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Abstract

In this paper we explore the role of social influence for the coordination of

effort choice in a game with strategic complementarities. Players are re-

peatedly randomly partitioned in groups to play a minimum effort game

and choose their effort based on their beliefs about the minimal effort

among the other members of their group. Individual expectations about

this minimal effort is influenced by own experience as well as by commu-

nication of beliefs within a social network. We show that increasing the

importance of social influence in the expectation formation process has

positive effects on the emerging (long run) effort level, thereby improv-

ing the efficiency of the outcome. Furthermore, a more centralized social

network leads to higher average efficiency, but also to increased variance

of outcomes. Finally, communication of actual minimum effort cannot

replace the communication of beliefs as a device fostering the emergence

of high long run effort.
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Louvain, Belgium. Email: mariam@nanumyan.com

1



Keywords: Minimum Effort Game, Expectation Formation, Social Influence, Belief Com-

munication

1. Introduction

Group production plays a central role in many economic contexts. In the

presence of strategic complementarities between the actions of group mem-

bers, the problem of determining individual effort by each member in the

group typically gives rise to multiple (Pareto ranked) equilibria and hence to

a severe coordination problem. In particular, the optimal effort choice of an

agent is crucially determined by her beliefs about the effort the other group

members invest into the project. Taking this into account, the way expecta-

tions are formed and adjusted over time is a key driver for determining the

outcome of (repeated) group production problems. In particular, whether

an efficient outcome can be reached in the long run strongly depends on the

evolution of the individual expectations of the players.

The agenda of this paper is to study the role of one important aspect of

expectation formation, namely social influence, in the dynamics of expec-

tations and actions in a population of agents which repeatedly undertake

some joint production task with strategic complementarities in changing

groups. As an illustrative example of a situation we have in mind we en-

vision a university which repeatedly encounters calls for interdisciplinary

project proposals and for each of these calls identifies a group of faculty

members from different departments who, based on their background, are

suitable to contribute to the proposal. Each group member then decides

how much effort to invest in developing her part of the proposal. After sub-

mission the proposal is evaluated and the group receives an outcome (e.g.

amount of funding, invitation to resubmit, rejection). We assume that refer-

ees tend to focus in their decision to a large extend on potential weaknesses

they see, such that the outcome is determined by the lowest effort shown
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by any group member. Faculty members over time repeatedly participate

in different such group proposals and over time build expectations about

the minimal effort shown among the other members of their group. We as-

sume that these expectations are not only based on their own experience,

i.e. the outcome of the projects they have been previously involved in, but

also on communication with their friends, close colleagues and co-authors

in the profession about their experience with similar project proposals. In

particular, we assume that agents communicate their own beliefs about the

level of minimal effort shown in such an interdisciplinary group to their so-

cial contacts. We denote such kind of communication as the social influence

channel of the expectation formation process. Whereas the groups jointly

producing the project proposals differ from call to call, we assume that the

set of social contacts of an agent stays constant over time. The main ques-

tions we address within such a setting are, whether the quality of the project

proposals in the long run is higher if there is communication of the agents’

own beliefs in the social network, and, how the outcome is affected by the

topology of the social network.

Our research agenda builds on a large body of empirical and theoretical

work studying the role of social influence for opinion dynamics and expec-

tation formation. Starting with the seminal contribution of DeGroot (1974)

there is by now a rich body of literature highlighting how communication

in social networks affects the dynamics of opinion formation, in particular

the emergence of consensus in a population (see e.g. the survey Acemoglu

and Ozdaglar (2011)), and under which circumstances there is ‘wisdom of

the crowd’ in the sense that communication in a network allows the agents

to learn the true state of the world (e.g. Golub and Jackson (2010)). As

shown e.g. in Golub and Jackson (2010) or Acemoglu et al. (2010) also the

topology of the social network matters with respect to these issues. Re-

cent contributions have also stressed that the impact of social influence on
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economic expectations can have important implications for actual dynamics

in different economic contexts (e.g. Arifovic et al. (2010); Burnside et al.

(2016); Rotemberg (2017)). However, so far a systematic analysis of the

implications of social influence for the selection of the outcome emerging in

a population faced with a group coordination problem is missing. The main

contribution of this paper is to fill this gap.

We address our main research questions by considering a dynamic model

of a population of agents, which every period is randomly partitioned into

groups of given size. In each group agents interact by playing a minimum

effort game with a finite set of effort choices. We use the minimum effort

game as the most widely used model in the theoretical (starting with Bryant

(1983)) and experimental (starting with Van Huyck et al. (1990)) literature

capturing a group coordination problem with strategic complementarities

and multiple Pareto ranked equilibria. Each agent in each period plays the

best response to her current expectations. These expectations have the form

of a belief distribution over the set of possible effort choices, expressing the

probability that a given effort level is the minimum of the effort choices of

the other members of the group. In each group only the outcome, i.e. the

minimal effort level in the group, is observable for its members. At the

end of each period agents update their expectations in two steps. First, in

line with standard adaptive expectations models1, agents build intermedi-

ate beliefs as a weighted average of their previous beliefs and the observed

outcome in the current period. In a second step, agents might communicate

their intermediate beliefs with all their contacts in a social network, which is

exogeneously given and constant over time. Following a standard approach

in the literature on social influence dynamics introduced in DeGroot (1974)

agents put identical weight on the intermediate beliefs of all their contacts

1See e.g. Huyck and Stahl (2018a) for a recent contribution in the framework of

minimum effort games.
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and the updated belief is a weighted average of their own intermediate be-

lief and average intermediate beliefs of their contacts.2 The weight agents

put on the average beliefs of their social contacts determines the impor-

tance of social influence in the population. A main goal of our analysis is

to understand how an increase in this social influence parameter affects the

evolution of expectations and the distribution of effort levels chosen in the

long run. We explore this question by combining analytical findings with

insights from statistical analysis of data obtained through extensive simula-

tions of the model under different assumptions about the size of the social

influence parameter and the social network topology.

Since the focus of our analysis is on the role of social influence, we

consider a model setup which, apart from the considered communication of

beliefs, is as simple as possible and directly corresponding to the baseline

stag hunt game, for which the experimental results of Van Huyck et al.

(1990) show convergence to the least efficient equilibrium under large group

sizes. Thereby, we do not incorporate into our model several mechanisms

which have been shown in the literature to improve the efficiency of the

emerging long run outcome of the game. In particular, our assumption that

each agent considers only the own payoff when determining a best response

2This model of belief diffusion is sometimes referred to as ‘naive learning’ since indi-

viduals do not take into account that due to the structure of the social network there

might be differences in the correlations between the intermediate beliefs of different pairs

of their contacts, which should be reflected in the weights put on their intermediate beliefs.

Alternatively a Bayesian Approach could be employed in which agents take into account

the network structure in a fully rational way. As pointed out in DeMarzo et al. (2003)

however a very high degree of rationality on the agents’ side has to be assumed for them

to infer the correct weights to be put on all their contacts. Indeed, as is shown in Grimm

and Mengel (2019), the naive approach put forward in DeGroot (1974) is better able to

explain the data from experiments studying the effect of social influence than a Bayesian

model. Hence, we stick in our analysis to the assumption that identical weights are put

on the communications from all social contacts.
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and then always chooses that best response does neither consider social

preferences (see e.g. Chen and Chen (2011)) nor stochastic choice by agents,

e.g. based on a the well studied logit model (e.g. Anderson et al. (2001);

Huyck and Stahl (2018b)). Furthermore, we assume that an exogenous

process stochastically determines the interaction group every period, while

it has been shown in Riedel et al. (2016) that endogenous partner choice can

improve the efficiency in coordination games. Agents in our setup with social

influence communicate at the end of each period with their social contacts

about their own beliefs, however there is no pre-play communication within

each interaction group, which might improve the effort level chosen in the

game (see e.g. Blume and Ortmann (2007); Kriss et al. (2016)). Also, in our

setting agents do not condition their effort on the fraction of members of

their interaction group with whom they have direct ties in the social network.

