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Abstract

A quasi-hereditary algebra is an Artin algebra A together with the choice
of a partial order on the set of isoclasses of simple A-modules which satis-
fies certain conditions. We refer to this partial order as a quasi-hereditary
structure on A.

In this thesis we discuss two approaches to investigate all the possible choices
that yield quasi-hereditary structures for a given Artin algebra.

The first strategy is to study total orders inducing quasi-hereditary struc-
tures via the homological poset, which is a partial order on the set of simple
modules reflecting homological properties. The second approach refines the
notion of a quasi-hereditary structure considering an appropriate equiva-
lence relation. In particular we exhibit combinatorial characterisations of
the homological poset of Auslander algebras arising from truncated polyno-
mial rings and for blocks of Schur algebras of finite representation type. For
the case of path algebras of Dynkin type An we find a complete characteri-
sation of all the equivalence classes of quasi-hereditary structures by means
of binary trees and certain quiver decompositions.
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Introduction

This thesis is framed within the representation theory of Artin algebras, which roughly
speaking is the study of modules over Artin algebras.

The origins of representation theory can be found in the first half of the 19th century
with the study of groups by Galois and Lagrange, and Hamilton’s work on quaternions,
but was DeMorgan who gave the rudiments of the definition of algebra [Gus82]. An
algebra is vector space equipped with an associative multiplication which is bilinear.
The first class of algebras to be completely classified was the one of semisimple algebras,
which involves work of Hilbert, Wedderburn and Artin among others. Subsequently, in
the first half of the 19th century, the Krull-Remak-Schmidt theorem (cf. Theorem 1.2.4)
about indecomposability in group theory is a fundamental tool for future algebraic de-
velopments. The concept of a module, coined some years later by E. Noether, provided a
new way of investigating algebras, since now their study is translated in terms of modules
over an algebra. In the 1950’s, homological and categorical methods were introduced,
giving rise to new techniques and a robust mathematical language from which represen-
tation theory benefited. It is until the 1970’s when P. Gabriel introduced quivers as a
new way of conceiving algebras: path algebras modulo relations [Gab72], which led him
to the classification of path algebras with a finite number of indecomposable modules up
to isomorphism. In the same decade, the ideas of M. Auslander and I. Reiten became a
cornerstone in modern representation theory, e.g. their AR-quiver permitted the use of
new combinatorial techniques that are present in nowadays research in representation
theory.

Quasi-hereditary structures

Quasi-hereditary algebras form a distinguished class of Artin algebras introduced in the
1980’s by L. Scott [Sco87] in the context of the theory initiated by E. Cline, B. Parshall
and L. Scott on highest weight categories arising in the representation theory of semisim-
ple complex Lie algebras and algebraic groups [CPS88a; CPS88b; PS88]. V. Dlab and
C. M. Ringel contributed extensively to the study of such algebras from a module theo-
retical approach, determining important homological and algebraic properties [DR89a;
DR89b; DR92]. O. Iyama showed that quasi-hereditary algebras are ubiquitous among
Artin algebras [Iya03].

Examples of quasi-hereditary algebras include semisimple algebras, Schur algebras
[Par89], path algebras defined by finite acyclic quivers, or by directed quivers modulo
relations, algebras of global dimension less or equal than two [DR89b], in particular
Auslander algebras, also blocks of the BGG-category O are quasi-hereditary algebras

vii
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[Hum08].

As noted earlier, quasi-hereditary algebras came up in the context of highest weight
categories in the sense that a module category over a quasi-hereditary algebra is a highest
weight category, and conversely every highest weight category with finitely many simple
objects arises in this way [CPS88b].

In a ring theoretical setting, the notion of heredity ideal (cf. Definition 2.2.1) is
central to define a quasi-hereditary ring. More precisely, a semiprimary ring Λ is quasi-
hereditary if there exists a finite chain of ideals

0 = am ⊆ am−1 ⊆ · · · ⊆ a1 ⊆ a0 = Λ

such that ai−1/ai is a heredity ideal of Λ/ai for 1 ≤ i ≤ m. Such a chain of idempotent
ideals is called a heredity chain. Hidden at first sight, there is an intrinsic partial order
on the set of isoclasses of simple Λ-modules defined after every heredity chain. If Λ has
n simple modules, then any heredity chain can be refined to a maximal heredity chain
of length n.

There is a module theoretical definition of quasi-hereditary algebra equivalent to the
one using heredity chains (cf. Definition 2.2.13) in which a partial order is explicitly
requested. In this case a quasi-hereditary algebra is a pair (A,C) where A is an Artin
algebra and C is an ordering on the set of simple A-modules, which is used to define
a set of standard modules ∆ = ∆C, and a set of costandard modules ∇ = ∇C. From
the notion of highest weight category, the poset C must satisfy a basic property in
order to have a quasi-hereditary algebra: to be adapted to A (cf. Definition 2.2.15). In
particular, an algebra may be quasi-hereditary for one adapted order but not for another.
A non-example of the last assertion are semisimple algebras; on the one hand they are
quasi-hereditary for any ordering, but on the other hand any order produces the same
set of standard modules, i.e. there is only one essential way to turn a semisimple algebra
into a quasi-hereditary algebra, in other words, every ordering produces the same set of
standard modules. In terms of heredity chains this means that any maximal heredity
chain produces a unique set of heredity ideals as factors. In this thesis, the latter is
formalised by the notion of quasi-hereditary structure in the following sense.

Let A be an Artin algebra, with {S(i)}i∈I a complete set of non-isomorphic simple
A-modules. Let C1 and C2 be two partial orders on I, then C1 ∼ C2 if ∆C1 = ∆C2 and
∇C1 = ∇C2 . Then if (A,C) is a quasi-hereditary algebra, we say that the class of C under
∼ is a quasi-hereditary structure of A (cf. Definition 2.4.6). Note that the number of
quasi-hereditary structures is bounded by (card I)!. Then, the study of quasi-hereditary
structures is by definition the study of these equivalence classes.

Many interesting examples of quasi-hereditary algebras come with only one quasi-
hereditary structure. For instance, in recent work by K. Coulembier [Cou19] it is
provided a sufficient condition for a quasi-hereditary algebra to have a unique quasi-
hereditary structure, see Theorem 2.4.10. For example, cellular algebras and Brauer
algebras are shown to have at most one quasi-hereditary structure.

In [Rin91] C. M. Ringel proved that if (A,C) is quasi-hereditary, then there exists a
tilting A-module TC, called the characteristic tilting module, such that F(∆) ∩ F(∇) =
addTC, where F(∆) denotes the category of all A-modules that admit a ∆-filtration,
and similarly for F(∇). Actually, Tlhd depends only on the class of C. Then, we have
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that two quasi-hereditary structures are the same if their corresponding characteristic
tilting modules are isomorphic.

Contributions

To our knowledge, and after an extensive literature review, no one has tried to do a
systematic study of the different quasi-hereditary structures on appropriate families of
quasi-hereditary algebras, besides Coulembier’s work. This is the main objective of this
thesis.

We first present a new approach to study all the possible heredity chains of an
algebra A via its homological poset H(A) and its homological Hasse quiver H(A) (cf.
Definition 2.3.3). Roughly speaking, H(A) is a directed graph where the vertices are in
bijective correspondence with Serre subcategories of modA of the form modA/(e), for e
an idempotent of A, and the arrows correspond to “minimal” embeddings between Serre
subcategories that preserve all extension groups. Then H(A) determines all the possible
heredity chains of A in the following manner.

Theorem 2.3.5. Let A be an Artin algebra, and {ei}ni=1 a complete set of primitive
orthogonal idempotents of A. Then we have a bijective correspondence between the
set of paths of length n in H(A) such that each quotient of the corresponding Serre
subcategories is semisimple, and the set of maximal heredity chains of A, given by(

∅ = J0 → J1 → · · · → Jn = [n]
)
7→
(
0 = (eJc

n
) ⊂ · · · ⊂ (eJc

1
) ⊂ (eJc

0
) = Λ

)
.

Let Λn be the Auslander algebra of the truncated polynomial ring K[x]/(xn). We give
the following explicit combinatorial characterisation of homological embeddings between
Serre subcategories of mod Λn.

Theorem 3.7.9. Let J ⊆ I ⊆ {1, . . . , n} be subsets expressed as disjoint union of
intervals J =

⊔l
j=1 Jj and I =

⊔m
i=1 Ii, and f : {1, . . . , l} → {1, . . . ,m} a function

such that Jj ⊆ If(j) for all j. Then the embedding mod Λn/(eJc) ↪→ mod Λn/(eIc) is
homological if and only if

(i) 1 ∈ J and Jj = If(j) for all 2 ≤ j ≤ l, or

(ii) 1 6∈ J and Jj = If(j) for all 1 ≤ j ≤ l.

The key ingredient in the proof of Theorem 3.7.9 is the characterisation of block
decompositions of Λn/(e), for e ∈ Λn an idempotent. Moreover, we provide a recursive
algorithm to construct the homological Hasse quiver H(Λn), confirming that Λn admits
only one heredity chain. In particular, we find that the cover relations of H(Λn) are in
bijection with P(n) the set of parts of n, i.e. the set of all summands in all possible sums
of positive integers equal to n.

Theorem 3.10.3. There exists a bijection CovH(Λn)→ P(n).

For a class of algebras Morita equivalent to blocks of Schur algebras of finite repre-
sentation type, we study their homological poset and homological Hasse quiver, using
techniques developed for the case of the Auslander algebras Λn, giving some interesting
counting formulas.
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It is well known that if A is a hereditary algebra, then it is quasi-hereditary for any
total order [DR89b], and this assertion can be extended to all adapted orders. In this
case, the homological Hasse quiver of A is the n-hypercube, where n is the number of
simple A-modules up to isomorphism, and the set of heredity chains of A is in bijective
correspondence with the set of all the paths of length n of H(A), which has cardinality
n!, but the sets of heredity ideals appearing as factors of two heredity chains may not
be the same, i.e. different orderings may produce different sets of standard modules,
in other words, the number of quasi-hereditary structures is not n!. This led us to a
different strategy.

For a second approach, we study quasi-hereditary structures per se. First we give
the foundations to investigate the set of classes of adapted orders giving quasi-hereditary
algebras, denoted by qh. str(A). A natural way to endow qh. str(A) with a partial order
is to consider the usual partial order for tilting modules, considering that to each quasi-
hereditary structure corresponds a characteristic tilting module, defining the poset of
quasi-hereditary structures. This is a new way to classify quasi-hereditary structures of
a given algebra. This is joint work with Yuta Kimura and Baptiste Rognerud [FKR20].

In particular, we classify all quasi-hereditary structures of a path algebra An of
a Dynkin diagram of type An with linear orientation in terms of binary trees. The
nice combinatorial properties of this classification are remarkable and involve Catalan
numbers. More precisely, we have the following result.

Theorem 5.1.9. There is a commutative diagram of bijections

Binary trees
of size n

qh. str(An)
Tilting modules

over An

/
∼=

Therefore, the poset of quasi-hereditary structures of An is isomorphic to a Tamari
lattice of order n. We extend our investigations to the case of a path algebra of type
An for any orientation via iterated deconcatenations of quivers at sink or source vertices
(cf. Definition 5.2.1).

Theorem 5.2.7. Let Q1 tQ2 t · · · tQ` be an iterated deconcatenation of a quiver Q.
Let A be a factor algebra of KQ modulo some admissible ideal and Ai := A/〈eu | u ∈
Qt0 \ {v}, t = 1, . . . , `, t 6= i〉. Then we have an isomorphism of posets

qh. str(A) −→
∏̀
i=1

qh. str(Ai),

which is given by [C] 7→
(
[C|Qi0 ]

)`
i=1

.

Outline

This thesis comprises five chapters organised as follows.
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Chapter 1 fixes general conventions and provides the reader the necessary back-
ground on representation theory over Artin algebras and finite dimensional algebras.
We introduce path algebras and bound quiver algebras and provide central results, fix-
ing important notation for quiver representations. Basic definitions of poset theory are
recalled briefly as well. The chapter ends with a brief discussion on homological embed-
dings and homological epimorphism of rings, proving some important properties used
later in the thesis.

In Chapter 2 we start introducing the central concept of highest weight category
and give an equivalent definition via filtrations of Serre subcategories. Afterwards we
define quasi-hereditary algebras in two equivalent ways, first via heredity chains, then
using adapted posets and standard modules, and we present a detailed explanation on the
interplay between both definitions and highest weight categories. Then we introduce the
homological poset of an algebra and formalise the notion of quasi-hereditary structure,
giving some examples.

The Chapter 3 is devoted to studying the homological poset and homological Hasse
quiver of the Auslander algebra of the truncated polynomial ring, denoted by Λ. In
the first sections we find a good description of a basis of Λ, used later to find block
decompositions of the factor algebras Λ/(e) for e an idempotent of Λ. The Chinese
remainder theorem and a property involving idempotent ideals Lemma 3.4.4 is crucial to
find such decompositions. Then we find a characterisation of all homological embeddings
over Λ, in particular we find a classification of the cover relations of the homological poset
of Λ that yields a recursive method to depict its homological Hasse quiver. In particular
we exhibit a bijection between the set of cover relations of H(Λ) and the set of all parts
of a positive integer number. At the end of the chapter we characterise the quotients
Λ/(e) that are quasi-hereditary, and find an induced subposet of H(Λ) with elements
corresponding to quasi-hereditary algebras.

In Chapter 4 we recall the notion of a block B of Schur algebras of finite represen-
tation type, and define a factor algebra B̃ of B, that is relevant when finding block
decompositions of B/(e), for e ∈ B an idempotent. Then we use several results of
Chapter 3 in order to find some homological properties of the algebra B̃ used to classify
homological embeddings between Serre subcategories of modB. We also provide a com-
plete description of the cover relations of the homological poset of B and give a recursive
method to depict its homological Hasse quiver.

Chapter 5 begins with the study of quasi-hereditary structures of An a path algebra of
an equioriented quiver of type An. We construct adapted posets to An from binary search
trees and show a bijection between binary trees of size n and quasi-hereditary structures
of An. This bijection is compatible with the one-to-one correspondence between binary
trees and tilting modules over An (cf. Theorem 5.1.9). This yields a characterisation of
characteristic tilting modules over An. Next we give a bijection between quasi-hereditary
structures of quiver algebras and quasi-hereditary structures of the corresponding quiver
algebras given by a deconcatenation of the original quiver. As application we find a
classification of quasi-hereditary structures for path algebras of type An in general, via
its minimal adapted posets.





Chapter 1

Preliminaries

In this first chapter we recall fundamental definitions and standard results that are used
throughout the thesis, it should be noted that this introduction is merely a reminder
and is not intended to be exhaustive. We also fix important notation that is constant
throughout the text. We assume general knowledge on rings, modules and categories,
and only rings with identity are considered. Concerning results of this chapter without
proof nor citation, we refer the reader to [ASS06; ARS95; Sch14].

1.1 General conventions

The set of natural numbers is N = {0, 1, . . . }, and the set of positive natural numbers is
N+ = {1, 2, . . . }. For n ∈ N+, we define [n] := {1, 2, . . . , n} and [0] := ∅ the empty set.
The set of permutations of [n] is denoted by Σn. The cardinality of a set X is denoted
by cardX.

In this thesis we work mainly with finitely generated left modules. More precisely, let
R be a ring. Then ModR denotes the category of all left R-modules, and modR is the
full subcategory of finitely generated left modules over R. For r ∈ R and S ⊆ R, we use
the following notations for the two sided ideals generated by r or S: RrR := (r) = 〈r〉R
and RSR := 〈S〉R = 〈S〉.

A path algebra is a bound quiver algebra with zero admissible ideal. For two arrows
α : a→ b and β : b→ c in some quiver, we denote the concatenation of α with β by βα.

When referring to a poset (S,C), we write just C if the underlying set S is known.

1.2 Representation theory of algebras

We start by defining the notion of R-algebra in general, despite the fact that we mainly
work with finite dimensional algebras over a field, and more generally over Artin algebras.

Definition 1.2.1. Let A be ring, and R a commutative ring. An R-algebra, or an algebra
over R, is a triple (A,R, ϕ) with ϕ : R→ A a unit preserving ring homomorphism such
that ϕ(R) is contained in the centre of A. In this case we write ra := ϕ(r)a for all r ∈ R
and a ∈ A.

Note that the action of R over A is bilinear, associative and respects the multiplica-
tion of A, i.e. r(ab) = (ra)b = a(rb) for all r ∈ R and a, b ∈ A.

1



2 Chapter 1. Preliminaries

We recall the notion of Artin algebra which is a generalisation of finite dimensional
algebras. In this thesis, usually Artin algebras are considered to provide a more general
setting for the theory, since the representation theory over Artin algebras is very well
studied, see for example [ARS95].

Definition 1.2.2 ([ARS95, II.1]). Let R be a commutative artinian ring. An R-algebra
Λ is called Artin algebra if Λ is finitely generated as module over R.

From now on, K denotes an arbitrary field, unless otherwise stated. Thus if A is a K-
algebra, then it has a vector space structure over K, and A is said to be finite dimensional
or infinite dimensional according to whether A is finite or infinite dimensional as K-
vector space. In particular, every finite dimensional algebra is an Artin algebra. In this
thesis we usually denote an Artin algebra with the greek letter Λ and we reserve the
letter A for a finite dimensional algebra over a field K.

The Jacobson radical of a ring R is the two-sided ideal of R given by intersection
of all its maximal left ideals and is denoted radR. A two-sided ideal I of R is called
nilpotent if there exists m ∈ N+ such that Im = 0.

We denote by Mod Λ the category of left modules over Λ, and by mod Λ the category
of finitely generated left Λ-modules. We denote the opposite algebra of Λ by Λop, and
we identify the category of right Λ-modules with Mod Λop, similarly for mod Λop. If M
is a Λ-module, we write ΛM the specify that it is a left Λ-module. The regular Λ-module
is Λ with action given by multiplication by the left, denoted ΛΛ. In this thesis we work
mainly with finitely generated left modules.

Two rings R,S are defined to be Morita equivalent provided the categories ModR
and ModS are equivalent. For further details on definitions about module categories we
refer the reader to [AF92] and [ARS95].

Let M ∈ Mod Λ. Then M is called simple if its unique submodules are 0 and M . M
is called semisimple if it is sum of simple modules. The algebra Λ is called semisimple
if Λ is semisimple as left Λ-module. The radical radM of M is the intersection of all
the maximal proper submodules of M , i.e. radM is the smallest submodule of M such
that M/ radM is semisimple. Call the quotient M/ radM the top of M , and denote it
by topM . The socle of M , denoted socM , is the submodule of M generated by all the
simple submodules of M , equivalently socM is the largest semisimple submodule of M .

A composition series of M is a finite chain of submodules M = M0 ⊃ M1 ⊃ · · · ⊃
Mt = 0 such that the factor module Mi/Mi−1 is simple for all 1 ≤ i ≤ t. In this case t
is the leght of the series.

Theorem 1.2.3 (Jordan-Hölder theorem). Let Λ be an Artin algebra, and M ∈ mod Λ.
If M = M0 ⊃ M1 ⊃ · · · ⊃ Mt = 0 and M = N0 ⊃ N1 ⊃ · · · ⊃ Ns = 0 are two
composition series of M , then s = t and there is a bijection between the composition
factors of these series such that the corresponding factors are isomorphic.

Proof. See [ARS95] or [DK94] for the case of finite dimensional.

The length of M is by definition the length of a composition series of M and is
denoted by `(M). The last theorem shows that `(M) is well defined and that the factors
of a composition series of M are unique up to isomorphism and are called the composition
factors of M . Moreover, if S is a simple Λ-module, the Jordan-Hölder multiplicity of S
in M , denoted by [M : S], is the number of simple factors of M isomorphic to S.
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A module M ∈ Mod Λ is indecomposable provided it is non-zero and cannot be
written as a direct sum of non-zero Λ-submodules. If a finitely generated module is not
indecomposable, then it can be decomposed into indecomposable direct summands in
an essentially unique way as the following theorem asserts.

Theorem 1.2.4 (Krull-Remak-Schmidt theorem). Let Λ be an Artin algebra. Then the
following holds.

(a) Let M ∈ mod Λ. Then M is indecomposable if and only if EndΛM is local.

(b) For all M ∈ mod Λ, there exits a decomposition M ∼=
⊕s

i=1Mi such that Mi is an
indecomposable Λ-module for all i.

(c) If M ∼=
⊕

i∈IMi
∼=
⊕

j∈J Nj are two finite decompositions of M into indecompos-
able modules in mod Λ, then there exists a bijection σ : I → J such that Mi

∼= Nσ(i)

for all i ∈ I.

An algebra Λ is of finite representation type if there is a finite number of indecom-
posable modules up to isomorphism in mod Λ.

Idempotent elements play a crucial role in this dissertation. In what follows we recall
definitions and some important properties about them.

Let R be a ring. An element e ∈ R is idempotent if e2 = e. A set of idempotents
{e1, . . . , en} ⊆ R is said to be complete provided e1 + · · · + en = 1R. Two idempotents
e, f ∈ R are orthogonal if ef = fe = 0. Moreover, e is primitive if it cannot be expressed
as a sum e = f + g with f and g non-zero orthogonal idempotents of R. An idempotent
e ∈ R is called central if er = re for all r ∈ R.

A complete set of primitive orthogonal idempotents of R is a complete set E =
{e1, . . . , en} ⊆ R of primitive idempotents which are pairwise orthogonal. In this case,
we also say that there exists a decomposition of the identity 1R =

∑n
i=1 ei with primitive

orthogonal idempotents.

Proposition 1.2.5. Let Λ be an Artin algebra. Let 1Λ = e1 + · · ·+ en = f1 + · · ·+ fm
be two decompositions of the identity with primitive orthogonal idempotents, then n = m
and there exists an invertible element a ∈ Λ and a unique permutation σ ∈ Σn such that
fσ(i) = aeia

−1 for all i.

Proof. For the existence part see [ARS95], and for the second part see [HGK04, Theo-
rem 11.1.7].

Let M and P be modules in mod Λ, with P projective. We say that P is a projective
cover of M if there exists an epimorphism f : P → M which induces an isomorphism
P/ radP → M/ radM , in this case we write P = P (M). Dually, an injective module
Q ∈ mod Λ is called an injective envelope of M if there exists a monomorphism g : M →
Q such that for any submodule X of Q, Im g ∩X = 0 implies X = 0, it is denoted by
Q(M). It turns out that both P (M) and Q(M) exist for any M ∈ mod Λ and are unique
up to a unique isomorphism.

Every Artin R-algebra Λ admits a duality D : mod Λ → mod Λop given by D(−) =
HomΛ(−, Q(topR)), where Q(topR) is the injective envelope of the top of R. The stan-
dard K-duality of a K-algebra A is the vector space duality D : modA→ modAop given
by D(−) = HomK(−,K). Then, the simple, projective and injective indecomposable
modules are characterised as follows.
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Theorem 1.2.6. Let {e1, . . . , en} be a complete set of primitive orthogonal idempotents
of an Artin algebra Λ. Then the following conditions hold.

(a) There exists a decomposition Λ ∼= Λe1 ⊕ · · · ⊕ Λen into indecomposable left ideals.

(b) Every simple left Λ-module is isomorphic to a module S(i) := top Λei, for some i.

(c) Every indecomposable projective left Λ-module is isomorphic to a module P (i) :=
Λei, for some i. Moreover, P (S(i)) ∼= P (i), for all i.

(d) Every indecomposable injective left Λ-module is isomorphic to a module I(i) :=
D(eiΛ), for some i. Moreover, Q(S(i)) ∼= I(i), for all i.

Let M ∈ mod Λ. A projective resolution of M is an exact sequence (possibly infinite)

η : · · · → P2
f1→ P1

f0→ P0
f→ M → 0 such that Pi is projective for all i ≥ 0. We say

that η is minimal if f and f ′i : Pi → Ker fi−1 are projective covers for all i. Dually, an
injective coresolution of M is an exact sequence ζ : 0 → M → I0 → I1 → I2 → · · ·
with Ii injective for all i ≥ 0. Similarly, call ζ minimal if the corresponding morphisms
are injective hulls. Write pdM ≤ n (pd stands for projective dimension) if there exists
a projective resolution of length n 0 → Pn → · · · → P0 → M → 0. If no such a
finite resolution exists, we set pdM = ∞, otherwise pdM = n if n is the length of
the shortest projective resolution of M . We define dually the injective dimension of
M . The dominant dimension of M , is the maximum integer n (or ∞) such that if
0 → M → I0 → · · · → In → · · · is a minimal projective resolution of M , then Ij is
projective for all j < t (or ∞).

The global dimension of Λ, denoted gl.dim Λ, is the supremum of the projective
dimension of all Λ-modules, or equivalently the supremum of all injective dimensions of
Λ-modules.

A ring R is connected provided {0, 1} are the unique central idempotents of R. This
is equivalent to the fact that R cannot be decomposed as a product S×T of non-trivial
rings S and T . Moreover, every finite dimensional algebra A is isomorphic to a direct
product A1×· · ·×Am of finite dimensional connected algebras Ai in an essentially unique
way. In this case, the algebras Ai are called the blocks of the algebra A.

1.3 Quiver representations

Most of the examples in this thesis are path algebras modulo an admissible ideal. In this
section we define all necessary notions to understand basic properties of quiver algebras
and quiver representations.

A quiver Q = (Q0, Q1, s, t) is a finite directed graph, with a set Q0 of vertices and
a set Q1 of arrows, equipped with two functions s, t : Q1 → Q0 which associate to each
arrow α ∈ Q1 its source, or starting vertex, s(α) and its target, or terminating vertex,
t(α), in this case we write α : s(α)→ t(α). We say that Q is finite provided cardQ0∪Q1

is finite, and Q is connected if its underlying graph is connected. The vertices in Q0

are known as the paths of length 0 or trivial paths, and a path of length m ≥ 1 is a
sequence of arrows p = αmαm−1 · · ·α1 such that t(αj) = s(αj+1) for j = 1, . . . ,m − 1.
Set s(p) := s(α1) and t(p) := t(αm). Thus the vertices are characterised as the paths ε
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of length 0 such that s(ε) = t(ε) = i, and in this case set ε := εi. For m ≥ 0, denote
by Qm the paths in Q of length m. If p ∈ Qm and q ∈ Qn with t(p) = s(q), we denote
the concatenation of p and q by qp. Note that qp ∈ Qm+n. A path p ∈ Qm is called an
oriented cycle if m ≥ 1 and s(p) = t(p). A loop is a cycle of length 1. A quiver is called
acyclic if it has no oriented cycles.

A subquiver of Q is a quiver Q′ = (Q′0, Q
′
1, s
′, t′) such that Q′0 ⊆ Q0, Q

′
1 ⊆ Q1, s

′ =
s|Q′1 and t′ = t|Q′1 . Moreover, Q′ is called full if Q′1 = {α ∈ Q1 | s(α), t(α) ∈ Q′0}. The
underlying graph of Q is the graph obtained from Q by forgetting the directions of the
arrows.

The path algebra KQ of a quiver Q is the K-algebra whose underlying vector space
has basis the set of all paths

⋃
m∈NQm with multiplication given by concatenation, that

is

q · p :=

{
qp if t(p) = s(q),

0 otherwise.

and extended bilinearly to arbitrary elements of KQ.
We resume some general properties of path algebras in the following proposition.

Proposition 1.3.1. Let Q be a quiver. Then the following conditions hold.

(a) KQ has identity element if and only if Q is finite. In this case, 1KQ =
∑

i∈Q0
εi is

a decomposition of the identity into primitive orthogonal idempotents.

(b) dimKKQ is finite if and only if Q is finite and acyclic.

(c) If Q is finite, then KQ is connected if and only if Q is connected.

(d) If Q is finite and acyclic, then radKQ is the two sided ideal generated by all arrows
in Q.

From now on, in this dissertation we consider only finite quivers. The last proposition
says that if a quiverQ is acyclic, then KQ is infinite dimensional, thus we want to consider
quotients of path algebras by certain ideals that turn out to be finite dimensional.

For the next definitions, we consider a quiver Q and we denote by RQ the arrow ideal
of Q, that is, RQ = radKQ =

⊕
i∈N+

KQi. The i-th power of RQ can be decomposed

as RiQ =
⊕

j≥iKQj .
An ideal I ⊆ KQ is said to be admissible if there exists m ∈ N such that RmQ ⊆ I ⊆

R2
Q. Moreover, if I ⊆ KQ is an admissible ideal, we say that (Q, I) is a bound quiver and

the quotient algebra KQ/I is called a bound quiver algebra, or simply a quiver algebra.
Let A be a finite dimensional algebra with {e1, . . . , en} a complete set of primitive

orthogonal idempotents. We say that A is basic provided Aei 6= Aej , for all i 6= j.
A relation in a quiver Q (with coefficients in K) is a linear combination of paths of

length at least two ρ =
∑m

i=1 aipi with same source and target, that is, s(pi) = s(pj)
and t(pi) = t(pj) for all i 6= j. If m = 1 we say that ρ is a monomial relation , and it is a
commutativity relation relation if it is of the form p1 − p2. Then, we have the following
properties of quiver algebras.

Proposition 1.3.2. Let (Q, I) be a bound quiver, and set A := KQ/I. Then the follow-
ing conditions hold.
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(a) A is finite dimensional basic algebra.

(b) The set {ei := εi+I | i ∈ Q0} is a complete set of primitive orthogonal idempotents
of A.

(c) A is connected if and only if Q is connected.

(d) radA = RQ/I.

(e) There exists a finite set of relations R = {ρ1, . . . , ρm} such that I = 〈R〉. In this
case we say that the relations ρi generate I.

The main connection between finite dimensional algebras and quiver algebras is given
by the following result by Gabriel [Gab72].

Theorem 1.3.3. Let K be an algebraically closed field, and A a basic and connected
finite dimensional algebra. Then there exists a quiver QA and admissible ideal I of KQA
such that A ∼= KQA/I.

The opposite quiver Qop of Q is defined as follows. Qop0 := Q0 and α : i → j is in
Q1 if and only if αop : j → i is in Qop. If (Q, I) is a bound quiver, then there exists an
admissible ideal Iop ⊆ KQop such that KQop/Iop ∼= (KQ/I)op.

A representation M = (Mi, ϕα)i∈Q0, α∈Q1 of a quiver Q consists of K-vector spaces
Mi for each vertex i ∈ Q0, together with linear maps ϕα : Ms(α) →Mt(α) for each arrow
α ∈ Q1. A representation M is called finite dimensional provided each vector space
Mi is finite dimensional. In this case, the dimension vector dimM of M is the vector
(dimKMi)i∈Q0 . Let M = (Mi, ϕα) and N = (Ni, ψα) be two representations of a quiver
Q. A morphism of representations f : M → N is a collection f = (fi)i∈Q0 of linear maps
fi : Mi → Ni such that for each map α : i→ j in Q1 the diagram

Mi Mj

Ni Nj

ϕα

fi fj

ψα

commutes, i.e. ψαfi = fjϕα. A morphism f = (fi) : M → N is a monomorphism
(epimorphism, isomorphism, resp.) if each fi is a monomorphism (epimorphism, iso-
morphism, resp.). In this way we have the category of representations of Q denoted by
repQ.

Let M = (Mi, ϕα) be a representation of Q, and p = αm · · ·α1 a non-trivial path.
We define the linear map ϕp = ϕαm · · ·ϕα1 . Moreover, if I ⊆ KQ is an admissible ideal
generated by the relations {ρ1, . . . , ρm}, we say that M is a representation of the bound
quiver (Q, I), if ϕρ = 0, for each ρ ∈ R, where ϕρ =

∑
j ajϕpj if ρ =

∑
j ajpj . The

morphisms of representations of bound quivers are defined in the same way as in repQ.
We denote by rep(Q, I) the category of representations of (Q, I).

The concepts of module and representation are essentially the same, i.e. if A = KQ/I
is a quiver algebra, then there exists an equivalence of categories modA ∼= rep(Q, I), if
Q is acyclic, then modKQ ∼= repQ. Thus, in this thesis we always identify both notions.
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For example, for i ∈ Q0 the simple module S(i) is given as representation as follows:
S(i)j = K and S(i)i = 0 for all j 6= i, and ϕα = 0 for all α ∈ Q1. The representation
of the projective module P (i) is given by P (i) = (P (i)j , ϕα), where P (i)j is the vector
space with basis the set of all residue classes p+ I of paths p from i to j, and if α : j → l
is in Q1, then ϕα is the linear map defined on the basis elements by composing paths
from i to j with the arrow α. The injective representations are defined dually. Usually,
if no confusion can arise, we write p for a residue class p+I in KQ/I, and set ei := εi+I
for each i ∈ Q0.

For example, consider the quiver Q =
1
•

2
•

α

β
with monomial relation αβ, i.e.

I = (αβ). Set A = KQ/I. Then A has dimension 5 with basis {e1, e2, α, β, βα}. The
simple and projective A-modules are given as follows.

S(1) = K 0
0

0
P (1) = K2 K

( 1 0 )

( 0
1 )

S(2) = 0 K0

0
P (2) = K K0

1

In many cases it is usually more efficient to write down a diagram to describe a
representation of a quiver. For a more extended explanation we refer to [Bar15, Ex-
ample 4.21]. For instance, in the above example, the module P (1) can be written as
1

1
2 meaning that P (1)1 is 2-dimensional, P (1)2 is 1-dimensional, i.e. [P (1) : S(1)] = 2

and [P (1) : S(2)] = 1, ϕα : 1 7→ 2 and ϕβ : 2 7→ 1 represent the non-zero defining linear
functions of P (1) acting on the basis elements. By convention the maps go from upper
to lower rows, thus we may avoid writing the edges. Using this new notation we have:
S(1) = 1, S(2) = 2, P (1) = 1

1
2 and P (2) =

1
2.

1.4 Poset theory

A central concept developed in this thesis is the homological poset of an algebra. In
what follows we give standard definitions related to posets and Hasse quivers.

Let S be a set. A binary relation S is a subset R ⊆ S × S. For simplicity we write
xRy for a pair (x, y) ∈ R. A partially ordered set, or poset or order or ordering for short,
is a pair P = (S,C), where C is a binary relation on S satisfying three properties: sC s
for all s ∈ S (reflexivity), if sC t and tC s, then s = t (antisymmetry), and if sC t and
t C u, then s C u (transitivity). Two elements s, t ∈ S are comparable if s C t or t C s,
otherwise s and t are incomparable. We say that t covers s provided s C t and there is
no element x ∈ S \ {s, t} such that s C x C t. In this case we call (s, t) a cover relation
of P . Denote CovP the set of all cover relations of P. Sometimes CovP is called the
Hasse diagram of P . An element m ∈ P is called maximal (minimal) in P if for all
x ∈ P such that mCx (xCm), then m = x. We say that a poset P ′ = (S′,C′) is a weak
subposet of P if S′ ⊆ S, and if x C′ y then x C y. Moreover, if S = S′ then P is called
a refinement or extension of P ′, and we say that P extends P ′. We say that P ′ is an
induced subposet of P if S′ ⊆ S and for all x, y ∈ S′, xC′ y if and only if xC y.
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Let S be a set. The power set of S is the set of all subsets of S, and is denoted by
2S . We equip 2S with a poset structure given by inclusion, denoted P(S) = (2S ,⊆). In
the special case of [n] = {1, . . . , n} for n ∈ N, we write P(n) = (2[n],⊆). This poset
plays a central role in Chapters 3 and 4.

A totally ordered set, or linearly ordered set, is a poset (S,C) in which any two
elements are comparable. In this case we say that C is a total order on S. Note that
there are 2n total orders on the set {1, . . . , n}.

The Hasse quiver of a poset P = (S,C) is the quiver with vertices the elements of
S, and arrows given by cover relations, i.e. for all s, t ∈ S there is an arrow s→ t if and
only if (s, t) is a cover relation. Usually we depict the minimal elements at the bottom
of the quiver and maximal elements at the top.

1.5 Homological embeddings and homological ring epimor-
phisms

In this section we introduce the language of homological ring epimorphisms that in the
setting of Chapter 2 for instance, coincides with the more general notion of homological
embedding. Also we prove some properties of homological ring epimorphisms that are
used in Chapter 3 to characterise certain homological embeddings.

Let A,B be abelian categories, and F : A → B an exact functor. For A,B ∈ A and
n ≥ 0, denote by

FnA,B : ExtnA(A,B)→ ExtnB(F (A), F (B))

the morphism between n-extension groups in the sense of Yoneda [Wei94; Mac95] induced
by F, i.e. if ξ ∈ ExtnA(A,B) then FnA,B(ξ) := F (ξ). For n = 0, we have

F 0
A,B : HomA(A,B)→ HomB(F (A), F (B)).

We say that F is faithful if F 0
A,B is injective for all A,B ∈ A. F is full if F 0

A,B is surjective
for all A,B ∈ A. If F is full and faithful, we say that F is fully faithful, or that F is
an embedding. Occasionally we will omit the subindices, i.e. we write Fn = FnA,B. In
the particular case when A is a subcategory of B, we denote ι : A → B the inclusion
functor. A subcategory A ⊆ B is called full provided ι0A,B is invertible for all A,B ∈ A.

Definition 1.5.1 ([Psa14]). An exact functor F : A→ B between abelian categories is
called a homological embedding provided FnA,B is an isomorphism for all n ≥ 0 and all
A,B ∈ A.

The following result gives a sufficient condition to have a homological embedding
when we consider certain subcategories of mod Λ.

Lemma 1.5.2 ([DR89b, Statement 3]). Let Λ be an Artin algebra, and e ∈ Λ an
idempotent such that the ideal (e) is projective as Λ-module. Then ι : mod Λ/(e) →
mod Λ, given by Λ/(e)M 7→ ΛM, is a homological embedding.

The functors given by a correspondence as in the previous lemma have a standard
generic name, see next definition.
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Definition 1.5.3. Let R,S be two rings, and f : R→ S be a ring homomorphism. The
functor ModS → ModR induced by f and defined by SM 7→ RM and the identity on
morphisms, is said to be given by restriction of scalars, we denote it by f∗.

Functors given by restriction of scalars have the following well known properties.

Proposition 1.5.4. Let f : R → S be a ring homomorphism. Then the following con-
ditions hold.

(a) The functor f∗ is faithful.

(b) If f is surjective, then f∗ is an embedding, and it restricts to finitely generated
modules, i.e. f∗ : modS → modR.

(c) If g : S → T is a ring homomorphism, then (gf)∗ = f∗ ◦ g∗.

The following theorem is crucial to describe homological embeddings.

Theorem 1.5.5 ([GL91, Thm. 4.4]). Let f : R → S be a ring homomorphism. Then
the following conditions are equivalent.

(a) f is an epimorphism of rings and TorRi (S, S) = 0 for all i ≥ 1.

(b) The natural map fn∗ : ExtnS(SX, SY ) → ExtnR(RX,RY ) is an isomorphism for all
left modules X,Y ∈ ModS and for all n ≥ 0.

(c) The natural map (f op)n∗ : ExtnS op(XS , YS) → ExtnR op(XR, YR) is an isomorphism
for all right modules X,Y ∈ ModS op and for all n ≥ 0.

Following [GL91] we give the next definition.

Definition 1.5.6. A homomorphism of rings f : R → S satisfying the equivalent con-
ditions of Theorem 1.5.5 is called a homological ring epimorphism.

Corollary 1.5.7. Let f : R→ S be a homological ring epimorphism. Then the following
conditions hold.

(a) If f is surjective, then f∗ : modS → modT is a homological embedding.

(b) f op : R op → S op is a homological epimorphism of rings.

Proof. From Proposition 1.5.4 f∗ restricts to finitely generated modules, then (a) is
consequence of Theorem 1.5.5.

The next results describe some new homological ring epimorphisms from old ones
that will permit us to prove important results in Chapter 3.

Lemma 1.5.8. The following assertions hold.

