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Strong Coupling Lattice QCD in the Continuous Time Limit

Marc Andre Klegrewe

Abstract

Lattice methods are the essential tool to study QCD in its non-perturbative framework. At fi-
nite baryon densities, Monte Carlo simulations are most severely hindered by the sign problem.
Thus, a finite density analysis of thermodynamic observables is limited, and the explo-

ration of the QCD phase diagram via lattice QCD requires new ideas to tackle the sign problem.

Within the strong coupling limit of lattice QCD (SC-LQCD), a dual formulation is known
which suffers only from a mild sign problem, allowing studies at finite baryon densities.
Moreover, the continuous time framework is employed, which exhibits many assets compared
to standard discrete time analysis such as a faster sampling of configurations, the avoidance
of extrapolations in N, as well as a smoother treatment of observables on anisotropic lattices.

On top of that, its feature of having static baryons removes the sign problem completely.

The measurement of the critical temperature T, at up = 0 or the determination of physical
quantities such as the pion decay constant F;. directly in the continuous time limit significantly
removes uncertainties due to extrapolations in discrete time studies. The featured continuous
time algorithm allows for a straightforward study of temporal correlators at zero and
finite baryon density. Pole masses are extracted using correlated fits and the temperature
dependence is analyzed. A Taylor expansion in the pressure allows to compare the finite
density phase transition with the radius of convergence. The temperature dependence of
Taylor coefficients is inspected and the pressure from finite density Monte Carlo simulations

is reconstructed.

The continuous time limit within the SC-LQCD framework turns out to be highly promising
for future projects such as studies with multiple flavors, at finite quark masses as well as at
finite gauge coupling. Within the scope of this thesis, evidence is provided that the continuous
time limit is well defined and suited to study QCD thermodynamics. This is illustrated with

various applications.
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Preface

It is the most fundamental goal of physics to describe the states and interactions of matter
based on a minimal set of hypotheses which lead to theories that characterize phenomena
taking place on microscopical scales to cosmological distances. This scale dependence was
not immediately apparent, as classical physics rooted in the mechanics of Galileo Galilei and
Isaac Newton, the study of electromagnetism by Michael Faraday and James Maxwell or
thermodynamics discussed by Ludwig Boltzmann and Hermann von Helmholtz is based on
macroscopic observations. In fact, by the end of the 19" century it was widely assumed that

the insights from the mentioned fields account for all physic phenomena known by then [1].

It was Planck’s theory on the black-body radiation [2] giving finally rise to the idea of
quantization which is fundamental for the study of microscopic theories. While it was widely
believed that the quantization of radiation could be a property of the emitting and absorbing
object, the discovery of the photoelectric effect [3] stating that the energy quantization is
in fact a property of the electromagnetic radiation itself corrected this believe. Apart from
light, the concept of quantization was successively introduced in the description of nuclear
matter as well. While the interaction of photons with electrons gave rise to the first of the
three fundamental microscopical interactions, a further exploration of the substructure of the
atomic nucleus was necessary for the others to emerge. While the nucleus was first believed
to be constituted merely out of protons [4], it took till the 1930’s to discover the neutron
[5]. With the arising studies of nuclear fission processes the weak force as an interaction
for explaining nuclear decays started to thrive. A further exploration of the substructure of
protons and neutrons was strongly enhanced by collider experiments in the 1950s which led to
the discovery of innumerable many new resonances in the particle spectrum (often referred to
as particle zoo). As these could not be all be elementary particles, it dates back to Gell-Mann
in 1961 [6] and his classification according to the Eightfold Way which took the field a giant
leap forward. This structured way of organizing hadrons gave rise to the quark-model in
1964 [7, 8]. The associated interaction is the strong force which binds quarks together into
colorless objects called mesons and baryons and dominates over the electric repulsion of its

constituents on short distances.

This completes the set of three classes of fundamental interactions acting on microscopical
scales - the strong, weak and electromagnetic interaction - which are formulated as Quantum
Field Theories that comprise the frameworks of quantum mechanics and special relativity.

The only exception is gravity, which represents the fourth fundamental interaction and acts
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on macroscopic scales.

Within this dissertation the Quantum Field Theory of quark interactions mediated
by massless non-abelian gauge vector fields (so-called gluons) is discussed which is known
as Quantum Chromodynamics (QCD). It is because of this strong force why quarks are
bound together into hadrons. Apart from gluons being able to self-interact, a particular
interesting feature of QCD is the energy dependence of its coupling constant. At large
energies the coupling decreases and finally vanishes resulting in what is called asymptotic
freedom [9]. Quarks and gluons are then forming a state of matter referred to as Quark-Gluon
Plasma (QGP) [10]. On the contrary, the strong coupling regime reveals a state denoted
as confinement where quarks form bound, colorless objects referred to as hadrons. As
perturbation theory breaks down in this regime, alternative methods have to be applied to
describe these states of matter. While confinement is not yet proven by analytic studies, it
is predicated by lattice QCD [11] where a discretization of Euclidean space-time is used to
perform studies typically on a 3 + 1 dimensional grid. In addition to the lattice acting as
a non-perturbative regularization scheme where no infinities arise at finite lattice spacing
a, there is the advantage to perform lattice QCD calculations on a computer using Monte
Carlo methods. Even though lattice QCD is nowadays a well-established tool, it still suffers
a very crucial limitation. Simulations at finite baryon chemical potential fail due to the
infamous sign problem that is manifested in a complex integrand which cannot be interpreted
as a probability weight. Therefore, Monte-Carlo methods require an infinite amount of
statistics to yield reasonable results. As the sign problem is representation dependent, it
can be circumvented by finding a suitable set of dual variables. In the strong coupling
limit of QCD such a formulation is known which renders the sign problem mild. While this
limit exhibits important similarities to full QCD such as chiral symmetry breaking, it also
offers an unobstructed view on lattice QCD at finite densities [12]. Within this thesis the
strong coupling limit framework is enhanced by performing studies directly in the continuous
time limit [13]. Hence, extrapolations in N, can be avoided while the algorithm allows
a faster sampling of configurations. The sign problem vanishes completely in the contin-

uous time limit and the expressions for the calculation of dual observables simplify significantly.

This thesis is structured into six chapters. The first chapter 1 comprises an introduc-
tion to the theory of Quantum Chromodynamics and its formulation on a discrete lattice.
Symmetries are studied and the staggered formulation of fermions is introduced. Finally, the
partition function for the strong coupling limit is derived and the new degrees of freedom are
discussed. This chapter is followed by the formulation of the continuous time limit (chapter 2).
In particular, the step-by-step derivation of the continuous time partition function from the

discrete version expressed in terms of a Hamiltonian, is the central element of this chapter. A




Worm type algorithm is presented which samples configurations according to the continuous
time partition function (see chapter 3). This algorithm is used to perform first measurements
which validate the correct performance of the algorithm (chapter 4). Furthermore, various
thermodynamic observables are extracted at zero temperature T' = 0 as well as at finite
temperatures. A comparison to results from discrete time simulations and extrapolation in
N; highlights the significance of an algorithm that directly samples in the continuous time
limit. The last chapters deal with two major topics in the field of QCD.

In chapter 5 meson correlators are studied with the main intention to analyze their behavior
at finite densities and temperatures in the chiral limit. Pole masses for various particles are
extracted from correlated fits [14] of temporal correlators that decay in time. A sophisticated
fit procedure is presented which is essential for a reasonably extended mass plateau and
therefore, the ground state mass extraction. Multiple state fits are discussed which deal with
correlators being in general spoiled by infinitely many states especially at short distances [15].
The continuous time formulation is a key concept to yield an almost arbitrary discretization
in temporal direction for an exceptional ground state analysis.

In the final chapter 6 the Taylor expansion method is explored which is a well-established
tool in full QCD to study the finite density phase diagram and locate the critical endpoint
[16-18]. In the strong coupling limit the phase diagram is already settled due to the mild sign
problem. Hence, this framework allows to test the range of validity of a Taylor expansion
of some thermodynamic variable in powers of up about up = 0. Taylor coefficients for an
expansion in the pressure are discussed under the assumption that the system is homogeneous.
The continuous time framework in combination with a histogram method allows to extract
the first six orders of Taylor coefficients. These expansion coefficients are used to construct
the radius of convergence which locates the nearest non-analyticity, i.e. the phase boundary
with its tri-critical point in the chiral limit. Finally, the pressure itself is reconstructed which
requires to account for the non-homogeneity of the system. Thus, a Taylor expansion based

on the spatial dimer density is performed.

XI






CHAPTER 1

Theoretical Framework

1.1 The Theory of Quantum Chromodynamics

From all the elementary particles contributing to the Standard model of modern physics (cf.
Fig. 1.1), the theory of Quantum Chromodynamics (QCD) deals with the quarks and gluons.
Latter are the massless gauge bosons mediating the strong force and they are the reason for
the interaction of quarks. Furthermore, as gluons themselves carry the color charge, it is

possible for them to self-interact.

QCD is a non-Abelian gauge theory based on the color gauge symmetry SU(3) described by
the Lagrangian density in Minkowski space-time [20]

Lop =L¥ + Lym

Ny N, 4 ) , N2-1 1
=33 X @MW~ mpdwdap)t (@) = Y JFR@EY @), (L)
f=1la,b=1a,f=1 a=1

with the six flavors of quarks f = u,d, s, ¢, b, t featured in nature coming in three colors V..
The color indices a,b and spinor indices «, 3 are dropped in the following to shorten the
upcoming expressions. Additionally, the flavor index is neglected as this dissertation focuses
on systems with a single flavor of quarks Ny = 1 only. The Dirac operator and the field

strength tensor incorporated in Eq. (1.1) read

D E’Y“(au + igA“)

(1.2)
Fu =0,A, —0,A, —ig[A,, A,

with the gluonic gauge field A, = Zi\z

of SU(3) [20]. These gluon fields describe a vector with N2 — 1 = 8 components which are

used to express all traceless Hermitian matrices within the gauge group.

1 ! A—;Az and the Gell-Mann matrices A* as generators

In order to draw a connection between Quantum Field Theory and Statistical Physics, an

analytic continuation to imaginary (Euclidean) time is performed by t — —i7 [21]. This gives
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Standard Model of Elementary Particles

Fermion generations Interaction/Force carries
1 I I
- @ @ @ @ =
N ,
m up charm top gluon higgs
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n
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Figure 1.1: The Standard Model of elementary particles in contemporary physics (inspired by
[19]). The quarks are the fermionic contribution to QCD while the gluon is the gauge particle
mediating the strong force. Additionally, the photon is depicted as the carrier of the electromagnetic
force which acts on the charged particles, which includes all quarks and the first leptonic row. The
W and Z boson complete the set of gauge particles. These mediate the weak interaction and all
fermions as well as the Higgs particle are affected by this force.

rise to the Euclidean action

_ B _
SSCD[A;M,(b?Q/)ag?m] :/0 dT/Vd3X ‘CgCD[A,ua,(b?l/)ag?m]

: (1.3)

Ful@) P (2),

B _
:/ dT/ Px P(2)(D” + m)p(x) +
0 1%
with the covariant derivative given as lﬁE = (0, +19A.). Note that due to the Wick rotation
the inverse temperature f = 1/T and the Euclidean time 7 are matched. This relation can
be stressed by writing the QCD partition function as an Fuclidean path integral with the
Boltzmann weight given by the Euclidean action Sch in Eq. (1.3)

Z =Tr[e PH) = / DA, DPDipe SacolAuwt.gml (1.4)

The partition function is by all means essential for the calculation of any thermodynamic
quantity. Note that the dependency on the bare input parameters g, m is dropped in the
following. Furthermore, the expression Eq. (1.4) can be simplified by analytically integrating




1.2 Symmetries of QCD

over the Grassmann-valued fermionic part [ DyDy (see Appendix (B))
Zp = / DYDipe 57 AP 8] = det M[A,] (1.5)

by means of the Matthews-Salam formula Eq. (B.5).

Finally, thermal expectation values of some observable O can be written in terms of Eq. (1.4)
and Eq. (1.5) as

(O0) = % / DA, DYDYOeacnAntv] (1.6)

== [ DALOFA e S det M4, (1.7)
where Op[A,] is given by [22]

_ [ DYDYO[A,, &, e SrlAubd]

Of [Au] [ D[l/_)w]est (A ]

(1.8)

In Section 1.3 these fundamental relations of QCD are formulated on a four-dimensional

lattice.

1.2 Symmetries of QCD

This section covers a discussion on the symmetries of the QCD Lagrangian. Especially the
introduction of a mass term will give rise to various scenarios. Since the breaking of certain
symmetries is strongly related to the phase structure of QCD a short review on the expected
phase diagram is given.

Within QCD the color charge is a conserved quantity characterized by the local symmetry
group SU(N.) which is the defining local gauge group for the strong interactions. Global
symmetries are of interest in order to study the dynamics of fermions coupled to gauge
fields where the hierarchy of hadron masses is explained through the spontaneous breaking of

symmetries giving rise to Goldstone bosons.

1.2.1 Chiral Symmetry

The non-interacting part of the QCD Lagrangian that contains the quark fields exhibits the
symmetry properties of interest. For simplicity the Euclidean Lagrangian with massless quarks

mg = 0 is considered which yields the gauge invariant fermionic action

Se = [ d'a ()0, + igAu@)) (1.9)
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Based on the chiral projectors [23]

14
2 2 (1.10)
with PrPp =0, Pi=Pg, P;=P, and Pgry,=".Pr,

Pgr

the quark fields can be projected onto states of definite chirality

Yr =Prt), = Pry, o(x) =vr(x)+ ¢Yr(z),

e o g i i (1.11)
Yr =YPr, Y =vPy, Y(z)=1vr(x)+¢Yr(x).

This decomposition allows to split up the fermionic action in a left and right-handed contribu-

tion

St = [ d'o (Gr(@)mul0, +ig Ao (@) + Dr(@)l0, +igAu@)lir(@) ,  (112)

such that also the Lagrangian £ = L, + Lr decouples into two independent terms. Therefore,
the massless Lagrangian is invariant under independent left- and right-handed transformations.

The symmetry group decomposition for massless quarks reads
SUNf)v @ SUNp)a@U)y @U(1)a4, (1.13)

where the indices denote vector (L = R) and axial-vector (L = R') transformations. From the
symmetry in Eq. (1.13) the U(1)4 contribution is broken by quantum effects, also denoted as
the axial anomaly, such that SU(Ny)y ® SU(Nf)a ® U(1)y remains, with U(1)y = U(1)p

comprising the conservation of the Baryon number.

In case of finite quark masses, the introduction of a respective mass term mixes states of

different chirality
S, 9] = /d49€ (YrRMYL + L Mig). (1.14)

such that the SU(Ny)4a is explicitly broken. In case of degenerate masses, the symmetry

group is broken down to
SUN,)v @ ULy, (1.15)

with the still intact SU(N¢)y vector subgroup. However, if non-degenerated masses m,, #

mq # ... for the quark fields are assumed, also this part is explicitly broken down to
Ny
SU(Ns)y - QU =U(1),@U(1)q®--- @ U(1)n,. (1.16)
f=1




1.2 Symmetries of QCD

On the lattice the number of flavors is typically Ny = 1,2 or 2 + 1. The latter notation
emphasizes that two light flavors (v and d) and a heavier quark (s) are considered. In nature
the explicit breaking of chiral symmetry is very small in case of the two lightest quarks such
that SU(2)r ® SU(2)g is a very reasonable symmetry. By including the strange quark there
are ~ 10% effects leading to a more strongly broken SU(3); ® SU(3)r symmetry [22].

1.2.2 Spontaneous Breaking of Chiral Symmetry

In theory, the QCD Lagrangian follows a symmetry of SU(Nyf)r ® SU(Nf)r @ U(1)y for
massless quarks. Compared with the continuum, the chiral symmetry SU(Ny)r ® SU(Ny)r
is present for Ny = 2 where isospin multiplets can be formulated for hadrons which then
transform under SU(2); = SU(2)y. For three flavors this symmetry is more approximate but
still clearly visible in the spectrum.

However, mass degenerated parity doublets are missing in the spectrum of hadrons as expected
if the full symmetry would be valid. For example the proton and neutron have masses of
about 938 MeV while their parity partner has a mass of ~ 1535 MeV [24]. Furthermore,

+ 77,7%) as well as heavier but still light

the occurrence of light pseudo-scalar pions (7
pseudo-scalar kaons (KT, K% K° K~) and the n-meson has to be explained. A comparison
with experimental data indicates that this significant mass difference must be due to a
spontaneously broken symmetry. Physically, the spontaneous symmetry breaking in the
confined phase can be understood by quarks polarizing the gluonic medium. This leads to the
formation of a gluon cloud which gives the quarks an effective mass [10]. This mass also holds
in case massless quarks are considered. If a continuous symmetry such as the chiral symmetry
spontaneously breaks, it generates massless Goldstone bosons in the spectrum. The number
of particles to be generated is stated by Goldstone’s theorem as the difference of the number
of generators of the full symmetry group and the subgroup that remains unbroken. Hence, for
the chiral symmetry group there are NJ% — 1 massless Goldstone bosons to be expected as
SU(Ns)r, ® SU(Ng)r — SU(Nyg)v. For Ny = 2 these are the three pions, while for Ny =3
this yields the following eight particles [23]: the three pions, the four kaons, and the n-meson
(c.f. Fig. C.1:Left).

In nature the particles associated with the Goldstone bosons do have finite, non-degenerated
quark masses since the chiral symmetry is explicitly broken by the mass term. Either way,
they can be seen as pseudo-Goldstone bosons which stay light due to u and d quark masses
being much smaller than the QCD scale Ajrg and the mass of the strange quark being of the
order of the scale [23].

1.2.3 QCD Phase Diagram

In analogy with confinement, chiral symmetry and its breaking is another phenomenon that

has not been proven analytically but can be observed in the non-perturbative framework
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Figure 1.2: Phase diagram of full QCD in terms of temperature T and baryon chemical potential
up. Left: It is expected that hadronic phase and the Quark Gluon Plasma are separated by a first
order line at small temperatures and large densities. This line ends in a critical point (CEP) as
a crossover region is connected to it at small densities and temperatures around T.. The chiral
restoration and deconfinement transition match and the chiral condensate (xx) can be used as an
order parameter. Right: In fact, only small portions of the phase diagram are settled. While the
nuclear matter transition and a crossover region around T, are verified, little is known about the
rest of the finite density phase diagram from actual measurements. However, there are many heavy
ion colliders probing the essential regions.

accessible by lattice QCD. The order parameter is the chiral condensate [10]

() = (0] ()¥(2)|0) = (Oldr(2)y(2)1 + Pr(2)¥(2)r|0) (1.17)

which is invariant under simultaneous (vector) transformations but not under general chiral
rotations. If the chiral symmetry is restored, the chiral condensate vanishes. Otherwise, it has
a non-zero expectation value (1)1)) # 0. Surprisingly, it is observed that the deconfinement
phase transition and the chiral transition seem to coincide [21]. This is unexpected as these
are related to two distinctly different physical effects. In other words, the chiral transition can
indicate at what temperatures quarks and gluons deconfine and transition from the hadronic
phase to a Quark-Gluon Plasma. At zero chemical potential the transition temperature
is 156.5(1.5) MeV[25]. The main features of the expected phase diagram of full QCD are
depicted in Fig. 1.2. In terms of thermodynamic quantities the chiral condensate and the

chiral susceptibility are given by

TOolnZ o -
T B X = o ). (118)

(ip) = = om,
While the condensate vanishes if the chiral symmetry is restored, the susceptibility forms a
peak. Whether the chiral condensate drastically drops to zero when slowly increasing the
temperature or if a smooth transition is expected depends on the type of phase transition that

takes place. In the same manner the chiral susceptibility can diverge or stay finite depending
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on the nature of the phase transition.
There are different schemes that classify the nature of a phase transition. The modern

classification scheme distinguishes between two broad categories:

1. First-order, discontinuous phase transitions that involve a latent heat due to a fixed
amount of energy being absorbed or released. The solid—liquid and liquid—gas transi-

tions are of this category.

2. Second-order, continuous phase transitions that have no associated latent heat. These
transitions are associated with critical phenomena and characterized by critical exponents.
Systems that are filed in the same universality class have matching critical exponents
[26].

The QCD phase diagram features a “crossover transition” in Fig. 1.2 which ends in a critical
end-point (CEP). The existence as well as the exact location of the CEP is still subject
to research. The crossover transition is not a real phase transition since there is no non-
analyticity for a definite point with a sensitive order parameter. The phases are continuously
connected. In case QCD simulations at vanishing quark masses are considered, denoted as
the so-called chiral limit, the crossover becomes a second-order transition which terminates in
a tri-critical point (TCP). The chiral condensate (1)¢)) stays finite along this transition while
the susceptibility is divergent. At large chemical potentials both crossover or second-order
transition turn into a first-order transition. In addition to this chiral restoration transition,
there is the first-order liquid-gas phase transition of nuclear matter which terminates in a

CEP. Along a first-order transition, both (¥1) and x, are discontinuous.

1.3 Lattice Quantum Chromodynamics

As in all Quantum Field Theories, also QCD has to deal with ultraviolet divergences which
spoil calculations, even though the related physical quantities are well-defined and finite.
In order to remove these contributions, it is necessary to “regulate” them, i.e. to remove
the divergences such that they stay finite. In the low energy regime of QCD the typical
perturbative regularization is useless. However, the replacement of continuous space-time by
a hypercubic lattice provides the desired ultraviolet (UV) cutoff. This unphysical regulator

must be removed in order for calculations to reproduce results in the continuum.

1.3.1 Lattice Regularization
For the regularization of Euclidean space-time, a hyper-cubic lattice A is introduced [22]

A =a{n = (n1,na,n3,n4)|

(1.19)
n= (ny,n2,n3)=0,1,...N, —1; ny =0,1,... N, — 1}
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The four-vector n labels all of the [A] =[], N, = N, 3 x N, individual sites which are separated
with respect to their nearest neighbor by the lattice spacing a. Each lattice site location is

therefore addressed as
rel, z,=an,, n,€[0,N,—1] Vpu=1,234. (1.20)
and consequently, the following replacements have to be taken into account

r— T =na

/d4:n —a* Z ) (1.21)

TEA

Applied on a function in the momentum this means
fpu) = /dﬂ:ueiip“x“f(mu) - GZ eiip“x“f(xu) (1.22)
T
where the periodicity in the exponential

£(put e, ) = L merme 20 (o) = f(p,) (129

constraints the momenta to a finite Brillouin Zone as n, € Z. The maximum momentum of
p ~ 1/a acts as the mentioned regulator to render lattice QCD ultraviolet save.

Typically, the spatial volume is considered to be isotropic with N2 = Nj- Ny - N3. In general
it will deviate from the temporal extent N, # N;.

In the following, lattice sites host quark fields

zp(m),zﬁ(x), reA (1.24)

while the gluon gauge fields will be placed on the links connecting two adjacent sites. They are
represented by the link variables U, (x), interconnecting site « with its neighbor in direction
ae, = [t

The main errors in lattice QCD arise from discretization effects and finite volume effects.
These can be improved by choosing the spatial extent much larger than the correlation length
alNy, > £ of the particle to be investigated as well as £ > a. As £ is proportional to the
inverse of the lightest hadron mass, it can be deduced that discretization effects are small if
aM < 1, while finite volume effects are small for aM N, > 1.

Note that due to the lattice discretization, symmetries are violated such as Lorentz symmetry.
These are recovered when proceeding towards the continuum limit. This is done by first
extrapolating in the volume V = N2 — oo denoted as thermodynamic limit and second by

removing the lattice spacing a(f) — 0. A naive continuum limit procedure by just sending
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a — 0 as presented for the discussion of the gauge and fermion part of the discretized
QCD action (see Sections (1.3.2) and (1.3.3)) is not possible, as the only input parameters
are bare parameter, namely the bare coupling g> = 2N./f and the bare quark masses
amy,amg, ...,amy. Instead of referring to the continuum limit by a — 0, the relation g — oo

2 and g — 0. Discussions on the functional dependence of g(a) via

is used because of 8 o< g~
the Renormalization Group Equation (RGE) (or Callan-Symanzik equation) can be found in

22, 27] and [20].

1.3.2 A Naive discretization - Gluons

First the Yang-Mills contribution comprising the gluon propagation term of QCD is formulated
in terms of lattice degrees of freedom. Such studies where the quarks are considered as infinitely
heavy, static objects is referred to as quenched limit with only gluons being the dynamic
variables. Due to the requirement of gauge invariance according to SU(3) transformations, a
gluon field is required to be represented by an appropriate lattice version which is an element
of the color gauge group as well. These lattice degrees of freedom are the so-called link
variables U, (z). As indicated by their name, the link variables connect two sites which are
required to be nearest neighbors. For the construction of loops it is useful to note that link

variables showing in backward direction U_,(z) are given as
U_u(x) = Uy(x — p)t. (1.25)

In order to reconstruct the gauge invariant gluonic part of the continuum action Sgom. =
i i d4a;FWF‘“’ up to some order in the lattice spacing a, the smallest closed loop build from

links on the lattice is considered, the so-called plaquette (see Fig. 1.3)

Uy () = Up(@)Uy (& + wUf(x + 1)U (@) = [ ] (@), (1.26)

Its traced real part is gauge invariant. In fact, the trace of any path ordered product of link
variables which forms a closed loop is gauge invariant. Based on the plaquette the Wilson

gauge action is formulated [11]
1
ScU)=8>_>" (1 —  ReTr UW(a:)> , (1.27)
T pu<v ¢

with the lattice coupling S being related to the bare coupling g via g = Q;Xc. This is the

discrete expression for the continuum gauge action contribution.

In order to ensure that the correct continuum limit can be recovered, the limit a — 0 has

to be performed. To do so, the relation of gauge fields A,(x) = foﬁfl %AZ(SE) and link
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<L> U(x)
| | ren
T+ v T+p+v

L] G
oty Uw(z) -- }~_— -—— > Ul(x) U,(z + )
U,(x

(_) ‘ ’ AN e U@ gy

T | | /"| | Link

Site

Figure 1.3: Left: An isotropic hypercubic lattice. Sites x denote where the quark fields 1(x) are
placed at. These are connected by links U, (x) which have an orientation p and represent the gauge
degrees of freedom. The lattice spacing a denotes the shortest distance between two neighboring
sites. Right: The smallest loop on a lattice, the plaquette U, (. consisting of four links. Its trace
18 gauge invariant.

variables in terms of the parallel transporter is recalled
U,(z) = Pe'™ [ dwuAu(@) ¢ia94u(@) (1.28)

with P denoting the path-ordering. The parallel transporter shifts color from a point x on the

lattice to the adjacent one in direction . The plaquette in terms of the gauge field variables

reads

Uy (1) = 29940 (@+11/2) giag s (amtpit[2) g —iag Ay (a+v-+u/2) g—iag Ay (a+0/2), (1.29)
By utilizing the Baker-Campell Hausdorff formula e4e? = eA*B +3lAB] 4 yields

Uy (z) = £19°9(0u A (2) =0, Ay (@) +iglAw(2),Ar (@) +O(0®) _ pia®gFu+0(a?) (1.30)

with the field strength tensor Fj,,(z) = 0,4, (x) — 0, Au(x) —ig[Au(x), Au(x)] defined just as
the continuum version. Finally, an expansion in the lattice spacing a results in
- 2 CL492 |12 6
Uw(x) =14+ 1ia"gF,, — TFWF + O(a”) (1.31)

which is inserted into the Wilson action Eq. (1.27) with the real part of the trace removing
the O(a?)-term of Eq. (1.31). The Wilson action becomes

4
S :aZ SN e FL PP 4 O(a?). (1.32)

T pu<v

10
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In the continuum limit the order O(a?) cut-off effects become irrelevant as they vanish for
a — 0. In order to approach the continuum limit faster, there are strategies incorporating

larger gauge invariant loops in the formulation of the gauge action.

1.3.3 A Naive Discretization - Fermions

This section covers the naive lattice discretization of the quark fields. For the sake of simplicity,
the interacting contribution is disregarded for this discussion such that free fermion fields are

described. Therefore, it is the goal to find a formulation for the continuum fermion action

SE< ) = [ da (D@D + mlv(e) s (1.33)

in terms of the discretized degrees of freedom, with the covariant derivative D,, = 0,, +igA,.
While the prescription from Eq. (1.21) dictates how to convert the space-time integral to
a finite sum over lattice sites, the quark fields are placed on the lattice sites according to
Eq. (1.24). For the naive fermion formulation, the derivatives of the quark fields have to be

replaced by finite differences. For a symmetric discrete derivative scheme

Q) — (Bl + p) =l — ), (134

a lattice version of the free fermion action reads

selnd] = ot i) (D SHEE ) ). )

TEA 2a

This expression is not gauge invariant yet when applying the transformations

() = ' = Qa)i(a), (1.36)
Ba) > 7 = d(2)0 (@) (1.37)

on the finite difference quark field term, with Q(z) being an element of SU(3). A gauge
invariant formulation is obtained by introducing the link variables Uy () from Sec. 1.3.2 which

transform according to
Un(z) = Uy(x) = Q) U (2)Q (z + p). (1.38)

Thus, the naive action for fermions in an external gauge field U reads

TEA 2a

=a' Y ()M (z,y)¢(y). (1.40)

z,yeN

11
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In the last line the bilinear structure was identified, with the naive lattice Dirac operator (or

fermion matrix) given as
Zw 0z + py) — Ul (x — p)o(a — p,y)] + mé(x, y). (1.41)

For a — 0, the link variables from Eq. (1.28) are Taylor expanded

Uu(x) ~1 +iagA,(z) + O(a?)