This assumption is due to the fact that we consider large interaction groups

where this fraction is typically small.3 Overall, by abstracting from all these

effects and considering a very basic environment we are able to isolate the

effect of social influence for the agent’s effort choice.

The first main insight from our analysis is that in the absence of social

influence, i.e. if the value of the social influence parameter is zero, the ef-

fort level in the population converges to the lowest effort level chosen in the

entire population in the initial period. In accordance with the experimental

evidence of Van Huyck et al. (1990), this implies that for large groups the

long run effort level coincides with high probability with the lowest possible

value and therefore the least efficient equilibrium is reached. Intuitively, in

the absence of communication with their social contacts, agents observe only

the outcome of the game in their own group, which corresponds to the lowest

effort shown by any group member. Hence, the agent with the most pes-

3For small group sizes, in particular interaction groups of size two, experimental find-

ings, e.g. by Chen and Chen (2011) show that effort in minimum effort games tends to be

higher if a player is matched with another player belonging to the same identity group.
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simistic belief in the whole population never receives information that could

move her best response upwards. Since every period all agents matched

with this most pessimistic agent observe the group outcome corresponding

to this agent’s (low) effort, their beliefs become more pessimistic. Due to

this mechanism all agents adjust their efforts downwards over time until it

matches the lowest effort level in the population. The picture changes rad-

ically if there is social influence in the population. First, due to learning

the expectations of her social contacts, an agent’s beliefs can become more

optimistic even if the observed outcome in the own group was low in the

previous period. Second, due to the communication between agents, the

beliefs in the population become homogeneous much faster. This induces

a fast coordination on an equilibrium and avoids the ‘downward drift’ of

beliefs over time, which occurs in heterogeneous populations due to the fact

that in every group the observed outcome corresponds to the lowest effort

in the group. We show that an increase of the social influence parameter

induces statistically significantly higher long run effort in the population.

Furthermore, our analysis establishes that the topology of the social net-

work matters. In particular, the expected long run effort of agents in the

population is significantly larger in a centralized star network compared to

a random network. However, this increase of average efficiency comes at the

cost of less predictability of the outcome in the sense that the variance of

the long run outcome across simulation runs is much larger under a central-

ized network. Intuitively, in a centralized network the population is strongly

influenced by the initial beliefs of the agent in the center of the network.

This fosters fast coordination, but at the same time introduces a strong de-

pendency of the long run outcome from the (stochastic) initial beliefs of a

single agent. We show that our findings are not only robust with respect

to variations of the model parameters, but also with respect to a change in

the model setup, where agents do not only exchange their beliefs with their
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social contacts but also are able to observe the outcomes of all the group

interactions in which any of their social contacts are involved. In particular,

this implies that exchange of information about the outcomes of the group

interaction in the social network cannot substitute the communication of

beliefs in fostering coordination on more efficient equilibria.

The paper is organized as follows. In Section 2 we describe our model

setting. In Section 3 we derive several analytical findings about the long

run outcomes for special cases of our setting, including the scenario without

social influence. In Section 4 we analyze the general case with social influence

and in Section 5 we consider a model extension, where not only beliefs

but also information about the actual outcomes of the group interactions

are communicated in the social network. Concluding remarks are given in

Section 6. Appendix A provides the proofs of the propositions in Section 3.

In Appendix B we provide the statistical test results discussed in the paper

and in Appendix C the robustness of our results with respect to parameter

variations is demonstrated.

2. Model

2.1 Setting

There is a set of agents N, with |N | = n, connected within a social network

s. The set of connections of agent i in the social network is fixed over time.

We denote the set of social contacts of agent i by mi(s) = {j|ij ∈ s} and by

ηi(s) = |mi(s)| the number of social contacts of agent i.

Every period the set of agents is randomly partitioned into n/k groups

of size k, where each partition has equal probability.4 Thus, each agent

faces an equal probability of being a member of each group. We denote by

4Assuming that k is a divisor of n, the number of possible ways to form such partitions

is given by
(∏n

k
−1

j=0

(
n−jk

k

))
/(n/k)!.
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g(i, t) ⊂ N the set of members of the group to which agent i belongs at t

(this implies i ∈ g(i, t) for all t).

At each period each group plays the following minimum effort game (see

Van Huyck et al. (1990)). Each agent i chooses an effort ei,t from a given

set of strategies X = {1, ..., e}. The payoff of the agent from the game is

determined by her own effort and the minimal effort chosen by the members

of her group in period t, denoted by ei,t. The payoff of agent i is given by:

π(ei,t, e−i,t) = αei,t − βei,t,

with α > β > 0, e−i,t = (ej,t)j∈g(i,t)\{i} and ei,t = minj∈g(i,t) ej,t is the

minimum effort in the group of agent i.

2.2 Beliefs

Each agent at each t has a belief about the distribution of minimal effort e in

her (randomly generated) group: bi,t ∈ ∆(X ) := 〈b ∈ Re+ :
∑e

e=1 b(e) = 1〉.
We denote by bi,t(e) the probability that the minimal effort of the other

players in the group is e. A belief vector which puts probability one on

some effort level ẽ will be referred to as a point belief and formally written

as b = 1ẽ. The population profile of beliefs at t is denoted by Bt = (bi,t)i∈N .

An agent has no information about effort level chosen by individual

agents and hence their beliefs about the distribution of minimal effort by

the other members of their current group does not depend on the identities

of these members. The expected payoff of an agent with effort e ∈ X and

belief b ∈ ∆(X ) is given by:

πe(e, b) =
∑
e∈X

π(e, e)b(e).

Each agent i chooses her effort by maximizing this expected payoff using

her current belief distribution bi,t. Hence, an agent with belief b chooses an
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action a∗(b) such that:

a∗(b) = max {e ∈ X |πe(e, b) ≥ πe(ẽ, b)) ∀ẽ ∈ X .}

We denote the action of agent i at t by ai,t = a∗(bi,t). Note that the above

formulation of a∗(b) implies that in case an agent is indifferent between

different levels of efforts she always chooses the largest of these levels.

After the game has been played, all agents update their belief distribu-

tions. They utilize both the acquired information about the minimum effort

in their group, and the information about the beliefs of their neighbors in

the network. Precisely, each agent i forms an intermediate belief b̃i,t as a

weighted average of the previous belief and her current observation ei,t:

b̃i,t+1 = (1− ξ)bi,t + ξ1ei,t , (1)

where 0 ≤ ξ ≤ 1 denotes the speed of individual updating. The fact that

only the minimum effort, rather than all individual effort choices of g(i, t),

is used to update the beliefs is based on the assumption that the individual

efforts of the group members are not observable. The only information

available is the outcome of the game, which is determined by the minimum

effort of all group members.5

Furthermore, individuals change beliefs due to social influence. In par-

ticular, they learn about intermediate beliefs b̃j,t+1(e) of their social contacts

and use them to form their own final beliefs. Following standard formula-

tions in the literature on opinion formation (e.g. DeGroot (1974)) we assume

that the updated belief is a linear combination of the agent’s intermediate

belief and that of her social contacts. Formally, we have:

bi,t+1 = b̃i,t+1 + χ
1

ηi(s)

∑
j∈mi(s)

(
b̃j,t+1 − b̃i,t+1

)
. (2)

5This assumption seems realistic in many examples of projects carried out by groups,

where it is impossible to identify the individual contributions to the success of the project.
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The parameter χ in (2) represents the level of confidence or trust in the

beliefs of social contacts. It determines the importance of social influence

and is a key parameter in our analysis. This updated belief distribution is

then the basis for the agent’s effort choice in period t+ 1.