(a) Let R
f−→ S

g−→ T be homological ring epimorphisms. Then the composite gf is a
homological ring epimorphism.
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(b) Assume that following diagram of ring homomorphisms

R S

R′ S′

α o

f

βo
f ′

commutes, with α and β isomorphisms. Then f is a homological ring epimorphism
if and only if f ′ is so.

Proof. (a) From Proposition 1.5.4 we have that (gf)∗ = f∗ ◦ g∗, thus

(gf)n∗ TX, TY = fn∗ SX, SY ◦ g
n
∗ TX, TY

for all X,Y ∈ ModT , and all n ≥ 0. Then the conclusion is consequence of Theo-
rem 1.5.5. The assertion (b) follows from (a).

Lemma 1.5.9. Let R,S be two rings. Then the projection p : R × S → R, given by
(r, s) 7→ r, is a homological ring epimorphism.

Proof. First note that R is projective as right R × S-module, since R ∼= R × 0 =
(1R, 0)R × S as left R × S-modules, thus TorR×Sn (R,R) = 0 for all n ≥ 1. Then, the
result follows from Theorem 1.5.5, since p is surjective.

Proposition 1.5.10. Let f : R → S and g : T → U be two homological ring epimor-
phisms. Then f × g : R×T → S×U , given by f × g(r, t) = (f(r), g(t)), is a homological
ring epimorphism.

Proof. We know that ModS×U ∼−→ ModS×ModU via S×UM 7→ ((1S , 0)M, (0, 1U )M),
and a quasi-inverse is given by SM × UN 7→ S×U (M ×N), thus we have natural isomor-
phisms

ExtiS×U (−,−)
∼−→ ExtiS((1S , 0)−, (1S , 0)−)× ExtiU ((0, 1U )−, (0, 1U )−)

and
ExtiS(−,−)× ExtiU (−,−)

∼−→ ExtiS×U (−×−,−×−)

for all i ≥ 0. Now, let X,Y be S × U -modules and i ≥ 0. Then,

ExtiS×U (X,Y ) ∼= ExtiS((1S , 0)X, (1S , 0)Y )× ExtiU ((0, 1U )X, (0, 1U )Y )
∼= ExtiR((1S , 0)X, (1S , 0)Y )× ExtiT ((0, 1U )X, (0, 1U )Y )
∼= ExtiR×T ((1S , 0)X × (0, 1U )X, (1S , 0)Y × (0, 1U )Y )
∼= ExtiR×T (X,Y ),

where the last isomorphism holds, since X ∼= (1S , 0)X × (0, 1U )X as left R × T -
modules, for any left S × U -module X. Indeed, x 7→ ((1S , 0)x, (0, 1U )x) is a bijec-
tive R × T -morphism, with inverse given by ((1S , 0)x, (0, 1U )x′) 7→ (1S , 0)x + (0, 1U )x′,
and the actions are given by (r, t) · x = ((f × g)(r, t))x = (f(r), g(t))x and (r, t) ·
((1S , 0)x, (0, 1U )x′) = ((f(r), 0)x, (0, g(t))x′)



Chapter 2

Highest weight categories and
quasi-hereditary algebras

The unifying concept of highest weight category was introduced by Cline, Parshall and
Scott [CPS88b] as a categorical theoretic generalisation of the BGG category O of highest
weight modules used in the study of the representation theory of semisimple groups or Lie
algebras. Such categories arise in many situations, for instance in the theory of quiver
algebras or perverse sheaves. The strongest connection with representation theory is
given by quasi-hereditary algebras in the sense that every highest weight category with
a finite number of isoclasses of simple objects is equivalent to a module category over a
quasi-hereditary algebra. Starting from this point of view, it is crucial in this dissertation
to define such categories and explain in more detail the connection with quasi-hereditary
algebras and its quasi-hereditary structures, via heredity chains and standard modules.
More precisely, the definition of a highest weight category depends on the choice of a set
of standard modules, occurring as composition factors of a good filtration of the regular
module, called a heredity chain, see Definition 2.1.1. Conversely every heredity chain
induces a highest weight category structure, i.e. induces a partial order on the set of
isoclasses of simples modules, which defines an adequate set of standard modules, see
Theorem 2.2.8.

In this chapter we discuss two approaches to study all the possible choices of par-
tial orders inducing quasi-hereditary algebras, or equivalently, highest weight structures.
First, the characterisation of highest weight category presented in Theorem 2.1.7 follow-
ing [Kra17], provides a more conceptual approach via filtrations by Serre subcategories
and recollements, useful to find all the possible heredity chains of a given algebra, via
the homological poset. For the second strategy we define an equivalence relation on the
set of quasi-hereditary structures in order to introduce the more refined notion of poset
of quasi-hereditary structures.

The chapter is organised as follows. In the first section we define highest weight
categories and recollements, and state Theorem 2.1.7. In Section 2.2 several equivalent
definitions of quasi-hereditary algebra are discussed, first by means of heredity chains
and then using standard modules where adapted orders are part of the axioms. We
open a parenthesis to discuss standardly stratified algebras which are a generalisation
of quasi-hereditary algebras. The characteristic tilting module of a quasi-hereditary
algebra is defined as well. In Section 2.3 we establish a partial order structure on the

11
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class of Serre subcategories that is used to find heredity chains of a quasi-hereditary
algebra, namely the homological poset. In Section 2.4 we introduce the poset of quasi-
hereditary structures and state a result about quasi-hereditary algebras admitting only
one quasi-hereditary structure, found in [Cou19].

2.1 Highest weight categories

The definition of highest weight category introduced by Cline, Parshall and Scott in
[CPS88b, Definition 3.1] considers K-abelian categories satisfying certain conditions with
a non-necessarily finite number of isoclasses of simple objects. In this thesis, we restrict
ourselves to the case of module categories with a finite number of simple objects up to
isomorphism, particularly we work with module categories over Artin algebras. We start
fixing important notation used throughout the thesis.

Let Λ be an Artin algebra. Let (I,C) be a finite poset and {S(i)}i∈I a complete set
of non-isomorphic simple Λ-modules. We denote by P (i) the projective cover of S(i),
and by Q(i) the injective envelope of S(i), for i ∈ I. Many times, when referring to a
poset (I,C), we write C for simplicity, when the underlying set is known. Under this
assumptions we define the following central notion.

Definition 2.1.1 ([CPS88b, Definition 3.1]). The pair (mod Λ,C) is a highest weight
category if there exists a collection of finitely generated Λ-modules ∆ = {∆(i)}i∈I such
that the following conditions hold.

(a) There is a surjective map ψi : ∆(i)→ S(i), for all i ∈ I.

(b) If S(j) is a composition factor of Kerψi, then j C i and j 6= i.

(c) Every P (i) admits a good filtration, i.e. there is a chain of submodules 0 = M0 ⊂
M1 ⊂ · · · ⊂Mt = P (i) such that

(c1) P (i)/Mt−1
∼= ∆(i), and

(c2) for 1 ≤ s ≤ t− 1 there exists j ∈ I with Ms/Ms−1
∼= ∆(j), iC j and i 6= j.

The elements of (I,C) are called the weights of mod Λ.

Recall that if A is an abelian category, a full subcategory C of A is a Serre subcategory
if for every exact sequence 0 → X → Y → Z → 0 in A, we have Y ∈ C if and only if
X,Z ∈ C

Definition 2.1.2. Let A be an abelian category and Φ a set of objects in A. We
denote by F(Φ) the full subcategory of objects X ∈ A that admit a finite filtration
0 = X0 ⊆ X1 ⊆ · · · ⊆ Xt = X such that each factor Xi/Xi−1 is isomorphic to an object
X ∈ Φ, in this case case we say that X is Φ-filtered, and the chain of subobjects is called
a Φ-filtration.

An ideal I of a ring R is idempotent provided I2 = I. Serre subcategories of a
module category over an Artin algebra are characterised as follows.

Proposition 2.1.3. Let Λ be an Artin algebra, and A = mod Λ. For a full subcategory
C ⊆ A the following statements are equivalent.
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(a) C is a Serre subcategory of A.

(b) C = F({S1, . . . , Sn}) for a set of simple objects {S1, . . . , Sn} in A.

(c) C = mod(Λ/a) for some idempotent ideal a ⊆ A.

(d) C = {X ∈ A | HomA(P,X) = 0} for some projective object P ∈ A.

In the case of (b), {S1, . . . , Sn} is a set of representatives of simple objects in A \C.

Proof. See [Aus74, Section 7] or [GL91, Proposition 5.3].

We will see that every highest weight category induces a sequence of recollements
satisfying extra conditions. For, we recall the notion of recollement between abelian
categories.

Definition 2.1.4. A recollement of abelian categories is a diagram of functors

A B Ci e

p

q

r

l

satisfying the following conditions.

(a) (l, e, r) is an adjoint triple.

(b) (q, i, p) is an adjoint triple.

(c) The functors i, l, and r are fully faithful.

(d) Im i = Ker e, where Im i is the essential image of the embedding i.

Following [Psa14], we say that the recollement is homological if the embedding i is
homological.

Remark 2.1.5. In the situation of a recollement the following properties hold.

(a) The functors e : B→ C and i : A→ B are exact.

(b) The composites q l = p l = 0.

(c) The functor i induces an equivalence between A and the Serre subcategory Ker e =
Im i of B.

(d) There is an equivalence B/A
∼→ C (cf. [Gab62]).

Example 2.1.6. Let Λ be an Artin algebra. Then every idempotent e ∈ Λ induces a
recollement of module categories

Mod Λ/(e) Mod Λ Mod eΛei e

p

q

r

l

where

q = Λ/(e)⊗Λ −, i = inc, p = HomΛ(Λ/(e),−),

l = Λe⊗eΛe −, e = HomΛ(Λe,−) ∼= e(−), r = HomeΛe(eΛ,−),
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that restricts to finitely generated modules. In this case, the functor e = HomΛ(Λe,−)
induces an equivalence Mod Λ

/
Mod Λ/(e) ∼= Mod eΛe that restricts to an equivalence

mod Λ
/

mod Λ/(e) ∼= mod eΛe.

Conversely, up to equivalence any recollement with middle term Mod Λ is induced by
an idempotent element as before [PV14, Corollary 5.5], and restricts to finitely generated
modules [Kra17, Lemma 2.5].

When the weights are totally ordered, the following characterisation of highest weight
categories is observed by Krause.

Theorem 2.1.7 ([Kra17, Theorem 3.4]). Let Λ be an Artin algebra, and ≤ the usual
order on {1, 2 . . . , n}. Then the following conditions are equivalent.

(a) (mod Λ,≤) is a highest weight category.

(b) There is a finite chain of Serre subcategories

0 = A0 ⊆ A1 ⊆ · · · ⊆ An = mod Λ

and a sequence of semisimple rings Γ1, . . . ,Γn such that each inclusion Ai ↪→ Ai+1

induces a homological recollement of abelian categories

Ai−1 Ai mod Γi.

In the latter case, the modules ∆(i) are obtained by applying the left adjoint mod Γi ↪→ Ai

to Γi, for 1 ≤ i ≤ n. Conversely, the subcategories Ai ⊆ mod Λ are obtained by setting
recursively Ai−1 = {X ∈ Ai | HomΛ(∆i, X) = 0}.

Remark 2.1.8. Note that in presence of Proposition 2.1.3 and Example 2.1.6, condition
(b) in Theorem 2.1.7 is equivalent to the existence of a sequence of idempotent elements
ε1, . . . , εn in Λ inducing homological recollements

mod Λ/(εi) mod Λ mod εiΛεi

such that εiΛεi is semisimple, for all i.

2.2 Quasi-hereditary algebras

In this section we present several equivalent definitions of quasi-hereditary algebra. In
particular we sketch a proof of the fact that every highest weight category is equivalent
to a module category over a quasi-hereditary algebra. We also introduce the notion
of standardly stratified algebra, and define the characteristic tilting module of a quasi-
hereditary algebra. We start defining quasi-hereditary algebras from a ring theoretical
approach.
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2.2.1 Definition via heredity chains

A ring Λ is semiprimary provided its Jacobson radical J = rad(Λ) is nilpotent and Λ/J
is semisimple. For instance, every Artin algebra is a semiprimary ring.

Definition 2.2.1. Let Λ be a semiprimary ring. An ideal a ⊆ Λ is called a heredity
ideal if the following three conditions hold.

(a) a is idempotent, i.e. a2 = a,

(b) a is projective as Λ-module, and

(c) aJ(Λ)a = 0.

A heredity chain, or defining sequence, of Λ is a sequence

0 = an ⊆ an−1 ⊆ · · · ⊆ a1 ⊆ a0 = Λ (2.2.1)

of two-sided ideals of Λ such that ai−1/ai is a heredity ideal in Λ/ai for all i. In this case
we say that the heredity chain has length n.

Definition 2.2.2. A semiprimary ring Λ is called quasi-hereditary if it admits a heredity
chain.

Lemma 2.2.3. Let Λ be a semiprimary ring. Then an ideal a ⊆ Λ is idempotent if and
only if there is an idempotent e ∈ Λ such that a = ΛeΛ.

Proof. See [DR89b, Statement 6].

Remark 2.2.4. Let a ⊆ A be an idempotent ideal. Then Lemma 2.2.3 shows that
a = AeA for some idempotent e ∈ A. Thus the axiom (c) of Definition 2.2.1 is equivalent
to ask that eAe is semisimple.

Note that the length of a heredity chain is arbitrary, but in general we can refine
defining sequences in such a way that the length is the number of simples over Λ up to
isomorphism. The following definition can be found in [UY90].

Definition 2.2.5. Let Λ be an Artin algebra. A chain of idempotent ideals 0 = at ⊆
· · · ⊆ a1 ⊆ a0 = Λ is called maximal if the length of the chain is the number of simple
Λ-modules.

Proposition 2.2.6. Let Λ be an Artin algebra with N isoclasses of simple modules.
Then the every heredity chain (2.2.1) can be refined to a maximal heredity chain 0 =
mN ⊆ · · · ⊆ m1 ⊆ m0 = Λ such that mi 6= mi−1 for all i ∈ {1, . . . , N}.

Proof. See [UY90, Proposition 1.3].

The next result is an equivalent definition of quasi-hereditary algebra by means of
surjective ring homomorphisms.

Lemma 2.2.7. A semiprimary ring Λ is quasi-hereditary if and only if there exists a
finite sequence of surjective ring homomorphisms

Λ = Λn
fn−→ Λn−1

fn−1−−−→ · · · f2−→ Λ1
f1−→ Λ0 = 0 (2.2.2)

such that Ker(fi) is an heredity ideal for each 1 ≤ i ≤ n.
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Proof. Suppose we have a sequence of the form (2.2.2). By Lemma 2.2.3 there are
idempotents ei ∈ Λi such that Ker fi = ΛieiΛi. Define an := 0 and ai := Ker(fi+1 · · · fn)
for 1 ≤ i ≤ n− 1. Clearly ai ⊆ ai−1 for 1 ≤ i ≤ n and a0 = Ker(Λ→ 0) = Λ. From the
hypothesis an−1 = Ker(fn) = (en) is a heredity ideal in Λn. Now fix i ∈ {1, . . . , n− 1}.
We prove that ai−1/ai ⊆ Λ/ai is heredity. For, set g := fi+1 · · · fn, which is a surjective
ring homomorphism, thus we have a commutative diagram

Λn Λi Λi−1

Λn
ai

g

π

fi

g

where π is the canonical projection and g is an isomorphism of rings. Then, π(ai−1) =
Ker(fi g), since g = g π. On the other hand, Ker(fi g)

∼−→ Ker(fi) via g, as g is a
bijection, moreover is an isomorphism of Λ/ai-modules: let λ ∈ Λ/ai and x ∈ Ker(fi g)
then g(λ · x) = g(λ) g(x) = λ · g(x). Let ei := g−1(ei). Then Ker(fi g) = g−1((ei)) =
(g−1(ei)) = (ei). This shows that π(ai−1) = ai−1/ai is an idempotent ideal of Λ/ai and
is a projective Λ/ai-module, considering that Λ/ai ∼= Λi and Ker fi is Λi-projective.
Finally, let x = ei x′ ei ∈ ei rad(Λ/ai) ei, then g(x) = g(g−1(ei)x′ g

−1(ei)) = ei g(x′) ei ∈
ei rad(Λi) ei = 0, therefore x = 0. This proves that ai−1/ai ⊆ Λ/ai is heredity.

For the converse, if (2.2.1) is a heredity chain of Λ, then fi : Λ/ai → Λ/ai−1 defined
by fi(λ) := λ+ ai−1, for 1 ≤ i ≤ n, is a well defined surjective ring homomorphism with
kernel ai−1/ai, thus Ker fi is a heredity ideal of Λ/ai, for all 1 ≤ i ≤ n.

The connection between highest weight categories and quasi-hereditary algebras is
given by the following central result due to Cline, Parshall and Scott.

Theorem 2.2.8 ([CPS88b, Theorem 3.6]). Let Λ be a finite dimensional algebra. Then
mod Λ admits the structure of a highest weight category if and only if Λ is a quasi-
hereditary algebra.

Sketch of the proof. Let (I,C) be a poset indexing the set of simple Λ-modules {S(i)}i∈I .
Let {ei}i∈I be a complete set of pairwise orthogonal idempotents of Λ.

First assume that (mod Λ,C) is a highest weight category, with distinguished objects
{∆(i)}i∈I . We construct by induction a heredity chain for Λ as follows. Let m ∈ I be
a maximal element such P (m) = ∆(m) is the projective cover of S(m). There is an
idempotent e ∈ Λ such that P (m) = Λe. Moreover, there exists a subset J ⊆ I, such
that e =

∑
j∈J ej . Set a = ΛeΛ. Then a is a heredity ideal of Λ, and mod Λ/a ∼=

F({S(i) | i ∈ I \ J}) is a Serre subcategory of mod Λ which admits the structure of a
highest weight category, with poset of weights (I \ J,C|I\J).

Conversely, let 0 = at ⊆ at−1 ⊆ · · · ⊆ a1 ⊆ a0 = Λ be a heredity chain of Λ. This
heredity chain induces a partition I =

⊔t−1
k=0 Ij where

Ik = {i ∈ I | [top(ak/ak+1), S(i)] 6= 0}.

We equip the set I with the following order: i CH j if and only if i ∈ Ir, j ∈ Is and
r > s, where < is the usual order on {0, . . . , t− 1}. For i ∈ Ir, let ∆(i) be the projective
cover of S(i) in mod Λ/ar−1 viewed as an Λ-module. Note that ar−1/ar is a direct sum
of copies of ∆(i), i ∈ Ir. Then (mod Λ,CH) is a highest weight category.
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Remark 2.2.9. If (mod Λ,C) is a highest weight category, we constructed a heredity
chain of the form Eq. (2.2.1) for Λ, and then we defined a partial order (I,CH) induced
by the last heredity chain. It follows that CH refines C.

2.2.2 Definition via standard modules

In this subsection Λ denotes an Artin algebra, {Si}i∈I is a complete set of non-isomorphic
simple Λ-modules indexed by a finite poset (I,C). For each i ∈ I, P (i) denotes the
projective cover of S(i), and Q(i) its injective envelope.

In what follows we present an alternative definition of quasi-hereditary algebra using
the module theoretical approach of Dlab and Ringel [DR92], which simplifies the defi-
nition of a highest weight category, considering Theorem 2.2.8. We start defining the
following operators.

Definition 2.2.10. Let M ∈ Mod Λ and U a class of modules in Mod Λ.

(a) The trace of Θ in M is TrU(M) :=
∑

f : f∈HomΛ(U,M), U∈U Im f

(b) The reject of Θ in M is RejU(M) :=
⋂
f : f∈HomΛ(M,U), U∈U Ker f

Note that TrU(M) is the largest submodule of M generated by U, and RejU(M) is the
submodule N of M such that M/N is the largest factor module of M that is cogenerated
by U.

Lemma 2.2.11 ([DR92]). Let (mod Λ, (I,C)) be a highest weight category, with distin-
guished collection ∆ = {∆(i)}i∈I . Let Ui := {P (j) | j 6 i}. Then

∆(i) ∼= P (i)/TrUi(P (i))

for all i ∈ I, as Λ-modules.

The last result shows that ∆(i) is characterised as the largest quotient of P (i) with
composition factors S(j), with jC i. Equivalently, ∆(i) is the projective cover of S(i) in
F({S(j) | j 6 i}) viewed a Λ-module (compare with the proof of Theorem 2.2.8). This
motivates the following definitions in the context of Artin algebras.

Definition 2.2.12. Let (I,C) be a poset indexing the simple Λ-modules.

(a) The standard module with weight i ∈ I, denoted by ∆(i) = ∆C(i), is the maximal
factor module of P (i) with composition factors S(j), with j C i, i.e.

∆(i) := P (i)/Tr{P (j) | j6i}(P (i)).

(b) The costandard module with weight i ∈ I, denoted by ∇(i) = ∇C(i), is the maximal
submodule of Q(i) with composition factors S(j), with j C i, i.e.

∇(i) := Rej{Q(j) | j6i}(Q(i)).

We set ∆ = ∆C := {∆(i)}i∈I and ∇ = ∇C := {∇(i)}i∈I .
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In the case of a finite dimensional K-algebra A, the costandard module ∇(i) is the
dual of a standard module: let D := HomA(−,K) be the standard duality and Aop the
opposite algebra of A, then ∇A(i) = D(∆Aop(i)), for all i ∈ I.

Let M ∈ F(∆) (cf. Definition 2.1.2). The number of times that ∆(i) appears as quo-
tient in a ∆-filtration of M does not depend on the choice of the filtration (cf. [CPS88b,
Theorem 3.11] or [Con16, Remark 1.4.7]), we denote it by

(
M : ∆(i)

)
. Similarly, for

N ∈ F(∇) the number of times that ∇(i) appears in a ∇-filtration is independent of the
choice of the filtration, we denote it by

(
N : ∇(i)

)
.

The next definition is a reinterpretation of Theorem 2.2.8 considering Lemma 2.2.11
and the proof of Theorem 2.2.8.

Definition 2.2.13 ([CPS88b]). The pair (Λ, (I,C)) is a quasi-hereditary algebra if the
following conditions are satisfied.

(a) [∆(i) : S(i)] = 1 for all i ∈ I,

(b) P (i) ∈ F(∆) for all i ∈ I, and

(c)
(
P (i) : ∆(i)

)
= 1 for all i ∈ I, and

(
P (i) : ∆(j)

)
6= 0 implies iC j.

Remark 2.2.14. Note that for each i ∈ I, condition (a) is equivalent to the properties:

(i) EndΛ(∆(i)) is a division algebra,

(ii) [∇(i) : S(i)] = 1,

(iii) EndΛ(∇(i)) is a division algebra;

and condition (b) is equivalent to ΛΛ ∈ F(∆).

We can replace condition (c) in Definition 2.2.13 if we consider adapted posets in the
following sense.

Definition 2.2.15 ([DR92]). A partial order (I,C) is adapted to Λ if for every Λ-module
M with top S(i) and socle S(j), where i and j are incomparable, there is k ∈ I with
iC k and j C k and [M : S(k)] 6= 0.

Note that if C is a total order, then it is adapted to Λ. A very important property
of adapted posets is that this property is closed under refinement.

Lemma 2.2.16 ([DR92]). Let (I,C1) be an adapted poset for Λ. Let C2 be a refinement
of C1. For l = 1, 2 let ∆l(i) be the standard module with weight i for the poset Cl. Then

(a) ∆1(i) = ∆2(i) for all i ∈ I.

(b) ∇1(i) = ∇2(i) for all i ∈ I.

(c) The poset (I,C2) is adapted.

Lemma 2.2.17 ([Con16, Proposition 1.4.12]). If (Λ, (I,C)) is a quasi-hereditary algebra,
then (I,C) is adapted to Λ.
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Proof. Let M be a module with simple top S(i) and simple socle S(j). Since Λ is
Artinian, M is a quotient of P (i). In particular S(j) is a composition factor of P (i).
Because the algebra is quasi-hereditary P (i) has a ∆-filtration. So S(j) must appear in
a standard module ∆(k). If k = i then j C i. If k 6= i and S(j) is at the top of ∆(k) we
have iC j. And finally if S(j) is not at the top of ∆(k) we have iC k and j C k.

We can know considerably simplify the definition of quasi-hereditary algebra.

Proposition 2.2.18. The pair (Λ, (I,C)) is a quasi-hereditary algebra, in the sense of
Definition 2.2.13, if and only if the following three conditions hold:

(a) The poset (I,C) is adapted to Λ.

(b) For all i ∈ I [∆(i) : S(i)] = 1.

(c) For all i ∈ I P (i) ∈ F(∆).

Proof. See the proof of [DR92, Theorem 1].

Remark 2.2.19. Many times, when considering adapted posets, one usually restricts
to total orders, since Lemma 2.2.16 and Proposition 2.2.18 actually show that this is not
an impediment.

The following are equivalent definitions of quasi-hereditary algebras. Condition (e)
is due to Soergel [Soe90]. The usual definition of quasi-hereditary algebra is (b).

Proposition 2.2.20 ([DR92, Theorem 1]). Let (I,C) be an adapted poset to Λ, and
assume that for all i ∈ I [∆(i) : S(i)] = 1. Then the following statements are equivalent.

(a) (Λ,C) is a quasi-hereditary algebra.

(b) The module ΛΛ is in F(∆).

(c) F(∆) = {X | Ext1(X,∇(i)) = 0 for all i ∈ I}.

(d) F(∆) = {X | Extj(X,∇(i)) = 0 for all i ∈ I and j ≥ 1}.

(e) Ext2(∆(i),∇(j)) = 0 for all i, j ∈ I.

We may add the dual conditions:

(b’) The dual D(ΛΛ) is in F(∆).

(c’) F(∇) = {Y | Ext1(∆(i), Y ) = 0 for all i ∈ I}.

(d’) F(∇) = {Y | Extj(∆(i), Y ) = 0 for all i ∈ I and j ≥ 1}.

In this case we say that the modules belonging to F(∆) admit a good filtration , and those
in F(∇) admit a cogood filtration.

Definition 2.2.21. Let C be a subcategory of mod Λ. We have the following full sub-
categories of mod Λ:

C⊥ := {M | ExtiΛ(C,M) = 0 for all i > 0, and C ∈ C} and
⊥C := {M | ExtiΛ(M,C) = 0 for all i > 0, and C ∈ C},

called the right (resp. left) perpendicular category to C.
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Ringel showed that the subcategories F(∆) and F(∇) are perpendicular to each
other, i.e. we have the following result.

Proposition 2.2.22 ([Rin91]). Let (Λ,C) be a quasi-hereditary algebra. Then F(∆) =
⊥F(∇) and F(∇) = F(∆)⊥.

Recall that a ring R is called right hereditary if all left ideals are projective. We
call an Artin algebra Λ hereditary if it is right hereditary, or equivalently if gl.dim Λ ≤
1. It is well known that if Q is a finite, connected and acyclic quiver, then KQ is a
hereditary algebra, and all basic hereditary algebras occur in this way [ASS06, Ch. VII,
Theorem 1.7].

The next result due to Dlab and Ringel shows that hereditary algebras are quasi-
hereditary for any adapted order.

Proposition 2.2.23. Assume that Λ is hereditary Artin algebra. Then for any adapted
order C on I, (Λ, (I,C)) is a quasi-hereditary algebra.

Proof. We may assume that C is a total order on I. Then the assertion follows from
[DR89b, Theorem 1].

Example 2.2.24. Let K be a field and Q the quiver 3 → 2 → 1. Set A = KQ, and
let C be given by the cover relations 1 C 2, 1 C 3. Then C is not adapted to A, thus

(A,C) is not a quasi-hereditary algebra. Indeed, ∆(1) = 1, ∆(2) =
1
2 , ∆(3) = 3. Thus

P (3) =

1
2
3

admits a ∆-filtration 0 ⊂ ∆(2) ⊂ P (3), with (P (3) : ∆(2)) 6= 0, but 3 6 2,

so the axiom (c) of Definition 2.2.13 fails in this case.

The next result gathers some general properties of quasi-hereditary algebras.

Proposition 2.2.25. Let Λ be an Artin algebra. Then the following statements hold.

(a) If (Λ, (I,C)) is a quasi-hereditary algebra, then gl. dim Λ ≤ 2n−2, where n = card I.

(b) The pair (Λ, (I,C)) is a quasi-hereditary algebra if and only if (Λ, (I,Cop)) is a
quasi-hereditary algebra.

(c) If gl. dim Λ ≤ 2, then there exits some adapted poset C to Λ, such that (Λ,C) is
quasi-hereditary.

Proof. (a) In [PS88, Theorem 4.3 (a)] Parshall and Scoot proved that every quasi-
hereditary algebra has finite global dimension. The bound was found later by Dlab
and Ringel [DR92, Lemma 2.2]. For (b), see [PS88, Theorem 4.3 (b)]. The assertion (c)
when gl. dim Λ = 2 was shown by Dlab and Ringel in [DR89b, Theorem 2], for the case
gl.dim Λ ≤ 1 see Proposition 2.2.23.

We finish this section recalling a generalisation of the concept of quasi-hereditary
algebra, namely standardly stratified algebras.

Definition 2.2.26. Let (I,C) be an adapted poset to Λ, and ∆ = ∆C. We say that
(Λ,C) is a standardly stratified algebra provided P (i) ∈ F(∆) for all i ∈ I.
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Remark 2.2.27. Note that if Λ has n simples up to isomorphism and ({1, . . . , n},C) is
a total order, then (Λ,C) is standardly stratified if and only if Λ admits a maximal chain
of idempotent ideals 0 = (εn) ⊂ (εn−1) ⊂ (εn−2) ⊂ · · · ⊂ (ε0) = Λ such that (εi−1)/(εi)
is projective as Λ/(εi)-module, for all 1 ≤ i ≤ n. Call such a chain stratifying.

Proposition 2.2.28. Let (I,C) be an adapted poset to Λ, and ∆ = ∆C. Then the
following conditions are equivalent.

(a) Λ is a quasi-hereditary algebra.

(b) Λ is a standardly stratified algebra with finite global dimension.

(c) Λ is a standardly stratified algebra such that [∆(i) : S(i)] = 1 for all i ∈ I.

Proof. For the equivalence of (a) and (b) see [Wic96, Theorem 1.7] or [Dla96, Corol-
lary 2.6]. The equivalence of (a) and (c) follows from Proposition 2.2.18.

2.2.3 The characteristic tilting module

In [Rin91] Ringel studied the full subcategory of modules in mod Λ which have a ∆- and
∇-filtration, for Λ a quasi-hereditary algebra. In what follows we state precise results
that will help us in the classification of quasi-hereditary structures for some quiver
algebras (cf. Chapter 5), but first we recall some definitions.

Let Λ be an Artin algebra, and M ∈ mod Λ. The additive closure of M , denote by
addM , is the full subcategory of mod Λ consisting of all direct summands of any direct
sum of finitely many copies of M . We say that M is a basic module if it has no direct
summand of the form N ⊕N , with N a non-zero Λ-module.

Definition 2.2.29. A Λ-module T is called a (generalised) tilting module if it satisfies
the following three conditions.

(a) T has finite projective dimension,

(b) ExtiΛ(T, T ) = 0 for all i > 0, and

(c) there exists an exact sequence 0 → Λ → T0 → T1 → · · · → Tm → 0, with
Ti ∈ addT .

Moreover, if pdT ≤ 1 then T is called a classical tilting module.

Proposition 2.2.30 ([Rin91]). Let (Λ, (I,C)) be a quasi-hereditary algebra. Then there
exists a basic tilting module T ∈ mod Λ such that addT = F(∆) ∩ F(∇). Moreover,
there exits a decomposition T =

⊕
i∈I T (i) into indecomposable Λ-modules T (i), such

that there are exact sequences

0→ ∆(i)→ T (i)→ X(i)→ 0, 0→ Y (i)→ T (i)→ ∇(i)→ 0

where X(i) belongs to F(∆(j) | j C i) and Y (i) belongs to F(∇(j) | j C i).
Definition 2.2.31. A module T given as in Proposition 2.2.30 is called a characteristic
tilting module of (A, (I,C)).

Ringel proved that the characteristic tilting module determines both F(∆) and F(∇)
in the following sense.

Proposition 2.2.32 ([Rin91, Corollary 4]). Let T be the characteristic tilting of a quasi-
hereditary algebra (Λ,C). Then F(∆) = ⊥T and F(∇) = T⊥.
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2.3 The homological poset

In this section we present a systematic method to study all the possible heredity chains
that an Artin algebra could admit. For, we consider the more general concept of homo-
logical embedding between Serre subcategories (cf. Theorem 2.1.7).

In what follows Λ is an Artin algebra, and {Si}i∈I is a finite complete list of non-
isomorphic simple Λ-modules. Let {ei}i∈I be a complete set of pairwise orthogonal
idempotents of Λ such that P (i) = Λei is the projective cover of S(i), for i ∈ I. For
J ⊆ I define

eJ :=
∑
j∈J

ej ,

where e∅ = 0. Set Jc := I \ J , thus eJc = 1− eJ .
Let 0 = at ⊆ at−1 ⊆ · · · ⊆ a1 ⊆ a0 = Λ be a heredity chain of Λ. Then Lemma 2.2.7

shows that
Λ

at

πt−→→ Λ

at−1

πt−1−−−→→ . . .
π2−→→ Λ

a1

π1−→→ Λ

a0

is a sequence of surjective ring homomorphisms, given by πi(a + ai) = a + ai−1, with
Kerπi = ai−1/ai a heredity ideal of Λ/ai. By Proposition 2.1.3 and Lemma 1.5.2, this
sequence induces a chain

mod Λ = mod Λ/at
ιt←↩ mod Λ/at−1

ιt−1←↩ . . . ι2←↩ mod Λ/a1 ←↩ mod Λ/a0 = 0 (2.3.1)

of homological embeddings between Serres subcategories of mod Λ, since ai−1/ai is pro-
jective as Λ/ai-module. The embeddings ιj are given by restriction of scalars.

Moreover, for each 1 ≤ i ≤ t, there is a non-empty subset Ji ⊆ I such that
mod Λ/ai = F({S(j) | j ∈ Ji}), more precisely Ji is characterised as the set of indices in
I such that {S(j)}j∈Ji is a set of representatives of simple objects in mod Λ \mod Λ/ai.
Thus we have inclusions ∅ = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jt = I. Then it is clear that

mod Λ/(eJc
i
) ∼= F({S(j) | j ∈ Ji}) ∼= mod Λ/ai,

thus ai = (eJc
i
), for each 1 ≤ i ≤ t. For simplicity, set δ0 := 0,

εi := eJc
i
, and δi := εi−1 − εi = eJi\Ji−1

for 1 ≤ i ≤ t. Therefore, the fact that Kerπi = (εi−1)/(εi) = (δi) is a heredity ideal in
Λ/(εi) means that it is projective as Λ/(εi)-module, and Γi := δi Λ/(εi) δi is semisimple.
Moreover, for 1 ≤ i ≤ t, we have an isomorphism of rings(

Λ/(εi)
)
/
(
(εi−1)/(εi)

) ∼= Λ/(εi−1),

hence we have a homological recollement

mod Λ/(εi−1) mod Λ/(εi) mod Γi (2.3.2)

which induces an equivalence mod Λ/(εi)
/

mod Λ/(εi−1)
∼→ mod Γi, for each 1 ≤ i ≤ t.

The last discussion motivates a more general construction involving embeddings be-
tween Serre subcategories of mod Λ provinding a correct language to find all the heredity
chains of Λ.
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Let J ⊆ I. We know that F({S(j) | j ∈ J}) ∼= mod Λ/(eJc) is a Serre subcategory
of mod Λ, and it is independent of the choice of the set of idempotents E, since it is
unique up to conjugacy (cf. Proposition 1.2.5). Thus we have a bijection between the
power set of [n] and the Serre subcategories of modA of the form modA/(eJc), given by
J 7→ modA/(eJc).

On the other hand, let J ⊆ K ⊆ I. We have a well defined ring surjection

πK,J :
Λ

(eKc)
�

Λ

(eJc)

given by λ + (eKc) 7→ λ + (eJc), since (eKc) ⊆ (eJc) by Lemma 3.4.1 (b1). By Proposi-
tion 1.5.4 (b) we have an embedding between Serre subcategories of mod Λ

ιJ,K := (πK,J)∗ : mod Λ/(eJc) ↪→ mod Λ/(eKc)

given by restriction of scalars. Therefore, we regard Λ/(eJc)-modules as modules over
Λ/(eKc), and Λ/(eKc)-modules as modules over Λ in the natural way.

Remark 2.3.1. Observe that πK,J is a homological ring epimorphism if and only if ιJ,K
is a homological embedding, by Theorem 1.5.5.

We will find necessary and sufficient conditions for ιJ,I to be a homological embedding
for some classes of algebras, see Chapters 3 and 4. This simple construction defines a
poset structure on the power set 2I .

Definition 2.3.2. Let Λ be an Artin algebra. Let {ei}i∈I be a complete set of primitive
orthogonal idempotents of Λ. For J ⊆ K ⊆ I, set J �Λ K if ιJ,K : mod Λ/(eJc) ↪→
mod Λ/(eKc) is a homological embedding.

It is clear that �Λ is reflexive and antisymmetric. Moreover, since the composition of
homological embeddings is so too, we have that �Λ is transitive, since if J �Λ L �Λ K,
then ιJ,K = ιL,K ◦ ιJ,L. Thus, �Λ gives a poset structure on 2I .

Definition 2.3.3. Let Λ be an Artin algebra, and {ei}i∈I a complete set of primitive
orthogonal idempotents of Λ. The homological poset of Λ is the poset (2I ,�Λ), denoted
by H(Λ). The homological Hasse quiver of Λ is the Hasse quiver of H(Λ), and is denoted
by H(Λ)

Note that the poset structure �Λ does not depend on the choice of the complete set
of primitive pairwise orthogonal idempotents, because if {fi}i∈J is other such a family,
by Proposition 1.2.5 there is a ∈ Λ invertible and we can reorder the idempotents fi in
such a way that fi = aeia

−1 for all i ∈ I. So, for any J ⊆ I, we have that (fJ) = (eJ).
In the particular case when A = KQ/I is a bound quiver algebra, in this thesis we

label the vertices of Q as Q0 = {1, . . . , n}. We know that the set of classes of paths of
length zero {ei := εi + I}ni=1 is a complete set set of primitive orthogonal idempotents
of A. We always consider this family when dealing with bound quiver algebras.

Remark 2.3.4. Let n ≥ 0, and I = [n] := {1, . . . , n}.

(a) The poset P(n) = (2[n],⊆) is a refinement of H(Λ), in other words, H(Λ) is a weak
subposet of P(n).
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(b) H(Λ) is determined by its cover relations since it is finite, i.e. if J �Λ I, then there
exists a chain of cover relations J �Λ X1 �Λ · · · �Λ Xl �Λ I.

Combining Theorem 2.1.7 and Proposition 2.2.6 and our previous discussions, we
have the next result.

Theorem 2.3.5. Let Λ be an Artin algebra, and {ei}ni=1 a complete set of primitive
orthogonal idempotents of Λ. Then we have a bijective correspondence between the set
of paths of length n in H(Λ) η : ∅ = J0 → J1 → · · · → Jn = [n] such that the algebra
eJi\Ji−1

Λ/(eJc
i
) eJi\Ji−1

is semisimple, and the set of maximal heredity chains of Λ, given
by

η 7→
(
0 = (eJc

n
) ⊂ · · · ⊂ (eJc

1
) ⊂ (eJc

0
) = Λ

)
.

Weakening the hypothesis on the maximal chains of idempotent ideals, we have a
similar result in the case of standardly stratified algebras.

Theorem 2.3.6. Let Λ be an Artin algebra, and {ei}ni=1 a complete set of primitive
orthogonal idempotents of Λ. Then we have a bijective correspondence between the set
of paths of length n in H(Λ), and the set of maximal stratifying chains of Λ given by(

∅ = J0 → J1 → · · · → Jn = [n]
)
7→
(
0 = (eJc

n
) ⊂ · · · ⊂ (eJc

1
) ⊂ (eJc

0
) = Λ

)
.

