertheless, the res-
ults show that by detecting F-Formations with the approach presented
by Setti et al. [Set+15], conversational groups with artificial agents can
be detected.

6.1 .4 Discussion

In this section, I Investigated Claim 6.1�. To this end, I implemented
a system for F-Formation-detection according to Setti et al. [Set+15]
and evaluated its applicability for the detection of conversational gro-
ups with artificial agents using the corpus presented in Chapter 5. The
evaluation shows that the quality of the conversational group detection
depends on and the crowdedness of the environment and the parti-
cipants incentive to interact with the agents. Errors in the detection of
participants can strongly interfere with the quality of the group detec-
tions. Furthermore, it gets increasingly hard to assign each participant
to the correct group while the group size grows. Nevertheless, it is evid-
ently possible to utilize the approach to correctly find the participants
of the conversational groups of artificial agents in the majority of the
observations, which confirms Claim 6.1.

6.2 in/out of group distinction

As suggested in the beginning of this chapter, it is not always necessary
for an artificial agent to correctly identify all participants of its con-
versational group to be able to solve its task in a socially acceptable
manner. For example, to exhibit civil inattention it is fully sufficient to
know whether the robot is in a conversational group or not. Therefore,
in such situations a much simpler classifier may be sufficient. In this
section, I investigate whether the detection of faces in the agents field
of view (Claim 6.3�), or mutual gaze (Claim 6.2�), can sufficiently
inform about whether the agent is in a conversational group or not
(in-group-detection). To this end, I compare the applicability of face
detections, and gaze detections with the results of the conversational
group detection based on F-Formation from Section 6.1.

� Claim 6.1: Mixed conversational groups of people and artificial agents can be detected
using F-Formations as known from HHI.

� Claim 6.3: The detection of faces in the agents field of view can sufficiently inform
about whether it is in a conversational group or not.

� Claim 6.2: The detection of peoples gaze direction in the agents field of view can
sufficiently inform about whether it is in a conversational group or not.
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6.2.1 Detectors

To better understand, if face detection, gaze detection, and F-Formation
detection can be applied to distinct situations where an agent is in a
group from situations where it is not, I create a scalar feature from each
of these inputs. This is done as follows:

face: To get a scalar feature for the face detection I calculate the amount
of the agents field of view that is occupied by the face of the nearest
person. As an approximation, the size of the ROI from the face de-
tection can be used. If multiple faces are detected simultaneously,
the biggest face (ROI) is chosen as the nearest and therefore most
informative. The resulting feature is zero when no face can be
detected and grows when someone gets closer to the agent.

gaze: The gaze feature is calculated from the horizontal and vertical
gaze angle of the face of the nearest person. To this end, the angle
of the combined rotation (yaw and pitch) is calculated and used
as a scalar feature vector. It is zero when the agent is directly
looked at and 𝜋 when the person looks in the opposite direction.
Because the gaze detection model is based on frontal views of
faces, this angle does not exceed 𝜋

3 in this evaluation. In case no
face and therefore no gaze direction can be detected, the angle is
set to 𝜋

2 as an upper bound.

gco-agent: From the F-Formation-detection models as presented in
Section 6.1, I use the graph-cuts based detection with MDL = 4500
and stride = 50 (Gco-4500-50). This configuration has an overall
good performance in the F-Formation detection. The automatic-
ally detected person percepts are used as input information to
allow a fully automatic recognition. To get a scalar feature, I cal-
culate the distance and visibility cost (Equations (6.2) and (6.3))
for the agent. Cases where the agent is detected as not in a group
(|𝐺𝑘| = 1) are set to the maximum observed cost. The resulting
feature approaches zero for group assignments with low costs for
the agent, and grows when it becomes difficult to access a group.

6.2.2 Evaluation

To evaluate the applicability of face information for in-group detection,
the face detection observations need to be linked to the group annota-
tions. To this end, the face detection data—which is produced with
15Hz—is assumed to be constant between observations and sampled
using the timestamps from the group annotations. This results in 50834
observations for each agent and feature. By varying a threshold between
the smallest and largest observed value of each feature, ROC and pre-
cision-recall curves can be created. It should be possible to create a
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classifier that combines these features to achieve an overall better per-
formance. However, the performance of such a classifier is not relevant
for the investigated claims (Claims 6.2 and 6.3) and therefore not inspec-
ted. The performance of the three features is visualized in Figures 6.3
and 6.4 and further analysed in the following.

6.2.3 Results

The visualization of the ROC curves and AUC of the proposed detectors
Face, Gaze, and Gco-Agent in Figure 6.3 allows some insights into their
applicability for in-group detection. (i) The recall is strongly increasing
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Figure 6.3: Performance visualizations of in-group detection from the Face
(red), Gaze (blue), and Gco-Agent (green) models in the ROC
space. The corresponding AUC values are shown in the gray box
on the lower centre. The results are shown separately for the agents
Flobi Assistance (solid lines, dark-filled AUC), and Flobi Entrance
(dashed lines, light filled AUC).

for small values of FPR and there are no observations of FPR in the
range [0.09, 0.97]. This strong increase in the FPR happens for the face
detection based features when observations without a face detection
are accepted as in-group and for the F-Formation based feature when
no group was detected. At this point all observations are accepted as
in-group and the detectors lack diagnostic power. (ii) The F-Formation
based feature (Gco-Agent) produces the lower bound in recall and the
upper bound of False Alarms for Flobi Entrance. Although a perfect
F-Formation based group detection would result in an optimal ROC
curve, this is the worst performing classifier. The lower quality of this
feature for Flobi Entrance, therefore, must be rooted in (1) the overall
worse performance of F-Formation detection for this agent and (2) the
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higher noise in the person detection in the vicinity of this agent. (iii) For
Flobi Assistance, this feature achieves the upper bound in recall while
showing a slightly worse FPR. It furthermore achieves the highest AUC.
This shows that the feature has a much higher potential in correctly
deciding whether an agent is in a group or not. (iv) Finally, the face
detection based detectors result in similar curves for each agent and
feature. While they achieve a slightly better recall for Flobi Assistance,
their FPR is lower for Flobi Entrance. Nevertheless, the overall difference
is negligible, as can be seen in their AUC. This property indicates that
information about the size of the detected face or gaze direction—at
least in this scenario—does not provide much information to in-group
detection. The detectability of a face as such is much more important.

Because the proportion of observations in which the agent is in a
group are low in the used data (0.39 for Flobi Assistance and 0.15 for
Flobi Entrance), the FPR value is an optimistic measure. Therefore, it is
interesting to additionally investigate the applicability of the features in
the precision-recall space. The curves can be seen in Figure 6.4 and give
further insights. (i) The breakdown in diagnostic power of the features
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Figure 6.4: Performance visualizations of in-group detection from the Face
(red), Gaze (blue), and Gco-Agent (green) models in the preci-
sion-recall space. The corresponding AUC values are shown in a
gray box on the lower left. The results are shown separately for the
agents Flobi Assistance (solid lines, dark-filled AUC), and Flobi
Entrance (dashed lines, light filled AUC).

when all observations are accepted as in-group can be seen in this visual-
ization too (for high values of recall). (ii) The differences of the features’
applicability is more apparent in this visualization. It can be seen in the
curves and the AUC values of the classifiers. (iii) The Gco-Agent based
classifier for Flobi Entrance is gradually loosing precision when recall
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is increased and shows an overall low AUC of ≈ 0.67. (iv) This does not
apply for Flobi Assistance, for which the feature produces a continu-
ously high precision of ≈ 90% even for high recall values. (v) Gco-Agent
for Flobi Assistance and Gaze for Flobi Entrance show a high variance
in precision for low recall values. While configurations with low recall
are not of great interest, this property lowers the overall AUC of these
detectors. (vi) The best AUC is achieved by the Face feature for Flobi
Assistance which shows a reliably high precision for recall < 80%.

6 .2.4 Discussion

In this section, I created scalar features from the results of a face detec-
tion and a gaze detection approach. I used these features to test their
applicability as in-group detectors and compared them to a feature based
on an F-Formation group assignment cost to investigate Claim 6.2� and
Claim 6.3�. On the one hand, this investigation shows that a feature
based on the detection of conversational groups can outperform ap-
proaches that only utilize informations from the detection of faces in
the agents field of view. This is especially true when a high recall is re-
quired. On the other hand, this only works if the conversational group
detection itself produces reliable results. If the reliability of the group
detection approach is low, an approach based on the detection of gazes
produces better results. This feature achieves a recall of ≈ 75% − 80%
with a precision of ≈ 90% and produces overall better results for Flobi
Entrance than the group detection based approach. Therefore, it can be
said that the detection of peoples gaze can inform about whether the
agent is in a group or not sufficiently to outperform a group detection
based approach. This confirms Claim 6.2. Although, this is only the
case when the reliability of the group detection is low—as with Flobi
Entrance. The feature based on the size of the face produces comparable
results. This confirms Claim 6.3. Furthermore, it is apparent that both
face-detection based features show only small changes in the investig-
ated quality measures for varying thresholds as long as observations
without a detected face can be distinguished from observations with a
face. It can be concluded from this observation that the most important
information for the in-group detection is not the gaze angle or face size
but whether a face can be detected in the first place or not.

6.3 summary

By detecting arrangements of verbally interacting people as conversa-
tional groups, an agent enriches its understanding of the social situation.

� Claim 6.2: The detection of peoples gaze direction in the agents field of view can
sufficiently inform about whether it is in a conversational group or not.

� Claim 6.3: The detection of faces in the agents field of view can sufficiently inform
about whether it is in a conversational group or not.
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This allows it to distinguish focused from unfocused interactions, and
behavemore socially adequate (see Sections 2.1.2 and 2.1.3). Therefore, I
investigated RQ 3� in this chapter. To this end, I showed that a conversa-
tional group with an artificial agent can be detected using F-Formations
as known from HHI (Claim 6.1). Furthermore, I examined whether
simpler approaches can be used as a substitute for the group detection
in cases where the participants of the group are of no interest. To this
end, I showed that the detection of peoples gaze direction in the agents
field of view is sufficient for in-group detection (Claim 6.2), and that this
can be further simplified by using face detection results (Claim 6.3).

Considering RQ 3 the collected observations show that conversa-
tional groups with artificial agents can be detected as F-Formations
using the same approach as known from HHI research. When the agent
only needs to know whether it is in a conversational group, and an
identification of the groups participants is not required, the F-Formation
based group detection can achieve better results than approaches based
on face and gaze detection. However, this investigation shows that
noise in the person detection has a strong negative impact on this group
detection. In case of noisy person detection, better in-group detection
results can be achieved by using the result of a face detector instead of
detecting person positions and calculating assignment costs.

� RQ 3: How can focused interactions of people with artificial agents be automatically
recognized in a smart environment?



7
CONVERSAT IONAL ROLE RECOGNIT ION

With conversational group detection, an agent can behave towards
people depending on whether they are part of its conversational group
or not. It can show civil inattention towards some while optimizing the
mutual observability with others. However, to correctly interact with
the people within the group, further information is required. The agent
needs to guide its attention towards the speaker and identify utterances
addressed towards it. Simultaneously, it should support the interaction
by acting according to its role, or may apply turn taking to influence
the roles within the group. However, to efficiently use them, the agent
needs to know its current role (Sections 2.2.2.2 and 2.2.2.3). Therefore,
I stated RQ 4�. To create an approach to conversational role recognition,
I elaborate on the following arguments and corresponding claims: On
the one hand, conversational roles can often be directly inferred from
the state of the scene. Someone who speaks, for example, automatically
becomes the accepted speaker or stops speaking. A Non-Participant, by
definition, lacks a conversational group. Therefore, I claim:

claim 7.1 (high-level features) Given a set of high-level features, the
conversational role of an agent can be recognized using simple models.