3. Analytical Results

The evolution of the profile of belief vectors Bt constitutes a Markov pro-

cess6 on the state space ∆(X )n. A general analytical characterization of

the transient dynamics or the long run distribution of this process seems

infeasible and therefore in Section 4 we will use simulations to gain insights

in this respect. However, it is possible to derive general characterizations

of absorbing sets of the process, and for the special case where χ = 0 also

a description of the long-run outcome of beliefs and induced effort can be

derived.

It is well known that for each effort level e ∈ X there exists a symmetric

Nash equilibrium of the underlying minimal effort game, in which all players

choose the effort e. These Nash equilibria are Pareto ranked and due to

α > β the outcome is more efficient the higher the equilibrium effort. In

our setting each such symmetric Nash equilibrium corresponds to a uniform

population profile with bi,t = 1e for all i ∈ N . Since a∗(1e) = e and therefore

ei = e for all agents i under such a belief profile, it follows directly that any

such uniform profile is an absorbing state of the process Bt. However, as we

will show below, the process does not necessarily reach a state with uniform

point beliefs, or even with uniform induced actions in the long run, at least

as long as the social influence parameter χ is positive.

6For each partition of the agents into groups of size k the belief of each agent i is given

by (1) and (2) and therefore deterministic. Hence, the distribution of Bt+1 given Bt is

determined by the probabilities of all possible group partitions and the beliefs of all agents

in t+ 1 given a certain partition.
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The following proposition shows that if all agents in the population in

some period choose identical effort, they will all continue to choose this effort

in all future periods as well.

Proposition 1. If at some t ≥ 0 there exists an effort level e ∈ X such that

a∗(bi,t) = e ∀i ∈ N then

(i) ai,τ = e ∀i ∈ N for all τ ≥ t,

(ii) bi,τ → 1e for τ →∞ for all i ∈ N .

The intuition for this result is quite straight-forward. If there is no

communication of beliefs, then in a period t, in which all agents observe a

minimal effort e, the weight of this effort level in the updated belief distri-

bution of every agent becomes larger. Due to the strategic complementarity

this increases for all agents their incentive to choose that effort level in pe-

riod t + 1 and, since choosing e has already been their optimal choice in t,

they all choose effort e also in period t+ 1.

Proposition 1 shows that any set of beliefs corresponding to some uniform

choice of effort among agents is absorbing. This raises the question whether

it is guaranteed that the belief process ends up in one of these absorbing

states with uniform effort choice. In the absence of social influence the

answer to this question is affirmative. In the following proposition we show

that if χ = 0 the population always converges to a state in which all agents

have identical point beliefs, i.e. they all expect with probability one that

the minimum effort is some ẽ ∈ X and choose their own effort level equal to

ẽ. Moreover, the long run effort is determined by the minimal effort chosen

among all agents at t = 1.

Proposition 2. Assume that χ = 0 and denote by e1 = mini∈N [a∗(bi,1)].

Then,

(i) actions of an agent never increase over time: ai,t+1 ≤ ai,t for all

i ∈ N, t ≥ 1.
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(ii) for every ε > 0 there exists T > 0 such that IP[ai,τ = e1 ∀i = 1, .., N

for all τ ≥ t] > 1− ε,

(iii) bi,t → 1e1 (in probability) for t→∞ for all i ∈ N .

Proposition 2 shows that in the absence of social influence the population

in the long run always coordinates on some effort level, which means that

the population profile of beliefs always reaches a state corresponding to a

Nash equilibrium of the game. However, the proposition also gives a clear

indication that the dynamic adjustment of individual’s beliefs induces a

downward trend in the chosen effort and in the long run all agents adopt

the smallest among all effort levels chosen in the initial period. The reason

for this downward trend is that, due to the structure of the minimum effort

game, no agent ever observes an outcome which is above its own effort level.

In the absence of social influence this implies that when an agent updates

her beliefs she always increases the weight of an effort level which is below or

equal her best response in the current period. Hence, the best response of an

agent can never increase over time. This induces contagion-like dynamics of

agents switching to beliefs that induce the minimal effort in the population,

which constantly remains at e1. Hence, in the long-run all agents in the

population choose this minimal effort.

For a sufficiently large value of the social influence parameter χ the claim

that beliefs and actions become uniform in the long are in general no longer

true. Actions might stay heterogeneous forever and, therefore, also effort

levels above the initial minimal effort are chosen by some agents in the long

run. Defining χ := (n−2)β
(n−k)α we obtain the following proposition.

Proposition 3. Assume that (n − k)α > (n − 2)β and χ ≥ χ > 0. Then

for any initial belief profile B1 with |{i ∈ N : a∗(bi,1) = e1}| = 1 there exists

a network s such that maxi∈N [ai,t] > mini∈N [ai,t] for all t with probability

one.
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To interpret the proposition it should first be noted that the condition

(n−k)α > (n−2)β implies that χ < 1, such that the interval (χ, 1] of values

of the social influence parameter χ leading to heterogeneous long-run beliefs

and actions is not empty. Given that we always have α > β the condition

is quite weak as long as we assume that the size of the interaction group

(k) is small compared to the population size (n). Whereas Proposition 3

is formulated for initial beliefs inducing that the minimal effort in the first

period is chosen by a single agent, analogous results can be obtained for

scenarios with a larger number of agents choosing the lowest initial effort e1

with an adjusted value of the threshold χ.

The intuition for the potential long-run heterogeneity of beliefs and ac-

tions in the presence of social influence is that in a situation, in which the

beliefs of the social contacts of an agent are more optimistic than the ob-

served outcome of the group interaction of that agent, the social influence,

i.e. the direct communication of beliefs, might prevent the downward adjust-

ment of that agent’s beliefs. Hence the contagion of low effort choices, which

drives the dynamics in the absence of social influence, might be stopped. If

the social network is such that agents, which initially choose low effort do no

have social ties to more optimistic individuals, which is the type of network

on which the proof Proposition 3 is based, then neither do these agents in-

crease their actions over time, nor do the more optimistic individuals, who

are linked through the social network, adjust their beliefs so strongly down-

wards to choose the minimal population effort. Whenever these optimistic

agents are in the same interaction group with the pessimistic agent, the

negative impact of the observed low outcome in their group on their beliefs

is outweighed by the social influence from their optimistic social contacts.

Hence, in such a scenario long-run heterogeneity of beliefs and actions pre-

vails.

Our analytical findings provide little guidance on the shape of the dy-
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namics and long run distribution of beliefs and actions for χ > 0. In the

following section we employ numerical simulations to explore how the evolu-

tion of beliefs and efforts are affected by social influence in different settings.

In particular, we examine how the degree of confidence in the beliefs of oth-

ers, and the topology of the social network influence the distribution of

minimum efforts and associated payoffs in the game.

4. Effect of Social Influence

The following analysis relies on a baseline parametrization of the model

given by n = 30, k = 5, α = 2, β = 1, ē = 15, ξ = 0.1 and χ = 0.3. The game

parameters α and β are chosen in line with Van Huyck et al. (1990). A

relatively low speed of updating ξ is chosen to prevent overly naive behavior

of agents driven entirely by their previous period observation. Variations

of the confidence parameter χ will be discussed extensively in the next sec-

tion. The chosen values of n, k and ē turn out not to be crucial for the

qualitative results we will discuss. Robustness checks showing that our re-

sults still hold for alternative specifications of the parameters are provided

in Appendix C. Furthermore, we assume that all agents initially have het-

erogeneous point beliefs of the form bi,1 = 1ẽ for ẽ uniformly chosen from X .

