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Abstract
We prove the equivalence of two different types of capacities in abstract Wiener spaces.
This yields a criterion for the Lp-uniqueness of the Ornstein-Uhlenbeck operator and its
integer powers defined on suitable algebras of functions vanishing in a neighborhood of
a given closed set � of zero Gaussian measure. To prove the equivalence we show the
Wr,p(B,μ)-boundedness of certain smooth nonlinear truncation operators acting on poten-
tials of nonnegative functions. We discuss connections to Gaussian Hausdorff measures.
Roughly speaking, if Lp-uniqueness holds then the ‘removed’ set � must have sufficiently
large codimension, in the case of the Ornstein-Uhlenbeck operator for instance at least 2p.
For p = 2 we obtain parallel results on truncations, capacities and essential self-adjointness
for Ornstein-Uhlenbeck operators with linear drift. These results apply to the time zero
Gaussian free field as a prototype example.
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1 Introduction

The present article deals with capacities associated with Ornstein-Uhlenbeck operators on
abstract Wiener spaces (B,μ,H), [8, 11, 24, 32, 35–37, 53, 58], and applications to Lp-
uniqueness problems for Ornstein-Uhlenbeck operators and their integer powers, endowed
with algebras of functions vanishing in a neighborhood of a small closed set.

Our original motivation comes from Lp-uniqueness problems for operators L endowed
with a suitable algebra A of functions, the special case p = 2 is the problem of essential
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self-adjointness. For the ‘globally defined’ operator L on the entire space Lp-uniqueness is
well understood, see for instance [18] and the references cited there. If the globally defined
operator is Lp-unique one can ask whether the removal of a small set (or, in other words,
the introduction of a small boundary) destroys this uniqueness or not. A loss of uniqueness
means that extensions to generators of C0-semigroups, [45], with different boundary con-
ditions exist. The answer to this question depends on the size of the removed set. The most
classical example may be the essential self-adjointness problem for the Laplacian � on Rn,
endowed with the algebra C∞

c (Rn \ {0}) of smooth compactly supported functions on R
n

with the origin {0} removed. It is well known that this operator is essential self-adjoint in
L2(Rn) if and only if n ≥ 4, [59, p.114] and [47, Theorem X.11, p.161]. Generalizations of
this example to manifolds have been provided in [12] and [38], more general examples on
Euclidean spaces can be found in [5] and [27], further generalizations to manifolds and met-
ric measure spaces will be discussed in [28]. For the Laplacian on Rn one main observation
is that, if a compact set� of zero measure is removed fromR

n, the essential self-adjointness
of (�,C∞

c (Rn \ �)) in L2(Rn) implies that dimH � ≤ n − 4, where dimH denotes the
Hausdorff dimension. See [5, Theorems 10.3 and 10.5] or [27, Theorem 2]. This necessary
‘codimension four’ condition can be rephrased by saying that we must haveHn−d(�) = 0
for all d < 4, whereHn−d denotes the Hausdorff measure of dimension n − d .

Having in mind coefficient regularity or boundary value problems for operators in infi-
nite dimensional spaces, see e.g. [10, 13, 14, 25, 26], one may wonder whether a similar
‘codimension four’ condition can be observed in infinite dimensional situations. For the
case of Ornstein-Uhlenbeck operators on abstract Wiener spaces an affirmative answer to
this question follows from the present results in the special case p = 2.

The basic tools to describe the critical size of a removed set � ⊂ B are capaci-
ties associated with the Sobolev spaces Wr,p(B,μ) for the H -derivative respectively the
Ornstein-Uhlenbeck semigroup, [8, 11, 24, 32, 35–37, 53, 58]. Such capacities can be intro-
duced following usual concepts of potential theory, [11, 20, 37, 52, 53, 55, 56, 58], see
Definition 3.1 below, and they are known to be connected to Gaussian Hausdorff measures,
[21]. Uniqueness problems connect easier to another, slightly different definition of capac-
ities, where the functions taken into account in the definition are recruited from the initial
algebra A and, roughly speaking, are required to be equal to one on the set in question, see
Definitions 3.2 and 3.3. This type of definition connects them to an algebraic ideal prop-
erty which is helpful to investigate extensions of operators initially defined on ideals of A.
For Euclidean Sobolev spaces these two types of capacities are known to be equivalent, see
for instance [2, Section 2.7]. The proofs of these equivalences go back to Maz’ya, Khavin,
Adams, Hedberg, Polking and others, [1–3, 41–44], and rely on bounds in Sobolev norms
for certain nonlinear composition operators acting on the cone of nonnegative Sobolev func-
tions, see e.g. [1, Theorem 3], or the cone of potentials of nonnegative functions, see e.g.
[1, Theorem 2] or [2, Theorem 3.3.3]. Apart from the first order case r = 1 this is non-
trivial, because in finite dimensions Sobolev spaces are not stable under such compositions,
see for instance [2, Theorem 3.3.2]. Apart from the case p = 2, where one can also use
an integration by parts argument, [1, Theorem 3], the desired bounds are shown using suit-
able Gagliardo-Nirenberg inequalities, [3, 42], or suitable multiplicative estimates of Riesz
or Bessel potential operators involving Hardy-Littelwood maximal functions and the Lp-
boundedness of the latter, [2, Theorem 1.1.1, Proposition 3.1.8]. The constants in these
estimates are dimension dependent.

Sobolev spaces Wr,p(B,μ) over abstract Wiener spaces (B,μ,H) are stable under
compositions with bounded smooth functions, [8, Remark 5.2.1 (i)], but one still needs to
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establish quantitative bounds. We establish Sobolev norm bounds for nonlinear composi-
tion operators acting on potentials of nonnegative functions, Theorem 3.6. To obtain it, we
use the Lp-boundedness of the maximal function in the sense of Rota and Stein for the
Ornstein-Uhlenbeck semigroup, [53, Theorem 3.3], this provides a similar multiplicative
estimate as in the finite dimensional case, see Lemma 4.2. From the Sobolev norm estimate
for compositions we can then deduce the desired equivalence of capacities, Theorem 3.5,
where A is chosen to be the set of smooth cylindrical functions or the space of Watan-
abe test functions. Applications of this equivalence provide Lp-uniqueness results for the
Ornstein-Uhlenbeck operator and, under a sufficient condition that ensures they generate
C0-semigroups, also for its integer powers, see Theorem 5.2. In particular, if � ⊂ B is a
given closed set of zero Gaussian measure, then the Ornstein-Uhlenbeck operator, endowed
with the algebra of cylindrical functions vanishing in a neighborhood of � (or the alge-
bra of Watanabe test functions vanishing q.s. on a neighborhood of �) is Lp-unique if and
only if the (2, p)-capacity of � is zero, see Theorem 5.2. Combined with results from [21]
on Gaussian Hausdorff measures, we then observe that the Lp-uniqueness of this Ornstein-
Uhlenbeck operator ‘after the removal of �’ implies that the Gaussian Hausdorff measure
�d(�) of codimension d of � must be zero for all d < 2p, see Corollary 6.2. In particu-
lar, if the operator is essentially self-adjoint on L2(B,μ), then �d(�) must be zero for all
d < 4, what is an analog of the necessary ‘codimension four’ condition known from the
Euclidean case. In Sections 8 and 9 we partial rework the arguments to obtain results on
essential self-adjointness of Ornstein-Uhlenbeck operators with linear drift as studied for
instance in [4, 7, 51, 52], the prominent example being the Hamiltonian of the time zero
Gaussian free field in Euclidean quantum field theory, [46, 48, 49, 54], Example 9.3. Again
the characterization of essential self-adjointness, Theorem 9.1, is obtained from a capacitary
equivalence, Theorem 8.7, based on a truncation result for potentials, Theorem 8.9.

In the next section we recall standard items from the analysis on abstract Wiener spaces.
In Section 3 we define Sobolev capacities and prove their equivalence, based on the norm
bound on nonlinear compositions, which is proved in Section 4. Section 5 contains the men-
tioned Lp-uniqueness results. The connection to Gaussian Hausdorff measures is briefly
discussed in Section 6, followed by some remarks on related Kakutani theorems for mul-
tiparameter processes in Section 7. Capacities, truncations and essential-selfadjointness of
operators with linear drift are discussed in Sections 8 and 9.

2 Preliminaries

Following the presentation in [53], we provide some basic definitions and facts. Let
(B,μ,H) be an abstract Wiener space. That is, B is a real separable Banach space, H is a
real separable Hilbert space which is embedded densely and continuously on B, and μ is a
Gaussian measure on B with∫

B

exp{√−1〈ϕ, y〉}μ(dy) = exp

{
−1

2
|ϕ|2H ∗

}
, ϕ ∈ B∗,

see for instance [53, Definition 1.2]. Here we identify H ∗ with H as usual, so that B∗ ⊂
H ⊂ B. Since every ϕ ∈ B∗ is N(0, |ϕ|2H )-distributed, it is an element of L2(B,μ) and
the map ϕ �→ 〈ϕ, ·〉 is an isometry from B∗, equipped with the scalar product 〈·, ·〉H , into
L2(B,μ). It extends uniquely to an isometry

h �→ ĥ (1)
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from H into L2(B,μ). A function f : B → R is said to be H -differentiable at x ∈ B if
there exists some h∗ ∈ H ∗ such that

d

dt
f (x + th)|t=0 = 〈

h, h∗〉

for all h ∈ H . If f is H -differentiable at x then h∗ is uniquely determined, denoted by
Df (x) and refereed to as the H -derivative of f at x. See [53, Definition 2.6]. For a function
f that is H -differentiable at x ∈ B and an element h of H we can define the directional
derivative ∂hf (x) of f at x by

∂hf (x) := 〈Df (x), h〉H .

A function f : B → R is said to be k-times H -differentiable at x ∈ B if there exists a
continuous k-linear mapping �x : Hk → R such that

∂k

∂t1 · · · ∂tk
f (x + t1h1 + · · · + tkhk)|t1=···=tk=0 = �x(h1, . . . hk)

for all h1, . . . , hk ∈ H . If so, �x is unique and denoted by Dkf (x). A function f : B → R

is called a (smooth) cylindrical function if there exist an integer n ≥ 1, linear functionals
l1, ..., ln ∈ B∗ and a function F ∈ C∞

b (Rn) such that

f = F(l1, ..., ln). (2)

The space of all such cylindrical functions on B we denote by FC∞
b . Clearly FC∞

b is
an algebra under pointwise multiplication and stable under the composition with functions
T ∈ C∞

b (R).
A cylindrical function f ∈ FC∞

b as in Eq. (2) is infinitely many times H -differentiable
at any x ∈ B, and for any k ≥ 1 we have

Dkf (x) =
∞∑

j1,...jk=1

∂j1 · · · ∂jk
F (〈x, l1〉 , ..., 〈x, ln〉) lj1 ⊗ · · · ⊗ ljk

, (3)

where ∂j denotes the j -th partial differentiation in the Euclidean sense. The space FC∞
b is

dense in Lp(B,μ) for any 1 ≤ p < +∞, see e.g. [7, Lemma 2.1].
We write H0 := R, H1 := H and generalizing this, denote by Hk the space of k-linear

maps a : Hk → R such that

|a|2Hk
:=

∞∑
j1,...,jk=1

(a(ej1 , . . . , ejk
))2 < +∞, (4)

where (ei)
∞
i=1 is an orthonormal basis in H . The value of this norm does not depend on the

choice of this basis. See [9, p.3]. Clearly every such k-linear map a can also be seen as a
linear map a : H⊗k → R, where H⊗k denotes the k-fold tensor product of H , with this
interpretation we have a(ej1 ⊗ ... ⊗ ejk

) = a(ej1 , . . . , ejk
) and by Eq. (4) the operator a is

a Hilbert-Schmidt operator. For later use we record the following fact.

