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ABSTRACT The volume of digital image data collected in the field of marine environmental monitoring and
exploration has been growing in rapidly increasing rates in recent years. Computational support is essential
for the timely evaluation of the high volume of marine imaging data, but often modern techniques such as
deep learning cannot be applied due to the lack of training data. In this article, we present Unsupervised
Knowledge Transfer (UnKnoT), a new method to use the limited amount of training data more efficiently.
In order to avoid time-consuming annotation, it employs a technique we call “scale transfer” and enhanced
data augmentation to reuse existing training data for object detection of the same object classes in new image
datasets. We introduce four fully annotated marine image datasets acquired in the same geographical area
but with different gear and distance to the sea floor. We evaluate the new method on the four datasets and
show that it can greatly improve the object detection performance in the relevant cases compared to object
detection without knowledge transfer. We conclude with a recommendation for an image acquisition and
annotation scheme that ensures a good applicability of modern machine learning methods in the field of
marine environmental monitoring and exploration.

INDEX TERMS Object detection, knowledge transfer, deep learning, marine environmental monitoring,

image annotation.

I. INTRODUCTION
Digital imaging is nowadays a popular technique in the
marine sciences as it is a non-invasive method for monitoring
and exploring marine habitats on a large scale (e.g. biodiver-
sity estimation or ecological management). Thanks to recent
technological advances in high-resolution digital imaging
and digital storage technology, mobile marine observation
platforms such as autonomous underwater vehicles (AUV)
or ocean floor observation systems (OFOS) are capable to
acquire large volumes of imaging data in a short time [1].
The sustainable curation and management of terabyte-scale
volumes of marine imaging data is a challenge that has only
recently been addressed [2].

The analysis of marine imaging datasets is usually
performed manually with dedicated software tools like
SQUIDLE+ [3], VARS [4] or BIIGLE 2.0 [5], which are
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specialized for the the task of manual image annotation.
In contrast to other areas of computer science, where image
annotation refers to the assignment of semantics to images
as a whole (e.g. describing the scene in the image), image
annotation in this context refers to the assignment of class
labels (e.g. a species name selected from a certain taxonomy)
to several points or regions in an image [6]-[8] (see Fig. 1).
This type of manual image annotation is a time-consuming
and error-prone task [6], [7]. Moreover, usually only domain
experts are able to detect the objects of interest (OOI), which
can be for example bacterial mats, litter or fauna such as
sponges and sea cucumbers, and to select the correct class
labels with sufficient accuracy and reproducibility. The grow-
ing volume of image data and the limited availability of
trained domain experts is a bottleneck problem for the evalu-
ation of marine imaging datasets.

In order to cope with the growing volume of marine imag-
ing data that needs to be analyzed, computer-aided methods
have been proposed to automate (or assist in certain steps of)
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FIGURE 1. Image annotation in the context of marine environmental
monitoring and exploration where class labels are assigned to several
points or regions in an image. This example shows three classes of
marine fauna which were annotated using circles.

image annotation. These include specialized approaches to
laser point detection [9], coral reef annotation [10], fish
detection [11] or quantification of megafauna [12]. As in
many areas of computer vision research, deep learning has
become increasingly popular in marine image processing, e.g.
for marine object detection [13] or semi-automated image
annotation [14]. Most areas of computer vision research focus
on large annotated image datasets showing everyday objects
from scenes on land. The impressive performance of state-of-
the-art deep learning models is based on such datasets (e.g.
ImageNet [15] or COCO [16]). The field of marine image
processing, however, lacks such large numbers of annotations
in images due to the limited availability of domain experts
capable of annotating the images. This leads to a “vicious
circle” in which marine scientists are not able to produce
large annotated image datasets because adequate computer
support is not available and state-of-the-art methods for ade-
quate computer support cannot be developed because large
annotated image datasets are not available.

One approach for situations where precise image annota-
tions are costly to acquire is weakly supervised object detec-
tion [17]-[19]. This technique uses weakly labeled images
or videos where only the whole image or video frame is
labeled instead of a precise region in the image or video
frame to train a machine learning model for object detection.
Weak labels for images or videos can be created much faster
than precise image annotations for all objects in an image.
However, weakly supervised object detection methods are
unsuitable for datasets where dozens or even hundreds of
objects of different classes may occur in a single image,
which is not uncommon in marine imaging datasets.

Another technique for dealing with situations where only
limited data is available to train a deep learning model is
transfer learning [20]. Transfer learning is usually applied in
deep learning by reusing the weights of the neural network
acquired by training on one “‘source’’ dataset as the starting
point for training on another “target” dataset. It has been
shown that transfer learning is also effective when the source
dataset from which the reused weights are derived is from
a completely different visual domain than the target dataset
(e.g. everyday objects vs. marine images [14], [21]). In most
cases, however, transfer learning still requires supervised
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training on the target dataset because the (number of) object
classes and the high-level visual properties of the objects are
different.

