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A DECOMPOSITION OF GENERAL PREMIUM PRINCIPLES INTO

RISK AND DEVIATION

MAX NENDEL, FRANK RIEDEL, AND MAREN DIANE SCHMECK

Abstract. In this paper, we provide an axiomatic approach to general premium
principles giving rise to a decomposition into risk, as a generalization of the expected
value, and deviation, as a generalization of the variance. We show that, for every pre-
mium principle, there exists a maximal risk measure capturing all risky components
covered by the insurance prices. In a second step, we consider dual representations of
convex risk measures consistent with the premium principle. In particular, we show
that the convex conjugate of the aforementioned maximal risk measure coincides with
the convex conjugate of the premium principle on the set of all finitely additive prob-
ability measures. In a last step, we consider insurance prices in the presence of a
not neccesarily frictionless market, where insurance claims are traded. In this setup,
we discuss premium principles that are consistent with hedging using securization
products that are traded in the market.

Key words: Principle of premium calculation, risk measure, deviation measure, con-
vex duality, superhedging
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1. Introduction

In classical risk theory, a premium principle is a map that assigns a real number
H(X) to a random variable X. Here, H(X) is the premium for insuring the claim X,
see Bühlmann [3], Deprez and Gerber [5], Young [27], or, for textbook references, Rolski
et al. [22] and Kaas et al. [12]. In this approach, it is assumed that the probability
distribution of any loss is known. Frequently, however, the probability distribution
is not known exactly. The issue of Knightian or model uncertainty has entered the
center stage in recent years. The International Actuarial Association acknowledges the
importance of such uncertainty in Chapter 17 of the risk book [11]: ’Risk is the effect
of variation that results from the random nature of the outcomes being studied (i.e.,
a quantity susceptible of measurement). Uncertainty involves the degree of confidence
in understanding the effect of perils or hazards not easily susceptible to measurement.’
Model uncertainty is also widely recognised, for example, in the context of life insurance,
cf. Biagini et al. [2], Bauer et al. [1], Milevsky et al. [17], and Schmeck and Schmidli
[23].

In this paper, we thus take a more general position, and model insurance claims as
measurable functions, thus being closer to the actual real world contract. In particular,
we do not assume ex ante that the probability distributions of losses are known to the
insurer. For a class C of bounded claims, we impose only two very natural conditions
on premium principles. We require that there is no unjustified risk loading, i.e a shift

Date: July 20, 2020.
Financial support through the German Research Foundation via CRC 1283 is gratefully acknowledged.
The authors thank Hans-Ulrich Gerber, Marcelo Brutti Righi, and Ruodu Wang for their helpful
comments and remarks.

1



2 MAX NENDEL, FRANK RIEDEL, AND MAREN DIANE SCHMECK

of a loss by a known amount is priced correctly, or

H(X +m) = H(X) +m for all X ∈ C and m ∈ R, (P1)

compare Deprez and Gerber [5] and Young [27]. In the textbook Kaas et al. [12, Section
5.3.1] Property (P1) is also referred to as a consistency condition. In the context of
monetary risk measures, property (P1) is, up to a sign, usually referred to as cash
additivity, see e.g. Föllmer and Schied [8]. Our second natural requirement has the
form

H(X) ≥ H(0) = 0 for all X ∈ C with X ≥ 0. (P2)

Condition (P2) simply states that an insurer will not be willing to pay money for insur-
ing pure losses, i.e. claims with only positive outcomes, a property neccesary to avoid a
ruin with certainty. Since typically insurance claims have only positive outcomes, one
could, loosely speaking, interpret (P2) as a condition stating that insurance premia are
always nonnegative, a standard requirement, see e.g. Young [27]. Notice that, (P2) is,
for example, implied by monotonicity.

Our first main result shows that every insurance premium can be written as

H(X) = R(−X) +D(X) for all X ∈ C,
where R is a monetary risk measure (compare, e.g., Föllmer and Schied [8]) and D is
a deviation measure (compare Rockafellar and Uryasev [21])1. Therefore, the simple
axioms (P1) and (P2) immediately give a lot of structure and contain most known
examples that are used in practice. We would like to point out that (P2) does not
contradict the standard no-ripoff condition, cf. Deprez and Gerber [5], Kaas et al. [12,
Section 5.3.1], or Young [27],

H(X) ≤ maxX for all X ∈ C, (1.1)

and that the latter can be added if necessary, leading to D = 0 in the decomposion of
H (see Proposition 3.6). In the classic case, when the probability distribution is known,
a typical insurance premium consists of the sum of the fair premium and a multiple of
the variance or standard deviation, compare [22]. As the expected loss is a risk measure
and the variance a deviation measure, we thus show that one can think of insurance
premia as generalizations of this basic approach in a very general way.

It is natural to ask in what sense the risk and the deviation measure can be identified
uniquely. In general, this is not the case. However, we show that the premium principle
can be uniquely decomposed into a maximal risk measure RMax (capturing all risky
components of the insurance claim) and a minimal deviation measure DMin measuring
the claim’s pure fluctuations. Moreover, we show that RMax can be explicitly read
out of the premium principle H and, additionally, can be extended to the space of all
bounded random variables. That is, it is possible to explicitly filter the (maximal) risk
contribution to the premium principle H and price other insurance contracts (that are
not contained in C) in a consistent way. The minimal deviation, i.e. the difference
between the premium and the maximal risk measure can be seen as a margin for
compensating the parts of the claim that cannot be quantified as pure risk.