(1.42)
U_,(2) =1 —iagA,(z — p) + O(a?)
and inserted in the action Eq. (1.39)
4
ol U] =t S e [Z (Mot a9

rEA pn=1
L g Au(@)y(z + p) +2’iZgAu(w — wY(r — u)) n mwx)} + 0@ (143
=a' Y (@) (O + igAu(@)¥(x) + mip(a)] + Ofa).

€A

In the last line it is used that ¢(z + p) = ¥(x) + O(a) and Ay(z — p) = Au(z) + O(a).
Additionally, the continuum derivative is already reintroduced to highlight the similar structure
to Eq. (1.33).

In comparison, the fermionic part of the action provides an error in the lattice spacing of
order O(a) while for the gauge part it is O(a?). Note that the naive discretization scheme is
only one choice to reproduce the continuum action.

The final partition sum, taking into account the gauge-invariant measure on the lattice reads

Z= / [ dv(z)dw(x / II HdU ¢~ SrlUb Wl e=SalU] (1.44)
z€eA zeA p=0

The naive lattice discretization introduces a major drawback in the form of the doubler

problem which is explored hereafter.

1.3.4 Doubling Problem

In the following, the doubling problem is explored that hinders the use of the naive fermion
discretization. For the free fermion action, i.e. U,(x) = 1, the Dirac operator Eq. (1.41) in

momentum space reads

4

M(p)=m-1+ — Zyusm (pua) (1.45)
;L 1

12



1.3 Lattice Quantum Chromodynamics

f(pu)t Dy
1 _ sin(p,a)
o RS > - Pp=—1—=
a : a
T 7Il' 7IT 7Ir 'pu
a 2a 2a a
1
a

Figure 1.4: The naive lattice discretization gives rise to the momentum p, = sin(p,a)/a which
becomes zero at additional locations +7 /2 within the Brillowin Zone. In comparison, the continuum
momentum p,, has a simple zero at 0. In four dimensions this gives rise to 16 poles or so-to-say
15 unwanted doublers. (Figure inspired by [20])

which has to be inverted in order to give rise to the fermion propagator [20]

- m—izufyuﬁu

M(p)~' = TEES S (1.46)

where p,, is given by p, = sin(p,a)/a (see Fig. 1.4). For p, — p, the continuum propagator
is obtained

m;O —1 Z# YuPu '

= (1.47)

This propagator has a single particle pole at pphys = (0,0,0,0) for massless fermions. However,
the discrete lattice version does not just have a single pole at zero momentum but it is spoiled
by the Sine-function which introduces additional contributions. Within the Brillouin Zone
there are 15 additional locations where the Sine-function becomes zero for p, = 7/2. These

correspond to the edges of the Brillouin Zone
PEdge = {(7]—/27 07 0: 0)7 (07 77/2a Oa 0)7 RS (7T/2, 7r/2> 71—/27 7T/2)} (1'48)

with a doubling in the number of particles with each dimension. In four dimension there are
2¢ = 1541 = 16 poles, 15 unphysical and a single physical relevant one.

Thus, the naive discretization produces Ny - 2¢ particles which do not vanish in the limit
a — 0. This is the motivation for the use of different fermion actions, such as the staggered

formulation, which try to cancel out the doublers with additional contributions. These

13
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contributions are required to vanish in the continuum limit as well. A limitation concerning
the construction of lattice fermion formulations is given by the Nielsen—Ninomiya theorem.
This theorem states that there is no fermion action without doublers that has all the following

properties [28]:
e Continuum chiral symmetry ({D,75} = 0) in massless case
e Locality of the fermion operator
e Correct continuum limit

Hence, there are various approaches to discretize fermions in order to tackle the doubling
problem. For Wilson fermions all doublers are removed, however, chiral symmetry is explicitly
broken. In contrast, the idea of staggered fermions is to reduce the number of doublers by a
factor of four, such that doublers will remain in the continuum, however, also chiral symmetry
is partly kept restored.

The fermion doubling phenomenon is strongly related to the existence of the chiral anomaly.
While in the continuum the anomaly arises from the chiral non-invariance of the path integral

measure [23], for the lattice version it is the non-invariance of the Lagrangian.

1.3.5 Staggered Fermions

In order to work towards the staggered formulation, a symmetry of the naive action is utilized
which reduces the number of doublers by a factor four. This four-fold degeneracy is obtained

by a local transformation of the fermion fields (spin-diagonalization)

b(x) = Q) (x), d(x) = ¢ (@) (@), (1.49)
with a total of sixteen different transformation matrices 2 defined as [29]
Qz) =15"1"12°5" and zy € (0,1). (1.50)
This transformation is used to remove the 7, dependence from the naive fermion description
by applying

nu(x) = QT($)’7MQ(x) :(71)$0+11+12+z3

Qf (2)Q(z) =1. (151)

The newly introduced staggered phases 7, () take over the role of the -, matrices such that

the whole action S will be diagonal in Dirac space. The phases are constraint by

(@) (x + wnl(z + v)nl(z) = -1
Sa (1.52)
= nu(z) =(=1)=r .

14



1.3 Lattice Quantum Chromodynamics

Finally, the fermion action acquires the form

33

€N a=0

@Z;a(x) Z 2a

n=0

3 )Y (x — Yo lx — (o — -
[ (mx)U“( Vbl + 1) — talx — U m)m%m %@)]

(1.53)

Each component of the Dirac spinor labeled by « yields the same term. Because of being
diagonal, three of the four components can be discarded and the one-component field y is
introduced. This reduces the number of Dirac particles in the continuum from 16 to four. In
order to distinguish these four continuum quark flavors, the term taste is introduced. With

the newly defined one-component fields y the gauge invariant staggered action reads

1

Sstagg (1) = Z % lno(w)%—((l‘) (eaquo(:):)X(m +0) — x(z —0)e Ha Ug(:r — 0))

xflA (1.54)
+ > m(@)x(@) (Vi + 0)x(z + i) = x(z = )U] (z - 0)) + mx(z)x(x)
=1

where it is incorporated that general lattice simulations with staggered fields are performed
on anisotropic lattices a, # a,, thus, accounting for the bare anisotropy parameter +.

Furthermore, a quark chemical potential contribution is incorporated.

There are a total of 16 one component fields, each with a different phase factor, corresponding
to the sites of a 2% hypercube. Each such staggered fermion with its 16 components can be
seen as four tastes of continuum fermions each with four Dirac components. Note that the
taste-symmetry of rotations is broken by a discrete lattice leading to a mass splitting of the
taste multiplets [30].

In contrast to Wilson fermions, the staggered formulation keeps a remnant chiral symmetry.

This is stressed by considering the transformation of v5. According to Eq. (1.49) this is given
by [22]

(@) ys(x) = 15(2)v(2) ()" (1.55)

Thus, the site-dependent staggered phase e(x) = 15 = (—1)%0T#1722%%3 gubstitutes 5. In the

chiral limit the staggered action is then invariant under continuous transformations

iae(x)

x(z) = €@y (), () = xe' @), (1.56)

This is the global chiral symmetry for the staggered quark degrees of freedom that are
distributed over the hypercube.

A further reduction of the number of doublers can be achieved by applying the rooting

procedure where the quartic (square) root is taken from the four-flavor staggered determinant

15
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det[M] yielding one (two) flavors.
Within this dissertation, staggered fermions based on the action Eq. (1.54) are used.

1.3.6 Finite Temperature and Density

Lattice studies at finite temperature and density are of interest in order to investigate QCD
matter in the early stages of the universe and the condensation of hadrons during the cooling

process [22].

Finite Temperature The infinite space-time volume limit corresponds to QCD at zero tem-
perature. However, as implied by the continuum discussion of Equations (1.3) and (1.4) a
non-zero temperature is achieved by restricting the physical extent of time to 8 while the
spatial volume is still be considered in the infinite volume limit. The corresponding fields are
periodic (bosons) or anti-periodic (fermions) in time. While the spatial contribution is still

considered in the infinite volume limit, the Euclidean lattice time extent is associated with
f=aN; = —. (1.57)

The limit 5 — oo corresponds to T — 0. At finite spatial volume and finite temperature the

continuum limit is achieved by a — 0 while alN, and a/NV are kept fixed.

Finite Density For QCD matter the net quark number density is non-vanishing. This is
accounted for by considering a non-zero quark chemical potential which yields the grand

canonical ensemble
Z(T, p) = Tr [ H-mND] (1.58)

with the quark number INV,. Alternatively, the baryon number Ng = N,/3 and the baryon
chemical potential up = 3u, can be used. Since N, and Np are integer valued, the grand

canonical partition function can be expanded in a power series
Z(T, ) = (/)" 2(T). (1.59)
n

This expansion is referred to as fugacity expansion with the fugacity variable e#e/T and the
quark number n € Z [22].

The finite density sign problem arises when integrating out the fermionic contribution to the
partition function which results in the fermion determinant Eq.(1.5) which depends on the

chemical potential. For u = 0 the fermion matrix exhibits 5 hermicity which leads to

det MT = det(y5M~s) = det M = (det M)*, (1.60)

16
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i.e. the determinant is real. However, for non-zero u the determinant becomes complex [31]
M (1) = 35 M (—p*)7s. (1.61)

This prevents Monte Carlo methods from using the fermion determinant as a probability

measure for finite, real chemical potentials.

1.4 Strong Coupling Limit

QCD suffers from a severe sign problem when considering calculations at finite chemical
potential due to the fermion determinant becoming complex. A possible solution to this
problem is to consider a dual formulation which is an established method and has been applied
to many models in the past (a more detailed review can be found in [32]). To obtain a dual
formulation the original degrees of freedom are integrated out and replaced by discrete ones
that encode nearest neighbor interactions. These can be expressed as unoriented occupation
numbers which are usually referred to as monomers and dimers as well as oriented fluxes [32].
Both, occupation numbers and fluxes, are restricted by constraints which are enforced by the

original symmetries of the system.

In the strong coupling limit of QCD the dual degrees of freedom result in a sign problem
that becomes mild [33, 34]. Note that enforcing the strong coupling limit g — oo alone, will
not solve the sign problem but the dual degrees of freedom are essential. Furthermore, it is

possible for a model to have several dual representations with different sign problems.

1.4.1 Dual Representation of Strong Coupling QCD

Within the strong coupling limit the Wilson plaquette action S [U] vanishes from Eq. (1.44)
as # = 0. By considering a staggered fermion action Sp = Sstage (cf. Eq. (1.54)) the QCD

partition function reads

7 :/H (di(x)dx(a:)eQaqu(x)X(’”) H {dUH(m)eT’“(x) (%(w)Uu(z)X(eru)>'<(w+u)U$(w)x(:v))]>
z I

-/ <dx<x>dx<x>e2“mq*@x<x> Hz(x,m> ,
z I
(1.62)
where the sum over the lattice points  and directions p factorizes into respective products.

For a finite chemical potential pi, as well as an anisotropic lattice the temporal links Uio(x)

are weighted with the factor vexp(+a,pq). The last line of Eq. (1.62) features the one-link
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integral z(x, u) over the Haar measure for U(N,) or SU(N,) which is of the form [30, 33]
Az, y) = / dU X@UX )~ XU x(@) (1.63)

The staggered phase factor as well as the additional weight factor of the temporal link variable
component can be absorbed in a redefinition of the x fields to match the form of Eq. (1.63).
The only contributions from this integral that arise must have equal powers in U and UT

modulo N,. For the different gauge groups the integration yields [30, 33]

Nc .

Az y) =) {ak (o v @) x (@) X)X () } (1.64)
k=0

v PG X @X W)™ + (1) (3l 2)x(w)x ()] (1.65)

where

LI H:{O’ e (1.56)

1, SU(N,)

follows from an integration over [ dy(z)dx(z)eX®X®) of Eq. (1.63) and likewise Eq. (1.64)

/d)Z(x)dx(x)eX(x)X(x) [/ dUechxfch*x — XWX(Y) — i %(X(Q)X(y))k

. N . (1.67)
/ dyx()dx () eXX) lz ak(i(w)x(w)x(y)x(y))’“] =3 akﬁ(i(y)x(y))’“,

k=0 k=0 ¢ ’

and a matching of the coefficients of x(y)x(y) [30, 33]. Note that the factor p(z,y) in Eq. (1.64)
had to be neglected to match the form of the one-link integral Eq. (1.63). The factors p(z,y)
and p(x,y) summarize the contributions from the phase factor, the anisotropy and the chemical

potential

N yexp(Farpq), (y—x)o==+1
p(z,y) = nu(z)y®+*  and  p(z,y) = ny—o(z) ! (1.68)
1, otherwise.

Equation (1.64) comprises the result for the U(N.) gauge group, i.e. k = 0, where the
combinations of M (z) = x(z)x(x) represent the bosonic (“mesonic”) degrees of freedom.
These come in pairs of two M (x)M (y) with a so-called mesonic link connecting them. For the
SU(N.) gauge group an additional term, i.e. k = 1, yields the fermionic (“baryonic”) degrees
of freedom B(x) = N%!eil_,_mxil(x) ... Xiy () which are oriented fluxes connecting to sites
B(z)B(y). The quark chemical potential affects the baryonic contribution where the mild
sign problem is still hidden such that SU(N,) simulations are affected by it. The one-link
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integral in terms of mesons and baryons reads

Nc

2ay) =Y [anlp(a,y)* M (@) M (y)] (1.69)
k=0

+5 | pla, y)™ B(@) B(y) + (1) p(y, 2)* B(y) B(x)| - (1.70)

Finally, after the link variables are integrated out, the Grassmann integral is evaluated. Note
that interchanging the order of integration is possible due to the absent plaquette contribution
for 5(g) = 0. An integration of the exponential in Eq. (1.62) yields [27, 33]

[ T dx(@ydx(a)eems¥oxta — (2am,)™ (171)

which follows when expanding the exponential as 1 + 2amgx(x)x(z). Due to the nilpotency
of Grassmann variables this series terminates after the second term (see Appendix Sec. B).
The full Grassmann integral including the mesonic contributions yields integrals of the form

N! n
—(2amgy)"*, mngz = N.—k. (1.72)

[ T dx@dx(@)e <X x(a)y (@) =
T
The integration generates constraints on possible configurations as well as on the mix of

degrees of freedom occupying a lattice site. There are three contributions [33, 35]:

Dimers The mesonic contribution comes from the one-link integral term (M (x)M (y))*. This
comprises a mesonic hopping between the sites z and y which is non-oriented. The
number k is the dimer or link occupation number taking values k € {0,1,... N.}. It

states how many dimers are attached to a specific link connecting sites x and y.

Monomers These contributions arise from the Grassmann integration over the Boltzmann
factor involving the quark mass m4. The monomer number n, is constraint to n, €
{0,1,...N.}. While a baryonic contribution excludes monomers from a site, a mesonic

contribution yields a reduction in the total monomer number

ng=Ne— > ku(a) (1.73)
pu==0,...,+d

which is the so-called Grassmann Constraint for monomers and dimers.

Baryon Loops The baryonic degrees of freedom occur in the one-link integration for a gauge
group SU(N,). These form directed pairs B(y)B(x) located at different sites with
B(z) exploiting N, staggered fields y;, (z)...xiy(z) and B(y) exploiting the fields
Xiy () ... Xiy (z). This leaves the baryonic contribution B(z) at site z and B(y) at site
y which will also connect to a nearest neighbor to form a pair B(z)B(z) or B(2)B(y)
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respectively. Thus, baryons will form a closed, self-avoiding loop with single chain
elements B(y) B(x). A baryonic link variable b, € {—1,0, 1} assigns to all links connected
to site x a value of 1 for an incoming baryon line, —1 for an outgoing line and 0 when
no baryon line occupies the link. Since there is no baryon source or sink the constraint

reads

Y. bulz)=0. (1.74)

p==0,....4d
Furthermore, the Grassmann Constraint for a system of monomers, dimers and baryon

loops is given as

Ne
Ng + Z ky(z) + Z 7]bu(x)\ = N.. (1.75)
p==+0,....+d p=~+0,....+d

In the following baryon loops are denoted by ¢. The final expression after the gauge field and

Grassmann integration for the partition function in the strong coupling limit reads

Nc —k,(z ! NC'
Z(’Y»Nﬂmqnuq) = Z (H ﬂrﬁku(z)%,u H —
T, 2 Nz

(k) Nelky(x)! (2amg)"" E[w(ﬁ,,u@) , (1.76)

where the very first sum runs over all configurations k, n, ¢ yielding non-zero contributions
based on the dimer (k) and monomer (n) occupation numbers as well as the baryon loops
£. The first term describes the mesonic hoppings, while the second comprises the monomer
contribution. The final term describes the baryon loop where the quark chemical potential is
hidden in the weight

w(l, ptg) =0 (£)y™e 2 0@l exp (N.N;w(O)arpg) | (1.77)

with £y the number of lattice sites on a baryon loop in temporal direction. The sign o(¥)

depends on the geometry of the baryon loop [35]

o(l) :(_l)w(E)-s-N,(Z)-i-l H () (1.78)
b=(x,u)€l

and comprises the sign problem in this dual formulation. The winding number w(¥) in
Eq. (1.78) counts the number of boundary crossings in forward or backward temporal direction
(w(?) € Z) and N_(¢) sums up the number of links which are oriented in negative temporal
direction [35]. The mildness of the sign problem at finite 1, was discussed in [30]. It is a result
of the change of integration order which leads to the introduction of mesonic and baryonic
color-singlet degrees of freedom after the gauge integrals are fully integrated out. Interestingly

the sign problem does not vanish even at zero quark chemical potential ;14 = 0 but a polymer
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resummation presented by Karsch and Miitter [35] can resolve this issue. As baryons will
become static in the continuous time limit, the loop geometry becomes trivial as they are
only oriented in temporal direction without any spatial baryon hoppings. As presented later
the sign then becomes o(¢) =1 as (w(¢) € £1) and N_(¢) is even.

1.4.2 High Temperature Limit

At various temperatures around 7., configurations generated by the partition function
Eq. (1.76) exhibit a very diverse structure. Therefore, it is only possible to evaluate these
systems analytically for the smallest volumes. An exception is the limiting case of large
temperatures where the static limit of purely temporal meson and baryon lines is approached.
Thus, in discrete and continuous time, baryons form one-dimensional objects that can be

resummed as

exp(pp/T) + exp(—up/T) = 2cosh(pp/T). (1.79)

Furthermore, there are N, + 1 possible states for a static mesonic line. Their respective weight

is 1 such that the total one-dimensional partition function is given by
Ztatic = (214)"7 = (Ne + 1) + 2 cosh(up/T))"". (1.80)

The spatial volume is either defined as V, = Vpr or V,, = Vo1 depending on the respective

type of algorithm in use.

Discussion Within the strong coupling limit regime it is possible to perform simulations of
Eq. (1.76) at finite baryon density. Based on discrete time results, the phase diagram and the
location of the tri-critical point (TCP) in the chiral limit is well known [36]. There are efforts
to include finite S-corrections in order to make sure that features from the strong coupling
limit are maintained. However, a connection to the continuum limit is not possible (yet).
Within the strong coupling limit the lattices are as coarse as possible with a lattice spacing
which cannot be specified. Therefore, there is no chance to set a scale and ratios of physical
observables have to be considered in order to compare values. Furthermore, due to the coarse
lattice spacing the mentioned mass splitting of taste multiplets (cf. Sec. 1.3.5) is maximal for

the strong coupling limit.

1.5 Numerical Approaches and Statistics

For the calculation and evaluation of observables in lattice QCD it is necessary to solve

high-dimensional integrals over gauge and quark fields as in Eq. (1.4) which is analogous to
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the partition functions solved in statistical mechanics

1
0)=—=Y O(z)e P 1.81
0)=2 Y O (181)
states

As mentioned in Sec. 1.1, the Boltzmann weight can be identified with the exponential of the
Euclidean action S(%CD' Thus, it is the goal to numerically sample configurations according to
the weight e . The number of possible states grows exponentially with an increasing number
of degrees of freedom. These are typical numerical integration problems addressed by Monte
Carlo methods based on generating successive configurations according to the Boltzmann
weight which build up the so-called Markov Chain.

1.5.1 Markov Chain Monte Carlo

Within a Monte Carlo simulation a sequence of configurations is generated
[sM] = [sP] = - = [s(M)], (1.82)

which is referred to as Markov Chain. The strategy of acceptance or rejection of certain
configurations according to some procedure was formulated by Metropolis in 1953 [37]. A
new configuration [s(”l)] is obtained by suggesting modifications on the current configuration
[s()] leading to a different weight. With a certain transition probability this new configuration

is accepted. If this acceptance test fails, the configuration is rejected such that s**1 kg

=s"is
also a valid update. This choice is related to the main concept of the Markov process which is
to visit configurations of a larger Boltzmann weight more often than others. The transition

probability
Pt = '|s® = U) = T(U'|U) (1.83)

only depends on the current configuration U and its successor but not on the location within

the Markov Chain. In general it is necessary for a probability to fulfill
0<TUWU)<1, Y TUWU)=1. (1.84)
U/

In order for a Markov process to sample configurations according to the Boltzmann weight
it is required for the algorithm to be ergodic. This means that the Markov Chain is able to
reach any configuration in a finite number of steps. In other words, there exists an n such

that T"(U’|U) is positive. Ergodicity is ensured by enforcing the detailed balance condition

T(U'|UYPU) = T(UU)PU") (1.85)
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which contains only successive configurations as in the Markov Chain. The equilibrium
distribution is approximated by using importance sampling that satisfies detailed balance.

Starting from an initial configuration s(!), a thermalization process equilibrates the system.
Depending on the complexity of the problem this might require already a large number M of
Monte Carlo iterations. Statistical quantities are then measured on a chain of equilibrated
configurations. The chance for a certain configuration [s)] to occur is defined by the
probability measure given by the Boltzmann weight in Eq. (1.81). An approximation for
the statistical mechanic average (A) is obtained from averaging A[s] over a large number of

configurations N which yields

1 N ‘
(0) = Jim ———r > o[s"]. (1.86)

i=M+1
In the limit N — oo the calculation becomes exact. In lattice QCD gauge field configurations
are constructed according to the respective probability distribution which allows to consider
only the most significant contributions from the path integral. This is called importance
sampling. Note that while the exponential factor does not occur anymore explicitly in
Eq. (1.86), it is implicitly included as the configurations occur with the respective probability.
In order to make sure that configurations are distributed according to the Boltzmann weight

it is necessary to have an ergodic algorithm that fulfills detailed balance as presented before.

1.5.2 Error Analysis

The use of a Markovian process requires a more detailed error analysis due to correlations in
the data set. Although a new configuration [s¢"t1)] can be extracted fully from its predecessor
[s(i)], it will be strongly related to a certain extent to the subsequent time-series of generated
configurations. This is expressed by the autocorrelation of data in terms of a non-vanishing

autocorrelation function [22]
Co(t) = (0;0i11)(0i) — (Ois) (1.87)

for an observable O. The problem that arises is that fluctuations in the data appear smaller
than they are since in fact the correlation leads to a reduction of the number of independently
sampled events which should be considered in error estimation. In order to account for such a

temporal correlation, different methods such as blocking are enforced.

Jackknife Method The Jackknife Method is applied to estimate and reduce the biases of
sample statistics [38] and to estimate variances [39]. For this method a data set X = {x;|i =
1,2,... N} of N random variables is divided into N, disjoint blocks. These are required to be

of equal size n = N/N;, which can result into dropping a few data points. The average value

23



Chapter 1 Theoretical Framework

is calculated based on a sample from N, — 1 blocks which is achieved by banishing each of the
j=1,2,... N, subsets X7 exactly once. This results in IV} average values .J;, which are used

to calculate the standard mean value
1 M
J=— Ji. 1.88
N k; (1.88)

The jackknife bias according to Quenouille [38] is simply given by (N — 1)(J — X) where X is
the mean value calculated on the original data set. A bias-corrected jackknife estimator then

follows by constructing the N pseudo-values [40-42]
Ji = NyJ — (Ny — 1)Jy, (1.89)

which are treated as if they are independent random variables. These reduce the bias from
the original data set from O(N 1) to O(N~2) [40]. These pseudo-values Eq. (1.89) can be

used to construct unbiased mean value and variance estimators for the Jackknife method [39]

1 M _ 1 Ny _

with f = f(jk) Compared to the Bootstrap method, the Jackknife is computationally
more efficient for small samples. It typically fails to describe statistics that are not smoothly
changing such as the median [41]. In general, the Jackknife is considered to be a linear

approximation to the Bootstrap method [43].

Bootstrap Method Within a data set of size N there are 2V — 1 possible ways to construct
non-empty subsets. The jackknife method is restricted to utilize a small fraction of this. The
aim of the Bootstrap Method is to improve on the used statistics by incorporating more
subsets [44]. Within this method blocks of size n are constructed by drawing random samples
from the original data set X with replacement. The total number of blocks N; that is drawn
is not affected by the size of the original ensemble and can be chosen reasonably large to get
better statistics depending on the computational resources that are invested. On each of these
individual blocks the mean value f; is calculated. These N; observations shape a distribution,
which resembles the distribution of data in the original data set. A bias-corrected bootstrap
estimate is obtained when calculating the mean value of all IV, -n resampled data points f
which results in [41, 44]

- 1 N 1 N
fb:f—ﬁbl;(fb—f)—%—ﬁbbglfb' (1.91)
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The unbiased mean value and variance of an observables is calculated by

Fo LS o e LS e (192
N v At ’ . .

In case of measuring the variance of an observable, the jackknife method is often preferred as it
requires fewer calculations. On the other hand, bootstrapping yields not just the variance but
first estimates the complete distribution which is useful for further analysis. Both methods

can be used to determine statistical errors for fitted quantities.
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CHAPTER 2

Continuous Time Limit

Based on the infinite coupling limit the continuous time limit is formulated. First, the
anisotropy parameter is discussed which finally leads to the motivation and definition
of the CT limit (cf. Sec. 2.1). This particular joint limit is applied to the strong
coupling partition function Eq. (1.76) for a step-by-step derivation of Zop (cf. Sec. 2.2).
Within this derivation first insights on the benefits of the CT limit are given (see e.g.
Sec. 2.2.2) and meson occupation numbers are introduced as new degrees of freedom (cf.
Sec. 2.3). This chapter concludes by formulating the CT partition function in terms of
a Hamiltonian which will be most helpful for the construction of a suitable algorithm to

sample such a partition function (see Sec. 2.4).

2.1 Definition of the Continuous Time Limit

For studying the continuous time limit it is crucial to be able to change the temperature
continuously. That’s why the bare anisotropy v was introduced to the staggered action (see
Eq. (1.54)). It is also part of the dual formulation where the bare anisotropy is included in
the weights of mesonic and baryonic hoppings as implied by the p(z,y), p(z,y) factors in
Eq. (1.68). Hereafter, it is pointed out why the bare anisotropy is essential for the derivation
of the CT limit.

The main objective of SC-LQCD is to study thermodynamic properties. Since § = 0, the only
way to change the temperature "= 1/(N;a(f)) is by means of the temporal lattice extent
N, as the lattice spacing cannot be varied in the strong coupling limit. In the staggered
formulation the smallest temporal lattice extent is N, = 2 such that the highest possible
temperature to be addressed is limited to 1/2. However, the chiral transition region is located
at much higher values such that simulations are always placed in the chirally broken phase.
In order to solve this limitation, an anisotropy parameter is included in the Dirac operator to
favor fermions temporal direction. In contrast to the chemical potential, there is no favoring
of forward or backward direction but both are treated equally. The temperature can be
expressed in terms of this anisotropy parameter

1 £(7)

T= N T aN with E(y) = a(y). (2.1)




Chapter 2 Continuous Time Limit

A study of the functional dependence £(7y) of the ratio of the spatial and temporal lattice
spacings on the bare anisotropy is essential. In general, this dependency is not known. There
are different approaches such as a weak coupling analysis (5 — oo) suggesting £(v) = 7.
However, this does not carry over to strong coupling, where quarks are confined on links
to color singlets. Another analysis based on a mean field approximation (with 8 < 1) of
SC-LQCD [45] states that a,T o ]'\Y,—i However, the most persuasive approach depends on a
non-perturbative determination of the functional dependence of £(y) using anisotropic lattices

Nyas = Nrar, &= % (2.2)

-

Here, a bare anisotropy calibration (&) via conserved currents in spatial and temporal
direction is performed [36, 46]. It is found that the function £(7y)/+? is monotonic decreasing
(see Fig. 2(b) in [36]) and there are various choices of fit-functions to describe the functional
behavior such as the one parameter ansatz

§(7) 11—k

2 :K+1+/€(74—1)'

(2.3)
Note that by construction the isotropic case (1) < 1 is covered. In [46] an improved fit ansatz
is discussed that drastically reduces the y-squared error, and which requires four independent
fit parameters. So far, the type of fit-ansatz to extract the anisotropy correction factor k is
a choice with unknown systematic error. Therefore, the x factor will be measured directly
in the CT limit in Sec. 4.3.1 via the above-mentioned method of anisotropy calibration with

conserved currents. So far, discrete time studies based on Eq.(2.3) suggest [36]
lim &(y) = wy?, K = 0.7810(8). (2.4)

Typically, observables have a strong N, dependence, which can even be non-monotonic.
Calculations at large N, might be necessary to gain control and perform a meaningful
extrapolation. Thus, the top goal is to remove both v and N, from the partition function
Eq. (1.76) and replace them by just one input parameter, the temperature a7'. Taking
Eq. (2.1) in combination with the insight of Eq. (2.3) and Eq. (2.4) results in the definition of
the CT limit as the joint limit in v and N

2
L N const. (2.5)

Yy—0o0

alcr =k lim a7 (v, N;), 4] =
N, >

Note that the subscript for the lattice spacing is dropped, a = a,. The second condition implies
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2.2 Towards the Continuous Time Partition Function

that ~ diverges as v/d] N.. Likewise, the chemical potential can be defined unambiguously as

appcr =k lm au(y,N;), au= NCaT,uq'y2 = const. (2.6)
Nr—o00
Y—00

Lattice simulations in continuous time will take the bare temperature &7 and chemical potential
ap as input parameters. However, according to Equations (2.5) and (2.6) the correction factor
« has to be included in order to adjust the parameter set as (a7, au) — (aTcr, app,cr). The
factor x will be determined later directly in the CT limit at zero temperature.
Within the next section, the joint limit of Eq. (2.5) is applied to the partition function of
SC-LQCD Egq. (1.76) in order to derive the partition function in the CT limit.

