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We seem to be a most curious breed of dysfunctional clairvoyants,
looking forward to the theoretical possibility,

while only becoming aware of what we have actually embarked upon
once we have already started.

— Spence (2009, pp. 125-126)

The critical act in formulating computational theories turns out
to be the discovery of valid constraints on the way the world

is structured — constraints that provide sufficient information
to allow the processing to succeed.

— Marr (1980)





A C K N O W L E D G M E N T S

These kinds of writings are never and should never be created alone.
So, wholeheartedly, I want to thank some special people for their
continuing support during this time.

First of all, I want to thank my supervisor Stefan Kopp, who always
supported my crazy musings about where this work should be head-
ing. During our discussions I always felt that he is as exited about its
potential as I am. His valuable support even encouraged me to send
him Whatsapp messages during off-hours when I had one or the other
heureka moments, when something finally worked.

During my time at the Social Cognitive Systems Group I always
felt at home! I want to thank my former and fellow colleagues for all
the support at work, the fun nights out, the crazy chats, the many
many (many) coffees and, last but not least, the breakfasts. Namely,
I especially want to thank Jan Pöppel for his open ear and the fun
discussions about all the technical ideas and problems I had with the
model. Also, I want to thank Laura Hoffmann, Sonja Stange, Philipp
Kulms, Hendrik Buschmeier, and Farina Freigang. Thank you for your
open ears to my troubles over the years. Thanks to you this work did
not break me. Over the years many colleagues came and went, but
the heart of the group never changed. Dagmar Philipp represents this
heart. I especially want to thank her for her invaluable support over
the years. Whenever I had any question she would drop everything
and try to help me.

Further special thanks go to Martin Butz who agreed to be the
second reviewer of this thesis.

I also want to thank all my friends for their support, you know who
you all are! You never dismissed my rants about the model, how it isn’t
working, what it should be able to do, what it finally did.

I am indebted to my family for their support. I still remember their
faces when I first told them that I wanted to study Cognitive Science.
Today, you know how to describe to your friends and colleagues what
I do, AI and pretty pictures from neuroscience are everywhere. Thank
you for believing in me and supporting me, Birgit Tennigkeit-Kahl,
Gerhard Kahl, and Stephan Kahl.

Finally, I want to thank my special one. You have been there for me
when nothing worked, you were excited with me when it finally did,
you supported me and believed in me when I was down.
My fiancée Kathi. You are my everything.

vii





P R E V I O U S P U B L I C AT I O N S

Parts of the ideas, figures and text presented in this thesis have ap-
peared previously in the following peer reviewed workshop, confer-
ence, or journal publications. Use of such material is indictated in the
footnotes.

Kahl, S. and S. Kopp (2015a). “Modeling a Social Brain for Interactive
Agents: Integrating Mirroring and Mentalizing”. In: 15th Interna-
tional Conference on Intelligent Virtual Agents.

Kahl, S. and S. Kopp (2015b). “Towards a Model of the Interplay
of Mentalizing and Mirroring in Embodied Communication”. In:
EuroAsianPacific Joint Conference on Cognitive Science.

Kahl, S. and S. Kopp (2016). “Communicative signaling and self-
other distinction: Next steps for an embodied hierarchical model of
dynamic social behavior and cognition”. In: 13th Biannual Conference
of the German Cognitive Science Society.

Kahl, S. and S. Kopp (2017a). “Distinguishing minds in interaction:
Modeling self-other distinction in the motor system”. In: 3rd Work-
shop on Virtual Social Interaction.

Kahl, S. and S. Kopp (2017b). “Self-other distinction in the motor
system during social interaction: A computational model based on
predictive processing”. In: Proceedings of the 39th Annual Conference
of the Cognitive Science Society.

Kahl, S. and S. Kopp (2018). “A Predictive Processing Model of Per-
ception and Action for Self-Other Distinction”. In: Frontiers in Psy-
chology.

ix





L I S T O F F I G U R E S

Figure 1.1 Basic model interplay . . . . . . . . . . . . . . . 4

Figure 2.1 Human Mirror-Neuron System . . . . . . . . . 25

Figure 2.2 Heider Simmel . . . . . . . . . . . . . . . . . . . 27

Figure 2.3 Mentalizing Network . . . . . . . . . . . . . . . 29

Figure 3.1 Visual illusion examples . . . . . . . . . . . . . 36

Figure 4.1 Handwriting corpus example . . . . . . . . . . 68

Figure 4.2 Motor coordination overview . . . . . . . . . . 74

Figure 4.3 MNS model hierarchy . . . . . . . . . . . . . . 75

Figure 4.4 Level S and C technical . . . . . . . . . . . . . . 77

Figure 4.5 Level M and V technical . . . . . . . . . . . . . 79

Figure 4.6 Kalman gain bias example . . . . . . . . . . . . 85

Figure 5.1 Belief coordination overview . . . . . . . . . . . 95

Figure 5.2 MENT model hierarchy . . . . . . . . . . . . . 97

Figure 5.3 Level CS and G technical . . . . . . . . . . . . . 99

Figure 6.1 Corpus problems . . . . . . . . . . . . . . . . . 108

Figure 6.2 Repeated training on same data . . . . . . . . . 109

Figure 6.3 Generalization test to b . . . . . . . . . . . . . . 109

Figure 6.4 Generalization test to c . . . . . . . . . . . . . . 109

Figure 6.5 Generalization test to d . . . . . . . . . . . . . . 110

Figure 6.6 Generalization test of pooled model . . . . . . 110

Figure 6.7 Classifier comparison . . . . . . . . . . . . . . . 111

Figure 6.8 Comparison with other models . . . . . . . . . 113

Figure 6.9 Classifier comparison . . . . . . . . . . . . . . . 113

Figure 6.10 Dynamics during action and perception . . . . 115

Figure 6.11 Free energy minimization comparison . . . . . 117

Figure 6.12 Agency test comparison . . . . . . . . . . . . . 119

Figure 6.13 Agency test dynamics . . . . . . . . . . . . . . 120

Figure 6.14 Interaction scenario sketch . . . . . . . . . . . . 122

Figure 6.15 Coordination sequence examples . . . . . . . . 123

Figure 6.16 Belief coordination scenario a . . . . . . . . . . 125

Figure 6.17 Belief coordination scenario b . . . . . . . . . . 126

Figure 6.18 Belief coordination scenario c . . . . . . . . . . 127

Figure 6.19 Kalman gain bias influence . . . . . . . . . . . 128

Figure 6.20 Belief coordination dynamics . . . . . . . . . . 130

Figure A.1 Full hierarchy overview . . . . . . . . . . . . . 153

xi



L I S T O F TA B L E S

Table 6.1 Model representation numbers . . . . . . . . . 112

A C R O N Y M S

MNS Human Mirror-Neuron System

MENT Mentalizing Network

STS superior temporal sulcus

TPJ temporal parietal junction

IPL inferior parietal lobule

IFG inferior frontal gyrus

PMC premotor cortex

TMS transcranial magnetic stimulation

MT Medial Temporal

mPFC medial prefrontal cortex

pmPFC posterior medial prefrontal cortex

HFA high-functioning autism

SoA Sense of Agency

PM Person Model

HPBU Hierarchical Predictive Belief Update

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

CNN Convolutional Neural Network

EBBU Empirical Bayesian Belief Update

ToM Theory of Mind

BDI Belief, Desire, Intention

GAN Generative Adversarial Networks

DMP Dynamic Movement Primitives

EEG Electroencephalography

fMRI functional Magnetic Resonance Imaging

xii



C O N T E N T S

1 introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 theoretical background 7

2.1 Belief coordination during social interaction . . . . . . 8

2.1.1 From communicator to resonator . . . . . . . . . 8

2.1.2 Good enough understanding in social interaction 14

2.1.3 Non-verbal communication . . . . . . . . . . . . 19

2.1.4 From behavior to neural processes . . . . . . . . 22

2.2 The social brain . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Human mirror-neuron system (MNS) . . . . . . 23

2.2.2 Mentalizing network (MENT) . . . . . . . . . . . 27

2.2.3 Interplay within the social brain . . . . . . . . . 29

2.2.4 Self-other differentiation . . . . . . . . . . . . . . 32

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 modeling foundations 35

3.1 Predictive processing and active inference . . . . . . . . 38

3.1.1 The free-energy principle . . . . . . . . . . . . . 39

3.1.2 Predictive processing . . . . . . . . . . . . . . . . 41

3.2 Mentalizing background . . . . . . . . . . . . . . . . . . 43

3.2.1 Theory of Mind . . . . . . . . . . . . . . . . . . . 43

3.2.2 The problem of recursion . . . . . . . . . . . . . 45

3.2.3 Conciliating theory theory and simulation theory 45

3.3 Mentalizing in predictive processing . . . . . . . . . . . 47

3.3.1 Event structures for mentalizing . . . . . . . . . 47

3.3.2 Minimizing free energy of beliefs and intentions 48

3.4 Inferring the self from sense of agency . . . . . . . . . . 50

3.4.1 Predictive process in sense of agency . . . . . . 50

3.4.2 Postdictive process in sense of agency . . . . . . 52

3.4.3 Integrating sense of agency . . . . . . . . . . . . 53

3.5 Related work in computational modeling . . . . . . . . 54

3.5.1 Kinds of models . . . . . . . . . . . . . . . . . . 54

3.5.2 Models of motor coordination . . . . . . . . . . 56

3.5.3 Models of theory of mind . . . . . . . . . . . . . 58

3.5.4 Models of direct social interaction . . . . . . . . 60

3.5.5 Models of interactive brain dynamics . . . . . . 61

3.6 Differentiation and contribution . . . . . . . . . . . . . 62

4 modeling a predictive processing hierarchy 65

4.1 Hierarchical Predictive Belief Update . . . . . . . . . . 65

4.1.1 Modeling assumptions . . . . . . . . . . . . . . . 65

4.1.2 The corpus of handwritten digits . . . . . . . . . 67

xiii



xiv contents

4.1.3 Generative model and the environment . . . . . 69

4.1.4 Inter-level communication . . . . . . . . . . . . . 70

4.2 Modeling a sensorimotor system . . . . . . . . . . . . . 73

4.2.1 Level definitions and updates . . . . . . . . . . . 73

4.2.2 A model of active inference . . . . . . . . . . . . 79

4.2.3 Handling action sequences . . . . . . . . . . . . 82

4.2.4 Strategic action and perception . . . . . . . . . . 84

4.2.5 Self-supervised learning . . . . . . . . . . . . . . 87

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 extending hpbu with a model of mentalizing 93

5.1 Additional modeling assumptions . . . . . . . . . . . . 93

5.2 Modeling a mentalizing system . . . . . . . . . . . . . . 94

5.2.1 Extended generative model . . . . . . . . . . . . 96

5.2.2 Level definitions and updates . . . . . . . . . . . 96

5.2.3 Person model and its influence . . . . . . . . . . 96

5.2.4 Levels and representations . . . . . . . . . . . . 98

5.2.5 Comparing coordination sequences . . . . . . . 100

5.2.6 Meta-communication . . . . . . . . . . . . . . . . 100

5.2.7 Intentions to act and intentions to observe . . . 101

5.3 Efficient belief coordination . . . . . . . . . . . . . . . . 102

5.3.1 A model of sensorimotor sense of agency . . . . 103

5.3.2 Sensorimotor communication . . . . . . . . . . . 104

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 results 107

6.1 Model recognition performance . . . . . . . . . . . . . . 107

6.2 Free energy minimization for action and perception . . 114

6.3 Differentiating self from other . . . . . . . . . . . . . . . 118

6.4 Multi-agent belief coordination . . . . . . . . . . . . . . 121

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7 discussion 131

7.1 Modeling approach discussion . . . . . . . . . . . . . . 132

7.2 Evaluation discussion . . . . . . . . . . . . . . . . . . . . 135

8 conclusion 143

8.1 Overall summary . . . . . . . . . . . . . . . . . . . . . . 143

8.2 Contribution summary . . . . . . . . . . . . . . . . . . . 145

8.3 Limitations and future work . . . . . . . . . . . . . . . . 148

a appendix 153

a.1 Full hierarchy overview . . . . . . . . . . . . . . . . . . 153

bibliography 155



A B S T R A C T

Human communication often seems effortless. We tend to quickly
have an idea of our interaction partner’s intentions that enable us to
predict their future behavior. How is such efficient communication
possible which, despite uncertainty, allows us to quickly attribute
beliefs to one another? Also, when and how are beliefs corrected if
necessary? By investigating how action and perception influence and
are influenced by prior beliefs during non-verbal communication, this
work tackles the question of how and when the two subnetworks of
the social brain interact.

A computational modeling approach is proposed, based on princi-
ples of predictive processing and active inference. The model’s hierar-
chy consists of sensorimotor- and mentalizing levels. Their processes
influence each other in a way that allows their embodied representa-
tions to be used efficiently. It is explored how uncertainty is handled
in human communication, before examining the neuroscientific de-
tails of social cognition. Both inform the assumptions underlying
the proposed model, which is evaluated in a number of simulations.
These test the model’s abilities to minimize uncertainty during action
and perception, to differentiate between its own and other’s actions,
and also its ability to coordinate beliefs between multiple agents in a
non-verbal communication game.

The simulations not only show that the proposed mechanisms
quickly infer action intentions, able to influence future perception
and action. Simulations also highlight the importance of weighting
new evidence against prior beliefs, so that it is able to detect false
beliefs and repair them during social interaction. The proposed com-
putational model demonstrates a mechanistic account of the interplay
within the social brain that allows for efficient non-verbal commu-
nication between similar agents, with implications for the notion of
subjective direct access to other’s minds.

xv
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I N T R O D U C T I O N

1.1 motivation

Social interaction can take many forms. Sometimes it is just a nod and
a smile of a stranger in the streets, in the best of times you find yourself
in a deep conversation with a good friend, and sometimes it even
comes in the form of an unnecessarily hard volley during a tennis
match. Most often, we find ourselves confronted with uncertainty,
wondering about the meaning of other’s behavior.

There are three questions which, when answered, can mitigate this
uncertainty: One is, whether oneself is part of a social interaction: am
I the target or addressee of a communicative act, e. g., is this person
over there, who is gesturing or speaking, making this communicative
act for me to understand? This question of being an addressee is
trivial when I meet my neighbour alone on the street in front of my
house, but think of a cocktail party, with a lot of people standing
around in groups or alone. There, the communicative act of speaking
or gesturing alone is not enough to make out the addressee.

Once we are sure that we are the addressee of a communicative
act we face the second question: what are we communicating about?
When thinking about the many ways to make yourself understood –
verbally or non-verbally – and the myriad topics an interaction can be
about, how is most social interaction so straight forward and efficient?

What we also need to answer is when we are done communicating,
and whether we always need to be sure about our understanding? This
third question is closely related to the second, in that the answer to it
follows directly from inferring what the communicative goal is, e. g., in a
process of belief coordination to reach a shared understanding (Clark, 1996;
Clark and Schaefer, 1989; Traum and Allen, 1992). Once we think that
we know what our goal is, we can track our progress toward it, but as
you can imagine, knowing the goal is often not trivial. Now and then
you find yourself thinking you reached your communicative goal, only
to find that your interaction partner was trying to get a completely
different message across. Human communication seems to be set up
in a way that allows its practitioners to circumnavigate the pitfalls of
handling this uncertainty, which can lead to misunderstandings. We
seem to do this with ease, at least most of the time (Healey et al., 2018).
But more often than not, we just assume our mutual understanding to
be good enough without further investigation (Ferreira et al., 2002).

At first, one might think that the ease of understanding each other is
based on properties of language in the form of verbal communication.

1



2 introduction

Yet, we will see that the same is true for non-verbal communication,
which might even be closer to the origins of human communication,
where in a form of social motorics the processes necessary for shared
understanding have first come to be (Tomasello, 2008). Non-verbal
communication takes many meaningful forms: from a body turned
towards or eyes gazing at the addressee (Ciaramidaro et al., 2014), over
the different kinds of gestures that represent something (Krauss et al.,
2001; McNeill and Duncan, 2000), or joint actions on the world (Vesper
and Richardson, 2014), down to small and meaningful deviations in all
these non-verbal communicative acts, which can help to differentiate
or make a point (Pezzulo et al., 2013).

The close relation between our body and cognition has been shown
by studies of motor cognition (Decety and Sommerville, 2003; Gal-
lagher, 2005), and gesture (Goldin-Meadow and Beilock, 2010). In
that both, our own behavior and perceiving behavior of others, can
influence our mental representations, and thus our understanding of
each other. The theory of embodied cognition describes that cognition,
as we possess it, requires a body, through which information can be
acquired, or through which we engage with the environment and
with our interaction partners in social situations (Wilson, 2002). In this
perspective, most of what we can think about – or what we represent
in our mind – is shaped by our experience of what is represented and
filtered through our body and its sensory organs.

The human brain is specifically tuned to social interaction (Schilbach
et al., 2008), perceiving other’s behavior in the light of our own experi-
ence (Gallese et al., 1996; Keysers et al., 2004), and reasoning about our
interaction partner’s beliefs and desires (Schuwerk et al., 2014). Two
functional subnetworks of the human brain have been identified to
contribute: the mentalizing network (MENT), and the human mirror
neuron system (MNS) (Van Overwalle, 2009). Yet, how the underlying
brain processes work together to achieve this coordination of beliefs
in social interaction, is still hardly understood and has been dubbed
the “dark matter of social neuroscience” (Przyrembel et al., 2012).

One account of the processes of cortical function that takes uncer-
tainty into account, is predictive processing (Clark, 2016; Friston and
Kiebel, 2009). In this account, uncertainty about the information re-
ceived about our environment through our senses is mitigated simply
by correctly predicting the source of the uncertainty. This can be under-
stood as a more general mechanistic property of efficient information
processing systems that are in exchange with other social agents, and
with their environment (Friston, 2013). Predictive processing is an
account of passive information processing. To be able to influence the
environment, or communicate with another social agent, it is extended
to an account called active inference, where predictions can lead to ac-
tion (Friston, 2011; Friston et al., 2010). This is similar to the ideomotor
principle (Prinz, 1990).
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This account of how uncertainty is handled in our brain could
provide a framework for human communication. In this framework,
the uncertainty one interlocutor has about her interaction partner’s
understanding needs to be reduced for this understanding to become
shared.

1.2 objective

In this thesis I seek to develop a more holistic perspective to the
general problem of how interaction partners can come to a shared
understanding. Instead of an abstract discussion of human behavior
in social interaction, here I create a computational model that aims to
provide a mechanistic account and framework for handling uncertainty
in social interaction.

To become more explicit: The purpose of the presented research is
to find possible mechanistic and cognitive properties, as described
in the literature, which underly the interplay of the processes within
the human social brain. Further, the mechanistic properties should
be able to reduce uncertainty between social agents during social
interaction. In order to test the identified process hypotheses, they will
be computationally modeled on the basis of predictive processing and
active inference and evaluated in multi-agent simulations.

David Marr introduced a now widely applied three-level analysis
to understanding information processing systems (Marr, 1982). To
tackle the problems of reducing undertainty and coming to a shared
understanding, two of Marr’s levels of analysis are applied. The compu-
tational level is used to analyze the modeling problem and identify the
necessary processes, so that in the next step, the functional accounts
and computational modeling can be approached in the algorithmic
level analyses.

The resulting identified functional accounts of the cognitive pro-
cesses will be summarized in the modeling assumptions.

Two specific research questions will be addressed to come to a better
understanding of the stated general problem:

• How are action and perception informative in social situations? In
the context of this question we will visit and discuss aspects
relevant for understanding social interaction in general. Then, we
focus on belief coordination, non-verbal communication and the
different findings from conversation analysis, hoping to uncover
the core problem people face when they try to establish shared
understanding with one or many interaction partners. Given the
identified computational perspective on the problem, we will
create a computational model based on necessary assumptions
to first investigate the influence of action and perception during
social situations. In order to handle uncertainty we will put the
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model on the basis of predictive processing and active inference,
investigating its suitability to handle the necessary processes.

• Can active inference connect mentalizing and sensorimotor process-
ing? Following up on the first question, and with additional
assumptions for the necessary interplay between sensorimotor
and mentalizing processes, we will extend the modeling ap-
proach to cover mentalizing processes. We will investigate if
active inference as an extension of predictive processing, allows
to produce communicative signals for another social agent so
that actual belief coordination based on perceived behavior and
performed reciprocity can occur.

MNS

MENT

MNS

MENT

Figure 1.1: The basic interaction of only two social agents consists of an intra-
personal interplay between the two processes within the social
brain as well as an interplay between social agents.

This is the first time a computational cognitive model of the func-
tional components of the social brain is created that can deal with
the uncertainty inherent in social interaction. In addition, it is eval-
uated in simulations of multi-agent reciprocal belief coordination. A
process of reaching a shared understanding between multiple inter-
action partners, based on a sharing of their respective beliefs (Clark,
1996). To achieve this, instances of the computational model are put
into the social agents in an interactive environment (see fig. 1.1). This
way the inter-personal interplay between multiple social agents can
be modeled, with each agent having a model that incorporates the
intra-personal interplay between the two processes within the social
brain.

The model allows for belief coordination by applying different
strategies to reach shared understanding through reciprocity. This is
achieved, by either communicating a perceived belief, or by convincing
the other agent of a belief by applying sensorimotor communication
strategies, i. e., selecting an action that the interaction partner is more
likely to correctly understand (Pezzulo et al., 2013).

At the core of the computational model lies an implementation of
the predictive processing and active inference account which entails,
as its primary goal, the need to minimize its free energy by predicting
and correcting for the statistical irregularities in the signal (Friston,
2013). Free energy represents prediction errors of the system, as a
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measure of uncertainty. The implementation of the model is a hybrid
of a hierarchical Bayesian model and a linear dynamic model which,
on each level, employs a variational belief update. This is designed as
a form of continuous updating of beliefs based on the success of its
prior predictions that minimize free energy. This continuous updating
allows to accumulate evidence online during perception or action.

The model will be tested and trained to understand and produce
non-verbal communication in the form of handwriting of digits, learned
from a recorded corpus. Thus, the statistical irregularities that it has
to deal with are deviations from previous movement directions. Such
statistical irregularities are informative because they deviate from the
previously applied predicting model, and lead to prediction errors,
reflected by an increase in free energy. Each irregularity can have
different reasons, which the model needs to infer, e. g., irregularities
from deviating communication goals, intentions or action schemas.

The resulting representations will be the embodied basis that allows
for belief coordination between the social agents.

The modeling and the evaluation results will demonstrate a mecha-
nistic account of the interplay between mentalizing and sensorimotor
processing – previously described as “the dark matter of social neuro-
science” – with implications for the notion of subjective direct access
to other’s minds during social interaction.

1.3 overview

Here, in the first chapter, we have now gotten a small motivatory
introduction to the problems of uncertainty and shared understanding
in social interaction. Also, I briefly summarized the actual objective of
the following research and modeling, i. e., what the specific research
questions involved are, and what the resulting modelings should
encompass.

In the second chapter, I will go into much greater detail on the
theoretical background. In the literature, we will see what it actually
entails to be part of a social interaction, where context and our own
prior information can play a vital role, when we align ourselves with
our interaction partners in different aspects. I will also discuss the
role of misunderstandings, and that they do not necessarily have to be
fatal for communication, because we have different repair strategies.
To further our understanding about the mechanisms underlying these
central communication strategies, I will also look at the neuroscientific
literature. There, we will get an idea of the complex interactions that
make up the dynamic involvement of mirroring – or sensorimotor –
and mentalizing activities within the social brain, which have been
described as “the dark matter of social neuroscience”.

In the third chapter, I will discuss additional background information
relevant for the computational modeling. This covers introductions
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to predictive processing, theory of mind, and motor control. Also,
related work on other computational models of motor control and
theory of mind will be discussed. And in addition, this chapter already
covers the background and ideas for modeling representations under
a predictive processing and active inference account of mentalizing.

In the fourth chapter, I will present the foundation of the computa-
tional cognitive model that contains many mechanistic properties –
modeled on the basis of active inference – which are vital for handling
uncertainty in exchange with the environment and during social in-
teraction. Also in this chapter, the sensorimotor part of the modeling
will be described.

In the fifth chapter, the established model, including its sensorimotor
processes will be extended with a mentalizing part. This way, the two
functional subnetworks of the social brain, along with their interaction,
are put on the same modeling basis.

The sixth chapter contains the evaluation simulations that will test
different assumptions and shine some light on the research questions
I will formulate.

The simulation results, in context of the research questions, will be
discussed in chapter seven, where we will also examine the general
modeling approach and its implications.

In the eigth chapter I will conclude the presented work with a general
summary, and a brief discussion of the contributions to different
research fields. As a last word, we will also examine the limitations of
the present work, and have an outlook at future possible work that
would benefit from the presented computational model.

some remarks Before we come to the second chapter and dive
into the theoretical background, there are some remarks:

• As you have probably already noticed, I here describe my re-
search from a first-person perspective. Of course, not every result,
and every line of text that was previously published, stems solely
from me. Rather, it is an accumulation of ideas that went into
the modeling assumptions, and into building the present model,
and the evaluation simulations.

• I will repeatedly use “we”. This should be understood as stand-
ing for “me and the reader”.

We will now, as a first step, come to the necessary background on hu-
man communication from the perspective of linguistics, conversation
analysis, and social neuroscience.
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T H E O R E T I C A L B A C K G R O U N D

Social interaction:
the communicative
interaction between
two or more agents
with their own
intentionality.

In this chapter I will introduce the different aspects of social inter-
action, specifically belief coordination and the respective foundations
and open questions, also from the perspective of the social cognitive
neuroscience literature.

Belief coordination:
the reciprocal back
and forth resulting
in mutual
understanding.

In the first section (sec. 2.1) we will see that during everyday social
interaction it is not only the simple act of speaking to our interaction
partners that leads to successful communication but at most times we
first establish a foundation upon which we are then able to efficiently
communicate and coordinate our respective beliefs, namely a common
ground. Following David Marr’s three-level analysis to understanding
information processing systems (Marr, 1982), in this section I will fo-
cus on the computational perspective on human communication and
belief coordination. I will introduce the background of cooperative be-
lief coordination and social resonance (sec. 2.1.1), with literature from
conversation analysis and linguistics, which describe the important
ingredients to form common ground during communication. These
aspects will be discussed as a problem of reciprocity and uncertainty
during communication, why most understanding may only be good
enough, and one of establishing when communication was success-
ful (sec. 2.1.2). Also, I will introduce several aspects of non-verbal
communication (sec. 2.1.3), along with its importance in the evolution
of human communication, because non-verbal communication will
become a central aspect of the modeling approach that we will develop
in the following chapters.

In the second section of this chapter (sec. 2.2) I will switch to a
focus on the representation and algorithm perspective, in the discus-
sion of the so-called social brain, and its two functional subnetworks: Social brain: two

partially overlapping
networks of brain
areas, functionally
associated with social
cognition.

the mirror-neuron system (sec. 2.2.1) and the mentalizing system
(sec. 2.2.2). This way, we will include our current mechanistic under-
standing of the one system, we know is able to communicate: the
human brain. The two networks of the social brain are not indepen-
dent of one another and their interplay and coordination will be the
focus of the last section of this chapter (sec. 2.2.3). The exact process
for their coordination (or their associated function) is in the locus
of discussion for much of the literature on the foundations of belief
coordination, and will be the vantage point from which I present my
contribution.

7
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2.1 belief coordination during social interaction

First, what is the foundation for communication that is established
with our communication partner, so that we can efficiently communi-
cate?

2.1.1 From communicator to resonator

Communication between two interaction partners is often way more
than the suggested back and forth in encoding and decoding mean-
ingful messages, which are being sent across channels, as described in
the classical conduit metaphor of communication (Reddy, 1979). Many
aspects of human communication are not covered by this metaphor.
For example, simple encodings and decodings of messages cannot
account for linguistic alignment (Pickering and Garrod, 2004), which
describes several aspects of linguistic processes, in which communica-
tion partners align over time, or mimicry (Chartrand and Bargh, 1999)
where gestures, posture, or choice of words are often unconsciously
adopted by interaction partners to fascilitate likeability.Social resonance: the

collected
coordination

mechanisms at play
during social

interaction.

Kopp (2010) argues that the coordination mechanisms described
here are always available to a certain extent during interaction and
can be subsumed under the term social resonance. This is similar to the
rapport (Tickle-Degnen and Rosenthal, 1990) that emerges between
increasingly coordinated interaction partners when they experience a
mutual attentiveness and coordination at different levels.

More generally, the more archetypal form of language use for com-
munication has been described by Clark, in that “[l]anguage use is
really a form of joint action. A joint action is one that is carried out by an
ensemble of people acting in coordination with each other”(Clark, 1996, pp.
3). Thus, joint actions are a form of communication which entail the
entrainment and coordination of overt behavior.

There are three types of coordination that operate on different
time scales during social interaction, and they may to some extent be
interdependent of each other (Kopp, 2010). In behavioral coordination,Behavior

coordination: the
overtly perceivable

adaptations between
interaction partners.

e. g., we see verbal and non-verbal adaptations of the body to an
interaction partner. Then, there is belief coordination, which describes
the back and forth of belief-representing communicative acts. Lastly, in
attitude coordination the interaction partners let each other know theirAttitude

coordination:
displays of

cooperativeness, an
exchange of

platitudes to
acquaint one with

the other, or a simple
exchange of gaze.

stance towards their joint goal of communicating. We will now discuss
these in more detail, as they give a good overview of the dimensions
of coordination that are part of human communication. Later, we will
primarily focus on belief coordination as our modeling goal.

behavior coordination Mechanisms that are part of behavior
coordination cover the overtly perceivable adaptations to an interac-
tion partner. First of all, behavioral coordination manifests in linguistic
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alignment, which has been observed in speech style, dialect, tim-
ing, prosody, intensity (e. g., Giles and Coupland, 1991) and speech
rate (Street, 1984). But has also been observed in non-verbal behav-
ioral adaptations during social interaction. There, this mimicry of
body posture, facial expressions, speed and intensities of gestures and
other mannerisms have first been subsumed under the term congru-
ence (Kendon, 1973). Later it was referred to as the chameleon effect Congruence and

Chameleon effect: the
non-verbal
behavioral
adaptations between
interaction partners.

(Chartrand and Bargh, 1999), wich has been shown to enhance the
smoothness of interactions while fostering liking among interaction
partners. This form of mimicry is mostly unconscious, automatic, and
has been suggested to be a form of social glue (Chartrand and Bargh,
1999; Lakin et al., 2003).

Also, a temporal coordination between interaction partners or in-
teractional synchrony has been reported, where listeners moved with
the rhythms of a speaker’s speech (Condon and Ogston, 1966). For
example, a form of synchronized postural sway was reported by
Shockley et al. (2003), where in a puzzle solving task the movements
of participants, who were conversing with one another, synchronized
more than in conditions in which they would converse with others.
In a previous study it was suggested that it was the prosociality of
a prime (e. g., suggestions that make the interaction partner more
likeable), which increases mimicry, in contrast to antisocial primes that
decreased mimicry (van Baaren et al., 2016). Following a different in-
terpretetation of mimicry, Wang and Hamilton (2013) could show that
for these primes to increase mimicry, they needed to be self-related
and relevant for subsequent action.

Together, prosodic style, speech intensity, facial expressions and
body posture are examples for verbal and non-verbal behavior coor-
dination mechanisms that make you behave more similarly to your
interaction partner and increase the likelihood of your subsequent com-
municative acts, and hence your communicative goal, to be understood.
Thereby, these mechanisms help to tackle the second question faced
during a social interaction, about answering what the communicative
goal is.

belief coordination If the main function of communication is
to make yourself understood, it comes down to what your intention to
communicate is. A prime candidate for this is a belief you have, which
can itself be about something that is in the world or an abstract concept
you have in your mind. This belief has to be encoded and transmitted
using whatever means you see fit to produce a communicative act, in
order to display meaning for an interaction partner to understand and
to respond appropriately. Common ground: all

shared knowledge,
established prior or
during the social
interaction.

Belief coordination is a highly dynamic and collaborative process of
joint action that establishes a shared understanding, or common ground
between interaction partners (Clark, 1996). The interaction partner’s
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response plays an integral part in the belief coordination scheme, as
it can demonstrate grounding acts, by which addressees can simply
acknowledge a previously perceived communicative act (Traum and
Allen, 1992).

Also, as we will discuss in more detail later, belief coordination can
take multiple rounds of grounding acts from all interaction partners,
who not only acknowledge but also demonstrate understanding, by
means of reciprocating what is believed to have been understood (e. g.,
Swets and Ferreira, 2002). Grounding acts for feedback either acknowl-
edge a communicative act or reciprocate a belief, and can inform
interaction partners about their addressee’s level of understanding
and help them to formulate their next communicative acts (Clark and
Brennan, 1991).

attitude coordination Feedback, shared by interaction part-
ners, is not only part of the belief coordination scheme, it also comes in
the form of back-channel feedback, e. g., where an addressee displays
a willingness to attend communicative acts (Allwood et al., 1992).
This attitude coordination can entail displays of cooperativeness, an
exchange of platitudes to acquaint one with the other, or a simple
exchange of gaze.

This pertains to the first question you need to answer in any social
interaction: am I the addressee of a communicative act, and hence am
I part of a social interaction? Research by Garrod and Pickering (2004)
suggests that during a conversation, sentence planning seems easier,
and Swets and Ferreira (2002) show that the mere presence of an
addressee seems to be a strong factor for the language production and
understanding systems to make the most of the resources available,
under the temporal constraints of online communication.

As we will discuss in more detail later, social gaze especially hasSocial gaze: eye gaze
not only displaying

attentiveness, but
also communicative

intent.

been shown to not only be a display of attentiveness, but it seems
to be able to engage our full capabilities for social cognition to coor-
dinate behaviors and beliefs in a gradual process of understanding
(Myllyneva and Hietanen, 2015).

common ground This gradual process of understanding each
other would be immensely more difficult if you weren’t able to pre-
sume your interaction partner to have a certain amount of prior knowl-
edge. That is, common knowledge about your basic needs, like needing
to eat or to sleep etc., or knowledge that you share about your upbring-
ing as a human being. Malle (2001) discusses these aspects under the
term causal history of reasons, as long as they play a role in forming an
intention to act. These also entail the shared knowledge about having
a body, which to a degree is mostly similar to that of your interaction
partner, and for which you mostly share similar experiences of how
it can be used to act upon and within the world. These experiences
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also cover the interaction with other human beings, e. g., how you
establish, develop, and end a conversation. Shared prior knowledge is
either assumed or (partially) established during conversation, and is
summarized under the term common ground (Brennan et al., 2010).

Now, instead of establishing every detail of your background and
prior knowledge before each communicative act, you can just assume
it to be part of the common ground you share with your interac-
tion partner. This is the way in which common ground bootstraps
communication (Clark, 1996). Grounding: the

process of
establishing shared
knowledge with your
interaction partner.

New information can be introduced in a process of grounding which,
when successful, updates common ground.

Grounding model: a
conceptualization of
the process of
grounding in human
communication.

grounding In the grounding model by Clark and Schaefer (1989)
communication is a collaborative effort towards understanding to
which all interaction partners contribute. This collaborative effort is
described as a back and forth of making contributions, with identi-
fyable phases. First, in the presentation phase, you make a contribution
to the interaction, for your interaction partner to understand. Then, in
the following acceptance phase, you observe whether your commu-
nicative act was properly understood.

There are many ways for your interaction partner to provide this
evidence of understanding. One would be to reciprocate what she
has understood in her own words or gestures. Another is to sim-
ply acknowledge your contribution, by herself contributing a meta-
communicative act – like nodding or smiling. Sometimes, it is even
allowed for your interaction partner to just skip this acceptance, and
continue with another presentation of her own to propell your di-
alog forward. This is allowed if her communicative act implies her
understanding of your presentation, by that implying acceptance. To
be exact, one should mention that even a display of acceptance could
in itself be understood as a presentation.

What should your presentations and contributions consist of, i. e.,
when are they informative to the interaction? Grice defined a co-
operative principle under which four categories of maxims for con-
versational contributions are specified, to “[m]ake your conversational
contribution such as is required, at the state at which it occurs, by the accepted
purpose or direction of the talk exchange in which you are engaged”(Grice,
1975, pp. 45-46):
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maxim of quantity “relates to the quantity of information to be
provided”

• make contributions as informative as required

• do not make contributions more informative than required

maxim of quality “Try to make your contribution one that is true”

• do not say what you believe to be false

• do not say that for which you lack adequate evidence

maxim of relation “Be relevant”

• be relevant or make your contributions relate to the ongoing
conversation

maxim of manner “Be perspicuous”

• avoid obscurity of expression

• avoid ambiguity

• be brief

• be orderly

In this Gricean view communicative acts are not self-contained. In-
stead, meaning is coordinated through a grounding process, in which
interaction partners seek and reciprocate evidence for understanding
(Brennan et al., 2010), and by that update the common ground with
newly established shared knowledge (Clark and Brennan, 1991). In
this sense, grounding can also be understood as a process of joint
hypothesis testing (Brennan, 1990), where temporary understandings
– or hypotheses of meaning – are formed and tested constantly, by
looking for misunderstandings or evidence for grounding.

Barr and Keysar (2002) argue that there is not much of a difference
between processing in a dialog or monologue and that, e. g., language
is first processed from an “egocentric” point of view. Only after that,
an interaction partner’s perspective is taken into account, in order to
diagnose and correct coordination problems, e. g., in the form of just
previously established word meanings.

As a more effortless approach to establishing a shared understand-
ing the interactive alignment model argues that processing of commu-
nicative acts in dialog is different than in monologue, because in the
former, the comprehension and reponse planning processes need to be
active at the same time (Pickering and Garrod, 2004). This is because
they assume that production and comprehension processes are based
on the same linguistic representations which, when activated dur-
ing listening to your interaction partner, can become aligned: similar
mental representations are active in all interaction partners. Further,
aligned representations can prime future processes of comprehension
and production. For example, during listening, an interaction part-
ner’s language primes your response planning to make use of similar
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grammatical structures, or words. The authors also assume that the
activation of representations can activate others (also at different levels
of processing). Other than the grounding model by Clark, no explicit
common ground needs to be established. Instead, the interactive align-
ment model proposes that aligned representations form an implicit
common ground.

