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1  | INTRODUC TION

‘Our preoccupation with averages has blinded us to biological re-
alities’ (Hogben & Sim,  1953). Despite the exponential increase in 
the use of meta-analysis in recent years (Stewart, 2009; Gurevitch 
et  al.,  2018), most meta-analyses have exclusively focused on the 
study of mean effects (using effect sizes such as response ratios 
and standardized mean differences between two groups; Nakagawa 
& Santos,  2012; Koricheva & Gurevitch,  2014). Meta-analysis is a 

powerful statistical tool for integrating and quantitatively summa-
rizing findings (i.e. effect sizes) from multiple studies tackling a com-
mon research question, and for generating new hypotheses. Yet, 
meta-analysts may be neglecting important biological realities by 
focusing on means alone.

In biological systems, variation from the mean is important to eco-
logical and evolutionary processes. Phenotypic variance is important 
for how we understand and predict responses to selection using quan-
titative genetics because phenotypic variance is a key component of 
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Abstract
Meta-analysis is increasingly used in biology to both quantitatively summarize avail-
able evidence for specific questions and generate new hypotheses. Although this 
powerful tool has mostly been deployed to study mean effects, there is untapped 
potential to study effects on (trait) variance. Here, we use a recently published data 
set as a case study to demonstrate how meta-analysis of variance can be used to 
provide insights into biological processes. This data set included 704 effect sizes 
from 89 studies, covering 56 animal species, and was originally used to test develop-
mental stress effects on a range of traits. We found that developmental stress not 
only negatively affects mean trait values, but also increases trait variance, mostly in 
reproduction, showcasing how meta-analysis of variance can reveal previously over-
looked effects. Furthermore, we show how meta-analysis of variance can be used as 
a tool to help meta-analysts make informed methodological decisions, even when the 
primary focus is on mean effects. We provide all data and comprehensive R scripts 
with detailed explanations to make it easier for researchers to conduct this type of 
analysis. We encourage meta-analysts in all disciplines to move beyond the world of 
means and start unravelling secrets of the world of variance.
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heritability and, thus, of the breeder's equation (Arnold, 1992; Blows 
& Hoffmann,  2005; Walsh & Lynch,  2018). As such, phenotypic 
variance has been the focus of abundant research in biology, lead-
ing to the development of important evolutionary hypotheses (e.g. 
sex-chromosome hypothesis: James,  1973; reviewed in Reinhold 
& Engqvist,  2013), principles (Bateman's principles: Arnold,  1994; 
Bateman, 1948; reviewed in Janicke et al., 2016) and entire research 
fields (e.g. animal personality: reviewed in Réale et al., 2007, 2010).

Meta-analysis of variance components such as repeatability and 
heritability has been possible for a long time, and a few studies have 
done so (repeatability: Bell et al., 2009; Holtmann et al., 2017; heri-
tability: Dochtermann et al., 2019). However, only recent statistical 
advances in meta-analysis have made it possible to analyse differ-
ences in variance between groups (Nakagawa et al., 2015), allowing 
us to test, for example, whether the opportunity of selection (vari-
ance in fitness) differs between groups. As a result, meta-analyses 
of variance are emerging (Supplementary material S1). For example, 
meta-analyses have shown that early-life dietary restriction not only 
affects mean longevity (English & Uller, 2016) but also increases vari-
ance in longevity (Senior et al., 2017); that poor condition increases 
mean risk-taking behaviour but does not generally affect total phe-
notypic variance (except in specific contexts; see Moran et al., 2020); 
and that sexual selection on males not only increases mean but 
also decreases variance in fitness-related traits (Cally et al., 2019). 
Despite this, meta-analyses of variance are still rarely used.

In this study, we aim to promote the use of meta-analysis of vari-
ance in biology and other disciplines. We used a recently published 
meta-analytic data set of experimental studies (Eyck et al., 2019) as a 
case study to test the prediction that developmental stress not only 
negatively affects mean trait values, but also increases total trait 
variance. Furthermore, we used meta-regression to test whether 
mean and variance effects differ across traits (e.g. behaviour, mor-
phology, reproduction). Our meta-analysis of variance revealed de-
velopmental stress effects on variance, mostly on reproduction, and 
highlighted the importance of shifting some of our meta-analytic at-
tention to the raw material for natural selection: variation.

