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1. Introduction

Motivation and main goals

In recent years, the study of nonlocal operators and related fields has been of significant interest to many
researchers in the areas of both analysis and probability theory. This thesis is devoted to developing an
accessible and moderate level of L?-theory for symmetric nonlocal operators on bounded domains. Our
approach will closely follow the standard L2-theory for local operators, especially that of elliptic partial
differential operators of second order. Formally, an operator A defined on a space of functions is defined
as local if it preserves the support, i.e. it obeys the rule, supp(Au) C supp(u) for every u in the domain of
A. Otherwise, A is classified as a nonlocal operator. Among local operators, we have the Laplace operator
A = A, the gradient operator A = V and the divergence operator A = div; each is defined on the space
of smooth functions. In terms of nonlocal operators, in this thesis, we focus our attention on a subclass
of integrodifferential operators, i.e. operators acting on a smooth function u € C2° (Rd) as follows

Lula) = pov. [ (0le) =) e dy). (@ € R
Here, (p(z, dy)),cre is a family of Borel measures on R? also called jump interaction measures such that
p(z,{x}) = 0 for all x € R It is noted that the pointwise evaluation of Zu(z) may fail to hold even
for a bona fide function u € C2°(R?). Therefore, it is often convenient to evaluate .Zu in the generalized
sense, i.e. in the sense of distributions or via the associated energy form. A similar observation occurs in
the local setting for a partial differential operator of the form &/ = — div(A- V) where A4 : R — R with
A(z) = (a;j(z))1<i j<d is a matrix-valued measurable function. & can be as good or as bad as .Z.

The nonlocal feature of integrodifferential operators requires that elliptic conditions of the associated
nonlocal problems on a domain must be assigned on the whole complement. The terminology nonlocal
complement value problems is thus appropriate. This contrasts with the local situation (elliptic boundary
value problems) where the data are usually prescribed on the boundary of associated domains.

The majority of our research concerns the study of IntegroDifferential Equations (IDEs) on open bounded
domains subject to Neumann, Dirichlet, Robin and mixed complement type conditions. We will not
deal with the physical interpretations of these problems and only do mathematics [’art pour l’art H
For physical applications, many references are quoted in [Val09]. The solvability of integrodifferential
equations on bounded domains raises a natural conceptual problem regarding the function spaces related
to such operators. Thus, the overreaching goal of this work is to set up some milestones for a method of
dealing with the aforementioned complement value problems in the framework of Hilbert spaces.

The main motivations of this work are threefold: (i) to set-up convenient function spaces encoding certain
nonlocal problems, (ii) to study the well-posedness of the aforementioned problems and their applications
within the frameworks of Hilbert spaces and (iii) to explore the asymptotic behavior of solutions associated
with integrodifferential operators with collapsing jump kernels. The latter objective aims to bridge a
transition from nonlocal objects to the corresponding local objects. For instance, we show that limits of
solutions to elliptic IDEs are solutions to elliptic partial differential equations (PDESs) of second order.

Nonlocal Dirichlet problems and related topics have received a great deal of research attention over
the last few years. See for instance [FKV15] where the well-posedness of the variational formulation is
covered for a large class of symmetric and nonsymmetric jump interaction kernels. We shall mention
some supplementary references later on. In the meantime, we note that nonlocal Robin and mixed
complement value problems appear to be combinations of Dirichlet and Neumann complement value
problems. Accordingly, our approach within this work is designed to give much more attention and
priority to nonlocal Neumann problems. For illustration purposes, we shall illuminate our exposition by
briefly reviewing the Neumann problem for the simple case of the Laplace operator. This summary is
intended to help the reader to become more familiar with the corresponding nonlocal formulation.

'Meaning that mathematics is applied to mathematics.



Chapter 1. Introduction

lllustration in the local case

Let Q C R? be a bounded open subset whose boundary 99 is sufficiently regular. Let f : Q2 — R and
g : 002 — R be measurable. The classical inhomogeneous Neumann problem for the Laplace operator
associated with data f and ¢ consists of finding a function w : 2 — R satisfying the following:

—Au=f in Q and u =g on 00 (1.1)
on

where % stands for the outward normal derivative of u on 9. To be more precise if we assume u is
the restriction on 2 of a smooth function @ : R? — R then g—g(x) = Vu(z) - n(z) where n(z) is the
outer normal vector at z € 9. It is a common approach to consider f € L2(Q) and g € H/?(0Q),
where H'/2(0Q) is the trace space of the classical Sobolev space H'(Q). However, for the variational
formulation, the regularity requirement on f and g can be relaxed. For example, it is possible to consider
f e (HY(Q)) (dual of H'(Q)) and g € H~'/2(9Q) (dual of H'/2(92)). For the sake of simplicity, assume
that f € L?(Q) and g € L?(992). A function u : © — R is said to be a weak solution, or a variational
solution, to if u e H*(Q), such that:

/ Vu(z) - Vu(z)de = / f(z)v(x)dz + / g(x)yov(z)do(z) for all v € H'(Q) (1.2)
Q Q o0

where, v stands for the trace of v on H(Q2) and do stands for the restriction of the Lebesgue measure
on 9. It is worth emphasizing that the trace space H'/2(99Q) can be seen as the space that models the
restrictiorﬂ to the boundary 9Q of functions in H'(2). Most importantly, the study of trace spaces is
mostly motivated by the study of problems such as boundary value problems with Neumann condition. If
u, f and g are sufficiently regular, say u € H2(Q), f € L*(Q) and g € H'/?(0Q) then and are
equivalent. This can be accomplished through applying the classical Green-Gauss formula (see [Nec67,
Chapter 3], [FSUL9, Theorem 2.20] or [Tri92, Appendix A.3]),

/[Au(x)}v(m) dz = /Vu(m) -Vou(x)de + /’yl(x)%v(m) do(x), forue H*(Q), ve H'(Q). (1.3)
Q Q a0

Note that yiu = 05, In fact, the Green-Gauss formula is the keystone to the weak formulation
. We will return later to some observations related to problems — . Meanwhile, it is ap-
parent that, in many studies of PDEs, Neumann boundary problems receive less attention than Dirichlet
boundary problems. Notwithstanding, some aspects of Neumann boundary problems involving elliptic
differential operators of second order are studied in [HT08| [Tay11], [Jos13l [DV09] IMik78]. A rigorous treat-
ment on topics including regularity up to the boundary, Schauder estimates, LP estimates and variational
formulation related to the Neumann boundary problem for the Laplace operator can be found in Giovanni
Leoni’s detailed, thorough lecture notes [Leol3]. See also [Dan00] where several topics are extended to
the local Robin boundary value problems.

lllustration in the nonlocal case

One of the goals of this work is to set up the inhomogeneous Neumann problems for a certain class of
symmetric nonlocal operators. We focus our attention on symmetric nonlocal Lévy operators which are
integrodifferential operators of the form

Lu(w) = p.v. [ (u(o) = ulp)vlz =)y, (@€ RY,

defined for a given measurable function u : R? — R whenever the right hand side exists and makes sense.
Here and henceforward, the function v : R?\ {0} — [0, 0] is the density of a symmetric Lévy measure.
In other words, v is positive and measurable such that

v(—h) = v(h) for all h € R? and / (1A |R)*)v(h)dh < <.
Rd

2The restriction here is understood in the sense of traces. Indeed, it does not make sense to restrict a measurable function
on 9 since I is the smooth manifold of a dimension lower that than d, and thus has measure zero.
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Notationally, for a,b € R we write a A b to denote min(a, b). In addition, we will also assume that v does
not vanish on sets of positive measure. In short we say that v has full support. If v is radial, we write v
for the profile, too, i.e. v(r) = v(z) if |z| = r. For Lu(x) to be defined, it is sufficient for u to possess a
C? regularity in the neighborhood of the point z and some weighted integrability for |z| — oc.

A prototypical example of an operator L is obtained by taking, v(h) = Cyo|h|79"% for h # 0 where
a € (0,2) is fixed. The resulting operator is the so called fractional Laplace operator (—A)*/2. The

constant Cy o given by
1 —cos(hq) >_1
C o = - dh )
* (/R |hjd+e

is chosen so that the Fourier relation (—A)®/2u(€) = |£|%u(¢) holds for all u € C°(R?). The fractional
Laplacian (—A)a/ 2 is one of the most heavily studied integrodifferential operators. Asymptotically, we
have Cg o =< (2 — a). This will play an important role for our analysis. Further details about the
fractional Laplacian (—A)"‘/ 2 and the constant Cy , are presented in Chapter 2l Next, we introduce the
Neumann problem associated with the operator L.

Assume Q C R? is an open set. Let f: Q — R and g : R?\ Q — R be measurable. The Neumann problem
for the operator L associated with data f and ¢ is to find a measurable function u : R* — R such that

Lu=f in Q and Nu=g on R?\Q. (N)

Here, N is another the integrodifferential operator defined by

Nu(y) = /Q(U(l') —u(y)v(e—y)de,  (yeRI\Q). (1.4)

and is also called for obvious reasons the nonlocal normal derivative operator across the boundary of 2
with respect to v. We justify this terminology progressively through our exposition. The problem
is said to be homogeneous if g = 0 and inhomogeneous otherwise. Let us emphasize that, in contrast to
the local situation where Au(z) is evaluated via an arbitrarily small neighborhood of = € 2, the eventual
evaluation of Lu(z) requires us to know u(y) for almost all y € R?. It is therefore reasonable to prescribe
the Neumann condition on the complement of 2. The terminology "nonlocal Neumann complement value
problem" is thus appropriate for the system . It is also important to observe that unlike in the local
setting, the definition of the nonlocal normal derivative AN'u requires neither the regularity of the function
u nor the regularity of the domain 2. Another observation is that the definition of N/ implies that if u
solves (NJ), then for almost all y € R®\ Q we have

u(y) =n; @)~ 9(v) +/

) u(x)v(r — y)dx) with  n,(y) = /Ql/(x —y)dz.

In other words, if u solves then the values of u on R?\ Q solely depend on its values inside
and the function g. Meanwhile, it can be observed that the integrodifferential operators L and N are
closely related from their common integrands and differ solely with regard to the domain of integration.
Furthermore, with the nonlocal analog of the normal derivative at hand, it makes sense to derive a
formula that resembles the classical Green-Gauss for formula . Indeed, a routine check shows that
the operators L and N satisfy the following nonlocal Green-Gauss formula

/Q[Lu(m)]v(x) de = E(u,v) — o Nu(y)v(y) dy, for all u,v € C2°(RY) (1.5)

where, here and henceforth, £(+,-) stands for the bilinear form,
1
E(u,v) = 5 // (u(@) — u(y))(v(z) —v(y))v(z —y) dedy.
(QeXQe)e

The Green-Gauss formula (1.5) is the cornerstone for deriving the variational formulation of the Neumann
problem . To do this, we need to introduce adequate function spaces.

9



Chapter 1. Introduction

To the best of our knowledge, the problem and the operator N were introduced for the first time
in [DROV17] for the fractional Laplace operator. They successfully analysed the well-posedness of the
homogeneous problem by applying the Fredholm alternative. Therein, the inhomogeneous problem is
analysed on a function space that depends on the Neumann complement data g, which is somewhat
unaccustomed.

We will propose a slightly different framework that does not depend on the Neumann data. In fact,
our function spaces are adapted for certain types of nonlocal problems similar to such as the Robin
complement value problem (see (1.9)). As mentioned above, an important role in our study is played by
function spaces.

Energy spaces and nonlocal trace spaces
Let us introduce several function spaces with respect to v that are fundamental for our work.

e We define the space H,(Q) by, H,(Q) = {u € L*(Q) : |ul}; ) < oo} equipped with the norm

ullr, ) = llullZ2q) + lulF, ) where

e = [ (wle) — ) vie — ) dy ds

=[] o)~ uw)? min(10(@) ta) vie — y)dy da.
RA R4

e Following [FKV15] [SV14], we introduce the space V,,(Q|R¢) by
V,(QRY) = {u: R* = R meas. : ulg € L*(Q) and E(u,u) < 0o}

Recall that the form £(-,-) is simultaneously given by

// ) v(z—y)dy do = // 2 max(]lg(a:),]lg(y)) v(z —y)dy de.

(chﬂc)c Rd R

Keep in mind that (Q°¢ x Q)¢ = (R? x R?) \ (Q° x Q°) = (2 x Q) U (Q2° x Q) U (2 x Q°). It is worth
emphasizing that in the integrand of £(-,-), only the increments from Q° to Q¢ are not allowed. Hence
a function u € V,,(Q|R9) has certain regularity inside 2 and across the boundary 9. Furthermore, the
space V,(QR?) can be redefined as

V,(QRY) = {u: R? — R meas. : u|g € L*(Q) and ‘ul%/y(gle) < o}
where we have,
|ul}, @ma) :://(u(x) —u(y))’ v(z —y)dy dz = // ) [La(z) + La(y)] v(z — y) dy da.
QR? Rd R4

Indeed, we have £(-,-) < < 2E(-,-) as for all z,y € RY,

1%, (Q[RY)
max(lo(z), Ia(y)) < La(z) + La(y) < 2max(lo(z), La(y)).

Throughout, we equip the space V,(Q2|R%) with the norm
Hu”%/,,(m]Rd) = HUH%%Q) + |u|%/U(Q|]Rd) = ||U||2L2(Q) + E(u, u).
e Assume L is the Lévy operator associated with the measure v. Define the new space V! (Q2] R%) by

VIQRY) = {u € V,(QRY) : Lu exists weakly and Lu € L2(Q) } .

10



Here, the weak integrodifferentiability of Lu is understood in the sense of Definition [2.11]

e Let us also introduce the subspace of functions in V,,(Q2|R%) that vanish on the complement of 2, i.e.
VEHQRY) = {u e V,(QRY) : u=0 a.e. on R*\Q}.

The space V(Q[RY) is clearly a closed subspace of V,,(2R9). The space V*(QR) encodes the nonlocal

Dirichlet problems related to the operator L.

Note that if v(h) = |h|=9=® for h € R* h # 0 with a € (0,2), the space H,(Q) equals the classical
fractional Sobolev-Slobodeckij space H®/2(Q). For the same choice of v, we define V*/2(QJR?) as the
space V,,(QJR%). Next, we need to introduce the spaces of functions defined on the complement of {2 which
aim to incorporate the complement data.

e We define trace space T),(2°): the space of restrictions to R? \ © of functions of V, (2|R?). That is,
T,(Q°) = {v: Q° — R meas. such that v =u|g. with wu e V,(QRY)}.

We equip 7),(€2°) with its natural norm,

o}

e We consider the weighted L?-spaces on Q¢ denoted by L?(Q¢ vk) and L?(Q¢, k) where for a given
measurable set K C Q with 0 < |K| < oo, we define

HUHTV(QC) = inf{Hu”VV(Qle) u € V,,(Q|Rd) with v =u

vig(z) = e;zi}r{lf vix—y) and vk(z):= /K 1Av(z —y)dy. (1.6)

The aforementioned spaces are Hilbert spaces and are connected. Indeed, the following hold
(a) The embeddings V*(QRY) < V,(QR?) — T, (2°) — L?(Q¢, vk) are continuous.
(b) The trace operator Tr : V,,(QR?) — L2(Q°¢, vk ) with u + Tr(u) = u |qe is linear and continuous.
(¢) We have Tr(V, (QRY)) = T,,(9°) and ker(Tr) = V,2(QR?).

The same holds true with v replaced by ©x . These interactions between the spaces V, (Q|R?), T,,(Q°),
VE(QIR?) and L%(Q¢, v ) respectively, are analogous to the ones between the classical Sobolev spaces
HY(Q), H'/?(0), H}(Q) and L?(09). Recall that H} () is by definition the closure of C2°(Q) in H(9).
In fact, it is well known that the following are true.

(a’) The embeddings HE(Q) — HY(Q) — H'Y?(9Q) — L*(99Q) are continuous.
(b’) The classical trace operator o : H'(Q2) — L?(992) whenever it exists, is linear and continuous.
(¢’) We have vo(H(Q)) = HY/2(9Q) and ker(vyo) = HE ().

In this regard, it is fair to view the spaces V, (Q|R%), V(Q|R?), T}, (2°) and L?(Q°, vk) as the nonlocal
replacements of H'(Q), H3(Q), H/2(0Q) and L?(9N), respectively. Therefore, it is natural to think
of the space T, () as the space encoding Dirichlet complement data whereas the space L?(Q¢, v) or
L?(Q°, k) encodes Neumann complement data. Let us mention that for sufficiently smooth €2, spaces
similar to T,,(£2°) have been recently studied in [BGPR20L [DK18] wherein, the main motivation is the
study of the nonlocal extension problem for the space V,,(Q|R%) which is an analog of the classical Sobolev
extension problem from the space H'/2(92) to H'(2). We discuss and compare the aforementioned spaces
and their connections with the classical Sobolev spaces in Section[3.3] Another approach to nonlocal trace
spaces on constrained domains is considered in [TD17].

Let us say a few words about the weights vx and Px. To avoid L?(Q¢, vk) being a trivial space, the
following condition on v is implicitly required

vi(x) = essi}rgf v(x —y) >0, for almost every z € Q°. (1.7)
ye

11



Chapter 1. Introduction

The condition also ensures that the function v does not decay (degenerate) too much for large
increments across the boundary of €). A suitable way to picture this condition is to assume that the
function h +— v(h) is continuous on R¢\ {0}. Choose K to be a nonempty compact subset of {2 and fix
x € 0° so that vk (z) = v(z — z) > 0 for a suitable z € K. The same observation holds for Zx. Another
crucial observation is that the weights vi and Uk annihilate the eventual singularity of v at the origin.
Let us illuminate our argument by looking at a particular case of v. Assume that v is a unimodal, i.e.
v is radial and almost decreasing in the sense that there exists a constant ¢ > 0 such that cv(y) < v(x)
whenever |y| > |z|. In addition, assume v satisfies the doubling growth condition i.e. 3 k¥ > 0 such that

v(h) < kv(2h) for all |h| > 1.

Let By be the unit ball of R? then (see Theorem we have p,,vg, € L'(RY), v, < 1 Av and
vp, < 1 Av. Clearly, 1 A v does not have a singularity at the origin. For a concrete example, one could
consider the standard example v(h) = |h|~9~%, a € (0,2). Then we have vg, (v) < (1+|z|)~9"% < 1Av(z)
and g, (z) < (14 |2]) 79 < 1 Av(z).

Although the class of almost decreasing unimodal Lévy kernel is fairly large, there exist some radial Lévy
kernels that are not almost decreasing . For example, for g € [—1,2) define

2+cos|h|)|h|4

va(h) = R~ p(h) with p(h) = (=

Note that vg is not almost decreasing since p(27n) = 1 and p(7(2n — 1)) = 3= =" for all n € N.
Now if 8 € (0,2) it is clear that v is Lévy integrable since p is bounded. If —1 < 3 < 0 then vg is also
Lévy integrable since the map 7 ~ p(r) is in L!(R).

Variational formulation of the Neumann problem

Let us now return to our main problem of interest. In light of the relation it is reasonable to
define weak solutions of the Neumann problem under consideration as follows. A measurable function
u: R? = R is a weak solution or a variational solution of the inhomogeneous Neumann problem if
u € V,(QRY) and satisfies the relation

E(u,v) :/Qf(x)v(x)dx—i-/ g(y)v(y)dy, for all ve V,(QRY). (V)

c

In particular if € is bounded, taking v = 1, becomes the so called compatibility condition
| t@aa [ atway=o. (©)

In fact, the compatibility condition appears to be an implicit necessary requirement that the data f
and g must fulfil beforehand for any attempt of solving the problems and . The local counterpart
of this compatibility condition where g is defined on 992 (see (1.2])) is given by

[ @i+ [ gtaat) =0 (18)
Q o0

It is worth highlighting that as opposed to [DROV17], our functional test space V,(2JR?) in the weak
formulation does not depend on the Neumann data g. Moreover for the existence of weak solutions
to we essentially choose f € L?(Q) and g = ¢'vi with ¢’ € L?(Q°, vk).

Another important remark is that under the compatibility condition , the problems and
might possess multiple solutions. Indeed, both integrodifferential operators L and A annihilate additive
constants. Therefore, as long as u is a solution to the system or to the variational problem SO
does the function @ = u + ¢ for any ¢ € R. Accordingly, both problems are ill-posed in the sense of
Hadamard. The situation is similar in the local setting for problems and with the operators L
and N respectively replaced by the operators —A and %. To overcome this anomaly we assume that €2 is

12



bounded and we introduce the functional Hilbert subspace V,, (2]R?)+ consisting of functions in V,,(Q|R%)
with zero mean over 2. To be more precise,

V,(QRY)* = {u €V, (QRY) : / u(z)de = O}.

Q

The space V,,(2|R?)+ enables us to reformulate the problem as follows: find u € V,,(QR?)* such that

E(u,v) = /Qf(:v)v(x)dx + /QC g(y)v(y)dy, forall ve V,(QRY):. (V")

Let us emphasize that in contrast to , the variational problem possesses at most one solution
since &(-,-) defines a scalar product on V, (2|R%)+. Furthermore, if u’ solves then all solutions of the
variational problem are of the form v’ + ¢ with ¢ € R. An analogous observation holds in the local
setting for the problem . There, one would need to introduce the space H*(Q2)* of the functions in
H(Q) whose mean over (2 vanishes.

We point out that if f € L?(Q) and g = ¢'vi with ¢’ € L?(Q°, vk) then under some additional conditions
on v and  (which we mention below) we are able to prove that the problem has a unique solution in
V,(QR?). From this perspective, it is legitimate to say that the function spaces V,(Q[R9) and L?(Q°, vk)
introduced earlier are of great importance for the study of Neumann complement value problems.

In the same spirit, we are able to formulate the variational formulation of others IDEs. For example, let us
introduce another variant of the problem . Let b : Q¢ — R be a measurable function. The perturbation
of the complement Neumann condition by Nu + bu = g gives rise to a new type of nonlocal complement
value problem and allows us to remedy the restriction to the space V, (Q2JR?)* in the weak formulation.
This will be called the Robin complement condition. In the local setting, the Robin boundary condition
is also known as the Fourier boundary condition or the third boundary condition. Given f: ) — R and
b, g : Q¢ — R as measurable functions, the nonlocal Robin boundary problem related to the operator L is
to find a measurable function u : R? — R such that

Lu=f in Q@ and Nu+bu=g on R*\Q. (1.9)
We say that u is a weak solution of the problem (1.9)) if u € V,,(QR¢) and u satisfies the relation

E(u,v) —|—/b(:c)u(x)v(m) dz = /f(a:)v(x)da: + /g(y)v(y)dy, for all v € V,(QRY). (1.10)

Qe Qe

Further nonlocal problems

The function spaces defined above also apply to the study of the following IDEs.
« Nonlocal Dirichlet problem: for f € L?(Q2) and g € T, (Q°),
Lu=f in Q@ and wu=g on R¥\Q.
« Nonlocal Neumann problem: for f € L?(Q2) and g € L?(Q°, vg),
Lu=f in Q@ and Nu=gvg on R?\Q.
« Nonlocal Robin problem: for f € L?(Q2) and g € L?(Q°, vk)
Lu=f in Q@ and Nu+bu=grg on R\ Q.

¢ Nonlocal mixed problem: Assume 2° = DUN, where D and N are measurable such that [ DNN| = 0.
For f € L3(Q) and gp € T,,(9¢) and gy € L?(Q°, vk)

Lu=f in Q and wu=gponD, Nu=gyvk on N.

13



Chapter 1. Introduction

Nonlocal Helmholtz problem: for A € R

Lu—Xu=f in Q@ and Nu=0 (oru=0) on R"\ Q.

 Nonlocal heat equation: Let f € L*(Q) and T > 0.

Ou+Lu=f inQx[0,T), Nu=0(oru=0) onQ°x[0,7), u=wu onf x{0}.

« Nonlocal Schrédinger equation: for ug, f € L2(2) and T > 0

iu+Lu=f in Qx[0,T), Nu=0(oru=0) onQ°x[0,T), u=up on x{0}.

 Nonlocal wave equation: for uy,ug, f € L?(Q2) and T > 0,

Ofu+Lu=f in Qx[0,T), Nu=0 (oru=0) onQ°x[0,T), du=muy, u=ug on x {0}.

Our treatments of the above IDEs are motivated by many existing analogous concepts from the theory of
elliptic PDEs of second order. We exploit follow the contents of [Dan00, [HT08| [Evai0l Hunl4, LDL16,
Nec67, Nit14].

Main results and literature review

We wish to formulate our main results and provide some further references. The solvability of some of
the above mentioned IDEs easily follows from the Lax-Milgram Lemma if Poincaré type inequalities hold.
Frequently, the Poincaré type inequalities can be derived via compactness arguments. Our first main
result concerns the compactness of the embedding of H,(2) and V,,(Q|R?) into L?(). Let us start with
some basic observations and formulate some sufficient assumptions on v and 2. To this end, we need to
reinforce our general assumption on the function v : R?\ {0} — [0, 00]. Let us recall that v satisfies

v(—=h) = v(h) for all h € R? and / (1A |R)*)v(h)dh < . (I1)
Rd

First and foremost, observe that for v € L*(RY) the space H,(f2) coincides with L%() and therefore,

cannot be compactly embedded into L?(€2). Likewise, if v € L'(R%), then the spaces V,(2|R%) N L?(R4)

and H,(R%) coincide with L?(R%), which is not even locally compactly embedded in L?(£2). In other words,

the least necessary condition for compact embeddings to hold is that v is not integrable. Therefore, it is

necessary to consider the following non-integrability condition

/R v(k)dh = +o. (I)

By having the condition at hand, it is possible to strengthen the condition by assuming that

lim |h|%v(h) = cc. I

Jim [l (h) = oc (1)
That is, the condition clearly implies . It is important to point out that if 2 is bounded then
conditions and are sufficient to obtain the local compactness of H, () and V,,(Q|R?) into L?(2)
(see Theorem [3.81)). In fact, this is reminiscent of the main result of [JW19a], which shows that the
embedding V*(QR?Y) — L?(1) is compact. We will revisit this result under slightly modified assumptions.

The global compactness requires some extra compatibility assumptions between {2 and v. We establish
the global compactness by exploiting the recent results from [JW19a] and [DMT18]. We intend to provide
an alternative approach to the compactness result in [CDP18, Theorem 2.2]. The technique therein is
adapted from [NPV12l Theorem 7.1] for fractional Sobolev spaces and uses the Sobolev extension property
of the corresponding domain. However, the proof provided in [CDP18§| only seems to be valid for domains
that can be written as a finite union of cubes; unless the corresponding nonlocal function space possesses
the extension property. Our approach is rather standard and follows the idea used to prove the classical
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Rellich-Kondrachov theorem, i.e. the compactness of the embedding W1P(Q) — LP(Q) for sufficiently
smooth €. It involves applying the local compactness and using an approximation argument near the
boundary of 2.

Let us introduce some regimes relating €2 and v under which the global compactness holds true. We will
enumerate these assumptions on (v, Q) into different classes. We say that the couple (v, Q) is in the class
o, i =1,2,3if Q C R? is an open bounded set and v : R?\ {0} — [0, 00] satisfies the conditions
and and additionally v and € satisfy:

e The class .7;: there exists a H, (Q)-extension operator E : H,(Q) — H,(R%), i.e. there is a constant
C: C(v,9,d) > 0 such that for every u € H,(S2), ||[Eull g, re) < Cllul g, (o) and Eulg = u.

e The class o%:  has a Lipschitz boundary, v is radial and

4(0) = 12/ 20 (h) dh 222 o, (1.11)
0 Bs(0)

e The class o73: setting Q5 = {x € Q : dist(x, Q) > §} for § > 0, the following condition holds true

3(6) = aie%fg/g v(h — a) dh 22 oo, (1.12)
5

Let us introduce a fourth class 274 of interest.

e The class 27, : we say that the couple (v,Q) is in the class 27, if Q is any open bounded subset of
R? and v : R?\ {0} — [0,00] is a unimodal Lévy measure that is, v is radial, almost decreasing and
ve LY(RY, 1A |h|?dh).

Let us mention that the class o% is inspired from [DMTI18]. Moreover, in the class ©7, v is not necessarily
singular near 0. Note that if Q is bounded and Lipschitz, then the couple (| - |~ Q) with a € (0,2)
belongs to each &7, i = 1,2,3,4. We discuss the classes <7, 1 = 1,2,3,4 in Chapter Here is our
compactness result.

Theorem (Theorem [3.89). Let Q C R be open and bounded and let v : R\ {0} — [0, 00] be a measurable
function. If the couple (v,Q) belongs to one of the classes <7;, i = 1,2,3 then the embedding H,(Q) —
L2(2) is compact. In particular, the embedding V,,(QR?) < L2(Q) is compact.

A noteworthy consequence of our compact embeddings result is the well-known Rellich-Kondrachov com-
pactness theorem which implies the compactness of the embedding H{(Q2) — L?*(Q2) (resp. H'(Q) —
L?(2) when Q has a Lipschitz boundary). Indeed, the embeddings H}(Q) — V. (QR?) — L2(Q) (resp.
H}(Q) — VHQIRY) — L2(Q)) are continuous. Another crucial application of the above compactness
theorem is the Poincaré inequality (cf. Theorem which also holds for the class .27;. To be more
precise, we are able to show that if the couple (v,Q) belongs to one of the classes <7, i = 1,2,3,4 then
there exists C' = C(v,Q,d) > 0 such that for every u € L?(Q2) we have

= fo sy < €[] (wle) — utv) ot — ) doay.

Accordingly, it follows that for every u € L?(2) we have
2
||u - fQ u”m(g) < C&(u,u).

In the same spirit, by establishing a Poincaré-Friedrichs type inequality, we provide an alternative short
proof of [FKV15, Lemma 2.7]. That is, for every u € V}(Q|R?) we also have

22 0 < CECu,u).

As complementary results on function spaces, we establish the density of smooth functions in the spaces
H,(Q),V,(QRY) and V2 (QR?). In particular, we improve the density result from [Voil7, Lemma 2.12]
and [BGPR20), Theorem A.4] whose proofs are incomplete. The results can be summarized as follows.
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Chapter 1. Introduction

Theorem (Theorem [3.70} [3.75| & [3.76). Assume that Q C R? is open.
e H,(Q)NC>®(N) is dense in H,(Q).
e If OQ is Lipschitz and compact or Q = R® then C°(R?) is dense in V,(QRY) ([VoilZ, [FKVIJ)).
o If O is continuous and compact then C2°(Q) is dense in V(Q|R?) ([BGPR20, FKV15)).

We established the well-posedness of elliptic IDEs. In particular, we have the following result.

Theorem. Assume that the couple (v,§2) belongs to one of the classes <7, i = 1,2,3,4. Then given
f e L?Q) and g = g'vi with ¢ € L*(0° vk), there exists a unique solution u € V,(QRY)L to the
variational problem , If the compatibility holds, then all solutions to are of the form w = u+c
with ¢ € R. Moreover, there exists a constant C' := C(d, K,Q,v) > 0 independent of f and g such that
any solution w of satisfies the following weak reqularity estimate

lw = fowliv,@me < C(I1flz2@) + 9l 2@en) )-

K

Note that the study of the nonlocal Neumann problem was introduced in [DROVI7] for the fractional
Laplace operator. The significant difference to our approach to studying , however, is that the test
space introduced therein depends on the Neumann data g. Following the approach of [DROV17], the recent
articles [BMPS18, IML19] also study inhomogeneous nonlocal problems with the Neumann complement
condition. We point out that [ML19] is a remake of [DROV17| is the LP-setting while considering the
Neumann problem for the so called p-fractional Laplacian operator. Most importantly, the nonlocal
normal derivative A/ is currently appearing in more and more works. For example, see [AL20) [Chel8|
CC20, [FBSS19] for the study of nonlocal semilinear problems with homogeneous Neumann complement
condition, [LMP™18] for the study of the principal eigenvalue of the fractional Laplacian with a mixed
complement condition, [Vonl9| for the study of a probability interpretation of nonlocal quadratic forms,
[Aba20] for a comparative study on different types of nonlocal Neumann conditions and [GSU2(] for the
study of the Calderén problem for the fractional Laplacian. It is important to highlight that some authors
prefer to formulate nonlocal Neumann problems via the regional fractional Laplacian [Warl8, [Warl6,
Warl5l [Grul6l [CS16]. The homogeneous Neumann problem for nonlocal regional type operators is also
studied in the area of peridynamic models see for instance [TTD17]. However, other authors work on the
Neumann problem by defining the fractional power of the Neumann Laplacian [MPV12, [SV15] [DSV15].
In the latter contexts, the Neumann conditions are rather prescribed on the boundary of the underlying
domains, therefore, our set-up does not apply.

There exists a substantial amount of literature on nonlocal Dirichlet problems. For example, for their
solvability see [FKV15] where the topic is extended to nonlocal operators with nonsymmetric kernels. See
[Rut1g| for a study of nonlocal Dirichlet problems involving symmetric nonlocal operators whose driven
jump interaction measure need not be absolutely continuous.See [PR18] for an examination of the Dirichlet
problem for the fractional Laplacian in perforated domains and also [RO15, [HJ96] for complementary
approaches. There are also several works on related subjects, for example, see [DK20), [(Coz17] for interior
regularity of solutions, [FK13] for interior regularity of parabolic problems, [RO15, [ROS14] for regularity
up to the boundary, [CS09, [CS11],[Lin16] for regularity for viscosity solution and [JWI19b] for the maximum
principle. There are also several works on related subjects for example, for interior regularity of solutions
see [DK20, [Cozl7], for interior regularity of parabolic problems see [FK13|, for regularity up to the
boundary see [RO15, [ROS14], for regularity for viscosity solutions see [CS09, [CS11) [Lin16] and for the
maximum principle see [JW19b].

Having a suitable set-up for nonlocal Dirichlet and Neumann problems to hand makes looking at some
aspects of the corresponding Dirichlet-to-Neumann map legitimate (at least the definition and the spec-
trum).The Dirichlet-to-Neumann operator exposed here is largely inspired by [AMO7, [AM12, BtE15]
ARP19], where an analogous subject is treated for the Laplace operator. The Dirichlet-to-Neumann map
plays a crucial role in the study of the so-called Calderon problem, see for instance [FSU19]. Our approach
leads to a slightly different Dirichlet-to-Neumann map than the one derived in |[GRSU20, [RS20] for the
fractional Laplacian.

Meanwhile, the compactness result constitutes a powerful tool for further investigations. Indeed, with the
compactness of the embedding V,,(QR?) — L?(Q) in force, we are able to analyse the following:
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e The spectral decomposition of the integrodifferential operator L subject to the Dirichlet, Neumann
or Robin complement condition using the Rayleigh quotient. Indeed, the operator L turns out to
have a discrete spectrum and a compact resolvent like the Laplace operator.

e the spectrum of the nonlocal Dirichlet-to-Neumann map via the spectrum of the operator L subject
to the Robin complement condition. To do this, we closely rely on the approach from [AMO07, [AM12]
where an analogous characterization is derived for the Laplace operator.

¢ The essentially self-adjointness for the operator L with the Dirichlet, Neumann or Robin complement
condition. Indeed, the operator L turns out to be a symmetric unbounded operator on L?(Q) the
same as for the Laplacian. Our survey on the essentially self-adjointness for the operator L closely
follow the material in [Kow09, [Dav96] where a similar study is carried out for the Laplace operator.
Let us mention that a different study of the essentially self-adjointness for the fractional Laplacian
is studied in [IKMT7] in the context where Q € R is the complement of a compact set.

e The profile solutions to evolution equations involving the operator L which are Initial Complement
Value Problems (ICVP). The parabolic equation with the Neumann complement condition for the
fractional Laplacian is also discussed in [DROV17]. We exploit some ideas from [Nit14] which treats
the parabolic problem elliptic with the Robin boundary condition for the Laplace operator.

We have seen several familiarities between the characteristics of the (local) Laplace operator —A and
the characteristics of the (nonlocal) integrodifferential operator L. Next, we want to bridge a connection
from the nonlocal world to the local one. Strictly speaking, we try to understand local objects as limits of
nonlocal objects. Accordingly, let us introduce (V4 )o<a<2, & family of Lévy radial functions approximating
the Dirac measure at the origin, i.e. for every a,§ > 0

Ve > 0 is radial, / (LA |B)?)va(h)dh =1, lim vo(h)dh =0.
R4 a—2 Ih">6

For a family (J)g<a<2 of positive symmetric kernels J® : R? x R?\ diag — [0, oo] we set-up the following
conditions:

(G-E) There exists a constant A > 1 such that for every a € (0,2) and all z,y € R, with = # y,
Ao —y) < J%(2,y) < Ava(z —y). (G-E)

Civen z € R? and § > 0, we define the symmetric matrix A(z) = (a;(x))1<i j<a by

a;j(z) = lim hih; J%(z, z + h)dh.

a—2~ Bs

It is noteworthy to mention that the matrix A = (a;;);; does not depend on the choice of 6 > 0 and
satisfies the elliptic condition

ATV dTHEP < (A(2)E,€) < AdYe?,  for all 2, & € RY.

Furthermore, assume we have J(z,y) = Cy o] —y| =2~ for a suitable choice of v, (h) = co|h|~47 then
a;; = 01if i # j and a;; = 1. Moreover, motivated by [BBMO1], we show that, for sufficiently smooth §2,
the nonlocal spaces H,,_ (2) and V,,_ (2|R?%) both converge to the Sobolev space H'(Q2) as a — 2. To be
more precise, we have the following simplified result (see Section .

Theorem. Let Q) be an H*(2)-extension domain. Then for all u € H(Q) we have
lirgl //(u(m)u(y))%a(x y)drdyz = hm // —0(y)) oz — )dxdy—Kdg/ |Vu(z)|* dz.
a—2-
QQ (chgc)c

where @ € H'(R?) is any extension of u to R? and Kgo= é. Moreover, a function u € L?(2), belongs to
HY(Q) if and only if

lim inf//(u(x) —w(y))?Va(r — y)dzdy < co.

a—2-
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Note that, the above convergence result can be found in [BBMOI] when © is a bounded Lipschitz domain
and in [Bre02] for @ = R? and however include the case where Q is an unbounded domain with an
H(Q)-extension property. Next, let us define the operators .%, and .4, by

ZLou(r) :=p.v. /Rd(U(fv)—U(y))J“(m,y) dy and Au(y) = L(U(y)—U(m))J“(xay) dz.

Let us also introduce the outwards normal derivative of a function v on 0f2 with respect to A defined for

z € 0Q by 5.°-(z) = A(z)Vu(z) -n(z). We now formulate some convergence results in a simplified setting.

Theorem (Theorem [5.77). Let © C R be open bounded with a Lipschitz boundary and connected. Let
(fa)a be a family converging weakly to some f in L?(2) as o — 2. Define go = Ao and g = 92 for

Ona
¢ € C2(RY). Assume that the condition (G-E) holds and suppose u, € V,,_(QRY)* is a weak solution of
the nonlocal Neumann problem

Lou=fo onQ and Nyu= g, on Q°.

Let uw € HY Q)L be the unique weak solution in H'(Q)* to the Neumann problem

—div(A()V)u=f on Q and @:g on O0NQ.
Ona

Then (uq)a converges to u in L*(Q) as a — 2, i.e. |Jua — ul/r2(0) 22200.

Likewise, if we assume that g € H'(R?) then under the condition (G-E)) (see Theorem [5.80) weak solutions
to nonlocal Dirichlet problems .Z,u = f, on Q and u = g on Q¢ with a € (0,2)) converge in L%(Q) to the
weak solution of the local Dirichlet problem —div(A(-)V)u = f on Q and u = g on 9.

Furthermore, we also show the convergence of normalized eigenpairs. A couple (A, ¢), with A € R and
u € L?(Q) is called a normalized eigenpair of %, subject to the Neumann (resp. Dirichlet) complement
condition if [Jul/z2() = 1 and u is a weak solution to the nonlocal Neumann (resp. Dirichlet) problem
Zou=Auin Q and A u = 0 on Q° (resp. u =0 on Q). In the same manner, one can define an eigenpair
of the elliptic operator — div(A(-)V).

Theorem (Theorem 5.82)). Let (Ao, uq) be a normalized eigenpair of the nonlocal operator £, .
Then, up to a subsequence, (Ma,Uq)a converge in R xL?(Q) to couple a (A, u) where the latter is a
normalized eigenpair of the local operator — div(A(-)V).

It is worth noting that if J®(z,y) = Cyalz — y|~4"* then £, = (—A)*/2 and —div(A(-)V) = —A.
Correspondingly, weak solutions (resp. normalized eigenpairs) of the fractional Laplacian converge to
weak solutions (resp. normalized eigenpairs) of the Laplacian as o — 2.

Let us point out that the crucial tools for accomplishing the aforementioned convergence results are robust
Poincaré type inequalities and Mosco convergence of nonlocal quadratic forms. First, by exploiting the
technique of [Pon03|], we show the following robust Poincaré inequalities: there exists ag € (0,2) and a
constant C' = C(d, ) such that

|u— fQuHZLQ(Q) < C’//(u(m) —u(y))?vo(r —y)dzdy, forall a € (ap,2) and u € L*(Q), (1.13)
Q0

and

Hu“iz(m <C // (u(z) — u(y))*va(z —y)dedy, for all a € (ap,2) and u € C°(Q). (1.14)
R9 R4
The inequality (1.13) (resp. (1.14))) is robust in the sense that the constant C' does not depend on « and
by letting, o — 2 gives the classical Poincaré (resp. Poincaré-Friedrichs) inequality

|u— fQuHQLQ(Q) < C’/ |Vu(z)?dz, for all u € L*(9),
Q
(resp. H“HQLz(Q) < C/ |Vu(x)|?de, for all u € C°(Q)).
Q
On the other hand, we establish [FKV19] the Mosco convergence of the nonlocal to local quadratics forms.

18



Theorem (Theorem . Assume Q C R? is open and bounded with a Lipschitz boundary. Assume the
condition holds. Then, as a — 2, the family of nonlocal quadratic forms (€%, V,, (QR%)), and
(£§, H,, ())a converge to the local quadratic form (€4, H'(Q)) whereas, (€%, V52 () R%))o converges to
(EA,HE(Q)). Here, we define

£° (u,u) := // (u(a) — u(y))2 T () da dy,
)

(QexQe)e

£8 (u,u) := // (u() — u(y))2 T () da dy,
QQ

A = X u\x) - ulx x.
£ <u,u>.—/ﬂ<A< )Vu(z) - Vu(z))d

In [Mos94] (see also [KS03]) it is shown that Mosco convergence of a sequence of symmetric closed forms
is equivalent to the convergence of the sequence of associated semigroups (or of the associated resolvents)
and implies the weak convergence of the finite-dimensional distributions of the corresponding processes
if any. Note that several authors have studied the weak convergence of Markov processes with the help
of Dirichlet forms, e.g., in [LZ96) [KU97, [SU16, MRZ98, [Sun98, [Kol05, [Kol06, BBCK09, ICKK13l [CES02].
Most of the related results are concerned with situations where the type of the process does not change,
i.e., the diffusions converge to a diffusion or jump processes converge to a jump process. The present
work considers the cases where a sequence of jump processes in bounded domains converges to a diffusion
process.

Outline

The thesis is organized as follows. Chapter [2]is devoted to the introduction of the basics of integrodiffer-
ential operators. First, we look at different characterizations of the operator L. We end up with fourteen
characterizations of the fractional Laplacian (—A)a/ 2. We compute and study the asymptotic behavior
of the normalization constant Cy,. Afterwards, we define the notion of nonlocal elliptic operators in
divergence and non-divergence form, and we show some correlations with local elliptic operators of second
order. Finally we define nonlocal mixed (anisotropic) operators.

In Chapter [3] we introduce nonlocal Sobolev-like spaces that are in a certain sense generalized Sobolev-
Slobodeckij spaces which we often encounter. Roughly speaking, these are just some refinement of classical
Lebesgue LP-spaces with 1 < p < oo (like the classical Sobolev spaces W1?(€) and W, (€2)) whose
additional structures are of importance. As such spaces are less common, we will examine some of their
rudimentary properties, e.g. their Banach structure, their relation with the classical Sobolev spaces, their
embeddings, their approximation by smooth functions, their extension property, their compact embeddings
into LP(2) and Poincaré type inequalities. A complement to this chapter is recorded in the Appendix

Chapter is dedicated to the solvability of nonlocal IntegroDifferential Equations (IDEs) and some related
problems such as the spectral decomposition, the essentially self-adjointness of the integrodifferential
operator L and the Dirichlet-to-Neumann map for L. We also look at some nonlocal evolution problems
that are Initial Complement Value Problems (ICVP).

Finally, in Chapter [f] we deal with convergence transitions from nonlocal to local. We start with the con-
vergence of spaces and characterize classical Sobolev spaces with the help of nonlocal spaces. Afterwards,
we establish robust Poincaré type inequalities. We conclude by proving the convergence of solutions and
eigenpairs of nonlocal problems, to the local ones.
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Chapter 1. Introduction

Abgrenzung des eigenen Beitrags gemafl §10(2) der Promotionsordnung

The proofs of Theorem Theorem and the density of C2°(R?) in V, (Q|R%) of Theorem m (for
p = 2) are published in [FKV19] and were established in collaboration between the author, his supervisor
and Dr. Paul Voigt.
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Notation

We collect various notations that will be frequently used in this thesis. We only summarize here the most
common notations.

Throughout, d > 1 is an integer and R? represents the d-dimensional Euclidean space furnished
with the usual Euclidean inner product defined for two elements z = (x1,z2, -+ + x4) and y =
(y1,Y2,** ,Yd) by -y = 1y1 + x2Yy2 - - + T4yq and the norm shall be denoted by |z| = /x - z.

We shall assume R? is automatically equipped with the topology induced by this norm and we
denote an open ball of radius r > 0 centered at z by B,.(z) or merely B, if x = 0. Further the space
R? will be furnished with the Borel o-algebra and the Lebesgue measure dz. We will simply write
"measurable’ instead of "Borel measurable" for sets and functions.

Given A a subset of R? we shall synonymously write A¢ or R\ A to designate the complement of
A and 14 denotes the characteristic function of A.

The notation A shall stand for the boundary of A that is 94 = A\ A where A and A are respectively
the closure and the interior of A.

Given two sets A and B define dist(4,B) = inf{la —b] : a € A,b € B} and for z € RY,
dist(x, A) = dist({z}, A).

Besides, if A is measurable we shall write |A| to denote the Lebesgue measure of A and also |0A|
to denote the Hausdorff measure of 9 A( which in this context is considered as the restriction to 0A
of Lebesgue measure). Especially [S?~!| denotes the surface of the d — 1-dimensional sphere of R9.

For a measurable function u and a measurable set such that 0 < |A| < oo, we denote the mean

1
value of u over A by ][ u= |A|/ u(z) dz.
A A
For 1 < p < oo we shall define the number p’ by % + ﬁ = 1 with the understanding that p’ = oo if

p=1,and p' =1if p = oco.

For h € R?, 75, denotes the shift function defined by 7,u(x) = u(x + h) when u is well understood.

We denote the support of a continuous function u : Q — R by suppu = {x € Q: u(z) # 0}. If
u is only measurable, then suppu = RY \O where O is largest open set on which v vanishes. Ex.
u(z) = Lg(z) = 0 a.e. is not continuous but suppu = R.

0% ... )%

For a multiindex o = (a1, -+ ,aq) € No, we write |a| = a1 + -+ , 44 and 0% = FI TR
d 1

Let m € N, the space C]*(Q) is the collection of differentiable functions whose classical derivatives
up to the order m are bounded.

Let m € Nand 0 < o < 1. We define the Holder space C;"7(Q) also denote by C;? () to be
collection of functions in C}*(§2) whose classical derivatives of order |a| = m belongs to C7 (€2).The

usual norm is the Hélder norm defined by ’ 0ou(z) — 0°u(
Yl
ullgre @) = Z sup |0%u(z)| + Z sup P .
‘Q‘Smilzeﬂ |a|:m o< |z—y|<1 y
z,y€eq

The space C2°(€2) is the collection of functions compactly supported in €2 whose classical derivatives
0%u of every order exist. C™ () denotes the space of restrictions to Q of function of C™(R?).

Given two comparable quantities a and b we denote a A b = min(a,b), a Vb = max(a,b) and a < b
means there is a constant C' > 0 such that C~1a < b < Ca.
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2. Basics On Nonlocal Operators

It is the aim of this chapter to introduce some rudimentary notions on nonlocal operators. Let us recall
that an operator A defined on a function space is called local if it preserves the support, i.e. it obeys
the rule that supp(Au) C supp(u) for every function in the domain of A. Otherwise, A will be called
a nonlocal operator. Examples of local operators include, the Laplace operator A = A, the gradient
operator A = V and the divergence operator A = div; each defined on the space C%(R?). The author
admits that the title is sort of claptrap as it is conceived to attract attention. Indeed, in this chapter, we
restrict ourselves on purely on nonlocal integrodifferential operators of Lévy type, which can be seen as a
generalization of nonlocal operators acting on a smooth function u € C2°(R%) as follows

Lu(w) = pv. [ (o) —ul)vlz =9 dy, (o <R

where the function v : R?\ {0} — [0,00] is even and satisfies the Lévy integrability condition that is
v(—=h) =v(h), h# 0 and v € L'(R% 1 A |h|? dh). We will define the above operator from many different
perspectives and later on, we provide a generalization of such operators viewed as integrodifferential
operators. Their connections with elliptic differential operators of second order will be provided afterwards.

2.1. Characterization of a purely nonlocal symmetric Lévy operator

We intend to define a purely nonlocal symmetric Lévy operator from several perspectives. Our exposition
here is certainly not exclusively original and is largely influenced by [Kwal7] mainly treating the partic-
ular case of the fractional Laplace operator. We believe the content here expands upon this, however.
Throughout this section, we assume that the function v : R\ {0} — [0, 0] is the density of a symmetric
Lévy measure, i.e. v(h) = v(—h) and satisfies the integrability condition

/ (1A 2w (h) dh < oo.
Rd

This integrability condition suggests that on the one hand v has some decay at infinity but is also allowed
to have some singularity at the origin. Further generalization of such nonlocal operators will be considered
in another section.

D.1: Singular integral Given v : R?\ {0} — [0,0c] as the density of a symmetric Lévy measure we
define a pure nonlocal symmetric Lévy operator L acting on a smooth function v : R — R by

Lu(z) = p.v. /]Rd (u(z) —u(y))v(z —y) dy = El_i}][gf)l+ Leu(x), (xz € RY), (2.1)
with

Leu(z) = / (ue) — )z — y) dy.
R\ B ()

The notation p.v. stands for the common abbreviation of the Cauchy principal value. This makes sense
within our context as the function v might eventually have a singularity at the origin.

D.2: First order difference One easily gets the following representations
Lu(x) = p. V./ (u(x) —u(z + h))v(h) dh = p. v./ (u(z) —u(z — h))v(h) dh.
Rd Rd
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Chapter 2. Basics On Nonlocal Operators

D.3: Second order difference If Lu(z) exists then we have,

Lu(z) = f% /Rd (u(z + h) —u(x — h) — 2u(zx))v(h) dh. (2.2)

We point out that the expression (2.2)) may exist while the one in (2.1)) does not. However, if (2.1)) exists,
then the above representations coincide. Indeed, for fixed € > 0, the mere change of variables y = z + h
gives

Lu(x) = / (u(a) — )z — y) dy = / (u(a) — u(z + W) (h) dh

R4\ B (z) R4\ B.(0)
= / (u(z) —u(z — h))v(h) dh = —% / (u(z + h) +u(z — h) —2u(x))v(h) dh
R4\ B.(0) R4\ B.(0)

where the last equality is obtained by adding the two preceding ones. The below proposition explains why
the second order difference allows us to get rid of the principal value. We show that Lu(z) in (2.2)) is well
defined for bounded functions u : R* — R which are sufficiently regular in a neighborhood of 2 € R?.

Proposition 2.1. Assume the function u : R* — R is bounded and C? in a neighborhood of x € R%.
Then Lu(x) exists and one has

Lu(z) = —% /(u(x + 1) + ulz — h) — 2u(@))w(h) dh.

Rd

Proof. Assume u is C? on a ball Bys(x) for 0 < § < 1 small enough. For |h| < § the fundamental
Theorem of calculus yields,

1
(u(x +h) +u(x—h) —2u(x)) = /0 [Vu(z + th) — Vu(z — th)] - h dt
= /1 /1 2t[D*u(z — th+ 2sth) - h] - h ds dt.
0o Jo

Since u is bounded on R? and its Hessian D?u on Bys(z), we get the estimate
fu(x + h) +u(x — h) — 2u(@)| < 4(ulle, @ + 1Dl o @)1 A BP). (2.3)
Thereupon, it follows that for all € > 0 we have

1
5 / lu(z + h) + u(x — h) — 2u(x)|v(h) dh < C’/Rd(l A WA v (h) dh < co.
R¥\ B, (0)

This proves on one hand by the dominated convergence theorem that L.u(z) converges to Lu(z) ase — 0
and on the other hand that Lu(z) exists and is worth the desired expression. O

Later on, we will show that the domain of L can be extended to a larger space. For the moment let us
evaluate the convergence of the family (L.u). to the operator Lu for smooth functions.

Proposition 2.2. Assume Q C R? is an open bounded set and let u € C’g (R?). The following properties
then are satisfied.

(1) The map x — Lu(x) is uniformly continuous and bounded.
(13) For each € > 0, the map x — L.u(x) is uniformly continuous.
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2.1. Characterization of a Lévy operator

(#41) The family (Leu(z))e is uniformly bounded and uniformly converges to Lu as e — 0, i.e.

| Lett — L poo (ray <= 0.

Proof. Here we use the second order difference representation (2.2). Let u € C2(R?), by a simple change
of variables one gets

Leu(z) = —= / (u(xz + h) + u(z — h) — 2u(z))v(h) dh.
R4\ B, (0)
Since v and its Hessian D?u are bounded functions, from (2.3) we get the estimate
lu(z + h) +u(z — h) = 2u(z)] < 4fullcz2ra) (1A |h|?), z,h € RY. (2.4)

The integrability of the function h + (1A|h|?)v(h) entails the boundedness of 2 + Lu(z) and the uniform
boundedness of x — L.u(x). Thereupon, it allows us to get rid of the principal value. We also get the
uniform convergence of (L.u). to Lu as follows

| Lew — Lul| oo (ray < 4||U||c§(Rd)/ ( (1A B2 (h) dh <=2 0.

€

To prove the uniform continuity, we fix 2,z € R? close enough, say |z — 2| < 6§ with 0 < § < 1, then for
all h € R? we have

2u(z) —u(2)| + |u(z + h) —u(z + h)| + |u(x — h) —u(z — h)| < 45Hu||cg(Rd).

This combined with (2.4) yields the uniform continuity via the integrability of A +— (1 A |h|?)v(h) as
follows,

6—0
[Lu(z) = Lu() ) < lullogs [ 6N db 22 o
R

The uniform continuity of x — L.u(z) follows analogously. O

It is possible to define Lu with u belonging to a space bigger than C2(Q) N L (RY).

Definition 2.3. The Blumenthal-Getoor index of v is the real number 3, € [0, 2] given by

By, =inf{y >0: / |h|"v(h) dh < oo} = inf{y >0 / (LA R v(h)dh < oo}
B1(0) R4
For example, by considering v(h) = |h|~972% with 0 < s < 1 one readily finds that 3, = 2s.

Proposition 2.4. Let 0 < (, < 2 be the Blumenthal-Getoor index of v. Let § > 0 then for every

u € Cf”H(Rd). The map x — Lu(x) is well defined and one has
Lu(z) = —% /(u(ac ) 4 ulz — h) — 2u(@))w(h) dh.
R
Moreover, the conclusions of Pmposition remain true with the space CZ(R?) replaces by C’g”H(Rd).
Proof. Arguing on the two cases 0 < 8, <1 and 1 < 5, < 2 then as for the proof of one gets
lu(z + h) +u(x — h) — 2u(x)| < 4Hu||cés,,+s(Rd)(1 A [h|Pr o).
The result follows. O
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We point out that 8, < 2 one can choose 6 > 0 for which 8, + § < 2. In this case we find that
C2(RY) c CP*TO(RY).

D.4: Integral form with gradient Assume u € C?(R?) N Cy(RY) just as for the preceding case, one
has

Lu(z) = /[u(a:) —u(z+h) —1p, (h)Vu(z) - h]v(h) dh, (z € RY).

This representation of L is dear to the community from the area of probability analysis area as it represents
the generator of a pure jump Lévy processes related to v. The expression on the right-hand side is justified
since h — [Vu(z)-h|v(h) is odd and therefore has vanishing integral over B\ B. for all 0 < ¢ < 1. Whence
forall 0 <e <1,

Leu(x) = / [u(z) —u(x + h) — 1, (h)Vu(z) - hjv(h) dh.
R4\ B,

As with the second-order difference (2.2)), one can easily get rid of the principal value since we have
1
u(z) —u(z+h) —1p,(h)Vu(z) - h = / [Vu(z +th)-h — Vu(x) - h] dt
0

= 1 1 2U£U S . . S
—/Ot/O[D (z + sth) - h] - h] ds dt

for |h| < 1 small enough.

D.5: Pseudo-differential operator We now show that the integrodifferential operator L can be realized
as a pseudo-differential operator. Let S¢(R?) denote the space of Schwartz functions on R?. Recall that
the Fourier transform of a function u € S¢(R?) is given by

A(6) = (n) 42 [ ) o, (€ RY).
Rd
The operator L can be defined using the Fourier symbol as follows

Lu€) = p()aE) (£ eRY
where, with the helping hand notation m¢(h) = cos (£ - h), the Fourier symbol (&) is given by

0(6) = Lme(0) = | (1= cos(6-h)w(h) a.

This relation is well defined since one readily observes that, for each & € RY, the function mg(h) = cos (€ - h)
is in CZ(R%). Hence, by Proposition Lme(0) = (&) exists. Alternatlvely, we have [1 —cos (- h)| <1
and by using the elementary inequality |sint| < |¢| true for all ¢ € R, we get

25 h _ [€PRP
5

|1 —cos(€-h)| =]|2sin | <

Thus, [1 —cos(§-h)| < (1+ %)(1 A |h|?) which assures the existence of ¥(€) since v is Lévy integrable.
Let us formally prove the above relation involving the Fourier transform.

Proposition 2.5. For u € SY(RY) and a fized frequency variable & the following relation holds
Lu(€) = $()a(e).
with the Fourier symbol 1¥(§) given by
0() = Lme(0) = [ (1= cos (&~ W)u(h) d.
It is common to also name the Fourier symbol 1 as the the characteristic exponent.
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2.1. Characterization of a Lévy operator

Proof. The key to the proof is to apply Fubini’s theorem. To this, write
lu(z + h) +u(x — h) — 2u(z)|v(h) = Ay (x, h) + As(x, h)

for every (z,h) € R? x R? with

First, observe that for each h € By,

1 1
|u(x + h) +u(z — h) — 2u(z)| de = / / 2t[D*u(z — th + 2sth) - h] - h ds dt
Rd o Jo

1 1
< |h2/ / Qt/ |D?u(x — th + 2sth)| ds dt dz
0 0 Rd

= |h|? /Rd |D?u(z)| da.

Note that the mapping @ — |D?u(z)| representing the norm in R%" of the Hessian matrix of the function
u € S(R?) is integrable. Therefore, A; € L*(R% x RY) since

// Ay (z,h) dx dh = /B v(h) g |u(z + h) +u(x — h) — 2u(x)| dz dh

RARA
< / \h|2y(h) dh / |D2u(;v)| dz < oo.
B Rd

Besides this, we have

/ As(x, h) dz dh = /Cz/(h) /Rd lu(z + h) +u(x — h) — 2u(z)| dz dh

RIR
< 4/ v(h) dh-/ lu(z)| dz < .
B¢ R4

As a result, the function (z,h) — v(h)|u(z + h) + u(z — h) — 2u(z)| is integrable on R? x R?. Therefore,

by using the translation rule of the Fourier transform u(- + h)(¢) = @(¢)e* " for all £, h € R? along with
Fubini’s theorem we get the desired result as follows

=——da [ %" u(z — h) —2u(x))v
= d/Rd /Rd 4+ h) +u(x — h) = 2u(z))v(h) dh

[ — e (y(x u(x — h) — 2u(x x
=5 [y an [ e e+ 1)+ ulo = )~ 2u() d

_ —117 GiEh | o—iEh _ 9y,
= —5(O) [ (@ e 2u(n) an

—ﬂwéﬂ—mﬁmwmﬁ

Remark 2.6. Assume that v is radial. In this case we abuse the notation by writing v(h) = v(|h|) for all
h € R?\{0}. Let O € O(d) be a rotation on R such that O(|¢|e;) = & and enforce the change of variables
= OTh. Then dh = dh’ by the rotation invariance of the Lebesgue measure. Note that the rotation
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preserves the inner product and O = O~! hence ¢ - h = O(|¢]e1) - OOTh = [€|e; - OTh = [£|ey - A'. In
addition since v is radial, we have v(|h|) = v(|h/|). As a result, the Fourier symbol 1(§) becomes,

v(©) = [ (1= cos(€- myw(ln) an
= [ = cosleler h’>>u<|h'\> an

_ / (1= cos (h)w(h/kEl) i
= (l¢ler).

|€| (€ #0) (2.5)

D.6: Generator of a symmetric Lévy process and of a semi-group Assume that v is radial,
almost decreasing and [, v(h) dh = co. According to [KR16, Lemma 2.5] for each ¢ > 0, there exists a

continuous function p; > 0 in R%\{0} such that in the Fourier space we have

Al = [ (o) do = eV, (€ R,

Obviously, prrs = ptps = pspe for all ¢, s > 0. Therefore, the family (P;); is defined by
Pou(x) = u*p; = /d u(y)pe(x — y) dy, (z € RY).
R

(P;); is clearly a strong continuous semigroup on L?(R ) whose generator is —L. We solely show that the

operator —L is the generator of (P,);. Let u € S(R?) we know that Lu( ) = u(&)y(§). The Plancherel
theorem implies,

P — t—0

L2(R%)

HPtu—u

“/’—l—l—tw’
t

— (~Lu)| "

+w\

="

LQ(Rd) - H L2 Rd)

The rightmost term goes to 0 as ¢ — 0 since the function ¢ : s — % with ¢(0) = 0 is continuous
and bounded on [0, 00). Thus, applying the dominated convergence theorem suffices.

The Kolmogorov extension theorem (see [Sat13]) actually infers the existence of a stochastic process (X3);
with the transition density is p;(z,y) = pi(z — y), namely P* (X, € A) = E*[14(X;)]. More generally

B u(X0)] = [ une.v)d.

Here P* (resp. E*) is the probability (resp. the expectation) corresponding to a process (X;); starting
from the position z, i.e. P*(Xy = z) = 1. The generator of such a stochastic process turns out to be —L.
Indeed for a smooth function wu,

lim E*[u(X¢)] — u(x) — lim Pou(z) — u(x)
t—0 t t—0 t

= —Lu(z).

In fact, (X¢): is a pure-jump isotropic unimodal Lévy process in ]Rd, i.e., a stochastic process with
stationary and independent increments and cadlag paths whose transition function p(z) is isotropic and
unimodal. We refer to [Sat13] for a more extensive study on Lévy processes.

D.7: Energy form We now show that the integrodifferential operator L is intimately related with a
Hilbert space of greatest interest in its own right. Let H,(R) be the space of functions u € L?(R?) such
that Era(u,u) < oo where we consider the bilinear form,

Era(u,v) // (u(z) —u(y))(v(z) —v(y))v(z —y) dy dz (u,v € H,(R?)).

]Rd]Rd
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2.1. Characterization of a Lévy operator

The space H, (R?) becomes a Hilbert space when furnished with the inner product
(u, V) 1, (rey = (U, V) p2(Ray + Era(u,v), u,v € H,(RY).

Regarding the increments between the variables x and y involved in the integrand of Ega(u,v) one legiti-
mately suspects some close relation with integrodifferential operator L. This intuition is in fact correct,
and we show below that Ega(-,-) can be viewed as the energy form associated with L. To do this, let us
first observe that S(RY) c H,(R?). Indeed, for u € S(RY) we clearly have that u,|Vu| € L?(R?) and
arguing analogously as the proof of Proposition ones readily arrives at

// (u(z) — u(y))?v(z —y) dy do < /B|fl|2u(h) dh-/RJVu(a:)P dx+2/Bzx(h) dh - [ |u(z)]? de< oo.

R4Rd ; e
. —it12 ‘elt/Q e it/2 2 o 2t .
Noting that |1 — e~ "] 4‘7| = 4sin® § = 2(1 — cost) for every t € R, it follows that for
u € S(RY), the Plancherel theorem yields,
1 2 1 2
Era(u,u) = 3 (u(z) —u(y))*v(r —y) dy dz =3 v(h) dh | (u(z) —u(x + h))* dx
Rd Rd

R4R4

_1 e ih = a(é))? —cos(&-h))v
-3 L. <h>dh/<>||1 Pag = [ [ - cos(e mun) dn dg
[ @Rt s = [ a@ue)me as = [ Lue)e .

Rd

Here, the notation Z denotes the conjugate of a complex number z € C. Employing the Plancherel theorem
again to the last expression produces the relation

Era(u,u) = /Rd u(z)Lu(z) dz.

Replacing u by u + v leads to the relation,

Era(u,v) = /Rd v(x)Lu(z) de = / u(z)Lv(x) dx for all u,v € S(R?).

R4

Therefore, due to the density of S(R?), Lu can be seen as a continuous linear form on H,(R¢). Moreover,
through the dual pairing

(Lu,v) = Epa(u,v) for all v € H,(RY).

The integrodifferential operator L can be extended to functions u in H, (R?). Thereupon, L can legiti-
mately be regarded as a linear bounded operator from H,(R?) into its dual, i.e. L : H,(R%) — (H,,(]Rd))/.
In this case, we observe that H,(R?) is a fairly large domain for L. It is worthy nothing that through the
correspondence L : H,(R?%) — (Hy(Rd))/, L may not always be evaluated in the classical sense.

D.8: Distributions It is natural to want to know the largest possible functional space for which Lu is
defined. In an attempt to answer this question, assume in addition that v : R4\ {0} — [0, oo] is unimodal,
i.e. v is radial and almost decreasing and there is a constant ¢ such that v(y) < cv(z) whenever |y| > |z|.
Let us define the function

(@) = v(5(1+ |z))).

It is not difficult to show that ¥ € L*(RY) N L*°(R4)(c.f. the proof of Lemma . Note that the space
LY (R4, D) is fairly large and contains the spaces CZ(R%), L*°(R%) and C2(R?)NL>(R?). Most importantly,
we show in Chapter [3| that H,(R?) ¢ L'(R%,7). Furthermore, for u € C?(R%) N L'(R%, D), we have that
Lu(z) exists in the classical sense for all z € RY. Let us prove this formally.

Proposition 2.7. Assume v : R?\ {0} — [0, 0] is unimodal. Let u € C?(R%) N LY(R?, D), then Lu(z) is
well defined for all x € R?.
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Proof. For z € R?, set R = 2|z| + 1, then for y € B%(0) we have |z —y| > % + 8z > L1 +y). As
v is almost deceasing, if y € B%(0), we have v(z — y) < cp(y). Consequently, for u € L'(R?%, D) we have

[ ) == par| <e [ ) —u()io) ay

Ra

< cfu(@)|[7l] 1 gy + ¢ / o )y < oo

=(0)

By exploiting (2.4) we get

’ /B (0)(u(:f:) —u(y))v(z —y) dy‘ = ‘;/ (u(z + h) + ulz — h) — 2u(z))v(h) dh

Br(0)

< Allullc2(Br(0)) /Rd(l A |R|?) dh < co.

In conclusion, Lu(x) exists since

Lu(z) = p.v. /B @) —u)ma =)y /B (u() — uy))w(z — y) dy.

%(0)

A refinement of Proposition for a possibly larger space, with an analog proof is given as follows:

Proposition 2.8. Assume v : R?\ {0} — [0, 00] is radial and almost decreasing. Let € > 0 be sufficiently
small and B, be the Blumenthal-Getoor index of v. Then, for u € CP+¢(R%) N LY (R, D), Lu(z) is well
defined for all x € RY.

Remark 2.9. For the simple instance v(h) = |h|~9~%(a € (0,2)) we have U < 1 Av < (1 + |n]|)~9~.

We now deal with the situation where v € L'(R%, D) and show that Lu is a distribution. We recall that

n—oo

D(R?) is the space C2°(R?) endowed its natural topology and a sequence (¢,), C D(R?), @, 222 0
in D(Rd) if and only if there exists a Compact set K C R? such that supp ¢, C K for all n € Ny and
[0%pnllcxy == 0 for all a € N¢. The space D'(R?) whose elements are usually called distributions,
is the collection of continuous linear forms on D(R?). Furthermore, a sequence of linear forms (T},), C
D' (R?) converges to another one T if and only if (T}, — T, ¢) ——+ 0 for every ¢ € D(R?). Here (-,-) is
the dual pairing between D’'(R?) and D(R?).

Proposition 2.10. For v € L'(R%, D), Lu defines a distribution via the mapping
¢ (Lu, @) == (u, Lp)2wey, ¢ € CX(RY),

Moreover, by applying this procedure, the linear map L : L*(R%, D) — D’ (Rd) with w — Lu is continuous.

Proof. Let ¢ € C2°(R?) be supported in Br(0) where R > 1 is sufficiently large. First, we claim that
ILe(2)] < Cllellcz2rayv(z) for all z € R%. (2.6)
Here the constant C' = C(R,d,v) depends only on R,d and v. To be sure, suppose |z| > 4R, so that

o(x) = 0. Since |z —y| > % + % —ly| > % + R > (1 + |z|) for y € Bg(0), the monotonicity of v
implies v(z — y) < cv(x). Accordingly,

[ Lop(x)| < /B o leW)lv(z —y) dy < | Br(O)[|¢llc2(rayv ().
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2.1. Characterization of a Lévy operator

Whereas, if |z| < 4R the proof of (2.6)) is completed by applying (2.4]) as follows: we have U(x) > ¢; for
an appropriate constant ¢; > 0, depending on R and v since %(1 + |z|) < 4R.

|Lo(2)] < 400l c2may < e1 '4Oll¢llcz @y ()

with © = [L.(1 A |h|*)v(h) dh. Finally, (2.6) yields
(0. L) < Clllczene) [ | fufe)loe) da.

This spontaneously shows that Lu is a distribution when v € L'(R?,7) and that L : L'(R?, ) — D'(R%)

n— oo

is continuous, i.e. Lu, —— Lu in D'(R?) if u, == v in L'(R%,7). Indeed the above estimate implies

[(Lun = Lu, @) < Cllellczrey /Rd [un(@) — u(z)|P(z) de === 0 for all ¢ € D(R?).

In light of Proposition [2.10} we are forced to formulate the following definition.

Definition 2.11. A function u € L{ (RY) will be called to be weakly integrodifferentiable (or integrod-
ifferentiable in the sense of distributions) with respect to  on an open set 2 C R? (eventually Q = R%)
if there exists a function g € L{ () such that for every compact set K C 2 and for every ¢ € C>°(R?)

with supp ¢ C K,

| st@eta) o = [ u@ie) a.

K

If v is well understood, we briefly say that Lu is the weak integrodifferential of w or that Lu is the
integrodifferential of u in the sense of distributions. In fact, as it can be easily shown that g is unique up
to a set of measure zero, we shall merely write g = Lu a.e on Q.

Remark 2.12. Of course, if for some locally integrable function u : R¢ — R, the expression Lu exists
almost everywhere and belongs to L%OC(RU,), then u is weakly integrodifferentiable and its weak integrodif-
ferential coincides with Lu.