Adaptations (e. g., Kopp, 2010) happen at different levels and can
happen anytime. Clark and Krych (2004) show this in studies of
cooperative building of Lego models. They find that the interaction
partners’ behavior is highly coordinated, rapidly adapting to each
other. Making several observations with implications for models of
speaking, they state that the most basic implication is that speakers
make use of their processing capabilities differently during dialogue,
then when they are alone. They observe that interaction partners
update common ground all the time, not just after each turn (as in the
grounding model). Also, speech is constructed jointly by all interaction
partners, evidence for understanding is given as soon as possible
(using all available communication channels), and speakers early on
during speech production plan to have to make repairs later on.

This is not a full list of accounts of grounding, but in most, the
information provided by an interaction partner is taken into account
to either prime yourself for a specific understanding or be sure about
the other’s correct understanding.

social resonance When we want to define what a successful
social interaction looks like, we need to identify the process of reach-
ing understanding. A prerequisite for this process is that it requires Communicative

intentionality: the
perceived willingness
to engage in
communication and
perception of
another’s mind to
have beliefs on its
own.

a shared communicative intentionality, which has be conveyed in be-
havioral and attitude coordination (Tomasello, 2008). For successful
communication common ground needs to be established between in-
teraction partners, which is achieved in a dynamic grounding process,
in which communicating agents reciprocally reveal and coordinate
their beliefs about each other as well as the state of their interaction
(Clark and Brennan, 1991). The different coordination mechanisms
are not separate, but go hand in hand to establish familiarity, trust
and rapport, forming a foundation for social resonance, upon which
communication can be successful, and thus, knowledge can be shared
(Kopp, 2010).

The process of establishing the shared knowledge during social
interaction is not an easy one and communication is not always suc-
cessful, since the grounding process described here is prone to errors.
For example, Clark and Schaefer (1989) suggest that the question
of when a new aspect becomes shared understanding depends on a
so-called grounding criterion. It dynamically adjusts to the need for
understanding in the current context, either allowing it to be only
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shallow, or good enough, or expects it to reach a more solid level of
understanding.

2.1.2 Good enough understanding in social interaction

In psycholinguistic investigations on sentence understanding, we can
find relevant pointers that hint at the foundations underlying general
belief coordination and grounding in conversation.

First of all, linguistic interpretation is very fragile and needs im-
mediate reinforcement by context, experience or feedback from an
interaction partner (Sachs, 1967). Also, during the comprehension
process of sentences with difficult syntactic structures, like garden-
path or implausible passive sentences, its intial interpretation can be
unstable. A classical example for a garden-path sentence is “A horse
raced pass the barn fell”, and for you to interpret it correctly you have to
revise your initial interpretation and chose another one instead. It was
shown that when asked about specifics about such sentences, your
first interpretation lingers and can influence your subsequent sentence
understanding (Christianson et al., 2001).

When it comes to implausible passive sentences, Ferreira and Stacey
(2000) showed that people seem to apply world knowledge to derive
who is doing what to whom, in a form of fast and frugal heuristics,
rather than proper syntactic algorithms. For example, in contrast to
the sentence “The man bit the dog”, a more unpredictable sentence like
“The dog was bitten by the man” is often misinterpreted when asked
about who did what to whom. Context helps to stabilize possible
interpretations of such communicative acts that are hard to interpet,
and they argue that such syntactic instabilities are usually no prob-
lem during normal conversation, because the communicative context
would support the interpretation.

Ferreira et al. (2002) suggest, that for an interpretation to become
more likely, enough information to support it must be collected. Oth-
erwise, only a good-enough understanding of a sentence is derived, i. e.,
a possible understanding which only superficially satisfies the given
information constraints, instead of having done a time-consuming and
in-depth evaluation of all possible understandings (see also Simon,
1955 on rational choice and satisficing humans).

One could argue for the computational advantages of a system
that initially underspecifies, and fills in information, as the details
become relevant and available (Sanford and Sturt, 2002). For example,
Pickering and Frisson (2001) argue that delays in disambiguation
allow for multiple meanings to become probable from context, while
an underspecified meaning is active. This also may reduce frequency
effects, where simply the most often seen use of the sentence becomes
selected.
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This approach suggests a necessary underspecification, because of
a capacity limit and goal directedness of the comprehension system.
That outside of a linguistics laboratory, people are seldomly asked
detailed questions about their understanding, may be another hint at
the incomplete and shallow representations, which we derive.

It has also been argued that a cognitive system that considers all
relevant information to arrive at a decision is biologically unrealistic,
due to the limits of resources humans must obey (Gigerenzer et al.,
1999). Limited resources, such as time pressure during a conversation,
or the limited capacity of working memory, may be key factors for the
incremental nature of conversation.

For example, Swets and Ferreira (2002) found that time pressure had
the effect of making speech more incremental. Similarly, Swets et al.
(2013) used time pressure in an interactive tangram description and
matching task, to investigate its effects on speech production. Partici-
pants either had the matcher role or the director’s role. The matcher
had to repeat the director’s description and match the tangram figure,
while the director was under time pressure to start describing. They
found that it was not time pressure that had any significant effect,
but the mere presence of the interaction partner made the director’s
utterances more descriptive.

misunderstandings Swets and Ferreira (2002) state that the
interaction partner’s mere responding is what determines the success
of the joint activity, as it is the only overt and interpretable signal of
the interaction, and we seem to rely on the slightest cues that allow us
to interpret their understanding in their favor.

A recent radical interpretation of embodied cognition by Wilson and
Golonka (2013) makes a similar assumption for the depth of under-
standing during social interaction. This assumption entails that the
information conveyed is not as important for the successful discourse,
as is the mere perception of the addressee’s understanding. They argue
that in the subjective experience of an organism, there is no difference
between the meaning of perceptual and of linguistic information. This
means that if you can correctly use linguistic information to meet the
expectations derived from your interaction partner’s intended mean-
ing, you have also demonstrated that you know the meaning of that
information, even if you actually lack proper understanding. What is
relevant to this argument is that the mere assumption of understand-
ing can be deemed good-enough. In the incremental process of belief
coordination, this good-enough approach relieves us of the burden of
needing to make sure that every said word was properly understood,
and instead focus on the relevant parts.

Relevant in a conversation are not only the beliefs that we intent
to communicate, but in order to create a stable context for linguistic
interpration, and a common ground, we also need to focus on misun-
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derstandings. Misunderstandings are detected during interaction, or
after a supposedly successful belief coordination attempt. An example
for this is when you learn the vocabulary of a new language, but then
during class, you are not entirely attentive, so you end up learning
the wrong meaning. In the best case, your misunderstanding will
just lead to some laughs, when you then try out your new learned
language skills, after which you will be corrected, and you learn the
correct meaning. In other cases, your misunderstanding will just go
unnoticed.

Misunderstandings are not fatal for social interactions but can be
repaired. Repairs describe “the methodical practices provided in the or-
ganization of talk-in-interaction for dealing with problems or troubles in
speaking, hearing, or understanding the talk” (Schegloff, 1987, pp. 110).
There is a long standing research tradition on dealing with difficulties
with mutual understanding (Sacks et al., 1978; Schegloff, 1987, 1995),
and several models of semantic coordination habe been developed,
driven by clarification requests, detecting communication errors and
to initiate repairs (Eshghi et al., 2015). All these approaches to dealing
with problems of understanding, speaking or hearing of a talk, take
into account the (mis-)understood aspect, evaluate it in the context
of the ongoing interaction, and can result in the request for a clarifi-
cation. For example: reciprocity, as the own production of the aspect
previously understood, is one possible way to implicitly request a
clarification.Running repairs

hypothesis: the idea
that repairs during
communication are

not the exception,
but the norm.

In recent work, Healey et al. (2018) discuss their running repairs
hypothesis, which has this exact focus: reciprocity not only is a tool
of belief coordination, but also helps to collect context information.
Thus, it stabilizes a (linguistic) interpretation by allowing parts of
a communicative act to carry uncertainty, but still be important for
disambiguation.

This is a vital point, which we will come back to later, when the
model of belief coordination will be described.

beliefs about self and other guide communicative acts

A very important aspect in the conversation about how shared under-
standing is reached, is how our beliefs are formed, represented and
utilized.Meta-cognition: the

process of thinking
about thinking,

which may even
allow to steer our

thoughts.

This pertains to the role of meta-cognition, or thinking about thinking.
An aspect of cognition that allows us to revise and (to a degree) steer
our thoughts. During social interaction such meta-cognition is often
described as theory of mind, where we form beliefs about the contents
of our interaction partner’s and our own beliefs, desires and intentions
(Premack and Woodruff, 1978; Rao and Georgeff, 1995).

communicative signaling One way in which meta-cognition
during social interaction can utilize perceived beliefs about our inter-
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action partner, is by making subsequent communicative acts directly
dependent on those beliefs, e. g., to confirm or disconfirm what is
believed to have been perceived.

This is similar to the running repairs hypothesis, where parts of
a communicative act needs to be explained in more detail, or has
been detected as being misunderstood (Healey et al., 2018). A false
belief would be used as a negative exemplar, from which your next
communicative act should be clearly differentiated.

Since this is very abstract, imagine yourself describing to a friend
your way to work, using co-speech gestures. After the first description
your friend stops you, so that she can repeat what she has understood.
At a crucial point, where you have to take the correct exit at a tricky
roundabout, she makes a mistake. In response, you explain this part
again, but this time you make sure that she understands to take the
correct exit by explicitly drawing the circular way you take through
the roundabout, up until the correct exit. This time, she understood
correctly.

Through your explicit drawing gesture, you have “signaled” your
intended action. Such strategies to signal intent are often embedded
in pragmatic actions as understandable kinematic signatures. The
literature also refers to this in the non-verbal communication domain
as sensorimotor communication. Sensorimotor

communication:
taking someone else’s
perspective into
account, to make
action kinematics
easier to
disambiguate.

It is a focus of interest in recent years, e. g., in the literature on
so-called joint action. There, interaction partners infer each other’s
intentions and goals through their respective actions by a process of
tight dynamic coupling in joint behavior tasks. These tasks can take
the form of simple interactive settings with two participants. In a
study of synchronous tapping on specific targets, interaction partners
informed each other of the target, by exaggerating the amplitude
of their trajectories (Vesper and Richardson, 2014). Konvalinka et
al. (2010) found that participants were good at synchronizing in a
joint tapping task with an interaction partner that was both, tapping
regularly and in a responsive manner. They were also synchronizing
with an irregularly tapping and responsive other. Responsiveness
here means that participants adapted to one-another, using slight
variations to brought their tapping frequency closer to their interaction
partner’s frequency. At the same time, this coordination could not
be established with an unresponsive computer, that nonetheless was
predictable. It seems that the mutual predictability and reponsive
adaptation on a millisecond timescale is important, but could not
be found in interaction with the unresponsive (and non-adapting)
computer.

A major result from the research on joint action is that participants
in such tasks tried to reduce their action variability in order to become
more predictable. Another major finding is that to increase the pre-
dictability of their actions, people often strategically change action
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kinematics, to make them easier to disambiguate. For example, empha-
sizing the amplitude in the movement between taps in an interactive
tapping task, to highlight the time between taps. Pezzulo et al. (2013)
modeled the dynamic interachange of gesture trajectories during joint
action. There, gestures had to be optimized toward maximum dis-
criminability with respect to other, equally possible, action trajectories.
They found that deviations from an action’s optimal trajectory could
be parameterized in such a way that its original pragmatic goal is
preserved while making its kinematics informative for another action.
They describe sensorimotor communication as an intentional strategy
during joint action that supports social interactions by making action
kinematics easier to disambiguate. The authors assume a predictive
account of action understanding and hence argue that such signaling
must have the goal to increase the predictability of the actor’s intent.

More recently, Vesper et al. (2016) found that there is a trade-off be-
tween trying to coordinate through sensorimotor communication and
reducing variability to be better predictable. In contrast to information
transfer, in true communication, signs are selected for a communica-
tive purpose from a communicative intention towards an interaction
partner (Clark, 1996). Additionally, sensorimotor communication has
to be distinguished from conventionalized forms of communication,
i. e., learned code such as spoken language or sign language, in that
it has a specialized aspect to it. For example, it acts like a deictic
gesture (like pointing towards something), rather than an iconic ges-
ture (convey conventionalized meaning that is also present in speech).
Sensorimotor communication can be described as a combination of a
pragmatic communicative goal with an additional specialized signal,
e. g., carrying a table together, where by applying slight pressure on
one end, you signal in what direction you want the table to be carried.

This comes as another aspect to belief coordination and reciprocity,
as it allows to select communicative acts, and act, by taking specific
aspects of a perceived understanding of your interaction partner into
account. Beyond sensorimotor communication, this can also be imag-
ined in different modalities, be it the pronounciation of words for
the goal of clarity in a noisy environment, or the pragmatic choice
of words that allows for improved understanding in the listener, and
the example from the described literature, that is the alteration of a
kinematic trajectory of an action for signaling purposes.

Since the described strategies for sensorimotor communication can
be a valuable aspect of the process of belief coordination, wich can
best be observed during non-verbal interaction, we will now discuss
the application and role of gestures for human communication.
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2.1.3 Non-verbal communication

A specific focus of the present research is non-verbal communication,
such as writing, gestures or social gaze. This is due to its unique im-
portance in the evolution of human communication. In that, Michael
Tomasello sees a strong case for the thesis that non-verbal communica-
tion like pointing, gesture, and gaze are a “primordial form of uniquely
human communication” (Tomasello, 2008, pp. 3) and are the foundation,
in which later verbal skills of communicating are rooted.

Pointing gestures seem to be based in cooperative communication,
since in itself such a gesture would mean nothing. It is only in the
situation, with shared situational context and joint attention between
interaction partners that a mere pointing carries information that is
shared. Tomasello argues that a complex psychological “infrastructure”
(Tomasello, 2008, ch. 3) is at work to achieve this, which at some point
in human evolution granted individuals an adaptive advantage to
engage in joint intentions, joint attention, and cooperative motives. He
constructs and describes the components of the necessary infrastruc-
ture, which he calls the cooperation model.

When looking at the ontogenetic development of humans, one finds
that already one-year-old children begin to point and pantomime.
These are gestures that require the child to understand their interac-
tion partners to be intentional agents, with whom such joint attention
is possible. Tomasello observes that language use in children starts
shortly after gesturing, and that their ability to perceive someone’s
intention is crucial for using communicative gesture, and later words.
Importantly, he argues that it is not the learning of the code of lan-
guage in which language ability originates, but a non-verbal (or non-
linguistic) infrastructure of intentional understanding and common
ground.

In contrast to the seemingly intuitive understanding of intentional-
ity, which even young children have, Tomasello describes the social
behavior of great apes, where most primate communication is studied.
There, he describes a mixture of genetically fixed and inflexible ges-
tures, and in addition a subset of gestures that seem to be individually
learned, and should be called intentional signals. While apes make
great use of these intentional gestures, flexibly display social intentions
and seem to understand the intentional actions of other apes, they
do not account for shared intentionality. That is, they do not relate
a gesture to the inferred intention of an interaction partner. By that,
they neither establish, nor share common ground explicitly.

Since we can still find cooperation and social interaction in great
apes, these biological adaptations are likely to provide an evolution-
ary advantage. And while we can find individual and flexibly-used
intentional gestures, it was found that these do not spread through a
community, like human conventional signs would do. Taken together,
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Tomasello argues against what still too many linguists assume, i. e.,
some version of an innate universal grammar. He makes a solid case,
arguing for a more empirically grounded approach, from which it was
observed that very important prerequisites are missing from our clos-
est evoluationary relatives. For example, the ability for a human-like
establishment of common ground, or the process of belief coordina-
tion. Equipped with this, even the richest intentions can be conveyed
by simple gestures, because of our uniquely human ability to share
common ground with our interaction partners. So, while probably not
possible without the prerequisite of understanding intentionality, hu-
man language is culturally constructed, and not biologically inherited.
Gestures, nonetheless, form the evolutionary basis of language, and
the main difference may be found in the “infrastructure” underlying
human-like establishing of common ground, and the process of belief
coordination.

writing and gestures Many gestures occur only during speech-
use, which makes them co-speech gestures. These can be beat gestures,
which carry emphasis and are produced to emphasize specific prosody
during speech, or iconic gestures, which are conventionalized gestures,
heavy in semantic content that can complement the meaning conveyed
in speech. Symbolic gestures are conventionalized, can be culture
specific, can replace words, and other than iconic gestures can occur
without speech (e. g., a thumbs-up gesture, or waving for saying
“hello”) (Krauss et al., 2001). Also deictic gestures, like pointing to
something, play an important role in communication of great apes
(McNeill and Duncan, 2000).

Usually, gestures are imagistic and sporadic when they are devel-
oped while accompanying speech (Goldin-Meadow, 2006). Also, they
often convey information not carried by speech, so the burden of com-
munication is shared between speech and gesture. In contrast, gestures
can develop a language-like form when the whole of communication
depends on gesture alone, like in sign language. These phenomena
were studied by Goldin-Meadow (2006), who found that deaf children
without exposure to conventional signed language spontaneously
invent gestures, to communicate in rich and language-like ways. Re-
search on sign language shows that gesture can be as semantically
rich as verbal communication.

Similar to iconic gestures, writing is a form of non-verbal communi-
cation that occurs without speech. It is a specific form of speech-related
gesture that interacts with the language processing systems responsi-
ble for speech and gesture. This has been shown in stuttering subjects,
who were able to perform motor tasks, but not writing during mo-
ments of stuttering (Mayberry et al., 1998). Writing has also been
described as a form of gesturing in a philosophical essay by Vilém
Flusser: “To write is to in-scribe, to penetrate a surface, and a written text is
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an inscription, although as a matter of fact it is in the vast majority of cases
an onscription. Therefore to write is not to form, but to in-form, and a text
is not a formation, but an in-formation. I believe that we have to start from
this fact if we want to understand the gesture of writing: it is a penetrating
gesture that informs a surface.” (Roth, 2012, pp. 26).

Gesturing and speech can occur simultaneously, but also the occur-
rence of gesture can happen automatically, without conscious action.
In several studies, participants’ behavior was analyzed while talking
on the telephone. It was found that regularly co-speech gestures are
used, as if the interaction partner was visible (Bavelas et al., 2008). Also,
the production of co-speech gestures has been found to be modulated
by interaction partner visibility and intentionality of the interaction
partner (e. g., in one condition Bavelas et al. (2008) had participants talk
to a tape recorder). Another study found a difference in the frequency
of co-speech gestures when visibility between interaction partners
could be blocked by a screen (Alibali et al., 2001), and although there
was a difference, gesturing was never absent. This points to an inter-
pretation of the representations of speech and gesture that connects
them intimately.

As has also been shown by McNeill and Duncan (2000), there is a
strong overlap between brain areas that are active during the percep-
tion and recognition of speech and gesture. This points to the idea that
both speech and gesture are strongly intertwined. McNeill also offers
the view that gestures are elements in the cognitive process itself,
in that “the actual motion of the gesture itself, is a dimension of thinking”
(McNeill, 2008, pp. 98). By that, so he argues, gesture is part of a loop
of self-directed speech – similar to writing – that can help in your own
thinking process.

embodied cognition The studies that describe the intertwined
nature of action and perception argue along the same line as the theory
of embodied cognition. Embodied cognition describes that cognition, Embodied cognition:

embodied cognition
describes that
cognition, as we
possess it, requires a
body, which shapes
our perception,
cognition, and
action.

as we possess it, requires a body, through which information can be
acquired, or through which we engage with the environment and with
our interaction partners in social situations. In this perspective, most
of what we can think about – or what we represent in our mind – is
shaped by our experience of what is represented and filtered through
our body and its sensory organs. Wilson (2002) evaluates the main
claims of embodied cognition, concluding that (adapted from her
paper, pp. 626): (1) cognition is situated: it takes place in the context
of the environment, involving perception and action; (2) cognition
is time pressured: its function is optimized for real-time interaction;
(3) off-loading of cognitive work on the environment: we make the
world hold or manipulate information, retrieving it if needed; (4)
cognition is for action: the function of the mind is to guide action; (5)
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off-line cognition is body based: even uncoupled from it, cognition is
grounded in mechanisms evolved in interaction with the environment.

Also, mental representations associated to a gesture have been
shown to be influenced by performing or seeing that gesture (Goldin-
Meadow and Beilock, 2010). Also, Gallagher writes that “even if we
are not explicitly aware of our gestures, and even in circumstances where
they contribute nothing to the communicative process, they may contribute
implicitly to the shaping of our cognition” (Gallagher, 2005, pp. 121). He
suggests that gesture is a means by which thought is accomplished,
and at the same time, an aspect of the thinking itself. Similarly, not
only own actions influence these mental representations, but also
those performed by others. Decety and Sommerville (2003) argue
that this close connection underlies motor cognition in general, as a
means to think about and handle our own and other’s actions. Further
they argue that this encompasses all levels of cognitive processing.
Those involved in the generation of our own action, and also in the
prediction and understanding of other’s actions.

2.1.4 From behavior to neural processes

I have chosen to focus on non-verbal communication, because of the
evidence for it being an ontogenetic and phylogenetic precursor for
verbal communication. Specifically, writing with a pen on a piece of
paper can be described as a highly conventionalized form of drawing
gestures with widely-recognized meanings, and will be used in this
work as the domain for communication.

Also, the evidence for an embodied nature of cognition sheds light
on the intertwined nature of motor cognition and social cognition.
Understanding the neural correlates underlying these processes could
give us more than a hint at how the process of blief coordination
works for communication in general.

From the Marr’ian computional level of analysis of looking at hu-
man communication, we will now switch to one of representation and
algorithm in the discussion of neural correlates of social interaction
in the so-called social brain – two partially overlapping functional
networks in the human brain, most active during social interaction.

2.2 the social brain

With the goal of better understanding social interaction in humans,
it is not only the dynamic interplay between interaction partners that
should be a research focus. It is equally important to understand the
function of communicative signals, like language and gestures, as it
is important to shed light on the neural correlates for the processes
underlying the understanding and production of such signals in the
individual brain, in an interactive context. A first correlate for the
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process of understanding an interaction partner’s action, is the Human
Mirror-Neuron System (MNS). In addition to action understanding, ToM: Theory of

Mind is the
cognitive ability to
reason about another
person’s mental
states.

people infer the intentions behind other’s behavior. This discrete ability
to predict and interpret social behavior is often referred to as mentalizing
or Theory of Mind (ToM). Brain regions associated with mentalizing are
part of the Mentalizing Network (MENT), as part of the social brain.

2.2.1 Human mirror-neuron system (MNS)

MNS: the human
mirror-neuron
system is a
functional
subnetwork of the
social brain, which is
active both, during
perception and
production of action.

Back in the 90s, di Pellegrino et al. (1992) first reported an interesting
response they had observed in monkeys. Recording the electrical ac-
tivity of neurons in Brodmann area 6 (F5 in monkeys), where neurons
have been associated with grasping behavior, they found that the same
neurons that are active during the performance of grasping, are also
active during the mere perception of somebody else performing a
grasp. In another paper, the role of mirror neurons in action recog-
nition is discussed, while already positing their existence in humans
(Gallese et al., 1996).

Human mirror neurons were eventually detected in vivo (Mukamel
et al., 2010), but instead of isolated frontal and premotor regions, as in
monkeys, mirroring activity was recorded in the human homolog as
well but also in supplementary motor areas, hippocampus, and their
environment. These in vivo extracellular electrode recordings found
many different areas to be exhibiting mirroring activity, but mainly
such activity was found in sensorimotor convergence zones.

In addition to the observation that it is a multitude of systems that
perform sensorimotor mirroring activity, there soon was evidence for
multisensory (also covering other senses than sight and propriocep-
tion), and socially relevant mirroring activity, e. g., a pain-response to
observed cues for anticipated pain (Hutchison et al., 1999). There is
even evidence for an involvement of the insula-striatal system in the
recognition of disgust in others (Calder et al., 2000), and activity has
been found in the secondary somatosensory cortex while the human
participant was touched as well as when the participant observed
somebody or something else being touched (Keysers et al., 2004). Also,
not only actually perceived actions do trigger mirroring activity. As
it was found by Grossman and Blake (2001), even imagined biologi-
cal motion was sufficient to trigger activity in the superior temporal STS: a brain area

that has been
associated with
processing visual
information of
behavior, without
differentiating
between self and an
interaction partner.

sulcus (STS), as part of the mirror-neuron system.

brain areas of the mns Because of the widespread areas that
respond to observations and performances of actions, in human imag-
ing studies it has not been straight-forward to pinpoint exactly which
areas are involved in the mirror-neuron system in humans.

I will now briefly summarize the cortical areas of the MNS (visual-
ized in fig. 2.1), adapted from a meta-analysis, which collected over



24 theoretical background

200 functional Magnetic Resonance Imaging (fMRI) studies and identi-
fied major functional brain areas that are involved in social cognition
(Van Overwalle, 2009): One major area that has been strongly associ-
ated with processing visual information of social settings, is area STS,
which processes visual information of behavior, without differentiat-
ing between the self or an interaction partner. In a supposed hierarchy
of information processing, the next processing step can be associated
with the inferior parietal lobule (IPL), which is strongly overlapping with
the temporal parietal junction (TPJ). Both areas have been associatedTPJ: a brain area

that has been
associated with

inferring the
intention of a

movement, and
identifying the agent

of an action.

with inferring the intention of a movement, with a specificity to social
information, and the function of identifying the agent of a social action
as the self or distinct from that. Further up the hierarchy, information
is send to the premotor cortex (PMC), an area involved in high-level

PMC: the premotor
cortex has been
associated with

visually inferring or
comparing own

action goals with
that of others.

processing of own actions, i. e., it has been suggested, that in social
cognition the PMC handles a comparison of the visually inferred behav-
ior of self or an interaction partner, with own action schemas and their
goals. This match of action schemas, along with information about
the action’s future path, is passed back to the IPL/TPJ area, so “In a
sense, the IPL “sees” the intentions behind other’s actions by “simulating” or

“matching” the actions of others in a shared representation” (Van Overwalle,
2009, pp. 831).

Throughout the literature on mirror neurons it is often discussed
how sensorimotor mirror neuron activity underlies human social life,
or whether a general mirroring mechanism underlying all mirroring-
like properties, found throughout the human brain, may be respon-
sible. In one article Gallese et al. (2004) discuss a potential unifying
basis of social cognition, covering not only actions but also emotions
of others. They end their discussion saying that potentially “[s]ocial
cognition is not only thinking about the contents of someone else’s mind.
Our brains, and those of other primates, appear to have developed a basic
functional mechanism, a mirror mechanism, which gives us an experiential
insight into other minds.” (Gallese et al., 2004, pp. 401).

Given the very specific kinematic patterns that are influenced by
specific prior intentions (e. g., like avoiding to run into one another
when we walk opposite directions on the street), we need to assume
that it makes sense for humans to be able to pick up very minute
kinematic patterns, and infer these specific intentions early on.

origins of mns Whether such a mechanism for such “insight” is
innate to us, i. e., given to us from birth, or whether it develops – and to
what extent – is hotly debated.

On one hand, there is the hypothesis for mirror-neurons to have
developed as an adaptation to evolutionary pressure, to understand
what other individuals were doing (this is implicit, e. g., in Rizzolatti
and Arbib, 1998) in ever growing social structures (cf. Dunbar, 1998) –
be it in apes or their human relatives. In this view of mirror-neurons,
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IPL

PMC

STS

Figure 2.1: The human mirror-neuron system consists of several functional
brain areas that have been identified in a meta-analysis of over
200 fMRI studies (Van Overwalle, 2009). Specifically, area IPL has
repeatedly been shown to be active in motor intention inference.
Also, the PMC area has been associated with monitoring own
behavior, and even with the ability to differentiate own from
other’s behavior, and focusing attention. STS on the other hand
does not distinguish between self and other behavior, and can be
seen as a first hub for visual information being fed into the social
brain.

sensory or motor experience is believed to facilitate their develop-
ment, but their function to match observed and executed actions is
genetically inherited. Association

hypothesis: the
hypothesis that
mirror-neurons
develop through an
association process
between sensory and
motor activity.

A different hypothesis for the development of mirror-neurons is
the association hypothesis. The hypothesis is that in brain areas, which
allow for neuron activity, in response to a sensory modality and in
response to motor activity, an association between these activations in
close temporal proximity is formed. This may result in learned senso-
rimotor associations, in response to the perception and production of
the underlying cause of the neuronal activity – similar to Pavlovian
conditioning (e. g., Heyes, 2001, and for a review see Heyes, 2009).

In support of the association hypothesis, it was found that pre-
motor transcranial magnetic stimulation (TMS) stimulation enhanced
mirror-neuron motor facilitation as well as the effect of prior counter-
mirror training (Catmur et al., 2011). Counter-mirroring describes
the neuronal activity in response to a sensory stimulus, where the
motor neuron activity does not correspond to the associated sensory
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effect. During training, participants perform a movement while they
observe a movement that involves some other muscle, so that during
observation you can find motor neuron activity for that other muscle.

The association hypothesis does not preclude any brain areas from
developing mirroring activity, and thus may better be able to shed
light on the development of mirror-neuron activity in humans, which
is not only being found in classical motor areas.

What is important for our later approach to modeling, is that context
strongly influences the understanding and production of an action. For
example, Georgiou et al. (2007) showed how a specific prior intention
(“individual vs social, cooperative vs competitive” Georgiou et al., 2007,
pp. 432) leads to very specific kinematic patterns in the same action.
Also during perception, context was found to strongly influence what
information is most useful to the participant (Streuber et al., 2011),
and how a scene is interpreted (de la Rosa et al., 2014).

A point not often made, is that there markedly seems to be a dif-
ference between human and monkey mirroring activity. In contrast
to monkey’s mirror-neurons only firing on the transient activity, i. e.,
goal-directed action, there is evidence for human mirror-neuron ac-
tivity to also occur during intransitive actions (Bertenthal et al., 2006;
Press et al., 2008).

common representations for action and perception Much
of the literature argues that the capabilities to perceive and make sense
of our interaction partner’s actions are basic prerequisites for being so-
cially resonant. and are rooted in a sensorimotor basis, like the human
mirror-neuron system, which has repeatedly been found active for
social behavior. Congruent with the discussed capabilities, associated
with the human mirror-neuron system, Hommel et al. (2001) proposed
a theory of event coding, in which observed (action-) events, and own
planned actions, are encoded in a common representational medium
as bundles of so-called feature codes. On the same line of argument,
the common-coding hypothesis was brought forward (Prinz, 1990, 1997).Common coding: the

hypothesis that
representations used
for understanding an
action and planning

an action are encoded
in a common

representational
medium.

These ideas and those highlighted earlier all provide a theoretical
basis for the embodied processes in humans, underlying action under-
standing, learning and planned action execution, along with effects
of anticipation and priming. One big question in the discussion on
the interplay within the social brain touches the way in which our
mind interacts with, and understands, the environment by means of
the body.

As already described, this has come to be called embodied cognition,
which “[. . . ] stresses that perception and action are directly relevant for our
thinking, and it is a mistake to regard them as separate.”(Willems and
Francken, 2012, pp. 1). Several claims in the embodied cognition
literature are relevant to us, and have been reviewed by Wilson (2002).
For example, our cognition takes place in the context of a task at hand
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in an environment that we perceive, i. e., it is situated. So in some sense
the environment becomes a part of our cognition.

A claim in the literature that has also gained much interest, is that
cognition is for action, which was rooted in the early works on the MNS

(as reviewed above), about motor neuron activity in response to the
right visual stimulus. That being said, it has also been argued that a
purely sensorimotor basis may not be enough for social behavior. E. g.,
Jacob and Jeannerod (2005) discuss evidence for differential activity in
non-human primates, for actions directed towards conspecifics that
led to purely perceptual neuronal responses, without motor activity.
They argue that the motor system alone might not be well equipped
to elicit appropriate responses to social behavior.

The evident human ability to predict and interpret social behavior is
often referred to as mentalizing, and related tasks often found activity
in the second subnetwork of the social brain: the mentalizing network.

2.2.2 Mentalizing network (MENT)

MENT: the
mentalizing network
is a functional
subnetwork of the
social brain, which is
active during
interpretation of an
interaction partner’s
social behavior.

One of the most influential, and widely known works that show the
acute human sensitivity to social interpretations, are the drawings and
animations from Heider and Simmel (1944). They trigger associations
with social situations, and emotional responses to the shown behavior.
The inference behind these associations require a form of reasoning
about the potential latent mental states, causing the behavior. In a
series of animations, simple geometrical figures, through their move-
ment alone, create the impression of intentional behavior (for a small
example, see fig. 2.2).

Figure 2.2: In their paper on “An experimental study of apparent behav-
ior” Heider and Simmel create animations of simple geometrical
figures, which by their movement alone create the impression
of intentional behavior. (Sketch adapted in style from original
Heider and Simmel animations.)
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As we have discussed in the MNS subsection, a lot of processing
of visually perceived behavior is performed in area TPJ, in exchange
with area PMC, in order to differentiate own from other’s actions. The
information about social intentions of an interaction partner, and the
ability to continually differentiate this information, has been associated
to be vital to the kind of mentalizing, which makes reasoning about
latent mental states possible, i. e., mental states that need to be inferred,
because they are hidden from our direct perception. Although the
MNS goes a long way in processing information from a social scene,
there is not much evidence for its involvement in long-term and more
abstract mentalizing.

In a meta-analysis by Van Overwalle (2009), not only evidence for
the involvement of the MNS was identified, but also the MENT – another
functional network of brain areas in humans. It has been found to
be strongly active during social interaction, when in order to make
sense of someone’s behavior, it becomes involved to understand their
beliefs, personality traits, or behavioral intentions. With information
from MNS-area STS, further processing is performed to identify action
intentions that in cooperation with PMC can be differentiated from
own actions in TPJ (remember fig. 2.1 with the MNS overview).

The area around mPFC is highly interconnected, even with regions
not directly adjacent in the hypothetical processing hierarchy, e. g.,
there are connections to and from STS, TPJ, general PFC areas and even
connections to thalamic and basal regions. mPFC has been associated
with the long-term maintaining of response sequences in social be-
havior. It has been observed that “neurons can continuously fire duringmPFC: a highly

connected brain area,
also involved in

MENT, associated
with maintaining

response sequences
during social

behavior, strechting
over long time spans.

an interval between an input and a delayed output. The mPFC stores these
temporally disconnected events [. . . ]” (Van Overwalle, 2009, pp. 834).

Fitting to the ability to represent long-term events and social be-
havior, different areas in the mPFC region have been associated with
the ability to infer traits, or differentiate between close others or ac-
quaintances. This suggests that the maintenance of different mental
state representations, for intentions and beliefs, is a capacity where
the mPFC is involved (see fig. 2.3 for a MENT overview).

In another review on the influences of different areas of the men-
talizing network on social cognition (Schuwerk et al., 2014), it was
found that posterior medial prefrontal cortex (pmPFC), when impaired,
disturbs the ability to distinguish oneself from the other. Important for
our later modeling approach is the ability to infer and track so-called
social scripts, i. e., the sequence of social actions of all involved agents
(including the self) that are adequate in the given social context.

Interestingly, another functional network of brain areas was dis-
covered to be most active with the human participants at rest (“lying
quietly, with the eyes closed” (Raichle et al., 2001, pp. 676)), without a
task, called default mode network (Raichle et al., 2001; Raichle and Sny-
der, 2007) (which is also known as the default system). A meta-analysis
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mPFC

TPJ

STS

Figure 2.3: The mentalizing network consists of several functional brain areas
that have been identified in a meta-analysis of over 200 fMRI stud-
ies (Van Overwalle, 2009). The ones most responsive during social
cognition are schematically shown in this figure. Area TPJ is active
during goal-directed action in social settings, also being involved
in tasks demanding agency judgements. medial prefrontal cor-
tex (mPFC) has been shown to be involved in inferring personality
traits, theory of mind beliefs and inferring and tracking so-called
social scripts of adequate behavior in the social context.

found these functional areas to be overlapping with areas typically
involved in social cognition, which might imply that the default cog-
nitive processing in humans is strongly predisposed toward social
cognition (Schilbach et al., 2008).

2.2.3 Interplay within the social brain

The two functional networks of the social brain are not independent
of one another and their interdependence and coordination will be
the focus of this section. While a number of mechanisms have been Dark matter of social

neuroscience: the
missing mechanism
underlying mental
state attribution,
from an interplay
between mentalizing
and mirroring
processes, during
reciprocal online
social interaction.

hypothesized to underly social interaction, especially the mechanisms
for reciprocal online social interaction, necessary for the human feat of
mental state attribution, is still amiss and has been dubbed the dark
matter of social neuroscience in a review by Przyrembel et al. (2012).

What is undisputed is that interacting with other agents assumed
to be intentional is fundamentally different from interacting with non-
intentional things, or objects (Gangopadhyay and Schilbach, 2012).
Earlier analyses already argue that infants are aware of other’s atten-
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tion (Reddy, 2003). Further, this directedness of attention experienced
by an infant merely from a perception of attention in others, can be
seen as a precursor of a developing self. This would then develop
first to a form of second-person perspective as a bridge between first-
person and third-person perspectives. In this view, social interaction
is ultimately rooted in the social cues and actions during real-time
social interaction, e. g., social context shapes action kinematics (Bec-
chio et al., 2010). This view is termed the second-person perspective,
where the other’s attending is perceived rather than represented, and
the self as an object is experienced, rather than conceived. In a detailed
discussion on the matter, Schilbach et al. (2013) argue that social and
emotional engagement are necessary for a second-person approach to
understanding other minds. As they have observed in high-functioning
autism (HFA) patients, it is not the explicit mentalizing that is impaired
in these patients, but rather the implicit process in direct social in-
teraction, as it would normally allow them to automatically reorient
themselves and integrate social cues.