In addition to the general problem of a lack of anno-
tated training data, computer-aided marine image annotation
suffers from another problem that makes the application of
transfer learning difficult. Common scenarios in marine envi-
ronmental monitoring and exploration are research cruises,
where images of the sea floor are captured during multiple
deployments of AUVs or OFOSs. Often the image datasets
collected on a single cruise cover a specific geographical area
and show similar habitats and OOI [22]-[25]. Between dif-
ferent deployments, the visual properties of the photographed
habitats and OOI may change due to different cruising speeds
of the observation platforms, different camera gear or differ-
ent distances of the observation platforms to the sea floor.
These differences may result in varying degrees of motion
blur, distorted colors caused by the water column between
the camera and the sea floor, or different scales of OOI
of the same class. From a pattern recognition perspective,
the distribution of data described by the visual properties of
a given class of OOI changes (or drifts) between datasets.
This phenomenon is referred to as “‘concept drift” by the
computer vision community [26]. In most of the literature,
“gradual” concept drift is described as a dynamic signal flow
that changes continuously over time (e.g. a slowly wearing
piece of factory equipment might cause a gradual change in
the quality of output parts). In our context, however, a “sud-
den” concept drift is described where the visual properties
of OOI change instantaneously from one dataset to the other.
Langenkédmper et al. [27] have recently shown that sudden
concept drift can have a strong impact on the performance
of deep learning classifiers applied for megafauna image
classification collected at the same site but with changing gear
and operation. Schoening et al. [28] have shown that concept
drift is even challenging for purely manual image annotation
by trained experts.

Despite the challenges mentioned above, some applica-
tions of computer vision for underwater image analysis have
been proposed in the last years. Most of these methods focus
only on a single class or very few classes of OOI such
as fish or corals [13]. Recently we proposed the Machine
learning Assisted Image Annotation (MAIA) method [14],
which does not distinguish between classes of OOI and can be
used in a broader context. MAIA consists of four successive
stages. In Stage I unsupervised novelty detection is used to
generate a list of possible OOI, which are manually filtered
in Stage II. The filtered OOI are used to train a machine
learning model for object detection in Stage III. In the last
stage, the final detections are again manually filtered and
class labels are manually assigned to the OOI to produce
the final image annotations. However, all methods, including
MAIA, are meant to be applied independently to each new
dataset and do not allow the reuse of existing training data
for object detection in a new dataset, as they do not account
for concept drift between different datasets.
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Considering the lack of annotated training data and the
high cost of time-consuming manual image annotation, it is
desirable to have a computer vision system for automated
or assisted image annotation that does not require extensive
retraining for each new dataset. Such a computer vision sys-
tem must be able to adapt to the changes between datasets
as described above, where OOI of the same class may dif-
fer in their visual appearance. Assisted by such a system,
marine scientists would only have to annotate one dataset,
and the time required for object detection, which is the most
time-consuming part of manual image annotation [6], would
be greatly reduced for the remaining datasets of the same
geographical area. In this way, the knowledge consisting of
images and annotations that were collected previously can be
transferred and is not lost.

Knowledge transfer in the context of marine environmental
monitoring and exploration has previously been presented
by Skaldebg ef al. [29], who attempt to transfer the knowl-
edge obtained in a simulated underwater environment to the
real environment. First, artificial 3D-rendered images are
created, showing scenes similar to the real images. Then
CycleGAN [30] is used to make the artificial images look
more realistic. Walker et al. [31] use physics based color
correction and scale normalization on underwater images to
reduce the generalization error of a DeepLabV3+ model [32]
for image segmentation. Similarly, Yamada ef al. [33] use
color correction and image rescaling to enhance their method
for unsupervised feature learning of georeferenced sea floor
images. All methods are applied to a single dataset and are not
used for knowledge transfer to enable cross-dataset machine
learning.

In this article we present Unsupervised Knowledge Trans-
fer (UnKnoT), a new method for object detection in marine
environmental monitoring and exploration. The method
employs a technique we call ““scale transfer”’ and enhanced
data augmentation to adapt one image dataset to the visual
properties of another image dataset and to reuse existing
image annotations for object detection. To the best of our
knowledge, UnKnoT is the first method that addresses the
reuse of existing image annotations for cross-dataset machine
learning in marine environmental monitoring and explo-
ration. To evaluate the method, we introduce four fully
annotated marine image datasets collected in the same geo-
graphical area but with varying gear and distance to the
sea floor. Our experiments show that UnKnoT can greatly
improve the object detection performance in the relevant
cases compared to object detection without knowledge trans-
fer. In combination with the existing MAIA method, UnKnoT
can be used instead of novelty detection in Stage I of
MAIA to generate more accurate suggestions for OOI if
the images of the datasets show the same classes of OOL
Taking this into account, we conclude with a recommen-
dation for an image acquisition and annotation scheme that
ensures a good applicability of modern machine learning
methods in the field of marine environmental monitoring and
exploration.
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In the following section, the UnKnoT method is presented
in detail, describing the individual steps for scale transfer,
data augmentation and object detection (see Section II). Code
has been made available with this publication and can be
accessed on GitHub.! The experimental setup that was used
to evaluate the method is presented in Section III, including
the four datasets, referred to as S083, S155, S171 and S233.
The datasets have been made available with this publication
[34]-[37] and can be visually explored in BIIGLE 2.0%. The
experimental results are summarized in Section IV and dis-
cussed in Section V. The manuscript ends with a conclusion
about the relevance of our results and the UnKnoT method
for marine image annotation.