Our comparison of model outcomes under different parameter and network

constellations is based on batches of Q = 20 simulation runs carried out for

each constellation. In order to avoid spurious effects induced by different

set of initial beliefs across the sets of batch runs, we generate a set of Q

initial beliefs (one for each batch run). We use these same initial beliefs in

each set of batch runs carried out under the different considered parameter

constellations. Concerning the social network, our benchmark is to consider

a random network with linking probability p = 0.2 between each pair of

agents. Similarly to our approach taken with respect to initial beliefs we

generate a set of Q random networks and use this same set in every batch

15
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Figure 1: Dynamics of the expected values of the belief distributions (a),

the chosen actions (b) and the standard deviation of the belief distributions

(c) for all agents in a single run in the baseline scenario.

of run across different parameter constellations.

4.1 Model Dynamics in the Baseline Scenario

To gain some initial understanding of the mechanisms at work we first illus-

trate the dynamics of a single simulation run in the case of a random social

network.

Figure 1 shows the dynamics of the action as well as the expected value

and the standard deviation of the belief of each agent in the population.
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The figure illustrates that whereas agents start with heterogeneous point

beliefs, initially the belief distributions of individual agents quickly become

more distributed (i.e. the standard deviation of individual belief distribu-

tions increases, see panel (c)) and at the same time the expected values of

individual beliefs approach each other (panel (a)). This is due to the inter-

play of observing the actual minimum effort in an agent’s own group, which

might differ from the agent’s expectation, and the communication of beliefs

from the agent’s social contacts. Actions stay strongly heterogeneous for ap-

proximately 10 periods and then quickly converge to a common effort level

of e = 3 in this run. Once actions have converged to a uniform profile they

stay constant over time (as shown in Proposition 1). Panel (b) of Figure

1 illustrates this result. The standard deviation of individual beliefs goes

to zero (see panel(c)) and the expectations of the individual beliefs become

uniform across agents slowly converging to the actual effort level observed

in all groups (see panel (a)). In other words, the belief profile converges

towards a profile of homogeneous point beliefs.

Agents with low point beliefs at t = 1, due to social influence, quickly

become more optimistic about the minimum effort in their group (see panel

(a)). For some of them this leads to an increase of the chosen action over

time (see panel (b)). In light of Proposition 2(i), which shows that in the

absence of social influence individual effort levels can never increase over

time, it is clear that this effect is driven by the communication of beliefs

between agents. The intuition is similar to that already discussed at the

end of Section 3. In a setting where outcomes are determined by the lowest

effort in the group, like the minimum effort game, direct communication

is important because it allows agents to realize that other agents in the

population have expectations that are much more optimistic than observable

outcomes would suggest. Hence, social influence might induce an upward

adjustment of individual beliefs which is sufficiently strong to give rise to an
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Figure 2: Distribution of average efforts at t = 40 for χ = 0, 0.3, 0.6, 0.9.

increase of the agent’s (optimal) action choice.

4.2 Effects of Social Influence

The discussion of the single run in our baseline scenario highlights the strong

importance of social influence for the dynamics of effort level choices in the

population. To examine the role of social influence in more detail we now

systematically analyze how the agents’ level of confidence in the beliefs of

their social contacts affects the emerging level of effort in the population.

More precisely, we vary the confidence parameter χ between χ = 0 and

χ = 0.9 and for each of the considered values carry out a batch of Q =

20 simulation runs of T = 40 periods. Figure 2 shows boxplots of the

distributions of the population average of actions across the batch runs. It

should be noted that in all runs at t = 40 actions are already uniform such

that the population average coincides with the action of every single agent in

the population. It can be clearly seen that a higher level of social influence,

expressed by a larger value of χ, significantly increases the distribution of
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Figure 3: Dynamics of expected values of minimal effort (a), chosen actions

(b) and standard deviation of the belief distributions (c) for all agents in a

single run under strong social influence (χ = 0.9).

long run efforts in the population.7

Similarly to Figure 1 described earlier, Figure 3 shows the dynamic of

the action (panel (b)), expected value and the standard deviation of the

belief of each agent in the population (panels (a) and (c)) where the level

of confidence in social contacts’ beliefs χ is equal to 0.9 compared to χ =

0.3 in the baseline scenario. In order to see the effect of increased social

7In Appendix B we provide the results of the Wilcoxon Signed Rank Tests to show

that the distributions of effort are indeed significantly different for different values of χ.
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influence one can first notice that the beliefs of the agents converge much

faster with higher confidence level χ. Particularly, the agents with low

initial beliefs become more optimistic quicker and the beliefs across all agents

converge faster. Based on this, the beliefs stay more optimistic in the long

run compared to the benchmark in Figure 1 where the population variance of

the beliefs decreases much slower. Panel (c) of Figure 3 shows that the beliefs

of individual agents quickly become more dispersed reaching the peak of the

standard deviations earlier compared to the benchmark, but this dispersion

then is reduced more quickly than in the case of a low value of χ.

The positive effect of the social influence on the pace of convergence and

effort choice proves to be robust. Figure 4 shows for different values of χ

the dynamics of distributions of average beliefs about the minimal effort

across the agents in the network (panel (a)), average standard deviation

of beliefs across the agents (panel (b)) and the standard deviation of the

beliefs in the network (panel (c)). The figure illustrates confidence bands

(across batch runs) of these values for baseline scenario (green bands), high

level of social influence (blue bands) and the absence of social influence

(grey bands). Similar to the single runs discussed above, the confidence

bands for the (population) standard deviation of expectations about the

minimum effort decreases much faster with higher level of social influence

(see panel (c)). The distribution of average standard deviation of beliefs

in the network reaches its maximum earlier and decreases much faster with

higher value of χ (panel (b)). Finally, the beliefs converge to a significantly

higher value of long run efforts when the level of trust in beliefs of the social

contacts is high (panel (a)). Considering the initial periods in the dynamics

of population mean of the expectations in Figure 4(a), it can be clearly

seen that the average speed (across batch runs) of its decrease is almost

identical for the different values of χ. The crucial difference between the

three considered scenarios is that for large values of χ the point in time,
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Figure 4: Dynamics of distribution of the population mean of expectation (a)

and standard deviation of the individual belief distributions in the baseline

scenario. Panel (c) shows the standard deviation of expected minimal effort

across agents. The confidence bands in all panels illustrate the dynamics of

the mean across the set of batch runs and one standard deviation from it

for χ = 0 (grey), 0.3 (green) and 0.9 (blue).

where the population variance is close to zero, is much earlier and the mean

expectation does hardly decrease further once the population has become

almost uniform. This observation reinforces our intuition that a stronger

effect of social influence improves the long-run effort level mainly by fostering

faster convergence of population beliefs, thereby avoiding a long lasting drift
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towards a minimal population effort which is substantially below the average

population effort.

The grey bands in Figure 4 illustrate the results derived in Proposition

2(iii) that beliefs of all agents slowly converge to the lowest effort exerted in

the first period of the games when there is no social influence in the network.

4.3 Effects of Social Network Topology

Previous work on opinion formation (e.g. Golub and Jackson (2009), Ace-

moglu et al. (2010)) has demonstrated the importance of the social network

structure on the emergence of consensus in a population and the ability to

learn the true state of the world. In this section we investigate how the abil-

ity of a population to coordinate on an effort level in our minimum effort

game and the efficiency of the emerging effort level is influenced by different

properties of the social network.

Number of Links

First we explore the effect of a changing level of connectedness in the network

by varying the parameter p which determines the probability that there is a

link between two nodes. As can be seen in Figure 5 increasing this parameter

has a non-linear effect on the distribution of the emerging long-run effort

levels. In particular, the change in p has a significant positive effect only on a

short interval from 0.1 to 0.2. Further increase in the number of links doesn’t

affect the expectations and thus the long-run effort levels in a statistically

significant way. Hence, above a certain minimal level a higher degree of

connectedness in the network does not foster the emergence of more efficient

equilibria with higher effort level.
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Figure 5: Distribution of average efforts at t = 40 for linking probability

p = 0.1, 0.2, 0.3, 0.5.

