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Abstract

In this thesis we derive for any € > 0 effective estimates for the size of a non-zero integral
lattice point m € Z?\ {0} solving the Diophantine inequality |Q[m]| < &, where @ denotes a
non-singular indefinite quadratic form in d > 5 variables. In order to prove our quantitative
variants of the Oppenheim conjecture, we establish effective error bounds on the lattice
remainder as well as extend - in the case of diagonal forms - the approach developed by
Birch and Davenport [BD58b| non-trivially to higher dimensions than five.

The approximation of the number of lattice points in d-dimensional hyperbolic or elliptic
shells {m : a < Q[m] < b}, which are restricted to rescaled and growing domains 72, by the
volume is a classical question in analytic number theory. Here we prove effective bounds of
order o(r?=2) for this approximation based on Diophantine approximation properties of the
quadratic form @. This part of the work is a revised variant of the earlier preprint [GM13|
of G6tze and Margulis with numerous changes and corrections. Using these results together
with a Dichotomy argument and Schlickewei’s work [Sch85] on small zeros of integral forms,
we derive bounds on the size of a non-trivial solution m € Z?\ {0} of |Q[m]| < € in terms of
the signature (r, s). For diagonal quadratic forms we can even extend Schlickewei’s bounds
to the real case in an optimal way up to a negligible growth factor, i.e. our result is already
comparable to the integral case if () is diagonal. The basic strategy in this case is to iterate
the Birch-Davenport approach (as introduced in the work |[BD58b|) and thereby to prove
conditionally improved mean-value estimates for certain products of quadratic Weyl sums.
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CHAPTER 1

Introduction

The main objective of this thesis is to develop quantitative versions of the Oppenheim conjec-
ture - that is, the study of the size of the least non-trivial integral solution to homogeneous
quadratic Diophantine inequalities: We will establish effective norm-bounds for a non-trivial
lattice point m € Z%\ {0} in terms of € > 0 satisfying

QIm]| < e

in at least d > 5 variables, i.e. the integral point m € Z?\ {0} should be an approximate
zero with ’small’ norm. Here we consider non-singular indefinite quadratic forms

Qlx] o (z,Qx) for z &R

with signature (r,s), where @ € GL(d,R) is the associated symmetric matrix, (-,-), resp.
||I|l, denotes the standard Euclidean scalar product, resp. norm, on a real d-dimensional
Euclidean space R? and d = r + s.

Our results will depend essentially on both explicit estimates for the lattice remainder and
small zeros of integral forms. Based on the preprint [GM13| of Gétze and Margulis we shall
establish in Chapter |3| effective error bounds for the approximation of the number of lattice
points restricted to growing domains for thin and wide shells, where Margulis’ averaging
method will be presented later in [Appendix B] These error bounds will be used in Chapter
together with Schlickewei’s result [Sch85| on small zeros for integral forms, depending on the
signature (r, s) of @, in order to establish bounds on a least non-trivial solution in the case
of general forms, not necessarily diagonal: If () has ‘good’ Diophantine properties, we can
compare the volume with the number of lattice points. Otherwise () is near a rational form
and here we shall use Schlickewei’s bound [Sch85| for small zeros of integral quadratic forms.

In the case of diagonal quadratic forms, we shall prove refined results in Chapter [2| by
extending the approach developed by Birch and Davenport [BD58b| to higher dimensions:
Compared to the volume argument, Birch and Davenport analyze regular patterns in the
frequency picture of the associated counting problem. Starting with the assumption that
there are no solutions, they show that specific rational approximations, corresponding to
quadratic exponential sums are 'rigid’ (we will call this coupling). However, their approach
is not directly applicable in combination with Schlickewei’s bound and will be modified in
some parts essentially. We will introduce an iteration of their coupling argument and prove
nearly optimal bounds for diagonal forms up to a negligible growth factor.

Both results were published as preprints, see [BGHM19| and [BGH19|. Whereas the latter
result was carried out in cooperation with T. Hille (a student of G. Margulis), based on the
earlier preprint [BG18|, the former result was developed in cooperation with both T. Hille
and G. Margulis based on the above-mentioned preprint [GM13].

1.1 The Oppenheim Conjecture: A Short Historical Overview

Before stating our results, we give a short historical overview on the Oppenheim conjecture
which was first formulated by A. Oppenheim |[Opp29] in 1929 and states that Q[Z%] is dense
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Chapter 1 Introduction

in R if d > 5 and @ is irrational, i.e. () is not a multiple of a rational form. This formulation
was inspired by the fact that a rational form represents zero non-trivially on Z?, as proven
by Meyer [Mey84] and nowadays deduced from the classical Hasse principle. Extending the
Oppenheim conjecture, H. Davenport [DH46| (stated for diagonal forms only) conjectured
in 1946 that it is sufficient to have d > 3 variables.

Actually the density of Q[Z¢] in R follows from that Q either represents zero non-trivially
or Q[Z% contains non-zero elements with arbitrarily small absolute values, provided that
d> 4[] and @ is irrational (see |[Oppb3a; |Opp53b; |Oppb3c| and for instance Section 5 in
[Lew73|). Thus, since irrational forms may not represent non-trivially zero in integral points,
it is natural to ask for the solvability of the Diophantine inequality |Q[m]| < . In particular,
our initial problem of finding explicit bounds for 'approximate zeros’ is a refinement of the
Oppenheim conjecture in the cases considered here, i.e. for forms in d > 5 variables.

In the later 1950s the validity of the conjecture was confirmed by Birch, Davenport
and Ridout in a series of papers [Davh6; [BD58a; |[Dav58; Rid58; DR59| for d > 21, using
mostly analytic number theory methods. In fact, their basic strategy is based on modificated
variants of the Hardy-Littlewood circle method, as introduced by Davenport and Heilbronn
[DH46|, and different diagonalization techniquesE] In any case, the used diagonalization
processes require considerably more variables as the resulting almost diagonal form, leading
to the condition d > 21 on the number of variables. Moreover, since no further progress was
achieved by using these methods, the impression arose that the methods of analytic number
theory were not sufficient to prove the Oppenheim conjecture for general quadratic forms in
a smaller number of variables.

Thirty years later, in 1986, the breakthrough was achieved by the seminal work [Mar89]
of Margulis using a connection, noticed by M. S. Raghunathan, between the Oppenheim
conjecture and ergodic theory on the homogeneous space G/I" defined by the Lie group
G = SL(3,R) and the discrete subgroup I' = SL(3,Z). Considering the orthogonal group

H:=S0(Q)={U e GLB,R) : U'QU =Q}

of (), Raghunathan observedﬁ that the density of the orbit HI" in G/I" immediately implies

Q7] = QIATZ] = QIG7] = R

Since the general problem can be reduced to the case d = 3 by restricting the form @ to an
appropriate subspace, the Oppenheim conjecture would follow at once. In a first instance,
Margulis has proved the weaker statement that |Q[m]| < € is non-trivially solvable in integral
points m € Z3 and, responding to a question by Borel, extended his arguments to prove
the solvability of 0 < |Q[m]| < €. The main argument is - similar to Hedlund’s theorem for
SL(2,R) - to prove that any non-closed orbit is dense in G/I. Since it is well-known that HT
is not closed in G/T for irrational @), the Oppenheim conjecture follows at once. However,
Margulis” work is based on the study of minimal invariant sets and the limits of orbits of
sequences of points tending to a minimal invariant set. Thus, the available methods at that
time were non-effective and not capable to give explicit bounds on the main question of this
thesis. Fore more historical information on the Oppenheim conjecture until 1997, we refer
the interested reader to |Lew73| and |[Mar97].

'Tf d = 3 and Q is irrational, then it is only known that the density of Q[Z?] in R and the solvability of
0 < |Q[m]| < € for any & > 0 in integral points m € Z%\ {0} are equivalent.

20One of them was introduced by Brauer, see |[Bra45.

3This connection was already discovered by Cassels and Swinnerton-Dyer implicitly in [CS55], but remained
unknown since the language of dynamical systems was not used there.




1.1 The Oppenheim Conjecture: A Short Historical Overview

Remark 1.1.

(a) Applying van der Corput’s work [Cor20| on lattice points in the plane, Watson has
extended (in 1953) the result [DH46| of Davenport and Heilbronn to forms which
include a singlecross-product term, see [Wat53a]. Moreover, using the elementary
theory of continued fraction, Watson proved the Oppenheim conjecture for special
types of diagonal quadratic forms in three and four variables, see [Wat53b].

(b) In 1975 Iwaniec [Iwa77| proved the Oppenheim conjecture for quaternary quadratic
forms of type 2% + 3 — 6(z2 + x2) with an irrational number 6 > 0 using sieve theory.

(c) In 1989 Dani and Margulis have deduced from results on flows on SL(3,R)/SL(3,7Z)
that the set of values of ) at primitive integral points is dense as well, see [DM89.

(d) Raghunathan’s conjectures are far more profound statements on the distribution
of unipotent flows on homogeneous spaces than mentioned here. These generalized
conjectures were proved around 1990 by M. Ratner, see e.g. [Rat92].

(e) Baker and Schlickewei |[BS87| have already used Schlickewei’s work [Sch85| in combi-
nation with the methods of Davenport and Ridout [DR59] to prove the Oppenheim
conjecture (for non-diagonal forms) in the special cases (i) d = 18, r =9, (ii) n = 20,
8 < 11, (iii) d = 20, 7 < r < 13.

Nearly a decade later Eskin, Margulis and Mozes [EMMO98; [EMMO05| gave quantitative
versions of these resultﬁ, i.e. counting asymptotically the number of lattice points in fixed
hyperbolic shells (with a,b € R and a < b)

def
Ea,b =

{reRY: a<Q[z] < b} (1.1)
which are restricted to growing domains {2 with » — oo. Such results are called quantitative
Oppenheim conjecture as well, but do not imply in first instance explicit bounds on the size
of the least non-trivial integral solution to homogeneous quadratic Diophantine inequalities:
To show that the inequality |Q[m]| < ¢ admits a non-trivial integer solution, whose size can
be bounded, an effective error bound for the lattice remainder is needed. This investigation
arguably goes back to the seminal works of Bentkus and Gétze [BGI7; BG99|, establishing
effective bounds for the lattice point remainder in the cases d > 9. However, in these works
no explicit connections between theta series and Diophantine approximation of () were
deduced which are needed to obtain explicit bounds on the size of the norm. Later this
study was continued by Gotze and Margulis [GM13| extending the previous results for d > 5
and deriving first variants of explicit bounds. Among the extension of the Birch-Davenport
approach, we revised the work [GM13| of Gotze and Margulis and complete some of their
arguments providing improvements on the explicit Diophantine dependency. Moreover, we
now use the work [Sch85| of Schlickewei as well. However, we cannot make use of the full
strength of Schlickewei’s bounds in the general case. Hence, our result for diagonal forms is
still considerably sharper.

Remark 1.2.

(a) For completeness, we note that S. Dani and G. Margulis have proved already in 1993
lower asymptotic bounds on the lattice remainder in the case of irrational () and

4One key ingredient in their proof is, in fact, a refined version of Ratner’s measure classification theorem.
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Chapter 1 Introduction

d > 3, see [IDM93|. More precisely, they showed for appropriate regions 2 that

lim inf VOIZ (Ea,b N TQ) Z 17
r—oo vol (Eqp N7QY)

where vol B denotes the Lebesgue measure of a measurable set B C R? and vol B =
#(B N Z%) denotes the number of integer points in B.

(b) In the case of positive definite forms Gotze established in 2004 explicit bounds on the
lattice remainder. His arguments are based on a direct investigation of the distribution
of the first successive minima of a certain symplectic lattice, which is associated to
the counting problem via a Weyl-type argument. Showing that there are ’large’ gaps
in the distribution, he derived bounds for the corresponding averages, see |Got04].
A variant of this method was applied to split indefinite forms in a PhD thesis by
G. Elsner [Els09]. In particular, in Chapter [3| important aspects of Gotze’s approach
will be used as well: For example, the rewriting of the lattice remainder in terms of
successive minima of a symplectic lattice.

(c) The above-mentioned works [DM93; EMMO8; [EMMO05| were extended by Margulis
and Mohammadi to inhomogeneous quadratic forms, see [MM11]. Additionally, they
have applied their results on the eigenvalue spacing on flat 2-tori proving a conjecture
of Berry and Tabor for these tori under certain Diophantine conditions.

(d) One should also mention related results of Marklof [Mark02; Mark03| investigating
the pair correlation densities of inhomogeneous quadratic forms and confirming partly
the Berry-Tabor conjecture on the consecutive level spacing distribution of certain
quantum systems.

(e) We also note that weaker results, providing upper bounds in terms of the signature
for general quadratic forms, were established by Cook [Coo83|, [Coo84], and Cook and
Raghavan |[CR84| using the diagonalization techniques of Birch and Davenport.

1.2 Integer-valued Quadratic Forms

Following the heuristic viewpoint that in the case of irrational forms the number of lattice
points should be approximated by the corresponding volume, we expect that the bounds in
the real case should be almost as good as in the integral case and, in fact, we will confirm
this at least in the case of diagonal forms. Since our argument depends essentially on the
solvability of non-degenerate, integral indefinite quadratic forms that are 'close’ to scalar
multiples of (), we will need for our purpose explicit bounds on the size of small zeros of
integral forms. Such bounds were given by Cassels [Cas55|, Birch and Davenport [BD58¢]
and Schlickewei [Sch85| using techniques from the Geometry of Numbers.

The substantial ideas to establish bounds on the magnitude of a least isotropic lattice
point of an integral quadratic form can be already found in Cassels’ work [Casb5|. Birch
and Davenport modified Cassels’ geometric argument in the note [BD58a| and showed that
any indefinite quadratic form F[m] = fim? + ...+ fym2 in d > 5 variables with non-zero
integers fi,..., fs admits a non-trivial lattice point m = (my,...,my) € Z%\ {0} satisfying

Flm] = fim{ + ...+ famj =0 and 0 < |film?—+.. .+ |fami <alfi--. fal, (1.2)

where we use Vinogradov’s notation < as usual. This result of Birch and Davenport has a

preparatory role only by providing bounds whose structure is essential for the application of
the Birch-Davenport approach [BD58b| which will be discussed in full-detail in Section [2.1]
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1.3 Main Result on Diagonal Indefinite Forms

In 1985 Schlickewei [Sch85| has extended the observation by Birch and Davenport non-
trivially by showing that the dimension, say dg, of a maximal rational isotropic subspace
influences the size of possible solutions essentially, rather than the mere indefiniteness,
i.e. dy > 1. Using additionally an induction argument combined with Meyer’s theorem
Schlickewei derived a lower bound for dy in terms of the signature (r, s) as well. In
[C]we will present a complete derivation of these results including an extension of Schlickewei’s
work by the following theorem. Assuming w.l.o.g. that » > s (one can replace A by —A), we
have

Theorem 1.3 (Schlickewei [Sch85]). Let A denote a non-singular quadratic form with
signature (r, s) in r+s = d > 5 variables, which takes integral values on A only. Additionally,
suppose that |det(A)| > 1 and Tr A? > 1, then the smallest non-trivial isotropic vector
m € A of A satisfies the bound

2 2 det2
0 < |lm|* <q (Tr A%)? |det A|" 4, (1.3)
where
%g forr >s+4+3
p=p(r,s):=Q3F forr=s+2orr=s+1. (1.4)
%% forr=s

Remark 1.4. In 1988 Schlickewei and Schmidt [SS88| proved that Schlickewei’s bound (in
terms of dy) is qualitatively best possible. Their work is based on a previous counterexample
given by Kneser, see |Cas56|, and extensions of this example by Watson, see [Wat57|,
combined with an existence result on linearly independent linear forms with particular
geometric properties. Of course, one can also ask if Schlickewei’s bound in terms of the
signature (r, s) is best possible, as was already conjectured by Schlickewei himself in his
first work [Sch85| on small zeros. For the class of integral quadratic forms (not necessarily
diagonal) this is known for the cases r > s+ 3 and (3, 2), see Schmidt [S85|.

Remark 1.5.

(a) Applying Theorem to diagonal forms, we obtain the following variant of (1.2): For
any non-zero integers fi,..., fg, of which » > 1 are positive and s > 1 negative with
d =r+ s > b5, there exist integers mq, ..., mgy, not all zero, such that

2p+1

fimi+ ..+ fami =0 and 0 < |filmi+...+]|falmi <al|fi-. fa "¢, (15)

and the implicit constant in (1.5 depends on the dimension d only.

(b) Compared to , the exponent in is smaller for a wide range of signatures
(r,s) and in the cases, where the exponent is larger, we can restrict () by setting some
coordinates to zero to arrive at least at the result of the case d = 5. For example, if
one has r ~ s, then 2p ~ 1 and therefore the exponent in ((1.5]) is of order ~ 2/d.

1.3 Main Result on Diagonal Indefinite Forms

In this and the following section we present the main theorems of this thesis beginning with
the case of diagonal forms. It is worth mentioning that the classical result of Birch and
Davenport [BD58b| has provided, until now, the sharpest known bounds within the class of
diagonal forms. But, in view of the Schlickewei’s work on small zeros of integral forms, it is
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Chapter 1 Introduction

reasonable to expect that the result of Birch and Davenport can be improved considerably
and, in fact, one of our main contributions is to extend their approach to higher dimensions.

The principle strategy of Birch and Davenport is to extend their bound [BD58a| on small
zeros of integral forms to the real case: Using a refined variant of the circle method they
proved in the case d = 5 (assuming that all of the real numbers ¢y, ..., gq are of absolute
value at least one) that for any € > 0 the Diophantine inequality

Q[m]| = |ggmT + ... +qm3| < e (1.6)

is non-trivially solvable in integers and furthermore give an effective estimate on the size
of the least solution. More precisely, for any ¢ > 0 there is a non-trivial integral solution

m = (my,...,mq) € Z4\ {0} of (1.6) lying in the elliptic shell defined by
g |m? + .+ Jqalm? <s g - - - qa 00 (1.7)

The reader may note that has the same form as the bound for integral forms with
the choice € = 1 up to the additional dependency on 9. During the proof we will also see that
the weighted norm in is an appropriate choice because of the scaling properties with
respect to qi, ..., qq. Additionally and more importantly, the above result implies for d > 5
and arbitrarily small € > 0 that there exists a non-trivial solution of with integral
my,...,mg all of size O(¢727°%) for any fixed § > 0.

Guided by Theorem , we establish improved variants of the bound in terms of the
signature (r, s): Following the basic idea of Birch and Davenport, we will use Schlickewei’s
bounds as the main ingredient to bound the size of the least non-trivial solution of . In
doing this, we prove the following bound for the irrational case, which is already comparable
to (1.5 up to the determinant (|f; ... f4| is the determinant of F') being replaced by the
d-th power of the largest eigenvalue and an additional growth rate given by .

Theorem 1.6. Let ¢y, ..., gq be real numbers, of which » > 1 are positive and s > 1 negative,
such that |¢;| > e® and d = r + s > 5. Then there exist integers my, ..., mg, not all zero,
satisfying both (2.1) and

lqami + .+ |galmg < ( max [q])"*, (1.8)

where p is defined as in ([1.4)). Here the implicit constant depends on d only and A < B
stands for

2
A< B' s (1.9)

The reader may note that the growth rate is considerably improved compared with (|1.7),
since we have

Bl+lo§(1]gg2B < B
for any 6 > 0. This improvement is achieved by replacing the smoothing kernel (in the

application of the circle method) by a faster decaying choice. We also note

Corollary 1.7. If ¢, ..., qq are fixed, and € > 0 is arbitrary, then there exists a non-trivial
solution m = (my,...,mq) € Z4\ {0} of |Q[m]| = |gum3 + ... qam?3| < e, whose size is of
order < e7”.

Obviously, this bound is an improved variant of the above-mentioned bound O(s=27?) of
Birch and Davenport [BD58b| for higher dimensions in terms of the signature (r, s). Although

6



1.4 Our Contribution to the Non-Diagonal Case

the general strategy of the proof uses the approach of Birch and Davenport [BD58b| as well,
their approach has to be extended non-trivially by counting all intervals, where the peaks of
the corresponding Weyl sums occur. To do this, we shall prove (conditionally) improved
mean-value estimates for certain products of Weyl sums and iterate the coupling argument
of Birch and Davenport.

Roughly speaking, their approach is based on an analysis of regular patterns in the
frequency picture of the associated counting problem in form of coupled Diophantine
approximation (see Definition for the precise meaning). In the end they deduce a
contradiction by counting these points (i.e. establishing an upper and a lower bound for
the number of certain Diophantine approximants) under the assumption that there are no
solutions of |@[m]| < ¢ in the elliptic shell defined by (L.7). As already mentioned above,
our modificated variant of their approach will be described in Section in full-detail.

Remark 1.8. The major feature of the Birch-Davenport approach is to avoid involving the
explicit size of the Diophantine approximants and the absolute value of certain quadratic
Weyl sums, which are related to the Diophantine approximation error via a typical Weyl
inequality. In fact, it seems to be impossible to control these parameters sufficiently well
via an approach, which aims for an asymptotic approximation of the number of integral
solutions of . In particular, our results for non-diagonal quadratic forms is probably
not optimal and one challenging questions is, if it is possible, to extend the Birch-Davenport
approach to the non-diagonal case.

1.4 Our Contribution to the Non-Diagonal Case

The proof in the general case is based on effective error bounds for the approximation of the
number of lattice points in hyperbolic or elliptic shells {m € Z? : a < Q[m] < b} restricted
to growing domains, which will be presented in Chapter [3], and explicit estimates of special
theta series 6, associated to the counting problem, in terms of projective Diophantine
approximation, which are proved in Chapter [l Both chapters are based on the earlier
preprint [GM13| with several corrections and improvements included here. In particular, we
improve the explicit dependency on the Diophantine properties of ) and make also use of
Schlickewei’s results [Sch85| on small zeros of integral forms replacing the bound of Birch
and Davenport [BD58¢].

1.4.1 Value Distribution of Quadratic Forms

Though the explicit results on the lattice remainder will be presented not until Section of
Chapter [3] we shall outline - as an orientation guide - the basic steps of the Fourier approach
used here and mention also the changes added to the new preprint [BGHM19|: Beginning with
a smoothing step, we will rewrite the lattice remainder problem in terms of Fourier integrals
and split these integrals as usually done in the application of the Davenport-Heilbronn
circle method. Guided by the approach introduced by Gotze in his work |G6t04] on positive
definite forms, the critical part of the Fourier integral will be translated into averages over
the a-characteristic of a special 2d-dimensional symplectic lattice, i.e. the maximum over
the reciprocal volume of all d-dimensional sublattices, and then apply Margulis’ averaging
method giving upper estimates of averages of such functions on the space of lattices. An
important role hereby is the choice of the counting region, which will be developed for certain
oriented parallelepipeds depending on the width of the shell. Especially, for wide shells we
will use modified methods developed by Skriganov [Skr94| on ’admissible lattices’. A more
detailed description of these steps will be given in Section
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The explicit estimates developed here are improved and corrected variants of the announced
results of the earlier preprint [GM13| of Gétze and Margulis. In particular, the bounds on
the lattice remainder stated in [GM13| had to be changed in the case of thin shells and
were improved in the case of wide shells. Here the optimization procedure for the smoothing
parameters is done differently depending on the width of the shell. In addition, we have
changed the splitting of the Fourier integrals as well leading to better dependencies on
the smallest and largest eigenvalue of () and elaborated the discussion on the smoothing
of the counting region in full-detail. Now Section provides explicit estimates in terms
of parameters depending on the parallelepiped region. Moreover, Sections and are
completely revised versions of the corresponding sections in |[GM13|.

1.4.2 Quantitative Bounds for Diophantine Inequalities

In order to establish quantitative bounds, we will apply our quantitative results on the
lattice remainder as follows: Either we have a 'good’ approximation of the number of lattice
points by the volume or the form is near a rational form and then we can make use of
Schlickewei’s bound on small zeros of integral forms. In this case, compared to the diagonal
case, we use only an [**-bound on 6, to extract the Diophantine behavior of @) (with respect
to the scaling size of the region). The indicated dichotomy argument leads finally to the
following quantitative bounds in the Oppenheim conjecture.

Theorem 1.9. For all indefinite and non-degenerate quadratic forms () of dimension d > 5
and signature (r, s) there exists for any § > 0 a non-trivial integral solution m € Z¢\ {0} to
the Diophantine inequality |Q[m]| < 1 satisfying

1QY*mll <sa (a/a0) P/ Dg#57+ |det Q| 50 (1.10)

where p is defined as (1.4)).

Here @ denotes the unique positive symmetric matrix such that Q2 = Q* and, if ¢, ..., qq
are the eigenvalues of (), we write

def . def def
o < min g, ¢ max g, Q¥ |detq). (1.11)

1<j<d 1<j<d
Moreover, for technical reasons, we assume additionally that ¢y > 1. Of course, this can be
always achieved by rescaling @ with 1/qo.

Corollary 1.10. For indefinite non-degenerate forms in d > 5 variables of signature (r, s)
and eigenvalues in absolute value contained in a compact set [1,C],ie 1 < gy < ¢ < C,
there exist non-trivial solutions m € Z¢ of |Q[m]| < € of size bounded by

||m|| <L 6_%’)_5.

d—2

13 4
In particular, we obtain solutions of order <¢ 5 2 (@903 % for the special case r = s+ 3
and for d = 5 of order <¢ 5 e72*79 for any fixed § > 0.

The novelty of the revised arguments of [GM13]| is, in fact, the derivation of a bound in
the non-diagonal case in a small number of variables. Previous works have only established
larger bounds for forms with restrictions on the signature and require a large number of
variables. However, the proof given in [GM13| was incomplete and here we have remedied
one missing argument: The theorem of Meyer requires, of course, that the quadratic form

8
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is indefinite. The earlier preprint [GM13] does not address this point, which unfortunately
requires additional restrictions leading to worse estimates for the quantitative Oppenheim
conjecture. For example, the exponent size of the least solution had to be increased from
71279 to ¢7227% in the case d = 5. However, at least for higher dimensions and ’good
signatures’ we have better estimates due to Schlickewei’s result and, in addition, the proof
was simplified as well.

1.4.3 Diophantine Quadratic Forms

Besides the above-mentioned results, we shall also deduce explicit bounds for another class
of forms without the use of small bounds for integral forms. We shall show that in the case
of quadratic forms of Diophantine type (x, A), as will be introduced in Definition [4.1] we
can compare the volume with the number of lattice points. Compared to [GM13], we also
have added a class of explicit examples: By using Schmidt’s Subspace theorem we show
that forms with independent algebraic coefficients belong to the class of quadratic forms of
Diophantine type.

Theorem 1.11. Let @ be an indefinite quadratic form in at least five variables. Suppose
that @ has k + 1 non-zero entries y, x1, ...,z such that z1/y, ..., x;/y are algebraic and
1,21/y,...,zx/y are linearly independent over Q. Then for any § > 0 there exists a non-trivial
solution to the Diophantine inequality |Q[m]| < € of order

d(34+2k)—4 _ ¢

<<Qd5 € 2k(d—4)

For example, for k = d(dTH) — 1 we can give a bound for the size of the least solution

__d34d’td—a
of order <45 € @+a-2@4 " and in this case for d = 5 of order <g s € *1/?87° where

151/28 =~ 5.39.

Remark 1.12.

(a) Neither in Theorem [1.9 nor in Theorem the condition d > 5 on the dimension
can be relaxed. In fact, the proof of Theorem relies on results about small zeros
of integral-valued quadratic forms and such forms may fail to have non-trivial zeros
if d < 5. Moreover, the used methods to translate the lattice remainder to averages
of certain functions of special symplectic lattices together with Margulis’ averaging
method require at least d > 5 variables as well.

(b) If d = 2, then the values at integral points may not be dense in R, even when @ is
irrational. In fact, since Q(1, z) is a quadratic polynomial which takes positive and
negative values, we can write Q(z,y) = c¢(x + ay)(z + by) with real numbers a,b,c € R
and therefore zero is an accumulation point of Q[Z?] if and only if one of a or b is an
irrational number which is not badly approximable.

(c) The remaining cases d = 3 and d = 4 are expected to be challenging. For quadratic
forms in three variables with algebraic coefficients a weak answer is given by Lin-
denstrauss and Margulis, see [LM14]. As we already indicated, in some special cases
(considering diagonal forms of special type) bounds are given in terms of continued
fraction expansions by Watson [Watb3b| and also Iwaniec [Iwa77]. In contrast, recent
research focus on randomized variants of the above questions as will be discussed in
the next section.
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1.5 Recent Development on Generic Variants of the Oppenheim
Conjecture

Recently, Bourgain [Boul6|, Athreya and Margulis [AM18], and Ghosh and Kelmer |[GK18|
investigated generic variants of the quantitative Oppenheim conjecture. Bourgain |[Boul6|
proved essentially optimal results for one-parameter families of diagonal ternary indefinite
quadratic forms under the Lindel6f hypothesis by using an analytic number theory approach.
Compared to [Boul6|, Ghosh and Kelmer consider in their work |GK18| the space of all
indefinite ternary quadratic forms, equipped with a natural probability measure, and they
use an effective mean ergodic theorem for semisimple groups. In contrast, Athreya and
Margulis [AM18] applied classical bounds of Rogers for L?-norm of Siegel transforms to
prove that for every 0 > 0 and almost every ) (with respect to the Lebesgue measure) with
signature (r,s) and d > 3 variables, there exists a non-trivial integer solution m € Z¢ of the
Diophantine inequality |Q[m]| < e whose size is

Iml| <sq =2 ",

1.6 Further Research Questions and Open Problems

We have started with the question of the solvability of the Diophantine inequality |H[m]| < e
in integral points m € Z%\ {0} for quadratic forms H. Of course, one may ask the same
question for homogeneous forms H: R? — R of higher degree k. In this case, relatively little
is known and many open questions are expected to be challenging: Though the celebrated
theorem of Birch |Bir62] on the Hasse principle, considering integral forms of degree k > 3,
was recently improved by Browning and Prendville |[BP17], the same questions for irrational
forms remains in most parts unanswered. Additionally, one may ask for further improvements
of Birch’s work, since for forms of smaller degree particularly rich literature exists requiring
a smaller number of variables. See, for example, the work of Heath-Brown [Hea83; |[Hea07|,
Hooley [Hoo88|, Heath-Brown and Browning [BH09).

Considering irrational forms and following the volume approach used here, one may ask
as well if it is possible to establish bounds on the corresponding lattice remainder? Methods
based on the study of unipotent subgroups are less likely to be extendable to higher order
forms. On the other hand, one may hope to extend the approach of Bentkus-Gotze |[BGI7;
BG99| developing a local Weyl-type argument and establishing gaps in the distribution of the
corresponding exponential sums. At least for the special class of forms with positive diagonal
highest order homogeneous terms there is a quantitative result of Bentkus and Gétze [BGO1|
requiring very large dimensions. Such results on the lattice remainder, corresponding to
counting lattice points of irrational forms H, would imply bounds on the size of an integral
solution of |H[m]| < e. In general, no explicit bounds on the size of isotropic vectors for
integral forms are known and therefore the dichotomy argument used here is not applicable.

Even in the case of quadratic forms, the range of open questions remains rather broad: In
view of the above-mentioned generic results, one can even expect in the case of diagonal
forms better results for irrational forms. However, to prove such results one needs to go
beyond the standard mean-value estimates. One promising starting point is to use explicit
Diophantine properties of () to get larger gaps in the distribution of the corresponding
weighted exponential sum. Moreover, in the non-diagonal case, our Weyl-type argument
seems not to be optimal, since the refined Weyl-type argument for diagonal forms gives better
dependencies in terms of the Diophantine approximation error. To extend Schlickewei’s
bounds [Sch85| on small zeros of integral forms to real non-diagonal forms, one additionally
needs to establish the rigidity argument of Birch and Davenport [BD58b| in the non-diagonal

10
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case. The subtle problem here is that the directions of the successive minima may change
and therefore the dichotomy argument in [BD58b| cannot be applied.

So far we have only considered quadratic forms in at least five variables. For quadratic
forms () in dimension d = 4 or d = 3 there are no appropriate methods to tackle our initial
question of the solvability of |@Q[m]| < e. Even the Davenport-Lewis conjecture [DL72| on
the density of values at infinity for irrational positive forms remains open.

1.7 Notation and Glossary

Most notations, which are used throughout this thesis, are ’standard’ in analytic number
theory. We suppose that the reader is familiar with these notations (e.g. Landau symbols). If
not otherwise stated, the asymptotics are always considered as r — oo, respectively P — oo.
Besides the big O notation, Vinogradov’s notation A <p C, meaning that A < cgC
with a constant cg > 0 depending on B, will be used as well. We will also write as usual
e(x) = exp(2wix). In addition, N denotes the set of natural numbers excluding 0 and Ny
with zero element.

General Glossary

Notation Description

qo absolute value of the smallest eigenvalue of ()
absolute value of the largest eigenvalue of )
Q] absolute value of the determinant of @)

p see

Glossary on the diagonal case

Notation Description

S;(a) the quadratic exponential sums corresponding to the eigenvalue ¢; as
defined in on page

K(«a) smoothing kernel in Chapter |2| given by K = @ with decay rate given
by on page

P bound on the size of a non-trivial solution of |Q[m| < ¢ in the diagonal

case, see on page

H see on page (15| as well

u(i) is defined by u(i) := min{s, (d — 4)}7, see on page

F specific subset of R, see on page

9,(a) see on page

N; number of certain integral pairs, see on

T;,U; numbers corresponding to a certain dyadic composition, see on

page %
see (2.40) on page .

g

Ty Yjs T Yy Ty Y 1ntegral numbers corresponding to the coupling argument, see Definition
on page [2]]

Qr restiction of @), see (2.58) on page

pi(d) see Lemmas n 7 and Sectlon as well

Glossary on the non-diagonal case

Notation Description

vol B volume of a measurable set B
11



Glossary on the non-diagonal case

Notation
VO]Z B

67)

«

Yor1,6(7)
det A

D,q, Usnq
d?"a Ut, k@
5tQ;R

12

Description

number of lattice points m € Z% in B

ay-characteristic, see on page [37] (resp. (3.43)) on page
maxmium over all a;-characteristics, see on page

see (3.2)) on page

discriminant of a lattice A

j-th successive minima of an n-dimensional lattice A

shortcut for the error term (difference between integral and series), see
(3.10) on page

generalized theta series, see on page

defined by ((z) = v(z) exp{Q4[z]}, compare (3.3 on page
counting region, see Section for a detailed discussion in the case of
parallelepiped regions

see on page

lattice point remainder, i.e. A, = |voly H, — vol H,|

fixed smoothing kernel, see Section

smoothed indicator function, see (3.24]) on page

see on page

intervals defined by Jo = [—q /*r~1,¢5 /*r~1] and J; =R\ Jj
special 2d-dimensional symplectic lattice, see (3.39) on page

see on page

Siegel transform of exp{—x?} evaluated at the lattice A4, see (6.24)) on
page [T0]]

see (13.40]) on page

see (3.67) and (3.68)) on page

approximation error, see (4.4) on page




CHAPTER 2

Indefinite Diagonal Quadratic Forms

The main subject of this chapter, which corresponds to the preprint [BGH19), is to prove
Theorem [I.6f We shall consider non-singular, indefinite, diagonal quadratic forms

QIm] = qmi + ...+ qam}

of signature (r,s) with d = r + s > 5 variables only (i.e. ¢i, ..., qq are the eigenvalues of
@ and r > 1 of them are positive and s > 1 negative) and generalize the result of Birch
and Davenport [BD58b| to this class. By extending their approach we significantly improve
the explicit bounds, established by Birch and Davenport, in terms of the signature (r, s) by
means of Schlickewei’s work [Sch85| on the size of small zeros of integral quadratic forms.
Compared to the earlier preprint [BG18|, which already provides optimal results for most
forms, we introduce an iteration of the coupling argument of Birch and Davenport to prove
conditionally improved mean-value estimates.

To simplify the investigation of the Diophantine inequality |Q[m]| = |gimi+. . .+qem3| < e,
we may assume that ¢ = 1. Indeed, replacing all coefficients ¢; by ¢;/e it is sufficient to
consider the solvability of the inequality

lqum? + ...+ qam?| < 1. (2.1)

2.1 Sketch of Proof

First, we shall outline the approach introduced by Birch and Davenport [BD58¢c|, which
is a proof by contradiction and consists mainly of two parts: The first step is to pick out
all integral solutions to the inequality that are contained in a box of a certain size
by integrating the product of all associated quadratic exponential sums S;(«), ..., Sq(a),
which are defined by

Sie) = Y elagm) (2.2)

P<|q; \1/2mj <2dP

with a suitable kernel K. Here we write as usual e(z) = exp(2wiz). Assuming that there are
no integral solutions contained in the elliptic shell defined by

sl + .+ lgalmg < 4d°P?, (2:3)
we deduce (in Lemma that the real part of the integral [~ Si(«)...Sy(e)K(a)dex
vanishes, i.e. there are non-trivial cancellations in the product of the sums Si,...,S3. To
analyze this integral, we will divide the range of integration into four parts, namely

O<a< ! ! <a< L
o< ——— e
(8dP)q/?’ (8dP)q'/? (8dP)(qo)1/?’ (2.4)
1 .
—— < a < u(P); P) <
(8dP)(q0)1/2 o u( )7 U( ) Oé,

where ¢o = min<;<4 |¢j| and ¢ = maxi<j<q |g;|, compare (1.11)), and u(P) = log(P + €)% In
the next steps we show that on the first range the mass of the real part is highly concentrated.

13
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In fact, since « is ‘very small’, van der Corput’s lemma can be applied and shows that this
part is at least as large as the volume of the restricted hyperbolic shell

{zeR?: Q]| <1}n{zeR?: P<|q|"?2; <2dP forall j=1,....d}. (2.5)

In comparison, the second and fourth range of the integral is negligible. Consequently the
mass contained in the third range - which we will also call J - has to be of the order of the
volume of and hence the contribution is ‘large’ as well when integrating the absolute
value of the product Si,...,Sq, see Lemma [2.7 Moreover, it remains ‘large’, even if we
restrict ourselves to a subregion (called F) of J, where all factors Sy, ..., Sy are uniformly
‘large’ (see Corollary [2.10)).