Before exhibiting some examples, we give the following technical observation, which
generalises that fact that the embedding mod Λ/(εi−1) ↪→ mod Λ/(εi) considered in the
recollement (2.3.2) is homological.

Lemma 2.3.7. Let Λ be an Artin algebra with {ei}i∈I a complete set of primitive or-
thogonal idempotents. Let J ⊆ K ⊆ I. If (eK\J) is projective as Λ/(eKc)-module, then
ιJ,K is a homological embedding.

Proof. Since Kc ⊆ Jc, we have Jc = Kc t Jc \ Kc, thus by Lemma 3.4.1 (eKc) ⊆
(eKc) = (eKc)+(eJc\Kc) = (eKc)+(eK\J). Set Λ′ := Λ/(eKc), then Λ/(eJc) ∼= Λ′/(eK\J),
which shows that we can regard ιJ,K as an embedding mod Λ′/(eK\J) ↪→ mod Λ′. The
conclusion follows from Lemma 1.5.2.

Example 2.3.8. Let K be a field.
(a) Let A be a hereditary K-algebra with n simples up to isomorphism. Then every

chain of length n of idempotent ideals is a heredity chain by [DR89b, Theorem 1]. Thus
H(A) = P(n), and H(A) is the n-hypercube.

(b) Let Q be the quiver 3 2 1b a , and set A = KQ/(ab). Then gl. dimA = 2,
thus A is quasi-hereditary for some adapted poset. H(A) is the following quiver

{1, 2, 3}

{2, 3} {1, 3}{1, 2}

{3}{2} {1}

∅
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which shows that A admits four different heredity chains.

(c) Let Q be the quiver 1 2 3.
a1 a2

b1 b2
Set A = KQ/(a1b1 − b2a2, b1a1, a2b2),

thus A is the preprojective algebra of type A3, therefore gl. dimA = ∞ and A is not
quasi-hereditary for any order. The Hasse quiver of H(A) is the following.

{1, 2, 3}{2, 3}

{1, 3}

{1, 2}{3}{2}{1}

∅

(d) Let Q be the quiver 1 2.
a

b
Set A = KQ/(baba). Then gl.dimA =∞, thus

A is not quasi-hereditary for any ordering, but H(A) is the following.

{1, 2}

{2}{1}

∅

Indeed, note that the maximal path in H(A) corresponds to the chain of Serre sub-

categories 0 ⊂ modA/(e1) ⊂ modA, but e1Ae1
∼= K( 1 α ) / (α2) is clearly not

semisimple. Note that A is standardly stratified by Theorem 2.3.6.

(e) Let Q be the quiver
2

1 3

ba

c

and A = KQ/(bac, acba). Then gl. dimA = 4,

and its homological Hasse quiver is the following.

{1, 2, 3} {2, 3}{1, 3}{1, 2}

{3}{2}{1}

∅

This shows that A admits no heredity chain. We remark that the algebra A has been
already considered in [DR89b].

2.4 Quasi-hereditary structures

In this section we provide the foundations of the notion of quasi-hereditary structures
in order to present a new approach to the classification of adapted posets that yield
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quasi-hereditary algebras. This is joint work with Yuta Kimura and Baptiste Rognerud
[FKR20]. At the end of the section we present a sufficient condition for an algebra to
have at most one quasi-heredity structure due to Coulembier.

In what follows Λ denotes an Artin algebra, and (I,C) a finite poset indexing a
complete set of non-isomorphic simple Λ-modules {S(i)}i∈I . In this case, ∆ = ∆C
denotes the set of standard modules, and ∇ = ∇C the set of costandard modules. Recall
that adapted posets (Definition 2.2.15) are closed under refinement (cf. Lemma 2.2.16).
We start with the following weaker version of Definition 2.2.15.

Lemma 2.4.1. A partial order C on I is adapted to A if and only if for every A-module
M with top S(i) and socle S(j), where i and j are incomparable, there is k ∈ I with
iC k or j C k and [M : S(k)] 6= 0.

Proof. See [DR92, page 202].

Definition 2.4.2. Let C1 and C2 be two partial orders on I. Then C1 is equivalent to
C2 if ∆C1 = ∆C2 and ∇C1 = ∇C2 . In this case we write C1 ∼ C2.

The relation ∼ is an equivalence relation on the set of poset structures of I, and is
compatible with the notion of adapted poset in the following sense.

Lemma 2.4.3. Let C1 be an adapted poset to Λ. If C is equivalent to C1, then C is
adapted to A.

Proof. Let M be an indecomposable module with simple top S(i) and simple socle S(j)
with i and j are incomparable for C. Since M has simple top S(i) it is a quotient of
P (i). We denote by U(i) the kernel of the projection from P (i) to ∆(i). Since i and
j are incomparable, the module S(j) is a composition factor of U(i). Then, there is
a composition factor S(k) which is at the top of U(i) and which is also a composition
factor of M . We denote by N a non-split extension of S(k) and ∆(i).

Since C1 is an adapted poset we see that i C1 k and by transitivity if S(e) is a
composition factor of ∆(i) then e C1 k. So the largest submodule of N cogenerated by
S(k) is a submodule of ∇1(k). Since ∇(k) = ∇1(k) and S(i) is a composition factor of
this module, we see that iC k and the result follows from Lemma 2.4.1.

Recall that a poset structure on I is a subset C ⊆ I × I satisfying three properties
(cf. Section 1.4). Thus we order poset structures on I by inclusion. This gives a poset of
posets over I where the minimal element is the equality relation on I, i.e. {(i, i) | i ∈ I},
and the maximal elements are the total orders on I. Given two poset structures C1 and
C2 on I, we can take their intersection C1 ∩ C2 which is again a poset structure on I,
called the intersection of C1 and C2.

Lemma 2.4.4. Let C1 and C2 be two adapted posets to Λ with C1 ∼ C2.

(a) The intersection C1 ∩C2 is an adapted poset to Λ in the same equivalence class.

(b) In each equivalence class of adapted posets to Λ there is a unique minimal poset.
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Proof. It is clear that (a) implies (b). Let C1 and C2 be two posets in the same equiva-
lence class. We denote by ∆ = ∆1 = ∆2 the corresponding set of standard modules. Set
Cint to be the intersection of C1 and C2, and denote by ∆int,∇int the corresponding
sets of standard and costandard modules, respectively.

Let i ∈ I. By definition ∆int(i) is the largest quotient of P (i) whose composition
factors are S(j) such that j C1 i and j C2 i. So ∆1(i) surjects onto ∆int(i). If they are
not isomorphic, at the top of the kernel there is a simple module S(j) such that j C1 i
but j is not smaller that i for C2. This contradicts ∆1(i) = ∆2(i). Therefore ∆int = ∆
and by a dual argument, we see that ∇int = ∇ and the poset Cint is equivalent to the
posets C1 and C2. The result follows from Lemma 2.4.3

Let C1 and C2 be two partial orders on I. If (Λ,C1) is a quasi-hereditary algebra
and C2 ∼ C1 then (Λ,C2) is also a quasi-hereditary algebra since the definition of quasi-
hereditary algebra only depends on the set of standard modules. In this case, we can give
various characterisations of this equivalence relation. Recall that for a quasi-heredity
algebra (Λ,C) there is a tilting module T such that addT = F(∆) ∩ F(∇), called the
characteristic tilting module (cf. Proposition 2.2.30).

Lemma 2.4.5. Let C1 and C2 be two partial orders on I such that (Λ,C1) and (Λ,C2)
are quasi-hereditary algebras. Then the following statements are equivalent.

(a) C1 ∼ C2.

(b) ∆1 = ∆2.

(c) ∇1 = ∇2.

(d) F(∆1) = F(∆2).

(e) F(∇1) = F(∇2).

(f) T1
∼= T2 where Ti is the characteristic tilting module of (Λ,Ci) for i = 1, 2.

Proof. We show (d) implies (b). For each i ∈ I, let K(i) be the sum of the kernels of non-
zero surjective maps P (i)→ X with X ∈ F(∆1). Then ∆1(i) = P (i)/K(i) holds by the
proof of [Rin91, Corollary 4]. We have ∆1(i) = P (i)/K(i) = ∆2(i) by the assumption.
Dually, (e) implies (c). The remaining equivalences follow from Propositions 2.2.20
and 2.2.30.

Definition 2.4.6. Let Λ be an Artin algebra with an adapted poset (I,C) indexing the
isomorphism classes of simple Λ-modules.

(a) The equivalence class of C under ∼ is called a quasi-hereditary structure of Λ if
(Λ, (I,C)) is a quasi-hereditary algebra. We denote by [C] the equivalence class of
C under ∼.

(b) The order C is called minimal adapted if it represents a quasi-hereditary structure
and it is minimal among partial orders which represent the same quasi-hereditary
structure (cf. Lemma 2.4.4 (b)).

We denote by qh. str(Λ) the set of quasi-hereditary structures on Λ.
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Note that the number of quasi-hereditary structures is bounded by (card I)!. Com-
pare with Example 2.4.7 (b).

Example 2.4.7. (a) Let A =
⊕

i∈I Ai be a semisimple algebra. Then it is clear that
any partial order on I is adapted to A, and ∆C(i) ∼= Ai for all i ∈ I and any order
(I,C). Thus A has only one quasi-hereditary structure.

(b) Let K be a field. Let n ∈ N+ and Qn+1 be a quiver with set of vertices I =
{1, 2, . . . , n + 1} and such that there is a unique arrow from i to j whenever i > j.
Observe that the underlying graph of Qn+1 is a complete graph. Let Kn+1 = KQn+1.
It follows that any adapted order on I for Kn+1 is a total order, and two distinct total
orders on I induce different quasi-hereditary structures on Kn+1. Therefore the number
of quasi-hereditary structures of Kn+1 is n!.

There is a poset structure defined on the set of basic tilting modules up to isomor-
phism given as follows. Let T1 and T2 be tilting modules in mod Λ, then T1 ≤ T2 if and
only if T⊥1 ⊆ T⊥2 . Happel and Unger [HU05] described the Hasse quiver of this poset in
terms of a graph defined previously in work by Riedtmann and Schofield [RS91].

By Lemma 2.4.5, the equivalence class of C only depends on its characteristic tilting
module. It is then natural to order quasi-hereditary structures of a given quasi-hereditary
algebra Λ in the following way.

Definition 2.4.8. Let [C1] and [C2] be two quasi-hereditary structures of Λ with re-
spective sets of standard modules ∆1 and ∆2. We set [C1] � [C2] if F(∆2) ⊆ F(∆1).
It follows that we have a poset qh. str(Λ) = (qh. str(Λ),�) called the poset of quasi-
hereditary structures of Λ.

We have the following equivalent definitions of the relation �.

Lemma 2.4.9. For i = 1, 2, let [Ci] be a quasi-hereditary structure on Λ, with ∇i = ∇Ci,
and Ti a characteristic tilting module of (Λ,Ci). Then the following statements are
equivalent.

(a) [C1] � [C2].

(b) F(∇1) ⊆ F(∇2).

(c) T⊥1 ⊆ T⊥2 .

Proof. Follows from Propositions 2.2.22 and 2.2.32.

We finish this section with a result by Coulembier which provides a sufficient con-
dition for a finite dimensional algebra A to have a unique quasi-heredity structure. Let
{S(i)}i∈I be a complete set of non-isomorphic simple A-modules. In this setting, we say
that A has a duality fixing the simples if there is an involutive contravariant autoequiv-
alence D of modA that induces the identity on I.

Theorem 2.4.10 ([Cou19, Theorem 2.1.1]). Let A be a finite dimensional algebra with
a duality fixing the simples. Let (I,C1) and (I,C2) be two partial orders indexing the
simple modules of A. If (A,C1) and (A,C2) are two quasi-hereditary algebras, then
C1 ∼ C2.



Chapter 3

The Auslander algebra of
K[x]/(xn)

Let K be a field. In this chapter we determine the homological poset and homological
Hasse quiver of a class of Auslander algebras, more precisely over the Auslander algebra
of the truncated polynomial ring Tn := K[x]/(xn), for n ≥ 0. This is done by means of a
combinatorial classification of all homological embeddings between Serre subcategories.
The crucial point in this characterisation is to determine block decompositions of factor
algebras by idempotent ideals, and use the Chinese remainder theorem. Along the
process we encounter some interesting integer sequences.

Recall that an Artin algebra Λ is called an Auslander algebra if its global dimension
is less than or equal to 2 and the dominant dimension of Λ is greater than or equal to 2.
Auslander showed that there is a one-to-one correspondence between algebras of finite
representation type and Auslander algebras, given by A 7→ (EndA(M))op, where M is
an additive generator of A [Aus74; ARS95]. Usually one takes M to be the direct sum
of all indecomposable A-modules up to isomorphism. In this thesis we denote by AusA
the Auslander algebra of a finite representation type algebra A.

The organisation of the chapter is as follows. We define AusTn in Section 3.1 as a
bound quiver algebra and give some properties. In Section 3.2 we find an adequate basis
of AusTn that is used in Section 3.3 to define a basis of the indecomposable projective
modules over AusTn/(e), for e an idempotent. In Section 3.4 we encounter a sufficient
condition concerning idempotent ideals of a K-algebra A that guarantees block decom-
position of the factors A/(e), using a version of the Chinese remainder theorem. We
apply it to the case of AusTn. In Section 3.5 we introduce the notion of preprojective
algebras of type An, and describe an appropriate basis. In Section 3.6 we characterise
blocks of the factor algebras AusTn/(e), and find the unique heredity chain of AusTn.
Section 3.7 is devoted to showing a combinatorial characterisation of homological embed-
dings between Serre subcategories of mod AusTn, that we use in Section 3.8 to describe
explicitly the cover relations of the homological poset of AusTn, denoted H(AusTn), ob-
taining some counting formulas. In Section 3.9 the homological Hasse quiver of AusTn
is described, where some Tribonacci sequences arise in the context of counting meth-
ods. In Section 3.10 we define compositions of a positive integer and show a bijection
between the cover relations of H(AusTn) and the set of parts of n via tilings. Finally,
Section 3.11 studies the factor algebras AusTn/(e) that are quasi-hereditary algebras,
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as consequence some Fibonacci sequences appear in our investigations.

3.1 Basic properties of AusTn

Let K be a field. For n ≥ 1, set Tn = K[x]/(xn) the algebra of truncated polynomials of
degree less than n with coefficients over K. It is clear that Tn is isomorphic to the bound
quiver algebra

K(
1
• α ) / (αn),

with isomorphism given by 1 7→ ε1 and x 7→ α.
It turns out that dimK Tn = n, gl.dimTn = ∞ and Tn is uniserial with unique

composition series Tn ⊇ radTn ⊇ · · · ⊇ radn−1 Tn ⊇ radn Tn = 0, where radi Tn =
K[x]/(xn−i), for i ∈ {1, . . . n}. The Auslander-Reiten quiver of Tn is

P (1) radP (1) · · · radn−1 P (1) = S(1),

thus Tn has finite representation type. So, the Auslander algebra of Tn is defined by

Λn = AusTn := EndTn
( n−1⊕
i=0

radi P (1)
)
.

It turns out that Λn is isomorphic to the path algebra KQ/I, where

Q =
1
•

2
• · · · n−1

•
n
•

a1 a2

b1

an−2

b2

an−1

bn−2 bn−1

and I is the ideal generated by the relations aibi − bi+1ai+1 for 1 ≤ i ≤ n − 2 and
an−1bn−1. In this case, Q0 = {1, . . . , n} =: [n]. Set Λ0 := 0.

In the next proposition we gather some known properties of the algebras Λn.

Proposition 3.1.1. Let n ≥ 1. Then the following conditions hold.

(a) Λn has a unique quasi-hereditary structure given by ({1, . . . , n},≤), where ≤ is the
usual order.

(b) Let M ∈ mod Λn, and ∆ = ∆≤. Then the following conditions are equivalent.

(i) M ∈ F(∆).

(ii) pdM ≤ 1.

(iii) M is torsionless.

(iv) Ext1(M,T ) = 0, where T is the characteristic tilting module.

(v) The injective envelope of M is projective.

(c) Λn is of finite representation type only if n ≤ 3.

Proof. For (a) and (c) see [DR92, Sec. 7]. For (b) we refer to [RZ14, Proposition 1].
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Example 3.1.2. Consider n = 3. The Auslander-Reiten quiver of Λ3 is the following.

1
2

1 3
2

1

2
1 3

2

1

3

1
2

1 3
2

2
1 3

1
2

1 3

2
3

2
1

2
1 3

2
1

3
2

1

2

1
2

1

1 3
22

1 3

1 3
22

1

1
2

3

1 3
2

1

3
2

1
2

2
1 3

2
1

1 3
2

1
2

1 3
2

1

2
1 3

2

1

3

The quiver lies on a cylinder, thus the dotted lines must be identified. The modules
belonging to F(∆) are marked with a rectangle. In particular we have the following
Λ3-modules.

∆(1) = 1, ∆(2) =
1

2 , ∆(3) =
1

2
3 , ∇(1) = 1, ∇(2) = 1

2
, ∇(3) = 1

2
3

and the characteristic tilting module has the following indecomposable direct summands.

T (1) = 1, T (2) =
1

2
1 , T (3) =

1
2

31

1
2

3.2 A basis of AusTn

The aim of this section is to find a good basis for Λn by means of the description of the
indecomposable projective Λn-modules. The main goal is to find an explicit description
of the block of the factor algebras Λn/(e), for any idempotent e of Λn. For example, the
projective Λ4-modules have the following radical filtrations.

P (1) =

1
2

1 3
2 4

1 3
2

1

P (2) =

2
1 3

2 4
1 3

2
1

P (3) =
3

2 4
1 3

2
1

P (4) = 4
3

2
1

Recall that each number j represents a basis element of the K-vector space ejP (i),
that is a path in Q from i to j. Thus each column in P (i) contains all the paths in Λ4

starting at i and terminating at j. Therefore, the dimension of ejP (i) equals the number
of elements of the j-column. We will prove that the basis elements of each P (i) only
depend on their length and on the target vertex (cf. Theorem 3.2.8). In order to justify
that we have the above radical filtrations, we first define the following sets of paths in
Q.
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Definition 3.2.1. Let k, j, i ∈ Q0. We denote by (k, j, i) the shortest path in Q from i
to k of the form

i
• · · · j

• · · · k
• .

For fixed i ∈ Q0, let Pi := {(k, j, i) | k, j ∈ Q0}.

Notation. If ω is a path in Q, we will denote by [ω] its corresponding class in Λ, and
by `(ω) its length.

Lemma 3.2.2. The length of (k, j, i) is |j − k|+ |j − i|.

Proof. Straightforward.

For example,

(3, 1, 2) = a2a1b1 = 2 1 2 3
b1 a1 a2 and `(3, 1, 2) = 3.

A priori, all the basis elements of Λ lay in
⋃
i∈Q0

Pi, because their length is bounded
by 2n− 1. Indeed, by Corollary 3.2.11 the path (1, n, 1) has maximum length 2n− 2 in
Λ.

Thus, for fixed i ∈ [n], it is natural to consider the following array of the paths
(k, j, i), where the column k contains the paths starting at i and ending at k. To be
more precise, in the row j of the column k lays the element (k, j, i).

(1, n, i)

(k − 1, n, i)

(k, n, i)

(k + 1, n, i)

(1, 1, i)

(n, n, i)

(n, 1, i)

(k − 1, 1, i)

(k − 1, j − 1, i)

(k − 1, j, i)

(k − 1, j + 1, i)

(k, 1, i)

(k, j − 1, i)

(k, j, i)

(k, j + 1, i)

(k + 1, 1, i)

(k + 1, j − 1, i)

(k + 1, j, i)

(k + 1, j + 1, i)

(1, j + 1, i)

(1, j, i)

(1, j − 1, i)

(n, j − 1, i)

(n, j, i)

(n, j + 1, i)

The following result characterizes all the paths in
⋃
i∈Q0

Pi.

Lemma 3.2.3. Let k, j, i ∈ Q0.

(a) (i, i, i) = εi is the trivial path at vertex i.

(b) If k ≤ j ≤ i with i 6= k, then (k, j, i) = bk · · · bi−1.
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(c) For 1 ≤ k ≤ n− 1 and max{k + 1, i+ 1} ≤ j ≤ n, we have

(k, j, i) = bk · · · bj−1aj−1 · · · ai =
i
• · · · j

• · · · k
•

ai aj−1 bj−1 bk .

(d) If k ≥ j ≥ i with i 6= k, then (k, j, i) = ak−1 · · · ai.

(e) For 2 ≤ k, i and 1 ≤ j ≤ min{k − 1, i− 1}, we have

(k, j, i) = ak−1 · · · ajbj · · · bi−1 =
i
• · · · j

• · · · k
•

bi−1 bj aj ak−1
.

(f) (k, k, i) = (k, i, i).

Proof. (a) Straightforward.

(b) and (d) follow from the fact that if 1 ≤ i < j ≤ n, then the shortest path in Q
from i to j is

i
•

i+1
• · · · j

•
ai ai+1 aj−1

,

and the shortest path from j to i in Q is

i
•

i+1
• · · · j

•
bi bi+1 bj−1

.

The conditions in (c) imply that i < j > k, and the conditions in (e) imply that
1 > j < k. Then in both cases apply (b) and (d), from where (c) and (e) follow. Finally,
(f) shows two different labellings for the same path.

Now we define the following sets.

A = {(i, i, i)}
B = {(k, j, i) | k ≤ j ≤ i, k 6= i}
C = {(k, j, i) | k 6= n, max{k + 1, i+ 1} ≤ j ≤ n}
D = {(k, j, i) | k ≥ j ≥ i, k 6= i}
E = {(k, j, i) | k 6= 1, 1 ≤ j ≤ min{k − 1, i− 1}}.

Note that each set corresponds to the elements described in Lemma 3.2.3. It is easy to
see that those sets are pairwise disjoint. Thus, we get a partition of Pi for each i ∈ Q0

Pi = A t B t C t D t E (3.2.1)

where B = E = ∅ for i = 1, and C = D = ∅ for i = n. The following diagram
describes this partition. Recall that all those elements lie in KQ.
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(1, 1, i)

(1, i, i)

(1, i+ 1, i)

(1, n, i)

(2, 1, i)

(i− 1, i− 1, i)

(i− 1, i, i)

(i, i− 1, i)

(i, i, i)

(i, i+ 1, i)

(i+ 1, i, i)

(i+ 1, i+ 1, i)

(n− 1, n, i)

(n, 1, i)

(n, i− 1, i)

(n, n, i)

(n, i, i)

B

C

D

E

Proposition 3.2.4. Let ω a path from i to j in Q. Then `(ω) ≡ |j − i| mod 2.

Proof. Induction on `(ω) = l. If l = 0, then j = i, i.e. ω = εi, thus |j − i| = 0 = `(ω).

Now let l > 0 and α ∈ Q1 starting at j, so e(α) = j ± 1. Then `(αω) = l + 1, and
by induction `(ω) ≡ |j − i| mod 2. Therefore `(αω) = 1 + `(ω) ≡ 1 + |j − i| mod 2.
Set m := j − i, so we have to prove that 1 + |m| ≡ |e(α) − i| mod 2. If m ≥ 1 and
e(α) = j + 1, then 1 + |m| − |m + 1| = 0. The other cases are similar. This completes
the induction.

Corollary 3.2.5. Let i, j ∈ Q0. Then i and j have the same parity if and only if any
path from i to j has even length.

Proof. Follows directly from Proposition 3.2.4.

Remark 3.2.6. Let ω be a path in Q of length l > 2n− i− j. By Corollary 3.2.5, if i, j
have the same parity, then 2n− i− j and l are even. Therefore, the least possible value
for l is 2n− i− j + 2. We conclude the same if i, j have different parity.

For example,

ηj :=

{
(j, j + 1, j)(j, n, i) = bj aj bj · · · bn−2 bn−1 an−1 · · · ai if j 6= n

(n, n− 1, n)(n, n, i) = an−1 bn−1 an−1 · · · ai if j = n

is a path of length `(j, j + 1, j) + `(j, n, i) = 2n− i− j + 2.

Lemma 3.2.7. Let 1 ≤ j ≤ n− 1 and s, t ≥ 0 such that j + t+ s ≤ n− 2. Then

[aj+s · · · ajbj · · · bj+t] = [bj+s+1 · · · bj+t+s+1aj+t+s+1 · · · aj+t+1],

i.e. [j + s+ 1 , j , j + t+ 1] = [j + s+ 1 , j + s+ t+ 2 , j + t+ 1].
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Proof. Let j be fixed. We proceed by doble induction on (s, t). The case (s, t) = (0, 0)
follows from the definition of Λ. Suppose that the result is true for t = 0 and s ≥ 0, then

[aj+s+1(aj+s · · · aj bj)] = [aj+s+1(bj+s+1 aj+s+1 · · · aj+1)]

= [(bj+s+2 aj+s+2) aj+s+1 · · · aj+1],

i.e. the result holds for (0, s+ 1). Analogously the result holds for (0, t+ 1).
Now suppose that the proposition is true for (s, t+ 1), so by induction we have

[aj+s+1(aj+s · · · aj bj · · ·j+t+1)] = [aj+s+1(bj+s+1 · · · bj+s+t+2 aj+s+t+2 · · · aj+t+2)]

= [(bj+s+2 · · · bj+s+t+3 aj+s+t+3) aj+s+t+2 · · · aj+t+2]

where the last equality follows by applying the change of variable j′ = j + s + 1 and
considering the base case (0, t+ 1), meaning

[aj′ bj′ · · · bj′+t+1] = [bj′+1 · · · bj′+t+2 aj′+t+2],

which shows the result in general.

Theorem 3.2.8. Let ω, ω′ be two paths in Q from i to j with `(ω) = `(ω′). Then
[ω] = [ω′].

Proof. By Lemma 3.2.7 any expression of ω has the same number of aj
′s and bj

′s. And
since ω′ is another path from i to j with the same length as ω, it has the same number
of aj

′s and bj
′s as ω. Thus [ω] = [ω′].

Theorem 3.2.8 shows a complete classification of paths in Q by their length, that is,
any path in Q depends only on the starting and ending vertices and its length. Moreover,
for i, j ∈ Q0 fixed, Proposition 3.2.4 implies that all the possible lengths for a path ω
from i to j are of the form |j − i|+ 2l, for l ≥ 0.

Corollary 3.2.9. Let ω be a path from i to j in Q and l = `(w). Then l > 2n − i − j
if and only if [w] = [0].

Proof. (⇒) Let ηj be the path defined in Remark 3.2.6. It has length 2n− i− j+ 2 and
is the least possible value for l > 2n− i− j. By Lemma 3.2.7, if j 6= n then

[ηj ] = [bj(bj+1 · · · bn−1an−1)bn−1an−1 · · · ai] = [0],

and clearly [ηn] = [0]. In general, if ω has length l = 2n − i − j + 2k for k > 1,
Theorem 3.2.8 shows that for j 6= n

[ω ] = [ (bj aj)
k−1 ηj ],

and [ω] = [(an−1 bn−1)k−1 ηn] if j = n. Thus [ω] = [0].
(⇐) Suppose l ≤ 2n− i− j and [w] = [0]. Then ω ∈ I, and since ω is a monomial we

conclude that
ω = γ an−1bn−1 δ

for some paths γ, δ starting at n, i and ending at j, n respectively. Thus `(γ) ≥ n − j
and `(δ) ≥ n − i, so l = `(γ) + 2 + `(δ) ≥ 2n − j − i + 2, a contradiction. Therefore,
[ω] 6= [0].
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Following Corollary 3.2.9 we give the next definition.

Definition 3.2.10. For i, j ∈ Q0, let m(i, j) = 2n− i− j. Thus m(i, j) is the maximal
length of a path from i to j in Λ.

Corollary 3.2.11. rad2n−1(Λ) = 0.

Proof. We have that m(1, 1) = 2n−2 ≥ m(i, j) for any i, j ∈ Q0. Thus by Corollary 3.2.9,
any path of length ≥ 2n− 1 is zero in Λ.

Now we describe the radical filtration of the indecomposable Λ-projectives. Let
i ∈ Q0. By Corollary 3.2.9 it suffices to consider only paths (k, j, i) in Pi because

`(k, j, i) = |j − k|+ |j − i| ≤ 2(n− 1) = m(1, 1).

Lets analyse the paths described in the partition (3.2.1) of Pi. By Theorem 3.2.8 we
can identify certain labels in Λ, because they have the same length, and same source
and target. For that reason we consider the following refinement of the partition of Pi
given in Eq. (3.2.1).

(1, 1, i)

(1, i− 1, i)

(1, i, i)

(1, i+ 1, i)

(1, n, i)

(2, 1, i)

(2, i+ 1, i)

(n− i, n, i)

(n− i+ 1, 1, i)

(i− 1, i− 1, i)

(i− 1, i, i)

(n− i+ 1, n, i)

(n− i+ 2, 1, i)

(i, i− 1, i)

(i, i, i)

(i, i+ 1, i)

(i+ 1, i, i)

(i+ 1, i+ 1, i)

(n− 1, i− 1, i)

(n− 1, n, i)

(n, 1, i)

(n, i− 1, i)

(n, n− 1, i)

(n, n, i)

(n, i, i)

B2

C2

C1

D1

D2

E2

E1

B1

(3.2.2)

For example, for n = 7 and i = 4 we have the following diagram.
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(1, 7, 4)

(1, 6, 4)

(1, 5, 4)

(1, 4, 4)

(1, 3, 4)

(1, 2, 4)

(1, 1, 4)

(2, 7, 4)

(2, 6, 4)

(2, 5, 4)

(2, 4, 4)

(2, 3, 4)

(2, 2, 4)

(2, 1, 4)

(3, 7, 4)

(3, 6, 4)

(3, 5, 4)

(3, 4, 4)

(3, 3, 4)

(3, 2, 4)

(3, 1, 4)

(4, 7, 4)

(4, 6, 4)

(4, 5, 4)

(4, 4, 4)

(4, 3, 4)

(4, 2, 4)

(4, 1, 4)

(5, 7, 4)

(5, 6, 4)

(5, 5, 4)

(5, 4, 4)

(5, 3, 4)

(5, 2, 4)

(5, 1, 4)

(6, 7, 4)

(6, 6, 4)

(6, 5, 4)

(6, 4, 4)

(6, 3, 4)

(6, 2, 4)

(6, 1, 4)

(7, 7, 4)

(7, 6, 4)

(7, 5, 4)

(7, 4, 4)

(7, 3, 4)

(7, 2, 4)

(7, 1, 4)

(3.2.3)

Now we provide a complete description of this refinement. Compare with (3.2.3)
to have an example in mind. First, for 1 ≤ k < i, the k-column of B is given by
{(k, k + s, i) | s = 0, . . . , i− k} , moreover

`(k, k + s, i) = |k + s− k|+ |k + s− i| = i− k,

thus elements in the same column in B represent the same path in Λ. We take the

paths of the form (k, i, i) as representatives in Λ, and call this set B1 .

For i < k ≤ n, the k-column in D is given by {(k, k − s, i) | s = 0, . . . , k − i}, and

`(k, k − s, i) = |k − s− k|+ |k − s− i| = k − i,

thus elements in the same column of D are labels for a single path in Λ. We take the

paths of the form (k, k, i) as representatives in Λ, call this set D1 .

Let i > 1, and 2 ≤ k ≤ n− 1, then the k-column of E1 is given by

(a) {(k, j, i) | 1 ≤ j ≤ min{k − 1, i− 1}} if k < n− i+ 2,

(b) {(k, j, i) | k − n+ i ≤ j ≤ min{k − 1, i− 1}} if k ≥ n− i+ 2,

and the k-column of C1 is given by

(a’) {(k, j, i) | max{i+ 1, k + 1} ≤ j ≤ k + i− 1} if k < n− i+ 2,

(b’) {(k, j, i) | max{i+ 1, k + 1} ≤ j ≤ n} if k ≥ n− i+ 2.

Thus, for (k, j, i) as in (a) or (b), we have that (k, i+ k− j, i) is a path as in (a’) or (b’)
respectively, and vice versa. Moreover

`(k, j, i) = |j − k|+ |j − i| = `(k, i+ k − j, i),

therefore [k, j, i] = [k, i+ k − j, i]. The correspondence

x = (k, j, i) 7→ ρ(x) := (k, i+ k − j, i)
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is just the reflection over the line through (i, i, i)−(i+2, i+1, i) or (i, i, i)−(i−2, i−1, i)

between the k-columns of E1 and C1 . We choose as representatives in Λ the paths in

C1 . The following diagram describes the reflection ρ.

(1, n, i)

(1, 1, i)

(n, 1, i)

(n, n, i)

(i, i, i)

x

ρ(x)

(i− 2, i− 1, i)

E1

C1

Let i > 1 and n− i+ 2 ≤ k ≤ n, thus k = n− i+ 2 + s for s = 0, . . . , i− 2. Then the
k-column of E2 is given by {(n− i+ 2 + s, j, i) | 1 ≤ j ≤ 1 + s}. Since

`(n− i+ 2 + s, 1 + s, i) = n− s > n− s− 2 = m(n− i+ 2 + s, i)

we conclude that the paths in E2 are zero in Λ.

Finally, the paths in C2 are those who have a unique representative of the form

(k, j, i), for i < n. Identifying all the paths as above, we get a description of the radical
filtration of the indecomposable projectives Λ-modules P (i), for i ∈ [n].

Notation. Let i ∈ Q0. Define ei = [εi]. Thus {e1, . . . , en} is a complete set of orthogonal
primitive pairwise non-isomorphic idempotents of Λ with the natural ordering.

Proposition 3.2.12. Let i ∈ Q0. Then a basis for ΛP (i) = Λei is given by the elements

[1, i, i]

[1, n, i]

[i, i, i]

[i, n, i]

[n, n, i].

Therefore, the column k of the radical filtration of P (i) is given by

[k, 1, i]

[k, 2, i]

[k, 3, i]

[k, n, i]

if k ≤ i, and by

[k, k, i]

[k, k + 1, i]

[k, n, i]

if k > i,
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i.e. P (i) has basis Bi := { [k, j, i] | 1 ≤ k ≤ n, max{i, k} ≤ j ≤ n }. Moreover,

dimK P (i) = (n−i+1)(n+i)
2 .

Proof. It follows identifying the paths of diagram (3.2.2) as in the previous discussions.

Note that for 2 ≤ i ≤ n, we have inclusions

P (i) ↪→ P (i− 1)

given by ω = [k, j, i] 7→ [ω ai−1] = [k, j, i − 1]. Thus, identifying the images of these
inclusions into P (1), we have

P (n) ⊆ P (n− 1) ⊆ · · · ⊆ P (1).

The following technical result will be useful later.

Lemma 3.2.13. If [k, j, i] ∈ Bi and 0 ≤ s ≤ n − j, then [k, j + s, i] factors through
[k, j, i].

Proof. By Theorem 3.2.8 we have

[k, j + s, i] = [(bkak)
s] [k, j, i]

because both elements have the same length 2s+ 2j − k − i.

As a direct consequence of Proposition 3.2.12 we obtain a basis for Λn.

Theorem 3.2.14. Let n ≥ 1. Then a K-basis for Λn is given by

BΛn =
{

[k, j, i] | 1 ≤ k, i ≤ n, max{i, k} ≤ j ≤ n
}
.

The multiplication between basis elements is given by

[k′, j′, i′][k, j, i] =

{
[k′, j′ + j − k, i] if i′ = k and j′ + j − k ≤ n
0 else.

Moreover, dimK AusTn = n(n+1)(2n+1)
6 .

Proof. Suppose that j′ + j − k ≤ n, then `([k′, j′, k][k, j, i]) = 2(j′ + j − k) − k′ − i =
`([k′, j′ + j − k, i]), thus [k′, j′, k][k, j, i] = [k′, j′ + j − k, i].

3.3 A basis of AusTn/(e)

Let Λn = AusTn. Recall that we write (e) := ΛneΛn, for an idempotent e of Λn. In this
section we describe a basis of Λn/(e) using the basis of Λn constructed in Section 3.2. For
the rest of the chapter, let {ei}ni=1

be a complete set of primitive orthogonal idempotents
of Λn given by the paths of length zero. We start giving the following notation.

Notation. Let n ≥ 1. We denote the basis elements of Λn by [k, j, i]n, and we will omit
the subscript if no confusion can arise.
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A first and very important instance is the quotient Λn/(en).

Lemma 3.3.1. Let n ≥ 1, and fn : Λn → Λn−1 be given by

fn([k, j, i]n) :=

{
[k, j, i]n−1 if 1 ≤ k, i,≤ n− 1 and j ≤ n− 1

0 else.

Then fn is a well defined K-algebra surjection, with Ker(fn) = (en). Thus, fn induces
an algebra isomorphism fn : Λn/(en)

∼−→ Λn−1.

Proof. The function fn is well defined by Theorem 3.2.14, and is a ring homomorphism:
let x = [k′, j′, k]n and y = [k, j, i]n be in BΛn , such that xy 6= 0, thus j′ + j − k ≤ n and
xy = [k′, j′+j−k, i]n. We have two cases, if j′+j−k ≤ n−1, then necessarily j, j′ ≤ n−1,
thus fn(xy) = [k′, j′ + j − k, i]n−1 = [k′, j′, k]n−1[k, j, i]n−1 = fn(x)fn(y). The second
case is when j′ + j − k ≥ n, then fn(xy) = 0. If j = n or j′ = n, the fn(x)fn(y) = 0,
so we can assume that j, j′ ≤ n− 1. Then fn(x)fn(y) = [k′, j′, k]n−1[k, j, i]n−1 = 0, since
j′ + j − k ≥ n− 1.

Now let’s show that Ker(fn) = (en). For, let x = [k, j, i] ∈ Ker(fn), then necessarily
j = n, thus x = (k, n, n)en(n, n, i) ∈ (en). Finally, fn(en) = fn([n, n, n]n) = 0, therefore
(en) ⊆ Ker(fn), and the equality holds.

We will focus on the quotient modules P (i)/(e)ei = Λei/ΛeΛei for i ∈ Q0, because
we have an isomorphism of K-modules

Λ

(e)
=

Λe1 ⊕ · · · ⊕ Λen
(e)

∼=
Λe1

(e)e1
× · · · × Λen

(e)en
.

Indeed, let

f : Λe1 ⊕ · · · ⊕ Λen →
Λe1

(e)e1
× · · · × Λen

(e)en
,

be given by

f(λ1e1 + · · ·+ λnen) = (λ1e1 + (e)e1, . . . , λnen + (e)en)

with λi ∈ Λ for all i. Then Ker f = (e), and the claim follows from the first isomorphism
theorem for modules. So, in order to find a basis of Λ/(e), it suffices to find bases for
the modules Λei/(e)ei. The following observation is fundamental in this context.

Lemma 3.3.2. Let A = KQ/I be a bound quiver algebra and B a K-basis of A. If
e = ej1 + · · ·+ ejr is a sum of primitive orthogonal idempotents of A, then

C = {b + (e) | b ∈ B, b does not factor through ejk for all k}

is a basis of A/(e). Therefore, a basis of P (i)/(e)ei is given by

Ci := {b+ (e) | b ∈ Bi, b does not factor through ejk for all k}.