This lack of automaticity during implicit mentalizing is described
to be overwhelming for HFA patients, at times when directly engaged
in interaction – in contrast to the patient being a passive observer
(Schilbach et al., 2013). The second-person perspective calls for the
necessity to investigate the procedural nature of real-time social inter-
action, which in neuroscience would mean the application of exper-
imental setups that allow this, in order to investigate the pragmatic
requirements to shed some light on the mechanistic underpinnings of
dynamic social interaction, i. e., the dark matter of social neuroscience.

social gaze triggers social cognition The human pre-
disposition towards social cognition (cf. Schilbach et al., 2008) – the
overlap of the default-mode network with MENT as discussed above
– is also found in the mere judgement of whether somebody else’s
gaze is directed towards me. When uncertain, there seems to be a
generalized tendency to judge another’s gaze to be directed towards
me (Mareschal et al., 2014).

Direct social gaze has repeatedly been found to trigger the func-
tional stance necessary for social cognition that have been called an
automatic form of implicit mentalizing, second-person perspective,
or intentional stance. On the example of motor contagion (where
perceived action primes own action planning), Becchio et al. (2007)
describe the importance of gaze as a social cue. In their experiment
they find that interference from motor contagion could only be elicited
with the social cue, while in HFA children motor contagion could not
be elicited under any condition.

Also, Myllyneva and Hietanen (2015) found a strong connection
between typical responses to the mere belief of being attended to (skin
conductance reponses, or a P3 response in Electroencephalography
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(EEG)), and the participant’s subjective view from a second-person
perspective, i. e., as the object of another’s attention.

For example, Ciaramidaro et al. (2014) recently found that social
gaze leads to the attribution of communicative intent, which in turn
differentially recruits the MNS and MENT networks, in processing the
behavior of the interaction partner. Similarly, it was found that the
mere presence of an other is able to activate MNS areas of the social
brain (including inferior frontal gyrus (IFG) and PMC), while only
direct social gaze with the interaction partner triggered the effective
connection between IFG and mPFC (MENT areas) (Cavallo et al., 2015).

Although it seems that a key component to trigger this integrated
form of social cognition is the bottom-up perception of social gaze,
it was found that also a top-down regulation, from more explicit
mentalizing areas of mere beliefs about social attention, can strongly
modulate MNS areas, i. e., area STS was found to be influenced through
the feedback coupling from areas mPFC and TPJ (Teufel et al., 2010).

So, what other factors, besides social gaze do trigger the activity of
mentalizing areas during social interaction?

does violated anticipation interface ment and mns? In
the direct perception hypothesis (Gallagher, 2008), the perceptual ac-
cessibility to an interaction partner’s intention is contrasted to the
doctrine of surface behavior, which states that mental states are per-
ceptually inaccessible. For example, Froese and Leavens (2014) found
that precise imitation of other’s actions is inhibited by correctly per-
ceiving an interaction partner’s intentions, unless the action is hard
to interpret. They argue that the details are often overlooked, because
they are not necessary for understanding, making the perceptual pro-
cess automatic. This would make action imitation a learning response
to unintelligible actions, involving more costly higher-level process-
ing, and would also help to explain children’s over-imitation when
learning.

In a similar pointer to the on-demand involvement of higher-level
processing, Bögels et al. (2015) found in a MEG experiment that during
a referential naming task there was found no anticipatory mentalizing
activity, but only on-demand mentalizing when an anticipation was
violated and had to be accounted for. A plausible interpretation would
be that generally expensive processing, like paying attention to the
details of an interaction partner’s action, or the search for a fitting
explanation for her behavior, following a violation of my expectations,
is only performed when the situation calls for it.

One such situation seems to be the direct interaction with somebody.
Wykowska et al. (2014) argue that this allows for mentalizing activity to
be triggered in order to form and retrieve beliefs about the interaction
partner. In turn such beliefs can influence the processing of sensory
information. This view entails a form of strategically taking sensory
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information into account when necessary, in a form of social attention
that to some degree controls the influence of sensory information.

2.2.4 Self-other differentiation

How does the human brain distinguish between our own and other’s
actions? Or to be more specific, how can we distinguish ourselves
from others, so that we do not falsely attribute an action outcome
to ourselves? Especially, during complex interaction scenarios with
multiple interaction partners and overlapping behavior from oneself
and others, such a differentiation can be difficult. Later, a possible
solution to this problem will be discussed and become a core aspect
of the social aspects of the model presented in this thesis. These
questions are related to the general mechanisms that give rise to a
sense of “feeling of control”, agency, and “self”. From here on: Sense
of Agency (SoA).

sense of agency in the brain A strong overlap of differential
activity in the MENT and MNS networks can also be detected during
SoA judgement tasks, which also underlies our ability to differentate
our own from other’s actions. Especially noteworthy: TPJ is a candidate
to infer the agency of a social action, spanning areas STS which mainly
responds to biological motion, to IPL which may respond to the inten-
tions behind someone’s actions. It connects to mPFC, which probably
holds trait inferences, or maintains different representations of self-, or
other-related intentions or beliefs. Generally, a person’s SoA is believed
to be influenced through predictive and postdictive processes (see next
chapter in sec. 3.4) which, when disturbed, can lead to misattributions
of actions, as in disorders such as schizophrenia (van der Weiden et al.,
2015). Schizophrenia as a deficit of sensory attenuation, points to dis-
functional precision encodings as a core pathology, i. e., the confidence
of beliefs about the world (Adams et al., 2013). Precision is believed
to be encoded in dopaminergic neuromodulation, and can as such
be linked to the sensory attenuation effects during the attribution of
agency in healthy subjects (Brown et al., 2013).

2.3 summary

Given the complex interactions that make up the dynamic involvement
of mirroring and mentalizing activities within the social brain, it is
no wonder that the underlying mechanisms have been called the dark
matter of social neuroscience. To summarize, and with all that we
discussed, let us return to the questions I formulated in the beginning
of the chapter.

We have seen how we are able to get a very direct – and possibly
predisposed – grasp on when we are part of a social interaction, and
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what this entails in our means of processing prior information, and
the context of the interaction also being involved.

Getting a grasp on the mental states of our interaction partner is
the goal of the process of creating a shared understanding, while in-
volving established common ground. We have reviewed the literature
on how this process involves an implicit, and sometimes automatic
mentalizing that reciprocally updates common ground, while also con-
textual information and prior information can influence our behavioral
understanding top-down.

This process of reciprocal belief coordination seems imperfect, as
it has been repeatedly shown that intial interpretations can linger,
supported by contextual information, only being good-enough for the
interaction to go on. But in general, misunderstandings and communi-
cation errors are not fatal for social interactions, but can be repaired.
In fact the incremental nature of belief coordination is supported by
findings that the higher-level process of mentalizing is triggered on
demand, given violations of anticipation.

Of course, we still do not have a full understanding of all details of
how social cognition is implemented in the brain, but we have now
visited enough of the literature to be able to form a working hypothesis
for the computational, and to a degree also of the algorithmic levels
of analysis, along with multiple assumptions that we will visit in the
following chapter.





3
M O D E L I N G F O U N D AT I O N S

We have visited the theoretical background surrounding the concept of
belief coordination in human communication as well as the literature
on the dynamics regarding repairs during such reciprocal interaction.
Also, we looked at the social neuroscience literature, for the coor-
dination of beliefs between interaction partners, and the necessary
mechanistic processes of mirroring and mentalizing that make up
social cognition. The present research focuses on finding mechanisms
underlying the intra-personal dynamics in the social brain (MNS and
MENT) and the inter-personal dynamics between interaction partners.
This is done to the end of creating a dynamic interaction between com-
putational models that can recreate the described behavior humans
employ during belief coordination, including attempts for repair.

The combined modeling approach is called Hierarchical Predictive HPBU: the combined
computational
modeling approach,
covering
sensorimotor as well
as mentalizing
processes.

Belief Update (HPBU), and covers two parts, related to the functional
networks of the social brain: the sensorimotor part, and the mentaliz-
ing part.

We already covered many necessary elements of the model. First
of all, modeling the sensorimotor part will allow for 1) dynamic and
online perception and production of behavior. The mentalizing part
will enable 2) prior beliefs, biases or social norms to influence future
behavior, and 3) have beliefs about representations of behavior enable
reasoning about other agent’s mental states. These will need to be
combined in 4) processes of perception and action to strategically
guide the dynamic coordination of beliefs in social interaction.

In this chapter, we will first cover the necessary modeling the-
ory for predictive processing (sec. 3.1.1). The next section covers the
background necessary to understand mentalizing, or theory of mind
(sec. 3.2). Integral to mentalizing is the self-other distinction, which
we will discuss in the context of sensorimotor agency (sec. 3.4). Lastly,
we will cover the related work on computational modeling of sensori-
motor processes and mentalizing (sec. 3.5) and cover the contribution
that the model presented here will make to the modeling landscape
(sec 3.6).

uncertainty The world in which we live in is one of sensory
uncertainty, although our introspective perspective makes us believe
that our perception is stable. Many factors can limit the reliability of
our sensory information. Sometimes this is due to the sensorium at
our disposal, e. g., the shape and position of our ears that make it
quite impossible to detect the elevation of an auditory source. And

35
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sometimes our preconceptions about the world bias our perception
towards what we expect.

Humans and other animals need to minimize this uncertainty, in
order to be able to perform the effective decision making. To be
effective at this, new information needs to be combined with the
experience we have gathered in the past. Getting this combination
right is critical for our survival, e. g., as it decides whether we stay
or run when we face a cat-like form while walking through a jungle.
Thus it can be described as a core objective of our nervous system
(Cox, 1946).

Let us have a look at how different approaches have so far tried to
model the processes in the brain that allow it to perceive the world or
act in the world under uncertainty.

In his monumental work, Helmholtz views human perception as
statistical inference that takes sensory input and (unconsciously) infers
probable causes (Helmholtz, 1867). The inferential process has become
an integral part of cognitive psychology in a concept known as analysis-
by-synthesis. That is, recognition is described as a process that compares
priorly formed hypotheses with the sensory input with the goal of
finding a matching hypothesis. This concept was taken up by Gregory

(a) Necker cube (b) Impossible triangle

Figure 3.1: (a) The Necker cube is a bi-stable illusion, because there are no
cues as for its orientation. (b) The Penrose impossible triangle is
an optical illusion that can only exist as a perspective drawing,
but not in reality.

(1980), who analysed the comparability of percepts with scientific
hypotheses. Therein the signal (information in the environment) was
separated from the data (input data as processed by our sensorium),
and the hypotheses (as inferred probable causes). In his analysis he does
not shy away from the fact that hypotheses can be false, e. g., in cases
of bi-stable percepts as in the Necker cube (Necker, 1832) (see fig. 3.1
(a) *). Also, distortions in the signal can be problematic, e. g., such as

* Necker cube by BenFrantzDale - Own work, CC BY-SA 3.0, https://commons.

wikimedia.org/wiki/File:Necker_cube.svg

https://commons.wikimedia.org/wiki/File:Necker_cube.svg
https://commons.wikimedia.org/wiki/File:Necker_cube.svg
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a dim environment or auditory noise. Another interesting effect is
discussed when it comes to distortions in the data that can be due to
prior adaptations of the sensorium. An example would be different
perceptions of heat in the left and right hand, when only one hand
previously was calibrated to cold temperatures. Hypotheses can also
be false when they are formed from inappropriate assumptions, as in
the case of the Penrose impossible triangle (Penrose and Penrose, 1958)
(see fig. 3.1 (b)†). This optical illusion can only exist as a perspective
drawing, but not in reality. In recent years, the so-called Bayesian brain Bayesian brain

hypothesis: a model
of how the brain
handles uncertainty,
by means of
conditional
probabilities.

hypothesis suggests that a way in which these processes of the human
brain can be modeled, is through probability theory (Knill and Pouget,
2004). It proposes that the human brain represents sensory information
as a conditional probability density function, with every perceivable
sensory information Z represented as a probability, given the evidence
I, as P(Z|I).

foundations of generative models Such analyses led to
the development of the Helmholtz Machine which describes its self-
supervised learning as an approach that faces a statistical problem.
It has the aim to maximize its likelihood by discovering a generative
model that captures the given input’s structure accurately (Dayan
et al., 1995). A generative model learns how to produce the input that
it gets presented with. The Helmholtz Machine makes a differentiation
between perception and production, by learning a generative model
for production, and a separate recognition model for perception. To
train the model, the difference between an expected and a recognized
probability distribution needs to be minimized. It is calculated using
the so-called Kullback-Leibler Divergence (Kullback, 1959), which we
will again meet later on. In a similar way (but without the statistical
account), forward models have been considered to describe this form
of generative models that allow for the generation of output that
might exist in the brain. While for the recognition model, inverse
models, or inversions of the forward models were proposed (Jordan
and Rumelhart, 1992; Kawato et al., 1993). Combined, this allows for
the generative model (or forward model) to influence the recognition
model through prior activity (e. g., in a model of the visual cortex
Kawato et al., 1993).

Early on, learning through feedback became a matter of investi-
gation. Kawato and Gomi (1992) proposed on the example of four
cerebellar regions of the brain, that learning might be due to error-
feedback. Forward models that incorporate feedback in the form of
a difference between predicted and perceived behavior. They are be-
lieved to be examples of generative models, which the brain may be
using for both perception and action (Wolpert et al., 1995).

† Penrose triangle by Tobias R. – Metoc - Own work, Public Domain, https://en.
wikipedia.org/wiki/File:Penrose-dreieck.svg

https://en.wikipedia.org/wiki/File:Penrose-dreieck.svg
https://en.wikipedia.org/wiki/File:Penrose-dreieck.svg
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on predictability The output generated by generative models
can be utilized as predictions. Such predictions allow them to exhibit
the same effect of sensory attennuation that has been observed in hu-
mans. Best described, it is the mechanism that inhibits the ability toSensory

attennuation:
neuronal activation

is inhibited if its
reponse was

predicted.

tickle yourself. This is of importance, because when the difference
between your predicted and perceived effect is minimal, so is the need
for further processing of that sensory percept, which saves energy.
Given the high energy consumption of our brain, compared to other
organs of our body (Raichle and Gusnard, 2002; Sokoloff et al., 1955),
it is vital for us to conserve as much energy as possible. Sensory at-
tennuation is a strategy, based on predictability, which allows for that.
For computational models of such processes, attennuation effects also
have the effect of minimizing the need for computational ressources.
This becomes necessary for systems that you build to run online, in
real time if possible, so that you can have interactions between humans
and machines.

Predictability also has other advantages: taken to the level of interac-
tion, it was observed that during duet playing on a piano, small delay
variations strongly impact your ability to synchronize with your duet
partner. The predictability of your own body makes yourself your best
duet partner, because the prediction error from the delay variations are
minimal (Keller et al., 2007). Similarly in a study where participants
had to throw darts at a target board, they and others were recorded
doing so. Later, a number of such videos were shown to them, and
they had the task to predict where on the target board the dart would
hit. Results show that own dart throws would be predicted with the
highest accuracy (Knoblich et al., 2016). In another example for where
the predictability of your body may give an advantage, is motor expe-
rience of specific tasks in sports. As it was shown in a study where
participants had to judge the probable success of basketball throws
from videos of partial throws (Aglioti et al., 2008). Expert basketball
players were able to predict successful throws with much higher accu-
racy than novice players. These “results suggest that only motor expertise
endows the motor system with the ability to discriminate between erroneous
and correct performance.” (Aglioti et al., 2008, pp. 1115).

3.1 predictive processing and active inference

The modeling approach presented in this work has its foundation in
these considerations about generative models, and the minimization
of energy consumption. These rely on finding a way to estimate the
worth and necessity of computational work being done, in order to
minimize the energy consumption in the future. We will now explore
a viable approach: the free-energy principle.
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3.1.1 The free-energy principle

“Thermodynamic free energy” stems from statistical physics, where
it describes the total energy available in a system to do work. The
concept was introduced to the machine-learning literature by Hinton
and Zemel (1994), who used the Helmholtz free energy to minimize
an objective function to train an autoencoder.

Prediction error can be described as the difference between the way
the environment actually is, and how it is represented in a system.
Such a formulation can be seen in an information-theoretic light,
where systems exchange information with the environment. As the
environment can be increadibly complex, a system that lives inside it
is not able experience it in a way that perfectly matches the system’s
representations. Free-energy

principle: living
organisms, in
constant exchange
with the
environment, need to
resist the increase of
entropy by keeping
free energy minimial.

Friston (2013) describes the free-energy principle to not only encom-
pass the information-processing of the brain. It is fundamental to
whole systems, such as living organisms in exchange with their envi-
ronment. Over time, living organisms have to resist the second law of
thermodynamics, i. e., resist the increase of entropy. More specifically,
living organisms such as us, maintain a model that represents the
exchange with their environment. This model is tuned to minimize
prediction error, or its information-theoretic homologue: free energy.
Since this exchange with the environment is an ongoing process, the Free energy: the

information-
theoretic homologue
of prediction error,
i. e., the difference
between a system’s
predictions and the
actual state of the
environment.

goal of a living organism must be to strive for an overall good model
that minimizes free energy in the long term. That is, the free-energy
principle requires the internal model of an organism and its actions to
suppress prediction error and keep free energy minimal.

In the following, we will look at the free-energy principle at work in
computational models, such as hierarchical predictive coding (Rao and
Ballard, 1999). There, the minimization of free energy guides model
selection – to predict probable hidden causes for the input – at higher
levels of a hierarchy. Such a system should then be better at predicting
future input at lower levels of a hierarchy, and thus suppress prediction
errors. But the minimization of free energy does not only apply to Active inference: a

system’s strategy to
minimize free energy
by actively changing
the environment to
meet its predictions.

model selection during perception, it also accounts for an organism’s
overt behavior. In the context of action, the minimization of free energy
is not primarily done by model selection to infer the hidden causes of
sensory states. Rather, the hidden causes are themselves influenced by
action through active inference in order to make the hidden cause meet
the prediction (Friston et al., 2010). Precision weighting:

balancing the
influence of
prediction error on
prior beliefs.

Making correct predictions about hidden causes under uncertainty
is tricky, so that the influence of prediction error on prior predictions
has to be balanced carefully. This act of balancing needs to depend on
the uncertainty itself, and is here described as the precision weighting of
the prior predictions. This is like asking your own generative model:

“How well have my predictions performed so far?”. Balancing the influence
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of prediction error on prior predictions by means of precision weight-
ing can greatly influence the success of free energy minimization.

We will now turn towards more computational approaches that
make use of the free-energy principle, such as hierarchical predictive
coding.

hierarchical predictive coding Predictive coding was origi-
nally developed as a compression strategy. For example, in image data
the compression of pixel color codes would depend on the predictabil-
ity of neighbouring codes. When two neighbouring pixels would have
the same color code, this is quite predictable and hence not newswor-
thy. When two neighbouring pixels were to be different, then this is
not predicted by the previous pixel and hence is newsworthy. This
is a very simple example, but might highlight the importance of pre-
dictability again, because in predictive coding only the newsworthy
information is important and is further processed.

There is some evidence that the basic idea of predictive coding
might be on the right track: in earlier work something similar was
proposed as a kind of anti-hebbian learning in the form of novelty filters,
where correlated activity leads to inhibition, rather than activation
(Kohonen, 1983). Rao and Ballard (1999) propose a well-fitting model
that accounts for the processing behavior of the visual cortex and
they called it Hierarchical predictive coding. It accounts for multipleHierarchical

predictive coding: a
hierarchical

predictive model,
where each level
predicts its next

lower level and only
prediction error is

communicated
upward.

levels of processing where “[e]ach level in the hierarchical model network
(except the lowest level, which represents the image) attempts to predict the
responses at the next lower level via feedback connections (Fig. 1a). The error
between this prediction and the actual response is then sent back to the higher
level via feedforward connections. This error signal is used to correct the
estimate of the input signal at each level” (Rao and Ballard, 1999, pp. 80).
Their simulation results suggest that certain extra-classical receptive
field effects can be interpreted as prediction error detecting signals.
This could be an emergent property of the cortex, when using such a
predictive strategy.

Similarly, retinal ganglion cells have been found to code differences
to previous stimuli. Hosoya et al. (2005) propose that the behavior of
those cells changes in order to adopt efficiently to new stimuli, in what
they term “dynamic predictive coding”. To that end the newsworthy
information, as suggested by the original predictive coding account, is
here transmitted onward to higher-level areas for further processing.

Also, in the architecture of cortical columns in the human brain, it
was found that columns higher in the cortical hierarchy can inhibit
activity at lower levels. Still, so-called residuals are the differences to
the expected signal from higher-level predictions (Mumford, 1992).
Given their findings they propose that “an animal should not rest until
it has ’explained’ the full set of signals coming to it from the world, as far as
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its past experience allows, and must also be able to recognize when the signal
indicates – because of variations beyond the normal limits – something never
encountered before.” (Mumford, 1992, pp. 246). This already highlights
an important aspect of predictive coding as a generative model of
brain function: the explaining of incoming signals, i. e., the newsworthy
residual information needs to be explained and thereby attennuated
higher up in the hierarchy. In predictive coding this newsworthy
information is nothing else than prediction error and is attennuated
– or explained away – at higher levels of the hierarchy. Also, the
error is used to optimize future predictions. Friston and Kiebel (2009)
combine the hierarchical predictive coding approach with free energy
minimization as a means to describe the architecture of the brain’s
neocortex as a hierarchical generative model.

3.1.2 Predictive processing

Predictive processing, as defined by Clark (2016), combines a hierar-
chical system of a bidirectional probabilistic generative model, with
the predictive coding strategy of efficient encoding and transmission.
From this point on, I will thus talk about predictive processing and
not just hierarchical predictive coding.

precision-weighted updates It is a tricky business to make
predictions about hidden causes under uncertainty. Balancing the in-
fluence of prediction error on prior predictions right – by means of
precision weighting – can greatly influence the success of free energy
minimization. Precision weighting is described to be able to “control
the relative influence of prior expectations at different levels” (Friston and
Kiebel, 2009, pp. 299). Precision is also described as the gain on the
prediction-error signal, which means that the higher the gain, the
stronger the prediction error will influence prior predictions. Greater
precision means that there is less uncertainty in the sensory data,
leading to higher gain on the prediction error to be able to detect
slight variations after the prior prediction was updated. Low precision
biases the update process to preserve the prior prediction, while high
precision lets the prediction-error signal drive future responses, by
stronly influencing the update process.

In a similar notion, the adaptation to the variance of a given stimulus
has been shown in the fly visual system, where neurons code for the
variances of the luminance in the peripheral visual scene (Laughlin
and Hardie, 1978). They describe this adaptation in terms of efficient
coding (Barlow, 1961). That is, on the core assumption that neurons
have a limited capacity to code for stimuli, the neuron’s dynamic range
is adjusted for the necessary stimuli to be most efficiently coded.
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Another example often used, is that attention is modulated by preci-
sion weighting. Kok et al. (2012) manipulated independent prediction
and spatial cues, in a Posner cueing paradigm setup (Posner, 1980), and
found that attention reversed the inhibition effect of prediction upon
the sensory signal. This means that congruent attention and prediction
leads to an enhanced attention, while an incongruent simulus (that
did not occur at the attended location) reduced the reponse measured
in the primary visual cortex. Kok and colleagues argue that the effect
of top-down prediction depends on attention. Taking attention into
account, the sometimes different empirical observations – sometimes
inhibiting and sometimes boosting the sensory data – can be explained.
Press et al. (2019) discuss this supposed incompatibility in the general
case (not only in visual attention). They propose a precision-weighting
account that depends on the surprise of the sensory data, to account
for the effect of empirical evidence, for both: inhibition and boosting
of top-down predictions. Also on a very similar notion, Tatler et al.
(2011) suggest a model of low-level salience based on uncertainty.
They propose that action, perception, and attention should be seen
in a more integrated manner, with attention and top-down driven
influences from priors, learned from the environment.

These aspects are relevant, because this weighting of information
is a key not only in the abstract sense of weighing prior information
with new information. It should also be taken into account when we
will later discuss the uptake of information from our social interaction
partners, weighing it against what we presume about them.

active inference Integral to predictive processing is also its
approach to explaining, how action can occur, from a hierarchical
system that maps from sensory effects to hidden causes. Such a system
would, e. g., allow the imitation of human behavior, or enable the
production of action in the first place.

This ability to translate visual information into action, or spawn
action through thought, are both part of the scope of the so-called
ideomotor principle. Voluntary actions describe this spawning of actionIdeomotor principle:

the motor system
uses the motor

program that has the
strongest similarity

with the seen or
intended action

effect.

through thought (going back to the analysis by James, 1890). The
ideomotor principle describes the idea that if we think of an action’s
effects, like using a switch to turn on the light, this thought will
resonate with representations in the motor system. The motor system
then uses the motor program that has the strongest similarity with
the intended action effect. Or in other words: “when one wants to do
something, the only requirement is to think of the intended action in terms
of its ultimate distal result, and one need not care about the intermediate
proximal steps required to realize it.” (Prinz, 1990, pp. 171).

Wohlschläger et al. (2003) describe that according to the ideomotor
principle imitation does not depend on the observed movement as a
whole. Rather, only different aspects of the movement are represented
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and become active in a representational hierarchy, with the highest
aspect becoming the main goal. Following the ideomotor principle
this goal activates motor programs that most strongly correspond
to that goal. Further they argue that meaningless, or partially seen
movements can only be understood at lower levels of the hierarchy.
The underlying mechanisms that implement the ideomotor principle
have long been unknown. Recently, Pfister et al. (2014) identified the
inferior parietal cortex and the parahippocampal gyrus as key regions
for this type of anticipatory coordination of action.

In a similar way, active inference describes the process of spawning
action. In active inference the environment is influenced through ac-
tion to meet the given predictions that stem from held beliefs about
the world (Adams et al., 2012). By making the environment meet one’s
held beliefs, they don’t have to be updated by prediction errors from
the environment. Following the assumption of predictive processing,
the main flow of information is predictive, i. e., top-down. In active in-
ference motor control can be seen as just top-down sensory prediction
(Clark, 2016).

When active inference is seen as a process theory the distinction to
previous models of motor control, is that in active inference we solely
rely on each level’s generative process to map from hidden causes
to their sensory consequences. Without separate inverse models the
generative process itself is inverted to predict the next steps at the next
lower level, and thus, explains away or suppresses prediction errors.
At the lowest level of the hierarchy, this process of suppression can
take the form of triggering the production of actions, and change the
environment. Thus in fullfilment of motor coordination – through a
loop of sensorimotor feedback – such action can affect the inferred
hidden causes, and minimize free energy (Friston et al., 2010).

3.2 mentalizing background

This section covers the theoretical background of the ability of mental-
izing, i. e., creating a theory of mind to infer another person’s mental
states.

3.2.1 Theory of Mind

Since the time of Heider and Simmel (1944) many empirical investiga-
tions have improved our understanding of the mentalizing process,
i. e., our ability to infer another person’s mental states. The ability was
termed ToM by Premack and Woodruff (1978), who investigated men-
talizing in chimpanzee. Not long after, it became a focus of research
in humans.

Dennett (1978) first proposed that a test for a false belief was nec-
essary. Otherwise, it would be impossible to differentiate a person’s
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behavior to be in accord with reality or with her (potentially false)
belief about reality. The Sally-Anne false-belief test (Wimmer and Perner,
1983) met this requirement. It was used to, e. g., investigate cases of
childhood autism, which is a developmental disorder that impairs the
understanding and coping with social environments (Baron-Cohen
et al., 1985).

Stone et al. (1998) postulated ToM as a functional system that allows
us to predict and interpret social information. They found that patients
with damage to (bilateral orbito-) frontal cortex had difficulties in their
ability to cope with tests that require more subtle social reasoning,
such as the ability to detect a faux pas from a third-person perspective.
That is, hearing someone say something to a third person, while not
realizing that he or she should not have said it. The authors explain
that this may be due to the need to represent two mental states: one
for the person committing the faux pas, and one for the other person,
who would feel insulted.

There is an ongoing debate about the nature of ToM, and its under-
lying mechanisms with two major contenders: simulation theory and
theory theory.

theory theory and simulation theory Theory theory de-
scribes theory of mind to depend on a set of mental states, in the
Belief, Desire, Intention (BDI) sense, and principles that guide their
interaction. Thus, we formulate explanations and predictions about
other’s behavior using mental states, and generate behavior by com-
bining the theory with prior information about the interaction partner
(Gopnik and Wellman, 1992).

Simulation theory was developed to ascertain that the biology will
allow the formation of beliefs, etc., which in themselves have causal
properties (Gordon, 1986; Jeannerod, 2001). In that, simulation theory
denies that we read other’s minds by applying theory. Rather, it
suggests that we use our own minds to understand others by putting
ourselves in another’s shoes, simulating their behavior. Also, beliefs
are assumed to be (at least) similar in our interaction partner’s minds,
which allows us to think about other minds, using our own minds as a
model to contrast to. This makes the simulation-theory account more
akin to the mirror-neuron hypothesis (Gallese and Goldman, 1998),
which has also been discussed to supposedly underly the whole of
social cognition.

These accounts have long been viewed as mutually exclusive, but
there exist integrated accounts of theory of mind, like direct social per-
ception (Gallagher, 2008) which try to conciliate them, or are proposed
as an alternative.
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3.2.2 The problem of recursion

Already in the early days of research into ToM it became apparent, that
mentalizing in complex social situations requires an ability to reason
not only about the intentions and beliefs of your interaction partner.
Also important is reasoning about the intentions and beliefs that
your interaction partner might hold about your intentions and beliefs
(with more rounds of recursive depth if necessary). Early studies
showed that this ability develops during childhood, allowing for an
increasing recursive depth during reasoning about intentions (Shultz
and Cloghesy, 1981). Interestingly, this recursive depth in practice is
not often applied to its full potential, as was shown by Keysar et al.
(2003). They found that the ability to distinguish one’s own from
other’s beliefs is not always applied when interpreting other’s actions.
Similarly, it has been shown by Devaine et al. (2014): participants in a
game-theoretic task did test to employ a recursivity order of 2 most of
the time, with 3rd order recursivity occuring negligibly. The authors
even suggest an upper bound.

implicit and explicit mentalizing Another set of strategies
to handle reasoning about intention has been proposed and devel-
oped that makes use of a differentiation between an implicit and an
explicit form of mentalizing (Frith, 2012; Frith and Frith, 2008). Where
the implicit form underlies our ability to automatically perform in joint
action tasks, and other non-verbal tests of non-verbal social cogni-
tion. It has been shown that this implicit mentalizing automatically
influences gaze following, action imitation, and the tracking of other’s
knowledge (Kilner et al., 2003; Sebanz et al., 2006). Later, Frith (2012)
proposes that during implicit mentalizing we employ a we-mode of
mentalizing. Using the we-mode we are able to automatically infer and
track the knowledge and intentions of others, without the need for a
recursive reasoning about our own and our interaction partner’s be-
liefs. In contrast, explicit mentalizing allows us to justify our behavior
to our interaction partners, and meta-cognitively reflect on our own
beliefs and intentions.

I will not further go into the developmental aspects of theory of
mind. Rather, the scope of this work is to cover a minimal kind of men-
talizing that is able to infer, and track the communicative intentions
and goals during a non-verbal social interaction. Although, this may
overlap with only part of the full abilities of adult humans.

3.2.3 Conciliating theory theory and simulation theory

We have to discuss where a predictive-processing perspective fits in
the discussion about the nature of social cognition, i. e., can it shed
light on the dark matter of social neuroscience?



46 modeling foundations

Both perspectives (simulation theory and theory theory) are criti-
cized for being isolationist paradigms (Becchio et al., 2010), in which
interaction partners merely observe the other – only reacting to the
mental states that they infer – instead of directly participating in the
social interaction. This paradigm is challenged by a view in which
social interaction is ultimately rooted in the social cues and actions
during real-time social interaction, e. g., social context shapes action
kinematics (ibid.). A more direct participation in the social interaction
is put forward by the second-person perspective where the other’s
mind is perceived, rather than represented (Schilbach et al., 2013).

Also, Apperly (2008) argues that so far a discrimination between
simulation-theory and theory-theory accounts was not found by neu-
roscience, as it was hoped for, and it probably never will. Further,
the author finds no fault in the methods of investigation, but in the
argument itself, which tries to differentiate between these accounts of
theory of mind.

There have been attempts bridging the supposed gap, which rely on
both: the folk-psychological inference, and the simulation – contrasting
own from other’s minds, in so-called hybrid theories. Gallagher (2015)
compares such hybrid approaches – such as direct social perception –
and argues for a pluralist approach that allows to make use of both,
inferential and simulationist strategies.

de Bruin and Strijbos (2015) critisize that even proponents of direct
social perception (Bohl and Gangopadhyay, 2013) still conform to
the so-called sandwich model of social cognition (Hurley, 2008). The
sandwich model of social cognition strongly distinguishes between
processes for perception, cognition, and action. They discuss how
direct social perception proponents disagree with the assumption
that mental states need to be functional, instead focusing on their
embodied grounding. They criticize that in direct social perception
only the inferential process is cut out, which results in mental states.
These discussions are contrasted with the Bayesian Predictive Coding
approach that can do justice to both accounts. First of all, it gets rid of
the distinction between perception and cognition by having perception
to be unconscious inference (sec. 3). Also, it accepts that perception
is driven by theory, i. e., priors in the brain. Finally, it undermines the
distinction between perception and action by the close coupling of
perception and action processes, as in active inference. Generally in
the predictive coding account, the brain does not need to engage in
deep inferential processing as long as the input is expected. Direct
social perception also allows for inferential processing. But only when
behavior is unexpected and cannot directly be responded to (Gallagher,
2008).

Given the hierarchical nature of the processes in the brain, for the
following it is assumed that no black box of a cognitive process is at
work. Rather, it is the predictive processing that conciliates hybrid
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and sandwich model accounts by collapsing the distinction between
perception, cognition and action. At work is only the inferential reso-
nance of possible perceptions with the input, able to trigger prediction
error correcting behavior, either to the end of correcting predictions,
or to actively change the environment to conform to the expected
perception.

3.3 mentalizing in predictive processing

3.3.1 Event structures for mentalizing

Now, we explore how social interaction, including mental states, can
be represented in a predictive-processing hierarchy. Representations
here need to account for the sequential nature of social interaction.
Also, they need to comply to the free-energy principle, i. e., reduce
uncertainty by attennuating prediction error.

Minsky (1974) developed frames and frame systems to describe
a framework of memory. Frames are retrieved from memory to be
adapted to fit reality, changing details as necessary. They are embed-
ded in a frame system, a hierarchical structure where frames at higher
levels represent things that are always true in a given situation and
those at the lower levels are changing. This is one of the examples
for segmenting knowledge and situations, while others are schemata,
scripts, or situation models (which we will not all go into in the scope
of this thesis). Rumelhart (1975) argues that stories consist of episodes,
in which a protagonist has to achieve some goals, while each episode
consists of a schema that contains steps towards that goal. The sub-
goals in the schemas which, able to contain schemas in themselves,
make a recursive structure possible in order to flexibly achieve the
goal.

It has long been unclear how such episodes can be learned, but
a link to episodic memory is apparent, which is suggested to allow
for mental time travel to remember past experiences (decoupled from
reality) (Tulving, 1985). Zacks and Tversky (2001) argue that while the
nature of our perception of the world is to some degree continuous,
people need to understand it in terms of discrete events (also pointing
toward the human bias to think in, and tell, stories). This discretization
needs a way to segment the never-ending perceptual experience, and
Zacks and colleagues argue that perception in itself determines how
events are segmented. They develop the Event Segmentation Theory
(Zacks et al., 2007), where events are segmented on boundaries that are
detected from errors in predictability. New aspects that are unforseen
in a given situation allow for segmentations, expanding the event
structures, so that in the future similar situations are more predictable.

Such event structures – closely related to episodic memory – may at
some level underly mentalizing. This is pointed to by imaging studies
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that show reliable activations of the mentalizing region mPFC during
retrieval from episodic memory (Hassabis and Maguire, 2007; Maguire
and Mummery, 1999). Multiple meta-analyses on episodic memory
and episodic simulation report an overlap with brain regions of the
default mode network (Benoit and Schacter, 2015). They also find that
there is a differential activation of brain regions, depending on the
task at hand, requiring either more general reasoning or mentalizing.
During mentalizing tasks, activation is strongly associated with the
mPFC area (please refer to sec. 2.2.2) (Van Overwalle, 2011).

modeling event structures The modeling approach presented
in this work follows the evidence for the link between mentalizing
and episodic memory to interpret social interactions in event struc-
tures, that will here be called coordination sequences. The proposedCoordination

sequences: represent
event structures and

make it possible to
track beliefs over

time.

coordination sequences can be seen as schemas that contain segments
consisting of mental state belief-attributions. The beliefs in the mental
state attributions are updated from a sensorimotor part of the pro-
posed Hierarchical Predictive Belief Update (HPBU) model (see next
chapter for details). Coordination sequences make it possible to track
the belief dynamics between interaction partners during belief coordi-
nation, over time, up until the interaction goal. The interaction goal is
a final mental state that is to be reached.

The coordination sequence level is embedded in a hierarchy where,
at an even higher level, coordination sequences can be collected into
clusters of sequences with similar interaction goals. These clusters
of coordination sequences are here called goal states, as they collectGoal states:

represent clusters of
coordination

sequences with the
same interaction

outcome.

sequences of similar outcome. Having different sequences toward the
same outcome available enables the goal-state level to predict the
outcome of an interaction (in the form of an interaction goal).

Further below, both representation levels will be described in more
detail, when we discuss the computational model of mentalizing. As
the literature suggests, similar event structures could also exist for
general reasoning purposes, outside of mentalizing, but this is beyond
the scope of this work.

3.3.2 Minimizing free energy of beliefs and intentions

Coordination sequences have access to information from sensorimotor
processing, along with information about the agency of an action
that, as we will discuss soon, allows for the differentiation of own
from other’s behavior. Given the access to such information, beliefs
can be attributed to oneself or an interaction partner, and under the
segments contained in the coordination sequences, a fitting segment
to the mental state can be identified, along with possible interaction
goals, or a specific goal of the inferred coordination sequence.
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This function of identifying possible interaction goals can be de-
scribed as a mechanism for modeling the so-called affordance com-
petition. Described briefly, it was introduced as a possible cortical Affordance

comptetition: a
cortical mechanism
for action selection,
where possible goals
afford interaction
with the
environment.

mechanism for action selection (Cisek, 2007), and has since been devel-
oped to also cover more abstract – or higher-level – goals (including
ways to create new affordances) (Pezzulo and Cisek, 2016). Thus, the
here proposed mechanism is one of affordance competition, for the
case of social interaction.