2.2 Towards the Continuous Time Partition Function

The CT partition function is studied in the chiral limit m, = 0. Since the mass contribution
to the partition function comes merely from the monomer sector, the chiral limit is obtained
by removing the monomers (n, = 0) . This converts the monomer term to a trivial weight
IL, Yl(2am,)™ = (N.!)V. The CT partition function in the chiral limit reads

ng!

GC d
ZpTmg=0(tig) = (N - 1 {( I1 WW%HWOH) (2.7)

{k,£} p=0 zeVy

. (H o0 [T e <w<z>NcNtatuq>) } , (2.8)
with the sign function o(¢) defined as before (cf. Eq. (1.78)) and the lattice volume V =
VPT = N3 x N,. Inside the curly brackets, the partition function is split up distinctively
in a mesonic (Eq. (2.7)) and a baryonic (Eq. (2.8)) contribution. Within each respective
sector, the bare anisotropy only couples to the temporal contribution via dg,. In the following,

different steps are performed in order to proceed gradually towards the continuous time limit.

2.2.1 Factorization and Grassmann constraint

Each sector is factorized in a temporal and spatial part such that the impact of the bare

anisotropy can be studied better:

S8 d — KRi(x))! c— x))!
Z(y a1, Nr) = 3 {( 11 (H (N]ifc!kkla(c)!))‘> = kﬁﬁ ))"V%O(x)) (2.9)

{k7£} eV \i=1 i

X (H a(f) H yNedous eXP{T(E)NcNtath}) } (2.10)

(CVp (z,1) €L
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Note that the prefactor (N.!)V is canceled by pulling out its inverse from both mesonic
1/(N.)"™ and baryonic 1/(N.!)"® volume. The restriction of the configuration sum enforced
by the Grassmann Constraint (GC, cf. Eq. (1.75)) can be explicitly incorporated. For the
mesonic volume V) the GC states that configurations need to fulfill 3, k, = N.. This means
that exactly N. dimers are required to be attached to a single site. The baryonic sector

already satisfies the GC by being build up from self-avoiding baryon loops only.

From the Grassmann Constraint it follows:

S k)t Y A = Sl (2.11)
2 2

EVr, z€VR,u

The factor 1/2 emerges as each dimer or baryon line connects two adjacent sites. Thus, it
contributes twice which has to be compensated for. Based on Eq. (2.11), further modifications

can be worked out by distinguishing between spatial and temporal contributions

NV = Y 2ku(x)+ > Nelbu()|

€V, u zeVp,u
(2.12)
= > 2ko(2)+ > Nefbo(@)| | +| Y. 2ki(z)+ > Nefbi(a)| | -
eV eV xGVM,i IEVB,’L'
Go gi

As discussed, the bare anisotropy acts only on the temporal contributions as 490 = NeV =5

Thus, by pulling out the factor yV<V" from Eq. (2.10) changes the partition function to

: — ki(z))! , . — ko(x))!
2 amg Ne) =7V 3 { ( R AER (.H W”%(w)) W)

{k‘,f} x€Vy  n =1

X ( H o(?) H Ay Nedip exp{w(Z)NcNTaT,uq}) } (2.13)

LCVp (z,u)el

Spatial links are now suppressed by a factor of 1/42 for mesons and 1/y™¢ for baryons.

2.2.2 Carrying out the CT limit

For the limit in the bare anisotropy v — o0, all subleading terms are supposed to vanish.

Since the average contribution per time location is 1/42, this has far-reaching consequences.

Firstly, there are no spatial dimer contributions with occupation numbers k;(x) > 1. The

remaining contributions come from static dimer chains and single spatial dimers. Thus, the
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2.2 Towards the Continuous Time Partition Function

spatial mesonic sector changes to

d
(Ne = ki(®))! _opa 1
HW’Y @ = 5ki($),0+6ki(x),1ﬁ67 : (2.14)

Secondly, spatial baryonic links for models with V. > 3 are suppressed. Studies on discrete time
lattices but with a restriction on the maximally allowed number of spatial dimers support this
truncation [46]. As baryons are purely temporal (i.e. static) the sign o(¢) = (—1)*(O)FN-(O+1
becomes strictly one since w(¢) = £1 and N_ € {0, N;}. Thus, in the continuous time limit
there is no sign problem. Each spatial baryonic site comes with a weight e?(F)NeNrariq with
only two distinctively different states: a static baryon line with winding number w(Z) = +1

or a static anti-baryon with w(¥) = —1.

Finally, for N. = 3 the partition function simplifies to

~ -2 — !
Z(y,uB/T,N:) = > ( IT o5k, <5ki(m),0+6ki(z),1z\fc> (cho(l;o)(!x)) ) (2.15)

{k‘}‘vjw €V

X Z H exp{w(Z)up/T} | . (2.16)

{wlvg \3eVg

Here, the overall prefactor 4™V¢" is dropped as it treats all sites equally. The baryonic volume
is split up into a spatial and temporal part Vg = Vg x N;. The exponential of the baryonic

weight is rewritten in terms of the ratio of temperature and baryon chemical potential
u/T = app/aT = NeNrarp,. (2.17)

While N, drops out of the baryonic contribution of the partition function, it is still implicitly

incorporated in the product over the mesonic volume Vj; = Vi, x N-.

Note that it does not require large N, to make baryons static at a fixed temperature.

2.2.3 Baryon resummation and mesonic vertices

As baryons are static they can loop around the lattice in temporal direction exactly once.
Therefore, the set of winding numbers {w}[yg contains two possible values: w(Z) = +1 or —1.
As a result, the static (anti-)baryon contribution can be resummed into one combined object,
a polymer with site weight wp = 2 cosh(up/T'). For the full baryonic volume it follows that
this weight comes with a power |V3| corresponding to the number of spatial sites within V3.
The mesonic sector is the most part trivial as static lines or segments carry a weight of 1.

This can easily be shown by considering a temporal dimer chain consisting of two sites and
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bonds and explicitly writing down the weights

Vag(ios ww N Wbl 2.18)

Due to the staggered even-odd decomposition of the lattice, sites come in pairs and the weights

have to be split by taking the square-root. The weight of a mesonic line is only affected by
attached spatial dimers. These contributions will be encoded in vertex weights v(z ;) with
each vertex having N, — 1 temporal dimers attached to it as well as one spatial dimer. Latter
connects two adjacent spatial sites (¥, 7), (414, 7) via the bond b = (¥, 7;4) such that vertices
always come in pairs. In fact, the total number of vertices in a configuration has to be a

multiple of four in order to restore the Grassmann Constraint at the boundary.

There are different types of vertices which can be classified according to the number of
attached temporal dimers in backward direction k; = ko(Z, 7 — 1) and in forward direction
kg = ko(Z, 7). Based on this notation the Grassmann constraint simplifies to ky +kg +1 = N,.
Generally, the associated vertex weights are calculated as usual by considering the site weight
N.! as well as three bond contributions belonging to &, kar and the single spatial dimer.
Thus, the weight follows as

I —_ _ kt B S A
U<kark3>:N0!J <N6k0f’o>’<N;w1>’<ch0jo>!:\/WC Wl £ g

As there are N, — 1 temporal dimers distributed among k;, and kzar , there are N, different

types of vertices. These take values in the range {0,1,..., N. — 1}.

The partition function expressed in terms of static baryons as well as pairs of meson vertices

reads
Z(v,pp/T,Ny) = (2.20)
GC — .+ — .+
olky 1k im0 kg 1) i .
2 > {( 11 e )720 0T ) (2cosh(up/T)) V8! }
{Vg:. Vit {koe{O,-n,Nc}}’ {z|ki(z)=1}
k;€{0,1} Vi

The N, dependence remains as configurations are still implicitly given by discrete dimer-chains.
The weights of these configurations are dictated by the shape of the vertices and calculated
via Eq. (2.19). Note that in Eq. (2.20) the lattice volume is separated into two distinctive

volumes, a mesonic subvolume V3, and a baryonic V3.

2.2.4 Vertices for N, = 3

For N, = 3, two general classes are distinguished, L.-shaped and T-shaped vertices. The
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L — shaped T — shaped
N.=1 |
Ne=2 o o
Ne=3 o o .
N.=14 Il | |

Figure 2.1: Two different classes of vertices emerge as the number of colors is increased. For
N, > 2 there are N_ = 2 L -shaped vertices and Nt = N. — 2 T -shaped vertices with weights
given by Eq. (2.19). For N, = 3 the specific weights are stated in Fq. (2.21).

specific weights read

ve = 0(0[2) =v(2|0) =1, vr =ov(1]1) = (2.21)

2
V3
There are four key observations:

e For arbitrary N., non-trivial weights only occur in the T-shaped class.

e The calculation of vertex weights is independent of their location (&, 7) within the
mesonic volume and only the respective number of different vertex types affects the

contribution to the mesonic part of the partition function.

e The complete temporal dimer chain can be reconstructed from knowing the dimer
occupation number in the first time-slice ko(Z,0) as well as the position of the attached

vertices.

e In addition to the requirement of an even number of vertices per spatial site, it is also
necessary for vertices to occupy the same number of sites with even and odd parity.
Therefore, the number of absorption (even parity) and emission sites (odd parity) is the

same #& = #A.

As a result, the mesonic sector of Z is decomposed in L. and T vertex weights coming with

respective multiplicities fulfilling

1/dT
= Z/ drn (Z,7) +nt(Z,7) | =np,, (2.22)
0

zevy,
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with n being the number of attached spatial dimers. The partition function changes to

Z(v,15/T, Ny) = (2.23)

\%Y: GC n nL (fﬂ') nTt (gﬂ—)
v v o
DD I (=" (=) (2cosh(pus/T))"E |}
VB, Vit n=0 [k (z,0), J=1
B {7&(%2 }‘VM ((@7575)
with the number of spatial dimers being bound by the mesonic volume due to the discretization
in temporal direction. The product is over all nearest neighbor pairs (Z,§) connected by a

spatial dimer.

2.3 Continous Time Partition Function

According to the definition of the continuous time limit Eq. (2.5) it is necessary to replace the
~ and N; dependence of the partition function Eq. (2.23) by the temperature. This is done
by studying the admissible sequence of vertices on an arbitrary mesonic site. As a shorthand
notation, vertices are written in terms of meson occupation numbers v(k|l) which are used
at this stage merely to label all possible N, + 1 alternating dimer chains. The sequence of
successive vertices can then be denoted as v(k|l|m) = v(k|l)v(l|m). The following part focuses
on N, = 3 but can be straightforward generalized to arbitrary N..

Without considering discrete dimer chains anymore, an interval between two successive vertices
can still be classified as even or odd. A sequence of either emission sites £ — £ or absorption
sites A — A is determined to be even. The meson occupation number is either successively

increased or decreased by such a vertex combination

v(0[1]2),  w(1]2[3)

(2.24)
u(31211),  w(2[1]0).

This corresponds to a combination of L.-vertex followed by a T-vertex or vice-versa (for
N, = 3). Since the initial and final meson occupation number do not match, such vertex
combinations are necessarily followed by further vertices in order to fulfill the GC. As
mentioned before, the number of dimers attached to absorption and emission sites has to agree.
This is realized by mixed sequences A — & and £ — A corresponding to odd intervals where
the occupation numbers are increased (decreased) by one unit and successively decreased

(increased)

v(0[1]0),  w(121),  w(2[3]2)

(2.25)
u(31213),  w(21]2),  v(1]0[1).
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In this case, also the vertex type stays unchanged corresponding to two subsequent L.-vertices

or two subsequent T -vertices.

Considering a set of n oriented spatial dimers to be distributed along the temporal extent of
site Z. Multiple spatial dimers are suppressed such that each spatial bond b(Z,t;4) € {0,1} is
occupied by maximally one dimer. Due to the Grassmann Constraint the number of oriented
dimers attached to an absorption site A equals the number attached to an emission site £.
Thus, the first spatial dimer from one of the subsets has N./2 possible locations. For the
second dimer from the same subset there are N, /2 — 1 locations left and the £*® dimer has
N./2 — k + 1 options left. For large N; this results in

:ﬁ(NTm —(k—1)) Nfirge ﬁ (?) = (?)Wz. (2.26)

For spatial dimers of arbitrary orientation this leads to a factor (N;/2)". This means that a
single spatial dimer suppressed by =2 has on average N, /2 position to choose from when

being attached to a site . This factor can be expressed in terms of the temperature

NT n ]. n . 2
Note that within this limit the probability of having multiple spatial dimers at the exact same

location is zero as the maximal number of spatial dimers is given by the order O(y™").

Furthermore, time ordering is a global aspect: From all possible n! permutations of n vertices
only one is time-ordered. Thus, a respective factor 1/n! has to be included and the continuous

time partition function follows as

: 11
Zor(aT,ap) = Y. Y e@ns/T $7 meFar S T (2.28)

{VE. Vi) {w}|v§ ne2N Ger.M

with Ty, = {no(Z,7),nT(Z,7)} being the set of all valid configurations with a total of n
spatial dimers. Since the time direction is compact, it is in theory possible to distribute
infinitely many spatial dimers on the lattice such that the sum nGXQ:N is not restricted anymore
by the mesonic volume. Moreover, as v = 1, such contributions can be neglected and only

the total number of T-shaped vertices contributes as

1/dT
Nt = Z/O drnt (Z,7), (2.29)

zeVy

with an integration over the compact temporal direction.
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v | Continuous Time

Meson States
3

Figure 2.2: Exzample for a CT configuration on a two-dimensional lattice. Baryons are static
and purely loop in temporal direction. Spatial dimers are located at uniformly distributed temporal
position.

Discussion The expansion in n is an all order high temperature expansion. It will also hold
at very low temperatures and it is possible to address zero-temperature phenomena.

When studying the partition function Eq. (2.28), it gives immediately an impression on how
configurations in CT look like (see Fig. 2.2). There is a baryonic volume V3 saturated with
static (anti)-baryons and a mesonic volume Vy; with scattered vertices v and vy. The
number of spatial dimers is a function of the temperature due to the factor 1/(247)™. At large
temperatures the partition function is dominated by configurations that are almost spatial
dimer free since the density (np,) becomes small. On the other hand, in the low temperature
regime configurations with large numbers of spatial dimers still contribute. As discussed in
Sec. 4.2, the spatial dimer density can be taken as an order parameter for chiral symmetry
breaking.

Note that even though spatial dimers are suppressed by 1/+2, their number stays finite since

the summation is over O(v?) sites is compensating for the suppression.

2.4 Hamiltonian Formulation

For analytic studies of the continuous time limit the partition function in Eq. (2.28) is well
suited, especially at temperatures above T, where the series can be truncated at low orders.
A main challenge is the determination of the T-vertex multiplicities.

Nevertheless, a formulation in terms of a Hamiltonian composed of operators is also of interest
for analytic and numeric studies. Thus, in order to prepare for Quantum Monte Carlo

on quantum states, it will be more suitable to reformulate Eq. (2.23) in terms of meson
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occupation numbers m. Instead of referring to a discrete dimer chain by its dimer occupation
at k(Z,0) = ko(Z), this can be replaced by the following assignment
N, N,
ko(x) — m(z) = €(z) <k0(a:) - 2c> + 70 (2.30)

m(z) € {0,1,... N.}, (2.31)

with the parity of a site ¢(z) = £1 introduced in Eq. (1.56). Note that neighboring sites which
feature the exact same dimer chain will have meson states that add up to m(z)+m(y) = N.. A
meson occupation number m(x) is constant on the interval between attached spatial dimers. As
used before, vertices in the dimer number are replaced by the vertices which are characterized

by meson occupation numbers
v(ky |kg) = v(m ™, mT) (2.32)

with ky the number of dimers in temporal backward direction and k§ in forward direction.
These new vertices change the meson state by one unit: m™(z) — m™*(z) = m~(x) + 1 such

that the partition function reads

Z(y,up/T,N;) = (2.33)

n

VM _ + o - + — . g
Z Z Z H v(m™[m™) iz v(m”[mT) @ (QCOSh(HB/T))‘VB‘ ’
p— 7 l j= ’y ’7
o Valn=0 b(Zt0 ~1
{V]\/[ VB} {m ( t )}lV]\/[ (f?T)ij

with b(Z, 7;1) the set of bonds occupied by one spatial dimer at location (Z,7) and in direction
1. Two vertices connected by a spatial dimer are defined on sites & and & + i of opposite
parity. From the meson state definition (2.30) it follows, that if the quantum number m~(x)
is raised (lowered) by a spatial dimer, the associated state m™(x + ) is lowered (raised). Thus,
the meson occupation number is a conserved quantum number. The vertices are replaced by

meson state lowering/raising operators J* and the partition function is further rewritten as

Zor(dl s ap) =
1 RS ops/T
Z {Trmv& [exp <2a7' Z (J%FJZ7 +J2 J;{)) Trwlvg {e ne/ }} (2.34)
Vi VE} (@.9)

The configuration sum is over all possible volume partitions into a mesonic M and a baryonic
B part. There is a trace contribution for the meson states Try, which are constraint on the
spatial mesonic volume and a trace over the winding number that’s limited to the baryonic

subvolume. The same large N, discussion as in Sec. 2.3 makes it possible to write spatial dimer
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Chapter 2 Continuous Time Limit

contributions as an exponential exp(z) = Y (z)"/n!. The product over bonds occupied by a
n

spatial dimer becomes a summation over nearest neighbors within the exponential. Finally,
both sectors can be written as traces of exponentials, where baryons and anti-baryons are
considered independently via the baryon winding number operator @. In terms of a joint trace
over hadronic quantum states § the partition function reads

A R 1 A A R

H+Q i - — ~

Zon T o) =Ty [P0 T A= LS (T 40 7) s fw= S (289
(@) z

with the Hamilton operator # and the baryon number operator Op corresponding to meson
and baryon exchange respectively. The meson state lowering and raising operators J* contain

the vertices within a (N, + 1) x (N, + 1) block as well as the diagonal baryon winding number
(2) x (2) block

0 0O 0 O 00 0 0
v O 0 0 00 0 O
T A R N T B (2.36)
v O 00 0 O
0 1 0
0 0 -1

The block diagonal form, here explicitly stated for N, = 3, is due to the Hilbert space being
decomposed into invariant subspaces — mesonic states and baryonic states cannot coexist on
the same site. Thus, a hadronic quantum state |h) can be written as a direct product of a

mesonic part |m) and a baryonic part |b) such that
b) = [m) & |b) = (0,7, 2, 37|B*, B)", [H,Q5] =0, (2.37)

with B¥ the (anti-)baryon. The invariance of the two is stressed by the commutation relation
of the Hamiltonian and the Baryon number operator. The meson quantum state counts the

number of pions which are flavorless for Ny = 1.

In the chiral limit the pion current is conserved as vertices come in pairs of opposite parity.
Due to this conservation law, spatial dimers cannot be distributed on a lattice that is fully
saturated since every site is occupied by N, pions. Likewise, a configuration with no pions at

all cannot develop meson transfers.

There are some more interesting features concerning the creation and annihilation operators.
If the additive constant N./2 is omitted from Eq. (2.30) a particle-hole symmetry emerges.
For the N, + 1 mesonic states, half of them behave like particles propagating in forward
direction while the other half consists of the opposite directed current. The corresponding

algebra has structure of a spin, but it has nothing to do with the spin of the particles. Note,
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2.4 Hamiltonian Formulation

that the alternating dimer chains just encode the fact that the lattice spacing for staggered
fermions is 2a, rather than just a.

The Hamiltonian formulation is the starting point for constructing a worm-type algorithm
as presented in chapter 3. Interesting symmetries concerning the creating and annihilating
operators are accessible from Eq. (2.35). The meson/baryon state occupations numbers
occur as quantum numbers of the operators. Within the next chapter it will become evident
how a worm-type algorithm changes a configuration gradually by adjusting these occupation

numbers.
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CHAPTER 3

Continuous Time Worm Algorithm

Nowadays, continuous time algorithms are widely used in Quantum Monte Carlo (see
e.g. [47, 48]), but to my knowledge have not yet been applied to quantum field theories.
In this respect global algorithms such as cluster-type algorithms or worm algorithms
are of interest as they eliminate the critical slowing down problem in case of performing
simulations close to non-analyticities [49]. A worm algorithm works in an extended
configuration space with additional configurations that feature two defects, a worm Head
and a worm Tail. This algorithm consists of local update schemes which operate at these
ends of the worm. For its applicability, the partition function needs to be formulated
in terms of bond variables. This is available in a dual representation of lattice QCD
based on the strong coupling expansion. Based on the derivation from the previous
chapter 2, the CT partition function Z¢r formulated in terms of a Hamiltonian is used
to be sampled by a CT worm algorithm. As discussed, this algorithm will use meson

state occupation numbers in order to direct the worm through the lattice.

Within this chapter, the two concepts of an algorithm working in continuous Euclidean
time and a worm algorithm are highlighted (see Sec. (3.1)). A combination of the two
ideas leads to the CT worm algorithm, which is introduced and applied throughout this
dissertation (Sec. (3.3)). It samples the CT partition function Eq. (2.35) for SC-LQCD.
A focus is on pointing out the interplay of absorption and emission update procedures
guiding the worm through the lattice (Sec. 3.2.1). Finally, the benefits of an algorithm
that samples directly in the CT limit is stressed (Sec. 3.4).

3.1 Two essential concepts

The simulation of quantum systems in continuous Euclidean time was first discussed by
Beard and Wiese [47]. They study the 2D Heisenberg model which is obtained by means
of the Trotter-Suzuki expansion of a 1D quantum mechanical system which is transformed
into a 2D system of classical Ising-like variables. There are three different types of decision
processes to be encountered in time that guide through an updating path. These are referred
to as “forced continuation”, “forced transition” and “optional decay” [47]. An updating path

is characterized by transition times and the states that are interconnected by transitions.
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Therefore, for a continuous time algorithm it suffices to store the transition times for each
spatial site in addition to the initial state in time-slice 7 = 0. In contrast a discrete time
algorithm requires to store the state information at each space-time point [47]. While path
updates are performed incrementally step-by-step in discrete time, greater leaps are possible
in the continuous time version where the transitions are known to be distributed exponentially.
The associated Poisson process is described in the next section.

A cluster-type algorithm that satisfies locality was first discussed by Prokofev et al. [49,
50]. The idea of the so-called worm algorithm is to sample closed path configurations which
are based on high-temperature expansions such as derived for CT in Eq. (2.28). An update
procedure features a disconnected path with two special sites, worm Head and Tail at either
end. While the worm Tail remains stationary, the worm Head propagates until reunion
denoted as “shift Update” (cf. Alg. 2). With a certain probability pgige the shifting will
continue, but with probability pmove = 1 — Pshitt worm Head and Tail recombine and a “move
Update” suggests a new location (cf. Alg. 1). Note that for a discrete time setup, during the
“shift Update” an increase (decrease) in bond occupation number is always balanced by a
respective decrease (increase). Likewise, the meson state will be conserved by a continuous
time algorithm. During the worm evolution, two-point correlation functions are sampled (cf.
Sec. 3.3.2) which give immediately rise to histograms for the temporal correlator analysis and
the chiral susceptibility (cf. Sec. 4.2).

3.2 Poisson Process

The weight of a configuration does not depend on the lengths of the segments separating
two spatial dimers, but only on the relative ordering. Therefore, spatial dimers should be
uniformly distributed with the inter-arrival times t;;1 — t; being exponentially distributed
[47]. The probability to locate exactly N spatial dimer emission events within a time interval

of At is given in terms of a Poisson distribution [51]
1
P(N|At) = ﬁ(AAt)Ne—W, At € [0,1]. (3.1)

The decay constant A represents the average number of spatial dimers being emitted per unit
time. The compact time interval is rescaled [0,1/47] — [0, 1] such that the decay constant is
temperature dependent. Due to the presence of baryons, the number of possible neighbors to

emit to is constraint and A also becomes space dependent

AT, &) = das(2)/(4aT),  dus () —2d- Y |B(@)|. (3.2)
(Z,7)

The number of available nearest neighbor mesonic sites is denoted as dp/(Z). Note that in

case a site & on which the Poisson process operates is fully surrounded by baryons, the decay
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3.2 Poisson Process

constant becomes A = 0. In this case, the distance covered by the Poisson process is maximal

P(N = 0|At) = exp(—AAt) =1, (3.3)
A=0
and a pure temporal propagation is chosen.
The distribution of spatial dimers can be measured in CT Monte Carlo worm simulations on
various intervals At. A fit of the resulting distributions according to Eq. (3.1) validates the
Poissonian shape. By excluding baryons and fixing parameters to their usual values (N, = 3,
d = 4), the decay probability A takes the value

2d 18

——4iVe = T+ (34)
44T 44T

)\site =

in case the distribution of spatial dimers over the lattice sites is considered. Based on the
results in Fig. 3.1, it becomes evident that the extracted distributions are clearly Poissonian
with good agreement. The few percentage mismatch in the decay constant is probably due to
the periodic boundary conditions. Usually, a Poisson process is defined on an infinite line and
not a circle. Additionally, a mismatch in the fit becomes more distinct at larger temperatures
where the distribution is expected to become more peaked shaped and settles towards smaller
numbers of vertices per site. Here, static baryons influence the result, as they become more

and more common in temperature ranges below, but in close proximity to 7.

3.2.1 Emission and Absorption Sites

According to the Poisson process, an interval At is covered before a pion is transferred from
an initial site Z to a neighbor 3. The site Z is denoted as emission site £ which reduces the

meson occupation number by one unit

Emission event: (#,t) €&, m—»m—1 (3.5)

Absorption event: (7,t) € A, m—m+ 1. (3.6)

In terms of the Hamiltonian representation, the meson state lowering operator J- represents
an emission event. Due to the meson number conservation, the emitted meson occupation
number unit is transferred via the spatial dimer (pion hopping) and is absorbed at site
(,t) € A, thus called absorption site (cf. Eq. (3.6)). Here, JT raises the respective mesonic
quantum state by one unit m — m + 1. In order to obey the Grassmann Constraint it is

necessary to have as many emission sites as absorption sites belonging to the same &
{ti [ (7, 1) € €} = [{ti [ (T, 1) € A}|. (3.7)

This resembles the underlying even/odd decomposition structure of staggered lattice sites.
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Poissonian distributions
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Figure 3.1: Top: Distribution of the number of spatial dimers at fixed temperature in varying
interval length At. Data are fitted by a Poisson distribution and results compared to the expected
value of the decay constant \. Bottom: Distribution of the number of spatial dimers at various
temperatures but fized interval length At = 0.5. Results are Poissonian distributed as validated by

the fit.

Apart from the emission of spatial dimers, a corresponding absorption process is necessary in
order to fulfill detailed balance and to obtain an equilibrium distribution of spatial dimers for
a certain temperature and chemical potential. This means that the meson state is a conserved

quantity throughout the propagation of the worm.

3.3 Algorithm Details

The basic idea for a worm algorithm operating in the strong coupling limit was developed by
Adams and Chandrasekharan [52]. They discussed a discrete time algorithm with staggered
fermions in the chiral limit and a U (V) gauge group. They excluded dynamic baryons since
these could form non-trivial geometries that trap a directed path mesonic worm (see Fig. D.1).
For a directed path algorithm, the incoming and outgoing propagation direction of the worm
Head have to be different. Such an algorithm is more efficient in updating configurations in
contrast to an algorithm which allows for backtracking (incoming and outgoing direction are

allowed to match).
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3.3 Algorithm Details

Algorithm 1 Select new location to place worm Head and Tail, avoid baryons

1: function MOVEUPDATE

2 do

3: Hx=irand(V); > Choose random spatial site
4: Ht=drand(); > Choose random temporal location € [0 : 1]
5 while on baryonic site

6 return Hx, Ht

Algorithm 2 Shift worm Head through lattice until recombination

1: function SHIFTUPDATE

2 Call MOVEUPDATE > Determine initial Head and Tail location
3 while Worm not closed do

4 Call ABSORPTIONUPDATE > Determine direction
5: if dir=spatial then

6 if At Worm Tail then

7 Close Worm

8 break

9 Move to neighboring site Hx=Hy

10: dir=Choose temporal direction

11: Call EMISSIONUPDATE > Determine At
12: for (t =0; t < At; t++ ) do

13: Increment Histogram

14: if Found Absorption site then

15: Hx=Ha

16: break

17: if not at Absorption site then

18: Add spatial dimer

For SU(N,.) gauge theory studies of the continuous time limit, two separate worms are required
[30], one sampling the mesonic sector and a second one sampling the baryonic sector. The
algorithm is based on a decomposition of the lattice in absorption A and emission sites
£. A new update starts with a moveUpdate where the worm enters the lattice through an
absorption site. The worm Tail is fixed at this position until recombination and raises the
meson state by one unit m — m + 1, similar to a monomer source. In order to consider the
Grassmann Constraint to be fulfilled at all times the worm Head can be interpreted as a (1)
monomer source on emission sites which acts as an absorption site raising the meson state, or

(2) a monomer sink at absorption sites which lowers the meson state by one unit.