We show that the classic premium principles as the aforementioned variance or stan-
dard deviation principle or the well-known economic principles can be subsumed under
our framework. We also discuss generalizations of these classic premium principles to

1We also refer to Liu et al. [14] for an overview on convex risk functionals, a class containing, both,
risk and deviation measures and to Righi [20] for a detailed discussion on compositions between risk
and deviation measures.
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Knightian uncertainty, and we discuss the more modern notions of quantile-based pre-
mia involving Value at Risk or Expected Shortfall, cf. Rolski et al. [22, Section 3.1.3]
and Kaas et al. [12, Section 5.6]. Similar to Castagnoli et al. [4], we discuss the case,
where

H(X) = EP(X) + AmbP(X) (1.2)

with a fixed baseline model P ∈ P and where

AmbP(X) :=
1

2
sup

Q,Q′∈P
EQ(X)− EQ′(X)

measures the ambiguity of the model. Castagnoli et al. [4] consider premium principles
of the form (1.2) together with the no-ripoff condition (1.1), which as we will show,
implies that the set of priors P is dominated by the reference measure P (see Proposition
3.7).

In a second step, we assume that, in addition to (P1) and (P2), the premium principle
H is convex or sublinear. We then derive a dual representation of RMax in terms of the
Fenchel-Legendre transform of H. In the sublinear case, we show that there exists a
maximal set P of probability measures (priors) satisfying

H(X) ≥ EP(X) for all X ∈ C and P ∈ P. (1.3)

The latter can be seen as a generalized version of a safety loading, see Castagnoli et
al. [4] and Young [27]. In the case, where P = {P} consists of a single prior, one ends up
with the classical condition to avoid bankruptcy according to the principle of pooling
risk in a large group. We therefore see that, in the sublinear case, the notion a premium
principle H covers a certain amount of model uncertainty or ambiguity in terms of the
prior. In view of equation (1.3), the set P can be seen as the set of all priors that
are covered by the premium principle in the sense that the premium principle avoids
bancrupcy under each model P ∈ P. We will therefore also refer to P as the set of all
plausible models. In a last step, we discuss the relation of the maximal risk measure
to superhedging in presence of a competitive market, that is used by the insurer to
hedge against certain risks using portfolios or securization products that are traded in
the market. In the spirit of Föllmer and Schied [7], we derive equivalent conditions
ensuring that the premium principle is consistent with superhedging.

The paper is structured as follows. In Section 2, we introduce the setup and nota-
tions, provide the decomposition of a premium principle into risk and deviation, give
an explicit description of the maximal risk measure RMax, and discuss various examples
illustrating our notion of a premium principle. Section 3 is devoted to the study of con-
vex and sublinear premium principles. In this context, we discuss dual representations,
multiple priors, and baseline models. In Section 4, we address the connection between
market consistency of insurance premia and hedging using securization products that
are traded in a competitive market. The proofs can be found in the Appendix A.

2. Premium principles and their decompositions

2.1. Model and Notation. Let (Ω,F) be a measurable space. Denote the space
of all bounded, real-valued measurable functions by Bb = Bb(Ω,F). Let C ⊂ Bb

represent the set of insurance claims covered by a premium policy. We assume that
0 ∈ C and that X + m ∈ C for all X ∈ C and m ∈ R, where, in the notation, we
do not differentiate between real constants and constant functions (with real values).
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Thus, we also consider claims with possibly negative values. We call every measurable
function X ∈ Bb a claim. We use the notation

maxX := sup
ω∈Ω

X(ω) and minX := inf
ω∈Ω

X(ω).

We denote by ≤, both, the usual order on the reals and the pointwise order on Bb.

2.2. Premium Principles and a Basic Decomposition. The central object in our
analysis is the following notion of a premium principle.

Definition 2.1. We say that a map H : C → R is a premium principle on C if

(P1) H(X +m) = H(X) +m for all X ∈ C and m ∈ R.
(P2) H(X) ≥ H(0) = 0 for all X ∈ C with X ≥ 0.

Notice that (P1) together with H(0) = 0, implies that H(m) = m for all constant
claims leading to the common assumption of no unjustified risk loading, cf. Deprez
and Gerber [5] and Young [27]. Concerning Property (P2), note that the condition
H(0) = 0 is natural for insurance claims. A typical policy insures losses in the sense
that the claim is either zero or positive. (P2) ensures that the company or the market
take a nonnegative premium for sure damages. It is thus a minimal requirement for a
sensible notion of premium policy.

Recall that a map R : Bb → R is a (monetary) risk measure (see e.g. Föllmer and
Schied [8]) if

(R1) R(0) = 0 and R(X +m) = R(X)−m for all X ∈ Bb and m ∈ R,
(R2) R(X) ≤ R(Y ) for all X,Y ∈ Bb with X ≥ Y .

A map D : C → R is a deviation measure (cf. Rockafellar-Uryasev [21]) if

(D1) D(X +m) = D(X) for all X ∈ C and m ∈ R,
(D2) D(0) = 0 and D(X) ≥ 0 for all X ∈ C.

Let R : Bb → R be a risk measure and D : C → R be a deviation measure. Then,
one readily verifies that the sum

H(X) := R(−X) +D(X), for X ∈ C,
defines a premium principle on C. It is quite remarkable that this decomposition into
a monetary risk measure and a deviation measure characterizes all premium principles.

Theorem 2.2. A map H : C → R is a premium principle if and only if

H(X) = R(−X) +D(X) for all X ∈ C,
where R : Bb → R is a risk measure and D : C → R is a deviation measure.

The theorem shows that premium principles can be decomposed into a net premium
or safety loading that takes care of the claim’s risk and a fluctuation loading that prices
the variability of the damage. In the classic case when a prior probability distribution
P is given, the typical premium consisting of the sum of the expected loss EP(X) and
(a multiple of) the variance of X under P is a case in point. Note that the expected
loss is a risk measure and the variance a deviation measure.

