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A note on stochastic dominance, uniform integrability
and lattice properties

Max Nendel

ABSTRACT

In this work, we discuss completeness for the lattice orders of first and second order stochastic
dominance. The main results state that both first- and second-order stochastic dominance induce
Dedekind super complete lattices, that is, lattices in which every bounded nonempty subset has a
countable subset with identical least upper bound and greatest lower bound. Moreover, we show
that, if a suitably bounded set of probability measures is directed (for example, a lattice), then the
supremum and infimum with respect to first-order or second-order stochastic dominance can be
approximated by sequences in the weak topology or in the Wasserstein-1 topology, respectively.
As a consequence, we are able to prove that a sublattice of probability measures is complete with
respect to first-order stochastic dominance or second-order stochastic dominance and increasing
convex order if and only if it is compact in the weak topology or in the Wasserstein-1 topology,
respectively. This complements a set of characterizations of tightness and uniform integrability,
which are discussed in a preliminary section.

1. Introduction

In this work, we discuss completeness for lattice orders arising from first- and second-order
stochastic dominance (see, for instance, Miiller and Stoyan [18] or Shaked and Shanthikumar
[19]), and their relation to tightness and uniform integrability, respectively. Given a lattice L,
it is a well-known result, due to Birkhoff [4, Section X.12, Theorem X.20] and Frink [9], that L
is complete, that is, every nonempty subset of L has a least upper bound and a greatest lower
bound, if and only if L is compact in the interval topology. The latter is the smallest topology
on L such that all closed intervals of the form

(—o00,a] :={z € L|z<a} and [a,00):={ze€Ll|z>a}, fora€cl,

are closed. Due to its definition, the interval topology or, more precisely, open sets in the
interval topology are usually not easy to describe. Moreover, in general, the interval topology
is not even a Hausdorff topology. We refer to Baer [2] for a characterization of lattices with
Hausdorff interval topologies. Stochastic dominance or convex orders are present in many
applications in microeconomics and decision theory (cf. Levy [14]), as well as mathematics, for
example, martingale optimal transport (cf. Strassen [20]) and, recently, submodular mean
field games (cf. Dianetti et al. [7]). It is therefore desirable to obtain a more tractable
characterization of complete (with respect to stochastic dominance) lattices of probability
measures than the one in terms of compactness in the interval topology. Two of the main results
of this paper are a characterization of complete lattices with respect to first- and second-order
stochastic dominance in terms of compactness in the weak topology and in the Wasserstein-1
topology, respectively (Theorems 3.5 and 3.12).
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Dianetti et al. [7] propose a lattice-theoretical approach to mean field games using Tarski’s
fixed point theorem. The crucial step in their analysis is to show that an appropriately chosen
lattice L of flows of probability measures is complete. Moreover, the approximation of suprema
and infima is of fundamental importance in their analysis. Motivated by this application, in
Section 3, for a fixed o-finite measure space (S,S,7), we consider the sets L°(S, S, m; P(R))
and L°(S,S,m; P1(R)) of all equivalence classes of S-B(P(R)) and S-B(P;(R)) measurable
flows (u1)tes of probability measures, respectively, and address the Dedekind completeness as
well as the approximation of suprema and infima for the latter. Here, P(R) is the set of all
probability measures on the Borel o-algebra of R and P;(R) is the subset of all probability
measures with finite first moment, endowed with the lattice orders of first- and second-order
stochastic dominance as well as the Borel o-algebras B(P(R)) and B(P;(R)) with respect
to the weak topology on P(R) and the Wasserstein-1 topology on P;(R), respectively. Note
that, although first- and second-order stochastic dominance induce lattice structures on P(R)
and Py (R), they do not induce a lattice order on P(R?) and Py (R?) for d > 1, respectively (cf.
Kamae et al. [11] and Miiller and Scarsini [17]). Kertz and Résler [12] proved that the lattices
P(R) and P;(R) are Dedekind complete, that is, every bounded nonempty subset has a least
upper bound and a greatest lower bound. Miiller [16] discusses closure properties of second-
order stochastic dominance with respect to the Wasserstein-1 topology, and shows that upper
interval bounds can be approximated in the Wasserstein-1 sense by a simple construction of
nondecreasing sequences of distributions, see [16, Theorem 4.3]. In the present paper, we show
that L°(S,S,m;P(R)) and appropriate sublattices of L°(S,S,m;P;(R)) are Dedekind super
complete, that is, every bounded nonempty subset has a countable subset with identical least
upper bound and greatest lower bound (Theorem 3.2 and Theorem 3.8). We further prove
that, for directed and (suitably) bounded sets of probability measures, the supremum and
infimum with respect to first-order or second-order stochastic dominance can be approximated
by monotone sequences in the weak topology or in the Wasserstein-1 topology, respectively.
The proof relies on an abstract lemma (Lemma A.3) in Appendix A, which gives a sufficient
and necessary condition for the Dedekind super completeness of lattices. The proof of the
latter is an abstract version of the existence proof of the essential supremum for families
of random variables (see, for example, Follmer and Schied [8, Theorem A.32]). Choosing S
to be a singleton with 7(S) > 0, we obtain the Dedekind super completeness of P(R) and
P1(R), endowed with first- and second-order stochastic dominance, as well as the approximation
of suprema/infima in the weak topology and the Wasserstein-1 topology, respectively (see
Corollary 3.3 and Proposition 3.9).

