ARTICLE 1 https://doi.org/10.1038/s41467-020-17935-6 **OPEN** ## Ultrafast terahertz magnetometry Wentao Zhang^{1,2}, Pablo Maldonado o ³, Zuanming Jin⁴, Tom S. Seifert⁵, Jacek Arabski⁶, Guy Schmerber⁶, Eric Beaurepaire^{6,8}, Mischa Bonn², Tobias Kampfrath⁷, Peter M. Oppeneer o ^{3,7} & Dmitry Turchinovich 1 □ A material's magnetic state and its dynamics are of great fundamental research interest and are also at the core of a wide plethora of modern technologies. However, reliable access to magnetization dynamics in materials and devices on the technologically relevant ultrafast timescale, and under realistic device-operation conditions, remains a challenge. Here, we demonstrate a method of ultrafast terahertz (THz) magnetometry, which gives direct access to the (sub-)picosecond magnetization dynamics even in encapsulated materials or devices in a contact-free fashion, in a fully calibrated manner, and under ambient conditions. As a showcase for this powerful method, we measure the ultrafast magnetization dynamics in a laser-excited encapsulated iron film. Our measurements reveal and disentangle distinct contributions originating from (i) incoherent hot-magnon-driven magnetization quenching and (ii) coherent acoustically-driven modulation of the exchange interaction in iron, paving the way to technologies utilizing ultrafast heat-free control of magnetism. High sensitivity and relative ease of experimental arrangement highlight the promise of ultrafast THz magnetometry for both fundamental studies and the technological applications of magnetism. ¹ Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany. ² Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. ³ Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden. ⁴ Terahertz Technology Innovation Research Institute, University of Shanghai for Science and Technology, JunGong Road 516, 200093 Shanghai, China. ⁵ Department of Materials, ETH Zurich, Hönggerbergring 64, 8093 Zurich, Switzerland. ⁶ Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg (UMR 7504), 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France. ⁷ Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany. ⁸Deceased: Eric Beaurepaire. [™] email: dmtu@physik.uni-bielefeld.de