It is natural to ask in what sense the risk and the deviation measure can be identified
uniquely. The following theorem provides a partial answer in the sense that it decom-
poses the premium principle into a maximal risk measure RMax (capturing all risky
components of the insurance claim) and a minimal deviation measure DMin measuring
the claim’s fluctuations that cannot be captured by any risk measure.
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Theorem 2.3. Let H : C → R be a premium principle. Define

RMax(X) := inf
{
H(X0) |X0 ∈ C, X +X0 ≥ 0

}
, for X ∈ Bb.

The map RMax : Bb → R defines a risk measure, and RMax(−X) ≤ H(X) for all
X ∈ C. Moreover, DMin(X) := H(X)−RMax(−X) defines a deviation measure on C,
and

H(X) = RMax(−X) +DMin(X) for all X ∈ C.
For every other decomposition of the form H(X) = R(−X) + D(X), for X ∈ C, with
a risk measure R and a deviation measure D, we have R ≤ RMax and D ≥ DMin.

Theorem 2.3 shows that one can identify uniquely a maximal risk measure and a
minimal deviation measure whose sum forms the premium principle. The risk measure
RMax solves a variational problem that is, at least in spirit, akin to the idea of super-
hedging in finance, it computes the minimal premium that one has to pay for a claim
X0 ∈ C that covers the loss given by X in every state of the world. Note that this risk
measure is defined on the whole space of claims Bb, the theorem thus provides a natural
extension of the premium principle H to the whole space of claims. In particular, we
obtain an algorithm to extend a given premium principle to the set of all claims.

2.3. Examples. We illustrate how classic and new approaches of insurance pricing can
be subsumed under our framework.

2.3.1. Classic Premium Principles under a Given Probabilistic Model.

Example 2.4 (Ad hoc premium principles under a given model). The benchmark
premium principle is the fair premium principle given by

H(X) = EP(X), for X ∈ Bb,

where P is a fixed probability measure on (Ω,F). Here, RMax = EP(− · ) and DMin = 0.
In practice, since the fair premium contains no premium for taking risk, insurers usually
add a safety loading, e.g. in terms of the variance

H(X) = EP(X) +
θ

2
varP(X), for X ∈ Bb,

with a constant θ ≥ 0. Here, R = EP(− · ), and D = θ
2varP( · ) is a decomposition of H

into risk and deviation. However, as we will see in Example 3.4, for θ > 0, the maximal
risk measure RMax is given by

RMax(X) = max
Q∈P

EQ(−X)− 1

2θ
G(Q|P),

where P consists of all probability measures Q, which are absolutely continuous w.r.t. P
and satisfy

G(Q|P) := varP

(
dQ
dP

)
<∞.

G is the so-called Gini concentration index, see e.g. Maccheroni et al. [15],[16].

Example 2.5 (Economic premium principles). Let P be a probability measure on
(Ω,F) and ` : R→ R be a strictly increasing loss function. One can then consider, for
example, the safety equivalent

H(X) := `−1
(
EP[`(X −minX)]

)
+ minX, for X ∈ Bb.

Often, one considers a random initial endowment Z ∈ Bb, which could be interpreted
as an existing portfolio of insurance contracts. Assuming a continuously differentiable



6 MAX NENDEL, FRANK RIEDEL, AND MAREN DIANE SCHMECK

loss function `, the premium p := H(X) is then computed by requiring that the new
insurance contract together with the premium p (infininitesimally) does not change the
expected loss. We thus have

0 = lim
h→0

EP
(
`[Z + h(X − p)]

)
− EP

(
`(Z)

)
h

= EP
(
`′(Z) · (X − p)

)
,

which leads to the so-called Esscher transform (cf. [6] or, in the context of option
pricing, Gerber and Shiu [9])

H(X) :=
EP
(
X`′(Z)

)
EP
(
`′(Z)

) , for X ∈ Bb.

Notice that, for P-a.s. constant Z, this leads to the mean value principle. In the case
of an exponential loss function `(x) := 1

α(eαx − 1) with α > 0, this leads to

H(X) :=
EP
(
XeαZ

)
EP(eαZ)

, for X ∈ Bb,

see also Bühlmann [3]. For Z = X, we obtain the celebrated Esscher principle (see e.g.
Bühlmann [3] and Deprez and Gerber [5])

H(X) :=
EP
(
XeαX

)
EP(eαX)

, for X ∈ Bb.

Another condition, when considering a random endowment Z, is given by the following
modification of the safety equivalent (cf. Deprez and Gerber [5])

EP
(
`(Z +X − p)

)
= EP

(
`(Z)

)
.

For the exponential loss function `(x) := 1
α(eαx − 1) with α > 0, this leads to

H(X) =
1

α
log

EP
(
eα(Z+X)

)
EP
(
eαZ

) , for X ∈ Bb.

2.3.2. Model Uncertainty. The recent history brought the issue of model uncertainty
to center stage; in particular, it has become clear that working under the assumption
of a single probability distribution can be too optimistic for insurance companies. New
regulations thus ask insurers to take various models into account (stress testing).

Example 2.6 (Model uncertainty). Instead of a single probability measure P on (Ω,F),
we now consider a nonempty set P of probability measures on (Ω,F). The set P can
be seen as a set of plausible models, and we thus end up with a setup, where we have
model uncertainty w.r.t. the models contained in P. Then, one can consider robust
versions of the aforementioned premium principles by regarding worst case scenarios.
Examples include:

(i) A robust variance principle

H(X) = sup
P∈P

EP(X) + θ sup
P∈P

varP(X), for X ∈ Bb,

with θ ≥ 0.
(ii) A robust Esscher principle

H(X) := sup
P∈P

EP
(
XeαX

)
EP(eαX)

, for X ∈ Bb,
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or a robust safety equivalent with exponential utility function and random endow-
ment Z ∈ Bb

H(X) = sup
P∈P

(
1

α
log

EP
(
eα(Z+X)