On the other hand, the signals used to negotiate conversational roles in
human interaction can often be minimal and hard to determine:

claim 7.2 (low-level features) By learning from lower level features,
the recognition of conversational roles can be further enhanced.

Furthermore, a conversation is a dynamic process that unfolds in time
and in which the roles are negotiated through the system of turn taking,
one turn at a time. Therefore, the problem should be treated as a time-
dependent recognition problem:

claim 7.3 (time-based approach) By observing how the interaction
unfolds in time, the conversational role can be better recognized than from the
latest observation alone.

To investigate RQ 4 and the presented claims, I create and evaluate
conversational role recognition models for virtual agents in a smart
environment. To this end, I use high-level features and simple models
on the one hand (Claim 7.1), and artificial neural networks with varying
feature sets (Claim 7.2) and time sequence information (Claim 7.3)
on the other hand. Like in Chapter 6, this investigation is performed

� RQ 4: How to determine conversational roles of artificial agents in dynamically chan-
ging interactions in a smart environment?

109
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using the corpus presented in Chapter 5. It contains 57min of mixed
human-agent interaction with the virtual agents Flobi Entrance and
Flobi Assistance. Observations are sampled with a regular rate of 15Hz
for each agent separately. This results in a total of 101668 observations,
uniformly distributed over the time and agents. The observations are
spread between the roles as follows: Speaker (3.35%), Addressee (5.60%),
Side-Participant (18.06%), andNon-Participant (73.00%). This imbalance
between the classes needs to be considered during evaluation.

7.1 high-level role features

For the evaluation of Claim 7.1�, I create a set of high-level features
based on the observationsmade in the previous chapters. These features
are then combined using a set of rules and, for comparison, a set of
Bayesian Networks to create simple classifiers for the recognition of
conversational roles.

7.1 .1 Feature Selection

To allow the classification of conversational roles, a set of high-level fea-
tures can be compiled. Based on the observations made in the previous
chapters, the following features can be automatically detected or are
directly accessible to the agent during the interaction:

Speaking: Whenever an agent is speaking, its conversational role must
be speaker or will become speaker over time (Section 2.1.3.3). The
agent’s speech-production activity (binary) is therefore an import-
ant information in the recognition of the speaker role. As this
is part of the agent’s inner state, it does not need to be detected.
The information can be extracted directly from the corpus (see
Section 5.5).

Addressed: Whether an agent has the role of addressee is determined
by the current speaker (Section 2.1.3.3). In Chapter 4, I present
and evaluate a model to decide whether the agent is addressed.
From this evaluation, I select a model for addressee recognition
that uses information about the interlocutors mouth movements
and mutual gaze with the agent.1 I train this model using the full
corpus that is presented in Section 4.2. By applying this model to
observations in this evaluation, a binary prediction can be made
whether the agent is addressed (𝑃(𝐴|𝐺, 𝑀) > 50%) or not.

In-group: One reason for the importance of conversational group de-
tection for conversational role recognition is that it subdivides

1 the Bayesian Network named Both in Figure 4.7 on page 77

� Claim 7.1: Given a set of high-level features, the conversational role of an agent can be
recognized using simple models.
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the set possible roles (Section 2.1.3.2). Whenever the agent is in a
group, it can not assume the role ofNon-Participant. In Chapter 6, I
present an approach to F-Formation detection that can be applied
here too. As in Section 6.2.2, I use the graph-cuts based optimiza-
tion with 𝑀 = 4500 and 𝑆 = 50 in this investigation. By applying
the F-Formation detection to an observation, a binary in-group
detection (|𝑔(𝑃𝑎𝑔𝑒𝑛𝑡)| > 1) can be created for the agent.

Mutual gaze: Gaze is an important information in conversations. The
distribution of the participants gaze in a conversational group
can be used as an indicator of the distribution of conversational
roles. Furthermore, gaze is used in the negotiation of the next
turn (Section 2.1.3.3). In Chapter 4, I present a model for a binary
mutual gaze detection which is based on the (continuous) angle
of the interlocutors gaze.

Mouth movements: Like the speaking feature for the agent, the detec-
tion of mouth movements can identify its interlocutor as speaker.
When a different participant of the conversation is the current
speaker, the agent can not assume this role simultaneously. Fur-
thermore, whether the interlocutor is speaking or not has implic-
ations for the interpretation of mutual gaze (Section 2.1.3.3). In
Chapter 4, I present a model for (binary) mouth movement detec-
tion based on the (continuous) variance of the distances between
the interlocutors upper and lower lip (lip variance) (Section 4.2.3).

This set of high level, binary classification results are used in the follow-
ing to create simple models for conversational role recognition.

7.1 .2 Rule Based Model

For the evaluation of Claim 7.1, I create a simple, rule based conversa-
tional role recognition model. It performs the following decisions:

In-Group: Whenever the agent is not in a conversational group, its role
must be Non-Participant. Therefore, the agent is Non-Participant
when |𝑔(𝑃𝑎)| = 1. When it is part of a conversational group
(|𝑔(𝑃𝑎)| > 1), it can assume one of the remaining conversational
roles.

Speaking: The literature suggests, that only one participant can have
the role of speaker at a time during conversations. This implies
that, if one agent does not have the floor but starts and continues
to speak, the current speaker will eventually yield and the agent
become speaker (see Section 2.1.3.3 on page 18). Therefore, the
agent is classified as speaker, whenever it is part of a conversation-
al group and speaking. This information is drawn directly from
the agent’s speech-production activity.
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Addressed: When the agent is in a conversational group but not the
speaker, it can assume the role Addressee or Side-Participant. To
distinguish these two roles, the addressee recognition model as
presented in Section 4.5 is used. The model is trained using the
full corpus presented in Section 4.2.5 and predicts the probability
of the agent being addressed givenmutual gaze and the interlocutors
mouth movements. As this is a binary decision, the agent is assumed
to beAddresseewhen the probability 𝑃(𝐴|𝐺, 𝑀) is higher than 50%.
Finally, when the agent is neither speaker nor Addressee but still a
participant of the conversational group, it must have the role of a
Side-Participant.

By applying these three binary decisions in succession, a rule-based
addressee classifier can be created. A visualization of the resulting
model can be seen in Figure 7.1. This simple model can be used to
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Figure 7.1: The decision tree for rule based role recognition. The root node
is shown as a black circle, decision nodes as blue diamonds, input
nodes as red parallelograms, and role recognition results as green
rectangles. Decision nodes perform a binary (yes/no) distinction
based on data provided by the input nodes.

assess the applicability of approaches to conversational role recognition
based on high level features (Claim 7.1).

7.1 .3 Bayesian Network

For comparison, I create Bayesian Networks that incorporate the high
level features of the rule model. To this end, the agent’s role is assumed
to be dependent on these features. Furthermore, this model usesmutual
gaze and mouth movement information directly (in contrast to the rule
based model which uses the results of the addressee recognition) to
allow a better adaptation to the addressing behaviour in this corpus.
The resulting model (𝐵𝑛𝑀) can be seen in Figure 7.2. Additionally, I
apply structure learning2 to automatically extract Bayesian Network

2 Using bnlearn::hc from the bnlearn package (v4.4) in R[bnlearn] with 1000 restarts
and 1000 perturbations.
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Role

Speaker Addressee Side-Participant Non-Participant

In-Group

True False

Speech Production

True False

Mouth Movement
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Mutual Gaze
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Figure 7.2: Manually created Bayesian Network structure (BnM) that uses the
high level features in-group, speech production, mouth movement, and
mutual-gaze for conversational role recognition. Blue rectangles
represent binary input nodes. The red rectangle represents the
conversational role of the agent with the four possible outcomes
Speaker, Addressee, Side Participant, and Non-Participant. The arrows
represent conditional dependency—the role depends on all other
nodes.

structures. In the following, models created via structure learning are
called 𝐵𝑛𝐴. Furthermore, as Bayesian Networks are sensitive to class-
imbalance, I additionally perform under-sampling in the training of
thesemodels. To prevent ties in the BayesianNetwork results, the under-
sampling uses slightly more examples for more common roles. This
is done by taking all 𝑛 observations of the rarest role and randomly
sampling 𝑛 + 1 of the second rarest, 𝑛 + 2 of the second most common,
and 𝑛+3 of themost common role observations fromwithin the training
data. Models trained with under-sampling are subscripted with ‘u’. The
resulting models 𝐵𝑛𝑀𝑢 and 𝐵𝑛𝐴𝑢 are trained with nearly equal amounts
of observations of all roles. In Table 7.1 a classification of the resulting
models is shown.

Full Training Set Under-sampling
Manual Structure 𝐵𝑛𝑀 𝐵𝑛𝑀𝑢

Automatic Structure 𝐵𝑛𝐴 𝐵𝑛𝐴𝑢

Table 7.1: The configurations of BayesianNetworks as evaluated in this chapter.
Manual networks use the structure shown in Figure 7.2. The struc-
ture of automatic networks is learnt from the training data. The ‘u’
subscript highlights models that are trained with under-sampling.

In the following section, I evaluate the classification performance of
the rule-based classifier and compare it to the results of the Bayesian
Network based approaches.

7.1 .4 Evaluation

For the evaluation, I split the corpus into 5min long slices on a regular
scale. This results in 12 subsets which can be used to perform a 12-fold
CV, by holding one subset out for validation and training with the
remaining 11. Structure learning and under-sampling are performed on
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the respective training-dataset within the fold. The rule based model
(Rule) does not need to be trained. In total, five models (𝑅𝑢𝑙𝑒, 𝐵𝑛𝑀,
𝐵𝑛𝑀𝑢, 𝐵𝑛𝐴, and 𝐵𝑛𝐴𝑢), are evaluated in a 12-fold cross-validation. To
get an impression of the models’ performances for each role, I first
visualize the F1-score, markedness, and informedness for each class
separately. The resulting plot can be seen in Figure 7.3. Furthermore, to
allow the comparison of the overall quality of the models, I calculate
two further performance measures. The accuracy of the models can be
calculated as the fraction of correct classifications in the population.
However, because all observations are considered individually, accur-
acy does not account for the class imbalance. Therefore, I additionally
calculate the macro average of the F1-score over the possible roles:

𝐹1𝜇 =
∑𝑟∈Roles 𝐹1𝑟

|Roles|

This way, each role is considered equally important for the model’s
performance, regardless of the prevalence. The resulting plots of 𝐹1𝜇
and accuracy for the presented models can be seen in Figure 7.4. These
visualizations are used to investigate and discuss the performance of
conversational role recognition with high-level features and simple
models.

7.1 .5 Results

Looking at the classification performances of the models for each class
(see Figure 7.3) the following observations can be made:

F1: The 𝑅𝑢𝑙𝑒, 𝐵𝑛𝑀, and 𝐵𝑛𝑀𝑢 models achieve similar F1-scores for
Speaker and Addressee, slightly better scores for Side-Participant
and good results for Non-Participant. In case of Side-Participant,
𝐵𝑛𝑀 beats the other models by more than 0.15. The Bayesian
Network with automatically deduced structure (𝐵𝑛𝐴) can not
compete for Speaker (Δ > 0.1), and fails to classify Side-Participant
and Addressee (both < 0.2). When trained with under-sampling,
the same approach (𝐵𝑛𝐴𝑢) produces a competitive F1-scores for
Speaker, Addressee, and Non-Participant but entirely ignores Side-
Participant (no orange bars for 𝑃 because always rejecting results
in division by zero).