The second step consists in finding an upper and a lower bound for the number N; of
specific rational approximants (z;,y;) of ¢;a in this subregion of the integral. As in Birch
and Davenport [BD58a], it is convenient to consider those parts of this subregion, where for
each i = 1,...,d both quantities S;(«) and y; are all of the same magnitude independent of
a. More precisely, we are going to use a dyadic decomposition of F into < log(P)?? parts
and restrict ourselves to one of these sets, say G, where the integral over G remains ‘large’,
see Lemma 2.12]

The lower bound for /V; will be established by a standard applications of a refined variant
of Weyl’s inequality, see Corollary To derive an upper bound, we shall prove on G
that d — k fractions x;yq/y;z4 are independent of a (see Lemma [2.17)), where k € {0,1,2, 3}
depends on the size of p and the order of magnitude of Syyq,...,Sy (prior to that, we have
already rearranged Si,...,95; in a certain way, compare ) Here Siy1,...,Sq show
a rigid behaviour as in the rational case. Indeed, the previous observation gives rise to a
factorization of x; and y; as

r;=uzx, and  y; =yy,

such that 2 and y} divide a fixed number, which is independent of «. For notational simplicity,
we will say that Siiq,...,5; are coupled on G if such a factorization exists, see Definition
for the precise meaning.

The case k = 0 corresponds to Birch and Davenport’s paper |BD58c|. However, this
setting occurs only if p > 2, i.e. the exponent in the bound has to be relatively large.
In fact, the main difficulty in the proof of Theorem [I.6]is to overcome this issue: In Section
this factorization will be used to show that all pairs (z,y) lie in a certain bounded set
(see Lemma . As a consequence, we deduce an upper bound for the number of distinct
pairs (z,y), see Corollary . Based on this, we shall establish an improved mean-value
estimate for Sy, ...9; on G, which implies better estimates for the order of magnitude of
Sk. This improved estimate allows us to conclude that Sy, ..., Sy are coupled on G as well.
Now, depending on k € {0, 1,2,3}, we can iterate this argument until £ = 0 to prove that
all remaining coordinates are coupled. In doing this, we are faced with the tedious problem
of comparing Schlickewei’s exponent for ) and all possible restrictions of () to certain
subspaces with k& zero coordinates. This results in the number of cases listed in Section 7.3
of [Appendix O

To complete the proof, we deduce an inconsistent inequality (as in Birch and Davenport
IBD58¢|) by establishing an upper bound for a particular V;, which contradicts the lower
bound found previously.

14
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2.2 Fourier Analysis

Throughout this chapter ¢y, ..., g4 denote real non-zero numbers, of which > 1 are positive
and s > 1 negative and, as usual, the constants throughout the proofs involved in the
notation < will not be always mentioned explicitly; these will depend on d only unless
stated otherwise. We also stress the underlying assumption that d = r 4+ s > 5, since our
argument depends on the solvability of non-degenerate, integral indefinite quadratic forms
that are ‘close’ to scalar multiples of (). We shall ultimately deduce a contradiction from
the following assumption.

Assumption 2.1. Let ¢y, ..., gq be as introduced in Theorem [1.6] Suppose that for C;; > 0
the inequality
|q1mf +... —l—qdm?i‘ <1

has no solutions in integers my, ..., mgy, not all zero, satisfying
lqi|mi + ...+ |qa| m) < 4d°P?, (2.6)
where )
2 E
P= exXp { (1 + logl?odgH) IOgH} and H = qu2+p (27>

and p is defined as in (1.4)).

Until the end of this chapter we shall fix a smoothing kernel K = {D\ with decay rate
[h(1)] < exp(—t/ log(t + ¢)?), (2.8)

where 1 is a smooth symmetric probability density supported in [—1,1]. Note that the
existence of such a function ¢ is guaranteed by Lemma (of the |[Appendix Al) with the

choice

u(t) ¥ log(e + 1) (2.9)
Compared to [BD58b| this kernel allows us to reduce the growth rate of the bound (1.8 of
Theorem [L.6] since we replace the kernel by a faster decaying one.

2.2.1 Counting via Integration

The starting point of Birch and Davenport’s approach is the following observation.

Lemma 2.2. Assumption [2.1] implies

Re (/Ooo Si(@) ... Sy(@) K () da) —0, (2.10)

where the exponential sums S; are defined as in (2.2)).

Proof: Expanding the product shows that

1

Re/ooosl(a)...Sd(oz)K(a)doz: 3 Z Z V(gm3 + ...+ qgm?),

P<|q|Y?mi<2dP  P<|qq|'/*mg<2dP

where we used that ¢ and Re(S;...S;) are symmetric functions. Since the domain of
summation is contained in ([2.6)), we have

lqum? + ..+ qgam?3| > 1

by Assumption . Thus, the sum is zero because v is supported in [—1,1]. ]
15



Chapter 2 Indefinite Diagonal Quadratic Forms

We begin by investigating the first range in (2.4), that is 0 < a < (8dP¢'/?)~!, where van
der Corput’s lemma can be applied in order to relate the integral over the exponential sums

S1,...,54 to the integral over their corresponding exponential integrals as follows.
Lemma 2.3. For )
0<a< (8dP) g 2 (2.11)

we have )

Si(a) = |g;] 2 1(£a) + O(1), (2.12)
where the + sign is the sign of ¢; and

2dP
I(a) = / exp(2miaé?) d€. (2.13)
P

Proof: Let f(x) = a|gj|z% If P < |g;|/?x < 2dP, then we have f”(z) > 0 and 0 < f'(z) <
1/2. Hence the conditions of van der Corput’s Lemma (|Vinb4], Chapter 1, Lemma 13) are
tulfilled and therefore we obtain

2dPlq;| "3
Sy(a) = / " e(agi(?)d¢ + O(1).
Plg;|™2
Using the change of variables ¢ = |g;|*/2¢ in the last integral proves already (2.12)). O
The next lemma will be helpful for estimating the integral I(+a) in (2.12]).
Lemma 2.4 (Lemma 3 in [BD58b]). For av > 0 we have
|I(£a)| < min(P, P"*a™t). (2.14)

Proof: Estimating the integral in (2.13]) by the length of the integration region shows that
|I(a)] < P. On the other hand, we may change variables via £2 = ( to get

d2 2
I(a) = 1/; i %exp(%rioz{) d¢

and after applying partial integration we find

1 exp(27iaC)
He) = 4rice N

Here we can bound the integrand (on the right-hand side) by its absolute value in order to
get I(a) < (aP)™! as well. O

4d2? P? 1 4d2 p2
+ / m exp(2mia() d(.

C:P2 87Ti& P2

Now we shall give an upper bound for the main integral in a small neighborhood of zero
and thus generalize Lemma 4 of [BD58b| to dimensions greater than five.

Lemma 2.5. We have

(8dP)~'q™2
Re/ Si(a)...Sq(a)K(a)da = My + Ry, (2.15)
0
where the main term satisfies )
M, > §P42|Q| 2 (2.16)
for some 0 > 0 depending on the kernel K only and the error term is bounded by
By < Pq2| Q2. (2.17)
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Proof: In the domain of integration 0 < o < (8dP) ¢z the condition (2.11)) of Lemma
2.3|is satisfied for each j=1,...,d. Thus, we have

Sj(a) = lg| 21 (a) + O(1)
and together with (2.14)) of Lemma we obtain the bound
Si(a) < |g;| "= min(P, P~'a™").

Combining both relations yields

d

[I (@) = 1@ [T 1(sen(a;)e)

J=1

d—1
< > gy g2 min(P7, (Pa) ).

=1 {ir,ij}c{l,...d}

Because of P > ¢'/? and o™ 'P~! > ¢'/2, we have min(P,a"'P~') > q% and therefore the
right-hand side is bounded by

< ¢7|Q|”* min (P, (Pa) =),
Hence, up to a small error, we can replace the sum by an integral and obtain

1
(8dP)~1q~

/0 S (@) Sa(a)K (@) da —j] /0 K (C*><f[1 (sgn(q;)a) ) da

#0101 [ (PP ) da ).
0

Note that the last error can be absorbed in Ry by ([2.17]), because it is bounded by
p2 -
([ Pt [T ptetan) < g
0 P2

We can also extend the integration domain to co, since the additional error is given by

[e.9]

Q|2 /(00 (£a) . I(Fa)K(a)da < |Q|_é/ ) P 4da

8dP)~1q™ 2 (8dP)~1q" 2
<|QI 22 P7lgr ! < |Q| 2 g2 P,

where we used that ¢'/2 < P. Again, this error can be absorbed in R, by (2.17).
Next, we are going to establish a lower bound for the main term
My =g ... qd|_% Re (/ I(£a)... I(£a)K(a) da).
0

Keeping in mind that K = 1, we may rewrite the main term as

) 2dP 2dP
M1:2—1yq1...qdy—z/ Y(EE £, £ dE ... dy,
P P

) 442 p? 4d2 p? L
:2_d_1\q1...qd\_2/ / (m...ma) 2p(Em £ ... £ng)dny ... dng.
p2 p2
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Since ¥(x) is symmetric around x = 0, increasing for x < 0 and decreasing for x > 0 (see
Lemma [5.11)), we have ¢(0) > 1/2. In particular, there exists a § € (0, 1) such that

Y(a) >1/4 forall |of <6.

Relabeling the variables, if necessary, we may suppose that the sign attached to 7, is + and
that the sign attached to 7, is —. It is easy to see that the region defined by

P? <mn; <4P? for i=3,...,d and 4(d—1)P? <mn < (4d(d— 1)+ 7)P?

and
Im—maEtnst... £ <o

is contained in the region of integration. Therefore, we get the lower bound

) | [Udd=-1)+7)P2 apr d—2
My > 2793 gy .. qq| 72 (20)(4d?P?) "2 / My 2dn2(/ n 2 dn)

4(d—1)P? P2
- _1/4d(d—=1)+T—/4d—-1) ,_
= (2 45)|q1'“qd| : ( ) y ( >Pd2
and the latter is at least as large as (2740)|q; . . . qa| 2 P*2. O

In order to guarantee that the (yet to be introduced) Diophantine approximation of g;a
does not vanish, we have to extend the upper integration limit in from (8dP)~1q~1/?
to (8dP)~*(qo)~'/2. This can be done without changing the lower bound on the main term
M in and in particular will be important to obtain a rational approximation of the
quadratic form a() with the same signature as ().

Lemma 2.6. We have

(84P)~(q0) /2
Ry = / 1S1(a) ... Sa()]| da < ¢"*|Q|72P*3(log P). (2.18)
(

8dp)—1q—1/2

A variant of our Lemma is also proved in [BD58b| under the stronger assumption
P > |Q|"?. Here the situation is even easier, since we have P > ¢. This follows directly
from Assumption and the fact that p > 1/2 or more precisely

>1d—|—3 >1d+2

p > 57_3 if d is odd and p> 511 if d is even, (2.19)

as can be checked easily. Additionally, we will need - apart from Lemma [2.3]- the moment-
estimates established in Lemma [5.1] see Section [5.1] in the [Appendix Al

Proof of Lemma [2.6: During this proof we will not need that @ is indefinite and therefore
we can assume that the eigenvalues are ordered, i.e. 1 < |¢1| < @] < ... < |gq|. In particular,
we have ¢y = |¢1| and ¢ = |qal.

In order to apply Lemma [2.3] we split the interval of integration into the d — 1 intervals

Iy ={ae(0,00) : (8dP|gy|2)™" < a < (8dP|g_1]2)""},

where k = 2,...,d. If j < k—1, then the condition (2.11]) of Lemmais satisfied. Therefore,
combined with Lemma [2.4] we obtain for o € I, the inequality

[Sj(@)] < lgs| 2P o™ +1 < |g| 2P a7, (2.20)
18



2.2 Fourier Analysis

For j > k we use the trivial estimate |9;(a)| < P|qj]’% to conclude that
191()) ... Sa(a)| < Q|2 (Pa)'F i1,

If £ > 3, then we find the bound

1S1(a) . .. Sa()| da < Q|72 P21 (Pgy|7)F2

I

= Q72 PP gul) 7 < QI 2q2 P,

We are left to treat the case k = 2 corresponding to the interval I. For j = 1 inequality
(2.20)) still holds and therefore we have

[Su(@)] < las| 2P~ a7 < Jar| 2l (2.21)
Let j = 2,...,d. Dividing the interval I, into parts of length |¢;|™" (the period of ;) gives

I~ I~

1 lg; g5
[Sj(@)* da < (1+ |qj\(8dP|q1|2)—1)/ [Sj(a)|*~ da <</ 1S5(a)] " da,
I 0 0

where P > ¢ was used. Next we apply Lemma to get the estimate
1S5 (@)|* dar < Jg;| 7 P (log P)
Ip)
and use Holder’s inequality to obtain

/ |SQ(C¥) . Sd(Oé)‘ da < ‘QQ e qd‘_%Pd_S(log P)

Iz

Together with equation (2.21)) we find

1S1(a) ... Sa(a)] da < |go|2|Q| "2 PP 3 (log P) < ¢2|Q| "2 PY~*(log P). O
Iz

We end this subsection by combining the previous estimates in order to prove

Lemma 2.7. Under Assumption [2.1, we may choose Cy > 1, occurring in the definition of

P in (2.7)), such that

u(P) )
/( 1S1(a) ... Sy(a) K (a)|da > |Q| 2 P2 (2.22)

8dP)~1(go) " 2

Proof: According to Lemmas [2.2] 2.5 and [2.6] we have
My + My + Ry + Ry + R3 = 0,
where

M; > |QI72P™? and |Ry| + |Ra| < ¢2|Q| 72 P (log P) < |Q| 72 P73
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Chapter 2 Indefinite Diagonal Quadratic Forms

and

M, = Re / " S1(a)... Sa(a) K (o) da,
(

8dP)~1(go) " 2

Rs — Re / , $0) i) (@) do.

We can easily bound Rj: Using the trivial estimate |S;(a)| < P|qj|_% and the decay of K,
see (2.8)), gives (by applying L’Hoépital’s rule)

R; < Pd|Q|_§/ exp(—au(a) ) da < |Q| 2 P43,
u(P)

Combining the previous estimates we end up with
My + M| < [Ri] + |Rel + [Ra| < |QI72 P47 (1 + P2).

In view of the lower bound for M;, we may increase Cy > 1 such that

u(P)
PU2QI < My < / 1S1(0) . .. Sa(@) K ()] da =
(8dP)~1(qo)" 2

2.2.2 Ordering and Contribution of the Peaks

Next we shall refine the previous bound by showing that the main contribution to the
integral arises from a certain subregion on which every Si,..., S, is large. Before
doing this, we shall fix an ordering of Sy, ..., S; as well, which will be necessary in order to
perform the coupling argument and its iteration. To simplify the notation, we define

J:={ae(0,00) : (8dPgy/*) ™! < o < u(P) } (2.23)

and write ) 1
Tr={aed e[S ()] < ... < ge(@]?[Sea(a)] } (2.24)
for any permutation 7 of the set {1,...,d}. Obviously, since all these sets cover J completely

and there are only finitely many permutations of {1,...,d}, Lemma [2.7 implies already
Lemma 2.8. Under Assumption , there exists a permutation 7 of {1,...,d} such that

i 191 () ... Sy(a) K ()| da > PP2|Q 2. (2.25)

In this chapter we shall fix a permutation 7 satisfying the inequality (2.25). As announced,
we shall prove next that the integral in (2.25]) can be restricted to

F={aecT:: |qﬁ(i)]%]8ﬂ(i)(a)] > P(u(P)?*q)™® forall i=1,...,d}. (2.26)
where u(i) :== min{, (d — 4)} . Indeed, we have
Lemma 2.9. Independently of Assumption 2.1 the estimate

/ 1S4(a) . .. Su(a)| da < |Q|~* P*(log P)~! (2.27)
T \F

holds, where the error term depends on the dimension d only.
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2.2 Fourier Analysis

Compared to the original work [BD58b| of Birch and Davenport, the dependency on the
maximal eigenvalue in (2.26) can be improved by using the ordering ([2.24)).

Proof: First we decompose the complement 7, \ F into d many sets given by

def i
= {aeTr  anp F[Sni)(@)] < P(u(P)g) ™},

where j =1,...,d. If a € C;, then (2.24) implies that
e [21Sm ) (@)] < -+ < lgny |1 Sx0i) (@)

and therefore the left-hand side of ([2.27)), restricted to the region C;, is bounded by

u(P)
_1 _
K Gn(1) - - G| 2 PF(u(P)?q) 1/ |Srerny (@) - .. Sr(ay(@)] dev, (2.28)
0
where k = min(j, d — 4). Recalling that S; is a periodic function with period |¢;| ™, we find
after an application of Lemma [5.1] E (of |[Appendix Al) that
u(P) lgs|
| Is@ e < ulPlal [ 1@ da < aP* a0 2u(P) log P,
0
Thus, we can make use of Holder’s inequality to obtain
o d—k—2
/ [Seesny(@) - Sr@y (@) dev € qlgrges) - - o] 2 P u(P) (log P)
0
and combined with (2.28)) we conclude that
/ 1S1(a) . .. Sa(a)| da < |Q|" P*2(log P) . D
TIx\F

Combining both Lemmas 2.8 and 2.9 yields the following corollary.

Corollary 2.10. Under Assumption [2.1] we may increase the constant Cy > 1, occurring
in the definition of P in ({2.7]), such that

/f|5’1(04) - Su(@)K ()| da > P2(QI . (2.29)

Remark 2.11. We note that the usual proof of the Hardy-Littlewood asymptotic formula
shows that the mean-value estimates, used here for the products of Sy,..., Sy, are in general
(up to log factors) best possible. In particular, one cannot improve the exponent u(i) without
using additional information on the underlying quadratic form Q[m] = gym? + ... + gam?.
To obtain better moment-estimates (as in Lemma we need to iterate the coupling
argument of Birch and Davenport and exploit Assumption 2.1} We shall couple certain
coordinates (in the sense of Definition and establish pointwise bounds for the products
of the corresponding exponential sums (see Lemma .
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Chapter 2 Indefinite Diagonal Quadratic Forms

2.3 First Coupling via Diophantine Approximation

As we have seen in Corollary [2.10] the integral over F is relatively large. Now we shall split
the region F into parts, where the quantities y; and S; have a specified order of magnitude
in terms of the following Diophantine approximation: By Dirichlet’s approximation theorem
there exist for any a € J and for each j = 1,...,d a coprime integral pair (z;,y;) € Z x N
such that . )

gjoo =L+ f; and 0 <y; <8dP|g| 2, (2.30)

j

where the approximation error is bounded by

18;] < y;L(8dP|g;| %)L, (2.31)

For convenience, we introduce the following notations as well: We shall denote by Z he

set of coprime integral pairs (z,y) with y > 0 and for any o € R we define

D,(a) = {(z;,y;) € Z2, + (x5,y;) are chosen as in (2.30) satisfying (2.31)}. (2.32)

One important point here is that none of x4, ..., x4 are zero, since

_ _1
|g;lo > |q;](8dP) (qo) 2 > | ;]

2
prim t

holds in the integration region F of interest. Indeed, we have |z;| > y;(Jag;| — |5;]) > 0.
To localize the peaks relatively to the size of |Si(a)|,...,|Ss(a)| and vy, ..., y4, we shall
decompose the region F as follows: For each j =1,...,d let T} = 2tU) and Uj; = 247) denote
dyadic numbers with integer exponents ¢(j),u(j) € Z. Corresponding to these numbers we
define the sets

Q(Tl,. . ,Td,Ul,. . .,Ud) = {Oé e F: El(xj,yj) S @j(Oé) with
T;P/2 < |g;|2|S;(a)] < T;P and  (2.33)
Uj/2<y; <Ujforal j=1,...,d}.

In this chapter we shall assume, for notational simplicity, that the coordinates are relabeled
such that (2.24]) holds with the trivial permutation and, as a consequence, we can write

T < ...< Ty (2.34)

Additionally, we have only to consider those sets G(T1,...,Ty, Uy, ..., Us) which are not
empty and then for any a € G(T1,...,Ty, Uy, ..., Uy) we see that

(u(P)%q) ™) < Ty < 4d, (2.35)

where we used, on the one hand, the trivial upper bound |S;(a)| < 2dP|q;|~'/? and, on the
other hand, the lower bound in (2.26]). Of course, we have

i.e. u(j) € No. In order to associate S;(«) with the Diophantine approximation in (2.30)), we
shall apply the following refined variant of Weyl’s inequality: If (2.31]) holds, then Lemma

(of the [Appendix Al) states that

_1 . _1 _ 1 _
|S5()| < (y;)~2(log P) min(Plq;| "2, P~"|q;|2|8;]71).
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2.3 First Coupling via Diophantine Approximation

This can be rewritten by
_1 . _ _ -1 . _ _
Tj < (y;)2(log P) min (1, P~%|;[[8;|™") < U; * (log P) min (1, P~%q;|[85] ). (2.36)
In particular, the last inequality yields both
U; < (log P)*T; (2.37)

and

N[

g1 7118;] < P*(log P)T; U, 2. (2.38)
Lemma 2.12. Under Assumption 2.1} there exist numbers T3, ..., Ty, Uy, ..., Uy such that
/ 1S4(a) . .. Su(@)K (a)| da > Q"3 P2(log P)2%. (2.39)
G(T1,....,T4,Ur )
Proof: On the one hand, we know from Corollary that
/ 1S1(a) . .. Sa(a) K (a)| da > Q7 P42,
F

On the other hand, implies
1> t(j) > —loglog P —log g > —log P,
and combined with we find
0 <u(j) < loglog P + |t(j)| < log P.

Hence, the minimal number of choices for Ti,...,Ty, Uy,..., Uy to cover all F is at most
< (log P)?¢. Thus, there is at least one choice of Ty,...,Ty, Uy, ..., Uy satisfying
/ |S1(a) ... Sq(a) K ()| dav > |Q|_%Pd_2(log P)~, O
g(T1 ..... Ty,U1,..., Ud)

Throughout this chapter we fix a choice T1, ..., Ty, Uy, ..., Uy as in Lemma satisfying
(2.39), and introduce the abbreviated notation

G=G(T,...,Ty,Uy,...,Uy). (2.40)
Moreover, for each j =1,...,d let
N; o #{(xj,y;) € Z24, - Jo € G such that (z;,y;) € D;(@)} (2.41)

denote the number of distinct integer pairs (z;,y;) € D;(a) which arise from all & € G. The
previous Lemma leads to the next lower bound on ;.

Corollary 2.13. For the fixed numbers T, ..., Ty, Uy, ..., Uy, satisfying (2.39)), we have
N; > (log P) YTy ... Ty) " NT;U7). (2.42)
Proof: If a« € G(T1,...,Ty4,Uy,...,Uy), then we have
Si(@) .. Sa()| < |QI"*PU(T; ... T0)
and therefore the bound (2.39)) implies
G| > P X(Ty...T;) *(log P)~2. (2.43)

At the same time, the inequality (2.38) shows that for each integer pair (z;,y;) € D;(a),
arising from o € G, « is located in an interval of length bounded by <« P*QTJ-_I(U]-)A/Q.

Together with (2.43]) we get
1
N; > (log P) YTy ... Ty) " N(T;U7)
as claimed in ([2.42)). O
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Chapter 2 Indefinite Diagonal Quadratic Forms

2.3.1 Coupling of the Rational Approximants

In the following we shall establish that at least d — 3 coordinates are coupled and later on
iterate this argument to deduce that all coordinates are coupled. To be precise, we define
coupling as follows.

Definition 2.14. Let 1 < j; < ... < jx < d, where k € {1,...,d}. We say that the
coordinates ji,. .., ji associated to gj,, ..., qj, (resp. the exponential sums Sj,,...,5;,) can
be coupled if for any o € G all pairs (z;,y;) € D;(«) are of the form

Tj = 1] and Y = yy;, (2.44)

where x,y > 0 are coprime integers and x;-, y} divide some L € N such that L is independent
of v € G.

The following lemma on the number of Diophantine approximations with bounded de-
nominator will be the key tool for the first coupling argument and later on for its iteration
as well.

Lemma 2.15. Let n € (0,1) and X > 0. Suppose that 6 is a real number such that there
exist N distinct (non-trivial) integer pairs (z,y) with

0<|z] <X (2.45)

and
|0z — y| <. (2.46)

Then either all integer pairs (x,y) have the same ratio y/z or
N < 24nX. (2.47)
We note that this is Lemma 14 in the original work [BD58b| of Birch and Davenport.

Proof: The inequality (2.47)) holds trivially whenever X < 1, because we have N = 0. Thus,
we may suppose that X > 1. Now we distinguish the following two cases. If n > 1/2, then
we have for any fixed x at most 2n + 1 possible choices for y, because

|y =yl < |0z =yl + [0z — y'| <2,
and, since there are at most 2X + 1 integers in the range 0 < |z| < X, we conclude that
N < (2X +1)(2n + 1) < 12X7.

In the second case we have n < 1/2. By Dirichlet’s theorem on Diophantine approximation
there exist coprime integers a, b with

0<b<2X and [b0—a| < (2X)"

Now we compare (a,b) with a tuple (x,y) which is restricted to the conditions ({2.45) and
(2.46) as well. Obviously, such a tuple (z,y) satisfies

1
lza — yb| < |x(a — )| + |b(x0 — y)| < X|(a — bO)| + by < 2(2X) 'qn < 5t bn. (2.48)
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2.3 First Coupling via Diophantine Approximation

If by < 1/2, then the last line implies that za = yb and this means that the first alternative
of the lemma holds. Otherwise we have by > 1/2 and then shows that the number of
possible residue classes for z mod b is at most 2(1/2 + bn) + 1 < 6bn. If we write z = bk +r
with £ € Ny and 0 < r < b, then |k| < |z|/b < X/b. Consequently, we find that the number
of possible choices for x is less than

6bn(2X/b+ 1) < 120X + 12X = 24nX,

because b < 2X. In view of (2.46|) together with n < 1/2 we know that x determines y with
at most one possibility. This concludes the proof. O]

We are going to apply this lemma with the choice z = z4y; and y = y4x; and show, in
view of the upper bound ({2.42)) for N;, that the first alternative in the above dichotomy
cannot hold. To do so, we need to adapt Lemma 13 of [BD58¢| as follows.

Lemma 2.16. Let j # [ be fixed. For any a € G the integral pairs (z;,y;) € D;(a),
(z1,1) € D) satisfy
0 < |zily; < |q|UiUju(P) (2.49)

and also
< |g;|(UU;) 2 (TyT3) 1 P2 (log P)*. (2.50)

ny; L — 2y,
i j
Proof: We recall that x; # 0 for any i = 1,...,d and that the size of |z;| is of order
oy < || < |q|aw,
because the approximation error |3;| is small compared to |g|ay;, see (2.31). Thus, we find
0 < |mly; < |gloayy; < u(P)|a|UU;,
where we used (2.33)), i.e. y; < U;, and a<u(P). To prove (2.50]), we note first that

1z, ; 1z
__7+&:__l+@_

q; Yj q; qr Y q

20 =
Hence after multiplying by v;y,¢; and arranging accordingly we see that
q; _ _
xzyjq—j — iy =y a5(a; By — @ B)-

Consequently, as in the proof of Lemma 13 in [BD58c|, we have

< y;ila; (a5 Bil + g Bil).

l’lyj@ — LY
qi

The inequality (2.38), that is |¢;| ™' 8:| < (log P)P~2T;'U; /?, combined with the definition
(2.33) of U, shows that the last term can be bounded by

_1 _1
< g |0, (17710, * + 1710, ) P2 (log P)
and, furthermore, this is bounded by
< |q; (D) * (TT;) ™ P~*(log P)*

because of the lower bound ([2.37)). O
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Chapter 2 Indefinite Diagonal Quadratic Forms

The next technical lemma is the key step to conclude that at least d — 3 variables are coupled:

Lemma 2.17. If d > 8, then for any j € {4,...,d — 1} and any a € G we have

iva _ A (2.51)
yira  Bj’

where (z;,y;) € ®;(a), (x4,ya) € Da(a), A;j, B; are coprime integers which are independent
of o and B; > 0, A; # 0. Under the following additional restrictions the same holds also for

(a) 3<j<d—1ifp>2/3andd>7,
(b) 2<j<d-1ifp>1andd>6,
(c)1<j<d-1lifp>2andd>5.

The second part of Lemma [2.17] will be important for both smaller dimensions and
quadratic forms of signature (7, s), where p(r, s) is relatively large, see Corollary [2.19]

Proof: The general strategy here is to apply Lemma to the integers x = x4y, and
y = yqr;, where (z;,y;) € (o) and (z4,v4) € Da(a) for some o € G. We only carry out
the proof for j € {4,...,d—1} and afterwards outline the required changes for the remaining
cases (a)—(c). By Lemma we have

|2q;/qa —y| <n and 0<|z] <X
with 1
X < u(P)|qa|(UgUj)u(P) and n < |q;|(UgU;)2 (TyT;) " P~ 2u(P).

According to Lemma [2.15] either N < 24nX, where N denotes the number of distinct
integer pairs (z,y) corresponding to any o € G, or all pairs (z,y) have the same ratio y / z,
independent of «, which gives the desired conclusion. We show that the former case is
impossible, provided C; > 1 is chosen sufficiently large: In this case, we have the upper

bound ,
N < 240X < |qaq;|(UaU;)2 (TyTy) " P 2u(P)? (2.52)

and, furthermore, the values of x4, y4 are determined by the divisors of x and y. Since there
are < P° divisors (for any fixed § > 0) and x4 # 0, we find

N, < P°N.

Now we may use the lower bound (2.42)) from Corollary together with the upper bound
B5) to get

1
(log P) Ty ... Ta) " (TuUy ) < |arg;1(Ual;)

By (2.37) this can simplified as

TiT! < ¢*P~**(log P)**u(P)*(Ty ... Ty). (2.53)

3
2

(TyT;) " P2 u(P).

Suppose that j € {4,...,d — 1} and d > 8. Since T} < ... < Ty, we can cancel T} and T
on both sides and obtain together with the bound (2.35)) that

1 < ¢*P7*(log P)*u(P)?.
26



2.3 First Coupling via Diophantine Approximation

Since 2p > (d + 3)/(d — 3), we can choose § > 0 such that 2 < (2 — §)(1 + 2p) and note
that the right-hand side tends to zero. Thus, after increasing Cy > 1, which occurs in the
definition of P, we obtain a contradiction.

In the other cases we should use Wigert’s divisor bound, i.e. d(n) <, 201+ log(n)/loglogn
if € > 0, regarding that |z|,|y] < P3. If 3<j <d—1and d > 7, then we can still cancel
T;T} and in addition use the lower bound T} > g~ 3u(P)=*/3, compare (2.35). To get a
contradiction again, we need at least 14 2p > 7/3. If we have 2 < j < d—1 and d > 6, then
we cancel T{T? and use T; > ¢~ '/2u(P)™" to see that at least 14 2p > 3 is required. In the
last case,ie. 1 <j3<d—1andd>5, weneed 1+ 2p > 5, since we can cancel Tjﬂ’j only
and have T; > ¢ 'u(P)~2 O

The above lemma allows us to obtain the factorization of x; and y; as formulated in the
Definition [2.14] where we have defined the notation of ‘coupling’.

Lemma 2.18. In each one of the cases of Lemma [2.17] it holds that all integral pairs
(z;,y;) € Dj(), (Tq,ya) € Da(a), corresponding to any « € G, are coupled (in the sense of
Definition [2.14])) with corresponding dividend L € N satisfying the bound

0<L< H" (2.54)
where H is as in ([2.7)).

Proof: For any j # d, restricted as in Lemma we can rewrite the equation (2.51)) as

T _ rab;

Yi  ya Ay
where (z4,v4) = (2;,y;) = (A;, B;) = 1. As a result, we find that
ya |4
(Ya: Bj) (xa, A;)

Now let I C {1,...,d — 1} denote the indices of all coordinates for which the factorization
(2.51)) holds. We define = and y by

x; = sgn(z;) 2l B;
’ " (wa, Ay) (Ya, By)

and y; =

T = —|xd| and y =

(€a; [Ties A7)

Then z and y are non-zero integers and we may factorize x; and y; as follows: Define

Ld Yd
zq =~ = sgn(za) (e, [ i, 4)  and gy = Y (4, [Tier Bi)

and also
.CIZ; = & = sgn(xj) ‘xd|BJ (xd’ HzEI ) _ sgn(a:j) BJ (‘Id HzeI )
T (za, Aj)(ya, By) |4l (ya, Bj) (w4, 4;)
and
Jom Y yalA4;] Wa 1LierBs) _ 1Al (a1 Lies Bi).
! Yy (ych Bj)(xd, Aj) Ya (yd7 Aj) (yd, Bj)

/

Note that both are non-zero integral numbers. Furthermore, we see that

divisors of

and y; are

L= [lie/|AiBil-
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Chapter 2 Indefinite Diagonal Quadratic Forms

It remains to find an upper bound for K. By Lemma we have
|A;B)| < |zaly;|z;lys < u(P)?|q1llg5|UZU7.
Thus, we find
L < u(p)Z(dfl)q?,(dfl)Uj(dfl) Hid UZ-Z < u(}g)z(dq)(log p)4(d71)q2(d—1)Tdf4(d71) Hid T[4,
where we used , and in view of this is bounded by

4(d—1)

< u(P)? Y Jog(P) a1 2= (y(P)2q) @ AT ) o w(P)16d+8108(d) (Sd-+dlog(d)

Using the definition of H together with the fact that p > 1/2, we see that the last inequality
chain is at most < H'0?, O

Taking into account the definition of p(r, s) for a given dimension d and given signature
(r,s) we obtain the following

Corollary 2.19. Under Assumption the successive minimas Sy, ..., Sy are always
coupled. Assuming additionally the following conditions imply that Sk, ..., Sq are coupled
(i) k=0if d € {5,6} or r > 4s,
(i) k=1if5<d<10orr > 2sand d > 11,
(iii) k=2if5<d<22o0rr >4s/3 and d > 23.

2.4 Iteration of the Coupling Argument

In Lemma we showed that Sii1,...,Sy are coupled on G for some k € {0,1,2,3}
depending on the size of p(r, s). In other words, we know that for any i =k + 1,...,d the
integer pairs (z;,y;) € D;(a) corresponding to ¢;«v are of the form

v, =zx; and oy =y, (2.55)

withz > 0,y > 0, z;2} > 0,2} | L and ¢/} | L, where L is independent of a € G and L < H10¢,
In this section we shall utilize this observation in combination with Schlickewei’s bound on
small zeros in order to count the number of distinct pairs (z,y). Since the inequality
depends multiplicatively on T7i,...,T,;, we need following multiplicative bound for small
zeros of integral quadratic forms.

Corollary 2.20. For any non-zero integers fi, ..., fg, of which r > 1 are positive and s > 1
negative with r > s, d = r + s > 5, there exist integers my, ..., mg, not all zero, such that
fimi+ .. 4 fami =0 (2.56)
and .
P
0< \f1]m3++\fd|m§ <y ’flfd’ a ., (257)

where p is defined as in (1.4)) and the implicit constant depends on the dimension d only.

Here we should emphasize that the exponent in Theorem depends essentially on the
previous bound on small zeros of diagonal integral forms.
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2.4 Iteration of the Coupling Argument

Proof: This is a special case of Corollary (of the [Appendix C)): If we choose there
F= diag(fb R fd)7

A=FF ' ie Alm] = Z?Zl sgn(f;)m?, and A = F}r/de, then we see that there exists a
non-trivial solution m € Z¢\ {0} of

flmf 4+ ...+ fdmf, = A[Fipm] =0,

whose size can be bounded by

2p+1

4p+2
1film? + .+ [ fam = | FLm|)? < (Tr A2)? [det A| @ < |fi.. fal @ . O

In the following we shall always assume that x; and y; are factorized as in (2.55)) without
mentioning this explicitly. For notational simplicity, we also introduce the set € (a) of all
pairs (z,y) corresponding to some fixed o € G.

Lemma 2.21. Suppose that Siyq,...,S5; are coupled, where k € {0,1, 2,3}, and that the

quadratic form
def

Qrim] = qeamig + ...+ qam} (2.58)
is indefinite of signature (17, s") with d — k > 5. Then, under Assumption the integer
pairs (z,y) € €(«), corresponding to the factorization (2.55) and any a € G, satisfy

4pk+2

IQPkyQPk-FQ < q29k+1P—2<10g P)U(P)ka(UlH-l o Ud) d—Fk ( -_E}gx dT;—lUi_i)7 (2'59)

where pp denotes the exponent corresponding to the signature (r’, s") of Q.

This lemma will be used subsequently to establish improved mean-value estimates and,
as a consequence, improved lower bounds for the size of the parameters 11, ..., Tk.

Proof: Due to the Diophantine approximation obtained in (2.30]), we have for any fixed
a € G and any integers mgy1,...,Mmq € Z

d . d o d
2 i 9 2
a Y gmi=) Smid )y pomd.
i=k+1 Y. 55 Y i=k+1

Changing variables to m; = yin; for i = k+1,...,d yields
d . d
a Y qmi== Y ayini+ Y pwind (2.60)
i=k+1 YiZen i=k+1

and we observe that the first term on the right-hand side, neglecting the factor z/y, is an
integral quadratic form whose signature (17, s") coincides with that of @, since the signs

of T 1 Yhi1s - - - Ty, are exactly equal to those of yi1 /Y11, .., 2a/ya and these have the
same signs as gg41,. . ., qq- Hence, it follows from Corollary [2.20] that there exist integers
Nk1,--.,Nq, Dot all zero, such that

/ / 2 ror 2
Ty Ypp1 Mg + - T 2gyyng =0
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Chapter 2 Indefinite Diagonal Quadratic Forms

and
‘$;c+13/1/<:+1‘ni+1 +...t ‘milyéﬂn?l <q ’37;c+1yl/c+1 - -xilyél’@pk“)/(dik)- (2.61)

For the corresponding my.1, ..., my the first part of the right-hand side in (2.60)) vanishes.
Thus, we find

|Griami g+ A qamd] < a7 (pen[YZanio -+ palying)

and from o|q;| < |z;]y;*, (2.61) and y; < U; we deduce that

1 |me o+ gamd < a7 ay T Y -yl G/ EER)

< oz_lx_z”’“y_2”k_2\xk+1yk+1 B .xdyd‘(zpk-*-l)/(d—k)
< a2p‘“m_2pky_2p’“_2|qk+1yi+1 o qdy62l|(2pk+1)/(d—k)

< a2pkm_2pky_29k_2q2pk+1(Uk+1 o Ud)(4pk+2)/(d_k)

(2.62)

Now we shall apply the Assumption made at the beginning: Since @)y is a restriction of
Q, i.e. Qrlm| = Q[(0,...,0,myy1,...,my)], we have either

4P P? < |qrs1|miq + - -+ |qalm3 (2.63)
or

U< grpamigs + -+ damgl < o7 (e lyidoanien + - - + lpalyiing). (2.64)
In the first case we may combine (2.63)) together with (2.62)) to get

P? <« a2pkm_2pky_2pk_2q2,0k+1(Uk+1 o Ud)(4pk+2)/(d_k)

and in view of (2.37)), that is T[lU;l/Z > log P, together with a@ < u(P) we conclude

already that inequality (2.59)) holds.
In the second case, (2.64]) holds and here we use (2.38)), that is

|pil < |g;| P~*(log P)Ti—lUi—l/Q’
to obtain

1< a_lzf:kﬂ\m\y?nf < a P (log P)(i:g}fltx dTi_lUiil/Q) (Z?:k+1‘Qi’mz2)>

which implies together with (2.62))

1< ankflekay72pk72q2pk+1P72<log P) ( i:ﬁ?x de‘il U;l/Q) (Uk+1 o Ud>(4pk+2)/(dfk).