)
EP
(
eαZ

) )
, for X ∈ Bb,

for α > 0.
(iii) Maxmin expected loss (cf. Gilboa and Schmeidler [10])

H(X) := sup
P∈P

EP
(
`(X −minX)

)
+ minX, for X ∈ Bb,

with a nondecreasing loss function ` : R→ R.
(iv) Alternatively and particularly in the case of parameter uncertainty, one can con-

sider, for a Polish space Ω (endowed with the Borel σ-algebra F), a probability
measure µ : Σ → [0, 1] (second-order prior), where Σ = Σ(P) denotes the Borel
σ-algebra on P endowed with the vague topology, and take a a mean value w.r.t.
µ. In the simplest case, where `(x) = φ(x) = x, this corresponds to a Bayesian
prediction. This approach can be modified by considering a continuous nonde-
creasing loss function ` : R → R and another nondecreasing function φ : R → R
(second-order loss function). Then, one obtains the so-called smooth ambiguity
model (cf. Klibanoff et al. [13])

H(X) :=

∫
P
φ
(
EP
[
`(X −minX)

])
µ(dP) + minX, for X ∈ Cb,

where Cb denotes the space of all continuous and bounded functions Ω→ R.

Example 2.7 (Ambiguity indices). Again, we consider a nonempty set P of probability
measures on (Ω,F). In contrast to the previous example, we now fix a baseline model
P ∈ P, which can be seen as the (due to some case-dependent reasons) most plausible
model. The idea is now to consider a safety loading, where we differentiate between risk
and uncertainty. The risk premium can then be given, for example, by the variance or
the (average) value at risk, and the premium for uncertainty is given by (cf. Castagnoli
et al. [4])

AmbP(X) :=
1

2
sup

Q,Q′∈P
EQ(X)− EQ′(X), for X ∈ Bb.

Then, AmbP as an uncertainty premium together with the variance as a risk premium
leads to the premium principle

H(X) = EP(X) +
θ

2
varP(X) + γAmbP(X), for X ∈ Bb, (2.1)

with γ, θ ≥ 0. We would like to point out that, in the setup chosen by Castagnoli
et al. [4], it is only possible to consider premium principles with an ambiguity index
for sets P, which are symmetric to the baseline model P, i.e. if 2P − Q ∈ P for all
Q ∈ P. However, our notion of a premium principle includes premium principles based
on ambiguity indices for any nonempty set P and every choice of the baseline model.
Instead of AmbP in (2.1), one could, for example, also consider the ambiguity index

Amb′P(X) :=
1

2
sup

Q,Q′∈P
dW 1

(
Q ◦X−1,Q′ ◦X−1

)
,

where dW 1 denotes the Wasserstein distance.
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Example 2.8 (Quantile-based premium principles). Let ε ∈ (0, 1), P be a probability
measure on (Ω,F), and

P−1
X (λ) := inf{a ∈ R |P(X ≤ a) ≥ λ}, for X ∈ Bb and λ ∈ (0, 1).

Then, we could consider the ε-quantile principle, cf. Rolski et al. [22, Section 3.1.3] or
Kaas et al. [12, Section 5.6],

H(X) = V@Rε
P(−X) = P−1

X (1− ε), for X ∈ Bb,

as a possible premium principle, where V@Rε
P is also known as the value at risk under

P at level ε, cf. Föllmer and Schied [8]. Here R = V@Rε
P( · ) and D = 0. A major

drawback, when considering the value at risk is that it is typically not convex and
thus does not reflect diversification effects. Therefore, one often considers the expected
shortfall or average value at risk AV@Rε

P at level ε, given by

AV@Rε
P(X) :=

1

ε

∫ ε

0
V@Rγ

P(X) dγ, for X ∈ Bb,

instead of V@Rε
P. AV@Rε

P is convex and positive homogeneous (of degree 1), cf. Föllmer
and Schied [8]. Alternatively, for θ ≥ 0, one can consider the so-called absolute deviation
principle, cf. Rolski et al. [22, Section 3.1.3],

H(X) = EP(X) + θEP
(∣∣X − P−1

X

(
1
2

)∣∣) , for X ∈ Bb,

as a modification of the standard deviation principle. In this case, R(X) = EP(−X)
and D(X) = θEP

(∣∣X − P−1
X (1/2)

∣∣) for X ∈ Bb. Notice that

D(X) =
θ

2

(
AV@R

1
2
P (−X) + AV@R

1
2
P (X)

)
= θAmbQ2(X)

is (up to a constant) an ambiguity index, where Q2 consists of all probability measures

Q� P whose density dQ
dP is P-a.s. bounded by 2, cf. Example 3.5. In Example 3.5, we

further show that, for θ ≥ 1, the maximal risk measure RMax is given by

RMax(X) = AV@R
1

1+θ

P (X), for X ∈ Bb.

Example 2.9 (Choquet integrals). Wang, Young, and Panjer [26] derive an axiomatic
characterization of premium principles in a competitive market setting that results in
a representation using Choquet integrals. Consider a set function γ : F → [0, 1] with
γ(∅) = 0, γ(Ω) = 1, and γ(A) ≤ γ(B) for all A,B ∈ F with A ⊂ B. Then, we consider
the premium principle given by the Choquet integral w.r.t. γ

H(X) :=

∫ ∞
minX

γ
(
{X > t}

)
dt+ minX for X ∈ Bb.