In Section 2, we discuss some preliminary results on tightness and uniform integrability.
Chandra [6] gives a de La Vallée Poussin-type characterization for tightness and uniform
integrability in terms of a function t: [0,00) — [0,00) with a certain behavior at infinity,
see also Hu and Rosalsky [10]. Inspired by these two works, we relate properties of the
function ¢, such as strict monotonicity and (strict) convexity, to integrability conditions on
the set of distributions. In particular, we answer two open questions from [6], and derive a
perturbation result for families of uniformly integrable (u.i.) random variables in terms of
a strictly convex transformation (Lemma 2.4 and Corollary 2.5). More precisely, we show
that, for a family H of u.i. random variables on a probability space (2, F,P), there exists a
strictly convex nondecreasing function ¢ : [0, 00) — [0, 00) with @ — 00 as § — 00, such that
{¥(|X])| X € H} is again u.i. Leskeld and Vhiola [13] obtained several characterizations of
tightness and uniform integrability in terms of first- and second-order stochastic dominance
for measures on the positive half line. We extend the results by Leskeld and Vhiola [13] to R
and combine them with the results from Sections 2 and 3 in order to obtain a characterization
of tightness and uniform integrability in terms of integrability conditions for a function ¢ with
certain properties and boundedness conditions with respect to first- and second-order stochastic
dominance, respectively (Lemmas 3.4 and 3.11).
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Structure of the paper: The paper is organized as follows. In Section 2, we derive some
preliminary results on tightness and uniform integrability, which we could not find in the
literature in this form. Section 3 is dedicated to the completeness of lattices of (flows of)
probability measures ordered by first- and second-order stochastic dominance. The main results
are Theorems 3.2, 3.8, 3.5 and 3.12. In Appendix A, we first give some lattice-theoretical
definitions (Definition A.1 and Definition A.2), and then derive an abstract auxiliary result
(Lemma A.3) that helps to determine, when a lattice is Dedekind super complete, and forms
the basis for the proofs in Section 3. The results from Section 2 are proved in Appendix B.

2. Some preliminary remarks on tightness and uniform integrability

Let Ry :=[0,00) and B(R.) denote the Borel o-algebra on R . We first concentrate on the set
M(R) of all (possibly nonfinite) measures u: B(Ry) — [0,00]. We start with the following
characterization of tightness, which is sort of a folk theorem, see, for example, [6, Lemma 2.1;
13, Remark 7; 15, Lemma D.5.3]. However, in this form, we could not find it in the literature,
which is why we provide a proof in Appendix B.

LEMMA 2.1. Let K C M(R.). Then, the following statements are equivalent:

(i) K is tight, that is, sup,c g v((s,00)) = 0 as s — 00;
(ii) there exists a nondecreasing function : [0,00) — [0,00) with ¥(0) =0, ¢(s) = oo as
5 = oo and

sup/ P(s)dv(s) < oo.
veK Jo

The function v in (ii) can be chosen to be continuous. The function ¢ can be chosen to be
convex if and only if

sup/ (s —M)"dv(s) < oo or, equivalently, if sup/ sdv(s) < oo (2.1)
vek Jo veK JMm

for some M > 0. Additionally, the function 1 can be chosen to be strictly increasing if and
only if

sup v((s,00)) < oo for all s > 0. (2.2)
veK

Lemma 2.1 answers an open question by an anonymous referee concerning [6, Lemma 2.1],
namely if the function ¢ in (ii) can be chosen to be convex. In the previous lemma, we have
seen that ¢ can be chosen to be convex if and only if (2.1) is satisfied for some M > 0. In
the special case, where K is a set of probability measures, (2.1) is equivalent to the uniform
boundedness of the first moments of the elements of K, that is,

oo
sup/ sdr(s) < oo.
veK Jo

DEFINITION 2.2. Let K C M(Ry). Then, we say that a nondecreasing map ¢: [0,00) —
[0,00) is ui. for K if

sup/ o(s)dr(s) = 0 as M — oo.
veEK JM
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We would like to mention at this point that the name ‘uniform integrability’ is actually
slightly misleading, since, for sets of nonfinite measures, uniform integrability does not imply
integrability, not even for singletons.

REMARK 2.3. Let ¢: [0,00) — [0,00) be nondecreasing. Then, the uniform integrability of
o for a set K C M(R,) can be divided into three cases.

(i) ¢(s) =0 for all s > 0. Then, ¢ is always u.i. for K.
(ii) ¢ is bounded and ¢(s) # 0 for some s > 0. Then, ¢ is u.i. for K if and only if K is
tight.
(iii) ¢(s) = 00 as s = oo. Then, ¢ is ui. for K if and only if the identity [0,00) —
[0,00), s+ s is w.i. for the set {pop 1 |ue K}.

Hence, except in the trivial case (i), the question of uniform integrability of ¢ can be reduced
to the question of tightness, which has already been discussed in Lemma 2.1 or uniform
integrability of the identity. Therefore, in the next lemma, which is a generalized version of the
de La Vallée Poussin Lemma (see also [6]), we will just discuss the uniform integrability of the
identity. The proof is a direct consequence of Lemma 2.1, and is also relegated to Appendix B.

0

In the following, we use the convention 3 := 0.

LEMMA 2.4. Let K C M(Ry). Then, the following statements are equivalent:

(i) the identity [0,00) — [0,00), s+ s is u.i. for K;
(ii) there exists a nondecreasing function : [0,00) — [0,00) with ¥(0) =0 such that
[0,00) = [0,00), s+ LGRS nondecreasing, @ — 00 as s — oo and

S

sup/O P(s)dv(s) < oo.

veK

The function v in (ii) can be chosen to be continuously differentiable, convex and u.i. for K.
Additionally, the function ¢ can be chosen to be strictly convex (and thus strictly increasing)
if and only if (2.2) is satisfied.