Finally, taking into account that 2p, > 1 and a < u(P), we conclude that (2.59)) holds. [

All pairs (z,y) € € o {(z,y) € Z2 - (z,y) € €i(a) for some a € G} lie in a bounded
set determined by condition (2.59)). Hence, we can bound the number 91 of all these pairs

as follows.

Corollary 2.22. Let 91, := #¢,. Then, in the situation of Lemma [2.21] we have

4pj+2 11
Wi < ¢ %0 P (log P) 7 w(P)(Ukyy ... Ug) #605 ( max T7070)ML(2.6)
1=k+1,...,
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2.4 Iteration of the Coupling Argument

Proof: First note that the expression on the right-hand side of (2.59)) must be > 1, since
G is not empty. Thus, we can apply Dirichlet’s hyperbola method to see that the number N
of distinct solutions (z,y) of x2+y?**2 <« 7 is at most < Z/(27%). Indeed, we have

71/ (2px) )
_ /(2px)
V=Y e Y Y e Y A
2Pk y2Pk+2<<Z y< 71/(2p+2) x<<Z1/(2pk)/y_1_1/pk y< 71/(2pk+2)
This already concludes the proof. O]

We are in position to establish improved mean-value estimates (conditionally under
Assumption [2.1)) by controlling the sum over all (z,y) € €, with the help of the previous
corollary.

Lemma 2.23. Suppose that d > 5+ k and k € {0,1,2,3}. Then, in the situation of Lemma
2.21], for any 6 > 0 we have

pi-k-2
¢ " (2.66)

/|Sk+1(oz)...Sd(a)K(a)|da<<P5 Sz
g |Gt - - qal? Pox

Proof: We shall decompose the integration domain G according to the covering induced by
the factorization from ([2.55)), which holds since Sk 1, ..., Sy are coupled: For fixed (z,y) € €

we define

9i(x,y) C {(@),y) € T2 © @ = a2} and y; = yy, as in (2.55)

with (z;,9;) € D;(a) for some « € G}

and
Tiaiy) © {a €6 : lagyi - ai| < |g*(84P) "}
in order to decompose the integral on the left-hand side of (2.66) as

< Z Z Z I(Ths1, Yrt1s - > Tdy Yad)s

(. Y)€Ck (T 1 Wy )ENR+1(zy)  (2lpys)ENalz,y)

where

def

It Yoty - -+ Ty Ya) = / |Skr1(@) ... Sa(a) K (a)| da.
(RN ACTET)

Using the bound |S;(a)| < |¢:|~Y/2PT;, compare the definition (2.33) of the set G, yields
P *(log P)

d
- |Qk+1 e qd’l/Z (Tk+1 T Td) mes(mi:k+1\7i(xi7 yz))

I(xk:-‘rla Yk+1s -+ -5 Td,y yd)
and, since the measure of the set J;(z;,v;) is at most < P~?(log P)T[lU;l/z, Holder’s
inequality implies

PI*=2(log P)
172

(Terr - Ta) iy (770712,

[<xk+17 Yk+15-- -, Td, yd) < i=k+1

‘QkJrl e Qd|

Returning to the initial decomposition of the integral, we note that #8;(x,y) < P?, because
o, ! are divisors of L < H%? and there are at most < P° divisors. Thus, taking all together
we find

Pd—k—2+6 (log P)

d Cqp-1/2y oL
= T; T; Uz a—% \),..
|ka+1 .. .qd|1/2 ( Hz7k+1 ( ) ) N

/g |Skr1(@) ... Sy(a)K ()| da <
31



Chapter 2 Indefinite Diagonal Quadratic Forms

Next we insert the bound ({2.65]), established in Corollary and get that the last equation
is bounded by

pd—k—2+5 1+ﬁ L, y 1
< T (log PYu(P)(_max 7,10 %) [ (1))
[@x+1 - a P2k i=k+1,...,d i=k+1

where we used that 2;1: (kdti) < % holds provided that d > 5 + k. The claim follows now from
the fact that

N S 6,1
2n  d—k = d—k+3 d—k

and [2.37), i.e. T,U;"* < log P. O

Corollary 2.24. In the situation of Lemma [2.23| we have

1

Ty .. Ty> PoPoug "o, (2.67)

Proof: We recall the lower bound
/ |51 () ... Sq(a) K ()| dev > |Q|_%Pd_2(log p)~%
g

obtained in Lemma [2.12] under Assumption 2.1} Combining this inequality together with
1S1() ... Sp(a)| < |qu...qu| Y2 PE (T ... Ty)

and the moment estimate derived in Lemma (2.23)) shows that
Q|72 P 2(log P)~% < PY2|Q|% P42 5 P70k (T ... T)). 0

2.4.1 Reducing Variables and Corresponding Signatures

Now we shall establish the coupling of the remaining coordinates stepwise beginning with
Sk. The basic strategy here is the same as in proofs of Lemma and Lemma [2.18], but
we additionally make use of the bound . Compared to the earlier arguments, we need
also to consider the ratio between p and py with care, since simple bounds on pj, (resp. on p)
are not sufficient to deduce a contradiction. Thus, we are faced with the problem to specify
the possible values of p; depending on the signature (r,s) of @), which we have moved to

Append .

Lemma 2.25. Let d > 8 and assume that the signature of @) is not of the form (d — 1, 1),
(d—2,2) or (d — 3,3). Then, under Assumption , Ss,...,S4 can be coupled on G.

Proof: According to Corollary we may assume that Sy, ..., Sy are coupled. Applying
Lemma [2.15|to the integers © = x4y3 and y = yqr3 with (24, y4) € Dg(a) and (z3,y3) € D3(a)
and assuming that the first alternative of Lemma holds, yields inequality (2.53)), that is

TiT} < @ P~?*P(log P)*™5u(P)*(Ty ... Ty).

In view of T} < ... < Ty we can cancel T;{T5 and use Corollary with k = 3 to obtain

1 1

P35 8¢5 < Ty < P24 (log P)***, (2.68)
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2.4 Iteration of the Coupling Argument

where we used T; < 1 as well. Rearranging inequality (2.68)) and using that ¢ < P
yields
1 < P*(log P)**5y(P)? PP,

def 2 7 1 1
d) T ——(z+—)—(2+—).
bs{d) (1+2p) (3 6/)3> ( 3/73)
Considering all (bad) cases in the table of Section of |Appendix C| shows that this

inequality cannot hold if we increase Cy > 1 and choose § > 0 small enough. To conclude
that Ss, ..., Sy are coupled, we have to repeat the proof of Lemma [2.1§ as well and note

where

that the factorization (2.55]) changes if more coordinates are coupled. O]

If d € {5,6} or @ has signature (d — 1, 1), then Corollary implies that all exponential
sums S, ...,.S; are coupled. Moreover, we also know that S3, ... Sy are coupled if 5 < d < 22
or if @ has signature (d — 1, 1), (d — 2,2) or (d — 3,3), as can be checked easily. Hence, in
view of the previous lemma, we conclude that Ss,...,S; are always coupled.

Lemma 2.26. Let d > 7 and assume that the signature of @) is not of the form (d —1,1)
or (d — 2,2). Then, under Assumption , Ss,...,S; can be coupled on G.

Proof: In this case, an analogous argument as above yields the inequality
PP <« T? < ¢*P~*™(log P)***3,
where we canceled T'7T% and applied Corollary with k£ = 2, and after rearranging

1 < P*(log P)**"u(P)* PP,

pa(d) & ﬁ<3+2_22) — <2+%).

Considering all (bad) cases in the table of Section [7.3] of [Appendix C|again shows that this
inequality cannot hold if we increase C; > 1 and choose § > 0 small enough. Finally, we

repeat the proof of Lemma [2.18] as well to show the claim. O

where

By Corollary we know that S, ..., Sy are coupled if 5 < d < 10. Hence we may
assume that d > 11 and then 55, ..., Sy are coupled as well if the signature of @) is of the
form (d —1,1) or (d — 2,2). Thus, we have proven that S, ..., S; are coupled, regardless of
the signature (r, s).

Lemma 2.27. Under Assumption [2.1 all exponential sums Sy, ..., S, can be coupled on G.

Proof: By the previous discussion, we know that Ss, ..., S, are coupled. Moreover, we can
assume that d > 7 and that the signature of @) is not of the form (d — 1, 1), since otherwise
all coordinates are coupled, see Corollary Similar to the previous case, we get

3

q—S—% < T3 < 2P *(log P)%+5,
where we canceled TjT} and applied Corollary with £ = 1, and this can be rewritten as

1« P46(log P)2d+5u(P)2Pp1(d),
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Chapter 2 Indefinite Diagonal Quadratic Forms

ol (o038)-(3)

For every case, other than sgn(Q) = (42, 4-3), we have seen (in Sectlon of [Appendix ppend1 d

that p;(d) < 0, thus yielding a contradiction. For sgn(Q) = (42, d23 and 2p1 =
ggjﬁi < 0. However, if 2p; = %2, then p;(d) = 0. In this case

the (d — 1)-dimensional restriction of the quadratic form is of signature (41 4+ 1, &1 — 2)
and hence we may remove one of the coordinates corresponding to 715, ..., T, to obtain a

(d — 2)-dimensional restriction of our quadratic form of signature (£, 1 — 2). Similarly

to Corollary we can deduce that

where

we obtain also pi(d) = —

L, 1-L
Tlﬂ > Pp2 q 2p27
for some 2 <[ < d. Arguing again as above, we obtain
335 —3-;2 3 2 H—2+6 2d+5 2
Pre2 g 72 KTV < ¢" P77 (log P)*“u(P)?,

which implies

1 < P~ (log P)**5y(P)? PP

which yields a contradiction. Since the previous considerations exhaust all cases, we may
repeat the proof of Lemma [2.1§ again and conclude that all coordinates are coupled. [

where

Remark 2.28. In the case p;(d) = 0 one can use Wigert’s divisor bound instead of the
above reduction argument. Since the growth rate in ([1.8]) is limited by the divisor bound,
we wanted to emphasize that the last step can be done without using it.

2.5 Proof of Theorem [1.6; Counting Approximants

Finally, we are going to deduce a contradiction in form of an inconsistent inequality consisting
of the lower bound for Nj, established in Corollary [2.13] and the upper bound from Corollary
for the number of distinct pairs (z,y).

Proof of Theorem [1.6: As we have seen in the previous section, all coordinates can be
coupled (under the Assumption and therefore we can apply Corollary with £k =0 -
in particular, we have @, = @ - to find an upper bound for the number N; of all (z;,y;):
Since x4}, ..., 2}, vy, are determined as divisors of an a-independent number L < H10¢
see Lemma Wigert’s divisor bound implies that

NP < Heiontt 00 < Hiotortt P22 (P (Uy . Uy max T707?),

where we also used that (4p 4+ 2)/d < p, which can be checked by considering the lower

bound (2.19). Next let j # [, where [ is a suffix for which the maximum of Ti_lUi_l/ % is
attained. Combined with the lower bound on N;, obtained in Corollary we find

(log P)~ 4=} ([T, T})~2(T;U )% < H wstostt P=2g2+ 1y (P)2 ([T, U/ (TUZ) ™" (2.69)
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2.5 Proof of Theorem : Counting Approximants

and this inequality can be simplified by using the notation
V; = U 2T Y (log P).
Indeed, since V; > 1 by , we can rewrite as
1< (Vi.. V) V2Vl < H meostiu( P)% (log P)%e+!

1
— log Cy
log log H — -5 Za
<K H TeglogH < exp ( loglogcd)’

(2.70)

where 2p > 1 was used. If Cy > 1 is chosen sufficiently large, we get a contradiction. Thus,
our initial Assumption [2.1] is false. O
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CHAPTER 3

Distribution of VValues of Quadratic
Forms

In this chapter we shall establish effective estimates on the lattice remainder which, in
particular, will be the basis for Chapter [d This corresponds to the sections 3, 4 and 6 of
|GM13| with several corrections and improvements on the parameter dependencies. In order
to state the explicit bounds on the lattice point remainder we need to introduce the following
notations. Let g > %l such that 0 < % — [ < % — %l for d > 4. For a lattice A C R?? with
dimA =2d and 1 <[ < d we define its og-characteristic by

a;(A) o sup{|det(/\’)|71 : A" C A, I-dimensional sublattice of A}, (3.1)

which will be the auxiliary tool to transfer the counting problem into the language of
dynamical systems. Here A’ = BZ? is determined by a (2d) x [-matrix B and det(A’) =
det(BT B)'/? is the volume of a fundamental domain. Introduce

() % sup { (M) To < 1 < T, (3.2)

where A; = d,u;Aq denotes a 2d-dimensional lattice obtained by the diagonal action of
d,u; € SL(2,R) on (R?)¢, which will be introduced in in full detail, and Ay denotes
a fixed 2d-dimensional lattice depending on (), which will be introduced later in as
well. Moreover, we write

E.p={zcR?:a<Qr] <b},

vol B denotes the Lebesgue measure of a measurable set B C R? and volz B := #(B N Z%)
denotes the number of integer points in B. In addition, let v(z) denote a smooth weight
function such that ((z) == v(x) exp{Q. [z]} satisfies

sup ([¢(@)] + [C(2)]) (1 + [l])* < oc. (3.3)

z€R4

Here we should remark that the condition (3.3 will be needed in order to rewrite the
remainder problem in terms of special theta series.

Theorem 3.1. Let () be a non-degenerate quadratic form in d > 5 variables with ¢o > 1.
Choose 3 = 2 + 2 for some arbitrary small § € (0, )andlet ¢ =d(3 — ) =9%-2-4.
Write (b—a), =b—aifb—a < qand (b—a), = ¢**1/?ifb—a > q, and (b—a)* == (b—a)
ifb—a <1land (b—a)* :==1ifb—a > 1. Then forany r > ¢*/?,b>aand 0 < w < (b—a)/4
we have

> - [ e | < {wllollo + 101 Copoian(r)}r?
Eup (34)

QI log (1 + 42,

1/2
QQ/"'
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Chapter 3 Distribution of Values of Quadratic Forms

where ||v]|g is defined in Lemma Cq = q|det Q| M, co = |det Q\1/47B/2 and

def . .
PQb—aw(r) = f {(b—a)y(cQT= +r_11,5(r) +va,1,8(r) (1 + log((b — a)"T4))

+c£21 (T+w)_1/2e_(T+w)l/2 T e [qo_l/Qr_l, 1] and T}, > 1}.

Furthermore

~

~ . /2 ¢
e = (@) Wt [ ) 69

[vlloo>r/2

and here ||v||z == min,,cz4l[v — M| 0.
Remark 3.2.
a) Note that Theorem [3.1]extends to affine quadratic forms Q[z+¢] uniformly in [¢| < 1.

b) Depending on the application, the lattice remainder (3.4) will be optimized in the
parameters w, € and 7', differently: For thin shells the error should also scale with the
length b — a. This forces T’y to be large and requires ’strong’ Diophantine assumptions.
In the case of wide shells it is possible to choose w relatively large.

c¢) If @ is irrational, then Corollary [4.6(implies that pg p—aw(r) — 0 for r — oo, provided
that w and (b — a) are fixed. The first factor in the definition of pgp—q. corresponds
to small values of ¢t on the Fourier side and the last factor to the decay rate of the
w-smoothing of the interval [a, b].

d) The reader may note that the Oppenheim conjecture is equivalent to the statement
that if d > 3 and @ is irrational, then volz E,, = co whenever a < b.)

3.1 Effective Estimates

In the following we specialize the choice of the smooth weight function v in Theorem [3.1]
to obtain quantitative bounds for the difference between the volume and the lattice point
volume in F, ;. Later - in Chapter @— the explicit Diophantine dependence will be elaborated
as well leading to explicit bounds for a special class of quadratic forms, which will be called
of Diophantine type (k, A).

3.1.1 Ellipsoids Ly,

Here () is positive definite and we shall assume that b tends to infinity. Let r = 2b'/2
in Theorem . Then the ellipsoid Ey, = {x € R? : Q[x] < b} is contained in rQ) =

Q_T_l/Q[—T', r]?. Choosing in Theorem a smoothing of I, say v, of width ¢ = %, which

equals 1 on Eyy, and the smoothing parameter w in terms of 77, such that the right-hand
side in (|3.4]) is minimal, will lead to

Corollary 3.3. Let Q denote a non-degenerate d-dimensional positive definite form with
d>5and gy > 1. For any r > ¢'/? and r = v/2b we have with H, = F,

voly, H, — vol H,| <4 |Q|72r% 2 (po(r) + ¢¥* =22 (q/q0)* log(r)), (3.6)

where
def . _1 ° 2
pq(r) = inf {GQ (@2 (cQT + vz ,6(r) +70,7.0,(r) Log (T4 + 1)) + %}

and the infimum is taken over T_ € [qo_l/Qr_l, 1] and T} > 1, where ag = ¢|det Q|1/4_’8/2,
cg = |det Q|Y*7P/2 Furthermore, lim, o p(r) = 0 as r tends to infinity, provided that @ is
irrational.
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3.1 Effective Estimates

Compared to the quantitative results in [BG97| and [BG99|, this bound holds already for
d > 5. Moreover, Corollary |3.3| refines the estimates obtained in |G6t04).

3.1.2 Hyperboloid Shells E,;

If @ is indefinite, we distinguish, depending on b — a, between ’small’ and 'wide’ shells £, .
Moreover, we restrict ourselves to a special class of rescaled admissible parallelepipeds r§2
for r > 0: We suppose that 2 = A~1[—1,1]¢ is determined by some A € GL(d,R) such that
the lattice I' = AZ? is admissible in the sense of Subsection [3.5.2] i.e. both and
should be satisfied.

To estimate the lattice point remainder for this restriction of E, given by H, = E,; N7}
we smooth the indicator function I in an e-neighborhood with an error of order O(g(b —
a)r®=?) using Lemma m This yields a smooth function v, and a final weight function (.,
according to in Theorem Since (2 is admissible, both ||¢.||; and ||¢ ]|« in are
growing with a power of [loge| only, see Lemmas and [3.22]

In the next step we calibrate both smoothing parameters w and ¢ in order to get Corollary
below for 'wide’ and ’thin’ shells. The actual choice of ¢ = £(r) is then determined
by calibrating the main terms er?~> and [|([|105 440 (7)r* ? depending on the speed of
convergence of lim, o 05 4., () = 0. The resulting error bound for indefinite forms will
then differ at most by some |loge|-factors from the positive definite case, and is thus
dominantly influenced by the Diophantine properties reflected in the decay of the v 1,5
resp. the pg), ,,-characteristic of irrationality. In particular we have uniformly for ’small’
and 'wide’ shells E,; and admissible regions (2 the following bound.

Corollary 3.4. Under the assumptions of Theorem [3.I] we get for an admissible region €2,
all |b] + |a| < cor?, where ¢ > 0 is chosen as in Lemma [3.17, and b — a > ¢

A, € voly Hy — vol Hy| <4 Q7212 (pgp—a(r) + Ro.a(r)), (3.7)

where
Roa() < gt +210g(r+1)7((2)% + 48 1og(24- 1) log (1425 3.8
QA(T) q*r og(r—{— ) ((qo) + Nm(T) Og( +Nm(F))) Og( +qé/2r)’ ( . )

Nm(T") == inf,er oy |71 - - - 74| in standard coordinates v = (71,...,74) and

def . (% —a d .
o 2
+ agyars(r) log(Ty +1) + %) }

where the infimum is taken over all 7 € [qo_l/Qrfl, 1Jand Ty > 1. If b — a < ¢, then (3.7)

holds, too, whereby the Diophantine factor pg,—q(r) have to be replaced by

* def . qx _
Poa() 2 infy 1, {aglog(1 +T=)((b — a)(cqT= + 1z u,5(r)

+ 0,60 (0g((b = 0)' Ty) + 1)) }.

In the last equation the infimum is taken over all T_ € [q, V21 1] and T > 1 with

T, > 4(b—a)"'T-° max{1,log(cg) (b — a)T<)*}. (3.9)
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Chapter 3 Distribution of Values of Quadratic Forms

These bounds refine the results obtained in [BG99| providing explicit estimates in terms
of @) and are valid for d > 5. Note that, due to the 'uncertainty principle’ for the fourier
transform, we need to choose T, at least as large as in it £, is 'thin’ in order to
obtain the small factor exp{— | w|"/?} which scales with b — a. In Section m we prove a
variant of Corollary for thin shells and non-admissible regions €2 as well, see Corollary

[3.24] on page [70]
3.2 Organization and Sketch of Proof

The proof of the above-mentioned results is divided into three parts: Starting with a
smoothing step in Section [3.3] we subsequently transfer the problem to Fourier transforms of
the error in terms of special d-dimensional theta sums. One crucial step here is to reformulate
the problem via a Weyl-type argument in terms of other theta sums with an underlying
symplectic structure on R??. In fact, in Section we prove that the underlying lattice
A, is symplectic and provide estimates on the theta sums using basic arguments from the
Geometry of Numbers. The crucial estimates for averages of functions on the space of lattices
are moved to the where we present Margulis’ averaging method in Section [6.2]
After proving in Section geometric bounds related to parallelepiped regions €2, which are
used here, we combine all these results in Section [3.6] to prove Theorem [3.1 and in Section
B.7 we conclude the results of the previous Section [3.1]

3.2.1 Smooth Weights on Z¢

For the weights v,(x) = exp{—Q[z]/r?} our techniques can be used to establish effective
bounds for the approximation of a weighted count of lattice points m € Z? with Q[m] € [a, ]
by a corresponding integral with an error

R(v,Ig,,) o Z Ur(m)—/ vp(x) da. (3.10)

The following bounds for R(v,[g,,) are identical for the case of positive and indefinite
d-dimensional forms @), provided that d > 5. We have

R(v,Ig,,) <qa " popalr) + > (b - a), (3.11)

provided that b — a < r. If r < b — a < r? the second term in the bound has to be replaced
by r%2log r. The function pg4_o(r) tends to zero for r tending to infinity if @ is irrational.
Moreover, assuming that @) is Diophantine of type (k, A), as we shall introduce in Definition
[1.1] we conclude that pgy—o(r) <4 777, where v € (0,1) depends on d, k and A (see
Corollary . These results follow from the Theorem with parameters chosen for the
indefinite, positive and effective Diophantine cases as in the proofs in Section

3.2.2 First Steps of the Proof

In order to prove effective bounds as in Theorem we need an explicit bound for the error,
say R([rmEa,b) with 74 denoting the indicator of a set A, of approximating the number of
integral points m € E,; in a bounded domain r € by the volume.

We start with a simplification of this problem: To bring Fourier analysis into the problem,
we replace the weights I,q(m) = 1 of integral points m € r{2 by suitable smoothly changing
weights v(m,/r), which tend to zero as m/r tends to infinity. This will be done in Lemma [3.17]
for a special class of regions. In fact, we will be forced to restrict the region €2 to parallelepipeds
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3.2 Organization and Sketch of Proof

only in order to ensure that the corresponding error has logarithmic growth only. Additionally,
we construct a w-smoothing ¢ of the indicator function [a,b] via convolution with an
appropriate kernel k whose Fourier transform decays like [k(t)| < exp{—+/[wt|}. This
allows us to replace the indicator function of [a, b] in the lattice point counting problem by
a smooth function, gaining an additional error in terms of the smoothing parameter w, see
Corollary 3.5

Being in a “smooth setting”, we will consider only sufficiently fast decreasing smooth
weight functions v(z), which satisfy additionally the decay condition . This step is
important, because now we can rewrite the lattice remainder in terms of special theta series.
Let us sketch this step more detailed: We need to estimate

> o) g@im) — | o

d
meZzZ4 R

313

)9(Qz])dx = V. =W, (3.12)

where we write v(z) = ((z) exp{—Q4[z]}. Using inverse Fourier transforms we may express
the weights as

9(Qlm]) = / 3(t) expl2nitQml} dt, ((m) = / ) exp {2 (u,m) } du

Combining the resulting factors exp{2mitQ[m]}, exp{2mi(v,m)} and exp{—Q,[%]} in (3.12)
into terms of the generalized theta series

6u(t) Y exp{=2mi{v,m)/r — 2mitQ[m] — Q[m]/r*}

mezZd

one arrives at an expression for V, by the following integral (in ¢ and v) over 6, (¢):

vV, = /R ) /R G(1)0, (1) dt dv. (3.13)

The approximating integral W, to this sum V,. can be rewritten in exactly the same way by
means of the theta integral

9,(1) & /R exp{~2mi(v,2)/r ~ 2witQla] — Q. la)/r*}

replacing the theta sum 6,(¢). Thus, in order to estimate the error |V, — W,|, the integral

over t and v of |0,(t) — 9,(t)| |g(t)((v)| has to be estimated.

As usually done in such counting problems, we split the integration domain depending
on the behavior of the integrands. For |t| < q0_1/27’_1 and [|z|| < r the functions = —
exp{27itQ[x]} are sufficiently smooth, so that the sum 6,(¢) is well approximable by the
first term of its Fourier series, that is the corresponding integral 4, (t), see and .
The error of this approximation, after integration over v, yields the second error term in
(3.11)), which does not depend on the Diophantine properties of ). Additionally, we may
restrict the integration to |t| < T’y for an appropriate choice of T, (depending on the width

of the shell) by using the decay rate of the kernel k. So we end up with the remaining error

term
/ /
7+>\t|>q0 1/27” L JRd

~

0,(1)3(t)C(v)| dvdt, (3.14)
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Chapter 3 Distribution of Values of Quadratic Forms

which we estimate as follows

1< |1E]l sup / 10,(8)] 90| dt. (3.15)
Ty >[t|>q /21

vERE

The second factor in the bound of I in encodes both the Diophantine behavior of
Q@ as well as the growth rate with respect to r. Our strategy to extract out of this factor
the correct rate of growth will be discussed in more detail later. Let us first state that the
resulting bound (the choice of T, depending on the width of the shell) is an error bound
depending on characteristics of ¢ (v) of the form (see Theorem

N N b—
R(Ig, ,vr) <raq W+ |[Cllip(r, b — a)ri? + HCHL*rd/? log (1 + Ta>’ (3.16)

which has to be optimized in the smoothing size w (compare Theorem [3.3)) and p(r,b — a)
depends on the Diophantine properties of ) and r (see Theorem |3.1]).

3.2.3 Mean-Value Estimates

In order to describe the second term in (3.16)), we follow |G6t04] and show in Lemma by
using a Weyl differencing argument that uniformly in v and pointwise in ¢

0.0 < 7 [det Q72 Y exp{—lv]I*}, (3.17)

vEA:

where (A;);er is a family of 2d-dimensional unimodular lattices generated by orbits of one-
parameter subgroups of SL(2,R) indexed by t and r, see for the precise definition. To
estimate the right-hand side in (3.17)), we will first bound the sum ¢ (¢) := > ., exp{—||v||*}
by the number of lattice points v € Ay with ||v]| < 1 and then make use of the symplectic
structure of A;, compare Lemma [3.8f Combining these arguments yields the estimate

2 1 -
Z eXp{_HUH } < Ml(At) o Md(At) —d ad<At)7

vEA:

where M;(A;) denotes the i-th successive minima of A; and ay(A;) the d-th a-characteristic
of Ay, that is

ag(Ay) = sup{|det(A')| ™" : A" is a d-dimensional sublattice of A},

Based on Lemma [6.18] and a local approximation of a certain one-parameter subgroup by

the compact group SO(2) (see Section [3.4.2)), the average of cy(A;)® with 0 < 3 < 1/2 over ¢

is derived in Lemmas and [3.16] The proof of Lemma [6.18 uses an involved recursion in

the size of r and builds on a method developed in [EMMO98| on upper estimates of averages

of certain functions on the space of lattices along translates of orbits of compact subgroups.

Here we only briefly sketch the main ideas involved in this argument as described in |[GM13].
As a first step, we will reduce the problem to the study of the mean-value operator

AN = 5 [ Hgke)dolh) (@ € SLE.R)/SL, D)

on K :=S0O(2) by finding an appropriate embedding of SL(2,R) in the standard symplectic
group Sp(2d,R), where the existence of such an embedding will be proven with the help
of representation theory of the group SL(2,R). In fact, taking all mentioned arguments
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3.2 Organization and Sketch of Proof

together we will see for thin shells and all intervals I of length at most < 1/¢ that

/1 10,(8)] dt <5 4P| det Q™ 1 5(r) ¢ Agry (@”) (Ar),

where 7y 5(r) contains information on the Diophantine properties of @) and tends to zero for
irrational forms as r tends to infinity (see Corollary and g(r) and A are appropriate
elements in SL(2,R), resp. the space of lattices. In the case of wide shells, additionally we
need to use the decay rate of the fourier transform g, of the w-smoothed indicator function
of [a,b] to find a similar estimate.

As a special case, we can estimate the growth-rate of A, for the spherical functions

n(9) = 5 | lateos(o).sine))| > do

as defined in , since they are the eigenfunctions of A,. In fact, it is easy to show from
this representation that 7(g) < [|g||*™2 if A > 2, see (6.48), implying later the effective
error bound of order 7472, Now the main idea is to extend these estimates to a larger class
of functions f which do not appear isolated but emerges as the maximum of a family of
positive functions fi, ..., fog. We require that this family satisfies two properties: First, the
value of each f; on any ball of radius sq is bounded (up to a constant depending only on s)
by its value at the center. Second, the mean value of any f; satisfies the following functional

inequality
Agfi <7a(9) fi + 0H<l?§z V fizj fitis

where we set ¢ = min{7, 2d — i} and ); := max{2, 3i}. Note that it is possible to reinterpret
this function class as a special case of subharmonic functions on Siegel’s upper halfspace.
We show, in a first instance, that any positive function f satisfying an inequality of the form

Agf K 7a(g)f + bry, (3.18)

for A > 2 and 0 < n < A satisfies already

Agf(1) < 7a(9) f(1), (3.19)

see Corollary [6.10] In other words, the mean value at g of such a function grows as fast as
the associated spherical function. In a second instance we apply the already proved estimate
(3.19) to the radialized family and obtain a preliminary estimate of the form

Agf(1) < F(D)7(9) (3.20)
for any fixed p > A4. Then we show inductively, using (3.18), (3.19) and (3.20)), that
Ag(fi) < f(D)7u,(9) (3.21)

for all i # d and an appropriate sequence Ay > p; > A;. Combining these estimates again
with (3.18)) yields in the case i = d the inequality A, fs < 7a,(9)fa+ f(1)7, for some n < Ag,
which implies together with (3.18) and (3.21]) the expected estimate

A (H) (1) < 1, (9) £(1) < fF(D)|lgl P2,

To apply this mean-value estimate, it remains to check that the a-characteristics aq, ..., asg
satisfy both mentioned properties. This will be done in Lemma [6.17] with the help of the
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geometric inequality d(L)d(M) > d(L N M)d(L + M) for any two A-rational subspaces L
and M, which was established in Lemma [3.6] Finally, we obtain in Theorem the bound
A0 (A) < a(A)P) g]|P*=? which implies for any interval I of length < 1/q

/ye,,(t)\ dt < ¢ trd2 |det Q]_1/4 fy],g(r)&d(AI)’B.
I

At this point the current approach is fundamentally different to the approach of previous
effective bounds for R(Ig, ,I,q) by Bentkus and Gotze [BG99| (see also [BGI7]) valid for
d > 9 and positive as well as indefinite forms. The reduction to and p(r, b — a) follows
the approach used by Gétze in |Got04], where the average on the right-hand side of
was estimated for d > 5 by methods from the Geometry of Numbers and essentially required

positive definite forms. A variant of that method was applied to split indefinite forms in a
PhD thesis by G. Elsner |Els09].

3.2.4 The Role of the Region (2

In order to estimate the lattice point deficiency R(/f, ,nrq) we have to e-smooth the indicator
function of Q which yields weights ¢ = (. and an additional error of order £(b — a)r?=? in
case of indefinite forms due to the intersection of E,; with the boundary dr€). For positive
definite forms r{) contains E,;, that is ¢ > 0 could be fixed independent of r, since this
boundary intersection term is not present here.

In the indefinite case one needs to match the actual size of r¥2p(r,b — a) by choosing €
as small as 7~%42%2 in (3-16). This leads to a critical dependence on ¢ through the Fourier
transform of (. and its characteristics. Here ||| moderately grows like (log1/e)? for
arbitrary small ¢ in the case of polyhedra only, see Lemma The dependence of |]Z€||1*,
see (3.5), is again critically dependent on  and the width b — a of the hyperbolic shell
Eqp. For b —a > r the boundary of 72N E,; will contain a larger segment of 0r{2. For
a sequence of scalings r theses segments of the d — 1-polytope potentially contain a large
number of lattice points which induce large errors in the lattice point approximation, for
which the technical restriction to the region (2 is solely responsible. In order to avoid
this artefact which is reflected by a large growth of ||(.||1« when e is small, we restrict
ourselves to special admissible regions 7€), where Q = A7[—1,1]¢, and A € GL(d,R) is
chosen such that the lattice T = AZ? is admissible in the sense of Subsection [3.5.2] i.e.
both and are satisfied. This ensures that the lattice point remainder of r(2
satisfies |volz rQ2 — vol Q)| <q (log7)?~! uniformly which is ‘abnormally’ small. Likewise
”Ea”l* grows of order (log1/¢)? only. The resulting error bounds in Corollary M for wide
shells with |a| + |b| < 2 are then comparable up to at most [loge|* factors to the case of
positive forms in Corollary [3.3]

3.3 Lattice Point Remainder via Fourier Representation

We begin by recalling some notations introduced at the beginning: Considering the quadratic
form Q[z] = (z, Qz), x € R, where (-,) resp. ||-|| denote the standard Euclidean scalar
product and norm, Q: R? — R denotes a symmetric linear operator in GL(d, R) with
eigenvalues ¢, ..., qq, we also denote

def : ‘ def A —1/2 def -1/2
@ = min g, ¢ = max g, |Q [det @

Here we always assume that the form is non-degenerate, i.e. ¢y > 0.
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3.3 Lattice Point Remainder via Fourier Representation

The first step in the proof of Theorem is to rewrite the lattice point counting errors
| volz H, — vol H,| in terms of integrals over appropriate smooth functions. In fact, here we
shall consider smooth weights v,.(z) := v(x/r) only, which are sufficiently fast decreasing
such that the function

((2) € () exp{Q[a]} (3.22)

satisfies . Depending on the applications, we will later replace v by an indicator function
of certain parallelepipeds (2 gaining an additional error controlled in Lemma [3.17]

Starting with smooth weights on the lattice points E, ;, we shall investigate approximations
to the weighted sum

S L (QIm]yo (m) = / Ty (Qla))or (@) da + R(I5, ,vy). (3.23)

d
mezZd R

For such weights both sides of (3.23) are well defined and R(Ig, ,v,) may be estimated by
splitting the integration domain appropriately and using Poisson’s formula, see [Boc48§], §46.

3.3.1 Smooth Approximation of the Indicator Function of [a, D]

Before doing this, we shall replace the indicator Ij,; by a smooth approximation. To
this end, we introduce smoothing kernels as follows. By Lemma (with u(t) = V1)
a probability measure k = k(z)dx (symmetric around 0) exists with compact support
satisfying k([—1,1]) = 1 and [k(t)| < C exp{—|t|“2} for all t € R and a positive constant
C > 0, where E(t) = [ g(x) exp{—2mitz} dz denotes the Fourier transform of the measure
k. Though Lemma [5.11] provides better kernels, we won’t need a better decay rate. For
7 > 0 let k, denote the rescaled measures k. (A) := k(771 A) for any A € B". Using the same
notation, let k. (z) = k,(x1) ... k-(z,), © = (1, ...,x,), denote its multivariate extension
on R™ n > 1. Furthermore, let f % k, denote the convolution of a function f on R™ and k..

Lemma 3.5. Let [a,b], = [a — 7,0+ 7] and write

ef ef
J+w « ][a,b]iw * ky  and g:%w(x) = giw(Q[x])7 x e Rd’ (324>
where 0 < w < (b — a)/4. Then
|R(Ig, ,vr)| < max [R(g2, vr)| + cawllvllgr®, (3.25)

where ||v]|g is defined in Lemma and ¢, is a positive constant depending on d only.

Proof: In Lemma [6.1| we choose the measure p resp. v on R as the induced measure under
the map = — Q|x] of the counting measure with weights v,.(m) resp. the measure v, (z) dz.

Let f(z) = Ijoy(2) and fZ(2) = Ijap).., (). Then (6.1)) is satisfied and (6.2) applies with
7 = w. In order to bound the remainder term in (6.2)) observe that
fow = Tow < I({z € R : Q[z] € [a — 2w, a + 2w] U [b— 2w, b+ 2w]})

and apply the geometric estimate of Lemma [3.17; that is (3.95) of the Appendix. O
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3.3.2 Rewriting of the Remainder Term

We have reduced the determination of the lattice point remainder R(Ig, ,v,) to the remainder

R(gfngr) for smooth weights. Next we rewrite the latter by means of the corresponding
Fourier transforms. Rewrite the weight factor v in (3.23)) as v(z) = exp{—Q[z]} {(z). Since
by definition

G ()] < Tiasn (8) o (8)] < Spase () exp{—[tw[/?} and ¢ e L'(dv), (3.26)

where
Stapian () E [(27t) " sin(nt (b — a £ 2w))],

we may express the weight functions g4, and ¢ by their Fourier transforms

o~

/g\iw(v):/Rgiw(x) exp{—27itz}dx and ((v)= g ((x) exp{—27i(v,z)} dz.