Given that coordination sequences are embedded in a predictive
processing hierarchy, they must comply to the free-energy principle,
minimizing prediction error, and hence free energy. The here pre-
sented idea for a form of social predictive processing was developed
from the discussion in Friston and Frith (2015b). They interpret the
term hermeneutics to apply to the problem of interpreting the intention
from verbal and non-verbal communication. They model the problem
in the form of two birds that can hear and produce a song. In that
model scenario, they describe their solution to the problem of neural
hermeneutics based on active inference, where action fulfills our pre-
dictions about our own behavior. This way one’s own action can be
attenuated, and the correctly predicted bird song, of the other bird
as well. An important point made in this paper is that the simulated
birds can hear themselves, not only their interaction partner. This
underlines the necessity to be able to correctly predict and attenuate
own actions, in order to tell them apart from that of an interaction
partner.

In a companion paper, Friston and Frith (2015a) make their view of
communication clearer: They point out that communication is based
on a shared narrative, in which interaction partners reciprocally attend
to and attenuate sensory input in a back and forth manner. They argue
that this back and forth can lead to a synchrony between the brain
states (in the form of probable hypotheses) of interaction partners. A
central problem of communication is the infinite regress induced by
modeling your interaction partner (while she is modeling you). The
regress can be (partially) evaded if both possess a similar model, as this
would minimize surprise, maximize predictability, and would allow
for synchronized brain states. This leads both interaction partners to
generate successful predictions about each other’s mental states. In a
way, the described synchrony even allows for the interacting brains to
bypass the perceptual loop that spans the interaction partner. Thereby,
they effectively predict themselves.

Thus, if predictions become shared between interaction partners
in the form of overt behavior through active inference, uncertainty
can be minimized. Still, the interaction described in both papers is
schematically similar (but rather primitive in comparison) to human
belief coordination (as described in ch. 2).
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prior experience with the interaction partner Common
ground (see sec. 2.1.1) has been described as the prior information
that you bring into a social interaction. This can be information about
the world, and this can also be prior experience you share with your
interaction partner.

If there is such prior experience that you share, it should affect
your inferential processes, and your predictions about the other’s
behaviors and beliefs. For example, if you know that you and your
conversation partner previously discussed where best to get dinner,
then in a later conversation you will probably know what restaurant is
meant when she picks up the conversation, asking you: “When do you
want to meet at the restaurant?”. On a more fundamental perspective,
the common ground established between you and your interaction
partner influenced your inferential processing to minimize uncertainty
about which restaurant is meant.

In several imaging studies the dorsal mPFC area in the brain was
associated with inferring personality traits and beliefs (Van Overwalle,
2011). As we also saw, the episodic memory literature also finds
a strong overlap with area mPFC during episodic memory retrieval
(Hassabis and Maguire, 2007). Thus, this is probably a good candidate
to suggest an area from which other mentalizing and action perception
processes could be influenced by prior knowledge from mental state
beliefs and personality traits, i. e., a form of person model (PM).

Later, the computational person model, and how it influences infer-
ential processing during social interaction, will be discussed further.

3.4 inferring the self from sense of agency

How does the human brain distinguish between information about
ourselves and others? As shortly introduced, the social brain is strongly
involved during judgements of agency and the differentiation of own
from other’s actions (see sec. 2.2.4). Generally, a person’s SoA is be-
lieved to be influenced through predictive and postdictive (inferential)
processes which, when disturbed, can lead to misattributions of ac-
tions, as in disorders such as schizophrenia (van der Weiden et al.,
2015). The aim of the following discussion of the predictive and post-
dictive processes, is to identify their underlying mechanisms. These
will be modeled as a combined representation, which forms a cue for
SoA of perceived behavioral outcomes.

3.4.1 Predictive process in sense of agency

The predictive process makes use of people’s ability to anticipate the
sensory consequences of their own actions. It allows to attenuate,

† This section on the mechanisms of sense of agency for self-other distinction was
adapted from a section in a previous publication in Kahl and Kopp (2018).
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i. e., decrease the intensity of predicted incoming signals. Using this
mechanism, it enables people to distinguish between (predicted) self-
caused actions and their outcomes, and those (unpredicted) actions
and outcomes caused by others.

One account to model these processes is based on inverse and
forward models (as discussed in par. 3), to account for disorders
of awareness in the motor system and delusion of control (Frith et
al., 2000). This account suggests that patients suffering from such
disorders of awareness can no longer link their intentions to their
actions. They still can become aware of the sensory consequences of
an action, but may find it problematic to integrate them to the intention
underlying the action. This would make it difficult to ascribe actions
to oneself or another agent, making misattributions more likely.

Research on schizophrenia has shown that reliable and early self-
other integration and distinction is important not only for the correct
attribution of SoA, but also for the correct attribution of intentions and
emotions to others in social interaction (van der Weiden et al., 2015).
Weiss et al. (2011) also showed that there is a social aspect to predictive
processes that influence SoA, by comparing perceived loudness of
auditory action effects in an interactive action context. They found
that attenuation occured also in the interactive context, comparable to
the attentuation of self-generated sound in an individual context.

Another aspect of the processing of differences between predictions
and feedback from reality is the intrinsic robustness and invariance
to unimportant aspects in the sensory input. Our model concerns
itself with allowing to act in (and perceive) the ever-varying nature of
its environment, while being able to attenuate the prediction errors
that aren’t surprising enough to lead to any form of adaptation (see
sec. 3.1.1). That this is also likely true for temporal prediction errors
was found in Sherwell et al. (2016) who, using EEG, saw significant
N1 component suppression in predicted stimulus onset timings. Con-
sistent with this perspective is work by Rohde and Ernst (2016), who
investigated if and in which cases we can compensate for sensorimotor
delay, i. e., the time between an action and its sensory consequence.
They find that if an error signal (a discrepancy between an expected
and an actual sensory delay) occurs we recalibrate our expectations
only if the error occurs systematically. This kind of temporal adapta-
tion is a well studied finding (e. g., Haering and Kiesel (2015) for sense
of agency or Cunningham et al. (2001) in motor control).

It is the unexpected, unsystematic and sudden temporal deviations
in sensorimotor processing that we will focus on next.
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3.4.2 Postdictive process in sense of agency

The postdictive process relies more on inferences drawn after the move-
ment, in order to check whether the observed events are contingent
and consistent with specific intentions (Wegner and Wheatley, 1999),
influenced by higher-level causal beliefs. Such beliefs may stem from
mental states of interaction partners, inferred through theory of mind.
But also expectations from folk physics might be at play, which Daniel
Dennett describes as: “Folk physics is the system of savvy expectations
we all have about how middle-sized physical objects in our world react to
middle-sized events. If I tip over a glass of water on the dinner table, you leap
out of your chair, expecting the water to spill over the side and soak through
your clothes.” (Dennett, 1989, pp. 7-8).

Temporal aspects of action-outcome integration seem to be im-
portant for this inferential process. For example, it was shown that
increasing action outcome delay decreases feeling of control (Sidarus
et al., 2013). Colonius and Diederich (2004) describe a model for the
improved response time in saccadic movements towards a target that is
visually and auditorily aligned. Their time-window-of-integration model
serves as a framework for the rules of multisensory integration. This
integration occurs only if all multimodal neural excitations terminate
within a given time interval. In van der Weiden et al. (2015) this time
interval of integration is taken as a solution to a problem posed in
the classic comparator model of motor prediction. The brain needs
to integrate action production signals with their predicted outcomes,
which can be perceived via multiple sensory channels. Such action-
outcome integration needs to account for the different time scales in
which outcomes of actions may occur.

A point not taken into account by Colonius and Diederich was
how such an integrating mechanism knows how long it has to wait
for all action outcomes to occur. Hillock-Dunn and Wallace (2012)
investigated how these temporal windows for integration – which
have been learned in childhood – develop through life. They analyzed
responses to a judgement task of a visual and an auditory stimulus to
occur simultaneously in participants, with ages ranging from 6 to 23

years, and found an age dependent decrease in temporal integration
window sizes. A possible assumption would be that a wider window
of integration can be associated with un-predictability and greater
variance in action outcome timings. A decrease of the integration
window size may be due to an adult person’s experience advantage
about effects their actions may have on their environment, or the mere
improved predictability of their full grown bodies.

Such an integration of an intended action with its predicted conse-
quences, learned through associations between action events, can lead
to an interesting phenomenon, often reported in the SoA literature.
In this phenomenon, integration can lead to the effect that predicted
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action consequences can be perceived to occur at the same time. This
phenomenon is called temporal binding, or also intentional binding, when
the effects of an intended action are predicted and are perceived as
occurring closer together as unintended actions (Haggard and Clark,
2003; Haggard et al., 2002). Temporal binding is one of the measures
often used to test for study participants’ SoA.

In sum, by and large, there are two processes that can inform SoA,
and hence can help to distinguish actions of self and other, in social
interaction. A predictive process is based on (assumed or given) causes
of the action, e. g., a motor command is executed and a forward model
is used to predict the to-be-observed sensory events.

A postdictive process works with features of an observed action
outcome and applies higher-level causal beliefs and inferential mecha-
nisms, e. g., a given intention to act, or temporal binding, to test the
consistency of the action outcome and infer a likely explanation.

3.4.3 Integrating sense of agency

How are these two processes integrated to inform SoA, and what if
their cues are unreliable? When disorders of SoA were first studied,
the comparator model was the first proposal concerning its underlying
mechanism. This was soon questioned as the comparator model failed
to account for external agency attributions. It was argued that its
evidence has to be weighted and integrated with more high-level
sources of evidence for sense of agency (Synofzik et al., 2008). The
weighting and integration of such evidence cues was studied by Moore
et al. (2009), who found that external cues – like prior beliefs – become
more influential if predictive cues are absent.

Neurological evidence for a differential processing of cues that
inform SoA comes from Nahab et al. (2010). In an imaging study, they
found a leading and a lagging network that both influence SoA, prior
to, and after an action. The leading network would check whether
a predicted action outcome is perceived, while the lagging network
would process these cues further to form a SoA that is consciously
experienced.

Further, an EEG study found evidence for separate processing areas
in the brain (Dumas et al., 2012b). They triggered predictive and
postdictive cues in two tasks. One induced an external attribution of
agency, while the other used a spontaneuous attribution condition. It
seems that in order to generate SoA, both systems do not necessarily
have to work perfectly together. Instead, the SoA might be based on a
weighted integration of predictive and postdictive cues, depending on
their respective precision (Moore and Fletcher, 2012; Synofzik et al.,
2013; Wolpe et al., 2014).
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Furthermore, the fluency of action-selection processes may also
influence self-other distinction, because the success of repeatedly pre-
dicting the next actions seem to accumulate over time to inform SoA

(Chambon and Haggard, 2012; Chambon et al., 2014). This action
selection fluency-effect seems to contribute prospectively to a sense of
agency, similar to a priming effect.

We have now discussed the literature on how the information about
our own body and actions can influence wheather we can differentate
other’s from our own self-produced actions. This information is used
in a two-process approach, one predictive and one postdictive, i. e., one
evaluates the action based on the prediction, while the latter evaluates
it in a broader context. The evaluated sense of agency, resulting from
these processes, is then integrated over time. This integration happens
in the information-theoretic context (free energy and precision) of the
current action-perception loop, and the broader temporal context that
HPBU is in.

3.5 related work in computational modeling

One aim of this thesis is to create a computational model of processes
in the two parts of the social brain that lead to dynamic production and
perception behavior, allowing the coordination of beliefs of multiple
agents. As described at the beginning of this chapter (see ch. 3),
necessary elements consist of:

1. allowing for dynamic and online perception and production of
behavior

2. enabling prior beliefs, biases or social norms to influence future
behavior

3. having beliefs about representations of behavior enable reason-
ing about other agent’s mental states

4. applying processes of perception and action strategically to
guide the dynamic coordination of such beliefs.

We now visit and review literature on computational cognitive
modeling of the necessary processes.

3.5.1 Kinds of models

Bayesian (or probabilistic) modeling is one of the big four approaches
to cognitive modeling, with the others being connectionism, rule-
based approaches, and dynamic systems. All have their strengths
and weaknesses, and have their problems to tackle, with one being
neural plausibility, and the other – which is more specific to Bayesian
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modeling – being rationality. All cognitive modeling eventually has the
goal to model the brain, processes within, or the interaction thereof,
in a plausible manner, i. e., create a reductionist account of cognition.

Bayesian modeling and rule-based approaches have the same prob-
lem: answering how rules and inference are implemented in the brain.
Connectionist accounts are deemed more neurally plausible, as they
are supposedly based on models of the same building blocks as the
brain, i. e., artificial neurons. But they also lack answers, e. g., when
it comes to how new neurons (due to neurogenesis) can partake in
an artificial neural network, or how the fine detail of the biology of
neurons influence their behavior.

Connectionist models can be described as a more bottom-up ap-
proach, while probabilistic models take the top-down perspective
when it comes to modeling the neural mechanisms underlying mental
processes. Griffiths et al. (2010) argue that the top-down perspective
is more flexible when it comes to exploring the representations and
biases underlying human cognition. Rather different is the perspec-
tive by McClelland et al. (2010), who argue that probabilistic models
sometimes serve as misleading abstractions with no real basis in the
actual process. They argue that connectionist and dynamic systems
approaches are better suited to explain the actual mechanisms that
give rise to cognition.

Commenting on these two arguments, Marcus argues that “[g]enuinely
adequate theories must borrow from each of these traditions – connection-
ism’s emphasis on development, and on how complex cognition derives from
the actions of relatively simple low-level units; Bayes’ emphasis on reverse
engineering (shared with evolutionary psychology). But both groups take a
one-size-fits-all approach that isn’t warranted by the data. Only by severing
commitments to extreme empiricism and excess adaptationism can we hope to
span the chasm between low-level neural circuits and higher-level cognition,
in a fashion that is faithful to the reality of our evolved psychology, quirks
and all.” (Marcus, 2010, pp. 2).

Another big problem for Bayesian models of human cognition are
limits of rationality. On the one hand, Bayes’ rule is inherently rational,
while on the other hand, humans have repeatedly been shown to not
be, when it comes to decision making under uncertainty (cf. Shafir
and Tversky, 1992). How prior and likelihood information is to be
optimally combined with respect to ther uncertainties is described in
Bayesian statistics, so a posterior probability estimate can be formed.
A way of representing uncertainties in the brain could be in the
form of distinct populations of neurons, as suggested in the form of
probabilistic population codes or relative timing effects (e. g., Knill
and Pouget, 2004 and for a review see Vilares and Kording, 2011).
If it were that uncertainty is taken into account at every state of the
cortical processing hierarchy in the brain, then we would be able to
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talk about a truly Bayesian brain. But given the sometimes irrational
behavior of humans, Clark (2016) describes the human brain to be
not Bayes optimal but rather, optimal at taking uncertainties in the
information from our own senses into account, making humans act
as rational Bayesian estimators (e. g., Berniker and Kording, 2008). In
that sense, the predictive processing account claims that the brain
approximates Bayesian inference, while uncovering the hidden causes
of the available information.

Let us see how these different modeling approaches have been
applied to handle the uncertainty and dynamics of motor coordination,
behavior recognition, or coordination of beliefs that form a theory of
mind.

3.5.2 Models of motor coordination

Motor control has to solve two problems to allow for comprehensive
interaction with the environment. One problem is to learn action
sequences that allow for understanding the goal of an action, by
mapping from a perceived action (in an extrinsic coordinate frame),
onto a description of muscle movements (in an intrinsic frame). The
second problem is to reach an action goal by activating the appropriate
muscles in sequence, to produce the necessary movement. This is a
hard problem, because most often many competing solutions exist, for
the mapping from an intrinsic to an extrinsic coordinate frame.

In the early days, often the planning of an optimal trajectory towards
a goal was assumed, applying models that tried to find an optimal
sequence of muscle activations (Kawato, 1999). The calculations to find
optimal action sequences was done offline, before the action event
started.

The high variability that was observed in natural movements, even
under conditions of repeated tasks, led to another strategy (Todorov
and Jordan, 2002). One which allowed for variability in redundant
task dimensions during action production, where feedback showed
that it doesn’t interfere with reaching the goal. A strategy related to
the dynamical systems view of motor coordination (Kelso, 1995). They
coupled an optimal feedback controller with the controlled motor plant
(the coupled system of moving joints) to produce a dynamical systems
model that allowed to coordinate movements to reach specified targets.
Thus, motor coordination describes the flexible and feedback-involvedMotor coordination:

the flexible and
feedback-involved

control of
movements to the
end of reaching a

movement goal.

control of movements of a motor plant to the end of reaching a
movement goal.

Paired forward- and inverse models have been proposed to model
general purpose motor behavior. Also they should be able to learn to

† The matter of how active inference could implement a comprehensive motor co-
ordination loop was also discussed in a previous publication in Kahl and Kopp
(2018).
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infer motor behavior, while a switch to an appropriate inverse model
can be performed during perception. These models incorporate ways
to handle probabilistic uncertainty during motor execution. This is
necessary to account for the sometimes considerable time delays in the
central nervous system for signal transduction and the motor execution
itself. It is also used to identify the “responsibility” (likelihood) of a
forward model to accurately model the perceived behavior. Extended
into a hierarchy of pairs of forward and inverse models, Wolpert
et al. (2003) call their model MOSAIC, and discuss and explore the
similarities between motor control and social interaction. They stress
that in principle MOSAIC should be able to account for motor control
and social interaction, although this has not been proven in practice.
MOSAIC makes strong use of sensory feedback, comparing it to a
predicted action. Feedback would influence the embedded forward
and inverse models, in order to optimize future action. Here, feedback
describes the proprioceptive feedback coming from so-called spindle-
cells surrounding the muscles as well as the joint positions that are
perceived visually.

More generally, in comparison to the fordward models used in
models of optimal control, as Friston (2011) highlights, the generative
models in perceptual inference are different and should not be con-
flated. He argues to replace the optimal control problem with active
inference, thereby making it an inference problem over motor reflex
arcs. As we will see later, this approach can use the information from
the extrinsic coordinate frame to circumvent the need for detailed
planning of muscle activations.

The recent revival of connectionist approaches was grounded in
increased processing power of modern computers, parallelization,
and also the success of new Recurrent Neural Network (RNN) and
Convolutional Neural Network (CNN) architectures. Especially, so-
called Long Short-Term Memory (LSTM) networks (Hochreiter and
Schmidhuber, 1997) found successful applications, e. g., also in senso-
rimotor control. For example, a RNN was applied on a complex robot
platform by Schilling and Cruse (2012), to perform hexapod walking.
This RNN was trained to create an internal model about the robot body,
reacting to the world. Here, the internal model could also be used as
a forward and inverse model. It not only allows to infer the forces
applied to the robot, but it also allows to optimize the robot behavior
by making predictions over future actions.

Also, another promising example should be considered, as it rests
on similar assumptions as the theoretical basis for the modeling, as
presented in this thesis. Butz (2016) proposes that LSTM networks
could be applied as predictive, generative models to be applied in a
top-down manner, generating sequences, such as those underlying
motor control. This approach was further developed into the REPRISE
model, which is described as a retrospective and prospective inference
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scheme. It takes into account the recent sensorimotor context retro-
spectively, selecting best-fitting event-models, to then prospectively
predict the next motor activations (Otte et al., 2017). REPRISE was
successfully trained to infer and predict different sensorimotor con-
tingencies in a partially observable scenario, where different kinds of
space ships have to reach a target (Butz et al., 2018). The model plans
ahead multiple time-steps of sensorimotor control, in order to reach its
goal, successfully taking into account the sensorimotor contingencies
presented by the scenario and the space ship.

Of course, these models of motor coordination are missing a mental-
izing perspective that might allow to infer mental states which might
explain the perceived behavior differently. Also, the adaptation to new
movements and situations might only be limited, as deep connectionist
models with many layers are known to be data hungry and might not
generalize to other types of movement. Nevertheless, the sensorimotor
part of HPBU employs ideas from the motor coordination literature.
Now, we turn to computational models of social interaction, as these
play a role in the mentalizing part of HPBU.

3.5.3 Models of theory of mind

We find two kinds of models in the literature on computational models
for social interaction. One kind of computational approaches under-
stands social interaction through observation, i. e., inferring beliefs
about other agents through observing their behavior. Also, there are a
few computational models that describe the direct social interaction
through modeling agents that actively participate in an interactive
task. These allow to investigate the underlying dynamics necessary
for joint action and belief coordination.

Here are some examples for inferring beliefs from observing behav-
ior: The approach of inferring beliefs of other agents has its clasical
origins in symbolic reasoning approaches, most prominently the BDI

model of computational agents (Rao and Georgeff, 1995). With its
reliance on symbolic reasoning and hard-coded rules, models based
on this framework often provide well defined representations of social
situations, but which are handcrafted very specifically. The symbolic
and rule-based approach leaves virtually no room for variability as
would be needed to interpret real-world behavior.

To better cope with uncertainty, probabilistic approaches have been
proposed for recognizing an agent’s behavior from observation (also
referred to as plan recognition) early on. This has traditionally been
done, either by directly translating and representing the plan recog-
nition problem into a Bayesian network, and to represent possible
explanations in a probability distribution (Charniak and Goldman,
1993). Also, this can be done by applying a general Dynamic Bayesian
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Network (DBN) to allow for temporal reasoning (Dean and Kanazawa,
1989) and, e. g., predict a player’s next action in an adventure game
(Albrecht et al., 1998). For example, Han and Veloso (2000) applied
multiple networks of DBN’s specialized cousins – Hidden Markov
Models (HMMs) – to recognize robot behavior, where each HMM
infers a single plan behavior with their hidden variable.

Taking a step beyond plan recognition, Pynadath and Marsella (2005)
describe a method called PsychSim. It is used to simulate how agents
would take other agents into account. It would not only represent
beliefs about the world, but also assume them in other agents and
include these during decision making, though this model does not
infer mental states of agents from their behavior.

Again, with a focus on inferring the beliefs of agents, Baker et al.
(2011) propose a framework called Bayesian Theory of Mind (BToM)
which is based on a process called Bayesian inverse planning. It as-
sumes that human reasoning on observed behavior is based on gener-
ative processes that allow them to rationally generate behaviors, given
the state of the environment, their beliefs, the beliefs of other agents,
and so on. Further, they assume that humans infer the goals of others
by inverting this generative process.

Following the idea of inverse planning, Pöppel and Kopp (2019)
describe an approach following the bounded rationality idea, i. e., that
human decision making is only optimal given the information we
have. Further, they follow the assumption that humans strive for being
good satisficers, i. e., to “choose options that are good enough to satisfy
a given need instead of actually evaluating all possible options in order to
choose the objectively best one” (Pöppel and Kopp, 2019, pp. 2). In the
context of inferring agent’s goals from observing their behavior, they
present a switching model that provides specialized models of different
complexity that can be applied when simpler models can no longer
provide meaningful explanations. They found that specialized models
can outperform complex models, where applicable, and found the
switching model approach to outperform the naive (or more general)
approach.

In light of recent innovations in the connectionist approach, called
Deep Learning, progress was made to infer a theory of mind from
observing another agent’s behavior. Rabinowitz et al. (2018) trained re-
current neural networks and extracted high-dimensional embeddings
onto a two-dimensional plane. This way, clusters could be found that
could be interpreted as an agent’s observable behavior, mapped onto
a representational space of mental states. It requires large amounts of
synthetic training data, which makes it unpractical to use for human
behavior, but the network could predict an agent’s behavior from these
inferred mental states.

These symbolic and rule-based approaches are limited in their ability
to infer mental states from behavior that is grounded in more dynamic
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and often quite variable real-world movements that make it necessary
to integrate behavior information over time. Also, the coordination of
beliefs, while taking into account the mental states of multiple agents,
are problems that have yet to be solved.

3.5.4 Models of direct social interaction

In contrast to the approaches above, models of direct social interaction
try to understand the dynamics underlying social interaction between
agents that stand in direct contact. Direct contact means they are
either directly coupled physically, or in a more loose manner, coupled
through communication, in a joint action task.

Only very few computational models of direct social interaction can
be found in the literature. One model of joint action was developed
by Pezzulo and Dindo (2011), which was used to show how shared
representations can help solve interaction problems. The model was
based on a probabilistic account with two levels of Dynamic Bayesian
Networks, where at the lower level the same “circuitry” is used for
action production and perception, in the form of forward and inverse
models of activation. The higher level model provides a “motor simula-
tion” process, which is guided by prior intentions, in order to allow for
action intentions to be inferred. The interplay between both levels is
in both directions, allowing prior intentions to bias action perception,
and recognized motor primitives can act as abstract representations of
the joint task with an interaction partner.

Recently, similar computational models were used to investigate
the dynamics of turn-taking in conversation, with multiple agents
interacting. They showed that sensorimotor communication and pre-
diction of the intention behind the other’s action brings the best results,
minimizing the gap between turns (Donnarumma et al., 2017). Sim-
ilarly, Sadeghipour and Kopp (2010) present the Empirical Bayesian
Belief Update (EBBU) model, a probabilistic model that implements a
mirroring-based account of the perception and production of iconic
gestures. In this model, a hierarchically organized representation of
motor knowledge is used during action perception by forward models
that formulate probabilistic expectations about possible continuations
of the observed gesture. The same representation is used for action
generation, with probabilistic interactions between both processes to
model, e. g., priming and resonance effects, and it is expanded by
way of inverse models when an unknown action is encountered. They
describe how this works during interaction with a human interaction
partner, who interacts with a virtual agent that is equipped with the
EBBU model.

Also, in a first prototypical model of the work presented in this
thesis, a version of the EBBU model (ibid.) was extended to commu-
nicate with a heuristic mentalizing model (Kahl and Kopp, 2015). In
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that paper the question was investigated how mere action observation
needs to be complemented by higher order mentalizing, and how
those systems need to interact, in order to account for the dynamic
inter-agent coordination mechanisms that are required for successful
communication. Using an interactive communication game with two
virtual agents (both equipped with the mirroring and mentalizing
model) it was investigated whether 1st order mental state attributions
are sufficient to infer the information, necessary to successfully act to-
wards a communicative goal, or whether higher-order theory of mind
can give a distinct advantage. These results demonstrated that mental-
izing affords interactive grounding, and thus makes communication
more robust and efficient.

What is missing in these previous accounts are approaches to mod-
eling the simultaneous production and perception of behavior. This
is necessary not only to confirm the correct production of own ac-
tions, but also to be able to observe behavior of other agents, even
during own action production. Also, the extended EBBU model imple-
mented mentalizing processes as simple heuristics, without being put
on the same foundation of handling uncertainty, as the sensorimotor
processes.

Also, there are some proposed computational models on direct so-
cial interaction without implementation and evaluation. For example,
Brandi et al. (2019) propose a computation model based on predictive
processing to be used to analyze data from ecologically valid and in-
teractive study designs. They also review the literature on how virtual
reality can help to simulate social interaction to better study so-called
social agency. Social agency can be defined as a form of feeling of con- Social agency: a

feeling of control
within social
situations.

trol within social situations, e. g., being able to predict an interaction
partner’s contributions to a conversation. Similarly, Fotopoulou and
Tsakiris (2017) discuss the connection between interoception and social Interoception: a

sense of the internal
state of the body.

interaction. Interoception describes a sense of the internal state of
one’s body (Khalsa and Lapidus, 2016). They argue that an awareness
of self (through interoception) is crucially linked to the experience
of dynamic social interaction. Rightfully, they make a call for more
work on computational models of social interaction, in order to reach
mechanistic explanations for what makes it so special.

3.5.5 Models of interactive brain dynamics

When it comes to synchrony between interaction partners, there is
not only evidence for synchronizing behavior. Also, the synchrony
between activity in the brains has been suggested, between interaction
partners who’s behavior aligns. Such a correlation between behavioral
and brain synchrony has been found by Dumas et al. (2010) who made
hyperscanning EEG recordings.
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Later, Dumas et al. (2012a) created computational models of weakly
coupled non-linear oscillators – the so-called Kuramoto model (Ku-
ramoto, 1975). A model commonly used in the study of synchroniza-
tion phenomenon in physics. The oscillators were coupled to conform
to the points of localized activity from the EEG recordings, to represent
one brain. Then they created a sensorimotor coupling between two
oscillator brain models. Testing the coupled oscillator brain models
in different tasks of reciprocal social interaction, they found that the
anatomical similarity between humans could explain a tendency to
enter in synchronized brain activity, while being in the same context
(coupled or not). Kelso et al. (2013) summarize their research into the
oscillatory and bidirectional nature of brain dynamics, i. e., within the
brain between neuronal ensembles, or between two brains in social
interaction. They argue that there are basically two forces at play in
dynamic coordinating brain systems: 1) The coupling between infor-
mation exchanging systems allows to distribute information and by
that allows for joint action. 2) The autonomy of individual systems
controls the influence of other systems. The interplay between both,
so they argue, leads to a form of self-organization. Or in other words:
despite individual differences between neural networks in two inter-
action partner’s brains, they will find a form of self-organization that
forms or breaks patterns of harmonizing activity.

With a similar approach to modeling the dynamics of social inter-
action, Friston and Frith (2015b) tackle the problem of interpreting
the intention behind communication. They create a model based on
active inference, i. e., action fulfills our predictions about our own
behavior. In coupling two models, with each producing sequences
of bird songs, they found that the models could successfully predict
the other model’s bird song and attennuate any resulting prediction
error. This showed that the hidden variable of the bird song must have
been successfully inferred. Otherwise the song could not have been
attennuated.

Although these models of interactive brain dynamics do give ac-
counts of synchronized activity between brains, there are no explicit
mental state attributions. These might not be necessary for coordi-
nating behavior that leads to a form of belief coordination, in the
form of synchronized activity. But to allow for the necessary reasoning
and strategic coordination of belief attributions, a rule-based form of
coordination recipes might be necessary.

3.6 differentiation and contribution

The reviewed models all are missing one or more of the elements
necessary for dynamically perceiving and production behavior during
communication, to the end of coordinating inferred beliefs in direct
social interaction. The necessary elements consist of 1) allowing for
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dynamic and online perception and production of behavior, 2) en-
abling prior beliefs, biases or social norms to influence future behavior,
3) having beliefs about representations of behavior enable reasoning
about other agent’s mental states, and 4) applying processes of per-
ception and action strategically to guide the dynamic coordination of
such beliefs.

Some limitations of the presented models are simply due to their
limited modeling scope. For example, models of motor coordination
are simply not meant to incorporate a mentalizing perspective. But
some of their limitations are more dependent on their modeling ap-
proach, rather than scope. One is the inability to adapt to unknown
movements, i. e., learning is not supported or very limited. This can
lead to limited robustness to infer the correct action understanding
from real-world movement data. Indeed, a lack of robust action un-
derstanding directly influences the model’s potential ability to infer
mental states from an observed agent, rendering attempts of belief
coordination impossible. Also, previous hierarchical models have not
attempted to allow for simultaneous production and perception of be-
havior, as necessary to perceive another agent’s behavior during one’s
own action production. In models of direct social perception, e. g.,
modeling brain dynamics, no explicit mental state attribution is made.
At the moment, such models lack the necessary rule-based recipes
for coordination. To allow a form of coordination, an ability to im-
plement more complex feedback structures is necessary that would
allow strategic alterations to an agent’s own brain dynamics. But also,
simple heuristics for mentalizing (as applied in Kahl and Kopp, 2015)
might not be enough, as they are not able to extend to new situations
or be robust enough to handle variable real-world input.

The cognitive modeling approach presented in this work attempts
to tackle these limitations. We call it Hierarchical Predictive Belief Up-
date (HPBU). HPBU is a hybrid model that combines a linear dynamic
systems approach with a form of hierarchical and empirical Bayesian
updating. The hierarchical levels of increasing abstractions allow to
model sensorimotor processes as well as mentalizing processes. This
is necessary for dynamic and online processing of behavior, inference
of mental states, and the automatic or strategic coordination of beliefs
during social interaction. The model makes similar assumptions as the
Helmholtz machine, i. e., trying to find approximate representations
for the statistical dynamics in the signal. Thus, it will learn represen-
tations that are grounded in the dynamics the system is exposed to,
during action and perception. But instead of two seperate streams for
recognition and for generation (or forward and inverse models, e. g.,
as in Wolpert and Kawato, 1998), only one generative model will be
necessary to account for – and minimize – uncertainty during percep-
tion, while catering to the need for stabilization during action. As its
foundation, with the modeling approach presented here, we argue
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for the use of predictive processing, with the long-term minimization
of uncertainty, or the so-called free energy principle. Through that,
it will be able to handle uncertainty in the perceived behavior by
allowing for uncertainty minimizing beliefs to become predictive in
the hierarchy top-down, and have an effect on the belief coordination
between interaction partners.



4
M O D E L I N G A P R E D I C T I V E P R O C E S S I N G
H I E R A R C H Y

The combined modeling approach, called HPBU (Hierarchical Predic-
tive Belief Update), covers two parts related to the functional networks
of the social brain: the sensorimotor part, and the mentalizing part
(see ch. 5). First, we will visit the modeling of the predictive process-
ing hierarchy (sec. 4.1). After that the computational sensorimotor
processing part will be described (sec. 4.2). It is based on a hierarchy
over increasingly abstract representations about behavior, which is
learned using a self-supervised approach (sec. 4.2.5).

4.1 hierarchical predictive belief update

First we will visit the modeling assumptions, and the corpus data that
will be used. Then, a detailed description of the actual model will
follow, starting with a description of the generative model embedded
in a dynamic environment. It is followed by a description of the
information passing and belief updating between layers and with the
environment.

4.1.1 Modeling assumptions

Computational cognitive modeling necessarily needs a set of assump-
tions that guides the kinds of algorithms that can be applied under
limitations of cognitive plausibility. Cognitive plausibility is guided by
results from cognitive psychology and cognitive neuropsychology,
and optimally would also take resource limits into account, which
would even limit the computational complexity. Included in this list
of assumptions are also some which may have been included based
on implementation necessity. I will try to mark these as such, since
it is problematic to confuse assumptions driven by implementation
concerns with those driven by theory (Cooper and Guest, 2014).

Assumptions that have guided the work on the HPBU, and on the
model of the sensorimotor system specifically, are:

• First of all, we assume for the model that the cortex is hierarchi-
cally organized into functional processing entities, called cortical
columns. This does not entail a singular hierarchy, rather it is
more likely that there are multiple uni-sensory hierarchies that
overlap with others in multi-sensory areas, which might fur-
ther be processed in a hierarchical manner. Such an assumption
entails an ontological structure, of primitive representations in

65
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lower levels of the hierarchy that are processed to become ever
more abstract representations, higher up in the hierarchy.

• Further, representations in the hierarchy are combining visual,
motor, and proprioceptive aspects of action, if available. Con-
sequently, they are used as high-level, or visuomotor represen-
tations of action and their outcomes. This also points to the
embodied nature of cognition (Wilson, 2002). This assumption
is based on converging evidence for the multimodal nature of
representations that can be found in somatosensory, primary
motor areas, and premotor areas of the human brain, which can
code for both visual and proprioceptive information (Fogassi
and Luppino, 2005; Gentile et al., 2015; Graziano et al., 2000;
Pipereit et al., 2006; Wise et al., 1997).

• The hierarchy will exhibit a generative model, with each level
consisting of a generative process. Their outputs are utilized as
predictions. This is of importance, because when the difference
between a predicted and perceived effect is minimal, so is the
need for further processing of that sensory percept, which saves
energy and aids in the survival of the organism. Also, given
the high energy consumption of our brain, compared to other
organs of our body (Raichle and Gusnard, 2002; Sokoloff et al.,
1955), it is vital for us to conserve as much energy as possible.

• Representing the statistical dynamics in the environment is a
goal similar to that of the Helmholtz machine, but instead of
two seperate streams, for recognition and for generation (as
discussed in par. 3), only one generative model will be necessary
to account for – and minimize – uncertainty during perception,
while catering to the need for stabilization during action. This
also pertains to how uncertainty can be represented in the form
of probabilities.

• Dealing with uncertainty is central to cognition. One account
of the processes of cortical function that takes uncertainty into
account in the form of probabilities, is predictive processing (Clark,
2016; Friston and Kiebel, 2009). This can be understood as a more
general mechanistic property of efficient information processing
systems that are in exchange with other social agents, and with
their environment (Friston, 2013).

• One basic assumption that might be implementation driven, is
that the dynamic environment unfolds as an ordered sequence of
states, where input can induce dynamic trajectories in represen-
tational state space embedded in the brain. Further, it is assumed
that the brain is a generative model of such trajectories, but in a
hierarchical form that enables it to categorize and represent sim-
ilar sequences. Such a hierarchical generative model can exhibit
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multiple time scales, e. g., sequences covering longer times scale
can generate sequences of shorter time scale. A similar idea was
previously explored in Kiebel et al. (2009).

• Principles underlying the information exchange between lev-
els of the model depend first and foremost on the hierarchical
structure, with main connections to direct neighbours, as it was
found between cortical columns for the supposed microcircuitry
for predictive coding (Bastos et al., 2012). In addition, long-range
connections transmit necessary information to levels when nec-
essary, breaking up the strict hierarchical communication. This
could be interpreted as an implementation level assumption,
but as the human brain does not only consist of the neo-cortex,
and has ample thalamo-cortical connections, so does HPBU not
exclusively model intra-cortical processing.

• As already discussed (see sec. 3.5), the computational cognitive
model presented here is a hybrid model combining a linear
dynamic systems approach with an empirical and hierarchical
Bayesian update, trying to find approximate representations for
the statistical dynamics in the input signal. Thus, representations
will be grounded in the dynamics the system is exposed to
during action and perception.

• To represent the statistical dynamics in the environment, surpris-
ing events are learned by extending the model’s state space. That
is, the discrete distributions as well as the representations are
extended to account for the surprising event on different levels
of the hierarchy.