Let us collect some simple facts involving the nonlocal operator L under consideration.
Proposition 2.13. The following assertions are true:

(1) The operator L commutes with translations. More generally, L commutes with rigid motionﬂ if in
addition v is radial. To be more precise, if Lu(x) for all x € R? and 7 : R? — R? is a rigid motion
then [Lu] o 7(z) = Lu o 7](z) for all x € R.

(i) For any multiindez o € N& we have 0%(Lu) = LO%u provided that u and Lu are sufficiently smooth.
iii) The convolution rule L(u * @) = Lu * ¢ holds for all p € CZ(R%) and u € L*(R?).
b

(iv) Assume Lu is well defined in a distributional sense, then for all p € CZ(R?) the equality L(u* p) =
u * L holds as well in the distributional sense.

(v) Given two functions u,v : R® — R, the relation L{uv] = u[Lv] + [Lu]v — T'(u,v) holds provided that
Liuv], Lu and Lv exist. Here I'(u,v) is the so called carré du champs operator associated with L and
is defined by

1

P(u,v)(z) = 5 /Rd(U(x) — u(y))(v(z) —v(y)) dy.

L A rigid motion is any transformation that can be obtained as a finite composition of translations and rotations.
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(vi) Let (¢j)jen be a sequence of functions in C°(R?), such that for each j > 1, ¢; = 1 on B;(0).
Assume u € H,(R?), such that Lu € L'2(Q), then we have | L[p;u] — Lul| 2 ga 7250,

Proof. (i) is a routine verification. (i) follows by iterating the procedure from Proposition (iv)

follows from (iii). To prove (iii), observe that from the estimate (2.4)), for all z, h, z € R? we have

u(2) (e — 2+ h) + e — 2 — h) = 2 — 2)) [p(h) < Clu(=)|(1 A [B2)v(h) € LMR? x RY).

Thus, by applying Fubini’s theorem, one easily arrives at L(u * ) = Lu x . (vi) is a consequence of (v)
whereas (v) follows by integrating the identity

w(@)o(z) —u(y)o(y) = ulz)(v(z) —v(y) — (w@) = uy))(v(@) —v(y)) + v(z)(u(@) - u(y)).

2.2. Case of the fractional Laplacian

In this section we focus on the most studied integrodifferential operator which is of course interesting in its
own right. Before we define this object formally, let us observe that for s € R the function h ~ |h|~972
is Lévy integrable if and only if 0 < s < 1. Concretely,

/ (1A |R)?)|h|7%25dh < 0o if and only if 0 < s < 1.
Rd

A prototypical example of a symmetric Lévy operator is obtained by putting, v(h) = Cdys|h|’d’25 with
s € (0,1). The resulting Lévy operator is the so called fractional Laplace operator and is denoted by
(=A)* or (—A)*/? with a = 2s. The "s" notation "with a fractional tendency" usually suites to PDEs
community whereas the probability community uses the "a" notation as its remind the a-stable processes.
Here, and in what follows depending on the context, we may sin&ltineously use the notation a = 2s.

The constant Cjy s = Cy,, is chosen so that the Fourier relation (—A)/2u(€) = [£|*@(€) holds for all u in
S(RY). Tt follows from (2.5) that the Fourier symbol associated with v(h) = Cy s|h|~?~2 is given by

d 1—-
906 = Cu [ (1= cos an)la/Iel -2 1555 = Canlel ™ [ e

By identification it follows that

1 — cos(z1) >1
«a=Cqs:= ——d .
Caa = Ca, </Rd |z[d+2s L

Note that within the Fourier symbol ¢ (§) we have already shown (see characterization D.5) that Cy s
is well defined. Later, we use a simple approach to compute this constant and study its asymptotic(c.f
Section . For the moment, it is important to keep in mind that
d+«o d
2°T(%5%) _ 2%T(s+3)

Ce = ZaRIL(— 9)] ~ 7P~ s)] ®1)

Patently from this Fourier characterization of (—A)®/2 we can already glimpse that for v € S(R?),
(=A)*2u(z) 222 —Au(z) and (—A)*/2u(z) 2=% u(z). Here, we are reminded that & — |¢[2 corre-
sponds to the Fourier multiplier of —A. This type of convergence extends to a more general context for
continuous bounded functions that are C? in the vicinity of z (see Section . It is worth emphasiz-
ing that the conclusions from Section apply to the fractional Laplacian (—A)o‘/ 2. In particular with
a=2s € (0,2), from D.3 we have

(_A)OC/QU(:L.) — Cd,a p.V./ (U(JI) — u(y)) dy

gd |z —ylite
Cia dh

(2.8)
= /Rd((u(x—l—h)+u(a:—h)—2u($))|h|d+a.
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2.2. Case of the fractional Laplacian

The fractional operator (—A)O‘/ 2 naturally appears as the generator of the rotationally symmetric a-

stable Lévy processes see [Sat13]. More extensive works on the fractional Laplace operator can be found
in [Abal5, Bucl6, [Sil05] [Sti19]. Let us proceed with some further representations of the fractional Laplace
operator. Most of these representations are inspired by [KwalT].

D.9: Inverse of Riesz’s potential The fractional Laplacian can be realized as the inverse of the Riesz
potential. The Riesz potential of order « € (0,d) which we denote as I,, is a pseudo-differential operator
whose Fourier multiplier is & — |¢]~¢, i.e. for all u € S(R?) we have m(f) = [&|7u(€). Tt is easy to
show that (see Remark for all u € S(R?) we have

1 u(y) d
Tou(z) = / dy, z € RY),
(z) rol) B P ( )

where the constant 7,4 (see Remark for the computation) is given by

Using the Fourier characterization of (—A)*/2 and I, for a € (0,2) we get (—A)*/%2 o I,u = u and
I, 0 (—A)*/?y = u. That is, (—A)*/2 = I ! (the inverse of the operator I,,).

D.10: Dynkin’s definition For all u € CZ(R?) and for = € R%, we have

/2 x) —u(x + h))
(—A)2u(x) = Cyq hm / (R - EZ)a/th'

The Dynkin definition of the fractional Laplacian is useful for studying (see [Abal5]) a-harmonic functions,
i.e. functions solving the equation (—A)®/2u = 0 on R?. Let now us establish it. Fix, 0 < ¢ < 1. From
the relation (2.4]), the following estimate holds

(1A [A[2)
]2 |2 — 1]/

(u(x + h) + u(z — h) — 2u(z))
e — e e ()] < Al cpey
It is possible to show that the dominating function on the right side is integrable on R?. Thus the claim
follows from the dominated convergence theorem, as we find from (2.8]) that

) (w(x) —u(z+h)) ., Cia .. / (u(z + h) +u(z — h) —2u(x))
Cao L, / HE(RE — ey =g B2 (A2 = e2)o/? an
B£(0) B£(0)
~ Caa (u(x 4+ h) +u(x — h) — 2u(x)) ., )2
== /Rd h|ia dh = (=A)*“u(x).

D.11: Bochner’s formula The claim here is that for a € (0,2) we have the identity
Bou = (=A)*%y  for all u € S(RY).

Here B, is accomplished through the following Bochner’s integral formula

e tAu(x) — u(z
Byu(z) = — |/ ) —ul@)) dt.

tl+a/2

For a rigorous proof of this identity (see for example [ST10]) one would need some advance knowledge
on Bochner integrals and functional calculus for unbounded operators. Here we provide some intuitive
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approaches for guessing the Bochner identity for (—A)®/2

to following the integral:

° 2 oo 2\ [
/ (e7 —1)t=*/271dt = lim [— Z(eT - l)t_a/z} - / e~ M2 qt
0 @ 0

e—0t € «

. For A\ > 0, let us apply the integration by part

2 [ 2
“ATRE [ emsgme2  ds = —AT2ET (1 - ).
a f, a 2

Since « € (0,2), by usmg the duplication formula for the Gamma function (see the formula 1)) ), we

can write, 1"(7 —9)=-9I'(1-%) =%|I'(— %)| Finally we have

/2 —t/\ o 1
A u(x) = 5, / TFa/2 dt. (2.9)
By roughly substituting A with A and 1 with the identity operator, this gives

. < (e u—)
(—A) — ‘/ . (2.10)

tlta/2

A more serious approach would be to consider the Fourier multiplier. By knowing that, & — [£]? is the

Fourier multiplier of —A it is not difficult to show that ¢ — e~t€l* is the Fourier multiplier of e—t2
Therefore, using the formula (2.9) we obtain

5 ey - ul8) et — D 4 — lele XYY
Bou(§) = T(— 9] /O Tars = |¢%0(€) = (=A)*/2u(¢), for u e S(RY) and £ € RY.

The uniqueness of the Fourier transform, implies Bou = (—A)*/?u, i.e. the identity (2.10)) holds true.

D.12: Balakrishnan’s formula The idea here is the same as previously: fix A > 0, then using the
Schwartz reflexion formula (2.40) we get

[} )\ta/Q—l 1 )\a/2
/ dt:Aa/Q/ (1—)=/22/271 qp = \*/2B(2,1 - 2) = — .
o t+A 0 sin (%)
Therefore, we have
oo S ) [TAEL
i 0 t + A
Substituting A by —A yields the following Balakrishnan formula with © € S (Rd)
/2 sin (94) [ -1 /2-1
(=A)* 2y = —== —AI — A" u t¥ dt (2.11)
T 0

It is worth noting that one is able to establish this formula using the Fourier multiplier as in D.11

D.13: From long jump random walk The aim here (see [Val09]) is to show that the fractional
Laplacian can be approximated by the generator of random walks. Define K : R? — [0, 0o] with K (h) =
O4.0|h| 79472 for h # 0 and K(0) = 0, where the constant 6, is chosen so that

> K(k) =

kezd
For § > 0, assume there is a random particle on the lattice 6Z¢ with the following properties.
e At any unit of time 7 the particle jumps from any point of §Z¢ to any other point.
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2.2. Case of the fractional Laplacian

o The probability that the particle jumps from x € 6Z% to z + 5k € Z¢ is given by 04 q|k|~¢~. This
includes the fact that the particle can also experience a long jump with a small probability.

e Let u(z,t) be the probability that the particle sites at the point = € §Z% at the time ¢ € 7N.

Patently, u(z,t + 7) (the probability that the particle sites at point x, at time ¢ + 7) corresponds to the
probability that the particle sites at any other point y = x + dk € §Z% at time t weighted with the jump
rate 0y o |k| =97, Together with the fact that Y. 6044|h|~9"* = 1, this yields

kezd
w(z, t+7) = u(@,t) =040 > |k~ “ulz + 6k, t) — u(x,t)
b (2.12)
=0 > K7 (ulx + 0k, t) — u(z,1)).
keza

Assume the unit of time is 7 = 6% then w = 64|5k|~9=~. Combining this with(2.12)) and the Riemann
sum of h — (u(z + h,t) — u(z,t))|k| =4 over R? yields the following

oulx.t) = Tim u(z, t+7) —u(z,t)

7—0 T
= lim 8040 Y [0k~ (u(x + Ok, t) — u(, 1)) (2.13)
- kezd
_ (u(erh,t) *’U,(fﬂ,t))
— 04 /R d e dh (2.14)

= —02,aC7 5 (—A)*?u(a, ).

One should observe that the expression in (2.13) is the Riemann sum of (2.14)). We have shown that
Ou(x,t) = —Gd,aC(Zi(—A)“ﬂu(m, t). In other words, the generators of our random particle is —(—A)®/2
up to a positive constant.

D.14: Caffarelli-Silvestre extension The Caffarelli-Silvestre extension is probably the most skillful
way to derive the fractional Laplacian. Indeed, Caffarelli and Silvestre showed in [CS07] that the fractional
Laplacian can be determined as an operator that maps a Dirichlet boundary condition to a Neumann-
type condition (Dirichlet-to-Neumann correspondence) via a PDE-extension problem. Concretely, for
u € CZ(R?) and « € (0,2), assume that a function U : R? x[0, 00) — R satisfies the extension problem

div(t!=*VU) =0 in R? x[0,00) and U(-,0) =u on R% (2.15)
Then, for a constant C' to be specified later, we have
10U . U(z,t) = U(x,0)
_A)/2 - _ l—aZ2 =_ ’ ’ 2.16
O(-2)"u(a) = ~ i =0T (1) = — Jimg S D VD) (216)

First, a routine check shows that we have div(t'=*V) = t!7*(A, + 520, + 03), where A, is the d-
dimensional Laplacian with respect to the x variable. We shall now introduce the Green function and the
Poisson kernel associated with the operator div(¢!~*V) which will be indispensable for establishing the

relations in ([2.16]).

Definition 2.14 ([CS07]). The fundamental solution associated with the operator div(t!=®V) is the
radial function @4, : (R x R) \ {0} — (0, 00) defined by

1
Do) =——In(|z)? +2)ifd+2-a=2,ie (d=1,a=1),
: o (2.17)

_d—«

Dy o(z):= —w(z}l(]:dz +1%) T fd+2—a>2
Assume that d + 2 + « > 2. The Poisson kernel associated with the operator div(¢t!~*V) is the function
Pyo i RYx(0,00)\ = (0,00) defined by

t*(d — 2
Pyo(z,t) = —taflat‘I’dz_a(a:,t) = ( +a)

i (2.18)
waz—a(lol? +2)
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Note that the constant wg, is determined so that for every t > 0 the function Py (-, t) : R* — (0,00)
with o — Py o(z,t) has a unit mass, i.e. it satisfies the following integral condition

/Rd Poaa,t)do = 1. (2.19)

Proposition 2.15. Assume that d + 2 — o > 2 then we have

1 1 P(d—‘rQ—a
@ - t) = th o — 2 )
ta(@:?) Wda (g2 1 2)° 7 T e T a =) nir (B2
Vial® . (e
Palz,1) = —"—p with Va,o = d/(fg) :
(jaf? + ) ()

Proof. It is sufficient to compute wg2—n. The relation (2.19)) implies that

t*dx - dz
1:wdé_a(d+2_a)/ sztzwdé_a(d_Q‘FOé)/ — dia
RE (o2 +12) 2 RE(14202) 2

oa—l).

2
Here, A(d+1, O‘T_l) is given by the expressions (2.23)) and (2.25]) below from which the claim follows since,

=wis_o([d—2+a)A(d+1,

1 1 (59

(d—2+a)A(d+1,252)  (d—2+a)79/2T(L)

Wd,2—a =

O

Remark 2.16. For the particular case a =1, ®4,1 and Py ; are the Green kernel and the Poisson kernel
of the Laplacian in the d + 1 dimension space, respectively. Moreover, if wy denotes the area of the
d 4 1-dimensional unit sphere of R*! then we have

d+1

1 1 th 2w
= W1 Wqg = .
war - (d—1wa S

We omit the computational details of the next proposition. Recall, div(t!=*V) = ¢}7* (A, + %*at +92).
Proposition 2.17. Let « € (0,2 such that d+ 2 — o > 0. The following assertions are true.

i) For eacht >0, Py o(-,t) is radial positive, satisfies Pyo(-,t) =t %Py o(Z,1) and [Pyo(z,t)dx = 1.
) ) 3 t )
Rd

(i7) The family (Pyo(-,t)): weakly converges to the Dirac mass dp ast — 0. To be more precise,

©(0) =lim [ Pyo(z,t)p(z)dz  for all o € CZ(RY).
t—0 R

(i11) Py satisfies the equation div(t'=*V) Py = 0 in R% x (0, 00).

(iv) ®yo satisfies the equation div(t'=*V)®y o = do in R

We can now derive the fractional Laplace operator from the Dirichlet-to-Neumann map associated with

the extension problem ([2.15]).

Proposition 2.18. Let u € CZ(R?) and o € (0,2). Define the convolution U(x,t) = [Pya(-,t) * u](x)
then the following assertions are true.

38



2.2. Case of the fractional Laplacian

(i) U solves the equation ([2.16)) in the sense that we have div(t*V)U(x,t) = 0 for every = € R* and
every t > 0 and for every & € R? we have

U(x,0) = im[Py (-, t) * u](z) = u(x).

t—0
’ : Ao Vaa _ [r(=3)]
(i1) Consider the constant C, = aCia = azer(s) then for every x € R we have

U(z,t) — U(z,0) = Co(=A)*2u(z).

—lim t'7*0,U (x,t) = — lim
t—0 t—0 at®

(i11) We define U*(z,t) = Uz, at'/®), for z € R and t > 0. Let § = —@. Then U* verifies
(A, +tP02)U* =0 in R x[0,00) and U*(-,0)=u on R% (2.20)
Moreover, for all x € R? we have

—8,U*(x,0) = — lim U@, t) = U"(,0)

_ o+l o ANa/2
lim " = a7 Co(—A)Y 2u(z).

Proof. The differentiation rule under the integral sign and Proposition m (iv) imply that

div(t*= VU (z,t) = [div(t'~*V)Pyo(-, 1)) % u(z) =0 for all z € R? and all ¢ > 0.
Next, for z € R and 0 < t < 1, using the condition (2.19), we have

U(z,t) —u(x) =[Pia(-t) *ul](x) —u(zr) = /Rd (v(x —h) —v(x))Pyga(h,t)dh

3 | (u(z+ h) +u(z — h) —2u(x))Pga(h,t)dh

Vi, t*dh
= 2% u(x +h)+u(r—h) - 2u(z)) —0s-
e [ (e )+ R s

In view of the estimate (2.4), we find that for every h € R?,

e+ 1) + 0 = ) = 2u() —— gz | < ey (LA DAL,
(Ih>+22) =

The dominant h +— (1A |k|?)|k| =9~ is integrable over R?. For each h € R we have Py (h,t) 29 0 and

t=*Pyo(h,t) 129 |h|=4==. The convergence dominated theorem yields

U(,0) = lim(Pya () « u)(x) = u(x)

and

. Uz, t) =U(z,0)  Vga dh A /2
lim = /Rd (u(z +h) +u(z — h) - QU(x))W = —Ca(-4) / u(z).

t—0 at® 2

Here C,, = a‘g; is deduced from the expressions of V; o and Cy 4 (see(2.7)). Furthermore, since

d+a+2

00 Pya(h,t) = aVaa (R +2) 5 — 2V (d+a) (B2 +2) 7

for 0 <t < 1, we also have the estimate
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|(u(z + h) +v(z —h) — 2u(x))t1_a6th7a(h,t)| < 8||U|‘C5(Rd)(d + )V (1 A |R|?) R0,
and t'7%0, Py o (h,t) 120, alh|=@=2 for each h € R?. Therefore, by using the differentiation rule under
the integral sign and the convergence dominated theorem one finds that

711_1}(1) 120U (z,t) = %E}% 170 (U(z,t) — u()) = Im[t' "0 Py (-, t) * (u — u(x))](z)

t—0

= lim Via / (u(z 4+ h) +u(x — h) — 2u(x)) =0 Py (h, t) dh
t—0 2 R4 ’

= —Co(—A)?u(z).

We have shown (i) and (i), while (ii7) is not yet proven. Clearly, for € R? we have U*(z,0) = U(z,0) =
u(x). Furthermore, for ¢ > 0, we have A U*(z,t) = A, U(z, at=) and

1-— 1
f@tU(az,atE).

ol «

POZU* (2,t) = 1P (0,(t+ 10U (w, at®))) = DRU (w, at v ) +

Recall that div(t!=*V) = t!7* (A, + 520, + 03). Therefore, since U solves (2.15), letting z = ats, we
get

1—
(A, + 902U (z,t) = (AU(,2) + aatU(x, 2) + 05U (z,2) = 0.
z
Moreover, it follows from (i) that
* T é o o _
lim U (gj,t) U (ZL‘,O) — lim U(I,Oét ) U<1‘>0> — aa—i—l lim U(:L‘,Z) U(ZL‘,O) — _aa—i-lca(_A)a/Qu(x)_
t—0 t t—0 t z—0 az®

O

2.3. Renormalization constant of the fractional Laplacian

Here, we provide a mere alternative method to compute the exact value of the constant Cy s with 0 < s < 1

and d € N given by
1 — cos(z1) -1
Cys:= — 7 .
d, (/Rd |z[d+2s x)

Afterwards we provide its asymptotic behavior when s — 1 and s — 0. Although the constant Cy ; has
already been computed, we believe that our approach is simpler and uses basic elementary calculus tools.
To the best of our knowledge the computation of a similar constant first appeared in [Lan72, formula
(1.1.2)] while studying the Riesz potential.

This constant is nicely deduced in [BV16l, Chapter 1] through Fourier analysis techniques while establishing
a relationship between: (i) the function U(x,t) solution of the heat equation: 0,U(x,t) = AU(z,t) for
all (z,t) € R? x (0, 400) with initial data U(z,0) = u(z) for some u € S(R?), (ii) its natural semigroup
and (iii) the fractional power of the associated infinitesimal generator which is nothing but the fractional
Laplace operator (see D.11 the Bochner definition for (—A)®/2 above ). Although this ingenuous idea
requires some further understanding of the related subjects, the identification process therein does not
provide a direct computation of the integral quantity defining the constant Cy s.

The art work in [BucI6] consists of first showing that the function u(x) = [max(1—|z|?,0)]® is the solution
to the Poisson equation (—A)*u(x) = 4. in Bi(0) and u(z) = 0 on RY\B;(0). Here, 0, is a specific
constant from [Bucl6]. Afterwards the Green function G (z,y) for the fractional Laplacian in the unit
ball is exploited to deduce the value Cy s since one has 1 = u(0) = 04,5 fBl G4(0,y)dy.

40



2.3. Renormalization constant of the fractional Laplacian

In contrast, Mathieu Felsinger [Fell3] opts for a direct computational method using polar coordinates.
This method brings into play the notion of Bessel functions of the first order k£ € R the understanding of
which requires some advanced knowledge of integral calculus and the concept of analytic functions. The
computational details therein refer to several advanced and pre-established formulae for Bessel functions.

Instead of these two appointed techniques, we rather propose a straightforward computation using basic
elementary methods of integral calculus. Although the explicit value of Cy , is not of particular interest
to us and only plays a minor role in our work, having it at hand significantly simplified the study of its
asymptotic behavior. Curious readers may look up [NPV12l, Section 4] for a lengthy elementary study of
the asymptotic behavior of Cyg .

To this scope, we start writing z = (z1,2’) € R? where 2’ € R?~! assuming d > 2. Thus, performing the
change of variables 2’ = z|z;| on R?~! that is dz’ = |z1|9 " 1dz yields

(Lo cost) L ) 2 G4
it = ([ ) </R <1+yx|2>dt“d>' =3 (221

With

1 — cos(t)
|1 +2s

G(s) == s(1 — s)/

R

dt (2.22)

and if wgy_» denotes the surface measure of the d — 2-dimensional unit sphere of R4~!

1 oo ,rd—2
A(d,s) := —— - dr = wq— ———dr. 2.23
(@9 /R (1+ |22) 5= ‘ 2/0 (1+72)%5 (223

Note that from the expression of C(1 ;i one can postulate the convention that A(1,s) = 1forall s € (0,1).

Let us recall the well known formula

Wa—1 = % where I' is the Euler’s Gamma function mapping
a>0to

I'«) :—/ e~ ot at.
0
To compute the constant A(d, s) we consider the following general integral

oS} a—1
I(a,b)::/ Tibdr 0<a<hb.
o (1+41r2)2

The change of variables u = ﬁ that is r = (L — 1) Y2 and dr = —5z (1 - 1)_1/2 du yields,

e _ . 1 b INEINEE
I(a,b)_2/0 (1—u) 1u321du—2B<;,2—g> :Léz).
2

Here B(-,-) is the beta function defined for z,y > 0 and given by the Legendre’s duplication formula by

vl

1
B(z,y) := /0 (1—w) " uy " du = (2.24)

Then, taking into account that wy_o = % then from the expression of I(a,b) and (2.23)), we get
2

I(s+1)

A(d, s) = wg_oI(d —1,d + 2s) = gld=1)/2
(d,s) =wq—21( s)=m F(s—f—g)

(2.25)

On the other hand, by applying integration by parts, to the expression of G(s) we get,

2This can be obtained by computing the Gaussian integral fooo e~ 17" 4z in two different fashions: first using polar coordi-
nates and second using Fubini ’s theorem observing that |x\2 =224+ x@.
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G(s) = 25(1 — s) /Oo 1= cost) (1 - ) /OOO i) g, (2.26)

0 t1+28 t28

Our main interest is to compute the last integral term appearing in the expression of G(s). To do this,
we need to bring into play the integrals defined for o € R by

* sint e t
o1(a) = / BP0 and  pa(a) = / ij dt. (2.27)
0 0

A routine check reveals that () exists if and only if 0 < a < 2 whereas, p2(«) exists if and only if
0 < a < 1. Moreover a more precise investigation results in the below table

summing over (0,00) | Riemann integrable | Lebesgue integrable

st 0<a<2 l<a<?2

Cfit O<axl no value

Details of this are left to the interested reader. Integrals in (2.27)) are somehow linked to the so called
general Fresnel’sﬂ integrals which are defined in their general forms for @ € R as follows:

fila) = /000 sin(t%) dt and Ja(a) = /000 cos(t%) dt. (2.28)

In fact, if we assume « # 1 (observe that f;(1) = ¢;(0) does not exists), then enforcing the change of

variables x = t, i.e dt = émlea dx we are led to the following relationships

fila) = sign(a) i (a — 1) equivalently, vi(a) = asign(a) f; ( ! ) . (2.29)
o o l1-«

In contrast to the functions under the integrals in the functions ¢ — cos(t*) and ¢ — sin(t*) have

the advantage of being analytical on the half complex plan {z € C : Re(z) > 0} for a« > 1. It can be

deduced from the existence conditions on ¢; and the above relationships that fi(«) exists only for |a] > 1

and fy(«) exists only for o > 1. Over all, the computation of ¢;(«) will be carried out by computing

fi() while the computation of this latter springs from Cauchy’s theorem.

Theorem 2.19 (Cauchy Theorem). Every analytic function on an open connected set @ C C has a null
integral over any closed oriented piecewise smooth simple curve supported in 2.

Proposition 2.20. The values of ¢1(a) and p2(c) are respectively given by

*° sint 2 -a) T
o1(a) = /0 a dt = o Cos (7) a€(0,2) (2.30)
and
> cost re—-a) . /ma
o) = /0 o dt = g Sim (7) a € (0,1). (2.31)
Immediately, one gets
I'2-2
G(s)=(1- s)M cos (sm). (2.32)
1—2s
Proof. First we assume that 0 < a < 1, i.e. 8 = ﬁ > 1. Next, we introduce the function z — i’

which is analytic on {z € C: Re(z) > 0}. Let us also introduce the close counter-clockwise directed curve
denoted by ' and given by T'r = [0, A]U~vgU[B, O] where R > 1 is an arbitrarily positive large enough,
vr = {Re'" : t € [0, 35)} is the arc of radius R angle 33, [B,0] = {ze'?5 x € [0, R]} is the inclined
segment of angle 75 with length R and [0, A] = [0, R] is the segment on the real line of length R (see the

figure .

3 For oo = 2 integrals in (2.28) are commonly known as Fresnel’s integrals.
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YR

0 R A

Figure 2.1.: Curve I'g = [0, A] U~vr U [B, O]

In virtue of Cauchy’s theorem, one has

0= FRf(z)d,z—/OA] L dz+/BO} f(z)dz
25

/f ) dx + f(Relt)d(Relt)+/ flxe'?7) d(ze'?m)

R
:/ iz d:L‘—l—l/ efRﬁ sinﬁteiRB cothReit dt — 612’;3/ 67Iﬁ dr. (233)
0 0 0

Applying a simple change of variables along with the inequality sint > %t for every t € [0, ], we have

the following
B sint dt
<5

7Rﬁ2ﬂ_t Vs . 7Rﬁ R— o0
6/ dt = o (1-e) 2550,

Hence for 5 > 1 the integral of f(z) over v vanishes as R goes to infinity. So that by letting R — oo in
(2.33) after identification, we simultaneously get the formulae

fl(ﬁ):/o sm(tﬁ dt—sm/ B t—ﬁ ;Sin;ﬁ ooe_tt%_ldt ;sm%F (;)

B t =z 1 o 4,1 1 1
f2(B :/ COSt’B dt—cos/ = e 'tP T = — cos —F
#) 0 ( 3¢ 2/3 B 28 \B
This, together with the relation gives the following for 0 < a < 1,

o1(a) =afi (1ia) =T'(1—a)sin(l — «a)

g\a

i/we sm,@t iR? cos,BtR 1tdt

oy N

1
pr(@) = afa (1 ) =T - a)eos(1 -~ a)
-«
For ¢1(a), the case 1 < a < 2 (i.e. 0 < o —1 < 1) obviously springs from the previous case and the

integration by part as follows:

() /°° Sintdt 1 sint °°+ 1 /°° cost 1 ( 3

o) = —_— = — = o —

1 . 1@ a—1lt 1], Ta—1), o1 a1
———

0
I'2-a) T T'2-a) ™
= - 2 —_ _ = — S 1 — —
T a cos(2 — ) 5 o sin(1 — «) 5
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Finally, from the relation I'(x + 1) = 2I'(z) « > 0, it can be deduced from the above steps that

°° sint re-—a) . T T2-a) T
= T Y ) E = T Y e (12 34
w1(a) /0 o dt —o sin( a)2 o COS( 3 ) a € (0,2) (2.34)
[T cost  T(2—a) T I'2-a) /7«
We deduce from ([2.26]) and (2.34) that the expression of G(s) is given by
*° si re-2
G = =) [ Tt = (1= 9 (29) = (1= 9T 22 cos(om).
0 tes 1-2s
O

We are now in a position to give the explicit value of Cy s and to study its asymptotic behavior as obtained
in [NPV12]. In addition, the Proposition below shows there is a surprising coincidence between constants
Ca,s and the Brezis-Bourgain-Mironescu constant K ,(see the Section, for p = 2, which will be useful
for studying the convergence of nonlocal structures to local ones.

Proposition 2.21. The following assertions are true:

(1) Let 0 < s < 1, we admit that T'(1 — s) = —sI'(—s) extending the definition of I' to —s. Then,

T'(s+Hre -2 d/2\0(— a/2p(1 —
Cd—i. — 7T_(d*l)/Q (S 2) ( j) CoS (877) _ ™ | d( 25)| _ ™ (d 28). (236)
’ 5(1—=2s)I'(s+ %) 225 (H22) 5225 (H )
Another simple expression is to set o = 2s so that we get
e = G = app (= 4]

(ii) Let 1 < p < oo and e be any element of the unit sphere ST=1. Then,

OGS,
Kd,p = |w . €|pd0d71(w) = 1—]H—d (237)
s r(3)T (T)
(iii) Let |ST7Y = wq_1 = % be the surface measure of unit sphere S*=! of RY. We hawve,
Ca,s 2 4 Ca,s 4d
lim — % = and ~ ———— = lim —2* = : (2.38)
s—0+ s(1—38)  wg—1 wi—1Kg2 s—1-s(1—s)  wgo

Proof. (i) The first equality clearly holds by combining (2.21)), (2.25) and (2.32)). For the second equal-
ity we need some helping hand formulae related to Gamma function. Another version of Legendre’s
duplication formula stipulates that for all z > 0,

22271

N3

A justification of this equality comes from the original Legendre duplication formula in ([2.24) as follows

(2)0(z+ 2). (2.39)

['(2z) = 5

F?()QI;()Z) = B(z,2) = /01 tz_l(l o t)z—l dt t=;;1 9l-2z [2 /01(1 - .CE2)Z_1 d.’L’]

u=x? ! 1
= 21_22/ wr (1= u)* " du 221_223(572)
0

= 21—22w _9l-2z VTL(2)

I(z+3) (z+4)
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2.3. Renormalization constant of the fractional Laplacian

Let us also recall that the Schwarz reflexion formulaﬂ infers that for every 0 < e < 1,

B(e,1—¢) =T(e)[(1 —&) = —

- (Schwarz’s reflexion formula). (2.40)
sin(7e)

Wherefrom, by using the parity of the t — sint one obviously gets the relation
[(1—¢)=—el(—¢) =¢|I'(—¢)|. (2.41)

More generally, the analytic extension formula of Gamma function given for all m € Z and all 0 < |g| < 1
can be obtained by induction:

I'(1-e)D(e)

'm+1—¢) (242)

I'le—m)=(-1)™
Indeed, considering the extended Gamma function for negative value, Schwarz’s reflexion formula above
is also valid for —1 < z < 0. By taking m = 1 and replacing ¢ in (2.42)) by 1 — e with 0 < £ < 1, however
one observes that

I'(1— I'(1 -
Pee) = 2079 hatis r(eey = TU=2)
€ 3
Within the relation (2.41)), a routine check shows that for all 0 < s < 1 with s # % one has
1 1—2s 1—2s
'(=-+1- = r . 2.4
(3r1s)=57r (%) 243

Thus, for 0 < s < 1 from relations (2.39)), (2.41)), (2.43)) and (2.40) we get

—2s+1

r'2(1-s)) = 7“1 —s)r (; +1-— s>

9—2s — 2s
:s<1—2s>ﬁ|< >|r( )
— s(1 - 28) > —[T(-s)| -

7=
=s(1—25)27 %1

sin(w(T2)L(s + 3)

Ns)
cos(sm)['(s + 1)

This shows the second equality in (2.36) for s # % for which the result is also valid for s = % simply by
taking the limit as s — % directly in (12.36))

(ii) Taking into account the rotation invariance of the Lebesgue measure one glimpses that K, is inde-
pendent of the chosen unit vector e and whence it is sufficient to consider e := (0,---,0,1) € S?~!. Now
we let w = (w',t) € S¥~! with t € (—1,1) so that w’ € /1 — 25?72, In virtue of the Jacobian formula

for spherical coordinates one has doy_1(w) = M%_(th'ﬂt (see [Gra08 Appendix D.2]). Therefore,

_o(w')dt
Kq, = w1 [Pdog_1(w / / dw
” ]édg 1P (w) g B L
2
- /tP‘WSd 2’ L = 2/(1—15) tdt
0

Wd—1 Wa—1
Wd— d=1_j pt1 Wd— d—1 p+1
= d2/(1t)2—1t"z “tat =2B 2
wd—1 Jo Wd—1 2 2
d—1 pt+1
Cwga T (79T (T)
= o - (%) .
“The Legendre duplication formula implies T'(e)T\(1 — ¢) = B(e,1 —¢) = [° tEdt thus the Schwarz reflexion formula can

be obtained by applying the residues theorem using an appropriate domaln
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Here B(-,-) is the beta function and we have used the relation (2.24). The result follows by using the

formula, [S4!| = wy_1 = 22 along with the relation i) =n/2

r(d/2)
(iii) This result plainly follows from expressions of G(s) and A(d, s). Indeed, one can check that
G(s) = (1 —s)I'(1 — 2s) cos (sm) = %% cos (sm)
from where,
lim G(s) =1 and lim G(s) = 1
50 s—1 2

Since I'(3) = 71/2, from (2:23) we get the following after cancellation

22 d/2
(d,0) rdy - g (d 1) ar(d) ~ 2d

[N
[N]fsH

Therefore, as s(1 — s)Cd_; = G(s)A(d,s) and K42 = %, we obtain the following results:

. Cd s 2 . Cd s 4d 4
lim : = and lim : = = .
50 s(l —5) Wd—1 s—1 S(l —5) Wd—1 wa—1Kq2

Alternatively, the above limits follows after one easily verifies that

s(1—s)  72T(2-s)
Cas — 22T(s+9)

Remark 2.22. For 0 < a < 1, from the foregoing computations, it follows that the constant

d
Yda = 2¢2(1 — a)A(d, —a/2) = Wg_arr(a(lEZ)

is the constant for which the Riesz Potential (also known as the inverse of the fractional Laplacian)

Lf(z) = I/R f(y)dy

" Yaa Jra T —ylde

satisfies the relation ]{a?(f) = |§|_af(§) for all f € S(RY) with equality understood in the sense of
distributions. Indeed, the invariance of the Lebesgue measure under rotation implies

—ix
e 1

R —ix-& —a __
Lie [ = ™ Fey

- dz.
Yd,a R4 |x‘dia Yd,a Rd |x|dia

Lf(&) =

Letting 2’ = z,z with z € R%~! that is dz’ = ¢~ 'dz

[ etn = ([ 2 ( /.. <1+|d>> — 265(1 - @) A(d, ~a/2).

2.4. Order of the fractional Laplace operator

Now, we show that the fractional Laplacian acts on Holder spaces like an operator of order 2s.

Definition 2.23. Let m € N and 0 < o < 1. The Hélder space C;""7(R?) also denoted, by C;"7 (R%), is
the collection of functions in Cj"(R?) whose classical derivative of order || = m belongs to C2(R9).
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2.4. Order of the fractional Laplace operator

In the spirit of the estimate (2.4)), one can easily establish the following estimates.

Proposition 2.24. Let u € C’g(Rd) withy =147, m=1and 0 <7 < 1. Define the second order
discrete difference of u by D3u(z) = u(z + h) + u(x — h) — 2u(x). Then for all z,h,z € R? we have

| Diu(z + 2) — Dju(x)| < Cllullgy @a) (2|Ih[7 A TR[TFT).
Furthermore, if u € C} (R?) with 0 <y <1 then

|Dhu(z + 2) = Diu(@)| < Cllullop ey (127 A [R]).

The next result shows that the fractional Laplace operator (—A)® is an integrodifferential of order 2s.

Theorem 2.25 (Order of fractional Laplacian). Let v > 0 and 0 < s < 1 such that 0 < 2s < . The
fractional Laplacian defined (—A)® : CF (R?) — C)~**(RY) is a bounded operator-

Proof. First, assume v —2s =m + o with m =0,1 and 0 < ¢ < 1. In the case m =0, i.e. y=2s+ o0
there are subcases: 0 < 2s <y < 1lorl < 2s <~ <2, Suppose that 0 < 2s < v < 1 then in view of
Proposition [2.24) we have

s s Cd,s D?Lu(x + Z) 7 D%Lu(m)
(-8 ula+2) = (-a)°ut) = G| [ PR P g
Cyas |2|7 A |R|7 Cas, 1vo / LA R
< ’ dh = 2 Rt dh
=75 /Rd |o[d+2s 9 z| ea |R]dF2s
_ Cd,s ~—2s 1 1 B N—2s
== |2 cd(’y 5 + 25) = Cslz| :

For the second subcase where 1 < 2s < v < 2 we necessarily have 0 < ¢ < 1. Now we put v = 1 4 7 with
7 € [0,1] and recall that v — 2s = o so that 7 = 2s + 0 — 1. From Proposition we get

Cua.s D2u(z + 2) — Diu(z)

(=A)u(z +2) = (=A)"u(z)] = = o ]2 dh‘
Cys |z||h|” A [R]ET Cys _2/ T
< =& dh = =22 |28 Rl o= (1 A |B])dA
<= / T F I R AR
_Cd73 y—2s 1 1 _ y—2s
= L2y cd(;—|—7170>_08|z| .

In either case, we have (—A)*u € C) ~>*(R%). Now, if m = 1 that is y = 2s+0+1 then, 0 < 25 <1 <~ < 2,
which implies that 0 < 2s + ¢ < 1. Furthermore, we have Vu € C**7(R%). Since Vu is bounded, we
have |Diu(z + te;) — Diu(z)| < C|t], and from Proposition one also gets |Diu(z + te;) — Diu(z)| <
C|t||h]?5*° so that

|D2u(z + te;) — D3u(z)] < CJt|(1 A |h[25+9).

On the other hand, h + (1 A |h|?*79)|h|~92% is integrable. Using the dominated convergence theorem
one arrives at 9, (—A)%u(x) = (=A)*9,,u(z). Furthermore, as d,,u € CZ*T7(R%), by applying dominated
convergence again one gets that the map = — (—A)*0d,,u(x) is continuous. In sum, z — (—A)%u(zx) is
differentiable and V(—A)*u = (—A)*Vu. We know from the previous case V(—A)*u € CF (R?), that is
(=A)su € CZHHRY) = O 7**(RY), since v — 25 = o + 1. Proceeding by induction with a similar argument
the result remains true when v = m + ¢ > 2 and 9%(—A)*u = (—A)*0%u for each multiindex || < m.
The boundedness of (—A)® blatantly follows from the previous estimates. O
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2.5. Nonlocal elliptic operators

In this section, we define some concepts analogous to those from elliptic partial differential operators of
second order. We then provide some concrete connections between the nonlocal and local notions. Let
us recall that the modern theory of elliptic partial differential operators of second order is governed by
two influential classes. The class of operators in the divergence form </ and the class of operators in the
non-divergence form 7. To be more precise these are operators of the following forms

d d
Fu=—div(A()V)u+b-Vu+cu=— Z i_(aij %)u + Zbi% +cu (divergence form)

i,j=1

—~ d 0%u 4 du

du=—tr(A()D*)u+b-Vu+cu = — Z Uij g o + Z bi% + cu. (non-divergence form)
7 =1 v

Here, ¢,b; : R? — R are measurable functions and A = (a;;);; : R? — M(d x d) is a matrix valued
measurable function satisfying the ellipticity condition, i.e. there is a constant Ag > 1 such that

d
AGHEP < (Ar)€,€) = Z a;;(2)&&; < Aol¢* for all z,& € RY.

4,j=1

The operators &7 and o are symmetric if the matrix A is symmetric, i.e. a;; = aj;, 1 < i,7 < d and
translation invariant if and only if the coefficients ¢, b;,a;; 1 < 4,j < d are constants. If the coefficients

are constants then o = o/. If A is regular enough, we then have the relation
8aij

8:ch '

,Q/UZQZL+5-Vu with BZ = Z
j=1
The most studied elliptic partial differential operator of second order is the Laplacian

for u € C?(RY).

d
Au = div(Vu) = tr(D*u) = Z
i=1

0%u
821‘@‘

Our purpose here is to introduce the analog notion of an elliptic operator in divergence and non-divergence
form for nonlocal operators especially for integrodifferential operators.

Definition 2.26 (Integrodifferential operator in divergence form). An integrodifferential operator
in divergence form is any nonlocal operator .Z that can be written in the form

Zu@) =pv. [ (wl) - ulg) (e dy), (xR (2.44)

R4

for a sufficiently smooth function u : R — R. Here (p(z, dy))m cpa 152 family of Borel measures satisfying

p(z, {x}) = 0 for every x € R%. In practice, for consistency reasons, it is often assumed that the family
(u(x, dy)), ga satisfies the uniform Lévy integrability condition

sup / (1A |z —y*)p(z, dy) < oco. (2.45)
z€R4 JRY

We say that .Z is symmetric if for all measurable set A, B C R? we have

//u(x, dy) dz — //u(x, dy) dz.
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2.5. Nonlocal elliptic operators

Definition 2.27 (Integrodifferential operator in non-divergence form). An integrodifferential
operator in non-divergence form is any nonlocal operator . that can be written in the form

gu(x) = ;/}Rd@u(z) —u(x + h) —u(z — h) gz, dh), (x € RY) (2.46)

for a sufficiently smooth function u : RY — R. Here (f(, dh))z cpre 18 a family of Borel measures satisfying

p(x,{0}) = 0 for every x € RY. In practice, for consistency reasons, it is often assumed that the family
(i(z, dy))gc cpa satisfies the uniform Lévy integrability condition

sup / (1A A fa(x, dh) < oco. (2.47)
z€R? JRE

We say that Zis symmetric if fi(z, A) = fi(z, —A) for all measurable sets A C R? and all z € R%,

Remark 2.28. If u € CZ(R?) then the pointwise evaluation sz?u(z) obviously makes sense and under

the condition (2.47), the pointwise evaluation Zu(z) is also well defined (it is sufficient to adapt the
Proposition [2.1). In general, however, the pointwise evaluation .Zu(z) might not be defined under the
condition even for bona fide test functions in C°(R?). This operator is as good or as bad as the local
operator &/ can be. In fact, if the coefficients (a;;);; are sufficiently rough then the pointwise expression
27 u(x) might not make sense. If we assume that .Z is symmetric and the condition holds and that
&/ is symmetric and elliptic, however, then &@/u and Zu can be evaluated in the generalized sense. It
other words, for all u, p € C°(R?), the expressions (/u, p) and (Lu, ) are well defined:

(u,p) = y (A(z)Vu(z) - Vo(x)) de (2.48)

(Lu,p) = // (u(z) — u(y))(p(z) — e(y)u(z, dy) dz. (2.49)

R4 R4

Additional discussions on the operators ¢ and . are included in [Kas07].

Remark 2.29. Assume (p(z, dy))zeRd is symmetric i.e p(z,—A) = p(z, A) for every A ¢ R? and is

translation invariant, i.e. u(x, A+ h) = v(x, A) for every A C R? and z,h € R? then £ = Z. In the
local setting, this corresponds to the situation where the matrix A is constant, hence &/ = . Tn a
sense, an integrodifferential operator that is symmetric and translation invariant corresponds in the local
setting to the situation where the coefficients c, b;, a;; are constants. A simple instance is provided if we
let pu(x, dy) = v(z —y) dy where the function v : R? — [0, 00] is measurable and satisfies v(—h) = v(h) for
all h € R%. In this particular case, one recognizes the operator L = £ = # discussed in the first section.

Remark 2.30. Assume p(x, dy) = v(z —y) dy and ji(z, dh) = v(h) dh where v is radial. Assume A = I
(identity matrix), then we have L = £ = £ and —A = &/ = &/. Moreover, it is not difficult to show
that the operators L and —A are isotropic, i.e. invariant by under rotations. Therefore, when v is radial,
the operator L appears to be a prototypical example of an elliptic integrodifferential operator, just as the
Laplace operator —A is a prototypical example of an elliptic differential operator of second order.

Next we introduce the ellipticity condition associated with the operators £ and #. We restrict ourselves
to the case where for each 2 € R?, the measures pu(z, dy) and fi(z, dy) are absolutely continuous with
respect to the Lebesgue measure.

Definition 2.31. A measurable function v : R — [0, c0] will be called unimodal if v is radial and almost
decreasing, i.e. there is ¢ > 0 such that v(z) > cv(y) whenever |z| < |y|.
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Definition 2.32. We say that the family (u(z, dy))x cre 18 weakly elliptic if there exist a constant A > 1

and a unimodal function v : R — [0, 00] that is Lévy integrable, i.e. v € L'((1 A ||?), dR) such that for
every Borel set A, B € R? we have

AT // (ua) — u(y))?v(e - y) dyde < // (u(a) — u(y))?u(, dy)dz < A // (u(x) — u(y))*v(x — y) dy de.
AB AB AB

The operator & is weakly elliptic if (u(z, dy)), g is weakly elliptic.

Definition 2.33 (Elliptic kernel). We say that a kernel J : R x R?\ diag — [0, 00] is elliptic if

sup / (1A |z —y[*)J(x,y)dy < . (2.50)
zER? JR?

and there exist a constant A > 1 and a unimodal function v : R — [0, 00] that is Lévy integrable, i.e.
v e LY((1 A |h|?), dh) such that

A vz —y) < J(z,y) < Av(z —y) forall0< |z —y| <1 (2.51)
We say that J is globally elliptic if instead we have
A tv(e —y) < J(x,y) < Av(z —y) forallx #y. (2.52)

Obviously the global ellipticity condition implies the ellipticity condition and the ellipticity condition
implies the weak ellipticity condition.

Remark 2.34. It is possible to omit the condition that v is almost decreasing in Definition [2.33]as it does
not really influence the concept of ellipticity defined here. One should keep in mind, however, that this
condition only plays a technical role when dealing with function spaces and Poincaré types inequalities.

Definition 2.35 (Elliptic operator). Assume u(z, dy) = J(x,y)dy and u(x, dh) = J(z,x + h) dh for
a kernel J : RY x R?\ diag — [0,00]. We say that the operators .Z and .Z are elliptic if the kernel J is
elliptic. Recall that here,

ZLu(r) = p.v./

RA

(u(z) —u(y))J(x,y)dy and gu(;v) = % / (2u(x) —u(z + h) —u(x — h) J(x,x + h) dh.

Ra

Next, we bridge a transition from elliptic integrodifferential operators of the forms £ and £ to elliptic
partial differential operators of the forms &/ and /. We intend to convince that the aforementioned
notions (symmetry, translation invariance, ellipticity, divergence form and non-divergence form) are cor-
related. Let us introduce (vy)o<a<2, & family of Lévy radial functions approximating the Dirac measure
at the origin, i.e. for every a,d > 0

Ve >0, is radial, / (1A WA ve(h)dh =1, lim va(h)dh =0.
R4

Note that several examples of (v,), are provided in Section For a family (J%)g<a<2 of positive
symmetric kernels J : RY x R?\ diag — [0, co] we set-up the following:

(E) There exists a constant A > 1 such that for every a € (0,2) and all z,y € R?, with 0 < |z —y| < 1

A" vo(w —y) < J%(2,y) < Ava(z —y). (E)
(L) For every 6 >0
lim sup / J(z, x4+ h)dh = 0. (L)
a—27 pcRd |h|>6
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(I) For each o € (0,2) the kernel J¢ is translation invariant, i.e., for every h € R?

Jx+h,y+h) =Jz,y). (D

(G-E) There exists a constant A > 1 such that for every a € (0,2) and all z,y € R, with z # y,

A vy (z —y) < T2, y) < Ava(z — y). (G-E)

It is clear that (G-FE|) implies (E]) and . Let us define the elliptic matrix uniquely determined by the
family (J*),. Given z € R? and § > 0, we define the symmetric matrix as A(z) = (a;;())1<ij<d by

a;j(x) = lim hih;J(x,x + h)dh. (2.53)

a—2~ Bs

Remark 2.36. (i) Under conditions and the expression [y hih;J*"(z,2 + h)dz converges for
a suitable subsequence of (a;,). The existence of the limit in poses an implicit condition on the
family (J%)q. (i7) and ensure that the quantity a;;(z) does not depend on the choice of ¢ and is
bounded as a function in x. Indeed for all §,r > 0,

a;j(z) = lim hih;J®(x,x 4+ h)dh = lim ; hihjJ*(x,x + h)dh.

a—=2- g, a—2-
(#4i) Under condition (I)) the functions a,;(x) are constant in .
Example 2.37. The conditions , and are fulfilled for each of the examples below.
JU(2,y) = va(z —y),
J5 (2, y) = va(z —y)lp, (z —y) + (2 — ) J (2,9) Ira\p, (z — y),

where J is a symmetric and translation invariant kernel such that

sup / J(xz,x + h)dh < co for every ¢ > 0.
R4 Rd\35

We can also consider the standard kernels

Ca —d—
Ji?(xvy):?,a|x_y| d 047

Cia e .
T§ (a,y) = =5 e =y~ g, (w —y) + 2~ e — y| = gays, (v — ),

Here, 8 > 0 and Cy , is the normalization constant of the fractional Laplacian. Another example is given
as follows. For e € R? we set

5 (2,y) = (24 cos(e - (z = y)))valz —y).

The matrix corresponding to J; and Jo above, is A(x) = é[d = (ééij)lg,jgd and for J3 and Js the

corresponding matrix is A(z) = I4 = (0;j)1<i,j<d, where I4 is the identity matrix; see Proposition [2.38]).
Proposition 2.38. Assume and . Consider the symmetric matrizc A = (a;;)i; from (2.53), i.e.
a;j(x) = lim hih;J*(x,x + h)dh.
a—2~ B
(i) The matriz A is elliptic and has bounded coefficients. To be more precise, we have
AT ATHEP < (A@)€,6) < dTIAIEP,  for every x,& € RY.
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Chapter 2. Basics On Nonlocal Operators

(t7) Under condition (l) each x — a;j(x) is constant function. In particular, for J¥*(z,y) = vo(x —y)
we have A(x) = 5(6ij)1<ij<d, i-e., the matriz A equals the identity matriz and for J%(z,y) =

y|7d*°‘ we have A(x) = (0i;)1<i,j<d-

(i17) Foru € CZ(R?) we have
. 1 ~
th Zou(z) = f% tr(A(zx)Vu)(z) = fieﬁz/u(x), for all z € R
a—r

where

ZLou(z) = —% /Rd(u(x +h) +u(z —h) —2u(x))Jx,x + h) dh.

(iv) For all u € CZ(RY) we have (—A)*/?u(x) LN —Au(z) and Lou(x) LN — 55 Au(z). Recall that

(=AY 2y (z) = % /Rd (u(z+h) +u(z—h) — 2u(x))|hﬁdh+a
Lou(z) = % /R (ulz + h) + u(z — h) — 2u(z))va(h) dh.

(v) Forue H'(RY) and ¢ € C=(RY) we have
(}LIL% (Lou, o) = (= div(A(-)Vu), p) = (Fu, p).

Here,
Loulo) 1= pov. [ (ula) = )T (w.9) dy
(fu.e) = [ (A)Vula) - Vo(a) da
(Zau, ) // N(p(@) = ¢(y) T (z,y) dy dz.

R Rd

Proof. (i) Let z,& € R? and |h| < 1. The condition implies that
Al/ [€ - h]va(h) dhg/ [€ - h)?T*(x,z + h) dth/ [€ - h]*va(h) dh.
B B4 By

From the definition of the matrix A we have
d
(A(z)€,€) = Z aij(z)€:€; :ahj?— J¥(z,x + h) Z hih;&&; dh = hm / [€-h)> T2,z + h)dh.

nI=t Ihi<1 L=l |hi<1

Since the Lebesgue measure is invariant under rotations, we have

lim [€ - h)*ve(R)dh = lim / > &&hihjva(h) dh + Jim. /Zg h2vy(h

a—2~ a—27 .
lni<1 nj<1 1S7Isd <1 =1

= lim Y & /hfya )dh:alngL €] / h2va(h) dh

a—2~

tsisdhj<a hi<1
—lm gPat [ X Bamdi= lm gPat [ ovaan
lhj<1 tsisd hi<1
= [¢[Pd,
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2.6. Mixed Lévy operators

Indeed, due to the symmetric, the sum over ¢ # j vanishes. Altogether this gives
AT TEP < (A@)€,€) < AdTYEP?P forall .6 € RY

(#3) Obviously = — a;;(x) is constant if the condition (I)) holds. Assume J*(z,y) = vo(z —y). We show
that A = é[d. By symmetry, for ¢ # j is easy to show that a;; = 0. From the fact that the Lebesgue
measure is rotationally invariant and Remark [5.4] we find that

a;i(r) = lim h2ve(h)dh = lim h2vq (k) dh

a—2— a—2—
Ini<1 Ini<1
1 d 1 1
= g | Tnteman=tm g [ iPragan=g.
<1 =t Ini<1

If (@, y) = “4=

and accounting Proposition [2.21f which asserts that 57
(#41) We know from (2.3)) that

x — 1y~ then a;; = 1 and thus we get A = I;. Indeed, it suffices to proceed as above
Od,a a—2 1
wd,l(Qfoz)

u(z + h) +u(e — h) = 2u(@)] < 4fullcza (LA

This combined with the assumption yields that

li
a—

m / lu(z + h) +u(x —h) — 2u(x)| J*(z,z + h) dh = 0.
Ihi>s

The fundamental theorem of calculus suggests that

Zu(x):—% / (ulz + h) + u(w — B) — 22)) J*(z,2 + h) dh:—% /[D2(x)-h]-hJ°‘(x,x+h) dh
[h|<é |h|<é

1 1ot
- 2/ / 2t / [D?u(xz — th 4 2sth) - h — D*u(z) - h] - h J%(z,z + h) dh ds dt.
0 0 |h|<d
Since D?u (the Hessian of u) is continuous at x, for any € > 0 there is sufficiently small § > 0 such that

|D?(z + 2) — D?u(z)| < € for all |z| < 4§. This implies,

1 bt 2 _ _ D2 . hl v s
hm2/0 /0 2t / ((D?u(z — th + 2sth) — D*u(x)) - h) - b| va(h) dh ds dt

a—2
|h|<é

€ .. 2 _ € e=0
<261;1_)mz/(1/\|h|)ua(h)dh_2~—+0.

|h|<d
Hence we get
i : . - 0 u(x) ) 7
-2 il_}Hlogau(l’) = / [D*(z) - h]-h J*(z,z + h) dh = z_: aij(a:)m = tr (A(z)D*u(z)) = Fu(z).
|hj<s hi=1
Note that (iv) is a consequence of (i) and (iii) whereas (v) is a particular case of Theorem [5.69} O

2.6. Mixed Lévy operators

Loosely speaking, we define a mized Lévy operator or a Lévy operator with mized jumps or a generalized
anisotropic operator as Lévy operators that can be viewed as the sum of lower-dimensional Lévy operators.
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Chapter 2. Basics On Nonlocal Operators

In recent years, the study of the sum of the one dimensional fractional Laplacian has attracted much
attention. The Fourier multiplier of such operators are of the form (&) = |&1|* + [£]%2 + -+ + [€q]*?
with «; € (0,2) for all £ € R%. Such operators are known as anisotropic operators, see for instance [Chal7]
and several other references therein. We wish to generalize this to lower dimensions greater than one and
due to this geometrical consideration, We believe there is more to learn from such operators.

Let us view R? as RY x R® x ... x R where d = dy +dy +---+d,, with 1 <n < d and d; € N. For

z € R? we write z = (z7,23,- -+ ,x;) where z} € R% . In addition we define z; = (0,0,---,27,0,---,0) €
RU xR x ... x R g0 that © = T4 + To+ - + Tn. We identify R% as a linear sub-variety of R? by the
means of the correspondence R% 3 z;— %j =(0,---,0, x],O .,0) € RY. Let v;j(dh}) be a symmetric

Lévy measure on R, i.e. vj(A;) = vj(—A;) for all A] CR%, v;({0}) =0 and
/Rdj (LA [RSP)v;(dR}) < oo

Definition 2.39. For each 2 € R? we define the (mixed) measures
(x, dy) =Y wi(x} — dy;) [[ 6=: (dyf) and  fi(x, dh) = v;(dh}) [] o (dh]). (2.54)
J=1 i#j Jj=1 i#]
Here d,+(dy;) represents the Dirac measure at z} € R%.

It is noteworthy to mention that for each z € R? the measures iz, dh) is supported on the sub-
varieties R4 , Rd2, e ,Rd” whereas the measure u(x, dh) is supported on the sub-varieties z; + RY , To +
]RdQ, e Tyt R% . To be more precise we have the following.

Proposition 2.40. (Integration rule)

(i) For each x € R* we have supp fi(x, dh) ¢ R UR® U---UR™ and supp pu(z, dh) C 1 +R® UZy +
R“U---U Z, + R¥. Moreover, for a Borel set A C R?, if we identify A;j=AN R% as a subset of
R% then, we have

ZZ/JZL‘ +A;) and [z, A) :ZZ/J
Jj=1 j=1

(i4) Let f:R% — R be measurable then for each x € R* we have

n

k(e dy) = Z fx+h)vy(dh*) and | f(WA(@, dh) = ST f(hy)vi(dh3).

Jle

As a consequence, we have the following Lévy integrability condition:
/ (1A |z —y*)pu(z, dy) = Z/ (LA [RS? Vj(dh;f):/ (1A [h*)p(z, dh) < oco.
R4

Definition 2.41. We shall call a mixed (or anisotropic) Lévy operator any Lévy type integrodifferential
operator whose Lévy measure can be represented in one of the forms in (2.54)). For instance the following

operator . and & are mixed Lévy operators.

Zulz) =p.v. [ (ule) - u(y) (e, dy
ke (2.55)

= 1
Lu(z) = 2/ (u(z + h) —u(z — h) —2u(z))p(x, dh).
RA
According to Proposition [2.40] we get the following proposition.
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2.6. Mixed Lévy operators

Proposition 2.42. Let u € C°(RY) and let £ and & be as in [2.55) then for z € R? we have

In addition, we have
(Lu,u :Z // —u(x+i~1j)zyj(dh;f)dz

We sce that . and . are in some way the sum of lower dimensional Lévy operators. This is verified
within the Fourier symbol.

Proposition 2.43. Let 1) be the Fourier symbol of,,?, i.e. E(f) = (&)u(€) for & € RY andu € CHRY).
Then for each & € R* we have wg) = 1(7) +1(&3) + -+ (), where ¢5(E7), § = 1,2,--- ,n is the

Fourier symbol of the operator .Z; defined by

—~ 1
Lyu(x}) = 3 /]Rd' (u(x] + h}) +u(@] + hj) — 2u(x}))v;(dh]).

Proof. According to Proposition we get

n

¢(g):/ (1 — cos(& - h)f(z, dh) Z/ (1 — cos(€ - hy))v;(dh})

J

—Z/ (1 —cos(& - hY))v;(dh?) 21/1]

Notation: To alleviate the notations we write

Lu= L+ Lot + Ln]u
Lu=[L+ L+ + L

Meaning in term of process: Assume that Zis the generator of a Lévy process (X;), then the process
(X4): jumps according to the following rules:

e The process can start at any point « € RY.

o If the process sites at a pomt z € R? then the process is only allowed to jump to the points of the

formy—x—i—h],j—lQ -, n, where we recall h; = (0,---,0,h,0,--- O)G]R andh*eRd

e The rate jump from x to y = = + Ej is according to the Lévy measure v;(dh}) on R% . Roughly

speaking, the process behaves like a d;j-dimensional Lévy process associated with the generator ,,@; .

Let us see some concrete examples. For simplicity one may assume that v;(dh}) = v;(h})dh; where
vj i RY — [0, 00] is a symmetric Lévy measure on R, i.e. vi(h) = vj(—hj) for all b} € R% and

/Rd_u AR (1) AR < oo.

e Ifn=1, (i.e. d=dy), then u(x, dy) = v(z — y) dy (see the first section).
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Chapter 2. Basics On Nonlocal Operators

o Let vj(h}) = Cq; a,h}| 7%~ with o € (0,2) then the Fourier symbol of % which we denote by
(=A)@ /2 0n/2 (miged fractional Laplacian) is given by (&) = [€5]*1 + - -+ + |£5|*" and we have
" Cy; ~ ~ dh’
Q1 /2,00 /2 — 3,0 ) ) a4y
(e ee) = 30 2 L e+ ) e = ) = 2000

= [(—A1>a1/2+(—Ag)a2/2+'~~—i—(—An)a"/z]u(x).

Here, (—A;)®/2 is the fractional Laplacian of order a; € (0,2) on R% . It is worth noting that for every
u € CZ(R?), we have (—A)*1/2an/2y(x) — —Au(z) as min{ay,--- ,a,} — 2. Note that the special
case n = d, i.e. dy = dy = --- = d, = 1, is considered in [Chal7] where the authors established the
Harnack inequality and Holder regularity for such operators. Similar work is carried out in [BS07] for the
case vy =--=ap,=cand dy =dy=---=d, = 1.
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3. Nonlocal Sobolev-like Spaces

In this chapter we introduce some nonlocal Sobolev-like spaces that are generalizations of Sobolev-
Slobodeckij spaces which we will very often encounter. Roughly speaking these are just some refinements
of classical Lebesgue LP-spaces (just like the classical Sobolev spaces W1?(Q) and W, () ) whose ad-
ditional structures are of importance. In short, one can perceive them as nonlocal versions of classical
Sobolev spaces of first order generalizing the usual fractional Sobolev spaces. When needed we will recall
some basics on classical Sobolev spaces. Nonetheless to better understand the correlation between the
nonlocal spaces and the local spaces, we recommend curious readers to hitch-hike some classical text books
like [AF03| [Alt16, Brel0l [EES7, [HT08]. For a thorough investigation on the theory of Sobolev spaces we
recommend, [Maz13]. We shall begin this chapter by reviewing some elementary properties of standard
Lebesgue spaces and the usual Sobolev spaces on an open set. Non-advanced readers should be aware
that some complementary basic notions on Lebesgue spaces are added in Appendix [A] In the next section
we first visit the nonlocal Hilbert spaces which are crucial for the study of complement values problems.
After, we introduce nonlocal Sobolev-like spaces in their general form. Since such spaces are less common,
we will examine some of their rudimentary properties useful later in our analysis. The usual fractional
Sobolev spaces will appear as a particular case of our set-up. After, we show that functions in such spaces
can be realized as approximation of smooth functions. Finally under some additional assumptions we de-
rive some compact embedding wherefrom we prove some Poincaré type inequalities. The theoretical effort
spent in this chapter will be rewarded in the following ones. Throughout this chapter, unless otherwise
stated, Q is an open subset of R? and 1 < p < co. If 1 < p < oo then it is very often assumed that the
function v : R — [0, o] satisfies the p-Lévy integrability condition

v(=h) =v(h) for all h € R? and / (LA RP)v(h)dh < oo (J1)
R4

3.1. Preliminaries

Our main focus in this section is to present the convolution product in L? (Rd) along with some applications
to the approximation by smooth functions and the compactness result like the Riesz Frécht-Kolomogorov
theorem. Those are in some ways the cornerstone in the sequel.

3.1.1. Convolution product

Let us recall that the convolution product of two measurable functions u and v on R? is given by
uxv(z) = /d v(y)u(x —y) dy
R

provided that for almost every x € R?, the integral on the right hand side exists and makes sense. Of
course, u x v will not exist unless suitable restrictions are imposed upon u and v. If it does exist, it is a
painless exercise to verify that convolution as product is commutative, associative and distributive over
the addition and the multiplication by scalars (at least for integrable functions).

We commence this section with a preparation result. Recall that for h € R?, 75, denotes the shift function
defined by mu(x) = u(z + h).

The following result often known as the continuity of the shift operator on LP-spaces, profoundly serves
our purposes in many perspectives.

Theorem 3.1 (Continuity of shift). Let u € LP(R?) with 1 < p < oo then

li — =0.
‘hl‘f_I}O | Thu UHLP(Rd)
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Chapter 3. Nonlocal Sobolev-like Spaces

Proof. Let ¢ > 0 and let g € LP(R?) be a simple function such that |[u — g||z»®e) < £. We have
Thu — ullLe ey < 1 Thu — ThgllLe ey + 1709 — gllLe ey + lu — gl Lo (Ra)
< 26+ ||7hg — gl e (ray-

Hence, it suffices to prove the result for the simple function g in particular if ¢ = 14 for a measurable
set A. Note that in this case A necessarily has finite measure. Thereupon, the result for this case comes
from the regularity of Lebesgue measure as follows

|h|—0
E—

|hﬂA—Lﬂﬂm@=A;MMx—M—1M@ch:KA—M\AN+M\M—hN 0.

O

Note that the above result holds true for p = oo if and only if  is uniformly continuous.

The most fundamental inequality involving convolutions is Young’s inequality which determines some
special situations where the convolution of two functions exist. Recall that for 1 < p < oo we shall define
the number p’ by % + ﬁ = 1 with the understanding that p’ = occ if p =1, and p’ =1 if p = o0.

Theorem 3.2 (Young’s inequality). Let 1 < p,q,r < oo such that %—k% =1+ % Suppose that u € LP(R?)
and v € LY(RY) then u v € L"(R?) and

wx vl Lr@ey < ||lullLrgay V]l Laray -
Moreover if r = 0o, the map x — ux v(x) is uniformly continuous.

Proof. First of all observe that 1% +1=1, 1% +2=1andl+ ; + % = 1. Thus, applying the generalized
Holder inequality with exponents p’, ¢’ and r we get

uso@)] < [ | lollutz =) dy
= / o) e — ) o(y)| " u(z — )] dy
Ra
/ 1/1"
< (ol §E e el / [o()|u(z — )" dy) .

Consequently for almost all z € R,

uxo(@)[" <ol

P llullBore | o) ule — y)IP dy.
> ®) [,

Employing Fubini’s theorem and using once more the relations f+1=1 and 4+ £ =1 yields

[ vt do < ol el [ [ 1ot =)l dy da

+ +
= [l ull b Ed? = ol oy Il o geay

which proves the desired inequality. Now assume that r» = oo and let A € R?. By the previous inequality
and the continuity of the shift we get that

lThu* v — ux* UHLOQ(Rd) = |Ju* (|Tpv — 'U)HLoo(Rd)

Jul| Lo ey =% 0.

< mhv — vl La(ray

Thereby providing the uniform continuity and the proof is now complete.
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It is worthwhile mentioning that in general Young’s inequality can be established on every locally compact
group furnished with the left invariant Haar measure. Some special cases of Young’s inequality are much
simpler to establish. For instance, assume r = oo which means % + % =1lorq=p" Let u € LP(R%) and

v e LY (RY), it follows from Hélder inequality that for almost every x € RY,

[ wuta =) as] < ol ol
Which can be rewritten as
[u s vl|poo(ray < (||| aqmayllull Loy

In the case where ¢ = 1 we have p = r and hence if we let u € LP(R?) and v € L'(R?) then applying the
Holder inequality again yields the following for almost every = € R%.

[ vt =) ds| < [ o) lute = )l dy
< ol e ([ otz — ) a) ™"

Fubini’s theorem implies

/Rd Ju* v(a)]P dx<||v|§€ngd)/ / y)llulz —y)” dy dz

= ||v||p/de)HU”Ll(Rd)Hu”Lp (Rd) = ||U||I£1(Rd)”u||ip(ﬂgd)~
which is
[w* vl Lpmay < o]l L1 @eyllull Le ra)-

This inequality is often referred to as the Minkowski’s inequality for convolution. The particular case
q=p=r=1gives

lw s vl Ly ey < [lvllzr @ ull 2y @e)-

In this way L'(R%) is a commutative Banach algebra with the convolution as product.

3.1.2. Approximation by smooth functions via convolution

Next we want to approximate a given function v € LP(R?) by smooth functions. This will be derived
as an application of the convolution product and the continuity of the shift. We begin with some basic
facts. Let ¢ € C°(R?) and u € Li (R?). Then as supp ¢ has compact support, it is routine to check
that u * ¢ € C®°(R%) and 9%(u * ) = u * 0% for all multi-indices a € N?. Assume u,v € C(RY) are
continuous functions. If u and v have compact supports so has u * v. Indeed, in general the convolution
u * v, if it exists, satisfies the inclusion

suppu * v C supp « + supp v.

Let (1:)c be the standard mollifier family that is n.(z) = e~9n(2) with
1
— |z

where the constant ¢ > 0 is chosen such that

/Rd n(z) dz = 1.

It is not difficult to establish that for each € > 0,
e € CX(RY), suppn. C B:(0) and / Ne(x) do = 1.
R4
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Chapter 3. Nonlocal Sobolev-like Spaces

Theorem 3.3. Let 1 < p < oo, for all g € LP(RY) we have
lim flg — g+ ne || o (re) = O-
Furthermore, C°(R?) is a dense subspace of LP(RY).

Proof. Let g € LP(R?), since [p.n-(2) da =1 for every z € R?

9+ n0) = 9@l = | [ (a0 =9) — a(@)e"n(cy) af

S/‘
Rd

Applying Jensen’s inequality with respect to the measure n(y) dy in combination with Fubini’s theorem
leads to

e _ _ p
g * ne g”LP(Rd)_/Rd g *ne(x) — g(x)|P dz S/Rd(/Rd

g(r —ey) — g(fﬂ)‘n(y) d

g(r —ey) — g(w)‘n(y) dy)p dz

p
< | lote =20~ 9@ donw) ay= [ o~y =]}, 1w av.
R Rd)
RARA
For each € > 0, we have n(y)||g(- — ey) — (;E)||’£,,(Rd) < 2n(y )Hg||Lp(Rd € L'(R%) and by continuity of the

shift, [|g(- —ey) —gll%, (RY) £29% 0. In virtue of the foregoing, the dominated convergence theorem implies

that we also have ||g * 7. — gHLP(Rd) =000,

Let us now prove the density of C2°(R?) in LP(R?). Let u € LP(R?) and fix § > 0. From the dominated
convergence theorem we are able to find jo > 1 large enough such that [|u — g||pr@rey < §/2 with g =
ulp, 5 (0)- Since g has compact support it turns out that g*. is of compact support too. Furthermore, we

have g*7n. € C2°(R?) and as previously shown, there is ¢ > 0 small enough for which ||g*n.—gl| Lr(rd) < 0/2
so that

lu— g *nellr@ay < lu— gllo@ay + lg * 1e — gllLr ey < 0.
This finishes the proof. O

Corollary 3.4. Assume Q2 C R? is an open subset and let 1 < p < co. Then C°(S2) is dense in LP(L2).