Proposition 2.1 For any a ∈ Hk we have

|a|Hk
≤ 2kk sup {|a(h1, ..., hk)| : h1, · · · , hk are members

of an orthonormal system in H, not necessarily distinct} .
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Proof By Parseval’s identity and Cauchy-Schwarz in H⊗k we have

|a|Hk
= sup

{
|ay| : y ∈ H⊗k and |y|H⊗k = 1

}
.

Choose an element y = y1 ⊗ ... ⊗ yk ∈ H⊗k such that |y|H⊗k = 1 and |a|Hk ≤ 2|ay|.
Without loss of generality we may assume that |yj |H = 1, 1 ≤ j ≤ k. Choosing an
orthonormal basis (bi)

n
i=1 in the subspace span {y1, ..., yk} of H we observe n ≤ k and

yj = ∑n
i=1 biλij with some |λij | ≤ 1. Since this implies

|ay| ≤
∑

i1,··· ,ik∈{1,··· ,n}
|a(bi1 , · · · , bik )|,

we obtain the desired result.

We recall the definition of Sobolev spaces on B. For any 1 ≤ p < +∞ and k ≥ 0 let
Lp(B,μ,Hk) denote the Lp-space of functions from B into Hk . For any 1 ≤ p < +∞
and integer r ≥ 0 set

‖f ‖Wr,p(B,μ) :=
r∑

k=0

∥∥∥Dkf

∥∥∥
Lp(B,μ,Hk)

, (5)

f ∈ FC∞
b . The Sobolev class Wr,p(B,μ) is defined as the completion of FC∞

b in this
norm, see [8, Section 5.2] or [9, Section 8.1]. In particular, W 0,p(B,μ) = Lp(B,μ). For
f ∈ Wr,p(B,μ) the derivatives Dkf , k ≤ r , are well defined as elements of Lp(B,μ,Hk),
see [8, Section 5.2]. By definition the spacesWr,p(B,μ) are Banach spaces. The spaceW∞
of Watanabe test functions is defined as

W∞ :=
⋂

r≥1, 1≤p<+∞
Wr,p(B,μ).

We have FC∞
b ⊂ W∞, in particular, W∞ is a dense subset of every Lp(B,μ) and

Wr,p(B,μ).
In contrast to Sobolev spaces over finite dimensional spaces, [2, Theorem 3.3.2], also

the Sobolev classes Wr,p(B,μ), r ≥ 2, are known to be stable under compositions u �→
T (u) = T ◦uwith functions T ∈ C∞

b (R), as follows from the evaluation of an integration by
parts identity together with the chain rule, applied to cylindrical functions. See [8, Remark
5.2.1 (i)] or [9, Proposition 8.7.5]. In particular, the space W∞ is stable under compositions
with functions from C∞

b (R). Also, it is an algebra with respect to pointwise multiplication,
[37, Corollary 5.8].

Given a bounded (or nonnegative) Borel function f : B → R and t > 0 set

Ptf (x) :=
∫

B

f (e−t x +
√
1 − e−2t y)μ(dy), x ∈ B. (6)

The function Ptf is again bounded (resp. nonnegative) Borel onB and the operators Pt form
a semigroup, i.e. that for any s, t > 0 we have Pt+s = PtPs . The semigroup (Pt )t>0 is called
the Ornstein-Uhlenbeck semigroup on B. For any 1 ≤ p ≤ +∞ it extends to a contraction
semigroup (P

(p)
t )t>0 on Lp(B,μ), [53, Proposition 2.4], strongly continuous for 1 ≤ p <

+∞. The semigroup (P
(2)
t )t>0 is a sub-Markovian symmetric semigroup onL2(B,μ) in the

sense of [11, Definition I.2.4.1]. The infinitesimal generators (L(p),D(L(p))) of (P
(p)
t )t>0

is called the Ornstein-Uhlenbeck operator on Lp(B,μ), [53, Section 2.1.4]. We will always
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write Pt and L instead of P
(p)
t and L(p), the meaning will be clear from the context. Given

r > 0 and a bounded (or nonnegative) Borel function f : B → R, set

Vrf := 1

	(r/2)

∫ ∞

0
t r/2−1e−tPtf dt, (7)

where 	 denotes the Euler Gamma function. The function Vrf is again bounded (resp.
nonnegative) Borel, and for any 1 ≤ p < ∞ the operators Vr form a strongly continuous
contraction semigroup (Vr)r>0 on Lp(B,μ), see [8, Corollary 5.3.3] or [53, Proposition
4.7], symmetric for p = 2. In any of these spaces the operators Vr are the powers (I −
L)−r/2 of order r/2 of the respective 1-resolvent operators (I −L)−1. Meyer’s equivalence,
[9, Theorem 8.5.2], [53, Theorem 4.4], states that for any integer r ≥ 1 and any 1 < p <

+∞ and any u ∈ Wr,p(B,μ) we have

c1 ‖u‖Wr,p(B,μ) ≤
∥∥∥(I − L)r/2u

∥∥∥
Lp(B,μ)

≤ c2 ‖u‖Wr,p(B,μ) (8)

with constants c1 > 0 and c2 > 0 depending only on r and p. By the continuity of the
Vr and the density of cylindrical functions we observe Wr,p(B,μ) = Vr(L

p(B,μ)) in the
sense of equivalently normed spaces. Note that for p = 2 the middle terms in Eq. (8) provide
equivalent norms that make the space Hilbert. The operator Vr acts as an isometry from
Ws,p(B,μ) onto Ws+r,p(B,μ), [11, Chapter II, Theorem 7.3.1]. For later use we record
the following well known fact.

Proposition 2.2 For any r > 0 we have Vr(FC∞
b ) ⊂ FC∞

b and Vr(W
∞) ⊂ W∞.

Proof From the preceding lines it is immediate that Vr(W
∞) ⊂ W∞. To see the remaining

statement suppose f ∈ FC∞
b with f = F(l1, ..., ln), li ∈ B∗, F ∈ C∞

b (Rn), and by
applying Gram-Schmidt we may assume {l1, ..., ln} is an orthonormal system in H . The
Ornstein-Uhlenbeck semigroup (T

(n)
t )t>0 on L2(Rn), defined by

T
(n)
t F (ξ) =

∫
Rn

F (e−t ξ +
√
1 − e−2t η)(2π)−n/2 e−|η|2/2dη,

preserves smoothness, i.e. T
(n)
t F ∈ C∞

b (Rn) for any F ∈ C∞
b (Rn). Given x ∈ B and

writing ξ = (〈x, l1〉 , ..., 〈x, ln〉), we have

Ptf (x) =
∫

B

F(
〈
e−t x +

√
1 − e−2t y, l1

〉
, ...,

〈
e−t x +

√
1 − e−2t y, ln

〉
)μ(dy)

=
∫

B

F(e−t ξ +
√
1 − e−2t (〈y, l1〉 , ..., 〈y, ln〉))μ(dy)

=
∫
Rn

F (e−t ξ +
√
1 − e−2t η)(2π)−n/2 e−|η|2/2dη

= F
(n)
t (〈x, l1〉 , ..., 〈x, ln〉),

where F
(n)
t = T

(n)
t F . Consequently Ptf ∈ FC∞

b , and using Eq. (7) and dominated
convergence it follows that Vrf ∈ FC∞

b .

Although different in nature both FC∞
b and W∞ can serve as natural replacements in

infinite dimensions for algebras of smooth differentiable functions in Euclidean spaces or
on manifolds.
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3 Capacities and their Equivalence

We define two types of capacities related toWr,p(B,μ)-spaces and verify their equivalence.
The following definition is standard, see for instance [20, 23, 33, 52].

Definition 3.1 Let 1 ≤ p < +∞ and let r > 0 be an integer. For open U ⊂ B, let

Capr,p(U) := inf{‖f ‖p
Lp | f ∈ Lp(B,μ), Vrf ≥ 1 μ-a.e. on U}

and for arbitrary A ⊂ B,

Capr,p(A) := inf{Capr,p(U)| A ⊂ U, U open}.

We give two further definitions of (r, p)-capacities in which we insist on a strict equality
on the set to be tested. In finite dimensional spaces such capacities were introduced in [39],
see also [2, Definition 2.7.1], [40] and [43, Chapter 13]. The first definition we give is based
on cylindrical functions.

Definition 3.2 Let 1 ≤ p < +∞ and let r > 0 be an integer. For an open set U ⊂ B define

cap
(FC∞

b )
r,p (U) := inf

{
‖u‖p

Wr,p(B,μ) | u ∈ FC∞
b , u = 1 on U

}
,

and for an arbitrary set A ⊂ B,

cap
(FC∞

b )
r,p (A) := inf{cap(FC∞

b )
r,p (U)| A ⊂ U, U open}.

The capacities cap
(FC∞

b )
r,p have a more ‘algebraic’ flavor and are well suited to study

operator extensions, see Section 5.
One can give a similar definition based on the space W∞. To do so, we recall some

potential theoretic notions. If a property holds outside a set E ⊂ B with Capr,p(E) = 0
then we say it holds (r, p)-quasi everywhere (q.e.). We follow [37, Chapter IV, Section 1.2]
and call a set E ⊂ B slim if Capr,p(E) = 0 for all 1 < p < +∞ and all integer r > 0,
and if a property holds outside a slim set, we say it holds quasi surely (q.s.). A function
u : B → R is said to be (r, p)-quasi continuous if for any ε > 0 we can find an open set
Uε ⊂ B such that Capr,p(U) < ε and the restriction u|Uc

ε
of u to Uc

ε is continuous. Every
function u ∈ Wr,p(B,μ) admits a (r, p)-quasi-continuous version ũ, unique in the sense
that two different quasi continuous versions can differ only on a set of zero (r, p)-capacity.
Since continuous functions are dense in Wr,p(B,μ) this follows by standard arguments,
see for instance [11, Chapter I, Section 8.2]. Now one can follow [37, Chapter IV, Section
2.4] to see that for any u ∈ W∞ there exists a function ũ : B → R such that u = ũ

μ-a.e. and for all r and p the function ũ is (r, p)-quasi continuous. It is referred to as the
quasi-sure redefinition of u and it is unique in the sense that the difference of two quasi-sure
redefinitions of u is zero (r, p)-quasi everywhere for all r and p, [37].

Definition 3.3 Let 1 ≤ p < +∞ and let r > 0 be and integer. For an open set U ⊂ B

define
cap(W∞)

r,p (U) := inf
{
‖u‖p

Wr,p(B,μ) | u ∈ W∞, ũ = 1 on U q.s.
}

,

where ũ denotes the quasi-sure redefinition of u with respect to the capacities from
Definition 3.1, and for an arbitrary set A ⊂ B,

cap(W∞)
r,p (A) := inf{cap(W∞)

r,p (U)| A ⊂ U, U open}.
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For some applications capacities based on the algebra W∞ may be more suitable that
those based on cylindrical functions.

