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Abstract

In this thesis we investigate dualization strategies in SU(N) lattice gauge theories mak-

ing use of the strong coupling expansion. The conventional representation of the lattice

QCD path-integral, which is obtained by considering the gauge links as the fundamental

degrees of freedom after having integrated out the fermion fields, suffers from the so-called

finite density sign problem: when a non-zero chemical potential µq is switched on, the QCD

action is no longer real and the thermodynamic properties of the QCD medium at finite tem-

perature and density cannot be reached by means of standard Monte Carlo methods which

relies on the interpretation of the path-integral as a probability distribution. The severity

and the existence of the sign problem is however representation dependent: using a dif-

ferent representation, replacing the gauge links by a different set of integration variables

might produce a mild enough sign problem that can be handled in Monte Carlo simula-

tions via sign reweighting. A dual representation with a mild sign problem was so far only

known in the so-called strong coupling limit β = 2Nc/g2
s = 0 and more recently including

O(β) gauge corrections. Going beyond this approximation is challenging as non-trivial and

coupled gauge integrals over the invariant Haar measure are involved. We will show how

group theoretical techniques can be applied to perform an exact dualization of the theory in

an all-order strong coupling expansion in the β parameter. For pedagogical purposes, the

dualization of the pure Yang-Mills theory will be presented first, while the inclusion of the

staggered quark fields will be treated as a generalization of the Yang-Mills result. The for-

malism and the results obtained here can be used for future investigations of the QCD phase

diagram at non-zero µ, helping unraveling its structure and the location of the conjectured

critical endpoint.
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Chapter 1

Introduction

Quantum chromodynamics (abbr. QCD) is the fundamental theory of the strong interac-

tions. It is a Yang-Mills theory with gauge group SU(3)c coupled to N f = 6 fermions in the

fundamental representation, named by Murray Gell-Mann, the quarks. Remarkably, such

a simple theory containing only seven free parameters (six quark masses and the strong

coupling constant αs) describes accurately the dynamics and properties of all hadrons, from

protons and neutrons to pions and heavy resonances. Qualitatively, the building blocks

of the theory are represented by the aforementioned six quarks, along with eight spin-1

massless particles, the gluons, which constitute the mediators of the strong force. Together

with the electroweak sector, QCD forms the so-called Standard Model of particle physics,

our most fundamental understanding of the laws of nature. Being a quantum field the-

ory, quantum fluctuations in the form of creation/annihilation of virtual particles make the

strong coupling constant αs a function of the energy scale µ of the process under consid-

eration. When compared to its electroweak counterpart, the evolution (or running) of αs

with the energy scale µ is very peculiar: it goes asymptotically to zero at high-energy and

becomes of order one at an energy scale ΛQCD ≈ 102 MeV, which separates the perturba-

tive and non-perturbative regimes of the theory. These two properties, usually referred to

as asymptotic freedom and infrared slavery, reflect the phenomenon of quark confinement

into color singlet hadronic bound states, which seems to be a fundamental property of the

QCD Lagrangian.

When dealing with the low-energy non-perturbative regime, the standard analytic tech-

niques based on a perturbative expansion in the strong coupling constant αs become ineffec-

tive, and one has to rely on alternative methods to compute measurable quantities. The lat-

tice formulation of quantum chromodynamics, in combination with the use of Monte Carlo

methods and high performance computers, provides a powerful non-perturbative tool to

perform ab-initio calculations in the regime where the running coupling cannot be consid-

ered as small. Since it was proposed by Kenneth Wilson in 1974, lattice QCD has undergone

tremendous improvement due to a better understanding of the formulation, algorithmic
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developments and larger computing resources. Despite its success, several questions re-

garding the thermodynamic behavior of the theory in particular regions of its parameter

space are still unanswered.

One of the most relevant open problems concerns the phase structure of the QCD medium

at finite temperature and baryon chemical potential µB. At zero density, the transition be-

tween the hadronic chirally broken phase, and the quark-gluon plasma phase with restored

chiral symmetry, is known to be an analytic crossover which takes place at a pseudocriti-

cal temperature Tc = 155.5± 1.5 MeV for physical quark masses [1]. It is conjectured that

this crossover extends also at finite chemical potential, defining a pseudocritical line that

terminates in a critical endpoint followed by a line of first-order phase transitions. The exis-

tence and location of the conjectured critical endpoint is however still unknown. From the

experimental side, heavy ion collision experiments are being carried out at the relativistic

heavy ion collider (RHIC), and at the large hadron collider (LHC) in order to find signa-

tures of these phase transitions. At RHIC the second beam energy scan (BES-II) for Au+Au

collisions in the energy range 7.7 GeV <
√

sNN < 19.6 GeV is being performed1. Due to

the increased luminosity of the low energy beams, higher precision measurements will be

produced. Besides the critical endpoint, there are additional phases which were conjectured

on the basis of model calculations. At low temperature, by increasing the baryon chemical

potential, after encountering the nuclear liquid phase, a quarkyonic matter phase [2] and

a superconducting phase [3], signaled by the presence of a non-zero di-quark condensate,

were conjectured. The existence of these states of matter could play an important role in

neutron stars. Providing first principle calculations from lattice QCD at finite density is thus

crucial to verify these conjectures and to interpret the experimental data.

The finite density sign problem however hinders a straightforward application of the

standard stochastic techniques used to compute lattice QCD observables. While several

new methods were proposed and exploited in the last decades in order to solve or circ-

ument the sign problem, an ultimate solution is still missing. In Fig. 1.1 a sketch of the

conjectured phase diagram, along with its current determination from first principle calcu-

lations, is reported. In this thesis, we will discuss dual representations as a possible tool

to make the finite density sign problem manageable. In the past years, dual methods have

proven to be successful in solving the finite density sign problem in several models. Some

of the hallmarks in the context of statistical physics are the O(N) and CPN−1 models [4, 5],

and in quantum field theory the Abelian gauge-Higgs model and the massless Schwinger

model [6, 7]. Dualizing non-Abelian gauge theories such as QCD seems to be instead a

non-trivial task: polynomial integrals over the SU(N) invariant Haar measure and over the

1√sNN is the center of mass energy per nucleon.
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FIGURE 1.1: Sketch of the phase diagram in the T − µB plane. Left: The conjectured phase diagram.
The crossover line departing from µB = 0 ends in a critical endpoint (CEP). At low temperature,
increasing µB one encounters in order, the hadron gas-to-liquid transition, the quarkyonic matter
phase and the color superconducting phase. The regions of the phase diagram probed or targeted
by heavy ion collision experiments are also shown. Right: What we know from first principle
calculations. Courtesy of Wolfgang Unger.

fermionic Grassmann fields have to be performed analytically in order to obtain a dual rep-

resentation of the partition function. This step cannot be performed by brute force, and it

is necessary to introduce auxiliary variables in order to make it feasible. After having inte-

grated out the fermion and gauge fields, the partition function shall be expressed as a sum

over configurations identified by the dual variables, which are typically given by a set of

constrained integers. In fact, constraints in the form of conservation laws on lattice sites and

bonds naturally arise from the requirement that the gauge integrals have to be non-zero and

from the nilpotency of the Grassmann measure.

In this work, we will show how to perform an exact dualization for staggered lattice

gauge theories with an arbitrary number of colors. The partition function will be organized

as a strong coupling series. Along with the usual dual variables already present in the dual

representation of the Schwinger model and of strong coupling QCD, a new class of degrees

of freedom, which we called Decoupling Operator Indices (DOI), will be introduced. The lat-

ter allows to deal with the non-Abelian nature of the theory and to perform the dualization

without any approximation. The finite density sign problem in the resulting representation

will not be absent: negative configurations usually appear due to the anti-commuting na-

ture of the Grassmann variables (so-called fermionic sign) as well as from the gauge part.

However, our preliminary analysis of the sign problem in small two-dimensional volumes

suggests that the sign problem remains manageable for small to moderate values of the

inverse bare gauge coupling β, and that the phase diagram including higher order gauge

corrections can be in principle mapped out using the formalism developed in this thesis.
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This thesis is organized as follows:

• Chapter 2 contains an introduction to continuum QCD along with its lattice coun-

terpart. The lattice discretization used in this thesis will be discussed, and the finite

density sign problem presented, shortly reviewing the various approaches currently

used to circumvent it, and our current understanding of the QCD phase diagram.

• Chapter 3 focuses on dual representations in simple models. We will present the main

concepts and the formalism behind every dual representations based on a strong cou-

pling expansion.

• Chapter 4 contains an introduction to gauge integration, which constitutes the first

step towards dualization in non-Abelian gauge theories. Our main findings regarding

polynomial integration over the SU(N) gauge group will be described in detail and

cross checked against known results in specific limiting cases.

• Chapter 5 gives the dual representation for non-Abelian gauge theories. As a pre-

liminary step we will present the dualization of Yang-Mills theories with an arbitrary

number of colors N. The generalization to staggered fermions will be then discussed

and the final form of the QCD partition function presented. We will further show how

to automate the computation of the higher order β corrections, cross checking our

evaluation of the dual Boltzmann weights against hybrid Monte Carlo (HMC) results.

• Chapter 6 contains a summary of the obtained results and a recap of the main features

of QCD in the dual representation. Future perspectives will be finally discussed.
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Chapter 2

QCD at finite temperature and density:

a short review

2.1 The continuum theory

In quantum field theory, the information about all measurable quantities is contained in the

Green functions, i.e. the vacuum expectation value of the time-ordered product of elemen-

tary or composite fields, which are determined using the Feynman path-integral. Collec-

tively denoting the fields of a given theory by φ(x), the Green functions are defined as

Gn(x1, . . . , xn) ≡ 〈Ω
∣∣T{φ(x1) . . . φ(xn)}

∣∣Ω〉 ≡ 〈φ(x1) . . . φ(xn)〉 , (2.1)

where T is the time-ordering operator,
∣∣Ω〉 the ground state of the theory, and the expec-

tation value 〈 . 〉 of a generic observable O(φ) function of the fields is obtained from the

path-integral

〈O〉 =
∫
D[φ]O(φ) exp (iS [φ])∫
D[φ] exp (iS [φ])

=
1
Z

∫
D[φ]O(φ) exp (iS [φ]) . (2.2)

D[φ] is the functional measure, and its explicit form depends on the nature of the fields,

while S [φ] is the action of the theory, i.e. the (D + 1) spacetime integral of the Lagrangian

density1

S [φ] =
∫

dt
∫

dD~xL(φ(~x, t)) ≡
∫

dD+1xL(φ(x)) . (2.3)

The denominator Z in Eq. (2.2) is called the partition function of the theory. It is an integral

over all possible paths φ(x), every path being weighted by the exponential factor exp (iS[φ]).

Evaluating the path-integral Eq. (2.2) is the main task when studying a quantum field theory.

In the case of QCD, the elementary fields are given by N f = 6 spin-1/2 fields ψ f in the

fundamental representation of the color gauge group SU(3) (the quarks), and a non-Abelian

1D is the number of spatial dimensions.
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spin-1 gauge field Aµ that describes the gluons and lives in the adjoint representation of

SU(3). The QCD Lagrangian, which describes the interaction between quarks and gluons,

is given by the sum of the SU(3) Yang-Mills gauge term and the Dirac Lagrangian for the

N f quarks, which are minimally coupled to the gauge field

LQCD = − 1
2g2 TrFµν(x)Fµν(x) +

N f

∑
f=1

ψ̄
f
i (x)

(
iγµ

(
Dµ

)
ij −m f δij

)
ψ

f
j (x). (2.4)

In the previous equation g is the bare gauge coupling, i, j = 1, 2, 3 are color indices and γµ

are the usual Dirac matrices satisfying the anticommutation rules

{γµ, γν} = 2gµν. (2.5)

To render the notation more compact, we did not write explicitly the Dirac indices in Eq. (2.4).

The field strength tensor Fµν and the covariant derivative Dµ are given in terms of the gauge

field by

Fµν(x) = ∂µ Aν(x)− ∂ν Aµ(x) + i
[
Aµ(x), Aν(x)

]
, (2.6)

(Dµ)ij = δij ∂µ + i
(

Aµ

)
ij , (2.7)

and the commutation rules of the gauge fields are obtained as usual expanding Aµ in a basis

of the generators {Ta}a=1,...,8 of the su(3) Lie algebra

Aµ(x) = Aa
µ(x)Ta,

[
Ta, Tb

]
= i f abcTc, Tr

(
TaTb

)
=

1
2

δab, (2.8)

where f abc are the SU(3) structure constants and Aa
µ(x) ∈ R are the gauge field components.

The QCD Lagrangian Eq. (2.4) also enjoys a gauge symmetry, i.e. it is invariant under the

following local transformations of the fundamental fields

ψ f (x) → G(x)ψ f (x) , ψ̄ f (x) → ψ̄ f (x)G(x)† , (2.9)

Aµ(x) → G(x)Aµ(x)G(x)† + i
(
∂µG(x)

)
G(x)† , (2.10)

where G(x) ∈ SU(3). The QCD partition function is obtained integrating e i
∫
LQCD over a

suitably defined measure of the gauge and fermionic fields. For the gauge field, the func-

tional integral is over all possible values of the gauge field components Aa
µ(x)

∫
D[Aµ] ≡∏

a
∏
x,µ

∫ +∞

−∞
dAa

µ(x) , (2.11)
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while the definition of the fermionic functional integral requires some additional work. The

standard procedure is to implement directly Fermi statistics associating to each fermionic

state i ∈ [1, . . . , N] a pair of Grassmann variables {ηi, η̄i} fulfilling the anticommutation

rules {
ηi, ηj

}
=
{

η̄i, η̄j
}
=
{

η̄i, ηj
}
= 0, ∀ i, j = 1, . . . , N . (2.12)

Grassmann variables are nilpotent since the square of any of them gives zero. As a con-

sequence, every function of a finite number of Grassmann variables is a finite polynomial

in ηi, η̄j. Since we want to determine the functional measure, it is necessary to define the

integral of a Grassmann variable. This can be done imposing

∫
dηi =

∫
dη̄i = 0 ,

∫
dηiηi =

∫
dη̄iη̄i = 1 , (2.13)

along with the usual linear properties of standard integration, and with dηi (resp. dη̄i) obey-

ing the same anticommutation rules as ηi (resp. η̄i). The Grassmann integral of an arbitrary

function F,

IF =
∫ N

∏
i=1

dη̄idηi F({ηi}, {η̄i}) , (2.14)

can be then obtained expanding F in a Taylor series and retaining only the term of order 2N

where every Grassmann variable appears exactly one time

F({ηi}, {η̄i}) = α(F)
N

∏
i=1

ηiη̄i + . . . . (2.15)

Given Eqs. (2.12) and (2.13), all the other terms are indeed either vanishing or will give zero

after integration. The value of the integral is then simply IF = α(F). Notice that to bring

the non-vanishing expansion term in the canonical form Eq. (2.15), it might be necessary to

reorder the Grassmann variables ηi, η̄i. In that case one has to take into account the minus

signs from the anticommutation rules Eq. (2.12). Making use of these definitions, one can

for instance show that the Gaussian integral over Grassmann variables is given by

∫ N

∏
i=1

dη̄idηi exp
(
η̄i Mi,jηj

)
= det M . (2.16)

The fermionic fields ψ̄ f (x), ψ f (x) are thus considered as Grassmann valued, and the corre-

sponding functional integral is defined as

∫
D[ψ̄, ψ] ≡∏

f ,i
∏

x

∫
dψ̄

f
i (x)dψ

f
i (x) i = 1, 2, 3 . (2.17)



Chapter 2. QCD at finite temperature and density: a short review 8

Finally, the path-integral representation for the vacuum expectation value of a generic QCD

observable 〈O〉 is

〈O〉 = 1
ZQCD

∫
D[Aµ]

∫
D[ψ̄, ψ]O(ψ̄, ψ, Aµ) exp

(
i
∫

d4xLQCD

)
, (2.18)

ZQCD =
∫
D[Aµ]

∫
D[ψ̄, ψ] exp

(
i
∫

d4xLQCD

)
. (2.19)

One can explicitly check that in the free field limit the Grassmann integral correctly repro-

duces the fermionic two-point function and that Wick theorem is implemented.

The path-integral in Eq. (2.19) is however ill-defined: its oscillatory nature makes it diffi-

cult to prove the convergence of the integral. In addition, the standard technique that allows

for a direct evaluation in the continuum, consists in a perturbative expansion around the free

field limit via

〈O〉 =
∫
D[Aµ]D[ψ̄, ψ]eiSfree[Aµ,ψ̄,ψ]+igSI [Aµ,ψ̄,ψ]O[Aµ, ψ̄, ψ]∫

D[Aµ]D[ψ̄, ψ]eiSfree[Aµ,ψ̄,ψ]+igSI [Aµ,ψ̄,ψ]

=
∑+∞

n=0
(ig)n

n!

∫
D[Aµ]D[ψ̄, ψ]eiSfree[Aµ,ψ̄,ψ] (SI [Aµ, ψ̄, ψ]

)nO[Aµ, ψ̄, ψ]

∑+∞
n=0

(ig)n

n!

∫
D[Aµ]D[ψ̄, ψ]eiSfree[Aµ,ψ̄,ψ] (SI [Aµ, ψ̄, ψ]

)n (2.20)

using then the Feynman diagrams technique to evaluate the perturbative series order by

order2. However, when one tries to go beyond the leading order expansion term, the con-

tribution to the functional integral coming from ultraviolet paths produces divergent ex-

pectation values 〈O〉. For a certain class of field theories to which QCD belongs (so-called

renormalizable theories), these divergencies are actually harmless. It can be shown that by

introducing a regulator Λ to make all integrals convergent, it is possible to absorb the di-

vergencies order by order into a redefinition of fields and couplings, in such a way that

all the Green functions, when expressed in terms of renormalized fields and couplings, have

a smooth finite limit when the regulator Λ is removed (see for instance [8, 9]). Physical

observables are not affected by the specific way the regulator Λ is introduced (so-called reg-

ularization scheme), while their dependence on the original parameters appearing in the

Lagrangian (bare parameters), disappears in favor of a dependence on the finite renormal-

ized ones. This so-called renormalization procedure has extremely important consequences:

renormalized couplings become functions of an energy scale µ, the functional dependence

being described by the renormalization-group flow equations [10]. Once a renormalized

quantity is fixed at some energy scale µ∗ (e.g. by comparison with experiments), its evo-

lution with µ is determined by the flow equations. A perturbative expansion in terms of

renormalized quantities, for an observable O involving a typical energy scale E, produces

2To define the perturbative expansion in presence of gauge invariance, a gauge fixing condition must be
supplied. This is usually done via the Faddeev-Popov gauge-fixing procedure.
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reliable results only if the coupling constants at µ ≈ E are small. In the case of QCD, the

renormalized strong coupling constant gr(µ) has the fundamental property

lim
µ→∞

gr(µ) = 0 , (2.21)

so that the theory becomes free at asymptotically high energy. In contrast, gr(µ) grows

when decreasing the scale µ, reaching a point where the pertubative expansion is no longer

reliable. This happens at an energy scale3 µ = ΛQCD ≈ 102 MeV, which sets a limit between

the perturbative and the non-perturbative regime of the theory. Since low energy processes

cannot be described by a perturbative expansion in gr(µ), alternative techniques must be

used to evaluate the path-integral. As will be described in the next sections, the lattice

discretization provides a powerful, fully non-perturbative and gauge invariant method to

evaluate the path-integral even when the perturbative expansion fails to provide reliable

results.

2.1.1 QCD at finite temperature

In the previous subsection we introduced a path-integral representation for the vacuum ex-

pectation values. To perform thermodynamic calculations, we want to know how Eq. (2.18)

gets modified when the system is in contact with a thermal reservoir. At equilibrium, we

know from standard thermodynamic arguments that every energy eigenstate n of the sys-

tem is visited a number of times N(n) proportional to the Boltzmann factor

N(n) ∝ exp
(
−En

T

)
, (2.22)

where En is the energy of the state n, T the temperature of the system and we set the Boltz-

mann constant kB = 1. The canonical partition function of the system is defined as

Z(T) ≡∑
n

exp
(
−En

T

)
= ∑

n
〈n
∣∣ exp

(
− Ĥ

T

)∣∣n〉 = Tr exp
(
− Ĥ

T

)
, (2.23)

where Ĥ is the Hamiltonian of the system and we used the invariance of the trace. Thermo-

dynamic quantities such as mean energy 〈E〉, pressure 〈P〉 and entropy 〈S〉 can be obtained

as usual from Z(T) and its derivatives. The operator ρ̂ = exp
(
− Ĥ

T

)
is called the density

matrix, and any thermal expectation value can be computed via

〈O〉 = Tr (Oρ̂)

Tr (ρ̂)
. (2.24)

3In contrast to Eq. (2.21), this value is regularization scheme dependent. In the MS scheme and for N f = 3,

ΛMS
QCD = 332± 17 MeV [11].
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A path-integral representation of Eq. (2.24), can be obtained starting from the quantum am-

plitude 〈q′|e−iĤt|q〉 written as

〈q′
∣∣ exp

(
−iĤt

)∣∣q〉 = ∫
D[x] exp

(
i
∫ t

0
dt′L(x(t′))

)
. (2.25)

where q, q′ are position eigenstates and the path-integral in the r.h.s is over all paths satis-

fying x(0) = q, x(t) = q′. Thermal averages can be thus expressed in the form of a path-

integral, performing an analytic continuation to imaginary time t→ iτ (Wick rotation), and

setting τ = 1
T .

The analytic continuation modifies the spacetime metric from Minkowskian to Euclidean.

In the case of QCD, the analytically continued Euclidean Lagrangian LE, invariant under the

Euclidean group E(4), is given by

LE
QCD(x) =

1
2g2 Tr Fµν(x)Fµν(x) +

N f

∑
f=1

ψ̄
f
i (x)

(
γ

µ
E
(

Dµ

)
ij + m f δij

)
ψ

f
j (x) , (2.26)

where the Euclidean gamma matrices satisfy the following anticommutation rules

{
γ

µ
E, γν

E
}
= 2δµν . (2.27)

In terms of LE, the canonical partition function and thermal averages can be written simi-

larly to the zero temperature case, through

〈O〉 = 1
ZQCD(T)

∫
D[Aµ]

∫
D[ψ̄, ψ]O(ψ̄, ψ, Aµ) exp

(
−SE

QCD(T)
)

, (2.28)

ZQCD(T) =
∫
D[Aµ]

∫
D[ψ̄, ψ] exp

(
−SE

QCD(T)
)

, (2.29)

SE
QCD(T) ≡

∫ 1
T

0
dτ
∫

d3~xLE(~x, τ) . (2.30)

In the following, the subscript/superscript E will be neglected where it is clear we are refer-

ring to the Euclidean theory. Given the trace in Eq. (2.23), the path-integral should now ex-

tend over all paths that are periodic in time direction. Actually this is not true for fermionic

fields, which as a consequence of their statistics require antiperiodic boundary conditions in

temporal direction4. Therefore the Path Integral is constrained to those field configurations

satisfying

Aµ(~x, 0) = Aµ(~x,
1
T
), (2.31)

ψ f (~x, 0) = −ψ f (~x,
1
T
). (2.32)

4Equivalently this stems from the definition of trace for Grassmann variables [12].
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The Euclidean path-integral has better convergence properties as compared to the one

in Minkowski space. Every path is weighted by exp
(
−SE(T)

)
, which resembles the usual

Boltzmann factor, and contributions corresponding to large values of the Euclidean action

are now suppressed. This expression thus provides a better behaved definition for the vac-

uum expectation values in Eq. (2.18), which can be obtained by taking the zero temperature

limit in Eq. (2.28) and performing the analytic continuation back to Minkowski space.

The relations Eqs. (2.28) and (2.29) also establish the well known connection between the

thermodynamics of a quantum field in D spatial dimensions and that of a classic system in

(spatial) dimensions D + 1.

2.1.2 QCD at finite density

In the same spirit of the previous subsection, we can generalize Eq. (2.29) to the finite density

case. In general, when an exactly conserved charge Q corresponding to a symmetry of the

Lagrangian is allowed to be exchanged between the system and the reservoir, after reaching

equilibrium, the system is described by the modified density matrix

ρ̂ = exp

(
− Ĥ − µQQ̂

T

)
, (2.33)

where µQ ∈ R is the chemical potential associated to the charge Q. In the following, we will

be mainly interested in the case where Q is the net quark number relative to some flavor f .

The corresponding µ f are then called the quark number chemical potentials, and µ f 6= 0 cor-

responds to an asymmetry between quark and antiquarks of flavor f . This regime is called

QCD at finite density. The U(1) symmetry that gives rise to quark number conservation is

given by

ψ f (x)→ eiαψ f (x), ψ̄ f (x)→ ψ̄ f (x)e−iα α ∈ R, (2.34)

and the corresponding Noether current is

Jµ
f (x) =

∂L
∂(∂µψ f )

δψ f = ψ̄ f (x)γµψ f (x). (2.35)

The quark number operator Q̂ f is obtained from the spatial integral of the temporal compo-

nent of Jµ
f , and the grand canonical partition function that generalizes Eq. (2.29) has thus the

following path-integral representation

ZQCD(T, {µ f }) ≡
∫
D[Aµ]

∫
D[ψ̄, ψ] exp

(
−
∫

T
d4xLQCD(x)−∑

f
µ f ψ̄ f (x)γ0ψ f (x)

)
.

(2.36)
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As in the case of the canonical partition function, the integral in the imaginary time direction

is over the compact interval
[
0, 1

T

]
, and the fields satisfy identical boundary conditions.

Inserting a non-zero chemical potential is however not an innocent operation. The mod-

ified Lagrangian density in Eq. (2.36) can be written as a sum of two terms: the pure Yang-

Mills part LY.M. and the fermion Lagrangian LF

LY.M. =
1

2g2 Fµν(x)Fµν(x) (2.37)

LF = ∑
f

ψ̄ f (x)
(
γµDµ + m f − γ0µ f

)
ψ f (x) := ∑

f
ψ̄ f M f

(
Aµ, m f , µ f

)
ψ f . (2.38)

The latter is a quadratic form in {ψ̄ f , ψ f } and the functional integral over the fermion fields

can be carried out exactly in favor of the determinant of M f as in Eq. (2.16). The grand

canonical partition function thus becomes

ZQCD(T, {µ f }) =
∫
D[Aµ] exp

(
−SY.M.[Aµ]

)
∏

f
det M f

(
Aµ, m f , µ f

)
. (2.39)

The fermion determinant det M f at non-zero chemical potential is not real anymore as it can

be seen directly from the identity

M f (−µ∗f ) = γ5M f (µ f )γ
5 , γ5 ≡ γ0γ1γ2γ3 ; (2.40)

hence the integrand in Eq. (2.39) cannot be interpreted anymore as a Boltzmann factor since

it is in general a complex number. This poses a serious problem when it comes to numerical

evaluation of the path-integral, which we shall discuss in the next sections. The lack of

positivity of the fermion determinant, usually referred to as the finite density sign problem,

will be the driving motivation behind the whole thesis.

2.1.3 Chiral symmetry and confinement

Before entering the discussion on how to evaluate the path-integral, we introduce some

of the observables relevant to studying the QCD phase diagram. As we outlined in the

introduction, the QCD medium at zero temperature is in a confined chirally broken phase.