Proof. Let (K;); be an exhaustion of compact sets of 2 with dist(Kj, 02) > % For w € LP(Q2) and 6 > 0
small enough there exists j > 1 sufficiently large such that ||u — ulk;||Lr() < /2. Assume ulg, is
extended by zero to R? then by Theorem [3.3 . 3f for e < 1/2j sufficiently small, we have ||ullg, — (ulk;) *
NellLr(ray < /2 so that

lu— (ulk,) *nellr) < llu—ullk, e + [ulk, — (ulk,) *nell Lo ray < 6.

Moreover u * 1. belongs to C2°(Q2) since supp(ulg;) * n. C K; + By/2;(0) C Kz; and Ko is a compact
subset of Q. This achieves the proof. O

3.1.3. The Riesz-Fréchet-Kolmogorov theorem

With the help of approximation by means of convolutions, we shall provide a compactness criterion of
subsets in LP(R%), which is very effective in applications. The concerned result will be obtained through
the Arzela-Ascoli theorem which gives a criterion for compactness in spaces of functions. We state the
result explicitly for the spaces of interest here and we shall omit the proof which can be found in [Yos80),
chapter 3.
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Theorem 3.5 (Arzela-Ascoli). Assume that K is a nonempty compact set in RY. A subset F of C(K)
normed by ||ullcx) = max |u(z)|, is precompact if and only if F is bounded in C(K) and F is equicon-
S
tinuous on C(K), i.e.
li — = 0.
Ihl0+ EEI;HTW uller)

Explicitly, for every e > 0 there exists § > 0 such that for all |h| < 0, if x,x +h € K then

lu(z + h) —u(x)| <e forall weF.

In connection to the equicontinuity we also have the following analogous concept in LP(R%).

Definition 3.6. Let F be a subset of LP(R?) with 1 < p < co. A subset F of LP(R?) is said to be
p-equicontinuous if

lim sup |70 —u =0.
IhHOuegH h ”LP(]Rd)

The following result known as the Riesz—Fréchet—KolmogorovH Theorem gives conditions analogous to the
ones in the Arzela- Ascoli theorem for a set to be precompact in LP(R?). The proof of the following
version follows [Brel(, Theorem 26].

Theorem 3.7 (Riesz-Fréchet-Kolmogorov). Let 1 < p < co. Assume F is a bounded p-equicontinuous
subset of LP(R®). Then F |q is precompact in LP($2) for any measurable subset Q C R% with finite measure

Proof. Given that LP(Q2) is complete it suffices to show that F |q is totally bounded therein. To this
end, we fix 6 > 0 since p-equicontinuous we choose € > 0 arbitrarily small such that

sup [[u — w* nel| Lo (ray < /2 (3.1)
ueF

In truth, with the p-equicontinuity at hand, by arguing as for the proof of Theorem [3.3 and applying the
dominated convergence theorem, one comes to conclusion that

P

fingy sup lw = s el gay < lim [ sup H“( —ey) — U‘ (y) dy = 0.

€ =0 JRrd ueF LP(Rd)n

Meanwhile, for each £ > 0 and each u € F, Young’s inequality yields that we have
[ el Loc(ray < Clinell o (mey and  [[V(uxne)| Lo ey < ClIVNe|l Lo (s (3.2)
where we have used V(u*n:) = u* V. and set C' = sup [|u|L»(ray. Let K be a compact subset of {2 then
ueF

using the left estimate from the previous display and (3.1]) we have that for all uw € F
lull ooy < llu = e poay + llu s nell ooy < 8/2+ ClQN\ K2 |[nell o gy
Wherefore, choosing the compact set K large so that [\ K| is small enough, we obtain that

sup HUHL;}(Q\K) < 6. (3.3)
ucF

For such a compact set K and fixed € > 0 as above we claim that the family F * 7|k is equicontinuous
in C(K). From the second estimate in (3.2)) it follows that

|h|—0
sup [|Tpu * 1 — w el ey < [h] sup [[V(uxne)l| o gy < ClA|[[V0e|| o ey — 0.
ueF ueF

! This was originally proved by M. Riesz. A further characterization, given by Fréchet and Kolmogorov, is the approxi-
mation of precompact sets by finite-dimensional ones
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Chapter 3. Nonlocal Sobolev-like Spaces

In view of the Arzela-Ascoli Theorem the set F * 0|k is precompact in C(K) and hence is totally

bounded. Whence there exist g1, -, gy € F * 1k such that
N
Fendgc | Bso(g:) with 6k = 8|K['/7.
i=1

To conclude that F |q is totally bounded, we show that
N
Flac | Bss(@),
i=1

where g, is the zero extension to R? of g;. Let u € F then by the previous inclusion, for some i we have
llu*ne — gillo(xy < dx . This implies that

lw*ne — gill Lo (i) < 0 (3.4)
Combining (3.1)), (3.3)) and (3.4) one arrives at

—p » » 1/p
o= Gills 0y = ( o M@ Azt [ ju@) - @) dr)
< lullze o\ i)y + 1w * ne — ull o gy + 1w * e — gillLe (x) < 30.

That is u € Bss5(g;), and the proof ends here. O

Theorem 3.8 (Riesz-Fréchet-Kolmogorov). Let 1 < p < co. A subset F of LP(R?) is precompact if and
only if F is bounded, p-tight and p-equicontinuous in LP(R?).

Proof. Assume F is bounded, p-tight and p-equicontinuous. In light of the p-tightness, for § > 0 let
Q) C R? be of finite measure and such that

sup / lu(z)|P dz < §/2.
ueF
RI\Q

Theorem |3.7|reveals that Flq is precompact in LP(£2) thus it is possible to cover Fg by finitely many balls
of radii §/2 centred at g1, ,g, € LP(2). Let g, be the zero extension to R? of g;. For u € F such that
u € Bj/s(gi) we have

v = Gillor ey < llw = GillLr@arve) + lu = Gillze (o)

= |lull e rava) + lu = GillLr () < 9.
It follows that N
FC U Bs(7;)-

i=1
Thus F is totally bounded in LP(R?) and hence precompact.
Conversely assume F is precompact. Then it is evidently bounded. Let ¢ > 0 and let there exists
g1, ,gn € LP(RY) such that F C U, Bs(g;). The p-tightness and p-equicontinuity (by continuity of
the shift) of the set {g1,-- ,g,} in LP?(R?) implies that of F within the estimates

IThu — ull porey < |70gi — gill Lo ey + 2l|w = gill Lr (ra)
and

lull Lo ra\BR(0)) < 1w = gill Lo ray + 19ill Lr (Re\ Br(0))-
foruecF,R>0,heRandi=1,2,---,n. O
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3.2. Classical Sobolev spaces

The following theorem generalizes [Brel0), Corollary 4.28] or [ACS™14, Theorem 6.23].

Theorem 3.9. Let 1 < p,q,r < oo such that + 5+ l =1+ l. Suppose that F is a bounded subset of
LP(R?) and let g € LY(RY) then F g is Telatwely compact in LT (RY).

loc

Proof. Since F is bounded in LP(R%), for each v € F and h € R? Young’s inequality implies

lu* (Thg — 9)| Lr(rd) < HUHLP(Rd) |Thg — 9 La(rd) < Clltng — gl La(R4)-

Together with the continuity of the shift, we get the r-equicontinuity of F x g as follows:

lim sup |7, (u * g) — u* gl|Lr@mey < C lim {719 = 9]l Lo (ra) = 0.
Bl =0 yeF e

In case r = oo we know from Young’s inequality (cf Theorem that F x g C C(R?) so that by Arzela-
Ascoli Theorem we get that F * g is relatively compact in C(K) for every compact subset K of R?
that is to say JF * g is relatively compact in L (R?). If r < oo then the result readily follows from the

loc

Kolmogorov-Riesz—Fréchet Theorem O

3.2. Classical Sobolev spaces

In this section we go through a rudimentary review of Sobolev spaces. We refer the reader to [AF03,
Maz13| for more discussions on the theory of Sobolev spaces. Assume Q C R? is an open set. Let
a = (a1, -+ ,a1) € Nd be a multiindex and u € L{,(2)(space of locally integrable function on{2). A
function g € LIOC(Q) usually denote by g = 0%u is called weak derivative or distributional derivative of u
of order «, if

/ u(z)p(x)de = (=1)l° / g(z)p(x)dz for all ¢ € C°(Q).
Q Q

The uniqueness of the weak derivative g = 0“u follows from the fundamental lemma of calculus of variation
which asserts that in L (), only the null function v = 0 a.e. on  satisfies

/ u(x)p(z)de =0 forall ¢ e CF(Q).
Q

Let m € Nand 1 < p < oco. The space W™P(Q) is the equivalence classes of functions u € LP(2)
whose distributional derivatives D*u, up to the other m, belong to LP(f2). In other words we have

WmP(Q) = {u € LP(Q) : D% € LP(), |a| < m} The space WP () is furnished with the norm
| - [lwmr() defined by

lulwns@ = (Il + D ID°ul,)"  for 1<p<oo,

|a|]<m
][ wrm o () = [|ull Lo (@) + Z [D%ul| Lo ()
|| <m
The closure of C°(2) in W™P(Q) is denoted by W;""(Q).
Notation: For p =2 and m = 1 we shall write H*(2)(resp. H{(€)) in place of W1H2(2) (resp.W,(€2)).

The space W™P() is a separable Banach space (Hilbert space for p = 2 ) for 1 < p < oo and reflexive
for 1 < p < oo (c.f. JAFO03]). The absence of reflexivity for the case p = 1 gives rise to another type
of function space. When m = 1 this is known to be the space of bounded variation functions. Roughly
speaking it is the space of elements in L'(£2) whose derivatives in the sense of distributions are bounded
Radon measures. This is formally defined as follows.
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Chapter 3. Nonlocal Sobolev-like Spaces

Definition 3.10. The space of functions with bounded variation on 2 denoted by BV (2) is defined as
the space of functions u € L'(Q) such that |u|gy (o) < oo (in which case u is said to has bounded variation
on Q) where

sy () = sup{ /Q u(z) divp(z)de - ¢ € C2(URY), [¢lli=(a) < 1}. (3.5)

We will still denote the distributional derivative of a function v € BV (Q2) by Vu. Roughly speaking,
Vu = (A1,As,--- ,Ag) can be seen as a vector valued Radon measurdﬂ on 2 such that

/U( )g;i( )dl’:—/ﬂgo(x)dAi(a:), forall peC®(Q), i=1,---,d.

In particular, if u € WHH(Q) then |u|lpy(o) < [|[Vullri) < d*|ulpy) that is u € BV(Q) and we
have 9,,u(z)dz = dA;(z). Indeed, note that for ¢ € C°(Q) and e € S ! then ep € C°(2,R?) and
div(ep) = Vy - e. By duality we have

d
||VU||L1(Q) < \/gz HVu . eiHLl(Q) dz sup ’/ le 61 dx’ < d |U|BV(Q)

i=1 i=1 llellpee @ <1

Conversely, since u € WH1(Q), the integration by part implies the following

ovey = sw | [ V@) @ de < sw [ Vu@lo@)] dr < [Vulo),

lPll oo () <1 [Pl oo () <1

The quantity |Vu| may be regarded as a positive Radon measure whose value on an open set U C  is
|Vu|(U) = |ulgv (). Notationally when no confusion may arise, it is often the case to write [, d|Vul
or [Vu|(£2) to synonymously denote the semi-norm |u|gy (o) also called the total variation of |Vu|. The
space BV () becomes a Banach space under the norm

lull Bv (o) = llullLr @) + [ulBv )

We recommend the books [EG15] Maz13, [Ziel2] for further details on the space of functions with bounded
variation.

Remark 3.11. Given 1 < p < oo by the reflexivity of LP(2) it is possible to show that for

vy = s { | o) div(alae s 6 € CE@RY, 6l o<1},

the space BVP(2) of LP(Q) such that |u|gys) < oo coincides with the Sobolev space WhP(£). We
show this fact implicitly in the proof of Theorem [5.22] Moreover, as for the p = 1, one shows that
lulpve(a) = [|Vul|Lr (). However, the inclusion Wh1(Q) < BV () is strict and continuous. For instance
the weak derivative of the function u(x) = 1(o1)(z) — 1 (_1,0)(z) is 2dp (Dirac mass at the origin) whence
it belongs to BV (—1,1) but is not in W!(—1,1). Actually, in this specific case the radon measure |Vu|
equals 26 and |Vu|(—1,1) = |u|pv(—1,1) = 2.

Later we shall need the following less common approximation result.

Theorem 3.12 [EGIH, p.172],J[AFP00, Theorem 3.9]). Let Q C R be open. Assume u € BV(Q)
n—o0

There exist functions (un)n in BV () NC=(Q) such that ||u, — ul|p1(q) —— 0 and ||V || 11 @) ——
ulBv (@) = [Vul(2).

Remark 3.13. Note that the above approximation theorem does not claim that |u,, — u] BV(Q) 270
but rather implies that [|u,||w1.1(q) —— |[ul|py (). Strictly speaking, BV (2)NC(£) is not necessarily
dense in BV(Q2). On the other hand, if a function u € L'(2) is regular enough say u € WH1(Q) then
[Vl L1 (q) = |ulpy (). From this we find that BV (Q) N C> () = WH(Q) N C>(Q).

2That is any Borel measure which is inner and outer regular and finite on each Compact subset of Q.
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3.2. Classical Sobolev spaces

A separate aim of this chapter is to provide some strong connections between the aforementioned
Sobolev spaces and the upcoming nonlocal spaces of higher interest. Most of these properties will be
realized under some additional assumption on the geometry of €. Especially if €2 is an extension domain
understood in the following sense.

Definition 3.14 (cf. [AF03]). An open set 0 C R? is called an W™ P-extension (resp. BV-extension)
domain if there exists a linear operator E : W™P(Q) — W™P(R%) (resp. E : BV(Q2) — BV (R?)) and a
constant C := C(Q,d) depending only on the domain € and the dimension d such that

Eul|g=u and | Bullwm.eway < Cllullwmp ) for all uwe W™P(Q)
(resp. Eulg=u  and | Eull gy (rey < CllullBv (o) for all uwe BV ().

Extension domains are significant in applications and are necessary in order to extend certain embeddings
theorems on function spaces defined on domains. Note that, bounded Lipschitz domains are both W-P-
extension and BV-extension domains. The geometry characterization of extension domains has been
extensively studied in the recent years. The W1 P-extension property of an open set € implies certain
regularity of the boundary 9. For instance, according to [HKTO0S8, Theorem 2], a W!P-extension domain
Q c R? is necessarily is a d-set, i.e. satisfies the volume density condition: there exists a constant ¢ > 0
such that for all z € 9Q and 0 < r < 1 we have |Q N B(z,7)| > cr?. Using the Lebesgue differentiation
theorem, it is easy to show that the boundary of a d-set €2, has a zero Lebesgue measure, i.e. |0Q] = 0.
Therefore, given a W1 P-extension domain €2, we have the following

/ |VEu(x)[Pdz =0 for all u € WHP(Q). (3.6)
o0

To the best of our knowledge, we do not know whether the geometric characterization (3.6) remains true
for a BV-extension domain. However, we emphasize that [HKTOS, Lemma 2.4] every Wll-extension
is a BV —extension domain. Hence, we will require a BV -extension domain {2 to satisfy the additional
condition

IV Bul(99) = / Loo(z)d[VE| =0 for all u € BV(Q). (3.7)
Rd

Some authors prefer [AFP00] to define a BV-extension domain together with the condition (3.7)). Dis-
cussions on BV —extension domains can be found in [KMS10, [Lah15]. Several references on extension
domains for Sobolev spaces can be found in [Zhol5].

Trace spaces of Sobolev spaces

Next we recall the notion of traces spaces that are in a certain sense Sobolev spaces on the boundary
of a smooth domain. Loosely speaking trace spaces are models of Sobolev spaces on lower dimensional
smooth manifolds. Some cares are needed in order to properly build such spaces. Indeed for functions of
Sobolev spaces the classical restriction to a lower dimensional manifold are meaningless. Because a smooth
manifold of lower manifolds has Lebesgue a vanishing measure and Sobolev functions are solely defined
in the almost everywhere sense. Notwithstanding, by means of functional methods one can generalize the
concept of restriction by introducing the notion of trace. Let us commence by recalling the trace theorem
for a smooth domain €2 in the Hilbert setting.

Theorem 3.15 (Trace theorem, [HT08, [Pon16]). Assume Q C R? is bounded domain with C*— boundary.
Then there exists a bounded linear map (or trace operator) vo : H'(2) — L?(9Q) such that Kervy =
HY(Q), for every v € C(Q) we have yov = v|aq, and there is some constant C > 0 for which

ovllzzo0) < Clvlla@), ¥V ve HY(Q).
Similarly the linear map v1 : C1(Q) N HY(Q) — C(0Q) N L?(0Q) defined by

v
N =0 oo = Vv - nlsn
v

continuously extends to H?(Q2) and Keryo N Kery; = HZ(Q).
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Chapter 3. Nonlocal Sobolev-like Spaces

Definition 3.16. Let Q be a bounded smooth domain. The trace spaces H'/2(99Q) and H?3/?(99) are
respectively the range of the trace operators vy and ~; that is

HY2(00) .= v (HY(Q)) and  H¥2(00) := v (H*(Q))

so that the mappings 7o : H'(Q) — HY?(0Q) and v, : H?(Q)) — H?3/2(99) are onto and remain bounded
respectively under the natural norms

[Vl 17200y = Inf{[|[w|| g1y s w € H'(Q) and v = yow}

and
V]| 200y = Inf{[|w|| 2y : w € HY(Q) and v = yyw).

Usually H~1/2(992) denote the dual space of H'/2(99). Clearly we have the following continuous embed-
dings: HL(Q) — HY(Q) — H'/2(0Q) — L?*(99). Note that, if Q is not smooth, then an intelligent way
to define H'/2(0Q) is to set H'/2(0Q) = H*(Q)/H{(Q) that is, the quotient space of H'(2) by HE ()
via the equivalent relation u ~ v if and only if u — v € H}(Q).

Let us also emphasize that for a domain with sufficiently smooth boundary, it is possible to define an
intrinsic norm [Din96, [Mik11] on the spaces H*(0Q2) with s = 1/2,3/2 as follows:

IolBreomy = [ _luo)Pdoto) + // ) dota)do(y),

Here do represents the Lebesgue surface measure on 9€2. This is an avant-gout towards the introduction
of the so called fractional Sobolev spaces. For the general case, where s € (0, 1) see [Grilll, Section 1.3.3].

Remark 3.17. Roughly speaking the operator 7y models the restriction of H!(f2) functions on the
boundary 99 (indeed the classical restriction on 92 of such functions apriori does not make sense in
general since 92 has zero Lebesgue measure as d — 1-dimensional manifold). The operator v; can be seen
as extension of the notion of the normal derivative on H?(£2). Meanwhile, one can prove that operators
70 and ; are not defined on L?(£2) and H!(Q) respectively. A modern treatise on trace spaces in general
is included in [Ponl6].

3.3. Nonlocal Hilbert function spaces

In this section we introduce generalized Sobolev-Slobodeckij-like function spaces with respect to a sym-
metric Lévy measure v(h)dh tailor made for L2-theory of nonlocal elliptic complement value problems.
We will extend this to LP-spaces later. Our standing object is a function v : R4\ {0} — [0, 0] which
satisfies the Lévy integrability condition, i.e., v € L'(R?, (1A|h|?) dh) and is symmetric, i.e., v(h) = v(—h)
for all h € R?. The function v then is the density of a symmetric Lévy measure. In case v is radial we
adopt the convention by identifying v with its radial profile, i.e., v(h) = v(|h|),h € R?. Let Q ¢ R? be
open.

e We define the space H,(Q2) by,
H,(@) = {ue L) ¢ [ul} ) // )~ u(w))* (e — y)dy do < o0}
equipped with the norm defined as follows

2
JulF o = oy + ] (o) = ) vio = ) dy do
Q0
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Note that we also have the following nice representation

J] W) = u@)* vl ~ ) dy do =[] ute) - u(w)? [10(0)  Ta@]vlz - ) dy da,

Q0 R4 R4
e We also introduce the space V,,(QR?) which is of highest interest in this work.

d d 1 2
VL, (QRY) = {u :RY - R meas. : E(u,u) = 3 (u(z) —u(y)) v(iz —y)dy dz < oo} .
(QCXQC)C

Note that (¢ x Q2°)¢ = (RY x R%) \ (¢ x Q°) = (2 x Q) U (Q° x Q) U (2 x Q°). Thus, an equal simple

representation of the form £(-,-) is given by

// —u(y))” [La(x) V La(y)]v(z — y) dy dz.

]Rd RA

e Assume L is the Lévy operator associated with the measure v. Define the new space V' (Q| R%) by

VHQIRY) = {u € V,(QR?) : Lu exists weakly and Lu € L*() } .
Here the weak integrodifferentiability of Lu is understood in the sense of Definition
e Denote by V(Q[R?) the space of functions that vanish on the complement of € i.e

VEQRY = {u € V,(QRY) : u=0 ae. on R*\Q}.
Proposition 3.18. The space V,,(QR?) can be equally defined as follows
2
V,(QRY) = {u RY = R meas. | ul}, (QRY) = // u(y)) v(z —y)dy dz < oo} :
QR4

Moreover, for all u € V,,(QRY) we have |u|%/y(Q|Rd) < &(u,u) < 2‘“‘%/,,(Q|1Rd)'
Proof. A routine check, shows that we have

— ;// (u(z) — u(y))’ [La(z) v 1o(y)]v(z — y) dy dz

R4 R4

oo =5[] (@)~ ) [Ta(e) + Ta(w)]v(e - y)dy do

R? R4

Clearly we have 1 [Lo(z)+1a(y)] < [La(z)V1a(y)] <2 3[Llo(z)+1La(y)]. Thus the following comparison

holds true
//(u(x) — u(y))2 vz —y)dy do < E(u,u)< 2 //(u(m) — u(y))2 v(iz —y)dy dz.

QR4 QR4
O
Therefore, for some proofs the usage of the quadratic form [f (u(z) — u(y))Qy(x — y)dy dz which is
OR¢
simpler to handle in place of  [[ (u(z) — u(y))2 v(r — y)dy dz should not alarm the reader. In

(QexQe)e
reality, as we can observe, the notation V,,(Q|R?) is to emphasize that the integral of the measurable map
(z,y) = (u(z) - u(y))2 v(z —vy) performed over 2 x R is finite. Another possible suitable notation of the

space V,,(QR?%) could be H,(QR?). But we shall use only the notation V, (Q|R%). We shall visit some
fundamental results in connection to the aforementioned spaces in wider context.
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3.3.1. Natural embeddings of nonlocal energy spaces

Here we intend to answer the following questions: (i) What is the most suitable way to define a norm on
V,(QR?)? (ii) What are the possible ways to embed V, (2]R?) into some L?-space of functions defined
on Q° or on the whole R?? The answer to the latter question is of great interest for our framework as it
is a cornerstone for the study of the Inhomogeneous Neumann and Robin complement value problems.
Before we start with our investigation, let us observe that under certain conditions on v and €2, there
exists at least a natural norm on V,,(Q[R%). Let us recall the following.

Definition 3.19. A function v : R? — [0,00] is said to be the density of an unimodal Lévy measure
if it is radial, v € L'(1 A |h|?>dh) and almost decreasing, i.e., there is ¢ > 0 such that |y| > |z| implies
v(y) < cv(z). We merely say that the function v is unimodal.

Proposition 3.20. Let v : R4\ {0} — R be unimodal and Q@ C R? be a bounded open set. Assume
Q C Bygj2(0) for some £ € R with v(€) # 0. In particular, if v is fully supported on R?. Then
V,(QRY) € L2(Q2). Equivalently V,(QRY) N L2(Q) = V,,(QRY).

Proof. First, if Q C Bj¢|/2(0), then for all 2,y € Q we have v(z —y) > ¢ with ¢ = cv(§) > 0. By
Jensen’s inequality, we have

| @) —uw)vie -y s ay= ¢ [[(u@)] - o) s ay
(QexQe)e Q0
2
> 19 [ (u@)| ~ fo lul) " dz
Q
This shows that the mean value f, |u| is finite. We conclude u € L?(2) because of

/Qu2($)da:§2/ﬂ(|u(m)|—fg|u|) da + 20 (f, |ul) -

O

Therefore, when (2 is bounded, under the assumptions of Proposition [3.20]it is natural to endow the space
V,(QRY) with the norm

”uH%/},(QURd) = HUHiz(Q) +E(u,u) =< ||U||%2(Q) + |u|%/u(Q|Rd)'
Accordingly on V, (2JR?) it is convenient to define the corresponding inner product
2
(u,v)VV(Q‘Rd) = (u,v)LQ(Q) + &(u,v) or (U”v)VV(QURd) = (u,v)LQ(Q) + [u, V]

where

cwo =y [ @) - u) (6@ - o) o~ y) dy do

(QexQe)e
[uvvmd)—// 2) — u(y)) (o) — v(y)) vz — ) dy dz.
QRY

When the function v is bounded, e.g. in the case v(h) = 1, (h), the space H,(f) equals L?(f2). The
same holds true if v € L!(R?). Indeed in such situation if u € L?(Q2) then we have

//(u(az)—u(y vz - y)dy dx<4// y)dy da

<4 [[ @) v dh = 41v] s o)

QR4
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Definition 3.21. From now on, for a general measure v with full support, even if €2 is not bounded, we
refer to the space V,,(QR?) as the space V,(Q|R?) N L%(Q) equipped with the norm defined by

HuH%/,,(QURd) = ||U||%2(Q) + E(u,u).
The space V! (©2| R?) shall be equipped with the norm
HUH%/VI(de) = HLU’HQL?(Q) + HUH%2(Q) + E(u,u) = HLU||2L2(Q) + HUH%/,(de)-
Some authors find it convenient to work with space V, (2|R?) N L2(R%) equipped with the norm
el opeay 2= lull7zgay + & (s ).

Remark 3.22. The space V! (Q|R?) can be understood as a nonlocal version of H2(2). Indeed it is well-
known from Caldéron-Zygmund inequality that for a smooth domain Q, H2(Q) = {u € H*(Q) : Au €
L?(9)} where Au is understood in the distributional sense. Moreover | - || g2y =< || - [[a1) + 1A | L2()-

Clearly, V,,(QR?) N L*(RY) C V,(QIRY) and [|ully, ey < llullly, oqrey for all u € V,(QRY) N L*(R?) so
that the embedding V,,(QR%) N L?(R?) < V,,(Q|R?) is continuous. Note that as in (3.8, for an integrable
function v, the space V,(QR%) N L2(RY) equals L%(RY) whereas, V, (QR?) reduces to the subspace of
functions u € L?(Q) with

J] @ = oo~y drdy < .

00e
This shows that in many situations the space V,,(QR?) might be a little larger than V,,(QR?) N L2(R%).
Nevertheless, when = R? the normed spaces (V. (QRY), || - lv, @ra)), (Vo (QR?) N L2 (R?), -y, yra))
and (H, (), || - |, («)) are all equal and coincide in norms and will be denoted by (H,(R?), || - ||z, (ra))-

Theorem 3.23. Assume that v : R? \{0} — R is a symmetric Lévy measure. The function spaces
(V,(QIRY) N L2(RY), -, qray) and (Hu (), | - ||m, (o)) are separable Hilbert spaces.

In addition if v has full support in R then the same is true for the space (VL (QURY), | - HVu(de)) and the
space (VHQIRY), |- [z re))

Proof. For the spaces (V,(Q[R?) N LQ(]Rd), H|'|||W5(Q|Rd ) and (H,(Q),]| - ||W5(Q)) and (V,(QR?), || -

wrqrd)) the statements are contained in Theorem [3.46f Now assume v is fully supported and let
v (QRY)

(un)n C VHQIRY). Then (u,), and (Lu,), are Cauchy sequences in (V,(Q|R?), || - v, (@re)) and

L*(Q) respectively. Let u € V,(QIR?) such that |ju, — ully, (re) —— 0 and g € L*(Q) such that

| Lun — gl L2 272 0. It remains to show that Lu = g distributionally which is straightforward. Ac-

cording to Definition since || Lun, — gl r2(0) + lun — ul|p2(q) ——— 0, we have Lu = g. Indeed since
each Lu, is define in the weak sense, for ¢ € C2°(Q) with K = supp ¢ we get

/Kg(x)go(x)dx—nango/I(Lun(x)cp(x)dx—nlLHéO/Kun(x)Lgp(:c)dx—/Ku(:c)Lga(x)dx.

O

The following lemma shows that it is possible to define certain norms on V,,(Q|R%) (with nice properties)
which are equivalent to the norm || - ||y, o)r¢) when the function v is unimodal.

Lemma 3.24. Let Q C R? be open (not necessarily bounded) such that Q¢ has a non-empty interior.
Assume v : R\ {0} — R is unimodal and has full support. Then there exists an almost decreasing radial
Radon measure 7 : R — [0, 00) with full support and a constant C > 0 both depending only on v,d and
Q such that the following assertions hold true.
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(i) D(RY) < oo.

(i) 0 < v < C(1 Av) a.e. Moreover, we have v < 1 A v if in addition v satisfies the doubling grow
condition: there is a constant k > 0 such that v(h) < kv(2h) for all |h| > 1.

(iii) We have the continuous embeddings

Vo (QRY) — L2(RY, D) — LY(RY, D).

(iv) On V,(QRY), the norms || - H\#/i,(de) and || - |I3, qray are equivalent. Where,

i e = [ @@ e+ [ (o) u)Pote - ) dedy,

(e XQe)e
#2 _ 20\ 2
e = [ Pa@i@ar+ [ (@@ - uw)re -y aray.
(QeX0e)e
Furthermore, if Q is bounded then the norms || - |lv, (o) and || - |I}, qray are also equivalent.

Proof. Assume v has full support. We take R > 1 sufficiently large such that we have |Br(0) N Q| > 0
and |Bgr(0) N Q¢ > 0. Set Q(R) = Bgr(0) N Q (if Q is bounded take R > 1 large so that  C Br(0),
ie. Q(R) = Q). In any case, for all z € Q(R) and all y € R? we have |z —y| < R(1 + |y|). The
monotonicity condition on v implies v(R(1 + |y|)) < ev(xz —y). Set v(h) = v(R(1 + |h|)) for h € RY,
where we abuse the notation and write v/(|y|) instead of v(y) for y € R%. Let us show that ¥ satisfies the
desired conditions. Firstly, using the scaling and the translation invariance properties of the Lebesgue
measure it is easy to show that v also has full support. Note that |h| < R(1+ |h|) and R < R(1 + |h|)
for all h € R%. Whence, 0 < 7 < C(1 A v) a.e. In addition let us assume that v(h) < kv(2h) for all

|h| > 1. Let n > 1 be the unique integer such that 2" < R < 2"*! and consider § = ﬁ > 1. For
1
this choice of § we have R(1+ |h|) < % = 2"|h| whenever |h| > 6 or |h|/d > 1. This entails that

v(h) > cv(2™|h|) and by assumption we get v(h) > ck~"v(|h|). Now, if || < then R(1+ |h|) < R(6+1)
so that v(h) > cv(R(d + 1)) = C. We have proved that v(h) > C(1 A v(h)) and hence (i) is verified.
Passing through polar coordinates, we have

JRY = [ v _ |gd-1 OOV Nrd=1 dr
PR = [ o(RO+ ) dh = 57 [ u(RO )

Rd

= |Sd1|R1/ u(r)(ﬁ - 1) dr < |Sd1|Rd/ v(r)rd=tdr
R R R

=R Ay —d Y o0 .
=R /Ih>R(1A]h|) (h)dh < R /(1/\|h| yv(h)dh <

R d

This proves (i) and hence L2(R% (h)dh) c L'(R%,7(h)dh). We recall that V,(Q|R?) is a subspace
of L?(2) endowed with the norm | - ||y, (qre). Let u € V,(QR?) since we know that v(z) < C and
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v(z) < cv(x —y) for all y € Q(R) and all x € R? the following estimates hold

/Qu2(x) dz + //(u(a:) —u(y))?v(z —y)dyda

QQe

>C~ / dx+// (u(z) — u(y))?v(z —y)dy dz

QQe

>C! /Q(R) u?(2)v(z) dz + // () v(z —y)dydz
= // y) dy dz + // () ?v(z —y)dydz

Q(R)Qe Q(R)Qe

> (700 he ) // [12(2) + (u(a) — u())?]Ply) dy e

Q(R)Qe

> o0 ne ) Lo ay
d

The second and the last line imply that v € L?(R?, ) thereby proving that V;,(QR%) ¢ L(R%, 7(h) dh).
Obviously the proof of (iii) is also complete. The first, second and the last line of the above estimates
show that there exist two constants C; > 0 and C5 > 0 depending only on €2, v, R and d such that

ullv, @z = Crllullf, ey = Callully, qpra) -

Together with the trivial inequality ||uHV (@Qray < [Jwlly, (Q[ra), the norms Il - ”v (Qre) and Il - H?/},(Q\]Rd)
turn out to be equivalent.

Moreover, if © is bounded, then R < R(1 + |h|) < R(1 + R) for all h € €. The monotonicity of v yields
C~t < p(h) < Cfor all h € Q. Hence, C~!|ul|2(q) < lull 20, 5nyany < CllullLz(@) which implies the

equivalent of || - and [| - |y, (qre) thereby proving the equivalence of || - ||y, qre) and || - [}, (opa)-

17, e
Part (iv) is proved. O

Example 3.25. For o € (0,2) consider v(h) = |h|~9~ and one obtains 7 < 1Av with 7(h) = (1+|h|) =~
or o(h) = (1 + |h|™*)~1. In the aforementioned case, the space H, () equals the classical Sobolev-
Slobodeckij space H®/2(£2). For the same choice of v we define V*/2(QR?) as the space V, (Q|R?). So
that we have V/2(QR%) — L*(R?, (1 + |h|) =4 ).

In the special case where v is unimodal, the Lemma [3.24] provides several possible ways to define other
norms on V,,(Q|R?) equivalent to the norm | - ||y, (qre). In particular we have the continuous embedding
V, (QRY) — L*(R%, D). Next we obtain similar results for a more general symmetric Lévy kernel v. We

start with the following definition

Definition 3.26. Let v : R?\{0} — [0, 0] be the density of a symmetric Lévy measure and K C R?
be a measurable set such that |K| > 0. We write vx to denote the measurable function defined by
vi : R? = [0, 00] such that for z € R?,

vi(x) = essinfye g v(z —y).

Remark 3.27. Since v is integrable away from the origin it has some decay at infinity. Typically, for
2 € R? the infimum of v(x —y) is realized when y is far from z. In some sense the function vx destroys
the singularity of v. A simple way to illustrate this is to consider the example where v is unimodal.

Proposition 3.28. Let v be the density of a unimodal Lévy measure with full support on R? \{0}. Then
(i) v, € L"(RY), (i) vg, < ¢(1 Av) and (iii) if in addition v satisfies the doubling growth condition:
3 k > 0 such that v(h) < kv(2h) for all |h| > 1 then

v, <1Av with v, (z) = essinfyecp, v(z —y).
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Chapter 3. Nonlocal Sobolev-like Spaces

The same conclusions hold with By replaced by any other ball B. Furthermore for a ball B C Q we have
Vo (QRY) — L2(RY, vp) — LY(RY, vp).

Proof. For x € Bj there exists x,. € By (diametrically opposite to x) such that 2 > |z —x,| =2—|z]| > 1.
Since v is almost decreasing we have cv(2) < vp, (z) < v(z — z.) < ¢ 'w(1). If z € R*\B, there exists
x, € By (diametrically opposite to z) such that |z| < |z| 4+ 1 = |z — x| that is cvp, () < ev(]z|) for all
y € By |z —y| <|z| + 1 < 2|x| which implies cv(2|z|) < vp, (z). We have cv(|z]) < vp, (z) < ¢ tv(|z]).

Observe that vp, is bounded on B; and vp,v on RrR? \B; and v is integrable on RrR? \B1. Therefore,
vp, € L'(RY) and thus L*(R% vp,) — L'(R% vp,). Further we have shown that cvp, < (1 A v) and
vp, (z) > (1 Av(2|z|)). If v satisfies v(h) < kv(2|h|) for all [h| > 1 then s te(1 Av) <wvp, <c H(1Av).
One reaches the similar conclusions for any other ball B. If B C 2 we let u € V,,(Q|R%) and y € B then

/ () v () de < 2Ju(y) 2lvs g + 2 / (u(x) — u(y)) 2ol — y) dr.
R4 R4

Integrating both sides with respect to the variable y over B yields

[ rs@)ds < ¢ [ uaay+c [ ) - oo -y dedy

K'Rd

<C [ @y +C ] (ule) = ul)Pvle - dsdy

QR4

with C' = 2\B|’1(||VB||L1(R(1) +1). Hence V,(Q|R?) — L?(R% vp) since ||u|\%2(QC’VK) < C||u||%/y(Q|Rd O

)

Remark 3.29. (i) The conclusions of Lemma remain true with o replaced by vp for a ball B C .

(#4) Under the doubling scaling condition on a unimodal kernel v, it is possible to analogously show that
for any ball B we have vg < 1 A v. Hence for any compact set K with a non-empty interior we have
vk = 1 Av. This means that almost all vi are comparable. But this is not always the case in general. For
instance consider v(h) = |h|~%e~1"", then we claim that vz, and vg, are not comparable. Indeed assume
there is a constant C' > 0 such that vg, (z) < cvg, (z) for all z € R?. Let || > 4 then there are two points
z« € 0By and 2/, € 9By(diametrically opposite to x) such that | — z.| = |z| + 1, |z — 2| = |z| + 2 and

vp, () = v(z — z.) = (Jo| + 1) HD* and v, (2) = v(w — o)) = (o] + 2) e~ CFD,

—2|z| |2lzoo,

That vp, (z) < Cvp,(z) implies 1 < C(m—ﬁ)de 0, which is impossible.

(7i1) Note that, although the class of the almost decreasing unimodal Lévy kernel is fairly large, there
exists some radial Lévy kernels which are not almost decreasing . For example, for 5 € [—1,2) define

2—|—cos|h|)|h|4

va(h) = W=7 p(h) with p(h) == (=3

Note that vg is not almost decreasing since p(27n) = 1 and p(7(2n — 1)) = 3= =" for all n € N.
Now if 5 € (0,2), it is clear that vg is Lévy integrable since p is bounded. If —1 < § < 0 then vg is also
Lévy integrable since the map r ~ p(r) is in L1(R).

The following result is more general and provides an alternative to the Lemma [3.:24] when v is not a
unimodal function.

Lemma 3.30. Assume v is a symmetric Lévy kernel and Q C R? is an open set. For any measurable
subset K C Q with positive measure |K| > 0, consider the map vi : Q¢ — [0, co] with

vi (z) = essinf c g v(x —y).
Then v € LY(Q°) and we have the continuous embeddings
Vo (QRY) < L*(Q°,vk) — L'(Q°, vk).
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Proof. Given that |K| > 0, for a suitable z € K C Q2 we have ¢, = dist(z,002) > 0 and vk (z) < v(z — 2)
for almost every = € Q°. As Q¢ C B§ (z) by Lévy integrability of v, we get

/ vi(z)de < / vz —z)de = / v(h)dh < co.
c B§_(2) Bg_(0)

In particular, v € L1(Q¢). This implies that L?(Q¢, vk) — LY(Q¢,vk). Let y € K’ C K be measurable
such that 0 < |K’| < oo . Proceeding as in the proof of Proposition one obtains the estimate
||u|\L2(QC ) < Cllull3, (aJray With C' = 2[K'[~ Ykl e + 1) O

As we have demonstrated above, the main feature of the weight vx consists of removing the singularity
of v. Another way of defining such a weight is as follows.

Definition 3.31. Let v : R*\{0} — [0,00] be the density of a symmetric Lévy measure and K ¢ R?
be a measurable set such that |K| > 0. We write 7k to denote the measurable function defined by
Ui : RY — [0, 00] such that for 2 € R,

V() = /Kl/\u(a:—y) dy.

Proposition 3.32. Assume that v is the density of a symmetric Lévy measure and @ C R is an open set.
For any measurable set S C R such that 0 < |S| < oo we have o5 € L*(R?). Let K C Q be measurable
with | K| > 0 then the embedding Vi, (QR?) < L2(R?, k) is continuous. Moreover If 0 < |K| < oo then
the embeddings V, (QR?) — L*(RY, ox) — L' (R?, 0k ) are continuous.

Proof. The integrability of g is readily obtained as follows
/ vs(z dx—// 1Av(x— )dxdy—|S|/ 1Av(h)dh < |S| dh—|-|S\ ()dh<oo
Rd R4 B,
Let u € V,(Q|R?) and K C Q, we get the estimate
|u(z)|? P (x dm—/ / y) +u(y)* 1 Av(z —y)dzdy
R R4
<21 AV n Rd)/|u |2dy+2// z) —u(y)) vz —y)dy dz

QR4
< Cllull?, (oray-

Let us look at the case where v is radial.

Proposition 3.33. Let v be the density of a unimodal Lévy measure with full support on RY\{0}. In
addition v satisfies the doubling growth condition, i.e. 3 k > 0 such that v(h) < kv(2h) for all |h| > 1
then for any ball B C R? we have

vp<1Av with ﬂB(x):/l/\V(:v—y)dy.
B

Furthermore, if B C Q0 then the embeddings V,(QR?) < L2*(R%, o5) < LY (R, i5) are continuous.

Proof. Since v is unimodal, let ¢ > 0 be a constant such that cv(y) < v(x) if |y| > |z|. Let R > 1 be
large enough such that B C Br. We know from Lemma (77) that there exists A > 1 such that

A15(h) <1Aw(h) < Ap(h) for all h e RY,
where v(h) = v(R(1 + |h|)).
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Assume |z| > 4R. For y € B we have |y| < R < 4R < |z| and thus R(1 + |z — y|) < 3R|z|. We also
have |z —y| > |z| — |y| > % Hence, for each y € B, we have % <|r—y| < R(1+|x—y|) < 3Rz,
which implies cv(3R|z|) < v(z —y) < c‘lu(%). Since % > 2R > 1, the scaling condition implies that
1/(%) < kv(|z) and there exists a constant > 0 such that nv(|z|) < v(3R|z|). It follows that

env(lal) < vz —y) < ¢ rv(lal).

Assume |z| < 4R then for each y € B C Br we have R < R(1 + | — y|) < 6R. This implies that
cv(6R) < v(z —y) < c 'w(R) for all y € B.
Altogether, it follows that for some constant C' > 1 and for all y € B and all z € R? we have

Cl1nv(x) <v(z—y) <CAv(2)).
Finally, for all y € B and all z € R? we get
AMleT A Av(x) <1 Av(z —y) < AC( Av(z)).
Integrating over B yields, v =< 1 A v since
A TCTHB (1 Av(z)) < op(x) < AC(|B|L Av(z)).

If B C Q then according to Proposition (3.32) the embeddings V, (Q|R%) — L*(R%, o5) < L'(R%, o) are
continuous. O

Example 3.34. Assume K is a compact subset of Q2 then §x = dist(K,9Q) > 0. For the particular
choice v(h) = |h|~97%, a € (0,2) one has that vi(z) < (1+|2])~4"* < 1 Av(z). Indeed, for fixed z € Q°
and choose y € K such that vi(z) = v(x —y). Let R > 1 be large enough such that K C Br(0) then
|z —y| < R(1+ |z|) that is R=4=(1 4 |z|)~%~* < vk (x). We now show that upper bound in two cases.
If |z| > 4R then |z —y| > |z| — |y| > % + R > 1(1+|2|) so that vg(z) <291+ |z|) =4~ If |z| < 4R
since 0k < |z — y| we get vi(x) < (BRI (1 + |z|)~ 4.

Analogously, we also have 7k (x) < (1 + |z])747* < 1 A v(z).

From this example, the inclusion V,(QRY) < L%(Q¢ vk) turns out to be a variant of the inclusion
Vel2(QRY) — L2(Q°, W) from [DKI8, Proposition 13].

Now we resume the conclusions we have obtained following Definition [3:26] and Definition [3:31] .

Theorem 3.35. Let v be the density of a symmetric Lévy measure. Let Q C R? be open. The following
assertions are true.

(i) For a ball B C Q we have V,(QR?%) — L2(R%, vg) — L' (R, vp). If v is unimodal and satisfies the
doubling growth condition then we have vg < 1 Av. The same holds for vp.

(i1) For a measurable set K C Q with |K| > 0 we have V,(QR?) — L2(Q¢ vg) — LY Q¢ vk). If K is
compact then vig € LY(RY) and V,(QRY) — L2(R?, vk) — LY (RY, vk).

(i1i) For a measurable set K C Q with |K| > 0 we have V,(QR?) < L*(R%, o). If 0 < |K| < oo then
Ur) € LYRY) and L*(RY, o) — L' (RY, g ).

3.3.2. Nonlocal trace spaces

The main goal of this part is to design an abstract notion of a trace space of V,,(Q|R¢) similarly as one does
for the space H'(£2). Due the nonlocal feature of the space V,,(2]R?), the trace space assumes functions
defined on the complement of 2. Indeed, one reason is that elements of V,,(Q|R%) are defined on the whole
R?. This contrasts with the local situation, where the trace space of H'(Q2) (with  sufficiently smooth)
consists of elements defined on the boundary 9. In this part, we assume that v is fully supported on R?
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and V,,(Q[R?) is solely endowed with the norm || - llv, (re)- We define T, (£2°), as the space of restrictions
to Q¢ of functions of V,,(QR%). That is,

T,(9° = {v: Q° = R meas. such that v=u|g. with wu € V,(QRY)]}.
We endow T),(2°) with its natural norm,
||1)||TU(Qc) = inf{”u”vy(de) Loue V,/(Qle) with v = u|Qc} (38)

As an immediate consequence of the definition of the space (T,(Q°),| - |7, ), the trace map Tr :
V,(QRY) — T,,(92°) with u — Tr(u) = u |ge is continuous, onto, i.e. Tr(V, (QR?)) = T,(Q°), ker(Tr) =
VE(QIR?) and satisfies || Tr(u) ||z, ey < [Jul v, (Qre) for all u € V,(QRY).

Theorem 3.36. The space is a separable Hilbert space with the scalar product

1
(u,v)1, () = 3 (||U +v||%‘u(§2€) - HUHQTV(QC) - H’U”%’V(QC)) .

Proof. Clearly the norm || - [|1, ) verifies the parallelogram law since the norm || - ||y, (qrq) does. It
follows that (', ')TU(QC)
that T, (€2°) is complete under the norm || - [|7, (o). Let (uy), be a Cauchy sequence in T, (€2°) then up
to extraction of a subsequence we may assume that

is a scalar product on T, (£2°) with associated norm || - ||, (qe) . We want to prove

1
| — Uni1ll7, 00y < PYEs) forall n>1.

Let us fix uy € V, (Q|R?) such that u; = U |ge. By definition of |[u; — uz|7, (oe) there exists v € V,,(Q|R)
such that uy — ug = v|ge and ||v|ly, (qray < [[u1 — uz|l1, (@) +47 1. Letting Ty = v + 1y, ie. v =T — Uy
yields @z € V,,(Q|R?), ug = Tz|q- and hence ||y — Uzl|y, (qra) < |Ju1r — 2|1, () +471 < 271 . Repeating

this process, one constructs a sequence of functions @, € V, (QR%) such that
_ 1
@ — un—l—l”VV(Q‘Rd) < o forall n>1,

which turns out to be a Cauchy sequence in the complete space V,,(Q|R?). Let w € V,,(2|R?) be the limit
of (t)n. Clearly, setting u = U |oc we have |u, — ullr, () < |[Un — Ullv, (ore) 27 0. Finally, the
original Cauchy sequence (uy,), converges up to extraction of subsequence to u and hence converges itself
to u. 0

It is natural to ask the following question: Can the space T, (Q°) be defined with an intrinsic scalar
product preserving its initial Hilbert structure such that its trivial connection to V, (Q2|R?) is less evident?
In the local situation, it is possible to define a scalar product on the space H'/2(9Q) when Q is a special
Lipschitz domain (see [Din96]) . We give an answer to this question provided that some regularity and
growth bound conditions on v are assumed. We follow [BGPR20] where the authors enforce the following
assumptions.

A1: v is unimodal, twice continuously differentiable and there is a constant C'; > 0 such that
()], [V (r)] < Crw(r).

A2: There exist constants J € (0,2) and C' > 0 such that
v(Ar) < CXPu(r), 0< A <1, and v(r)<Cuv(r+1), r>1.

Assume Q¢ satisfies the volume density condition, i.e. 3¢ > 0 such that |Q° N B.(x)| > erd for all
x € 022 and all r > 0. Then under assumptions, A1 and A2 [BGPR20, Theorem 2.3] reveals that for any
g € T, (2°), there exists a unique uy € V,(Q|R?) such that uy|qc = g and

Halg, g) := // (9(z) — 9(v)* valz,y) dy dz = // (ug(z) —ug(y)) v(z —y)dy dz.  (3.9)

QeQe (QexQe)e
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Furthermore, u, satisfies the weak formulation

// (ug(z) — ug(y))(d(z) — ¢(y)) v(z — y) dy dz = 0, for all ¢ € VE(QRY). (3.10)

(Qc XQC)C

The interaction kernel yq(x,y) is given via the Poisson kernel Pq(-,-) of © by the formula

w@@w%=/fb@www—yﬂz T,y € Q.
Q

Furthermore, a precise formula for u, in € is given by the Poisson integral

%@%JMW@—/QMHMWMy reQ.

c

Now let v € T,,(Q2°) by definition of || - [|7, (qe) we have

[0]%, (@) = mf{lully, @y : u € Vo (QRY) with v =u

Qe }
QC} + Ha(v,v).

= inf { / w (z)de: u € V,(QRY) with v =u
Q
It is rather challenging to find or to estimate the quantity

inf {/ w(r)de: u €V, (QRY) with v = U|Qc}
Q

Let us remind that our goal here is to explicitly define a norm which is equivalent to || - ||, (o) and has
less visible connection to V,,(Q|R%). To this end, we bring into play the norm || - H*VV(Qle) defined as in
Lemma [3.:241

Proposition 3.37. Assume ) is open and bounded, such that Q¢ satisfies the volume density condition.
Assume v satisfies conditions A1 and A2 (in particular v is unimodal and has full support on R?). Let
vand || - |3, qray be the measure and the norm respectively given in Lemma W Then,

T,(92°) = {v : Q° = R meas. Ha(v,v) = // (v(z) — v(y))2 Ya(z,y)dy de < oo}
QeQe
and the norms || - |1, ey, || - ”;"V(QC) and || - HTT,,(Qc) are all equivalent. The norms are defined by
ac}
_ 2
o1 @ = [ @@zt [ (0@) = o) rale ) dy do.

Q(:Q(:

[0l @y = m{lul, qpe) : u € V(QURY) with v=u

Proof. The equivalence between || - |7, (qe) and || - H*T,,(QC) is an immediate consequence of Lemma
(). By (3.9) it follows that

HUH*T%(QC) = inf{||u||*‘}2u(Q|Rd) u € V,(QRY) with v = u|ge}

= inf { / w?(2)o(z)dz u e V,(QR?Y) withv=1u Q} + Ha(v,v)
Rd

> / ?(2)7(x) dz + Ha (v, ).

We have ||v||TTV(QC) < [loll7, (oe)- Hence the identity Id : (T,,(Q2°), || - |7, qe)) — (T (29, ] - ”TTV(Q(:)) is
continuous. The space (T,,(Q2°), || - |7, () is a Hilbert space since || ||, (oc) and |- H}%(Q) are equivalent.
Also, using Fatou’s lemma one can easily show that (7, (2¢), ||- HTTV(QC)) is a Hilbert space. As a consequence

of the open mapping theorem the norms || - H;L(ﬂc) and || - H}V(Qc) are equivalent.
O

76
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In the special case v(h) = (2 — )|h|~%~%, noting 6, = dist(z,9), the authors in [DKI8, Theorem 3]
claim that if v € V,(Q|R?) then

v(y))”
//(|x—y\+5 15, —dzrdy <oo. (3.11)

Conversely if (3.11]) holds true for v = g on Q¢ then there exists u, € V, (Q|R?) such that u,|ge—, and

2 ) // x_y|+51f(5y)))2 dy dz = // |x_y|+5:(%));d _dzdy (3.12)

(QexQe)e

with the constants independent of g and uy. Therefore, it readily follows that

c\ c _U(y))
T,(92°) = {v Q° — R meas. // |x—y\+6 10, dydx<oo}.
QeQe

Actually it is not stralghtforward to conclude on the equivalence of norms in this case. In view of (| -
we only have | - |7, () < C| - HT (q¢) With the norm

'2 _ _U(?J))
Ilier = f, o e *// e

Remark 3.38. Let us emphasize the nonlocal trace Tr does not need any special construction via the
functional analysis and density argument. Since €2¢ is still a d-dimensional manifold, it makes sense to
consider the restriction of a measurable function on {2¢. Moreover no regularity on (2 is required. Whereas
in the local situation, the trace of a Sobolev function u on the boundary 92 requires the smoothness of
both u and 0f).

Let us give an important result concerning the notion of nonlocal trace, thereby providing some analogies
with the classical notion traces.

Proposition 3.39. Let K C Q be measurable with |K| > 0. The following properties are true.
(i) The trace map Tr : V,(QR?) — L2(Q°, v) with u— Tr(u) = u |qe is linear and continuous.

(ii) The trace map Tr : V,(QIR?) — L2(Q°, 0) with u v Tr(u) = u

qc 18 linear and continuous.
(433) In both cases we have ker(Tr) = VE(QRY) and Tr(V, (QRY)) = T, (Q°).

Proof. This is a straightforward consequence of Theorem [3.35
O

Remark 3.40. Let us observe that the interplay between , V,, (QRY), V(QR?), T, (Q°) and L?(Q°, vk )
may be view as the nonlocal counterpart of that between H'(2), H}(Q), H'/2(99) and L?(99). Indeed,
it is well known that if the classical trace operator vy : H!(Q) — L?(0f2) exists then we have

o 0 : HY(Q) — L?(09) is linear and continuous.
e 20(H'(Q)) = HY2(00) and ker(v0) = H3 ().

In this regard it is fair to view V,(Q|R?), V(QR?), T,,(Q¢) and L?(Q¢, vk ) respectively as the nonlocal
replacement of H'(Q), H(Q), H/2(0Q) and L?(99).

Proposition 3.41. Assume Q is a Lipschitz bounded domain. Then T : HY?(9Q) — T,(Q°) with
Tu = TroFE o Extu is a linear operator bounded.

Here E : H'(Q) — H'(R?) is the Sobolev extension, i.e. Fulg = u and | Eull g (ray < Cllullgi) for
all w € HY(Q). And Ext : H'/2(0Q) — H'(Q) is the trace-extension operator, i.e. oo Extu = u and
| Ext ull g1/2(90) < Cllull i) for all u € H'Y2(09).
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Chapter 3. Nonlocal Sobolev-like Spaces

Proof. The proof is immediate. O

Proposition 3.42. Let C°(Q) = C2(RY)|qe be set of restrictions on Q° of C> functions on R? with
compact support. Then C2°(£2°) is dense in T, (02°).

Proof. For v € T,(Q°) we write v = u|ge with u € V,,(Q|R?). According to Theorem there exists
u, € C(RY) such that ||u, — ully, (orey = 0. Put, v, = up|oe we get

lon = vllz, (@0) < llun = ully, (@qray === 0.

O
Note the recent result on the nonlocal trace from [Vonl9)] is rather restrictive compared to our existing
results. Indeed therein the space LQ(QC M) appears to be the trace of V,(QR?) N L%(R% m) where
m(x) = Lo(z) + p(x)lae () and p(x) = [, v(z —y)dy for € Q°. The corresponding extension operator
defined from L2(Q¢, i) to V,,(QR9) ﬁ L?(R%,m) is merely the extension operator by zero outside Q. The
main defect of this approach is that the measure m is too singular across the boundary of €2. Another
point is that our trace space T, (2¢) turns out to be larger than L*(Q¢ ). In the sense that L2?(Q€, u)

is continuously embedded in T, (92¢). Indeed, for v € L%(2, ) its zero extension vy = vlge belongs to
V,(Q|R?) since we have

(v0(z) = v0l))” vl ~ ) dy dz =2 | oP(a)u(e) de,
(Qe xQe)e

So that v € T,,(2°) and the continuity is obtained as follows |[[v||7, () < [[vollv, (Qra) < V2|[vl| 20, p)-

3.4. Nonlocal Sobolev-like spaces

An important role in our study is played by function spaces. We assume that 2 an open subset of RY.
Let us introduce generalized Sobolev-Slobodeckij-like spaces with respect to a symmetric p-Lévy measure
v(h)dh (1 < p < o0) We will show some strong connections with the classical Sobolev spaces. Our
standing assumption is that v : R4\{0} — [0, co] satisfies

v(=h) =v(h) for all h € R? and / (1A |R|P)v(R)dh < oo (J1)

Ra

In case v is radial we adopt the convention by identifying v with its radial profile, i.e. v(h) = v(|h|), h € R?.
For several results v will be assumed to have full support. Let  C R? be open.
e We define the space WP (2) as

wWr(Q) = {u e LP(Q) : |u(x) — u(y)|/P(z —y) € LP(Q x Q)}

equipped with the norm defined as follows
[l iy = Nl + iy with fullp oy = [ futa) = ul)]” vio — )y do
Q0

Note that norm || - () 18 equivalent to norm defined by

[
u ||u|\’£p(g) + // lu(z) — u(y)|" v(z —y)dy dz for all 6 > 0.
QaN{|z—y|<o}
Indeed it suffice to observe that letting Cs = flh|>5 v(h)dh >0

u(e) ~ ) vla -~ ) dy do <2 [ Ju@)Pds [ vle - g)dy = Collulf o
Q0N {jz—y|>6} : frmuizd
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3.4. Nonlocal Sobolev-like spaces

e We also introduce the space W2 (Q2|R?) defined as follows
WP (QRY) = {u ‘R - R meas. : |u(z) —u(y)|r/P(z —y) € LP(Q x Rd)} .

The space WP (QR?) shall be equipped with the following norm
ullyyp ray = 1l to@) + [uliyp ey With  Julyyrqpe) = // |u(z) = u(y)|" v(z - y) dy da.
QR4

Likewise as above, the norm || - is equivalent to the norm defined by

p
lwz @iz

u ||u||]zp(m + // lu(z) — u(y)|p v(z—y)dy dz for all § > 0.

QR N{|z—y|<6}
Another possibility is to consider the norm
Iy ety = 112 gy + 1l e
e The space W5 o(QR9) is the space of functions that vanish on the complement of € i.e
WEG(QRY) = {u € WP(QR?) : u=0 ae. on R\ Q}.
We set
lullwe ,@re) = llullwg @ra)-

Remark 3.43. (i) Forp = 2 the spaces W2 (Q), WZ(Q|R?) and W} ,(Q|R?) become the spaces H, (), V, (Q|R?)
and VSH(Q|R?) of Section respectively.

(i7) It is a little exercise to show that the investigations from Section extend to the case p # 2.

(i3i) For Q = R? the spaces WZ(Q|R?), W7 o(QR?) and WE () all coincide. We shall denote by W2 (R)
or H,(R%) if p = 2.

iv) Obviously the norms | - [[wrrd)s || - lwemey and |||l e o agree on W2 o (QR?). Furthermore,
7 (QIR®) 5 (RY) WE(Q|R?) v,Q
W, o(QR?) is a closed subspace of W2(QR?).

(v) Note that h — |h|~4*P belongs to L'(R% 1 A |h|P) if and only if 0 < s < 1. In this case taking
v(h) = |h|~%P the space WP(2) turns out to be the fractional Sobolev space W*P(Q). The space
W2 (QRY) shall be denoted by W*?(Q R%).

Vi ong the lines or Section (3.3 one can analogously establish that u € , (1 + - or
1) Al he li f Section [3.3 1 | blish th LP(RY, (1 + |h|)~@=5P dh) f
any u € WP(Q|R?) provided that |Q > 0 and |R*\Q| > 0.

(vii) The integrability of the increments |u(z) — u(y)|Pv(z — y) over Q x R? encodes certain regularity of
the function u in 2 and across the boundary of 2. We concretely deal with the regularity inside €2 in
Section [5.2] under certain conditions. To picture the regularity across the boundary, for the instance
case v(h) = |h|~47*P with sp > 1, let us assume v is continuous and v = 0 on Q°. If u € WP(Q|R?)
then

e 22 [ fu@P [ o=yl dy =€ [ fuao)p dist(e. 00) 7 do.
i Q Qe Q

dist(z,002)—0
_—

For the case sp > 1, this implies that u(z) 0.
Here we highlight the reason why it is crucial to assume v to be of full support.
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Chapter 3. Nonlocal Sobolev-like Spaces

Proposition 3.44. Assume v has full support then |ulwyr qray = 0 if and only if u = c a.e on R? (¢ € R).
In particular, (WP(QR?), llullweray) is @ normed space. This conclusion may be false if v is not of full
support.

Proof. In the case |u[yp o) = 0, there exists N C Q with [N| = 0 and for all Q\ N we have
0= [ lu@) ~ u@Prie—g)dy = [ Jua) = ulo -+ PR dh
R4 Rd

Since v(h) > 0 a.e, for a € Q\ N we have u(a + h) = u(a) for almost all » € R?. That u is almost
everywhere constant on R?. If ullwz ) = 0, then |ul},, (aJray = 0, u is constant almost everywhere and

since u = 0 a.e on € it follows that v = 0 a.e on R?. This enables |- lwz(ore) to be a norm on WP(QRY).

Next assume that 2 is bounded and v has a compact support. Let S = R? \(Q Usupp v+ Q) and consider
the function u(z) = 1s(x). A routine verification shows that ||ully»(orey = 0 but u # 0. This means
that (WE(QIRY), || - [lwr(are)) cannot be a normed space. O
It is noteworthy to mention that the assumption is optimal in the sense of the following proposition.
Proposition 3.45. Assume that v : RY — [0, 00] is symmetric. The following assertions hold true.

(i) If v e LY(RY), then WP(Q) = LP(Q) and WP(QRY) N LP(R?) = LP(RY).

(i3) If v e LY(RY, 1A |h|P) and Q is bounded, then W2?(Q) and WE(QIR?) contain all bounded Lipschitz
functions.

(iii) Assume [4 |h[Pv(h)dh = oo for all 6 > 0 (in particular v ¢ LY(RY, 1 A |hP)), v is radial and 2 is
s
connected. Then the only smooth functions contained in WE(Q) are constants.

(i) If v € L"(RY 1 A |h|P) and v is radial then there exists two constant Cy,Cy > 0 such that for all
u e WHP(RY) we have Cillullwrr ey < llullwe@ey < Collullypgay-

Proof. If v € L'(R?) then (i) is obtained through the following estimate

//‘um)—uy)’ vz —y dydx<//’u —u(y)|[" v(z —y)dy dz

QR4
<o // (@) P o — ) dy da < 2° // (@) [P v(h)dz dh = 22|1v]| 1 gyl o e -
QRd QR4

For a bounded Lipschitz function u, there is a constant C' > 0 such that |u(z) —u(y)| < C(1A |z —y|) for
all z,y € R%. Hence it clearly follows that u € WP(2) and u € WP(QR?), i.e. (ii) is true.

Now assume f35 |h|Pv(h)dh = oo for all § > 0 and let u € C°(2). Assume u € WP(2), let K C Q be a
compact and let § > 0 such that K () = K + Bs(0) C . Using the fundamental theorem of calculus and
passing through polar coordinates yields

[0l = / fu(a) — uly) vz — y) dy da
(v-2) ,,

=/ y|<5/V“” R

_ /K . /S IVu() - wl do(w) /O PP ()
= IS“I(/K(&) /S Vu(z) - wl” do(w) dx)(/Bé [hfPv(h) dh).
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3.4. Nonlocal Sobolev-like spaces

However, this is possible only if Vu = 0 since f35 |h|Pv(h) dh = co. Hence u must be a constant function.

To prove (iv), observe that, taking K = R? in (3.13) and noting that the Lebesgue measure is invariant
by rotation we have

L |Sd_1|_l(/w /S V() - wl” do(w) dx)(/Bé L [Py (h) dh)

= p,d(/Bs (k7w (R) dh) /R Vu(@)? dz = G| Vull], -

With Kp g = fgu-1 |w-e|? dog1(w) (see Lemmal5.13). From this, the estimate C1 [|uly1.0®a) < lullwer @
follows. The reverse estimate is a direct consequence of the estimate (3.14) below. O

Let us now see some fundamental properties of the spaces under consideration.

Theorem 3.46. Assume that v satisfies the condition (J1])). The function spaces (WEF(QR?), |||-|||W5(Q‘Rd))
and (WE2(), || - lwz(q)) are separable Banach (Hilbert for p = 2) spaces and reflexive for 1 < p < oc.
In addition, if v has full support in RY, then the same is true for the space (W2(QIR?), || - W (ra)) -

Proof. It is not difficult to check that || - |lwp qray and ||-[l[y»(qre) are norms on WP(QRY) and WP (Q)
respectively. We know that || - [|yyz(qre) is @ norm on WP(QRY).

Now, let (u,), be a Cauchy sequence in (W2 (QR?), |||‘|||W5(Q|1Rd))~ It converges to some u in the topology

of LP(RY) and pointwise almost everywhere in R? up to a subsequence (u,, ). Fix k large enough, the
Fatou’s lemma implies

|unk - u|€v£(Q‘Rd) < hﬁg}f // Hunk - une](x) - ([unk - une](y)|p V(x - y) dy dz.
QR4

Since (un, )k is a Cauchy sequence, the right hand side is finite for any k and tends to 0 as k — oo. This

implies u € WP(Q|R?) and |uy, — “lgvg’(de) E2%, 0. Finally, u, — u in WP2(QR?). Furthermore, the

map Z : WP(QIR?) — LP(RY) x LP(Q x R?Y) with
Z(u) = (@), (u(z) — uw(y)v'/*(z - y))

is an isometry. From its Banach structure, the space (WZ(QIR?), |- [z qyra)), which can be identified
with 7 (Wf (Q|Rd)), is separable (and reflexive for 1 < p < 00) as a closed subspace of the separable (and

reflexive for 1 < p < co) space LP(R?) x LP(Q x R?). Analogously, one can show that (WEZ(R), || - w2 (q))
is a separable Banach space.

It remains to prove that (WZ(Q|R?), || - lwroray) is a separable Banach space. Here we assume that v

has full support on R?. Without loss of generality we assume v(h) > 0 for every h € R%. Let (uy,), be a
Cauchy sequence in (W2 (QR9),||- lwr(@ray). Then there exist a subsequence (up,, ) of (uy)n, a function
u in LP(§2), a function U € LP(Q x RY), and null sets N C R? and R C 2 x R such that

- (un,, )k converges to u in LP(Q),

- (un, )k converges to u pointwise on Q\ N,

- (U, )k converges to U in LP(Q x R,

- (Upn,)r converges to U pointwise on (Q x RY)\ R,
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Chapter 3. Nonlocal Sobolev-like Spaces

where Uy, (2, ) = (tn(x) —un(y))v/?(x—y). For(x,y) € (Ax R\ R’ with z # y where R’ = RU(N x ),

k—o0

U (4) = U (2) = Uy (2,9) /0P (@ — y) == u(z) = Ulz,y) /v (z —y)

Finally, U(z,y) = (u(z) — u(y))v'/?(z —y) € LP(Q x R?) so that u € WP(QRY). We easily conclude
lun — ullwe ray 2% 0 which proves completeness.
O

Actually the spaces Wf’Q(Q|Rd),WVp(Q|Rd) and WﬁQ(Q\Rd) (just like the Sobolev space W1P(Q) and
I/VO1 P(2)) are refinement of LP(Q). Next we highlight some strong connections with the classical Sobolev
spaces W1P(2) and W, *(€)) (1 < p < o). To start, let us point out some useful estimates. First of all
observe that for h € R? we have ||7,u— ull e ray < 2|l rre). On the other hand since smooth functions

of compact support are dense in WLP(]Rd), using the fundamental theorem of calculus along with Jensen’s
inequality we find that

/Rd lu(z 4+ h) — u(x)|P dx—/Rd

Therefore, the following estimate holds true for all for 1 < p < 0o

1
P
/ Vau(z +th) - h| dz < [h]P|Vul| o gay-
0

/ [u(z + h) —u(@)[" dz < 2P(1 A [AP)|ullyregey, for every wu e WhP(R?), and h € RY.  (3.14)
Ra

Next, since by Theorem the BV-norm of an element in BV (R?) can be approximated by the W11-
norms of elements in W1HT(R?), we easily find the following analogous estimate

/ lu(z +h) —u(@)| dz < 2(1 A [h])|ul gy (ray, for every w € BV (R?) and h € R?. (3.15)
RA

Lemma 3.47. Let v € L*(R%, 1 A |h[P) be a nonnegative function with 1 < p < co. Let Q be a WP-
extension (in particular a Lipschitz domain) open subset of R, Then there is a constant C' = C(£,p,d)
depending only Q p and d such that for all u € WHP(£2)

J] 1@ = wt)lvta = p)duds < Clulfy.y 911
QQ

Proof. Since (2 is an extension domain, let @ be an W1 (Q)-extension of u on RY. First of all recall (3.14])

that ||7pw — ﬁ||ip(Rd) <2P(1A |h|p)|lﬂ||%17p(Rd) for all h € RY. Hence using Fubini’s theorem yields

// lu(z) — u(y)|Pv(z — y)dydz < / [a(z + h) —a(x)|Pv(h)dhdz

RIR4

= [voan [ e+ 1) w0z < e |20 A B
R4

R4 R4

< Cllullwrr@) IVl e, 14 [0 P -

For the case p = 1 the above result still holds true with W11(Q) replaced by the larger space BV (Q).

Lemma 3.48. If v € L' (R%, 1 A |h|) and Q is a BV -extension open subset of R? there exists a constant
C =C(92,d) >0 such that for all u € BV (Q),

/ () — ()l (& — y)dydz < Cllull vy ¥l @ mmp.
QO
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3.4. Nonlocal Sobolev-like spaces

Proof. Consider u € BV(R?) to be the extension on R? of a functionu € BV (Q), i.e. [[@lpy g <
Cllull pv () with constant C' > 0 independent of u. We know from Theorem that there is (uyn)n a

sequence of functions of W11 (R?) converging to @ in L'(R?) and such that [ Vnll ey = [Tl gy (gay-
This implies [[unllyy1.1 e 1o, @]l gy (re)- This together with Lemma and Fatou’s lemma, yield

[ 18@) = wwlvte ~ y)ags <[] () - aty)lvie - payda
QO

R4 R4

n—00
Re R4

< lim inf / un () = un(y)|v(z = y)dyde < 2lminf [lu, [y @s [Vl 22 @110

= 2||ﬂ||BV(Rd)||V||L1(Rd,1A|h\) < CHUHBV(Q)||V||L1(Rd,1/\\h|)-

Willingly, one could proceed as in the Lemma by means of the inequality (3.15)).
O

It is noteworthy to emphasize that Lemma (respectively Lemma ) does not hold true if 2 is not
an extension domain, see the Counterexample [3.53] As a result we have the following.

Theorem 3.49. If Q is an WP-extension (resp. BV -extension) domain, then the following embedding
18 continuous

WhP(Q) — WP(Q) (resp. forp=1 BV(Q) — WL(Q)).

The above embeddings fail if Q is not an extension domain (see the counterexample .