Network Centralization

So far we have considered random networks with identical linking probabil-

ities between all agents. However, many social networks are characterized

by a ‘core-periphery’ structure where a few central agents are each linked to

a large number of individuals (see Borgatti and Everett (1999)). In order

to study the effect of such (partially) centralized communication structure,

we first consider the extreme case of a star network, in which all nodes are

connected to one central agent, and then consider scenarios with several

coexisting star networks.

Contrary to the weak effect of increasing connectedness in the random

network, changing the type of the network into a star network with a single

center boosts the expected minimum effort and the payoffs in the long run.

Comparing the individual expectations and variances for random and star

networks in Figures 1 and 6 one can observe that the expectations about

the minimum effort converge to much higher level when the network is a
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Figure 6: Dynamics of expected values of minimal effort (a), chosen actions

(b) and variance of the belief distributions for all agents in a single run with

a star social network.

star. The significant positive effect from this change in network topology on

the final distribution of average efforts is shown in Figure 7. However, the

variance of this distribution is much higher in the case of a star network.

This is implied by the strong dependence of the outcome on the initial belief

of the central node in the star. More specifically, each of the periphery

nodes in the network learns about the belief of the central node, which over

time then is adapted to the average beliefs of all periphery nodes. If an

agent with pessimistic initial beliefs is located at the center of the star and
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Figure 7: Distribution of average efforts at t = 40 for a random network

(left) and a star network (right)

therefore the only source of belief communication for periphery nodes, the

average beliefs in the network quickly become more pessimistic. While a

very optimistic center will push the beliefs in the network up.

As becomes apparent from Figure 6, the beliefs of the different agents

become uniform much faster in a centralized network, which leads to a faster

convergence of actions. Since average effort levels exhibit a negative trend as

long as there is substantial heterogeneity of beliefs in the population, the fast

convergence of beliefs leads to systematically higher effort levels compared

to the random network. Given this effect of centralization, higher confidence

in beliefs of social contacts for a large range of χ has a stronger effect in the

star network compared to the random one (Figure 8). The increase of χ in a

star network however has a significant positive effect only up to some level.

Increasing the value of χ from 0.6 to 0.9 affects the long run distribution of

beliefs negatively (see Figure 8).

If the centralization of the information flow is not global, like in a network
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Figure 8: Distribution of average efforts at t = 40 with a random network

(a) and a star network (b) for χ = 0, 0.3, 0.6, 0.9.

with a single star, but rather characterized by the coexistence of several in-

fluential ‘local stars’ the positive effect of the network centralization quickly

diminishes. Figure 9 shows the distribution of long-run efforts for networks

with one to six star components. Increasing the number of components from

two to three and again from three to four components each yields a signifi-

cant reduction in long-run effort, and the distribution of effort in a network

with four star components is actually already below the distribution under

a random network. Figure 10 illustrates the dynamics of individual beliefs

and actions for a network with three star components. The mechanism

leading to the relatively low long-term effort can be clearly identified in this

figure. Individual beliefs of agents in each of the three components con-

verge quickly due to communication of beliefs and social influence, however,

agents from each component are repeatedly matched in groups with agents

from the component with the lowest beliefs, yielding low effort observations

for these agents. Hence, beliefs in all components over time slowly adjust
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Figure 9: Distribution of average efforts at t = 40 for star network (left)

and segregated networks with 2 to 6 star components.

downwards towards the beliefs of the lowest component and actions across

these components converge to a level determined by the actions taken by

members of the most pessimistic component.

The effect of a segregation of the network into several disconnected com-

ponents is much weaker if each component is a random network. Simulation

results not reported in detail here show that increasing the number of com-

ponents in general has only insignificant effects in such a setting.

Before analyzing an extension of our benchmark model, we like to point

out that in all simulation runs in all settings considered in this section the

beliefs and effort choices eventually become uniform. In particular, this ob-

servation also holds true for scenarios with high values of the social influence

parameter χ. Relating this to Proposition 3, which shows that for large val-

ues of that parameter there always exist social networks and initial beliefs

such that convergence to a uniform profile does not occur, shows that the

types of social networks that do not induce uniform long-run profiles are of
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Figure 10: Dynamics of expected values of minimal effort (a), chosen actions

(b) and variance of the belief distributions (c) for individual agents in a single

run with a segregated social network with 3 star components.

very special structure. As sketched in Section 3, long-run heterogeneity of

beliefs requires the existence of separated components in the network where

the social influence in the component with optimistic beliefs is sufficiently

strong to outweigh the low-effort observations made by the agents in that

component who are matched with members of the (smaller) component with

pessimistic beliefs. Simulation results not reported here show that adding a

single connection between these components typically is sufficient to induce

uniform long-run beliefs in the population. Also, the results reported in
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the previous paragraphs show that even under fully separated components

uniform beliefs and effort choices emerge in the long-run, if the components

are of equal size.

5. Communication of Information

In our benchmark model we assume that an agent receives information about

the outcomes of the minimal effort games in groups other than their own

only indirectly through the communication of the beliefs of their social con-

tacts. However, in many situations, individuals might not only communicate

their beliefs to their social contacts, but also the actual outcome of their own

interaction group. In this section we analyze whether the presence of such

communication of information about the group outcomes in the social net-

work changes the qualitative effects of belief communication. Furthermore,

we explore whether communication of information might act as a substitute

for the communication of beliefs or whether it might even reinforce the (pos-

itive) effect of belief communication on the long-run effort level emerging in

the population.

We extend the model described in section 2 by assuming that, when

building their intermediate beliefs, agents do not only take into account the

outcome of their own interaction group, but also that in all groups of their

social contacts. In particular, we replace in equation (1) term 1ei,t with

b̂i,t(e), which is given by

b̂i,t = 1ei,t + κ
1

ηi

∑
j∈mi(s)

(
1ej,t − 1ei,t

)
. (3)

Here 0 ≤ κ ≤ 1 is a weight that the agent i assigns to the information

about the minimum effort observed and communicated by her social con-

tacts. Thus, we obtain the following generalization of equation (1), describ-

ing the intermediate belief formation with information communication:

29



Figure 11: Distribution of average efforts at t = 40 for χ = 0, 0.3, 0.6, 0.9,

with κ = 0.3.

b̃i,t+1(e) = (1− ξ)bi,t(e) + ξb̂i,t(e) (4)

with b̂i,t given in (3). For κ = 0 this formulation gives our benchmark model

studied in the previous section.

We again use our baseline parametrization and additionally set κ = 0.3

as the baseline value for the weight assigned to the observations of the so-

cial contacts. Figure 11 shows that the impact of variation of the confidence

parameter χ on the long run effort choice stays significant also with com-

munication of information. Comparing the figure with Figure 2 also shows

that quantitatively the effects of an increas of the social influence parame-

ter χ are hardly affected by the presence of communication of information.

Extensive analyses of the extended model for all the scenarios examined in

Section 4 furthermore show that all earlier results remain qualitatively un-

changed also in the presence of information communication. Statistical tests

demonstrating this are presented in Appendix B together with the tests for
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Figure 12: Distribution of average efforts at t = 40 for κ = 0, 0.3, 0.6, 0.9,

when χ = 0.

the baseline model.