This means that quarks are bound into color singlet hadrons and do not exist as asymptotic

states, and that the SUA(N f ) (chiral) symmetry of the QCD Lagrangian

ψ
′ f (x) = e iγ5 τf f ′ψ f ′(x) , ψ̄

′ f (x) = ψ̄ f ′(x)e iγ5 τf ′ f , τ ∈ su(N f ) , (2.41)
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FIGURE 2.1: The behavior of the zero density thermal phase transition as a function of the light
(mud) and strange (ms) quark masses. The figures describe two different scenarios depending on the
order of the N f = 2 chiral transition. Taken from [13].

is spontaneously broken by the vacuum. Chiral symmetry is not an exact symmetry in

the real world since quark masses are non-zero5. However, since the up and down quark

masses mu, md are small and there is no evidence for an approximate SUA(2) degeneracy

in the hadron spectrum, we still talk of a spontaneously broken chiral symmetry. When

studying the phase diagram as a function of chemical potential and temperature, one is

mainly interested in knowing when chiral symmetry gets restored and when quarks and

gluons start to behave as free particles (so-called quark-gluon-plasma phase). To probe these

phases, commonly used observables are

(Chiral condensate) 〈ψ̄ψ〉 ≡ T
V ∑

f

∂ log (Z)
∂m f

, (2.42)

(Polyakov loop) 〈L〉 ≡ 1
V
〈 1

3

∫
~x

Tr P
{

exp

(
i
∫ 1

T

0
A0(~x, τ)dτ

)}
〉 , (2.43)

along with their susceptibilities, i.e. the second order connected momenta of their distribu-

tions

χψ̄ψ ≡
V
T

[
〈(ψ̄ψ)2〉 − 〈ψ̄ψ〉2

]
=

T
V ∑

f

∂2 log (Z)
∂2m f

, χL ≡ V
[
〈|L|2〉 − 〈|L|〉2

]
, (2.44)

where V is the spatial volume. The behavior of these quantities can be exactly related to

the confinement and chiral properties of the system in particular limits. In pure gauge the-

ory (i.e. m f → ∞), the Polyakov loop is the order parameter for the Z(3) center symmetry

associated to deconfinement. In particular 〈L〉 = 0 implies confinement and 〈L〉 6= 0 de-

confinement. In this limit, the Polyakov loop susceptibility diverges at the deconfinement

5The quark mass term in Eq. (2.4) is not invariant under the transformations in Eq. (2.41)
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temperature Tc ≈ 270 MeV, where a first order transition takes place [14]. The chiral con-

densate is instead the order parameter for chiral symmetry breaking in the limit m f → 0,

and acquires a non-vanishing expectation value 〈ψ̄ψ〉 6= 0 in the broken phase. The chiral

susceptibility diverges at the transition temperature, but in this case the order of the tran-

sition depends on the number of chiral flavors [15, 16, 17]. In the real world, where quark

masses are finite and non-zero, there are no real symmetries associated to these phases and

these observables are only approximate order parameters. In particular we know that the

zero density thermal transition, for physical quark masses, is not a real phase transition:

the Polyakov loop susceptibility χL and the chiral susceptibility χψ̄ψ do not diverge at the

transition point in the thermodynamic limit. What is observed6 is an analytic rise in the

Polyakov loop and a drop in the chiral condensate that are however not associated to criti-

cal behavior (so-called crossover) [18]. This takes place at a pseudocritical temperature that

for chiral observables is Tc = 155.5(1.5) MeV [1]. The quark mass dependence of the zero

density thermal transition for N f = 2 + 1 flavors is summarized in the so-called Columbia

plot (Fig. 2.1). What happens at finite density µ f 6= 0 is instead largely unknown. As we will

see in the next sections, the sign problem hinders a direct evaluation of thermodynamic quan-

tities, and the structure of the phase diagram is only qualitatively understood on the basis

of model calculations (e.g. [19]), and at non-zero baryon chemical potential µB ≡ 1
3 ∑

f=u,d,s
µ f ,

only for small values of µB/T [20, 21]. In this context, the main open question regards the

existence of a second order critical point in the T− µB plane that represents the ending point

of the crossover line.

2.2 The lattice formulation

The lattice discretization is a non-perturbative way of regularizing the path-integral, which

allows for numerical evaluations. It constitutes the only known method to perform ab-initio

calculations in the regime where the perturbative expansion is not reliable. In this section

we will describe the main concepts behind the lattice formulation of Euclidean QCD. This is

not meant to be a detailed introduction, for which we refer to [22, 23]. Only the main aspects

and the information needed for the understanding of the next chapters will be covered.

2.2.1 From continuum to discrete

The functional measure appearing in the path-integral representation of the partition func-

tion is infinite dimensional since paths of arbitrary wavelength contribute. In the lattice

6These calculations were made considering only the three lightest quarks u, d, s, since at the temperatures of
interest the contribution of the c, b, t quarks is largely negligible.
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discretization, this infinite number of integration variables is made finite (regularized), in-

troducing a lattice spacing a such that the continuum spacetime xµ is replaced by a lattice7

Λ having a finite number of points (lattice sites)

xµ ∈ R→ anµ, nµ ∈
[
1, . . . , Nµ

]
, (2.45)

and the spacetime integral by

∫
dD+1x → aD+1 ∑

n∈Λ
. (2.46)

The lattice spacing a and the lattice size8 V =
D

∏
µ=0

Nµ provide a natural cut-off for ultraviolet

and infrared modes and the resulting path-integral is always finite. Basically we are replac-

ing the infinite-dimensional functional integral by a finite number of integrals over all field

configurations at discrete spacetime points.

Before discussing the more technical discretization of the QCD action, in order to show

the main features of the lattice discretization, we consider the simpler case of the scalar φ4

theory in four dimensions. In this case, the continuum Euclidean action is given by

Sφ4 [φ, ∂µφ] =
∫

d4x
1
2

∂µφ(x)∂µφ(x) +
1
2

m2φ2(x) +
λ

4!
φ4(x) , (2.47)

and the continuum functional measure is

∫
D[φ] = ∏

x

∫ +∞

−∞
dφ(x) . (2.48)

After having discretized the spacetime, the domain of the field φ is the finite set of lattice

sites n = (n0, . . . , n3). Clearly, the continuum action must be now substituted with a discrete

counterpart since differential operators such as ∂µ are no longer well defined. A necessary

condition when discretizing the Lagrangian is that in the limit a→ 0 its continuum counter-

part must be recovered. Hence, possible candidates for the discretized derivative operator

7We will only consider hypercubic lattices.
8At finite temperature the lattice temporal extent is related to T via N0 = 1

aT . Oftentimes we will use the
notation Nt in place of N0.
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are the forward, backward and symmetric derivatives

∇(f.)
µ φ(n) =

φ(n + µ̂)− φ(n)
a

, (2.49)

∇(b.)
µ φ(n) =

φ(n)− φ(n− µ̂)

a
, (2.50)

∇(s.)
µ φ(n) =

φ(n + µ̂)− φ(n− µ̂)

2a
, (2.51)

where µ̂ is the unit vector in direction µ = 0, . . . , D. In the limit a → 0 the usual derivative

is obtained in all cases. Introducing the following dimensionless quantities

φ̂(n) ≡ aφ(n), m̂ ≡ am, λ̂ ≡ λ, ∇̂µ ≡ a∇µ (2.52)

the discretized Path Integral is

Zφ4 = ∏
n∈Λ

∫ +∞

−∞
dφ̂(n) exp

(
− ∑

n∈Λ

1
2
∇̂(c)

µ φ̂(n)∇̂(c)
µ φ̂(n) +

1
2

m̂φ̂2(n) +
λ̂

4!
φ̂4(n)

)
, (2.53)

where c = {f., b., s.}. The discretized system takes the form of a statistical model with a

finite number of degrees of freedom, the derivative operators being replaced by couplings

between fields at different lattice sites. The explicit dependency on the lattice spacing a

completely disappeared from the action, which is written only in terms of dimensionless

couplings and fields. The main advantage of the lattice discretization, as we will see, is that

numerical techniques from statistical mechanics, in particular Monte Carlo methods, can be

used to evaluate the partition function.

On the lattice, some of the symmetries of the continuum Lagrangian can be lost. For

instance, this is the case of the Euclidean O(4) symmetry in Eq. (2.47), which is reduced to a

symmetry under the hypercubic group C4 of Eq. (2.53). Symmetry transformations acting on

the internal space of the fundamental fields may or may not survive the lattice discretization.

When possible it is always better to choose a symmetry-preserving lattice discretization in

order to avoid the spurious artifacts that would be introduced.

2.2.2 Recovering the continuum theory

At this point it is not clear whether and how a suitable limit of the partition function in

Eq. (2.53) can be taken in order to recover the continuum theory. Indeed, we ended up with

a statistical model where the lattice spacing completely disappeared from its description

in terms of dimensionless couplings and fields. Naively, one would expect that by an ap-

propriate tuning of the dimensionless parameters {m̂, λ̂}, the continuum theory is always
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recovered in some limit

λ̂→ λ̂∗, m̂→ m̂∗, Nµ → ∞. (2.54)

However, to define a proper continuum limit, we need to define first our target theory.

The continuum φ4 Lagrangian in four dimensions is a renormalizable theory having two free

parameters that must be fixed imposing two conditions. One possible choice to fix them (but

other choices might be more convenient for practical purposes) is requiring that the lightest

particle of the system has a prescribed mass M, and that the scattering amplitude of the

φ + φ → φ + φ process in the limit of zero external three-momenta is equal to some value

λR. In terms of the renormalized vertex functions9 this reads

Γ(2)
R (p)

∣∣
p2=−M2 = 0 (2.55)

Γ(4)
R (p1, . . . , p4)

∣∣
~pi=0 = −λR. (2.56)

On the lattice, the bare dimensionless parameters {m̂, λ̂} have to be tuned in order to fulfill

the condition in Eq. (2.56). This determines a trajectory in the m̂− λ̂ plane called the line of

constant physics (LCP)

λ̂ = λ̂(m̂, λR), λR fixed. (2.57)

The lattice spacing a can be then defined on a given point of the LCP computing the corre-

lation length ξ̂ from the connected two-point function

〈φ̂(n)φ̂(0)〉c
∣∣
|n|→∞ ∝ exp

(
−|n|

ξ̂

)
(2.58)

using a = 1/ξ̂M. A proper, well defined, continuum limit requires therefore that the LCP

possesses a critical point (i.e. a point where a second-order phase transition occurs) where

the correlation length diverges

ξ̂ =
1

aM
→ ∞ , (2.59)

and a→ 0. Qualitatively we can say that close to the critical point the system loses memory

of the underlying lattice structure since the only relevant scale is the diverging correlation

length ξ̂. The full O(4) rotational symmetry is therefore recovered in this limit, while in

the scaling region of the critical point the expectation value of a dimensionless quantity 〈X̂〉
9For definitions and properties of the vertex functions see for instance [8].
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evaluated on the lattice is related to its continuum counterpart via10

〈X̂(a)〉
∣∣
lat. =

a→0
〈X̂〉

∣∣
cont. +O(ak) , k > 0 . (2.60)

The critical point picture of the continuum limit allows to understand the freedom when

choosing the discretized action: in RG language, if the difference between two lattice actions

corresponds to an irrelevant operator, the critical properties of the two systems are identical,

i.e. they describe the same physics in the continuum limit11. At the same time it is not

guaranteed that such a continuum limit exists for all systems and for every value of the

renormalized couplings. For a general discretized theory with bare couplings {ĝi} it is in

fact possible that a given LCP does not contain a critical point. Hence not all theories admit

a lattice discretization. We will not discuss further this issue and we refer to [22] for a more

detailed presentation. Here we only want to mention that in the case of the φ4 theory just

discussed, an interacting continuum limit having λR 6= 0 does not exist. In the case of QCD,

which we are going to analyze, the existence of a non-trivial continuum limit is guaranteed

by the property of asymptotic freedom Eq. (2.21).

2.2.3 The naive fermion discretization

In this subsection we begin the discretization of the Euclidean QCD path-integral starting

from the fermionic action in the free field limit (i.e. neglecting the coupling to the gauge

field). Unlike the case of the φ4 theory, an admissible discretization of the free Dirac La-

grangian for one flavor of quarks,

Lfree
f (x) = ψ̄(x)

(
γµ∂µ + m

)
ψ(x), (2.61)

can be only obtained using the symmetric derivative operator. Indeed, the forward and

backward derivatives produce in this case a non-hermitian action. This (so-called naive)

discretization has however a problem. The discretized path-integral is

ZF = ∏
n∈Λ

∫
d ˆ̄ψ(n)dψ̂(n) exp

(
−∑

n

ˆ̄ψ(n)

[
∑
µ

γµ

2
(
ψ̂(n + µ̂)− ψ̂(n− µ̂)

)
+ m̂ψ̂(n)

])
,

(2.62)

where, as in the scalar case, dimensionless couplings and fields have been introduced:

ψ̂(n) ≡ a
3
2 ψ(n), ˆ̄ψ(n) ≡ a

3
2 ψ̄(n), m̂ ≡ am. (2.63)

10A renormalization of the operator X̂ on the lattice might be required to subtract UV divergences.
11Although a clever choice of the action can considerably speed up the convergence [24, 25].
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The lattice two-point function in the free field limit can be readily obtained inverting in

momentum space the quadratic form in Eq. (2.62)

〈 ˆ̄ψα(n1)ψ̂β(n2)〉 =
∫ π

−π

d4k
(2π)4 eik(n1−n2)

−i ∑µ

(
γµ

)
αβ

sin (kµ) + m̂δαβ

∑µ sin2(kµ) + m̂2
. (2.64)

We can see that a problem arises: the term ∑µ sin2(kµ) in the r.h.s. of the previous equation

goes to zero not only for kµ → 0, but at every corner |kµ| = π of the Brillouin zone. When

moving towards the continuum limit m̂ = am → 0, the contribution to the integral coming

from the momentum region around these corners cannot be neglected, and the continuum

Lagrangian describes 16 fermions with equal masses and different chiralities. This is the

so-called doubling problem which afflicts the naive fermion discretization12. The origin of the

doublers is actually deep, and this problem cannot be solved without paying a price. Indeed,

the Nielsen-Ninomiya theorem [26] states a set of conditions that cannot be simultaneously

satisfied by any discretization of the Dirac Lagrangian

LF[ ˆ̄ψ, ψ̂] = ∑
n,m∈Λ

ˆ̄ψ(n)D(n, m)ψ̂(m) : (2.65)

• The operator D(n, m) is translationally invariant, i.e. it depends only on the difference

|n−m|.

• The matrix elements D(n, m) decay at least exponentially fast when |n − m| goes to

infinity.

• The operator D(n, m) is invariant under the full chiral group in the massless limit

m̂ = 0. This condition can be rephrased as
{

γ5, D(m̂ = 0)
}
= 0.

• The continuum theory describes only one free fermion without doublers.

The fermion discretizations we are going to describe will break in one way or another one or

more of these conditions. Here we will only discuss those discretizations which are some-

how more suited for a strong coupling expansion, namely the Wilson and the staggered

discretization. However other discretizations have been introduced and used in other con-

texts, such as the twisted mass fermions, the overlap and the domain walls fermions. The

latter two in particular have good chiral properties but the drawback is that the matrix ele-

ments D(n, m) are not sufficiently local and too coumbersome to be treated analytically in

a series expansion. From now on, we will not discuss further these discretizations, and we

refer to the literature (e.g. [23] ) for a more comprehensive presentation.

12In the case of a scalar theory, the symmetric derivative also produces doublers. In this case however the
problem is easily solved by using either ∇( f .) or ∇(b.).
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2.2.4 Wilson fermions

In the Wilson discretization, the naive fermion Lagrangian Eq. (2.62) is modified by adding

a dimension five operator. This so-called Wilson term solves the doubling problem by giving

to the doublers a mass proportional to 1
a , while the low-momentum modes acquire a mass

proportional to a, which vanishes in the continuum limit. In this way all doublers become

infinitely heavy in the continuum limit and disappear from the spectrum. The price one has

to pay is that at finite lattice spacing the Wilson term explicitly breaks the chiral symmetry,

and the Nielsen-Ninomiya no-go theorem is thus satisfied. The free Wilson Lagrangian is

given by

LWilson
F [ ˆ̄ψ, ψ̂] = ∑

n∈Λ

ˆ̄ψα(n)
[
∇̂(s.)

µ γ
αβ
µ + m̂δαβ − r

2
δαβ∇̂(b.)

µ ∇̂(f.)
µ

]
ψ̂β(n), (2.66)

where a summation over µ = 0, . . . , 3 is implied. The last term in square bracket is the

Wilson term and r ∈ (0, 1] the Wilson parameter. Since it breaks explicitly chiral symme-

try, lattice artifacts are usually quite sizable using this discretization, and the study of the

chiral transition requires a fine tuning of the bare mass parameter m̂q since additive mass

renormalization terms are present.

2.2.5 Staggered fermions

The staggered discretization was first proposed by Kogut and Susskind in [27]. In some

sense it is halfway between the naive and Wilson discretization, because chiral symme-

try is not completely spoiled and the number of doublers is not maximal as in the naive

discretization. The derivation of the staggered discretization starts with the so-called spin-

diagonalization of the naive fermion Lagrangian. One performs a local transformation on the

fermion fields

χ(n) = Ω(n)ψ̂(n), χ̄(n) = ˆ̄ψ(n)Ω†(n) , (2.67)

where Ω(n) is a 4× 4 unitary matrix acting on the spinor components of the fields { ˆ̄ψ, ψ̂},
and chosen such that the following spin-diagonalization condition is satisfied

Ω†(n)γµΩ(n + µ̂) = ηµ(n)14×4, ηµ(n) ∈ R. (2.68)

The usual choice of the matrices Ω(n) is

Ω(n) = γn0
0 γn1

1 γn2
2 γn3

3 , ηµ(n) = (−1)∑ν<µ nν . (2.69)
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When the naive Lagrangian is written in terms of the staggered fields {χ̄, χ}, the four Dirac

components completely decouple as a consequence of the previous condition

Lnaive
F [χ̄, χ] = ∑

n∈Λ

3

∑
α=0

χ̄α(n)
[
ηµ(n)∇(s.)

µ + m̂
]

χα(n), (2.70)

and the staggered Lagrangian is defined retaining only one term in the previous sum over

α (e.g. the term with α = 0). The resulting Lagrangian, in terms of a single component field

{χ̄0, χ0} describes four (instead of sixteen) degenerate flavors of fermions, as we shall see

in a moment. Dropping out the index 0, we can construct four Dirac fields ψ f associated to

the values of the staggered field {χ̄, χ} at the corners of the elementary hypercube of size a

via13

ψ̂
f
α(n) =

1
8 ∑

y
Γy; α, f χ(2n + y), ˆ̄ψ f

α(n) =
1
8 ∑

y
χ̄(2n + y)Γ†

y; α, f , (2.71)

where f stands for the four different flavors, α is again a Dirac index and y spans the corners

of the hypercube. The matrices Γy are given by

Γy = γ
y0
0 γ

y1
1 γ

y2
2 γ

y3
3 . (2.72)

Notice that the lattice spacing for the fields ψ̂ f effectively doubled since the number of lattice

sites where they are defined has been halved. In term of these new fields defined on the

sublattice Λ′ made only of the even sites, the staggered Lagrangian is

Lstagg.
F [ ˆ̄ψ f , ψ̂ f ] ∝ ∑

n∈Λ′

ˆ̄ψ f
α(n)

[
m̂δαβδ f f ′ +

(
(γµ)αβδ f f ′∇̂

(s.)
µ − 1

2
(γ5)αβ(γ5γT

µ) f f ′∇̂2
µ

)]
ψ̄

f ′

β (n),

(2.73)

where ∇̂2
µ is the following discretized version of the second derivative

∇̂2
µψ̂(n) =

ψ̂(n + µ) + ψ̂(n− µ)− 2ψ̂(n)
2

. (2.74)

The mass and kinetic terms in the Lagrangian Eq. (2.73) describes four flavors of fermions

(which are usually called tastes) in a similar way as in the naive discretization. The last term

is a dimension five operator which vanishes in the continuum limit. However, at finite lattice

spacing this term breaks the chiral symmetry of the four tastes (so-called taste symmetry

breaking). Nevertheless the invariance under the chiral group is not completely lost, and a

remnant of chiral symmetry in the massless limit still persists at finite lattice spacing. The

13We assume that the number of lattice sites in each direction is even.
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Lagrangian Eq. (2.70) is indeed invariant under the following U(1) transformations

χ(n)→ eiaε(n)χ(n), χ̄(n)→ eiaε(n)χ̄(n), ε(n) = (−1)n0+...+n3 , (2.75)

which in terms of the "physical field" in Eq. (2.71) reads

ψ̂(n)→ eiaγ
Spin
5 ⊗γTaste

5 ψ̂(n), ˆ̄ψ(n)→ ˆ̄ψ(n)eiaγ
Spin
5 ⊗γTaste

5 , (2.76)

where the notation γ
Spin
5 ⊗γTaste

5 means the direct product between two γ5 matrices acting on

Dirac and taste components. The existence of this symmetry makes the staggered fermions

more suited to the study of the QCD chiral transition. Notice that since Tr γTaste
5 = 0 this

symmetry is part of the SU(4) chiral group.

Moreover, the four tastes in Eq. (2.73) do not produce doublers in the continuum limit.

Computing the fermionic two-point function as in Eq. (2.64), one can show that the sin2(kµ)

term gets replaced by sin2(kµ/2) which does not go to zero at the corners of the Brillouin

zone. The reason behind this behavior is hidden in the fact that the lattice spacing for the

fields in Eq. (2.71) is 2a, and in units of their momenta the Brillouin zone is [−π
2 , π

2 ].

2.2.6 Gauge fields

We now describe the discretization of the gauge fields Aµ(x) and of the QCD action. Be-

fore analyzing the Yang-Mills term, we consider the modification of the minimal coupling

between fermionic and gauge fields at finite lattice spacing. Any discretized free fermion

Lagrangian, ignoring internal indices, takes the form

LF[ ˆ̄ψ, ψ̂] = ˆ̄ψ(n)∇̂(s.)
µ Bµψ̂(n) + . . . , (2.77)

where the structure of the 4−vector Bµ depends on the discretization adopted. In the case of

the quark fields, we insist on having a Lagrangian that is invariant under the gauge trans-

formations Eq. (2.9) at each lattice site n. As neighboring lattice points are separated by a

finite distance a, a gauge invariant quantity can be constructed modifying the symmetric

derivative operator via

∇̂U
µ ψ̂(n) =

Un,µψ̂(n + µ̂)−U†
n−µ̂,µψ̂(n− µ̂)

2
, Un,µ ∈ SU(3). (2.78)

The quantities Un,µ, U†
n,µ are the gauge links in the forward (Un,µ) and backward (U†

n,µ) direc-

tions. They are defined on every bond (or link) (n, µ) of the lattice Λ and transform under a
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gauge transformation G as

Un,µ → U′n,µ = G(n)Un,µ G(n + µ̂)†. (2.79)

In terms of the continuum gauge field Aµ(x), the gauge link Un,µ corresponds to the Wilson

line

Un,µ = P exp
(

i
∫ an+aµ̂

an
Aµ(x)dxµ

)
; (2.80)

therefore it acts as a parallel transporter between the lattice sites n and n + µ̂. It is straight-

forward to show that in the limit a → 0, Eq. (2.78) describes the usual minimal coupling of

the continuum Lagrangian. The Euclidean Yang-Mills term

LYM(x) =
1

2g2 Tr
[
Fµν(x)Fµν(x)

]
, (2.81)

Fµν(x) = ∂µ Aν(x)− ∂ν Aµ(x) + i
[
Aµ(x), Aν(x)

]
, (2.82)

must be also discretized in terms of gauge links. From the transformation rule Eq. (2.79),

it follows that any trace of product of gauge links along a closed path is gauge invariant.

Hence, they are good candidates to describe the Yang-Mills term. The first lattice version of

Eq. (2.81), proposed by K. Wilson in [28], was obtained considering the smallest loop, i.e. the

product of four gauge links around the elementary square of size a. This quantity is called

the plaquette, and it is given by

Up=(n,µ,ν) ≡ Un,µ Un+µ̂,ν U†
n+ν̂,µ U†

n,ν, µ < ν. (2.83)

In terms of the plaquettes, the (Wilson) lattice gauge action is simply

SG[Up] =
β

6 ∑
p

Tr
[
2 · 1−Up −U†

p

]
∈ R , (2.84)

where the sum is over all (unoriented) plaquettes and β is a constant. One can verify that

for a→ 0, substituting

Ux,µ ' exp
(
iaAµ(x)

)
, (2.85)

and using the Baker-Campbell-Hausdorff formula, the correct continuum limit for the action

is approached,

SG
a→0
=

β

12

∫
d4x Tr Fµν(x)Fµν(x) +O(a2), (2.86)
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if β is related to the inverse bare gauge coupling via β = 6
g2 . In the case of a SU(N) or U(N)

Yang-Mills theory the same result holds true with β
6 →

β
2N = 1

g2 .

The discretized functional integral for QCD thus takes the form

ZQCD = ∏
n

∫
d ˆ̄ψ(n)dψ̂(n) ∏

(n,µ)

∫
DUn,µ exp

(
−SG[Up] + SF[ ˆ̄ψ, ψ̂, U]

)
, (2.87)

where SF is a not yet specified fermion discretization equipped with the modified deriva-

tive operator Eq. (2.78). The continuum gauge integral over the gauge components Aa
µ(x) is

now replaced by a functional integral over the gauge links Un,µ ∈ SU(3). The correspond-

ing measure DUn,µ is the invariant SU(3) Haar measure which will be described in more

details in Ch. 4. For a general group G = SU(N), U(N), the Haar measure of G satisfies the

invariance property

∫
DU = 1 , D (UV) = D (VU) = DU, ∀V ∈ G . (2.88)

As we already outlined, lattice QCD has a well defined continuum limit which is obtained

in the limits

β→ ∞, m̂→ 0 , Nµ → ∞ , (2.89)

ensuring that for every value of (β, m̂) on the LCP the lattice is large enough so that finite

volume effects are under control. Since we will be limited to β values far from the continuum

limit, we do not go into details concerning the determination of the LCP and the extraction

of continuum physics from the discretized QCD partition function. For further reading we

refer to [29, 30, 23, 22].

QCD thermodynamics can be studied on the lattice compactifying the temporal extent

via Nt = 1
aT . As in the continuum theory, the gauge links Un,µ and fermion fields { ˆ̄ψ, ψ̂},

must satisfy respectively periodic and antiperiodic boundary conditions in the temporal di-

rection. To reduce finite size effect, periodic conditions for all fields are usually imposed on

the spatial boundaries. In addition, a finite quark chemical potential µ f can be introduced

( [31]) via an exponential coupling to the gauge links (see [32] for an alternative discretiza-

tion)

Un,µ → eµ̂ f δµ,0Un,µ, U†
n,µ → e−µ̂ f δµ,0U†

n,µ , (2.90)

where µ̂ f = aµ f . Again, the insertion of a finite chemical potential gives rise to a complex

fermion determinant. Using for instance the Wilson or staggered discretization, it is easy to
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show that the fermionic action still satisfies Eq. (2.40).