Wang, Young, and Panjer [26] show that, under certain axioms, every premium principle
H can be represented as a Choquet integral w.r.t. a distorted probability γ = g ◦ P for
a probability measure P and a distortion function g (a nondecreasing function on [0, 1]
with g(0) = 0 and g(1) = 1). In this case,

H(X) =

∫ ∞
minX

g
(
PX(t)

)
dt+ minX,

where, for t ≥ 0, PX(t) := P(X > t).
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3. Dual representation of convex premium principles and baseline
models

Premium principles should generally reflect the benefits of diversification and the
aversion to uncertainty. In this section, we thus consider convex premium principles,
generalizing the approach of [5] who assume that the probability distribution of claims
is known. We identify the maximal risk measure in the premium’s decomposition as a
convex risk measure, cf. Föllmer and Schied [7]. Throughout this section, we assume
that C is a linear space with R ⊂ C. We denote the set of all finitely additive probability
measures on (Ω,F) by ba1

+. We say that a premium principle H : C → R is convex if

H(λX + (1− λ)Y ) ≤ λH(X) + (1− λ)H(Y ) for all λ ∈ [0, 1] and X,Y ∈ C.

In this case, we denote the convex dual of H by

H∗(P) := inf
X∈C

EP(−X) +H(X) ∈ [−∞, 0] for P ∈ ba1
+ .

Theorem 3.1. Let H : C → R a convex premium principle. Then, the maximal risk
measure RMax in the decomposition of H satisfies

RMax(X) = max
P∈ba1+

EP(−X) +H∗(P) for all X ∈ Bb.

Moreover,

H∗(P) = inf
X∈Bb

EP(X) +RMax(X) for all P ∈ ba1
+, (3.1)

By the previous theorem, the convex dual H∗ of the premium principle corresponds
to the penalty function of its maximal risk measure. H∗ thus represents the confidence
that the insurer puts on a particular model P within the class of all possible models.
In the sequel, we will refer to

P :=
{
P ∈ ba1

+ |H∗(P) <∞
}

as the set of all plausible models.

If the premium principle is also scalable in the sense that it is positively homogeneous,
RMax is even a coherent risk measure.

Corollary 3.2. Let H : C → R be a sublinear premium principle, i.e. H is a con-
vex premium principle, and H(λX) = λH(X) for all X ∈ C and λ > 0. Then, the
representing maximal risk measure RMax is a coherent risk measure, i.e.

RMax(X) = max
P∈P

EP(−X) for all X ∈ Bb,

where the set of plausible models is given by

P =
{
P ∈ ba1

+ | ∀X ∈ C : EP(X) ≤ H(X)
}
.

Proof. This follows directly from Theorem 3.1 together with the observation that sub-
linearity implies that H∗(P) ∈ {−∞, 0} for all P ∈ ba1

+. �

Notice that, in the sublinear case, for all probabilistic models P ∈ P and all claims
X ∈ Bb,

H(X) ≥ EP(X).

In other words, the premium principle H incorporates a so-called safety loading under
each plausible model P ∈ P, cf. Castagnoli et al. [4], Young [27], and Deprez and Gerber
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[5]. In the next step, we analyze in more detail the minimal deviation measure of the
premium’s decomposition. For P ∈ P,

DP(X) := H
(
X − EP(X)

)
, for X ∈ C, (3.2)

defines a deviation measure, that we call the fluctuation loading under P. We have

H(X) = EP(X) +DP(X) for all X ∈ C. (3.3)

The deviation measures DP can thus be seen as the profit for accepting the aleatoric
risk of X under the model P ∈ P. Equation (3.3) is a model-dependent decomposition
into a risk measure and a deviation measure. We have the following relation between
the minimal deviation measure DMin and the family of model-dependent deviation
measures (DP)P∈P .

Corollary 3.3. Let H : C → R be a convex premium principle. Then,

DMin(X) = min
P∈P

DP(X)−H∗(P) for all X ∈ C.

Proof. By Theorem 3.1,

DMin(X) = H(X)−RMax(−X) = min
P∈P

H
(
X − EP(X)

)
−H∗(P) for all X ∈ C.

The statement now follows from Equation (3.2). �

Example 3.4. Let P be a probability measure, θ > 0, and consider

H(X) := EP(X) +
θ

2
varP(X) for all X ∈ Bb.

Let Q ∈ P. The condition H∗(Q) < ∞ imples that Q is countably additive and

absolutely continuous w.r.t. P2. Let Z := dQ
dP . We can write

H∗(Q) = inf
X∈Bb

EQ(−X) +H(X) = inf
X∈Bb

EP

[
X

(
1− Z +

θ

2

(
X − EP(X)

))]
With the help of Cauchy-Schwarz inequality, one can then show that

H∗(Q) = inf

{
αEP

(
X2
) ∣∣∣∣α ≤ 0, αX = 1− Z +

θ

2

(
X − EP(X)

)}
,

compare the Appendix of [16] for details. Notice that αX = 1 − Z + θ
2

(
X − EP(X)

)
implies that EP(X) = 0, which, in turn, implies that X =

(
α− θ

2

)−1
(1− Z). Hence,

H∗(Q) = inf
α≤0

α

(
α− θ

2

)−2

varP

(
dQ
dP

)
.

Notice that d
dαα

(
α− θ

2

)−2
= 0 if and only if α = − θ

2 . We therefore obtain that

H∗(Q) = − 1

2θ
varP

(
dQ
dP

)
.

is (up to the factor − 1
2θ ) the Gini concentration index. By Theorem 3.1,

RMax(X) = max
Q∈P

EQ(−X)− 1

2θ
varP

(
dQ
dP

)
for all X ∈ Bb.

2This follows from the inequality RMax(−X) ≤ H(X), for X ∈ Bb, together with [8, Proposition 4.21].
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Example 3.5. Let P be a probability measure, θ ≥ 0, and consider

H(X) = EP(X) + θEP
(∣∣X − P−1

X

(
1
2

)∣∣) , for X ∈ Bb.