In general, the worm movement is an alternating succession of Absorption and Emission
Update procedures. While an Absorption Update deals with decision processes at absorption
sites, the Emission Update covers the handling with emission sites (cf. Alg. (2)).
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Chapter 3 Continuous Time Worm Algorithm

Algorithm 3 Choose direction to continue worm propagation

1:
2
3
4:
5
6

function ABSORPTIONUPDATE

if Incoming from spatial direction then
dir=Choose temporal direction

if Incoming from temporal direction then
dir=Choose spatial direction or proceed temporal

return dir

Algorithm 4 Determine distance to cover in temporal direction

1: function EMISSIONUPDATE

2:
3:
4:

Calc # AccessibleNeighbors
Calc At from exponential distribution
return At

Absorption Update Whenever located at an absorption site, an Absorption Update is per-

formed which either deletes an absorption site or chooses a temporal direction (see Fig. 3.2).

This depends on whether the incoming direction is spatial, temporal or the site itself:

e Coming from a spatial direction p after spatial dimer emission requires the worm to

select a new temporal direction. Due to the new absorption site vertex which raises
the meson occupation number by one unit, it is not possible to choose both temporal
directions with equal probability due to the Grassmann Constraint. The probabilities
are based on the respective occupation numbers

m-o m.io
Poro =5 —7 Pero=x 1 (3.8)

In case of zero pion current m-g = 0 in backward direction, the worm has to continue
propagation in forward temporal direction. Vice versa, the emitted absorption site can
raise the meson occupation number in forward direction to m.+g = N, + 1 which requires

a temporal backward propagation of the worm.

Coming from a temporal direction 40, the temporal propagation of the worm Head is
paused at each absorption site. These are either associated to a spatial dimer or the
worm Tail. Either way, both are considered to have an occupation number of m = 1,
i.e. they are identified as a source. It is always an option to delete the spatial dimer or
worm Tail respectively, however, a continuation in temporal direction depends on the

meson occupation number

1 myo

P =— P = 3.9

(-0lp) 1+my (-0|+0) 1+ mo (3.9)
1 Mg

Ploow = 1 Fooro = 77— (3.10)
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absorption events: start worm:
1

1+mig
m Mg myy i My My
N1 A NSt , AT _ e A e
choose temporal direction delete spatial dimer choose direction

Figure 3.2: An absorption site is encountered after the emission of a spatial dimer or when
deleting a spatial dimer. During worm start the absorption site is entered via the site itself and an
immediate recombination is possible.

emission events:

< £ > > £ >
0.5 0.5 e At
I 1— e—)\Atl
choose temporal direction emit spatial dimer

Figure 3.3: An emission site is removed from the lattice as a consequence of the deletion of a
spatial dimer. The distribution of emission sites is controlled by the Poisson process.

Emission Update Whenever located at an emission site £, an Emission Update is required.

Either a spatial dimer is emitted or a new temporal direction is chosen after an emission site

was removed (see Fig. 3.3).

e Coming from a temporal direction, the worm propagation is dictated by a Poisson
process. The probability to emit a spatial dimer or rather continue in temporal direction

is given by
Pojzo0) = e A, Piiopy =1- e AL (3.11)

In case of spatial dimer emission, each spatial direction y = +1,--- 4+ d can be selected
with equal probability excluding the ones occupied by baryons. It is impossible that
all neighboring sites are baryonic for At < 1. For At =1 (see Eq. (3.3)) the Poisson
process dictates to loop around the lattice in temporal direction to find the absorption

site where it started.

At high temperatures, the decay constant is small A = A(dT) < 1 (cf. Eq. (3.2)).
Therefore, the worm Head likely covers lager distances in temporal direction before

emitting spatial dimers. On the contrary, a small temperature will encourage the spatial
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dimer emission such that the worm Head is redirected so frequently resulting in a much
larger sequence of updates before recombination. Therefore, the average worm length

drastically increases.

e If the incoming direction is spatial, a spatial dimer is removed by an Absorption Update.
As a consequence, the attached emission site is removed and the meson state is not
modified anymore at the current worm Heads location. Thus, meson occupation numbers
are equal in forward and backward temporal direction. Therefore, the probabilities for

either direction are equal

1
Pojz0) = 5- (3.12)

Worm Start Based on the Absorption Update, the start of a worm requires an almost identical
discussion to the case when the worm Heads incoming direction is spatial. However, since
there was so far no monomer placed at the worm Tails location, the Grassmann constraint is
satisfied by the mesonic states in forward and backward temporal direction. The involved

probabilities read

mo mio .
P(s\-O) = FC, P(s|+0) = ﬁ, with m+myg = N.. (3.13)

c

3.3.1 Worm Propagation

After a successful moveUpdate, worm Head and Tail are located on a random mesonic lattice
site. The Head finds an outgoing path with a probability that satisfies detailed balance. The

maximal propagation distance in temporal direction is given by
At = —In(R)dp (Z)/(44T), (3.14)

with the decay constant from Eq. (3.2) and R a random number R €[0:1]. Note that it is
incorporated in Eq. (3.14) that the inter-arrival times are distributed exponentially. During its
movement in temporal direction, the meson states are modified. For each boundary crossing
in forward direction, the occupation numbers are raised by one unit and for each crossing in

backward direction they are lowered respectively. Two scenarios can occur:

e An absorption site is located within the interval At such that the worm stops at its
location ¥ and an Absorption Update decides on whether to delete the spatial dimer
(see Eq. (3.9)).

e No absorption site is found and the full distance is covered in temporal direction. A
spatial dimer is emitted and the worm Head is moved to the selected site where an

Absorption Update decides on the new temporal direction.
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This interplay of Absorption and Emission Update is continued until the worm Tail is removed
from the lattice by an Absorption Update corresponding to a recombination of worm Head
and Tail.

Measurements of closed loop observables are performed after each update. Furthermore, a
certain number of measurements Nyeasure 1S required to obtain decent statistics. This results

in a total of Nypdate * NVmeasure Worm updates to be carried out for each simulation.

3.3.2 Measurement of Monomer Two-point Functions

In contrast to the vast majority of observables discussed in the next chapter 4, the monomer
two-point functions are measured during the worm evolution as worm estimators and not on
closed loop configurations. Therefore, a short overview on these specific functions is given
here. In the chiral limit where monomers are absent (n, = 0), measurements of monomer
two-point functions only include the worm Head and Tail. A measurement is performed when
both defects are located at an absorption site which is true after an Emission Update. While
the Tail is always considered to be a monomer source, the Head only acts as a monomer sink
at absorption sites. The monomer two-point contributions are accumulated in histograms
which give rise to correlators.

Due to translational invariance, only the relative lattice vector z = 1 — x3 is needed. For

discrete time configurations the increment reads

Vor

Hy(2) = Ha(2) + f(V)0zpp—an, (V)= du(zn) + 292

(3.15)

with dy(z) defined in Eq. (3.2) and Vpt = N2N,. In continuous time this is modified to

Ha(Z,7) =5 HolZ,m) + f(T)ozzy i 0(r — (o —m)), f(D) =355 (3.16)

with Vot = N3. The connected chiral two-point function G(Z,7) is approximated by such

accumulated and normalized histograms

C Hy(Z,7). (3.17)

. L N,
G(Z,7) = (Xx0 XXzr) =~ -

3.4 Benefits of a Continuous Time Worm Algorithm

It is only reasonable to end this chapter by stressing the benefits of the presented algorithm. An

algorithm that operates directly in the Euclidean continuous time limit is strongly motivated:

e There is no necessity to perform multiple simulations at different N, - where larger N,

require more statistics - and an extrapolation to continuous time N, — oo becomes
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obsolete. Thus, an unnecessary high workload can be avoided which would include an

additional fit error estimation.

e Observables have a simpler structure in the CT Limit as it is not necessary to consider the
functional dependence on the anisotropy &(7y) (cf. Sec. 4.1). Especially a non-monotonic

behavior makes it harder to deal with the discrete time extrapolation process.

e Baryons are static in CT since spatial hoppings are suppressed for the v — oo limit
(N > 3). This results in a vanishing sign problem o (¢) = 1, such that no sign reweighting
is necessary which introduces noise. A static baryon approximation can also be enforced
in DT such that the IV, extrapolation is much more controlled. The error introduced by

this approximation is not too bad.

e The CT algorithm is expected to be faster in many regions of interest, especially around
the chiral transition and for large temperatures. In particular, the baryonic update

procedure is detached from the mesonic and requires no worm evolution.

As mentioned by the last item, the CT algorithm clearly outperforms the discrete time worm.
In a temperature range around the chiral transition line and above this is strongly supported
by shorter sampling times (Fig. 3.4). Simulations at large temperatures feature mostly static
meson lines as spatial dimers are suppressed. The Poisson process samples time intervals
which force the worm to loop around the temporal lattice extent without any emission events.
This results in short runtimes as mostly no detours are taken.

At temperatures below the chiral transition the discrete time simulations are affected by
saturation effects due to the finite number of spatial dimers that can be placed along the
temporal direction. These effects arise at temperatures below 1/N; (v < 1) where the number
of spatial dimers is larger than the number of temporal dimers. Hence, this leads to a limiting
value of N.N;/2 for the spatial dimer density in DT. On the contrary, no such limit is present
in CT as there is no discretization anymore and dimers can be placed arbitrarily tight. In
order to compensate for the saturation effects, it is required to consider larger N, for a
thermodynamic extrapolation at small temperatures. Therefore, the shorter runtimes in
Fig. 3.4 for discrete time algorithms have to be put into perspective to the above discussion.
Independently of the temporal discretization, at temperatures below the chiral transition the
worm covers rather short distances in temporal direction. Thus, many spatial hoppings are

enforced such that the sampling of a configuration takes longer.
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Performance of CT-Algorithm

NT=4 ‘I—X—i ‘ 32

108 | 16 cT -
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0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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Figure 3.4: The performance of the continuous time worm algorithm compared to the discrete
time algorithm for various N.. At and above T, the CT algorithm even outperforms the N, = 4
DT algorithm. Below T, single DT simulations perform better, however, the range of validity is
limited due to saturation effects.
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CHAPTER 4

Continuous Time Crosschecks and Results

The following section covers a discussion on various observables of interest for this thesis.
Crosschecks are performed concerning the reconstruction of results obtained in the CT limit.
For that, calculations in discrete time at various N, are carried out, in order to compare the
extrapolated results in N, — oco. Features of the CT partition function such as the single
spatial dimer approximation are motivated, the Poisson process is further discussed and the
constant is determined. Finally, zero temperature observables can be measured based on a

finite-size analysis and prediction from chiral perturbation theory for the O(2) model.

4.1 Observables in the Dual representation

Within this section various observables are explored which can be constructed from the
measurement of dual variables in the strong coupling limit. First, the dual variables and
observables for a discrete time formulation are explored before the transition to continuous

time is performed.

4.1.1 Discrete Time Observables

There are three main contributions to the partition function Eq. (1.76): Monomers, dimers
and baryons.
Since the chiral limit is considered, monomer contributions Ny; = >, n, vanish and are
therefore not relevant for further discussions. The chiral condensate is directly related to the
monomer density by

a* (i) = Wor) _ nar) (4.1)

-~ 2amgN3  2am,’

Thus, the chiral condensate is zero when measured in terms of dual variables in the chiral
limit. However, it can be extracted from chiral perturbation theory as discussed in Sec.4.3.3.

Dimer contributions are distinguished for temporal and spatial directions

Temporal Dimers: Np_ = Z ks0,
X

(4.2)
Spatial Dimers: Np, = Z ks,
X
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while baryonic contributions are extracted from baryon loops winding around the temporal

lattice extent as

Baryons: Np = > Qp((). (4.3)
¢

Latter gives immediately rise to the calculation of the baryon density

= <sz§> = (). (4.4)

o

Two more involved observables are the energy density a*e and the pressure a*p. These are

closely related when formulated in terms of dual variables:

3
4 3 a®> 0lnZ _ §£0v(2Np, + N.Np)
Energy density: a“e¢ = aua’npg — V ()1 s = N, N3 ; (4.5)
InZ
Pressure: a'p = —agaTa(;‘l/ - = a4§ + ?]]\\f/? (4.6)

These relations are derived in [53] by evaluating the temperature and volume derivative of

log Z as
dlogZ | 1 0§ Oy 0Z 0Z (@7
oaT) 1y,  N,Z\Oa, 06 0v|, Oa, N '
Odlog Z 1 0& 0y 0Z 0Z
- Kacel %=, 4.
wd ey |, T 3eNiE <8a ¢ 07|, " da 7) 4.8

In the chiral limit energy density and pressure can be obtained simultaneously since the
monomer density vanishes. In this specific case these observables differ by just a factor of 3.

This results in the interaction measure to vanish [10, 53]

(Nar)

’ ( 2 ar N;a3 N3 chiral limit

(4.9)
Finally, the chiral susceptibility a%y, is of interest. It is measured as a worm estimator, which
means it is an observable that is directly accumulated as the worm propagates through the
lattice. Contributions arise after each Emission Update, such that both Head and Tail are
located at absorption sites. The relative offset in time of the worm Head with respect to
the Tail is measured. Yet, the spatial offset has to be accounted for as well, since temporal

correlators are being projected to zero momentum (see Sec. 5.1.1).
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4.1 Observables in the Dual representation

The chiral susceptibility is defined as the integrated monomer two-point function

6 4 821112

a Xq =a W (410)

mg=0

As discussed in Sec. 3.3.2 this function is measured in terms of a histogram.

4.1.2 Continuous Time Observables

In the continuous time limit the calculation of dual observables simplifies. Without any
spatial baryon hoppings, it is necessary for a baryon attached to a spatial site Z to occupy all

temporal locations 7;. Hence, the winding number wz can be used to state whether a site is

mesonic: wz =10
anti-baryonic: wz = —1 (4.11)

baryonic: wz = +1.

Therefore, a measurement of the baryon density a®np reduces to counting the number of
baryons (B) and anti-baryons (A) on the lattice yielding
3 _(B=A)
a np = Tg = <w> . (412)
The final expression agrees with the one for discrete time simulations, however, the way of

calculating this observable simplified.

Concerning the pressure and energy density, a slightly deeper analysis has to be performed. In
the CT limit it is not possible to specify the number of temporal dimer segments Np_ as there
is no discretization in time anymore. Therefore, the temporal contributions are rewritten in

terms of spatial number densities
(2Np, + N.Ng) = (N.N,N3 — 2Np,_). (4.13)

The first term NCNTNg’ resembles the Grassmann Constraint on a lattice with NTN;,5 sites
and is related to the factor 4V¢V which was pulled out of the partition function Eq. (2.15) as
it weights all sites equally. The second term 2Np_ accounts for all lattice sites that have a
spatial dimer attached. Another simplification arises in continuous time for dimensionless
thermodynamic observables where the anisotropy dependence reads

d 21 1 d 1 1
@1 L 2 with £(vy) = /@72 and —_—. (4.14)

_ — l: =
v odé v 2y 2 d¢  2kE 2Ky

95



Chapter 4 Continuous Time Crosschecks and Results

At

o
—_
v

Figure 4.1: FEzxzample for a discretization in time with 10 bins. The worm Head is moved away
from the Tail by the distance At. The index i states which histogram bins are accumulated since
the relative offset in time is measured. Due to symmetry of the correlator only half of the bins
1=1,2,..., N, /2 are required.

This leads to the energy density and the pressure formulated in CT dual variables

ate = kaT (C — (np,)), (4.15)
a*p =k (C ~ (np,)). (4.16)

Thus, both quantities are extracted from a measurement of the spatial dimer density. The
additive constant C' = N.N,N, ensures that both quantities are positive and encodes the

Grassmann Constraint.

Finally, the measurement of the chiral susceptibility requires the introduction of an artificial
discretization in CT for the histogram accumulation. Two histograms are measured which
distinguish the parity of the offset between worm Head and Tail (even or odd). Combinations
of these histograms are used to reconstruct continuous time temporal correlation functions (see
Fig. 4.1). Note that this offset would be trivial if only the temporal displacement is considered
as correlators are always accumulated when Head and Tail have opposite parity. However,
temporal correlators are being projected to zero momentum (see Sec. 5.1.1) such that the
4-d parity has to be accounted for. Therefore, an even (odd) site histogram is accumulated
whenever the spatial distance is odd (even). Due to this update rule there is always only one

of the two histograms which is updated.

4.2 Crosschecks

The discussed dual observables are measured both in discrete and continuous time and results

are matched. The crosschecks are performed for a vanishing baryon chemical potential pp = 0.
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4.2 Crosschecks

Comparison CT and DT for N,=4

035 T T T T T
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Figure 4.2: Top: Temperature dependence of the baryon density susceptibility measured in DT,
in direct comparison with the results from CT. Bottom: Temperature dependence of the spatial
dimer density measured in DT, in direct comparison with the results from CT.

Baryon Fluctuations At zero chemical potential, the odd moments n (mod 2) = 1 in the
winding number density (w") = 0 vanish. There is no preference between baryons and
anti-baryons as their weights match at all temperatures wp,4(up/T) = ei“B/T|MB:0 = 1.
Therefore, the second moment in the winding number density w? is considered which gives

rise to the baryon susceptibility

xB = (W?) — ()2 (4.17)
ey

This function monotonically increases with temperature (see Fig. 4.2:Top). The discrete time
values converge towards the continuous time curve for each single temperature. There is
a strong T, dependence as static baryons are suppressed below 7T, while they are common
above T.. At large temperatures a limiting value of 1/3 is reached which is obtained when
calculating the second moment of the winding number density Eq. (4.4) based on the partition

function from one-dimensional QCD (see Eq. (1.80)).
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Chapter 4 Continuous Time Crosschecks and Results

Variation in N and extrapolation

‘N=4..32
N, — .
CT + = -

Figure 4.3: Chiral susceptibility for various N, measures on 43 x N, lattices. It is a monoton-
ically decreasing function in temperature. There is a clear imprint of the chiral transition. An
extrapolation in N, shows agreements with a®x, measured in CT.

Energy density and pressure Both energy density and pressure follow from the measurement
of the spatial dimer density (cf. Fig. 4.2). Spatial dimers are most prominent below 7, where
the worm performs many detours due to short temporal intervals sampled by the Poisson
process and therefore many spatial hoppings. On the contrary, at large temperatures the
static limit is approached where hoppings become more and more unlikely and so the dimer
density becomes small. In total, over the whole temperature range the spatial dimer density
decreases as the temperature is increased. This also means that pressure and energy density
are constantly increasing quantities. Note that the definition of the pressure in Eq. (4.6) is

distinctively different from
atp = a3/<ctz- In Z, (4.18)

which is valid for homogeneous systems. However, while the identity p = p’ holds in the
continuum it is not true on the lattice. Thus, the Taylor expansion has to be performed in
(np,) (cf. Sec. 6.6).

Chiral Susceptibility The integrated two-point function in Eq. (4.10) measures the suscep-
tibility x, for the ¢ meson. Further susceptibilities for other mesons can be addressed by
weighting the histogram increments with phase factors which are related to the kernel in

spin®taste space (cf. Sec. 5.2).

At temperatures below T, the worm performs many detours due to the emission of spatial
dimers. Its chance to find and recombine with the worm Tail is low. Above T, there are

almost no spatial dimers and the worm purely loops in temporal direction resulting in a fast
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4.3 ResultsatT =0

recombination. Since the chiral susceptibility x, is a measure of the length of the worm path,
it is a monotonic decreasing function with temperature (see Fig. 4.3 and Fig. 4.8). The chiral
susceptibility exhibits finite N, effects which clearly extrapolate towards simulation results
from CT (Fig. 4.3). It shows an imprint of the chiral transition at 7.. The impact of spatial

dimers on the worm length is strong, with increasing volume a clear kink evolves. (Fig. 4.8).

4.3 Resultsat T' =0

4.3.1 Determination of

Lattice simulations at strong coupling are typically performed on anisotropic lattices in order

to address temperature ranges of interest. In DT simulations it is necessary to analyze the

1d¢

Edy”

anisotropy calibration procedure is discussed for anisotropic lattices at strong coupling and

DT in [56] and [36] in detail. In CT this procedure simplifies to the determination of the

proportionality factor k = glim %—Z which then defines the temperature and chemical potential
—00

(see Eq. (2.5) and Eq. (2.6)). An estimate for s directly from CT is obtained from the variance

running of which is a strong coupling analogue of Karsch’s coefficients [54, 55]. The

of the pion current. In the chiral limit, the pion current for DT

Ne

— 1bu(2) Nc) (4.19)

@) = ela) () = Sl - 5

is conserved

> _(ul@) = julz — ) = 0. (4.20)

i

Likewise, in CT the meson occupation numbers (see Eq. (2.30)) are the corresponding currents
m(Z,7) = 5i(&,7) = (&, 7) ki (Z, T), (4.21)

m(@,7) + Y (mi(@7) = mi(@ — i, 7)) = 0. (4.22)

Note that the baryonic contributions as well as the constant are dropped as they do not

contribute to the pion current.
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Chapter 4 Continuous Time Crosschecks and Results

The temporal and spatial charges are calculated as

Qo =Y m(Z 1) =M, (4.23)
1/dT
Qi= Y. / drm;(Z,7) = My, (4.24)
ile;”0
Their expectation values
N N,
(M) = o M)y = (M) — ) and (9;) =0, (4.25)

follow from simple considerations:

1) Since meson occupation numbers take values m € (0,1,..., N,), it immediately follows
that the expectation value (9) yields N./2

2) As emission and absorption sites come in pairs, meson state changes due to spatial dimers

are always compensated such that the expectation value (91;) vanishes.

The variances are however temperature dependent. In case temporal and spatial variances are

equal, this indicates that the lattice is physically isotropic

1 1 1
T = o al kdl

(4.26)

Thus, in order to measure k, a scan in the bare temperature ¢/ around the crossing point
is necessary for each lattice with different spatial extent N,. The temperature 4Jy at the

crossing point

2
(), = () - T & () (127
gives immediately rise to kK = 1/(N,dTy). An example for an anisotropy calibration is
shown in Fig. 4.4. The range in 47 is taken very narrowly in order to approximate a linear
slope. The results for x for various volumes are shown in Tab. 4.1 and the thermodynamic
extrapolation N, — oo is depicted in Fig. 4.5:Left. The latter coincides with the zero-
temperature extrapolation, and since the calibration is performed at au = 0, static baryons
are virtually absent. Therefore, there is no reason to distinguish between x values for gauge
groups U(3) and SU(3). Note that this is not valid at finite £ (finite a;).

There is a 2% mismatch when comparing the CT result with the DT extrapolation & — oo
performed in [36]. In this DT study uncertainties in the determination of x arise, since the
extrapolation is based on a limited range of values ¢ < 8. Furthermore, the extrapolation
strongly depends on the used fit ansatz for the function &/4? [46]. To avoid such disambiguates

it is reasonable to measure x directly in the CT limit.
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N,=16, k=0.7970(1)
157 : :

slope of <AQi2>=-2045(36)

156.5
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25

- timelike —=—
o 1555 |
g spacelike ——

155

154.5

slope of <AQ,*>=1836(37)
154 n n | n n n n | n n n n | n n n n n n n n n n n n n
0.078 0.0782 0.0784 0.0786 0.0788 0.079
bare aT

Figure 4.4: Results on the spatial and temporal charges. The crossing point defines the temper-
ature dly for the determination of k as well as the charge (M) which gives rise to the helicity
modulus and hence the pion decay constant Fi.

Table 4.1: Data from the anisotropy calibration on various volumes N3. The crossing point
(dTo, (M?)o) gives rise to the calculation of the CT constant k as well as the helicity modulus a®Y .

N, aTo (M%) K a®Y
4 | 0.31388(1) 9.724(1) 0.7965(1) 0.6078(1)
6 | 0.20911(1) 21.88(1) 0.7970(1) 0.6079(1)
8 | 0.15680(1) 38.91(1) 0.7972(1) 0.6080(1)
12 | 0.10457(1)  87.51(1) 0.7969(1) 0.6077(1)
16 | 0.07841(1) 155.65(1) 0.7970(1) 0.6080(1)
0 0.7971(3)  0.6080(1)

Note that the anisotropy calibration can also be performed at finite quark mass [57] as well
as at finite coupling 5. These results indicate that it is possible to formulate the CT limit

unambiguously at finite my and 3, with k = k(my, §).
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Measurement of K in CT Helicity Modulus

0.7975 : : 0.6081 ——— :
KN, «=0-7971(3) a” Yy, . »=0.6080(1) —
0) —
T 0.6080 | i
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Figure 4.5: Left: Thermodynamic extrapolation of the CT proportionality constant k based on
isotropic lattices with N, = 4,6,8,12,16. Note the overall precision in the data points. Right:
Extrapolation of the helicity modulus which is of high interest for the measurement of the pion
decay constant. The N, = 12 value is not considered in the fit. Both quantities are retrieved from
the intersection point of the anisotropy calibration.

4.3.2 Pion Decay Constant

In the chiral limit m, = 0, lattice QCD with staggered fermions exhibits an exact O(2) chiral
symmetry (cf. Sec. 4.4.2). This symmetry is spontaneously broken at 7' = 0 but gets restored
at high temperatures [56]. A finite-size scaling analysis gives rise to low-energy quantities
such as the pion decay constant aFy and the chiral condensate a3 = a®(xx).

The square of the pion decay constant is related to the helicity modulus via

a’F? = lim a®7, (4.28)
Ng—o00
which is in turn obtained from the variance of the conserved pion currents as [36, 46]
2T = = (m?) . (4.29)
N2 0

Note that (91?)( is the variance of the meson occupation number at the crossing point (see

Eq. (4.27)) where the lattice is isotropic. Thus, the anisotropy calibration in CT is performed
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4.3 ResultsatT =0

on various volumes with results summarized in Tab. 4.1. The thermodynamic extrapolation
of the helicity modulus is graphically shown in Fig. 4.5. Based on Eq.(4.28) the final result

for the pion decay constant can be computed as
(aFy)CT = 0.7797(1). (4.30)

This result shows a 1% discrepancy from previous studies on DT lattices (aFy)PT = 0.78171(4)

which is due to uncertainties in the £ extrapolation of DT studies as discussed before.

4.3.3 Chiral Condensate

In a finite volume, the direct measurement of the chiral condensate a3% is proportional to
the monomer density, which however vanishes in the chiral limit. Nevertheless, the chiral
condensate can be extracted from Chiral Perturbation Theory (CPT) in a finite box by a
large volume expansion in 1/V2 [58]. As the chiral limit is considered, the correlation length
diverges such that finite sized systems are necessarily be considered in the so-called e-regime
[59]. CPT predicts the finite-size scaling of the chiral susceptibility X, which is non-zero in
a finite volume and contains the (infinite volume) chiral condensate as a contribution. The
scaling reads [58, 60]
6 1

62 Ard B o
~ —aSY2NA (1 4.31
@ Xe ™ 5 ”( *_a2FgA@‘+2a4FﬁA%>’ (431)

with the constant « being of the form

1 aAZN,
CK:IB%—FBQ—‘FQIH AEMU.

(4.32)

The two constants §; = 0.140461 and Sy = —0.020305 are the shape coeflicients of the box
and Ay, Aj; are two renormalization group invariant logarithmic scales [58]. Since aF is
known from above, the chiral condensate a®% can be extracted by measurements of a%y, on
various volumes 43 — 163 (cf. Sec. 4.2) and fitting according to Eq. (4.31) (see Fig. 4.6). The
volumes considered in this analysis are rather small, since simulations at low temperatures
are required in order to keep the lattice isotropic (see Eq. (4.26)). The third term defining
the constant « (cf. Eq. (4.32)) is considered to be a fit parameter as well. However, without

2
a good estimate for the contribution # In MREA]IVU, there is no benefit from considering this

additional term. If the contribution of Eq. (4.32) is incorporated, the value for the chiral
condensate follows as (a®%)CT = 1.306(6). However, the best result is achieved by neglecting

the mentioned term which results in the final value

(a3%)°T = 1.305(3). (4.33)
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Chiral Condensate
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Figure 4.6: Extraction of the chiral condensate via a fit of the chiral susceptibility a®x, according
to Eq. (4.31).

In contrast to other discussions on 1" = 0 observables, the obtained value coincides with the

result from DT [36]. However, it is not possible to retrieve the same accuracy.

4.4 Phase Diagram

4.4.1 Pressure and Energy Density in the up — T plane

With no sign problem present in the CT limit, the phase diagram for the pressure a*p can
be explored in the full ug — T plane (cf. Fig. 4.7). Since the pressure is proportional to
the spatial dimer density np, according to Eq. (4.6) its temperature dependence is the
same. It drops with increasing temperature and can almost be neglected above T,.. With
respect to the chemical potential, the pressure vanishes below p. and obtains a finite value
above. At low temperature there are unphysical thermalization effects. As discussed in [53]
a discontinuous behavior of the pressure across the transition line is observed in the strong
coupling limit of LQCD. Typically, these pressure gaps (or negative values in the pressure)
arise due to perturbatively calculating anisotropy coefficients. Therefore, as presented in
Sec. 2.1 a non-perturbative approach is chosen in the (continuous time) strong coupling limit.