Markedness: The 𝑅𝑢𝑙𝑒 based model achieves a high markedness for
Speaker and Non-Participant, while the values for Addressee and
Side-Participant are much lower (half as good). 𝐵𝑛𝑀 behaves sim-
ilar but can achieve better results for Side-Participant (Δ > 0.05).
𝐵𝑛𝑀𝑢 has a much lower markedness for Speaker than the other
models but behaves otherwise similar to 𝑅𝑜𝑙𝑒. The 𝐵𝑛𝐴 model
achieves a high markedness of > 0.9 for Speaker, performs similar
to the other models for Addressee and Side-Participant, and worse
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Figure 7.3: Performance measures F1-score, markedness, and informedness
for the rule based model and the Bayesian Network based mod-
els calculated for each role separately. The roles are (S)peaker,
(A)ddressee, Side-(P)articipant, and (N)on-Participant. The results of
the differentmodels—from left to right—are coloured in red (𝑅𝑢𝑙𝑒),
blue (𝐵𝑛𝑀), green (𝐵𝑛𝑀𝑢), violet (𝐵𝑛𝐴), and orange (𝐵𝑛𝐴𝑢). The
results of 𝐵𝑛𝐴𝑢 for 𝑃 can not be calculated as it does not predict
Side-Participants (division by zero).

than the other models for Non-Participant. 𝐵𝑛𝐴𝑢 performs similar
to the other models for Addressee but is slightly worse for Speaker
and Non-Participant. Side-Participant is never predicted by this
model.

Informedness: The informedness for Speaker of all models except 𝐵𝑛𝑀𝑢
is much worse than the markedness. 𝐵𝑛𝑀𝑢 has a better informed-
ness for Speaker and Addressee than markedness. While 𝑅𝑢𝑙𝑒 and
𝐵𝑛𝑀𝑢 achieve a much higher informedness for Addressee than
𝐵𝑛𝑀 (Δ > 0.25), the difference is inverse for Side-Participant. The
informedness forNon-Participant is high for 𝑅𝑜𝑙𝑒, 𝐵𝑛𝑀, and 𝐵𝑛𝑀𝑢
but low in comparison to the others for 𝐵𝑛𝐴 and 𝐵𝑛𝐴𝑢. Finally,
𝐵𝑛𝐴𝑢 shows an overall low informedness.

To get a better impression of the models overall performances, Fig-
ure 7.4 can be consulted. The following observations can be drawn from
the visualizations of accuracy and 𝐹1𝜇:

Accuracy: The accuracy of the evaluated models ranges between 0.76
(𝐵𝑛𝐴) and 0.84 (𝐵𝑛𝑀). While 𝐵𝑛𝑀 achieves the highest accuracy,
the 𝑅𝑢𝑙𝑒 model (0.81) is second best. The models 𝑅𝑢𝑙𝑒, 𝐵𝑛𝑀𝑢, and
𝐵𝑛𝐴 are in the mean third of the range. 𝐵𝑛𝐴𝑢 performs worst
with an accuracy of 0.76 which is only slightly higher than the
prevalence of the Non-Participant role.

𝐹1𝜇: The 𝐹1𝜇 measures show a similar but less encouraging image.
𝐵𝑛𝑀, 𝑅𝑢𝑙𝑒, and 𝐵𝑛𝑀𝑢 perform best and in the same order as for
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Figure 7.4: The overall accuracy and 𝐹1𝜇 of the evaluated models. The bars
represent different models with the same colour coding as in Fig-
ure 7.3. While accuracy is shown in the left plot, the models 𝐹1𝜇
can be seen in the right plot. 𝐹1𝜇 for 𝐵𝑛𝐴𝑢 can not be calculated as
it does not predict Side-Participants (division by zero).

accuracy. They achieve an 𝐹1𝜇 between 0.54 and 0.59. The 𝐵𝑛𝐴
model achieves a low mean F1-score of 0.41. Because 𝐹1𝜇 requires
the model to be able to predict all roles and 𝐵𝑛𝐴𝑢 does not predict
Side-Participant, there is no result for 𝐵𝑛𝐴𝑢.

7 .1 .6 Discussion

The best results in this evaluation are achieved by the Bayesian Net-
work based model 𝐵𝑛𝑀. Under-sampling (𝐵𝑛𝑀𝑢) does not improve it’s
F1-score or markedness but it’s informedness for Speaker and Addressee.
These observations are plausible considering the structure of the model
(Figure 7.2). With all features being parent-nodes of the Role node, the
model can learn the probability distribution of roles for each combin-
ation of the feature values separately. This is possible because of the
small amount of binary features (the resulting conditional probability
table for 𝑅𝑜𝑙𝑒 has 64 cells). Given enough examples, and based on these
features, this model always performs optimal from a statistical point of
view. Additionally, it is not affected by an imbalance in the observations
it learns from. This is confirmed by the lower performance of 𝐵𝑛𝑀𝑢
which has the same structure but trains with fewer observations.

In contrast to the 𝐵𝑛𝑀 structure which is optimized for 𝑅𝑜𝑙𝑒 predic-
tion, the structure learning optimizes for a global model of the data.
Therefore, the 𝐵𝑛𝐴 models can not compete with the other models in
this set-up. This approach is better suited for bigger feature sets—which
makes it impractical to set Role a child-node of all features—or when the
prediction of varying nodes in the network is required from incomplete
observations.
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With an accuracy of 0.81 and an averaged F1-score of 0.58, the 𝑅𝑢𝑙𝑒
based conversational role classification approach achieves the second
best results. The in group feature from the F-Formation detection allows
predicting the Non-Participant role with a high reliability. As the F1-
score for the remaining roles is between 0.4 and 0.5, it is evident that
they are less easy to distinguish based on the provided features. The
much higher markedness than informedness for Speaker is rooted in
the speech production activity feature not accounting for situations in
which the agent holds the floor but does not speak or speaks without
holding the floor. For Addressee the difference between markedness and
informedness is inverse. This imbalance means that the role ofAddressee
is found correctly in the data but with a high amount of false positives.

While the reliability of the 𝑅𝑢𝑙𝑒 based conversational role classifica-
tion differs with the role that needs to be detected, its overall results are
good for a multi-class problem. Given the high-level features used in
this evaluation, an optimized, statistical model achieves slightly better
results. Therefore, it can be concluded that simple models can be used
to predict the conversational role of an artificial agent when high-level
information about the situation is available (Claim 7.1�).

7.2 low-level & time-based features

For the investigation of Claim 7.2� andClaim 7.3�, a classifier is required
that predicts the conversational role of the agent from lower-level fea-
tures and based on sequences of observations. Artificial neural networks
have the potential to extract the relevant information from low-level
features. Therefore, I utilize artificial neural networks with simple, fully
connected layers to test Claim 7.2. Furthermore, they can be extended
to learn models on sequences of observations. To test Claim 7.3, I create
models with layers of Long Short-Term Memory (LSTM) units, which
are specifically designed to process time-series [HS97].

7.2.1 Feature Selection

For the investigation of Claim 7.1, a set of high-level features is used. In
the following, I expand on the set of possible inputs and create different
feature vectors for the evaluation of Claim 7.2 and Claim 7.3.

𝑟𝑢𝑙𝑒: The 𝑟𝑢𝑙𝑒 feature vector contains the four binary features used in
the Rule and Bayesian Network based models in the evaluation

� Claim 7.1: Given a set of high-level features, the conversational role of an agent can be
recognized using simple models.

� Claim 7.2: By learning from lower level features, the recognition of conversational roles
can be further enhanced.

� Claim 7.3: By observing how the interaction unfolds in time, the conversational role
can be better recognized than from the latest observation alone.
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of Claim 7.1 (in group, speech production activity, mouth movement,
and mutual gaze).

𝑟𝑢𝑙𝑒𝑟𝑎𝑤: This feature vector contains the continuous features that are
used in the calculation of the 𝑟𝑢𝑙𝑒 features as presented in Sec-
tion 7.1.1. The speech production activity is used as is. For mouth
movement the continuous feature lip variance, and for mutual gaze
the continuous feature gaze angle are used. Instead of in group,
the agents F-Formation participation costs 𝐶𝑝 are used. These are
calculated as presented in the cost function of the F-Formation
detection (Section 6.1.1) but only regarding the agent 𝑃𝑎’s distance
and visibility costs without the MDL prior.

𝐶𝑝(𝑃𝑎) =
distance cost

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑢𝑔(𝑃𝑎) − 𝑥𝜇𝑎
)2 + (𝑣𝑔(𝑃𝑎) − 𝑦𝜇𝑎

)2

+ ∑
𝑗∈𝑃,𝑗≠𝑎

𝑅𝑎,𝑗(𝑔(𝑃𝑎))
⏟⏟⏟⏟⏟⏟⏟⏟⏟

visibility cost

This results in a 4D vector of continuous features.

𝑓 𝑢𝑙𝑙: For this feature vector, I use lower-level information from the
system data, face detection, and group detection. The list of in-
formation used in the feature vector with descriptions and dimen-
sionality can be seen in Table 7.2. I do not use the time-integrated
features lip variance and mouth movements, and the other deduced
features addressed, in-group, and mutual gaze. Hence, the time-
integration feature abstraction has to be done in the model. The
resulting feature vector has 148 dimensions.

All these features can be automatically detected during an interaction
and are used in the following to train and evaluate different artificial
neural networks. To support the training, the feature vectors 𝑟𝑢𝑙𝑒 (4D),
𝑟𝑢𝑙𝑒𝑟𝑎𝑤 (4D), and 𝑓 𝑢𝑙𝑙 (148D) are centred and scaled. This is done for
each dimension separately by first subtracting the mean and then di-
viding the results by the standard deviation3 (in the following, if not
stated explicitly, a preceding centring is always implied when scaling is
performed).

7.2.2 Neural Network Models

For this evaluation, I use the kerasR: R Interface to the Keras Deep Learning
Library by Andrie de Vries et al. [kerasR] (v0.6.1) with Keras: The
Python Deep Learning library by François Chollet et al. [Keras] (v2.2.4)
and TensorFlow: A System for Large-Scale Machine Learning by Yong Tang
et al. [TensorFlow] (v1.14) as back-end. I create two types of models,
one that uses only the most recent observation to recognize the agents

3 Performed with the scale function from the base package (v3.5.1) in R [base].
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Description Dim Source

For which agent the conversational role
recognition is performed.

1D System
Data

Whether the agent is currently speaking or not. 1D System
Data

The number of faces detected in the agent’s
FOV.

1D Face
Detection

The size of the agent’s interlocutors face. 1D Face
Detection

Facial landmark positions of the agent’s
interlocutor.

136D Face
Detection

The gaze angle of the agents interlocutor. 1D Gaze
Detection

The number of participants in the agents
conversational group.

1D Group
Detection

The position of the o-space centre of the agents
conversational group.

2D Group
Detection

Assignment and visibility costs for the agent
and its conversational group.