Concerning the question whether the exchange of information can act as

a substitute for the exchange of beliefs, we show in Figure 12 how the dis-

tribution of long-run effort changes if there is no exchange of beliefs (χ = 0)

and the parameter κ determining the weight of the information obtained

from an agent’s social contacts is increased. The figure clearly demonstrates

that exchanging only information without exchanging beliefs has hardly any

positive effect on the level of long-run effort which emerges. This insight

is consistent with the intuition developed above that the main role of the

exchange of beliefs is that agents in this way get signals about (expected)

minimal effort in groups that are more positive than the actual project out-

comes which are observed. This role cannot be played by the communication

of actual minimal efforts in the groups of the social contacts. Therefore, the

communication of information about project outcomes cannot act as a sub-

stitute for the communication of beliefs in fostering more efficient outcomes
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of the minimal effort game. Overall, our results show that the main re-

sults discussed in the previous section qualitatively stay intact if apart from

beliefs also information is communicated in the social network.

6. Conclusions

This paper highlights from a theoretical perspective the potential impor-

tance of social influence for improving efficiency of the outcome of group

production problems with strategic complementarities. Also, it shows that

the topology of the social network has a significant influence on the achieved

outcome. Unfortunately, at this point experimental studies exploring the

role of social influence in such a setting is missing. Hence, the analysis

provided in this paper is a natural basis for designing and carrying out ex-

periments clarifying in how far the effects identified in our study are also

observable in the lab. Also from a theoretical perspective it would be inter-

esting to explore the relevance of several of the assumptions that have been

made in this paper. This includes the consideration of endogenous updat-

ing of the social network as well a generalization of the agents’ behavior by

incorporating logit best reply or social preferences or a more refined expec-

tation updating process, e.g. like the one developed in Grimm and Mengel

(2019) based on its good match with experimental evidence. These issues

are left for future research.
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Appendix A. Proofs

Proof of Proposition 1. We first show a Lemma, which will be used in this

proof as well as in the proofs of the following propositions.

Lemma 1. Consider beliefs b1, b2 ∈ ∆(X ) such that a∗(b1) ≤ a∗(b2) then

a∗(κb1 + (1− κ)b2) ∈ [a∗(b1), a∗(b2)] for all κ ∈ [0, 1].

Proof of Lemma 1. In light of the form of π(ei, e−i) we can write the ex-

pected profit of an agent with effort e and belief b as

πe(e, b) = α

∑
ẽ≤e

b(ẽ)ẽ+ e
∑
ẽ>e

b(ẽ)

− βe.
Hence,

∆πe(e, b) = πe(e+ 1, b)− πe(e, b) = α
∑
ẽ>e

b(ẽ)− β,

which is (weakly) decreasing in e. Now consider some effort = e1 < a∗(b1).

Since e1 < a∗(b1) ≤ a∗(b2) and ∆π(e, b) is decreasing in e, we must have

∆πe(e1, b1) ≥ 0 and ∆πe(e1, b2) ≥ 0. Therefore,

∆πe(e1, κb1 + (1− κ)b2) = κ∆πe(e1, b1) + (1− κ)∆πe(e1, b2) ≥ 0.

Since a∗(κb1 + (1 − κ)b2) is the largest effort among those maximizing the

expected profit of the agent, this shows that e1 < a∗(κb1 +(1−κ)b2). Hence

a∗(κb1 + (1− κ)b2) ≥ a∗(b1). Analogous arguments show that a∗(κb1 + (1−
κ)b2) ≤ a∗(b2). This completes the proof of the lemma.

To prove claim (i) of the proposition consider a profile Bt such that

a∗(bi,t) = e for all i ∈ N . It should be noted that under such a profile ei,t = e

for all i ∈ N regardless of the realization of the group partition. Hence Bt+1

is deterministic and we show that also for Bt+1 we have a∗(bi,t+1) = e for all

i ∈ N . Claim (i) then follows by induction. To show that a∗(bi,t+1) = e for
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all i ∈ N , we consider an arbitrary agent i. Since ei,t = e and a∗(1e) = e, it

follows from Lemma 1 that

a∗(b̃i,t+1) = a∗((1− ξ)bi,t + ξ1e) = e.

Since the same reasoning also applies to all social contacts of i, repeated

application of the lemma establishes that a∗
(

1
ηi(s)

∑
j∈mi(s)

b̃j,t+1

)
= e, and

therefore

a∗(bi,t+1) = a∗

(1− χ)b̃i,t + χ
1

ηi(s)

∑
j∈mi(s)

b̃j,t+1

 = e.

Hence, we obtain part (i) of the proposition.

To show part (ii) we define for some arbitrary effort ê ∈ X \ {e} the

maximal probability for this effort level in any belief distribution in Bτ as

b̄(ê)τ = max[bi,τ (ê) : i ∈ N ] for all τ ≥ t. Since ej,τ = e 6= ê for all j ∈ N
and τ ≥ t we have

b̃j,τ+1(ê) = (1− ξ)bj,τ (ê) ≤ (1− ξ)b̄(ê)τ ,

and therefore

bi,τ+1(ê) = (1− ξ)(1− χ)bi,τ (ê) +
χ

ηi(s)

∑
j∈mi(s)

b̃j,τ+1 ≤ (1− ξ)b̄(ê)τ

for all i ∈ N . Hence, b̄(ê)τ+1 ≤ (1−ξ)b̄(ê)τ and accordingly limτ→∞ b̄(ê)τ =

0 for all ê 6= e. This implies that bi,τ → 1e for τ →∞ for all i ∈ N

Proof of Proposition 2. (i) By definition we have ei,t ≤ a∗(bi,t) for all i and

all t. Hence, a∗(1ei,t) = ei,t ≤ a∗(bi,t). Using Lemma 1 we obtain

ai,t+1 = a∗(bi,t+1) = a∗((1− ξ)bi,t + ξ1ei,t) ≤ a
∗(bi,t) = ai,t.

(ii) First, we show that for any agent i with ai,1 = e1 := minj∈N aj,1 we

must have ai,τ = eτ = e1 ∀τ ≥ 1. This can be shown by induction. Assume
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that for all τ = 1, .., t beliefs bi,τ are such that a∗(bi,τ ) = et = e1. Then

obviously we have ai,t = e1 and therefore, under consideration of χ = 0, the

updated belief reads

bi,t+1 = b̃i,t+1 = (1− ξ)bi,t + ξ1e1 .

Using Lemma 1 it follows from a∗(bi,t) = a∗(1e1) = e1 that ai,t+1 = a∗(bi,t+1) =

e1. For any agent j 6= i we have a∗(bj,t) ≥ e1 and ej,t ≥ e1, which implies

that

aj,t+1 = a∗
(

(1− ξ)bj,t + ξ1ej,t

)
≥ e1.

From this we conclude that et+1 ≥ e1, which in light of ai,t+1 = e1 implies

et+1 = e1. This completes the induction and we have shown that ai,t = et =

e1 for all t ≥ 1.

Consider now an agent j with aj,t > e1. Taking into account that e is

a strictly optimal action under belief b = 1e and the continuity of πe with

respect to b, it follows that there exists some λ̃ such that a∗(λ1e1 + (1 −
λ)bj,t) = e1 for all λ ≥ λ̃. Choose a T̃ such that (1− ξ)T̃ < 1− λ̃. There is

a positive probability that agent j is matched with an agent i with ai,t = e1

for T̃ periods in a row. The belief of agent j in period t+ T̃ then is given by

bj,t+T̃ = (1− ξ)T̃ bj,t + (1− (1− ξ)T̃ )1e1

and our reasoning above shows that, in case such a matching pattern oc-

curs, this agent j switches to action aj,t+T̃ = e1. Following the arguments

provided in the first part of the proof, this implies that aj,τ = e1 for all

τ ≥ t + T̃ . The same reasoning can be applied sequentially to every

agent j with aj,t > e1. Together, this establishes that from every pro-

file of beliefs Bt, that can be reached with positive probability from B1,

there is a positive probability path to a profile B̃ with the property that

a∗(b̃i) = e1 for all i ∈ N . Denote the set of all such belief profiles B̃ by

B̃ = {B̃|a∗(b̃i) = e1 ∀i ∈ N}. We know from Proposition 1 that this set B̃
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of belief profiles is absorbing. Together with the fact that there is a tran-

sition path with positive probability from any reachable state into B̃, this

implies that IP(Bt 6∈ B̃) → 0 for t → ∞. This shows part (ii) of the propo-

sition. Part (iii) follows directly from the observation that if Bt ∈ B̃ then

bi,t+τ (ê) ≤ (1− ξ)τ bi,t(ê) for all i ∈ N, ê 6= e1.