Nevertheless, the problem of a sudden increase in pressure at the transition line persists.

4.4.2 Determination of T,

The imprint of the chiral transition on the chiral susceptibility (discussed in Sec. 4.2) is
used in a finite size scaling analysis to determine the critical temperature at up = 0. In the

chiral limit, the system undergoes a second order transition as temperature is increased. This
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Phase Diagram for the Pressure
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Figure 4.7: Pressure a*p in the finite bare density and temperature plane. The 2™¢ and 1°¢ order
phase transition in the chiral limit with its tri-critical point is depicted as well.

transition belongs to the 3d O(2) universality class with critical exponents [61]
v =0.67155(27) and ~ = 1.3177(5). (4.34)

Note that v is the critical exponent related to the correlation length by & o |[t|77, with the
reduced temperature defined as t =1 — T/T,.. A critical behavior of y o [¢|~7 is observed for

the chiral susceptibility.
In the critical region the susceptibility is expected to scale as [12, 56, 62]

Xon, = NJ/YR(ANMY) = NJ/¥ (ag + O(NL)). (4.35)

The rescaled susceptibilities xo n, /N;Y/ Y = ag yield the same value at T, (i.e. t = 0) such
that the intersection point of finite volume tuples (N, ;|Nyit1) gives an estimate of the
critical temperature (see Fig. 4.9 and Tab. 4.2). It is expected that x, n, /Ng/ Y collapses
on a universal scaling function )Z(tN;/ ) when plotted as a function of tN;/ Y. Thus, an

extrapolation according to
Xo = dTe + ag/NM" (4.36)

for successive volume tuples results in the final value a7.°T = 1.4276(2) (Fig. 4.10).

The CT estimation of the critical temperature is different from previous studies deducing
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Variation of volumes N03
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Figure 4.8: Volume dependence of the chiral susceptibility. By rescaling x, with N;WV a crossing
point emerges which indicates the critical temperature. The critical exponents are associated with
the 3d O(2) universality class. Note that the extrapolated value of dl. = 1.4276(2) is already
incorporated in both plots.

a value of dT°T = 1.403(1) based on DT simulations with N, = 4 lattices [12]. This again
emphasizes the advantages of CT where no extrapolation in N is required and calculations

on lattices up to N, = 64 could be performed.

Summary Within this chapter dual observables are discussed, which includes an overview of
discrete time observables and their formulation in continuous time. Among its many benefits,
the CT framework thrives from its simple structured observables.

Crosschecks are performed for the most prominent observables where extrapolations in N
showed full agreement with the CT measurements.

At zero temperature T' = 0 the proportionality factor x is determined based on an anisotropy
calibration. For CT this requires measurements of variances of spatial and temporal charges at
certain temperatures far below 7, (cf. Eq. (4.26)). In this temperature regime CT simulations
are limited to lattices with a spatial extent of N, = 16 due to the increasing numerical
effort. However, this suffices as x exhibits only small finite size effects. The crossing point
encodes information not just about s, but also gives rise to the helicity modulus. From latter

follows the pion decay constant. In both x and the pion decay constant aF}; a few percentage
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4.4 Phase Diagram

Table 4.2: Data for the determination of dl. from the finite size scaling of the chiral susceptibility.
Successive volume tuples are intersected. The crossing points are an estimate for dJ..

(N1 'N2)1/2 ll’TC

(4-6)1/2 1.3654(5)
(6-8)1/2 1.3851(5)
(8-12)Y/2  1.4041(1)
(12-16)%/2  1.41348(6)
(16-32)'/2  1.42029(3)
(32-64)'/2  1.424240(9)

Determination of T,
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Figure 4.9: Finite volume scaling of the chiral susceptibility. The crossing point of successive
volumes is an estimate for df.. A tight region around dJ. is chosen such that a linear approzimation
of the slope is feasible.

mismatch was observed between DT and CT results. These differences are expected to arise
when keeping in mind that DT results require an extrapolation in £&. These are based on

rather small values £ < 8 and on a fit ansatz for the function &/+2. The respective systematic
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Finite size scaling
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Figure 4.10: FExtrapolation of the finite volume critical temperatures dl.(n, ,|N, . ,) to the
thermodynamic limit. Note that a jackknife analysis is performed for the error estimation. This
yields the depicted 10 fits from which dJ. and the standard deviation can be calculated.

error due to the choice of fit ansatz is unknown. As noted, the anisotropy calibration can also
be performed at finite quark mass m, and/or finite 5. Additionally, the chiral condensate is
extracted from CPT in a finite box by a large volume expansion in 1/V,2. The CT measurement
agrees with results obtained from DT simulations.

Finally, the phase diagram of the pressure/energy density is obtained from finite temperature
and density simulations. Based on a finite-size scaling analysis of the chiral susceptibility, the
critical temperature is estimated which slightly deviates from values obtained so far in DT
studies. This clearly stresses the necessity to have an algorithm performing directly in the CT
limit in order to avoid inaccuracies due to extrapolations or anisotropy calibrations. In order
to improve on the precision of T, more data points are required in a narrower range around
T, for the larger volumes N, = 32,64 and beyond.

Within the last chapters 2-4 the continuous time limit is introduced with its partition function,
an algorithm that samples respective configurations as well as observables of interest. The
next two chapters will cover two major topics within the research area of lattice QCD. Firstly,
temporal correlators are constructed at finite temperatures and densities and so-called pole
masses will be investigated (see chapter 5). Secondly, the phase diagram of SC-QCD is
explored with the Taylor expansion method (cf. chapter 6). Since the continuous time
framework has no sign problem, the range of reliability is discussed by means of the radius of

convergence and the reconstruction of the pressure.

68



CHAPTER 5

Temporal Correlators

Meson correlators allow to extract the ground state mass and possibly excited mesonic states.
Typically, there is a focus on spatial correlators since large lattice extents are required to
isolate the lowest excitation [63]. Here, temporal directions suffer from being limited by
the inverse temperature. The respective masses of spatial (screening mass) and temporal
correlators (pole mass) obtained from the exponential decay are not necessarily identical.
However, they are related to the same spectral function which is a central tool for the study
of transport properties of the quark-gluon plasma [63]. By means of the spectral function
the dissolution of heavy quarks at high temperatures is studied in order to learn about the
modifications of hadronic properties under extreme conditions.

Within this chapter, hadronic correlators projected to zero spatial momentum are constructed
(Sec. 5.1). The focus is on temporal correlators as the CT algorithm is not hindered by an
insufficiently large temporal lattice extent. Especially, staggered correlators are introduced
which have a more complicated bilinear spin-taste structure (Sec. 5.2). The temporal correlators
are discussed for discrete and continuous time (see Sections (5.3) and (5.4)). An extraction
of corresponding pole masses is outlined by means of correlated fits performed on temporal
correlators (Sec. 5.5). Many results are presented for the masses at various temperatures below,
around and above T, as well as at zero and finite baryon chemical potential (Sections (5.5)
and (5.6)). Finally, methods for the calculation of transport coefficients are discussed, such as

the Maximum Entropy method and the Schwinger-Keldysh contour (see Sec. 5.7).

5.1 Foundation of Hadron Correlators

For the construction of a hadron correlation function an arbitrary hadronic state |h) is taken
into account with some associated quantum numbers that are discussed in Appendix (C).
The interpolating operators O;  are considered which have a non-vanishing overlap with the

state of interest |h) [28] and eventually also with its decay products

(010, 411} # 0. (5.1)

The overlap with other states of the same quantum numbers is ideally minimal. With the
initial state O;(x)|0) (source) creating the desired hadron state at z = (xg,%p) from the

vacuum |0) and the final state Of(y)|0) (sink) annihilating it after some time ¢ at y = (y, ),
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the hadron correlation function is constructed as the expectation value

Clz —y) = (O(y)O' (2)). (5.2)

An evaluation of this function will give rise to the energy levels corresponding to the eigenstates

of H. Due to translational invariance it is an options to choose (xo,%p) = (0,0) from here on
C(z) = (0(2)01(0)). (5:3)

The Heisenberg operators on a discrete Minkowski space-time with periodic boundary condi-

tions can be written as
O(l‘) _ eip(z—Nt)O(O)e—ipm _ 6iH(t—Nt)+ip(x—Na)O(O, O)G—th-l-ipx. (54)

For a discrete lattice extent N = (N, Ny) in spatial and temporal direction, the discrete

momentum is given as

2 .
p:A—[ﬂNa, N. =0,1,...,N, —1,i =1,2,3. (5.5)

In the following, the associated energy eigenstates to the Hamiltonian e~ |n) = e~1Fnl|p)
will be ordered according to Fy < E1 < Es... with Ejy the vacuum energy and F; the energy
state corresponding to the first excited state above the vacuum.
By using Eq. (5.4) in order to rewrite (5.3) and by inserting a complete set of eigenstates
1 = Y"|m)(m| yields the expression

m

Cur(x,t) =D (n]O(x, t)|m)(m|O'(0,0)|n)
= (e 0(0)e= P m) (m|O'(0)|n)

=" ePnl@=N)gmivns (3| O(0) [m) (m|OT (0) ) (5.6)

n,m

=™ EM0]0T(0)n) > + Y~ e P (m|O0T(0)[0)]* + . ..

=" Ap(@)e®r N L N A ()e P 4L

In the last two lines the expectation values are expanded about the vacuum with pg = 0
[15] which is the reference point of choice such that energies are always measured with
respect to the vacuum energy Fy. Furthermore, the abbreviations A, (z) = [(0]O(0)|n)|?> and
A (z) = [{m]OT(0)]0)|? are used. In general, the amplitudes are related as A, (z) = £A,,(z)
if the correlator C(z) is even (odd) in temporal direction [64]. Finally, a Wick rotation is

performed to proceed with Euclidean space-time t — —i7 and the exponential is split up for
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5.1 Foundation of Hadron Correlators

space and time-like momenta p = (p, p”) such that
CE ZA e (r—N7) zpn(x N, +2Am6 HT zpmx

iPmX | ,—Fm T —FEm Nr—1
_ZA iP [ P)IT 4 ¢ ( ) )} (5.7)
= Z Ay ePmX {e_Em(p)A;TQ cosh <Em(p) (]\; - 7'))] .

Due to the periodic boundary conditions, the contribution e=£m®)(N==7) ¢orresponds to a

particle propagating backward in temporal direction.

5.1.1 Zero momentum projection

Typically, when studying correlation functions the interpolating correlators are projected to
have a definite momentum. When studying temporal correlators and their associated pole
masses the corresponding momentum projection results in the spatial momentum p = 0 to
vanish. For spatial correlators the screening masses are obtained from the p = (ps, py,pr) =0
projection [15]. In this case only the p, component is non-zero. In order to get the correlation

function in terms of momentum, a discrete Fourier transformation has to be performed

Clp. ) = 3¢ P{0/0x,10(0,0)) (5.8)
O(x, 1) = Néﬂ Ep:eipxmp,t), Of(x,4) = N; - gp:e*ipxoT(p,t), (5.9)

where the transformation of the discussed interpolation operators is given in the second line.

Taking into account that a complete set of hadronic states reads [n)(n| = >, L?éﬁf?ézj , similar

calculations as performed in Eq. (5.6) and Eq. (5.7) result in

Z| ,pj\\%;E)\O ,0)[? eipmx[ —Em(p) QCOSh< - (p) <J\;T —T)>:| . (5.10)

In particular, the zero momentum projection results in a simplified expression for the temporal

correlator

Clp=0,7)=C(1) = Z[lm cosh( m(p =0) (]\2/ - T)) (5.11)
5.1.2 Mass extraction

At finite momentum, correlators are usually noisier [65] and the explicit choice of zero spatial

momentum (p=0) makes it possible to extract pole masses from the exponential decay of the
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Chapter 5 Temporal Correlators

correlator due to energy and mass being directly related via the relativistic dispersion relation

E(p) =\/mi + p*(1+ O(p)), (5.12)

E(p = 0) ZEh = Mh.

Based on Eq. (5.11), a study of the large time behavior of a temporal correlator is beneficial

(im0 (5 )

- T)) {1 + O(cosh((Ez — En) .. ))} :

for the mass extraction since

C(1) Nr2% 4, cosh <E1 (]\;T - 7’))

N-
2

= ;11 cosh (El ( o

This means that the pole mass of the ground state can be obtained from the leading order
decay of the hadron correlator describing the state of interest. Since Eq. (5.13) only holds
in the limit N, — oo, large temporal lattice extents are necessary in order to obtain a mass
plateau corresponding to Fy = M; without many excited states tampering the result. In
practice, the ground state is often studied by defining the so-called effective mass in a range
away from the center N;/2, where the cosh-function can be approximated by an exponential
[66]

_ C(T) _ o >on AneiMnT
Meff(T) =N, log ()> fN-,-l g( )7

C(T n 1/NT Zn Ane—Mn(T+1/NT)
5.14)
. M /N~ n Ay =
= NlTlgloo N7 log (6 1+3, %e*(Mn*Ml)(TH/NT) ) M

=140 (e~ (M2—M1)T)

Finally, the fit of a constant to the effective mass gives rise to the ground state. Note that the
sum over the excited state |n) consists of all states with the correct quantum numbers, thus,

it is possible to also measure decay products instead of the desired quantum state[14].

5.2 Staggered Meson Correlators

So far, only general interpolating operators were considered. In the following, this is specified
by incorporating the staggered formalism and by considering mesons only.
The staggered quark fields are introduced in Sec. 1.3.5 for which each flavor comes in a

multiplet of four tastes [29]

aa 1 aa oa 1 aa .-
'¢} (y) = g ZQS X2y+ss ’Qb (y) = g ZQS X2y+ss (515)
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5.2 Staggered Meson Correlators

with flavor index f, spinor index a = 0,...,3 and taste index 8 = 1,...,4. In the latter
equation it is summed over all sixteen corners of the four dimensional hypercube with origin

at 2y. Moreover, the product of gamma matrices is denoted as

Q(s) = %’V 132 73° (5.16)

which follows some useful properties

1 s s’ s S)
7T QO] =5, and Zm 1% = 60,005, (5.17)

The taste component complicates the construction of staggered interpolating operator since
adding only a Dirac spin kernel I'p € (1,75, Vu, Vv, Yu5), With sixteen different choices
depending on the particle class, in between two staggered fields (M (z)TpMT(0)) is not
sufficient. Rather staggered bilinears have to be considered with another sixteen taste choices
that come with each gq pair. Thus, a staggered mesonic interpolating operator Mgiage is built

by a bilinear structure called Dirac-Taste kernel. The final operator reads

Mtage :&( SCa(y) = v(y) (T @ TP)w(y)

64 ZX(2y+s ORIy @ Fab)QEab)X(2y+s)

64 ZTr QL) Traﬁg(s L R oy te) - X(yts) (5.18)
:E : Z (5,8 ) X(2y+s) * X(2y+")
In the last equality, the phase factor ((s,s’) is defined as [29]
(s, 5) = TR O T (5.19)

which encodes all information about the meson particle. The four-vector s labels the 24 sites
of the hypercube with components s, € (0,1). The factor in Eq. (5.19) is typically simplified
in order to avoid considering two different spatial locations within the hypercube. Thus, a
diagonal Dirac-Taste basis with F%’B = Fi}b is chosen, i.e. Dirac spin and Taste are evaluated
at the same point within the hypercube which means that local bilinears are studied with a

simplified phase

((s,8') = ((s) - 0se, with ((s):%Tr[Q(S)TPDQ(S)PTT]. (5.20)
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Chapter 5 Temporal Correlators

Table 5.1: List of particle classes with their associated Dirac-Taste basis encoding the quantum
numbers of the respective particle as well as the phase factor. Related operators are assumed to be
diagonal in their respective basis.

Particle Class I'g=Tp&®Ir ¢(s)
Scalar (S) 1®1 1
Pseudo-Scalar (PS) V5 ® Vi (—1)s1tsatsstso
Vector (V) Vi ® (—1)3»
Axial-Vector (A) | (7u75) ® (Yu75)" (—1)srts2tsstso—sy
Tensor (T) (")/#fyy) X (’Yu')/y)* (_1)51+52+53+5078H73u

Hence, the staggered meson operator is given as
1 _
Mstagg = E Z C(S)X(2y+s)X(2y+s)' (521)
S

It is important to keep in mind that studying local correlators is a choice which simplifies the
evaluation of the equations above, however, it is not a necessity. In fact, non-local correlators
— which connect two different points within the hypercube — have some improved parity
properties [15]. For the full taste multiplet both types of operators are required. Nevertheless,

within this dissertation the focus is on local operators only.

5.2.1 Staggered Phase Factors

In the following, a calculation of phase factors for the different classes of particles is performed

as presented in Tab. 5.1.

The simplest phase factor is derived in case of a scalar particle for which 'y = 1® 1. It

trivially follows
1
G(s) = JTr [e@f10@1] = 1. (5.22)

While no substantial calculation is necessary for scalar particles, for pseudoscalars it is

helpful to recall v57, = —757, which makes the following very simple

CA
—
V)
~—

|

— Ty [Q(S)T75Q(S)75}

Tr [ (35) (172545 % " )+

Tr [Q(S)TQ(S) (_1)S1+S2+S3+T (75)2}

(5.23)

S = s =

_1)81+82+53+T.

I
—~

When particles transforming as axialvectors are studied, the Dirac-Taste structure of I'yy =
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5.2 Staggered Meson Correlators

Table 5.2: Mesonic operators for staggered fermions that are diagonal in the spin-taste basis
I'? @ T'T and the corresponding physical states. The oscillating and Non-Oscillating channels
corresponding to the same ((s) are distinguished. The JFC representation is discussed in Ap-
pendiz (C)

C(s) I'p@I'r Jre Physical states
NO O NO O NO O
1 1®1 Y5 @ (Yov5)* | 07T 071 | og TA
(—1)% Y5 @ (vivs)* v @ (rve)* | 1T 177 | ag oT
(=1)%+% | vy @ () ¥ ® v} 1= 17| bp pv
(—1)steatse Y @ Y5 75 ® (75)* 0ot~ 0t | —y TPS

(7uv5) ® (7475) has to be taken into account. It follows

1 S S 81182183 S1T821TS8S3TT
((s) = Tr [OTQE) (1)srtsmtsn (qportsntontt (5)2(55 7 52
=(-1)*.

where the simplification (—1)s1+s2Fs3(_1)s1ts2Fss+m — (_1)2s14+2s242s347 — (_1)7 i5 applied.

In an analogous calculation it can be shown that for T'y = (7;75) ® (7i75)* it follows that

¢(s) = (=1)*. For vector and tensor-class particles the respective factors are listed in
Tab. 5.1.

5.2.2 Staggered Correlation Function

Based on Eq. (5.21) with phase factors from Sec. 5.2.1, the formulation for local staggered

meson operators yields the temporal staggered correlation function [29]

Cltngs(27) = =165 3 "€, ) X2+ X2y + X)) (5:25)

Y s,

This correlation function is local in space, but occupies two adjacent time slices. It is far
more practical to restrict to single-time-slice operators when studying the temporal decay of

correlation functions.

In order to achieve that, it can be enforced that the Dirac-Taste bilinear is replaced as [29]
I'p@Tr = Tp®@I'r £Tpyys @ (Dryoys)™ (5.26)

The plus-minus sign cancels one of the two time slice contributions — either the sg = 0 or
so = 1 — inside the hypercube and the correlation function is independent of the choice of

the temporal location [29]. Furthermore, this leads also to a modification of the phase factor
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Chapter 5 Temporal Correlators

according to

((s) = C(s) (1 £ (=1)7) (5.27)

because according to Eq. (5.24) the associated phase of vy75 is (—1)7. The change in kernel
introduces a new contribution, an oscillating state which is measured alongside with the
current Non-Oscillating state. It has opposite spin, parity and taste content. Thus, this
oscillating state is called the parity partner. Fixed to a single time slice it is not possible
for the staggered correlator to exhibit the full parity properties, thus, it is parity degenerated.
Finally, the incorporation of the new finding leads to the staggered correlation function fit

ansatz

C(p, T) = Z ANO,n(p) COSh[ENO,n(p)(NT/Q - T)]
" (5.28)
£(=1)7 Y Aon(p) cosh[Eo ,(p) (N7 /2 — 7)].

Since calculations are performed on a discrete lattice the oscillating prefactor is typically
expressed as (—1)7 = cos(n7). In Tab. 5.2 all states measured by the worm algorithm are
summarized. All states within a single line are measured simultaneously. As discussed in [29]
there is no parity partner for the single time slice correlator of the Goldstone pion constructed
by 75 ® v5 Y0 ® 0. The reason is that for degenerate quark masses vg ® g is the density
for a conserved charge and in case of the zero momentum projection p = 0, it is the charge

itself which does not excite states from the vacuum, thus there is no parity partner [29].

5.3 Discrete Time Mesonic Correlators

When measuring histograms in discrete time, the substantial difference to continuous time
calculations is the fixed discretization in temporal direction. The finite temporal lattice extent
N, determines the fineness of the discretization. For a N2 x N, lattice the correlator can be
symmetrized due to the axial-symmetry of the cosh-function. Hence, it is feasible to construct
histograms with just N./2 + 1 entries.

Discrete time histogram data are fitted according to Eq. (5.28), where the sign in between the
taste partners is chosen such that the amplitude is positive. For a first qualitative analysis of

a temporal correlator, a simple four-parameter fit-ansatz is sufficient

Cpr(7) = Cno(T) — (—=1)"Co(7)

(5.29)
= Ano coshla; Mno(N;/2 — 7)] — (=1)" Ap cosh[a, Mo(N, /2 — T)].

The energy is already substituted by the corresponding mass measured in DT as a,M. In

Sec. 5.5 excited states are accounted and a systematic approach is presented to choose the
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5.3 Discrete Time Mesonic Correlators

most reasonable number of states.

A fit according to Eq. (5.29) describes the complete data set at once (see Fig. 5.1). However,
due to its oscillating prefactor (—1)™ = cos(w) it is challenging to choose first estimates of the
parameters such that the fit converges. Therefore, it is helpful to notice that the contributions

to the histograms for even 7 can be fitted separately from the odd part:

Chven(T) =Cno(T) — Co(7)

=Ano coshla; Mno(N;/2 — 7)) — Ap cosh[ar Mo (N /2 — 7)]
Coad(T) =Cno(T) + Co(T)

=Ano coshlar Mo ((N-/2 — 7)] + Ao cosh[a, Mo (N, /2 — T)].

(5.30)

The oscillating factor vanishes trivially since for even sites (—1)8ver = (—1)27 = +1 and for

27+l — _1. This means

the histogram data at odd 7 the sign is opposite (—1)70dd = (—1)
that the pole masses for the Non-Oscillating and Oscillating contribution can be measured
by either performing a fit according to Eq. (5.29) with an oscillating prefactor, or according
to Eq. (5.30). The latter ansatz avoids the prefactor cos(n7). It is sufficient to perform the
fit for either the even or the odd data set and reconstruct the respective other. Note that
a four-parameter fit is required either way. However, the fit-ansatz according to Eq. (5.29)

contains twice the data points and should therefore yield better accuracy.

Finally, the correlators corresponding to the Non-Oscillating and the Oscillating state can be

formulated as

ng(T) :ANO COSh(aTMNQ(NT/Q — T)) = %(CEVQH(T) + COdd(T)), (5 31)
CBT (1) = Ao cosh(as Mo (N, /2 — 7)) = é(oEven(r) ~ Coua(™)). ‘

These correlators can only be constructed based on a simultaneous fit of the data set according
to Eq. (5.29) or Eq. (5.30). This construction is summarized in Fig. 5.1. The correlator for
the Oscillating channel can only be reasonably depicted in case the data set is shifted to
be located at around zero, as the magnitude of Co(7) is given by the difference of Cgyen(7)
and Coqq(7). In contrast, by definition Cxo(7) is positioned in between the even and odd

correlator data.

For temperatures below 7, the spatial dimer emission and thus, also the worm length is
large. Due to the tight connection between chiral susceptibility and temporal correlators
(cf. Eq. (4.10)), the amplitude of correlators associated with the phase factor ((s) =1 =

(—1)s1+52F53%7 increases with decreasing temperature and vice versa (cf. Fig. 5.2).

Discrete time calculations have to be performed for multiple temporal discretizations N, ’s.
At fixed temperature T' = 0.35 7T, several correlators are constructed with increasing temporal

extent and for various channels according to Tab. 5.1. A temperature far below T, is
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Figure 5.1: Discrete time histogram data for a N3 x N, = 43 x 16 lattice. The data set is shifted
to agree with zero at N, /2. C(T) is extracted from the full Oscillating data fit, while Cpgyen(T)
and Coq4(T) are fitted separately to the respective data set. Cno(T) and Co(T) are the resulting
constructed correlators.
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Figure 5.2: Temporal Correlators for two different channels wps/os and py/aa at a fized
temperature of T = 0.35T,. and various N, € (16,...,64).
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Figure 5.3: Temporal correlator fits for the mps/os channel. The fits are shifted such that
the N, /2 data point coincides with 0. Left: A simultaneous fit of the even and odd histogram
data points. Right: Individual fits of even and odd histogram data as well as the reconstructed
Non-Oscillating and oscillating correlators.

chosen to distinguish between the different correlators without much overlap. In Fig. 5.2:Left
such correlators are depicted corresponding to the channel 7pg/og. With increasing N, the
worm length and therefore, the correlator value increases. However, this effect becomes less
prominent for larger temporal extents. On the other side, temporal correlators associated
with the channel py /a4 (cf. Fig. 5.2:Right), corresponding to ((s) = (—1)% = (—1)%+sk+7,
are funnel-shaped by showing a maximum width at 7 = 0 and are damped in amplitude as 7
gets larger. For small IV the drop is more intense.

Again, further interesting features are observed by shifting the correlators by C'(N,/2) as
shown in Fig. 5.3. All correlators C(7) coincide at the point 7 = 0 which lies necessarily on
CEven(T) (cf. Fig. 5.3:Left). The oscillation covers a larger range as NN, is increased and there
are no intersection points between correlators at all. Finally, for the same channel the different
correlators Chyen(7), Coad(7), Cno(T) as well as Co(7) start each at the same position for

7 = 0 and merge as 7 is increased (cf. Fig. 5.3:Right).

5.4 Continuous Time Meson Correlators

In the following, temporal correlators are constructed from histograms obtained by performing
computations with a continuous time worm algorithm. In contrast to the discrete time
analysis, there is no alternating structure since the continuous time histograms are continuously
incremented during the Poisson process. Thus, the histogram data yield immediately the
Non-Oscillating and Oscillating part of the full correlator such that a single two parameter fit
is sufficient to extract the ground state of the corresponding particle. Nevertheless, the even
and odd histogram structure is also recovered in continuous time. However, note that it is

not related to the artificial discretization which is necessarily introduced in CT to store the
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Figure 5.4: Continuous time correlators for various channels covering a broad temperature
range around df. = 1.4276(2). All correlators are fitted with a 4-parameter ansatz. Left: “Native”
correlators as directly extracted from the incremented histograms. Right: Correlators shifted to
match C(1/2) = 0.

results. An even (odd) histogram is continuously incremented whenever the worm Head and
Tail have an odd (even) spatial separation and an opposite parity. Thus, if Head and Tail

have matching parities, there will be no contribution to the even histogram and vice versa.

The Non-Oscillating and Oscillating meson correlators are obtained in CT via

CST(r) = Ano cosh(Myo /T(r — 1/2)) :é <00dd () + CEVQH(T)) ,
(5.32)

CST(r) = Ao cosh(Mo /T(r — 1/2)) :é (cOdd(T) _ CEVQH(T)) .

The temporal correlators constructed by the even and odd histogram contributions are depicted
in Fig. 5.4. Each subplot contains correlators measured at temperatures covering a range
around 7. As the temperature is increased the curves show a successively softer falloff. For
different channels the correlators are scattered around different ranges (cf. Fig. 5.4:Left) while
the overall shape of the correlation functions is very similar independently of the associated
channel (see Fig. 5.4:Right).
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5.5 Pole Masses from Correlated Fits

The previous two sections offered a formulation of temporal correlators in DT and CT. The
fits performed on the data assumed a single ground state for the respective taste partners
excluding any excited states. Discrete time correlator data exhibit large scale oscillations (see
Fig. 5.1 or 5.2) such that the Non-Oscillating and Oscillating contributions can’t be addressed
individually. A combined four parameter fit is required according to Eq. (5.29) or (5.30). On
the contrary, continuous time correlators show no oscillations since the averaging of even
and odd site contributions is necessarily incorporated in a CT algorithm. The correlators
for the taste partners can be addressed individually and are reasonably good described by
a two-parameter fit. This corresponds to a ground state fit of either the Non-Oscillating or

Oscillating channel.

These approaches already yield promising results and follow the data even at short distances.
Nevertheless, it is of high interest to include additional states. These will separate the ground
state signal from the leading order excited contributions. However, by involving more states
into the fit makes it highly dependent on the initial guess which is necessary in order to
stabilize it, and will most likely increase the error on the individual results (cf. Fig. 5.6).

Thus, a good balance between number of states and reasonable signal is of crucial importance.