This yields

20l @le]) = [ Fault) xp{2mitQlal} (3.27)
((x) = » Z(U) exp{2ri{x,v)} dv. (3.28)

Using (3.27)) we obtain by interchanging summation and integration in (3.23))

Riguvr) = [ Rleiqun)Toult) (3.29)
R
with e;g(z) = exp{27itQ[z]}. In the same way, writing

Eop(x) E exp{—Qq[z/r] + 2mi(w,vr 1)},

we derive by (3.28) the remainder

R(egu,) = /Rd R(etQév,T)E(v) dv. (3.30)

The sum R(etqé,,) is the remainder between the generalized theta series and its correspond-
ing theta integral, that is R(e;g€,,) = 0,(2) — U,(t), where

08) S exp{Quu(tyr)} and 0,(1) 9 /R e {Qro(t,0)} dr, (3.31)

z€Z4

Qro(t,z) € 2mitQx] — r2Qu[a] + 2mi(w, vr ™). (3.32)

3.3.3 Splitting the Fourier Integrals

From here we only consider the weight ¢,. The same inequalities hold also for g, re-
placed with g_,. Next, we decompose the integral over ¢ in (3.29) into the segments
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3.3 Lattice Point Remainder via Fourier Representation

Jo = [_%—1/271_17 qo_l/2r_1} and J; == R\ Jy, where the choice of .Jy was changed compared
to [GM13] leading to improved dependency on @) in the final lattice remainder, and obtain

‘R(ggvrﬂ Lq In+Iy+ Iy, say, where (3.33)
I ¢ / R(ewquy) Gul(t) dt|, (3.34)
Jo
L | [ G [ ool (3.35)
J1 R4

I /J G () /R d&u(t)f(v)dvdt‘. (3.36)

Most of the technical estimates were moved to the Section (6.1) of [Appendix B} In Lemma
we show that

Iy <4 dg HZHI min{|b — a| qo_l/Qr_l, 1}7‘d/2qg/4,
provided that d > 2, and in Lemma [6.5| we prove that

In < dgr¥®log(1 + b — algy *r ) <]l

using the quantity ||E||*T as defined in (3.5)) for the weights ((x), provided that d > 5. Thus,
applying (3.25)) of Lemma together with the previous estimates, we may now collect the
results obtained so far for the lattice point remainder of (3.23) and obtain

|3t @mlyonm) ~ [ Ton(@laDen(z) da]
mezd R4 (3.37)
< T+ 1QI 2028l Tog(1 + b — algg V) + w el

It remains to estimate the term [y and this step crucially depends on Margulis’ averaging
method. We begin to separate the ¢ and v integrals via

h<alCloswn [ G d
[t]>q5 "/ *r =

vERY

Applying Lemma of the [Appendix Bl where the bound |6, (£)| <4 |det Q|™* r4/24(r, )}/

was proven with
bty = S expl{—Hym,n)},

m,neZ
where Hy(m,n) = r2Q;'[m — 4tQn] + r~2Q[n] is a positive quadratic form on Z*?, yields
Iy < et QU [ G (3.39)
[t|>qq r—1

In order to rewrite the Siegel transform ¢ (r,t) = 3" . exp{—|v||*} of exp{—||z||*} evalu-
ated at the lattice A;, we introduce the 2d-dimensional lattice

def
At -

DrQ: TQ+ 1 and U4tQ: L4 _4tQ ) (3'4())
T‘lei ILcl

47

D,oUugZ*, (3.39)

where



Chapter 3 Distribution of Values of Quadratic Forms

and note that Lemma 6.6 (with £ = 1) implies the estimate
(1) =g #{w € Ay 1 |woe <1} < #{w € Ay : |Jw]| < dV?} (3.41)

reducing the problem of estimating the theta series to the problem of counting lattice
points. In the next section we shall establish a relation between the «;-characteristics and
the successive minima of a lattice. As a consequence, we show that ¥(r,t) <4 a(A;), where
a is the maximum over all ay;-characteristics, compare ((3.1)).

3.4 Special Symplectic Lattices

Let n € NT be fixed and for every integer | with 1 < [ < n we fix a quasinorm |- |; on
the exterior product A'R". Let L be a subspace of R” and A a lattice in L (i.e. A is a
free Z-module of full rank dim L), then any two bases of A are related by a unimodular
transformation, that is, if uq,...,u; and vy, ..., v; are two bases of A, where [ = dim L, then
v A+ Avp = Fug A -+ - Ay, which implies that the expression |v; A - -+ A ], is independent
of the choice of basis.

Let A be a lattice in R"”, we say that a subspace L of R" is A-rational if L NA is a lattice
in L. For any A-rational subspace L, we denote by da (L), or simply by d(L), the quasinorm
lur A ..o Ayly, where {uy,...,u}, | = dim L, is a basis of L N A over Z. For L = {0} we
write d(L) := 1. If the quasinorms | - |; are the norms on A'R™ induced from the standard
Euclidean norm on R™, then d(L) is equal to the determinant (or discriminant) det(L N A)
of the lattice L N A, that is the volume of L/(L N A). In particular, in this case the lattice
A is said to be unimodular if and only if da(R"™) = 1. Additionally, we have the following
geometric estimate on the product of the volume of two A-rational subspaces.

Lemma 3.6. There is a constant C' > 1 depending only on the quasinorm | - |; and not on
A such that

C?*d(L)d(M) > d(L N M)d(L + M) (3.42)
for any two A-rational subspaces L and M.

Proof (compare Lemma 5.6 in [EMM98]): Since any two quasinorms on A'R" are
equivalent, it remains to prove this result when d(-) is equal to the determinant. Additionally,
we shall reduce the problem to the case L N M = {0} as follows.

We denote by 7: R* — R"/L N M the natural projection and note that d(L) =
d(m(M))d(L " M), d(M) = d(x(L))d(LN M) and d(L + M) = d(x(L + M))d(L N M).
Since the inequality is equivalent to

d(L) _d(M) _ d(L+M)
ALAM)dLOM) = dLNM)’

we can replace L, M and L+ M by (L), (M) and w(L + M). Thus, we may assume that
LN M ={0}. Now let ey,...,¢, l =dim L, and €41, ..., €4m, m = dim M, be bases in L
resp. in M. Then, using the Cauchy-Schwarz inequality in the exterior algebra, we get

d(L)d(M) = lles A ... Negll - |leist A e o A erml|
>les Ao AerAepr Ao A epeml] = d(L+ M),

where the last equality holds since ey, ..., e/, is a basis in L 4+ M. O
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Let us introduce the following notations for 0 <[ < n,

ar(A) oof sup{d(L)~" : L is a A-rational subspace of dimension [}, (3.43)
a(A) ¢ max ay(A). (3.44)

This extends the earlier definition (3.1)) of a;(A) in the introduction of Chapter [3| to the
case of general seminorms on A'R™. In this section the functions oy and o will be based on
standard Euclidean norms, that is, we have d(L) = det(L N A).

In the following we shall use some facts from the geometry of numbers for lattices in R”,
see Davenport |[Davb8| and Cassels |[Cas97|.The successive minima of a lattice A are the
numbers M;(A) < --- < M, (A) defined as follows: M;(A) is the infimum of A > 0 such that
the set {v € A : |[v]| < A} contains j linearly independent vectors, in particular, M;(A) is
the shortest vector of the lattice A. It is easy to see that these infima are attained, that
is, there exist linearly independent vectors vy, ..., v, € A such that ||v;|| = M;(A) for all
7=1,...,n.

Remark 3.7. In classical reduction theory, one uses a variant of the classical successive
minima called primitive vectors: by, ..., b, € A constitute a basis for A with F(b;) =<4 M;.
This alternative construction leads to larger constants in Minkowski’s second theorem. For
details see [Si89], Lecture X, §5-6.

Lemma 3.8. Let I be a norm in R" such that F' =<, || - || and denote by M; < --- < M,
the successive minima with respect to F'. Let A be a lattice in A C R", then

a(A) =, (My(A) - M(A)™Y, 1=1,....n. (3.45)

Moreover, for any p > 0, if 1 < j < n is such that M;(A) < p < M;1(A), where the
right-hand side is omitted if 7 = d, then

#{ve A : Fv) < pu} =, i a;(A). (3.46)

Proof: In principle, the relation (3.45)) is well-known and a proof can be found in Einsiedler-
Ward [EW19|. However, for completeness we include the proof here. Let A’ C A be an
arbitrary [-dimensional sublattice of A and N; < ... < N, the corresponding successive
minima of A’ with respect to F'. Moreover, let V'’ denotes the [-dimensional volume of the
convex body {F < 1} N Span(A’). Then we know by Minkowski’s theorem on successive

minima that l l

2 /
i < (Vi) < = [det(A)] (3.47)

The last inequality together with F'(-) =<, ||-|| shows that Ny - - - N; <,, |[det(A’)| and, because
of M; < Nj for all j =1,...,1, we obtain that

|det(A")]

Oél(/\) <y (Ml T MZ)_I.

On the other hand, we have M; = F(b;) for some linearly independent lattice points
bi,...,b € A. Therefore, the successive minima of the [-dimensional lattice

N = {Zé»:lnjbj TNy, € Z,}

are exactly M; = N; for all j =1,2,... 1. This implies M; - -- M; <,, | det(A’)| and therefore
we find also a,(A) >, My --- M,. This concludes the proof of (3.45]).
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Next we shall prove (3.46). Let x> 0 with M;(A) < pu < M;4+1(A), where the right-hand
side being omitted if j = m. Moreover, let vy, ..., v,, denote the elements in A corresponding
to the successive minima M;(A), i = 1,...,m. For my,...,m; € Z with |m;| < j 7' uF(v;)™*
notice that v = myv; + ...+ m;v; satisfies F'(v) < p, thus

N(u) € #{v €A F(v) < p} >/ (My(A) - M;(A)) ™" (3.48)

The upper bound is also proven in Davenport |[Dav5§|, see Lemma 1. Again, we include the
argument here for the sake of completeness: First note that any lattice point v € A with
F(v) < Mj4, is linearly dependent on ay, ..., ;. Though the points a4, ..., a, in general do
not constitute an integral basis for A, there exists a basis by, ..., b, such that a; is linearly
dependent on by, ..., b;, see e.g. Cassels [Cas97|, Section 1.2 Corollary 2. Hence any element
v € A with F(v) < p can be written as v = myb; + ...+ m;b; with m; € Z. Suppose v' € A
is another element with F'(v') < pi. Of course, we can again write v’ = mj by + ... m/;b; with

m; € Z. Now define positive integers v4,...,v; by
2p
vl < 5 < oM, 3.49
<2 (3.49)

7

Obviously v; > v, > ... > v;. Assuming for the moment that m; = m; mod 2" for every
[ =1,...,7 and let i denote the largest index ¢ such that m; # m/}. Then z = 27" (v — ') is
an element of A and linearly independent of by, ...,b;_1 and thus also of ay,...,a;_1. This
implies F'(x) > M;. On the other hand we have

Flx)=2"""Fv—v") <27 (F(v)+ F('")) <27"2u < M;

by . This contradiction shows that there is at most one lattice point in A such that
the coordinates my, ..., m; lie in the same residue classes to the moduli 21, 272, ... 2%
respectively. Hence the number of lattice points N(p) in is bounded from above by
the number of all residue classes, i.e. by 2/12*2 ... 2" < (4u)? (M ... M;)~'. This shows the
upper bound in ((3.46]). O

Lemma 3.9 (Davenport [Davh§|). Let A = gZ" and A’ = g~ Z" denote dual lattices of
rank n, then for all j = 1,...,n we have

1< M;(A) My (N) < 1. (3.50)
Proof: The proof of (3.50) is given by Davenport in [Dav5§|, Lemma 2. Once again, we
include the argument here for completeness: Let vy,...,v, € A, resp. v},...,v,, € A, be
linearly independent such that ||v;|| = M;(A), resp. ||vf|| = M;(A’). Then vy, ..., v; cannot be
orthogonal to all lattice points vy, ..., v, ;_;, otherwise they would fail to be independent.

Thus, we have (v;,v;) # 0 for some i =1,...,7 and k =1,...,n+ 1 —j, which implies that
Mi(A)Myya—j(N') = Mi(A) My(A") = Jvill[[og]] = [{vi, vi)| = 1

because of duality. The right-hand side of (3.50)) follows from (3.45)) in the case | = d, which
is known as Minkowski’s inequality. Indeed, det(A) = a,(A) =, My(A) ... M,,(A) and since
det(A) det(A’) = 1 we conclude that

Mi(A) M1 (N') <o Tz gy (Mn (D) M1 - (A)) 71 <5 1 O
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3.4 Special Symplectic Lattices

3.4.1 Symplectic Structure of A;

In the following we shall apply the previous results from the Geometry of Numbers to the
special 2d-dimensional lattice A;, introduced in (3.39). Especially, we will make use of the
symplectic structure of A; in order to establish a relation between the theta series and
the ay-characteristic of Ay, see , and to sharpen Lemma and Lemma as follows.

Lemma 3.10. Let A; be the lattice defined in (3.39). Then we have for any t € R

Mj(At)M2d+1—j(At) =4 1 (] = 1, ... ,d), (351)
Mi(A) < . < My(Ay) <a1 < Myai(A) < ... < Mag(Ay) (3.52)

and the lower bound
Mi(Ay) > min{r‘lqé/Q, rq_I/Q}. (3.53)

Corollary 3.11. As a consequence, we find for u > 1

#{ve Aol < p} < p*taa(Ay), (3.54)
a(Ay) =max{o;(Ay) : j=1,...,2d} =4 aq(Ay). (3.55)

and
P(r,t) g aq(Ay). (3.56)

Proof of Lemma [3.10: First we prove (3.51)). Let

def Lq
()

A, = JD,qUigJ ' 7%,

and consider the lattice

then JD,qUyqJ 1= D;é UﬂtQ and hence A} is the lattice dual to A; in the sense of Lemma
B.91 We claim that they have identical successive minima. To this end, note that for any
N = (m,m)" € 2%

IDrUug Nl = |7 T DyqUig I~ IN|| = [ D;qUL g IV, (3.57)

where we use that .J is an orthogonal matrix. Since JZ?? = Z2? the equation (3.57) implies
that the successive minima of A; and A} are identical and by Lemma we conclude
Mj<At>M2d+1fj(At) =d 1 fOI'j = 1, R ,d.

To prove (3.52) we note that My < Myq and 1 < My(Ay) Myy1(Ay) <g 1 implies

M;(Ay) < My(Ay) <a1 and 1< Mg (Ay) < Mgyi(Ay)

for all j = 1,...,d. Thus, it remains to show the lower bound for Mi(Ay): Take
m,m € Z¢ with My(A;) = ||D,qUuq(m,m)|| = Hilm,m]"/2, where H,; denotes the special
norm in the theta series (6.24). If m # 0, then we have Mj(A;) > r‘lHQi/zmH >
qo/*r=t, but otherwise M (A,) = r||Q;"*m| > rq=2/2. O
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Proof of Corollary[3.11: We begin with proving (3.54)) as follows. Recall that ;1 > 1 and
let 2d > j > 1 denote the maximal integer with M;(A;) < p. Then Lemma implies

#{v € Ao JJvll < p} <a doy(Ae) < p*foa(Ay),

since we have M;(A;) > ... > My (Ay) > 1ifj > dand p < Mg (M) < ..o < Mg(Ay) <4
1 if j < d. In the case p < M;(A;) the inequality in holds trivially. Moreover, this
argument also proves . Finally, the estimate (3.56|) follows from the relation (3.41])
combined with for = d'/2. O

For arbitrary ¢t and for small ¢ the following bounds which are independent of the Dio-
phantine properties of () hold.

Lemma 3.12. Denote by A the lattice Qlfzd, then

supyep a(ds s Ag) <a po(s) (3.58)
where
po(s) = s [det Q72 T1,ar a)se (s 2(M;(A)?), 5 > 0. (3.59)
In particular, it follows that
0o(s) <q s |det Q72 if  |s| > ¢ (3.60)
and for small ¢ we get
ag(dyu Ao) <q |det QY% (s7 + |ts])%, it gt |ts| > 1, (3.61)
ag(dyu Ap) <q |det Q7 max{1, (\/q/s)%} |ts|™*, if ¢"?|ts| < 1. (3.62)

Proof: 1f 1/2 < M;(A;), then we have obviously
a(Ay) =g (My(Ay) ... Ma(A)) ' <a #{v € Ay« o] <1/2}. (3.63)

Otherwise, there exists an integer j = 1,...,d with M;(A;) < 1/2 < M;1(As), since
1 < My 1(Ay) holds by (3.52)). Now, taking = 1/2 in (3.46|) of Lemma (3.8 shows that

() =a (Mi(Ay) ... My(A)) ™ < (My(Ay) ... My(A) ™" =g #{v € Ay - o]l < 1/2},

i.e. (3.63)) holds also in the second case. Recalling again ([6.25]), we see that the right-hand
side of ([3.63)) is the same as the number all lattice points m,m € Z? satisfying

Him,m] = s*Q'[m — 4tQm] + s Q4 [m] < 1/4. (3.64)

Proof of (3.58). If (B-64) holds, then ||Q/?m|| < s/2, which has again by Lemma [3.8|at most
<all My ( Ay<s(S M;(A)~1) integral solutions. Similarly, for fixed m the triangle inequality

combined with (3.64]) implies

1sQ2 " (my — mo)|| < V/Hilma,m] + v/ Hima,m] < 1.

Thus, for fixed m, the number of pairs (m,m) for which (3.64) holds is bounded by the
number of elements v in the dual lattice A’ = Q~/2Z% to A such that ||v]| < s7'. Since the
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3.4 Special Symplectic Lattices

successive minima for this dual lattice are determined by Lemma |3.9, we may use Lemma
3.8 inequality (3.46]), again to determine the upper bound

<all; m (A’)<s—1(S(Mj<A/))71 < Hj:(Mj(A)Zs(Sil(Mj(A))

for this number as well. The product of both numbers yields the bound

aa(Ae) <a #{v € Ay s [loll < /2 < s* (T2 (M5 (A)) (TT;: (agy (a2 (57M5(A)%)).

Finally, using Lemma ﬁln form of H M (A) =4 ag(A)7 = |det Q| shows the
claimed bound in @ Iso the 1nequahty - follows immediately from (3.58]).

Proof of (3.61). Assume qO/ [ts| > 1 and g > 1. If m = 0 we conclude that ||m|]* <
|4t s|? ||Ql/2 n||* < 1/4. Hence m = 0. For any fixed m # 0 the triangle inequality implies that
there is at most one element m € Z? with (3.64)). Furthermore, we get (|]Q_1/2m|| —1/(2s5)) <
H4tQi/2 m|| for that pair (m,m). This implies

1/2 2 /H(m,m) > s71Q*m| = (1Q7*ml| - 1/(2s))/ [4ts|

and hence [|Q;"*m| < (s7! 4 |4ts|)/2. Thus

#{ve A Jo)? < 1/4} <4 (571 + |4ts))? |det Q'
Proof of (3.62)). As in the previous case, (3.64)) implies by the triangle inequality that
Q=] - 146QY? S| < (25)" (3.65)

and together with ¢/? |ts| < 1 also |4t s s’l||Ql/2

these inequalities is strict and therefore we have

m| < |4ts| /2 < 2¢~'/2. Moreover one of

Pl < 1QT*ml| < (25)7 + (24Y%) 7 (3.66)

If s > ¢/, this leads to a contradiction unless m = 0. Hence, the possible solutions
for m in (3.65) satisfy ||Qi/2fn|| < |8ts| ™" which, as in the proof of (3.58), has at most

<4 |det Q|72 |ts|™ solutions. In the second case, i.e. if s < ¢'/2, the inequality (B.66) has
at most <4 (¢*/?/s)? solutions for m. Now any possible /m must satisfy

|QY*mll < I8ts| ™" + |4t Q3" *m]| < 3 |dts|”!
again, which completes the proof of (3.62) in view of (3.63)). O

3.4.2 Approximation by Compact Subgroups

In the next section we need to average over powers of the ay-characteristic of the lattice A;
introduced in . In order to use harmonic analysis tools, we shall rewrite the family
{A; }1er as an orbit of a single lattice by means of elements of the one-parameter subgroups
D:={d,:r >0} and U = {u; : t € R} of SL(2,R), where

def r 0 def 1 —t
v () W= (1) 560
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and then approximate the subgroup U locally by the compact subgroup K = SO(2) = {ky :
0 € [0,27]} parameterized, as usual, by elements

ko def (CQSH —sm€>' (3.68)

sinf cos6

Let S be an orthogonal matrix such that SQQ +IST (o, where () denotes the signature
matrix corresponding to @, that is Qy = diag(1,...,1,—1,...,—1). A short computation

shows that )
ST SQ P
DrQU4tQ = ( ST> dy gy ( Q+ SQ1/2> ’

where we embed SL(2,R) into SL(2d,R) according to the following action
a b aly bQq
(¢ ) (o3 000, 5o
Define the 2d-dimensional lattice

ef S ~1/2
Ap & ( @ SQ1/2> 72 (3.70)

then as claimed or
At = < ST) drU4t AQ. (371)

Moreover, since S is orthogonal and «; is invariant under left multiplication by orthogonal
matrices we observe that
ai(Ay) = ai(dru4tAQ)7 (3.72)

foralli=1,...,2d.

Lemma 3.13. With respect to the embedding of SL(2,R) defined in (3.69) we have for
t € R, s > 1 and any 2d-dimensional lattice A in R2d

aj(dousA) <q (14 )3 a;(dokgh), G =1,...,2d, (3.73)
where 6 = arctant.

Proof: Suppose the signature of Q is (p, ¢) and let (v, w) € R? x R%, thought of as a column
vector with coordinates vy, ..., vq, wy, ..., wq, then

\|dyuy (v, w)|)? = an g (vi, w;) || ? + Z | dsu—g (v, w;) || (3.74)
i=p+1
Let z,y € R. Note that y + tz = (1 + ¢*) y + ¢ (v — ty), which implies that
(y+tx)® <2(1+13)2(y)* + 2 (z — ty)?,
and therefore we find

s (x—ty)P+s 2y +tr)? <21+ ) (¥ (x —ty)® + 5%y, (3.75)
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provided that s > 1. Taking # = arctant and noting that cos(f) = (> + 1)~'/2, resp.
sin(f) = ¢(t? + 1)7'/2, we see that (3.75) can be written as

dsko(z, y)|I* < 2(1 + ¢*)[|dsue (2, y) %, (3.76)
and it is easy to see, along the same lines as before, that

dsky (2, )| < 2(1 + %) [ dsu—i(, )| (3.77)
Hence, we obtain in view of that

dsko (v, w)I[* < 2(1 + %) || dsue (v, w)]|*, (3.78)

from which we deduce that (1 + t2)Y/2M;(dsuA) > M;(dskgA) for any i = 1,...,2d. The
claim follows now from (3.45)). O

3.4.3 Application to the Lattice Remainder

In this subsection we shall proceed to estimate the error term Iy by applying the previous
results from the Geometry of Numbers combined with Gotze’s Fourier-approach and Margulis
averaging result. First we recall the bound and also the relation ¥(r,t) <4 aq(Ay),
obtained in Corollary [3.11] to conclude that

Iy <4 rd/? |det Q\_IM HZHl s \ﬁw(t)\ad(At)l/Q dt, (3.79)
[t]>qy /“r—1

where A; denotes the lattice defined in and g, the smoothed indicator function of
[a,b] with 0 < w < (b— a)/4, see Corollary B.5 Since Lemma provides estimates for
||E |l1 in the case of both admissible and non-admissible regions €2, it remains to estimate the
integral in . We shall start by bounding this integral over an interval I of length at
most 1/¢q and approximating these integrals by the average over the group SO(2). For this,
we introduce the maximum value over I of the ag4-characteristic for the lattice A; via

yip(r) & sup{ (r™?aq(Ay))? Pite I} (3.80)

and the following family of lattices
AQJ = dq1/2 ’LL4tAQ, (381)

where A is as defined in (3.71]). Here ~y; 3(r) depends on the Diophantine properties of @)
and tends to zero for growing » — oo for irrational ) as we will show in Lemma 4.6

Lemma 3.14. Let r > ¢/?, 0 < 8 < 1/2 and fix an interval I = |1, 7] of length at most
1/q. Then we have

~ ~ d_ I dé
[ o) P G0l dt <aGirt sy [ aldnkidoun)’ 5 (382
I -7

where ¢ = rq~"/? and §; == max{|g,(t)| : t € I}.
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Proof: Using the trivial bound ag(A;) < 7?29, 5(r)?ag(Ay)?? and estimating [g,,| by its
maximum g; on I yields

/ aa(A)? [Gu ()] dt < Grrs =Py (r) / aa(A,)”dt. (3.83)
I I

Since the group D normalizes U, a computation shows that
dr Ugt = dr Ug(t—71) Uda = dm Ur dq1/2 Ugr

where 7 := 4(t — 71)q. Changing variables from ¢ to 7 we obtain in terms of the lattices

Ag s, defined in (3.81]),

T2 1 4
/ad(At)ﬁdt = / ad(dm Ur dq1/2U47-1 AQ)Bdt < E/ ad(dro UTAQATl)ﬁdT. (384)
I T1 0

Finally, we estimate the last average with the help of Lemma by the average over the
group K = SO(2). Changing variables 0(s) = arctan(r), 7 € [0, 4], and noting that |0 <7
and d7 = (1 + 72) df, we get by (3.73)) of Lemma that

i dé

4 4
/ Oéd<d7~0 Ur AQ747—1 )6 dT <K / Oéd(dm ]{39(7-) AQ747—1 )B dT <K / Oéd(dm ]{7,9 AQ’47—1 )B —_—.
0 0

. 2m

Now note that ag(A) < a(A) holds for any lattice A in R??. Thus, the last inequality together
with (3.83]) and (3.84)) completes the proof. O

Finally, Margulis’ averaging results will be applied to prove the following corollary and
the lemma thereafter, which will the key-tool to obtain non-trivial estimates of Ij.

Corollary 3.15. Let v > ¢'/2, I = [to,to + 1] with ¢, € R, 0 < 8 < 1/2 with 8d > 2 and
gr = max{|g,(t)| : t € I'}. Using the notation (3.80]), we have

[l h) P Gu®)] d s a1det QI Gralr) (3.85)
1

Note that we need at least d > 5.

Proof: In order to apply Lemma [3.14] we cover [ by intervals I; = [s;, sj41] of length at
most 1/¢, where s; = to+ j/q with j € J :={0,..., [¢]}. This implies

~ d_gg~ 1 T do
/ad(At)1/2|gw(t)|dt <rd 5dgmm_2/ a(dmkaAQSj)ﬁﬂ
! Liert == (3.86)
T de

i-pdg dry koMo s,)® —
2
<Lr QI’YI,BI?EE?(/_”O‘( rokoAq.s;) 5

Now, we shall apply Theorem with h = d,,, 7o = 7/¢"/? and the lattices Ags;, =
d/2us;Ag, as defined in (3.81)), and obtain

T do
B B pd—2 Bd—2 —B/2
masx [ uldy kg, ) 5 <na maxa(hn) I 1472 <o 17 g1Q ).

where we have used ||d,,|| = ro = 7/¢"/? and (3.60) in form of
a(Aqs;) Ka aa(Aqg,s;) <a |det Q|_1/2 g2,

Note that we have applied Corollary with r = ¢*/? and t = sj in order to get a(Aq,s;) =4
a4(Ag,s;). Finally, in view of (3.86]), this concludes the proof of (3.85)). O
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In order to bound the lattice point remainder for ‘wide shells’, that is b — a > ¢*/2, we need
to extend the averaging result, established in Corollary for small values of tg. To do
this, we recall the bound

G ()] < min{|b — al, [¢| 7} exp{— [tw]"*} (3.87)
for the integrand g, (t) in (3.82)), provided that 0 < w < (b — a)/4. Note that it is of size
b—a for |[t| < 1/(b— a) and changes rapidly if |b — a| > 1 grows with 7.

Lemma 3.16. If r > ¢'/2, Bd > 2 and 0 < w < |b — a| /4, then

q=1/2

/1/2 (M) [Gu ()] dt g a g7 |det Q7% 4y 5(r)r*2, (3.88)
q !

where [ = [qo_l/zrfl, qg 2.

Proof: Starting as in the proof of Lemma and changing variables to s = ¢! yields

e ray'” ds
/Qzaﬂfﬁ%wﬁ<mmm””@/ a(dy s 80)° (57 -

@ 1/2

Let N = [r(qo/q)"/?], then the integral on the right-hand side is bounded by S% = 1j, where

1/2;

e J ~ dS
L[ el Bl

qt/2(j-1)
For 2 < j < N write t; = ¢~*/2j7!, then using that
druys—1 = drU4(s—17tj)U4tj = d4rj—1 u4—1j2(s—17t]~)d4—1j U4t

together with the change of variables v = 4715%(s™ — ¢;) yields

4 1 . -
I; < F/ g (dapj-1 1y da-15uai,A0)” [Gu (40572 + 1) ] dv
0

1/2
<y 7 Ozd(d4Tj—1 uvd4—1jU4tjAQ)6dU,
0

where the last inequality is a consequence of [g,(¢)] < |t|~'. Hence, since 4rj~' > 1 and
g"/%jt; = 1, we deduce from Lemma [3.13] Theorem and (3.62) of Lemma [3.12] that

1/2
I; <4 qT 0a(dipjor kdyrjugg, Ag)? dor (k)
K

<4 B2 \det Q’—Bﬂ qﬁd/2+1/2j175d max{l, <4q1/2j71),8d}'

Summing the last inequality over 2 < j < N, we observe that it suffices to show that the
following estimate holds

Z;V:le—ﬁd maX{l, (4q1/2j—1)6d} <<B,d Tﬁd_2‘ det Q|_B/2qﬁd+1/2.

1/2 1/2

Indeed, split the previous sum according to whether 57 < 4¢*/“ or 7 > 4¢*/*. The sum over

j > 4¢'/? can be bounded by
_ _ N q_ _ _ _
Tﬂd 2‘ det Q’ ,8/2qu/2+1/2 Zj=[4q1/2] jl Bd <<ﬁ,d Tﬂd 2‘ det Q’ ,8/2(]3/27,,&1 27
and the sum over 2 < j < 4¢'/? by

yBd— 2| det Q| B/2gpd+1/2 Zt4q1/2j

1-28d < drﬁd 2| det Q|- 5/2q6d+1/2 n
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3.5 Smoothing of Special Parallelepiped Regions

This section corresponds to the appendix of [GM13| with major changes on the explicit
dependency on the parameters depending on the region €2. In the following Lemma
we shall bound the volume of e-boundaries of rQ2 N E,; and in Lemma we estimate
integrals of the Fourier transform of the region ). For wide shells the lattice point counting
remainders will reflect the Diophantine properties of () more directly when using counting
regions {2 which are ‘admissible’ convex polyhedra. Here we confine ourselves to study a
specially oriented parallelepiped Q = A~![—1,1]¢ with

Q+ S ATA S CAQ+ (389)

for a suitable A € GL(d,R) and a positive constant c4 > 1 depending on A. In this case,
the Minkowski functional of € is given by M(x) = max({(¢g;+,x) : ¢ = 1,...,d), where
Gix = +ATe; are 2d outward normal vectors of the faces of Q. Note that the inequalities in

imply the norm equivalence
QY x|l < M(x) < (ea)? QY 2l (3.90)
We now approximate I by smooth weight functions. For this, introduce
Q. ¥ 1+, 09). € 0\, and v € I, x kg, (3.91)

where k4. (B) = k.(AB) for any B € B" and k. denotes the rescaled measure on R?
introduced in the beginning of Subsection [3.3.1] Moreover, we also will need the technical
restriction € € (0, g) with € := 1/100. Since Lemma [6.1] can be adapted to this situation,
taking vy .(z) = vic(z/r), we get for the lattice point remainder ((3.23))

|R(I5, ,Ir0)| < max|R(Ip, ,vses)| + Rey, (3.92)
where, in view of (6.2]), the remainder term is given by
Reo [ Tomy (o/1) o Q) (3.99)
R
Using the bound (3.96) from the following Lemma [3.17] yields
|R(Ip,, I0)| < max |R(Ig, ,viey)| + QY2 (b — a)er®2, (3.94)

Lemma 3.17. Let Jy[a,b] == [a — 2w, a + 2w] U [b — 2w, b + 2w] for 0 < w < (b — a)/4.
Consider a weight function v such that the integral in (3.101]) exists, resp. (3.102)) is bounded.
Then

/ Ty (Qla]) v /) da < wvllor™>, (3.95)

where |[v]|g is defined in ([3.101)), resp. ([3.102). Assuming additionally |a| + |b] < cor? with
co = (ca)7!/5, following estimates hold for indefinite forms Q.

R, <a |QI(b—a)er? (3.96)
vol H, >4 Q|72 (ea) @2 (b—a)r?? (3.97)

Moreover, for the special choice v = vy, as defined in (3.91)), we have
lvselle <a Q172 (3.98)

whereby the condition |a| + [b] < co7? can be dropped if @ is positive definite.
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3.5 Smoothing of Special Parallelepiped Regions

The lower bound (3.97)) can be also found in [BG99], see Lemma 8.2. Moreover, Lemma 3.8
in [EMMO8| provides an asymptotic formula for the volume of H,..

Proof: For a bounded measurable function g on R with compact support we introduce
def
R, [ g@lel)ota/r)ds
R

Let Sg = QQ;l,LQ = Qiﬂ and let U denote a rotation in R? such that UQU ! and
hence ULoU ™" are diagonal. Write vg(y) == U(LC_QIUfly) with integrable weight function
v. Changing variables via x = TLélUfly in R with y € R? x RY, d = p + ¢ and using
polar coordinates, y = (r1m;,7272), where r1,79 > 0 and 7, € SP71 1, € S9!, that is

Il = |l = 1, we may write Q[x] = r?(r? — r2). Thus we obtain by Fubini’s theorem
Ry=rQU [ [ 670 - ) el drdra, (3:99)
o Jo
where
def
Pu(ri,me) = / vg(riny, ranz) do(ny)do ().
Sp—1xGa—1

Note that in the case of positive definite forms @ (i.e. p =0 or ¢ = 0), the double integral
(3.99) must be replaced by a single one. Next, we change variables via v := r? — r2 and
u = ry, so that 72 + r2 = 2u?> — v and ry = Vu2 — v. Thus, we get

—-1/2 0o
R, = rd% / g(r%)/ I(u® > v)uP Lo, (u, Va2 — v)(u? —v)4"22dude.  (3.100)
R 0

In order to prove (3.95), we choose g = Iy, 44 in (3.100). Since the length of r~*supp g is
at most < |w| 772, we get R, <4 |w|r?2||v| g, where

def _
lvlle = |QI7*  sup
VET 20 [a,b]

/ I(u? > v)uP Lo, (u, Va2 — v)(u? — )@ D2du|. (3.101)
0

If @ is positive definite, ||v]|o has to be replaced by

def

lollg = 1QIT*  sup o'y (v)]. (3.102)

vET 20y [a,b]
Next we prove (3.97): Taking g = Ijo 4, v(z) = Io(x) = I(M(x) < 1) and using
lylld™"* < M(Lg'U™"y) < [lyll(ca)'/? (3.103)

gives the lower bound

eotrir) = [ (i )| < (ea) ) dotm) dotp)
Sr—1xSa—
>a 120+ o] < (e0)™)
Thus, we find

r=2b 00
vol H, >, rd|Q|_1/2/ / T(u? > ) I(2u® + |v] < (ca) P Hu? —0) D2 dydo
r=2a JO

r—2b

ot |

r—2q

> 170~ a)| QT2 (Veo) 2.

I(jv] < CO)/ I(8cy < u? < 2¢o)u” M (u® — )72y do
0
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Chapter 3 Distribution of Values of Quadratic Forms

Proof of (3.96). In (3.100)) we choose g = If,3 and v = I(pq), with 0 < ¢ < 9. By the
properties of the polyhedron 2, see , we have I(pqay,. (x) < I(M(z) € Ji2:), where
Ji9e = [1 —2e,1+4 2¢]. Let g, ..., goq denote the 2d-tuple of normal vectors defining €2 and
let f,, = ULélgm, m =1,...,2d, be the transformed vectors. Since

I(M(L5' U™ y) € Jro0) < Sm I((y, fn) € Jr2:)
we may bound ¢, (r1,72) in (3.100]) as follows
gO(’I“l, T2) S Z?j:l Qom<7ﬂ17 T2)7

where

def

Om(r1,7m2) = / ) I[((T’177177‘2772)7fm> € J1,2e} dmy dna.
Sp—1x5a-1

Recall [v| < ¢, v =7 — 72, u =r; and ry = Vu2 — v. The inequality ([3.103)) implies
(14+2e)%d > 77 +75 =2u> —v > (1 — 2e)*(ca)” .
Therefore ¢, (u, vu? —v) =0 if

1 of (142
0<u<22ybcg(l—26)2—cy or u>Cq o (1+2)

\/d"—Co.