Remark 3.4 In [34, Example 3.13] Kusuoka introduced capacities based on functions u ∈
W∞, but requiring that u ≥ 1 μ-a.e. on U (similarly as in Definition 3.1 above) in place of
the condition that ũ = 1 on U q.s.

The following equivalence can be observed.

Theorem 3.5 Let 1 < p < +∞ and let r > 0 be an integer. Then there are positive
constants c3 and c4 depending only on p and r such that for any set A ⊂ B we have

c3 cap
(FC∞

b )
r,p (A) ≤ Capr,p(A) ≤ c4 cap

(FC∞
b )

r,p (A) (9)

and
c3 cap(W∞)

r,p (A) ≤ Capr,p(A) ≤ c4 cap(W∞)
r,p (A). (10)

Theorem 3.5 is an analog of corresponding results in finite dimensions, [3, Theorem A],
[42, Theorem 3.3], see also [2, Section 2.7 and Corollary 3.3.4] or [43, Sections 13.3 and
13.4].

One ingredient of our proof of Theorem 3.5 is a bound in Wr,p(B,μ)-norm for compo-
sitions with suitable smooth truncation functions. For the spaces W 1,p(B,μ) such a bound
is clear from the chain rule for D respectively from general Dirichlet form theory, see [11].
Norm estimates in Wr,p(B,μ) for compositions T ◦ u of elements u ∈ Wr,p(B,μ) with
suitable smooth functions T : R → R can be obtained via the chain rule. For instance, in the
special case r = 2 the chain and product rules and the definition of the generator L imply

LT (u) = T ′(u)Lu + T ′′(u) 〈Du,Du〉H (11)

for any u ∈ W 2,p(B,μ). By Eq. (8) it would now suffice to show a suitable bound for
LT (u) in Lp , and the summand more difficult to handle is the one involving the first
derivatives Du. In the finite dimensional Euclidean case an Lp-estimate for it follows
immediately from a simple integration by parts argument, [1, Theorem 3], or by a use of a
suitable Gagliardo-Nirenberg inequality, [3, 42]. Integration by parts for Gaussian measures
comes with an additional ‘boundary’ term involving the direction h ∈ H of differentiation
that spoils the original trick, and the classical proof of the Gagliardo-Nirenberg inequal-
ity involves dimension dependent constants. A simple alternative approach, suitable for any
integer r > 0, is to prove truncation results for potentials in a similar way as in [2, Theo-
rem 3.3.3], so that a quick evaluation of the first order term above follows from estimates in
terms of the maximal function, [2, Proposition 3.1.8]. This method can be made dimension
independent if the Hardy-Littlewood maximal function is replaced by the maximal function
in terms of the semigroup operators Eq. (6) in the sense of Rota and Stein, [53, Theorem
3.3], [57, Chapter III, Section 3], see Lemma 4.2 below. We obtain the following variant of
a Theorem due to Maz’ya and Adams, [1, Theorems 2 and 3], [2, Theorem 3.3.3], now for
Sobolev spaces Wr,p(B,μ) over abstract Wiener spaces. A proof will be given in Section 4
below.

Theorem 3.6 Assume 1 < p < +∞ and let r > 0 be an integer. Let T ∈ C∞(R+) and
suppose that T satisfies

sup
t>0

|t i−1T (i)(t)| ≤ L < ∞, i = 0, 1, 2, ... (12)
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Then for every nonnegative f ∈ Lp(B,μ) the function T ◦Vrf is an element ofWr,p(B,μ),
and there is a constant cT > 0 depending only on p, r andL such that for every nonnegative
f ∈ Lp(B,μ) we have

‖T ◦ Vrf ‖Wr,p(B,μ) ≤ cT ‖f ‖Lp(B,μ) . (13)

Remark 3.7 To prove Theorem 3.5 the function T can be chosen much more specifically
than in Theorem 3.6. However, Eq. (12) is the classical hypothesis introduced by Maz’ya,
[40] (see also [2, Theorem 3.3.3]), and since the statement may be of independent interest,
we prove Theorem 3.6 in this general form.

Another useful tool in our proof of Theorem 3.5 is the following ‘intermediate’
description of Capr,p. By FC∞

b,+ we denote the cone of nonnegative elements of FC∞
b .

Lemma 3.8 Let 1 ≤ p < +∞ and let r > 0 be an integer. For any open set U ⊂ B we
have

Capr,p(U) = inf
{
‖f ‖p

Lp(B,μ) | f ∈ FC∞
b,+, Vrf ≥ 1 on U

}
. (14)

Due to Proposition 2.2 the right hand side in Eq. (14) makes sense. The lemma can be
proved using standard techniques, we partially follow [36, III. Proposition 3.5].

Proof For U ⊂ B open let the right hand side of Eq. (14) be denoted by Cap′
r,p(U). Then

clearly

Cap′
r,p({|Vrf | > R}) ≤ R−p ‖f ‖p

Lp(B,μ) (15)

for all f ∈ FC∞
b and R > 0.

Now letU ⊂ B open be fixed. The value of Capr,p(U) does not change if in its definition
we require that Vrf ≥ 1 + δ μ-a.e. on U with an arbitrarily small number δ > 0. It does
also not change if in addition we consider only nonnegative f ∈ Lp(B,μ) in the definition:
For any f ∈ Lp(B,μ) the positivity and linearity of Vr imply that (Vrf )+ ≤ Vr(f

+).
Consequently, if f ∈ Lp(B,μ) is such that Vrf ≥ 1 + δ μ-a.e. on U , then also Vr(f

+) ≥
1 + δ μ-a.e. on U , and clearly

∥∥f +∥∥
Lp(B,μ)

≤ ‖f ‖Lp(B,μ).
Given ε > 0 choose a nonnegative function f ∈ Lp(B,μ) such that u := Vrf ≥ 1 + δ

μ-a.e. on U with some δ > 0 and

‖f ‖p

Lp(B,μ) ≤ Capr,p(U) + ε

3
.

Approximating f by bounded nonnegative functions in Lp(B,μ), taking their cylindri-
cal approximations, which are nonnegative as well, and smoothing by convolution in finite
dimensional spaces, we can approximate f in Lp(B,μ) by a sequence of nonnegative func-
tions (fn)

∞
n=1 ⊂ FC∞

b,+, see for instance [37, Chapter II, Theorem 5.1] or [35, Theorem
7.4.5]. Clearly the functions un := Vrfn satisfy limn un = u in Wr,p(B,μ).

By Eq. (15) and the convergence in Wr,p(B,μ) we can now choose a subsequence
(uni

)∞i=1 such that

Cap′
r,p({|uni+1 − uni

| > 2−i}) ≤ 2−i and
∥∥uni+1 − uni

∥∥
Lp(B,μ)

≤ 2−2i

for all i = 1, 2, ... For any k = 1, 2, ... let now

Ak :=
⋃
i≥k

{|uni+1 − uni
| > 2−i}, k = 1, 2, ...
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Then for each k the sequence (uni
)∞i=1 is Cauchy in supremum norm on Ac

k . On the other
hand,

μ({|uni+1 − uni
| > 2−i}) ≤ 2−ip,

so that μ(Ak) ≤ ∑∞
i=k 2

−ip, what implies

μ

( ∞⋂
k=1

Ak

)
= lim

k→∞ μ(Ak) = 0.

Consequently, setting u(x) := limn→∞ un(x) for all x ∈ ⋃∞
k=1 Ac

k and u(x) = 0 for all
other x, we obtain a μ-version u of u.

Now choose l such that Cap′
r,p(Al) < ε

3 and then j large enough so that

∥∥fnj
− f

∥∥p

Lp(B,μ)
<

ε

3
and sup

x∈Ac
l

|unj
(x) − u(x)| < δ/2.

Then unj
≥ 1 μ-a.e. on some neighborhood V of U ∩ Ac

l . The topological support of μ is
B, see for instance [8, Theorem 3.6.1, Definition 3.6.2 and the remark following it]. Since
unj

is continuous by Proposition 2.2 we therefore have unj
≥ 1 everywhere on V . Now,

since Cap′
r,p is clearly subadditive and monotone,

Capr,p(U) ≤ Cap′
r,p(U) ≤ Cap′

r,p (V ) +Cap′
r,p(Al)

≤ ∥∥fnj

∥∥p

Lp(B,μ)
+ ε

3
≤ ‖f ‖p

Lp(B,μ) + 2ε

3
≤ Capr,p(U) + ε.

Using Theorem 3.6 and Lemma 3.8 we can now verify Theorem 3.5.

Proof We show Eq. (9). It suffices to consider open sets U . Since FC∞
b ⊂ Wr,p(B,μ), we

have

Capr,p(U) ≤ c
p

2 cap
(FC∞

b )
r,p (U)

with c2 as in Eq. (8), so that it suffices to show

cap
(FC∞

b )
r,p (U) ≤ cCapr,p(U)

with a suitable constant c > 0 depending only on r and p.
Let T ∈ C∞(R) be a function such that 0 ≤ T ≤ 1, T (t) = 0 for 0 ≤ t ≤ 1/2 and

T (t) = 1 for t ≥ 1, and let cT be as in Theorem 3.6. Given ε > 0, let f ∈ FC∞
b,+ be such

that u := Vrf ≥ 1 on U and

‖f ‖p

Lp(B,μ) ≤ Capr,p(U) + ε

c
p
T

,

due to Lemma 3.8 such f can be found. Clearly T ◦ u ∈ FC∞
b and T ◦ u = 1 on U .

Therefore, using Theorem 3.6, we have

cap
(FC∞

b )
r,p (U) ≤ ‖T ◦ u‖p

Wr,p(B,μ) ≤ c
p
T ‖f ‖p

Lp(B,μ) ≤ c
p
T Capr,p(U) + ε,

and we arrive at Eq. (9) with c3 := 1/cp
T and c4 := c

p

2 . Since FC∞
b ⊂ W∞ ⊂ Wr,p(B,μ),

Eq. (10) is an easy consequence.
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4 Smooth Truncations

To verify Theorem 3.6 we begin with the following generalization of [8, formula (5.4.4) in
Proposition 5.4.8].

Proposition 4.1 Assume p > 1 and f ∈ Lp(B,μ). Then for any t > 0 and μ-a.e. x ∈ B

the mapping h �→ Ptf (x + h) from H to B is infinitely Fréchet differentiable, and given
h1, ..., hk ∈ H we have

∂h1 · · · ∂hk
Ptf (x) =

(
e−t

√
1 − e−2t

)k ∫
B

f (e−t x +
√
1 − e−2t y)Q(ĥ1(y), ..., ĥk(y))μ(dy),

where the functions ĥi are as in Eq. (1) and Q : Rn → R, n ≤ k, is a polynomial of degree
k whose coefficients are constants or products of scalar products

〈
hi, hj

〉
H
. If the h1, ..., hk

are elements of an orthonormal system (gi)
k
i=1 in H , not necessarily distinct, then each

coefficient of Q depends only on the multiplicity according to which the respective element
of (gi)

k
i=1 occurs in {h1, ..., hk}.