Then, by [8, Lemma 4.46],

EP
(∣∣X − P−1

X

(
1
2

)∣∣) = EP

((
X − P−1

X

(
1
2

))−)
+ EP

((
X − P−1

X

(
1
2

))+)
=

1

2

(
AV@R

1
2
P (−X) + AV@R

1
2
P (X)

)
Recall that, for ε ∈ (0, 1),

AV@Rε
P(X) = max

Q∈Q1/ε

EQ(−X) for all X ∈ Bb,

where, for α ≥ 1, Qα denotes the set of all probability measures Q� P whose density
is P-a.s. bounded by α, cf. [8, Theorem 4.47]. Therefore, the set P related to RMax is
given by the set of all probability measures Q∗ of the form

Q∗ = P +
θ

2

(
Q−Q′

)
(3.4)

with Q,Q′ ∈ Q2. Therefore, P consists of all probability measures Q∗ � P with

1− θ ≤ dQ∗

dP
≤ 1 + θ P-a.s. (3.5)

In particular, for θ ≥ 1, P = Q1+θ, which implies that

RMax(X) = AV@R
1

1+θ

P (X) for all X ∈ Bb.

In fact, by the previous argumentation, it follows that every Q∗ ∈ P is of the form (3.4),
which, in turn, implies that it satisfies (3.5). Now, assume that Q∗ � P is a probability
measure, which satisfies (3.5). For θ = 0, it follows that Q∗ = P ∈ P. Hence, assume
that θ > 0, and define

Z :=
2

θ

(
dQ∗

dP
− 1

)
.

Then, |Z| ≤ 2 P-a.s., EP(Z) = 0, and, by Hölder’s inequality, α := EP(|Z|)
2 ≤ 1. Define

Y := Z+ + 1− |Z|
2

and Y ′ := Z− + 1− |Z|
2
.

Then, 0 ≤ Y ≤ 2 and 0 ≤ Y ′ ≤ 2 P-a.s. Moreover, Y − Y ′ = Z P-a.s. and

EP(Y ) = EP(Z+) + 1− EP(|Z|)
2

= 1 = EP(Z−) + 1− EP(|Z|)
2

= EP(Y ′).

Hence, Equation (3.4) is satisfied with Q := Y dP and Q′ := Y ′dP

We say that a premium principle H : C → R is monotone if H(X) ≤ H(Y ) for
all X,Y ∈ C with X ≤ Y . Throughout the remainder of this section, we discuss
the relation to monotone sublinear premium principles that Castagnoli et al. consider
in [4]. More precisely, we show that, in the convex case, replacing Axiom (P2) in the
definition of a premium principle by a so-called internality condition, cf. [4], implies the
monotonicity of the premium principle, and thus, together with positive homogeneity,
leads to the objects considered in [4]. A similar result can be found in Deprez and
Gerber [5, Theorem 3].

Proposition 3.6. Let H : C → R a convex map that satisfies (P1). Then, the following
statements are equivalent:
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(i) H is a monotone premium principle,
(ii) H(X) ≤ H(0) = 0 for all X ∈ C with X ≤ 0, i.e. H is internal.

Notice that (ii) together with (P1) implies the standard no-ripoff condition (1.1).
The following proposition is a partial extension of Theorem 3 in Castagnoli et al. [4],

where statement (i) is a reformulation of Axiom P.7 in [4].

Proposition 3.7. Let H : C → R be a sublinear premium principle, and define

AmbP(X) :=
1

2

(
RMax(−X) +RMax(X)

)
=

1

2
max

Q,Q′∈P
EQ(X)− EQ′(X)

for X ∈ Bb. Then, for every P ∈ P, the following statements are equivalent:

(i) EP(X) = 1
2

(
RMax(−X)−RMax(X)

)
for all X ∈ Bb,

(ii) P is symmetric with center P, i.e. 2P−Q ∈ P for all Q ∈ P,
(iii) AmbP(X) = maxQ∈P EP(X)− EQ(X),
(iv) DP(X) = DMin(X) + AmbP(X) for all X ∈ C.

In this case, RMax is dominated by P, i.e. every Q ∈ P is absolutely continuous w.r.t. P,
and P is countably additive if and only if every Q ∈ P is countably additive.

Remark 3.8. We would like to point out what are the implications of Proposition 3.7 in
view of [4]. Notice that, in contrast to assumption (P2) in our definition of a premium
principle (Definition 2.1), the internality axiom P.1 together with the subadditivity
requirement P.3 in [4] already implies the monotonicity of the premium functional H.
Therefore, Proposition 3.7 shows that in [4] only very particular types of ambiguity sets
P, namely symmetric ones, and only a very particular choice of the baseline model P can
be considered for the premium calculation. Consequently, the case of an asymmetric P
does not fall into the setup chosen in [4]. Moreover, the symmetry of P implies that all
elements of P are absolutely continuous w.r.t. the baseline model P excluding setups,
where the set P is undominated. However undominated sets of plausible models appear
quite naturally, for example, when considering a Brownian Motion with uncertainty in
the volatility parameter, see e.g. Peng [18],[19] or Soner et al. [24],[25]. Hence, replacing
the internality axiom P.1 in [4] by the apparently similar assumption (P2) in Definition
2.1 has a huge impact. In the following example, we describe a basic setup that leads
to a nonsymmetric set P.

Example 3.9. Consider the setup (2.1) from [4] with Ω = N, endowed with the σ-
algebra F = 2N (power set). For n ∈ N, we consider the measure

Pn :=
1

n

n∑
k=1

δk,

where δk denotes the Dirac measure with barycenter k ∈ N. We then consider the
monotone premium principle

H(X) := sup
n∈N

EPn(X) = sup
n∈N

1

n

n∑
k=1

X(k), for X ∈ Bb.