4D Group
Detection

Table 7.2: The information that is encoded in the 𝑓 𝑢𝑙𝑙 feature set for conver-
sational role recognition with artificial neural networks. Each row
describes a portion of the feature vector with dimensionality (Dim)
and source. For the final feature all portions are stacked into a 148D
vector.

conversational role (𝑑𝑒𝑛𝑠𝑒) and one that trains the recognition on time-
series (𝑙𝑠𝑡𝑚).

dense: The model that classifies only on the basis of the most recent
observation uses fully connected layers to model the input features
and a final dense output layer with 4 units and soft-max activation.
It’s results are interpreted as a probability distribution over the
possible conversational roles and the most probable role is chosen
as the result.

lstm: The time-based model uses layers of LSTM units [HS97] to learn
a temporal representation of the input features. It is trained with
observation sequences of length 𝑛 = 15, which encode the most
recent 1 sec. Given that the negotiation of conversational roles is
performed in close collaboration this is a good trade-off between
model size and history information available to the model. The
LSTM layers are followed by a time distributed, dense (fully con-
nected) output layer with 4 units and a soft-max activation. This
results in a sequence of 15 four-dimensional vectors interpreted
as role probabilities over the last 1 sec. The first 14 encode the
progress (history) of the agent’s conversational role and the final
vector identifies the current role of the agent. Further processing
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of the history will not improve the results as this is the task of the
LSTM layers. Therefore, for the evaluation I use the final vector
(current role).

To prevent over-fitting, the non-output layers of themodels are followed
by a dropout layer with 𝑝 = 0.5.4 The amount of units 𝑢 ∈ {128, 512} in
the inner layers of the models and the number of layers 𝑛 ∈ {1, 4} are
varied during the evaluation. A visualization of the model structure can
be seen in Figure 7.5. With the three variations of input features (𝑟𝑜𝑙𝑒,

 

𝑙𝑠𝑡𝑚 Model

LSTM 𝑢𝑛𝑖𝑡𝑠 = 𝑢 ∈ {128, 512}

Dropout 𝑝 = 0.5

Time Distributed 𝑢𝑛𝑖𝑡𝑠 = 4

Dense 𝑢𝑛𝑖𝑡𝑠 = 𝑢 ∈ {128, 512}

Dense 𝑢𝑛𝑖𝑡𝑠 = 4

Softmax

𝑑𝑒𝑛𝑠𝑒 Model
Input Feature Input Feature

Dropout 𝑝 = 0.5

Softmax

Repeat
𝑛 ∈ {1, 4}

times

Figure 7.5: The artificial neural network models lstm (left, red) and dense
(right, blue) as created for this investigation. They consist of
𝑛 ∈ {1, 4} layers (highlighted in grey) with 𝑢 ∈ {128, 512} units,
followed by a dense layer with soft-max activation. While the dense
model considers only the most recent information, the lstm model
is trained from observation sequences and has a time distributed,
dense output-layer.

𝑟𝑜𝑙𝑒𝑟𝑎𝑤, and 𝑓 𝑢𝑙𝑙) and the parametrization of the two model types (𝑙𝑠𝑡𝑚
and 𝑑𝑒𝑛𝑠𝑒 with 𝑢 ∈ {128, 512}, 𝑛 ∈ {1, 4}), there are 24 artificial neural
network models to evaluate. The model-names encode the following
information separated by dots: the type of the model (𝐷 = 𝑑𝑒𝑛𝑠𝑒, 𝐿 =
𝑙𝑠𝑡𝑚), the feature set (𝑅 = 𝑟𝑢𝑙𝑒, 𝑊 = 𝑟𝑢𝑙𝑒𝑟𝑎𝑤, 𝐹 = 𝑓 𝑢𝑙𝑙), the number of
units in each hidden layer {128, 512}, and the number of layers {1, 4}.
Therefore, L.F.128.4 represents an lstm typed model, trained using the
full feature vector with 128 units and 4 layers.

7.2.3 Evaluation

To investigate the performance of the presented models, I perform a 12-
fold cross-validation with folds of 5min length. An equal scaling (see
Section 7.2.1) of the feature vectors in the training and test sets is ensured
by determining the scaling parameters (mean and standard deviation in
each input dimension) from the training set and considering them a part
of themodel. Thereafter, the test set is scaled using the same parameters.
Furthermore, as the models are randomly initialized and prone to find
different local minima, I create multiple instances (8 seeds) of each
model configuration. Thus, a confidence interval can be calculated for

4 For for an in depth motivation and analysis of dropout see Srivastava et al. [Sri+14].
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the models’ performances. As in Section 7.1.4, I investigate the accuracy,
𝐹1𝜇, and class-wise F1-score of the presented models.

7.2.4 Results

In the following, I present and discuss the results of the 𝑑𝑒𝑛𝑠𝑒 and 𝑙𝑠𝑡𝑚
model configuredwith one hidden layer and 128 units in each layer after
50 epochs of training. Increasing the number of layers, units, or epochs
has only a small impact on the results (this can be seen in Figures B.1
to B.3 in the appendix).

The accuracy and 𝐹1𝜇 of the models, in combination with the results
of the 𝑅𝑢𝑙𝑒 and 𝐵𝑛𝑀 models, can be seen in Figure 7.6. The following
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Figure 7.6: Accuracy (red) and 𝐹1𝜇 values (blue)—both on the same vertical
axis–for the artificial neural network based models (horizontal
axis). The visualized value range is reduced from [0, 1] to [0.5, 0.9]
for better visibility. Horizontal lines represent the accuracy and
𝐹1𝜇 of the 𝑟𝑢𝑙𝑒 (dotted) and 𝐵𝑛𝑀 (dashed) model.

observations can be made on the basis of this visualization:
Both artificial neural network models achieve a better accuracy than

the Rule based model. For the dense model, an increase in the accuracy
and a decrease in the size of the confidence interval can be observed
with growing feature complexity. When using the full feature vector,
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the dense model can achieve better accuracy than the 𝐵𝑛𝑀 model. This
does not happen with the 𝑟𝑢𝑙𝑒𝑟𝑎𝑤 and rule feature for which the dense
models perform similar to 𝐵𝑛𝑀. The accuracy of the lstm based models
is above the results of the 𝐵𝑛𝑀 model. Between the different feature
sets, only small changes in the accuracy can be observed for the lstm
model.

Considering the 𝐹1𝜇 measurements, the models show different, par-
tially contradictory, results. From the perspective of 𝐹1𝜇, the dense mod-
els perform for all feature sets equally or worse than both the 𝑅𝑢𝑙𝑒 and
the 𝐵𝑛𝑀 model. They never perform better. Additionally, they show a
high variability in combinationwith the rule and full feature. The 𝑟𝑢𝑙𝑒𝑟𝑎𝑤
feature allows the densemodels to achieve results which are more stable
but not necessarily better. Lstm based models achieve better 𝐹1𝜇 than
𝑅𝑢𝑙𝑒 and 𝐵𝑛𝑀 when used with the 𝑟𝑢𝑙𝑒 and 𝑟𝑢𝑙𝑒𝑟𝑎𝑤 features. In case of
the 𝑓 𝑢𝑙𝑙 feature, the 𝐹1𝜇 of the LSTM models shows a degradation in
comparison to the other features. The 𝐹1𝜇 results of this configuration
are in between the Rule and 𝐵𝑛𝑀 model.

Although, most configurations of the artificial neural networkmodels
achieve a better accuracy than theRulemodel, amajority of them can not
achieve better 𝐹1𝜇. To further analyse this discrepancy, the F1-score for
each class can be investigated. A visualization of these measurements
is shown in Figure 7.7. This representation of the model performance
allows the following observations: The F1-score of Non-Participant is
high for all models including the 𝑅𝑢𝑙𝑒 and 𝐵𝑛𝑀 based models. Artifi-
cial neural network based models achieve better results—by a small
margin—when using LSTM layers with high-level features or the full
feature set and the 𝑑𝑒𝑛𝑠𝑒 model. Predictions of Side-Participant are bet-
ter than the 𝑅𝑢𝑙𝑒 based predictions in all configurations. The strongest
improvement in comparison to the 𝑅𝑢𝑙𝑒 model can be observed for this
class. To achieve a prediction of Side-Participant that is comparable to
𝐵𝑛𝑀, the dense model needs to be trained with the full feature set and
the lstm model with the 𝑟𝑢𝑙𝑒𝑟𝑎𝑤 features. Better results can be achieved
when using the 𝑟𝑢𝑙𝑒 feature with the lstm model. In the prediction of
Speaker, the dense model achieves results similar to the 𝐵𝑛𝑀 model with
the 𝑟𝑢𝑙𝑒 feature, similar to the rule model with the 𝑟𝑢𝑙𝑒𝑟𝑎𝑤 feature, and
worse with the 𝑓 𝑢𝑙𝑙 feature set. The lstm models achieve similar results
for Speaker with the 𝑟𝑢𝑙𝑒 and 𝑟𝑢𝑙𝑒𝑟𝑎𝑤 features but show a strong drop
in F1-score for the 𝑓 𝑢𝑙𝑙 feature. Addressee is the only role for which the
𝐵𝑛𝑀 model can not compete with the 𝑅𝑢𝑙𝑒 model. This observation is
even stronger for the artificial neural network models. The F1-scores
of the dense models for Addressee is equal to or worse than the 𝐵𝑛𝑀
models. While the lstm model can achieve results between the 𝑅𝑢𝑙𝑒 and
𝐵𝑛𝑀 models, it’s best recognition of Addressee is achieved with the 𝑓 𝑢𝑙𝑙
feature set.

By looking at the confusion matrices of the best performing 𝑑𝑒𝑛𝑠𝑒
and 𝑙𝑠𝑡𝑚 models in comparison to the 𝑟𝑢𝑙𝑒 and 𝐵𝑛𝑀 model (Figure 7.8)
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Figure 7.7: F1-scores (vertical axis) for the artificial neural network based
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error bars encode the classes Speaker (black), Addressee (red), Side-
Participant (violet), and Non-Participant (blue). Horizontal, lines
represent the F1-score of the 𝑟𝑢𝑙𝑒 (solid) and 𝐵𝑛𝑀 (dashed) model,
using the same colour coding.
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further observations can be made. The recall of Non-Participant is high
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Figure 7.8: ConfusionMatrices of the 𝑟𝑢𝑙𝑒, 𝐵𝑛𝑀 and best performing 𝑑𝑒𝑛𝑠𝑒 and
𝑙𝑠𝑡𝑚 models. The results are normalized by the amount of obser-
vations of each role in the corpus. The green tiles, represent recall
and the red tiles can be interpreted as the chance to misclassify
into the corresponding role.

in all models. However, when the agent is part of a conversational group
the 𝑟𝑢𝑙𝑒 model shows a bias towards predicting Addressee and the other
models towards Side-Participant. The higher accuracy of the 𝑑𝑒𝑛𝑠𝑒 model
is rooted in its focus on Non-Participant. While it has the best result for
this role, all other predictions are worse than the 𝐵𝑛𝑀 model’s. Only
the 𝑙𝑠𝑡𝑚 model trainedwith the 𝑟𝑢𝑙𝑒 feature set can outperform the 𝐵𝑛𝑀
model for most conversational roles.