Proof. Follows from the fact that if b ∈ B, then b ∈ (e) if and only if b factors though
some ejk .
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Proposition 3.3.3. Let 1 ≤ k0 < i ≤ n. Then a basis for P = P (i)/(ek0)ei is given by

[i, i, i]

[k0 + 1, i, i]

[n− i+ k0 + 1, n, i]

[n, n, i]
(3.3.1)

Proof. By Lemma 3.3.2 we have to find the elements of Bi that factor through ek0 . It
is clear that [k, k0, i] factors through ek0 for all k ∈ Q0, thus [k, k0, i] = [0] in P. First

consider 1 ≤ k ≤ k0, then [k, k0, i] ∈ B1 , thus [k, k0, i] = [k, i, i] = [0] in P, and since

x := [k, i+ s, i] = [k, i, i][i, i+ s, i], 0 ≤ s ≤ n− i,

because they have the same length, we conclude that x is zero in P.
Now consider k0 + 1 ≤ k ≤ n− i+ k0. We know that [k, k0, i] = [k, i+ k− k0, i], thus

[k, i+ k − k0, i] = [0] in P . But in general, for k < j > i we have that

[k, j + s, i] = [k, j, i][i, i+ s, i], 0 ≤ s ≤ n− j,

thus for j = i+ k − k0 we get that [k, j + s, i] = [0] in P with 0 ≤ s ≤ n− k − i− k0.
It remains to prove that the elements in (3.3.1) do not factor through ek0 . Indeed,

those elements can be parameterized as

y := [k0 + 1 + s+ t, i+ t, i], 0 ≤ s ≤ i− k0 − 1, 0 ≤ t ≤ n− i,

then `(y) = |k0 + 1 + s+ t− i− t|+ |i+ t− i| = |k0 + 1 + s− i|+ t = i−k0−1− s+ t, but

`(k0 + 1 + s+ t, k0, i) = 1 + s+ t+ i− k0

thus the minimal length path starting at i, ending at k0 + 1 + s+ t and passing by k0,
has length greater than any y, therefore y does not factor through ek0 . This completes
the proof.

Corollary 3.3.4. Let 1 ≤ k < i ≤ n. Then a basis for (ek)ei is given by

[1, n, i]

[1, i, i]

[k, i, i]

[n− i+ k, n, i]

Proof. Follows from Propositions 3.2.12 and 3.3.3.

Corollary 3.3.5. Let 1 ≤ k0 < k1 < · · · < kr < i ≤ n. Then

P (i)

(ek0 + ek1 + · · ·+ ekr)ei
=

P (i)

(ekr)ei
= P.
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Proof. It suffices to prove that (ek0 + ek1 + · · · + ekr)ei ⊆ (ekr)ei. From the proof of
Proposition 3.3.3 we have that all the elements of Bi that factor through ek0 are zero in P,
this is equivalent to say that (ek0)ei ⊆ (ekr)ei. Then the result follows by induction.

Proposition 3.3.6. Let 1 ≤ i < j0 ≤ n. Then a basis for P = P (i)/(ej0)ei is given by

[1, i, i]

[1, j0 − 1, i]

[i, i, i]

[j0 − 1, j0 − 1, i]
(3.3.2)

Proof. We proceed as in Proposition 3.3.3: [k, j0, i] factors through ej0 for all k ∈ Q0,
thus [k, j0, i] = [0] in P, therefore [k, j, i] = [0] for all j0 ≤ j ≤ n and 1 ≤ k ≤ n, in
particular for the elements in C . We remain to show that the elements of the four-sided
diagram are non-zero in P. Indeed, the largest path in each column has length

`(k, j0 − 1, i) = 2j0 − k − i− 2 < `(k, j0, i), k < j0,

thus all the elements in (3.3.2) do not factor through ej0 .

Corollary 3.3.7. Let 1 ≤ i < j ≤ n. Then a basis for (ej)ei is given by

[1, n, i]

[1, j, i]

[j, j, i]

[n, n, i]

Moreover, (ej)ei ∼= P (j).

Proof. The description of the basis follows from Propositions 3.2.12 and 3.3.6. Recall
that P (i) ↪→ P (j), so (ej)ei ⊆ P (i) ⊆ P (j), but dimK(ej)ei = dimK P (j), thus the last
assertion also follows.

A very important case is when we consider the idempotent ideal (en). Next we
compute a basis for this ideal using the last result.

Corollary 3.3.8. Let 1 ≤ i ≤ n. Then a basis for (en)ei is given by

[1, n, i]

[n, n, i]

(3.3.3)

Moreover, (en)ei is isomorphic to P (n).

Proof. Fix i ∈ [n]. A basis for (en)ei is just the complement of Eq. (3.3.2), for j0 = n,
in the basis Bi of P (i) (cf. Proposition 3.2.12), and this is given by Eq. (3.3.3). For the
last assertion, the isomporphism is given by [j, n, i] 7→ [j, n, i][i, i, n] = [j, n, n], for any
j ∈ [n].
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Corollary 3.3.9. Let 1 ≤ i < j0 < j1 < · · · < jr ≤ n. Then

P (i)

(ej0 + ej1 + · · ·+ ejr)ei
=

P (i)

(ej0)ei
= P.

Proof. It suffices to prove that (ej0 + ej1 + · · ·+ ejr)ei ⊆ (ej0)ei. In the proof of Propo-
sition 3.3.6 we showed that all the elements of Bi that factor through ej1 are zero in
P , which is equivalent to the fact that (ej1)ei ⊆ (ej0)ei. Then the result follows by
induction.

Proposition 3.3.10. Let 1 ≤ k0 < i < j0 ≤ n. Then a basis for P = P (i)/(ek0 + ej0)ei
is given by

[i, i, i]

[k0 + 1, i, i]

[k0 + j0 − i, j0 − 1, i]

[j0 − 1, j0 − 1, i]
(3.3.4)

Proof. By Lemma 3.3.2, a basis of P is formed by those elements of Bi that do not
factor through ek0 nor through ej0 . By Propositions 3.3.3 and 3.3.6 those elements are
the intersection of (3.3.1) and (3.3.2), and this is just (3.3.4).

Corollary 3.3.11. Let 1 ≤ k < i < j ≤ n. Then a basis for (ek + ej)ei is given by

[1, n, i]

[1, i, i]

[k, i, i]

[k + j − i, j, i]

[j, j, i]

[n, n, i]

Proof. Follows from Propositions 3.2.12 and 3.3.10.

The previous results give us a simple description of bases for the modules

P (i)

(e)ei
,

for e an idempotent in Λ.

Theorem 3.3.12. Let i ∈ Q0.

(a) If i = 1 < j0 < j1 < · · · < js ≤ n, and e = ej0 + · · ·+ ejs, then

P (1)

(e)e1
=

P (1)

(ej0)e1
,

and a basis is given by
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[1, j0 − 1, 1]

[1, 1, 1]

[j0 − 1, j0 − 1, 1]

(b) If 1 ≤ k0 < k1 < · · · < kr < n = i, and e = ek0 + · · ·+ ekr , then

P (n)

(e)en
=

P (n)

(ekr)en
,

and a basis is given by

[kr + 1, n, n]

[n, n, n]

(c) Let 1 ≤ k0 < · · · < kr < i < j0 < · · · < js ≤ n, thus i 6= 1, n. If e := ek0 + · · · +
ekr + ej0 + · · ·+ ejs , then

P (i)

(e)ei
=

P (i)

(ekr + ej0)ei
,

and a basis is given by

[i, i, i]

[kr + 1, i, i]

[kr + j0 − i, j0 − 1, i]

[j0 − 1, j0 − 1, i]

In other words, we have that the shape of P (i)/(e)ei, in either case, depends only on the
neighbour indices of i, i.e. on kr and j0.

Proof. (c) is consequence of Corollaries 3.3.5 and 3.3.9 and Proposition 3.3.10.

3.4 Block decomposition of AusTn/(e)

In this section we find block decompositions of the factor algebras AusTn/(e) for idempo-
tent elements e in Λn and characterise its blocks. The main tool used to find such decom-
positions is a particular version of the Chinese remainder theorem for non-commutative
rings. In general we find a sufficient condition on the set of idempotent ideals of an
algebra that guaranties the existence of a block decomposition as the one that we obtain
for the case of AusTn. We start discussing some properties of idempotent ideals.

Let R a ring and F ⊆ R. Denote by 〈F 〉+ the set of all finite sums of elements of F
union with {0R}.
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In what follows, E = {e1, . . . , en} denotes a complete set of primitive orthogonal
idempotents of a ring R or K-algebra A. It follows for any element e ∈ 〈E〉+ there exists
a unique J ⊆ [n] = {1, . . . , n} such that

e = eJ :=
∑
j∈J

ej ,

where e∅ := 0, i.e. there is a bijection between the power set of [n] and 〈E〉+ given by
J 7→ eJ .

For natural numbers s ≤ t, the set [s, t] := {x ∈ N | s ≤ x ≤ t} is called a discrete
interval. Therefore, if J ⊆ [n] is non-empty, then J can be expressed as disjoint union
of discrete intervals in a unique way:

J = [s1, t1] t · · · t [sr, tr], (3.4.1)

where 1 ≤ r ≤ bn+1
2 c, si ≤ ti for all 1 ≤ i ≤ r, and si+1 − ti ≥ 2 for 1 ≤ i ≤ r − 1. In

this case, define Ji := [si, ti], for 1 ≤ i ≤ r, and we use this notation for the rest of this
section. Note that e[n] = 1R. Moreover, we set Jc := [n] \ J . Thus, eJc = 1R − eJ and

Jc =
r⋂
i=1

Jc
i .

The next result gathers some technical properties of two-sided ideals generated by
idempotent elements.

Lemma 3.4.1. Let R be a ring. Then the following conditions hold.

(a) If e, f ∈ R are orthogonal idempotents, then e + f is an idempotent and (e) ⊆
(e+ f) = (e) + (f). In general this is not a direct sum.

(b) Let E = {e1, . . . , en} be a complete set of primitive orthogonal idempotents of R,
and J and I subsets of [n].

(b0) The product of any two idempotents in 〈E〉+ is idempotent, more precisely,
eJ eI = eJ∩I .

(b1) (eJ∩I) ⊆ (eJ) ∩ (eI) ⊆ (eI). In particular, if J ⊆ I then (eJ) ⊆ (eI).

(b2) J ∩ I = ∅ if and only if eJ , eI are orthogonal. In this case, eJ∪I = eJ + eI is
an idempotent and (eJ∪I) = (eJ) + (eI).

Proof. (a) It is clear that e+ f is idempotent, and since e = (e+ f)e ∈ (e+ f), we have
(e) ⊆ (e+ f). On the other hand, we have (e+ f) ⊆ (e) + (f). For the reverse inclusion
let xey+wfz be in (e) + (f), thus xey+wfz = x(e+ f)ey+wf(e+ f)z ∈ (e+ f), and
the assertion holds. As counterexample for the direct sum consider R = AusT2, then
[1, 2, 1] ∈ (e1) ∩ (e2).

(b0) Since ejei = 0 for all j 6= i and e2
i = ei, then

eJ eI = eJ
∑
i∈I

ei =
∑
i∈I

eJei =
∑
i∈I

(∑
J∈J

ej

)
ei

=
∑

(i,j)∈I×J

ejei =
∑
k∈J∩I

ek = eJ∩I .
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(b1) follows from (b0). The first part of (b2) follows from (b0), because e∅ = 0, and
the last assertion of (b2) is due to (a), considering J ∩ I = ∅.

Next we recall the Chinese remainder theorem for non-commutative rings.

Proposition 3.4.2. Let I1, . . . , Ir be two-sided ideals of a ring R such that Ij + Ik = R
for all j 6= k. Then the map

ϕ : R→ R

I1
× · · · × R

Ir
, r 7→ (r + I1, . . . , r + Ir)

is a ring surjection such that Kerϕ =
⋂r
i=1 Ii.

The following result is a less general version of the Chinese remainder theorem,
adapted to our purposes when we consider ideals generated by idempotent elements.

Corollary 3.4.3. Let J =
⊔r
i=1 Ji ⊆ [n]. Then the correspondence

ϕJ : R→ R

(eJc
1
)
× · · · × R

(eJc
r
)
, r 7→ (r + (eJc

1
), . . . , r + (eJc

r
))

is a surjective ring homomorphism with KerϕJ =
⋂r
i=1(eJc

i
).

Proof. Follows from Proposition 3.4.2, since 1R ∈ (eJc
i
) + (eJc

j
) for all i 6= j.

We will find a description of KerϕJ for algebras satisfying certain conditions. Some
results that we have proven for the alegbra AusTn motivate the following lemma.

Lemma 3.4.4. Let A be an algebra with n simples, and E = {e1, . . . , en} a complete set
of primitive orthogonal idempotents of A satisfying the following property: for i ∈ [n],
and any subsets K = {k0, . . . , kl} and L = {l0, . . . , lm} of [n] with 1 ≤ k0 < · · · < kl <
i < l0 < · · · < lm ≤ n, the following conditions (I) and (II) hold:

(I) If i ≤ n then (eK)ei = (ekl)ei,

(II) If 1 ≤ i then (eL)ei = (el0)ei.

Then, if J =
⊔r
i=1 Ji ⊆ [n], we have that (eJc) =

⋂r
i=1(eJc

i
).

Proof. First note that (eK + eL)ei = (ekl + el0)ei. Indeed, clearly I ∩ J = ∅, thus
by Lemma 3.4.1 (a) (eK + eL) = (eK) + (eL), thus by (I) and (II) (eK + eL)ei =
(eK)ei + (eL)ei = (ekl)ei + (el0)ei = ((ekl) + (el0))ei = (ekl + el0)ei.

By Lemma 3.4.1 (b1), we have (eJc) = (e⋂r
i=1 J

c
i
) ⊆

⋂r
i=1(eJc

i
). Now we show the

reverse inclusion. For, let x ∈
⋂r
i=1(eJc

i
), and a ∈ [n]. If a ∈

⋂r
i=1 J

c
i = Jc, then

xea ∈ (eJc). Now suppose a 6∈
⋂r
i=1 J

c
i = Jc ⇔ a ∈ J , thus there exists i0 ∈ [r] such that

a ∈ Ji0 . We have three cases: i0 ∈ {1, r} or 1 < i0 < r.
First suppose i0 = 1. Thus a ∈ J1 = [s1, t1]. We have three subcases. If s1 = 1

and t1 < n, then t1 + 1 ∈ Jc, otherwise t1 + 1 ∈ J which is a contradiction. Thus
Jc

1 = [t1 +1, n] and a < t1 +1. In particular xea ∈ (eJc
1
)ea ⊆ (et1+1)ea ⊆ (eJc)ea ⊆ (eJc),

where the first and second inclusions follow from (II) and Lemma 3.4.1 (b1) respectively.
If 1 < s1 ≤ a ≤ t1 < n, then s1 − 1, t1 + 1 ∈ Jc. Thus Jc

1 = [1, s1 − 1] t [t1 + 1, n],
and as before we have xea ∈ (eJc

1
)ea ⊆ (es1−1 + et1+1)ea ⊆ (eJc)ea ⊆ (eJc), but now

using the first claim in this proof. Finally, if t1 = n, then J = J1 and the claim is
trivial. Similar arguments, using also the property (I), show the other two remaining
cases, which completes the proof.
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Note that Lemma 3.4.4 depends on the ordering of the set E of idempotents, i.e. it
could happen that if we reorder the elements of E, then the requested property could
not hold. Thus, we are interested in some order of the set of idempotents where the
requested property actually holds, if it exits.

Theorem 3.4.5. Let A be a K-algebra satisfying the property in Lemma 3.4.4 for some
complete set of pairwise orthogonal idempotents E = {e1, . . . , en}, J =

⊔r
i=1 Ji ⊆ [n],

and πJ : A→ A/(eJc) the canonical projection. Then the map

ϕJ :
A

(eJc)

∼−−→ A

(eJc
1
)
× · · · × A

(eJc
r
)
,

given by ϕ(πJ(a)) := ϕJπJ(a) is a K-algebra isomorphism.

Proof. The ring surjection ϕJ is K-linear by componentwise scalar multiplication. Then
the theorem is consequence of Corollary 3.4.3 and Lemma 3.4.4.

Corollary 3.4.6. Let Λn = AusTn, E = {[i, i, i] | i ∈ [n]} with the canonical oder, and
J =

⊔r
i=1 Ji ⊆ [n]. Then

ϕJ :
Λn

(eJc)

∼−−→ Λn
(eJc

1
)
× · · · × Λn

(eJc
r
)
,

given as in Theorem 3.4.5, is a K-algebra isomorphism.

Proof. By Theorem 3.4.5, it is enough to show that Λn satisfies the property given in
Lemma 3.4.4 for E. Indeed, the inclusions ⊆ of (I) and (II) were shown in the proofs of
Corollaries 3.3.5 and 3.3.9 respectively, the reversed inclusions follow from Lemma 3.4.1
(b1).

Let Λn = AusTn. We finish this section with the following result that plays an
important role when computing homological embeddings for Λn. To avoid confusions, if
e ∈ Λn is an idempotent, we use the notation 〈e〉 = ΛneΛn.

Proposition 3.4.7. Let 1 ≤ i ≤ n. Then 〈ei + · · ·+ en〉 is a projective left Λn-module.

Proof. We have

〈ei + · · ·+ en〉 = 〈ei + · · ·+ en〉(e1 + · · ·+ en) ∼=
n⊕
i=1

Λn(ei + · · ·+ en)Λnei

= 〈ei〉e1 ⊕ · · · ⊕ 〈ei〉ei−1 ⊕ P (i)⊕ · · · ⊕ P (n),

where the last equality holds since Λn satisfies the property in Lemma 3.4.4. From
Corollaries 3.3.7 and 3.3.8 we have that this is a direct sum of projective Λn-modules.

3.5 Preprojective algebras of type An

We will prove that some blocks of AusTn/(e) are isomorphic to preprojective algebras of
type An. In this section we define such algebras and find a basis of its indecomposable
projective modules.
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Definition 3.5.1. For n ≥ 2, let An be the quiver

1
•

2
• · · · n

•
b1 b2 bn−1

of Dynkin type An. Let Π = Πn = P(An) be the preprojective algebra of type An. Thus
Π = KAn/J, where the double quiver An of An is the following:

1
•

2
• · · · n

•
a1 a2

b1 b2

an−1

bn−1

and the ideal J is generated by b1a1, an−1bn−1, and aibi − bi+1ai+1 for 1 6 i 6 n− 2.

We will describe a basis for the preprojective algebra Π using what we have done so
far, but first note that Π is quotient of Λ = AusTn. Indeed, recall that Λ = KQ/I, and
denote by π : KQ → Λ the canonical projection. Consider the ideal b := ([b1a1]) + I in
Λ. Thus by the (Noether) correspondence theorem we have that

Λ

b
∼=

KQ
π−1(b)

,

but π−1(b) = J. Therefore Λ/b ∼= Π. So, in order to find a basis of Π, it is enough to get
a basis of Λ/b, and this is equivalent to find bases for the projectives Λei/bei = P (i)/bei,
with 1 ≤ i ≤ n.

Proposition 3.5.2. Let 1 ≤ i ≤ n, then a basis for P (i)/bei = Πei is given by

[i, i, i]

[1, i, i]

[n− i+ 1, n, i]

[n, n, i]
(3.5.1)

Proof. Fix i ∈ {1, . . . , n}. As before, we have to show that the elements in (3.5.1) are
those elements in the basis Bi of P (i) that do not factor through b1a1. In what follows
we will use Lemma 3.2.7 without mentioning it.

First consider the elements below the diagonal [1, i, i]− [n− i+1, n, i] (see diagram in
Proposition 3.2.12). Those elements are parameterized by [k, i+k, i] with 1 ≤ k ≤ n− i.
It is clear that [1, 2, 1] factors through b1a1, so consider i = 1 and 1 < k ≤ n− 1. Then,

[k, k + 1, 1] = [(bkak · · · a2)a1] = [(ak−1 · · · a1b1)a1].

Now let i > 1. If k = 1, then

[1, i+ 1, i] = [b1(b2 · · · biai)] = [b1(a1b1 · · · bi−1].

So, if k > 1 we get

[k, i+ k, i] = [bk(bk−1 · · · bi+k−1ai+k−1 · · · ai)] = [bk(ak · · · a1b1 · · · bi−1)]

= [(bkak · · · a2)a1b1 · · · bi−1] = [(ak−1 · · · a1b1)a1b1 · · · bi−1].
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Thus by Lemma 3.2.13 all the elements below this diagonal factor through b1a1. So, lets
show that the diagonal elements do not factor through b1a1. Indeed, these elements are
parameterized by [k, i + k − 1, i] for 1 ≤ k ≤ n − i + 1. We proceed by induction on
k. For [1, 1, 1] the assertion is trivial, so consider i > 1 and k = 1. Then the claim is
also clear for [1, i, i] = [b1 · · · bi−1]. By induction, suppose that for k > 1 the element
η = [k − 1, i+ k − 2, i] does not factor through b1a1. If

[k, i+ k − 1, i] = [ak−1η] = [ak−1bk−1 · · · bi+k−3ai+k−3 · · · ai]

factors through b1a1, then the only possibility to find such a factorization is when

[ak−1bk−1] = [bkak] = [b1a1]

because η does not admit the sequence b1a1 in any expression. Thus k = 1, a contradic-
tion. Therefore [k, i+ k − 1, i] does not factor through b1a1.

In the proof of Proposition 3.3.3 we showed that the remaining elements of (3.5.1)
do not factor through e1, thus they cannot factor through b1a1. Thus the result follows
in general.

Corollary 3.5.3. Let 1 ≤ i ≤ n− 1, then a basis for bei ⊆ Λn is given by

[1, n, i]

[1, i+ 1, i]

[n− i, n, i]

and ben = 0. Thus the elements [k, j, i] ∈ b are characterised by i ∈ [1, n−1], k ∈ [1, n−i]
and k + i ≤ j ≤ n.

In order to distinguish the basis elements of Λ and Π, we will use the notation Jk, j, iK
for basis elements of Π. Thus, we can state the following result.

Theorem 3.5.4. Let n ≥ 1. Then a K-basis for Πn is given by

BΠn =
{
Jk, j, iK | 1 ≤ k, i ≤ n, max{i, k} ≤ j ≤ min{k + i− 1, n}

}
.

The multiplication between basis elements is given by

Jk′, j′, i′KJk, j, iK =

{
Jk′, j′ + j − k, iK if i′ = k and j′ + j − k ≤ min{k′ + i− 1, n}
0 else.

Proof. Follows from Theorem 3.2.14 and Proposition 3.5.2

3.6 Blocks of AusTn/(e)

Let Λn = AusTn. In what follows we characterise the blocks of the block decomposition
of Λn/(e) given in Section 3.4. It turns out that those blocks are isomorphic to AusTm
or Πm, for some m ∈ N+. We start observing an important property of the morphisms
fi : Λi → Λi−1 defined at the beginning of Section 3.3.
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Lemma 3.6.1. Let 1 ≤ m ≤ n and fi : Λi → Λi−1 the function defined in Lemma 3.3.1.
Then the composite fm · · · fn : Λn → Λm−1 has kernel 〈em + · · ·+ en〉.

Proof. Let x = [k, j, i]n ∈ Ker(fm · · · fn), then there exists m0 ∈ N, with m ≤ m0 ≤ n,
such that j ≥ m0, otherwise j ≤ m − 1, so fm · · · fn(x) = [k, j, i]m−1 6= 0, which is a
contradiction. Thus, by Lemma 3.4.1 x ∈ 〈ej〉 ⊆ 〈em + · · ·+ en〉, since m ≤ m0 ≤ j ≤ n.
For the converse, set [j]i := [j, j, j]i = ej ∈ Λi, for 1 ≤ j ≤ i ≤ n, then, since fi([i]i) = 0
for all i, we have

fm · · · fn([m]n + · · ·+ [n]n) = fm · · · fn−1([m]n−1 + · · ·+ [n− 1]n−1)

= · · · = fm([m]m) = 0.

Therefore 〈em + · · ·+ en〉 ⊆ Ker(fm · · · fn).

The following technical result is used in the proof of Theorem 3.6.3.

Lemma 3.6.2. Let 1 < s ≤ t < n and J = [s, t]. If x := [k, j, i] ∈ Λn, then the following
conditions hold.

(a) x ∈ (eJc) if and only if

(i) i ∈ Jc, or

(ii) i ∈ J and k ∈ Jc, or

(iii) i, k ∈ J and min{i+ k − s+ 1, t+ 1} ≤ j.

(b) x 6∈ (eJc) if and only if i, k ∈ J and j ≤ min{i+ k − s, t}.

Proof. (b) Let i, k ∈ J , then x 6∈ (eJc) if and only if x is a basis element of P (i)/(eJc)ei,
but by Theorem 3.3.12 (c) those elements are characterised by j ≤ min{i+ k − s, t}.

(a) Follows from (b), since the conditions are dual.

Theorem 3.6.3. Let J = [s, t] ⊆ {1, . . . , n}, and m := t− s+ 1. Then

Λn
(eJc)

∼=


0 if J = ∅,
Λm=t if s = 1,

Πm if s > 1.

as K-algebras. If m = 1 we identify Λ1
∼= S(t) ∼= Π1

∼= K.

Proof. Let A := Λn/(eJc). The case J = ∅ is trivial, so we can assume J 6= ∅. If m = 1,
we have that J = {t}, thus the algebra A has only one primitive idempotent, namely et.
Therefore A ∼= K · et ∼= K.

Now let 1 < m = n. Then J = [1, n], thus (eJc) = 0, and A = Λn. So we can assume
1 < m < n. If s = 1 then m = t and eJc = et+1 + · · ·+ en. Therefore, by Lemma 3.6.1

ψ := ft+1 . . . fn :
Λn

(eJc)
→ Λt

is an isomorphism of rings, where fi : Λi → Λi−1 is defined in Lemma 3.3.1.
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Now let s > 1, then t ≤ n. If t < n, then Jc = [1, s− 1] t [t+ 1, n], and we define a
function

ψ = ψJ :
Λn

(eJc)
→ Λm

(b1a1)
= Πm

given, for [k, j, i]n ∈ Λn, by

ψ([k, j, i]n + (eJc)) :=

{
[k − s+ 1, j − s+ 1, i− s+ 1]m + (b1a1) if s ≤ k, i ≤ t, j ≤ t
0 else.

It is clear that ψ is well defined, since [k, j, i]n + (eJc) = [k′, j′, i′]n + (eJc)⇔ [k, j, i]n =
[k′, j′, i′]n or [k, j, i]n, [k

′, j′, i′]n ∈ (eJc).
Now, we prove that ψ is a ring homomorphism. For, let y = [k′, j′, j]n, x = [k, j, i]n

be in Λn. Write x := x + (eJc). Then yx = [k′, j′ + j − k, i]n, considering yx = 0 if
j′ + j − k > n. Thus,

ψ(yx) = [k′ − s+ 1, j′ + j − k − s+ 1, i− s+ 1]m + (b1a1)

if s ≤ k′, i ≤ t and j′ + j − k ≤ t, and ψ(yx) = 0 else,

ψ(y) :=

{
[k′ − s+ 1, j′ − s+ 1, k − s+ 1]m + (b1a1) if s ≤ k′, k ≤ t and j′ ≤ t,
0 else,

ψ(x) :=

{
[k − s+ 1, j − s+ 1, i− s+ 1]m + (b1a1) if s ≤ k, i ≤ t and j ≤ t,
0 else.

We can distinguish two cases (a) and (b).
(a) yx = 0 ⇔ j′ + j − k > n or yx ∈ (eJc). In the first instance, if s ≤ k′, k, i ≤ t

and j′, j ≤ j, then ψ(y)ψ(x) = [k′ − s + 1, j′ + j − k − s + 1, i − s + 1]m = 0, since
j′ + j − k − s + 1 > n − s + 1 > t − s + 1 = m; if the latter conditions do not hold,
then ψ(y) = 0 or ψ(x) = 0, thus their product is zero. For the second instance, by
Lemma 3.6.2, yx ∈ (eJc) if and only if one of the following three conditions hold:

(i) i ∈ Jc, or

(ii) i ∈ J and k′ ∈ Jc, or

(iii) i, k′ ∈ J and min{i+ k′ − s+ 1, t+ 1} ≤ j′ + j − k.

Then, (i) implies ψ(x) = 0, (ii) implies ψ(y) = 0, and (iii) implies in particular that
j′+ j − k− s+ 1 > t− s+ 1 = m, thus ψ(y) = 0 or ψ(x) = 0 or ψ(y)ψ(x) = 0. In either
case (i),(ii) or (iii), we have ψ(y)ψ(x) = 0.

(b) By Lemma 3.6.2, yx 6= 0⇔ yx 6∈ (eJc)⇔ i, k′ ∈ J and j′+j−k ≤ min{i+k′−s, t}.
In particular, these conditions imply j′, j ≤ t and

ψ(yx) = [k′ − s+ 1, j′ + j − k − s+ 1, i− s+ 1]m + (b1a1).

Thus, if k ∈ J , then ψ(y)ψ(x) = ψ(yx). On the other hand, k ∈ Jc cannot occur,
otherwise x ∈ (eJc), which implies yx = 0, a contradiction. This shows that ψ is a ring
homomorphism.
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Moreover, we have decompositions

Λn
(eJc)

∼=
Λnes

(eJc)es
× · · · × Λnet

(eJc)et
, and

Λm
(b1a1)

∼=
Λme1

(b1a1)e1
× · · · × Λmem

(b1a1)em

as Λn-modules. But Theorem 3.3.12 and Propositions 3.3.10 and 3.5.2 show that the
correspondence

Λnei
(eJc)ei

=
Λnei

(es−1 + et+1)ei
−→ Λmei−s+1

(b1a1)ei−s+1

given by

[k, j, i]n + (eJc)ei 7→ [k − s+ 1, j − s+ 1, i− s+ 1]m + (b1a1)ei−s+1,

is bijective for all i ∈ J = [s, t]. This proves that ψ is a bijection, thus a ring isomorphism.

Finally, if t = n, then Jc = [1, s− 1], and similar arguments as before show that the
function

ψ = ψJ :
Λn

(eJc)
−→ Λm

(b1a1)
= Πm

given, for [k, j, i]n ∈ Λn, by

ψ([k, j, i]n + (eJc)) :=

{
[k − s+ 1, j − s+ 1, i− s+ 1]m + (b1a1) if s ≤ k, i,
0 else,

is a ring isomorphism. This completes the proof of the theorem.

Corollary 3.6.4. Let J ⊆ {1, . . . , n}. Then the blocks of the factor algebra Λn/(eJc) are
isomorphic to Λr or Πt, for some 1 ≤ r, t ≤ n.

Proof. Follows from Corollary 3.4.6 and Theorem 3.6.3.

Now we are able to prove that Λn admits a unique heredity chain using some results
of the previous sections.

Lemma 3.6.5. The ideal (en) is a heredity ideal of Λn.

Proof. By Lemma 2.2.3 (en) is an idempotent ideal, and Proposition 3.4.7 shows that
it is a projective Λn-module. Finally, enΛnen ∼= enP (n) ∼= K · en ∼= S(n) because
the only element in the basis of P (n) with target n is [n, n, n] = en. Thus, enΛnen is
semisimple.

Proposition 3.6.6. Let n ≥ 0. Then Λn is quasi-hereditary, with unique heredity chain

0 ⊆ (en) ⊆ (en−1 + en) ⊆ · · · ⊆ (e1 + · · ·+ en) = Λn. (3.6.1)

Proof. By induction on n, we construct a sequence of surjective ring morphisms fi : Λi →
Λi−1, such that Ker(fi) is a heredity ideal. The cases n = 0, 1 are trivial, so consider
n > 1. By induction there is a sequence of surjective ring homomorphisms

Λn−1
fn−1−−−→ Λn−2

fn−2−−−→ · · · f2−→ Λ1
f1−→ Λ0 = 0
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such that Ker(fi) is a heredity ideal, for 1 ≤ i ≤ n− 1. By Lemma 3.3.1, there exists a
surjective ring morphism fn : Λn → Λn−1, with Ker(fn) = (en), which is a heredity ideal
by Lemma 3.6.5. This proves that Λn is quasi-hereditary for all n ≥ 0.

In order to prove that (3.6.1) is a heredity chain, it is enough to show that for
1 ≤ m ≤ n, Ker(fm · · · fn) = 〈em+ · · ·+en〉, but this follows from Lemma 3.6.1. Finally,
if we show that (en) is the unique heredity ideal of the form 〈e〉, for some primitive
idempotent e ∈ Λn , then it follows by induction that (3.6.1) is unique. Indeed, this holds,
since for 1 ≤ i ≤ n−1, we have that [i, i+1, i] ∈ ei rad(Λn)ei ⊆ 〈ei〉 rad(Λn)〈ei〉 6= 0.

3.7 Homological embeddings in modAusTn

In this section we assume that K is an algebraically closed field. Set Λn = AusTn. The
aim of this section is to compute homological embeddings between Serre subcategories
of mod Λn, using the block decompositions obtained in Section 3.4 and the classification
of homological embeddings over preprojective algebras of type An found in [Mar17]. Our
proof uses the language of homological ring epimorphisms.

Recall that if R is a ring, we fix E = {e1, . . . , en} a complete set of primitive orthog-
onal idempotents of R. If J ⊆ I ⊆ [n], then the embedding

ιJ,I : modR/(eJc) ↪→ modR/(eIc)

is given by restriction of scalars, i.e. ιJ,I := (πI,J)∗, see Section 2.3.

Proposition 3.7.1. The embedding ι[n−1],[n] : mod Λn/(en) ↪→ mod Λn is homological.

Proof. From Proposition 3.4.7 we know that (en) ⊆ Λn is projective. Then the result
follows by Lemma 1.5.2.

Corollary 3.7.2. Let n ≥ 1. The morphism fn : Λn → Λn−1 is a homological ring
epimorphism. Thus, for any 1 ≤ m ≤ n, the composite fm · · · fn : Λn → Λm−1 is a
homological ring epimorphism as well.

Proof. By Proposition 3.7.1 ι[n−1],[n] = (π[n],[n−1])∗ is a homological embedding, i.e.
π[n],[n−1] is a homological ring epimorphism (cf. Remark 2.3.1). From Lemma 3.3.1 we

have that fn induces an isomorphism fn : Λn/(en)
∼→ Λn−1, and it is easy to see that

fn = fnπ[n],[n−1], thus fn is a homological ring epimorphism by Lemma 1.5.8 (a). The
last assertion follows by induction.

The next theorem due to Marks will help us to prove that there are no non-trivial
homological embeddings into mod Πn, with Πn the preprojective algebra of type An.

Theorem 3.7.3 ([Mar17, Thm. 6.2]). Suppose K is an algebraically closed field. Let
A be a preprojective algebra of Dynkin type and F : modB → modA be a homolog-
ical embedding that is neither zero nor an equivalence. Then A must be of type An
1
•

2
• · · · n

• for n ≥ 2 and the algebra B is Morita equivalent to K. In fact,
for each n ≥ 2 there are precisely two such choices for F , up to equivalence, which corre-
spond to the Weyl group elements sn−1(sn−2sn−1) · · · (s1s2 · · · sn−1) and sn(sn−1sn) . . .
(s2s3 · · · sn), respectively.
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Corollary 3.7.4. Let Πn be the preprojective algebra of type An. If ι : modB → mod Πn

is a homological embedding given by restriction of scalars, then ι is zero or an equivalence.

Proof. Suppose that ι is neither zero nor an equivalence. Then Theorem 3.7.3 implies
that B necessarily is Morita equivalent to K, and the essential image of ι is add(ΠnP (1))
or add(ΠnP (n)), in either case ι is not given by restriction of scalars, a contradiction.
Hence, ι is zero or an equivalence.

Corollary 3.7.5. Let J = [s, t] ( I = [r, u] ⊆ [n], such that 1 6∈ J . Then the embedding
ιJ,I : mod Λn

(eJc ) → mod Λn
(eIc ) is not homological.

Proof. If 1 ∈ I, then by Theorem 3.6.3 Λn/(eJc) ∼= Πt−s+1 and Λn/(eIc) ∼= Λu−r+1,
thus gl.dim Λn/(eJc) =∞ and gl.dim Λn/(eIc) = 2. Therefore, ιJ,I is not a homological
embedding.

If 1 6∈ I, Theorem 3.6.3 implies Λn/(eJc) ∼= Πt−s+1 and Λn/(eIc) ∼= Πu−r+1. Thus,
since J 6= I the embedding ιI,J , induced by restriction of scalars by πI,J , is not zero nor an
equivalence. Hence, Corollary 3.7.4 implies that ιI,J is not a homological embedding.

The next technical results will be used to characterise the homological embeddings
between Serre subcategories of mod Λn.

Lemma 3.7.6. Let J = [s, t] ⊆ I = [r, u] ⊆ [n] such that 1 6∈ I. Set p := u − r + 1,
m := t− s+ 1 and q := s− r. Then the correspondence

γ = γI,J :
Λu−r+1

(b1a1)
−→ Λt−s+1

(b1a1)

given by

γ([k, j, i]p+(b1a1)) =

{
[k − q, j − q, i− q]m + (b1a1) if k, i ∈ [q + 1, q +m], j ≤ q +m,

0 else,

is the composite ψJ ◦ πI,J ◦ ψ−1
I . Therefore, γ is a K-algebra surjection.

Proof. Let J and I be as in the hypothesis. In the proof of Theorem 3.6.3 we defined
an isomorphism ψI : Λn/(eIc) → Λu−r+1/(b1a1), with inverse ψ−1

I : Λu−r+1/(b1a1) →
Λn/(eIc) given by [k, j, i]p + (b1a1) 7→ [k+ r− 1, j + r− 1, i+ r− 1]n + (eIc). Therefore,

ψJ ◦ πI,J ◦ ψ−1
I ([k, j, i]p + (b1a1)) = ψJ ◦ πI,J([k + r − 1, j + r − 1, i+ r − 1]n + (eIc))

= ψJ([k + r − 1, j + r − 1, i+ r − 1]n + (eJc))

= [k + r − s, j + r − s, i+ r − s]t−s+1 + (b1a1)

= γ([k, j, i]p + (b1a1)).

Thus, the diagram

Λn
(eIc)

Λn
(eJc)

Λu−r+1

(b1a1)

Λt−s+1

(b1a1)

πI,J

ψJo

γ

ψ−1
I
o

commutes, proving the lemma.
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Lemma 3.7.7. Let J ( I ⊆ [n], such that J = [s, t] and I = [r, u]. Then Ic ( Jc, and
the following holds.

(a) If 1 ∈ J (thus 1 = s = r) there is a commutative diagram

Λn
(eIc)

Λn
(eJc)

Λu Λt

fu+1···fn

πI,J

ft+1···fn
ft+1···fu

(3.7.1)

(b) If 1 6∈ I (thus 1 6∈ J) there is a commutative diagram

Λn
(eIc)

Λn
(eJc)

Πu−r+1 Πt−s+1

πI,J

ψI ψJ

γI,J

(3.7.2)

Proof. (a) Let λ ∈ Λn. Then

ft+1 · · · fu ◦ fu+1 · · · fn(λ+ (eIc)) = ft+1 · · · fu(fu+1 · · · fn(λ+ (eIc)))

= ft+1 · · · fu(fu+1 · · · fn(λ)) = ft+1 · · · fn(λ)

= ft+1 · · · fn(λ+ (eJc)) = ft+1 · · · fn(πI,J(λ+ (eIc))

= ft+1 · · · fn ◦ (πI,J)(λ+ (eIc)).

(b) Follows from Lemma 3.7.6, since γI,J ◦ψI = ψJ ◦ πI,J ◦ψ−1
I ◦ψI = ψJ ◦ πI,J .

Let J ( I ⊆ {1, . . . , n}. Thus we can write them uniquely, up to permutation, as
disjoint union of discrete intervals J =

⊔l
j=1 Jj and I =

⊔m
i=1 Ii, with Jj = [sj , tj ] and

Ii = [ri, ui] for all j ∈ [l] and i ∈ [m]. Then, it is clear that there exists a unique function
f = fI,J : [l] → [m] such that Jj ⊆ If(j). Moreover, if 1 ∈ J , we always choose an
ordering of the intervals such that 1 ∈ J1. Under this conditions, the following holds.