Il. METHODS

In the UnKnoT approach, knowledge is represented by a
source dataset D’ and annotations that were manually created
by domain experts. The knowledge is transferred by trans-
forming D® and the annotations so a deep learning model can
be trained to perform object detection on a target dataset D'
which has not been annotated. The entire process consists
of three consecutive steps which are described in detail in
the following sections (see also Fig. 2). In the first step,
scale transfer is applied to the images I® of the annotated
source dataset D®. This transforms the visible OOI in I® to
a similar scale than the OOI in the images of the target
dataset D'. A set of annotation patches AS~ ! is extracted from
the scale-transferred images, where each annotation patch is
a cropped image centered on an annotated OOL. In the sec-
ond step, enhanced data augmentation is applied to increase
the size and variety of the set of annotation patches AS™!,
resulting in the set of augmented annotation patches AS=!,
In the final step, the set A="is used to train a Mask R-CNN
model [38] which is subsequently applied for object detection
on the target dataset D'.

A. SCALE TRANSFER

On most deployments of an AUV or OFOS, the observation
platform moves at a fixed distance to the sea floor. This
ensures an almost stable scale and illumination of OOI in
the images that are captured during the same deployment.
The distance to the sea floor may vary between two deploy-
ments, though. An OFOS is usually operated much closer
to the sea floor than an AUV and even the same observa-
tion platform can be operated at different target distances
on different deployments. This can result in highly different
scales for the same classes of OOI in different image datasets
(see Fig. 4). Fully convolutional neural networks for instance
segmentation or object detection such as Mask R-CNN [38]
are usually scale-invariant because they are trained on large
image datasets in which many scales of objects of the same
class occur. In this context, however, the scales of OOI of

! https://github.com/BiodataMiningGroup/unknot
2https://biigle.de/projects/237, login: unknot@example.com, pass-
word: UnKnoTpaper
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FIGURE 2. The UnKnoT method. (1) Scale transfer: Images from an annotated source dataset DS are
transformed to the set of scale-transferred images /5=t (a) and the set of annotation patches AS—t is
extracted (b). (2) Data augmentation: The size and variety of the annotation patches A5~ is increased
through data augmentation, resulting in the set of augmented annotation patches A=t (c). (3) Object
detection: A Mask R-CNN model is trained on AS=! and applied to the images of D! to produce the final

object detections (d).

the same class and dataset have a very low variance owing
to the fixed distance of the observation platform to the sea
floor. In addition, the datasets usually have a much lower total
number of annotations than in other scenarios.

To mitigate the scale shift between different datasets, scale
transfer transforms the images I® of an annotated source
dataset DS to make the OOI appear at a similar scale than
the OOI in the images I' of the target dataset D'. The source
dataset D° = {(I}, d?)} and the target dataset D' = {(I}, d})}
consist of tuples of an image /; and the distance d; of the
observation platform to the sea floor when the image was
captured. The average distance to the sea floor of the target
dataset is denoted as d':

B 1 7'
t

dt = m . d; 1)

i=1
Each image /7 € I° has a width of w; and a height of
h; pixels. To apply scale transfer to an image /7, the scale
transfer factor df_’t is calculated first as defined in (2). Next,
each image I is scaled to the width wi™" and height 2{~" as
can be seen in (3) and (4), respectively, resulting in the set
of scale-transferred images I°~! (see Fig. 2a). A three-lobe
Lanczos kernel is applied for downscaling (i.e. df”t < l)and
a cubic filter is applied for upscaling (i.e. d'~" > 1) which
are the recommended methods of the VIPS image processing

library [39].

ds

s—>t _ 1
=5 @
Wil = w - d} T 3)
h?—)t — hi 3 dis—>t (4)

From each image in /5! the annotated OOI are extracted
as 512 x 512 pixel crops which form the set of annotation
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patches AS~! (see Fig. 2b). The annotation patches are passed
to the next step for data augmentation.

B. DATA AUGMENTATION

Data augmentation is often used to increase the size and
variety of data that is available to train a machine learning
model. This can often improve the performance of the trained
model [40], [41]. In the context of computer vision tasks such
as object detection or classification, common augmentation
methods include operations such as horizontal or vertical
flipping, rotation or blurring of images. Viable augmentation
operations highly depend on the visual domain of the image
datasets (e.g. vertical flipping makes sense for the image of a
football but not for a face).

In case of images of the sea floor captured with an AUV
or OFOS, augmentation operations such as flipping, rotation
or blurring can be applied. The OOI in the images are mostly
living organisms with a symmetric shape, which makes the
flipping operations viable. In addition, the OOI in the images
are photographed from the top, so they can occur at any rota-
tion angle. Different camera properties, motion of the obser-
vation platform or optical distortion by the water column can
introduce varying degrees of blur. An object detection model
that was trained partially with blurred images through data
augmentation can be more robust for these cases.

In case of UnKnoT, the machine learning model is trained
with images of one dataset and applied to images of another
dataset. The images can be captured with different observa-
tion platforms and different cameras, and are usually avail-
able as JPEG files. Different camera and storage settings can
produce JPEG files with a varying degree of compression,
which can introduce characteristic compression artifacts in
the images. We propose to use artificial JPEG compression
as augmentation operation to make an object detection model
more robust for the application on different datasets.
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In UnKnoT, data augmentation is applied to the annotation
patches AS~! at each step during training of the Mask R-CNN
model (see the following section). For each step, a ran-
dom selection of zero to all of the following augmentation
operations is applied: horizontal flipping, vertical flipping,
rotation by 90, 180 or 270 degrees, Gaussian blur with a
random standard deviation o € [1.0, 2.0] and artificial JPEG
compression with a random compression factor ¢ € [25, 50].
The set of augmented annotation patches is denoted as AS="
(see Fig. 2¢).