Note that in the previous lemma, the function 1 in (ii) can be chosen to be strictly convex and
u.i. if K is, for example, a set of probability measures. This is actually quite remarkable, since it
shows that uniform integrability is preserved under a ‘small’ perturbation in terms of a strictly
convex transformation 1 with @ — 00 as s — 00. It can thus be seen as a perturbation result
for families of u.i. functions and answers an open question by an anonymous referee concerning
[6, Lemma 1.2]. In view of the standard application of the de La Vallée Poussin Lemma, where
the function v is chosen to be 1(s) = sP for some suitable p > 1, this perturbation result is
quite natural, since, in this case, any perturbation of the form s+ s? for ¢ € (1,p) would

remain u.i.

COROLLARY 2.5. Let H be a set of random variables or random vectors (not necessarily
of the same dimension) on a probability space (2, F,P) and p € [0,00). Then, the following
statements are equivalent.

(i) H is u.i., that is,

sup/ | X|dP — 0 ass— oo.
XeH J{|X|>s}
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(ii) There exists a nondecreasing function 1: [0,00) — [0, 00) with ¥(0) = 0, 1/’( )y 50 as
s — 0o and

sup/w(|X|)d}P’<oo.

XeH JQ

The function 1 in (ii) can be chosen to be continuously differentiable, strictly convex and in
such a way that {¢(|X|)| X € H} is again u.1.

Proof. This follows from the previous results by considering K := {Po |X|™'| X € H}. O

3. Completeness

In this section, we discuss the completeness of lattice orders arising from first- and second-
order stochastic dominance. Throughout this section, let B(R) denote the Borel o-algebra on
R, P(R) denote the set of all probability measures on B(R) and P;(R) denote the set of all
probability measures on B(R) with finite first moment, that is, all probability measures p on

B(R) with
/ |z du(x) < oo
R

3.1. First-order stochastic dominance

Throughout this section, we will identify a distribution p € P(R) by its survival function puy,
that is, we identify

p(s) = po(s) = p((s, 00))

for all s € R. On P(R), we consider the partial-order < arising from first -order stochastic
dominance, given by

u<s v if and only if po(s) < vo(s) for all s € R.
Recall that, for u,v € P(R), u <4 v if and only if

/h ) dp(z /h )dv(x

for all nondecreasing functions h: R — R. For a detailed discussion on the properties of the
partial-order <y, we refer to [19, Section 1.A].

REMARK 3.1. (a) By identifying p with its survival function pg, the set P(R) coincides with
the set of all nonincreasing right-continuous functions F: R — [0,1] with lims_, . F(s) =1
and lim,_, o, F'(s) = 0. In particular, the partial-order <y induces a lattice structure on P(R)
via

(L Vst v)(8) = po(s) Vip(s) and (uAst v)(s) := po(s) Avg(s) forall s € R.

Further, we would like to recall that the weak topology on P(R) is metrizable and that the weak
convergence coincides with the pointwise convergence of survival functions at every continuity
point, that is, ™ — pu weakly as n — oo if and only if

pi(s) = po(s) asn — oo for every continuity point s € R of pyg.

Therefore, the weak convergence behaves well with the pointwise lattice operations Vg
and Ag. More precisely, the maps (u,v)— pu Vs v and (u,v) — p Ay v are continuous
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P(R) x P(R) — P(R). Moreover, the weak topology is finer than the interval topology, since,
by the previous argumentation, every closed interval is weakly closed.

(b) Recall that a nonincreasing function R — R is right-continuous if and only if it is lower
semicontinuous (Isc). Hence, for a sequence (u™),eny € P(R), which is bounded above, the
supremum sup,,cy 4" with respect to <; exists, and is exactly the pointwise supremum of the
survival functions (u)nen-

(c) For a nonincreasing function F': R — R, we define its lsc-envelope F: R — R by

F.(s):=supF(s+9) forseR.
6>0

Note that F(s) > F.(s) > F(s+¢) for all s € R and ¢ > 0. That is, F differs from F only at
discontinuity points of F'. Intuitively speaking, F) is the right-continuous version of F. For a
sequence (u")nen € P(R), which is bounded below, the infimum inf,,cy p™ with respect to <g
exists, and is given by the Isc-envelope of the pointwise infimum of the survival functions
(14§ )nen. That is, one has to modify the pointwise infimum at all its discontinuity points in
order to be right-continuous.

(d) A combination of the previous remarks, leads to the following insight: Every bounded and
nondecreasing or nonincreasing sequence (u"),eny C P(R) converges weakly to its supremum
or infimum with respect to <y, respectively.

Let (S, S, ) be a o-finite measure space. We denote the Borel o-algebra of the weak topology
by B(P(R)) and the lattice of all equivalence classes of S-B(P(R))-measurable functions
S — P(R) by L% =L°(PR))=L° (S S,m;P(R)). An arbitrary element g of L2 will be
denoted in the form p = (pu;)es. On LY we consider the order relation <o, given by o <po v
if and only if u; <g vy for m-almost all t € S.

THEOREM 3.2. (a) The lattice LY, is Dedekind super complete (cf. Definition A.1).

(b) If M C LY is a nonempty set, which is bounded above or below and directed upward or
downward (cf. Definition A.1), then there exists a sequence (u")neny C M with p™ <po pntt
for all n € N and p™ — sup M weakly m-almost everywhere as n — oo or p" >0 w1t for all
n € N and p" — inf M weakly m-almost everywhere as n — 0o, respectively.

Proof. Since every o-finite measure can be transformed into a finite measure without
changing the null-sets, we may without loss of generality assume that 7 is finite. By Remark 3.1,
LY is Dedekind o-complete. Let ® be the cumulative distribution function of the standard
normal distribution, that is,

O(x) = eV /2 dy forall z € R.