Lemma 3.7.8. Let J ( I ⊆ [n] as above, and suppose that l ≤ m. Then we can reorder
the intervals Ii in such a way that f(j) = j for all 1 ≤ j ≤ l, i.e. Jj ⊆ Ij for 1 ≤ j ≤ l,
and the following diagram of ring homomorphisms

Λn
(eIc)

Λn
(eJc)

×m
i=1

Λn
(eIci )

×l
j=1

Λn
(eJc

j
)

πI,J

ϕI o o ϕJ

pI,J

commutes, where pI,J(λ1 + (eIc1), . . . , λm + (eIcm)) := (λ1 + (eJc
1
), . . . , λl + (eJc

l
))
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Proof. The first assertion is clear. Also it is clear that pI,J is a well defined ring surjec-
tion. Now we prove that the diagram commutes. For, let λ ∈ Λn, then

pI,J ◦ ϕI(λ+ (eIc)) = pI,J(λ+ (eIc1), . . . , λ+ (eIcm))

= (λ+ (eJc
1
), . . . , λ+ (eJc

l
))

= ϕJ(λ+ (eJc)) = ϕJ ◦ πI,J(λ+ (eIc)),

proving the lemma.

Now we are able to present a complete characterisation of homological embeddings
between Serre subcategories of mod Λn.

Theorem 3.7.9. Let J ⊆ I ⊆ [n]. The embedding ιJ,I : mod Λn/(eJc) → mod Λn/(eIc)
is homological if and only if

(i) 1 ∈ J and Jj = If(j) for all 2 ≤ j ≤ l, or

(ii) 1 6∈ J and Jj = If(j) for all 1 ≤ j ≤ l.

Proof. (⇐) Suppose first that (i) holds. Then 1 ∈ J1 ⊆ I1, and necessarily l ≤ m.
Reordering the intervals Ii we can assume f(j) = j for all 2 ≤ j ≤ l, therefore I =
I1 t

⊔l
j=2 Jj t

⊔m
i=l+1 Ii, where

⊔m
i=l+1 Ii is empty whenever l = m. Then we have the

following diagram of ring morphisms:

Λn
(eIc)

Λn
(eJc)

Λn
(eIc1)

××l
j=2

Λn
(eJc

j
)
××m

i=l+1

Λn
(eIci )

Λn
(eJc

1
)
××l

j=2

Λn
(eJc

j
)

Λu1 ××l
j=2 Πtj−sj+1 ××m

i=l+1 Πui−ri+1 Λt1 ××l
j=2 Πtj−sj+1

πI,J

ϕI o o ϕJ

ofu1+1···fn××lj=2ψJj××mi=l+1ψIi

pI,J

ft1+1···fn××lj=2ψJjo

η

where η := ft1+1 · · · fu1 × p, and p : R × S → R is just the projection (r, s) 7→ r, and R
and S are the corresponding direct products of preprojective algebras in the diagram, if
l < m. When l = m, set p = 1R. Moreover, if t1 = u1, we replace ft1+1 · · · fu1 by 1Λu1

.

By Theorem 3.6.3 and Corollary 3.4.6 the vertical arrows are isomorphisms, and by
Lemma 3.7.8 the upper square commutes. Now we show the commutativity of the lower
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square. For, let λi ∈ Λn for 1 ≤ i ≤ m, then

η ◦ fu1+1 · · · fn ×
l

×
j=2

ψJj ×
m

×
i=l+1

ψIi(λ1 + (eIc1), . . . , λm + (eIcm)) =

= η(fu1+1 · · · fn(λ1 + (eIc1)), (ψJj (λj + (eJc
j
)))j , (ψIi(λi + (eIci )))i)

= (ft1+1 · · · fu1fu1+1 · · · fn(λ1 + (eIc1)), (ψJj (λj + (eJc
j
)))j)

= (ft1+1 · · · fn ◦ πI1, J1(λ1 + (eIc1)), (ψJj (λj + (eJc
j
)))j)

= (ft1+1 · · · fn(λ1 + (eJc
1
)), (ψJj (λj + (eJc

j
)))j)

=
(
ft1+1 · · · fn ×

l

×
j=2

ψJj
)
(λ1 + (eJc

1
), (λj + (eJc

j
))j)

=
(
ft1+1 · · · fn ×

l

×
j=2

ψJj
)
◦ pI,J(λ1 + (eIc1), . . . , λm + (eIcm))

using Lemma 3.7.7 (a) in the third equality. Hence the lower square commutes.
Now, p and ft1+1 · · · fu1 (or 1Λu1

if t1 = u1) are homological ring epimorphisms
by Lemma 1.5.9 and Corollary 3.7.2 respectively, therefore η is so considering Proposi-
tion 1.5.10. Thus πI,J is a homological ring epimorphism, so Corollary 1.5.7 (a) implies
that ιJ,I is a homological embedding.

Now suppose (ii) holds. As before, we can reorder the intervals Ii in such a way that
f(j) = j for 1 ≤ j ≤ l. Moreover, l < m, since J 6= I. Thus, I =

⊔l
j=1 Jj t

⊔m
i=l+1 Ii,

and we have the following diagram.

Λn
(eIc)

Λn
(eJc)

×l
j=1

Λn
(eJc

j
)
××m

i=l+1

Λn
(eIci )

×l
j=1

Λn
(eJc

j
)

×l
j=1 Πtj−sj+1 ××m

i=l+1 Πui−ri+1 ×l
j=1 Πtj−sj+1

πI,J

ϕI o o ϕJ

×lj=1 ψJj××mi=l+1ψIi o

pI,J

×lj=1ψJjo

p

where p is the projection onto the first component. Note that the vertical arrows are
isomorphisms. Thus similar arguments as in case (i) show that the diagram is commu-
tative, and therefore πI,J is a homological ring epimorphism. Thus, by Corollary 1.5.7
(a), ιJ,I is a homological embedding.

(⇒) We proceed by contraposition. So, we have three cases:

(1) 1 ∈ J and there exists j0 ∈ {2, . . . , l} such that Jj0 ( If(j0),

(2) 1 6∈ J and there exists j0 ∈ {1, . . . , l} such that Jj0 ( If(j0), and

(3) there exists j0 ∈ {2, . . . , l} such that Jj0 ( If(j0).
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We need to show that in either case, the embedding ιJ,I is not homological. For, first
consider (1). Then, 1 6∈ Jj0 , otherwise 1 ∈ J1 ∩ Jj0 , and since the intervals are disjoint,
we have J1 = Jj0 , contradiction. Then we have the following commutative diagram

Λn
(eIc)

Λn
(eJc)

×m
i=1

Λn
(eIci )

×l
j=1

Λn
(eJc

j
)

Λn
(eIc

f(j0)
)

Λn
(eJc

j0
)

πI,J

ϕI o ϕJo

p p′

πIf(j0), Jj0

where p and p′ are the projections onto the components f(j0) and j0 respectively. It
induces the following commutative diagram of functors given by restriction of scalars

mod Λn/(eIc) mod Λn/(eJc)

mod×m
i=1 Λn/(eIci ) mod×l

j=1 Λn/(eJc
j
)

mod Λn/
(
eIc
f(j0)

)
mod Λn/

(
eJc
j0

)

ιJ,I

(ϕI)∗ o (ϕJ )∗o

p∗ p′∗
ιJj0 , If(j0)

Then, from Corollary 3.7.5 we have that ιJj0 , If(j0)
is not a homological embedding, since

1 6∈ Jj0 , thus there exist left modules X,Y ∈ mod Λn/
(
eJc
j0

)
and q > 0 such that

Extq Λn(
eJc
j0

) (X,Y ) 6∼= Extq Λn
(eIc
f(j0)

)

(X,Y ).

On the other hand, p∗ and p′∗ are homological embeddings (cf. Lemma 1.5.9), and since
(ϕI)∗ and (ϕJ)∗ are equivalences, we get

ExtqΛn
(eJc )

(X,Y ) ∼= Extq×lj=1
Λn

(eJc
j

)

(X,Y ) ∼= Extq Λn
(eJc

j0

)

(X,Y )

6∼= Extq Λn
(eIc
f(j0)

)

(X,Y ) ∼= Extq×mi=1
Λn

(eIc
i

)

(X,Y ) ∼= ExtqΛn
(eIc )

(X,Y ),

thus ExtqΛn
(eJc )

(X,Y ) 6∼= ExtqΛn
(eIc )

(X,Y ), proving that the embedding ιJ,I is not homologi-

cal.
Now assume that (2) holds. Since 1 6∈ J, we have 1 6∈ Jj0 , and Corollary 3.7.5 shows

that ιJj0 , If(j0)
is not a homological emebedding, and the same calculations as before

show that ιJ,I is not homological as well. Finally (3) follows from (1) and (2). This
completes the proof.
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3.8 The homological poset of AusTn

Let Λn = AusTn. In last section we characterised homological embeddings between
Serre subcategories of mod Λn. In what follows we describe the set CovH(Λn) of cover
relations of the homological poset H(Λn). Recall that this poset is defined on the power
set 2[n], and for two subsets J ⊆ I ⊆ [n] the relation is given by J �Λn I if and only if
the embedding ιJ,I : mod Λn/(eJc) ↪→ mod Λn/(eIc) is homological.

Notation. If J =
⊔l
j=1 Jj ⊆ [n], set `(J) := l. Thus, `(∅) = 0.

For simplicity, we write � instead of �Λn . The next proposition characterises the
elements of CovH(Λn).

Proposition 3.8.1. Let J ≺ I ⊆ [n].

(a) If 1 ∈ J, then I covers J if and only if

(a1) I1 = J1 and `(I) = `(J) + 1, or

(a2) u1 = t1 + 1 and `(I) = `(J).

(b) If 1 6∈ J, then I covers J if and only if

(b1) 1 6∈ I and `(I) = `(J) + 1, or

(b2) I \ J = {1}.

Moreover, all these conditions are pairwise disjoint and characterise all the cover rela-
tions of H(Λn).

Proof. Assume that J ≺ I. In particular J ⊆ I and `(J) ≤ `(I), thus there is a function
f = fJ,I : {1, . . . , `(J)} → {1, . . . , `(I)}, such that if 1 ≤ j ≤ j′ ≤ `(J), then f(j) ≤ f(j′).

(a) Suppose 1 ∈ J. Then J1 ⊆ I1 and Jj = If(j) for all 2 ≤ j ≤ `(J). In particular,
J1 = [1, t1] and I1 = [1, u1] with t1 ≤ u1.

(⇒) We proceed by contraposition. Thus we have four cases.

Case 1. J1 ( I1 and u1 6= t1 + 1. Then u1 < t1 + 1 ⇔ u1 ≤ t1, and since t1 ≤ u1,
we have t1 = u1, a contradiction, since J1 6= I1. Thus we can assume u1 > t1 + 1. Then
t1+2 ≤ u1 = uf(1) < rf(2) = s2. Set J ′ := J∪{t1+1}, then J ′ = [1, t1+1]tJ2t· · ·tJ`(J),
since t1 + 2 < s2. Thus J ≺ J ′ ≺ I, given J ′ 6= I.

Case 2. J1 ( I1 and `(J) < `(I). Then f is not surjective, otherwise `(J) ≥ `(I),
a contradiction. Thus there exists i0 ∈ [`(I)], such that i0 6∈ Im f, i.e. Jj * Ii0 for all
j ∈ [`(J)], moreover 2 ≤ i0 because J1 ⊂ I1, thus Jj = If(j) * Ii0 for all 2 ≤ j ≤ `(J).
Set J ′ := J ∪ Ii0 . Thus J ′ = J t Ii0 . Therefore, J ≺ J ′ ≺ I, since J1 ⊂ I1.

Case 3. `(I) 6= `(J) + 1 and u1 6= t1 + 1. We have four subcases.

(i) `(I) > `(J)+1 and u1 > t1+1. Then t1+2 ≤ u1 < rf(2) = s2. Set J ′ := J∪{t1+1}.
Then J ′ = [1, t1 + 1]tJ2t · · · tJ`(J), given that t1 + 2 < s2. Therefore J ≺ J ′ ≺ I, since
`(J ′) = `(J) < `(I).

(ii) `(I) > `(J)+1 and u1 < t1 +1. Then u1 = t1, i.e. J1 = I1, and since `(I) > `(J),
as in Case 2, there exists 2 ≤ i0 ≤ `(I), such that i0 6∈ Im f. Defining J ′ := J ∪ Ii0 , we
get J ′ = J t Ii0 . Thus J ≺ J ′ ≺ I, since `(J ′) = `(J) + 1 < `(I).
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(iii) `(I) < `(J) + 1 and u1 > t1 + 1. Then `(I) = `(J), thus f = 1[`(J)], i.e. Jj ⊆ Ij
for all j ∈ [`(J)]. Therefore t1 + 2 ≤ u1 < rf(2) = r2 = s2, considering I2 = J2. Setting
J ′ := J ∪ {t1 + 1}, we get J ′ = [1, t1 + 1] t J2 t · · · t J`(J), since t1 + 2 < s2. Thus
J ≺ J ′ ≺ I, since t1 + 1 < u1.

(iv) `(I) < `(J) + 1 and u1 < t1 + 1. Then `(I) = `(J) and u1 = t1. Thus Jj = Ij for
all 1 ≤ j ≤ `(J), so J = I, contradiction. Then this subcase does not hold.

Case 4. `(I) 6= `(J) + 1 and `(I) 6= `(J). Then we have two subcases, since `(J) ≤
`(I).

(i) `(I) > `(J) + 1 and `(I) > `(J). This is equivalent to `(I) > `(J) + 1. So, as in
Case 2, there exists 2 ≤ i0 ≤ `(I), such that i0 6∈ Im f . Set J ′ := J∪Ii0 , thus J ′ = JtIi0 .
Then J ≺ J ′ ≺ I, since `(J ′) = `(J) + 1 < `(I).

(ii) `(I) < `(J) + 1 and `(I) > `(J). Then `(I) = `(J) and `(I) > `(J), a contradic-
tion. Thus, this subcase does not occur.

Therefore in each case, we conclude that I does not cover J . Completing the proof
for the necessity of (a).

(⇐) Set l := `(J). Suppose (a1) holds. Since `(I) = l+ 1 and I1 = J1, there exists a
unique 2 ≤ i0 ≤ l+ 1 such that i0 6∈ Im f, and since J ≺ I, we have I \J = Ii0 . Suppose
that there exists J ′ ⊆ [n], with J ≺ J ′ ≺ I, then necessarily there exists non-empty
L ( Ii0 such that J ′ = J t L. If `(L) > 1, then `(J ′) = l + `(L) > l + 1 = `(I), a
contradiction, since `(J ′) ≤ `(I), considering that J ′ ≺ I. Thus L = [p, q] ⊂ Ii0 for
some integers p ≤ q. So, since J ′ ≺ I and i0 ≥ 2, Theorem 3.7.9 implies that L = Ii0 , a
contradiction. Thus such a J ′ does not exist, proving that I covers J .

Now suppose (a2) holds. Since `(I) = `(J) = l, we can choose an ordering of the
intervals of I such that Jj ⊆ Ij for all 1 ≤ j ≤ l. In particular, Jj = Ij for all 2 ≤ j ≤ l,
considering J ≺ J. Moreover, J1 = [1, t1] ⊂ I1 = [1, t1 + 1], thus J \ I = {t1 + 1}, i.e. I
covers J in (2[n],⊆), hence the same holds in (2[n],�). This completes the proof of (a).

(b) Suppose 1 6∈ J. Then Jj = If(j) for all 1 ≤ j ≤ `(J).

(⇒) We proceed by contraposition. Thus we have two cases.

Case 1. 1 ∈ I and I \ J 6= {1}. We can distinguish two subcases.

(i) `(I) = `(J). Then the conditions in (b) show that f = 1[`(J)], and in particular
J1 = I1, thus 1 ∈ J1 ⊆ J, a contradiction. Thus this subcase does not hold.

(ii) `(I) > `(J) ⇔ `(I) ≥ `(J) + 1. If `(I) > `(J) + 1, then as before f is not
surjective, thus there exists 1 ≤ i0 ≤ `(I) such that i0 6∈ Im f. Then, for J ′ := J ∪ Ii0 ,
we get J ′ = J t Ii0 , and J ≺ J ′ ≺ I.

If `(I) = `(J) + 1, since Jj = If(j) for all 1 ≤ j ≤ `(J) = `(I)− 1 and 1 ∈ I \ J , we
have I = I1 t J1 t · · · t J`(J). Then I \ J = I1, thus I1 6= {1} by assumption, so u1 ≥ 2.
On the other hand, 1 < f(1), otherwise 1 = f(1), so J1 = I1, thus 1 ∈ I1 = J1 ⊆ J, a
contradiction. Then 2 ≤ u1 < rf(1) = s1, thus 3 ≤ s1. Therefore, setting J ′ := J ∪ {1},
we get J ′ = [1, 1] t J. Then I 6= J ′, given I \ J ′ = I1 \ [1, 1] 6= ∅. Thus J ≺ J ′ ≺ I.

Case 2. `(I) 6= `(J) + 1 and I \ J 6= {1}. As before, we have two subcases.

(i) `(I) < `(J) + 1. Then `(I) = `(J). Thus f = 1[`(J)], considering (b), so I = J, a
contradiction.

(ii) `(I) > `(J) + 1. Similar as in Case 1 (ii).

Therefore in each case, we conclude that I does not cover J . This completes the
proof for the necessity of (b).

(⇐) Consider that (b1) holds. Similar arguments as in case (a1) show that I covers J.
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Note that condition 1 6∈ I is necessary to have J covered by I. Indeed, as counterexample
consider J = [4, 4] and I = [1, 2]t [4, 4], then J ≺ I, 1 6∈ J and `(I) = 2 = `(J) + 1. But
J ′ = [1, 1] t [4, 4] satisfies J ≺ J ′ ≺ I, showing that I does not cover J .

Finally suppose that (b2) holds. Then I covers J in (2[n],⊆), thus the same holds in
(2[n],�). The last assertion is clear. This completes the proof of the proposition.

In order to find some combinatorial properties of H(Λn), we define the following sets
which contain the cover relations given by Proposition 3.8.1.

Definition 3.8.2. Let n ≥ 0. Define the following subsets of 2[n] × 2[n].

A(n) :={(J, I) ∈ 2[n] × 2[n] | J ≺ I, 1 ∈ J, I1 = J1 and `(I) = `(J) + 1}.
B(n) :={(J, I) ∈ 2[n] × 2[n] | J ≺ I, 1 ∈ J, u1 = t1 + 1 and `(I) = `(J)}.
C(n) :={(J, I) ∈ 2[n] × 2[n] | J ≺ I, 1 6∈ I, and `(I) = `(J) + 1}.
D(n) :={(J, I) ∈ 2[n] × 2[n] | J ≺ I, I \ J = {1} }.

We denote the cardinality of each set using the corresponding lower case letter, e.g.
a(n) = cardA(n).

Therefore,
CovH(Λn) = A(n) tB(n) t C(n) tD(n)

and h(n) := card CovH(Λn) = a(n) + b(n) + c(n) +d(n) is the number of cover relations
in H(Λn), by Proposition 3.8.1. Now, we determine h(n) as follows.

Proposition 3.8.3. For n ≥ 0, the following equalities hold.

(a) a(n) = 0 for n = 0, 1, and a(n) = (n− 2) · 2n−3 for n ≥ 2.

(b) b(n) = 0 for n = 0, 1, and b(n) = 2n−2 for n ≥ 2.

(c) c(n) = 0 for n = 0, 1, and c(n) = n · 2n−3 for n ≥ 2.

(d) d(0) = 0, d(1) = 1, and d(n) = 2n−2 for n ≥ 2.

Proof. (a) It is clear that A(n) = ∅ for n = 0, 1, 2, and A(3) = {({1}, {1, 3})}, thus
a(3) = 1 = (3−2) ·23−3. Now, let n ≥ 4. Therefore, by induction we get that a(n−1) =
(n− 3) · 2n−4. We define the following three functions.

α : A(n− 1)→ A(n) (J, I) 7→ (J, I)

β : A(n− 1)→ A(n) (J, I) 7→

{
(J, I ∪ {n}) if n− 1 ∈ I \ J
(J ∪ {n}, I ∪ {n}) if n− 1 6∈ I \ J

γ : {J | J ⊆ {2, . . . , n− 2}} → A(n) J 7→ ({1} ∪ J, {1, n} ∪ J)

Note that α is well defined. Now we show that β is well defined. For, let (J, I) ∈
A(n − 1), and write J = [1, t1] t · · · t [sl, tl]. Set I ′ := I ∪ {n}. First, suppose that
n− 1 ∈ I \ J . Thus I = J t [rl+1, n− 1] with tl + 2 ≤ rl+1 ≤ n− 1, so I ′ = J t [rl+1, n].
Then it is easy to verify that (J, I ′) ∈ A(n). Secondly, suppose that n − 1 6∈ I \ J . We
have two cases.
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(i) n−1 6∈ I. Thus, n−1 6∈ J, so (J, I) ∈ A(n−2), thus J ′ := J ∪{n} = J t [n, n] and
I ′ = It [n, n]. Therefore, (J ′, I ′) ∈ A(n), since `(I ′) = `(I)+1 = `(J)+1+1 = `(J ′)+1.

(ii) n− 1 ∈ J. Thus n− 1 ∈ I. In this case, we can write J = [1, t1]t · · · t [sl, n− 1],
I = I1 t · · · t Il+1, and without loss of generality we can assume I1 = J1 and Il+1 = Jl,
considering that {1, n−1} ⊆ J ⊆ I. Thus, there exists a unique i0 ∈ {2, . . . , l} such that
I \J = Ii0 , so I = J tIi0 . Therefore, J ′ := J ∪{n} = [1, t1]t· · ·t [sl, n] and I ′ = J ′tIi0 ,
thus (J ′, I ′) ∈ A(n). This proves that β is well defined.

To prove that γ is well defined, let J ⊆ {2, . . . , n−2}. Write J = [s1, t1]t· · ·t [sl, tl],
and set J ′ := {1} ∪ J and I ′ := {1, n} ∪ I. If 2 ∈ J, then J ′ = [1, t1] t · · · t [sl, tl] and
I ′ = [1, t1] t · · · t [sl, tl] t [n, n], so clearly (J ′, I ′) ∈ A(n). On the other hand, if 2 6∈ J,
then J ′ = [1, 1] t J and I ′ = J ′ ∪ [n, n], thus (J ′, I ′) ∈ A(n), proving that γ is well
defined. Thus, this shows that Imα ∪ Imβ ∪ Im γ ⊆ A(n).

Next we prove that A(n) ⊆ Imα ∪ Imβ ∪ Im γ. For, let (J ′, I ′) ∈ A(n). If n 6∈ I ′,
then (J ′, I ′) ∈ A(n− 1) = Imα. So, we can assume that n ∈ I ′. We have two cases.

Case 1. n 6∈ J ′. Then J ′ = [1, t1] t · · · t [sl, tl] and I ′ = J ′ t [rl+1, n], with tl + 2 ≤
rl+1 ≤ n. If n − 1 ∈ I ′, then rl+1 ≤ n − 1, thus I := I ′ \ {n} satisfies that (I, J ′) ∈
A(n − 1), and β(J ′, I) = (J ′, I ′), since n − 1 ∈ I \ J ′. If n − 1 6∈ I ′, then rl+1 = n, and
J := I ′ \ {1, n} ⊆ {2, . . . , n − 2} satisfies γ(J) = ({1} ∪ J, {1, n} ∪ J) = (J ′, I ′), since
J ′ = I ′ \ n = 1 ∪ (I ′ \ {1, n}) = 1 ∪ J.

Case 2. n ∈ J ′. Since (J ′, I ′) ∈ A(n), we can write J ′ = [1, t1] t · · · t [sl, n] and
I ′ = J ′ t I ′i0 for some unique interval I ′i0 ⊆ {t1 + 2, . . . , sl − 2}. Set I := I ′ \ {n} and
J := J ′ \ {n}, hence (J, I) ∈ A(n − 1) and β(J, I) = (J ′, I ′), since n − 1 6∈ Ii0 = I \ J.
This proves that A(n) = Imα ∪ Imβ ∪ Im γ.

Now we show that the images are pairwise disjoint. Indeed, if (J ′, I ′) ∈ Imα∩ Imβ,
then I ′ ⊆ [n−1] and n ∈ I ′, a contradiction, thus Imα∩Imβ = ∅. Similarly Imα∩Im γ =
∅. Now, let (J ′, I ′) ∈ Imβ ∩ Im γ. In particular n− 1 6∈ I ′ and there exists I ⊆ [n− 1]
such that I ′ = I∪{n}, thus there exists J ⊆ I such that J ′ = J ∪{n}. Thus I ′ \J ′ = {n}
and I ′ \ J ′ 63 n, a contradiction. Thus Imβ ∩ Im γ = ∅.

Note that α, β and γ are injective functions, hence the previous proved conditions
imply that

a(n) = cardA(n) = card(Imα) + card(Imβ) + card(Im γ)

= cardA(n− 1) + cardA(n− 1) + 2n−3 = 2a(n− 1) + 2n−3

= (n− 3) · 2n−3 + 2n−3 = (n− 2) · 2n−3.

(b) It is clear that B(n) = ∅ for n = 0, 1, and B(2) = {({1}, {1, 2})}, thus a(2) =
1 = 22−2. Now, suppose by induction that b(n − 1) = 2n−3 for n > 2. We define the
correspondences

δ : B(n− 1)→ B(n) (J, I) 7→ (J, I)

ε : B(n− 1)→ B(n) (J, I) 7→

{
(J ∪ {n}, I ∪ {n}) if I 6= [1, n− 1]

(J ∪ {n− 1}, I ∪ {n}) if I = [1, n− 1]

It is clear that δ is well defined. Next we show that ε is a well defined function. For, let
(J, I) ∈ B(n − 1). If `(J) = 1, then necessarily `(I) = 1, and J = [1, t1], I = [1, t1 + 1]
with t1 + 1 ≤ n − 1. If t1 + 1 = n − 1, then ε(J, I) = ([1, n − 1], [1, n]) ∈ B(n), and
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if t1 + 1 < n − 1, then ε(J, I) = (J ∪ {n}, I ∪ {n}) = (J t [n, n], I t [n, n]) ∈ B(n).
If `(J) = `(I) = l > 1, then J = [1, t1] t · · · t [sl, tl] and I = [1, t1 + 1] t · · · t [sl, tl],
and it follows easily that ε(J, I) ∈ B(n). This proves that ε is well defined, and that
Im δ ∪ Im ε ⊆ B(n).

Next we prove that B(n) ⊆ Im δ ∪ Im ε. For, let (J ′, I ′) ∈ B(n). As before, if n 6∈ J ′,
then (J ′, I ′) ∈ B(n − 1) and (J ′, I ′) = δ(J ′, I ′). Thus, we can assume that n ∈ I ′.
Set J := J ′ \ {n} and I := I ′ \ {n}. If I ′ = [1, n], then necessarily J ′ = [1, n − 1].
Thus, I = [1, n − 1], and ε([1, n − 2], I) = (J ′, I ′). So, lets assume that I ′ 6= [1, n].
If `(J ′) = `(I ′) = 1, then J ′ = [1, t1] and I ′ = [1, t1 + 1] with t1 + 1 ≤ n − 1, and
n ∈ I ′, a contradiction. Thus, if I ′ 6= [1, n], and n ∈ I ′, then `(I ′) = `(J ′) = l > 1.
So, J ′ = [1, t1] t [s2, t2] t · · · t [sl, n] and I ′ = [1, t1 + 1] t [s2, t2] · · · t [sl, n], where
t1 + 1 ≤ s2 − 2. If sl = n, then J = [1, t1] t [s2, t2] t · · · t [sl−1, tl−1] and I = [1, t1 +
1] t [s2, t2] t · · · t [sl−1, tl−1] with tl−1 ≤ n− 2, thus (J, I) ∈ B(n− 2) ⊆ B(n− 1), and
ε(J, I) = (J ′, I ′). On the other hand, if sl ≤ n−1, then J = [1, t1]t[s2, t2]t· · ·t[sl, n−1]
and I = [1, t1 + 1]t [s2, t2]t · · · t [sl, n− 1], thus (J, I) ∈ B(n− 1), and ε(J, I) = (J ′, I ′).
This shows that B(n) = Im δ ∪ Im ε.

Moreover, Im δ ∩ Im ε = ∅ and δ, ε are injective functions, hence

b(n) = cardB(n) = card(Im δ) + card(Im ε)

= cardB(n− 1) + cardB(n− 1) = 2 · 2n−3 = 2n−2.

(c) We have that C(0) = C(1) = ∅, and C(2) = {(∅, {2})}, thus c(2) = 1 = 2 · 22−3.
So, by induction suppose that n ≥ 4 and c(m) = m · 2m−3 for 2 ≤ m ≤ n − 1. Hence,∑n−1

i=2 c(i) = (n− 2) · 2n−3 by induction. Now we define the following correspondences.

η : {2, 3} → C(n) s 7→ (∅, [s, n])

θ : C(n− 1)→ C(n) (J, I) 7→ (J, I),

and for 2 ≤ i ≤ n− 2, let

µi : C(i)→ C(n) (J, I) 7→ (J t [i+ 2, n], I t [i+ 2, n])

νi : {J | J ⊆ [2, i]} → C(n) J 7→ (J, J t [i+ 2, n]).

Note that these functions are well defined. Thus Im η ∪ Im θ ∪
⋃n−2
i=2 (Imµi ∪ Im νi) ⊆

C(n). Now we show the reverse inclusion. For, let (J ′, I ′) ∈ C(n). If n 6∈ I ′, then
(J ′, I ′) ∈ C(n− 1), thus (J ′, I ′) = θ(J ′, I ′).

Now, suppose that n ∈ I ′. If `(I ′) = 1, then I ′ = [r, n] for some 2 ≤ r ≤ n and
`(J ′) = 0, thus J ′ = ∅. Then, if r ∈ {2, 3} we have (J ′, I ′) = η(r), and if r ≥ 4,
then νr−2(∅) = (∅, [r, n]) = (J ′, I ′). Then we can assume that `(I ′) = `(J ′) + 1 ≥ 2,
i.e. l = `(J ′) ≥ 1. If n ∈ J ′, then there exists 4 ≤ r ≤ n such that J ′l = [r, n], since
`(I ′) ≥ 2. Set J := J ′ \ [r, n] and I := I ′ \ [r, n], then it follows that (J, I) ∈ C(r − 2),
hence µr−2(J, I) = (J ′, I ′). On the other hand, if n 6∈ J ′, then there exists 4 ≤ r ≤ n
such that I ′l+1 = [r, n] and I ′ = J ′ t [r, n], otherwise `(I ′) = 1, a contradiction. Thus
J ′ ⊆ [2, r− 2], therefore νr−2(J ′) = (J ′, J ′ t [r, n]) = (J ′, I ′) as needed. This shows that
C(n) = Im η ∪ Im θ ∪

⋃n−2
i=2 (Imµi ∪ Im νi).
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Note that the images of η, θ, µi, νj are pairwise disjoint for all 2 ≤ i, j ≤ n − 2, and
since they are injective functions, we get

c(n) = cardC(n) = card(Im η) + card(Im θ) +

n−2∑
i=2

card(Imµi) +

n−2∑
i=2

card(Im νi)

= 2 + cardC(n− 1) +

n−2∑
i=2

cardC(i) +

n−2∑
i=2

card{J | J ⊆ [2, i]}

= 2 +
n−1∑
i=2

c(i) +
n−3∑
i=1

2i = 2 + (n− 2) · 2n−3 + 2n−2 − 2 = n · 2n−3.

(d) It is clear that d(0) = 0, D(1) = {(∅, {1})} = D(2), thus we can assume that
n ≥ 3, and define the correspondence

σ : {J | J ⊆ {3, . . . , n}} → D(n) J 7→ (J, {1} ∪ J).

It follows that σ is a well defined injection, since J ≺ {1} ∪ J . Next we show that σ is
surjective. For, let (J ′, I ′) ∈ D(n). If 1 ∈ J ′, then I ′ \ J ′ = ∅, a contradiction. Thus,
1 6∈ J ′. If 2 ∈ J ′, then J ′ = [2, t1]t · · · t [sl, tl], and since I ′ \ J ′ = {1}, we conclude that
I ′ = {1}∪J ′ = [1, t1]t· · ·t[sl, tl], thus J ′ 6≺ I ′, contradiction. Therefore J ′ ⊆ {3, · · · , n},
thus I ′ = {1} ∪ J ′, i.e. σ(J ′) = (J ′, I ′), proving that σ is surjective, thus bijective. So,
d(n) = cardD(n) = 2n−2.

Corollary 3.8.4. h(0) = 0 and h(n) = 2n−2(n+ 1) for n ≥ 1.

Proof. Follows from Proposition 3.8.3.

The numbers h(n) form the sequence OEIS:A001792 shifted by −1. Moreover, they
satisfy the recursive formula h(n) = 2 · h(n − 1) + 2n−2, for n ≥ 2. The first values of
the sequence h(n) appear below.

n 1 2 3 4 5 6 7 8 9 10

h(n) 1 3 8 20 48 112 256 576 1280 2816

3.9 Homological Hasse quiver of AusTn

In this section we provide an explicit description of the Hasse diagram of the homological
poset of Λn = AusTn using the classification of the cover relations of the homological
poset of Λn given in Section 3.8, and construct its Hasse quiver H(AusTn).

From the proof of Proposition 3.8.3, we have the following homological Hasse quivers.
H(AusT0) : ∅

H(AusT1) :

∅

[1, 1]

H(AusT2) :

∅

[1, 1] [2, 2]

[1, 2]
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Note that h(n − 1) = c(n), thus the proof of Proposition 3.8.3 (c) motivates the
following construction of H(AusTn) using recursion methods. More specifically, we will
prove that H(AusTn) is obtained from H(AusTn−1) by attaching to it exactly one copy of
H(AusTi), for 0 ≤ i ≤ n−2, and connecting the vertices in certain way, and finally adding
the arrow ([1, n−1], [1, n]), which corresponds to the embedding mod Λn/(en) ↪→ mod Λn.

For the rest of the section, set H(n) := H(AusTn). For n ≥ 2 and 0 ≤ i ≤ n − 2
define

H ′(i) :={(J t [i+ 2, n], I t [i+ 2, n]) | (J, I) ∈ CovH(i)}, and

U(i) :={(I, I t [i+ 2, n]) | I ⊆ [i]}, where [0] := ∅.

Note that these sets are contained in CovH(n) and are pairwise disjoint. We re-
gard H ′(i) as the copy of CovH(i) inside CovH(n) that we mentioned above. The
elements of U(i) correspond to arrows that connect the vertices of H(AusTn−1) with the
corresponding ones in the copies of H(AusTi), for 0 ≤ i ≤ n− 2.

The following proposition shows that this construction actually give us the complete
Hasse diagram of H(AusTn).

Proposition 3.9.1. Let n ≥ 2. Then

h(n) =

n−1∑
i=0

h(i) +

n−2∑
i=0

2i + 1 =

n−1∑
i=0

h(i) + 2n−1.

Thus, CovH(n) = CovH(n− 1) t
⊔n−2
i=0 (H ′(i) t U(i)) t {([1, n− 1], [1, n])}.

Proof. For n = 2 we have h(2) = 3 = 1 + 1 + 1 = h(1) + 20 + 1, thus we can assume by
induction that the result holds for n− 1, for n > 2. Then,

n−1∑
i=0

h(i) + 2n−1 =

n−1∑
i=0

h(i) +

n−2∑
i=0

2i + 1 = h(n− 1) + h(n− 1) + 2n−2 = h(n). (3.9.1)

Moreover, since the subsets H ′(i) and U(j) are contained in CovH(n) and are pairwise
disjoint, for 0 ≤ i, j ≤ n− 2, Eq. (3.9.1) shows the last claim of the proposition.

Fig. 3.1 illustrates the construction of H(AusT3) and H(AusT4) using the previous
recursive method.

Remark 3.9.2. By Proposition 3.6.6, the unique maximal length path in H(AusTn)
corresponds to the unique heredity chain of AusTn.

Now we count the number of maximal elements of H(n). For, let M(n) be the set
of maximal elements of H(n), and set m(n) := cardM(n). Thus, m(0) = 0, m(1) = 1,
m(2) = 2, m(3) = 4 and m(4) = 7 (cf. Fig. 3.1). Note that, for 0 ≤ i ≤ n − 2, the
elements I t [i + 2, n] lie in M(n) if and only if I ∈ M(i), by Proposition 3.9.1. Set
M ′(i) := {I t [i + 2, n] | I ⊆ M(i)}, for 0 ≤ i ≤ n − 2, thus we can say that the copies
H ′(i) preserve the maximality of its elements, if i ∈ [n− 2].

On the other hand, for n ≥ 5, we have that M(n − 1) 6⊂ M(n), for, consider J =
{1} t [3, n− 2] ∈M(n− 1), and observe that it is not a maximal element of H(n), since
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H(AusT3)

∅

[1, 1] [2, 2] [2, 3][3, 3]

[1, 2] [1, 1][3, 3]

[1, 3]

H(AusT4)

∅

[1, 1] [2, 3][2, 2] [3, 3]

[1, 2] [1, 1][3, 3]

[1, 3]

[4, 4]

[1, 1][4, 4] [2, 2][4, 4]

[1, 2][4, 4]

[3, 4]

[1, 1][3, 4]

[2, 4]

[1, 4]

Figure 3.1: The homological Hasse quivers of AusT3 and AusT4. We omit the symbols
t in the expression of J ⊆ [n] as disjoint union of intervals, e.g. [1, 1][3, 3] = [1, 1]t [3, 3].
The copies of H(AusT0) are indicated in orange, H(AusT1) in green, H(AusT2) in red
and H(AusT3) in blue, respectively. Dashed arrows indicate elements of the sets U(i),
and the unique solid black arrow corresponds to the embedding ι[n−1],[n], for n = 3, 4.

J ≺AusTn J t {n}. Actually, all the maximal elements of H(n − 1), not considering
[n − 1], that are not maximal in H(n) are those with maximal element n − 2, denote
this set by N(n). Now define N ′(i) := {J t [i + 2, n − 2] | J ∈ M(i)}, for i ∈ [n − 4].
It is clear that N ′(i) ⊆ M(n − 1), but N ′(i) 6⊂ M(n). Hence, by induction we have
that N(n) =

⋃n−4
i=1 N

′(i)∪ {[2, n− 2]}, thus M(n− 1) \ (N(n)∪ {[n− 1]}) ⊆M(n). For
simplicity, set

M ′(n− 1) := M(n− 1) \ (N(n) ∪ {[n− 1]}).

We have the following result.

Proposition 3.9.3. Let n ≥ 4. Then m(n) = m(n− 1) +m(n− 2) +m(n− 3).

Proof. We have already shown that
⋃n−1
i=0 M

′(i) t {[n]} ⊆ M(n), moreover the reverse
inclusion also holds, considering Proposition 3.9.1 and the fact that the subsets of M ′(n−
1) are maximal elements of H(n−1) with maximal element n−1, thus the equality holds.
Since all the involved subsets are pairwise disjoint we have the following equalities.

cardM(n) =
n−1∑
i=0

cardM ′(i) + 1 =
n−2∑
i=0

M ′(i) + cardM(n− 1)−
( n−4∑
i=1

cardN ′(i) + 1
)

= 1 +

n−1∑
i=1

m(i)−
n−4∑
i=1

m(i)− 1 = m(n− 1) +m(n− 2) +m(n− 3).

The sequence {m(n)}n∈N is a Tribonacci sequence with initial conditions m(1) = 1,
m(2) = 2 and m(3) = 4, and this coincides, up to a shift, with the sequence a(n) given
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by OEIS:A000073, more precisely m(n) = a(n + 2), for n ≥ 1. The following table
exhibits the first values of m(n).

n 1 2 3 4 5 6 7 8 9 10

m(n) 1 2 4 7 13 24 44 81 149 274

Now we show that H(n) admits a rank function in the following sense.

Definition 3.9.4. A rank function of a poset P is function ρ : P → N satisfying the
following properties:

(a) If x ∈ P is minimal, then ρ(x) = 0.

(b) If y covers x, then ρ(y) = ρ(x) + 1.

