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Abstract. When a robot perceives its environment, it is not only im-
portant to know what kind of objects are present in it, but also how they
relate to each other. For example in a cleanup task in a cluttered envi-
ronment, a sensible strategy is to pick the objects with the least contacts
to other objects first, to minimize the chance of unwanted movements
not related to the current picking action. Estimating object contacts in
cluttered scenes only based on passive observation is a complex problem.
To tackle this problem, we present a deep neural network that learns
physically stable object relations directly from geometric features. The
learned relations are encoded as contact graphs between the objects. To
facilitate training of the network, we generated a rich, publicly available
dataset consisting of more than 25000 unique contact scenes, by utilizing
a physics simulation. Different deep architectures have been evaluated
and the final architecture, which shows good results in reconstructing
contact graphs, is evaluated quantitatively and qualitatively.
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1 Introduction

Having knowledge about the relations of objects is important for everyday ac-
tivities. For example, when taking a plate from a stack of dishes, we intuitively
pick the one that is on top of the stack, since it has only contact with one of
the other objects in the stack. This, for humans intuitive, knowledge is also cru-
cial in the robotic domain when manipulation actions have to be planned and
carried out. One way of specifying this knowledge that allows to infer relations
between objects and their mutual contacts is in terms of a contact graph. To
generate a contact graph, two major strategies can be distinguished. Either an
agent actively explores its environment, for example by pushing objects around
and track changes in their movements, or passively by capturing a snapshot of
the environment and using an analysis pipeline to extract contact information
based on rules. In this setting, the snapshot would be, for example, a 3D point
cloud from a depth sensor. This point cloud needs to be further processed to
extract segments from it, which in turn have to be fitted to object models, to
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finally infer contact information from these objects by reproducing them in a vir-
tual environment, e.g. a physics simulation, and extract their mutual contacts
from the simulation. Alternatively, object hypotheses can also be generated by
means of a neural network [11].

By creating a contact graph from object geometries and a set of predefined
rules the work presented in [10] follows the latter, rule based line of approaches
to generate a contact graph. They propose a formalism to generate motion plans
from a sequence of transitions in this graph. Rosman and Ramamoorthy [13] used
SVMs to segment point clouds into objects based on geometric separability and
generated rule based relations between these objects. In [1], the authors pursue
the idea of active exploration. They use contact graphs to plan planar pushing
actions of a robot to arrange boxes in a desired pattern. Here the contact graph
is constructed by letting the robot actively move the boxes around and register
contacts between them. The work presented in [15] used a learned representation
of contact events in a manipulation sequence that was carried out by human
demonstrators and successfully applied it to a real robot.

Exploiting relational properties of data has recently been of major interest
in the machine learning and robotics community. The authors in [4] used graphs
constructed from spatial relations between objects in a classification task to
predict actions performed by humans. The input graphs here are constructed
based on prior knowledge. In [6], the authors used the graph structure in the
underlying datasets with graph convolutional layers to facilitate semi supervised
classification. They were able to outperform different graph clustering methods.
The model presented in [2] introduced the term of interaction networks. These
networks are able to predict future states in a 2D physics simulation by learning
from object properties an their physical relations expressed in graph structures.
By using the kinematic tree of different robots directly as an input graph to
a network, the authors in [14] were able to learn physics based controllers for
different robots. Exploiting the underlying graph structure of data also gained
interest in the area of activity recognition. In [17], a networks was presented
which is able to reconstruct the relations between different team members in a
game of volleyball from video sequences. Here, the prediction of the relations is
formulated by optimizing multiple cross entropies to obtain the most probable
relations. The work in [12] internally uses a graph structure to keep track of
activity descriptions over time when trying to estimate when and where in a
video an actions has taken place.

In this paper, we present a neural network that is able to infer complex
contact graphs only from geometric properties of physically stable object con-
figurations. This extends rule-based approaches such as [10, 13], that rely on
geometry alone, e.g. without considering the embedding in a physical situation
with gravity and friction. We include such physical information through the way
our training data set is generated, relying on the power of deep neural nets
to implicitly extract the resulting correlations between physics and geometry for
constructing accurate contact predictions. In our setting, we do not have a-priori
knowledge of the underlying graph structure, but we want to predict it given
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physical realistic geometric object configurations. We decided on an approach
similar to [17], to let the network generate contact hypotheses. To this end, we
created a novel dataset1 of physically realistic object relations and corresponding
contact graphs and evaluated different network architectures to facilitate contact
graph generation from single examples.