1 :
v 2 /_oc
Alternatively, one could consider, for example, ® =arctan. The map S —R, t+—

Jg ®(2) dpi () is S-B(R)-measurable for every p € LY, since ® € C,(R) induces a continuous
(Wlth respect to the weak topology) linear functional P(R) — R. Hence,

F: LY =R, Mi—)// x) dpg(z) dr(t)

is well defined and strictly increasing (cf. Definition A.2), since ® is strictly increasing, see,
for example, [19, Theorem 1.A.8]. The assertions now follow from Lemma A.3 with R =R;
Remarks A.4 and 3.1(d). O

In the case, where S is a singleton and 7(S) > 0, we obtain the following corollary.
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COROLLARY 3.3. (a) The lattice P(R), endowed with the lattice-order <, is Dedekind
super complete.

(b) If M C P(R) is a nonempty set, which is bounded above or below and directed upward
or downward, then there exists a sequence (u")n,en C M with p" <g p"*! for all n € N and
"™ — sup M weakly asn — oo or u™ >4 u" ! for allm € N and p™ — inf M weakly asn — oo,
respectively.

We now turn our focus on characterizing the complete sublattices of P(R). We start with
the following lemma, which gives two more characterizations of tightness. It is basically a
combination and generalization of [13, Proposition 1] and Lemma 2.1.

LEMMA 3.4. Let K C P(R). Then, the following statements are equivalent.

(i) K is tight, that is, sup,,¢ e p1([—s, s]®) = 0 as s — oo.
(ii) K is <g-bounded, that is, there exist p, i € P(R) with u <g p <gt @ for all p € K.
(iii) Every nonempty subset of K has a least upper bound and a greatest lower bound.
(iv) There exists a nondecreasing function ¢ : [0,00) — [0, 00) with ¥(0) = 0, ¥(s) — oo as
s — oo and

sup / () dpa(z) < oo.

neK

The function 1 in (iv) can be chosen to be continuous and strictly increasing. Moreover, the
function v can be chosen to be convex if and only if

sup/ |z du(z) < oo.
neK JR

Proof. The equivalence of (i) and (iv) has been discussed in the previous section. By
Corollary 3.3, (ii) and (iii) are equivalent. If K is <g-bounded, then

sup p((s,00)) < fp(s) >0 as s — oo
pnekK

and

sup p((—o0,s)) =1 — inf p([s,0)) <1—p (s) >0 ass— —oo,
peK HEK =0

which shows that K is tight. It remains to show that (i) implies (ii). We assume that K is
tight. Then,

inf po(s) >1 ass— —oco and sup pe(s) =0 ass— oo. (3.1)
peK neK

We define 1, 7i5: R — [0, 1] by

Ho(s) = sup inf pg(s+3) and Tg(s) := sup po(s)
5>0 HEK neK

for s € R. Then, K and 7i, are nonincreasing and right-continuous functions, cf. Remark 3.1,
and, by (3.1), lims—— F'(s) = 1 and lim, .o F'(s) = 0 for F' = p, J1y. This shows that p and
Tip give rise to two probability measures p, i € P(R) with p <q p < 7 for all p € K. O

THEOREM 3.5. Let K be a sublattice of P(R). Then, the following statements are
equivalent:

(ii) K is weakly compact.
(i) K is complete with respect to the lattice-order <.
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Proof. Since, by Remark 3.1(a), the weak topology is finer than the interval topology, it
follows that every weakly compact subset of P(R) is compact in the interval topology, and
therefore complete. Now, assume that K is complete. We first show that K is weakly closed.
Let (u")neny € P(R) with " — p € P(R) weakly as n — oo. Then,

p = inf sup u* € K,
neN k>n

since K is complete. Here, we used the fact that the weak convergence is equivalent to the
pointwise convergence at every continuity point. Since the weak topology is metrizable, it
follows that K is weakly closed. By the previous lemma, K is tight, since it is complete and
thus <s-bounded. Since K is weakly closed, it is therefore weakly compact by Prokhorov’s
theorem (see, for example, [3, Theorems 6.1 and 6.2; 5, Theorem 8.6.2]). g

3.2. Second-order stochastic dominance and increasing convex order

In this section, we identify a probability measure p € P;(R) via its (negative) integrated
distribution function p; _, which is given by

p1,—(s) = /R(x — )" du(x) = — /_S po(u)du  for all s € R,

oo

and via its integrated survival function p; 4, which is given by

p1+(s) = /(x —s)Tdu(x) = /OC po(u) du  for all s € R.
R s

On P;1(R), we then consider the partial order arising from second -order stochastic dominance
(also called increasing concave order) <, given by

W <icy v ifand only if pq,_(s) <wvy,_(s) forall s eR,
and the increasing convex -order <i.x, given by

p<iex v if and only if pq 4(s) < vy 41(s) forall s € R.
Recall that, for u,v € P1(R), g <iev ¥ (10 Sicx V) if and only if

/Rh(:v) du(x) </h(m) dv(x) (3.2)

R
for all nondecreasing concave (convex) functions h: R — R. In particular, p < v implies g <jev
v and p <jex V. If (3.2) holds for all convex functions h: R — R, we write pu <cx v (convex
order). Note that u <. v if and only if v <jey p and p <iex v. For p € P1(R), let p/ € P1(R)
denote the probability measure, given by

W ((—00,s]) := pu([—s,00)) forall s € R.

That is, for a random variable X on a probability space (2, F,P) with distribution y, g’ is the
distribution of —X. Then, for all u,v € P;(R),

i <iex v if and only if ' >y V. (3.3)

For a detailed discussion on the properties of the partial orders <j., and <jcx, we refer to
[19, Section 4.A]. In this subsection, we investigate the interplay between the partial orders
Siev and Kiex and the Wasserstein-1 topology on the Wasserstein-1 space P (R). For a definition
of the Wasserstein-1 metric and a detailed discussion on its properties, we refer to [1, 21].

