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1. Introduction

1.1. Convergence results

Materials appearing to be homogeneous to the naked eye are in fact quite heterogeneous on the
microscopic level with deformations that tend to lack describable pattern. In the absence of a better
approach their microscopic structure is often modeled as random. From the mathematical point of
view, an interesting endeavor is to identify macroscopic properties of a random media which depend
only on the statistical property of its random structure. Many classical books of homogenization
theory deal with such questions, see [JKO94] for instance.

Take the following problem as an example. Suppose that a symmetric, positive definite n x n
matrix field a,(x) on R™ is chosen at random (in whatever way). It is known that under the ellipticity
assumption C~H|v||? < (aw(x)v,v) < C||v||? the parabolic problem

Oy, — div (a,Vuy,) = 0. (1.1)

has a unique solution u,. One then wonders if lim,,; oo U, (m2t7 max) exists almost surely, for which
kind of random a,, and how to identify it. The transformation (¢,z) — (m?t,mx) is the so-called
parabolic scaling and preserves solutions of in the simplest case when a,, is just a constant
matrix.

Similar questions, posed on the discrete lattice Z" and for jump type operators, will occupy our
attention throughout this thesis. In order to be more concrete, let us introduce a simplified model of
random media known as the random conductance model (see [Bisl1] or [Kuml8] for an introduction).
One takes the lattice Z™ for any n > 1 and considers on it a family of non-negative random variables
k(z,y) > 0 indexed by pairs of lattice points, x,y € Z", which are symmetric in the sense that
k(xz,y) = k(y,z). For every realization of k it is possible to construct a variable speed random walk
X4, starting from 0, corresponding to the generator

Lf(x) =Y (fy) = f@)k(z,y).
yeL™

(see [Section 9.3| for details). The distribution of such a Markov chain satisfies a discrete analogue of

Eq. (1.1), that is

0w — Lu =0, (1.2)

and it is natural that questions concerning|[Eq. (1.2)|can be rephrased in terms of X;. We would like to
clarify a possible source of confusion here. For every realization k“ of random kernel k£ on probability
space (£, F,[P) we construct a new Markov chain X}’ in order to study This introduces
an artificial probability measure P describing the trajectories of X}”, where subscript 0 indicates the
starting point of X’. The “total” probability, also called the annealed probability (denoted here by
P), of an event in the RCM is then computed by

Pldr) = /Q P (dr)P(dw).

From now on, we will omit the superscript w in the notation X’ and P{ but it is important to keep
in mind that these objects will always depend on the realization of k.

If k(z,y) is required to be 0 whenever |z — y| # 1, we talk about the nearest neighbor case, which
has been studied extensively. For example, [ABDHI3| proves that if k(x,y) are i.i.d. random variable
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1. Introduction

such that P(k(z,y) > 0) > p. (p. denotes the critical percolation probability), then, for almost every
realization of k, X,,2;/m converges, as m goes to oo, to a diffusion process weakly on the Skorokhod
space D([0,T],R™) for every T' > 0 (see [Bil99], Chapter 3 for details on the Skorokhod space). This
convergence statement is known as the quenched invariance principle (QIP) or quenched functional
central limit theorem. On the other hand, if k(z,y) are only stationary and ergodic, [ADS15| proves
that the QIP holds whenever E[k(x,y)™ 9] + E[k(z,y)?] < oo for all z,y € Z", |x — y| = 1 and some
p,q € [1,00] satisfying é + % < % Notice that this implicitly requires P(k(z,y) > 0) = 1 for all
x,y €Z", |z —y| = 1. Tt is believed that similar results should hold if the nearest neighbor condition
is relaxed to k(z,y) = 0 whenever |z —y| > R for any finite R or even to > ;. k(z,y)ly — 72 < 00
a.s. for every x. Some indications of this can be found in [PZ17, [PZ20, [FHS19].

The case when, for almost every realization of k, EyeZ“ k(z,y)|y — z|?> = +oo is known as the long
range case and has been less studied. Our focus will be on a particular subclass where k has the
special form

c(x,

k(z,y) = ‘x_(y‘zlgs (1.3)
for some fixed number s € (0, 1) and a family of random variables ¢(x,y), x,y € Z". There are several
arguments for choosing the weight ]a:—y\_("”s). It is the simplest weight with infinite spatial variance,
it is a jump rate of a rotationally symmetric stable process on R", for which a central limit theorem
type result is known, and the indications are that when s — 1 the transition into finite spatial variance
case should occur. A family of random variables ¢(zx,y) is what we would like to call the conductance
throughout this thesis. The quantity k can then be seen as a weighted conductance but we prefer to call
it the kernel due to its resemblance to the jumping kernels of rotationally symmetric stable processes.
Notice that in the nearest neighbor case k(z,y) = c¢(z,y) anyway and the distinction between ¢ and k
is irrelevant. As far as we know, this particular setup has only been studied in [CKW18b, [CKW18a]
and [FH20]. A closely related model of long-range percolation was studied in [CS12] and [CS13].

The following two results are the main contributions of this thesis to the long-range random con-
ductance model in dimension greater or equal to two. When random variables ¢(x,y) have the same
distribution (which is the case in all theorems in this introduction) then quantity E[c(z, y)P] (for what-
ever p € R) does not depend on z or y and we will simply denote it by E[cP]. The limiting process
mentioned in following theorems is a Lévy process of pure jump type given through its Lévy measure,
see Chapter 2 of [Sat99]. For the purpose of the next two theorems, let Xt(oo) be the rotationally
symmetric stable process on R" with Lévy measure

E[c]
n(dy) = Wdy

Theorem 1.1.1 (see(12.4.2)). Let ¢ be a symmetrized twofold ergodic conductance on Z™ (n > 2) such
that E[c™] + E[cP] < 0o for some p,q € [1,00] satisfying

1 1 2

S+t (1.4)
p q n

m—o0

Then, for a.e. realization of the conductance ¢, X,,2s;/m Xt(oo) in the sense of finite-dimensional

distributions.

Theorem 1.1.2 (see [12.5.3)). Let ¢ be an i.i.d. conductance on Z"™ (n > 2) that is not identically

zero and such that E[cP] < oo for some p > ”T“ Then, for P-a.e. realization of the conductance c,
m—0o0

Xpp2se/m ——— Xt(oo) weakly on Skorokhod space D(]0,T],R™), for every T > 0.

By twofold ergodic in [Theorem 1.1.1] we mean to say that c(z,y) is stationary and ergodic with
respect to independent shifts in x and y variables or, to be precise, with respect to shifts (z,y) —

(x + z,y) and (z,y) — (x,y + 2), for all z,y,z € Z™. Such version of ergodicity is used in [FH20] but
6



1.2. Regularity results

it is a rather strong assumption. One hopes for an analogous result to be true if stationarity is only
assumed under shifts (z,y) — (z+z,y+2), for all z,y, z € Z". There seems to be no results obtained
in this case so far. Note also that in this case the limiting process no longer needs to be rotationally
symmetric which makes identifying it much more difficult. Compared to the results known for the
nearest neighbor case, the convergence in finite dimension distributions proved in [Theorem 1.1.1]is
weaker then the weak convergence on the Skorokhod space. However, we believe to be
among the first results on the long-range ergodic random conductance model.

[Theorem 1.1.2|can be seen as an improvement to Theorem 1.1 of [CKW1I8b]. The result in [CKW18b]
also holds when ¢(z,y) are only independent random variables on more general graphs than Z" but,
restricted to the i.i.d. conductance used in it requires the following assumption in order
to obtain the same result. One needs to have n > 4(1—s), P(c(z,y) = 0) < 274 and E[c~29] +E[c¢?’] <
oo for some p > max{(n +2)/n, (n+1)/(4(1 — s))} and ¢ > (n + 2)/n. In [Theorem 1.1.2 we require
that n > 2 and P(¢(x,y) = 0) < 1. The negative moment condition E[c™9] is not needed and the
upper moment condition is changed to E[cP] < oo for some p > "TH which is an improvement when
s> 2/3.

1.2. Regularity results

In order to prove the convergence statements on X,,2s;/m we first establish results concerning process
X, that are of independent interest such as weak elliptic and parabolic Harnack inequalities, Holder
regularity (see [Theorem 10.4.1) [Theorem 11.7.1)) and an estimate on the expected exit time (see
Theorem 10.5.3| and [Theorem 11.8.1). The reader should note that under the uniform pointwise
bound

ATh < efz,y) < 4, (1.5)

for A > 1, far better results are already known on general metric measure spaces. The upper and
lower pointwise heat kernel estimates have been established in [CK03| on d-sets and later on volume
regular metric measure spaces in [GHHI17], [GHH18], using mostly analytic methods, and in [CKW19],
[CKW16a], [CKW16b] with probabilitic methods. These works are quite extensive and cover relations
between heat kernel estimates, Harnack inequalities, Poincaré inequalities, and other conditions in
great details. However, the case of kernels not satisfying [Ineq. (1.5)| remains largely unexplored. This
is comparable with the developments in the nearest neighbor case where anomalous behavior of the
heat kernel has been discovered for some conductances (for constant speed random walk X;). The
defect is caused by emergence of so called “traps” that slow down the propagation of X;. In the
ergodic environment, [ADS16] shows that this can happen when % + % < 2 is violated and [BBTI6]
gives an example of an i.i.d. conductance satisfying E[c?] + E[c™P] < oo, p < 1 for which even the QIP
fails. Furthermore, [BC11a] (corrected in [BC11b]) presents an example of i.i.d. conductance where
the limiting process is a fractional kinetic process instead of a diffusion.

Here is the statement of the weak elliptic Harnack inequality for the symmetrized twofold ergodic
conductance on Z" which we prove in [Theorem 10.4.1] As mentioned before, the interesting case
is when either ¢ or p is different from +o00. Notice also that assumptions on ¢ are the same as in

Theorem 1.1.1} The nearest neighbor version of the result can be found in [ADS16].

Theorem 1.2.1 (Weak elliptic Harnack inequality). Let a symmetrized twofold ergodic conductance
c onZ"™ (n>2) be such that Elc™9] + E[cP] < oo for some p,q € [1,00] satisfying

1 1 32s

P q n

Then for every xo € Z™ there exist a P-a.s. finite random variable Ro(x¢) and non random Cgy < 0o

such that P-a.s. every time-independent solution u of|Eq. (1.2)|in 2B := B(xg,2R), for every R > Ry,
7



1. Introduction

satisfies

][ u < Cgpginfu.
15 15

The lower bound R > Ry(xo) is not necessary if is assumed. It prescribes the minimal
radius of the ball on which the weak elliptic Harnack inequality can be expected to hold and its depen-
dence on the realization of ¢ significantly weakens the results. However, such effects are unavoidable
and similar radius bounds appear in [Bar04, [ADS16] for instance. To understand this, consider, say,
an i.i.d. conductance ¢ < 1 which is not uniformly bounded from below, pick a box Q) C Z™ x Z™ and
an arbitrary “desired” configuration of conductance in ). Then there is a positive probability that
c is smaller than the desired configuration in ) which consequently implies that this happens with
probability 1 in some translate z + Q, z € Z". As we are free to choose the desired configuration
inconceivably bad (basically meaning that ¢ is very close to 0 everywhere in @) there is no hope in
proving the theorem for balls contained in (). The role of Ry in such a situation is to adjust to local
peculiarities of ¢ and exclude balls which are too small.

We also obtain an improved version of in the case of an i.i.d. conductance. The

assumptions on ¢ match those of [Theorem 1.1.

Theorem 1.2.2 (see [Theorem 11.7.1). Let ¢ be an i.i.d. conductance on Z" (n > 2) such that
E[c’] < oo for some p > ”TH Then there exist non random 6 € (0,1), Cpg < oo and, for every
T € Z", a random variable Ry (xy) such that P-a.s., for all Ry > Ry, xo € B(z4, Ry), R > Rg, every

time-independent solution u of |Eq. (1.2)| in 2B := B(xo,2R) satisfies

][ u < Cgpginf u.
1p 1p

2 2

Clearly, we removed E[c™? < oo condition from [Theorem 1.2.1] in [Theorem 1.2.2, The other
improvement lies hidden behind the claim 6 < 1 and “quantifier structure” Vag € B(zy, Rp), VR > Rg.
Effectively, this means that the random radius that controls the local behavior of the conductance
from can be chosen locally uniformly. To be precise, the control radius Rg will work
for all points xy with |z, — xz¢| < Ry provided that Ry is large enough. The point is that Rg is on
the lower order scale compared to Ry which, after rescaling, essentially gives a statement for balls of
all sizes. To restate it yet again, this mean that the control radius Ry(x) behaves asymptotically like
Ro(xo) = |zo — 24|°. In contrast to this, it is not hard to see that in the ergodic environment one can
have Ry(z) =< |z — xo| which is not good enough. The choice of the “quantifier structure” is motivated
by [Bar04] where a very similar construction is used for the definition of a “very good ball”.

1.3. Techniques

In order to obtain convergence in finite-dimensional distributions in both [Theorem 1.1.1| and [T'heo-|
we make use of Mosco convergence results developed in [FH20] and [CKKI13] respectively.
These results alone imply the convergence in finite-dimensional distributions if the limiting process
is started from an absolutely continuous (with respect the Lebesgue measure) initial distribution and
the approximating processes from discrete approximations of said initial distribution. See [CKKI3]
for details. What we contribute here is the regularity result (for both ergodic and i.i.d. conductance)
which improves the previous statement by allowing the processes to start from any given point.

The regularity result mentioned above is obtained with the help of De Giorgi, Nash, Moser tech-
niques. To be precise, we modify the version of the nonlocal Moser iteration from [FK13] and adopt it
to the setting of general, volume regular, metric measure space. These modifications are in the spirit
of [ADS16] and [ACDSI18] but further modifications are needed due to the existence of long-range
jumps, especially concerning the quantity v(x) introduced there. In order to perform the iteration
one needs to have Sobolev and Poincaré inequalities as well estimates on the energy density of cutoff

8



1.4. Limitations of the method

functions readily available. For the sake of exposition, let us only consider the Sobolev inequality
which, in our opinion, is the most interesting one:

— f(x 2
1Pl <o Y YO —J@7 ) (1.6)

T, yeL" ’x - y|n+25

for some p > 1, C > 0 and all functions f on Z™. The main difficulty is that such an estimate can
not hold with constants uniform throughout the space without the uniform lower estimate on the
conductance. We circumvent this difficulty by considering localized versions of the aforementioned
inequality and devote significant effort to proving them for both ergodic and i.i.d. conductance. It
turns out that the negative moment condition E[c¢™9], for ¢ > n/(2s), is sufficient to inherit the Sobolev
inequality from Z" through an application of Holder inequality to the right hand side of
On the other hand, such a method does not work if ¢ is allowed to be zero with positive probability
like it is in In that case we prove the following version of the Sobolev inequality by
adopting the techniques from [DNPV12]:

— f(x))?
I i eI b)) e (1.7)

Hf2HLP < CH/\_llsuppf| ‘x_y‘n—i—Zs

T, YyEL™

where p > 1, C,r < oo and X : Z" — (0,00) is a function that depends on the realization of the
conductance c¢. The advantage compared to is that local random deformations can now
be incorporated into the function A which is then averaged out allowing for the law of large numbers
to kick in. Using such localized versions of Sobolev and Poincaré inequalities it is possible to run
the iteration machinery and obtain weak elliptic/parabolic Harnack inequalities as well as Holder
regularity type estimates.

We improve on these results using maximum principle techniques from [GHH17] and [GHHIS| which
allow us to also obtain the expected exit time and survival estimates for process X;. This is as far as
we can get in the ergodic case. On the other hand, if the conductance is i.i.d., we make use of “very
good” counterparts of previous estimates in combination with Markov property of X; and tightness
criteria from [Ald78] to prove weak convergence on the Skorokhod space just like in [CKWI8Db].
Note, however, that we are able to obtain these “very good” estimates only under somewhat stronger
conditions E[cP] < oo for some p > (n +1)/s.

1.4. Limitations of the method

The reason why the weak convergence on the Skorokhod space works in the nearest neighbor case but
not in is twofold. Proofs of the quenched invariace principle in nearest neighbor case
in [ADST6, MPOT7], [ABDHI3] employ the so called corrector method which decomposes

Xi = M + o(Xy)

where M; is a martingale and ¢ : R™ — R" is called the corrector. The proof then proceeds on by
proving that M,,,2,/m coverges to a diffusion and that ¢(X,,2;)/m tends to zero for a.e. realization of c.
The main issue is that the corrector is usually constructed using the assumption 7. k(z, yy|? <
oo, for all x € Z™ which is not available in the long-range case. Even worse, when s < 1 in
the expectation E[X}] does not exist so the martingale part M; no longer makes sense. Furthermore,
supposing that s > 1 and assuming one could come up with a way of defining the corrector ¢, the
usual way of proving ¢(X;)/m is through subadditivity estimate

wp L@ o

zeB(0,R) R



1. Introduction

This estimate is in turn obtained as a consequence of maximal inequality supg [p| < C|[¢||z2(p) which
holds because ¢ solves certain elliptic PDE. The problem is that proving maximal inequalities for
irregular non-local kernels (even if they are translation invariant on R™) is not straightforward as
so called tail terms pollute the calculation. If the aforementioned maximal inequality is true, then
essentially the Harnack inequality has to hold true as well. This is the case for some kernels, as can be
seen in [DCKP14] but fails in general as shown in [BS07] where an additional “relative Kato condition”
is identified as being decisive. Since random kernels are fundamentally not translation invariant and
since we can not see any reasonable way of imposing a kind of relative Kato condition on them, this
line of attack looks fairly bleak.

On the other hand, in the i.i.d. case we rely on estimates of the “very good” kind and restarting of
the process in the vicinity of the original starting point instead of the corrector method. This however
comes at the cost of moment condition because proving estimates of the “very good” kind requires
the upper moments of ¢ larger than ”TH as opposed to 5= which might be expected from m
Furthermore, it is plausible that condition E[cP] < oo in is superflous since no such
condition is needed for the nearest neighbor case in [ABDHI3|]. However, the method of dealing with
large conductances in [ABDH13|] does not seem to be applicable in the long-range case.

1.5. Outline

This thesis consists of two preliminary chapters followed by two main parts. In we give a
summary of basic concepts that will be important throughout the thesis. contains a list of
properties that will be used extensively in and [T

studies general deterministic jump type symmetric bilinear forms on a metric measure space.
It avoids assuming pointwise estimates on the kernel and instead makes use of the assumptions pre-
sented in [Chapter 3] [Part I consists of five chapters and a short summary is given in In
we introduce the concept of weak solution for nonlocal equations. The Moser iteration in
the subsequent chapter will work for such solutions. The iteration itself is performed in and
results in a weak parabolic/elliptic Harnack inequality and a large scale Holder regularity estimate.
We extend on this in where an expected exit time estimate, a survival estimate and related
results are proved. Lastly, gives a sufficient condition for validity of the Poincaré-Sobolev
inequality.

studies the long-range conductance model with stable like jumps on Z", for n > 2. It
consists of four chapters. The long-range i.i.d. and symmetrized ergodic conductance are introduced
in [Chapter 9 [Chapters 10| and [11] apply the results of to the symmetrized ergodic and i.i.d.
conductance respectively. Finally, the convergence results, which are the main results of this thesis,

are obtained in
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2. Preliminaries

2.1. Notation

B(xp, R) denotes the open ball of radius R around x

aB(zo, R) := B(x,aR) assuming center xo and radius R are unique and a > 0

a Aband aV b denote the minimum and maximum of set {a,b} respectively

log a denotes the natural logarithm of a, i.e. the logarithm to the base e

f+=fVO0, f- =—(f A0) denote the positive and negative part of the function f

essoscg [ = esssupg f — essinfg f denotes the essential oscillation of function f on set S.

diam M denotes the diameter of set M

A¢ denotes the complement of set A

|A| denotes the measure of set A (the choice of the measure depends on the context)

#A denotes the number of elements in the set A

supp f denotes the support of function f

E(f) is a shorthand notation for £(f, f) when £ is a bilinear form

LP(M, 1) stands for the LP space on M with respect to measure

LP(M) shortens LP(M, p) if p is clear from the context

LY (M) contains only f € LP(M) such that f >0 a.s.

Lf oo(M) denotes the space of functions f such that f € LP(K) for every compact K C M

LP(I; L9(M)) denotes the space of function f : I — L%(M) such that f] ||f|| ) < o0

p* denotes the conjugate exponent of p € [1, oo] 1 i =1

fr f@)p(de) ' [ f(z)p(dz) denotes the average of f (convention: 1/0c0 = 0)
(M) will denote the Borel o- algebra of topological space M

C(M) denotes the space of continuous functions on M

C.(M) denotes the space of continuous functions with compact support

Co(M) denotes the space of continuous functions that tend to 0 at infinity

Cy(M) denotes the space of bounded continuous functions

(-,-)m or (+,-) denote the scalar product on a Hilbert space H

Lip f denotes the Lipshitz constant of function f

C = C(a,b) denotes that variable C' depends only on a and b. If later we decide to specify a = a and
b= p, we will write C'(a, 8) or C(a =a,b=f) or C(b=f,a = ).

2.2. Inequalities
Theorem 2.2.1 (Hélder’s inequality, Corollary 2.5 [AF03]). Let (M, M,m) be a measure space and

let f,g M — [0,00] be M-measurable extended functions. Then, for all p,q,7 € (0,00] such that
- == + f, inequality

(/f 17@ata)rmia ) < ([ 11 \pmdx) (/ 1ot rqmda:)

is true. Furthermore, if f € LP(M) and g € L1(M), this implies that

Hfg”LT(M) < HfHLP(M) HgHLq(M)
11
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Proof. If f ¢ LP(M) or g ¢ L%(M) the inequality trivially holds. If not, then the usual Hoélder
inequality from Proposition 3.3.2 of [Cohl13|, with r/p + /¢ = 1, implies

[ @t < [ 15em dx) ([ sy da:)

Theorem 2.2.2 (Jensen’s inequality). Let (M, M, m) be a measure space with m(M) =1 and ¢ :
R — R a convex function. Then, for every integrable function f: M — R,

0 ( / f<x>m<dx>> < [ etrymin)

where the part of the claim is that the integral on the right exists in (—oo, 00].

O

Proof.  is lower semi-continuous and thus Lebesgue measurable which show that o f is measurable.
It is not hard to prove that there exist a, b > 0 such that ¢(x) > —a|z|—b. Thus, [,,(¢of)_(z)m(dx) <
a [y f-(x)m(dx)+b < oo so the integral of ¢(f) exists in (—oco, 00]. The inequality then follows from
Theorem 1 5.1 of [Durl0]. O

Corollary 2.2.3. Let (M, M, m) be a measure space, f : M — [0,00) be an integrable function and
p € (—00,00). If p€ (—00,0) U [1,00), then

(f f(w)m(dw)>p < [ swpma)
( / f(x)m(dx))p > [ sapmas).

(We use the conventions 07 = oo, 0 =0 for all a > 0.)

and, if p € (0, 1], then

Theorem 2.2.4 (Minkowski’s inequality, Proposition 3.3.3 of [Cohl3]). Let (M, m) be a measure
space and p € [1,00]. Then for all measurable functions f,g: M — R

1f+ 9lleary < N fllzecary + Mgl zecan)-

2.3. Bochner integral

We present some selected results concerning Bochner integral. Most of the results are stated without
the proof and taken from |[Cohl3|, Appendix E. Additional references can be found in [Fell3], chapter
I.1.

Definition 2.3.1. Let (X, X, u) be a measure space, (E,|-|) a Banach space and denote the Borel
sigma algebra on E by B. A function f : X — E is said to be Borel measurable if it is measurable
from X to B and strongly measurable if it is Borel measurable and has seaparate range.

Theorem 2.3.2. Function f : X — E is strongly measurable if and only if it is a pointwise limit of
simple Borel measurable functions.

Corollary 2.3.3. Let I be a measurable subset of R and (E,|| -|) a Banach space. Then every
continuous function f : I — E is strongly measurable.

12



2.3. Bochner integral

Definition 2.3.4. A function f : X — FE is said to be Bochner integrable if it is measurable and
Jx I f(x)|lp(de) < co. In that case the Bochner integral of f is defined to be

[ t@ntdn) = fim [ fi(e)ntas)
X —0 JX

where fi : X — E is any sequence of simple, Borel measurable functions such that fr(x) — f(x) and
[fe(@)l < [ f ()|l for every x € X.

The following two statements will be implicitly used in See also [Fell3] Proposition 1.12. for
more details and pointers to the literature.

Proposition 2.3.5. Let (M, M, m) be a o-finite measure space, I C R an measurable set and p €
[1,00). Denote by A the Lebesgue measure and by L the o-algebra of Lebesgue measurable sets. For
every Bochner integrable f : I — LP(M) there exist L x M measurable function g : I x M — R such
that g(t,-) = f(t) for a.e. t € I.

Proof. Let us first suppose that M and I have finite measure. Since f is Bochner integrable, there is
sequence of simple functions fi : I — LP(M) such that [, [|f(t) — fu(t)||r(ar)A(dt) converges to zero.
By Hoélder inequality this implies that [} [|f(t) = fr(t)l|L1(an)A(dt) also converges to zero. Functions fy,
are simple and can easily be extended to £ x M measurable functions from I x M to R. Thus, Fubini’s
theorem implies that f is a Cauchy sequence in L*(I x M). Denote by g its limit, which exist because
L'(IxM) is complete. Another application of Fubini’s theorem shows that [, || fx(¢)—g(t, ") 1 (anyA(dt)
tends to zero, which implies that f(t) = g(t,-), as elements of L'(M) or LP(M), for a.e. t € I.

If I and M are only o-finite, we can find increasing sequences of measurable sets I; and M; which
cover I and M respectively and have finite measure. Then f(t) € LP(M;) for every t € I; so by first
part we know that there exists £ x M measurable function ¢(*) : I; x M; — R such that g\ (¢,-) = f(t)
for a.e. t € I;. If we now define g(t,z) = lim; 500 ¢ (¢, )17, <2z, (£, %), then g is £ x M measurable as
a function I x M — R and g¢(t,-) = f(¢) for a.e. t € I, which is what we wanted to show. O

Proposition 2.3.6. Let (M, M, m) be a o-finite measure space, I C R an measurable set, p € [1,00)
and v : I — LP(R) a Bochner integrable function such that v(t) > 0 for allt € I. Then there exists a
version of v such that the pointwise integral [;v(t,z)dt is in LP(M) and

{/J v(t)dt} (x) = /Iv(t,a:)dt for a.e. x € M.

Proof. We consider the version of v which is equal to the positive part of function g from
tion 2.3.5, Then v is measurable as a function from I x M to R and v > 0. Denote by V = [, v(t)dt €
LP(M) the Bochner integral on the left side of the equality. By [Cohl3|] Proposition E.11 for every

@ € LP" (M) we know that
/I ( /M v(t,x)«p(x)m(dm)) dt’ .

Wlzsnlielron = | [ Viee@m)
If ¢ > 0, then by Fubini’s theorem and measurability of v

Wlonleloan = [ ([ otapwmna)a= [ ([ o) pwmia,

General ¢ can be split into the positive and negative part ¢ = ¢ — ¢~ which results in

/M </lv(taw)dt) (@) m(dz) < [VIIze (I I oe + e Lor) = IVl llel Lor

13



2. Preliminaries

and shows that the pointwise integral [; v(¢, )dt is an LP(M) function. By applying Fubini’s theorem
one more time (this time for signed integrand) we obtain

/M V(2)p(z)m(de) = /1 < /M v(t,x)go(x)dx) dt = /M < /I v(t,x)dt) o(z)m(dz)

for every ¢ € LP"(M). But this implies that V' = [; v(t, z)dt as elements of LP(M) and therefore also
pointwise a.e. which is what we wanted to show. O

2.4. Dirichlet forms

This section presents a few concepts from the general theory of regular Dirichlet forms on locally
compact separable metric measure spaces. The first couple of definitions are taken from [FOTT1],
Chapter 1.

Definition 2.4.1 (Closed symmetric form). Let H be a Hilbert space and let € be a bilinear form
on H with domain D[] C H which is dense in H. If E(u,v) = E(v,u) for all u,v € DIE], the form
(DIE), €) is said to be symmetric and if DIE] is complete in the metric E1(-) := E(:) + || - |3, the form
(DIE],E) is said to be closed.

Remark 2.4.2. We will shorten E(f) := E(f, f) for bilinear form £.

Definition 2.4.3 (Markovian form). Let (M, m) be a measure space. A closed form (D[E],E) on
L*(M) is said to be Markovian if, for every u € DIE], (uV 0) A1 € DIE] and

E((uVvO)Al) < E(u).

Definition 2.4.4 (Normal contraction). Function v € L?>(M) is called a normal contraction of func-
tion u € L2(M) if, for all z,y € M,

(1) [v(@)] < [u(x)] and
(i) |v(y) —v(@)| < fu(y) —u(z)|.

Definition 2.4.5 (Dirichlet form). A bilinear form is said to be a Dirichlet form if it is symmetric,
closed and Markovian.

Proposition 2.4.6. If (£,D[€]) is a Dirichlet form and v is a normal contraction of u € DIE], then
v € DIE] and E(v) < E(u).

Proof. See Theorem 1.4.1 from [FOT11]. O

Definition 2.4.7. A metric measure space is a triple (M,d,m), where M 1is the state space, d is the
distance on M and m is the measure on M.

Definition 2.4.8 (Regular Dirichlet form). Let (M,d,m) be a metric measure space. A Dirichlet
form (€, D[E]) on L*(M) is said to be regular if Co(M)NDIE] is dense in D[E] with respect to & norm
and at the same time dense in C.(M) with respect to the uniform norm.

Definition 2.4.9. Let (M, d,m) be a metric measure space. For a given Dirichlet form (€, D[E]), cor-
responding contractive resolvent, strongly continuous contracive semigroup and generator in L?(M,m)
are denoted by {Gg: >0}, {P,:t > 0} and L respectively.

Remark 2.4.10. Operators Py and G extend to LP(M) for all p € [1, 00].

Definition 2.4.11. The semigroup P; is said to be conservative if P11 = 1 m-a.e. for any/every t > 0.

14



2.5. Markov processes

Definition 2.4.12 (Restricted Dirichlet form, see [GHL10]). Let (M, m,d) be a metric measure space,
U an open subspace of M and (€,DIE]) a Dirichlet form on L*(M). The space L*(U) is embedded
into L?(M) by extending functions from L?(U) by zero outside of U. Denote by Dy|&] the closure of
DIEINC(U) in &1. It is known that (€, Dy[€)) is a regular Dirichlet form on L*(U) and we call it the
restricted form. The corresponding restricted semigroup, resolvent and generator in the space L*(U)
are denoted by PV, Gg and LY.

Definition 2.4.13 (see 1.5 of [FOTTI]). Let U be an open subset of M and (€, D[E]) a Dirichlet form
on M. For f € L*(U) we define

t
SUr= [ Pgds
0

where the integration is preformed in the Bochner sense in L*(U). It is known that S; extends to
LY(U) and we define GU f to be the pointwise limit GY f(z) = limy_y00 SY f(z) € [0,00]. This makes
sense because, for t; < to, ng(x) < ng(x) m-a.e. as a consequence of the Markov property. If

GUf(z) < oo m-ae. VfeLL(U)
the semigroup PtU 1s said to be transient, otherwise it is said to be recurrent.

Definition 2.4.14. For f € L?>(M) we adopt the convention
Pth = PtU(f|U)7
where (f‘U) is the restriction of f to U. The same convention holds for for GU.

Proposition 2.4.15. Let {Ug}reny C M be a sequence of open sets of finite measure, define U =
Uken Uk and let f € L (M). Then for every t € [0,00) and m-a.e. x € M

P f(z) 2% PY ().

Proof. Lemma 4.17 from [GHO8] proves the claim if f € L%F(U ). Here we give the agument for
extending it to f € L(U). Take any increasing sequence {f;} C L% (U) converging to f pointwise

(f1p, is one such sequence). Then m-a.e. PU f; 1o, PV f by definition of extension of PV on L>(M).

k—o0

As f; is in L?(U) for every I € N, Lemma 4.17 of [GHOS] proves that PtU’“fl = PV f; m-a.e. for
every k € N. Passing to the limit | — oo we get

lim lim P f; = PUf m-ae.
l—00 k—o0

On the other hand, for every k,l € N, PtU’“fl < Ptka < PVYf m-a.e. which proves that m-a.e.
plep 222 pUf. O

2.5. Markov processes

Definition 2.5.1 (Skorokhod space, see [Bil99], Chapter 3, Section 12). Let (E,dg) be a metric space.
For T € (0,00) the Skorokhod space D([0,T]; E) is the space of all functions x : [0,T] — E which
are right continuous and have left limits (also called cadlag functions). The topology on D(]0,T]; E)
1s induced by the metric

d(z,y) = inf sup {|A(t) — |V dr(z(t),y(A(1)))}
ACA te[0,T]

where A is the set of all strictly increasing, continuous bijections from [0,T] onto [0,T].

15
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Remark 2.5.2. The space D([0,T] : R™) is not complete with respect to d but it is possible to find a
metric (which generates the same topology) with respect to which D([0,T]; R™) is complete. This and
more on the Skorokhod space can be found in Chapter 12 of [Bil99].

Next, we give the definitions of a Markov process, strong Markov and Hunt process on a state space
FE and a couple of properties that will be needed later. The definitions that follow are taken from
[CEF12] Appendix A. For detailed treatment of the subject the reader should consult [CE12] Appendix

A, [FOT11] Section A.2 or [CWO05] Chapters 1 to 3.
We will be working under the following assumption.

Assumption 2.5.3 (see [FOT1I] (1.1.7)). We assume that (M, d,m) is a locally compact and separable
metric measure space and that m is a Radon measure of full support (note that this implies that (M, m)
is o-finite).

Definition 2.5.4. Let (2, M,P) be a probability space. Any increasing family {My;t € [0,00]} of
o-algebras such that My C M for all t € [0,00] is called a filtration.

Definition 2.5.5. Let E be a metric space, Eg = E U {0} its one point compactification with a
cemetery point 0 and B(Epy) the Borel o-algebra on Ey. A normal Markov process X; with time
parameter [0, 00] on the state space E is a quadruple

(Q7 M, {Xt}tE[O,oo]v {Px}era)
satisfying:

1. For every x € Ep, (Q, M,{Xt}ie(0,00), Pz) is a stochastic process with state space (Ey,B(Ey))
and time parameter set [0,00] such that X (w) = 0 for every w € Q.

2. For everyt >0 and B € B(Ey), P,(X; € B) is B(Ey)-measurable as a function of x € Ey.
3. There exists an admissible filtration { M }ic(0,0] Such that, for all x € By, to,t > 0, A € B(E»),

Px(Xto—‘rt S A|Mt0) = PXtO (Xt € A) P.-a.s. (21)

4. Py(Xy =0) =1 for every t > 0.
5. Pp(Xo =) =1 for every x € Ejy.
The expectation with respect to the measure P, is denoted by E,.

Definition 2.5.6. Let {M;}c[0,0) e a filtration on measure space (2, M). A function 7 : Q — [0, o0]
is called an My-stopping time if {T < t} € My for every t > 0. In that case we define the sigma
algebra M; by

M; ={A e M : An{r <t} € My for every t > 0}.

Definition 2.5.7. Let X; be a Markov process and {M;} an admissible filtration. The first exit time
of X; from a subset A of the state space, denoted by T4 : Q2 — [0, 00|, is defined by

TA(w) :=1inf{t > 0: Xy(w) ¢ A}
with convention inf ) = co.

Definition 2.5.8. A Markov process X; is said to be a strong Markov process if there exists a right
continuous admissible filtration { M} for which the following stronger version of holds. For
every {M;}-stopping time T, every t > 0, every A € B(Ey) and every probability measure [ on
(Ea, B(Es)),

P,( Xy € AIM;)=Px (Xy € A) Pj-as.

where P, (B) := fa:eEa P.(B)u(dx) for B € B(Ey).
16
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Definition 2.5.9. A Hunt process X; is a normal strong Markov process on a Lusin space E that
also satisfies:

6. Xi¢(w) =0 for every t > ((w) where ((w) = inf{t > 0: Xp(w) = 9} (with convention inf ) = co)
is called the lifetime of the sample path of w.

7. For everyt > 0 there exists a map 0y :  — Q such that X;00s = Xyys for every s > 0. Moreover
Oo(w) = w and O (w) = [0] for every w € Q, where [0] denotes the special element of  such
that X([0]) = O for every t > 0.

8. For every w € § the sample path t — Xi(w) € Ey is right continuous on [0,00) and has left
limits on (0,00) in Ey.

9. There exists a right continuous admissible filtration { M.} of X such that for every sequence of
increasing {M,}-stopping times {7} with 7 = limg_,o 7 and every probability measure u on
(Eo, B(Ep)),

P, (klim X =X7< oo) =P, (1 < 00).
— 00

Definition 2.5.10. Let (M, d, m) be a metric measure space. A Hunt process Xy on M is said to be
m-symmetric if, for all non-negative B(M )-measurable functions u,v : M — R,

/u(x)Ex[v(Xt)]m(da:):/ E,[u(Xy)|v(z)m(dz).
M

M

Definition 2.5.11. Let (M,d,m) be a metric measure space satisfying |Assumption 2.5.5 and X; an
m-symmetric Hunt process on (M,d,m). Then P; defined for f € Cy(M) by

Fif (z) = Eo[f(Xy)] (2.2)

extends to a strongly continuous symmetric semigroup on L2(M,m). The corresponding reqular Dirich-
let (£,D[E]) form is said to be the Dirichlet form of X;. Furthermore, we say that X; is properly
associated to (€,D[E]).

Corollary 2.5.12. Let X; be a m-symmetric Hunt process on (M,d,m). If P; is conservative then
the lifetime ¢ of Xy is Py-a.s. infinite for m-a.e. x € M.

Proof. For t € (0,00) and z € M, P,({ <t) =1—Eg[1y(X¢)] =1 — Plpy(x). If P is conservative,
then Pl = 1 so, for m-a.e. z € M,

P,(( <o00) <) Pu((<t) < (1(x) — Plu(z)) = 0.

teN teN

Other way around, if P,({ < oco) = 0 for m-a.e. z, then 1j/(x) — Plpy(x) < P,(¢ < 00) = 0, which
implies P;1p; = 157 so P, is conservative. O

Theorem 2.5.13 (Theorem 7.2.1 for [FOT11]). Let (M,d,m) be a metric measure space satisfying
|Assumption 2.5.9 and £ a regular Dirichlet form on L?(M,m). Then there exists an m-symmetric
Hunt process M on (M,B(M)) whose Dirichlet form is .

Theorem 2.5.14. If there are two Hunt processes associated to £, then they transition functions
coincide outside of a properly exceptional set.

Theorem 2.5.15. Let (M,d, m) be a metric measure space satisfying |Assumption 2.5.5, X; an m-
symmetric Hunt process and Py its L?(M, m)-semigroup which for all t > 0 satisfies

P, (L*(M) N Co(M)) C Co(M).

17
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Then for all k € N, ty,ta,...1; € (0,00), f1, f2,... fr € Co(M)N L?*(M) and m-a.e. x € E,

E; [f1(Xe)) f2(Xey) - - fo(Xe,)]
= Ptl (flPtzftl (f2Pt3*t2(' .. fk—lptk*tkfl(fk) .. )))(1})

Proof. By Markov property (Eq. (2.1))) of X; (used in the third line) and definition of semigroup P,
from

(2.3)

E; [f1(Xe) f2(Xt,) - - fre(X,)]
T [fl(Xh) s fk—l(thA)Eﬂ? [fk(th)‘le s vth—lH

=E,; [fl(th) e (X )Ex, [fk(thftkflﬂ]
i [fl(Xh) cee fk—l(th—1)Ptk—tk—1 fk(th—1)] .

Since ﬁ_l = Py —t,_,fx € Co(M) N L?(M) by assumption the statement is proved by an induction
in k. O

Theorem 2.5.16. Let X; be a Hunt process on R} such that its lifetime C is Py-a.s. strictly greater
than T for allx € R™ and T € (0,00). Then measures Py, for x € R™, can be considered as probability
measures on D([0, T]; R™).

Proof. Fix an x € R" and let Q be the set of P, probability 1  such that ((w) > T for every w € Q. Then
Xi(w) € R™ for all w € Q and ¢ > 0 so the mapping . : @ — D([0,T];R"), A (w) = (Xt(w))eepo,m)
is well defined. Notice that paths t — X;(w) are right continuous and have left limits because of
ltem 8§ of [Definition 2.5.90 By [Bil99] 12.5 (i) .# is measurable if and only if .#; : Q@ — R™ defined
by A (w) = X¢(w) is measurable for every t € [0, 7. Since this is true for every stochastic process we
can _consider .#-pushforward of P, on D([0,T]; R") instead of P,. This is independent of the choice
of Q because P, (€2\ Q) = 0. O

2.6. Volume regularity of Z"

In this section we will consider the metric measure space (Z",d, #), where # denotes the counting
measure on Z" and d denotes the Euclidean distance on Z", for arbitrary n € N. .

Lemma 2.6.1. For every ball B C Z™ with radius R > 0

#B > (2y/n) "R"

and hence (Z",d, #) satisfies[V>[Z", [0, 00);n, (2¢/n)""]. On the other hand, for every ball B C Z"
with radius R > 1
4B < 3"R"

which shows that (Z",d,#) satisfies [V[Z",[1,00);n, (2¢/n) ™™, 3"] holds.

Remark 2.6.2. Notice that the second statement cannot hold for every R > 0 because any nonempty
ball in Z™ has the size at least 1.

Proof. Let xg € Z™, R > 0 be arbitrary and set B = B(x, R). We can approximate B with cubes from

inside and outside in the following way

R R " n n n
r——,o+—=| NZ"CBClzx—R,z+R"NZ".
NLD vn
The size of these cubes is not hard to estimate. For the smaller cube take any a > 1 and notice that
the interval (z; + a,z; + a) N Z (where x; is any coordinate of x) contains at least 1 + 2|a — 1| V0

18
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points (one is always in the center). If @ < 2, then 14+ 2|a—1] V0 > 1 > a/2 and otherwise if a > 2,
then 1 +2[a—1] > 14 2|a/2] > |a/2+ 1] > a/2 so we get the estimate 1 +2|a— 1] V0 > a/2 in
any case. Therefore, using the product structure of cubes in Z™, for any R > 0

On the other hand, if a > 1, then segment [x — a,x + a] N Z contains at most 2|a| +1 < 2a+1 < 3a
elements and therefore

#B < (#lz —R,x+ RINZ)" <3"R".

O]

Definition 2.6.3. We give special names to constants from the previous theorem. Define Cy(Z") :=
(2y/n)~" and Cyy(Z™) := 3™. The (Z™) part is sometimes omitted for brevity if it is clear from the
context.

Lemma 2.6.4. Let n € N be arbitrary. For every € > 0 there exists an Ry = Ry (n,€) such that for
every ball B C Z™ with radius R > Ry

(Vi — €)R" < |B| < (Vp, + £)R"

where V,, = m20(n/2 +1)~" is the volume of the unit ball in R™. In other words, (Z",d,#) satisfies
MZ”, [Ry,00);n, Vi, —e, V, +¢].

Proof. Let zg € Z™, R > 0 be arbitrary and set B = B(z, R). We use subscript R to distinguish R"
balls from Z™" balls, Q(z,a) = [v — a,z + a]™ C R™ to denote the cube around zg of side length 2a in
R"™, for x € R™, a > 0, and X to denote the Lebesgue measure on R™. Then

Bg(xo, R — vn/2) C | ) Q(z,1/2) C Br(zo, R+ vn/2).

zeB

Since

#B=# | Qx,1/2) = (U Q(z, 1/2)>

reB zeB

using \(B(z,a)) = V,,a™ we end up with
Vo (R—vn/2)" <#B <V, (R++n/2)". (2.4)

Rewriting [Ineq. (2.4)| we also see that

Vi <R_R\/ﬁ/2>n1%" <#B<V, <R+R\/’m)nm

Since Ri‘éﬁ/Q, R+}§H/2 — 1 as R — oo this shows that for every £ > 0 it is possible to find Ry > 0
such that (Z",d, #) satisfies [Z", [Ry,00);n, Vi, —e, V, + ¢l O

Remark 2.6.5. The previous lemma gives the simplest estimate concerning the famous GaufS cir-
cle problem. Much sharper estimates are know and a good starting place to look them up might be

[IKKN0G].
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2.7. Symmetric jump type forms

Let (M, d, m) be a metric measure space for the rest of this section.

Definition 2.7.1. A function k : M x M — [0,00] is said to be a (jump) kernel on M if it is Borel
measurable on M x M. A kernel is said to be symmetric if k(z,y) = k(y,x) m X m-a.e.

Definition 2.7.2. A form & acting on Borel measurable function on M is said to be of jump type if
for every Borel measurable function f on M

E(f) = /M /M(f(w) () y)dydz (2.5)

for some jump kernel k : M x M — [0, c0].

Definition 2.7.3 (Energy density). For symmetric kernel k on M we define the carré du champ
operator I' acting on a Borel measurable function f on M by

I (x) = /M(f(w) — F )k (. y)dy € [0, 0]

for x € M. T'f(x)dx is then called the energy measure of f.

Proposition 2.7.4. Let £ be a symmetric jump type form on L*(M) defined by for some
symmetric kernel k. If we take D[E] = {f € L*(M) : E(f) < 0o} then the form (£,D[E]) is closed.

Proof. We follow Example 1.2.4 of [FOTTI]. Let u € L?(M) be arbitrary and {w;} C L*(M) an
&-Cauchy sequence such that u; — u in L?(M). Because u; converges to u in L?(M), we can find a
subsequence which u;, which converges to u a.e. By Fatou’s lemma, for every m > 0,

Elumn) = [ Tim fu (o) = ) = 0, (0) + ()" K ) g

< liminf &(uy;, — up).

11— 00
The last term can be made arbitrarily small for m large enough. Thus u € D[€] and &1 (u—uyy,) — 0. O

The next lemma gives an estimate on the pointwise energy density of cutoff functions for kernel
k= d(z,y)~ (29,

Lemma 2.7.5. Let (M,d,m) be a metric measure space, x € M arbitrary and suppose that there is
a Cyy > 0 such that
VR >0 |B(z, R) \ {z}| < CyyR"

for some n > 2. Then there exists a C = C’(s,n, Cyu) such that, for all s € (0,1) and
bounded Lipschitz function ¢ : M — R,

_ 2
/M Wdy < Cza 10170 (Lip ¥)**.

Relating this to [CE] the result of the theorem is equivalent to saying that form & ,corresponding to
kernel k(z,y) = d(z,y)~ "2 satisfies [M, (0,00);5,Q = 00,7 =0,Cc = Cgry)
Proof. Let us denote L := Lip¢ and [[¢[|oc := ||¥)| o (ar)- For arbitrary a > 0

[ wo—vgr, g Ld(,y) Al
M B

—dy + ——>_dy =: 11 + I.
d(x,y)nt2s (z,0)\{zo} d(T,y)" T2 Y /M\B(x,a) d(a, )2t T TR
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2.7. Symmetric jump type forms

The integrals I; and I> will be computed separately. For I; we use a dyadic decomposition to compute

o
L =17
k()

L2Z k+1 2 n_2s|B($0,2_ka)\{aj0H.

/ d(z,y)* " #dy
B(x0,27%a)\B(z0,2~(+1q)

The volume in the last expression can be estimate using the assumption which gives

2’FL

= 1L20VUa2—2$

0
Il < 2n+2s—2L2a2—23 Z CVU(22—2S)—1€ <
k=0

where the sum converges because 2272 < 1. The estimate of the second integral can be obtained in
a similar way,

I = 4|v||% Z/ d(z,y) " *dy

B(z0,2k*1a)\ B(z0,2%a)
<A4|lyll3 Z(Qk )" 7| B(wo, 2 a) \ {wo}.
k=0

The volume on the right can again be estimated using the assumption which leads to

2n+2

L < 4||y|% Zzn “2B 02k < T

k=0

[0[|2,Cyvua>°.