Since one of the most tedious tasks when generating a dataset is acquiring
high quality label information, we will describe our approach to automatically
generate object relations and corresponding contact graphs in the following sec-
tion. After that we lay out the design decisions for the network architectures we
chose and evaluate them.

2 Data Generation and Preprocessing

To generate a sufficiently large dataset for training a neural network and also
to obtain ground truth data, we employed the open source robot simulation
gazebo [7]. The goal of our network is to realize a mapping:

Â = f(F, θ) (1)

where θ denote the network weights, F is a n × d matrix of input features (cf.
below) and Â an estimate of the true contact graph A, represented in the form
of an undirected binary adjacency matrix of size n×n to accommodate contacts
between up to n objects (n = 10 in our simulations).

To this end, we randomly generated scenes which contain between six and
ten objects. Each scene is generated as the result of a physical process, modeling
how an initially random configuration of physical objects above a planar support
surface (”ground”) comes to rest under its natural dynamics and the influence
of gravity. Therefore, each of these objects is initialized with a randomized 6D
position in space and random size along its x,y and z dimension. Mean and
upper/lower bound of the uniformly distributed initialization values are shown
in Table 1. We chose a smaller z dimension compared to x and y to assure that
one dimension is small enough to be easily graspable by a robotic manipulator, so
that the dataset could possibly be used in future experiments. Having one smaller
dimension is also a common feature in most household objects, for example books
or various kind of storage boxes for food. The friction between the simulated
objects is set to a rather high value in simulation, a real world analogy would
be bricks made of clay, to facilitate reaching a stable state in a shorter period of
time by reducing unwanted sliding motions. The density of each object is also
set to a value similar to bricks with 2 g

cm3 .
It is important to note that the objects are initialized above the ground and in

a consecutive fashion to prevent an overlap of objects during initialization. If two
objects are initialized in an overlapping or penetrating state, physics simulators
tend to estimate extremely high forces and the simulated scene has a high chance
to ”explode”, being in an unrecoverable state afterwards.

1 Dataset is available at https://pub.uni-bielefeld.de/record/2943056
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property X Y Z

position 0.0± 0.1m 0.0± 0.1m 0.4± 0.1m

orientation π ± π rad 0.0± 0.1 rad π ± π rad

size 0.25± 0.15m 0.125± 0.05m 0.05± 0.01m

Table 1. Mean and upper/lower bound of the uniformly distributed initialization pa-
rameter of generated objects. Position and size are in meters while the orientation is
given in Euler xyz angles.

To obtain a stable state in the simulation, after initializing the objects, we
let the simulation run for 15 seconds at a rate of 1000 simulation steps/second
and evaluated the object movements afterwards. If the center of none of the
objects moves further than 0.1mm in any direction within 100 simulation steps,
we recorded ten simulation steps consisting of object locations and contact pairs
between objects. These contact pairs were accumulated over the ten simulation
steps. Accumulating contacts over multiple steps was necessary due to unstable
contacts generated by the simulation. An example for a stable configuration, e.g.
no object is moving, of ten objects is shown in Fig. 1. Although the objects are
not moving, not all contacts are recognized during all time steps, for example
the contact between object two and six is not present in each of the four con-
secutive frames of the simulation shown in Fig. 1. This is due to the technique
of simulation engines to add small noise internally to all object states, to avoid
running into numerical instabilities. Recording ten consecutive steps proved to
be sufficient to collect all contact pairs between objects. We ran simulations for
nearly a week and were able to gather 25116 samples of training data, consisting
of object locations and their pairwise contacts.

From the recorded samples of contacts, we generate the binary object adja-
cency matrices A by checking if there exists a contact for a given object pair
within the recorded ten simulation steps. If this is the case, we set the corre-
sponding element in the adjacency matrix to 1, 0 otherwise. Contacts between
objects and the ground plane in the simulation were omitted, since most of
the objects have contacts with the ground and these connections would be over
represented compared to object-object contacts.

As our object features we used shape (3D elongation along x,y,z object edges),
spatial position (3D) and orientation (represented as quaternions with 4 param-
eters). By having at most ten objects, we obtain a 10 × 10 feature matrix F
consisting of object features × the number of objects. Since we generated the
scenes with a varying number of objects, rows with a higher row index have a
higher probability to consist only of zeroes. To circumvent this bias and to aug-
ment the dataset, we applied random permutations to the rows of the feature
matrix F and the same permutations to the rows and columns of the corre-
sponding adjacency matrix A, to preserve the symmetry of A. We applied 32
permutations to each pair {F,A} which, together with the original pair, leads
to a total of 828828 training samples.
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(a) Sim step 1. (b) Sim step 2. (c) Sim step 3. (d) Sim step 4.