As described earlier (see sec. 2.1.3), a specific focus of the present
research is non-verbal communication, such as writing, gestures or
social gaze. Representations of speech and gesture have been found
to be intimately connected (e. g., Alibali et al., 2001; Goldin-Meadow
and Beilock, 2010), with gesture also being part of a loop of self-
directed speech – similar to writing – that can help in your own
thinking process (McNeill, 2008). Generelly, there is ample evidence
for non-verbal communication to be an ontogenetic and phylogenetic
precursor for verbal communication (Tomasello, 2008). In order to train
and evaluate our computational model of non-verbal communication,
we will now visit the handwriting corpus that was recorded for the
purpose of studying this.

4.1.2 The corpus of handwritten digits

Usually when handwriting recognition is tested in the machine learn-
ing and artificial intelligence literature, the MNIST (or modified NIST)
dataset comes to mind (Lecun et al., 1998). MNIST consists of 60.000
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training images and 10.000 test images of size-normalized images of
hand-written digits. MNIST was not used for training HPBU, because
it does not contain the necessary sequential information.

Another dataset contender was released only a couple of years
ago. The Omniglot corpus was first constructed to be tested on a
novel one-shot Bayesian Program Learning approach by Lake et al.
(2015). Omniglot contains the sequential and temporal information
of multiple sequences of each 1623 hand-written character from 50

writing systems. The handwriting sequences were collected using the
Amazon Mechanical Turk service, where participants had to draw
the shown characters by hand. The drawings vary greatly in writing
speeds, consistency, and fluency. This may be due to the artificial
nature of the recordings, where participants had to write characters
that they were not familiar with. To circumvent known problems with
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Figure 4.1: Examples of handwriting in the corpus of handwritten Hindu-
Arabic numerals, from one recorded participant.

the existing datasets, we recorded our own, of all ten Hindu-Arabic
numerals, written by 5 participants that were familiar with writing
these on a daily basis. Each participant recorded each digit 10 times,
resulting in 500 written digits (for an example by one participant, see
fig. 4.1).

Recordings were collected using an iOS app that was first developed
for the purpose of recording the corpus of handwriting digits on an
6th generation Apple iPad, using the Apple Pencil as a means of input.
This setup was chosen for its natural input characteristics.
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In the resulting 500 written digits a large amount of variance can
still be found with respect to the speed and sequence of how digits
are written in each individual’s writing style. This certainly creates
problems for algorithms to compare these sequences, because many
are only able to compare sequences of similar size. We will return
to this problem later. Still, one can argue that these sequences of
handwriting are at least natural in their appearance and dynamics.

4.1.3 Generative model and the environment

We now dive into the formal description of the environment the model
has access to and the model itself.

Each level L of the hierarchical generative model maps its internal
state space Li onto the domain of its next lower level Le via map,
representing the actual mapping function map : Li → Le of each level
of the hierarchy. Conceptually, this describes the top-down influence
from a higher level in the hierarchy. Also, the model maps from
external to internal states (Li) to minimize entropy. Conceptually, this
describes the bottom-up influence from a lower level in the hierarchy.
What is described as external depends on where in the hierarchy the
level is situated.

Entropy minimization can be described as a function of h : Le → Li
which maps external states onto internal states in a way that minimizes
entropy (see eq.4.2).

h(Le) = arg min
li∈Li

H(Le|li) (4.1)

H(Le|li) = −
∑
le∈Le

P(le|li) ln P(le|li). (4.2)

The sensorimotor part of the hierarchy consists of four levels, the
C level (Schemas), the S level (Sequences), and in the lowest levels,
M level (Motor) and V level (Vision). For levels M and V the external
states describe the sensory states of the system, which they will map
to if possible.

The environmental state space consists of X = R2 and discrete time
T = R. It is defined in terms of a dynamical system of (X, T ,ϕ, ϑ).
ϕ : T → X is a function of discrete movements over time, observable
by the system. ϑ : X× T → X′ is a function of movements (from up-
dating positions) in the environmental state space. The model must
figuratively be understood as a box that connects to a hand that is
glued to a writing pen. The hand can be moved through ϑ.

The specific levels of the generative model (C,S,M,V) are sequen-
tially updated. They are updated in sequence, starting at the top,
from it’s next higher and next lower levels (if available). They thereby
learn to represent and produce the states in their next lower level,
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and observe joint positions in the environment x = ϕ(t), which it can
influence using a movement m ∈M, resulting in x′ = ϑ(m, t).

Each level of the generative model contains its own discrete proba-
bility distribution, where each probability describes a hypothesis of
one discrete representation. The calligraphically styled level-variable
denotes the random variable contained in that level, e. g., C is the ran-
dom variable contained in level C. This results in a joint distribution
of the hierarchy, as follows:

P(C, S,M,V, x) = P(C) · P(S|C) · P(V|S) · P(M|S) · P(x|M) (4.3)

4.1.4 Inter-level communication

The here presented hierarchical generative model depends on a fast
exchange of information between levels. As already mentioned, the
generative model will be updated in sequence, starting at the level at
the top of the hierarchy.

The difference between continuous and discrete states in the context
of active inference is well discussed in Friston et al. (2017a). They
explain that under discrete states the updating of beliefs depends on a
so-called message passing scheme, while under continuous states we
would describe a predictive coding scheme. The difference being that
under predictive coding only prediction errors are communicated to a
next-higher level in the hierarchy. The updating of beliefs, and how
message passing is handled in the model of discrete states presented
here will be discussed later (see par. 4.1.4).

Generally, there are three kinds of information being transmitted
between levels in the hierarchy. Two of those are transmitted between
direct neighbours, while one is used for either broadcasting or more
specific transmission to other levels. First, information being transmit-
ted to direct neighbouring levels are prediction data and feedback data.
Prediction data consists of a level’s posterior probability distribution,
containing updated beliefs for all representation hypotheses of that
level, being send to that level’s next-lower neighbour. Second, the same
data is being send to the next-higher neighbouring level as feedback
information.

To clarify, this model does not implement a standard hierarchical
Bayesian updating scheme. Of course, this is a probabilistic hierarchy
akin to a hierarchical Bayesian model. But, a linear dynamic update
at each level is a vital part of the belief updating that incorporates
top-down and bottom-up information, and also, new representations
can be added to the levels as needed. There are no standard Bayesian
update approaches to updating these hierarchical Bayesian models
in this dynamic sense. Rather, HPBU implements empirical Bayesian
updating to incorporate predictive top-down information with the
posterior from the last time step, which has become the prior for the
current time step. Similarly, an empirical Bayesian update incorporates
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bottom-up feedback information with the posterior from the last time
step. This results in a posterior that is based on bottom-up information
(Pbu), and a posterior that is based on top-down information (Ptd).
Combining these is up to a variational updating scheme based on
Kalman filtering (which can be understood as a linear dynamic model),
which will be discussed next.

The third kind of information transmission is described as long-range
connections, which are used to broadcast information relevant for other
levels. Long-range connections are also used to transmit information
similar to the function of a corollary discharge or efference copy to inform
a level about what information to expect. This kind of information
transmission is vital for closing the visuo-motor coordination loop, as
will be explained soon (see par. 4.2.2).

calculating free energy The HPBU model is defined as a
hierarchical generative model which learns to predict and explain away
prediction errors and in this sense minimize its free energy. The free
energy, calculated for each level, is used as a measure of uncertainty of
its fit to the environment. In HPBU this measure of uncertainty is used
to calculate weighted belief updates, and to threshold the learning of
new representations. Free energy describes the negative log model
evidence of a generative model that tries to explain hidden states, e. g.,
events in the environment.

Evidence corresponds to probabilities of data from the environment,
given the model at hand. Each level of the hierarchy contains a discrete
random variable X, for which two states are represented separately.
The prior P stands for the top-down posterior Ptd, while the posterior
Q stands for the bottom-up posterior Pbu of X. So in effect, free energy
will be caculated between a variable that incorporates predictions
from the next-higher level, and a variable that incorporates (external)
sensory-, or feedback information from the next-lower level.

The free energy in each level is expressed as the sum of surprise Surprise: each
model’s
self-information
which, when
averaged over all
states, corresponds to
the model’s entropy.

over the level’s internal prior state P, and a cross entropy of two
states (the prior P, and a posterior Q after evidence has arrived).
Each level’s state-representation corresponds to a model (or policy)
Xi ∈ X. Surprise describes each model’s self-information, or negative
log model evidence −lnP(Xi) (Parr and Friston, 2019). Averaged over
all models represented in X, surprise corresponds to the entropy of
the level’s states, as in:

F(X) = H(P(X)) +DKL(P(X)||Q(X)) (4.4)

= −
∑
i

P(Xi) lnP(Xi) +
∑
i

P(Xi) · ln
P(Xi)

Q(Xi)
(4.5)

This formulation is a form of expected free energy, because here
the prior probabilities of possible outcomes are not explicitly involved
as they are part of the represented states (Parr and Friston, 2019).
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In other words: in this hierarchical generative model, each level’s
state-representations correspond to models (or policies) that contain
possible future outcomes.

Free energy in HPBU is calculated based on current information, to
select a currently best fitting model. This best fit (or likelihood) is
calculated differently, depending on the kind of representations a level
contains, i. e., sequence-based or cluster-based. The next possible steps
(toward an outcome) will be calculated in sequence-based levels, trans-
lating their sequence-based representations into possible observations
of their next-lower level. In cluster-based levels the membership of a
perceived sequence-representation is evaluated, to establish cluster or
schema, in effect forming abstractions over similar sequences.

variational belief update To update level beliefs, both poste-
riors will be combined to form the current level-posterior Pt. In this
setting, the top-down posteriors play the role of prior beliefs, while
the bottom-up posterior is the evidence. The difference between the
bottom-up and top-down posteriors can be treated as a prediction
error. Both are entered into a Kalman filter to create a linear dynamic
system. The to-be calculated Kalman gain K is used to differentially
weigh bottom-up evidence against top-down predictions, and plays
the role of a precision-weighting. K is a function of free energy F
(eq. 4.9) and the precision factor π, i. e., the inverse of the variance of
the prediction error (eq. 4.8).

This is similar to the identified cortical microcircuitry for predictive
coding (Bastos et al., 2012), where it was described that connections
between cortical columns are mostly inhibitory. Here, belief updat-
ing is described as modeling a top-down inhibitory influence that
attennuates the bottom-up information:

Pt = Ptd +Kt(Pbu − Ptd) (4.6)

Kt =
Ft

Ft + πt
(4.7)

πt = ln
1

σ2(Pbu − Ptd)
(4.8)

Ft = H(Ptd) +DKL(Ptd||Pbu) (4.9)

To be exact, the posterior probability distribution over represented
beliefs are updated over the whole time course of perception or action.
Thus, the belief update integrates the filter (eq. 4.6) into the dynamically
updated hierarchical model context (eq. 4.7-4.9). Still, free energy
describes the current upper bound on surprise (or model evidence),
as a measure of uncertainty.

This belief update as well as the calculation of the Kalman gain
are both performed with every new observation or prediction. If
necessary, at every time step it allows for the selection of a new
approximate maximum posterior representation, until free energy is
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(hopefully) minimized after perception or action are finished. This is Variational belief
update: beliefs are
updated dynamically
while taking the
current model
uncertainty into
account.

called variational belief update, performed in every level of the hierarchy.
In the belief updating approach applied in HPBU, the difference

between perception and action lies in the question: which of both drives
the belief updates, the bottom-up or the top-down information? When
it comes to calculating the level posterior distribution Pt, it is the
Kalman gain K that sets the belief update towards either: maintaining
the prior information from Ptd to drive action, or towards having
the prior being strongly updated by information from Pbu, to drive
perception.

normalization Before each belief update, the last level posterior
Pt−1 will be used as an empirical prior for calculating Pbu and Ptd,
respectively. We will soon discuss this for every level of the hierarchy.
Pt is normalized after each belief update. In this normalization step

Laplace smoothing is used (Manning et al., 2008, pp. 193). It corrects
for numerical errors that due to limits in floating point accuracy, can
result in single probabilities reaching P = 1 or P = 0:

P̂t(Xi) =
Pt(Xi) +α∑
i Pt(Xi) +α

∀Xi ∈ X (4.10)

Here, it simply adds α = 0.0001 to each count, to leviate possible
numerical errors. This smoothing step can be interpreted as a uniform
prior, which is updated with the level posterior.

4.2 modeling a sensorimotor system

This section describes a predictive-processing based model of a senso-
rimotor system, which corresponds to the MNS. Later, the second part
of HPBU will be described: the mentalizing part, which corresponds
to the MENT (see ch. 5). Fig. 4.2 depicts a technical overview over the
sensorimotor part of HPBU. It enables perception and production of
behavior in a hierarchy of increasing abstractions over simple move-
ment primitives, as represented in the lowest levels V (Vision) and
M (Motor). Level S (Sequences) represents sequences of movement
primitives and is part of the motor-coordination loop implementing
active inference. The highest level of the sensorimotor part of the
model consists of level C (Schemas), which forms clusters over similar
level S representations.

4.2.1 Level definitions and updates

The model must figuratively be understood as a box that connects to
a hand that is glued to a writing pen, which can be influenced, while
the box also perceives the trajectories of what is written on a piece

Figure 4.3 has already been published in Kahl and Kopp (2018).
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M: Motor

V: Vision

C: Schemas

S: Sequences

action

perception

Figure 4.2: Depicted here is a technical overview of the sensorimotor part
of HPBU, enabling the perception and production of behavior.
At the top, level C (Schemas) clusters similar level S (Sequence)
representations in the form of schemas. Sequence representations
in level S allow the prediction of movement primitives in level V
(Vision) and M (Motor). Producing an action sequence triggers
the consecutive active inference of movement primitives in level
M towards the predicted movement target from level S, thereby
minimizing prediction error. Once minimized, level M will inform
level V to check its success and close the motor loop.

of paper. Fig. 4.3 shows a sketch of the modeled cortical hierarchy
of the sensorimotor processing part of HPBU and how it is connected
to its environment. Predictions are sent top-down and compared
with sensory (bottom-up) evidence to drive belief updates within the
hierarchy.

At the top, in the C level abstract clusters of similar action sequences
are represented. Below that, the S level represents sequences of visuo-
motor acts. The lowest levels in the model hierarchy allow for action
production, and proprioceptive feedback in M level and visual input
and action feedback in the V. Red and blue lines represent bottom-up
and top-down information propagation, respectively. The blue dotted
line from V represents a visual prediction without any effect on the
world, while the blue line from M has a causal effect. The red dotted
line from M represents a long-range connection, further explained
below.
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Figure 4.3: Depicted is a sketch of the modeled cortical hierarchy of the
sensorimotor part of HPBU. Predictions are sent top-down and
compared with sensory (bottom-up) evidence to drive belief up-
dates within the hierarchy. Depicted levels have loose associations
with the displayed cortical and subcortial structures. In schema
(C) level, abstract clusters of similar action sequences are repre-
sented. Below that, the sequence (S) level represents sequences
of visuomotor acts. The lowest levels allow for movement per-
ception and production. Movements are updated X′ ∈ R2 with
proprioceptive feedback in motor control (M) level, and visual
input X ∈ R2 in vision (V) level. Red and blue lines represent
bottom-up and top-down information propagation, respectively.
The blue dotted line from V represents a visual prediction with-
out any effect on the world, while the blue line from M has a
causal effect. The red dotted line from M represents a long-range
connection.

Depicted levels have loose associations with the displayed cortical
and subcortial structures. Schema and Sequence levels are associated
with Primary Motor Cortex and Premotor Cortex areas which, as
already discussed, are assumed to code for (visuo- or) senso-motoric
forms of action sequences. Vision level representations code for the
perception of movement directions, similar to area Medial Temporal
(MT) in the visual cortex. The polar coordinates used in S are relative
oculocentric coordinates (φ, r) of the visual field which, when seen in
sequence, are similar to saccadic eye movements. Such a gaze-centered
oculomotor frame of reference has been shown to code for the visual
targets for reaching, and other actions (Ambrosini et al., 2012; Engel
et al., 2002; Russo and Bruce, 1996). In Motor level M these coordinates
will guide action in the form of movement goals. The production and
proprioceptive feedback of movement in different directions is coded
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in the Motor Control level M. It corresponds to reflex arcs, embedded
in the tight coordination of basal ganglia, spinal cord, and cerebellum
for the description of the motor coordination loop (see par. 4.2.2).

levels and representations At the top of the hierarchy we
find level C (Schemas), which represents abstract clusters of similar
action sequences in so-called schemas. Level C consists of cluster
representations {c1, . . . , cn}, and contains a discrete probability dis-
tribution C over these n discrete states. The calligraphically styled
level-variable denotes the random variable contained in that level, e. g.,
C is the random variable contained in level C. Every discrete state’s
probability will be represented in its level’s respective discrete prob-
ability distribution, e. g., for ci ∈ C: P(ci) represents the respective
cluster representation’s probability from C. Each schema cn clusters
sequences S′ ⊆ S by similarity, and finds a median in the cluster,
representing the schema as a cluster prototype c̃n. It maps to its next
lower level S with s : C 7→ S.

Below level C, sequence level S represents action sequences {s1, . . . , sm},
and contains a discrete probability distribution S over these m dis-
crete states. Each action sequence sm contains a tuple of observed
movements (o1, . . . ,ok) in polar coordinates at time t ∈ T with
ok = (θ, r), and the time delay between observations (∆2, . . . ,∆k),
with ∆k = tk − tk−1.

That is, S (Sequences) maps to it’s next lower level V (Vision) with
v : S 7→ V where S consists of sequences of salient states from V. To
detect a salient event ok in V the model free energy Ft(V) is calculated
(see par. 4.1.4), given two consecutive input events from environmental
state space ϕ(t). If then Ft(V) > Ft−1(V), a salient event was detected,
as the updated model was not able to correctly predict the current
input event.

The lowest levels of the hierarchy represent visuomotor primitives,
allowing for action production, visual input, and proprioceptive feed-
back. V (Vision) and M (Motor) code relative movement angles of a
joint in i = 16 directions {v1, . . . , vi}. Visually, this is represented in
V, which also contains a discrete probability distribution V of these i
discrete states. Each vi represents a movement visually perceivable by
the model. In addition, a jump in writing (placing the pen at another
point to resume writing) is detected and stored as a jump-flag. Relative
movement angles are also coded in M, where each mi is a possible
movement applicable to the joint, which can then be proprioceptively
perceived by the model. M also contains a discrete probability distri-
bution M of these i discrete states. In addition, level M is the only
level that can influence the environmental state space X using:

m′ = arg max
mi∈M

P(mi), (4.11)

which results in a movement in ϑ(m′, t).
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With this in mind, let us turn to each level’s update mechanism of
both: the bottom-up posterior and the top-down posterior.

intra-level bayesian update The presented model (so far)
consists of just three different update mechanisms. Later in the section
on the extended version of HPBU that covers the mentalizing part, we
will revisit the update mechanisms, where necessary.

The type of level, either sequence-based or cluster-based, will de-
termine the kind of update. With the exception of the Vision and
Motor Control levels, two types of level-updates are differentiated
based on the kind of representation: a sequence-based update and a
cluster-based update.

For a technical overview of these and additional calculations em-
bedded in the input and output of levels S and C, please have a look
at fig. 4.4.

C: Schemas

S: Sequences
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Figure 4.4: This technical overview shows the following input and output
calculations embedded in levels C and S: (a) the bottom-up update
of C is described in eq. 4.13, (c) describes the detection of suprising
sequences (par. 4.2.5), (d) is the top-down (eq. 4.15), and (e) the
bottom-up update of S (eq. 4.16), with (f) describing the detection
of surprising movements (par. 4.2.3).

The schema level C clusters representations from sequence level S
by similarity, to find clusters of similar action sequences, along with a
median action sequence that represents the cluster as a prototype.

Comparing action sequences will be discussed later (see par. 4.2.3)
as well as a detailed explanation for the clustering algorithm used
here (see par. 4.2.5).

Level C calculates it’s bottom-up posterior Pbu(C) using the soft
evidence “all things considered” method over updated sequence prob-
abilities, given the schema cluster it belongs to (for more information,
please see Darwiche, 2009, ch. 3.6.1).

Pbu(C) := Pt(C|S) (4.12)

Pt(cn|S) =
∑
sm∈cn

Pt−1(sm)Pt(cn|sm) ∀cn ∈ C (4.13)
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The top-down posterior for level C will be discussed later (see
sec. 5.2), when there is a next-higher level to update from, in the
description of the mentalizing model.

Level S calculates its top-down posterior Ptd(S) from a mixture of
experts.

Ptd(S) := Pt(S|C) (4.14)

Pt(S|C) =
∑
cn∈C

Pt(S|cn) · Pt(cn) (4.15)

For the bottom-up posterior Pbu(S) the sequence probability needs
to be calculated, given observations from V, which represents only
singular observations of movement. So in order to calculate their like-
lihood, observations are collected in a temporary sequence that grows
over time s′ = (o′1, . . . ,o′k). The likelihood for the temporary sequence,
given each known sequence P(s′|sm) is the sequence difference dtw
(see eq. 4.28). In addition, the sequence difference is weighted by
an exponential factor, which calculates the temporal precision of the
observed state (see par. 4.2.3). This is in effect comparable to calcu-
lating a joint probability for all observation events P(o′1, . . . ,o′k|sm).
Calculating the posterior then simply is a Bayesian inversion:

Pbu(S) := Pt(S|o1, . . . ,ok) =
Pt(o1, . . . ,ok|S) Pt(S)

Pt(o1, . . . ,ok)
. (4.16)

As a prediction for lower levels of the hierarchy, i. e., levels V and
M, a complete sequence would be of no use. The sequence would not
map to the representations associated with the discrete probability
distributions in these levels, i. e., relative movement angles of a joint
in 16 directions. Thus, we need to obtain the probability of all possible
next observations (∀vi ∈ V), with the prior observations o′1, . . . ,o′k,
given the predicted sequence sm:

Ptd(V) := Pt(V|S) (4.17)

Pt(V|S) ≈ Pt(vi|o′1, ...,o′k, sm) =
Pt(o

′
1, . . . ,o′k, vi|sm)

Pt(o′1, . . . ,o′k|sm)
(4.18)

The resulting distribution is compatible with representations of M
level and is used similarly as Ptd(M) := Pt(M|S).

The bottom-up posterior Pbu(V) is a mapping from environmental
state space ϕ(t) to the model’s movement reportoire, using a param-
eterized gaussian likelihood function for each available movement
vi ∈ V , given σ = 0.1.

Pbu(V) := Pt(V|ϕ(t)) ∝ Pt(ϕ(t)|V) Pt(V) (4.19)

Pt(ϕ(t)|vi) = e
−

(ϕ(t)−vi)
2

2σ2 (4.20)

The same applies also for level M. For a formal summary of these
update mechanisms for the level S to levels V and M complex, have a
look at fig. 4.5.
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Figure 4.5: This technical overview shows the following input and output
calculations embedded in levels V and M: (a) is the result of a
sequence prediction, described in eq. 4.18, (b) shows how this
sequence prediction becomes the top-down posterior of V, which
is approximately similar to the update of M in (c). (d) is the
bottom-up update of V (eq. 4.20), which is also similar to the
update of M, while (f) describes the damped spring system for
movement generation (eq. 4.24).

4.2.2 A model of active inference

Let us now turn to the other side of the coin, i. e., how the described
representations and updates can lead to action, performed in the
environment. The model of active inference will be described, contin-
uing the discussion for a possible solution to the problem of motor
coordination.

motor coordination In the sensorimotor hierarchy the lowest
levels are the ones responsible for motor coordination. Specifically,
the V and M levels represent two aspects in active inference that
are necessary for motor coordination. As described in the previous
subsection, V receives coordinates of a writing trajectory at discrete
points in time. So at each point in time, writing is represented in
the form of a discrete probability distribution, over a discrete set of
writing angles.

Friston (2011) argues that the detailed planning of movements
should be replaced by a free-energy minimizing application of re-
flex arcs. In HPBU we apply the oculocentric information, stored in the
sequence representations in level S, to guide action, and in the process

Parts of this section on the motor coordination in the sensorimotor hierarchy has
previously been published in Kahl and Kopp, 2018.
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circumvent the need for detailed programming of motor commands.
The relative polar coordinates are send to level M, where they act
as action targets. In level M, a reflex arc in the form of a damped
spring system realizes the motion toward the action target. The action
target defines the spring’s point of equalibrium at the relative polar
coordinate, so that the movement realization just has to follow simple
equations of motion.

This implementation of active inference is formally related to the
equilibrium point hypothesis (Feldman and Levin, 1995). In other
words, information from level S contains top-down predictions of the
proprioceptive consequences of movement, similar to the argument
for motor commands also just being predictions (Adams et al., 2012).
They are regarded as setting and equilibrium or set point to which
the motor plant (the moving joints) converges, via the engagement of
motor reflexes. Similar to the ideomotor principle, once the movement
goal is set, the motor system will select and apply the movements
necessary to reach it (Prinz, 1990).

To allow for smooth and curving trajectories that are similar to
handwriting in spatial and temporal properties, Dynamic Movement
Primitives (DMP)s have been considered. DMPs have been used for
modeling attractor behaviors of autonomous nonlinear dynamical
systems with the help of statistical learning techniques (Ijspeert et al.,
2013). Here, their ability to learn and reproduce trajectories is not
used. Rather, the damped spring system is configured similarly to a
DMP. Instead of applying a forcing term f that activates the system’s
nonlinear dynamics over time, here an obstacle avoidance technique is
used (as described in Hoffmann et al., 2009). Its force was adopted and
inverted to actually move towards the goal in a goal-forcing function g
(see eq. 4.24). The reason for this is that when we would now simply
apply the spring system to each goal sequentially, it would accelerate
toward and slow down at the goal. Several simulations showed that to
keep up the momentum we need to look ahead several goals xi+3 (here
3 steps ahead) in the core spring system. The goal-forcing function
will still visit each goal xi sequentially.
α,β,γ and µ are constants that specify the behavior of the system.

ϕ is the angle to the goal and y is the current position.

ÿ = α(β(xi+3 − y) − ẏ) + g (4.21)

g = (xi − y) ϕ̇ (4.22)

ϕ̇ = γ ϕ e−µ|ϕ| (4.23)

ϕ = ϕxi −ϕẏ (4.24)

The resulting acceleration ÿ will be twice integrated, before it is ap-
plied as an environmental state space position ϑ(y, t), with t ∈ T and
y ∈ X (see definition of the dynamical system in par. 4.1.3).
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Free energy in level M is minimized by moving towards the target
in the predicted manner, i. e., with the optimal relative movement di-
rection. This allows an action to be completed, by converging towards
the spring system’s equilibrium point as the target. But how can the
visual system be informed, getting its information from level V, in
order to close the visuo-motoric loop?

closing the motor loop A very important aspect of the pre-
sented approach to active inference is a missing feedback connection
between levels M and S (visible as a stroked, red arrow in fig. 4.3 and
fig. 4.5). Once level M reaches the subgoal of an action sequence a
signal is directly send to level V via a long-range connection. It informs
level V of the location where the joint should have been moved, so it
can evaluate whether the simultaneously received visual information
can confirm the proprioceptive information. This closes the motor
coordination loop.

The missing feedback connection between levels M and S has two
reasons:

First, in order to investigate if motor coordination can rely on vi-
sual information alone to drive motor coordination, it is getting only
sporadic proprioceptive feedback from level M to evaluate. This is
different to the approach by Friston (2011), which relies heavily on
proprioceptive information to make reflex arcs conform to action
predictions through active inference. HPBU’s active inference model
spans a wider motor coordination loop and only loosly constraints
motor control. This allows for variability in redundant aspects of the
movement (similar to Todorov and Jordan, 2002), to reliably reach
the next target (as briefly discussed in par. 3.5.2). Redundant aspects
of movement are, e. g., the set of all possible arm configurations that
allow the fingertip to reach to movement target.

Second, by making the model’s sequence coordination independent
from direct proprioceptive feedback, it allows for future developments
that might enable it to associate actions in the world with intended
effects that do not have to influence the motor system directly. An
example might be the more distal action effect of pressing on a switch
to turn on a light.

motor control summary When action production is initiated,
the motor coordination loop starts in the sequence layer, where an
action sequence is selected. An action contains a sequence of move-
ment primitives, consisting of tuples of oculocentric polar coordinates,
and relative timing information. A movement that realizes the tuple
information actually defines the movement target along with infor-
mation about the predicted movement duration. The next movement
primitive in sequence will be communicated to levels V and M. V
receives the primitive in a form of an efference copy, for maintenance
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of the correct priors for later comparison (see par. 4.2.4. M receives the
primitive for realization through movement.

Simultaneously, the realized movement is visually perceived, while
the action is being produced. This way the produced action sequence
can be evaluated immediately, by comparing the perceived with the
produced action. In addition, when level M believes that it has reached
its target, it will signal level V to check for deviations between in-
tended and perceived location of the moved joint, using a long-range
connection.

As long as the predicted action sequence is successfully evaluated,
each movement primitive will be sent for production one by one, until
finished.

4.2.3 Handling action sequences

The comparison of action sequences is vital for evaluating the correct-
ness of action predictions, during mere perception of other’s actions,
and also during production of own actions.

sequences of surprising movements The goal of the overall
model is to minimize free energy by predicting and correcting for
the statistical irregularities in the signal. The statistical irregularities
that HPBU has to deal with are deviation from previous movement
directions. Such statistical irregularities are informative, because they
deviate from the previously predicted movement, and lead to predic-
tion errors. This is reflected by increases in free energy and sometimes
leads to model-switching, i. e., the prediction of a better-fitting repre-
sentation of future movement. The detection of movement deviations
as surprising events, are errors in the predictability of the signal, and
can be used to find segmentation boundaries, that structure the signal
in an information-theoretic perspective. This idea was developed by
Zacks et al. (2007) into what they call Event Segmentation Theory.

As discussed, we confront the model with data from a previously
collected corpus of handwritten digits. The drawing strokes contain
dynamic movement information. Level V detects surprising strokes in
the sudden increase of free energy, with respect to the last time step,
as:

Ft(V) > Ft−1(V) (4.25)

Information about this surprising stroke consists of the writing and
its length, which are both transformed into the oculocentric reference
frame. Also, the jump-flag is stored. More specifically, the relative
coordinates are transformed into a relative polar coordinate, with the
last surprising stroke coordinate at its center. Such a gaze-centered
oculomotor frame of reference has been shown to code for the visual
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targets for reaching, and other actions (Ambrosini et al., 2012; Engel
et al., 2002; Russo and Bruce, 1996).

This information – along with the amount of time passed since the
last surprising event – is sent to level S, which stores sequences of
such surprising events in a temporarily collected sequence s′. The
oculocentric reference frame, used for storing surprising events, is also
used for the generation of action.

comparing action sequences Multiple approaches to compare
sequences have been applied, such as the Riemann Distance measure,
comparing temporal sequences of probability distributions, in the
form of a Riemann manifold (not further discussed here). Also, the
alphabetic Jensen-Shannon distance measure (Mateos et al., 2017) has
been tested, which created an alphabet of repeating subsequences
for comparing their occurrence frequency, in a given sequence. I will
not go into detail on these approaches. Instead, I will describe the
comparison algorithm that was actually applied in the model, i. e., the
Dynamic Time Warping (DTW) distance measure, a computationally
light-weight sequence comparison method. As we discussed when
introducing the corpus of handwriting of digits, sometimes sequence
comparisons need to be able to compare sequences of different lenghts,
while concentrating on aspects of similarity without ignoring the
temporal dynamics inherent in hand writing.

In a dynamic programming approach, the DTW measure evaluates
the difference between temporal sequences by finding the overlapping
subsequence with the minimally necessary temporal edits between
them. Each edit has a cost associated to it (as described in eq. 4.28).
Such costs include insertions and deletions of temporal steps so that
alignment can again be preserved (e. g., Salvador et al., 2007). Here,
the distance measure d was specifically chosen to have a minimum
sequence distance return approximately 1, i. e., the parameterized
gaussian distance from a perfect match (µ = 0) with σ2 being cho-
sen accordingly. Using dynamic programming, the algorithm finds
the path with the minimal amount of edits between all movement
primitives i of sequence a compared with movement primitives j of
sequence b, as in,

dtw(a,b) = e−
(dtwmin−µ)

2

2 σ2 (4.26)

dtwmin = arg min (dtwa,b(i, j)) (4.27)

dtwa,b(i, j) = d(ai,bj) + min


dtwa,b(i− 1, j) + 1 del

dtwa,b(i, j− 1) + 1 ins

dtwa,b(i− 1, j− 1) match.
(4.28)
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The first minimum is akin to a deletion (or del, from sequence a
to b), the second minimum corresponds to an insertion (ins), and
the third corresponds to a match or mismatch (match). This depends
on function d(ai,bj), which optimally would add zero if movement
primitives are identical. A comparison between movement primitives
which, here is coded in polar coordinates (relative to the last movement
primitive), translates the angular-difference coding from θ ∈ [−π,π]
into θ′ = θ+π

2 . This allows for a cosine difference for the angle, and a
log difference for the radius r, both weighted by wd, as in,

d(ai,bj) =

sp jumpi 6= jumpj

wd (1− cos(|θ′i − θ
′
j|) +

log(|ri−rj|+1)
sw

) otherwise.
(4.29)

This comparison also takes drawing jumps into account, with a penalty
variable sp for disaligned jump-flags (necessary in writing, e. g., a
seven, five, or four). The log difference for the radius of the polar
coordinate is also weighted using the variable sw. Those variables as
well as σ for the gaussian distance have to be chosen carefully to reach
a good classification performance. For the evaluation described later
in this work, the variables have been set to wd = 10, sp = 15, sw = 5,
and σ = 100, to create a balanced comparison.

In order to compare a temporarily collected sequence s′ to all known
sequences, the distance is calculated for every sm ∈ S. Also taken into
account is the temporal distance between the predicted and perceived
delay until the action’s consequence:

P(s′|sm) = dtw(s′, sm) · e
−

(∆t
s′−∆tsm )2

2 π2
S . (4.30)

The temporal distance between predicted and perceived delay is a
parameterized gaussian with a decreasing variance, depending on
the sequence level’s precision πS. In level S, as in all levels of the
hierarchy, such a likelihood will inform the new level posterior, after
belief updating (see par. 4.1.4).

This is how HPBU compares action sequences and estimates their
likelihood, given known sequences and observations.

4.2.4 Strategic action and perception

During all interaction with the world our sensorimotor system needs
to handle its uncertainty about the world, by balancing the influence
of new evidence and make use of it, in order to meet its interaction
goals. This need for balance when facing uncertainty entails a strategic
component of deciding when evidence should be ignored or when
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special attention is needed. Now we will consider the problem of
strategically configuring the sensorimotor part of HPBU for action
or perception. This also covers the problem of maintaining focus
during action production. A focus, which is necessary because of the
uncertainty in the signal, even of self-produced behavior.

biasing kalman gain for perception and action The
sensorimotor hierarchy can be configured for action or perception
using a biased K. First of all, this bias b toward either maintaining
or changing prior information is driven by a level’s uncertainty with
respect to the external information. This is represented both: by the
variance in the level’s hypothesis space (reflected in the precision
value π), and by the success of higher level predictions to attenuate
prediction errors (as measured in the free energy F).

The resulting Kalman gain from different combinations can be seen
in fig. 4.6 (a). A high π results in a very slow response in K with
increasing F, which mostly preserves the top-down prior, up until a
balanced influence of prior and prediction error when both π and F are
high. A low π results in a very steep response in K with even slightest
increases in F, which leads to strong influences from prediction error.
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Figure 4.6: (a) A high π results in a very slow response in K with increasing
F, which mostly preserves the prior, up until a balanced influence
of prior and prediction error when both π and F are high. A low π

results in a very steep response in K with even slightest increases
in F, which leads to strong influences from prediction error. (b) As
an example of biasing Kalman gain, the K responses from (a) are
biased either toward perception with b = 0.9, or toward action
with b = 0.1.

For the strategic application of perception and action, two observa-
tions are important: for perception, a high K is necessary to stabilize
the detected prediction error, in order to give it a chance to drive
the belief update in higher levels by finding better hypotheses that
again, minimize free energy. During action the opposite is true, as



86 modeling a predictive processing hierarchy

there, strong prediction error would – in the worst case – overwrite
an intended action sequence. To allow for stable action production,
the top-down prediction has to be maintained, i. e., the influence of
prediction error needs to be small, using a small K, setting the belief
update towards maintaining Ptd. Still, its influence needs to be high
enough that it does not forfit all chances of allowing for prediction
error to change perception.

In order to bias belief updates more strategically towards driving
updates, either for perception or for action, we introduce a gain bias b.
During perception, K is to be biased toward a higher gain, while for
action K is biased toward a lower gain, still allowing for the uncertainty
driven fluctuations.

Similar to a Kalman filter, the strategic perception-action bias b
influences the update of K. It can be higher for perception (e. g.,
b = 0.9, to bias updating towards new information) than for action
(e. g., b = 0.1 which would bias updating toward the prior),

K′
t = Kt +

1

2
(b−Kt) (4.31)

resulting in a strategically biased Kalman gain K′
t. Thus, either Ptd or

Pbu becomes the driving signal for belief updates. To see its influence
on the Kalman gain bias K, please see fig. 4.6 (b). This bias parameter
will become of vital importance when we come to the balance of
attending to an interaction partner’s behavior during social interaction.

maintaining focus : the intention signal As indicated
previously, in addition to level M, level V also receives predictions
of expected movement primitives during action production, in the
form of an efference copy. Corollary discharge or efference copy, areCorollary discharge:

a signal that in the
nervous system is
sent to additional

distal areas, and is
used for future

processing, e. g.,
comparisons.

motor command signals in the nervous system that send additional
activity to distal areas for further processing. Such information is sent
to brain regions that use sensory input, e. g., for comparison with
visual or proprioceptive feedback, as suggested in the comparator for
motor coordination (Wolpert et al., 1995). In the visual system, such
information has been hypothesized to produce stable visual percepts,
instead of eye-movement induced jumpyness (Sommer and Wurtz,
2008). Although, the concept of specific motor commands has been
called into question, as in active inference, such signals would also be
predictions about future actions (Adams et al., 2012).