2.3 Numerical methods

The most powerful method used to compute lattice observables are Monte Carlo simula-

tions. The main idea behind this technique is very easy: starting from the partition function

Eq. (2.87), one integrates the fermion fields as in Eq. (2.39) arriving at

ZQCD =
∫
D[U] exp (−SG[U])

N f

∏
f=1

det M f [U] ≡
∫
D[U]P[U]. (2.91)

If the fermion determinant is positive (as at zero chemical potential), the integrand can be

interpreted as a probability distribution over the gauge links Un,µ that one can evaluate

stochastically since the number of integrals is large but finite. Indeed, one can set up a

Markov process

{Un,µ}(0) → {Un,µ}(1) → . . . → {Un,µ}(N), (2.92)

such that after a number of equilibration steps τeq., it visits every gauge configuration {Un,µ}
a number of times proportional to the positive integrand in Eq. (2.91). This can be done

choosing the transition probabilities A{Un,µ}→{U′n,µ} from a state {Un,µ} to a state {U′n,µ} such

that the detailed balance condition is fulfilled14

A{Un,µ}→{U′n,µ}P
(
{Un,µ}

)
= A{U′n,µ}→{Un,µ}P({U

′
n,µ}) . (2.93)

An estimate for an observable 〈O〉, is then obtained from the generated set of gauge config-

urations via

〈O〉 = 1
ZQCD

∫
D[U] exp (−SG[U])

N f

∏
f=1

(
det M f [U]

)
O[U] ≈ 1

N

N

∑
i=1
O
[
{Un,µ}(τeq.+i)

]
,

(2.94)

with the statistical error on O decreasing as the square root of the sample size 1√
N

15. The

rational hybrid Monte Carlo algorithm (RHMC) [33] along with its improved versions (for

instance [34] ), when combined with the use of high performance computers, represents the

14In addition the Markov process must be ergodic and aperiodic [22].
15Assuming that the gauge configurations are sufficiently decorrelated.
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fastest way to compute lattice QCD observables, and led in the past years to continuum ex-

trapolated results for realistic quark masses.

At finite chemical potential, the RHMC algorithm cannot be directly used as the inte-

grand cannot be interpreted anymore as a probability distribution. In this case a "conserva-

tive" variation on the standard Monte Carlo algorithms is obtained via reweighting. This is

done introducing a fictitious, positive defined, function of the gauge fields Prew.[U], deter-

mining the expectation value 〈O〉 via

〈O〉 =

∫
D[U]Prew.[U] P[U]

Prew.[U]
O[U]∫

D[U]Prew.[U] P[U]
Prew.[U]

=
〈 P

Prew.
O〉rew.

〈 P
Prew.
〉rew.

, (2.95)

where 〈 . 〉rew. means average over the probability distribution Prew.. The drawback of this

method is that when the two functions P and Prew. are not peaked around the same region

of the phase space {Un,µ}, an overlap problem arises: the denominator in the r.h.s. of the

previous equation is

〈 P
Prew.
〉rew. = exp

(
−( f − frew.)

V
T

)
, (2.96)

which is exponentially suppressed with the lattice volume if the free energy densities of the

full ( f ) and reweighted ( frew.) systems are too different. Basically the overlap between the

two probability distributions gets suppressed at large volumes as a consequence of the cen-

tral limit theorem. In this case the number of gauge configurations to generate in order to

get a fixed statistical accuracy can be prohibitively large, and reweighting becomes ineffec-

tive. Common choices for the reweighted function Prew. in the case of QCD at finite density

are

Pp.q.[U] = exp (−SG[U])

∣∣∣∣ N f

∏
f=1

det M f [U, µ f ]

∣∣∣∣ , (2.97)

Pµ f =0[U] = exp (−SG[U])
N f

∏
f=1

det M f [U, µ f = 0] , (2.98)

or the multi-parameter reweighting [35], but none of these has led so far to a determination

of the finite density phase diagram. Many other strategies are available to circument the sign

problem for small values of the chemical potential, like the Taylor expansion method [36] or

the use of an imaginary chemical potential [37, 38, 39]. More recently, other approaches that

are not limited to small µq have been proposed, such as the complex Langevin approach

[40, 41], the Lefschetz thimble approach [42, 43, 44, 45], the density of states method [46]
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and the use of 3d effective theories [47, 48, 49]. All these approaches have their advantages

and shortcomings, but a method that allows to simulate lattice QCD at finite density has not

yet been established. Instead among the methods that are not lattice based, the functional

approach is recently playing a prominent role [50]. In the next chapters we will discuss the

application of dual methods as a possible way to solve or mitigate the QCD sign problem.
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Chapter 3

Dual representations

In this chapter we illustrate the main ideas behind dual representations. A number of con-

cepts and quantities which will enter the dualization of non-Abelian gauge theories will be

introduced. Before going through the involved process of dualization in QCD, which will be

covered in the next chapters, a fully dualized version of the multi-flavor lattice Schwinger

model, and of lattice QCD in the strong coupling limit β = 0, will be presented. This is

meant to be a pedagogical introduction that aims to show the main features of dualizations

based on series expansion and their usefulness: the finite density sign problem that afflicts

the conventional formulation of the multi-flavor Schwinger model is absent in the dual rep-

resentation in the massless limit, whereas in the case of lattice QCD at strong coupling,

although a residual sign problem is still present, it is mild enough that the phase diagram

can be studied via sign reweighting.

3.1 Definition and general considerations

Historically duality transformations were introduced and used for the first time by Kram-

mers and Wannier in 1941 [51, 52]. They discovered a self-duality property of the two-

dimensional Ising model, i.e. a mapping between the high and low temperature phase, and

were able, under a mild assumption, to locate exactly and for the first time the ferromagnetic-

to-paramagnetic transition temperature. Since then duality transformations were extended

to a large number of systems, and a number of relations connecting different statistical

models have been discovered (see [53] for a review). In the context of lattice field theo-

ries, the term dual representations was introduced, and the corresponding dual transforma-

tions, which bring one from the original to the dual system, are generally different from the

Krammers-Wannier ones. Typically, to obtain a dual representation, one integrates out the

original degrees of freedom that parameterize the partition function (e.g. the gauge links

in a pure gauge theory) after a Taylor or character expansion of the local Boltzmann fac-

tors. The integer variables that identify a given order of the Taylor expansion or a given
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irreducible representation in the character expansion correspond to the new set of degrees

of freedom in the dual representation (so-called dual variables). In the case of non-Abelian

gauge theories, the set of dual variables must be augmented by an additional set of auxiliary

degrees of freedom that allow to express the dualized partition function as a product of local

weights distributed over lattice sites and bonds. The particle content of the original formu-

lation is usually translated into constraints on the admissible set of dual variables, which

are then crucial in Monte Carlo simulations, where it is fundamental to build an ergodic

Markov process capable of proposing updates only between admissible configurations.

The driving force behind the use of dual representations comes from the observation

that the sign problem is representation-dependent. Indeed, it does not have a physical ori-

gin and only stems from the choice of the basis in which the matrix elements of the density

matrix are expressed. Therefore, a different parameterization of the partition function pro-

duces a sign problem with a different magnitude, which in some cases can be even absent.

Before entering the discussion about dualization in QCD, we will re-examine two models:

the multi-flavor lattice Schwinger model (i.e. two-dimensional quantum electrodynamics

on the lattice) and lattice QCD at strong coupling, where the dualization process can be

carried out quite easily, without struggling with the non-Abelian Yang-Mills term.

3.2 The lattice Schwinger model

3.2.1 Formulation

The Euclidean action of the multi-flavor Schwinger model in the continuum is given by

SS.M. = −
∫

d2x
1

2e2 Fµν(x)Fµν(x) +
N f

∑
a=1

ψ̄a(x)

[
∑

µ=0,1
γµDµ + ma

]
ψa(x) , (3.1)

Fµν(x) = ∂µ Aν(x)− ∂ν Aµ(x), Aµ ∈ R, µ, ν = 0, 1 , (3.2)

where e is the bare electric charge, Aµ the Abelian photon field and γµ=0,1 are the two-

dimensional gamma matrices. This model shares important properties with QCD: it ex-

hibits confinement, spontaneous chiral symmetry breaking and has a non-trivial topology.

Apart from gauge and chiral symmetry, the action Eq. (3.1) is invariant under U(1) transfor-

mations corresponding to independent global phase rotations of the different flavors. The

corresponding N f conserved quantities

Qa(x0) =
∫

dx1ψ̄a(x0, x1)γ
0ψa(x0, x1) , ∂x0 Qa(x0) = 0 , a = 1, . . . , N f , (3.3)
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can be coupled to N f chemical potentials µa=1,...,N f similarly to Eq. (2.36). The resulting

action has then a sign problem as in the QCD case. On the lattice, a discretized version of

the Schwinger model can be obtained with the ingredients of the previous chapter. We only

consider the massless limit, employing the staggered discretization for the fermionic part,

and the U(1) plaquette action for the gauge term, obtaining the partition function1

ZS.M. = ∏
n∈Λ

∏
a

∫
dχ̄a(n)dχa(n) ∏

(n,µ)
DUn,µ exp

(
+

β

2 ∑
p

(
TrUp + TrU†

p

)
− SF[χ̄

a, χa, U]

)
,

(3.4)

SF[χ̄
a, χa, U] = ∑

n,µ

N f

∑
a=1

χ̄a(n)
[
ηµ(n)e µ̂a δµ,0Un,µχ(n + µ̂)− ηµ(n− µ̂)e−µ̂a δµ,0U†

n−µ,µχa(n− µ̂)
]

.

(3.5)

The two-dimensional staggered phases ηµ(n) are given by

η0(n) = 1, η1(n) = (−1)n0 , (3.6)

µ̂a are the dimensionless lattice chemical potentials, and Un,µ ≡ eiφn,µ ∈ U(1) are the Abelian

gauge links. The trace in the plaquette action is trivial in the Abelian case since the gauge

links are complex numbers, and we have

Tr Up=(n,µ,ν) = Up=(n,µ,ν) ≡ eiφp = ei(φn,µ+φn+µ̂,ν−φn+ν̂,µ−φn,ν) . (3.7)

On a lattice with periodic boundary conditions, the net flux of the electric field is always

zero, and the Gauss law implies global electric neutrality. Therefore only configurations

with zero total electric charge can be generated. As a consequence, chemical potentials

µa = µQ, ∀ a = 1, . . . N f , (3.8)

which couple to the electric charge operator, do not produce any measurable effects, thus

one needs at least N f = 2. Other choices of the chemical potentials generate instead a non-

trivial dependence in thermodynamic quantities, and the corresponding phase diagram has

a rich structure [54].

1Ignoring the two tastes produced by each flavor of staggered quarks.
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Before starting with the dualization process, we can get rid of the staggered phases which

can be absorbed with a redefinition of the gauge links

Un,µ → ηµ(n)Un,µ . (3.9)

This transformation does not change the Haar measure because the staggered phases are el-

ements of the U(1) gauge group. As the product of the staggered phases around a plaquette

is always

ηµ(n)ην(n + µ̂)ηµ(n + ν̂)ην(n) = −1 , (3.10)

this has only the effect of changing β to −β. This statement holds true for every U(N) or

SU(2N) gauge theory. To obtain a dual representation, we start expanding in Taylor series2

the Boltzmann factors corresponding to the plaquette term (expansion in β/2), and to the

fermionic action (hopping expansion)

exp

(
−β

2 ∑
p

TrUp + TrU†
p

)
= ∑
{np,n̄p}

∏
p

(−β/2)np+n̄p

np!n̄p!
(TrUp)

np(TrU†
p)

n̄p , (3.11)

exp (−SF[χ̄
a, χa, U]) = ∑

{da
n,µ,d̄a

n,µ}
∏
(n,µ)

N f

∏
a=1

(
Wa

n,µ

)da
n,µ
(

Wa
n,µ

)da
n,µ

, (3.12)

where we introduced the dual variables np, n̄p ∈ N and da
n,µ, d̄a

n,µ ∈ {0, 1}. The positive (W)

and negative (W) hopping weights are given by

Wa
n,µ = −χ̄a(n) eµ̂aδµ,0 Un,µ χa(n + µ̂) , (3.13)

Wa
n,µ = +χ̄a(n + µ̂) e−µ̂aδµ,0 U†

n,µ χa(n) . (3.14)

The dual variables np and n̄p are called respectively the plaquette and antiplaquette occupa-

tion numbers, and clearly live on the lattice plaquettes. The dn,µ and d̄n,µ are instead defined

on the lattice link (n, µ). In the following, to identify lattice links we will oftentimes use the

notation (n,±µ), meaning

(n,+µ) ≡ (n, µ), (n,−µ) ≡ (n− µ̂, µ). (3.15)

2Historically the dual representation of the Schwinger model was derived from a character expansion [7]. In
view of the generalization to non-Abelian gauge theories, we will perform a Taylor expansion showing at the
end of the section the simple connection between the two representations.
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For later convenience, we also introduce the dimer numbers ka
n,µ and the fermion fluxes f a

n,µ via

ka
n,µ = min {da

n,µ, d̄a
n,µ} ∈ {0, 1}, f a

n,µ = da
n,µ − d̄a

n,µ ∈ {−1, 0, 1} , (3.16)

which can be used as dual variables in place of dn,µ and d̄n,µ. In this way Eq. (3.12) can be

rewritten as

exp (−SF[χ̄
a, χa, U]) = ∑

{ka
n,µ, f a

n,µ}
∏
(n,µ)

N f

∏
a=1

(
Wa

D; n,µ

)ka
n,µ

Wa
F; n,µ( f a

n,µ) , (3.17)

where the new dimer and flux weights WD and WF are given by

Wa
D; n,µ = χ̄a(n)χa(n)χ̄a(n + µ̂)χa(n + µ̂), (3.18)

Wa
F; n,µ( f a

n,µ) = δ f a
n,µ,1 Wa

n,µ + δ f a
n,µ,−1 W̄a

n,µ + δ f a
n,µ,0 . (3.19)

The dimer weight WD; n,µ does not depend explicitly on the gauge link and describes two

fermion-antifermion pairs at site n and n + µ̂. The flux weight WF; n,µ describes instead a

fermion-antifermion hopping between the two sites, and contains a forward or backward

gauge link depending on the sign of fn,µ.

3.2.2 Grassmann and gauge integration

The Grassmann and gauge integrals can now be performed. We will start integrating out

the fermionic field. Given the properties of Grassmann integration, to get a non-vanishing

integral, at each lattice site n and for each flavor a, exactly one fermion χa(n) and antifermion

χ̄a(n) must be present in the product in Eq. (3.17). When this happens we say that the

Grassmann measure has been saturated. To fulfill this condition at each site n, we have two

possibilities for each flavor a: we can either place a dimer on one link (n,±µ), i.e. ka
n,±µ = 1,

or insert two fermion fluxes on two different links (n,±µ̂), (n,±ν̂). The two possibilities are

mutually exclusive. In the first case, the Grassmann measure is saturated at site (n± µ̂) as

well, and the corresponding integrals simply give

∫
dχ̄a(n)dχa(n)dχ̄a(n± µ̂)dχa(n± µ̂)χ̄a(n)χa(n)χ̄a(n± µ̂)χa(n± µ̂) = 1 . (3.20)

In the second case, to obtain a non-zero result from Grassmann integration, the fermion

fluxes f a
n,±µ and f a

n,±ν, must be chosen such that a fermion (χa(n)) or antifermion (χ̄a(n))

"excess" generated by one flux is always compensated by an antifermion or fermion from
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the second flux. This condition can be written as

∑
µ=0,1

f a
n,+µ − f a

n,−µ = 0 , ∀ a = 1, . . . , N f , (3.21)

which expresses a conservation law for the net flux. As a consequence, fermion fluxes of any

flavor a must always form oriented self-avoiding loops, including loops that wind around

the periodic boundaries of the lattice. These loops can never cross a site attached to a dimer

of the same flavor. The Grassmann integral for all sites belonging to one loop `a, can be

performed and gives a total contribution of

W`a [U] = (−1)L(`a)/2+w(`a)+1 ∏
(n,µ)∈`a

e f a
n,µ µ̂a δµ,0 U

f a
x,µ

n,µ , (3.22)

where L(`a) is the number of links inside the loop (i.e. its length) and w(`a) is the winding

number around the temporal direction. In fact, inspecting Eqs. (3.19), (3.13) and (3.14), we

get a factor U±1
n,µe±µ̂aδµ,0 from each positive (+) or negative (−) hopping term (for unitary

groups U−1
n,µ = U†

n,µ). Moreover we get a minus sign from each positive hopping (which

are L(`a)/2 in total3), and an additional minus sign every time a fermion flux crosses the

temporal boundary due to the antiperiodic conditions for fermionic fields. In addition, as

explained in Sec. 2.1, the Grassmann variables must be put in canonical ordering before

performing the integrals using Eq. (2.13). To do this, the first and last variable appearing

in the product of the hopping terms must be commuted, which accounts for the last minus

sign in the sign factor Eq. (3.22).

Thus, each lattice site is either attached to a dimer or crossed by a fermion flux. The

(Grassmann-) constraint on {ka
n,µ, f a

n,µ} is

∑
±µ

ka
n,µ +

| f a
n,µ|
2

= 1, ∀n ∈ Λ, ∀ a = 1, . . . , N f , (3.23)

along with the flux conservation law Eq. (3.21). After Grassmann integration, the partition

function takes the form

ZS.M. = ∑
{np,n̄p}
{kn,µ, fn,µ}

∏
(n,µ)
DUn,µ

[ N f

∏
a=1

∏
`a

W`a [U]

]
∏

p

(−β/2)np+n̄p

np!n̄p!
(TrUp)

np(TrU†
p)

n̄p , (3.24)

3For loops with a non-zero winding number this is not true, but Eq. (3.22) still holds if the number of sites in
each direction is a multiple of 4.
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Having integrated out the Grassmann variables, to complete the dualization process we

need to integrate out the gauge fields. The U(1) Haar measure takes the trivial form

∫
DUn,µ =

1
2

∫ 2π

0
dφn,µ , (3.25)

hence any polynomial integral over the gauge link Un,µ gives simply

∫
DUn,µ

(
Un,µ

)a (U†
n,µ
)b

= δa,b . (3.26)

The integration over the gauge measure in the U(1) case, acts simply as a constraint on

the allowed set of dual variables {np, n̄p, fn,µ}, which must be chosen such that the gauge

integrals are non-vanishing. As the dimer weight WD;n,µ does not depend on the gauge

links, this condition does not constrain further the dimer numbers kn,µ. A non-zero weight

is thus obtained only when at each link the same number of forward Un,µ and backward U†
n,µ

gauge links are present. If this condition is satisfied, the integral in Eq. (3.24) gives simply

one. This (gauge-) constraint can be stated in terms of dual variables as

∑
ν>µ

(
δnn,µ,ν − δnn−ν̂,µ,ν

)
+ ∑

ν<µ

(
δnn−ν̂,ν,µ − δnn,ν,µ

)
+

N f

∑
a=1

f a
n,µ = 0, ∀ (n, µ) , (3.27)

where δnp = np − n̄p. Indeed, every unit of np and n̄p produces, on each of the four links

that make the plaquette p, a forward or a backward gauge link depending on the relative

orientation of the plaquette with respect to the link. An excess of gauge links in one di-

rection, generated by the plaquettes, must be compensated by oppositely oriented fermion

fluxes.

3.2.3 The dual partition function

The fully dualized partition function can be thus expressed as a sum over configurations C
made of fermion loops `a, dimers ka

n,µ, and plaquette occupation numbers {np, n̄p} via

ZS.M. = ∑
{np,n̄p}
{ka

n,µ,`a}

σ (C)∏
`a

e µ̂a Nt w(`a) ∏
p

(β/2)np+n̄p

np!n̄p!
, (3.28)

where Nt is the temporal extent of the lattice, and the dual variables must fulfill the con-

straints Eqs. (3.21), (3.23) and (3.27). A graphical representation of an allowed configuration

is shown in Fig. 3.1. Notice that the dependence on the chemical potential is only carried

by fermion loops with non-zero winding number in temporal direction. For other types of

loop instead, the number of positive and negative temporal hoppings is the same, and the
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FIGURE 3.1: An allowed configuration on a 8× 8 lattice with periodic boundary conditions for
N f = 2. Unoriented and oriented lines represent respectively dimers and fermion fluxes. Different
colors refer to different flavors. Every clockwise or anti-clockwise green arrow corresponds
respectively to a positive or negative unit of δnp = np − n̄p.

chemical potential dependence cancels. The overall sign σ (C) in Eq. (3.28) is

σ (C) =
(
− 1
)∑p

δnp + ∑
`a

(
L(`a)/2+w(`a)+1

)
, (3.29)

thus it might look like we did not solve the sign problem after all. Remarkably, it can be

shown (see [7] for a detailed proof) that for all sets of allowed dual variables, the minus signs

always combine to produce σ (C) = 1, and the sign problem is absent in this representation.

The dual variables can be sampled using a generalization of the Prokofiev-Svistunov Worm

algorithm [55] that includes an update of the plaquette occupation numbers. This has been

discussed in [56] to which we refer for further readings about simulation strategies.

At finite fermion masses m̂a, a sign problem is instead present. We can understand this



Chapter 3. Dual representations 36

FIGURE 3.2: A negative configuration generated by a 2R× 2 fermion loop for N f = 1. The
Grassmann constraint within the loop cannot be fulfilled by placing dimers only, and it is forbidden
in the chiral limit.

effect diagrammatically: rectangular 2R× 2 fermion loops are forbidden in the chiral limit

m̂a = 0 since the Grassmann constraint Eq. (3.55) cannot be fulfilled at lattice sites within the

loops using dimers only. Given that they carry a negative sign (see Fig. 3.2), the appearance

of the sign problem can be explained as a proliferation of these kind of loop geometries at

non-zero fermion masses, since now the Grassmann integrals within the loop can be satu-

rated by terms of the form

exp

(
−∑

a
m̂a χ̄a(n)χa(n)

)
= ∑

ma
n=0,1

(−m̂a)
ma

n (χ̄a(n)χa(n))ma
n . (3.30)

One last remark concerns the connection between the Taylor and character expansions. The

gauge constraint Eq. (3.27), only involves the difference np − n̄p between plaquette and an-

tiplaquette occupation numbers. This means that a resummation of np and n̄p is possible,

and the partition function can be expressed only in terms of their difference δnp with modi-

fied weights given by

(β/2)np+n̄p

np!n̄p!
→

+∞

∑
n̄p=0

(β/2)2n̄p+δnp

n̄p!(n̄p + δnp)!
= Iδnp(β), (3.31)

where Iα(x) are the modified Bessel functions of the first kind. As the modified Bessel func-

tions are the expansion coefficients in the character expansion of the plaquette action

exp

(
β

2 ∑
p

TrUp + TrU†
p

)
=

+∞

∑
ν=−∞

Iν(β)χ̂ν(Up), χ̂ν(Up) = ei ν φp , (3.32)
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this resummation connects the Taylor and character expansion based, dual representations.

For the latter the dual partition function is simply

ZS.M.(β, µ̂a) = ∑
{δnp, ka

n,µ, `a}
∏
`a

e µ̂a Nt w(`a) ∏
p

Iδnp(β) . (3.33)

In the case of non-Abelian gauge theories, including QCD, such a simple correspondence

does not exist, and the resulting representations can have in general different properties

(see the discussion in Sec. 5.2.4).

The sign problem in other Abelian models, such as in the gauge-Higgs model and in

the charged scalar φ4 theory, can be solved using strategies similar to the one we just dis-

cussed [6, 57]. For non-Abelian systems, the corresponding dual representations will have

in general a residual sign problem. As we will show in the next subsection, this does not

always represent a failure of the method. The magnitude of the sign problem can be drasti-

cally reduced in the dual representation, and reweighting techniques be applied.

3.3 Lattice QCD at strong coupling

In this subsection we continue the overview on dual methods analyzing a second model:

lattice QCD in the strong coupling limit. This model corresponds to a one-parameter de-

formation of the full theory, since it is obtained setting the bare lattice coupling β to zero.

Despite its crudeness, it has some interesting properties. For example the realization of chi-

ral symmetry at strong coupling happens in a similar way as in the continuum limit β→ ∞:

it is spontaneously broken by the vacuum, and restored at some finite temperature Tc. The

system also possesses pion-like and baryon-like modes, and the phase structure at finite tem-

perature and density can provide qualitative indications about the corresponding structure

in the continuum limit. Finally, it corresponds to the zeroth-order term in the strong cou-

pling expansion; thus performing the dualization of this theory allows to introduce some of

the ingredients needed for the understanding of the following chapters, where the problem

of a systematic inclusion of the β corrections will be tackled.

3.3.1 The dual formulation

We start directly from the partition function on the lattice, employing one flavor of staggered

fermions4. To keep the discussion as general as possible, we consider the case of a SU(N) or

4We remind the reader that in the continuum limit, for D + 1 = 4, the action describes four degenerate quark
flavors.
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U(N) theory in D + 1 spacetime dimensions. The strong coupling partition function is

Zs.c. = ∏
n

dχ̄(n)dχ(n) ∏
(n,µ)

∫
G
DUn,µ exp (−SF[χ̄, χ, U]) , Un,µ ∈ G , (3.34)

SF[χ̄, χ, U] = ∑
n

(
−∑

µ

[
TrM†

n,µUn,µ + Tr U†
n,µMn,µ

]
+ 2m̂qχ̄(n)χ(n)

)
, (3.35)

where G = SU(N), U(N), and m̂q is the dimensionless quark mass. The staggered fields

χ̄(n) and χ(n) are now N−component vectors

χ̄(n) ≡
(
χ̄1(n), . . . , χ̄N(n)

)
, χ(n) ≡


χ1(n)

...

χN(n)

 . (3.36)

The plaquette action is of course absent in the strong coupling limit since β = 0. To simplify

the notation, we have defined the staggered action in term of the fermion matricesM and

M†, which are given by

(
Mn,µ

)
i,j = ηµ(n)e−µ̂q δµ,0 χ̄i(n + µ̂)χj(n) , (3.37)(

M†
n,µ
)

i,j = −ηµ(n)e µ̂q δµ,0 χ̄i(n)χj(n + µ̂) . (3.38)

The color indices i, j run from 1 to N, and µ̂q is the dimensionless quark chemical potential.

The trace in Eq. (3.35) is intended over color indices. Given the anticommutation rules for

Grassmann variables, the fermion matrices satisfy the properties

Tr
[(
Mn,µM†

n,µ

)i
]
= (−1)i+1 (Mn Mn+µ̂

)i , Mn ≡
N

∑
i=1

χ̄i(n)χi(n) , (3.39)

(
Mn,µ

)N+1
=
(
M†

n,µ
)N+1

= 0 (3.40)

To obtain a dual representation, we start performing the integral over the gauge links

Un,µ. As there are no plaquette terms, the functional integral in Eq. (3.34) factorizes into

one-link contributions of the form

IG(M,M†) =
∫

G
DU exp

(
TrM†U + TrMU†

)
, (3.41)

which can be computed independently. The quantity IG(A, A†), for a generic complex N ×
N matrix A, is the Brézin-Gross-Witten integral and it is known, for unitary groups G of

sufficiently small rank, as a power series in terms of the invariants of A, A† [58]. For example
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in the case of SU(3) the invariants are:

det[A], det[A†], Tr[(AA†)], Tr[(AA†)2] , (3.42)

while for G = U(N), SU(N) the power series contains higher order traces Tr[(AA†)k] with

k < N. In our case the fermion matrices satisfy the properties Eqs. (3.39) and (3.40); hence

the power series is finite and it can be obtained for any unitary group. The result is5

IG(Mn,µ,M†
n,µ) =

N

∑
kn,µ=0

(N − kn,µ)!
N!kn,µ!

(
Mn Mn+µ̂

)kn,µ + z
(
(−1)Nαn,µB̄nBn+µ̂ + α−1

n,µB̄n+µ̂Bn

)
(3.43)

Bn ≡
1

N!
εi1,...,iN χi1(n) . . . χiN (n) , B̄n ≡

1
N!

εi1,...,iN χ̄i1(n) . . . χ̄iN (n) . (3.44)

z is 1 for SU(N) and 0 for U(N), while

αn,µ =
(
ηµ(n)

)N e N µ̂q δµ,0 , α−1
n,µ =

(
ηµ(n)

)N e−N µ̂q δµ,0 . (3.45)

Similarly to what we did for the Schwinger model, we can introduce dual variables associ-

ated to the various terms in Eq. (3.43). The integers kn,µ ∈ {0, . . . , N} are the dimer numbers,

while the second and third term represent respectively a N−quark flux ( fn,µ = N) and an

N−antiquark flux ( fn,µ = −N). In the context of strong coupling lattice QCD, the latter two

are usually referred to as a baryon flux and an antibaryon flux. This definition of dimers

and quark fluxes exactly coincides with the one given for the Schwinger model as the var-

ious pieces in Eq. (3.43) originate respectively from the following expansion terms of the

staggered action:

(
TrM†

n,µUn,µ

)kn,µ
(

TrMn,µU†
n,µ

)kn,µ
,
(

TrM†
n,µUn,µ

)N
,
(

TrMn,µU†
n,µ

)N
. (3.46)

An exact derivation of Eq. (3.43), starting directly from the Taylor expansion of SF[χ̄, χ], will

be given in the next chapter.