Lemma 3.9.5. Let n ≥ 0. Then the function ρn : 2[n] → N given by

ρn(J) :=

{
`(J) if 1 6∈ J
t1 + `(J)− 1 if 1 ∈ J.

where J = [s1, t1] t · · · t [sl, tl] ⊆ [n], is a rank function of H(n).

Proof. Set ρ = ρn. Since P(n) = (2[n],⊆) is a refinement of H(n), we have that H(n)
has only one minimal element, namely ∅. Thus, ρ(∅) = `(∅) = 0. Now, suppose that
(J, I) is a cover relation in H(n), with J =

⊔l
j=1[sj , tj ] and I =

⊔m
i=1[ri, ui]. From

Proposition 3.8.1 we can distinguish four cases.
(i) 1 ∈ J , I1 = J1 and m = l+1. Then ρ(J) = t1 +l−1 and ρ(I) = u1 +m−1 = t1 +l.

Thus ρ(I) = ρ(J) + 1.
(ii) 1 ∈ J , u1 = t1 + 1 and m = l. The same calculations as in (i) show that

ρ(I) = ρ(J) + 1.
(iii) 1 6∈ J , 1 6∈ I and m = l + 1. Then ρ(J) = l = m− 1 = ρ(I)− 1.
(iv) I \J = {1}. The cases n = 1, 2 are trivial. So, suppose that n ≥ 3. In the proof of

Proposition 3.8.3 (d) we showed that if (J, I) satisfies (iv), then (J, I) = (J, {1} t J) for
some J ⊆ {3, . . . , n}, thus u1 = 1. So, ρ(I) = u1+m−1 = m = l+1 = `(J)+1 = ρ(J)+1.
This shows that ρ is a rank function of H(n).

3.10 Homological embeddings over AusTn and composi-
tions

In this section we study some interesting combinatorial properties of cover relations of
the poset H(n) = H(AusTn) involving compositions of an integer. We start with some
definitions.

Let n be a positive integer. A composition of n is a sequence of positive integers
σ = (σ1, . . . , σk) such that

∑k
i=1 σi = n. We write often σ = σ1 + · · · + σk, and we

say that σ is a k-composition of n, the numbers σi are called the parts of σ. We
denote Comp(n) the set of all compositions of n, and P(n) denotes the set of parts of all
compositions of the positive integer n.

https://oeis.org/A000073
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The main motivation for considering compositions of positive integers comes from
the description of OEIS:A001792, where we can see that h(n) coincides with the number
of parts in all compositions of n. For example, h(3) = 8, and all the compositions of 3 are
1 + 1 + 1, 2 + 1, 1 + 2, 3. In what follows we will exhibit a bijection between CovH(n)
and P(n), but first we provide a new description of the cover relations of H(n) that is
crucial to find such a correspondence. Recall that CovH(n) = A(n)tB(n)tC(n)tD(n)
(cf. Proposition 3.8.1 and Definition 3.8.2).

Lemma 3.10.1. Let (J, I) ∈ CovH(n), then D := I \ J has one of the following forms.

(a) D = [d1, d2] for some 3 ≤ d1 ≤ d2 ≤ n, if (J, I) ∈ A(n).

(b) D = {d} for some 2 ≤ d ≤ n, if (J, I) ∈ B(n).

(c) D = [d1, d2] for some 2 ≤ d1 ≤ d2 ≤ n, if (J, I) ∈ C(n).

(d) D = {1} if (J, I) ∈ D(n).

Moreover, the conditions (a)-(d) determine the cover relation (J, I), in the sense
that if J ≺ I and their set difference D satisfies (a), (b), (c) or (d), then (J, I) lies in
A(n), B(n), C(n) or D(n), respectively. Thus, any cover relation (J, I) is of the form
(J, J tD), for some set D ⊂ [n] as in (a)-(d).

Proof. Follows from Proposition 3.8.1 and Definition 3.8.2.

For simplicity, in the presence of Lemma 3.10.1, we use the following notation.

Definition 3.10.2. Let (J, JtD) be a cover relation of H(n). Then ⟪J,D⟫ := (J, JtD).

Now we define a correspondence Ψ = Ψn : P(n) → CovH(n). Let σ = σ1 + · · ·+ σk
be a k-composition of n. For 1 ≤ j ≤ j′ ≤ k set σj

′

j = σj + · · ·+ σj′ .
Case 1. If σ1 ≥ 2, Ψ is given by:

σ1 7→ ⟪[1, σ1 − 1] t
⊔
j≥2,
σj≥2

[σj−1
1 + 2 , σj1] , [σ1 , σ1]⟫, (3.10.1)

and for i ≥ 2,

σi 7→ ⟪[1, σ1− 1]t
⊔

1<j<i,
σj≥2

[σj−1
1 + 1 , σj1− 1]t

⊔
j>i,
σj≥2

[σj−1
1 + 2 , σj1] , [σi−1

1 + 1 , σi1]⟫. (3.10.2)

For (3.10.1) we have that 1 ≤ σ1− 1 < σ1 + 2 ≤ σj−1
1 + 2 for any j ≥ 2 such that σj ≥ 2;

and for 2 ≤ j < j′ such that σj , σj′ ≥ 2, we get σj1 < σj1 + 2 ≤ σj
′−1

1 + 2, meaning that
the intervals involved in the right hand side of (3.10.1) are disjoint and determine the
correct expression of their underlying set as union of them. Hence the first assignment
is well defined. Similar arguments show that the assignment (3.10.2) is well defined.

Case 2. If σ1 = 1, then Ψ is given by

σ1 7→ ⟪
⊔
j≥2,
σj≥2

[σj−1
1 + 2 , σj1] , [1, 1]⟫, (3.10.3)
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and for i ≥ 2

σi 7→ ⟪
⊔

1<j<i,
σj≥2

[σj−1
1 + 1 , σj1 − 1] t

⊔
j>i,
σj≥2

[σj−1
1 + 2 , σj1] , [σi−1

1 + 1 , σi1]⟫. (3.10.4)

Similar arguments as before, show that the assignments (3.10.3) and (3.10.4) are well
defined. Moreover, from Lemma 3.10.1 we get

Ψ(σi) ∈


A(n) if σ1 ≥ 2 and i ≥ 2,

B(n) if σ1 ≥ 2 and i = 1,

C(n) if σ1 = 1 and i ≥ 2,

D(n) if σ1 = 1 and i ≥ 1.

(3.10.5)

As an example, we write explicitly the correspondence Ψ2 : P(2) → CovH(2), since
the case n = 1 is trivial. Indeed, we know that there are only two compositions of 2:
σ = 1 + 1 and σ′ = 2, thus cardP(2) = 3. Hence, Ψ2 is given as follows:

σ1 = 1 7→ ⟪∅, {1}⟫, σ2 = 1 7→ ⟪∅, {2}⟫, σ′1 = 2 7→ ⟪{1}, {2}⟫,

and the inverse Φ2 : CovH(2)→ P(2) is given by

(∅, {1}) 7→ σ1 = 1, (∅, {2}) 7→ σ2 = 1, ({1}, {1, 2}) 7→ σ′1 = 2.

In Theorem 3.10.3 we define the correspondence Φn for any n ≥ 2 and prove that
Φn and Ψn are inverse from each other. For, we use the following notation. Set 1(m) :=
1, . . . , 1 m-times, for m ≥ 0. Thus, 1(0) is the empty word. Also note that if σ is a
k-composition of n, then k can be recovered from the parts of σ that are larger than 1,
i.e.

k = n− (σ1 + · · ·+ σk) + k = n− [(σ1 − 1) + · · ·+ (σk − 1)]

= n−
∑
j,

σj≥2

(σj − 1), (3.10.6)

similarly, if 2 ≤ i ≤ k and τ := σ1 + · · ·+ σi−1 + 1 = n′, then we can recover the number
i from the parts of τ that are larger than 1, i.e.

i = n′ − (σ1 + · · ·+ σi−1 + 1) + i = n′ − [(σ1 − 1) + · · ·+ (σi−1 − 1)]

= n′ −
∑

1≤j≤i−1,
σj≥2

(σj − 1). (3.10.7)

Theorem 3.10.3. Let n ≥ 1. There exists a function Φ = Φn : CovH(Λn)→ P(n) such
that Ψ ◦ Φ = 1CovH(n) and Φ ◦Ψ = 1P(n).

Proof. We have already shown the cases n ∈ {1, 2}, so consider n ≥ 3. We define Φ
explicitly by cases. For, let x = (J, I) = ⟪J,D⟫ ∈ CovH(n).
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(a) If x ∈ A(n), then D = [d1, d2] with 3 ≤ d1 ≤ d2 ≤ n, and we can write

I = J tD = [s1 = 1, t1] · · · [sl, tl][d1, d2][r1, u1] · · · [rm, um],

where 1 ≤ l, and 1 ≤ m, if J ∩ [d2 + 1, n] 6= ∅, otherwise the intervals [rj , uj ] do not
appear. Set

αj := tj − sj + 2 βj := uj − rj + 2

αj := sj+1 − tj − 2 βj := rj − uj−1 − 2,
(3.10.8)

and define a map ΦA : A(n)→ Comp(n) by

ΦA(x) = σ :=
(
α1, 1(α1), . . . , αl,1(αl), d2 − d1 + 1,1(β1), β1, . . . ,1(βm), βm,1(n− um)

)
where, by convention, we set sl+1 = d1 and u0 = d2. If J ∩ [d2 + 1, n] = ∅ we identify
um = d2 and we omit to write all the coordinates involving βj or βj , for example if
d2 = n, then the last coordinate of σ is d2 − d1 + 1. Note that ΦA is well defined, since
the sum of its parts is

l∑
j=1

(αj + αj) + d2 − d1 + 1 +
m∑
j=1

(βj + βj) + n− um

= −1 + d1 + d2 − d1 + 1− d2 + um + n− um = n.

Now, for 1 ≤ j ≤ j′, let sj
′

j := sj+· · ·+sj′ . Similarly for tj
′

j , r
j′

j and uj
′

j . Note that the
part α1 occurs in the position 1, and if it is the case, for 2 ≤ j ≤ l, αj occurs in position

(j) := sj1 − t
j−1
1 − j + 1; the part d2 − d1 + 1 occurs in position (d) := (l) + d1 − tl − 1;

and for 1 ≤ j ≤ m the part βj occurs in position (j∗) := (d) + rj1 − u
j−1
0 − j. Thus, we

define for x ∈ A(n)

Φ(x) := (ΦA(x))(d) = σ(d) = d2 − d1 + 1.

It is easy to prove by induction that σ
(j)
1 = tj + 1, σ

(j)−1
1 = sj − 1 for 2 ≤ j ≤ l,

σ
(d)
1 = d2, σ

(d)−1
1 = d1, and for 1 ≤ j ≤ m, we have σ

(j∗)
1 = uj and σ(j∗)−1 = rj − 2.

Moreover, σ is a k-composition of n, where

k = (1 + α1) + · · ·+ (1 + αl) + 1 + (β1 + 1) + · · ·+ (βm + 1) + n− um
= n− l −m+ sl+1

1 − tl1 + rm1 − um0 .

Thus, (3.10.2) applies, since σ1 ≥ 2 and (d) > 1, and we get

Ψ(Φ(x)) = Ψ(σ(d)) = 〈J,D〉 = x.

(b) If x ∈ B(n), then D = {d} for 2 ≤ d ≤ n, and we can write

I = [1, d][r1, u1] · · · [rm, um]

if J ∩ [d + 1, n] 6= ∅, otherwise the intervals [rj , uj ] do not appear. Then, we define a
correspondence ΦB : B(n)→ Comp(n) by

ΦB(x) = σ :=
(
d,1(β1), β1, . . . ,1(βm), βm,1(n− um)

)



3.10. Homological embeddings over AusTn and compositions 71

where we use the same notations and conventions as in (a), with the conditions u0 := d
and (d) = 1. It is easy to show that σ is a k-composition of n, where k = n −m + 1 +
rm1 − um0 . Thus, we define for x ∈ B(n)

Φ(x) := (ΦB(x))1 = σ1 = d,

and similar calculations as in (a) show that Ψ(Φ(x)) = Ψ(σ1) = x.

(c) If x ∈ C(n), then D = [d1, d2] with 2 ≤ d1 ≤ d2 ≤ n, and we can write

I = J tD = [s1, t1] · · · [sl, tl][d1, d2][r1, u1] · · · [rm, um],

for some l,m ≥ 1 if J ∩ [2, d1 − 1] 6= ∅ and J ∩ [d2 + 1, n] 6= ∅, otherwise the intervals
[sj , tj ] or [rj , uj ] do not appear respectively. Using the same conventions and notation
of (a), we define a correspondence ΦC : C(n)→ Comp(n) by

ΦC(x) = σ :=
(
1(s1 − 1), α1,1(α1), . . . , αl,1(αl), d2 − d1 + 1,

1(β1), β1, . . . ,1(βm), βm,1(n− um)
)
.

In this case σ is a k-composition of n, where k = n− l−m+ sl+1
1 − tl1 + rm1 − um0 . Thus,

we define for x ∈ C(n)

Φ(x) := (ΦC(x))(d) = σ(d) = d2 − d1 + 1,

and similar calculations as in (a) show that Ψ(Φ(x)) = Ψ(σ(d)) = x.

(d) If x ∈ D(n), then D = {1}, and we can write

I = [1, 1][r1, u1] · · · [rm, um],

for some m ≥ 1 if J ∩ [2, n] 6= ∅, otherwise I = [1, 1]. As before, we use the same
conventions and notations as in (a) to define a correspondence ΦD : D(n) → Comp(n)
by

ΦD(x) = σ :=
(
1,1(β1), β1, . . . ,1(βm), βm,1(n− um)

)
where u0 := 1 and (d) := 1. Note that σ is a k-composition of n, with k = n−m+ 1 +
rm1 − um0 . Thus, we define for x ∈ D(n)

Φ(x) := (ΦD(x))1 = σ1 = 1.

Similarly as in (a), we get that Ψ(Φ(x)) = Ψ(σ1) = x. This shows that Ψ◦Φ = 1CovH(n).

For the converse, let σ = σ1 + · · · + σk be a k-composition of n, with σ1 ≥ 2, and
take 2 ≤ i ≤ k. Then, from Eq. (3.10.2) we get

Ψ(σi) = ⟪[1, σ1 − 1] t
l⊔

j=2

[σ
(j)−1
1 + 1, σ

(j)
1 − 1] t

m⊔
j=1

[σ
(j∗)−1
1 + 2, σj

∗

1 ] , [σi−1
1 + 1 , σi1]⟫,

where (j) are those indices j′ ∈ {2, . . . , i− 1} such that σj′ ≥ 2, and by (j∗) we denote
the indices j′ ∈ {i + 1, . . . , k} such that σj′ ≥ 2, with the convention 1 < (2) < · · · <
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(l) < i < (1∗) < · · · < (m∗). Define (1) := 1, G := {(1), (2), . . . , (l), i, (1∗), . . . , (m∗)},
and

for 2 ≤ j ≤ l : for 1 ≤ j ≤ m :

s1 = 1 d1 = σi−1
1 + 1 sj = σ

(j)−1
1 + 1 rj = σ

(j∗)−1
1 + 2

t1 = σ1 − 1 d2 = σi1 tj = σ
(j)
1 − 1 uj = σ

(j∗)
1 .

From (3.10.5) we have Ψ(σi) ∈ A(n), hence we can set σ′ := ΦA(Ψ(σi)). Therefore,
using the equalities (3.10.8), we have that

σ′1 = α1 = t1 − s1 + 2 = t1 + 1 = σ1,

σ′(j) = αj = tj − sj + 2 = σ
(j)
1 − 1− (σ

(j)−1
1 + 1) + 2 = σ(j) for 2 ≤ j ≤ l,

σ′(j∗) = βj = uj − rj + 2 = σ
(j∗)
1 − (σ

(j∗)−1
1 + 2) + 2 = σ(j∗) for 1 ≤ j ≤ m,

σ′i = d2 − d1 + 1 = σi, and

σ′j = 1 = σj for any j ∈ [k] \G,

moreover, σ′ is a k′-composition of n by construction, where k′ = n− l−m+ sl+1
1 − tl1 +

rm1 − um0 . Hence,

k′ = n− l −m+ 1 + (σ
(2)−1
1 + 1) + · · ·+ (σ

(l)−1
1 + 1) + (σi−1

1 + 1)

− [(σ1 − 1) + (σ
(2)
1 − 1) + · · ·+ (σ

(l)
1 − 1)] + (σ

(1∗)−1
1 + 2) + · · ·+ (σ

(m∗)−1
1 + 2)

− [σi1 + σ
(1∗)
1 + · · ·+ σ

(m∗)
1 ]

= n− [(σ(1) − 1) + · · ·+ (σ(l) − 1) + (σi − 1) + (σ(1∗) − 1) + · · ·+ (σ(m∗) − 1)]

=n−
∑
j∈G

(σj − 1) = n−
∑
j,

σj≥2

(σj − 1) = k

where the last equality follows from Eq. (3.10.6). Therefore, σ = σ′ as k-compositions
of n. Also, we have that

(d) = (l) + d1 − tl − 1 = sl1 − tl1 − l + d1

= 1 + (σ
(2)−1
1 + 1) + · · ·+ (σ

(l)−1
1 + 1)

− [(σ1 − 1) + (σ
(2)
1 − 1) + · · ·+ (σ

(l)
1 − 1)]− l + σi−1

1 + 1

= σi−1
1 + 1− [(σ1 − 1) + (σ(2) − 1) + · · ·+ (σ(l) − 1)] = i

where the last equality follows from Eq. (3.10.7) Therefore,

Φ(Ψ(σi)) = (ΦA(Ψ(σi)))(d) = σ′(d) = σ(d) = σi.

Now for the case i = 1, we have that

Ψ(σ1) = ⟪[1, σ1 − 1] t
m⊔
j=1

[σ
(j∗)−1
1 + 2, σj

∗

1 ] , [σ1, σ1]⟫,
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where we use the same notation as in the previous case. From Eq. (3.10.5) we have
Ψ(σ1) ∈ B(n), hence we can set σ′ := ΦB(Ψ(σ1)). Similar arguments as before show
that σ = σ′ as k-compositions of n. Therefore,

Φ(Ψ(σ1)) = (ΦB(Ψ(σ1)))1 = σ′1 = σ1.

The case when σ = 1 + σ2 + · · ·+ σk is proven using the same techniques as in the case
σ1 ≥ 2. Thus Φ ◦Ψ = 1P(n). This completes the proof of the theorem.

Concerning the proof of Theorem 3.10.3, note that the maps ΦB and ΦD are injective
for all n ≥ 1; ΦC is not injective for n ≥ 3, since ΦC(〈∅, {2}〉) = 1+1+1 = ΦC(〈∅, {3}〉);
and ΦA is not injective for all n ≥ 4, since ΦA(〈{1}, {3}〉) = 2 + 1 + 1 = ΦA(〈{1}, {4}〉).

In the following paragraphs, we describe the maps ΦA, ΦB, ΦC , and ΦD in terms of
other combinatorial objets. For, we first introduce the binary notation of subsets of [n]
as follows. For this purpose we always consider the elements of J ⊆ [n] ordered by the
usual ordering of N.

Let Bin(n) be the set of binary words of length n, i.e. words w1w2 · · ·wn such that
wi ∈ {0, 1} for all i. We may also depict a binary word w of length n as a n-tuple
(w1, . . . , wn).

Recall that card 2[n] = card Bin(n) = 2n, via the bijective map Binn : 2[n] → Bin(n)
given by J 7→ Binn(J), where Binn(J) is the word w1 · · ·wn with wj = 1 if j ∈ J, and
wj = 0 otherwise. We call Binn(J) the binary notation of J , and for seek of simplicity
we identify those notations, when we fix n. For example, if J = {1, 3, 4, 5} ⊆ [6], we
have J = Bin6(J) = 101110 = (1, 0, 1, 1, 1, 0).

It is well known that we can visualise a composition σ = σ1 + · · · + σk (of n) as a
tiling of a 1 × n board with tiles of size 1 × σi corresponding to each part of σ in the
natural way. For example, 1 + 2 + 3 + 1 = 7 is represented by the tiling

1 2 3 4 5 6 7 (3.10.9)

which has 4 tiles of lengths 1, 2, 3 and 1, resp. The numbers in the tiling (3.10.9) repre-
sent the positions of the underlying tiles of size 1× 1 when considering the composition
σ = (1, 1, 1, 1, 1, 1, 1), counting from left to right. In what follows, we stick to this con-
vention. Moreover, we assign σi − 1 dots to each tile of size 1 × σi, as in the following
picture:

1 2 3 4 5 6

(3.10.10)

and we identify the tilings (3.10.9) and (3.10.10). In the latter case, the dots are drawn
over all the internal edges of each tile of length σi ≥ 2. Actually, this representation gives
a bijection ϕ between Comp(n) (viewed as tilings) and the set Bin(n− 1) of all binary
sequences of length n−1, e.g. (3.10.10) corresponds to the binary sequence (0, 1, 0, 1, 1, 0):
the ones correspond to the positions of the dots over the n−1 internal edges of the board
labelled with the natural order. The inverse correspondence is given by first assigning
to the binary sequence s = (s1, . . . , sn−1) its conjugate s′, where s′i := si + 1 mod 2,
and then marking the internal edges of the board corresponding to the positions of the
ones in s′ to get a tiling, and therefore a composition of n. For example,
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ϕ : (1, 0, 1, 1, 0, 1) 7→ (0, 1, 0, 0, 1, 0) 7→
1 2 3 4 5 6

=
1 2 3 4 5 6

which corresponds to the composition 2 + 3 + 2 = 7. Thus, there are 2n−1 compositions
of n. So, it is natural to equip Comp(n) with the following order: let T and T ′ be
in Comp(n), then T ≤til T ′ if and only if ϕ(T )i ≤ ϕ(T ′)i, for all i ∈ [n − 1]. Hence,
(2[n−1],⊆) and (Comp(n),≤til) are isomorphic posets, thus they have isomorphic Hasse
quivers. Fig. 3.2 shows the Hasse quiver of (Comp(3),≤til).

Figure 3.2: Hasse quiver of (Comp(3),≤til). The vertices are the compositions of 3
depicted as tilings of a 1 × 3 board. Note that all the elements of P(3) appear in this
diagram as tiles.

Now, we exhibit the corresponding tiling of the composition ΦA(x) (ΦB(x), ΦC(x),
ΦD(x)) for x in A(n) (B(n), C(n), D(n), respectively). Recall that for x = (J, I) ∈
CovH(n), we set D = I \ J.

(a) If x ∈ A(n), then D = [d1, d2] for 3 ≤ d1 ≤ d2 ≤ n. If d1 < d2, the tiling
corresponding to ΦA(x) is the following:

1 d1 d2 n

1

· · · · · · · · ·
d1−1 d2 n−1

L RM

where L denotes the parts α1,1(α1), . . . , αl,1(αl) of ΦA(x) and it is obtained by
drawing dots over the internal edges with positions j, for any j ∈ J ∩ [1, d1 − 2];
note that it has at least one dot, since 1 ∈ J ∩ [1, d1 − 2]. M indicates the part
d2 − d1 + 1 that occurs in position (d). If d2 = n, then R is not defined; but if
d2 < n, R is obtained by drawing dots over the internal edges with positions j− 1,
for every j ∈ J∩ [d2 +1, n] provided the last intersection is non-empty, otherwise R
is given by n−d2 tiles of length 1, thus R represents the parts 1(β1), β1, . . . ,1(βm),
βm, 1(n − um). Therefore, Φ(x) = (ΦA(x))(d) = d2 − d1 + 1 is represented by the
tile M .

If d1 = d2 = d, we just consider the tiling

1 d n

1

· · · · · ·
d n−1

L RM

and proceed as before.
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(b) If x ∈ B(n), then D = {d} for some 2 ≤ d ≤ n. Thus, the tiling representation of
ΦB(x) is the following:

1 d d+1 n· · · · · ·
1 d n−1

RM

where R is given and represents the same parts as in (a). Therefore, Φ(x) =
(ΦB(x))1 = d is represented by M.

(c) If x ∈ C(n), then D = [d1, d2] for some 2 ≤ d1 ≤ d2 ≤ n. If d1 < d2, the tiling
representing ΦC(x) is the following:

1 2 d1 d2 n

1 2

· · · · · · · · ·
d1−1 d2 n−1

L RM

where R is defined and represents the same parts as in (a). Note that in this
case 1 6∈ J , hence the first tile has length 1. If d1 = 2, then L is not defined; if
d1 = 3, then L consists of the single tile in position 2; if d1 ≥ 4 L is given by
drawing dots over the internal edges with positions j, for every j ∈ J ∩ [2, d1 − 2]
provided the last intersection is non-empty, otherwise L consists of d1 − 2 tiles of
length 1 in positions 2, . . . , d1 − 1. In this way L represents the parts (ΦC(x))j for
2 ≤ j ≤ (d)− 1. Therefore, Φ(x) = (ΦC(x))(d) = d2 − d1 + 1 is represented by M.
If d1 = d2 then M is represented by a tile of length 1 as in the last part of (a).

(d) If x ∈ D(n), then D = {1}. Hence, the tiling representing ΦD(x) is the
following:

1 2 n· · ·
1 2 n−1

RM

where R is given and represents the same parts as in (a). Since 1 6∈ J, the first tile
has length 1. Therefore, Φ(x) = (ΦD(x))1 = 1 is represented by M.

Observe that the construction given above may give the same tiling for different
cover relations of H(n), actually if σ is a k-composition of n, then there are k elements
of CovH(n) with the same tiling T , but each one corresponding to different tiles of T .
In particular if (J, I) and (J ′, I ′) are elements of CovH(n), with 1 ∈ J and 1 6∈ J ′, then
their corresponding parts will never belong to the same composition, see Fig. 3.3.

The inverse correspondence is given by Ψ. We explain this map using tilings by an
example as follows. The special case occurs when σ1 ≥ 2. For, consider the tiling

T = 1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10

For convenience, we keep the numbering of the edges and tiles as explained before.
Thus, T corresponds to the composition σ = (3, 1, 2, 2, 1, 1, 1) ∈ Comp(11). In this
case σ1 = 3 ≥ 2, hence, Eq. (3.10.1) implies that it corresponds to the cover relation
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x = ⟪[1, σ1 − 1] t J, {σ1}⟫, where J consists of the numbers j + 1 with j a label of an
edge marked with a dot appearing to the right of the edge σ1, i.e. J = {6, 8}, hence
x = ⟪{1, 2, 6, 8}, {3}⟫. For i > 1, Eq. (3.10.2) indicates that σi corresponds to the cover
relation ⟪J t J ′, D⟫, where J consists of the numbers j that label an edge marked with
a dot that appear to the left of the tile T ′ corresponding to the part σi; J

′ consists of
the numbers j + 1 with j a label of a dotted edge to the right of T ′, and D consists
of the positions of the underlying 1 × 1 tiles of T ′. For instance, σ3 corresponds to
⟪{1, 2, 8}, {5, 6}⟫, and σ6 to ⟪{1, 2, 5, 7}, {9}⟫. The cases when σ1 = 1 are analogous to
the the last two examples.

Fig. 3.3 displays the Hasse quiver of (Comp(4),≤til) with the cover relations of
H(AusT4) corresponding to the parts of each composition of 4.

1

2

3

4 ⟪∅, {4}⟫
⟪∅, {2}⟫
⟪∅, {3}⟫
⟪∅, {1}⟫

1

2

3

4⟪{1}, {4}⟫
⟪{1}, {3}⟫
⟪{1}, {2}⟫ 1

2

3

4 ⟪{2}, {4}⟫
⟪∅, {2, 3}⟫
⟪{3}, {1}⟫ 1

2

3

4
⟪∅, {3, 4}⟫
⟪{4}, {2}⟫
⟪{4}, {1}⟫

1

2

3

4⟪{1, 2}, {4}⟫

⟪{1, 2}, {3}⟫
1

2

3

4
⟪{1}, {3, 4}⟫

⟪{1, 4}, {2}⟫ 1

2

3

4

⟪∅, {2, 3, 4}⟫

⟪{3, 4}, {1}⟫

1

2

3

4

⟪{1, 2, 3}, {4}⟫

Figure 3.3: Hasse quiver of (Comp(4),≤til) with tilings depicted vertically for a better
display, with the 1 × 1 tile labelled by 1 on the top. Next to each tile appears the
corresponding cover relation of H(AusT4) using the notation ⟪J,D⟫. The green tiles
correspond to elements of A(4), orange tiles to elements of B(4), blue tiles to elements
of C(4), and purple tiles to elements of D(4). Note that if we erase the tiles involving
a 4, then we get the Hasse quiver of (Comp(3),≤til) with the corresponding elements of
CovH(AusT3).

3.11 Quasi-hereditary quotients of AusTn

Observe that if J ⊆ [n] and Binn(J) has a subword of the form 011, then AJ :=
AusTn/(eJc) has a block isomorphic to Πm, for some m ≥ 2, by Theorem 3.6.3 and Corol-
lary 3.6.4, thus AJ is not quasi-hereditary since gl. dim Πm = ∞. The converse is also
true. We denote by < the usual order on J .

Proposition 3.11.1. (AJ , (J,<)) is a quasi-hereditary algebra if and only if 011 is not
a subword of Binn(J).
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Proof. (⇐) Let J =
⊔r
i=1 Ji, with Ji = [si, ti], for i ∈ [r]. We proceed by induction

on r. The case r = 1 means that J = [s1, t1], so we have two cases: if s1 = 1, then
AJ ∼= AusTt1 , and AJ is quasi-hereditary; if s1 > 1, then necessarily s1 = t1, and
AJ is simple, thus quasi-hereditary. Now let r > 1, and set J ′ =

⊔r−1
j=1[sj , tj ], thus

J = J ′ t [sr, tr]. Without loss of generality we can assume sr > 1. Since 011 is not a
subword of Binn(J), we have that sr = tr, thus AJ ∼= AJ ′ ×Kesr , hence (esr) = Kesr is
clearly a heredity ideal of AJ , and f : AJ → AJ ′ given by the projection onto the first
coordinate, is a ring surjection with kernel (esr). Then, the result follows by induction.
This completes the proof.

Recall that an induced subposet of a poset (P,≤) is a poset (P ′,≤′), where P ′ ⊆ P ,
and for all x, y ∈ P ′, we have x ≤′ y if and only if x ≤ y. In this case, we write
≤ |P ′ =≤′.

Using the characterisation of the quasi-hereditary quotients AJ , we can restrict our-
selves to homological embeddings in H(AusTn) between quasi-hereditary quotients, i.e.
we have an induced subposet of H(AusTn) given as follows.

Set P (n) := {J ⊆ [n] | 011 is not subword of Binn(J)}. Then, it is clear that we
have an induced subposet

QH(AusTn) :=
(
P (n),�AusTn |P (n)

)
.

Set p(n) := cardP (n). Note that P (1) = 2[1] and P (2) = 2[2], thus p(1) = 2 and
p(2) = 4, hence QH(AusTn) = H(AusTn), for n = 1, 2. The following lemma provides
a recursive method to construct P (n).

Lemma 3.11.2. Let n ≥ 3. Then p(n) = p(n− 1) + p(n− 2) + 1.

Proof. Set P ′(k − 2) = {J t {k} | J ∈ P (k − 2)}, for k ≥ 3. It is enough to prove that
P (n) = P (n−1)tP ′(n−2)t{[n]}. For, we use binary notation. Indeed, it is clear that
P (n−1)tP ′(n−2)t{[n]} ⊆ P (n). For the converse inclusion, let w ∈ P (n). If wn = 0,
then w ∈ P (n − 1). On the other hand, if wn = 1, we have two cases: wn−1 = 1, thus
wi = 1 for all i ∈ [n − 2], otherwise 011 is a subword of w, a contradiction, therefore,
w = [n]. Second, if wn−1 = 0, then w ∈ P ′(n− 2). This completes the proof.

The sequence {p(n)}n≥1 satisfies the recursive defining formula of the Fibonacci
numbers Fib(n) minus one, but with initial values 2, 4, i.e. p(n) = Fib(n + 3) − 1, for
n ≥ 1, where Fib(n) = A000045(n). We observe also that the numbers Fib(n)−1 appear
as the sequence OEIS:A000071.

In what follows we will see that the number q(n) of cover relations of QH(AusTn) is
given by the sequence OEIS:A023610 (cf. Proposition 3.11.4), which counts the number
of parts of all compositions of n that use only 1 and 2, i.e. setting Comp≤2(n) := {σ ∈
Comp(n) | σi ≤ 2 for all i} and P(Comp≤2(n)) := {σi ∈ P(n) | σ ∈ Comp≤2(n)}, then
cardP(Comp≤2(n)) = A023610(n− 1).

Note that the image of the restriction of the map Φ: CovH(n)
∼→ P(n) to the subset

of cover relations (J, I) ∈ CovH(n) with J, I ∈ P (n) is not completely contained in
P(Comp≤2(n)), e.g. Φ([2], [3]) = 3, we need to characterise those elements Φ((J, I)) that

https://oeis.org/A000045
https://oeis.org/A000071
https://oeis.org/A023610
https://oeis.org/A023610
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do not lie in P(Comp≤2(n)). For, we define the following subsets of Comp(n):

F (n) := {σ ∈ Comp≤2(n) | σi = 2 for some i ≥ 2}, and

G(n) := {σ ∈ Comp(n) | σ1 ≥ 3, σi ≤ 2 for all i > 1}.

For simplicity, we write a k-composition σ of n as a word w of length k, and we identify
both notations, e.g. if σ = (1, 2, 4) ∈ Comp(7), then σ = 124. Using this identification,
the following table shows the elements of F (n) and G(n), for n = 3, 4, 5.

n F (n) G(n)

3 12 3

4 121, 112, 22 31, 4

5 1211, 1121, 1112, 221, 212, 122 311, 41, 32, 5

Aditionally we set,

F(n) := {σi ∈ P(n) | σ ∈ F (n), i ≥ 2, σi = 2}, and

G(n) := {σi ∈ P(n) | σ ∈ G(n), σi 6= 2}.

Note that cardF(n) = cardG(n) for 1 ≤ n ≤ 5. We show that this is not a coinci-
dence.

Lemma 3.11.3. cardF(n) = cardG(n), for n ≥ 1.

Proof. Let n ≥ 5. For Xn ∈ {F (n), G(n)} and m ∈ N, set Xn[m] := {wm | w ∈ Xn}.
First we show that

F (n) = F (n− 1)[1] t F (n− 2)[2] t {xn, yn}, (3.11.1)

where xn := 1 · · · 12 is a n−1-composition of n, and yn := 21 · · · 12 is a n−2-composition
of n. It is clear that the right hand side of Eq. (3.11.1) is contained in F (n). Conversely,
let σ ∈ F (n) be a k-composition. If σk = 1, then σ ∈ F (n− 1)[1]. If σk = 2, and there
exits 1 < i < k, then σ ∈ F (n − 2)[2], otherwise σ ∈ {xn, yn}. A similar proof shows
that equality

G(n) = G(n− 1)[1] tG(n− 2)[2] t {n} (3.11.2)

also holds. Hence,

cardF(n) = cardF(n− 1) + cardF(n− 2) + cardF (n− 2) + 2, and

cardG(n) = cardG(n− 1) + cardG(n− 1) + cardG(n− 2) + 1.

Moreover, from (3.11.1) we have that cardF (n) = cardF (n − 1) + cardF (n − 2) + 2,
thus, (3.11.2) and an easy induction show that cardG(n) = cardF (n−1)+1. The result
follows by induction.

Proposition 3.11.4. Let n ≥ 1. Then q(n) = A023610(n − 1). Moreover, q(n) =
q(n− 1) + q(n− 2) + Fib(n+ 1), for n ≥ 3.

https://oeis.org/A023610
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Proof. Define

R = {σi ∈ P(n) | σ ∈ Comp≤2(n), σi = 1}, and

T = {σ1 ∈ P(n) | σ ∈ Comp≤2(n), σ1 = 2}.

Hence, P(Comp≤2(n)) = F(n) tR t T , and cardF(n) tR t T = A023610(n− 1).
Let x = ⟪J,D⟫ ∈ CovH(n). If we prove that J and J tD are in P (n) if and only if

Φ(x) ∈ Rt T tG(n), then the result follows from Lemma 3.11.3, since Φ: CovH(n)→
P(n) is a bijection. So, we prove the last claim.

Set I := J tD, and suppose that J, J tD ∈ P (n). From the proof of Theorem 3.10.3,
we have four cases.

Case 1. x ∈ A(n). Then I = {1, 2, . . . , t1, s2, . . . , sl, d, r1, . . . , rm}, with no consecu-
tive integers after t1, for some d ≥ 3. Thus

ΦA(x) ∈


G(n) if t1 ≥ 2,

F (n) if t1 = 1 and l ≥ 2 or m ≥ 1,

{21 · · · 1} if I = {1, d}.

In the first case we get Φ(x) = 1 ∈ G(n), and in the last two cases Φ(x) = 1 ∈ R, since
I \ [1, t1] is union of singletons.

Case 2. x ∈ B(n). Then I = {1, 2, . . . , d, r1, . . . , rm}, with no consecutive integers
after d, for some d ≥ 2. Thus,

ΦB(x) ∈

{
G(n) if d ≥ 3,

F (n) if d = 2.

In the first case we get Φ(x) = d ∈ G(n), and in the second Φ(x) = 2 ∈ T.
Case 3. x ∈ C(n). Then I = {s1, . . . , sl, d, r1, . . . , rm}, with no consecutive integers

and d ≥ 2. Thus,

ΦC(x) ∈

{
F (n) if l ≥ 1 or m ≥ 1,

{1 · · · 1} if I = {d}.

In both instances we find that Φ(x) = 1 ∈ R.
Case 4. x ∈ D(n). Then I = {1, r1, . . . , rm}, with no consecutive integers. Thus,

ΦD(x) ∈

{
F (n) if m ≥ 1,

{1 · · · 1} if I = {1}.

In both instances we find that Φ(x) = 1 ∈ R.
For the converse, let Φ(x) = σ be a k-composition of n such that σi ≤ 2, for 2 ≤ i ≤ k.

Set J−σi := {j | 1 < j < i, σj = 2} and J+
σi

:= {j | i < j < k, σj = 2}. Recall that if

1 ≤ j ≤ j′ ≤ k, then σj
′

j = σj + · · ·+ σj′ . Hence, if j ∈ J−σi , then σj1 − 1 = σj−1
1 + 1, and

if j ∈ J+
σi , then σj1 = σj−1

1 + 2. Set Σ−σi = {σj1 − 1 | j ∈ J−σi}, Σ+
σi = {σj1 | j ∈ J+

σi}, and
Σσi = Σ−σi t Σ+

σi . From the definition of Ψ (cf. page 68) we have the following.
If σi = 1 ∈ R, then

Ψ(σi) =


⟪{1} t Σσi , {σ

i
1}⟫ if σ1 = 2,

⟪Σ+
σi , {1}⟫ if σ1 = 1 and i = 1,

⟪Σσi , {σ
i
1}⟫ if σ1 = 1 and i > 1.

https://oeis.org/A023610
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If σ1 = 2 ∈ T, then Ψ(σ1) = ⟪{1} t Σ+
σi , {2}⟫.

Finally, if σi ∈ G(n), then

Ψ(σi) =

{
⟪[1, σ1 − 1] t Σ+

σi , {σ1}⟫ if i = 1.

⟪[1, σ1 − 1] t Σσi , {σ
i
1}⟫ if i > 1.

In all cases we can see that J,D ∈ P (n), thus J, I ∈ P (n). This shows the first
part of the proposition; the second assertion is a well known property of the sequence
OEIS:A023610.

The following table shows the values of q(n) for small n.

n 1 2 3 4 5 6 7 8 9 10

q(n) 1 3 7 15 30 58 109 201 365 655

Now it is easy to construct recursively the Hasse diagram of QH(AusTn). For, set
Q(n) := CovQH(AusTn),

Q′(n− 2) := {(J t {n}, I t {n}) | (J, I) ∈ Q(n− 2)},
U(n− 2) := {(J, J t {n}) | J ∈ P (n− 2)}.