REMARK 3.6. (a) Note that by identifying p via its integrated distribution (survival)
function gy — (p1,4), P1(R) coincides with the set of all nonincreasing concave (convex)
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functions ¢: R — R with ¢(s) + s —m — 0 as s — oo (s = —0o0) for some constant m € R and
©w(s) = 0as s = —oo (s — 00). This follows from the observation that, for a concave (convex)
function v, ¥(s) — 0 as s — +oo implies that ¢'(s) — 0 as s — oo, where ¢’ denotes the
right-continuous version of the derivative of t. Therefore, —¢’ is the distribution (survival)
function sy of a probability measure p € Py (R) with [, 2 dp(x) = m. In particular, the partial
orders <.y and <jex induce lattice structures on P;(R) via

(1 Mo 1)(5) = i1, (8) A v (3), (1 Viex W)(8) = pin s (5) V w4 (5)
and
(1 Viev v)(s) :=inf{As + a|X\,a € R with M +a > p1,_(t) Viq,—(¢t) for all t € R},
(1 Niex V) (8) :==sup{As + a| X, a € R with M +a < p1 4 (¢) A vy 4 (t) for all t € R}

for all s € R. That is, the minimum (maximum) of two distributions is the pointwise minimum
(maximum) of their integrated distribution (survival) functions and the maximum (minimum)
of two distributions is the upper concave (lower convex) envelope of the pointwise maximum
(minimum) of their integrated survival functions. Recall that, for a function F': R — [0, c0),
its upper concave envelope F* and its lower convex envelope F are given by

F*(s) :=inf{As+a| A a € Rwith At+a > F(t) for all t € R} and
F.(s) :=sup{As+a|A a € R with Mt +a < F(t) for all t € R} for s € R.

Since the convergence in the Wasserstein-1 topology implies the pointwise convergence of the
integrated distribution (survival) functions (see, for example, [21, Theorem 6.9]), the lattice
operations (p, V) — p Viex v and (u,v) — p Aiex ¥ are continuous Pj(R) x Pi(R) — Py (R).
Moreover, this implies that the Wasserstein-1 topology is finer than both interval topologies,
since closed intervals are closed with respect to the Wasserstein-1 metric.

(b) Let (u™)nen € P1(R) be a sequence, which is bounded above with respect to <iey (Kicx),
and let

V"= pt Viey - Viey (1/” = p! Viex -+ Viex u") for all n € N.

Then, the supremum of (u"),eny with respect to <icv (<iex) exists, and its integrated
distribution (survival) function is exactly the pointwise limit, as n — oo, of the integrated
distribution (survival) functions of (v¥™),en.

(¢) Let (u™)nen € P1(R) be a sequence, which is bounded below with respect to <icy (Kiex),
and let

V"=t Aoy - Aoy (1 (1/” = 1! Ajex -+ Aex u") for all n € N.

Then, the infimum of (u"),en with respect to <jev (Kiex) exists, and its integrated distribution
(survival) function is exactly the pointwise limit, as n — oo, of the integrated distribution
(survival) functions of (v™)nen.

Before we state the first main result of this subsection, we briefly discuss some connections
between uniform integrability, and boundedness with respect to <icy and <jex.

REMARK 3.7. (a) Let K C P1(R) and p,m € Pi(R) with p <icy p <iex @ for all p e K.
Then, the identity is u.i. for K. In fact,

o0 o0 o0
sup/ :vd,u(ac)<sup2/ :E—sd,u(x)<2/ x—sdi(z) >0 ass— o0
peK J2s pneK s s
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and

2s s s
sup/ —:vd,u(ac)<sup2/ s—xdu(x)é?/ s—xdu(z) -0 ass— —oo.

pneK pneK IS [eS)

(b) Let (1")nen C Pr(R) with g <jev o <iex @ and p™ <jeu p” L (" ey L) for all
n € N. Then, by part a), (4")nen is wi. Therefore, every subsequence of (u"),cy has a
Wasserstein-1 convergent subsequence (cf. [1, Proposition 7.1.5; 21, Theorem 6.9]). Let
1 € P1(R) denote the least upper bound of (u™),en with respect to <icy (Siex), (V™)nen
be a convergent subsequence of (u"),eny and v :=lim, . ™. Then, v"™ <jcv gt (V" Kicx 1)
and therefore, v <jov 1t (V <iex 1) by Remark 3.6 a). On the other hand, for all n € N, there
exists some N € N with v* >, u" (VF >e p™) for all k > N. Therefore, by Remark 3.6(a),
V Ziev 1" (V Ziex p") for all n € N, that is, v Ziey ft (¥ Zicx p). This shows that v = p. Recall
that a sequence converges if and only if every subsequence has a convergent subsequence with
the same limit. We have therefore shown that (u™),en converges to its supremum with respect
t0 Siev (Siex) in the Wasserstein-1 topology.

(c) Note that the <;c,-boundedness from below (<jcx-boundedness from above) in parts (a)
and (b) cannot be replaced by <jex-boundedness from below (<jcy-boundedness from above).
Recall that every set K C P1(R) with sup,c [; [2[du(z) < oo is <jey-bounded from above
(Sicx-bounded from below). This follows from the fact that, by Jensen’s inequality, pu <icy
ba (0q Siex p) for all a € R and p € Pi(R) with a > [, xdp(z) (a < [, zdu(z)). However,
the uniform boundedness of first moments is not sufficient in order to achieve uniform
integrability We would further like to point out that p <icv o (¢ <icx @) for all p € K and
Jezdu(z) = [y xdv(z) for all pu,v € K implies p <iex p (B iy p) for g€ K and thus the
uniform integrability of the identity for K.

We consider a o-finite measure space (5, S, 7). We denote the Borel o-algebra with respect
to the Wasserstein-1 topology by B(P1(R)) and the lattice of all equivalence classes of S-
B(P;(R))-measurable functions S — P;(R) by L°(P;(R)) = L°(S,S,m;P1(R)). An arbitrary
element p of LO(P;(R)) will again be denoted in the form u = (u¢)ies. On LO(Pl(R)) we
consider the order relations < Lo and < Lo given by u < Lo v if and only if pu <iey 14 for
m-almost all t € S and p < Lo v 9f and only if e Siex vy for m- “almost all t € S, respectively.