Proof The infinite differentiability was shown in [8, Proposition 5.4.8] as a consequence of
the Cameron-Martin formula. By the same arguments we can see that

∂h1 · · · ∂hk
Ptf (x) =

∫
B

f (e−t x +
√
1 − e−2t y) ×

× ∂k

∂λ1 · · · ∂λk

�(t, λ1h1 + ... + λkhk, y)|λ1=...=λk=0 μ(dy),

where

�(t, h, y) = exp

{
e−t

√
1 − e−2t

ĥ(y) − e−2t

2(1 − e−2t )
|h|2H

}
.

A straightforward calculation shows that

∂k

∂λ1 · · · ∂λk

�(t, λ1h1 + ... + λkhk, y)|λ1=...=λk=0 =
(

e−t

√
1 − e−2t

)k

Q(ĥ1(y), ..., ĥk(y))

with a polynomial Q as stated.

The next inequality is a counterpart to [2, Proposition 3.1.8]. It provides a pointwise
multiplicative estimate for derivatives of potentials in terms of powers of the potential and
a suitable maximal function.

Lemma 4.2 Let 1 < q < +∞, let r ≥ 2 be an integer and let k < r . Then for any
nonnegative Borel function f on B and μ-a.e. x ∈ B we have

∣∣∣DkVrf (x)

∣∣∣
Hk

≤ c(k, q, r) (Vrf (x))1−
k
r

(
sup
t>0

Pt (f
q)(x)

) k
rq

. (16)
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Proof Suppose h1, ..., hk ∈ H are members of an orthonormal system in H , not necessarily
distinct. Then for any δ > 0 we have, by dominated convergence,

DkVrf (x)(h1, ..., hk) = ∂h1 · · · ∂hk
Vrf (x)

=
∫ δ

0

∫
B

e−t t r/2−1
(

e−t

√
1 − e−2t

)k

f (e−t x +
√
1 − e−2t y) ×

×Q(ĥ1(y), ..., ĥk(y)) μ(dy)dt

+
∫ ∞

δ

∫
B

e−t t r/2−1
(

e−t

√
1 − e−2t

)k

f (e−t x +
√
1 − e−2t y) ×

×Q(ĥ1(y), ..., ĥk(y)) μ(dy)dt

= : I1(δ) + I2(δ)

with a polynomial Q of degree k as in Proposition 4.1. Now let β > 1 be a real number
such that

r

2k
< β <

r

k
. (17)

Hölder’s inequality yields

|I1(δ)| ≤
(∫ δ

0

∫
B

e−t t r/2−1
(

e−t

√
1 − e−2t

)βk

f (e−t x +
√
1 − e−2t y)

×|Q(ĥ1(y), ..., ĥk(y))|βμ(dy)dt
)1/β

×
(∫ δ

0

∫
B

e−t t r/2−1f (e−t x +
√
1 − e−2t y) μ(dy)dt

)1/β ′

. (18)

Using the fact that r ≥ 2, the elementary inequality e−t t ≤ 1 − e−2t , t ≥ 0, and the left
inequality in Eq. (17),

e−t t r/2−1
(

e−t

√
1 − e−2t

)βk

≤ (1 − e−2t )r/2−kβ/2−1 e−2t ,

so that another application of Hölder’s inequality, now with q, shows that the first factor on
the right hand side of Eq. (18) is bounded by

(∫ δ

0

∫
B

f (e−t x +
√
1 − e−2t y)qμ(dy)(1 − e−2t )r/2−kβ/2−1e−2t dt

)1/(βq)

×

×
(∫

B

|Q(ĥ1(y), ..., ĥk(y))|βq ′
μ(dy)

∫ δ

0
(1 − e−2t )r/2−kβ/2−1e−2t dt

)1/(βq ′)
.

According to Proposition 4.1 the coefficients of the polynomial Q are bounded for fixed k,
and since its degree does not exceed k, it involves only finitely many distinct products of
powers of the functions ĥi . Together with the fact that each ĥi is N(0, 1)-distributed, this
implies that there is a constant c1(k, q, β) > 0, depending on k but not on the particular
choice of the elements h1, ..., hk , such that

(∫
B

|Q(ĥ1(y), ..., ĥk(y))|βq ′
μ(dy)

)1/(βq ′)
< c1(k, q, β).
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Taking into account Eq. (17), we therefore obtain

|I1(δ)| ≤ c1(k, q, β)

(
r

2
− βk

2

)−1/β

(1 − e−2δ)r/(2β)−k/2 (Vrf (x))1/β
′
(
sup
t>0

Pt (f
q)(x)

) 1
βq

. (19)

To estimate I2(δ) let
r

k
< γ . (20)

In a similar fashion we can then obtain the estimate

|I2(δ)| ≤ c2(k, q, γ )

(
r

2
− γ k

2

)−1/γ

(1 − e−2δ)r/(2γ )−k/2 (Vrf (x))1/γ
′
(
sup
t>0

Pt (f
q)(x)

) 1
γ q

, (21)

where c2(k, q, γ ) > 0 is a constant depending on n but not on the particular choice of
h1, ..., hk .

We finally choose suitable δ > 0. The function

δ �→ (1 − e−2δ), δ > 0,

can attain any value in (0, 1). Since Jensen’s inequality implies

(Vrf (x))q ≤ sup
t>0

(Pt (f )(x))q ≤ sup
t>0

Pt (f
q)(x), (22)

we have supt>0(Pt (f
q)(x))1/q ≥ Vrf (x) and can choose δ > 0 such that

(1 − e−2δ) = Vrf (x)2/r

2 supt>0(Pt (f q)(x))2/(qr)
, (23)

note that the denominator cannot be zero unless f is zero μ-a.e. Combining with Eqs. (19)
and (21) we obtain

|DkVrf (x) (h1, ..., hk)|

≤
{

c′
1(k, q, β)

(
r

2
− βk

2

)−1/β

+ c′
2(k, q, γ )

(
r

2
− γ k

2

)−1/γ
}

×

× (Vrf (x))1−k/r

(
sup
t>0

Pt (f
q)(x)

)k/(qr)

for some constants c′
1(k, q, β), c′

2(k, q, γ ). For any given r there exist only finitely many
numbers k < r and for any such k numbers β and γ as in Eqs. (17) and (20) can be fixed.
Using Proposition 2.1 we can therefore find a constant c(k, q, r) depending only on k, q

and r such that Eqs. (16) holds.

We prove Theorem 3.6, basically following the method of proof used for [2, Theorem
3.3.3].

Proof If r = 1 then T has a bounded first derivative, and the desired bound is immediate
from the definition of the norm ‖·‖W 1,p(B,μ), the chain rule for the gradient D and Meyer’s
equivalence, [53, Theorem 4.4]. In the following we therefore assume r ≥ 2.

We verify that for any k ≤ r the inequality∥∥∥Dk(T ◦ Vrf )

∥∥∥
Lp(B,μ,Hk)

≤ c(k, L, p, r) ‖f ‖Lp(B,μ) (24)
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holds with a constant c(k, L, p, r) > 0 depending only on k,L, p and r . If so, then summing
up yields

‖T ◦ Vrf ‖Wr,p(B,μ) =
r∑

k=0

∥∥∥Dk(T ◦ Vrf )

∥∥∥
Lp(B,μ,Hr )

≤ cT ‖f ‖Lp(B,μ)

with a constant cT > 0 depending on L, p and r , as desired.
To see Eq. (24) suppose k ≤ r and that h1, ..., hk are members of an orthonormal system

(gi)
k
i=1, not necessarily distinct. To simplify notation, we use multiindices with respect to

this orthonormal system: Given a multiindex α = (α1, ..., αk) we write Dα := ∂
α1
g1 · · · ∂αk

gk
,

where for β = 0, 1, 2, ..., a function u : B → R and an element g ∈ H we define ∂
β
g u as

the image of u under the application of β differentiations in direction g,

∂β
g u(x) := ∂g · · · ∂gu(x) = Dβu(x)(g, ..., g).

Now let α be a multiindex such that Dα = ∂h1 · · · ∂hk
. Then clearly |α| = k. Moreover, we

have

Dα(T ◦ Vrf )(x) =
k∑

j=1

T (j) ◦ Vrf (x)
∑

Cα1,...,αj D
α1

Vrf (x) · · · Dαj

Vrf (x)

by the chain rule, where the interior sum is over all j -tuples (α1, ..., αj ) of multiindices αi

such that |αi | ≥ 1 for all i and α1+α2+...+αj = α. The interior sum has
(
k−1
j−1

)
summands.

The Cα1,...,αj are real valued coefficients, and since there are only finitely many different
Cα1,...,αj , there exists a constant C(k) > 0 which for all multiindices α with |α| = k

dominates these constants, Cα1,...,αj ≤ C(k). In particular, C(k) does not depend on the
particular choice of the elements h1, ..., hk . More explicit computations can for instance be
obtained using [19].

The hypothesis Eq. (12) on T implies

|Dα(T ◦ Vrf )(x)| ≤ c(k)L

k∑
j=1

(Vrf (x))1−j
∑

|Dα1
Vrf (x) · · ·Dαj

Vrf (x)|

with a constant c(k) > 0 depending only on k and with L being as in Eq. (12). Since∑j

i=1(1 − |αi |/k) = j − |α|/k = j − 1 and

|Dαi

Vrf (x)| ≤
∣∣∣D|αi |Vrf (x)

∣∣∣
H|αi |

,

Lemma 4.2 implies that

k∑
j=2

(Vrf (x))1−j
∑

|Dα1
Vrf (x) · · · Dαj

Vrf (x)|

≤
k∑

j=2

(Vrf (x))1−j
∑∣∣∣D|α1|Vrf (x)

∣∣∣
H|α1 |

· · ·
∣∣∣D|αj |Vrf (x)

∣∣∣
H|αj |

≤ c(k, q, r)

k∑
j=2

(
k − 1

j − 1

)
(sup
t>0

Pt (f
q)(x))1/q ,
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where 1 < q < +∞ is arbitrary and c(k, q, r) > 0 is a constant depending only on k, q

and r . For the case j = 1 we have

|DαVrf (x)| ≤
∣∣∣DkVrf (x)

∣∣∣
Hk

.

Taking the supremum over all h1, ..., hk ∈ H as above we obtain∣∣∣DkT ◦ Vrf (x)

∣∣∣
Hk

≤ c(k, L, q, r)

[
(sup
t>0

Pt (f
q)(x))1/q +

∣∣∣DkVrf (x)

∣∣∣
Hk

]

with a constant c(k, L, q, r) > 0 by Proposition 2.1.
Fixing 1 < q < p and using the boundedness of the semigroup maximal function,

[53, Theorem 3.3], we see that there is a constant c(p, q) > 0 depending only on p and q

such that ∥∥(sup
t>0

Pt (f
q))1/q

∥∥
Lp(B,μ)

≤ c(p, q) ‖f ‖Lp(B,μ) .

On the other hand, by Eq. (8), we have∥∥∥DkVrf

∥∥∥
Lp(B,μ,Hk)

≤ 1

c1
‖f ‖Lp(B,μ) .

Combining, we arrive at Eq. (24).

5 Lp-uniqueness of Powers of the Ornstein-Uhlenbeck Operator

We discuss related uniqueness problems for the Ornstein Uhlenbeck operator L and its
integer powers.