Similarly, own simulations (not shown) have convinced us that
without an efference copy that acts as a stabilizing mechanism, ac-
tion production in the model would suffer from visually induced
jumpyness between behavior-producing models. This is due to the
continuously ongoing perceptual inference process that compares the
currently perceived action sequence with known sequences. In itself,
it can – but will not necessarily – infer the exact same action sequence
that is currently being produced. If action production would solely
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rely on the maximum posterior action sequence hypothesis being
selected for production, this would make ongoing production highly
vulnerable to noise in the exterior action-perception loop. Such noise
can take many forms, but the main source of noise, in the scenario
presented here, is due to the dynamics of motor coordination of the
damped spring-system based behavior, converging towards its move-
ment goal. In other words: the dynamics of the spring system can
create a discrepancy between the dynamics learned from the corpus of
hand-written digits, and the dynamics of HPBU’s motor coordination. Intention signal: a

corollary discharge
information, used to
maintain focus on
the currently
produced action
sequence.

To counter-act visually induced jumpyness of action production,
the described corollary discharge of motor command signals is inter-
preted as an intention signal. It maintains the currently selected action
sequence throughout the production process on every level involved
in visuo-motor processing For example, an intended sequence from
level S would be sI ∈ S, a schema from level C would be cI ∈ C.

Generally speaking, there are two ways of chosing the intended
action sequence in HPBU: One is to simply select the intended cluster’s
prototype sI = c̃Id ∈ cI, which will become necessary for strategies of
efficient communication, as will be discussed much later. The other
is to randomly sample a member sequence from the intended cluster.
Such a random selection of a sequence, in order to produce an intended
cluster, is the normal mode of operation for HPBU, unless otherwise
stated.

The intention signal helps to strategically reduce the influence of
bottom-up information influencing the top-down prior action predic-
tion. This way, the perceptual inference process, comparing predicted
with actual movements, can be biased towards an increased robustness
of action production in light of unexpected movement dynamics.

The need for maintenance of action goals during action production
points towards a dependence on robust representations, and shifts
the computational burden to the acquisition and selection of the right
prior, in the first place. Representations in the hierarchy take the role
of priors that allow for predictable movement dynamics, and hence,
can tune the generative model itself. To that end, we will now discuss
the learning of motor sequences and schemas.

4.2.5 Self-supervised learning

As of yet, it was left out how the model collects, or “learns” repre-
sentations of sequences, in the first place. These representations are
the hierarchical model’s primary source of priors to account for the
sensory input, and to minimize free energy. It is then the success
of these priors to attennuate prediction-errors that is evaluated, and
which guides the model’s reactions. These reactions have the form of
belief updates that take into account the model’s uncertainties through
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precision weighting. Or in other words, the model picks up and repre-
sents the information-theoretic irregularities in the interchange with
its environment to be able to account for them in the future.

HPBU employs a self-supervised learning process for self-organization,
picking up these information-theoretic irregularities to form repre-
sentations through uncertainty-driven action sequence selection, and
similarity-based clustering. Already learned representations will act
as temporary labels – or priors – to guide the prediction of perceivable
actions, so that these known representations can be ignored, while
unknown actions will be learned. This is a self-supervised approach,
which similarly to the Helmholtz-machine (Dayan et al., 1995; Kawato
et al., 1993), tries to find approximate representations for the statistical
dynamics in the signal. This is different from supervised learning,
where labels are given explicitly, or unsupervised learning, where no
labels are given.

sequence learning In the discussion about the uncertainty of
sensory information and how to represent these, it is important to
understand that, taken seriously, there is no such thing as a clear-
cut differentiation between stimulus and response. A stimulus can
be the consequence of an earlier interaction with the world, while
even the preparation to react influences the perception of a stimulus.
Also, during action execution, for the most time, we ignore that we
perceive our actions, although even reflex arcs can influence further
processing (Jordan, 1998). “Thus, as the continuous dynamic closed loop
of sensory input and motor output makes infeasible a true discrimination of
stimulus from response, so does the embedded continuous dynamic closed
loop of perceptual processing and action preparation make infeasible a true
discrimination of perception from action [. . . ]” (Spivey, 2008, pp. 48).

So how can we actually discriminate between perceptual sequences?
As we have seen in the description of the vision level V of the model
hierarchy, surprising movement deviations can be detected as errors
in the predictability of the signal. These events can be used to find
segmentation boundaries that structure the signal in an information-
theoretic perspective. This idea was developed by Zacks et al. (2007)
into what they call Event Segmentation Theory (which we will discuss
later in par. 3.3.1). This was applied in an account by Gumbsch et al.
(2017), who propose to make use of the surprise that can be detected
in transient free energy at event boundaries, to learn new action
representations.

As discussed, the vision level of HPBU filters for salient movement
primitives, which are communicated to the sequence level S. With
every new salient movement level S extends a temporary sequence s′,
which is compared with already known sequences. In that process,
level S detects surprising deviations from known sequences in the
form of a sudden increase in free energy. To be invariant against small
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fluctuations, the current free energy Ft(S) is compared to a running
average transient free energy F(S) and its variance σ2, to signify a
highly surprising deviation from known sequences if

Ft(S) > F(S) + σ
2(F(S)). (4.32)

In addition, not only the information-theoretic irregularity is – by
definition – informative, but also temporal irregularities are. Detecting
them is done similarly as for detecting surprising jumps in free energy.
From the beginning of collecting salient movements in the tempo-
rary sequence, also a temporary sequence of temporal delays between
salient movements is stored as Tsal = [∆2, . . . ,∆t−1]. Detecting salient
temporal delays is then a matter of comparing the current delay ∆t
with mean transient delays and their variance, such that:

∆t > Tsal + σ
2(Tsal) (4.33)

Those are two methods that allow for the detection of a salient
segment – one information-theoretic and one temporal. The surprising
temporary sequence s′ will then be added to the list of representations,
and will become represented in the discrete probability distribution
S of level S. When only a temporally salient delay was detected s′

will just be emptied, and all variables contingent on processing ongo-
ing movement will be reset. This way, only movements that cannot
be accounted for by known sequences will be added to the list of
representations.

Adding a new action sequence representation effectively extends
the discrete probability distribution, seemingly making updates in-
compatible. The extension takes place after the level posterior Pt(S)
was updated, so that before the next update cycle, the posterior can
be renormalized (par. 4.1.4). This way, compatibility is restored. Also,
bottom-up and top-down posteriors are calculated with Pt(S) as a
prior, before any other update.

clustering New movement sequences, when added to the list of
representations, will in effect contribute to the whole model’s ability to
attennuate prediction errors from movement deviations. Also, a new
level S representation extends its discrete probability distribution. This
would make future updates incompatible, so in order to reestablish
compatibility the sequence also has to be incorporated into the clusters
of level C. This is necessary so that level C representations can be
updated from, and predict, the complete level S state space.

Even though each movement consists of very individual movement
dynamics, there are similarities between them. Especially task related
movements or informative gestures result from underlying represen-
tations that have been triggered by a task or by a communicative
intent.
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Level C clusters movement sequences by their similarity to deter-
mine the hidden meaning behind the clustered similarity, i. e., the
common hidden or latent variable, representing the clustered move-
ment sequences.

In the current scenario, in which HPBU encounters only hand-written
digits, a clustering approach with a predefined number of clusters
would naturally suffice. For example, k-means clustering can be ap-
plied with a predefined number of clusters beforehand. But k-means
wouldn’t be able to determine a prototypical representation for a
cluster, as e. g., the k-medoids algorithm would determine. To allow
for a more cognitively plausible approach and future applications, a
clustering algorithm was selected, which on its own determines the
number of clusters.

The affinity propagation algorithm was selected for its independence
on a predefined number of clusters, while it will determine a so-
called exemplar representation for each cluster, similar to a median
representation. This exemplar representation will be used as a cluster-
representing prototype c̃d. These prototypes can for example be used
for speeding up the process of determining cluster affinity for tempo-
rary sequences. A new sequence representation may become a member
(or exemplar) of a cluster, or trigger the creation of a new cluster rep-
resentation of level C. To make this clear: clusters are not created
on demand, but the affinity propagation algorithm will determine a
completely new set of clusters.

Affinity propagation clusters data by identifying subsets of cluster-
representative exemplars (Frey and Dueck, 2007). Exemplars are not
chosen randomly in order to avoid running into local minima, but are
determined by a process of message passing on a similarity matrix of
data points, i. e., the action sequence representations.

Two kinds of messages are balanced and weighted to choose exem-
plars from data points, responsibility and availability messages. During
each iteration of message passing between data points, first responsibil-
ities r(i,k) (see eq. 4.35) are updated using the responsibility message,
being sent from data point i to point k, determining how well point k
could serve as an exemplar for point i, taking their similarity s(i,k)
(see eq. 4.36) into account, which is based on the sequence-comparison
method dtw (as discussed in par. 4.2.3). Then availability messages
a(i,k) (see eq. 4.35) are collected to determine how fitting it would
be for data point i to choose point k as its exemplar. The third step
combines availabilities and reponsibilities to determine for data point i,
which point k maximizes responsibility and availability a(i,k)+ r(i,k),
while identifying exemplars if point i and k are the same. The algo-
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rithm terminates after a set amount of unchanging iterations. As
adapted from Frey and Dueck (2007, pp. 972):

a(i,k)← min
{
0,

∑
i′s.t.i′/∈{i,k}

max{0, r(i′,k)}
}

(4.34)

r(i,k)← s(i,k) − max
k′s.t.k′ 6=k

{a(i,k′) + s(i,k′)} (4.35)

s(i,k) = dtw(i,k) (4.36)

They also discuss that affinity propagation can be viewed as a
method that searches for minima of an energy function of a configura-
tion of exemplars. So for application in HPBU, apart from being a quick
and exemplar-identifying process, affinity propagation is especially
suitable, because the rules for updating exemplars corresponds to
minimizing a free energy approximation. This puts the algorithm in
the same realm of information-theoretically driven optimization as the
rest of the free-energy minimizing hierarchy.

Taken together, the discussed sequence learning and clustering
approaches allow the model to make judgements about the suitability
of a novel sequence to become represented.

4.3 summary

This chapter described the modeling of a sensorimotor system on
the basis of predictive processing and active inference. We discussed
the different functional levels of the hierarchy, how they exchange
information with the environment, and with each other. Also, the
kinds of actions were described that the model has to cope with
during action and perception: handwritten digits.

A very integral part of the chapter took the description of the role of
active inference as a possible solution to the problem of motor coordi-
nation. Finally, we discussed the self-supervised learning approach for
action representations in the form of movement sequences and their
hidden variables in the form of clusters. This aspect of the presented
modeling approach especially sets it apart from standard hierarchi-
cal Bayesian modeling approaches. The minimization of free energy
during the different tasks of action and perception was evaluated,
which will be discussed later in ch. 6, sec. 6.2. Also, the self-supervised
learning approach was evaluated in its recognition performance in
sec. 6.1.





5
E X T E N D I N G H P B U W I T H A M O D E L O F
M E N TA L I Z I N G

The following section describes a predictive-processing based model of
a mentalizing system. We will first introduce the mentalizing hierarchy,
describing the form of representations and kind of abstractions. This
is the part of the complete HPBU model hierarchy that concerns itself
with perceiving and reacting to other agents during a situation of
collaborative social interaction.

The levels of the hierarchy will be discussed, as well as how they
exchange information with their respective next higher and next lower
levels. Also, we will cover a description about how a self-other differ-
entiation, as discussed above, based on a sensorimotor sense of agency,
can be modeled computationally. We will also come back to how HPBU

communicates efficiently (as first discussed in ch. 2), through sensori-
motor communication, and the integration of prior experience. Also a
part of this section are solutions to specific problems of the presented
modeling approach to mentalizing.

5.1 additional modeling assumptions

In order to model the mentalizing part of HPBU, the set of assumptions
that guide computational cognitive modeling need to be extended:

• Predictive processing is a vital step towards conciliating direct
social perception with sandwich-model approaches, like theory
theory and simulation theory. In that, the hierarchical nature
of processing in the brain does not entail a black-box cognitive
process. Rather, at work is only the inferential resonance of possible
perceptions with the input. It is able to trigger prediction-error
correcting behavior, either to the end of correcting predictions, or
to actively change the environment to conform to the expected
perception.

• Further, using information of the own body and about its effects
on the environment, be it spatially or temporally, is crucial for a
sense of agency that further allows to differentiate actions of the
self from that of the other.

• We follow the evidence for the link between mentalizing and
episodic memory to interpret social interactions in the form of
event structures, which we call coordination sequences. Coordina-
tion sequences can be seen as schemas that contain segments
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consisting of mental state belief-attributions. These make it pos-
sible to track the belief dynamics between interaction partners
during belief coordination over time, up until the interaction goal
– a final mental state that is to be reached. They are embedded in
the hierarchy on top of the sensorimotor part of the model, so
that interaction goals and action schemas that are plausible in
the given situation can be predicted.

• By following coordination sequences to their interaction goal,
which in effect means that a social interaction of belief coordina-
tion can be successfully predicted, prediction error minimizes
with every predicted step of the interaction. This can be thought
to the extent that this back and forth can lead to a synchrony
between the brain states (in the form of probable hypotheses) of
interaction partners.

5.2 modeling a mentalizing system

Given the modeling assumptions, now a detailed description of the
mentalizing part of HPBU will follow, which corresponds to the MENT.
Fig. 5.1 depicts an overview over the full model hierarchy.

On top, the mentalizing part includes the G (Goals) and CS (Coor-
dination Sequence) levels. Level G represents clusters of coordinate
sequences with similar state-goal pairs of mental states. Level CS rep-
resents the sequences of belief-coordinating intentions that connect
the state-goal pairs of mental states that are clustered at level G. That
is, coordination sequences define a sequence of intentions that lead
from a start mental state to a goal mental state. The intentions that can
be triggered in coordination sequences can reconfigure the sensorimo-
tor part of HPBU to either produce or observe action. Always, prior
beliefs from the Person Model (PM) can influence these processes (see
par. 5.2.3).

The kind of intentions that are assumed as being part of a coordina-
tion sequence here are threefold:

• First, intentions to act trigger the underlying sensorimotor system
to produce a belief from PM. PM stores beliefs either in the form
of a me-belief, you-belief, or we-belief, and they have their source
in the representations of schema level C. So, an intention to act
first establishes an intended schema cI for production, which
then automatically triggers subsequent lower-level productions,
like sI at level S (for more detail see par. 5.2.7).

• Second, intentions to perceive trigger level CS to wait for a stable ob-
servation to be communicated from level C. Observation stability
here is also defined from an information-theoretic perspective, as
the free energy of level C with regard to the currently perceived
action sequence.
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M: Motor

V: Vision

action

perception

C: Schemas

S: Sequences

CS: Coordination Sequences

G: Goals

Figure 5.1: Depicted here is the full sensorimotor and mentalizing hierar-
chy of HPBU. The mentalizing part includes the Goals (G) and
Coordination Sequence (CS) levels. Intentions triggered from co-
ordination sequences reconfigure the sensorimotor part of HPBU

to either produce or observe action, given certain prior beliefs.

• Third and lastly, intentions to compare mental states trigger an
internal CS-level comparison of temporarily stored me-beliefs
and you-beliefs in PM, with respect to available coordination
sequences. Such a comparison is used to decide on whether an
interaction goal is reached. In this case, the we-beliefs of the
interaction partner are updated to contain the newly established
belief. Alternatively, the interaction goal was not reached when
it should have been, and a more complex coordination sequence
should become available. This in effect prioritizes shorter coor-
dination sequences over longer ones. These can contain repair
sequences and intentions to act that allow for sensorimotor com-
munication, which will be discussed later (see par. 5.3.2).
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5.2.1 Extended generative model

The HPBU hierarchy needs to be extended by a mentalizing part. As
already discussed in par. 4.1.3, each level of HPBU’s hierarchical gen-
erative model maps its internal state space Li onto the domain of its
next lower level Le. Also, the model maps from external to internal
states (Li) to minimize entropy.

The model described so far will be extended by the mentalizing
part. It consists of two levels, the CS level and the G level.

The overall generative model is extended to (G, CS,C,S,M,V) (with
the sensorimotor part being covered in par. 4.1.3). As described before,
the levels are sequentially updated, from its next higher and next
lower levels, starting at the top of the hierarchy. Each level then learns
to represent and produce the states at the next lower level. Each
level of the generative model contains its own discrete probability
distribution, where each probability describes a hypothesis of one
discrete representation. The joint distribution of the whole generative
model hierarchy is similar to,

P(G,CS,C, S,M,V, x) =

P(G) · P(CS|G) · P(C|CS) · P(S|C) · P(V|S) · P(M|S) · P(x|M)
(5.1)

5.2.2 Level definitions and updates

Fig. 5.2 shows the full HPBU hierarchy, with the highlighted mentaliz-
ing part. Predictions from the mentalizing part are sent top-down and
compared with (bottom-up) evidence from the sensorimotor part, to
drive belief coordination updates within the hierarchy.

The G level contains clusters of coordination sequences with similar
state-goal pairs. The CS level below that provides event structures for
belief coordination, leading towards the goal state.

As described in detail (see sec. 3.3.1), the mentalizing structures
proposed in this work, functionally overlap with event structures.
That is, imaging studies show reliable activations of the mentalizing
region mPFC during retrieval from episodic memory (Hassabis and
Maguire, 2007; Maguire and Mummery, 1999). Also, meta-analyses on
episodic simulation report an overlap between brain regions associated
with episodic memory, and the default mode network (Benoit and
Schacter, 2015). Specifically, area TPJ has been associated with inferring
intentions in social situations (Van Overwalle, 2009).

5.2.3 Person model and its influence

In fig. 5.2, seemingly at the top (or lower-left) of this hierarchy you
find the PM, which here should not be confused with being a level of
the hierarchy. Rather, it takes the function of a partially permanent
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Figure 5.2: Depicted is the mentalizing part of HPBU. Predictions are sent
top-down and compared with sensory (bottom-up) evidence, to
drive belief updates. All levels have loose associations with the
displayed cortical structures. In the person model (PM) differ-
entiated mental-state attributions are stored. The goals (G) level
contains clusters of coordination sequences with similar state-goal
pairs. The coordination sequence (CS) level below that provides
event structures for belief coordination, leading towards the goal
state. The mental states to which these structures are compared
to are updated from the sensorimotor part of HPBU.

and partially temporary storage of beliefs. For one, PM stores prior
information of specific interaction partners, i. e., about the already es-
tablished common ground with that interaction partner (see par. 3.3.2
for the background). Also, PM stores temporary beliefs of the ongoing
interaction, holding the belief of the agent itself (called me-belief ), and
beliefs about the underlying action intention of the interaction partner
(the you-belief ). These beliefs are communicated to PM from current
stable beliefs at level C. It also stores the goal belief that the interac-
tion strives for (from the agent’s perspective), or in other words, the
communication goal (here called we-belief ).

Two aspects are important to understand these different kinds of
beliefs stored in PM: one is the interaction’s goal-state, which will also
be represented as a we-belief. All interaction partners should strive
to achieve this we-belief, but not every agent is aware of it from the
beginning of the interaction. As we will later discuss in more detail for
our evaluation, agents will take on different roles in a communication
game, either that of a leader or a follower. Only the agent with the
leader role defines the we-belief from the beginning, and strives for
that belief to be established as common ground. The other aspect
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is the belief that is attributed to another agent – as the you-belief –
inferred from perceived behavior. If that belief is similar enough to
the we-belief, then belief coordination has been successful.

PM is set up in such a way that it influences levels of the hierarchy
using long-range connections. As such, prior information (in the form
of established common ground) about an interaction partner, influ-
ences the belief update of level S. The discrete probability distribution
in S represents the probabily of perceiving or producing an action
sequence. Thus, PM can increase the chance of perceiving an action for
which information was already shared between interaction partners,
i. e., perception can be biased toward prior information using already
established we-beliefs.

Prior information pm about an interaction partner q is stored as
pmq ∈ PM. Each pmq contains Nq action sequences that are in com-
mon ground with that specific interaction partner, with
Nq = |pmq|. Thus, each pmq here contains only the we-belief of prior
interactions. To maintain compatibility with the probability distribu-
tion of all action sequences S at level S, the probability distribution
Ppmq will be constructed for all sm using fpm : R→ R:

Ppmq(sm) = fpm(sm) ∀sm ∈ S (5.2)

fpm(sm) =

 1
Nq

if sm ∈ pmq

0 otherwise
(5.3)

Ppmq will then influence top-down beliefs Ptd prior to the belief
update (see eq. 4.6) at level S,

P′td(S) = Ptd(S) +Kq(Ppmq − Ptd(S)), (5.4)

with a partner-specific Kalman gain Kq that models the trust in the
interaction partner. Kq can take many values, but here it is equally
weighting the influence of each interaction partner, for which the
established we-beliefs are stored in PM.

Thus, upon a successful belief coordination, the established we-belief
is stored in PM, for it to influence level S in future interactions. The me-,
and you-beliefs, important for tracking an ongoing belief coordination,
are not influenced by the described process of influencing level S
beliefs.

5.2.4 Levels and representations

State-goal pair: the
mental states at the

beginning and end of
a coordination

sequence.

As you can see in fig. 5.3 at the top of the mentalizing hierarchy, we
find the G level. It represents abstract clusters of similar coordination
sequences {g1, . . . ,gp} that contain similar state-goal pairs. State-goal
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Figure 5.3: This technical overview shows the following input and output cal-
culations embedded at levels CS and G: (a) describes the bottom-
up update of G (approximately similar to eq. 4.13), while (b)
describes the top-down update of CS (similar to eq. 4.15), and (c)
describes its bottom-up update (approximately similar to eq. 4.16).
(d) describes the detection of stable observations (par. 5.2.5).

pairs represent the mental states at the beginning and end of a coor-
dination sequence, clustering coordination sequences with the same
interaction outcome (see sec. 3.3.1). G contains a discrete probabil-
ity distribution G over p discrete states, and maps to it’s next lower
level CS, with cs : G 7→ CS. Each G-level represenation gi clusters
coordination sequences CS′ ⊆ CS by similar state-goal pairs. Simi-
larity here depends on similar start-, and goal-state mental states of
the corresponding coordination sequences. The goal state is a final
mental state in a coordination sequence, which has to be reached, for
a coordination sequence to be successful.

Level G calculates its bottom-up posterior using the same soft evi-
dence method, as was described for level C (see eq. 4.13). Here, since
G represents the top of the hierarchy we have no top-down posterior,
so that the level G posterior belief update will be calculated with the
posterior from the last time step Pt−1(G), in place of the top-down
posterior Ptd(G). The same is true for calculating free energy.

Below that, the CS level represents so-called coordination sequences,
{cs1, . . . , cso}, which provide event structures that were described,
along with their neuroanatomic associations, in sec. 3.3.1. Shortly sum-
marized, it defines the progression of a belief-coordinating interaction
that allows to move from one set of mental states to another (e. g.,
the respective start-, and gloal-states, or state-goal pairs of G). Each
coordination sequence cso contains a sequence of intentions that each
may also allow to entail a strategic biasing of precision weighting (as
we will discuss soon in par. 5.2.7). CS contains a discrete probability
distribution CS over o discrete states, and maps to it’s next lower level
C, with c : CS 7→ C.
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Level CS calculates its top-down posterior similarly to level S, from
a mixture of experts (see eq. 4.15).

5.2.5 Comparing coordination sequences

From level C only stable observations (os) will be communicated to
CS, such that free energy at level C is:

Ft(C) 6 F(C) + σ
2(F(C)) (5.5)

For the bottom-up posterior only these stable observations in the form
of one maximum posterior hypothesis from level C are communicated
to PM, to be stored either as a me-belief or a you-belief, depending on
the amount of SoA attributed to it (see eq. 5.9).

Similarly to the sequence comparison at level S, the coordination
sequence likelihood P(cs′|cso) is the coordination sequence difference
dtwcs between known coordination sequences and a temporary coordi-
nation sequence cs′ that grows over the interaction time. The sequence
difference is same as dtw (see eq. 4.28), with the minor change that
dcs
(ai,bj)

adds zero only if there are no differences between mental
states i of coordination sequence a compared with mental states j of
coordination sequence b:

dcs
(ai,bj) =

0 if ame
i = bme

j ∧ a
you
i = b

you
j

1 otherwise.
(5.6)

CS and G-level representations are not learned by the implementa-
tion of the model presented here. Instead, a number of coordination
sequences have been defined by hand, in order to allow for a num-
ber of increasingly complex interactions. These include sensorimotor
communication strategies and the inclusion of prior beliefs about an-
other agent, for adaptive reciprocity based on previously perceived
false beliefs. These are then collected into different Goal level cluster
representations that code for similar state-goal pairs. The coordina-
tion sequences that were used will later be specified in detail for the
evaluation simulations (see fig. 6.15).

5.2.6 Meta-communication

HPBU also has so-called meta-communicative acts at its disposal,
i. e., they can also be perceived and produced as intentional acts.
These are not represented at the schema level. Rather, one would
probably represent them in other hierarchical representations that
equally allow for their perception and production. For this work, meta-
communicative acts are represented as stand-in (or virtual) hierarchies
for production and perception, i. e., they are implemented purely as
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data signals to be perceived with certainty, and exchanged between
the implemented HPBU agents.

Meta-communicative acts, represented here, are the following:

• Social gaze is shared between interaction partners to establish a
direct social interaction once at the beginning of the interaction.
This allows to instantiate mutual gaze between interaction part-
ners. We discussed its importance for social interaction, motor
contagion, and the general feeling of direct social interaction, in
par. 2.2.3.

• Thumbs-up is a signal to be communicated to end communication
for good. In human communication, other signals are often used,
e. g., nodding, a salient smile, or specific other gestures. Here,
we choose the salient thumbs-up iconic gesture to signal that
the signaling agent thinks that the interaction could end here.
All coordination sequences end with this meta-communicative
signal.

Now, with meta-communicative acts in place, coordination sequences
are able to trigger intentions to observe or to act toward reaching their
goal state. The next question is: how does the sensorimotor part of
HPBU react to such signals that carry the intention to observe or to act?

5.2.7 Intentions to act and intentions to observe

For the sensorimotor part of HPBU, intentions to observe and inten-
tions to act do not represent automatic responses that are naturally
evoked from sensorimotor representations. Rather, they are strategi-
cally placed biases that come from outside the sensorimotor part: the
mentalizing hierarchy.

The sensorimotor system responds to these biases (as introduced
earlier as bias b in par. 4.2.4) and reconfigures its driving signal (fo-
cusing on perception or action), in order to allow the minimization of
free energy in the mentalizing part of HPBU. Without this reconfigu-
ration level CS and G would not or only by chance be able to reduce
prediction error.

The intention to act, strategically placed at level CS, for one sends a
strongly biased distribution as a prediction to level C, where it is used
to update its top-down posterior. In a way this is similar to clamping,
as it is used in neural network architectures, where a neuron has its
value forcibly fixed to a certain value. Such a clamped neuron is often
used as an input unit for the network, e. g., to force a generative model
to produce a certain behavior. Also, the intention to act places an
intention for the to-be produced belief in the long-range connection to
levels C and S, thus triggering the production of the intended action
in the sensorimotor part of HPBU. The intention stems either from the
me-belief or the you-belief in PM, depending on whether the agent’s
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own belief is to be produced (me-belief), or the other’s observed belief
(you-belief) is to be reciprocated. In addition, the intention to act helps
the sensorimotor part to achieve its goal to minimize free energy, given
the new constraints, by biasing the Kalman gain K (see par. 4.2.4) with
a low b for the level posterior belief update towards maintaining the
prior, i. e., the top-down posterior.

The intention to observe, in turn, also strategically sends a prediction
of a distribution of level C representations. There, the probabilities are
clamped to the one belief from PM that is to be observed (me-belief
or you-belief). In addition, the intention to observe helps the sensori-
motor part to achieve its goal to minimize free energy, given the new
constraints, by biasing the Kalman gain K with a high b for the level
posterior belief update towards the observation, i. e., the bottom-up
posterior.

Now that the full HPBU hierarchy is in place, how does it allow for
belief coordination that is not only achieved by a reciprocal back and
forth, but that is also efficient?

5.3 efficient belief coordination

Based on free energy minimization HPBU allows to engage in a process
of belief coordination in a reciprocal back and forth of the inferred
intentions underlying perceived behavior. This is done in a process of
inferential resonance of possibly perceived behavior that is also in a
second step interpreted in a process of inferential resonance of possible
communicative goals. Both can in response trigger the engagement
with an interaction partner based on inferred intentions, by putting
the pressure to minimize free energy on the direct interaction with the
environment.

Both, resonance and reciprocity, allow for a reciprocal back and forth,
although by itself this is not an example of efficient communication.
For that, the incorporation of inferred beliefs in future decision making
and model selection is necessary. Also, prior information about the
interaction partner should influence perception.

These are strategies for efficient communication that may lead to an
update of common ground. But neither would be possible without a
reliable differentiation of perceived behavior to be the consequence of
action, either from the self or another agent. This information is used
to attribute actions, as inferred at level C, to either beliefs of self or
beliefs of other in the person model.
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5.3.1 A model of sensorimotor sense of agency

During online social interaction, the sensorimotor system potentially
gets involved in simultaneous action perception and production pro-
cesses. This makes the correct attribution of agency to perceived action
effects necessary. As suggested in the background on SoA (see sec. 3.4),
there are two kinds of processes that lead to informative cues: a pre-
dictive and a postdictive process. Here, we models these accounts and
integrate them into a sensorimotor SoA for produced actions, which
will depend on the likelihood calculated at the sequence level S: in
the predictive process, we calculate the likelihood of the perceived
action sequence s′, given the predicted action sequence sm ∈ S in
the sequence comparison function dtw(s′, sm). In the postdictive pro-
cess, we have the intention to act and the delay in the action-outcome
for temporal integration. This temporal integration depends on the
predicted and perceived temporal delay of the predicted action, and
the sequence level’s precision. Precision in this context will stretch or
sharpen the likelihood of temporal integration (see eq. 4.30).

Following the evidence for a fluency effect that accumulates the re-
peated success in correctly predicting and selecting actions (Chambon
et al., 2014), this accumulation of evidence is also modeled. That is, the
likelihood of the current action of the intended sequence sI is put into
a Kalman filter to estimate the agency (see eq. 5.9). To make this clear,
SoA is calculated for the given intended action sequence at level S.
The Kalman filter estimates the agency ât from the likelihood P(s′|sI)
and the previous agency estimate ât−1. If no intended sequence is
available (P = 0) the agency will slowly decrease. Kalman gain Kt is
calculated from the sequence level’s free energy FS and precision πS.

ât = ât−1 +Kt(S) (P(s
′|sI) − ât−1) (5.7)

P(s′|sI) = dtw(s′, sI) · e
−

(∆t
s′−∆tsI )

2

2 π2
S (5.8)

Kt(S) =
FS

FS + πS
(5.9)

By allowing the agency estimate only to accumulate through this
filter, strong fluctuations are dampened. Further, with the gain gov-
erned by precision and free energy, the influence of the estimate will
strongly depend on the success of previous predictions.

The essential elements for the sense of agency of the perception-
action loop are an intention signal for a specific action production, the
correct prediction of the learned action, and its timing. At level S of
HPBU, the prediction and evaluation of an action and its timing are
embedded in each sequence. The intention signal for a specific action
production can essentially be described as a high precision predictive

This subsection on the mechanisms of sense of agency for self-other distinction was
adapted from a section in a previous publication in Kahl and Kopp (2018).
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corolary discharge (see par. 4.2.4) that is very strong and stable over
time.

If it is then the case that such a high precision prediction is the
driving signal, and the probability for the predicted sequence stays
low, the model’s free energy will be high. An interpretation of a high
SoA is that either something unpredicted is influencing the action
production, or it is not the system’s production at all that is perceived.
If so, the perceived action-outcome can be attributed to another agent.

With a model of SoA and self-other differentiation available, future
behavior can be guided by inferred beliefs about the other, e. g., in
sensorimotor communication.

5.3.2 Sensorimotor communication

Sensorimotor communication, as previously modeled, is an optimiza-
tion problem over an action trajectory to be as different – or informa-
tive – as possible without losing the vital information necessary to
be classified as the original trajectory’s interpretation (Pezzulo et al.,
2013).

In HPBU sensorimotor communication also has the purpose to select
or alter an action representation in order to tailor the next commu-
nicative act to the interaction partner’s needs. These needs have to
be met by selecting an action sequence, and are defined, e. g., by
prior information, representations that differ in terms of sequence
representations, or also schema membership.

We will soon come to the evaluation chapter, where instances of the
model will be put into interacting agents. In a scenario that allows for
belief coordination to happen, agents will take on different roles in a
communication game, either that of a leader or a follower. With these
roles come different kinds of knowledge, specifically, only the leader
agent will have a me-belief from the start, along with the intention to
communicate that belief to other agents, while taking care that they
have understood correctly.

The sensorimotor communication strategy applied here, for selecting
an action sequence representation for a next communicative act, is
based on two aspects:

One is the interaction’s goal state, which will also be represented
as a we-belief, and can be understood as a goal belief. All interaction
partners should strive to achieve this we-belief, but not every agent is
aware of it from the beginning of the interaction. Only the agent with
the leader role defines the we-belief from the beginning, and strives
for that belief to be established as common ground. The other aspect
concerns the belief that is attributed to another agent – as the you-
belief – inferred from perceived behavior, which is being produced by
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interaction partners. If the you-belief is similar enough to the we-belief
of the goal state, then belief coordination has been successful.

In cases of unsuccessful belief coordination, a strategy of repair
has to be implemented. In this strategy, the schema of the other’s
you-belief is understood to be a distractor (cd), i. e., it distracts the
other’s perceptual inference from the correct inference (which is the
one communicated by the leader agent). As the next step, a new
action sequence from the goal belief’s schema cluster has to be chosen.
Here, a mode of action-sequence selection is applied that is different
than the random selection, which normally selects a member of an
intended cluster for production. This time, the action sequence is
chosen conditionally on being most different from the distractor schema.

Thus, the subset of action sequences clustered under the goal belief’s
(cg) schema sm ∈ cg is compared with the distractor’s prototype c̃d,
in order to find the most different sequence that becomes the new
intended action sequence sI:

sI = arg max
sm∈cg

dtw(sm, c̃d) (5.10)

With a new sI found, it becomes the new sequence to be produced,
and hence communicates the goal belief cg to the interaction partner
in a way that is strategically tailored to take its prior beliefs and
perceptual differences into account. Of course, this repair strategy
cannot account for the possibility of a missing representation in the
interaction partner. A missing representation would make the intended
understanding impossible, unless learning were enabled during such
situations in social interaction.

5.4 summary

Now that the full model of hierarchical predictive belief update is
in place, let us summarize it. To do so, we briefly revisit chapter 2,
but with the presented model in mind. There I proposed that we as
humans face three questions before and during social interaction:

First, in order to engage in social interaction we have to identify an
interaction partner as such, or identify ourselves as being the receiver
of communication. Here, HPBU provides the possibility to enage in
direct social interaction by addressing an interaction partner using
social gaze as a meta-communicative signal. An interaction for belief
coordination can be established once the addressed agent returns the
social gaze, so that mutual gaze is established. This allows for a –
possibly very direct – social perception of communicative acts.

The second question was about getting a grasp on the mental states
of our interaction partner, as this is the goal of the process of updat-
ing common ground. HPBU allows to attain this grasp, including a
differentiation between the self and an interaction partner’s behav-
ior, with a process of inferential resonance of possible perceptions
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with the perceived behavior. This is able to trigger prediction-error
reducing behavior, either to the end of correcting predictions, or to
actively engage with the interaction partner’s beliefs through action
production, i. e., active inference. Through this hierarchical process of
resonating explanations for behavior, and resonating explanations for
the interaction goal, common ground can be established.

The third question was concerned with answering when an interac-
tion can be deemed to have ended, successfully or not. This process
of reciprocal belief coordination seems imperfect, as it has been re-
peatedly shown that intial interpretations can linger, supported by
contextual information, only being good-enough for the interaction
to go on. But in general, misunderstandings and communication er-
rors are not fatal for social interactions, but can be repaired. HPBU
supports this process by allowing for a strategy of efficient belief co-
ordination repairs, i. e., the support for sensorimotor communication,
as a means to engage with an inferred false belief in the interaction
partner. For that, the interaction goal will again be produced, but with
strategically altered action kinematics to allow for better differentia-
tion from the false belief. This makes belief coordination and error
correction possible, so that a good enough common ground can be
established between interaction partners.

Of course, we still do not have a full understanding of all details of
how social cognition is implemented in the brain, but HPBU may be a
viable framework for belief coordination, and a possible example for
an algorithmic explanation based on free energy minimization. In the
following, several evaluation attempts will be described in order to
establish HPBU’s viability.



6
R E S U LT S

In the previous chapters we reviewed the theoretical background for
human social interaction and belief coordination from the perspec-
tives of linguistics, conversation analysis, cognitive neuroscience, and
cognitive psychology. Also, we presented a computational modeling
approach to sensorimotor and mentalizing processes called HPBU in
detail.

In the following, we will desribe the results of several evaluations of
different aspects of the HPBU model. For now, the focus will be only on
the sensorimotor part of HPBU. First of all, the self-supervised learning
approach needs to be evaluated with regard to its recognition perfor-
mance (sec. 6.1). Then, the model’s ability to minimize free energy
is evaluted during perception of action sequences as well as during
action production (sec. 6.2). After that, the focus will move towards a
social perspective, while staying put on the sensorimotor part. There,
the correct differentiation of self from other will be evaluated, and
by that the model of sense of agency, underlying the self-attribution
judgement (sec. 6.3). Finally, we will focus on the whole HPBU model,
integrating the sensorimotor part with the mentalizing part. To evalu-
ate the mentalizing model in interaction with the sensorimotor part,
its capabilities will be tested in a setting of belief coordination, in
interaction with multiple other agents (sec. 6.4).

6.1 model recognition performance

Here, we evaluate the recognition performance of the self-supervised
approach implemented in the sensorimotor part of HPBU.