Before performing the Grassmann integral, it is convenient to expand also the mass term

in Eq. (3.35) as

e−2m̂qχ̄(n)χ(n) =
N

∑
mn=0

(
−2m̂q

)mn

mn!
Mmn

n . (3.47)

5For a derivation of this equation see [59] or Ch. 4 where it will be obtained using a different formalism.
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The associated dual variables mn ∈ {0, . . . , N} are called monomers. Putting together Eqs. (3.47)

and (3.43) the strong coupling partition function assumes the dual form

Zs.c. = ∑
{mn,kn,µ, fn,µ}

∏
n
D[χ̄(n), χ(n)]

(−2m̂q)mn

mn!
Mmn

n ∏
(n,µ)

WD; n,µ(kn,µ)WB; n,µ( fn,µ) (3.48)

with the dimer and baryon weights given by

WD; n,µ(kn,µ) =
(N − kn,µ)!

N!kn,µ!
(

Mn Mn+µ̂

)kn,µ , kn,µ ∈ {0, . . . , N} , (3.49)

WB; n,µ( fn,µ) = z
(
(−1)Nαn,µB̄nBn+µ̂ δ fn,µ,N + α−1

n,µB̄n+µ̂Bn δ fn,µ,−N

)
+ δ fn,µ,0 , (3.50)

fn,µ ∈ {−N, 0, N} . (3.51)

We can now proceed integrating out the staggered fields. The Grassmann measure can be

saturated in a similar way as in the Schwinger model. Since the staggered fields have N

components, at each site n exactly one quark-antiquark pair χ̄i(n)χi(n), for each quark color

i ∈ {1, . . . , N}, must be present in order to get a non-zero result. The first possibility for sat-

urating the Grassmann measure at site n consists in activating dimers kn,±µ and monomers

mn. Given the Grassmann integral

∫
dχ̄(n) dχ(n) (Mn)

K = N! δK,N , (3.52)

this produces an allowed configuration only if the dimer and monomer numbers satisfy the

(Grassmann-) constraint

mn + ∑
±µ

kn,±µ = N , ∀ N ; (3.53)

then the integration simply produces an additional factor N!. The second possibility is to

activate a baryon flux ( fn,±µ = ±N) on a link (n,±µ). As each factor Bn, B̄n carries respec-

tively N quarks and antiquarks with different colors, the excess of quarks or antiquarks

produced at site n can only be compensated by a second baryon flux in another direction.

Therefore, baryon fluxes can only form oriented self-avoiding loops that never cross a site

attached to dimers or occupied by monomers. This condition can be stated, as in the case of

the Schwinger model, as a local conservation law for the baryon flux

D

∑
µ=0

fn,+µ − fn,−µ = 0 , (3.54)
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and Eq. (3.53) can be generalized in order to account for baryon fluxes as well via

mn + ∑
±µ

kn,±µ +

∣∣ fn,±µ

∣∣
2

= N . (3.55)

Of course in the U(N) case since z = 0 there are no baryon fluxes, and the system is de-

scribed only by dimers and monomers. The Grassmann integral along a baryon loop ` can

be performed and gives a total contribution of

N!L(`) W` ≡ σ(`) ∏
(n,µ)∈`

e fn,µ µ̂q δµ,0 = σ(`) exp
(

N Nt µ̂q w(`)
)

, (3.56)

σ(`) =


(−1)N+(`)+w(`)+1 ∏

(n,µ)∈`
ηµ(n) N odd

1 N even.

(3.57)

N+(`) and w(`) are respectively the total number of positive baryon segments and the tem-

poral winding number, while Nt is the temporal extent of the lattice. Indeed, similarly to

the fermion loops in the Schwinger model, we get from the weights WB in Eq. (3.48), a factor

eN µ̂q (e−N µ̂q ) for each baryon (antibaryon) flux in temporal direction, a factor (−1)N from

each (positive) baryon flux (which are N+(`) in total), and a factor
(
ηµ(n)

)N for every link

(n, µ) traversed by the loop. The remaining part of the sign factor σ(`) is determined by the

antiperiodic boundary condition in temporal directions ((−1)w(`)) and from commuting the

first and last term B̄n, Bn in the product of the factors WB around the loop. Notice that when

Bn and B̄n are made of an even number of quarks and antiquarks (the case of even N), since

baryons are bosons in this case, we do not get any minus sign when commuting Bn with B̄n

or when crossing the temporal boundary.

Putting it all together, the final partition function assumes the form6

Zs.c. = ∑
{mn, kn,µ, `}

∏
n

N!
m̂q!

(
2m̂q

)mn ∏
(n,µ)

(N − kn,µ)!
N!kn,µ! ∏

`

W` ; (3.58)

hence it is a sum over configurations made of monomers, dimers and baryon loops, subject

to the constraints Eqs. (3.54) and (3.55). The first determination of Eq. (3.58) was obtained

in [60] by P. Rossi and U. Wolff. An example of an admissible configuration is shown in

Fig. 3.3. Unlike the massless Schwinger model, the partition function contains negative

configuations because the minus signs from baryon loops do not always cancel. Indeed in

the U(1) case, because of the gauge constraint Eq. (3.27), fermion fluxes can only exist in

combination with plaquette terms which counterbalance the gauge links appearing in the

6Since on an even lattice the total number of monomers ∑n mn is even, we neglected the factor (−1)mn from
the monomer weight.



Chapter 3. Dual representations 42

FIGURE 3.3: Graphical representation of an allowed configuration for SU(3) on a 8× 8 lattice with
periodic boundary conditions. At each lattice site the monomer number mn is given by the number
of blue circles, while on each link every black line represents a dimer, i.e. one unit of kn,µ. Oriented
red lines are instead baryon fluxes ( fn,µ = ±3) and always form closed loops. The Grassmann
constraint Eqs. (3.54) and (3.55) is always satisfied.

flux weights WF[U] (see Eq. (3.19)). As a consequence, not all fermion loop geometries are

allowed, and in particular those providing negative weights are forbidden in the massless

limit. In the case of a SU(N) theory, baryon fluxes can exist even without the plaquettes, and

loops of arbitrary shape can be generated, producing a sign problem7. The question whether

numerical simulations are still feasible depends on its severity, and will be discussed in the

next subsection.

3.3.2 Analysis of the sign problem and the finite density phase diagram

To discuss the sign problem in the dual representation, we need a quantitative definition

of its magnitude. It is a common practice to do this on the basis of a reweighting criterion:

given a generic partition function Z = ∑α Pα, the sign problem is said to be mild if the

average sign 〈σ〉 satisfies

〈σ〉 ≡ 〈 P
|P| 〉p.q. =

∑α Pα

∑α |Pα|
= exp

(
−( f − fp.q.)

V
T

)
≈ O(1) , (3.59)

7In the dual representation negative configurations are present even at zero chemical potential. However in
this limit the sign problem can be solved exploiting the Karsch-Mutter trick [61] which resums baryon loops and
dimer chains into so-called polymers.
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where 〈 . 〉p.q. means average over the phase quenched distribution |Pα| obtained by taking the

norm of the statistical weights Pα. As we already discussed in Sec. 2.3, f and fp.q. are the

free energy densities of the real and reweighted system. Conversely, when 〈σ〉 ≈ 0 the sign

problem is said to be severe. Clearly 0 ≤ 〈σ〉 ≤ 1. In a nutshell, this definition tells us how

expensive it is in terms of machine time to get a fixed statistical accuracy on the observables

if we perform a Monte Carlo sampling according to the phase quenched distribution |Pα|.
Of course, increasing the spatial volume V will always correspond to an exponential dete-

rioration of the signal, but for practical purposes if the mildness condition Eq. (3.59) holds

true for a volume V large enough such that finite size effects are under control, we can say

that the sign problem is effectively solved. Notice that the mildness condition depends on

the lattice parameters, like quark mass m̂q, chemical potential µ̂q and temperature T.

The dual strong coupling partition function can be simulated using the Prokofiev-Svistunov

Worm algorithm. The algorithmic details are unimportant for the following discussion,

hence we refer to [62] for a detailed presentation. However, one important point concerning

finite temperature simulations, is realizing that since we are limited to β = 0, the lattice

spacing a of our system cannot be changed8. As a consequence, the temperature T can only

be varied by changing the temporal extent Nt of the lattice, since T = 1
aNt

. This is a prob-

lem: the highest lattice temperature aT that can be reached is aTmax. =
1
2 since staggered

fermions require an even lattice in all directions. A solution to this problem requires the

introduction of anisotropic lattices. The idea in this case is to introduce in the Dirac operator

a bare anistropy γ that favors the coupling in temporal direction, via

Mn,µ → γδµ,0Mn,µ, M†
n,µ → γδµ,0M†

n,µ, γ ∈ R+ . (3.60)

This modification triggers a physical anistropy ξ between the spatial (a) and temporal (at)

lattice spacing

ξ(γ) ≡ a
at

, (3.61)

and the lattice temperature can now be varied continuously by changing γ, since now

aT =
ξ(γ)

Nt
. (3.62)

The relation between γ and ξ is of non-perturbative nature and must be determined via the

8Strictly speaking the lattice spacing cannot be even defined since we are very far from the continuum limit.
Setting the scale using an operator O with length dimension δ via Ophys. = aδÔlatt., produces very different
determinations of a depending on what is O [63].
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so-called calibration procedure [64]. This has been done so far for the most relevant cases of

U(3) and SU(3), and the result is

ξ(γ)

γ2 = κ +
1

1 + κ
1−κ γ4 , κ =

0.7795(4), U(3)

0.7810(8), SU(3)
(3.63)

In the dual partition function, the introduction of a bare anistropy γ only requires a simple

modification of the dimer and loop weights, which can be summarized with reference to

Eq. (3.58) as

(N − kn,µ)!
N!kn,µ!

→ γ2kn,µ
(N − kn,µ)!

N!kn,µ!
, W` → γN0(`)W` , (3.64)

where N0(`) is the number of temporal lattice links contained in the loop `.

With these ingredients, the magnitude of the sign problem in the dual representation

can be analyzed. In Fig. 3.4, we show the average sign 〈σ〉 for SU(3) as obtained from

Monte Carlo simulations on a 163 × 4 lattice as a function of the chemical potential µ̂q and

temperature aT, in the chiral limit m̂q = 0. The sign problem is very mild for a broad

range of temperatures and chemical potentials (essentially because baryons are heavy) and

for the purposes of determining the finite density phase diagram, the sign problem can be

considered as solved. In the region of the aT − µ̂q plane relevant for the determination of

the transition line that separates the chirally broken from the chirally restored phase, the

average sign 〈σ〉 is sufficiently close to one that sign reweighting can be used. In Fig. 3.5 we

show a determination of the phase diagram in the chiral limit. The transition temperature

is determined, for each value of the chemical potential, from a finite size scaling analysis of

the lattice chiral susceptibility9

χψ̄ψ =
1

L3Nt

∂2 logZ
∂2(2m̂q)

, (3.65)

as shown in Fig. 3.6. At zero chemical potential the chiral transition is of second order with

associated O(2) critical exponents10. When switching on a chemical potential, the transition

temperature decreases keeping its second order nature until a tricritical point at

aT(tric.)
c = 0.80(2) , (aµq)

(tric.) ≡ (ξ(γ)µ̂q)
(tric.) = 0.52(1) , (3.66)

is reached. A line of first order phase transition is then present for larger values of the

9See [65, 66, 67] for a review on finite size scaling at phase transitions.
10We remind the reader that the staggered Lagrangian has a O(2) ∼=U(1) ⊂ SU(4) chiral symmetry.
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FIGURE 3.4: The dimensionless free energy difference a4∆ f = − 1
Nt N3

s
log 〈σ〉 (Eq. (3.59)) in the

aT − µ̂q plane for SU(3) in the chiral limit. The temperature aT and the chemical potential
aµ = ξ(γ)µ̂q were rescaled using the mean field coefficient κmf = 1; hence the tricritical point is
located at a slightly larger value of the chemical potential with respect to Fig 3.5. Courtesy of
Wolfgang Unger.

chemical potential. For finite quark mass instead, the second order line turns into an an-

alytic crossover, while the tricritical point becomes a critical endpoint, hence described by

the universality class of the three-dimensional Ising model. The phase diagram resembles

the one expected for continuum QCD (see Fig. 1.1). Of course the position of the strong

coupling critical endpoint has nothing to do with the continuum one, if any. An artifact of

the strong coupling limit is instead related to the nuclear transition: at low temperature,

chiral symmetry restoration occurs via the condensation of static baryon fluxes ( fn,0 = ±N).

When 〈ψ̄ψ〉 = 0, the system is in a crystalline phase where every site is occupied by a static

baryon, and the nuclear and chiral transition are thus degenerate. In the continuum limit

it is expected that this degeneracy gets removed, with a nuclear-liquid phase forming be-

fore chiral restoration. To try to determine the fate of the critical endpoint in the continuum

limit, and the splitting of the chiral and nuclear transition, it is fundamental to study how

the phase diagram gets modified by the gauge corrections. The next two chapters will be

devoted to the development of a strategy capable to attack this problem systematically in a

strong coupling expansion in the β parameter.
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FIGURE 3.5: The phase diagram of strong coupling QCD (G = SU(3)) in the chiral limit m̂q = 0.

The line of second order critical points ends in a tricritical point at aT(tric.)
c = 0.80(2) and

(aµq)(tric.) = 0.52(1). Different lines refer to simulations at different values of the lattice temporal
extent Nt. Taken from [64].
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FIGURE 3.6: Example of the procedure followed to determine the critical temperature. For different
values of the spatial lattice length L, the combination χψ̄ψL−γ/ν is plotted as a function of the lattice
temperature aT. The critical temperature aTc is determined as the crossing point of the various
curves. In the figure, the mean field temperature aT = γ2/Nt, has been used. For O(2) critical
behavior in three dimensions ν = 0.67155(27) and γ = 1.3177(5) [68]. At the tricritical point instead
ν = 1/2 and γ = 1. From [69].
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Chapter 4

Gauge integration

At β > 0, the plaquette terms in a non-Abelian gauge theory do not allow for a direct dual-

ization since the integrals over gauge links are all coupled together and no longer factorize

as in the strong coupling limit. A one-step evaluation of the integrals is not possible, and

even if so the resulting partition function would be a non-local function of the dual vari-

ables, hence not suited for Monte Carlo simulations. The solution to this problem requires

the introduction of auxiliary variables, which allow to write down the result of gauge inte-

gration, at fixed value of the dual variables, as a sum over local weights, i.e. as a sum of

products of scalar quantities distributed over lattice sites, links and plaquettes. The auxil-

iary variables can be then promoted to degrees of freedom and evaluated stochastically. The

introduction of auxiliary variables can be however problematic: local weights carrying neg-

ative signs can represent an additional source for the sign problem which strongly depends

on the specific way they are introduced. In the past years, two main strategies have been

put forward: in [70, 71, 72] starting from a character expansion of the plaquette action it was

possible to dualize two colors QCD using a spin-foam representation of the partition func-

tion where the role of auxiliary variables is played by the intertwiner labels. Simulations

in pure SU(2) Yang-Mills theory, on small to moderate four-dimensional volumes were car-

ried out, but the appearance of a sign problem starting at about β ≈ 1.8 prevented them

from reaching the weak coupling branch β→ ∞. In [73, 74] instead, the authors introduced

the concept of Abelian color cycles (ACC), i.e. loops of color indices around the plaquettes

which are then treated as dynamical degrees of freedom. Basically, at fixed values of the

ACC, the dual partition function resembles the one of an Abelian model, and the full parti-

tion function can be thought as a collection of Abelian-like systems. However, a severe sign

problem was present, and this approach was not further developed.1 Here we investigate a

novel strategy: starting from the Taylor expansion of the plaquette action, we introduce a set

of auxiliary variables which we called decoupling operator indices (DOI). The DOI arise from

our solution of the SU(N) polynomial one-link integral and its decomposition in terms of

1Although the ACC dualization solved the sign problem of the SU(2) principal chiral model at finite den-
sity [75].



Chapter 4. Gauge integration 49

decoupling operators. This chapter is concerned with the formal derivation of these results,

while their application to the dualization of full QCD will be presented in Ch. 5.

4.1 Beyond strong coupling: the polynomial one-link integral

Including the Wilson plaquette action, the full partition function Eq. (2.87) for one flavor of

staggered quarks can be expanded as

Z(β, m̂q) = ∑
{np,n̄p}
{d`,d̄`,mn}

∏
p

β̃np+n̄p

np!n̄p! ∏
`

1
d`!d̄`!

∏
n

(2m̂q)mn

mn!

∫
dχ̄(n)dχ(n) (χ̄(n)χ(n))mn Gnp,n̄p,d`,d̄` ,

(4.1)

Gnp,n̄p,d`,d̄` = ∏
`

∫
DU` Tr[U`M†

` ]
d` Tr[U†

`M`]
d̄` ∏

p
Tr[Up]

np Tr[U†
p]

n̄p , (4.2)

where β̃ ≡ β/2N, and to render the notation more compact we labeled the lattice links

with ` ≡ (n, µ). The dual variables {np, n̄p, d`, d̄`, mn} are again respectively the plaque-

tte occupation numbers, the hopping expansion coefficients and the monomers. As in the

Schwinger model d` and d̄` are related to dimers and quark fluxes via

k` ≡ min {d`, d̄`} , f` ≡ d` − d̄` . (4.3)

We continue keeping the discussion general considering a gauge group G = U(N), SU(N).

The quantity G contains the non-local part of the computation, and it is given by a gauge

integral over the whole lattice. To obtain a dual representation valid to all order in the β

expansion, we split the computation of G in two parts:

1) The traces appearing in Eq. (4.2) are written explicitly: we do not perform the matrix mul-

tiplication, leaving the color indices uncontracted. As a consequence, the gauge integral

∏`

∫
DU`, becomes a disjoint product of polynomial integrals with open color indices

and we integrate out every gauge link independently.

2) After gauge integration, some of the open color indices need to be contracted between

links that share a common site such that the plaquette terms are recovered. The remaining

indices are contracted with the fermion matrices M`, M†
` . We postpone the description of

this second step to Ch. 5.

If the matrix multiplications are not performed, the gauge integrals to compute assume the

following general form

I a,b
i j,k l ≡

∫
G

DU U j1
i1
· · ·U ja

ia
U† l1

k1
· · ·U† lb

kb
, (4.4)
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where the values a, b for a given link ` are determined counting the number of forward and

backward gauge links U` and U†
` appearing in the hopping and plaquette terms of Eq. (4.2).

We also make use of the multi-index notation

i = (i1, i2, . . . , ia), j = (j1, j2, . . . , ja),

k = (k1, k2, . . . , kb), l = (l1, l2, . . . , lb). (4.5)

Integrals over the invariant Haar measure were studied extensively in the past decades [76,

77, 78, 79, 80, 58, 81, 82, 83, 84, 85, 86, 87, 88]. Although a closed expression for polyno-

mial integrals of the form Eq. (4.4) was available for G =U(N), the solution for SU(N) was

unknown. We filled this gap obtaining a closed expression for the most general case.

4.1.1 Solution of the polynomial one-link integral

The integral Eq. (4.4) can be obtained from the generating functional

Za,b [K, J] =
∫

G
DU Tr[UK]a Tr[U† J]b, (4.6)

by taking successive derivatives with respect to the sources J, K ∈ GL(N, C), according to

the following equation:

I a,b
i j,k l =

1
a!b!

∂(a+b)Za,b [K, J]

∂Ki1
j1
· · · ∂Kia

ja ∂Jk1
`1
· · · ∂Jkb

`b

∣∣∣∣
J=K=0

. (4.7)

The explicit expression for the Haar measure on G is not important for this computation.

The two main properties which we make use of are:

1) Orthogonality of characters: given two irreducible representations2 Rr(U) and Rs(U) of the

group G and their irreducible characters χ̂r,s(U) ≡ Tr Rr,s(U)

∫
G
DU χ̂s(UV)χ̂r(U†W) =

δr,s

Dr,N
χ̂r(VW) ∀V, W ∈ G , (4.8)

where Dr,N is the dimension of the matrices Rr(U).

2) Center group invariance condition: if c 1 ∈ G with c ∈ C then for all monomial functions

f (U)

∫
G
DU f (U) 6= 0 =⇒ f (U) = f (cU) . (4.9)

2A group representation is an homomorphism R→ ρ(U) between the group G and the general linear group
GL(n, V) over a field V. In our case V = C, i.e. R(U) is an invertible n× n complex matrix. A group represen-
tation is then said to be irreducible if it cannot be written as a direct sum of other representations.
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In the case of the generating functional this property implies

Za,b [K, J] 6= 0 =⇒

a = b U(N)

a− b mod N = 0 SU(N)
(4.10)

Given Eq. (4.10) we set without loss of generality a = qN + p, b = p with p, q ∈ N+

and q = 0 if G = U(N). The generating functional is now a function of q and p, and we

define Z̃q,p [K, J] ≡ ZqN+p,p [K, J]. To evaluate it, we first convert the integral in Eq. (4.6) for

G = SU(N) into an U(N) integral, using

1
det Kq

∫
SU(N)

DUTr[UK]qN+p Tr[U† J]p =
∫

U(N)
DU

1
det[UK]q

Tr[UK]qN+p Tr[U† J]p, (4.11)

and assuming for the moment J, K ∈ U(N). The equality holds because the last integrand

is invariant under multiplication of the U matrix by a complex phase. As a consequence, it

gives the same result when integrated using the SU(N) or the U(N) Haar measure, and for

SU(N) det U = 1. Exploiting this trick, we can make use of the U(N) character expansion

to compute the quantity in the r.h.s. Before doing this we list some of the properties of the

irreducible representations (irreps) of the U(N) group3 highlighting the connections with

the symmetric group Sn:

1) Every irrep of U(N) is indexed by a N-tuple of integers {λ1 ≥ λ2 ≥ ... ≥ λN} (λN ≥ 0 or

< 0)). We will denote with Rλ the irrep associated to {λ1 ≥ λ2 ≥ ... ≥ λN}. If λN ≥ 0 the

irrep is called polynomial, thus polynomial irreps can be associated to integer partitions

λ ` n with n =
N

∑
i=1

λi (see Fig. 4.1).

2) For U(N) it exists a one-dimensional irrep called determinantal representation Rdet

Rdet : U → det[U] (4.12)

and its "inverse" Rdet : U → det[U†]. Every irrep of U(N) can be obtained as the tensor

product of a polynomial irrep with powers of Rdet since the following holds true:

Rλ ⊗ (Rdet)
⊗n ∼= Rλ−n =⇒ χλ(U)det[U]−n = χλ−n(U) , (4.13)

Rλ ⊗ (Rdet)
⊗n ∼= Rλ+n =⇒ χλ(U)det[U]n = χλ+n(U) , (4.14)

where λ± n ≡ {λ1 ± n, ..., λN ± n}.
3Further details and references can be found e.g. in [77].
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FIGURE 4.1: Graphical representation of a partition λ ` 9. The length of the partition len(λ) is the
number of rows.

3) The symmetric group Sn is the group of permutation of n objects. Its irreps are in one-

to-one correspondence with the integer partitions λ ` n. Its irreducible characters are

denoted with χλ(π), where π is a permutation, and the dimension of a given irrep is de-

noted with fλ. As for any irreducible character, its value only depends on the conjugacy

class of the group element g since Tr R(g) = Tr R(g′gg′−1). In the case of the symmetric

group, its conjugacy classes are also in one-to-one correspondence with partitions ρ ` n,

therefore we define χ
ρ
λ ≡ χλ(π) where π is any permutation in the conjugacy class ρ,

and we denote by hρ the total number of permutations within this class.

4) The irreducible characters χ̂λ(U) of the polynomial irreps can be expanded in traces of

powers of U (Frobenius relation)

χ̂λ`n(U) =
1
n! ∑

ρ`n
hρ χ

ρ
λ tρ(U) , tρ(U) =

N

∏
i=1

tr[Uρi ]. (4.15)

where the sum is over all partitions ρ ` n. Similarly, powers of traces of U can be ex-

panded in irreducible characters of the polynomial irreps

Tr[U]n = ∑
λ`n

len(λ)≤N

fλ χ̂λ(U) , (4.16)

where len(λ) is the partition length, i.e. the number of non-zero rows in λ.

Making use of these results an explicit expression for the generating functional is readily

obtained. We first expand in characters the traces in the r.h.s. of Eq. (4.11) using Eq. (4.16),

then we use the relations Eqs. (4.13) and (4.14), and finally the orthogonality of characters
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Eq. (4.8) and the Frobenius relation

Z̃q,p[K, J]
det[K]q

=
∫

U(N)
DU

1
det[UK]q

Tr[UK]qN+p Tr[U† J]p

=
∫

U(N)
DU ∑

λ`qN+p
len(λ)≤N

fλ χ̂λ−q(UK) ∑
λ′`p

len(λ′)≤N

fλ′ χ̂λ′(U† J)

= ∑
λ`p

len(λ)≤N

fλ+q fλ
χ̂λ(JK)

Dλ,N
=

(qN + p)!
p!

N−1

∏
i=0

i!
(i + q)! ∑

λ`p
len(λ)≤N

( fλ)
2

Dλ,N+q
χ̂λ(JK)

=
(qN + p)!

p!2
N−1

∏
i=0

i!
(i + q)! ∑

λ`p
len(λ)≤N

( fλ)
2

Dλ,N+q
∑
ρ`p

hρ χ̂λ(ρ) tρ(JK)

= (qN + p)!
N−1

∏
i=0

i!
(i + q)! ∑

ρ`p
hρ W̃gq,p

N (ρ) tρ(JK) . (4.17)

The fourth equality follows from the combinatorial identity

fλ+q

Dλ,N
=

(qN + p)!
p!

N−1

∏
i=0

[
i!

(i + q)!

]
fλ

Dλ,N+q
, (4.18)

valid for len(λ) ≤ N, and which will be demonstrated in App. A. The last line is just a

rearrangement of terms. We called the functions W̃gq,p
N generalized Weingarten functions

W̃gq,p
N (ρ) =

1
(p!)2 ∑

λ`p
len(λ)≤N

( fλ)
2

Dλ,N+q
χ

ρ
λ . (4.19)

They are class functions of the symmetric group and therefore only depend on the conjugacy

class of a given permutation. In the limiting case q = 0 one recovers the ordinary Weingarten

functions introduced in [76]. The properties of the generalized Weingarten functions will be

discussed in the next section. Summing up, the SU(N) generating functional is

Z̃q,p[K, J] = (qN + p)!
N−1

∏
i=0

i!
(i + q)!

det[K]q ∑
ρ`p

hρ W̃gq,p
N (ρ)tρ(JK) , (4.20)

and given the polynomial nature of the expression, it can be extended to any K, J ∈ GL(N, C).