2  | MATERIAL S AND METHODS

2.1 | Data analysed

Experimental data on the effects of developmental stress on phe-
notype and fitness were obtained from Eyck et  al.  (2019). Before 
the analyses, we made modifications to the data set (see details in 
Supplementary material S2).

2.2 | Effect size calculation

We calculated two types of effect sizes and their associated sam-
pling variances using the function ‘escalc()’ from the R package 
‘metafor’ v.2.1–0 (Viechtbauer, 2010).

To study mean effects, we calculated the log response ratio (lnRR, 
Hedges et al., 1999; also known as the ratio of means or ROM, Friedrich 
et al., 2008). We chose lnRR instead of the standardized mean differ-
ence Cohen's d (Cohen, 1988) as used in Eyck et al. (2019), because (a) 
lnRR is less affected by heteroscedasticity (see results), and (b) lnRR 
can be readily interpreted as the percentage of change between the 
two groups. Nonetheless, for comparison with the original study, we 
conducted an additional meta-analysis of means based on a standard-
ized mean difference effect size (see Supplementary Material S3).

To study variance effects, we calculated the log coefficient of 
variation ratio (lnCVR; Nakagawa et al., 2015; Senior et al., 2020). We 
chose lnCVR over the log variability ratio (lnVR; Nakagawa et al., 2015; 
Senior et al., 2020) because groups can simultaneously differ at 
both the mean and variance levels (mean–variance relationship, e.g. 
Taylor's Law; Cohen & Xu, 2015; Nakagawa & Schielzeth, 2012), such 
as that observed in our sample (see Supplementary Material S4), and 
lnCVR is designed to account for that. An alternative approach to 
account for mean–variance relationships would be to model group 
means and standard deviations (SD) using univariate random slope 
mixed-effects models or bivariate mixed-effects meta-analytic mod-
els (also called arm-based models). Compared with lnCVR, the latter 
approaches can have both advantages (e.g. incorporating interval 
scale data) and disadvantages (e.g. unknown sampling error covari-
ances and complexity; Dias & Ades, 2016; Nakagawa et al., 2015). 
Although we note that such approaches are possible, and have 
been successfully implemented elsewhere (Simons,  2015; O’Dea 
et al., 2019), our choice of lnCVR was mostly driven by its simplicity 
and integration within established meta-analytic paradigms, and be-
cause lnCVR is easily comparable to lnRR.

Multiple treatment groups shared a common control group in 
23 studies (25.8% of all studies) involving 252 effect sizes (35.8% 
of all effect sizes), leading to nonindependence among effect sizes 
(Lajeunesse,  2011). To deal with this nonindependence, we adjusted 
the sample size of the control groups to be equal to the original sample 
size of that control group divided by the number of times that control 
group was compared with a treatment group (Noble et al., 2017). For the 
meta-analysis of means, all the revised effect sizes that we calculated 
were coded such that negative values indicate that developmental stress 
negatively affects fitness. That is, effect sizes were coded based on the 
expected relationship between the trait and fitness. For example, since 
fitness is expected to positively associate with body mass and immune 
response, no change in sign had to be implemented for those effect 
sizes. However, since fitness is expected to negatively associate with 
latency to reproduce and corticosterone levels, we inverted the sign of 
those effect sizes before the analyses (all decisions are available in data 
accessibility section). For the meta-analysis of variance, effect sizes were 
left unchanged as we expected an increase in variance across traits.

2.3 | Meta-analyses and meta-regressions

We ran two multilevel meta-analytic (i.e. intercept-only) models, 
one for each type of effect size, to test whether developmental 
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stress generally affects phenotype and fitness both at the mean 
(lnRR) and variance (lnCVR) levels, and two multilevel meta-re-
gression models to test whether developmental stress effects 
differed across different types of traits. For meta-analytic mod-
els, we investigated unexplained variation across studies (after ac-
counting for sampling variance) by estimating total and separate 
relative heterogeneity for each random effect (I2; Nakagawa & 
Santos, 2012; more in R script: 009_results_figures_and_tables.R), 
and absolute heterogeneity (Q) using the R package ‘metafor’ 
v.2.1–0 (Viechtbauer,  2010). For meta-regressions, we estimated 
the percentage of variance explained by the moderators (R2

marginal; 
Nakagawa & Schielzeth, 2013).