One readily verifies that the set P consists only of probability measures P of the form

P =
∑
n∈N

λnδn (3.6)

with a nonincreasing sequence (λn)n∈N ⊂ [0, 1] summing up to 1. Assume that there
existed some P ∈ P with 2P−Pn ∈ P for all n ∈ N. Then, P is of the form (3.6) with a
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nonincreasing sequence (λn)n∈N ⊂ [0, 1]. On the other hand, 2P−Pn ∈ P for all n ∈ N,
which, in particular, means that

2λn −
1

n
≥ 2λn+1 for all n ∈ N. (3.7)

However, Equation (3.7) implies that

λn+1 = λ1 +
n∑
k=1

(
λk+1 − λk

)
≤ λ1 −

n∑
k=1

1

2k
→ −∞, as n→∞,

leading to a contradiction. By Proposition 3.7, we may therefore conclude that there
exists no P ∈ P with

H(X) = EP(X) + AmbP(X) for all X ∈ Bb.

That is, the left right-hand side of the previous equation does not define a premium
principle in the sense of Castagnoli et al. [4], whereas it defines a premium principle in
the sense of Definition 2.1.

4. Superhedging and market consistency

The integration of insurance and finance has been a central issue of research in the
last years. In this section, we consider insurance premia that are consistent with a
given financial market (or liquidly traded insurance contracts). We will identify the
maximal risk measure in the premium’s decomposition as the so-called superhedging
risk measure.

The financial market is modeled by a linear subspace M ⊂ C, where C is again
assumed to be a linear space, and a nonnegative linear price functional F : M → R.
Assuming M to be a linear space and F : M → R to be linear corresponds to a com-
petitive market without frictions. We would like to point out that our model can also
be used for markets with frictions. That is, the linearity of the price functional F can
be replaced by sublinearity, and M can be assumed to be a convex cone instead of a
linear subspace. In this case, F would resemble the ask price for securization products
that are traded in the market or, in other words, the price an insurer has to pay for
“selling” the risk of a claim to the market. Nonnegativity is a no arbitrage condition
as it requires

F (X) ≥ 0 (4.1)

for nonnegative claims X ≥ 0. Without loss of generality, we assume that F (1) = 1,
i.e. the interest rate that is implicit in F is zero. We call

M =
{
P ∈ ba1

+

∣∣∀X0 ∈M : EP(X0) = F (X0)
}

the set of martingale measures for the financial market.

Throughout this section, we consider a sublinear premium principle. We assume that
the premia charged by our insurer coincide with market prices on M , i.e. H|M = F .
The condition H|M = F expresses the fact that the insurer cannot charge a premium
above market prices due to competition. We introduce the set

M0 :=
{
X0 ∈M |F (X0) = 0

}
of all claims that are traded on the market with price 0. In the sequel, we consider the
superhedging risk measure

R∗(X) := inf
{
m ∈ R

∣∣ ∃X0 ∈M0 : m+X +X0 ≥ 0
}

for all X ∈ Bb.
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The superhedging risk measure amounts to the cost of staying on the safe side with the
help of the products that are already being traded liquidly in the market. Notice that
R∗ is well-defined, since M0 is nonempty. Moreover, RMax ≤ R∗ since H|M = F .

Proposition 4.1. Let H be sublinear. Then, the following statements are equivalent:

(i) The maximal risk measure in the decomposition of H is the superhedging func-
tional R∗, i.e. RMax = R∗.

(ii) The premium principle H is based on the use of securization products, i.e., for
all X ∈ C, there exists some X0 ∈M with X ≤ X0 and H(X) ≥ F (X0).

(iii) The plausible models for H coincide with the martingale measures, i.e. P =M.

Appendix A. Proofs

Proof of Theorem 2.3. First, notice thatRMax : Bb → R is well-defined since max(−X) ∈
C with X+max(−X) ≥ 0 and H(X0) ≥ H

(
min(−X)

)
for all X0 ∈ C with X+X0 ≥ 0.

By definition, RMax(−X) ≤ H(X) for all X ∈ C. Hence, DMin(X) = H(X) −
RMax(−X) ≥ 0 for all X ∈ C. Moreover, H(X0) ≥ H(0) = 0 for all X0 ∈ C with X0 ≥
0, which implies that RMax(0) = 0. In particular, DMin(0) = H(0)−RMax(0) = 0. We
will now show that RMax defines a risk measure. First, observe that RMax(X) ≤ H(Y0)
for X,Y ∈ Bb with X ≥ Y and Y0 ∈ C with Y + Y0 ≥ 0. Taking the infimum over all
Y0 ∈ C with Y +Y0 ≥ 0, it follows that RMax(X) ≤ RMax(Y ). Now, let X ∈ Bb, m ∈ R
and X0 ∈ C with X +X0 ≥ 0. Then,

RMax(X +m) ≤ H(X0 −m) = H(X0)−m.
Taking the infimum over all X0 ∈ C with X + X0 ≥ 0 implies that RMax(X + m) ≤
RMax(X)−m. On the other hand,

RMax(X)−m = RMax(X +m−m)−m ≤ RMax(X +m).

This also shows that, for X ∈ C and m ∈ R,

DMin(X +m) = H(X +m)−RMax(−X −m) = H(X)−RMax(−X) = DMin(X).

Let R : Bb → R be a risk measure with R(−X) ≤ H(X) for all X ∈ C. Then, for all
X ∈ Bb and X0 ∈ C with X +X0 ≥ 0,

R(X) ≤ R(−X0) ≤ H(X0).

Taking the infimum over all X0 ∈ C with X +X0 ≥ 0, we may conclude that R(X) ≤
RMax(X) for all X ∈ Bb. �

Proof of Theorem 3.1. We first show that RMax : Bb → R is convex. Let X,Y ∈ Bb and
λ ∈ [0, 1]. Then, for X0, Y0 ∈ C with X0 ≤ X and Y0 ≤ Y ,

RMax

(
λX + (1− λ)Y

)
≤ H

(
λX0 + (1− λ)Y0

)
≤ λH(X0) + (1− λ)H(Y0).