In the limits q = 0, q = 1, and p = 0 the known results [77, 88] are recovered. Given the

expression Eq. (4.20), the polynomial one-link integral Eq. (4.4) is obtained by taking deriva-

tives with respect to the sources K, J, setting them to zero at the end of the calculation. This

may seem like hard task; luckily we do not need to do this explicitly. Indeed, it is sufficient

to know the result in the cases p = 0 and q = 0 and then make use of the Leibiniz formula

for the derivative of a product. The two special cases p = 0, q = 0 have already been solved
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respectively by Creutz [78] and Collins [83, 84], and the result is

IqN,0

i j,k l =
1

(qN)!
∂(qN)Z̃q,0[K]

∂Kj1,i1 · · · ∂KjqN ,iqN

∣∣∣∣
J=K=0

=

[
N−1

∏
r=1

r!
(r + q)!

]
∑
{α}

ε
⊗q
i{α}

ε⊗q,j{α} , (4.21)

I p,p

i j,k l =
1

p!2
∂(2p)Z̃0,p[K, J]

∂Kj1,i1 ∂Jl1,k1 · · · ∂Kjp,ip ∂Jlp,kp

∣∣∣∣
J=K=0

= ∑
π, σ∈Sp

δlπ
i W̃g0,p

N (π ◦ σ−1)δ
j
kσ

. (4.22)

The integral IqN,0 is written as a sum of q−fold epsilon tensors, with

ε
⊗q
i{α}
≡ εiα1 ,..., iαN

εiαN+1 ,..., α2N
. . . εiα(q−1)N+1

,..., iαqN
. (4.23)

The sum is over all possible ways of partitioning the qN indices i and j, into the q different

epsilon tensors, and partitions that can be obtained from one another by permuting the

epsilon tensors are considered equivalent. We labeled them with {α}. The genuine U(N)

integral I p,p is instead written as a double sum over permutations π, σ ∈ Sp. Every element

of the sum is a product of two Kronecker delta functions with permuted indices

δlπ
i ≡ δ

lπ(1)
i1

. . . δ
lπ(p)
ip

, δ
j
kσ
≡ δ

j1
kσ(1)

. . . δ
jp
kσ(p)

, (4.24)

weighted by the Weingarten function W̃g0,p
N (π ◦ σ−1). To get the general I-integral it is suffi-

cient to exploit the fact that the generating functional (4.20) can be decomposed, apart from

a trivial combinatorial factor, as a product of Z̃q,0 and a term that resembles the generating

functional Z0,p. The only difference is in the coefficients W̃g0,p
N that must be substituted with

W̃gq,p
N . Therefore, by looking at Eq. (4.7), when qN derivatives w.r.t. K act on det[K]q, they

reproduce IqN,0. Similarly, when p derivatives w.r.t. K and p derivatives w.r.t. J act on the

second term, they reproduce Ip,p with the substitution W̃g0,p
N → W̃gq,p

N . Any other combina-

tion of derivatives gives zero. Making use of the Leibniz formula, we can thus write down

the expression of the I-integral as

IqN+p,p

i j,k l =

[
N−1

∏
r=1

r!
(r + q)!

]
∑
{α,β}

∑
π,σ∈Sp

ε
⊗q
i{α}

δlπ
i{β}

W̃gq,p
N (π ◦ σ−1) ε⊗q,j{α}δ

j{β}
kσ

. (4.25)

The leftmost sum now runs over all the ways (α, β) of partitioning the i and j indices into

the Kronecker deltas and into the q epsilon tensors. This "multiplicity" stems from the fact

that we need to take into account every possible way of acting with the K derivatives on the

determinant and on the traces trρ(JK), and from the previous result for IqN,0 in Eq. (4.21).

This result was obtained independently by us [89] and by Borisenko et al. [90]. For the
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SU(N) integral IN+1,1, one for instance gets

IN+1,1
i j,k l =

1
N!

W̃g1,1
N (1)

N+1

∑
a=1

εi1...ia−1ia+1...iN+1 εj1...ja−1 ja+1...jN+1 δl1
ia

δ
ja
k1

(4.26)

=
1

N!(N + 1)

N+1

∑
a=1

εi1 ...ia−1ia+1 ...iN+1 εj1 ...ja−1 ja+1 ...jN+1 δl1
ia

δ
ja
k1

. (4.27)

Since p = 1 for this integral, the "mesonic" part is trivial (i.e. λ ` 1) while there are N + 1

partitions (α, β) depending on the values ia, ja that enter the delta functions.

4.1.2 Properties of the Weingarten functions

The computation of the Weingarten functions can be automatized evaluating their character

expansion

W̃gq,p
N (ρ) =

1
(p!)2 ∑

λ`p
len(λ)≤N

( fλ)
2

Dλ,N+q
χ

ρ
λ . (4.28)

The partitions λ ` p can be efficiently generated with simple algorithms [91], while the sym-

metric group characters χ
ρ
λ are computed recursively implementing the

Murnaghan–Nakayama rule [92, 93, 94]. The dimensions fλ, Dλ,N of the irreps of Sp and

U(N), are instead computed via

fλ =
p!

∏(i,j)∈λ hλ(i, j)
, Dλ,N =

∏(i,j)∈λ(N + i− j)

∏(i,j)∈λ hλ(i, j)
, (4.29)

where the product ∏(i,j)∈λ runs over all boxes of λ with coordinates (i, j), and hλ(i, j) is the

hook of the box (i, j), i.e. the number of boxes having coordinates (i′, j′) with i′ = i, j′ ≥ j

or j = j′, i′ ≥ i. For the symmetric group S3, the complete list of generalized Weingarten

functions is

W̃gq,3
N ({1, 1, 1}) =


(N+q)2−2

(N+q)((N+q)2−1)((N+q)2−4) N ≥ 3

5q+17
6(q+2)(q+4)((q+2)2−1) N = 2

(4.30)

W̃gq,3
N ({2, 1}) =

−
1

((N+q)2−1)((N+q)2−4) N ≥ 3

1
6(q+2)(q+3)(q+4) N = 2

(4.31)

W̃gq,3
N ({3}) =


2

(N+q)((N+q)2−1)((N+q)2−4) N ≥ 3

− q+7
6(q+2)(q+4)((q+2)2−1) N = 2

(4.32)
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For N ≥ p the functions W̃g are rational functions of N + q. Notice that the restriction on the

partition length (len(λ) ≤ N) always prevents the appearance of poles (due to the zeros of

Dλ,N), and the Weingarten functions are always finite. A complete list for S4 will be given in

App. B. As can be seen already in the case of S3, the W̃g are not always positive. In particular

one can show that for N ≥ p

sgn
[
W̃gq,p

N (λ)
] N≥p

=
len(λ)

∏
i=1

(−1)λi+1 . (4.33)

These sign oscillations make the representation of the I−integral in Eq. (4.25) not particu-

larly useful. Having in mind the dualization of the full theory, one can think of using as

auxiliary variables the permutations π, σ and the partitions (α, β). Then one proceed to the

contraction of the color indices considering single terms in the sum in Eq. (4.25). Since the

sum over the auxiliary variables must be then sampled via Monte Carlo, the negative signs

from the Weingarten functions would completely hinder this approach. A possible way out

to this problem requires a reparameterization of the integrals. This will be done introducing

the decoupling operators.

4.2 The decoupling operators and the DOI

4.2.1 The irreducible matrix elements

To find a different parameterization of the I-integral we start to make explicit the definition

of the irreducible characters of the symmetric group

χλ(π) ≡ Tr Mλ(π) =⇒ χλ(π ◦ σ−1) =
fλ

∑
a,b=1

(
Mλ(π)

)
a,b

(
Mλ(σ

−1)
)

b,a . (4.34)

The choice of the matrix representation Mλ is not unique since the traces are invariant under

conjugation

Mλ(π)→ S Mλ(π) S−1, ∀π ∈ Sn , S ∈ GL( fλ, C) . (4.35)

Two popular basis choices are the so-called Young’s orthogonal form and the natural repre-

sentation [95]. In these two basis the matrices Mλ satisfy the properties

(Orthogonal basis ) Mλ(π)−1 = (Mλ(π))T , (Mλ(π))a,b ∈ R , (4.36)

(Natural basis ) (Mλ(π))a,b ∈ Z . (4.37)
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FIGURE 4.2: The five standard Young tableaux associated to the partition λ ` 5 = {2, 2, 1}. The SYT
are canonically ordered, from left to right, according to the value of their Yamanouchi symbols.

The computation of the matrix elements in both basis have been automatized. In the case

of the orthogonal basis, to compute Mλ(π), we first decompose π as a product of adjacent

transpositions via

π = τk1 ◦ τk2 ◦ . . . ◦ τkr , τk ≡ (k, k + 1) , (4.38)

so that τk only swaps the consecutive numbers k and k+ 1. The matrices Mλ(τ
k) can be then

obtained associating to each row (a) and column (b) of the matrices Mλ a standard Young

tableaux (SYT) Ta, i.e. a filling of the partition λ ` n with the positive integers {1, . . . , n}
such that in every row and column the numbers are in ascending order when reading them

respectively from left to right and from top to bottom. An illustrative example of SYT is

provided in Fig. 4.2. The number of SYT of a given shape λ ` n is exactly fλ, therefore

every row and column can be uniquely associated to a SYT. To do so, we define an ordering

between the tableaux of the same shape via the Yamanouchi symbols M(T)

M (T) ≡ {m1, . . . , mn} , (4.39)

where mi is the row of T containing the number i. One can then impose lexicographic order-

ing on the Yamanouchi symbols M so that

Ta1 ≤ Ta2 ⇔ M(Ta1) ≤ M(Ta2) . (4.40)

Having defined an ordering, we associate the row and column a of Mλ to Ta. The matrix

Mλ(τ
k) is obtained in terms of the axial distance La(k, k+ 1) between the numbers k and k+ 1

in Ta

La(k, k + 1) ≡ (xk+1 − xk)− (yk+1 − yk) , (4.41)
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where (xk, yk) are the coordinates of the number k in Ta. The final formula is

(
Mλ(τ

k)
)

a,b
=

1
La(k, k + 1)

δa,b +

√
1−

(
1

La(k, k + 1)

)2

δTb,Tk
a

, (4.42)

where Tk
a is the possibly nonstandard Young tableaux obtained swapping k and k + 1 in Ta.

Notice that the matrices Mλ(τ
k) are orthogonal since the square sum of the matrix elements

on a given row is clearly 1 if Tk
a is a SYT, and a nonstandard Young Tableaux can only be

obtained if k and k + 1 appear consecutively in a given row or column. In this case however

La(k, k + 1) = ±1. For instance, the matrix associated to the adjacent transpositions τ1, τ2 of

S5 in the irrep λ corresponding to the partition in Fig. 4.2 are

Mλ(τ
1) =



1 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1


, Mλ(τ

2) =



− 1
2 0

√
3

2 0 0

0 − 1
2 0

√
3

2 0
√

3
2 0 1

2 0 0

0
√

3
2 0 1

2 0

0 0 0 0 −1


. (4.43)

Swapping 1 and 2 in the SYT in Fig. 4.2 always produce a nonstandard Young tableaux,

hence Mλ(τ
1) is a diagonal matrix.

In the case of the natural representation the description is a bit more involved and re-

quires the introduction of a number of concepts which are not particularly relevant for the

discussion. Hence we refer to [96] for definitions and basic properties of the matrix ele-

ments in this basis, and to [95] where the relation between the orthogonal and the natural

representation is discussed, and a method to obtain the matrix elements from one another

is presented. Before ending this subsection we want to highlight one important property

of the matrix elements in the orthogonal represention. It is the so-called great orthogonality

theorem [97], which states a very general orthogonality relation between the matrix elements

of the irreps, and that in the case of the symmetric group reads

1
n! ∑

π∈Sn

(Mλ(π))a,b (Mλ′(π)))c,d =
1
fλ

δλ,λ′ δa,c δb,d . (4.44)

This theorem will play an important role in the following chapter to prove some of the

properties of the Boltzmann weights in the dual representation.
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4.2.2 Final form of the polynomial 1−link integral

Making use of the the irreducible matrix elements, the Weingarten functions can be cast in

the following form

W̃gq,p
N (π ◦ σ−1) = ∑

λ`p
len(λ)≤N

1
(p!)2

f 2
λ

Dλ,N+q
χλ(π ◦ σ−1) (4.45)

= ∑
λa,b

(
1
p!

fλ√
Dλ,N+q

Mλ; ab(π)

)(
1
p!

fλ√
Dλ,N+q

Mλ; ab(σ)

)
, (4.46)

∑
λab

≡ ∑
λ`p

len(λ)≤N

fλ

∑
a,b=1

, Mλ; ab(π) ≡ (Mλ(π))a,b , (4.47)

and we made use of the orthogonal basis for which Mλ; ba(σ
−1) = Mλ; ab(σ). Substituting

this expression into Eq. (4.25), we obtain

IqN+p,p

i j,k l ∝ ∑
{α,β}

∑
λa,b

 ∑
π∈Sp

fλ/p!√
Dλ,N+q

Mλ; ab(π)ε
⊗q
i{α}

δ`π
i{β}

 ∑
σ∈Sp

fλ/p!√
Dλ,N+q

Mλ; ab(σ)ε
⊗q,j{α}δ

j{β}
kσ

 .

(4.48)

We see that by introducing explicitly the irreducible matrix elements, we can perform a

resummation of the permutations π and σ. The quantities in brackets

(
P(α,β), λab

)l

i
≡

√√√√N−1

∏
r=1

r!
(r + q)! ∑

π∈Sp

fλ/p!√
Dλ,N+q

Mλ; ab(π)ε
⊗q
i{α}

δ`π
i{β}

, (4.49)

(
P(α,β), λab

)j

k
≡

√√√√N−1

∏
r=1

r!
(r + q)! ∑

σ∈Sp

fλ/p!√
Dλ,N+q

Mλ; ab(σ)ε
⊗q,j{α}δ

j{β}
kσ

, (4.50)

are the decoupling operators. They are functions of the partitions (α, β) and of the two SYT

Ta, Tb of shape λ, associated to the row a and column b of the matrix representation Mλ. In

terms of the multi-index

ρ ≡ {(α, β), (Ta, Tb)} , (4.51)

the I−integral can be written in compact form as

IqN+p,p

i j,k l = ∑
ρ

(
P ρ
) l

i

(
P ρ
) j

k . (4.52)
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The reason for calling the operators Pρ decoupling operators, stems from the fact that at

fixed value of ρ the indices {i, l} and {k, j} are decoupled in the expression of the I-integral.

This property is crucial to obtain a dual formulation in terms of local weights, as we will

show in the next chapter. The multi-index ρ, which uniquely identifies a given operator Pρ,

is what we called the decoupling operator index (DOI), and will correspond to the auxiliary

variable which we will use to write down the partition function at finite β. Even if ρ is a

multi-index, a one-to-one mapping between {(α, β), (Ta, Tb)} and positive integers can be

easily found (see App. C). From now on we will assume this mapping and refer to the ρ as

integer variables. Finally, the number of DOI for given values of (q, p) is

Nρ = Npart. · (NSYT)
2 =

(qN + p)!
q!N!q p!

· ∑
λ`p

len(λ)≤N

f 2
λ . (4.53)

4.2.3 Recovering the strong coupling one-link integral

The result for IG[M,M†] in Eq. (3.43) can be obtained using the generating functional Z̃q,p

or the formalism of the decoupling operators. As an application of this formalism we will

use the Pρ . The idea is to expand as usual the integrand in a Taylor series, retaining only

the orders that are compatible with the nilpotency of the fermionic matrices Eq. (3.40) and

with the gauge constraint Eq. (4.10)

IG[Mn,µ,M†
n,µ] =

∫
G
DU exp

(
Tr [M†

n,µU] + Tr [Mn,µU†]
)

(4.54)

=
N

∑
κ=1

1
κ!2

∫
G
DU Tr[M†

n,µU]κTr[Mn,µU†]κ

+
z

N!

∫
G
DU

(
Tr[M†

n,µU]N + Tr[Mn,µU†]N
)

, (4.55)

where again z = 1 for SU(N) and z = 0 for U(N) because of the gauge constraint. The result

for IG can be then obtained integrating term by term the r.h.s. of the previous equation. The

last two terms are

∫
SU(N)

DU Tr[M†
n,µU]N = (−1)Nαn,µ ∑

ρ

(
P ρ
)

i

(
P ρ
) j

χ̄i(n) χj(n + µ̂) , (4.56)∫
SU(N)

DU Tr[Mn,µU†]N = α−1
n,µ ∑

ρ

(
P ρ
) l (P ρ

)
k χl(n) χ̄k(n + µ̂) , (4.57)

and the operators Pρ carry only one type of color indices, since in Eqs. (4.56) and (4.57) only

gauge links in one direction are present. We also used the shorthand notation

χi(n) = χi1(n)χi2(n) . . . χiN (n) , χ̄j(n) ≡ χ̄j1(n)χ̄j2(n) . . . χ̄jN (n) . (4.58)
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These integrals are somewhat trivial since there is only one DOI ρ which corresponds to the

epsilon tensor

(Pρ)i =
1√
N!

εi1...iN , (Pρ)j =
1√
N!

εj1...jN , (4.59)

(Pρ)k =
1√
N!

εk1 ...kN , (Pρ)l =
1√
N!

εl1 ...lN ; (4.60)

hence we immediately obtain

∫
G
DU

z
N!

(
Tr[M†

n,µU]N + Tr[Mn,µU†]N
)
= z

(
(−1)Nαn,µB̄nBn+µ̂ + α−1

n,µB̄n+µ̂Bn

)
, (4.61)

Bn ≡
1

N!
εi1,...,iN χi1(n) . . . χiN (n) , B̄n ≡

1
N!

εi1,...,iN χ̄i1(n) . . . χ̄iN (n) , (4.62)

as in Eq. (3.43). Concerning the first term, the expression in terms of the decoupling opera-

tors is

∫
G
DU

1
κ!2

Tr[M†
n,µU]κTr[Mn,µU†]κ = ∑

ρ

(
P ρ
) l

i

(
P ρ
) j

k χ̄i(n)χl(n) χ̄k(n + µ̂)χj(n + µ̂) .

(4.63)

where

χ̄i(n)χl(n) ≡ χ̄i1(n)χl1(n) . . . χ̄iκ (n)χlκ (n) , (4.64)

and similarly for χ̄k(n + µ̂)χj(n + µ̂). In this case, several DOI corresponding to pairs of

SYT of any shape λ ` κ, are present. Since epsilon tensors are instead absent, there is

no multiplicity from the partitions (α, β). The general form of the decoupling operators

appearing in the sum over ρ is

(
Pρ=λab

)l

i
=

1
κ! ∑

π∈Sκ

fλ√
Dλ,N

Mλ; ab(π) δlπ
i ,

(
Pρ=λab

)j

k
=

1
κ! ∑

σ∈Sκ

fλ√
Dλ,N

Mλ; ab(σ) δ
j
kσ

.

(4.65)

The contraction of the color indices between a single delta function with permuted indices

and the staggered fields gives

δlπ
i χ̄i(n)χl(n) = sgn(π) (Mn)

κ , Mn ≡
N

∑
i=0

χ̄i(n)χi(n) , (4.66)

δ
j
kσ

χ̄k(n + µ̂)χj(n + µ̂) = sgn(σ)
(

Mn+µ̂

)κ , Mn+µ̂ ≡
N

∑
i=0

χ̄i(n + µ̂)χi(n + µ̂) , (4.67)
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where sgn(π) is the parity of the permutation π, i.e. sgn(π) = (−1)Nπ if π can be written

as a composition of Nπ transpositions. The homomorphism π → sgn(π), defines a one-

dimensional irreducible representation called the completely antisymmetric irrep, which is

associated to the partition

λ ` κ = {1, 1, . . . , 1︸ ︷︷ ︸
κ times

} , (4.68)

and we will refer to this particular irrep with 1κ. Hence, we can make use of the great

orthogonality theorem (Eq. (4.44)), obtaining

(
P ρ=λab

) l
i χ̄i(n)χl(n) =

(Mn)
κ

κ! ∑
π∈Sκ

fλ√
Dλ,N

Mλ;ab(π) sgn(π) =
(Mn)

κ√
Dλ,N

δλ,1κ ,

(4.69)(
P ρ=λab

) j
k χ̄k(n + µ̂)χj(n + µ̂) =

(Mn)
κ

κ! ∑
σ∈Sκ

fλ√
Dλ,N

Mλ;ab(σ) sgn(σ) =
(Mn)

κ√
Dλ,N

δλ,1κ .

(4.70)

Hence, the only decoupling operator that contributes is the one associated to the partition

1κ. Clearly in this case a = b = 1 since the irrep is one-dimensional. The final form of the IG

integral is thus

IG[Mn,µ,M†
n,µ] =

N

∑
κ=0

1
(κ!)2Dλ1κ ,N

(
Mn Mn+µ̂

)κ
+ z

(
(−1)Nαn,µB̄nBn+µ̂ + α−1

n,µB̄n+µ̂Bn

)
,

(4.71)

and Eq. (3.43) is recovered since from Eq. (4.29) we get

1
(κ!)2D1κ ,N

=
1

(κ!)2
κ!

N(N − 1) . . . (N − κ + 1)
=

(N − κ)!
κ!N!

. (4.72)
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Chapter 5

The dual representation at finite β

In this chapter we present our results concerning the dualization of SU(N) lattice gauge the-

ories with staggered fermions. It contains most of the results we recently published in [98].

In the dualization process, the DOI already introduced in the previous chapter, will play the

role of auxiliary dual variables, and will allow us to write down the full series expansion

in the lattice coupling β, as a product of local weights. To illustrate how the dualization

process must be carried out, we start considering the pure Yang-Mills theory, i.e. we neglect

the quark fields. The partition function will be organized as a power series in term of the

occupation numbers plus the DOI. The statistical weight of any given configuration, which

is now identified by assigning a specific value to both DOI and occupation numbers, will

be simply the product of local site weights that are obtained contracting the color indices of

the decoupling operators attached to a given site, and can be computed numerically. When

including the staggered quark fields, the dualization is essentially the same. The only dif-

ference is that now color contraction can also take place between decoupling operators and

Grassmann fields. This modification does not introduce any overhead in the algorithm. We

will show how to write down the full partition function in a compact form, and how to com-

pute the Boltzmann weights in the dual representation. In particular, a combinatorial form

of the partition function at order O(β) and O(β2) will be explicitly given. For the higher

orders, since a classification of all weights would be too lengthy, an analytic resummation

in small two-dimensional volumes will be performed and the result cross checked against

standard hybrid Monte Carlo (HMC) simulations. A preliminary analysis of the magnitude

of the sign problem when including the higher order β corrections will be finally presented.
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5.1 Dualization in Yang-Mills theory

For a pure gauge theory, the Taylor expansion of the Wilson action reads

ZY.M. =
∫

G
∏
(n,µ)
DUn,µ exp

(
β

2N ∑
p

TrUp + TrU†
p

)
(5.1)

= ∑
{np,n̄p}

(
β

2N

)np+n̄p

np!n̄p!

∫
G

∏
(n,µ)
DUn,µ ∏

p
Tr[Up]

np Tr[U†
p]

n̄p . (5.2)

Depending on the gauge group G, the occupation numbers are subject to a (gauge-) con-

straint: they must be chosen such that all link integrals over the Haar measure are non-

vanishing. As we have shown in Eq. (4.10), this means that the number of gauge links in

forward (Un,µ) and backward (U†
n,µ) direction contained in the product over the plaquettes

must be the same for G = U(N), or differ by a multiple of N for SU(N). This requirement

can be written in compact notation as

∑
ν>µ

[
δnn,µ,ν − δnn−ν̂,µ,ν

]
− ∑

ν<µ

[
δnn,ν,µ − δnn−µ̂,ν,µ

]
=

0 U(N)

0 mod N SU(N)
∀ (n, µ) ,

(5.3)

where δnp ≡ np − n̄p. Assuming that this constraint is satisfied by some choice of the occu-

pation numbers, the integral can be decomposed as a product of local weights making use

of the DOI. The idea is to select for each lattice link ` ≡ (n, µ) a DOI ρn
µ, which thus identifies

a given decoupling operator Pρn
µ in the decomposition of the I−integral

Iq`N+p`,p`
i j,k l = ∑

ρn
µ

(
P ρn

µ
) l

i

(
P ρn

µ
) j

k . (5.4)

The values of q` and p` are determined, as mentioned in the previous chapter, from the

plaquette occupation numbers. When a given DOI ρn
µ is selected for each link ` = (n, µ),

the contraction of the color indices that brings from the I−integrals to the traces appearing

in Eq. (5.2), can be done locally at each lattice site. In order to show this feature, for every

link ` = (n, µ) we associate the decoupling operator Pρn
µ carrying color indices {i, l} to site

n, and the second operator Pρn
µ with color indices {k, j} to site n + µ̂ (see Fig. 5.1). In the

following we will also make use of the notation ρn
−µ ≡ ρ

n−µ̂
µ . As depicted in Fig. 5.2, the

color indices relative to the decoupling operator associated to n are always contracted with

the color indices of decoupling operators on different links but associated to the same site n.
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FIGURE 5.1: The decoupling operator
(

Pρn
µ

)l

i
is associated to the site n, while

(
Pρn

µ

)j

k
to n + µ̂.

This follows from the definition of plaquette and antiplaquette

Tr Up =
(
U1
) j1

i1

(
U2
) j2

i2

(
U†

3
) l3

k3

(
U†

4
) l4

k4 δ i2

j1 δ k3

j2 δ k4

l3 δ i1

l4 , (5.5)

Tr U†
p =

(
U†

1
) l1

k1

(
U†

2
) l2

k2

(
U3
) j3

i3

(
U4
) j4

i4 δ k1

l2 δ k2

j3 δ i3
j4 δ i4

l1 , (5.6)

where U1, . . . , U4 are the four links that make up the plaquette, and a summation over

repeating indices is implied. Indeed, as is also shown in Fig. 5.3 in the case of a single pla-

quette, the structure of the delta functions in Eqs. (5.5) and (5.6) is such that the indices i, l

of a gauge link Un,µ are always contracted with the color indices of the gauge links attached

to site n, while the indices k, j are contracted with the color indices of the gauge links at-

tached to site n + µ̂. Therefore, at fixed value of the DOI, the contraction of color indices

for decoupling operators associated to different lattice sites is completely independent. This

is the crucial observation to obtain a dual form in terms of local weights. The result of the

contraction at a given site n, is a scalar number that in D + 1 spacetime dimensions only

depends on the 2(D + 1) DOI ρn
±µ, and on the plaquette occupation numbers np, n̄p relative

to the plaquettes p surrounding n (which are 2D(D + 1) in total). In particular the plaquette

occupation numbers determine the contraction rules of the decoupling operators, i.e. how

the color indices of the different Pρn
±µ must be paired when performing the contraction. If

two links (n,±µ), (n,±µ′) span a given plaquette p, then all the color indices in Pρn
±µ and

Pρn
±µ′ stemming from the decomposition of Tr[Up]np and Tr[U†

p]
n̄p into matrix elements of the

gauge links Un,±µ and Un,±µ′ , must be saturated accordingly. When doing so for all pairs of

decoupling operators associated to the same lattice site, every color index will be contracted

and the result is just a scalar number. Formally, we can write down this result as

T
ρn
−D ...ρn

D
n ({np, n̄p}) ≡ Tr{np,n̄p}

[
∏
±µ

Pρn
±µ

]
∈ R (5.7)

where the symbol Tr{np,n̄p} means that the contraction is performed according to the afore-

mentioned rules. The computation of the site weights Tρ
n has been automatized. We de-

veloped a code, that for a given set of DOI {ρn
µ} builds up the decoupling operators and
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FIGURE 5.2: Illustration of the decoupling in two dimensions: on each of the four links attached to
the central lattice site, the DOI have been fixed. Decoupling operators on the same link undergo a
disjoint contraction at different lattice sites. The bra-ket notation has been introduced to display this
feature. At the central site, the color indices of the four decoupling operators attached to it are
completely saturated. The contraction rule of the color indices are defined by the plaquette
occupation numbers np and n̄p relative to the four plaquettes (in two dimensions) attached to this
site (green arrows). The result of the contraction is a scalar quantity which only depends on the
value of the DOI and on the plaquette occupation numbers around the site.
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FIGURE 5.3: The contraction of color indices that produces a plaquette. For every gauge link the
indices {i, l} and {k, j} undergo a disjoined contraction at different lattice sites. Given the structure

of the decoupling operators, this means that
(

Pρn
µ

)l

i
and

(
Pρn

µ

)j

k
contract respectively with the

decoupling operators associated to site n and n + µ̂.

performs automatically the color contraction as specified by the plaquette occupation num-

bers in the background. In terms of the site weights in Eq. (5.7), the Yang-Mills partition

function can be written simply as

ZY.M. = ∑
{np,n̄p}

∑
{ρn

µ}
∏

p

(
β

2N

)np+n̄p

np!n̄p! ∏
n

T
ρn
−D ...ρn

D
n ({np, n̄p}) . (5.8)

Having postponed the sum over the DOI, one can think of promoting them to dual variables

to be sampled along with the plaquette occupation numbers. In this case the weight of

a configuration, which is now identified by the plaquette occupation numbers and by the

DOI, is the product of scalar site weights, and a fully local dual form is obtained. In this

formulation, neighboring lattice sites communicate only through the common DOI on the

shared bond since ρn
µ = ρ

n+µ̂
−µ by construction.