C. OBJECT DETECTION

Object detection is performed in a similar way than in
Stage III of the MAIA method [14] which has been shown to
be effective in this particular context, with a few differences
that are described in the following. In Stage III of MAIA,
a Mask R-CNN model [42] is trained on an augmented set
of training samples using pre-trained weights of the COCO
dataset [16]. The trained model is applied to an image collec-
tion for the segmentation of ““interesting’ pixel regions in the
images, which are subsequently converted into circle annota-
tions. In UnKnoT, the Mask R-CNN model is trained using
the set AS=' of augmented annotation patches, as well as the
pre-trained weights of the COCO dataset. The data augmen-
tation used in Stage III of MAIA is replaced by the enhanced
data augmentation described in the previous section. Differ-
ent to the training configuration of MAIA and [42], a value
of 0.85 is used for the RPN_NMS_THRESHOLD, which
increases the number of region proposals during training.
In this context, a higher number of region proposals during
training is beneficial for the detection of very small objects
in the presence of very large and salient objects in the same
image. In addition, a stepped learning rate decay is used to
improve convergence of the object detection performance of
experiment replicates. For the stepped learning rate decay,
the heads layers are trained for 10 epochs each with a
learning rate of 1073, 5.10"* and 1074, and all layers for
another 10 epochs each with a learning rate of 1074, 5. 1073
and 107>, resulting in a total of 60 training epochs compared
to the 30 epochs of the training configuration of MAIA.
One epoch consists of 400 steps and in each step, a batch
of five images is processed. Training took about five hours
per dataset on a single NVIDIA Tesla V100. Inference is
performed on the images I' of the target dataset in the same
way than in Stage III of MAIA [14] (see Fig. 3). The final
result is a set of circle annotations, enclosing potential OOI
in I' (see Fig. 2d).

lIl. EXPERIMENTAL SETUP

Four fully annotated image datasets were created to eval-
uate the UnKnoT method. The datasets were captured in
the same geographical area, showing the same classes of
OOI, but with different observation platforms and distances
to the sea floor. In addition, a new metric to measure the
effectiveness of UnKnoT was created, which accounts for the
desired properties of an object detection method for marine
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image annotation. The method was tested in comprehensive
experiments on different combinations of datasets to evaluate
the effectiveness of scale transfer and enhanced data augmen-
tation for unsupervised knowledge transfer.

A. DATASETS

The four image datasets used to evaluate UnKnoT are referred
to as S083, S155, S171 and S233. Each dataset consists
of 550 randomly selected images from the image collec-
tions [22] (S083), [23] (S155), [24] (S171) and [25] (S233).
The image collections were acquired during the 2015 cruises
S0242/1 and SO242/2 of research vessel SONNE at the Peru
Basin Disturbance and Colonization (DISCOL) area [43].
The images of the different datasets were captured using
different observation platforms (OFOS and AUV) as well as
different average distances to the sea floor (see Table 1).

TABLE 1. Properties of the four datasets that were used to evaluate
UnKnoT with the observation platform, average distance and standard
deviation of the camera to the sea floor, and the number of images and
annotations in the train and test splits.

Dataset Avg. dist. (&l) |Itrain| |Alrain| ‘Itest‘ IAtest|
S083 (AUV) 7.62£0.89 m 490 1,808 60 203
S155 (OFOS) 1.70 £ 0.33 m 514 2,107 36 236
S171 (OFOS) 1.61 £0.25m 485 2,061 65 234

S233 (OFOS) 3.33+£0.39m 494 3,719 56 416

The image annotations are based on a subset of ten
morphological classes of the fauna identification guide pre-
sented in [28] (see Fig. 4). The images were annotated in
BIIGLE 2.0 [5] using MAIA [14] with an additional review
using the Lawnmower tool to annotate OOI that were missed
by MAIA. In total, the datasets contain 10,784 manual anno-
tations on 2,200 images. Compared to datasets of other
research areas such as the detection of everyday objects,
the datasets presented here may seem rather small. However,
the acquisition of annotations in marine images is much more
costly, as it requires more training and background knowl-
edge in marine biology. This makes it infeasible to generate
datasets as large as e.g. COCO [16] to evaluate machine
learning methods in this research area.

The datasets S083, S155, S171 and S233 have been made
available with this publication [34]-[37]. Example images
with annotations can be found in the supplementary material.

B. EVALUATION METRIC

A common metric to evaluate the performance of an object
detection method is the mean average precision [44]. In this
context, object detections are produced based on the seg-
mentation output of Mask R-CNN as described in [14]
(see Fig. 3). This allows only the calculation of the “recall”
(i.e. the percentage of OOI that were detected) and the ““pre-
cision” (i.e. the percentage of correct detections in the final
result) but does not allow the ranking of the detections, so the
mean average precision is not applicable. Another metric
which is the harmonic mean of the recall and precision is
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FIGURE 3. Example for inference with Mask R-CNN and the final object detection on a subsection of image TIMER_2015_09_04at09_13_31IMG_

0864. jpg of the S155 dataset. The image (a) is processed by Mask R-CNN which returns a segmentation mask for “interesting” pixels (b). The regions of
interesting pixels are converted to circle annotations for the final detections (c). The full image with manual annotations can be found in the
supplementary material.

the F1-Score [45]. A variant of the F{-Score is the F»-Score
which puts a higher weight on the recall and which has been
used in a similar context to evaluate the object detection
performance of the MAIA method [14]:

5 - precision - recall

Fa(recall, precision) = (4 - precision) + recall ®)