7.2.5 Discussion

By utilizing artificial neural networks for the recognition of conversa-
tional roles, the overall accuracy can be improved in comparison to
the 𝑅𝑢𝑙𝑒 model. The accuracy of the 𝐵𝑛𝑀 model can only be surpassed
when using high-dimensional data (𝑓 𝑢𝑙𝑙 feature) with the 𝑑𝑒𝑛𝑠𝑒 model
or time sequences of low-dimensional, high-level features (𝑙𝑠𝑡𝑚 model).
The 𝐹1𝜇 and class-wise F1-scores measurements present a more nu-
anced picture. In case of the 𝑟𝑢𝑙𝑒 feature, and without time information,
the 𝐵𝑛𝑀 model can not be outperformed. It, by definition, produces
statistically optimal results. This is confirmed by the observation that
achieving higher accuracy is only possible by providing the models
with more information. By using the 𝑓 𝑢𝑙𝑙 feature set, the dense models
can achieve an accuracy of ≈ 85% which is better than the accuracy
of the 𝐵𝑛𝑀 model. A comparison with the F1-scores suggests that the
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increased accuracy is achieved by further enhancing the recognition of
Non-Participant. This can be confirmed by investigating the correspond-
ing confusion matrices. For Side-Participant the recognition remains
unchanged and gets worse for the other roles. By observing the situ-
ation over time, the models that use LSTM layers can outperform the
𝑅𝑢𝑙𝑒 and 𝐵𝑛𝑀 models. In combination with the 𝑟𝑢𝑙𝑒 or 𝑟𝑢𝑙𝑒𝑟𝑎𝑤 feature
set, these models achieve the overall best accuracy and 𝐹1𝜇. This is the
only configuration that can achieve a higher F1-score than 𝐵𝑛𝑀 for Ad-
dressee without loosing performance for the Speaker and Side-Participant
roles. The results of the LSTM models can not be enhanced by increas-
ing their complexity—the number of layers or units in each layer (see
Figures B.1 and B.2). This suggests that the less complexmodels already
have enough capacity to represent the informative properties of the
data. Over-fitting is reliably reduced by the drop-out layers, allowing
the more complex models to achieve similar results. The resilience of
the models against long training (Figure B.3), further confirms this.
Increasing the complexity of the input by using the 𝑓 𝑢𝑙𝑙 feature set does
not help to further enhance the lstm models’ performance. While the
F1-score for Non-Participant further improves, the results for the other
classes get worse. The strongest loss in F1-score can be observed for
Speaker, the role with the least amount of examples. This suggests that
the 148 dimensional 𝑓 𝑢𝑙𝑙 feature over a sequence of 15 observations
introduces too much noise to be handled with the available amount of
data. Like the Bayesian Networks, the artificial neural network mod-
els give preference to the more common role Side-Participant before
the Addressee role. Therefore, the 𝑅𝑢𝑙𝑒 based model may be considered
preferable when the recognition of the Addressee role is more important
than of the Side-Participant. However, as the Bayesian Networks and
artificial neural networks produce a probability distribution over the
roles, their results can be further processed to account for any trade-off
between the classes. Furthermore, the 𝑅𝑢𝑙𝑒 model performance is fixed.
The performance of the 𝐵𝑛𝑀 model can not get much better because of
its fixed structure and input. By using artificial neural networks with
low-level features, the accuracy of the system can be enhanced in com-
parison to the other models. Simultaneously, the 𝐹1𝜇 of the system goes
down. It is possible that these results will improve when trained with
more data. Nevertheless, Claim 7.2� can not be confirmed on the basis
of the observations in this chapter. Using sequences of observations, the
lstm models achieve better overall results than the other models when
using the high-level features. Provided with more training data, they
have the potential to further improve—especially for the less common
roles and low-level features. Therefore, it can be confirmed that models

� Claim 7.2: By learning from lower level features, the recognition of conversational roles
can be further enhanced.
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using time information achieve better results than models that only use
the newest observation Claim 7.3�.

7 .3 summary

Each participant of a conversational group can assume different roles
within the conversation which dynamically change over time. Acting in
accordance to its conversational role allows an artificial agent to better
meet the expectations of its interaction partners and raise the quality
of the interaction (see Sections 2.1.3.3 and 2.2.2.1). Furthermore, this
knowledge is a basic requirement if the agent is supposed to influence
its role or the roles of its interlocutors in an informed and autonomous
manner. Therefore, I stated RQ 4� and investigated it in this chapter. I
showed that, on the basis of the high-level features that were developed
in the previous chapters, the conversational role of an artificial agent
can be recognized using simple rule or Bayesian Network based models
(Claim 7.1�). Furthermore, I examined whether a better classification
can be achieved with different, lower-level features or by observing the
situation over time. To this end, I created artificial neural networks that
use only the most recent observation and such that use all observations
of the preceding second to predict the agent’s role. An evaluation of
these models revealed that observing the high-level features over time
allows achieving better classification results than possible from only a
single observation (Claim 7.3). Using all available, raw features does not
further improve the model performance. Therefore, Claim 7.2 could not
be confirmed. Nevertheless, the increase in the accuracy of the model
suggests, that further improvements are possible with more data.

Considering RQ 4, the collected observations show that the conversa-
tional roles of artificial agents can be recognized on the basis of simple
models when high-level information about the interaction is available.
This can be further enhanced by observing the situation over time with
more complex models.

� Claim 7.3: By observing how the interaction unfolds in time, the conversational role
can be better recognized than from the latest observation alone.

� RQ 4: How to determine conversational roles of artificial agents in dynamically chan-
ging interactions in a smart environment?

� Claim 7.1: Given a set of high-level features, the conversational role of an agent can be
recognized using simple models.



Part IV

PERSPECT IVES

In this part, I summarize the contributions I make in this
thesis. Furthermore, I present possible enhancements, ex-
tensions, applications, and future work.





8
RECAP ITULAT ION OF CONTR IBUT IONS

In this thesis, I investigate human interaction with arbitrary devices,
virtual agents, and robots in a smart environment. With my investiga-
tions, I focus on the problems of addressee recognition in interactions
with changing types of devices and mixed human-agent groups, and
the more fundamental problems of conversational group detection and
conversational role recognition in unconstrained HAI.

8.1 research topic

The overarching goal of this thesis is to use the perceptive capabilit-
ies of the environment and contained agents to better recognize the
conversational expectations of inhabitants towards different kinds of
artificial agents. To approach this goal from different directions, I articu-
late four research questions. Two of them consider the distinction of the
addressee of communicational acts in interaction with changing agents
on the one hand: ‘RQ 1: Which behaviours in naïve human interaction
with a smart environment can be observed to distinguish which agent is
addressed with a deliberate communicational act?’ and in interactions
in a fixed, conversational human-robot group on the other hand: ‘RQ 2:
How can an artificial agent visually recognize whether it was addressed
by a person within its conversational group or not?’. The second two re-
search questions aim at a more global recognition of the conversational
participation of artificial agents. By investigating the detection of con-
versational groups: ‘RQ 3: How can focused interactions of people with
artificial agents be automatically recognized in a smart environment?’
and the recognition of conversational roles of the agent: ‘RQ 4: How to
determine conversational roles of artificial agents in dynamically chan-
ging interactions in a smart environment?’. In Chapter 2, I present the
scientific foundation of these investigations. By performing a literature
review on human interaction from the perspective of social sciences,
I create an overview of how people behave in copresence. I contrast
these findings with a literature review from the perspective of computer
sciences. In this review, I show that behaviours and expectations from
HHI interaction can be similarly observed in human interactions with
artificial agents. Furthermore, I show how they can be automatically
recognized and how they are utilized in interaction scenarios with ar-
tificial agents and smart environments in the literature. The compiled
overview of research on human interaction from both social sciences
and computer science helps to understand human expectations and
behaviours in copresence with artificial agents.
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8.2 addressee in communicative acts

In Part II, I investigate human addressing behaviour and how it can
be interpreted in interactions with devices, robots, and smart environ-
ments. Artificial agents and devices are products of human imagination
and design. To make them usable for people without prior training,
they need to match the user’s intuition. The literature on smart envir-
onments, suggests and evaluates multiple ways of communicating the
addressee and task in interaction. However, approaches inwhich people
can freely choose their own way of interacting are rare (Section 2.3.2).
The contribution I make with RQ 1 in Chapter 3, is an investigation of
human addressing behaviour in a smart, robot inhabited apartment
with naïve users and deliberately unconstrained interaction possibilities.
The investigation shows that the visual focus of the user is the most
important cue for the distinction of addressed entities, regardless of
their form. If the addressee has a humanoid form, like the robot Floka,
this effect is stronger. The used modality and its form encode further
important features. In contrast to interactions proposed in the literature,
direct, verbal addressing with terms such as robot or apartment is rare.
The used gestures are general—e.g. waving, pointing, clapping—and
only intelligible in combination with other modalities such as gaze or
speech.

When an artificial agent participates in a conversational group with
multiple persons, the problem of distinguishing utterances addressed
towards it from utterances exchanged between the other participants
is evident. Most systems that explicitly deal with this distinction, use
close talk microphones or sound source localization to find the cur-
rent speaker and derive the addressee from the speaker’s visual fo-
cus of attention. The usefulness of the sound source localization to
detect the speaker is plausible and the speaker’s gaze behaviour is re-
peatedly investigated in HHI and HAI. In the investigation of RQ 2
in Chapter 4, I make a contribution to addressee recognition within
mixed human-robot conversational groups by presenting and evalu-
ating a visual mouth-movement detection as an alternative source of
information. A person—focused using sound source localization—can
be verified or rejected as the current speaker with this approach. On this
basis, I create and evaluate an addressee recognition model that fuses
information from speaker detection, mutual gaze detection, speech
recognition, and the robots state using Bayesian Networks. The result-
ing model can strongly reduce the amount of unwanted responses in
human interactions with artificial agents at the cost of a small amount
of false rejections.
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8.3 groups & roles in copresence

To behave socially appropriate in copresence with humans over longer
periods of time, artificial agents need to understand their role in the
situation and act accordingly. In Part III, I investigate how artificial
agents can better understand the situation and the flow of interaction
in copresence with humans. To be able to investigate RQ 3 and RQ 4,
I present a scenario and corresponding corpus in which people freely
interact with each other and two virtual agents over an extended time
period (Chapter 5).

Conversational groups are a fundamental building block for human
interactions. By creating a conversational group, people not only op-
timize the efficiency of the communication within the group. They
impose specific behaviours and responses on all agents in copresence
(Sections 2.1.2 and 2.1.3.2). To be able act in conformance to these social
norms, an artificial agent needs to have an understanding of conversa-
tional groups. While F-Formations are utilized in some HRI scenarios,
their effects on people are mainly investigated in virtual environments
and the detection performed on human-only groups (Section 2.2.2.5).
To investigate RQ 3 in Chapter 6, I present a fully autonomous ap-
proach for the detection of mixed human-agent conversational groups
and dedicated in-group detections for agents that lack a robust person
tracking. As a contribution, I show that conversational groups contain-
ing a combination of humans and artificial agents can be detected using
F-Formations, as it is done in the analysis of human interactions. I fur-
ther show, that the distinction between in group and out-of group can
already be performed on the basis of face detections in the agents field
of view with acceptable results.

The distinction of utterances that are addressed towards an artificial
agent from other utterances is a basic requirement for most modern
conversing systems. In the literature, as in Chapter 4, this is done on
the basis of utterances (Section 2.2.2.2). While this allows the agent
to respond to people’s statements, it is not enough to generate role
specific behaviour or to notice deviations between the course of the
interaction and the robots inner representation (Section 2.2.2.3). For
the investigation of RQ 4 in Chapter 7, I harness the results and models
made while working on RQs 1–3. I contribute to the advancement of
the capabilities of artificial agents by showing that their conversation-
al roles can be recognized continuously. With simple rule based and
Bayesian Network models, I show that the features developed in the
previous chapters allow an automatic recognition of an agent’s conver-
sational role. Furthermore, I show how time-sequence information and
lower level features can be harnessed to further enhance the recognition
quality with artificial neural networks. These results constitute a basis
for further research on the automatic recognition and utilization of
conversational roles in HAI.





9
OUTLOOK

The contributions made in this thesis are based on the current state
of research on human interaction with artificial agents and further
extend on it. Although, the presented models leave room for further
improvements, they already solve existing, practical problems. In doing
this, they also lay the foundation for further advances in the state of the
art.