Recall first that a densely defined operator (L,A) on Lp(B,μ), 1 ≤ p < +∞ is said
to be Lp-unique if there is only one C0-semigroup on Lp(B,μ) whose generator extends
(L,A), see e.g. [18, Chapter I b), Definition 1.3]. If (L,A) has an extension generating a
C0-semigroup on Lp(B,μ) then (L,A) is Lp-unique if and only if the closure of (L,A)

generates a C0-semigroup on Lp(B,μ), see [18, Chapter I, Theorem 1.2 of Appendix A].
From Eq. (8) it follows that for any m = 1, 2, ... and 1 < p < +∞ we have

D((−L)m) = W 2m,p(B,μ). The density ofFC∞
b and W∞ in the spaces W 2m,p(B,μ) and

the completeness of the latter imply that ((−L)m,W 2m,p(B,μ)) is the closure in Lp(B,μ)

of ((−L)m,FC∞
b ) and also of ((−L)m, W∞).

Since obviously (Pt )t>0 is a C0-semigroup, (L,FC∞
b ) and (L, W∞) are Lp-unique in

all Lp(B,μ), 1 ≤ p < +∞. To discuss the its powers −(−L)m for m ≥ 2 we quote well
known facts to provide a sufficient condition for them to generate C0-semigroups. Since
(Pt )t>0 is a symmetric Markov semigroup on L2(B,μ), for any 1 < p < +∞ the operator
L = L(p) generates a bounded holomorphic semigroup onLp(B,μ)with angle θ satisfying
π
2 −θ ≤ π

2 | 2
p

−1|, see for instance [15, Theorem 1.4.2]. On the other hand [16, Theorem 4]
tells that if L is the generator of a bounded holomorphic semigroup with angle θ satisfying
π
2 − θ < π

2m , then also −(−L)m generates a bounded holomorphic semigroup. Combining,
we can conclude that −(−L)m generates a bounded holomorphic semigroup on Lp(B,μ)

and therefore in particular a (bounded) C0-semigroup if

| 2
p

− 1| <
1

m
. (25)

[17, Theorem 8] shows that (up to a discussion of limit cases) this is a sharp condition
for −(−L)m to generate a bounded C0-semigroup. For 1 < p < +∞ this also recovers
the Lp-uniqueness in the case m = 1. For p = 2 condition Eq. (25) is always satisfied.

517Capacities, Removable Sets and Lp -Uniqueness on Wiener Spaces



Alternatively we can conclude the generation of C0-semigroups on L2(B,μ) directly from
the spectral theorem.

For later use we fix the following fact.

Proposition 5.1 Let 1 < p < +∞ and let m > 0 be an integer satisfying Eq. (25).
Then the operators (−(−L)m,FC∞

b ) and (−(−L)m,W∞) are Lp-unique in Lp(B,μ). In
particular, they are essentially self-adjoint in L2(B,μ) for all m > 0.

The last statement is true because a semi-bounded symmetric operator (L,A) on
L2(B,μ) is L2-unique if and only if it is essential self-adjoint, see [18, Chapter I c),
Corollary 1.2].

Here we are interested inLp-uniqueness after the removal of a small closed set� ⊂ B of
zero measure. This is similar to our discussion in [27] and, in a sense, similar to a removable
singularities problem, see for instance [42] or [43] or [2, Section 2.7].

Let � ⊂ B be a closed set of zero Gaussian measure and N := B \ �. We define

FC∞
b (N) := {f ∈ FC∞

b | f = 0 on an open neighborhood of �}
and

W∞(N) := {f ∈ W∞| f̃ = 0 q.s. on an open neighborhood of �}.
The Lp-uniqueness of −(−L)m, restricted to FC∞

b (N) and W∞(N), respectively, now
depends on the size of the set �. If it is small enough not to cause additional boundary
effects then from the point of view of operator extensions it is removable.

Theorem 5.2 Let 1 < p < +∞, let m > 0 be an integer and assume that � ⊂ B is a
closed set of zero measure μ. Write N := B \ �.

(i) If Cap2m,p(�) = 0 then the closure of (−(−L)m,FC∞
b (N)) in Lp(B,μ) is

(−(−L)m,W 2m,p(B,μ)).

If in addition m satisfies Eq. (25) then (−(−L)m,FC∞
b (N)) is Lp-unique.

(ii) If (−(−L)m,FC∞
b (N)) is Lp-unique, then Cap2m,p(�) = 0.

The same statements are true with W∞(N) in place of FC∞
b (N).

Proof To see (i) suppose that Cap2m,p(�) = 0. Let ((−L)m,D((−L)m)) denote the closure
of ((−L)m,FC∞

b (N)) in Lp(B,μ). Since FC∞
b (N) ⊂ FC∞

b we trivially have

D((−L)m) ⊂ W 2m,p(B,μ),

and it remains to show the converse inclusion.
Given u ∈ W 2m,p(B,μ), let (uj )

∞
j=1 ⊂ FC∞

b be a sequence approximating u in

W 2m,p(B,μ). By Theorem 3.5 there is a sequence (vl)
∞
l=1 ⊂ FC∞

b such that liml→∞ vl =
0 in W 2m,p(B,μ) and for each l the function vl equals one on an open neighborhood of
�. Set wjl := (1 − vl)uj to obtain functions wjl ∈ FC∞

b (N). Now let j be fixed. For
any 1 ≤ k ≤ 2m let h1, ..., hk be members of an orthonormal system (gi)

k
i=1, not necessar-

ily distinct. As in the proof of Theorem 3.6 we use multiindex notation with respect to this
orthonormal system. Let α be such that Dα = ∂h1 · · · ∂hk

. Then, by the general Leibniz rule,

Dα(uj − wjl)(x) = Dα(ujvl)(x) =
∑
β≤α

(
α

β

)
Dβuj (x)Dα−βvl(x),
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where for two multiindices α and β we write β ≤ α if βi ≤ αi for all i = 1, ..., k. For any
such β we clearly have

|Dβuj (x)| ≤
∣∣∣D|β|uj (x)

∣∣∣
H|β|

and |Dα−βvl(x)| ≤
∣∣∣D|α−β|vl(x)

∣∣∣
H|α−β|

,

and taking the supremum over all h1, ..., hk as above,
∣∣∣Dk(uj − wjl)(x)

∣∣∣
Hk

≤ c(k)max
n≤k

∣∣Dnuj (x)
∣∣
Hn

max
n≤k

∣∣Dnvl(x)
∣∣
Hn

with a constant c(k) > 0 depending only on k. Taking into account that

sup
x∈B

∣∣Dnuj (x)
∣∣
Hn

< +∞

for any n ≥ 1 and summing up, we see that

lim
l

2m∑
k=1

∥∥∥Dk(uj − wl)

∥∥∥
Lp(B,μ,Hk)

≤ c(m) max
n≤2m

sup
x∈B

∣∣Dnuj (x)
∣∣
Hn

lim
l

‖vl‖W 2m,p = 0,

here c(m) > 0 is a constant depending on m only. Since uj is bounded, we also have
liml (uj − wjl) = liml uj vl = 0 in Lp(B,μ) so that

lim
l

wjl = uj in W 2m,p(B,μ),

what implies u ∈ D((−L)m) and therefore

W 2m,p(B,μ) ⊂ D((−L)m).

To see (ii) suppose that (−(−L)m,FC∞
b (N)) isLp-unique inLp(B,μ). Then its unique

extension must be (−(−L)m,W 2m,p(B,μ)). Let u ∈ FC∞
b be a function that equals one on

a neighborhood of �. SinceFC∞
b ⊂ W 2m,p(B,μ) and by hypothesisFC∞

b (N) is dense in
W 2m,p(B,μ), we can find a sequence (ul)l ⊂ FC∞

b (N) approximating u in W 2m,p(B,μ).
The functions el := u − ul then are in FC∞

b , each equals one on an open neighborhood of
�, and they converge to zero in W 2m,p(B,μ), so that by Theorem 3.5 we have

Cap2m,p(�) ≤ c2 lim
l

‖el‖W 2m,p(B,μ) = 0.

The proof for W∞ is similar.

6 Comments on Gaussian HausdorffMeasures

For finite dimensional Euclidean spaces the link between Sobolev type capacities and
Hausdorff measures is well known and the critical size of a set � in order to have (r, p)-
capacity zero or not is, roughly speaking, determined by its Hausdorff codimension, see e.g.
[2, Chapter 5]. For Wiener spaces one can at least provide a partial result of this type.

Hausdorff measures on Wiener spaces of integer codimension had been introduced in
[21, Section 1]. We briefly sketch their method but allow non-integer codimensions, this is
an effortless generalization and immediate from their arguments.
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Given an m-dimensional Euclidean space F and a real number 0 ≤ d ≤ m the spherical
Hausdorff measure Sd of dimension d can be defined as follows: For any ε > 0 set

Sd
ε (A) := inf

{ ∞∑
i=1

rd
i : {Bi}∞i=1 is a collection of balls

of radius ri < ε/2 such that A ⊂
∞⋃
i=1

Bi

}
,

and finally, Sd(A) := supε>0 Sd
ε (A), A ⊂ F . A priori Sd is an outer measure, but its

σ -algebra of measurable sets contains all Borel sets. For any 0 ≤ d ≤ m we define

θF
d (A) := (2π)−m/2

∫
A

exp

(
−|y|2F

2

)
Sm−d(dy),

for Borel sets A ⊂ F , [21, 1. Definition], by approximation from outside it extends to an
outer measure on F , defined in particular for any analytic set. Recall that a set A ⊂ F is
called analytic if it is a continuous image of a Polish space.

We return to the abstract Wiener space (B,μ,H). Let d ≥ 0 be a real number and let
F be a subspace of H of finite dimension m ≥ d . Let pF denote the orthogonal projection
from H onto F , it extends to a linear projection pF from B onto F which is (r, p)-quasi
continuous for all r and p, [20, 11. Théorème]. We write F̃ for the kernel of pF . The spaces
B and F × F̃ are isomorphic under the map pF × (I − pF ). If A ⊂ B is analytical and
for any x ∈ F̃ the section with respect to the above product is denotes by Ax ⊂ F , then
for any a ∈ R the set {x ∈ F̃ : θF

d (Ax) > a} is analytic up to a slim set, as shown in
[21, 4. Lemma]. We follow [21, 5. Definition] and set μF (B) := μ((I − pF )−1(B)) for
any analytic subset B of F . Then by [21, 4. Lemma] we can define

�F
d (A) :=

∫
B

θF
d (Ax)μ(dx)

for any analytic subset A of B. As in [21, 8. Definition] we define the Gaussian Hausdorff
measure �d of codimension d ≥ 0 by

�d(A) := sup
{
�F

d (A) : F ⊂ H and d ≤ dimF < +∞
}

for any analytic set A ⊂ B. Restricted to the Borel σ -algebra it is a Borel measure. The next
result follows in the same way as [21, 9. Theorem] from [20, 32. Théorème] and [44], see
also [2, Theorem 5.1.13].

Theorem 6.1 If a Borel set A ⊂ B satisfies Capr,p(A) = 0, then �d(A) = 0 for all d < rp.

Combined with Theorem 5.2 this yields a necessary codimension condition which is
similar as in the case of Laplacians on Euclidean spaces, [5, 27].

Corollary 6.2 Assume 1 < p < +∞. Let � ⊂ B be a closed set of zero measure and
N := B \ �.