Performing directly simulations at large β is however very time consuming, and this ap-

proach will never be competitive when compared for instance with the Cabibbo-Marinari

pseudo heat-bath algorithm [99]. There are several reasons for this: first of all the computa-

tion of the site weights Tρ
n gets more and more time consuming as the plaquette occupation

numbers get larger. Secondly, the site weights Tρ
n are not all positive definite and one should

expect a sign problem even if the conventional formulation in term of gauge links does

not have one. Nevertheless the fact that the weights are, at least in principle, known for

every value of np, n̄p, can play an important role in the regime where conventional simu-

lations are not possible, e.g. in finite density QCD. As we are going to show, the partition

function Eq. (5.8) can be extended, without making any approximation, to include staggered
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fermions. In this case, the dual formalism will allow to obtain the higher-order β-corrections

to strong coupling and will provide an important tool to generate the statistical weights to

be used in Monte Carlo simulations.

5.2 Dualization including staggered fermions

5.2.1 Formulation and main properties

When including staggered fermions, as outlined in Ch. 4, the Taylor expansion in terms of

dual variables is

Z(β, m̂q, µ̂q) = ∑
{np,n̄p}
{d`,d̄`,mn}

∏
p

β̃np+n̄p

np!n̄p! ∏
`

1
d`!d̄`!

∏
n

(2m̂q)mn

mn!

∫
dχ̄(n)dχ(n) (χ̄(n)χ(n))mn Gnp,n̄p,d`,d̄` ,

(5.9)

Gnp,n̄p,d`,d̄` = ∏
`

∫
DU` Tr[U`M†

` ]
d` Tr[U†

`M`]
d̄` ∏

p
Tr[Up]

np Tr[U†
p]

n̄p , (5.10)

with β̃ = β/2N. In addition to the plaquette occupation numbers, we now have the monomers

mn, and the hopping coefficients d` and d̄` which are related to dimers and quark fluxes via

k` ≡ min{d`, d̄`} , f` ≡ d` − d̄` . (5.11)

Before going through the evaluation of G, we want to analyze how the strong coupling

constraints on the dual variables get modified at finite β. The Grassmann constraint is clearly

blind to the presence of the plaquettes, and therefore takes the same form as in the strong

coupling limit

mn + ∑
±µ

kn,±µ +

∣∣ fn,±µ

∣∣
2

= N ,
D

∑
µ=0

fn,+µ − fn,−µ = 0 . (5.12)

The (gauge-) constraint Eq. (5.3) is instead modified by the presence of quark fluxes. Every

unit of fn,µ in Eq. (5.10) contains a forward (Un,µ) or backward (U†
n,µ) gauge link depending

on its sign. As a consequence, the requirement that every integral
∫
DUn,µ be non-zero is

translated in term of dual variables into

fn,µ + ∑
ν>µ

[
δnn,µ,ν − δnn−ν̂,µ,ν

]
− ∑

ν<µ

[
δnn,ν,µ − δnn−µ̂,ν,µ

]
=

0 U(N)

0 mod N SU(N)
∀ (n, µ) .

(5.13)
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FIGURE 5.4: An allowed configuration in d = 2 for SU(3): for each plaquette, a (counter- ) clockwise
loop corresponds to one unit of (np) n̄p. On each site the monomer number mn is given by the
number of circles, while on each link the unoriented black lines represent dimers (n lines for
kn,µ = n). Every red arrow represents instead one unit of quark flux fn,µ. The Grassmann constraint,
in agreement with Eq. (5.12), is satisfied at each site with the net quark flux being always zero. For
every link, the difference between the total flux (gluons + quarks) in positive and negative direction
is a multiple of N = 3. Periodic boundary conditions are employed.

The dimers kn,µ are clearly not involved in this constraint as they carry the same number of

forward and backward gauge links. The first consequence of this relation is that in contrast

to strong coupling, quark fluxes are not required to be integer multiples of N. Moreover,

dimers and quark fluxes are not mutually exclusive on a given link, i.e. the constraint allows

for a dimer to be superimposed to a quark flux. Lastly, even though the flux conservation

law in Eq. (5.12) still holds, quark fluxes can form intersecting loops as shown in Fig. 5.4 where

we provide an example of an admissible configuration.

When all constraints are satisfied, the goal is to obtain a closed expression for the weight

of an allowed configuration. As in the Yang-Mills case, this can be done making use of the

DOI. We start by building up, on each gauge link ` = (n, µ), the corresponding I-integral.

The values of q` and p`, are now co-determined by the plaquette occupation numbers on the

plaquettes p adjacent to `, and by the number of hopping terms Tr[U`M†
` ] and Tr[U†

`M`].

We then select a given decoupling operator Pρn
µ on each link, and consider the color contrac-

tion in a fixed background of DOI. The locality property of the contractions still holds. The
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main difference is that now the color indices are not only contracted among decoupling op-

erators, but also with the fermionic matricesM` andM†
` . We thus distinguish two types of

color indices: those associated to the hopping terms, and those arising from the expansion

of the Wilson gauge action. We will refer to them as fermionic and gluonic color indices. In

the case of the gluonic color indices, the contraction proceeds exactly as in the Yang-Mills

case: associating the decoupling operator
(

Pρn
µ

)l

i
to site n, and

(
Pρn

µ

)j

k
to site n + µ̂, the

gluonic color indices in {i, l} and {k, j} get contracted respectively with the gluonic color

indices of decoupling operators at site n and n + µ̂, according to the rules described in the

previous subsection. After having contracted all gluonic color indices, the resulting object

is no longer a scalar quantity, but contains the yet uncontracted 2(N −mn) fermionic color

indices1 which in turn must be contracted with the fermionic matrices in order to recover

the hopping expansion terms Tr[U`M†
` ] and Tr[U†

`M`]. The structure of the fermionic ma-

trices is such that again the contraction at a given site decouples from the rest. Indeed, by

definition we have

Tr[U`M†
` ]

d` ∝
d`

∏
a=1

(
Un,µ

) ja
ia

χ̄ia(n)χja(n + µ̂) , (5.14)

Tr[U†
`M`]

d̄` ∝
d̄`

∏
b=1

(
U†

n,µ

) lb

kb
χ̄kb(n + µ̂)χlb(n) ; (5.15)

hence the fermionic color indices in {i, l} (resp. {k, j}) are contracted with the staggered

fields χ̄(n), χ(n) (resp. χ̄(n + µ̂), χ(n + µ̂)). This additional contraction has been imple-

mented in our code: the idea is to collect all Grassmann variables χ̄(n) and χ(n) appearing

in the definition of G (Eq. (5.10)), performing symbolically the Grassmann integral via

Gj1,...,jN−mn
i1,...,iN−mn

(n) =
N

∏
i=1

∫
dχ̄i(n)dχi(n) χi1(n) . . . χiN−mn

(n)χ̄j1(n) . . . χ̄jN−mn (n) (χ̄(n)χ(n))mn

= mn! ε̃
j1,...,jN−mn
i1,...,iN−mn

, (5.16)

where

ε̃
j1,...,jk
i1,...,ik

=

sgn(π) if ∀m, n jm 6= jn ∧ (j1, . . . , jk) = π(i1, . . . , ik), π ∈ Sk

0 otherwise
(5.17)

The indices {i1, . . . , iN−mn} and {j1, . . . , jN−mn} of the tensor G(n) are in one-to-one corre-

spondence with the fermionic color indices, and one can define an ordering between them,

so that every χi(n) and χ̄j(n) in Eq. (5.16) is unambiguously associated to a fermionic color

1The number of Grassmann variables at a given site must be always 2N (counting both quarks and anti-
quarks), and the monomers mn contribute with a factor (χ̄(n)χ(n))mn .
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index2 of a decoupling operator Pρn
µ attached to site n. In this way we can simply take the

result of the contraction of the gluonic color indices, which is a tensor containing only the

fermionic color indices, and contract it further with the tensor G(n) in Eq. (5.16). The result

is again a scalar quantity, which similarly to the Yang-Mills case, can be written as

T
ρn
−D ...ρn

+D
n (Dn) ≡ TrDn

[
∏
±µ

Pρn
µ G(n)

]
, Dn =

{
mn, fn,±µ, kn,±µ, nn,µν, n̄n,µν

}
(5.18)

where now the symbol TrDn means that the contraction must be performed not only ac-

cording to the plaquette occupation numbers (which only determine the contraction rules

of the gluonic color indices), but also according to the number of dimers
(
kn,±µ

)
, quark

fluxes
(

fn,±µ

)
and monomers (mn). Notice that in the definition of G(n) we did not take

into account neither the chemical potential dependence nor the staggered phases contained

in the fermionic matrices. Since these quantities simply factorize, we will reintroduce them

explicitly when writing down the expression of the partition function. In addition, when

collecting the staggered fields before performing the Grassmann integration (Eq. (5.16)), a

certain number of swaps of Grassmann variables is performed. The relative minus sign

must be then taken into account when determining the global sign of a configuration. This

(called geometric) sign is already present at strong coupling, where given the simple struc-

ture of the quark loops it only contributes with a factor (−1)N to the sign σ` in Eq. (3.56).

For the moment we disregard the problem of computing the sign of a configuration at finite

β, postponing the discussion to the next subsection. Up to a yet undetermined fermionic

sign σf , the value of the combined Grassmann and gauge integral in Eq. (5.9), is expressed

in terms of the DOI ρn
µ and of the site weights Tρ

n as

∏
n

∫
dχ̄(n)dχ(n) (χ̄(n)χ(n))mn Gnp,n̄p,k`, f` = σf ∏

(n,µ)
e µ̂q δµ,0 fn,µ ∑

{ρn
µ}

∏
n

T
ρn
−D ...ρn

+D
n (Dn) (5.19)

≡ σf ∏
(n,µ)

e µ̂q δµ,0 fn,µ W
[
np, n̄p, k`, f`, mn

]
, (5.20)

and the fully dualized partition function Eq. (5.9) is given by

Z(β, µq, m̂q) = ∑
{np,n̄p}
{k`, f`,mn}

σf ∑
{ρn

µ}
∏

p

(
β

2N

)np+n̄p

np!n̄p! ∏
`=(n,µ)

eµqδµ,0 fn,µ

k`!(k` + | f`|)!∏n

(2m̂q)mn

mn!
T

ρn
−D ...ρn

+D
n (Dn) ,

(5.21)

with the dual variables {np, n̄p, k`, f`, mn} subject to the Grassmann and gauge constraints

2We follow the convention of associating the color indices of Gn (from left to right) to the fermionic color
indices of the decoupling operators Pρn

µ starting from µ = −0,+0 to µ = −D,+D.
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Eqs. (5.12) and (5.13). The system is an ensemble of plaquette occupation number, dimers,

quark fluxes and monomers. The DOI can be either thought as an auxiliary degree of free-

dom to be sampled, or as a mathematical tool that allows to obtain the statistical weight of

configurations identified only by {np, n̄p, k`, f`, mn}. The two possibilities have their advan-

tages and shortcomings. In the latter case, the resummation of the DOI proceeds as follows:

at any lattice site one evaluates the tensor Tρ−D ...ρ+D
n , meaning that one computes the site

weight for all possible combinations of DOI around site n. This defines a tensor network.

Given the fact that ρn
µ = ρ

n+µ
−µ (because DOI on the same link are equal by construction), the

tensor-to-scalar contraction of the tensor network returns the value W
[
np, n̄p, k`, f`, mn

]
(see

Fig. 5.6). The advantage of this method, as compared to the use of the DOI as dynamical

variables, is that the sign problem is always milder since we are resumming configurations.

At the same time the weight W
[
np, n̄p, k`, f`, mn

]
is clearly a non-local object and becomes

increasingly more expensive to compute for large occupation numbers. Even if so, since we

are interested in evaluating the partition function perturbatively in β, non-local effects can

be under control if β is not too large, and one can still obtain the weights W reasonably fast.

In particular, one can exploit the fact that the weight W always decomposes as a product of

a strong coupling part Ws.c., and a term Wβ corresponding to the sublattice where non-zero

plaquette occupation numbers are present. One can write

W = Ws.c. ·Wβ , Wβ ≡ ∏
bubbles i

WBi , (5.22)

where a bubble Bi is any plaquette-connected region. The tensors T
ρn
−D ...ρn

+D
n are trivial if some

direction ±µ corresponds to a nonexcited link (n,±µ), i.e. a link that is not attached to

an excited plaquette. Indeed, a nonexcited link can be either traversed by a baryon flux

fn,µ = ±N, or be occupied by dimers (or the link is empty). In the first case, there is only

one DOI ρn
µ corresponding to the epsilon tensor (see Sec. 4.2.3), and the tensor network is

closed in this direction. In the case of strong coupling dimers, this property also holds true.

As we showed in Sec. 4.2.3, the only DOI that contributes at strong coupling is the one

associated to the completely antisymmetric representation ρn
µ = 1kn,µ . This property also

extends to the case where the dimers kn,µ are connected to excited links (Fig. 5.7). In this

case, the tensor Tρ
n factorizes as

T
ρn
−D ...ρn

+D
n ∝

(
∏
µsc

δ
ρn

µsc

1kn,µ

)
T̃

ρn
µexc(1)

...ρn
µexc(nexc)

n (5.23)

where µsc and µexc(a), a = 1, . . . , nexc are respectively the directions of the nonexcited and

excited links. Therefore, to evaluate the total weight of a configuration, it is sufficient to use
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FIGURE 5.5: The decoupling in presence of staggered fermions in two dimensions. At fixed values
of the DOI, the statistical weight of a configuration, up to trivial combinatorial factors, is the

product of the site weights T
ρn
−D ...ρn

+D
n . Every site weight is obtained contracting the color indices of

the decoupling operators attached to that site. The gluonic color indices (green arrows), which stem
from the expansion of the Wilson gauge action, are contracted among the different operators Pρ as
in the Yang-Mills case. The result of this contraction is a tensorial object containing the fermionic
color indices. An additional contraction with Gj1,...,jN−mn

i1,...,iN−mn
(n) produces the scalar site weight

T
ρn
−D ...ρn

+D
n ∈ R.
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FIGURE 5.6: Example of tensor network contraction. Depending on the dual variables, at any lattice
site the tensor Tn is evaluated. Given two neighboring sites n and n + µ̂, the DOI on the common
link is contracted (ρn

µ = ρ
n+µ̂
−µ ). The weight W, is the scalar quantity obtained by contracting all pairs

of indices between lattice neighbors. In the figure, the tensor indices have been displaced for
visualization purposes.

the more involved structure based on the tensor network contraction only on the sublattice

where the plaquette occupation numbers are non-zero, exploiting the factorization of the

tensor network for disconnected plaquette contributions. The strong coupling part can be

evaluated using the standard combinatorial formulae (e.g. Eq. (3.58)). This is particularly

useful since at small values of β, the bubbles Bi extend over few lattice spacings and the non-

local effects from the tensor network are manageable. In Fig. 5.8 we illustrate an example of

this factorization, whereas in Tab. 5.1 we report the values of the associated tensor network.

The other possibility, as already outlined, is to promote the DOI to dual variables. In this

case, the increasing complexity and the non-localities induced by the tensor network can be

overcome by importance sampling. When the DOI are considered dynamical, the former

configurations are split into many subconfigurations determined by selecting one tensor

element Tρ
n per lattice site n. When doing so, the weight of such configurations is local and

an additional Metropolis acceptance test can be introduced to make sure that the system

explores the DOI configuration space during Monte Carlo. For instance, when a bond, an

elementary plaquette or a cube containing six plaquettes is updated, we can propose a quasi-

local update by randomly choosing new DOI on the bonds involved. The feasibility of

this approach depends on the minus signs induced by splitting the former configurations

in terms of {np, n̄p, k`, f`, mn} with weights W, into subconfigurations labeled by the DOI.

Indeed, the tensor elements are not positive defined, and it could happen that without a

full contraction of the network, additional sign fluctuations are introduced. In Sec. 5.3.3, we

will provide preliminary evidences, based on an exact enumeration of the partition function

on small volumes, that the sign problem does not seem to worsen drastically, and that the

DOI can constitute a valid alternative to the bubble diagrams when the evaluation of the
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FIGURE 5.7: Left: a typical strong coupling configuration where dimers are attached to a given site.
The tensor Tρ

n is trivial as only one combination of DOI (totally antisymmetric irrep on each leg)
contributes. Right: an O(β) correction. In this case the tensor Tρ

n decomposes as the product of a
tensor carrying the indices from the DOI on the excited links (T̃ρ

n ), and delta functions
corresponding to the strong coupling legs which single out the irrep 1kn,µ .

Tensors B1 (DOI) / value Tensors B2 (DOI) / value

Tn1

(1, 1, 2, 1) Tn1

(1, 1, 1, 2)
2 2.912

Tn2

(1, 2, 2, 1) Tn2

(1, 1, 1, 2)
1.154 2.912

Tn3

(1, 2, 1, 1) Tn3

(2, 1, 2, 2)
2 0.816

Tn4

(1, 1, 2, 1) Tn4

(2, 2, 1, 2)
1.154 0.816

Tn5

(1, 1, 1, 5) (1, 2, 1, 5) (1, 1, 1, 6) (1, 2, 1, 6) Tn5

(2, 1, 2, 1)
0.384 0.544 0.544 −0.384 1.682

Tn6

(1, 1, 1, 1) Tn6

(2, 2, 1, 1)
1.154 1.682

Tn7

(1, 2, 1, 1)
2

Tn8

(6, 1, 1, 1)
2

Tn9

(1, 1, 1, 1)
2

TABLE 5.1: The tensors Tρ
n corresponding to the bubble diagrams B1 and B2 in Fig. 5.8. The indices

in parentheses are respectively the DOI ρn
−D, . . . , ρn

+D. Only the non-zero tensor elements have been
reported. For small plaquette occupation numbers, contracting the reduced tensor network within
the bubbles is straightforward and can be done on the fly during Monte Carlo evolution without
any overhead.
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FIGURE 5.8: Example of the factorization of the tensor network for SU(3) in two dimensions. The
total weight W[np, n̄p, k`, f`, mn] is the product of the bubbles weights WB1 and WB2 , times the
weight Ws.c. of the strong coupling background. In B1 and B2, the external (strong coupling) legs
are amputated. This means that for each external leg of a tensor Tn, the correction factors vB =

√
N!,

v(k) =
√

N!
(N−k)!k! are introduced depending on whether the leg contains a baryon (vB) or k dimers

(v(k)). The tensor networks corresponding to B1 and B2 are reported in Tab. 5.1.
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full tensors Tρ
n become too expensive to be computed, and the tensor networks within the

bubble diagrams become too large to be contracted exactly. However, for small truncation

order we will show that most of the DOI can be resummed locally in favor of simple local

combinatorial factors, in such a way that the system can be sampled using the standard

Worm algorithm already used for simulations in the strong coupling limit.
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5.2.2 The fermionic sign

We now turn into the computation of σf in the dual representation. In general, the fermionic

sign σf (C) of a configuration C is determined by the staggered phases, the antiperiodic

boundary condition for fermion fields in temporal direction, and by the so-called geometric

sign σg. The latter, as already outlined, stems from the reordering of the Grassmann vari-

ables χ̄(n), χ(n) that must be done before integrating them out at each lattice site n using

Eq. (5.16). Similarly to the strong coupling case, a negative fermionic sign σf can only arise

from quark flux loops, and for every loop ` we have

σf (`) = σg(`)(−1)w(`) ∏
(n,µ)∈`

(
ηµ(n)

) fn,µ σf (C) = ∏
loop `

σf (`) . (5.24)

In the previous equation, the winding number w(`) is the total number of quark fluxes in

the loop ` that cross the temporal boundary

w(`) = ∑
~n

w~n , w~n =

0 if ((Nt − 1,~n), 0) /∈ `

f (Nt−1,~n), 0 otherwise
(5.25)

where the sum ∑~n is over all spatial lattice sites. The computation of the geometric sign σg(`)

is instead slightly more involved. The main complication is that differently from strong

coupling, quark fluxes can have non-trivial geometries in presence of excited plaquettes.

This is for instance the case of the loop `B2 to which B2 belongs to (see Fig. 5.8). For standard

loop geometries, where every lattice site n in the loop is traversed by two and only two non-

zero fn,µ (e.g. the one in B1), it is straightforward to show that the geometric sign is given

by

σg(`) =

1 if ` is an even flux loop

(−1)N+(`)+1 otherwise
(5.26)

where N+(`) is as usual the number of forward links traversed by the loop. Using formulae

Eqs. (5.24) and (5.26) one gets for instance σf (`B1) = −1. Notice that for an even flux loop

(i.e. a loop where fn,µ is even) σf (`) = 1, always. However, in the most general case a closed

expression for σg(`) cannot be obtained. To determine its value for non-trivial geometries,

we only make use of its definition, i.e. we explicitly count the number of swaps of Grass-

mann variables that need to be performed in order to bring them in canonical ordering at

each lattice site. In this way one gets for instance σg(`B2) = −1, which implies σf (`B2) = 1.
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5.2.3 Observables

Since both the fermion fields and the gauge links have been integrated out, the observables

in the dual representation take a different form. The observables defined as derivatives of

log(Z) with respect to external parameters, can be clearly obtained taking the same deriva-

tives in the partition function expressed in terms of dual variables. For instance, the chiral

condensate 〈ψ̄ψ〉, the net quark number3 〈nq〉, and the average plaquette 〈P〉 are obtained

as the following expectation values

〈ψ̄ψ〉 = 1
LD Nt

∂ logZ
∂(2m̂q)

=
1

LD Nt

∑n〈mn〉
2m̂q

, (5.27)

〈nq〉 =
1

LD Nt

∂ logZ
∂µ̂q

=
1

LD Nt
∑
n
〈 fn,0〉 , (5.28)

〈P〉 = 1
LD Nt

∂ logZ
∂β

=
1

LD Nt

∑p〈np + n̄p〉
β

, (5.29)

where L and Nt are the spatial and temporal extent of the lattice. Notice that the r.h.s. of

Eq. (5.29) implies that for any truncation of the maximally allowed plaquette occupation

numbers limβ→∞〈P(β)〉 = 0. This is clearly an artifact: at large β values the contribution of

large np and n̄p cannot be neglected because excited plaquettes come with a factor of βnp+n̄p .

Therefore at fixed truncation order, by increasing β, the average plaquette will always reach

a maximum and then drop to zero.

Analogous expressions for the susceptibilities of the observables in Eqs. (5.27), (5.28)

and (5.29) are readily obtained

χψ̄ψ ≡=
1

LD Nt

∂2 logZ
∂(2m̂q)2 =

1
LD Nt(2m̂q)2

[
∑
n,n′

(〈mnmn′〉 − 〈mn〉〈mn′〉)−∑
n
〈mn〉

]
, (5.30)

χnq ≡=
1

LD Nt

∂2 logZ
∂µ̂2

q
=

1
LD Nt

∑
n,n′

[
〈 fn,0 fn′,0〉 − 〈 fn,0〉〈 fn′,0〉

]
, (5.31)

χP ≡=
1

LD Nt

∂2 logZ
∂β2 =

1
LD Ntβ2

[
∑
p,p′

(
〈rp rp′〉 − 〈rp〉〈rp′〉

)
−∑

p
〈rp〉

]
, rp ≡ np + n̄p .

(5.32)

Concerning non-derivative observables, their expression in the dual representation is less

trivial, and cannot always be obtained. Unfortunately this is the case of the Polyakov loop

〈L〉. Formally it can be written as a ratio of partition functions via

〈L〉 = 1
LD ∑

~n

1
N

〈
Tr

Nt−1

∏
τ=0

U(τ,~n),0

〉
0
=

1
NLD ∑

~n

ZL~n
Z , (5.33)

3the quark number nq is related to the net baryon number nB via nB = nq/N.
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where 〈〉0 means taking the average in the conventional formulation in terms of gauge links,

and ZL~n is the partition function with a Polyakov loop insertion at ~n. ZL~n admits a dual

representation similar to Z . The main difference is that on the lattice links (n, 0) crossed by

the Polyakov loop, the gauge constraint Eq. (5.13) gets replaced by

fn,µ + ∑
ν>µ

[
δnn,µ,ν − δnn−ν̂,µ,ν

]
− ∑

ν<µ

[
δnn,ν,µ − δnn−µ̂,ν,µ

]
− 1 =

0 U(N)

0 mod N SU(N)
,

(5.34)

while the site weights Tρ
n , with n = (τ,~n), are now different because the two decoupling

operators Pρn
−0 and Pρn

+0 , carry the additional color index of the Polyakov loop which must

be contracted in order to obtain Tr ∏Nτ−1
τ=0 U(τ,~n),0. Hence, the modified contraction rules of

the decoupling operators Pρn
µ produce modified site weights T̃ρ

n which are computed nu-

merically similarly to the standard Tρ
n . However, the main (unsolved) problem is to connect

the valid configurations in the two ensembles Z and ZL~n . One indeed wishes to obtain a

local mapping between the valid configurations {C} of Z , and {CL} of ZL~n , such that after

the stochastic generation of a valid configuration C of Z , one can reweight to a subset of

configurations {CL|C} of ZL~n via

〈L~x〉 =
∑{CL}W(CL)

∑{C}W(C) =
∑{C}W(C)∑{CL|C}

W(CL)
W(C) PCL,C

∑{C}W(C) , ∑
{C}

PCL,C = 1 ∀ CL , (5.35)

where PCL,C is the proposal probability from a configuration C to CL, and W(CL)
W(C) the acceptance

probability. The problem is that the modified gauge constraint on the lattice links (n, 0)

produce configurations CL that differ from the standard configurations C globally, and the

ratio W(CL)
W(C) in Eq. (5.35) depends in general exponentially on the lattice volume, causing bad

sampling. Indeed, the presence of the Polyakov loop modifies the allowed values of the

plaquette occupation numbers on the temporal plaquettes crossed by the Polyakov loop,

and this "flux defect" propagates to the entire lattice.