In case of an object detection method for images in
marine environmental monitoring and exploration, a mini-
mum of 80% for the recall and 10% for the precision can
be considered acceptable [14]. The F>-Score does not take
this into account. For example, it is possible to achieve a
higher F>-Score based on a precision of 20% and a recall
of 70% than an F>-Score based on a precision of 10% and a
recall of 80%. In this context, the latter result would be more
desirable and should yield a higher score in the evaluation.
As a consequence, we do not apply the F»-Score as the
primary metric to evaluate UnKnoT. Instead, we propose the
“Logistic Score” (L-Score) as a new metric which is better
suited to evaluate marine object detection regarding a mini-
mum recall of 80% and a minimum precision of 10%. The
L-Score is the harmonic mean of the two logistic functions
L, to assess the recall and L, to assess the precision (see (6),
(7) and (8)). L, is centered on the value of 80% recall with
a growth rate that yields L,(1) ~ 1 (see Fig. 5a) and L, is
centered on the value of 10% precision with a growth rate that
yields L,(0) ~ O (see Fig. 5b). The L-Score produces high
scores for a recall close to or greater than 80% and a precision
close to or greater than 10%, and low scores otherwise (see
Fig. 5¢).

1
Ly(recall) = 7 1 ¢—025(100 recall80) ©)
Ly (precision) = | o0 5100 precision=10) 7
2 - L,(recall) - L,(precision
L(recall, precision) = r( ) - Ly(p ) )

L, (recall) + Ly (precision)

C. EXPERIMENTS

To evaluate the UnKnoT method, each of the four datasets
was separated into train and test splits. The test splits consist
of images I that contain &~ 10% of the annotations of
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the dataset (Atgt). The train splits consist of the remain-
ing images (/ir4in) and annotations (Ain) of the respective
dataset (see Table 1). For evaluation, UnKnoT was applied to
a given train split as source dataset D® and a given test split
as target dataset D'.

All combinations of using two datasets as D® and D' were
evaluated in experiments using the following methods for
comparison: UnKnoT (ESDCf;’aflt), UnKnoT without enhanced
training compared to MAIA (Eslz;th), UnKnoT without

enhanced image augmentation (Esl();t? Dt), UnKnoT only with

scale transfer (ESLZS”DK) and the baseline configuration of the
MAIA object detection stage without any knowledge transfer
(EP*~D")_ The subscripts “sc””, “tr”” and “au” refer to scale
transfer, enhanced training and enhanced image augmenta-
tion, respectively. For all experiments except ED=D' the
combinations D® = D! were not evaluated as this would mean
knowledge transfer within the same dataset. Each experiment
was repeated three times and the average L-Score was calcu-
lated as final performance. We denote the average resulting

: DS—D! DS—D' DS—D!
L-Score of Ithe experiments Eg; " and E as L i an
S
LD —D

and , respectively.

IV. RESULTS
The effect of scale transfer that is applied with UnKnoT can
be seen in Fig. 6. In case of source dataset SO83, scale transfer
magnifies the OOI with a factor of d7 " > 1 (see Fig. 6 first
row). In contrast to that, the size of the OOI of the source
datasets S155 and S171 is reduced with a factor of &>~ < 1
during scale transfer, with the exception of ASISS_)SP}1 where
the size is marginally increased (see Fig. 6 second and third
row). In case of S233 as source dataset, the size of the OOI
is both increased with S155 and S171 as target datasets and
decreased with S083 as target dataset (see Fig. 6 fourth row).
Table 2 shows the average resulting L-Scores of the exper-
iments E2*~P" without knowledge transfer and Eslzst? g with
knowledge transfer. The experiments E” "=D" without knowl-
edge transfer show the highest scores for the cases D® = D!,
where the images of source and target come from the same
dataset. The experiments ES!35S171 apnd gS171=S155 ghow
almost identical scores to the experiments with DS = D' of
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other fauna

5083 S155 S171 5233
o >‘&L ..
coral . -.
o V .
o . .
litter . ‘
ophiuroid .

sea cucumber

sponge

stalked crinoid

FIGURE 4. Examples for the ten classes of 00I (rows) of each of the four
image datasets (columns) that were used to evaluate UnKnoT. Scales of
00l can vary drastically between different datasets.

these datasets. The experiments E2" 5083 with D* £ S083 as
well as ES083—S155 apnd gS083=SI71 ¢how a score close to 0.

Eight of the twelve experiments EZ'"E' with knowl-
edge transfer show higher scores than the experiments
EP'=D' ith the same combination of datasets. The
L-Scores are increased by an average of 0.32. However,
further inspection of the output of Mask R-CNN reveals

invalid segmentation results for the experiments ES083>S153

sc,tr,au
and ESSC"?f; SI71 In these experiments, the segmentations
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FIGURE 5. The harmonic mean of the two logistic functions L, (a) and Lp
(b) forms the L-Score (c).

L(recall, precision)

precision

5083

5083

S155

S171

S233

FIGURE 6. Annotation patches of the “sea cucumber” class without scale
transfer (dashed outline on the main diagonal) compared to
scale-transferred annotation patches of A5t. The rows denote the
source dataset and the columns denote the target dataset (e.g. the patch
in the first row and second column is from A5083—5155) Apnotation
patches produced with a scale transfer factor of d5~t > 1 are marked
with a + and patches produced with a scale transfer factor of d5=t < 1
are marked with a —.

produced by Mask R-CNN show only crude region proposal
boxes instead of the refined regions of a valid segmentation
(see Fig. 7). Similarly, the segmentation results for the exper-
iment ES933->5233 are not as refined as desired. The score of

sc,tr,au
82338155 5 decreased when compared to object detection

sc, tr,au
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TABLE 2. Average resulting L-Score of the experiments without

knowledge transfer (L"s—"’t ). with knowledge transfer (L‘:cs t—r’g:) and the

average increase of the L-Score through knowledge transfer. Experiments
based on a scale transfer factor of d,.s"t < 0.9 are highlighted.