Proof. Letu € W'?(R?) be an extension of a function u € W?(Q) with ||@|yy1.0 ey < Cllullwirq) fora
constant C' depending only on € and d. Within the estimate we easily get the continuous embedding
WLP(Q) < WP(Q). Analogously using Lemma one can also establish that BV (Q) — W(Q). If Q
is not an extension domain the counterexample shows that the results do not always hold. O

Let us collect some trivial embeddings also involving the classical Sobolev spaces. Note the norm
Il (ray is not excluded in the following.

e It springs from that the following continuous embeddings hold true:
WhP(RY) — WE(R?) — WP(QIR).
e We obviously have the following continuous embeddings
W2(QIRY) — WP(Q) — LP(Q).

o Let W[ (Q2) be the closure of C2°(Q) with respect to || - [lyz(q)). Note that- the zero extension to R? of

any function in Wy (Q) belongs to W'»(R%). Hence, using ([3.14) we also have the following continuous
embeddings:

Wy () = WEG(QRY) — WP (Q) — LP(Q) and W2, (QRY) — W, (RY).
The embeddings W) o (QIR?) < W[ () and W) o(QRY) — W, (R?) follow from the fact that for all
u € WP(QRY)
JJ 1@ = et~y dy do = [ 1ue) ~ at) et - ) dy do 2 [ fu@)Prie - ) dy de.
R4IRd QO QQc
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It is worth noticing that not every function u € H, ¢(f2) has its zero extension in H,(R?). Indeed for this
to hold, one would need that

[ @reas [ vt - pay < o.

This is not always true because the measure v might be very singular at the origin. This purely nonlocal
effect contrasts with the local function space WO1 P(2) whose elements can be isometrically extended by
zero on RY as functions of W?(R9). This also shows that for some appropriate domain § and for some
appropriate measure v e.g. v(h) = |h|79" the spaces W, o(2) and W?,(QRY) are strictly different
although they both possess C2°(€2) as dense subspace. 7

Proposition 3.50. Let Q c R? be open.

(i) Let v1 and v satisfying . Assume that there exist two constants r > 0 and k > 0 such that if
|h| < r we have
I/l(h) S ]{JI/Q(h)

Then the following embeddings are continuous

WP (Q) = WP(Q) and WE(Q|R?) — WP (QR?).

(i) If Q1 C Qo then we have the continuous embeddings

WP(Qy) = WP(Q1) and WP(Qy|RY) — WP(Q,|RY).

(1ii) For a ball B C Q we have the continuous embeddings
WPQIRY) — LP(RY, vp) and WP(QIR?) — LP(R?, ip),

where for x € R? we let

vp(x) = essinfycpv(z —y) and vp(zr)= / 1 Av(z —y)dy.
B

Proof. Note that (ii) is obvious and for the proof of (iii) we use analogous methods as in Section

Putting Cs = f|h|>6 v1(h)dh, then for u € WP (Q) we get

[ 1@ —wwrne -y <2l = [ @) - )i -y dyds
Q0 QON{|z—y|<}
<Pl k[ ue) — u)vete - ) dy s
QQN{|z—y||<d}

P p
< 2(k+1)Csllullyy o

From this it follows that W2 () < W2 () and likewise WZ (Q| R?) — W2 (Q|R?).

In light of Proposition [3.50] it is legitimate to formulate the following definition.

Definition 3.51. Given two functions v; and vs satisfying we shall say that 1o is regular than 14
there exist two constants 7o, £ > 0 such that for all h € R? with || < 7o one has v, (k) < kva(h).

This definition is not fortuitous. In some sense it means that vy is likely to be more singular than 14
near the vicinity of the original. Should the singularity of v be higher, more regularity of a function «
is required for the integrability of the increment (z,y) — (u(z) — u(y))yé/p(x —1y). A simple example is
given as follows.
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Example 3.52. For 0 < s < s/ < 1 we have W 2(Q) < W*?(Q) and W*?(Q|RY) — W?(Q|R?).
Indeed, this follows from (i) since for every |h| < 1 we have |h|~?~*F < |h|~4~*'? and hence it suffices to
take v1(h) = |h|=%%P, vy(h) = |h|~9=5"P. Moreover we have the continuous embedding W*?(Q] RY) —
LP(R%, (1 + |h|)=9=*P dh). Note that the norm of W*P(2) can be rescaled so that in the limiting case
s =1, WP(Q) is precisely W1P(Q) whose functions are more regular.

Counterexample 3.53. For a simple instance, in one dimension, consider 2 = (—1,0) U (0,1) and put
u(r) = =1 if ¥ € (=1,0) and u(z) = 1 if € (0,1). Clearly, we have u € WP(Q2) for all 1 < p < oo
with Vu = 0. However, u does not belong to any of the fractional Sobolev space WP () provided that
s > 1/p. Recall that here we have v(h) = |h|~17*P. Indeed, since s > 1/p

Ju(@) = uy)|” // de dy . -
dz dy = 2PF = opt! (1 P dz = oo.
4) o -yt Y 1w =yl o O e

Moreover, Q2 = (—1,0)U(0,1) is not a W' -extension domain. Indeed, if 7 € W?(R?) is an extension of
u defined as above then in particular we would have w € W1P(—1,1) and @ = u on Q = (—1,0) U (0, 1).
The distributional derivative of @ on (—1,1) is Vu = 2§y (where §y stands for the Dirac mass at the
origin). Hence V7 is not a function which contradicts the fact that w € W1?(R).

Next we prove that this example persists in the higher dimensional space d > 2. Let B (0) = B;(0) N
{(2',24) € RY: 24 > 0} and By (0) = B1(0) N {(«/,z4) € R : x4 < 0}. Put Q = B,(0) \ {(2/,2q) €
R%: 24 = 0} = B;(0) U B (0) and define the function u(z) = ]lB;r(O)(x) — 13;(0)( x), ie. u(z) =1
if + € B (0) and u(z) = —1 if z € By (0). Obviously we have u € WHP(Q) for all 1 < p < oo with
Vu = 0. Further following the discussion above, one can check that u does not have any extension to the
whole space. Hence () cannot be an extension domain. On the other hand u does not belong to any of
the fractional Sobolev space W*P(Q) provided that s > 1/p. Recall that here we have v(h) = |h|~¢=*P.
Indeed, assume s > 1/p. Since integrals disregard sets of zero measure, we have

_ P dx d
/ ) Z WP g gy = / / i = 2V / da / [h|=9=5 dh = oc.
o |z -yl B (0) /By (0) |z -yl B (0)

Bi(z)n{ha>zq}
We justify this conclusion as follows. It is easy to show that D’ € D where
D ={(z,h) e R xR : z € B (0), he B(x)N{hg>zq}}
D' = Bf,(0) x {(I',ha) € R : [W| <1/4, x4 < ha <1/4}.

Also note that {(2/,z4) € R : |2/| < 1/4, 0 < x4 < 1/4} C B1/2(0). Using the change of variables
h' = hgz' so that dh/ = hjfl dz’ then since s > 1/p we get the following

_ p
/ W dz dy = 277! // |n|~4=5P dx dh > 2P+ // |h|~4=*P dx dh
T —y|eTs D /
QQ

1/4
_2p+1 / daz/ / |h/|2_~_h3)7(d+5p)/2 dh/

1/2( nl<1/4

1/4
p+1 / d.’E/ h_l Spdh /(1+ ‘ZI|2)_(d+$p)/2 dZ/

1/2( |h'|<1/4

=C, / 2y —47*P)dx  with C, =2 /(1+ |2/[2)~(dTsp)/2 4
1/2(0) |z"|<1/4
1/4
> C, / 47°P) day / dz’ = .
|z’|<1/4
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Chapter 3. Nonlocal Sobolev-like Spaces

3.5. Fractional Sobolev spaces

Let us first observe that for s € R, v : h + |h|797*P satisfies (Ji]), i.e. belongs to LP(RY, (1 A |R|P)) if
and only if s € (0,1). In this case the spaces W2 (2), W} (), WPQ(QURd) and WP (Q|R?) are respectively
denoted by W*P(Q), WP (Q), WP(Q) and W*P(QR?). The spaces W*?(Q) and WP () are recog-
nized as the usual fractional Sobolev spaces. They are often called Aronszajn, Gagliardo or Slobodeckij
spaces|Arobbl, [Gagb61], [SIo58] after the names of those who introduced them simultaneously. Those spaces
are of particular interest in their own right and have been extensively studied throughout the literature in
recent years. Rigorous treatises on fractional Sobolev spaces can be found in [Grilll Maz13]. See [NPV12]
for a treatment of Sobolev spaces of fractional order. The terminologies fractional is on one hand owed to
the fact that for on a smooth domain the space W*P(2) can be realized as the s-interpolation of LP(2)
and W1P(Q). On the other hand the spaces Wl_%’p(ﬁQ) (with O viewed as an open manifold of R%™1)
is the trace space of WP(Q2). Precisely there exists a bounded operator T : W1P(Q) — Wlfi’p(ﬁQ)
such that if u € C*°(Q) N WHP(Q) we have Tu = u |gq, i.e. Tu = u on 9N ). The existence of such an
operator was proven by Emilio Gagliardo around 1957, a modern treatment of this result can be found in
[Pon6]. Next we relate the fractional Sobolev spaces to the interpolation of LP and WP,

Theorem 3.54. Let s € (0,1), 1 < p < oo. There is a constant 0(s,d,p) > 0 such that for all u €
W#P(R?) the following log-convex inequality (interpolation estimate) holds

lullwss@ay < 0(s,d, )l Gy ullfrn gay - (3.16)

With 1 < 0(s,d, p) < C(s(1 — s))~*/P where the constant C' does not depend on s.
If Q is a WYP-extension domain there is C > 0 also depending on Q such that

lullwengay < C(d, p. Q) (s(1 — )7 lull ey lullivr oy for allue WP(Q).

Proof. Assume v € WP (R?) and let r > 0. We have

/ / ute) —ule £ W ) g, <2p/|u )P dz /yh| —d=sp qp, =

TG
R* |h|2r |h|>r

Furthermore, using Fubini’s theorem we get
) —u(z+h)]P _ 1 .
/ / BT+ dhdz = / //O |Vu(z + th) - hdt|"|h|=4=*P dz dh
RY |h|<r |h|<r RE

/|VU | dz / |h| —d—(1— S)pdh |Sd 1| ( )HVUHLP(R")

|h|<r

1/p Hvu”Lp(Rd)

||“‘|Lp(md

S

Adding the two inequalities for = (1 ) and letting 67 (s, d, p) = 2°P (1—1—%) yields

1—s
[l 1Vl

Hu||]£p(Rd) + |u|W<p(]Rd) < psl 5(1 9)5

—s 1-s s
27007 (s, d, p) |l ) (1ell5, oy + [Vl o))
—S S p
<[00, o) [ull b Il e |

Note that e=/¢ < t* <1 for t € (0,1) hence 0(s,d,p) < C(s(1 —5))~/P. The claim is proved. O

rP(1=

sp
S p(1— S) ||VUHLP(R4)

=87

3This value is obtained after solving for r, 2P|S%~ 1\ [lu]|®

Lr(R9)
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3.5. Fractional Sobolev spaces

We observe that is sharp in the sense that tending s — 1(resp. s — 0T) leads to the obvious
inequality Hu”i{/l,p(Rd) < C||UH€V1»17(R4) (resp. |[lull?, Ray < C’||u\|’£p(Rd)). We discuss this widely in
Section In addition, the log-convex inequality somehow encodes an interpolation between LP
and WP whose the resulting interpolation space is W*P. Truly speaking, the fractional Sobolev space
results from the so called real interpolation. A concrete elaboration of this assertion can be found in

[Tri95, BL12).

Next we derive the fractional counterpart of the famous Gagliardo—Nirenberg—Sobolev embedding theorem.
The spectacularly amazing elementary proof presented here is apparently due to Haim Brezis [Ponl0,
Proposition 15.5] from a personal communication. It is important to highlight that earlier proofs of this
theorem exist in the literature as well. For instance another lengthy proof also using basic analysis tools
is well incorporated in [NPV12, Theorem 6.5]. See also [CT04] where the inequality is established with
the best constant for p = 2.

Theorem 3.55 (Gagliardo—Nirenberg—Sobolev). Let s € (0,1) and 1 <p < ¢. For all u € LP:(R?),

DL /D 1/p—s/d |u(x) 7u(y)|p 1/p
ey < 2521 B 0) o0 ([ aay) (3.17)
R4 R4
1 1 s . . s , .
Here — = — — p > 0 is the so-called fractional critical exponent or fractional Sobolev conjugate. In
Ps p

particular, the embedding W*P(RY) < LP:(R?) is continuous.

Proof. First we fix z € R? and r > 0. Integrating the inequality |u(z)| < |u(y)| + |u(z) — u(y)| over
y € B,(z) and using Jensen’s inequality gives

. 1/p% 1/p
<(f wrra) " (£ ju - u)r )
B, (x) B, (x)
L\ Ju(z) — u)lP  \Vp
- )l g (e f O,
(Jirm Wl ay) T (e )

e Y Ju(z) = u()l? | \Ur
— »=4/71| B, (0)| 1/175( / u(y)[Ps ) +7°[B1(0)] Up( / Wdy)
B.,.(z) B (z)
_ * _ * * /75 s u ? Y/
<r d/pS|B1(O)| l/ps(/|u(y)|pS dy) 4t |B | 1/17 /|d+s;)ady) .
Rd

Next solving the following equation for r,

- . 1/p} s ulx )|P 1/p
0)] 1“"S(/IU@) " dy =1*|B1(0)|7H/* /| d+sp| dy)
Rd

rla) =7 = B ([ uty)

R4

r—4/P3|B

gives

v dy)p/dpi( |u(z) — uy)” dy)—l/d‘

|z — y|dtep

Substituting this specific (x) in the preceding estimate leads to

@) < 251 B ) ([ luto)? ay)
Rd

— 9p:

P dy>1*”/p3( |u(a) — u(y)]” dy)_

| — y|dtep

BaO)] 7% ([ futy
Rd

R
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Chapter 3. Nonlocal Sobolev-like Spaces

Integrating both sides with respect to the variable x gives

—p/ps u(x p
By (0)|72/v% ( / P ay) (] '(wsi'dydx).

R4 R4

/|u )|Ps da < 2P<

Cancellation on both sides provides the desired estimate.
O

It is interesting to know what could be the suitable definition of fractional Sobolev space W*P for s > 1.
It turns out that the definition of | - [yys.r(q) cannot be extended to the situation where s > 1. This is
justified by the following result.

Proposition 3.56. Let Q C R be open and let u € C(Q) with uw # 0. Then for 1 <p < oo

[ulpsry =00 foralls>1and  lim |u|ysrq) = oo.
s—1—

Proof. Let K C Q be a compact and let § > 0 such that K(§) = K + Bs(0) C Q. Since u € C%(Q), by
mimicking we find that

5
ulTysn ) >/ dﬂc/ |Vu(z) - w|? da(w)/ r=p=1qp,
k() Jsi 0

The claim follows since for all s > 1, f05 r(1=9)P=1dr = 5o and we also have

0 1—s
/‘A1maa_5()psz%m_
0

(1—s)p
O
On a smooth domain Q the spaces W#P(Q) with 0 < s < 1 can be realized as the interpolation space
between LP(2) and W1P(Q). Therefore it is interesting to know how close is the space || - [|ws»(q) to
|- ey as s = 0 and to || - [|wrr(o) as s — 1. Unpleasantly, for the asymptotic — 1~ we know from

Proposition (3.56| that lim |u|ys.»(q) = oo. This divergence was initially observed by Haim Brezis, Jean
s—1—

Bourgain and Pierre Mironescu in 2001 [BBMO1]. As one can foresee from the above computation, to
correct this anomaly, putting the factor (1 —s) in front of the term |ul},. , () annihilates the singularity.

In fact, they prove that for all u € W1P(€)

Hm (1= s)[ulyyenq) = KapllVullloq) = Kapluljm - (3.18)

s—1—

for some appropriate universal constant K, , depending only on d and p > 1. We shall see this in a more

general context later on. The case s — 0 was solved in [MS02] claiming that for allu € |J W#P(R?),
0<s<1

i fulfy gy = 8l

Seemingly, Proposition suggests that the space W*P(Q) for s > 1 must be defined in a different way.
Assuming for now that the relation (3.18) is true the following definition plainly makes sense.

Definition 3.57. Let Q@ ¢ R? be an open set, 1 < p < oo and s > 0. We put s = m + ¢ if s is not

an integer, where m € N and o € (0,1). The space W*P() assumes the equivalence classes of functions

u € W™P(Q) whose distributional derivatives D%u of order |a| = m belong to WP (2), namely
WP(Q) := {u e W™P(Q) : D% € W7P(Q) for any a s.t. |a| = m}
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3.5. Fractional Sobolev spaces

The space W#P () is a Banach space with respect to the norm defined by

1

lullwescey = (lallymsioy + 30 1Dl ) -

lo|=m

Purposely we emphasize that W>P(Q) = {u € Lr(Q): hr(m)_‘u(y)' € LP(Q x Q)} and
T —y|r

U\x
IIuIWW(Q)—/ u(z) P d:c—l—//' —y\"*"f’ " dudy.

Furthermore, W~%?(Q2) is the topological dual of Wos’p Q) = CC(Q)W " Ghere 1/p) =1—1/p. The

space W#>°(Q) boils down to the usual Holder space C™7(2).
Clearly, if s = m is an integer, the space W*P(Q) coincides with the Sobolev space W™P({2).

Remark 3.58. The fractional Sobolev spaces W*P(Q) fill the gaps between the classical Sobolev of
integers orders. Actually there are two main different schools when it comes to define the notions of
fractional Sobolev spaces. The spaces W*P(Q), s € R belong to the schools of Besov-Gagliardo-Nirenberg.
There are also the spaces H*P(§2) (which we define below) belonging to the school of Triebel-Linzorkin.
The latter spaces can be realized as the complex interpolation between LP(R?) and W'P(R?) whereas
W*P(Q) is the real interpolation between LP(R?) and W1»(R?).

Definition 3.59 (Via Fourier transform). Let €2 C R? be open, 1 < p < oo and s € R. According to the
definition due to Triebel-Linzorking the fractional Sobolev space denoted H*P(R%) is the completion of
the space

P (RY) = {u € SR™) 1 (€)D" ||pore) < o0},

equipped with the norm Y
[wll grs.pray = || (14 [¢1*)°al] | Lo may-

Furthermore, we have the space H>?(Q)) := {u lo: u € HSvP(Rd)}, equipped with the norm
ltll e @y = E {0l gty £ 0= v |0 € HOPRY)}.

Let us now illuminate some correlations between the spaces W*?(R?) and H*?(R?).

e By using the Fourier transform (see the presentation in Chapter [2)) one gets that for all s € R,
WS,Q(Rd) — HS’2(Rd).

+ According to Mikhlin’s Theorem [Zie12, Theorem 2.6.1] we have W™?(R%) = H™P?(R?) for all
m € Z and 1 < p < oo. Moreover the equality holds with equivalent norms. This fails for p =1 or
p = 00.

« Furthermore, according to [Grili], for all s € R? we have

WsP(R?) c H*P(R?) for1<p<2 and H*P(RY) C WHP(R?) for 2 <p < oo.

o In addition Lions and Peetre (1964) |[Grill] have proved that if s; < so < s3 then

WesP(RY) ¢ Ho2P(RY) C WP (RY).

o If Q is a Lipschitz domain then combining Proposition [3.:50| and Theorem [3.49]it is easy to establish
the following continuous embedding for all 1 < 51 < s

WH2P(Q) — W3P(Q).
Similarly, for all 1 < s; < sg, one can show that H*>P(Q) — H*P(Q).
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Chapter 3. Nonlocal Sobolev-like Spaces

Let us now quote some interesting results in connection to the spaces W*P ().
Theorem 3.60 (JHT08, [Grill]). Let Q C R? be open.
(i) C(RY) is dense in W*P(R?) for all s € R.

(ii) If Q has a continuous boundary, then the space WiP(Q) = {u € W*P(R?) : u = 0 a.e on Q°}
contains C°(2) as a dense subspace.

(i11) Assume 2 has a continuous boundary, then C2°(Q) is dense in W*P () for all s > 0, where we recall
that C2°(Q2) is the space of all functions which are restriction of C°° functions with compact support
in R to Q.

(iv) Assume Q2 has a Lipschitz boundary, then C°(Q) is dense in W*P(Q) for 0 < s < 1/p, i.e.,
WP (Q) = WsP(Q) for s < 1/p.

(v) Let Q be a bounded open subset of R with a Lipschitz boundary, then WP (Q) = WP(Q) except if
s — 1/p is an integer. Furthermore, if 0 < s < 1/p , WP (Q) = WP(Q) = WP(Q).

The proofs of (i) — (iv) are included in Section [3.6{in a more general context.

Remark 3.61. To some authors e.g [FKVI15, [DK13], the space W"P(Q) is the closure in W*P(R%) of

s,p md
C§°(9) in this case we will denote simply by CSO(Q)W ® ). Whereas others e.g [NPV12, [HT08] define
WyP(R2) to be closure of C§°(2) in W*P(Q2). One should be careful since (see (v)) in general both
definitions do not coincide especially on non-smooth domains.

3.6. Approximations by smooth functions

In practice it is rather laborious and demanding to work in a function space not containing smooth
functions. In this section we show from different perspectives that functions from the nonlocal spaces of
interest for us can be approximated by smooth functions. This part is stimulated by [EES7]. Throughout

this section, the function v : R4 \{0} — [0, 0] is assumed to satisfy the condition (J1)) see (page |57). In
addition we fix a function ¢ € C°(R%) supported in B;(0) such that ¢ > 0 and [5, @ =1 we denote the

corresponding mollifier by ¢s(z) = 5—111(;5 (%) It is not difficult to establish that for each § > 0,
ps € C(RY), ¢5>0, suppos C Bs(0) and ¢s(x) do = 1.
Rd

A standard example is given by taking ¢(x) = cexp—ﬁ if |z| < 1 and ¢(z) = 0 if |x| > 1 where the
constant ¢ > 0 is chosen such that [, ¢(x) dz = 1.

We start by recalling some basic remarks and some useful Lemmata.
Remark 3.62. Note that if we notationally set U(z,y) = (u(z) — u(y))v"/?(x — y) then
o u e WP(Q) if and only if (u,U) € LP(2) x LP(2 x )

o u € WP(QIRY) if and only if (u, U) € LP(Q) x LP(Q x RY).
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3.6. Approximations by smooth functions

Employing Jensen’s inequality we get

s 1= ullyy oy = [ 11650 = (@) 65 u = ul(w) (o~ ) dy s

[919]
://’/gb(;(z){U(x—z,y—z)—U(%y)}dz‘pdydz

QQ R4

://’/q&(z){U(x—dz,y—éz)—U(%y)}dz‘pdydm

QQ  Rd

< /¢(z) dz// |U(x — 02,y — 62) — U(z,y)|" dydz
B QQ

(3.19)

Lemma 3.63. Assume Q C R? is an open set. Let ' C Q be open and such that dist(Q',09Q) > 0 (if
Q#RY). Forue WP(Q) then ¢s xu € C(Q) NWP(Q') for all 0 < § < dist(Q, Q) and

s % u — ullwr iy 2= 0.

The same is true with WP (V) replaced with W?(Q'|RY). Moreover if @ = R? then one can take Q' = R?.

Proof. We will only prove the first statement and the others statements will follow analogously. Fix
0 < 0 < dist(2,09Q). Note that for z,y € Q" and z € By, then  — dz,y — dz € Q' + Bs C Q. Hence, by
mimicking the estimate (3.19) and using a trivial change of variables we find that

\¢5*U|€V5(Q,) §/¢(z)dz/ U(z — b2,y — 62)|" dy da
e

By
< /¢(z) dz // Uz, y)|" dy d < [ultyp () < o0
B Q'4+Bs Q'+ Bs

Thus, ¢5 * u € WP(Q'). By continuity of the shift in LP(R? x R?),
// ‘U(x —dz,y—0z) — U(x,y)’pdydx 920, .
Qo
Further, we have
o) [[ o= b2y =62 - UG [ dyae < 260) [ [0 dyde < 20 ulfyy g, € LR
Qo Q0

By dominated convergence we conclude that |¢s * u — ul),» @) 229, and according to Theorem we

know that [|¢s * u — ul| s (o) 229 0 and so we get 165 % u — ullwe o vy 920, g, O

The next lemma plays a determinant role in approximation functions.
Lemma 3.64. Assume Q C R? is open. The following assertions are true

(1) Let @ C Q be open and such that dist($2',0Q) > 0. For u € WE(Q) with suppu C € the zero
extension U of u outside 2 belongs to W,f’(]Rd), Moreover, there is C' > 0 independent of u with

Il we ey < Cllullwe )
(i1) Let @ € C®°(R?) then for all u € LP(Q) and all z,y € R, we have the estimate
o(@)u(a) — o) < 2ol - (Laup o @u@) = u@F + u(@) (LA e = y")).  (3:20)
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Chapter 3. Nonlocal Sobolev-like Spaces

(i4i) Let p € CX(RY). If u € WP(Q) then ou € WP(Q) and for some constant independent of u,
leullwz ) < Cllullwe@)-
The same holds with WP() replaced by WP (QR?).
(iv) Let ¢ € CX(Q). If u € WE2(Q) then pu € WE(RY) and for some constant independent of u
||90U||W5(Rd) < C||U||W5(Q)~

The same holds true with WP () replaced by WP(QR?).

Proof. Observe that (iv) follows by combining (7) and (#i7). Next, let us prove (7). Set § = dist(Q’, 9Q) >

0 and C5 = f|h\>6 v(h)dh > 0. Tt follows that

JJ 1)~ atyprta - dyds - // ) ~ u()Priz = ) dydo+2 | @) iz [ L

R4 R4
< Julwr gy +2 / ()P de / V(e — y)dy
o jo—y|26

= |u|€vg(g) + 2C5Hu||1£P(Q)'
Whence, HHH];Vf(Rd) < (2C5 + 1)Hu||€v5(m. Now we prove (ii). Observe that for all z,y € R? we have

[p(@)u(z) - pyu)] < le®)lluE) - uly)] + [u@)] @) - ey)]
= (1) [Loupp o (1) () = u(y)] + lu(@)|| / Vipla + 1ty —2)) - (y - @)
< ] e ey Lo o (9)]14(2) = ()] + [l o [u(@)| (1 A 2 = ).

Thus implies (i¢) follows. On the other hand, (ii7) follows by integrating both sides of the estimate (3.20)),
over R? x R?, with respect to the measure v(z —y)dydz. Indeed, letting 6 = dist(supp ¢, 2°) > 0 we
have

// lo(@)ule) — p(y)u(y) Pz — y) dzdy
]R(l Rd

<2[lplfr.e (/ Ju(@) = u(y)[Pv(z — y) dz dy + / ()P dﬂﬁ/(l AR AR) (5 1)
Q

QQ R4

+2 / lu(2)|P d / v(h) dh.

supp ¢ |h|>6

Lemma 3.65. Assume that Q C R? is open. Let x € Cgo(Rd) such that 0 < x < 1 and x(z) =1 for
|z| <1 and x(z) =0 for |z| > 2. If u e W2(Q) then x(-/j)u € WP(Q) and
j—o0

Ix(/3)u = ullwg @) —— 0.

The same holds with WP(Y) replaced by WP(Q|RY).
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3.6. Approximations by smooth functions

Proof. Pointwise we have x(z/j) I, 1. So that for u € we (), x(z/j)u(z) Jzee, u(z). We know
that x(-/j)u € WP(Q2). On the other hand, |x(-/j)u| < |u| then [x(-/j)u — u|rr(o) 272 0 and using the
estimate (3.20), for all z,y € R? and j > 1 we find that

Ix(@/7)u(x) = x(y/7)u)Pr(z —y) <fulz) —uly)["v(z -y)
+ 2[Ix [y (@) P(LA |2 = yP)u(a —y) € L1 (2 x Q).

The dominated convergence theorem implies that [x(-/j)u — ulwrq) I2%% 0 and thus, it follows that

Ix(-/3)u — ullwe ) I (). The case u € Wr(QIRY) follows likewise. O

Let us immediately start with a simple case.

Theorem 3.66. Let 1 < p < oo and v : R*\{0} — [0,00] satisfying , Then C°(RY) is dense in
WP(RY), i.e. for a function u € WP(RY), there exist functions u,, € C°(R?) such that

n— 00

Proof. Let x € C°(R?) such that 0 < x < 1 and x(z) = 1 for |z| < 1 and x(x) = 0 for |z| > 2. Letting
u; = x(-/j)u, by Lemma we can find j > 1 such that |[u; — ullyprey < €/2 with € > 0. Note

that ¢s * @; € C°(RY). Setting Uj(z,y) = (@;(x) — u;(y))v'/?(z — y) € LP(R? x RY). By mimicking the
estimate (3.19) for Q = R? we have

|5 *uj—uj|€V5(Rd)§/¢(z)dz/ Uj(z — 62,y — §2) — Uj(z,y)|" dy dz.
B,

R4 R4

By the continuity of the shift in LP(R? x R?)

// ‘Uj(x —dz,y —0z) — Uj(x,y)’pdydx 920, .

R? R¢

Further, we have

o) [ [oa=s5y-69-Us(ew| dyde < 20(2) [[ |Us(a)” dyde = 26 ully oy € LR,

R? R? R? R?

6—0

By dominated convergence we conclude that |¢s * 1, —— 0 and according to Theorem

U |§V5(Rd)
we know that |[¢s * u; — ;| o ray 220,70, Accordingly we can find § > 0 sufficiently small such
that |¢s * w; — u;llyerey < €/2. Finally we get ¢s * u; € C2°(R?) and it is not difficult to show that
¢5 *W; € WP(R?) and we have

1fs * U5 — ullwe ey < [ — ullwy@ay + 65 %05 — U llwe ey <e

We now deal with what can be seen as the Meyers-Serrin density type result for nonlocal spaces.

Theorem 3.67. Let 1 < p < oo and v : R*\{0} — [0, oc] satisfying (J1). Then C=(Q)NWE(Q) is dense
in € WP(Q).

Proof. We shall only assume 2 # R? because the case Q = R? is greatly covered by Theorem We
follow the standard arguments as for the classical Sobolev spaces. Set

0; = {z € Q: dist(z, Q) > 277, |z| < 27}
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Chapter 3. Nonlocal Sobolev-like Spaces

and Vi = O3 and V; = O;42 \ O; for j > 2. We have Q = |J V;. Consider (¢;);, a partition of the unity
Jj=1
subordinate to the family (V});. That is,

& ECEMRY), supp(&) CVy, 0<& <1, Y &=1
j=1

According to Lemma for u € WE(R2), each u; = {u € WP(2). We also have suppu; C V; C Q0.
Chose ¢ > 0 small enough so that supp u;Usupp(¢#*u;) C Oj13\0;_1. Note that dist(O;3, ) > 27773,
In accordance to Lemma [3.63| we have

d—0
¢ * uj — ujllwero,,,) — 0.

On the other hand, since dist(0;43,Q\ Oj14) > 271, letting C = flh|>2*1 v(h)dh > 0 we get

/ |<b5*uj(x)—uj(x)|pdx/ Z/(x—y)dySC/ |¢5*uj(x)—uj(x)|pdxM—0>O.
Oj+3 O\Oj 14 Oj+3

§—0

Altogether we have ||¢s * u; —— 0 because

- uj||€v5(g)

165 * u;(z) — uy(2)|P dz / vz —y) dy.

16545 = wllp ) = 165 5 = wllg o, +2 |
\Ojya

Oj+3

Accordingly, given € > 0 we can find §; > 0 such that
||¢5j *Uj — uj”%/f(g) <e277.

Given that Oj 13\ 0;j_1 ® can only overlap at most five times and @5 *u; € C°(0;43\ 0;_1), the function
v = ) ¢s5, * u; is well defined and belongs to C>°(R?). Noticing that u = 3. &u = Y uj, from the
Jj=1 j=1 j=1

above we get on the one hand that ||[v — ul[yzq) < € since

oo o0 oo
v —ullwer@) = H > s, wuj — UjHWp(Q) <> s, *uy — usllwro)l <> 627 =e.
j=1 v Jj=1 J=1

And on the other hand, v € C*(R%) N W2 () since

[vllwe) < v —ullwe@) + lullwe@ < lullwe @) + ¢

This completes the proof. O

Note that the main point in the above proof is that if u € W2 (§2) then by truncation it is possible to shrink
the support of u inside §2 using a suitable partition of unity, so that convoluting makes sense afterwards.
On the other hand, the question of approximating a function of W2 (Q|R9) by smooth functions is more
delicate, but can be reduced to the question whether W7 (2|R?) is closed under the shift operator, i.e.
for v € WP(QIR?), do we have u(- — h) = 7,u € WP(QR?)? This is equivalent to say that for § > 0
sufficiently small, u € W2(Q + Bs| R?) when u € WP(Q|R?). Whereas this is not totally obvious because
in this situation the function w is already defined on the whole R?. Next we give a partial answer to this
question when 2 has a compact Lipschitz boundary.

Definition 3.68. An open set € R? shall be called a local graph domain if for each 2z € 99 there exists
ar >0 and a function v : R*"! — R such that

QN B, (z) = {z € By(z) : x4
NN B, (z) ={z € B,(z): zg=7(a)}
Q°N By (z) = {z € By(x) : zqg <~(a)}.

v
=

H\
==

In addition, if v is of class C"? then 2 is called to be a C"™“-domain. For m = 0,0 = 1, Q is called a
Lipschitz domain.
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3.6. Approximations by smooth functions

We will need the following result.

Lemma 3.69. Let 1 < p < oo and assume v : R*\{0} — [0,00] satisfying is radially almost
decreasing, i.e. v(x) < cv(y) (¢ >0 ) whenever |y| > |z|. Then for @ c R* open, WP(QRY) c LF (R?).

loc

Moreover for each compact K C R there is a constant C = (K,Q,v) such that for all u € WP(S),

P p
[ @)l de < Clulfy o

Proof. If u € WP2(QR?) then u € LP(£2). For a compact set K C R write K = KUK, with K; = QNK
and Ko = Q°N K. Now choose K’ C  to be any compact set and R > 0 sufficiently large such that
K' UK, C Bg(0). Clearly u € LP(K;) and u € LP(K'). It remains to show that u € LP(K>). For every
x € K" and y € Ko we have |z — y| < R so that v(x — y) > cg for some constant cg > 0. Applying this
and Jensen’s inequality we get the following

0> [[ 1ut@) —uPrie—payds = en [ [ ul) - up dyda

QR4

> cr|K'| lu(x) — fr ulP de.
The conclusion is reached because
/ ()P dz < 2P|K2|][ lu(z) [P dz + 21’/ lu(z) — Foul? da
Ko K’ Ko
< 2(cg" + DIEE' | ullly g < oo
O

The following density result ameliorates the analogous one from [Voil7] whose proof is more likely not to
be fully satisfactory.

Theorem 3.70. Assume Q C R? is open with a compact Lipschitz boundary 0. Let v satisfy and
in addition, assume v is radially almost decreasing. Then C(R?) is dense in WP(QR?) with respect to
the norm || - |lwr ey, i.e. for u€ WP(QIRY) there exists a sequence (un) C C°(RY) with

|tn — ullwe@ray — 0 as n — co.
Moreover for p = 2, then C°(R?) is dense in V. (Q RY) with respect to the norm

||U|\%/V1(Q|Rd) = || LullZ2(q) + HUH%/L,(QURd)'

Proof. Let u € WP(QR?). We prove that |v. — ulwe (o) £29% 0 wherev, € C>°(R?). This implies

lve — ullwz ray 2% 0 because convergence of the LP-norms follows by standard arguments. Note that
the sequence (v.) is constructed by translation and convolution of the function u with a mollifier Thus
for u € V}(Q|R?Y) since dQ is Lipschitz, taking into account Proposition by a subsequence shift

arguments one can show that ||Lu — Lv.|[12(q) =0 0.

Step 1: Let zg € 0. Since is 0f) Lipschitz, there exists » > 0 and a Lipschitz function - : R S R
with Lipschitz constant k£ > 0, such that (upon relabelling the coordinates)

QN B(xg) = {x = (2',24) € Br(z0)|za > v(2')}.
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Chapter 3. Nonlocal Sobolev-like Spaces

For the sake of convenience, we choose 7 > 0 so small such that |2 N By(xg)| > 0. For z € B, 3(w0),

T>1+kand 0<e< ﬁ we define the shifted point z. = x + Teeg. We define

ue(z) = u(z:) = u(zr + Teeq) and Ve = Pg * Ug,

where ¢ is a smooth mollifier having support in B (0). It is noteworthy to emphasize that the smoothness
of the function ¢. * u. is warranted by Lemma which assures that u € L?_(R?) when u € W7 (QR?)

loc
and v is radially almost decreasing. Indeed we have C°(R?) x LL (R%) ¢ C=(R%).

Step 2: Let us assume suppu € B, 4(x0). In this case v. € C°(B,(x¢)). In this step, we aim to prove
[ve — ulwrmray — 0 ase—0.
Due to the nonlocal nature of the semi-norm, this step turns out to be rather challenging. We begin with

a geometric observation.

Lemma 3.71. Let z € B1(0). Let Q2 = Q +¢e(1eq — z). Then QZ N B, 5(x0) C QN By(z0).

Proof. For h € QZN B, 2(x0), let us write h = t +e7eq —e2z with ¢ € 2. Note that since ¢ < ﬁ we get
[t —xo| < |[t—h|+|h—xo| <e(T+1)+r/2<r. Sothatt € B,(xg), ' =t' —ez’ and hg = tq+e(T — zq).
Since v is Lipschitz with Lipschitz constant k < 7 —1 and t € QN B,(xo) = {z € B,(x0)|zq > v(2')}, i.e.
tqa > y(t'), we obtain

(R <) + v (W) =) < ta+ k2|
<tq+ek <td+€(7—zd) = hg.

Thus, h € B,(xo) and hg > v(h’). We have shown h € QN B,.(xg) as desired. O

The main technical tool of the argument below is the Vitali convergence theorem, (see Theorem
in Appendix). Since u belongs to the space WP (Q|R?), for every 6 > 0 there is 7 > 0 such that for all sets
E cQ, F c R with |E x F| < 1 we know

// lu(z) — u(y)|["v(z — y) dydz < § and / lu(y)[Pdy < 0. (3.22)
2 EF

. d
The second estimate uses the fact that u has compact support and belongs to L, .(R®).

Lemma 3.72. For every 6 > 0 there is n > 0 such that for all sets E C Q, F ¢ R* with |E x F| <n

sup sup// [uZ(z) — uZ(y)|"v(z — y)dyde < 6, (3.23)

ZEBl(O) e>0
EF

where uZ(§) = u(§ —ez) = u(€ +ereq —€z).

Proof. Let 6 > 0. Choose > 0 as in (3.22). Let € > 0, z € B1(0). Let E C Q, F C R? be sets with
|E X F| < n. Then

// 2 (2) — w2 ()| (e — ) dy da = / () — u(y) [Pz — y) dydz, (3.24)

where EZ = E+e(req—z) and FZ defined analogously. We decompose EZ as follows EZ = EZNB,./3(z0)U
EzZn Bf/Q(;EO). Note
EEZ M Br/g(l'o) C Qz n BT/Q(xO) cn Br/g(afo) ,

where we apply Lemma [3.71] We directly conclude

[ 15 @luts) — u@ ot~ ) ay e < 5. (3.5)

EZF
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3.6. Approximations by smooth functions

With regard to the remaining term since suppu C B, 4(70), note

// Lpe (o) (@)|u(@) — u(y)["v(z — y) dydz

EzF?

— [ 1o 0 @), Wl P~ ) dy o

FEzFZ

o (3.26)
<ctr) [[ 1n: @), s @@ dydo <[] )P dyde

EzF? EzF?

:c/ lu(y)|P dydx < ¢d .

EF?

The positive constant ¢(r,v) depends on r and on the shape of v. Summation over (3.25) and ((3.26])
completes the proof after redefining ¢ accordingly. O

The next lemma shows the tightness of uZ(x) — uZ(y) uniformly for z € B1(0) and € > 0.

Lemma 3.73. For every § > 0 there exists E(5) C Q and Fs C R? such that |E(8) x Fs| < oo and

sup sup // |uZ(z) — uj(y)|pu(a: —y)dydz < 4. (3.27)
z€B1(0) €>0
(2xRE)\(E(6) X Fs)

Proof. Fix ¢ > 0 and z € B;(0). Let R = sup|¢ — x| which is finite since © is bounded. Note that
£eQ

suppuZ C B, /2(wo). Choose R > 0 so large such that [Bf(x0)]Z = Bf(20) + e(7ea + 2) C Bf 5(20) and
|zt —y| > R/2— R for x € BIC%/Q(.%()) and y € Q. Thus,

|uZ(2) — ui(y)[ v(e —y) dy da = // |uZ(2)["v(x —y) dy do

(AXRH\(Q2x Br(z0)) QBg(zo)
- [ w@ra [ ve-pas [uora [ ove-pay
QzNB,./2(z0) [Bf(zo0)]z Q Bg/a—r(®
= Jfulls, 0 / v(h) dh.
BS, 5(0)

The desired result follows by taking F(d) = Q and F5 = Bpr(zo) with R > 0 large enough such that
J v(h)dh < 5”“”23(9) : O
Bzcz/2—1?(0)

Lemma 3.74. There exists a constant C(§2,r,v) depending on Q,r and v such that
\uj]ﬁvf(mw) <CQ,r, V)|u\€v5(Q|Rd) for all z € B1(0) and all e > 0. (3.28)

Proof. Note that |z — y| > r/4 for z € Bﬁ/Q(a:O) and y € B, 4(z0). Note that is v radially almost
decreasing, i.e. v(x — y) < ¢(r,v) = cv(r/4). Let us choose

-1
C =1+ sup ( / V(m—y)dx) /I/(h) dh < 1—}—(6(1“,1/)QﬂBﬁ(xo)D_l/u(h) < 0.
B,./4(x
yE€Br/a(wo) QNBE (x0) Be,,(0) Be,(0)
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Therefore, for each z € B1(0) and each € > 0 we have

(@) P — u(y)[? v(z — y) dydz = / ()PP dy / vz — y)da

QgﬂB:/2(I0)XRd BT/4(160) QgﬂBi/Q(:ﬂo)

< / ()PP dy / v(h) dh <c/ ()PP dy / V(e — y)de
B;./4(z0) By, (y) B;./4(z0) QNBg(zo)

—¢ [ o) - utlvie -y dya.

QNBE(zo) xR?

By applying change of variables, this and Lemma [3.71] we have

e = [ 2@ - @ e -parde = [ fu@) - u@)]vie - ) dyda
QR4 Qsz
- | w@-wwlve-paaes [ u@) - u)Pre - g dyds
QzZNB,. /2 (zo) xR? QgﬁBf/z(xo)XRd
<c // —u@)Pulz—y)dyde  +C // () — uly) Pz — ) dy de
QNB,.(z0) xR? QNBE(zo) xR
< Clultyy ajra)-

O

We are now in a position to prove the main result of this step. By mimicking the estimate (3.19)), we get

o = ey =[] (0e0) = 0:0) = (u(a) = u@)Po(o — 9) dy do

Q R4

< [ o) [[ lfuelo - e2) ~ ety — 22) - (ule) ~ u)| vl - ) dyda

B1(0) QR4
JRET LS
B1(0)

For each fixed z € By (0) the family of functions (z,y) — |(uZ(z) — uZ(y)) — (u(z) — u(y))["v(z — y) with
(z,y) € Q x R? ¢ > 0 is equiintegrable (by Lemma , is tight (by Lemma and converges to 0
a.e on 2 x RZ. Also note that according to the estimate , each member of this family is integrable
(this follows from the equiintegrability). Thus for fixed z € B;(0) the Vitali’s convergence theorem gives

// [(ue(z —€2) — uc(y — e2)) — (u(z) — u(y))|py(gj —y) dy dz =00,

Q R4

That is, |uZ — u|€Vyp(Q|Rd) — 0, as € — 0 for each z € B;(0). Further, from estimate (3.28)) the function
z = ¢(2)[uf — uwvf’(mﬂad) is bounded by 2C[u]ypqray for all ¢ > 0 and a.e. z € By(0). Thus, by
Lebesgue’s dominated convergence theorem

e—0
luZ — u\gvf(mw)qb(z) dz—0.
B1(0)
This implies [ve — u]wrqra) — 0 as e — 0.
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3.6. Approximations by smooth functions

Step 3: Let u € WP (QR?) be arbitrary. Let R > 0 such that Q C Bg(0). Let fr € C>°(B3g(0)) with
fr < 1and fr(z) =1 for all z € Bag(0). Define up = fru. Then according to Lemma we have
supp(ur) C B3gr(0), ur € W2(Q) and [u — ur]wrqre) — 0 as R — oo.

Step 4: Let x; € 09, r; > 0,7=1,.., N, such that
N
00 C U Bri/Q(xi)y
=1
where the r; are chosen small enough, such that up to relabelling the coordinates, we can assume

QN By, (z;) = {x € Byy,(x;)|za > vi(2")}

for some smooth v; : R™! — R as in Step 1. Let Q* = {z € R | dist(z, Q) > %mini:{l,“,N} r;} and
Qo = {z € Q| dist(z, Q°) > %mini:{le} r;}. Then

CJ B, () UQ* UQy =R?.
i=1
Let {@}iN;(gl be a smooth partition of unity subordinated to the above constructed sets. We define
u; =& - ug for all i € {0,.., N + 1},
and thus
suppu; C By, (z;) for i € {1,..N},

supp up C o,
suppuyt1 C Q"

Step 5: Let 6 > 0 and i € {1,.., N}. By Step 2 there exists a sequence v: € C2°(By,,(;)) such that
[us — vilwe @ray — 0

for ¢ — 0. Thus we can choose g9 > 0 such that [u; — vi]wrqre) < NLH for all i € {1,..,N}.
For i = N + 1 define v’ ™! = ¢. x uy,1 and set r = %minie{le} r;. Choosing € < r and since
supp un41 C Q* for all z € Q, y € R and z € B.(0)
Unti1(z,y) =Unsi(z -2,y —2)=0 or |z—y|>r

where we set Uy 11(x,y) = (u(z) — u(y)v'/P(x — y). Thus, following the estimate (3.19) , we have

N+1 N+1

‘UE — UN+1|€V§’(Q|]R‘1) = |¢E * Ug - uN+1‘€Vf(Q|Rd)

<[ oas [[ vl sy - e2) - Uy lo)P dyde,
B1(0)
QR4

By the continuity of the shift in LP(R? x RY),

// |Un+1(z —ez,y —ez) — Uny1(x,y) [P dydz — 0.
Q R

Further, since Uyy1(z,y) = Unt1(x — 2,y — 2) =0 or |x — y| > r, for any 2z € B;1(0), then the map

2 9(2) // Unsa(t — 2,y — £2) — Uy (2, ) Pl — ) dy da
Q R4
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is bounded. Thus [vNT! — uNH]Wg(de) — 0 by dominated convergence and we find €9 > 0, such that
JoN+L — unt1lwere) < Ni-m for all £ < g9. We define v? = ¢, * ug. Thus for ¢ < r

supp vg € .

The convergence v? — ug follows by the same arguments as above and we find &g > 0 such that [v? —
uo]wf(Q‘Rd) < NLJFQ for all € < eg.

N+1 4 N+1
Step 6: Define v. = > vl € C°(R?). Since ur(xz) = Y wu;(x), we have
i=0 i=0
N+l
[ur = velwz@ire) < ; G Ui)‘wg(de)
Nt1 5
< ; [ve — uilwr(qre) < (N+2)m~

Choosing % < R in Step 3 such that |[u — ur|wprqrae) < J, concludes
U — ve|lwrrey < |[u— urlwr@rae) + [UrR — Velwr (qray < 20.

The convergence in L?(Q) follows from the continuity of the shift in L?(R%). O

We now derive another variant of Theorem for W2(Q) N LP(R?) only assuming (J1). Recall
By ey = gy + Ny

Theorem 3.75. Assume Q C R? is open with a compact Lipschitz boundary ). Assume that v only
satisfies (Ji). Then, C2°(R?) is dense in W2 (QR?) N LP(R) with respect to the norm -l mray» e
for u € WP(Q|RY), there exists a sequence (u,) C C°(RY) with

llun = ullyye @ray — 0 as n — oco.

Proof. The proof of the assertion here solely follows the scheme of the proof of Theorem [3.70| so we only
point out the crucial Step 2 where the radially of v enters into play. The estimate (3.28)), i.e.

[0 s oy < O D)l o0

remains true with the constant

-1
C =1+sup ( / V(xfy)dx) /V(h)dh<oo.
YEB,./a(0) '
QNBE(zo) B;,,(0)

We recall, |z —y| > r/4 for x € By )5(w0) and y € B, /(o).

However since in this case we have u € LP (Rd) it is easy to obtain the following analog estimate
B ey < OOl (3.29)

with the mere constant C' =1+ [ v(h)dh < oo. Indeed, a close look at the proof of the estimate ([3.29)
Be 4 (0)
r/4
shows that one gets the estimate (3.29)) by applying the following

u(@)[” — u(y)|” v(z - y) dy dx

ngBg/Q(zo)de

= [ wwray [ ve-pi<c| uwra
R

By /a(wo) QzNBE (o)
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Next by mimicking the estimate (3.19) we have

|ve — u|€v5(9) < [ ¢(2)dz \U(z — e(teq — 2),y — e(teq — 2)) — Ulx, y)|p dy dz
Joon ]

QR?

with U(z,y) = (u(z) — u(y))v*/?(x — y). The estimate (3.29) shows that u,u? € WP(QR?Y) we recall
u?(z) = u(z + e(teq — 2)) equivalently U(- — e(req — 2),- — e(teq — 2)),U € LP(Q x RY). So that by

continuity of the shift,

/ |U(z —e(rea — 2),y — e(teq — 2)) — U(z,y)|" dy d 20 ¢
QR4

u‘gvf(ﬂ) <29 0 and step 2 follows. The

remaining details from the proof of Theorem @ are unchanged. However we emphasize that the smooth-
ness of v, = ¢. * u. is provided since v € LP(R?) C L} (R%). O

Analogously by invoking dominated convergence we get |v. —

Theorem 3.76. Let Q2 be a continuous domain such that the boundary 0S) is compact. Assume v satisfies

(see page . The following assertions hold.
(i) C2(Q) is dense in W) o(QRY).

(ii) C2°(Q) is dense in WP(Y), where C2°(Q) is the space of all functions which are restriction of C*
functions with compact support in R?® to €.

Remark 3.77. Note that an incomplete proof of Theorem m (¢) is provided in [BGPR20, Theorem
A.4] under the additional condition that v radially almost decreasing. However for our setting, this is just
reminiscent of the main result in [FSV15| for fractional Sobolev spaces from which we borrow some ideas.

Proof. (i) Since 0N is compact, let z; € 9Q, i = 1,.., N and r > 0 such that
N
o) C U By ja(;),
i=1
where the r > 0 is chosen small enough, such that up to relabelling the coordinates, we can assume

QN B, (2;) = {z = (¢, 24) € By(x:)|zq > vi(2')}
Q°N B(x;) = {x = (2, 24) € Br(x;)|wa < 7vi(z')}.

for some continuous functions 7; : R%™* — R. Let Q)2 = {z € Q: dist(x,09Q) > r/2}. Then,
N
QB (z:) U,
i=1
Let {&1}Y, be a smooth partition of unity subordinated to the above constructed sets. That is we have
N
& >0, &=1and & € C°(9,)2) and & € C(B,(x;)). Let u € W2 (Q2R?) and define
i=0 :
u; =& -u forallie{0,.,N}.
For 0 < n < r/2 sufficiently small, we define

up (z) =u'(z',xq —n) forallie{0,.,N}.
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Recall that u = 0 on Q°, so it is clear that u € WP(R%) and according to Lemma ut = &u € WP(RY).
Therefore, regarding the finiteness of the ||u’||yyrga), no problem should raise while shifting the function

i, Thus u',u! € WE(R?). Invoking the continuity of the shift in both LP(R?) and LP(R?x R?), for

instance like in the proof of Theorem we find that ||u’ — ’U/%HWS(Rd) 229 0. Given ¢ > 0, from now
we fix n > 0 sufficiently small that

u

i i €
lu" — upllwe @aey < AN 1)

Meanwhile we claim that u; is compactly supported in . We even have suppuj C 7771 with V! = {z €
B, (z;): xg —n > 7v(2’)}. Indeed assume

x=(2',14) & Vni ={z=(2,24) € Bo(x;): ¢ —1n>7()}

equivalently
(@ xq—m) €{2=(2,24) € Br(x;) : 24 <7(2)} = Q°N B,.(x;).

Which implies u} () = [£u](z’, 24 — ) = 0 because (2/, 24 — 1) € Q° and v’ = &u = 0 on Q°. We now
get R
suppu, C Vi C QN By ().
Indeed, by the continuity of the 7/s we get
777" ={z € B.(z;) : g — 1 >v(2")} C{z € Bo(x;) : zg > vi(2)} = QN By(x;).
0—0

Meanwhile the same arguments used in the proof of Theorem |3.3{yields that [|¢s *u}, — uj [lyz @ay — 0.
For 0 < ¢ < dist(suppuj,dQ)/2, we have

supp @s * u% C Bs +suppuj, C €.

We have ¢; + uf, € C°(€2). We can find 0 < ¢ < dist(supp uf,, ) /2 such that ¢s * u;, € C2°(Q) and

i i £
65 %y = wnllwz ey < gy

For ug the assertion ¢s5 % ug € C°(£), is much easier since there is no need to shift it. Of course

v= ;Z_V:O b5 *up € C(Q) and u = ;Z_V:O u® since ;2_\60 & = 1. Altogether we get
N
o=l = || s x =l
N
<D s *ugy — g lwe ey + luy — ' llwe @)
z;O 6
D eu it

Il
<}

1

To show (i7), in view of Theorem it suffices to prove it for u € C*°(Q) N WP(Q). With the previous
notations we consider u%(:c) = [u&](a',xq +m), i = 1,--- | N. Note that u,’7 is C* and supported in
B, (x;) because supp&; C By(z;). Furthermore, for 0 < 7 < r small enough, it is possible to show that
r € Q°N By s(x;) implies (2,24 + 1) € QN B,(r;) and hence u;(x’,xd + 1) is well define. In other
words, ui, € C2°(9Q). Also note that for n > 0 small enough we also have u§7 € WP(Q). With analogous
N
arguments as previously, for v = > ¢g * uﬁl € C(Q) one gets ||v —ul| < e.
i=0
O

Now, we state an extension result for the space WP(Q2). Up to a rigorous modification of the extension
result of [NPV12, Theorem 5.4] one is able to obtain the following extension theorem.
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Theorem 3.78. Let 1 < p < oo and Q be open with a bounded Lipschitz boundary. Let v : R4\{0} —
[0,00] be radial, almost decreasing and satisfies the p-Lévy integrability . Then there exists linear
bounded operator E : WP(Q) — WP(RY) such that Eulg = u for all u € WP(Q).

If the conclusion of the above theorem holds then one says that € is an extension domain for W2 (). Let
us recall, in the special case where v(h) = |h|=97*P, s € (0, 1), the main result of [Zhol5] states that €
is an extension domain for W*P(Q) if and only if Q is a d-set, i.e. there exists ¢ > 0 such that for every
€ 0Q and r € (0,1) we have |B(z,7) N Q| > cr?.

3.7. Compact embeddings and Poincaré type inequalities

In this section we are concerned with the compact embeddings of the spaces WZ(Q), WE(QIR?) and
W7 o(QR?) into LP(2). Let us start with some basic observations and formulate some sufficient assump-

tions on v and €. We shall temporarily modify our general assumption on the function v : R4\ {0} —
[0, 00]. Like previously for 1 < p < oo, we assume that v satisfies

v(—h) = v(h) for all h € R% and / (LA [hP)v(h)dh < 0. (I)
Rd

It is an obvious fact that if v € L'(R?), then the space WP(Q2) coincides with LP(f2) and thus cannot
be compactly embedded into LP(2). Likewise, if v € L'(R%), then the spaces WZ(QR%) N LP(R?) and
WP(R?) coincide with LP(R?) which is not even locally compactly embedded in LP(Q2). In other words,
the least necessary condition for compact embeddings to hold is that v must not be integrable. Therefore,
it is necessary to consider the following non-integrability condition

/Rd v(h)dh = occ. (1)

If the condition holds true, it is possible to strengthen the condition by merely assuming that

Jim [ (h) = oc. (13)

The conditions and clearly imply and . The latter conditions are sufficient to obtain
locally compact embeddings of W2(Q2) and WP(QR?) into LP(f2) (see Corollary . The global com-
pactness needs some extra regularity assumptions on 2 compatible with v that we will state later on.
First and foremost, we the following well known from functional analysis.

Theorem 3.79 (Chapter X, p.278, [Yos80]). Given X andY two Banach spaces denote by L(X,Y) (resp.
K(X,Y)) the space of linear bounded operators( resp. linear compact operators) from X into Y. Then
K(X,Y) is closed in L(X,Y')) with respect top the topology associated to the norm || - ||z(x,v))-

ITllecx vy = sup [[Tzlly.

lz]| x =1

For a measurable subset D C R? we adopt the notation Rp to denote the restriction operator assigning
u|p to a function u. The following lemma is a consequence of Theorem applied with p =r and ¢ = 1.

Lemma 3.80. Let w € LY(R?). Then the convolution operator Ty, : LP(R?) — LP(RY) with Tyu = w * u
is continuous, locally compact and its norm is not greater than ||w| ;1 (ga)-

In what follows, we denote by v; the kernel v truncated away from the ball Bs(0), i.e., for every h € RY
and every ¢ > 0, we have

Vs = ]le\Bg(O)(h)V(h)'

The following result is reminiscent of [JW19a, Theorem 1.2] under a slightly weaker assumption. Recall
that u € W) o(QRY) if and only if u € WP(Q|R?) and u = 0 on Q°.

103
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Theorem 3.81. Let v : RY\ {0} — [0,00] be a measurable function for which the conditions and
hold (in particular if holds true ) with

v(=h) =v(h) for all h € R? and /h| S v(h)dh < oo for all § > 0. (17)
>

Then the embedding WP(R?) < LP(R?) is locally compact. Moreover, for  C R? open and bounded, the
embedding W) o (QR?) < LP(Q) is compact.

Proof. This proof is in the spirit of [JW19a]. Let 6 > 0 small enough, the assumptions and
imply 0 < ||vs||L1 ey < 00; We set ws = Thus, ||ws||r1®e) = 1 and for fixed u € LP(R?), by

vs
HVéllLl(Rd) ’

evenness of v for all z € R? we have
Tosu(o) = [ wslyule —p)dy = [ ws(wulz + ) dy,
Rd Rd
Thus, by Jensen’s inequality

M_HM%M_Ad

< // |u(z) — u(x + h)|Pws(h)dhdz

RIR4

/ﬁmm—u@+mmmmdwﬂm
Rd

< Il [] lut@) = ute +WyPot) ahas
RARd

-1
< ||V6HL1(R¢1)||U||§V§(ROL) .
Accordingly, for a compact subset K of R?, taking into account the assumption leads to

6—0

—1
||RK - RKTw5||£(W5(Rd)7Lp(K)) S HV&HLI(Rd) —0.

Thus the embedding Ry : WP (RY) — LP(K) is compact since by Lemma the operator R T, is also
compact for every § > 0. In view of Theorem K(WE(R?), LP(K)) is closed in L(WP(RY), LP(K)).
This prove the locally compactness of the embedding W?(R?) «— LP(R?). Furthermore, it springs directly
from the continuous embeddings, W} o (Q[R?) < WP (R?) < LP(Q) and the ideal property of compactor

operators that the embedding W o(QRY) — LP(Q) is also compact. O

Remark 3.82. Note that and do not only capture the class of Lévy integrable functions which
are non-integrable but also functions with strong singularity at the origin. For instance, consider v(h) =
|h|=4=P for h # 0 with 8 > 0. In this case, the p-Lévy integrability in fails for 8 > p while and
remain true and hence Theorem applies.

In the sequel we will frequently use the family of cut-off functions introduced ion the following lemma.

Lemma 3.83. For § > 0 small enough, recall that Qs = {x € Q : dist(x,00) > §}. Let ¢ € C®(RY)
supported in the unit ball B1(0), ¢ > 0 and [,, ¢(x)dz = 1. Then the function o5(x) = ds/s * Loy, (@)

with ¢5(x) = (%) satisfies: s € C2(Q), suppps C Usjay 0< 5 <1, 05 =1 on Qs @5 =% 1 and
(Vps| < ¢/d, (with ¢ =8 [|V¢]).

Proof. Indeed, since ¢s/s is supported in Bs/s(0),

ws(x) = / b5/8(Y)Lay, s (z —y) dy = / bs/s(z —y) dy.

Bs,5(0) Q5,8
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Fix z € Qs. Let z € 0Q and y € B;/3(0) then [z — 2z —y| > |z — 2| — |y| > %6. Since z € 99 is arbitrarily
chosen, dist(z — y, 0Q2) > % > 5—86 we get x —y € Q555 i.¢ Lo, (¢ —y) = 1 which implies

po(z) = / bss(y) dy = 1.

Bs5(0)
That is 95 = 1, on Q5. Hence we also get @5 920 1 Now if 2 € Q \ Q52 then for y € Q55,5 we have

|z — y| > | dist(y, 0Q) — dist(z,9Q)| > 5/8

so that © —y & Bs/s(0), ie. ¢s/s(x —y) = 0 for all y € Qs55/5 which means that ¢s(x) = 0 that is
supp @5 C €s2. Last we note that Vs (2) = §[Ve]s/s*1a,, 4 (z) so that [Ves| < ¢/d, (with ¢ = 8 [[Vg)).
O

As an immediate consequence of Theorem we get the local compactness of WP(Q2) in LP(2).

Corollary 3.84. Let Q C R? be open bounded. Assume that v : R%\ {0} — R fulfills conditions and
(I2). The embedding WP () — LP(Q) is locally compact. Furthermore, for every bounded sequence (uy)n
there exits u € WP(Q) and subsequence (uy,); converging to u in L, (Q). Moreover,

lullwz (o) < liminf [fun|[wz (o)

Proof. In view of Lemma we claim that for ¢ € C2°(Q), the mapping J,, : W2(Q) — W/ o(QR?),
with J,u = ug is continuous and hence by Theorem @ and the ideal property of compact operator,
the linear map J, : WP(Q) — W) o(QRY) — LP() is compact which therefore implies the locally
compactness of the embedding W2 () — LP(Q2).

Let us prove the second statement. For 6 > 0 small enough, we let p5 € C*°(€2) be such that ¢5 = 1 on

Qs see in Lemma [3.83]

Next we employ Cantor’s diagonalization procedure to show that every bounded sequence of WZ(Q) has a
converging subsequence in L _(£2) to some function u € W2(2). To this end, for k € N, we let 6, = ﬁ
and merely set the shorthand notations Qj = Qs, and ¢, = s, where kg is large enough so that {2, is
non-empty. For every k > 1, Q C Qi41 and ¢ = 1 on Q.

Assume (uy, ), is a bounded sequence in W2 (). By the above remark, for each & > 1 the sequence (¢run)n
is also bounded in W2 (R?) and hence relatively compact in LY (R¢) by Theorem In particular for
fixed k, (un)n is relatively compact in LP () because @xu, = u, on Q. Thus there is a subsequence
(4o, (n))n Of (Un)n converging to some function uy in LP(€)) and almost everywhere in €. Applying
this argument again on (@i41ug,(n))n it turns out that the subsequence (ug, (n))n possesses a further
subsequence (u9k+1(n))n converging to some function ug11 in LP(Qk41) and a.e. on Q1.

By this procedure, assume that for each & we have constructed a subsequence (ug, (n))» having the property
that the (k+1)" subsequence (ug, , ,(n))n is a subsequence of the preceding k*" subsequence (ug, (5))n and
additionally the sequence (ug, (n))n converges in LP(€) and almost everywhere on €2 to some function
ug. Clearly, for each k, the restriction of upy1 on € coincides with uy. Therefore the function v : Q@ — R
coinciding with ug on Qf for every k € N is well defined and measurable since it is easy to verify that

oo
u = up+ Y uplg,\q, , a.e. Now we consider the diagonal sequence (ug, (n))n Which is a bounded
k=1

subsequence in LP (Q) of the original sequence (u,), converging almost everywhere to u on Q. Indeed
this follows immediately since ug, (n) — ux a.e on {2 and (Q)g is an exhaustion of £2. We conclude that
u € WP(Q) since (ug, (n))n is bounded in W2 (Q2), and by Fatou’s lemma we have

lullwe o) < lim inf lug, () llwer ) < oo
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Meanwhile, the global compactness requires some extra compatibility assumptions between 2 and v.
We establish the global compactness, by exploiting the recent results from [JW19a] and [DMT18]. We
intend to provide an alternative approach to the compactness result in [CDPI18, Theorem 2.2]. The
technique therein is adapted from [NPVI2, Theorem 7.1] for fractional Sobolev spaces which uses the
Sobolev extension property of the corresponding domain. However, the proof provided in [CDP18| seems
to be valid only for domains which can be written as a finite union of cubes; unless the corresponding
nonlocal function space possesses the extension property. Our approach is rather standard and follows
the idea used to prove the classical Rellich—-Kondrachov theorem, i.e. the compactness of the embedding
HY(Q) — L*(Q) for Q sufficiently smooth. It consists of applying the local local compactness and using
an approximation argument near the boundary of €.

Let us introduce some regimes relating 2 and v under which the global compactness holds true. We will
enumerate these assumptions on the couple (v, ) into different classes. We say that the couple (v, Q) is
in the class o7, i =1,2,3 if Q@ C R?is an open bounded set, v : R4\ {0} — [0, co] satisfies the conditions
and and additionally v and €2 satisfy:

e The class @ : there exists an WP({2)-extension operator E : WP(Q) — WP(R?). That is there is a
constant C': C'(v,€,d) > 0 such that [ullyrre) < Cllullwe ) and Bulg = u for every u € W2 (Q).

e The class o/: Q has Lipschitz boundary, v is radial and

9(8) =

== /B o I[Py (k) dh 225 oo. (3.30)
9

e The class 73: letting Qs = {x € Q : dist(x, Q) > §} for 6 > 0, the following condition holds true

q(9) = aie%fsz/g v(h—a)dh 220, . (3.31)
13

Let us also introduce a fourth class 7 of interest.

e The class 7, : we say that the couple (v,Q) is in the class 74 if Q is any open bounded subset of
R? and v : R?\ {0} — [0,00] is a unimodal Lévy measure that is, v is radial, almost decreasing and
v e LY(R? 1 A |h|? dh). Note that in the class @, v is not necessarily singular near 0.

Let us make some comments about the newly introduced classes. We note that the monotonicity of v is
not required here. The condition reflects a certain correlation between 2 and the singularity of v
near the origin when shifted on the boundary 92 of €. In a sense, the singularity of v is compatible with
the boundary 0€2. On the other hand, g(J) < oo since for each a € 9 and each § > 0, Q5 C B§(a) and

hence by we get
G(0) < / v(h)dh < 0.
B§(0)

Straight away, we would like to show some examples of elements of the classes <7, i = 1,2, 3. To this end,
let us recall some concepts about the regularity of a domain.

Recall that € is of class C11 if for every a € 9 there is r > 0 for which B,.(a) N 9Q = {z = (2/,24) €
B,(a) : x4 = v(z')} represents the graph of a C1! function v : R9~! — R. That is to say ~ is a C!
function whose gradient is Lipschitz. The main result in [Bar09] shows that an open set  is C! if and
only if € satisfies the interior and exterior sphere condition. We say that {2 satisfies the interior and
exterior sphere condition at some scale r > 0 if for every a € 9Q one can find o’ € Q and a” € Q° for
which B,(a') ¢ Q, B.(a") € Q° and B,(a/) N B,.(a") = {a}. The interior and exterior sphere condition
holds for every scale r € (0,79) once it holds for ro. This characterization entails that a C1'! set Q is a
d-set (or volume density condition according to some authors): that is, there exist two positive constants
¢ > 0 and r¢p > 0 such that for every r € (0,r9) and every a € 9

QN B,(a)| > cr?.

Now we show that the classes 7, ¢ = 1,2,3 are not empty. Let us simply assume that holds true,
take for instance v(h) = |h|~¢7*P (s € (0, 1)), which together with implies (I)). It is easy to see that

1 IST=Y L 50
q5:/ hPu(h) dh = 55
B=g5 [, e =t
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Figure 3.1.:

This shows that (3.30)) is verified. Wherefore, considering any Lipschitz domain €2, (v, Q) in the class .o%.

If Q is of class C1'! we would like to show that (1,€) is in the class «%. Consider R > 0, Jp and
ro > 0 as above. Fix a € 09, by the interior sphere condition, consider 6 € (0,00/4) small enough
and z € Q such that Bas(z) C Q, dsit(x,0Q) = |z — a] = 2§ and Baos(x) NN = {a} then obviously,
Bs(x) C Qs N Bas(x) C Q5 N Bys(a). This yields that

Qs N Bus(a)| > dwgd?, with wg = |S41. (3.32)

Therefore, recalling that v(h — a) > M|h — a|~% > ;& when h € Bys(a) we have

R R dwy
_ > = — > ——R.
/95 v(h a)dh_4d5d/ﬂ dh = 1051 Bis(a)| = LR

sNBys (a)

Finally, we get g(9) > %R which means that the condition (3.31)) is verified since M can be arbitrarily
large. Thus if Q is C1! and v satisfying (I)), (v,9) belongs to <.

On the other hand, it is well known from [Zhol5|] that € is an extension domain for W*?(Q), s € (0,1)
if and only if Q is a d-set and thus, (|- [797*, Q) is an element of the class .27].

Assuming and it is an interesting question to know under which additional minimal conditions
on boundary 9df2 and v the condition holds true. We illustrate this interest, with a simple counter
example. In the Euclidean plane consider v(h) = |h|727%1y(h) (d = 2,p = 2,a € (0,2)) with V =
{(x1,m2) € R%: |2q| < |z2|} and Q = {(21,22) € R? : 4]z — 6| < 21, 0 < 21 < 4} whose boundary
is continuous. Considering a = (0,6) € 9Q one has V N (Qs — a) = 0 for every § > 0 (see figure 3.1).
Therefore we have

(7(5)§/Q v(h —a)dh =0.

In conclusion, the condition (3.31)) fails although conditions and are satisfied.
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It is interesting to know whether for small 6 > 0, s inherits the regularity of Q. As proven in [GT15]
Section 6.14] if Q is of class C* with k > 2 then so is Q5. Regarding the relevance of the relation (3.32)),
we introduce the notion of strong volume density condition which, together with will imply (3.31)).

Definition 3.85. We say that () satisfies the strong volume density condition if there exist positive
constants 7y > 0 and ¢ > 0 such that for all 6,7 € (0,7) and a € 99, one has |Qs N B,.(a)| > crd.

Let us resume with our quest toward the global compactness. In the spirit of [DMT18] and [Pon03] we
will need some estimates near the boundary 992. We start with an inequality involving cut-off functions.