Fig. 1. Contacts calculated by the physics simulation for a stable configuration of ten
objects. Contacts between objects are depicted as blue spheres. During four consecutive
simulation steps, not always the same contacts are calculated. This is due to numerical
instabilities and added noise by the simulation engine.

3 Learning Contact Relations

The goal of this work is to learn a mapping from a set of physical object con-
figurations to a binary adjacency matrix that indicates their mutual contacts.
To this end, the natural idea is to express our learning problem as a multi-label
classification task and use binary cross entropy

L(A, Â) = − 1

n ∗ n

n∑
i=1

n∑
j=1

(aij log âij + (1− aij) log(1− âij)) (2)

as loss function, where aij are the elements of A and âij are the elements of

the predicted adjacency matrix Â. We also investigated using Focal Loss[8] and
reconstruction with mean squared error as losses, but these did not lead to better
results than binary cross entropy, details are in the next section.

Since our generated dataset contains, on average, 20% positive entries in the
adjacency matrices while the remaining 80% entries are zero, it is not sensible
to use a straightforward accuracy metric to evaluate our model, because the
dataset is not sufficiently balanced. Therefore, we are using the Area under the
ROC curve (AUC) as metric in the following evaluation [3]. Here, ROC is the
receiver operating characteristic, which is defined by the ratio of the true positive
rate to the true negative rate of a classifier.

To obtain a network architecture which is able to reconstruct an adjacency
matrix from our dataset and to ensure it learns some kind of dense representa-
tion, we performed a reverse ablation study. Since we have a 100 dimensional
output with sigmoid activation to match the binary cross entropy loss, we want
the second to last layer to contain less neurons than the output, to facilitate the
learning of a denser representation than the original input. We started with a
single hidden layer with 64 neurons and ReLU (rectified linear unit) activation,
and successively added hidden layers of increasing size with ReLU activation to
the model, while keeping the 64 unit layer always as the second to last layer, to
enforce the learning of a dense representation in this layer. The final reconstruc-
tion of the adjacency matrix from the last layer is done by applying a threshold
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# hidden layers 1 2 3 4 5 6 7

units in first hidden layer 64 96 128 192 256 384 512

AUC score 0.6623 0.7393 0.8146 0.8425 0.8629 0.8653 0.8647
Table 2. Evaluation of different deep architectures. The table is read column wise. For
example, a network with three hidden layers has the architecture of input-128-96-64-
output and a validation AUC score of 0.8164 after training.

of 0.5 to the output of the sigmoid units, to obtain binary values. Since our
dataset contains more than 800k samples, we followed the idea to increase the
batch size instead of decreasing the learning rate [16], to facilitate faster training.
Starting from a batch size of 64, we double the batch size every 20 epochs up to
a final batch size of 2048. All trainings have been carried out using the Adam
optimizer [5]. From the 800k samples, 20% were kept from training to perform
the evaluation. Table 2 shows the seven deep architectures we tested. The table
is read column wise. For example, if the network has four hidden layers, the first
hidden layer has 192 ReLU units and the network achieved a final AUC score
of 0.8425. As can be seen in the table, the AUC score increases with each addi-
tional hidden layer until it reaches a plateau at five hidden layers. We therefore
decided to do a thorough evaluation on a network with five hidden layers with
256-192-128-96-64 units.
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Fig. 2. Results of a 5-fold cross validation using the proposed model from section 3.
Starting from an initial batch size of 64, the batch size is doubled every 20 epochs. The
values shown are mean and standard deviation for AUC score and loss at the end of
each epoch, for the evaluation sets of the five runs.
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(a) Sample 24745. (b) Sample 334. (c) Sample 14566.

Fig. 3. Example scenes from the dataset where our network achieved perfect results.
Each panel shows a screenshot of the scene and the corresponding contact graphs.

4 Evaluation

We evaluated the selected model in a 5-fold cross validation. The AUC score
reaches a final value of µ = 0.8564, σ = 0.007, with a minimum of 0.8495 and
a maximum of 0.8709, the training progress is shown in Fig. 2. The increase in
AUC score reaches a plateau around epoch 60, where the batch size is increased
to 512. As a comparison, using focal loss with these settings leads to a final
AUC score of 0.7719. This could be due to the fact that focal loss is tailored
towards shaping the underlying binary cross entropy towards rewarding very rare
occurring features, which could be too extreme in the dataset at hand. Using
mean squared error as the loss function leads to a final AUC score of 0.8146.