Corollary 3.11.5. Q(n) = Q(n− 1) tQ′(n− 2) t U(n− 2) t {([n− 1], [n])}.

Proof. Write X = Q(n − 1) t Q′(n − 2) t U(n − 2) t {([n − 1], [n])}. Then it is clear
that X ⊆ Q(n), and cardX = q(n − 1) + q(n − 2) + p(n − 2) + 1. Since p(n − 2) =
Fib(n + 1) − 1, then cardX = q(n − 1) + q(n − 1) + Fib(n − 1) and the result follows
from Proposition 3.11.4.

https://oeis.org/A023610


Chapter 4

Blocks of Schur algebras of finite
representation type

Classical Schur algebras are defined as the endomorphism ring of some permutation
modules over symmetric groups. It is well known that Schur algebras are quasi-hereditary
for some suitable order of the simples [Don81; Par89; Gre90], whose highest weight
theory corresponds to those of general linear groups. In [Erd93] Erdmann classified
Schur algebras of finite type, and following this work, Donkin and Erdmann classified
blocks of finite representation type of Schur algebras, up to Morita equivalence in [DR94].
In this chapter we describe the homological poset of blocks of Schur algebras of finite
representation type, using a similar procedure as in the case of the Auslander algebra of
the truncated polynomial ring in Chapter 3.

Let K be a fixed algebraically closed field of characteristic p. For a vector space
V of dimension n over K, denote by V ⊗r the r-th tensor power of V , with r ≥ 0.
Then the symmetric group Σn acts on V ⊗r by place permutations. The Schur algebra
SK(n, r) is the endomorphism ring EndKΣn(V ⊗r). For more details on Schur algebras
and representation theory we refer the reader to [Mar08].

An interesting fact about blocks of Schur algebras of finite representation type is
that they are Morita equivalent to quiver algebras of the form KQ/I, where Q is the
quiver

1
•

2
• · · · n−1

•
n
•

a1 a2

b1

an−2

b2

an−1

bn−2 bn−1

and I is the ideal generated by ai+1ai, bibi+1, aibi − bi+1ai+1, for 1 ≤ i ≤ n − 2, and
an−1bn−1, for some n ≥ 1 [DR94, Theorem 2.1]. We denote this algebra by Bn, setting
Bi = AusTi, for i ∈ {0, 1, 2}.

It is also well known that the algebras Bn are quasi-hereditary for a unique order
of the simples, since they have a duality fixing the simples [DR94; Cou19]. In this case
the only admissible order is the usual one: 1 < 2 < · · · < n. In this chapter we describe
the homological poset of the algebras Bn. Firstly we describe the factors of some block
decomposition of Bn, to do so we define the following class of algebras: for n ≥ 1, set
B̃n := Bn/(b1a1). Note that B̃2 = Π2 (cf. Definition 3.5.1). Recall that for n ∈ N+, we
set [n] = {1, . . . , n}.

The chapter is organised as follows. In Section 4.1 we find block decompositions of the
factor algebras Bn/(e) and B̃n/(e), for e an idempotent in Bn or B̃n, respectively, and we
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also characterise its blocks. Section 4.2 is devoted to explaining and prove homological
properties of the algebra B̃n that we utilise later to show that certain embeddings are
not homological. In Section 4.3 we describe the set of cover relations of the homological
poset of Bn using properties of the algebras AusTn discussed in Chapter 3. Finally, in
Section 4.4 we construct the homological Hasse quiver of Bn using similar methods as
in Section 3.9.

4.1 Block decompositions of Bn and B̃n

In this section we find block decompositions and characterise its blocks in the case of the
algebras Bn and B̃n. We proceed in a similar way as in the case of AusTn in Chapter 3.

Let E = {ei}i∈[n] be a complete set of primitive orthogonal idempotents of Bn corre-
sponding to the paths of length zero. The next result characterises the indecomposable
projective Bn-modules and the idempotent ideals (e) = BneBn. For the convenience of
the reader, we use two notations for the basis elements.

Proposition 4.1.1. Let n ≥ 1, and P (i) := Bnei, for 1 ≤ i ≤ n. Then the following
conditions hold.

(a) P (1) =
b1a1

e1
a1 =

1

1
2 , P (n) =

en
bn−1

=
n

n− 1 , and

(b) P (i) =
biai

ei
aibi−1 =

i

i
i+ 1i− 1 , for 2 ≤ i ≤ n− 1.

(c) If 2 ≤ i ≤ n− 1 then (ei−1)ei = i− 1
i

, and (en−1)en ∼= K bn−1.

(d) If 1 ≤ i ≤ n− 1 then (ei+1)ei = i+ 1
i

.

(e) If |i− j| ≥ 2 then (ej)ei = 0.

(f) Let I = {ij | 1 ≤ j ≤ k} ⊆ [n] with i1 < . . . < ik. If ik < i then (eI)ei = (eik)ei,
and if i < i1 then (eI)ei = (ei1)ei.

(g) The ideal (en) is projective, more precisely (en) ∼= P (n)⊕ P (n).

Proof. Since there are no paths of length greater than 2, (a) and (b) follow directly from
the defining relations of Bn.

(c), (d) and (e) follow easily from (a) and (b). For (f), first assume ik < i. If i−ik ≥ 2,
then (eI)ei = 0 since there are no paths starting in i and factoring through some ij by
(c), thus (eik)ei = 0 = (eik)ei. If i − ik ≤ 1, then necessarily ik = i − 1. It is clear that

(eik)ei ⊆ (eI)ei. Let x ∈ (eI)ei, then x = p1eIp2ei =
∑k

j=1 p1eijp2ei = p1ei−1p2ei ∈
(ei−1)ei, by (e), from which the first part of (f) follows. The second part of (f) is similar.
Finally, (g) follows from (a), (d) and (e).
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Corollary 4.1.2. Let J =
⊔r
i=1 Ji ⊆ [n]. Then the map

ϕJ :
Bn

(eJc)

∼−−→ Bn
(eJc

1
)
× · · · × Bn

(eJc
r
)
,

given by b+ (eJc) 7→ (b+ (eJc
1
), . . . , b+ (eJc

r
)), is a K-algebra isomorphism.

Proof. By Proposition 4.1.1 (f) the algebra Bn satisfies the property in Lemma 3.4.4.
Thus, the result follows from Theorem 3.4.5.

Lemma 4.1.3. The embedding ι[n−1],[n] : modBn/(en) ↪→ modBn is homological.

Proof. By Proposition 4.1.1 (g), the ideal (en) is projective as Bn-module, thus the result
follows from Lemma 1.5.2.

For simplicity, we use the same notation E = {ei}i∈[n] for classes of paths of length

zero of B̃n, if no confusion can arise. Then we have the following descriptions of the
indecomposable projective modules and idempotent ideals of B̃n. This follows directly
from Proposition 4.1.1.

Proposition 4.1.4. Let n ≥ 2, and P (i) := B̃nei, for 1 ≤ i ≤ n. Then

(a) P (1) = e1
a1

= 1
2 , P (n) =

en
bn−1

=
n

n− 1 , and

(b) P (i) =
biai

ei
aibi−1 =

i

i
i+ 1i− 1 , for 2 ≤ i ≤ n− 1.

(c) If 2 ≤ i ≤ n− 1 then (ei−1)ei = i− 1
i

, and (en−1)en ∼= Kbn−1.

(d) If 2 ≤ i ≤ n− 1 then (ei+1)ei = i+ 1
i

, and (e2)e1
∼= Ka1.

(e) If |i− j| ≥ 2 then (ej)ei = 0.

(f) Let I = {ij | 1 ≤ j ≤ k} ⊆ [n] with i1 < . . . < ik. If ik < i then (eI)ei = (eik)ei,
and if i < i1 then (eI)ei = (ei1)ei.

(g) If n ≥ 3 then (ei) ∼= P (i)⊕ P (i), for i = 1, n.

Proof. To avoid confusion, we use the notation 〈e〉 := B̃neB̃n.

(g) 〈e1〉 = 〈e1〉(e1 + · · · + en) ∼= 〈e1〉e1 ⊕ 〈e1〉e2
∼= P (1) ⊕ P (1), by (a), (c) and (e).

The case i = n is analogous.

The assertion (f) of Proposition 4.1.4 implies that B̃n has the property stated in
Lemma 3.4.4. Thus, by Theorem 3.4.5 we can describe the quotients B̃n/(e), for e ∈ B̃n
a sum of elements of E.
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Corollary 4.1.5. Let J =
⊔r
i=1 Ji ⊆ [n]. Then

ϕJ :
B̃n

(eJc)

∼−−→ B̃n
(eJc

1
)
× · · · × B̃n

(eJc
r
)
,

given as in Theorem 3.4.5, is a K-algebra isomorphism, with the usual order of the
idempotents.

Now we are able to characterise the blocks of Bn/(e) as algebras of the form Bm
and B̃n. The crucial step for this characterisation is to consider the case of AusTn (cf.
Theorem 3.6.3) and the following observation.

Proposition 4.1.6. Let A and A′ be K-algebras. Consider two-sided ideals I, J of A,
and denote by πX : A→ A/X the canonical projections for X ∈ {I, J}. If there exists a
K-algebra isomorphism ϕ : πJ(A)→ A′, then the map

θ :
πI(A)

πI(J)
→ A′

ϕπJ(I)
, πI(a) + πI(J) 7→ ϕπJ(a) + ϕπJ(I)

is a K-algebra isomorphism.

Proof. First note that θ is well defined: suppose πI(a) + πI(J) = πI(b) + πI(J), then
πI(a − b) ∈ πI(J), thus a − b ∈ J, then ϕπJ(a − b) = 0, i.e. ϕπJ(a) = ϕπJ(b), from
where the claim follows. Now, let πI(a) + πI(J) ∈ Ker θ, thus ϕπJ(a) ∈ ϕπJ(I), since ϕ
is invertible, we get πJ(a) ∈ πJ(I), thus a ∈ I which shows that Ker θ is trivial. Finally,
since ϕ is surjective, we conclude that θ is an isomorphism.

For the rest of the section, if S is a subset of a ring R, denote 〈S〉R the two-sided
ideal of R generated by the elements of S.

For the following result, set Λn = AusTn and denote Πn the preprojective algebra of
type An. Consider the set In := {ai+1ai | 1 ≤ i ≤ n−2}∪{bibi+1 | 1 ≤ i ≤ n−2}, as subset
either of Λn or Πn. Then we have the two-sided ideals In := 〈In〉Λn and Ĩn := 〈In〉Πn .
With this notation, observe that Bn ∼= Λn/In and B̃n ∼= Πn/Ĩn as algebras, and we
have the canonical projections πn : Λn → Λn/In = Bn and π̃n : Πn → Πn/Ĩn = B̃n.
Note that if e ∈ Λn is a primitive idempotent associated to a path of length 0, then
πn(〈e〉Λn) = 〈e〉Bn , since πn(e) = e.

Theorem 4.1.7. Let n ≥ 3, J = [s, t] ⊆ {1, . . . , n}, and m := t− s+ 1. Then

Bn
〈eJc〉Bn

∼=


0 if J = ∅,
Bm=t if s = 1,

B̃m if s > 1.

as K-algebras. If m = 1 we identify B1
∼= Ket ∼= B̃1.

Proof. The cases J = ∅ and m ≤ 2 have been already considered in Theorem 3.6.3, thus
we can assume J 6= ∅ and m ≥ 3.

Let πJ : Λn → Λn/〈eJc〉Λn and π̃J : Πn → Πn/〈eJc〉Πn be the canonical projec-
tions. Then, by Theorem 3.6.3 we have isomorphisms ψ : πJ(Λn)

∼−→ Λt if s = 1,
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and ψ : πJ(Λn)
∼−→ Πm, if s > 1. Recall the notation [i + 1, i + 1, i]n = ai+1ai and

[i, i+1, i+1]n = bibi+1 as elements of Λn or Πn. Thus, from the proof of Theorem 3.6.3 we
get ψ([i+2, i+1, i]n+〈eJc〉Λn) = [i+2, i+1, i]t = ai+1ai and ψ([i, i+1, i+2]n+〈eJc〉Λn) =
[i+ 2, i+ 1, i]t = bibi+1 only if 1 ≤ i ≤ t− 2, and 0 otherwise, therefore ψπJ(In) = It if
s = 1, and ψπ̃J(Ĩn) = Ĩm if s > 1. Hence, if s = 1, by Proposition 4.1.6 we have

Bn
〈eJc〉Bn

=
πn(Λn)

πn(〈eJc〉Λn)
∼=

Λt
ψπJ(In)

=
Λt
It

= Bt,

and if s > 1 we get

Bn
〈eJc〉Bn

=
πn(Λn)

πn(〈eJc〉Λn)
∼=

Πm

ψπ̃J(Ĩn)
=

Πm

Ĩm
= B̃m.

Corollary 4.1.8. Let n ≥ 3 and J = [s, t] ⊆ [n], J 6= ∅. Then
B̃n

(eJc)
∼= B̃t−s+1.

Proof. We consider Bn+1 with primitive orthogonal idempotents labelled e0, e1, . . . , en.
So, by Theorem 4.1.7 we have that Bn+1/(e0) ∼= B̃n. Let {ẽi}ni=1 be the usual set of
primitive idempotents of B̃n. Then, motivated by the latter isomorphism, we identify
ei = ẽi, for 1 ≤ i ≤ n. Set Jc′ := {0, 1, . . . , n} \ J, since Jc = {1, . . . , n} \ J , and 0 6∈ J,
we get Jc′ = Jc ∪ {0}. Hence

B̃n
(eJc)

∼=
Bn+1

(eJc + e0)
=

Bn+1

(eJc∪{0})
=
Bn+1

(eJc′ )
∼= B̃t−s+1

by Theorem 4.1.7.

Corollary 4.1.9. Let J ⊆ [n]. Then the factor algebra Bn/(eJc) has blocks isomorphic
to Br or B̃t, for some 1 ≤ r, t ≤ n.

Proof. Follows from Corollary 4.1.2 and Theorem 4.1.7.

4.2 Homological properties of B̃n

In this section we study some homological properties involving the syzygies of the simple
B̃n-modules which will permit us characterise homological embeddings between Serre
subcategories of modBn. More precisely, we show that if n ≥ 5 and 1 < i < j < n then
Extj−i

B̃n
(S(i), S(j)) ∼= K, to do so we need explicit descriptions of the k-th syzygies of the

B̃n-simples S1, . . . , Sn for some k’s. The next results will explain this in more detail.
We start recalling the definition of syzygy of a module.

Definition 4.2.1. Let Λ be an Artin algebra. Let M be a Λ-module, and P• : · · · →
Pk

fk−→ · · · → P1
f1−→ P0

f0−→ M → 0 a projective resolution of M , with M in degree −1.
Then fi is the i-th differential of P•, for i ≥ 0, and Ωk

ΛM := Ker fk−1 is the k-th syzygy
of M , for all k ≥ 1.
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From now on, in this section we work over the algebra B̃n, so we write ΩkM =
Ωk
B̃n
M , for any module M ∈ mod B̃n. Note that by dimension shifting we have that

Extk
B̃n

(M,N) ∼= HomB̃n
(ΩkM,N), for any N ∈ mod B̃n and k ≤ 1.

For 1 ≤ i ≤ n− 2 and 0 ≤ t ≤ n−i
2 , t ∈ Z, denote M(i, i+ 2t) the string B̃n-module

i

i+ 1

i+ 2

· · ·

· · ·

i+ 2t− 1

i+ 2t

and the projective B̃n-module P (i, i+2t) :=
⊕t

j=0 P (i+2j). By Proposition 4.1.4, there
are inclusions ιi,t : M(i, i+ 2t) ↪→ P (i+ 1, i+ 2t− 1). Observe that there are projective
covers of the form hi,t : P (i, i+ 2t)→M(i, i+ 2t).

From Proposition 4.1.4, direct and easy computations show that

Ω1S(i) ∼=


S(2) if i = 1,

M(i− 1, i+ 1) if 2 ≤ i ≤ n− 2,

S(n− 1) if i = n.

(4.2.1)

For the next proposition consider the functions h, g : N→ Z given by

h(n) :=

{
m− 2 if n = 2m+ 1,

m− 2 if n = 2m,
g(n) :=


2 if n = 3,

m+ 2 if n = 2m+ 1 6= 3,

m+ 1 if n = 2m.

Proposition 4.2.2. Let n ≥ 5.

(a) We have the following exact sequences in mod B̃n.

0→M(1, 3)→ P (2)→ P (1)→ S(1)→ 0,

0→M(2, 4)→ P (1, 3)→ P (2)→ S(2)→ 0,

0→M(i− 2, i+ 2)→ P (i− 1, i+ 1)→ P (i)→ S(i)→ 0, for ≤ i ≤ n− 1,

0→M(n− 2, n)→ P (n− 1)→ P (n)→ S(n)→ 0.

(b) If 2 ≤ k ≤ n− 2 we have ΩkS(1) ∼=

{
M(1, k + 1) if k is even,

M(2, k + 1) if k is odd.

(c) If 2 ≤ k ≤ h(n) and k + 3 ≤ i ≤ n− 1− k, then ΩkS(i) ∼= M(i− k, i+ k).

(d) If 3 ≤ k ≤ n− 2, then ΩkS(1) ∼= Ωk−1S(2) ∼= · · · ∼= Ωk+1−g(k)S(g(k)).

The diagram in Fig. 4.1 depicts the syzygies considered in Proposition 4.2.2, in the
sense that the point in the row label by k and column i represents ΩkS(i). Note that the
syzygies appearing on the left hand side of the picture satisfy ΩkS(i) ∼= Ωk+i−1S(1), for
2 ≤ k ≤ n − 3 and 2 ≤ i ≤ g(k), by Proposition 4.2.2 (d), thus they are characterised
by Proposition 4.2.2 (b). The remaining cases, i.e. the syzigies represented by points in
the triangle to the right are completely described by Proposition 4.2.2 (c).
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2

3

n− 3

n− 2

↑
k

← i

↗

2

h(n)− 1

h(n)

g(n− 2)

1 2 3 4 5
n
2 + 1 n− 3

Figure 4.1: For n even, the points in diagram represent ΩkS(i). The triangle to the right
correspond to syzygies characterised in Proposition 4.2.2 (c). The dashed lines denote
the isomorphic syzygies described in Proposition 4.2.2 (d). The diagram is similar when
n ≥ 9 is odd, in that case the row k = h(n) in the triangle has 2 points corresponding to
Ωh(n)S(n+1

2 ) and Ωh(n)S(n+3
2 ). If n = 5, 6, 7 the triangle to the right does not appear.

Proof of Proposition 4.2.2. (a) is consequence of (4.2.1).
(b) From (a), we construct a projective resolution of S(1) by induction. If n = 2m+1,

with m ≥ 2, then n− 2 = 2m− 1. Thus, for 2 ≤ k ≤ m we have an exact sequence

P (2, 2k)
h2k−1−−−−→P (1, 2k − 1)

h2k−2−−−−→ P (2, 2k − 2)→ · · ·
h4−→ P (2, 4)

h3−→ P (1, 3)
h2−→ P (2)

h1−→ P (1)
h0−→ S(1)→ 0

where P (1) and P (2, 2k) are in degrees 0 and 2k − 1 respectively. By induction,
Ω2k−1S(1) = Kerh2k−2 = Imh2k−1

∼= M(2, 2k) and Ω2k−2S(1) Kerh2k−3 = Imh2k−2
∼=

M(1, 2k − 1).
Similarly, if n = 2m, with m ≥ 3, then n − 2 = 2m − 2. Thus, for 2 ≤ k ≤ m we

construct an exact sequence

P (1, 2k − 1)
h2k−2−−−−→P (2, 2k − 2)

h2k−3−−−−→ P (1, 2k − 3)→ · · ·
h4−→ P (2, 4)

h3−→ P (1, 3)
h2−→ P (2)

h1−→ P (1)
h0−→ S(1)→ 0

where P (1) and P (1, 2k − 1) are in degrees 0 and 2k − 2 respectively. By induction,
Ω2k−2S(1) = Kerh2k−3 = Imh2k−2

∼= M(1, 2k − 1) and Ω2k−3S(1) = Kerh2k−4 =
Imh2k−3

∼= M(2, 2k − 2).
(c) In this case, consider n ≥ 8, otherwise the conditions are empty and there is

nothing to prove. Note that if k = 2, the result follows from (a). Then, if k + 3 ≤ i ≤
n− 1− k, usig induction on k we find an exact sequence

P (i− (k − 2), i+ k − 2)
hk−2−−−→P (i− (k − 3), i+ k − 3)

hk−3−−−→ · · ·

→P (i− 2, i+ 2)
h2−→ P (i− 1, i+ 1)

h1−→ P (i)
h0−→ S(i)→ 0,

then Kerhk−2 = Ωk−1S(i) ∼= M(i − k + 1, i + k − 1), which implies that the following
term in the sequence is P = P (i− k + 1, i+ k − 1) and ΩkS(i) ∼= M(i− k, i+ k).
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(d) We proceed by induction on k. For k = 3, 4, 5, 6 the result follows by direct
inspection. Thus, we can assume k ≥ 6. First suppose that k = 2m + 1, with m ≥ 3.
Then g(k − 1) = m + 1 and g(k) = m + 2. Thus, by induction hypothesis we have
Ω2mS(1) ∼= Ω2m−1S(2) ∼= · · · ∼= ΩmS(m + 1). Using these isomorphisms, by induction
we continue the construction of projective resolutions of S(1), . . . , S(m + 1) such that
Ω2m+1S(1) ∼= Ω2mS(2) ∼= · · · ∼= Ωm+1S(m+ 1), but by (b) these syzygies are isomorphic
to M(2, 2m+ 2) = M(2, k + 1).

On the other hand, note that the numbers k′ := m − 1 and i′ := m + 2 satisfy 2 ≤
k′ ≤ h(n) and k′+3 = i′, thus by (c) we have Ωm−1S(m+2) ∼= M(3, 2m+1) = M(3, k),
hence, by induction, the m − 1-st differential of a projective cover of S(m + 2) has the
form

P (3, k) P (4, k − 1)

M(3, k)

hm−1

thus ΩmS(m+2) ∼= M(2, k+1), showing the claim for k = 2m+1, since k+1−g(k) = m
and g(k) = m+ 2. The case when k = 2m is similiar. This completes the proof.

Corollary 4.2.3. Let n ≥ 2, and i ∈ [n]. Then pdS(i) = ∞ as B̃n-module. Thus,
gl.dim B̃n =∞.

Proof. From Proposition 4.2.2 we can construct for each S(i), i = 1, . . . , n, an infinite
projective resolution of period 2, with repeating differentials P (1, n)→ P (2, n− 1) if n
is odd, and P (1, n− 1)→ P (2, n) if n is even.

We have two crucial implications of Proposition 4.2.2 that will be used in the proof
of Theorem 4.3.3. Namely we have the following obervation.

Remark 4.2.4. If 2 ≤ k ≤ n− 2 and 1 ≤ i ≤ n− 1− k, then Ωk
B̃n
S(i) ∼= M(x, i+ k) for

some integer 1 ≤ x ≤ n− 1, and for i ∈ [n], Ext2
B̃n

(S(i), S(i)) ∼= HomB̃n
(Ω2S(i), S(i)) ∼=

K, since S(i) is direct summand of top Ω2S(i).

The following is a key lemma used in the characterisation of homological embeddings
into modBn.

Lemma 4.2.5. Let n ≥ 2. Then Ext2
Bn(S(i), S(i)) ∼= K for 2 ≤ i ≤ n.

Proof. Induction on n. For n = 2, we have that 0→ P (2)→ P (1)→ P (2)→ S(2)→ 0
is a projective resolution of S(2) in modB2, thus Ω2S(2) ∼= P (2). By dimension shifting
we get Ext2

B2
(S(2), S(2)) ∼= HomB2(Ω2S(2), S(2)) ∼= K, since S(2) = topP (2).

Now let n > 2. By Theorem 4.1.7 Bn/(en) is isomorphic to Bn−1, thus Lemma 4.1.3
implies that the composition modBn−1

∼→ modBn/(en) ↪→ modBn is a homological
embedding, so ExtBn(S(i), S(i)) ∼= K for all i ∈ {2, . . . , n − 1} by induction. Is left to
prove the case i = n. Indeed, the following is an exact sequence in modBn :

0→ K → P (n− 1)→ P (n)→ S(n)→ 0,

where K =
n− 1

nn− 2
, hence K = Ω2S(n). So, Ext2

Bn(S(n), S(n)) ∼= HomBn(K,S(n)) ∼=
K, because S(n) is direct summand of topK, finishing the proof.
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4.3 Homological poset of Bn

Now we are prepare to give a characterisation of the cover relations of the homological
poset of Bn. We start describing the homological embeddings into modBn.

Theorem 4.3.1. Let J =
⊔r
j=1 Ji ( [n], J non-empty. Then the emebedding ιJ :=

ιJ,[n] : modBn/(eJc) ↪→ modBn is homological if and only if r = 1 and 1 ∈ J.

Proof. (⇐) Follows by induction using Lemma 4.1.3 and Theorem 4.1.7.
(⇒) We proceed by contraposition. First assume, without loss of generality, that

r = 2. Write Ji = [si, ti] for i = 1, 2, with t1 + 2 ≤ s2, and set BJ := Bn/(eJc). Then

BJ ∼=
Bn

(eJc
1
)
× Bn

(eJc
2
)
,

where the second block is isomorphic to B̃t2−s2+1, since 1 6∈ J2. We distinguish two cases.
If cardJ2 = 1, i.e. s2 = t2, then B̃t2−s2+1

∼= Ket2 ∼= S(t2) as BJ -modules, which shows
that S(t2) is BJ -projective, so ExtiBJ (S(t2), S(t2)) = 0 for all i ≥ 1. On the other hand,

by Lemma 4.2.5 Ext2
Bn(S(t2), S(t2)) ∼= K, given t2 > 2. Therefore ιJ is not homological.

Now, if card J2 > 1, then B̃t2−s2+1 has infinite global dimension by Corollary 4.2.3,
but Bn has finite global dimension, considering it is quasi-hereditary, hence ιJ cannot
be homological.

Finally, if 1 6∈ J, BJ is isomorphic to a product of algebras of the form B̃m for some
m ∈ N+, so similar arguments as before show that ιJ is not a homological embedding.
This completes the proof.

Lemma 4.3.2. Let n ≥ 3. Then, the embedding ιi : mod B̃n/(ei) ↪→ mod B̃n given by
restriction of scalars if homological for i = 1, n.

Proof. It is enough to observe that (e1) and (en) are projective B̃n-modules by Propo-
sition 4.1.4 (g).

Recall that we identify B̃2 = Π2, thus in either case, the only homological embeddings
of the form modA ↪→ mod B̃2 are the trivial ones, i.e. when A = B̃2 or A = 0 (cf.
Corollary 3.7.4).

Theorem 4.3.3. Let n ≥ 3, J =
⊔r
i=1 Ji ( [n], J non-empty. Then, the embedding

ιJ := ιJ,[n] : mod B̃n/(eJc) ↪→ mod B̃n is homological if and only if r = 1 and card J ≥ 2.

Proof. Set B := B̃n/(eJc).
(⇒) We proceed by contraposition. For, suppose r ≥ 2. Without loss of generality

we can consider r = 2. Write Ji = [ui, ti], for i = 1, 2. Then, by Corollary 4.1.5 we have

B ∼=
B̃n

(eJc
1
)
× B̃n

(eJc
2
)
.

If ui = ti, for some i = 1, 2, then Corollary 4.1.8 implies that B̃n/(eJc
i
) ∼= B̃1

∼= Keui ,
thus pdB S(ui) = pdB̃n/(eJc

i
) S(ui) = pdKK = 0. But in Remark 4.2.4 we observed that

Ext2
B̃n

(S(ui), S(ui)) ∼= K. Hence, ιJ is not homological in this case.
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Now assume ui < ti, for i = 1, 2. Thus 1 < t1 < u2 < n. Since S(t1) and S(u2) are
supported in different blocks as B-modules, Ext∗B(S(t1), S(u2)) = 0. On the other hand,
there exits 2 ≤ k ≤ n− 2 such that u2 = t1 + k. By dimension shifting we have

Extk
B̃n

(S(t1), S(t1 + k)) ∼= HomB̃n
(ΩkS(t1), S(t1 + k)). (4.3.1)

From Proposition 4.2.2 we know that ΩkS(t1) ∼= M(p, t1 + k) as B̃n-modules, for some
1 ≤ p ≤ n− 1. Then, recalling the shape of M(p, t1 + k), it is easy to see that the right
hand side of (4.3.1) is isomorphic to K, since S(t1 +k) is direct summand of top ΩkS(t1),
showing that ιJ is not homological.

(⇐) We proceed by induction on n. For n = 3, the only possibilities for J are [1, 2] and
[2, 3]. Since Jc is equal to {3} and {1} respectively, the claim follows from Lemma 4.3.2.
Now let n > 3 and J ⊆ [n] as in the hypothesis. We distinguish two cases.

First, if n 6∈ J , then J ⊆ [n− 1]. Write Jc′ = [n− 1] \ J , and recall that Jc = [n] \ J.
Then,

B̃n
(eJc)

∼= B̃t−s+1
∼=
B̃n−1

(eJc′ )
.

By induction ι′j : mod B̃n−1/(eJc′ )→ mod B̃n−1 is a homological embedding. Also note

that B̃n−1
∼= B̃n/(en), and ιn : mod B̃n/(en) → mod B̃n is homological. Hence, the

composition

mod
B̃n

(eJc)

∼−→ mod
B̃n−1

(eJc′ )

ι′j−→ mod B̃n−1
∼−→ mod

B̃n
(en)

ιn−→ mod B̃n

equals ιj , since all functors are given by restriction of scalars, thus ιJ is homological.

Second, if n ∈ J, then necessarily 1 6∈ J , and the proof is done similarly as in
the previous case, but now considering that B̃n−1

∼= B̃n/(e1) and that the embedding
ι1 : mod B̃n/(e1)→ B̃n is homological. This completes the proof.

Recall that H(A) is a weak subposet of the power set of [n] ordered by inclusion
P(n). Thus, if (J, I) ∈ H(A) and card I \ J = 1, then (J, I) ∈ CovH(A).

Corollary 4.3.4. Let n ≥ 3, and J ⊆ [n]. Then,

(a) (J, [n]) ∈ CovH(Bn) if and only if J = [1, n− 1].

(b) (J, [n]) ∈ CovH(B̃n) if and only if J = [1, n− 1] or J = [2, n].

Proof. (a) From Theorem 4.3.1 we have r := (J, [n]) ∈ H(Bn) if and only if J = [1, t]
for some 1 ≤ t ≤ n− 1. Thus, if t = n− 1, then clearly r is a cover relation. Conversely,
if t ≤ n − 2, then ι[t],[n] = ι[n−1],[n] ◦ ι[t],[n−1] is a non-trivial factorisation of ι[t],[n] into
homological embeddings, thus [n] does not cover [t] in H(Bn).

(b) From Theorem 4.3.3 we have r := (J, [n]) ∈ H(B̃n) if and only if J = [s, t] for
some 1 ≤ s < t ≤ n. Thus, if (s, t) = (1, n− 1) or (s, t) = (2, n) then r is a cover relation
in H(B̃n). Conversely, if 2 ≤ card J ≤ n − 2, then J ( [1, n − 1] or J ( [2, n]. In the
first case, ιJ,[n] = ι[n−1],[n] ◦ ιJ,[n−1] is a non-trivial factorisation of ιJ,[n] into homological

embeddings, thus r is not a cover relation in H(B̃n). The other case is similar.
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In what follows we use the following assumptions. Let J ⊆ I ⊆ [n]. As before,
we split them into intervals, i.e. we find 1 ≤ r ≤ t and closed intervals Jj = [sj , tj ],
Ii = [ri, ui], for 1 ≤ j ≤ r and 1 ≤ i ≤ t, such that J =

⊔r
j=1 Jj and I =

⊔t
i=1 Ii. We

also assume that tj + 2 ≤ sj+1 and ui + 2 ≤ ri+1, for j ∈ [r − 1] and i ∈ [t − 1], unless
otherwise stated. Moreover, we have a unique function σ : [r]→ [t] such that Jj ⊆ Iσ(j)

for all j ∈ [r]. In the case when t = r, we assume that σ = 1[r], thus, if 1 ∈ J , then
1 ∈ J1 ⊆ I1, and in these cases, `(J) = r and `(I) = t. Also, for simplicity, we denote
BJ := Bn/(eJc) for any J ⊆ [n].

Next we show that the cover relations of H(AusTn) (cf. Proposition 3.8.1) are actu-
ally relations in H(Bn), but not necessarily cover relations.

Proposition 4.3.5. Let (J, I) ∈ H(AusTn), then (J, I) ∈ H(Bn).

Proof. It is enough to prove the assertion for the cover relations of H(AusTn). So, let
(J, I) ∈ CovH(AusTn), and set BI := Bn/(eIc) for simplicity. Then, by Lemma 2.3.7,
it is sufficient to show that the ideal (eI\J) is projective as BI -module.

From Proposition 3.8.1 we have four cases.

Case 1. t = r+ 1, 1 ∈ J, J1 = I1 and Jj = Iσ(j) for 2 ≤ j ≤ r. By Lemma 3.10.1, we
have I \ J = Ii0 for some i0 ∈ {2, . . . , t}, i.e. I = J t Ii0 . Then

BI ∼=
r∏
j=1

Bn
(eJc

j
)
× Bn

(eIci0
)
,

note that the last block is isomorphic to (eI\J) = (eIi0 ) as BI -module, hence BI -
projective.

Case 2. t = r, 1 ∈ J, u1 = t1 + 1, and Jj = Ij for 2 ≤ j ≤ r. Thus, I1 = [1, u1] and
I \ J = {u1}, so

BI ∼=
Bn

(eIc1)
×

r∏
j=2

Bn
(eJc

j
)
∼= Bu1 ×

r∏
j=2

Bn
(eJc

j
)
,

then (eI\J) = BI eu1 BI
∼= Bn

(eIc1
) eu1

Bn
(eIc1

)
∼= Bu1eu1Bu1 =: M as BI -modules. Note that

M is a projective Bu1-module (Proposition 4.1.1 (g)). Set B′ =
∏r
j=2Bn/(eJc

j
), then B′

is an ideal of BI and B′ ⊆ annBIM , hence M ∼= (eI\J) is a projective BI -module.

Case 3. t = r+ 1, 1 6∈ I and Jj = Iσ(j) for all j ∈ [r]. Then, there exists i0 ∈ [t] such
that I \ J = Ii0 , i.e. I = J t Ii0 , thus

BI ∼=
r∏
j=1

Bn
(eJc

j
)
× Bn

(eIci0
)

and similarly as in Case 1, we conclude that (eI\J) is BI -projective.

Case 4. J ⊆ {3, . . . , n} and I = [1, 1] t J. Thus, I \ J = {1}, so

BI ∼=
Bn

(e[2,n])
×

r∏
j=1

Bn
(eJc

j
)
∼= Ke1 ×

r∏
j=1

Bn
(eJc

j
)
,

thus (eI\J) = (e1) ∼= Ke1 as BI -modules, showing that (eI\J) is projective.
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Note that the relations (J, I) described in Cases 2 and 4 in the last proof are cover
relations in H(Bn). We keep the same notation for the intervals Jj and Ii as before.

Lemma 4.3.6. Let n ≥ 3, J ⊆ I ⊆ [n], r = `(J) and t = `(I). Then the following
conditions hold.

(a) If (J, I) ∈ CovH(Bn), then r ≤ t ≤ r + 1,.

(b) Let t = r. Then (J, I) ∈ CovH(Bn) if and only if there exists i0 ∈ [r] such that
(Ji0 , Ii0) ∈ CovH(BIi0 ) and Ji = Ii for all i 6= i0.

(c) Let t = r+ 1. Then (J, I) ∈ CovH(Bn) if and only if there exists i0 ∈ [t] such that
i0 6∈ Imσ, (∅, Ii0) ∈ CovH(BIi0 ) and Jj = Iσ(j) for all j ∈ [r].

Proof. (a) First suppose by contradiction that r + 1 < t. Without loss of generality we
can assume t = r + 2. Then I = J t Ii0 t Ii1 , thus similar arguments to those used in
the proof of Proposition 4.3.5 Case 1 show that J ≺Bn J t Ii0 ≺Bn I, a contradiction.
Moreover, r ≤ t, otherwise t < r, thus there exist i0 ∈ [t] and j0 ∈ [r] such that
Jj0 t Jj0+1 ⊆ Ii0 . If 1 ∈ Ii0 , then BI has a block of the form Bn/(eIci0

) ∼= Bm, for

some m, hence, after relabelling the idempotents if necessary, Theorem 4.3.1 shows that
(Jj0 t Jj0+1, Ii0) is not a homological embedding in H(Bm), thus (J, I) 6∈ H(Bn), a
contradiction. A similar contradiction holds if 1 6∈ Ii0 . Therefore, r ≤ t ≤ r + 1.

(b) It is clear that the implication (⇐) is consequence of Corollary 4.1.2. For the
converse, we proceed by contradiction. In particular we have (Ji, Ii) ∈ H(BIi) holds for
all i ∈ [r]. First, suppose that there is no i0 ∈ [r] such that (Ji0 , Ii0) ∈ CovH(BIi0 ), i.e.
(Ji, Ii) 6∈ CovH(BIi) for all i ∈ [r], then there exists Ki ⊆ [n] such that Ji ≺ Ki ≺ Ii in
BIi , thus J ≺Bn J tKi ≺Bn I contradicts the fact that (J, I) is a cover relation. Then,
we can assume that such an i0 exists. By contradiction, we assume also that there exits
i1 ∈ [j], i0 6= i1, such that Ji1 ( Ii1 . Then, Ji0 ≺ Ii0 in H(BIi0 ) and Ji1 ≺ Ii1 in H(BIi1 ),
hence J ≺ (J \Ji0)t Ii0 ≺ I is a non-trivial factorisation of the relation (J, I) in H(Bn),
since Ji1 is contained in the middle set, a contradiction. Thus, the converse holds as
well.

Note that if (J, I) ∈ CovH(Bn), then t = r if and only if Ji 6= ∅ for all i ∈ [r], thus
(c) is consequence of (b) when we let some Ji to be empty. This completes the proof.

The last lemma shows that the cover relations (J, I) in H(Bn) are determined by the
cover relations of any block BI , and these cover relations are completely characterised
in Corollary 4.3.4, since each block is of the form Bm or B̃m, for some m.

Proposition 4.3.7. Let n ≥ 3, and J ⊆ I ⊆ [n] as before. Consider the following
conditions.

(C1) t = r + 1, 1 ∈ J, Jj = Iσ(j) for all j ∈ [r], and card Ii0 ∈ {1, 2} for the unique
i0 ∈ [t] \ Imσ.

(C2) t = r, 1 ∈ J1 ( I1, Jj = Ij for 2 ≤ j ≤ r, and u1 = t1 + 1.

(C3) t = r + 1, 1 6∈ I, Jj = Iσ(j) for all j ∈ [r], and card Ii0 ∈ {1, 2} for the unique
i0 ∈ [t] \ Imσ.
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(C4) I = [1, 1] t J, with J ⊆ {3, . . . , n}.

(C5) 1 ∈ J , there exists 2 ≤ j0 ≤ r such that sj0 < tj0 and I \ J = {sj0 − 1} or
I \ J = {tj0 + 1}.

(C6) 1 6∈ I, there exists 1 ≤ j0 ≤ r such that sj0 < tj0 and I \ J = {sj0 − 1} or
I \ J = {tj0 + 1}.

If the pair (I, J) satisfies one of the properties (C1)-(C6), then (I, J) ∈ CovH(Bn).
Conversely, all the cover relations of H(Bn) are given by the conditions (C1)-(C6).