Lemma 3.86. Let Q C R? be open and bounded . Assume v : R?\ {0} — [0,00] be an even measurable
function. For § > 0 small enough, let p € C*°(Q) be such that ¢ =0 on Qs, p =1 0on 2\ Qs/5, 0 < <1
and |V| <c¢/d (cf. Lemma by taking ¢ = 1— s ). Then for every u € LP(QY), the following estimate
holds true

[ 1@ - el vie -~ azdy < 5 [ u@p o2 [ o) - u@lPve -y dedy (339)
Q0 Q2 Q0

where, C =2Pc? [ |hPv(h)dh and R = diam(9Q).
Br(0)

Proof. Firstly, since ¢ = 1 on Q\ Q5,5 we have

/ gl () — [ug] () oz — v) dedy = // () — u(y)Pu(z - y) dz dy
9\95/2 9\95/2 Q\Q(;/Q Q\Q(;/z

< [ 1@ - utw)vis - ) deay.
QQ

In view of the fact that 0 < ¢ <1 and |p(z) — ¢(y)| < ¢/d|z — y| for every x,y € €2, we have

[ue)(x) — [uel(v)]" = (p(y)(ulz) = uly)) + u@)(p(@) - 1))

5P

Secondly, noticing that Q@ C Bg(z) for all x € Q where R = diam(2) and integrating both sides of ([3.34))
over {15/5 X §5/2 we obtain the following estimate

cP

< 277 u(a) — uP + - fu(w) Fla — g (3:34)

[ 16@ - el Pota -y dray

Q572952

<2t [l - wtvte - pavay + 25 [ i [ e-yve - pay
QQ

Qs/2 Br(z)

_zp—l/ |u(x)—u(y)|py(x—y)dxdy+2p;6p< / (hlPw(h) dh) / lu(2)|? da .

QQ Br(0) Qs /2

Similar to the previous estimate, using (3.34) we get

|[uel(x) = [uel(v)["v(z — y) dedy
Q52 xAN\Qs /2

C

<o [t —utvta —yavay+ ZE ([ mpeman) [ o as.

QQ BRr(0) Qs /2
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Altogether, the desired estimate follows as claimed since by symmetry we can use the split

J="0 = J «

QxQ Qé/QXQJ/Q Q(;/z XQ\Qg/Q Q\Q(;/Q XQ\Q,;/Q

Since Lipschitz domains play an important role in this section let us recall another handy characterization
of such domains according to |Grilll Theorem 1.2.2.2].

Theorem 3.87. A bounded open subset 2 of R? has the uniform cone properties if and only if its boundary
is Lipschitz. In particular any open bounded convex set is Lipschitz.

Let us recall the following: Q has the uniform segment property (resp. cone property ) if for every x € 99,
there exists a neighborhood of x in R and new coordinate system {y1,y2,--- ,ya} such that

(1) Vs a hypercube, V.= {(y1,y2, - ,¥a) : —a; <y; <a; 1=1,2,--- ,d}.

(ii) y — 2 € Q whenever y € ANV and z € C where C is the open segment {(0,0,--- ,z4) :0 < 24 < h}
(resp. the open cone {(2',zq) :cotB|z'| < zg < h} for some 0 € (0,7/2]) for some h > 0.

Note that tan @ < 1/k where is k the uniform Lipschitz constant or Q.
We need the following lemma in the sequel.
Lemma 3.88. Assume Q C R? is open bounded and v : R?\ {0} — [0, 00] is an even function. Then for

every u € LP(Q) and every 6 > 0 small enough there exists a positive constant C > 0 independent of 0
such that

P ¢ Pdz ﬁ u(z) —u(y)|Pv(z — x
J o ar < s [ s 2o Q/Z u(e) ~uly) P~y dedy.  (335)

Moreover if Q0 has Lipschitz boundary and v is radial then

p L ulx p T
[ e < o [

Proof. Let ¢ be as in Lemma [3.86] and fix a € 92. A routine check reveals that Qo5 —a C Qs — x for
every x € QN Bs(a) which yields,

/QHBé “ [pu]?(z) dz /Q 5 v(z—y)dy > /Q mBé(a)[m]p(m) dz /Q Mu(h) dh
= /mBé(a)[sDU]”(x) dzx /Q%_au(h) dh

> §(26) /Q @

op+1
q(26)

// |u(z) — u(y)Pr(z — y) dz dy. (3.36)

n .
By a compactness argument there exist a',a?,---a™ € 9Q such that 9Q C |J Bs/a(a’). Thus, Q\ Qs/s C
i=1

U QN Bs(a") € Q\ Q5. Since pu = 0 on Q55 so on Q5. Therefore with the aid of the above estimate we
=1
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get the following estimate

// llpul () — [pul(4) [Pz — y) dzdy > 2 // loul? (@) — y) dzdy
Q0 Q\Qs Qs

> [ @ o)y > 22) | @

L:LJ QNB;(ai) L:LJ QN B;(ai)
> 24(26) / lpul? () der = 23(26) / () P () de

Q\Qs /2 O\ Qs /2

This combined with (3.33) gives (3.35)).

Now we assume that v is radial and 2 is Lipschitz. Let a € 9 up to translating we may a = 0. Since
[up] = 0 on s, according to [Pon03, Eq. 22] there is a constant C' = C(£,d, p) not depending on up
such that for all w € AN S?~!

[ug](z)[P dz < CoP /Q . [luel(z + Tw:p_ el (@ 4, (3.37)

QﬁBJ/z(O)

Here A is a half cone locally related to Q and defined by A = {x = (2/,z4) : |2/| < z4}.

In connection to the polar coordinates, since v is radial, integrating the above inequality with respect to
the measure |h|Pv(h) dh := rP+9=1y(r) dog_ 1 (w) dr over ANS?—1 x (0,0) and letting ¢; = [ANS—1|/|S41|
gives

([ wrvman) [ lwel@rar <o [ gl ) - fud@) Py dhds
B, (0) QNBj 2(0) QN B35 (0) Bs(0)

< // lugl(y) — [ue)(@)Pu(y — z) dy da,
QN Bas(0) QN Bas (0)

where the last inequality holds since z +h € QN Bys5(0) for x € 2N B3s(0) and h € Bs(0). Up to doubling
the parameter § > 0 relabelling the constant C' > 0 that is

([ weveyan) [ wd@rasce el - w@Pely - o) dyds

BQ,;(O) QNBys (O) QNBss (0) QﬁBsg(O)

n . n .

and using once more a recovering argument as previously (since Q2\Qs,2 C U QNBs(a’) C U QN Bgs(a’))
i=1 i=1

one reaches the following estimate

([ wrvwan) [ iwd@rds <co [ ludw) - wa@rvy - o dyde. g g
Bas (0) Q\Q;s /2 Q0
Hence,
2028) [ puP(@)do <€ [ [[oul(a) - [pul ) vie ~ ) dedy,
Q\Qs 5 Q0

which combined with (3.33]) implies (3.36)).

Here is the global compactness result.
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3.7. Compact embeddings and Poincaré type inequalities

Theorem 3.89. Let Q C R? be open, bounded and v : RY\ {0} — [0, 00] be a measurable function. If the
couple (v,Q) belongs to one of the class %, i = 1,2,3 then the embedding WE(Q2) — LP() is compact.
In particular, the embedding WP (Q|RY) — LP(Q) is compact.

Proof. Given the continuous embedding WZ(QRY) — WPF(Q), it will be sufficient to prove that the
embedding WP () — LP(Q) is compact. For (v,€) belonging to the class .} the result is a direct
consequence of Theorem Now assume (v,2) belongs to o the class &% (resp. o) then for ¢ > 0
there is § > 0 small enough such that 2P71¢=1(26) < & (resp. 2PT1q~1(26) < €) If (uy), is a bounded
sequence of WP (§2) then Corollary infers the existence of a subsequence (uy,); of (u,), converging
to some u € WE(Q) in LP(2s/2) i€ [[un; —ullLr(;,,) — 0 as j — co. In any case, in view of Lemmaw
passing to the limsup in or in applied to u,; —u we get

lim sup/ [tn, () — u(z)[P de < Me
Q

Jj—oo

where M = 2PHU||€V5(Q) +2° sup ||un||€V§7(Q) < oo. Finally, letting e — 0 gives li;nj)tip |tn, —ullLr() = 0.

Which ends the proof. O

A noteworthy consequence of Theorem is the well known and established Rellich—KondraChov’sﬂ

Corollary 3.90 (Rellich-Kondrachov’s Theorem). Assume Q2 C R? s open and bounded. The embedding
W(}’p(Q) — LP(Q) is compact. Further if Q is Lipschitz, then the embedding WP (Q) — LP() is compact.

Proof. The embedding W, (Q) < LP(Q) is compact because, with the choice v(h) = |h|~?~*?, since in
view of Theorem the embedding Wf,ﬂ(de) < LP(9) is compact and the embedding W, () <
W7 o(QR?) is continuous.

Now if Q is Lipschitz then by Theoremwe know that the embedding W1P(Q) < WP(Q) is continuous
whereas from Theorem it comes that the embedding W2(Q) — LP(Q) is compact. It thus turns out
that W1P(Q) < LP(Q) is compact too. O

The efforts made to establish the compactness result of Theorem will be rewarded for the elaboration
of the Poincaré type inequality which will be useful in the forthcoming section.

Theorem 3.91 (Poincaré inequality). Let € be an open bounded subset of R? and v : R4\ {0} — [0, 00] be a
measurable function with full support. Assume the couple (v,Q) belongs to one of the class <7;, i = 1,2,3,4.
Then there exists a positive constant C' = C(d,Q),v) depending only on d, Q and v such that

l|lu— fQuHip(Q) < C’// |u(z) — u(y)Pr(z —y)dedy for every w € LP(Q) (3.39)
Q0
and immediately,

|u— fQuHip(Q) <C // lu(z) — u(y)Pr(z —y)dedy for every w e LP(Q). (3.40)
QR4
Proof. Assume such constant does not exist then we can find a sequence (uy,), elements of WP (£2) such

that for every n, fo, un =0, ||un||zr(0) = 1 and

[ 1) = vt~y dway < o

—_— 2n .
QQ

4The classical Rellich-Kondrachov theorem is often known as the Kondrachov compactness theorem after V.Kondrachov
who generalized Rellich’s result for compact map WO1 "P(Q) into LI(Q2) whenever 1 < g < dp/(d — p).
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Chapter 3. Nonlocal Sobolev-like Spaces

The sequence (uy,)y is thus bounded in W2 (£2) which by Theorem is compactly embedded in LP(2)
whenever (v, ) belongs to one of the class o7, i = 1,2,3. Therefore, if it is the case, passing through
a subsequence, (un), converges in LP(Q) to some function u. Clearly it follows that f,u = 0 and
lul| z» () = 1. Moreover, by Fatou’s lemma we have

[ 1@ = wtyevte ~ ) aay < timint [ tuate) ~ )Pt - vy drdy =0
Q0 Q0

which implies that u equals the constant function z — f,u = 0 almost everywhere on . This goes
against the fact that ||ul|Lr(q) = 1 hereby showing that our initial assumption was wrong.

Next assume (v, Q) belongs to the class 27, then, as v has a full support, is radial and is almost decreasing
and Q is bounded, there is a constant ¢’ > 0 such that v(x —y) > ¢ for all z,y € Q. Using this and
Jensen’s inequality we get the desired inequality as follows

Q/Q/W(x) —u(y)[Prv(z —y)dedy > |9 /Q ]i lu(z) — u(y)|?P dz dy

> |Qllu— fo ulltp -

Which ends the proof since (3.40)) is clearly a consequence of (3.39)). O

The above Poincaré inequality (3.39)-(3.40) can be seen has the nonlocal counterpart of the classical
Poincaré inequality which states that for a connected bounded Lipschitz 2, there is C' > 0 for which

lu— fQuHLP(Q) < ClVullze , for all u e LP(Q)

where by convention we assume ||Vu||prq) = oo if [Vu| is not in LP(Q2). Alongside this, we also recall the
classical Poincaré-Friedrichs inequality: there is C' > 0 such that

lull o) < ClIVullLeo) for all u € Wy (Q).

With a close look at the proof of Theorem [3.46] one readily establishes the following generalization.

Theorem 3.92 (Poincaré inequality). Let 2 be an open bounded subset of R% and v : R?\ {0} — [0, 00| be
a measurable function with full support. Assume the couple (v, Q) belongs to the o, i =1,2,3. Assume
that there G C LP(Q) is a nonempty closed subset of LP(§)) not containing non-zero constant functions.
Then there exists a positive constant C = C(d,Q), v, G) such that

il 0 < € [ 1u@) — ) Prta —y)dedy  for every uweG.
QO

By a subsequent analogy, one can also establish the following result as well.

Theorem 3.93 (Poincaré inequality). Let  be an open bounded subset of R? and v : R%\ {0} — [0, o]
be a measurable function with full support. Assume the couple (v,Q) belongs to the <f;, i = 1,2,3. Let
G C WP(QIR?) be a nonempty closed subset of WP(QR?) not containing non-zero constant functions.
Then there exists a positive constant C = C(d,Q),v, G) such that

HuHip(Q) <C // lu(z) — u(y)|Pr(z — y) de dy for every u € G.

QR4

Remark 3.94. (i) Let £ C Q be a measurable set with a positive measure and 6 > 0. Some special
closed subsets of LP(£2) to which Theorem applies are given by, Gg = {u € LP(Q) : fyu = 0},
GY ={uelP(Q): u=0 ae. on E} and Gs = {u € LP(Q) : |{u =0} > 4}.

(ii) Let E C R? be a measurable set with a positive measure and § > 0. Some special closed subsets of
WP(QIR?) to which Theorem applies are given by, Gg = {u € WZ(QRY) : fou=0}, GY, ={u e
WEP(QR?Y) : w=0 a.e. on E} and Gs = {u € WP(QIR?) : [{u =0} > d}.
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In the same spirit, as we will see below the corresponding nonlocal Poincaré-Friedrichs inequality W5 o022 IR9)
(which we recall is the closure of the C2°() in W2 (Q|R%)) is much easier to obtain and no compactness
argument is required. This provides an effortless alternative way to proof the Poincaé-Friedrichs inequal-
ity from [FKV15, Lemma 2.7] which uses iterated convolutions. Nevertheless, we point out that under
the condition that the embedding is W? o (QRY) — LP(Q) is compact, a similar inequality is derived in
[TW19a] when € is only bounded in one direction.

Theorem 3.95 (Poincaré-Friedrichs inequality for W) o (QR?)). Let Q be a open bounded subset of R?
and v : R4\ {0} — [0,00] be a function satisfying (I]). There is a constant C = C(d,,v) such that

||u\|’£p(m < C|u|€V§’(Q|Rd) for every u € WﬁQ(Q\Rd), (3.41)

Proof. Let R > 0 be the diameter of Q then for all 2 € Q we have Bj(z) C Q°. For u € W) o(QR?) we
recall that u = 0 a.e on Q°. It suffices to take C= (2||vg||11(ra)) ™ With vg = Viga\ g, (o) indeed

Wl ey = Q/z ) =) Pota =) drdy+2 [ P de [ vy

>2 / fu()|? de / vla — ) dy = 2lvrl a1l .
Q B¢, ()

O

In view of the compactness of W} ((§2) (the closure of C°(§2) in WP(Q)) into LP(R) it is very tempting
to say that the nonlocal counterpart of the Poincaré-Friedrichs inequality also holds on W,f 0(€2) under
the only assumption that (v,Q) is in the class <%, i = 1,2,3. But this is not warranted especially if one
considers the simple case v/(h) = |h| 7?7 with 0 < s < 1/p. Indeed, is well known that C>°(f2) is dense in
WeP(Q) when 0 < s < 1/p (c.f. [Grilll, [Tri83]) that is to say in this situation we have WP (€2) = W} ().
In fact, since WP(2) contains constant functions, it is impossible to find a C' > 0 for which the following
Poincaré-Friedrichs inequality holds

ull7sq) < C// lu(z) — u(y)|Pr(z —y) dedy for all uwe C(Q). (3.42)
QQ

More generally, following the scheme of the proof of Theorem [3.91] one is able to establish the following.

Theorem 3.96 (Poincaré-Friedrichs inequality for W) (€2)). Let Q C R? be an open bounded set and a
measurable function v : R — [0, 0c] satisfying such that the embedding WP(Q) — LP(Q) is compact.
Then the Poincaré-Friedrichs inequality holds true on the space Wf,o(ﬂ) if and only if the constant
u =1 1is not an element of W} ().

We are also in the mood to establish the so called nonlocal Friedrichs type inequality. To do this let us
start with the following well-know results.

Theorem 3.97. Let X,Y and Z be three Banach spaces such that X is reflexive. Let K € L(X,Y) be a
compact operator and S € L(X,Z) be one-to-one. Then for every e > 0 there exists a constant Ce > 0
such that for all x € X

[Kzlly <ellzlx + Ce|Sz|l 2,

Proof. Assume the claim fails for some ¢ > 0. Then there exists a sequence (), of X such that for
all n € Nwe have ||Kxz,||y > ¢|z,|x + 2"||Sxy| z. Preferably we assume ||z, ||x = 1. Hence, since X
is reflexive, a subsequence (x,) weakly converges to some x € X. So that Sz, also converges weakly
in Z to Sz which implies ||Sz||z < lirlrgigf ISx,||z and by compactness of K, Kz, converges to Kx in

Y. Simultaneously, the above relation forces ||Sx,|z — 0 that is S = 0 which means x = 0 since S is
one-to-one and hence | Kz|y > ¢ which is a contradiction. O
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Chapter 3. Nonlocal Sobolev-like Spaces

As a consequence of this we have the following nonlocal version of Friedrichs’ inequality.

Theorem 3.98 (Nonlocal Friedrichs inequality). Let  be an open bounded subset of R?, 1 < p < oo and
v: R4\ {0} — [0,00] be a measurable function with full support. Assume the couple (v,) belongs to the
oy, i =1,2,3. Assume K C Q (eventually K = Q ) and O C Q° (eventually O = Q°) be a measurable
sets such that |K| > 0 and |O] > 0. There exists a constant C' > 0 such that for all u € WP(QR?),

||U|\I£p(ﬂ) < C|u|€v3(de) + CHUHZZIP(O,Z/K)’
[ullo 0y < Cluliys q@pray + CllelLoo, o)

where we recall that
vi (z) = essinf e v(r — ) and Ui () = / 1Av(z —y)dy.
K

In particular the following norms are mutually equivalent to || - ||W5(Q‘Rd)7

1/p 1/p
U = (|u|€V’f’(Q‘Rd) + \|u||ip(07VK)) and  u (|u|€V5(Q|Rd) + ||U‘|I£p(o7,;,())

Proof. The embedding WP (QR?) < LP(Q) is compact. A mere adaption of Proposition shows
that Tr : WP(Q|RY) — LP(Q°, vk) and Tr : WP(QR?) — LP(Q°, Pk) with u — Tr(u) = u |qe are linear
and continuous. On the other hand we trivially have that the embeddings L?(Q°, vi) — LP(O,vk) and
LP(Q°, i) — LP(O, P ) are continuous. Whence the mappings S : WP(QR?Y) — LP(QxRY) x LP(O, vk)
and S : WP(QIRY) — LP(Q x R?) x LP(O, v ) with

Su = Su = (u(z) — u(y))v'/?(z — y), Tru)
are linear bounded and one-to-one. In virtue of Theorem [3.97, for £ > 0 we have

Hu”i:ﬂ(ﬂ) < 5”“”5{/3(9@1) + C«EHSUH%Q(QC,V}()
= ellullp(q) + (€ + Co)luliyp gray + CellullLo e )

Likewise, we have

HUHIEP(Q) < 5”“”?;7(9) +(e+ C€)|U|I;I/5(Q‘Rd) + Ca”“”ip(gc,i;Ky
Taking ¢ = 1/2 provides the required inequalities. That the norms are equivalent blatantly follows. [

Let us recall the classical Friedrichs inequality whose proof can be derived analogously.

Theorem 3.99 (c.f. [Maz13]). Assume Q C R? has a Lipschitz boundary. Let Ty C O be a surface with
a positive area, i.e. |To| > 0. Let 1 < p < co. Then there exists a constant C' > 0 such that

lull ey < Cllullwre) + CllullLerg)

Moreover, the norm || - |lw1.»(q) is equivalent to the norm

1/p
wes ([0 gy + 1l omy) -
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4. Complement Value Problems For Nonlocal Operators

The overreaching goal of this chapter is to investigate weak solutions to some specific integrodifferential
equations (IDEs) involving nonlocal operators of Lévy type. In many cases, this will be equivalent to
proving the existence of minimizers via the direct method of calculus of Variationsﬂ At first, we shall be
concerned with the well-posedness of Dirichlet (first), Neumann (second), Robin (third) and mixed com-
plement value type problems for integrodifferential operators (IDEs) of Lévy type. Afterwards, we study
the spectral decomposition of Lévy type operators that are subject of the aforementioned complement
conditions. The latter will allow us to study evolution IDEs problems on bounded domains, Dirichlet-
to-Neumann map and essentially self-adjointness for integrodifferential operators. Our approaches sub-
stantially consist of developing the aforementioned notions using gadgets from L2?-theory. Analogous
approaches treating standard elliptic PDEs of the second order are referenced in [AAT5l [Eval0l Hunl4)
HTO08, [Jos13| ILDLI16L Leol3dl Mik78, [Tay11l]. We begin by reviewing some important results from the
theory of calculus of variations.

4.1. Review of variational principles

Definition 4.1. Let (V,||-||v) be a normed space. Let £: V' — R be a linear form and a(-,-) : VxV = R
be a bilinear form.

e (¢ is bounded if there exists M > 1 such that

[4(v)] < M|v||y forall veV.

e a(-,-) is bounded if there exists M > 0 such that

la(u,v)| < M||u||v||v]ly for all u,v € V.

e a(-,-) is called to be coercive or V —elliptic if there exists 0 < 6 < 1 such that
a(v,v) > 0|lv]|}, forall veV.
In short, we will simply say that a(-,-) is 6-coercive.

The dual space V' is the collection of linear continuous forms on V' and is a Banach space under the norm

lellv: = sup  |€(v)].

veV, ||lv|lv=1

We omit the proof of the next theorem.

Theorem 4.2. Let (V,||-|lv) be a normed space and K C V be a convex subset. Let £ : V — R be a linear
form and let a(-,-) : V x V = R be a symmetric and positive definite bilinear form. Then the functional
J:V = R with

1
J(v) = 5(1(1},1}) —{(v)
is strictly convex. Moreover, there is at most one u € K such that

J(u) = 71()1(16% J(v).

!Calculus of variations is a branch of mathematical analysis dealing with optimization problems to find the extremum for
a functional.
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Moreover, this minimization is equivalent to the variational inequality
a(u,v —u) > Ll(v—u) forallveK.

Furthermore, in the special case where K is an affine subspace of V, i.e. K = vy + U with vg € V and U
is a closed subspace of V', the above variational inequality becomes

a(u,v) =L(v) forallve K.
The next theorem shows that in the setting of Banach spaces, the above variational inequality is well-posed

in the sense of Hadamard. In other words, it possesses a unique solution which continuously depends upon
the data. This is useful to show the well-posedness of many variational equations.

Theorem 4.3 (StampachiaED. Let V' be a Banach space and K C V' be a nonempty, closed, conver set.
Let a(-,-) : V. xV = R be a continuous and 0-coercive bilinear form. Then for every continuous linear
form £:V — R there is a unique u € K such that

a(u,v —u) > Ll(v—u) forallveK. (4.1)
Moreover, if w € K corresponds to another continuous linear form ¢ : V — R then,

_ 1 2
lu=allv < 5l = Elv (4.2)

Proof. Assume u,u € K be solutions corresponding to £, {. Since K is convex, testing both u and @ with
v = 4% ¢ K and adding both inequalities one easily arrives at

T2
—a(u—w,u—71u) >l —0)(u—"7).
The coercivity yields

Ollu —ally < a(u—1,u—1) < [0 =0y |lu—lv.

This entails the estimate (4.2)) from which the uniqueness follows subsequently. Now we prove the existence
which in virtue of Theorem corresponds to show that the functional

J(v) = %a(v,v) — ).

has a minimizer on K. First of all, the quantity d = in}f{ J(v) exists, since J is bounded below on V.
ve
Indeed, for v € V,

0, .o B \/? ) 1 2 1 1,
J(@) 2 gllvlly = el llvllv = ( Sl — ﬁllﬁllv') ~ 5glltllve = =551y -

First, we assume that a(-, -) is symmetric. For each n € N we consider u,, € K such that d < J(u,,) < d—l—%n

Whence, since J is convex, from the relation 2ab = a? + b* — 4(‘%”)2 we get

Ot — U |3 < a(tn — U, Up — Uny)

= 4 (un) + 4 () — 8J(U”+Tum)

1 1 11
< — —) — =4(— 4+ —).
S4(d+ o) H4(d+ o) -8 =4(5; + 5)

Therefore, (uy), is a Cauchy sequence in the Banach space V' and hence converges to some u € K since
K is closed. By continuity of J, we have d = J(u).

2This theorem was established by Guido Stampachia in the setting of Hilbert spaces in 1964, he extended it later in 1967
to Banach spaces in a joint work with Jacques-Louis Lions. See for example [ET09] and other references therein
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4.2. Lagrange multipliers

If a(-,-) is not symmetric, then for fixed ¢ € [0, 1] we write
ai(u,v) = ag(u,v) + tb(u,v)
with
1 1
ap(u,v) = i(a(u,v) +a(v,u)) and b(u,v) = i(a(u,v) —a(v,u)).

Clearly, the bilinear forms b(-, -), a+(, -) are bounded and a.(, -) is f-coercive since for every v € V we have
at(v,v) = ap(v,v) = a(v,v). For fixed w € V, define the bounded linear form ¢,,(v) = ¢(v) — tb(w,v).
Given that ag(-,-) is symmetric, from the previous case, there is a unique u = u(w) € K satisfying the
variational inequality

ap(u, v — u) > Ly (v —u) for all v e K.

Accordingly, the map T : V — K with u(w) = Tw is well defined. Choosing ¢ such that 0 < ¢ < % then
utilizing the estimate (4.2)) leads to
1
7w~ Twl v < 5l — urllv

t M 1
= Sl =Yy < ot =l < G llw =y

This shows that 7" is a contraction on V and thus has a unique fixed point u; € K. We have u; = Tuy
which by definition implies that for every v € K,

ar(ug, v —ug) = ag(ug, v — ug) + th(ug, v — uy)
> Ly, (v —up) + tb(ug, v —up) = L(v —uy) .
We have shown that for 0 < ¢ < %, there is a unique u; € K such that

ar(ug, v —uy) > L(v—wuy) forall eveK.

A recursive argument shows that this remains true when 2‘9—]\’}[ <t< % for all n € N and thus for all
t > 0. This terminates the proof since for ¢t = 1 we have a1 (u,v) = a(u,v) for all u,v € V. O

The celebrated Lax-Milgram lemma turns out to be a consequence of the Theorem [4.3]

Corollary 4.4 (Lax-Milgram lemma). Let V' be a Banach space and K C V' be a nonempty closed, convex
set. Let a(-,-) : V xV = R be a continuous -coercive bilinear form. Then for every continuous linear
form £ :V — R there is a unique u € V such that

a(u,v) =4L(v) forallveV.

Moreover, the mapping £ — u is linear and continuous from V' to V with

1
lully < Zll€lv -

4.2. Lagrange multipliers

The Lagrange multiplier method is one of the most powerful tools used to solve certain types of constrained
minimization problems in the setting of Banach spaces. For a fair exposition we need some basics on
differential calculus. We recommend [Chel3] for supplementary notions on differential calculus. In this
section, V, W are two Banach spaces and U C V is an open set of V. We recall the notion of Fréchet
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derivative. A function f: U — W is said to be Fréchet differentiable at a point a € U if there is a linear
bounded operator L, : V. — W i.e L, € L(V,W) such that

[f(a+h) = fla) = La(h)[lw

=0.
]y —0 1AV

It is often common that the operator L, is synonymously denoted by df(a) or f'(a). We will adopt the
latter notation. We say that f is C'* or continuously differentiable if f’(a) exists for every a € U and the
function f': U — L(V,W) with a — f’(a) is continuous. Note that £(V, W) is equipped with the norm

1T zev,wy == sup{[[Tollw = [lvllv =1}
If the Fréchet derivative of f at a exists then

lim flat tvt) — /@) _ f'(a)v  forallveV.

In general, if the above expression exists then f is said to be gateau differentiable at a in the direction
v. However, the gateau differentiability does not always imply the Fréchet differentiability. The Fréchet
derivative is related to the open mapping theorem.

Theorem 4.5 (Open mapping Theorem). [Cheld, Section 3.4] Let f : U — W be a continuously differ-
entiable function where U C V is open. If the Fréchet derivative f'(a) of f at point a € U is surjective,
then f(U) is a neighborhood of f(a) in W.

Theorem 4.6 (Lagrange Multiplier). [Chel3, Section 3.5] Let U C V be open and let f : U — R and
g:V — W be continuously differentiable functions. Let K = {x € U : g(x) =0}. Assume a € UNK s
the a local minimum of f on U N K such that ¢'(a) € L(V,W) is surjective. Then there exists a bounded
linear form € € W' so that f'(a) =€ o ¢'(a). To be more precise, f'(a)(v) = Lo g'(a)(v) for allv e V.

This theorem can be proved by applying the implicit function theorem, see [Chel3|. However, the Lagrange
multiplier theorem above can be reformulated in the special case where W = R as follows.

Theorem 4.7 (Lagrange Multiplier). Let U C V be open and let f : U — R and g : U — W be
continuously differentiable functions. Let K = {x € U : g(x) = 0}. Assume a € U N K is the a local
minimum of f on U N K such that ¢'(a) # 0. Then there is A\ € R so that f'(a) = \g'(a). To be more
precise, f'(a)(v) = Ag'(a)(v) for allv € V.

Proof. Without loss of generality, assume that f(a) = é’ﬂ[}%le(x) Define F : U — R? with F(z) =

(f(x),g(z)). Then F(a) = (f(a),0) and F is also C* and for z € U, F'(z)(v) = (f'(x)(v),¢'(z)(v)) for
all v € V. As f(a) is the local minimum of f, it appears that for € > 0 small enough, (f(a) — €,0)) is
not an element of F(U). This means that F(U) is not a neighborhood of F'(a). Whence the function
F cannot be open which in virtue of the open mapping Theorem [4.5| means that F’(a) is not surjective.
Accordingly, the range Im(F’(a)) of F’(a) is at most of dimension one. Hence there is a bounded linear
form ¢ € V' and an element v = (71,72) € R? such that F'(a)(v) = ~¢(v) for all v € V. We have
f'(a)(v) = y14(v) and ¢'(a)(v) = v2€(v). The fact that ¢’(a) # 0 implies that v2 # 0. Letting A = v1 /72
we obtain f'(a) = A¢'(a). O
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4.3. Integrodifferential equations (IDEs)

Here we study the well-posedness of various types of integrodifferential equations (IDEs) associated with
symmetric integrodifferential operators of Lévy type. These are operators of the form

Lu(e) = pov. | (o) ~ulp)vla - y)dy, (2 R
R
where v : R*\{0} — [0, 00] is even and Lévy integrable, i.e.
v(h) = v(=h) for h #0 and / (1A |R)?)v(h) dh < .
Ra

We are interested in showing the well-posedness of IDEs on a domain 2 C R with Neumann, Dirichlet,
Robin and mixed complement condition. It is worth emphasizing that due to the nonlocal feature of L,
the condition for each of the aforementioned problems is imposed on the complement of €. In each case,
we briefly recall the local analog. From now on we use several notations from the previous chapters. In
particular, we associate with the Lévy density v, the bilinear form £(-,-) defined for u,v € V,,(Q[R?) by

E(u,v) = % // (u(z) — u(y)) (v(z) — v(y)) v(z — y)dz dy.
(QexQe)e

In addition, the function spaces introduced in Chapter [3| play an important role in this section. It is worth
recalling that the space V, (Q2[R?) is always endowed with the norm [|v]|?, (QRd) = HUH%Q(Q) +&(u,u). Also

recall that | - %/U(Q\Rd) <&, ) <2 |%/V(Q|Rd)’ where

|U|‘2/V(Q|Rd) = // (v(z) — v(y))2 v(z — y)dz dy.

QR4

4.3.1. Integrodifferential equations (IDEs) with Neumann condition

Assume Q C RY is an open set. Let f : Q@ — R and g : R?\ Q — R be measurable functions. The
Neumann problem for the operator L is to find a measurable function u : R? — R such that

Lu=f in Q and Nu=g on R¥\Q, (N)

where N, also called for an obvious reason the nonlocal normal derivative operator (see [DROVIT,
DGLZ12]) on Q with respect to v is the integrodifferential operator defined by

Nufy) = /Q (u(x) — u(y)v(z — y) de (y € R?\ Q). (4.3)

Let us derive the so called nonlocal Green-Gauss formula cf. (4.5) which provides a nonlocal version to
the classical Green-Gauss formula for u € H?(2) and v € H(Q) (See [FSUT9, Theorem 2.20]),

/(—A)u(m)v(m) dz = / Vu(z) - Vo(x)dz — / yu(z)yov(x) do(zx), (4.4)
Q Q o0
where we recall that v, = v9 o V, and 7 stands for the trace operator on H*(2).

Proposition 4.8 (Green-Gauss formula). Let Q C R be open and bounded. For every u € CZ(R?)
and v € C,}(Rd) the following Green-Gauss formula holds true

/ [Lu(z)|v(z)de = E(u,v) — [ Nu(y)v(y)dy. (4.5)
Q Qe
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Chapter 4. Complement Value Problems

In particular, letting v = 1 one gets the integration by part formula,

/QLu(x)dx =— [ Nu(y)dy. (4.6)

Qc

Furthermore, if u,v € C’E(Rd) then we have the following second Green-Gauss formula,

/Q[LU(x)}v(SC)—[Lv(x)]U(fB)dx—/ No(y)luly) — Nu(y)lo(y)dy. (4.7)

c

Proof. It is sufficient to prove (4.5) since it implies (4.7). Note that for ¢ € C}! (Rd), we have
o(@) = p(z + )| < 2)|@llcp@ey (LA |R])  for all 2,k € R, (4.8)

Let u € CZ(R%) and v € C}(RY). With the aid of Proposition [2.2/ we can write

/Q (Lu() u(z)o(a)dz = lim / o(z)dz / (u(z) — u(y))(z - y)dy

R\ B. (2)

i [ [ o)~ ute)eeve - dyds+ [ (@) - u@)rs - ) dyda

Q Q\B.(z) Q Qe

On one side, by a symmetry argument we have

lim / (u(z) —u(y))v(@)r(z —y) dyde = lim // (u(z) = u(y))v(z)v(z - y) dydz

s_mﬂ Q\ Be () QxQn{|z—y|>e}
—tin s ] @)~ a0 - @) - s = ] @) - u) e - w)ve - ) dyds
QxQN{|z—y|>e} QQ

where one gets rid of the principal value using the estimate (4.8) applied to u and v. On the other side,
with the help of Fubini’s theorem we have

J] @) = wtw)etaive — y) dyas

QQe

= [ @) = uw)et) ~ ) ) e + / dy/ )~ u(y)v(e—y)da

QQe

— 5 [ @) w0~ )vte - v dyde+ 5 [ @) — ) () o)l - ) dyds

Nu(y)v(y)dy .

Qc

Altogether inserted in the initial relation provide the desired relation. O

Regarding the density of C2°(R?) in V,}(QR?) and in V,,(QR?) (see Theorem [3.70)), the nonlocal version
of Green-Gauss formula (4.4)) is given as follows.

Theorem 4.9. Assume Q C R is open and bounded with Lipschitz boundary. Recall the definition of the
space V. (Q| R?) see Section for every u € VH(QIR?) and every v € V,(QRY) we have

[ oot = G = [ Nulwuipay
where, the operators L and N are understood in the generalized sense.
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4.3. Integrodifferential equations (IDEs)

Let us look at a connection between the trace space T, (2¢) and the nonlocal normal derivative N.

Theorem 4.10. Assume T,(Q2°) is endowed with the norm || - |1, (). Then for any linear continuous
form € : T, () — R there exists w € V,(QR?) such that for every v € C=(Q)

l(v) = o Nw(y)v(y)dy (4.9)

In particular, given a measurable function g : Q° — R, if the linear mapping Ly : v — [. g(y)v(y)dy is
continuous on T, (2°), then there exists w € V,,(QR?) such that g = N'w almost everywhere on Q°.

Proof. Let ¢ € (T,(92¢)). Because of the continuity of the trace operator Tr : V,(Q|RY) — T, (92°),
the linear form ¢ o Tr is also continuous on V,(Q|R?). By Riesz’s representation theorem there exists
w € V,(QRY) such that £ o Tr(v) = (v, )y, (rae) for each v € V., (QR9). In particular, for v € C(Q°)
identified with its zero extension on 2 so that Tr(v) = v, we obtain the following

(o) = /ﬂ w(z)o(z)dz + // (w() — w(y) (v(z) — v(E)r(z - y) dedy

(QexQe)e

- / o(y)dy / (w(y) — w@)v(z —y)de = | Nw()o(y)dy.
Qe Q @

Furthermore, if g : Q¢ — R is such that ¢, is continuous on T, (£2°) then by the above computation, it
follows that ¢ = N'w almost everywhere on ¢ since

/Cg(y)v(y) dy= [ Nw(y)v(y)dy, forall veCXQ°).

Qc

O

Remark 4.11. The second statement of Theorem [4.10| particularly suggests that the space of all mea-
surable functions g : Q¢ — R for which linear the form v — [,. g(y)v(y)dy is continuous on T, (Q2°) is
contained in NV'(V, (Q|R?)) (the range of N).

In light of the relation (4.5]) it is reasonable to define weak solutions of the Neumann problem as follows.

Definition 4.12. A measurable function u : R? — R is a weak solution or a variational solution of the
inhomogeneous Neumann problem if u € V,(QR?) and satisfies the relation

c

E(u,v) = /Qf(;v)v(x)dx+/ g(y)v(y)dy, forall v e V, (QRY). (V)

In particular, if Q is bounded then taking v = 1, turns to the so called compatibility condition

| s+ [ gty =o ©)

Remark 4.13. The compatibility condition is an implicit necessary requirement that the data f and
g must fulfill before any attempt at solving the problems and . The local counterpart of this
compatibility condition, where g is defined on 0%}, is given by

[ @izt [ gwiots) =o. (4.10)
Q o

Let us recall that the variational formulation of the classical Neumann problem —Awu = f in 2 and % =g
on 99 is to find u € H*() such that

/ Vu(z) - Vu(z)de = / f(z)v(z)d —|—/ g(y)v(y)do(y), forall ve HY(Q). (4.11)
Q Q o0
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Chapter 4. Complement Value Problems

Both integrodifferential operators L and N annihilate additive constants. Therefore, as long as u is a
solution to the system or to the variational problem so does the function u = u + ¢ for any
c € R. Accordingly, both problems are ill-posed in the sense of Hadamard. The situation is hkewise in the
local setting with the operators L and N respectively replaced by the operators —A and a . In order to
overcome this anomaly we introduce an appropriate functional space V,(QJR?)* consisting of functions
in V,,(QR?) with zero mean over 2. To be more precise,

V, (QRY): - {u € V,(QRY) : /Qu(x)dx - o}.

Assuming that Q is bounded, the space V, (2|R?)+ endowed with the scalar product of V,,(Q|R?) is also
a Hilbert as well. With this at hand, we rewrite the variational problem as follows

E(u,v) = / f(z)v(z)dz + /c g(y)v(y)dy, forall v e V, (QRY):. (V")

It is noteworthy emphasizing that in contrast to , the variational problem (V') possesses at most one
solution since £(-,-) defines a scalar product on V, (Q|R9)~L. Analogous observations can be carried out in
the local setting by introducing the space H*(Q)* = {u € H*(Q) : [, u(z)dz = 0}.

Under additional regularity assumptions, we show that both problems (N]) and ( . are equivalent.
Proposition 4.14. Let Q be an open bounded subset of R® with Lipschitz boundary. Let u € CZ(RY),

f € L) and g € L*(Q°,vi') where vk (z) = essinf,ecx v(x — y) for some measurable set K C Q with
|K| > 0. Then u is a solution of if and only if f and g are compatible in the sense of and u is

a solution of .

Proof. If u solves , ie. Lu= fin Q and Nu = g on Q°, then by the Green-Gauss formula (4.5 we
obtain the following

(u,v) /f(a: dx—i—/ g(y)v(y)dy, for all ve CLH(RY). (4.12)

As shown in ([(£.17)-(4.18) below, all terms involved in are linear and continuous on V,,(Q|R%) with
respect to the variable v. Moreover, smooth functions of compact support are dense in V,(Q[R?) hence
the relation in remains true for functions v in V,(QJR?) so is satisfied. In particular, taking
v = 1 yields the condition . Conversely, assume u solves then inserting the Green-Gauss formula

[@.5) with v € CLRY) C V,(Q|R?) in ([#.12)) yields

/ Lu(x)v(x)dz —/ f@)v(x)dz = /Cg(y)v(y)dy - Nu(y)v(y)dy, forall v e CLRY).

Qc

Specializing this relation for v € C°(Q2) and v € C°(R% \ Q) respectively, we end up with

/ Lu(z)v(x)dr — / f(z)v(z)dz =0 for all v e C*(Q),
Q Q
/C g(y)v(y)dy — o Nu(y)v(y)dy =0 for all v € C°(R4\ Q).

According to Proposition Lu is well defined and bounded hence belongs to L?(£2). Similarly Nu is
well defined and bounded, i.e. belongs to L>°(2°). Thus, up to null sets, the above equations lead to .
Precisely, we have Lu = f in Q and N'u = g on R?\ €. O

By standard procedure, a solution of the variational problem is characterized as a critical point (a
minimizer) of the functional

j(v)—;E(U,v)—/fvdx—/cgvdx
_1 (w(@) — )20z — y)dzdy — | fode— | guda. (4.13)
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4.3. Integrodifferential equations (IDEs)

Proposition 4.15. A function u € V,(QR)L is solution to (V7)) if and only if u is also a solution of
the minimization problem

J(wu)= _ min - J(v) (M)

veV, (Q[RY)L

Moreover, u € V,(QRYL solves (V) if and only if for any ¢ € R, u + ¢ solves the variational problem
and the latter problem is equivalent to the minimization problem

Jw)= _min @), (1)

Proof. Let u,v € V,(Q2JR%)*. Employing, Cauchy-Schwartz inequality yields

—_

E(u,v) < =&(u,u) + %S(U,’U) =&(u,u) — %5(u,u) + %8(1},1}).

[\

Thus, if holds true for all v € V,(Q|R%)* then we get J(u) < J(v) and thus u solves (M).
Conversely, assume that u € V,(QR?)* satisfies (M)). For all v € V,(Q2R%)* and all t € R implies
J(u) < J(u+tv) since u+tv € V,(QR?)*. Therefore, for fixed v € V,,(QR?)* the polynomial of second
order J(u+w): R =R,

2

tt—)j(u—ktv):j()—f—t (u,v) /f dx—l— 5(1111)

has a critical point at t = 0. From this we get that (V') is verified since

C Ju+tw) - J(u
0= ting TERI I _ o) [ fapptarae— [ glwotu)d.

—0 t 9] c
Meanwhile, if the compatibility condition holds, then it is easy to observe that the relation in
remains unchanged under additive constant, i.e. J(v +¢) = J(v) for all v € V,(QR?) and all ¢ € R.

Accordingly, if u € V,(QR%)* solves ('), then we have J(u + ¢) = In(lél‘ d) J(v) which by a similar
veV, R

arguments as above is equivalent to (V). O

We are now in a position to state the well-posedness of (V') and hence of up to additive constant.

Theorem 4.16. Assume that Q C R is a bounded open set and the function v : R — [0, 0o] is the density
of a symmetric Lévy measure with full support such that the couple (v,Q) belongs to one of the classes
o, 1=1,2,3,4. For a set K C Q with positive measure, assume vi(x) = essinfyex v(z —y) > 0 a.e for
almost x € Q°. Then, given f € L*(Q) and g € L*(Q°,v"), there exists a unique solution u € V,,(QR%)*+
to the variational problem . Further, the solutions to are of the form u 4+ ¢ with ¢ € R provided
that f and g are compatible in the sense that is verified.

Moreover, there exists a constant C := C(d,Q,v) > 0 independent of f and g such that any solution w of
satisfies the following weak reqularity estimate

o = fowlly, pzey < € (Ifllz2@) + 9]l 12 0enzr)) (4.14)
In particular, the operator ® : L*(Q) x L?(Q°,vg') — V(R mapping the Neumann data (f,g) €

L2(Q) x L2(Q¢,vi') to the unique solution u € V,(QRY) L of the variational problem (V) is linear,
one-to-one, continuous and we have

[2(f, Q)HVV(Q\Rd) < CH(fvg)’|L2(Q)><L2(QC,uI;1)‘
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Chapter 4. Complement Value Problems

Remark 4.17. In some sense, a solution to the variational problem exists only if the data f and
g satisfy the compatibility condition . This constraint corresponds to the situation arising in finite
dimension when solving linear equations Az = b with b € R? and A € R%*¢ where a unique solution exists
if and only if dim(ker A) = 0. Recall that dim(ker A) + dim(Im A) = d. This generalizes in infinite
dimensional spaces via the so called Fredholm alternative (see Theorem .

The next theorem offers an alternative formulation of Theorem [£.16] with a relaxed condition on vx and
a different (possibly larger) function space for g.

Theorem 4.18. Assume that Q C R? is a bounded open set and the function v : RY — [0, 00] is the
density of a symmetric Lévy measure with full support such that the couple (v,Q) belongs to one of the
classes ;, i = 1,2,3,4 (see page . For some K C Q with positive measure, consider vk (r) =
essinfycx v(xz —y) for almost all x € Q°.

Given f € L*(Q) and g € L*(0°, vk), there exists a unique solution u. € V,(QRY)L to the following
variational problem

E(Us, v / f@)v(x)dz + /C gv(y)vi(y)dy, forall ve VV(Q|]Rd)L. (V)

Additionally, if f and g verify the condition , then all solutions to the problem (V.| are of the form
Ux + ¢ with ¢ € R, where we let

/ f(@)de + / o(9)vi(y)dy = 0 ()

(u,v) / flx)v dac—i—/ gv(y)vk (y)dy, for all ve V,,(Q|]Rd). (V)

Moreover, there exists a constant C' := C(d,Q, K,v) > 0 independent of f and g such that any solution
w of satisfies the following weak reqularity estimate

lw = fo wllv, ey < C (1fllz2@) + lgllz2 (e mi)) - (4.15)

In particular, the operator ®, : L*(Q) x L*(Q¢,vk) — V,(QRYL mapping the Neumann data (f,g) €
L2(9) x L?(Q°,vk) to the unique solution u € V,(QR?) L of the variational problem (V) is linear, one-
to-one, continuous and we have

12.(f, 9llv,.@rey < ClI(f> 9|22 @)% L2020 ) -

Remark 4.19. (i) It is worthwhile noticing that Theorem and Theorem remain true with the
weight v replaced by Pk, where we recall that

ﬁK(x):/Kl/\u(x—y)dy.

The reason is that, according to Theoremm the embedding V,, (QRY) — L2(Q¢, k) is also continuous.

(ii) Let f € L?(Q), for g = 0 it is worthwhile to see that the variational problem coincides with
and both correspond to the variational (weak) formulation of the homogeneous Neumann problem Lu = f
in Q and Nu =0 on Q°.

Proof of Theorem [4.16] and Theorem [4.18. The existence and the uniqueness of solutions of
and on V,(QRY)* plainly spring from the Lax-Milgram lemma using the arguments below The
bilinear form £(-, ) is continuous on V,,(Q|R%)*. From the Poincaré inequality (3.40) (Theorem [3.91), for
some constant C' > 0 we have

[0]Z2(0) < CE(v,v)  forall v eV, (QRY)*
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4.3. Integrodifferential equations (IDEs)

Equivalently, this inequality amounts to the coercivity of £(-,-) on V,(22|R%)+ and we obtain
-1
E(v,v) 2 (L+C) 0lT, qpay- (4.16)

Let us show the continuity of the linear forms involved. For every v € V,(2|R?)+ we have
| [ @0@ds] < 1l ollzz < 1z lole ame (4.17)
If g € L?(Q°,v") along with the continuity of Tr : V,,(QR?) — L2(Q°, vk) (see Theorem [3.35)) then,

‘/‘g(m)v(x)da:’ < HgHL?(QC,y;(l)”UHLz(QC,VK) < ”gHL?(Q“,l/I’(l)HU”V,,(QURd)- (4.18)

Similarly, if g € L?(Q¢, vk) we get
| [ st@iaic(e)da] < lllaiorm o]y, ormo. (4.19)

This conclude the existence and the uniqueness of a solution u € V,(QR4)* (resp. u, € V,(QR?)1) to
the problem (resp. (V]]).

For v € V,(QR?) set v = 0 + ¢ with ¢ = f,vdx so that v € V,(QR?)*. In addition, a constant
function w = ¢ belongs to V,,(Q[RY) for every ¢ € R? because  is bounded. This means that V, (QR¢) =
V,(QRY)L @R. From this observation along with the identity £(u+c,v+¢') = £(u,v) for all ¢,¢’ € R and
the uniqueness of u € V,,(Q|R%)* solving , it becomes easy to check under the compatibility condition
that all solutions of are of the form u+ c. Analogously, if u, € V,(QR%)* solves then under
condition all solutions of are of the form u, + c.

Conversely, if the problem (V) (resp. ) has a solution, then testing with v = 1 provides the compati-
bility condition (resp. (C.)).
Next observe that, if w € V,(Q|R?) solves then w — f, wdz € V,(Q|R%)* solves (), and thus by

uniqueness we have u = w — f, wdz. Plunging u € V,(QR%)* into (4.16)-(4.18) and one easily
arrives at (4.14). The estimate (4.15)) is obtained analogously by taking into account the estimate (4.19)
instead of (4.19). The continuity of the linear mappings ® and ®, follow immediately.

O]

4.3.2. Integrodifferential equations (IDEs) with Dirichlet condition

Assume that Q@ C R is an open set. Let f: Q — R and g : R?\ © — R be measurable functions. The
Dirichlet problem for the operator L associated with the data f and g is to find a measurable function
u: RY — R such that

Lu=f in Q and u=g on R\ Q. (D)

Definition 4.20. A measurable function u : R? — R is a weak solution or a variational solution of the
inhomogeneous Dirichlet problem (D) if u € V,,(QR?) and satisfies

u—ge VEHQRY) and E(u,v) = / f(z)v(x)dz, forall ve VEHQRY). (Vo)
Q

The weak formulation (Vo)) makes sense regarding the Green-Gauss formula (4.5). Let us now see the
corresponding minimization formulation.

Proposition 4.21. A function u € V,(QR?) is solution to if and only if
To(u) = Jo(v) (Mo)

min
veV(QRY)+g

where
Jo(v) = %5(’0,1)) —/ f(@)v(z) dz  for all u € V(QIRY).
Q
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Proof. Let u € V(QR?) + g satisfying (Vo). Note that for v € V,(QR?) + g we have u —v € V,*(Q|R?)
thus from the relation and Cauchy-Schwartz inequality we get

E(u,u) = E(u,u —v) + E(u,v) = /Qf(x)(u(m) —o(z))dz + E(u,v)
< %E(U,u) —I—/Qf(x)u(m) dx + %S(v,v) — /Q f(@)v(x)dz

Equivalently, we have Jo(u) < Jo(v) and hence u verifies (Mg]). Conversely, assume that u € V3(QRY)+g
satisfies (Mg)). For all v € V{(Q|R?) and all t € R (M) we have u + tv € V,(QR?) + g which implies
Jo(u) < Jo(u+tv). Therefore, for fixed v € V(Q|R?) the polynomial of second order Jo(u+.v) : R — R,

2

t— Jo(u+tv) = TJo(u) +t [5(u,v) - /Q f(x)v(x)dx} + %5(@,1})

has a critical point at ¢ = 0. Hence is verified since we have

0 = 1im Dolu 1) = Jolu
t—0 t

) = E(u,v) / f(@)v(x)dz.
Q
O
Theorem 4.22. Let Q C R? be bounded and open. Assume that the function v : RY — [0, oc] satisfies the
mild condition (I])). Given f € L*(Q) and g € T, (Q°), there ezists a unique solution u € V,,(QR?) to the

variational problem , Moreover, there exists a constant C' := C(d,,v) > 0 independent of f and g
such that for any g € V,,(QR?) extending g, we have

E(u,u) < C(fl22() +£(5.9))- (4.20)

In addition, the following weak regularity estimate holds

lullv, @ray < C(I1flz20) + lgllz, 00)) - (4.21)
In particular, the operator ® : L%(Q) x T, (Q°) — V,(QR?) mapping the Dirichlet data (f,g) € L*() x
T,,(Q°) to the unique solution u € V,(QR?) of the variational problem is linear, one-to-one, contin-
uwous and we have

12°(f, Dllv, @re) < CI(f> 922 @) <10 (00 -
Proof. From the Poincaré-Friedrichs inequality (3.41) (see Theorem [3.95) one finds a constant C' =
C(92,v,d) > 0 such that the following coercivity holds
||U||%/U(Q|Rd) < CE(v,v), forall wveVEHQIRY).

Let g € V,(QR?) be an extension of g. The linear form v — —&(g,v) + [, f(#)v(z) dz is continuous on

VH(QR?). Tt is clear that, the symmetric bilinear form £(-,-) is also continuous. By Lax-Milgram, there
exists a unique ug € V,*(Q|R?) such that

E(ug,v) = —€(g,v) +/ f(z)v(z)dz for all v e VE(QRY).
Q
Hence u = ug + g solves since u — g € V(QR?) and
E(u,v) = / f(@)v(z)dz, for all v € VE(QRY).
Q
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4.3. Integrodifferential equations (IDEs)

With the aid of the coercivity one can easily show that u is unique and does not depend on the choice of
g. Meanwhile, since u — g € V}(Q|R?), using the definition of u and the Poincaré-Friedrichs inequality
we get

() = E(u.u—9) +E(u.) = [ f(@)(ula) do —5(0) do +E(u.9)
<N fllrzllu = gllre (o) + €(u,u)'/2E(g,9)"/?
< CE(u,w) (| fll 20 + £F.9)'?).
Hence, ([4.20)) follows. Next, since u — g € V(Q|R?), the Poincaré-Friedrichs inequality (3.41]) implies
ullZ2 oy < 2llu— G720 + 21171720
< 2CE(u—g,u—7) + 2|9l 7:q)
<AC(E(u,u) + 19113, (ray)-
Recalling that [|g]|7, ey = inf {[|g]lv, @ra) : Tr(g) = g}, the estimate (4.21]) follows as well by combining
(4.20) with the above estimate. O
Next, we establish a nonlocal version of Weyl’s decomposition lemma which the local case asserts that
HY(Q) = Hj(Q) & H, () where H,(Q) = {u e H'(Q) : —Au=~u, in Q and u =0 on 9Q}.

Proposition 4.23 (Weyl’s lemma). Fory > 0 define the scalar product £, (u,u) = &€ (u, u)+y(u, u)r2(q)
and the space of v—Harmonic functions by

Vo (QRY) = {u € V,(QRY) : Lu=~u in Q and u=0 on Q°}.
The following & (-, -)-orthogonal decomposition is true
Vo(QUR?) = VHQURY) @ Vi, (2 RY).

Proof. Let u € V,(QR%). We know there is a unique v’ € V,,(Q|R) such that v’ = u — v’ € V(QRY)
and &, (u',v) = 0 for all v € V(Q|R?) that is u’ € V,,, (| R?). In particular we have &, (u/,u”) = 0, i.c.
u' and u” are &,(-,-)-orthogonal. Thus, u = v’ +u” € V(QIR?) @V, (Q| R?). O

4.3.3. Integrodifferential equations (IDEs) with mixed condition

Here we treat a special IDE whose complement condition is a mixture of the Dirichlet and the Neumann
complement conditions. Assume Q C R? is an open set. Let D C Q¢ and N C Q¢ be measurable sets
such that |D|,|N| >0, Q°=DUN and [DNN|=0. Let f: Q2 >R, gp: D — Rand gn : N - R be
measurable functions. The mixed problem for the operator L associated with the data f, gp and gy is
to find a measurable function u : R* — R such that

Lu=f in Q wu=gp on D and Nu=gy on N. (4.22)

The local counterpart of the problem (4.22) for the Laplace operator is to find a measurable function
u : £ — R such that

0
—Au=f in Q wu=gp on D and 8—u:gN on N. (4.23)
n

where the functions gp and g are respectively defined on D C 92 and N C 92 so that DUN = 9f) with
|[D N N|=0. As for the Neumann and the Dirichlet complement conditions, a weak solution of (4.22)) is
defined as follows.

Definition 4.24. A measurable function u : R — R is a weak solution or a variational solution of the
inhomogeneous mixed problem (#.22) if u € V,,(2|R?) and satisfies

u—gp €Vp and E(u,v) = / f(@)v(x)dz +/ gn(y)v(y)dy for all v e Vp (4.24)
Q N

where Vp = {v € V,(Q|R?) : v =0 a.e. on D}.
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Theorem 4.25. Assume Q C R? is a bounded open set and the function v : R — [0, 0o] is the density of
a symmetric Lévy measure with full support such that the couple (v,Q) belongs to one of the class o7, i =
1,2,3,4 (see page, For a set K C Q with positive measure, assume vi (x) = essinfycx v(z—y) > 0a.e
for almost x € Q°. Then given f € L*(Q), gp € T,(Q°) and gn € L3(Q°,vy"), there exists a unique
solution u € V,,(QR?) to the variational problem (4.24)).

Moreover, there exists a constant C := C(d,Q,v) > 0 independent of f and g such that u satisfies the
following weak reqularity estimate

lullv, ey < € (IFllz2@ + lgnllm o) + llon | 2gae -t ) - (4.25)
Proof. Since |D| > 0, by Theorem the Poincaré inequality holds on Vp, i.e. there exists a constant
C=0C(d,Q,D,v,) such that
vl 20 < CE(v,v) for all v € Vp.
Therefore, the proof follows by adapting the proofs of Theorem [£.16] and Theorem O

4.3.4. Integrodifferential equations (IDEs) with Robin condition

We now treat the Robin type problem with respect to the nonlocal operator L on €. In the classical
setting for the Laplace operator, the Robin boundary problem also known as Fourier boundary problem
or third boundary problem is a combination of the Dirichlet and Neumann boundary problem and is often
given as follows.

ou
on
Here f : Q@ — R and b,g : 92 — R are given measurable functions. For a more extensive study on the
local Robin boundary value problems see [Dan00, Nit14]. Analogously, in the nonlocal set up, we assume
that b,h : Q¢ — R are measurable functions. We now formulate the Robin problem with respect to L
with data f,h and b. It consists of finding a measurable function u : R? — R such that

Lu=f in Q@ and Nu+bu=h on Q° (4.26)

—Au=f in Q and +bu=g on ONQ.

For the sake of simplicity we assume b(x) = B(x)vi(x) and h(z) = g(z)vk(z), x € QF, for a measurable
set K C Q with a positive measure. We recall that vx(x) = essinf,cx v(z —y). If 8 = 0 one recovers a
Neumann problem and if 5 — oo then it leads to a Dirichlet problem. As for the weak formulation of the
Neumann problem, we define a weak solution to as follows.

Definition 4.26. A function u : R? — R is a weak solution of the Robin problem (4.26)) if

Qp(u,v) —/Qf(x)v(:c) dac—i—/ g)v(y)vk (y)dy for all UGVV(QURd), (4.27)

c

where we introduce the bilinear form

Qp(u,v) = Eu,v) + / u(y)o(y)B()vic (y) dy.

c

Theorem 4.27. Assume Q C R? is a bounded open set and the function v : R — [0, 00] is the density
of a symmetric Lévy measure with full support such that the couple (v,Q) belongs to one of the class
o, i =1,2,3 (see page . For a set K C Q with a positive measure, let vi(z) = essinfyerx v(z —y)
for almost every x € Q°. Let B : Q¢ — [0,00) be essentially bounded such that fvix > 0 a.e on a subset of
positive of 2°.

Then given f € L?(Q) and g € L?(Q°, vk), there exists a unique solution u € V,,(QR?) to the variational
problem . Moreover, there exists a constant C := C(d,Q,v, K, 3) independent of f and g such that

lullv, @rsy < C (1fll2) + l9llL2@ev)) - (4.28)

In particular, the operator ¥ : L2(Q2) x L%(Q¢, vk) — V., (QR?) mapping the Robin data (f,g) € L?(2) x
L2(Q¢,vk) to the unique solution u € V,(QRY) of the variational problem (&.27) is linear, one-to-one,
continuous and we have

19 (f, v, @mraey < CIf 9 L2 x L2 (90,5
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Proof. First of all, we claim that the form Qs(-,-) is coercive on V, (2JR?). Assume it is not true then
for each n > 1 there exists u, € V, (QR?) preferably, ||un v, qre) = 1 such that

1
Qs un) < 5

In virtue of compactness Theorem m (un)n converges up to a subsequence in L?(f2) to some u. It
n—oo

turns out that [lullpz2) = 1, since E(un,u,) —— 0 and for all n > 1, [lunlly, (rey = 1. That
E (U, un) —=25 0 and ||, — ull L2 (0) 2722 0 imply that u,, converges to u in V, (Q|R%) with &(u,u) = 0
and thus u is constant almost everywhere in R¢. On the other hand, since /3 is bounded and the embedding
V,(QRY) — L2(Q°, vk) is continuous, we have

c

| s ar <2 [ E@swrw s+ 23l | () - o)) dy

< 2Qﬁ(umun) + C”un - u”%/l,(de) — 0.

From this, we have u = 0 since we know that u is a constant function and Svg > 0 almost everywhere on
a set of positive measure U C Q° on which u vanishes. This negates the fact that ||ul[z2(q) = 1 and hence
our initial assumption was wrong. Therefore, there exists a constant C' = C(d, 2, v, K, 8) > 0 such that

Qp(u,u) > C”UH%/U(de) for all u € V,(Q|RY). (4.29)

Beside this, it is easy to prove that the remaining assumptions of the Lax-Milgram lemma are met in
order to guarantee the existence and uniqueness of a solution to (4.27). The estimate (4.28) is a direct

consequence of (4.29). O

Comments

A separate objective was to show that the function spaces studied in Chapter [3are adapted for the study
of IntegroDifferential Equations (IDEs) on domains with complement conditions similar to those present
in the study of boundary values problems associated with elliptic Partial Differential Equations (PDEs) of
second order. It is noteworthy to highlight that our context, however easily extends to the setting where
the interacting kernel v(z — y) is substituted by an elliptic symmetric kernel k : RY x R — [0, 00], i.e.
satisfying the following weak elliptic condition:

(Ex): There exists a constant A > 1 such that for every measurable function u : R* — R we have
AT E (u,u) < EF(u,u) < AE(u,u), (Ex)
where

) =5 (o) - uw)*k.y) dod.

(QexQe)e

It is worth noting that choosing a kernel k : RY x R — [0,00] in the nonlocal setting is the same as
2

choosing a matrix A : R* — R A(z) = (ai;(x))1<ij<a in the local setting. A concrete explanation is

encoded in Chapter [2] and we elaborate more on this fact in Chapter

Let us mention that the Dirichlet problem for nonlocal operators has been extensively studied throughout
the literature. The Dirichlet problem for nonsymmetric kernels is thoroughly carried out in [FKV15].
See also [RO15] and further references therein. The Neumann problem for nonsymmetric kernel requires
some additional knowledge on a way to control the set of functions u on which the linear form £*(u,-) is
degenerated. This is not straightforward since if & is nonsymmetric, one can easily check that £ (u,u) =
EFs (u,u) where ky(z,y) = 3 (k(z,y) + k(y,z) is the symmetric part of k.

If v is fully supported on R? and k is symmetric and satisfying , then £F(u,-) is degenerated if
and only if u is a constant. From this the solvability of the nonlocal Neumann for a symmetric kernel
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k satisfying (F) easily extends since in this case the compatibility condition persists and it thus
suffices to work on the space V,,(QR%)+L.

Furthermore, when working on the space V(Q|R?) of measurable functions u : R* — R for which
E¥(u,u) < oo in replacement of the space V,(2|R?), the lower elliptic bound condition (L-E%]) below
would be sufficient as it guaranties the coercivity of the form £(-,) via Poincaré type inequalities.

(L-Ey): There exists a constant A > 1 such that for every measurable function u : R* — R we have
A (uyu) < EF(u,u). (L-E¥)

4.4. Spectral decomposition of nonlocal operators

The main subject of interest in this section is the spectral decomposition of a singular nonlocal operator
of the form L on a bounded domain €2 subject to the Neumann, Dirichlet or Robin boundary condition.
Precisely, we are concerned about the pairs (A, u) consisting of a real number A called an eigenvalue and a
function u € V,,(Q|R?) called eigenfunction so that (in the strong sense) we have Lu = Au on ) plus some
additional conditions which we formally consider in the next definitions. These spectral decomposition
have some properties of important interest which we will explore here and later. Let us first define the
weak version eigenvalues and eigenfunctions.

Definition 4.28 (Neumann eigenvalue of L). A non zero function u € V, (2|R?) will be called a Neumann
eigenfunction of the operator L on 2 if there exists a real number p which is the eigenvalue associated
with u such that the following holds

E(u,v) = ,u/gu(x)v(x)dx for all v € V,(QRY). (4.30)

We will formally write Lu = pu in Q and Nu = 0 on Q¢ which in fact corresponds to the weak formulation
in (4.30) provided that u is regular enough.

It is worth noticing that if u is a Neumann eigenfunction of L with associated eigenvalue p then automat-
ically, either u € V,,(QR?)* when p # 0 or else 1 = 0 and the constant functions u = ¢, ¢ € R\ {0} as
the related eigenfunctions.

Definition 4.29 (Dirichlet eigenvalue of L). A non zero function u € V.$}(Q|R9) will be called a Dirichlet
eigenfunction of the operator L on 2 if there exists a real number A which is the eigenvalue associated
with u such that the following holds

E(u,v) = )\/Qu(x)v(x)dm for all v € V(QRY). (4.31)

We will formally write Lu = Au in € and v = 0 on 2¢ which in fact corresponds to the weak formulation
in (4.31)) provided that w is regular enough.

Definition 4.30 (Robin eigenvalue of L). Let 5 : Q¢ — [0, oo] be a measurable function and K C Q be a
measurable set such that |[K| > 0. A non zero function u € V, (QJR?) will be called a Robin eigenfunction
of the operator L on  if there exists a real number v(3) which is the eigenvalue associated with u such
that the following holds

Qp(u,v) = 7(6)/Qu(x)v(x)dx for all v € V,(QRY), (4.32)

where we recall that

c

Qo (u,v) = E(u,v) + / (o) By (y) dy.

We will formally write Lu = y(8)u in Q and Nu+ fvgu = 0 on Q¢ which in fact corresponds to the weak
formulation in (4.32)) provided that u is regular enough.
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Theorem 4.31. Assume Q C R? is a bounded open set and the function v : R — [0, 00] is the density
of a symmetric Lévy measure with full support such that the couple (v,Q) belongs to one of the class
o, i = 1,2,3. Then there exist a sequence (¢n)en, in Vi, (QRY), orthonormal basis of L*(Q) and an
increasing sequence of real numbers 0 = g < p1 < -+ < pp < -+ L such that gy, — 00 as n — oo and
each ¢, is a Neumann eigenfunction of L whose corresponding eigenvalue is p,. Fach eigenvalue is listed
with its geometrical multiplicity.

Proof. For fi, fo € L*(Q) let us denote us, = ®o(fx) = ®(fx,0) € V,(QRY)L, k = 1,2 the unique
solution of with Neumann data f = f; and g = 0. Precisely,

E(@o(fr), / fe(x)v(x)dz for all v e V, (QRHL. (4.33)

Testing (4.33)) against v = ®¢(f2) and v = Py(f1) successively when k = 1 and k = 2 yields

(f1,20(£2)) 12 () = E(@o(f1), o(f2)) = E(Po(f2), Po(f1)) = (f2, Po(f1)) 2 (q)-

Therefore, the operator Rg o @y : L2(2) 2% V,(QRY)~ 22 12(Q)L is compact (by Theorem and
symmetric hence self-adjoint. Recall that R denotes the restriction operator to 2. It is a fact from the
spectral theory of compact self-adjoint operators that L?(2)* possesses an orthonormal basis (e,, ),, whose
elements are eigenfunctions of Rgo®( and the sequence of the corresponding eigenvalues are non-negative
real numbers (r,,), which we assume are ordered in the decreasing order, r; > ro > -+ > 7, > ---0 such
that r, — 0 as n — oco. Precisely, for each n > 1, Rq o ®g(e,,) = rpe, or simply write ®g(e,,) = rpe, a.e
in Q. Combining the latter relation with the definition of ®¢(e,) we get

E(Do(en), v) = / en(@)o(x)dz = ! / Bo(en)(@)o(x)dz  for all v e V,(QRY):
Q Q

Equivalently, letting p, = r,;' and ¢, = ®o(e,)/||Polen)||2(0) = rn* Pole,) which is clearly an element

of € V,(QR%)* yields

E(Pn,v) = fin /Q dn(x)v(z)dz  for all v € V, (QRY)*:

Hereby, along with po = 0 and ¢g = |Q|~! provides the sequences sought for. Now if we assume pu; = 0
then we have ¢1 € V,(QR?)L and E(¢1,v) = 0 for all v € V,,(QR?Y)L. In particular £(¢1,¢1) = 0, i.e ¢
is a constant function in V, (Q|R%)* necessarily ¢; = 0 since ¢; has zero mean over 2. We have therefore
reached a contradiction as ¢; is supposed to be an eigenfunction, i.e. ¢; # 0. Thus, ;1 > 0 and this
completes the proof. O

Next, by exploiting [Nic11], we characterize the eigenpairs of the operator L using the Rayleigh quotient.

Theorem 4.32. Assume Q C R? is a bounded open set and the function v : R — [0, 00] is the density
of a symmetric Lévy measure with full support such that the couple (v,Q) belongs to one of the class
Ay, i =1,2,3 (see page . The following assertions are true.

(i) There exists u € V,(QRI) L which is a global minimum of v — £(v,v) in V,(QR?)L subject to the
constraint ||v||p2(q) = 1. In short,

E(u,u) = min{&(v,v): v € Vl,(Q|Rd)l7 ||U||L2(Q) =1}

(ii) Let u be a local extremum (minimum or mazimum) of v — E(v,v) in V,(QRY)L subject to the
constraint ||v]|r2q) = 1, then u is an eigenfunction of L subject to Neumann condition. Moreover,
the corresponding eigenvalue is a strictly positive real number given by u = &E(u,u).
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Proof. To prove (i), note that the quantity m = inf{&(v,v) : v € V,(QRNL, [[v||12(0) = 1} exists
according to the Poincaré inequality (3.40). Next, let (uy,), C V,(Q|R?)+ be a minimizing sequence such
that for all n > 1, |luy|/z2(0) = 1 and

1

m < E(up,u,) <m+ on”

The sequence (uy,), is clearly bounded in V,, (Q[R4). Therefore, according to Theorem there exists
u € V,(QR?) so that a subsequence of (u,), weakly converges in V,(Q|R?) and strongly converges in
L?(Q) to u. Recalling that || - H%,U(de)) = - ||%2(Q) + &(+,+), the weak convergence combined with

||un||L2(Q) = HUHL2(Q) =1 yields,

o o 1
E(u,u) < hnrgloréfg(un,un) < llnrr_1>1oréf(m + 2—71) =m
That is, £(u,u) < m. In addition, the strong convergence implies that f,u = 0 so that u € V, (Q|R?)+
and [Jul|z2(q) = 1. Tt follows that

m = E(u,u) = min{&E(v,v): v € V,,(Q|]Rd)J‘, lvllL2() = 1}

Let us now tackle (i3). On the space V,(Q|R?)L, let us define A : v+ E(v,v) and G : v ||v\|2L2(Q) -1
So that u is a local extremum of A subject to the constraint G(u) = 0. It is routine to show that A and
G are continuously Fréchet differentiable. Furthermore, the first variation of A and G reveals that

A (u)(v) =2E(u,v) and  G'(u)(v) = 2(u,v) 2 for all v € V,(QR%)*.