Collecting the estimates for I; and Iy we see that for every a > 0

(T/J(f) - 1/J(y))2 AL 9 995 2n+ 0s
< 7 o_92s .
@de@wws@—ym_ﬁcwa + T W13 Cvua”

As the first term is increasing in a and explodes for a — oo and the second one is decreasing in a and
explodes for a — 0 the minimum is obtained when

d on os d 2n+2 oy
i (g ovee™ )+ (g i ™) <o

It is not hard to check that this happens for

4 22—25 -1 B
= WL

() 65 ()

% (22725 _ 1)_5 H#JHgQQSLQS

<onC 4 s 1 P
S0 <(1 —s)(1— 2—2s)> <5(22_2_1)> [lI5 = L7

The claim follows by defining C’ = C (s,n,Cyy) to be the factor in front of |[1]|2;2L%5. O

which gives the bound

[ E@vR, g,
M\{zo}

d(l‘ y)n+23
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2. Preliminaries

Corollary 2.7.6. Let n > 2 and let iy : Z™ — [0,1] be a Lipschitz function. Then there exists a
Cegzg = C@ra)(n, s) such that for every s € (0,1)

_ 2
2 W < Czg) (Lipy)™.
ver Lo (zn)

Proof. 1t is sufficient to notice that M = Z™ with counting measure m = # satisfies the estimate
|B(z, R) \ {z}| < Cyy(Z")R"

for all x € Z™, R > 0. Indeed, if R < 1, then the set on the left is empty so the statement holds and

if R > 1, then this is implied by Applying leads to the inequality claimed

if one takes into account [[¢[|os < 1, renames Cgrp) to Cgrg) = C@rg) (s n, Cvu(Z™)) and notices
that Cyy(Z™) depends only on n. O

2.8. Generalized Mosco convergence

The concept of Mosco convergence of a sequence of bilinear forms was introduced in [Mos94]. We
present here a generalization of this concept, called “generalized Mosco convergence”, introduced in
[KS03] and also in [Kim06]. The results which follow can be found in [CKK13], appendix 8.

Remark 2.8.1. It is sometimes convenient to consider symmetric bilinear forms (€, D[E]) on Hilbert
space H to be defined on whole H but take value oo outside of D[E]. In that sense the domain D[E] of
the form is sometimes not explicitly stated.

Definition 2.8.2. Suppose that we are given a sequence of Hilbert spaces (Hy, (-, )x), for k € N, and
a “limiting” Hilbert space (H, (-,-)). Sequences Ey : Hy — H and 7 : H — Hy, of bounded operators
such that

(i) . is the adjoint of Ey, that is (mrf, fx)x = {f, Exfx) for all f € H, f € Hy,
(ii) Ey is the right inverse of g, mEyfi = fx for every fi € Hy,
(i1i) supgen |7kl o b, < 00,
(iv) limpo0 [T f || 1, = |1 f || 12 for every f € H,
(v) (Exf, Erg) = (f,9)k for every f,g € Hy,
are called extension and projection operators respectively.

Setting 2.8.3. Suppose that we are given a sequence of Hilbert spaces (Hy, (-, -)i) with a corresponding
sequence of densely defined symmetric closed bilinear forms (Ex, D(E)) and a “limiting” Hilbert space
(H,(-,-)) together with a closed symmetric bilinear form (£, D(E)). Suppose also that sequences of
extension and projection operator Ej, and 7 are given.

Definition 2.8.4 (Generalized Mosco convergence). Under |Setting 2.8.5 we say that the sequence of
forms &, converges to £ in the generalized Mosco sense if the following two statements are satisfied:

(i) If ux, € Hy, and uw € H are such that Epu, — u weakly in H, then

liminf & (ug) > £(u).
k—ro0

(ii) For every u € H there is a sequence uy € Hy such that Exur — u strongly in H and

lim sup & (ux) < E(u).

k—o0
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2.8. Generalized Mosco convergence

The following lemma is a paraphrase of Lemma 8.2 (see also Lemma 2.8).

Theorem 2.8.5. Under[Setting 2.8.3, & converges to € in the generalized Mosco sense if, in[Defini]
[tion 2.8.4) (Item (i) holds and instead of|Item (1) the following three statements are satisfied:

(i’) there exists a set D C H which is E1-dense in D[E],
(ii’) 7 () € D[E] for every ¢ € D,

(iii’) for every ¢ € D,
limsup & (mp) = E(p).

k—00
Proof. The statement is the same as in Lemma 8.2 of up to notational changes. O

Generalized Mosco convergence of densely defined symmetric closed bilinear forms is equivalent
to the strong convergence of the corresponding semigroups. The precise statement is given in the
following theorem which is taken from [CKKT13].

Theorem 2.8.6. Under|[Setting 2.8.5 the following are equivalent:

(i) Ek E2o0s & in the generalized Mosco sense.

(ii) Eth(k)Wk LiicN P, strongly on H and the convergence is uniform on any finite time interval of
t>0.

Proof. See [CKK13|, Theorem 8.3. O
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3. List of properties

We list here the assumption and properties that will be used throughout the thesis. For the purpose
of this chapter let (M, d, m) be metric measure space, £ : L2(M) — [0, 0] a bilinear form on L?(M),
k: M x M — [0,00) a Borel measurable kernel on M x M and ¢ : M x M — [0, 00) a Borel measurable
“conductance” on M x M.

Whenever a kernel k is mentioned in properties below, it is implicitly assumed that £ is the corre-
sponding energy form on L?(M) (allowed to take value 4oo for some functions) defined by

E(f) = /M /M<f<a:> ~ f()k(z,y)dyda Vf € L2(M).

In that case we define, for U C M,

Eu(f) = /U /U (F(z) — F(9)*k(z,y)dydz Vf € L3(U).

Similarly, whenever a conductance ¢ is mentioned in properties below, it is implicit assumed that k
is the kernel defined by k(x,y) = c(z,y)d(x,y)~("+29),

3.1. Local properties describing jump kernels

The following properties are used to describe a metric measure space (M, d, m), bilinear form &, kernel
k or conductance c. As a rule, these properties will apply in certain ball B of M so they will contain
parameters xg € M and a radius R > 0 indicating the center and the radius of B.

Property 3.1.1 . We say that the measure space (M, d, m) satisfies the volume regularity property
on a ball B := B(xo, R) C M with constants n,Cyr,Cyy € (0,00) if

CVLRn < m(B(:E(),R)) < CVURn.

In short we simply say that m[xo, R;n,Cyr,Cyyl is satisfied. If only the lower bound holds, we say
that (M,d, m) satisfies the lower volume regularity, |V>[xo, R;n,Cyr], and if only the upper bound
holds we say that (M, d, m) satisfies upper volume regularity, [V<]zo, R;n, Cyy].

Property 3.1.2 (PSI). We say that the functional Q : L'(M) — R satisfies Poincaré-Sobolev in-

equality with constants p € [1,%), q € (%, o], Cps < 00 on a ball B := B(xg, R) if, for p > 1 solving

% =1-24 % and every f € LY(M) supported in B, the inequality

I1(f = far)? | oqar) < CrsRQ(f)

holds, where far = f,, f (by definition far = 0 if |M| = o). In short, we say that xo,R;s,p,q,
Cpg] is satisfied.

Property 3.1.3 . We say that the kernel k satisfies a version of Sobolev inequality with constants
p € (l,00), C€[l,0), s€(0,1),v€]0,2s), Cs1,Cs2 < 00 on a ball B = B(xg, R) C M if, for every
f € LY(B) and every o € (0,1),

1_ _9s_ 1_1
1%\l 2oo) < Csn|Ble T R*#Ep(f) + Cs2(1 — 0) 727 Blo ™ <[| || 1e()- (3.1)
In short, we say that xg, R;s,p,(,Cs1,Cgs2,7] is satisfied.
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3. List of properties

Property 3.1.4 (PI). We say that the kernel k satisfies the L?-Poincaré inequality with constants
€ (0,1), Cp < o0 on a ball B := B(zg, R) C M if, for every f € L'(B),

If = f8ll3 < CpR*E5(f),

where fp = fg f. In short, we say that xo, R;s,Cp] is satisfied.
Property 3.1.5 (CE). We say that the kernel k satisfies cutoff energy density estimate on a ball
B := B(xg, R) C M with constants Q € [1,0], s € (0,1), Cc < o0, v € [0,2s) if for every Lipschitz
function ¢ : M — [0,1]

1

Q

(f ng(x)Qda:) < CoR™25(£2577 v ¢251)
B

where £ = RLip . In short, we say that [a:o, R;s,Q,v,Cc] is satisfied.

Property 3.1.6 (AKB>|. We say that the kernel k : M x M — [0,00) is in average bounded from
below on the ball B(xo, R) C M with constant Cx > 0 if there exists a yo € M \ B(xo,6R) such that

][ / k(z,y)dydz > CrR™%.
B(wo,R) J B(yo,R)

In short, we say that| AKB>|xg, R; s, Ck] is satisfied.

Property 3.1.7 (TB). We say that the kernel k satisfies truncation bound on a ball B :== B(z, R) C
M with constant s € (0,1), Cr < oo if

/ k(z,y)dy < CrR™2.
M\B(z,R)

In short, we say that [xo, R;s,Cr] is satisfied.

For the following three properties the supersolutions of equations Lu = 0 and Jyu — Lu = f are

defined as in [Definition 5.1.5l and [Definition 5.1.4l

Property 3.1.8 (WEHI|). We say that £ satisfies the weak elliptic Harnack inequality on the ball
B := B(zg, R) C M with constant Cgp < 0o if, for every supersolution u of Lu = 0 in 2B with u > 0
on M, the inequality

][ u(x)dx < Cppgessinfu
ip iB
2 2

holds. In short, we say that xo, R; Cpy] holds.

Property 3.1.9 . We say that £ satisfies the weak parabolic Harnack inequality on a ball
B := B(xzo,R) C M with constants s € (0,1), Cpg < oo if the following statement holds. For all
to € R, f € L¥(I(R); L2(2B)) and for every supersolution u of dyu — Lu = f in I(R) x 2B(xg, R)
with uw > 0 on M the inequality

][ u < COpy | essinfu + (2R)* sup (7[ \f(t)|Q>Q
Us Us tel(R) \J2B

I(R) = (to — R**,to + R%®)

is true. Here

1
Us = (to + R** — (R/2)*,to + R**) x =B

2
1
Us := (to — R**,tg — R** + (R/2)*) x 55
In short, we say that xo, R; s,Cpm, Q] is true.
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3.2. Conventions

Property 3.1.10 (HR)). We say that € satisfies Holder regularity in a ball B := B(xo, R) C M with
constants n > 0 and Cyg < oo if the following statement holds. For all R > R, to € R and every
supersolution u of Oyu — Lu = 0 in (tg — 2R>®,t9) x B(xo,2R) with u >0 on M,

R

n
€8S 0SC u < CHl|u|| poo((tg—or2s — .
[to—R23,to]x B(zo,R) H ”L ((to—2R2s,t0) x M) <R>

In short, we say that [mo, R;n,Cyl is satisfied.

Property 3.1.11 (ETE). We say that £ satisfies two-sided expected exit time estimates on B :=
B(zo, R) C M with constants s € (0,1), C(g<y < 00 and C(g>) > 0 if

C’(E>)R25 < essinf GP1 < esssup GP1 < C(E<)R2S,
- zGiB z€B -

where GP is the potential operator from |Deﬁm'tion 2.4.131. In short, we say that [:1:0, R;s,Cip<y,
C(g>)] is satisfied.

Property 3.1.12 (SE). We say that the semigroup P, corresponding to the form & satisfies survival
estimate with parameters s € (0,1), ,8 >0 on a ball B := B(xg, R) C M if, for all t € [0, (§R)?],

essinf PP1p(z) > e.
inB

In short we say that [acg, R;s,¢e,0] is satisfied.

Property 3.1.13 (BA). For p,Cy € R we say that the conductance ¢ on Z™ has p-average bounded
by Cyr around xg € Z™ if

1 1
thupi Z YRR C(-’L',y)p S CM,
B k B(x.l Z
kklzglo #B(o, )xGB(xo,k) #B(, )yGB(xo,l)

where limsupy, ;_, o f(k,1) = sup{limsup,_,, f(ki,l;) : for any k; — o0,l; — oo}. In short, we say
that[BA[zo; p, Car,n| is satisfied

3.2. Conventions

Most of the time form &£, kernel £ and conductance ¢ will be clear from the context and in that case
we will simply say that certain Property holds instead of saying that it is satisfied for &, k or c.
Statements of form “Property[A,...;B,...] holds”, where A and B are sets given in place of a
concrete parameters, are understood in the sense that Property]|a,...;b,...] holds for all choices of
parameters in a € A and b € B.
We will try to suggest the matching of parameters through their notation and not through the order
alone. That is, reader will not find statements of the form {WPHI|zq, R; 1,2, 3] holds” but rather of
o . (2) » 3 T .

the form [aco, R; s1,Cpyy, Q3] holds”, where names s1, C5}; and @2 indicate the corresponding
parameters in the definition of[WPHI] If the first situation can not be avoided, we will instead write
‘[xo,R;s =1,Cpyg = 2,Q = 3] holds”.

The construction in the next definition is an imitation of the “very good ball” from [Bar04]. Similar
constructions are also used in [CKWI18b] and [CKW18a] although they are not stated explicitly.

Definition 3.2.1. We say that some property holds on scales larger that 0 € (0,1) in a ball B(xy, Ry),
and write * Property|x,., R, 0;...] if the following statement is satisfied. For all Ry € N N [Ry, ),
zo € B(w,, Ro), R > RS Property[zo, R; . ..] holds.






Part 1.

Deterministic degenerate energy forms of
jump type
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4. Assumptions and main ideas

Let (M, d, m) be a metric measure space and assume, for the sake of this introduction, that the volume
of a ball B € M with radius R is comparable to R™ for some n > 0. Later on, we will need such
comparability of volume only for certain balls.

Remark 4.0.1. Integration over measure m is denoted simply by dx instead of m(dx) and the m-
measure of the set is denote by | - |. Since m is the only measure used in this part such conventions
should not cause confusion.

Throughout this part we will be studying the closed symmetric bilinear form & satisfying the fol-
lowing assumption:

Assumption 4.0.2. The closed symmetric bilinear form (£,D[E]) on L?*(M) is defined through its
action on f € L*(M) by

E(f) = / / (f(2) - () k(. y)dyda, (4.1)
for some symmetric Borel measurable kernel k : M x M — [0,00), and D[E] is its mazimal domain,

i.e.

DIE] = {f € L*(M);E(f) < oo} .

Furthermore, we assume that D[E] contains all Lipschitz functions supported on balls and that all balls
are precompact.

Form & defined in the above way is always closed, see |Proposition 2.7.4] and we denote its generator
by (L, D[L]) .

We would like to develop results that will apply to kernels of the form k(x,y) = c(z, y)d(x, y)~ 25
for some generic realization of random variables ¢(z,y), x,y € Z"™. Such kernels will be studied in
The theory developed in [GHHIS, (GHH17, (GHL14] or [CKO03| [CKW16b, [CKW16a] for kernels
satisfying pointwise bounds

A7Vd(z,y) "2 < k(a,y) < Ad(z,y) "), (4.2)

for some A > 1, is not directly applicable because we want to allow random variables c(z,y) to be
unbounded or to take value zero for some pairs of x and y. Therefore, we need a different way of
comparing our kernel to the rotationally stable kernel d(z,y)~("*2%). One approach, developed in
[FK13] and [DKI5] for M = R™, is to assume the comparability of energy forms corresponding to
kernels k and d(z,y)”("*t2%). That is, to assume that for some A > 1, every ball B C R™ and every
function f € L?(B)

A~ // xyn+2$ dyd:n<// k:(xydydac<A// :LvynJFQS) dydzx.

(4.3)

See also [CS19] for recent developments. We will take a slightly different route here and postulate that
the kernel k satisfies certain functional inequalities which are satisfied for the kernel d(z, y)*(”HS),
possibly with different constants. To be more precise, we will assume that energy form & satisfies
Poincaré inequality, Sobolev inequality and estimate of the energy density of cutoff functions given
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4. Assumptions and main ideas

in and [CE] respectively (see . All of these inequalities follow immediately if one
assumes [[neq. (4.2)] or [lneq. (4.3)}

The main results of this part are[Theorems 6.5.1},[6.6.9} [7.2.2} [7.3.2|and [8.1.4] and they will be applied
in [Part T [Theorem 6.5.1| proves the weak parabolic Harnack inequality and is used to obtain
large scale Holder regularity (HR) in [Theorem 6.6.3, The latter result will be used when applying
[Theorem 12.4.1] to symmetrized twofold ergodic and i.i.d. conductance respectively.
proves that form &£ is conservative which we will use to embed the paths of the corresponding process
into Sorokhod space D([0,T],R™). gives the lower bound of the decay of restricted
semigroup PP and is the crucial ingredient in the proof of tightness for the i.i.d. conductance in
[Theorem 12.5.2] Finally, will be used to obtain [PI] and [ST] for both ergodic and i.i.d.
conductance in ['heorems 10.2.5( and [11.7.1| respectively.

We believe that [Theorems 6.5.2], [7.1.5| and [7.2.1] are interesting by themselves but are not necessary
for and will only be briefly mentioned there.
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5. Weak solution and testing lemma

The Moser iteration, presented in the next chapter, relies on energy estimates obtained by testing the
supersolutions u of the parabolic equation

8tu—£u = f,

where L is the generator of symmetric bilinear form £ from with test functions of the form
ou~? for some B € (0,00) and compactly supported Lipschitz ¢. Once such estimates have been
obtained, the iteration does not require any additional input from the equation. The goal of this
chapter is to establish a definition of weak supersolution (Definition 5.1.4)) for the above equation that
allows for the derivation of aforementioned energy estimates. Ideally, such definition would require
as little as possible a priori regularity of the solution and provide energy estimates at the same time.
However, reducing a priori regularity increases technical difficulties and for this reason we will settle on
the definition of weak supersolutions similar to the one in [GHL09] which require the a priori existence
of weak time derivative O,u (see[Definition 5.1.4]). This will not give us problems in because we
will only be interested in semigroup solutions, which are known to be sufficiently regular. A discussion
on the possible solution concepts can be found in [Fell3]. In particular, the a priori existance of dyu
can be avoided using Steklov averages techniques.

The main result of this chapter are the weak solution concept in [Definition 5.1.4] and the energy
estimate in Moreover, proves that semigroup solutions are weak solutions
in the sense of [Definition 5.1.4

5.1. Concept of weak solutions

Definition 5.1.1 (Weak differentiation). Let H be a Hilbert space and I an interval in R. We say
that the function w: I — H is weakly differentiable at t € I if there exists a v € H such that

u(t+e) —u(t) o
- v

where — stands for the weak convergence in H. Then v is denoted by u'(t) or Owu(t) and called the
weak derivative of u at t.

Definition 5.1.2 (Solution space). Let us define, loosely following [FKV15] Definition 2.1, for any
ball B C M the space

Ve = {v: M — R;v Borel mesurable and Vp(v) < co}

where Vg s the seminorm
Ve) = [ (ula) ~ v(y) k(e y)dyds
(Bex Be)e
and B¢ = M\ B so that (B° x B°)* = Bx BUB x (M \ B)U (M \ B) x B.
Remark 5.1.3. For f € Dg[€], g € D[]

E(f,9) =Va(f,9) < EN)*V5(g)"?

and Vi can be considered as a subspace of E-dual of Dp[E].
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5. Weak solution and testing lemma

Following [GHL09] we now define weak supersolutions (subsolution/solution) of equation dyu—Lu =

f.

Definition 5.1.4 (Weak parabolic supersolution). Let Q € [1,00], finite open interval I C R, a ball
B C M and f € L™®(I;L9(M)) be arbitrary. Denote by L the L*-generator corresponding to the
closed form (€, D[E]).

A function v : I — Vg N L?(B) is said to be a weak supersolution of the equation

ou—Lu=finlxB

if the weak L*(B)-derivative Oyu exists, Oyu € L} (I;L*(B)), Vg(u) € L}, .(I) and for every non-
negative ¢ € Dpl€] N LY (B),

/@uta: z)dz + & (u( /ftx z)dx for every t € I. (5.1)

u is said to be a weak subsolution if the same thing holds for non-positive p and it is called o weak
solution if it holds for all .

Definition 5.1.5 (Weak elliptic supersolution). Let Q € [1,00], ball B C M and f € L9(B) be
arbitrary. Function u € Vg N L?(B) is said to be a weak supersolution of the equation Lu = f in B if

for every ¢ € D[E]N LY (B), » >0,
> [ F@eta)da. (52)

u 18 said to be a weak subsolution if the same thing holds for non-positive p and it is called a weak
solution if it holds for all .

Proposition 5.1.6. Let Q € [1,00], ball B in M and f € L9 (B) be arbitrary. Functionu € L?>(B)NVp
is a weak super/sub/solution of equation Lu = f in B if and only if the function v : R — L%(B),
defined by v(t) = u, is a weak super/sub/solution of Oy — Lv = f in I X B for every open interval
I C R, where f(t,z) = f(x) for allt € R.

Proof. From [Definition 5.1.1] it follows immediately that v is weakly differentiable on every open
interval I and Ov(t) = 0 for all t € I. Due to definitions of f(¢,-), v(t) and v = 0,
collapses to for every ¢ € D[] N LY (B). Suppose u is a weak super/sub/solution of
Lu = f and take any open interval I C R. Clearly [; Vp(v(t))dt = Vp(u)|I| < oo and therefore v is a
super /sub/solution of dyv — Lv = f on I x B. Other Way around, if v is a weak super/sub/solution of
diu— Lu = f on every finite open interval I, then Vg(u) = §, Vp(v(t))dt < oo implying u € Vp which
means that u is a super/sub/solution of Lu = f. O

The following lemma concerning properties of weak differentiation is borrowed from [GHL09],
Lemma 5.1.

Lemma 5.1.7 (Weak differentiation). Let H be a Hilbert space with inner product (-,-), I and open
subset of R and uw: 1 — H.

(i) If u is weakly differentiable at t € I, then u is strongly continuous at t.

(ii) (The product rule) If functions u: I — H and v : I — H are weakly differentiable at t, then
the inner product (u,v) is also weakly differentiable at t and

(u,v) = (', v) + (u,v").
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5.1. Concept of weak solutions

(iii) (The chain rule) Let (X, ) be a measure space and set H = L?>(X, ). Let v : I — L*(X, i) be
weakly differentiable at t and let & : R — R be a smooth real valued function such that

®(0) =0, sup|®’| < oo and sup|P”| < oo.
R R

Then the function ®(u) maps I to L?>(X, ) and it is also weakly differentiable at t with

O (u) = o' (u)'.

(iv) The conclusion of |Item (ii1) remain valid if function ® is defined and smooth only on some open
J C R (possibly unbounded), with lim,_,o ®(x) =0 in case 0 € J,

sup |®'| < oo, sup |®”| < o
J J

and u(t,z) € J for a.e. t € I and p-a.e. x € X.

Proof. Just like in |[GHL09] Lemma 5.1 except for which is not stated there. The proof
of in [GHL09] was corrected by the authors and is available on the webpage of Professor
Grigor’yan. The correction is as follows: It is claimed in [GHLQ9] that the first term on the right of
(5.3) converges to zero strongly in L?. This is not true because the use of Hélder inequality proves
that it only converges to zero strongly in L!. However, the same term is bounded in L? by 2sup |®’|
which makes it weakly compact. But then the weak L?-limit must coincide with the strong L!-limit
and the term converges to zero weakly in L? which is sufficient to prove the statement following the
remaining arguments from [GHLO09].

For we consider first the case 0 € J. Then one only needs to extend ® by a smooth
function ¥ onto the whole R with bounded first and second derivatives and apply If0 ¢ J,
then one has to, in addition, choose ¥ such that ¥(0) = 0 which is possible because 0 is separated
from J. 0

Remark 5.1.8. Operators of type LP(X,p) > u(z) — f(x,u(x)) € LP(X,u) are called superposition
operators and one can look them up in [AZ90)].

Lemma 5.1.9. Let g € L?>(M) be arbitrary and let U C M be open. Let PY be a strongly contin-
wous L?(U) semigroup corresponding to the closed symmetric bilinear form & on L*(U), see

tion 2.4.12. Then PV g is a solution of Oyu— Lu =0 on (0,00) x B, for every ball B C U, in the sense
of [Definition 5.1.4 Furthermore,

. U _
lim 1P 9= gllr2@wy = 0.

Proof. Let LV denote the generator of PV on L?(U). Because PU is symmetric and contractive,
PY(L2(U)) c D[LY] so the strong L?(U) Fréchet derivative exists and is equal to 9,P’g = LY PYg.
All of this follows from the spectral theorem. Let {FEy, A\ € (—oc0,00)} be a spectral family of —£Y
(which is known to be non-negative and self-adjoint by [FOT11] Lemma 1.3.1) such that

/;U_/ (=\)dE, and D[LY] = {veLz(U):/ N d(Ezw,v) <oo}
0 0
just like in [FOT11] Chapter 1.3, (around Formula (1.3.4)), see also [Kat95] Chapter six, Section 5.

Then also PV = [~ e *dE) and

o0 [e.e]
/ Nd(ExP{g, P g) = / Ne 2 d(Erg, g) < oo
0 0
implying PYg € D[LY]. This in particular implies that L?(B)-Fréchet deriviative 0; PY g exists and
oPlg=rLVPVf  in L*(B)
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5. Weak solution and testing lemma

so PV is also weakly differentiable on (0, c0) in the sense of [Definition 5.1.1, Note that £U commutes
with PU and that the function PVLY f : (0,00) — L?(B) is continuous on (0, 00) which implies that
0PV f e L} ((0,00); L?(B)). Testing the previous equation with ¢ € Dg[€] we obtain

loc

/B 0P g(2)p(x)da + E(PY g, 0) = 0

because [5(—LY)PYg(x)p(x)dx = E(PY g, ¢) (see Corollary 1.3.1 in [FOTTI]). This shows that PV
satisfies [Ineq. (5.1)|for all ¢ € (0,00) and ¢ € Dp[€]. Furthermore, from

HE(PYg) = 0(—LY Pg, PV g) = —2(LY P/ g, LY PV g) <0

it follow that the function ¢ — £(PYg) is decreasing so for any compact [T1, T3] C (0, c0),

To Ts T2
Vp(PYg)dt < E(PYg)dt < E(Pf g)dt < cc.

Ty T Ty

Thus PYg is indeed a solution in the sense of [Definition 5.1.1|on (0,00) x B. The convergence claim
is simply a restatement of strong continuity of semigroup PV in L?(U). O

5.2. Testing lemma

Lemma 5.2.1 (Testing lemma). Under |Assumption 4.0.9 let I C R be a finite interval, B a ball
of radius R > 0, Q@ > 1, and f € L®(I;L%(B)). Suppose ¢ > 0 and a weak supersolution u of
Owu— Lu= [ in I X B are such that

Q=

u > e+ R* esssup <][ \f(t,x)\de> on I x B.
tel B
Define

w(t,z) = {llﬁulﬁ(t, r) ifB#1
log u(t, x) if = 1.

Then w is continuous in t and for every B > 0, every non-negative, bounded and absolutely contin-
wous x : I — R, every non-negative, Lipschitz 1» : M — R supported inside of B and every segment
[Tl, TQ] clI

[x@) /| ¢<x>w<t,m>dx] i /  OE () b (0t

Ty T

Tz 1 N é
> blla /T [w(m /B |w(t,x>|dx+|x<t>|R—28|B|Q(/B u1-9) (t,x>dx) ]dt,
1

where X'(t) is the Radon-Nikodym derivative of x and [a(t)]% is the shorthand notation for a(Ts) —
a(Th).
Furthermore, if B # 1, the last two terms can be combined to give

Ty Ty
[f{t)ﬂ/Bw(m)ul_’B(t, x)dm} +/ X()E (u(t), Yu=P (t))dt

T1 Tl
1 To / t . %
> [l | B / <’X< ) +!x(t)R‘25> ( / W1-5) (t,x)dac) ”
T ‘1_/3‘ B
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5.2. Testing lemma

Proof. First of all, notice that ¢ € D[E] due to |Assumption 4.0.2 We claim that more is true and
51,k—>oo

that in fact ¢ € Dp[€]. To see this, we approximate ¢ := ¢ — (¢ V (=1/k)) AN 1/k ——— 9 by
[FOTTI], Lemma 1.4.2 (iv). Every 1 is compactly supported inside L?(B) because v is Lipschitz
and zero on B¢ so ¢y is in Dp[£] by [Definition 2.4.12| Since Dp[€] is & -closed, ¢ € Dp[E] as well.
For fixed ¢ € I we intend to test supersolution u with ¢; = Yu=?(¢,) in For this we have
to check that ¢ is a valid test function. Clearly ¢; is a non-negative element of L>°(B) C L% (B) by
assumptions u > €, so we only need to verify that ¢; € Dp[£]. To do so, notice that u > ¢ and that
for every a,b € [e,00)

la™® — b7 < Be=FD|a —b] < C(e, B)]a — b].

Now £(p;) = Vp(p:) because ¢ € Dg(€) and thus (with elementary estimate (ab — cd)? < 2a%(b —
d)? + 2(a — ¢)?d? in mind for the first inequality)

Elpr) = V(o) = / (w(x)%fﬁ(t, ) —d(y)u (L, y))2 k(x, y)dyda

(Bex Be)e

2
< 20613 s) (w2t 2) = w(ty)) ha,y)dyds
(Bex Be)e

P2 ey [0 D) k)

< C(e, B 19 7oe(s) /( ooy 10 Ul )R y)dyde £ HEW)

< C(e, B[] oo ) VB (ult)) + e P E(W).

This shows that ¢; € D[E] and eventually that ¢, € Dg[€] by application of Lemma 4.4 (ii) of [GT12]
because ¢y < e P(z) € Dp[€] together with ¢, > 0. It is therefore justified to test with ¢; which
gives, for every t € [T1, T3],

[ ottty ta)de + & (u) v ?(0) = [ fa)i@n? (b,
B B
We deal with the f term using u > R* esssup;e; (f |f(t, z)|9dz) T to estimate

/ f, x)¢(az)u_ﬁ (t,z)dx
B

> < WwQ(x)d:L‘> ‘ < /B W19 (1 x)da:) v

B UQ (t7 :C)

> |lllgm R BIF ( [ <t,x>dx>
B

1
Q*

and arrive at

/ Buu(t, o) (x)u=B(t, x)dx + € (u(t, ), puB(t, .))
B

1

X3

* Q
> 4 ey R B ( [ <t,x>dx)
B

Multiplying both sides with x(¢) and integrating in ¢t from T3 to T, results in

/:2 x(t) /B Ayu(t, ) (x)u P (t, z)dxdt + /TITQ x(t)E (u(t, Y, puA (¢, )) dt -
> ol [ x@R2181E ([ w99 @ aar)
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5. Weak solution and testing lemma

Notice that two integrals on left exist because a supersolution by definition needs to satisfy dyu(t) €
L} (I; L*(B)) and V(u(t)) € L},.(I) respectively and the one on the right exists (could be infinite)

loc

because its integrand is of constant sign. Let us now attend to the first integral in in
more details. By [Item (iv)| of [Lemma 5.1.7| with X = B, ® : (¢/2,00) = R, ®(a) = %—
or ®(a) = log(a) 1t =T (all derivatives of ® are bounded on (¢/2,00) in any case) we know that
w is L*(B)-weakly differentiable and dyw = u P8;u. Together with [Item (i)| of [Lemma 5.1.7| this
implies that w is L?(B)-strongly continuous like stated. In addition, calling (-,-) the scalar product

on L2(U), shows that 0;(¢,w) = (0w, w) + (Y, Ow) = (¢, Oyw) so function t — (¢, w(t)) is
differentiable. It is then also absolutely continuous, just like x is by assumption, so an application of
integration by parts (see [Cohl3] Corollary 6.3.9) allows us to rewrite the first integral as

/T1T2x(t)/]3w(m)8tw(t,a:)dmdt (D) /¢ w(Ty, 2)dz — x(T}) /2/) w(Ty, 2)dx
/ / W) (s, 2)dads.

Combining this with |Ineq. (5.3)| we end up at

[ / Y(x)w(t, z dx] E +/T2 Y()E (u(t, )P, ,)) dt

Ty T

T X ) %
ety [w(m [ tttapiae + o151 ([ 0499 0 ) ]dt.

This proves the first statement. In case 8 # 1 we know that u(!=#) = (1 — B)w and we can express
the last inequality purely in terms of u. Furthermore, by Holder’s inequality

[ tuttaas < 1% ([ rw<t,x>|Q*)Ql

which allows us to combine the last two terms of our main inequality and get

[f@ﬁ /B w<x)u15<t,x>dx] y / e (utt. ) 0y (t,0)) at

T1 Tl

1 Ts / . %
> —HTﬁHLoo(B)!BlQ/T <||1X_(t)ﬁl| + |X(t)|R28> </B u(t, z)1=A)Q dm) < at

which proves the second statement. O

5.3. Maximum principle

Here we present two maximum principles from [GHLO09] and [GHHI7] which we will use in [Chapter 7

Theorem 5.3.1 (Parabolic maximum principle - Proposition 5.2 in [GHLO09]). Assume that metric
measure space (M,d, m) satisfies|Assumption 2.5.5 and & is a regular Dirichlet form on L*(M). Let
u € DIE] be a weak subsolution of Oyu — Lu = 0 in (0,T) x U where T € (0,00] and U is an open
subset of M. Assume in addition that u satisfies the following boundary and initial conditions:

(i) ui(t, ) € Dyl&] for everyt € (0,T);

2
(i) uy(t,) 9% 0 as t — 0.
Then u(t,z) <0 for every t € (0,T) and m-a.e. x € U.
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5.3. Maximum principle

Proof. Notice that [Definition 5.1.1| requires some additional integrability on top of solution concept

in [GHLO9], Chapter 5.2. O

Theorem 5.3.2 (Parabolic maximum principle II - Proposition 6.1 in [GHHIT]). Assume (M,d,m)
satisfies [Assumption 2.5.5 and that € is a regular Dirichlet form on L?>(M). Suppose we are given
T € (0,00, an open set U C M and a function f € DIE] N L>(M) such that fu = |||z ). If

(i) w: (0,T) — DIE] is a subsolution of the equation Oyu—Lu = f such that Oyu from|Definition 5.1.1|
exists in the strong L*(U)-sense,

(ii) uy(t,-) € Dyl&] for every t € (0,T) and
(iii) u. (t,-) — O strongly in L*(M) ast — 0
then, for every t € (0,T),

t
Jut, 2@y < 2/0 E(f,uy(s,-))ds.

Proof. Tt is not difficult to verify that conditions of Lemma 6.1 of [GHHI7] hold when w is the
subsolution in the sense of [Definition 5.1.4l O
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6. Parabolic Moser iteration

In this chapter we are going to develop the local version of the parabolic Moser iteration scheme. In
this will allow us to obtain regularity-type bounds on the semigroups of long-range random
walks in random environments. The local parabolic version of the iteration appeared in [Mos64] (see
also [Mos67] and [Mos71]) and generalizes the elliptic version developed a few years earlier in [Mos61].
It was later adjusted to various different setting and in particular extended to discrete spaces in [Del99)
and later still to random discrete setting in [ADS16]. The nonlocal elliptic case was recently studied in
[DK15] and [CK20] while parabolic case is developed in [FK13]. Our method here is a combination of
[ADS16], which provides ideas relating to randomness of environment, and of [FK13], which contains
the calculations needed in the nonlocal case. There are four key points the reader should take note
of. Firstly, we will be working with a nonlocal energy form which prevents us from obtaining the full
Harnack inequality (sup < inf) directly from the iteration. In fact, it is not clear if this could be true
for our choice of kernels k, see [BS07| for a detailed discussion. Secondly, random kernels that we would
like to handle in are fundamentally space dependent (in particular, all space related scalings are
destroyed) which forces us to work locally and manifests in constants being space dependent. Thirdly,
the lack of a pointwise bound on the kernel causes the energy density I'f of a function f to behave
wildly in the pointwise sense and some averaging procedure is needed. In particular, this means that
energy measure of a Lipschitz function cannot be bounded pointwise. Instead, we bound it locally
in L9 space for appropriate Q € [1,00). Lastly, the procedure only works if the kernel k is not too
degenerate. We can give a sufficient condition for this in terms of parameters in assumed functional
inequalities [ST| and [CE] see [Tneq. (6.7)} Similar condition appear in [ADS16, [FH20].

For the rest of the chapter we will consider weak supersolutions of equation

dou— Lu=f (6.1)

in I x 2B where B is a ball in M of radius R and I is the interval (to — R?*,ty + R%*) for some
to € R (recall [Definition 5.1.4). To make the main ideas clearer, let us assume that f = 0 through
this introduction. The definition of sets Z, Zg, Zg used below can be found in [Definition 6.1.3]

The Moser iteration procedure roughly consist of three steps. In the first step, contained in
one uses an iterative argument to prove, for all o € (1/2,1) and p € [—1,0), there is a
constant C7 such that, for every supersolution u

1

p
essinf u > C4 ][ uP | .
Zo(oR) Zo(R)

The second step, in [Section 6.3| is quite similar and proves that, for all ¢ € (1/2,1) and p € (0,1),
there is a constant Cy such that, for all supersolutions u,

%
][ u < Oy ][ uP | .
Zg(oR) Zg(R)

If we restrict our attention to solutions instead of supersolutions of dyu — Lu = 0, then it is sometimes
possible to improve the estimate by replacing the L' term on the left hand side with esssup Ze(oR) U-
We will not obtain such a result in this thesis. The third step combines the previous two estimates
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6. Parabolic Moser iteration

and proves the weak parabolic Harnack inequality. To be explicit, it proves that there is a constant
Cpr < oo such that for every supersolution u

][ u < Cpp essinf u.
Us U

52

This is done in and For definition of sets Us and Ug, see theorem and
Fig. 6.5.1l Once the weak parabolic Harnack inequality is available, a standard argument, see [FK13]

for example, proves Holder regularity estimate of u. We present this in

6.1. Iteration preparations
We need some preliminary results before we can start with the iteration.

Definition 6.1.1. Let R > 0 and xo € M be arbitrary and set B := B(xo, R). A cutoff function
between balls cB C B, for o € (0,1), is any function ¢ that satisfies p =1 on 0B, ¢ =0 on B¢ and

o(a) - el < o

An example of such function is given by

() = <WA1> V0.

[Assumption 4.0.2| guarantees that all the cutoffs from the above definition are in the energy space
of £ and [CE] provides an estimate of its energy which we prove in the following proposition.

Proposition 6.1.2. Suppose s € (0,1), v € [0,25), Coc < o0, @ > 1, R > 0 and z9p € M are
such that [a:o, R;s,Q,v,Cc] holds. Let ¢ be a Lipschitz function supported in B := B(xg, R) and
&= RLipp. Then

E(p) < 2C0(ET7 v 77 |BIR™%.

In particular, if[a:o, [Ro,); s, Q,v,Cc] holds for some Ry > 0, then D(E) (the mazimal domain
of €) contains all Lipschitz functions with bounded support.

Proof. Start by computing

£(¢) /M /M«o(a:) — o())*k(z, y)dyda

</B /B i /B / ) (e(x) — o(y)*k(x, y)dyda
2

/B/M(SO(ZU) — o(y)*k(z, y)dydr < 2/ To(z)da.

B

IN

Holder inequality and [ZE(), R;s,Q,v,Cc¢] imply

E(p) <2 /B Do(x)dr < 2 (/B 1dx> v (/B F(p(m)dx) ° <200 (%77 v €2 | B|R™%.

If, for some Ry > O, [xo, (Rp,); s,Q,7,Cc] holds, then for every Lipschitz function ¢’ with
bounded support it is possible to find R > Ry such that supp ¢’ C B(zg, R). The previous calculation
now shows €(¢’) < oo and implies that ¢’ is in D[E]. O

42



6.1. Iteration preparations

The geometry is going to play an important role in what follows which is why we introduce the
following definitions, borrowed from [FKI3][]

Definition 6.1.3. Let xg € M, ty € R and R > 0 be arbitrary. We introduce the following intervals
in R and cylinders in R x M, see

I(t(h R) = (tO - stvto + R28)’ Z(th xo, R) = I(t(): R) X B(l‘o, R)v
Io(to, R) = (to — R* ), Zo(to, vo, R) = I5(to, R) x B(zo, R),
I (to, R) = (to,to + R*), Za(to, 20, R) = I (to, R) x B(zo, R).

When to and xo are clear from context we will omit them in the notation and write just Z(R) instead
Of Z(t()a xo, R)

Figure 6.1.1.: “Zylinders”

We also shorten the notation by defining:
Definition 6.1.4. For o € (0,1), s € (0,1) and v € [0, 2s),
Klo)=(1—-0)27+(1-0%)"L (6.2)
Lemma 6.1.5. Function K : (0,1) — (0,00) is increasing and
K(o) <2571 (1 — o)~ (@st0VD),

Proof. Both terms on the right of [Eq. (6.2) are increasing in o so K is as well. If s > %, then
1 —025>1— 0 and we can estimate

(1 . U)—2s—’y + (1 _ 023)—1 < 2(1 N U)—((Qs-i-’y)\/l).

If, on the other hand, s < %, we resort to convexity of function 1 — 02 at ¢ = 1 to estimate
1 —02% > 25(1 — o) and eventually get

(1= )27 4 (1= 0%)~1 < 571(1 — ) ~(Cs+VD),
In either case,
K(O‘) < (1 _ O.)—Qs—v =+ (1 - 0.28)—1 < 28_1(1 o O_)—((Zs-i—’y)\/l).

O]

!The author would like to thank Prof. Dr. Moritz Kafmann for letting him reuse source codes of images from [FKI3]
in this chapter
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6. Parabolic Moser iteration

Remark 6.1.6. Due to the vy correction, which is needed in we are not able to recover
the sharp dependence of constants on s. This in particular means it is not possible to use results of
this chapter to pass to the limit s — 1. See [FK13] for more details.

6.1.1. Iteration Norms

In order to get the optimal moment condition we iterate in the following averaged space-time norms.

Definition 6.1.7. Let a,b € R\ {0}, B C R and A C M measurable. Define, for measurable
u: B x A— R, the seminorm

(U)ap,Bxa = (é (]{1 IU(t,:E)I“dﬂf)Zth € [0, 09].

Proposition 6.1.8. Let aj,a2,b1,b0 € R\ {0}, BCR and AC M. If a1 < ay and by < by, then

<u>a1,b1,B><A S <u>a2,b2,B><A-
Proof. Let us first prove that, for all ¢1,co # 0, ¢1 < 9,

(7[ u(t, 2 \Cldx) <][ ult, z ycm) | (6.3)

<2
If ¢ > 0, then ¢; and ¢ are both positive and Jensen’s inequality with convex function x — z <

proves the claim. If co < 0, then both ¢; and ¢y are negative so x — x°2/€1 ig concave which due to

Jensen’s inequality gives
c1
(f i) = (f jutoar)
A A

but then rising both sides to power 1/¢; < 0 reverses the inequality and proves the original claim.
In the last case when ¢ < 0 < ¢g it is sufficient to prove the claim for ¢y = —cy. For instance, if
c1 < —co we can use previously proved case to replace ¢; with —cy. Then Jensen’s inequality with
convex function x — ! proves

(][ lu(t, )|~ %) ” (][ lu(t, x |C2dx>

Altogether, this proves [Ineq. (6.3)]
Coming back to proving our main claim we use m (6.3)| to see that

(][ u(t, 2 \“1dx> (][ u(t, 2 \“de> g

an then, independent of the sign of by, we have

, 1 1
21
][ <][ |u(t,a?)]a1da?> "at

B A

by b by
An application of inequality analogue to |[Ineq. (6.3)|on R instead of M gives

é(]{x‘“(tvl’)l‘”dx)‘édt
]i; (7{; |“(t»$)\“2dx)25dt

by By
][ (]i |u(t,x)\a2dx> YAt = (Waybe.Bra
B

and proves the claim. ]

1
b1

IN

(U)ay,by,Bx A

N

IN
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6.1. Iteration preparations

6.1.2. On the choice of Sobolev inequality

The exact form of the inequality given in [ST] does not influence the iteration procedure too much.
There are several other alternatives and in the next proposition we prove that one particularly simple
form of the inequality implies [SI| under the assumption that [CE]is satisfied.

Lemma 6.1.9. Suppose s € (0,1), v € [0,2s), Co < 00, @ > 1, R > 0 and xg € M are such that
[CHEzo, R; s,Q.~,C¢] holds. For every Lipschitz function n : M — [0,1] supported in B := B(zo, R)
and £ :== RLipn

1

E3

En(mu) < E(nu) < 2Ep(u) + 200(€277 v €2577)|B|@ R~ ( / uzQ*> o
B

Proof. Clearly £p < & simply due to the size of the area of integration in definition of forms. For the
other inequality we estimate

E(nu) = /M /M [u(z)n(z) — u(y)n(y)) k(z, y)dydz
< / / [(u(z) — u(y)) n(x) + uly) (n(z) — n))]* k(z,y)dydz

o /C s
// ())]? k(z ydyda:—i—/ / 2u(y — () k(x, y)dydzx

2 /B / u(aln(e) —ny)h, y)dyde
< 28p(u) + 2/Bu(:n)2f‘7](3:)d:n

1

<\ QF
< 265 (u) + 200 (€2 v €2-7)| B[S B2 ( [ )
B

where Holder inequality and [:co, R;s,Q,v,Cc] were used at the same time in the last inequality.
O

Proposition 6.1.10. Suppose s € (0,1), v € [0,2s), Cc < 00, @ > 1, R >0 and xy € M are such

that-xo,R S Q,’y, C’C] holds. Let q € (2% oo] and Cg < oo be arbitrary and define p to be the

solution of ~=1- . If, for every u € L*(M) with support in B := B(xq, R),

2 11526
|lu”l o By < Cs|Ble ™" R¥E(u), (6.4)
then [SI[zg, R; s, p, ¢ := Q*,Cs1 := 2Cg,Cgo := 2CsCc, 7] holds.

Proof. Fix u € L*(B) and o € (0,1). Define 5 : B — [0, 1] by

n(z) = (W A 1) vo.

so that Lipn = ﬁ. Applying [Lemma 6.1.9| (note that ¢ = (1 — o)~!) proves that

1

Em) < 265(0) + 200 (1— o) >l [ )
B
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6. Parabolic Moser iteration

Combining this with [Ineq. (6.4)| leads to

l_ S
14| Lo (o) = |72 (| o) < Cs|B|? ™" R¥E (u)

1

| QF
< 2Cs|B|» ' R¥Ep(u) + 205Co(1 — o)~ 27|Blr @ </ w2 ) :
B

The previous inequality holds for all u € LY(M), o € (0,1) proving that [:L'O,R; $,p,¢,Cs1,Cs,,7]
holds if we take ( := Q*, Cg1 := 2Cg and Cgo := 2CsCe. [

6.2. Iteration for negative exponents

6.2.1. Energy estimate
We follow the approach from [Kas09] and [FK13].

Theorem 6.2.1. Suppose s € (0,1), v € [0,2s), Cc < 00, @ > 1, R > 0 and 9 € M are such
that [:CO,R;S,Q,% Cc¢] holds and denote B := B(xg,R). Let € > 0,tp € R, 0 € (1/2,1) and
f € L®(I5(R); L2 (B)) be arbitrary. Then, for every supersolution u of dyu — Lu = f in Zo(R) =
Ze(to, o, R) such that

Ql~

u > e+ R* esssup <][ |f(t,x)|Qd:E> on Ig x M
tels(R) B

and every 8 > 1, both

1
€ss sup / ut P (t, x)de < 882 (Co + 1)K(0)|B]&1?R_25/ </ u1=9e" (t,x)da:) ¢ dt
telg(oR) JoB Is(R) B

and

1
/ &, (T (1, ))dt < 85%(Co + 1)K (o) B|S R~2 / < / W1-A)Q° (t,z)dw) Tt
Is(oR) Io(R) \/B

hold. Here K(-) is is the function from|Definition 6.1.4).