THEOREM 3.8. (a) For every fixed v € L°(Pi(R)), the lattice {u € L°(P1(R))|u <iex
v (1 Ziev v)}, together with the order <po (<po ), is Dedekind super complete (cf.
Definition A.1). 4 '

(b) Let M C L°(P1(R)) be nonempty, <ro -bounded below and <o -bounded above. If
M is directed upward/downward (cf. Definition A. 1) with respect to <po (<o ), then there
exists a nondecreasing/nonincreasing sequence (u")peny C M with p" 5 W m-almost every-
where in the Wasserstein-1 topology asn — oo, where p € L°(P;(R)) is the supremum/infimum
of M with respect to <o (<po ).

Proof. Since every o-finite measure can be transformed into a finite measure without
changing the null sets, we may without loss of generality assume that 7 is finite. By Remarks 3.6
and 3.7, the set {pn € LO(P1(R)) | <po v (=10 v)} together with <;0 (<o ) is Dedekind
o-complete. Let ®: R — R be deﬁnedml);y - - -

OF () == — /(x - s)ie_52/2 ds for all z € R.
R
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The map S — R, t — [, ®*(z)du(z) is S-B(R)-measurable for every p € L°(P1(R)), since
®* is 1-Lipschitz and thus induces a continuous (with respect to the Wasserstein-1 topology)
linear functional P;(R) — R. Hence,

FELPR) SR oo [ 5@ du(a) dr(r)

is well defined. Moreover, F~ (F1) is strictly increasing with respect to <icy (Kiex), cf.
Definition A.2, since ® is nondecreasing and strictly concave (convex), see, for example, [19,
Theorem 4.A.49]. The assertions now follow from Lemma A.3, and Remarks A.4 and
3.7(b). O

Again, in the case, where S is a singleton and w(S) >0, we obtain the following
proposition.

PROPOSITION 3.9. (a) The lattice P1(R), endowed with the lattice-order <icy (Sicx), IS
Dedekind super complete.

(b) Let M C Pi1(R) be nonempty, <j.,-bounded below and <;.x-bounded above. If M
is directed upward/downward (cf. Definition A.1) with respect to <icv (<icx), then there
exists a nondecreasing/nonincreasing sequence (1™ )neny C M with u'™ — p in the Wasserstein-
1 topology as n. — oo, where i € P1(R) is the supremum/infimum of M with respect to <icy
(gicx)-

Proof. By Remark 3.6(b) and (c), P1(R) together with <jcy (Kicx) is Dedekind o-complete.
The assertions now follow from the same arguments that were employed in the proof of
Theorem 3.8. U

REMARK 3.10. For fixed m € R, let Pi,,(R) denote the set of all p e Pi(R) with
fod;L(x) =m. Then, v <y p if and only if p <jex v if and only if p < v for all pu,v €
P1.m(R). By Theorem 3.8, the lattices L(P;,,(R)), defined in a similar way as L°(P;(R))
and equipped with the order <o :=< Lo, as well as Py, (R) together with the order
relation <¢x are then Dedekind super complete. Moreover, the supremum/infimum of any
bounded set M, which is directed upward/downward can be approximated in the (w-almost
everywhere) Wasserstein-1 sense by a nondecreasing/nonincreasing sequence in M.

We now turn our focus on characterizing the complete sublattices of P; (R). We start with the
following lemma, which is a combination and generalization of [13, Theorem 1] and Lemma 2.4.
It complements the characterizations of uniform integrability from Section 2 by two more
equivalences.

LEMMA 3.11. Let K C Pi(R). Then, the following statements are equivalent.

(i) The identity is u.i. for K, that is, sup,,c i [ 1[—s.sc(z)|2|dp(z) = 0 as s — oco.
(ii) There exist p, i € P1(R) with p <icy p <iex @ for all p € K.
(iii) Every nonempty subset of K has a least upper bound and a greatest lower bound with
respect to <icy and <iex-
(iv) There exists a nondecreasing function : [0, 00) — [0, 00) with ¥(0) = 0, @ — 00 as
s — oo and

wgéwmmmm<w.

neK
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In this case, for p = infi., K and @i = sup,, K,

/R 2du(e) = inf /R rdu(z) and /]R () = sup /R 2 du(z). (3.4)

Moreover, the function ¥ in (iv) can be chosen to be continuously differentiable, strictly convex
and u.i. for K.

Proof. The equivalence of (i) and (iv) has been discussed in Section 2. By Proposition 3.9,
(ii) and (iii) are equivalent. Moreover, (ii) implies (i) by Remark 3.7. It remains to show that
(i) implies (ii). Assume that K is u.i., and define By g R— [0, 00) by

Ky

(s):= inf i (s) and 7, (s) = sup o1 4 (s)
neK pneK

for s € R. Then, _ is nonincreasing and concave, and 71, , is nonincreasing and convex.

Since the 1dent1ty is w.i. for K, it follows that

lim g, (s)+s= mf rdp(z) and  lim 7y ,(s) +s = sup /Rxdu(x).

§—00 neEK Jp §——00 HEK

Moreover, lim,—, oo pt, (s) = 0 and limy_,oc 7ty 4 (s) = 0, which shows that ¢ and 77, | give

rise to two probability measures p, i € P1(R) with (3.4). By definition of u and 7, it follows
that p = infiey K and 7t = sup;., K. ]

Note that the previous lemma is quite interesting in view of Lemma 3.4. A combination of
these two results yields that uniform integrability of the identity implies tightness and thus <g-
boundedness, which in turn implies <;.,-boundedness and <jc.x-boundedness and thus uniform
integrability. At first glance, this gives the impression that tightness is equivalent to uniform
integrability of the identity and thus seems to be a contradiction. However, the <g-bounds of
tight sets, for which the identity is not u.i., do not lie in P;(R), and thus the two lemmas are
not contradictory. We are now ready to state the second main result of this subsection.