We further evaluated the impact of our dataset augmentation to the achiev-
able AUC score. To this end, we started with the original dataset and successively
doubled the number of permuted samples, which are added to the training set.
The results are shown in table 3. Here we can see that the augmentation proves
to be beneficial for the task. Especially the comparison of no permutation to
one is a strong hint that it is important to permute the feature matrices to re-
duce the bias which originates from possible empty feature vectors. Also in this
case, the gain from adding more permutations becomes neglectable around 64
permutations, which is a good indicator that our chosen settings of 32 is a good
trade-off between training duration and achieved AUC score. To get a qualita-
tive insight into the results of our trained model, we randomly selected successful
reconstructions of contact graphs and the corresponding scenes from our dataset
as well as reconstructions that partially failed, i.e. contain missing or wrong links
between objects. The successful reconstructions are shown in Fig. 3. Here the
prediction contact graph always matches the ground truth. The partially failed
examples are shown in Fig. 4. Here it can be seen that our model has problems
with corner to surface contacts, for example between objects 7 and 0 in the left
panel, 8 and 7 in the center panel and 7 and 9 in the rightmost panel. Also, edge
to surface contacts seem to be slightly over estimated in some cases, there is a
non existing contact added between object 8 and 1 in the rightmost panel and
between object 5 and 4 in the central panel.

We further investigated the behavior of our model in a successively chang-
ing simulation. To this end, we manually constructed a scene that resembles a
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permutations 0 1 2 4 8 16 32 64 128 256

AUC score 0.6647 0.7503 0.7693 0.7805 0.8177 0.8253 0.8511 0.8532 0.8534 0.8506
Table 3. Evaluation of the dataset augmentation in terms of added permutations to
the dataset. The initial increase in performance is compelling in the lower numbers of
permutations but reaches a plateau around 64, using the proposed network architecture.

(a) Sample 23710. (b) Sample 414. (c) Sample 327.

Fig. 4. Example scenes from the dataset where our network partially failed to recon-
struct the contact graph. In the top right of each panel, the ground truth contact graph
is shown. The reconstruction is in the lower right. For discussion please refer to the
text.

domino effect, as shown in Fig. 5. We pushed the leftmost box to tip over the
remaining five boxes and took snapshots of the object poses when other blocks
started to fall over. The resulting contact graphs are shown at the bottom of
each panel. The graphs represent the sequence of the blocks contacting their
neighbors and create a chain that connects all blocks, eventually.

Additionally, we investigated the activations in the last hidden layer in our
network. Fig. 6 shows the same TSNE [9] embedding of activations for each
sample in our dataset, colored with respect to two different properties in our
dataset. In the left panel, the embedded activations are colored according to the
number of objects in the input feature. Here clear clusters are visible, where the

(a) Snapshot 1. (b) Snapshot 2. (c) Snapshot 3. (d) Snapshot 4. (e) Snapshot 5.

Fig. 5. Example for a manually constructed ”domino” sequence. In the beginning,
six objects are arranged in a straight line. The leftmost object is tilted to initiate
tipping over the other objects. The corresponding contact graph generated by our
neural network is shown at the bottom of each panel.
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yellow color at the bottom of the figure indicates six objects in the input while
the dark blue at the top indicates ten objects.

The right panel is colored according to the number of contacts in the output
contact graphs. Here only a slight tendency is visible, the lighter coloring at the
bottom indicates less contacts. This correlates with the number of objects in
the left panel, since samples with less objects have a tendency to also have less
contacts.
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(a) Colored wrt. number of objects.
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(b) Colored wrt. number of contacts.

Fig. 6. 2D TSNE embedding of the activations in the last hidden layer. This figure
shows the same embedding colored with respect to two different properties of our
dataset. The left panel is colored based on the number of objects in the input feature
while the right panel is colored wrt. the number of contacts in the input feature.

5 Conclusion

We considered the task of predicting contact graphs from object configura-
tions through a deep neural network and presented a dataset which represents
rich physical contact situations. We compared network architectures of different
depths for solving this task, considering it as a multi-label classification task from
geometric object features to the elements of an adjacency matrix that describes
the contact graph. We showed that for the resulting, unbalanced multi-label clas-
sification task with our dataset, an optimization based on binary cross entropy
is superior to least squares or focal loss in term of the respective AUC score and
present typical examples and TSNE embeddings to provide some insight into
the properties of the network solution. The used input representation is well tai-
lored to become part of a point cloud processing pipeline leading from a depth
map of a cluttered arrangement of 3D objects to a high-level contact represen-
tation of their physical configuration. Such a pipeline can enable a recording of
rich contact episodes and help to guide every day manual actions of robots in
unstructured environments.
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