The data the model trains on is the handwriting corpus, described
in sec. 4.1.2, which contains the recordings of handwritten digits (0-9)
from five user sources. The corpus can be split into sets of user-specific
handwritings from the five different user sources, which we call a, b, c,
d, and e. We will here not evaluate trainings or tests on user source e,
as this user’s writings were performed at too slow speeds, such that
resampling, smoothing and rescaling would have been needed. For an
example, see fig. 6.1 (a), showing the writing of a 3. No resampling
or rescaling was necessary for data of user sources a-d. Nevertheless,
certain digits were not uniformly written by people, making their
reliable classification unlikely, and reducing the overall achievable
accuracy. For examples, have a look at fig. 6.1 (b), showing writing
examples of the digits 0 and 6. Thus, I would expect to see the overall
achievable accuracy being reduced by these two classes having a high
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(a) User source e distortion
example

(b) Corpus variations examples

Figure 6.1: (a) User source e example. This user’s writings will not be used,
as they were performed at too slow speeds that creates visible
noise, such that resampling, smoothing and rescaling would have
been needed. (b) Certain digits were not uniformly written by
people, making their reliable classification unlikely. The digits 0

and 6 are such examples.

risk of being wrongly classified as one or the other. This reduces the
overall achievable accuracy for 10 different classes by 0.1-0.2, leaving
an expected achievable accuracy of 0.8-0.9.

The available user sources allow to mix the different handwritings
to evaluate the recognition performance on similar (same user source)
or unseen data (different user sources). The focus here will primarily
lie on the performance on unseen data, as this gives us information
about the classifier’s generalization performance.

We will compare two classification training and evaluation ap-
proaches: 1) One is a training on data from one specific user source, up
to three epochs (repetitions). Each trained classifier is tested with data
from a specific user source, to evaluate its generalization performance.
2) The other is a training on a pooling of all available data from the
four different user sources. Here, a classifier is trained once on user
sources a, b, c, and d. Its generalization is tested on each of the available
user sources.

During every training run, HPBU will decide – based on two methods
for the detection of a salient segment (see sec. 4.2.5) – whether a
new representation should be learned. This way, it is not guaranteed
that a single training run will allow the model to get a grasp on
(and represent) the full corpus data, which often leaves out several
exemplars from the training set untouched. With repeated training,
there is of course the threat of overfitting to keep in mind.

Thus, first the effect of repeated training on user source a will be
shown in fig. 6.2, where you see a confusion matrix. It shows the
number of correct classifications on its diagonal, with an increase of
correct classifications with repeated training.

Next, we will look at the classification performance on unseen
data from different user sources, in order to evaluate the model’s
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Figure 6.2: The figure shows confusion matrices after repeated training and
testing on user source a. a) Shows the classification performance
after seeing the data once, with more misclassifications as when
b) the data had been seen two times, or c) three times, where the
number of correct classifications is the highest.
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Figure 6.3: The figure shows confusion matrices after repeated training on
user source a and testing its generalization to user source b.

ability to generalize from one user source to others. We will also
evaluate the influence repeated training on a single user source has
on the generalization performance. In fig. 6.3 confusion matrices are
shown for the model repeatedly trained on user source a, testing its
generalization to user source b. Similarly, in fig. 6.4 confusion matrices
are shown, the model repeatedly trained on user source a, testing
its generalization to user source c. And finally, in fig. 6.5 confusion
matrices are shown, for the repeatedly trained model, tested on user
source d.
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Figure 6.4: The figure shows confusion matrices after repeated training on
user source a and testing its generalization to user source c.
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Figure 6.5: The figure shows confusion matrices after repeated training on
user source a and testing its generalization to user source d.

In fig. 6.3, 6.4, 6.5, a general increase in classification performance
can be seen, which speaks for the influence of repeated training on
generalization, but overall generalization is lacking for all three tests.
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Figure 6.6: The figure shows confusion matrices resulting from training on a
pooling of user source (a, b, c, and d) and testing its performance
to classify each user source.

The second approach to be tested is the pooling of training on
different user sources. We have just seen that repeated training allows
to increase classification performance, and – to some degree – increases
generalization performance. Fig. 6.6 shows the performance of HPBU

classification, trained on a pooling of user sources, i. e., trained once
on user sources a, b, c, and d. The general classification performance of
this model, trained on a pooling of user sources, shows that it correctly
classifies most of the seen tests.

For better comparison of the classification performance, the micro-
average accuracy was calculated for each classifier. This means that the
resulting average accuracy aggregates the contributions of all classes
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Figure 6.7: The figure shows the micro-average accuracy of each classifier,
tested separately on each user source. Each classifier is described
using the user source of its training and its number of repeated
training runs (e. g., a1 has been trained on user source a and
trained only once).

to compute the average metric. The result can be seen in fig. 6.7. There,
each classifier is described using the user source of its training and its
number of repeated training runs. For example, a1 has been trained
on user source a and trained only once, while a2 has been repeatedly
trained twice.

In the comparison of the accuracy of the different classifiers, each
tested on the different user sources, the best generalization can be
achieved by the pool model trained on the pooled set of user sources.
The repeated training classifier a2 seems to generalize the best to other
user sources, without a decrease in accuracy, as can be seen from
a3 when tested on user source d. In my understanding, the minimal
increase of performance from testing on user source a, while losing
accuracy for testing on user source d is a sign of overfitting, which
should be avoided. Overall, the pooled training set model seems to
perform best.

This comes at a caveat, as you might expect. The different models
contain a very different amount of representations, as described in
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tab. 6.1. This is especially true for the model trained on the pooled user
sources, where 347 of the seen 400 sequences (from four user sources)
have become represented in 53 clusters. In the current implementation,
without parallelization and optimizations of sequence comparisons,
the amount of necessary sequence comparisons is so high that a
significant increase of necessary compute power would be needed to
still achieve online-performance.

classifier number of sequences number of schemas

a1 67 13

a2 94 25

a3 105 27

pool 347 53

Table 6.1: Shown are the number of representations in the Sequence and
the Schema levels, for each evaluated classifier. The number of
representations can lead to an increase of necessary compute power
to still achieve online-performance.

comparison with other models HPBU was also used in a
master’s thesis, where its performance on the described corpus was
compared with different connectionist models. There, state-of-the-art
Generative Adversarial Networks (GAN) (Goodfellow et al., 2014) and
LSTM networks were trained on the same corpus of handwritten data,
as HPBU. Also, a CNN was created by AutoML to create a gold standard
for the described corpus of handwritten digits. The method called
AutoML automatically creates and tests different model architectures
and parameters (e.g., Real et al., 2017). In this work though, all the user
sources were trained upon, even though source e has the disadvantage
of containing 4 times the number of samples per digit, including a lot
of noise due to the slow writing speed. After a single epoch (seeing
the whole training set once), HPBU has a lead on the connectionist
models in terms of accuracy, which was then not tested any further in
this master’s thesis due to technical problems with repeated training
of HPBU (that have since been resolved). The four connectionist models
were trained with a stochastic optimizer (called Adam, see Kingma
and Ba, 2017), and either received images of the plotted trajectories or
received the trajectories in the form of normalized arrays (please see
fig. 6.8*). The connectionist models could then, after 50 epochs, beat
the initial lead of HPBU. The AutoML model performs best, with an ac-
curacy of about 0.78 (please see fig. 6.9†). The AutoML generated CNN

* Voß, Hendric (2019): HPBU vs deep learning approaches - first epoch. figshare. Figure.
https://doi.org/10.6084/m9.figshare.10252892.v1

† Voß, Hendric (2019): HPBU vs deep learning approaches - AutoML comparison.
figshare. Figure. https://doi.org/10.6084/m9.figshare.10028972.v1

https://doi.org/10.6084/m9.figshare.10252892.v1
https://doi.org/10.6084/m9.figshare.10028972.v1


6.1 model recognition performance 113

(a) After first epoch (b) Final model comparison

Figure 6.8: (a) Accuracy of the five different networks after the first epoch.
The four networks on the right were trained with an Adam op-
timizer. CNN Images was trained with plotted trajectories, while
CNN Raw Images received the information in the trajectories as a
normalized array. (b) Comparison of the accuracy after 50 epochs
of learning, while HPBU could not be repeatedly trained.
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Figure 6.9: The accuracy by epoch of several known machine learning models
against one model generated with a custom AutoML algorithm.

model was compared with other known machine learning models on
the full corpus of trajectories of handwritten digits. This is very close
to the expected maximal accuracy of 0.8-0.9. In the master’s thesis,
similarly the observation was made that digits 0 and 6 were often
confused. Also the digit 5 was identified as an outlier. The discrepancy
between classification accuracies of HPBU in the model comparison
from the master’s thesis (see fig. 6.8 (a)) and the here presented test
results (see fig. 6.7) may very well result from leaving out user source e.

With the recognition performance established we can now say that at
least to some degree the correct recognition of perceived handwriting
can be assumed, with the repeatedly trained model a2 having a very
good accuracy on the user source it was trained on. It generalizes
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to other user sources without overfitting. a2 is also a good choice
because it still is much more computationally inexpensive than the
pooled model, trained on all available data.

6.2 free energy minimization for action and perception

With the recognition performance of handwriting established, now
the model’s general ability to minimize free energy can be evaluated.
The ability of the generative model to minimize free energy during
perception of action sequences is quite vital to the overall viability of
the modeling approach. For example, if the model would fail to infer
the correct action sequence or schema, despite minimizing free energy,
or would actually infer the correct schema, while free energy could
not be minimized, this would point to a serious failure of the model to
capture the correct information-theoretic irregularities. Either that, or
the general approach to perceptual inference through prediction-error
minimization would need to be called into question.

Over time the writing samples are fed into the model as a visual
input stream. Level V reacts to the visual input stream, with its repre-
sentation’s likelihood changing with the drawing angle of the input
drawing. That likelihood updates level V’s posterior belief, by also
incorporating the predictions from the level above. There, level S also
resonates to the salient movements detected at level V, comparing them
to known action sequences, while incorporating level C predictions.
At level C schemas are evaluated based on their prior probability, and
based on the action sequence probabilities of each schema’s cluster.

Here, three expectations of the model’s ability to minimize free
energy are evaluated:

• First, the perception of a known handwriting example should
minimize free energy.

• Second, the perception of an unknown handwriting example
should not lead to minimized free energy.

• Third, the production of an action should lead to minimized free
energy.

evaluation In fig. 6.10 you can see three columns of model dy-
namics being plotted. Each row shows the posterior probability dy-
namics, plotted as heat maps over time (color coded from dark green
to white, from belief probabilities P = 0 to P = 0.6 for best differen-
tiability), while the model works to minimize free energy, given its
presented task. Each heatmap shows the level’s posterior probabilities
after beliefs are updated bottom-up and top-down. Also, below the

† The evaluation of free energy minimization was previously discussed in Kahl and
Kopp (2018).
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Figure 6.10: Here you can see the probability dynamics in the model as
heatmaps over the probability distributions over time at the
different levels of the HPBU (color coded from dark green to
white, from belief probabilities P = 0 to P = 0.6 for best differen-
tiability). The different scenarios are (a) perceived known: the
perception of a known digit (here a 5), (b) perceived unknown:
the perception of an unknown digit (here a 4), (c) produced with
correct feedback: the production of a digit by means of active
inference (here the digit 9). In addition the free energy dynamics
for each level is drawn.

green plotted belief dynamics, a line plot of the level’s free energy is
drawn, showing the level of adaptation and model evidence, given the
current state of the system.

To be more specific, the first column shows evaluation scenario (a)
perceived known, where HPBU faces a known handwriting example.
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For this evaluation, the drawing of the digit 5 was chosen. The sec-
ond column shows the model’s behavior in response to scenario (b)
perceived unknown, an unknown handwriting. Here, the model will
receive the drawing of the digit 4. To allow that, during training for
this specific evaluation, all drawings of the digit 4 were ommitted. In
the third column, the model’s dynamic action production behavior
can be observed as the digit 9 is produced in scenario (c) produced
with correct feedback.

results description As one can see, the visual input clearly
influences the perception of sequences and schemas of sequences at
higher levels, thereby minimizing free energy over time. Also, during
production the belief created in the schema representing the digit 9

percolates down the hierarchy, activating and acting out a selected
sequence.

To be more precise, in scenario (a) the heatmaps show nicely how
level V perceives the different movement angles over time. Simulta-
neously, evidence for the level S hypotheses accumulates slowly with
each new salient visual feature. At first, this leads to a limited number
of probable sequence representations. Finally, a single hypothesis be-
comes the most probable. The level C hypotheses accumulate evidence
more slowly, predicting the underlying sequences. Schema level C
predictions have a strong influence at the sequence level, most evident
in the final distributions. There, only a number of sequences are still
probable, and most of them belong the the most probable schema
hypothesis.

In scenario (b), evidence accumulation does not reach a necessary
level to account for successful perceptual inference and level S free
energy remains high. The drop at level C free energy at the end of the
sequence is probably because no further evidence is received and level
C can linger on its own predictions.

In scenario (c), you can see that the motor control and vision level
heatmaps look similar, where action production and the perception
of its outcome align. At schema and sequence levels, heatmaps show
how predictions are mostly met, but interestingly, evidence for the
firstly predicted sequence is not met at some point. Then, another
viable sequence hypothesis from the same schema hypothesis cluster
becomes active after some time. This pertubation may have been
caused by the spring dynamics at the motor control level.

Having a look at the free energy comparison of the different sce-
narios in the hierarchy’s sequence level S (see fig. 6.11). This level of
the hierarchy can give us an idea how well the model is able to find
explanations for the perceived input, as here the schema level’s higher-
level expectations meet the dynamics of handwritten digits. Strong
fluctuations can be a clue to highly irregular input or unreliable rep-
resentations, e. g., at level V, where bottom-up sensory evidence and
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Figure 6.11: Shown are the free energy (F) plots of the sequence level S during
each scenario. First, the perception of a known and unknown
writing sequence clearly shows a difference in that free energy
is minimized during perception of the former sequence, but not
the latter. Second, the production of a writing sequence also
minimizes free energy as it would in active inference as long as
the sequential production is successfull, i. e., the temporal and
spatial prediction of sequential acts are met.

top-down predictions can change rapidly. The perception of a known
and unknown writing sequence clearly shows a difference in that free
energy is minimized during perception of the former sequence, but
not the latter. The production of a writing sequence also minimizes
free energy as it would in active inference as long as the sequential
production is successfull, i. e., the temporal and spatial predictions of
action sequences are met.

To summarize, free energy is minimized as previsously expected in
scenarios (a) and (c), while its resistance to be minimized signifies the
perception of an unknown action sequence in scenario (b). The model’s
explanatory power in our case seems sufficient for the perception and
production of sequences of writing digits. The sequence level’s free
energy dynamics can quickly respond to unpredicted input, but still
receives predictions from the schema level C to inhibit most unlikely
explanations.
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6.3 differentiating self from other

With HPBU’s general ability now evaluated that it minimizes free en-
ergy during action and perception processes, we will now turn our
attention towards a social perspective while – for now – staying put
on the sensorimotor part. Here, the correct differentiation of self from
other will be evaluated, and by that the model of sense of agency,
underlying the self-attribution judgement.

The generative model that is HPBU creates action representations
that spread several levels of the hierarchy, from schemas of action
representations, down to simple movement primitives. In between, an
action sequence hypothesis represents the occurrence of differential
movements in time and space. It is these representations that allow
us to take the step from abstract action to the actual details of how
movement can be predicted.

When an action is produced its movements are predicted in space,
and also in time. Timing information is vital to our behavior and
perception, as we discussed earlier. Humans come to know their
body and its effect on the environment. That is, they learn also to
predict when the effect of their bodily action should be expected. This
is the kind of information that is also predicted and evaluated in
the presented computational model of sense of agency: an action’s
temporal and spatial attributes.

An agent’s own action, predicted temporally and spatially with high
precision, combined with a postdictive judgement about the agent’s
intention, allows to differentiate one’s own from other’s actions. This
is the general idea underlying the differentiation of self from other,
implemented in HPBU.

Here, this model is evaluted in a setting of concurrent perception
and action. It is actually the modus operandi for the kind of active-
inference based motor coordination, implemented here: during action
production, the action’s environmental effects are concurrently per-
ceived both, visually and proprioceptively. To test the model’s ability
to infer a sense of agency from the combination of action and its effect,
the visual feedback will be altered.

evaluation Two scenarios have been compared: In one, the pro-
duction of an action was complemented with correct visual and pro-
prioceptive feedback. This will in effect be the same action production
as in scenario (c) of the free energy minimization evaluation (with the
production of the digit 9). In the other scenario, the action produc-
ing sensorimotor part of HPBU received only correct proprioceptive

† The evaluation of sense of agency for self-other differentiation was previously dis-
cussed in Kahl and Kopp (2018).
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feedback, while its visual feedback was altered (producing a 1, while
receiving visual feedback for a 3).
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Figure 6.12: This figure is similar to fig. 6.10, showing the dynamics of two
scenarios. (c) produced with correct feedback: the production of
a digit (here a 9), with correct proprioceptive and visual feedback.
(d) produced with incorrect feedback: correct proprioceptive
feedback (of a 1) during action, while the production of another
digit (here a 3) is received as visual feedback.

Similarly visualized to the free energy minimization evaluation
above, here in fig. 6.12 you see two columns for each action production
scenario.
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In scenario (c) the production with correct feedback, the intention
created in the schema level (representing the digit 9) percolates down
the hierarchy, activating and acting out a selected sequence. In the
incorrect feedback scenario (d), the sequential activation is shown
for producing one digit in the motor control level, while seeing the
activation dynamics for visually perceiving another digit in the vision
level. The resulting confusion is immediately visible at the sequence
level, while at schema level, the posterior probability settles on a lower
probability for the (still preferred) intended hypothesis.

results description Now let us have a look at the results of the
mechanism for integrating the sensorimotor sense of agency estimate
over time (see sec. 5.3.1), given our simulation scenarios. The result-
ing SoA integration plots in fig. 6.13 show that the cue integration
mechanism, supports results reported in the literature.
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Figure 6.13: The sense of agency (SoA) estimate dynamics produced by the
HPBU in the production scenarios of action production with cor-
rect, and the other, with incorrect feedback, respectively. In both
scenarios the SoA estimate rises up to a certain point but it re-
mains at a low level of 0.2 in the incorrect feedback scenario,
where predictions of produced actions are met with contradict-
ing visual feedback.

First, it is sound with regard to results where the precision of the
predictive process was reduced and the system put more weight on
postdictive processes, conforming evidence for a weighted integration
based on the cues’ precision (Moore and Fletcher, 2012; Synofzik et al.,
2013; Wolpe et al., 2014). This aspect can be observed in scenario (d)
with incorrect feedback, where the SoA estimate increases slowly even
though a completely different digit is being perceived visually. This
may be due to the fact that when drawn simultaneously, a perceived 3

and a drawn 1 start with similar trajectories, despite the roundness in
the trajectory of a three. When either timing or spatial predictions are
met to a degree, they can accumulate. In our simulation it is then only
the lower, second curved trajectory of the 3, which is in total contrast
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to the trajectory of the 1, which finally prohibits further accumulation
of agency.

Second, the results are in line with a fluency effect for correct
predictions of actions (Chambon et al., 2014). The accumulation of the
SoA estimate over time is done using a Kalman Filter, which depends
on the current free energy and precision of the sequence level S. The
more accurate the hierarchy’s predictions, the faster the uptake of SoA

evidence (positive and negative).
Finally, even though the cue integration model is flexible with regard

to the precision of predictive and postdictive cues, the scenario with
incorrect feedback shows that a false attribution of SoA is not likely
when both cues show no signs of agency.

Other than Friston (2011), who rely heavily on proprioceptive in-
formation, HPBU allows for visual information to solely drive motor
coordination. Here, the motor coordination loop is closed using a
direct connection that informs the vision level when motor control is
done coordinating actions to reach a subgoal. Vision level will then
check if visual information can confirm the movement and close the
motor coordination loop by sending the information to level S.

6.4 multi-agent belief coordination

We have now seen that the sensorimotor part of HPBU has the ability
to reliably recognize known handwriting sequences, and to some
degree even generalize to previously unknown kinds of handwriting
sequences. Its ability to act as a free energy minimizing generative
model, given the uncertainties it faces, was shown during action
production and perception. Also, and very much important for the
next evaluation step, the model of sensorimotor sense of agency was
shown to be able to correctly infer sense of agency given correct
feedback. Also, it can detect confusing and unexpected feedback, and
in effect prohibit the cue integration of sense of agency under these
circumstances. In this work, I argue that the cue integration of sense
of agency is a marker for the attribution of an action (and its outcome)
to the self, rather than another agent. For that, any perceived action
(-outcome) will be processed by the model of sensorimotor sense of
agency and attributed to the self or another agent. For these evaluation
simulations the threshold for attributing an action outcome to the self
is set to 0.4, slightly biasing its attribution toward self-attributions.
These attributions are represented in the person model PM of HPBU, as
either me-belief (selfs) or you-belief (other).

In an ongoing interaction, these attributions will be used to compare
the current set of mental states. This allows to see if work needs to
be done, to get from the current state of the coordination sequence to
its goal state. Another important aspect during social interaction is,
whether the information provided by an interaction partner is success-
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fully perceived and integrated into the agent’s mental state. In HPBU,
this strongly depends on the uncertainty present during perception.
If uncertainty is high during perception, bottom-up information will
more strongly influence beliefs. If uncertainty is low, bottom-up infor-
mation might be ignored. For example, the leader agent might have
low uncertainty about the follower’s understanding early on, which
results in a dismissal of a part of its action that might show its false
belief. To counter-act the dismissal of vital information during crucial
steps of the coordination sequence, we will evaluate different bias
configurations of the Kalman gain K. As introduced in par. 5.2.7, it
can be biased toward either preferring to maintain the top-down, or
the bottom-up information.

To test the model’s assumptions and find answers to the defined
research questions, we need a task that allows the full model hierarchy
to work within the context of free energy minimization through belief
coordination. This entails that during perception processes, when
known representations are evaluated, best explanations can switch
and new insights need to inform the rest of the hierarchy. This basically
is the work being done by the sensorimotor part. The mentalizing
part itself takes this information to integrate it into the person model
to track mental states of the self and the potential other. If in any
coordination sequence the goal state cannot be reached successfully,
another coordination sequence could be more promising to still achieve
the goal state. Thus, also in the coordination sequence this switch to
another model (i. e., another coordination sequence) should be able to
happen.

Figure 6.14: Agents are each equipped with a copy of HPBU, trained on the
same corpus data. Agents differ only in their roles, with Agent
A taking on the role of leader, while agents B and C take on
the role of follower. The difference between them being that the
leader agent will try to convince the follower agents, and make
sure that they have understood, while the follower agents will
primarily reciprocate their inferred beliefs about Agent A.



6.4 multi-agent belief coordination 123

Another aspect to belief coordination, previously not taken into
account, is the interaction with multiple agents, not only one. In such
a multi-agent scenario, common ground would need to be established
not only with one agent, but with all agents. For this to work, one
agent would need to take care of making sure that all agents have
successfully understood what was to be communicated. This is not
a task for a kind of swarm intelligence, where no agent is truly in
charge and all mutually strive for minimizing a measure of distance.
Here, there are roles that the agents take on, with one agent taking the
role of a leader agent during a communication game task. The other
agents take the role of followers. You can see a sketch of the scenario in
fig. 6.14. The leader agent has the task to communicate its belief of a
specific digit, and make sure that the other agents have understood
the correct meaning. The follower agents will perceive the interaction
and will try to reciprocate, in order to convince the leader agent that
they have understood the correct meaning.
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Figure 6.15: Shown are a number of coordination sequences sorted by com-
plexity. As described in the legend, coordination sequences con-
sist of checks for mental states (grey) and intentions (white) to ei-
ther observe or produce an action as well as meta-communicative
acts, i. e., thumbs-up and gaze. We-beliefs in mental state checks
depend on an agent’s interaction role. Intentions to produce an
action refer to a placeholder for a level C representation (speci-
fied during runtime), which can involve observed false beliefs,
or prior knowledge, as contrastors for sensorimotor communica-
tion.

For this to work, (as you can see in fig. 6.15), the coordination
sequences for each role differ very slightly when it comes to starting
an interaction and correcting for error. For example, the leader role
needs a me-belief to already be set, to start its coordination sequence.
Also, it is able to account for a detected false belief, trying to correct
it using a sensorimotor communication strategy. The follower agents
mostly just react to the leader agent’s behavior, but always have the
task to reciprocate what they belief they have understood. These
different kinds of coordination sequences are present in all agents, but
two clusters at the goal level were created. They contain the sequences
that are specific to the agent’s role, and the agents are configured to
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prefer that role’s goal state, and thus their associated coordination
sequences.

One more thing needs to be added to be kept in mind: how should
Kalman gain K be biased during hierarchical configurations of an
intention to act or an intention to observe? Two observations have been
made that show how a biased K influences the model’s behavior. For
perception, a high K is important to stabilize the detected prediction
error, in order to give it a chance to drive the belief update at higher
levels by finding better hypotheses that again, minimize free energy.
During action the opposite is true, as there strong prediction errors
would – in the worst case – overwrite an intended action sequence. To
allow for stable action production, the top-down prediction has to be
maintained, i. e., the influence of prediction error needs to be small,
using a small K, biasing the belief update towards the prior.

evaluation We have three agents configured with the complete
HPBU model trained on the same corpus. The one difference is the role
with which they are configured, with one agent having the leader role,
and the other two agents taking on the follower role. This configu-
ration clamps the goal level probability distribution to that specific
role-containing hypothesis which, in effect, biases the coordination
sequence distributions to favor the ones suitable to the agent’s role.

In this evaluation, three aspects are important: 1) The leader agent
has the task to communicate its belief of a specific digit. 2) The inter-
action will be evaluated with regard to the leader agent’s success to
establish common ground with its two interaction partners. 3) The
Kalman gain bias b will be evaluated with respect to its influence on
an agent’s ability to perceive its interaction partner’s behavior, which
in effect might influence the success of the belief coordination.

For this evaluation, many configurations of bias b were simulated.
Here, we will compare three scenarios of the Kalman gain bias, while
the intention for Agent A remains the same (producing the drawing
of a 9):

• Scenario a biases K towards the prior, with a bias b of 0.3 at all
levels of the hierarchy during intentions to observe.

• Scenario b biases K more strongly towards the evidence, with a
bias of 0.65, throughout the hierarchy, similar to Scenario a.

• Scenario c biases K towards strongly favoring new evidence with
a bias of 0.9, throughout the hierarchy, similar to Scenarios a and
b.

During all scenarios the gain bias will be set to b = 0.1 during inten-
tions to act.

In figures fig. 6.16, 6.17, and 6.18 you see three rows that display
the belief dynamics at the schema level C, over all available schema
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Figure 6.16: Scenario a with bias b = 0.3. Three rows display the belief
dynamics at the schema level, over all available schema rep-
resentations. Above each row the onset of new intentions are
shown. Here, we see an example of how shared understanding
cannot be established. While the leader Agent A produces its in-
tended action successfully (drawing a 9), it does not care enough
for its interaction partners. Both follower agents do not catch
the correct intention behind Agent A’s behavior, but this is not
detected.

representations (all learned clusters of different-enough digits), which
is an overall good place to look for how behavior is perceived or acted
out. Above each row of belief dynamics the onset times of intentions
from coordination sequence level CS are shown. Right from the start
the two follower agents have the intention for social gaze, the meta-
communicative signal. Agent A is the leader agent in the first row,
who selects Agent B as the initial interaction partner, by returning the
social gaze signal, establishing mutual gaze between them. This allows
the coordination sequence to progress on.

In the following reciprocal back and forth of action and perception,
over each row we see the onset timings of the intentions from the
coordination sequence level. There, intentions to either _observe or
_produce are triggered. The latter one also contains information about
what to produce, either the me-belief or the you-belief, as it is the
leader agent who will primarily produce its held me-belief, while
the follower agents will primarily produce the perceived you-belief.
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Figure 6.17: Scenario b with bias b = 0.65. Three rows display the belief
dynamics at the schema level, over all available schema represen-
tations. Above each row the onset of new intentions are shown.
Here, the coordination is well off with Agent B, which picks up
and reciprocates the correct belief (drawing a 9). In the following
coordination attempt with Agent C, its wrongly held belief is not
detected by Agent A. The belief probabilities of Agent A show
that Agent C’s false belief is first detected but then disregarded,
as Agent A’s prior belief takes over again.

In the end, both agents have hopefully signaled a _thumbsup. Agent
A will then turn to Agent C to also establish mututal gaze, because
in its person model, Agent A has no common ground registered
with Agent C. With mutual gaze established between them, also
they can go through the belief coordination sequence, leading to
common ground between all three agents. In scenario c, a false belief
of Agent C could be detected, which triggered a switch to a more
complex coordination sequence (see fig. 6.15), which allowed the
attempt of repair of the false belief, using sensorimotor communication.
Sensorimotor communication made use of the false belief, to select a
sequence from the schema of the communication goal intention, which
is maximally different than the false belief’s corresponding schema.
The detection of this false belief was possible due to the setting of b to
a high bias towards evidence.

In order to discuss the influence of the Kalman gain bias b on the
ability of the leader agent to pick up false beliefs, fig. 6.19 compares
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Figure 6.18: Scenario c with bias b = 0.9. Three rows display the belief
dynamics at the schema level, over all available schema rep-
resentations. Above each row the onset of new intentions are
shown. Here, the coordination is well off with Agent B, which
picks up and reciprocates the correct belief (drawing a 9). During
the communication with Agent C, its false belief is detected by
Agent A. Using sensorimotor communication, Agent A attempts
to repair the false belief. This is successful.

the progression of belief coordination attempts depending on different
biases. Displayed is the free energy F of the schema level C of the leader
agent, throughout the whole interaction. Spikes in free energy mark
changes at schema level beliefs and the vertical line marks the end of
the interaction. The vertical line is dashed if beliefs between leader and
follower agents are the same at the end of the interaction, and dotted
if they are different. The interaction sequences with higher gain biases
(>0.65) are longer because the leader agent is able to pick up false
beliefs and attempts repairs through sensorimotor communication.

In addition, the successfull but complex belief coordination scenario
c was chosen to see whether it also minimized free energy in the
mentalizing part of HPBU (see fig. 6.20). During successful belief coor-
dination, the actual predicted progression through the coordination
sequence, one intention at a time and up to reaching the predicted goal
state, minmizes free energy at the coordination sequence level. This
figure (fig. 6.20) shows the complete hierarchy dynamics in the form
of heat maps, during the successful belief coordination in fig. 6.18,
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Figure 6.19: Shown is the free energy (F) at the schema level of the leader
agent, plotted for different bias settings, over whole belief co-
ordination interactions. Spikes in free energy mark changes at
schema level beliefs, inferred from the follower agents. The ver-
tical line marks the end of the interaction. It is dashed if beliefs
between leader and follower agents are the same (successful
belief coordination), and dotted if not.

including the free energy over time below each level’s heat map. Fo-
cusing on the CoordSeqs and Goals levels, we see that free energy is
indeed minimized during this successful coordination.

results description Three scenarios were tested with different
configurations of biasing the Kalman gain K during belief updates
that is configured during different intentions from the coordination
sequence level.

Generally, what can be taken from these figures of the overall back
and forth of belief coordination at work, is that the mentalizing part,
with its goal level and especially the coordination sequence level,
constrains the sensorimotor part of HPBU. These constraints are strate-
gically placed biases – through intentions to act or observe – permitting
a flexible boundary in which it can perform its task.

The belief coordination between two agents can extend to a third
agent which, when present, can be automatically included in the
interaction. The role of the leader agent in this setting is vital, as
it selects whom to choose as an interaction partner, based on the
knowledge available in its person model.

Overall, belief coordination was possible between all three agents,
even in cases of false beliefs in one of the follower agents. The detection
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of such a false belief depends on the Kalman gain bias b during
observation of behavior. A detected false belief triggered the switch to
a coordination sequence that allowed to attempt a repair of the false
belief, using sensorimotor communication. The influence of gain bias b
on the agent’s ability to pick up false beliefs was evaluated in different
settings, showing a sweet spot for b > 0.65. Also, as assumed for
modeling the mentalizing part of HPBU, it was evaluated that indeed,
also by following through with a coordination sequence, reaching the
goal state, in effect minimizes free energy.

6.5 summary

In this chapter, different aspects of the model have been evaluated.
First of all, the recognition performance of the self-supervised ap-
proach to hierarchical learning was evaluated, showing a reasonable
performance. Also, we saw the actual ability of the generative model
to minimize free energy during action and perception. An interesting
aspect here was the inability to minimize free energy, when confronted
with an unknown category of handwriting.

Last but not least, the belief coordination performance was evaluated
in a multi-agent scenario. We saw on the example of Agent A that
the Kalman gain bias is a vital parameter, controlling the attention of
the agent on the newly observed behavior. This strongly impacted the
leader agent’s ability to detect misunderstandings in its interaction
partners. Also, we saw in the dynamics of the full hierarchy how
during the successful coordination scenario free energy could be
minimized at the coordination sequence level.

Now, it is time to discuss the initial research questions in light of the
presented theoretical background, the modeling and its assumptions,
and the evaluation results.



130 results

a) Agent A (leader)

G
oa

ls

b) Agent B (follower)

1

2

hy
po

th
es

es

c) Agent C (follower)

C
oo

rd
S

eq
s

1

2

3

4

5

6

hy
po

th
es

es

S
ch

em
as

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

hy
po

th
es

es

S
eq

ue
nc

es

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47

hy
po

th
es

es

V
is

io
n

-3.14

-2.83

-2.51

-2.2

-1.88

-1.57

-1.26

-0.94

-0.63

-0.31

0.0

0.31

0.63

0.94

1.26

1.57

1.88

2.2

2.51

2.83

hy
po

th
es

es

0 9 18 27 36 45 54 63 72 81 90 99 10
8

11
7

12
6

13
5

14
4

15
3

16
2

17
1

18
0

18
9

19
8

20
7

21
6

22
5

23
4

24
3

25
2

26
1

27
0

M
ot

or
 c

on
tro

l

0 9 18 27 36 45 54 63 72 81 90 99 10
8

11
7

12
6

13
5

14
4

15
3

16
2

17
1

18
0

18
9

19
8

20
7

21
6

22
5

23
4

24
3

25
2

26
1

27
0 0 9 18 27 36 45 54 63 72 81 90 99 10
8

11
7

12
6

13
5

14
4

15
3

16
2

17
1

18
0

18
9

19
8

20
7

21
6

22
5

23
4

24
3

25
2

26
1

-3.14

-2.83

-2.51

-2.2

-1.88

-1.57

-1.26

-0.94

-0.63

-0.31

0.0

0.31

0.63

0.94

1.26

1.57

1.88

2.2

2.51

2.83

hy
po

th
es

es

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40
steps

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40
steps

0 5 10 15 20 25 30 35 40
0

2

4

6

fre
e 

en
er

gy

0 5 10 15 20 25 30 35 40
0

2

4

6

fre
e 

en
er

gy

0 5 10 15 20 25 30 35 40
0

2

4

6

fre
e 

en
er

gy

0 5 10 15 20 25 30 35 40
0

2

4

6

fre
e 

en
er

gy

0 5 10 15 20 25 30 35 40
0

2

4

6

fre
e 

en
er

gy

0 5 10 15 20 25 30 35 40
steps

0

2

4

6

fre
e 

en
er

gy

Figure 6.20: This figure shows the complete hierarchy dynamics in the
form of heat maps, during the successful belief coordination
in fig. 6.18, including the free energy over time below each
level’s heat map. Focusing on the CoordSeqs and Goals levels, we
see that free energy is indeed minimized during this successful
coordination attempt.
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D I S C U S S I O N

We as human beings master the coordination of beliefs in social in-
teraction so effortlessly, it sometimes seems as if we had direct access
to our interaction partner’s minds. In the introduction I asked how
the processes underlying the reduction of uncertainty in exchange
with the environment, and the coordination of beliefs during social
interaction, are related.

In this thesis, I have focused on the presented modeling approach,
which is: to create a computational model on assumptions of predictive
processing and active inference, to infer the intentions and abstract
beliefs of an interaction partner, and to share them in the form of
reciprocal overt behavior, to the end of achieving belief coordination.

On the way towards a computational model, the following questions
needed research:

• How are action and perception informative in social situations? On the
basic assumptions of predictive processing and active inference,
a computational model of sensorimotor processing was created
which, as a first step, allowed to infer and produce motor be-
havior. Following as a second step, based on assumptions from
the literature of sense of agency and schizophrenia, a functional
account of self-other distinction was created. It allows to differen-
tiate between actions produced by oneself from those of others.
This was also created on the same assumptions of predictive
processing and active inference, and finally allowed to address
the initial question.

• Can active inference connect mentalizing and sensorimotor processing?
Following up on the first question, additional computational
modeling was necessary to account for the processes required
for mentalizing. It is also based on the same core assumptions
as the initial model of sensorimotor processing. Modeling the
additional mentalizing processes was necessary to perform the
actual belief coordination, based on perceived behavior and
performed reciprocity. Now that both processes were put on the
same foundation of predictive processing and active inference,
the second research question could be addressed.

Summarizing the presented computational modeling for social in-
teraction, the following observations and inferences can be made, with
regard to the research questions:

Inferrable intention representations stem from the model’s ability to
attennuate prediction error, finding explanations that are empirically
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grounded in the information-theoretic irregularities of the input signal.
These do not only cover explanations for low-level behavior, but also
the interaction as a whole, up to the interaction goal.

Under the view of predictive processing, the actual perception
process of inferring a belief about another’s behavior becomes only
necessary after failed predictions invalidate prior beliefs about that
behavior. The seemless dynamic shifts of focus on explaining errors at
the different levels of the HPBU model is only possible, because it does
not only cover the mere necessities of symbolically representing an
interaction partner’s mental states. Rather, it grounds possible beliefs
in the actual dynamics which become represented in the interaction
with other agents, and the environment. This way, deviations from
the predicted dynamics can be located at every level of abstraction,
be it deviations from an action sequence, or a predicted coordination
sequence.

In a way, the successful prediction of behavior and interaction goals
allow for the interaction partners to bypass their perceptual loop that
spans the interaction partner’s perceivable behavior. Thereby, when the
successful interaction is perceived from a subjective point of view, an
agent effectively generates only successful predictions of itself, but for
the interaction partner, and in effect the social interaction as a whole.
This leaves the amount of work minimal during successful social
interaction, speaking for a very efficient way of bootstrapping theory
of mind. The actual work done in predictive processing is the model
selection, necessary to attennuate prediction error. Since in successful
interaction no unpredicted switching of models is necessary, the amount
of work remains minimal. As we will discuss later, successful high-
precision predictions of the social interaction, down to the behavioral
levels, come close to the feeling of direct access, as described in the
second-person neuroscience and direct social perception literature,
because nothing is more direct than correctly predicting yourself.