Proof of Proposition 3. Consider any initial belief profile B1 with |{i ∈ N :

a∗(bi,1) = e1}| = 1. Without restriction of generality we label the agent

with the smallest initial effort as agent 1. Hence, we have a∗(b1,1) = e1

and a∗(bi,1) > e1 ∀i = 2, .., n. Consider the social network s with m1(s) =

∅, mi(s) = N \{1, i}. Since agent 1 does not have any social contacts under

this social network, the beliefs of agent 1 in period t are given by

b1,t = (1− ξ)t−1b1,1 + (1− (1− ξ)t−1)1e1

and it follows from Lemma 1 that a1,t = e1 for all t.

Considering agents i = 2, .., n we proceed by induction. Assume that

a∗(bi,τ ) > e1 for all i = 2, ..n and τ = 1, .., t. We show that then also

a∗(bi,t+1) > e1 for all i = 2, ..n. Define, as in the proof of Proposition 2, the

expected profit difference between two adjacent effort levels as ∆πe(e, b) =

πe(e+1, b)−πe(e, b). Since ∆πe(e, b) is weakly decreasing in e and a∗(bi,t) >

e1 for all i = 2, .., n it follows that

∆πe(e1, bi,t) = α
∑
ẽ>e1

bi,t(ẽ)− β ≥ 0.

Defining xi,t =
∑

ẽ>e1
bi,t(ẽ), it follows that

xi,t ≥
β

α
∀i = 2, .., n. (5)

In every period (k − 1) agents are matched with agent 1 and hence observe

ei,t = e1, whereas for the remaining n−k agents we have ei,t > e1. Denote by

agent j one of the agents matched with agent 1 in t. Furthermore, denote
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by yt =
∑

i 6=1,j

∑
ẽ>e1

bi,t(ẽ) the sum of the probabilities that all agents

apart from agents 1 and j put on effort choices above e1. Clearly, we have

yt ≥ (n− 2)βα . Defining x̃j,t =
∑

ẽ>e1
b̃j,t(ẽ) we obtain from (1)

x̃j,t+1 = (1− ξ)xj,t.

Furthermore, we define by ỹt =
∑

i 6=1,j

∑
ẽ>e1

b̃i,t(ẽ) and we get

ỹt+1 = (1− ξ)yt + ξ(n− k).

Inserting this into the belief adjustment due to social influence for agent j

(see 2) we obtain

xj,t+1 = (1− χ)x̃j,t+1 +
χ

n− 2
ỹt+1

= (1− χ)(1− ξ)xj,t +
χ

n− 2
((1− ξ)yt + ξ(n− k))

≥ (1− χ)(1− ξ)β
α

+
χ

n− 2

(
(1− ξ)(n− 2)

β

α
+ ξ(n− k)

)
= (1− ξ)β

α
+ χ

n− k
n− 2

ξ,

where we have used that xj,t >
β
α and yt ≥ (n− 2)βα . If χ > χ this directly

implies that xj,t+1 ≥ β
α and therefore a∗(bj,t+1) > e1. Clearly, the beliefs

of all agents who have not been matched with agent 1 in period t are more

optimistic than that of agent j and therefore we have a∗(bi,t+1) > e1 for

all i = 2, .., n. This completes the induction. Overall, we have shown that

for all agents i = 2, .., n we have ai,t > e1 for all t ≥ 1. Together with

a1,t = e1 for all t ≥ 1 this shows that with probability one maxi∈N [ai,t] <

e1 = mini∈N [ai,t], which completes the proof.

Appendix B. Test Results

We perform Wilcoxon signed-rank test to show the significance of difference

between distributions of long run effort choices. Tables 1-7 in this appendix
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show the p-values of the tests.8

Table 1: Effect of the social influence on long-run efforts.

χ 0 and 0.3 0.3 and 0.6 0.6 and 0.9

κ = 0 0.0002 0.0001 0.0006

κ = 0.3 0.0001 0.0001 0.0457

The table shows the effects of increasing social influence on the long-run

efforts in the baseline model (κ = 0) and the extended model with the

information communication (κ = 0.3) with random network.

We compare each pair of long-run effort distributions for scenarios with trust

parameter values χ equal to 0 and 0.3, 0.3 and 0.6, 0.6 and 0,9.

Table 2: Effect of changing the random network connectedness.

0.1 and 0.2 0.2 and 0.3 0.3 and 0.5

κ = 0 0.0419 0.2396 0.4666

κ = 0.3 0.6677 0.7794 0.5882

The table shows the effect of increasing average degree in the random net-

work. We compare the pairs of long-run effort distributions in random net-

works with probabilities of link formation p equal to 0.1 and 0.2, 0.2 and 0.3,

0.3 and 0.5. The Wilcoxon signed-rank tests are performed for the baseline

model (κ = 0) and the extended model with the information communication

(κ = 0.3).

8For the tests in Table 1 and further we consider the difference of two distributions to

be significant when p < 0.05.
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Table 3: Social influence effect in the star network.

χ 0 and 0.3 0.3 and 0.6 0.6 and 0.9

κ = 0 0.0001 0.0012 0.0178

κ = 0.3 0.0001 0.0021 0.0021

The table shows the effects of increasing social influence on the long-run

efforts in the baseline model (κ = 0) and the extended model with the

information communication (κ = 0.3) with star network.

We compare each pair of long-run effort distributions for scenarios with trust

parameter values χ equal to 0 and 0.3, 0.3 and 0.6, 0.6 and 0,9.

Table 4: Effect of network centralization.

χ = 0 χ = 0.3 χ = 0.6 χ = 0.9

κ = 0 0.2708 0.0007 0.0076 0.1978

κ = 0.3 0.0894 0.0003 0.0085 0.1506

The test result in the table indicate the significance of difference between

long-run effort distributions of random network with benchmark value of

link formation probability 0.2 and star network. The tests are performed

for the baseline model (κ = 0) and the extended model with information

communication (κ = 0.3). Alongside with the benchmark value of trust

parameter χ = 0.3 other levels of social influence are tested.
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Table 5: Effect of increasing segregation level in random networks.

1 and 2 2 and 3 3 and 4 4 and 5 5 and 6

κ = 0 0.9553 0.4441 0.2396 0.0119 0.6677

κ = 0.3 0.9553 0.8373 0.8082 0.0966 0.1850

The table shows Wilcoxon signed-rank tests results of comparing long-run

effort distributions of random networks with 1 component and 2 discon-

nected components, as well as random networks with 2 and 3, 3 and 4, 4

and 5, and 5 and 6 disconnected components. The average degree in all

networks is kept equal to the benchmark value.

Table 6: Effect of increasing segregation level in networks with star compo-

nents.

1 and 2 2 and 3 3 and 4 4 and 5 5 and 6

κ = 0 0.4441 0.0545 0.0239 0.5883 0.7795

κ = 0.3 0.0160 0.2396 0.0054 0.6407 0.6676

The table shows Wilcoxon signed-rank tests results of comparing long-run

effort distributions of a star network and a network with 2 disconnected

star components, networks with 2 and 3, 3 and 4, 4 and 5, and 5 and 6

disconnected star components correspondingly.