Taking the infimum over all X0, Y0 ∈ C with X+X0 ≥ 0 and Y +Y0 ≥ 0, we obtain that
RMax is convex. Since RMax is a convex risk measure, it follows that, see e.g. Föllmer
and Schied [8, Theorem 4.12],

RMax(X) = max
P∈ba1+

EP(−X) +R∗Max(P) for all X ∈ Bb,

where R∗Max(P) := infX∈Bb EP(X) + RMax(X) for P ∈ ba1
+. It remains to show (3.1),

i.e. H∗(P) = R∗Max(P) for all P ∈ ba1
+. Since RMax(−X) ≤ H(X) for all X ∈ C, it

follows that

R∗Max(P) ≤ inf
X∈C

EP(−X)−RMax(−X) ≤ H∗(P) for all P ∈ ba1
+ .
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In particular, there exists some P ∈ ba1
+ with H∗(P) > −∞. Therefore,

R(X) := sup
P∈ba1+

EP(−X) +H∗(P), for X ∈ Bb,

defines a risk measure. Since R∗Max(P) ≤ H∗(P) for all P ∈ ba1
+, it follows that

RMax(X) ≤ R(X) ≤ H(X) for all X ∈ C.
By the maximality of RMax, we may conclude that RMax = R. In particular,

H∗(P) ≤ EP(X) +R(X) = EP(X) +RMax(X) for all X ∈ C and P ∈ ba1
+ .

By definition of R∗Max, it follows that H∗(P) ≤ R∗Max(P) for all P ∈ ba1
+. �

Proof of Proposition 3.6. Trivially, (i) implies (ii). We first show that (ii) implies (P2),
let X ∈ C with X ≥ 0. Then, by Condition (ii),

0 ≤ −H(−X) ≤ H(X),

where the second inequality follows from 0 = 2H(0) ≤ H(X) + H(−X). In order to
prove the monotonicity, first notice that, due to (P1) and (ii),

H(X) = H(X −maxX) + maxX ≤ maxX for all X ∈ C. (A.1)

Now, let X,Y ∈ C with X ≤ Y . Then, by (A.1), for all λ ∈ (0, 1),

H(X) ≤ λH(Y ) + (1− λ)H

(
X − λY

1− λ

)
≤ λH(Y ) + max(X − λY )

≤ λH(Y ) + (1− λ) maxX.

Letting λ→ 1, we obtain that H(X) ≤ H(Y ). �

Proof of Proposition 3.7. For all X ∈ Bb,

AmbP(X) = RMax(X) +
1

2

(
RMax(−X)−RMax(X)

)
and

max
Q∈P

EP(X)− EQ(X) = RMax(X) + EP(X).

Therefore, AmbP(X) = maxQ∈P EP(X)−EQ(X) for all X ∈ Bb if and only if EP(X) =
1
2

(
RMax(−X)−RMax(X)

)
for allX ∈ Bb. On the other hand, if EP(X) = 1

2

(
RMax(−X)−

RMax(X)
)

for all X ∈ Bb, then, for all X ∈ Bb and Q ∈ P,

2EP(−X)− EQ(−X) ≤ 2EP(−X) + RMax(−X) = RMax(X),

i.e. 2P−Q ∈ P. Next, assume that 2P−Q ∈ P for all Q ∈ P. Then, for all X ∈ Bb,

1

2

(
RMax(−X)−RMax(X)

)
=

1

2

(
max
Q∈P

EQ(X) + min
Q′∈P

EQ′(X)
)

≤ 1

2
max
Q∈P

(
EQ(X) + (2EP(X)− EQ(X)

)
= EP(X).

Using a symmetry argument, this implies that 1
2

(
RMax(−X) − RMax(X)

)
= EP(X)

for all X ∈ Bb. We have therefore established the equivalence (i) - (iii). In order to
establish the remaining equivalence, first observe that, for all P ∈ P,

EP(X) +DP(X) = H(X) = RMax(−X) +DMin(X)

=
1

2

(
RMax(−X)−RMax(X)

)
+DMin(X) + AmbP(X)
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The equivalence between (i) and (iv) in now an immediate consequence of the previous
equation. Under (ii), it follows that EQ(X) ≤ 2EP(X) for all X ∈ Bb with X ≥ 0 and
all Q ∈ P. Choosing X = 1N for N ∈ F with P(N) = 0, it follows that every Q ∈ P is
absolutely continuous w.r.t. P. On the other hand, let Q ∈ P and (Xn)n∈N ⊂ Bb with
Xn+1 ≤ Xn for all n ∈ N and infn∈NXn = 0. If P is countably additive, then

0 ≤ EQ(Xn) ≤ 2EP(Xn)→ 0 as n→∞,
which shows that Q is countably additive. �

Proof of Proposition 4.1. First observe that, since H|M = F

R∗(X) = inf
{
H(X0)

∣∣X0 ∈M, X +X0 ≥ 0
}

for all X ∈ Bb.

Therefore, by Theorem 3.1, statement (i) is equivalent to statement (iii). It remains to
show the equivalence of (i) and (ii). In order to establish this equivalence, first assume
that RMax = R∗. Then, R∗(−X) ≤ H(X) for allX ∈ C. By definition of R∗, this means
that, for all X ∈ C, there exists some X0 ∈ M with X ≤ X0 and F (X0) ≤ H(X).
Now, assume that, for all X ∈ C, there exists some X0 ∈ M with X ≤ X0 and
F (X0) ≤ H(X). Then, by definition of R∗, it follows that R∗(−X) ≤ H(X) for all
X ∈ C. The maximality of RMax together with RMax ≤ R∗, which is due to H|M = F ,
thus implies that RMax = R∗. �
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