9.1 possibilities for improvement

The analyses in Chapter 3 are performed on manually annotated data.
To create a better understanding of human addressing of agents in smart
environments, a fully automatic approach for the addressee detection
is required. Only with an automatic recognition, these findings can be
practically applied to aid further studies. To this end, it is interesting to
see if approaches to conversational group detection and conversational
role recognition are transferable to human interactions with devices.
Furthermore, all objects in the CSRA were possible addressees in the
addressing study and were annotated by an uninvolved person. Further
research needs be undertaken to better understand which entity the
participants intended to address and if some objects only functioned as
proxies for expected, invisible agents.

The addressee recognition model used in Chapter 4 can be further
enhanced by reducing the noise in the robots face detections model or
creating a dedicated artificial neural network to better distinct speaking
from other types of mouth movements. Furthermore, the model cur-
rently only considers visual information of the focused person. Acoustic
information is used only indirectly through the attention management
of the robot. By maintaining a model of each participant and fusing
information from visual and acoustic information, the speaker detection
can be further enhanced.

The group detection model presented in Chapter 6 is sensitive to the
quality of the underlying person tracking. Reducing the noise in the
person tracking and eliminating blind spots will enhance the overall
results of the group detection. Furthermore, a detailed investigation
of the cases that pose problems in the evaluation can reveal possible
improvements to the model. Because the model for conversational gro-
up detection is based on an approach to F-Formation detection from
HHI research, it is best suited for interaction of standing people in
open areas. For the application in a smart flat, other situations need
additional consideration. To deal with seated people or people who are
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occupied with a different task, further adaptations of the model may
be required.

In the role recognition presented in Chapter 7, the classification of the
speaker and addressee roles needs further improvements. Because these
are the roleswith the least amount of observations, extending the corpus
with observations of more interactions is likely to improve the results
To this end, observations with a low certainty in the artificial neural
network model results could be specifically and automatically collected.
Furthermore, the role recognition currently only uses the assignment
costs and o-space centre of the conversational group. By considering all
the individuals that are part of the group and maintaining models of
their state, further improvements of the conversational role recognition
are possible.

Finally, all studies are performed in the CSRAwith the corresponding
artificial agents. The participants are native German speakers, recruited
from the campus of the Bielefeld University. Further research with
participants with different backgrounds and capabilities, and with
different agents will broaden the applicability of the results.

9.2 applications & possibilities for further research

Despite the possibilities for further improvement, the results of this
thesis already allow practical applications and pave the way for further
research.

The investigations on addressing behaviour present a strong argu-
ment for the consideration of the users attention and other modalities in
human interaction with smart environments and artificial agents. Fur-
ther research on the detection of attention in smart environments should
be done to allow the utilization of this important information while
simultaneously respecting other requirements of smart environments
such as privacy, data safety, and energy efficiency.

The proposed model for addressee recognition in multi-party inter-
action can be used in intelligent devices, IPAs, or artificial agents to
enhance their interaction capabilities. In the CSRA, this model is used
to reduce unintended responses from the virtual agents. The visual de-
tection of speakers is especially helpful for agents that can not perform
sound source localization. Because the approach is fully automatic, it
can be applied in long-term studies on human interactions in smart
environments.

The detection of mixed human-agent conversational groups is also
continuously active in the CSRA and forms a basis of the presented
conversational role recognition models. Through it’s fully automatic
nature, it is a basic building block for the creation of group analysis
and group behaviour generation models for autonomous agents. On
the one hand, this allows the transfer of research from group based
human interaction (Section 2.2.2.4) to mixed human-agent interaction
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scenarios. This entails, the analysis of the social and interactive meaning
of group formations and distances. On the other hand, research on the
generation and effects of artificial agent behaviour (Section 2.2.2.5)
can be performed without having to keep fixed group configurations.
Furthermore, this allows the analysis of group formations and peoples
preferences in HAI over longer periods of time.

The recognition of conversational roles allows generating role specific
agent behaviour. While some possible behaviours are already explored
in the literature (Section 2.2.2.3), their application is rather sparse. The
robots in these investigations use conversational signals when taking
or releasing the turn or to show their attention when not speaking. By
recognizing the role continuously, the behaviour of the agent can be
further adapted during a turn. An agent should not only be able to react
when addressed or interrupted, but also when attention shifts and role
changes happen during a turn. By comparing the recognized role of the
agent with the expected role, problems in the mutual understanding of
the situation can be detected and repair strategies initiated.

To be accepted in long term interactions, artificial agents do not only
need to understand commands. They need a model of the interaction
they are in. They need to know to whom to talk and whom to listen to.
To people who want to converse, they need to direct special attention,
and they need to respect that others do not want attention. With the
investigations in this thesis, I intend to make this more achievable by
broadening the recognition-possibilities of artificial agents in smart
environments.
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APPENDIX





A
ADDRESS ING BEHAVIOUR IN SMART
ENV IRONMENTS

Tier T A V N L

Addressee final C * 18
Expression (facial, gestural, verbal) C * 6
Expression specific F * 21
Focus of attention C * 19
Method C * 3
Method specific F * 282
Speech form of address C * 3
Speech politeness C * 3
Speech type of sentence C * 7
Speech specific F * 149
Speech intention C * 4
Study progress coarse C * 4
Study progress fine C * 8
Wizard C 21
Radio B 2
Robot gesture C 4
Robot speech F * 11
Displayed text F * 27
Apartment Call B * 2
Apartment Parcel B * 2
Apartment Time B * 2
Cupboard handle light B 2
Cupboard handle sound B 2
Cupboard door state B 2
Apartment door state B 2

Table A.1: The tiers, available in the ELAN Linguistic Annotator [ELAN] an-
notations of the addressing study. The column T (Type) depicts
the kind of annotation: (C)ategorical, (F)ree-text, or (B)inary; The
column A (Annotated) depicts whether the tiers were manually an-
notated (*) or extracted from system events. The columns V (Verbal)
and N (Non-Verbal) highlight tiers which are only relevant in the
verbal/non-verbal condition. The column L (Levels) tell how many
different values the tier assumed in the annotation. Addressee final
and Focus of attention have different levels because not all entities
were addressed/focused during the study.
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Entity Mapped to

Floor lamp 𝐿𝐹 Floor lamp 𝐿𝐹
Light in the hallway 𝐿𝐻 Light in the hallway 𝐿𝐻
Robot Robot
Unspecific Unspecific
Not discernible Unspecific
Self Unspecific
Furniture of apartment Parts of the Apartment
Loudspeaker (by the fridge) Parts of the Apartment
Screen (entrance) Parts of the Apartment
Screen (kitchen on worktop) Parts of the Apartment
Screen (living room table) Parts of the Apartment
Screen (living room wall) Parts of the Apartment
Screen (living room window) Parts of the Apartment
Sliding door (btw. hallway & kitchen) Parts of the Apartment
Switch (living room) Parts of the Apartment
Switches (entrance) Parts of the Apartment
Switches (kitchen by the fridge) Parts of the Apartment
Switches (living room by the kitchen) Parts of the Apartment
Switches (living room lamp), Parts of the Apartment
Parts of the apartment Parts of the Apartment

Table A.2: This shows the mapping of entities that could be addressed and
focused to the reduced set that is used during the analyses in
Chapter 3 on page 43.
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{t, pid} → ar: The addressee is chosen according to the task at hand
and the participants personal preferences.

c → ar: Condition correlates with the addressee. It can understood as
an external factor that influences the participants preferences in
interaction with the environment.

ar → {fr, m}: The selection of the addressee influences the parti-
cipants attention and which method is applied for interaction.

ar → {sp, ssr}: When speech is used, it additionally influences the
politeness and whether the entity is verbally named.

o → m: Order correlates with the applied method. Therefore,Order acts
as an external factor that influences the participants preferences.

pid → aef → fr: The participants preferences influence whether ad-
dressee and focus must be equal which in return affects the focus.
The connection Aef → Fr ← Ar suits the intuition, that Addressee
equals focus can only inform about the addressee when the focus
is also known.

sp → {sf, str, sph}: Politeness affects the appropriateness of forms of
addressing, types of sentences, and phrasing.

pid → er: Whether participants show strong emotions is determined
by their character.

m → {sp, msr}: Whether speech or gestures are used at all, in implied
by the applied method.

pid → msr: The choice of the appropriate gesture is influenced by the
participants preferences and expectations.

ar → aw: The wizards choice of addressee only depends on the wiz-
ards estimate of the participants addressee.

Figure A.1: The reasoning behind the manually created Bayesian Network
structure in Section 3.4 on page 58.
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Figure B.1: Accuracy and 𝐹1𝜇 values (both on the same vertical axis) for
the artificial neural network based models (horizontal axis). The
visualized value range is reduced from [0, 1] to [0.5, 0.9] for better
visibility. Colours of the error bars encode the type of measurement
and number epochs the models were trained. Horizontal lines
represent the accuracy (dashed) and 𝐹1𝜇 (dotted) of the 𝑟𝑢𝑙𝑒 (red)
and 𝐵𝑛𝑀 (blue) model. The different feature sets are separated by
vertical dashed lines and labelled in violet. The dense models can
be seen on the left, the lstm models on the right side.

143



144 conversational role recognition

𝑟𝑢𝑙𝑒 𝑟𝑢𝑙𝑒𝑟𝑎𝑤 𝑓 𝑢𝑙𝑙 𝑟𝑢𝑙𝑒 𝑟𝑢𝑙𝑒𝑟𝑎𝑤 𝑓 𝑢𝑙𝑙
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Figure B.2: F1-scores (vertical axis) for the artificial neural network based
models (horizontal axis) for each class separately. Colours of the
error bars encode the class and number of epochs the models
were trained (𝑆 = Speaker, 𝐴 = Addressee, 𝑃 = Side-Participant, and
𝑁 = Non-Participant). Coloured, translucent background-strips
highlight the value ranges of the classes. Horizontal, lines represent
the F1-score of the 𝑅𝑢𝑙𝑒 (solid) and 𝐵𝑛𝑀 model (dashed) for the
classes, coloured in red (Addressee), black (Speaker), violet (Side-
Participant), and blue (Non-Participant). The different feature sets
are separated by vertical dashed lines and labelled in violet. The
dense models can be seen on the left, the lstm models on the right
side.
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Figure B.3: F1-scores (vertical axis) for a dense model (left) and an lstm
model configuration after 10 to 500 epochs of training (left to
right for either side). Colours of the error bars encode the class
Speaker (black), Addressee (red), Side-Participant (violet), and Non-
Participant (blue). Horizontal, lines represent the F1-score of the
𝑟𝑢𝑙𝑒 (solid) and 𝐵𝑛𝑀 model (dashed). The models are separated
by a dashed lines and labelled in violet.