Because of

1 e 19
973/Beo(l — 26)% — o > co X 1—80

and u? — v > 9¢y/10, we get

r—2b Cao _
R, < rd|Q\_1/2/ (/ uP (u? — U)Lfgo(u, Vu? —v) du) dv
co

. (3.104)
Q

2d r—2b
< rd|Q|—1/2 Z/ (/ P~ (u? — v)%cpm(% Vu? —v) du) dv.
me1 r—2q c

By interchanging the variables r; and r, we can suppose that ¢ > 2. Thus, since u <4 1
and Vu? —v <4 1, we see that

CQ _ CQ
/ uP ™ (u® — U)¥<Pm(ua Vu2 —v)du <4 / Om(u, Vu? — v) du. (3.105)
cQ

cQ

We claim that
R, <4 |Q| ™ ?e(b—a)r®? (3.106)

holds. In view of (3.104) and (3.105)), the estimates

Cq
R,, df / Om(u, Vu? —v)du <4 ecq

cq

for all m =1,...,2d will prove the bound (3.106)).
Thus let F,(u) = ((uny, (u? — v)"2ny), fin) for fixed |v| < co and (ny,12). If

0
— >
’auFm(u)‘ >c; >0 (3.107)
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3.5 Smoothing of Special Parallelepiped Regions

for all cq < u < Cq with F,(u) € [1 — 2¢,1 + 2¢] uniformly in (n;,72) and v, then

Ca c
/ [(Fp(u) € [1— 22,1+ 2¢]) du < =
c €1

and hence R,, <4 c;'e for all m = 1,...,2d. Note that

0 1
%Fm(u) == (Fm(u) +

v

—<<07 772)7 fm>>

u2 —v

and because of ||L631AT|| = ||ALC_21|| < /ca we see that

0] 2 4 (1Pl = —5slsal) 2 G (1 =20 - 5) > it

Thus, (3.107)) holds and the assertion (3.106)) is proved. This yields the claimed bound

for R.,, compare (3.93). Finally, we prove (3.98)). Here we have v = vy, and vy (z) <
I(M(x) <14 2¢). In view of (3.103)), we find that the u-integral in (3.101]) can be restricted
to 2u? < 2d + v. Hence

vsello <a [QI* sup (14 |U|)(d_3)/2/ I(v <u? <d+v/2)du < |Q712,
vET 20y [a,b] 0

because |v| < 772(|a| + |b|) < o < 1. Since ¢, is supported in ||-|-ball of radius 2d'/2, we
get also in the case of positive definite forms that ([3.102)) is bounded by <, |Q|~'/2. n

3.5.1 Fourier Transform of Weights for Polyhedra

Here we continue to estimate the remainder terms in (3.94). Since the bounds for R(g%v_. )
are exactly the same as for R(g%v,. ) we shall consider the latter only. We shall now modify
the weight v., defined in (3.91)), as follows. Define ¢ = Ij_59 * k, where k is again the
probability measure from Subsection [3.3.1] Of course, ¢ is smooth and ¢(u) = 1 if ||uljo < 1
and ¢(u) = 0 if |Jull > 3. Let sq := d(1 + 2g9)%. Now, by construction p(Q[z]s;"') is
identical to 1 on the support of the e-smoothed indicator of Q. = A71[—(1 +¢), (1 +¢)]%,
that is v.(x). Hence we may rewrite the weights ¢ of via

Ce(@) = ve(z) exp{Q[a]} = ve(z)1(2) (3.108)

using the C™ function of bounded support 1 (x) = exp{Q [7]}p(Q[x]s;"), whose Fourier
transform is easy to handle.

Lemma 3.18. The following estimate holds

/ 1G@)] dv < / el () TGy exp{ = levs] 7} dv < (loge™)". (3.109)
R

Remark 3.19. In the general case, when () has finite Minkowski surface measure cq only,
defined via meas(0-€2) < cqe, we have

=~ def e B
alle [ JTae)exp{~ vl 2} dv <o =~ @02
R

These bounds are best possible. For the case of general €2, we may use the bound in Theorem
2.9 of |[BCT97]| for the average n +— |Ig(sn)| over the unit sphere S*! for polyhedra. That
paper contains examples showing that these averages are sharp. In our setting, i.e. in the
case of specially oriented parallelepipeds §2, more elementary arguments can be used.
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Proof: Note that by definition

[ cwiao= [ priean= [

Since

/R (o~ )P dafdv < |8 1B (3110

12,

IZ(I) = |d€t Q|_1/2/ eXp[’U2]@(U25;1)e_27ﬁ<v,Q; do

R4
we easily conclude that

10(2)] < |det Q|72 e(d, k) (1 + Q7 [z]) ™, x € RY, and thus |[¢]l; < e(d).  (3.111)

Defining B = (A™!)” and changing variables shows also that

Io.(v) = (14 &) T ((1 + e)v) = (1 + &) |det A| ™ Ty ya((1 + £) Bv) (3.112)
and
[kac(v)] < exp{—c2 37, |(Bv);]/*}. (3.113)

Thus we get for v, = I * ka.
ol = 1o Faclh < [ Faue((U4 0TIy expl— ooy do. (3.114)
R

Finally, using 10[71,1101(1)) = H;.lzl sin(2mv;)/(mv;) together with (3.114) gives the estimate

R S | d L d
17:][1 <a (/ e vV du) <4 (1 +/ du) < log(e™H)%. (3.115)
o U +¢€ 0

u—+ €

We now obtain the estimate (3.109)) from (3.110) combined with (3.111)) and (3.115). O

3.5.2 Lattice Point Remainders for Admissible Parallelepipeds

Now we restrict the parallelepiped Q = A71[—1,1]¢, as defined in ([3.89)), such that its faces
are in a general position relative to the standard lattice Z¢. This ensures that the lattice
point remainder for r() is of ‘abnormally’ small error uniformly in r. To construct it, we
may alternatively construct lattices AZ? such that the faces of [—1,1]¢ have this property.
Following Skriganov [Skr94], we call a lattice I' C R? of full rank, and likewise (2, ‘admissible’
if

Nm[ & inf,er oy [Nm~y| > 0, (3.116)

where Nm~y = |y - - - 74| in standard coordinates v = (71,...,7a)-

Remark 3.20. This definition is a special case of ‘admissible lattices’ for star-bodies, see
Chapter IV.4 in |Cas97]. Here, the star-body is given by {F < 1} with the distance function

F(z) = |o1---zal'".

As shown in Lemma 3.1 of [Skr94], the dual lattice I'* = BZ? of I, where BTA = Id,
is admissible as well. Another property of admissible lattices is that there exists a cube
[—70,70]¢ containing a fundamental domain F of T' such that 7o > 0 depends only by means
of the invariants detI' and Nm T
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3.5 Smoothing of Special Parallelepiped Regions

Example 3.21. Well known examples are provided by the Minkowski embedding of a
totally real algebraic number field F of degree d into R?. Given all embeddings o1, ..., 04
of F, the Minkowski embedding o: F — R? is defined by o = (01,...,04). In this case
Nm o (a) = |Ngjg(a)| is the field norm of any a € F, where we interpret multiplication by
a as a (Q-linear map. Thus, the image of the ring of integers Oy is an admissible lattice I'
with NmI" > 1. For more information, see Chapter 2.3 in [BS66)|.

We also note that for any natural number n € N we may choose a real number field of
degree n which is normal over the rational numbers. In fact, let m € N be chosen such
that 2n | ¢(m) and let &, be a primitive m-th root of unity. Then Q(&,, + &,!) is a real
number field of degree ¢(m)/2, which is also normal and its Galois group G is abelian. Since
G contains a subgroup H of order ¢(m)/(2n), the fixed field of H is real, normal and of
degree n. Thus, there exists an admissible region (2 satisfying with ¢4 <4 ¢/qo and
Nm(A) =<, ¢%/2.

Lemma 3.22. Assume that the lattice I' = AZ? is admissible and A satisfies (3.89)). For
0 <& <¢goand r > 1 we get for the parallelepiped Q = A71[—1,1]¢ and the corresponding
weights (.(z) = v.(x)(x) introduced in Subsection [3.5.]]

def & ()] —~d/4 | ry)-1/2 Arer
I < / dv <q g0 " |QV? |det A AT . (3.117
T S @ Ty S o QU AN gy BT
where \,. = min{log(r + 1),log(¢7 1)} and \,.r = max{\,.,log(2 + Nm(F Ta)} For any
inadmissible parallelepiped €2 only the estimate
I <a Q72 g2 2 (3.118)

holds. Additionally, we also have |Q|~"/? |[det A| < (c4)%2.

Proof: We start by making the change of variables w = r~!Bv in (3.117)) and then splitting
I, into integrals over cells C* := B[—%, %)d, where I'* := BZ? denotes the dual lattice to T,
that is B = (AT)~!, in order to get

L= Y I(y), where I(m) % r?|det A| |§( iy +U>)|édfu. (3.119)
e o (ghr T+ [B0]0)!

Note that I'* satisfies || B|| < ||Q11/2|| < qo_l/Q, since the first inequality in (3.8Y)) implies

1> QAT = (AT Q)TN = AT QY% = 1BQY”! (3.120)

In particular, the fundamental domain C* is contained in g, PV d[—1 > 2] Next, we shall
bound the Fourier transform of (.. Recall that by definition

C(u) = ((To, - kag) x ) (w). (3.121)

As verified in (3.112)), we have in coordinates u = (uq, ..., uq)

sin[27(1 + €)u;]
(1+e)uy

d
g ldet AT [+ )t (3.122)

J=1

o (B™4)| < |det 4|~ H(
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Since also implies ||Q7"*(B~'u)|| > |jul|, we can rewrite by
(B~ u)| La |det Q72 (14 ul®) ™ <up |det Q7 TTSL, (1 +u2)™/4, (3.123)
where we applied the AM-GM inequality. In view of we have the bound
[kac(B~10)| < exp{= 301, [ew;*?) (3.124)

as well. Combining these estimates yields

1/2
C(Brw)| <an Q172 / H exp{—e'/? ru; —w}
6 1+“ b L+ |rw; — uj] '
Thus, we get for a fixed lattice point v* = (v5,...,v;) € I
det Q] [det A / w(er(v: + vy — ))
< / / ’ dudv,
R R RS L RdH Rl

7’

where @(z) == (1 + 22)7*/¢ and w(z) = exp{— |z|"/*}. We now estimate the last double
integral coordinatewise: Note that we have |v;| < @ := v/d/2 and

_ _ d/4, _ d/4 _
(a2 + B 0llo)® 0 i (07 4 [lolloo) 2 2 65 TTj, (! + o) 2,

1/2

since || B720]|oo >4 | B 7 |v]loo = ¢~ ||v]|0o- Hence, we find

I(v*) <an a0 Q72 det A|TTI_, Jo(755R),

. dof v 1 o wler(yy v =)
Je(V;; D) = /U e /Dw(u) — — dudv.

In order to estimate J¢(7;;R), we decompose the integral into parts corresponding to the
* 40| /2}, we get

v r
’7], ) / |U 1/2/ dudv <<kd/|v|1/2 (1+T " )@—1 dv.
—v —v J

*| /2 and hence

/“ 1 dv < 1
v d —*
o [u]? (L+|ry;])

where

extremal points of the integrands. Defining D; = {|u| > r

EY

In the case

Jc(7;5 Dj) <a

(1+ }r’y}‘ )

if we take k = d(d + 3). In the other case
as follows in order to find the estimate

1
. Uy 2 rI(|v] >
Je(v;; Dj) <<d/ iir

) r
v+ /0 %(1 (=) dv

1
*7%_{_ "yj*|2r /1/2 : 1 dU<<d
(rPl+ D5 Jo oa(1— o)t

1
#1772

<y
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3.5 Smoothing of Special Parallelepiped Regions

In the complement u € D§ we have

. e 1 w(sr(v*—i—v)/Q)
(o) < [ o ST urall

If "yj*} > /d, then we easily conclude that Je(vi; D§) <a wleryi/4) | At last, we

bounded by
< 1/2/U |U|>|7|/2 do
d
B e R W=
3vd/2
~1/2 1 1 wl—1/2 . 1
<4 /0 o TR D dv <4 min{log(¢™"),log(r+1)}

and similar over the complement by

|'Y;|/2 Ufl/Q _
<<d/ #dv <y "'}/j*| 1/2.
0 | — v

Hence we conclude that

I <aay Q2 ldet 4] Y H (3.125)
(V55 ED*\{0} 5=1 a
where
Hyo(x) = Ae 2| I(|2| < Vd) + (1 +er |2)) " (2| > V). (3.126)

In view of the following Lemma this concludes the proof of the bound (3.117)).
If the region  is not admissible, then we change variables to w = r~!v and split the
left-hand side of (3.117)) into integrals over unit cells E := [—2, )¢ in order to find

272

e |Ze(r(m+w)|
g I:(m), where I;(m) o rd/ - dw
’ [2p—1 d/2
meZ\{0} E (q T ||wHOO)

Because of Z;l:1 ;|2 > ||ul|*/? we can further estimate by
Fac(Bu) < exp{~leul /%),
Recalling the definition and the estimates — for u = Bw shows that
C(rw) < |QIT2 e (r| Bul| + 1) < |QI72 e (gea) 2 (r |l + 1)
Thus, taking k = d + 1 we find
I <4 |Q|—1/2 qd/2 cf:l-‘rl)/QE—d'

The last remark easily follows by comparing the volume of the bodies {||Az| < 1} and
{1Q"?z|| < 1}: Using [B.89) leads to |det QY < |det A| < (ca)¥? |det Q"2 O
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Lemma 3.23. For an admissible lattice I' we have for any weight function w(z) > 0 on R,
such that wy =1+ max, w(z)(1 + |z|)? < oo, where p € N and £ > 0, the bound

(1) w0y A

Sre & D0 ’w’s(%) reO)| ) g Nt Drel (3.127)
Y1---Vd Nm(T')

(715-7a) ET\{0}

where w,. () == A\, . \:c|% I(|z| < Vd) 4 w(erz)I(|z] > Vd).

Proof: First, we make a decomposition of I' as follows. For any (z1,...,z4) € R? with
|21~ 2z4] > Nm(T) let m; € Z be the unique integers satisfying 2 > [2Miz;|d~1/2 > 1
for j = 2,...,d. We have |z;| > Nm(z) |z ... 24" > Nm(T)d~9/2 H?:z 2mi~1 and this
implies that [2™ 24| € [kcp, (k+1)er) for a unique integer k£ > 1, where m; € Z is determined
by my +mg + ... +mg =0 and cp = d~9/22741 Nm(T"). Introducing the lattice

Ed::{m:(ml,...,md)EZd . m1++md:0}CZd

and the interval By == [kcr, (k + 1)cr), we can write

I(|lzy ..ozl = Nm(T)) = Y > Ip,(12™ x1) H[MM 1273 ;),

meEy keEN

and hence

Z ZZIBk |2 ’71 H[[\/,%/» |2 ,yj|)‘wrs(71) Wrs(’Vd) . (3128)

meEy keN ~er e d

We also introduce the obvious notations Nm(z) = |zq - - - x4/, 2™x = (2™ 2y, ... 2Mdx,),

m € Ey and 2T for the rescaled lattice {2™ : v € T'}. Note that Nm(2") = Nm(y) and
hence Nm(T') = Nm(2™T"). Defining Cy, == By x [V/d, 2v/d)*" and h(z) = (1 + |z|)7P, we
may rewrite and bound by

-3 (X 3 o[

meE; keNne2mD j=1
3.129
re CF2 m1k d ( )
<o XX (( X )2 [ o
meFky keN ne2ml Jj=

where h,.(x) = A\ \:r;]% I(|z| < 1)+ h(erz)I(]Jz| > 1). In order to perform the summation

in k and 7 in (3.129)) we first observe that
> Io ()<L (3.130)

Proof of (3.130): Assume that two different lattice points 7,7’ € 2™T lie in Cy. Then
we have | —nj| < cr and maxo<j<q|n; — 77]| < V/d. Since n — ' € 2T\ {0} implies
e — 1] -+ g — | > (NmT)/ep = d@=D/220=1 and hence |(n, — n4)| > 2V/d for some
j > 2, we get at a contradiction which proves (3.130)).
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Estimating the sum following in &£ by an integral, we obtain

) 9 dof -
3 h"f/(:‘k < MeI(a<1)+log (1 + —) < ). (3.131)

are
k=1

Hence, making use of (3.130]) and (3.131)) in (3.129)), shows that

SF,& <y WOO(CF)il ZmGEd H(Qim)’ (3132)

where 2™ := (2™ ... 2Md) and H(x) = h(cpay)hno(22) - hyo(Tq).
Let E, denote the subset of E; consisting of all lattice points (my,...,mq) € E; with
my; < 0. We claim that

Y HE™) <a (Are +log(1 + gfr)) A (3.133)

meE,

Proof of (3.133): Let m € E/, \ {0}. Assume for definiteness that ms,...,m;—; < 0 and
mi, ..., mq > 0. By definition of Fy we get 237" m; = Z?:1 |m;| > ||m]|2. Since h,..(27F) <
1 for k < 0 and otherwise h,..(27%) = )\WQ*’“/Q, we obtain

<4 (>\r,5 + log(1 + W)))\ZjT”m”/?

Thus, splitting the sum according to the number of positive coordinates and then summing
over the d — 1-dimensional lattice E, yields (3.133).

In order to bound the sum over the complement of £/, we again split the sum according to
the number of positive coordinates. For simplicity, we may assume that m,ms,...,m; >0
and myyq,...,mg < 0. Similar to the previous case, we find that

l
H(2™™) <a ([[mll + Are +log(1 + gtryr)) M 1(H —%) min(1, (re)~27lmi/2)
Jj=2

If we parameterize the d — 1-dimensional lattice E; by (mq,m), where my = —(ma+...+my)
and m = (Mo, ..., mg) € Z471, and split the summation into a ball of radius ||m|, < R. ==
3d log(2 + (re)~!) and its complement, where (re)~P27PlIml2/2 < (re)=dr—Plml2/2 < 1 we
can bound the sum corresponding to a fixed [ by

<N (X Crart lml) Hzmm > m,r+||mu><ra>*dp2*p”ﬁ“‘2/2)

[mlle<Re [mll2>Re

where we have estimated the sums by comparison with the corresponding integrals. Using
this estimate for each [ = 1,...,d — 1 together with (3.133) in (3.132)) yields the bound
(3.127)). [
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3.6 Proof of Theorem [3.1]

We are left to collect all error bounds and to adjust the choice of parameters in order to prove

Theorem . In view of ([3.37)), it remains to estimate Iy. By (3.79 - with Ky = [g, ~1/2,-1 1]
and K : (]]—I—l]]Zl Wehave

K;

Iy < |det Qlﬁ ||Z||1<Ie,0 +Z]9J>> where Iy = / |§w(t)|ozd(At)%dt (3.134)
j=1

with j > 0. For fixed 7 > ¢'/? we may choose
_ d
O<w<(b—a)/4, 1>T_ >¢ """, T.>1 and 5 > Bd>2 (3.135)

Also recall that Cp = ¢ |det Q| 7/*7%/% as introduced in Corollary [3.15|

Step 1: Estimate of Igy. We consider the case b — a < ¢ first. Here we apply Corollary
to bound the integral over Ky combined with gx, < b — a. Note that we didn’t use
the restriction b — a < ¢ at all. For wide shells, i.e. in _the case b — a > ¢, we use Lemma
for t € Ky, qo_l/Qrfl < |t| < ¢~/? and Corollary for the other ¢t in K together
with §[q 129 < ¢ /2 Furthermore, for both cases of b — a, split Ky = Koo U K, where

Koo = lgg /*r~',T_] and Ko; = (T_,1]. Then (3.61) yields

Vico0,8(r) Ka (\det QIF T2 7 =75 |det Q2 , < ¥ al —pB) (3.136)

with the notation . Using Cpq?#=1/2 = Oy, we may bound Iy, as

[®

Ipo <a Co(b—a),(|det Q|%_§ TS 4 Yior,5(r)) r™?,  where (3.137)
b—a)y € b—a)b—a<q)+q¢>"V2[0b-a>q). (3.138)

Step 2: Estimate of Iy ; for j > 1. Similar as before, applying Corollary (with g =1/2)
combined with the estimate (3.60)) of Lemma shows that

Ip; <4 G, Coi, o(r)r ™2 <a G, q |det Q772 142, (3.139)

We recall the bound ([3.87) for g, and the choices of T\ and w in (3.135)) in order to get

1/2
exp{— |sw[""} 1 1/2
E Ik, <</ . ds<<\/T+_weXp{—]T+w| }.

Thus, we obtain
S To; <ar®2q |det Q7Y (Tw) V2 exp{— | Ty w|/?}. (3.140)

Furthermore, for b — a > 1 we can use [gk,| < j~' to bound the remaining sum. Whereas
for b—a <1 weuse |gk,| <b—aforl1<j<S—1and|jg,|<j " forS<;j<TL—1
and minimize the resulting expression in S. In both cases this leads to

S Gk, < 1+ log((b—a)* Ty, (3.141)

=1

where

b—a) L b-—a)b—a<1)+I(b—a>1).
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Hence, using ((3.134]) combined with (3.137)), (3.140) and (3.141]) with (3.139)), we get
Iy <a I8l ~2Cq (b= @)y (cqT + -y 5(7)

—]1 ex w1/2
+0,0,8(r) (1 -+ log((b — @) T)) + e 2L ),

(3.142)

18
where ¢ = |det Q|‘11 2. Together with the inequality (3.37]) we obtain

Aw) ST (@D (m) - / dz[a,bm@[x]m(x) dx\
mezd R (3.143)

< (101 Capan-an(r) + wlvllo) +1Q1 2 r# .. log (14 21,

where

P@i-aw(r) = inf {(b—a),(cqT* + vz 11,5(r) + a8 (1 +log((b— a)* T.))
;1

+cg' (T+w)’1/2e’(Twa)l/2 T € (g *r " 1] and T, > 1}

under the condition 0 < w < (b — a)/4. This completes the proof of Theorem O

3.7 Applications of Theorem

We start by smoothing the indicator function of the region 2. We choose weights v = v, as
defined in (3.91]) and the related ¢ = (., see Section [3.5.1} corresponding to parallelepipeds
Q= A71[—1,1]9 satisfying Q; < ATA < c4Q,, compare (3.89)). Recalling (3.94), where we

have used Lemma to estimate the e-smoothing error, yields a total error
A, <y |Q|_%(b —a)er®™? + max |R(Ig, ,vtes)| (3.144)
for the lattice remainder
def

A, = |volz (Eqp N1rQ) —vol (E,, NrQ)|.

Now we can apply Theorem l in order to bound the latter remainder ‘R (Ig, bviw) as
follows. In (3.143) we shall estimate HCEH*,, by using |Jv:|qo <4 Q7Y% of Lemma
¢l <q (loge™1)? of Lemma and

—d/4 d Arc.
Gl < qd/“(( )72 log(e ™) + gy P NI Nm(;)) (3.145)
of Lemma for admissible regions €2, i.e. (3.116| holds, to get

Ay <pa |@|—%rd-2(s<b @) +w + ag(log ) pgs-au(r))

d/4,.d/2 d/2 —d/4 d/2 d—1 Arer b—a (3.146)
+1QI™7¢ (( )" log(e™)" + go Are Na(D) >log(1+—q =),
0

where ag = gcg = ¢|det QM = ColQ|'?, provided that 0 < w < (b — a)/4. This
bound holds for admissible parallelepipeds 2 only. If €2 is not admissible, then we have to
replace the smoothing error (3.145)) by

1Celler < a** ((a/a0)" Tog(e ™) + Q12" (ca) /27, (3.147)

that is (3.118)) of Lemma [3.22) With these bounds we are ready to prove the main statements
on the lattice point remainder for hyperbolic shells.
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Proof of Corollary[3.7): For wide shells, i.e. b—a > g, we optimize in the smooth-
ing parameter w first by choosing w = W(qT,/2)?/T,, where W denotes the principal
branch of the Lambert-W-function. Note that we have w < ¢/(2e) < (b — a)/4 as required
in the restrictions . This leads to the partial bound

|Q| 1/2w+CQCQ (T w) 1/2 —(T+w 1/2 < |Q| 1/2W(qT+/2) < |Q| 1/210g(q;1+1)

Next, we calibrate the e-dependent terms in ([3.146)) by choosing ¢ = T° (b — a)~'/9. Again,

this choice satisfies the required restrictions, i.e. € < 3. Because of

e(b—a)<ag(b—a)ycqT®, loge ' <log(r+1) and
rd+1

Arer log(2 + Nm(r))
log(r + 1) log(r + 1)
compare the definition in Lemma [3.22) we can simplify (3.146] to

< max {1, } < log(2 + Nn}(F))’

A, <pa Q721 2pg (1)
1 4 d d iiq/ZqO—d/4 b—a
+1QI72 g r2 log(r + 1)*((£)? + 42 log(2+ ks )))10g<1 s

(3.148)
).

where
def . rx —a d _
PQb—a(r) = infp, 1 {bg(ij +1) (aQq(wd V2T + 7 n,6(r))

O; 2
+agyar,)p(r)log(Ty + 1) + %)}

and the infimum is taken over all T_ € [g, Y 1 1], T > 1. This proves the first part of
Corollary Next, we consider the case of thin shells, i.e. b—a < g. Here we take ¢ = T /9

and w = T° (b — a)/4 in (3.146)), noting that |Q|"Y3(w + (b — a)) < ag(b — a)cpT®, in
order to get the bound ([3.148)), whereby the factor pgp—q(r), depending on the Diophantine
properties of (), has to be replaced by

Pu-a(r) 2 infy_ s, {aglog(1 +T=)((b ~ a)(cq T + vz u,5(r))
+ () (log((b — @) T4) + 1) }.

In the last equation the infimum is taken over all T € [q, S ,1] and T’y > 1 with
T, > 4(b— a)"'T-° max{1,log(c5) (b — a)T%)},
where the last condition ensures that
cc_gl(TjLw)_l/2 e~ (Trw)'? < co(b—a)T".

Finally, we note that Corollary |4.6/ implies that vz 1) 5(r) — 0 and also vy 7,5(r) — 0 for

r — oo and any fixed T_ € [qo_l/zrfl, 1], Ty > 1, when @ is irrational. Thus, we conclude
that pgp-a(r) — 0, resp. p4_o(r) = 0, for r — oo and fixed b — a. O

Corollary 3.24. Consider a (not necessary admissible) parallelepiped € satisfying ((3.89)
and |a| + [b] < cor?, where ¢y > 0 is chosen as in Lemma [3.17, Then for all b —a < 1

Ar <<B,d ’Q|71/2Td72(PQ,b7a(7’) + (b— a) 1— d/2q(d 2)/4 log(1+r) (q/q )(d+1 /2( A>(d+1)/2);

where pgp—q is defined in (3.149)). In particular, for irrational @) we have pgp—q(r) — 0 for
r — oo, provided that b — a is fixed.
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Proof: Since 2 is not necessarily admissible, we can only use (3.147) to bound ||ZE||*T
Additionally we consider here thin shells only, i.e. b — a < 1. Taking

e=9log(1+T=°)" and w=T(b—a)/4,
leads to the bound

B <101 (r) + 1@ 2 5 (log(1 + )0/ 00)
QI e 2 log(1 4 1)) log (1 + L),
0

where

£0.b—a(T) def inf{aQ log(1+T__§)d<(b —a)(cQT: + vr_1,8(7))

, (3.149)
5 og((b — ) T) ) + betss |
and the infimum is taken over all 7_ € [q, Y 1 1] and
T, > 1 1,1log(ch (b T¢)? O
+Z mmax{ ,log(cg(b—a)T2)7}.

The next corollary provides a lower bound for the number of lattice points and will be
useful for proving quantitative bounds in the Oppenheim conjecture.

Corollary 3.25. For the special choice A = Q}rﬂ, ie Q= Q;lm[—l, 1]¢ and ¢y = 1, and

all |a| + [b] < 72/5 and b — a < 1 there exists a constant bg 4 > 0, depending on 3 and d
only, such that

vol H,

A, <
=10

+bga|Q| 22 (Pop—a(r) + T a)r_d/QH(Q/QO)(dH)/Q), (3.150)

where ¢ = |det Q]1/4_B/2, ag = qcg and

Pab-a(r) = infly 7 {ag((b—a)(cgTs + 3z 1s(r)) +var,),6(r) log((b—a) Ty))} (3.151)

and the infimum is taken over all 7" € [qo_l/QT*l, 1] and T’y > 1 with

T, > CB’dFICO max { log <ZC_B,Z>2’ 1}

and Cgq,c54 > 1 are constants depending on d and 3 only.

Proof: In view of (3.07), established in Lemma [3.17] we can take ¢ = (30ag,qb4)~" and
w = (b— a)e in the optimization of (3.146)), where the error bound is used instead of
, since € is not necessarily admissible, and by > 1, resp. ag 4 > 1, denotes the implicit
constant in (3.97), resp. . If we choose T, > w™ max{log(¢~'w)?, 1} additionally,
then we also have ag 4 q Q|2 (T, w)~ /2 exp(—|T,w|*/?) < vol H,/30. O

Now we consider elliptic shells as well and optimize the lattice remainder as in the case of
‘wide shells’. In contrast to the previous cases, the error caused by the smoothing of the
region () is not present here.
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Chapter 3 Distribution of Values of Quadratic Forms

Proof of Corollary [3.3: In the case of ellipsoids, i.e. Q is a positive definite form, we
choose the (not necessary admissible) parallelepiped € := A71[—1,1]¢ with A = Ql/ % and
r=+2b>q"/% resp. 26 = r%, a = 0 and € = 1/4. Then is satisfied with ¢4 = 1
and Eyp, C 782, i.e. H, := E,, NrQ = E, ;. Moreover, since Eyp, does not intersect r(0€2)2,
(the 2er-boundary of 72 as defined in (3.91])), we get an error R., = 0 for smoothing the
indicator function of ). Hence, we may remove the term proportional to (b — a)e in (3.144)).
Note that apart from Lemma of the appendix the indefiniteness of ) has not been
used in all arguments so far. In contrast to the case of hyperbolic shells, we optimize
in w first. Again including the bound ||v.|lg <4 |Q|~*/? of Lemma and here taking
w = W(qT, /4)?/T,, where W denotes the principal branch of the Lambert-WW-function, and
noting that w < ¢/(4e) < (b — a)/4, leads (as in the proof of Corollary to the bound

A, <pq 7 Q(CQ( (28d=1)/2(¢, TS +

(1) +701m15(r) log (T + 1))
) (3.152)
QIR ) 1 g g

8 ((/a0)3 +1QI73¢%) log (14 £,

11,8
%

where T_ € [qo_l/Qr_l, 1] and T > 1. This can be rewritten as

Ay €pa Q2192 o (r) + Q12 ¢V 12 (q/q0) ¥ log (1 + 7/ g5

with

def _1 o 2
po(r) % inf {aQ(qﬁd 2(cQTS + Y 1,5(r)) + vm 5(r) log(Ty + 1)) + REEEE }
where the infimum is taken over all T_ € [q, S P 1] and T} > 1. Note that as in the
indefinite case lim, , p(r) = 0 if @ is irrational by Corollary [4.6] This proves Corollary [3.3]
Furthermore, we remark that vol H, = vol(rQ N Eyp) = |Q|"/?wyr?, where wy denotes the
volume of the unit d-ball. O

To establish explicit bounds, it remains to bound the Diophantine factors (in terms of a
certain Diophantine approximation error). This will be done in the next chapter leading to
quantitative variants of the Oppenheim conjecture.
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CHAPTER 4

General Indefinite Quadratic Forms

In the following we shall prove the introduced quantitative variants of the Oppenheim
conjecture for non-diagonal forms, i.e. we prove Theorems and [[.11] To do this, we shall
finally combine the results established in Chapter |3[ on thin shells together with explicit
estimates on the ag4-characteristic in terms of a projective Diophantine approximation of ()
which will be introduced in the next section. Compared to [GM13| the explicit dependency
on the largest eigenvalue of @) has been improved in Lemma [4.5 and the dependency on the
determinant was removed. Additionally, we show that forms with algebraic coefficients are
Diophantine forms leading to explict bounds on the size of an integral solution of |Q[m]| < .

4.1 Quadratic Forms of Diophantine Type (x, A)
For any fixed 7" > 1 > T_ and irrational ) we will prove in Corollary [.6| that

lim vy 7 p(r) = 0, (4.1)
with a speed depending on the Diophantine properties of (). For fixed b — a > 0 we get
lim ,OQJ,,a(T) =0 (42)
T—00

and hence A, = o(r?72) as r — oo, where A, denotes the lattice remainder (introduced in the
previous chapter). This holds uniformly for all intervals [a, b] with 0 < u, < b—a < v, < ¢or?
and sequences lim, u,, = 0, lim, v, = oo, r — oo depending on (). However, in order to get
effective bounds, we need effective estimates on the rate of convergence as well. Hence, one
may introduce the following class of Diophantine matrices.

Definition 4.1. We call @) Diophantine of type (x,A), where x, A > 0, if for any m € Z\ {0}
and M € M(d,Z) we have

inf [|M —mtQ| = A |m|™", (4.3)
te(1,2]
where ||-|| denotes the operator norm induced by the Euclidean norm on R™.

Equivalently we may require that () satisfy
inf 6tQ;R > AR™" for all R > 1,

te(1,2]
where ;. is the truncated rational approximation error defined by

Sion < min {HM —mtQ|| : m €Z,0<|m| <R, M € Sym(d, Z)}. (4.4)

Remark 4.2. As an aside, we remark that the property of () being Diophantine in the
above sense is easily seen to be equivalent to the requirement that

|M —tQ|| >t™%, forallt>2and M € Sym(d,Z), for some & > 0,

which was introduced in [EMMO98| in the context of forms that are (EWAS). However,
this formulation ignores the constant A which is of major importance in Diophantine
approximation.
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Chapter 4 General Indefinite Quadratic Forms

Applying Corollary we will prove the following corollary establishing a quantitative
variant of the Oppenheim conjecture for quadratic forms @) of Diophantine types (A, k).

Corollary 4.3. Let @ be an indefinite quadratic form of Diophantine type (x,A) and 6 > 0.
Then for any € > 0 there exists a non-trivial lattice point m € Z% \ 0 satisfying

2d+3kd—4k -5

|Q[m]| <& and |m| Kgase 245

Moreover, using Corollary [£.6] we may estimate the Diophantine factors of Corollary [3.4]
for quadratic forms @ of Diophantine types (A, k) as follows.

Corollary 4.4. Consider an indefinite quadratic form Q[z] with matrix ¢ which is Dio-
phantine of type (k, A). Moreover, let § = 2/d + ¢ for some sufficiently small 0 < § < 1—10.
Then for the case of wide shells b — a > ¢ in Corollary we have

P0w—a(r) <palog(r + 1) hog® =3 (1 + A7) (r~ % + 1~ =5 log(gr + 1)), (4.5)

where hg = ¢ |det QI"*? and v = (1 — 28)/(2k + 2). Thus for an admissible region (2
satisfying (3.89) we have for all r > ¢'/? and b — a < ¢or?

2—48 d

<7~— U204 +r 2 G-2mx 4 212 |og (1 + 17;_‘1)), (4.6)

log(r + 1)4
b—

‘ VOIZ Hr

-1| <
VO] HT Q79767d

where the implied constant in (4.6)) can be explicitly determined. For thin shells,i.e. b—a < g,
we have
* co ok —< d S —vp—v,,—2v
pQ?bfa(r) <5 1nfT_7T+{ log (1 +T- ) hQ((b —a)(TS + AT~ "r==)
+ AT (log((b — a)*Ty)) + 1)) b,

where the infimum is taken over all 7_ € [q, Y 2t 1] and Ty > 1 restricted to

Ty > 4(b— a) ' T=° max{1,log(cj (b — a)T—*)*}.

4.2 Irrational and Diophantine Lattices

In this section we shall establish a connection between the ag-characteristic aq(A;) and
Diophantine approximations of ¢() by symmetric integral matrices with approximation error
0t0;r, introduced in (4.4)), in order to pave the way for applying the results on small zeros of
integral forms and the approximation property of quadratic forms of Diophantine type
(k, A) as introduced in Definition . To do this, we introduce the rescaled ag4-characteristic

Buir = cta(Ay)r~" |det Q' (4.7)

and note that by Lemma we have the uniform bound f;, <, 1 for r > ¢'/2. This bound
will be refined in the following Lemma [4.5], showing that larger values of f, enforce smaller
values of the rational approximation error d4q,g.

Lemma 4.5. Assume that gy > 1. Then we have for all t € R and r > ¢'/?
6415@261_”1 <<d q1”72 B}f?rl' (48)

Note that this bound is non-trivial for B, > qr~2 only.
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As a remark, we note that the restriction in (4.4) to symmetric matrices can be dropped,
since @ is a symmetric matrix. Before proving (4.8]), we shall state the following important
consequences.

Corollary 4.6. Consider any interval [T, T ] with 7_ € (0,1] and T} > 1.
i) If @ is irrational, then

lim ( sup  ag(A)r %) =0. (4.9)

r—0o0 <t<Ty

ii) If Q is Diophantine of type (k, A), where k > 0 and A > 0, that is,

inf 5tQ,R >AR™" forall R>1, (410)

te(1,2]

then
sup  ag(A)r™4 <4 (g |det Q|é A_lr_z)ﬁ%l max {(T_)f%ﬂ, (T+)%+1}. (4.11)

T_<t<T,

A variant of (i) in terms of the successive minima of A; can also be found in |[G6t04], see
Lemma 3.11, yielding an alternative proof of (4.9)) when combined with (3.45)).

Proof: i) Assume that there is an ¢ > 0 and sequences r;, ¢; such that lim; r; = co and
B, > €. Passing to a subsequence we may assume that lim; ¢; = ¢ for some ¢ € [T, T,].
Thus yields lim; 54753.@73; = 0 with R} = ﬁt;lrj < ¢~ 1. By definition, this means that
lim; || M; — 4t;m;Q|| = 0 for some M; € Sym(d,Z) and m; € Z with |m;| < e~!. Obviously
both, ||| and |m;|, are bounded. Hence there exist integral elements M, m and an infinite
subsequence j' of j with M;; = M, m; = m and by construction lim; ¢; = ¢. These limit
values satisfy |M —4mt Q| = 0, i.e. @ is a multiple of a rational form.
ii) First we note that for any ¢t € [1,7| we have by

(OtQ.r) " < SuPpep o) (drqaer) " < ATH(4tR)" < ATy ) (4R)"
and similarly for ¢t € [T_, 1]
(T-) "0nq.r > [t 1004k > S(i-1100.4r > A(4R) .