2.4 | Publication bias

We assessed publication bias—specifically small-study bias—by 
running a variant of Egger's regression that uses the meta-ana-
lytic residuals as the response variable, and the precision (i.e. the 
square root of the inverse of the sampling variance) as the mod-
erator (Nakagawa & Santos, 2012). Publication bias occurs when 
specific effect sizes are overrepresented in the literature, and 
it is normally indicated by an overrepresentation of large effect 
sizes of small precision (small-study bias; Jennions et  al.,  2013; 
Rothstein et al., 2005). Additionally, we assessed potential tempo-
ral trends in effect sizes that could indicate a time-lag bias or de-
cline effect by running a multilevel meta-regression that included 
year of publication as a z-transformed moderator (Nakagawa & 
Santos, 2012; Sánchez-Tójar et al., 2018). A decline effect consists 
of decreasing support for a specific research hypothesis over time 
as evidence accumulates and is normally identified by effect sizes 
becoming smaller over time (Jennions & Møller, 2002; Koricheva 
& Kulinskaya, 2019).

2.5 | Random effects

All models included the following random effects: (a) observation 
ID, which represents the observational or residual variance that 

needs to be explicitly modelled in a meta-analytic model, (b) study 
ID, which encompassed those estimates obtained within each 
specific study, (c) species ID, which encompassed those estimates 
obtained for each species, and (d) phylogeny, which consisted of 
a phylogenetic relatedness correlation matrix. To build the phy-
logeny, we searched for our species in the Open Tree Taxonomy 
(Rees & Cranston, 2017) and retrieved the phylogenetic relation-
ships from the Open Tree of Life (Hinchliff et al., 2015) using the 
R package ‘rotl’ v.3.0.5 (Michonneau et  al.,  2016). We estimated 
branch lengths following Grafen (1989) as implemented in the 
function ‘compute.brlen()’ of the R package ‘ape’ v.5.2 (Paradis & 
Schliep, 2019). The single polytomy encountered was dealt with via 
randomization using the function ‘multi2di()’ from the R package 
‘ape’ v.5.2 (Paradis & Schliep, 2019).

We used the R programming language v.3.5.1 (R Core Team, 2018) 
throughout. All analyses were run in a Bayesian framework based 
on Stan programming language using the R package ‘brms’ v.2.9.0 
(Bürkner, 2017; model parameters and convergence tests are avail-
able in the R code provided). Figures and tables were created using 
the R packages ‘ggplot2’ v.3.1.0 (Wickham,  2016) and ‘gt’ v.0.1.0 
(Iannone et al., 2019), respectively. All data and code are available 
from the data availability statement.

3  | RESULTS

Our final data set consisted of 704 effect sizes from 89 stud-
ies covering 56 animal species (Aves  =  12 sp., Reptiles  =  12 sp., 
Arthropods = 11 sp., Fishes = 9 sp., Amphibians = 6 sp., Mammals = 6 
sp.; Figure S2).

3.1 | Meta-analysis of variance

Overall, developmental stress increased variance by around 4% on 
average, albeit uncertainty was high (Table 1, Figure 1). The effect 
of developmental stress on variance differed depending on the trait 
studied, with reproduction showing the largest increase in variance 
(ca. 21% on average) (Figure 2). However, the percentage of variance 

TA B L E  1   Results of the meta-analyses testing the effect of developmental stress on mean (lnRR) and variance (lnCVR) in phenotype and 
fitness. The results of the Egger's regression tests are also shown.
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explained by the trait moderator was less than 1% (Table 2), indicat-
ing that most heterogeneity remained unexplained.

3.2 | Meta-analysis of mean

Our results showed that, on average, developmental stress 
negatively affected mean trait values by around 13% (Table 1, 
Figure 1). The meta-regression showed that developmental stress 
negatively affected all traits, with the strongest effects being on 
reproduction (ca. 21% on average) and behaviour (ca. 16% on av-
erage; Table 2, Figure  2). Nonetheless, heterogeneity remained 
high even after including the trait moderator (Table 2). Our ad-
ditional meta-analysis based on a standardized mean difference 
effect size led to a meta-analytic mean that was very similar to 
the original study (i.e. Eyck et al., 2019; see Supplementary mate-
rial S3). However, our phylogenetically corrected meta-analytic 
mean was much more uncertain (i.e. wider credible intervals 
overlapping zero). Additionally, relative (I2) and mostly absolute 
(Q) heterogeneity were lower, indicating lower unexplained vari-
ation across studies in our meta-analysis (see Supplementary ma-
terial S3).