If (−(−L)m,FC∞
b (N)) is Lp-unique, then

�d(�) = 0 for all d < 2mp.

In particular, if (L,FC∞
b (N)) is essentially self-adjoint, then

�d(�) = 0 for all d < 4.
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The same is true with W∞(N) in place of FC∞
b (N).

7 Comments on Stochastic Processes

We finally like to briefly point out connections to known Kakutani type theorems for related
multiparameter Ornstein-Uhlenbeck processes. The connection between Gaussian capaci-
ties, [20], and the hitting behavious of multiparameter processes, [29–31], has for instance
been investigated in [6, 55, 56]. We briefly sketch the construction and main result of [56],
later generalized in [6].

Let �(0) := B and for integer k ≥ 1, �(k+1)(B) := C(R+,�(k)(B)). The space �k(B)

can be identified with C(Rk+, B). Moreover, set μ(0) := μ, T (0)
t := Pt , t > 0, and let Z(1)

be the Ornstein-Uhlenbeck process taking values in �(0)(B) = B with semigroup T
(0)
t and

initial law μ(0). Let μ(1) denote the law of the process Z(1), clearly a centered Gaussian
measure on �(1)(B). Next, let (T (1)

t )t>0 be the Ornstein-Uhlenbeck semigroup on �(1)(B)

defined by

T
(1)
t f (x) =

∫
�(1)(B)

f (e−t x +
√
1 − e−2t y)μ(1)(dy), x ∈ �(1)(B),

for any bounded Borel function f on �(1)(B), and let Z(2) be the Ornstein-Uhlenbeck
process taking values in �(1)(B) with semigroup (�(1))t>0 and initial law μ(1). Iterating
this construction yields, for any integer r ≥ 1, an Ornstein-Uhlenbeck process Z(r) taking
values in �(r−1)(B). This process may also be viewed as an r-parameter process Z(r) =
(Z

(r)
t )t∈Rr+ taking values in B. Now [56, §6, Théorème 1] tells that a Borel set A ⊂ B has

zero (r, 2)-capacity Capr,2(A) = 0 if and only if the event
{
there exists some t ∈ R

r+ such that Z(r)
t ∈ A

}

has probability zero. See also [6, 13. Corollary].
Combined with Theorem 5.2 this result gives a preliminary characterization of L2-

uniqueness (that is, essential self-adjointness) in terms of the hitting behaviour of the
2m-parameter Ornstein-Uhlenbeck process (Z

(m)
t )t∈R2m+ .

Corollary 7.1 Let m > 0 be an integer. Let � ⊂ B be a closed set of zero measure and
N := B \ �. The operators (−(−L)m,FC∞

b (N)) and (−(−L)m, W∞(N)) are L2-unique
(resp. essentially self-adjont) if and only if Z(2m) does not hit � with positive probability.

Amore causal connection between uniqueness problems for operators and classical prob-
ability should involve certain branching diffusions rather than multiparameter processes, but
even for finite dimensional Euclidean spaces the problem is not fully settled and remains a
future project.

8 Capacities and Truncations for Ornstein-Uhlenbeck Operators
with Linear Drift

In this section we investigate Ornstein-Uhlenbeck semigroups with linear drift as considered
for instance in [4, 7, 51]. The main example we have in mind is the time zero Gaussian
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free field, [46, 48, 49], see Example 9.3. We therefore restrict attention to the special cases
r = 1, 2, p = 2 and m = 1 (in the notation of Section 5) and follow [7] and [51].

Let (E,H, μ) be an abstract Wiener space and let (A,D(A)) be a strictly positive self-
adjoint operator on H such that the operators e−tA, t > 0, extend to a strongly continuous
contraction semigroup on E. We assume that K ⊂ E∗ ∩ D(A) is a dense subspace of E∗,
dense in D(A) w.r.t. the graph norm, that A(K) ⊂ K and that

e−tA(K) = K, t > 0. (26)

Remark 8.1 If H is a real separable Hilbert space and (A,D(A)) a strictly positive self-
adjoint operator on H then one can find an inner product norm q, continuous on H and
such that the embedding of H into the completion E of H w.r.t. q is Hilbert-Schmidt and
the operators e−tA, t > 0, behave as stated. One can also find a space K as above. This
is part of the statement of [7, Theorem 3.1]. If in this situation μ∗ is a standard Gaussian
cylindrical measure on H then it induces a Gaussian measure μ on E, [7, Remark 3.2 (ii)].

For the special cases r = 1, 2, p = 2 and m = 1 under consideration it is convenient to
use the corresponding semigroup as the starting point for subsequent developments. Given
a bounded (or nonnegative) Borel function f : E → R and t > 0 set

PA,tf (x) :=
∫

E

f (e−tAx +
√
1 − e−2tAy)μ(dy), x ∈ E. (27)

Since the operators
√
1 − e−2tA are bounded on E, [7, Lemma 3.5], this definition makes

sense. The family of operators (PA,t )t>0 is a symmetric sub-Markovian semigroup on
L2(E,μ), referred to as the Mehler semigroup corresponding to (E, H, A, μ). Actually, it
is a Feller semigroup on E, as shown in [7, Corollary 3.6] and commented in [51, Section
2, p. 732]. If A is the identity operator on H then we recover Eq. (6) form Eq. (27). Let
(LA,D(LA)) denote the infinitesimal generator inL2(E,μ) of (PA,t )t>0, that is, the unique
non-positive definite self-adjoint operator on L2(E,μ) such that PA,t = etA, t > 0, see for
instance [11]. It is referred to as the Ornstein-Uhlenbeck operator on L2(E,μ) with linear
drift A. Similarly as in Eq. (7) we define

VA,rf := 1

	(r/2)

∫ ∞

0
t r/2−1e−tPA,tf dt

for any r > 0 and bounded (or nonnegative) Borel function f : E → R. Being symmetric
and Markovian, the semigroup (PA,t )t>0 also induces (unique) strongly continuous con-
traction semigroups on the spaces Lp(E,μ), 1 ≤ p < +∞ (as mentioned in Section 2),
and for simplicity we denote them by the same symbol; likewise for their generators and the
contractive operators VA,r = (I −LA)−r/2. For any 1 ≤ p < +∞ and r > 0 we define the
Sobolev spaces

Wr,p
A (E,μ) := VA,r (L

p(E,μ)).
Endowed with the norms

‖u‖Wr,p
A (E,μ) :=

∥∥∥(I − LA)r/2u

∥∥∥
Lp(E,μ)

, u ∈ Wr,p
A (E,μ), (28)

these spaces are Banach, and for p = 2 Hilbert. We also consider the space

W∞
A :=

⋂
r≥1,1≤p<+∞

Wr,p
A (E,μ).

Let FC∞
b,K denote the collection of functions on E of form f = F(l1, ..., ln), where

n ≥ 1, F ∈ C∞
b (Rn) and l1, ..., ln ∈ K . Clearly this space is an algebra, and it is dense
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in Lp(E,μ), 1 ≤ p < +∞ (as can be seen using arguments as in [7, Lemma 2.1 and
Proposition 5.4]).

With D defined on FC∞
b,K by formula Eq. (3) with k = 1 we now set DA := √

AD.
Then for f = F(l1, ..., ln) ∈ FC∞

b,K with F ∈ C∞
b (Rn) and li ∈ K and x ∈ E we obtain

DAf (x) =
∞∑

j=1

∂jF (〈x, l1〉 , ..., 〈x, ln〉)
√

A lj . (29)

The following was proved in [7, Theorem 5.3, Proposition 5.4 and Theorem 5.5].

Proposition 8.2

(i) The domain D(LA) ⊂ L2(E,μ) of LA contains FC∞
b,K . Moreover, LA|FC∞

b,K
is

essentially self-adjoint with unique self-adjoint extension (LA,D(LA)).
(ii) The Dirichlet form (EA,D(EA)) generated by (LA,D(LA)) is the closure of

EA(u, v) =
∫

E

〈DAu(x),DAv(x)〉H μ(dx), u, v ∈ FC∞
b,K . (30)

For background on Dirichlet form theory see for instance [11] or in the present context,
[7]. Here we only point out that EA and LA are uniquely associated by the identity

EA(u, v) = − 〈LAu, v〉L2(E,μ) , u ∈ D(LA), v ∈ D(EA).

In terms of the Sobolev type spaces defined above, we observe that D(LA) = W2,2
A (E,μ)

and D(EA) = W1,2
A (E,μ).

Remark 8.3 For systematical reasons we mention the following results from [51], although
we will not use them explicitely. Consider the norms on FC∞

b,K defined by

‖f ‖
W

1,2
A (E,μ)

:= ‖f ‖L2(E,μ) + ‖DAf ‖L2(E,μ,H)

and

‖f ‖
W

2,2
A (E,μ)

:= ‖f ‖L2(E,μ) +
∥∥∥(1 + A)1/2DAf

∥∥∥
L2(E,μ,H)

+
∥∥∥D2

Af

∥∥∥
L2(E,μ,H2)

,

where H2 is as in Eq. (4), and let W
1,2
A (E,μ) and W

2,2
A (E,μ) denote the completions of

FC∞
b,K in these norms, respectively. By the Meyer equivalence proved in [51, Theorems

3.1 and 3.6] the spaces Wr,2
A (E,μ) and W

r,2
A (E,μ), r = 1, 2, coincide in the sense of

equivalently normed spaces. We remark that in [51] not the space FC∞
b,K was used, but a

space of polynomial functions based on E∗ ∩⋂∞
k=1D(Ak). However, for the cases r = 1, 2

the necessary modifications in the proof are inessential.

To discuss capacities based on the spaceW∞
A below, we have to import two implications

of the Meyer equivalence in [51]: The first is the fact that the space W∞
A is an algebra

(which can be seen as in the proof of [51, Theorem 4.3]) and the second is the fact that
FC∞

b,K ⊂ Wr,p
A (E,μ) for all r and p, so that in particular,

FC∞
b,K ⊂ W∞

A . (31)

The following is an analog of Proposition 2.2.

Proposition 8.4 For any r > 0 we have VA,r (FC∞
b,K) ⊂ FC∞

b,K and VA,r (W∞
A ) ⊂ W∞

A .
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Proof Again the statement for W∞
A is immediate. The statement for FC∞

b,K can be proved
similarly as in Proposition 2.2: If f = F(l1, ..., ln) ∈ FC∞

b,K with F ∈ C∞
b (Rn) and

l1, ..., ln ∈ K orthogonal in H , we have, for any x ∈ E,

PA,tf (x) =
∫

E

F(
〈
e−tAx, l1

〉 + 〈√
1 − e−2tAy, l1

〉
, ...,

〈
e−tAx, ln

〉 + 〈√
1 − e−2tAy, ln

〉
)μ(dy)

=
∫

E

F(
〈
x, e−tAl1

〉 + 〈
y,

√
1 − e−2tAl1

〉
, ...,

〈
x, e−tAln

〉 + 〈
y,

√
1 − e−2tAln

〉
)μ(dy)

=
∫
Rn

F (ξt + η) N (0, D(t, A; l1, ..., ln))(dη),

where ξt = (
〈
x, e−tAl1

〉
, ...,

〈
x, e−tAln

〉
) and the symbol N (0, D(t, A; l1, ..., ln)) denotes

the centered normal distribution with diagonal covariance matrix D(t, A; l1, ..., ln) having
diagonal entries |√1 − e−2tAli |2H . This can be rewritten as F

(n)
t (

〈
x, e−tAl1

〉
, ...,

〈
x, e−tAln

〉
)

with the C∞
b (Rn) function

F
(n)
t (ξ) =

∫
Rn

F (ξ + η) N (0, D(t, A; l1, ..., ln))(dη), ξ ∈ R
n,

and by Eq. (26) we have e−tAli ∈ K for all i.