THEOREM 3.12. Let K be a sublattice of P1(R). Then, the following statements are
equivalent:

(i) K is compact in the Wasserstein-1 topology;
(ii) K and K’ := {p/' | € K} are complete with respect to the lattice-order <icy (Sicx);
(iii) K is complete with respect to the lattice orders <jcy and <icx.

Proof. If K = (), the statement is trivial. Therefore, we assume that K is nonempty. Since
the Wasserstein-1 topology is finer than the interval topologies of <jcy and <jcy, it follows that
every Wasserstein-1 compact subset of Py (R) is compact in both interval topologies and thus
complete with respect to <ijcy and <jcx. On the other hand, if K is compact in the interval
topologies of <icy (Kiex), it is closed in the Wasserstein-1 topology. In fact, let (u")nen C P1(R)
with g — p € P1(R) as n — oo with respect to the Wasserstein-1 metric. Then,

H1,— = sup gggul €K (u1,+ = i,réfN 21;1; py € K),
which shows that u € K, since K is complete. Here, we used the fact that the Wasserstein-
1 convergence implies the pointwise convergence of the integrated distribution (survival)
functions. This shows that K is Wasserstein-1 closed. Moreover, K is <jc.,-bounded and
Sicx-bounded as it is complete with respect to both partial orders. By Lemma 3.11 (or
Remark 3.7(a)), it follows that K is u.i., and therefore Wasserstein-1 compact, as it is closed in
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the Wasserstein-1 topology (cf. [1, Proposition 7.1.5; 21, Theorem 6.9]). We have thus shown
that (i) and (iii) are equivalent. The equivalence of (ii) and (iii) follows from (3.3). O

The following corollary is a direct consequence of Theorem 3.12 and Remark 3.7(c).

COROLLARY 3.13. Let K be a sublattice of Pi(R) with [, xdu(x) = [, zdv(x) for all
u,v € K. Then, K is complete with respect to <. if and only if K is compact in the
Wasserstein-1 topology.

Appendix A. An auxiliary result

In this section, we prove an auxiliary result that helps to determine when a Dedekind o-
complete lattice is Dedekind super complete. We start with the following definitions:

DEFINITION A.1. Let L be a lattice, that is, a partially ordered set (poset) in which every
finite nonempty subset has a least upper bound and a greatest lower bound.

(a) We say that L is Dedekind o-complete if every countable nonempty subset, that is
bounded above or below, has a least upper bound or a greatest lower bound, respectively. We
say that L is Dedekind complete if every nonempty subset, that is bounded above or below,
has a least upper bound or a greatest lower bound, respectively. We say that L is Dedekind
super complete if every nonempty subset, that is bounded above or below, has a countable
subset with the same least upper bound or greatest lower bound, respectively. We say that L
is complete if every nonempty subset of L has the least upper bound and the greatest lower
bound.

(b) We say that a set M C L is directed upward or directed downward if, for all x,y € M,
there exists some z € M with z Vy < z or Ay > z, respectively.

DEFINITION A.2. Let L and R be two posets. We say that a map F': L — R is strictly
increasing if

(i) F(z) < F(y) for all z,y € L with x < y;
(ii) for all z,y € L with z <y and F(x) = F(y), it follows that x = y;

The following lemma gives a sufficient and necessary condition for a Dedekind o-complete
lattice to be Dedekind super complete. The proof is a generalized version of the existence

proof of the essential supremum for families of real-valued random variables (see, for example,
Follmer-Schied [8, Theorem A.32)).

LEMMA A.3. Let L be a Dedekind o-complete lattice. Then, L is Dedekind super complete if
and only if there exists a strictly increasing map F': L — R for some Dedekind super complete
lattice R.

Proof. If L is Dedekind super complete, we may choose R = L and F as the identity. In order
to prove the converse implication, let M C L be a nonempty subset of L, which is bounded
above. Then, for every countable nonempty set ¥ C M, we denote by xy :=sup ¥ € L. Let

My = {F(l‘\y) ’ ¥ C M nonempty and countable} and c:=supM; € R.

Note that My is nonempty since M is nonempty, and bounded above since F' is nondecreasing
(property (i) in Definition A.2) and M is bounded above. Therefore, F(a) € R is an upper
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bound of My for every upper bound a € L of M. Since R is Dedekind super complete, there
exists a sequence (¥"),en of countable nonempty subsets of M with

sup F(xgn) = c.

neN
Then, U* :=J, .y ¥" is a countable nonempty subset of M since it is a countable union of

countable nonempty subsets of M, and we set x* := xy+. Note that xy» < a* for all n € N,
and therefore,

F(zyn) < F(z*) < c¢ forallneN,

where the last inequality follows from the fact that U* is a countable nonempty subset of M.
Taking the supremum over all n € N| it follows that F(z*) = ¢. We now show that x* > «x for
all x € M. In order to see this, fix some arbitrary € M, and let ¥’ := ¥* U {x}. Then, ¥’ is
again a countable nonempty subset of M, and we obtain that

c=F(z") < F(zy) < c.