Proof. Let us start by introducing cutoffs ¢ : M — [0, 1],

Y(z) = <R(I (_1(:3);) A 1) VO

t+ R*
We apply [Lemma 5.2.1| with 8, x? and ¥#*!. By the choice of ¥ and y, || < 1, [x?| < 1 and

()| < 2lx|IX| < 2R™2%(1 — 0?%)~1. The second statement of [Lemma 5.2.1] justified by g > 1,
implies that for any 71,7 € I5(R), Ty < T3,

and x : R — [0, 1],

1o

i /T2 XPOE (ult), 7 a0 () dt

T

[m/Bwﬁﬂ(x)ul_ﬁ(t, ac)dx}Tl

Ty /9(1 _ 25)-1 i o
> _|B|eR"% <(") +1> < / u1=P)@ (t,x)dx) dt.
Ty /8 -1 B
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6.2. Iteration for negative exponents

Let us focus on the second term on the left for a moment. Lemma 2.5 from [Kas09] states that for
every aj,as >0, b > 1 and 71,70 > 0, defining J(b) = max {4, %}.

1-b 1-by\ 2
1 ar\ 2 az\ 2
_ b1, —b _ b+l b <« _ ay (a2
(a1 ag)(Tl aj Ty a2>§ p I ((7_1> (7_2> )
a1 1-b as 1-b
IO (i — )| [ — —= :
o= ((2)”(2)")

Using this with a1 = u(t, x),a2 = u(t,y), 71 = ¥(x), 2 = ¥(y) and b = [ we can estimate

(6.6)

€ u, 1 B) = /M /M<u<t, 2) — ult, ) (@ (@ (1, 2) — PP ()u P (b, )k, y)dady
1 at, o)\ (w7
: 6—1/M/M¢<x""(”[<w<x>> (567) ]’“("’“””dmy
u(t,z)\ P U 1-8
o =i (22 (22

=11 + I.

To estimate I, notice that the function under the integral is non-negative so reducing the area cB
(where ¢ = 1) we get

1-8 1-872

flz—ﬁil /[ wuw(y)[(“&’;fy—(“&;j))Z] k(. y)dady
< T /UB [t = (a0 %] ooy
<57 (u =2 (t)).

For I, we use the symmetry of k(z,y) and the fact that w%(x) < 1p(x) (because f§ —1 > 0) to

estimate
n=0®) [ [ @)= [(“jfiy YT (e ?)”3] k(,y)dedy

< 29(8) /B Wt z) /Mw:v) — () 2k(e, y)dyde
< 20(B) /B B (t, )Ty (x)dx

Applying Hélder inequality and [CE[zo, R; s, Q,v, C¢c] (with € = (1—0)71) to the last expression gives

1

E3

B £ 208)Co(1 - ) IR ([ 099 (¢ ajas
B
Collecting the estimates for I; and Iy we come back to

1
1 - 1 * Q*
v u?) £ L banlu™F) 4 20(0)Ce = o) 2 BE R ([ W9 (i)
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6. Parabolic Moser iteration

Going even further back to [Ineq. (6.5)) we end up with

T2 1 T2 1—

_ @ BHL V=B (. 2V 1 9 u*TB
[5_1 /Bw () (t,z)(t,x)d }Tl 51 /T1 X (t)Esn( )dt
23)—1

> Bla Rz (2E20) T L a8)Ce(t — o) 2 " [u | o+ dt
B 5 - 1 ¢ T1 LQ (B) .

To keep the size of this expression manageable, let us recall the definition of K (o) from Definition 6.1.4]
and slightly overestimate the constant on the right. Since ¥(8) = max{ } < 45 (because § > 1)

we can bound

2(1 — o) !
B-1

Rearranging our main inequality now shows that

[x%) /| wﬁ“m)ul—ﬁ(t,mdas] e / )€ at

Ty Ty

)_25_7 < 852(00 + 1)K(U>

F1420(8)Cc(1— o i

1

To o
< 84%(Co + 1)K (0)| B|S R / ( / u1-Pe” (t,:c)dx) <.
B

T

Let us now reduce the integration area of integrals on left to Zg(oR), where x = ¢ = 1, and send
Ty — —R?, to obtain, for Ty € (—(cR)%,0],

Ty s
/ UI_B(TQ,x)d:E‘i‘/ Eop(u™ 2 )dt
oB —(ocR)2s
1

*

T
< 862(Cc + 1)K (0)|B|S R™% (/ u1=Ae (t,a;)dx) <
,RQs B

The first claim of the theorem now follows by ignoring the second term and taking the sup over all
T, € Ig(oR), which gives

1

O « Q*
€ss sup / ut P (t,z)dx < 88%(Co + 1)K(0)|B|$R_28 </ u1-9e (t,:v)dx) dt.
— R2s B

telg(oR) JoB

Similarly, the second claim follows by ignoring the first term and letting 75 — 0, which gives

/ Esplu
Is(oR)

1

1-8 Q*

0
(¢, ))dt < 862(Ce + 1)K (o)| B|e R™2 </ u1=Ae (t,x)d:z) <.
_R25 B

6.2.2. Elementary step
Theorem 6.2.2 (Elementary step). Suppose s € (0,1), v € [0,2s), ¢,Q € [1,0], Cc,Cs1,Cs2,Cyr,
Cyu,n € (0,00), R >0 and zg € M are such that, with p := (1 — 2 %) _1,
(i) [CHxo, (R/2, R]: 5,Q,~, Cc] holds,
(it) [STzo, (R/2, R]; s, p, Q*, Cs1,Cs,, 7] holds,
(iii) [V[zo, (R/2, R);n, Cv 1, Cyu) holds and

1 2s
-

Q|-
Q|
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6.2. Iteration for negative exponents

Then there exists a
C = C (37 n,q, Qa CC? CSla CSQ: v, CVL; CVU)

fulfilling the following statement.

Setr=1+2—-1_4>1, B:= B(wg,R) andlete > 0,tg € R, 0 € (1/2,1), f € L™(I5(R); LY(B))
be arbitrary. For every b < 0 and every supersolution u of Oyu — Lu = f in Zg(R) = Zs(to, xo, R)
such that

1
u > e + R* esssup <][ |f(t,z |de> on Zg(R),
telg R)

the inequality

1
<u>,{bQ*7,{b7ze(JR) > |:C(1 — b)Q(l — O')_((28+’Y)V1):| b <’U¢>bQ*7b7Ze(R) (68)
1s satisfied.
Proof. For 8> 1 we apply Holder inequality, with exponents 1 and p for which satisfy

1_'_1 1+2s 1 1 141 23+1 1 1 1
KR — —_ = —_———— = — —_— _——= ——:7’
P noq Q nooq Q @

to get

Kk—1
A= Hu(lﬁ)“(t)HLQ*(aB)dtS/ (/ u(lﬁ)(t,x)dm) </ u=Pr (g, a:)da:> dt
Is(oR) Is(oR) oB oB
k—1
<[ esswp [ Aeapds) ([ D@t ).
tels(oR) JoB Io(oR)

Let 6 = H—“ € (0,1) and let us apply.mo, GR;s,p,Q*,Cs1,Cs,,~] with larger ball equal to 6B and
the smaller equal to oB. Some care is needed because property [SI| also uses a variable o which we
here rename to og. Then og = o/5 € (0,1) and

=

140
—_ — 0 1_
l—og=1-2=-2_°">-"%_1_5
o o 2

This together with increasing the integration domain I (0R) to Io(GR) at various points leads us to

k—1
A< (ess sup / w9 (t,:c)dm) {051|5B|;_1(&R)28/ EsB <u%(t)> dt
)JoB Io(5R)

telo(oR

Cos (1—5)"77 |6Bls 2" 1= d
+Cs2(1-5) 0Bl lw POl Lo~ 5mydt |-

Is(GR)
Resorting to estimates of [[heorem 6.2.1] we proceed by bounding

k—1
1 9 _
A< <8ﬁ2(00 +1)K(0)|B|[eR™? | lu* ’B(t)HLQ*(B)dt>

Io(R

1_2s 1
« [805152(Cc+1)K(5)|5B|‘1 2B / la' =P (0)l] o (it

Is(R)

+ 01— ) B Hulﬂ@)rmmdt].
Is(R)
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6. Parabolic Moser iteration

(o) (See Deﬁmtlon 6.1. 4| and [Lemma 6.1.5) and
G20y, R_2 < ACy, /" R™**) the expression on

Now overestimating (1 — )%™ < K(5), K(0) < K
W<

USng[xo, (R/2, R];n, Cvr, Cyyl (to get |6 B|~
the right reduces to

—2s ® 1,k "
A< <320VL" 2(00—1-1)(051—1-052)1((5)) |BJaTQ R2" ( / ( )||u1‘ﬁ(t>||m3>dt> :
Is(R

To prevent the constant from eating up the rest of the paper we will estimate it with interest only in
its behavior with respect to 8 and o. With we find

(32CVL” B*(Cc +1)(Cs1 + CSQ)K(&)>
< (320v2"552(00 +1)(Cs1 + Csa)s™ (1 — &)((25+’V)V1)>

_2s k
< <32CVLTL 52(00 +1)(Cs1 + 052)8—12(25—1—’\/)\/1(1 _ J)—((25—i-'y)V1)> )

2
Setting Cy := Ci(s, Ce, Cs1,Csa,v,n, Cyr) = 320y, (Co + 1)(Cs1 + Cg2)s 1225V relaxes our
notation to

/ ||U(1_6)”||LQ*(UB)dt < [0152(1 _ J)—((2s+v)v1)r
Is(oR)

y |B’%+%R—25m (/ ||u1’3!LQ*(B)dt> )
Io(R)

which, after averaging out all space and time integrals, transforms into
W) e 1 20 o) < |C1B(1 - 0’)_(28“)“} (W1 2o
— &= —2s BF P2sk e sk
x |oB| @7 (o R)”**|B|e" R*"| B[« @ R™=".

Using [V][zo, (R/2, R];n, Cy 1, Cyy) (notice that oR, R € (R/2, R]) the product in the second row can
be bounded as (with some comments after the calculation)

OF P28k l-l-ﬁ —2sK _% —(g=+2s) _(&‘FQ‘S) "H_% Ttnk

Q"R |B| QR <Cyp o '@ R Cypy'Ra

<Cy Q* g2t R( g2yt < gnidse Q* C;;.

|aB|—&(aR)—25|B

where for the last line we need to recall that ¢ > 1/2, @* > 1 and Kk = 1+ % —y - % by

41
definition. Collecting everything, smuggling 2"+2¢ C’CU‘I C‘;}J into C; we find a constant C’ =
C (87 n,q, Q’ CC; CSI? 0521 Vs CVL» CVU) such that

<u(175)K>Q*,1,Z9(0R) < {062(1_0)*(25+’Y)V1] < 1- 5>Q*,1,Z9(R)

Substituting b = (1 — 3) < 0, rising everything to power ﬁ < 0 (which changes the inequality sign)
gives

=

(W) kb @+ b, Zo (0 R) = [C-(1 —b)*(1 - U)f(%ﬂ)w} ()" b, 20 (R)>
which is exactly the statement from the theorem. O
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6.2. Iteration for negative exponents

6.2.3. Iteration
Theorem 6.2.3. Suppose s € (0,1), v € [0,2s), ¢,Q € [1 x|, Ce,Cs1,Cg2,n,Cyr,Cyy € (0,00),
R >0 and xg € M are such that, for p := (1—5—{—1) ,

n g
(Z) [an (R/27 R]7 S, Q7 Vs CC] hOldS,
(’I,Z) $07 (R/Z) R]a S, 05 Q*7 CSlv CSQ”Y:I h’OZdS;
(iii) m[:ro, (R/2, R];n,Cyr,Cyy]| holds and

1 1 2s
=< = 6.9
0 (6.9)
Then there is a
D = D (87 n,q, Q7 CC7 CSla 0527 v, CVL7 CVU)
possessing the following property.
Set k = 1+%—%—% > 1, B := B(xo, R) and choose anye >0, tp € R, o0 € (1/2,1), =1 < py < 0,
f € L®(I5(R); L(B)). Then every supersolution u of dyu — Lu = f in Zo(R) = Zs(to, o, R), such
that
1
u > e + R* esssup <][ |f(t,x |ng;> on Zgs(R),

tE[@

1 1/po
fu> [D (1—0) ((2”“”1”*]?0 ][ Po
essinf u —0 1—r~ U .

gssinfu > | Dy o

Proof. Set Ry = (0 +27%(1 — 0))R and o} = Ry.1/Ry. We are going to iterate [Theorem 6.2.2| over

a sequence by = kFpo/Q*, Ry and oy, for k from 0 to N — 1 for arbitrary N € N. Notice that this is
possible because Ry € (R/2, R] for every k € Ny. Taking

satisfies

(1—o0p) = Rk;{f’fﬂ — 2—(k+1)(1 _ U)}i > 2—(k+1)(1 —0)

into account the iteration gives

N—-1 1
(W) Qb by Zo(Ry) = H (Cz((%ﬂ)vl)(’”l)(l —bp)*(1—0)” ((28+7)V1))b (W) Q*bo,b0, 20 (R)-
=0

The product on the right side can be expressed in term of an exponential as

N—-1 Q*
H (0-2( 25+7) \/1)(k+1)(1 —b)2(1— o) ((28+7)\/1)> 0
k=0

Q* N—-1 —k
((254+7)V1) ) po k=0 K

- (CEzm(1-0)
« N—
xexp( Z " (log2((2s +7) Vv 1)(k + )—l—log(l—bk)z)).

k=
Now, since p3 < 1 and (1 — by)? < 2+ 207 = 2 + 257 (po/Q*)? < 2k%%(1 + p3) < 4x?*, the sum inside
the exponential can be bounded from above by

N-1
w7k (log(2)((25 +7) V 1) (k + 1) 4 2k log(4k))
k=0
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6. Parabolic Moser iteration

which converges because Y .-, k %k < +4o0o0. This means that independent of N we can find a

Dy := D1(q,Q, s,v,n) such that the exponential factor is bounded from below by D}/po (keep in mind

that po < 0). Estimating S5 &% < 35 k7% < (1 — x~1)~! and taking into account that py is
negative, we obtain

* 1

_ e g sl
<u>nN+1po,“N$:p0,Ze(RN) > (C(l —0) ((2s+v)v1)) poli=<=1) pro <u>p0,%,Z9(R)' (6.10)

On one hand, by Jensen’s inequality and Fubini’s theorem, the norm on the right can be estimated
by (negative py reverses Jensen’s inequality)

1
Qo
Po, oF Zo(R) Iown \JoB

On the other hand,

Q

* 1
PO 20 1/po
I@(O'R) O'B Z@(R)

(u)

N
K P
NNPOv Q*O

2s & =Npg
< (0 )] B(zo. UR)’l <Np N2, essinf u
Zo(RN) R23|B(zo, RN)| @ #Npo, "%, Ze (0 R) Zo(oR)

because, as we will show below,

Q*

a5\ =V
(u) N = ][ ][ u P ¢ " N2 essinf w. (6.11)

KNPOy’{QfO’Z@(UR) I@(JR) oB Z@(UR)
and

(R Blao,oR)F ) 7

lim ] =1. (6.12)
N—oo R2S|B(I0,RN)’§

[Equation (6.12)|is due to [V]zo, (R/2, R];n, Cy 1, Cvu] together with Ry € (R/2,R], o € (1/2,1) and
Q*Fpro_l N2 0. We now turn to proving [Eq. (6.11)} Plugging v := ess infz, ,p winstead of u in
the middle integral gives the natural inequality (keep in mind py < 0)

{u)

N > v
#Npo,“ 5%, Ze (0 R)

Observe again that Jensen’s inequality applied to the inner integral and Fubini’s theorem imply

* *

1 16\277 N g
NN Q* K2 Po 5" po K po
<U> N NNPO z = u po S u QF .
wpo, g Zo (o R) Is@or) \/oB Zs(R)

For arbitrary € > 0 we now find § > 0 such that [{u < (1 +¢)v}| > §|Zg(0R)| and compute

* *

anO "Q]%i?%) ”NPO "Q]%i?%)
f L < (1Zo(oR) / (14 o)) @
Zo(oR) {u<(i+e)w}

Q*
< (14 e Y22 (1 4 e,

N—oo
WN ——— v follows.

Recalling that ¢ > 0 was arbitrary, <u>ﬁ Npo, 5520 7 (o)
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6.3. Iteration for small positive exponents

Returning to our main proof, these observations allow us to pass to the limit N — oo in|Ineq. (6.10)
and obtain

Q* % 1/po
—((2s+y)V1) ) 1=t Po
Dy (C’(l — o)« ) ] <][Z u ) .
e(R)

The claim of the theorem now follows by taking

essinf u >
Zs(oR)

*

_QF
D ED(S7n7q7Q70070517CS2777CVL7CVU) DIC- .

6.3. Iteration for small positive exponents

6.3.1. Energy estimate

Theorem 6.3.1. Suppose s € (0,1), v € [0,2s), Co € (0,00), Q € [1,0], R > 0 and xg € M are
such that[CHxzo, R; s,Q,~,Cc| holds and denote B := B(xo, R). Lete > 0,tg € R, o € (1/2,1) and
f € L®(I5(R); L2(B)) be arbitrary. Then, for every supersolution u of dyu — Lu = f in Zg(R) =
Zg(to, o, R) such that

1

u > e+ R* esssup <][ |f(t,x |Qd:n) on Zg(R)

telg(R

and every 8 € (0,1), both
1

* Q*
ess sup / u Bt x)de < 28(Co + 1)ﬁ1K(a)\B]é2R23/ </ w1 =P (¢, x)dm) dt
Is(R) \/B

tel@(UR) oB
and
o
/ &, 5T )t < 42(Co + 152K ()| B|& B2 / ( / u1-9)Q (t,:v)dx) dt
Ip(oR) Is(R) \JB
hold.

Proof. Let us start by introducing cutoffs

Y(z) = <R(I ii(:;);) A 1) V0

R? —t
t)=|—=——5=A1]) VO
O = (=g )
We proceed similar to the proof of [Theorem 6.2.1|and use|[Lemma 5.2.1| with 3, x? and 2. Notice that

by the choice of ¥ and x;, ||¢?||L=~ < 1, [x?| < L and |(x2)'(t)] < 2|x(t)||xX'(t)| < 2R™2(1—02%)"1. The
second statement of [Lemma 5.2.1] justified by 8 € (0, 1), implies that for all 71,7 € Ig(R), T} < T3,

and

Ty To
[1 /wz w(t, z d:n} +/ X2 (B E(u(t), > u=P(t))dt
- o h (6.13)
1 Ty _ 228\ — o
—’B|5R_28 <2(11025)1 + 1) </ w1=8)er (t,x)dx) ¢ dt.
Ty - B
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6. Parabolic Moser iteration

We focus on the second term on the left for a moment. Let us start by using the symmetry of k and
¥ = 0 on B¢ to estimate

€, Pu / / B (@) (@) — 2 (y)u (y) k(. y)dydz
/ / D (2)u~? () — 02 (y)u~ (9)o(z, y) dyds
2 [ [ fute) - u))o? @@l g)dyde = 1+ I

By the positivity of u on M, or more precisely u(z) — u(y) < u(x) for all z,y € M, I5 is bounded by

<2 /B / @) () — ()R y)dyde <2 / ul=B (@) Do () de

B
and then [:co, R;5,Q,v,Cc] (with € = (1 — ¢)~!) implies that
1 . 1/Q
I <2 / ut =P (z)T(z)de < 2Cc(1 — o) "2 7|B|JT R™2 ( / u1=A)Q (x)da:) :
B B

Recall now Lemma 3.3 (ii) from [FK13], which states that for every aj,as > 0,b € (0,1) and 71,72 > 0,
setting ((b) = 1%, (1 (b) = §¢(b) and (a(b) = ¢(b) + 3,

1-b

1-5)\ 2
(@1 - an)(rfar’ - 0% < G0 (0~ my® )+ O - Pl rd . (619

Choosing b = B, a1 = u(t,z), as = u(t,y), 71 = ¥(x), 7 = ¥(y), we can use this [lreq (6.19] to
estimate I; which results in

I < —G(B / / 2 (z) - w(y)uT(y)rk(ﬂfvy)dxdy
+a(@) [ /B [9(2) — 6Pl () + =P o) k(e )drdy.
Furthermore, since ) is identically 1 on o B

-6 [ [ [p@n'F0 — s3] ke oy

—C1(8) /UB /GB [u%(m _u%(wrk(x y)dzdy < —C1(B) UB( ﬂ)

We can use the symmetry of k(z,y) to get

x) — QUI_B x ul_ﬂ x x
8) /B /B () — $() 2 (&) + P )k (. y)d
< 2@(5)/

B

< 26(8) / u()' P () de

B

w(z) /M[¢<x> — ()P, y)dydz

Holder inequality together with [CE[xo, R; s, @, 7, Cc] estimate the expression in the last line by

1 ) 1/Qr
26:(5) [ ule) To)ie < 26(5)Col1 - o) BER ( [ - <x>da:)
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6.3. Iteration for small positive exponents
which gives
L . 1/Q*
h < =@ (4'5) +26(0)Ccl1 - o) R ([ W9 @)
B
Collecting the estimates for I; and Iy we return to
-8 1 ) 1/Q*
e i) < ~a(@nn (1°5) 4 2a0) + 1)Cc(1 - o) 1B R ( [ 099 ()ar)
B
and then going all the way back to [[neq. (6.13)| we end up with

[1 — / T (3 x)dx] ” - C1(B) /::2 2(t)Exp (u%) dt

2(1 — o25)7 1 T
1.5 +1+2(¢2(B) +1)Ce(1 - o) . w7l Lor (p)dt.

1
In order to keep the size of expressions manageable let us recall the definition of K (o) from
tion 6.1.4] and overestimate the constant in front of the integral on the right. For g, (1 — ) < 1, by
definition of (3 we have

> -l

469 _ 4B+ - +B1-F) _ 14
1-p B B(1—7) S )

which we use to estimate

(2(11__02)_1 +1+2(¢2(B) +1)Ce(1 — U)zsv>

<25(1 — 0—28)71 + 6(1 - 5) + 2800(1 — 0’)25’7>
A1 —p5)

_ 28(Cc + 1)K (o)
- pA-p)

With this in hand we multiply the equation with —(1 — ) (which changes the sign because 8 < 1) to
get

e [ e ena] s 0-mae) [0 (17 @

T1 Tl

T =
g28(CC+1)ﬁ—1K(a)|B|éR—2S/ (/ u<1—ﬁ>Q*(t,x)dx>Q dt.
B

T

If we restrict the integration are of the integral on the left hand side to Zg (0 R) where y = ¢ =1
and send Ty — R?*, we obtain, for every Ty € [0, (6 R)%],

(O.R)Qs

/U W B(Ta)de + (1 5)G(6) /T " (w5 ) ar

1
R2s *

< 98(Cor + 13~ K (o) B|8 R~ / < / u<1—ﬁ>Q*(t,x)dx>Q dt.
Ty B

The first claim of now follows by ignoring the second term on the left and taking the
supremum over 1) € Ig(oR) which results in

B
€ss sup / ut P (t, x)dr < 28(Co + 1)B_1K(o)|B|éR_2S/ (/ u1-Ae" (t,m)d$> ¢ dt.
) Ie(R) \/B

telg(oR
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6. Parabolic Moser iteration

To get the second claim, we ignore the first term on the left and let 77 — 0 to get

Py DO VKO s [ ([ s )
/I@(JR)EUB(U )dt < B(1— 3G (B) |B|QR /1@(1%) /Bu (t,x)dzx dt.

Recalling (1 (8) = 6(14758) it follows that

1
QF

/ E,p(u' T )dt < 42(Ce + 1)52K ()| B|a B2 ( / u<1—ﬂ>Q*(t,x)dx> dt.
Ig(oR) Io(R)

6.3.2. Elementary step
Theorem 6.3.2. Suppose s € (0,1), v € [0,2s), ¢,Q € [1 ], Cc,Cs1,Cs2,n,Cyr, Cyy € (0,00),
R >0 and xg € M are such that, for p := (1—54— ) ,
(i) [CEzo, (R/2, R]; 5,Q,~, Cc] holds,
(ii) [SHxo, (R/2, R]; 5, p, Q*, Cs1, Cs,, ] holds,
(iii) [V[zo, (R/2, R); n, Cv 1, Cyu) holds and

are satisfied. Then there exists a constant
Cwza = CEzy(s,n,4,Q,7,Cc, Cs1,Cs2, Cvi, Cvu)

fulfilling the following statement.

Set k = 1—1—%—%—% > 1, B:= B(xo, R) and lete > 0,tg €R, o € (1/2,1), f € L®(Ig(R); LY(B))
be arbitrary. For every b € (0,1) and every supersolution u of Oyu — Lu = f in Zg(R) = Zg(to, xo, R)
such that

1
u > e + R* esssup <][ |f(t,z |Qd:c> on Zg(R),
telg(R)

the inequality

1
(W) kbQ* b, Zgy (0 R) < [C(l —b)7*(1 - 0)*(25”)”} " (Wbor .20 (R) (6.15)

18 true.
Proof. For g€ (0,1), 6 = 1+ we apply Holder’s inequality with exponents —5 and p, which satisfy

1 2s 1 1 25 1 1 1
k—1l4+-=14"2—-2—- = — 1+1——+——1—— ,
p n q Q q Q Q

followed by [SI[zo, 5 R; s, p, Q*, Cs1, Cs,, 7], (see proof of [Theorem 6.2.2 for details) to get

A= / [0 | o (ot
Is(oR)

Kk—1
< ( sup / u(l_ﬁ)(t,x)dac) l:CSl‘UB‘P (6R)* / & (u%(t» dt
)JoB I5(5R)

telg(ocR

+C1-9) Bl | Hulﬂ@)r\m*(&mdt]
Ip(GR)

56



6.3. Iteration for small positive exponents

Resorting to the estimates of using

(1— &)—28—7 < K@) < 23712(25+7)\/1<1 _ 0_)7((2s+’y)\/1)

(see |Lemma 6.1.5) and denoting
C1 = C1(Co, s,7) = s 122V CH +1) > 1

we proceed by bounding

k—1
1
A< <2801(1 — o)~ (@stVD 3=l gjg R=25 ||u1_ﬂ(t)||LQ*(B)dt>
Ig(R)
1 2

1_2s 1
X [4205101(1 — o)~ (@ g2 Bl ‘B’Q/ Hul_ﬁ(t)HLQ*(B)dt
[S>]

1 2s

Ly1_2s —
_|_CS2(1_U)_((2s+’Y)\/1)‘5B‘q+Q n/I . Hul ﬁ(t)HLQ*(B)dt]'
@

. _2s
Using [xo, (R/2,R];n,Cyr,Cyy] to bound |&B|_27 <4c, R~2%, overestimating 1 < =1 < g2

_2s
and defining Cy = C2(Ce, s,Cs1,Cs2,v,n,Cy ) := 4C,, [* C1 (Cs1 + Cs2) in order to track only the
behavior with respect to 8 and o we end up with

A< [02ﬁ72(1 . (j,)f((Zerw)Vl)]’i ‘B’%Jr%Rstn (/

Ig(R

HUPBHLQ*(B) (t)dt> :

After averaging out the integrals, using [3:0, (R/2, R];n,Cyr,Cyy] just like in the proof of
and smuggling volume regularity pollution terms into constant Cy we end up with

<u(175)K>Q*71,Z@(UR) S [0572(1 - 0)7((28+’Y)V1)i| <u17’8>6*,1,2®(R)

where C = CE39)(5,n,4,Q,7,Cc,Cs1,Cs2,Cyr, Cyy). Substituting b = (1 — §) < 0, rising
everything to power — > 0 leads to

1
<u>,§bQ*7,§b7Z®(UR) < [C(l — b)—Q(l — o‘)_((28+”/)\/1)} b <U>bQ*7b’Z®(R)
which is exactly the statement from the theorem. O

Remark 6.3.3. Using this theorem one can estimate the (-)g+p.p norm (which is dominating averaged
LP norm) of the solution from above by norm of lower power for p € (0,k). Going with p above k
requires different energy estimates which can be obtained for subsolutions of equation u — Lu = f
as opposed to supersolutions we have been working with. But the iteration is more complicated in that
case as certain tail terms have to be included. It is sometimes, see [DCKP14], but not always, see
[BSO], possible to get rid of these tail terms and obtain the full Harnack inequality.

6.3.3. Ilteration
Theorem 6.3.4. Suppose s € (0,1), v € [0,2s), ¢,Q € [1,00], Ce,Cs1,Cs2,n,Cyr,Cyy € (0,00),
R >0 and xg € M are such that for p := (1 — % + %)71
(i) [CE[xo, (R/2, R]; 5,Q, 7, Cc] holds,
(i) [STxo, (R/2, R]; 5, p, Q*, Cs1, Cs,, 7] holds,
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6. Parabolic Moser iteration

(iii) [V[zo, (R/2, R);n, Cv 1, Cyu) holds and

Then there is a constant

Dgza) = Dpza)(s,n,q,Q.7,Cc,Cs1, Cs2, Cvr, Cvu)

possessing the following property.

Set k =1+ g—ns — % —% > 1, B := B(zo, R) and choose any t) € R, 1/2 < 0 < 1, pp € (0,1/2],

f € L®(I4(R); L9(B)). Then, for every supersolution u of Ou — Lu = f in Za(R) = Za(to, 20, R)
such that

Q=

u > e+ R* esssup <][ |f(t,x |de> on Zg(R),
telg R)

the inequality

1

[ e e ()
LS 63.4) (L —0 1=r™ U
Za(oR) Z®(R)
holds.

Proof. Find the smallest integer N such that = < po/Q*, i.e. N = [—log,(po/Q*)], and define
py = V. Define also Ry = (¢ 4+27%(1—0)) R and o) = Ry41/Re. This time we will iterate
Ineq. (6.15) over the sequence by = /-ikp{), Ry and oy, for k from 0 to N — 1. Noticing that

(1—0) = R’“;{f’““ =21 — ")}i >2-(H)(1 - o)

the iteration results in
N—
_ (25 b
< >Q*bN,bN,Z@(O'R S H (0-2( 2s+v)V1)(k+1) (1 _ bk) 2 (1 _ 0-) (2 +'Y)\/1)) <u>Q*b0,bo,Z@(R)'

As byp,, = 1 on the left hand side, by Jensen’s inequality and Fubini’s theorem we have
0

1

. (o3
(U)@* 1,25 (o R) 2][ <][ u® (¢, w)div) dt > ][ u.
Ig(oR) oB Zg(oR)

On the right hand side Q*by = Q*p{, < po, so Jensen’s inequality and Fubini’s theorem show that
g 0

N L

. oF () PO

(0 v () < (][ (f wbit.a)ar)® dt) < (f u) -
Is(R) \/B Zg(R)

Combining these two observations with b, = /@kp{) we can estimate

1
N-1 , - s
][ us [] <02((28+”“)<’“+1> (1 - Kkpf)) (1— J)—((QS-&-W)VI)) b ][ o)
e = Zg(R)

Implementing the estimates 1 — Hk { >1—r"!forall k < N—1 and smuggling the resulting constant
(1 —-rx1)"2into C; = C4(s,n, q,Q,'y,CC,CShCSQ,CVL,CVU) C(l — k™1 72 produces

N-1 1 P
][ u< H (012((2s+7)v1)(k+1)(1 —o)” ((25+7)v1)> wF ) <][ um) 0 |
Zg(oR) k=0 Zg(R)
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6.3. Iteration for small positive exponents

Writing the product in terms of the exponential gives us

][ u < (Cl(l —o)” ((2s+'y)V1)) e
Zg(oR)
1

N- b0
xexp | — 0 s uPo .
p( . Z F(log 2)((2 +7)v1)(k+1)) <][Z®(R) )

Po 2o

We now estimate all sums by utilizing that for every § € (0,1)

N—-1
I
k=0

5N

and
B —N5N(1—5)—|—(1—5N)(5 < 5(1—(5N)

=1 (1-9)2 =T1-0)

N-1 . N
T dz 1—dz

Recalling that pgﬁN =1 we find

LY () - e (5 e ()

and
N-1 N-1
i K F(log2)((2s +7) V1) (k+1) < (10g2)((23/+7)\/1) (Z(k+1)f<;k>
P k=0 Po k=0
(log2)((2s +9) V1) (k711 — k) (log2)((2s+y) V1) (1
< B () = M ()

Taking into account that py < 1/2 and Q*/py < 1/py < KQ*/po, we have 1/(2pg) < 1/pp — 1 so we
can bound

This allow us to rewrite the previous estimates in terms of py instead of pj, i.e.

N-—1 *
izn_kg QHQ 1 1
D 1—r1

0 k=0 Po
and
15 - 2(log2)((2s +7) V1)Q* [ 1
% kio/@ k(10g2)((28+7)\/1)(k+1) < (log )(g(_SHY;Q ) <po—1),

Therefore, we can take

rkO* —IQ_I * —Kk—
Dgza) = Dpza)(s:n,4,Q.7,Cc,Cs1,Cs2,Cvi, Cvu) = O/ U g2(@s VD@ (1=

to obtain y
£ os e o] ()
u < (6.3.4) — 0 1=Kk ][ (75
Zo(oR) €33 Zgy(R)
which proves the statement of the theorem. ]

99



6. Parabolic Moser iteration

6.4. Connecting positive and negative exponents

6.4.1. Weighted Poincaré inequality
We now obtain the weighted Poincaré inequality using the result of [DK13].

Theorem 6.4.1 (Weighted Poincaré inequality). Suppose xo € M, R > 0, s € (0,1), Cp,n,Cyp,
Cyy € (0,00) are such that J;O,(R, 2R];s,Cp] and m[ﬂfo,(R, 2R];n,Cyr,Cyy| holds, set B :=
B(xo, R) and define v : M — [0,1] by

ooy = (20

Then there is a positive constant Cyp := Cyp(Cp, s,n,Cyr,Cyy) such that for every v € L?(2B)

/3 [v(x) = vy 25 (@) W (2)de < CszRQS/3 ﬁ [o(x) = () (Y (@) A () k(z,y)dyda
3B 5BJ35B

2

where
van e fQB v(z)(z)dx
’ IQB Y(x)dx
Proof. The result is a special case of Proposition 4 from [DK13]. In the notation from that paper we

take X = M for the space, p(z,y) = d(z,y)/(2R) for the metric and dz = m(dx) for the measure.
Concerning proposition specific notation we take p = 2, ¢ = ®(p(zy,-)) with

O(x)=[3—4x)A1]VO for z > 0.

By [PYz, (R, 2R]; s,Cp| we know that for all r € (R,2R] and all v € L!(2B) (using % < (2R)?*)

/T [U(Sﬂ) - ]{Br U(y)dyr dr < Cp(2R)* /T /T [v(x) — v(y)]2 k(z,y)dydz.

One only needs to translate this to p metric to see that it is equivalent to the main assumption of the
proposition from [DKI3|. Since we verified all the assumptions, the proposition now guaratees that
for every v € L?(2B) (we immediately translate it to d-metric form)

/ [0(2) — v 25 (@)]2 $(@)dz < CrrCp(2R) / / [o(z) — v(y)]2 ((x) Aw())k(z, y)dyd.
2B 2B J2B

where 2 | (0)
8 BQR q) 0 6+ -1
= = 2" CyuyCrrr.
Y 1Bl 2(1/2) v
Taking Cyp := 225C;Cp and noticing that ¥ = 0 outside of %B proves the theorem. O

6.4.2. Energy estimate for logu

Our aim is to apply the lemma of Bombieri and Giusti to get the weak Harnack inequality. We start
by proving another energy estimate.

Theorem 6.4.2. Let xy € M, R > 0 be arbitrary and set B := B(xg, R). For every strictly positive
function w > 0 on M, every Lipschitz function 1 : M — [0,00) such that ) > 0 in B, 1» = 0 outside
of B and E(¢) < o0

() w(z)

~ o8 )

2
O Y R <1ogw ) k(o y)dedy — 26(1). (6.16)

Y(y)
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6.4. Connecting positive and negative exponents

If in addition for some s € (0,1), v € [0,2s), Q € [1,00], Cc > 0[CHzo, R; 5,Q,v,Cc] is satisfied
and £ = RLipvy, then we can additionally estimate

E(1) < 2Cc (€77 vV E#)|BIR™
and E(Y) < oo is automatically satisfied.

Proof. To get this, one computes as in [FK13|] Section 4,

£ (w, —?w) / / — w(@)| () (2) — () () k(. y)dydz
vjwly) | Pywlz) )  v@)|, N
2 | L@ | S ) )~ iy | e

)Y (@)w ™ (x) — ¥ (y)w™ (y)]k(z, y)dydz

_|._

[\
SN
—

B

S

|
=3

where B¢ x B¢ term vanished because v is supported inside of B. Applying identity

b
%4_7_2:(a—b)(lfl—cfl)z(loga—logb)2 Va,b > 0,
a

which can be found in [DK15] Equation (4.7) for instance, with a = % and b = % we can estimate
the first integral I; on the right by

nz [ [ v o2 1os 2O ke, s

[ oo o0 [ 22 g 201
- / / [W(z) = ¥()] k(z,y)dyds

> [ [ v [1%53— ¢8rk<x,y>dmdy—5<w>.

Notice that assumption (1)) < oo guarantees that expression oo — oo did not appear in the above
computation. For Iy we use ¢(y) = 0 for y € B¢ and the energy density estimate to compute

2= [ [ o) - w@ @ @k, g)dyde
= / Mk(:ﬂ y dyde/ V2 () k(z,y)dydz

w(x) Be

/ / (W(@) =¥ (y) k(@ y)dydr > —E(3).

Combining the estimates of I; and Iy proves

w2 [ [ e [los 20 1o PO ko, pandy - 260

which is the first statement of the theorem. The second statement follows from [Proposition 6.1.2] [
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6. Parabolic Moser iteration

6.4.3. Weak L' estimates on logu

The next step is to prove two weak L' estimates of the logarithm of the solution.

Theorem 6.4.3. Suppose xo € M, R >0, s € (0,1), v € [0,2s), Q € [1,00], Cp,Cc,n,Cyr,Cyy €
(0,00) are such that

(i) [CEz0,2R; 5,Q,7,Ccl,
(it) [PI|zo, (R, 2R); s, Cp],
(i) [V[zo, [R,2R];n,Cy 1, Cvu]
are satisfied and set B := B(xo, R). Then there is a constant
D3 = DEag(Cr.Cc,v,8,Q,n,Cvi,Cvu)

fulfilling the following statement.
Lete > 0,tg € R, f € L®°(I(R); L?(2B)) be arbitrary and set I(R) := I(to, R). For every superso-
lution u of Oyu — Lu = f in I(R) X 2B such that

Q
u > e+ (2R)* esssup (7[ |f(t, x)|Qd:c> in I(R) x 2B,
2B

tel(R)
inequalities
1 —a Dz ">
VeSO |Za(R)N (log(ute ) > 6} < B
and pnt2s

V>0 |Zs(R)N {log(uc®) > €}| < -5

are satisfied, where

Jop —log (M) ) V2 (x)dx
Jop ¥*(@
Proof. Take the cutoff function ¢ : M — [0, 00) such that

PP (x) = (WAI) V0

and apply [Lemma 5.2.1|on the ball 2B with 8 = 1 and x = 1 and 92 for [t1,t5] C I(R). Implementing
the particularities of the current choice of 1, x and 8 = 1 together with [130, 2R;n,Cyr,Cyy] gives

a =

[/ V?(z) log u(t,x)dx] ) + /t2 £ (u(t),zﬂu*l(t)) dt > —Cyy(ta — t1)(2R)"%.
2B

t1 t1
Defining, like in [FK13],

v(t,x) := —log <u5(;:;)> = log¢(z) — log u(t, x)

and implementing the estimate on £(¢) from [Theorem 6.4.2| (notice that [CE[xo, R;s,Q,~,Cc] is
assumed and Lipv > (R/2)7!, ie. € > 2) together with [V|[xzg, 2R;n, Cy 1, Cyy] provides us with

[/SB viaptta)de) o /t /23 /QB V(@)v(y) (v(x) = v(y))? k(z,y)dedydt

to
< CVU2n72s(t2 — t1)Rn72s + / QCCcVUQ%JW(QR)n*QSdt

t1
< 2n—280VU [1 + 002254-7-&-1] (t2 o tl)Rn—2s —. Cl (tz o tl)R”_QS.
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6.4. Connecting positive and negative exponents

At this point we use the weighted Poincaré inequality from [Theorem 6.4.1, which requires [mo,
(R,2R];s,Cp| and [xo, (R,2R];n,Cyr,Cyyl, in order to decrease the second term on the left hand

side (note that 1 (z)? A (y)? < (x)y(y) for all z,y € M) and get

to
/ V)t z)dz| +C
3B ;

Here V(t) is defined to be

IR_28 /t2 / ['U(t,$) - V(t)]Q ¢2($)dxdt < Cl (t2 _ tl)Rn_Qs'
t1 J2B

Jop v(t; ) wz )
Jop (@
A division by f;B Y?(x)dx, for which we know by [xo, (R, 2R]; n,Cyr,Cyyl that
2

V(1) := vy2 2p(t) =

n
CyLR" <|B| S/S Y (x)dr < ‘23‘ < (2) CvuR",
3p

and a restriction of the domain to B, where i = 1, in the second integral on the left give
V(tg) - V(tl) + CoR™"™ s / [’U(t, x) - V(t)]Q dxdt < 03R728(t2 - tl).
[t1,t2]

1

Here Cy = (3) 7" Cy(;Cyp > 0 and C3 = C1Cyp = 2730y [055 + CCCVU22S+7“] > 0. In the

rest of the proof we will mostly deal with the function V(¢). It is possible to prove that, when u
is L2(B)-weakly differentiable, V' (¢) is differentiable which would simplify parts of what follows (see
[FK13]). Let us however give the more complicated version using only continuity of V'(¢) in order to
show that differentiability of V'(¢) and consequently L?(B)-weak differentiabitly of w(t) is not crucial
and that a priori on the solution could be relaxed.

Recall that also states that logu(t) is L?(2B)-strongly continuous in time which
implies that v(t) = logy — logu(t) is as well and that V : I — R is continuous. Thus V' is uniformly
continuous on Ig(r) = [to, to + 72%] for any r < R which allows us to find, for an arbitrary e; > 0, an
d =d(e1,r,u) > 0 such that [V (t1) — V(t2)| < e1 whenever t1,ts € Ig(r) and |t; — ta] < §. We intend
to use this to approximate V' (¢) by step functions while preserving the inequality. To be more precise,
for all t € [ta — 0,12 + 0] N Ip(r) and z € B

v(t,z) — V(t2)]* < 2Ju(t, z) — V(£)|* + 267,
which implies that for all ¢; € [ta — 0, t2] N Ig(7)

V(ts) — V(t1) + C;QR”QS/ / [v(t, ) — V(t2)]* — 25%) drdt < C3R™%%(ty — t1).

By [;Eo, (R,2R];n,Cyr, Cyy] the estimate R~"2¢ f[t1 o] fB dr < CyyR™2%(ty —t1) holds and we use
it to move €1 to the right side and get

V(ty) — V(1) + (’;QR‘”‘QS/H . / [w(t,x) — V(t2)]” dadt < (C3 + Cypel) R (ta — t1).  (6.17)

Setting C;, = Cs + C’VUsf > 0 and defining
we, (t,z) = v(t,z) — Co,R™%t, W, (t)=V(t) - C,, Rt
we end up with

C
W () — Wey (1) + PR 28/[ / e (,2) = Wey (b2) + Coy (b — )] dadt < 0. (6.18)
t1,t2]
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6. Parabolic Moser iteration

Since the last inequality holds for all ¢; and t2 close enough and the third term is non-negative, this
in particular shows that W, is nonincreasing in ¢.
Let us now define, like in the statement of the theorem,

f23—10g< 1;(093 >¢2( )dx
Jop?(x

For & > 0, on the set {(t,x) € [t1,t2] X B : we, (t,x) > a + £}, we have that we, (t,2) — We, (t2) >
E+We, (to) —We, (t2) > &€ > 0 (because W, is non increasing) which allows us to ignore the C¢, (ta —t1)

part in [Ineq. (6.18)[ and estimate

a = Wg, (to) = V(ty) =

We, (t2) = We, (t1) + %H(t, x) € [t1,ta] X B:we, (t,2) > £+ a}|(E+a — W, (t2))* < 0.

Since Cy > 0, this implies that

WEl (tl) - W€1 (t2)

(§+a— W (t2))?
W€1(t1) - WEl (tQ)

(€ +a—We (t1))(§+a— W (t2))

1 1
=20y 'R ( - > :
2 E+a—We(t)) E+a—W,(ta)

{(t,x) € [t1,t2] X B :we, (t,2) > €+ a}| < 205 'R

< 2051 RTL+28

Here we again used that W;, is nonincreasing in the second inequality.
Taking N € N large enough such that R?*/N < § (note that this means that N = N(R,r,e1,u)),
we can sum up the small intervals and obtain

[e(r) x BN {wal > § + aj

{ [t0_|_ r25] t0+r2s(1€+1)] % B :we, (t,1) Zf"i‘a}

N’ N

k=
N-1

1 1
<20 an+25 < - )
-2 kzzo E+a— W (to+72k/N)  E+a—W., (to+1r2(k+1)/N)

1 1
— 2071Rn+28 < _ )
2 E+a—We(ty) &€+a—Wigie (to+129)

202—an+23
S —F
§
where in order to get the last line one has to recall that a = W,, (o) = W¢, (to) by definition and

ignore the second term (£ +a — Wy, (to +72%))~! > 0 in the second to last line. Returning from wr, (¢)
to —logu(t) = we, (t) + C, R725t (keep in mind that ¢ = 1 on B) we have

\I@( ) x BNn{—=logu > &+ a}|
< |Ig(r) x BN{ws, > &/2+ a}| + I (r) x BN{C,t > 1*°¢/2}]

40*1Rn+2s 5
§2+K1— )\/O]TQSB.
£ 2C,, 1B

Recalling that constants Cy = Co(Cp,n,Cyr,Cyy) = (3/2)_”0;(1]6'1;;, and C, = C¢,(e1,Q,7,Cc, s,
n,Cyr,Cyy) = 2" 2SC'VL[C’%//UQ + Cc2257H1] + Cype? do not depend on r and then passing to the
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6.4. Connecting positive and negative exponents

limit r — R results in

-1
\Z@(R)ﬂ{—logu2§+a}|§(402 +cVU[<1 ¢ )\/ODR’”QS

3 2,
_ (4C5 " + CvuCe, /2) R72
—_— é— .
The last line uses an elementary inequality
2
a
_h< —
TP

for any a,b > 0 (with a = 1,b = £/(2C%,)). Since C;, il ('3, passing to the limit e; — 0 we get
the first inequality of the theorem

n+2s
Z0(R) 1 {log (u™'e™") 2 €} <

if we take
Dga3) = DEag)(Cr, Q,7,Ce,s,n,Cvi, Cvy) = 4C5 ' + CyvyCs/2.
The other statement is obtained in a similar way by introducing variable r < R, working with
t1,to € Io(r) and analyzing the set |{(t,x) € [t1,t2] X B : we; < =€ + a}| instead of the set |{(t,x) €
[t1,t2] X B : we, > € 4 a}|. On has to use the left endpoint of the integral when approximating V()

on [t1,t2] which results in an estimate similar to [Ineq. (6.17) but with V(¢;) instead of V' (t2) under
the integral. Replacing V' with W,, like before leads to

¢ —n—2s
We, (t2) — We, (1) + 72R 2 /[ | / [we, (t, ) — We, (t1) — Ce, (t — t1))* dadt < 0.
ti,ta] / B

This time one ignores the term —Cg, (¢t — ¢1) on set [{(t,z) € [t1,t2] X B : w,, < —& + a}| because
We, (t, ) — W, (t1) < =&+ We, (to) — We, (1) <0, due to W, (to) — We, (t1) <0, in order to estimate

We, (t2) = W (t1) + {(t,2) € [t1,t2] X B :we, (t, ) < —€+a}|(—€ +a—We (t1))* <0.