DS — Dt Lp'—=D Lse;auDl Increase
S083 — S083  0.95 £+ 0.01
S155 — S083 0.00 £0.00 0.85+0.02 0.85
S171 — S083  0.00£0.00 0.79 £0.11 0.79
S233 — S083 0.15+0.11 0.93 £0.01 0.78
S083 — S155 0.11 £0.03 0.00 £ 0.00 -0.11
S155 — S155  0.95 £ 0.01
S171 — S155  0.92£0.02 0.83£0.01 -0.09
S233 — S155 0.46 £0.18 0.32+£0.23 -0.14
S083 — S171  0.10£0.02 0.28 £0.40 0.18
S155 — S171  0.97£0.00 0.95+0.01 -0.02
S171 — S171  0.96 £+ 0.01
S233 — S171  0.21£0.03 0.91 £0.01 0.70
S083 — S233  0.32£0.02 0.71£0.05 0.39
S155 — S233 0.68 £0.05 0.92 £0.02 0.24
S171 — S233  0.71 £0.06 0.96 £ 0.01 0.25
S233 — S233 0.94 £0.04

FIGURE 7. Part of an invalid segmentation from the experiment

53?3;15'55 (outlined blue) and a valid segmentation from the

experiment ES083—5155 (gutlined green) for comparison. The invalid
segmentation shows only crude region proposal boxes instead of the
desired refined regions of a valid segmentation. At the center of the
image, the five tips of the arms of a burrowed ophiuroid are visible.

without knowledge transfer whereas the score of ESSCZEEZ;’ SI71
shows one of the highest valid increases. When the detection
is limited to the subset of OOI classes that have an average
intra-class area standard deviation of less than 1.5 times their
average annotation area (‘“‘Coral”, “Crustacean”, “Ipnops
fish” and “Ophiuroid”, see Table 3), the L-Scores of both
experiments converge to 0.58 + 0.10 (S233 — S155) and
0.86 £ 0.03 (S233 — S171) but are still not equal. All these
experiments are exclusively the cases where scale transfer
was applied with a factor of d*' > 1. Among the remain-
ing experiments only ESSJZ}; S135 shows a slightly decreased
L-Score compared to object detection without knowledge
transfer. In this experiment, a scale transfer factor of 0.9 <
d>~" < 1 was applied. The average increase of L-Scores of
the remaining experiments, where a scale transfer factor of
d’~" < 0.9 was applied, is 0.58.

The detailed results of all experiments including L-Score,

recall and precision are presented in Tables 4 and 5.

VOLUME 8, 2020

TABLE 3. Standard deviation of the area of the circle annotations per
class and dataset, and the average over all datasets, given as multiples of
the average annotation area of the respective class. Rows with an
average standard deviation of less than 1.5 are highlighted.

Class S083  SI55 S171  S233  Avg.
Anemone 1.02 0.98 2.10 2.77 1.72
Coral 0.61 1.20 1.74 0.95 1.13
Crustacean 0.45 1.42 1.43 1.06 1.09
Ipnops fish 037 025 029 034 031
Litter 3.52  0.68 0.83 1.46 1.62
Ophiuroid 0.41 1.08 1.09 0.97 0.89
Other fauna 1.88 3.79 2.61 2.63 2.73
Sea cucumber 0.93 1.07 3.88 1.13 1.75
Sponge 1.12 2.29 1.96 2.54 1.98

Stalked crinoid  0.90 1.99 2.15 1.05 1.52

TABLE 4. Average resulting L-Score, recall and precision of the

; DS pt DS pt
experiments E' and Esc,",au.

D$ — Dt L-Score  recall  precision

S083 — S083  0.95+0.01 0.91 0.16

S155 — S083  0.00 £ 0.00 0.40 0.42

S171 — S083  0.00 £ 0.00 0.33 0.60

S$233 — S083  0.15+0.11 0.68 0.36

S083 — S155  0.11 £0.03 0.73 0.05

S155 — S155  0.95£0.01 0.90 0.19

S171 — S155  0.92 +0.02 0.88 0.16

pD D! S$233 — S155 0.46 £0.18 0.90 0.08
S083 — S171  0.10 £ 0.02 0.82 0.04

S155 — S171  0.97 £ 0.00 0.94 0.18

S171 — S171  0.96 £ 0.01 0.91 0.21

$233 —+ S171  0.21 £0.03 0.97 0.06

S083 — S233  0.32 £0.02 0.91 0.07

S155 —+ 8233 0.68 £0.05 0.80 0.20

S171 — 8233 0.71 £ 0.06 0.81 0.27

S233 — 8233 0.94£0.04 0.95 0.16

S155 — S083  0.85 £ 0.02 0.86 0.14

S171 — S083  0.79 £0.11 0.84 0.16

S$233 — S083  0.93+0.01 0.89 0.16

S083 — S155  0.00 £ 0.00 0.27 0.35

S171 — S155  0.83 £0.01 0.90 0.12

psspt  S233 —S155  0.32+£0.23 0.72 0.17
se,tr,au S083 — S171  0.28 £0.40 0.56 0.18
S155 —+ S171  0.95 £ 0.01 0.94 0.15

S$233 — S171  0.91+0.01 0.87 0.17

S083 — S233  0.71£0.05 0.88 0.11

S155 — S233  0.92 £ 0.02 0.87 0.23

S171 — 8233 0.96 £ 0.01 0.90 0.23

TABLE 5. Average resulting L-Score, recall and precision of all
experiments with a scale transfer factor of diS—’t <0.9.