To account for correlated data sets is one main challenge when dealing with correlators in
lattice calculations. These data sets carry less information compared to uncorrelated data.
Correlations between neighboring lattice points necessarily arise because the worm performs
local updates. During these elementary worm steps histograms are accumulated such that
correlations arise. Latter can be minimized by performing many global updates. A measure
for the correlation of data is the autocorrelation time which can be obtained from Eq. (1.87)

as the largest 7; in the series of exponentials [14]

gz(((t))) ~ Z Age= /i, (5.33)
Mesonic correlators are specifically affected by correlations since they are evaluated typically
along some lattice axis. For temporal correlators it is the time direction where neighboring
points are correlated and this also affects successive histogram entries. Typically, the statistical
errors of such observables are underestimated by not compensating for the lack of information.
Therefore, correlated fits are performed in order to get a reasonable error handling and to

choose the number of states involved in the fit.

For the pole mass extraction, a fitting routine is used which is described in detail in [14].

Within this work a concise overview of the main features is given.
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5.5.1 Construct estimators

When fitting a data set X, it is of interest to study functions of some form f(X,6) that
approximate the data obtained from measurement best. The parameter 6 is unknown. It is
adjusted according to some methods such as the maximum likelihood method or the least
squares method. These try to approximate the real value 6.

For a correlated data set the x-squared to be minimized reads [14, 51]

Y2 = ivj (W) (X)i_jl (W) (5.34)
ij=1 g J

. 1 1
L(#) = PN exp (—2x2> , (5.35)

with the definition of the likelihood function L in the second line. The main effort is encoded
in the calculation and inversion of the correlation matrix X which is defined as

Xij = S it Cij :#i(yik_gi)(y'k_g')- (5.36)

oi0j’ N -1 = s J

Here, the covariance matrix with its elements Cj; is introduced. It contains information on
how two quantities 7 and j fluctuate together with respect to their individual mean values. In
fact, the correlation matrix is used which binds all entries to X;; € [-1:1] [51] and reduces
the condition number such that the matrix is expected to be less singular [14].
Several minimization algorithms are applied and the fit parameters are taken from the
algorithm yielding the smallest 2. The covariance matrix for the errors of the fit parameters
can be directly calculated from the errors of the data set [14]. Here, underestimated errors by

not accounting for the quality of the fit are compensated for by multiplying the error with

X2

d.o.f.”

5.5.2 Multiple State Fits

The whole fitting procedure is more involved and requires several steps in order to assure the
best possible outcome even when including excited states.

Each correlator corresponds to a certain channel and its taste partner. The selected bare
correlator data are fitted according to the number of Non-Oscillating (--nstates) and Oscillating

states (--nstates-osc) specified when calling the fitting program ./corrfitter.py [14]

1 ./corrfitter.py $out -Nt $nt --nstates $nsNO --nstates-osc $nsO --

corr --folder $write
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Figure 5.5: Different multiple-state fits are performed on the same CT correlator at a temperature
slightly above T, and for the Goldstone pion channel Tpg. The color coding signals the value of
the lower fit boundary. The blueish color tones correspond to fits on large intervals. Along the
color spectrum the fit intervals are chosen smaller, with the smallest intervals associated with the
color purple.

which is discussed in detail in [14]. The option --corr ensures that correlated fits are

performed. If the fit interval is not constraint, the fits are performed on all successive intervals
[1:N:/2],[2:N;/2],...,[N;/2— P,N,/2] (5.37)

with P being the number of fit parameters (see Fig. 5.5). By changing only the lower bound
but keeping the upper fixed at N;/2 can improve on the quality of the correlation matrix.
Even though the fits in Fig. 5.5 do not show a large impact by including additional states,
the obtained ground state masses can change drastically (see Fig. 5.6). By including too
many states the precision on all present states can get lost. It is simply not possible for the
algorithm to estimate good start parameters for all fit parameters and thus, inaccuracy in

some parameters have to be absorbed by others, thus, resulting in an overall loss in precision.

In order to assure a good choice of initial parameters, the following sequence of steps is
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Table 5.3: Different combinations of Non-Oscillating (NO) and Oscillating (O) states included
in a correlator fit for DT as well as CT data sets. In DT simultaneous fits are required with
contributions in both channels. In CT the considered states are either fully associated with the
Non-Oscillating part or with the Oscillating part.

DT: NO O CT: NO 0
1 {123} {123} 0
2 {1,2,3} 0 {123}
3 {1,2,3}

performed [14]:

1.

6.

Choose a small fit interval, roughly half of the correlator. Perform a one state fit on
the even and odd sites separately to obtain the parameter sets (Agven, MEven) and

(Aodd, Moqq) respectively.

. Calculate initial parameters for the combined fit via Axo,1 = (AEven + A0dd)/2, A01 =

(Afven — Aodd)/2 and Myo1 = Mo,1 = (Mgyen + Moda)/2.

Perform a full one state fit, i.e. with a single Non-Oscillating and Oscillating part
according to Eq. (5.29).

Increase the fit interval. Introduce the next excited state in either the Even or Odd
channel. Guess its initial mass by choosing arbitrarily Mgyen 0dd = 5/4 - Mno /O,1- Set
the amplitude Anp/o02 to agree with the first point of the correlator within the fit

interval.

. Perform a fit including the higher states introduced so far. Parameters from steps 3

and 4 are taken as initial guess.

Repeat steps 4 and 5 until the desired number of states is included.

Note that steps 1 and 2 correspond to the relations specified in Equations (5.31) and (5.32).

The presented sequence of steps is good for noisy data sets. However, in principal it is of

course possible to implement and try many variations of such a procedure and choose the one
with the smallest y? [14].

5.5.3 Mass plateau

For each possible fit range n, € [1 : N./2 — P] various multiple state fits are performed. All

combinations of states are listed in Tab. 5.3.

There are a couple of reasons why to include excited states in a correlator fit. Some fits might

be spoiled by contributions from excited states as the total number of included fit-states is

not sufficient, while others are bothered by larger errors due to overfitting. The notorious task
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Continuous Time: V=43, Tg/0g, TIT=1.25
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Figure 5.6: Masses from continuous time mesonic correlators on a 4% volume. Various multi-
state fits are used and a single value per T is selected by AICc. The one state fit is dominant at
large T while the two and three state fits are preferred by the AICc at small 7.

is to select the appropriate number of states for each fit-range. Here, the Aikaike Information
criterion (AIC) is applied to find the balance between number of states and error. In fact, a
modified version of the criterion is used, the corrected AIC (AICc) [67]

N\ 2P?42P
AICe =2P —In(L) +N7;1 (5.38)
AIC - -

with P the number of parameters, N the number of points within an interval and L the
likelihood function as defined in Eq. (5.35). The corrected version of the AIC accounts for
effects of overfitting whenever the number of fitted parameters P is a large fraction of the
sample size N [67]. In the end, the smallest AICc value decides which fit values are considered

for the determination of the mass plateau.

In order to obtain the meson pole mass for the considered channel, an averaging over the
region of constant mass is performed. Since the masses are all extracted from fits based on
the data set, it is not possible to choose standard statistical methods to evaluate the final

values. By calling the ./find_plateau.py function
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Figure 5.7: Meson correlator masses obtained from discrete time simulations on 43 x N, lattices
with N, = 16,24,32,48,64. Since a, vanishes in the CT limit, so does a;M. The extrapolation
agrees with zero within errors.

1 ./find_plateau.py $massFile

a Gaussian bootstrap method is used where the median will correspond to the final value and

its error is estimates as the 68% percentile around the median [14].

5.5.4 Pole Masses from Discrete Time

For temporal correlator measurements in discrete time the binning is fixed by the number of
sites in temporal direction N,. Simulations performed at various values of N, are required to
extrapolate towards continuous time. The number of states considered for the fits are listed in
Tab. 5.3. The meson correlator masses are measured as a,M which is reflected in the weaker
decay as N; is increased (see Fig. 5.2). In the continuous time limit the quantity a,M has to
vanish (cf. Fig. 5.7) because the lattice spacing a, — 0 vanishes and is not defined anymore.
However, CT simulations yield finite masses which cannot match with discrete time results
as these all extrapolate to zero. Since the temperature is the only parameter left, it follows

that CT masses are measured as ratios M /T (cf. Eq. (5.32)). Thus, also discrete time masses
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Extrapolated DT meson masses for T/T =1.25
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Figure 5.8: Comparison of meson masses extracted from CT and DT worm simulations for three
different channels and a fized temperature of 1.25T.. The DT results at finite N, are extrapolated
to compare with CT. All masses are located within the same 5% window.

have to be measured accordingly (see Fig. 5.8) by the following conversion rule

M/T =N,a, M (5.39)
aM =kd] M/T. (5.40)

A comparison between mesonic correlator masses from extrapolated DT simulations as well
as direct CT simulations shows a 5% discrepancy for the first two and the fourth channel (cf.
Fig. 5.8). For the third channel the results match within errors. In fact, it cannot be expected

for the results to coincide due to a variety of factors:

o It is necessary to have a large temporal extent to extract pole masses. This requirement
is difficult to meet due to the computational effort with larger values of N, and the
computational cost of many simulations at various N;. As an example, the N, = 16
correlator is symmetrized and the lowest state fit contains four fit parameters in total.

Thus, the mass plateau contains 8 — 4 = 4 values only.

e A discrete time correlator encodes both, information on the Non-Oscillating and Os-

cillating channel. An averaging is required to reconstruct the respective correlator.
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Discrete Time: Tpg/og, T/T.=1.25
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Figure 5.9: Masses from discrete time mesonic correlators on a 43 x CT volume for different
temporal extents N, = 24,32,48,64. The correlators are symmetrized, thus, covering mazximally
half the range minus the number of fit parameters. Fits with contributions in both, Non-Oscillating
and Oscillating channel (NO,O) have to be considered.

This averaging yields better results for large N,. In CT the “added” correlator data
yield the Non-Oscillating channel while the subtracted data give rise to the Oscillating
contribution. The averaging is already incorporated in the algorithm such that the

respective channels can be fitted independently.

Both points are stressed when studying the location of the mass plateau. In DT the plateau
is located at short distances where excited states contribute the most (cf. Fig. 5.9). Lattices
with a larger temporal extent N, have to be studied in order to improve on the averaging
which should result in a shift of the mass plateau. In contrast, in CT the mass plateau is

commonly positioned at intermediate or large distances (see Fig. 5.6).

5.5.5 Pole Masses from Continuous Time

As motivated in the previous section, meson masses are studied in CT for various kernels,
temperatures and volumes. A first analysis is performed at zero chemical potential (see
Fig. 5.10). Each degenerate pair leads to meson masses that are clearly distinguishable in

magnitude from the other pairs for temperatures below and around 7. The largest masses
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CT meson correlator masses
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Figure 5.10: Meson masses measured in CT for four different degenerated meson operators,
three different volumes V, = 43,83,16% at zero baryon chemical potential.

are obtained for the 74/—y pair while by far the lowest masses are measured for the 7pg/og
kernel. Three meson operators show a similar temperature and volume dependence and it is
the Goldstone pion channel which has a significantly different behavior. Below T, the mass
My, /T decreases as the volume is increased. In fact, it is expected that the Goldstone pion
mass is zero in the continuum limit at small temperatures due to spontaneous symmetry
breaking and suddenly obtains a finite mass when crossing 7.. An imprint of such a behavior

is already visible in the V, = 163 data set.

At large temperature all channels have similar masses and the same high temperature behavior
(see Fig. 5.11). The masses expressed as aM no longer tend towards zero but approach a
constant value of aM7_,o, = 0.361(1) which is identical for all channels (see Fig. 5.12). The

meson masses do not diverge according to

M =/Q2 +mZ,, (5.41)

since there is no thermal mass contribution from the lowest Matsubara frequency {2 = 0. The
mesons are still subject to periodic (bosonic) boundary conditions as they do not separate into

quarks above T, in the strong coupling limit. In case of baryon correlators, a thermal mass
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Figure 5.11: Meson pole masses from CT correlators at zero density for the 163 x CT volume at
small temperatures and for the 83 x CT volume at larger temperatures. Masses for the channels
discussed in Tab. 5.2 are shown. The Goldstone pion channel has a distinctively different mass
dependence below T,. The high-temperature limit is independent of the considered channel.

contribution = 77" results in diverging masses [68]. Whether this value is N, dependent or

sensitive to the lattice dimension is not known so far and may be subject to future studies.

5.5.6 Variation of Bins

In order to obtain the best possible signal from a temporal correlator, large extents in time
direction are necessary. Despite the fact that a CT correlator has a continuous temporal
extent, an artificial discretization has to be introduced in order to measure the correlators
(see Fig. 4.1). However, this binning only affects the measurement of the histograms, not
the propagation of the worm. Thus, it is more cost-efficient to double the number of bins in
contrast to increase N, by a factor of two.

Due to an increase in the binning, the amplitude of the correlator is expected to drop (see

Fig. 5.13). As each bin is incremented by

f(r)y  Ver
Hbins 24T #bins

(5.42)
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Figure 5.12: Extrapolation of aM for the different channels on a 43 x CT volume via a quadratic
fit anzatz. Indeed, a single high-temperature value is approached.
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Figure 5.13: Variation in the number of bins used in temporal direction for the same mesonic
correlator corresponding to the Goldstone pion channel wpgog at a temperature of T/T, = 1.25.
The slight drop in amplitude is an effect due to the finite binning. Note that not all data points
are depicted here for the larger #bins.

with f(T') according to Eq. (3.16), there is some overhead coming from the two bins covering

the locations of worm Head and Tail respectively (cf. yellowish area in Fig. 4.1). This

contribution can be minimized by increasing the total number of bins.

This leads to a

reduction in the bin size which has the desired effect. Note that the bin at location L, = 0 is

always incremented. Therefore, it is excluded from all analyses.

Mesonic masses are not changed by the binning since the curvature of the correlator does

not change (see Fig. 5.13). The plateau region fluctuates with the number of bins (Fig. 5.14)

and estimates on the plateau location for the 43 x CT lattice and the 7pg/os channel are

given in Tab. 5.4. A larger binning yields a better precision for the mass Mpy; extracted from
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Figure 5.14: Meson masses obtained for the channel nps/os on a 43 x CT lattice at various
binnings. The plateau region fluctuates with the number of bins.

Table 5.4: Plateau location in absolute and relative values and the corresponding mass. The
error of Mpy becomes slightly smaller as the number of bins is raised.

# bins My (Tmins Tmaz)abs  (Tmin, Tmaz )rel
100 0.1938(7) (22, 45) (0.22,0.45)
200 0.1941(4) (34,82) (0.17,0.41)
400 0.1941(2) (49, 146) (0.12,0.37)
800  0.1939(2) (200, 390) (0.25,0.49)

the plateau. The plateau width stays almost unchanged. A larger binning is beneficial as
more data points contribute to the plateau. However, it is computationally more expensive to
evaluate all intervals for fine histograms such that intervals have to be skipped. Therefore,
for example for a binning of #bins = 800 only every 10" interval is evaluated. Instead
of increasing the number of bins in order to yield a slightly better accuracy as addressed
in Tab. 5.4, it is of more interest to shift the plateau region to large 7 as far as possible

by investing in statistics. Latter means that the number of global worm updates should be
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Location of Mass Plateaus
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Figure 5.15: Meson masses corresponding to the Goldstone pion wpg/os kernel at increasing
statistics from left to right and top to bottom. Values fluctuate less, the plateau size stays constant
but is shifted towards larger values.

Table 5.5: Critical chiral restoration bare temperatures for various bare baryon chemical potential
values. Multiply with k in order to convert to non-perturbative results.

alp dle

0.0 1.4276(2)
0.3  1.423(1)
0.9 1.367(1)
1.5 1.229(1)

maximized. This is successively done in Fig. 5.15, where the number of closed worm updates —

initially set to 1000 — is raised by a factor of 10 for each subsequent plot.

5.6 Finite Chemical Potential

In the infinite coupling limit there are no restrictions concerning simulations at finite chemical
potential. Instead, the chiral transition temperature decreases as up = 34 gets larger
(cf. Tab. 5.5). A clear imprint of this behavior is observed in the data set where results
are shifted along the temperature axis with larger shifts corresponding to larger values

of chemical potential (see Fig. 5.16). These shifts are directly connected to the critical
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Figure 5.16: Meson masses extracted from CT correlators on a 43 x CT lattice at zero and
finite chemical potential. The associated critical temperatures are highlighted by dashed vertical
lines. Each subplot is devoted to one distinctive meson correlator channel. The large temperature
behavior is studied for bare au, = 0.0 and 0.5.

temperatures summarized in Tab. 5.5. All considered chemical potentials address the second
order phase transition regime. Even though the tri-critical point (TCP) is approached with
app rop = 1.95(5), there is no impact due to its presence. So far no chemical potentials were
considered which address the first order regime. Future studies should be performed to verify
that a singularity is occurs at T, when addressing chemical potentials beyond the tri-critical

point.

5.7 Towards Transport Coefficients

The study of correlators is far more versatile and goes beyond the extraction of meson masses
from the long-distance exponential decay. Firstly, their relation to the spectral function

o(w, p) is explored which reads

cosh(w(r — 1/2T))
sinh(w/2T)

G(r.p) = /0 " dwo(w, p) K (w,7), K(w,7) = (5.43)
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with the associated kernel denoted as K (w, 7). The spectral function contains all the informa-
tion about the considered bound state. Thus, the impacts of the surrounding thermal medium
are imprinted on it. The spectral functions peak-like structure encodes the properties of the

bound states at respective frequencies w [69]
o(w, p) = [{0]O|h) Pe(w)d(p* — Mp), (5.44)

with M}, the hadron mass of the corresponding meson state and e(w) the sign function. The
dissolution of states is encoded in the width of the bound state peaks. Latter broaden and
disappear at sufficiently high temperatures such that the large w regime is described by the
continuum [70].

A variety of transport coefficients can be extracted from the spectral function such as viscosities,
conductivities, diffusion coefficients ... [69, 71-73]. For example, the heavy quark diffusion
coefficient as well as the electrical conductivity are calculated from the spectral function for
the I' = ~; kernel. Both quantities are obtained from the zero-frequency limit as follows
[71-73]

m %, 0, (w,p =0,7)

D=—Iim
3Xo w—0 = w

(5.45)

Tem _ Cem lim ‘7%(0‘))’
T 6 w—0 Wl

with the quark number susceptibility x, and the electromagnetic factor Cey,.

As pointed out, the spectral function yields different transport coeflicients and should therefore
be studied in further detail. However, temporal correlators are measured in imaginary
(Euclidean) time while the spectral function is real-valued. Thus, an analytic continuation
from data in imaginary time to real frequencies is required. In the following, two methods are

presented which tackle this problem.

Maximum Entropy Method

The extraction of the spectral function by inverting Eq. (5.43) is highly problematic since it is
an ill-posed problem. There are far too many degrees of freedom compared to the temperature
restricted number of temporal lattice points that can be offered. As there is an infinite number
of possible solutions, a method is required to select the most suitable spectral function. Due
to its non-negativity and normalizability, the spectral function can be treated as a probability
density. In the Maximum Entropy Method (MEM) which is based on Bayesian probability
theory, the conditional probability

P[D|cH|P[o|H|

Plo|DH) = ==p0

x exp(—L + aS) (5.46)
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is to be maximized given the correlator data D and some additional prior knowledge H. The
same is achieved by minimizing the sum of likelihood function L (defined in Sec. 5.5.1) and

Shannon-Jaynes entropy [73]

o(w)

S = /OOO ;Z—C; [U(w) —m(w) —o(w)In , (5.47)

m(w)
which is the central element of the Maximum Entropy Method (MEM). Here, the default
model m(w) contains additional information in order to minimize correlations between data.
Often, the relation m(w) = mow? is used with mg being a constant that is dependent on the

choice of channel.

Schwinger-Keldysh contour

For the extraction of transport coefficients the Schwinger-Keldysh contour is of interest. A
construction of this contour as depicted in Fig. 5.17 requires simulations at real Minkowski
time where a sign problem is introduced. However, for the dual representation presented in
this thesis the sign problem can be controlled when excluding dynamic baryons. The phase
factor then only takes values of +1. Therefore, the CT limit with its feature of having static

baryons is an interesting framework for studying the Schwinger-Keldysh contour.

Observables are defined through thermal averaged real time operators
(01(1)0x()) 5 = Tr (e HOL (1) Os(t)). (5.48)

The Schwinger-Keldysh formalism dictates how to express real time correlators in terms of a
path integral [74]

(01(t)O2(t)) =Tr [(91 (1) O, (t/)e—ﬂH}
=Tr[01(0)e =110y (0) 1= +i8)] (5.49)

:% / Dae’SsklEl 0, (1O (t'),

with the action Ssx = [, dtL[z] obtained from the original action S by analytical continuation
of the time along values on the contour C (Fig. 5.17). The obtained correlator has a severe
sign problem since the integrand is a pure phase but it is expected that this can be addressed
by the CT limit of SC-LQCD as discussed before. A fit of the oscillating decay of the real-time
correlator and a successive Fourier transformation gives rise to the spectral function. Also, for
real time simulations large time extents are required in order to include as many frequencies

as possible.
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Figure 5.17: Schwinger-Keldysh contour in its continuous (Left) and discretized form (Right).
Within the complex time plane, there are two real time legs connected by a third, imaginary time
segment of length B/2.

5.8 Discussion

Based on the general fit ansatz formulated in Eq. (5.28), the construction of temporal
correlators in discrete and continuous time was outlined. In one point the analysis is distinctly
different: Discrete time correlators exhibit strong oscillations such that a four parameter
fit is necessary. This fit averages the even and odd histogram contributions in order to
extract the Non-Oscillating and Oscillating channel. Due to the alternating structure large
N, are required such that the averaging is reasonably good. In contrast, this averaging of an
alternating data structure is not required in CT. The histogram data allow to extract the
Non-Oscillating and Oscillating channel independently via two parameter fits for the ground
state extraction.

In order to incorporate excited states as well as for having a reasonable error estimation,
correlated fits are performed. The strategy is outlined which should assure good initial fit
parameters for fits with many states. In DT fits also include the oscillating part but suffer
from being too complicated such that most fits including additional states fail (see Fig. 5.9).
In contrast, in CT only exponential fits on the symmetrized correlator have to be performed
where it seems easier to find good initial estimates. At long ranges (small 7) data can be
qualitatively better described by incorporating additional states (see Fig. 5.5). However, the
signal is not good enough to extract any excited states with a reasonable error estimate.
Nevertheless, in these regions the AICc favors masses from multiple state fits (cf. Fig. 5.6).
Within the plateau region, mainly the ground state mass contributes and a comparison to DT
calculations shows an offset by about 5% for various channels. It is motivated that the DT
data are affected by strong inaccuracies due to the mentioned averaging as well as small .
Even for simulations on a 4 x 64 lattice the mass plateau in DT is situated in the region most
severely tampered by excited states even though good statistics is used. Here, the CT worm

algorithm is by far superior as a better discretization can be chosen with statistics where the
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mass plateau is shifted to rather small values of 7.

The Goldstone pion channel shows the expected mass dependence. In the infinite volume limit
the mass vanishes below T, while at and above T, a mass is acquired which rises and limits
in a constant value. The other channels exhibit a constantly decreasing mass as temperature
is increased. A limiting high-temperature value of 0.361(1) is obtained. The meson masses
do not diverge since no thermal mass contribution is obtained from anti-periodic boundary
conditions for fermions. An explanation of the exact value for the high-temperature mass
limit is subject to future analysis.

The binning chosen for the CT correlators does not seem to have a distinct impact on the
location of the mass plateau or on the accuracy of the final meson mass. In contrast, the
included statistics affects the plateau greatly by shifting it to regions of interest (cf. Fig. 5.15).
As there is no sign problem in continuous time strong coupling QCD, also correlators were
measured at finite densities. The results exhibited very slight changes according to their
associated critical temperatures. Their overall features stayed the same compared to the
g = 0 analysis.

Finally, it would be of great interest to use the insights on the correlator measurement
not just for mass extraction. A business of high significance is the extraction of transport
coefficeints. Several methods were outlined where in particular the Schwinger-Keldysh contour

is investigated more thoroughly in the future.
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CHAPTER 6

Taylor Expansion

Phase diagrams are a common tool in physics to illustrate the state of a substance under
different values of thermodynamic parameters such as temperature, pressure and chemical
potential. The QCD phase diagram as presented in Fig. 1.2 exhibits a rich structure which is
still in the focus of current research. One potential feature of the QCD phase diagram is of
great interest for the theoretical [16, 75-79] and experimental [80-82] physics community: the
existence of a critical end point (CEP) and its location (up crp, Tcep) in the up — T plane.
Such a point would separate a first order line originating from the cold and dense regime and

a crossover region leading towards pup = 0.

On the theoretical side, great efforts towards overcoming the finite density sign problem are
undertaken, but so far none can access the region of interest and pinpoint the potentially
location of the CEP (for reviews see Ref. [83, 84], for instance). Nevertheless, various methods
offer a solution (Reweighting, Taylor expansion, Imaginary chemical potential, ...[31, 78,
85-87]) to circumvent the complex phase problem. By using these methods, the finite density
plane can be accessed at least for small values of chemical potentials. The most established
approach [16-18] is based on a Taylor expansion of thermodynamic variables in powers of
up/T about up = 0. Calculations are performed either at zero or purely imaginary baryon
chemical potential up, such that no fermionic sign problem occurs. Due to computational
effort the Taylor series is limited to a finite order n (current state of the art [17, 18, 83, 88] is
n < 6 for HISQ and n < 8 for unimproved staggered fermions), and thus, limiting the range
of reliability. In the end, the full Taylor series would be required to locate the CEP exactly.
Moreover, a breakdown of the Taylor expansion in some thermodynamic variable, such as
pressure and its derivatives, is necessary in the presence of a CEP due to their non-analytic
behavior. Such a finite radius of convergence of a Taylor series can be taken advantage from.
The position of a CEP [89] can be probed as the radius of convergence specifies the distance

from the series’ origin to the nearest non-analytic point.

In the following, a Taylor expansion is performed in the continuous time limit based
on the dual formulation of strong coupling lattice QCD (see Sec. 6.1). In this regime an
expansion from zero baryon density is not required in order to gain access to the finite

pp — T plane as no sign problem is present. However, since the Taylor expansion method is
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the most prominent procedure in full QCD, the continuous time simulations can provide a
framework in which the range of reliability is tested. The implemented method is validated
with an exact enumeration of the partition function for QCD in two dimensions (cf. Sec. 6.2).
Various methods for measuring baryon number fluctuations are presented (see Sec. 6.3). This
results in a histogram-based method which has the best signal-to-noise ratio and allows a
measurement of Taylor coefficients up to ¢z for a N3 = 103 volume and cg for volumes of 163
and 323 respectively. The volume dependence of different order cumulants in a tight range
around T is explored (Sec. 6.4). Furthermore, the chiral phase transition is mapped from the
radius of convergence and an imprint of the TCP possibly emerges (see Sec. 6.5). Finally,
the reconstruction of the pressure is performed by dropping the homogeneity condition and
measuring Taylor coefficients based on the spatial dimer density weighted by the baryon

density fluctuations (Sec. 6.6).

6.1 Taylor Expanding the Pressure

Thermodynamic quantities such as pressure and energy density are of great interest due to
their most prominent role governing the expansion of the QGP in the early universe as well as
in heavy ion collisions. Both quantities are very closely related in the chiral limit of SC-LQCD
(see Sec. 4.1.1). In fact, they only differ by a factor of three which is also expressed in terms
of the vanishing interaction measure (cf. Eq. (4.9)). Latter is the equation of state (EOS) for
relativistic, massless, non-interacting particles.
Under the assumption that the considered system is homogeneous, the pressure is related to
the partition function via

atp = —QBRE In(Z) and a'e= —agﬁi In(2), V =a>N3. (6.1)

V 3V

This expression is most helpful since no volume derivative has to be considered as in the
fundamental definition of the pressure a*p = —a%wT% In(Z).
Based on the homogeneity condition, the pressure by itself is a thermodynamic potential and
in general should be continuous along phase transitions. Thus, in the large density and small
temperature regime, where a first order phase transition occurs, the pressure should match as
the two phases coexist at the first order line (cf. discussion in Sec. 4.4). On the other hand,
the energy density between the phases is different which is denoted by the latent heat [90]. As
the interaction measure vanishes, pressure and energy density will behave in the same fashion
for the studies presented here.
An important aspect to be analyzed is the homogeneity condition that is enforced for lattice
calculations (cf. Eq.(6.1)). In fact, this condition only holds in the continuum and will make it
impossible to reconstruct the pressure from strong coupling Monte Carlo simulations by means

of a Taylor expansion of Eq. (6.1). Therefore, it will be required to perform an expansion in
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6.1 Taylor Expanding the Pressure

terms of the spatial dimer density which will give rise to a slightly more complicated structure
(see Sec. 6.6). Nevertheless, since the homogeneity approximation is mostly considered in
literature, the analysis of the expansion coefficients as well as the radius of convergence will
be based on Eq. (6.1).