We turn to consider related capacities. Let

CapA,r,p, 1 ≤ p < +∞, r > 0,

be the capacities defined in the same way as Capr,p in Definition 3.1, but with E and VA,r

in place of B and Vr . Likewise, let

cap
(FC∞

b,K )

A,r,2 , r = 1, 2,

be defined as cap
(FC∞

b )

r,2 in Definition 3.2 but with E, Wr,2
A (E,μ) and FC∞

b,K in place of

B, Wr,2(B,μ) and FC∞
b . To define capacities based on W∞

A we now make the following
assumption.

Assumption 8.5 For any 1 < p < +∞ and r > 0 the capacities CapA,r,p are tight, i.e.,
there exists an increasing sequence (Fn)n of compact sets Fn ⊂ E such that

lim
n

CapA,r,p(E \ Fn) = 0.

Remark 8.6 In [7, Theorem 6.7] it was shown that one can always find a Banach space
E1 such that E is continuously and densely embedded into E1, the operators e−tA, t > 0,
extend to a strongly continuous contraction semigroup on E1, and when μ is considered
as a measure on E1, the capacities CapA,r,p, 1 < p < +∞, r > 0, associated with the
Mehler semigroup corresponding to (E1, H, A, μ) are tight. The key items in the proof
of this fact were the density of K in E∗ and Eq. (26). In [4, Corollary 1.5], quoted to
prove [7, Theorem 6.7], the space E1 was constructed as the completion of H w.r.t. the
norm ‖x‖E1

:= ∥∥e−sAx
∥∥

E
for fixed s > 0. Using Eq. (26) one can then conclude that∥∥e−sAl

∥∥
E∗
1

≤ ‖l‖E∗ , for all l ∈ K , so that even the initial assumptions involving the space

K remain valid.
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Under Assumption 8.5 one can now define the notions (r, p)-quasi everywhere (q.e.),
slim, quasi surely (q.s.) and (r, p)-quasi continuous in the same manner as in Section 3 (see
[22], [37, Chapter IV] and the comments in [4, Section 1]) and also prove that any u ∈ W∞

A

has a quasi-sure redefinition ũ. Let

cap
(W∞

A )

r,2 , r = 1, 2,

be defined as in Definition 3.3 but with E,Wr,2
A (E,μ) andW∞

A in place of B, Wr,2(B,μ)

and W∞.
We have the following partial analog of Theorem 3.5.

Theorem 8.7 Let Assumption 8.5 be in force. Then for r = 1, 2 there exist positive
constants c3 and c4 depending only on r , such that for any set C ⊂ E we have

c3 cap
(FC∞

b,K )

A,r,2 (C) ≤ CapA,r,2(C) ≤ c4 cap
(FC∞

b,K )

A,r,2 (C)

and
c3 cap

(W∞
A )

r,2 (C) ≤ CapA,r,2(C) ≤ c4 cap
(W∞

A )

r,2 (C).

Remark 8.8 (i) The left inequalities remain valid without Assumption 8.5.

(ii) Using the theory in [51] one can study capacities of type cap
(FC∞

b,K )

A,r,p and cap
(W∞

A )
r,p for

general r and p and establish a more general version of Theorem 8.7. However, as this
is not needed to discuss our main example and since in the presence of a drift A the
corresponding Sobolev spaces of higher order are considerably more complicated to
handle, we leave it to the interested reader.

We provide two results from which Theorem 8.7 is obtained by similar arguments as
Theorem 3.5. The first is the following Theorem 8.9 which is a partial analog of Theorem 3.6
and of course interesting only for r = 2.

Theorem 8.9 Let r = 1, 2 and let T ∈ C2(R) be as in Theorem 8.9, so that Eq. (12)
holds. Then for any nonnegative f ∈ L2(E,μ) the function T ◦ VA,rf is in Wr,2

A (E,μ),
and there is a constant cT > 0, depending only on r and on L in Eq. (12) such that for any
nonnegative f ∈ L2(E,μ) we have∥∥T ◦ VA,rf

∥∥
Wr,2

A (E,μ)
≤ cT ‖f ‖L2(E,μ) .

The second result employed to prove Theorem 8.7 is the following Lemma 8.10, and
since it can be shown in the same manner as Lemma 3.8, we omit its proof. The symbol
FC∞

b,K,+ denotes the cone of nonnegative elements of FC∞
b,K .

Lemma 8.10 Let Assumption 8.5 be in force and r = 1, 2. For any open setU ⊂ E we have

CapA,r,2(U) = inf
{
‖f ‖p

Lp(E,μ) | f ∈ FC∞
b,K,+, VA,rf ≥ 1 on U

}
.

In the sequel we provide a proof for Theorem 8.9. To do so we use a spectral theoretic
refinement of the arguments used to show Theorem 3.6. Recall that the self-adjoint operator
(A,D(A)) on H is assumed to be strictly positive, hence we can find λ0 > 0 so that

inf
0�=k∈D(A)

〈Ak, k〉H
|k|2H

> λ0. (32)
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Let (�λ)λ≥λ0 denote the family of spectral projectors in H uniquely associated with
(A,D(A)), so that

A =
∫ ∞

λ0

λd�λ.

Note that by the above bound we have �λ0(H) = {0}. Given t > 0 let now ϕt : (0,+∞) →
(0,+∞) be the function defined by

ϕt (λ) := e−λt

√
1 − e−2λt

, λ > 0,

obviously nonnegative, continuous and decreasing with limλ→∞ ϕt (λ) = 0. Recall from
Section 2 that h �→ ĥ denotes the isometry from H into L2(E,μ). Clearly its range Ĥ is a
closed subspace of L2(E,μ), we denote the orthogonal projection in L2(E,μ) onto Ĥ by
�

Ĥ
, and for the inverse of the bijection ·̂ : H → Ĥ we write ·̌ : Ĥ → H . We fix some

straightforward consequences of the spectral representation and the isometry.

Lemma 8.11

(i) For any t > 0 the self-adjoint operator ϕt (A) = ∫ ∞
λ0

ϕt (λ) d�λ on H is bounded,
more precisely, ‖ϕt (A)‖H→H ≤ ϕt (λ0).

(ii) For any t > 0, any h ∈ H and any g ∈ L2(E,μ) we have

〈
(ϕt (A)h)∧, g

〉
L2(E,μ)

=
∫ ∞

λ0

ϕt (λ) d
〈
(�λh)∧, g

〉
L2(E,μ)

,

where the integral over (λ0,+∞) on the right hand side is taken w.r.t. the signed
measure

d
〈
(�λh)∧, g

〉
L2(E,μ)

= d
〈
�λh, (�

Ĥ
g)∨

〉
H
. (33)

(iii) For any β > 1, t > 0, h ∈ H and nonnegative g ∈ L2(E,μ), we have

∣∣∣〈(ϕt (A)h)∧, g
〉
L2(E,μ)

∣∣∣ ≤ ϕt (λ0)

(∫
E

|ĥ|βg dμ

)1/β (∫
E

g dμ

)1/β ′

,

where 1
β

+ 1
β ′ = 1.

Proof Statement (i) is clear from the spectral theorem and since ϕt is decreasing. To see (ii)
note that by the isometry and the spectral theorem,

〈
(ϕt (A)h)∧, g

〉
L2(E,μ)

= 〈
(ϕt (A)h)∧,�

Ĥ
g
〉
L2(E,μ)

= 〈
ϕt (A)h, (�

Ĥ
g)∨

〉
H

=
∫ ∞

λ0

ϕt (λ) d
〈
�λh, (�

Ĥ
g)∨

〉
H

=
∫ ∞

λ0

ϕt (λ) d
〈
(�λh)∧, �

Ĥ
g
〉
L2(E,μ)

=
∫ ∞

λ0

ϕt (λ) d
〈
(�λh)∧, g

〉
L2(E,μ)

.

526 M. Hinz, S. Kang



To see (iii) note that by Hölder’s inequality,∣∣∣∣
∫ ∞

λ0

ϕt (λ)d
〈
�λh, (�

Ĥ
g)∨

〉
H

∣∣∣∣ ≤ ϕt (λ0)

∫ ∞

λ0

d| 〈�λh, (�
Ĥ

g)∨
〉
H

|
= ϕt (λ0)|

〈
�λh, (�

Ĥ
g)∨

〉
H

|
= ϕt (λ0)

∣∣∣∣
∫

E

ĥg dμ

∣∣∣∣
≤ ϕt (λ0)

(∫
E

|ĥ|βg dμ

)1/β (∫
E

g dμ

)1/β ′

,

where d| 〈�λh, (�
Ĥ

g)∨
〉
H

| denotes the total variation of Eq. (33).

The next fact is probably well known, but as we could not locate it in the literature, we
sketch it briefly.

Proposition 8.12 For any t > 0 and any f ∈ L2(E,μ) the function PA,tf is
H -differentiable at μ-a.e. x ∈ E, and we have

∂hPA,tf (x) =
∫

E

f (e−tAx +
√
1 − e−2tAy) (ϕt (A)h)∧ (y)μ(dy)

for any h ∈ H and μ-a.e. x ∈ E.

Proof Similarly as in [8, Proposition 5.4.8] Fubini implies that forμ-a.e. x ∈ E the function
y �→ f (e−tAx + √

1 − e−2tAy) is in L2(E,μ). We have

PA,tf (x + λh) =
∫

E

f

(
e−tAx +

√
1 − e−2tA

(
e−tA

√
1 − e−2tA

λh + y

))
μ(dy)

=
∫

E

f (e−tAx +
√
1 − e−2tAz) exp

{
λ (ϕt (A)h)∧ − λ2

2
|ϕt (A)h|2H

}
μ(dz)

by the Cameron-Martin theorem, and proceeding as in Proposition 4.1 we obtain the result.

A suitable partial analog of the multiplicative estimate in Lemma 4.2 is as follows.

Lemma 8.13 For any 1 < q < +∞, any nonnegative f ∈ L2(E,μ) and μ-a.e. x ∈ E we
have

∣∣DAVA,2f (x)
∣∣
H

≤ c(q) (VA,2f (x))
1
2

(
sup
t>0

PA,t (f
q)(x)

) 1
2q

.

We use the fact that D(
√

A), endowed with 〈·, ·〉D(
√

A)
:= 〈√

A·,√A · 〉
H
, is Hilbert

space and the fact that∣∣DAVA,2f (x)
∣∣
H

= ∥∥DVA,2f (x)
∥∥
D(

√
A)

= sup
h∈D(

√
A), ‖h‖D(

√
A)

=1

|DVA,2f (x)(h)|.