2
2Rn+2$
Note that the inequality

WEl (tl) - WE1 (tQ)
(=€ +a—We (t))?

WEl (tl) - W€1 (t2)
(=€ +a—We, (01)(=§ +a— W, (t2))
is still true but for slightly different reasons. The factors in the denominator are now negative and

decreasing ¢; increases —¢ + a — W, (t1) but decreases its absolute value. The rest of the estimates
remain exactly the same and a similar summation procedure produces

<

- 1 1

(R Bn < _ < QC—IRn-‘rQs —

e (R) x BN {ws < —C+a}| < 2C; <—£+a—ng(to—r2$) —€+a—Wsl(t0)>
< _202_1Rn+28 < M
- = - §

Translating this into a statement on u and passing to the limits r — R and €1 — 0 exactly like before
we end up with

n+2s
|Zo(R) N {log (ue®) > &} < .

which is the second statement of the theorem. O
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6. Parabolic Moser iteration

6.4.4. Lemma of Bombieri and Giusti

To connect positive and negative exponents we are going to use the idea of Bombieri and Giusti [BGT72]
in modified version from [SC02] Lemma 2.2.6. We provide the statement of the lemma with reduced
and adapted notation for convenience.

Lemma 6.4.4 (Bombieri and Giusti ([SC02], Lemma 2.2.6)). Fiz a collection of measurable subset
{Us, € M;0 € (0,1]} such that Uy C U, if o' < o and denote U = Uy. Let 6,C be positive constants
and 0 < ap < co. Let also v be a positive measurable function on U which satisfies

1/a—1/ag
] lollzeq,) < oo,

loll oo,y < |Clo —o")~|UI™

for all 0,0, such that 1/2 < o' <o <1 and 0 < o < min{1, ap/2}. Assume further that v satisfies

{logv > €} < CLU‘

for all € > 0. Then

HU”LQO (U1/2) < A|U|1/a0

where A depends only on 0,C and a lower bound on «y.

6.5. Weak Harnack inequality
Theorem 6.5.1 (Weak parabolic Harnack inequality). Suppose s € (0,1), v € [0,2s), ¢,Q € [1,00],

-1
Cc,Cs1,Cs2,n,Cyr,Cyy € (0,00), R >0 and xo € M are such that, for p := (1 — % + %) ,

(i) [CHzo, (R/2, RJU{2R};5,Q,, Ccl,
(ii) [SHzo, (R/2, R]; s, p, Q*,Cs1,Cs,, 7],
(iii) [V[zo, (R/2,2R];n,Cvr, Cyyl,
(iv) ¢+ Q71 < 2s/n,
(v) [PX[wo, (R, 2R]; 5, Cp],
are satisfied and set B := B(xg, R). Then there exists a constant
Cpu = Cpa (s,1,¢,Q,Cc, Cs1,Cs2,Cp, v, Cv i, Cyu)

such that to,xo,R; s,Cpm, Q) is satisfied. To be explicit, Cpy is such that the following state-
ment holds.

Let f € L¥(I(R); L(2B)) be arbitrary. For every supersolution u of Oyu — Lu = f in I(R) x
B(xo,2R) such that w > 0 on M, the inequality

1
Q
][ u(z)dr < Cpy | essinfu 4 (2R)* esssup (7[ |f(t,x)\de>
Us Us tel(R) \J2B
is satisfied, where Ug = Zg(tg — R%, 20, R/2) and Ug = Z5(to + R*, 20, R/2) (see|Fig. 6.5.1).
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6.5. Weak Harnack inequality

(O.R)2s l E

(cR)* ' E

Figure 6.5.1.: Sequences U, and [7'0

Proof. Let us define )
i =u+e+ (2R)* esssup (][ \f(t,a:)\Qda:> °. (6.19)
teI(R) \J2B
Notice that we can assume that the essinfy, u is finite otherwise the theorem trivially holds. The
plan is to apply [Lemma 6.4.4] two times, for sequences {UU}U 1) and {U } oelb 1] like in [Fig. 6.5.1
Let a be like in |Theorem 6.4.3| for function u. For the first apphcatlon take U, = Z@ (to+ R**,x9,0R),

ag = +oo, v ="1"le 9,

o (@254 VD"
T a-s

and C = 2”+2s+5C;iC‘1/UDm V C’;]{Dm. For all @ < ap, 1/2 < ¢/ < 0 < 1 we use the
iteration for negative exponents in [Theorem 6.2.3|, applied to @ on U, = Zs(tg + R?*®, 19,0 R) with
=o0'/o € (1/2,1) and py = —«. Assumptions in [ltems (i)| to [(iv) and the definition of @ justify
the application, which gives

_(@2st)vnet ] T -
, «@
inf > |Dgzg (1-2 e i
oo > €ss 1 u = ©.2.3) - — .
Z@(t0+R25,x0,J’R) g Z@(t0+R23,IQ,0'R)

~—1 e

Translating this into statement involving v = @
shows

, Uy, 6, o and oV switches the inequality and

1
(U —d) e
[vlleow,) < |Dza) | —— vl e @,)-

| G|"
Due to 0% < 29 and (somewhat deceivingly aio =0)
1 1 1
= <

— = T+ < - < (2n+250‘;iCVU’U1|71)é_%7
Ual®  1Zolto+ R, 0RE — (CunCibonteo|tn])*

which follows from [wo, (R/2,R];n,Cyr,Cyyl|, we can furthermore estimate

1/a—1/a 1/e
||UHLQO(UOI) < [C(U—U/)_‘”Ul]*l} fa—1/ao (/ Ua) ‘
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6. Parabolic Moser iteration

Weirdly enough, U is exactly Zg(to, o, R) so weak L'(Zg(R)) estimate on log(i~te™?) in
justified by [[tems (i)] and proves

Dgag R < Cy 1 DEaz)| Ui < C|Ui|
3 - § NS
for all £ > 0, where the second inequality requires [mo, (R/2,R];n,Cyr,Cyy]. [Lemma 6.4.4] now

implies that there is a constant

|U; N {logv > &} <

A= A(C7 5) - A(Sﬂ’l, CVL7CVU7q7Q7C5'1705270P7CC/7) >0

such that
esssup@ te ® = esssupv < A
U@ Ul
2
or written differently
essinfa > A~ e . (6.20)
Us

For the second application, let us first suppose that u is in L'(I(R), L?(2B)) and not only in
L} .(I(R),L*(2B)) which would follow from |Item (1)| of |Lemma 5.1.7} This implies that fI(R)x2B u <

0. Take U, = Zag(to — R*,x9,0R), g = 1, 0 = e,

((2s+v)V1)(1+k)Q*
(1=s1)

5 =

and C = 22”+45+5C;%C‘2/UD 634) \/C";}JDm. The iteration for positive exponents in|Theorem 6.3.4
is applicable due to [Items (i)[to|(iv)| and shows, for all & < app/2, 1/2 <o’ <o <1,

)\ Ve R g7 Y/a-1/a0 1/a
<][A i)\a°> < [C(a — U/)_6 ‘Uly ] <][A 5}\0‘) < 00,
U, 0

1 1
where < oo bound comes from assumption fI(R)qu < 00. Due to |Uy|%0 < |Up|% and (using
i<l—1:é—aiofora€(0,1/2))

20 — «
1 1 1
i 2 T = 1 I
|Uq| = | Zs(to + R?5,0R)|= (CVLC‘;UJ”+2S|U1|)O‘
1 1 1_ 1 1

it follows that

=17 Ya—1/a0 1/a
o ()
o! Us

Slightly confusingly, U, = Zs(to, xo, R) and [Theorem 6.4.3| shows that for all £ > 0

1/@o
(/ﬁ aa()) §[6’(0—0')5A

g "> _ CviDEaa|thl _ C|U]
3 B 3 NS
Applying once more gives us a constant
‘Z{ = A\('S? n, CVL) CVU7 q, Q? CSla CSZ) CP7 CC) ’Y)

/ ﬂea:/A v < A|0,).
Us Uiz

1010 flog(ae?) > €} < b

such that
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6.5. Weak Harnack inequality

This is now easily transformed into

][ i < 20y Oyt Aeme (6.21)
Us

using [xO,R;n, Cvr,Cyyl]. On the other hand if w is only in L} (I(R), L?(2B)), then for every
B € (0, R?) [Ineq. (6.21)| can be proved with {(t+ 3,z) : (t,z) € Ug} instead of Us on the left simply

by shifting all sets in time. But the right hand side remains independent of § so sending 8 — oo
proves [Ineq. (6.21)|in the original form by monotone convergence theorem.
Combining [Ineq. (6.20)| and [Ineq. (6.21)| gives the parabolic weak Harnack inequality for w,

][ o < Cpgessinf
U@ UEB

where we take
Cpyu = Cpu(s,n,Cvr,Cvu,q,Q,Cs1,Cs2,Cp,Cc,y) = 2n+250VUC‘;£A;{-

Substituting « with u through this is equivalent to

4
furererpess (£ i)
Us tel(R) \J2B

1
< Cppg (ess infu 4 & + (2R)?® ess sup <][ |f(t,a:)]Qdm> Q) .
Ug 2B

tel(R)

1
If we ignore term esssup;c(g) (f,5 | f(t,2)|%dz)@ > 0 on the left hand side and send ¢ — 0 (note
that Cpp does not depend on ¢), we obtain exactly the statement of the theorem, i.e.

1
Q
][ u < Cpp | essinfu + (2R)% esssup <][ \f(t,m)]Qdac) .
Us Us teI(R) \J2B

O

Theorem 6.5.2. Letxg € M, R >0, Q € [1,00], Cpy € (0,00) be such that|{WPHI[xy, R; s, Cpy, Q]
is satisfied and set B := B(xg, R). Then for every f € L9(2B), every supersolution u of Lu = f in

2B withu >0 on M
1
: 2s Q Q
u < Cgp | essinfu + (2R) |f] .
iB 3B 2B

2

In particular, (WEHI|xo, R; Cpy] also hold.

Proof. By [Proposition 5.1.6] we know that every supersolution u of Lu = f in 2B solves yu — Lu = f
in I(tg, R) x 2B for all tyg € R. Therefore WPHI|[z, R; s, Cpp, Q] gives

1
Q
][ u < Cpp | essinfu + (2R)% esssup (7[ \f(t,x)|Qd:c)
Us Us teI(R) \J2B

which is equivalent to the statement of the theorem because v and f are time independent and Uy,
Ug are cylinders over B/2. O
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6. Parabolic Moser iteration

6.6. Holder regularity estimate

Definition 6.6.1. For xo € M,ty € R and R > define
D(tg, o, R) = (to — 2R**,to) x B(zo,2R),
D(to, 0, R) = (to — 2R**, o) x B (x0,3R),
Do (to, w0, R) = (to — 2R, to — 2R + (R/2)**) x B (w0, R/2),
D (to, 20, R) = (to — (R/2)* o) x B (w0, R/2)
like in[Fig. 6.6.1. We will leave ty and xo implicit whenever possible.

D(R/(6V 2!/))
t/ M
4

teeae-sr—Dg (R)

<+—Do(R)

/@
=

Figure 6.6.1.: Sets D(R), D(R), Dg, and D,

Lemma 6.6.2 (Increase of inf). Letzp € M, tg € R, R >0, s € (%, v €10,2s5), Cpu,Cc € (0,00),
|

Q € [1,00] be such that £ satisfies to,xo,R;s,CpH,Q], xo, R;5,Q,v,Cc] and set B =
B(z9,3R), 6 = 801 (Cpr,s,7,Cc) > 0 with the following
property. If w: M — R is a supersolution of Oyu — Lu = 0 in D(R) such that

w>1-3%  in(tg— (2R)*,to) x ¥B  Vj e Ny, (6.22)

and D
’D@(R) N {w > 2}‘ | 92( )’, (6.23)
then w is separated from 0 in Dg(R) i.e.
w >4 in Dg(R).

Proof. Define By := B(x¢,2R) so that D(R) = (tg—2R?*,ty) x Bz. We only need to find an appropriate
S > 0 as small as necessary. Let us write w = w™ — w™ and observe that w(t) € Vp, implies
wt(t),w (t) € Vp, (recall [Definition 5.1.2)). This allows us to consider w™ as a supersolution of
Ou — Lu = E(w™,-) in D(R). Functional E(w™(t),-) on Dp,(E) appears because £ is nonlocal
and w~ = 0 on D(R) D D(R) is not enough to make it trivial. Let us denote this functional by
Fy: Dp,[€] = R, Fyi(p) := E(w(t),p). For t € (tg — 2R?,ty) we find the estimate for 1F2l| e (By)—r
by calculating, for arbitrary ¢ € C.(Bz2),

()] = I€( |4//‘ @ﬁﬂf”‘m”mw@m
= w™(t,y)
- /BQ Be d :L' y)n+28 (:C’y)dydﬁﬂ

<o (], e a) ([, 7m)
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6.6. Holder regularity estimate

Let us, for j € N, introduce cutoffs
3R — d(zo, )
()= ——————2"2 A1
o= (g 1) vo

which have the property that 1; = 1 on By and 1; = 0 outside of 39=1B. These function can be used
together with [CE[z, R; s, Q,7,Cc| and [Ineq. (6.22)| to estimate

1E¢l| Lo (By)—r R gy 4 Z/ (397 — 1) (¢ (x) — ¥5(y))?
|By|@ BB\3I1B d(z, y)" e

LR(B2)

N i 398 _ 1

<2§ (397 —1)|By|"@ 1Tl s, < Y moes (37 — 2)257
J:1

< 206(2R) ™2 EOO it

<20c(2R)7 <3G

]:
For 8 < (2s —)/2, the series is dominated by
> 378 © > (2s—)j
—(25—) —(25—) (B—25+7) — a—(25—7) s
3 ”ZWM) <3 ”Z;?ﬂ M <3 723 T <o
j=1 j= j=

so dominated converegence theorem implies

25 12 — ¥-1 B0
(2R)™*|Ba| || Fill Lo (By)—r < 20021 3G @) ¢(B) —
J:

because 38 — 1 2% pointwise. In particular, [|Fi[| o (p,)_,r is bounded so, for every ¢ € (to —

2R? 1) there exist an f(t) € L9 (By) such that £(w™(t),¢) = (f(t),¢) and

B5—0

(2R) (]fg |f<t,x>erx) ¥ IRller sy < C(8) 225 0.

If we take 8 < s small enough such that {(3) < 01311{/8, thenWPHI[to — R?*, 2, R; s, Cpy, Q] applied
to wt in D(R) together with [[neq. (6.23)| gives

1
Q
essinfw = essinf w™ > Cpp; (][ w(t, x)dxdt) — (2R)*  esssup (][ \f(t,m)]Qd:c>
De ( B

Dg Dg te(to—(2R)?5 to)
1 1
> — > > 0.
— 4Cpp ¢h) 2 8Cpu —
At the end, observe that ¢ depended only on 3, s, 7y, Cc and since § was chosen such that ((3) < C’IS}{ /8
we have 8 = B8(Cpp, s,7, Co). O

Theorem 6.6.3 (Holder regularity estimate). Suppose that xg € M, ty € R, Ry, s € (0,1),
€ [0,2s), Cpy < o0, Q € [1,00] are such that & satisfies| WPHI[xg, ty, [Ro,0); s,Cpm, Q] and
[:1:0, [Ro,0);8,Q,7,Cc|. Then there exists

n=n(Cpu,Cc,s,7v) >0

such that the following is true. For every R,R > 0 such that R > R > Ry, every supersolution
u: (tg — 2R?%,tg) x M — (0,00) of Oyu — Lu =0 in D(R),

R

n
1
(tofRQEStso?s%(xo R)u = (12 v 21+S) [l oo ((t0—2R25 t0) x 1) <R> .

In other words, [xo, [Ro, 00); 1, Cy = 12V 211/9] holds.
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6. Parabolic Moser iteration

Proof. We will use sets D, ].5, Dg and Dg from |Deﬁniti0n 6.6.1l If u = 0, the statement is trivially
true. If not, dividing both sides with 2||ul[ oo (7« ar) it is sufficient to consider only u such that —1/2 <
u < 1/2 (the statement is trivial for v = 0). Let ¢ and 8 be constants from Take
¢ := 6V 2+ and notice that this is exactly the condition needed to have D(¢7'R) € Dg(R). Set
§=(1—c B AF and define

n=n(Cpu,Cc,s,7) := —log,(1—0) >0

which in particular implies that (1 —d) =¢ 7 and n < S A L.
We will construct a increasing sequence {my} and a decreasing sequence {M}} in [—1/2,1/2], for
k € Ny, such that
my < u < My in D(¢c7*R),

My — my = ¢k,

We set mp = —1/2 and My = 1/2 and proceed by induction supposing k > 1 and myg_q, My_1 are
already defined. There are two possibilities, either

~(k=1)
‘D@@—W—Un)m{u;zA“‘lgnufl}‘z’De@ 5 U o (6.24)
~(k=1)
‘D@(c—(k_l)R) n {u < M’“‘lgm’“‘l }‘ > [Dele 5 Ll (6.25)

U—ME—1

In the first case we take v = ; and verify that it satisfies the assumptions of [Lemma 6.6.2

k—1—"Mk—1
Firstly, since u is a supersolution of dyu — Lu = f on D(R), clearly v is a supersolution of the same

equation on D(¢7*R) C D(R). Secondly, for every j € Ng,j < k — 1 and every

(t,2) € [to — (" *"DR)* 1o | x B(zo, " *"DHR) c D(e-*k1IIR)

we have, by induction hypothesis

" S U —ME—1 > MEg—j—1 — Mk—1
v(t,x) > >
My —mp— My —mp—
—(k—1 —(k—1—j
My_y — My_1_j —mp—1 +mp_1—; ¢ F=Dn — =(k=1=)n

- M1 —my ¢~ (k=1)n
=1-d1>1-d"
If j > k, the same computation as for j = k — 1 applies because mg < u < My on the whole space M

and one only needs to estimate 1 —3(k-1)8 > 1-3/8 in the very end. The final condition in|Lemma, 6.6.2

is fulfilled by [Eq. (6.24)l Provided that WPHI[zg, o, ¢ *R; s, Cpg, Q] and |CE[zg, c*R; 5, Q, v, Cc]
are satisfied, [Lemma 6.6.2| implies that v > § in Dg (¢~ *~DR) or equivalently

u>mg_q+0(Mg_1 —mp_1) =mp_1 + Selk=1m in Dg(c*R).

The same then also holds in D(¢*R) C Dg(c-*~DR). Setting my = my_1 + ¢~ and M, =
M;j._1 we end up with

My —my, = Mp_q1 — (mk,l + (Sti(kil)n) = Ci(kil)n(l - (S) = ¢k

because 1 —§ = ¢~ by our choice of 7.

In case [Eq. (6.25)|is true we instead take v = H

and prove in the analogue way that

u < My — 6(My—y —my_1) = Mgy — ¢ D7 in D(c7*R).
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Contrary to the previous case this time we set my, = mg_; and My, = Mj_1 — ¢~ * D7 but this again
results in
My —mp =M1 —mp_1 — Se—(=Dn — C(k_l)n(l —9) = ¢k,

Supposing that we are able to repeat this procedure all the way down to ZA)(C*(N “)R) (for some
large N € N) we would get

_essosc < ¢ N+,
D(c—(N+DR)

In order to repeat it, however, lemma |[Lemma 6.6.2| needs WPHI[x, to, c *R; s, Cppr, Q] and |CE[xo,
¢ *R;s,Q,7,Cc] to be satisfied for all k < N which, under assumptions of the theorem, is equivalent
to c ™R > Ry. Additionally, in order to estimate the oscilation of u in (¢ — R?®,tg) x B(xo, R) it is
necessary that (to — R25,t9) x B(zo, R) € D(¢-V+DR) that is, 3¢~ VDR > R and 2c 25OV R2s >
R?3. Since R > Ry and ¢ > 6V 2%, it only makes sense to apply the procedure

N+1= \‘logc <(3/\]2%25)R>J

times which together with n < 1, elementary bound ¢~ W7 < ¢~W=Dn < ¢c=vn (y € R) and a few
trivial estimates results in ;
essosc u<c| =] .
[t,tQ]XB(Io,T‘) o <R>

Recalling the definition of ¢ and assumption |u(|fec(rxary = 1/2 from the beginning this proves the
theorem. 0
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7. Exit time estimates and conservativeness

In this chapter we obtain several estimates concerning the semigroup F;, restricted semigroup PtB
and operator GP corresponding to the bilinear form &£, defined by restricted to L?(B) for
some ball B C M (see [Section 2.4). All of these are obtained under assumption that & is Dirichlet
and under conditions on the kernel that we can prove for certain random conductance models in
As a consequence, we also obtain that the £ is conservative under the same conditions. If
the kernel k is pointwise comparable to the kernel d(z,y) ™24, like in then the results
presented here have already been established in the context of metric measure spaces. See for instance
IGHHI17, IGHH1S8] and [CKO03| [CKW16a] and references therein. Our arguments are not very different
and most of the time we simply localize the results from |[GHHIS| [GHHI7], but this is not always
possible.

The main results in this chapter are which proves the expected exit time estimates
(ETE] of exiting a given ball, which proves the survival estimate ,
which proves that semigroup P, is conservative and [I'heorem 7.3.2] which proves the short time
estimates on the restricted semigrop PtB . The last theorem requires kernel & to satisfies and additional
truncation condition that we can verify for an i.i.d. conductance but not for a symmetrized
ergodic conductance in Estimates on the expected exit time are obtained from weak elliptic
Harnack inequality and condition The latter replaces the lower bound k(z,y) >
Aild(x,y)*("”s), for all z,y € M, A > 1, used in [GHHI1S8]. Proofs of the survival estimate and
conservativeness of £ follow the arguments of [GHHI18] and [GHH17] and rely on maximum principles
from The estimate on PP for small times is proved by iterating the survival estimate
through space with the help of truncation bound .

[Assumption 2.5.3| and [Assumption 4.0.2] are assumed to hold for the rest of chapter.

7.1. Estimate of the expected exit time

Let us start by recalling Lemma 4.1 from |[GHHI17].

Lemma 7.1.1 ([GHHIT], Lemma 4.1). Assume that (M,d,m) is a metric measure space satisfying
|Assumption 2.5.5 and (€, D[E]) is a regular Dirichlet form on L*(M). Let also V be an open subset
of M, h a non-negative function in L*(M) N L?>(M) and ¢ € DIE] such that 0 < ¢ <1 and ¢ =0 on
V. Then for every T > 0

T
(1—PY1,h) Z/o —E&(¢, PY h)dt.

The next lemma reformulates the previous statement in terms of GV.

Lemma 7.1.2. Assume that metric measure space (M, d, m) satisfies|Assumption 2.5.5 and (€, DIE])
is a regular Dirichlet form satisfying |Assumption 4.0.2. Let V' be open subset of M and B(yo, R) a
ball in M such that B(yo,2R) C M \'V. Then for every non-negative h € L*(M) N L?(M)

Illon > 2 / / GY h(z)k(x, y)dyda.
V J B(yo,R)

Proof. Define a cutoff function

AN1VO

oly) = 2y d}(;{yo’ v)
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7. Exit time estimates and conservativeness

between balls B(yp, R) and B(yo,2R). Then ¢ in D[E] by |Assumption 4.0.2l Taking this ¢ is in
Lemma 7.1.1| we know that for every non-negative h € L' N L?(M) and every T > 0

T
s > (= P10 > [ —eGo. Pyt ()
0

Since, for every t > 0, P/ h and ¢ are supported inside disjoint sets V and B(yo, 2R) respectively and
¢ =1 on B(yo, R), the energy on the right can be estimated by

(6. PV h) = / / (6(z) — 6W)(BY h(z) — PY h(y))k(z, y)dydz
> 2/ /B(ym PY h(z)k(z,y)dydz > 0.

This makes the integral on the right side of [[neq. (7.1)|strictly increasing in 7. Thus sending 7" — oo
and using Fubini-Tonelli’s theorem (P;(z) has a version which is measurable as a function from I x M
to R by |Corollary 2.3.3| and [Proposition 2.3.5|) results in

[y _/ E(p, PV h) dt>2/ // Pch( V(z, y)dydadt
(yo,R

> 2/ / lim Ptvh(:r:)dtk:(x,y)dydx.

yO R) T—oo

Definition of GV in [Definition 2.4.13| and [Proposition 2.3.6| assure that the limit of Bochner integrals
corresponds to the limit of pointwise integrals so for a.e. x € V

T
lim PY h(z)dt = GV h(x)

T—o0 0

which proves

Il > 2 / / GY h(2)k(x, y)dyda.
B J B(yo,

O

Theorem 7.1.3. Assume that (M,d,m) satisfies|Assumption 2.5.5 and that & is a regular Dirichlet
form on L?(M) satisfying|Assumption 4.0.4. Let B C M be an arbitrary ball and suppose that

/ k(z,y)dy >0  for m-a.e. x € B. (7.2)
M\B

Then GB1 < 0o m-a.e.

Proof. For yg € M, R,e > 0 consider the sets

W(yo, R,¢) = :EEBZ/ k(z,y)dy > ¢ ;.
B(yo,R)

We know that M is separable by [Assumption 2.5.3, so let D be a dense set in M \ B. We claim that
there is a set N of measure 0 such that

U U U W(yo,R,e) =B\ N. (7.3)
yeD ReQ4 ceQ+
B(yo,2R)CM\B

76



7.1. Estimate of the expected exit time

This is true because we can take N to be the exceptional set of|[Ineq. (7.2) and then for every z € B\ N
it holds that |[ M\B k(x,y)dy > 0. The countable family of balls

{B(yO;R)vyO S D7R€Q+aB(y072R) - M\E}

covers M \ B. Thus, [, .1 (@, y) = 0 for all such balls implies Jing k(@ y)dy = 0 and therefore
z € N which proves [Eq. (7.3)f On the other hand, applying [Lemma 7.1.2) with V' = B and h = 1p
and arbitrary ball B(yp, R) C M such that B(yp,2R) C M \ B results in
Moz [ [ 61k gy
B J B(yo,R)
Now, for fixed yg, R, e and for = € W(yo, R, ¢),
”1HL1(B) > 5/ GBl(a;)da:
W(y07R7€)
which implies that GP1 < oo m-a.s. in W (yo, R, ). But since B is as contained in the countable union

of W (yo, R,€) up to a null set N we can conclude that G® < oo m-a.s. on B. O

Remark 7.1.4. Notice that on a discrete space, in particular on Z", ||GP1|| 1~ < oo is equivalent to
GP1 < 0o although the first statement is stronger in general. As we only intend to apply the results
in the case of Z" this deficiency in the current chapter will not be a problem. However, it would be
desirable to have a condition on the kernel which would guarantee |GP1||L~ < oco.

Theorem 7.1.5 (Expected exit time). Assume that metric measure space (M,d,m) and regular
Dirichlet form & on L*(M) satisfy |Assumption 2.5.5 and |Assumption 4.0.2, Let xo € M, R > 0 and
denote B := B(xo, R). Suppose that |G*P1|| up) < oo and that there exist s € (0,1), v € [0,2s),
n,Cvr,Cvu,Cpm,Ck € (0,00) and Q € [1,00] such that

(i) [WEHTxo, {R/2,2R}; Crn),
(ii) [AKB>[xo, R; 3, C],
(iii) [V]zo, R/4;n, Cy 1, Cvul,
(iv) [CHxo, R; 5,Q, v, Cc]

are satisfied. Then there exist Cg>) = Cg>)(Cen,Cc,7,5,n,Cyr,Cyy) € (0,00) and Cp<y =
Cg<)(Cen,CKk) € (0,00) such that [mo,R;s, C(e<), C(g<)] holds. To be explicit,

C(E>)R25 < essinf GP1 < esssup GP1 < C(E<)R25
- z€1B zeB B

The constants can be taken to be C(p>) = 2_3_25_7_2”C§}JCVLC;5051 and C(p<) = g%’j
The proof uses the ideas from Lemmas 5.4 and 5.5 of [GHHI1S8| but replaces the pointwise bound on
the jumping kernel A='d(z,y)~ 29 < k(z,y) < Ad(z,y)~"*t2%) with [AKB>[z¢, R; s, Ck], [a:o,
R;s,Q,v,Cc] and |GB1| reo(m)y < 00. The hardest part consists of obtaining weak elliptic Harnack
inequality without the pointwise bound of the kernel which is what was dedicated to.

Proof. Applying |Lemma 7.1.2| with V' = 4B, yo € M \ B(xo,6R) that satisfies AKB>[xo, R; s, Ck]
and an arbitrary h > 0 in L'(B) N L?(B) gives us

Il > 2 / / G*Bh(2)k(z, y)dyde.
4B J B(yo,R)
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7. Exit time estimates and conservativeness

We have assumed that [[G*1]| =5y < oo so Lemma 3.2 of [GT12] implies that G*7 is a bounded
operator on L?(4B) and G*B = (—£*P)~L. This implies that the function G*Bh is a supersolution of
Lu = 0 in 4B because

E(GPh,¢) = (=LG"Ph, ¢) r2(ary = (hy &) r2(ar) > 0

for every ¢ € Dyp(FE), ¢ > 0. Therefore, the application of WEHI[z¢, 2R; Cgy| with G*Bh is justified
and gives

essinf G*Ph(z) > CE}{][ G h(x)dx
B

r€EB
which leads to

Il > 2 / / Gk )y
yO,

G4Bh
2C5 1 | HLI(B //B( k(z,y)dydz.
yo, R

Combining this with |AKB>[z, R; s, Ck| we end up with

IG*Phl| 1)

Il By > 2CpHCK — g
Now using GB1p < G*B1p, h > 0 and symmetry of G*Z we conclude that

C
(h, GP1p) < (h,G'B1g) = (G'Bh, 1) = |G*Bhl 11y < gHR2SIIhIIL1(B

Recalling that h was an arbitrary non-negative function from L'(B) N L?(B) this provides us with
sufficiently many test function to conclude

Cen
GPlp < =~ R%,
ess gup 50
and proves claimed upper bound with C(g<) = (;CL}’:
For the lower bound let us call w = GP1. Then, in the same way as for G*51, HGB].HLOO(B) < 00

and Lemma 3.2 from |[GT12] imply that v = GPB1 is positive and superharmonic in B. Therefore
WEHI|zo, R/2; Cpy] applies and gives (the second inequality being the consequence of Jensen’s

inequality)
-1
1
ess1nfu>CEH][ u>Crpy (7[ > . (7.4)
B B U

Due to [xo, R;s,Q,v,Cc] and |Proposition 6.1.2L any Lipschitz cutoff function ¢ between %B and
%B has energy bounded by

E(p) < Cly)|BIR*

with C'(¢) depending on its Lipschitz constant. In order to be unambiguous, let us take

ey) = (WAQ VO

which gives C(p) = 22t Co|B|R™2° because Lip(yp) = 2R~!. It is now possible to use Proposition
A.2 (iii) from [GHHIS] to see that for every € > 0

2

e Dyfe] (7.5)
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7.2. Survival estimate and conservativeness

but let us give some more details here. Function a — a~! is Lipschitz on [, 00) with Lipschitz constant
€72, This implies that ?(u+¢) ! —¢ is a normal contraction of u and therefore e2(u+¢)~! —& € Dg(£)
due to[Proposition 2.4.6| This function is bounded, as is 2, so Theorem 1.4.2 (ii) from [FOTTI] implies
that (e2(u+¢)~! — e)p? € Dp(€) and, in particular, @*(u + €)' € Dp(&) (because ep? € Dg[€] by
|Assumption 4.0.2) which proves [Eq. (7.5)]

Encouraged by this fact write

1 2 2
iBu—i—s u—+e u—+e

and estimate the energy term on the right using|Theorem 6.4.2| (alternatively, one can look into Lemma
3.7 in [GHHI1S]). In|Ineq. (6.16)| we take 1) = ¢ and ignore the first term to get

1 2
/ <& <u L4 ) < 3&(p) < 3- 240 | BIR™%.
1B U+ e u+e

We now divide both sides with |B/4|, use volume regularity [V[zo, R/4;n, Cy 1, Cyy] and pass to the
limit € — 0, using monotone convergence theorem, to obtain

<
lgu |B/A]

][ 1 23+25+VCC|B\R725 < 32t oy O RS
i VL .

4

Inverting the inequality and combining it with leads to

-1
1
: -1 —3—2s—y—2n -1 —1 ~—1p2s
es§119nfu > Cgy (7[13 u) >2 CrulviCyyCo R
1 1

and proves the lower bound with Cg>) = 2_3_25_7_2”CE}ICVLC‘7(1]051. O

7.2. Survival estimate and conservativeness

Theorem 7.2.1. Assume that metric measure space (M, d, m) and reqular Dirichlet form & on L*(M
satisfy |Assumption 2.5.5 and [Assumption 4.0.2. Let ©o € M and R > 0 be arbitrary, denote B :=
B(zo, R) and suppose that, for some C(g>),C(g<y € (0,00), € satisfies

[ETEx0, R; 5,C(g>), C(p<))-
also satisfies

[SExo, R; s,¢&,0].

To be explicit, for all t < (§R)?S,

essinf PP1p(z) > e.
inB

The proof is again very close to Lemma 5.6 of [GHHIS§|, however, in [GHHIS]| the expected exit time
condition (F) is uniform throughout the space while we are working with a local condition on
some ball B. Also, Lemma 5.6 implicitly uses arguments of the proof of Theorem 6.13 from [GHL14]
which has assumption slightly incompatible with our setting. Let us, for these reasons, present the
full proof here.
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7. Exit time estimates and conservativeness

Proof. We will prove the inequality

B _
PtBlB(x)> G 1(2?) t

> _————2 for mae x€B 7.6
161 1~ s (76)

for every t > 0 using parabolic maximum principle from [Theorem 5.3.1l Denote u = GP1, take ¢ > 0
to be any cutoff function between B and 2B and define

w(t) = u— ¢t — |lull (5 PP 1p.

Note that by [ETE[zo, R; s, C(p>), C(p<)] we know that ||GP1||je0(p) < 0o. Lemma 3.2 of [GT12] thus
implies that G® = (—£7)~! so in particular GP1 € D[] and £(GP1,¢) = (1p,v) for every 1 € D[E].
By we know that PP1 is a weak solution of d;u — Lu = 0 in [0,00) x B with values in
Dg[€] € L*(B). Therefore, w takes values in Dp[€] and for every non-negative ¢ € C.(B) we have

(Ovw(t),¥) + E(w,¥) = — (¢ + ||ull Lo (3O PP LB, ) + € (u — ot — ||| g3y PP 15, ¥)
= — (@, 9) + & (u— ot,9) — |[ull o) [(B:P 1B, ¥) + € (PP1p,v)]

Because ¢ =1 on B and supp ¥ C B we can compute

E(p, 1) =2 /B ) (L o) ke )y 2 0,
which leads to

(atwaw) + E(w,¢) < _(¢7¢) + 5(GBL¢) < (1B - 9071/}) < 0.

Thus, w is a weak subsolution of equation dyu — Lu = 0 in [0,00) x B. Furthermore, w4 (¢,-) € Dp[€]
since £ is Markovian so
lim lull oo (B) Py 1B = ||ullpoe(B) 1B 2>

)

shows that
lim {|w (%, ) 22 () = 0-

This justifies the application of the parabolic maximum principle from and proves that
w < 0 on [0,00) x B which proves [Ineq. (7.6)| by definition of w if we take the account that ¢ =1 on
B. Recall that ETE[zo, R; s, C(g>), C(g<)] states that

C(EZ)R2S S es§infGBl(a:) S ||GBlHLoo(B) S C(ES)RQS.
=B

4

Combined with [Ineq. (7.6)} this implies that for all ¢t < C(p>)R**/2 and m-a.e. x € 1B

Clo) B = 5Cwm) B O

PB1(x) > .
vie) 2 Cip<)R? ~ 2C(p<)

Taking ¢ = C(£<)C(E2)/2 and 0 = (C(Ez)/Q)i gives the statement of the theorem. O

Theorem 7.2.2. Assume that metric measure space (M, d, m) and reqular Dirichlet form & on L*(M)
satisfy |Assumption 2.5.5 and [Assumption 4.0.2. Let x9 € M, Ry > 0, €,6 € (0,00) be such that
[mo, [Ro,00); s,¢€,6] holds. Then the semigroup P, corresponding to Dirichlet form £ is conservative,
i.e. P,1 =1 for everyt > 0.
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7.2. Survival estimate and conservativeness

This time we follow the proof of [GHHI17|, Lemma 4.6. Unfortunately, the original statement is
not directly applicable in the current setting because condition (S) is assumed to be uniform through
the whole space. However, going through the proof it is quite clear that a localized version of this
condition works just as well and the changes are mostly cosmetic.

Proof. Let r,R > Ry, » < R be variables which we will later use to optimize the estimates. Define
U = B(xo,r), @ = B(x0,8R) and let ¢ be a Lipschitz cutoff between B(zo, R) and B(xg,2R) such
that ¢» = 1 on B(zo, R) and 1) = 0 on B(zg,2R). Then ¢ is in D[€] by |[Assumption 4.0.2] For fixed
r < R we consider the function

P _
u(t,z) = u(t,z,r,R) = PV1(x) — = (1)_ ;1/1( 2)
and apply on it the parabolic maximum principle from [Theorem 5.3.2] To verify that this application
is valid, notice that u(t,-) € D(E) by definition (see [Lemma 5.1.9) and u(t,-) < PY1 € Dy(€) for all
t < (86R)25 due to

P — ey S

1-¢
which follows from |SE| -3:0,8R' s,€,6]. By Lemma 4.4 of [GHOS], u(t,-) < PV1 € Dp[£] implies that

ut(t,-) € Dy(€) for t < (86R)?*. The strong continuity of PV ensures that when ¢t — 0, PV1 ~—— Gl

and which together with ¢» = 1 on U C B(x, R) shows that u™(t,-) ﬂ) 0. On the other hand,

knowing that both PY and Pf? solve the equation dyu — Lu = 0 in [0,00) x U we can compute, for
non-negative ¢ € Dy (&),
€
(Opu, @) + E(u, ) = 17_55(1/% ).

Notice also that f := %b € L>®(M) and fly = | f|lre(ar) by construction of 1. This verifies the

1)

assumptions of [Theorem 5.3.2 and its application yields, for ¢t < (80R)?*,

st iy < 1o [ €0 &
We proceed by computing
ewusr) = [ [ (@) =) s (r.a) = ua (e )y
~2 / M) )kt )y

As already know from the beginning that u < PtUl < 1, thinking of k£ as measure on M x M,
fA fB x,y)dydz, we estimate

5(11), ’LL+(7', )) < Qk(Ua B(an R)C)
Returning to we find
4

et ¢
lut (& g2y < 72+, Blo, R)°).

|Assumption 4.0.2|ensures that Lipschitz cutoff  between U = B(xo,r) and B(zg, R) has finite energy
meaning that

k(U, B(zo, R / / n(y)) k(z,y)dydr < E(n) < oo.
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7. Exit time estimates and conservativeness

Therefore, by continuity from above of measure k on M x M,
k(U,B(zp,R)°) -0 as R—0

which in combination with Fatou’s lemma shows that

4et

i inf s (¢, ) 20y < 7 limint k(U, B(ao, R)°) < 0 (7.8)

—€
for all t+ > 0 because condition ¢t < (86R)?* is always satisfied for R large enough. Let now R; be
an increasing sequence tending to co, R; — oo. Because |J, Q; = M, |[Proposition 2.4.15| proves that
PtQi — P, pointwise m-a.e. This together with ¢» = ¢(R) =1 on U for every R > r and the definition
of u gives

. . Pt1($)—5
lim inf = PV1(z) - =
iminfu(t,z) = B 1(z) -

On the other hand, proved that liminfg oo u™(¢,2) = 0 for m-a.e. z and every ¢ > 0 so

for m-a.e. x € U.

Pl —
PtUlgtig on U
1—e¢

also for every ¢ > 0. Furthermore, taking any incresing sequence r; tending to oo, 7; — 00,

tion 2.4.15| shows that PtUj 1 — P,1 pointwise m-a.e. implying that for every ¢t > 0 and m-a.e. every

xeM
Ptl(.fC) — &

1-¢
But this is only possible if P;,1 =1, for ¢ > 0 which proves that the semigroup P; is conservative. [

7.3. Truncation and survival probabilities
Here we present a way of self improving the survival condition

ess inf PP1>¢ for t < (0r)* with 6,& > 0 fixed
ip
4
using ideas similar to [GHHI7] Lemma 4.6 together with L> bound on the tail. The result is not

new, but we feel that the proof is interesting because it gives a way of obtaining the estimate without
explicitly truncating the kernel.

Lemma 7.3.1 (Iteration lemma). Assume that metric measure space (M,d, m) and reqular Dirichlet
form & on L?>(M) satisfy |[Assumption 2.5.5 and |Assumption 4.0.4. Let ball B, C M be given and
suppose that there are constants Cr = Cr(Bx) > 0, € = €(Byx) € (0,1), 6 = §(Bx) > 0 and Ry =
Ro(By) such that, for all x € By and R > Ro satisfying B(x,R) C By,

(i) [SHz,R; s, e, 6] and
(ii) [:E,R; Cr]

hold. Then the following statement is true. Choose any xg € By, r,t,H > 0, such that B, :=
B(xo,7) C By and take

R>r+3 (Ro VoTlE v e H O (40) % ). (7.9)
If Bg := B(xo, R) C By, then for every U C B, the implication
1-PP1 < Hmeae onU = 1-PPF1< (1 - g) H m-a.e. onU (7.10)
holds.
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7.3. Truncation and survival probabilities

Proof. Let us suppose that for some zg € M,r > 0 such that B, := B(xzo,r) C B, and some t > 0,
U C B, we have
1- PtBrl <H m-a.e.onU.

Take variable R > r, § > 0 and ¢ € D(E) such that Br := B(xg, R) C By, ¥ < 1 and consider the
function

B(xzo,R) _
A

for 7 € [0,00) and x € M. We intend to adjust variables R, 3 and v as the proof progresses. For

start, let us choose R and (8 so that the parabolic maximum principle from applies
to w in B,. First of all, notice that u € D(€) as it is a linear combination of functions from D(E).

If R;" ~1¢2:, then B(y,(R—1r)/3) C Br C B, for every y € B(xg,r + 2(R —r)/3) so
2s
[y, (R —1)/3;s,¢,0] holds by assumption implying that, for all 7 € [0, (6(%_”) I,

u(r,z) = PPri(z) —

B(y,Zzr -
PPOS) s meae. onB<y,12r> for everyy€B<$oar+

By [Assumption 2.5.3) M is separable so taking countably many y such that B(y, (R — r)/3) cover
B(xo,m +2(R —1)/3) we obtain

PTBRl >¢e m-ae. on B (:L‘(),T +

Choosing v to be a cutoff between B(x,r+ RgT) and B(zg,r+ 2“?”) results in PPR1—eg1) > 0 m-a.e.
on B, for 7 as before. Hence u < PPr1 € Dp_[€] and Lemma 4.4 of [GHOS]| leads to u™*(r,-) € Dp,[£].

L?(By
Furthermore, semigroups PPr and PP% are strongly continuous so, letting 7 — 0, PPr1 M 1
L?(By, S L*(U .
and = fls v LB, (recall that ¢ = 1 on B) which implies u™(7,") RGO Finally, let us

take ¢ € Dp (), ¢ > 0, and compute, keeping in mind that PTB’“l and PTBRl solve the equation
Ou — Ly =0 in [0,00) X By,

(B, 9) + € (u,9) = T——E (W, ) = BV, ) — TBEW, ).

Recall now that ) is identically 1 on B(zg,r + R; L) and ¢ is non-negative and supported in B,, which
means that (¢, p) = (1, ¢) and

£ ) = /M /M<w<y> (@) (o(y) — p(@)k(z, y)dedy
—o / /M\B P () )y > 0

)

Plugging these two observations in allows us to estimate
€

Moving on, we use [l‘,( —1r)/3;Crp] for x € By, ]
Bpgr C B,, to estimate

() =2 / o(@)(1 - $(y))k(z, y)dydz

Jo
o[ ot
J,

(z, (R —1)/3) C

IA

k(:v, y)dzdy

IN

3

/
? o

R—1r\*
k(z,y)dzdy < 2Cr ( ) (1,¢).
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7. Exit time estimates and conservativeness

Thus, for 7 € [0, (§(R — 7)/3)?%], choosing

g 2Cr (R-r o
T l-c¢ 3

results in

207e (R—7r\ "% 207e (R—1r\ "%
. < — < 0.
(ru(r, ), 0) + E(u, ) < 7 ( 3 ) (L) =7 ( 3 > (L) <0

The arguments presented so far verified the assumptions of parabolic maximum principle in
Its application proves that, for 7 € [0, (6(R — r)/3)%*] and m-a.e. x € B,, u(r,z) < 0. The
choice of R assures that t < (§(R — r)/3)?® so, taking 7 = ¢ in particular, we get u(t,z) < 0, which
translates into

PtBrl — m-a.e. in B,.

1—¢ 3 1—c¢

2Cet (R - r>‘25 _ PPR1 — ¢
Previous inequality holds also m-a.e. on U C B, and, since we assumed P/1 > (1 — H) m-a.e. on U,
this leads to (recall PY1 < PPr1 because U C B,)

2. 32SCT€

PPRI>c+(1—¢) ((I—H)— —

(R— T)_28t> m-a.e. on U

where the only assumption on R so far was that R —r > 3(Ro V tlgzs ). The previous line is equivalent

to

2.3%C
1—PPr1<(1-¢) (H + 17T€(R - r)28t> m-a.e. on U.
—€
Let us take R large enough such that also
H
R—r)™2t< ————.
(B=r) S gy

In this case, m-a.e. on U,

1-PPr1<(1-¢) <H—2(1€_5)H>

oot us(n

which is what we have promised to obtain. In the end, let us collect the assumptions on the range
of R. Firstly, to be able to use survival estimate and truncation inequalities we needed to assume

R—7r>3(RoV #) and secondly, to get the multiplicative decrease in the end, we needed to assume
that R —r > 3t3s H _%(4CT)2LS. Collectively, it suffices to assume
TR SRR BN 1
R>r+3 (Ro Vol v s O (40) % )
just like we assumed in the theorem. O

Theorem 7.3.2 (Iteration procedure). Assume that metric measure space (M,d,m) and regular
Dirichlet form € on L?(M) satisfy|Assumption 2.5.5 and|Assumption 4.0.2. Let ball B, := B(x, Ry)
be given and suppose that there are constants Cr = Cp(Bx) > 0, € = ¢(By) € (0,1), § = §(Bx) > 0
and Ro = Ro(By) such that for all xy € By, R > Ro satisfying B(xo, R) C By,

(i) [SB[xo, R; 5,¢,6] and
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7.3. Truncation and survival probabilities

(ii) [TBJzo, R; Cr]

hold. Then there is a constant Crs3) = C@F33) (e,8) such that for all xog € B(zy, R/2), t > 0 and
R € (0, R,/2]

RE

1- P, ($0*R)1<C-R’;s ( s 2Sv4CT> in B (w0, Ro V67143 ).

Proof. The assumption in the theorem are exactly the same as in allowing us to use
IImplication (7.10) which we plan to iterate in this proof. Fix an arbitrary xo € B(zy, R./2). We start

with R© .= R, Vv 5-1t2s and trivial estimate

1- PtB(m’R(O))l <1 mae. on B(xg, RY).