The Taylor expansion of the pressure about (7, up = 0) is given as [17],[31]

T T 1 uB>" "lnZ
= Z=pTup=0)-=> — %) 50 —77n
P v n (T, up ) Vnzzjln! (T INpup/T)"
T oo 1 WB 2n 82n1HZ
=p(T,up =0) — ) dup/T)> v
V;@n)! T) O(us/T)*,,— o2
00 LB 2n
_p(T,MB—O)_ZC2” (T)
n=1

The second line already incorporates the fact that the thermodynamic potential Q(T, u, V) is
an even function of the baryon chemical potential up due to reflection symmetry Z(7T', up) =
Z(T,—up) (see e.g. [88]) and thus, P(T,up) = P(T,—up) as well. Within the last line the

Taylor coefficients are defined as

T 1 9™hZ
Con — =5 (63)
V. 2n)!o(up/T)*" | ,,—o
with 8(8:;% being the essential contribution to be studied in the following.

Cumulants and Moments From statistical physics it is known that the grand-canonical
partition function is the exponential or moment generating function exp(up/T X) of the
baryon density moments X = Qg/V, ([51, 91],[92]). The volume is given as V, = N3. It
follows

t2(X? (X"

<2! ) + ... <7“! )

12 tr
=1+tu1+%+... Hir

! r!
o t'r
=2 Hr
r=0 ’

Z(T, g, Vo) = M(t = pp/T) = () =1+ H{X) +

with s, being the 7" raw moment. By differentiating the moment generating function M (t)

a total of  times with respect to ¢ (at the origin), the 7" raw moment reads

Hm = e
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Chapter 6 Taylor Expansion

As there is no favoring between the baryon and anti-baryon sector at zero baryon chemical

potential pp = 0, the odd baryon density moments vanish (m = 2n+ 1,n € N).

Based on the moment generating function, the so-called cumulant generating function is
defined as

K(t)=In(M(t)) = i HT;' (6.6)
r=0 :

By inserting Eq. (6.4) into Eq. (6.6) and matching coefficients allows to express the cumulants

in terms of the moments p,(w) = (W"):

Ki(w) = m

w) = p3 — Bpigpr + 243 (6.7)

ka(w) = =641 + 12uF o — 3u3 — Apa pis + pia

(w)
_ 12
Ko(w) = p2 —
(W) =
(w) =
Note that another elegant way to calculate the cumulants is based on the initial condition

olnZ
O(up/T)

and a recursion relation which makes it possible to relate successive orders of moments by

= (w), (6.8)

enforcing [93]

0

— (W) = (W) — (W) (w). )
8(MB/T)< ) = (") — (W) {w) (6.9)

Therefore, derivatives % of arbitrary order n can be applied to Eq. (6.8) and by inserting
Eq. (6.9) it can be concluded that the partition function Z is related to the cumulants via

0% 1n Z
d(pp/T)*

As the thermodynamic potential is a function of even orders, this leads to less complex higher

= KZQn(QB) = Kvgn(w) . Va2n. (6.10)

order cumulants kop,:

ro(w) = p2

Ka(w) = —3u3 + fia

ro(w) = 30p3 — 15papa + pig (6.11)
rg(w) = —630p5 — 3543 + 420344 — 28pap6 + s
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6.2 Exact enumeration in two dimensions

Table 6.1: Static limit results for the Taylor coefficients discussed in the following. At high
temperatures the Taylor coefficients have to converge towards their respective limit.

k2(02B)/ Vo | Ka(2B)/ Vs | k6(2B)/ Vo | k8(2B)/ Vs | K10(2B)/ Vo | kK12(2B)/ Vs
1 2 10 6 1
3 ‘ 0 ‘ —5 ‘ Kl ‘ —4g ‘ —33
This reduces the expression for the Taylor expansion of the pressure to
T 1 u3>2"
A = T — T = — - | —= " Q
p=p(T0) ~p(Ts) = 3 o () mnt)
- (6.12)

e 2n Ko
:ZCQn(QB)(MI?> , c2n(QB):(2Tw2‘(/W

with the Taylor coefficients ca,(2p). By measuring the baryon density moments

(nf) = (W) = pim (6.13)

via a CT worm algorithm, the cumulants x,(w) are constructed. Based on the cumulants, a

Taylor expansion of the pressure for a homogeneous system can be composed.

Cumulants in the High Temperature Limit In Sec. 1.4.2 the high temperature limit is
explored which features static mesons and baryon lines. Based on the one-dimensional QCD
partition function Eq.(1.80) at vanishing baryon chemical potential pp = 0, the moments

calculated by Equations (6.8) and (6.9) yield the same static limit value

pifee = 1, (6.14)
Note that aside from being independent of the order n, there is also no volume dependence
present in the static moment definition. By inserting Eq. (6.14) into Eq. (6.11) results in the
static limit values for kg,(Q2p)/V, summarized in Tab. 6.1. These values are of great interest
as a crosscheck for all further calculations. Interestingly, the limiting values are in close
proximity of ~ +1 for all cumulants up to k12(Q25)/V,. Beyond that the high temperature

limit results seem to diverge.

6.2 Exact enumeration in two dimensions

An exact evaluation of the partition function, whether it is in discrete (Zpr) or continuous
time (Zc), is only manageable on small lattices where the number of possible configurations is
under control. Nevertheless, such crosschecks are crucial in order to verify that measurements

work properly.
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Taylor coefficients in two dimensions
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Figure 6.1: Discrete time simulations of the first four Taylor coefficients ko, 8(Qp)/Vs on a
2 X N, lattice. Noticeable deviations are visible for N, = 2 results, while larger temporal extends
converge smoothly towards the continuous time simulation results N, — oo. The eract numeration
results for N = 2 and 4 agree perfectly with the same colored data points.

Details on the analytic derivation of the exact partition function on a 2 x 2 lattice is given in

[53]. Its generalization to 2 x N, only changes the multiplicity in the bare anisotropy

2P =% (2 cosh(2up/T) + 16(cosh(ug/T) + 1) + 2>

400
+7 <’Y4NT + ’}/ZN"—) + 4.

(6.15)

For the CT limit such an expression can only be derived approximately, as spatial dimer can
be placed arbitrary tight and thus, an infinite number of terms contributes. The starting
point is the static limit as discussed for a one-dimensional system in Sec. 1.4.2. In general,
the partition function can be structured into sectors which are characterized by the winding

number

Vo
ZCT,static = Z ZQB . (6 16)
Qp=—Vs

No spatial meson hoppings can be present for configurations with a baryon winding number
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6.2 Exact enumeration in two dimensions

Qp # 0. A lattice that is fully saturated with (anti)-baryons is associated with winding numbers
(Qp = —V) Qp = V while lattices partly occupied with (anti)-baryons take integer valued
numbers in between (—V, < Qp < V,). As (anti)-baryons carry a weight of exp(+up/T),

contributions to the purely baryonic sectors Zq,—+2 add up to
Zop—2+ Zaop=—2=2 cosh(2up/T). (6.17)

For the mixed sectors Zqg,—11 there are N. + 1 combinations to put a static (anti)-baryon

and a static meson line on a 2 x CT lattice. Therefore, the weight is given by

Zap=1+ Zap=—1 = 2(Ne + 1)(exp(pp/T) + 1) + 2(Ne + 1)(exp(—pp/T) + 1)

(6.18)
= 16(cosh(up/T) + 1).

Finally, the largest number of configurations are gathered in the 25 = 0 sector. There are
two ways of putting a baryon/anti-baryon on a 2 x CT lattices with Q5 = 0 which yields
a weight of 2exp(up/T) exp(—pup/T)|uz=0 = 2. In total, the static partition function on a
2 x CT lattice reads

Zor static = Zaxcr = 2cosh(2up/T) 4+ 16 (cosh(up/T) + 1) + 2. (6.19)
Note that this static contribution is part of the first term in Eq. (6.15).

In discrete time the number of configurations remains finite and only grows with a larger
temporal extend N,. As mentioned before, this is very different for CT configurations.
Since an arbitrary number of sets of oppositely oriented spatial dimers can be included in a
configuration, there is in fact no upper limit for the number of vertices that can be included.
Thus, infinitely many configurations can be constructed. However, at bare temperatures
dl” > 1/2, contributions with larger spatial dimer number k are suppressed more and more.
According to Eq. (2.28) the partition function including the corrections to the static limit

reads

1 \* N
ZQXCT = ZCT,static + § Ck (27.> y Cl — g ’UTT(g). (620)
kE2N a Ve
Gel',,

The coefficients ¢, contain the contributions of the spatial dimer vertices as discussed in
Sec. 2.3. Thus, by adding order-by-order ¢’s the overall static limit contribution is corrected.
Higher order c¢; are necessary to be included at temperatures below 7T, where multiple spatial
dimers per site are very common. However, the process of tabulating the vp-multiplicities
beyond k > 10 is sophisticated. It is most crucial to avoid configurations where the number
of emission and absorption events attached to a spatial site does not match, thus violating

the Grassmann Constraint at the boundaries. Alternatively, the GC can be violated by
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Table 6.2: Number of spatial dimers and the associated multiplicities of T-shaped vertices with
their non-trivial weight vy = % For n spatial dimers there are 0...2n vertices. Only even

multiplicities occur and every second column has only one non-zero entry, namely for the #D row
and U#D column. A symmetry factor of 8 is factored out from the whole table.

#D U% v% v% vg visr v%o v%z 0%4 0%6
2 4 4 1 - - — — — —
4 4 0 12 0 1 — — — —
6 4 0 9 16 6 0 1 — -
8 4 0 16 0 52 0 8 0 1

raising (lowering) the meson state occupation number above (below) N, (0). In Tab. (6.2),
the first four correction terms cs, ¢4, cg and cg are listed including their multiplicities in vp.
Note that a symmetry factor motivated by Fig. 6.2 of 2.4 = 8 is factored out. With the

Meson State m(z) e=——p-- e m(y) ————
Site Swap m(y) l—T m(z) .—T .. l_
Periodic m(x) caes y.. R / |
Boundaries m(y) l T | T l - l +_...

Figure 6.2: Configurations of the same weight. Due to the depicted symmetries only %th of all
possible configurations have to be calculated.

strategy elaborated in Appendix (A.1), it is easily possible to compute multiplicities up to cag.
Moreover, correlations between the multiplicities of vy and vy, vertices and the total number
of spatial dimers k can be found. Without a proof, the contributions to Eq. (6.20) can be
written down to arbitrary order in k (see Appendix (A.2)).

Finally, it needs to be discussed to what order it is necessary to include spatial dimer
contributions and when a truncation is reasonable. At temperatures above T, meson hoppings
are suppressed and no significant deviations between calculations based on different truncated
partition functions are obtained (see Fig. 6.3). This is very different for temperatures below T,
where spatial hoppings are very common. While clear deviations are visible for coefficients ko
and k4, good agreement is obtained for £ > 6 and the analytic curve describes the continuous
time worm simulation results perfectly. Therefore, at least for the 2 x CT test case the listing
in Tab. 6.2 is sufficient.
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Taylor coefficients in two dimensions
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Figure 6.3: Continuous time results for the first four Taylor coefficients ko s(2p)/Vs on a
2 x CT lattice obtained respectively by a CT worm simulation and the truncated partition function
Eq. (6.20). Analytic results up to k = 28 spatial dimers are considered.

6.3 Taylor coefficients in 341 dimensions

The previous sections strongly support that the method for extracting Taylor coefficients
based on the baryon number density is well established and is ready to be applied to larger
lattices in 3 4+ 1 dimensions. Calculations on various lattice sizes provide insights on the

cumulants behavior in the vicinity of T, as the thermodynamic limit is approached.

6.3.1 Naive approach

Recent studies based on DT lattices of size 103 x 4 at finite quark mass amg = 0.1 already
failed to extract the fourth order cumulant with sufficient accuracy [53]. It is expected that the
CT data are significantly less noisy due to the continuous time feature of having static baryon
lines which keeps the cumulants under control especially at temperatures above T, where
baryon/anti-baryon fluctuations are rare. To verify that this is not a quark mass dependent
effect, the simulations in discrete time are repeated for m, = 0.

Worm simulations for a 103 x CT lattices are performed. A comparison of cumulants x2(Q25)/V,
and k4(Q2p)/V, from both DT and CT calculations is given in Fig. 6.4. For the second order
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Cumulants measured by DT vs. CT algorithm
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Figure 6.4: Measurement of the cumulants k2(Qp)/Vy and k4(2p)/ Vs on a discrete time lattice
with Ny = 4 and on a continuous time lattice. The offset below T, in ko(p)/Vy between the
results is a finite size effect as discussed for 2 x N, simulations. discrete time results start to
become noisy for k4(Qp)/V, below T, whereas the CT results show a smooth and well-defined
behavior.

cumulant an overall match is observed, except for temperatures below T, where the finite size
effects discussed in Fig. 6.1 contribute to a small offset. This offset cannot be observed in the
fourth order cumulant, since data are already too noisy for DT simulations below 7.

Note that both data sets are based on the same statistics. A total of 108 worm updates
were performed to obtain a hundred averaged values for the baryon density. Subsequently, a
jackknife analysis (details in Sec. 1.5.2) was performed on these data sets. This is approximately
a factor four less statistics compared to the results for finite m, = 0.1 in [53] which is also
why the errors here are larger by about the same factor. Hence, it is even more impressive
that the continuous time method has a superior performance just due to its native feature of
static baryon lines.

In general, the noise in the baryon density will be lowest at small temperatures where
configurations are dominated by spatial meson hoppings such that there is no space for static
degrees of freedom on the lattice. This state of baryon loop suppression does not hold anymore
around T, and above. As the baryon density increases, the calculation of high-order cumulants

becomes demanding since with each order more moments contribute to a single cumulant (cf.
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Introduce a Polymer resummation scheme in CT
80

60

40

—%— no resummation

a0 b T full polymer resummation
| | |

-15 I I I I
0.5 1.0 1.5 2.0

T/T

c

Figure 6.5: Measurement of the cumulant k¢(2p)/Vy with and without a resummation scheme.
A resummation of static objects reduces the errors such that the structure of kg close to T, can be
studied.

Eq. (6.11)). It needs high precision to compensate for these new contributions which become

more and more sensitive to variations as higher orders are considered.

6.3.2 Polymer resummation

The application of the CT algorithm results in a reasonable improvement compared to the
latest discrete time studies. However, the wiggles in Fig. 6.4 above T, also highlight that no
major improvement over several orders of cumulants was achieved so far. Thus, the sixth
order cumulant kg is calculated based on a polymer resummation scheme in order to reduce
fluctuations. Static meson state chains as well as (anti)-baryons are treated the same during
the worm evolution and the individual contributions are extracted based on the probabilities
stated in Eq. (6.21). A clear improvement can be achieved as seen in Fig. 6.5. Without a full
resummation, the noise is extreme and destroys the imprint of the chiral transition completely,
while the imprint is visible with a full polymer resummation. Nevertheless, the errors are
still large, even though it should be manageable to reconstruct at least kg(€25)/V, with more
statistics. In order to get some additional benefit from this analysis in the strong coupling

limit, it is most crucial to be able to go beyond the sixth order which can also be addressed
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in full QCD [18]. Thus, the next section introduces the final method which allows to extract
decent results up to k12(Q2p)/Vs.

6.3.3 Histograms in the Polymer Number

In the following, a method based on a histogram in the winding number density is presented
which boosts the accuracy in the reconstructed Taylor coefficients. This method depends
on the Polymer resummed algorithm in order to incorporate these benefits as well. This
resummation scheme treats static meson lines and (anti-)baryons as the exact same object, a
polymer. At zero baryon chemical potential ;g = 0 the probability of interpreting a polymer
Q € {B, A, D} as a static meson D or (anti-)baryon P = B + A is given as

Ne+1 2 2cosh(up/T) 1

=_ = 2= 6.21
Zld 37 PP Zld 37 ( )

Pp =

with N. = 3 and Z14 from Eq. (1.80). Now, instead of distinguishing between the different
types of static lines at the very end of every single worm update, histograms Hy 7/, , (Q) are
accumulated in the polymer number @) and normalized such that each histogram corresponds
to a probability distribution (see Fig. 6.6:Top). Moments and cumulants are reconstructed
based on such a histogram. At low and high temperatures, the histogram structure is narrow
and peaked. While almost no static lines are present at 0.57, there are almost no non-static
lines at 2.0 T,.. As T, is approached, the probability of single polymeric sites () decreases. This
is compensated by a broadening of the distribution. At T, the histograms peak is located
in the vicinity of V;/2, as this temperature highlights the transition from a dynamic regime
(at low temperatures) with almost only non-static sites to a regime with almost only static
polymer sites (large temperatures).

Starting from the histograms in the fully resummed polymer number @ (cf. Fig. 6.6:Top), a

binomial transformation is applied which yields a histogram in P:

N. +1\9P /2cosh(ug/T)\ "
HV#B/T ZHV“B/T(Q) <g>( Z14 ) <COSZ(de/)>

Gupy/7(Q.P) (6.22)
Q 9 Q—P 1 P
~Sr@(3) (5) ()
Q

In the second line the function g, /7(Q, P) is evaluated for N, = 3

wp=0 @ @)Q_P @P (6.23)

where the weights introduced in Eq. (6.21) are recovered. The temperature dependence of the

QMB/T(Q7 P)
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Figure 6.6: Histograms used for an accurate calculation of cumulants. The histograms in the
polymer number Q are obtained from CT worm simulations on V = 103 lattices while all others
are derived completely analytically.

histograms Hy;,, . /7 (P) is shown in Fig. 6.6:Center. Since the probability of (anti)- baryonic
sites is %, the data points are no longer distributed over the whole V,-range but located
within ~ % Above T, static sites dominate and no saturation occurs which would result in a
narrow, peaked structure since only @) feels the saturation due to the finite volume but P can
vary and be spread out. The amplitude stays rather constant since () can be interpreted as %
static dimer sites and % static (anti-)baryon sites. Another transformation is necessary to
differ between antibaryonic and baryonic sites. At zero pup none of the two is favored and the
distribution will be exactly the same. For the same reason all odd moments of the baryon

density vanish. In analogy to Eq. (6.22) it follows that

v 1 (B) =X g (P) (1) g e
Viup/T\P) = — Voug/T B ) (2cosh(pp/T))B (2 cosh(up/T))F—B

_ P\ /1\* (6.24)
= Hyyupr(P ( ) <)
5 Vius B 2
qMB/T(P’B)

In the last line it is used that at up = 0 the chance of interpreting a polymer site P as
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a baryon or antibaryon is identical. Due to this fifty-fifty chance of having a baryon or
antibaryon, histograms in the baryon number are constrained to an interval of ~ (V,,/3)/2
(see Fig. 6.6:Bottom). A complete similar structure to the previous histograms in the polymer
number emerges. Since the baryon histograms are constraint to a narrower region, less data
points build up the peak structure with a raise in amplitude in order to keep the normalization

fixed to one.

The analysis can be shortened by skipping the intermediate step of having a histogram in P

and hence, combining both binomial transformations in a single trinomial distribution

@ Bus/T(N, 4 1)@-F
DSE/T(Q,B): Z <P-£-B’PE%7Q_P>€ (N + 1) . (6.25)

P=|B] wQ(/LB/T)Q

This distribution is used to transform histograms in the fully resummed polymer number @

into histograms in B:
S5 QB Q
HY yyr(B) = 3 D@, B) Hy, o r(Q). (6.26)
Q=P

Finally, a certain raw moment pu,, can be extracted fully analytically by weighting a function

in the required (anti)-baryon number f(B) = B™ with the before mentioned histogram

(f(B)) = HY, ., /r(B) f(B). (6.27)

Since the histograms in baryon and antibaryon number are the same at pup = 0, a function in

(B — A)™ can be selected to shorten the process.

In the following, final results on the extraction of cumulants are presented. The moments of
np are calculated by applying Eq. (6.27) to a suitable function in the baryon and antibaryon
number. In Fig. 6.7:Left results up to the eighth order are shown in a close range around
T.. In this range the data are well-behaved even for the larger volumes and the emergence
of local extrema with each two orders in ko, becomes evident. The peaks closest to T, are
the ones that are strongest. While the 162 x CT and 322 x CT data already converge pretty
well at the low- and high-temperature borders of the depicted range, there are clear finite size
scaling effects in the vicinity of T.. At larger orders of ko, the high temperature behavior
cannot be featured precisely. The data is clearly dominated by noise for the 163 x CT volume
at kg but also fails for the 103 x CT simulations. The problem is that with each order in the
cumulants a factor of V,, pushes down the signal which has to be compensate for by tuning
up the precision by the same factor. At some point this is not manageable anymore with a
serial algorithm. In the vicinity of T, the corrections due to finite size effects become stronger
with the order of ks,. Higher order cumulants show a divergence of the amplitude also for

the 103 x CT volume as depicted in Fig. 6.8. Since k19 and k12 are well behaved around T,
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Volume dependence of cumulants
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Figure 6.7: Cumulants up to order 8 obtained from histograms in the polymer number Q for
various volume sizes. Left: Temperature dependence in close vicinity to T.. Right: Temperature
dependence towards the static limit.

such that the expected behavior can be studied, these two orders will also be considered in
the following analysis.
The location of maxima and the shape of the cumulant function is further investigated in the

next section.

6.4 Inflection Points

When studying the different orders of cumulants, several systematics can be observed such as
new maxima arising with every two orders and hence inflection points with each order in xoy,.
Similar structures for cumulants are obtained in [87],[93],[94]. To qualitatively narrow down
the locations of minima, maxima and inflection points more precisely the coarse simulation
data are cubic spline interpolated in order to raise the number of available data points by a
factor of 10. The resampling is performed on an interval ¢ = [1.30:1.50] around T, with
200 bins. A larger number of bins is not reasonable and would lead to possible oscillations
introduced by the spline interpolation. At constant volume the location of maxima and minima

as well as the position of inflection points are reasonably good distributed symmetrically
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Figure 6.8: Higher order cumulants in a close range around T.. For 10®> x CT simulations
the 10" and 12" order are shown with reasonable errors which allow to observe the increasingly
complex structure around T, with diverging amplitudes already for this small volume.

around 7, (see Fig. 6.9). Based on the results it can be assumed that exactly at T, there is
in alternating order (1) an inflection point with negative sign change (k2), followed by (2)
a maximum (k4), (3) an inflection point with positive sign change (k¢) and (4) a minimum
(ks). This behavior is quite reasonable when looking at the slope of , and comparing it to
Kn+2 as depicted in Fig. 6.10 for k2 and k4. The shape of the two functions is similar and in
particular the position of the maximum agrees. Nevertheless, they totally differ in amplitude
and in low- and high-temperature behavior since the derivative of k,, is expected to vanish in
both limits. If the volume dependence of the cumulants is taken into account there are two

main observations (see Fig. 6.11):

1. With increasing volume the locations of peaks are narrowed down to successively smaller

intervals around T,
2. and the amplitude diverges.

Eventually, in the thermodynamic limit it can be expected that poles will emerge. Away
from T, no volume effects arise. Table (6.3) sums up the different locations and in Fig. 6.12

an extrapolation towards the thermodynamic limit is performed. For the two lowest order
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Table 6.3: Temperature locations of Mazima, Minima (left) and inflection points (right) from
the analysis of the four lowest order cumulants and for three different volumes.

TMin/MaX 10% ‘ 163 ‘ 32° Tnflection 103 ‘ 163 ‘ 32°

K2 - - — K2 1.409 1.418 1.422

1.382 1.400 1.413
1.448 1.437 1.435
1.362 1.399 1.412
K6 1.422 1.424 1.424
1.473 1.448 1.436
1.359 1.384 1411
1.406 1.415 1.422
1.440 1.435 1.435
1.494 1.458 1.446

K4 1.415 1.419 1.423 K4

1.386 1.405 1.416

~e 1.451 1.438 1.431

1.369 1.395 1.415
K 1.423 1.425 1.429 K8
1474 1.450 1.441

cumulants the extrapolations agree very well with the critical temperature obtained from the
chiral susceptibility scaling (see Sec. 4.2). On the contrary, extrapolation results are far more
scattered for the higher order cumulants since these exhibit more complex structures which
cannot be resolved as good by the sparsely distributed simulation data. Therefore, the cubic
spine interpolation is affected by larger uncertainties for higher order cumulants as well as for

larger volumes where peaks and inflection points are located in a narrower range about 7.

6.5 Radius of Convergence

In the chiral limit of strong coupling LQCD the phase diagram exhibits a first order transition
line at densities around py ~ 0.77 and low temperatures. This line ends in a tricritical point
(TCP), which is located at (augrcp, dfrcp) = (1.95(5),1.005(25)). For smaller densities

the phases of low and high temperatures are separated by a 2"¢

order phase transition. By
measuring the radius of convergence r,, the chiral transition can be tested. A finite 7,
indicates the position of the nearest critical point with respect to the center of the expansion.
It is not possible to have a series expansion that crosses the non-analyticity to describe the

phase transition in the adjacent phase.

For a general power series expansion

Z an = Z cn(z —b)" (6.28)
n=1 n=1

the radius of convergence r is a nonnegative, real number which specifies that the series in

Eq. (6.28) is convergent if |z — b| < r. It is estimated from successive ratios of the expansion
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Figure 6.10: Comparison of k4(2p)/V, simulation data with the first derivative of k2(Qp)/Vy.
Both data sets are spline interpolated and resampled as described in Sec. 6.4. The similarity
motivates the sequence of Minima, Mazima and inflection points with different sign changes arising
at T, for consecutive K, — Kpia.
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Volume dependence of Inflection Points and Extrema
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Figure 6.11: Volume dependence of cumulant k¢(Q2g)/Vy. Extreme points move towards T, and
diverge in amplitude. The range away from T, is unaffected by change in volume. Note that for
the V, = 323 volume the simulation data are very sparsely distributed in the region of interest.

coefficients and by performing the limit

ro = lim
n—o0

Rn
— lim /|as , 6.29
Jim 4 /o (n)mm2 (6.29)

The square-root comes from the fact that the Taylor expansion is performed in (up/T)? rather
than in pp/T [94]. The constant ay(n) in Eq. (6.29) depends on which kind of observable

is Taylor expanded. So, for the pressure a*p or the baryon number susceptibility a®xp the

Cn
Cn+2

corresponding coefficients are [16]

ap(n) =4/(n+2)(n+1) (6.30)

Qxp (77,) = (n - 1)”7

and therefore, different 7, are obtained at finite n for different observables. In fact, the

estimates for the radius of convergence for the baryon density r,, can be directly related to
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Volume extrapolation of Extrema positions
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Figure 6.12: Thermodynamic limit extrapolation of the Minima, Maxima and inflection point
locations and comparison to T, obtained from the chiral susceptibility scaling.

the radius of convergence for the pressure [7§]

s 2n(2n — 1)

Although there is a difference at finite n, they all agree in the nlgrOlo limit. For the pressure
the constant directly follows from the definition of the Taylor coefficients ¢y, in Eq. (6.12).
As discussed before, the determination of Taylor coefficients does not allow yet to measure
arbitrary high order coefficients. In fact, it is already extremely difficult to get a reasonable
good signal-to-noise ratio for the low ordered coefficients as the system becomes more complex.
For the 10% x CT Taylor coefficients, the results for the radii of convergence are shown in
Fig. 6.13. The phase transition lines connected by the TCP are obtained from CT SC-LQCD
simulations. With increasing orders, the ratios of Taylor coefficients approach the transition
line from the high density region. A similar behavior was discussed in [95] for an effective
Ny = 2+ 1 flavour Polyakov-quark-meson model. For the low order ratios, a strong back-
bending towards low densities is obtained which sets in at successively lower temperatures as
higher orders are considered. Furthermore, the ratio £ is noisy below T, due to a dramatic

K12

increase in simulation runtime at low temperatures. However, at temperatures slightly above
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Radius of Convergence from Pressure
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Figure 6.13: Phase diagram in temperature and baryon chemical potential for the pressure with
the numerical results from CT simulations depicted in black and the radii of convergence in color.
Negative results indicating the presence of non-analyticities in the complex plane are shown in

grey.

Trep there is a slight bending towards higher densities which could be an impact of higher
order ratios reacting on the presence of the TCP. On the other hand, this could also indicate

that insufficient statistics is included in the construction of k1.

The same plot can be obtained when Taylor expanding the baryon susceptibility

5 82p 0 g\ 22
Xom = 575 = n(n — l)cp () . (6.32)
- = Sy (4
This expansion requires no new measurements as it is completely based on the Taylor
expansion of the pressure with the respective coefficients c5,. As susceptibilities diverge at
non-analyticities, they have a stronger dependence on the transition line which should result in
a faster convergence ([16],[95]). This is strongly supported by Fig. 6.15. The overall behavior
in the finite up — T plane matches between r,,(2n) and r,(2n). However, Eq. (6.32) yields a

“shift” such that the results for r,,(2n) almost agree with the transition line for n > 8.

Below T, the radius of convergence is positive and therefore sensitive towards the nearest

singularity in the real up — T plane [96]. In close proximity to 7. = 1.4276(2) the ratios are
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oscillating between positive and negative values. Here, the number of zeros increases with

Kn
Kn+2

extrema, it is evident that with increasing volume the locations of zeros are spread narrower

each order of . From the previous discussion on the location of inflection points and
around T,.. For V, — oo the ratios n > 4 are positive below T, and negative above, while at
T. there is a singularity. As the radius of convergence resembles the location of the closest
singularity, it is expected that above T, the ratios will react to a singularity in the complex
plane since above T, no phase transition takes place for real yg. However, in this temperature

regime no mutual convergence towards some transition line is observed whatsoever.