Note also that by Eq. (6) we have

PA,t1 = 1, t > 0, and VA,21 = 1. (34)
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Proof To shorten notation we will use the abbreviation gt,x(y) := f (e−tAx +√
1 − e−2tAy). We first assume that f is bounded. Let h ∈ D(

√
A) be such that

‖h‖D(
√

A)
= 1, and let δ > 0 be arbitrary. By Proposition 8.12 we see that for μ-a.e. x ∈ E

we have

DVA,2f (x)(h) = ∂hVA,2f (x) =
∫ ∞

0
e−t

∫
E

gt,x(y)(ϕt (A)h)∧(y) μ(dy) dt

=
∫ δ

0
e−t

∫ ∞

λ0

ϕt (λ) d
〈
(�λh)∧, gt,x

〉
L2(E,μ)

dt

+
∫ ∞

δ

e−t

∫ ∞

λ0

ϕt (λ) d
〈
(�λh)∧, gt,x

〉
L2(E,μ)

dt

= : I1(δ) + I2(δ).

Now let

max

{
1, 2 − 1

λ0

}
< β < 2.

Then by Lemma 8.11 and Hölder’s inequality,

|I1(δ)| ≤
∫ δ

0
e−t ϕt (λ0)

(∫
E

|ĥ|βgt,x dμ

)1/β (∫
E

gt,x dμ

)1/β ′

dt

≤
(∫ δ

0
e−t ϕt (λ0)

β

∫
E

|ĥ|βgt,x dμ dt

)1/β (∫ δ

0
e−t

∫
E

gt,x dμ dt

)1/β ′

(35)

with 1
β

+ 1
β ′ = 1, and by Hölder, now with 1

q
+ 1

q ′ = 1, the first factor in Eq. (35) admits
the bound(∫ δ

0

∫
E

f (e−tAx +
√
1 − e−2tAy)q μ(dy) (1 − e−2λ0t )β/2e−(1+βλ0)t dt

)1/(βq)

×
(∫

E

|ĥ(y)|βq ′
μ(dy)

∫ δ

0
(1 − e−2λ0t )β/2e−(1+βλ0)t dt

)1/(βq ′)
.

Since our choice of β guarantees 1 + βλ0 > 2λ0, we have∫ δ

0
(1 − e−2λ0t )β/2e−(1+βλ0)t dt = 1

2λ0

∫ 1

e−2λ0δ
(1 − s)−β/2s(1+βλ0)/(2λ0)−1ds

≤ (1 − e−2λ0δ)1−β/2

2λ0(1 − β
2 )

.

Using the facts that∫
E

|ĥ(y)|βq ′
μ(dy) =

∫
R

|η|βq ′N (0, |h|2H )(dη) = |h|βq ′
H

∫
R

|ξ |βq ′N (0, 1)(dξ),

∥∥∥A−1/2
∥∥∥

H→H
≤ 1√

λ0

and
|h|H ≤

∥∥∥A−1/2
∥∥∥

H→H
|√Ah|H ,

where |√Ah|H = ‖h‖D(
√

A)
= 1 by the hypothesis on H , we arrive at the bound

|I1(δ)| ≤ c1(λ0, β, q)

(
1 − β

2

)−1/β

(1 − e−2λ0δ)1/β−1/2 (VA,rf (x)
)1/β ′

(
sup
t>0

PA,t (f
q)(x)

)1/(βq)

,
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where c1(λ0, β, q) > 0 is a constant depending only on λ0, β and q. In a similar fashion
we can obtain a bound

|I2(δ)| ≤ c2(λ0, γ, q)
(
1 − γ

2

)−1/γ
(1 − e−2λ0δ)1/γ−1/2 (VA,rf (x)

)1/γ ′
(
sup
t>0

PA,t (f
q)(x)

)1/(γ q)

with arbitrary γ > 2, 1
γ

+ 1
γ ′ = 1 and a constant c2(λ0, γ, q) > 0 depending only on λ0, γ

and q. Choosing suitable δ > 0 as in the proof of Lemma 4.2, we obtain the statement for
bounded f . For general nonnegative f ∈ L2(E,μ) consider fN := f ∧ N , for which we
obtain ∣∣DA((VA,2f ) ∧ N)(x)

∣∣
H

= ∣∣DAVA,2fN(x)
∣∣
H

≤ c(q) (VA,2f (x))
1
2

(
sup
t>0

PA,t (f
q)(x)

) 1
2q

by the positivity of the operators VA,2 and Pt and Eq. (34). This allows to conclude the
result using standard Dirichlet form theory.

We prove Theorem 8.9.

Proof We provide a proof only for the case r = 2. Let u = VA,2f . Since T (0) = 0 and |T ′|
is bounded by L, we have

‖T (u)‖L2(E,μ) ≤ L
∥∥VA,2f

∥∥
L2(E,μ)

≤ L ‖f ‖L2(E,μ) .

By Eq. (28) and the triangle inequality it therefore suffices to obtain a suitable bound for
‖LAT (u)‖L2(E,μ). For any ε > 0 we also consider uε := VA,2(f + ε). By Eq. (34) we have
uε ≥ ε and, because it implies 1 ∈ kerLA, also LAuε = LAu. By Eq. (29) clearly also
DAuε = DAu. The analog of the chain rule Eq. (11) for the case of linear drift, applied to
uε , yields

‖LAT (uε)‖L2(E,μ) ≤ L ‖LAu‖L2(E,μ) +
∥∥∥∥ 1

uε

〈DAuε,DAuε〉H
∥∥∥∥

L2(E,μ)

.

Clearly ‖LAu‖L2(E,μ) ≤ ‖f ‖L2(E,μ). On the other hand, by Lemma 8.13 with some 1 <

q < 2 and the boundedness of the maximal function inL2/q(E,μ), [57, Chapter III, Section
3, Maximal Theorem], we can mimick the original idea of Maz’ya, [1, Theorem 3], and
estimate ∫

E

|DAuε(x)|4H
uε(x)2

μ(dx) ≤ c(q)

∫
E

(
sup
t>0

PA,t ((f + ε)q)(x)

)2/q

μ(dx)

≤ c

∫
E

(f + ε)2 dμ

≤ c′
(∫

E

f 2 dμ + ε2
)
.

Together with the preceding argument this implies that for any 0 < ε < ‖f ‖L2(E,μ) we have

‖LAT (uε)‖L2(E,μ) ≤ c ‖f ‖L2(E,μ) .

Accordingly we can find a sequence (εk)k with limk εk = 0 and an element w ∈
L2(E,μ) such that limk LAT (uεk

) = w weakly in L2(E,μ) and such that with wN :=
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∑N
k=1 T (uεk

) ∈ D(LA) also w = limN LAwN = limN

∑N
k=1 LAT (uεk

) strongly in
L2(E,μ). Since

lim
ε

‖T (uε) − T (u)‖L2(E,μ) ≤ L lim
ε

‖uε − u‖L2(E,μ) = 0,

we also have limN wN = T (u) strongly in L2(E,μ). Since (LA,D(LA)) is closed, it
follows that T (u) ∈ D(LA) and LAT (u) = w. We can therefore conclude that

‖LAT (u)‖L2(E,μ) ≤ lim inf
k

∥∥LAT (uεk
)
∥∥

L2(E,μ)
≤ c ‖f ‖L2(E,μ) ,

and combined with the above this yields ‖T ◦ u‖W2,2
A (E,μ)

≤ cT ‖f ‖L2(E,μ), as desired.

9 Essential Self-Adjointness of Ornstein-Uhlenbeck Operators
with Linear Drift

In this section we consider the essential self-adjointness of LA in L2(E,μ), endowed with
subspaces of FC∞

b,K orW∞
A after the removal of a small set from E. Let (A,D(A)) and K

be as in in the preceding section. In [7, Proposition 5.4] it was shown thatLA, endowed with
FC∞

b,K , is essentially self-adjoint in L2(E,μ), and that its unique self-adjoint extension is

(LA,D(LA)) with D(LA) = W2,2
A (E,μ) as discussed above. By Eq. (31) then also LA,

endowed withW∞
A , is essentially self-adjoint with the same unique self-adjoint extension.

Similarly as before let now � ⊂ E be a closed set of zero Gaussian measure and write
N := E \ �. Let

FC∞
b,K(N) := {f ∈ FC∞

b,K | f = 0 on an open neighborhood of �}
and

W∞
A (N) := {f ∈ W∞

A | f̃ = 0 q.s. on an open neighborhood of �}.

Theorem 9.1 Let Assumption 8.5 be in force. Let � ⊂ E be a closed set of zero measure μ

and write N := E \ �.

(i) If CapA,2,2(�) = 0 then (LA,FC∞
b,K(N)) is essentially self-adjoint on L2(E,μ) with

unique self-adjoint extension (LA,W2,2
A (E,μ)).

(ii) If (LA,FC∞
b,K(N)) is essentially self-adjoint on L2(E,μ) then CapA,2,2(�) = 0.

The same is true withW∞
A (N) in place of FC∞

b,K(N).

Theorem 9.1 follows by (a simpler version of) the same arguments as Theorem 5.2.

Remark 9.2 Of course an analogous statement is true for capacities of type CapA,1,2 and
with essential self-adjointness replaced by Markov uniqueness, but this is the special case
of a well known standard result in Dirichlet form theory.

Theorem 9.1 can be applied to the time zero Gaussian free field, [54], as discussed in [4,
Examples 3.3 (ii)], [7, Examples 5.6. (ii) and 6.6.(i)] and [48, 49]. We follow [50, Examples
3.5], referred to as the ‘second approach to the free Dirichlet form’ in [7, Examples 5.6.(ii)].

Example 9.3 For any s ∈ R let Hs(Rd) = {
f ∈ S ′(Rd) | (1 + |ξ |2)s/2Ff ∈ L2(Rd)

}
as

usual, where S ′(Rd) is the topological dual of the Schwartz space S(Rd) and F denotes
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the Fourier transform. Now let m ∈ (0,+∞) and consider A = (m2 − �)1/2 as a self-
adjoint operator on H := H−1/2(Rd) with D(

√
A) = L2(Rd). Obviously A is stricly

positive and we may choose any 0 < λ0 < m in Eq. (32). Let E and K be as constructed
in [7, Theorem 3.1]. Alternatively, let E be the space Bα as described in [50, Examples 3.5]
and constructed in [48, 49] and K = S(Rd). Let E be extended according to [7, Theorem
6.7] and Remark 8.6 above (we keep the same symbol E). The mean zero Gaussian measure
μ on E with covariance

∫
E

l1(y)l2(y)μ(dy) = 〈l1, l2〉H , l1, l2 ∈ E′,

makes (E,H, μ) into an abstract Wiener space. It is called the time zero Gaussian free field
with mass m. This setup satisfies all assumptions made in the beginning of Section 8, and
it satisfies Assumption 8.5. The corresponding generator (LA,D(LA)) and Dirichlet form
(EA,D(EA)) as in Eq. (30) are called the free Hamiltonian and the free-field Dirichlet form,
respectively.

If a closed set � ⊂ E of zero Gaussian measure is removed from E and N := E \ �,
then the free Hamiltonian LA, endowed with FC∞

b,K(N) or W∞
A (N) as defined above,

is essentially self-adjoint on L2(N,μ) = L2(E,μ) with unique self-adjoint extension
(LA,D(LA)) if and only if CapA,2,2,(�) = 0. In other words, small ‘boundaries’ � of zero
CapA,2,2,-capacity are not seen when extending the operator, and if a small boundary is not
seen, it must have zero CapA,2,2,-capacity.
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