Define £ = k() := (1 —§) < 1 for readability. Iterating [Implication (7.10)| over k € N with U =
B(zo, R), r = R*1 R = R®) we obtain

1-P B(zo,R®) <kF  me-a.e. on B(zg, RY)
where »
R® = R=1) 4 3 < 0 vtV (4Cr)e > {2k 2
t2§
satisfies [[neq. (7.9)| from [Lemma 7.3.1| for every k € N. Telescoping this rule together with

Ro
tQS

RO =Ryv i lte < 3( vty (4CT)22> t25 10

and substitution Cy = C4(t, s, Ro, 0, Cr) :==3 (@ vétv (4C’T)2L) t2s gives

t2s

R® <)k w<Oo ot
1=0 ko2 =1

with Cy = Cy(k, t, s, Ro,d,Cr) = Cm_?ls/(ﬁ;_i —1). This is valid as long as B(zo, R*®) C B(z,, Ry)
which is satisfied if R*) < R,/2 due to 29 € B(zs, Ry/2). Let us thus stop the iteration at the
smallest number k € N such that R*+Y > R (recall that R < R, /2 by assumption). As a consequence

R®) <R and k > —2slog, (C%) — 1 implying

R

1— PtB(me)l <1- PtB(me(k))l < /ik < Iiil <C
2

2s
) m-a.e. on B(zg, R).

Recalling what Cy was we end up, m-a.e. on B(zg, Ro V 5‘115%), with

t 1 RQS
1— pBEoR] < 7t — . (32%1(/125 —1)7% (f VY 4CT>>
which after taking (recall K = (1 — 5))

S, — _ 1 _9s
050(5,5)232,4; 2(/4; % 1) 9

gives exactly the claim from the theorem. O

Remark 7.3.3. We intend to use the previous result for random conductance model on Z™ with
independent conductances. The same result was obtain in [CKWI18b|] using truncation techniques.
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8. Local Poincaré-Sobolev inequality

In this chapter we employ the method from [DNPV12], section 6, to obtain the weighted version of
Sobolev-Poincaré inequality in under relatively weak assumption on the kernel given
in [Assumption 8.1.1] This will be used to prove Sobolev and Poincaré inequalities in At the
end of the chapter, in theorem we also present a consequence of in Z™.

For the rest of the chapter we will be working on an arbitrary measure space (M, m) (we will not use
the distance d anywhere) together with an arbitrary p € [1,00) and a symmetric form Q, : L*(M) —
[0, 0] (allowed to be +oo for some functions) of jump-type:

N=[ [ 15 = f@)Pky(a.)dady

for some symmetric k = k, : M x M — [0,00) which is Borel measurable on M x M. All these
notation will be fixed for the rest of the chapter.
Note that form & defined by [Eq. (4.1)| fits into this setting with p = 2.

8.1. Abstract inequality

The following assumption suffices to obtain the Poincaré-Sobolev inequality for a jump-type form.

Assumption 8.1.1. Assume that one can find a function A : M — (0,00) and a v > 0 such that for
every E C M, which satisfies |E| < oo and |E| < |M \ E|, and m-a.e. v € E

[ pledy = A@)|E . (81)
M\E
Definition 8.1.2. For f € LY(M) let us define

f ][ fa 0 1f |M| =
M= ‘M| Jas J( )d:c otherwise.

Lemma 8.1.3. Let f € LY(M) and r € [1,00) be arbitrary. Then
1

(f, 0= surae) " <230 (f 1)~ a|’“doc>i

Proof. If |M| = oo, then f — a is in L'(M) only when a = 0 so the infimum is obtained for a = 0.
On the other hand fj; = 0, and the inequality is trivially true. In case |M| < oo, for every a € R, by
Minkowski inequality for L™ (M) norm and Jensen’s inequality

</M - erdm)i = (/ '7[ F(y) — ady Tdﬂf)i + </M |f(x) — a|”dm)i
</ ][ la—F)I dydg”)i + </M |f(x) — al’d:n)i (8.2)
<2( [ 1w - avdxf
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8. Local Poincaré-Sobolev inequality

Theorem 8.1.4 (Weighted Poincaré-Sobolev inequality). Suppose |Assumption 8.1.1| is satisfied and
set I =[(vp)~t,00]ifvp<1,I=1[1,00)ifvp=1and I =1[1,(vp—1)"1) ifvp > 1. Choose any q € I
and find r € [1/p,00] such that 2 =1 —vp + %. Then there exists a constant Cgza) = CE19) (v,p,q)
(but independent of M ) such that for every f € L1(M) supported on the set of finite measure, setting
A=M if |[M| < oo and A =supp f otherwise,

17 = Paellzra = CzmIN lzaa) Q9 (83)
Proof. The proof is given after preliminary [Lemmas 8.1.8|to [8.1.10] O

An immediate consequence of the previous theorem is

Theorem 8.1.5 (Weighted Sobolev inequality). Suppose|Assumption 8.1.1|is satisfied and in addition

|M| = oco. Choose any q € I (where I is the interval depending on v,p from|Theorem 8.1.4) and find
r € [p,00] such that £ =1 —vp+ %. Then

IFI? < Cgamp Al pagr) Qp(f) (8.4)

for every bounded measurable function f with F':= supp f such that |F| < co.
Proof. |M| = oo makes fy; = 0 and [Theorem 8.1.4] then automatically gives the claim. O

Remark 8.1.6. Notice that the previous theorem generalizes the classical Sobolev inequality for the
fractional Laplacian A%* (it can be found in Theorem 6.5, Chapter 6 of [DNPV12] for instance) if one
chooses M = R™, sp > n, ky(z,y) = Cslz —y|~"2) v = s/n, \(z) = 1 and ¢ = oo where Cy is an
explicit constant depending on s.

Theorem 8.1.7. Suppose |M| < 0o, 1 < p < r < oo and that for some H > 0 and f € L*(M) the
nequality

17 = Fatl ) < HO,() (5.5)
is satisfied on M. Then for every ¢ € [1,7]
1718y < 22HQu(N) + 2P G g (56)
and .,
Hf fM”Lp(M <H‘M|17;Qp(f)- (8-7)

Proof. To prove [Ineq. (8.6)| we compute

IANE -y < 2°0F = Fadlleary + 21 e
(M) (M) (M)

<wug, () +2 (| f s

r>f:
< 2HQ,(f) + 2 |M|* ((][M ) ) Z>f

<wro,(n+ 2t 00

where we used Jensen’s inequality in the second to last line. For[Ineq. (8.7)] Holder inequality followed

by |Ineq. (8.5)| produces

”f - fMH]zp(M) < Hf - fMHpr(M)HIHP

( < H|IM[""7 Q,(f).
L

)

=
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8.1. Abstract inequality

The rest of the section contains the proof of arranged in a sequence of lemmas.

Lemma 8.1.8. Suppose [Assumption 8.1.1| is satisfied and ¢ > 0. Let f be a bounded measurable
function with support F' := supp f such that |F| < |M|/2 and |F| < oo and define, fori € Z,

a; = {|f] = 2'}].

Then

1 1+1/q a VP
N @) > g S 2l
1€EZ
a; 70
Proof. 1t is not hard, using the formula for Q,, to verify Q,(|f|) < Q,(f) so the worst case for the
proof of the estimate arises when f is non-negative and we can therefore assume that this is the case.
Let us, for i € Z, define:

A= {szi}, a; ::|{|f|22i}|, ag)‘) ::/ Az)dx,
A;

Dj = A\ Aiy1, di == |Di, dy Z/ A(z)d
D;

and
S()\) _ Z oPi g _Vpdgi)l
1€EZ
a; 70
We now repeat the calculation of line (6.14) from [DNPVIZ] in two steps (our S is marginally
different then their S but conceptually the same). First compute

_ A _
S ST e e = 30N ovia Al (8.8)
i€ IEZ I€EZ €Z
a; 20 1>i+1 a1 £04<i—1

where we changed the order of summation and reformulated the set of indices. For the change in the

indices, notice that it is sufficient to consider only i +1 < [ such that a; # 0, because then a; > a; > 0

(N

41 < ap = 0. In the second step we

and the summands with a; = 0 do not contribute due to 0 < d
estimate a; > a; and get rid of the additional summation to get

Z Z opi, Vpdl(i)l < Z Z 2pzal l/de < Z op(I=1) Vpd N ZQ —pk

i€Z €L lEZ €Z leZ

(11750 lZ’L+1 al;ﬁo l<l 1 aﬁéO (8 9)
p(i-1) ;~vp 4N L oo
S219_1232 dl+1_2p_15 )
lEZ
a;#0

Observe that sets D;, i € Z are disjoint and (J~; D = A; which implies that

A A
i = 3,

k>i

This, together with [Ineq. (8.9)| (used in the last line), allows us to estimate

i~V A i~V A i~V
SN =37 e a2 Y 2 ey = Y a7,

€L €L l€Z

a; 70 a;#0 1>i+1
i —vp_ () L oo
> Z 2Pa, VpaiH T 15’( )
€L
a;#0

89



8. Local Poincaré-Sobolev inequality

which implies that

1 \! -
SN > <1 + » 1 1) g 2Pq, Vpal(j\r)l.
IEZL
a;#0

Let us call the constant in front of the sum on the right c¢; /2.
On the other hand, sets A; are defined so that for all i € Z, z € A; 41 and y € M \ A;

|f(z) = fy)] = 2",

If 4 is such that a; # 0, then we also know that |A;| < |supp f| < oo and |4;| < |supp f| < |M]/2.
Because of |Assumption 8.1.1| this makes [Ineq. (8.1) applicable with E = A; resulting in

[ 1@ = Sy 2 2 [ gy > A
M\A;

M\A;

for m-a.e. x € A;11. Integrating in x € D; 11 C A;11 and summing over all i with a; # 0 gets us to

>/ (@) = FWIPhy(a,y)dedy > 3 2a; 7d2) = 5O
i+1 % (M\A;)

1E€EL 1EZ
ai;é() U«i?éo
C1 . )
e you vp (
2 B E :2 ; Q-
€L
a7;7é0

The last estimate leads to the lower estimate of Q,(f) because

D= [ [ 186~ FPk o y)dady

— Z/WM\A)'Mf<y>|pkp<x,y>dmy

1€Z
(11750
— A
> E 2P, ”paz(Jr)l.
=/
a;7#0

Furthermore, for every i € Z (recall A; C F' := supp f) we can use Holder’s inequality to get

1+1/q
X pamyal®™ = A | Loa, /A)\(a:)dxz (/A ()\)\1)1+11/qu) =a Ve

The version of the Holder inequality applied in the previous line is perhaps not so standard but can be
found in Corollary 2.5 of [AF03] (see |Theorem 2.2.1| for the statement). This results in the estimate

N Qo(f) = et Y 2P0 PN pagimaly

1€EZ
a;#0
1+1 —v
> 1 Z 2pl z+1/q a; P
1€EZ
a; 70
and proves the result since
oy L\t
a=\"Te-1) T
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8.1. Abstract inequality

The following lemma is inspired by Lemma 6.2 from [DNPV12] Chapter 5.

Lemma 8.1.9. Suppose |Assumpti0n 8.1.1| is satisfied and choose any q > 0 such that 1 — Vp+% > 0.
Fiz T > 1 and let (a;);c; be a bounded, non-negative and decreasing two-way sequence which is
identically O for all i large enough. Then

l—vptd . 1\ (1—pprl) 41
Zai P i < T<1+9><1 ”p+tZ) Z a; i a; VPt
i€ i’
a;#0
Proof. First of all, the conditions on ¢ and the sequence a; guarantee that both series are finite. Tails
for 7 going to —oo converge because 1" is decreasing exponentially and a; is bounded while tails for
i going to oo do not exist because a; = 0 for large enough i. For 7, > 0 (to be chosen later) define

v = % (i.e. % + W% = 1) and use Holder’s inequality to get

—Z i S a, i 3 (a;?Ti(l‘i)> <aj+_fp+;a;5Ti>

€L €L iE€EZ
a;7#0 a;7#0

2=

1
. o\ 1 v + )
oy P —57
< <Z a; Tl) Z a’z+1 T

1€Z €7
a;7#0

It is now possible to choose v and § such that (1 —vp+ %) =1+ %, Yé=1—vp+ % and dy = vp.
The correct choice turns out to be

1 1\ ! i 1 1
y=(14+-)(1-vp+-) =1, '=(14+-)(vp) >1,
q q q
1 1\ !
d=vp|l—vp+— 14+ - > 0,
q q

which is not hard to verify. Notice that v > 1 and § > 0 crucially depend on (1 —vp+1/g) > 0. Our
choice was made so that

2=

1

1- Vp+qTZ 1_Vp+%Ti v 1 —I/pTz
3 > > ailia ’
1€EZ €L €L

a;#0

with the intention of making the first factor on the right a multiple of the term on the left. For this
reason

1-%)y
l-vpt+d . ( 7 141 .
qr Y q  —Vprm
<§ a; T> <T E a;a; 1Y,
€L iE€EZ

a;7#0

which proves the lemma because (1 —1/9*)y = 1. O

1

Lemma 8.1.10. Suppose |Assumpti0n 8.1.1| is satisfied, choose any q € [(vp)~", 0] such that % >

vp—1 and set let r be the unique number solving % =1—-vp+ é. Then there is a constant C =
C’(V,p, q) with the following property. For every bounded, measurable f : M — R such that,

setting Fy := supp (f+),
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8. Local Poincaré-Sobolev inequality

0 [ swrdyzg [ 1ferd.

| M]

it holds that
£ ary) < Crmp N page, ) Qo (F)-

Proof. The first assumption on f allows us to estimate
b
1A ary < 251 12

Furthermore, Q,(f+) < Q,(f) follows directly from formula for Q,. It is therefore sufficient (up to
changing the constant by a factor of 2°/ ") to prove the statement for f instead of f. To do so, define
a; = |{f+ > 2'}| and estimates the left hand side by

T (Z [, G rdx)

€L

38

p
(Z o+ 1)r Z> ' <3 Qi+ PP,

€L iE€EZ

The last inequality follows by reading elementary inequality

B B-1
VB > 1,Va; >0, (Za,) :Z o <Zai> EZai'ai’B_IZZaiﬁ,
i€EZ

1€EZL 1€L 1€EZL 1€

with a; = 2(i+1)paf/r, 8=
we already know that

5 = 1 (which is equivalent to ¢ > (vp)~1), backwards. From |Lemma 8.1.8

_ 1+1
N ey Q) > St 3 el e
1€EZ
aﬁéO

DL 1+1/q

and we just need to compare ) ;. 2(i+1)paf/T with > ez 2Pa; il P up to a multiplicative constant.
a;#0

Z

We will use [Lemma 8.1.9| with 7' = 2P, and the sequence a; = |{f; > 2'}| as defined before to do
so. Notice that g =1—vp+ 1 > 0 because of the assumption % > vp — 1. Let us verify that a;

indeed satisfies all the assumptions of the lemma. It is bounded because a; < |F| < 0o, decreasing by
definition and identically zero for ¢ large enough because f was assumed to be bounded.
thus implies
ip _p/T p<1+l) (17Vp+l>71 i 1+1/q —v
Z 2Pq,"" <2 a q Z 2P,

1EZ €L
a; 70

Collecting everything we get that

) P 1~ i 141/
N 2oy Qp(f) = o= Zzp 1111/[1 a; "

€L
a;#0
20 -1 —p 1+ ip p/T
> 2 Ly 22 d
7
20 —1_—r(14+1)_pe_r
> 2Ly (gt

which proves the inequality taking

_ —1 P 1
o - o _ 12_r<1+ )2 p2_7 1 B 2p +p+r+r(1+q>
@.1.10) -— op—1 = ow _ 1 .
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8.1. Abstract inequality

At the end let us remark that this constant clearly depends only on v, p and ¢ (because r was defined
depending on v, p and ¢) and is finite. O

All the preparations are now complete and we are ready to prove
Proof of[Theorem 8.1.7. Let us first show that it is sufficient to prove the claim for bounded functions
f. Suppose that the [Ineq. (8.3) holds for bounded f. Define fN) = (f V—=N) AN and notices

that f A(év ) far due to the dominated convergence theorem and f € L'(M). Following this up with
Fatou’s lemma shows that

. N . _
1 = Il ay < Jim 15 = 5710y < Jim O IA o (acny Qo ()

where we denoted by AV) the set from [Theorem 8.1.4| corresponding to function f(¥). Now using
Qp(f(N)) < 9Q,(f), owing to the shape of Q,,, and AW = A, because the support of f) is contained

in the support of f, it follows that
1f = £ ary < CETDIAN aga) ()

SO holds for f as well. Hence, without the loss of generality, we will from now on assume
that f is bounded.

If f is constant on M, then there is nothing to prove because it is equal to its average and the
inequality trivially holds. The proofs of |[M| < oo and |M| = oo diverge slightly at this point. Let us
first deal with the case |M| < co. We start by finding a number & = £(f) € R such that

T _ T _ 1 T
[ g =erar= [ go-era=3 [ o -ora.

This is possible because function
e~ [ (1)~ €)%y
M

is continuous via dominated convergence theorem since M has finite measure. This function clearly
tends to oo when & goes to —oo and to 0 when £ goes to oco. Having chosen &, |supp(f — §)4| or
| supp(f — &)—| (or both) is smaller or equal than |M|/2 which means that at least one of function

f—¢&and —(f —&) satisfies assumptions of [Lemma 8.1.10, Applying|Lemma 8.1.10|in either case gives

us the estimate

If - f”pr(M) < CH/\_luLf!(M) 9(f)
which, due to implies that
1 = st rany < 2207 = €12 apy < 2Oz N oaqan Qo(F):

Recalling that we defined A := M in case |M| < oo produces the statement of the theorem in case

]]\48| < oo with COEStTIJI\ZF :T:hQPC’ which depends only on s,p,q and n just like C.
uppose now that = 00. en

|supp f4| V [supp f-| < [supp f| < |[M]/2 = o0

since f is assumed to be supported on a set of finite measure. Furthermore,

| twran=g [ sara o [ para=g [ fara

which means that at least one of fi, f_ qualifies for the application of |[Lemma 8.1.10f Applying
Lemma 8.1.10l in either case results in

15y < CRTTIN ™ la(supp ) Qo (f)-

Since in this case A was defined to be supp f, taking Cg1z) = Cg1ig) gives exactly the statement
from the theorem. Notice that C depends only on v, p and ¢ as claimed. ]
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8. Local Poincaré-Sobolev inequality

8.2. Examples of the inequality

Volume regularity from below is a sufficient condition for a metric measure space (M, d, m) to satisfy
[Assumption 8.1.1| with kernel

kp(a,y) = d(,y) "),
A bit more is shown in the following lemma.

Lemma 8.2.1. Let (M,d,m) be a metric measure space, p € [1,00) and s > 0. Suppose that n :
M — [0,00), n,Cyr, D1 > 0 are such that ky(z,y) > n(x)d(x,y)"+sp) and[]W7 (0, Dy diam(M)];
n,Cyr] hold. Then there is a constant C = C (n,s,p, D1,Cvyr) such that for every E C M
satisfying |E| < oo, |E| < |M \ E|, and every point x € E

/M\E kp(x,y)dy > Cgzmyn(x)| E|~*/". (8.10)

In other words, |Assumption 8.1.1 holds for v = s/n and A(z) = Cgzqn(z).

Proof. The plan is to treat “large” and “small” sets separately. If E C M is small, that is, if
’E‘ < D’fCVLéfn(diam M)n,

there exists R > 0 such that |E| = CyR". The bound on |E| implies that 4R < D; diam M so, by
assumption, [M , (0,4R]; n, Cy 1] holds true. Thus for every r € [2R,4R]:

|B(xz,r)\ E| > |B(z,r)| — |E| > Cypr" — CyrR" > Cyp, (7’" — 2*”7'") >(1—=2"")r"

Keeping this in mind, let us use Fubini’s theorem, or more precisely Cavalieri’s principle, to compute

dy
Y
/M\E o(®9) (@) e d(z,y) P

= n(x)(n + sp) / / =gy
M\E J[d(x,y),00)

= n(x)(n + sp) /[0 )T‘”_S”_II(B(%T)\E)IdT-

Reducing the area of integration on the right side to [2R,4R] it follows that

4R
/ Fp(@,y)dy = n(x)(n + sp) / P B(a, ) \ Eldr
M\E IR
4R
= T}(LL“)(n + Sp) CVL(l — 2*”)T*5P*1dr
2R

n+ sp

> o (1= 27")(a) ( ) ((2R)™ — (4R)~*)

n—+ sp

> O R (1 -2y — 2o <
= YVL sp

__sp
) n(@)CyF R

sp s
> el _ gy — o) (”*pp) n(@)|E|~%.

On the other hand, if the set E is large, that is, if |E| > D}Cy 47" (diam M )™ (notice that this
only happens if diam M < o0), then in particular we have

g S
(diam M)~ > D?+3P4—(n+sp) C‘l/—z n ’E‘—l—%’.
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8.2. Examples of the inequality

Recalling that |E| < |M \ E| by assumption, we proceed to calculate

dy
k €T,y dy > n(x / T Neden
/M\E p(7.0) (=) e d(z,y)"Tsp
> n(x)(diam M)™""*P|M \ K|
n+sp 1—(n+s 1+S,1l _1-2P
> Dty o ()| BT | B

sp s
> D?+Sp4_("+5p)0‘1,—2" n(z)|E|~*.

Combining the estimate for small and large sets we see that [Assumption 8.1.1] holds with v = 2 and

Az) = Cgzgn(z) where

sp sp
Cizm = Oy (1 —27")27P(1 —27) (”;Sp) v Dty (ntsp) ot

which in particular depends only on s,p,n, D1 and Cy, and not on the space M in any other way. [

Remark 8.2.2. The fact that the lemma is stated in the setting of metric measure spaces makes it
quite useful because subsets of metric measure space are metric measure spaces themselves. Thus,
this automatically implies that all compact and smooth domains of R™ as well as all uniform d sets
satisfy Poincaré-Sobolev inequality. The only truly restrictive condition is the uniform lower volume
reqularity of the space.

With the help of the abstract proves the Poincaré-Sobolev inequality
on any ball in Z™ with constants independent of the ball. This is quite convenient since it circumvents
the need for proving uniform extensions estimates. We start with a lemma.

Lemma 8.2.3. Let Ry > 0 and xg € Z" be fized. Consider M = B(xo, Ro)NZ", d to be the Euclidean
distance on Z™ and m to be the counting measure. Then M satisfies [V=[M, (0, Ro); n, Cyr,(M)] with

LD A (o)

Cyr(M) = Cyr(B(zo,Ro)NZ") = i

which depends only on n.

Proof. Let x € B(xo, Ro), r € (0, Ro) be arbitrary and embed Z" into R™. In R" it is true that

r(z—mzo) T
B - = B B
(:L‘ SRy 2> C B(xg, Ro) N B(z, 1)
but z — T(%R:O) does not have to be in Z". Nevertheless, we can find the point y € Z"™ which is closest

to it. Then d(x — T(zg‘:‘)),y) is at most \/n/2 so

B (yr\/ﬁ) cB (x r(z = 2o) T) C B(xo, Ro) N B(z, ).

2 2 2Ry 2
Therefore, if r > 2¢/n,

r.

|B(z0, Ro) N B(x,7)| > ‘B <y7 %)‘ > C‘/Zizn)

When r is small (comparable to the discrete structure), that is r < 24/n, we instead use the property
of the counting measure, |{z}| =1 for any z € Z", to obtain

|B(z0, Ro) N B(x,7)| > [{z}| > (2¢/n)"r".
In both cases it suffices to take

Cyr(Z")

CVL(B(:E(),R()) ﬂZn) = i

A (2y/n)7 "
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8. Local Poincaré-Sobolev inequality

Theorem 8.2.4 (Uniform Poincaré-Sobolev inequality on balls in Z™). For fited n € N, s > 0 and
p > 1 such that n > sp there is a constant C = C@ (n, s,p) such that, fixing r to be the solution
of 2 =1-"2 for every ball B in Z™ and every f : B — R,

p
17~ fsllr < Cgma Y- LETRE

z,yeB

In combination with[Theorem 8.1.7 this also provides the estimate

1oy < 70z 3 LT 4 wovu@nr-ing,

z,yeB

Proof. Set M = B, ky(z,y) = d(x,y)~™*P) and take m to be the counting measure. [Lemma 8.2.3
showed that M satisfies [V>[M, (0, diam M /2);n, Cy 1] with

Cvi
LD 1 avi)™

independent of the ball B. Plugging this into [Lemma 8.2.1| with n(x) = 1 and D; = 1/2 proves that

|Assumption 8.1.1}is valid on M with A = A(n, s,p) = Cgz1) and allows us to apply [Theorem 8.1.4

with v = s/n. Note that due to assumption n > sp we are allowed to choose any ¢ € (&, 00|. Taking

Cyr =

sp?
g = oo results in 2 =1 — 2 and for f € L'(B) we obtain

1f = fBllerm) < CCQp(f)‘

Defining Cgzg) = Cgza) (n,s,p) == CC’(]_S.lﬁh and writing out the definition of Q, proves the
first inequality. The second is the consequence of [I'heorem 8.1.7 which implies that

11 < 2Oz 3 LT 4 B 111

z,yeB

and combining this with [Z”, [0,00);n, Cyr(Z™)] property of Z™ gives

p op
e D I T R

z,yeb

which gives the required statement. O

Remark 8.2.5. Alternative way of approaching the proof of the previous theorem would be to bound
the extension operator from WP5(B) to WP*(Z") and use the Sobolev inequality for the full space
Z". This is a classical approach in R™ and a similar approach on Z™ is taken in [FH20]. However,
while this works nicely for a fized ball or domain, the lack of scaling makes it difficult to preserve the
same constant under dilations. Additional work is required as one can see in Definition 16 and what
follows in [FH2()]. Notice that we obtained constants which are independent of the ball in the previous
theorem.

96



Part Il.

Long-range random conductance model

97






9. Motivation and definitions

For the rest of the thesis we will only be working on a metric measure space (Z",d, #), for n > 2, but
we will allow the conductance ¢ to be random. Here d is the Euclidean distance on R™ and # is the
counting measure. We also fix an arbitrary number s € (0,1). We will define what we mean by terms
symmetrized twofold ergodic conductance (Definition 9.1.6)) and i.i.d. conductance (Definition 9.1.4)).
Furthermore, in we will explain how to construct the variable speed random walk X; for
almost every realization of conductance that is either symmetrized ergodic or i.i.d.

Let, from now on, ¢ be either an i.i.d. or symmetrized ergodic conductance. Our plan is to verify
that assumptions from are satisfied for almost every realization of conductance ¢, under cer-
tain conditions on its distribution, and then apply deterministic results obtained in for every
such realization. In case of the symmetrized ergodic conductance, these assumptions are verified in
[Sections 10.2] and [10.3] for an arbitrary but fixed point x¢ € Z" and all large enough radii. We wish
to point out that the exact meaning of phrase “large enough” in the previous sentence depend on
the concrete realization of conductance c¢. The consequences of applying are stated in
frems 10.4.1) and [10.5.3] In case of the i.i.d. conductance, we can verify that the assumptions of
hold, with uniform parameters for almost every realization of conductance ¢ and “large enough” radii,
not only for arbitrary fixed point z, € Z" but also for points in the vicinity of x,. What we mean by
vicinity is explained in [Definition 3.2.1) and is inspired by the very good ball definition from [Bar04].
This uniformity of parameters is a big advantage compared to the symmetrized ergodic case because
it means that results of apply also for balls in the vicinity of z, and not only for balls with
center at z4. This technical detail will play the crucial role in the proof of tightness on the Skorokhod
space in [Theorem 12.5.2) where we make use the Markov property to restart the process X,,2s;/m in
the vicinity of point z, = 0. The consequences of applying are collected in [Theorems 11.7.1|
and [T.8.1]

In particular, we obtain the large scale Holder regularity estimate around point 0 € Z™ for
both choices of conductance c. Under rescaling X; — X,,,2s;/m, which is discussed in this
estimate together with Mosco convergence results from [FH20] (ergodic) and [CKK13] (i.i.d.) can be
used to prove that the process X,,2s;/m, starting from Xy = 0, converges to a rotationally symmetric
alpha stable process in finite-dimensional distributions. We present the proof in [Theorem 12.4.1] In
case of the i.i.d. conductance, we can in addition verify that the truncation estimate , needed for
short time estimates of PP in holds. This is the second crucial ingredient that allows
us to prove the tightness in [Theorem 12.5.2]

The main results of this part, and the thesis in whole, are [Corollary 12.4.2] which proves the
convergence of X,,2s;/m in finite-dimensional distributions for almost every realization of symmetrized
ergodic conductance, and [Theorem 12.5.2) which proves the weak convergence of X,,2s;/m on the
Skorokhod space D([0,T],R™) for every T' > 0 and almost every realization of i.i.d. conductance. The
argument used in the proof of [Theorem 12.5.2| is due to [CKW18b], Theorem 4.5 which proves the
same statement but under different moment assumptions.

Remark 9.0.1. Throughout this part Cyp = Cyr(n) and Cyy = Cyy(n) will denote the lower and

upper volume regularity constants of Z" (see|Lemma 2.6.1). To be precise
CyLR" <#B < CyyR"

for all balls B with radius R > 1. Here # denotes the counting measure. In case we need to use these
constants for Z™ and Z™ at the same time, we will write Cy(Z™) and Cy(Z™?) respectively.

99



9. Motivation and definitions

The integration in Z"™ will always be performed with respect to the counting measure #. That is, for

f € LYZ", #), we define
[ o= [ jen) - 3 s

Furthermore, for a set A C Z"™ we will denote |A| := #A.

0.1. Definition of random conductance

Definition 9.1.1. Let (Q, F,P) be a probability space. Random conductance ¢ on Z" is a function
c:QXZ"xZ" —[0,00)

which is F x B(Z") x B(Z™) to B(R) measurable (with B denoting Borel sigma algebra). Random
conductance c is said to be symmetric if

Yw e QVa,y € Z" clw,z,y) = c(w,y,T).

Remark 9.1.2. As is common when working with random variables, we will suppress w dependence
i the notation of c.

To a conductance ¢ we associate the kernel k and the energy form £ in the following way:

Definition 9.1.3. For a random conductance ¢ on Z"™ and s € (0,1) we define a random kernel

c(z,y)
k =
($7y) d(a:,y)”+25
and a random form &, trough its action on a measurable f : Z" — R, by

EF) =D > (f(=x) = f)k(z,y) (9.1)

TEL™ yeEL™

Unless explicitly stated otherwise, we will always consider on its maximal domain D[E] = {f €
L*(Z"),E(f) < 0o}. (Both ¢, s are suppressed in the notation but should be clear from the context.)

Definition 9.1.4. Symmetric random conductances c is said to be independent and identically dis-
tributed (i.i.d.) if the family of random variables

{c(z,y) 2,y e Z", 2 < y}

is independent and identically distributed. Here < is any total ordering on Z". (The ordering is needed
to avoid the conflict with the symmetry of c.)

Definition 9.1.5. Random conductance c is said to be twofold ergodic if there exists a family of
invertible, commuting and measurable mappings {TZ-(J) Q= Q:ie{1,2,...,n},j € {1,2}} (also
called shifts) such that dynamical system (2, F,P, {%i(J)}) is ergodic and for every i € {1,2,...n},

c(7(W), 2, y) = c(w,z —eiy) & (TP (W), 2,y) = c(w, z,y — €)

)

where e; € Z" is the unit vector having 1 only at i-th coordinate.
Recall that the dynamical system (Q, F,P,T) (here T denotes a family of shifts) is said to be ergodic
if all shifts are measure preserving, that is

VreTNAeF  P(r ' (A4) =PA),

and for every A € F
[T(A)=A VreT] = P(A)=0orl.
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9.2. Dirichlet form property

Definition 9.1.6. Random conductance c on (2, F,P) is said to be symmetrized (twofold) ergodic if
there exists an ergodic conductance ¢’ such that

/ /
Veyemn ey = CEN WD)

Remark 9.1.7. Let ¢ be a symmetrized ergodic conductance and ¢ an ergodic conductance from the
previous definition. Denote by (€, DIE]) and (E',DIE']) corresponding bilinear forms with mazimal
domains on L?(Z™). It is not hard to see that D|E] = DIE'] and that & is equal to the symmetric part
of &', that is, for all f,g € DIE]

E(frg) = 2 (E(f.9) +E.1)).

T2
In particular, forms & and E' coincide on the diagonal and E(f) = E'(f) for all f € DIE]. Therefore,
any statement on ¢ that contains only symmetric part of €' immediately translates to the statement on
c. For instance, Poincaré inequality, Sobolev inequality or Mosco convergece (assuming we are given
sequences {cm}, {ch,}) are valid for ¢ if and only if they are valid for c.

Definition 9.1.8. Let ¢ be an i.i.d. or ergodic or symmetrized ergodic conductance. In any of these
cases the distribution of variables c(x,y), for x,y € Z", is the same so the value E[f(c(x,y))], for
whatever f: R — R, does not depend on = or y and we will simply denote it by E[f(c)].

9.2. Dirichlet form property

We prove that, if conductance ¢ is symmetrized ergodic or i.i.d., then the random bilinear form
introduced in [Definition 9.1.3| with its maximal domain is P-a.s. a Dirichlet form.

Theorem 9.2.1 (cf. [CKK13], Theorem 3.2). Let A > 0 and a symmetric conductance ¢ on Z" be
such that E[c(z,y)] < A for all x,y € Z". Then, P-almost surely, & with its mazimal domain

DE] = {ve L*(Z"): E(v) < oo}

is a reqular Dirichlet form on L?(Z") containing C.(Z") in its domain. In particular, (€, D[E]) P-a.s.
satisfies [Assumption 4.0.2

Proof. We essentially repeat the proof of Theorem 3.2 in [CKK13]. By monotone convergence theorem,
for every x € Z",

clx, A
El Y kwy)|=E| >, d(xfy)ilgs < 2 d(z, g2 %

yeZ " \{x} yez\{z} yez"\{z}

Therefore there exists a a P-null set IV,, outside of which ZyEZ"\{m} k(z,y) < co. Then N :=J,czn N
is also a P-null set outside of which

Vo e Z" Z k(x,y) < oo.
yeZ™\{x}

Let us now fix an w ¢ N and work only on realization ¢(w). That £ is a positive definite bilinear form
follows from formula for £ in [Eq. (9.1)| and symmetry is inherited from the symmetry of ¢. To prove

2(7n
it is closed, take an arbitrary £-Cauchy sequence f,,,. Then f, ﬂ f for some f € L?(Z"™) and

we can find a subsequence f] (either because Z" is o-finite or because counting measure is atomized)

101



9. Motivation and definitions

which converges to f pointwise. Fatou’s lemma together with the Cauchy property of sequence f,,
now implies

Ef=Fm) =2 D lim (fi(@) = fn(y)*k(z,y)

TEL™ yeL™
<lim Y 0> (f(@) = fn()?k(z,y) = lim E(f] = fm) == 0,

TEL™ yeL™

which proves that the form is closed. The form is also Markov because E((f V 1) A0) < E(f) follows
straight from formula for £ in and therefore a Dirichlet form. Furthermore, by symmetry of
k, for a function g compactly supported in some set K C Z"™ we have

Eg) = > (9x) —gW)’k(x,y) <2 > g@)® > klz,y)

TEL™ yeL™ TeZn yeZ™\{z}
=2 g(x)* Y k(zy) <oo,
reK yeZ™\{z}

where the last inequality works only because compact set K C Z™ has finitely many elements. Hence
C.(Z™) c DI€]. By [FOTT11] Theorem 1.4.2 (iv) any function f € D[£] is approximated in & norm
by functions f,, = f — (f V. —1/m) A 1/m. But sets {|f| > 1/m}, on which f,, are supported, are
finite because f € L%(M) (keep in mind that we are working with counting measure). Hence f,, are
compactly supported and since any function on Z" (with discrete topology) is continuous, f € C.(Z")
which proves the regularity of £. Since the set of Lipschitz functions supported in balls is contained
in C.(Z"™) the [Assumption 4.0.2|is satisfied. All of this holds outside of P-null set N which completes
the proof. O

Corollary 9.2.2. Let ¢ be an i.i.d. or a symmetrized ergodic conductance on Z" such that E[c] < oo.
Then P-almost surely € with its mazimal domain is a reqular Dirichlet form on L*(Z™) satisfying
[Assumption 4.0.2

Proof. As mentioned when defining E[c], in both cases the distribution of ¢(z,y) does not depend

on z,y € Z". Thus Elc(x,y)] < El] for all z,y € oo so it suffices to apply [Theorem 9.2.1| with
A=E[] < 0. O

Lemma 9.2.3. Let ¢ be a symmetric random conductance such that P.a.s. (€, D[E]) is a regular
Dirichlet form and for every ball B C Z™

3 _dwy) (9.2)

n+2s
yezmp 4@ Y)

Then P-a.s., for every ball B C Z", HGBIHLoo(Zn) < 00.

Proof. Fix some ball B C Z". Let N(B) € F, P(N(B)) = 0, be a set such that [lneq. (9.2)is true and
(€,D[€]) is a regular Dirichlet form on ©Q \ N(B). This verifies [Assumption 4.0.2| [Assumption 2.5.3|
is satisfied because (Z",d,#) is a o-finite, locally compact, separable measure space and counting
measure # has full support. By this implies that GP1 < oo #-a.e. in B so in fact
everywhere on B because () is the only #-null set. We also know that G®1 = 0 on Z"\ B and as the ball
B has only finitely many elements we must have ||Gp1|| e (zn) < oo for every w € Q\ N(B). Since Z"
is separable and discrete it contains only finitely many different balls which allows us to define P-null
set N = ,ezn Ureg N(B(2, R)) outside of which ||GBlHLoo(Zn) < oo for every ball B C Z". O
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9.3. Random walk

9.3. Random walk

Let u be a Radon measure of full support on Z™. If the conductance ¢ is such that P-a.s. £ is a
regular Dirichlet form on L?(Z", 1), the existence of the Hunt process X; for every such realization of
¢ follows from [Theorem 2.5.13] Note that we leave the dependence of X; on the realization of ¢ out of
the notation, as is common in the literature. The discreteness of state space Z™ simplifies the general
results relating Dirichlet forms to their symmetric Hunt process considerably. Firstly, there is no need
to care about p-a.e. or q.e. notions because () is the only p-null subset of Z™. Thus the transition
functions of any two Hunt process coincide everywhere instead of q.e. like claimed in [Theorem 2.5.14]
Secondly, the Hunt process X; is the continuous time Markov chain with the generator

1

ﬁf(ﬂc):m

> () = f@)k(z,y)

YyeL™

and can be constructed directly, just like in [Nor98] Chapter 2. We summarize this in the following
theorem.

Theorem 9.3.1. Let ¢ be a symmetric random conductance on Z" such that P-a.e. (€, D[E]) is
a regular Dirichlet form on L?(Z"™ ). Then for P-a.e. realization of ¢ there ewist a Hunt process
(2, F, X4, {Py}uezp) on Zj (where Z = Z" U{0} and 9 is the cemetery point) such that

P f(z) = B [f(X,)] Vaez" (9.3)

Here P, is the strongly continuous contractive semigroup corresponding to (€, D[E]) on L*(Z", ).

Proof. Directly from [Theorem 2.5.13| applied to every realization of ¢ for which (€, D[€]) is a regular
Dirichlet form. This proves that [Eq. (9.3) holds for q.e.  but, because the space Z" is discrete and p
has full support, it also holds for every x € Z™. O

In particular, the previous theorem combined with [Corollary 9.2.2| proves that the continuous time
Markov chain exists when p is the counting measure on Z" and conductance c is either i.i.d. or
symmetrized ergodic. In general, measure p governs the jumping rates of X; at different points in
space and there are two standard choices in the literature. If p is the counting measure on Z", the
process X; is called the variable speed random walk and if y is given by

Z Z CL’ y z+2s VA C Zn’

reAyYEL™

it is called the constant speed random walk. Other choices are possible but they are not as common.

For the rest of we will only consider the variable speed random walk, that is, we will only
analyze the form & on L?(Z",#) where # is the counting measure. Thus we have the following
corollary.

Theorem 9.3.2. Let ¢ be an i.i.d. or symmetrized ergodic conductance on Z". Then for P-a.e.
realization of ¢ there exist a Hunt process (2, F, X¢, {Pa}uezp) on Z§ such that

Fif (z) = E.[f(Xy)] Vo eZ”

where Py is the strongly continuous contractive semigroup corresponding to (€, D[E]) on L*(Z",#) and
# denotes the counting measure.
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10. Symmetrized ergodic conductance

In this chapter we will study the regular Dirichlet form £, with its maximal domain, corresponding to
symmetrized ergodic conductance introduced in [Definition 9.1.6{on L?(Z",#). The main results are
Theorem 10.4.1, which gives the weak parabolic Harnack inequality and large scale Holder
regularity , and [Theorem 10.5.3] which gives the expected exit time estimate , survival
estimate and conservativeness of £. Both of these theorems are valid at every point zg € Z" in
space but only on the scale large enough depending on xy and the realization of c.

Let p > 0 be arbitrary. In we prove, by requiring that E[cp/] < oo for whatever p’ > p
and using the ergodic theorem of Zygmund and Fava, that the space averages of ¢ are bounded in
the limit. To be more precise, there is a Cy; < oo such that P-a.s.

e gE & B, 2, S O 1oy

z€B(0,a yeB(z,b)

where a and b are allowed to tend to infinity independently (see/BA). This is slightly stronger than the
ergodic theorem of Tempel’'man (see [Kre85] Theorem 2.8) because the set of P-full measure does not
depend of the choice of sequences {a;} and {b;} tending to infinity. However, a stronger assumption
E[cP(log™ ¢)?"~1] < oo is needed instead of E[cP] < oo required in the theorem of Tempel’'man. Sobolev
and Poincaré inequalities are proved in|Section 10.2|with the help of applied to ¢! instead
of ¢ and ¢ > 3= instead of p. In [Section 10.3] |Tneq. (10.1)} with @ > 0 in place of p, is used to prove
the estimate on the energy density of cutoff functions. Finally, the application of method from
demands the moment condition

1+1<25
g Q n

and results in [Theorems 10.4.1] and [10.5.31

10.1. Estimates on spatial averages

The main and only tool from ergodic theory that we are going to use is the theorem of Zygmund and
Fava which we paraphrase from [Fav72], Corollary after Theorem 3. It can also be found in Theorem
1.1, Section 6.1 in [Kre85]. It improves on the theorem 10 of [DS56] that is, in fact, already sufficient
for the arguments in this chapter.

Theorem 10.1.1 (Zygmund-Fava). Let (2, 1) be a measure space of finite total measure and k € N.
If each of linear operators T; (i = 1,2,...k) is at the same time a contraction of L' () and of L>(£2),
then for every f € L(log™ L)*~Y(Q) the multiple averages

CTESY mkHZ DI AT

= sz

converge when my,...my — oo independently (meaning that they converge for every sequence of k-
tuples that converge to 400 componentwise) for p-a.e. w € Q.
In particular, if p € (1,00), the same conclusion holds for f € LP(Q) C L(log™ L)*~1(Q).

Proposition 10.1.2. Let ¢ be an ergodic conductance and ¢ its symmetrized version. Let p € R be
such that B[] < oo for whatever p' € R with % > 1. Then, P-a.s., for every xog € Z" c(w) satisfies

[BAz; p, E[c?],n] and ¢ satisfies[BA[zo; p, 2E[c?], n].
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10. Symmetrized ergodic conductance

Proof. Fix an xg € Z™. Let us use shifts Ti(l) 7(2), (1=1,2,...n) from |Deﬁnition 9.1.5|to define T, T5,

EA )
.. Ty, through its action on a random variable f, by T; f(w) = f(Ti(l)Ti(z)w) and T, f = f(Ti(2)w) for
i =1,2,...n. Then each of the operators T, T3, ...Ts, is a contraction in both L'(Q) and L () so

Theorem 10.1.1}, applied to ¢?(w, xg, o) € L%(Q) proves that

1 man

11 i2n
(1 1) <m2n+1z 2 T T o, 20)

1=0 12y, =0

converges independently for P-a.e. w € 2. Changing the notation from sums to integrals with respect
to the counting measure, this implies that

i, I
P (w,x0 + x,x0 + = + y)dydz.
#(0,ma] ... #[0,m20] J10.m1]x...x[0,mn] L [0mns1] x5 [0,m20] (. 20 ’ )
(1) (2

also converges when myq,...m, — oo independently. Because shifts 7;"/,7;” are invertible by defini-

tion, this remains true if one or more segments of the form [0, m;] are replaced by segments [—m;, 0].
From this it is not hard to see that there is a P-null set N(xg) C €2 such that for every w € Q\ N(x¢)

][ ][ P(w,xo + x, 0 + = + y)dydz
[—m1,mi]x.. . X[—mp,mn] S [—Mni1,mpp1] X X [—M2n,man]

converges when my, ..., mo, — oo independently. Specifying m; =mo = ... = my, :=1 and my41 =
. = may, := k we find that for w € Q\ N(z¢)
Aw) == lim ][ ][ P (w, z,y)dydxr < .
k,l—o00 zo+[=L1" +[—k,k]"

indepenently
But then
lim sup][ ][ P (w,z,y)dydr < 2*"Cy7 Alw) < oc.
zo, B(z,l)

k,l—o0

1 (2

Clearly lim sup is invariant under shifts 7,°/, 7,”/ for ¢ = 1,...n so it has to be equal to a constant, call
it £ < oo, by ergodicity of (2, F,P). On the other hand, we can find a subsequence k; — 00, l; — c©

such that
E = lim ][ ][ P (w, z,y)dydx
=0 J B(xo,k;) J B(x,l;)

so Fatou’s lemma proves that
lim mf][ f P(z,y)| <liminfE f ][ P(z,y)
i=00  J B(wo,ki) J B(w,l; ) 100 B(zo,ki) J B(z,l;)

Therefore c(w) satisfies BA]zo; p, Car = E[cP],n] for w € Q\ N(z). Flipping operators T1,. .., T;, and
Thit,- .-, Toy, exactly the same proof (with variables x and y flipped) gives a P-null set N'(zg) such

that for w € Q\ N'(z)
lim sup][ ][ P (w,y, x)dydx < E[P].
k,l—oo J B(zg,k) J B(z,l)

Now, for the symmetrized ergodic conductance ¢, we can estimate

&z, y)P < (C(x’y) ;r . “T)) < c(x,y)P V ey, z)P < c(z,y)? + c(y, )P

Thus for every I,k € N and every w € Q\ (N (zg) U N'(z0))

][ ][ é(x, y)Pdydx <][ ][ c(x,y)P + c(y, z)Pdydr < 2E[cP)
(z0,k) J B(x,l) B(zo,k) J B(z,l)

proving that ¢ satisfies [BA[zo; p, Casr = 2E[cP], n]. Since Z™ is countable, we can easily find a null set
N which is good for all xg € Z". O

= E[].
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10.1. Estimates on spatial averages
We now introduce the family of sets on which the averages of conductance will later be required to

converge.

Definition 10.1.3. Fiz an zo € Z" and define, for a,b, R > 0,
Ay (R,a,b) = {z,y € Z" : x € B(xo,2° 'bR),d(x,y) < 2° 1aR}.

Proposition 10.1.4. Let zg be fized and take arbitrary R,a,b > 0. If R';a’,b' > 0 are such that
a<dad,b<?V and R< R, then

Ay (R, a,b) C Agy (R, a,b) N Agy (R, a’,b) N Ay (R, a, )
and

U Aso(Rya,0) 0 | Aug (R a,0) 0 ] Auy(R,a,b) D Z" x Z7.
ReN aeN beN

Furthermore,

CF [ (R%ab)"20=2" < 4 4, (R, a,b) < C¥y(R*ab)"2(@tt=2n,

Proof. Everything but the volume estimate follows directly from the definition because

Utz €27 a € Blao, Q). d(a,y) < (} =2 x 2"
¢eN

For volume estimate we use (Z”, [1,00];n, Cyr,Cyy) of Z™ with counting measure # to estimate,
for every x € Z",

CVLRRQn(b_l)an < #{y € B(x, Qb_l(zR)} < CVURnQn(b_l)an.
Summing this inequality in € B(x, R2%~'b) and using [V| once again results in

C‘%LR2n2(a+b—2)n(ab)n < Z #{y e B(l‘, 2b_1aR)} < C‘%UR2n2(a+b—2)n(ab)n.
z€B(z0,R2%~1b)

Since the middle term is equal to #A,, (R, a,b), the claim follows. O

Lemma 10.1.5. Suppose xg € Z", p,Cyn € R and conductance ¢ are such that ¢ satisfies [mo;
p,Cum,n] P-a.s. Then for every 6 > 0 there exist P-a.s. finite random variables R(o1s) = Ro1s) (o,

w,¢,0,p,Cwn), a@o1s) = afiors)(To,w, ¢, 6,p,Cyr) and boip = b(:vo,w,c, 9, p,Chr) such that

][ c(w, z,y)Pdedy < Cpr + 9 (10.2)
Azy (R,a,b)

for P-a.e. w € Q and all R,a,b € N such that R > Roig)(w) or a > aqmzs)(w) or b > bois)(w),
where the integration is with respect to the counting measure.