ACRONYMS

A
AUC

Area Under The Curve. used on: pp. 27, 77–80, 105–107

C
CITEC

Cluster of Excellence Cognitive Interaction Technology. used
on: pp. 6, 70

CN
Condition Negative. used on: p. xvi

CP
Condition Positive. used on: p. xvi

CSRA
Cognitive Service Robotics Apartment As Ambient Host. used
on: pp. 6, 43–45, 65–67, 69, 70, 82, 87, 89, 90, 92, 94, 133, 134

CV
Cross-Validation. used on: pp. 61, 62, 77, 113

D
DOR

Diagnostic Odds Ratio. used on: pp. xvii, 72–76

F
FDR

False Discovery Rate. used on: p. xvi
FN

False Negative. used on: pp. xv, xvi, 76, 79, 100, 102
FNR

False Negative Rate. used on: pp. xvi, xvii
FOR

False Omission Rate. used on: p. xvi, 102
FOV

Field of View. used on: pp. 29, 32, 91, 119
FP

False Positive. used on: pp. xv, xvi, 79, 100, 102, 117
FPR

False Positive Rate. used on: pp. xvi, xvii, 78, 79, 102, 105, 106

G
GUI

Graphical User Interface. used on: pp. 34, 35, 37
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H
HAI

Human-Agent-Interaction. used on: pp. 9, 21, 24, 26, 28, 29, 31–33,
38, 39, 88, 94, 129–131, 135

HCI
Human-Computer-Interaction. used on: p. 3

HHI
Human-Human-Interaction. used on: pp. 22, 24–28, 30, 32, 37–39,
95, 96, 99, 103, 108, 129, 130, 133

HRI
Human-Robot-Interaction. used on: pp. 4, 9, 21, 28, 37, 65–67, 71,
81, 131

I
IPA

Intelligent Personal Assistant. used on: pp. 3, 21, 36, 134

L
LR-

Negative Likelihood Ratio. used on: p. xvii
LR+

Positive Likelihood Ratio. used on: p. xvii
LSTM

Long Short-Term Memory. used on: pp. 117, 119, 120, 122, 125

M
MDL

Minimum Description Length. used on: pp. 97, 99–102, 104, 118
MLP

Multilayer Perceptron. used on: p. 29

N
NPV

Negative Prediction Value. used on: pp. xvi, xvii

P
PN

Predicted Negative. used on: p. xvi
PP

Predicted Positive. used on: p. xvi
PPV

Positive Prediction Value. used on: pp. xvi, xvii

R
ROC

Receiver Operating Characteristic. used on: pp. 77–79, 81, 104,
105

ROI
Region of Interest. used on: pp. 91, 104
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S
SVM

Support Vector Machine. used on: p. 27

T
TN

True Negative. used on: pp. xv, xvi, 100
TNR

True Negative Rate. used on: pp. xvi, xvii
TP

True Positive. used on: pp. xv, xvi, 100
TPR

True Positive Rate. used on: pp. xvi, xvii

V
VFoA

Visual Focus of Attention. used on: pp. 27–30, 65

W
WoZ

Wizard-Of-Oz. used on: pp. 28, 36, 45





GLOSSARY

A
accuracy

accuracy =
𝑇𝑃 + 𝑇𝑁
𝐶𝑃 + 𝐶𝑁 =

|correct classifications|
|all classifications|

The amount of correct classifications (correctly accepted and
correctly rejected) in comparison to the total sample size. This
measurement can be generalized for problems with more than
two classes as the sum of correct classifications divided by the
size of the population. used on: pp. xvi, 26–28, 44, 72–76, 79,
114–117, 121, 122, 124–126, 143

activity space
The space that is occupied by the activity of an agent. Entering
it may cause discomfort in the agent [LE11]. used on: p. 23

addressee
The addressee is the participant a speaker directs the speech to.
While multiple or all participants of a conversation can be ad-
dressed at the same time, one person usually can be considered
the main addressee. used on: pp. 5, 6, 18–20, 24–30, 33–37, 39, 41,
43, 44, 46, 48–69, 71, 73–76, 78–82, 90, 110, 112, 129, 130, 133, 134,
141

addressing corpus
The addressing corpus is the corpus I automatically extract in
Section 3.3 from the corpus presented in [Hol+16]. used on:
pp. 51–54, 56, 58, 63

addressing study
A study of interactions of naïve people in the CSRA, in which
participants needed to solve a set of mundane tasks. The
study is presented in [Ber+16] and the corresponding corpus
in [Hol+16]. used on: pp. 44, 46, 133, 139

affordance space
A space of a potential activity. Being there may prevent other
agents from performing that activity [LE11]. used on: p. 23

apartment
Also known as CSRA used on: pp. 6–8, 44–49, 51, 57, 68, 70, 71,
89–93, 100, 102, 130

Area Under the Curve (AUC)
The area under the ROC curve can be calculated as a measure
of classifier performance over a set of possible parametrisations.
used on: pp. 27, 77–80, 105–107

151
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artificial agent
In contrast to living beings, artificial agents are a result of hu-
man engineering. This encompasses robots and virtual agents.
For the taxonomy of interactive entities see Figure 2.3. used on:
pp. vii, 1, 3, 5, 6, 9, 11, 12, 21–23, 25, 26, 30, 31, 34, 36, 38, 39, 43,
65, 66, 81, 85, 87, 88, 93–95, 97, 99, 103, 108, 109, 117, 126, 129–131,
133–135

artificial neural network
Inspired by the mechanics of biological neural networks, these
networks can be used for machine learning tasks. They receive
an activation in their input layer and propagate it through the
network to produce an activation at their output layer. used on:
pp. 109, 117–126, 131, 133, 134, 143, 144

autonomous agent
Autonomous agents are interactive entities that can react and
interact with their environment and with other entities in it.
They have believes about the world and goals which they pur-
sue through interaction. For the taxonomy of interactive entities
see Figure 2.3. used on: pp. 21, 134

B
Bayesian Network

A probabilistic, directed, acyclic graph that models dependent
probabilities. used on: pp. 26, 27, 58–64, 76–82, 110, 112–117, 125,
126, 130, 131, 141

C
civil inattention

In unfocused interaction, people need to display that they
acknowledge the others presence and can potentially be ap-
proached. At the same time they may want to prevent the
impression that they are trying to enter, disturb or eavesdrop
on a focused interaction. used on: pp. 11, 14, 87, 95, 103, 109

close phase
The inner region of a proxemic distance as defined by [Hal69].
used on: pp. 13, 14

Cognitive Service Robotics Apartment as Ambient Host (CSRA)
The CSRA is a robot inhabited, smart home-laboratory in the
CITEC at Bielefeld University. A discription of the CSRA can
be found in Section 1.3, [Wre+17] and https://www.cit-ec.

de/csra. used on: pp. 6, 43–45, 65–67, 69, 70, 82, 87, 89, 90, 92, 94,
133, 134

condition negative (CN)
The sum of negative elements in the sample of a confusion
matrix. used on: p. xvi

https://www.cit-ec.de/csra
https://www.cit-ec.de/csra
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condition positive (CP)
The sum of positive elements in the sample of a confusion
matrix. used on: p. xvi

confusion matrix
A matrix that contrasts classifications to ground truth data to
visualize the performance of a classifier.

confusion matrix = [𝑇𝑃 𝐹𝑃
𝑇𝑁 𝐹𝑁]

used on: pp. xv, 99, 100
conversation

A focused interaction with the purpose of communication
between a group of people in copresence. Although, conver-
sations can have different forms—e.g. manually coded or text
based—this work focuses on direct, verbal conversations. used
on: pp. vii, 4–6, 9, 12, 17–20, 22–26, 28–32, 36, 38, 39, 43, 44, 65,
82, 109, 111, 126, 129, 135

conversational floor
Often interchangeably used for the turn in a conversa-
tion [Hay88]. used on: pp. 18, 20, 24, 30, 38

conversational group
A group of two or more persons that conduct a conversation
(see Section 2.1.3.2). Conversational groups often assume F-
Formations. used on: pp. vii, 5, 9, 18, 19, 24, 26, 30–32, 37–39,
65–68, 73, 81, 82, 85, 87, 88, 90, 91, 93–99, 103, 107–112, 119, 124,
126, 129–131, 133, 134

conversational role
The roles people can assume in respect to a conversation. These
can be speaker, addressee, or different types of side-participants
(see Section 2.1.3.3) used on: pp. 4, 6, 9, 25–30, 32, 38, 67, 85, 87,
88, 90, 91, 93–95, 109–114, 117, 119, 124–126, 129, 131, 133–135

copresence
People are copresent, when they sense that they are close
enough to mutually perceive each other and their mutual sens-
ing of perceiving and being perceived. used on: pp. 9, 11–20, 22,
23, 30, 32, 33, 38, 87, 88, 95, 129, 131

D
device

A device is any interactive entity that is not an autonomous
agent. It has an inner state that can be changed, but neither
believes nor goals. For the taxonomy of interactive entities see
Figure 2.3. used on: pp. vii, 1, 4–7, 20, 21, 31, 33–36, 38, 39, 56, 57,
129, 130, 133, 134
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diagnostic odds ratio (DOR)

𝐷𝑂𝑅 =
𝐿𝑅+
𝐿𝑅−

The diagnostic odds ratio is an indicator for test quality which
is independent from the prevalence of the test set. It can be read
as ‘The odds of correcly accepting is 𝑥 times higher than the
odds of falsely rejecting’. Therefore, tests with discriminative
power have a DOR > 1 [Gla+03]. used on: pp. xvii, 72–76

E
encounter

An alternative term for face engagement [Gof63]. used on: p. 15

F
F1-score

The harmonic mean between precision and recall:

𝐹1 = 2
𝑃𝑃𝑉 ⋅ 𝑇𝑃𝑅
𝑃𝑃𝑉 + 𝑇𝑃𝑅

used on: pp. xvi, 72–76, 101, 114–117, 121–125, 144, 145
face engagement

Goffmanuses the term face engagement for instances of focused
interaction between people [Gof63, p. 91]. used on: pp. 15, 16, 38

fall-out
Also known as FPR used on: pp. xvi, 81, 155

false discovery rate (FDR)

𝐹𝐷𝑅 =
𝐹𝑃
𝑃𝑃

used on: p. xvi
false negative (FN)

Wrongly rejected elements in a confusion matrix (Type II Error).
used on: pp. xv, xvi, 76, 79, 100, 102

false negative rate (FNR)

𝐹𝑁𝑅 =
𝐹𝑁
𝐶𝑃

Miss rate. used on: pp. xvi, xvii
false omission rate (FOR)

𝐹𝑂𝑅 =
𝐹𝑁
𝑃𝑁
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used on: p. xvi, 102
false positive (FP)

Wrongly accepted elements in a confusionmatrix (Type I Error).
used on: pp. xv, xvi, 79, 100, 102, 117

false positive rate (FPR)

𝐹𝑃𝑅 =
𝐹𝑃
𝐶𝑁

Probability of false alarm, also known as fall-out. used on:
pp. xvi, xvii, 78, 79, 102, 105, 106

far phase
The outer region of a proxemic distance as defined by [Hal69].
used on: p. 13

F-Formation
A spacial and orientational arrangement entered and main-
tained by a group of people. The space between them is the
o-space, to which all participants have equal and exclusive ac-
cess [Ken90, p. 209]. used on: pp. 16–18, 25, 26, 30–32, 85, 95, 96,
99, 103–105, 107, 108, 111, 117, 118, 131, 133

Flobi
Flobi is an anthropomorphic robot head designed at Bielefeld
University specifically for HRI applications. It can actuate its
eyes, lids, brows, mouth and neck to show emotions, attention,
mouth movements during speech [Lüt+10]. A corresponding
simulation is a virtual agent with similar capabilities which
can be used interchangeably with the robot head [LSW14]. The
adapted robot head, that was created for the Floka is presented
in [SBW19]. used on: pp. 7, 8, 87, 89, 91, 93

Flobi Assistance
Flobi Assistance is an instance of the simulation of the anthro-
pomorphic robot head Flobi. It is located in the kitchen of the
CSRA. A photograph of it can be seen in Figure 1.2 on page 7.
used on: pp. 7, 8, 100–102, 105–107, 110

Flobi Entrance
Flobi Entrance is an instance of the simulation of the anthro-
pomorphic robot head Flobi. It is located in the hallway of the
CSRA. A photograph of it can be seen in Figure 1.2 on page 7.
used on: pp. 7, 8, 100–102, 105–107, 110