Moreover, G’ (u) # 0 since G’ (u)(u) = 2, given that G(u) = 0. Applying the Lagrange multiplier Theorem
with the space V, (Q|R?)* serving the role of the Banach space, one finds a real number y such that
A (u) = pG’'(u). Equivalently, we have

E(u,v) = ,u/Qu(a:)v(x) dz for all v € V,(QR%)*.

We have reached the relation claiming v as a Neumann eigenfunction of L and we have u = &(u, u)

since G(u) = 0. If 4 = E(u,u) = 0 then u is constant with a vanishing mean over Q since V,,(QR?)+.

Necessarily, u = 0 which goes against the fact that |u||z2(q) = 1. Thus p > 0 which achieves the proof.
O

Remark 4.33. The assertions (i) and (i¢) of T heorem reveal that a global minimum u € V, (Q|R%)+
of v = &£(v,v) subject to the constraint [v[[z2(q) = 1 exists. Moreover, this minimum is a Neumann
eigenfunction of L whose corresponding eigenvalue is p = E(u,u) > 0. In fact p is the smallest positive
Neumann eigenvalue of L. For this reason, we shall call this eigenvalue p; and one of the associated
eigenfunction ;. Note that the smallest eigenvalue is po = 0 and the associated eigenfunctions are
constant functions ¢y = ¢ with ¢ # 0.

Another important remark is that, minimizing v — &£(v,v) on V,(QR?)* subject to |[v[|r2(q) = 1 is

equivalent as minimizing the quotient v Hfll(;) ) with v running in V,(Q|R%)%. This is the Rayleigh
L2(2)
quotient. Wherefore, we have the following explicit representation
E(v,v)

- BACLLON, E(v,v) : — 11
v Mo ol 1= ey €@ ) ol =13

Next, we explain how to find the other eigenvalues by employing a similar technique. The following
theorem is a refinement Theorem providing a more constructive approach to the eigenvalues (g, ).
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Theorem 4.34. Let Q C RY be a bounded open set and the function v : R® — [0,00] is the density of
a symmetric Lévy measure with full support. Assume that the couple (v,Q) belongs to one of the class
oy, i = 1,2,3 (see page . Then there exist a sequence (@n)nen, 0f positive real numbers and a
sequence of functions (@n)nen, i Vi, (QRY) such that for each n > 0 the pair (un, pn) satisfies

, E(v,v)
n =E(pn,on) = min{E(v,v) : ||v|r2) =1} = inf { —5—— }. (4.34)
VEVn, L2 = vEV, { 1011720 }

Here we denote Vo = V,,(Q|R?), po = |~ and forn > 1,

V., = {9007 1, ,@n—l}J‘ = {U S VV(QHRd) : ('U,SO'L')LZ(Q) = 07 1= O’ ]_’ N 1}
Moreover, the following assertions hold true.

(i) For each m > 0, u, is a Neumann eigenvalue of L the operator L constrained with the Neumann
boundary condition Nu =0 on Q¢ and the associated eigenfunction is @,.

(1)) O=po < pp <+ < pp <--- and lim p, = co.
n—oo

(iii) The family (pn)nen, is an orthonormal basis of L?(€2).

Proof. Obviously, we have Vo = V,,(QR?), uo = 0 and ¢y = |Q|7L. We also have V; = V,(QRY)+ =
{eo}t = {v € VL(QR?) : [,v = 0}. The existence of (u1,¢1) clearly springs from Theorem h
Repeating this procedure 1nduct1vely by modifying appropriately with V; replaced by Vs, V3, -+ one
obtains the existence of u, and ¢, for each n > 1. The argument is based on the grounds that for each
n > 1 the linear forms v — (v,¢;)r2) ¢ = 0,1,---,n — 1 are continuous on V,(QRY) which implies
that V,, is a closed subspace of V, (2|R?) and hence can be thought as a Hilbert space in its own right.
Thus is verified and (7) follows by identical argument as in Theorem It is worth noticing
that by construction all elements of the sequence (¢,), are mutually orthogonal in L?(f2). Besides,
VooViD>VeoD--- DV, D--- wherefrom it follows that 0 = pg < p1 < -+ < pp < -+ - thus we have
lim p, =B with B =sup .

Assume B is a real number, i.e. sup,cypn = sup,cy&(¥n,¥n) = B < co. For all n > 1 we also have
l¢nllz2(@) = 1. In other words, the sequence (¢, ), is bounded in V, (Q|R?). In virtue of the compactness
Theorem [3.89) m there exists a subsequence (p,,)r converging in L?(Q)). Which is impossible since by
orthogonality

||90nk+1 - SOnkH%z(Q) = ||90nk+1||%2(§2) + ||@nk||%2(ﬂ) =2 forall k>0
Consequently the assumption that B < oo is impossible hence li_>m tn = B = co. We have proved (ii).
n oo

Now to show (iii) we solely need to show that the span of (¢, )nen, is dense in L?(2). Let f € L*(Q).
For £ > 0 small enough consider g € C2°(R?) C V,,(QR?) such that ||f — g|/r2(a) < &. Since the elements
(¢n)nen, are mutually orthogonal, the Bessel inequality tells us that

‘Z(f—ga SOk)Lz(Q)%‘ <N =9l <e
k=0

Therefore, we have the following estimate for all n > 1

Hf - zn:(ﬂ @k)m(g)@k
k=0

< 1f = gllzzc0) + Hg (97 Pr) L (Q)‘Pk‘
k=0

L2(Q)

+ H Z(f - gv‘Pk)LQ(Q)SOk‘
k=0

L2(Q)

(4.35)

n
<2+ ’ |
€+ |9 — 2 0(9 k) L2(Q) Pk L2(8)
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For n > 1, consider g, = g — > (g, ) 12()9%- Since g € V,,(QR?), by definition of (1, ;) we have
k=0

E(g,¢5) = 159, 05) L2 forall 0<j<n.

Also by orthogonality, we have

E(pr, 05) = r(Pr, ©5)12(Q) = Hrlk,j forall 0<jk<n.

Whence, for 0 < j < n, combining the above relations we get

n

Elgn, ;) = E(g,05) = > _(9,06) L2 E (@, 05)
k=0

= (9, ¢j) L2 () — Z (9, 1) £2(Q) Ok,
k=0

= 1;(9, Sﬁj)m(n) - Mj(!J,st)Lz(Q) =0

which yields €(gn, g — 9n) = E(gn,

J

E(9,9) = E(Gn> gn) +E(G = gn, 9 — gn) = E(Gns gn)- (4.36)

(9, SOj)LQ(Q)gaj) = 0. Therefore we get
0

Again by orthogonality we have

n

(9> 03) 2200 = (9:95) 22 — D (9, 0r) p2@) (Phs ©5)12(02)
k=0

=(9,905)r2(2) — >_(9:Pr)12(2) 0k
k=0

=(9,¢j)r2) — (9, ¥j)2() = 0.
So that g, € Vi1 = {0, 01, -+, on}+. By the expression of p, 1 together with (4.36) we get

tint1llgnll7zcq) < E(gns gn) < E(9,9)-

n—oo

Since this holds for arbitrarily chosen n > 1 the fact i, 1 ——s 0 forces ||gn||%2(m —— 0 that is

n

nh—>n§o Hg - Z(Q:@k)ﬁ(ﬂ)@”k”;(m =0.
k=0

Inserting this in our initial estimate (4.35)) yields
- 2
Jim If - l;)(fv ‘Pk)LQ(Q)QOkHLz(Q) < 2e.

Wherefore letting ¢ — 0 leads to the relation

oo

f= Z(f, ©n)L2(Q)Pn in the L?(Q) sense.

n=0

This gives precisely the density result we are striving for and the proof is completed. O

By analogous arguments as in Theorem [£.34] one is able to prove the following similar result when the
operator L is subject to Dirichlet or Robin boundary condition.
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Theorem 4.35. Let Q C RY be a bounded open set and let the function v : R — [0,00] be the density
of a symmetric Lévy measure. Assume the conditions and (see page hold. Then there exist
a sequence of positive real numbers (A\n)nen and a sequence of functions (¥n)nen in VSHQR?) such that
for each n > 1 the pair (An,v¥n) satisfies the relations

Ao = ECbn ) = minE@,0) ¢ ol = 1) = inf {m L (437)
Here we denote V; = V(QIR?) and for n > 2,
Vo= {01, P}t = {v € VHQIRY : (0,9i)12(0) =0, i=1,---,n—1}.
Moreover, the following assertions hold true.

(i) Each A\, is a Dirichlet eigenvalue of the operator L constrained with the Dirichlet boundary condition
u =0 on Q° and the associated eigenfunction ¥.,.

(1) 0< A <--- <A, <--- and lim A, = co.

n—oo

(iii) The family (Vn)nen is an orthonormal basis of L*(£2).

Theorem 4.36. Let Q C RY be a bounded open set and let the function v : R — [0,00] be the density
of a symmetric Lévy measure with full support. Assume that the couple (v, ) belongs to one of the class
o, i =1,2,3 (see page . Let K C Q be a measurable set such that |K| > 0 and let §: Q° — [0, 0]
be a measurable function such that Svx > 0 a.e on a set of positive measure. Then there exist a sequence
of positive real numbers (Y(B)n)nen and a sequence of functions (Xn)nen in Vi, (QR?) such that for each
n > 1 the pair (xn,v(8)n) satisfies the relations

Qﬁ(”? ’U) }

(4.38)
||U||2L2(Q)

W) = Qs (xn xn) = min {Qs(v,0) ¢ [[vllzaey =1} = inf {
with

Qp(u,v) = E(u,v) + / w(y)o(y)B(y)vic(y) dy.

c

Here we denote Vi = V,(QR?) and for n > 2,
Vi = {X17X25 T 7Xn71}l_ = {’U € VV(Q‘Rd) : (7)7Xi>L2(Q) =0, i=1,---,n— 1}
Moreover the following assertions hold true.

(i) Each v(B), is a Robin eigenvalue of the operator L constrained with the Robin boundary condition
Nu+ Brgu =0 on Q° and the associated eigenfunction is xy.

(ii3) The family (Xn)nen is an orthonormal basis of L*(£2).

Remark 4.37. Recall that it is possible to replace vg by Pk in the foregoing. It is worthwhile mentioning
that the constants p; > 0 and A\; > 0 respectively satisfy the following Poincaré type inequalities.

E(u,u) > u1||u||2L2(Q), for all u € V,(QRY)*  and  &(u,u) > )\1||u||2L2(Q), for all u € V. (QIRY).
In addition, the following comparison holds
tn—1 < v (8) < Ap, foralln>1.
In short, one merely writes Neumann < Robin < Dirichlet.
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4.5. Helmholtz equation for nonlocal operators

There are several applications of spectral decomposition. We shall illuminate this through the Helmholtz
type equations subject with the Neumann complement condition. The other types of complement condi-
tions can be derived likewise. The Helmholtz equation with the Neumann condition is of the form

Lu—Xu=f in Q and  Nu=0 on R¥\ Q. (4.39)

Here ) is a potential and for brevity we assume that A € R. Define £_(u,v) = E(u,v) — AMu,v)r2(q)-
Obviously, the weak formulation of (4.39) consists of finding u € V,,(Q2|R?) such that

(u,v) / f(@)v(x)dz for all v € V,(QRY). (4.40)

To study (4.40]), we will need the so called Fredholm alternative.

Theorem 4.38 (Appendix D, Theorem 5, [Eval0]). Let K : H — H be a compact operator on a Hilbert
space (H, (-,-)m). The following assertions are true.

(i) ker(I — K) has finite dimension and Im(I — K) is closed.

(i) If K* denotes the adjoint of K thenker(I — K) = Im(I — K*)* and dim Im(I — K) = dim Im (I — K*).
(131) ker(I — K) = {0} if and only if Im(I — K) = H.
Theorem 4.39. Assume Q C R? is a bounded open set and the function v : R — [0, 00] is the density
of a symmetric Lévy measure with full support such that the couple (v,Q) belongs to one of the class

oy i =1,2,3 (see pageu) Let 0= po < p1 < pig < - <y < -+ be the eigenvalues of L subject to
the Neumann condition (c.f Theorem“) Let f € L2( ). The following assertions are true.

(i) If X € RO\{p, : n € Ny} there exists a unique function u € V,(QRYL such that

(u,v) / f@)v(x)dz  for all v € V,(QRY)*. (4.41)

Moreover, there is a constant C := C(d,Q,v,\) > 0 such that

lullv, @ray < Cllfllz2q) - (4.42)

ii) Let j > 1. Assume X = p; and let ©;, 0541, ,0jar, € V,(QRY)L be the linear mdependent
J irPj g+
eigenfunctions corresponding to the eigenvalue p;. Consider the direct decomposition V,, (Q|Rd)
W; ® Wi where W; = span{@;, @j41,- -+, @j4r, } and Wi = {v € V,(QAR)™ : (v,0;)p20) = -+ =
(v, 0j4r;)12() = 0}. Then there exists a unique u; € W]-J‘ such that

E_p, (uj,v / f(x)v(z)dz for allv e WL (4.43)

Moreover, there exists C := C(d, 2, v, ;) > 0 independent of f such that the following estimate holds

lluillv, @mray < Cllfllz2 ) - (4.44)

Furthermore, the problem (4.41) has a solution if and only if (f,¢j)r2) = = (fs@j+r;)r2@) = 0. In
this case, all solutions to the problem (4.41) are of the form uj; + ¢ for any ¢ € Wj.
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Proof. (i) Consider the linear operator ®y : L2(2) — V,(QR%)L mapping f € L?(Q2) to u = ®of €
V,(QR4)+ the unique solution of the problem with ¢ =0, i.e.

E(u,v) = /Qf(a:)v(x) dz for all v € V,,(QR%)*:.

As in the proof of Theorem we know that the operator S = Rq o ®q : L?(Q) — L?(Q)* is compact.
Let w € ker(I — AS) that is ASw = w. Equivalently, we have

E(Pow,v) = )\/ dow(x)v(z)dz for all v € V,(QRY)L.
Q

Necessarily, w = 0 since by assumption, A is not a Neumann eigenvalue. Hence ker(I — AS) = {0}.
According to Theorem (iii), we have Im(I — AS) = L?(Q2). Hence for f € L*(Q), we can write
f=w—ASw=w— ARgq o ®ow for some w € L?(Q). We have w = f + ARq o ®ow. Let v € V,(QRY)*,
by definition of ®gw we have

S(CDow,v):/Qw(m)v(x)da::/ﬂf(x)v(a:)da:—l—)x/ﬂ@ow(:c)v(x)dx.

Therefore the function u = ®gw, satisfies . Furthermore, the uniqueness of u is due to the fact
that A is not a Neumann eigenvalue. Next, consider the operator Ty : L2(Q2) — V,,(Q|R%)~* such that for
f € L), u=T\f solves . Let (fn)n be a sequence in L?(Q) tending to zero such that u, = ®f,
converges to u in V,,(Q|R?). Let v € V,,(QR?)L then for n > 1, we have

E(tun, v) — A /Q tn(2)v(z) do = /Q Falz)v(z) dz.

Letting n — oo, this amounts to £_(u,v) = 0. Necessarily u = 0 since by assumption A is not a Neumann
eigenvalue. Therefore, in virtue of the closed graph Theorem T) is a bounded operator. There exists a
constant C' > 0 such that

TRy, oray < Cllhllz2@)  for all h € L*(Q2).
Hence the estimate (4.42]) follows.

(77) Assume X = pj. The procedure is analogous to the proof of (i). Consider the linear operator
D, L2(Q) — le mapping f € L*(Q) to u; = ®; f the unique function in WjJ- satisfying

E(uj,v) = /Qf(x)v(x) dz forallve W]-L.

This makes sense since WjJ- is a closed subspace of V,(QJR%)L and hence Lax-Milgram’s lemma can be
applied on WjJ-. Similarly, we can show that S = Rg o ®; : L?(2) — L?(Q2)* is compact. Moreover,
ker(I —p;S) = {0}. Indeed, if w € ker(I — 1;S) then since p; is a Neumann eigenvalue we can easily show
that w = ASw € W; N W;* = {0}. Again by Fredholm alternative (Theorem (iii)) for f € L?()

there exists u; € W; such that f = u; — pu;Su; and u; is unique since W; N WjJ- = {0}. We get that

E_y;(uj,v) = /Qf(x)v(x) dx for all v € Wj.

One can also show the estimate (4.44)) by applying the closed graph theorem as above. Let us recall
that W; is the eigenspace associated with the eigenvalue p;. If u € V,(QR%)* solves (4.41) then since
E_p,(u, ) =0 for all ¢ € W;. In particular this implies that (f, <‘Dj)L2(Q) == (f, ‘PJ'JFTJ‘)L?(Q) =0.
The converse remains true. Indeed, every ¢ € Wj is an eigenfunction associated with the eigenvalue p;,
ie. £_,,(p,v) =0 forall v e V,(QR?):. Accounting the fact that V,(QR): = W; @ Wf one easily
show that

E (uj+¢,v)=0 forallve Vi, (QRY) L.

Conversely, if u solves (4.41)) then one can easily show that u —u; € W and f € WJ-J-. Thus all solutions
of (4.41) are of the form u; + ¢ with ¢ € W; if and only if f € WjJ-. O
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Remark 4.40. It is easy to deduce solutions of the problem form those of the problem (4.41]).
Note that the situation where A = 0 is already encoded in the variational problem . Furthermore, in a
similar manner one is able to treat the Helmholtz type equation associated with other types of complement
value conditions.

4.6. Profiling solutions of evolution of IDEs

In this section the spectral decomposition also plays an essential role. We do some accustomed heuristic
on certain IDEs with time evolution. Our exposition here is mostly for illustrative purposes, so we will not
give precise arguments. We shall only focus on Neumann complement type condition. Assume  C R? is
an open set and let 0 < T' < oco. Let us consider the heat equation with complement Neumann condition,

Ou+Lu=f inQx[0,T), Nu=g onQ°x[0,T), u=wug on x {0} (4.45)

Here f,g:Q x[0,T) — R and ug : RY — R are given data. In practice f is called the forcing term and
ug is the initial condition. For the sake of simplicity, from now on we assume that g = 0, i.e.

Ou+Lu=f inQx[0,7), Nu=0 onQ°x][0,T), u=ug on x{0}. (4.46)

According to [DROV17] the problem (4.46) encodes the evolution of a Lévy process whose jumps from x
to y are driven by v(xz — y) with the following features:

1. u(x,t) represents the probability distribution of the position of a Lévy process moving randomly
inside Q. In other words the generator of this process is —L (See Chapter [2)). Thus u(z,t) satisfies

O+ Lu=0 in Q x [0,7).

2. When the process exits €2, it instantaneously comes back to {2 almost surely. If the process sites at
the position z € Q¢ at the time ¢t > 0, it will jump back at the same time to some position y € 2
with probability 1 according to the jump intensity v(z — y). Thus at the position z € Q¢ and at the
time ¢ the probability u(z,t) is the sum of all possible positions that process may occupy in  at
time ¢. This results with the following relation

u(z,t) = /@(x)/ u(y, t)v(z —y)dy.

Q

The constant x ensures that the function y — k(z)v(x — y) is a probability density on Q. That is
k1 (z) = [ v(z —y)dy. Therefore the above relation becomes

/ u(z, t)v(z —y)dy = / u(y, t)v(z —y)dy equivalently, Nu(z,t)=0.
Q Q

3. The process starts in {2 at time t = 0 with some probability distribution ug.
In sum the probability distribution solves the equation (4.46) with f =0, i.e.
Ou+Lu=0 inQx[0,7) Nu=0 onQ°x[0,T) u=up on x {0}

In practice, it would makes sense to call such a process gravity process since € it acts on the process like
an attractor. Another possible name could be reflected jumps process or pull-back process.

Remark 4.41. Assume the above process is modified in such a way that it terminates in {2¢ upon exiting
Q instead of coming back then the corresponding complement value condition is given by u(x,t) = 0

n [0,7) x Q¢ (Dirichlet condition). This process is well-known as a killed process and its probability
described by the following equation

Ou+Lu=0 inQx[0,T), u=0 onQ°x[0,T), u=mwuy onfx{0}.
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Now we want to analyze the equation (4.46]) heuristically. We adopt the notation v(t) = v(,t).

Definition 4.42. A function u : R? x[0,T) — R is called to be a weak solution of the evolution problem
(4-46)) if u € L2(0,T; V., (QRY)), dyu € L2(0,T; V, (QR?)') and

(Oru(t),v) o) + E(t), ) = (f(£),0) o forallve V,(QRY) and t € [0,T). (4.47)

Henceforward, the spaces L2(0,T; L%(Q)), L*(0,T; V,(QR?)) and L%(0, T; (V.. (QR%))’) are understood in
the Bochner sense.

Next, we are interested in establishing some basic properties of a weak solution of whenever it
exists. The spectral decomposition of L is one of the key points to do this. Before, let us see what could
be the profile of a weak solution. Under the assumption of Theorem assume (¢p, fn )nen, constitutes
the Neumann eigenpairs of the operator L. We emphasize that (¢,), is an orthonormal basis of L?(Q)
and ¢, € V,(Q|R?) for all n > 0. Recall that if b € L?(2) and hy, = (h, gbk)LQ(Q) stands for the k*" Fourier

coefficient of A then the Fourier expansion and the Parseval identity of h respectively give

h=> hepr and |B)F2) =D [l
k=0 k=0

Assume ug € V,,(QRY) and f € L?(0,T; L?(Q2)). Assume u € L%(0,T;V, (Q2R%)) solves (4.47) such that
Owu(t) € L*(Q) for all t € [0,T). By definition of ¢, we have E(u(t), dr) = i (u(t), ¢>k)L2(Q) = pruk(t),
thus testing (4.47)) against v = ¢ amounts to the ordinary differential equation

uh () + prur(t) = fr(t)  equivalently (eM*tuy(t)) = eP ! fi (1), te[0,7).
Integrating gives

t
ug(t) = e "y, (0) +/ et (570 £ () ds.
0

Therefore, since u(0) = ug, urx(0) = (uo(t), ¢k)L2(Q) and fr(t) = (f(2), gbk)LQ(Q) we have

oo

u<l‘7 t) = Z (UO(t)7 ¢k)L2(Q)€*Mkt¢k(x) + Z ¢)k(x) / 67#k(t75) (f(s)a ¢k)L2(Q) ds. (448)
k=0

t
k=0 0

The expression (4.48) shows that u(z,t) is uniquely defined whenever it exists. Further, it is worth
emphasizing that the equality in (4.48) is understood in L?(2) sense. On the other hand, assume T < oo
then for k£ > 1 given that 0 < p1 < pg we find that

T
w0 <2 )P + 27 [ 50 at
0
Recalling that ¢g = |Q|~! and pp = 0, the Parseval identity together with the preceding estimate yield
T
t 2 o
) = foy o = J3 Fo P05l 0 < 2672 o = fy oy +2T [ 15(0) = fo SOl .
Meanwhile, using v =1 in (4.47)) implies that

t
/u(x,t)dx:/uo(x)der/ /f(;v,s)dxds foral 0 <¢<T.
Q Q 0o Jo

Altogether we get

T
[u(t) = £, U(ﬂ”iz(g) < 272 lug — fo, uoll72(q) + 2T/0 1£(t) = fo F (D) Z2(q) dt. (4.49)
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It is worth emphasizing that the estimate (4.49) can also be established by using Poincaré inequality and
Gronwall’s lemma. In particular, we have

T
2
sup[[ut) = fo u®) 320 < 20 — i vollFaey + 27 / 1F(E) = £ £y . (4.50)

Exploiting the relation (4.46]) together with the Poincaré inequality whose sharp constant is given by Mfl,
leads to the following estimate

T
2 _
Hu(t) - fQ u(t)HVl,(Q\Rd) S Ce 2#175”1,[,0 - fQ UO”%}(Q) + C/O ||f(t) - fﬂ f(t)”%z(g) dt (451)

Here C' is a generic constant only depending on 7" and p;. Finally, (4.51)) ,(4.50)) and (4.47) yield

2 2 2
le = fo ullzo 0. 73220 + 10 = fo ull 20 vs imeyy + 18 = fo ull 2o 2w imeyyy (4.52)
< Clluo — o uolliz(qy + CIlf — fo FIIT20.7:020))-

A rigorous analysis using some basics on Bochner integrals allows us to establish the existence and unique-
ness of a weak solution solving under appropriate choices of the initial and complement condition.
In practice this analysis is based on the so called Galerkin approximation method which consists of pro-
jecting the problem on the finite dimensional Hilbert space generated by the n*" first vectors ¢g - -+ , dp_1.
The Galerkin approximation method also allows us to establish the estimate more consistently. A
curious readers may consult [Eval(l [Hunl4, [LDLI16] for more about this theoretical approach. Roughly,
we can summarize the well-posedness of as follows.

Theorem 4.43. Under the assumption of Them"em i.e (1,Q) belongs to one of the class <7;, i =
1,2,3 (see page . Then for f € L?*(0,T;L?()) and uy € V,(QR?) there exists a unique solution
u € C(0,T; L3(Q)) N L2(0,T; V., (QR?)) of such that Oyu € L(0,T; (V,(QRY))). Here we assume
T < co. Moreover, the estimate holds true.

One is able to establish an analogous result replacing the Neumann complement condition with the
Dirichlet complement condition. Next, we would like to investigate the long time behavior of u(z,t) upon
assuming f = 0 and T = oco. That is dyu + Lu = 0 in Q x [0,00), Nu =0 on Q° x [0,00) and v = ug on
R? x{0}. Thus reduces to

(8tu(t),v)L2(Q) + E(u(t),v) =0 for all v € V,,(QR?) and t € [0,T). (4.53)
To avoid technicality, we assume (z,t) — u(x,t) is sufficiently regular so that the interchanges between

integral sign and derivative are possible.
Mass conservation: As a consequence of (4.53) with v =1 it follows that

/ u(z,t)de = / uo(z) dz for all ¢ > 0.
Q Q

Now taking v = u(t) we get that %Hu(t)”gﬂ(m = —&(u(t),u(t)) <0 for all t > 0 which implies

Hu(t)||2L2(Q) < ||U0H2LQ(Q) for all ¢ > 0.

Energy conservation: Assume dyu(t) € V,(QR?) and let the energy E(t) = E(u(t),u(t)) then testing
(4.53) with v = dyu(t) yields

(1) = & £(u(t) u(t)) = 26 (u(t), Du(t)) = ~2000u(D)[32(0 < 0.
Therefore, we have E(t) < E(0), i.e.

E(u(t),u(t)) < E(ug,up) for all ¢ > 0.
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Dissipation effect: A close look at the proof the estimate (4.49) reveals that
2 _ t—o0
l(t) = fo o0 < €2 luo — fo ol ey 22 0. (4.54)

In other words u(-,t) exponentially tends to f, ug in L*(Q2) as t — oco.

Stability at the equilibrium: Now assume that in (4.45)), f and g are independent of the time variable.
An equilibrium solution of (4.46]) is any solution which we denote u, such that d;u, = 0 that is u, satisfies
the Neumann problem

Luc=f inQ and Nu,=g on Q°.

Next assume u is a solution to(4.45) then w(z,t) = u(x,t) — ue(x) with wo(z) = ug(x) — ue(x) satisfies

w~+Lw=0 inQx[0,T), Nw=0 onQ°x[0,T), w=wy=1up—u on 2 x {0}. (4.55)

From the estimate in (4.54) we have

) = e = Faluo — wel| gy < €4 lto — e — Fofiio — el 22 0. (4.56)

Note that if f € L?(Q) and g € L?(Q°, vj") are compatible then, Theorem implies that for all ¢ > 0,

Joat) — e — fyluo — well 2y < Ce™* (o — foyoll ey + 12y + gl ogery)- (457)

Let us highlight other types of evolution IDEs. The spectral decomposition can be further applied with
a parallel analysis on nonlocal Schrédinger equation of the form

Ow+Lu=f inQx[0,7), Nu=0 onQ°x[0,T), u=mwug onQ x {0} (4.58)

If ug € V,(QR?) and f € L2(0,T; L?(Q2)) then a profile of solution of (4.58)) is of the form

o0

Z ¢k LQ(Q kt(bk — ZZ(,bk / b (£) (f(s)vqsk)Lz(Q) ds.

Note that if f = 0 then in this case we have mass conservation ||u(t)| z2() = [[uol|z2(o) for all £ > 0. We
also point out the nonlocal hyperbolic equation of the form

Ru+Lu=f inQx[0,T), Nu=0 onQ°x[0,T), u=uganddu=mu; onQx {0}. (4.59)

If ug,u; € V,(QR?) and f € L?(0,T; L?(2)) then a profile of solution of (#.59) is of the form

u(et) = | cos(y/ant) (uo(t), 6x) 1o o) + W(“l 60) ] (0
k=0
N (e [ =8) )
> o )| (1 0),90)

4.7. Dirichlet-to-Neumann map for nonlocal operators

In this section we wish to define the Dirichlet-to-Neumann map related to the nonlocal operator L under
consideration. After we show its eigenvalues are strongly connected to the Robin eigenvalues of the
operator L. Our exposition here is largely influenced by [AMO07, [AM12] where the Dirichlet-to-Neumann
map is treated in the local setting for the Laplacian. However, we point out that an attempt to define the
Dirichlet-to-Neumann map is proved in [Von19]. For the case for the fractional Laplacian L = (—A)%/2),
a sightly different Dirichlet-to-Neumann map to ours is derived in [GSU20]. Let us start this section by
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recalling that if f € L2(Q) and g € T, (), there exists a unique weak solution u € V,(Q|R9) to the
nonlocal Dirichlet problem Lu = f in Q and u = g on ¢, i.e. we have u = g a.e. on Q¢ and

(u,v) / f(@)v(z)dz for all v e VE(QRY). (4.60)

Moreover, there exists a constant C' > 0 such that

HU||V,,(Q|Rd) < C(||f||L2(Q) + ||9HTU(Qc))- (4.61)

It is noteworthy recalling that under the conditions and (see page , by Theorem there
exist of a family of element (), elements of V}(QR?), orthonormal basis of L?(2) and an increasing
sequence of real number 0 < A} <--- < A, <--- such that A\, = 0o as n — oo and each 1), is a Dirichlet
eigenfunction of L whose corresponding eigenvalue is A,, namely

E(n,v) = /1/)n v(z)dz for all v e VEHQRY).

Before we formally define the Dirichlet-to-Neumann map, some prerequisites are required. Let f € L?(£2)
and g € T,(2¢). Assume A\ < A1, then the bilinear form

E-x(u,u) = E(u,u) = MullZ2q)

is coercive on V2(QR4). Thus there exists a function u € V,#(2JR?) which is a unique weak solution to
the Dirichlet problem Lu — Au = f in € and v = g on Q°. Explicitly, u = g on Q¢ and

E(u,v) — )\/ r)dr = / f(@)v(z)dz for all v e VE(QIRY). (4.62)

Moreover, the estimate (4.61)) (with the estimating constant depending on A) remains true. More generally,
by the mean of the Fredholm alternative and the closed graph Theorem, the preceding facts (4.62)) and
(4.61)) respectively remain true for the operator L — A, whenever A € R\ {\, : n > 1}.

From now on we suppose f =0 and A € R\ {\,, : n > 1} and label the solution of (4.62)) by u = uy. Then
the mapping g — u, is linear and continuous from T}, (02¢) to V,,(Q|R?) since by (4.61) we have

lugllv, oray < Cllgllz, (@e)-

Given v € T,,(Q°), put ¥ = ext(v) € V,(Q|R?) be an extension of v.

Definition 4.44. Let A € R\ {\, : n 2 1}. We call the Dirichlet-to-Neumann map with respect to
the operator L — A, the mapping Zy : T,,(2°) — (1,,(Q°))’ defined by g — Zrg = E_x(uy,~) such that
(Drg,v) = E_x(ugy,v). Here (-,-) stands for the dual pairing between T, (2¢) and (T, (2¢))’.

Theorem 4.45. The Dirichlet-to-Neumann operator D : T, (Q°) — (T, (2°))" with g — Prg = E_(ugq,~)
is well defined, linearly bounded and self-adjoint. Moreover there exists ¢ € R such that for all g € T, (Q°)

(P9, 9) > clluglly, ray:

Proof. Let v’ € V,(QR?) be another extension of v thus v — o € V,2(QR?). By definition of u, we get’
E_A(ug,v' —=0) =0 orequally E_x(ugy,0)=E_x(ug,v).
Therefore the mapping v — £_(ugy,v) is well defined, linear and bounded on T, (2¢). Indeed,

1€ A(ug, V)| < (Al + Dlugllv, (ora)

[0]lv, (2[ra)-
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Since the extension v of v is arbitrarily chosen, upon the estimate (4.62) we obtain

|E-x(ug, )] < Cliglit, @)llvllz, @)

This shows that £_x(ug,~) belongs (T, (2°))". Subsequently it also follows from this estimate that the
mapping I : T,,(2°) — (T,,(Q2°))" with g = Prg = E_x(ug,~) is linearly bounded. Now let g, h € T, (Q°),
specializing the definition of &) with g = u4 and h = uy. The self-adjointness is obtained as follows

(Drg, h) = E_x(ug,un) = E_x(un,ug) = (Zxh, g).

We end this proof by taking ¢ = min(1, —\), since (Zrg, g) = E_x(ug, uy) > min(1, _)‘)HUQH%/V(de)'

Remark 4.46. The above definition is plainly motivated by the following observation. Assume u4 be as
before and let ¢ € C2°(R?), the Green-Gauss formula (4.5)) gives

c

(Drg, p) = E-\(ug, @) = QCJ\fug(y)w(y) dy = / v ()N ug(y)e(y)vi (y) dy . (4.63)

From the second equality we can identify Zxg = Nu, € L?(Q°,vg') C (T,(Q°)). Hence Zrg — Nu,
which, regarding the definition of the operator N, agrees with conceptual idea behind the Dirichlet-to-
Neumann map. For the sake of consistency, in the next result, we will rather consider the following

equivalent alternative identification (up to a multiplicative weight) of the Dirichlet-to-Neumann operator
Dy : T,(Q°) — L*(Q°, vk) with Dhg = vg' Nu,.

Theorem 4.47. Let the assumptions of Theorem be in force. For B > 0, denote Lg the operator L
subject to the Robin boundary condition Nu+ Bvgu = 0. Then the point spectrum o,(Lg) = (yn(8))n of
Lg is infinitely countable say 0 < y1(8) < v2(B) < -+ <4, (B) < --- and the corresponding eigenfunctions
are elements of V,,(QR?) and form an orthonormal basis of L*(12).

Proof. It suffices to proceed as the in proof of Theorem O

Next we observe the relation between the spectrum of the operator L subject to the Robin boundary
condition and that of Dirichlet-to-Neumann operator.

Theorem 4.48. Let A € R\{\, : n > 1} and 8 € R. Under the previous notations, consider the Dirichlet-
to-Neumann map Drg = VI_(l./\/ug. Let 0,(Zx) and 0,(Lg) respectively denote pure point spectrum of P
and Lg. Then, —f € o,(Z») if and only if X € 0,(Lg). In addition, dimker(Lg — \) = dimker(Zy + 3).

Proof. Let u € ker(Lg — \) then for all v € V,,(Q|R%),

Qp(u,v) = )\/ﬂu(:v)v(q:) dz equivalently &_j(u,v) =—p o u(y)v(y)vi (y) dy.

Set g = Tr(u) = u|qe, with the aid of (4.63]) the above relation reduces to

/ Vi Ny (@)o(y)ve(y) dy = 5 o 9 (Y)vk (y) dy.
Thus g € ker(Z, + ). We have shown that the mapping T : ker(Lg — \) — ker(Z + () with v — Tr(u)
is well defined and is onto. Both assertions will follow once we show that T defines a bijection. In other
words we only have to show that T is one-to-one. For u € ker(Lg — \) if Tr(u) = 0 then from the first
relation above, we have €(u,v) = A [, u(x)v(x)dz for all v € V2(QR?). Necessarily, u = 0 otherwise A
is a Dirichlet eigenvalue which is not the case by assumption. O
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Chapter 4. Complement Value Problems

4.8. Essentially self-adjointness for nonlocal operators

We now investigate the unboundedness aspect of the operator L subject with the Dirichlet and the
Neumann complement condition. Beforehand, let us recall some basics on unbounded operators. We refer
to [Dav96, [Kow09, [RS80] for a more extensive expositions on unbounded operators. Let (H,(-,-)g) be a
Hilbert space. Throughout this section, we write (T,D(T)) to denote a densely defined linear operator,
i.e. T:D(T) — H is a linear operator whose domain D(T') is a dense subspace of H. The adjoint of the
operator (T, D(T)) will be denoted by (T*,D(T*)) where

D(T*) = {w € H: such that v+— (T, w)y is continunous on D(T')}
={w e H:3lw" € H such that (Tv,w)y = (v,w*)y for all v € D(T)}

and T*w = w* for all w € D(T'). Note that T*w is well defined since the existence and uniqueness of w*
is due to the Riesz representation theorem.

Let (T1,D(T1)) and (T3, D(T3)) be two densely defined operators on H such that D(Ty) C D(1) and
T5 |p(ry) then we say that (T1,D(Ty)) is the restriction on D(T1) of (T2, D(13)) and (15, D(13)) is an
extension of (T1,D(T1)) and write 77 C Ts. In particular, T3 = T3 if and only if 71 C Ts and T C T3.

A densely defined operator (T, D(T)) is said to be self-adjoint if 7* = T'. Obviously, we have D(T") C D(T™)
if the operator (T, D(T)) is symmetric i.e (Tu,v)yg = (u, Tv)y for all u,v € D(T).

The operator (T,D(T)) is called to be closed if (D(T),| - ||r) is Hilbert space under the graph norm
defined be ||v||% = ||v]|%; + || Tv||% for v € D(T). In other words, (T, D(T)) is closed if and only its graph
I'(T) is a closed subspace of H x H. Recall that I'(T) := {(v,Tv) € H x H: v € D(T)}.

Note that the adjoint (7, D(T™*)) of (T,D(T)) is always closed.

Instead, (T, D(T)) is called closable if it possesses a closed extension. Equivalently, (7', D(T)) is closable
if for every sequence (vy,), C D(T)) such that v,, — 0 and T'v,, — y for y € H we have that y = 0.

We write (T, D(T)) to denote the closure of a closable operator (T, D(T)), i.e. the smallest closed extension
of (T, D(T)). Note that (T, D(T)) is the closure of (T, D(T)) is equivalent to say that T'(T') = I'(T).

Definition 4.49. A symmetric operator (7, D(T)) is said to be essentially self-adjoint if it admits a
unique self-adjoint extension. This is merely equivalent to saying that the closure (7', D(T)) of (T, D(T))
is self-adjoint.

The following result is adapted from [Kow(09, Lemma 5.10]. One should note that the author intentionally
ignores the identification of the space H with ¢?(N) although it might be natural to do so.

Lemma 4.50 (Lemma 5.10, [Kow09]). Let H be a separable Hilbert space and (T, D(T)) a positive sym-
metric unbounded operator on H. Assume there exists an orthonormal basis (e;); of H such that e; € D(T')
for all j > 1 and which are eigenfunctions of T', i.e. Te; = Aje; for some \; > 0 for all j > 1. Then T is
essentially self-adjoint and its closure is unitarily equivalent with the multiplication operator (M, D(M))

on 2(N), i.e. M : D(M) — (?(N) given by

D(M) = {(u); € P(N) = Y Njuy* <o}, and  M((uy);) = (Ajuy) ;-
j=1

To be more precise we have T = UMU™Y where U : (>(N) — H is the unitary operator defined for
(uj); € C2(N) by U((uj);) = > uje; and Ut is defined for u € H by U~ (u) = ((u,e;)m);-
j=1

One can formally write Mu(x) = AMz)u(z) for x € N where u, A : N = R with A(j) = A; and v € H with
u(j) = u;. So that if m denotes the counting measure on N, one has

jzlwﬂ = / 32 () (z)m( dz).

Note that if the sequence (A;) has an accumulation point, the spectrum is not the same as the set of
eigenvalues (this already occurred for compact operators, where 0 may belong to the spectrum even if the
kernel is trivial).

144
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Proof. First of all for u € H consider the identification u; = (u,e;) . From the Bessel and the Parseval
identities we know that

U= Zujej and ||u|lg = Z |uj |2
j=1 j=1
This shows that the operators U and U ! are well defined. Moreover, U is a unitary operator. Indeed for
(u;); € *(N) and v € H, set u=U((u;);) € H with u; = (u,e;) g since U (v) = ((v,ej)m); we get
U((u3)3),0)m = (w,v)m =) (wep)m(v,e)n =Y uj(v,e;)n = ((u)7, U (0)) o -
j=1 j=1
We will show T' = UMU ~is the closure of 7" and is self adjoint. We proceed in several steps.

Step 1: We show that M is self-adjoint, this would imply that 7 = UMU ! is self-adjoint too since
U* = U~ Tt is sufficient to show that D(M*) C D(M). In fact, since M is symmetric, we get
D(M) Cc D(M*). Let w € D(M*) then by definition, the linear form v — (Mv,w)e(y is bounded on
D(M) C ¢*(N). In other words, there is a constant C' > 0 such that

‘(MU,’LU)@2(N)| < C””HW(N)? for all v € D(M)
Specializing with v = v,, € D(M) where v, ; = \j(w, e;)e; for j <n and v, ; =0 for j > n+ 1 for fixed

n > 1, we have v, = ((vn;)); € D(M) and |jv,[|3 = P 1)\§|(w,ej)|2 = (Mwvy,w)p(y). This amounts
the above inequality to

Z)\?|(w,ej)|2 <(C foralln>1.
j=1
Hence we conclude that Mw = (\jw;); € (*(N), i.e. w € D(M). Finally D(M) = D(M*) altogether with
symmetry we get that M is self-adjoint.
Step 2: T = UMU ! is closed since it is self-adjoint.
Step 3: Let us check that T = UMU™" is an extension of T. Consider u € D(T) and set u; = (u,¢€;) ;-
Since each e; € D(T) is an eigenfunction, the symmetry of T' gives (Tw,ej)p = (u,Te;)g = \j(u,€;)m-.
Thus accounting that (e;); is an orthonormal basis of H we find that
Tu=> (Tu,e;) 65 =Y N(u,ej) 65 =U((A\uy);) = UM((u;);) = UMU 'u.
=1 =
In other words, T'C UMU™!, i.e. UMU™! is an extension of T since Tu = UMU '« for all u € D(T)
and

[ee)
>N (useg) yl* = 1 Tull < oo
=1

Step 4: It remains to show that T'(7) = I'(T) which will imply that T is the closure of T. From Step 3 we
know that T'(T') C T(T). Let (u, Tu) € T(T) with u € D(T). For all n > 1 u, = 37, (u,¢;)me; € D(T)
since e; € D(T) and Tu, = Y 5_; A\j(u,ej)me; since T is symmetric and each e; is an eigenvalue of T
Thus, (un,Tu,) € I'(T). Meanwhile, we know that

o0

o0
lulZ =D l(w,ej)ul® <oo and [Tullfy =) AFl(u,ej)nl* < oo

j=1 Jj=1

since

= (u,ej)ge; € H and Tu=UMU" U—Z)\ (u,e;)mej € H.

Jj=1 7j=1

Therefore, it follows that |lu, — ullx TH—°°> 0 and ||Tu, — Tullg == 0. Hence, I'(T) = I'(T). From
the foregoing, it follows that T = UMU ! is self-adjoint and is the closure of 7' which means that T is
essentially self-adjoint.

O

145



Chapter 4. Complement Value Problems

Armed with these prerequisites, let us turn our attention to some concrete examples to which the above
notions apply. Assume © C R? is an open bounded set. On L2(Q), consider the operator (Lp,Vp)
where Vp = V(Q|R?) and Lp is the integrodifferential operator L subject to the Dirichlet complement
condition. In other words, Lpu = f if and only f € L?(Q2) and

E(u,v) = /Qf(x)v(x) dz for all v € VEH(QRY).

Likewise, on L?(Q), consider the operator (Ly,Vx) where Vy = {v € V,(QR?) : Nv = 0 on Q°} and
L is the integrodifferential operator L subject to the Neumann complement condition. In other words,
Lyu = f if and only f € L?(Q) and

E(u,v) = /Qf(z)v(x) dz for all v € V,,(QR?). (4.64)

We adopt the convention that Nu = 0 on Q¢ for function u € V,(QR?) if there is f € L?(Q) such
that (4.64) holds. The next theorem is the core result of this section showing that under appropriated
conditions on 2 and the jump kernel v the operators Lp and Ly are essentially self-adjoint.

Theorem 4.51. The operators (Lp,Vp) and (Ly, V) are symmetric and positive on L?(2). Further-
more, the following assertions are true.

(1) Assume (v,Q) belongs to one of the classes o7;, i = 1,2,3 (see page , then (L, VN) is a densely
defined, unbounded and essentially self-adjoint operator on L*(Q).

(i) Assume v satisfies the conditions and (see page , then (Lp,Vp) is a densely defined,

unbounded and essentially self-adjoint operator on L*().

Proof. Proceeding as in the proof of Theorem [4.31] one finds that (Lp, Vp) and (L, Vi) are symmetric
and positive on L2(Q2). Assume (v, Q) belongs to one of the classes .7, i = 1,2, 3 then by Theorem m
there exists a sequence of eigenpairs (fiy, ¢n)nen, such that for each n > 0, ¢, € Vi, Loy = pindn
and the family (p,)nen, is an orthonormal basis of L?(Q). It turns out that Vy is dense in L?(f2)
and thus (Ly,Vy) is essentially self-adjoint on L?(f2) according to Lemma m Furthermore, due to
the orthonormal basis (¢, )n,, it becomes clear that (Ly,Vy) is unbounded on L?(f2). Likewise, from
Theorem and Lemma it follows that (Lp, Vp) is densely defined and essentially self-adjoint on
L?(Q). O

Remark 4.52. Under the assumption that (v,) belongs to one of the classes <%, ¢ = 1,2,3, the
corresponding formulation of the above theorem is true if the operator L is subject to the mixed or Robin
complement condition.

Corollary 4.53. Let Q ¢ R? be open and bounded. Let v(h) = Cyolh|~4* h # 0 for some o € (0,2).
Let V§/2(9|Rd) = {v e V¥/2(QIRY) : v = 00n Q°}. Then ((—A)a/2,Vg/2) is essentially self-adjoint
and also ((—A)*/2, Vﬁ/Q) if Q is Lipschitz where Vﬁ/2(Q| RY) = {v € V*/2(Q|RY) : Nv=0o0n Q°}.

It is relevant to mention that the characterization of essentially self-adjointness of the fractional Laplacian
(—A)®/2 subject to the Dirichlet complement condition on an unbounded open set Q € R? is the central

discussion in [HKMI17] and several other references therein. Next, in spirit of Theorem we have the
following result in the local setting for the Laplace operator.

Theorem 4.54. Assume Q C R? is open and bounded. Let (Ap, Hp) be the Dirichlet Laplacian Ap with
Hp = H}(Q). Let (An,Hy) be the Neumann Laplacian with Hy = {v € H*(Q): 9% =0 on 9Q} where
by convention we say that % =0 on 0N if there exists f € L?(Q) such that

/ Vu(z) - Vo(z)de = / f(z)v(z)dz  for allv € H' ().
Q Q

Then (Ap, Hp) is densely defined, unbounded and essentially self-adjoint. If  is Lipschitz, the same
holds for (An, HN).
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5. From Nonlocal To Local

This Chapter is essentially devoted to investigating local objects as limits of nonlocal ones. We espe-
cially focus on the following concepts: Sobolev spaces, elliptic operators, energy forms, Poincaré type
inequalities, elliptic PDEs of second order with Dirichlet or Neumann boundary condition, Dirichlet and
Neumann eigenvalues. Roughly speaking, this chapter serves as a needed bridge between basic ellip-
tic partial differential equations of second order and elliptic integrodifferential equations that require a
significant background in functional analysis. To begin this journey let us first introduce our central tool.

5.1. Approximation of the Dirac mass by Lévy measures

In this section we introduce the tool that will help us to move from nonlocal objects to their corresponding
local notions. We begin by coining the concept of p-Lévy measure for 1 < p < oc.

Definition 5.1. A nonnegative Borel measure v( dh) on R will be called a p-Lévy measure for 1 < p < oo

if v({0}) = 0 and it satisfies the p-Lévy integrability condition. That is to say

/ (1A [BIP)w( dh) < oo,
Rd

Patently, one recovers the usual definition a Lévy measure when p = 2. Notationally, we shall intentionally
ignore the dependence of v on p. In addition, for a family (v:)o<c<e, for a fixed real number g9 > 0 we
shall merely write (v¢)e or (Ve)eso. It is important to keep in mind that € is a quantity near 0 (¢ — 07).

We start with the following motivating rescaling result.

Proposition 5.2. Assume v : R? — [0,00] is a positive measurable function satisfying the p-Lévy inte-
grability condition, i.e. v € L*((1 A |h|P)dh. Define the rescaled family (v.)e as follows

e~ 4Py (h/e) if |h|<e
ve(h) = q e h|"Pv(h/e) if e<|h| <1 (5.1)
e~4v(h/e) if |h| > 1.

Then

/ (LA h|P)ve(h)dh = / (LA h|P)v(h)dh  for each 6 >0 and lim / (LA |h|P)ve(h)dh = 0.
Rd Rd e—0

Ihi>s

Proof. Observe that since v € L((1 A |h|P)dh) by dominated convergence theorem we get
i P — 5 P —
Eh_r% (LA |R|P)ve(h)dh = 31_1% / (LA |RP)v(h)dh = 0.
[h|>6 |h|>6/e

We omit the remaining details as it solely involves straightforward computations. O

There are two keys observations that govern the rescaled family (v.). for p = 2. The first is that it gives
raise to a family of measures with a concentration property. Secondly, from the probabilistic point of
view one obtains a family of pure jumps Lévy processes (X¢). each associated with the measure v, from a
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Lévy process X associated with v. Viewed from this scope we aim to show that (X.). converges in some
sense (to be clarified later see Theorem and Theorem to a Brownian motion provided that one
in addition assumes that v is radial. This, in certain sense, could be one more argument to justify the
ubiquity of the Brownian motion.

From now on, for 1 < p < 00, (V)eso denotes a family of nonnegative functions such that

ve is radial and / (LA |RP)ve(h) dh =1, (5.2)
R4
lim / (LA [BP)ve(h) dh =0 forall &> 0. (5.3)
e—
|h|=6

Note that the relation ([5.3)) is often known as the concentration property and because of (5.2)) it is merely
equivalent to

lim / ve(h) dh =0 forall ¢ >0.
e—0
|k 26

Consequently, we also have

lim / (1A [BP)v.(h) dh = lim / hPv.(h) dh =1 forall 6> 0.
e—0 e—0
[h|<d |h|<8

Definition 5.3. Under the conditions (5.2) and (5.3) the family (v.). will be called a radial Dirac

approximation of p-Lévy measures.

Remark 5.4. Under the conditions (5.2)) and (5.3) we have that for all 5, R >0

0 if B>p
1 if Bg=np.

e—0
|h|<R

lim (1A |h|?)ve(h)dh = {

Indeed, for fixed § > 0

3 p 3 P _

[ QAP < iy [ AP k)an =
§<|h|<R [h|>6

; p 1T p _

lim / (LA [hIP)v=(h)dh = 1~ lim / (1A B[P)ve(h)dh = 1.
|h]<6 |h]>6

Thus, for § > p, we have

e—0
|h|[<R 6<|h|<R |h|<é

— §8-p,

lim (1/\|h|ﬁ)1/5(h)dh§;i_r>r(1) (RB_” / (1 A |h|P)ve(h)dh 4 6°—P / (1A|h|p)yg(h)dh)

Letting § — 0 provides the claim.

The following result infers the weak convergence of the family (v.). to the Dirac mass at origin and thus
withstands Definition

Proposition 5.5. Assume (v.). satisfies conditions (5.2) and (5.3) for p =1. Then v. — o (weakly) in

the sense of distributions, i.e. for every ¢ € C2°(R?), (ve, ) 20 (00, 0) = ¢(0). Here &g stands for the
Dirac mass at the origin.
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Proof. Take ¢ € C>°(R%) and in virtue of write
o) = [ bve(h)an
—o0)+ [ (o) = e wamydhit [ (olh) ~ (Ot
|h|<1

[h| 21

= o(0) + /|h<1(<ﬁ(h) — (0) — Vp(0) - h) ve () dh + / (o(h) — 0(0))ve(h) dh

|h| =1

— (0) + / / (Vip(th) — Vip(0) - h) ve(h) dt dh + / (o(h) — @(0))we () dh
|h|<1 J0 |h

[>1

:¢(o)+/|h<1/0 /O s((D2<p(tsh)-h)~h)u5(h)dsdtdh+/ (o(h) — (0))v.(h) dh.

[h|=1

The conclusion clearly follows since

[ o) = O ab] < 2lpl [ vat)an =00
|h|>1 |h|>1

and by Remark [5.4] we have

| /h|<1 /o1 /01 S((D(tsh) - ) - h) ve(h) ds dt dhwe (k) dh| < IDzsoloo/ [h2v.(h) dh <=2 0.

|h|<1

Another motivating reason to consider the family (v¢). is given by the following.

Proposition 5.6. For p =2 and a = 2 — ¢ € (0,2) under the conditions (5.2) and (5.3) suppose the
function u : R* — R is bounded and C? on a neighborhood of x then

where L, is the nonlocal operator

1
Lou(x) := —2/ (u(z + h) +u(z — h) —2u(x))va_q(h) dh.
Rd
Proof. It suffices to adapt the proof of Proposition m (iv). O

Let us mention some examples of particular interest. The first class relates to the fractional Laplacian.

Example 5.7. For p = 2 consider (v,), the family of a-stable kernel defined for « = 2 — ¢ € (0,2) and
h # 0 by vo(h) = ago k|~ with age = %ﬁ‘ﬂ Let us show that (5.2]) and (5.3]) are fulfilled for p = 2.
Passing through polar coordinates yields

1 [ee)
/ (LA |B2)|h|~4 dh = |Sd—1|(/ pl-e dr+/ pi-e dr)
Rd 1

0

1 1 2
—_ Sd_l —) = Sd—l — 71.
| |(2—a+a) | ‘a(2—a) Ya.d

For § > 0 a similar computation gives

2 — *° 2—a)d™* 4
T B e A )
é

2
|h|>6
Note that lim2 S;"" = 1 (see Proposition [2.21) where Cq, is the norming constant of the fractional
a— o

Laplacian.
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More generally, in connection with the fractional Sobolev spaces we have the following example.

Example 5.8. The family (v.). of kernels defined for h # 0 by

—d— . ep—¢
hl d—p+e with Qedyp = M

Va<h> = Aed,p

fulfills the conditions (5.2) and ([5.3).

The next class is that of Proposition [5.2]

Example 5.9. Assume v : R? — [0, 0] is radial and consider the family (v.). such that each v, is the
rescaling of v defined as in (5.1) provided that

/ (1A RP)u(h) dh = 1.

A subclass is obtained if one considers an integrable radial function p : R? — [0, 00] and defines v(h) =
c|h|~Pp(h) for a suitable normalizing constant ¢ > 0.

The following class is of important interest and is related to the so called approximation of the identity.

Example 5.10. Assume (p.). is an approximation of the identity, i.e. € > 0, p. : R — [0, 00] is radial,

/ pe(h) dh =1 and lin%) pe(h) dh =0 forall §>0.
R4 e—

e

For instance, define p.(h) = e~%p(h/e) where p : R — [0,00] is radial and such that [oq p(h)dh = 1.
Define the family (v.)c by
ve(h) = Ca|h|_pp6(h)

where ¢, > 0 is a normalizing constant for which ([5.2)) holds true.

The resulting class obtained here is somewhat restrictive and does not capture good classes such that as
the kernels from Example To be more precise, there is no sequence (p.)c satisfying the conditions
above, for which v.(h) = c.|h|™Pp.(h) = |h|=4=PF¢ for all h.

To remedy to this, the truncation p.(h) = c.p-(h)1p, (o) is actually sufficient where c. > 0 is such that
[ pe(h) dh = 1. Afterwards define . (h) = p-(h)|h|P.

Note that the class (7:). (where each p.(h) is supported in a ball centered at the origin) is precisely the
one considered in [BBMO1], [Pon03] and used as main tool on related topics.

Now we collect some concrete examples of sequence (v, ). satisfying (5.2) and (5.3).
Example 5.11. Let 0 <e <1 and 8 > —d. Set

d+ -

For the limiting case § = —d consider 0 < € < gy < 1 and put

1

ve(h) = 58 T Tog(e0/e)

A=\, (h).

log(eg/€)
[log(e)]

It is important to notice that — 1. Some special cases are obtained with 5 = 0, 8 = p and

B=(1—-s)p—dforse(0,1).
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Example 5.12. Let 0 < € < g9 < 1 and 3 > —d. For 2 € R? consider

h| 4 ¢€)?|h|7P !
ve(h) = (Al + ) |hI™" ||;f)1|,|) | Ip.,(h)  with b =g’ P = )t
€ ﬁ
For the limiting case § = —d consider
(12| + &)~ |n|? , R -1
ve(h) = ST, Lp, (n) with b, = %t (1 —t)* dt.
eteg

In either case the constant b, is such that [,.,(1 A |h[?)v.(h)dh = 1. Note that one can check that

1
aa-=|05ﬂ—>l as e— 0.
Another example familiar to the case § = —d is
(Jh| +e)~¢P _ L B
ve(h) = Wﬂmh) with  b. = t7H (1 — )P lae,

—&
e+eg

5.2. Characterization of classical Sobolev spaces

In this section we show the convergence of the nonlocal Sobolev like spaces (W7 _(€2)). to the usual Sobolev
space WHP(Q). Further we will see that the W1P(Q) with 1 < p < oo can be characterized by the mean
of (WP (€2))e. The case p = 1 will be obtained separately as it involves the space of bounded variation
functions BV (Q2). Our exposition here mainly relies upon [BBMOIl [Bre02]. Different approaches can be
found in [Pon04, [PS17, [LS11].

Lemma 5.13. Let u € CH(R?) and let Q C RY be open (not necessarily bounded). Assume that the family
(ve)e fulfills the conditions (5.2)) and (5.3]) then for 1 < p < oo the following convergence occurs in both
pointwise and L*(Q2) sense

iy | Ju(e) ~ (o) Pr.(o ~ y)dy = Ky | Vu(e)”

e—=0 Jo

here fdl”’ is a universal constanﬂ independent of the geometry of Q and is defined for any unit vector
e €S by

_ , TN+ 1)/2)
Kap= A, o elrdoaw) = el Lo

Proof. Let 0 > 0 be sufficiently small. By assumption Vu is uniformly continuous and hence one can
find 0 < 7 < 1 such that if |z — y| < n then

SIVu(@)| < Vu()| < 2Vu(@)|  and  [Vuly) - Vu()| <o (5.4)

Let n, = min(n, §,) with J, = dist(z, 0f2) so that B(z,n,) C Q. Consider the mapping F': Q@ x (0,1) — R
with

Fee)= [ )Pt —pdy= [ Ju@) —u(o+ mPv.(h) b

Qﬁ{|$—y|S%} |h|§77m

!The geometrical constant Kg p is the same as initially established for in [BBMO1]. A similar constant also appears in
[INT0, Section 7].
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In virtue of the fundamental theorem of calculus, we have
1 P
F(z,e) = / ] / Vu(z + th) - hdt| vo(h) dh
0
[h|<ne

_ / Vu(z) - BlP ve(h) dh + R(z,e)
[h]| <Nz

with

R(z,e) = / (‘/01 Vu(x+th)-hdt‘p—‘/;Vu(x)-hdt’p) v.(h) dh

[h]|<ng

Consider the function s — Gy (s) = |s|P which belongs to C*'(R*\ {0}) and G},(s) = pG,(s)s~'. Further,
we are able to write

Gp(b) — Gp(a) = (b—a) /0 G (a+ s(b—a)) ds.

Applying this with @ = Vu(z) - h and b = fol Vu(xz + th) - h dt by taking into account (5.4)) leads to the
following estimates

Gy0) ~ Gyl <o —al [ fat s(0- )P~ s

< cp|Vu(q:)|p_1|h|p_1/ |\Vu(z + th) — Vu(z)||h| dt
0
< ¢, 0| Vu(x)|P~|h|P.

From this we get

|R(x,5)|::‘ / (‘/Olw(xﬂh).hdt\ /Vu(m hdt)) dh‘

[h]|<ne
< cpo|Vu(z)|P~! / |h|Pve(h) dh
[h]|<ng
= c,0|Vu(z)[P / (1 A |h[P)ve(h) dh 2222 0.
[h|<ng

On the other side, if we consider O € O(d) to be a rotatio assigning IVzggl to the unit vector e then

passing through polar coordinates, the rotation invariance of the d — 1-dimensional Lebesgue surface
measure together with Remark [5.4] we find that

a
|Vu(z) - h|P ve(h) dh:/ PPy / |Vu(z) - wPdog_1(w)
0

[h]|<ne

= |Vu(z)[P / |h|Pv(h) dh ][ - o [P dog 1 (w)

[h]<n
= |Vu(z)P / |h|Pve(h) dh f lw - elPdog—1(w)
|h]<n §d-1

e—0

Ky |Vu(z)? / hPvo(h) dh =% K |Vu(a)P.

[h]| <N

2 An affine mapping O on R? is called a rotation if OO = I,.
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5.2. Characterization of classical Sobolev spaces

Therefore, we have shown that
. — p
21_% F(z,e) = Kqp|Vu(x)P.
Further, a close look to our reasoning reveals that we have subsequently shown that for all § > 0

lim / () — uly)Pre(e — y) dy = Kap|Vu(@)P. (5.5)

e—0
Qn{lz—y|<6}

In fact since for all § > 0
)~ u()P e — ) dy < 2l ey [ vell)ah 0. (5:)
an{lz—y|>6} |h|>6

We thus have the pointwise convergence as claimed

iy [ fu(a) ~ u(u)Pve (o~ ) dy do = Ky [ Tula)P.

e—0

In order to proceed with the convergence in L!(Q), for 0 < n < 1 as above we write
/ lu(z) — u(y)[Pre(z —y) dy dz = // u(z) = u(y)[Pre(zr —y) dy dz
QxQn{jz—y|<n}

* // [u(z) — u(y)[Pre(z —y) dy da.

QxQn{lz—y[>n}

First and foremost, observe that for this specific choice of 0 < 7 < 1, using (5.4]) one gets

u(x) —u(y)[Pve(z —y) dy < / lu(z) = u(z + h)[Pve(h) dh

Qn{lz—y|<n} [h|<n
1
/ ‘/ Vu(a + th) - b dt] ve(h) dh
hi<n "
< 2P|Vu(z)|? / |h|Pre(h) dh < 2P|Vu(z)|P.

[h|<n

Since z + |Vu(x)|P belongs to L(£2), the above estimate in combination with the pointwise limit in (5.5
and the dominated convergence theorem yield that

lirr%) // ) — u(y)|Pre(x — )dyd;v—de/|Vu )|P d.
e—
QxQN{|z—y|<n}
Thus it follows that
hm //|u x) —u(y)|Pre(z —y) dy dz —de/ |Vu(x)|P dx

QXQ
since one has

ue) ~ uly)vele ) dy de < Pullf o [ vidh Do,

QxQn{|z—y|>n} |h|>n

The claimed convergence in L'(2) is a straightforward consequence of Corollary (Schéffé lemma).
Moreover, the explicit value of Ky, is already established in Proposition @
O
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Chapter 5. From Nonlocal To Local

Alternative proof of Lemma [5.13| under a weaker condition. We assume in addition that u €
C%(R%). Note that G, € C?(R?\ {0}) with G,(s) = |s|P. The Taylor formula implies

u(y) —u(z) = Vu(z) - (y —2) + O(Je = yI*) 2,y € R,

Gp(b) — Gpla) =G (a)(b—a) + O(b—a)® a,be R\{0}.
Hence for almost all z,y € ]Rd, we have
u(y) —u(@)[P = Gp(Vu(z) - (y — 2) + O(ly — z|*)) = [Vu(z) - (y — 2)[” + O(|ly — «["™).

Set 9, = dist(z,0). Passing through polar coordinates and the rotation invariance of the Lebesgue
measure yields

[ @)~ atypreta =y = [ [ute)- 1 veyan o [ prtivman)

B(z,0:) |h]|<dq [h| <6y

51
_ / Vu(e) - w] doas () / r=u, (r)r + O / B+ v ()dh)
st ’ |h <6,
= Kap [Vu(z)[" / ua(h)dh+o( / \hlp“z/g(h)dh).
[h]| <8z [h| <6

Therefore, letting € — 0 in the latter expression, by taking into account Remark [5.4] gives

lim lu(@) — u(y)[Pre(z — y)dy = Kap|Vu(z)[".

e—0
B(z,02)

On the other side, we have

lu(z) — u(y)Pre(x —y)dy < 2p||u\|’£m(ﬂ) / ve(z — y)dy == 0.
Q\B(z,d,) |z—y|>0a
We have proved that
tiy [ Juta) — ul) v~ y)dy = Ky | Vu(o)].
Q
For the remaining details one can proceed as in the previous proof. O

Following [BBMO1) Theorem 2], we derive the next theorem which is a direct consequence of Lemma|5.13

Theorem 5.14. Let Q C R? be a WhP-extension set (not necessarily bounded), 1 < p < co. Assume that
the family (ve)e fulfills the conditions (5.2)) and (5.3)) then for all u € W1P(Q)

Jim // u(z) — u(y)Pre(z — y)dy dz = Ko, /Q V()P da.
Q0

e—0

Proof. By Lemmam there is C' > 0 independent of e such that for u,v € WHP(Q),

Ul L x) — IVellr@oxay| < 10U = VellLe@xa) < Cllu — vllwis o).
where we set
Ue(z,y) = Ju(z) — u(y)[pl/? (@ —y) and Vi(z,y) = |v(z) — o(y)|2/P(z — y).

Therefore, it suffices to establish the result for u in a dense subset of WP(Q). Note that, C>°(RY) is
dense in W1P(Q) since  is an W1 P-extension domain. We conclude by using Lemma Alternatively,
the result follows by combining the forthcoming Theorem and Theorem [5.1 (|
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5.2. Characterization of classical Sobolev spaces

Remark 5.15. The counterexample [3.53| shows that the conclusion of Theorem might be erroneous
whenever () is not an extension domain. However, even if ) is not an extension domain, the next result,
very close to Theorem shows that one can still get the following inequality which also appears in
[Pon03] and was first established in [Bre02] for the case Q = R%.

Theorem 5.16. Let Q C R? be open (not necessarily bounded). Assume that the family (v.). fulfills the
conditions (5.2) and (5.3)). Let u € LP(Q) with 1 < p < oo or u € WH1(Q). Adopting the convention that
|Vul| r ) = oo if [Vu| does not belong to LP(S2) we have

Kd,p/ |[Vu(z)|P dz < lim inf/ |u(x) — u(y)|Pre(z — y)dy dz.
Q e—0
Q0

Proof. For ¢ > 0 sufficiently small, Q5 = {z € Q : dist(z, Q) > 6}. Define the mollifier ¢5(x) = 570 (%)
with support in Bs(0) where ¢ € C>°(R?) is supported in B1(0), ¢ > 0 and [¢ = 1. For the sake of the

simplicity we will assume u is extended by zero off Q and let u’ = u * ¢s denote the convolution product
of u and ¢s.
Assume z € Qs and |h| < 0 then z — h € Q5 — h C 2 so that by a simple change of variables, we have

/|u — u(y)Pre(z — y) dy dz > // w(y)Pv.(z — ) dy da

Qs —hQs—

—/ lu(x — h) —u(y — h)|Pr.(x — y) de dy.
Q55

Thus given that [¢s = 1 integrating both sides over the ball Bs(0) with respect to ¢s(h)dh and employing
Jensen’s inequality afterwards, yields

//|u ) — u(y)Pro(z — y dydx>/ b5 (h dh// lu(z — h) — uly — h)|Pve(z — ) dy dz

Q5%

_ // /]R (e — ) — uly — B)Ps(h) dh ve(x — ) de dy
Q50

= / ula— ) — uly — D)s(0) db| v — y) dady
Qs

= // |u* ¢s(x) — u* ¢ps(y)|Pve(z — y) de dy.
Q505

Thus we have
// Jul () — u® (y)|Pre(z —y dxdy<//|u —u(y)Pr-(x — y) dz dy. (5.7)

Q58

Note that u® € C°°(R?) and Q5 ; = Q5N B;(0) has a compact closure for each j > 1. Then for each j > 1
the Lemma [5.13] implies

p — p _
Kiy [ Ve = I J| 1) utwPr.o ) dsay

Q5,55

<hm1nf//|u —u(y)Pr(x — y) dz dy.
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Tending j — oo in the latter we get
Kd,p/ |Vl (2)|P dz < lim i(I)lf// lu(z) — u(y)Pre(x — y) de dy. (5.8)
Qs e—
Q0

The only interesting scenario occurs if the right hand side is finite. If it is the case, then the upcoming
result Theorem ensures that u € W1P(Q). Thus clearly Vu® = V(u * ¢5) = Vu * ¢s and we know
that [|¢s * Vu — V| Lrq) — 0 as 6 — 0. The desired inequality follows by letting 6 — 0 since

P 1/p 5d—0
IVl o) = Vu* @5l o | < IVu* é5 = Vull oy + ( o, |7u@) de) 200,
O\ Qs

The next theorem is a the counterpart of Theorem and is a refinement version of Theorem [5.21

Theorem 5.17. Let Q C R? be a W'P-extension set (not necessarily bounded). Assume that the family
(Ve)e fulfills the conditions (5.2) and (5.3)) with 1 < p < co. Adopting the convention that ||Vu| prq) = oo
if [Vu| does not belong to LP(2) then for all u € LP(Q)) we have

imsup /[ fu(e) — ul)Pvle ~ p)dyde < Ka, [ [Val@)p do.

e—0
Q0

Proof. The case where |[Vul|1sq) = oo is trivial. Now for u € W'P(Q), we let 7 € W'P(R?) be its

extension to R Consider Q(6) = Q + Bs(0) = {z € R? : dist(z, Q) < §} be a neighborhood of Q with
0 < ¢ < 1 sufficiently small. Let us start by proving the following estimate which holds for each ¢,

[ 1) - stiets = pagae < Ky [ Wn@P ar Pl [y an 69)
QO -

We know that there is (u,), a sequence of functions in C2°(R?) converging to @ in W1?(R?). For each
n > 1, exploiting the computations from the proof of Lemma (see the step before (5.5))) we find that

1
/ i () — un (9)Pve (2 — ) dy da < / / / (Vn(z + th) - P dz dt ve(h) dh
QIﬂc—yléts |h| <& 0 0
< // |Vun,(z) - h|P dz ve(h) dh
Q(9)

|n|<é

= Ky 19w az)( [ anmemm )

|n| <o

< Kd,p/ |V, (2)|P dz.
Q(9)
Therefrom, applying Fatou’s lemma we get

(o) — )P~ ) dy do <limint [ [ Jun(o) = wnly)Pvela — y) dy da

n—o00
lz—y|<o le—y|<o
< lim Kd,p/ |Vu,(2)|P dz
n—00 Q(5)

= KdJ,/ |Vu(x)|?P de.
Q(9)
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5.2. Characterization of classical Sobolev spaces

On the other hand, we obviously have
L @) =l =) dy de < 2l [ v di
an{lz—y|=6} |R|>6

Altogether, (5.9) clearly follows. Therefore, letting ¢ — 0 and 6 — 0 successively the relation ([5.9)
becomes

e—0

limsup/ lu(z) — u(y)Pre(z — y)dy de < Kd’p/ |Vu(z)P do
Q
Q

since recalling that u = @ |, we have

/ ve(h) dh =% 0 and / \Va(z |de‘§i>/|vu )P dz.
|h|>6 (9)

The desired estimate is proved.