5.2.4 Improving the Taylor expansion

The dualization that we discussed in the previous subsections, although exact, cannot be

used as it stands to generate the statistical weights for arbitrary values of the dual variables

as they get more and more expensive to compute for large occupation numbers. Continuum

physics is expected to emerge above β/2N ≈ 1, where the contributions of large plaquette

occupation numbers cannot be neglected. To try to make contact with the continuum limit

as much as possible, one wishes to find an expansion of the Wilson plaquette action of the
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form

∏
p

exp
(

β

2N

(
Tr Up + Tr U†

p

))
= ∏

p
∑

i
ai(β)Fi(Up) , (5.36)

such that with a small number of coefficients ai one captures larger β effects. This is achieved

with a character expansion. Since the r.h.s. of Eq. (5.36) is a class function4 of G, it can be

expanded in the irreducible characters χ̂λ(Up) of G. Considering for definiteness the case of

G = SU(N), its irreducible representations Rλ are similar to the U(N) ones (see Sec. 4.1.1)

with the additional constraint λN = 0. Any irrep can be thus associated to a partition λ with

length at most N − 1. The formula in Eq. (4.29) is still valid for computing the dimension

Dλ,N of the irrep λ. Clearly in this case tensoring an irrep λ with a determinantal irrep does

not have any effect since det U = 1. The character expansion of the SU(N) Wilson action

is [77]

∏
p

exp
(

β

2N

(
Tr Up + Tr U†

p

))
= ∏

p
∑
λ

uλ(β/N) χ̂λ(Up) , (5.37)

uλ(x) =
+∞

∑
n=−∞

det Iλj−j+i+n(x) , (5.38)

where Iα(x) are the modified Bessel functions of the first kind already introduced in the

discussion of the Schwinger model, and uλ(β/N) the character coefficients. The charac-

ter expansion has better convergency properties as compared to the Taylor expansion. The

main reason why we did not make use of it from the beginning is that we could not obtain

an analytic expression similar to Eq. (4.25) in the case where U j
i and Ul

k are substituted by the

matrix elements of the irreps Rλ(U)5. Moreover, it is not easy to get a posteriori a character-

based dual representation from the one obtained with a Taylor expansion, as we did for the

Schwinger model. This difficulty arises from the necessity of introducing the auxiliary vari-

ables: their form is indeed very specific to the expansion adopted, and switching from one to

the other is no longer possible. Despite this fact, we can still try to use the character expan-

sion in Eq. (5.37) to improve the coefficients (β/2N)np+n̄p of the Taylor expansion. To do so,

we start writing the characters χ̂λ(Up) in terms of power of traces of Up, U†
p and their pow-

ers. As explained in [77] this can be done systematically. For the low-lying representations

4A class function f (g) ∈ C, g ∈ G is a function that is invariant under group conjugation, i.e. f (g) =
f (g′gg′−1), ∀ g′ ∈ G.

5Although for SU(2) Cherrington et. al in [70, 71, 72] proposed an interesting dual form based on a character
expansion supplied by the invariant intertwiners.
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of SU(N) one gets for instance

χ̂{0,...}(Up) = 1 , Dλ,N = 1 ,

χ̂{1,0,...}(Up) = TrUp , Dλ,N = N ,

χ̂{1, . . . , 1, 0︸ ︷︷ ︸
N

}(Up) = TrU†
p , Dλ,N = N ,

χ̂{1,1,0,...}(Up) =
Tr[Up]2 − Tr[U2

p]

2
, Dλ,N =

N(N − 1)
2

,

χ̂{1, . . . , 1, 0︸ ︷︷ ︸
N−1

}(Up) =
Tr[U†

p]
2 − Tr[U†2

p ]

2
, Dλ,N =

N(N − 1)
2

,

χ̂{2,0,...}(Up) =
Tr[Up]2 + Tr[U2

p]

2
, Dλ,N =

N(N + 1)
2

,

χ̂{2, . . . , 2, 0︸ ︷︷ ︸
N

}(Up) =
Tr[U†

p]
2 + Tr[U†2

p ]

2
, Dλ,N =

N(N + 1)
2

,

χ̂{2, 1, . . . , 1, 0︸ ︷︷ ︸
N

}(Up) = Tr[Up]Tr[U†
p]− 1 , Dλ,N = N2 − 1 . (5.39)

Traces of the form Tr[Ua
p] and Tr[U†b

p ] can be in turn cast into power of traces of only Up

and U†
p for both SU(2) and SU(3). This is essentially a consequence of the Cayley-Hamilton

theorem. In the most relevant case of SU(3), the characteristic polynomials of Up and U†
p are

PUp(t) = det
(
Up − t1

)
= −t3 + Tr[Up] t2 − Tr[U†

p]t + 1 , PUp(Up) = 0 , (5.40)

PU†
p
(t) = det

(
U†

p − t1
)
= −t3 + Tr[U†

p] t2 − Tr[Up]t + 1 , PU†
p
(U†

p) = 0 , (5.41)

This determines recursion relations between the traces Tr[Ua
p] and Tr[U†b

p ] of the form

Tr[Ua
p] = Tr[Up]Tr[Ua−1

p ]− Tr[U†
p]Tr[Ua−2

p ] + Tr[Ua−3
p ] , a ≥ 3 (5.42)

Tr[U†b
p ] = Tr[U†

p]Tr[U†b−1
p ]− Tr[Up]Tr[U†b−2

p ] + Tr[U†b−3
p ] , b ≥ 3 (5.43)

from which it is straightforward to show by induction that one can express traces of power

of Up and U†
p only in terms of Tr[Up] and Tr[U†

p]. In particular, making use of the three-steps

Lucas polynomials Ln(x, x̄) defined by

Ln(x, x̄) ≡



3 n = 0

x n = 1

x2 − 2x̄ n = 2

xLn−1(x, x̄)− x̄Ln−2(x, x̄) + Ln−3(x, x̄) n ≥ 3

(5.44)
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we get

Tr[Un
p ] = Ln(L, L∗) , Tr[U†n

p ] = Ln(L∗, L) , L = Tr[Up] , (5.45)

and substituting back this expression into Eq. (5.39), one obtains an equality of the form

χ̂λ(Up) = ∑
np,n̄p

cλ(np, n̄p)Tr[Up]
np Tr[U†

p]
n̄p (5.46)

The coefficients cλ(np, n̄p) can be easily computed numerically for any λ. We can then trun-

cate the character expansion Eq. (5.37), considering only those characters {λ}r for which

the Taylor expansion of the corresponding Bessel function determinant starts at O(βk) with

k ≤ r. For SU(3) this means neglecting all characters with λ1 > r since

uλ(x) = aλxλ1 +O(xλ1+1) . (5.47)

Making use of the formulae in Eq. (5.39) and of the three-steps Lucas polynomials, we can

then cast the expansion of the Wilson action into

∏
p

exp
(

β

6

(
Tr Up + Tr U†

p

))
≈∏

p
∑

np,n̄p

αr
np,n̄p

(β)Tr[Up]
np Tr[U†

p]
n̄p , (5.48)

αr
np,n̄p

(β) = ∑
{λ}r

cλ(np, n̄p) uλ(β/3) . (5.49)

The coefficients αr
np,n̄p

(β) can be used in place of the Taylor coefficients when truncating the

expansion of the action. In the limit r → ∞ one has to recover the usual Taylor expansion;

hence

lim
r→∞

αr
np,n̄p

(β) =
1

np!n̄p!

(
β

6

)np+n̄p

. (5.50)

What is expected is that since they involve the character coefficients, the truncation can

produce a better agreement with the full result. This will be explicitly shown in Sec. 5.3.3.

The expression of the plaquette expectation value is now

〈P〉 = 1
LD Nt

∂ logZ
∂β

=
1

LD Nt
∑

p

〈∂βar
np,n̄p

(β)

ar
np,n̄p

(β)

〉
, (5.51)
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FIGURE 5.9: The behavior of the α2 coefficients as a function of β. The numbers in round brackets
correspond to the values (np, n̄p).

while the αr coefficients for SU(3) and r = 2 are:

α2
0,0(β) = u{0}

(
β

3

)
− u{2,1,0}

(
β

3

)
, α2

1,0(β) = α2
0,1(β) = u{1,0}

(
β

3

)
− u{2,0,0}

(
β

3

)
,

(5.52)

α2
1,1(β) = u{2,1,0}

(
β

3

)
, α2

2,0(β) = α2
0,2(β) = u{2,0,0}

(
β

3

)
. (5.53)

Some of the coefficients α2
np,n̄p

turn negative at some β∗. Therefore when performing simu-

lations, the truncation of the character expansion must be carefully chosen. In Fig. 5.9 we

show the behavior of the α2 coefficients as a function of β.

5.3 Analysis of the β corrections

In this section we present our determination of the bubble diagrams WBi contributing to the

partition function, for various truncations of the plaquette occupation numbers. The O(βk)
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truncation is defined by only allowing bubble diagrams Bi satisfying ∑
p∈Bi

(
np + n̄p

)
≤ k.

Enumerating the various contributions is fundamental to perform simulations at non-zero

β. The code we developed within this Ph.D. project is capable to compute automatically

bubble diagrams of arbitrary shape and truncation order β. A brief description of the al-

gorithm will be presented in App. (C). Here, as a first cross check we compute the O(β)

diagrams, reobtaining the partition function used in [100]. We then move to the O(β2) cor-

rections, where the structure of the tensor network is sufficiently simple that one can rewrite

the partition function in terms of scalar objects depending on the usual dual variables plus

only six DOI. For O(βk), k ≥ 3, the bubble computation is still feasible, but the number of

DOI that need to be considered to have a fully local representation grows. So far we were

able to enumerate in four dimensions and for the most relevant case of SU(3), all diagrams

up to order β4 and all planar bubble contributions up to order β7. This was done on a single

CPU. For even higher orders, the most time consuming part is represented by the compu-

tation of the tensors Tρ
n , i.e. the color contraction between the decoupling operators. This

computational barrier can be overcome by either modifying the code for parallel CPU us-

age, or by reaching a better understanding of the group theoretical structure of the tensors

Tρ
n .

As a cross check of the formalism we developed, bubble contributions of higher order

(up to β6) will be then resummed on small two dimensional volumes. The resulting partition

function, which is a polynomial in β, quark mass m̂q, and chemical potential µ̂q, will be

compared with the result of hybrid Monte Carlo simulations, showing how the higher order

diagrams effectively induce a better agreement with the full result. A preliminary analysis

of the sign problem, with and without the DOI as dual degrees of freedom will be finally

presented.

5.3.1 Partition function at O (β)

AtO(β), the bubble diagrams are only made up of a single plaquette (np = 1) or antiplaque-

tte (n̄p = 1). The tensor networks associated to the bubbles are trivial at this order. Indeed,

as we are going to show, for any allowed background of dual variables, all tensors Tρ
n (except

one) have only one non-zero element. The multiplicity from the bubble diagram containing

the "non-trivial" tensor can be however resummed locally, and one can express the partition

function only in terms of scalar site and link weights depending only on {np, n̄p, k`, f`, mn}
without the DOI. To show this feature, we consider all possible tensors Tρ

n at the corner of

the excited plaquette. For a general SU(N) theory, up to charge conjugation6, there are two

classes of tensors: those where a single quark flux, oppositely oriented with respect to the

6i.e. exchanging the direction of all quark fluxes and at the same time swapping np and n̄p.
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FIGURE 5.10: The four different types of tensor at a corner of the excited plaquette. (a) The U(N)
contributions: two excited links are occupied by dimers and a single quark flux. (b) An incoming
baryon ( f` = N) split into a (N − 1)-quark flux and a single quark flux. (c) An (N − 1)-quark flux
travels in the same direction of the gauge flux. An external dimer or a monomer must be present in
order to fulfill the Grassmann constraint. (d) As in (c) with a dimer superimposed to one of the two
(N − 1)-quark fluxes.

plaquette, is superimposed to dimers (Fig. 5.10 (a)), and the ones corresponding to genuine

SU(N) contributions (Fig. 5.10 (b)-(d)). The first is a U(N) contribution as the associated

I-integrals have q = 0. Let us start considering this case:

a) Even though the tensors corresponding to these diagrams can be quite large, the same

decoupling that happens at strong coupling takes place in this case. Proceeding in a

similar fashion as in Sec. 4.2.3, and with reference to Fig. 5.10 (a), one gets

T
ρn
−D ...ρn

+D
(0) = N!

∏
µs.c.

1√
D

1kn,µs.c. ,N

δρn
µs.c. ,1

kn,µs.c.

 δ
ρn
+0, 1

kn,+0+1√
D

1
kn,+0+1,N

δ
ρn
+1, 1

kn,+1+1√
D

1
kn,+1+1,N

, (5.54)

where the first product runs over the external legs (n, µs.c.). Thus, as in the strong cou-

pling limit only the tensor element corresponding to the completely antisymmetric DOI

is non-zero. The modification of the dimers weight is simply

w1
` (k`) =

1
k`!(k` + 1)!

1
D

1k`+1,N
=

1
k`!(k` + 1)!

(k` + 1)!
N(N − 1) · · · (N − k`)

=
(N − k` − 1)!

N!k`!
, (5.55)

which gives the correct link weight to be used when a dimer coexists with a quark flux

on an excited link.

The genuine SU(N) contributions are instead of three types:

b) An incoming (strong coupling) baryon splits, at a corner of the excited plaquette, into

a single quark flux and a (N − 1)-quark flux. Equivalently, a single quark flux and a

(N− 1)-quark flux can recombine to form an outgoing (strong coupling) baryon (Fig. 5.10

(b)).
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c) An incoming (N − 1)-quark flux exits the site following the gauge flux induced by the

plaquette. A monomer or an external dimer is also present in order to fulfill the Grass-

mann constraint (Fig. 5.10 (c)).

d) As in c) with the external dimer or monomer replaced by a dimer on one of the two

excited links (Fig. 5.10 (d)).

The first two types of configurations are somewhat trivial as the associated tensors have size

one. There is in fact only one DOI associated to the external legs of the two tensors. Their

values can be readily computed

T(1) =
N!√

N
T(2) = (N − 1)!. (5.56)

In the case of the configurations of type d), the associated tensor has size 2× 1. There are

indeed two DOI in direction 1̂, where a dimer is superimposed to a (N− 1)-quark flux. This

tensor is given by7

T1,1
(3) =

N!√
N + 1

T1,2
(3) =

N!√
N(N + 1)

. (5.57)

To remove this multiplicity, it is sufficient to exploit the fact that a link carrying a dimer plus

a (N − 1)-quark flux can only recombine with a (N − 1)-quark flux from another direction

because of the Grassmann constraint. The latter involves an I-integral made up of a single

decoupling operator, the epsilon tensor. Therefore, we can perform a local resummation of

the two DOI by considering the following modified "tensor" of size 1

T̃(3) =

√(
T1,1
(3)

)2
+
(

T1,2
(3)

)2
=

N!√
N

. (5.58)

In this way all Tρ
n have been reduced to scalar quantities. It is easy to check that the modified

dimer weights (Eq. (5.55)) and the values of T(1), T(2), T̃(3) together with the usual combina-

torial factors from the Taylor expansion, are recovered by defining the following link and

site weights at the boundary of the excited plaquette

1) If a link ` is occupied by k` ∈ {0, . . . , N − 1} dimers and a single quark flux ( f` = ±1),

there is an associated factor w1
`(k`).

2) To each (N − 1) quark flux superimposed to a dimer corresponds a link weight

vN−1,1 = (N−1)!
N! = 1

N .

7We only show the tensor indices associated to the direction +0 and +1.
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FIGURE 5.11: Modification of the link weights (upper line) and of the site weights (bottom line)
induced by an elementary plaquette excitation for N = 3. The green arrow shows the direction of
the gauge flux.

3) To each (N − 1) quark flux corresponds a link weight vN−1 = 1
N!(N−1)! .

4) At each corner n of the excited plaquette corresponding to a U(N) configuration (Fig. 5.10

(a)), the site weight is N!/mn!.

5) At each corner n of the excited plaquette corresponding to a SU(N) configuration, there

is a site weight N! if there are no external dimers or baryons and if mn = 0. Instead,

the site weight is N!
√

N! if there is an external baryon, while it is N!(N − 1)! if there are

external dimers or if mn = 1.

The rules (1)-(5) together with the usual strong coupling weights define the O(β) partition

function. The new link and site weights induced by the presence of the excited plaquette

are graphically represented in Fig. 5.11. To compute the fermionic sign σf (`) of a quark

loop `, the procedure described in Sec. 5.2.2 must be followed. At this order the partition

functions has a very similar structure to the strong coupling one, with simple combinatorial

factors at each site, link and plaquette. Multiple O(β) bubbles are allowed in the ensemble

provided that they are disconnected8. Qualitatively, the main aspect arising at O(β) is that

baryons and mesons are no longer point-like but can extend over one lattice spacing, and

can interact via a gluon exchange. This system was studied for the first time via Monte

Carlo in [100] for G = SU(3). In Fig. 5.12 we show the evolution of the phase boundaries

at finite chemical potential, when the O(β) corrections are included. The chiral transition

temperature at µ̂q = 0 decreases with β, being aTNP
c = 0.911(1) at β = 0.6. The various

curves at constant β however intersect around the chiral tricritical point which only has

a very mild β-dependence at this order. Also, the shape of the line of first order phase

transitions is unaffected by theO(β) gauge corrections, and the chiral and nuclear transition

are still degenerate. This is of course an artifact of the approximation, and higher orders in

β are required to obtain the splitting expected in the continuum limit. However, at higher

8Two bubbles are connected if they share an edge or a corner.
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FIGURE 5.12: The chiral phase diagram including O(β) corrections from direct simulations on a
N3

σ × 4 lattice and for G = SU(3). Both temperature aT and baryon chemical potential µ̂B = 3µ̂q
have been rescaled non-perturbatively (NP) as a consequence of the anisotropic calibration at finite
β. From [101].

order in β, it is no longer possible to express the partition function only in terms of site and

link weights integrating out locally all the DOI. In this case it is necessary to enumerate the

bubble diagrams, and check explicitly how many DOI are needed in order to obtain a fully

local expression in term of combinatorial factors. At O(β2), as we are going to show, the

structure of the tensor network within the bubbles is sufficiently simple that this number is

minimal.

5.3.2 Partition function at O
(

β2)
As an application of the formalism we developed, we now consider the partition func-

tion at O(β2) showing how the higher order corrections can be cast in a manageable form

for Monte Carlo simulations. At order O(β2) we allow for bubble contributions Bi with

∑
p∈Bi

np + n̄p ≤ 2. The plaquette occupation numbers can be distributed within the bubbles,
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FIGURE 5.13: The six types of diagrams, up to charge conjugation, rotations, and foldings at O(β2).

as shown in Fig. 5.13, in six different ways9. For all of them, except the SU(N) contribu-

tions of type (a), and the U(N) contributions of type (f), a fully local expression for their

weights can be obtained integrating out locally all the DOI in favor of simple combinatorial

factors as we did for the O(β) corrections. Since the procedure is quite involved, we only

sketch it for some of the diagrams of type (a) and (b), and then only quote the final result.

For the remaining diagrams instead, to obtain local weights we need to leave a number of

DOI uncontracted, adding them as dual variables. The power of the decoupling operators

is to render this number minimal, and the complexity of the resulting partition function is

essentially the same as the O(β) one. At the same time it is possible to use directly the

bubble weights, i.e. by contracting the (non-trivial) tensor network associated to these dia-

grams. When their number is not too large (as in this case), the bubbles can be sampled via

reweighting. Since they are based on a resummation of DOI, this will always improve on

the sign problem. We will show both procedures.

The U(N) contributions of type (a) are of the form depicted in Fig. 5.14 left. The great

orthogonality theorem still applies, and the form of the tensors Tρ
n at the corner of the doubly

excited plaquette is

T
ρn
−D ...ρn

+D
(0) = N!

∏
µs.c.

1√
D

1kn,µs.c. ,N

δρn
µs.c. ,1

kn,µs.c.

 δ
ρn
+0, 1

kn,+0+2√
D

1
kn,+0+2,N

δ
ρn
+1, 1

kn,+1+2√
D

1
kn,+1+2,N

, (5.59)

9Up to charge conjugation, rotations and foldings.
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assuming that (n,+0) and (n,+1) are the two excited links. Hence, the weights of these

bubble contributions can be obtained associating the combinatorial factors

ŵ2
`(k`, f` = ±2) =

(N − k` − 2)!
k`!N!

, (5.60)

to each of the excited links10 since

1
k`!(k` + 2)!

1
D

1k`+2 , N
=

1
k`!(k` + 2)!

(k` + 2)!
N(N − 1) . . . (N − k` − 3)

=
(N − k` − 2)!

k`!N!
, (5.61)

where the first factor on the r.h.s. comes as usual from the Taylor expansion of the staggered

action. Concerning the diagrams of type (b), the only non-trivial part might be represented

by the tensors at sites n2 and n5. For the U(N) contributions (Fig. 5.14 middle) however,

the tensor network is still trivial because on the O(β) links (i.e. the links attached to only

one excited plaquette), just the completely antisymmetric decoupling operator contributes

as a consequence of the result derived in the previous subsection. The O(β) combinatorial

factors can be thus used on the links surrounding the 2× 1 bubble, whereas if the internal

link is occupied by k` dimers, the corresponding link weight is

w1
`(k`) =

(N − k` − 1)!
k`!N!

, (5.62)

essentially because the two gluonic color indices of the decoupling operators Pρ
n5
−1 and Pρ

n2
+1

combine with the ones of the decoupling operators Pρn
µ=1kn,µ+1

on the O(β) links, forming an

additional quark-antiquark pair that gives rise to the factor w1
`(k`). When instead SU(N)

contributions are considered, e.g. the one in Fig. 5.14 right, although the tensors Tn2 and Tn5

are in general non-trivial if the internal link is occupied by dimers or traversed by quark

fluxes, we can still obtain local weights by resumming locally the DOI. This is done observ-

ing that the indices of the tensors Tn2 and Tn5 corresponding to external links do not have

multiplicity. The DOI shared by Tn2 and Tn5 can be thus contracted, and the result cast into

modified (trivial) tensors T̃n2 and T̃n5 as shown in Fig. 5.15 for the SU(3) diagram in Fig. 5.14

right. Then, T̃n2 and T̃n5 induce a modification of the site weights at n2 and n5. This pro-

cedure is generalizable to all diagrams except the U(N) contributions of type (f) and the

SU(N) contributions of type (a). The complete list of the resulting modified site and link

weights is shown in Fig. 5.16. For the contributions of type (d) and (e) where two excited

plaquettes only share a corner, the link weights are as in the O(β) partition function and

only a modification of the site weight on the shared corner is induced.

For the U(N) contributions of type (e) and for the SU(N) contributions of type (a) this

10This statement is also true at O(β3).
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reduction does not work. In the first case there are six possible tensors (for N = 3) at the

corner of the excited plaquette, depending on the dimer covering (Fig. 5.17). Their values

are

T
ρn
+0=1, ρn

+1
n (1) =

(
2
√

2 2
)

, T
ρn
+0=1, ρn

+1
n (2) =

(
0 0 0 0 4

√
2
3 2

√
1
3

)
,

T
ρn
+0, ρn

+1
n (3) =

 1
√

2√
(2) 0

 , T
ρn
+0, ρn

+1
n (4) =

0 0 0 0 2
√

1
3 2

√
2
3

0 0 0 0 2
√

2
3 −2

√
1
3

 , (5.63)

while Tn(5) is a 23× 1 matrix having only one non-zero element T1,23
n (5) = 6, and trivially

T1,1
n (6) = 6. In the previous equation, the rows and columns of the matrices identify re-

spectively the value of ρn
+0 and ρn

+1. Although the tensors are non-trivial and the Boltzmann

weights of the bubbles in Fig. 5.17 cannot be rewritten as a product of local combinatorial

factors without the DOI, we can see the power of the decoupling operators: many DOI

just do not contribute and a completely local expression for the partition function can be

obtained considering the few contributing ones as dynamical variables. The fullO(β) parti-

tion function, considering also the SU(3) contributions of type (a), can be obtained making

use of only six DOI, associating specific site and link weights to them as shown in Fig. 5.18,

where the complete list of the additional combinatorial factors is reported. For each link

state there are at most two DOI. In Fig. 5.18 they are indicated with ρ = ±. To obtain such

coefficients we also made use of the freedom of rotating the decoupling operators via

(
P
′ρ′
)`

i
≡∑

ρ

Vρ′,ρ
(

Pρ
)`

i ,
(

P
′ρ′
)j

k
≡∑

ρ

Vρ′,ρ
(

Pρ
)j

k , V ∈ SO
(

Nρ

)
. (5.64)

The I−integral is indeed invariant under rotations in the decoupling operators space, and

by choosing specific linear combinations one can reduce the number of contributing DOI.

In term of the standard dual variables {np, n̄p, k`, f`, mn} and of the additional DOI, the full

O(β2) partition function is

Zβ2(β, m̂q, µ̂q) = ∑
{np,n̄p, f`,k`,mn,ρn

µ}
σf ∏

p

(β/2N)np+n̄p

np!n̄p! ∏
`=(n,µ)

w̃(`) e f` µ̂q δµ,0 ∏
n

w̃(n)
(
2m̂q

)mn ,

(5.65)

w̃ (` = (n, µ)) ≡ w̃
(

kn,µ, fn,µ, n(n,µ,ν), n̄(n,µ,ν), ρn
µ

)
, (5.66)

w̃(n) ≡ w̃
(

k(n,±µ), f(n,±µ), n(n,µ,ν), n̄(n,µ,ν), ρn
±µ, mn

)
, (5.67)

where depending on the occupation numbers and on the six DOI ρn
µ, the factors w̃` and w̃n

are respectively the link and site weights in Figs. 5.16 and 5.18.

At the same time, for the diagrams with non-trivial structure, it is possible to resum the
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FIGURE 5.14: From left to right we show respectively typical U(3) diagrams of type (a) and (b), and
a typical SU(3) contribution of type (c). In all these cases the bubble weights can be obtained
associating combinatorial factors to each link and site of the bubble.

DOI in favor of the bubble weights WBi . This computation has been automatized, and the

result is reported in Tab. 5.2. This procedure generalizes to the higher orders. Our strategy is

to precompute all tensors that are compatible with the truncation order, storing only the non-

zero tensor elements. From the trivial tensors the modification of the site and link weights

can be read automatically, while attention should be paid in order to identify the DOI that

can be resummed locally. Clearly this computation is performed one time only since the

tensor network does not depend on the simulation parameters. So far all O(β4) tensors

in four dimensions have been computed. The bubble weights can be instead obtained on

the fly during Monte Carlo. Eventually these objects become too non-local to be effectively

sampled via reweighting, and only the description in terms of the DOI should be used. In

the latter case indeed the Svistunov-Prokofiev Worm algorithm can be directly applied.

At order O(βk) with k ≥ 3, non-planar geometries appear. Examples are provided in

Fig. 5.19 for the cubic β corrections. The tensor network that give rise to these bubble di-

agrams is still very simple, and the number of contributing DOI small. In the case of the

diagrams shown, the tensors at sites n1 and n2 are

T
ρ

n1
+1

n1 (a) = T
ρ

n2
−1

n2 (a) =
(

1 1
3

√
2

3

)
(5.68)

T
ρ

n1
+1

n1 (b) = T
ρ

n2
−1

n2 (b) =
(

0 0 0 0 0
√

2
3

)
, (5.69)

where we only show the non-trivial DOI associated to the link (n1,+1) = (n2,−1) shared by

the three plaquettes. From the tensors, the modification of the site and link weights is read-

ily obtained in a similar fashion as for the O(β2) corrections. The orthogonal basis which

we used to define the decoupling operators, has the merit of producing a small number

of non-zero tensor elements Tρ
n . Although we know that this must be related to the great

orthogonality theorem, and in some cases we were able to show this explicitly, we did not

succeed obtaining a set of rules to determine beforehand what are in general the contributing

DOI. The solution to this problem, which requires a better group theoretical understanding

of Eq. (5.18), will heavily influence the maximum order reachable in numerical simulations.
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FIGURE 5.15: Example of resummation of DOI. The only non-trivial part of the tensors Tρ
n2 and Tρ

n5
corresponds to the DOI ρ in direction (n2,+1) = (n5,−1). We contract the two tensors in this
direction and cast the result into scalar quantities T̃n2 = T̃n5 .