Experiments L-Score  recall  precision
gD =D 0.314£0.04  0.60 0.37
ED =D 0.85+0.06  0.87 0.16
EDPPY 082+004 086 0.16
EDOPY 086+0.04 086 0.19
ED=D' 0894003 087 0.18

sc,tr,au

V. DISCUSSION

The UnKnoT method applies knowledge transfer from a
source dataset D® with existing annotations to a target
dataset D' for object detection. The knowledge transfer con-
sists of scale transfer, which adapts the scales of OOI in the
source dataset D® to the scales of OOI in the target dataset D,
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and of enhanced data augmentation for typical images of the
sea floor.

Fig. 6 shows that the scale transfer effectively transforms
the scale of OOI of the source dataset to the scale of OOI of
the target dataset. First we will review the results obtained
for experiments with a scale transfer factor of a’is_>t > 1
(see patches marked with + in Fig. 6). In this scenario,
the images of the source dataset have been transformed by
upscaling, as the OOI of the target dataset are shown larger
and more detailed. In a real setting, the images of the target
dataset would have been captured by an AUV or OFOS closer
to the sea floor as in the previous dives. In case of S083
as source dataset, the OOI are transformed to a scale that
matches the scale of the OOI in the target dataset. However,
the scaling blurs the OOI and they do not appear as in focus
as the OOI in the target datasets. The results are similar but
not as pronounced in case of S233 as target dataset. In the
opposite scenario, where the images of the target dataset
would have been captured further away from the sea floor
than in the previous dives, the images of the source dataset
are transformed by downscaling with a scale transfer factor
of d¥~" < 1 (see patches marked with — in Fig. 6). In case of
S083 as the target dataset, the scale of the OOI matches the
scale of the OOI of the target dataset and the OOI appear in
focus. Considering only the visual appearance of the OOI,
UnKnoT works more effectively if the source dataset was
captured closer to the sea floor than the target dataset and
the scale of the annotated OOI is reduced during knowledge
transfer. This observation is confirmed by the experimental
results.

The experiments E D=D' with DS = D', where the
images of source and target come from the same dataset,
show the highest average L-Scores. This is to be expected,
as Mask R-CNN is trained with OOI that appear most similar
to the OOI that should be detected. These experiments can be
seen as baseline with the best possible object detection perfor-
mance in this context. Notably, the experiments £51717>5155
and ES157S171 show a score almost equal to ES132—>S155
and ES1717S171 respectively. Although these datasets differ
in the distribution of annotations in the images (cf. |lis| and
|Atest| in Table 1), both datasets were captured at a similar dis-
tance to the sea floor with an OFOS. When Mask R-CNN is
trained on one dataset and applied to the other, no knowledge
transfer is required to achieve a very good object detection
performance. Other notable results are given by the exper-
iments EP"—5083 with D # S083, as well as [ES083—S155
and ES083=S171 which show a score close to 0. Such a low
L-Score is produced if either the recall is bad (i.e. < 80%),
the precision is bad (i.e. < 10%) or both. In case of the three
experiments EP° 5083 with D5 £ S083, the low average
recall of 47% is the cause for the low L-Score (see Table 4).
Trained with OOI at a much larger scale, Mask R-CNN is
unable to achieve an adequate recall in these cases. For the
experiments ES033=S155 and gS083—=>S171 the Jow average
precision of 5% causes the low L-Score (see Table 4). Again,
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the high difference in the scale of OOI is the cause for the bad
object detection performance.

The experiments E2 "2 can be separated into the same
two scenarios as the annotation patches of Fig. 6 mentioned
above, where the scale transfer is only effective in the cases
where a scale transfer factor of d~' < 1 is applied.

The experiments where the source dataset D° has a higher
average distance to the sea floor than the target dataset D'
belong to the first scenario. Even though UnKnoT produces
an improved object detection performance in some of these
cases, the segmentation results of Mask R-CNN are invalid
(i.e. not as refined as desired) or the object detection per-
formance is highly affected by the intra-class area standard
deviation of the annotations. An invalid segmentation (as can
be seen in Fig. 7) can be the result of OOI that were highly dis-
torted by a large scale transfer factor ' >> 1 so the trained
Mask R-CNN model cannot produce a meaningful segmen-
tation for the target dataset. Although the datasets S155 and
S171 are very similar in terms of the average distance of the
camera to the sea floor, they show very different L-Scores in
the experiments ES%570 51 and ES%3-517! A closer look
at the intra-class area standard deviations of the annotations
reveals that the compositions of annotations of some classes
differ between these datasets (see Table 3). A high intra-class
area standard deviation can be amplified by scale transfer
and can potentially result in unrealistically large OOI in the
annotation patches of the source dataset. A limited amount
of training samples per class and an equally high intra-class
standard deviation in the target dataset can lead to highly
different object detection performances, even if the source
datasets were captured at a similar average distance to the
sea floor. When limited only to classes that show an average
intra-class area standard deviation of less than 1.5 times their
average annotation area (see Table 3), the L-Scores produced
by the experiments converge, but are still not equally high.
This confirms the observation that UnKnoT is not well suited
for cases where the source dataset was captured at a higher
distance to the sea floor than the target dataset.