Thus, we obtain for every t € [T_, T, ] that
Brr <a qldet Q2 12 (0yyq 51) ™ <a 47q [det Q|2 2 A max{(T1) ", (T4)" }(Brr) ™,

where we used (|4.8]). Therefore we conclude (4.11]) as claimed. ]

As a preparation for the proof below, we recall that the standard Euclidean inner product
and the corresponding norm on the exterior product A™R" (with 1 < m < n) can be
introduced as follows. Using the universal property of the exterior product twice, we see
that the alternating multilinear form (-,-): (R")™ x (R")™ — R defined by

(VI Ao AU Ao A wpy) et det((vs, wy), 1 <i,7 <m) (4.12)

can be extended to (A™R") x (A™R"), which we also call (-,-). The uniqueness of this
extension shows that this map is symmetric as well. Additionally, we see that ey := e;; A
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Chapter 4 General Indefinite Quadratic Forms

... Ne;,, passing all subsets I = {i1,...,in} C {1,...,n} with m elements, constitute an
orthogonal basis. Thus, writing v = ), a;e; we find that

(v,w) = Zafaj<61,ej) = Za?
1,7 I

showing the positive definiteness of (-,-). The reader may note that the definition (4.12) is
directly related to the volume of a lattice A with basis by, ..., b,,, because we have

det(A) = \/det((bi,by), 1< i,j < m) = [lby A A bl

This relation will be used in the following proof to rewrite the ag4-characteristic of A;.

Proof of Lemma [[.5: We begin by recalling that Ay = D,qUsqZ?*® (see (3.39))), where

~1/2
[ rQy 0 ([ la —4tQ
D,qg = ( 0 - Qiﬂ) and  Uyg = (O I, )

Since the d-th exterior powers of D, and Uy are invertible, we see that
| DrqUuq(vi A ... Avg) — DrgUag(wi Ao Awg)|| > |[(vr Aeoo Avg) — (wr Ao Awg) ||,

where the implicit constant depends on @Q,t,r. Now the right-hand side takes positive
integer values only and therefore we find that the ag4-characteristic of A; is attained at
some sublattice. In other words, we can write ag(A;) = |lwi A ... Awy||~! by means of
vectors w; = D,oUyql; with linear independent points Iy, ...,l; € Z** depending on t.
Moreover, we write [; = (m;,n;), where m;,n; € Z* and the coordinates of (m;,n;) are the
coordinates of the vectors m; and n; in the corresponding order. Additionally, we introduce
the d x d integer matrices N and M with columns nq,...,ng and my, ..., my as well. Using
this notation, we may write

wi N\ ...Nwg = (DTQU475Q) (%) e1rN...N\eq. (4.13)
First, we shall prove that
aa(As) > qdgr?™? implies ;' > |det(N)| > 0. (4.14)

Note that the left-hand side of can be rewritten as f;,. > ¢r~? and we may assume
that this inequality holds, since otherwise the bound is trivial.

Let us assume that rank(N) = d — k. According to elementary divisor theory (for matrices
with entries in a principal ideal domain) there exist P, P’ € GL(d,Z) such that P'NP is a
diagonal matrix with positive entries of the form diag(0,...,0, agy1,-..,aq) With a; | a;1,
a; € N. In particular NP is a matrix whose first £ columns are zero. Moreover, since
det P = =1, it is obvious that

MP A Neqg ==L M A A
NP €1 €qd — N €1 €q

and hence we can assume from now on that N = (0,...,0,n441,...,ng4) with linearly
independent vectors nyy1,...,nqg € Z% Since [, ..., constitute a basis for a d-dimensional
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lattice, we note that myq, ..., m; are necessarily linearly independent. Now we shall express
wy A. .. Awg in terms of the standard basis ey A e; indexed by pairs of subsets I C {1,...,d}
and J C {d+1,...,2d} with |I|+ |J| = d, i.e. we write

wy N Nwg = ZﬁIJef/\@J

Let I ={i1,...,in} and J = {j1,..., Ja—m}, then the coefficients [ ; are given by

def A[ *
Bry = det ( 0 BJ>’ (4.15)
where
1 1
o (rQ >my,e;) ... (rQ 2my,e;)
A = : :
1 1
(rQi>my,e;,) ... (rQ >my,e;.)
1 1
(r'Qinkri,e5) ... (r7'Qingej)
BJ déf . .
1 1
<T_1Qink+17 ejdfm> s <r_1Qind’ ejd*‘"L)

Since the matrix in (4.15)) is of block-type, we find

ozd(At)_2 =Jlwi A... A wd||2

>3 Y 8= (Y etan?) (Y (derBy)?) (4.16)

\I|=k |J|=d—k =3 |J|=d—k
_1 1
— 2 Q7 iy A A2 1Q3 (i A A

Without loss of generality assume that the eigenvalues of @) are indexed such that |¢;| <

- < |qq|- Since go > 1, note that the minimal eigenvalue of the k-th exterior power of
Q;lﬂ is given by |q_g41...q4)"Y? and that of the (d—k)-th exterior power of Qi/z is
precisely |q1 . .. qa—x|'/?. Hence, since my,...,my and nj1,...,ng are linearly independent
and integral, we obtain the following lower bound

1/2
ag(Ay) 7t > 2R (—'ql Gl ) > ¢! det Q|24
|9a—k+1 - - - qal

where we used that r > ¢'/2. In view of (#.14)), this strict inequality yields a contradiction

unless & = 0. Thus, we proved that det N # 0 and k¥ = 0. Now (4.16)) also implies
Bt > |det N|. Hence, the upper bound for |det N| in (4.14) holds as well.
Finally, we shall prove (4.8]). Since N is invertible, we can rewrite w; A ... wqy by

-1 ~1
(DT,Q U4tQ) (M]]lv ) N61 VAR €qg = (det N)(DTQ U4tQ) (Mizlv ) €1 VANPAN €d, (417)
d d
i.e. we parametrized the subspace spanned by [y, ..., [l;. Introduce also the 2dxd matrix
-1 -3 -1 _
W (DyqUug) (M v ) = (TQ+ (MN™ ‘“Q))
ﬂd TleQ
+
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Chapter 4 General Indefinite Quadratic Forms

and note that WTW is a positive definite symmetric d x d matrix. Thus, there exists an
orthogonal matrix V' € O(d) such that D := VIWTWV is diagonal with positive entries.
Since (det V)(ex A ... Aeq) = V(er A... Aeg) it follows that

IW(eiA. .. Ae? = WV (e A...Aed)|?

d d ) (4.18)
= (D(es A... Nea) (er Ao Nea)) = [T IIDeill = TT IWwill?,
i=1 i=1
where vy, ..., vy denote the columns of V. Next observe that
e [Woill 2 max [rQ* (VN = 41Q)ui]| >ara H[MNT = 4Q). (419)

Now let iy be a subscript for which |[[Wv;|| is maximal. Similar to the proof of (4.16]) we
may write W (A vi) = Y Br.ser A ey, where the sum is taken over subsets I C {1,...,d}
and J C {d+1,...,2d} with |I|+ |J| =d — 1, and find that

W (A= > B, =lr" Q+( i Vi) || > 77 “Hdet Q. (4.20)
11|=0,|J|=d—1

Combining (4.17)) together with (4.18)—(4.20) yields

aq(Ae) ™" = |det(N)] [|Woio|| T, W 0ill = [det(N)] [[Woio|| [[W (Aiivi) |
>0 170D det Q|2 |det N| |[MN~ — 4Q).

Since (det N)N~! is an integral matrix, the last line together with (4.14)) implies
min{||M —4mtQ|| : 0 <|m| < S}, m, M integral} <q qr~2 3},
and, since () is symmetric, we may take M symmetric as well, which proves ([4.8)). O

4.3 Proofs of Theorems [1.9], [1.11] and Corollaries [4.3], 4.4]

Now we are in position to prove the Theorems [I.9]and [I.11] In the case of Theorem [I.9) we
consider the solubility of the Diophantine inequality |Q[m]| < 1. In order to get solutions of
|Q[m]| < & with explicit bounds for the norm of m € Z?\ {0} (in terms of € > 0), one can
replace @ by @/e. The general approach here is to compare the volume with the number
of lattice points if () has ‘good’ Diophantine properties. If () has not ‘good’ Diophantine
properties, we will see that () is near a rational form and here we shall use Schlickewei’s
bound [Sch85| for small zeros of integral quadratic forms.

Proof of Theorem[1.9: Let d > 5, qo > 1 and = 2/d + §'/d with appropriate ' > 0
depending on § > 0. Applying Corollary with b = —a = 1/10 (note that both conditions
la] + |b] <7?/5 and b — a < 1 are always satisfied) gives the bound

A < vol H,

X bg,ddQ’f’d72 (pQ(T) X q(d72)/4r17d/2<q/q0)(d+1)/2)’
where

po(r) = q|det Q' infl o {|det Q' T 4 1 5(r) + v () log(Ty)
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—1/2 1 1]

and the infimum is taken over all T_ € [q, and

T} >34 max{1,log(10gcs.q))*}.

Thus, we can take T <gq log(q + 1)%. In view of the lower bound voly H, >4 dgr® 2,
established in Lemma [3.17] (see (3.97))), we may also take at least

r>paq"(q/q0) VP (4.21)

in order to get

b,@,ddQTd/2 1 (d— 2/4(q/q )(d+1/ < %’

where we used 7 > ¢'/? in the form ¢(*2/4 < p4/2-1 Likewise, we may take
T =4q (¢ |det QIF )@ = ¢ a2 |det Q|
- =g (g |det Q77) =q |det Q|

to obtain
vol H,

10

In order to guarantee that 7_ € [q, V21 1] is satisfied, we have to choose

bp.adori2q|det Q)P TS <

r>pady g |det QY

First Case: We consider first classes of (irrational) quadratic forms @ for which we can
approximate the number of lattice points by the volume: Corresponding to Diophantine
properties of (), we assume that

bs.aq |det Q7% (yr 1) 5(r) + vu.1y1,5(r) 0g(T}) < D (4.22)
with some constant hgq > 0 depending on d and § only such that
5voly H, > vol H,.,
compare with of Lemma Note that r > ¢*/? is fixed here. Taking a priori
r =gq q/2(q/qo) D/ (@-2) 2/ (A= D+6 (4.23)

guarantees that volz H, > 2, i.e. there exists at least one non-zero lattice point m € Z%\ {0}

satisfying both |Q[m]| < e and HQH m|| < r. Note that the choice (@.23)) ensures also that
both conditions (4.21]) and (4.3)) are satisfied, whereby we may increase the implicit constant
if necessary.

Second Case: Now we assume that the inequality in (4.22]) does not hold. Then there exists
aty € [T, T,] such that the reciprocal oy-characteristic satisfies at least

)™ > Eto) = (hpa/bsa) =g 77 [det Q] log(T) ™! (4.24)

By Lemma we have a 'good’ rational approximation of ¢;Q): There exists a symmetric
integral-valued matrix M € Sym(d,Z) and a positive integer k € N such that

1M~ kto Q|| <a qdo(aa(Ag,)r™") ™17 < qdgE(to)~'r ™%, (4.25)
79



Chapter 4 General Indefinite Quadratic Forms

where 1 < k < 8., < dgF(tg)*. In view of (4.25) and

log(q+1)* 54 Ty > to > T >gaq 7712,

we need that

>4 E(to) *(q/q0)" ¢~ 4)+5/4d1/2 S5 (a/q0)2q? @+,

where we used ¢° > log(log(q + €)). In fact, increasing the implicit constant in (4.23)
ensures that the last condition is satisfied. This choice together with the Courant-Fischer
theorem guarantees that M and kty() have the same signature. In particular, M is invertible.
Now we shall apply Theorem (7.1 with A = M}r/2 and Afz| := M[M;l/Qx]. Hence there exists
a non-trivial lattice point m € Z?\ {0}, which is an isotropic point of M, i.e. M[m] = 0,
and is bounded as follows:

MY ml| <4 |det M|V « |det Q| P%) (kity)?/ o) (4.26)

Although the dimension dy of a maximal isotropic Q-subspace depends on M, the bound
(7.3) depends on (r, s) only; that is d/dy < 2p + 1, where p is defined as in ([1.4]). Because of
||MJ1F/2m|| > (qokto)?||m|| we conclude in combination with (#.25) and (4.26) that

|(tok) ™ M [m] — Q[m]|

(to ) 1|!M—t0k;Q|| ||mH2

< (q/q0)(kto)*~" |det Q| K dQE(to)
< (a/q0) (log()? + log(q)?) |det Q|

In view of (4.24)) we need to take

| /\

(4.27)

(t0)72p7’72.

3d—4

2p+1
" =8d (Q/QO)l/Qq%p-i_& |det Q’% g 0ar

in order to guarantee that |Q[m]| < . For this choice we also find

- 2p+1
1QY*m | < (g/0)"/*(kto) (|M}*m|| <pa (a/q0)"/? |det Q| =t (kto)”
<54 (q/q0) 2 qT5740 |det Q| 50 e 0w,

This concludes the proof of Theorem [I.9] O

Given a quadratic form @ of Diophantine type (k, A), i.e. Q) satisfies , we shall apply
Corollary [£.6] in order to estimate the Diophantine factors explicitly. Hereby, we prove
quantitative bounds in the Oppenheim conjecture by comparing the weighted volume with
the corresponding lattice sum.

Proof of Corollary [{.3: We begin by applying Corollary [3.25} Taking b = —a = ¢ and
T = (10a4bgaq) = |det Q| "%, where agz > 0 denotes the implicit constant from (3.97),
yields the lattice remainder bound

A, < VOIE)HT +

r2Cobsa(2evr_1,5(r) + Ya,r,,5(r) log(2eT))
+2ebgq Q| Y2 gD/ A pd/ 2= () Y (AHD/2,
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provided that r > ¢'/2, r¢i/> > (10a4bs49)"/s |det Q"¢ and

T, = Cpq(2e) ' max{1,log(2s(qcsq) )?}.
Since @ is of Diophantine type (k, A), we can use Corollary in order to find that
Y- 1,8(1) <qg AT |det Q\%gﬂ;%fw qﬁ i
and also that
7(1,T+],/3( T) <Lpgag A~ 2(~+1> |det Q|4 5 e -2 (5-8) ‘le max{1, 1Og(q%d)2}%“(5_ﬂ)-

In view of (3.97)), we may increase r >>¢ 5.4 1 to get

vol H,
T

Because of the condition 1/2 > > 2/d, we shall take § = 2/d + ¢’ for a suitable ¢’
depending on ¢. Now, we choose r <¢ 454 € ~(2d+3rd=4r)/(2d=8)=0 ip order to obtain

2ebpar™* (Corpr o (r) + 1~ #HQI ™2 (g /q0) ™ D?) <

vol H,
P

bg.aCqr®?log(2¢Ty) Y ,6(r) <
All in all, we have
5voly H, > vol H, >4 |Q|/2erd=2.

Since (2d 4 3rd — 4k)/(2d — 8) > 1/(d — 2) holds if d > 5, we find that voly H, > 1. This
means that there exists at least one non-zero lattice point m € Z¢ satisfying both |Q[m]| < €

and also HQ}rﬂmH <Lg . O

Using the Diophantine estimates for quadratic forms @) of Diophantine type (k, A) again,
we can estimate pg o and pp,_, in Corollary explicitly as follows.

Proof of Corollary[{.]): First, we consider 'wide shells’, i.e. b — a > ¢. By applying
Corollary [£.6] we can bound the Diophantine factor from Corollary [3.4] by

Pop-a(r) g infy 5 {log (f’T—_§1+1)d(hQ( B3 (TS 4 AV T—Vp—2)
+ AT log(Ty + 1)) + Rt

Ty

where hg = ¢|det Q]%_B v = (1 —20)/(2k + 2) and the infimum is taken over all
T_ € [q, T2 ,1] and T, > 1. Optimizing this expression by taking T_ = r=2/(**%) note
that T_ € [qq 1/2 ~11] because of 0 > v, and T, = r)/(+1) Jeads to

p0w-a(r) Kpalog(r + 1) hoq® 3 (1 + A7) (r™ % + 1~ = log(qr + 1)).

In view of the bound from Corollary and (3.97) we get the relative lattice error

‘ VOlZ

i —_ 1 v+o rkv+1
volH 1‘<<Q95d(b a)” log(r+1) <r e 4T wAT log(r + 1)

BIPR A log (1+b_7“)> :
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Chapter 4 General Indefinite Quadratic Forms

For ’thin shells’, i.e. b — a < ¢, we have

Poypalr) <painfy 7 {log (1+T5) " hg((b—a) (TS + A T="r%)
+ AT (log((b — a)*Ty)) + 1)) 1,
where the infimum is taken over all T_ € [r~!, 1] and T, > 1 satisfying
Ty > 4(b—a) 'T-° max{1,log(c5) (b — a)T-*)*}. O

In order to prove Theorem [1.11] we need to show that quadratic forms with Q-independent
algebraic coefficients are Diophantine forms in the sense of Definition [4.1] In fact, we have

Lemma 4.7. Suppose () is a form such that k£ + 1 non-zero entries y, x1, . .., x; satisfy the
property that
max, lgzi/y +pil > Ag™"

for all k-tuples (p1/q, ..., pxr/q) of rationals. Then @ is Diophantine of type (k, A’), where
A" depends on A,y,x1/y,...,x;/y only (see (4.28)).

Proof: Let M € Sym(d,Z), m € Z\{0} and t € [1,2]. Denoting the entries in M corre-
sponding to the coordinates of () in which y, x4, ...,z appear by q,p1, ..., pr, we find the
inequality

|M = mtQ| > max { max lpi — mitxz;],|g — mty|}

K

Suppose that the expression on the right-hand side is strictly less than A'm ™", where

A" = min{A (5y (1 + max [z;/y[)) ", 1/2}. (4.28)
Note first that |m| > |mty|/(2y) > ¢/(4y) and hence

€
—q —Di
Yy

for all = 1,..., k, which yields a contradiction. O

ZT; —K —K
< ’5‘ | — mty| + [mtz; — pi| < Am™"(1+ |ai/y]) < Ag

In particular any form ) for which one ratio of two of its entries is a Diophantine number,
is Diophantine in the sense of Definition and hence almost all forms are Diophantine in
this sense. An example of Diophantine forms for which we can control the exponent & is the
following: Suppose @ is a form with k + 1 entries y, x1, ...,z such that x;/y, ...,z /y are
algebraic and 1,21 /y, ..., x,/y are linearly independent over @Q, then Schmidt’s Subspace
Theorem together with Lemma implies that for any 1 > 0 the form () is Diophantine of
type (1/k+n, A’), where A’ is a constant depending only on n, A, y,x1/y, ..., zx/y, proving
Theorem However, as is usually the case in Diophantine approximation, the constant A
and hence A’ is ineffective in the sense that these constants cannot be determined explicitly.

4.4 Davenport-Lewis Conjecture

As a side remark, we illustrate that the techniques developed here are capable to prove the
Davenport-Lewis Conjecture for indefinite and positive definite forms as well. Davenport
and Lewis [DL72| have conjectured for positive definite quadratic forms that the distance
between successive values v, of the quadratic form Q[x] on Z¢ converges to zero as n — oo,
provided that the dimension d is at least five and () is irrational. This conjecture was proved
by Gotze in |Got04]. Using the explicit error bounds for the lattice point counting problem
we shall investigate the density of values of the quadratic form as well:
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Corollary 4.8. Let ) denote a non-degenerate indefinite form in d > 5 Diophantine of
type (k, A), for some k > 0 and A > 0. For § > 0 and a fixed, sufficiently small constant
¢1 > 0, depending on €2, we obtain for the maximal gap d(r) between successive values of
the quadratic form in the set V()

d(T) S C5,d,Q,k,A,Q T_VO—H;, (429)
for sufficiently large r, where v = Mﬁ{ﬁ and ¢5 q.0,x,4,0 > 0 denotes a constant depending
on k, A, @, Q and d and 0 < § < 1/10. For a more detailed description see Corollaries
and [4.4] below.

Proof: 1t is sufficient to prove that volz(rQQ N E,;) > 0 for any a,b € [—c1r?, ¢;r?] with

cganQr " = b — a and a sufficiently large constant cz 0o > 0. Moreover, we have
b—a < 1 for sufficiently large r > ¢*/2. Since Corollary can be also extended to general

(not necessarily admissible) parallelepipeds Q = A~![—1, 1], which satisfies (3.89), we can

argue as in the last proof: Taking r = (cga0.0) /(b — a)~¥/* in Corollary [3.25, where
vy = wéiﬁ — 0, leads to volz«(rQ2 N E, ;) > 0. H
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CHAPTER 5

Appendix A

The Appendix A constitutes sufficient preparation for the diagonal case. We revisit well-
known moment estimates for quadratic exponential sums and prove a refined variant of
Weyl’s inequality as well. Additionally, we discuss the existence of compactly-supported
smoothing kernels with fast-decaying Fourier transforms.

5.1 Mean-Value Estimates for Quadratic Exponential Sums

For the special case of diagonal quadratic forms, i.e. @ is of the form Q[m] = ZZ=1 qrmi with
eigenvalues q, . .., qq of absolute values at least one, we will need the following well-known
(and simple) moment estimates for the associated quadratic exponential sums

Sj(a) = Z exp(2miag;m?),

P<|qj|/?2m<2dP
where j =1,...,d and P > |¢;|"/2.

Lemma 5.1. For any n > 4 we have

‘—1

la; .
/ 15,()]" da < |gs] 3 P"(log P). (5.1)
0

Remark 5.2. Lemmal5.1] will be used in the proof of Lemma[2.6]in order to bound integrals
of the type fOX |S1(a) ... Sq—1(cr)| dev. Tt is possible to deduce these estimates by applying a
special form of the large sieve combined with the effective error bounds from Chapter |3; In
1974 A. Selberg used Beurling’s function in order to obtain

8 N
/ Z a(k) e27rizzkt
@ lg=1

where vy, ..., vy are well-spaced real numbers in the sense that |v, — 1| > 0 whenever
m # n. See Vaaler’s survey article [Vaa85| for a detailed discussion on Beurling’s function
and applications.

dt << (B—a+61)Y lak)

2 N
=1

k

Proof: Using the trivial estimate |S;(a)| < \qj|_%P we shall reduce the problem to the
case n = 4 as follows:

/Iqj
0

Next we make the change of variables a = |g;|~'6 and get

/qj Z e?wi@mQ dé.
0

P<|q;|'/2m<2dP

! B jaj 1
15;(a)|" da < Jg,|~ "7 Pt / 15;(a)|* da

0

‘71

1
15,(a)" da < |g;] "5 P /
0
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Obviously, the integral on the right-hand side represents the number of solutions of
v+ v) = wi + ws,
where v;, w; range over the interval of summation. This number can be bounded by

Z r?(n), (5.2)

n<N

where r(n) denotes the number of representations of n as a sum of two squares and
N = 8d?P?|g;|~". In view of the next Lemma [5.3| we see that this sum is < Nlog N. [

By applying Dirichlet’s hyperbola method we will prove the following folklore estimate
for the second moment of r(n).

Lemma 5.3. Let r(n) .= #{(x,y) € Z? : 22 +y? = n} denote the number of representations
of n as a sum of two squares (with multiplicity). Then we have

Z r(n)®> < Nlog N. (5.3)

1<n<N

Remark 5.4. In the case n > 10 one might appeal to the Hardy-Littlewood asymptotic
formula (see e.g. [Nat96|, Theorem 5.7) and for n > 6 we could use the results in |[CKOO05]
to drop the term log N as well, but this wouldn’t have any effect on Theorem [I.6 For
completeness, we also note that the best known asymptotic formula for can be found
in |Kih93].

Proof of Lemma [5.3: Because of 7(n)? = #{(x1,y1, T2, y2) € Z* : 23 +y? = 22+ 95 = n}
we see that the sum in (5.3)) is bounded by

#{(1,91), (22,92) € (ZN[-VN,VN])? 1 af + 47 = 25 + 43},
We shall transform this problem into a multiplicative one by introducing the new variables
Xi=x+mx, Xo=x1—-22, Yi=p+uy, Yo=yp—uy.
In fact, we can rewrite the equation z? + y? = 2 + y3 by
XiXo = (w1 + @) (21 — @) = af — a5 =y —yi = (o +y1) (12 — y2) = V1Y3

and each solution (21, ys, T2,y2) of the initial Diophantine equation gives rise to only one
integer solution (Xi, Xo, Y, Ys) with | X[, | Xsl, |Y1],|Y2| < 2V N. Thus, we have

Sicnen T(n)? S 2VH{(X1, Xp, Y1, Y2) € Z 1 0 < X1, X5, Y1, Y2 <2VN, X1 Xy = 1Yo},

where the factor 2* comes from all possible sign patterns. Now we count the number of
integral points 0 < Xi, X», Y], Ys < 2¢v/N satisfying X; X, = Y;Ys. If one of the variables
is zero, then necessarily another variable is also zero, and therefore there are at most
4 - (2\/N )2 < N solutions. Hence, we can suppose that all coordinates are none zero. In
this case, we can factorize any solution (X7, Xs, Y], Y5) in coprime factors and get
X1 Y, Y1 X
a) = = and  ag = =

(X1, Y1) (Y2, Xy) (X1, Y1) (Ye,Xy)
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Thus, writing b; = (X1,Y)) and by = (X5,Ys), we find that all solutions with non-zero
coordinates can be bounded by

> ST S S

1S<a1’a2?2\1/ﬁ 1<b1,b2<2v/N min(a] *,a; ") 1<a1<aa<2V/N 1<b1,bo<2v/Naj
al,a)=

Here, the last inequality follows by symmetry. Furthermore, since there are at most 4Na;?
integers by, by, we find the bound

1 1
<N Y 5<N Y —<Nlgh,
1<a1<aa<2VN 2 1<as<2VN

where we used again that there are at most a,* integers a;. This concludes the proof of the
second moment bound (j5.3)). O

5.2 A Refined Variant of Weyl’s Inequality

The purpose of this section is to prove Lemma - a refined variant of Weyl’s inequality
for the exponential sums S;(a) = ZP<|qj‘1/2m<2dP exp(2miag;m?), where qi, ..., g denote

the eigenvalues of the diagonal form Q[m] = Zzzl qrmz. Both results, Lemmata and
[5.10] are already proven in [BD58D| (see Lemma 9 and the subsequent Corollary) for the case
d = 5. In fact, the same proofs apply here if the endpoints of summation and integration are
adjusted; the main idea is to split the sum on the left-hand side of according to the
residue classes mod ¢ and then apply Poisson’s summation formula to each of these sums.

Lemma 5.5. Suppose that A >, 1 and that « is a real number with approximation
x
a=—+p, (5.4)
Y
where x,y € Z are coprime integers satisfying
O<y<p A, 4k <y AL (5.5)

and k > 1 is a fixed integer. Then

kA
> explemiam®) = y'S,, [ ep(2niog) g+ O P log2y), (56)
A<m<kA A
where the O-term dependent on k only and
def o
Sy = Z exp(2mizm? /y). (5.7)

m=1

Remark 5.6. This lemma can be generalized to higher powers m*, k > 2, as already done
by Davenport in his investigations on Waring’s problem for cubes and quartics, see [Dav39a|
and |[Dav39b| for more details.

Before proving this lemma, we introduce for any integer z € Z the generalized Gauss sum

Yy
Sy o Z exp(27i (xm? + zm) /y)

m=1
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as well. Following the arguments in [Vinb4| (Chapter 2),we shall first establish the bound
[ e| < 2, (58)

which will be used in the proof of Lemmata[5.5) and [5.10] We begin by identifying Z/yZ with
Z)NWZ X ...7Z])ynmZ by the Chinese remainder theorem, where y = y; ...y, is the canonical
decomposition into coprime numbers yi, . .., ym: Let m; =[], 4 Yi and choose a; € Z with
ajm; = 1mody;, then the map Z/y1Z x ... Z[ymZ — L/yZ via (r1,. .., mm) = Y00 agmyr;
is bijective. This implies

1 Ym m
SE,Z/,Z - Z ce Z eXp(27Ti<$(Z;n:1ajij’j>2 + ZZTzlajijj)/y) = H Sxa?mj,yj,zaj'
ri=1 rm=1 7=1

Thus, the bound follows at once from the case, where y = p* is a power of a prime
number p. Note that we have here (xa?mj, q;) = 1, too. Moreover, if p is an odd prime
number, there exists an integer 2* € Z with 2z2* = 1 mod p* and then we have zm? 4+ zm =
x(m + zz*)? — z2*(2*)? mod p* and consequently |S, .| = |S, |- In other words, we can
assume that z = 0 if p is odd. In the case p = 2 this argument cannot be applied and, in
particular, it is possible that |S, o .| # S, 2¢|. We begin by considering the case of odd
prime numbers.

Lemma 5.7. For any odd prime number p € P and coprime integer a € Z we have

|Sapl < VP (5.9)

Proof: Since Z/pZ is a finite field, the group (Z/pZ)* is generated by one element g.
Obviously, m? = w mod p, w € (Z/pZ)*, is solvable if and only if the index of w is a multiple
of h = (2,p — 1) and then there are h solutions. Thus, using

- ( m1ndw> {h if h | indw
Zexp 27 . = ) ,

0 otherwise
m=0

we may write

s mind w aw s
1—|—ZZeXp(2m 27r1—) = ZZexp(Qm

m=0 w=1 m=1w=1

) exp (27riﬂ).
p

Now we use the basic technique of Weyl differencing: The Cauchy-Schwarz inequality implies

g indv —ind w —w
1Sapl® < (h—1) Z Z exp (2W1mf) exp (27T1 ) )

m=1v,w=1

and, because the map ¢ — wt is a bijection of (Z/pZ)*, this can be rewritten as

= nd¢ t—1
1Sapl? < (h—1) Z Z exp (QmmT) exp (27r1w 5 )

m=1t,w=1

Since the sum over w=1,...,p—1fort =1is exactly p — 1 and (by adding all terms with
2 =0,1e Y ') exp(2rimindt/h)) is zero otherwise, we conclude further that

h—1 —1
Sl < (-1 <p 1 pZeXp(27rimindt/h)>.
m=1 t=2

If ¢t runs from 1 to p — 1, the index of ¢t takes all values mod h equally often and therefore

the last sum is (h — 1)?p and thus (5.9) holds as claimed. O
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Remark 5.8.

(1) The above argument can be used in order to prove the more general estimate

< [(k,p—1)—1]p'?

Z exp(2miam® /p)

m=1

as well, where p is an odd prime number, a is an integer not divisible by p and k£ € N.

(2) One can even prove that |S,,| = p'/? for odd prime numbers p. To do this, one verify
that S, , is the Gauss sum associated with the character x(n) = (n | p) induced by
the Legendre symbol and, since x is a primitive character modulo p, that |S, ,|* = p.
For details see e.g. Theorem 8.15 in [Apo76].

(3) As the reader probably already knows, Gauss has proved the explicit formula

1 .
Sim = E\/ﬁ(l +1)(1+e™™/?2)  (meN)

in his famous Disquisitiones Arithmeticae (published 1801). This formula can be
utilized in order to prove the quadratic reprocity law (see e.g. [Apo76|, Sections
9.9-9.11). In view of the separability property S,, = (a | p)S1,, which holds for any
odd prime number p, we can even determine the complex sign of S, .

The previous Lemma [5.7] together with the following Lemma [5.9] already implies |S, .| <
p*? for any odd prime number p € P: We have |S, .| = |S, x| = p’| S, pr-2i| with some
j € Ny such that k — 25 € {0,1} and also |S, 2| < p*/>79. Moreover, we see also that the
inequality cannot be improved, since for example .S, 2| = /p.

Lemma 5.9. If £ > 2, p € P is an odd prime number and (a,p) = 1, then we have
Sapk = PSaph-2-

On the other hand, we have for &k > 4
Sa,2k = 250,,2’9*2‘

Proof: If p is an odd prime number, we transform the sum S, ,» by changing variables via
m = pFt+r wheret =0,...,p—1land r =0,...,p" ' — 1 are taken independently. This

gives the identity
p—1ph~l-1

2 2at
S =3 3 e (2m (U 20,
p P

t=0 r=0

where we have used that exp(2riap*~2t?) = 1 provided that k > 2. For any fixed r, which is
not divisible by p, the sum over ¢ runs through a complete residue system (because 2ar is
invertible in F,) and therefore vanishes. Hence we obtain

k—2

Z exp (27Ti QITQ) = pSyph-2.
m=0 p

In the second case we introduce the more general sums

p
Sa7pk =p

—_

q—

Sz = exp(wi(xm2 +zm)/y)
0

o
n

3
Il

89
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and also §x7y = gw,o. Similarly, changing variables as above shows that

2k—1_1 2k—1_1
Saokp = Z e2mi(ar+br)/2t Z 2l Tl 2Y (4 emb)Sa oe-1p  (5.10)
r=0 r=0

provided that k& > 2. In particular S, o« = 2§a’2k—1. On the other hand, we may change

variables via m = 2872t + 7, where y = 0,...,3 and 2 =0,...,2¥2 — 1, in order to get
2k—2_1 3 2k—2_1 ar?
Sa ok = Z exp (2#1—) Zexp witar) = 2 Z exp (2%127) (1+(=1)"),
r=0 t=0 r=0
since k > 4 and a is odd. Moreover, this can be rewritten as
7t ar? ~
Sezr =4 > exp (mw) =48, 903 = 25, 91>. O
r=0

We are left to prove for the case y = 2*. By we have S, o1, = 0 if 2z is odd.
Otherwise, we can argue as in the case of odd prime numbers: Write z = 2z’ with 2z’ € Z and
take x* € Z with z2* = 1 mod 2* in order to get m?+ zm = z(m + 2'2*)? — 2(2'2*)? mod 2*.
Thus, we have |S, o1 .| =[S, o¢| and now follows by the same arguments as before.

Proof of Lemma [5.5: By varying A we may suppose that A and kA are irrational and
not near an integer (without contributing A >, 1). Note that the sum and the integral in
change by an amount of O(1) only. Then we split the sum in according to the
residue classes modulo ¢ to get

y
Z exp(2miam?) = Zexp(2ﬂixr2/y) Z exp(2miBm?)
A<m<kA r=1 A<m<kA

] m=rmody (5.11)
= Z exp(2mizr? /) Z exp(2mif(ym + 7)?).
r=1

(A=r)/y<m<(kA—r)/y

Here we need a generalized variant of Poisson’s summations formula and therefore we repeat
the proof in a special case: Let f(s) == La—r)/y,(ka—r)/y) () exp(2mia(ys + r)?) and

s) S D fls+D)

IEZ

the periodic extension of f. F'is locally a finite sum, 1-periodic and has jumping discon-
tinuities at (A —r)/y + Z and (kA —r)/y + Z. Moreover, we can write F' = P + i@Q) with
piecewise continuous and monotonic function P, @ on [0, 1]. Hence, the Fourier series of F'
converges towards the mean of the left- and right-hand limits of F' (see e.g. [Vinb4], Chapter
1, Lemma 11). Since A and kA are irrational, s = 0 is a point of continuity for F'. Therefore,
we may find that the inner sum in (5.11)) is equal to

(kA—r)/y (kA—r)
/ exp(27if(yn + r)*) dn + E / eXp(%i[ﬁ (yn +1)* + vn)) dn,
(

A-r)/y u—;oo A-r)/y
v#0
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5.2 A Refined Variant of Weyl’s Inequality

where the convergence is understood in the sense that the summation shall be taken
symmetric over negative and positive integers. Next, we make the substitution yn+r = £ in
order to obtain

Z exp(2miam?) =

1
A<m<kA y

Yy kA
Z 2mizr? / 27r1ﬁ£ df—i- Z / 27r1 [BE24v(E—7) /] dg

A

v=—o00

v#0

and this can be rewritten as

o Sey [ :ae2
Z exp(2miam?) = y7 exp(2mifE ) dE + R
A

A<m<kA

with an error term R, which is given by

o0

def 1 ka . 2
=3 S / exp(2mi[BE + vE fy]) de. (5.12)

Vv=—0o0

v#0

In order to bound (5.12)) we would like to make a change of variables in the last integral as

well: For this, we write
B+ 22— 5 (5 ’ ) -
2yp 40y?

and note that the last condition in (5.5 implies

V|
=L S 9kA.
2y| 8|

Therefore the new variable |3|7'¢ = {¢ + v/(2y8)}? is not vanishing (neither for positive
nor negative v) and the integral in (5.12)) becomes

ex Gl 1/25 n(vp) * Y% exp(s n(5)2mri¢) d¢
p 26 5 g . p{sg )

2 2
G = \m( 2;ﬁ) and & = || (k +ﬁ)

For notational simplicity we may suppose that § > 0. Because of (; > 0 and (, > 0 we
obtain by integrating by parts

where

B . - ' 1 G2 .
<C2 1/2627r1{2 . Cl 1/2e27T1C1> _ C_?’/QQQTHC dc¢. (513)

C 1/2 27r1< dC _ :
dmi Je,

a i

Again integrating by parts shows that the last integral is of order O((; 82 4 ({3/2) =
O(y*|B1**1v|73). In view of (5.8)) the contribution of these terms to (5.12) is at most

<PIBL Y [Seyl V7P <y 18] < y?PATE <5y,

v#0
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where (5.5)) was used in the last two steps. It remains to bound the sum over the first terms
on the right-hand side of (5.13)). Since both terms can be treated similarly, we consider only
of one of them. For example write

1 1/2
G P explmicy) = 2 ()
1 1

exp(27i[k*A%B + kAv /y]) exp [ i v?
v+ 2kAyS 20y?

and note that the sum over |v| < y* can be bounded by

< Y [Seyillv 264y T <y > T <y log 2,

0<|v|<y? 0<|v|<y?

where we used the typical integral comparison argument in the last inequality. The remaining
sum over |v| > y? can be written as

y
: 1 :

Z exp(2mizr? /) Z T2k ALE exp(2miv(kA —r)/y),

r=1 2

lv[>y

except for a factor of absolute value one. Splitting the summation (of the inner sum) into
positive and negative v, we shall apply summation by parts (Abel’s lemma) to each part
separately. Again, both cases can be treated similarly. For example we define

At) = Z exp(2miv(kA —1)/y), ¢(x) = m

o<v<t
and note that |A(t)| < |sin(mr(kA —r)/y)| < {(kA —7r)/y} ", where {0} = min,,ez |m — 0|
denotes the distance to the nearest integer. Recall that we have supposed that A is not near

an integer, and therefore {(kA —r)/y)} > y~'. In particular ¢(s)A(s) — 0 for s — co. All
in all, summation by parts shows that

————;L—___ 1 2 2 > /
; Ty O (EA = 1) fy) = ~AG)ely?) - / " A ()
v>q
<y H{kA=T)/y} <y
and hence the overall contribution is O(1). This completes the proof of (/5.6)). O

Finally we shall apply Lemma to the quadratic exponential sums S; as follows.