5.3.3 Cross checks from exact enumeration

In this section we present our results concerning the comparison between the bubble eval-

uation in the dual representation, and hybrid Monte Carlo (HMC) simulations. This com-

parison was carried out as a preliminary step before performing Monte Carlo simulations

in order to cross check the correctness of the dual formalism and of our implementation.

On a finite volume, the partition function Z is always a finite polynomial P
(

β, m̂q, µ̂q
)

in

β, quark mass m̂q and fugacity eµ̂q . For various truncation of the β expansion we exactly

computed the polynomials P on a 2× 2 and 4× 4 lattice with periodic boundary conditions

in all directions. To do so, we first evaluated all tensors Tρ appearing for a given truncation

of the plaquette occupation numbers, and then enumerated all admissible combinations

of {np, n̄p, k`, d`, mn} for various gauge groups. For each combination, the corresponding

tensor network was then contracted, and the fermionic sign σf computed according to the

recipe described in Sec. 5.2.2. The resulting value contributes to a given coefficient of the

polynomial P , depending on the monomer number mn, the total quark flux in temporal

direction ∑n fn,0, and the plaquette occupation numbers ∑p(np + n̄p). For fixed truncation

O(βk), the number of admissible configurations grows very large increasing the number of

dimensions; hence we could not perform the exact enumeration in dimensions D + 1 > 2.

Nevertheless, as our dual formulation does not present any fundamental difference when

applied to higher dimensions, this cross check gives some indications about its validity in

D + 1 = 3, 4. Moreover, in doing this comparison we did not take advantage of any resum-

mation of DOI: our main goal was to verify the capability of the dual formulation to cor-

rectly reproduce the β dependence of various observables, and to validate our algorithms
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FIGURE 5.16: The list of combinatorial factors for all diagrams (a)-(f), excluding the SU(N)
contributions of type (a) and the U(N) contributions of type (f). In the upper part of the figure we
show the link weights, whereas the bottom part contains the list of the modified site weights. The
last two site weights do not depend on how the remaining quark-antiquark pair is distributed on
the links attached to the second plaquette. Site states that are not shown, carry the strong coupling
factor N!/mn! while at the corner of a single excited plaquette the combinatorial factors in Fig. 5.11
must be used. The green arrows show the direction of the gauge flux.

FIGURE 5.17: Depending on the dimer covering, there are six possible tensors at the corner of the
plaquette with np = n̄p = 1. Tρ

n (6) is just a scalar because there is only one DOI on the links (n,+0)
and (n,+1).
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FIGURE 5.18: The list of combinatorial factors for the SU(N) diagrams of type (a) and the U(N)
diagrams of type (f). In the upper part of the figure we show the link weights, in the lower the
modified site weights. In all cases there are at most two DOI per link, which are identified in the
figure by ±. The six DOI appearing can be then made dynamical and sampled along with the
standard occupation numbers. Although the N dependence is made explicit, these results only hold
for N = 3.
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(np, n̄p) (k1, f1) (k2, f2) (k3, f3) (k4, f4) WBi

(1, 1) (0, 0) (0, 0) (0, 0) (0, 0) 1

(1, 1) (3, 0) (0, 0) (0, 0) (0, 0) 1

(1, 1) (2, 0) (0, 0) (0, 0) (0, 0) 3

(1, 1) (1, 0) (0, 0) (0, 0) (0, 0) 3

(1, 1) (1, 0) (1, 0) (0, 0) (0, 0) 6

(1, 1) (1, 0) (1, 0) (1, 0) (0, 0) 12

(1, 1) (1, 0) (1, 0) (1, 0) (1, 0) 17

(1, 1) (2, 0) (1, 0) (0, 0) (0, 0) 3

(1, 1) (2, 0) (1, 0) (1, 0) (0, 0) 6

(1, 1) (2, 0) (1, 0) (1, 0) (1, 0) 5

(1, 1) (2, 0) (1, 0) (0, 0) (1, 0) 3

(1, 1) (2, 0) (1, 0) (2, 0) (0, 0) 3

(1, 1) (2, 0) (1, 0) (2, 0) (1, 0) 2

(2, 0) (0, 1) (0, 1) (0,−1) (0,−1) 0.5

(2, 0) (1, 1) (0, 1) (0,−1) (0,−1) 1

(2, 0) (1, 1) (1, 1) (0,−1) (0,−1) 1

(2, 0) (1, 1) (0, 1) (1,−1) (0,−1) 2

(2, 0) (1, 1) (1, 1) (1,−1) (0,−1) 1

(2, 0) (1, 1) (1, 1) (1,−1) (1,−1) 1

(2, 0) (2, 1) (0, 1) (0,−1) (0,−1) 0.5

(2, 0) (2, 1) (0, 1) (2,−1) (0,−1) 0.5

(2, 0) (2, 1) (0, 1) (1,−1) (0,−1) 1

(2, 0) (0, 1) (0, 1) (0,−1) (2, 0) 3

(2, 0) (0, 1) (1, 1) (0,−1) (2, 0) 6

(2, 0) (0, 1) (0, 1) (2, 0) (2, 0) 3

(2, 0) (0, 1) (0,−2) (0,−1) (0, 2) 18

TABLE 5.2: The list of bubble weights WBi (up to rotations, charge conjugation, and foldings)
corresponding to the bubble diagrams of type (a) and (e) for which the tensor network is non-trivial.
Since they are all made by a doubly excited plaquette, to identify a given diagram it is sufficient to
specify the link states ((ki, fi) , i = 1, . . . , 4) and the corresponding plaquette occupation numbers
(np, n̄p). Links are ordered such that Up = U1U2U†

3 U†
4 . Fermionically disconnected diagrams are

not shown since at this order they are the product of their fermionically connected components. The
combinatorial factors from the Taylor expansion have been included in the values of the weights
WBi . We only considered bubbles without external dimers. When kn,µ external dimers are attached
to a given site n, the correction factor mn!/(mn − kn,µ)! must be included.
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FIGURE 5.19: Example of non-planar bubble diagrams at order O(β3). The O(β) site and link
weights can be used everywhere except at sites n1 and n2, and on the link shared by the three
excited plaquettes. The modification of the weights can be obtained from the tensors Tρ

n1 and Tρ
n2 in

Eq. (5.68).

G 2× 2 4× 4

U(2) O(β7) O(β2)

U(3) O(β6) O(β2)

SU(2) O(β6) O(β2)

SU(3) O(β4) O(β2)

TABLE 5.3: The maximum order in the β expansion considered, depending on the gauge group G
and on the lattice size.

for the computation and contraction of the decoupling operators. We considered four differ-

ent gauge groups: U(2), U(3), SU(2) and SU(3). The complexity of the enumeration clearly

depends on the chosen group, and different orders of the β expansion could be reached de-

pending on G. The list of the maximum orders considered is reported in Tab. 5.3. From the

polynomial P
(

β, m̂q, µ̂q
)

several observables can be computed. Derivative observables such

as the chiral condensate 〈ψ̄ψ〉, chiral susceptibility χψ̄ψ, average plaquette 〈P〉 and plaquette

susceptibility χP, can be determined from the mass and β derivatives of P . The Polyakov

loop 〈L(~n)〉 can instead be computed as the following ratio

〈L(~n)〉 = 1
N
P~n(β, m̂q, µ̂q)

P(β, m̂q, µ̂q)
, (5.70)

where P~n(β, m̂q, µ̂q) is the polynomial obtained from the modified tensor network with a

Polyakov loop insertion at ~n, truncated at the same order O(βk) as P . As we illustrated in

Sec. 5.2.3, the presence of the Polyakov loop modifies the gauge constraint on the temporal

links ((τ,~n), 0), and gives rise to the modified tensors T̃ρ
~n . The result of the comparison with

HMC simulations on the 2 × 2 lattice, for the four different gauge groups, is reported in

Figs. 5.20 and 5.21 for G = U(2) and U(3), and in Figs 5.22 and 5.23 for SU(2) and SU(3). For
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G O(β) O(β2) O(β3) O(β4) O(β5) O(β6) O(β7)

U(2) 55 215 639 2 079 6 007 19 125 55 973

U(3) 155 655 2 279 8 687 31 617 124 680 //

SU(2) 91 379 1 355 4 478 17 370 53 408 //

SU(3) 255 1 499 8 939 52 571 // // //

TABLE 5.4: The number of non-zero tensor elements entering the exact evaluation of the
polynomials P

(
β, m̂q, µ̂q

)
as a function of the truncation order and of the gauge group G.

the latter two we also plot the behavior of the polynomials Pχ̂(β, m̂q, µ̂q) obtained making

use of the character expansion inspired coefficients αnp,n̄p(β) in place of βnp+n̄p /(np!n̄p!) (see

Sec. 5.2.4). For all gauge groups we show the chiral condensate, the average plaquette and

the Polyakov loop. Concerning HMC simulations, 105 trajectories were generated for each

value of the parameters.

As it is clear from Figs. 5.20, 5.21, 5.22 and 5.23, the higher order terms on the 2× 2 lat-

tice correctly reproduce the β dependence of the observables. When the Taylor coefficients

βnp+n̄p /(np!n̄p!) are used, the agreement with the HMC results extends (for the largest order

considered) up to β ≈ 1.5− 2 for U(2) and U(3), and up to β ≈ 1− 1.5 for SU(2) and SU(3).

For the latter the computation was performed only up toO(β4) because the evaluation of all

valid configurations becomes too time consuming in the case of the O(β5) corrections. Re-

markably, when the character expansion inspired coefficients are used (i.e. α1(β) and α2(β)),

the agreement extends to larger β values and especially in the case of the average plaquette,

the analytic curves remain always close to the full result. We recall that the α2 coefficients

only correspond to a truncation of the plaquette occupation numbers up to two. The usage

of the α coefficients, which are linear combinations of Bessel function determinants, avoids

the presence of the artifact from the definition of the plaquette expectation value in the dual

representation (see Sec. 5.2.3), which no longer goes to zero at large β.

On the 4× 4 lattice instead, given the very large number of admissible configurations, it

was only possible to cross check the O(β2) corrections for U(2) and U(3), which however

correctly reproduce the linear behavior of the average plaquette and of the chiral condensate

(Fig. 5.24).

Overall, the main outcome of this comparison is that the higher order corrections cor-

rectly reproduce the strong coupling branch for different quark masses. The high number of

tensor elements considered (see Tab. 5.4), and the sensitivity of the final result to the correct

computation of the fermionic sign σf , shows that the tensors Tρ
n are correctly computed and

the formalism we developed can be trusted. Although the computation of the tensor and
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of the bubble weights WBi has been automatized, and works in principle for every trunca-

tion O(βk), to obtain a representation of the partition function that is applicable in Monte

Carlo simulations without invoking the reweighting of the bubbles, it is fundamental to

identify the DOI that can be resummed locally (as we did for the O(β2) corrections in the

previous subsection), and disregard the ones that do not contribute. Only in this way nu-

merical simulations in large four-dimensional volumes can be feasible. For the O(β3) and

O(β4) corrections this is still doable by analyzing case by case the structure of the tensor

network within the (not so large) number of bubble diagrams appearing. Concerning the

higher orders, there are still issue that need to be investigated further. First of all, as we

already mentioned, the computation of the tensors Tρ
n gets more and more time consum-

ing. One possible way to mitigate this problem consists in analyzing the group theoretical

structure of the contraction of the decoupling operators. An important step in this direction

would be to know before the contraction of the color indices, what are the DOI that con-

tribute depending on the background of occupation numbers. This would make it easier to

identify the DOI that can be resummed, reducing drastically the complexity of the partition

function. At the same time, numerical improvements of the contraction routine, and the

parallelization of the code we developed, would be desirable.

As a preliminary evaluation of the severity of the sign problem when including higher

order corrections, we plotted in Fig. 5.25 the average signs 〈σ〉 = 〈σf σρ〉 and 〈σf 〉 for SU(3),

as obtained on the 2× 2 lattice for various truncation of the β expansion. The first observable

encodes the information about the sign fluctuations induced by the fermions and by the

tensor network, while 〈σf 〉 gives information about the severity of the sign problem in the

DOI-resummed representation of the partition function. In formulae we have

〈σf 〉 ≡
Z
Zp.q.

1
, 〈σ〉 ≡ Z

Zp.q.
2

, 〈σ〉 ≤ 〈σf 〉 , (5.71)

where Zp.q.
1 is obtained setting σf = 1, while in Zp.q.

2 we also take the absolute value of each

tensor element Tρ
n → |T

ρ
n |. Despite the smallness of the volume considered, which does

not give quantitative information about the magnitude of the sign problem in large four-

dimensional volumes, it is still worth to compare the behavior of the different orders. As

the figure shows, in the DOI resummed representation, by increasing the truncation order,

the sign 〈σf 〉 does not worsen (it slightly improves), making reasonable to expect for the

higher order terms, the same sign problem induced by the O(β) corrections. However this

result must be taken cum grano salis: many fermion loop geometries are not allowed on

this small volume, therefore we cannot rule out that on a larger volume the behavior will

be different. If this preliminary result turns out to be correct, it will imply that numerical

simulations are feasible in four dimensions up to β ≈ 1− 2, which corresponds to the value
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where the O(β) partition function cannot be sampled anymore by sign reweighting. When

considering also the negative sign induced by the tensor network (Fig. 5.25 left), the signal

shows a deterioration for β ≥ 1 both at zero and non-zero density. Whether this constitutes

a no-go for numerical simulations employing the partition function with locally resummed

DOI (thus with a milder sign problem), it is only to be seen in practice. The Monte Carlo

simulations are currently in preparation. The important message is that with respect to the

permutation basis in terms of Weingarten functions (Sec. 4.1.2), the improvement is drastic.
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FIGURE 5.20: The chiral condensate 〈χ̄χ〉, the average plaquette 〈P〉, and the Polyakov loop 〈L〉 for
G = U(2). The HMC results are plotted against the polynomials P(β, m̂q, µ̂q) for various truncation
of the β expansion. The average plaquette 〈P〉 has only a mild quark mass dependence; hence it is
plotted only for one value of the bare quark mass m̂q = 0.5 for visualization purposes. Error bars
that are not shown are smaller than the point size.
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FIGURE 5.21: Same as in Fig. 5.20 for G = U(3).
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FIGURE 5.22: Same as in Fig. 5.20 for G = SU(2). In this case we also plotted the polynomials
Pχ̂(β, m̂q, µ̂q) obtained using the α coefficients. Since the results obtained using αr=1 and αr=2 are
nearly degenerate for SU(2), we decided to show only the case r = 2 for the sake of clarity.
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FIGURE 5.23: Same as in Fig. 5.22 for G = SU(3). In this case we plotted both the results for αr=1

and αr=2.
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FIGURE 5.24: The chiral condensate 〈χ̄χ〉 and the average plaquette 〈P〉 on the 4× 4 lattice for U(2)
and U(3). Given the large number of admissible configurations we were able to determine only the
O(β) and O(β2) polynomials P(β, m̂q, µ̂q). The error bars are not shown because they are smaller
than the point size.
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FIGURE 5.25: The average signs 〈σ〉 and 〈σf 〉 for G = SU(3) on the 2× 2 lattice for various quark
masses m̂q and truncation of the β expansion, and for two values of the baryon chemical potential
µ̂B = 0.0 and µ̂B = 1.0. Black, red, and green lines correspond respectively to m̂q = 0.5, 0.2, 0.0.
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Chapter 6

Conclusion

In this Ph.D. thesis we developed a new method to extend the dual formulation of strong

coupling lattice QCD to finite β. We achieved an exact dualization of the all-order strong

coupling expansion for general SU(N) (or U(N)) gauge group, by making use of what we

called decoupling operators. These arose from our solution of the polynomial SU(N) one-link

integral with open color indices, and is discussed in Ch. 5. The full partition function, after

having integrated out both gauge and fermion fields, is organized as a Taylor expansion in

β, where the configurations are identified by the same type of occupation numbers already

present in the dualization of the Schwinger model, plus a set of additional integer variables,

the decoupling operator indices (DOI). These are defined on the lattice bonds and correspond

to labels for the decoupling operators. The first type of variables, usually referred to as dual

variables, obey a number of constraints that in the dual representation reflect the original

symmetries of the theory. The Grassmann integral indeed imposes an exact conservation

law for the quark fluxes, while the SU(N) Haar measure allows the quark and gauge flux

to be present only in specific combinations. In terms of the dual variables and of the DOI,

the statistical weights of the dual configurations are calculated as the disjoint product of

local site weights, making the dual representation well suited for Monte Carlo simulations.

The presence of the DOI, or in general of additional degrees of freedom besides the dual

variables, is unavoidable in the dualization of non-Abelian gauge theories. The statistical

weights of configurations only determined by the dual variables, are indeed non-local and

hard to compute. The role of the DOI is to re-express the non-localities as a sum over local

quantities which are in principle all computable. Moreover, the dependence of the dual

partition function on the parameters of the theory, like quark mass and chemical potential,

is particularly simple and only amounts to multiplication by positive factors.

The main reason why this representation is interesting is the possibility to reduce the

magnitude of the finite density sign problem, which severely affect the standard formula-

tion in terms of gauge links. This is indeed the case at strong coupling (β = 0), and our

primary goal was to provide a formalism to evaluate the gauge corrections order by order
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in the β expansion. The computation of the configuration weights has been automatized to

provide this information. Several orders in the β expansions were computed: all statistical

weights are now known up to O(β4) in four dimensions, and up to O(β7) in two dimen-

sions for the most relevant case of SU(3). Given this result, we explicitly showed, taking as

an example the O(β2) corrections, how the partition function can be further cast in a form

directly usable in Worm-type Monte Carlo simulations, in such a way that for small orders

in the β expansion the complexity of the system is essentially constant. Several observables

obtained in the dual formulations were cross checked in small two-dimensional volumes

against the results obtained using hybrid Monte Carlo simulations, proving the capability

of our method to reproduce the gauge corrections.

As in the strong coupling limit, also at finite β the dual partition function is not sign

problem free. Sign fluctuations induced by gluons and fermions do not cancel. Our prelim-

inary analysis of the sign problem shows that up to β ≈ 1 simulations should be feasible,

and that up to O(β4) the phase diagram can be studied making use of the formalism we

developed. An important question that one can then answer concerns the evolution of the

critical point (or tricritical point in the chiral limit), as a function of β. At leading order, only

a mild dependence on β is observed, while the chiral and nuclear transition are still degen-

erate. This behavior can change including the O(β2) corrections for which the numerical

simulations are in preparation.

Our dualization strategy is very general and can be applied to different models (e.g.

scalar QCD), and possibly to different types of fermion discretizations. Indeed the decou-

pling operators are insensitive to the matter content of the Lagrangian, which however can

affect the complexity of the resulting partition function. To give an example, in the case of

Wilson fermions the presence of the additional spin indices produces a much larger tensor

network as compared to the staggered one.

An all-order evaluation of the partition function is however not only hindered by a po-

tential sign problem, but computational issues arise due to the high numerical cost of eval-

uating the statistical weights at large order. An important problem to solve, as a future

research plan, is the numerical bottleneck caused by the color contraction of the decoupling

operators. A group theoretical analysis of the structure of such contractions can allow us

to obtain the site weights without the need of performing the contraction of the decoupling

operators explicitly.
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Appendix A

Proof of the combinatorial lemma

Eq. (4.18)

Here we demonstrate the combinatorial lemma

fλ+q

Dλ,N
=

(qN + p)!
p!

N−1

∏
i=0

i!
(i + q)!

fλ

Dλ,N+q
, (A.1)

valid for len(λ) ≤ N, which was used to obtain the generating functional in terms of the

generalized Weingarten functions. To do so, we will manipulate the l.h.s. of the previous

equation using the formulae given in Eq. (4.29) for the dimensions fλ and Dλ,N of the irreps

of the symmetric and unitary group

fλ =
p!

∏(i,j)∈λ hλ(i, j)
≡ p!

hλ
Dλ,N =

∏(i,j)∈λ(N + i− j)

∏(i,j)∈λ hλ(i, j)
≡ D̃λ,N

hλ
, (A.2)

where λ ` p and the hook hλ(i, j) were defined in Sec. 4.1.2. The lhs of Eq. (A.1) can be

written as

fλ+q

Dλ,N
=

fλ+q

Dλ+q,N
=

(qN + p)!
D̃λ+q,N

, (A.3)

because Dλ,N = Dλ+q,N as a consequence of

Rλ ⊗ (Rdet)
⊗q ∼= Rλ+q , (A.4)

since Ddet,N = 1. The term D̃λ+q,N in the l.h.s. of Eq. (A.3) can be further manipulated as

follows

D̃λ+q,N =
N−1

∏
i=0

(N + q− i− 1)!
(N − i− 1)!

D̃λ,N+q . (A.5)
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FIGURE A.1: The partitions λ (blue boxes) and λ + q (blue and red boxes). The quantity D̃λ+q,N is
the product of all numbers within the boxes. The restriction of this product to the blue boxes is
clearly Dλ,N+q, therefore D̃λ,N+q = α(N, q)D̃λ,N+q, where α(N, q) is the product of all numbers

within the red boxes. It is easy to check that α(N, q) = ∏N−1
i=0

(N+q−1−i)!
(N−i−1)! .

The validity of this equality is made clear in Fig. A.1. In conclusion we have

fλ+q

Dλ,N
=

(qN + p)!
D̃λ+q,N

=
N−1

∏
i=0

(N − i− 1)!
(N + q− i− 1)!

(qN + p)!
D̃λ,N+q

=
N−1

∏
i=0

i!
(i + q)!

(qN + p)!
1

hλ

hλ

D̃λ,N+q

=
N−1

∏
i=0

i!
(i + q)!

(qN + p)!
p!

p!
hλ

hλ

D̃λ,N+q
=

(qN + p)!
p!

N−1

∏
i=0

i!
(i + q)!

fλ

Dλ,N+q
�. (A.6)
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Appendix B

List of generalized Weingarten

functions

In this appendix we provide the complete list of the generalized Weingarten functions for

the symmetric group S4. In this case the number of conjugacy classes is five.

W̃gq,4
N ({1, 1, 1, 1}) =


(N+q)4−8(N+q)2+24

(N+q)2((N+q)2−1)((N+q)2−4)((N+q)2−9) N ≥ 4

23(q+3)3+63(q+3)2−14(q+3)−48
4!(q+3)2((q+3)2−1)((q+3)2−4)(q+6) N = 3

14(q+2)2+46(q+2)+24
4!(q+2)2((q+2)2−1)(q+4)(q+5) N = 2

W̃gq,4
N ({2, 1, 1}) =


− 1

(N+q)((N+q)2−1)((N+q)2−9) N ≥ 4

(q+3)2−15(q+3)−34
4!(q+3)((q+3)2−1)((q+3)2−4)(q+6) N = 3

1
6(q+2)((q+2)2−1)(q+5) N = 2

W̃gq,4
N ({3, 1}) =


3

4(N+q)2((N+q)2−1)((N+q)2−9) N ≥ 4

− (N+q)2+11(N+q)+12
4!(N+q)2((N+q)2−1))(N+q+2)(N+q+3) N = 2, 3

W̃gq,4
N ({2, 2}) =


7(N+q)2−18

3(N+q)((N+q)2−1)((N+q)2−4)((N+q)2−9) N ≥ 4

− (q+3)3+9(q+3)2−18(q+3)−48
4!(q+3)2((q+2)2−1)((q+2)2−4)(q+6) N = 3

(q+2)2+5(q+2)+12
12(q+2)2((q+2)2−1)(q+4)(q+5) N = 2

W̃gq,4
N ({4}) =


− (N+q)2+11

4(N+q)((N+q)2−1)((N+q)2−4)((N+q)2−9) N ≥ 4

(q+3)2+3(q+3)+20
4!(q+3)((q+3)2−1)((q+3)2−4)(q+6) N = 3

− q+7
12(q+2)((q+2)2−1)(q+4)(q+5) N = 2
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Appendix C

Ariadne-β

In this appendix we briefly describe the main features of our code Ariadne-β for the gen-

eration of the higher order β contributions to the partition function. The code will be soon

available online, and this appendix serves as an overview. The code has two main modes:

"COMPUTE_TENSORS" and "EVALUATE_BUBBLES". In the first mode, the code takes as

an input the maximum order O(βk) considered, a gauge group G = U(N), SU(N), and the

number of spacetime dimensions D + 1. The output is the whole list of the non-zero weights

entering the partition functions up to that order. Depending on the background of dual vari-

ables {np, n̄p, k`, f`, mn}, the non-zero tensor elements Tρ−D ...ρD are all printed. The DOI ρ,

as defined in Sec. 4.2.2, are multi-indices. In our code a mapping between the multi-indices

ρ ≡ {(α, β), (Ta, Tb} and a set of positive integers is used. In particular, the set partition

(α, β) that distributes the color indices between the epsilon tensors and the delta functions,

are ordered in reverse lexicographic order. In the first partition the fermionic color indices

appear always before the gluonic color indices, while the subsequent set partition is gen-

erated by the next_permutation function of the C + + standard library, which follows the

reverse lexicographic order. The pair of standard Young tableaux (Ta, Tb) of shape λ ` n, are

similarly ordered by imposing the reverse lexicographic ordering on the partitions λ ` n (i.e.

from {n, 0} to {1, . . . , 1}), and the Yamanouchi symbols induced ordering for the tableaux

Ta and Tb. In total we thus order the DOI ρ via

ρ > ρ′ ↔(α, β) > (α′, β′) or

(α, β) = (α′, β′), Ta > Ta′ or

(α, β) = (α′, β′), Ta = Ta′ Tb > Tb′ . (C.1)

In this way every DOI ρ is associated to an integer with ρ ∈ (1, . . . , Nρ). The code then gen-

erates only the set of allowed dual variables surrounding an arbitrary lattice site (call it x),

and computes the whole tensor Tρ
x . The 2(D + 1) decoupling operators Pρx

±µ associated to

site x are built calculating only the associated irreducible matrix elements Mλ; a,b(π), which
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are stored in maps in order to avoid unnecessary multiple computations. The program ac-

tually computes only the matrices Mλ(τk) associated to the adjacent transpositions, while

the matrix Mλ(π) is then obtained from the decomposition of π in terms of the τk. The con-

traction of the projectors Pρ is instead handled via the boost tensor library. The gauge flux

between any pair of lattice links is precomputed from the value of the plaquette occupation

numbers np, n̄p, and the corresponding color indices of the decoupling operators associated

to the two lattice links are contracted. In practice we do not build the whole operators Pρ but

contract term by term the product of the Levi-Civita part with a permuting delta function

δπ. This has the drawback of slowing down the execution time, but avoids the intensive

use of memory needed to store the whole operator (Pρ)
j
i . When all gluonic color indices

are contracted, the color indices that are left out (the fermionic ones) are contracted with

the tensor Gn defined in Eq. (5.16). The resulting scalar quantity is then multiplied by the

combinatorial factors appearing in the definition of the decoupling operators (Eq. (4.49)).

Looping over the permuting delta functions produces the final result that , if non-zero, is

stored in different files depending on the background of occupation numbers. When pos-

sible, the code makes use of rotational invariance and charge conjugation to speed up the

computation.

The second mode computes the bubble diagrams given an arbitrary shape and a set

of occupation numbers. The bubble shape is taken as an input, and it is implemented as a

network of vertices connected by bonds. In this way bubbles related by rotations correspond

to the same shape. The tensors Tρ
n for all bubble vertex are loaded from the stored files, and

the contraction of the tensor network is again performed using the boost tensor library.

An external routine computes the fermionic sign associated to the nontrivial quark loop

geometries and the result is returned.
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