7.1 modeling approach discussion

How have the research questions been approached in this work, which
lead to these observations?

levels of analysis The information processing carried out by a
human during social interaction was the focus of this presented work.
Following David Marr’s three level approach to understanding infor-
mation processing systems (Marr, 1982), I restricted myself to finding
possible descriptions at a computational level and a representational (and
algorithmic) level. That is, describing the overall goal of the compu-
tation and its logic. This was first described in ch. 2, but its second
part, which focused on the cognitive neuroscience underlying social
interaction, overlapped with the second level of description. That is,
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we first analyzed social interaction at the computational level, while
already discussing cues for possible representations and algorithms of
the information processing during social interaction, as exhibited by
the social brain. A much stronger focus was put at this representation
and algorithm level of analysis in ch. 3-ch. 4, where the background
and the approach to computational modeling was described.

As said, the described computational modeling is primarily con-
cerned with the algorithmic, representational details of the necessary
computation. Of course, this omits much detail of the software imple-
mentation, where hidden assumptions may lie. Although this may be
problematic on a first glance, the implementation can be described as
only one instance of the computational model. It would potentially be
very interesting to reimplement it and compare its simulation results.
As has been discussed by Cooper and Guest (2014), one should be
careful with conflating assumptions of modeling and implementa-
tion. A re-implementation of a computational model, so it could be
argued, is similar to replication in helping to shine light on hidden
assumptions, errors, and overlooked aspects.

With the levels of analysis in mind, what can be said about the
influence of perception and action on social interaction, and to what
extend can the intra-personal dynamics within the social brain be put
on the basis of predictive processing and active inference?

modeling belief coordination A core aspect of belief coordi-
nation is that during an interaction, it is necessary for its participants
to carefully select their contributions. Following the Gricean maxims
it is vital to “[m]ake your conversational contribution such as is required, at
the state at which it occurs, by the accepted purpose or direction of the talk
exchange in which you are engaged” (Grice, 1975, pp. 45).

In addition, understanding in human communication can be very
fast and flexible, but also is prone to error. This makes it necessary
for repairs to be possible. In that, reciprocity is not only a tool of
belief coordination, but also helps to collect more information, either
from context, extended exposure, or active repair attempts. Thus, it
stabilizes a linguistic interpretation over time that at first is only good
enough. Misunderstandings and communication errors are not fatal
for social interactions, but can be repaired. As has been suggested
in the running repairs hypothesis, repairs can be an integral part of
communication (Healey et al., 2018). If you will, this could be described
as a form of exaggerated counter-factual reasoning, i. e., taking other
beliefs into account with the prior false belief as a distractor that
should be avoided.

In human social interaction, it is vital that reliable understanding of
other’s social behavior is met by the correct prior assumptions about
the interaction partner, and about the social situation.
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Imagine that you find yourself on a street on your way home from
work. You are approached by a person who raises her hand. You can
now try to get out of the way, because you belief that the person wants
to slap you in the face. Another possibility is that you recognize the
person as your good friend and neighbor, who often greets you with
requesting a high five greeting. The appropriate response here would
be to give the requested high five.

This example shows the importance of prior assumptions (about
other people and situations), and the correct recognition of behavior.
In longer conversations, the process of reciprocal belief coordination
becomes important, as it not only requires well-fitting prior assump-
tions and recognition of social behavior. It also requires the possibility
to repair lingering misunderstandings, and updating those prior be-
liefs about interaction partners. The process of belief coordination
presented here is similar to the we-mode, proposed by Frith (2012): An
implicit form of mentalizing that bootstraps the attribution of men-
tal states, which here allows to reciprocally update common ground,
while contextual information and prior information can influence be-
havioral understanding top-down.

It is the presented combination of interpreting non-verbal behavior
during social interaction that underlies the title of this thesis: “Social
Motorics”. That is, a combination of an embodied grounding of pro-
cesses of perception and production of action, in dynamic interaction
with higher-level abstractions of subsequent events within a social
context.

deep temporal model The computational modeling approach
presented here solves the necessary abstractions and dynamics, of
uncertainty reduction during social interaction, using a hierarchical
approach of updating prior beliefs over longer temporal time scales.
The computational cognitive model is called HPBU, and is based on
a hierarchy of generative processes. These not only allow the predic-
tion of spatial relations in the perceived behavior, but also temporal
relations.

One basic assumption is that the dynamic environment (which in-
cludes the agent’s behavior) unfolds as an ordered sequence of states,
where input can induce dynamic trajectories in representational state
space, embedded in the model. HPBU is a generative model of such
trajectories, but in a hierarchical form that enables it to categorize
and represent similar sequences. Such a hierarchical generative model
can exhibit multiple time scales, i. e., sequences covering longer time
scale can generate sequences of shorter time scale. In other words, at
different levels of the hierarchy generative processes allow to predict
sequences of events over time. Together, this hierarchy is an example
of a generative model that infers nested sequences of state transitions
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of shorter temporal stretches within sequences of longer temporal
stretches. This has previously been described as a so-called deep tempo-
ral model (Friston et al., 2017b).

HPBU as it was described, presents these properties: it infers se-
quences of belief coordination, in which parts of a coordination se-
quence contain nested sequences, either of action understanding or
action production. In its properties of an uncertainty minimizing prob-
abilistic model, it can be described as a local search at every level of the
hierarchy for inferring the approximate posterior, given the message
passing that over time reaches the level in the form of bottom-up input
and top-down predictions. Each level at every time step, when a new
input or prediction is available, employs a form of variational belief
updating. That is, it minimizes free energy by finding available repre-
sentations (or models) that better predict the evidence (or maximize
model evidence), before predicting the next time step from the approx-
imate maximum posterior representation. The sequence-processing
levels calculate their likelihood based on recent salient movements,
collected since the completion of the last sequence.

Further in-depth treatment of the presented specialized algorithm’s
formal comparability to similar approaches will not be part of this
work, but should be part of a possible future extension toward a
generalized machine-learning framework.

7.2 evaluation discussion

With the general theoretical background and the modeling discussed,
what did the evaluation reveal?

sensorimotor evaluation discussion The recognition per-
formance of HPBU’s self-supervised learning approach has been evalu-
ated, with generally good performance, already after training on one
user source, with slight increases in classification and generalization
performance after repeated training on that source. The best perfor-
mance could be achieved through a pooling of user sources to train
on, but this led to a very high number of necessary representations,
which are computationally demanding.

Increases in recognition performance could possibly be achievable
through optimizations that would be needed to go beyond repre-
senting mere information-theoretic irregularities. These include the
representation’s reliability in relation to other – already known – rep-
resentations. What comes to mind is, to account for the frequency of
a representation’s success in reducing free energy. In addition, the
possibility of a life-long learning approach could be considered, with
a representation not only of reliability, but also with an account of
frequency of encounters, over the model’s runtime.
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Generally, the presented corpus of handwritten digits seem to con-
tain exemplars that are hard to distinguish. Especially, since even
with the highest number of representations two digits where hard to
distinguish for the model. The sequence comparison measures seemed
to be insufficient to account for all exemplars of the digits 0 and 6.

We have also seen results from a master’s thesis that compared HPBU

to state-of-the-art neural network approaches, which could reach the
initial level of classification performance after 50 epochs.

The model makes judgements about the suitability of a novel se-
quence to become represented, and to be assumed to be dependend
upon one of several hidden variables (e. g., the schema clusters). That
is, it may become a member of a cluster, or trigger the creation of
a new cluster representation. This ability to extend its state space is
what sets HPBU apart from traditional modeling approaches. To my
knowledge, no standard approach to hierarchical Bayesian modeling
allows for these kinds of dynamic updates that allow to add new
representations on the fly, in effect extending the discrete probability
distributions.

Another focus of the evaluation was to see if HPBU actually mini-
mizes free energy during action and perception, after it was trained.
Here, we could see that although being able to minimize free energy
during the perception of a known handwriting sequence, it did not
minimize free energy when confronted with an unknown handwriting
sequence. This shows the ability to differentiate between a known and
an unknown signal. Also, it exposes the point at which learning of
new sequences takes place, with the possibility of either an extension
of existing schema clusters, or a rearrangement of sequences into
additional schema clusters.

The inferred sensorimotor sense of agency during action is central
to the correct attribution of beliefs of perceived action. It strongly
depends on the parametrization of the gain bias b (to be discussed
soon) and the context of the coordination sequence – whether the
agent intends to act or observe – and highlights the uncertainty imma-
nent in the sensorimotor loop. We see in the evaluation of an action
with correct visual and proprioceptive feedback how SoA can success-
fully be established in temporal and spatial predictions, and both
feedback types. When one of these predictions is not met, as in the
second evaluation, sensorimotor SoA cannot be inferred to the level
of the first evaluation. That is, correct proprioceptive feedback was
combined with incorrect visual feedback. This way, a situation has
to be simulated where, during the own action production, another
agent’s behavior is visually observed. This quite nicely demonstrates
also the dual use of the sensorimotor system of perception and pro-
duction processes. During the correct – and to some degree automatic
– production of an own action sequence, the perception of another’s
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action could potentially still be inferred, but it is ignored at the mo-
ment. What was missing is a mechanism to actually cancel a failed
action production when the evidence suggests unpredicted action
effects. Still, a prediction of this model is that during these dual-use
cases, the differentiation of self from another agent’s action cannot be
guaranteed, if the perceived and produced behavior is too similar.

general mentalizing evaluation discussion Belief coordi-
nation was evaluated in a simulation of a multi-agent communication
game, with one agent having the leader role and the other agents
that of followers. The leading agent would try to make sure that
the followers have correctly understood its communicated intention.
The sequence of coordination attempts could be shown to be able
to lead to the establishment of common ground between all agents.
Three scenarios were tested with different configurations of biasing
the Kalman gain K during belief updates that is configured during
different intentions from the coordination sequence level. What can
be said about the belief coordination in these different conditions of
biasing the uptake of different beliefs?

In fig. 6.16, which shows the coordination of Scenario a (using a bias
b = 0.3), we see an example of how shared understanding cannot
be established. While the leader agent produces its intended action
of schema 9 successfully, it does not care enough for its interaction
partners. Both follower agents do not catch the correct intention behind
Agent A’s behavior. Also, Agent A does not detected their false beliefs.

The coordination goes similarly in Scenario b (using a bias of b =

0.65), where Agent A again attempts at communicating schema 9
(which stands for writing a 9). Here, the coordination starts off well,
where the follower Agent B picks up and reciprocates the correct belief
(drawing a 9). In the following coordination attempt with Agent C, its
wrongly held belief is not detected by Agent A. The belief probabilities
of Agent A show that Agent C’s false belief is first detected but then
disregarded, as Agent A’s prior belief takes over again (please see
fig. 6.17).

Finally in Scenario c (see fig. 6.18), we get to see a successful commu-
nication attempt, despite false beliefs. Here, the leader Agent A puts
enough attention on the interaction partner’s behavior, using a bias of
b = 0.9. Again, Agent A has the intention to communicate schema 9
and the coordination is successful with Agent B. During the communi-
cation with Agent C, its false belief is detected by Agent A. The false
belief triggers the switch to a coordination sequence that allows to
attempt a repair of the false belief, using sensorimotor communication.
This is successful.

First of all, it could be shown that belief coordination can be suc-
cessful in establishing common ground. When belief coordination was
not successful, mostly the inattentive leader agent was to blame for
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not detecting misunderstandings. Attentiveness was parameterized
by applying a gain bias b to the belief updating performed at every
level of the respective agents’ hierarchies. The analysis of the influence
of different parameter settings for b showed a sweet spot for picking
up false beliefs and repairing them (see fig. 6.19). Despite false beliefs
in follower agents, only biases of 0.7 and higher allow for successful
repair attempts. These biases allow for false beliefs to be perceived and
processed to trigger attempts for repair. A bias greater than 0.65 seems
to be the sweet spot for the detectability of false beliefs. With a bias of
0.65, the increase in free energy at t=20 might signify the detection of a
false belief, but it is not strong enough for the coordination sequences
at the next higher level to trigger a repair attempt (see spike at t=23 in
bias 0.7). In the bias setting of 0.5, beliefs between agents are the same,
which might be due to chance. Generally, the analysis shows that the
gain on prediction error influences free energy due to the Kalman gain
bias increase.

The Kalman bias parameterization that led to unsuccessful belief
coordination can be compared to the so-called confirmation bias, as
observed in humans. The confirmation bias has first been described by
Wason (1960), as a bias that during an inquiry we seem to ask questions
that seem to confirm our hypothesis, rather than trying to disprove
it. Similarly, this has been described in the light of the cognitive bias
called availability heuristic (Tversky and Kahneman, 1973), where they
observed that people tend to bias their predictions on things that are
salient (likelihood of causal influence) or vivid (easily recalled and
convincing), rather than accounting for its probability.

intentions and intended action A possible line of criticism
is the long-range connection for the intention signal, which is perculat-
ing the hierarchy in order to configure the sensorimotor hierarchy part
to the needs of the mentalizing hierarchy. E. g., the intention signal is
received by level C (or schema level) and tags one of its hypotheses for
production in active inference. Then, using additional long-range con-
nections to other levels in the hierarchy the intention is spread, giving
an initial boost of probability to associated hypotheses at those levels.
In the present implementation the intention signal is also maintaned
to continuously tag the intended action. This way, during inference,
sudden switches to other representations (e. g., other probable action
sequences), are inhibited.

Similarly, activity is maintained during attentional tasks in area MT

(Treue and Martinez Trujillo, 1999). There, monkeys were tasked to
follow a single moving visual stimulus while other movements were
also on display. The maintained activity only decreased once the task
was performed and the stimulus vanished.

One should naturally assume that the probability of intended ac-
tion representations should automatically be maintained by successful
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predictions of actions. In reality, in the model, small differences in the
feedback to early actions of an action sequence can lead to increased
likelihood of other, at that moment more similar sequence represen-
tations that not always belong to the intended schema. It may well
be the case that in an extended hierarchy, the maintained tag on the
intended representation may be provided by higher levels through
appropriate priors.

For successful active inference, incoming sensory signals to some
degree have to be ignored in order to be able to initiate action. As
a sidenote, such a necessity to maintain the intended action during
production was also identified by Doiega (2018), who discusses a
predictive-processing interpretation of M-autonomy, i. e., a formulation
of mental agency for intentional action (Metzinger, 2015).

implications of the precision weighting bias In fig. 6.19

we have seen how a bias on Kalman gain K could strongly influence
the gain of prediction error on free energy throughout the model
hierarchy. Thus, in addition to the intention signal that configures the
sensorimotor part of HPBU, also the precision weighting was biased
in order to make the intentions to act or to observe happen. A weak
bias to the influence of prediction errors could lead to uninterrupted
action and observation, without sudden switches to similar, but unin-
tended representation hypotheses. A strong bias can lead to increasing
fluctuations in free energy, and repeated switching between similar
representations, while reducing the chance to fixate on possibly false
representation hypotheses.

This strategically applied bias b of the application of the calculated
Kalman gain K during belief update seems to be a key parameter.
Specifically in the task of belief coordination, if not properly set,
the evidence for falsely held beliefs of an interaction partner can be
overlooked.

Precision weighting has previously also been associated with the
functional role of dopamine at the synapses, to balance bottom-up
sensory information with top-down prior beliefs during hierarchical
inference (e. g., Friston et al., 2012). In simulations they show how
dopaminergic lesions can produce behavior similar to neurological dis-
orders, such as Parkinson’s disease. If anything, this at least highlights
how central the role of integration of prior beliefs and sensory evidence
is, in systems faced with uncertainty. More work is definitely needed
to properly understand how, when and which bias at the different
levels in the hierarchy should be applied, and what that bias depends
on.

Also, the found sweet spot could only be reproduced for a handful
of representations. It is not universal for all representations. Further
analysis of the underlying dynamics is here ommitted, but should
be part of a thorough investigation in future work. Hypothetically,
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it could allow for the strategic placement of attention on points of
inquiry, either within the hierarchy, or in the external environment, as
perceived and influenced through the sensorimotor system. To make
the point more explicit: a strategically applied bias, placed by the system
on itself, is a form of meta-cognition. Sadly, it is beyond the scope of
this work to discuss the implications in general, of systems that place
strategic biases on their own integration of prior beliefs with sensory
evidence. What has been shown here is that its correct application is
vital for the successful coordination of beliefs during social interaction.

To summarize: the correct integration of prior beliefs and sensory
evidence is vital for the process of approximating correct posteriors at
the levels of HPBU. Also, the presented treatment of the intra-personal
dynamics within the social brain has implications for the understand-
ing of successful direct social interaction.

implications for direct social interaction Within the
presented model of HPBU, active inference and predictive processing
connects mentalizing and sensorimotor processes. This is done in a
way that may account for the subjective feeling of direct access to our
interaction partner’s minds. First of all, it allows for beliefs about an
interaction partner to act as a prior for the recognition of behavior.
Thereby it influences the likelihood of the perceived understanding
of an action (remember the example about the high-five greeting
neighbor). Also, it allows to correct for errors in understanding, and
to update beliefs over time. Another integral aspect is the precision
weighting that can bias belief updating toward favoring a stable prior
belief, effectively ignoring prediction errors. If precision weighting
is biased correctly, reciprocity becomes possible, which can lead to
a shared understanding between interaction partners. Such shared
understanding would be realized by a prior and a precision weighting
that entails good predictions about each other’s beliefs and intentions.
In effect, this prior along with the correct precision weighting helps
to minimize free energy at all levels of the hierarchy, by allowing to
efficiently anticipate, react and sometimes ignore prediction errors
that might occur in the perceptual loop, including the observation of
an interaction partner’s behavior. This process can be understood as a
form of bypassing the conscious error-correction necessary for infer-
ring each other’s beliefs and intentions, thus again making necessary
adjustments automatically and unconsciously (remember Helmholtz’s
unconscious inference). This bypass allows each interaction partner
to assume each other’s beliefs without question, which may result in
the feeling of direct access to the other’s mind. In other words: the
subjective feeling of direct access to an interaction partner’s mind is
due to continued correct attennuation of errors to predictions about
the other’s behavior, during social interaction.
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In summary, this can be described as a hypothesis for a mechanistic
account, which is missing in the dark matter of social neuroscience
(as described in sec. 2.2.3). Especially the observed impairment in HFA

patients could potentially be shed some light on. There, the implicit
process in direct social interaction is impaired which, in neurotypical
people, allows them to automatically reorient themselves and integrate
social cues. This lack of automaticity during implicit mentalizing is
described to be overwhelming for HFA patients at times. Especially,
when directly engaged in interaction, in contrast to the patient being
a passive observer (Schilbach et al., 2013).

A prediction that results from this hypothesis, is that in HFA patients
the attennuations, necessary for implicit and automatic processing,
are to some degree not possible. From the literature on impaired sen-
sory attennuation that is suggested to underlie positive symptoms
of schizophrenia (Adams et al., 2013; Brown et al., 2013; Friston and
Frith, 1995; van der Weiden et al., 2015) to the prediction hypothesis
of autism (de Cruys et al., 2014; von der Lühe et al., 2016), there are
pointers toward the idea of a spectrum of incorrectly tuned precision
weightings. Possibly, there is an over-reliance on bottom-up information
in schizophrenic patients and an over-reliance on over-generalized
top-down predictions in autism patients. For HFA patients, the auto-
matic processing would often not be achieved, because the possible
attennuations are not detailed enough for the automatic processing to
occur.

To highlight this again, the shown integration of the sensorimotor
part with the mentalizing part suggests an intra-personal dynamic
that influences the inter-personal dynamics of belief coordination.





8
C O N C L U S I O N

Let us now conclude this thesis with a brief summary of its main
arguments, results and contributions (sec. 8.2). We will also discuss
their implications as well as the limitations of this work, and possible
future research directions (sec. 8.3).

8.1 overall summary

In this thesis I sought to address the problem of how interaction part-
ners can come to a shared understanding using a predictive processing
based mechanism for the interplay within the social brain. Entailed
in this problem are the two main research questions that motivated
the work for the thesis. To tackle this problem, two of Marr’s levels
of analysis were applied to differentiate the computational from the
funtional and algorithmic levels. The computational level was used to
analyze the modeling problem and identify the necessary processes
underlying the task of achieving shared understanding in social in-
teraction. In the next step, the functional accounts and computational
modeling were approached at the algorithmic analysis level.

The first research question was: “How are action and perception in-
formative in social situations?”. In the context of this question we have
visited and discussed aspects relevant for understanding social inter-
action in general. Then, we focused on belief coordination, non-verbal
communication and the different findings from conversation analysis.
They uncover the core problem people face when they try to establish
shared understanding with one or many interaction partners. Mainly
the problem is one of uncertainty, where the inferred understanding
of exchanged communicative signals being subject to influence from
many sources. One influence comes from past experience and con-
text, regarding the information itself. The other is the social influence
from past experience with the interaction partner. Both can create
good-enough lingering understandings which, through the belief co-
ordinating process, can be tested and repaired, when necessary.

Reviewed accounts of computationally modeling all missed one
or more of the elements necessary for dynamically perceiving and
production behavior during communication, to the end of coordinating
inferred beliefs in direct social interaction (see sec. 3.6). Thus, the
computational model called HPBU was created based on predictive
processing. It has uncertainty at its core, with a central strategy of
decision making that is setup up to minimize this uncertainty (or free
energy) on the different levels of its hierarchy. Also, it handles inferred
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beliefs as possessing causal powers that can be employed and tested
in the form of predictions. Here, the levels of the hierarchy represent
increasing abstractions (sequences and schemas) over visuo-motor
movement primitives. In a form of active inference stable schema-level
beliefs can drive its lower-level sequence and motor levels to generate
predicted actions in order to minimize free energy. At the same time,
schema-level beliefs are influenced by perceived movement sequences,
minimizing free energy by driving its higher levels to select best-fitting
representations.

One focus of evaluation was to see under which circumstances the
model actually minimizes free energy. Results of these evaluations
show that free energy is minimized during action and perception of
known representations, but not if the observed behavior is unknown
or if feedback during action production is unpredicted. Thus, the
model makes judgements about the suitability of a novel sequence
to become represented, and to extend its state space. As reviewed,
this sets HPBU apart from traditional modeling approaches. It was
found that the model allows not only to handle uncertainty during
processes of perception and production of communicative signals. It
can also use predictions about the embodied nature of its learned
representations, which culminated in a functional account of SoA for
self-other differentiation. We see in the evaluation of an action with
correct feedback how SoA can successfully be established in temporal
and spatial predictions while, when predictions are not met, as in
the second evaluation, the inferred value for SoA stays low. Thus, the
applied account allows HPBU to differentiate its own actions from
those of its interaction partners.

We also visited and discussed the social cognitive neuroscience
perspective on the problem of achieving shared understanding. There
are significant differences in how the brain processes information with
or without an interaction partner. Only with an interaction partner
prior information about the interaction partner is taken into account,
and only then does the perceived behavior become informative with
regard to a belief-coordinating process.

The second question was: “Can active inference connect mentalizing
and sensorimotor processing?”. Still missing was a mechanistic account
about the interplay of the two functional networks of the social brain,
involved during social interaction. Here, such a mechanistic account of
mentalizing and sensorimotor processing was put forward in the form
of a computational model; an extended HPBU hierarchy that forms a
combined social predictive processing hierarchy. In it, beliefs about
an ongoing social interaction are stored in the form of mental state
attributions that inform state-goal pairs of mental states that track
the success of an ongoing belief coordination attempt. Interaction
goals, inferred using these structures, are successively fulfilled using
coordination sequences that employ strategies for reciprocal belief
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coordination. These can influence further processing in the form of
strategically applied intentions to act or perceive. Those intentions are
effectively biasing hierarchical belief updates to either focus on, or
ignore new evidence. By biasing belief updates and through top-down
predictions the mentalizing part influences the sensorimotor part of
the hierarchy during action production and perception. This is a form
of active inference that allows the mentalizing part to test its beliefs in
a form of reciprocal belief coordination. Also, the top-down influences
were set up to allow for an action sequence selection to be informed by
false beliefs attributed to a specific interaction partner. This is a form
of sensorimotor communication that allows for a recipient-optimized
communication, making the overall reciprocal communication strategy
more efficient.

The applied model was evaluated using a multi-agent communi-
cation game, with one agent having the leader role and the other
agents that of followers. The evaluation was focused on evaluating the
influence of biasing the Kalman gain K during belief updates, as strate-
gically configured during different intentions from the coordination
sequence level. Testing the model’s viability to coordinate beliefs un-
der these conditions, evaluations found that shared understanding can
successfully be established. The Kalman gain bias b needs to correctly
be parameterized to a level that allows for a form of confirmation
bias to be overcome that is specific to the employd communication
goal; here in the form of a specific digit. This is needed in order to
successfully integrate information during the different phases of belief
coordination, identify false beliefs, and for repair strategies in the form
of sensorimotor communication to succeed.

In conclusion, the presented work sheds light on the importance
of handling uncertainty when interacting with the environment – or
specifically – during reciprocal belief coordination with other people.
This was possible due to significant strides in computational model-
ing of motor coordination, and in enabling computational embodied
models of the social brain to engage in multi-agent interaction during
communicative settings. The most important contribution is the mech-
anistic account of the interplay between mentalizing and sensorimotor
processing, with implications for the notion of subjective direct access
to other’s minds during social interaction.

8.2 contribution summary

I regard the work presented in this thesis to be relevant to ongoing
discourses within multiple fields of research.

computational cognitive modeling With the current focus
on deep learning approaches to machine learning and computational
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cognition, I think it is necessary to contrast the presented work’s
contribution to the field of computational cognitive modeling.

First of all, HPBU represents a different approach to learning than
weight updating of existing connections. Rather, it accounts for uncer-
tainty in the input signal by “learning” new sequences on an account
of information-theoretic irregularity. In effect, the model extends its
sequence representation repertoire in a self-supervised approach. This
sequence gets abstracted upon in the hierarchy, thus it becomes embed-
ded in clusters of similar sequences, upon which further abstractions
of sequential processing can be performed, if necessary. To my knowl-
edge, this is the first account of a hierarchical probabilistic model to
handle uncertainty in this way.

Doing so, HPBU goes beyond conceptual models of hierarchical
processing, e. g., of motor coordination (Wolpert et al., 2003). It not
only handles uncertainty during coordination, but can learn new
sequences if necessary. Also, it goes beyond modeling of coupled
linear oscillators (e. g., Dumas et al., 2012a), in that it does not adapt
the model dynamically to a single state. Rather, it handles uncertainty
during sequences of events, continuously finding minimal free energy
states.

The actual dynamics within HPBU more closely resemble what has
been described by Friston et al. (2017b) as a deep temporal model. At
different levels of the hierarchy, generative processes allow to predict
sequences of events over time. Together, the hierarchy is an example
of a generative model that infers nested sequences of state transitions
of shorter temporal stretches within sequences of longer temporal
stretches.

In caring also for the temporal parameters of its embodiment, HPBU

needed to go beyond the original idea of a deep temporal model, as
it not only allows to have nested sequences of state transitions on
different clock speeds. Rather, the represented temporal dynamics of
the state transitions themselves are parameterized from experience.
These learned temporal transitions allow the model not only to predict
what to expect, but also when it is to be expect.

a mechanistic account of the interplay in the social

brain This thesis also adds to the body of work on social neuro-
science. For long, a mechanistic account for the interplay between
sensorimotor processes and mentalizing processes was missing. One
that could account for the differential activation in imaging data be-
tween participants in social situations. The missing mechanism was
dubbed “the dark matter of social neuroscience” (Przyrembel et al.,
2012).

As a step toward a complete mechanistic account of the social brain,
the presented work contributes a computational model of sensorimo-
tor sense of agency. It allows for a distinction of own actions from
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that of others. This model is based on functional mechanisms iden-
tified in the literature, spanning ideas from the comparator model,
to a proposed account of disturbed precision encodings at the core
of the Schizophrenia pathology. Combined, this enables a self-other
distinction that feeds into the mentalizing part of HPBU, informing
further processing in the context of social interaction.

The mentalizing part of HPBU was exemplified in scenarios of belief
coordination during social interaction. The presented model contains a
hierarchical structure, based on state transitions between mental state
representations, which could also be described as social affordances.
Similar state transition sequences (or coordination sequences) towards
a communicative goal of a belief coordination are clustered. This
allows for different approaches to the same problem of belief coordi-
nation, with or without means for repair. Mental state representations
receive information from the sensorimotor part of the model. With
that information the mentalizing part can track the belief coordination,
and configure the sensorimotor part to achieve its communicative
goal. The sensorimotor part either observes an interaction partner’s
behavior, or produces communicative behavior.

Engrained in this mechanistic account of the social brain is that HPBU

is based on predictive processing and active inference. This allows
for prior information about an interaction partner to influence the
likelihood in belief update processes, during perception or production
of behavior. Reciprocity allows to correct for errors in understanding
and updates beliefs, so that over time, a shared understanding between
interaction partners can be established. Shared understanding (in the
form of minimized free energy at sensorimotor levels of the hierarchy)
effectively allows to bypass the perceptual loop that includes the
observation of an interaction partner’s behavior. This allows the agent
to only predict itself (at mentalizing levels of the hierarchy), as long
as the prediction errors from the interaction partner’s behavior can
continuously be correctly attennuated.

An interesting implication of this view is that this bypass allows
each interaction partner to assume each other’s beliefs without ques-
tion. In humans, such a similar process may result in the subjective
feeling of direct access to the other’s mind, since nothing is more
direct than observing your own thoughts.

Another important contribution, though not only for the field of
social neuroscience, is the importance of precision weighting. Precision
weighting, in the form of a biased Kalman gain, was found to be vital
for the balanced updating of beliefs, which we have seen to impact not
only the correct attribution of sense of agency to own actions. We have
also seen it to be vital for a social agent to gain access to its interaction
partner’s beliefs, by observing their actions without its prior beliefs
overwriting the new information during the inference process.
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The impact of precision weighting on the pathology of Schizophre-
nia, e. g., in the form of attennuation, has already been discussed, as
it directly influences also the attribution of agency and the under-
standing of an active self. For autism it has also been discussed that
predictive processes might be at the core of the automatic process-
ing underlying implicit mentalizing, as seen in HFA patients. To my
present knowledge though, the role of precision weighting has not
been highlighted to the same degree in disturbed social cognition, as
it has been for cases of positive symptoms of Schizophrenia.

Clearly, the role of precision weighting should more deeply be
investigated. Thus, let us now come to discuss the limitations and the
possible outlook for the presented body of work.

8.3 limitations and future work

With the many assumptions that carry the presented modeling ap-
proach, there are some that need to be questioned, if the model’s
conceptual power is to be evaluated and extended further.

One limitation that is quite obvious, is that the HPBU agents did
not play their communication game with an actual human participant.
Much of the modeling work presented here would not have been
possible without the empirical findings in the literature on social
cognition, conversation analysis, and social neuroscience. Thus, a true
interaction with human participants, as the de-facto gold standard of
social agents, should be a primary milestone for future development.
One problem with this is the open question of finding the correct
parameterization for precision weighting during an interaction as such.
Precision weighting should be another focus of future developments
of this model. In the presented model belief updates were heavily
influenced by an uncertainty based Kalman gain K, which again was
influenced by a gain bias b. Only few gain bias parametrizations were
successful for a specific digit to allow for successful application of
repair strategies and the detection of a false belief. Not all performed
parametrizations were included in this work, but I hypothesize that
the success of this gain bias parameter is dependent on the kind of
digit and variability of its representations. To make the point again:
a strategically applied bias, placed by the system on itself, is a form of
meta-cognition, which could be learned. Hypothetically, it could allow
for the strategic placement of attention on points of inquiry, either
within the hierarchy, or in the external environment, as perceived and
influenced through the sensorimotor system.

A first approach to mediate this problem would be to use other
training corpora that would allow to find more robust representations.
Using more extensive corpora would probably lead to increasing
necessary computational resources. To handle these, a good next step
would be to make use of parallelization on GPUs, by performing
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the necessary likelihood calculations in parallel. Also, a coupling
of connectionist accounts of processing sequential information, like
recurrent neural networks, with a predictive processing based account,
should be considered to make use of the strides in performance of
these accounts.

Another possibility to tackle this problem would be to only compare
human task performance with that of the model in specialized tasks.
For example, the presented mechanistic account of the interplay within
the social brain could be investigated in the future, by comparing the
model performance with that of HFA patients. For that, the model’s
precision weighting could then be biased to match the performance of
social information integration of HFA patients. Similarly, for patients
suffering from positive symptoms of Schizophrenia a comparison
also with the model’s performance on a specialized task could be
performed.

If such an endevour would be successful and a parameter spectrum
of precision weighting could be established, an improved social inter-
action, with a balanced agent, would become possible. Also then, the
repair mechanism embedded in the hierarchy would become more ef-
fective in making use of sensorimotor communication. This would allow
to reciprocate during belief coordination in a way that strategically
takes the other agent’s belief into account more extensively.

On a similar note, Brandi et al. (2019) propose the concept of social
agency, to refer to the experience of agency in a social interaction. They
develop a mechanistic account for social agency, based on predictive
processing, and propose to test it on patients with different disorders,
to see how it impacts social agency. The proposed mechanistic process
is based on a hierarchical representation of social interactions. I belief
the account of sense of agency, already available in HPBU, could pro-
vide a measure of social agency when applied at the level of social
interaction, i. e., HPBU’s coordination-sequence level.

Another limitation of the presented work is the depth of the treat-
ment of the model’s mathematical validity and suitability as a gen-
eralized framework. As discussed, HPBU combines properties of an
uncertainty minimizing hierarchical probabilistic model, with proper-
ties of a linear dynamical system. It employes a local search at every
level of the hierarchy for inferring the approximate posterior, given
the message passing that over time reaches the level, in the form of
bottom-up input and top-down predictions. Each local search has the
form of a variational belief updating (see par. 4.1.4) which, by select-
ing a better-fitting model, minimizes free energy. From the updated
approximate maximum posterior representation, a better prediction
can be made for the next time step. As was previously proposed, deep
temporal models can be expressed as a hierarchy of Markov decision
processes (Friston et al., 2017b). Although, this example does not cover
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explicit representation – and thus predictability – of temporal relations,
or learning of new representations.

Self-supervised learning in HPBU is currently restricted to the ex-
tension of the state space by adding new representations at the se-
quence and schema levels. In future developments the present learning
approach should be taken a step further, maybe by optimizing the
connection weights between clusters and their associated representa-
tions. Such a future development would allow to learn the comparison
functions used to calculate the likelihoods, which at the moment are
static and predefined. Also, a focus should be put on learning optimal
precision weightings, depending on the current intention-context (ac-
tion or observation), the representation in question, and maybe even
depending on the interaction partner.

What should also be considered as a possible future direction, is
the possibility to associate HPBU’s actions with different intended
effects than mere joint-movements. It would be interesting to associate
effects in the world that do not influence the motor system directly.
An example would be the distal action effect of pressing on a switch
to turn on a light.

For a more fine-tuned, and possibly more appropriate belief coordi-
nation, which might be necessary for interaction with humans, rep-
resentations at the coordination sequence level could also be learned.
Generally, learning of new sensorimotor-part representations during
social interaction would allow for very interesting investigations into
human learning (e. g., language learning, or imitation learning), and
negotiation.

Another angle for social interaction between social agents would be
the variation of the agent’s roles. In the present work, agents either
have the role of leader or follower, while in both roles the agents were
assumed to be collaborative. In future setups, the leader role could be
configured (by means of different coordination sequences), to play a
deceiving role in a deception game, explicitly trying to convince the
follower agents of a false belief.

Tightly connected to such a setup is the idea of interaction-partner
specific levels of trust. In the current model, if prior information about
interaction partners are available, those beliefs will equally influence
belief updating. In future interaction scenarios, the weight of prior
information could, for example, be set to depend on the frequency of
successful prior interactions with a specific interaction partner. This
would make the mentioned deception game even more interesting.

As a final outlook, the possibility of future reimplementations are
important and should strongly be encouraged. To my understand-
ing, and as has previously been argued (Cooper and Guest, 2014),
reimplementations could be regarded as replication. They make im-
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plementation assumptions obvious and the basic assumptions are
more rigorously tested. To that end, the source code for the HPBU core
model as well as its specific instantiations (specifically configured for
the presented evaluations), will be made public under open-source
licencing*.

* Software repository: https://purl.org/skahl/hpbu

https://purl.org/skahl/hpbu
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Figure A.1

Figure A.1 shows an overview over the whole HPBU hierarchy.
The two top-most levels make up the mentalizing part of HPBU,

starting with level G (Goals), which shows: (a) bottom-up posterior of
level G, see sec. 5.2.4; The next lower level CS (CoordinationSequences)
shows: (b) top-down posterior of level CS, see sec. 5.2.4; (c) bottom-up
posterior of level CS, see sec. 5.2.4.

Below that, the sensorimotor part of HPBU begings with level C
(Schemas), which shows: (d) stable schema detection of level C, see
par. 5.2.5; (e) top-down posterior of level C, see par. 4.2.1; (f) bottom-up
posterior of level C, see par. 4.2.1.
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Next, level S (Sequences) shows: (g) salient new sequence detection
of level S, see par. 4.2.5; (h) top-down posterior of level S, see par. 4.2.1;
(i) bottom-up posterior of level S, see par. 4.2.1; (j) likelihood of next
steps of level V and M, see par. 4.2.1.

The bottom-most levels consist of levels V (Vision) and M (Motor-
Control), which show: (k) salient movement detection of level V, see
par. 4.2.3; (l) top-down posterior with (j) of level V; (m) top-down
posterior with (j) of level M; (n) bottom-up posterior of level V, see
par. 4.2.1; (o) likelihood of movement direction of level V, see par. 4.2.1;
(p) bottom-up posterior of level M; (q) dampened spring system with
goal-forcing, see par. 4.2.2.

The update of each level’s beliefs are integrated using the follow
belief update mechanism: (r) belief update, similar for all levels, see
par. 4.1.4 and par. 4.2.4.
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