Lemma 5.10. Suppose that x;,y,; € Z are coprime integers with 0 < y; < 8dP\qj\’% and

I‘.
g0 = —Jff‘ﬁj’
J

where |5;] < y;l(SdP|qj|_%)_1 and P > |¢;|*/?. Then we have
1 , T
|Sj(e)| < y; * (log P) min(Plg;| ™2, P~ ;|2 (851 ). (5.14)
Proof: Applying Lemma [5.5 with A = P|q¢;|7Y/2, k = 2d, * = x;, y = y; and « replaced by

gjo shows that

) 2dP|q;|~1/2 oy 12
Si(a) = Y Se; /P| . exp(27mif;€7) d€ + O(yj log 2y;).
qj —1/2
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5.3 Smoothing Kernels

Because of y;/2 < y;1/2P|qj|_1/2, log(2y;) < log(P) and yjl-/Q < y;1/2P_1\qj|1/2|ﬁj]_1, we

are left to estimate the integral. Using S, ,. < yjl-/ ? see (5.8), and bounding the integral by

the length of the integration interval yield < y}l/ 2P|qj]_1/ 2. On the other hand, we can use
the alternative representation

2dP|q;|~1/2 1 [AdP?g !
/ exp(2ri6,€%) d¢ = / ¢V exp(2mif, () A

Pla; /2 2 Jp2igy
and apply partial integration in order to conclude that the integral is < |3;|~*P~tq;|*/2.
Together with S, < yjl-/ ? this proves already (5.14)). ]

5.3 Smoothing Kernels

In the next lemma we shall construct compactly-supported smoothing kernels with fast-
decaying Fourier transforms. This construction extends the commonly used kernels (in the
context of the circle method - see e.g. Lemma 1 in [Dav56| or [BK01|) by using convergent
infinite convolution products (instead of convolving finitely many times). Since our kernel is
used only rarely, we decided to include the proof (following the arguments in [BR86]).

Lemma 5.11 (Theorem 10.2 in [BR86]). Let u: [1,00) — [0, 00) be a positive, continuous,
strictly increasing function satisfying the decay condition

/looﬁdt < o0. (5.15)

Then there exists a smooth symmetric probability density ¢ on R such that
(1) ¢ is supported in [—1, 1],
(2) 1 is increasing for x < 0 and 1 decreasing for z > 0,
(3) (1) < exp(—|t|u(|t])~) and 1) is real-valued and symmetric.

Remark 5.12. It is worth mentioning that this kernel will be used in both cases: Only
after approximating the indicator function of [a, b] and of the region Q we can rewrite the
lattice point counting error in terms of Fourier integrals. But also the circle method of Birch
and Davenport, as used in the case of diagonal quadratic forms, relies on Fourier methods
and requires a suitable kernel.

Proof: Let us first introduce the notation U([—a, a]) = (2a) '1[_aq, i.e. U([—a, a]) denotes
the density of the uniform distribution on the interval [—a,al, a > 0. As simple to check,
the Fourier transform is given by

a 2mat

~ 1 [ in(2mat

O([-aa)(t) = - / cos(2mta) do — SRETA) (5.16)
We shall use this simple kernel as a basis for the infinite convolution product. From the
condition (5.15)) we see that there exists a positive integer ny € N and a non-decreasing
sequence of non-negative numbers (a,)nen, given by

nowu(no)
e )

u(n)

——  if 1 <n<ng
ay, = ]
~ if n > ng
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which satisfies

= e > 1
a, = +e <1. (5.17)
2 ) 2 )
We shall check that

= lim U([—ay,a1]) * ... x U([—an, a))

n—o0

is uniformly convergent and has the claimed properties. To do this, we write v, =
U([—a1,a1]) * ...« U([—an,a,]) and claim that 1, n > 1, is Lipschitz-continuous with
Lipschitz constant 1/(4aga,). In fact, if 0 < b < a, then we find

0 if [t| >a+0b
U([~a,a]) * U([=b,b])(t) = 1 5= if [t <a-—0b. (5.18)
%_b‘t' else

Hence the above remark is true for n = 2. The general case follows by induction:

1 fntt 1
|tn41(8) = tn41 (8)] < / [n(s =) = un(t = h)|dh < |t — s|.

T 2an41 Jog,,, Qpay

Proceeding in the same manner, we see that

s 0) = (0] < 5 — [ Tt — B) — () B

2an+1 —O0n+1

1 1 dn+1 n
< / Ih|dh = —n+L
4@0&1 2an+1 _ 8@0&1

An41

if n > 1. In view of this shows that (1, )nen is uniformly convergent, say to .
Obviously, ¥ is non-negative and continuous. Moreover, since 1, has compact support lying
in [—> 0, ag, Y r_y ag], we find that suppy C [—1,1]. By the fundamental theorem of
calculus we get that 1, is (n—1)-times continuous differentiable, where n > 1, and together
with the uniform convergence we conclude that ¢ is smooth with lim,_,. > zpﬁﬁ) = w(k)
uniformly on R. In particular, we have

/w(a:) dz = lim [ ¢,(z)dz =1
n—oo

and hence v is a probability density. Additionally, we see by induction that every 1, is

symmetric and thus also 1. Similarly, we shall prove (2) by induction: For n = 2 this follows

at once from ([5.18]). If n > 2 we have

1
B 26Ln—‘,—l

Y (t)

{Un(t + ang1) — ¥n(t — ani)}.

At this point we may use the symmetry of ¢, in order to conclude that both ¢, ,(¢) > 0 if
t <0and ), (t) <0if t >0 hold, as claimed. Letting n — oo yields (2) for ¢. Finally, it
remains to prove (3). The uniform convergence combined with the explicit formula (|5.16))
implies the identity

o0

P(t) =

n=1

sin(2ma,t)

—

2mant
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where the convergence is uniform on compact sets. Note that ([5.15) necessarily implies
u(t) — oo if t — oo and therefore there exists a ¢ty > 0 such that u(¢) > 1 for all £ > ¢,. Let
|t] > to. In view of the bound

o<1 (5egar) = ot = (nz|(t7)>n

k=1

we may take n = ||t|u(|t])7!], i.e. the integer part of |t|u(|t|)~!, to obtain

131)] < ( u(m) ) < e < exp{—|tu(lt) ).

eu([t])

In the last line we used that u is non-decreasing and that |t| > n, since |t| > ;. This
completes the proof of Lemma [5.11] n

Remark 5.13. We note that Lemma is due to Ingham [Ing34|. In general, there are
many known variants of the uncertainty principle, i.e. that “a pair of transforms f and f
cannot both be very small”ﬂ as remarked by N. Wiener. As examples, one can mention
Hardy’s clarification of this remark [Har33| or a uniqueness theorem of Beurling, see [H6r91].
Also the identity theorem for analytic (resp. quasianalytic) functions is directly related to
this question: If we suppose that f has decay rate O(exp{—¢lz|}) for |x| — oo and some
e > 0, then f can be extended analytically to the e-stripe {z € C : —¢ < Im(z) < ¢}
and therefore f cannot have compact support (unless f is zero everywhere). Ingham has
extended this observation by proving that compactly supported functions f exist with
f(t) = O(exp{—|tlu(t)~'}), provided that holds, and also that this condition is
necessary. That means if [ (tu(t))™' dt = oo, then there does not exist any finite measure
with compact support and Fourier transform of growth O(exp{—|t|u(¢)~'}). A similar result
can be found in [PW87| as well, see Theorem XII.

!This quote can be found in |[Har33].
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CHAPTER 6

Appendix B

The Appendix B is a revised and corrected version of certain technical parts of the preprint
|GM13]| of G6tze and Margulis on approximating the number of lattice points in d-dimensional
hyperbolic or elliptic shells {m € Z?: a < Q[m] < b}, which are restricted to rescaled and
growing domains €2, by the volume.

6.1 Fourier Analysis, Smoothing and Theta-Series

In order to rewrite the lattice remainder, we will need certain well-known estimates for
smooth approximations, estimates on the Theta-series ¥, (t) corresponding to the lattice
counting problem and bounds on 9J,(t) in terms of the a-characteristic of a special symplectic
lattice A, as well, which was already introduced in (3.39). First, we prove the following
smoothing estimate.

Lemma 6.1. Suppose that p and v are positive finite measures on (R", B™). Moreover, let
fand f£, 7> 0, denote bounded real-valued Borel-measurable functions on R" satisfying
for any 7 > 0 the inequalities

fr(@) <inf{f(y) : lly = 2llw<r} and  f7(z) = sup{f(y) : Iy — 2l <7},
for(@) <mf{f7(y) s ly — 2l <7} and fil(2) = sup{f () : ly — @llo <7}

Then we have
[ rdw-)| < max| [ vy ks (G- pod 62)

Proof: Since k, is a probability measure with support contained in a || - ||-ball of radius
7, we conclude in view of (6.1 that the chain of inequalities

for S frowke << fFw ke < S

holds. The inequality f < f x k., implies, for instance, the upper bound

[raw-v < [fren -+ [(7 ek - pav
Now we may use f > f~ * k, > f,_ in the last integral in order to obtain

[raw=v < [ekdp=—+ [k g k) (6.3

In the same manner we get also the lower bound

[aw=vz [ ckdp=s [k - pav
and together with f < f«k, < f,f also

[raw=nz [ skdp-n = [k ) (6.4)

Both estimates (6.3]) and (6.4]) together yields the claimed inequality (6.2)). H
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6.1.1 Estimates for ,(t)

In order to estimate the terms In and Iy in (3.33)) we need to estimate |9, (t)] first. To do
this, we need the following lemma on the multidimensional Gaussian integral.

Lemma 6.2. For any symmetric complex d x d-matrix {2, whose imaginary part is positive
definite, we have

/Rd exp{7iQz] + 27i(z,v) } do = (det (/1)) "% exp {—miQ '[v]}, (6.5)

where we choose the branch of the square root which takes positive values on purely imaginary
Q,veRand Q7! [:v} denotes the quadratic form (Q7'z, ), defined by the inverse operator
Q~1: C? = C? whose imaginary part is negative definite.

Proof (see also [Mum83[, p. 195, Lemma 5.8 and (5.6)): 1f ) is purely imaginary,
this formula follows at once by applying the change of variables y = —i{2 and taking into
account that x — exp(—mz?) is invariant under Fourier transformation. The general case
follows by splitting 2 = ; — i), into the real and imaginary part and using successively
that both sides in (6.5)) are analytic as one-variable functions in the entries of €);. n

Corollary 6.3 (Simple Bound for 9, (t)). We have
[Fur(8)] <a dgr?riPexp { - 7212Q3 [u]}, (6.6)

where ry == r(4722r4 +1)7/2 and dg, == |det Q| 7/? as already defined in (T.11)).
Proof: Here we shall apply (6.5)) to 9, (as introduced (3.31)) and (6.13))) by taking
def

0 = ir Q= 2tQ + irlr2Q,.
This yields
0, (t) = /]Rd exp {mi[z] + 27i{x,v/r) }do = (det(Qt/i))_l/2 exp{—miQ; v/r]}  (6.7)
and therefore the Fourier transform of z — exp{@,,(t,z)]} is given by
det (77 Q0) " exp { =@ [u = v/r]} = B pult) = Vrua1) (6.8)
Since () and @), are simultaneously diagonalizable, a short calculation shows that
Q' = (4r +r M7 2mitQ ! + Q1Y)

and likewise

d
det Q7! = (4m?t? 4 r—4)~¢ H(Qﬂitqi_l + 772 q ). (6.9)
i=1
By taking the absolute value of (6.7)) and we find the bound . ]
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6.1.2 Estimation of Iy and I

By means of the previous Lemma [6.1| we can already estimate Iy as follows.
Lemma 6.4 (Estimation of Iy). If d > 2, then we have

Iy <4 dg HEHl min{|b — a| qo_l/zr_l, 1}rd/2qg/4. (6.10)
Proof: As a starting point, we note that that we have |0,(t)] <g dor/2r! /2 and gw(t) <

S[a,p)., (). The first bound follows from (6.6) with v = ur and the second one is a direct
consequence of (3.26)). Using these bounds we may estimate the integral in (3.35)) by

Iy =

/ Gu(t) m(t)f(u)dvdt' <q dor®?||CIIx Stau, ()2t (6.11)
J1 R4

—1/2
[t]>qg /21

Depending on the length of the interval [a, b] we distinguish following two cases. If |b — a| ™" <

qo_l/Qr*l, then we can use s, (t) < [t/ in order to get the bound

/ Stas, (0)7e* dt < =2 / P <y g

—1/2 —1/2
a5 /,',.—1 %% / r—1

In the case [b—a| ™' > ¢ "/*r~!, we have the bound Slap), (1) < |b—a+ 2w| /2 and thus

o b—a
/ S[a,b}w(t)rfﬂdt<<T‘d/2|b—a+2w|/ A<y ] 72 i,
[t]>q5 /%71 g 1 Qo T

where |w| < (b—a)/4 and d > 2 was used as well. The last two estimates together with

(6.11)) yield the claimed bound (6.10)). O

The error term Ia, corresponding to small values of the t-integration, will be estimated
by using the following representations of R(e;qé,,) = 0,(2) — ¥,(t) in (3.29) by means of
Poisson’s formula (see [Boc48]|, §46). In fact, we can apply the Poisson summation formula

and obtain
Ou(t) = 0,(t) = > Doepmlt). (6.12)
meZi\{0}

Note that by definition (3.31]) the Fourier transform of x + exp{Q,,(t,z)} at u € R? is
given by ¥,_,,(t), where

exp{Qo(t, )} = exp{—Q¢[z] 4 27i(z,vr 1)} and Q; o r2Q, —27itQ.  (6.13)

In view of (3.30)) and (6.12)) we have
R(ewov,) = / d ( 3 ﬁv_rm(t)>f(v)dv. (6.14)
R

meza\ {0}

Lemma 6.5 (Estimation of /x). Using the quantity ||Z||*,, as defined in (3.5 for the weights
¢(z), we have the estimate

In <q dgr?log(1+ 16— algy > r =) |IC]|x.0- (6.15)
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Proof: According to (3.34)), (3.30) and (6.12]) we may write

/ Guw(t) R(erqu,)dt ‘, where
Jo

In =

. o (6.16)
R(equ,) = /R SiuC(v)dv, Siw T ) Durml).

mezd\{0}

In order to use the estimate let v € R? and write v = ru with u = ug + m,, where
ug € [—1/2,1/2]* and m,, € Z4, then

1Sl < D7 Wrtuormy (0] < dgr®r”® 3" exp{—r*r}Q7 [uo + m]}. (6.17)

MFEMy, MFAEMy,

1\120te that ||m +uo|| > |lm + uolles > 3 for any m € Z4\ {0} and therefore 7T3262;1[% +m] >
¢ ' > ¢ " which yields the bound

r?
|St| < erd/2|7“t|d/2 ((3‘”2”?@I [“O}Ir(v) + e_unO) (6.18)

where 1, (v) = I(||v]|oc = 7/2) and Ky = >, c7a exp{—”{rf@f[m + up]}. The sum K,
may be estimated by an integral as follows: Since r2 > qo/(472 + 1) for |t| < g5 "/*r~! as
r > g2, we have exp{—m%r?Q7'[u]} < exp{—2Q7'[u]}. Let I := [, 1]¢ and note that

272
Q;l[a:] < ﬁ for x € I, from which we deduce that

k, o /Iexp{—%’@;l[um]}dx >q exp{—2Q ' [u]} /IGXP{—%@IW’@N%

where the integral on the right-hand side is at least 1 by Jensen’s inequality. Hence

Kuo < Z e—%Oerl[m—f—uo] <4 Z km-l—uo :/

d
meZd meZd R

d
e 5l dr < (2) g (6.19)
do

Using (6.16|) together with (6.18) and (6.19), we may now estimate Ix by the following
integrals. Writing vy = v — rm, |[vo]les < 5, m € Z%, we have

Ia <4 dQ |§w(t)| (@t,l + @tyg) dt, (6.20)
Jo
where

act (ANY? 4 a2 [ >
O = (—> retrye 4 I((v)[ dv
do R

def _ _ -~
Oy LI 22 / exp{—m?r2Q foor 1} ()] do.
|v]loo>7/2

Note that ¢ — 72 is strictly monotonically decreasing on Jy from r2 = r% to qo/50 < r? < qo

for t = :l:qal/zr_l. If we write h(s;x) == s¥%e™ with s, 2 > 0, then the maximum of h(s;z)

is attained at s = d/(4z). Hence, maxey, h(rf;z) <4 min(z=4*,r¥?) <, (z + &)~
Thus, we obtain with z = 1/¢

max O <a (q/0)"* "¢ (]| (6.21)
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In order to estimate ©, 5, we choose x = Q;'[vy/r]/4 and get

-~

[C(v)]
sup O, < Td/2/ — dv. 6.22
teJo b2 0]l >T/2 (7"*2+Q+1[’UO/7”]W4 ( )

Now we integrate the bounds (6.21)) and (6.22)) in ¢t € Jy weighted with |g,(¢)|: In view of
(3.26)) we have fJo |9 ()| dt < log(1 + |b— a|q0_1/27“*1) and thus we finally get, using the

quantity ||E ||+ as defined in (3.5) for the weights ((z), the estimate (6.15]). O

6.1.3 Rewriting of I

In this section we proceed to estimate (3.38]), where we have already started to treat the
term Iy, see (3.36]). As already announced, we shall bound the theta series 0, (¢) uniformly in
v by another theta series in dimension 2d with symplectic structure. This step is crucial in

order to transform the problem to averages over functions on the space of lattices subjected
to actions of SL(2,R). We have

Lemma 6.6. Let 6,(t) denote the theta function in (3.31]) depending on @ and v € R?. For
r > 1, t € R the following bound holds uniformly in v € R?

10,(t)] < (det Q) VArd 2 ap(r )12, where (6.23)

W(r,t) o Z exp{—H;(m,n)}, and (6.24)
m,nezd

Hi(m,n) o2 Q' [m —4tQn] +r*Q4[n], (6.25)

and H,;(m,n) is a positive quadratic form on Z*.

Proof: For any z,y € R the equalities

2 (Qilz]+Q1ly]) = Qilr+y]l +Qylr —yl,

Qr+y), z—y) = Qla] —Qly] (6.26)

hold. Rearranging 6,(z) 6,(z) and using (6-26), we would like to use m+n and m —n as new
summation variables on a lattice. But both vectors have the same parity, i.e. m4+n=m—n
mod 2. Since they are dependent one has to consider the 2¢ affine sublattices indexed by
a=(ai,...,aq) with a; € {0,1} for 1 < j <d:

/i o {meZ': m=a mod 2},
where, for m = (my,...,mq), m = a mod 2 means m; = o; mod 2 for all 1 < j <d. Thus
writing

Opalt) & > exp {—T%qu]—zth[mHzWi(m,;) :

mezZd

we obtain 6,(t) = ) 6,.4(t) and hence by the Cauchy-Schwarz inequality

0.)]° < 2 Yoy [fual®)] (6.27)
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Using (6.26) and the absolute convergence of 6,(t), we can write

oo = 3 exp|=5(Qu bl + Qula]) = 2rit (Qm] ~ Qla]) = 27 (m — n, )]

m,nezd

= Z exp [—%(QHW] +Q+[n]) — 4mi(2tQm + ;’ n>} (6.28)

where m = , n = "2 Note that the map

2

m+n m-—n
H: Upeonye Z8 X T8 — ZUX 20, (mon) — (2, 25

is a bijection. Therefore we get by (6.27)

0.0 <a D exp {—%(QJr[m]%—QJr[n])—21<2tQm+;,n>}

ae{0,1}4 m,nezd

= Y exp {_%(Q+[m] + Q4[n]) — 2i(2tQm + ;m] .

m,nczZd

(6.29)

In this double sum fix 7 and sum over m € Z? first, and call the inner sum 6, (¢, 7). Using

2
(6.5) with Q = 2iQ,r~2/7 and v = —4tQn + m, we get for § = (det (#QJF))_% by the
symmetry of ¢ and Poisson’s formula (see [Boc48|, §46)

. 2 _ U
0,(t,n) def Z exp {_T_Q(Q+[m] + Q+[n]) — 47T1<2tQm + %,nﬂ

meZ4

=5 ex o Q- [m — 4t Q7] — 20, 7] — 4xi(2,7)
=, p 9 + r2 + 7”’ .

Thus, we have uniformly in v € R?
2,.2
0.0m)| <0 3 exp{ -0 m — 41Qa] - f—zQ+[ﬁ]}. (6.30)

meZd

Hence we obtain by (6.29) and ((6.30)

10,(5)]" < (det Q)72 " exp{~Gi[m,n]},

m,ncz4

where Gy[m,n] = ”227"2 Q7' [m —4tQn] + 2Q.[n]. Since 7%/2 > 1 we may bound G;[m, n]

from below as follows:
Gylm,n] > r2Q 5 m — 4Qn] +772Q4 [n] = Hyfm,n)
which proves the claimed estimate ((6.23]). n

We end this section by establishing the following lower and upper bound on the Siegel
transform of a lattice.

102



6.2 Margulis’ Averaging Result

Lemma 6.7. Let A be a lattice in R, Assume that 0 < ¢ < 1, then

exp{—de}#H < Z exp{ —¢ [|[v*|| } <4 e 2 4H, (6.31)

vEA
where H = {v €A : |Jv]| < 1}.

We may apply Lemma to find that ¢(r,t) = > ., exp{—|[v|]’} =4 #{w € A; :
|w]le < 1} <g #{w € Ay : ||w|| < d'/?}, where A, is defined as in (3.39)). This step will be
further carried out in Section [3.3.3

Proof: The lower bound for the sum is obvious by restricting summation to the set of
elements in H. As for the upper bound introduce for = (p1,...,pq) € Z¢ the sets

def 1 1 1 1
B, = M1—§,M1+§> Koo X [Md_§7ﬂd+§>

such that R? = U,.cz¢ By For any fixed w* € H,, .= AN B, we have w — w* € H for all
w € H,. Hence we conclude for any u € Z?

#H, < #H.

Since x € B, implies |||l > ||t]|s0/2, we obtain

Sl < S < 37 ST ik < g 3T TP 2 .

vEA vEA uezZd veANB,, HeZl
This concludes the proof of Lemma [6.7] O

6.2 Margulis’ Averaging Result

In the following paragraphs we present Margulis’ averaging method which will be used in
Section to prove explicit bounds for averages over the group K of type fK aq(d, kA)P dk.

6.2.1 Operators A, and Functions 7, on SL(2,R)
Let G = SL(2,R). We consider the following two subgroups of G:

K=S0(2)={ks : 0<0 <27} and T—{(S abl):a>0,b€R},

where kg is defined as in (3.68]) by
Lo — (€08 6 —sinf
o~ \sinf cosh -

According to the Iwasawa decomposition, any g € G can be uniquely represented as a
product of elements from K and T, that is

g=k(9)t(g), k(g) €K, t(g) €T.

Now let
dy, & (‘” a01> for a >0 and DY = {d, 1 a > 1}.
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According to the Cartan decomposition, we have
G =KD'K, g = ki(g9)d(9)k2(9), g € G, k1(g), k2(9) € K, d(g) € D*.

In this decomposition d(g) is determined by ¢, and if ¢ ¢ K then k;(g) and ky(g) are also
determined by g up to a factor of £1 on k; and ks. It is clear that ||g|| = ||d(g)]|, where
|||l denotes the operator norm on GL(n,R) induced by the standard Euclidean norm on
R™. Note that, in the simple case g = d,, this norm is given by ||d,|| = a. Since d, is the
conjugate of d,-1 by kr/2, we see that g~! € KgK or equivalently, d(g) = d(g~") for any
g € G. Therefore, |lg]| = lg7*|l, g € G.

We say that a function f on G is left K-invariant (resp. right K-invariant, resp. bi-K-

invariant) if f(Kg) = f(g) (resp. f(gK) = f(g), resp. f(KgK) = f(g)). Any bi-K-invariant
function on G is completely determined by its restriction to D*. Hence for any bi-K-invariant
function f on G, there is a function f on [1,00) such that f(g) = f(||gll), g € C.

For any A € R we define a character x, of T by

a b Y
X (O a1> -
and the function ¢y: G — R* by

ealg) = xalt(g), ge€G. (6.32)

The function ¢, has the property

pa(kgt) = xa(t)palg), 9€G keK teT, (6.33)
and it is completely determined by this property and the condition ¢,(1) = 1.

Definition 6.8. For ¢ € G and a continuous action of G on a topological space X, we
define the operator A, on the space of continuous functions on X by

(A)@) = [ Flgka)doh), o X (6.34)

where ¢ is the normalized Haar measure on K, or, using the parametrization of K, by

A)a) =5 | Flaklpa)ds, o e x.

The operator A, is a linear map into the space of left K-invariant functions on X. If
X = G and G acts on itself by left translations, then A, commutes with right translations.
From these two remark we get that

Agor(kgt) = Agpa(gt) = Ag(ox(-))(9) = xa(H) Agpr(9) (€ G, keK, teT),
i.e. Ay, has the property (6.33). Hence ¢, is an eigenfunction for A, with the eigenvalue
def
nle) 2 eV = [ erlghdoth) = [ alok)do).  (639)
K K

We see from ((6.35)) that 7, is obtained from ¢, by averaging over right translations by
elements of K. But ¢, is left K-invariant and A, commutes with right translations. Hence
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the function 7, is bi-K-invariant and it is an eigenfunction for A, with the eigenvalue 7,(g),
that is

(Agra)(h) = Ta(g)Ta(h) forall he G. (6.36)
We have that

oa(g) = llgeal ™, g € G, er =(1,0), (6.37)
where ||-|| denotes the usual Euclidean norm on R?. Indeed

oa(9) = xaltg) = lt(g)erl| ™ = Ik(g)t(g)er]| ™ = llger] ™

From ((6.35)) and ([6.37)) we get

1 2w
= [ lgker | dotk) = - [ lgk0)er| o
K 0 (6.38)

1 27 ' B B
— 5 [ lateostusing)| > as = [ flgul *attw)
0 St

where S is the unit circle in R? and ¢ denotes the normalized rotation invariant measure
on S'. One can easily see that ||gu||™2, g € G, u € S, is equal to the Jacobian at u of the
diffeomorphism v +— gv/||gv|| of S* onto S*. On the other hand, it follows from the change

of variables formula that
1-)
/ Jf - / Jf 1 7

where f: M — M is a diffeomorphism of a compact differentiable manifold M and Jy (resp.
Jy-1) denotes the Jacobian of f (resp. f~!). Now using (6.38)) we get

2(9) = Toa(g7) = 7-x(9), g € G, N €R. (6.39)

The second equality in (6.39) is true because 7, is bi-K-invariant and ¢! € KgK. Since,
obviously, 79(¢g) = 1, it follows that

72(9) = mo(g) = 1. (6.40)

Since ¢t~ is a strictly convex function of A for any ¢ > 0,t # 1, it follows from - that
7x(g) is a strictly convex function of A for any ¢ € G. From this, (6.39)) and (6.40 - we deduce
that

7,(9) < 7a(9) forany g ¢ Kand 1 <np< X <2
7,(9) <land 7\(g) >1 forany g¢ K, 0 <n<2,A>2, and (6.41)
7,(9) < TA(9) forany g ¢ K, A>2,0<n <A\ (6.42)

Since the function 7,(g) is bi-K-invariant, it depends only on the norm ||g|| of g. Thus, we
can write

nlg) = 0allgl), 9 €G, (6.43)

where for a > 1

() = 7 (dy) = /K |daker]| > do(k) = % /O ' : LA S (644)

a2 cos? § + a=2sin? §)>/2
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In view of (6.36]) and the definition of A,, we get

/ Allghdal)) do(k) = ma(9)in(a), g€ Gra> L. (6.45)
K
Since ||g|| = [|lg7*|| for all g € G,

“ 7S < |lgkda|| < allgll

for all £ € K and g € G. From this, (6.41)) and (6.45) we deduce that, for any A > 2,
the continuous function 7)(a),a > 1, does not have a local maximum. Hence 7, is strictly
increasing for all A > 2 or, equivalently,

ma(g) < mah) it llgl < [IBll, g.h € G, A> 2. (6.46)
Using (6.39) and - 6.44]) yields
1 2
\(0) = aala) = o / (a2 cos? 0+ a2 sin )31 do. (6.47)
T Jo

Since a2 cos? § < a®cos? 6 + a~?sin? 0 < a?, we deduce from (6.47)) the estimates

c(N)a*? < A(a) <aE a>1, A > 2, (6.48)
where
1 o o [m/2 B(AL 1) p(ist
() = —/ cos B2 df = —/ cosoy2ag — 2zes) - T )
27 J, 7 Jo T L(5)y/m

)
B denotes the beta function. Here we have used the identity B(z,y) = I'(x)I'(y)/T'(x + y)
as well as I'(1/2) = \/m. From ((6.47)) we also conclude that for any A > 2 the ratio ak( 9 is a
strictly decreasing function of a > 1 and

lim
a— 00 a,)‘ 2

= ¢(N). (6.50)

We note that the constant ¢(A) is usually referred to as Harish-Chandra’s c-function and it
is well-known that its value is given by (6.49), see [Hel00|, Introduction Theorem 4.5, or
|[Lan85|, Chapter V §5.

Lemma 6.9. Let g € G,g ¢ K, A >2,0<n < X\ b>0,B >1, and let f be a left
K-invariant positive continuous function on G. Assume that

Agf <ma(9)f + b7y (6.51)

and that
flyh) < Bf(h) if h,yeG and |yl <|gl. (6.52)
Then for all h € G

(Anf)(1 /f (hk)do(k) < sta(h),

where
b
s=b (f W+ o= Tn<g>) | (6:53)
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Proof: We define
h ¥ /f(hk:)da(k:), heG.
K

Since A, commutes with right translations, and 7, is right K-invariant, it follows from ((6.51))
that A, fx < 7a(9)fx + b7,. If h and y are as in (6.52), then f(yhk) < Bf(hk) for every
k € K and therefore fx(yh) < Bfk(h). On the other hand, it is clear that

fr(h) = (Anfi)(1) = (Anf)(1).

Thus we can replace f by fx and assume that f is bi-K-invariant. Then we have to prove
that f < s7\. Assume the contrary, then f(h) > s'7\(h) for some h € G and s’ > s. In view

of 622 and (§53), &' > s > Bf(1). From this, (6.46) and (§52) we get that [[h]| > [|g]

and .

S .
flyh) > Zoyh) iyl < llgll and lyAll < [|A]l. (6.54)

Using the Cartan decomposition, we see that any = € G with Hh” < |lz]| < ||h]| can be
written as © = kyyhks, where ki, ko € K, [ly|| < ||g]| and [|yh] < ||h]|. (In fact, if x = ksd, k4
and h = ksdpykg with a,b > 1, ks3,..., ks € K, then we can take ky = k3, ko = kg1k4 and
y = daycks ', where |ly|| = ¢/a.) But the functions f and 7, are bi-K-invariant. Therefore it
follows from that

F@) > Grata) it o< el < D) (6.55)
Let

def b ot > f(1) + b and
Ay = ———, A\ = — ———
" onlg) —m) T B

def
w = f—a\xt\+ ayT,.

In view of (6.36]) and (6.51]), we see that

Ajw —a(g)w = Ay(f — axta + ay7y) — Ta(9)(f — axmn + a,7y))
= [Agf — 7a(9)f] — ax[Agma — Ta(g) 2] + an [Ang - TA(Q)TU] (6.56)
< b7y + ay [1y(9)7) — a(g)] = 0.

Since 75(1) = 7,(1) = 1, we have
w(l) = f(1) —ax+a, <O. (6.57)
It follows from that a, > 0. Using additionally and , we get that
w(2) = () — ana(@) + ayry () > f(z) — arma ()

s . H I
>(S—a )@ =0 if < =l < |R]-
(B ) llgll

Let v € G, satisfying [|v]| < ||h||, be a point where the continuous function w attains its

minimum on the set {x € G : ||z|| < ||h||}. It follows from (6.57) and (6.58) that

h
ww) <0 and |jv]] < U

g1

(6.58)
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Because of 7,(g) > 1 and ||gkv|| < ||g||||v] for all £ € K we conclude

(Agw)(v) = /Kw(gkv) do(k) > w(v) > 1a(g)w(v).

Thus, we get a contradiction with (/6.56]). [
As a special case (n =2 and b = 0) of Lemma [6.9, we have the following

Corollary 6.10. Let g € G, g ¢ K, A > 2, B > 1, and let f be a left K-invariant positive
continuous function on G satisfying the inequality (6.52)). Assume that

Agf < TA(Q)f-
Then for all h € G
(A1 / f(hk) do(k) < BF(1)rs(h).

Lemma 6.11. Let g€ G, g ¢ K, 2< A< pu, B>1, M >1,neNtandlet f;, 0<i<n,
be left K-invariant positive continuous functions on G. We denote min{i,n — 4} by ¢ and

> o<i<n Ji DY f. Assume that
filyh) < Bfi(h) if 0<i<n, hyeG and [jy| <|lgll,
Agfi STA( )fz+M maX V Ji- jfl-‘r]) 0<i<m, (659)

so in particular A,fy < 7a(g)fo and Agfn < 72(9)fn- Then there is a constant C' =
C(g, A\, i, B, M,n) such that for all h € G,

(Anf)(1 / f(hk)do(k) < Cf(1)1.(h). (6.60)
Proof: For any 0 < e <1 and 0 <i <n we define
fie =19 f where q(3) o i(n —1).

Using the inequality (6.59)) for all 7, 0 < i < n, we see that

Agfic = — gfz < g ) fi + 90 M max \/g_q(i—j)fi_j,sg_qu-i-j)fi_,’_jﬁ

0<]<1

= ( )fze‘f‘Mgile{Z&?q() Q[q(l DFali+i)] fz ]afz—l—]e

Direct computation shows that

Hence for all 7, 0 < i <n,
Agfic <Ta(9)fie +eM max ficjefitie- (6.61)
IS
Let f. = > o<icp fier Summing (6.61) over all 4, 0 < i < n, and using the inequalities
fe > \/[fi—je firje» which are satisfied for any 1 <i <n—1,0< j <1, we get

Agfe= > Agfic Smalg)f- +eM(n—1)f. = (talg) + eM(n — 1)) f-. (6.62)

0<i<n
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Write

€0 :min{l,%}

in order to get from ((6.62)) that
AngO S TH(Q)fEO’

Since f. also satisfies (6.52]), we can apply Corollary to f., and get that

(ARf)(1) < g™ (Anfey)(1) < g™ foo (D Tu(h) < £5™ BF(1)7u(h)

2

for all h € G. Hence is true with C' = ¢;™ B. O

Proposition 6.12. Let g € G, g ¢ K, d € N*, B > 1, M > 1. For every 0 < i < 2d,
let \; > 2 and let f; be a left K-invariant positive continuous function on G. We denote
min{i,2d — i} by i and Y5 ;o4 fi by f. Assume that

Ag > N; forany i #d,

filyh) < Bfi(h) if 0<i<2d, h,yeGand [ly| <llgl, (6.63)
Ay fi <1 (g )fZJrMmax V ficifirj, 0<i<2d, (6.64)

in particular,

Agfo < a(9)fo and Ay fag < Tay,(9) foa-
Then, we have that

(a) Forallh e Gand 0 <i<2d, i #d,

(Anf)(1 /fl (hk) do (k) < f(1)m(h),
where

n=Mx—3" VN —7) < Xg, 7 =max{\:0<i<2d,i#d}. (6.65)

(b) For all h € G
(Auf)(1 !/thﬁ)<ﬂﬁm>

(c) Forall h e G
(A1) = [ F0kydo(k) < SO,
Here the notation < means (until the end of the proof of this proposition) that the left

hand side is bounded from above by the right-hand side multiplied by a constant which
depends on g, A, ..., Aoq, B and M, and does not depend on fy, ..., faq.

Proof: (a) Let
fix(h) o /fi(hk) do(k), heaG.
K
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The Cauchy-Schwarz inequality implies

/\/fz _i(hk) £y (hE) do(k \// fiej(hk) dor( )\//K Firy(hE) do (k)

= \/fifj,K(h)fiJrj:K(h)'

Hence

max \/ fi_j(hk) s (k) dor(k) < Y / \/ Fimi () fis (k) dor (k)

K0<j<’L 0<j<i
< Z \/fi—j,K(h)fi—i-j,K(h)
0<j<i

< d max \/fi_j,K(h)fi+j,K(h)~

0<5<t

On the other hand, we have

(Ayfix)(h) = / (A, £,) () dor (k)

and according to (6.64])

(Agf)(0k) < 7, (9) Fi(hR) + M max \/ fioj () s (k).

0<5<

Therefore

Agfix <7\ (9) fix +dM max \/ JicjxJirix-

But fk(1) = f(1),
fix(h) = (Anfix)(1) = (Anfi)(1)
and, as easily follows from , we have
fix(yh) < Bfix(h)

if h,y € G, and ||y|]| < ||g||. Thus, replacing f; by f;x and M by dM, we can assume that
the functions f; are bi-K-invariant. Then we have to prove that

fi< f(l)r, forall 0<i<2d, i#d. (6.66)
Let ' = max{\; : 0 <i < 2d,i # d}, as in . We define p;, 0 <7 < 2d, by
ta = g+ 37N\, —7) and (6.67)
pi=pg—3"(A—n), 0<i<2d, i#d. (6.68)
Since together with pg > Ag > A; > 2 implies 7y, (g9) < 7,,(g), it follows from Lemma

[6.11] that
fi < ()7, 0<i<2d. (6.69)

One can easily check that n > p; > A; > 2 and therefore 7,, > 7, for all 0 <1 < 2d,7 # d.
Thus, to prove , it is enough to show that

fi < f(U)r, forall 0<i<2d, i+#d. (6.70)
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We will prove for « < d — 1 by using induction in ¢; the proof in the case i > d + 1 is
similar. For i = 0 we have 7,,(g) > 7,(g) because of and thus it is enough to use
Corollary [6.10} Let 1 < m < d — 1 and assume that (6.70)) is proved for all i < m. Using
for all 0 < 7 < m we find that

V =i fmti < f(l)\/ Thin—; Tia = f(l)\/ T Tpg <K f(l)T(um—1+ud)/2' (6.71)
Note that the second inequality in (6.71)) follows from ((6.42)) and (6.68)), and the third one

follows from ((6.43 and -
Combmmg and (6.66) we get

Agfm S T)\m (g)fm + Cf(1>T(Mm—1+Md)/27

where C' < 1. On the other hand, we have \,, < u,, and
(,um—l + :ud)/2 < Um

by (6.67) and . Now, to prove that f,, < f(1)7,,, it remains to apply Lemma
comblned with ( -
(b) As in the proof of (a), we can assume that the functions f; are bi- K-invariant. Then

we get from - and - ) that
Agfd < TAdfd + Df(l)Tm

where D < 1. Since 77 < )\d, Lemma implies that f; < f(1)7,, which proves (b).