O

Remark 5.18. The counterexample clearly shows that the conclusion of Theorem might be
false whenever ) is not an extension domain. It is also highly remarkable that Theorem and Theorem

[3:53] together imply Theorem [5.14]

The following lemma is relevant for the sequel and is somewhat a revisited version of [BBM01), Lemma 1].

Lemma 5.19. Let u € LP(R?), v € LY(R%, 1 A |h|P) with 1 < p < 0o and ¢ € C°(R?) then for any unit
vector e € S¥1 we have

//u(m )(1/\|x—y|p iz —y dydm‘+‘ // )(1/\|x—y|p)y(x— )dyd:v‘

(y—z)-e>0 (y—z)-e<0
u
< [ Ll ||<P( (LA Je — ylP)ue — y)dyde.
RARd

Proof. We begin by introducing s(h) = |h|~'(1 A |h[P)v(h) Lga\ g, (h) for 6 > 0 which enables us to
rule out an eventual singularity of v at the origin. Moreover, note that vs € L'(R%). It tuns that the
mappings (z,y) — u(z)p(y)vs(x —y) and (z,y) — u(x)p(x)vs(x —y) are integrable. Indeed, using Holder
inequality combined with Fubini’s theorem lead to the following

/|u<x )3z — y) dy da = // Dlle— g A A |z — Pz —y) dy da
R4R4 |z—y|>68

< 5‘1(/ [u(@)P(1 A |2 = yP)(z — y) dy df”)l/p(/ [p(@)” (LA 2 = yP)v(x — y) dy d“/’)l/p,

le—y| =4 lz—y|=6

< 5 el Il | (1A APAR) dh < o,
Likewise we also have

// lu(z)e(y)|vs(z —y) dy dz < 571||80“Lp’(Rd)||U||L})(Rri) /Rd(l A h|P)v(h) dh < oo.

RAR4
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Consequently, by interchanging x and y, using Fubini’s theorem and the symmetry of v we obtain

// 2 —y) dy dz = // )5s(x — y) dy do

(y—x)-e>0 (z—y)-e>0
= | u@ely)dy | wvs(h)dh = | wly)ely) dy [ vs(h) dh
k / k /
= [uwew ay [ an = [ wweti s [ G- do
h-e>0 (y—zx)-e>0

Therefore, we have

[ a@) d [ (o)~ e@)ste - ) dy] = // V(e — ) dy dx// 2)7(z —y) dy da
R
(y—z)-e>0 (y—z)-e>0 (y—z)-e>0
= // y)vs(x —y) dy dac// Y|vs(x —y) dy dx’
(y—x)-e>0 (y—z)-e>0
| [ o ar [ (@) - )i - ) dal
® (y—z)-e>0
< [ewray [P0y -y ao
(y—z)-e>0
= [ w@ras [0y - an
(y—z)-e<0

Thus, letting § — 0 implies

| [[ut)6) = ot @ nle = yiryte —y) dy aal //\wn'“ U3 p e~ yPy(e - y) dy e (5.10)
(

—
(y—x)-e>0 y—x)-e<0

Likewise one has

| [ - s@) Al - yPiwte =) ay as] < [[lota) |u<wx—y\p>u<x—y> dy dz. (5.11)
(

yl
(y—z)-e<0 y—x)-e>0

Adding (5.10) and (5.11)) gives the desired inequality
— oz —o(x
[ty ae [ D=2 e ypinte =y g +] [ atw) an [ELZED g ypiuge—y) gy
R |z —y| R4 |z —

yl
(y—z)-e>0 (y—z)-e<0
u u
/ o(a |dx/' Nt e =yt —y) dy+/|90 |dx/')’<m|xy|p>u<xy>dy
(y—z)-e>0 (y—z)-e<0
u — U
= [ tetas | M(Wx—ww-w dy.
R4 Rd |3?—Z/|

O

Proposition 5.20. Assume Q C R? is an open set. Let u € LP(Q) with 1 < p < oo. Then for every
@ € OX(R?) with support in 2 and for every unit vector e € S¥=! the following estimate holds true

1/p

A
/ uw(z)V(z) e do| < Z2— el o (- (5.12)
Q Ka
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5.2. Characterization of classical Sobolev spaces

With
Ay :=lim inf/ lu(y) — u(z)|Pre(z —y) dz dy
e—0
Q

and the family (v:)e satisfies the conditions (5.2) and (5.3)).

Proof. Throughout, to alleviate the notation we denote 7.(x—y) = (1A|z—y|P)v.(z—y). Let w € LP(RY)
be the zero extension of u outside Q. Let ¢ € C°(R%) with support in 2. First of all we have the identity

uly) —ulx u
[ e as [ =B dy—/ ) = A v o — ) ey
u(x
+ / (o) da / o =) dy
supp(y) RO

There are two keys observations. First, since ¢ = dist(supp(y),9€) > 0, Holder inequality implies

|u(z)| - c0
/ o 7= |7Ta(:r —y) dy <0 Yull ooy llell o) | (1A RP)ve(h) dh == 0.

supp(¢) RI\Q [h|>6

Second, from Holder inequality and |h|7P(1 A |h|P) < 1 we find that

Q/g o @l —y) de dy
// |’LL |:E _y|P (ZE — y) dx dy>1/p(42 !90(33)|p/775(:c _ y) da dy)l/p

< el (] 1) = @t =) o ) ([ n ey an)””
QQ

’

< el ] 1ut0) = u@)Pv. o =) o ay)

QQ
Therefore inserting these two observations in the previous identity and combining the resulting estimate
with that of Lemma [5.19] and that of the assumptions imply
hmlnf’/ / ()_('Ofm))(l/\|x—y\p)ua(x—y) dy‘ +
=y
x)-e>0
o (00) - v(a) (5.13)
it | [ u(e) do [ EDZED @ e = ypte - ) do] < Aol
(y—x)-e<0

The next step of the proof will consist into computing the limits appearing on the left hand side ([5.13)).
We have

. (e(y) — o(z)) »
lim /|m_y|(1A$—ZJ| Jve(z —y) dy
(y—z)-e>0
h
~ lim / / V(o + th) - i AH(LA D)) i
e—
h-e>0
h
—_ p
= lim / [V(x + th) — Ve(z)] 7 QA v (h) dn
h-e>0
+lim / Vol |(1/\ h[PYv. (h) dh.
h e>0
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Recall that |Vo(z + z) — V(z)| < C(1 A |2]) for all z, z € R? so that using Remark we obtain

lim / /O ‘[V(p(ac +th) — Ve(z)] - |Z|] dt(1 A [B|P)ve(h) dh < cg%/(l A P v (R) dh = 0.

h-e>0

Thus, passing through polar coordinates in the other term of the above expression and taking into account

(5.2) implies
. (p(y) —p(z)) »
lim /M(1A|$—y| Jve(z —y) dy
(y—z)-e>0
_ P
= tim [ Vela) - oA WP () dn
h-e>0
= lim / Vo(z) - w dadl(w)/ (LA |rP)ve(r) dr
e—0 0
Sd—1n{w-e>0}
— ( / Vo(z) w dad,l(w)) x [S471 7! lim / (1A |h|P)ve(h) dh
e—0 R4
Sd—1n{w-e>0}
= |s¢-17t / V() - w dog_1(w).
Sd—1n{w-e>0}
Let (e, vs,---v4) be an orthonormal basis of R? in which we write the coordinates w = (w1, ws, -+ ,wq) =

(wy,w’) that is wy = w-e and w; = w - v;. Similarly, in this basis one has Vo(z) = (Ve(x) - e, (Vp(x))).
Observe that Vo(z) - w = [Vé(z)1wy + - + [Vo(x)]qwa = (Vo(z) - €)(w - €) + [Ve(x)]' - w’. From this
we find that

V(z) - wdog—1(w) = / (Vo(z)-e)(w - e)dog—1(w) + / (Vo(x)) - w'dog—1(w).
Sd=1N{w-e>0} Se=1n{w-e>0} Sd=1N{w-e>0}

Consider the rotation O(w) = (wy,—w') = (w - e,—w') then the rotation invariance of the Lebesgue
measure entails that dog—1(w) = do(O(w)) and we have

(Vo(z)) - w'dog_1(w) = — / (V(x)) - w'dog_1(w) = 0.
Se=1n{w-e>0} Sd—1n{w-e>0}

Whereas, by symmetry we have

w-e dog_1(w) = — / w - edog_1(w) = / lw - e|dog—1(w).
Se=1n{w-e>0} Se=1N{w-e<0}
Altogether yields that
—1— Vo(z)-e 1
S / Vo(x) - w dog—1(w) = ('0(2)][ lw-e| dog_1(w) = inJVgo(a:) e
gd-1

Sd=1N{w-e>0}

In conclusion,

: (p(y) — p(z)) p _ 1
ig%( ) !>0|$_y|(1 ANz —y|P)ve(z —y) dy = inJVSO(ﬂU) €. (5.14)

Analogously one is able to show that

. (o(y) — p(x)) p _1
3§i_zﬂjw—ylOAWM)%“y“m_2KMV“@'& (5.15)
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5.2. Characterization of classical Sobolev spaces

By substituting the two relations (5.14]) and (5.15) in (5.13)), using the dominate convergence theorem one
readily ends up with the desired estimate

Azl)/p
| @) ete) € de| < 2l

O

Next we proceed with the following little observation which can be easily derived from the foregoing steps.

Theorem 5.21. Let Q be a WP-extension set with 1 < p < oo. Assume the family (v.). satisfies the
conditions ((5.2) and (5.3)). There is a constant C > 0 only depending on €, p and d such that for all
u € WHr(Q),

iimsup [ [u(e) — u(y)Pve(z ) dz dy < Cllulwi oo
e—
[919]

If p=1 and Q is a BV -extension set then for all u € BV (),

lim sup // lu(z) — u(y)|ve(e — ) de dy < Cllullzve).

e—0
QO

Proof. The claims blatantly follow from Lemma and Lemma |3.48]. O

Conversely to Theorem the following result helps to characterize functions in W1?((Q).

Theorem 5.22. Assume that the family (ve)e fulfills the conditions (5.2) and (5.3)). Assume € is an open
set of R? and let u € LP() with 1 < p < oo such that

A, :=lim i(I]lf/ lu(z) — u(y)Pre(x —y) doe dy < oo.
e—
Q0

Then u € WHP(Q) and the following estimate holds

Al/p
/Q |Vu(z)|P do < d2KL. (5.16)

d,1

Proof. An obvious observation is that (5.12]) holds true for all ¢ € C(f2), all 1 < p < oo and all
e € S%=1. Now we assume e = e;, i=1,---,d so that Vo(z) - e; = 05, (). In virtue of the density of
C°(Q) in LP (), it readily follows from (5.12)) that for each i = 1,--- ,d the linear mapping

@H/{zu(x)aw,igo(x) dz

uniquely extends as a linear and continuous functional on Lp,(Q). Note that 1 < p’ < oo and hence
referring to [BrelO, Theorem 4.11 & 4.14], the Riesz representatioxﬁ for Lebesgue spaces reveals that
there exists a unique g; € LP(£2) such that

/Qu(:r)ﬁxlgo(x) dz = /Qgi(x)cp(x) dz = —/Q&Eiu(:v)go(x) dz forall ¢ e CX(Q),

3 The result infers that if 1 < p < oo then L? () is isomorphic to the dual of L”(£2) and any linear continuous functional
on LP(Q) is of the form u — [, gu with g € LP Q).
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where we let 0,,u = —g;. In order words, we have u € W1P(Q). Furthermore, with the aid of (5.12)) and
the LP-duality, we obtain the estimate (5.16) as follows

1/p

A
lLr(o) = dz l’/ﬂu(m) Vo(x) - e;dx| < deL

d1

d
HVUHLP(Q) < \/az Ha;uu

i=1 i=1 ||<P|\Lp @

Note that the estimate is not better than the estimate ||Vu||Lp(Q) A — of Theorem 5.16{ Indeed,
Jensen’s inequality imphes Kb, d=% < KL | < K4, because

(]édl w - e!dod_1(w))p < ]édl w - efP dog_1 (w).

The counterpart of Theorem [5.22] for the case p = 1 rather falls into the class of functions with bounded
variations BV (€2)(see Theorem [5.30). As we shall see later in the proof, because of the lack of reflexivity
of L'(Q), assuming that A; < oo is not enough to conclude that u € W11(Q).

Next we resume the characterization of WP(Q) with 1 < p < oo as follows.

Theorem 5.23. Let Q C R? be a WlP-extension set with 1 < p < oo. Assume that the family (v.).
fulfills the conditions (5.2) and (5.3). Let u € LP(Q). Then u € WYP(Q) if and only if

hmlnf/ lu(z) — u(y)|Pre(x — y)dyde < oc.

Moreover, with the convention that [, |Vu(z)[Pdz = co when |Vu| is not in LP(2) we have

hm//|u(m —u(y)Pre(x —y dydx—de/ |Vu(x)|Pdz.

QQ

Proof. If u € W1P(2) then Theorem asserts that

lim sup/ lu(z) — u(y)|Pre(z — y)dyde = Kd,p/ |Vu(z)Pdz < oco.
Q

e—0

The converse is a direct consequence of Theorem Now assume |Vu| does not belong to LP(2) then
once more Theorem implies that

hmmf// lu(z) — u(y)|Pre(x — y)dydz = oo,
Q0

in other words we have

tim ] 1u@) = wPv.ta = pyes = | [Fute)ras = o
QO

Let us now mention some concrete examples.
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5.3. Characterization of the spaces of bounded variation

Corollary 5.24. Assume 2 C R is an extension domain. Then the following

. |u(z) — u(y)[” \Sd ' p
ll_)rnl(l - 8)42 Wd ydz = hm € \x - y|d+p(1 E) dydx =—Kgi, |Vu(x)| dz

d—1
gii%e_d lu(z) — u(y)|Pdydx = | 7 Kd’p/g |Vu(z)Pdz
QxQn{|z—y|<e}
1 |U( ) U( ) -1

QxQN{|z—y|>e}

Proof. For the first relation, take v.(h) = ac q,|h|~9 7179 with a. 4, = %. For the second take
ve(h) = ﬁlhl‘phs(h)- Last, take v.(h) = mmrd_pﬂ&\&(h) or more generally, for fixed
gg > 1, take

ve(h) = fr=iz Lp.y\. (h) with b, = |log ] . O

_llogel
= (=<, ")/ptloge]

A noteworthy application of this section is given by the following result. It infers that the spaces
(Wr (9 R%)). collapse to the space W1?(Q) as € — 0.

Theorem 5.25 (Collapsing convergence across the boundary ). Let Q € R be open with a compact
Lipschitz boundary. The following are true for every u € Wl’p(Rd)

tiy [ fu(e) = u() oo~ ) dedy = o

QQe
Consequently,
11rr(1)//|u —u(y)|Pre(x — )dxdy—hm // ) — u(y)|Pre(x — )dxdy—de/ |Vu(z)P dz.
e—
QR4 (Q2exQe)e

Proof. Note that both € and Q¢ have the same compact Lipschitz boundary and are thus W !P-extension
domains. Whence the claims follow since for u € W?(R?) we get

ti [ ute) = e~ ) dedy = Kay [ IVato)p

R4 R4

iy (] u(o) — ul)Prete — g) dedy = Koy [ [Vu(@) da,
e— Q
Q0

lim // lu(z) — u(y)|Pre(z —y)dedy = Kdm/ |Vu(z)P dz.
e—0 Qe
QeQe
Thus it suffices to observe that 2 x Q°UQ° x Q = (R x RY)\ [Qx QU x Q°], O xR = O x QUQ x Q°
and (¢ x Q°)° = (R? x RY) \ (Q° x Q°).
O

5.3. Characterization of the spaces of bounded variation

A natural question raised by the authors in [BBMO01] was to know if Theorem persists for functions
in BV (). They were able to obtain a positive answer in one dimension with 2 = (0,1). To be more
precise, recalling Example [5.10] they showed that

1
: |u(@) —u(y)|
;lﬂ%/ / |$ — y| pe(z —y) dy dz = |u|pv(q)-
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Chapter 5. From Nonlocal To Local

The case d > 2 was thoroughly completed later for a bounded Lipschitz domain by [Dav02]. However,
our proof of this result as stated in the below (see Theorem [5.28)) is much simpler. Let us start with a
variant of Theorem for the case p = 1.

Theorem 5.26. Let Q C R? be any open set (not necessarily bounded). Assume that for p = 1 the family
(Ve)e fulfills the conditions (5.2)) and (5.3). Adopting the convention that |Vu|py ) = oo if the Radon
measure |Vu| does not have finite total variation, then for all u € L'(Q) we have

Kaa[Vulavioy < tmiat [] ju(e) ~ uy)lve(e - p)dy da.
QO

Proof. We extend the proof of Theorem wherein we recall u® = ux ¢s € C°(RY), ¢s)(z) = 6 4(%)

is a mollification sequence with ¢ € C°(R?) and u is extended off © by 0. The relation (5.8) asserts that

for all 6 > 0,

Kd,l/ IVl (z)] de < lirni(glf// lu(z) — u(y)|ve(x — y) de dy.
e—
s 00
Hence the estimate we are seeking occurs once we show that
Ka1lu|py ) < liminf/ |Vl ()| da.
6—0 Qs

Let y € C2°(,R?) such that ||x|lec < 1, we find that

‘ / u(z)div x(z) dz — / u(z) div x(z) da:)

Q Qs
= ‘ / (u(z) — u* ¢ps(x)) div x(z) dz + / u* ¢s(x) div x(z) dz
Qs

Q\Qs

. 6—0
<l 65 = alzroy + [ divxllclolle | Ju(o)]do S 0
Q

\Qs

This implies the following by using the fact that u is a distribution on Q.

/ u(z)div x(z)dz = lim u’ (x) div x(z) dz
Q d—0 QS

= lim — [ Vu®(z) - x(z)dz — lim [ wx*¢s(z)divx(z)dz

§—0 Q 6—0 Q\Q(;
= lim — Vul (z) - x(x)dz — lim | wx Vos(x) - x(z) + u* ¢s(z) div x(z) dz
< lim inf/ IVl (z)| dz + C lim |u(z)|dx

§—0

:hminf/ IVl ()| da
Qs

with C = (X[« ||V®|loo + [ div X[l ||@]lc). Therefore, since the above holds for arbitrarily chosen
X € C°(Q,R) such that ||x|/ee < 1, by definition of BV(2) (see the relation (B.5)) we get

Kailu|lpya) < liminf/ |Vl (z)| dz
6—0 Qs

which completes the proof. O
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5.3. Characterization of the spaces of bounded variation

Now we establish the limsup inequality which is a counterpart of Theorem [5.26] and extends Theorem

bI7

Theorem 5.27. Assume Q C RY is an open BV -extension set (not necessarily bounded). Assume that

for p =1 the family (v.): fulfills the conditions (5.2)) and (5.3)) then for all u € BV (Q)

iimsup [ u(e) ~ uy)lva(o ~ )y ds < Karlulpvo)
E—r
QQ

Proof. The case where |Vu|gy ) = oo is trivial. Now for u € BV(2), we let u € BV(R?) be its
extension to RY. Consider Q(6) = Q + Bs(0) = {z € R? : dist(z,Q) < §} with 0 < § < 1 sufficiently
small. We know from Theorem that there is (uy), a sequence of functions of C*°(R%) N W11 (RY)
converging to @ in L'(R?) and such that [Vl L1 (ray o, @] gy (ray- For each n > 1, by the estimate

(5.9) we have
// [tn () — un (y)|ve(x — y)dy dz < KdJ/ |Vu, (x)| de + 2”unHL1(Q)/ ve(h) dh.
A (s) Ih|>5

The Fatou lemma implies

[ 1ute) = stwlv.o = g e < it [ (@)~ wno)lvete - )y da
Q0 QQ

< lim Kd,l/ |Vu,(z)| dx+2||un||L1(Q)/ ve(h) dh.
Q(s)

= Kd,1|ﬁ|BV(Q(6)) —+ 2||u||L1(Q)/ I/E(h> dh.
[h|>d

Correspondingly, we have

// lu(z) — u(y)|ve(r — y)dy dz < Ka 1|l v (o)) + 2lullL @) / | ve(h) dh. (5.17)
h|>6
Q0 =

The claimed estimate follows by letting ¢ — 0 and § — 0 successively. Indeed, since u € BV(Rd) and
u =1 |q we have

e—0 _ d—0
/I ‘ ve(h) dh === 0  and @l svaes) — |ulpv(a)-
h|>6

Theorem 5.28 (c.f [Dav02]). Assume Q@ C R? is an open BV -extension set(not necessarily bounded,).
Assume that for p =1 the family (ve). fulfills the conditions (5.2)) and (5.3)) then for all u € BV (Q)

e—0

lim // fu(z) — u(y)lve(z — y)dy de = Kaalul v g)-
QO

Proof. The result blatantly follows by combining Theorem [5.26| and Theorem [5.27] since

e—0

lim sup // [u(@) — u(y)|ve(z — y)dy dz < Kaalulpy o) < 1igrggf// lu(@) — u(y)|ve(z — y)dy dz.
QQ QQ
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The following theorem is a revisited version of [Dav02, Lemma 2] which provides an alternative to Theorem
B.14 and if € is not an extension domain..

Theorem 5.29. Let Q C R? be an open set. Assume that for p =1 the family (v.). fulfills the conditions
(5.2) and (5.3)). For every u € WHP(Q) the family of measures (ju.). with

dpe(a / () — u(y)Pre (@ — y)dy da.

converges weakly on Q0 (in the sense of Radon measures) to the Radon measure dp(x) = Kq,|Vu(z)P dz,
e—0

i.e. ue(E) —— p(E) for every compact set E C Q2. Moreover, if p =1 and u € BV (Q) then du(x) =
Kd71 d|Vu\(x)

Proof. Let E C Q be compact with a nonempty interior. Consider the open set E(§) = E + Bs(0)
where 0 < § < dist(0€, E). The family of functions (). is bounded in L'(E). Indeed, if we denote
d|VulP(z) = |Vu(z)[P dz for u € WP(Q), then the estimates (5.9) and (5.17) with Q replaced by E imply

pe(z) doe < Kqp [ d[VulP(z) + 2P ||lull}, q ve(h) dh, (5.18)
E T JE®) )

|h|>6

with / ve(h) dh < (1 A6P)71
|h|>é

In virtue of the weak compactness of L!(E), (see [Brel0, p.116]) we may assume that (u.). converges
in the weak-* sense to a Radon measure pp otherwise, one may pick a converging subsequence, i.e
(e — g, ¥) =290 for all ¢ € C(E). For a suitable (£2;);en exhaustion of €2, i.e. Qs are open, each
K; = Q; is compact, K; = Q; C Q41 and Q = J;cy @, it would suffice to let = px; = Ka,|VulP on
K;. We aim to show that u = Ky ,|VulP. Noticing  and Kg4,|VulP are Radon measures it sufficient to
show that both measures coincide open compact sets, i.e. we have to show that

pi(E) = Ky [ aI9up(a)

On the one hand, given that u.(E) — u(E) and flh|>5 (h) dh — 0 as € — 0, the fact that u € W1P(Q)

or u € BV(Q) enables us to successively let ¢ — 0 and ¢ — 0 in (5.18) which becomes

/Ed,u(x) SKCLP/E d|VulP(x). (5.19)

On other hand, since E has an nonempty interior, from Theorem [5.16] we get
de/ d|VulP(z) < liminf// |u(x) — u(y)|Pre(z — y)de dy < lim/ e () da :/ dpp(z).
“JE e—0 e=0 /g E
EE

Therefore, we get dp = Kgq,, d|VulP as claimed.

Let us provide an alternative proof to the case p = 1 and v € BV (Q). Exploiting Lemma together
with the relations and it clearly appears that for ¢ € C2°(Q2) with ¢ > 0 and e € S?~! the
following occurs

Kd,l‘/ﬂap(@ d(Vu(z) - )‘ < hmlnf / lu(z) — u(y)|p(x)ve(x —y) dy dz

R4 R

zliminf/ dx/ lu(z) — uly)|ve(z — )dy+hmlnf // Ylp(@)ve(x —y) dy dz

e—0
QRI\Q
<timipt | pue(o)pla) do+ el o il iy [ v.00) dh = /Q olx) du(z).
[h|=6
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5.3. Characterization of the spaces of bounded variation

Provided that p. —* p and the vector measure Vu is the weak derivative of u and where we put § =
dist(supp ¢, Q) > 0. This proves that for every ¢ € C°(Q2), ¢ > 0 and e € S?~1.

Kaa| [ ota) d(ute)- 0| < [ ola) duto).

In a sense, this impliesﬂ that for all Borel set B C €2 we have
Ky1(Vu-e)(B)) < u(B), forevery ecS¥ L

Choosing especially the unit vector e = Vu(B)/|Vu(B)| (vector measure of B ) so that (Vu -e)(B) =
|Vu|(B) we get that

KaalVul(B) < u(B). (5.20)
Recalling (5.19)) we end up showing that K, 1|Vu| = p as claimed.

The following theorem is the appropriate variant of Theorem in the case p = 1.

Theorem 5.30. Assume that the family (ve)c fulfills the conditions (5.2)) and (5.3). Assume Q is an open
set of R% and let u € LY () such that

Ay = hmlnf/ lu(z) — u(y)|ve(z — y) de dy < oo.

Then u € BV (Q) and the following estimate holds

Ay
< — 5.21
\U|BV(Q) Kaq ( )

)

Proof. Let x = (x1, X2, -, Xa) € C°(Q,R?) such that x|z <1lande=¢;, i =1,2---,d. Since
VXi - €; = 0z, xi With x; € C2°(Q), the estimate (5.12)) implies

Ay
‘/ ) div x dz —‘Z/ ) Vyi(x) - e; da <de1

Hence u € BV (Q2) and we have |u|gy () < dA

Kdl

O

In the same spirit, a variant of Theorem with p = 1, characterizing the space BV () is given as
follows.

Theorem 5.31. Let Q C R? be a BV -extension domain. Assume that for p =1 the family (v.). fulfills
the conditions (5.2)) and (5.3). Let u € L*(Q). Then u € BV (Q) if and only if

e—0

lim inf/ [u(x) — u(y)|ve(z — y)dydzr < oo.
Moreover, with the convention that |u|gq) = oo when |Vu| is not of finite total variation we have

e—=0

limy // () — u(y)lve (x — y)dyde = Ko lulpvo.

4Technically since we are dealing with Radon measures, it is sufficient to show the due inequality for all compacts subset
of . The latter statement can be accomplished by choosing appropriate cut-off functions ¢ € CZ°(Q).
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Proof. If u € BV (2) then Theorem asserts that

e—0

liminf// lu(z) — u(y)|ve(x — y)dyde = Kq1 /Q [Vu(x)|dr < co.
Q0

The converse is a direct consequence of Theorem Now assume |Vu| does not have finite total
variation then once more Theorem [5.30] implies that

lim i(r)lf// lu(z) — u(y)|ve(z — y)dydax = co
e—
Q0

in other words we have

&1%// u(z) = u(y)lve(z — y)dyde = |u|py () = oo
00

5.4. Asymptotically compactness

In the foregoing sections we dealt with convergence of seminorms when the associated functions are
independent of the parameter € > 0. Throughout this section we examine the case where the functions
also depend on € > 0. Therefore it is expected that we will encounter a situation where sequential
compactness arguments are needed. In order to alleviate the notations we shall replace v, with v, where
(en)n is any sequence of positive real numbers tending to 0 as n — oo. We recall that our standing
assumptions on v/ s is as follows: 1 < p < oo,

v.. isradial  and / (LA [BP)ve, (B) dh = 1 (5.22)
]Rd
li_>m (LA RP)ve, (h) dh=0 forall ¢ >0. (5.23)
e

The authors in [Pon03, BBMOI] solely deal with the restrictive case where v, (h) = 1, (h)|h| Ppe, (h)
where p. s satisfy the following condition

n—oo
[h|>0

pe, isradial and / pe,(h)dh=1 and lim pe,(h) dh =0 forall §>0.
R4

In the present section we upgrade this within a fairly large class of family (v., ), under consideration.

Next, we start by borrowing some results from [Pon03].

Lemma 5.32. For 0 < s <t, write t = ks +0s with k = |£] € N and 0 € [0,1). For g € LP(R) we have

G() < 2p—1(@ n %), with G(t) = /IR (T +1) — g(7)|P dr.

tp spP tP

Proof. Applying Jensen’s inequality, we obtain

l9(7 +1) = g(7)I” < 2" g(r + ks) — g(T)P + 277 g(7 + ks) — g(7 + ks + 0s) ]
k—1 »
= 2p*1‘ Zg(T +js+s)—g(T —|—js)‘ + 2P g(T + ks) — g(T + ks + 0s)|P
=0
k—1
<P g(r + s+ s) — g(m + js) P+ 20 (T + ks) — g(7 + ks + 05)[P.

Jj=0
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5.4. Asymptotically compactness

Integrating both sides and noticing that k < ¢/s the result follows since

G(t) = 20" 1kPG(s) + 2P~ LG (0s) < 2071 (t/5)PG(s) + 2P 1 G(0s).

Let us derive the following integration formula on the unit sphere.

Theorem 5.33. Assume d > 2. Let h: S%~! — [0, 0] be a Borel measurable function. For v € S4=1 we
consider that v-section of S*! denoted by S*2 = S*1 N (RY)* with RY = {sv: s € R}. Then

/S () dog (w) = /S ( /S o h(w) dog—(w)) w. (5.24)

Proof. By standards approximation of positive measurable functions, it is sufficient to prove the claim
solely for indicator functions. Let A C S?~! be a Borel measurable set. Define the measure

o dog_1(v)
d d—1
,LL<A) = \/Sd1 O'd_2(AmS,U Q)W

Given that the Borel(Hausdorff) measures 041 and o4_o are respectively rotation invariant on S~ and
S92 so0 does the measure y on S?~!. Indeed, for each v € S¥~1 and O € O(d), a rotation on R?, one has

that O(A4) NSE~2) = 0(AnN S?)_f(v)) since OT O = I;. The rotation invariance of ¢4_o implies

04-2(0(A) NS77?) = 04-2(O(ANSEH ) = da-2(ANSEH,)-

Hence, by the rotation invariance of o4_1 we find that

dog— dog—
pow) = [ ad_2<O<A>mSﬁ2>w -/ ad_2<AmSé;iv)>w

= /Sd1 oa—2(AN Sg_Q)W = p(A).

That is, (O(A)) = p(A) and the claim is proved. Recalling that rotation invariant Borel measures on
S%=1 are unique up to a multiplicative constant, we get p = cog—;. On the other hand, once again the
rotation invariance of o4_o implies that o4 2(S¥* N S%2) = 54_5(S¢~2) which implies that u(S?~!) =
04-1(S¥1) = |S?1|. In conclusion, 4 = 04_1. This ends the proof.

O

Lemma 5.34. Given u € LP(R?) define
Uh) = / h(z+ 1) — g(@)Pdz for all h € R%,
Rd

Then for every 0 < s <t we have

/Sdl Ultw) dog—1(w) < 22p1/ o) dog—1(w).

tp ga-1  SP

Proof. Applying Lemma to the function g(t) = u(x + tw) yields
U(tw _ U(sw U(fsw
[ T e = ([ FEP s [ T o).
gd—1 Sd—1

tr sP qa-1 1P

Thus it would suffice to show that

/Sdl Ulsw) dog_1(w) < 210/ U(iw) dog1(w).

tp gd—1 t
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We distinguish two cases.
If d is even then there exists O € O(d), a rotation on R?, such that Ow - w = 0 for all w € R%. Such a

rotation can be constructed by using the block matrix ({ '). Thereupon, consider

/

0 0’ 0 0
O1w = W + 5Ow and Osw = Pl §Ow with 6/ = /4 — 62.

A routine check shows that O1,02 € O(d) are rotations too and fw = Ojw 4+ Oyw. Given that dog_; is
invariant under rotation, we obtain

/ U(fsw) o1 (w) < 2p1/ U(sO1w) + U(sOqw) dog_1(w) :2p/ U(sw) dog_1(w).
gi-1 1P gd-1 t gimt 1P

Now if d is odd then d — 1 is even thus the previous case reveals that

/ ) dog_2(w) < 2p/ Alew) dog—z(w) forallve ST
sd=2

tP gd-2 tpP

Combining this with the integration formula of Theorem [5.33] finishes the proof since

/Sdl U(Osw) dog1(w) < 2p/ U(sw) dog_1 (w).

tp ga—1 tP

The next result is a variant of the Riesz-Fréchet-Kolmogorov theorem.

Theorem 5.35. Assume d > 2. Let (uy)n be a bounded sequence in LP(R?) such that

Ayi=swp [ (o) = )P, (@ - ) dydo < oc
n> 1]Rd -

Then under the assumptions (5.23) the sequence (), is relatively compact in LY (R?).

Proof. For fixed 6 > 0, from the assumption ([5.23]) we can choose ns > 1 such that

for all n > ns.

N | —

/‘ (LA (B[P, (B) dh >
Bs(0)

In virtue of Lemma for 0 < s < 0 <t we have
Un(t Un
/ U0) Gy () < 2201 / Unlsw) 450 ().
gd-1

tP §d—1 sp

Thus,
Uy (tw)

tpP

1 U (tw) 1
dog_1(w) < ——
Il ST 51 oo

0
= / / Mdad_l(w) s A P, (s)ds
0 Jsa-1 tP

0
U, -
<ot [0 [ B gy 18, o)
0 Jsa-1

dog—1(w)

(IAMVﬁaxwdh/

§d—1

S
<ot [T [ Unsw)doaa(w) st v, ()
0 Sd*l

_ g1 // (& + 1) — wn (@) Pre, (h) dh do < 2271 A,

R R4
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5.4. Asymptotically compactness

‘We have shown that

U, (t
/ % dog—1(w) < 22p|Sd_1|Ap, for all t > ¢ and all n > ns.
gd—1

In particular letting C), = 2?P|S?~1| A, we have
/Sdl Uy (dw)dog—1(w) < Cpé?  for all n > ns.
Now for 0 < s < ¢, writing s = — + (s + 0), we also have
/Sd—l Un(sw)dog_1(w) < 2°71 /Sd—l Uy (dw)dog—1(w) + 2p_1/ Un((s + 0)w) dog—1(w)

gd—1
< 27710, (87 4 (5 + 5)P) < 22PC 67,

Therefore we get
/ Un(sw)dog_i(w) < 2*PA,|S¥ 6P, for all 0 < s < § and for all n > ns.
gd—1

Now assume ¢ € C2°(R?) is radial, supported in the unit ball By(0), ¢ > 0, [, ¢(z)dx
os(x) = 6%(;5(%). Using this, the Jensen inequality and the last estimate it follows that, for n
have

1 and
ng, we

AVAN

[ 165 wn(@) = wn@Pdo < [ sy [ funla+ 1) = (@) da
R4 R4

Bs

5
= / bs(s)stt ds/ [tun (2 4+ sw) — up(z) P de dog_1 (w)
0 §d—1 JRA
5
< 24”A,,|Sd_1|6”/ ps(s)sttds = 24”A,,5p.
0
That is we have

sup |ps * un () — wn ()P dz < 2°P A, 0P

n>ns J R

For £ > 0, we fix 0, := 6 > 0 such that

sup |5 * up (x) — up(x)|P da < /2. (5.25)

n>ns JRE

Let K ¢ R? be a compact with positive measure, to conclude we need to show that F = {u, : n > 1}
is totally bounded in LP(K). Note that (¢s * u,) is a bounded and equicontinuous sequence in C(K).
Indeed, if we let C' = sup ||u, || ,r(ray then by Young’s inequality we find that

n>1

sup [|up * ¢5||L°°(Rd) < CH¢5||LP’(RJ)7
n>1
|h|—0

sup [Thtn * 5 — un * Psllcxy < CIRIIVds| Lo gay — 0.

According to the Arzela-Ascoli Theorem the set F * ¢s |k is precompact in C'(K) and hence is totally
bounded. Whence there exist g1, -+ ,gn € F * ¢5 |k such that

N
Fros |kC | J B (9:), witheg = |K|™"/Pe/2 .

i=1
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From this we have N

F|xC{ur, - ups t U U B.(gi)-

i=1
Indeed if ¢5 * u, € B (gi), with n > ns then u, € B.(g;) since
[tun = gill Lo (i) < Nt — b5 * wnllLo(rey + |66 * un — Gill (i) < €/2 + ex|K|MP = e.
We conclude that F = (uy, ), is precompact in LP(K). This achieves the proof. O

Let us now look to the one dimensional case. The proof in one dimension can be obtained by modifying
the higher dimension case analogously.

Theorem 5.36. [Pon03, Lemma 7.1] Assume d = 1 and without loss of generality that v., is defined for
every x € R. Assume that there exist 6y € (0,1) and co > 0 such that

= “
Un,6, () := 001<nef<1 ve, (0z) > T (5.26)

Let (un)n be a bounded sequence in LP(R) such that

Ay —sup//un — un(y)|Pre, (z — y)dydz < co.

n>1
Then the sequence (uy)y is relatively compact in L7, (R).

We are now in a position to establish asymptotic compactness on a bounded domains 2. Let us proceed
with the following result.

Theorem 5.37. Let Q C R? be open. Assume (uy,), is a sequence converging to u in LP(Q) and

Ay = lirr_1>inf/ [un () — un(y)|Pre, (z — y) dy dz < oo.

(i) If 1 < p < oo, then u € WHP(Q) and ||Vu||1£p(m < ApKd_,;.

(it) If p=1, then u € BV (2) and |u|py(q) < Ale_j.

Proof. Let us fix 6 > 0 sufficiently small and recall, Q5 = {x € Q : dist(x,0Q) > ¢}. Define the mollifier
¢5(x) = 57¢ (%) with support in Bs(0) where ¢ € C2°(R?) is supported in B1(0), ¢ > 0 and [¢ = 1.
Assume that u, and u are extended by zero off (2. Let ufl = u, * ¢5 and u® = u * ps. Regarding (5.7) we
get

[ 1@ - iwp.. o - >dydx</ (&) = wn(y) v, (2 — y) dy .
Q505

By Minkowski’s inequality we have

([ 1)~ wpe, @ ayaa)" < ([ whw i oo )
ot Qs
(= i) - 0 = i, @ - payas)
i
< (] hate) ~ a2, o - pyayar)
+ (‘7/ 7 — wS)(@) — 4 — ) P, (o — ) dy o)
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5.4. Asymptotically compactness

Passing to the liminf, according to the estimate (3.14]), the assumption (5.22)) and Young’s inequality we
obtain

lim inf ( / ul () — ul (y)[Pre, (x —y) dy dx) v

n—oo
Q5Qs

< A;/p + 2||u’® — UfLle,p(Rd) / (LA h|P)ve, (R) dh
RA

= AYP 4 2liminf [|¢s * (u — uy)|| d 520
» im in n)llwte(rd)
< A7+ 2005l wr.p ey i inf [lu — || o ze)
= AP,
In view of Theorem [5.16| we get
Kap 5 |Vul (z)|P da < hmlnf / [ul (z) — u’ (y)|Pre, (x —y)dedy < A, forall§>0. (5.28)

Q585

Let ¢ € C°(Q) and i =1, -+, d then it is not difficult to check that

‘/6% da; = hm‘/ )0, u’ (x )dz‘

. 1/p

<timsup ol o [ 10,00 do)
§—0 Qs

< el oAy P ).

Hence if 1 < p < oo then the linear form ¢ — [, 9, ¢(x)u(x) dz uniquely extends to a continuous linear
form on LP (€2). Wherefore there exists g; € LP() such that

/ O, 0(x)u(z) doe = / giu(z)dz, for all ¢ € C°(Q).
Q
It turns out that u € WHP(Q) and 0,,u = —g;. Therefore Vu’ = ¢s * Vu so that letting 6 — 0 in
Kdm/ |Vu(x)|P de = lim Kd,p/ |p5 * Vu(x)|P doe < Ap.
O §—0 Q§
If p =1 then u € BV () because an analogous procedure yields that (see (3.5]))

lulpv(q) = sup {’/Qdivgp(x)u(x) dx’ el o) < 1} < Ale_j.

Next we proceed with some estimates near the boundary of a Lipschitz domain.

Lemma 5.38. Let Q C R be open bounded. v : R%\ {0} — [0, cc] satisfies (see page . Foré >0
small enough, let o € C(Q) be such that ¢ =0 on Qs, o =1 on Q\ Qs5/2, 0 < @ < 1 and V| < c/d
(cf. Lemmal3.83 by taking o =1 — ¢5). Then for every u € LP(SY), the following estimate holds true

// gl () — [ug] (4) [Pz — y) dardy < 207 / () — u(y) Pz — y) de dy
QQ

2p c /u )P dz /hlpz/ dh+/lu I”dx/Mhm (h)d )

Qs /4 Br(0) B;,,(0)

(5.29)
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Proof. Since |[ug](z) — [ugl(y)[” < 22~ u(e) — u()l” + 5 fu(@)"|o(x) — o(y)]? we get
// |[u](z) — [ug](y)["v(z — y) dz dy
Q0
< op-1 // lu(z) — u(y)Pv(z — y) dedy + 2°~! / () [P dgc/Q lo(z) — (y)|v(e — ) dy.
QQ o

Note that @ C Bg(z) for all x € Q with R = diam(Q2) and for all z € Q\ Q5,4 we have [z —y| >
| dist(z, 0Q) — dist(y, 9Q)| > 6/4 and ¢(x) = ¢(y) = 1. Moreover, |p(z) — (y)| < $(1A |z —y|) for every
z,y € Q,since 1 < < 1and [p(x) — ¢(y)| < §lr —y|. Hence, we get the following estimates

Q/ ()P de / lo(z) — o(v) "o — y) dy

_ / ()P de /ﬂ lo(&) — o(v)[Pv(@ — y) dy + / fu(z) P de / lo(z) — o(v)["v( — y) dy

Qs/4 O\ Qs /4 Qs/2
c? P P b P P
<5 | lu@)Pde Q|£U—y| v(z—y)dy+ = lu(@)[Pdz [ (LA |z —y[P)v(z —y)dy
Q574 O\Q5/4 Qs /2
b P P c? P P
<5 [ lu@)de o —ylPre —y)dy + = [ u(@)[”dz (LA |z —yP)v(z—y)dy
Br(z
Q54 z(e) Q B, (x)
c? P
=5 / lu(z) P dx/ |h|Pv(h) dh + 5 / |u(z)|P dz / (LA h|P)v(h)dh,
/4 Br(0) Q B;,,(0)
Altogether, gives ([5.29). O

Lemma 5.39. Assume Q C R? is open bounded with a Lipschitz boundary. Assume v : R\ {0} — [0, o0]
is a radial function and satisfies (see page . Then there exists a positive constant C' = C(Q,d, p)
independent of v such that for every u € LP(Q2) and every § > 0 small enough,

/Q ()P dz < CB(5,v) /Q | luto)Par+ O Q/ ()P da

(5.30)
+ CoPA(6,v) // lu(z) — u(y)Prv(z — y) dae dy
QO
where
@)= / mPu(yan)
B2s(0)
B(5,v) = A(5,v) /|h|pu(h) dh, 51
Br(0)
D(5,v) = A(5,v) /(1 A [BIPYw(R) dh.
Bg,(0)

Proof. Recall that by the relation (3.38)) we have

/ lug](@)|? dz < CoPA(5,v) // fugl(y) — [ug](@)Pu(y — z) dy da.

Q25,2
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5.4. Asymptotically compactness

Combining this with Lemma [5.38| leads to the following

/ lu(z)P de < / lu(z)|? do + / |u(z)|P dx
Q Qs/4 Q5,2

S/ |u(z)|P dx + COPA(6, v) 2p1/ lu(z) — u(y)Pv(z —y)dedy
Q574

2” 1 /|u )P da /|h|p dh+/|u I”dx/thV’) (n)dh) }

Q0/4 Br O) 5/4(0)
< CB(o, 1/)/ |u(x)|P de + CD(4,v) / lu(z)|P dx
Qs /4
Q

+ CoPA(S,v) / lu(z) — u(y)|Prv(z — y) dz dy.
Q0

Note that here C' is a generic constant which neither depends on v nor on 6. O

Theorem 5.40. Assume d > 2,1 < p < oo. Let Q C R? be open with a Lipschitz boundary. Assume

that the sequence (ve, )y satisfies the conditions (5.22)) and (5.23)). Assume (uy), is a bounded sequence
in LP(Q) such that

—hmmf//|un — up(Y)|Pre, (x —y)dy de < co.

Then (un)n has a converging subsequence in LP(Q). Moreover, assume u € LP(Q) is the limit of a
subsequence of (uy)n then the following hold true.

(i) If 1 < p < oo, then u € WHP(Q) and IVullTnq) < A K.
(it) If p=1, then u € BV () and |u|py (o) < AlKCﬁ.

The same holds true in dimension d = 1, provided that the condition (5.26]) holds.

Proof. For 6 > 0 small enough, we let p5 € C2°(Q) be such that 5 =1 on 5 and 0 < s < 1 as in

Lemma [3.83] From estimate (3.21)) we get
|| test@rn(@) = ostwyuno)ve, (@ - ) dody

R4 Rd
<2 [[ fun(e) = wn )P, (@ = ) dody+ 2leslly e [ Tua@)P do [ (@A L2 =yl () dh
Q0 Q ®
+2 / |t (2)|P da / ve, (h)dh <2PA, + C;s / [t (2)|P da.
Qs/2 |h|=d/2 Q
Therefore, for each § > 0, (pstiy)n is bounded in LP(R?) and we have
timin (] es(e)un(e) = oa5)unn) P, (o~ 9) dody < .
R4 R4

According to Theorem the sequence (@suy)y is relatively compact in LP(2). Employing Cantor’s
diagonalization procedure as in the proof of Corollary one is able to find that (u,,), has a subsequence

175



Chapter 5. From Nonlocal To Local

that we still denote by (u,,),, converging to some measurable function u in L () and a.e in 2. Necessarily,

u € LP(Q2). Indeed by Fatou’s lemma, ||u|rrq) < lirr_1>inf l|tn | e (o) < oo since (uy), is bounded in LP(€2).

Next, we show that ||u, — u||Lr(q) 272 0. In reference to Lemma for 0 < § < 1 sufficiently small,
we have the following

/Q |tn (2) — u(z)P dz < CB(J, Vsn)/

Qs /4

() — () P daz + CD(6, vz, / ju() P de,
Q

+ CoPA(S, ve,,) // |un () — u(@) = [un(y) — u(y)]|Pre, (x — y) dz dy,
Q0

< CB(4,v.,) / |un(x) — u(z)P de + CM{D(6,ve,) + 6P A6, v, ) }-

Qs /4
Here, the constant C' = C(d, p, ) is independent of § and n, and

M = 2P(||u|]€V5(Q) + s%p ||un||]£p(m + A,) < o0.

Further, in view of the assumptions (5.22)) and (5.23)), by taking into account Remark we have

—1
AGve) = ([ IbPve,yan) =0

Bas(0)
Bve) = AGve) [IhPve, () dh 22 1
Br(0)
DGve,) = AGw,) [ (AP, () dh 225 0
B;5,4(0)
# n—r00

By the convergence in L, (Q), it follows that |lu, — u||Ls(q, ) T 0. Altogether, passing the previous
estimate to the lim sup, we remain with the following

lim sup/ |un () — u(z)P de < CMSP.
Q

n—oo

Letting § — 0, it follows that ||u, — ul/z» () 27, 0 since we have limsup |ju,, — ul|Lp(@) = 0. The proof

n—o0

is complete since the statements (i) and (i7) follow immediately from Theorem O

5.5. Robust Poincaré inequalities

Poincaré type inequalities are crucial tools to show the well-posedness for certain classes of variational
problems. Moreover, the sharp constants for such inequalities are strongly connected to the analysis of
eigenvalues of certain operators. In this section, we aim to establish robust Poincaré type inequalities for
the class of nonlocal Sobolev-like spaces introduced in Chapter [3] The Robustness should be understood
in the sense that within such inequalities, one is able to recover the corresponding classical Poincaré
inequalities for classical Sobolev spaces. See the upcoming Corollary

Recall that for an open bounded connected and Lipschitz set 2 € R? (d > 1) and 1 < p < oo, in the local
setting we say that a non-empty subset G' of LP(2) is admissible for the Poincaré inequality if there exists
a constant A = A(Q,d,p,G) > 0 such that
/ lu(z)Pdx < A/ |Vu(z)? dx for all u e G. (5.32)
Q Q

Here Vu is the distributional gradient of u. By convention, we let [ |Vu(z)[P dx = oo if Vu & LP(Q).
Q
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5.5. Robust Poincaré inequalities

Remark 5.41. It is worth noticing that an admissible set G for inequalities of types (5.32)) does not
contain non-zero constant functions. This is obvious since these inequalities cannot not hold true for such
functions. Let us mention some standard examples of admissible set G on which the inequality (5.32))
holds true.

e Gog= VVO1 P(Q). In this case the inequality ((5.32) is known as Poincaré-Friedrichs inequality.

o Gy =LP()T ={uelP(Q): fyu:= ‘le' Jou(x)dz = 0}. In this case the inequality (5.32) cor-
responds to the Poincaré inequality. For all u € LP(Q) then, u — f,udz € LP(Q)*. Thus the
inequality (5.32)) can be rewritten as follows

/ lu(x) — £, ulPde < A/ |Vu(z) P dz, for all u € LP(Q).
Q Q

o Go={uecLP(Q): [{u=0} >4} for some 0 < 4§ < |Q].
e Gs={uecLP(Q): f,u=0 } for a measurable set E C  with a positive measure.

e Gy={uelP(Q):u=0 aeon E} for a measurable set E C Q with a positive measure.

It is important to remark that the dominant link between G;-S is that the null function « = 0 is the only
constant belonging to G;.

Theorem 5.42 (Robust Poincaré inequality). Let Q C R be a bounded connected Lipschitz open set.
Assume that the family (v.). satisfies the conditions and with 1 < p < 0o. Let G be a nonempty
closed subset of LP(QY) such that ¢ € G for all ¢ € R\{0}. Assume d > 2 then there exist eg > 0 and a
constant B = B(eg,d, p,Q, G) such that for every 0 < € < &g and every u € G

Jullfs oy < B[] )~ ul)lPre(o ~ ) dy (5.33)
QQ

The same is true in dimension d =1 provided that the condition (5.26|) holds.

Proof. Assume the statement is false. Then for all n > 1 we can find 0 < g, < 2% and u,, € G such that
[tnl7p(qy =1 and

J] 1unt) = wntw), (o~ 9) dy e < o

Q0

According to Theorem the sequence (uy), has a subsequence (which we again denote by wu,) con-
verging in LP(€2) to some u with u € WHP(Q) for 1 < p < co and u € BV (Q) if p = 1. Moreover, in either
case we have that

Kd,p/ [VulP < liniinf// [tn () — un(y)|Pre, (x —y) dy da = 0.
Q n oo
Q0

This implies that Vu = 0 almost everywhere on 2 which is a connected set. Necessarily, u = ¢ is a
constant function. In addition, since HunHiP(Q) = 1, it follows that ||u\|ip(m = 1 which implies that
u # 0. Hence, u = ¢ # 0, and by assumption we have u = ¢ ¢ G. On the other hand, v € G because
lun —ullLr (o) 272 0 and by assumption G is a closed subspace of LP(£2). This contradicts the fact that
u € G. We have reached a contradiction which means that our initial assumption was wrong. O
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Corollary 5.43. Under the assumption of Theorem there exist eg > 0 and a constant B =
B(eg,d,p, Q) such that the following inequalities hold

llu — fQHip(Q) < B// lu(z) — u(y)|Pre(x —y)dedy  for alle € (0,e9) and u € LP(Q)
Q0
||u||1£,,(m < B// lu(x) —u(y)|Pre(z —y)dedy  foralle € (0,e0) and u € G, i = 2,3,4.
Q0

Note that the constant B = B(eg, d, p, ), G;) is independent of £ > 0. Therefore, a noteworthy consequence
of Theorem is obtained letting ¢ — 0 by means of Theorem and Theorem thereby recovering
the classical Poincaré type inequality.

Corollary 5.44. Assume d > 2,1 < p < co. Let @ C R? be a connected Lipschitz open set. Assume G is
a closed subset of LP () which does not contains non-zero constant functions. Then we have

||u|\’£p(g) < BKg, / |Vu(z)|Pdz  for every u € G. (5.34)
Q

The analog robust Poincaré-Friedrichs inequality, is delicate and deserves a different treatment.

Theorem 5.45 (Robust Poincaré-Friedrichs inequality). Let Q € RY be a bounded connected open set.
Assume that the family (ve)e satisfies the conditions and with 1 < p < oo. Assume d > 2 then
there exist eg > 0 and a constant B = B(eg, d, p, ) such that for every 0 < € < &y and every u € Cgo(Rd)
with suppu C € it holds

o <B [ u(@) ~ u)Pvete ) dyda (5.35)

R4 R4
The same is true in dimension d =1 provided that the condition (5.26)) holds.

o and u, € C(Q)

Proof. Assume the statement is false. Then for each n > 1 we can find 0 < &, < B

such that [[un|7, ) =1 and

1

[ 1wnt) = watw) P, o = )y < ] unle) = walg)e, o - g dy e < o
Q0 R4 R

According to Theorem the sequence (uy), has a subsequence (which we again denote by wu,) con-

verging in LP((2) to some u with u € WHP(Q) for 1 < p < co and u € BV (Q) if p = 1. Moreover, in either

case we have that

Kd’p/ [VulP < lirr_1>inf// [un () — un(y)|Pre, (z —y) dy dz = 0.
Q n oo
Q0

This implies that Vu = 0 almost everywhere on {2 which is a connected set. Necessarily, u = c is a
constant function. In addition, since Hun||]zp(m = 1, it follows that ||u\|’£p(m = 1 which implies that

u # 0. Hence, u = ¢ # 0. Next we need to show that u € WOLP(Q). For § > 0 small enough since each v,
is radial, by mimicking the relation (3.13]) we get the following

1
3 2 [, (o) = wnlo)e, (o~ ) dydo
R R4

> / d /IM (@) = un(@ + b) v, () dh da

_ |Sd_1|_1</Rd /S Vn (2) - w] dog_1 (w) dx)(/B WP, () dh)
:Kd,p( /R d |Vun(x)|pdx)( /B \h[Pue, (h) dh).
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5.5. Robust Poincaré inequalities

Therefore, from Remark [5.4] we have

1 -1 n—o0o
Kip | |Vun(z)Pda < 7( \h[Pue, (h) dh) Ny}
Rd 2"\ I B,

Finally, we have [|u, — ul|rr(0) ——— 0 and ||V 1r0) —— 0. Thus ||lu, — ullwrs@) —— 0 and we

get that u € W, *(9) since u, € C°(Q). This contradicts the fact that u = ¢ # 0 since the null function
is the only constant function belonging to W, **(€2). O

Remark 5.46. Note that statement for the analog inequality

lullnoy < B // fu(z) — u(y)|Pre(@ — ) dy da (5.36)
QO

holding for all uw € C°(Q) and all ¢ € (0,¢), is not fully satisfactory since the kernels (v.). are also
allowed to be integrable. If this is the case, then the spaces LP(2) and W} () coincide. This would
imply that the estimate holds true for all functions in LP(2), which is impossible since it fails
for the constant function v = 1. Example (with 8 = p), i.e. ve(h) = Wﬂ%]@g(h) is typical
illustration withstanding the present argument applies. It might be challenging to classify families ()
for which the inequality for all uw € C°(Q2) and all € € (0,ep). For instance, we believe it is

true for v.(h) = ;I(gd_j)l |h|~947PF¢ with 0 < ¢ < 1/p and all u € C(9).

As a consequence of Theorem[5.45] by letting e — 0, one recovers the following classical Poincaré-Friedrichs
inequality.

Corollary 5.47. Assume 2 C R? s open, bounded and connected. Then we have

ull7s gy < BKap / |Vu(z)|Pde  for every u € Wy P(S) . (5.37)
Q

Next, we would like to study the asymptotic behavior of the sharp constant of estimate (5.33)). It is not
so surprising that this asymptotic behavior is related to the sharp constant of estimate ([5.32)).

Theorem 5.48 (convergence of sharp constants I). Let @ C R be open, bounded and connected
Lipschitz. Let 1 < p < oo. Assume that the family (ve)e satisfies the conditions (5.2)) and (5.3)). Let G be
a nonempty closed subset of LP(Q2) such that ¢ ¢ G for all ¢ € R\{0}. Let Ay, be the sharp constant of

the inequality (5.34) and A1_. ), be the sharp constant of the inequality (5.33)) that is,
Ay :=sup {Hu”gp(m cu € G, ||Vullpeo) = 1}
and for each € € (0,¢),
Mepi=sup{[ulf, o) i u€ G EP(uu) =1}
Here we adopt the notation

€57 (u,u) = // () — uly)Pre(e — y) de dy.
QQ

Then the map € — A_. p with € € (0,€0), is bounded and we have

lim Ay, = Ay , K72
e O l—e,p LpBdp
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Proof. The boundedness comes from Theorem For every € € (0,¢9) and every u € G we have
[ u@rde < tsy [ lu@) - u)vete - ) do
Q
QQ

According to Theorem and Theorem letting ¢ — 0" implies

/Q|u(x)|pda; < Kd,plig(r]lfAl_g,p/|Vu(x)p dz.
Q

It follows that

Alm S.Kﬁmlhnianl_&p
e—0t

On the other hand, if we fix 7 € (0, ALpKd_Jl)) then, for each € > 0 there exists u. € G such that
Aiep =1 < |Juellfpq) and  EG(ue,u) = 1. (5.38)

In virtue of Theorem [5.42]the family (u.). is bounded in LP(f2) since Hu5||ip(m < BE®P(u.,u.) = B with

the constant B is independent of . Passing through a subsequence we may assume as for the proof of
Theorem that it converges in LP(Q) to some u with u € W1P(Q) when p > 1 and v € BV () when
p = 1. Further, applying Theorem and Theorem yields

||Vu||’£p(m < de; lim inf E57 (uz, u.) = de;.

Subsequently, we have u € G since G is closed in LP(Q)). Thus, by applying the Poincaré inequality ([5.32))
to uw and taking into account ([5.38|) we obtain the following

hm%‘ipAl—&p /S HUHIEP(Q) < Al,pHVUHiP(Q) < Al,pKdié'
E—

Finally, letting n — 0, completes the proof since we reach the following inequality

. -1
limsupAi_.p < Al,pKd’p.
e—0t

Analogously we also have the following convergence of sharps constants.

Theorem 5.49 (convergence of sharp constants II). Let ) C RY be open, bounded and connected
Lipschitz. Let 1 < p < co. Assume that the family (ve). satisfies the conditions (5.2)) and (5.3)). Let A7,
be the sharp constant of the inequality (5.37) and A be the sharp constant of the inequality (5.35)),

l—e,p
i.e.,

Aj o= sup {H“HIEP(Q) tu € C(Q), | Vullpr) = 1}
and for each € € (0,¢p),

Ny = sup {[Jull ) u € CF(Q), €7 (uu) =1}

l—e,p -
Here we adopt the notation
e (un) = [ (o)~ u)vete ~ ) do dy
Re R4

Then the map € — Ay__ , with ¢ € (0,¢¢) is bounded and we have

lm A=A K 0.

es0t 1P
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5.5. Robust Poincaré inequalities

Next, we deal with a situation where the robustness holds globally in terms of the parameter € > 0.

Theorem 5.50. Assume d > 2,1 < p < co. Let Q C R? be a bounded connected Lipschitz open set.
Assume that the family (ve)zc(o,c,) satisfies the conditions (5.2) and (5.3)). In addition assume that for
R >0 and 7 € (0,e,) there exists 8 > 0 such that

ve(h) >0, for all |h| < R and all € € (7,¢.). (5.39)

Then there ezists C = C(d, p, ) independent of € > 0 such that for all € € (0,e,) and u € LP(Q)
HU’ - fQuHip(Q) S C[/ |U(I) - U(y)lpl/a(l' - y) dyde‘.
Q0

The same is true in dimension d =1 provided that the condition (5.26|) holds.

Proof. According to Theorem there exist g9 € (0,e,) and a constant B = B(d, p, ) such that for
all w € LP(Q) and ¢ € (0,&9)

Ju = faul e < B [ 1u(o) = )P ) dyda.
Q0

The condition ((5.39)) with 7 = ¢ implies that v.(z —y) > 0 for all € € (g9,¢.) and all |z — y| < R, where
R = diam(2) is the diameter of Q. This, together with Jensen’s inequality yield

[ 1@~ w@ P~ gy dwdy = 0 ] 1utw) ~ utol? dody

QQ QQ
29|Q|/ lu(z) — fﬂu|pdm.
Q

The proof is now complete. O

As a consequence of Theorem we have following.

Corollary 5.51. Assume d>1, 1 <p < oco. Let ) C R be open, bounded and connected with Lipschitz
boundary. Then there exists a constant, C = C(p,d,Q) > 0 depending only on d,p and Q such that for
every s € (0,1) and every u € LP(Q2) we have

i iy < €= 0) [[ S oy (5.40)

Remark 5.52. It is worth pointing out that Corollary provides a global estimate in terms of the
fractional order s € (0,1) . In other words, the estimate holds true for all s € (0,1) and the estimating
constant C' is independent of s. In [Pon03], the author established the inequality , provided that
s > sg for some sy depending on d,p and €. Our present result fills the gap 0 < s < sg. See also
[BBMO02| [LBP14] for further applications.

As a consequence of Theorem we have following.

Corollary 5.53. Assume d > 1, 1 < p < co. Let Q C R? be a bounded connected Lipschitz open set.
Then there exist s € (0,1) and a constant C' = C(p,d,2) > 0 depending only on d,p and Q such that for
every s € (so,1) and every u € C°(R?) with suppu C Q, we have

|u(z) — u(y)|”
||“||ip(g) <C(1—-s) / o=y dx dy. (5.41)

R4 R4
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5.6. Convergence of Hilbert spaces

In order to establish the main goal of this chapter, we are forced to deal with the family of Hilbert spaces
that vary according to limiting variables. Therefore, we need to understand certain aspects and notions
of convergence in varying spaces. Here we have in mind concepts like the Gamma convergence, the Mosco
convergence and the convergence in varying Hilbert spaces. Our exposition in this section closely follows
[KS03]. Throughout this section (H, (-,-),,) and (Hp, (-,) is a family of separable Hilbert spaces
over R.

H Hn)n

Definition 5.54. We say that a sequence of Hilbert spaces (H,,), converges to a Hilbert space H if H
has dense a subspace € and for each n > 1 there is a linear map ®,, : € — H,, such that for all u € €

lim ([ ®,ul, = [lul . (5.42)

This is equivalent to say that for all u,v € €,

lim (®,u, ®,v)H, = (u,v)q.

n—oo

Indeed, it suffices to write

1 1
(@, ®0)a, = 7 (19t oy, = 1@atu—0)[F,) and (wo)s = 3 (Jlu+ollf — o —vlF)-

In practice it is common to take ®,, be the inclusion operator when H C H,+; C H,, for all n > 1.

Example 5.55. We let H = H'(Q) be the standard Sobolev space and H,, = H*"/?(Q) be the fractional
Sobolev space where €2 C R%is a Lipschitz open set and («, ), is any sequence, 0 < «,, < 2 tending to 2.
It results as a consequence of Corollary that (H,), converges to H.

In what follows, it is assumed in this section that H has dense a subspace % such that (5.42)) holds true.

Definition 5.56. Let (u,), be a sequence such that u,, € H,, and u € H.

(i) We say that (uy), strongly converges (or simply converges ) to u if there exists another sequence
(Upm,)m C € such that

lim ||ty —u|lg =0 and lim limsup || @, — un||H, = 0.
m— 00 m—o0 n_soo

Note that the first limit says that (u,,),, tends to u in the topology of H.

(11) We say that (u, ), converges in the weak sense (weakly) to u if for every sequence (vy,),, with v,, € H,,
strongly converging to v € H we have

lim (up,vn),, = (u,v)

Let us now visit some related properties.

Proposition 5.57. Assume that the sequence of Hilbert spaces (Hy,), converges to a Hilbert space H. Let
(un)n and (vn)n be sequence such that un,v, € H, and u,v € H.

Uy )n, cOnverges to 0 € if ana only if ||Un|| B .
(un) ges to 0 € H if and only if ||un |, ———> 0

If (un)n converges to u then ||un || g, —— |||l

If (un)n converges to w and (v,), converges to v then (un,vn)m, —— (u,0)g.

n—oo

)
)
(131) If (un)n converges to u and (v, )y, converges to v then (u, + Avy,)n, converges to u+ Av for A € R.
)
) lun — vnllg, — 0 and (uy,), converges to u then (vy,), converges to u.
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5.6. Convergence of Hilbert spaces

(vi) For any w € H there is a sequence (wy,), with w, € H, such that (wy,), converges to w.

(vii) If (un)n converges to w and (v,), converges to u then ||[u, — vn| g, —— 0.

m—oo

Proof. Throughout, we assume that the sequence (uy,),, C € is such that ||u,, — u||p ——— 0 and

(1) If uy, — 0 then ||Unm||zr —— 0 and since | @, Um| 1, ——— ||Um ||z we find that

lim ||up|lg, < lim limsup ||®,tn, — un| g, + lim limsup || @, o,
n—o00 m—00 5 _so0 m—00 np—oo

— lim_[[fim i = 0.
m—r oo

Conversely, assume ||u,|g, — 0, by density we can approximate 0 € H i.e there exists a sequence

(U )m C € such that ||[u/ |z — 0. We know that ||®,u, ||z, ——— ||u), |z for each m. Hence the

m m
conclusion follows since

lim limsup || ®,ul, — upllg, < lim limsup |[|[®,u), || g, + im ||lus|#,
m—r 00 n—oo m—r 00 n—oo n—oo
= [l + Jim o, =0,
(73) For all n,m by triangle inequality it is effortless to see that
| Pntm ar, — | Prtim — tnllm, < unlln, < |Prtmlla, + ([ Patin — un| .,

from which we get

llanllan, = lwllar| < 1@niim = wnlla, + [|@ntimlli, = lula]-

Hence the conclusion holds since || @, ||z, ——— [t ||l &; [|Tm — ullg ——5 0 and

lim limsup ’||un\|Hn — Hu||H‘ < lim limsup ||®pm, — up|lg, + lim lim sup‘H(I)n’EmHHn — ullg
m—oo 5 o0 M—00 n_so0 Mm—00 5 500
= li ‘HamHH - ||UHH‘ = 0.

m—00

(#47) This is a straightforward consequence of the definition.

(iv) From (i¢) and (#i¢) the result is obtained as follows

. 1
i (o), = lim o (Jln + vl =l = val%,)

1
7 (a4 0lly = llu =0l ) = (u,0)-

n—oo m—o0

(v) Since ||uy, — vy | g, — 0 and (uy,), converges to u then @, — ullg — 0 and

lim limsup || P tm — vnl
m—o0 n—oo

, < lim limsup [|®ptm — up||g, + lim limsup ||u, — v, |lg, =0
m—00 noo m—=0 poo

which shows that (v,,),, converges to u.

(vi) By density there exists @, € € with ||t,, —ul|gz — 0 it suffices to take u,, = ®,u, € H, such that
| @ty — tn| g, = 0 for every n > 1.
(vii) Note that
|un = vnlla, < Prtim — unllm, + |PuUm — valla, + | Patim — @nUmllm, -
m—00 m—00

The claim readily follows since ||Uy, — u||lg — 0, ||U, — u||g — 0 and we have

lim limsup ||®ytUn, — ®pUm|lg, = lim limsup || @, (U — Om)||g, = Hm ||y, — Onllg = 0.
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Lemma 5.58. Assume that the sequence of Hilbert spaces (H,)n converges to the Hilbert space H. A
. . . n—oo
sequence (Up)n with u, € H, converges to u if and only if (un,wy)n, — (u,w)n for every sequence

(Wn)n, wn € Hy, converging weakly to w € H.

Proof. The forward implication is patently a consequence of the definition of the weak convergence.
Reciprocally assume (u,,w,)w, —— (u,w)y for every sequence (wy)n, wy, € H, converging weakly to
w € H. From Proposition m (iv) we know that strong convergence implies the weak convergence, then
choosing (wy, ), strongly converging to w implies that (u,) is in particular converging weakly to u. Thus
taking w, = u, implies |u, ||z, ——— ||u|z. Next by density we have ||ty — ul| g —— 0 with @, € E.
To conclude, it suffices to show that

lim limsup || @t — Un|/a, = 0.
m—00 n—oo

To do this, let us fix m > 1. We claim that (®,u,,), is converging weakly to .. Indeed, for a sequence

(Wn)n, wy, € Hy, strongly converging to w € H there exists (w;); such that [|[w; — w| g 222, 0 and

lim limsup ||®,w; — wy| g, = 0.
)= n—oo

We have

|((I)n77m7wn)Hn - (ﬂmaw)H| < ’(q)naqu)nwj)Hn - (amaw)H| + |((I)nﬂ7mwn - q)nwj)Hn
< (@, Pr®) b, — (U, w) | + (| Pl |, |wn — @l m, -

The claim follows once we show that (®,2m, wn) 51, —— (Um,w)q. Indeed, let us see that

jli{& liTanﬁsolip(@nﬂm, O, W) H, = jlirgo(ﬂm,@j)H = (U, w)H.

As (P, is converging weakly to u,, then in particular we have (uy,, @, ) g, 272 (u, U ) g Finally,
combining the foregoing steps yields

i Timsup [| @t — w7, = lim lim sup (||<I>nam||%,n + unl, = 2(un, <I>nﬂm)Hn)
=t ([, + [l =200, n)i) = 0.

O

Now we derive what can be viewed as a weakly sequential compactness result in connection with the spaces
(H,)n, and H. We believe that our proof here, although inspired by [KS03], is more comprehensible and
uses rudimentary arguments.

Theorem 5.59. [KS03, Lemma 2.2 & 2.3] Assume the sequence of separable Hilbert spaces (Hy,), con-
verges to a separable Hilbert space H. Let (uy)n be a sequence with u, € Hy,.

(2) If (un)n weakly converges to some u € H then the sequence (||un|lm, )n is bounded and we have

< limi .
el < liminf g1,

(17) Conversely, if the sequence (||un| f,)n is bounded then there is a subsequence (un, )i converging
weakly to some u € H.

Proof. (i) Assume sup ||u,||g, = oo then one is able to construct a subsequence (ny); such that
n>1

wn |l .0, > 9% for all k > 1. We have the right to set vy = g It clearly appears that

b e

vkl m,, = 2=k E2% 0 In virtue of Proposition [5.57, (vg)r converges to 0 € H. On the other hand, it
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5.6. Convergence of Hilbert spaces

is also clear that the subsequence (uy, )r weakly converges to u. By the definition of weak convergence it
follows that (un,,vk)m F2% ) which contradictory to the fact that

n

Uy, ) _ ([t || ez
H

N e,
(Uny> Vk) H,,, (u"’“’ 2k|\unk||an 2k -

ng
In conclusion, our initial assumption was wrong and hence (||uy| m, )» must be bounded.

Let us prove the liminf inequality. By invoking once more Proposition there exists v, € H, such
that (v,), converging to u and we also have ||, ||z, —— |Ju|z. By definition of weak convergence it
follows that (i, vn)m, —— (u,u)s. For & > 0 and certain jo > 1 we have ||[v, ||z, < ||ulz + ¢ for all
n > N. Thus by Cauchy Schwarz inequality

|(uns vn ), | < funll, lonll a, < Nlunlla, (lullg +€) - for all n > N.