Floka
Floka is an anthropomorphic robot based on the MekaBot M1.
It has an omni-directional drive, can lift it’s upper body up
and down and two arms that end in hand-like manipulators.
It’s head can be chosen between the original sensor head of
the MekaBot M1 and a version of the Flobi head that was ad-
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apted for this particular case [SBW19]. The robot is presented
in [Wac+17] used on: pp. 7–9, 66, 68, 71, 130

focused interaction
In a focused interaction, people come together and actively
cooperate to maintain a joint focus of attention (Section 2.1.3).
used on: pp. 5, 11, 12, 14–18, 23, 24, 32, 33, 38, 39, 43, 87, 93–95,
108, 129

I
in the wild

This term is used to emphasize research or situations that are
performed outside of the controlled laboratory environment.
Studies that place a robot on a public square to interact with
whoever passes by are in the wild. used on: p. 11

information process space
The space in front of pedestrians in which they observe other
pedestrians and obstacles [KF10]. used on: p. 23

informedness

informedness = 𝑇𝑃𝑅 + 𝑇𝑁𝑅 − 1

An alternative measure for recall which is not biased by the
prevalence of the sample [Pow11]. It tells whether the mod-
el can detect positive and negative observations. 1 means all
observations will be correctly retrieved, -1 means all will be
wrongfully retrieved. used on: pp. xvii, 72–75, 100–102, 114–117

Intelligent Personal Assistant (IPA)
Speech activated and verbally interacting artificial agentswhich
can be embedded in loudspeakers, televisions, smart phones,
etc.. In contrast to other virtual agents they do not have a spe-
cific embodiment. used on: pp. 3, 21, 36, 134

interactive entity
Interactive entities are all entities with which a person can
interact and which as a result change their internal state. For
the taxonomy of interactive entities see Figure 2.3. used on:
pp. 9, 12, 20, 21, 64

intimate distance
The area ≤ 0.46m around a person where physical contact is
probable and only partners and good friendsmay enterwithout
discomfort [Hal69]. used on: p. 13

K
Kinect

The Microsoft Kinect is a sensor that can provide a coloured
video stream, a depth—distance measurement—stream and
an audio stream. used on: p. 35
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L
Long Short-Term Memory (LSTM)

Recurrent neural networks with memory cells and gate units
which allows efficient learning of long term time dependencies.
They are introduced in [HS97]. used on: pp. 117, 119, 120, 122,
125

M
markedness

markedness = 𝑃𝑃𝑉 + 𝑁𝑃𝑉 − 1

An alternative measure for precision which is not biased by
the prevalence of the sample [Pow11]. It tells how trustworthy
the models predictions are. 1 means all predictions are correct,
-1 means all predictions are wrong. used on: pp. xvii, 72–76,
100–102, 114–117

N
Naïve Bayes

A Bayesian Network with strong independence assumptions.
used on: p. 27

negative likelihood ratio (LR-)

𝐿𝑅− =
𝐹𝑁𝑅
𝑇𝑁𝑅

used on: p. xvii
negative prediction value (NPV)

𝑁𝑃𝑉 =
𝑇𝑁
𝑃𝑁

used on: pp. xvi, xvii
non-participant

All people in copresence that do not participate a conversation
can be considered non-participants of regarding this conversa-
tion. used on: pp. 17–19, 90, 95

O
o-space

The space between the participants of a focused interaction.
The participants orient their upper body towards its center
and coordinate themselves to maintain equal accessibility for
participants and non-accessibility for non-participants [CK80,
p. 243]. used on: pp. 16–18, 23, 26, 30, 31, 96–98, 119, 134
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P
participation unit

Participation unit is a collective term for face engagements and
single, unengaged persons [Gof63, p. 91]. used on: pp. 15–17

penetrated space
The space that is affected by an activity—e.g. through noise or
odour. Its form may be different from the activity space [LE11].
used on: p. 23

personal distance
The area ≤ 1.22m around a person personal topics can be
discussed by people who know each other. It is at the edge of
‘arms reach’ [Hal69]. used on: pp. 13, 22, 23, 31

positive likelihood ratio (LR+)

𝐿𝑅+ =
𝑇𝑃𝑅
𝐹𝑃𝑅

used on: p. xvii
positive prediction value (PPV)

𝑃𝑃𝑉 =
𝑇𝑃
𝑃𝑃

Also known as precision. used on: pp. xvi, xvii
precision

Also known as PPV used on: pp. xvi, xvii, 72–76, 78–81, 100–102,
104, 106, 107, 154, 157, 158

predicted negative (PN)
The sum of elements rejected by a model. used on: p. xvi

predicted positive (PP)
The sum of elements accepted by a model. used on: p. xvi

prevalence

prevalence =
𝐶𝑃

𝐶𝑃 + 𝐶𝑁

The proportion of true elements in the sample. used on: pp. xvi,
xvii, 72–75, 79, 80, 102, 114, 115

proxemic space
The set of spaces from Hall’s proxemics as used in a taxonomy
of social spaces by [LE11]. The original term in the taxonomy
is personal space. Proxemic space is used in this dissertation to
prevent confusion. used on: p. 23
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proxemics
Proxemics investigate how people perceive and use interper-
sonal distances in different situations and social contexts. used
on: pp. 13, 14, 22, 23, 32, 33, 38, 39

p-space
A narrow zone in F-Formations where the bodies and personal
belongings of the participants are located [CK80, p. 259]. used
on: pp. 16, 17, 26, 31, 67

public distance
The area ≤ 7.62m around a person where the voice level needs
to get loud, the phrasingmore format and facial expressions get
replaced by gestures. It is more appropriate for speeches and
presentations than for conversations [Hal69]. used on: pp. 13,
14, 22

R
Random Forests

A learner that uses ensembles of decision trees and voting for
classification [Bre01]. used on: pp. 60–64

recall
Also known as TPR used on: pp. xvi, xvii, 72–76, 78–81, 100–102,
104–107, 124, 154, 156, 161

receiver operating characteristic (ROC)
The receiver operating characteristic (ROC) Curve visual-
izes the TPR of a classifier against its FPR for a collection of
thresholds. This allows a better assessment of the trade-off
between the probabilities of detection and false alarm. used on:
pp. 77–79, 81, 104, 105

robot
Robots are artificial agents with an embodiment that occu-
pies physical space. They may be able to navigate, reconfigure
themselves, ormanipulate objects but notwithout changing the
availability of space in doing so. For the taxonomy of interactive
entities see Figure 2.3. used on: pp. vii, 3–9, 11, 20–26, 28–32, 36,
37, 41, 44–49, 56, 57, 63–77, 79, 81–83, 87, 88, 103, 129–131, 133,
135

robotiquette
Kerstin Dautenhahn proposed that a robot needs to behave in
a manner that is socially acceptable to humans. This is often
referred to as robotiquette [Dau07]. used on: pp. 4, 11

r-space
The space outside of and between F-Formations. In this space
associates of the F-Formation are usually located and it is
avoided by other participation units [CK80, p. 260]. used on:
pp. 16–18
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S
selectivity

Also known as TNR used on: p. xvi, 161
sensitivity

Also known as TPR used on: p. xvi, 161
side-participant

A participant of a conversation who is neither speaker not
addressee has the role of a side-participant. used on: pp. 18, 19,
25, 28–30, 75, 90

smart environment
A smart environment is composed of interconnected devices
with the capability of sensing and actuating. It can observe
inhabitants and adapt to improve their experience or simplify
their tasks [CD04]. used on: pp. vii, 3–9, 11, 20, 21, 33, 34, 37–39,
41, 43, 44, 49, 52, 55, 58, 63, 64, 87, 93–95, 108, 109, 126, 129, 130,
133–135

smart home
A smart home is a home with the capabilities of a smart envir-
onment. used on: pp. 3, 6, 12, 34–37, 41, 43, 49, 63

social distance
The area ≤ 3.66m around a person where less personal
interactions—e.g. with colleagues or on social gatherings—can
be carried out. This distance allows simple engagement and
disengagement [Hal69]. used on: pp. 13, 14, 22, 23

speaker
The speaker is the participant of a conversation who has the
right to speak. While the speakers change during the conversa-
tion, only one person can be speaker at a time. used on: pp. 18–20,
26–30, 37, 38, 41, 65, 66, 68, 70, 71, 74, 75, 81, 83, 90, 109–112, 130,
133, 134

specificity
Also known as TNR used on: p. xvi, 161

stride
The distance between a persons position and the center of its
transactional segment as presented in [Set+15]. used on: pp. 96,
97, 100, 101, 104

T
territory space

The space that is claimed and accordingly marked by an agent
or a group—e.g. a garden or room [LE11]. used on: p. 23

The Media Equation
According to [RN96], humans treat computers, artificial agents,
and media in general similar to other humans. They show po-
liteness, ascribe gender stereotypes, and physically react to
visualized motion. used on: pp. 3, 11, 33
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tolerance threshold
The threshold used in a tolerant match (see Definition 1). used
on: pp. 99, 100, 102

tolerant match
Adefinition from [Set+15] of how to compare a detected group
of persons with a ground truth annotation to decide whether
they match or not. The definition can be looked up in Defini-
tion 1. used on: pp. 99, 100

transactional segment
Is the area in front of a person. In this area people perform
most of their activities, have the best perception of and highest
degree of control over their environment [CK80, p. 240]. used
on: pp. 15–18, 68, 96–98

true negative (TN)
Correctly rejected elements in a confusionmatrix. used on: pp. xv,
xvi, 100

true negative rate (TNR)

𝑇𝑁𝑅 =
𝑇𝑁
𝐶𝑁

Also known as specificity or selectivity. used on: pp. xvi, xvii
true positive (TP)

Correctly accepted elements in a confusion matrix. used on:
pp. xv, xvi, 100

true positive rate (TPR)

𝑇𝑃𝑅 =
𝑇𝑃
𝐶𝑃

Probability of detection, also known as recall or sensitivity. used
on: pp. xvi, xvii

turn
The right to speak in a conversation. Only one participant of
said conversation can own the turn. used on: pp. 18–20, 25, 26,
29, 30, 32, 37, 43, 66–68, 73, 75, 76, 81, 82, 87, 109, 111, 135

turn taking
The act of acquiring or releasing a turn in a conversation. Often
used as synonym for the turn taking system used on: pp. 4, 24,
29, 30, 38, 39, 109

turn taking system
A set of rules and behaviours by which the transition of a
turn between participants of a conversation is negotiated (see
Section 2.1.3.4). used on: pp. 19, 30, 87
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U
ubicomp

In (), technology and interfaces blend with their environment
and therefore can not be distinguished from it [Gre+11]. used
on: p. 33

unfocused interaction
When people are not in a focused interaction but to manage
their copresence they are in an unfocused interaction. used on:
pp. 9, 11–14, 22, 23, 33, 38, 87, 108

V
virtual agent

Virtual agents are artificial agents which are not robots. They
may have an embodiment—e.g. visualized on a screen—but do
not change the availability of space when they act. IPAs can be
counted as virtual agents too. For the taxonomy of interactive
entities see Figure 2.3. used on: pp. vii, 4, 6, 7, 11, 20–22, 24, 25,
27, 28, 32, 85, 87, 89, 95, 109, 110, 129, 131, 134

W
wizard

The person that controls the behaviour of an agent in a WoZ
study. used on: pp. 25, 27, 45, 47–50, 52, 54, 88, 141

Wizard-Of-Oz (WoZ)
A study set-up, in which participants interact with a seemingly
interactive interlocutor that is secretly controlled by a hidden
experimenter. used on: pp. 28, 36, 45
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