(¢) Follows from (a), (b), (6.42)), (6.43) and (6.48). O

6.2.2 Quasinorms and Representations of SL(2,R)

We say that a continuous function v — |v| on a real topological vector space V' is a quasinorm
if it satisfies the following properties

(i) |v| > 0 and |v| = 0 if and only if v = 0,
(ii) [Av| = A |v| forall A€ R and v € V.

If V is finite dimensional, then any two quasinorms on V' are equivalent in the sense that
their ratio lies between two positive constants.

Lemma 6.13. Let p be a (continuous) representation of G = SL(2,R) in a real topological
vector space V), let |-| be a p(K)-invariant quasinorm on V and let v € V,v # 0, be an
eigenvector for p corresponding to the character x_,,r € R, that is

Then for any g € G and g € R
p(g)0] ™" = @ae(9) 0] 7, (6.72)

where g, is defined as in (6.32)), and
do (k)

¢ gk )l = 75,:(9) Jv| " (6.73)
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Proof: Using the p(K)-invariance of | - | we get that
p(9)0]™" = [p(k(9)p(t(9))0] ™" = |p(t(9))v] ™" = [x—r(t(9))0] ™ = Xpr(t(9)) 0] "
= () [0
The equality (6.73)) follows from (6.72)) and from the definition of 74,(g), see (6.35)). O

Let ||z]| denote the norm of z € C? corresponding to the standard Hermitian inner product
on C?, that is
121* = ll2l* + [lyllI*  where 2 =z + iy, =,y € R™.

Lemma 6.14. For any z € C2, 2 # 0, g € G and 8 > 0, we have

[ Hijjz’?ﬁ < 15(g). (6.74)

def
F(2) = Fys(z) = ||2]7

Proof: Since the measure ¢ on K is translation invariant, we have
F(kz) = F(z) for any k € K. (6.75)
Also for all A € C, A # 0, and z € C2,z # 0,
F(\z) = F(2), (6.76)

because ||Av|| = |A|-||v]|, v € C?, and because G = SL(2,R) acts C-linearly on C?. Any
nonzero vector x € R? can be represented as x = Ake; with A € R, k € K, ¢; = (1,0). Then,

using (6.38)) from Section [6.2.1} we get from (6.75)) and (6.76]) that
F(x) = F(e)) = 75(g) for all x € R* z # 0. (6.77)

lzoll

Let now z = z + iy, z,y € R?, 2 # 0. We write ez = xy + iyp, 9, y9 € R?. Then oo 18 a

continuous function of § with values in Rs U {oo}. But €™/2z = iz = —y + iz and therefore

-1 .
o2l (% . Hence there exists 6 such that ||ag|| = |lye||. Replacing then z by ez
6.76)

||y71'/2|| -
and using (| we can assume that ||zg|| = |lyg||. Now using the convexity of the function

t —t7/2 ¢ >0, and the identity (6.77) we get that
do(k) / do(k)
K

Tok=l? = S TgkalP + lgkyl2P
27h/? { do (k) do (k) } _ 277 {Tﬁ(!}) Tﬁ(g)] (6.78)
< e Tgralr t e Tomi?) = 2 el TP
- 1 _ 1 73(9)
— 9-h8/2 = _9B/2 . _ T8\9)
) B O IR P

Clearly the last inequality (6.78]) implies (6.74)). O

Let us recall some basic facts of the finite-dimensional representation theory of G =
SL(2,R). Let W be a finite-dimensional complex vector space, there is a correspondence
between complex-linear representations of s[(2,C) on W and representations of G on W,
under which invariant subspaces and equivalences are preserved (see [Kna01| Proposition 2.1).
It is well-known that any finite-dimensional representation of sl(2, C) is fully reducible, that is,
it can be decomposed into the direct sum of irreducible representations (see [Kna02] Corollary
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1.70). Moreover, for each m > 1 there exists up to equivalence a unique irreducible complex-
linear representation of s[(2,C) on a complex vector space of dimension m (see [Kna02|
Corollary 1.63). Hence, any finite-dimensional representation of G is fully reducible and any
two irreducible finite-dimensional representations of the same degree must be isomorphic.
Let P,, denote the (m + 1)-dimensional complex vector space of complex polynomials in
two variables homogeneous of degree m, and let 1, denote the regular representation of
G = SL(2,R) on P,, defined by (¢,(9)P)(z) = P(g7'2),forg € G,z € C>and P € P,,. It is
well-known that the representation 1), is irreducible for any m (see [Kow14] Example 2.7.11)
and hence it is, up to isomorphism, the unique irreducible finite-dimensional representation
of G of degree m. We define

I(p) = {m € Nt : 4, is isomorphic to a subrepresentation of p }.

Proposition 6.15. Let p be a representation of G = SL(2,R) on a finite-dimensional
space W. Then there exists a p(K)-invariant quasinorm | - | = |- | on W such that for any
weW w+#0,g€ Gandf >0,

1
max {Tgm —
/ " gk w‘ﬂ e ()

Proof: Let W = @;_, W, be the decomposition of W into the direct sum of p(G)-irreducible
subspaces, and let m;: W — W, denote the natural projection. Suppose that we constructed
for each i = 1,...,n a p(K)-invariant quasinorm |- |; = | - |,, on W; such that for any
weW,w#0,9g€ G, and g >0,

do(k) 1
K |pi(gk)wl; jwl;
where p; denotes the restriction of p to W; and m(i) € I(p) is defined by the condition that
Uiy is isomorphic to p;. Then we define |w| = |w|, by
ol = oo )l w € V. (6:50)

Clearly |- |, is a p(K)-invariant quasinorm. Let us fix now w € W, w # 0. Then

/ lp(gk w|5 1<7,<n/ mi(p )w e, K | i gk: 7Tz ’B

1
< min T, g—gmax Tam(g)j—=.
1<i<n pm ()( >’7Tz(w)|f mel(p) {ﬁ ( >}‘w‘5

Thus, it is enough to prove the proposition for representations ¢,,,. For this, let P € P,,, P # 0.
We consider P as a polynomial on C? and decompose P, using the fundamental theorem of
algebra, into the product of m linear forms

P = gl ot gm, where 61(21, 22) = a;z21 + biZQ, a;, bizl, 29 € C.
There is a natural K-invariant norm on the space of linear forms on C?:

10017 = |a|*> + |b]?, €(21,22) = az; + bz,
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Now we define a quasinorm on P, by the equation
[Pl = [lex]| .- [[€mll. (6.81)

This definition is correct because the factorization (6.81)) is unique up to the order of factors
and the multiplication of ¢;, 1 < i < n, by constants. We denote by ¢, the extension of ¢,
to the space of linear forms on G. It is isomorphic to the standard representation of G on
C?. Then using Lemma and the generalized Holder inequality, we get that

dO‘ 1/m
NS <
wm gk Pw / T gHHﬁ_H(/ 191 gwrw)
e TBm T,Bm(g)
<H(||£ ||ﬁm) ~ PP

Since () = {m}, (6.82)) implies (6.79)) for p = ¢,. O

We recall from Section [6.2.1] see (6.41)) and (6.42)), that 7,(¢9) < 1 and 7,(g) < T\(g) for
any g ¢ K, 0 < p <2, A>2and0 < n < A Using this, we deduce from the previous
Proposition [6.15] the following corollary.

(6.82)

Corollary 6.16. Let p be a representation of G = SL(2,R) in a finite dimensional space
W, and let m be the largest number in /(p). Then there exists a p(K)-invariant quasinorm
|-|=1-], on W such that

(i) if 8 > 0 and fm > 2 then for any w € W, w # 0, and g € G
1
= m\d)7T 13>
/Ip gkl = <)Iw|5
(i) if 8 > 0 and fm < 2 then for any w € W, w # 0, and g € G, g ¢ K,

1
K |p( gk wlﬁ lw|?

6.2.3 Estimates of Special Functions on the Space of Lattices

Let p be a representation of G = SL(2,R) on R™ and for each 1 <1 < nlet | - |; be a
(A'p)(K)-invariant quasinorm on the exterior product A'R™. Throughout this section the
underlying quasinorms in the definition of the lattice functions «; and « are taken to be
with respect to this particular choice of quasinorms, see and . For every compact
subset A C G note that

Nep)(h)vl; )
sup{% cheAjve N'R" v # 0}
V4
— sup{|(N'p) ()]s : h € A0 € AR, [u]; = 1}
is finite for every i,1 < i < n. Hence, if we fix g € G, g ¢ K, then there exists some B > 1
such that for any i,1 <i <n, and v € A'R", v # 0,

B*1<M<B

) if y € G and [ly] < [g]l (6.83)
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where ||h| = ||| denotes the norm of h € G = SL(2,R) with respect to the standard
Euclidean norm on R%. Now, let A be a lattice in R™ and L a A-rational subspace, i.e. LN A
is a full-rank lattice in L. For any h € SL(2,R) observe that hL is an hA-rational subspace
and if vy, ..., v; is a basis of AN L then hvy, ..., hv; is a basis of hA N AL. This observation
together with implies that

dya(yL)
da(L)

Hence, for any i € {0,...,n} it follows that

B < < B ifyeGand |y| <|g]- (6.84)

ai(yd) < Bag(d) if y € G and [yl| < gl (6.85)

For any 3 > 0 and 1 <4 < n we define the functions F; 5 on A'R™\ {0} by

dof / ’w’ﬁ (k), we AR w0

F; do(k), w ,w # 0.
o (A p) gkl

It is clear that the functions F; g are continuous and that F; g(Aw) = F; g(w) for any A € R,

A#0.Let cpp:=1and for 1 <i<n

Ci g o sup{F; s(w) : w € N'R",w # 0} = sup{F; 3(w) : w € A'R"|w|; = 1}.  (6.86)

We note that ¢, 5 = 1, since the image of any continuous homomorphism SL(2, R) — GL(n, R)
is contained in SL(n,R). (In fact, composing any continuous homomorphism SL(2,R) —
GL(n,R) with the determinant map GL(n, R) — R* gives a continuous homomorphism
f:SL(2,R) — R*. Since SL(2,R) is connected, the image f(SL(2,R)) lies in Rso. As
R.o ~ R topologically and algebraically, the map f is trivial, because any continuous
homomorphism SL(2,R) — R is already the trivial homomorphism. The last statement can
be easily checked by using the Iwasawa decomposition.)

Lemma 6.17. For any 7, 0 < i <n,

2
Ajal < ¢ 30’ +C°B ﬁSE% of ol (6.87)

where ¢ = min{i,n — i}, the constant C' > 1 is from Lemma and the operator A, is
defined by (6.34) from Section [6.2.1]

Proof: Let A be a lattice in R". We have to prove that

/ al-(gk;A)B do(k) < ci,ﬁai(A)ﬁ + CP B max \/ai,j(A)Baiﬂ(A)ﬁ. (6.88)
K

0<j<i
There exists a A-rational subspace L of dimension i such that

1
da(L)

Let us denote the set of A-rational subspaces M of dimension i with da(M) < B?da(L) by

;. For a A-rational i-dimensional subspace M ¢ ¥, we get from ((6.84]) that

dgkA(ng) > dgkA(gk‘L).
115



Chapter 6 Appendix B

If ¥; = {L}, then it follows from this and the definitions of «; and ¢; g that
[ autakay doth) < cigai(a)’. (6.90)
K

Assume now that ¥; # {L}. Let M € ¥;, M # L. Then dim(M + L) =i+ 5,0 < j < i.
Now we obtain by (6.84]), (6.89) and Lemma [3.6] for any k& € K that
B CB?

\/ dA \/dA (LN M)da(L + M)

< 032\/ai_j(A)ai+j<A).

a;(gkA) < Ba;(A) =

Hence, if ¥; # {L},

/ 0i(gkAA)’ do(k) < O7 B2 max \fa_, () a (A (6.91)

0<j<i

Combining and (6.91)), we get ([6.88]). O

Theorem 6.18. Let d € N and let p; be a representation of G = SL(2,R) isomorphic to
the direct sum of d copies of the standard 2-dimensional representation. Let S be a positive
number such that Sd > 2. Then there is a constant R, depending only on § and the choice
of the K-invariant quasinorms | - |; involved in the definition of «;, such that for any h € G
and any lattice A in R??

(Ana®)(A) :/Ka(hkA)dea(k) < Ra(A)?||n|P4=2.

Proof: As in Section [6.2.2) we define for a finite dimensional representation p of G
I(p) = {m € N* : 4, is isomorphic to a subrepresentation of p},

where 1, denotes the regular representation of G in the space of complex homogeneous
polynomials in two variables homogeneous of degree m. Let m; be the largest number in
I(N'pq), 1 <i < 2d. Tt is well-known that

m; =i < min{s, 2d — i}. (6.92)

We fix g € G,g ¢ K. It follows from (6.92) and from Corollary that we can choose
quasi-norms | - |[; on A'R?? in such a way that for w € A'R*, w # 0,

/ |w|ﬁ dol) < T5i(g) if Bi > 2
|(Aipa)(g)w]? ~ |1 if Bi < 2.

cip <7g(g) if Bi>2 and ¢z<1 if fi<2. (6.93)
where ¢; 5, 1 < i < 2d, is defined by (6.86) and ¢y3 = 1. As a remark, we notice that
cip = Tai(g) if Bi > 2.

According to Lemma , the functions af , 0 <1 < 2d, satisfy the following system of
inequalities

Hence

Ayl < ¢igal +CPBY gg;aé fjafﬂ.. (6.94)
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Let
A Y omax{2,8i}, 0<i<2d (6.95)

Since 15(g) = 1, see (6.40]) in Section [6.2.1], it follows from (6.93))-(6.95)) that

Ajaf <7\ (g)a? + C°B* max affjafﬂ, 0<i<2d. (6.96)
0<j<i

Now we fix a lattice A in R?? and define functions f;, 0 <1 < 2d, on G by
fi(h) = as(hA)?,  h e Q.
Then it follows from that
Agfs S 7 (9)fi+ CPBY max \/ficifivy, 0<i<2d
On the other hand, in view of ,
filyh) < Bfi(h), if 0<i<2d, hyyeG and |yl <]l

Since fd > 2, we have that Sd = Ay > \; for any ¢ # d. Now we can apply Proposition [6.12
(c) in order to get that

(Aa®) (D) < (An Y al)(A) = (A Yo D) < (Y @) [nlPe?

0<i<2d 0<i<2d 0<i<2d (6.97)
= (D a(A))IR]P? < 2da(A)7[|R] %2,
0<i<2d

The inequality (6.97) proves the theorem for our specific choice of the quasinorms | - |;. Now
it remains to notice that any two quasinorms on /A\'R" are equivalent. ]
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CHAPTER 7

Appendix C

7.1 Integer-valued Quadratic Forms

In the following we summarize some essential results on small zeros of integer-valued quadratic
forms and revisit Schlickewei’s work [Sch85|, including a complete derivation. These norm-
bounds (depending on the signature of @) for isotropic vectors will be used together with
our effective equidistribution results, resp. our extension of the Birch-Davenport approach,
in order to obtain the quantitative versions of the Oppenheim conjecture stated in Theorem
[L.9 and Theorem [1.6l

Here we shall suppose that
d

A[I‘] = Z Qi ;T 5
ij=1

is an indefinite quadratic form in d variables and A is a full-rank lattice in R such that
A[m)] takes integral values on A. Tt is well-known that such form represents non-trivially zero
on A if the rank of the associated matrix A is at least 5. Meyer |Mey84] was the first who
proved this (reformulated for A = Z¢) using elementary arguments. Nowadays this result
is usually deduced from the Hasse-Minkowski theorem, which is a local-global principle: A
rational form A represents zero non-trivially over QQ if and only if it represents zero over
any completion of Q, i.e. over the field Q, of p-adic numbers for all p € P and over R (see
|Ger08|, Theorem 5.7). Since A is isotropic over all Q, for p finite, provided that A is regular
and d > 5, Meyer’s Theorem follows immediately (see |Ger08|, Corollary 5.10). In contrast,
it is possible that an indefinite integral form in four variables does not represent zero.

7.2 Schlickewei’s Work on Small Zeros of Integral Quadratic Forms

Similarly to the result of Birch and Davenport [BD58b| on diagonal forms in five variables,
our quantitative bounds depend essentially on explicit bounds for small zeros of integral
forms as well, since our argument depends on rational approximations that are ’close’ to
scalar multiples of Q. First bounds of this kind were proved by Cassels [Casb5| based on a
geometric argument using Minkowski’s theorem on successive minima. Birch and Davenport
[BD58¢| improved Cassels’ result as follows: If d > 3 and A[m] admits a non-trivial zero on
the lattice A, then there exists an isotropic m € A\ {0} with Euclidean norm

0 < ml < 74~ (2 Tk A%)@ D/ (det AY, (7.1)

where 74 denotes Hermite’s constant in dimension d. This bound is essentially best possible
in view of an example by M. Kneser if A has signature (n — 1,1), see [Casb6|. On the
other hand, a result of Schmidt [S79a] may lead us to expect that can be improved
by considering rational isotropic subspaces. In fact, Schlickewei |[Sch85| proved that the
dimension, say djy, of a maximal rational isotropic subspace influences the size of possible
solutions essentially as follows.

Theorem 7.1 (Schlickewei [Sch85]). Let A be a d-dimensional lattice and A a non-trivial
quadratic form in d variables taking integral values on A. Also let dy > 1 be maximal such
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that there exist linearly independent lattice points my,...,mg, € A with the property that

A vanishes on the linear subspace generated by m;, ..., mg4,. Then there exist such points
my,...,mq, € A satisfying
([[ma]| . . . [|ma, ||)? <q (Tr A2)d=40)/2(det A)2. (7.2)

In the same way as Birch and Davenport |[BD58c| deduce their Theorem B from their
Theorem A, we may conclude

Theorem 7.2 (Schlickewei [Sch85|). Let F,G # 0 be quadratic forms in d variables and
suppose in addition that G is positive definite. Let dy be maximal such that F' vanishes on
a rational subspace of dimension dy. Then there exist dy linearly independent lattice points
mi, ..., mg, € Z% such that F vanishes on the corresponding subspace and

Glm] -+~ Glma,) <a (Tr(FG™1)?)@=10)/2 det G,
where the implicit constant depends on d only.

Additionally, Schlickewei derived also the following lower bound for the dimension of
a maximal rational isotropic subspace in terms of the signature (r, s), compare with Hilfssatz
of Section 4 in [Sch85]. We shall reproduce his proof of (7.3), which relies on an induction
argument combined with Meyer’s theorem, as well.

Theorem 7.3. Suppose that A takes integral values on A and that A has signature (r, s;t)
with » + s + ¢t = d. Moreover, let » > s. Then A vanishes on a subspace of dimension at

least dj, generated by linearly independent lattice points my, ..., mg, € A, where
s+t ifr>s+4+3
dgy><s+t—1 ifr=s+2orr=s+1. (7.3)

s+t—2 ifr=s

Obviously, a straightforward combination of the upper bound together with Theorem
[7.1]yields explicit bounds on the smallest non-trivial isotropic vector. However this application
can be improved in the cases r = s + 2 and r = s by reducing the problem to dimension
d — 1 as done by Schlickewei in Folgerung 3 of [Sch85|: He proved that for any integral
quadratic form A with signature (r, s) there exists an isotropic lattice point m € Z%\ {0}
such that ||m||? <4 (Tr A?)?, where p is defined as in by

%g forr>s+3
p=p(r,s):=Q3E forr=s+2orr=s+1.
%zf—l forr=s

We will extend this result to general lattices leading to the following strengthening of (7.1)).

Corollary 7.4. Let A denote a non-singular quadratic form with signature (r,s) in r + s =
d > 5 variables, which takes integral values on A only. Additionally suppose that |det(A)| > 1
and Tr A% > 1, then the smallest non-trivial isotropic vector m € A of A satisfies the bound

2 2 do42
0 < ||m|* <a (Tr A%)? [det A| "7, (7.4)

where p is defined as in ((1.4)).
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Remark 7.5.

(a) We recall the second part of Remark [I.5} Compared to (7.1)), the exponent in (7.4) is
smaller for a wide range of signatures (r, s) and in the cases, where the exponent is
larger, we can restrict A by setting certain coordinates to zero to arrive at least at
the result of the case d = 5. For example, if one has r ~ s, then 2p ~ 1 and therefore
(2p+1)/d ~2/d.

(b) In a series of papers [S85; Sch85; [SS88| Schlickewei and Schmidt have shown that
the above-mentioned bounds are - in most cases - best possible. More details on the
optimality of these bounds were already mentioned in Remark [I.4]

Proof of Theorem [7.1: Let my,...,mg, € A be a basis of a dy-dimensional subspace on
which A vanishes. Additionally, we suppose that this basis is chosen such that

[my Ao Amg||* = det({(my,mj) 2d,5 =1,...,do)

is minimal. Here, (-,-) denotes the standard euclidean inner product on R¢. (Note that
the minimum is attained, because the above norm takes values in a discrete set. In fact,
if we write A = GZ* with G € GL(R, d), then the dy-th exterior power of G is invertible
with inverse A%, (G—) and thus ||(A%, G| > [|A% (GH)||7 v for any v € AP, R%)
Moreover, for notational simplicity we write

A det((mg,my) i 5 =1,...,do)"2 (7.5)
Let M denote the subspace, respectively A, the lattice, generated by my, ..., mg,, and
Mt ={zx eR?: (my,z) =0Vi=1,...,dy} the orthogonal complement of M. By choice,
the volume of a fundamental domain of Ay, is the determinant A. Furthermore, we denote

by A+ the (d — dy)-dimensional lattice arising as the projection of the lattice A onto M*.
According to ((7.5) we have

det(A) = det(Ag, ) det(A) = A det(Ah). (7.6)

Now we may use Minkowski’s convex body theorem (see |Cas97|, Section II1.2.2) and see
that there exists a non-trivial lattice point v € A+ satisfying

[v]] <q det(AL)Y =) — (det(A)/A)V/(d=d0) (7.7)
Therefore, there exist v € A and Ay, ..., \g, € R such that
u=MAmy+ ...+ Agymg, + 0. (7.8)

Since we have (x, Ay) = 0 for all =,y € M, the maximality of dy implies the existence of a
non-trivial point x € M, = M & Ru with

(2, Au) # 0. (7.9)

The points my, . .., mgq,, u generate a lattice Ay,1 C M, of dimension dy+ 1. Since v € M+,

we obtain from (7.5)), (7.7) and (7.8)) that

det(Agyy1) = Allv]| < A=) det(A)1/(d=do),
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The next step is to construct a dy-dimensional sublattice A’ of Ay, 41 such that A vanishes
on A’ and the determinant of A is bounded by

det(A) < Al=2/(d=do) qot( A)2/(d=do) (Ty A2)1/2, (7.10)

At this point we should note that this idea is essentially due to Cassels [Casb5|. Assuming
(7.10) we get in view of the minimality of A that

A &g APE7D) deg(A)2/ (4 d0) (Ty A%)12

In other words, we would obtain that

A <4 (Tr A%)d=d0)/4 det(A). (7.11)
This would already complete the proof, since Minkowski’s theorem on successive minima
implies that the successive minima nq, ..., ng, of Ay, satisty
Il llng, || =a A.

Thus, we are left to construct a lattice with ([7.10): We recall that A takes integral values
on A and hence 2(Az,y) € Z for all z,y € A, where we used the decomposition A[z + y] =
Alx] + 2(x, Ay) + Aly]. Especially, we may take the points

r=2xmy + ...+ 2x4mg, + vu = (221 + vA)my + ... + (224, + VAgy) Mg, + VU

with x1,...,24,,v € Z and y = u to get 2(z, Au) € Z. According to (7.8]) we also have

(x, Au) = v{v, Av) + Y (22; + 2)) (v, Amy).

i=1
Now let £ denote the (dy + 1)-dimensional lattice spanned by
my = 4my, ..., my = dmg,, v’ = 4\my + ..+ 4Xgyma, + 2v.

As we have seen, any point x = x1m) + ... + x4,my, + vu' of £ satisfies
(z, Av) = 2 (Zfil(2xi +20) (v, Amy) + v, Av)) = 2(S2% 22m; + vv, Au) € Z. (7.12)

Since we assumed that dy is maximal, there exists an z € £ with (x, Av) # 0. Let us fix a
point 4 € £ such that the map x — (x, Av) is minimal and positive, say with value a € N.
Obviously, this lattice point 4 has the property that

(,a ' Av) = 1. (7.13)

Now if z € £ and (x, Av) = gqa+r with 0 < r < a, then z— g4l € £ and thus (x—q¢il, Av) = r.
Since a > 0 was minimal, we see that r = 0. This argument shows that (z,a ' Av) € Z for
all x € £. Similarly, we see also that 4 must be a primitive lattice point in £. Hence, we
can extended i to a basis i, by, ..., by, of £. If we replace b; by b; — (b;, a ' Av)il, we get
(b;, Avy = 0 for all i = 1,...,dy as well. Here we used that (b;,a=*Av) € Z. In particular,
the lattice £ generated by by, ..., b4, lies in the subspace W determined by the condition

(x,a ' Av) =0, = € span(£) (7.14)
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and by, ..., by, is a basis of W. We also see that the point 4l has distance det(£)/ det(£') to
W. Since a~!Av is orthogonal to W, we conclude together with ((7.13)) that

det(£') = det(L)a"||Av]|. (7.15)

Recall that £ is generated by the basis 4my,...,4mg,, 4 \imy + ... + 4\g,ma, + 2v and
v € M*. Hence, using (7.5) and (7.7)), we conclude that

det(£) <4 Jv]|A <q ATV E=d)(det(A))H/ (o)
and in view of ([7.15)) together with ([7.7)) also that
det(£') < det(£)(Tr AHY2||v|| <q A d=d0) (det(A))%/ =) (Tr AZ)1/2, (7.16)

where we used that v/Tr A2 is the Hilbert-Schmidt norm of A. Denote by X} = S_%
y;u’ the successive minima of £'. Again, by Minkowski’s theorem we know that

= lxﬂm +

125 1%y, || =<a det(£). (7.17)
The linearly independence of X7,..., X, implies also that the points
%i :xljiml—l—...—f—xdwmdo —i—yzu, 1= 1,...,d0

are linearly independent. In fact, suppose that Zfil n;X; = 0. Then we have

Zn X, = 247%% -2 Zniyiv = —2Zniyz~v.

Since my, ..., mgy,, v are linearly independent, comparing the coefficients yields that

and thus n; =0 for all : = 1,...,dy. Note that by choice we have X; € A. In the same way,
using that v € M~ we find
1% = [|%3]]- (7.18)

Combining ([7.16|) together with ((7.17) and ([7.18]) yields

120 (1%, || < AT (det ()40 (T A2)1/2.

If we verify that A[x] vanishes on the subspace spanned by Xi,...,X,,, then the claimed
assertion follows: Let £” denote the lattice generated by Xy,..., X4,. Recalling that A was
chosen minimal, we get

120 1%, | < AT (det (A))2/ 1) (T A%)1/2

< det (€)'~ F0) (det(A))¥ (4D (T A%)1/2
S (IRl] (1% )72 (det (A)) 1) (T 42)1/2

and thus (7.2) holds. In order to show that A[z] vanishes on the subspace spanned by
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X1,...,Xg, it is sufficient to prove that
(X;,AX;) =0 Vi,j=1,....dp. (7.19)
To do this, note that X; can be rewritten as
X = (213 + My)ma + - (Tdgi + Adg¥i) My + Yiv.

Using this representation we find

do
1
(361-, A%k> = Y; (Z(a:k’j + )\kyj)<mk, A’U> + §yj <U, AU>>

k=1

do
1 Yijanr Yj e
+y; (Z({Em + Aryi) (my, Av) + §y¢<v, Av>) = Z(%j, Av) + Zj(%“ Av).

k=1

Since X},..., X}, € £ and (7.14) holds on £, both terms in the last line are zero. This
concludes the proof of ([7.19). O

Remark 7.6. The above arguments show the existence of an isotropic subspace of dimension
dy with small determinant, provided that there exists a dy-dimensional isotropic subspace.
In the Geometry of Numbers it is often the case that one can use the existence of a lattice
points satisfying some inequality in order to get several independent points satisfying a joint
inequality: Schlickewei and Schmidt [SS87; |SS89| proved the existence of d — dy + 1 many
isotropic subspaces I'y, ..., 'y_q, with the properties

1) ToNT; has dimension dy — 1 for each j =1,...,d — d,,
j
2) the union of I'y, ..., I'y_4, spans R™ and
0
(3) detTydetI'; < (Tr A2)(@=90)/2(det A)? for each j = 1,...,d — dy.

Clearly, the last inequality immediately implies Schlickewei’s result on small zeros of integral
forms. In addition, this extends (with dy = 1) Davenport’s work |[Dav71| and generalizes a
result of Schulze-Pillot [Sch83], which states that there exist d linearly independent isotropic
lattice points xg, ..., zq_1 with

l@ol|% 2| ... [|[wacs || < (Tr A2)@D*/2(det A)2FD),
In fact, one corollary of (3) is that the lattices Iy, ..., T'y_q, satisfy
(det Fo)d_do detT'y...dety_q, < (Tr AQ)(d_dO)Q/Q(det A)Q(d—do).

Proof of Theorem [7.3: Here, as usual, A denotes the symmetric matrix corresponding
to the quadratic form A[x]. According to the rank assumptions, we have dim(ker A) = t.
We may factorize A via m: R — R?/ker A. Note that any maximal isotropic subspace
in R?/ker A with dimension dy corresponds to a maximal isotropic subspace in R? with
dimension dy + t. Moreover, the image of the lattice A is also a full-rank lattice in R?/ ker A
and A takes integral-values on this lattice. Thus we can assume w.l.o.g. that t =0 and A
is not singular. Additionally, we may suppose that A = Z%: If A = BZ? with B € GL(d),
then the quadratic form M[m]| = 2A[Bm| has integral coefficients and by Sylvester’s law of
inertia also the same signature as A.
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Overall we are reduced to the case when A is a non-singular integral matrix with signature
(r,s) and w.l.o.g. 7 > s. Now we shall prove that A[z] vanishes on a rational subspace of
dimension at least
S ifr>s+3,
d s 1 ifr=st20rr=s5+1,
s—2 ifr=s.

Recall that by Meyer’s theorem any indefinite non-singular form with integral coefficients in
at least five variables represents zero non-trivially on Z?. Here, we have r + s = d > 5 with
r>s>0. Let 4; € Z%\ {0} be an isotropic vector of A. Because A is non-singular, there
exists B € Z¢\ {0} with

(U, AB)Y # 0.

Note that the subspace spanned by ; and B is a hyperbolic plane. Next we restrict A on
the subspace M; determined by

(X,AB) =0 and (X, Al;) =0,

which is (d — 2)-dimensional. Obviously, A is not singular on M, has signature (r —1,s — 1)
and A[z] takes integral values on M;NZ<. Thus,if s—1 > 0and r+s—2 =d—2 > 5, we can
proceed by using Meyer’s theorem again to get a second isotropic lattice point iy € M NZ2.
In view of we see that A[z] vanishes on span(i;, y). Repeated application of this
argument leads to the following cases:

(a) If r—s > 3, then we get in the n — 1-th application of our argument that the quadratic
form, restricted on the corresponding subspace, has signature (r — s+ 1,1). Because
of r —s+1 > 4 we can apply Meyer’s theorem in order to get another isotropic lattice
point. Thus A[x] vanishes on a rational subspace of dimension s.

(b) If r — s = 2, then we have in the n — 2-th step a quadratic form with signature
(r—s+2,2) = (4,2) and again we may apply Meyer’s theorem in the same way as
before. Thus, we see that A[z] vanishes on a rational space of dimension s.

(c¢) In the case r — s = 1 we get, as before, a (s — 1)-dimensional rational subspace on
which A[z] vanishes.

(d) If r = s, then the rational subspace, on which A[x] vanishes, has dimension s —2. [

Proof of Corollary[7.4): As can be checked easily, in the cases r > s+ 3 and r = s+ 1
the bound follows immediately by Theorem together with , since we have
d/dy < 2p+1 in these cases. If r = s or r = s+ 2, then this relation does not hold. Here we
fix a reduced basis vy, ...,v4 of A with ||v1|| < ... < jvg|| and

[det(A)] =a [[oal] .- - [[vall-

Let Ay := Zvy + ... + Zvgy_1, which is a d—1 dimensional sublattice of A, and note that
Hadamard’s inequality (for positive definite matrices), applied on BT B = (b; ;)1<i j<a With
B = (v1,...,v4-1), shows that

det(Ag) = (det(BTB)Y? < [T92] VV/orwe = [T0Z) [[oll-
In other words, we showed that |[vy A ... Avg_1] < ||vi]l ... ||va—1]] and therefore
det(Ag) <q det(A)4-D/d, (7.20)
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Now denote by Aj the restriction of A to the subspace generated by vy, ...,v4_1. It follows
that Ay has signature either (r,s — 1) or (r — 1, s) and, since (Tr A%)Y/? = || A||us, also that
Tr A2 < Tr A%, Applying Theorem [7.1| to Ay and Ay shows that there exists an isotropic
lattice point m € Ao \ {0} such that

d—
2

Iml|? < (Tr A2) 750" |det Aol <q (Tr A%) 2% |det A| T %
d (TrAg) 20 |det Ao % <4 (Tr A%) 20 [det A| & %,

where we used (7.20)) in the last step (in doing so, we need Tr A% > 1 and |det A| > 1). Here
dy denotes the dimension of a maximal isotropic subspace of Ay (instead of A). Completing
the proof, we note that in both cases r = s + 2 and r = s one has

<2p+1,
0

as can be readily seen. O

7.3 Discrete Optimization: Possible Signatures and Exponents

In this section we treat the discrete optimization problem with which we are faced in the
diagonal case: We have to determine all possible values of p, (defined as in Lemma
depending on the signature (7, s) of @ and then find an upper bound for p;(d), ..., p3(d),
which appear in the iteration of the coupling argument (see Lemmas -2.:27).

‘ Even d
Sign(Q) 2p || Sign(Qs) 2p3 || Sign(Q2) 2p2 || Sign(Q1) 2p1
(45%.9) (4=t )
4 4 22 d—2 d
d d di2 (%’%) d 42 d-2 d_ (%% 2) d+2
(5.9 | &3 % | ( )
202 d—4 Do doa a-6 2 0 2 d—6 s d—1
(é ﬂ) (2’ 2 )
20 2
d—4 d—2 4
S Bl (G- 5 R I
(42,44 s (5. %%°)
(58 | &3], 2 G 5 =
- d d—6 d N -
(5’7) d—6 (M @) d+2 (df-;z’%)
(u @) d+2 20 2 d—6
2 0 2 s
(525 i || (4 d- 4
(d2d76; Lﬁ (27 2 ) d—6 (u,ﬁ) %
(Lt =ty | dia 20 2 a—6 (22, d-6) d+2 272 -
2 0 2 d—4 (42 4-3) di2 2 0 32 a—6 it e s
272 -8 (dt2 48) d+4 (54 45°) d—6
CEs I N
(d+2l_67%) % (d+2l74 d72l) d+21—4
4 oo o 2 a2 a2 d-21) | d2-2
(42t 42ty a (L3 a2y ) dia (Le2=2 d=2i-2) | de2i2 (%2759 | T
—2 d+20-2 d—21—4 d+21-2 ’ e o
[>3 ( +2 T2 ) di?l*‘* d+2l d—21—4 d+2l (%’{122#) di;;—lQ
(M d72l76) d+21 (T’T) d—21—4
2 0 2 d—21-6
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\ 0Odd d |
Sign(Q) 2p Sign(Qs) 2p3 Sign(Q2) 29 Sign(Q1) 201
(2% %) P (452, L1y
(22 | B e (5. 45)
(d+1 d;l) d+3 2 0 2 d—7 (@ @) d+1 2002 d+l
B b} 4—3 (@ @) a1 2 1 9 d—5 (M (]75) d—5
2 3 a7 4l ds =5
(@ H) a1 ( PRED) )
20 2 a7
(%v%) % d—1 d=3 d+1
(454 552) o |02 G
(2. 45°) paa ‘e (N 5) P P )
(59 = d+3 d-7 d+3 (5549 i
(@ H) d+3 (T’T) a-7
20 2 a9
(% dgs) % (g @) d+1
3 2 32 P 443 ds i3
(d+5 ﬂ) d+5 (d;%%) % (Q ﬂ) d+3 ( 27 2 ) d—5
t - (43, 49) a+3 2 T d+5 d—T d+5
272 -9 (L3, 4=9) d+5 (42, 457) —7
(425, d=11) di5 22 =9
2 0 2 11
(d+21 5 d— 21 1) d+21-5
d—2i—1 <d+221—37 d7221—1> T;;?
3 i —2- d420—1 d—21—1\ | d+2i—1
(d+22l+17d—22l—1) o (d+2l 3 d— 2l J) 3357; <d+2171 d72173> o ( -1 42 ) 2l
d=21-1 d 21 1 de 21 5 dt2i-1 272 d=21-3 .
t23 ( : ) Tors (d+21+1 d72175) d+2l41 ({HQJH’ . 221 3) ngffé
(d+2l+1 d— 21 7) d+21+1 2 2 d—2l-5
207

Note that in both tables the last case in every row is the worst when compared to p. Thus,
considering all theses cases, one can derive the following bound on the exponent p;(d).

Sign(Q) p3(d) < p2(d) < pi(d) <
(gl gl) _ 6d—4 _ 6(d—2) __6_
272 d(d—1) d(d—1) d—1
d+2 d—2 14 4 6
(T?T) T 3(d-1) Tda-1 Ta-1
d+21 d—21 2(20—1) 4(1-1) 2(20—3)
(+Tﬁ T)v [ =2 T d d ]
d+1 d—1 16 6(d—1) 6(d—5)
(T’ T) 3(d+1) d(d+1) T d(d+1)
d+3 d—3 4 2
(42,45 —d —a *
d+21+1 d—21—1 41 2(20—1) 4(1—1)
(+2+= 2 )leQ T d T d T d
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