Proof. First, note that all the conditions are pairwise disjoint. Moreover, by Proposi-
tions 3.8.1 and 4.3.5 the pairs (J, I) in (C1) to (C4) are relations in H(Bn). For the rest
of the proof, set BI := Bn/(eIc).

Next, we show that (C5) and (C6) give relations in H(Bn). For, suppose that (I, J)
satisfies (C5) with I \ J = {sj0 − 1}. Then, I = Ij0 t

⊔
j 6=j0 Jj , where Ij0 = [sj0 − 1, tj0 ].

Since 1 ∈ J, we have that 1 ∈ I1, and 1 6∈ Ij0 , given 2 ≤ j0. Thus,

BI ∼=
Bn

(eIcj0
)
×
∏
j 6=j0

Bn
(eJc

j
)
∼= B̃m ×

∏
j 6=j0

Bn
(eJc

j
)
, (4.3.2)

where m := tj0 − sj0 + 2 ≥ 3. Then, (eI\J) = BI esj0−1BI ∼= B̃mesj0−1B̃m =: M as

BI -modules. By Proposition 4.1.4 (g), and after relabelling the idempotents of B̃m as
{ej0−1, ej0 , . . . , etj0}, we conlude that M is a projective B̃m-module, thus a projective
BI -module, considering the isomorphism (4.3.2). Hence, Lemma 2.3.7 implies that ιJ,I
is homological in this case.

Now, if (J, I) satisfies (C5) with I \ J = {tj0 + 1}, or (C6), we find an isomorphism
(4.3.2), thus similar arguments as before show that (J, I) ∈ H(Bn).

On the other hand, the pairs (J, I) with properties (C2), (C4), (C5) or (C6) satisfy
that card I − card J = 1, thus they are cover relations in H(Bn). If (J, I) has the
conditions in (C1) or (C3), then I = J t Ii0 for some i0 ∈ [t], and card Ii0 ≤ 2. If
card Ii0 = 1, then card I − card J = 1 and (J, I) is a cover relation. If card Ii0 = 2, then
Bn/(eIci0

) ∼= B̃2 = Π2 would be a block of BI by Corollary 4.1.2 and Theorem 4.1.7,

but we know that there are no non-trivial homological embeddings modA ↪→ mod Π2

given by restriction of scalars, so there is no K ⊆ [n] such that J ≺Bn K ≺Bn I, i.e.
(J, I) ∈ CovH(Bn).

Now, we prove that these are all the cover relations of H(Bn). Indeed, let (J, I) ∈
CovH(Bn), then by Lemma 4.3.6 (a) we know that r ≤ t ≤ r + 1.

First, if t = r, Lemma 4.3.6 (b) implies that there exists i0 ∈ [r] such that (Ji0 , Ii0) ∈
CovH(BIi0 ) and Ji = Ii for all i 6= i0. Since Ii0 6= ∅, we have that

BIi0
∼=

{
Bm if 1 ∈ Ii0 ,
B̃m if 1 6∈ Ii0 ,

for some m ≥ 2. In the first instance we have that i0 = 1, thus Corollary 4.3.4 (a) shows
that the only possibility for J1, and therefore for J, is the one given in (C2). For the
second case, if m ≥ 3, then Corollary 4.3.4 (b) shows that the unique possibilities for
Ji0 are given by (C5) if 1 ∈ J, or by (C6) if 1 6∈ I. If m = 2, the unique cover relation
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in H(BIi0 ) is (∅, Ii0), i.e. Ji0 = ∅, thus t = r + 1, a contradiction. Thus, this case does
not hold.

If t = r + 1, Lemma 4.3.6 (c) shows that there exits i0 such that I = J t Ii0 and
(∅, Ii0) ∈ CovH(BIi0 ). Then necessarily card Ii0 ∈ {1, 2} by Corollary 4.3.4, thus

BIi0
∼=

{
B1 if card Ii0 = 1,

Π2 if card Ii0 = 2.

Hence, the unique possibilities for (J, I) are given by (C1), (C3) and (C4), depending on
wether 1 ∈ J, 1 6∈ I or 1 ∈ I \ J , respectively. This shows that the conditions (C1)-(C6)
describe all the cover relations in H(Bn).

4.4 Homological Hasse quiver of Bn

Next we count the number of cover relations given in Proposition 4.3.7. For, we use
the binary notation of subsets J ⊆ [n] introduced in Section 3.10. Observe that with
this notation, the conditions (C1)-(C6) in Proposition 4.3.7 are equivalent to statements
using binary notation and subwords, for instance (C1) is equivalent to ask Binn(I)1 = 1
and 010 or 0110 are subwords of Binn(I); or Binn(I) = (1, ∗, · · · , ∗, 0, 1) or Binn(I) =
(1, ∗, · · · , ∗, 0, 1, 1), where ∗ ∈ {0, 1}.

For i ∈ {1, . . . , 6}, we denote by C(i) the set of pairs (J, I) given by the condition
(Ci) in Proposition 4.3.7.

Lemma 4.4.1. Let n ≥ 4. Then the following equalities hold.

(a) cardC(1) = 2n−5(3n− 4).

(b) cardC(3) = 2n−5(3n+ 2).

(c) cardC(5) = 2n−4(n− 4).

(d) cardC(6) = 2n−4(n− 2).

Proof. (a) Let (J, I) ∈ C(1). From the previous discussion, we have four general shapes
for the binary notation of I:

(i) I = (1, ∗, · · · , ∗, 0, 1, 0, ∗, · · · , ∗),

(ii) I = (1, ∗, · · · , ∗, 0, 1),

(iii) I = (1, ∗, · · · , ∗, 0, 1, 1, 0, ∗, · · · , ∗),

(iv) I = (1, ∗, · · · , ∗, 0, 1, 1).

Note that the first two correspond to the property that for some i0 card Ii0 = 1, and the
last two when card Ii0 = 2. Hence, for (i) the first 0 of the subword 010 cannot be placed
at entries 1, n− 1 or n of I, and there are n− 4 free slots marked with ∗, thus there are
2n−4(n− 3) choices for I as in (i). It is clear that for (ii) there are 2n−3 choices. Similar
arguments show that there are 2n−5(n − 4) choices for the case (iii) and 2n−4 for (iv).
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Hence, cardC(1) = 2n−5(3n − 4), since once I is determined, J is uniquely defined in
these cases.

(b) Let (J, I) ∈ C(3). Then I is determined by the conditions: Binn(I)1 = 0 and
there exists i0 such that card Ii0 ∈ {1, 2}. If

(i) I = (0, ∗, · · · , ∗, 0, 1, 0, ∗, · · · , ∗),

(ii) I = (0, 1, 0, ∗, · · · , ∗),

(iii) I = (0, ∗, · · · , ∗, 0, 1).

Using the same counting methods as in (a), we have 2n−4(n − 3) choices for (i), and
2n−3 for (ii) and (iii). On the other hand, if card Ii0 = 2, we have also three shapes for
Binn(I):

(i) I = (0, ∗, · · · , ∗, 0, 1, 1, 0, ∗, · · · , ∗),

(ii) I = (0, 1, 1, 0, ∗, · · · , ∗),

(iii) I = (0, ∗, · · · , ∗, 0, 1, 1).

For (i) there are 2n−5(n − 4) choices, and 2n−4 for (ii) and (iii). Since J is uniquely
determined, once I is given, we get that cardC(3) = 2n−5(3n+ 2).

(c) Let (J, I) ∈ C(5). Then, it is clear that I is characterised by: Binn(I) = 1
and 0111 is a subword of Binn(I). Thus I = (1, ∗, · · · , ∗, 0, 1, 1, 1, ∗, · · · , ∗), so there are
2n−5(n− 4) choice for such an I. In this case, J is not uniquely determined by I, there
are exactly two choices for it, considering (C5). Therefore, cardC(5) = 2n−4(n− 4).

(d) Let (J, I) ∈ C(6). Then, I is characterised by: Binn(I) = 0 and 0111 is a subword
of Binn(I). Thus I = (0, ∗, · · · , ∗, 0, 1, 1, 1, ∗, · · · , ∗), for which there are 2n−5(n − 4)
choices, or I = (0, 1, 1, 1, ∗, · · · , ∗), for which there are 2n−4 choices. Thus, there are
2n−5(n − 2) choices for I satisfying the conditions in (C6). As before, there are two
choices for J , thus, cardC(6) = 2n−4(n− 2).

Corollary 4.4.2. Let n ≥ 3. Then, card CovH(Bn) = 2n−4(5n+ 1).

Proof. We know that cardC(2) = 2n−2 = cardC(4) (cf. Proposition 3.8.3), then the
result follows from Lemma 4.4.1, when n ≥ 4. Direct computations show that H(B3) =
H(AusT3), thus CovH(B3) = 8.

In what follows we will describe the Hasse quiver H(Bn) of Bn recursively, but first
we need the next arithmetic formula of card CovH(Bn). Recall that Bn = AusTn for
n ∈ {1, 2}, thus we define b(1) := 1, b(2) := 3 and b(n) := 2(n−4)(5n + 1), for n ≥ 3.
Hence, b(n) = card CovH(Bn), for n ≥ 1. We remark that the sequence {b(n)}n∈N+

is not listed in the on-line encyclopedia of integer sequences OEIS [OEI20] until the
publication date of this thesis.

Lemma 4.4.3. Let n ≥ 3. Then b(n) =
∑n−1

i=1 b(i) + 5 · 2n−3 − 1.

Proof. Follows easily by induction.

https://oeis.org/
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Note that for n ≥ 3,

b(n) =
n−1∑
i=1

b(i) + 2n−3 + 2n−2 + 2(2n−3 − 1) + 1. (4.4.1)

This motivates a recursive construction of H(Bn). For, we define the following sets.

H(i) := {(J t [i+ 2, n], I t [i+ 2, n]) | (J, I) ∈ CovH(Bi)}, for i ∈ [n− 2],

U(i) := {(J, J t [i+ 2, n]) | J ⊆ [i]}, for i ∈ {n− 3, n− 2},
T (n) := {(J t [n− 2, n− 1], J t [n− 2, n]) | J ( [n− 3]},
T ′(n) := {(J t [n− 1, n], J t [n− 2, n]) | J ( [n− 3]}.

Proposition 4.4.4. Let n ≥ 3. Then

CovH(Bn) =

n−1⊔
i=1

H(i) t U(n− 3) t U(n− 2) t T (n) t T ′(n) t {([n− 1], [n])},

where H(n− 1) := CovH(Bn−1).

Proof. First, observe that the sets involved in the equality are pairwise disjoint. More-
over, Lemma 4.3.6 implies that H(i) ⊆ CovH(Bn) for all i ∈ [n − 1], in particu-
lar Lemma 4.3.6 (c) shows that U(i) ⊆ CovH(Bn) for i ∈ {n − 3, n − 2}, since
(∅, [2]) ∈ CovH(Π2) and (∅, [1]) ∈ CovH(B1). On the other hand, T (n) t T ′(n) is
the subset of relations (J, I) in C(5) t C(6) such that Binn(I) = (∗, · · · , ∗, 0, 1, 1, 1),
thus T (n) t T ′(n) ⊆ CovH(Bn). It is straightforward to see that cardH(i) = b(i), for
i ∈ [n− 1], cardU(i) = 2i, for i ∈ {n− 3, n− 2}, and cardT (n) = cardT ′(n) = 2n−3− 1.
Finally, note that ([n − 1], [n]) ∈ CovH(Bn) by Corollary 4.3.4 (a), hence the result
follows from (4.4.1).

The last result says that, for i ∈ [n − 1], then H(i) can be considered as a copy of
CovH(Bi) inside CovH(Bn). As an example, in Fig. 4.2 we depict the Hasse quivers of
H(Bn), for n ∈ {4, 5}. The cases n = 1, 2 or 3 are shown in Fig. 3.1 on page 66.

On the other hand, in Section 3.11 we characterised the quasi-hereditary algebras of
the form AusTn/(eJc) for subsets J ⊆ [n]. In the case of the quotients Bn/(eJc) we have
the same conclusion.

Proposition 4.4.5. Let J ⊆ [n], and < the usual order on J . Then (Bn/(eJc), (J,<))
is a quasi-hereditary algebra if and only if 011 is not a subword of Binn(J).

Proof. Follows similarly as in the proof of Proposition 3.11.1 considering Corollary 4.1.9
and that B̃m has infinite global dimension for m ≥ 2.
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H(B4)

123

141312 24 134

4321 34

1234

234

∅
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23 34

H(B5)

∅
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134

135

12 13 14 15 145

23

24 25

34

35

2345

45

12345

1345

1234 1235

345

1245

234235 245

123 124 125

5 45

345

Figure 4.2: Homological Hasse quivers of B4 and B5. For simplicity, we write the
subsets J ⊆ [n] as words over the ordered alphabet {1, . . . , n}, in the natural way, for
n = 4, 5. The copies of H(B1) are indicated in yellow, H(B2) in red, H(B3) in blue and
H(B4) in green, respectively; in each case, the empty set corresponds to the elements
marked with a rectangle. For n ∈ {4, 5}, black solid arrows terminate at vertices I,
with {n − 2, n − 1, n} ⊆ I, and they correspond to elements of T (n) t T ′(n) and the
embedding ι[n−1],[n]. Dashed arrows indicate elements of the sets U(i).





Chapter 5

Quasi-hereditary structures of
path algebras of type An

Let K be a field. The Dynkin diagram of type An is the graph
1
•

2
• · · · n−1

•
n
• .

In this chapter we classify all the quasi-hereditary structures of path algebras of type
An, i.e. path algebras KQ, where Q has underlying graph An. First for an equioriented
quiver, and then for any orientation. This is joint work with Yuta Kimura and Baptiste
Rognerud [FKR20].

The chapter is organised as follows. In Section 5.1 we define binary search trees
which we use to construct minimal adapted posets to Λn := KAn in the sense of Defi-
nition 2.2.15, where An is an equioriented quiver of type An. Then we show a bijection
between binary trees and quasi-hereditary structures of Λn that is compatible with the
classification of Λn-tilting modules presented in [Hil06], determining that qh. str(Λn)
and the Tamari lattice of size n are isomorphic posets. Section 5.2 is devoted to study-
ing quasi-hereditary structures of quiver algebras under deconcatenations of the original
quiver. As application we find all the quasi-hereditary structures of path algebras of
type An in the general case.

5.1 Path algebras of type An: equioriented case

Let An =
1
•

2
• · · · n

• be an equioriented quiver of type An. In the setting of
quiver representations, it was noticed by Gabriel in [Gab81] that tilting modules over
Λn := KAn are counted by the n-th Catalan number

cn =
1

n+ 1

(
2n

n

)
.

Moreover, Buan and Krause studied the poset structure of tilting modules in mod Λn,
determining that the latter is isomorphic to the Tamari lattice of size n as posets [BK04].
The Tamari lattice of size n, denoted by T(n), is defined on the set of bracketings of
a string of n + 1-letters, and relations given by the rule (xy)z → x(yz) [Sta99], it was
introduced by Dov Tamari [Tam62]. There are several ways to describe the Tamari
lattice, all of them involve bijections between families of objects counted by Catalan
numbers [Sta99, Corollary 6.2.3]; among them we find the set of binary trees.

99
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In this section we show that the number of different quasi-hereditary structures of the
path algebra Λn also coincides with cn, and prove that this bijection is compatible with
the poset structure on the set of quasi-hereditary structures of Λn. The classification
of quasi-hereditary structures of Λn is given by binary trees with a specific labelling.
We also describe all the characteristic tilting modules over Λn using minimal adapted
posets. We start defining binary trees.

Definition 5.1.1. A binary tree T is either the empty set or a tuple (r, L,R) where r
is a singleton set, called the root of T , and L and R are two binary trees, called left and
right subtree, respectively. The root of L (R, resp.) is called the left (right, resp.) child
of r. The empty set has no vertex but has one leaf. The set of leaves of T = (r, L,R) is
the disjoint union of the set of leaves of L and R. The size of the tree is the number of
leaves minus 1. We depict binary trees as in Fig. 5.1.

a

b

d e

c

Figure 5.1: Graphic representation of the binary tree T =
(a, (b, (d,∅,∅), (e,∅,∅)), (c,∅,∅)). The vertices correspond to singletons, which
are connected by an edge to their left and right subtrees. The leaves are marked by
edges connected to only one vertex. In this case T has 6 leaves, thus it has size 5. The
top-most vertex corresponds to the root of T .

From now on we identify binary trees with their graphic representation. Therefore,
the size of a tree T is the number of vertices appearing in T . It is well known that the
number of binary trees is given by the Catalan numbers.

Definition 5.1.2. A binary search tree is a binary tree labelled by integers such that if
a vertex x is labelled by k, then the vertices of the left subtree (resp. right subtree) of
x are labelled by integers less than or equal (resp. superior) to k.

If T is a binary tree with n vertices, there is a unique labelling of the vertices by
each of the integers 1, 2, . . . , n that makes it a binary search tree. This procedure is
sometimes called the in-order traversal of the tree or simply as the in-order algorithm
(recursively visit left subtree, root and right subtree). The first vertex visited by the
algorithm is labelled by 1, the second by 2 and so on, see Fig. 5.2 for an example.

From now on, every binary search tree will be labelled by the in-order traversal
method.

4

2

1 3

5

Figure 5.2: Binary tree of Fig. 5.1 viewed as a binary search tree using the in-order
algorithm. The vertices of T are visited in the following order: d, b, e, a, c, thus d is
labelled by 1, b by 2, and so on.



5.1. Path algebras of type An: equioriented case 101

Let T be a binary tree of size n viewed as a binary search tree. Then T induces a
poset CT on {1, 2, . . . , n} by setting i CT j if i labels a vertex in some subtree of the
vertex labelled by j. In other words, erasing the leaves of T , and converting each edge
into an arrow pointing from a lower level to a higher level, we get the corresponding
Hasse quiver of CT .

Example 5.1.3. Consider the binary search tree T of Fig. 5.2. Then CT is the transitive
closure of the relations: 1CT 2, 3CT 2, 2CT 4 and 5CT 4, i.e. the Hasse quiver of CT
is the following.

1 3

2

4

5

The next proposition is a key result for proving a bijection between binary search
trees and adapted posets to Λn. From now on, we denote the usual order on {1, . . . , n}
by <.

Proposition 5.1.4. Let C be a partial order on {1, 2, . . . , n}. Then there is a binary
tree T such that C = CT if and only if

(a) For every i < j incomparable for C, there exists k such that i < k < j and i C k
and j C k.

(b) For every i < j < k, if iC k then j C k and if k C i then j C i.

Proof. See [CPP19, Proposition 2.21].

Remark 5.1.5. Condition (a) is equivalent to the following weaker condition: for every
i < j incomparable there exists k such that i < k < j and iC k or j C k.

Lemma 5.1.6. Let n ≥ 1. Then the following conditions hold.

(a) Let T be a binary tree of size n. Then CT is an adapted poset for Λn.

(b) If C is an adapted poset for Λn, then there is a binary tree T such that C ∼ CT .

Proof. The indecomposable Λn-modules can be identified with intervals in {1, 2, · · · , n}.
Then, (a) follows from Proposition 5.1.4.

(b) Let C be an adapted poset for Λn. Let R be the set consisting of all the relations
of C that satisfy the condition (b) of Proposition 5.1.4. This set is non-empty since
it contains all the trivial relations i C i and all the relations of length 2. Because the
condition (b) is stable under transitivity, it is easy to see that R is a partial order on
{1, 2, · · · , n}.

Let us look more carefully at the failure of condition (b). Let i < j such that i C j
and there is i < k < j with k 6 j. We choose k maximal for this property. There are two
possibilities: either j C k or j and k are incomparable. Assume the second possibility.
Since the poset is adapted, there is k < x < j with k C x and j C x. By the maximality
of k, there is a relation xC j which contradicts the anti-symmetry of C. Thus, only the
first possibility occurs, and by transitivity we have i C k. Note that the relation j C k
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lies in R because if k < x < j, the maximality of k implies that xCj, and by transitivity
we have xC k. The relation iC k not necessarily belongs to R, but we can use the same
argument with i and k and by induction we prove the following. If a relation iC j with
i < j is not in R, there is i < k < j such that i C j, j C k ∈ R and i C k ∈ R. By
symmetry we have the same result for the decreasing relations.

Now we prove that R satisfies the condition (a) of Proposition 5.1.4. Let i < j such
that i and j are incomparable in R. There are two possibilities: either i and j are
comparable for C or not. In the first case, the discussion above implies the existence of
k such that i < k < j and i C k ∈ R and j C k ∈ R. Let us assume that i and j are
incomparable for C, then there is i < k < j such that i C k and j C k. If the last two
relations are in R, we are done. Otherwise, we use the discussion above and we see that
there is i < t < j such that iC t ∈ R and j C t ∈ R.

In conclusion, the poset R satisfies the two conditions of Proposition 5.1.4, so there
is a binary tree T such that R = CT . Moreover the poset C is an extension of R, so by
Lemma 2.2.16, we have that R ∼ C.

Now we are prepared to show that the quasi-hereditary structures of Λn are counted
by the Catalan numbers.

Proposition 5.1.7. Let n ≥ 1. The map sending a binary tree T to the equivalence
class of the adapted poset CT is a bijection between the set of binary trees of size n and
the set of quasi-hereditary structures of Λn. Therefore, card(qh. str Λn) = cn.

Proof. We already know that this map is surjective, since by Proposition 2.2.23 every
adapted poset induces a quasi-hereditary algebra. We need to see that it is injective.
For that we explain how we can recover the tree for the set of standard and costandard
modules.

Let T be a binary tree. Then CT is an adapted poset for Λn and (Λn,CT ) is a quasi-
hereditary algebra. The standard module ∆(i) is the largest quotient of P (i) having
composition factors S(j) such that j CT i. By construction, this implies that j labels
a vertex in the left subtree of the vertex labelled by i. Conversely, the label of the left
subtree of i is of the form [j, i], so we see that ∆(i) is the indecomposable module with
composition factor the interval consisting of i the labels of its left subtree. Similarly,
∇(i) is the indecomposable module with composition factors indexed by the interval
consisting of i and the labels of its right subtree. It follows that two different trees
induce two non-equivalent posets.

Lemma 5.1.8. Let T be a binary tree of size n. Then CT is a minimal adapted order
to Λn.

Proof. Let C′ be an adapted poset to Λn such that CT ∼ C′. Then there exists a binary
tree T ′ such that C′ ∼ CT ′ , by Lemma 5.1.6. Thus T = T ′ by Proposition 5.1.7, and the
proof of Lemma 5.1.6 (b) shows that CT is extended by C′, which shows the claim.

Lemma 5.1.8 proves that the Hasse quiver in Example 5.1.3 corresponds to a minimal
adapted order to Λ5. In general, all minimal adapted orders to Λn are obtained in this
way (cf. Theorem 5.1.9).

Let (Λn,C) be a quasi-hereditary algebra, and T the associated characteristic tilting
module, which is characterised by add(T ) = F(∆C) ∩ F(∇C) (cf. Proposition 2.2.30).
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Observe that the module T is a classical tilting module in this case, since Λn is hereditary.
Moreover, the tilting module T only depends on the equivalence class of the partial order
C by Lemma 2.4.5. So we have a well defined map char from the set quasi-hereditary
structures of Λn to the set of isomorphism classes of tilting modules for Λn which sends
the equivalence class of C to the characteristic tilting module of (Λn,C). Moreover, by
Proposition 5.1.7 and [Gab81], the correspondence char is one-to-one.

On the other hand, Hille exhibited a bijective correspondence ϕ between binary
trees of size n and tilting Λn-modules up to isomorphism [Hil06, Sec. 9]. This bijection
is compatible with our findings in the following sense.

Theorem 5.1.9. We have a commutative diagram of bijections

Binary trees
of size n

qh. str(Λn)
Tilting modules

over Λn

/
∼=

ψ

char

ϕ

where ψ is given by T 7→ [CT ].

Proof. In the proof of Proposition 5.1.7 we determined the set of standard modules and
costandard modules from a binary tree T ′. We claim that the indecomposable direct
summand T (i) of the characteristic tilting module T is the indecomposable module with
composition factors indexed by the interval consisting of i and the labels of its subtrees
(left and right). Since the map ϕ sends T ′ to the module constructed in this way, the
proof follows from this claim.

By induction on the size of the subtrees we show that the module T (i) belongs to
F(∆) ∩ F(∇). This is clear for the subtrees of size one since in this case T (i) = S(i) =
∆(i) = ∇(i).

In the general case, if il (resp. ir) denotes the left (resp. right) child of i we have
two exact sequences

0→ ∆(i)→ T (i)→ T (ir)→ 0

and

0→ T (il)→ T (i)→ ∇(i)→ 0.

If i has not left (resp.) right child then we let T (il) = 0 (resp. T (ir) = 0) and we
still have the two exact sequences. By induction T (ir) ∈ F(∆) and T (il) ∈ F(∇), so
T (i) ∈ F(∆) ∩ F(∇). The results follows.

Remark 5.1.10. Theorem 5.1.9 does not hold for other orientations of An, for instance
in Section 5.2 we show that if Q = 3 2 1, then card(qh. str(KQ)) = 4, but KQ
has 5 tilting modules, i.e. not all tilting modules are characteristic tilting modules.

The next result is intrinsic in the proof of Theorem 5.1.9.

Corollary 5.1.11. Let C be a minimal adapted poset to Λn and char([C]) =
⊕

i∈I T (i)
the associated characteristic tilting module. Then for any weights i, j ∈ I, we have that
[T (i) : S(j)] 6= 0 if and only if j C i.
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Proof. Let T be a binary tree such that CT = C. Thus
⊕

i∈I T (i) = char([C]) =
char([CT ]) ∼= ϕ(T ), by Theorem 5.1.9. Then, from the definition of ϕ, we have that T (i)
has composition factors S(j), with j ∈ I, if and only if j CT i.

Example 5.1.12. Let T be the binary tree of Fig. 5.2, and char([CT ]) =
⊕5

i=1 T (i).
Then

T (1) = 1, T (2) =

1
2
3
, T (3) = 3, T (4) =

1
2
3
4
5

, T (5) = 5.

Corollary 5.1.13. Let n ≥ 1. Then qh. str(Λn) and the Tamari lattice T(n) are iso-
morphic as partially ordered sets.

Proof. From Lemma 2.4.9 and Theorem 5.1.9 we have that qh. str(Λn) and the set of
tilting modules over Λn are isomorphic as posets. Then the assertion is consequence of
[BK04, Theorem 5.2].

Example 5.1.14. The Hasse quiver of qh. str(Λ3) is depicted below. The vertices cor-
respond to the minimal adapted orders to Λ3 displayed as Hasse diagrams. Note that for
the bottom-most order the standard modules are S(1), S(2), S(3). On the other hand,
for the top-most order we have that ∆ = {P (1), P (2), P (3)}.

3

2

1

3

2

1

3

2

1
3

2

1

3

2

1

5.2 Quasi-hereditary structures and deconcatenations

In this section we define certain kind of quiver decomposition, namely deconcatenation
of a quiver, and study the relation between quasi-hereditary structures of a quiver al-
gebra and quasi-hereditary structures of the corresponding quiver algebras given by a
deconcatenation of the original quiver. As application of this results, we generalise the
classification of quasi-hereditary structures of Section 5.1 to path algebras of type An
for any orientation.

For the rest of the section, let Q be a finite connected quiver. Recall that a vertex
v ∈ Q0 is a sink if all arrows connected to v point towards v, and v is a source if all
arrows connected to v point away from v.
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Definition 5.2.1. Let v ∈ Q0 be a sink or a source. A deconcatenation of Q at v is
a disjoint union Q1 t Q2 t · · · t Q` of full subquivers Qi of Q such that each Qi is a
connected full subquiver of Q having a vertex v, Q0 =

(
Q1

0 \ {v}
)
t· · ·t

(
Q`0 \ {v}

)
t{v},

Qi0 ∩Q
j
0 = {v} and there are no arrows between the elements of Qi0 \ {v} and Qj0 \ {v},

for 1 ≤ i 6= j ≤ `.

Note that a deconcatenation of Q at a sink or source is not a unique. Furthermore,
it is easy to see that if Q1 tQ2 is a deconcatenation of Q at a vertex v, and Q3 tQ4 is a
deconcatenation of Q2 at the vertex w, then Q1tQ3tQ4 is a deconcatenation of Q. For
instance, consider Q = 1 2 3 4 5. Then we have two deconcatenations of
Q:

( 1 2 ) t ( 2 3 4 5 ), ( 1 2 3 4 ) t ( 4 5 ).

Moreover, the first has a deconcatenation at 4, the second has a deconcatenation at 2,
and the resulting deconcatenation is the same:

( 1 2 ) t ( 2 3 4 ) t ( 4 5 ).

Therefore, we consider deconcatenations which are the disjoint union of two full sub-
quivers.

Let Q1tQ2 be a deconcatenation of Q at a sink or a source v. Let I be an admissible
ideal of KQ and A := KQ/I. Set 1 = 2 and 2 = 1. For each ` = 1, 2, let

A` :=
A

〈eu | u ∈ Q`0 \ {v}〉
. (5.2.1)

Thus we have a surjective morphism of algebras A→ A`, and there exists an embedding
modA` → modA given by restriction of scalars. Using this functor, we regard modA`

as a full subcategory of modA. Therefore, an A-module M is an A`-module if and
only if euM = 0 for any u ∈ Q`0 \ {v}. For a vertex i ∈ Q`0, let P `(i), I`(i), S`(i)
be the indecomposable projective, indecomposable injective and the simple A`-module
associated to the vertex i, respectively. The next lemma is proven easily.

Lemma 5.2.2. Let Q1 t Q2 be a deconcatenation of Q at a sink or a source v. Fix
` = 1, 2.

(a) For any vertex i ∈ Q`0, we have S(i) ∼= S`(i) in modA.

(b) If v is a sink, then for any vertex i ∈ Q`0, we have P (i) ∼= P `(i) in modA.

(c) If v is a source, then for any vertex i ∈ Q`0, we have I(i) ∼= I`(i) in modA.

(d) Let M be a non-zero A-module. If both the top and the socle of M are simple, then
one of M ∈ modA1 or M ∈ modA2 holds.

(e) Let M ∈ modA` and i ∈ Q0. If [M : S(i)] 6= 0, then i ∈ Q`0 holds.

Let C be a partial order on Q0. By restricting this order, we have a partial order
C|Q`0 on Q`0, for ` = 1, 2. We first compare standard and costandard modules associated
to these orders.
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Lemma 5.2.3. Let Q1tQ2 be a deconcatenation of Q at a sink or a source v. Let C be
a partial order on Q0 and ∆ (∇, respectively) the standard (costandard, respectively) A-
modules associated to C. We denote by ∆` (∇`, respectively) the standard (costandard,
respectively) A`-modules associated to C|Q`0. Then we have the following statements.

(a) If v is a sink, then we have ∆`(i) ∼= ∆(i) for any ` = 1, 2 and any i ∈ Q`0.

(b) If v is a source, then we have ∇`(i) ∼= ∇(i) for any ` = 1, 2 and any i ∈ Q`0.

(c) If C defines a quasi-hereditary structure on A, then C|Q`0 defines a quasi-hereditary

structure on A` for each ` = 1, 2.

Proof. (a) Let i ∈ Q`0. By Lemma 5.2.2, we have P (i) ∼= P `(i). If j ∈ Q0 satisfies
[P (i) : S(j)] 6= 0, then j ∈ Ql0. Thus, for a composition factor S(j) of P (i) ∼= P `(i),
we get that j C i if and only if j C |Q`0i. This means that ∆(i) ∼= ∆`(i). By a similar

argument, (b) follows.
(c) Assume that v is a sink. Let i ∈ Q`0. By (1), ∆(i) ∼= ∆`(i). Thus we have

[∆`(i) : S`(i)] = 1 by Lemma 5.2.2. Since any composition factor of P (i) is a simple
A`-module, a filtration of P (i) by ∆ in modA gives a filtration of P `(i) by ∆` in modA`.
Clearly, this filtration satisfies the axiom (c) of Definition 2.2.13. Thus C|Q`0 defines a

quasi-hereditary structure on A`. The assertion also holds in the case when v is a source
by a similar argument.

Next we construct a partial order on Q0 from partial orders on Q`0. Recall that we
write 1 = 2 and 2 = 1.

Definition 5.2.4. Let C` be partial orders on Q`0 for ` = 1, 2. We define a partial order
C = C(C1,C2) on Q0 as follows: for i, j ∈ Q0, set i C j if one of the following two
statements holds:

(a) i, j ∈ Q`0 and iC` j holds for some `, or

(b) i ∈ Q`0, j ∈ Q`0, iC` v and v C` j hold.

Lemma 5.2.5. Let Q1 t Q2 be a deconcatenation of Q at a sink or source v. Let
C` be a partial order on Q`0 and ∆` (∇`, respectively) the standard (costandard) A`-
modules associated to C` for ` = 1, 2. We denote by ∆ (∇, respectively) the standard
(costandard, respectively) A-modules associated to C = C(C1,C2). Then we have the
following statements.

(a) If v is a sink, then ∆(i) ∼= ∆`(i) for any ` = 1, 2 and any i ∈ Q`0.

(b) If v is a source, then ∇(i) ∼= ∇`(i) for any ` = 1, 2 and any i ∈ Q`0.

(c) If C` defines a quasi-hereditary structure on A` for ` = 1, 2, then C = C(C1,C2)
defines a quasi-hereditary structure on A.

Proof. (a) Let i ∈ Q`0. By Lemma 5.2.2, P (i) ∼= P `(i) holds. By the definition of C and
a similar argument as the proof of Lemma 5.2.3 (a), we have that, for a composition
factor S(j) of P (i) ∼= P `(i), j C i if and only if j C` i. This implies the assertion. By a
similar argument, (b) holds.
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(c) Assume that v is a sink. Let i ∈ Q`0. From (a) we have ∆(i) ∼= ∆`(i). In
particular [∆(i) : S(i)] = 1. By Lemma 5.2.2, P (i) ∼= P `(i), for all i ∈ Q`0. Since C`
defines a quasi-hereditary structure on A`, P (i) is filtered by ∆(i) for i ∈ Q`0. Since the
number (P (i) : ∆(j)) does not depend on the choice of the filtration, the axiom (c) of
Definition 2.2.13 is satisfied. If v is a source, then the dual argument show the claim.

Let Q1tQ2 be a deconcatenation of Q at a sink or a source v. Let I be an admissible
ideal of KQ and A := KQ/I. By Lemmas 5.2.3 and 5.2.5, we have the following map:

Φ: qh. str(A) −→ qh. str(A1)× qh. str(A2), [C] 7→
(

[C|Q1
0
], [C|Q2

0
]
)
.

We also have an inverse map

Ψ: qh. str(A1)× qh. str(A2) −→ qh. str(A),
(
[C1], [C2]

)
7→ [C(C1,C2)].

Let (A,≤A) and (B,≤B) be two posets. For (a1, b1), (a2, b2) ∈ A×B, we set (a1, b1) ≤
(a2, b2) if a1 ≤A a2 and b1 ≤B b2. Then (A×B,≤) is a poset, called the product poset.

Proposition 5.2.6. The map Φ is an isomorphism of posets, with inverse Ψ.

Proof. Consider the product poset on qh. str(A1) × qh. str(A2). Then the assertion
follows directly from Lemmas 2.4.5, 5.2.3 and 5.2.5.

Let Q1 tQ2 t · · · tQ` be a deconcatenation of Q at a vertex v. If Q`+1 t · · · tQm
is a deconcatenation of Q` at a vertex u, then we have a disjoint union Q1 tQ2 t · · · t
Q`−1 tQ`+1 t · · · tQm of full subquivers of Q, and so on for each connected quiver Qi.
We call a disjoint union Q1 tQ2 t · · · tQ`′ of full subquivers of Q obtained by iterated
operations as above an iterated deconcatenation of Q.

Then we have the following result, which is a generalisation of Proposition 5.2.6.

Theorem 5.2.7. Let Q1tQ2t · · · tQ` be an iterated deconcatenation of Q. Let A be a
factor algebra of KQ modulo some admissible ideal and Ai := A/〈eu | u ∈ Qt0 \ {v}, t =
1, . . . , `, t 6= i〉. Then we have an isomorphism of posets

qh. str(A) −→
∏̀
i=1

qh. str(Ai),

which is given by [C] 7→
(
[C|Qi0 ]

)`
i=1

.

Proof. By applying Proposition 5.2.6 iteratively, we have the assertion.

Example 5.2.8. Let Q = 1 2 3 4 5. We have an isomoprhism of posets

qh. str(KQ) −→ qh. str(Λ2)× qh. str(Λ3)× qh. str(Λ2),

where Λn is the path algebra of an equioriented quiver of type An, for n = 2, 3. Thus
card(qh. strKQ) = 2× 5× 2 = 20.

The following result determines how minimal adapted orders behave under decon-
catenations.
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Proposition 5.2.9. Let Q1 tQ2 be a deconcatenation of Q at a sink or a source v. Let
I be an admissible ideal of KQ and A = KQ/I. Let C (C1, C2 respectively) be a partial
order on Q0 (Q1

0, Q2
0, respectively) defining a quasi-hereditary structure on A (A1, A2,

respectively). Then the following statements hold.

(a) If C is a minimal adapted order, then both C|Q1
0

and C|Q2
0

are minimal adapted
orders.

(b) If C1 and C2 are minimal adapted orders, then C(C1,C2) is a minimal adapted
order.

In particular, if C is minimal, then C = C(C|Q1
0
,C|Q2

0
) holds.

Proof. We show only (a) and the last assertion. The assertion (b) is shown similarly.
We show that C1 := C|Q1

0
is a minimal adapted order. Let C′1 be a partial order on Q1

0

such that C′1 ∼ C1. Let i, j ∈ Q1
0 and assume that i C1 j. This implies that i C j. By

Proposition 5.2.6, we have C′ := C(C′1,C|Q2
0
) ∼ C. Since C is minimal, then iC′ j. By

the definition of C′, we have that iC′1 j. The last assertion follows from the uniqueness
of a minimal adapted order, stated in Lemma 2.4.4 (b).

Theorem 5.2.10. Let KQ be a path algebra of type An, and Q1 t Q2 t · · · t Q` an
iterated deconcatenation of Q such that each Qi is an equioriented quiver of type Ani,
for some ni ∈ N+. Then there is a bijection

qh. str(KQ) −→
∏̀
i=1

qh. str(Λni)

given by [C] 7→
(
[C|Qi0 ]

)`
i=1

. Moreover, if C is a minimal adapted order, then there exists

a binary tree Ti of size ni such that C|Qi0 = CTi, for each 1 ≤ i ≤ `.
Proof. The bijection follows from Theorem 5.2.7. The second assertion is consequence
of Propositions 5.1.7 and 5.2.9 and Lemma 5.1.8.

Example 5.2.11. Let A = KQ, where Q = 1 2 3 4 5 as before. Then
we have that

2

1

2

3

4 4

5

are the Hasse quivers of some minimal adapted posets to Λ2,Λ3 and Λ2, respectively.
Then, by Proposition 5.2.9 we have that the concatenation of the last Hasse quivers

1

2

3

4

5

is the corresponding minimal adapted poset to A, which represents a quasi-hereditary
structure of A. Moreover, we know that card(qh. strA) = 20. In Fig. 5.3 we depict
the Hasse quiver of qh. str(A). The vertices correspond to minimal adapted orders to A
which represent all the quasi-hereditary structures to A. Note that if a total order is a
minimal adapted order, then it is the unique element in its equivalence class.
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Figure 5.3: Poset of quasi-hereditary structures of A = K( 1 2 3 4 5 ).





Bibliography

[AF92] F. W. Anderson and K. R. Fuller. Rings and categories of modules. Second.
Vol. 13. Graduate Texts in Mathematics. Springer-Verlag, New York, 1992,
pp. x+376.

[ASS06] I. Assem, D. Simson, and A. Skowroński. Elements of the representation
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