Proof. Choose arbitrary xo,p,d and fix them for the rest of the proof. Let us denote by x(S) the
indicator function of a set S C Q and define

Rozs) (%o, ¢, 6,p, Cun) == sup |R-x U {][ P(x,y)dzdy > Crr + 5} + 1.
ReN aeNpeN Az (Fab)

Since sets {fAIO(R,a,b) c(z,y)Pdyde > Cy + 0} are measurable for every R,a,b € N, Rg1s) is also
measurable as an extended real valued function, possibly taking value +o0o on a measurable set. a({0.1.5)
and b are defined in an analogue way and they are also measurable for the same reason.
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10. Symmetrized ergodic conductance

Let N C Q be a P-null set such that for every w € Q\ N conductance c(w) satisfies BA[zo; p, Car, 1.
We will prove that Rg1s), a(io1s), b{io1s) are finite on Q\ N by fixing w € @\ N and proving that
there are only finitely many triples (R, a,b) not satisfying [Ineq. (10.2)l So, let us fix an w € Q\ N and

suppose the opposite, that the there is infinitely many triples (R, a,b) € N3 not satisfying [Ineq. (10.2
We can then find a infinite sequence (R;, a;, b;) € N3 such that

][ c(w,z,y)Pdxdy > Cyr + 6. (10.3)
Aug (Riyai,bi)

First we prove that one can extract a strictly increasing subsequence of (R;,a;,b;) (using ordering
(Ri,a1,b1) < (Ra2,a2,b2) if and only if Ry < Ry, a1 < ag and by < b2). (R;)ien, (a:)ien and (b;)ien
cannot all be bounded because the sequence is infinite. Without the loss of generality suppose (R;)ien
is unbounded and (by passing to the subsequence if necessary) that R; are strictly increasing. If
now the sequences a; and b; are bounded, then at least one of the values, say (a*,b*), has to appear
infinitely many times in (a;, b;);cn allowing us to extract a strictly increasing subsequence (R;, a*, b*)
(the subsequence notation is omitted) which satisfies Otherwise, one of the sequences a;
and b; has to be unbounded, so let us assume (without the loss of generality) that it is a;, and (up to
passing to subsequence again) that a; is strictly increasing. The same reasoning applies again. If b; is
bounded, then at least one of the values, say b* has to appear infinitely many times in (b;);cn. In this
case we can again extract an increasing sequence (R;,a;,b*) which satisfies Otherwise,
if b; is not bounded, we can take it to be strictly increasing (by passing to the subsequence one
more time) so that (R;,a;, b;) is again strictly increasing and satisfying Therefore, if
[Tneq. (10.2)] were wrong, we would be able to find a strictly increasing infinite sequence (R;,a;, b;)
satisfying [Ineq. f10.3)l Now set k; := 2% 1b;R;, l; = 2bi—14. R and notice that li, k; — oo because at
least one of the sequences R;, a; or b; is strictly increasing. We would then have

][ ][ c(w, z,y)Pdydr = ][ c(w, z,y)Pdydx > Cpr + 9
Bl(xo,k;) J B(z,l;) Az (Riyai,b;)

which contradicts [BA[zo; p, Car, n] of ¢(w) if we pass to the limit k;,; — oo. O

We now define the minimal radius that will guarantee that the averages of ¢P are finite on sets
Az, (27°R,a,b) for all R > R, a,b € N, which is of technical importance for the rest of the
chapter.

Definition 10.1.6. Suppose xg € Z™, p,Cyr € R and conductance ¢ are such that ¢ satisfies [1:0;
p, Car,n| P-a.s. Define

Rots) (o, w, ¢, p, Cnr) == Rggas) (w0, w, ¢,6 = 1,p, Cp) 2@ (o.w.e.0=1p.Car)

implies that R 1s measurable and P-a.s. finite.

10.2. Functional inequalities in ergodic environment
The next theorem, written in a slightly different way, appears in [FH20], see Lemma 28.

Lemma 10.2.1. Let xg € Z" be arbitrary and suppose that conductance ¢ on Z" P-a.s. satisfies

[xg; —q,Cn,n] for some q,Cpy € (0,00). Then P-a.s., for all R > Rotg)(zo,w,c,p = —q,Cn)
and > 0,

c(z,y) 1 )
a7 < [Bazn(8:m] (Cu + DR 8
B(z0,R)?
T7y
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10.2. Functional inequalities in ergodic environment

Function IS’ can be taken to be

o0

Baozn (B,n) = 2°"Cy Y (1+1)"2 D7,

=0
which explodes when B goes to 0.

Proof Let us rewrite the sums using integration with respect to counting measure, [ f(z)dz :=
[ f(=) = >, f(z). For R > Rg1g) (20, w,c,p = —¢, Cu) we compute

c(z,y)~ 1
97 _dxd
[ﬂ,yeB(xo,R) d(x7y)n_ﬁ "
THY

[log, R|
< Z e B0 ) o(x, y)—qQ(l-i-l)("—ﬁ)Rn—dedy
=0 " o-(+D R<d(z,y)<27'R
[log, R|

Z R’B_"Q(ZH)("_B)/ c(x,y) Ydxdy.
— Ay ([2-1R]14+1,1)

The definition of R ) guarantees that for every I > 0 either 27'R > Rm orl > A([0.1.5)- It
is therefore legltlmate to use the estimate of |L m Moreover, when | < [logy R| we have

27'R > 1 and we can estimate [27'R] < 2'~'R, which, together with the upper estimate of volume of
set Ay, from [Proposition 10.1.4]in the second inequality, allows us to proceed with

cz,y) & o n-8) .
A S A < —no(l+1)(n— —
AyEB(mO’R) Ty dody < (o +1) S RO # Ao (127'R], 141, 1)
TH#Y =0
L10g2RJ

< CVU CM +1 Z Rﬁ n2 (I+1)( [QflR"|2n2nl(l+1)n

Ung R|
< 22“0\2/U(CM + 1) Z RB—nQ(l+1)(n—B)R2n2—ln(l+ 1)77,
=0

o0
< 2"CPy (Cyr + D)RMPY (14 12 D8,
1=0
This proves the statement because the series in the last line is converging and we simply have to define
B(ioz1) (8, n) like stated in the theorem. O

The following result is the same as one obtained in [FH20], where the variable r corresponds to
variable p’ used used below.

Theorem 10.2.2 (Embedding of random Sobolev-Slobodeckij spaces cf. [FH20] Section 3.4). Suppose
xg € Z™, q,Cpr > 0 and conductance ¢ on Z" are such that P-a.s. ¢ satisfies [azo;—q,C'M,n].
Let 1 < p < oo and 0 < s < s < 1 be arbitrary and set p' = pq/(q + 1). Then for P-a.e. w,
every R > R(mo,w,c,p = —q,Cu) and every measurable f : B(zo, R) — R, writing for short
B = B(l‘o, R),

1
Y

Z e d(z,y) n+si>|p < (Car + 1) Brza((s — §')pg. n) o

z,yeB

B =

’p

x R ) ) ‘f d(z y)n-(i-52 (@, y)

z,yeB
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10. Symmetrized ergodic conductance

Proof. Fix w € Q such that c¢(w) satisfies [azo; —q,Cyyn) and R > R(mo,w,c,p = —q,Cyy).
Starting from the quantity on the left and applying Holder inequality with exponents (¢ + 1)/q and
(g + 1) gives

q

|f(x) = fW)I” |f(z y) P e(a, y) o+ _—
Z .ZE y nJrSp Z ZL‘ y)n+5p (C/U,y) q+1

z,yeB z,y€B
4 1
' (a+1) a+1 1
<[ [f(@) = f@)l o clx,y) 3 c(x, y)~*
cwes  d(x,y) T 2 ()= )

The second factor in the last expression can be estimated using [Lemma 10.2.1| which require [a:o;
—q, Cpr,n| assumption, with 8 = (s — s')p’(¢ + 1) > 0. Rising at the same time both sides to power
1/p" and recalling that p’(q + 1)/q = p, we proceed with

1

Z ’f )’p ’ < ([ ((8 o 8,) n)} (C + 1>Rn+(8—8/)pQ>qlp
JZ‘ y n+s 1'% = BiIII,Z.I rq, M
z,yeB
f(= y)lPe(z,y)
X Z ZL‘ y n+sp
T, yeB
whenever R > R(xg,w, e,p=—q,Cuy). O

Remark 10.2.3. From now on we will state our results in term of ergodic conductance for concrete-
ness. However, they could be reformulated for conductance ¢ satisfying appropriate [BA] conditions
P-a.s. without much problem.

Theorem 10.2.4 (Ergodic Poincaré-Sobolev inequality). Suppose ¢ is an ergodic or symmetrized er-
godic conductance on Z" such that Elc™1] < oo for some ¢ > 1. Letp > 1, s € (0,1) and e > 0 be arbi-
trary but such thatn > sp, ¢ > %, pq/(q+1) > 1 ande < (£ — é) Define r = r(e, p,q, s,n) implicitly
by B:=1-2F +4 L . Then, for every zy € Z", there is a non random Cpg = Cpd(n, s,p,q,E[c™],¢)
and a mndom Rm Rogza(zo, w, ¢, n, 8,p,q,€) such that the following Poincaré-Sobolev inequality
holds P-a.s.: For all R > R{z4). f € LY(B), writing B = B(xo, R) for short,

p
I = Foll iy < Cizr () 30 = o) (1049

z,yeB

where fp = (#B)" 'Y ,cp f(zx). Constant CH§ can be taken to be

(1+n/sp)

Cpd(n,s,p,q,E[c™9),e) := (1 —|—C’) ns (1 +B(Esp/2,n)) sp? (E[e™ 1] +2):7?

Proof. The right hand side in of is symmetric in x,y and it doesn’t change if the con-
ductance c is symmetrized. Thus it is enough to prove the statement for ergodic ¢, which we will
now do. By [Proposition 10.1.2| we know that for every ¢’ € (0,q) there is a P-null set Ny C
such that for all w € Q\ Ny conductance c(w) satisﬁes BA[zo; —¢',1 + E[c"%,n] (note the estimate
E[c?] < 1+E[¢79)). Fixa ¢ € (0, q) such that ¢ > w5 pd'/(d'+1)>1ande+1/q—1/¢ > /2. This
is possible because all inequalities are strict and assumed to hold for ¢’ = ¢, leading to the following
dependency ¢’ = ¢'(n, s,p, q,¢€).

Let us now fix w € Q\ Ny for the rest of the proof. We define p’ :=pq'/(¢'+1), ¢’ :==e+1/q—1/¢,

/

s’ := s — ¢’n/p and notice that the choice of ¢/, ¢ and ¢ guarantees p’ > 1, &’ € (5,2 — %) and
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10.2. Functional inequalities in ergodic environment

s’ € (0,s). We start with Sobolev-Poincaré inequality provided in [Theorem 8.2.4| applied with n, p/,

/ / Y
sandr = 22— je. E =12,
n—s'p T n

)
I = Sl < Oy 30 LD L0)

z,yeB

where Cgza) = Cm(n p,s) = C- (n,s,p,q,¢). Taking the p/-th root of both sides, using
|The0rem 10.2.2{ (with I@zy = ¢, Cpyy = 14 E[c?] and all other variables matched by name) and
renaming the constant popping out to Ci, we find that for every R > Rm (xo,w,c,p=—¢q,Cp =
1+ E[c79]) one has

I = Falri < Ca(Ele ]+ 25w R0 | 50 LRSI Gy
z,yeB

: _J _¢€n en ./ _ _Pq
Using s — s' = b > o V=

first variable, we can estimate

¢ > 2 and the fact that function B(-, -) is decreasing in the

1 (1+n/sp)

1 1 n
C = C (Baoz (s — s)pd'sn))»" < (1+Cgzg) ™ (1 + Baoazgy(esp/2,n)) =

which which leads to C; = Ci(n, s,p, ¢,e). Now rising both sides to power p results in

1 = F5l2, ) < CHEL + 2)5 RT3 Wc@,y).
z,yeB

Finally, we can define C5¢ = C’;Tg(n s,p,q,E[c™9],¢) := CY(E[c™ 9] + 2)%r , R = R, w, ¢, 1,
8,0,q,€) = R(ioTo) (xo,w,c,p=—q',Cp = 1+ E[c™9]) and use the definition of ¢’ to get

IF = foll oy < o) 52 LSS0 )

.73 n-+sp
z,yeB y)

which proves [Ineq. (10.4)l Here

1 1 ¢ [(¢d+1\1 s s—5 1 1 8+6
rp n \ ¢ Jp n no @ n p
or 1
L
.

In order to get the increase of regularity we need that g < 1 which is equivalent to % +e< Sn—p. i.e.

q > % and e < 2 — % and this is exactly what we assume in the theorem. O

Theorem 10.2.5 (Functional inequalities). Let xg € Z™, n > 2, s € (0,1), € € (0, (% - %)), q> 5
be arbitrary and let ¢ be an ergodic or symmetrized ergodic conductance on Z"™ such that Elc™9] < co.
Let us also shorten Rigz: 5[) = Rozs) (zo,w,¢,n, 8,q,€) i= = Raoz3) (xo,w,c,n, s,p=2,q,¢) and define

P9 by pelrg =1-2 + +e. Then it is possible to find non random C5Y = C59(n,s,q,E[c™),¢),

Cg’ = ngg(n,s,q,]E[ ]7 e) and Cgy = C (D) such that P-a.s. € satisfies
[P1 [0, [Rozs), o0); 5, Cp ) (10.5)

and, for every ¢ € [2, p"Y], also

[x(]v [R7 00)7 7Ca gﬁg’ CSQ Y = O] (106)
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10. Symmetrized ergodic conductance

Proof. Poincaré and Sobolev inequalities follow by combining Poincaré-Sobolev inequality, for p = 2,

in {Ineq. (10.4)| with [Theorem 8.1.7} Choosing p = 2 in [Theorem 10.2.4} |Ineq. (10.4)[ holds P-a.s. for
— = 2 ._ 2 T

Cpd = Cpd(n,s,p =2,q,Elc,¢), r defined by £ :=1— 22 4 ; te <1landevery R > Rz

Theorem 8.1.7 (with p = 2) now gives

2s 1

If = fol2em < Cyy * CRdR¥Ep(f) (10.7)

and for every ¢ € [1,7/2]

or 241, 2
17120 < 4052 R G4 g () + a4 2,

where f € L'(B) is arbitrary. Using || f]|3.5 = HfQHLB(B) (for 5 > 0) leads us to

17215 () < 4CEER" () s )+ 4B £l e ) (10.8)

Ineq. (10.7)[shows that [Pl ﬁ x0, Rm, 00); s, Cp Y] is satisfied P-a.s. with Cp¥ = Cp?(n, s,q,Elc™,

€)= CVWU_E_EC;TSQ. On the other hand, [Ineq. (10.8)|remains true if the domain on the left hand side is
reduced to o B for any o € (0, 1) so[xo, [R@oz3) o0); 8,07, ¢, Ce?,CeY(¢),v = 0] holds P-a.s. with

2

2
constants p" = p®I(n, s, q,e) :=r/2, Cq = C(n,s,q,Elc™,e) :=4CRICy, , Oy = Cqy = 4.
This completes the proof. O

10.3. Energy density of cutoff functions

Theorem 10.3.1. Suppose xog € Z", @ > 1, Cyy < o0 and a random conductance ¢ on Z" are such

that P-a.s. ¢ satisfies [xg;Q,CM,n]. Then P-a.s. for all R > R(a:o,w,c,p = Q,Cuy) and
Lipschitz functz’on w:L" — [0, 1], with £ := RLip¢ and B := B(xg, R),

Q
Yy ¥ y) e y)? Crozn (Car + 1)€% (logy(€71) V logy € + 1)" R

.%‘ y d+2s
zeB yeZnr

where Cigza) = Cosa)(n,s) can be taken to be

[e.e] oo
Caozg =2-2""Cy (Z 2 2 FDA=) (o 4 1)n 3 " 272 E s (g 4 1)”> .
k=0 k=1

Proof. We will prove the theorem pointwise in w and all statements should be understood in the P-a.e.
sense. ¢ = 0 would make the right hand side of the inequality zero but this is alright because the left
side is also zero in that case. Let us assume that ¢ # 0 so & = RLipp > 0. The argument below
will require introduction of an additional summation, which is why we prefer to write the original
summations as integrals over counting measure #, i.e. denote [ f(z)dx := [ f(x)#(dx) =, f(x).
The proof consist of estimating the sum/ integral on the left side of stated inequality,

! _/ /n d(x y>3+2§x y)Qdyd”’"

but the computation is slightly different for £ > 1 and £ < 1. However, we will squash these two cases
together by adding integral terms which might have trivial integration areas in one of the cases. We
split I into four integrals which are to be estimated separately. Let us denote the integrand in I by
o/ for brevity, only for the next line.

1:// m// m// m// o =
B d(z,y)<§/\R B %Sd(a:7y)<R B Rgd(m,y)<§ B nggd(x,y)

=01+ s+ I3 + 14
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10.3. Energy density of cutoff functions

The computations for I3, I, Is, I4 that follow are very similar except in the choice of sets A, (-, -, ) (For
sets A(R, a,b) see|Definition 10.1.3)) and the choice of the bound for (¢(z) —(y))? term. The first step
is always to decompose the integral in dyadic way and then use sets Az, (R, a,b) in combination with
to estimate every summand in the decomposition. One has to keep in mind that this is
only possible when at lest one of the variables R, a, b is larger than its lower bound from [Lemma 10.1.5

Making an example of I;, we can, without the loss of generality (by replacing £ with 1), assume
that £ > 1 so that 5 AR = B. Using bound |¢(z) — ¢(y)| < d(x,y){/R we decompose

2 Q
// (€d(z,y)/R) fQ(x,y) dydz
2-k—1R/e<d(z,y)<2—FR/¢ d(x, y)n+2s

R —(n+23) [logy (R/€)]
- <> S okenm-2(1-s) / o, y)@dzdy.
£ P A([27FR/€] h+[10g2 €]4+1,1)

where the summation range is limited to k& < [logy(R/§)] because B(zp,1) \ {zo} = 0. Due to

assumption R > R either 2*kR/§ > R or k+logy, é+1 > A (T0.1.5)- Therefore |Lemma 10.1.5

applies and proves

Uog2 R/€)]

(VE € Np) c(x,y)dzdy < Cyy + 1. (10.9)

]%4((2’“1%/61 Jk+[logy £]+1,1)

Additionally, the upper bound on k implies that 27¥R/¢ > 1, which allows us to estimate [27*R/¢] <
27FR/E4+1 < 2'7FR/¢, and log, € > 0 implies that

k+ [loge &1 +1 < 2(k+1)(logy &+ 1) (using a +b < 2ab  Va,b>1).

Keeping this in mind, [Proposition 10.1.4] allows us to bound

#A([27R/E]  + Nogy €] + 1,1) < Clyr (277 R/E12 (k + MNogy €] + 1)) 2+ Tz €Dn
< 2O R (k + 1)"(logy € + 1)"27 %,

Thus we can now estimate

R —(+2s) Loga(R/6)]

I < <€) Z 2(1”1)("*2(1*5))(01\4 + 1)#A,, ([24“]%/51,,14: + [logy €] + 1, 1)
k=0

< 2 Cy (o + 1)E% (logy € + 1) R0 ) "2 2(HNA=9) (1)
k=0

< C1(Cn +1)€%(logy(§71) Vlogy € + 1)" R,

In the last line we used that the sum converges to define

Cy =y (TL 8) 25nC‘2/U Z 2_2(k+1)(1_5)(/€ + 1)n
k=0

The term log,(671) Vlog, € is added to account for the case when ¢ < 1. Then the whole computation
goes through by replacing £ with 1 but the final estimate is also valid for the original &.

I5 is bounded in a similar way, but using |p(z) — ¢(y)| < 1 instead of |p(z) — p(y)| < %d(m,y).
Notice also that we might again assume that £ > 1 because otherwise Io = 0. Hence

o(z,y)?
I, < / / 7da:dy
Z k=1 R/e<d(wy) <2k R/e AT, y) T2

< (Rjey ) 3 g2 / ez, y)dudy.

P A(TR/€].[logy €1+ 1,k+1)
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10. Symmetrized ergodic conductance

The volume of the set A can again be estimated using [Proposition 10.1.4{ together with [logy &] +1 <
2(logy & + 1), which results in

A(TR/E1 Nogy €] + 1,k +1) < Cyy (TR/E1* (Togy €] + 1) (k + 1)) " 2nTlosa 1k
< 2MCY ¢ (logy & + 1) R (k + 1)"2".
As either R/& > Ro1s) or logy § +1 > aggas), by [Lemma 10.1.5 we have

R (n+2s) oo
I <2 CYy(Cu +1) <> > o kN e (log, £ 4 1) R (k + 1)"2"

§

< 2 Chy (Cy + 1)€% (logy € + 1) R0 " 27218 (4 1)
k=1
< Co(Cur + 1)€ (logy(€71) Viogy € + 1) R,

where the sum in the second to last line is again converges and

Cy = Co(n, s) :=2°"CY, Zz k=Ds(k +1)" <
k=1

For I3 we may assume £ < 1 because otherwise I3 = 0 and then the same procedure gives

[logy (™1 2 Q
2-k—1R/e<d(x,y)<2~ kR/g d(x,y)n+2s

R (n+2s) [loga (6~ Bl
_ () 3 al-201-) / o, ) dzdy.
§ prd A(TR),1,Nlogy (1)1 —k+1)

This time #A(R], 1, llogg(€)] — k + 1) < 2703, R~ (ogy(€~") + 1)"2-"4(k + 1) which
means that implies

I3 < 25“0\2/U(CM + 1)525(log2(571) + 1)an72s ZQ*Q(kJrl)(lfs) (k + 1)71
k=0
< C3(Chr +1)€% (logy(§71) Vlogy € +1)"R" ™

where C3 = C3(n, s) := 2°"C% ;Y p0 o 2720+ DA=9) () 4 1)7.
Finally we arrive at I4. Here we can, without the loss of generality, assume & < 1 (otherwise we
replace £ with 1 in what follows). In the same way we estimate

c(x,y)?
I < / / e
! Z k1R je<d(w,y) <2k Rje A(T,y)" T2

R (n+2s) oo
< () S o (kl)(n+2s)/ oz, ) dzdy.
§ pet A(TR],1,[logy(6~1)]+k+1)

The volume of the set A is bounded by
#A([R],1, [logy(67)] + kb +1) < 2" Cy R (logy(671) + 1) (k + 1)"2™

SO

I4 < 25”0\2/U<CM + 1)£25(log2(§—1) + 1)an—25 Z 2—2(k—1)s(k + l)n
k=1
< Cy(Crr + 1)6° (logo(§71) V logy € + 1)"R" 2,
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10.3. Energy density of cutoff functions

where Cy = Cy(n, s) := 2°"C% ;S op2, 272k Ds (k4 1),
Collecting the computations for Iy, I, Is and Iy we finally get

L < (Cl +Cy+ C5+ C4)(CM + 1)§2s(log2(5_1) Vlogy & + 1)an—25

which proves the claim with

Cioz1) = Cozp(ns) = Cr1+Ca+ C3+ Cy

—9. 25”0‘2/U (Z 272(k+1)(175)(k + 1)n + Z 272(1{71)8(1{7 + 1)71)

k=0 k=1

because, as it turns out, Ch7 = C3 and Cy = Cj. O

Lemma 10.3.2. Suppose x € Z"", R > 0, s € (0,1), @ > 1, H < oo, conductance ¢ on Z" and a
Lipschitz function ¢ : Z" — [0, 1], with £ = RLip ¢, are such that

() -
Z Z d(z n+25 S e y) SHEFRTTE,
reB yeZm y

where we shortened B := B(zo, R). Then, recalling Cgzg) = Cgzg) (s, n),

1

<Z <T¢($))de> -chg%R**%

zeEB

Proof. Let us again replace the summation in the statement with integrals over the counting measure
#, [, f )do = [ f(z)#(dz) =, f(x). Take u € L9 (B), where Q* is the conjugated exponent of
Q ie. @ + Ql* =1, and compute using Holder inequality

/ x)lp(x)dx —/ /n A(z.0) fJ(rgZ)Zc(:n,y)dyd:U

: (/B / . ((’ch?x),;)fgz)z(%y)Qdydﬂf)l/Q.

According to [Corollary 2.7.6] the first factor can be estimated by

</B u (95)/” Wdydaz) e < (qmgsR—zs/BuQ* (SU)dx) 1/Qr

and the second factor is immediately estimated by the assumption of this lemma. Combining these
two gives

A 2s —2s * 1/Q* 1 2s n—2s
w(z)Tp(z)dx < CL QT RaF (/ u® xda;) HOEQR @
| u@reta) @)

—2s

. 1 n
QF = 25 P2
< CgrgHu¢ RY

[ull Lor (m)-

Since u € L9 (B) was arbitrary, the duality between L9 and LY?" proves the theorem. O
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10. Symmetrized ergodic conductance

Theorem 10.3.3. Suppose xg € Z", QQ > 1 and a symmetrized ergodic conductance ¢ on Z" are such
that E[c?'] < oo for whatever Q' > Q. Let us shorten Ros3) = R(|1033D (xo,w,c,Q) = Rm (xo,
w,c,p = Q,Crr = E[c?]). Then it is possible to find a non random Cei(y) = CE9% vy, n,s,Q,El¢ Q),
for every v € (0,2s), such that symmetric form € P-a.s. satisfies

[CE [x0, [R(mo33): 0); 5, @7, C& ' (7)] -

A little bit stronger statement is true: for all R > R and Lipschitz function ¢ : Z"" — [0, 1] with
¢ := RLip ¢y, shortening B := B(xo, R),

@\3

([ retan@as)” < g Cifry Bi2e? + WA RE™ (o6 ™) VIoga€ + 1.

Proof. By |Proposition 10.1.2] we know that P-a.s. ¢ satisfies BA[zo; Q, 2E[c?],n] so [Theorem 10.3.1|
produces a constant C’m = C’m (n, s) such that, for every R > Rm,

2
>yl d+25) c(x,9)? < Oz E2¢? + 1)6* (logy(§7") Vlogy € + )" R"™2.

reB yeZn

Following this up with an application of [Lemma 10.3.2| results in

([ rotenae)® < cig [CquapBiae® + Uogals™) viogs € + 1) € R~

and proves the inequality. Furthermore, for every v € (0,2s), it is possible to find a C, = C,(v,n)
such that
(logga+1)" < Cya” Va € [1, 0]

So we can estimate

e -5 oF 1
(Ji(Fcp(x))de> <Cyp C (CCVE[QCQ +1])Q (¢35 v gt R

This is now equlvalent by definition, to the Statement in the theorem if we take C57(v) = CZY(v,n

5,Q,E[c?]) := CVL C- (Ciozn CHE[2e? + 1]) O

10.4. Weak Harnack inequality and Holder regularity

In this section we present the weak parabolic Harnack inequality and Hélder regularity obtained by
applying the results of for almost every realization of symmetrized ergodic conductance.

Theorem 10.4.1. Suppose q,Q > 1 and a symmetrized ergodic conductance ¢ on Z™ (n > 2) are such
that

1 1 2s
— < — 10.10
L2 (10.10)
and E[c™9) +E[c?] < co. Then for every xog € Z" there exist a P-a.s. finite random variable Raoz1) =
Raoaa) (zo,w, ¢, n, s,q,Q) and non random Chi = Chi(s,n, ¢, Q,E[c™9),E[c?]) < oo, 09 = n°"9(s,

n,q,Q,E[c7,E[c?]) € (0,1), C7? = C?(s) such that form & P-a.s. satisfies

WPHj o, [R(]MD7 00)7 S5, C]cf]"—gjv ]’
WEH ., [R gy o) Conn = O3

[HR]zo, [Rasz), o0); 17, C5 )

and
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10.4. Weak Harnack inequality and Holder regularity

Proof. We fix an arbitrary xzg € Z" and work pointwise for P-a.e. w € 2. We will use results from

Chapter 6{on (M,d, m) with M = Z", d the Euclidean distance and m = # the counting measure.
First of all, notice that [Lemma 2.6.1{implies that (Z",d, #) satisfies

[m()) [17 OO), n, CVL7 CVU]'

Because of the strict inequality in [Ineq. (10.10)| we can find € € (0, (% — %)) small enough such that
for ¢ == (1/qg+¢)7, Q" := (1/Q + ¢)~! we also have

1 n 1 1 n 1 49 < 2s

— 4+ — =4 = +2e< —.

¢ @ q Q n
To be explicit, we take ¢ = (% - % - %)/4 which results in ¢ = e(n,s,q,Q), ¢ = ¢(n,s,q,Q)
and Q" = Q'(n,s,q,Q). Because of ¢ > 3 and € € (0, % — %), we can use |Theorem 10.2.5| to find

er

random variable Rigss) = Roas) (2o, w, ¢, n, s, ¢, Q) and non random Cp? = CL%(n, s, ¢, E[c 1], ),
-1

Cg? =C5 (n,s,¢ Elc],¢),Cqy =4, p9 = (1 — 2 %) such that, for every ¢ € [2, p9], form

& satisfies

[P [0, [Rozs), )i 5: Cp 7] 4

[xﬂu [R7 OO), SvpeTgv <7 02'1197 02'2977 = O] .

Note that the last line then also trivially holds for every v € (0,2s). By [Theorem 10.3.3| (with roles of
Q and Q' reversed), due to Q' < Q and E[c?] < o0, it is possible to find a random variable Rioss) =
R(xo,w,c, Q') and, for every v € (0,2s), a non random Cg?(y) = CZ9(v,n,s, Q" E[1 + )
such that &£ satisfies

[0, [Rozg), 0); @7, C&?(7)] -

Let us now specify ¢ = (Q')*, v = s, Rz = Roag(wo,w,c,n,5,¢,Q) := 1V Rgzs) V Riosa)
and notice that [Chapter 6, with exponents ¢ and @’ in place of ¢ and Q, applies to £ in B(xg, R) for
all R > Roz)- |Theorem 6.5.1| then proves that there is a constant C'5}} such that & satisfies

WPHI[z0, [R@oz) ); s Cpirr QJ,

with the following dependence of the parameter
OIC;T[?[ = C’PI{ (55 n, q,7 Qla Cng7 ngga Cg‘ggv C;Tga e C\e/TLga Oxe/rg) )

which reduces to
C;T}% = CPH (57 n,dq, Q’ ]E[C_q], E[CQ]) .

By |[Theorem 6.5.2) this also proves WEHI|zo, [Rgz7), 0); Cen = Co4] for €. Furthermore,
orem 6.6.3| implies that there exist a non random 79 = 79 and C5? = 12 Vv 2'71/% such that £
satisfies o, [Rgoa). o) 17, C'/7], with dependence

nerg = nerg(CPH; nga S, M, CVLa CVU) >0,

which reduces to
179 =n(s,n, q, Q,E[c?], E[c™Y]).
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10. Symmetrized ergodic conductance

10.5. Exit time estimates

We present the expected exit time estimate, survival estimate and conservativeness of £ obtained by
applying the results of for almost every realization of symmetrized ergodic conductance.

Lemma 10.5.1. Let ¢ be a symmetrized ergodic conductance on Z" such that E[c™9] < oo and E[c] <
oo for some ¢ > 0. Then P-a.s., for every ball B C Z", ||GBlHLoo(Zn) < 0.

Proof. Let us fix some ball B C Z". E[c¢™9] implies that c¢(x,y) > 0 P-a.s. for every pair z,y € Z".
There are only countably many such pairs so it is possible to find a P-null set N € F, such that
c(w,z,y) >0 forall we Q\ N and all z,y € Z". But this implies that for all w € Q\ N and = € B

Z c(w,z,y) S0

n+2s
P G )

Since the form (&€, D[€]) is P-a.s. is regular and Dirichlet by |Corollary 9.2.2| the statement now follows
from [Lemma 9.2.3 O]

Theorem 10.5.2. Suppose ¢ is a symmetrized ergodic conductance on Z" such that E[lc™9] < oo for
whatever ¢ > 1. Then, for every xo € Z", there exist a P-a.s. finite random variable Rm
Ros3) (20, w, ¢, E[c™!]) and a non random Ci¥ = O (n,s,Elc™']) > 0 such that P-a.s. for every
R > Ry there exist yo = yo(R, xo,w,c) € M\ B(:Eo, 6R) with the property

][ / k(z,y)dydr > CHLIR™>,
B(zo,R) J B(yo,R)

where the integration is with respect to the counting measure. In other words, form £ P-a.s. satisfies

BRBxo, Ry, 0); 5, O]

Proof. Fix an arbitrary zo € Z". By [Proposition 10.1.2} ¢ P-a.s. satisfies [ BA[zo; —1,2E[c"!],n] so in
particular

lim sup ][ ][ c(z,y) 1dyala;
k—oo J B(zo,k) v B(zo,k)

950,2/9)][ B(z, Qk)][ 1 M1 -2 12 1
< limsup ———= — clx,y) dydr < 2" CH7CoyE[2¢ .
koo B(20:K) JB(ao.2k) B(®o, k) JBa2n) (#.9) viCruEl2e]

Hence, using x(A) to denote a characteristic function of the set A C 2, the random variable

Rz (z0,w, ¢, Blc™))

R-x ][ ][ c(z,y) tdyde > 22O CEE2¢! + 1]
B(zo,R) Y B(zo,R)

is P-a.s. finite. Therefore P-a.s. for every R > R(io53), denoting B := B(xo, R),

1= sup +2

ReN

][ ][ c(z,y) tdydx < 22"P1CLICE R [2¢7 + 1]
8B

Taking any y € B(zg, 7R) \ B(zo,6R) (this is not an empty subset of Z" because R > 1) we can
increase the area of integration to estimate

_ 8B/ -1
c(z,y) tdydr < 22"+1C C’ c(z,y) “dydx
][B][B(yo,R) VU|B||B yOa |

2

ml&? [2c7 +1] < 28"“0%0;%1@ [2¢7" +1].
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10.5. Exit time estimates

On the other hand, Jensen’s inequality implies that

1
][ c(x,y)dxdy < ][ c(z,y) ' dzdy
BxB(yo,R) BxB(yo,R)

so the last two inequalities combined prove

~1
][ c(z,y)dzdy > ][ c(z,y) ! > 278n71C€‘/LC’;4UE [2671 +1]
BxB(yo,R) BxB(yo,r)

Since d(z,y) < 9R for all x € B,y € B(yo, R), we can use

-1

_ (CC y) (n+2s) p—(n+2s)
k(w7 y) - d(ﬂ? y)n+28 - 9 R C(.I, y)
to estimate
/ k(z,y)dzdy > 9~ (n+2s) p—(n+2s) / c(z,y)dzdy
BxB(yo,R) BxB(yo,R)

> - (n29) p(nt29)9-8n—1cd 0oAR [2¢ +1] 7 |B||B(yo, R)|

> 9,(n+25)278n710‘5/LC‘;l4jE 27! + 1]—1 |B|R™%

Dividing both sides with |B| and defining
C9 = C59(n, s, Ele1]) i= 9~ (+29)2=8n=100 OO R [2¢71 4 1]_1
leads to the claimed P-a.s. statement and finishes the proof. O

Theorem 10.5.3. Suppose symmetrized ergodz’c conductance conZ" (n>2)is such that Elc™9] +
E[c?] < oo, for some q,Q > 1 satzsfyzng + Q < —. Then, for every xq € Z™, there exist a P-a.s.

finite random wvariable Ros3) = R(110~5-3D (xo,w, ¢, q,Q) and non random C(eggg) = Cfgé)(s,n,q,Q,

E[Q), E[c™)) < 0o, CGL, = oL, (5,14, Q. E[?), E[c™)) > 0, &7 = &79(s,n, ¢, Q, E[c~7], E[c))

and 679 = 679(s,n, q, Q,E[c™9), E[c?]) such that symmetric form E on (Z",d, ) satisfies

ETE[vo, (Rmzs, ;5. Oy Ci)

and
[0, [Rgz), 00); 5,077, 7]

In particular, the semigroup corresponding to £ is P-a.s. conservative.

Proof. Observe that Z™ with the Euclidean distance and counting measure # is a locally compact,
separable metric space and # has full support which verifies|[Assumption 2.5.3| Furthermore, (£, D[E])
is a IP-a.s. a regular Dirichlet form satisfying[Assumption 4.0.2|by |[Corollary 9.2.2] Let us fix an zg € Z™.
We will prove the theorem pointwise for P-a.s. w. By[l'heorem 10.4.1|we know that there exist a random
variable Rz = Roa) (%o, w, ¢, ¢, Q) and a non random Cp}; = CPf(s,n,q,Q,E[c™], E[c?]) such
that & satisfies

WEHI [z, [R gz, o0); Chj] -

Furthermore, [Lemma 10.5.1| shows that ||G? 1| zee(By < 00 P-a.s. Because of ¢ > 1 and E[c™] < oo,
[Theorem 10.5.2] shows that there is a random variable Rm Rm (w0, w, ¢, E[c™!]) and a non
random Cy 7 = C3?(n,s,E[c7]) > 0 (having a look in the proof it is not hard to see that E[c™!]
dependency can be replaced with E[¢™?]) such that symmetric kernel k satisfies

(20, [R{oz), 00); 5, 7] -
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10. Symmetrized ergodic conductance

By [Theorem 10.3.3| we also know that there exists a random variable R = R (zo,w, ¢, Q,
E[c?]) and a non random Cg? = CZ¥(v,n, s, @, E[c?]) such that for every v € (0,2s) £ satisfies

[0, (R, o) @1 = 5, C9(x)]

Finally, we also know that counting measure # on Z" satisfies

[V][zo, [1,00),n, Cvr, Cvu]

by [Lemma 2.6.1} These conditions (along with [Assumption 2.5.3| and [Assumption 4.0.2| verified in the
beginning) are sufficient for [Theorem 7.1.5/to apply and conclude that & satisfies

ETE [wo, 2Ry V Rosa) Vv Ross), 00); s, C’aggg), Cfggz)}

with C(eggz) = C(eg’z)(C’EH,C’gg,%s,n,CVL,C’VU) and C(eg’g) = C’(eggs)(CEH,CK) > 0. If we choose

~v = s, dependencies change to C’(e;f;) = C’(e;i)(s,n,q,Q,]E[cQ],E[C*q]) and C’Fgg<) = C(egi)(s,n,q,Q,
E[c?],E[c™9]) > 0. The first statement now follows by defining Raos3) = Raosa)(ro,w,c,q,Q) =

2Rmoaq) V Raosa) V Ross). Moreover, using |Theorem 7.2.1| we can find constants "9 = g9 (C'(eg;),
C9\) and §¢79 = §¢9(CF 7 ) s) such that & satisfies

(B<) (E>
[0, [Reg), 00); 5,677, ]

In the current case dependencies transform into £9 = 9(s, n, ¢, Q, E[c 9], E[c¥]) and §"9 = §¢79(s,
n,q,Q,E[c™9], E[c?]) which proves the second statement. Finally, the conservativeness follows from

the last property through O
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11. i.i.d. conductance

In this chapter we will study the regular Dirichlet form &, with its maximal domain, corresponding
to the i.i.d. conductance introduced in [Definition 9.1.4] on L?(Z" #). Similar to the
main results of this chapter are [Theorem 11.7.1 which gives the weak parabolic Harnack inequality
and large scale Holder regularity (HRJ), and [Theorem 11.8.1, which gives the expected
exit time estimate , survival estimate , conservativeness of £ and also the short time
estimate on the restricted semigroup Pf. In contrast to the results of [Theorem 11.7.1
and [Theorem 11.8.1] hold with uniform constants in the vicinity of the point x,. To be more precise,
there is a 6 € (0,1) such that, for every fixed z, € Z", all the results hold in balls B(z¢, R) whenever
R > (|Jzo—x4|VR,)?, where R, is a minimal radius depending on the realization of ¢ (seeDefinition 3.2.1|
for more details). For the sake of this exposition, let us say that a statement fails in x(0, Ry)-way if
it fails to hold in at least one of the balls described in the previous sentence. The improvement we
mentioned is possible because in the i.i.d. case we are able to estimate the probability that [ST} [PT]
or fails in *(0, R,)-way. If these probabilites are summable in R, for some choice of 6, then
Borel-Cantelli lemma can be used to prove the existence of the minimal radius R, < oc.

In [Sections 11.2] and [I1.3] respectively, we estimate the probability that Sobolev or Poincaré in-
equality fails in x(0, R,)-way. To do so, we couple the conductance ¢ with a family {&,, : x,y € Z"} of
symmetric i.i.d. Bernoulli random variables such that c(z,y) > v, for some v > 0 and all z,y € Z".

Then the bilinear form corresponding to the conductance v€, call it £, is dominated by &, that is, for
every f € L*(Z") R
E(f) < EF).

Because of this, it is enough to estimate the probability that Sobolev or Poincaré inequality with
& replaced by £ fails in *(0, R.)-way. The fact that £, are Bernoulli random variable allows us to
use Chernoff’s bound (see [Theorem 11.1.2)) and prove that these probabilities decay exponentially
in R,. The result then follows from Borel-Cantelli lemma and does not require an assumption on
the moments of ¢~'. On the other hand, in [Sections 11.5| and [11.6] we make use of Rosenthal’s
inequality (see|Theorem 11.1.3)) to estimate the probability that or fail in x(6, R,)-way under
the assumption that certain positive moment of ¢ is finite. For appropriate choice of § € (0,1), these
probabilities turn out to be summable in R, and and are then proved by another application
of Borel-Cantelli lemma. Finally, an application of method from results in [Theorems 11.7.1]
and [11.8.1] and the moment condition boils down to

S n+1

Assumption 11.0.1. In this chapter we will consider an i.i.d. conductance ¢ which is allowed to zero
but not P-a.s. (which is the trivial case)

Lemma 11.0.2. Since all ¢(x,y) # 0 have the same distribution, we can find numbers p > 0 and
v > 0 such that P(c(z,y) > v) > p.

Proof. By assumption P(c(z,y) # 0) > 0, so we can take v to be the median of ¢(z,y) on the set
{c(z,y) > 0}. Defining p := P(c(x,y) > v) > 0 proves the claim. O

Definition 11.0.3. For the rest of this chapter, p and v will denote any choice of numbers which
existence 1s claimed in previous lemma. We use v to define a family of i.i.d. random variables

§a:y = 1{c(x,y)2u}a x,y € z".

They are all Bernoulli distributed with parameter p.
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11. i.i.d. conductance

11.1. Basic estimates

Most of the proofs in this chapter rely heavily on the first Borel-Cantelli lemma (see [Durl0], Chapter
2.3).

Theorem 11.1.1 (Borel-Cantelli lemma). Let Eq, Es ... be a sequence of events in (Q, F,P). Then
o
> P(E) < oo = P(limsup E;) =0
i—1 1—00
where lim sup,;_, ., F; = ﬂizl szl- E; is the subset of Q) where infinitely many events E; happen.
To estimate the tails of different sums of &;,, we will use Chernoff bound.

Theorem 11.1.2 (Chernoff’s bound). Let X be a binomial random variable. Then for every ¢ € (0,1)

_ 5%E[x]
2

P(X <(1-0E[X])<e

Proof. Suppose X is binomial with parameters m € N,p € [0, 1] and set p = E[X] = mp. Taking any
t < 0, by Markov inequality for e!*, we find

E[etX] (pet + (1 —p))™

PX <(1-d)p) < A=~ ti—d)mp

Estimating the numerator using p(e! — 1) + 1 < exp(p(e! — 1)) and specifying ¢t = log(1 — §) < 0 gives

exp(—dp)
<1 - < — L = — — —_
PX < (1= 0)) < 2 = exp(oih + (1= ) log(1 —5).
To complete the proof it suffices to check that 6 + (1 — §)log(1 — &) > 62/2 for § € (0,1). Setting
x = —log(1 — &) > 0 this is equivalent to 1 — e™® — ze™® — (1 — e7%)2/2 > 0 and reduces to

2 O roi-1 _
e . 1 (2 —id)x
P D D e

O

When the summands are not Bernoulli distributed we rely on Rosenthal’s inequality to obtain the
deviation estimate. Here is the statement of the Rosenthal inequality paraphrased from from Theorem

3 of [Ros70]:

Theorem 11.1.3 (Rosenthal’s inequality). Let w > 2. There exists a constant Cr = Cr(w) such
that for every N € N and every sequence X;, i = 1,..., N of independent random variables with finite
absolute w moments and E[X;] =0

N
E[|Sn["] < Cr(w) max ((E [S%])® >ZE[|Xz'|w]> : (11.1)
i=1
where Sy = Zfil Xi.

We will use this inequality to calculate the probability that Sy deviates from its mean. The idea
is similar to the one used in the proof of the weak law of large numbers except that it uses moments
higher than the second one.
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11.1. Basic estimates

Lemma 11.1.4 (Deviation estimate). Let w > 2, N € N be arbitrary and let X;, i =1,...,N, be a
sequence of i.i.d. random variables with finite absolute w moment. Then for every 6 > 0

N
P (Z} X_A;E[‘X] > 5) < 2YCr(w)d "N~ 2ZE[| X ["]. (11.2)

Proof. We start by estimating the probability using Markov inequality and then applying Rosenthal’s
inequality dTheorem 11.1.3[) to a centered sequence %[Xi] of independent random variables. This
results in

|

P(i&_]@w >6> < 5VE
N 5 N
< Cr(w)d™ " max <Z \%p) ’ZE HXz_]\;E[Xz]
i—1

i=1
=1

LN
> X - E[X]
‘N i=1

|

—w Var(X1)? E[|1X; —E[Xi]|"]
< Cr(w)d max( NE N1

The centered moment can be estimated by the normal one with the same trick used in [Ineq. (8.2)| as
E[|X: — E[X4]["] < 2VE[|X1]"].

This, in turn, gives

N w
Xi — E[X] —w EX{]z L E[1X:]"]
(5552 ) o 22 20T

Taking into account that w > 2, on one hand N~(=1 < N ~% and on the other Jensen’s inequality
allows for the estimate
E[XT]? <E[X1]"]

because w/2 > 1 makes the power convex. The last two observations lead to

N
P (Zl mer 5) < 20 Cp(w)6 N B[ X[

and complete the proof. O

Lemma 11.1.5. Let ¢ be a non-zero i.i.d. conductance on Z". Then P-a.s. |GP1|| 10 (zn) < 0o for
every ball B C Z™.

Proof. Let a ball B C Z" be arbitrary. For fixed x € B we have
c(z,y) . - |B(z,L)\B]
_— = < g < — 3 — .
Pl 2 Ty 0 < fim 1L B =0 < fim (1-0) 0
yeZn\B yeB(z,L)\B
As there are only finitely many = € B, this implies that P-a.s. for all z € B

I

yeL™

and the claim follows from |Corollary 9.2.2| and [Lemma 9.2.3| O
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11. i.i.d. conductance

11.2. Sobolev inequality

We will prove [Assumption 8.1.1| using the independence of {&y}yezn for fixed z € Z™.

Theorem 11.2.1. Let ¢ be an i.i.d. conductance on Z", p,v, &y like in|Definition 11.0.5 and p > 1
arbitrary. There is a family {\(z) = Mz, w,c,n, s,p,p,v)}pezn of i.i.d. random variables on  such
that, for every E C Z", |E| < oo and every x € E, P-a.s.