The experiments where the source dataset D’ has a lower
average distance to the sea floor than the target dataset
D' belong to the second scenario. Among these cases only

S 3155 in which a scale transfer factor of 0.9 < df ™' <
1 was applied, shows a slightly decreased L-Score compared
to object detection without knowledge transfer. This high-
lights a drawback of the proposed L-Score, as only small
changes in the precision and/or recall can cause high dif-
ferences in the L-Score if the score is already high. In case
of Efclzrl;]’ S135 "the lower L-Score is produced by a slightly
lower precision of 12% compared to 16% of ES!71—>S155
and an actually slightly higher recall of 90% compared to
88% of ESV71—SI55 (gee Table 4). Still, even if UnKnoT
does not have a negative impact on the object detection
performance in this case, it does not improve the perfor-
mance either. Hence, we only denote the experiments in
which a scale transfer factor of 4;”' < 0.9 was applied
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as “relevant”. These are the cases with a sufficiently large
difference in the average distance of the camera to the sea
floor. On average, UnKnoT improves the object detection
performance by an L-Score of 0.58 (189%) compared to
object detection without knowledge transfer in these cases.
Where the experiments E2° 5083 with D* £ S083 produced
a bad average recall of 47%, UnKnoT improves the average
recall to 86% (see Table 4). Notably, the improved object
detection performance is highest for S233 — S083 compared
to S155 — SO083 and S171 — S083. Also, the object
detection performance is improved to a similarly high level
for 155 — $233 and S171 — $233, in case of ES) 11375233
even surpassing the baseline average L-Score of ES?33—5233,
These results indicate that UnKnoT produces a better object
detection performance with a source dataset that was captured
at an average distance to the sea floor that is roughly half the
average distance of the target dataset.

Considering only the relevant experiments, scale transfer
accounts for most of the improvements in the object detection
performance. The additional enhanced training configuration
of Mask R-CNN and the data augmentation improve the
object detection performance even further (see Table 5).

VI. CONCLUSION

Based on the observations and experimental results we draw
the following conclusions: If the annotated source dataset and
the target dataset are very similar in terms of average distance
to the sea floor and observation platform, no knowledge trans-
fer is required to achieve a good object detection performance
with a machine learning model such as Mask R-CNN. If the
annotated source dataset was captured at roughly half the
distance to the sea floor than the target dataset, UnKnoT
can be used to greatly improve the object detection perfor-
mance in an unsupervised way. As the discrepancy in average
distances to the sea floor increases, the increase in object
detection performance by UnKnoT decreases, but the final
object detection is still much better than if no knowledge
transfer is performed.

To ensure a good applicability of machine learning meth-
ods such as UnKnoT for marine image annotation, we pro-
pose a four-step image acquisition and annotation scheme for
future studies of the same geographical area:

1) One dataset with images of the sea floor should be
captured close to the ground and the current distance
to the sea floor should be recorded for each image.
The images should be fully annotated in a manual
way using a software such as BIIGLE 2.0 [5]. A target
distance to the sea floor of 1.7 m should be preferred as
OOI are likely to be easy to identify at this distance.
Methods to assist image annotation such as MAIA
[14] can be used to speed up the image annotation
process.

2) The remaining image datasets should be captured at
twice the distance to the sea floor than the dataset from
Step 1 and should also record the current distance to the
sea floor for each image. Image acquisition can be done
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on a large scale using observation platforms such as
AUVs. Following Step 1, the preferred target distance
to the sea floor should be 3.4 m. At this distance,
the images cover a larger area than the images of Step 1,
potentially containing more OOI (cf. |Ain | in Table 1).

3) UnKnoT should be used for object detection with the
annotated dataset of Step 1 as source dataset and each
of the datasets acquired in Step 2 as target dataset.

4) MAIA [14] should be used for the final image annota-
tion of each of the datasets acquired in Step 2, by using
the object detection results of Step 3 as training pro-
posals. The object detection results of Step 3 replace
the results of the novelty detection stage of MAIA and
ensure a highly specialized Mask R-CNN model for
each individual dataset in the instance segmentation
stage.

This image acquisition and annotation scheme can be an
efficient way to produce large volumes of high-quality image
annotations in typical scenarios of the field of marine envi-
ronmental monitoring and exploration.

In summary, we presented UnKnoT, a new method for
unsupervised knowledge transfer that allows the reuse of
existing knowledge in the form of image annotations for
object detection in new marine image datasets that show sim-
ilar OOL. In addition, we presented the L-Score, a metric that
is better suited to evaluate the object detection performance
in this particular context. We evaluated the effectiveness of
UnKnoT with four fully annotated image datasets, compris-
ing a total of 10,784 annotations on 2,200 images captured
in the same geographical area at different distances to the
sea floor. Our experimental results have shown that UnKnoT
greatly improves the object detection performance compared
to object detection without knowledge transfer in the relevant
cases. Based on these results, we conclude by recommend-
ing a four-step image acquisition and annotation scheme for
future studies, which can be an efficient way to produce large
volumes of high-quality image annotations in the field of
marine environmental monitoring and exploration.
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