4  | PUBLIC ATION BIA S

The intercepts of the Egger's regressions were clearly different from 
zero, suggesting the existence of publication bias (small-study bias) 
at both mean and variance levels (Table 1). The meta-regressions 
testing for temporal trends in effect sizes showed a small effect size 
reduction over time at both mean and variance levels, but the trends 

were uncertain and the percentage of variance explained by the 
moderator was essentially zero (Table 2).

5  | DISCUSSION

Combining a recent advance in meta-analytic methodology and a 
case study, we demonstrate how meta-analysis of variance can shed 
light on important biological processes. We showed that develop-
mental stress not only negatively affects mean trait values, but can 
also increase total trait variance. Our results have also revealed that 
developmental stress affects reproduction most strongly, both at 
the mean and at the variance level. Overall, we encourage meta-an-
alysts to focus on both mean and variance effects to unearth previ-
ously overlooked effects.

5.1 | Case study: developmental stress effects

Developmental stress effects on phenotype and fitness have been 
studied often. For example, studies have investigated the effects 
of different developmental stressors on morphology and colora-
tion (Tschirren et al., 2009), attractiveness (Kahn et al., 2012), social 
network position (Boogert et al., 2014), telomere dynamics (Grunst 
et al., 2019) and fitness (Arbuthnott & Whitlock, 2018). Several re-
views and meta-analyses have attempted to synthesize how different 
developmental stressors influence phenotype and fitness. However, 
the majority focused on mean effects (e.g. Nakagawa et al., 2012; 
English & Uller, 2016; Eyck et al., 2019; Macartney et al., 2019), with 
only a few recent meta-analyses exploring the effects of specific de-
velopmental stressors on variance. For example, O’Dea et al. (2019) 
showed that experimentally increasing developmental temperature 
leads to an  ~  8% average increase in phenotypic variance across 
43 fish species, which could facilitate adaptation to novel environ-
ments by increasing the amount of rare phenotypes in the popula-
tion. Dietary restriction during development has also been shown to 
lead to an ~ 9% average increase of variance in longevity across 14 
animal species, which may affect the strength of selection on lon-
gevity (Senior et al., 2017). In contrast, lower quality/quantity diets 
during development have been shown to lead to an ~ 8% average 
decrease of variance in risk-taking behaviour across animal species, 
suggesting that individuals may converge on high-risk behavioural 
phenotype under developmental diet stress (Moran et al., 2020). In 
all, these recent meta-analyses of variance provide good evidence 
suggesting that developmental stress can affect phenotypic vari-
ance and the opportunity for selection.

Our results first confirm that overall, developmental stress nega-
tively affects mean trait values, with the strongest effects on reproduc-
tion (ca. 21%) and behaviour (ca. 16%). Furthermore, our meta-analysis 
of variance revealed that even when multiple developmental stressors 
are considered together (e.g. physiological, environmental, nutritional, 
etc)—as in our study, developmental stress also leads to a small in-
crease of around 4% on average in trait variance, with that effect being 

F I G U R E  1   Developmental stress affects negatively the mean 
and slightly increases variance in trait values. Points and associated 
error bars correspond to posterior modes and 95% highest 
posterior density intervals (HPDI) from the meta-analyses. The 
posterior distributions with vertical lines indicating the median are 
plotted on top of their respective modes and 95% HPDI
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mostly driven by an increase in variance of around 21% on average in 
reproduction. Thus, the increase in variance observed in experimental 
versus control treatments is in agreement with the recent meta-anal-
yses above (Senior et al., 2017; O’Dea et al., 2019). Furthermore, our 
results seem in agreement with another two recent meta-analyses of 
variance showing that environmental stress (i.e. not only during de-
velopment) measured as single-food diets and high temperature in-
crease variance in fitness (Senior et al., 2015) and reproductive success 
(García-Roa et al., 2018), respectively. Our results on variance in repro-
duction, specifically, confirm previous theoretical predictions (Martin & 
Lenormand, 2006) and recent experimental work (Martinossi-Allibert 
et al., 2017). Since a recent meta-analysis showed that environmen-
tal stress can increase both genetic and residual variances (i.e. not just 
total phenotypic variance; Rowiński & Rogell,  2017), developmental 
stress could have far reaching evolutionary consequences. Overall, our 
study shows that developmental stress may lead to increased oppor-
tunity for selection; however, these results should be interpreted care-
fully as most of the heterogeneity in our models remained unexplained.