Appendix C. Robustness

In this appendix we show the robustness of our model with respect to changes

in size of the social network (n), randomly generated groups’ size (k), the
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Table 7: Comparing the effects of χ and κ.

χ or κ 0 and 0.3 0.3 and 0.6 0.6 and 0.9

κ = 0 0.0002 0.0001 0.0006

χ = 0 0.0048 0.0594 0.0117

κ = 0.3 0.0001 0.0001 0.0457

χ = 0.3 0.2396 0.9256 0.1850

The table shows the effects of increasing social influence (χ) and coefficient

of information communication (κ) on the long-run efforts when the κ and χ

are set to 0.3 correspondingly.

number of possible strategies, that is, the highest effort level (ē), and the

speed of beliefs’ updating (ξ). In particular, we show that the effect of the

increasing level of trust in beliefs of social contacts remains the same when

changing the benchmark parametrization.

Network Size

We compare the effect of increasing social influence in networks of sizes

n = 15 and n = 50 to the benchmark of size 30. We find that in smaller

network of size 15 increasing the value of parameter χ from 0.6 to 0.9 doesn’t

have a significant effect (Figure 139, Table 8). This results in a significant

difference between distributions of long run efforts for network sizes 15 and

30, the “cross-effect” of network size (Table 9, p = 0.016). In all remaining

cases the increase in value of trust parameter χ has a significant effect on

the long run effort choice, whereas the “cross-effect” of network size for a

9In this and further figures, the darker grey coloring of the plots is to represent the

benchmark model.
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given value of χ is insignificant.

Figure 13: Distribution of average efforts at t = 40 for χ = 0, 0.3, 0.6, 0.9,

for network sizes n = 15, n = 30 and n = 50.

Table 8: Effect of increasing social influence on long-run efforts in different

size networks.

χ 0 and 0.3 0.3 and 0.6 0.6 and 0.9

n = 15 0.0038 0.003 0.0545

n = 30 0.0002 0.0001 0.0006

n = 50 0.0001 0.0001 0.0018

The table shows the effect of increasing social influence on the long-run

efforts in the baseline model (κ = 0). We compare each pair of long-run

effort distributions for scenarios with trust parameter values χ equal to

0 and 0.3, 0.3 and 0.6, 0.6 and 0,9 when the size of the network is 15,

30(benchmark) and 50.
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Table 9: Cross-effect of the network size.

15 and 30 30 and 50

χ = 0 0.9256 0.1305

χ = 0.3 0.9256 0.1851

χ = 0.6 0.1213 0.5135

χ = 0.9 0.016 0.6407

The table shows the “cross-effect” of increasing network size for different

levels of social influence parameter χ.

Random Group Size

The positive effect of the increasing χ holds when changing the size of ran-

dom game groups k in the network of size 30. This result is illustrated in

Figure 14 and confirmed by test results in Table 10. We also find that the

increasing the number of people in randomly formed groups playing mini-

mum effort game decreases the efforts significantly. Thus, increase in k from

2 to 5, and from 6 to 10 leads to a significant decrease in long-run efforts

for all analyzed values of the trust parameter. Moreover, the negative effect

increasing the group size from 5 to 6 is significant given there is no social

influence in the network (Table 11).

Strategy Set

For a given set of strategies X = {1, ..., e} the positive effect of trust param-

eter on effort choice is independent from the value of e (Figure 15, Table

12). Despite of the difference in number of possible efforts and the higher

average effort, the long-run effort’ distribution doesn’t differ significantly
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Figure 14: Distribution of average efforts at t = 40 for random group sizes

k = 2, 5, 6, 10 and χ = 0, 0.3, 0.6, 0.9.

with absence of social influence. While this difference grows significantly

when the trust parameter χ is positive (Table 13). This can be explained

scaling up with the average of possible strategies.

Speed of Updating

Increasing the speed for updating old beliefs to new information affects the

long-run effort choice for any level of trust in the network. The negative

cross-effect of faster updating is significant (Table 15). Test results in Table

14 show that the positive effect from increasing social influence remains

significant when ξ = 0.1, and ξ = 0.3. While for faster belief updating

(ξ = 0.5, ξ = 0.6) increase in trust parameter from absence of social influence

χ = 0 to χ = 0.3 becomes insignificant.
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Table 10: Effect of increasing social influence on long-run efforts with dif-

ferent random group sizes.

χ 0 and 0.3 0.3 and 0.6 0.6 and 0.9

k = 2 0.0003 0.0001 0.0021

k = 5 0.0002 0.0001 0.0006

k = 6 0.0002 0.0001 0.0002

k = 10 0.0023 0.0001 0.0002

The table shows the effect of increasing social influence on the long-run

efforts in the baseline model (κ = 0). We compare each pair of long-run

effort distributions for scenarios with trust parameter values χ equal to 0

and 0.3, 0.3 and 0.6, 0.6 and 0,9 when the size of randomly generated groups

k are 2, 5, 6, and 10.

Table 11: Cross-effect of increasing the random group size.

2 and 5 5 and 6 6 and 10

χ = 0 0.0001 0.0458 0.0054

χ = 0.3 0.0001 0.0826 0.0023

χ = 0.6 0.0001 0.0646 0.0003

χ = 0.9 0.0001 0.4009 0.0239

The table shows the “cross-effect” of increasing random group size k for

different levels of social influence parameter χ.
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Figure 15: Distribution of average efforts at t = 40 with highest possible

effort and number of possible strategies e = 7, 15, 25 and χ = 0, 0.3, 0.6, 0.9.

Table 12: Effect of increasing social influence on long-run efforts with dif-

ferent values of e.

χ 0 and 0.3 0.3 and 0.6 0.6 and 0.9

e = 7 0.0239 0.0002 0.0043

e = 15 0.0002 0.0001 0.0006

e = 25 0.0001 0.0001 0.0006

The table shows the effect of increasing social influence on the long-run

efforts in the baseline model (κ = 0). We compare each pair of long-run

effort distributions for scenarios with trust parameter values χ equal to 0

and 0.3, 0.3 and 0.6, 0.6 and 0,9 when the highest possible effort is 7, 15,

and 25.
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Table 13: Cross-effect of changing the highest possible effort.

7 and 15 15 and 25

χ = 0 0.0826 0.2111

χ = 0.3 0.0068 0.0034

χ = 0.6 0.0002 0.0007

χ = 0.9 0.0002 0.0005

The table shows the “cross-effect” of increasing the highest possible effort e

for different levels of social influence parameter χ.

Figure 16: Distribution of average efforts at t = 40 for χ = 0, 0.3, 0.6, 0.9

with ξ = 0.1, ξ = 0.3 and ξ = 0.5.
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Table 14: Effect of increasing social influence on long-run efforts with dif-

ferent values of speed of updating ξ.

χ 0 and 0.3 0.3 and 0.6 0.6 and 0.9

ξ = 0.1 0.0002 0.0001 0.0006

ξ = 0.3 0.0066 0.0002 0.0076

ξ = 0.5 1 0.0029 0.0355

ξ = 0.6 1 0.012 0.0033

The table shows the effect of increasing social influence on the long-run

efforts in the baseline model (κ = 0). We compare each pair of long-run

effort distributions for scenarios with trust parameter values χ equal to 0

and 0.3, 0.3 and 0.6, 0.6 and 0.9 when the speed of belief updating ξ is 0.1,

0.3, 0.5, 0.6.

Table 15: Cross-effect of increasing speed of belief updating.

0.1 and 0.3 0.3 and 0.5

χ = 0 0.0458 0.0144

χ = 0.3 0.0004 0.0048

χ = 0.6 0.0001 0.0012

χ = 0.9 0.0001 0.0004

The table shows the “cross-effect” of increasing the speed of belief updating

ξ for different levels of social influence parameter χ.
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