Passing to the liminf as n — co and letting ¢ — 0 after, yields

[ull < liminf ffun ||, -
n— oo

(73) Assume that (||un| g, )n is bounded. Let (¢x)x be an orthonormal basis of H. By density, for each
k > 1 there exists a sequence (@g m)m C € such that

I9km — prlls <27 for every m > 1. (5.43)

Observing that lim lim ||®p¢km||m, = LIm |lprm|z = 1 it is not difficult to obtain that for each
M—00 N— 00 m— 0o

k > 1, the doubling sequence of real numbers ((un»q)nSOk:,m)Hn)n L, 18 bounded in R. We may find a

cluster point ay, two suitable subsequences (n,), and (m;); and another sequence (ax(m;)); obeying the

following rule: if we set ay(np, m;) := (un, Pn,Pk,m; ) H,,, then

ag(m;) = plirgo ar(np,m;) and ’ak(mj) - ak‘ <277, (5.44)

In particular, we have

ar = lim lim ag(n,,m;) = lim lim (u, ,® v for ever k>1.
k j— 00 p—co k( P> ]) jﬁoop%oo( Np» np@k,mJ>an y =

m—oo

Let us show the convergence of the series > |ax|?. Since ||pk.m — @kllg —— 0 it follows that
k=1

lim lim (®n0km, Prim)H, = n}gllm(wk,m, Cim)H = (Pks ©i)H = Ok i

m—o00 N—r0o0

Further, recalling that ax(n,,m;) := (un,, Pn, Pr,m,; ) a0

n

, the following holds for every £ € N.

0 < lim liminf
j—ro0 p—>00

¢ 2
Un, — Z ak(”pymj)q)npﬁpk,mj "

k=1 P

¢ ¢ 0
= lim liminf [Hunp”%{np— 2 Z lak(np, mj)|2 +Z Zak(np, m;)a;(np, mj)(@npgok,mj,@np@iymj)an
k=1i=1

—00 p—roo
J P k=1

£ L £
= lim inf ln, 17, =2 kz_:l lanl + ) > araide,

k=1i=1
‘
i 2 2
= Hminf [luy, |17, = > lax[.
k=1
oo
As a result, if we put u:= ) appg then it is clear that u € H since letting ¢ — oo, the above implies
k=1

o0
lull; = kg Jaxl” < lminf fus,[I7,, < cc.
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Next, we show that (u,,), weakly converges to u. Let (vy),, with v, € H, be a sequence strongly
converging to some v € H. That is there exists (Uy,)m C € such that

lim ||, —v||g =0 and lim limsup || ®,0, — vnllm, = 0.
m—ro0 m—00 n_ o0

On the other hand, since (@) is an orthonormal basis of H we know that

v= Z bror and  |v||% = Z |br|? with by = (u,v) .
k=1 k=1

np

J
To conclude, we show that (un,,vn,)n P2, (u,v) . We put vi = > bpk,m,; € €. From (4.35) we
k=1

obtain

i , oo
v — ol = H D bk(Prm, — gok)HH + >0 |bel?

k=1 k=j+1
J J oo

< (k) (D ko, —nllde) + D0 Jowf?
k=1 k=1 k=j+1

0 .
<jATmlE + Y [P 0.
k=7+1

It clearly follows that [lv¥ — % I 0 so that we have

Jim i [(un,, @0, 05 = @0, %), | < C lim lim |90, (5 =), = C lim v =5l =0.

Meanwhile recalling that (u,v)y = > axrby using the above procedure we find that
k=1

J o)
i lim (@05, — (00| < lim D7 ol B [t @, P, )i, — 0l 4| D anbi
k=1 k=j+1
J

= .irgoZWkHak(mj)*akH‘ > akbk’

J

k=1 k=j+1
oo
< lim j2*j||v||H + ’ Z akbk‘ =0.
j—o00 ki1

Finally putting together the previous we obtain

lim sup ‘(Unwvnp)mp — (w,)g| < lim lim sup ‘(unp@npv}‘ )H,, — (uav)H‘

+ lim limsup ‘(un,,,q)np (U; —0j))H

np
)70 p—oo

=0.

+ lim lim sup ‘(unp, P, 05 — Vn, )1

”LP
)70 p—oo

5.7. Mosco convergence of nonlocal to local quadratic forms

Here we establish the convergence in the sense of Mosco of a certain class of nonlocal quadratic forms to
some elliptic forms of gradient type. We essentially deal with Dirichlet forms.
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Definition 5.60. Let (X,B,m) be a o-finite measure space. A Dirichlet form on L?(X,m) is a couple
(€,D(€)) satisfying Dy — Dy. Moreover (€, D(€)) is called to be a regular Dirichlet form on L?(X,m) if
in addition Ds holds true.

Dy. D(€) is dense in L*(X,m).
D,. £:D(E) x D(E) — R is a positive, (i.e. £(u,u) > 0 for all v € D(E)) symmetric bilinear form.

Ds3. (€,D(€)) is closed if the space (D(E), || - |[p(e)) is a Hilbert space. Here || - [|p(¢) represents the graph
norm defined by ||u|]%(5) =& (u,u) = ||u||%2(X’m) + E(u,u).

Dy. (€,D(€)) is Markovian if u € D(€) and v = (u V 0) A1 (called the normal contraction of u) then
ve D) and E(v,v) < E(u,u).

Ds. (€,D(€)) is regular if it possesses a core i.e. there is a subset C of (D(€)NC.(X) such that C is dense
in (D), |l - lpce)) and C is dense in (Ce(X), || - [ o (x))-

Referring to [MR12, [FOT11], any Dirichlet form is uniquely associated to a Generator (A, D(A)), a strong
semigroup of contractions (73):>o and a resolvent (G'x)x>o respectively characterized as follows.
e Generator

G1. (A, D(A)) is a negative self-adjoint operator whose domain D(A) is dense in L?(X,m),
Ga. D(€) = D(V—A) and E(u,v) = (vV—Au, V=A0) [2(x,m) for all u,v € D(E).

G3. Ais closed, i.e. (D(A),] - |lp(a)y) is a Hilbert space where ||u||2D(A) = ||u||2L2(Xm + HAu||L2(Xm
G4. D(A) C D(E) and E(u,v) = (—Au,v)2(x,m) for all u € D(A), v € D(E).

e Semigroup

S1. (Ty)¢>o is a semigroup on L?(X,m): T; is linear on L?(X,m) and TsT; = Ty, for all s,t > 0.
Sy. The contraction property holds, i.e. |Tyullr2(x,m) < |ull2(x,m), t > 0, u € L*(X,m).

Ss. (T};)¢>0 is strongly continuous, i.e. ||Tyu — ullz2(x,m) 29 0.

Sy Tyu=e Au, t >0, u € L*(X,m). Au= lim 1= 4 € D(A).

t—0

e Resolvent
Ri1. (Gy)xso is a resolvent: G, is linear on L?(X,m) and Gy — G, + (A — u)GA\G,, = 0, A\, u > 0.

Rj. The contraction property holds, i.e. [[AGaul|r2(x,m) < [[ullz2(x,m)s A > 0, u € L*(X, m).

R3. (Gx)a>o is strongly continuous, i.e. [|[AGxu — ul|12(x,m) i N
Ry. Ghu = fooo e MTu A >0, u € L2(X,m). Au= I — Gy u, u € D(A).
Let us recall the notion of Mosco convergence and Gamma convergence of quadratic forms on L2- spaces.

Definition 5.61 (Mosco convergence and Gamma convergence ). Assume (£", D(E™))nen and (€, D(E))
are quadratic forms with dense domains in L?(X,m). One says that (€™, D(E™))nen converges in L? (X, m)
in the Mosco sense (resp. in the Gamma sense) to (£, D(E)) if the following two conditions M; and M,
(resp. My and MJ) are satisfied.

M;. (limsup): For every u € L?(X,m) there exists a sequence (uy,), in L?(X,m) such that u,, € D(E"),
U, — u (read u, strongly converges to u) in L?(X,m) and

lim sup €™ (uy,, up) < E(u, u).

n— 00
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M. (liminf): For every sequence, (uy), with u, € D(E™) and every u € D(E) such that u,, — u (read
u, weakly converges to u) in L?(X,m) we have,

E(u,u) < lin_l)infé'"(un,un).
M. (liminf): For every sequence, (uy), with u, € D(E™) and every u € D(E) such that u,, — u (read
uy, strongly converges to u) in L?(X,m) we have,

E(u,u) < liminf E™ (uy,, uy,).

n—oo

Remark 5.62. (i) It is worth emphasizing that combining the lim sup and lim inf conditions, the lim sup
condition is equivalent to the existence of a sequence (uy,), in L?(X,m) such that u, € D(EM), u, — u
in L2(X,m) and

nli_)néoé’ (Un, up) = E(u, uw).

(73) Tt is clear that the convergence in the sense of Mosco implies Gamma convergence. The converse is
true provided that the asymptomatic compactness holds, see Proposition [5.63] below.
(iii) We adopt the convention that for a given quadratic form (£,D(€)), we have &(u, u) = oo whenever

u ¢ D(E).

(1v) Note that the Mosco convergence on Banach spaces in general is defined in [T6110].

Proposition 5.63 (Mosco vs Gamma ). Assume (€™, D(E™)), converges in Gamma sense to (€, D(E)).
Then (€™, D(E™))n converges in Mosco sense to (€, D(E)) if (E™,D(E™))nen is asymptotically compact,
i.e. for any sequence (uy)n such that u, € D(E™) and linginf (E (tns un) + [Junllz2(x,m)) < 00 has a

strongly convergent subsequence.
Proof. The proof is immediate. O

To a closed form & corresponds a semigroup (T3):, Generator (G,), and a stochastic process (X3);.
According to [FOTT1], if (X¢); is a Markov process (resp. a Hunt process) then £ is a Dirichlet form
(resp. a regular Dirichlet form). The Mosco convergence relates the convergence of Markov processes and
the convergence of their corresponding Dirichlet forms.

Theorem 5.64 ([KS03| [Mos94l, Kol06]). Let (€™, D(E™)) and (£,D(E)) be closed Dirichlet forms. The

following are equivalent:
(1) (E™,D(E™)),, Mosco converges to (€, D(E)).
(17) (G%)n strongly converges to G for every .
(#i1) (T]')n strongly converges to Ty for every t.
Moreover, if (E™, D(E™))n Mosco converges to (€, D(E)) then (X™),, converges to X in finite dimensional

distribution.

Next, we explain for which sequences of nonlocal quadratic forms we can prove convergence to a classical
local gradient form. Let us recall our standing set-up in this section. Let (va)ac(0,2) be a family of Lévy
radial functions approximating the Dirac measure at the origin, i.e. for every a,d > 0

Vo >0, is radial, / (LA A ve(h)dh =1, lim Vo(h)dh =0. (5.45)
Rd a—2 ‘h|>5

Moreover, we assume that h +— v, (h) is almost decreasing, i.e., for some ¢ > 1 and all z,y with |z| < |y|
we have v, (y) < cv,(z). Note that all examples of (vy), from Section apply here as well. Moreover
it is important to stress that (vy)o<a<2 defined as above generalizes the set-up of [FKV19].
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Given a € (0,2),J : RY x R?\ diag — [0, co] and sufficiently smooth functions u,v : R — R, define

£8 (u,v) = // (u(y) — u(@)) (u(y) — v()) T*(z,y) dz dy (5.46)

E(u,v) = // (u(y) — u(@)) (v(y) — v(x)J*(z,y) dz dy. (5.47)
(QexQe)e

Here, for sequence (J*)g<a<2 of positive symmetric kernels J : R? x R?\ diag — [0, 0] we set-up the
following conditions:

(E) There exists a constant A > 1 such that for every a € (0,2) and all z,y € R%, with 0 < |z —y| <1

At (z —y) < Tz, y) < Ave(z —y). (E)
(L) For every 6 >0
lim sup / J*(z,x + h)dh = 0. (L)
Q=27 geRd J|h|>6

(I) For each a € (0,2) the kernel J¢ is translation invariant, i.e., for every h € R?
JHx + by + h) = J(z,y). (D)
(G-E) There exists a constant A > 1 such that for every a € (0,2) and all z,y € RY, with z # y
A ez —y) < J%(2,y) < Ava(z —y). (G-E)

Clearly (G-E|) implies and . Finally, let us define the limit object, which is a local quadratic form
of gradient type. Given z € R? and § > 0, we define the symmetric matrix A(z) = (ai;(z))1<ij<a by

aij(:z:) = al_i)n;ﬁ 5 hitha(:c, T+ h)dh (548)
§

and for u,v € H'(Q) the corresponding bilinear form by

EMu,v) = / (A(z)Vu(z) - Vo(z)) dz..

Q

Remark 5.65. Let us discuss the assumption on the family (J%),. (i) Under conditions and
the expression [ hih;J" (z, 2+ h)dx converges for a suitable subsequence of (c,). The existence of the

limit in (5.48)) poses an implicit condition on the family (J%),. (i) and ensure that the quantity
a;;j(x) does not depend on the choice of ¢ and is bounded as a function in z, i.e. for all §,r > 0,

a;j(z) = lim hih;J*(x,x 4+ h)dh = lim ; hih;J*(x,x + h)dh.

a—=2" /B, a—2~

(#4i) Under condition (I)) the functions a;;(z), 1 <i,j < d, are constant in z. (iv) Regarding Proposition
[2:38] which asserts that

AP < (A(@)€,€) < dMAE2,  for every @, € € RY,

condition is a sufficient condition for what can be seen as nonlocal version of the classical ellipticity
condition for second order operators in divergence form. (v) Condition ensures that long-range
interactions encoded by J*(x,y) vanish as @« — 27. As a result, for some o € (0,2) we have

Ko = Ssup sup / J*(z,x + h)dh < co.
a€(ap,2) ze€R? J|h|>1
Hence conditions and imply the following uniform Lévy integrability type property:
sup  sup / (LA |R)*)T*(z, 2+ h)dh < 00 (5.49)
a€(ap,2) z€R4 JRE

189



Chapter 5. From Nonlocal To Local

Let us begin with a simple but important observation.

Proposition 5.66. Assume Q) C RY is a sufficiently smooth open bounded set or ) = RY. Let v be a
unimodal Lévy kernel. Let v,, J* and A be as above.

(i) The following are reqular Dirichlet forms on L?(Q): (€4, HL(2)), (£4, HY(Q)), (Eq, H,(Q)), (Eq, Hy0(Q)),
(€, VHQIRY), (€5, Hy, (), (€8, Hy, 0() and (£, V2 (QIRT)).
(i) (&, Vi (QRY) N L2RY) and (E*,V,, (QRY) N L2(RY)) are regular Dirichlet forms on L?(R%).

[e%

(i43) The form (£,V,(QR?)) is a regular Dirichlet form on L*(R%, D). The form (£%,V, (QR%)) is a

o4

reqular Dirichlet form on L*(R%,7,). In particular for J*(x,y) = Caalz — y|~4* then the form
(£, V2(QIRY) is a regular Dirichlet form on L2(RY, (1 + |z|)~9~).

Proof. For (iii) the regularity of the forms is a consequence of Theorem and Lemma The
remaining details are easy to establish using Theorem [3.70, Theorem [3.75] and Theorem [3.76] O

Proposition 5.67. Let ag € (0,2) be as in (5.49). The quadratic forms (E§(,-), Hy,, () and (£%(-,-), Vi, (RN
L%(R%)) are well defined for every a € (ag,2).

Proof. Let a € (ap,2) and v € H,_ (). By the assumption and relation (5.49) we have

Swo= [ we-uwPrepdas [ @ - o) @) ddy

Qan{|z—y|<1} Q0N {[z—yl>1}
<A [ e - wwPe-pdedy st [R@de [ @
QQN{|z—y|<1} Q2 lz—y[>1
< A//(u(m) —u(y)) oz — y) dz dy + 4ko /uz(x)dx <(A+ 4/60)Hu||%{ua(ﬂ) < 00.
00 Q

Now if u € V,,_ (Q|R?) then, from the above we deduce £§(u,u) < co. By the same argument we obtain

J] @)~ a2 @) ey

QQec
<A [ we-wPee-pdeaysz [ @@+ @) @) dedy

QQen{|z—y|<L1} QQen{|z—y|>1}

<A // (u(z) — u(y))2valz — y) dzdy + 2ko / u?(z)dz + 2rg / w?(z)dz

QQen{|z—y|<L1} Q Qe

< Aﬂé/ (u(z) — u(y))?va(z — y) dzdy + 2k /uQ(x)dx < 00.

Rd

Finally, we obtain

E¥(u,u) = EG(u,u) + 2 //(u(x) —u(y))?J%(x,y)dzdy < co.
00°
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5.7. Mosco convergence of nonlocal to local quadratic forms

Lemma 5.68. Let D C R? be an H'-extension domain. Assume J satisfies and and let
ag € (0,2)be as in (5.49). Then, there exists a constant C := C(D, A, d, ag) such that for everyu € H' (D)

and every a € (ap,2) we have

Ep(u,u) < CllullF (py-

Proof. From the symmetry of J*(x,y) and (5.49) we have the following estimates

[ w@-wwrrenaag<e o [ 0w d< 2ol

DxDN{|z—y|>1} D lz—y[>1

By Lemma |3.47| we get

(u(@) = u(y))*va(z — y) de dy < Clullin p)-
DxDN{|z—y|<1}

Combining the above estimates along with the condition we get £ (u,u) < C’||u||§{1(D).

The following result is reminiscent of Theorem

Theorem 5.69. Let D C RY be a H'-extension domain (or D = R®). Then, under assumptions and
(L), for all w € H*(D) we have

a—2~

lim //(u(az) —u(y))?J*(x,y) dz dy = / (A(z)Vu(z) - Vu(x)) da. (5.50)
5 D
In particular, if Cq o is the normalization constant of the fractional Laplacian then we have
lirg // —u(y))?ve(z —y)de dy = / (Vu(z) | do (5.51)
a—

lim Cd = // Vlz —y| " de dy = / \Vu(z)|? de.
a—2~ D

Proof. Lemma suggests that it suffices to prove ([5.50)) for u in a dense subset of H L(D). For instance,
let us choose u € C%(D)

(u(z) — u(y))?J*(z,y) dz dy < 4/u2(m) dz / J(z,y) dy 22240, (5.52)
DxDn{|z—y[>1} D |z—y|>1

Now, we consider the mapping F' : D x (0,2) — R with
Fleo)i= [ (o)~ u)?0" e do
le—y|<1

By Taylor expansion we have u(y) — ( ) = Vu(z) - (y —z) +ri(z,y)|r — y|* and therefore, we can write
(u(y) —u())? = (Vu(z) - (y — x))* + r(z,y)|x — y|*> with bounded remainders r(x,y) and r1(z,y). Hence,
F(x,a) becomes

F(z,0) = / Vu(z) - (y — 2)]2T% (. y) dy + R(z, )

|[z—y|<1
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Chapter 5. From Nonlocal To Local

with

|R(z, )| := ’ / r(z,y)|x —y>J(z,y) dy‘ < C/ |h|?va(h) dh oz ),
|z—y|<1 [h|<1

Here, we have applied and Remark Finally, we obtain

lim F(z,a)= lim / [Vu(z) - (y — 2)]?J*(z,y) dy

a—2~ a—2~

lz—y|<1
= ¥ du@du@) [ ()l - )0 ) dy
o=ti=d la—y|<1
= Z a;j(x)0u(x)dju(x) = (A(x)Vu(z), Vu(zx)).
0<i,j<d

Applying the dominated convergence theorem yields

a—2~

lim // (u(z) — u(y))?J*(z,y) dz dy = aliﬂn;ﬁ /F(x,a) dx = /<A(x)Vu(x), Vu(z)) dx.
DxDn{|z—y|<1} D D

The case J*(z,y) = vo(z — y) follows from Theorem since K2 = 2. In fact, the cases J%(z,y) =

Vo(z —y) and J(z,y) = %hﬁ — y|~9 follow from Example
O

Corollary 5.70. Let 2 C R? be a H-extension domain. Then, under assumptions and , for all
u € H' (D) the family of Hilbert spaces (H,, (), | -|la), converges to the Hilbert space (H*(2), |- ||a) as
a — 2 in the sense of Definition[5.5] Here we consider the norms

lull? = llullfeqo) + €5 (uw)  and [ul’y = llull72q) + € (u,w).

Proof. Note that Lemma and the regularity of € imply that H!(Q) is a dense subspace of H,,_().
Thus result follows since by Theorem l|u]] o LmaN |ul| 4 for every u € H (). O

Theorem 5.71. Let Q C R be a H'-extension domain. Let (ay,), with a, € (0,2) be a sequence such

n—oo

that oy, ——> 2. Assume (up)n with u, € H,, (Q) is a sequence converging in L*(Q) to u € H ().
Under the assumptions and we have

/ (A(2)Vu(2) - Vu(2)) dz < lim inf // (1 (@) — wn(y))2T (z, y) dz dy. (5.53)
Q Q0

Proof. The claim clearly holds if lirginf EG™ (Un, uy) = 0o0. Assume lirr_1>inf EG™ (Un,up) < co. Then the

sequence of real numbers (||uy|a, )n has a bounded subsequence. By Corollary we know that the
sequence of Hilbert spaces (Hy, ,|| - |la,), converges to the Hilbert space (H'(Q),| - [l4). Therefore, in
view of Theorem there exists a subsequence of (u,), that we still denote by wu,, converging weakly
(in the sense of Definition to some v’ € H(Q) that is for every sequence (v,), with v, € H,, (Q)
strongly converging to v € H'(Q) we have

n— oo

<u"’v")Han @ (u', v)Hl(Q).
Moreover, we have

||U/||z24 < hnn—l>ior<l>f ||un||%lan(9).
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5.7. Mosco convergence of nonlocal to local quadratic forms

In particular, for v € C°(Q2) the constant sequence v, = v strongly converges to v. Thus since (uy)n
converges to u in L?(2) we have,

(u,v)LQ(Q) + nler;O &G (Up,v) = Lrgo (un,vn)H%(Q) = (u’,v)LZ(Q) + &AW v).

n

Wherefrom, we get (u,v)LQ(Q) = (u’,v)LQ(Q) for all v € C2°(Q2). This implies that u = u' a.e. on Q.

Finally, since ||u, — ul|r2(q) 2722 0, the above inequality yields €4 (u, u) < linlinf EG" (U, Uy ). Indeed,
n oo
A -
a2 gy + €4 () = [y < liminf fun . o
= lim inf Hun||%2(m + lim inf EG" (Un, up)

= Jul2 ) + lim inf £5" (un, ).

As a consequence of Theorem [5.69] and Theorem [5.71] the following is true.

Corollary 5.72. Let Q C R? be a H'-extension domain (or Q = R?). Assume and (L)). Then the
quadratic forms (£S(-,-), H,. (Q))a and converges to (E4(-,-), H(Q)) in the Gamma sense in L?() as
a—27.

Finally, we now are in a position to prove the main result of this section.
Theorem 5.73. Let Q C R? be an open bounded set with a Lipschitz continuous boundary. Assume

and (L). Then the two families of quadratic forms (£§(-,-), Hy, (Q))a and (E%(-,-), Vi, (QR?)) o both
converge to (E4(-,-), H'(Q)) in the Mosco sense in L*(Q) as o — 27.

Proof. Note that by Theorem C°(RY) is dense in V,,_ (Q|RY) and by Theorem C2°(Q) is dense
in H,_ (Q). Hence it follows that V,_(QR?) and H,_(Q) are dense in L%(Q2). We proof the lim sup and
the liminf conditions separately.

Limsup: Let u € L?(Q), if u ¢ H() then the lim sup statement holds true since £4(u, u) = co. Now
let w € H'(Q). By identifying u to one of its extensions @ € H'(R?), for the sake of simplicity we can
always assume that u € H'(R%). On the one hand, Theorem |5.69 shows that lim &£ (u,u) = £4(u,u).

a—2~

On the other hand, we have

£ () = E3(u,0) + 2 [ (u(w) ~ u(y))? I () dody.
QQe
Since () is Lipschitz, adapting the proof of Theorem by applying Theorem we find that

/ (u(z) — u(y))*J*(z,y)dedy = 0 asa— 2. (5.54)
Q0e

Thus, we conclude that for u € H* (),

lim sup £ (u, u) = lim sup £ (u, u) = E4(u, u).
a—2~ a—2~

Thus, choosing the constant sequence u, = u for all « € (0,2) we are provided with the lim sup condition
for both forms (£8, H,, () and (£%,V,_(QR?)),.

Liminf: Let u,u, € L?*(Q) be such that u,, — u in L?(2). Necessarily, (u, ), is bounded in L?(Q). Let
(an)n be a sequence in (0,2) such that «,, — 27 as n — co. If lilginf EG™ (Un, up) = 00 then,

EMu,u) < lirginf Q" (Un,up) = lirginf E (Upy, Up) = 00.

Assume lini inf £ (un, u,) < 0o then according to Theorem the sequence (u, ), has a subsequence
n o0

(which we again denote by u,,) converging in L?(2) to some 4 € H*(£2). Consequently, as u,, — u it readily
follows that (u,), converges strongly to u in L?(£2). Therefore, taking into account that v € H*(2), the
desired liminf inequality is an immediate consequence of Theorem O
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The next result is a variant of Theorem [5.73 with H*(Q) replaced by H{ ().

Theorem 5.74. Let  C R be an open bounded set with a continuous boundary. Assume and
(Z). Then the two families of quadratic forms (ES(-,~),C§°(Q)H"“(Q))& and (E%(-,-), VSL(QIR?))  both
converge to (E4(-,-), H} () in the Mosco sense in L*(Q) as a — 27.

The result relies on the density of C’go(Q)HVa @) resp. VV% (Q|Rd). The density of the first space is trivial.
The density of the second space is formulated in Theorem Apart from the density issue, the details
of the proof are the same as in the proof of Theorem

5.8. Convergence of Dirichlet and Neumann problems

The main purpose of this section is to prove the convergence of weak solutions, eigenvalues and eigen-
functions of the nonlocal Dirichlet and Neumann problems the local ones. Here again we assume that
(Va)ae(o,2) satisfies the condition and the family(J%), of symmetric kernels either satisfies the
conditions and or the global elliptic condition . Define the operators %, and .4, by

Loulz) = p.v. /

R4

(u() — u(y))J*(z,y)dy and o4au<x>::/Q<u<x>—-u<y>»f“<x,y>dy.

Recall that we note

E*(v,v) = y)2J%(x,y)dedy for all v eV, (QR?)
EA(v,v) = / (A(x)Vv(x) -Vo(z))dr forall ve H' ().
Q

We remind that A is the elliptic symmetric matrix satisfying d=1A71|¢]2 < (A(2)€,€) < d—1A[€]?, for
every z, ¢ € R given by (see (5.48))

a;j(z) = lim hih; J%(z, x + h)dh.

a—2 Bj

We also introduce the outwards normal derivative of a function v on 92 with respect to the matrix A
(also called co-normal derivative of v) which is defined for = € 92 by

—(2) = A(x) V() - n(z).

872,4

We start with the following preparation result.

Lemma 5.75. Let Q C R? be Lipschitz, open and bounded. Let ¢ € CZ(R?) and v € V,,_(QIR?). With
the conditions (5.45)), , and in force, the following assertions hold.

(1) There exist oy € (0,2) and a constant C > 0 independent of o such that

sup

| [ Aaplyo) dy| < Cligloz g lvllv,, @ips -
a€(ap,2) Qe

(i) Assume v € H'(R?) then

lim a%ﬂ@()yzjijwwmmﬂw.

a—2 90 dna

In particular if J*(x,y) = Ca.alr—y| =4 then aé%(w) = g—ﬁ(x). Here, Cg o is the normalization constant
given by the formula (2.36]).
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Proof. The condition () gives J¥(x,z + h) = J*(x,z — h) which implies that

Zou(z) =p.v. /Rd(u(x) —u(y)J(z,y)dy = ;/ (u(x + h) +u(x — h) — 2u(x))J%(x,z + h) dh.

Rd
Wherefrom, since A is constant, it is easy to show that (see Proposition [2.38))

lirn2 Lou(x) = —tr(A()D*u)(x) = — div(A(-) Vu) ().
a—r
Combing the estimates ([5.49)), and |o(z + h) — ()| < 2[l¢llcr ey (1 A [h]) we have

[ Zapl < 4nll@llczrey and  E%(p, @) < 4r[Qll@llczrey for all o € (a0, 2)

where
k= sup  sup / (LA JB2)T® (2,2 + h) dh < 0.
a€(ap,2) zeRe JR4
Therefore, since the hnear mapping v — £%(p,v) — [, ZLap(z)v(x) dz is continuous on V,, (Q|RY), the

Green-Gauss formula (4.5) is applicable for ¢ € C’b (R4) and v € V,,_ (2|R?) and hence the above estimates
imply (7) as follows

‘ ch/VOAO( v(y) dy‘

E¥p,v /Q,,?ago(x)v(x) dx‘

< &%, <P)U25a(vav)1/2 + ||$a90\|L2(Q)||U||L2(Q)
< Clellczmallvlv,, @ira) -

a—2

We known that Z,p(r) —= —div(A(-)Ve)(x) for all z € R? and since | Lhp| < 4kll¢llcz(ray, the
Lebesgue dominated convergence Theorem yields

/faap z)dz 222 QdiV(A(-)Vap)(ac)v(ae) dz.
On the other hand, Theorem [5.25| combined with Theorem [5.69| implies that
E%(p,v) 222 Q(A(x)Vgp(x) - Vo(z)) dz.
Finally from the foregoing and the classical Green-Gauss formula we obtain (ii) as follows

lim o Nap(y)v(y) dy = 01[1_)11125 (p,v) — Olél_}rnz/Qfago(a:)v(m) dz

a—2

= /(A(a:)Vgp(a:) -Vo(z)) dzx —/ div(A(-)Ve)(z)v(x) dz
Q Q
— [ 2% o) do(a).

o0 871A
The case J*(z,y) = Cqalz — y| =47 follows since A = (6;j)1<i,j<a see from Example

The following result is crucial for our purpose.

Theorem 5.76. Let Q C R be open, bounded and connected with Lipschitz boundary. Assume the
conditions (5.45) and (G-E)) hold. Let u, € V,_(QR?) such that

sup  [[uallz2() + €% (Ua, ta) < 00
a€(ay,2)

Then there exist u € H'(Q) and a subsequence vy, ——— 2 such that |[ua, — ul|L2(q) ——> 0 and
E% (Ug,,,v) =25 EAu,v) = / (A(z)Vu(z) - Vo(z))dz  for all v e H'(RY).
Q

The same is true for Q = R? with the exception that the strong convergence on LlOC(Rd), i.e. for every
n— 00

compact K C R we have ||uq, — ull2(xy —— 0.

195



Chapter 5. From Nonlocal To Local

Proof. On H,_(Q2) and H*(2) we define the scalar products,

(w0, = [ wle)ola) do + // D)(v(@) — w(y))J* (z,y) do dy

(w,v)Hl(Q) = /Qw(a:)v(a:) dz + /Q(A(:L‘)Vw(x) -Vou(z))dz

In view of Theorem for both cases Q # R% and Q = R?, we have vl &, @) — llvlla (@) for all
v € HY(Q). In other Words the family of Hilbert spaces (H,,, (Q)) converges to the Hilbert space H'(Q)
as o — 2 in the sense of Definition Whence we deduce from Theorem m there exists u € H(Q)

and a subsequence «, 2729 2 such that

i (ua,,v) )

On the other hand, for the case 2 # R¢ Theorem asserts there exist a further subsequence that we
still denote by (av,), and a function u’ € H'(Q2) such that ||ua, — u/||12(q) —— 0. Instead, if @ = RY,
then fact that ||ua, —u'|| L2 (k) 2722 0 for every compact K € R? is due to Theorem@ In either case,
it is not difficult by taking the test function v € C2°(R%) to show that «' = u a.e in €. In both cases,
from this we get the weak convergence in L?(2) that is,

= (u,v)Lz(Q) for all v € H'(Q).

= (u,v)Hl(Q) for all v € H'(Q).

lim (uan , U)

n—oo L2(Q)
Therefore, this and the above weak convergence imply that
//(uan (%) = Ua, () (v(x) = v(y))J*" (2,y) dedy == | (A(2)V/(z) - Vo(z)) da. (5.55)
Q
QQ

The proof is thus complete for case 2 = R%. Next, if Q # R? then by the uniform boundedness in ([5.57))
together with (G-E]|) we find that

// |ty (&) — 11, (1)) (0(2) — 0()) | T (2, ) dr ly

QQe
<C [ wo) = o)Pva (z — ) dndy =20
QQe
where the convergence follows from Theorem This combined with (5.55)) implies

£ (U, ,v) =25 EA(u,v) = /Q(A(:v)Vu(:c) -Vou(x))de.

Here is our first convergence theorem concerning weak solutions.

Theorem 5.77 (Convergence of weak solution I). Let Q C RY be open, bounded and connected with
Lipschitz boundary. Let (fa)a be a family converging weakly to some f in L*() as o — 2. For p € CZ(R?)
define go, = Nop and g = . Assume the conditions (5.45)) and (G-E)) hold. Suppose u, € V,, (QR?)+
is a weak solution of the nonlocal Neumann problem Lou = fo on Q and Nu = go on Q° that is we
have

*(Ua, v / fa(z)v(z)de + / go(z)v(z)dz  for all v eV, (QRHL

Let u € HY(Q)* be the unique weak solution in H'(Q)* of the Neumann problem — div(A(-)Vu) = f on

0
QO and 2L = g on 0N) that is we have
0nA

(u,v) / f(z)v(z)dx + /asz g(x)v(z)do(z) for all ve HY(Q)*

Under the condition or else, if go = g = 0, then ||ug — ullz2(q) 2220, de. (U)o converges to u in
L2(Q2). Moreover, we have the weak convergence E%(uq,v) —— a2 225 A(u,v) for all v e HY(R?).
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Proof. In virtue of Theorem combined with condition (G-E|) there exist ag € (0,2) and a constant
B > 0 depending only on g, and d such that for all v € L?(Q)* and all « € («ap, 2)

||’U||%2(Q) S Cga(v,v) with C' = AB.
Therefore, up to relabelling the constant C, for all v € L#(Q)* and all a € (a,2) we have
[0[I%, ey < CE*(v,0). (5.56)
On one hand, by the weak convergence of (f,)o we may assume sup ||folr2(q) < oo. This together
(0,2)

ac

with the definition of u, along with Lemma [5.75] (i) we get

& o tta) = [ fu@hta(e)do+ [ galw)ualy) dy
Q Qe
< luallv,, @re) (I fallz2@) + llellczra))
< Clluallv,, @ra),

for some constant C' > 0 independent of o and « € (ag, 2). Combining this with (5.56|) then for a generic
constant C' > 0 independent of o we have the following uniform boundedness

luallm,, @) < lluallv,, @rey < C for all « € (ayp,2). (5.57)
In accordance to Theorem there exist a subsequence (ay,)n, such that a, — 2 and a function
u' € HY(Q) such that ||ua, — |12 —— 0 and

£ (U, ,v) —=25 EA(W ) = /Q(A(x)Vu'(x) -Vo(z))dz for all v € HY(R?).

In addition we have u’ € H*(Q)* since u, € V,_(QRY)* for all a € (0,2). The proof will be completed
if we show that u = u/. To this end, we fix v € H*(2)*, given that Q has a Lipschitz boundary we let
v € H'(R?) be an extension of v. We know that v € V,,_ (Q2R%)* for all « € (0,2). Thus by definition of
Uq,, it follows that

& (uq,,,v) = / fo, (@)v(z) dz + / cgan(y)@(y) dy.

Now, given that (f., ). weakly converges to f in L?(Q2), letting n — oo in the above yields

(', v) /f dx—i—/agg(x)v(x) do(z)

if go = g = 0 or by applying Lemma (i1), if condition (T holds. This holds true for any v € H'()*.
By uniqueness we have v = u’ on  since v/ € H'(Q)" is the weak solution of the corresponding local
Neumann problem.

The same reasoning is true for any sequence (o, ),, with a;,, — 2. Thereupon, the uniqueness of u € H*(2)*

implies that |uq — u||£2() 2220 and % (uq, v) 222 EA(u,v) for all v € H'(R?). O

The general case can be captured as follows.

Theorem 5.78 (Convergence of weak solution II). Under the assumptions of Theorem assume
that

Lfa(x)dw+cha(y)dy=/Qf(:r)der/an(y)dy:O for all a € (0,2).

Assume w, € V,_ (QRY) is a weak solution of the monlocal Neumann problem Lou = fo on Q and
Nl = go on Q°, i.e.

*(we, v / falz /C ga(z)v(z) for all v eV, (QRY). (5.58)
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Assume that the family (co)a with co = fowa(x)da is bounded. Then there exist w € H'(Q) and a
sequence o, — 2 such that ||wa,, —wl|L2(q) 27220, where w € H'(Q) is a weak solution of the Neumann

problem — div(A(-)Vu) = f on Q and aa—u =g on 01, i.e.
nA

EA(u,v) = / f(x)v(z)de +/ g(x)v(z)do(x) forall ve H'(Q). (5.59)
Q a0

Conversely, if w € H' () solves (5.59) then there exists wy € Vi, (QR?) solving (5.58) such that we have

lwa —w| L2 2220 and E¥ Wy, v) LmEN EA(w,v) for all H'(RY).

Proof. It suffices to observe that wq = uq + ¢q and w = u + ¢ where ¢ = fowa(z)dz , ¢ = fow(z)dr
and the functions u, € V, (QRHL u € HY(Q)L are uniquely determined as in Theorem E such
that [|ua — ul|r2(q) 222, 0. Thus, the forwards statement follows since by assumption (ca)ae(ag,2) 1 @
bounded family of real numbers and thus has a converging subsequence. For the converse it suffices to
take wy, = u, + ¢ with ¢ € R.

O

We will need the following lemma to establish the convergence of Dirichlet problem.

Lemma 5.79. Let Q ¢ R? be open and bounded with continuous boundary. Assume the conditions (5.45))
and hold. Then there exist o, € (0,2) and a constant B > 0 independent of a such that for all
a € (ay,2) we have

HU||2L2(Q) < 2BAE*(u,u)  for allu € VI (QRY).

Proof. Since 2 has continuous boundary, by Theorem [3.76] it is sufficient to prove the inequality for
u € C(Q). In virtue of Theorem there exist ap € (0,2) and a constant B > 0 independent of «
such that for every o € (g, 2) we have

lul20 < B // (u() — u(y))2valz — y) de dy.
(QexQe)e

From the condition ([5.45)) there exists a; € (0,2) such that for all & € (1, 2) we have

Let o, = max(«yg, 1), thus for a € (o, 2), employing the above and the condition yields

lul220) < B // (u() — u(y))*valz — ) dedy
(QexQe)e

<BA [ @) = u)P1a @ -0 ) dedy + 8Bl [ vai)an

[h|>1
(QexQe)e

. 1
< BAE*(u,u) + §||UH%2(Q)~

Thereupon we get ||u\|%2(9) < 2BAE%(u,u).
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Theorem 5.80 (Convergence of weak solution III). Let Q C R? be open, bounded and connected
with continuous boundary. Let (fa)a be a family converging weakly to some f in L*(Q) as o — 2. Let
g € HY(R?Y). Under the conditions (5-45), (E) and (L) assume uq € V,, (QR?) is a weak solution of the
nonlocal Dirichlet problem Lou = fo on Q and u = g on Q°, i.e. uqy —g € VQ (Q|RY) and

E¥(ug,v) = /Qfa(x)v(x) forall wve V,fj(m]Rd).

Then ||ua — ullr2(q) 2220 where u € HY(Q) is the unique weak solution of the Dirichlet problem
div(A()V)u = f on Q and u =g on 99, i.e. we have u —g € H}(Q) and

(u,v) /f x)dz  for all ve H ().

Moreover, we have the weak convergence E*(uq,v) LN EA(u,v) for allv € H'(RY).

Proof. Since, uq — g € V() R%), in view of Lemma there exist .. € (0,2) and a constant B > 0
independent of « such that for every « € (au,2) we have

[ua = gll72(0) < 2BAE (ua — g, ua — 9)
which implies that
l[ua — QHV o (QRY) = < (2BA+1)E%(ua — g,ua — 9)-
In accordance to the definition of u,, taking C' = v2BA + 1, the following holds
€% (Ua = g, ua — 9)] < [E%(ta, ua = 9)[ +[E%(9, ua — )]
= | [ fa@) (@) = g(a) da] + (0,10 — 0

< | fallzz@llta = gllrz2) + E(9, 9)*E* (ua — g,ua — 9)
< CE*(ua — g, ua — 9)* (I fallL2 (o) + €%(9.9)?).

That is £ (ug — g, e — g)*/? < C(Ilfallzz) + £%(g,9)"?). Further, given that u, — g = 0 on Q°, we get
lta — g||HVa(Rd) = |lua — gllv,, (ore)- Hence we have

1/2

1/2
e = gll,. ey = (Ilte = 912 + E%(ta = 9,10 — 9))
< V20 (uq — g,ua — 9)'/?
<202 (| fallL2(o) + £%(9,9)'?).
Wherefrom, we find that
luallm,, @y < 9lla,, @y + va = 9lla,, @
< 2C% (|| fallr2) + 9l 2 @ey + 267 (9, 9)"/?).
On other the hand, under the conditions and the estimate implies the following uniform
Lévy integrability type property:

K« = SUp sup / (LA |R)*)J*(z,z + h)dh < oo with a, > ag.
aE(ax,2) zeRe J R4

Next, exploiting the estimate (3.14) we get

“(g9,9) // )2 (z, 2 + h) dhda < 4k.|g||3 Ry < 00.
R4 RY
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By the weakly convergence of (fo)o We may assume sup || fo|r2(0) < oc. Finally, we have shown that
a€e(0,2

luallg,, @y < 2C%( Sl(lp)HfaHLQ(Q)+||9HL2(]R"’ )+ 8k llgllF ray) =M foralla € (an,2)  (5.60)
ae(0

where M does not depend on «. In view of Theorem m there exist u' € H'(R?) and a subsequence
ay ~—>% 2 such that for all compact K C R, |lua, — u/||12(x) —— 0 and for all v € H'(R?)

[ (@) = 0, ) 0(@) = )T () dedy 225 [ AV ) Vo) e (s g
R R4 B
We claim that v’ — ¢ = 0 on Q°. In fact for any compact K C Q¢ since uq,, — ¢ = 0 on Q¢ we have

v’ = gllz2(x) = lua, — o'l p2cry — 0.

Thus we have v/ — g € H'(R?) and «/ — g = 0 on Q¢ which means that ' — g € H}(€). On the other
hand, we also have ||ua, — v 12(0) 272 0 since Q is bounded. The proof will be completed if we show
that u = u’. To this end, we fix v € H}(Q). We naturally assume that v = 0 on Q¢ so that v € H!(R?).

The relation (5.61)) implies

E0 (Ug, ,v) =25 EA (W v) = / (A(z)Vi/(z) - Vou(x)) dz .
Q
We know that v € V2 (€ R%) for all a € (0,2). Thus by definition of u,, it follows that

ga"(uan,v):Lfan(:v)v(x) dx.

Now, given that (f., ). weakly converges to f in L?(f2), letting n — oo in the above gives

Al v) = )v(zx) dx
£ (uw)—/ﬂf()()d

This holds true for any v € H}(Q2) and v/ — g € HZ(Q)). Thus, v/ € H}(Q) is the weak solution of
the corresponding local Dirichlet problem. By uniqueness we have v = «’ on ). The same reasoning
is true for any sequence (o), with o, — 2. Thereupon, the uniqueness of u € H*(f2) implies that
e — ullL2 (o) 2220 and €% (ua, v) 222 E4(u, v) for all v € H(RY).

O

Another result on the convergence of Dirichlet problems can be found in [Voil7]. Next, we prove the
convergence of nonlocal eigenvalues and eigenfunctions to the local ones.

Theorem 5.81 (Convergence of eigenvalues I). Let O C R? be open, bounded and connected with
Lipschitz boundary. Assume that the conditions (G-E|) and are satisfied. For each o, assume
that the operator £, has a family of normalized Neumann eigenpairs (fia,n, Pan)n- That is for all
n >0, ¢dan € Vo (AR, |[banllrz) = 1 the elements (¢pan)n are mutually L*()-orthogonal, i.e.
(¢a,i7¢a,k>L2(Q) =01ifi#k, and

ga(¢a,n7 = Ha n/ ¢a n d:U fOT' all ve V,/a (Q“Rd) .

Then for each n > 0, the eigenpair (,ua ns Pan)a converges to (pu,, ) in R XLZ(Q) up to a subsequence

as o — 2. To be more precise, fio; n ==, tir, in R and || ¢pa; n — &7l 20 22200 for some a; T2 9.
Moreover the family (ul,, ¢l,)n is the sequence of the normalized Neumann eigenpairs of the div(A(-)V),
i.e. (95, 9%)r2) = dik and for each n >0

&4 pn/qﬁ z)dz  for all ve HY Q).
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Proof. First of all, we know that ¢o0 = ¢) = |27! and pao = pu = 0. By proceeding as in the

proof of Theorem it can be shown that 1 a2, wh. It can be shown that ¢, 1 converges to
some ¢} in L?(Q)* up to a subsequence. More generally, for fixed n > 1 assume there exists a sequence

aj = aj(n) 2% 2 such that for every 0 < k < n—1, (fter; k> Doy (), )m converges to (py, @) in R x L*(Q)
as j — oo. Then by Rayleigh’s quotient (see Chapter [4]) we have

Hajmn = gaj((baj,nvdbj,n) = min {M}

veVa,n U|v[|Z2 0
where Vi, = {v € Vo, (QR?) ¢ (¢a, ks 0)12() =0, i =0,1,--- ,n—1}. Observing that V,, , C L*(Q)*,
it follows from the robust Poincaré inequality (see Corollary [5.43) that there exists a constant C' > 0
independent of ; for which we have

u;jlm <C forall j>1.

That is, the sequence (,u;jln)j is bounded. Thus, without loss of generality we may assume that M;},n
converges to some j/7 1 > 0 as j — co. On the other hand, the sequence (Ma;,n)j being bounded, we have

|‘¢aj,n

|%Q(Q) +5aj(¢aj,m¢aj,n) <1 +$1>1}1)uaj7n =M < oo forall j >1.
i>

Therefore, from Theorem one is able to find a further subsequence (a;(n+1)); which we denote o; =

aj(n+1) of the sequence («;);( recall a; = aj(n)) and ¢}, € H'(2) such that ||¢a;_,n — ol o) IZ0
and for all v € H'(R?) we have

5A(¢;wv) = lim 5063 ((ba;,nvv) :jli{go,ua;.,n/g¢a;,n(x)v(x) dr = /JJ;L/Q¢;L(1')U($) dz.

j—oo
In particular, since 9 is Lipschitz we have
EA(¢L,v) = u;/ ¢ (z)v(x)dz for allv € HY(Q).
Q
Moreover, for 0 < i < k < n we have
A 13 Y — 4.
(&3> Pk L2(0) = jlggo(%g,m Por 1) L2(2) = Oi k-

By induction the result remains true for all n € Np. O

A similar reasoning leads to the convergence of eigenpairs associated with Dirichlet condition.

Theorem 5.82 (Convergence of eigenvalues II). Let Q C R? be open, bounded and connected. Assume
that the conditions (G-E) and (5.45)) are satisfied. For each fized o, assume that the operator £, has
a family of normalized Dirichlet eigenpairs (Aan, Pan)n- That is, for alln > 1, ¢an € VV%(QURd),
lanllzz@) =1 the elements of (Pa,n)n are mutually L*(Q)-orthogonal, i.e. (Pa,is ak)r2(0) =0 ifi #k
and

E*(van,v) = )\a,n/ Yan(@)v(z)de forall ve Vfi(m Rd).
Q

Then for each n > 1, the eigenpair (Aa.n, Pa.n)a converges to (X, ¢h) in R x L2(2) up to a subsequence

as a — 2. To be more precise, Ao, n EimiicN Ay in R and ||0a; n — 1220 2220 for some o Jzeo, o
Moreover the family (., ¢l )n is the sequence of the normalized Dirichlet eigenpairs of the div(A(-)V),
i.e. (‘PQ,SO%)LZ(Q) =4, and for each n > 1

EAQ,v) = A%/{zgoil(x)v(x) dz  forall ve HH Q).
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Specializing the aforementioned results with J(z,y) = Cyalz — y|~9~ that is we get &, = (—A)*/2

and —div(A(-)V) = —A we get following corollaries.

Corollary 5.83. Let Q C RY be open bounded and connected with Lipschitz boundary. Let Let (fo)a be

a family converging weakly to some f in L*(Q) as a — 2. For ¢ € CZ(RY) define go = Nop and g = g—‘s.

Let ug € VO2(QRYL be the weak solution in V/2(QIRY)L of the nonlocal Newmann problem for the
fractional Laplacian, i.e. uq is a weak solution of the following

(=A)2u = fo, on Q and Nyu= g, on Q°.

Then we have ||uq — ul|z2(q) 2220 where u € HY(Q)* is the unique weak solution in H' ()L of the
Neumann problem

—Au=f on Q and @:gon o09.
on

Furthermore, let (fia.ns Pan)n be the family of normalized Neumann eigenpairs of the fractional Laplacian
(=A)*/2. Let (1!, ¢.)n be the sequence of normalized Neumann eigenpairs of the Laplacian —A. Then
for each n > 0, the eigenpair (fon, Pan)n converges to (ph, ¢l) in R xL3(Q) up to a subsequence as
a— 2.

Corollary 5.84. Let 2 C R? be open, bounded and connected. Let (fo)a be a family converging weakly to
some f in L2(Q) as o — 2. Let g € HY(RY). Let uq € V/2(Q|RY) be the weak solution in V*/2(Q R?)
of the nonlocal Dirichlet problem for the fractional Laplacian, i.e. uy is a weak solution of the following

(=AY 2u=f, on Q and u=g on Q°.

Then ||ua — ulr2(0) 2720 where u € HY(Q) be the unique weak solution in H*(Q) of the Dirichlet
problem

—Au=f on Q and u=g on 0.

Furthermore, let (Ao n, Pa.n)n be the family of normalized Dirichlet eigenpairs of the fractional Laplacian
(—=A)*/2. Let (X, ") be the sequence of normalized Dirichlet eigenpairs of the Laplacian —A. Then for
each n > 1, the eigenpair (Ao.ns Pa.n)n converges to (A, ¢h) in R x L2(2) up to a subsequence as v — 2.

Another special case is to consider J*(z,y) = d - vo(x,y) with (v, ) satisfying the condition (5.45). In
this case we also have —div(A(-)V) = —A.
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A. Lebesgue Spaces

A.1. Lebesgue spaces

Let the triplet (X, A, 1) be a measure space that is X is a set, A is a og-algebra on X and p: A — [0, o0]
is positive measure on X. Basic notions related to such a triplet are recorded in [Alt16l Bog07, [Gra08]
especially in [EG15]. Our exposition here and in the next section abundantly relies upon these materials .

Definition A.1. For 1 < p < oo, the space LP(X) is the space of class of measurable functions u : X — R
such that ||ul|lLr(x) < oo with

/p
ul e x) = / |u(z)|P du( )) for 1<p<oo
lull Lo (xy =inf{c >0:|u| <c p—aeon X} for p=oo.

Let us quote without proofs some significant results on LP(X). We start with Holder inequality which
appears to be the most important inequality on LP-spaces.

Theorem A.2 (Holder inequality). For 1 < p,p’ < oo, such that p + p' = pp’ then for all measurable
functions u,v: X — R the following inequalities ||uv| L1 (x) < [[ullLex)|0]l o (x) holds true that is

/p 1/p’
/|u )| dp(a /|u P (e /|u W du(@) "

More generally assume r,p1 -+ ,py, € [1,00] satisfy the relation

Then for all measurable functions uy,--- ,u, : X — R we have

l|lug - - ’unHLT(X) < ||’U,1HL171 (x)" " Hun”LP“(X)'

In particular, uy - - - u, € L"(X) once u; € LPi(X), i=1,--- ,n.

One of the most influential inequalities on the integration theory is the Jensen’s inequality.

Theorem A.3 (Jensen inequality). Let u : X — R be measurable and let ¢ : R — [0,00) be a convex
function such that ¢ ou € LY(X). Assume u(X) < oo then,

0 (M(lX)/Xu(x) du(x)) < M(lX)/Xsoou(x) dp(z).

Actually, it is possible to derive Holder inequality from Jensen’s inequality. Exploiting the Hoélder inequal-
ity we are able to prove the Minkowski inequality.

Theorem A.4 (Minkowski inequality). For 1 < p < oo, then for all measurable functions u,v : X — R
one has the following triangle inequality

lu+vllzrx) < lullex) + J0]l2rx)-

The Minkowski inequality shows that LP(X) is a normed space. We have the following.
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Theorem A.5 (RieszFischer). For 1 < p < oo, the space LP(X) is a Banach space under the norm
U +— Hu||Lp(X)

The next very important result is the monotone convergence theorem due to Lebesgue and Beppo Levi.

Theorem A.6 (Monotone convergence or Beppo Levi). Assume (up), is a sequence of nonnegative
measurable functions on X such that 0 < u, < upy1 a.e for each n > 1 then

/ lim wu,(z) du(z) = lim un () dp(z).
b'e b

n—oo n—oo
An alternative to the monotone convergence theorem when the monotonicity is violated is the so called
Fatou’s lemma.

Theorem A.7 (Fatou’s lemma). Assume (uy), is a sequence of nonnegative measurable functions on X
then

/ lim inf u, (z) dp(z) < lim inf/ U (x) dp(z).
b'e b'e

n—oo n—oo

Of course to complete the discussion on convergence one needs to recalls the Lebesgue Dominated conver-
gence theorem but we defer this to the next section which will be derived as an immediate consequence
of the Vitali convergence Theorem (cf. Theorem [A.25]).

Theorem A.8 (Fubini Theorem). Let (X1, Ai, i) ¢ = 1,2 be two o-finite measurable spaces and let
(X1 X Xo, A1 ® Ao, 11 ® ug) be the corresponding product space. Assume v : X1 X Xo — R is A; @ As-
measurable therl

/ (1, 22)] dpa@pa (21, w2) = / (/\0(3017902” dH1($1)> dpo(w2) = / (/ v(z1, z2)| dul(@)) dpz (1)

X1xXo X1 Xo X2 X1
additionally if v € LY (X1 x X3) then,

/ v(x1,m2) dpr @ po(z1,22)= / (/v(ml,xg) dul(scl)) dps(z2)= / (/v(:vl,xz) d,ul(xg)> dpe(x1).

X1 xX2 X1 Xo X2 Xy

A.2. The Vitali convergence theorem

It is the aim of this section to establish the Vitali convergence theorem which provides necessary and
sufficient conditions for convergence in LP-spaces. Throughout, we assume that (X, .4, u) is a measure
space and by "measurable" or "integrable" we refer to this triplet. We start with some basics.

Definition A.9. A sequence (u,)nen of measurable functions is said to converge in measure to w if for
alle >0

li_}rn w{r € X ¢+ |up(x) —u(z)| > e} =0.
We said that (up)nen is Cauchy in measure if for all € > 0

lim pf{x e X: |up(z) —uy(z)| >} =0.

m,n— oo

Let us see the connections between the convergence in measure and other types of convergence.

Proposition A.10. Let u and (un)nen be measurable functions. The following statements hold true.

'Fubini theorem for nonnegative functions is often known as the Fubini-Tonelli theorem
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(1) Suppose u(X) < oo. If the sequence (uy), converges pointwise p-almost everywhere to u then it
converges in measure to u.

(#3) If the sequence (uy), converges in LP(X) (1 < p < 00) to u then it converges in measure to .

(ii1) If the sequence (uy)n converges in measure to u then there is a subsequence (un,;); of (un)n which
converges pointwise p-almost everywhere to u.

Proof. Without any loss of generality we assume that u = 0.
(7) Given that u, — 0 p-a.e., for any € > 0 the measurable set E = {x € X : limsup |u,(z)| > £} has

—
measure zero and contains the measurable sets B, = |J {|ux| > ¢} with B,+1 C B,. Since u(X) < oo,
k>n

by monotonicity of the measure u we get

Tim p({z € X+ Jun(2)| > e}) < Tim (| {Jurl > €}) = p([) Ba) < ul(E) = 0.
k>n n>1

(i1) Assume |un | Le(x) 27%% 0 then the convergence in measure is a straightforward consequence of
Chebyshev’s inequality, since for all € > 0 we have

lim p({w € X : Jun(x)| >e}) < lim Junllerey _

n—00 o)

1

(ii7) Assume u,, converges in measure to 0 then for every € = 5z we capable to gradually construct (ng)

with ng < ng41 such that
1 1
p{r e X 1 |uy(x)| > Q—k}) < ok for all n > ng.
Now let

E= Ulzex: |unk(x)|>2ik}= N E..

n>1k>n n>1

Observing that E, 1 C E, and pu(X) < oo then the monotonicity of the measure p yields

: R 1 N D
p(E) = lim p(E,) < nlbnéo; pl{lun, ] > 553) < nlggog ok = Jim oo =0
If € X \ E then there exists N, > 1 such that z ¢ {z € X : |up, (x)] > 55} for all k > N, ie
|un, (z)| < 5 for all k > N, which means that uy, (z) LmiNG Hereby providing the subsequence sought
for. O

Setwise the convergence in measure on a finite measure space may be defined by means of a topology.

Proposition A.11. Assume the measure p is finite, i.e. w(X) < co. Let (up)nen be a sequence of
measurable functions. A mnecessary and sufficient condition for (up), to converge in measure is that

plu,) 2222 0 where
R
plu) = /X Tt Ju(z)] )

Proof. First and foremost, it clearly appears that for each € > 0 and every n > 1 we have

o) ey

= : n Z = : o
An={re X @]z e} ={ve X: 2>

205



Appendix A. Lebesgue Spaces

Utilizing this remark, entails on the one hand that p(A,) < <p(u,) and on the other hand that

plun) = | @l / @l

o L fun(2)] \A, 1+ [un ()]

<[ vdu s [ ) = ) + ().
A X\ A, 1+e¢

n

The claim readily follows by letting n — oo and after € — 0.

Remark A.12. It clearly appears that the convergence in measure induces a topology on the set of class
of measurable functions on X which is metrisable relatively to the distance function

)=l o) = [ |(Z<)a5 fff?ln )

The convergence in measure induces a topology on the space of class of measurable functions. The
following theorem states its completeness under this topology. For a proof we refer to [Bog07, [Gra0g].

Theorem A.13. A sequence (un)n of measurable functions on X that is Cauchy in measure converges
in measure up to a subsequence.

Theorem A.14 (Ergorov’s Theorem). Assume that E C X is a measurable subset with finite measure,
i.e. p(F) < oo. If (un)n is a sequence of measurable functions converging almost everywhere on A to a
function u then for every e > 0 there is A C E such that u(A) < ¢ and the convergence of (un)n to u
holds uniformly on E \ A.

Proof. Let us fix kK > 1 and consider the measurable set

}.

=

Ay = ﬂ Ak with A, = U {zx € E: |up(x) —u(x) >

n>1 m>n

Let x € Ay, it turns out that for all n > 1 there is m > n such that |u,,(z) — u(z)| > 1. In other words,
x belongs to a set of measure zero given that (uy), converges to u almost everywhere on E. Hence it is
easy to recognise that p(Ax) = 0. Moreover u(F) < oo and A,41 % C Ay so that by the monotonicity
of the measure p, nlLII;O (An k) = p(Ag) = 0. Now for fixed e > 0 there is ny such that p(A4,, ) < 5%

Therefore setting

}

i

A= UAnk’k: U U {.%EEI |um(x)—u(x)|2

k>1 k>1m>ny
one obtains p(A) < € and the uniform convergence (uy,), on E \ A follows since for each k > 1
1
sup |um(z) —u(x)| < % for all m > ny.

z€E\A

O

It is significant to mention that the conclusion of Ergorov’s theorem may fail if the finiteness of u(FE) is
violated. Indeed on R, the sequence u,, = 1|, ;1) converges pointwise everywhere to u = 0 on R and
does not uniformly since for each n > 1 sup |u,(z)| = 1.

z€R

Let us now introduce some important notions such as the equiintegrability and the tightness.
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Definition A.15. A set F of measurable functions on X is called uniformly integrable (or equiintegrable)
if: for every € > 0 there exists 0 > 0 such that for a measurable set E € A, if u(E) < 4, then

/ lu(z)] dp(x) < e for all we F.
E

This can be fairly written in short form as

lim sup/ lu(z)| du(z) =

W(E)=0 yeF

More generally, F is called p-uniformly integrable (or p-equiintegrable) for some 1 < p < oo if

lim su/uq:pd z) =0.
(i sup [u(z)[” du(z)

The next result gives an equivalent definition of the equiintegrability.

Proposition A.16. Let F be a set of measurable functions. The following assertions are true.

(1) A necessary and sufficient condition for F to be uniformly integrable is that

lim sup ‘ / =0.
WE)—=0 yeF
(#4) If in addition, F is a bounded subset of LP(X) then F is uniformly integrable if and only if

lim sup / lu(z)|” dp(z) = inf sup / lu(z)P du(z) = 0.
R—ooyeF R20yer
{lu|=R} {lul=R}

Proof. (i) It is clear by definition that the uniform integrability implies

lim sup ‘ / =0.
W(E)=0yeF

For the converse, let € and § be such that if u(E) < 4,
‘/ <8/2 for all we F.

Observe that for every u € F and fix a measurable set E with u(E) < 6, the sets By = EN{u > 0}
and Fy = EN{u < 0} are measurable too. Hence, the desired claim follows from the above since u is
arbitrarily chosen and pu(FE7), u(E2) < 6 and

wammmzéﬁgywm+émﬁymmw

’/ x) dp(z +‘/ <e.

(i1) Assume F is bounded in LP(X) and let M = sup ||ul|z»(x). For u € F and every R > 0 we have
ueF

pllol > By = o [ @)l dn(o) < g5 [ Juta)| dute) < 55
{lul>R}
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This forces p{|u| > R} — 0 as R — oo and hence if F is uniformly integrable then

lim sup / |u(x)] du(x) = mf sup / |u(z)| dp(x) = 0.
R—ooyer R20yeF
{lul>R} {lul=R}

The converse holds straightforwardly since for each measurable set £ with a small measure, the following
is true.

sup / lu(z)] du(z) < sup / [u(z)| du(:c>+sug / u(@)] dp(z)
ue ue
Eﬁ{\u\<R} En{|u|=R}

<Mp(E)+swp [ fule)] duo).
ue
{lu|>R}

O

We now introduce the tightness which an is accurate expedient concept preventing a family of measurable
function from escaping to infinity.

Definition A.17. Let 1 < p < co. A set F of measurable functions on X is called to be p-tight (or
simply tight for p = 1) if for every £ > 0 there exists measurable set E with a finite measure i.e u(F) < oo
such that

/ |u(x)|P du(z) <e  forall weF.
X\E

This can be written in compact form as

inf sup/ lu(z) [P dp(z) = 0.
n(E)<eo  yeF JX\E

E measurable

When X = R? is equipped with the Lebesgue measure the p-tightness F is equivalent to

lim sup / |u(z)|P dz = 0.
R—ooyeF
{lz|>R}

Warning: Some authors define equiintegrability as uniform integrability plus tightness. Of course if
u(X) < oo then the tight is gratuitous.

Remark A.18. Let u € LP(X) then the set F = {u} is p-tight and p-uniformly integrable. Indeed, since
u is integrable, it emanates form the monotone convergence theorem that for £ > 0 there is n > 1 large
enough such that

/ (@)L o< 11 (2) dpa(a) < ¢
X
and as well
[ WL g (0) i) < 22
X

On one hand, the tightness follows from the first estimate since letting A, = {x € X : |u(z)| > 1} the
Chebyshev’s inequality yields

pA) = ilf € X ¢ fu@)] > 1) < nllull o) < o0
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and we have
/ (@) dpu(e /|u DLy 1) dp(a) < =.
X\A,

On the other hand, for any measurable set F with u(E) < § = £/2nP the second inequality leads to the
uniform integrability through the following.

/ ()P dp(z / () [PL{ ) <y () dpa() / () P g () ()
Pu(E) + /X () T gajomy (2) dpa(a) <

<nfu(E

Correspondingly, upon the above observation any finite subset {uy, - ,ux} of LP(X) is also p-tight and
p-uniformly integrable.

We now are in a position to state the Vitali convergence theorem.

Theorem A.19 (Vitali convergence theorem). Let u and (uy), be a sequence of measurable functions.
Then (un)yn converges to u in LP(X) with 1 < p < oo if and only if (un)n is p-uniformly integrable, p-tight
and converges in measure to u.

Proof. Assume (u,), converges to u in LP(X) then the convergence in measure follows from to Propo-
sition Note that for every measurable set A C X we have

/A fun(@) P dpa(z) < 20 /A ()P dpu(z) + 20 /X fun(z) — u(@)P du(z).

Given that for each N > 1 the set {u,u1,--- ,un} is p—uniformly integrable and p-tight as a finite subset
of LP(X) so is the sequence (uy)n since ||un, — ul|Lr(2) 270,

Let us now show that the converse holds true. Again from Proposition we can assume that (up),
converges almost everywhere to u on X. Now for fixed ¢ > 0 the p-uniform integrability and the p-
tightness imply that there exist § > 0 and a measurable set £ C X with u(E) < oo both depending solely
on ¢ such that

sup/ |tun ()P du(x) < e and sup/ lun ()P du(x) < e forall u(A) <.
X\E

n>1 n>1JA

Given the pointwise convergence, with the aid of the Fatou’s lemma the above estimates respectively
imply

— 00

/ lu(2)[P dp(z) < liminf / (@) dus() < €
X\E n X\E
and
/ |u(x)|P du(z) < lim>i{1f/ lun ()P du(x) <e forall wp(A) <.
A nz A

Combining these estimates with the previous ones gives

sup [ |un(x) —u(z)P du(z) < 2Pe and sup/ lun () —u(z)P du(z) < 2Pe, ¥V u(A) <. (A.1)

n>1JX\E n>1JA

Since pu(F) < oo, for the choice of § > 0 as above the Ergorov’s Theorem reveals that there is a
measurable set A C E with p(A) < 6 such that (uy,), converges uniformly to u on E \ A4, i.e.
[P 2222 0.

sup fun () — u(x)
z€FE\A
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For the particular choices of F and A with pu(A) < ¢ in combination with the estimates in (A.1)) we get
[ fen(@) = w@P du@) < [ Junla) = wl@)? duo) + [ Jun(a) = u(@)? du(o)
b's X\E A
[ o)~ u(@)” duo)
E\A

<24+ 2Pe+ pu(E\ A) sup |up(x) — u(x)|P.
rEE\A

The expected convergence in LP(X) thus follows by letting n — oo and € — 0 successively. O

Remark A.20. Note that the tightness cannot be completely dropped. Indeed on R, if we consider
Up = 1 41) then (uy,), converges pointwise everywhere to u = 0 and is uniformly integrable since for
each n > 1 and every measurable set E with |E| < e,

/ undz = |EN [n,n+1]| < |B] <.
E
Nevertheless,

1= lim up(z) dz # lim u,(x) dz = 0.
n—o0 n—oo
b'e X
We now visit some consequences of Vitali’s convergence theorem.

Corollary A.21. Let (uy)n be a sequence of LP(X) with (1 < p < 00) converging almost everywhere to
u € LP(X). Then (un), converges to u in LP(X) if and only if (|un|P)n converges to |u|P in L'(X).

Proof. The result plainly springs from Theorem based on the observation that (uy,), is p-uniformly
integrable and p-tight if and only if (|u,|P),, is uniformly integrable and tight. O

A deeper version of the above result is the following.

Corollary A.22. Let (u,)n be a sequence of LP(X) with (1 < p < o0) converging almost everywhere to

n—o0

u € LP(X). Then (uy), converges to u in LP(X) if and only if ||un | Le(x) —— [JullLe(x)-

Proof. The forward implication is obvious hence let us prove the converse statement. Assume ||uy, || r(x) —

lullLr(x) as n — co. Put g, = max(0, |ul’ — |u,|P). We have g, 272 0 pointwise almost everywhere,
(gn)n uniformly integrable and tight since 0 < g,, < |u|? for each n > 1 and |u|P € L'(X). Wherefore,
Theorem [A.T9] implies

/ max(0, [uf? — [un|?) dpu() = / g () dpa() 220,
X X

Taking into account the identity |u,|? — |u|P = h, — g, with h, = max(0,|u,|P — |u|’) and ¢, =
max (0, |u|? — |u,|P), the assumption also entails

tim [ ho(e) dpe) = lim (lualle, = [0l ) = tm [ gn(@)dute) =o.
X

n—oo X n—oo

Finally, since ||u,|P — |u|P| = hy, + g = max(0, |u,|P — |ul?) + max (0, [uP — |u,|P) we get
n—oo

lim /X n(@)]? — [uf? ()] dps(z) = 0.

That is (|un|P), converges to |ulP in L'(X) thus by Corollary (un)n converges to u in LP(X).
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Alternatively one may consider the sequence of positive functions (27~ (|u, [P + [u[P) — |u, — u|P),, which
converges almost everywhere to 2P|u|. Therefore, in view of Fatou’s lemma and the assumption we get

2l ) < limin [ 277l + ul?) = o = ul”] )

= 2l ~ limsup [ i~ ul?) dp(e).
n— 00 X

The result follows since we have shown that limsup [[u, — u|[L»(x) = 0. O
n—oo

The special case p = 1 provides the following well-known and established Scheffé lemma.

Corollary A.23 (Scheffé Lemma, [Wil91], p.55). Let (un), be a sequence of L*(X) converging almost
everywhere to u € L*(X). Then ( un)n converges to u in L*(X) if and only if

/ ()] duz) 222 / ()] du(e

A typical application of Vitali’s theorem is provided by the next result.

Corollary A.24. Assume u(X) < oo and 1 < p < oo. Let (up), be a bounded sequence of LP(X)
converging almost everywhere to u. Then (uy), converges to u in L™(X) for all1 <r < p.

Proof. The r-tightness (uy), obviously holds true and the r-uniform integrability follows from Holder
inequality
r p(E)—0

sup /E un ()" dp(x) < u(E)*5 sup ( /X (@) dp@) < Cu(E)'

n>1 n>1

0.
O
The celebrated Lebesgue dominated convergence theorem appears as an immediate consequence of Vitali’s

convergence theorem.

Theorem A.25 (Lebesgue dominated convergence theorem). Let (uy,)y be a bounded sequence of LP(X)
with (1 < p < 00) converging almost everywhere to u. Assume that there exists g € LP(X) such that

sup |un (z)] < g(z) for almost every x € X
n>1

then u € LP(X) and

Proof. The function g € LP(X) is p-uniformly integrable and p-tight so is (uy), because |u,| < g for all
n > 1 and thus the result follows from Theorem [A.19] O

Another consequence of the Vitali theorem is Brezis-Lieb lemma [BrelQ, Section 4.5] is the following.
Theorem A.26 (Brezis-Lieb lemma). Let (up), be a bounded sequence of LP(X) with (1 < p < o0)
converging almost everywhere to u. Then

Hu” P(X) — hm {”unHLp(X) — flun — u”ip(x)}'

n—oo n—oo

In particular, if [|un| Lr(x) —— l|ullr(x) then [Juy, — ul|Lr(x)y —— 0.

Proof. Note that boundedness plus almost everywhere convergence imply the weak convergence. Then
|ty — u| — 0 (weakly) in LP(X) and |u, —u[P™! — 0 (weakly) in L” (X). One concludes by noticing that
There exists a constant C' > 0 such that for all a,b € R (taking a = u,, — u, b = u),

lla+ b — |al = [bl] < C(]pI"~"a + |a]"~"D).
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