5.2 | Promoting meta-analysis of variance

Our results show how meta-analysing variances alongside means 
can unearth otherwise overlooked effects and contribute to our un-
derstanding of biological processes. Indeed, all but one (93%) of the 
meta-analyses of variance performed in the field of ecology and evo-
lution (see Supplementary material S1) revealed important variance 
effects that otherwise would have remained unknown.

Calculating lnCVR for a meta-analysis of variance requires es-
sentially the same information needed to estimate commonly 
used effect size statistics for comparing means such as Hedges’ g 
(Hedges, 1981) and lnRR (Hedges et al., 1999). Specifically, one sim-
ply needs the mean, SD and sample size for the two groups being 

compared (Nakagawa et al., 2015). Since over 60% of published me-
ta-analyses in ecology and evolution compare means (Nakagawa & 
Santos, 2012; Koricheva & Gurevitch, 2014), meta-analysis of vari-
ance could be applied to most meta-analytic data sets in the field, 
even retrospectively.

Nonetheless, there are some limitations that meta-analysts need 
to know when conducting a meta-analysis of variance. First, as in the 
case of lnRR, only ratio scale data can be used to calculate lnCVR, 
and equations to derive lnCVR from other statistics such as F or t 
statistics are not available. Furthermore, lnCVR cannot be calculated 
for group-level proportional data (Nakagawa et al., 2015). Second, 
absolute error variance will generally be larger for lnCVR than for 
mean-based effect size statistics. This large sampling variance will 
generally lead to lower levels of heterogeneity in lnCVR compared 
with mean-based effect size statistics (Table 1), and overall highlights 
that meta-analysing variances will usually be more data-hungry than 
meta-analysing means. Despite these limitations, meta-analysis of 
variance is rather uncomplicated, making it easy for meta-analysts 
to shift some of their preoccupations with averages to more vari-
ance-driven hypothesis testing and development.

Meta-analysis of variance not only can reveal important biologi-
cal realities, but can also help with making informed methodological 
decisions. By identifying whether the compared groups show un-
equal variances (i.e. whether there is heteroscedasticity), meta-anal-
ysis of variance can help meta-analysts choose between effect sizes 
that assume homoscedasticity (e.g. Cohen's d, Cohen, 1988; Hedges’ 
g, Hedges, 1981), and those that incorporate heteroscedasticity (e.g. 
standardized mean difference with heteroscedasticity or SMDH, 
Bonett, 2008, 2009; see Supplementary material S3). This is import-
ant because not accounting for heteroscedasticity can cause param-
eter misestimation in meta-analysis (Bonett, 2008, 2009). Overall, 
we suggest that even when variance-based hypotheses are of no 
interest to the researcher, meta-analysis of variance can still be used 

F I G U R E  2   Developmental stress 
affects mean and variance differently 
across traits, with the strongest effects 
being on reproduction. Points and 
associated error bars correspond to 
posterior modes and 95% highest 
posterior density intervals (HPDI) from 
the meta-regressions. The posterior 
distributions with vertical lines indicating 
the median are plotted on top of their 
respective modes and 95% HPDI. Point 
size is proportional to the number of 
effect sizes (see Table 2)
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as a powerful methodological tool for helping to choose the most 
appropriate effect size statistic.

6  | CONCLUSION

Our analyses on the effects of developmental stress on both mean 
and variance in phenotype and fitness showcase how meta-analys-
ing variances alongside means can help unravel crucial processes. 
Importantly, meta-analysing variances is not limited to ecology 
and evolution, and can also advance disciplines such as agricul-
ture (Knapp & Heijden, 2018), social sciences (O’Dea et al., 2018) 
and medicine (Senior et al., 2016). We have also shown how meta-
analysis of variance can be used as a methodological tool to make 
informed decisions on how to choose effect size statistics for the 
study of mean effects. Overall, a holistic understanding of the 
world requires moving beyond the world of means to incorporate 
the world of variance.
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