[ Ky = 2@ (11.3)
Zn\E

In addition, A(x) > 0 P-a.s., there exist () = (Ez) (™ s,p) > 0 and Cara = Carag (b, n, s,
q,p) > 0 such that

Ve (oo (z))  E |exp (CA(@) W9 )| < oo
and for all ¢ € R
EAz)™ < Czmv*
Proof. Let us fix an arbitrary unit vector e; in Z" and define, for an =z € Z",
Hi(x)={yeZ:y-e>ux-e}.

We will construct A(z) from random variables {£zy}, ¢+ () Which will automatically make {\N2)}rezn

independent since sets {&y : y € Hf (2)}ezn are disjoint. The symmetry &, = £, prevents us from
using Z" instead of H[ () because &, would be involved in constructions of both A(z) and A(y) and
these variables would not be independent.
Moving on to the construction, we fix z in Z" and w € © and find the largest number ¢ = ¢(n) > 1
such that
CVL(Zn)Cn — CVU(ZH) — CVU(Znil)Cnil = 2. (11.4)

This is possible because the above expression is continuous in ¢, Cy < Cyy implies that it is non-
positive for ¢ = 1 and it tends to +o0o0 when ¢ goes to +00. Define now a sequence of annuli

Ay = B(z, ¢\ B(z, )
and two sequences of half annuli
Af=ANH (z), A =ANH, (z).
We claim that [Af| := #A" > ¢ for every | € N. Indeed,
Al:AlJr+Al_+Alﬂ{y:yi-ei:x-ei}
so using volume regularity of both Z" and Z"~! (note that ¢ > 1) we know that
Al = B, )| = [Bla, )| = Cyr(Z")e" D" = Cyy(27)e
and
An{y:yi-ei=2 e} <|Blz, )N {y:yi e =z e} < Cyy(zh1)HDO—1),

By the symmetry of Z" under reflection over plane {y,y - e; = z - e;}, we deduce that |4| = |4, |.
This together with the previous estimate implies that

Al = A N{y:y- e =2 e}

|A| = 5
o Gy (2" — Cyy (2" — Cyy(zr— )T
- 2
S Cvi(ZM)e" = Cyy(Z") = Cyu(Z" D) b n

- 2
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11.2. Sobolev inequality

where we have intentionally estimated ¢(TDM=1 < ((+1)n=1 31q ysed [Eq. (11.4)|in the last line.
Let us now find the smallest Iy = lp(z,w, ¢, p,v) € NU {oo} such that

{ye Af :&y=1} > |A+| VI > lo.

We will show, using Borel-Cantelli lemma, that such [y is finite P-almost surely. To do so, we estimate
the tail of binomial random variable X := 3" A &y using the Chernoff bound from [Theorem 11.1.2|,

§2EX

P(X <(1-0EX)<e "2,

to get (note that EX = p|Af|)

Pl > &y< A+| =P| > &< <1—)p|A+|

yeAS yeAS
(/2214 | n
< e_fl < e‘%‘ :
This is summable in [ so Borel-Cantelli lemma implies that
. P, s
P | limsup Exy < Z|A]| =0
map | 2 b < 5l

+
yEAl

which means that [y is finite P-a.s. It is measurable because, for every [ € Ny,

{o>0=UJ3 D &< yA+ eF

>l yEA;"

and its distribution is independent of x since the family {&,,} yeHZ (2) is i.i.d. Bernoulli with parameter
independent of z. Using this Iy we now define random variables

(n+sp)/n
AMz) = Mz,w, ¢, 8,n,p,v) =V <E> :

C_(lo +2)(n+sp)
4

and observe that A(x) > 0 P-a.s. because [y is P-a.s. finite.
To verify [Ineq. (11.3)] we fix a set E and find the smallest I; € Ny such that |E| < %clln, ie.

= [ logc 4|E‘
implies |E| > 1. With I; defined in this way, |E| < Bclotlin < BlAF ., | and we can calculate
0 1

c(z,y)
kx,ydyZ/ km,ydyZ/ o= dy
\/ZR\E ( ) At \E ( ) {yGAZEH 'fzy:]-}\E (Cl0+ll+1)n+5p

lo+1i1
> ye (ot Dmtsp) =hntsn) | fy e AF g, =11\ B
> ye~ (ot Dntsp) —hintsp) |

. Notice that Iy > 0 because (by special property of the counting measure) E # ()

where for the last line one needs to take into account that, by definition of [y,

1
e AL =1 BI2 3 e 812 (31 ) oAbl 2 181
y6A10+l1
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11. i.i.d. conductance

Furthermore, clearly

1 (4B
l]_ < ﬁ logc T +1

—(n+sp)/n
/ k(z,y)dy > ve (ot (ntsp) <4|E!> B
Z"\E p

o p (ntsp)/n —(lo+2)(n+sp) —sp/n
”’(1) ¢ |\E|~P/m,

Now plugging in the definition of \(x) we get exactly

We still have to find ¢(FrzT) such that the moment generating function of /\(%)7#51’ is finite on
(=00, {qTz1)) and that random variable A(z) has all moments. Notice first that random variable Iy
has a doubly exponentially decaying tail at infinity which can be seen from

P(lg > l) < ip Z f:cy |A+‘ < Z _7cm <e" 8 et ie—gc”i
=0

i=l yeA;"

and therefore

l

S Cl(pa c)e—%c" )
where C; = C1(p, n) is defined by

o0

_bni

Ci:= E e 8" |
=0

which is summable since it has a sub-exponential tail. It is elementary to see that, for a.s. finite
random variable X € N and increasing non-negative measurable function g : R — R,

=> gi+ )P(X =i+1) <Zgz+ DP(X > ). (11.5)
1= =0
For ¢ > 0, implies
E [exp (CVﬁSr’)\(:c)_ﬁspﬂ < iexp (C (2) c(l+3)”) P(lp > 1)

=0
< iexp (C (%) c(l+3)") Che= 5"
1=0
< iexp {z <Cc3" — ;) c”l} .
=0

The sum clearly converges if the expression inside of the exponential is negative which happens for
¢ < 271¢™3n, For ¢ <0 the same claim follows because v, A(x) are non-negative and

exp (CZ/#LSP)\(IE)_#SP) <1.

Taking (izg) = ¢ oy (n) = 271¢73" proves the estimate of the moment-generating function.
We can also use [[neq. (11.5)[to compute the moments of A~Y(z). For ¢ > 0 we get

—g(nsp)/n &
E[\z) 9] < v~ (%) ST s g, > )
=0

<v q( ) a(n+sp)/ § :cq (1+3)( n+sp

—q (P) TIPS Dos0)a(t48)(ntop)—Len
< q (L og(c n+sp
< Chv <4) ;e
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11.2. Sobolev inequality

The last series is finite because

pnl

~5" =16
for sufficiently large [. Defining Co = Ca(p,n, q) to be

log(¢)q(l + 3)(n + sp)

Cy = Z610g(t)tI(l+3)(n+sp)—§t”’ < 00
=0
we get
p ) —q(n+sp)/n

E[\(z)~9 < Oy Cor (Z

Taking Crzay = Carza) (b1, s, ¢, p) := C1Cs (p/4)7q("+3p)/" we get the last claim of the theorem.
O

Theorem 11.2.2. Let ¢ be an i.i.d. conductance on Z", p,v as defined in|Definition 11.0.5 For all
p € (1,n/s), 8 € (0,1) and ¢ > % there exists a family of random variables { Ry (2x) = Ry(2s,w, ¢, 0,
N, 8,4,y P, V) }a,czn such that, for every x, € Z", the following two claims hold.

i) There exists a non random C%% = C%(n,s,q,p,p,v) such that P-a.s. ¢ satisfies
PS PS

m:ﬂ*, R*(ZL‘*), 9, s, D4, C}gg’]

Ezxplicitly, for all Ry > Ry, xo € B(z4, Ry), R > Rg and f € LY(B(zo, R)), with p being the
unique solution of% =1-24 %,

iid pn flx) = fy)lP
17 oy < B3R Y =IO oz, (1L6)
T,YyeL” Yy
(ii) Let p =2 and define p as in|ltem (i). If for some ¢ € [1,p], v € [0,2s], Cc < oo and random
variable RE(E) form & P-a.s. satisfies [x*,R,EE) (z4),0;5,(,7,Ccl, then P-a.s. £ satisfies

A8z, Ry(w,) v R (2,),0;5,p,¢, Cs1, sz, 1]
with non random Cgy = C(n, s,q,p,v) and Cgy = Csa(n, s, q,p,v,Ce).

Proof. By [Theorem 11.2.1)we can find a family {A(z) = A(z,w, ¢, p,n, s, p, V) }zezn such that
|tion 8.1.1| from Fhapter 8| is satisfied P-a.s. with space M = Z", counting measure # and VEII) = S /n.

Keeping the assumption sp/n < 1 in mind, [Theorem 8.1.4] proves that, for all g > %, xo€Z", R>0
and f : L'(Z") supported in B(zo, R), P-a.s.

q

HprT(B(xo,R)) < C </B )\(Jf)qu> gp(f)

(xo,R)

where C = C(s, n,p, q) is the constant from [Theorem 8.1.4]and fz» = 0 by convention since
|Z™| = co. We intend to estimate the integral on the right side uniformly for z( close to z, and large

R. What exactly is meant by “close” and “large” should become clear as the proof goes on.

Let w > 2 be arbitrary. Recall that[Theorem 11.2.1| proved that all negative moments of \ are finite,
which allows us to use deviation estimate from [Lemma 11.1.4{ (with 6 = 1) together with E[A\™"9] < oo
as follows. For arbitrary zp € Z", R € Ny set N = |B(z, R)| and estimate

4y Y _ AMz)~"7 —E [\ )
P(é(mﬂ) ANz) %z > E [ ]+1> P</B(mo,R) ~ d >1> aLm

< 2Cr(w)N"2E[N"v].

127



11. i.i.d. conductance

Now fix arbitrary =, € Z", Ry > 0 and shorten B, = B(z, Rp). We can use the previous estimate to
calculate the probability that there exists an R > RY such that [PSI[x € B(x,, Ro), [RS,0);s,p, q, 4]
fails to hold for some A > 0 chosen appropriately. To be precise, let us define

P(Ro,A) =P (320 € B,,3R > RY - ][
B(zo,R)

AMz) 9dx > A) .

We will now show that P(Rg, A) can be estimated by only considering R of the form R = 2! for [ € Ny,
that is,

P(Ry,A) <P (3330 € B,,3l € Np,2! > RY: ][ AMx) 9dx > C;}DA> (11.8)
B(z0,2!)

where Cyp = Cyp(n) is the volume doubling constant of Z™ (one can take Cyp = Q”C;iCVU). If
R < 1, then B(zo, R) = B(x,1) and examining R = 1 instead will suffice. If R € (2!, 2(+1) for some
l € Ny, by volume regularity of Z" it follows that
B 9(1+1)
][ A9(z)dx < | B(wo, : )
B(zo,R) | B(20,2")] B(z0,2041))

This shows that, if fB )\ > A is true for some R > RO, then also fB( )\ > C’VDA is true

for some [ € Ny, 2! > RO, Wthh proves [neq. (11.8)
Defining A = CypE[A~7 + 1] and using [Ineq. (11.7)[ we obtain, for Ry > 1,

P(Rp, A) < ) Z P (7{9@0,20 Mz)~(z)dz > E[A "+ 1])

20€Bx I=[log, RY]

< 2°Cr(w)EN"™] Y Z cpo s

©0€Bx [=[log, RY]

Az) %dx < CVD][ A Y(z)dz.
B(z0,20+1))

-1 [logo R(e)—\ nw

< O 2 Cyy2¥ Cr(w)EN" "] RY (1 - 2*%) R

CVL Cyy2¥ CR( )
T 1-27Y

n bw
Ep-r) Ry 2),

If n(1— %) < —1, then probabilities P(Ry, A) are summable in Ry € N. Since [Theorem 11.2.1|proved
that all negative moments of A are finite, we can take w large enough, say w = 2(1 + 1/n)/0 + 1,
to assure that this happens. Then Borel-Cantelli lemma implies that random variable R,(x.) =

R (zy,w,c,0,n,5,q,p,v) defined by

Ry (z,) = sup {R* >0:3Ry > R’, 3zg € B(xs, Ro), IR > R s.t.
][ M) ~%dz > CypE[A~7 + 5]} +1
B(zo,R)

is P-a.s. finite. This proves that P-a.s., for all Ry > R.(x4), o € B(zs, Ro), R > R} and f €
LY(B(xo, R)),

1 n
12| o (B(ao.r)) < CETmCVD (E[A"?+1]) 7 Ra&y(f).

Defining C%% = C%d(n, s,p, q,p,v) := CeraCvp(EN 7+ 1)V/4 (see |The0rem 11.2.1|for dependence)

this is equivalent to saying that P-a.s. &, satisfies [m*, R,,0;s,p,q, C};‘gé] which proves [Item (i)
For we restrict to p = 2. By assumption we know that there exists a random variable
iE) such that @[wo, R;(,v,Cc] holds P-a.s. for every Ry € N, Ry > R&C) (z4), o € B(xs, Ro), R >
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11.3. Poincare inequality

Rg. This, combined with [[neq. (11.6)| and [Proposition 6.1.10, implies that, for all Ry € N, Ry >
R.(xy) V Rio) (24), 2o € B(z4, Ro) R > R} [xo, R;s,p,(,Cs1,Cg2,7] holds P-a.s. with non random
Cs1 =Cs1(n,s,q,p,v) = 2C§§d5 and Cgo = Cg2(n, s,q,p,v,Co) = ZCﬁgC’C. But quantifiers on Ry, xg

and R are exactly the ones needed to prove ASI[z,, R.(z4) V Ric)(:v*), 0;s,p,¢,Cs1,Cs2,7]. O

11.3. Poincare inequality

Theorem 11.3.1. Let ¢ be an i.i.d. conductance and p, v numbers from|[Definition 11.0.5. Then there
s a mon random C}ﬁd = C’}id(n,p, v) such that for all @ € (0,1), x, € Z" there exists a random variable
Ri(zy) = Ry(x4,w,c,0,p,v,n) such that P-a.s. form £ satisfies x*,R*,G;s,Cﬁd]. To be explicit,
for all Ry > Ry, z9 € B(ws, Ro), R > RY and every f € L'(B(z, R)), with fp := fB(xo,R) fs

/ (f(2) - f5(@)’de < CER>Ex(f).
B(zo,R)

The proof is postponed for the end of the chapter because we need two preliminary results in
[Theorem 11.3.2] and [Lemma 11.3.3] [Theorem 11.2.1| proves that all LP-Poincaré inequalities for p €
(1, 00) follow from a sort of fractional isoperimetric inequality given in|Ineq. (11.9)] The computations
we use are not very different from the ones in [Kuml8] Chapter 3.3, which deals mostly with cases
p=1,2.

Theorem 11.3.2. Let ¢ be an i.i.d. conductance on Z™, p,v > 0 and a family of Bernoulli random
variables {&zy}ayezn like in |Definition 11.0.5, Let B C Z" be a ball of radius R > 1 and suppose,
similar to isoperimetric inequality, that there exists a parameter 8 € (0,1) such that P-a.s. for every
set AC B

{€ey = L2 € A,y € A} > BA[[A°] (11.9)

where A€ stands for B\ A.
Then, P-a.s., for every p € [1,00) the LP-Poincaré inequality holds on B. That is, there is a function

A(p) = A(p, B,v,Cy 1, Cyr) = 8PCL L C P pP Py 1

such that for every f € L*(B), setting fp = {5 f,

o [ [ @) = F)P
|11 = soprar < agre [ [ LD e, g)ady. (11.10)

Proof. We work pointwise only for w € Q for which holds. Suppose h : B — [0,00) is a
function with | supp(h)| < |B|/2 and define H; := {h > t}. Our isoperimetric assumption implies that
for every t > 0

BIH:||H| < {&y = 152 € Hy,y € Hi}|

and allows for the following computation (the exchange of integrals is justified by Fubini’s theorem
since the integrand is non-negative)

/ h(z)da = / / ooy (t, 2)dbde = / \H,|dt
B BJO 0

é /0018_1 ’{gxy =1:z EcHt7y € Htc}|dt
0 | H|
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11. i.i.d. conductance

Since, by volume regularity of Z", |Hf| > |B|/2 > %R” we can proceed with (again switching the
integrals)

/ h(z)dx < 2Cy B R™" / / / EayL{h(y) <t<h(z))drdydt
B 0 BJB

— 2yl R / €2y (h(z) — h(y))dady
h(z)>h(y)
h —h
—_ ;iﬁ_le /; L ga:y ‘ (:UI)%HJFS (y) ’ dxdy

The last equality is true because the integrand is zero when h(z) = h(y) and symmetric in « and y.
Now take an arbitrary f € L'(B) and find an a = a(f) € R such that

[=apn=[=ap =5 [ 17-ap

That such a exists follows from the dominated convergence theorem which shows that [5(f —a) is
continuous in a and tends to 0 or oo when a goes to oo or —oo respectively. Choose g to be either
(f —a)+,(f —a)—, depending on which of them has the smallest support, and apply the calculation
from before with h = gP, together with the elementary inequality

9(z)P — g(y)"| < p(g" (@) + 6" (W)|g(z) — g(v),

to get

P
/B (x )pd:v<CVL/3 1RS//§$an+‘Z()|dxdy
1 -1 _
chiﬁ_lpRs/B/ngy (" (@) + 9" ®))lo(=) =9l ;.

Rn+s
Applying Holder’s inequality with exponents p and 1% (I% = oo by definition if p = 1) we obtain

p—1

/Bg(a:)pdx< cos (// )P 1+g(y)p1)p”1dxdy>p
(/ / e, RMSP o) = 9P, dy>;

The first factor can be estimated using the inequality

p P

(g(x)P~t + g(y)P~1) 7= < 27T (g(x)" + g(y)P),

symmetry and volume regularity of Z" (note that R > 1 was assumed) in the following way:

// dwdy< 95 1R 2// x)Pdxdy < 21’ T CVU/ g(z)Pdx.
B

Inserting this into our main inequality (notice that &8, = &) gives

1
P P

e ( , )( 9(2) — g(w)I? )i
/Bg(x) dasﬁic,w:ﬁ R /Bg(a:) dx /B/nganJrsp dxdy
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11.3. Poincare inequality

—1

p—1
Dividing by (fB g(x)pdx) » , rising everything to power p and taking into account &, < vle(z,y)

finally results in
A(p) l9(z) — g(y)I?
P sp
/Bg(a:) dx < i1 R /B/B e c(z,y)dzdy

with A(p) = A(p, 8,v,Cyr,Cyvy) = 2p+1C€_UlC;§pp22p*1ﬁ*pzfl. Recall that constant a and function
g were chosen in such a way so that

2 [ glayde= [ 17 - apis

which allows for the following line of estimates

/B |f(z) — alPdx = 2 /B g(z)Pda

A _ P
< 2(f) R /B /B \g(w])%nggy)! (. y)ddy
AP) s |f(z) — f(y)P
< SR /B /B g e y)drdy.
Therefore, like in
) — p
/B|f_fB|pdx < 2P/B(f—a)l’da: < A(p)RSP/jg/BWc(x,y)dxdy.
which proves the theorem. O

Let us now show that [[neq. (11.9)|is satisfied if R is large enough (depending on w).

Lemma 11.3.3. Let ¢ be an i.i.d. conductance on Z", p,v > 0 and {£zy}ayezn Bernoulli random
variables from |Definition 11.0.5. For every 6 € (0,1) there exist non random R, = R.(0,p,n),
Caiza) = Czz)(6,p,n) and Dizs) = Daizg)(0,p,n) such that for every ball B of radius R > R.

P(HAC B: |{&{y =1z € Ay € A%} < (1 —0)p|A||A°]) < C’e_DRn.
Proof. Let us set N :=|B], fix a § € [0,1) and denote
P:=PEACB:|{{y=LzecAyec A} < (1-0)p|A|lAY).

It suffices to prove the statement of the lemma for |A| < |B|/2 due to symmetry of A and A°. This
implies that |A¢| > |B|/2 so using Chernoff’s bound (Theorem 11.1.2)) to estimate the tail of binomial
variable ) &, we can bound

Zp|A||A°] 2p|B|
P Y Gy <(Q-0plAllAc] | <o <o TR

rEAyeAc
Summing these probabilities over all A C B gives the estimate

LN/2]

P<Y P| > &y<@-oplAa] < Z Ze*‘%"m

ACB rEAycAc
IAF
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11. i.i.d. conductance

If we overestimate the number of subsets of B with exactly i elements by N* and recall that for R > 1,
CyrLR" < N < CyyR" we end up with

pe Z Nz - S i (5 pCvLR" log(CVUR")) .

Choosing R, = R.(9,p,n) large enough such that R, > 1 and

§*pCy

TER > 2og(CruRY),

for R > R, we can further estimate

0o 0o

l n; 1
E —59 *pCy LR < e_T652pCVLRn E e 166 pCy L < C 6 mR
i=1 i=1

which proves the theorem with constants Cgr33) and DEis3) taken as Cisg) = 2oy e~ 1607POV L
152
and D11.3.3 = —TG(S pCVL. O

The previous lemma gives the exponentially decreasing bound on the probability that fractional
isoperimetric inequality does not hold in an arbitrary ball B with large enough radius. By
this probability is greater than the probability that L?-Poincaré inequality fails in B. We
will use this exponential decay together with Borel-Cantelli lemma in order to find R, (z,) in which
APT] will hold.

Proof of[Theorem 11.53.1. For variable 6,6 € (0,1), Ry > 1 we interested in the probability that there
exist some zg € B(z4, Ro), R > Ry such that [P} .xo,R s,C%d] fails where C4? = C%d(n,d,p,v) :=
Alp=2,8=2"1Cy}(1 - &)p,v,Cyr,Cyy) (Ais the function from [Theorem 11.3.2). The choice of
B=B(6,p,n) :=2"1Cyp(1 — )p is a technicality and will make sense shortly.

Due to|Theorem 11.3.2} this probability is bounded by probability, call it P(Ry), that isoperimetric
inequality fails in B(xo, R) for some = and R as above, i.e. it is bounded by

P(Ro) := IP(EIJ:O € B(x,, Ro),3R > RS, 3A  B(zo, R) :

ey = 1w € A,y € A%Y] < Bla]A°)).

We now show that it is possible to have a similar bound in terms of integer radii R € N N [RY, 00)
only, at the expense of constant 8. Suppose 2! < R < 2!*! for some [ € N. For A C B(xg, R) such
that |B(zg, R) \ A| > |B(zo, R)|/2 we can estimate

{€ey = Liz € Ay € B(xo, R) \ A}

|Al[B(xo, R) \ Al
|B(wo,2" )| [{&y =Lz € Ay € B(xo,21) \ A}
= |B(,21) \ A |Al[B(z0, R)[/2

[{€sy = 1;2 € A,y € B(xo,21)\ A}\

<2
= 2Cvp [Al[Blzo,250) \ A

Therefore, if isoperimetric inequality fails in B(xq, R) with constant 8 = 2*10;1D(1 —0)p, then isoperi-
metric inequality fails in B(zg, 2/*!) with constant (1 — §)p and we get the estimate

P(Ro)< > > P(FACB(xo,R) : [{&y = 1;z € A,y € A%} < (1 - 6)p|AJ|A%)).
zo€B(z«,R0) R=[logy RY]
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By [Lemma 11.3.3| with any § € (0,1), say 6 = 1/2 for the sake of concreteness, previous expression
for R > R, can be estimated further by

P(Ro) < CyuRy Y Cprzge "3

I=[log, ng
00
-D Ry Z -D 2ln
< CVU011'3‘3R616 0 e .
=0

The last series converges because it has a double exponential tail so we can find constants C = C1(n, p)
and Cy = Cy(n,p) such that, for Ry > R,

P(R()) < CleechRg.

P(Ry) it therefore is summable in Ry € N so, by Borel-Cantelli lemma, random variable R,(x,) =
R (24 ,w,c,0,p,v,n) (recall that 8 = B(n,d,p) and that we fixed § = 1/2 for dependence), defined by

R.(z,) :==sup {Ro € N: 3zg € B(z4, Ro),3R > R),3A C B(xo, R) :
: {oy =Lz € A,y € A} < BIAJ|A°|} + 1

is P-a.s. finite. Thus, due to [Theorem 11.3.2 there is a non random C’}ﬁd = C’}ﬁd(n,p, v) such that
[a;*, R, 0;5,C%] also holds. O

11.4. Lower estimates on the kernel

Lemma 11.4.1. Let ¢ be an i.i.d. conductance on Z" and let p,v,{€zy}tzyczn be like in

tion 11.0.5. There exist Cix = Ck(v,p,n,s) > 0 such that for all 0 € (0,1), x, € Z™ there exists an
P-a.s. finite random variable R, (zy) = Ry(xw,w,c,0,n,p) such that € P-a.s. satisfies

AKD [ﬁ*,R*(fE*),e;S,CK].
To be explicit, for all Ry > Ry(x4), 2o € B(z, Ry) and R > R there exists yo € M \ B(xo,6R) such

that
][ / k(z,y)dydz > CxR™%. (11.11)
B(zo,R) J B(yo,R)

In fact, a stronger statement with fB(xo R) replaced by supp(,, gy is also true.

Proof. We relay on Chernoff’s bound from [Theorem 11.1.2] and Borel-Cantelli lemma from [T'heo-
rem 11.1.1} once again. Fix arbitrary 0, € (0,1). For R > 1, x € Z" and yp € B(z,8R) we consider
the probability

PrleoR) =B ( [ g < (1= 89 IO hpR )
B(yo,R)
By assumption on yo, d(x,y) < 9R for all y € B(yo, R), which gives

R72s
k z, = ¢(x, d z, —n—2s > (9R —n—ZSC z, > l/gxy
(2,y) = c(z,y)d(z,y) "> > (9R) (*:9) 2 Gy 1B, )|

Hence

Pi(z,yo, R) <P | Y &y < (1—0)p|B(yo, R)|
y€B(yo,R)
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11. i.i.d. conductance

so Chernoff’s bound from [Theorem 11.1.2 applies, with X = }_ g, g) Soys B[X] = |B(yo, R)|p, and
proves

~ 8%p|B(yg,R)|
2

_ Cyp8%pR"
2

Pl(xay()vR)Se e

Let now v € Z™ be an arbitrary unit vector and notice that, if for some g € M and R > 0,
AKB>[z0, R; 5,97 ("2 (1 — §)C,,f;vpR™2%] fails, then for every y € M \ B(z,6R)

][ / k(z,y)dy < 9729 (1 — §)CyvpR™%.
B(zo,R) J B(yo,R)

Therefore, taking y = xo + 6 Rv, there must exists an x € B(xg, R) such that fB(xO+6RU R) k(z,y)dy <
9=(+25)(1 — §)Cy rvpR—2.
Defining Cx = Cg (8, v,p,n,s) = 9~ (28 (1 — 5)0‘;}};3 and taking the previous argument one step
further, for arbitrary R, > 1, z, € Z", we can estimate
Py 1= P ({ARBx,, R, 655, ] fails)
< IP’(EIRO € N, Ry > R.,3wo € B(xs, Ro), 3R > RS, 3 € B(xo, R) :

: / k(x,y)dy < CKR_QS).
yEB(zo+6Rv,R)

A similar technique like the one in [Theorem 11.3.T can be used to show that it is enough to consider
only R € N (or R of the form 2! for some I € N). Hence

Py, < Z Z Z Z P1($,IEO—|—6R’U,R)

Ro=Rx zo€B(z+,R0) R:Rg z€B(zo,R)

00 00 Cur 62
_ZVL n
< Z Cvu Ry Z CyuyR"e R
Ro=R.« R:Rg

2 > n _ — CVLézp Ren s n — CVL523J R"
S CVU E RO e 4 0 E R"e 4 .
Ro=Rs« R=Ry

Introducing an auxiliary constant Cy = Ca(d,p,n) = Cy1,6%p/8 > 0, we can proceed with

o0 o0

_ on _ on _ n _ on

Py < Cye” @R N Ripem@R0" } © Rre 2R < Cgem 2
Ro=1 R=1

where N N
03 = 03(57 p7 n, 0) - C\%’U Z RO eicQRgn Z Rn€72C2Rn < 0
Ro=1 R=1

is finite because both series converge. Since Cy > 0,

Z P (HAKB>|z,, R.,0; s, Ck]| fails) < Z Cze @R < o
R.=1 R.=1

so Borel-Cantelli lemma from [Theorem 11.1.1| proves that Ry (z4) = Ry(z4,w,c,0,d,n,p) (it does not
depend on v in fact) defined by

R, (zy) :=sup{R, > 1 {AKB>[z,, R,,0;s, (1 — §)Ck] fails} + 1

is P-a.s. finite. Fixing § = 1/2, for instance, proves the lemma. O
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11.5. Energy density of cutoff functions

11.5. Energy density of cutoff functions

In this section we prove, P-a.s., an estimate on L?(B) norm of I'(¢) depending on the radius of the
ball B and Lipschitz constant of ¢ for large enough balls around a point z, € Z". The minimal size
of the ball depends on the realization of ¢ close to z,. The computation is very similar to the one
performed in but in case of i.i.d. conductance it can be improved to work for v = 0 and
not only for v > 0.

1/
Definition 11.5.1. Set f = §f(Cyr,Cyvy) = (g‘;g + 1) n. Let B C Z" be an arbitrary ball with
radius R > 1. For i € Z define

F(B)={z,yeZ":xeB & f{ 'R<d(zy) <{R}.
F;(B) is denoted just by F; if the ball B is clear from the context. Note that F; = () when i < — log; R.

Lemma 11.5.2. Let B C Z" be an arbitrary ball with radius R > 1. Then for everyi € Z,i > —log; R
CVLf(i_l)nRQn < ‘F‘Z‘ < C%UflnRQn

Proof. Notice that for i > —logs R + 1, f~1R > 1 and we can use volume regularity of Z" to get

Bl = [ BB - B B> [ (CvfR - Cuf IR da
B B

Z CVLf(ifl)nRQTL (fn o CVUC;i) 2 CVLf(ifl)nRQn

1/n
where the choice § = (gLV‘LJ + 1) is crucial for the last inequality. If —logi R < i < —log; R+ 1,

then the upper volume regularity might not be available for the ball B(z, ~' R) but the set B(z,{'R)\
B(x,f"'R) contains at least one element because 1 € (fiflR, fiR]. Thus, taking into account that in
this case f''R < 1,

|Fz| > / 1dx > |B| > CyR" > CVLf(i_l)nRQn
B

so the same statement is true.
The other estimate is easier as one has f*R > 1 so volume regularity of Z" implies

Bl < [ BRI < Coufn i [ 1de < Chufnren
B B

O]

Lemma 11.5.3. Let ¢ be an i.i.d. conductance on Z"™, B C Z"™ an arbitrary ball with radius R > 1
and shorten F; = F;(B). Suppose that there exist Q > 1 and G < oo such that P-a.s., for all i € Z,

> clw,y)® < GIF]. (11.12)
Then P-a.s. for every Lipschitz ¢ : Z" — [0,1], with € :== RLip ¢,
(p(x) — o(y))? N
> Y s G < CumgGetR
ZEEByEZ” 9
where

_ " "
Cisy = Casy () = (1 e T Chy-
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11. i.i.d. conductance

Proof. Again, we work pointwise for P-a.e. w € ) where the assumption holds. Let us also write the
summation as the integration with respect to the counting measure #, i.e. [ f(z)dx := [ f(z)#(dx) =
>, f(x). With this change of notation in mind, we compute

xT) — 2
= (o(z) = (y))?
- /B /d(%y)éfﬂogf(f_lﬂR Wc(ﬂ% y)Qdydzx

(p(2) = ¢(y))? o B
+/ /m o d(a, gyires () dydr =D b

I is estimated using the Lipschitz constant of ¢ (|p(z) — ¢(y)| < {Rd(z,vy)),

@) o) o
h= T Ndy2s O\ dydx
1 / /d(x y <fflogf(§*1)'\R d(w y)d+28 ( y) Y

|—1ng(§
(¢d(z,y)/R)’ Q
< c(z, dydx
- Z / / L Red(zy)<sin A, d(z,y)t el y)=dy
R\ 2 [logy(6~D1
< (£> S D2 gein21-) /F o) dady
R\ 2 Mogs(¢~1)]

<g <> Z ff(ifl)(n72(1fs))R7(n72(175))’Fi”
where [Ineq. (11.12)|is used in the last line. By [Lemma 11.5.2) we know that |F;| < C%,f**R?*" which
gives

i=—[log; R]
i=—[log; R]
¢ i=—[log; R]

[og; (1)1
Il S fnc[z/UgéQRn_Qs Z f2(l_l)(l_s)-
i=—[log; R]

Using [logf(f_l)] -1< logf(f_l), the sum can be estimated by

Mog;(€~1)] [log; R] o0
Z f2(i*1)(1*5) - Z f*Q(iJrl)(l*S) < Zf*Z(j*flogf(£*1)1+1)(1*8)
i=—[log; R] i=—[logs(§71)] J=0

2(s—1) = —2(1—s)j ¢2-1)
=¢ Zf < 1— 209
=0

which leads to
n 12
I < L
1—§2

The computation for Iy is similar but uses |p(z) — ¢(y)| < 1 instead of the Lipschitz estimate:

(@) - o) o
b= A dyd
2 L/xy f“ogf(iflﬂR d(x y)n+25 C(%y) yax

c(z,y)%
< —————dydx
/ /f | Red(a,y)<pr AT, y) T2

i= |—1ng “H]+1

< Z (=142 g=(n2) / o(w, ) dydz.
i=[log;(6~1)]+1 f

gngRn 25
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11.5. Energy density of cutoff functions

Due to [Ineq. (11.12)| and the bound |F;| < CZ,f*R?" from |[Lemma 11.5.2} we arrive at

o0

I < fnC‘%Uan—Zs Z f—?(i—l)s.
i=[logs(£~1)]+1
Estimating the sum using —[log;(§ < - logf(ﬁfl) provides us with

(e o]

00 o0 2s
—92(i—1)s —25(j+[log: (61 2s —2sj é
S e S;Of G+ Togr(€™) < ¢ ;Of e

i=[log¢(£~1)]+1

which we insert into the previous computation to get

fnCI%U 2 -2
Iy < —0-GEP R,
2= 1— f_28 g€

Combining estimates for I; and I leads to

x) — 2
/B/nwc(xay)Qdydaj <L+

fn fn 2 2s pn—2s
< <1 _ f—2(1—8) + 1 f25> CyuG¢T R

and proves the lemma. O

Lemma 11.5.4. Let ¢ be an i.i.d. conductance on Z" such that E[c¥?] for some w > 2,Q > 1. Let
B C Z"™ be a ball with radius R > 1. Then for every 6 > 0

Pl3ieZ, > oy >E[EL+0F|| <CaspElR™ ™,
(m,y)EFi

with Crsa) = Crsa)(w, 6, n) and F; = Fi(B).
Proof. We will us use deviation estimate from [Lemma 11.1.4fon the i.i.d. variables {c(z, y)Q}(x’y)eFi.

There is exactly |Fj| := #F; of them and this number is greater or equal to Cyf~D"R?" by
[Lemma 11.5.21 Therefore

Pl Y clxy)®>E[? +0)|F]| | <2°Cr(w)s “E[c*?)|F| "2
(z,y)EF;

_ (i=Dnw
2

< 2°Cr(w)d~VE[?)C;, 2 R~

Summing this over i € Z™ implies (recall F; = () for i < — log; R)

Pl3ieZ, Y ca,y)®> E[]+6)F
(xvy)EFi
< > P day)? > (B + )|
i=— “ng R] yEF;
< QwCR(w)C;I%é_“’JE[ch]R—nw Z f_%
i=—[log; R]
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11. i.i.d. conductance

The only thing left to do is to estimate the sum by

o i~ )nw (Mogg R1+1mw 2 5, nw nw
I e D DA e
i=—[log; R| §=0 L—§=
and obtain
nw w nw
Plaicz, 3 cwy)?>Ee?+0F|| < — o Cr(w)CyE 5 VB[ R~
Taking
Cisa = C. 5m) = — Cp(w)C E
154 = (|11.5.4|)(U)7 , 1) ‘—m R(w) VL
proves the claim. O

Theorem 11.5.5. Let ¢ be an i.i.d. conductance on Z" such that E[c¥?] < oo for some Q@ > 1
and w > 2+ 2. Then there exist non random 6 = 6(w,n) € (0,1), Cid = CEE[c"?],Q, s, n)
and, for every x, € Z", a random variable Ry = Ry(Zy,c,Q,s,n,w) such that £ P-a.e. satisfies
@[x*,R*, 0:5,Q,v=0, ng].

Written out explicitly, for all Ry > Ry, w0 € B(w., Ro), R > R} and Lipschitz ¢ : Z" — [0, 1], with
§:= RLip o,

1

Q
/ Tp(z)9x | < CEleP RO,
B(zo,R)

Proof. For 6§ € (0,1) and Ry > 1 we are interested in estimating the probability that

1

Q
/ Tp(z)%dz | < A2 RQ™% (11.13)
B(zo,R)

fails for certain A > 0 and some admissible choice of xg, Ry, R and . Using [Lemma 11.5.4] we intend
to guarantee that this probability is small for the correct choice of A, that is, we are looking to bound

P(6, Ry, A) := P (axo ¢ B(zs, Ro), 3R > RY, 3¢ : [lneq. (11.13)] fails on B(x,R)) .

First of all, we claim that this probability can be estimated considering only R of the form 2! for [ € N.
To see this, take some zg € B(x, Ry) and suppose that [Ineq. (11.13)| holds for all R = 2!, I € N and
all p. For arbitrary R > Rg, Lipschitz ¢, set £ := RLipy and find | € N such that 2! < R < 211,

Then [Ineq. (11.13)| applied with R = 21 and ¢ = 2!*! Lip ¢ implies that

1

Q
( / (Tp)? (y)dy>
B(zo,R)

which shows that is also satisfied in B(zg, R) but with constant 2@ A instead of A on the
right. Hence, P(6, Ry,2% A) can be estimated by looking only at R > Rg of the form 2! for I € N. For
zo € M,R=2"1€cN,[Lemma 11.5.3/and [Lemma 10.3.2| combined show that the following implication
holds (for F; := F;(B(xo, R))):

IN

Q ? : 2s (+1)n
/ T)® (y)dy | < A(Lipp)™2 @
B(z0,2!11)

< 26 A(Lip p)%28 < 206 A¢RG %,

(VieZ) > cy)? <E[E+1]|F| =
yeF;

— ( / (T)° <y>dy)
B(zo,R)

Q=

<% Cd E[c? +1]3¢2 RG>
< ¢ ¢
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11.6. Tail estimates

n % L 1
where, in the second line, ¢ = RLip ¢. Setting A = 2§CCE[CQ +1]@ this proves that

P(6,Ro, A) < Y P|FeZ: D cla,y)? >E[? +1]|F

z€B(z+,10) I=[logy RY] yeF;

But P(6, Ry, A) is decreasing in A so defining
id __ d n % L 1
sz Cm (E[c wQLQ’n,S):QQCC E[c? —|—2]Q > A

the previous estimate also holds with ng instead of A. Using [Lemma 11.5.4|with § = 1 gives

.. > _lnw
P(0, Ro,C&%) < CzgBle™? > > 272

x€B(x+,Ro) l:[10g2 RY)

9nw lnw
< Crsa Ele” Z 2
The last expression is summable in Ry whenever n — G”Tw < —1 which is equivalent to ‘9”7“’ >n+
1. fw> 2+ 2 then n£/+21 7 < 1 and it is possible to choose any 6 € (MJ), say 0 =

O(w,n) == 3+ 2(1+T1/n) to be specific. Borel-Cantelli lemma now proves that random variable R, (z,) =

Ri(x,0,Q,C%, 0, 5,n,w) defined by
R, = sup{R, : ACElz,, R.,0;5,Q,~y = 0,C&d] fails} + 1

is almost surely finite. Dependencies reduce to Ry (z4) = Ry (x4, c,p,s,n,w) and C¥4 = ng(E[ch],
Q,n, s), which proves the theorem. O

11.6. Tail estimates

Lemma 11.6.1. Let ¢ be an i.i.d. conductance on Z" such that E[c*] < oo for some w > 2. Let
R >0, x € Z" be arbitrary, set B = B(xz, R) and let ¢ > 0 be such that <Cyp, > Cyy + 1. Then for
every § >0

PF o> OB ) IO
YT B T,y c 1—¢ 2

Proof. The plan is again to make use of which is based on Rosenthal’s inequality.
We again write the sums in Z" as integrals over counting measure #, [ f(z)dz := [ f(x)#(dx) =
>, f(x) for the rest of the proof. Define annuli 4; := ¢! B\ ¢! B which, owing to the assumption on
¢ and volume regularity of Z™, have the property that

R"" < | B| - |¢'B < |4;| < [¢T'B| < Cyy R,

If for every ¢ > 0
F cle.dy < Ele+ ),
A;

139



11. i.i.d. conductance

then
oo
1\ —n—2s
| e Z [, it < S [ e
< C\/UCnR 2s Z ¢ 2is ][ (.%', y)dy < CVUC C + 5 R_2S Z C_2is
i=0 Ai i=0
CVUC _92
5 S
ST o SElc+d]R
Therefore

IP></Cd(if”;’)i{)%cly>Cvgfcmlf[c;‘S ) ZIP(][ xydy>]E[c+(5]>

Deviation estimate from applies easily to probabilities on the right and gives

P(f, clady > Ble+ 01) < 2 Cow)d AL FEL
A;

<2YCr(w)d ™R 2 ¢ 2 IE[ v].

Summing up in ¢ we come back to

p </ d(c(m,y) dy > Cyuc"Ele + 6] R2S) < 25_—]'351) *TWE[cw],

x, y)n+23 1 — ¢ 2s 1—¢ 2

which proves the statement. O

Theorem 11.6.2. Let ¢ be an i.i.d. conductance on Z" such that E[c”] < oo for some w > 2 + %
Then there ezist non random 0 = 0(n,w) € (0,1), Cr = Cr(E[c],n, s) such that, for every x, € Z", we
can find a random variable R, = R.(x4,w,0, ¢, n,s) such that € P-a.s. satisfies {TB[x, Ri(y), 0; Cr).
Explicitly,

YRy > R,,Vz € B(x,, Ro),YR > Rl / O
0= (@2 Bo) " sy Ay =Y =0T
Proof. Consider, for Ry > 1 and A > 0, the probability

P(Ry,0,A) =P <3R > RS, 3z € B(zy, Ry) : /

k(z,y)dy > AR™%
B(z,R)c

and notice that it can be bounded in terms of R > Rg of the form R = 2! for | € Ny. Let us explain
how this works. If R < 1, then B(z, R)¢ = B(x,1)° and we can just use R = 1. On the other hand, if
R >1, let us find [ € Ny such that 2! < R < 2"*1 and observe that, if fB e bz, y)dy > 4AR™? for
some A > 0, then

—2s
/ k(x,y)dy > / k(x,y)dy > 4AR™* > 4A (%) 272U > Ao~ s,
B(z,20)e B(z,R) 2

Because of this we can now estimate

P(Ro,0,44) < Y > oop ( /B o E(x,y)dy > A22l8>.

z€B(z+,10) I=[log, RY]
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11.7. Weak Harnack inequality and Holder regularity

CVU+1 5 — 1 A CVUCnE[C‘Fl}

Taking ¢ : and using [Lemma 11.6.1| results in

1—¢—2s
ACYyElc + 1] —  2“Cp(w) —inw
PR ) <y RO e
z€B(@+,Ro) I=[logy R
2wCR( ) an Inw
< YRW) 272
<y Z

2¥Cr(w)E[c"] Rn—g%’”
T (1-c7)(1-2%) "

The right side is summable in Ry if we can find € such that the exponent is smaller than —1. This
is possible if and only if w > 2 + 2 = just like in the proof of |Theorem 11.5. 5l Thus, we can define
Cr = Cr(n,s,E[c]) := 44 and make use of Borel-Cantelli lemma (Theorem 11.1.1)) to conclude that
random variable R, (x.) = Ry(z4,w,c,0,n,s) > 0, defined by

Ry (z4) := sup{ R« € N : ATB[z,, R, 0; C7] fails} + 1,

is P-a.s. finite, which proves the theorem. O

11.7. Weak Harnack inequality and Holder regularity

Theorem 11.7.1. Let ¢ be an i.i.d. conductance on Z"™ (n > 2) such that E[cP] < oo for some p > "L,

Then there exist non random 6 = Q(p, n s) (0, 1), @ =Q(p,s,n) € [ 00), C“d = ng(p,]E[cp], s,n),

p,y,s,n) C”d = C”d( ) 77”d = n'd(s,n p,E[cp],p,V) and, for every a;* € Z", a random wvariable
R.(zy) = R*(x*,w ¢, p,p,v,n,s) such that P-a.s. £ satisfies

(i) @x*,R* (74),0;5,Q,7 = 0,Cl],
(ii) a;*,R* (14),0;8,p=(1-2s/n+1/q)7 1, ¢ =Q, Cgf,C’?g, = 0],
(iii) {PHe., Ru(x.),6; 5, C}7),
(iv) AWPHIfz,, Ri(2.),0; 5, i, Q).
(v) [w*aR*(SU*)’emiid:ng]-
Proof. Assumption on p allows us to find @, w > 1 such that Q@ > 7=, w > 2 + % and Qw = p. For

-1
such @ = Q(p, s,n) and w = w(p, s,n) let us choose any q > (2775 — é) which assures that

112
4= i (11.14)

Q-

-1
For concreteness let us fix ¢ = q(p, s,n) := 2 (% — é) . Due to [Theorem 11.5.5 there exist #(&) =

0B (n,w) = 0F) (n, s,p) € (0,1), Cid = C’gd(E[ch],Q,s,n) CU4(E[cP],p, s,n) and a P-a.s. finite
(E)

random variables Ry ™/ (z4) = R,E )(CC*,OJ, ¢,Q,s8,n) = RiE) (T4, w, ¢, p, s,n) such that £ P-a.s. satisfies

ACHz,, B (2,),05); 5,Q,~v = 0,Cd].

By [Item (ii)| of [Theorem 11.2.2| there exist C4d = C¥d(n, s, q,p,v) = Ci(n, s, p,p,v), Cid = Cld(n,
s,q,p,v,CE) = Cid(n,s,p,p,v,E[cP]) and a P-a.s. finite Ri )( o) = Ro(ze,w,¢,0F) n.s q,p,v) =
R (zy,w,c,n,s,p,p,v) such that £ P-a.s. satisfies

ATz, R () v B (2,),07);5,p = (1= 2s/n +1/q) "', ¢ = Q, CE, Clig v = 0],
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11. i.i.d. conductance

Moving on, |Theorem 11.3. 1| proved that there exist C’fﬁd = C]igid(n,p, v) and an P-a.s. finite random

variables Ri )(33*) = ip) (24, w,¢,0F) npv) = £P)(x*,w,c,p,s,n,p,u) such that P-a.s. £ satisfies

APYz,, R (2,),09); s, Ciid].