Based on the finite r,, results, an extrapolation for fixed temperature will locate the position
of the nearest non-analyticity. As studies in [95] show, a peaked behavior at small n followed
by a decay towards the desired r, .o value can be expected. This agrees with the behavior
observed for small temperatures well below T, for the baryon density as well as the associated
susceptibility (Fig. 6.14). While at 0.75 7T, a sudden rise occurs, which could be an imprint of
the TCP or an indication of insufficient statistics, this bulky part will eventually vanish as
T. is approached. The results for the susceptibility nicely agree with the large n numerical
value. At 0.957, a merely decaying behavior in 7, and a constant increase in r,, is observed.
Based on the shown convergence, a transition would be expected to take place at twice the

numerical value.

Especially the plot for the last temperature stresses the necessity to incorporate many more
higher order coefficients in order to meaningful approach and extrapolate towards 7, 0.

As discussed before, higher order Taylor coefficients are difficult to obtain in non-toy models.
In order to reliably extrapolate from the finite set of expansion coefficients towards n — oo
there are various methods to choose from. A usual approach is comprised in the Domb-Sykes
Plot ([94],[97]), where the estimates for the radius of convergence 1/r2_; are plotted versus
1/n. The data points are then extrapolated linearly towards 1/n — 0 and the radius of
convergence can be extracted. Note that it is required for the expansion coefficients to be
asymptotically of the same sign or to alternate in the sign [94]. There are estimators which
deal better with an irregular asymptotic structure. Typically, these estimators are not used
since an increasing number of Taylor coefficients is involved in their calculations. As the
histogram method in the polymer number gives rise to the first six orders of coefficients, this
should allow to address more complex estimators. One such estimator which works best for

non-analyticities away from the real axis was proposed by Mercer and Roberts [96]

N

2
(MR) _ |tn41Cn—-1 — Cy
’I”n = |l

2
Cn+2Cn — Cpyq

(6.33)

=

2
Cn4+2Cn—2 — C,

)

2
Cn+4Cn — Cpyo
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Figure 6.14: Conwvergence of the radius of convergence towards the chiral transition line for
three temperatures below T,.. The radii are obtained from expansions in the baryon density as well
as the baryon susceptibility.

and even more complex, modified versions (MMR) are proposed as presented in [98]

1
222
n n—
(n —1)epyicn—1 — n°c

(
(

(MMR)

r
Nepi2cn — (N + 1)2ci+1

. (6.34)

n+1)
n+2)
n+2)(n — 2)cpiocn_o — n?c2
n+4)ncppacn — (n+2)2¢2 .,

(
(
A great variety of estimators is also presented in [99]. The radius of convergence rr(LMR)

based on Eq. 6.33 shows strong imprints of some of the radii incorporated in its more complex

structure (see also Fig. 6.16). It seems obvious that rffB (MB) 4 spoiled by the unphysical
behavior of r3? while r§” MR shows large imprints of 7% . So, in case more Taylor coefficients

were available it would be reasonable to exclude these mentioned results from an analysis
with the MR estimator.

A descent analysis based on the Domb-Sykes Plot is not possible with the limited data set.
In the end, the standard estimator for the Baryon susceptibility shows a better convergence

towards the transition line while for the Mercer-Roberts estimator no real trend can be
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Figure 6.15: Phase diagram in xp for real and imaginary chemical potentials.
observed.

6.6 Reconstruction of the Pressure

Finally, it is of interest to reconstruct the pressure via the Taylor expansion method. As
discussed in Sec. 6.1, a reconstruction according to Eq. (6.12) does not work as the Taylor
expansion is based on the assumption of having measured the pressure on a homogeneous
system. Most certainly this is not the case for the pressure obtained from calculations on a

discrete lattice.

The starting point for the discussion is the definition of the pressure in terms of the spatial
dimer density a*p = —%—(C — (np,)). Instead of an expansion in baryon density moments,
the pressure for an inhomogeneous system is sensitive to a Taylor expansion in the spatial

dimer density

00 2n %Ln
Ap=1 S b (“B> 07 {np,) (6.35)

32« )\ T ) 8(up/T)2

n=0

#B=0

The derivatives with respect to up/T of (np_) are more involved as the expectation value of
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Figure 6.16: Reconstruction of the chiral transition line in the phase diagram for the baryon
susceptibility based on the Mercer-Roberts estimator.

the spatial dimer density is given by

(np,) = Wg)w (6.36)

where it is summed over all configurations C. So, with each expansion order n, an additional
factor in the winding number density emerges from the derivative of Z. In particular, this
leads to mixed terms (np,w?") to be evaluated. In the end, this whole problem can be scaled
down to a simple recursion relation [93] similar to the one of Eq. (6.9):

8ﬂn 0 1I1<7’LDS >

- = [+l — fn d ———L = [i4. 6.37
3(up/T) Pnt1 — fnft1 - an 90/ T) p1 (6.37)

The modified moments fi,, are the before mentioned combinations of the spatial dimer density

np, and the winding number density w from previous studies

fim, ={np,w™). (6.38)
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Finally, the modified cumulants are constructed by applying Eq. (6.37) [93]

Fo(np,) =(np,) = fio

0*(np,)
R2(np,) —75 = (fiz — fiop2)
/’LB/Ij)2 np=0
_ o np, . _ _ _
Fa(np,) = < T>4 = (fia — 6fiopiz — fiopia + 6fiofi3)
/’LB/ ) np=0
06(”[) )
Nus/T)%,,—0 (6.39)
=(—9043 fio — pefio + 90u3fiz — 15pafia + 1502 (2uafio — fia) + fic)
~ % (n
Rs(np,) = DL

8(/'LB/T)8 np=0
= (25203710 + TOpZfio — psfio — 25204312 — 28p16fiy — 42045 (3pajio — fia)
— TOpafis + 282(2uefio + 30puafiz — fig) + fis)-

A far more sophisticated structure emerges here with significantly more terms that mix
contributions from different moments. The Taylor expansion in terms of these defined

coefficients reads

00 1 2n ~
=53 (“TB) Fan(ND,)

1 Z <“B>2n02n (Np,),

(6.40)

with the Taylor coefficients ¢2,(Np,) depending on the spatial dimer number, Np_, = np, V.

The moments in Eq. (6.39) can be evaluated in a similar fashion to the homogeneous analysis.
However, more histograms are required. In addition to the histogram in the polymer number,
it is necessary to also measure a histogram in the spatial dimer density as well as in all
different mixed contributions np, w?*. The crucial difference is, that the new histograms are
not limited in their number of entries since the CT limit allows infinite many spatial dimers.

Therefore, a fixed and finite limiting value is set for the histogram size.

Within the scope of this thesis, results for the reconstruction of the pressure are limited
to a non-histogram simulation but including a polymer resummation (see Fig. 6.17). The
reconstruction of the pressure is analyzed for four different temperatures in the range of
0.56 T, up to ~ T.. The lowest temperature ratio is slightly below Trcp. As discussed in
Fig. 4.7 the pressure shows an almost immediate jump from ~ 0 to a finite value at the phase
transition. For temperatures Tpocp < T < T, the transition is 21d grder in the chiral limit
and the jump in the pressure becomes smoother. A reconstruction of the pressure in the

temperature regime T' < T is only possible from the series’ origin to the nearest non-analytic
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Reconstruction of the Pressure
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Figure 6.17: Reconstruction of the pressure a*p based on Taylor coefficients extracted from
moments in the spatial dimer and baryon number density as well as mized contributions on a 103
volume. A polymer resummation scheme is used for the calculation of the baryon number densities.
At successively larger temperatures the coefficients kg and kg have large errors and should not be
considered for a Taylor expansion. The respective expansions are shown in grey color.

point. Beyond that the series expansion fails.

Since no histograms are used, only low order Taylor expansion coefficients can be considered.
In the Appendix Fig. D.2 depicts the modified cumulants obtained by simulations with and
without enforcing a polymer resummation scheme. Based on this as well as the observations
made in Fig. 6.4 and 6.5, it can be expected that ko and &4 reproduce the pressure while &g
and RKg can only be incorporated for low temperatures 7/T. < 0.7. Due to the more complex
structure of the new coefficients, it can also be assumed that the order of the highest Taylor
coeflicient to be extracted with reasonable errors is lower. The polymer resummation scheme
only affects the baryon number density while the spatial dimer density and combinations of

these observables are afflicted by larger uncertainties.

6.7 Discussion

The Taylor expansion method is a powerful tool in QCD to access and learn about the finite

density region. However, Taylor expansions in full QCD are typically restricted to just a
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few low order coefficients. Therefore, often some QCD like models are chosen to discuss a
wider range of Taylor coefficients as well as the radius of convergence. The SC limit is such a
model which shares many important properties of QCD. It also provides the opportunity to

go beyond the strong coupling limit and include S corrections.

In SC-LQCD, it is not necessary to use a Taylor expansion method as the sign problem is so
mild that simulations can already be performed at finite up, pinpointing the location of the
TCP to (apuprep, dlrep) = ((1.95(5),1.005(25))) in the chiral limit. However, in order to
learn about the features of the expansion coefficients and to study the radius of convergence,
a Taylor expansion was performed for the CT limit within the SC-LQCD framework. The
analysis is based on an expansion of the pressure by assuming the system to be homogeneous.
Crosschecks worked out well and showed agreement concerning an extrapolation in N, as
well as with the static limit. In two dimensions with N, = 2 it is possible to formulate
the partition function analytically and again the correctness of the extraction of the Taylor

coefficients was emphasized.

Simulations in 3 + 1 dimensions were performed on a 10% x CT lattice in order to compare
with literature results for a discrete time analysis on a 103 x 4 lattice. Clearly, the CT limit
performed better but not beyond k4. Apart from the polymer resummation, a histogram
method was presented which allowed an analysis for 163 x CT and 322 x CT lattices up to xs.

For the smaller 103 x CT volume also k¢ and k12 are under control.

The volume dependency of the cumulants was analyzed. A larger volume leads to fluctuations
in Ko, to be in close vicinity to 7. and in the thermodynamic limit these narrow down to
a single singularity at 7T,. Additionally, each order in Taylor coefficients introduces a more

complex structure with an increasing number of inflection points.

Based on the obtained Taylor coefficients for the 10% x CT study, the radius of convergence
was constructed. Due to the number of available ko,, more complex estimators were used
for the analysis. Interestingly, the radius of convergence for the baryon number density
approaches the numerical transition line from large chemical potentials and clearly showed
signs of convergence. An even better approximation of the transition was obtained for
an expansion based on the baryon number susceptibility. In general, it is expected that
susceptibilities are a better indicator for a chiral transition as they diverge at the respective
location. At imaginary pp no transition can be observed from the data. The reconstruction
of the phase transition in the chiral limit is very fruitful but also showed that k12 should not
be used due to increasing errors and uncontrolled behavior. Therefore, it is not possible to

say whether there is an imprint of the TCP in k12 and maybe also in all orders beyond that.

Finally, for the reconstruction of the pressure it was necessary to reformulate the Taylor
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expansion in terms of the spatial dimer density. The respective Taylor coefficients become
more complex but clearly reconstruct the pressure measured on the CT lattice. It is assumed
that the Taylor expansion will reconstruct the data until the inflection point below T, and
completely above T,.. In order to see a possible imprint of the TCP and thus, to pinpoint the
location of the TCP by means of the reconstruction of the pressure, it is necessary to perform
a histogram analysis. So far, the polymer resummation scheme can only lead to improvements
for measurements of moments in the baryon number density. A histogram method would most
certainly yield for higher order expansion coefficients. However, due to the more complex
Taylor coefficients it is challenging to reasonably measure expansion coefficients up to &12 or

to go even beyond.
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CHAPTER 7

Conclusion and Outlook

Within this thesis, the continuous time limit was explored for lattice QCD in the strong
coupling limit based on a dual formulation. The examination of this distinct limit involved
the derivation of the continuous time partition function Zcr (chapter 2), the formulation
of an algorithm that samples the respective function and an extensive study of the features
(chapter 3). Various crosschecks were performed and first measurements yielded results on
the critical temperature 7., the pion decay decay constant F; and the chiral condensate
Y (chapter 4). Based on this formulation, two key research areas within lattice QCD were
addressed:

1. The study of temporal correlation functions at zero and finite density (chapter 5),

2. and the inspection of the finite density phase diagram of QCD by means of the Taylor

expansion method (chapter 6).

In chapter 2 the continuous time partition function was derived fully analytically based on the
discrete time formulation of SC-LQCD and the simultaneous limit of v — co and N, — co.
The key observation was that spatial hopping are strongly affected by the CT limit. Baryonic
hoppings are completely suppressed for N, > 3 such that baryons are static while mesonic
hoppings are strongly restricted. This restriction is encoded in the meson state raising and
lowering operators which are the essential building blocks of the Hamiltonian. These operators
restrict the possible changes in the meson state to one unit m — m’ = m £ 1. The derived
partition function expressed by a Quantum Hamiltonian has the desired structure in order to
work towards the Ny = 2 formulation. For such a future study mainly the meson state raising
and lowering operators have to be adjusted accordingly (see [46]). Additionally, a quark mass
dependence can be incorporated in the CT limit [100].

Based on the formulation of the continuous time partition function a respective algorithm
was implemented and described in detail in chapter 3. In order to sample Eq. (2.35) a worm
type algorithm was used. The key characteristic of the algorithm is the use of a Poisson
process to distribute spatial hoppings evenly in time without any dependence on previous
emission events. Other properties such as the interplay of Absorption and Emission Updates
are general features of a worm type algorithm. Its many advantages compared to discrete time

analyses make it a highly interesting formulation in future studies. However, the flexibility of
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the algorithm has to be strongly improved as it is constraint so far to the chiral and strong

coupling limit with one flavor. This is an essential part to work on and fix in the near future.

Finally, CT worm simulation were performed, followed by an analysis of the results in chapter 4.
The obtained data sets for various dual observables were checked with simulations on DT
lattices as well as with literature. For this crosscheck it was most helpful that dual observables
in the CT limit have a much simpler structure with no anisotropy calibration required. For
various observables it was graphically pointed out that the CT results match extrapolations
from DT simulations. The determination of the critical temperature ¢7.°T = 1.4276(2)
at up = 0 led to a reasonable correction compared to studies for a7°T from literature.
This discrepancy was also observed for the measurement of the continuous time specific
proportionality factor x as well as for the pion decay constant F. Again, this strongly
supports that extrapolations in N, or £ should be avoided if the analysis can be performed
in the CT framework. It is important to notice that previous error estimations were unable
to predict such a high inaccuracy as pointed out in this work for the mentioned observables.
Altogether, the accuracy in k, T, or Fy could still be improved, although, the focus should be
on including gauge corrections such that results could possibly be meaningfully related to

studies at finite gauge coupling .

In chapter 5 the extraction of pole masses from temporal meson correlation functions was
discussed. For DT simulations a combined fit considering states in both the Non-Oscillating
and Oscillating sector is necessary. Since there is a finite resolution in temporal direction,
an alternating structure emerges which requires an averaging in order to reconstruct the
correlators associated with the taste partners. In contrast, in continuous time there is an
“infinite resolution” such that the averaging is already incorporated in the data and Non-
Oscillating and Oscillating correlators are obtained directly from the histogram measurement.
Therefore, it is possible to perform separate fits for the two taste partners. Based on a
correlated fit analysis presented in [14] the pole masses were extracted and the anaysis
revealed that mainly the ground state contributed to the mass plateau. No such plateau
was obtained for excited state contributions. A possible reason for an unsatisfying signal of
excited states could be the simulation temperature. It might be helpful to perform further
analysis at temperatures below T, where the worm length increases significantly due to the
higher spatial dimer density. Therefore, the signal in the region of expected excited states
should get stronger and possibly the associated masses can be restored. It was observed that
the meson masses for all kernels yield the same (finite) high-temperature limit. In the strong
coupling limit, the mesons do not split up into quarks in the deconfined phase and are still
subject to bosonic boundary conditions. Therefore, there is no thermal mass contribution and
the meson masses remain finite. Finally, it is expected that the sign problem for real-time
worm simulations is under control in the strong coupling limit. Thus, the Schwinger-Keldysh

Contour can be constructed which would allow the extraction of transport coefficients.
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The final chapter of this thesis explored the Taylor expansion method performed for the
pressure (see chapter 6). Based on the homogeneous definition of the pressure the Taylor
coefficients were reconstructed by measurements of baryon density moments. The static
baryon feature of the CT formulation was already helpful for obtaining distinctly better
results for k4(Qp)/V, compared to DT studies in literature. However, in order to address
significantly higher orders it was required to apply a polymer resummation scheme as well as
a histogram method giving rise to Taylor coefficients up to order 12. The histogram method
is a powerful tool to improve on accuracy and enhance variability since arbitrary baryon
density moments are reconstructed fully analytically. The Taylor coefficients revealed the
expected behavior of additional fluctuations emerging in the vicinity of 7, as the order in ko,
is increased. The determination of the radius of convergence is helpful to get a first estimate
on the location of the transition line when based on the baryon density. A Taylor expansion
in the baryon susceptibility was very promising as results for orders > 8 are partly identical
with the transition line around T,. Even though the Mercer-Roberts estimator did not yield
a great improvement in the results for the baryon susceptibility, it might be of interest for
future studies to investigate further improved estimators as well as to go to larger volumes.
The reconstruction of the pressure required a Taylor expansion in the spatial dimer density.
The pressure at strong coupling is that of an inhomogeneous system and thus, it cannot be
obtained from a Taylor expansion as performed before. Even though the structure of the
expansion gets more involved with a contribution mixing spatial dimer density and baryon
density moments, it is clearly possible to reconstruct the pressure based on Taylor coefficients
up to order four. Obviously, a histogram method is also required for this analysis. However,
it might be more challenging to obtain the same accuracy compared to the expansion for a
homogeneous system because the spatial dimer number is not limited. Therefore, it requires
some cut-off in order to fit into a finite sized histogram. Especially at temperatures in the
vicinity of T, or below this cut-off is severe.

The CT limit with its many assets served to be versatile and worth to study. Several important
quantities were verified or corrected by the direct measurements in the CT limit. It was
possible to construct temporal correlators at zero and finite density. Pole masses were studied
at finite temperature associated with various channels. Finally, a powerful method for the
construction of Taylor coefficients for the pressure was set up. These coeflicients were used to
reconstruct the first order transition line down to 7'/T, = 0.5 in the finite density plane of
SC-LQCD in the chiral limit.
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Appendix

A “Exact” Continuous Time Partition Function for 2 x CT Lattice.

The two-dimensional continuous time partition function (6.20) is structured in two contribu-
tions, a static and a dynamic part. Latter contains all the corrections to the static limit due
to meson and baryon hoppings. As it has been pointed out it is sufficient to include the first
three non-zero contributions to get accurate results on a 2 x CT lattice. Nevertheless, for
larger N, and dimensions the corrections to the static limit are expected to get more complex
and higher orders will be required. Therefore, it is useful to formulate the 2 x CT partition
function to whatever order is possible.

A.1 Numeric approach

Instead of checking for the fulfillment of the Grassmann constraint with pen and paper, it
is strongly recommended to transfer the problem to a computer. The task is to generate all
combinations of n spatial dimers attached to a site, where n/2 indistinguishable emission
and absorption sites are distributed respectively. These sets of absorption and emission sites
must not violate the Grassmann constraint. Thus, the meson states have to be kept in a
range > 0 or < N,.. There are (n%) possible configurations which then have to be checked for
the GC. Most approaches run into the problem of generating n! configurations and sorting
out the duplicates on the run. Almost all standard build in functions will therefore fail for
n > 16. Let’s say k = 6 spatial dimers are considered. All combinations of three emission and
absorption sites distributed in a row have to be found which are a total of (g) = 20. Instead
of generating 6! = 720 configurations and removing the duplicates it is far more efficient to
only generate the required 20. This is done by shifting blocks of different sizes. The initial
setup is a sorted array

i) 1 2 3 4 5 6. (A1)

As a first step, blocks of size n/2 (|1 2 3]) are shifted from left to right:

i) 4 1 2 3] 5 6
i) 4 5 [1 2 3| 6 (A.2)
w) 4 5 6 [1 2 3

As a next step the size of the block is reduced by one such that a block containing the last
(n/2 — 1 = 2) elements is shifted from left to right. There will be three new combinations for
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i), two new ones i) and one for iv):

i) — )

(%)

vl

1x

)
)
it) — viii)
)
)

i) — x

[ N N

[ B e TGN

\)
w
ot

(=2 B e

= ot Ot Ot Ot

o] @ o
wiw
o |

[=2 B e

NN
Wl W

(A.3)

This step is repeated until a single element is left in a block. For this specific example a shift
of the last element in the box () yields the combinations:

i) — xi)
Tt
1) — xiv

v

v) = zVil
TV
Vi) — xiT

)
)
)
)
i1i) — zvi)
)
)
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)
)
)
)
2
)
)
2
2

(A4)

With this approach all possible configurations with up to & = 28 spatial dimers can be
analyzed within minutes. Results are listed in Table A.1. It is only a question of memory
whether all combinations can be stored such that it is also possible to go beyond k = 28.
Here, the creative mind can improve by already evaluating configurations with boxes that
are completely shifted through and then dropping these out of the memory while keeping the

ones which still have to considered.
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Table A.1: Number of configuration with #D spatial dimers that contain n T -shaped vertices (v}.). A symmetry factor of 8 is factored out.

vl

4D |00 w2 vh oS oS wld  wl2 gl gl6 I8 20 22 21 26 28 80 82 34
2 |4 4 1 - - - - - = — — — — — — -
4 /4 0 12 0 1 - - - - - - - - - - - - -
6 [ 4 0 9 16 0 1 - - - - - - - - - - -
8 |4 0 16 0 52 0 0 1 - - - - - - - - -
104 0 2 0 5 64 3 0 10 0 1 - - - - - - -
12 |4 0 3 0 105 0 240 0 54 0 12 0 1 - - - - -
14 |4 0 49 0 196 0 294 256 210 0 77 0 14 0 1 - - =
16 |4 0 64 0 3% 0 672 0 1172 0 352 0 104 0 16 0 1 -
18 |4 0 8 0 540 0 138 0 1782 1024 1287 0 546 0 135 0 18 0
20 |4 0 100 0 85 0 2640 0 4290 0 6052 0 2275 0 800 0 170 0
22 |4 0 121 0 1210 0 4719 0 9438 0 11011 4096 8008 0 3740 0 1122 0
24 | 4 0 144 0 1716 0 8008 O 19305 0 27456 O 32944 0 14688 0 5814 0
26 | 4 0 169 0 2366 0 13013 0 37180 0 63206 0 68952 16384 50388 0 25194 0
28 | 4 0 196 0 3185 0 20384 0 68068 0 136136 O 176358 0 187808 O 94962 0
AD | 035 038 00 B2 gl 86 IS B0 B2 Ba 456
2 _ _ _ _ _ _ _ _ _ _ _
4 — — — — — — — — — —
6 — — _ — — — — — — — —
8 _ _ _ _ _ _ _ — — — —
0 - - - - - - - - - - -
2| - - - - - - - - - -
7 -
6| - - - - - - - - - - -
18 1 - - - - - - - - =
20 | 20 0 1 - - - - - ==
22 [ 200 0 22 o0 1 - — — - - —
24 [ 1520 0 252 0 24 O 1 - - — -
26 | 8645 0 2002 O 299 0 26 0 1 — —
28 | 40964 0 12397 0 2576 O 350 0 28 0 1

901998 I,)) X ¢ I0J UOIIoun,J UOIIIIRJ OWIL], SNONUIUO)) , JOBXN],,
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A.2 Combinatorial approach

There are various systematics arising when taking a closer look at Table A.1. The first column

v always takes the value 4, while the last value of each line is a 1. The column v$ contains

2
only square numbers (%) except for #D = 4. There is an additional contribution from the

diagonal U#D which takes values of 2#P/2+1 guch that %2 +24/241 — 4 4+ 8 = 12. There are
further prominent features which finally lead to a generalization that holds for all columns
with n (mod 4) =0 and n > 0:

n/4—1
Il #pres (#D/2+n/4-1)!
- k=—n/4+1 . +n/4—1)!
Cl#Dn) = #D 2m)! = #P D2 = D) (nj2)" (A.5)

Note that this equation is based on observations and does not provide a solid proof.

B Grassmann Integration

The quark fields represent fermions which have to behave according to Fermi statistics. These
fields anti-commute with each other. This can be expressed in terms of Grassmann numbers

which form an algebra with 2N generators 7;,7;,7 = 1,2,..., N that anti-commute [22]
Mg = =N, Nl = 00, M5 = —1;7- (B.1)

It follows that these numbers are nilpotent. A Grassmann variable being squared n? = 0

yields zero. Assuming that the Grassmann variables transform as

N
= Mjgn, (B.2)
k=1

the respective integration measure gives rise to the fermion determinant
d¥n=dyn...din = det[M]d" 7. (B.3)
The basic integration rules when dealing with Grassmann numbers are
/dNnmng ooy =1, /dml =0, /dnmz- =1. (B.4)

Combing the insights from above gives rise to the Matthews-Salam formula

N
Zp = /andﬁN ...dnidn; exp ( Z ﬁiMijnj) = det[M], (B.5)
ij=1

with M being a complex N, X N, matrix.
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For the generating functional for fermions it is found that

W10,0] = det(M) exp ( ZG > (B.6)

with 6 and 0’ being Grassmann variables as well, which are not integrated over and serve as

source terms. This functional is used to derive Wicks’s theorem

Mix gy -+ Mig M) F = /H dnkdnkdni, dnj,, . . . in exp ( > 771M1m77m> (B.7)

I,m=1
=(-1)" Z Sign(P)(M_l)thl (M_l)i2jp2 s (M_l)injpn> (B.8)
P(1,2...n)
which is a fundamental formula for the discussion of fermion expectations values (...)r. The
expectation value on the left-hand side of Eq. (B.7) is a n-point function which requires an

equal number of 7; and 7); to be different from zero.

C Quantum Numbers

Particles are characterized and identified by their intrinsic quantum numbers. In the following

those quantum numbers of interest for studying meson states are discussed [24],[66]:

e Total Angular Momentum J. Bosons take integer values (J = 0,1,...), fermions

half-integer values J € (1 .). Mesons and force carriers are all bosons.

2,2,..

e Flavor quantum numbers

Isospin I, I, € (—I,—I+1,...1 = 1,I) and I, = }(ny, — na) = +3(u),—5(d).
Number of particles in multiplet is given by 21 4+ 1. I, is related to the charge of a
particle by Gell-Mann-Nishijima formula @ = I, + 5 (B +9).

— Strangeness S = —(ns —ng) — —1(s), +1(5)

— Charm C = n, — ng — +1(c), —1(¢)

Bottomness B = —(ny, — ng) — —1(b), +1(b)

Topness T = ny —ny — +1(t), —1(t)

The mentioned quantum numbers are all additive.

e Parity P = £1. While the parity of a boson particle agrees with its anti-particle, the
parity of a fermion must be opposite to its counterpart. Thus, quarks ¢ are often chosen
to have positive parity. It is worth to mention that parity is a multiplicative quantum
number. For compound meson states an extra factor of (—1)” (with L being the orbital

angular momentum) occurs in determining the parity while for baryons its (—1)F12+13
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Table C.1:  Behavior of different Scalar P(s)=s

particle classes under the parity trans- Pseudo-Scalar P(p) = —p

formation. Vector P(v)=—v
Axial-Vector P(a)=a

e Charge Conjugation C' = +1. Converts particles into anti-particles by changing the sign
of all “internal” quantum numbers. Keeps spin, mass, energy and momentum fixed [101].
For meson states qq only electrically neutral states can be eigenstates of C'. Typically, a

G-parity is introduced to describe all states independent of their charge [102].
e Electrical Charge is not accounted for.

Meson states which have quantum numbers in accordance with the previous discussed ones

are considered: J,I,P,C and G. Particles are referenced by shortly writing (I¢).J¢

or just
JPC [24]. Latter will be used to describe the meson states constructed by the discussed
temporal correlation functions. The lightest meson states (made up from u,d and s quark
combinations) are depicted in Fig. C.1 where they are arranged according to their quantum
numbers Strangeness S and Isospin I,. Both diagrams contain a meson octet and a singlet
contribution, the n’ for pseudo-scalar mesons and the w for vector-mesons. Since the C-parity
is only relevant for neutral mesons, it is dropped here. The Kaons all contain a s-quark
or s-anti-quark, thus, S # 0. Additionally, 7,7’ and the ¢ also contain combinations of
strangeness which adds up to zero. Meson states on a single horizontal line lie within the
same multiplet. For better visualization the center states corresponding to (I,,.S) = (0,0) are

depicted a bit offset.

-1 —1/2 0 +1/2 +1 -1 12 0 +1/2 +1 I,

Figure C.1: Lightest pseudo-scalar (left) and vector (right) meson states combined in a nonet.
Horizontally states are separated according their isospin quantum numbers while vertically they
have different strangeness.
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Figure D.1: A two-dimensional discrete time lattice configuration. For such systems with non-
static baryons, mesonic lines can be trapped by baryons. This requires the worm to backtrack, i.e.
to choose the incoming direction as outgoing direction.

Taylor Coefficients for Spatial Dimer Density Expansion
15 - T

K2n(NDU)
/
\‘

15 L . . . .
0.4 0.6 0.8 1 1.2 1.4

TIT,

Figure D.2: Taylor coefficients based on the modified cumulants for an expansion of the spatial
dimer density. Data points with an error larger than Aks, > 0.5 are not plotted. The polymer
resummation scheme leads to reasonable error reduction which is nevertheless not good enough to
consider higher order cumulants.
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