Since z* < xgs and F is strictly increasing (property (ii) in Definition A.2), it follows that
x* = xys, which implies that = < z*. We have thus shown that z* € L is an upper bound of
M. Now, let a € L be an upper bound of M. Then, a is also an upper bound of ¥* C M, which
shows that a > sup U* = x*. Therefore, x* is the least upper bound of M and of the countable
subset U* of M. Analogously, one shows that M has a countable subset with the same infimum
if M is bounded below. O

REMARK A.4. Let M be a nonempty subset of a Dedekind super complete lattice L.
If M is bounded above or below and directed upward or downward, then there exists a
nondecreasing or nonincreasing sequence (z")n,eny C M with sup M = sup,,cy ™ or inf M =
inf, ey 2, respectively. In fact, let (y")nen C M with sup M = sup,,cy y". Since M is directed
upward, there exists a sequence (z"),eny C M with 2"t > 2" >yt v...vy" for all n € N.
The sequence (z"),en can be constructed recursively by defining ! := y!, and by choosing
"t e M with 2"t > 2" v y"*! for alln € N. Since (z"),en C M, if follows that sup,, ¢y 2" <
sup M. On the other hand, y" < z” for all n € N, and consequently,

sup M = supy” < supz” < sup M.
neN neN

The statement for the infimum follows in an analogous way.

Appendix B. Proofs of Lemmas 2.1 and 2.4

Proof of Lemma 2.1. First, assume that there exists a nondecreasing function : [0, 00) —
[0, 00) with #(0) =0, ¥(s) = oo as s = o0 and

C := sup /000 P(s)dv(s) < oo.

veEK

Then, by Markov’s inequality,

sup v((s,00)) < sup Y(u)dv(u) < & —0 ass— 0.

1
veK Y(s) ver Jo ¥(s)
Now, assume that K is tight, and let (M"),cy C [0,00) with 1 < M™ < M™*! and

sup »((M",00)) < 27
veEK
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for all n € N. Define : [0,00) — [0,00) by
) = Z 1(]‘,171,}00) (S) for all s = 0.
neN

Then, ¢ is nondecreasing with ¢(0) = 0 and (s) — oo as s — co. Moreover,

sup [ 9()dv(s) < S u(M™00)) < 20 =1

veK Jo neN neN

Choosing 1), instead, as the linear interpolation of the points (0,0) and (M™,n — 1) for all
n € N, we obtain that v is continuous with ¢(0) = 0 and

Sg}p{/o P(s)dr(s) <1

since ¥ <D, cn Lvm o0y If (2.1) is satisfied for some M > 0, then 1 can, for example, be
chosen as 9(s) := (s — M) ™ for all s > 0. On the other hand, if w is convex, there exist a > 0
and 8 > 0 such that ¥(s) > as — g for all s > 0. Then, for M :=

(o] 1 o0
sup/ (8—M)+dy(8)=*/ (as — B)T du(s) <—sup/ P(s)du(s
vek Jo @ Jo veK
Next, assume that (2.2) is satisfied. Up to now, we saw that the function ¢ can be chosen to
be strictly increasing on [M, 00) for M > 0 sufficiently large. It remains to show that ¢ can be
chosen to be strictly increasing on [0, M] for all M > 0. Let M > 0 and

a’ = sup v((M,00)) < oo and ™ := sup V((;%p ”D < oo forallneN.
veK veK

Next, we choose a sequence (¢"),en, C (0,00) with ¢" Tt < ¢" for all n € Ny, ¢ — 0 as n — oo
and ), o, ¢"a” < oo. Then,

sup/ A Lar00) (8 —l—Zc 1 LM] (s)dr(s) < Z c"a" < oo.
0

veK neN n+1 n neNy

Let v); denote the linear interpolation of the points (n”—fl,c") for all n € Ny with ¢0(0) :=0
and Ypr(s) :=c¢o for all s > M. Then, 1y is strictly increasing on [0, M]. Choosing either
() =ur(s) + (s — M)T or ¢ = i (s) + n(s) for s > 0, where 7 is the linear interpolation
of the points (M™,n — 1), we see that 1 is strictly increasing. On the other hand, if v is strictly

increasing, then (s) > 0 for all s > 0, and therefore, by Markov’s inequality,

sup v((s,00)) < sup/ Y(u)dv(u) < oo for all s > 0. O
veK 1/) VGK

Proof of Lemma 2.4. Note that [0,00) — [0,00), s+ s is u.i. for K if and only if the set
L ={vi|v € K} is tight, where, for v € K, the measure v;: B(Ry) — [0, 0] is given by

v (B) = /Budl/(u) for all B € B(R4).

By the previous lemma, the set L is tight if and only if there exists a nondecreasing function
7: [0,00) = [0, 00) with n(0) =0, n(s) — oo as s — co and

sup/0 n(s)do(s) < .

o€l

Defining (s) :=n(s)s or n(s) = 1[’(5) for all s >0, respectively, the equivalence of (i)
and (ii) follows. By Lemma 2.1, we. may assume that 7 is continuous. Let « € (0,1] and
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fo @ du for all s > 0. Since 7 is continuous and nondecreasing, 1, is continuously
dlfferentlable, convex and nondecreasing with ¢, (0) = 0. Since ¥, (s) < n(s)s for all s > 0, it
follows that

sup/0 Ya(s)dv(s) < oo

veEK

By the transformation theorem, w”s(s) fo *du for all s > 0, which shows that the map
[0,00) — [0,00), s+ 1/’“( ) is nondecreasing w1th wa(s)

inequality or Jensen’s mequahty,

Ya(s) — (s
o) s

— 00 as § — co. Moreover, by Holder’s

Hence,

Sup/wa )dv(u) < “SUP/dJ ) dv(u),

veK veK

which shows that 1, is u.i. for K if a € (0,1). By Lemma 2.1, the function 1 can, additionally,
be chosen to be strictly increasing if and only if (2.2) is satisfied. In this case, ¥, can be
chosen to be strictly convex and thus strictly increasing. On the other hand, if the function
¢ in (ii) is strictly convex, it is strictly increasing, and therefore (2.2) has to be satisfied by
Lemma 2.1. (Il
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