This verifies [Ttems (i)|to |(iii) for all @ > 0) and R,(z,) > R (z,) v R (z,) v R (2,).
To get {WPHI| we take (1) = Q(H)(n, 5.p) = %UE) o

frisd (ry) = R (Twyw, €D, S, M, P, V) = 40Ny, () (%) V R (%) V R ().
Then for all Ry > R (x,), 20 € B(zs, Ro) and R > RS™ we have
R/2 > Rg( )/2 S Rg( )RiH)(JE*)e(H)_e(E)/Q S Rg(E) (1 g(E))—l(l_g(E))/2/2 > Rg(E)
which means that P-a.s. £ satisfies
o [CE[xo, [R/2, 00); 5,Q, 25, C1],
o [ST[zo, [R/2,00);5,p = (1= 2s/n+1/q)™},¢ = Q, CE{, CE4, v = 0] and
o [PTxo, [R/2,00); 5, O],

This verifies assumptions [Items (i)| and |(v)|of [Theorem 6.5.1] [Item (iii)|is verified by [Lemma 2.6.1
which confirms that Z" with counting measure satisfies [V]zq, [R/2, 00),n,Cy, Cyy] and is

identical to|Ineq. (11.14)l Therefore [Theorem 6.5.1{ implies that there exists
Cty = Cly (5.7,0.Q, CE%, CH, CU, CB%, ., Cy 1, Cvu ) = Cy(s,m,p, L] b, v)

such that & P-a.s. satisfies WPHI[z, [R, 00); s, C%4, Q]. This is sufficient to conclude that £ P-a.s.
satisfies

AWPHILxo, R (), 647: 5, O}y, Q)
which proves An immediate consequence, due to [Theorem 6.5.2} is that
AWEHT o, B (2,), 00D Cp = Cliy)

also holds P-a.s. Finally, [Theorem 6.6.3] with the help of [Items (i)| and |(iv)} implies that there exists

an

0" = n"(CpYy, CE4, s.n, Ovr, Ovu) = (s, n,p,E[e], p,v)
and C%d = C%d(s) such that
AHRIzo, Ru(.), 6; 0", O
is satisfied P-a.s., which proves [ltem (v)]
Note in the end that replacing R*E , iS)’ &P) with the larger RiH) and 0) 9(5) 9(P) with larger
0) preserves corresponding xProperty which reduces some of the notation from the proof by taking
R, := R and 6 := o1, 0

11.8. Exit time estimates

Theorem 11.8.1. Let ¢ be an i.i.d. conductance on Z" (n > 2) such that E[cP] < oo for some
p > "T‘H Then there exist non random 6 = 0(p,s,n) € (0,1), ijg>) = C(Z}g>)( JE[¢P], p, v, 8,n),
Cgid <) = CéiEdS)(p,E[Cp],p,I/’s,n), 5iid = giid(pa]E[Cpr?V?San); 5iid = 57,7,d(p>]E[ ] p,v, s,n), Cgfll—"’ =
Ci4,(p, E[P],p,v,s,n), Or = Cp(E[cP],n, s) and, for every fired x, € Z", a random variable Ry(z,) =
R*(x*,w ¢, p,p,v,n,s) such that € P-a.s. satisfies
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11.8. Exit time estimates

(9 [x*’ R.(w),6; 5, Cligs), Cligs)
(ii) SHx., R (x.),0;5,", 6;iq] and
(iii) for all x, € Z, t > 0, Ry > Ry (x4), o € B(xy, Ro/2), R < Ry/2

B(zo,R) jid Rgse 2 iid \ 0\, s—1 L
1= PPO1 < O (S0 v o v ACE! ) in B (w0, BE V 645 ). (11.15)

In particular, the semigroup corresponding to £ is P-a.s. conservative.

Proof. From [Theorem 11.7.1| we know that there exist 8(1) = (1) (p,n, s) € (0,1), Q = Q(p,n,s) > 1,

C'}%%, = C’”d 4 (0, E[cP], p, v, s,n), C’”d = C’gd(E[cp],s,n) and RiH)(x*) = R&H)(m*,w,c,p,p, v,n,s) such

that £ P-a.s. satisfies
o ACE[z,, R..0U);5,Q,v = 0,C%% and

o AWEHI[z, B (2,),0(1); Ciid .

On the other hand, due to [Lemma 11.4.1] for this (1) there exist C’”d = C'”d(y,p,n, s) > 0 and
iK) (ry) = &K) (24, w, c, ) n_p) such that P-a.s. £ satisfies

AKB[r,, B (2.), 095, O},
Writing *-quantifiers out, for all Ry > R&H) \% R&K), xo € B(zg, Ro), we have
o [CHJzo, (R 00);5,Q.7 = 0,Ci1,
o WEHIzo, [R§"™, 00); Ciif ],
o [AKB>]ao, (7)™, 00):s, C)

. [mo, [1,00);n, Cyr(Z™),Cyu(Z")).

(where the last statement comes from . As the reader might suspect, the aim is to
use but there are three more assumptions that need to be verified. Firstly, Z" with
counting measure is a separable metric measure space with Radon measure of full support which
verifies [Assumption 2.5.3] Secondly, that £ is a regular Dirichlet form on L?(M) P-a.s. satisfying
[Assumption 4.0.2{we know from Corollary 9.2.2} This verifies|Assumption 2.5.3] Finally, |GP1]| 2(B) <
oo by [Lemma 11.1.5| for every ball B C Z™. With the application of [I’heorem 7.1.5| now justified, we
can find

C&gg) = C(”d )(Cg%7022d77787n) Cvr,Cvu) = Cg>)(p, E[F], p,v,8,1n) > 0

and
CEZEC'lg) = CEZEdg)(C}:Z’%D C%d) = C(ES) (va[chpa v,s, TL) <0

such that [ETE[z, [QRS(H),OO); s, C(igg), Cé%i<)] is satisfied. Redefining (%) = 0(p, n, s) := 9<H)+1 and

-1

R (2,) = R 2y, w,¢,p, 9,0y, 8) i= RS (2,) v RE (2,) v 4007
implies that for Ry > jrisd ()

o(H)

9(S) _g(H)
) > 2R!

Rg(s) RQ(H) (R( ) (z,)
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11. i.i.d. conductance

which shows that £ P-a.s. satisfies
S i i
M[l‘*, 5( )(l'*),G(S),S,C(Edz),C(Etij)]

Now [Theorem 7.2.1| proves that there exist ¢ = £%(p, E[cP],p,v, s,n), diia = dsia(p, E[cP], p, v, 5,7)
such that £ P-a.s. satisfies )
ASEz,, BV (2,),09); 5,6, 631a).

The conservativeness of £ follows from the last property through [Theorem 7.2.2
On an independent argument line, |Theorem 11.6.2| proved that there exists (1) = (1) (n,p), Cp =

Cr(Elc],n, s) and rR" (x4) = jrisk (24,w,0T) ¢,n,s) such that P-a.s. £ satisfies

*M[x*, »(kT) (.1‘*), H(T)§ CT]'

(Checking the proof of [Theorem 11.6.2| the previous statement, due to monotonicity in Cp, remains
true if E[c? 4 2] is used instead of E[c + 1] when defining C7). This allows us to consider Cr as
depending on E[cP] and not on E[c].)

Let us define 6 = 0(n,p, s) = 05 v o),

R.(z,) = Ru(zs,w, c,p,p,vin,5) = R () v R (2,)

and take arbitrary Ry > Ry(z4), ©0 € B(zs, Ro/2). Denoting B, = B(zo, Ro) and Ry = R} in
Mheorem 7.3.2 we find ) ) )

Cip = Cip (0, E[P), p, v, 5,n) := Crzg) (€, )
such that P-a.s. the following estimate holds. For all ¢ > 0, R € (0, Ry /2],

. —2s 2560
1— PP < o <tl7/€25) (R(t) VaTE Y 4CT> in B (xo, RYV 5*175%) ,

which proves [[neq. (11.15)| O
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12. Convergence results

In this chapter we investigate the consequences that results from and [I7] have on the
rescaled process X,,2s;/m. In we introduce the rescaled versions of £ and P which we
denote by &™) and Pt(m) respectively. Theorem 4 from [FH20], in the ergodic case, and Theorem
8.3 from [CKKI3|(in the i.i.d. case) prove that £™ converges in the generalized Mosco sense to
a Dirichlet form of a rotationally symmetric stable process. As a consequence, Pt(m) f converges
strongly in L?-sense, for all t > 0 and f € L?. With the help of large scale Holder regularity from
[Theorems 10.4.1] and [11.7.1] this L2-convergence can be improved to the pointwise convergence of

Pt(m f(0) in case of both ergodic and i.i.d. conductance. Using arguments similar to the ones in
Theorem 4.5 of [CKW18b| the pointwise convergence can be used to prove that X,,2s,/m converges
in the sense of finite-dimensional distributions.

If ¢ is an i.i.d. conductance, we can also prove the convergence of X,,2s,/m in Skorokhod space
D([0,T],R™) for every T' > 0. The limit can be identified from the convergence in the finite-dimensional
distributions so one only need to prove the tightness of distributions of X,,2s;/m. This is again done
with the help of arguments from Theorem 4.5 of [CKWI8b|] and relies on the tightness criteria from
[AId7S].

12.1. Rescaling

Definition 12.1.1. For n,m € N denote by Z,, the refinement of the lattice 7",

Z n
YARRES () = {(z1,22,...2y) € R"\mz; € Z,Vi=1,2,...n}.
m

Define i, = m™"# (# the counting measure on Z") to be our default measure on Z,, and take
L?*(Zy,) to be the shorthand notation for L*(Zm, fim).
Furthermore, define dilation operators Dy, : L*(Z") — L*(Zy) by Dy f(x) = f(mz) for x € Zp,.

Proposition 12.1.2. For every m € N, m™2D,, is a bijective isometry between L*(Z") and L*(Zy,).

Proof. For g € L(Z,,) the inverse of D,, is given by D 'g(x) = g(x/m), for x € Z". Moreover, for
every f € L?(Z") we have

I 2 Do flZa(z,y = D " ma)pum = 3 F@)* = 2z
TELm TEL™
]

Definition 12.1.3. Let ¢ be a random conductance on Z" such that (€, DIE]) is P-a.s. a conservative
regular Dirichlet form on L*(Z"). Let X; denote the random walk, properly associated to Dirichlet
form (€, D[E]), from|Theorem 9.3.1. Because £ is conservative, we can assume that X; takes values
in Z" instead of % (see[Corollary 2.5.19).

For m € N, we define Xt(m) by Xt(m) = X,,25¢/m. Then Xt(m) takes values in Zy,. The distributions
of Xt(m) on D([0, 0], R™) under Xt(m) = xo are denoted by P%) for every xog € Zy,. The expectation
with respect to P%) is denoted by Eg;?) We denote by (0™ DIEM™]) and Pt(m) the reqular Dirichlet
form and the symmetric semigroup associated with Xt(m) on L*(Z,,) in the sense 0f|Deﬁm'ti0n 2.5.11|.

For every U C Z,y, PtU’(m) stands for the restricted semigroup corresponding to (€™ DIE]) in the
sense of [Definition 2.4.15.
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12. Convergence results

Proposition 12.1.4 (Scaling relations). For m € N and f € L?(Z,,) we have the following three
scaling relations:

. m XZS
(i) X" = =2,

(ii) Pt(m) = Dy P2, DY, equivalently Pt(m)f(x) = P25 [f (E)] (mzx), and

) — 2
(iii) D[E™)] = D, DIE] and E™(f) = m™?" Z Wc(mw,my) for every f € L*(Zy,).
T,Y€4m ’

Proof. is just the definition of Xt(m). For all f € C.(Z,,) and x € Z,,

P f() = Bo[f(X™)] = Ena[Dy! f(Xpp2ot)] = Przoy Dy f(miz)
= Dy P2 D f ().

Since both semigroups are bounded and C.(Z,,) is dense in L?(Z,,), we have Pt(m) = Dy P2 Dt

.2

which proves Furthermore m~"/2D; ! is an isometry between L?(Z,,) and L?*(Z") by
sition 12.1.2] so, for every ¢t > 0,

(B 10) L, =T (DR - D D)
m 28

i (Przet Dt f = D f Dt F) oy -

L2(Zp,)

Passing to the limit ¢ — co and using Lemma 1.3.4 of [FOTTI] we find that D[] = D;,'(D[£(™)]) and

r/m) — m 2
g(m)(f) — m—n+255(D;11f) _ m—n+25 xygzn (f( /d<1)‘7 y)i_(,_gg )) C(ZL‘, y)
ey UE) S

d(l‘/, y/)n+2s

c(ma’, my’)
'Y €Zm

where we used d(mx, my) = md(x,y) property of the Euclidean distance on R™ in the last line. This

shows [[tem (iii){and completes the proof. O

Definition 12.1.5. Let ¢ be a symmetrized ergodic or i.i.d. conductance such that E[c] < co. We

define Xt(oo) to be the pure jump Lévy process determined by its Lévy measure (see [Ber96], Chapter
I, Theorem 1)
Elc]

H(dy) = |y|n+25 Y-

We denote by £ and Pt(oo) the reqular Dirichlet form and semigroup of the process Xt(oo). It is

known that for every f € L?(R")

g(w)(f) - E[C]/ Mdmdy.

RoxRe [T — Y|

The distributions of X on D([0, 0], R™) under Xt(oo) = xg are denoted by P;%O) for every xg € R™.

(c0)

The expectation with respect to PQ(C%O) s denoted by Eg, .
Proposition 12.1.6. Function g(t,z) := t(oo)f(a:) is continuous in (0,00) xR" for every f € L*(R™).
Proof. See [FK13] Theorem 1.2 which proves Holder continuity. O
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12.1. Rescaling

Proposition 12.1.7. Semigroup Pt(oo) has the Feller property. That is, for every f € Co(R™),
Ve>0  Pf e o)

and
W |5 f = fll oo @y = 0.

Proof. Semigroups of Lévy processes are always Feller which can be found in [Ber96] Chapter I Propo-
sition 5 for instance. O

As foreshadowed by notation we aim to prove that (™) converges to £(°) in Mosco sense. As
the classical Mosco convergence requires forms to be defined on the same Hilbert space, which is not
the case here, we instead turn to the generalized Mosco convergence introduced in In
we take H,, = L?(Z,,), H = L*(Z") and the projection and extension operators m,,, E,
defined below. These are the natural projection and extension operators when approximating R™ by
a square mesh.

Definition 12.1.8. Define the projection operator m, : L>(R") — L?(Z,,) by

]£+[—2m721n)n

and the extension operator Ey, : L*(Z,,) — L*(R") by

Enf(z) = f([x]m)

where [x],, € Zy, is the unique point such that € [Ty, + [~ 5, o

~ S 3m)

Almost the same definition of projection and extension operators is given in the beginning of Section
2 of [FH20]. For more general limit spaces and tiling patterns the definition can be found in [CKK13],
see Equations (2.13) and (2.14), or in [CKW18b], Section 4.3.

Proposition 12.1.9. 7, and E,, are projection and extension operators in the sense of [Defini]
[tion 2.8.2.

Proof. [Items (1) and of Definition 2.8.2| follow by straightforward computations. For f €

L?(Z"), Jensen’s inequality implies

2
| 7m fllL2(2,) = Z m" <][+[ Ly f(ff)dx> < I fllz2(zny,

ZEZm

which proves remaining Items (iii)| and |(iv)| of [Definition 2.8.2 O

Definition 12.1.10. Define the sequence of semigroups P™ on L2(R™) by P(™) = E,, P("r, .

The following lemma will be needed in [Theorem 12.4.1]

Lemma 12.1.11. Let t;,M > 0, f € L?*(R") and a sequence {fn} C L*(R™) be arbitrary but such
that sup,, || fm|lLe < M. If P-a.s. € is a Dirichlet form satisfying [HRJO, [Ro,00);n, C), for some
Ry >0,n,Cq € (0,00), and

pt(lm) frn 225 Pt(loo) f in L?(R™)-sense,
then P-a.s. I%(T)fm(O) m—oo, Pt(loo)f(o)-
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12. Convergence results

Proof. We will prove the claim pointwise on the set of P probability 1 where all the assumptions are
satisfied. Recall that by definition P"™ = E, P 7ty = By Dy Pyyzey Dit e Where Dy, : L2(Z7) —
L*(Z,,) are dilation operators Dp,g(z) = g(mz). We know from that, for every
g € L*(Z"), function P,g(z) solves Oyu — Lu = 0 on (0,00) x B for every ball B C Z". Hence
[07 [Ro, 00);n, Cpr] implies that for all Rg < R <R < (to/Q)i, denoting Bpr := B(0, R),

R n
P.D! <Cyl=) |ID! co(Fn.
et B e P T I) < O () D7 Tl

Let us first show that essential oscillation on the left can be replaced with the classical oscillation.
This works on any countable measure spaces where the algebra of null sets is trivial, so in particular
it works on Z" with counting measure #. To elaborate, denote g := D, !7,, fm for a short while and
notice that P; is strongly continuous in L?(Z"). This allows us to estimate, for all y € Z", § > 0,

1/2
|Prisg(y) — Prg(y)] < 7 {y} (Z | Prysg(z Pt9(2)|2> < |[|Pi+69 — PegllL2(zn),

ZEL™

implying that P;g(y) is continuous in ¢ for every y € Z". Let us denote S := [tg— R?*, to] x B(0, R)NZ"
and suppose that N C S, A x #(NN) = 0 (X being the Lebesgue measure on R) is an null set such that

P, = P, .
TepmgPole) =, S5g w1

Since Z" is countable and () is the only #-null subset of Z" we can decompose N into

N= |J N,
y€B(0,R)NZ"

where A(IV,) = 0 for every y € B(0, R) N Z". Therefore

ess osc P = osc P
(t.2)es 9(z) tayes\n Y (@)
= sup sup Pig(x) — inf inf Pig(x).
z€B(0,R)NZ" te[to— R25 o]\ Nx 2€B(0,R)NZ™ t€[to—R25,t0]\ Ny

Due to the continuity of P,g(z) for every x € B(0, R) NZ"™, null sets N, in the last line can be ignored
giving
P, = P,
g o) = (o3¢ T

just like we promised. This proves that for all Ry < R <R < (to/ 2)2%

R n
0sC P.D 'n ) <Cgyl|= D 'x oo (7mY)-
o S Db (@) < Cu (3 ) 105l
Since both 7y, and D;! do not increase the L*°(R™) norm, the last factor is bounded by || fyn || oo (gn) <
M. Rescaling variables Ry, R, R and ty we can translate this into the following statement concerning

P T fin = Din Pzt D o fra: For B2 < R <R < (t/2)7,

(m) R\"
PV fm(x) <CgM | = | . 12.1
(t,x)e[tofR(g?go}xBRﬂZm e Tmfm(2) a <R) ( )

Recall that for every g € L?(Z,,) by definition E,,g(z) := g([x],,) where d([x]m,z) < % and we can
estimate, for every S’ C R" and g € L?(Z,,),

sup Fng < sup g and in,f Eng > inf g.
s (€ Zm:d(2,5")< Y2} S {2€Zm:d(0,5")< Y2}

2m
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12.2. Mosco convergence for symmetrized ergodic conductance

. p(m) (m) R
Tranf/lgtmg Ineq. (12i) to a statement on P’ = E,, P} my fn we find that for all 7¢ < R <
R+ 35— <R < (to/2)2s

i R+ Y\
P (x) < CyM <+2m) .

0SC
(t,z)€[to—R23,t0] X Br R

The left hand side is increasing in R and the right hand side is decreasing in R which makes it
possible to allovv1 for small values of R and R by slightly modifying the inequality. That is, for all
RaR € [07 (tO/Q)g]

osc P f(x) < (Cp v 2)M (

R, \/ﬁ
R+ 20 4 T '
(t,I)E[tO IEQSytO]XBR

R

Note that if R+ ;/7? > R the above inequality follows from L°°-contractiveness of ]St(m) explaining the
change to C'y V 2. Let us specify tg :=t1, R = (tO/Q)i in what follows. Then in particular

n
~ (m) < Ry +/n
a:(e)SBCR Ptl fm(@) < C1 <R m 2m>

where C} := (Cyr V 2)M (t1/2) 2. For arbitrary § € (0, (tl/Q)i) this implies that

= (m) Ry vn\"
< P () < =4 Y.
< xe%st(é,a)  fm(z) < O <5+ ot 2m>

f B £ (@)dz — B £(0)
B(0,6)

On the other hand, by continuity of Pt(loo) f(z) from |Pr0position 12.1.6|, for every € > 0 there is a
= 6(e) € (0,¢) such that

<e.

f PO f(2)dz — P £(0)
B(0,5)

The last two observations, with € = £(¢;) small enough, lead to

" N . - R n\"
B £nl0) = PEOSOI < f (B fnla) - PEY flalde + (5 ot QF) e
B(0,5) " "

m—o0

From L?(R"™)-convergence Pt(lm ) fm Pt(loo) f we now conclude that

m— 00

= (m o . .
fB(O ) ’Pt(l )fm(l') - Pt(1 )f(x)’dl‘ < ’B(O,(s)‘ 2 HPt(l )fm _ Pt(1 )fHL2(M) mooo

Thus

1

limsup [B{™ £, (0) — P £(0)] < & + Cye”,
m—0o0

which proves the claim because the left hand side does not depend on € which can be taken arbitrarily
small. O

12.2. Mosco convergence for symmetrized ergodic conductance

We will prove that £(™ converges to £(>) in the generalized Mosco sense when ¢ is symmetrized
ergodic conductance. The result which we need is proved in Theorem 4 of [FH20] and only minor
modifications are needed to adopt it into our setting. Here is a paraphrase of their result.
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12. Convergence results

Theorem 12.2.1. Let s € (0,1) and n > 2 be arbitrary and let g > 5 be such that ergodic conductance
¢ has finite expectation and negative ¢ moment, i.e. E[c] + E[c™9] < oo. Then the following two
statements hold P-a.s.

(i) For every sequence wy, € L*(Zy,) such that sup,, £ (u,,) < oo there exist a w € W2(R"™) and
a subsequence wuy,, such that By, — u a.e. on L>(R") and

lim inf £ (u,,) > £ (w).

m— 00

(ii) For every u € C.(R™) consider the sequence mpu. Then mpmu € DIEM™)], Epmnu — u strongly
in L*(R"™) and
lim £ (mpu) = £ (u).
m—0o0
Proof of paraphrase. Since the differences that we need to address are mostly cosmetic we advise
the reader to have a copy of [FH20] nearby. Note that [FH20] does not state the condition P-a.s.
explicitly. We restrict the definition of the form &), ;. from the introduction of [FH20] by specifying
p=2G=0,V(E) =& and f. = 0. Taking ¢ = 1/m these forms coincide with £ and the R.,
R} coincide with 7, E,, respectively. The result is a combination of Theorem 5 and Lemma 36 from
[FH20]. The second conclusion of Theorem 5 does not quite fit with our definition of generalized Mosco
convergence because the approximating sequence is not claimed to be in L?(Z,,) and the convergence
is pointwise. But let us not get ahead of ourselves and first find » such that Assumptions 1 and 3
from [FH20] are satisfied. For Assumption 1, ¢ is ergodic in Z™ x Z™ by assumption, and we need to
find r € (1,p) such that ¢ > ﬁ > %. We know already that ¢ > sn—p > 1, p =2, E[c] < oo and
E[¢79] < oo. Plugging r = 1 into expression 5o gives ﬁ = 1 while for » — p the expression goes
to infinity. Since zﬁ is continuous in r, we can find an r such that Iﬁ € (%, q} so Assumption 1 is

satisfied. Assumption 3 is satisfied because V(¢) = £2 is continuous and one can take o = 1, 8 = 1,
c=0and p =2 to get
alglP < V(§) < e+ BIEP.

Furthermore, |{|7PV(§) = 1 is clearly continuous at 0. The second condition 2 in Theorem 5 from
[FH20) is satisfied because G = a|£|" 4+ G with o = 0, G = 0 (which is clearly non-negative and convex)
and in addition f,,, = 0. The first claim now follows from statement 1 of Theorem 5 of [FH20].

To prove the second statement we turn to Lemma 36 of [FH20]. Take an arbitrary u € C.(R™), find
a bounded set Q@ C R™ large enough such that d(supp(u), Q°) > 2y/n and set u,, = mpu. We already
checked Assumptions 1 and 3 of [FH20] and a simple computation

lu(z + z) — u(y + 2)|dz < ][ . (Lipu)d(z,y)dz < (Lipu)d(zx,y)

n

() — ()] < ][

[—3mzm)"

[=%m3m

shows that u,, are Lipschitz functions on Z,, with the same Lipshitz constant as u. In a similar way,
luml|oo < ||t]|oo. Furthermore, the cubes over which m, averages and E,, extends are contained in a

ball of radius % around its center so

supp(mmu) C {y € Zp, = d(y,suppu) < \/ﬁ}
and
supp(E,mnu) C {y € R" : d(y, supp(mnu) < \/ﬁ}

which means that supp(m,u) C Q and supp(En,mnu) C Q by definition of Q. Continuity of u implies
that E,,u;, — u a.e. and since we know that w and all E,,u,, are bounded and supported on Q
the dominated convergence theorem implies that E,,u,, converges to u strongly in L?(Q) and hence
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12.3. Mosco convergence for i.i.d. conductance

also in L2(R"). This verifies the assumptions of Lemma 35 from [FH20] and its second to last claim
(Equation (43)) gives, in slightly adjusted notation,

O LB ey [ e () —u)?,

M—00 d(x.y)n+2s 1’ n+25
oics, Ay y

Since Up € Ce(Zm), tm € D[EM™)]. By definition of £(™ and £(°) this is equivalent to

lim £ (uy,) = £ (u)

m—r0o0

which, together with the strong convergence, proves the claim. ]

Theorem 12.2.2 (Mosco convergence). Let ¢ be a symmetrized ergodic conductance on Z™ (n > 2)
n

such that Elc] + E[c™ < oo for some q > 5=. Then P-a.s. EM) converges to £ in generalized
Mosco sense.

Proof. Recall that by [Remark 9.1.7| the fact that ¢ is symmetrized plays no role since our statement
only depends on the symmetric part of £. Thus we can assume that ¢ is not symmetrized and we only
need to check the assumptions of [Theorem 2.8.5| Let u € L?(R™) and let u,, € L?*(Z") be a sequence
such that E,,u, — u weakly in L?(R™). If liminf,, o gm) (um,) = 00, then trivially

lim inf £ (uy,) > &(u). (12.2)

m— 00

Otherwise [[tem (i) of [Theorem 12.2.1|implies that every subsequence u/, of u,, has a sub-subsequence
u) such that E,,u!" converges a.e. to some v and

lim inf £ (") > £(%°) (v).

m—r0o0
In fact v = u M-a.e. as we will now show (A denotes the Lebesgue measure). Take any ¢ € C°(R™)
and a bounded open set U C R"™ such that ¢ is supported inside of U. Then weak convergence u,,, — u
in L*(U) implies that [z, Emup, (z)¢(z)dz roe, fR" . On the other hand E,u/, £% v
implies that E,,u! converges to v in measure on L (U ) and moreover that it converges as distribution
on Cy(U) so [i; Epult(z)p(z)dr === [, v(z)p(z)dz. Thus E,ul, converge as a distribution on

C2°(R™) to both v and v which is only possible 1f u = v A-a.e. But this means that

lim inf £ (u)) > £ (w).

m—0o0
Such ! exists for every subsequence u}, of u,, which implies that [Eq. (12.2) holds in this case as well.
Hence [Item (i)| of [Definition 2.8.4|is satisfied. Let us now take D := C.(R"™) and verify the remaining
conditions in [Theorem 2.8.5l We know that C.(R™) is dense in (D[S(OO)],El(OO)) because £(>) is a

regular Dirichlet form of a Lévy process. [[tem (i) of [Theorem 12.2.1| immediately verifies remaining
conditions and therefore [Theorem 2.8.5|implies that €™ — £(°°) in Mosco sense. 0

12.3. Mosco convergence for i.i.d. conductance

If ¢(z,y) is allowed to be zero for some z,y € Z™ we are only able to deal with the i.i.d. case. The
Mosco convergence result which we require was obtained in [CKK13] Proposition 7.1. Here we present
a particular realization of that theorem in Z™ and explain how it is obtained from the result of [CKK13].

Theorem 12.3.1 ([CKK13] Proposition 7.1). Let c¢(z,y) be a non-negative i.i.d. conductance on Z"
(n > 2) such that Var[c] < co. Then P-a.s. £™) converges to £(>) in generalized Mosco sense.
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Proof. Proposition 7.1 of [CKK13] is stated in a more general way allowing the limiting spaces to
differ from R"™, limiting kernel to differ from d(x,y)*(””s) and allowing for sequences of graph ap-
proximations other than Z,,. We will now indicate, among other things, how these more general
notation collapse in our setting. In our setting c(z,y) replaces &, from [CKKI3]. The assumption
E[¢:,,] = 1 is benign since we can redefine ¢/(x,y) := E[c] 'c(z,y) and ¢’ remains non-negative, i.i.d.
and Var[¢] < oco. Forms £ and £(>) then have to be multiplied by a factor E[c]~' which is of
little relevance for the generalized Mosco convergence. Let us suppose thus that E[c] = 1. We take
the sequence of graphs V,,, := Z,,, with partitions Up,(z) = z + [—1/(2m), 1/(2m))". It is not hard to
verify that this choice satisfies (AG.1), (AG.2), (AG.3). With such choice of approximating graphs
) (x,y) and k™ (z,y) coincide as well as forms £ (which happen to be denoted in exactly the
same way) and & () and &. Lastly, [CKK13] only states the consequences of generalized Mosco con-
vergence although Mosco convergence is used in the proof. The conditions (A2), (A3)* and (A4) are
proved to be satisfied, which together with Theorem 4.7 of [CKKI3] proves that P-a.s. gm) _y g(e0)
in generalized Mosco sense. O

12.4. Convergence in finite-dimensional distributions

(

|Theorem 12.4.1| gives the convergence of the finite-dimensional distributions when Xt(m) and Xtoo) are
started from 0. The proof relies on the Mosco convergence, conservativeness of the limiting process

and large scale Holder regularity only around point 0. One can also start X(goo) from initial distribution
@A(dx) for some p € C.(R"), ¢ > 0, [pn 1oA(dx) (X is the Lebesgue measure) and Xt(m) from @iy, (dz).
In that case the proof of the vague convergence (tested with C.(R™)) requires no Hélder regularity at
all and can be found in [Kol06], Section 7. If the limiting process is conservative, the convergence is
also true in the weak sense (tested with Cp(R™)) and the proof can be found in [CKK13], Theorem
5.1. On the other hand, if large scale Holder regularity for Xt(m) is available, it is possible to obtain
the same results when Xt(m) and Xt(oo) are started from the origin 0 € Z". The vague convergence in
this case can be found in [HK07], end of proof of Theorem 5.1 or [CKW18b] Theorem 4.5. Here we
slightly relax Holder regularity assumption by requiring that it only holds at point 0. This is necessary
because in the ergodic case we do not have the control of the minimal scale of Holder regularity in the
neighborhood of 0.

Theorem 12.4.1 (Weak convergence of finite-dimensional distributions). Let ¢ be a symmetric ran-
dom conductance such that £ is a reqular Dirichlet form P-a.s. Suppose also that

(i) Pt(oo) is conservative,
(ii) ) T2 () jn generalized Mosco sense P-a.s. and
(iii) there exist n > 0, Cy < oo and a random variable Ry > 0 such that € P-a.s. satisfies
[HE]0, [Ro, 00); n, Ca]-
)

Then, P-a.s., finite-dimensional distributions of Xt(m) under P(()m) weakly converge to those of Xlt(oo
under P(()OO). Explicitly, we will prove that, P-a.s., for every k € N, any sequence of times 0 < t1 <
to < ... <t < oo and any sequence of bounded continuous functions f1, fa,..., fr € Cp(R™)

Tim B | A LX) (X = BED [RGB e

k

Proof. We will work with semigroups Pt(m) = EmPt(m)wm from |Deﬁnition 12.1.10l First of all, notice
that generalized Mosco convergence £ — £(°°) implies, through [Theorem 2.8.6L that for all v €
L?>(R") and t > 0

By — Py (12.3)
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strongly in L?(R"). Fix an arbitrary k& € N, an arbitrary sequence of times 0 < t; < ty... < t}, < 00
and an arbitrary sequence of functions fi, fa,..., fr € Cp(R™). Let us first prove that we can require
f1, fo,... fr to have compact support. By conservativeness of Pt(oo)
large enough ball B, with radius at least 1, such that for i = 1,2,...k, Pt(ioo)lg(O) > 1 —e. Take
any h € C.(R™) such that 15 < h < 195. By |Proposition 12.1.7| we know that the semigroup Pt(oo)
is Feller so Pt(ioo)h € Co(R™). By |[Eq. (12.3)[ we know that Ist(im)h — Pt(z_oo)h strongly in L?(R").
In addition, |Lemma 12.1.11| combined with [HR|0, [Ry, c0); 8, Cy] implies that lim,, ]st(im)h(O) =
Péoo)h(O) > Pt(ioo)lg(()) >1—¢ for every i = 1,2,...k. By increasing the ball B if necessary, we can
find mo = mo(e) such that P(()m)(Xt(:n) € B) = Pt(m)IB(O) >1—2forallm>mgandi=1,2,...k.
Let us now take a compactly supported Lipschitz function ¢ : R™ — [0, 1] such that ¢ = 1 on B. Then
for all m > my(e)

, for every ¢ > 0 we can find

B [A () LX) (X))

—E(" | AT (X)L (X ’m{X(mGB}

ﬂ{X(m € B}
(<)
P (U{X““’ ¢ B})

+ B | A (X 1U{X<m ¢ BY| P

The size of the second term is comparable to € when m > mg(e) because

By [f1<X§f“)>fz<X§;”>>. fi(x3") ]U{X“" ¢ B)

(H\szoo> S P ¢ B) (Humm) 2ke.

Since the previous calculations work in the same way if f; are replaced with ¢f;, it follows that for
m > m(e)

(U{X“” ¢B}>

B (A (X)) - EEY [ (XS () (X H<2k€HHfllloo

o0)

An analogue estimate holds for Xt( where we get

k
B [0 O] - B [0 - o) X[ < b TT e
=1

Thus, for every € > 0, it is possible to find ¢ € C.(R™) such that

timsup [BY™ [A1 (X)X =BG [AXED) . (X))

m—00

< timsup B [(7e)(X) . (fie) (X~ BE? [(h) X5 - (o) (X)) |
k
+3ke [ T 11 lloos
=1

which show that up to an arbitrary small error in the final result we can replace functions f; by their
compactly supported alternatives ¢ f;.
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Let us therefore assume that fq, fo,... fr were compactly supported to begin with. This guarantees
that they are all uniformly continuous so we can find a modulus of continuity () : R — R =

U[f1, f2,--- fr](-) such that

Vi<i<k |filz)— fily)| <U(z —y])

lz—y|—0

0.

Moving on, notice that L?(Z,,) C Co(Z,,), for every m € N, because the measure on Z,, is a multiple
of the counting measure (see [Definition 12.1.1). This means that Pt(m)(LQ(Zm) NCo(Zm)) C Co(Zm)
for every t > 0. Therefore, by [Theorem 2.5.15], we have

B [ LX) (X))
=PI AP, (P (o e PO (fr) - ))(0).

We now claim that replacing Pt(m) with pt(m) = EmPt(m)wm will not make any difference in the limit.
More precisely, we claim that

P o it P () D(0) 2225 BV CAPEY, (o fiea B, (F) - ) (0):
(12.4)
To prove this, notice first that for every h,g € L?(R"), by definition of extension and restriction
operators in [Definition 12.1.8] E(w(h)) is constant on the averaging domains of 7 so w(gE(mw(h))) =
7(g)m(h). Secondly, notice that (Eh)(0) = h(0) since 0 € Z™. The extension operators therefore play
no role in our current computation and

B (P, o et P, () - 0))(0)
= P @™ (1) B, (™ ()Y, (7 (f) - ))(0).
Furthermore, for all h € L>(Z,,), i =1,...k,

R = B W) < | P2 (= mfo)]| <24 (e ) Wil

because for all x € R"

ﬂ@—mﬂméf

@t [z 07m)"

rﬂm—ﬂmwgu<§g.

Let us now shorten
Plar, as, .., a) = B (@1 P, (0P, (- oax 1 P (ag) )
and notice that P is multilinear. Defining, for 1 <17 < k,

hi =P (firr oo PYY (Tnfi) )

and hr = 1 we know that [|h;]|eo < H§=i+1 | filloo (because Pt(m) and 7, are L°°-contractions) so we
can estimate

||P[flaf27' . afk] - P[Wmfl77rmf27 s 77rmfk]||oo
K
< Z IPUf1s- -5 fimts fis imfits oo oo T fi] = Plfas - fict, T fis T fins -+ mn Sl oo

IHLM
( )me&ﬂmmg4 )ifﬂmmmm

=1

<3 0 EE Gt
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This proves [Eq. (12.4)l In a similar way, by applying [Eq. (12.3)| several times (keeping in mind that

|| filloo < 00 and that Pt(m), Pt(oo) are L2-contractions), we find that

~m ~(m ~(m ~ (m L? m—o0
P vy o= B (HPYY, (o e PYY, (fi) )

L% m—
22 PO (AP, (o fua P, (fe) - ) = P
in L?(R™) where v, and v are implicitly defined. Functions v and Pt(loo)v are continuous by Feller

property of Pt(oo). Noticing that [[vy,||fe < Hle Il fillo (because Pt(m) is a L*°-contraction) allows us
to use lLemma 12.1.11l and conclude that

B iy (0) 22225 PEOR(0).
With the last statement and [Eq. (12.4)|in hand it follows that

B (A X | = PGPS, G i P, () - ))(0)
222 POV APS (o fia P, (f) - )(0) = BE [A(X) (X))

In the last line we again used |Theorem 2.5.15| and the fact that P,(Co(R™)) C Co(R™) due to Pt(oo)
being Feller, see [Proposition 12.1.7, This completes the proof. ]

Corollary 12.4.2. Let a symmetrized twofold ergodic conductance ¢ on Z™ (n > 2) be such that
E[c™9] + E[cP] < oo for some p,q € [1,00] satisfying

1 1 2
il (12.5)
p q n

Then, for P-a.e. realization of conductance, Xt(m), started from Xém) = 0, converges to X{°, started

from Xéoo) =0, in the sense of finite-dimensional distributions.

Proof. |Theorem 12.2.2| shows that P-a.s. £(™) — £(%) in Mosco sense because q > 55 from|Ineq. (12.5)

Since Xt(oo) is a Lévy process, we know that Pt(oo) is conservative. On the other hand, |Theorem 10.4.1}
which requires the same moment assumption as in for g := 0 provides us with non
random 69 = 6°9(s,n, q,p, E[c™], E[cP]), Cy? = Cp;?(s) and a random variable Ry = Rgz1)(z0 =
0,w,c,q,p,E[c™9],E[cP]) such that P-a.s. £ satisfies I@[ZEQ = 0, [Ro(w),00);09,C%7). This means
that assumptions of |Theorem 12.4.1| are P-a.s. satisfied and thus P-a.s. Xt(m) noe Xt(oo) in finite-
dimensional distributions when all processes are started from O. 0

Corollary 12.4.3. Let ¢ be an i.i.d. conductance on Z™ (n > 2) such that E[cP] < oo for some
p > "T“ Then P-a.s. Xt(m), started from X(()m) = 0, converges to Xt(oo), started from X(()OO) =0, in
the sense of finite-dimensional distributions.

Proof. We check the assumptions of |The0rern 12.4.1l Semigroup Pt(oo) is conservative because Xt(oo)

is a Lévy process. By [Theorem 12.3.1] we know that £ converges in generalized Mosco sense
to £(>) for P-a.e. realization of ¢. Finally, by [Theorem 11.7.1] there exist # = 6(p,n,s), Cy =
Cx(s), n = n(s,n,p,E[c’],p,v) and a random variable R, = R,(z9 = 0,w,¢,p, s,n,p,v) such that
[.T}* = 0, R,(0),0;7n,Cg| holds P-a.s. In particular, £ satisfies @[xo = 0,[R?,00);m,Cg). This
verifies all assumptions of [Theorem 12.4.1| which implies that Xt(m converges to Xt(oo) in sense of
finite-dimensional distributions when all processes are started from 0. ]
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12.5. Tightness in the i.i.d. case

Having control of exit probabilities for process started in a neighborhood B(0, Ry) of 0 on scales of
any order strictly lower than Ry together with tightness criteria from [Ald78] implies that probability
measures Pg? are tight on Skorokhod space D([0, T, R"™) for every T' > 0 and every sequence x,, C Z,
such that z,, — 0.

We start with a paraphrase of Theorem 1 from [AId78].

Theorem 12.5.1 (Tightness criteria). Let T > 0 be arbitrary and denote by m : D([0,T];R™) — R
projections x — x(t) (see|Definition 2.5.1| for Skorokhod space D). A sequence of probability measures
{Pi}ien is tight on D([0, T|;R") if

(i) Pi(m; 1) is tight on R™ for every t € [0,T] and

(ii) for every sequence of stopping times {7;} taking only finitely many values, every sequence of
constants {e;} C [0,1] tending to 0 and every § >0

1—00

P; (|z(m + &) — z(m)| > §) —— 0.

Proof. Define a sequence of random elements {X;} of D([0,7],R™) that have distributions {P;} and
apply Theorem 1 from [AId78]. O

Theorem 12.5.2. Let ¢ an i.i.d. conductance on Z™ (n > 2) that is not identically zero and has finite
p moment, i.e. E[cP] < oo, for some p > "TH Let {xpm}tmen C R™ be an arbitrary sequence such

that X, € Zpy and T — 0. Then P-a.s. the sequence of random measures {Pg,?}meN is tight on the
Skorokhod space D(]0,T];R™) for every T > 0.

Proof. The following argument is borrowed from the proof of Theorem 4.5 from [CKWIS8b]. Let
us fix an arbitrary T" > 0. The plan is to verify and from [Theorem 12.5.1| for the
sequence {Pg,ﬂn)} Since ¢ is a nonzero conductance, we can find p > 0 and v > 0 such that
P(e(x,y) > v) > p just like in [Definition 11.0.3] Using [Theorem 11.8.1) we find 6 = 6(p, s,n) € (0, 1),
Cpp = Cgp(p,E[?],p,v,s,n), § = 0(p,E[cP],p,v,s,n), Cr = Cr(E[cP],s,n) and a random variable
R, := R,(0) = R,(0,w,¢,p,p,v,n) such that, for all t > 0, Ry > Ry, xo € B(0,Ry/2), R < Roy/2,
holds, that is,

B(xo,R) t <R%59

1_Pt 1< CEP@ \/6_28\/4CT> in B <$0,R8\/5_1ti) .

On the other hand, for every ball B C Z™ (which is a nearly Borel set) we know by [CF12] Theorem
3.3.8 that process X/, obtained from X; by killing it upon exiting B, is properly associated with
Dirichlet form (£,Dp[€]). Thus [FOTII], Theorem 4.2.3 implies that for every function v : Z" — R
(all such functions are automatically universally measurable because the space is discrete) we have

E,(v(XP)) = PPv(x) VxecZ" (12.6)

Notice that because we are dealing with the discrete measure “for every x” in the last statement is
equivalent to “for a.e. 7 and “for q.e. ”. Our estimate therefore translates into

. t R259
sup P, (X0 ¢ B(xo, R)) < Cop ( v v4CT) .
:L’EB(:EO,RS\/(S*HTIS)

The probability on the left is equal to the probability that X; does not exit ball B(zg, R) at any time

T € [0, t] because otherwise XtB OB is killed upon exit and never comes back to B(0, R). Thus we can
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also write

2560
(Rg VR, 4CT) (12.7)

t
sup P, ( sup |X; — xo| > R) < CEPR25
xeB(mo,Rgvé—lt%) T€[0,t]

for all t > 0, Ry > Ry, xo € B(0,Rp/2), R < Ry/2. The fact that [Ineq. (12.7)| holds uniformly in
zo € B(0, Ry/2) will be of crucial importance for the rest of the proof.

Choosing zg = 0, Ry = 2R = mr in[lneq. (12.7)] for arbitrary 7 > 0 and m € N, and recalling the
scaling relation Xt(m) = X,,25¢/m from |Deﬁniti0n 12.1.3| we obtain

sup Px(Xt(m) ¢ B(0,r)) < sup P, | sup |X, 25| > mr/2
z€B(0,6—1¢1/2s) z€B(0,mé—1¢1/2s) 7€[0,t]

74259

<C !
= “EP (r/2)% \ tm2s(1-0)

VY 4OT> .

Due to 6 < 1, when passing to limsup,,,_,, the expression reduces to

lim sup sup Px(Xt(m) ¢ B(0,r)) < Cgp (5_25 Vv 4Cr) _

M—00 g B(0,0-1t1/29) (7’/2)25
and then letting r — oo we find that, for every t > 0,

lim lim sup sup Pz(Xt(m) ¢ B(0,r)) =0.

T—=00 m—yo0 z€B(0,6~1t1/25)
1
Since 2, — 0, ., € B(0,6't2s) for m large enough so in particular we have

lim limsup P, (X\™ ¢ B(0,r)) =0

r—00 m—o0

which proves that P, (X; € -) is tight on R™ for every ¢ > 0 and checks|Item (i)|of[Theorem 12.5.1] To
prove take an arbitrary £ > 0, an arbitrary sequence of stopping time 7,,, < T', an arbitrary
sequence of numbers ¢, > 0, €, — 0, and consider the probability

P (1X0., = X > ¢).

Tm+Em

For rg > 0 we can estimate

P (1X0.., = X > €) <Po | sup |X{™)] > ro/2
te[0,7)

+ Py <!X£::)+em - X0 >¢ ‘ sup | x| < 7"0/2> =P+ P,
te[0,7)

P and P, can be expressed in terms of X; using the scaling relation Xt(m) = X,,2s;/m from
tion 12.1.3] Taking R = Ry/2 = mry/2, x9 = 0 € B(0, Ry/2) in|lneq. (12.7)|and assuming that ro > 2

and m is large enough so that Ry = mrg > R, we can estimate

T 7’859
(7’0/2)25 Tm2s(1-0)

< Cpp(ro/2) 200 (1v 62T v ACTT) .

P =Py ( sup |Xt| > mm/2) < Cgp

VT2 4CT>
te[0,m2sT)
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On the other hand, Markov property of process Xt(m) under condition Xt(m) € B(0,r/2) implies that

Py (rxﬁ:lsm—xﬁ::)r >¢ | sup |x{™)] Sro/2>
t€[0,T]

Px,, (1X., — X > ¢) LSESPT ] x(™) < 7’0/2] .
S )

This allows us to estimate

P, < sup Py, ( sup | X" — wo| > 5)
J?OEB(O,T’()) tlE[O,anL]

< sup Py < sup | Xy, — x| > m£> .
t1€]

zoE€B(0,mro) 0,m25e,,]

This time we would like to apply with R := mé, Ry = 2mrg, t = m*%e,, and zg €
B(0,Ry/2) = B(0,mrg). We can assume & < 1 (without loss of generality) and ry > 2 like before
toget R=E&m < m < mrg < Ry/2. If m is large enough so that Ry = 2mrg > R,, the estimate is
uniform in z¢ € B(0, mry) so

em (W

&2 \ml-0¢,,

where we used €, — 0 in the last inequality. The estimate on P; does not depend on m, as long as it
is large enough (m > R, /2 to be precise), and hence

P, <Cgp

2s6
Ve \/4CT> < Cgp <(2T0) cm V 4CT5m) 0 ).

m1—9§25 528528 §2s

Py (|X£;”>+€m — x| > 5) < Py + Py 7% Cp(re/2) 200 (1v 62T v 401 T)
for every ro > 2. But as we are still free to choose ry > 2 arbitrary large it follows that

lim Po (IX\.,, = X[ >6) < lim Cpp(ro/2) 070 (1§57 V4CIT) =0

m—r0o0

which proves|Item (ii){of[Theorem 12.5.1} Hence [Theorem 12.5.1|implies that the sequence of measures
P, is tight on D([0,T],R") for every T > 0. O

Corollary 12.5.3. Let ¢ be an i.i.d. conductance on Z" (n > 2) such that E[cP] < oo for some
(m)

p > ”TH Then, for P-a.e. realization of conductance c, Xt(m) started at Xy ' = 0 converges weakly
on Skorohod space D([0,T],R™) to Xt(oo), started from Xéoo) =0, for every T > 0.

Proof. By |T heorem 12.5.2| we know that distributions of Xt(m) are tight on D([0, T]; R") for every T' >
0. On the other hand, |Corollary 12.4.3| proves that Xt(m) converges in finite-dimensional distributions

to Xt(oo) which identifies the limit point of sequence Xt(m) as Xt(oo). Hence Xt(m) converges to Xt(oo)
weakly on D([0,T]; R™) for every T' > 0. O
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